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Abstract For multi-field simulations involving a larger

number of different physical fields and in cases where

the involved fields or simulation codes change due to

new modelling insigts, e.g., flexible and robust parti-

tioned coupling schemes are an important prerequisite

to keep time-to-solution within reasonable limits. They

allow for a fast, almost plug-and-play combination of

existing established codes to the respective multi-field

simulation environment. In this paper, we study a class

of coupling approaches that we originally introduced in

order to improve the parallel scalability of partitioned

simulations. Due to the symmetric structure of these

coupling methods and the use of ’long’ vectors of cou-

pling data comprising the input and output of all in-

volved codes at a time, they turn out to be particularly

suited also for simulations involving more than two cou-
pled fields. As standard two-field coupling schemes are

not suited for such cases as shown in our numerical

results, this allows the simulation of a new range of

applications in a partitioned way.
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1 Introduction

The simulation of the interaction between three or more

physical fields, so-called multi-physics scenarios, is cru-

cial in many engineering or biomedical applications.

This includes, for example, fluid-structure-acoustic in-

teraction (e.g. [12]), where the acoustic field can be

seperated in a complex near field and a simplified far

field, or simulations of the heart, where electro-magne-

tism, fluid flow, and structure equations are coupled

([11]). Also scenarios with multiple flow fields such as

partially filled tanks on container ships ([7]) belong

to this class. If the coupling is restricted to a lower-

dimensional manifold in the computational domain,

which is the case in the mentioned examples, we speak

of surface-coupled problems. Two-physics versions of
such applications, in particular fluid-structure interac-

tions, have been widely simulated with partitioned ap-

proaches until more and more monolithic methods and

codes have evolved throughout the last years. In purely

monlithic approaches, a completely new software for

a specific set of coupled equations is developed that

solves the large coupled system as a whole. Although

monolithic approaches are very efficient to tackle es-

tablished multi-physics applications where neither the

fields nor the used discretization methods are expected

to change drastically over a long time period, they im-

ply an unfeasible complexity, if a varying set of physical

fields and discretization methods is considered. Direct

coupling and quasi-direct coupling methods were de-

veloped for fluid-structure simulations in [1] that delib-

erately use nonmatching meshes at the fluid-structure

interface and reduce to monolithic methods for match-

ing grids. These methods, to some degree, make the

overall FSI solver environment more modular. The con-

nection at non-matching grid interfaces is established
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via suitable projection equations, which are solved us-

ing sublevel iterations. However, often black-box solvers

that allow to access only input-output information are

to be used. Here, the partitioned approach comes into

play that splits the physical domain into single-physics

fields, simulates all fields with their own solvers, and

couples these solvers via common interfaces. This gives

us the possibility to reuse existing software and, thus,

considerably speed up the code development time. As

long as the coupling is restricted to a surface (instead of

the whole volume of the domain), the amount of data

to be transferred between the solvers is comparable to

the amount of data transferred in a distributed mem-

ory parallelization of the single fields which makes the

partitioning feasible in terms of runtime performance.

However, the splitting into single fields possibly in-

troduces stability issues that need to be tackled by ad-

vanced coupling algorithms. Depending on the type of

interaction between the single physical fields, the task

of finding a stable and accurate coupling method can

be easy or rather difficult. We speak of a uni-directional

interaction if the mutual influence between two phys-

ical fields Pi and Pj is only one-sided, e.g., Pi influ-

ences Pj but not vice versa. Such problems can be han-

dled easily and efficiently even with a file-based one-

time data transfer between the single field solvers and

is, therefore, not considered in this paper. We focus

on bi-directional interactions where both fields have an

impact on each other. Depending on the strength of

the bi-directional interaction, more or less sophisticated

methods are required for the numerical coupling of the

fields.

For coupling of only two fields which we refer to

as bi-coupling schemes in the following, a variety of

partitioned methods from explicit schemes (executing

only a fixed number of single field solves per multi-field

time step [5]) to stable implicit schemes (iterating be-

tween the single field solvers until the time step equa-

tion converges to the monolithic solution) are known

from literature. Explicit coupling schemes are known

to yield stable time-stepping only in cases with a rel-

atively weak bi-directional coupling. Implicit schemes

are particularly necessary for fluid-structure interac-

tion (FSI) with incompressible fluids, a typical case

for a strong bi-directional interaction due to the so-

called added mass effect (e.g. [3,2]). Established stable

iteration methods are Aitken underrelaxation ([10]), or

quasi-Newton methods ([4,19,14,15])1. Usually, these

1 In block-iterative coupling and partitioned approaches
with direct access to discretization details, increasing the en-
tries of the structural mass matrix is a further possible sta-
bilization technique that dates back to 2003 and earlier (see
[1] and citations therein)

methods execute the single field solvers in a staggered

way, i.e., one after the other which limits the scalabil-

ity of such a simulation on massively parallel systems.

As massively parallel computations are necessary for

multi-physics scenarios, since only a high resolution of

all fields allows to take advantage of the more com-

plex modeling of multi-physics scenarios compared to

single-physics scenarios, we developed implicit coupling

algorithms executing the involved single field solvers in

parallel to each other ([17,13]).

Whereas many coupling algorithms for systems in-

volving two surface-coupled physical fields have been

developed in the last decade, there are hardly any gen-

eral and robust methods available for the coupling of

multiple fields. In [16], a multi-coupling algorithm that

needs full Jacobian information (non-black-box) is de-

scribed and tested for lower dimensional problems. The

necessity of full Jacobian information makes it very

cumbersome to integrate this algorithm in 2D or 3D

scenarios already in the case of non-black-box solvers.

In this work, we develop and discuss multi-coupling

algorithms that are derived from either a simple com-

position of bi-coupling schemes or a generalization of

the underlying idea of our parallel coupling to a true

multi-coupling. To our knowledge, this is the first time,

that a fully-implicit black-box multi-coupling algorithm

is described that allows to simulate scenarios in a parti-

tioned way. The results in Sects. 6 and 8 show that the

easiest approach, i.e., the composition of bi-coupling

schemes, is not sufficient already for moderately diffi-

cult problems.

The remainder of this work is organized as follows:

A model problem containing three different physical

fields is introduced in 2. Section 3 shortly recalls the

staggered and our parallel bi-coupling approach based

on IQN coupling schemes. Based on this, we propose

different multi-field coupling methods for the example

of the model problem from Sect. 2 in Sect. 4. Section

5 shortly introduces the inhouse coupling software pre-

CICE in which all coupling methods are implemented.

A first set of numerical results for our model problem is

presented in Sect. 6. Sect. 7 generalizes the ideas of our

multi-coupling approach to general multi-field scenar-

ios, followed by a second set of numerical results for a

further academic multi-coupling scenarion in Sect. 8.

Finally, Sect. 9 concludes this work with some pre-

liminary guidelines how to choose the optimal multi-

coupling scheme for a particular scenario.

2 A Fluid-Structure-Fluid Model Problem

For the sake of clarity, we start with a model prob-

lem comprising three solvers, two fluid solvers F1 and
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F2 and one structural solver S solving a scenario with

two (possibly different) fluids separated by an elastic

structure. As the two fluid solvers do not have a direct

interaction with each other, this model scenario corre-

sponds to the graph shown in Figure 1.

F1 S F2
f d

fd

1

1 2

2

Fig. 1 Multi-physics model problem, represented in a de-
pendency graph. Two fluid solvers F1 and F2 compute force
values f1 and f2, acting as input values for the structural
solver S, who itself gives back displacement values d1 and d2
to the fluid solvers.

This model problem contains already many basic

issues of general multi-physics scenarios. Therefore, we

use it to study various multi-coupling approaches with-

out the formalism needed to describe general multi-

physics problems. We want to stress that all techniques

developed in this work can be generalized in a straight-

forward way to problems comprising more than three

physical solvers as sketched in Section 7. Also the im-

plementation in preCICE allows for more complicated

scenarios.

The densities ρF1, ρF2, and ρS in all three physical

domains and the geometrical shape of the structural do-

main determine the strength of the three-field interac-

tion, and, thus, have a crucial impact on the suitability

and performance of coupling schemes. We use this fact

to study different setups with strong or weak interac-

tion between all three fields as well as strong interaction

between two fields and weak interaction with the third

field in Section 6. We introduce a variety of coupling

approaches and discuss their theoretical applicability

in the following two sections.

3 A Short Review of Staggered and Parallel

Two-Field Coupling

As our multi-field coupling ideas are based on our de-

velopments for parallel two-field coupling, we shortly

recall the underlying ideas in this section. The basis of

our parallel coupling approach is the following observa-

tion: Each multi-physics problem can be reformulated

as a fixed-point equation (FPE). This is widely used

in classical partitioned FSI problems, where many cou-

pling algorithms are derived from the FPE

(S ◦ F )(d) = d . (1)

where S and F denote the structure and the flow solver,

respectively, d is the displacement (or the velocity) of

the structure surface. Below, f is the force exerted on

the structure surface by the fluid. We showed in [17,13],

that the same solution is achieved from the alternative

FPE in matrix-like notation(
0 F

S 0

)(
f

d

)
=

(
f

d

)
, (2)

which we refer to as the vectorial system. The two

fixed-point equations are associated to two different ex-

ecution orders of flow and structure solver in an iter-

ative solution method as shown in Fig. 2. Thus, the

second fixed-point equation has the advantage that the

fluid and the structure solver can be executed in paral-

lel to each other leading to a better parallel efficiency.

In Sect. 4.2, we use a similar idea to get from com-

binations of bi-coupling methods to a true multi-field

coupling.

F S

F

S

F

S

F

S

F

S

F S

staggered coupling

parallel coupling

Fig. 2 Schematic view of the execution order of fluid and
structure solvers for the standard staggered approach cor-
responding to the staggered fixed-point equation (1) and the
parallel coupling approach corresponding to the parallel fixed-
point equation (2).

Before proceeding to multi-field coupling, we should,

however add some remarks on suitable solution meth-

ods for the parallel fixed-point equation (2). We showed

in [13] that simple FPE solvers such as a fixed-point it-

eration or an Aitken underrelexation for classical FSI

problems lead to a two times slower convergence when

using (2) compared to (1). Sophisticated quasi-Newton

FPE solvers, based on the solution of a least-squares

system in every iteration, however, show only a slight

degradation of the convergence rate. Such a quasi-New-

ton least-squares (QNLS) solver (cf. [8]) was applied for

(1) in [4] based on similar ideas in [14,19] and for (2)

in [17,13]. Algorithm 1 describes the QNLS technique

for a general fixed-point equation H(x) = x. In a tran-

sient setting, the reuse of iteration values from previous

time steps can lead to a far better efficiency (cf. [4,13]).
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We write QNLS(n) for a quasi-Newton solver reusing

information from n time steps.

Algorithm 1 Quasi-Newton least squares method in

pseudocode (cf. [4,8])

initial value x0

x̃0 = H(x0) and R0 = x̃0 − x0
x1 = x0 + 0.1 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk
if ‖Rk‖/‖xk‖ < ε : break
V k = [∆Rk

0 , . . . , ∆R
k
k−1] with ∆Rk

i = Ri −Rk

Wk = [∆x̃k0 , . . . ,∆x̃
k
k−1] with ∆x̃ki = x̃i − x̃k

decompose V k = QkUk

solve the first k lines of Ukα = −QkTRk

∆x̃ = Wα
xk+1 = x̃k +∆x̃k

end for

4 Options for Multi-Field Coupling

4.1 Composition of Bi-Coupling Schemes

This section discusses methods for multi-coupling that

can be easily derived (and implemented) as a combi-

nation of existing bi-coupling methods. There are basi-

cally two ways to combine bi-couplings: concatenation

(Section 4.1.1) and inclusion (Section 4.1.2).

4.1.1 Concatenation of Bi-Coupling Schemes

The straightforward idea to couple multiple physical

solvers Pi is to use a bi-coupling scheme for each edge

in the multi-physics graph as displayed in Figure 3 for

our model problem from Section 2. In this setting, each

bi-coupling scheme can be adjusted to meet particular

needs. In particular, we can choose whether an explicit

or an implicit scheme is required for each bi-coupling

separately. Figure 4 shows that different choices lead

to different execution orders of the physical solvers.

All combinations sketched in Figure 4 are supported in

preCICE (cf. [6] and Section 5). If two implicit schemes

are used, they do, in general, not convergence at the

same time. In this case, the early converged coupling

scheme waits until convergence of all schemes.

Sophisticated implicit coupling schemes such as Ait-

ken underrelaxation or quasi-Newton methods reuse in-

formation collected over several iterations to estimate

the response of the coupled system and, finally, to choose

the best coupling parameters. If we concatenate bi-

coupling schemes, we introduce an artificial decompo-

sition into pairs of coupled solvers. I.e., we apply fixed-

point solvers to smaller systems that each contains only

two fields. Combining two IQN solvers for our model

F1 S F2
f d

fd

1

1 2

2

bi-coupling bi-coupling
Fig. 3 Schematic view of the three-field coupling for the
model problem from Section 2 using a concatenation of two
bi-coupling methods, one for each edge in the interaction
graph.

problem in the way sketched in the lower left graph in

Fig. 4, this means that we aim at solving(
d1

d2

)
= S ◦

(
F1 0

0 F2

)(
d1

d2

)
by decomposing it into the two equations

d1 = Sf2 ◦ F1(d1) and

d2 = Sf1 ◦ F2(d2).

Note that the subscripts ·f1 and ·f2 indicate that the

response of the structure solver applied to the result of

one of the two fluid solvers at the same time depends on

the result of the other fluid solver. This implies that, if

both coupling schemes are implicit, they hamper each

other since the response of the two corresponding fixed-

point operators Sf2 ◦F1 and Sf1 ◦F2 changes with f1

and f2. Similar considerations apply for the case of a

concatenation of two instances of our parallel implicit

coupling schemes introduced in [17,13]. This type of

concatenation is shown in the lower right picture in

Fig. 4 where we solve the two subsystems(
0 F1

Sf2 0

)(
f1

d1

)
=

(
f1

d1

)
and(

0 F2

Sf1 0

)(
f2

d2

)
=

(
f2

d2

)
.

In mathematical terms, this means that the Jaco-

bian of both two-field subsystems in the three-field sys-

tem changes substantially throughout the iterations.

This makes it almost impossible for the third solver

to get any useful information on the response of such

a subsystem. This is especially a problem if both fluid

solvers F1 and F2 are indirectly strongly coupled which

is the case for a very thin, elastic or lightweight struc-

ture. The impact of the described problem, depends,

thus, on the geometrical shape and the stiffness of S.

Numerical experiments in Sect. 6 confirm this conclu-

sion. Obviously, this problem reappears in general multi-

physics problems, if multiple implicit bi-coupling sche-

mes influence each other. A simple concatenation of bi-

coupling schemes does, in general, not result in a stable

overall coupling. In Sections 4.1.2 and 4.2, we present

possible remedies.
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4.1.2 Inclusion of Bi-Coupling Schemes

The alternative to a simple concatenation of bi-coupling

schemes is the inclusion of bi-coupling schemes. Here,

two physical solvers coupled by a bi-coupling scheme

are regarded as an entity from the outside and are cou-

pled with the third solver using a bi-coupling approach

again. Figure 5 shows a variant of this approach for

our model problem: F1 and S are bi-coupled and the

converged entity (F1S) is bi-coupled with F2. Different

from the methods in Section 4.1.1, this implies, that we

have induced a nesting of iterations: In the inner iter-

ation, we iterate between F1 and S until convergence

to the two-field monolithic solution. The result is then

transferred to F2 which returns its result to S. This

outer coupling is then repeated until convergence to

the three-field system. If we assume that M iterations

are required for both the inner and the outer iteration,

a total of M2 solves is required for F1 and S, whereas

M solves are needed for F2. Only if we apply an explicit

scheme to the outside coupling, the overall scheme does

not differ from a concatenation scheme.

F1 S F2
f d

fd

1

1 2

2

bi-coupling

bi-coupling

Fig. 5 Schematic view of the three-field coupling for the
model problem from Section 2 using an inclusion of two bi-
coupling methods. Two coupled physical solvers are regarded
as an entity from the outside and are coupled with the third
solver. If two implicit schemes are applied, this results in two
nested iteration loops.

We suppose that the inclusion of two implicit schemes

always results in an overall stable coupling if we choose

appropriate methods for each of the bi-couplings. The

disadvantage of a multiple inclusion is its computa-

tional cost: the number of solver executions grows expo-

nentially with the number of physical fields if we assume

that each coupling schemes needs a constant amount of

iterations. This is the reason, why we did not imple-

ment such schemes in preCICE. In the next section, we

develop a far more efficient and stable multi-coupling

scheme.

4.2 Multi-Coupling Schemes

In this section, we generalize our parallel bi-coupling

schemes to proper multi-coupling schemes by directly

looking at the coupling of multiple solvers as depicted

in Figure 6.

F1 S F2
f d

fd

1

1 2

2

multi-coupling
Fig. 6 Schematic view of the three-field coupling for the
model problem from Section 2 using a multi-coupling ap-
proach, i.e. considering all interactions in an overall coupling
system.

We’ve already used different types of fixed-point

equations in Sects. 4.1.1 and 3 who’s solution leads to

the monolithic solution of the respective coupled multi-

field problem. For our three-field model problem, we

could also execute all three involved solvers in parallel

to each other. If we (as in the step from staggered to

parallel flud-structure coupling) leave the in- and out-

put relations of all three solver unchanged, this corre-

sponds to the iteration
f it+1
1

f it+1
2(
dit+1
1

dit+1
2

)
 =


F1(dit1 )

F2(dit2 )

S(f it1 , f
it
2 )


if we don’t use any underrelaxation or quasi-Newton

convergence acceleration. Thus, written in matrix-like

form, we solve the fixed-point equation
0 0 F1 0

0 0 0 F2

S11 S12 0 0

S21 S22 0 0



f1
f2
d1
d2

 =


f1
f2
d1
d2

 . (3)

This FPE can now be solved with any FPE solver.

Again, the quasi-Newton method mentioned above in

Sect. 3 is a very powerful solver. If a quasi-Newton least

squares method reusing the information of n previous

time steps is applied for a complete multi-physics prob-

lem such as (3), we refer to the coupling scheme as the

“multi interface quasi-Newton” scheme (MIQN(n)).

The fixed-point x that Algorithm 1 seeks for con-

sists, in our model problem, of the four different subvec-

tors f1, f2, d1, and d2. The solution of the least-squares

system in QNLS (Algorithm 1 uses a QR-decomposition),
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depends highly on the mutual scaling of those subvec-

tors. In classical FSI applications, force vectors often

have substantially larger values than the displacements,

in particular if displacement increments are used in-

stead of absolute displacements relative to the initial

state. In order to balance the influence of all subvectors

we, thus, have to apply a normalization. In our studies,

we found that a static scaling of the force vectors results

in a sufficiently good balance. The potential of further

improvements if using a dynamical scaling is subject of

further research.

5 The Coupling Software preCICE

All coupling methods used in Section 6 are implemented

in preCICE, a coupling library ([6]) developed in our

group, which offers, besides different coupling algorithms,

also methods for mapping data between non-matching

meshes and communication routines. The application

interface of preCICE is formulated on a very high level,

allowing for a minimally invasive inclusion in any single-

physics code. Once a solver is adapted to preCICE, dif-

ferent other solvers can be coupled in a nearly plug-

and-play manner. Different solvers including commer-

cial tools such as Fluent or COMSOL, open source tools

such as OpenFOAM, and in-house codes (e.g. [18]), have

been coupled successfully to preCICE. preCICE itself is

open-source software2. For sake of brevity, implemen-

tation details of preCICE are left out in this work. The

interested reader is referred to [6].

6 Numerical Results: Fluid-Structure-Fluid

6.1 Experiment Settings

Figure 7 depicts the geometry of the scenario that we

study numerically. Two fluid domains F1 and F2 are

separated by an elastic beam S, which is fixed on both

ends. We distinguish two variants, which differ in the

vertical extent of the beam: one thin variant S1, d1 =

0.2, and one thick variant S2, d2 = 1.0. The thin vari-

ant induces a stronger indirect interaction between the

two fluid fields than the thick variant. The structure

is modeled by a St. Venant-Kirchoff cantilever with

Young’s modulus E = 5.6 · 106 kg/ms2 and Poisson-

ratio 0.4 . The density of the structure varies from 102

to 103 kg/m3. Both fluids are modeled by the incom-

pressible Navier-Stokes equations, with dynamic vis-

cosity µ = 102 kg/ms. The inflows show a parabolic

velocity profile with mean velocity U = 1.0 m/s. The

2 http://www5.in.tum.de/wiki/index.php/PreCICE Webpage

F1

F2

S

rigid wall

rigid wall

inflow

inflowoutflow

outflow

5

2
2

d

Fig. 7 Scenario sketch: 2 fluid domains F1 and F2 are sep-
arated by an elastic beam S, which is fixed on both ends.
Two variants of this scenario are studied, which differ in the
vertical extent of the beam, d1 = 0.2 or d2 = 1 m.

densities of both fluids, ρF1 and ρF2, vary separately

in the range from 100 to 103 kg/m3, leading to either

weak or strong interactions between both fluids and the

structure.

We use Alya3 as the physical solver for all three

domains (cf. [18,9]). There is, however, no particular

need for this choice. Solvers can be exchanged in a

nearly plug-and-play manner to meet particular needs.

We showed, for example, in [13] the bi-coupling of COM-

SOL, Fluent, or OpenFOAM. Both fluid domains are dis-

cretized with approximately 4000 elements each, where-

as the structure consists of approximately 2250 (S1),

respectively 600 (S2) elements. We use a matching grid

at both interfaces. Alya uses finite elements for both,

structure und fluids. The moving structure is resolved in

the fluid by an arbitrary Lagrangian-Eulerian perspec-

tive, involving the movement of the underlying grid.

For further numerical details of Alya, we want to re-

fer to [18]. The timestep size is set to dt = 10−3 s.

To decide on the overall convergence, we use relative

convergence criteria of 10−3 for all coupling variables,

displacement increments and forces on both interfaces.

Figure 8 shows the results for the thin structure at

t = 1.0 s

6.2 Discussion

This subsection presents and discusses the results for

the test case described above. We vary the density of all

three physical fields and the thickness of the structure.

From literature (e.g. [3,2]), we know that the interac-

tion between fluid and structure gets stronger, and thus

the coupling gets more elaborate, if the density ratio

3 Alya is developed at the Barcelona Supercomputing
Center,
cf. http://www.bsc.es/computer-applications/alya-system.
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Fig. 8 Pressure values (N/m2), velocity vectors and grid
deformation for the fluid-structure-fluid model problem at
t = 1.0. This run uses the thin structure S1, the densities
ρF1 = ρF2 = 103 kg/m3, ρS = 101 kg/m3, and the MIQN(8)
coupling scheme. For sake of clarity, the structural displace-
ments are scaled by a factor of 5.

ρF /ρS raises. Furthermore, by lowering the thickness

of the structure, we can raise the indirect interaction

between both fluid fields. Table 1 shows the average

iteration numbers per timestep, listed for various den-

sity ratios, for both structures, and for the different

coupling schemes, we introduced in Sections 4.1 and

4.2. By “IQN(5) / IQN(5)”, we denote a concatenation

of two interface quasi-Newton schemes (developed in

[4]), with re-used information from 5 timesteps, whereas

CSS refers to the classical serial staggered scheme (the

trivial explicit scheme, discussed in [5]). MIQN is the

multi quasi-Newton coupling scheme, introduced in Sec-

tion 4.2. Our experiences in [13] determined the choice

of reused timesteps. For the MIQN scheme, we scale all

force vectors by a factor of 10−7 (compare the discus-

sion in Section 4.2).

In Table 1, we can observe several aspects. The up-

per part of the table shows results for a weak F1−S in-

teraction and a strong F2−S interaction. For this case,

we concatenate an explicit with an implicit scheme. We

can argue from the results that, in this case, the strong

interaction dominates the overall system. This means

that the implicit coupling is not hampered by the ex-

plicit scheme. We can observe this in the better conver-

gence of CSS / IQN(5) compared to CSS / IQN(0). If

the density of F1 is raised to 101 kg/m3, the interaction

between F1 and S also becomes a strong one, leading to

divergence if only an explicit scheme is used. In general,

the behavior of the overall system, in this case, is very

similar to the bi-coupling of F2 and S itself. The thick-

ness of the structure, in particular, has no important

influence here.

The middle block of Table 1 shows results for two

strong interactions, demanding an implicit scheme on

both interfaces. The concatenation of two implicit sche-

mes, however, is not successful, since both interface sys-

tems hamper each other (compare the explanation in

ρF1 - ρS - ρF2 Coupling S1 S2

100 - 103 - 103 CSS / IQN(5) 4.62 4.62
100 - 103 - 103 CSS / IQN(0) 9.04 9.24
101 - 103 - 103 CSS / IQN(5) crash crash

101 - 103 - 103 IQN(5) / IQN(5) crash 3.08 / 4.56
102 - 103 - 103 IQN(5) / IQN(5) crash crash
103 - 103 - 103 IQN(5) / IQN(5) crash 5.10 / 5.18
103 - 102 - 103 IQN(5) / IQN(5) crash crash
103 - 101 - 103 IQN(5) / IQN(5) crash crash

101 - 103 - 103 MIQN(8) 5.64 5.62
102 - 103 - 103 MIQN(8) 5.88 5.76
103 - 103 - 103 MIQN(8) 7.40 7.00
103 - 102 - 103 MIQN(8) 11.78 11.72
103 - 101 - 103 MIQN(8) 20.90 17.20

Table 1 Average iteration numbers needed for convergence
for various coupling configurations and different density ra-
tios (all values in kg/m3). S1 and S2 refer to the thin respec-
tively thick structure. The values are averaged over the first
50 timesteps. The upper part shows results for the concatena-
tion of an explicit and an implicit scheme, the middle part for
the concatenation of two implicit schemes (cf. Section 4.1.1),
and the lower part for the newly developed multi-coupling
scheme (cf. Section 4.2).

Section 4.1.1). It is striking that this problem especially

influences the test case with the thin structure S1, since,

here, both fluid fields possess a strong indirect interac-

tion. In this case, all density settings lead to divergent

runs. If the structure gets very thick, both interface

systems get quasi independent from each other, and a

concatenation of two implicit schemes can be successful.

If we then lower the density of S, both interactions be-

come stronger, and both interfaces influence each other

again.

The lower block of Table 1 shows results for the

same density settings, but now for the multi-coupling

scheme MIQN. We observe a stable coupling for all

settings. The number of iterations gets bigger for a

stronger interaction between both fluid fields and the

structure fields, but also for a stronger indirect interac-

tion between both fluid fields.

7 Ways to Generalize the Coupling

Our multi-coupling schemes are easily extendable to

arbitrary multi-field coupling. For a mathematical for-

mulation, we have to introduce an abstract notation:

To include also commercial tools with a closed appli-

cation interface, i.e., black-box solvers, we describe the

n single-field solvers Gi, i = 1, 2, . . . , n of an n-field

coupled system simply by input-output relations

Gi : xi,in 7→ xi,out for all i = 1, 2, . . . , n.
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Here, xin ∈ RN denotes a vector of nodal input val-

ues at the discretized coupling surface between Gi and

other physical fields. Pi maps this input to output val-

ues xout ∈ RN by calculating one timestep or one iter-

ation. A fluid solver in a so-called Dirichlet-Neumann

coupling, for example, gets displacement values from

(possible multiple) structure solvers at a common sur-

face, calculates new pressure and velocity values, and

finally gives back force values to the structure solvers

at the same coupling surface.

In general, we can model surface-coupled multi-phy-

sics scenarios as directed graphs where each vertex cor-

responds to a physical solver Pi and each edge from

solver Pi to Gj means that the output (or part of it) of

Pi is an input variable of Gj . Note that this can either

be in terms of actual physical coupling or in terms of

the modelling of the coupling. In our model, we might

decide to approximate a bi-directional coupling by a

uni-directional coupling or to even completely neglect

some of the coupling relations. A possible representa-

tion of the coupling graph is an adjacency matrix A

that has an entry aji = 1 if and only if the directed

edge from Gi to Gj exists. All other entries are zero.

The full vectorial fixed-point problem involving all

n single-field solvers G1, G2, . . . , Gn of our multi-field

problem in parallel reads

P


G1 0 · · · 0

0 G2
. . .

...
...

. . .
. . . 0

0 · · · 0 Gn



x1,in
x2,in

...

xn,in

 =


x1,in
x2,in

...

xn,in


where P is a permutation that reorders the output vec-

tors of the solvers such that the composed vector can be

used as an input for the next iteration. For our three-

field model problem from Sect. 2, we, e.g., can rewrite

the multi-coupling fixed point equation (3) as
0 I 0

0 0 I(
I 0

0 I

)
0



F1 0 0

0 F2 0

0

0

0

0
S




d1
d2(
f1
f2

)
 =


d1
d2(
f1
f2

)
 .

Before applying a multi-coupling for our whole multi-

field system, we should in a first step identify decoupled

subsystems (if any) and uni-directional coupling. As a

formal tool, we can use the permutation matrix P . We

can rewrite P in a block-wise manner using blocks Pi,j

defining which part of the output of solver Gj goes to

which part of the input vector of solver Gi:

P =

 P1,1 · · · P1,n

...
...

Pn,1 · · · Pn,n



P is closely related to the adjacency matrix of the

coupling graph: every non-zero entry aij in the adja-

cency matrix corresponds to a non-zero block Pij . If we

have k decoupled subsystems, i.e., if our coupling graph

has k independent components, P , thus, is a block-

diagonal matrix if a suitable ordering of the fields is

used:



 P1,1 · · · P1,n1

...
...

Pn1,1 · · · Pn1,n1


. . . Pnk−1,nk−1

· · · Pnk−1,nk

...
...

Pnk,nk−1
· · · Pnk,nk




︸ ︷︷ ︸

P

.

This is a quite artificial case as we usually don’t

choose a multi-field model where we have several com-

pletely independent subsystems. In addition, the ’solu-

tion’ in such a case is straight-forward: We solve the

subsystems independent from and possibly parallel to

each other. Therefore, we assume in the following that

we have a single fully-coupled multi-field problem. How-

ever, also in this case, we should have a close look at

our permutation matrix P in order to keep the costs

for the multi-field coupling as low as possible: if our

coupling graph can be partitioned into parts that have

only ’outgoing’ edges, this means that the respective

partition has only a uni-directional coupling to all other

fields. In a suitable ordering of the solvers Gi, this case

corresponds to an upper block-triangular matrix P :



 P1,1 · · · P1,n1

...
...

Pn1,1 · · · Pn1,n1

 · · ·
 P1,nq−1

· · · P1,nq

...
...

Pn1,nq−1
· · · Pn1,nq


. . .

...Pnq−1,nq−1
· · · Pnq−1,nq

...
...

Pnq,nq−1
· · · Pnq,nq




︸ ︷︷ ︸

P

.

In this case, we would use our true multi-field cou-

pling within the q subsystems only: We first solve the

system comprising Gnq−1
, . . . , Gnq

, then the subsystem

consisting of Gnq−2
, . . ., Gnq−1

and so forth until we

have solved the last block of coupled fields with G1,. . . ,

Gn1
.

In special cases, some of these field can be solved in

parallel to each other. This is the case if they do not

depend on each other but are only indirectly coupled

via a third subsystem.
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8 Numerical Results II: Fluid with Multiple

Structures

8.1 Experiment Settings

We use a second academic example to check the appli-

cability of our method for problems with different char-

acteristics. In this example, we embed several structures

in a single fluid domain.

2

10

2 31 0.5

F
S1 S2 S3 S4

Fig. 9 Scenario sketch: Four structure domains S1, S2, S3,
and S4 are embedded in a flow channel (F ). The structure
’towers’ are fixed at the bottom of the channel.

Figure 9 depicts the geometry of our second test

problem. Four elastic beams S1, S2, S3, S4 are embed-

ded in a flow channel of size 10 × 2 m and fixed at

the bottom wall of the channel. The structure beams

are modeled by St. Venant-Kirchoff cantilevers with

Young’s modulus E = 5 · 105 kg/ms2 and and Poisson-

ratio 0.4. The density of the structures is 10 kg/m3 for

S1, 0.1 kg/m3 for S2, 1 kg/m3 for S3, and 100 kg/m3

for S4 wherwas the fluid density is 1 kg/m3. Thus, the

coupling strength between fluid and structure varies be-

tween S1, S2, S3, and S4.

The fluid is again modeled by means of the incom-

pressible Navier-Stokes equations with the dynamic vis-

cosity µ = 1 kg/ms, the mean velocity of the parabolic

inflow profile U = 50 m/s. The Reynolds number of the

flow is Re = 100 (relative to the channel width).

As in the fluid-structure-fluid model problem, we

use Alya as the physical solver for all domains. All do-

mains are discretized with finite elements, the meshes

are matchting at all fluid-structure interfaces. The flow

domain is discretized using 4702 elements in an arbi-

trarily Lagrangian-Eulerian setting, each of the struc-

tures has 140 elements in a Lagrangian setting. The

timestep size is set to dt = 10−4 s. Relative convergence

criteria of 10−4 are used for all coupling variables. Fig-

ure 10 shows the results at t = 0.02 s

8.2 Discussion

This subsection presents and discusses the results for

the test case described above. For the first 200 time

steps using the MIQN(8) coupling scheme with a sec-

ond order extrapolation for the initial guess, we achieve

an average iteration number of 7.71 per time step. We

scale all force vectors by a factor of 10−6 (compare the

discussion in Section 4.2). If we use a concatenation

of bi-coupling schemes based on IQn as described in

Sect. 4.1.1, we observe divergence already in the first

time step.

To get some further insight in the mechanisms of

the observed divergence, we additionally simulated the

setup with the four structures having a very high den-

sity of 104 kg/m3, a scenario that we would expect to

be very stable. Table 2 shows the number of iterations

required with a concatenation of bi-couplings for each

of the involved IQN(8) schemes. We observe good con-

vergence in the first few time steps but a fast increase of

iteration numbers starting from time step 5. Thus, even

for a scenario whos equivalent with only a single struc-

ture is very easy to solve due to the high structure den-

sity, the concatenation of bi-coupling IQN schemes does

not give the desired results. We can conclude that the

instabilty for this case is purely induced by the changing

response of partner-solvers in the bi-coupling schemes

due to the influence of the other solvers.

F – S1 F – S2 F – S3 F – S4

step 1 5 5 5 5

step 2 4 4 4 4

step 3 4 4 4 4

step 4 4 4 4 4

step 5 3 11 21 27

step 6 7 7 18 7

step 7 14 14 39 14

step 8 13 34 42 26

step 9 26 50 35 35

step 10 35 35 46 46

Table 2 Iteration counts for the fluid flow with four embed-
ded structures coupled with a concatenation of bi-coupling
IQN(8) schemes over the first ten time steps. The fluid in the
underlying setup has a density of 1 kg/m3 whereas all four
structures have a very high density of 104 kg/m3.

For the MIQN(8) multi-couling scheme, we achieve

the result that we would have expected regarding the

high density ratio. Table 3 shows that very few itera-

tions per time step are sufficient.

This examples confirms the conclusion from the re-

sults for the fluid-structure-fluid model problem that

the MIQN coupling scheme is capable of automatically

tackling the physical coupling between multiple fields

even in cases where the strength of the coupling varies

within the overall system.
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MIQN(8)

step 1 7

step 2 5

step 3 4

step 4 5

step 5 4

step 6 2

step 7 3

step 8 3

step 9 2

step 10 2

Table 3 Iteration counts for the fluid flow with four em-
bedded structures coupled with the MIQN(8) multi-coupling
scheme over the first ten time steps. The fluid in the underly-
ing setup has a density of 1 kg/m3 whereas all four structures
have a very high density of 104 kg/m3.

9 Conclusions

In this work, we developed multi-coupling schemes based

on either a composition of bi-coupling schemes or a true

generalization of the underlying ideas of bi-coupling

schemes. We tested those schemes by means of a sim-

ple, but still challenging fluid-structure-fluid and fluid

with multiple structures model problems.

For the fluid-structure-fluid problem, we observed

that, if one fluid-structure interface posseses a weak

and the other one a strong interaction, the strong in-

teraction dominates the overall stability and a concate-

nation of an explicit with an implicit scheme (cf. Sec-

tion 4.1.1) leads to a stable multi-coupling scheme. If

both fluid-structure interfaces show a strong interac-

tion, a concatenation of two implicit coupling schemes

does not result in an overall stable scheme, since both

interface system hamper each other. For this case, we

developed a true multi-coupling scheme, named “multi

interface quasi-Newton” (MIQN) scheme by generaliz-

ing the ideas that we used in earlier work to deduce

parallel FSI coupling schemes ([17,13].

The numerical experiments for the fluid with mul-

tiple structures problem confirmed our conclusion that

our multi-coupling MIQN schemes are capable of tack-

ling multi-physics problems even in cases with variable

physical coupling strength between the involved fields.

In addition, we could show that a concatenation of bi-

coupling schemes using IQN fails even for scenarios

where we would expect the numerical coupling to be

stable due to the weak interaction between the fields.

To our knowledge, this is the first time, that a fully

implicit black-box multi-coupling scheme is described.

This allows to simulate a new range of applications in

a partitioned way.

We showed that the multi-coupling idea can be eas-

ily generalize to multi-physics problems consisting of

arbitrary physical fields. If one group of interface inter-

actions is weak, and the other one strong, it should al-

ways be possible to couple all strong interactions with

the MIQN scheme and then concatenate MIQN with

explicit schemes for each weak interaction.
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A 2D finite-element scheme for fluid-solid-acoustic inter-
actions and its application to human phonation. Com-
puter Methods in Applied Mechanics and Engineering
198 (2009). DOI 10.1016/j.cma.2009.06.009

13. Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzham-
mer, B., Zuijlen, A.V.: Parallel Coupling Numercis for
Partitioned Fluid-Structure Interaction Simulations. sub-
mitted to SIAM SISC (2013)

14. Michler, C.: An interface Newton-Krylov solver for fluid-
structure interaction. International Journal for Numeri-
cal Methods in Fluids 47 (2004)

15. Minami, S., Yoshimura, S.: Performance evaluation of
nonlinear algorithms with line-search for partitioned cou-
pling techniques for fluid-structure interactions. Int. J.
Num. Meth. Fluids 64 (2010)

16. Sicklinger, S., Belsky, V., Engelmann, B., Elmqvist, H.,
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Fig. 4 Execution orders for concatenation of different bi-coupling scheme. Whether the coupling scheme is explicit or implicit,
serial or parallel, the execution order differs. The selection of sketches is restricted to reasonable and non-trivial combinations.
For sake of simplicity, implicit coupling schemes are assumed to converge in 3 iterations.

Fig. 10 Velocities and grid deformation for the multiple structure problem at t = 0.02. The simulation used the MIQN(8)
coupling scheme with a second order extrapolation for the initial guess.


