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Abstract For multi-field simulations involving a larger
number of different physical fields and in cases where
the involved fields or simulation codes change due to
new modelling insigts, e.g., flexible and robust parti-
tioned coupling schemes are an important prerequisite
to keep time-to-solution within reasonable limits. They
allow for a fast, almost plug-and-play combination of
existing established codes to the respective multi-field
simulation environment. In this paper, we study a class
of coupling approaches that we originally introduced in
order to improve the parallel scalability of partitioned
simulations. Due to the symmetric structure of these
coupling methods and the use of 'long’ vectors of cou-
pling data comprising the input and output of all in-
volved codes at a time, they turn out to be particularly
suited also for simulations involving more than two cou-
pled fields. As standard two-field coupling schemes are
not suited for such cases as shown in our numerical
results, this allows the simulation of a new range of
applications in a partitioned way.
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1 Introduction

The simulation of the interaction between three or more
physical fields, so-called multi-physics scenarios, is cru-
cial in many engineering or biomedical applications.
This includes, for example, fluid-structure-acoustic in-
teraction (e.g. [12]), where the acoustic field can be
seperated in a complex near field and a simplified far
field, or simulations of the heart, where electro-magne-
tism, fluid flow, and structure equations are coupled
([11]). Also scenarios with multiple flow fields such as
partially filled tanks on container ships ([7]) belong
to this class. If the coupling is restricted to a lower-
dimensional manifold in the computational domain,
which is the case in the mentioned examples, we speak
of surface-coupled problems. Two-physics versions of
such applications, in particular fluid-structure interac-
tions, have been widely simulated with partitioned ap-
proaches until more and more monolithic methods and
codes have evolved throughout the last years. In purely
monlithic approaches, a completely new software for
a specific set of coupled equations is developed that
solves the large coupled system as a whole. Although
monolithic approaches are very efficient to tackle es-
tablished multi-physics applications where neither the
fields nor the used discretization methods are expected
to change drastically over a long time period, they im-
ply an unfeasible complexity, if a varying set of physical
fields and discretization methods is considered. Direct
coupling and quasi-direct coupling methods were de-
veloped for fluid-structure simulations in [1] that delib-
erately use nonmatching meshes at the fluid-structure
interface and reduce to monolithic methods for match-
ing grids. These methods, to some degree, make the
overall FSI solver environment more modular. The con-
nection at non-matching grid interfaces is established
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via suitable projection equations, which are solved us-
ing sublevel iterations. However, often black-box solvers
that allow to access only input-output information are
to be used. Here, the partitioned approach comes into
play that splits the physical domain into single-physics
fields, simulates all fields with their own solvers, and
couples these solvers via common interfaces. This gives
us the possibility to reuse existing software and, thus,
considerably speed up the code development time. As
long as the coupling is restricted to a surface (instead of
the whole volume of the domain), the amount of data
to be transferred between the solvers is comparable to
the amount of data transferred in a distributed mem-
ory parallelization of the single fields which makes the
partitioning feasible in terms of runtime performance.

However, the splitting into single fields possibly in-
troduces stability issues that need to be tackled by ad-
vanced coupling algorithms. Depending on the type of
interaction between the single physical fields, the task
of finding a stable and accurate coupling method can
be easy or rather difficult. We speak of a uni-directional
interaction if the mutual influence between two phys-
ical fields P; and P; is only one-sided, e.g., F; influ-
ences P; but not vice versa. Such problems can be han-
dled easily and efficiently even with a file-based one-
time data transfer between the single field solvers and
is, therefore, not considered in this paper. We focus
on bi-directional interactions where both fields have an
impact on each other. Depending on the strength of
the bi-directional interaction, more or less sophisticated
methods are required for the numerical coupling of the
fields.

For coupling of only two fields which we refer to
as bi-coupling schemes in the following, a variety of
partitioned methods from explicit schemes (executing
only a fixed number of single field solves per multi-field
time step [5]) to stable implicit schemes (iterating be-
tween the single field solvers until the time step equa-
tion converges to the monolithic solution) are known
from literature. Explicit coupling schemes are known
to yield stable time-stepping only in cases with a rel-
atively weak bi-directional coupling. Implicit schemes
are particularly necessary for fluid-structure interac-
tion (FSI) with incompressible fluids, a typical case
for a strong bi-directional interaction due to the so-
called added mass effect (e.g. [3,2]). Established stable
iteration methods are Aitken underrelaxation ([10]), or
quasi-Newton methods ([4,19,14,15])!. Usually, these

1 In block-iterative coupling and partitioned approaches
with direct access to discretization details, increasing the en-
tries of the structural mass matrix is a further possible sta-
bilization technique that dates back to 2003 and earlier (see
[1] and citations therein)

methods execute the single field solvers in a staggered
way, i.e., one after the other which limits the scalabil-
ity of such a simulation on massively parallel systems.
As massively parallel computations are necessary for
multi-physics scenarios, since only a high resolution of
all fields allows to take advantage of the more com-
plex modeling of multi-physics scenarios compared to
single-physics scenarios, we developed implicit coupling
algorithms executing the involved single field solvers in
parallel to each other ([17,13]).

Whereas many coupling algorithms for systems in-
volving two surface-coupled physical fields have been
developed in the last decade, there are hardly any gen-
eral and robust methods available for the coupling of
multiple fields. In [16], a multi-coupling algorithm that
needs full Jacobian information (non-black-box) is de-
scribed and tested for lower dimensional problems. The
necessity of full Jacobian information makes it very
cumbersome to integrate this algorithm in 2D or 3D
scenarios already in the case of non-black-box solvers.

In this work, we develop and discuss multi-coupling
algorithms that are derived from either a simple com-
position of bi-coupling schemes or a generalization of
the underlying idea of our parallel coupling to a true
multi-coupling. To our knowledge, this is the first time,
that a fully-implicit black-box multi-coupling algorithm
is described that allows to simulate scenarios in a parti-
tioned way. The results in Sects. 6 and 8 show that the
easiest approach, i.e., the composition of bi-coupling
schemes, is not sufficient already for moderately diffi-
cult problems.

The remainder of this work is organized as follows:
A model problem containing three different physical
fields is introduced in 2. Section 3 shortly recalls the
staggered and our parallel bi-coupling approach based
on IQN coupling schemes. Based on this, we propose
different multi-field coupling methods for the example
of the model problem from Sect. 2 in Sect. 4. Section
5 shortly introduces the inhouse coupling software pre-
CICE in which all coupling methods are implemented.
A first set of numerical results for our model problem is
presented in Sect. 6. Sect. 7 generalizes the ideas of our
multi-coupling approach to general multi-field scenar-
ios, followed by a second set of numerical results for a
further academic multi-coupling scenarion in Sect. 8.
Finally, Sect. 9 concludes this work with some pre-
liminary guidelines how to choose the optimal multi-
coupling scheme for a particular scenario.

2 A Fluid-Structure-Fluid Model Problem

For the sake of clarity, we start with a model prob-
lem comprising three solvers, two fluid solvers F; and
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F5 and one structural solver S solving a scenario with
two (possibly different) fluids separated by an elastic
structure. As the two fluid solvers do not have a direct
interaction with each other, this model scenario corre-

sponds to the graph shown in Figure 1.

Fig. 1 Multi—physws model problem, represented in a de-
pendency graph. Two fluid solvers F; and F> compute force
values f1 and f2, acting as input values for the structural
solver S, who itself gives back displacement values d; and da
to the fluid solvers.

This model problem contains already many basic
issues of general multi-physics scenarios. Therefore, we
use it to study various multi-coupling approaches with-
out the formalism needed to describe general multi-
physics problems. We want to stress that all techniques
developed in this work can be generalized in a straight-
forward way to problems comprising more than three
physical solvers as sketched in Section 7. Also the im-
plementation in preCICE allows for more complicated
scenarios.

The densities pr1, pr2, and pg in all three physical
domains and the geometrical shape of the structural do-
main determine the strength of the three-field interac-
tion, and, thus, have a crucial impact on the suitability
and performance of coupling schemes. We use this fact
to study different setups with strong or weak interac-
tion between all three fields as well as strong interaction
between two fields and weak interaction with the third
field in Section 6. We introduce a variety of coupling
approaches and discuss their theoretical applicability
in the following two sections.

3 A Short Review of Staggered and Parallel
Two-Field Coupling

As our multi-field coupling ideas are based on our de-
velopments for parallel two-field coupling, we shortly
recall the underlying ideas in this section. The basis of
our parallel coupling approach is the following observa-
tion: Each multi-physics problem can be reformulated
as a fixed-point equation (FPE). This is widely used
in classical partitioned FSI problems, where many cou-
pling algorithms are derived from the FPE

(SoF)(d)=d. (1)

where S and F' denote the structure and the flow solver,
respectively, d is the displacement (or the velocity) of

the structure surface. Below, f is the force exerted on
the structure surface by the fluid. We showed in [17,13],
that the same solution is achieved from the alternative
FPE in matrix-like notation

(50) ()= () ?

which we refer to as the vectorial system. The two
fixed-point equations are associated to two different ex-
ecution orders of flow and structure solver in an iter-
ative solution method as shown in Fig. 2. Thus, the
second fixed-point equation has the advantage that the
fluid and the structure solver can be executed in paral-
lel to each other leading to a better parallel efficiency.
In Sect. 4.2, we use a similar idea to get from com-
binations of bi-coupling methods to a true multi-field
coupling.

F S F S

staggered coupling

F F F F
S S S S

parallel coupling

Fig. 2 Schematic view of the execution order of fluid and
structure solvers for the standard staggered approach cor-
responding to the staggered fixed-point equation (1) and the
parallel coupling approach corresponding to the parallel fixed-
point equation (2).

Before proceeding to multi-field coupling, we should,
however add some remarks on suitable solution meth-
ods for the parallel fixed-point equation (2). We showed
in [13] that simple FPE solvers such as a fixed-point it-
eration or an Aitken underrelexation for classical FSI
problems lead to a two times slower convergence when
using (2) compared to (1). Sophisticated quasi-Newton
FPE solvers, based on the solution of a least-squares
system in every iteration, however, show only a slight
degradation of the convergence rate. Such a quasi-New-
ton least-squares (QNLS) solver (cf. [8]) was applied for
(1) in [4] based on similar ideas in [14,19] and for (2)
in [17,13]. Algorithm 1 describes the QNLS technique
for a general fixed-point equation H(z) = x. In a tran-
sient setting, the reuse of iteration values from previous
time steps can lead to a far better efficiency (cf. [4,13]).
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We write QNLS(n) for a quasi-Newton solver reusing
information from n time steps.

Algorithm 1 Quasi-Newton least squares method in
pseudocode (cf. [4,8])

0

initial value z
7% = H(z°) and R® = 3° — 2°
2! =2240.1-RC
for k=1...do
% = H(z*) and RF = 3¢ — zF
if ||R*||/||z"|| < € : break
VF =[ARE,...,ARF ] with ARF = R — RF
Wy = [AZE, ..., Azl _|] with Az = 7° — z*
decompose VF = QkU*
solve the first k lines of UFa = —QkTRk

Az = Wa
okt = gk 4 Azk
end for

4 Options for Multi-Field Coupling
4.1 Composition of Bi-Coupling Schemes

This section discusses methods for multi-coupling that
can be easily derived (and implemented) as a combi-
nation of existing bi-coupling methods. There are basi-
cally two ways to combine bi-couplings: concatenation
(Section 4.1.1) and inclusion (Section 4.1.2).

4.1.1 Concatenation of Bi-Coupling Schemes

The straightforward idea to couple multiple physical
solvers P; is to use a bi-coupling scheme for each edge
in the multi-physics graph as displayed in Figure 3 for
our model problem from Section 2. In this setting, each
bi-coupling scheme can be adjusted to meet particular
needs. In particular, we can choose whether an explicit
or an implicit scheme is required for each bi-coupling
separately. Figure 4 shows that different choices lead
to different execution orders of the physical solvers.
All combinations sketched in Figure 4 are supported in
preCICE (cf. [6] and Section 5). If two implicit schemes
are used, they do, in general, not convergence at the
same time. In this case, the early converged coupling
scheme waits until convergence of all schemes.
Sophisticated implicit coupling schemes such as Ait-
ken underrelaxation or quasi-Newton methods reuse in-
formation collected over several iterations to estimate
the response of the coupled system and, finally, to choose
the best coupling parameters. If we concatenate bi-
coupling schemes, we introduce an artificial decompo-
sition into pairs of coupled solvers. IL.e., we apply fixed-
point solvers to smaller systems that each contains only
two fields. Combining two IQN solvers for our model

bi-coupling bi-coupling

Fig. 3 Schematic view of the three-field coupling for the
model problem from Section 2 using a concatenation of two
bi-coupling methods, one for each edge in the interaction
graph.

problem in the way sketched in the lower left graph in
Fig. 4, this means that we aim at solving

(dl) _ 5o (Fl 0 ) (dl)

d2 0 F2 d2

by decomposing it into the two equations
dl = Syo0 F1(dl) and

d2 = S5y 0 F2(d2).

Note that the subscripts -1 and -2 indicate that the
response of the structure solver applied to the result of
one of the two fluid solvers at the same time depends on
the result of the other fluid solver. This implies that, if
both coupling schemes are implicit, they hamper each
other since the response of the two corresponding fixed-
point operators Syp 0 F'1 and Sy o F'2 changes with f1
and f2. Similar considerations apply for the case of a
concatenation of two instances of our parallel implicit
coupling schemes introduced in [17,13]. This type of
concatenation is shown in the lower right picture in
Fig. 4 where we solve the two subsystems

(. D) ()= () e
(5.5 ()= (2)

In mathematical terms, this means that the Jaco-
bian of both two-field subsystems in the three-field sys-
tem changes substantially throughout the iterations.
This makes it almost impossible for the third solver
to get any useful information on the response of such
a subsystem. This is especially a problem if both fluid
solvers F; and Fy are indirectly strongly coupled which
is the case for a very thin, elastic or lightweight struc-
ture. The impact of the described problem, depends,
thus, on the geometrical shape and the stiffness of S.
Numerical experiments in Sect. 6 confirm this conclu-
sion. Obviously, this problem reappears in general multi-
physics problems, if multiple implicit bi-coupling sche-
mes influence each other. A simple concatenation of bi-
coupling schemes does, in general, not result in a stable
overall coupling. In Sections 4.1.2 and 4.2, we present
possible remedies.
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4.1.2 Inclusion of Bi-Coupling Schemes

The alternative to a simple concatenation of bi-coupling
schemes is the inclusion of bi-coupling schemes. Here,
two physical solvers coupled by a bi-coupling scheme
are regarded as an entity from the outside and are cou-
pled with the third solver using a bi-coupling approach
again. Figure 5 shows a variant of this approach for
our model problem: F; and S are bi-coupled and the
converged entity (F1.5) is bi-coupled with F». Different
from the methods in Section 4.1.1, this implies, that we
have induced a nesting of iterations: In the inner iter-
ation, we iterate between F; and S until convergence
to the two-field monolithic solution. The result is then
transferred to F5 which returns its result to S. This
outer coupling is then repeated until convergence to
the three-field system. If we assume that M iterations
are required for both the inner and the outer iteration,
a total of M? solves is required for F; and S, whereas
M solves are needed for F5. Only if we apply an explicit
scheme to the outside coupling, the overall scheme does
not differ from a concatenation scheme.

bi-coupling

Fig. 5 Schematic view of the three-field coupling for the
model problem from Section 2 using an inclusion of two bi-
coupling methods. Two coupled physical solvers are regarded
as an entity from the outside and are coupled with the third
solver. If two implicit schemes are applied, this results in two
nested iteration loops.

We suppose that the inclusion of two implicit schemes
always results in an overall stable coupling if we choose
appropriate methods for each of the bi-couplings. The
disadvantage of a multiple inclusion is its computa-
tional cost: the number of solver executions grows expo-
nentially with the number of physical fields if we assume
that each coupling schemes needs a constant amount of
iterations. This is the reason, why we did not imple-
ment such schemes in preCICE. In the next section, we
develop a far more efficient and stable multi-coupling
scheme.

4.2 Multi-Coupling Schemes

In this section, we generalize our parallel bi-coupling
schemes to proper multi-coupling schemes by directly
looking at the coupling of multiple solvers as depicted
in Figure 6.

multi-coupling

Fig. 6 Schematic view of the three-field coupling for the
model problem from Section 2 using a multi-coupling ap-
proach, i.e. considering all interactions in an overall coupling
system.

We've already used different types of fixed-point
equations in Sects. 4.1.1 and 3 who’s solution leads to
the monolithic solution of the respective coupled multi-
field problem. For our three-field model problem, we
could also execute all three involved solvers in parallel
to each other. If we (as in the step from staggered to
parallel flud-structure coupling) leave the in- and out-
put relations of all three solver unchanged, this corre-
sponds to the iteration

flitJrl Fl(d?)

wi || F2(df)

ditJrl - ; ;
(dit—i-l) S( 1ta 2t)

if we don’t use any underrelaxation or quasi-Newton
convergence acceleration. Thus, written in matrix-like
form, we solve the fixed-point equation

0 0 F10 fi i
00 0F2|[f]|_|£r 3)
S11 812 0 0 dy d |-

This FPE can now be solved with any FPE solver.
Again, the quasi-Newton method mentioned above in
Sect. 3 is a very powerful solver. If a quasi-Newton least
squares method reusing the information of n previous
time steps is applied for a complete multi-physics prob-
lem such as (3), we refer to the coupling scheme as the
“multi interface quasi-Newton” scheme (MIQN(n)).

The fixed-point x that Algorithm 1 seeks for con-
sists, in our model problem, of the four different subvec-
tors f1, f2,dq, and ds. The solution of the least-squares
system in QNLS (Algorithm 1 uses a QR~decomposition),
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depends highly on the mutual scaling of those subvec-
tors. In classical FSI applications, force vectors often
have substantially larger values than the displacements,
in particular if displacement increments are used in-
stead of absolute displacements relative to the initial
state. In order to balance the influence of all subvectors
we, thus, have to apply a normalization. In our studies,
we found that a static scaling of the force vectors results
in a sufficiently good balance. The potential of further
improvements if using a dynamical scaling is subject of
further research.

5 The Coupling Software preCICE

All coupling methods used in Section 6 are implemented
in preCICE, a coupling library ([6]) developed in our
group, which offers, besides different coupling algorithms,
also methods for mapping data between non-matching
meshes and communication routines. The application
interface of preCICE is formulated on a very high level,
allowing for a minimally invasive inclusion in any single-
physics code. Once a solver is adapted to preCICE, dif-
ferent other solvers can be coupled in a nearly plug-
and-play manner. Different solvers including commer-
cial tools such as Fluent or COMSOL, open source tools
such as OpenFOAM, and in-house codes (e.g. [18]), have
been coupled successfully to preCICE. preCICE itself is
open-source software?. For sake of brevity, implemen-
tation details of preCICE are left out in this work. The
interested reader is referred to [6].

6 Numerical Results: Fluid-Structure-Fluid
6.1 Experiment Settings

Figure 7 depicts the geometry of the scenario that we
study numerically. Two fluid domains F; and F; are
separated by an elastic beam S, which is fixed on both
ends. We distinguish two variants, which differ in the
vertical extent of the beam: one thin variant S, d; =
0.2, and one thick variant S, do = 1.0. The thin vari-
ant induces a stronger indirect interaction between the
two fluid fields than the thick variant. The structure
is modeled by a St. Venant-Kirchoff cantilever with
Young’s modulus £ = 5.6 - 105 kg/ms? and Poisson-
ratio 0.4 . The density of the structure varies from 102
to 10% kg/m?. Both fluids are modeled by the incom-
pressible Navier-Stokes equations, with dynamic vis-
cosity = 102 kg/ms. The inflows show a parabolic
velocity profile with mean velocity U = 1.0 m/s. The

rigid wall
inflow F1 _— outflow o
EI : E—
outflow F2 inflow 3]
rigid wall

5

Fig. 7 Scenario sketch: 2 fluid domains F; and Fs are sep-
arated by an elastic beam S, which is fixed on both ends.
Two variants of this scenario are studied, which differ in the
vertical extent of the beam, di = 0.2 or d2 = 1 m.

densities of both fluids, pr1 and ppo, vary separately
in the range from 10° to 103 kg/m3, leading to either
weak or strong interactions between both fluids and the
structure.

We use Alya® as the physical solver for all three
domains (cf. [18,9]). There is, however, no particular
need for this choice. Solvers can be exchanged in a
nearly plug-and-play manner to meet particular needs.
We showed, for example, in [13] the bi-coupling of COM-
SOL, Fluent, or OpenFOAM. Both fluid domains are dis-
cretized with approximately 4000 elements each, where-
as the structure consists of approximately 2250 (S7),
respectively 600 (S2) elements. We use a matching grid
at both interfaces. Alya uses finite elements for both,
structure und fluids. The moving structure is resolved in
the fluid by an arbitrary Lagrangian-Eulerian perspec-
tive, involving the movement of the underlying grid.
For further numerical details of Alya, we want to re-
fer to [18]. The timestep size is set to dt = 1073 s.
To decide on the overall convergence, we use relative
convergence criteria of 1073 for all coupling variables,
displacement increments and forces on both interfaces.
Figure 8 shows the results for the thin structure at
t=1.0s

6.2 Discussion

This subsection presents and discusses the results for
the test case described above. We vary the density of all
three physical fields and the thickness of the structure.
From literature (e.g. [3,2]), we know that the interac-
tion between fluid and structure gets stronger, and thus
the coupling gets more elaborate, if the density ratio

3 Alya is developed at the Barcelona Supercomputing
Center,

2 http://www5.in.tum.de/wiki/index.php/PreCICE Webpage cf. http://www.bsc.es/computer-applications/alya-system.
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PRESS

Fig. 8 Pressure values (N/m?2), velocity vectors and grid
deformation for the fluid-structure-fluid model problem at
t = 1.0. This run uses the thin structure Si, the densities
pr1 = pr2 = 103 kg/m?3, ps = 10! kg/m?3, and the MIQN(8)
coupling scheme. For sake of clarity, the structural displace-
ments are scaled by a factor of 5.

pr/ps raises. Furthermore, by lowering the thickness
of the structure, we can raise the indirect interaction
between both fluid fields. Table 1 shows the average
iteration numbers per timestep, listed for various den-
sity ratios, for both structures, and for the different
coupling schemes, we introduced in Sections 4.1 and
4.2. By “IQN(5) / IQN(5)”, we denote a concatenation
of two interface quasi-Newton schemes (developed in
[4]), with re-used information from 5 timesteps, whereas
CSS refers to the classical serial staggered scheme (the
trivial explicit scheme, discussed in [5]). MIQN is the
multi quasi-Newton coupling scheme, introduced in Sec-
tion 4.2. Our experiences in [13] determined the choice
of reused timesteps. For the MIQN scheme, we scale all
force vectors by a factor of 10~7 (compare the discus-
sion in Section 4.2).

In Table 1, we can observe several aspects. The up-
per part of the table shows results for a weak F; — S in-
teraction and a strong F» — S interaction. For this case,
we concatenate an explicit with an implicit scheme. We
can argue from the results that, in this case, the strong
interaction dominates the overall system. This means
that the implicit coupling is not hampered by the ex-
plicit scheme. We can observe this in the better conver-
gence of CSS / IQN(5) compared to CSS / IQN(0). If
the density of Fy is raised to 10! kg/m?, the interaction
between F; and S also becomes a strong one, leading to
divergence if only an explicit scheme is used. In general,
the behavior of the overall system, in this case, is very
similar to the bi-coupling of F5 and S itself. The thick-
ness of the structure, in particular, has no important
influence here.

The middle block of Table 1 shows results for two
strong interactions, demanding an implicit scheme on
both interfaces. The concatenation of two implicit sche-
mes, however, is not successful, since both interface sys-
tems hamper each other (compare the explanation in

PF1 - PS - PF2 ‘ Coupling ‘ S1 ‘ Sa
100 - 102 - 10® | CSS / IQN(5) 4.62 4.62
100 - 103 - 103 | CSS / IQN(0) 9.04 9.24
10! - 103 - 103 | CSS / IQN(5) crash crash
10' - 103 - 103 | IQN(5) / IQN(5) | crash | 3.08 / 4.56
102 - 10 - 10® | IQN(5) / IQN(5) | crash crash
103 - 10% - 103 | IQN(5) / IQN(5) | crash | 5.10 / 5.18
103 - 102 - 10® | IQN(5) / IQN(5) | crash crash
103 - 101 - 103 | IQN(5) / IQN(5) | crash crash
10t - 103 - 103 | MIQN(8) 5.64 5.62
102 - 10% - 10® | MIQN(8) 5.88 5.76
103 - 103 - 10 | MIQN(8) 7.40 7.00
103 - 102 - 10® | MIQN(8) 11.78 11.72
103 - 10! - 103 | MIQN(8) 20.90 17.20

Table 1 Average iteration numbers needed for convergence
for various coupling configurations and different density ra-
tios (all values in kg/m?3). S1 and S» refer to the thin respec-
tively thick structure. The values are averaged over the first
50 timesteps. The upper part shows results for the concatena-
tion of an explicit and an implicit scheme, the middle part for
the concatenation of two implicit schemes (cf. Section 4.1.1),
and the lower part for the newly developed multi-coupling
scheme (cf. Section 4.2).

Section 4.1.1). It is striking that this problem especially
influences the test case with the thin structure S, since,
here, both fluid fields possess a strong indirect interac-
tion. In this case, all density settings lead to divergent
runs. If the structure gets very thick, both interface
systems get quasi independent from each other, and a
concatenation of two implicit schemes can be successful.
If we then lower the density of S, both interactions be-
come stronger, and both interfaces influence each other
again.

The lower block of Table 1 shows results for the
same density settings, but now for the multi-coupling
scheme MIQN. We observe a stable coupling for all
settings. The number of iterations gets bigger for a
stronger interaction between both fluid fields and the
structure fields, but also for a stronger indirect interac-
tion between both fluid fields.

7 Ways to Generalize the Coupling

Our multi-coupling schemes are easily extendable to
arbitrary multi-field coupling. For a mathematical for-
mulation, we have to introduce an abstract notation:
To include also commercial tools with a closed appli-
cation interface, i.e., black-box solvers, we describe the
n single-field solvers G;, i = 1,2,...,n of an n-field
coupled system simply by input-output relations

Gi x> xont forall i=1,2,... n.
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Here, z;,, € RY denotes a vector of nodal input val-
ues at the discretized coupling surface between G; and
other physical fields. P; maps this input to output val-
ues Toyt € RY by calculating one timestep or one iter-
ation. A fluid solver in a so-called Dirichlet-Neumann
coupling, for example, gets displacement values from
(possible multiple) structure solvers at a common sur-
face, calculates new pressure and velocity values, and
finally gives back force values to the structure solvers
at the same coupling surface.

In general, we can model surface-coupled multi-phy-
sics scenarios as directed graphs where each vertex cor-
responds to a physical solver P; and each edge from
solver P; to G; means that the output (or part of it) of
P; is an input variable of G;. Note that this can either
be in terms of actual physical coupling or in terms of
the modelling of the coupling. In our model, we might
decide to approximate a bi-directional coupling by a
uni-directional coupling or to even completely neglect
some of the coupling relations. A possible representa-
tion of the coupling graph is an adjacency matrix A
that has an entry aj; = 1 if and only if the directed
edge from G; to G; exists. All other entries are zero.

The full vectorial fixed-point problem involving all
n single-field solvers G1,Ga,...,G, of our multi-field
problem in parallel reads

Gy 0 --- 0 . .
1 Zqin Z1in
P 0 Gy - Tain | | %2in
: .0 :
0 --- 0 Gn xn,in xn,in

where P is a permutation that reorders the output vec-
tors of the solvers such that the composed vector can be
used as an input for the next iteration. For our three-
field model problem from Sect. 2, we, e.g., can rewrite
the multi-coupling fixed point equation (3) as

0 I0 F, 00 dy dy
0 07 0 F,0 ds B ds

70 00 f f
Gr)o J\eos)\()) \(2)

Before applying a multi-coupling for our whole multi-
field system, we should in a first step identify decoupled
subsystems (if any) and uni-directional coupling. As a
formal tool, we can use the permutation matrix P. We
can rewrite P in a block-wise manner using blocks P; ;
defining which part of the output of solver G; goes to
which part of the input vector of solver Gj:

P Py

P is closely related to the adjacency matrix of the
coupling graph: every non-zero entry a;; in the adja-
cency matrix corresponds to a non-zero block P;;. If we
have k decoupled subsystems, i.e., if our coupling graph
has k independent components, P, thus, is a block-
diagonal matrix if a suitable ordering of the fields is
used:

Pi1 -+ Pin,

P’n],l Pn],n]

P’”k—] M1 T P"k—unk

P’M,"k

Pnkﬂbk_l

This is a quite artificial case as we usually don’t
choose a multi-field model where we have several com-
pletely independent subsystems. In addition, the ’solu-
tion’ in such a case is straight-forward: We solve the
subsystems independent from and possibly parallel to
each other. Therefore, we assume in the following that
we have a single fully-coupled multi-field problem. How-
ever, also in this case, we should have a close look at
our permutation matrix P in order to keep the costs
for the multi-field coupling as low as possible: if our
coupling graph can be partitioned into parts that have
only ’'outgoing’ edges, this means that the respective
partition has only a uni-directional coupling to all other
fields. In a suitable ordering of the solvers G;, this case
corresponds to an upper block-triangular matrix P:
Piyi - Pig,

Pl,nq,l Pl,nq

P”lul Pnlanl P"ll,"lq

P”Lla"q—l e

an—l!nq—l e an—lvnq

an,nq

an,nq,l

In this case, we would use our true multi-field cou-
pling within the ¢ subsystems only: We first solve the
system comprising Gy, _,, ..., Gp,, then the subsystem
consisting of Gy, _,, ..., Gn,_, and so forth until we
have solved the last block of coupled fields with Gy,. ..,
Gp,.-

In special cases, some of these field can be solved in
parallel to each other. This is the case if they do not
depend on each other but are only indirectly coupled
via a third subsystem.
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8 Numerical Results II: Fluid with Multiple
Structures

8.1 Experiment Settings

We use a second academic example to check the appli-
cability of our method for problems with different char-
acteristics. In this example, we embed several structures
in a single fluid domain.

10

NEIEIEN

Fig. 9 Scenario sketch: Four structure domains S, Sa, S3,
and S, are embedded in a flow channel (F). The structure
‘towers’ are fixed at the bottom of the channel.
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Figure 9 depicts the geometry of our second test
problem. Four elastic beams S1, .53, 53, S4 are embed-
ded in a flow channel of size 10 x 2 m and fixed at
the bottom wall of the channel. The structure beams
are modeled by St. Venant-Kirchoff cantilevers with
Young’s modulus E = 5 - 105 kg/ms? and and Poisson-
ratio 0.4. The density of the structures is 10 kg/m? for
S1, 0.1 kg/m? for Sy, 1 kg/m? for S3, and 100 kg/m?
for S, wherwas the fluid density is 1 kg/m3. Thus, the
coupling strength between fluid and structure varies be-
tween Sl,SQ,Sg, and S4.

The fluid is again modeled by means of the incom-
pressible Navier-Stokes equations with the dynamic vis-
cosity p = 1 kg/ms, the mean velocity of the parabolic
inflow profile U = 50 m/s. The Reynolds number of the
flow is Re = 100 (relative to the channel width).

As in the fluid-structure-fluid model problem, we
use Alya as the physical solver for all domains. All do-
mains are discretized with finite elements, the meshes
are matchting at all fluid-structure interfaces. The flow
domain is discretized using 4702 elements in an arbi-
trarily Lagrangian-Eulerian setting, each of the struc-
tures has 140 elements in a Lagrangian setting. The
timestep size is set to dt = 10~ s. Relative convergence
criteria of 10~% are used for all coupling variables. Fig-
ure 10 shows the results at ¢ = 0.02 s

8.2 Discussion

This subsection presents and discusses the results for
the test case described above. For the first 200 time

steps using the MIQN(8) coupling scheme with a sec-
ond order extrapolation for the initial guess, we achieve
an average iteration number of 7.71 per time step. We
scale all force vectors by a factor of 1076 (compare the
discussion in Section 4.2). If we use a concatenation
of bi-coupling schemes based on IQn as described in
Sect. 4.1.1, we observe divergence already in the first
time step.

To get some further insight in the mechanisms of
the observed divergence, we additionally simulated the
setup with the four structures having a very high den-
sity of 10% kg/m?, a scenario that we would expect to
be very stable. Table 2 shows the number of iterations
required with a concatenation of bi-couplings for each
of the involved IQN(8) schemes. We observe good con-
vergence in the first few time steps but a fast increase of
iteration numbers starting from time step 5. Thus, even
for a scenario whos equivalent with only a single struc-
ture is very easy to solve due to the high structure den-
sity, the concatenation of bi-coupling IQN schemes does
not give the desired results. We can conclude that the
instabilty for this case is purely induced by the changing
response of partner-solvers in the bi-coupling schemes
due to the influence of the other solvers.

F-5 |F-5 | F-S | F-5,
step 1 5 5 5 5
step 2 4 4 4 4
step 3 4 4 4 4
step 4 4 4 4 4
step 5 3 11 21 27
step 6 7 7 18 7
step 7 14 14 39 14
step 8 13 34 42 26
step 9 | 26 50 35 35
step 10 | 35 35 46 46

Table 2 Iteration counts for the fluid flow with four embed-
ded structures coupled with a concatenation of bi-coupling
IQN(8) schemes over the first ten time steps. The fluid in the
underlying setup has a density of 1 kg/m?® whereas all four
structures have a very high density of 10% kg/m3.

For the MIQN(8) multi-couling scheme, we achieve
the result that we would have expected regarding the
high density ratio. Table 3 shows that very few itera-
tions per time step are sufficient.

This examples confirms the conclusion from the re-
sults for the fluid-structure-fluid model problem that
the MIQN coupling scheme is capable of automatically
tackling the physical coupling between multiple fields
even in cases where the strength of the coupling varies
within the overall system.
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MIQN(8) We showed that the multi-coupling idea can be eas-
step1 |7 ily generalize to multi-physics problems consisting of
step2 | 5 arbitrary physical fields. If one group of interface inter-
step3 | 4 actions is weak, and the other one strong, it should al-
step4d | 5 ways be possible to couple all strong interactions with
stepb | 4 the MIQN scheme and then concatenate MIQN with
step6 | 2 explicit schemes for each weak interaction.
step7 | 3
step 8 3 Acknowledgements: The financial support of the Insti-
step 9 2 tute for Advanced Study (IAS) of the Technische Universitat
step 10 | 2 Miinchen, and of SPPEXA, the German Science Foundation

Table 3 Iteration counts for the fluid flow with four em-
bedded structures coupled with the MIQN(8) multi-coupling
scheme over the first ten time steps. The fluid in the underly-
ing setup has a density of 1 kg/m?3 whereas all four structures
have a very high density of 10* kg/m?3.

9 Conclusions

In this work, we developed multi-coupling schemes based
on either a composition of bi-coupling schemes or a true
generalization of the underlying ideas of bi-coupling
schemes. We tested those schemes by means of a sim-
ple, but still challenging fluid-structure-fluid and fluid
with multiple structures model problems.

For the fluid-structure-fluid problem, we observed
that, if one fluid-structure interface posseses a weak
and the other one a strong interaction, the strong in-
teraction dominates the overall stability and a concate-
nation of an explicit with an implicit scheme (cf. Sec-
tion 4.1.1) leads to a stable multi-coupling scheme. If
both fluid-structure interfaces show a strong interac-
tion, a concatenation of two implicit coupling schemes
does not result in an overall stable scheme, since both
interface system hamper each other. For this case, we
developed a true multi-coupling scheme, named “multi
interface quasi-Newton” (MIQN) scheme by generaliz-
ing the ideas that we used in earlier work to deduce
parallel FSI coupling schemes ([17,13].

The numerical experiments for the fluid with mul-
tiple structures problem confirmed our conclusion that
our multi-coupling MIQN schemes are capable of tack-
ling multi-physics problems even in cases with variable
physical coupling strength between the involved fields.
In addition, we could show that a concatenation of bi-
coupling schemes using IQN fails even for scenarios
where we would expect the numerical coupling to be
stable due to the weak interaction between the fields.

To our knowledge, this is the first time, that a fully
implicit black-box multi-coupling scheme is described.
This allows to simulate a new range of applications in
a partitioned way.

Priority Programme 1648 — Software for Exascale Comput-
ing are thankfully acknowledged. Alya is developed at the
Barcelona Supercomuting Center, by Guillaume Houzeaux,
Mariano Véazquez, et al. We want to thank, in particular,
Juan Carlos Cajas, who helped to implement the preCICE
adapter in Alya.
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For sake of simplicity, implicit coupling schemes are assumed to converge in 3 iterations.
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Fig. 10 Velocities and grid deformation for the multiple structure problem at ¢ = 0.02. The simulation used the MIQN(8)

coupling scheme with a second order extrapolation for the initial guess.



