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Abstract—Updating a network is an essential and continual
task in the management of today’s softwarized networks. When
applying updates on distributed network elements, desired net-
work properties, such as drop- and loop-freeness, might be
transiently violated. Although being crucial, update consistency
has yet been less considered in network management.

In this article, we argue for incorporating the particularities
of update consistency into the reconfiguration process of contin-
uous network management. We present a generic management
architecture allowing for an appropriate selection of an update
mechanism and its parameters based on expected inconsistency
effects. We investigate update consistency for the case of multicast
routing and show in an extensive analysis why simultaneous drop-
and duplicate-freeness is not possible. We present an update
procedure for multicast routing updates that identifies critical
update steps, which are fed back into the reconfiguration process,
along with a lightweight approach that allows for the selection
of an update strategy, preventing either drops or duplicates.
Furthermore, we present an optimization of an existing powerful,
but resource-intensive update approach as well as an approach
for in-network filtering of duplicates.

Index Terms—Software-defined networking, configuration
management, update consistency, quality-of-service management,
multicast communication

I. INTRODUCTION

OFTWARE-DEFINED NETWORKING (SDN) has been

gaining substantial attention from both, academia and
industry. Large internet companies like Google and Facebook
have been adopting the SDN paradigm both within data center
networks (DCNs) [1] and their interconnections in global wide
area networks (WANSs) [2]. A large internet service provider
has set the goal of controlling 75% of their network with
software by 2020 [3].

One key element of SDN is the logical centralization of
network control in form of a logically centralized controller
with global knowledge over SDN-enabled switches, their
interconnections as well as end hosts. Thus, SDN has fostered
the evolution of network management [4], [5], to allow for
complex management of heterogeneous network elements and
possibly overlapping network functions. Furthermore, today’s
softwarized networks are in constant flux, continuously adapting
to changes in the network topology, load and network functions,
e.g., through migration of virtual machines or dynamic scaling
processes in Network Function Virtualization (NFV). This
high degree of dynamics has blurred the borders of network
operation and network management and has led to their
convergence.
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To implement adaptations, the network has to be reconfigured
inevitably. Updating the data plane of an SDN-based network
can be described as transition from an old to a new global
network state. Centralized control allows for consistent updates,
such that certain network properties (invariants), e.g., no packet
should be dropped, hold during a transition. For instance, in
consistent route updates, invariants such as avoidance of black-
holes, which occur when packets are dropped on-route due
to a missing rule, or avoiding micro-loops due to transient
cycles, hold not only before and after the update but also
during route transition [6], [7]. Network functions are encoded
in a set of rules, installed in inherently distributed elements of
the network, i.e., the switches. To advance to a new network
state, the switches have to be updated individually. Since the
delay until a rule update has been successfully applied varies
among the switches, packets may be processed according to
a mixture of new and old rules as they traverse the network,
while it is being updated. Thus, properties that hold in the old
and new network state my not hold in an intra-update state,
possibly violating network invariants.

The violation of invariants in the best case reduces the
network’s efficiency, possibly violating soft requirements such
as Quality of Experience (QoE). In the worst case, it may
severely jeopardize stipulated hard invariants, e.g., when
black-holes occur in routing, which is a network function
of utmost importance. Since the management of networks
includes definition and realization of requirements on the
network operation, we argue to create awareness about update
consistency in network management in order to be able to
circumvent effects that stem from update inconsistencies. This
implies the selection of suitable update methods based on the
network specifications to maintain.

To achieve update consistency, two classes of approaches
have been proposed: a state-based approach and stateless update
ordering. The state-based approach is very powerful. It guar-
antees maintenance of for arbitrary consistency properties [6].
However, it relies on state information, injected in the packets
and encoded in vacant header fields. Thus its applicability is
limited, in particular, when such header fields are used for the
specification of flows or by the application layer. In practice,
the VLAN tag field is typically used in this approach, which
is only feasible when the network configuration does not use
VLAN:S itself. Furthermore, it requires to store both, the old and
new rules at the same time in each switch. Hardware switches
store their flow table in ternary content-addressable memory
(TCAM), which is a power-hungry and limited resource, with
typical capacities of only up to 2000 rules for current hardware
switches [8], [9]. Therefore, stateless approaches based on an
appropriate ordering of updates received a lot of attention.
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Although update ordering approaches already solve many
problems for unicast route updates and even minimal pro-
cedures for some invariants exist [7], there are no thorough
investigations of update ordering approaches for multicast,
which offers efficient many-to-many communication, although
in particular multicast could benefit very much from consis-
tent updates to increase performance and user experience.
Furthermore, we will show in this article that update con-
sistency entails numerous crucial particularities which are
to be considered in the management of multicast networks.
Multicast is one network paradigm that tremendously benefits
from SDN [10]. Opposed to the distributed creation and
maintenance of multicast distribution trees, logical control
centralization tremendously reduces complexity and allows
for optimized routing, as shown in [11] and in this article.
Membership management and control naturally benefit from
centralization alike. Multiple types of applications already rely
on multicast, including large-scale media streaming in WANS,
like distribution of live television broadcasts using IPTV. To
provide resiliency, both, data and services in data centers are
typically distributed and replicated, using e.g., Apache Hadoop
or Infinispan, heavily relying on multicast. We thus see SDN
as an enabler for multicast and expect to see a significant boost
in the adoption of multicast in both, DCNs and WANSs.

In this article, we make the case for update consistency aware-
ness and perform an in-depth analysis for the concrete case of
multicast networks. We propose an update ordering and hybrid
approach that tackles the update problem of avoiding dropped
messages and duplicate messages in multicast networks. The
relevance of drops is obvious. For instance, in video streams,
dropped packets result in dropped frames, which may severely
reduce the Quality of Experience (QoE). Duplicate messages
waste bandwidth and might lead to bandwidth bottlenecks
during updates, which again might degrade the QoE of the
application (e.g., a video application not receiving sufficient
bandwidth anymore). Furthermore, duplicates might confuse
the application if it is not prepared to handle them. As an overall
implication of drops or duplicates, temporary degradation of
network performance and thus application QoE degradation
can be stated.

In detail, our contributions are as follows:

First, we propose a generic system architecture for network
management, incorporating knowledge about update consis-
tency to allow for the selection of an appropriate update
mechanism and its parameters.

Second, based on our previous work [12], we specify a
network update correctness property specific to multicast—
duplicate-freeness—which has been formerly unconsidered in
the context of network update consistency. In our extensive
analysis, we then prove that in general it is impossible to avoid
violation of two invariants, drop- and duplicate-freeness, for
arbitrary multicast network updates using a stateless approach.

Third, we identify and define necessary conditions on
multicast tree updates, leading to undesired effects that possibly
break invariants. We show that update ordering is a degree
of freedom, resulting in maintenance of drop-freeness, while
sacrificing duplicate-freeness and vice versa. This allows for
an update strategy that avoids drops at the cost of duplicates
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and vice versa. Either behavior can be achieved by a deliberate
selection of a respective strategy. We extend [12] by the
specification of the loop-freeness invariant, which our approach
additionally maintains.

Fourth, we conduct a detailed analysis of packets traversing
the network while an update is being applied and show that the
update order as perceived by the packets may differ, depending
on their propagation delay. We show the implications of this
reordering and present a method to prevent it.

Fifth, we propose a generic multicast update procedure. We
introduce the path update algorithm, which decomposes a
global multicast network transition into update steps for which
invariant maintenance can be guaranteed, leveraging the degrees
of freedom identified in the analysis. We outline the involved
algorithms and procedures which translate tree changes to
SDN rule updates and executes these updates in guaranteed
order, maintaining desired invariants. As an extension of our
prior work, we present a mechanism to mitigate update-caused
duplications through in-network filtering. Furthermore, we
present a novel alternative update approach as an optimized
state-based approach which maintains arbitrary invariants, while
rule space consumption, i.e., TCAM space, is minimized.
Overall, we particularly highlight feedback of the prevailing
network state and update situation to the network management,
as well as its decisions about the approach selection and
parameter determination.

The remainder of this article is thus organized as follows:
Section II states related work. In Section IIT a generic system
architecture for network management, incorporating update
consistency is presented. Henceforth, this scheme is applied
to the concrete case of multicast networks, where update
consistency is shown to be of particular relevance. Section IV
formally introduces the multicast model. Section V provides
the problem statement and an in-depth analysis. Section VI
describes our flexible update approach for multicast trees
utilizing update ordering, with optional duplicate filtering, or
an optimized hybrid approach. To investigate the implications
of inconsistency effects, in Section VII their frequencies and
impact for real WAN scenarios are evaluated, both, analytically
and empirically, through direct measurement in the data plane
under update. Finally, conclusions are provided in Section VIIL

II. RELATED WORK

SDN constitutes a perfect match to solve key deployment
problems that have been impeding the adoption of multicast
in large-scale real-world scenarios so far. Especially for data
center networks, a management method of multicast in overlay
networks is described in [13]. Avalanche enables secure and
bandwidth-efficient multicast in DCNs [10]. Scaling and routing
of multicast in data-center topologies is investigated in [14].
For multicast-based streaming with multiple simultaneous
streams among multiple WAN sites under real-time requirement
(3D teleimmersion), [11] introduces an SDN-based control
protocol allowing for seamless reconfiguration of the network.
Bandwidth and connectivity invariants are maintained using
a state-based update procedure. Stateless network updates are
not considered in these works. However, the number of recent
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works indicate a clear trend for SDN enabled adoption of
multicasting in both, DCNs and WANS.

As mentioned in the introduction, in the domain of network
update consistency, a state-based mechanism guaranteeing
arbitrary invariants [6] as well as stateless approaches, based
on update ordering have been proposed. A minimal stateless
procedure as well as an overview of correctness properties
and their interdependencies are presented in [7]. With the aim
to improve update speed, dynamic scheduling of consistent
updates respecting these interdependencies is proposed in [15].
A stateless search-based approach is presented in [16]. Neither
approach considers the peculiarities of updating multicast
networks though.

In the domain of network management, a rather early
contribution from the year 2013 explores SDN’s ability to
ease management and configuration of a variety of networks
[4]. The authors propose a network control architecture
focusing on the interdependency of high-level network policies,
declared in a functional programming language, and low-
level network configuration, including its deployment in a
campus network. More recent and detailed work on the SDN-
enabled management of large-scale networks propose a layered
and distributed control plane. The authors of [17] focus on
intra-domain control and management of large scale networks
and present revised algorithms for hierarchical routing and
local link-failure recovery in the context of management
distribution, exploiting global network knowledge. In [18], a
layered management and control framework for fixed backbone
networks is proposed, along with a placement algorithm for
control entities. This allows for adaptive resource management
operations as demonstrated on two exemplary use cases,
adaptive load-balancing and energy management. Neither of
these approaches considers efficient incremental updates or
identifies the relevance of update consistency.

III. UPDATE CONSISTENCY IN NETWORK MANAGEMENT

In this section, we describe a generic system architecture for
SDN network management. Fig. 1 gives an overview of the
proposed system architecture and control flow.

We build on a typical SDN architecture, where management
and control are strictly separated from the actual packet
forwarding in the data plane. Specifically, our architecture
embeds a dedicated control loop that implements an adaptation
mechanism providing network updates that are consistent with
given consistency criteria and avoiding undesired inconsistency
effects. We subsume the control and management plane in
a logically centralized entity denoted as Network Manager
(NM), which implements the network configuration logic
and handles the communication with the switches to deploy
the configuration. We assume the Network Manager to have
global knowledge of the data plane. To achieve scalability, the
NM might be transparently distributed. High Level Policies
(HLPs) represent the definition of network functions as well
as global network constraints (QoS, QoE), the data plane has
to implement and adhere to. HLPs might be declaratively
defined in a high level network programming language, such
as Frenetic [19], [20], or be concretely implemented as SDN
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Fig. 1. Overview of the proposed SDN-based system architecture.

controller modules. Multiple network functions, such as routing,
traffic monitoring, load balancing, or multicast, may co-exist.
Their composition [21] is handled by the Network Manager.
Initially, a concrete configuration of a network function NF'; is
derived from its HLP; (planned configuration) and pushed to
the data plane where it eventually becomes effective, such that
the effective configuration (data plane) reflects the planned
configuration (management plane).

In this article, we focus on change management: based on
the current configuration, the NM reacts to changes in both, the
management plane, such as changes of the HLP, and the data
plane. Data plane changes may be generic, such as topology
changes, and thus affecting all network functions, or network
function specific, such as a host joining a multicast group. In
the configuration control loop, change events are interpreted as
disturbance and trigger a reconfiguration process, in which
the NM in reaction adapts to the changed conditions. This
consists of two steps: 1) A set of rule updates U that change
the current planned configuration of the NM to a new, adapted
configuration, has to be calculated. This is naturally highly
network function specific. In this article, we will show how
incremental updates of multicast traffic distribution trees are
calculated. 2) In order to implement the network state transition,
the update is then to be applied to the data plane. Based on how
this is done (update method), the update execution possibly
leads to transient inconsistency effects that might also affect
other NFs.

The selection of an update method and its parameters
has severe implications not only on the type of occurring
inconsistency effects, but also on their extent, the reconfig-
uration duration, and data plane resource consumption, i.e.,
switch rule space. Thus, the NM assesses different types of
information, describing the prevailing update situation, in order
to decide on an appropriate method and its parameters. This
information includes expected update inconsistency effects,
specific to the available update methods, characteristics of the
triggering change event, the affected HLPs, and monitoring
data from the data plane, such as statistics of NF-specific
or generic flows. While the expected type of effects of an
update method are known a priori to the NM, its extent can
be estimated through a static analysis of U. The monitoring
data, e.g., flow-associated packet rates [22], even allows the
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NM to empirically estimate the expected number of affected
packets. The NM is thus able to evaluate a method-parameter
combination against the stipulated system specification or
concrete HLP goals. This allows for a dynamic selection of an
adequate update mechanism and determination of its parameters
on the granularity of NFs and concrete updates. We leave the
description of concrete algorithms for selection and quantitative
parameter determination for later work, and rather focus on
describing specific update methods.

IV. MULTICAST MODEL

In this section we describe preliminary assumptions and
introduce multicast tree updates along with relevant consistency
properties which are defining the problem statement.
Throughout this article, we follow the IP Multicast Service
Model (RFC-1112!): there are possibly many senders and
several receivers, denoted as multicast group. Logical ad-
dressing assigns a single class D IP address to each group.
Group messages are sent to respective destination multicast IP
addresses over a distribution tree which defines the routing of
the multicast traffic through the network. In our analysis, we
focus on multicast traffic distribution and thus only consider
switches in the distribution tree, not actual member end
hosts. While irrelevant for the analysis, our approach assumes
group management to be handled using the Internet Group
Management Protocol (IGMP, RFC-2236') as end-host-to-
switch protocol.

We call a switch with connected group members (hosts be-
longing to group) a member switch. Routing is entirely done by
SDN switches, which snoop IGMP signaling packets and report
group membership to an SDN controller, enabling logically
centralized group and tree management. We furthermore assume
a network consisting of a set of SDN switches sw € SW
with associated ports p € P connected over bidirectional non-
lossy links { € L with associated weight w(l), forming a
topology graph 7'. The distribution tree is denoted as a directed
acyclic graph (DAG): G(SW y¢ € SW, Ly C L). Switches
are associated special roles as depicted in the legend of Fig. 2
and listed below:

« Exactly one root:

S ={s} C SWuc : degin(s) =0
o At least two group members: m € M C SWyc
o Relays (single out-port):

rel € Rel C SW yc : deg,,,(rel) =1
« Replicators (multiple out-ports):

r € Rep C SW e : deg,,, (r) > 1

» Non-tree switches: SW \ SW yc

Throughout the article, we use the terms switch and node as
well as link and edge interchangeably, depending on the current
focus on either the networking aspect or its graph-theoretical
representation. Packets are intentionally replicated and sent
out on multiple links of replicator switches. We differentiate
between relays and replicators, since replicators are shown
to be play a distinguished role for update consistency, as we
will describe in the analysis. Note that group members, i.e.,
switches with connected member end hosts, may also relay or
replicate, they are not necessarily leaves of the tree. For ease

Uhttps://tools.ietf.org/rfc/rfc1112.txt; https://tools.ietf.org/rfc/rfc2236.txt
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of illustration, we assume a single multicast tree, which either
might be a source-based tree or shared tree. We consider only
group traffic of one multicast group, i.e., one destination IP
address. This simplification does not limit the generality of
our approach. It is valid for multiple groups and thus multiple
distribution trees as well.

V. PROBLEM STATEMENT AND ANALYSIS

In this section, we first given the problem statement (Sec-
tion V-A). Next, we state the impossibility of combined drop-
and duplicate-freeness (Section V-B). We then refine conditions
on updates which lead to violation of invariants (Section V-C).
We introduce a central structure for both the analysis and
approach (Section V-D). We then introduce the loop-freeness
property (Section V-E). Finally, we conduct an analysis of the
update order as seen by packets being in the network during
an update (Section V-F).

A. Problem Statement: Multicast Tree Updates

Applying network updates to a multicast network, a global
network state translates to a distribution tree instance. We
assume distribution tree calculation to be a non-incremental
process: in reaction to a topology or membership change, a
tree is computed entirely anew, irrespective of the extent of the
actual change that triggers that recalculation. Thus, even small
changes may result in huge differences in the recalculated tree.
Our goal is to advance from an old to a new distribution tree
by finding an update order, while maintaining certain invariants.
Particularly, we want to guarantee drop-freeness and duplicate-
freeness, where the latter informally describes the reception of
an unintended duplicate.

B. Impossibility Result

Claim: It is impossible to avoid violation of the two simul-
taneous invariants drop- and duplicate-freeness for arbitrary
transitions using a stateless update method.

Proof: We assume that maintaining both invariants at any
time is possible, i.e., there exists exactly one effective path
from s to each m; at any time. Consider a scenario as shown
in Fig. 2, where a transformation from G (left) to G’ (right),
both correct multicast trees, is performed. In G, packets from
a source s are sent to a replicator switch 2, which replicates

Updat
T T C O\ TROLLER

Branch update

source (root)

group member
relay

Bl replicator

[C]  non-tree switch
— topology link

distr. tree link

Fig. 2. Update of a branch s — mo (dashed lines) within a multicast
distribution tree (G), leading to a new network state, i.e., distribution tree
@".
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the packets and forwards them to relay switches 4 and 5,
where the respective replicas are forwarded to member m; and
member my respectively. In G, s takes over the replication
and forwards to 2 and 3, while 2 only forwards to 4 and thus
does not replicate anymore. To implement this transformation,
the output port list of switches s, 2 and 3 have to be updated by
rule updates wu; for switch ¢ as follows (to improve readability,
we denote updates that add out-ports, i.e., add new paths, as uj,
whereas updates that remove out-ports, i.e., remove existing
paths, as u; ):

Switch i Out-port set

old (PO;) new (PO%)  update
s {2} {2,3} ud = POs U {3}
2 {4, 5} {4} uy, = PO2\ {5}
3 ) {5} uy = PO3 U {5}

Path s — 5 has to be installed (uj, u3+), whereas path
2 — 5 has to be removed (u, ). This implies the “shift” of the
replication from 2 to s. The execution order of these updates
is crucial: Fig. 3 shows intermediate states of two update order
permutations, where u and u (a) and u3 and u, (b) have
been executed. In other words, path 3 — 5 has been installed
first, followed by an update of the new replicator v’ to do
replication in (a) and, respectively, followed by an update of the
old replicator r to stop replication in (b). We use the happens-
before relation [23] to express an order of events: event e
happens before event es iff e; <1 es. We do not consider delay
aspects for now, hence we subsume in an update event u; the
sending of an update message from the controller as well as the
reception and the execution at a switch i. A detailed analysis
including additional timing aspects, such as propagation delay,
is given in Section V-F. Formally, those two cases depict
intermediate states of update orders uj < uf (< uy) (a) and
u}f < uy (< uf) (b), where the respective last update has not
yet been executed (in parentheses).

Obviously, a cycle has been introduced in (a) through a
new effective path s — my. A packet p entering the network
at s, denoted as event switch(p,s), at that point in time
will get replicated twice and follow both paths which results
in two replicas reaching mo, which we call a duplicate at
mso. In (b), with u;f < uy < switch(p, s), neither s nor 2
are replicating. Hence, there is no effective path s — mo
at all, resulting in a missing packet at ms. Note that for (a)
it does not matter whether uj is executed before or after
uf. Both orders, ui < uf(<uy) (a) and uf < ud (< uy),
result in an intermediate state with multiple effective paths to
mo. Analogously, there exists an equivalence class of update
orders causing drops due to an intermediate state with no
effective path to mao: ud < uy (< ul) (b), uy < uj(<ul),
uf < ugy (< uf)and uy; < uf (< ud). Hence, in any of all six
possible update order permutations, either duplicate-freeness or
drop-freeness is violated which contradicts our assumption. We
thus have proven that there exists no correct update procedure
w.r.t. both, drop- and duplicate-freeness. g

C. Conditions for Violation of Invariants

Although we have proven that in general we cannot guarantee
both desired properties at the same time, we will describe the
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Fig. 3. Traces of packets (arrows), entering the network in two intra-update
states, where u; and uj (a) and u;)r and u, (b) have been executed, resulting
in duplicates and drops, respectively.

conditions for the violation in the following.
Branch update, replicator pair: We refer to the kind of
update as shown above, where there is a change in the path
from s to some branch member, as branch update. We define a
replicator pair (r,r’) as a pair of old and new replicator, where
reG, r € G'. In the example, 7 is switch 2 and 7’ is s. Note
that, as described, postponing u;j in (a), i.e., uj < u§(<1 Uy ),
does not solve but only defers the problem: as long as 3 — 5
is missing, duplicates are stopped at 3, however, eventually, ug'
and u; have to be executed. Anyway, pushing a critical update,
i.e., that update that finally establishes a new path and thus
would cause duplicates, from a replicator downstreams along
unicast paths constitutes an additional degree of freedom.
This reveals the reason for the impossibility result: replicator
updates inherently involve updating a pair of distinct switches,
affecting common subsequent switches downstreams of them.
Ignoring my, this transition would be a trivial unicast path
update, were after 3 — 5 has been installed, the single switch,
s, would be updated through a single non-competing update
to forward to 3, instead of 2. In our multicast scenario, this is
not feasible, since 2 still has to forward packets downstream
via 2 to mo and thus has to receive packets from s.
Dependency of replicators: In the depicted type of replicator
change, both, r and 7’ of a replicator pair are common elements
of at least one path from s to all m € M. Hence, there exists a
dependency among (r,7’) in forwarding packets on such paths.
In such cases, we denote replicators of a pair to be dependent.
We refine this definition in the following.
Replicator move (downstream/upstream): 1If a dependency
among (r,7’) is present, we call the two associated updates
(ur,u,) a replicator move. A replicator move is directed. It
is denoted an upstream move if v’ is upstreams of r, i.e., r’
is a (transitive) predecessor of r on at least one path from s
to all m. In this case, as in the example, r is dependent on r’.
This dependency stems from the dependency of packets, being
forwarded on such a path: The events of r receiving a packet p
from 7’ (e, ) and subsequently sending p further downstreams
(er,ma) are causally dependent on the event of ' sending a
message to 7 (€7 gng). Thus: €,/ g < €r ree < € gnq. Vice versa,
if 7 is a predecessor of 7/, it is denoted a downstream move.
A minimal illustration of both, a downstream and an upstream
move is show in Fig. 6.
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Replicator swap: 1If replicators are not dependent, we call
the update a replicator swap.

In conclusion, we state that simultaneous drop- and duplicate-
freeness is not possible for updates that involve a change of
a replicator pair (r,r’). However, depending on the update
ordering, one of the inconsistency effects, either drops or
duplicates, can be prevented.

This degree of freedom can be leveraged by a deliberate
selection of an inconsistency effect that is tolerable, while
the other one is prevented. We denote the exploitation of this
particular degree of freedom within multicast network update as
update strategy. As explained in the introduction, it depends on
the concrete application that uses multicast whether violating
one property is preferred over violating the other. In general,
this decision is to be made by the network manager. Henceforth,
we assume drops more fatal than duplicates, and thus, without
loss of generality, argue from this perspective.

D. Central Analysis Structure: The Delta Graph

In the following, we introduce a central structure for both,
our analysis and approach. As seen in the examples so far,
inconsistency effects due to replicator pair updates do not
necessarily affect all members. Furthermore, a network update
might consist of several replicator pair updates as well as
of uncritical updates. To be able to identify relevant nodes
of a network update as well as to identify affected nodes
of individual replicator moves, we introduce the delta graph
(G?). Tt captures differences of two distribution trees G and
G’. Informally, it can be constructed by merging G and
G’, removing all common edges, followed by removing all
unconnected vertices. Formally, we define G2 as follows:
Def. GA: G2 = [(G— Lyc) + (G — Luc)] — SWhe,
where Lo is the set of links and SW ¢ is the set of
switches of G. Primes indicate reference to G’. SW 9, denotes
unconnected nodes, i.e., Vsw € SW9,4 : degyppa(sw) = 0.
Fig. 4 illustrates an intermediate step after merging exem-
plary G and G’, where ellipsis denote unicast paths of arbitrary
length, to provide generalization. Thin, blue edges (bottom
paths) are exclusively in G and thus represent old paths, to
be removed as part of a network update, whereas thick, red
edges (top paths) are exclusively in G’ and thus represent new
paths, to be installed respectively. Common edges (dashed),
both in G and G’, and respective nodes (dashed) are not to be
changed and thus removed from G in a subsequent step. We
further define a set of join nodes N~ as follows:
Def. join node: Yjc N> C SW4 : deg;,(j) = 2. Each
7 is associated with a replicator move. The effects of a
corresponding replicator move affect all downstream nodes
of j.
Def. P, P/, split node s<: We further denote the old path
from s to j in G as s -2 7, and the new path from s to j
in G as s £ j, analogously. To identify a replicator pair
(r,7"), we back-traverse P and P’ in G?, starting from j,
until no further predecessor exists or a common predecessor in
both P and P’, denoted as split node s<, is reached. The end
nodes on P and P’ define r and 1/, respectively. If s< exists,
a non-competing update, which is performed by an update of a
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—> old paths
new paths
common paths

Fig. 4. Intermediate step of G -construction, after exemplary G, G’ have
been merged. Dashed edges and vertices are removed in a subsequent step.

—> old paths
new paths

Py

o = J2 P,

Fig. 5. Traversal of an exemplary delta graph, leading to a correct ordering
among the updates. The dotted subtree represents joining group members.
Replicator pairs (gray labels) other than (ro,r()) are omitted for brevity.

single node, s< = r = 7/, is present. Non-competing updates
arise, e.g., when a single edge, connecting s< and j is replaced
by a path s< NLAN 7. Since they are not critical in terms of
update consistency, we do not consider them to be replicator
updates. In the exemplary G in Fig. 5, four join nodes j;
define replicator moves with respective replicator pairs (r;,7})
and paths (P}, P}).

E. Maintaining Loop-freeness

A special update case that has shown to occur very frequently
in our evaluation scenarios arises, when old and new paths
are interleaved, leading to swap paths, i.e., edges both in G
and G’ but with opposite direction, as illustrated in Fig. 5.
Consider the following naive but drop-freeness-maintaining
update: after processing of j; = 5 (install 4 P15, remove
3 1, 5), a transient loop 3 -+ 4 — 5 — 3 is introduced
during processing of jo = 3, while 5 2, 3 has been installed
and 3 —22 4 has not yet been removed. Note that if duplicate-
freeness is to be maintained, i.e., P; is removed before P/
is installed, naturally, loops and duplicates do not appear. As
the occurrence of loops is dependent on the update strategy,
we define a third correctness property, loop-freeness, which
is relevant for competing replicator move updates when drop-
freeness is to be guaranteed. Avoiding cycles can however
be achieved through a suitable update ordering. We derive
a general update ordering, maintaining also loop-freeness in
Section VI.
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FE. Effective Update Order

While we have focused on the formal structural analysis of
multicast network updates so far, in the following we will
incorporate further aspects of time to complement the prior
analysis. In this section will describe the situation for packets
traversing the network while an update is being applied. We
will show that propagation delay of group messages may lead
to an inversion of inconsistency effects and thus has to be
included in the approach in order to be able to guarantee an
invariant as selected by the update strategy. On the other hand
it can be used to mitigate inconsistency effects.

Analysis: We differentiate between two types of events:
1) Events due to the packet forwarding process in the data
plane: message receipt (packet ingress) and processing
(forwarding), which possibly leads to multiple message
sending. We consider processing delays negligible compared
to link propagation delay and thus only consider the latter in
this analysis. Therefore we subsume all named sub-events
in a single switch event. 2) Events due to update messages
from the controller: update message receipt and processing
(execution). We assume that the network manager is aware of
the control channel latencies and handles timing of control
messages accordingly. The discussion over this assumption is
taken up again at the end of this subsection. We depict update
events to mark the end of the update execution, i.e., when the
update has become effective on the data plane.

For ease of demonstration, we simplify the example from
Fig. 2 by omitting nodes which are solely relay nodes in both
G and G, i.e., switches 3 to 5, as shown in Fig. 6.

We start with the upstream replicator move (cf. Fig. 6 with
r=s and v’ = 2), where r is a successor of 7’ and thus
dependent on 7/, as in our running example. We assume the
drop prevention update strategy, at the cost of duplicates, and
thus an update order of u:r, < u,. . Fig. 7(a) shows a space-time
diagram, depicting packet traversal with varying propagation
delays and in intermediate states of an upstream move. A time
axis for each node is given, where arrows depict events. A
packet p is entering the network at the source node s and
is forwarded on ingress by each switch ¢ in a switch event
switch(p, i) according to the rules installed at ¢ at the time of
the switch event. The traversal of each packet is captured by
a respective trace, reflecting the history of update events as
seen by the traversing packet. As shown in Fig. 7(a), packets
always reach m; correctly, i.e., exactly once, such that we do
not include them in traces (dotted arrows).

Packet and trace names are binary coded according to
the state that was present at network ingress or switch
events, respectively. For instance, packet pki; (rightmost)
enters the network after all updates have already been
executed and become effective (irrespective of their order):
-+ < switch(pky1,7’). Packet pkyp results in a correct trace
try1 (rightmost), since all switch events happen after the
update of the respective switches. A packet pkgg is entering
the network before v and u:ﬁ and is thus switched at the

ingress switch s =1’ before wuf;: switch(pkoo,r") < u.

Depending on the propagation delay of ' — r, denoted
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S i
ug: rreplicate
u,: replicate

(2) 2
ok . S

Fig. 6. Simplified example for the analysis of intermediate states, showing
downstream and upstream replicator moves and corresponding updates.

ug: replicate
u,: rreplicate

as T, ,, packet pkoo might reach r before its update or in
an intermediate state after its update. In the following we
assume two cases of a small and large T} , respectively. The
first case, switch(pkoo,r’) < switch(pkoo,r) <1 ---, results
in a correct trace trgg (leftmost trace). In the second case,
switch(pkoo, ') < u,; < switch(pkoo,r), however, ' did
not yet replicate, whereas r has, due to its update, already
stopped replicating, resulting in a drop at mo in the trace trg;.
Due to propagation delay, the effective update order, i.e., the
update order as seen by the traversing packet, is inverted from
uj, <u, tou, < uj,

As shown in the motivating example, a packet ingress
in an intra-update state, i.e., within the volatile phase,
pkio  with ul, <t switch(pkig,r') < switch(pkig,r) <1 - -,
results in a duplicate (¢rig). However, analogously, through
propagation delay, pk;o might see a different update order,
uf, < switch(pkio, ') < u, <0 switch(pkio, ), which leads
to a correct trace trj;, although the packet ingress has
happened at an intra-update state.

For upstream replicator moves with an update order of
u, < uj, (cf. Fig. 7(b)), inversion through propagation delay
cannot happen, since the dependent replicator r is updated
before its predecessor ' and thus, irrespective of T, ., tr19
cannot occur. Thus, pkqgg either leads to trgg (correct) or trgq
(drop), where pko; necessarily leads to trg;.

In the case of downstream moves, where 7’ is a successor of
and thus dependent on r, the situation is inverted. Downstream
moves with u,. < uj,, i.e., the update strategy to prevent
duplicates at the cost of drops, pkip may lead to drops, as
can be verified in Fig. 7(c). Through propagation delay, this
effect may be inverted, such that duplicates instead of drops
occur. Analogously, downstream moves with uj, < u, , may
result in duplicates in case of intermediate states, also due to
propagation delay.

We thus conclude: in general, two conditions for
perceived update reordering through propagation delay
between (r,7’) can be stated: dependency among (r,7’) and
the upstream node being updated before the downstream node.
Due to the independence of replicator swaps, they are not
prone to reordering. Replicator moves present dependency
but only two out of four possible cases, those fulfilling the
second condition, are prone to reordering: upstream moves
with u:r, < u,., possibly leading to drops through propagation
delay, instead of duplicates, and downstream moves with
u, < uj‘,, possibly leading to duplicates through propagation

delay, instead of drops.
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(c) Downstream replicator move with u, < u:r,
Fig. 7. Intermediate states of replicator moves as perceived by traversing

packets, considering propagation delay, which may invert the effects.

Effective update reordering due to propagation delay obvi-
ously counters the update strategy. However, first, typically the
network manager would select one static update strategy for
the whole multicast group traffic. Thus, there would only be
one case left where drop-freeness cannot be fully guaranteed.
Second, typical flow modification processing delay of SDN
hardware switches [24], [25] are at least one order of magnitude
larger than typical one-hop latencies of LAN or WAN links.
Anyway, since we enable the network manager to be aware
of this effect and its conditions, it is able to estimate the
effect’s extent and evaluate its criticality. The network manager
has global knowledge of the topology and the changes to be
applied to the multicast network, including the type of replicator
change. This allows for a static analysis of the effect’s extent
(cf. Section VII, Stage I). Along with empirical measurement of
data rates, the network manager can even estimate the expected
number of drops (cf. Section VII, Stage II). Based on this
evaluation the network manager may either simply choose to
tolerate the reordering or apply a method to eliminate effective
update reordering, which we present in the following.
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Mitigation approach: In the analysis, we have identified
a crucial measure for the reordering: the propagation delay
between the replicators, T ., which, in a real-world network,
would typically include multiple hops and might thus accu-
mulate to the order of tens to hundreds of milliseconds for
WANS. The network manager’s global knowledge also allows
for a measurement of path latencies and thus the determination
of T,/ ,. To eliminate effective update reordering, for cases
where these would occur, the update of the downstream
replicator is artificially delayed by maxz (T, )+ ts, where
ts denotes a safety margin which may possibly be added
to handle outliers of 7. ,. For instance, in the example
of Fig. 7(a), this guarantees that the last packet pkog with
ingress before u;ﬁ does not reach a yet updated r, such that
drops are prevented. On the downside, however, this approach
increases the volatile phase 7, such that it constitutes a
trade-off between potentially increasing the extent of tolerable
effects through decreasing the extent of unwanted effects.
Furthermore it is prone to jitter, i.e., variation of link delay.
While the jitter in LANs is typically small enough to be safely
ignored here, in WANSs it might have to be considered in
the determination of T, ,. With small jitter, however, the
extent of tolerable effects is small, since packets entering the
network within the volatile phase (pki1g), would, through the
artificial delay and small propagation jitter, most probably
reach an yet updated downstream replicator, leading to a drop
and duplicate free trace (¢r11). An optimization of this delay-
based method, is to minimize T),,; through the incorporation
of the network manager’s knowledge about the update rates
of the involved SDN switches, similarly to [15]. This would
allow to create exactly timed update schedules, which could be
precisely executed by the network manager, utilizing the timed
network updates approach [26]. However, this approach relies
on precisely synchronized switch clocks, which is reasonable
assumption for LANSs, whereas clock synchronization in WANs
cannot safely be assumed. Since we enable awareness of the
network manager also for the stated trade-off and dependencies,
it is able to reason and decide on a concrete method, including
parameters and optimizations. In Section VI-D, we present
another update approach which guarantees the maintenance
of arbitrary invariants by combining stateless updates with
optimized state-based updates to minimize the rule space
consumption.

VI. FLEXIBLE APPROACH FOR MULTICAST TREE UPDATES

Next, we present a flexible update approach for multicast
distribution trees that feeds back the prevailing update situation
to the network manager, which dynamically decides on an
update mechanism to be used. In Sections VI-A to VI-B we
describe a stateless update mechanism which allows for the
selection of one primary invariant to be guaranteed (update
strategy), where optional duplicate filtering (Section VI-C) may
be applied. In Section VI-D we present a hybrid, i.e., both,
stateless approach and state-based approach, which maintains
arbitrary invariants, while rule space consumption is minimized.
An overview of the proposed update procedure is given in Fig. 8,
relevant notations for this section are listed in Table 1.
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TABLE I. Table of relevant notations for Section VI.
sw  switch (node) si< split node % l link
s source node G distribution tree pk  packet
Ji join node % G2 delta graph tr  packet trace

replicator node € G(”, associated with j;; r. pair
path in G(", from swi to swz

rgj); (ri,m})

PO, swy £ swo

L= /Lt paths to be removed/installed in one update step
Ugy | ujw rule update (removal/installation) at sw
Tswy,sws propagation delay between sw1i, swa

The update procedure comprises five steps (cf. Figure 8):

S1) We capture differences in the distribution tree, which
was recalculated due to events in the network, such as topology
changes, e.g., link and node failures or utilization changes, as
well as changes in the group membership due to joining or
leaving nodes (churn). The change analyzer constructs the
delta graph (G2), representing all changes.

S2) The change analyzer returns all join nodes, their update
type, i.e., (up-/downstream) replicator move, replicator swap,
non-competing, as well as the number and identity of affected
nodes to the network manager’s reconfiguration process.
There, an appropriate update mechanism is selected along
with its parameters, based on the prevailing update situation.

S3) Based on the selected mechanism and parameters, the
necessary data plane updates are calculated by the path update
algorithm that decomposes the tree changes into incremental
edge updates. To this end, it traverses G in order to identify
and classify all changes into branch updates, replicator updates,
and added and removed edges due to member dynamics. Then
it defines update sequences by building a partial ordering over
sets of edge updates, associated with an update type. The order
depends on the given update strategy.

S4) These sets of edge updates are translated into SDN rule
updates by the rule update generator.

S5) Lastly, the updates are applied to the data plane in
guaranteed order by the update executor, which executes
all updates based on the update mechanism, selected by the
network manager.

'<_( UZJ Network Topology . Changes Link/node failures
< <
[a) i Group Membership . Changes Member dynamics
Old ) New
distribution tree Recalculation distribution tree
¥ - 2
— Update types
51) g | Crange e :
z
O w 83) Path update algorithm 2
UPDATE MECHANISM S
x y
z Ordered sets Strategy |Eff. order] %
- o< of edge updates o)
z Switch manager
- S4) | Rule update generator
oo Aggregator
Ordered sets
O of rule updates
S5) | Update executor W

Fig. 8. Overview of the proposed multicast update procedure, where the
specification of the update mechanism to be used is determined in the network
manager’s reconfiguration process.
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A. Processing Graph Changes

The change analyzer creates G2 (S1), which contains all
changed edges of a pair of old and new distribution tree (G, G’),
reflecting their transition. Thus, every edge [ is associated with
either G or G’. An edge [l is in G2 iff T € GAI~ ¢ G' or
IT € G’ AT ¢ G. Within the transition, all [~ € L™ are to
be removed and all [t € LT are to be installed.
3-phase G*-decomposition: Through constructive traversal,
the path update algorithm decomposes G into path segments
(S3), i.e., ordered sets of edges, and defines an order of these
steps. One step contains maximum-length path segments, while
still maintaining invariants, e.g., unicast paths of arbitrary length
as depicted in Fig. 5 (running example) can be combined in
one update. We refer to paths in G consisting of [~ as old
paths and vice versa for new paths. An update step is defined
as a pair (L7, LT). On the one hand, the execution order
within one update pair is determined by the update strategy: in
general, if drops are to be prevented, edges are installed before
edges are removed and vice versa, when preventing duplicates.
On the other hand, the order among update pairs is crucial:
intuitively, the general “remove-before-add” procedure implies
careful removal, such that only edges that are independent,
i.e., not needed by downstream nodes, are removed. This is,
e.g., to verify, that an old path sw; —£ sws, is removed only,
when it either has been replaced by a new path sw; L swy
or swy € G'. The first case would be caused by a replicator
move, whereas the second case would be caused by a leaving
member or a relay node in G becoming a non-tree node. To
ensure this behavior, i.e., to determine a proper inter update
pair order, we traverse G2, starting at s.
Phase 1 - Determining join node sequence: In the first
traversal step, we employ a depth-first search (DFS) to obtain an
ordered list of all join nodes j; € G (indices depict sequence
in Fig. 5), to be processed in order later. Note that s is not
necessarily an element of G and furthermore, G® might be
a forest. We thus traverse G’ starting from the closest (most
upstream) node of s for each possibly isolated tree of G
which is in G’ (node 1 (rightmost) in Fig. 5).
Phase 2 - Join node processing: Then, join nodes are
processed in order, where for each j;, the number of affected
nodes is assessed, as is a pair (L;,L;). The pairwise
update step is determined by a backward DFS, traversing G2
backwards (upstreams), starting from j;. Edges from G are
appended to L; , analogously edges from G’ are appended to
L. The traversal stops when another join node or the end of
the path is reached. In the example of Fig. 5 (ignoring the dotted
subtree), processing of jo would yield (Ly = Py, L = P))
with Py = [3— 4] and Pl = [6 =>4, 7T—6, 1= 7]. As
described, the ends of the respective paths define the replicator
pair (r;, %), with ro = 3, 7, = 1 in the example (gray label).
If r;, =71, = sf, the replicator move is classified as non-
competing. Finally, L;" is reversed, such that the most upstream
edge is removed first, continuing in downstream direction.
Individual update steps are stored in an ordered set, in order
of the join node processing.

To consider member changes, within the backward DFS, a
forward DFS is started when a node sw has deg,,,, (sw) > 1.
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The subtree branching from 7 in the example (dotted lines), is
traversed by a forward DFS, started when the backward DFS
reaches 7, and is inserted as a nested sublist within P).
Phase 3 - Processing residuals: After processing join nodes,
there might be residual, unhandled parts in G2, which are
subsequently handled in a second traversal step. These can be
isolated trees which do not contain a join node. Root nodes
with deg,, (sw) = 0 are determined and processed in order by
employing a forward DFS to identify residual paths and create
update steps accordingly.

B. Translating Graph Changes to the Data Plane

After the path update algorithm has decomposed the (G, G")
transition into a partially ordered set of edge update steps, the
update steps have to be translated into SDN flow rule updates
on a per-switch basis. Since distribution tree calculation is
executed by the logically centralized network manager and thus
both, topology data and switch management data is present,
this step is straightforward: the rule update generator (S4)
translates the directed edges ! of the distribution tree into
an associated switch-switchport pair (sw, ps, ), where sw is
the source of [, in the order given by the update steps. The
update aggregator component keeps track of rules installed in
sw’s flow table and determines an appropriate incremental rule
update action® for each (sw,psy ).

Lastly, the update executor executes all rule updates (S5)
given by the rule update generator using an update mechanism
as determined by the network manager (S2). For the stateless
update mechanism, it coordinates the execution on multiple
switches and guarantees total execution order. Thus the
invariant, selected by the update strategy is guaranteed to
be maintained throughout the whole update process. Update
scheduling and execution has been subject to intensive research,
e.g., [15]. We thus consider scheduling to be out of the scope
of this article. Moreover, we identified several opportunities to
leverage parallelization of update execution in our approach,
which, due to space restrictions, we also did not include here.

C. In-network Duplicate Filtering

In this section, we describe an approach to mitigate duplicates
which may occur in our stateless update mechanism with
drop-prevention strategy, i.e., uj, < u, . This approach is
applicable to both replicator moves and replicator swaps. We
tackle the symptoms of this update inconsistency by installing
an additional rule at the join node j, associated with a replicator
pair (r, "), which aims to detect and filter duplicates after the
actual replication (post-filtering). Consider a replicator swap,
where the path from the split node s< to j over r (s< - j)
and over 7 (s< j) are completely disjoint, as in Fig. 5 with
j=7j1=05, s< =1, r =4, r = 3. The base filter principle
is illustrated in Fig. 9(a): when the first packet pk; reaches
j over the (new) path P’ we consider all consequent packets
reaching j over the (old) path P to be duplicates. Thus, on
ingress of pk; at j, we install a rule to drop all packets, reaching

2When, e.g., a flow table entry in sw for group messages already exists, it
is either deleted or its out-port action is changed to include or exclude pgqy.
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Fig. 9. In-network duplicate filtering: the ingress of a packet from r’ triggers
the installation of the drop rule at j, which identifies subsequent packets
from 7 as duplicates and drops them accordingly. The filter effectiveness is
dependent on T/ ; — T5. 5.

7 over the ingress port that is associated with the link to j’s
predecessor in P. For sake of illustration only, we assume
each packet to be identifiable over a sequentially increasing
sequence number s;. In the illustration, the ingress of pk; with
sy, from 7’ triggers the installation of the drop rule at j (u;),
which identifies subsequent packets from r (pkg with s,,, S5,+1)
as duplicates and drops them accordingly. In practice, flow
rules typically cannot change the state or content of other rules,
which is mandatory here. However, even in early releases
of commonly used SDN switch software implementations,
such as Open vSwitch?, local switch logic has been enabled
by implementing the Nicira Extensions*. They implement,
inter alia, a MAC learning switch, where packet ingress triggers
the installation of new forwarding rules, completely based
on local logic, without controller involvement. Incorporating
local switch logic thus, analogously, allows us to pre-install
the described drop rules that are activated by local logic,
i.e., packet ingress, by the switch, without time-consuming
controller involvement. However, depending on differences in
the accumulated propagation delay of r —— j and 7/ LN Js
this approach can only guarantee partial duplicate filtering.
As illustrated in Fig. 9(b), duplicates pass unfiltered, when
Ty ; > T, ;. Vice versa, when T, ; < T ;, yet unreceived
packets from r may be filtered, leading to effective drops.
However, similar to the effective update order method, effective
drops can be avoided by deferring u; such that filtering becomes
effective after the last non-duplicated pky from r reached j.

In conclusion, the effectivity of the filtering approach is
anti-proportional to the difference of T, ; and T;. ;, however
removing any (extent of) unnecessary load from a network is
beneficial. Awareness of this dependency allows the network
manager to gauge the costs and benefit and dynamically decide
whether to apply duplicate filtering (S2).

D. Hybrid Update Mechanism

While effective order elimination and duplicate filtering mecha-
nisms are able to partially decrease the extent of invariant
violation by tackling the symptoms of inevitable update
inconsistency, in this section we present an optimized state-
based approach, eliminating the reason of inconsistency. We
present an optimized version of the prominent two-phase update

3http://openvswitch.org/
“https://git.io/vgTKL
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approach of Reitblatt er al. [6], combined with a stateless
update ordering as an alternative update approach for multicast
networks. In a two phase update, a version tag is appended
to each incoming packet at the ingress switch, s in our case,
while each network configuration, i.e., coherent set of rules
installed in all switches, matches only one particular version.
Reconfiguration is achieved by installing a new set of rules
with an increased version match field on all switches, in parallel
to the old rule set, before updating the ingress switch as to
tag newly incoming packets with the new version number. A
packet, traversing the network, thus is processed according to
a coherent configuration (per-packet consistency). Increasing
the tagged version number at the ingress switch effectively
switches the configuration that packet is processed according
to simultaneously, such that there exists no effective intra-
update state and arbitrary invariants are maintained. Through
the parallel installation of old and new configuration, the rule
space consumption is doubled. In modern networking, multiple
network functions are executed in parallel, leading to a high
total number of rules. Furthermore, the two-phase approach
has a technical dependency on the ability to encode state
information in the packet. State of the art SDN switches can
only process the packet header efficiently, such that the version
information is stored in an unused header field, typically the
VLAN tag. However, it cannot safely be assumed that a vacant
header field is present at every packet, such that the approach’s
applicability is limited.

While the technical dependency remains, we optimize
the original approach as described in the following. The
conducted extensive analysis on the concrete problem of update
consistency of multicast networks has identified the critical
parts of reconfiguration, where drop- and duplicate-freeness
breaks, as the replicator pair (r, ). In order to maintain both—
in fact, arbitrary invariants—we employ a two-phase update,
but limited to the replicator pairs. While the calculation of the
necessary updates stays unchanged, their execution order (S3)
is changed: P} \ %, denoted as P’ ?, is installed, before a two-
phase update, limited to (r;,r;) is conducted. Note, that the
installation order of P’ ? is even irrelevant, since the associated
path is not used until the two-phase update of (r;,r;) has
been executed. After (r;,7;) has been updated, P’ is effective,
while P is ineffective due to the update of r, such that P}
can be safely removed in arbitrary order. The update order of
upro < U(pyry <LUPD has to be guaranteed though.

Depending on the severity of the update inconsistency effects,
the network manager might decide (S2) to prefer rule space
capacity and use this approach only if effective update order
and duplicate filtering mechanisms would yield bad results,
rather than blindly apply it whenever the technical condition
is met.

VII. EVALUATION

Our evaluation consists of two stages: first, we analytically
evaluate the impact, i.e., the number of replicator moves and
affected nodes, for a varying degree of network dynamics
(random member and link changes) for a small and large
WAN topology. Second, we apply our approach to these graph
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Fig. 10. Scenario Generator, stepwisely recalculating the distribution tree,
triggered by simulated link and member changes.

changes to transform them into rule changes and corresponding
network updates, which we execute on an SDN network
emulated with Mininet. We empirically measure the occurrence
of drops and duplicates directly on the data plane, while varying
the update strategy and the degree of the random reordering
of the given update sequences. All stages were executed on
a dual-socket Intel Xeon E5-2687Wv3 (10 physical cores at
3.10GHz per socket) with 128GB RAM, running CentOS 7.

Stage I: Impact Analysis of Network Dynamics

Methodology: For Stage I, we implemented a scenario
generator which first creates a random initial state (source
node and members selection) for a given number of members
m and a given topology, along with an according distribution
tree. The scenario generator then simulates random data-plane
events (member and link changes), which trigger a recalculation,
leading to a new tree. This change-recalculate process is
repeated in a stepwise execution model, where one step is
denoted by a time period p;, as illustrated in Fig. 10. All trees
of one scenario generator run are called a scenario. Distribution
trees are calculated using a C++-implementation of a Steiner
Tree approximation algorithm®.

For membership changes, we employ a probabilistic model,
where p defines the probability of a node changing its
membership state. Link over-utilization is simulated by a
temporary significant increase of the respective edge weight,
where ¢ denotes the number of over-utilized links, per period.

In each period, the change analyzer creates a G* and
assesses three metrics: the number of replicator moves, the total
number of affected nodes, and the distribution of replicator
update types within that period. Note that non-competing
replicator moves are not considered here. Furthermore, recall
that (affected) nodes do not consider potentially connected
end hosts, which would be affected as well. Also, the path
update algorithm calculates all edge update sequences, which
are dumped and used in the Stage II.

In Stage I, we use two real WAN topologies of different
scales (number of vertices v, number of edges e): the Eu-
ropean National Research & Education Networks (NREN)®
with v =440, e =599, as well as the IP-backbone of the
German Research & Education Network (DFN X-WiN) with
v = 50, e = 76. Link latencies are used as initial edge weights.
For NREN, latencies missing in the obtained data set where
interpolated (with an added Gaussian-distributed random error),

5 Enabled by the global knowledge, optimality is shown to be reached,
constructing a minimum Steiner tree [27]. The Steiner tree problem asks for a
tree, spanning a set of terminals (S U M) at minimal cost (ZZELMC w(l)),
possibly including additional non-terminal elements, called Steiner nodes.

6obtained from http://www.topology-zoo.org/eu_nren.html
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Fig. 11. DFN X-WiN base topology (light edges, light and unfilled vertices;
edge labels: avg. link delay in ps) with superimposed exemplary multicast
distribution tree (dark edges; downward triangle: source (node 45); upward
triangle: member; dark vertex: replicator; light vertex: relay).

whereas latencies of the X-WiN were obtained from the web
service of its active probing system’. The number of initial
members m is given as a fixed ratio of /v = 0.4. An exemplary
Steiner tree based on the DFN X-WiN underlay topology is
shown in Fig. 11. The degree of dynamics is gradually increased
in 6 levels, ranging in p € [0.005,...,0.1], c € [0,...,10] (p:
member change probability; c: number of simulated link over-
utilizations). To reduce structural dependency on the initial
state, each level is evaluated by a common set of 5 scenarios.
Each scenario consists of 200 periods.
Results: Fig. 12 shows period- and scenario-aggregated mean
ratios of replicator moves. Error bars in the figure and stated
variances henceforth refer to the standard deviation of the inter-
scenario aggregation, i.e., among scenarios. As expected, a
strong correlation between degree of dynamics and extent of
effects can be inferred. The number of replicator moves directly
reflects the degree of dynamics. Constantly low variance
indicates low dependency on both topology and scenario.
The number of affected nodes naturally reflects the number of
replicator nodes. Even small/few changes in the network already
cause a significant extent of effects, mostly stemming from sim-
ulated link over-utilization. For instance, for (p = 0.005,¢ = 1)
the number of affected nodes is 24.21 + 13.72 (NREN) and
13.06 & 2.72 (X-WiN). Respective statistical ratios® are 5.5%
of all NREN nodes and 26.1% of all X-WiN nodes.
However, a high variance and thus a high dependency on
the underlying topology and its initial conditions can be stated.
Naturally, the specific position of the respective replicator
pairs in the graph along with initial conditions and scenario
parameters, such as average distance to the source or graph
diameter, strongly influence the number of affected nodes.
The distribution of replicator update types, excluding non-
competing replicator updates, is shown in Fig. 13. The churn

"http://pallando.rrze.uni-erlangen.de:8090/servicessMA/HADES/DFN
8Note that this ratio does not imply the coverage of actual nodes, since a
single node can be affected by multiple replicator moves within a period.
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values of number of replicator moves and affected nodes for varying degree of
dynamics. Even small dynamics cause a significant extent of network changes.
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Fig. 13. Distribution of replicator update types.

type depicts moves, where either r ¢ G’ or ' ¢ G. In both,
NREN and X-WiN, = 80% of the moves are replicator moves,
where, on average, downstream moves are twice as likely as
upstream moves for X-WiN with moderate and high dynamics
and about 25% more likely for NREN, irrespective of the
degree of dynamics. For drop-prevention, the effective update
reordering, happening at upstream moves, is thus shown to be
of potential practical relevance, if HW switches’ flow update
rates are unconsidered, as discussed. Reorder-free replicator
swaps are more significant for NREN with ~ 17% on average
than on X-WiN with = 10%, both showing anti-proportionality
wrt. the degree of dynamics. The churn type ratio is rather
constant at & 5% for both base topologies.

We summarize the observations in stating that even moderate
degree of dynamics lead to significant extent of tree changes
and thus to a significant amount of nodes, affected by update
inconsistency.

Stage 1I: Empirical Validation

Methodology: In Stage II, we translate the edge updates
from the scenarios of Stage I into corresponding FlowMod
messages (OF 1.3) and execute them in an emulated network
with X-WiN topology and given link characteristics (latency).
We use Mininet version 2.2.1 with Linux Traffic Control (TC)
enabled links, which allow for link latency emulation, in
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combination with Open vSwitch (OVS) version 2.3.2. The
rule update generator and the update executor are implemented
as a module for the Python-based Ryu SDN controller. Since
the update executor has to guarantee total update execution
order on a switch basis, OF Barrier Messages are used as
flow-modification feedback mechanism, i.e., updates, sent to a
switch for execution, block sending updates to other switches,
until the execution of all former updates are acknowledged.

Recent SDN hardware switches have a limited flow modi-
fication capacity of around 40 flows per second (update rate)
[24], [25], which we simulate through an artificial delay in
the update executor. This assumed lower bound is probably
exceeded in the evolution of upcoming SDN hardware switches.
Thus, we present an extended evaluation with update rates up
to 1000 flows per second at the end of this section. However,
other work, including [15], suggest a high volatility of the flow
update rate and strong dependency on a number of factors, such
as control-plane load, number of installed rules, rule priority
and complexity (actions). The update executor processes all
translated updates of a scenario period, before progressing to
the next period. This results in a typical execution time of
1.15 + 0.3s per period.

We measure the occurrence of drops and duplicates within
one period directly on the data plane, while updates are being
executed. Therefore, the sender node is added as a Mininet host
that constantly sends group messages, containing a sequence
number as payload, at a rate of 250pps (packets per second),
which is a realistic number, e.g., for media streaming, and a
packet size of 50 Bytes. We capture the complete traffic on
all Mininet network interfaces, i.e., switchports. The number
of captured packets is denoted by n. Through evaluating
the sequence numbers of captured packets on a switchport,
we directly measure the number of duplicates du. To assess
the number of dropped packets dr, we evaluate sequence
number gaps between two consecutively captured packets on
a switchport, respecting period-borders. We then aggregate
duplicate and drop values to the switch level by summation
and evaluation of possibly overlapping sequence number and
their gaps, respectively.

Here, edge updates of the 5 scenarios with moderate degree
of dynamics (p = 0.005, ¢ = 1) from Stage I are used. The
update strategy is varied between drop prevention (ADD_F') and
duplicate prevention (REM_F), to validate the effectiveness of
our approach. As a baseline, we provide a completely random
update order. To show the implications of deviation from
the pure strategies up to complete randomness, we employ
a gradually increasing extent of random reordering: ps denotes
the probability of a message within an ordered list of messages
to be chosen for reordering. The set of chosen messages are
then randomly reordered, using Fisher—Yates Shuffling. While
unchosen messages stay at their list position, chosen messages
are replaced by shuffled messages. Note that only the ordered
elements within an update pair (L; , L;") are shuffled, whereas
the order among update pairs (strategy) is maintained.
Results: Fig. 14 shows mean packet drop factor (quotient of
num. of dropped and num. of expected packets: Ay = 4r/dr+n)
and duplication factor (quotient of num. of duplicates and
num. of captured packets: A4, = du/n) of affected nodes for
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Fig. 14. Empirical data plane effect occurrence evaluation of affected nodes
(Stage II): mean drop and duplication factors for varying strategy and degree of
random update message reordering, validating the correctness of our approach.

varying degree of reordering, where the extremes (leftmost,
rightmost) show pure strategies (no shuffling: p, = 0), with a
gradual 0.25 p-increase (partial shuffling) towards the center,
which is fully shuffled (p; = 1). As illustrated, our approach
can be shown to be correct: the drop prevention strategy (left)
successfully prevents drops A4 = 040, at the cost of duplicates
Adw = 0.05 £ 0.005 and vice versa for duplicate prevention
(right): Ag, = 0£0, Ag = 0.09 £ 0.01.

Deviating from a pure strategy, e.g., drop prevention, is
shown to result in introduced effects, actually to be prevented,
e.g., drops, as expected. While the extent of the inverse effect,
i.e., duplicates, decreases strong monotonically with increasing
ps in the case of drop prevention, curiously this is not the case,
when deviating from pure duplicate prevention. One possible
explanation is the small topology scale, typically resulting in
short message lists, where the effectiveness of probabilistic
shuffling is small, such that the extent of reordering is similar
for a large range of ps-gradations.

Another asymmetry is present in the average Ag- being
almost 2 * Ag4,. This asymmetry however naturally follows
from the nature of removal and installation of unicast paths to
a respective join node j: for the non-shuffled case of add first,
the new path to j is first fully installed, before the old path
is removed. Until the last edge in the installation phase has
been installed, neither drops nor duplicates occur. In contrary,
with remove first, the first removal of an edge immediately
results in drops, lasting over the removal and installation phase,
until the last edge of the new path has been installed. Thus,
drops are much more likely than duplicates. Similarly, for
shuffled cases, the probability to have the only unicast path to
7 broken by a reordered and thus premature remove-update is
much higher than the probability to have a complete redundant
unicast path installed, despite the mixing of installation and
removal updates. For averagely larger path lengths, e.g., in
larger topologies, this effect is expected to be of much higher
extent.

In a last evaluation, we have increased the assumed flow
update rate to 1000s~!—the order of magnitude we expect to
see on upcoming SDN switch hardware. In order to reliably
assess update inconsistency effects, we target a packet rate
that is one order of magnitude higher than the update rate, i.e.,
10000pps. On our evaluation machine, Mininet does not scale
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further than approx. 3000pps for the X-WiN base topology,
using default Linux virtual Ethernet (veth) pair links. Thus,
we have to use OVS specific OVS patch links® to interconnect
OVS bridge ports. Since these interfaces are not exposed to
the OS, performing packet capture on them is not possible.
We thus add a Linux dummy interface to each OVS bridge
and mirror all packets from the other (regular) OVS ports to it.
Capturing on those dummy interfaces thus allows for assessing
the complete network traffic. The results shown above were
confirmed for increased update and packet rates, however, the
changed evaluation method introduces a packet reorder rate
of about 1%. Furthermore, OVS patch links do not support
link latency emulation, so that we could not consider timing
aspects.

VIII. CONCLUSION

In this article, we have proposed a generic system architecture
for network management, focusing on change management.
We have proven that it is impossible in general to achieve
drop-freeness and duplicate-freeness simultaneously just by
ordering updates in a multicast network. We have presented
a detailed formal analysis of this update problem. In order
to alleviate this problem, we have proposed a flexible update
approach, allowing for selecting a strategy that either prevents
duplicate or drops. We have shown that update consistency is
multifarious and comprises many degrees of freedom, spanning
a large configuration space. In combination with the severity
of impacts on the network performance, this has shown the
relevance of update consistency in network management and
argues for incorporating update consistency awareness in the
network reconfiguration process.

Our evaluation has shown the relevance of the addressed
problem even for small degree of network dynamics and has
validated the correctness of our update order approach: drop-
freeness can be achieved at the cost of as few as 5% introduced
duplicates. Since duplicates, in contrast to drops, have been
shown to be of less extent and certainly can be assumed less
fatal for most applications, our approach is highly practical.
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