
1

High Performance Publish/Subscribe Middleware in
Software-defined Networks

Sukanya Bhowmik†, Muhammad Adnan Tariq†, Boris Koldehofe∓, Frank Dürr†, Thomas Kohler†, and Kurt
Rothermel†

†University of Stuttgart, {first name.last name}@ipvs.uni-stuttgart.de
∓University of Darmstadt, {first name.last name}@kom.tu-darmstadt.de

Abstract—With the increasing popularity of Software-defined
Networking (SDN), Ternary Content-Addressable Memory
(TCAM) of switches can be directly accessed by a pub-
lish/subscribe middleware to perform filtering operations at
low latency. In this way, three important requirements for a
publish/subscribe middleware can be fulfilled: namely, bandwidth
efficiency, line-rate performance, and low latency in forwarding
messages between producers and consumers. Nevertheless, it is
challenging to sustain line-rate performance in the presence of dy-
namically changing interests of producers and consumers. In this
article, we realize a scalable, SDN-based publish/subscribe mid-
dleware, called PLEROMA, that performs efficient forwarding
at line-rate. Moreover, PLEROMA offers methods to efficiently
reconfigure a deployed topology in the presence of dynamic
subscriptions and advertisements. We evaluate the performance
of both the data plane and the control plane of PLEROMA to
support our claim. Furthermore, we evaluate and benchmark the
performances of SDN-compliant hardware and software switches
in the context of our middleware.

Index Terms—Content-based Routing, Publish/Subscribe,
Software-defined Networking, Consistency, Middleware

I. INTRODUCTION

Content-based routing as provided by publish/subscribe
(pub/sub) systems has evolved as a key paradigm for in-
teractions between loosely coupled application components
(content publishers and subscribers). The basic idea of content-
based routing is to utilize the diversity of information ex-
changed between application components to increase the ef-
ficiency of forwarding. Using content-based forwarding rules
(also called content filters) installed on content-based routers
(also termed brokers), bandwidth-efficiency is increased by
only forwarding content to the subset of subscribers who are
actually interested in the published content.

Many middleware implementations for content-based
pub/sub have been developed over the last decade (e.g.,
[17], [19], [10]). These approaches have proven to efficiently
support content-based routing between a large number of dis-
tributed application components. However, implemented in an
overlay network of software brokers, their performance is still
far behind the performance of communication protocols im-
plemented on the network layer w.r.t. throughput, end-to-end
latency, and bandwidth efficiency. This is because these mid-
dleware implementations are unable to exploit the performance
benefits of standard multilayer switches or hardware routers
capable of forwarding packets at line-rate and achieving data

rates of 10 Gbps and more using dedicated hardware such
as Ternary Content Addressable Memory (TCAM). Moreover,
routing on overlay networks may not be bandwidth efficient
due to the dissemination of the same packet multiple times
over the same physical link being shared by multiple logical
links. This is in contrast to routing on the network layer.

Therefore, it would be highly attractive to implement
content-based routing directly on the network layer. However,
even till the recent past, changes to existing standard network
protocols and hardware seemed to be unrealistic and most
research refrained from network layer implementations. This,
however, has changed with the advent of software-defined net-
working (SDN), which provides the possibility to go beyond
the limitations of traditional network architectures by allowing
software to flexibly configure the network. With the help of
standards like OpenFlow [9], the lower-level network func-
tionalities are abstracted and presented as network services.
In doing so, SDN establishes a clear distinction between the
control plane and the data (forwarding) plane by extracting
all control logic from the forwarding devices and hosting
it on a logically centralized component, the controller. A
controller has an integrated view of the entire network. It has
the ability to collect and process information (e.g., network
statistics, application-specific requests) from the data plane
and perform network updates accordingly by modifying the
state of network devices (i.e., switches).

SDN technology can be exploited by existing content-based
publish/subscribe middleware to enhance performance on the
data plane w.r.t. throughput, end-to-end latency, and bandwidth
efficiency in highly demanding application fields such as
financial trading, traffic control, online gaming, and smart grid.
This is because the expressive filtering of events, which was
previously done at the application layer, can now be performed
on the TCAM memory of switches (in the date plane) at line-
rate [34]. Moreover, since the logically centralized controller
has a global view of the underlying topology, it is possible to
install a network topology for forwarding information between
producers and consumers in a bandwidth efficient manner.

In this article, we mainly focus on fulfilling two require-
ments, one at the data plane and the other at the control plane,
towards achieving a scalable SDN-based publish/subscribe
middleware. First, while a deployed network topology offers
line-rate performance in forwarding events at the data plane,
efficient mapping of content to expressive filters capable of

bhowmisa
Text Box
© 2016 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This is the author's version of an article that has been published in IEEE/ACM TRANSACTIONS ON NETWORKING journal. Changes were made to this version by the publisher prior to publication.The final version of record is available at http://dx.doi.org/10.1109/TNET.2016.2632970

2

being installed in the TCAM of switches can prove to be
extremely challenging and an important requirement. Content
representation should be expressive enough to keep the amount
of unnecessary traffic in the network to a minimum, even in
the presence of hardware limitations, e.g., limited number of
flow table entries. Note that the cost for TCAM is critical in
the design of switches. Therefore, vendors offer only a limited
set of flows which is currently in the order of thousands to
hundreds of thousands flow entries per switch [12]. Second, in
the presence of high dynamics, the logically centralized control
plane needs to engage in very frequent network topology
updates with changing interests of publishers and subscribers.
For example, financial trading, traffic monitoring, or online
gaming are not only known to be highly latency sensitive ap-
plications, but also highly dynamic with respect to the interests
of publishers and subscribers [19], [23]. In order to analyse the
trend of stocks and quotes, the threshold for receiving events
is updated in the time-scale ranging from just a few seconds to
several hours for a single subscription [19]. Traffic monitoring
and online gaming require location-dependent updates of run-
time parameters such as the location of objects, often at higher
frequency than one update per minute per subscriber [23].
Providing a scalable control plane with high responsiveness
to such topology change requests in a dynamically changing
environment is, therefore, crucial to the middleware and con-
stitutes the second requirement.

This article is an extended version of previous publications
on the PLEROMA middleware [34], [5], [22] and provides
a detailed insight into various aspects of it. In particular, the
contributions of this article are the design, implementation, and
detailed evaluation of an SDN-based publish/subscribe mid-
dleware offering line-rate forwarding of events and methods
for its scalable reconfiguration addressing the aforementioned
requirements. To the best of our knowledge, we are the first
to provide a middleware implementation using SDN [25].

The remainder of this article is structured as follows. In Sec-
tion II, we first introduce the architecture of the PLEROMA
middleware. Section III presents mechanisms that i) provide a
content representation capable of being mapped to hardware
switches, ii) achieve reconfiguration of the network topology,
and iii) limit the number of flows to be installed inside an SDN
switch. In Section IV, we focus on increasing responsiveness
of the control plane to data plane requests by introducing scal-
ing mechanisms and provide methods to reduce the number
of flow updates on switches. Finally, in Section V, we present
detailed performance evaluation of the data plane and the
control plane of the PLEROMA middleware. We also evaluate
and benchmark the performances of real hardware switches
and virtual switches implemented in software in the context
of our middleware. We conclude with a comparison to related
state of the art systems and a summary of our work.

II. THE PLEROMA MIDDLEWARE

A content-based publish/subscribe consists of mainly two
types of participants—publishers and subscribers—, which are
connected to switches in a software-defined network. Publish-
ers specify the information they intend to publish by sending

P S

OpenFlow
messages

OpenFlow
messages

Event

Su
b

scrip
tio

nA
d

ve
rt

is
em

en
t

Configurator
CP-config

Dispatcher

DATA PLANE

CONTROL PLANE

Fig. 1: SDN-based Pub/Sub Middleware

advertisements to the control plane. Likewise, subscribers
specify information they are interested in receiving by send-
ing subscriptions. The logically centralized controller collects
all control requests ((un)advertisement/(un)subscription) from
participants based on which it installs paths on the data plane
between each publisher and all its interested subscribers. In
doing so, it configures the network’s data plane by proactively
installing suitable flow table entries—representing content-
based filters—on SDN-configurable switches by utilizing the
widely accepted OpenFlow standard [9] (cf. Figure 1). We
specifically use IP-Multicast addresses in flow table entries to
represent filters in PLEROMA. In this paper, we use the term
flow to represent a flow table entry on an SDN-configurable
switch. A flow further defines an outgoing port of a switch to
which a packet with a matching header field (packet-header-
based filtering) is forwarded. Note, our content representation
mechanisms are generic and other fields, e.g., MAC addresses
or VLAN tags [31], can also be used for the same purpose.

Figure 1 illustrates the architecture of the PLEROMA mid-
dleware, which establishes line-rate content-based routing. The
control plane consists of a two-tiered architecture; a dispatcher
collects control requests from publishers and subscribers in
a software-defined network, and a component, known as
configurator, processes these requests and performs network
updates accordingly. SDN allows the dispatcher and the
configurator, constituting the logically centralized controller,
to acquire a global view of the entire network and configure
it as needed. The dispatcher serves as the entry point to the
control plane. It collects all data plane control requests and
forwards them to the configurator.

On receiving control requests forwarded by the dispatcher,
a configurator configures the network topology to establish
short and bandwidth efficient paths between publishers and
subscribers. So, a configurator needs to read the current state
of the network, decide on updates, and then make changes to
the network state for each control request. The network state
is represented by network configuration that consists of (i)
all switches constituting the network, (ii) all links connecting
the switches to account for a dissemination structure, and (iii)
all pub/sub flows deployed on each switch. In general, the
network configuration is maintained both at the data plane and
the control plane of a software-defined network. On the one
hand, the network configuration at the data plane (denoted as
DP-config) is maintained implicitly as a result of pub/sub flows

3

deployed on the TCAM of hardware switches. On the other
hand, a control plane network configuration (denoted as CP-
config) is maintained by the logically centralized control plane
which serves as a reflection of DP-config. The configurator
needs to maintain the network state CP-config so that it does
not need to query the switches in the data plane and read
their states for processing every control request. As mentioned
before, installing paths between publishers and subscribers
involves reading the existing flows of each switch (along the
path), taking decisions on flow changes and writing these
changes to the switch. Since the controller assumes CP-config
to be identical to DP-config, it uses CP-config to read existing
flows and decide on flow changes. On taking a decision, the
controller sends the new flow changes to the hardware switch,
resulting in a change in DP-config. Meanwhile, the controller
also performs these flow changes in the CP-config to ensure
that it remains consistent with DP-config.

The above description of the PLEROMA middleware di-
rectly leads us to the problems to be solved on the data
plane and the control plane. In particular, the challenges on
the data plane include the (i) mapping of expressive content-
filters to flow entries in hardware switches, (ii) design of a
bandwidth and latency efficient dissemination structure for
packet forwarding, and (iii) preserving bandwidth efficiency
in the presence of hardware limitations w.r.t. number of
bits available for filtering. These challenges are addressed
in Section III where all mechanisms employed to enable in-
network content-based filtering are explained in details. More-
over, the challenges on the control plane include (i) design
of a consistent control plane which is highly responsive to
dynamically changing subscriber interests, and (ii) addressing
limitations of SDN-compliant switches w.r.t. the rate at which
flow updates are performed. These challenges are addressed
in Section IV where a mechanism to scale the control plane
in a consistent manner is discussed in details.

III. IN-NETWORK CONTENT-BASED FILTERING

In this section, we detail the methods employed to address
the aforementioned challenges related to the data plane. We,
first, provide a mechanism to linearize content such that
advertisements, subscriptions and events can be represented
as match fields in flows of switches (or header field of an
event packet). This is followed by an algorithm that details the
processing of both advertisements and subscription requests
at the control plane such that necessary paths are deployed
between publishers and relevant subscribers by installing the
aforementioned linearized content filters represented by switch
flows along these paths. Moreover, we also discuss ways to
preserve bandwidth efficiency in the presence of hardware
limitations while expressing content filters.

A. Content Representation

To ensure high expressiveness and establish paths with
low-bandwidth usage between publishers and subscribers, we
follow the content-based subscription model, i.e., an event
is composed of a set of attribute value pairs. To realize
the aforementioned packet-header-based filtering of events

ε

d1 = Price(P)

d
2

 =
 V

o
lu

m
e(

V
)

L2 =0
0 100

0

100

0 1

0 100
0

100

01

00 10

11

50

50

0
0

100

010

50

50

000

011

001 100 101

110 111

25 75

d1 = Price(P)

d1 = Price(P) d1 = Price(P)

d
2

 =
 V

o
lu

m
e(

V
)

d
2

 =
 V

o
lu

m
e(

V
)

d
2

 =
 V

o
lu

m
e(

V
)

100

U1 =100L1 =0

U2=100

50

sub1={ P = [50,75], V = [0,100] }

e1

Fig. 2: Spatial Indexing [22]

at the data plane, we need an efficient mapping between
content attributes and flow identifiers (i.e., one or more header
fields that uniquely identify flow entries in the flow tables of
switches). There are two steps to this mapping process.

The first step yields a binary representation of content fol-
lowing the principle of spatial indexing [22]. The event space
Ω, i.e., the set of all possible events that can be disseminated
by the publishers, can be interpreted by a multi-dimensional
space of which each dimension refers to the values of a specific
attribute. An event is simply represented as a point and a
subscription or advertisement as a subspace in Ω. Building on
the principle of spatial indexing, we can divide the event space
into regular subspaces that serve as enclosing approximations
for events, advertisements, and subscriptions. In fact, since
events are points in Ω, they are represented by subspaces of
finest possible granularity. Any subspace can be identified by a
binary string named dz-expression (in short dz). In particular,
dz-expressions fulfill the following characteristics. 1) The
shorter the dz, the larger is the corresponding subspace in Ω.
Again, since events are points in Ω, they are represented by
dzs of maximum length. 2) A subspace represented by dzi is
covered by the subspace represented by dzj iff dzj is a prefix
of dzi. In this case, we write dzj � dzi. 3) Two subspaces
dzi and dzj are overlapping if either dzi � dzj or dzj � dzi
holds and the overlap dzi ∩ dzj is identified by the longest
of the two dz. 4) For overlapping non identical subspaces dzi
and dzj , the non overlapping part, say dzi − dzj , may need
to be identified by multiple subspaces. For instance, the non
overlapped part of dzi = 0 w.r.t. dzj = 000 contains subspaces
001, 010, and 011.

We illustrate spatial indexing with an example in Figure 2
where we consider a stock quote dissemination system im-
plemented by the pub/sub paradigm. In this example, we
consider two attributes (or dimensions) stock price (P) and
stock volume (V) of a stock quote dissemination system. An
advertisement/subscription can be composed of several dzs,
denoted as DZ. For instance, to approximate the subscription
sub1 in Figure 2, two dzs are required, i.e., DZ = {110, 100}.
The containment and overlap relationships between a pair of
DZ can be defined w.r.t. set of dz-expressions represented
by them. For the sake of simplicity, here, we consider only
two dimensions. However, multiple dimensions can be indexed

4

which can even include string attributes such as company
name in the stock quote example. The string attributes can be
linearized by hashing and indexed in a similar manner [30].

The second step involves the mapping of the generated
binary strings (dzs) to flow identifiers. Using the above
relations, an event e disseminated by a publisher p will
comprise in its packet header field(s) a dz that represents
its attribute values. In order to deliver e to a subscriber s
with a subscription sub which expresses an interest in e,
the configurator must have installed on each switch along
the path (between p and s) a flow whose match field(s)
matches the header field(s) of this event. With respect to
spatial indexing, an event will match a subscription filter if
it lies within the subspace representing the subscription in Ω,
i.e., the dz representing sub covers (�) the dz representing
e. So, for a match to occur between e and sub, we utilize
the characteristics of dzs such that the match field(s) in flows
representing the filters for sub covers header field(s) of event
packet representing e. To this end, we use a range of IPv6
multicast addresses reserved for pub/sub traffic, as the flow
identifiers. So, a subscription/advertisement is represented by
an IPv6 multicast address which is used by the flow entries in
the flow tables of switches for event matching and forwarding.
The covering relation between subspaces is accommodated in
IP addresses with the help of Class-less Interdomain Routing
(CIDR) style masking supported by hardware switches where
the ’don’t care’ symbol (*) is used to represent masking
operations. An event is also represented as an IPv6 multicast
address and forms part of the header of the event packet. This
enables header-based matching and subsequent forwarding
of the event packet as dictated by a flow on account of a
match. So, continuing the stock quote example from Figure 2,
the dz representing the subspace {110} is converted to the
IP address ff0e:c000:* (ff0e:c000::/19). Now, if
the event e1={P=65, V=55} in the figure, which lies within
(matches) sub1, is represented by the dz 110010, then it is
converted to an IP address ff0e:c800:: and header-based
matching of this event packet takes place with the installed
flows for sub1.

B. Topology Reconfiguration

An efficient approach to topology reconfiguration is central
to pub/sub using SDN. To this end, we need to maintain a
dissemination structure which considers as constraints latency
efficiency, bandwidth usage, and cost efficiency to update
the network topology. Clearly, the lowest latency is achieved
if a configurator establishes a shortest path for each pub-
lisher/subscriber pair. However, this severely limits the reuse
in forwarding an event on common paths, i.e., the possibility to
share common subpath(s) and, therefore, bandwidth between
a publisher and subscribers with overlapping subscriptions.
Moreover, each new subscription or advertisement would
trigger updates of the network topology to add paths between
all relevant publishers and subscribers and, therefore, impose
a very high reconfiguration cost.

A common alternative—often taken by traditional broker-
based systems [17]—is to embed the paths between publishers

and subscribers by means of filters in a single spanning tree.
The spanning tree reflects low latency paths between any
pair of publisher and subscriber. Since all paths between
publishers and subscribers are embedded in the same tree, the
number of times an event needs to be forwarded is significantly
reduced. The reconfiguration cost is also limited to the edges
in the spanning tree and is significantly reduced wherever
subscriptions and advertisements overlap.

As a result, the PLEROMA middleware maintains a
spanning tree (comprising switches), denoted by t, at the
configurator, to account for an acyclic dissemination structure
on which paths are embedded between publishers and sub-
scribers by installing appropriate flows (filters) on switches
along these paths. More specifically, the dissemination struc-
ture of CP-config maintained at the control plane (and DP-
config maintained implicitly at the data plane) represents the
aforementioned spanning tree (cf. Section II). As a result, a
spanning tree maintained at the control plane, a CP-config and
a DP-config are synonymous in the rest of this article.

As mentioned earlier, installing paths between publishers
and subscribers involves reading the existing flows of each
switch (along the path), taking decisions on flow changes and
writing these changes to the switch. To do so, the configurator
uses CP-config to read existing flows and decide on flow
changes under the assumption that CP-config is identical
to DP-config. In a later section, we discuss the process of
ensuring consistency between CP-config and DP-config even
in the presence of failures. In order to understand the decision-
making process to determine flow changes on a switch, it is
important to understand how the configurator processes each
type of control request, which is the subject of discussion in
the remaining part of this subsection.

1) Maintenance of flow tables: The flow tables in the
switch network (network of switches in the data plane)
are modified (e.g, by adding or removing flow entries)
by the configurator as a result of (un)advertisement and
(un)subscription requests. In the following, we will first fo-
cus on advertisement, subscription requests and later briefly
describe the handling of unsubscription, unadvertisement re-
quests by the configurator.

a) Advertisements and Subscriptions: On arrival of an
advertisement, denoted by DZ(p), from a publisher p, the
configurator notes each dzi in DZ(p) and adds p to the
spanning tree, denoted by t. The configurator then checks for
already existing subscribers in t whose subscriptions overlap
with DZ(p). If there is no overlap, then no further actions are
taken. However, if an overlap exists, then the configurator es-
tablishes paths between the publisher p and all subscribers with
overlapping subscriptions in t. Each path between a publisher
p and a subscriber s on t only forwards the events matching
the subspaces overlapped between DZ(s) and DZ(p) (cf.
Algorithm 1, lines 1-6). In this way false positives (events
delivered to a subscriber that is not interested in receiving
them) are avoided.

Subscription requests are handled similarly as described
formally in lines 7-12 of Algorithm 1. On arrival of a sub-
scription, as a first step, the configurator calculates the route
between the subscriber s and each relevant publisher p on the

5

Algorithm 1 Publish/Subscribe maintenance at a single
configurator
1: upon event Receive(ADV, p, DZ(p)) do
2: for all dzi ∈ DZ(p) do
3: subSet = {s ∈ S ∧ ∃dzj ∈ DZ(s) : dzi � dzj ∨ dzj � dzi} //

Subscribers with overlapping DZ(s)
4: for all s ∈ subSet do
5: overlapWithSub = dzi ∩DZ(p)
6: flowAddition(overlapWithSub, 〈p, s, t〉, t)

7: upon event Receive(SUB, s, DZ(s)) do
8: for all dzi ∈ DZ(s) do
9: pubSet = {p ∈ Pt ∧ ∃dzj ∈ DZ(p) : dzi � dzj ∨ dzj � dzi}

// Publishers with overlapping DZ(p)
10: for all p ∈ pubSet do
11: overlapWithPub = dzi ∩DZ(p)
12: flowAddition(overlapWithPub, 〈p, s, t〉, t)

13: procedure flowAddition(dz, 〈p, s, t〉, t) do
14: destIP = (binary(ff0e:b400)&(dz � 112− |dz|)) \ 16 + |dz|
15: for all ri ∈ 〈p, s, t〉 do
16: Flow fln = MF ∪ IS ∪ PO
17: fln.MF = destIP
18: fln.PO = default value
19: fln.IS.oP = {ri.oPi}
20: curFlow = getCurrentFlowsFromSwitch(ri.Ri)
21: if ri is last entry in 〈p, s, t〉 then
22: fln.IS.set-destIP = s.IP
23: if curFlow 6= ∅ ∧¬(∃flc ∈ curFlow : flc � fln) then // Cases

3 - 4: None of the curFlow fully covers fln
24: for all flc ∈ curFlow : fln � flc do // Case 3
25: deleteFlowFromSwitch(flc, ri.Ri)
26: for all flc ∈ curFlow : flc v fln do // Case 4
27: fln.IS.oP = fln.IS.oP ∪ flc.IS.oP
28: increasePriority(fln.PO)
29: for all flc ∈ curFlow : fln v flc do // Case 5
30: flc.IS.oP = flc.IS.oP ∪ fln.IS.oP
31: increasePriority(flc.PO)
32: modifyFlowOnSwitch(flc, ri.Ri)
33: addFlowOnSwitch(fln, ri.Ri)

R1 R2

R4

R5

R6

p1 s1

s2
1

2

1

3

2

1

2

1 2

1

2 3

1
1* 2

1* 2

100* 2

100* 2

MF PO IS
destIP = ff0e:8000::/19 1 Out Port = {2,3}
destIP = ff0e:8000::/17 0 Out Port = {2}

Example
flow table

1

3

2

R3

DZ(s2) = { 100 }

DZ(s1) = { 1 }DZ(p1) = { 1 }

Fig. 3: Forwarding in the switch network. Match fields of flows
in R1, R2, R4-R6 are shown as dzs. Flows follow the notation
MF → IS : PO

tree t. A route consists of a sequence of physical switches
(denoted as R) on which flows need to be established along
with the out ports (denoted as oP) through which a matching
event should be forwarded so that connectivity is achieved
between the publisher p and the subscriber s, i.e., 〈p, s, t〉 =
{(Ri, oPi), . . . (Rj , oPj)}. Once the route is calculated, the
configurator establishes the path by inserting (or modifying)
flows on the switches along the route between the publisher
p and the subscriber s. The flows ensure that only the events
matching the overlapped subspaces (i.e., DZ(s)∩DZ(p)) are
forwarded on the path. The process of establishing paths along
the switch network is discussed in detail later in this section.

b) Flow installation: The installation of flows on the
switches requires to specify the match field (MF), instruc-
tion set (IS), and priority order (PO) of a flow [31]. The
matching field defines the header information against which
packets are matched. Recall that PLEROMA uses for inter-
operability with other services IP-multicast ranges to embed
dz-expressions. For instance, subspaces with dz = 101101
and dz = 101 are converted to IPv6 multicast addresses
ff0e:b400:* and ff0e:a000:*, respectively. Therefore,
an event dz = 101101 can be matched against a flow with
dz = 101 by a hardware switch during forwarding, i.e.,
ff0e:a000::/19 � ff0e:b400::/22.

Furthermore, in the instruction set the outgoing ports are
specified, ensuring that a matching packet (i.e., an event) can
be forwarded to multiple destinations in the spanning tree.
Also, the priority order needs to be defined to decide on the
order in which flows will be applied to a packet. For example,
in Figure 3, an incoming event (dz = 1001) on switch R3

matches multiple flows with dz = 1 and dz = 100. However,
the switch only follows the instructions of the first match.
Therefore, to ensure proper forwarding, the flow installation
gives higher priority to the flows with longer dz. In Figure 3,
priority order on R3 ensures that all packets matching flow
with dz = 100 are forwarded to both switches (R2 and R4).
However, packets matching flow with dz = 1 but not with
dz = 100 are only forwarded to R2.

To describe the maintenance of flows in the presence of
dynamic (un)subscriptions, we first define the containment
relation between flows w.r.t. a single switch. A flow fl1 covers
(or contains) another flow fl2, denoted by fl1 � fl2, iff the
following two conditions hold: (i) the dz associated with the
IP address in the match field of fl2 is covered by the dz
of fl1, and (ii) the out ports to which a packet matching
fl2 is forwarded are a subset of those specified in the IS
of fl1. Likewise, a partial containment relation (v) can be
defined between flows of a switch (or flows to be installed on
a switch). A flow fl1 partially covers (or contains) another
flow fl2, denoted by fl1 v fl2, if dz associated with the
match field of fl1 covers dz of fl2, but not all the out ports
used for forwarding packets matching fl2 are listed in the IS
of fl1.

The procedure flowAddition is used by the configurator to
set up flows on the switches along the route 〈p, s, t〉 between
the publisher p and the subscriber s (cf. Algorithm 1, lines
13 - 33). The dz used for creating the match field of the new
flows (to be added in the switch network) is determined from
the overlap between DZ(s) and DZ(p), as mentioned earlier.

In more detail, the configurator iteratively checks the exist-
ing entries in the flow tables of each switch Ri along the route
〈p, s, t〉 and determines whether to add a new flow fln or to
modify (or delete) existing flows. The following cases drive
the process of flow addition and modification at a particular
switch Ri. Continuing the example from Figure 3, the cases
are explained w.r.t. the changes to the flow tables of the
switches on the arrival of new subscriber s3 with subscription
DZ(s3) = {10} as depicted in Figure 4. (1) If the flows are
not currently installed on a switch, then the new flow fln is
simply added to the flow table of that switch, e.g., a new flow

6

R1 R2

R4

R5

R6

p1 s1

s2

s3

1

2

1

3

2

1

2

1 2

1

2 3

1

2
1* 2

1* 2

100* 2, 3 : PO = 1

DZ(s2) = { 100 }

DZ(s1) = { 1 } DZ(s3) = { 10 }DZ(p1) = { 1 }

1

33

2
R3

10* 2

10* 3 : PO = 0

10* 2

100* 2

100* 2, 3 : PO = 1
10* 2, 3 : PO = 1
1* 2 : PO = 0

Change to flows are
shown in rectangles

1

2

3

5
4

Fig. 4: Flow maintenance on the arrival of s3. The numbers
in the circles correspond to the cases explained in text.

R1 R2

R4

R5

R6

p1 s1

s2

s3

1

2

1

3

2

1

2

1 2

1

2 3

1

2
1* 2

1* 2

DZ(s2) = { 100 }

DZ(s1) = { 1 } DZ(s3) = { 10 }DZ(p1) = { 1 }

1

33

2
R3

10* 2

100* 2

100* 2, 3 : PO = 1
1* 2 : PO = 0

Change to flows are
shown in rectangles

10* 2

100* 2, 3 : PO = 1
10* 3 : PO = 0

10* 2, 3 : PO = 1

Fig. 5: Flow maintenance on the departure of s3

with dz = 10 is added to R6 in Figure 4. (2) If an existing
flow flc already covers the new flow fln to be installed on
the switch (i.e., flc � fln), then no action is performed, e.g.,
no new flow is added to the switch R1 in Figure 4 when s3
subscribes. The flow {10∗} that needed to be installed on R1

to direct required traffic towards s3 is covered by the already
existing flow {1∗} which directs traffic that includes required
traffic for s3 along the same direction. So, an additional flow
in this case will be redundant. (3) If an existing flow flc is
covered by the new flow fln, then the new flow fln is added
and flc is deleted from the flow table as it is no longer needed,
e.g., in Figure 4 existing flows associated with dz = 100 are
replaced by new flows with dz = 10 on R3 and R4. This
follows from the argument of case (2). So, the existing flow
which is covered by the new flow should be replaced to avoid
redundancy. (4) If the new flow fln is partially covered by an
existing flow flc (i.e., flc v fln), then fln should be added
with high priority and should include the out ports in the IS
of flc, as depicted by R3 in Figure 4. This ensures that traffic
specific to the flow {10∗} (subscription of s3) strictly matches
it and gets forwarded towards both s3 and s1. The remaining
traffic that is specific only to s1 and that does not match the
new flow will now be forwarded by the existing flow {1∗}
only to s1. (5) Finally, if the existing flow flc is partially
covered by the new flow fln, then besides adding fln to the
flow table, the existing flow flc should be updated to include
out ports used by fln and to hold higher priority than fln,
e.g., in Figure 4 an additional out port (i.e., oP = 3) and a
higher priority order is assigned to an existing flow {100∗}
on R5. This follows similar logic as case (4).

c) Unsubscriptions and Unadvertisements: We, also,
briefly discuss the handling of unsubscriptions and unadver-
tisements by the configurator. Handling of an unsubscription
or unadvertisement is the exact reverse process of handling
a subscription or advertisement. On the arrival of an unsub-
scription, the subscriber s, associated with the corresponding
subscription, is removed from t. This is accomplished by
removing previously established paths between s and all
publishers with overlapping advertisements. To remove a path
on t, the flows are either deleted or downgraded depending
upon other subscribers reachable (w.r.t. their relevant publish-
ers) via a particular switch. For example, on arrival of an
unsubscription from s3 in Figure 5, the path between p1 and
s3 comprising of switches R1, R3, R4, R5 and R6 needs to

be removed. However, the existing flows on these switches
determining this path cannot simply be removed as each of
these flows may share paths to other subscribers based on the
covering relations between flows as seen earlier in this section.
For example, the flow with dz = 10 is deleted from the flow
table of R6 as no other subscriber is reachable w.r.t. p1 via R6.
However, the flows installed on switches R3, R4, and R5 have
to be downgraded from dz = 10 to use dz = 100 (in their
match fields) because the path from p1 to subscriber s2 with
DZ(s2) = {100} passes through these switches. Downgrading
not only ensures that no further events are forwarded to s3 but
also ensures that no other subscriber paths get affected due to
these updates. So, in this example, s2 continues to receive
relevant events as downgrading of flows does not affect its
path from p1. Likewise, an unadvertisement from a publisher
p is handled by removing the previously established paths in
the switch network between the publisher p and all subscribers
with overlapping subscriptions on t with which the publisher
p is associated.

C. Dimension Selection

In PLEROMA, the length of dz-expressions required to
accurately represent the subspaces mapped by subscriptions
(advertisements or events) increases linearly with the number
of attributes (or dimensions) in the system. Recall, in practice,
the length of dz is limited by the range of IPv6 (or IPv4)
multicast address reserved for publish/subscribe. Similarly, for
an event space with many attributes, the number of dz in DZ
(i.e., subspaces) for an accurate subscription (or advertisement)
representation may be very high and may produce flow tables
with large numbers of entries.

PLEROMA addresses the above limitations by performing
spatial indexing only on a small subset of dimensions, denoted
as ΩD. The dimensions in the set ΩD are selected according to
their ability to avoid dissemination of unnecessary messages
during in-network filtering. More precisely, the ability of a
dimension d to reduce false positives mainly depends on two
factors, namely, selectivity of subscriptions and distribution
of events along that dimension. The main idea is to deem
dimensions where event traffic matches most subscriptions as
less important for dimension selection. Therefore, PLEROMA
selects those dimensions that have high variability (or in
other words variance) in the set of subscriptions matched by

7

the events (according to current event traffic) to perform in-
network filtering of events. Further details of this mechanism
are discussed in [34], [3]. Also, we show the benefits of
dimension selection in our evaluations in Section V.

IV. SCALABLE HANDLING OF CONTROL REQUESTS

The topology reconfiguration efforts are significant in an
SDN-based pub/sub middleware. In a scenario with frequent
concurrent control requests from multiple participants, a de-
sign with a single configurator will result in very poor control
plane responsiveness. Here, we define response time as the
time from the issuance of a control request by a participant
till the completion of all topology reconfiguration associated
with this request by the control plane. For example, the
response time to a subscription is the time elapsed from the
issuance of the subscription until the subscriber starts receiving
events. As a single configurator processes each control request
sequentially, the response time increases significantly in the
face of high dynamics. This problem motivates us to introduce
multiple configurator instances in the control plane enabling
concurrent processing of control requests. However, scaling
the control plane implies concurrent processing of requests
for improved responsiveness which in turn raises questions on
control plane consistency.

In general, two important problems have to be addressed to
ensure control plane consistency in an SDN-based pub/sub
middleware. These problems are i) maintaining consistent
network configuration (i.e., CP-config and DP-config) in the
presence of concurrent updates by multiple configurators,
and ii) keeping CP-config consistent with DP-config in the
presence of failures. In Section IV-A, we strictly focus on the
first problem and address the second problem in Section IV-B.
For simplicity and without loss of generality, we discuss the
first problem only with respect to CP-config, as consistent
maintenance of CP-config in the face of concurrency (and
absence of failures) implies consistent DP-config.

In more detail, the configurators execute the same control
logic and operate on the same CP-config concurrently. On
receiving a request, a configurator performs operations on
switches along the paths between publishers and subscribers
in order to deploy flow updates. As mentioned in Section III,
at each switch, the configurator performs an action that
consists of an ordered sequence of three operations. The three
operations include reading flows from a switch, deciding on
the changes to be made to the flows, and finally writing
these changes back to the switch. The concurrent execution of
such actions by two or more configurators can result in their
sequences being interleaved. This raises concurrency related
issues resulting in false negatives (events not delivered to
a subscriber despite its interest in receiving them) or false
positives (events delivered to a subscriber that is not interested
in receiving them) at the subscriber end.

While understanding the above mentioned concurrency is-
sues, we identify conflicting actions in an SDN-based pub/sub
middleware. Typical concurrency issues are expected to arise
when two or more configurators try to access the same
resource, more specifically the same flow on a switch. More-
over, as the decisions to make further flow updates depend

on already existing related flows (� and v), interleaving
sequences result in conflicting actions when two or more
configurators concurrently affect not only the same flow but
also flows that are related to each other (� and v) at a switch
as this may result in reading from, deciding on, or writing to
inconsistent related flow-set states.

Referring to Figure 4, let us look at an example where two
overlapping subscription requests subx={00} from subscriber
s2 and suby={00} from subscriber s3 are simultaneously
dispatched to two configurators cx , cy ∈ C respectively.
Both follow the aforementioned request handling process and
perform actions on relevant switches. We specifically focus
on switch R5 where two separate flows will be installed by
the two configurators with the exact same filter {00} but
different IS, i.e., out port 2 will be set for the flow installed
by cx (flx) and out port 3 for the flow installed by cy (fly).
Since deploying flows on CP-config implies deploying them
on DP-config, now, if an event packet lying in subspace {00}
arrives at R5 in the data plane, it follows the instruction set
of either flx or fly , but never both as the matching of a
packet at a switch is terminated as soon as the first match is
found. In either case, one of the two subscribers is affected
by false negatives compromising correctness of the system.
This is a simple case of false negatives at a subscriber due
to the interleaving of sequences of operations constituting
two actions and belonging to two configurators. Clearly, false
negatives occurred because flows flx and fly concurrently
added by cx and cy are in aforementioned flow containment
relation, which essentially results in addressing the same filter
in R5.

Therefore, from the above discussion, we formally define
conflicting actions in the PLEROMA middleware as follows :

Definition 1 Two actions are in conflict if (i) they belong
to different configurators, (ii) both of them access the same
switch, and (iii) both of them affect flows that are bound by
the flow relations, i.e., complete containment (�) and partial
containment (v).

To ensure consistency, conflicting actions must be serialized.

A. Scaling by State Partitioning
The identification of conflicting actions (cf. Definition 1)

leads us to the idea of using flow relations to identify the
actions that need to be serialized on a switch. Since the
dzs representing the subscriptions/advertisements (in control
requests) are directly mapped to flows added to switches (cf.
Section III), two control requests where one dz covers or
is identical to the other (overlapping subspaces in Ω) yield
flows related (� and v) to each other. This means that
concurrent processing of overlapping control requests at a
switch will result in conflicting actions and must be ordered
sequentially. Control requests with non-overlapping subspaces
in Ω, however, can undergo concurrent processing without any
issues. This directly leads us to the idea of partitioning the
event-space in a disjoint way such that flows corresponding to
different partitions in Ω are maintained in separate CP-configs.

So, we divide the event-space (Ω) into multiple disjoint,
continuous partitions. A partition is nothing but a subspace

8

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 1

0010111111

001101

10010111111

c1 c2 cn

Dispatcher

Partition-specific
dispatch

000

0011
0010 10011

100101

Fig. 6: State-Partitioning Approach

in Ω and may be represented in the same way, i.e., by a dz.
Disjoint event-space partitioning may yield equal or unequal
partitions depending on the partitioning criteria. However, it is
important to note that, in any case, the partition set, denoted
by P , is non-overlapping and fully covers Ω. Mechanisms
for content or event-space partitioning have been extensively
researched in various fields of computer science [37], [38]
and will not be discussed further in this article. Henceforth,
we assume that P consists of k partitions and k >> n where
n denotes the total number of configurators. The middleware
maintains a set of independently configurable CP-configs
(denoted by CP) having a one-to-one mapping with these
partitions. This results in the creation of k CP-configs where
each configuration, cp ∈ CP , is represented by the dz of
the corresponding partition. Again, each switch in each cp
contains only those flows that are associated with the event-
space partition that this configuration represents. This implies
that the spanning tree maintained by CP-config is responsible
for the dissemination of only a set of events that lies in its
designated subspace. In the remaining part of this article, a
CP-config (cpi ∈ CP) is considered to be synonymous with
a partition (pi ∈ P).

Having partitioned the event space, our scaling approach,
the state-partitioning approach (SPA), now operates on these
disjoint CP-configs. In SPA, each partition is assigned ex-
clusively to exactly one configurator. To ensure consistency,
each configurator is restricted to performing reconfigurations
on its assigned partitions only. So, two or more configurators
may process different requests concurrently as they operate
on completely different subspaces in Ω, i.e., they may modify
the flows on the same switch concurrently without any incon-
sistencies as the flows affected in each case are completely
unrelated. This ensures that no two configurators interfere with
each other while performing parallel topology reconfigurations
on the same network. As our design assumes k >> n, each
configurator may be responsible for multiple partitions. Please
note, each configurator needs to maintain only those CP-
configs that have been assigned to it. Such a mechanism avoids
all kinds of coordination overhead among configurators while
ensuring control plane consistency in a distributed setting.

1) Topology Reconfiguration: The dispatcher plays a sig-
nificant role in this approach. It maintains a map of the
configurators and their associated partitions and performs
partition-specific dispatch of control requests (cf. Figure 6).
But first, it performs an additional step to prepare the requests

for further processing. Let us denote the dz representing a
control request by dzc and that representing any partition pi
by dzpi

. When a control request arrives at a dispatcher, it is
processed by the dispatcher in two ways depending on whether
(i) dzpi

� dzc or (ii) dzc � {dzpi
,...,dzpj

}. In the first case,
the dispatcher simply dispatches the request to a configurator
as the request is contained by one partition and affects a
single CP-config. However, the second scenario portrays a case
where the control request subspace spans more than a single
partition. Under such circumstances, the dispatcher splits up
the request into multiple dzs depending upon the nature of the
partitions and dispatches these partial requests. This guarantees
the mapping of a request to a single partition enabling the
dispatcher to directly forward a request to a configurator
responsible for the corresponding partition. For example, in
Figure 6, if a request corresponds to {00}, the dispatcher first
splits it up into three requests {000}, {0010}, {0011} and then
dispatches them to c1 and c2 as {00} � {000, 0010, 0011}.
Consequently, all three CP-configs are reconfigured for this
single request.

Each configurator maintains a request queue for each par-
tition it is responsible for. Processing of control requests at
a configurator takes place sequentially. This, in turn, en-
sures consistency within each partition. Moreover, topology
reconfiguration follows the usual mechanisms discussed in
Section III.

The state-partitioning approach enables concurrent process-
ing of requests corresponding to disjoint partitions at multiple
configurators, thus reaping the benefits of scaling. However,
the true potential of this design can be realized if the workload
can be balanced between configurators. There may be scenar-
ios where the workload is much higher for certain partitions
which burdens a few configurators while others remain idle.
This degrades responsiveness of the control plane to control
requests. For this reason, load balancing among configurators
bears considerable significance and features as the subject of
discussion in the remaining part of this section.

2) Partition Assignment: The most naive way of assigning
partitions to configurators is a random approach where k
partitions are randomly distributed among n configurators.
However, this may result in the request load being unevenly
distributed among the configurators which creates bottlenecks
at certain configurators while others remain idle. As a result,
instead of a random approach we employ a partition assign-
ment approach based on previous trends of control requests.

The aforementioned assignment problem is similar to a bin-
packing problem where maximum load has to be minimized
among all configurators and we simply employ a greedy
approach from literature [13] for the same. First, every par-
tition p ∈ P is given weights depending upon its popularity.
The popularity of a partition is determined by the percentage
of control requests covered by this partition that feature in
history over a time window. After weighting each of the k
partitions, they are sorted in decreasing order of weights. Now,
at each step, the next partition is assigned to the current least
loaded configurator. This approach results in near-optimal
performance. In practice, subscriptions/advertisements change
dynamically and, therefore, over time the assignment may

9

become sub-optimal. However, it is not feasible to frequently
use this technique for load balancing as it involves reas-
signment of all partitions among all configurators incurring
significant migration costs. As a result, we only use it after
extended periods while a more light-weight approach is used
for adaptive load balancing during these periods.

3) Adaptive Load Balancing: We identify load of a
configurator at a given time by request queue lengths of
all partitions assigned to it. A request queue, specific to a
partition (say, pj), consists of all control requests waiting to
be processed by the configurator for an assigned partition. So,
load at a configurator ci may be defined as li =

∑m
j=1 QLj ,

where m is the number of partitions assigned to ci and QLj

represents queue length at pj . When an overload condition is
detected at a heavily loaded configurator, one or more of its
assigned partitions are migrated to a configurator with current
minimum load. This implies that the task of processing all
current and future requests for the migrated partitions now lies
with the newly chosen configurator. An overload detection is
carried out by the monitor component. The monitor period-
ically collects load information of every configurator. With
every periodic collection, the monitor calculates the average
queue length at each configurator, denoted by lavg. If the ratio
of the load at a configurator, i.e., li, to lavg is greater than
a threshold value, then the monitor detects an overload and
proceeds with partition migration. More formally, an overload
is detected if, li

lavg
> threshold, where lavg =

∑n
s=1 ls
n . How-

ever, in order to avoid partition thrashing, the monitor initiates
migration only if the overload condition at a configurator is
monotonically increasing with time. Initially, the most heavily
loaded partition at the overloaded configurator is selected for
migration and the effects of migrating it to the minimally
loaded configurator is calculated. If this results in a potential
overload condition at the minimally loaded configurator, the
monitor proceeds to calculate the feasibility of migration of the
next most heavily loaded partition until a balanced migration
is achieved or all partitions considered for migration.

B. Control Plane Consistency in Presence of Failures
As we have not considered failures previously, it has

been sufficient to assume that CP-config is consistent with
DP-config and therefore sufficient to only deal with in-
consistencies arising due to concurrency between mul-
tiple configurators. However, lost connections (between
configurators and switches) and switch failures may result
in inconsistencies between the two configs, irrespective of
whether the control plane is centralized or distributed.

Let us first consider a case where the connection between
a configurator and a switch is lost. As a result, the updates
that were pushed by a configurator onto a switch may not be
reflected on the TCAM memory of the switch at all. If the
configurator continues processing of requests assuming that
the said changes are deployed on the switch, then this would
imply inconsistencies between the two configs, resulting in in-
correct system behavior. To avoid this, our middleware pushes
out the flow modification requests, generated while processing
a control request, to the switch and waits until the switch ac-
knowledges the successful completion of these updates within

fl1 fl2

1) sub1 : 00  sub2 : 000
Add (Match : 00* Outport :2)

2) sub2 : 000  sub1 : 00
Add (Match : 000* Outport :2), Add (Match : 00* Outport :2), Delete (Match : 000* Outport :2)

1

2
S1

R2R1
S231 2

sub1 : 00

sub2 : 000

fl1 fl2

1) sub1 : 00  sub2 : 000
Add (Match : 00* Outport :2), Add (Match : 000* Outport :2, 3)

2) sub2 : 000  sub1 : 00
Add (Match : 000* Outport :3), Add (Match : 00* Outport :2), Modify (Match : 000* Outport :2, 3)

1

2
S1

R2R1
S231 2

sub1 : 00

sub2 : 000

Fig. 7: Reducing Flow Operations

a given timeout. Various functionality such as bundle messages
or flow monitoring available in OpenFlow version 1.4 can be
efficiently used to allow a configurator to be notified by a
switch about flow operations (addition/modification/deletion)
performed on its tables. Such switch notifications can serve as
acknowledgments of completed flow table updates. On receiv-
ing an acknowledgement from the switch, the configurator
writes these changes to the CP-config and considers the
control request as fully processed. If an acknowledgement
does not arrive at a configurator within the given timeout,
the configurator marks all the unacknowledged flow changes
as undefined in CP-config. The processing of all subsequent
requests that depend on undefined flows must be stalled. A
configurator must explicitly read the current status of the
switch with a missing acknowledgement using the OpenFlow
standard and reflect the same in the CP-config.

Inconsistencies between CP-config and DP-config also arise
due to switch failures. In case of a switch failure, the spanning
tree maintained by CP-config has to be modified accordingly,
which means that all paths need to be recalculated according to
the new topology. The same has to be done in case of a switch
recovery as this also involves a change in the network topology
and must be reflected in CP-config to ensure consistency.

C. Reducing Flow Operations

Increasing responsiveness of the control plane to control
requests also increases the rate at which network updates
are pushed onto the switches by multiple configurators. With
today’s hardware switches supporting around 40-50 flow-table
updates per second [16], it would be really beneficial if the
total number of flow updates could be reduced. However, this
would have to be achieved while ensuring correctness of the
system, i.e., no false positives and false negatives.

We claim that the number of network updates can be
reduced by exploiting the knowledge of advertisements and
subscriptions and their relations yet again. Using the relations,
processing of control requests can be ordered to optimize
the network update procedure. We explain the optimization
process at a switch level w.r.t. subscriptions and identify two
relations that make a difference in the ordering of control
requests. If two subscriptions subi and subj , where subi
� subj , independently produce two new flows fli and flj
respectively, then the two relations between the flows which

10

would benefit from ordering are complete containment, i.e.,
fli � flj , and partial containment, i.e., fli v flj .

Referring to the two subscriptions in the above example
and their relations, we first look at complete containment
between flows. The following updates would be done on a
switch depending on the order in which the two subscriptions
are processed. 1) If subi is processed before subj , subi first
produces one add flow (fli) operation on the switch. When
subj is processed, it does not produce any other flow updates
on the switch as fli fully covers all events that need to be
forwarded in response to subj . 2) If subj is processed before
subi, subj also produces one add flow (flj) operation on
the switch. After this, when subi is processed another flow
(fli) add operation has to be performed to cover forwarding
of all events matching subj and also those matching subi
but not subj . Also, a delete operation has to be performed
on flj as it is now redundant. Given the limitations of
the flow table size on a switch, redundant flows cannot be
afforded. This clearly indicates that the first ordering yields
two operations less as compared to the second. Figure 7
illustrates the above discussion with an example where the
ordering of two subscriptions sub1 ({00}) and sub2 ({000})
that would independently produce fl1 and fl2 yield different
numbers of operations on switch R1 as fl1 � fl2.

Let us now consider the second relation of partial con-
tainment between the flows. Again, we look at the number
of operations required on ordering subi and subj differently.
1) If subi is processed before subj , subi produces one add
flow (fli) operation. When subj is processed, a second flow
(flj) add operation needs to be performed as this time the
flows are only partially related and a different out port needs
to be added only for subj . 2) However, if subj is processed
before subi, subj produces one add flow (flj) operation on the
switch. Now, when subi is processed, first a flow (fli) gets
added for this subscription. Also, since the events relevant
to flj are also relevant to fli (as subi � subj), a modify
operation is performed on flj to accommodate the out port
for subi. Again, the first ordering yields lesser operations as
compared to the second. Please note that the reordering of
subscriptions does not have an impact on the correctness of
the system as, no matter how processing of requests is ordered,
the final set of flows deployed on the switches is always the
same. In Figure 7, at the end of processing sub1 and sub2, both
switches have the same flows irrespective of the order in which
they were processed. However, ordering may have an effect on
the response time to certain requests that get scheduled later
(cf. Section V).

Similarly, efficient ordering of advertisements, unadvertise-
ments, and unsubscriptions that have overlapping switches
and are bound by the above relations reduce the number
of network updates significantly. However, ordering of two
control requests of different types should never be done.
For example, the order of processing a subscription with an
unsubscription must not be changed as this may result in
undesirable system behavior.

V. PERFORMANCE EVALUATIONS

This section is dedicated to an analysis of the design and
implementation of the proposed PLEROMA middleware. A
series of experiments are conducted to understand the effects
of the design on performance metrics on the data plane and
on the control plane. The measurements on the data plane
include end-to-end delay for event dissemination as well as
bandwidth efficiency in terms of false positives w.r.t. length
of dz and number of flows. Those on the control plane
include control plane throughput, average processing latency
of control requests, and required number of flow operations
on switches. We also provide micro-benchmarks by evaluating
and comparing the forwarding delay of a hardware switch and
a virtual switch implemented in software [12].

A. Experimental setup

We have conducted our evaluations under three
environments—1) a physically distributed network of
software switches (SDN-t), 2) an emulated network running
on a single machine using Mininet (SDN-m), and 3) micro-
benchmarks on a single hardware switch NEC PF5240.
The majority of the experiments have been conducted on
SDN-t [34] consisting of commodity PC hardware and
virtualization technologies as used in datacenters. For SDN-t,
we use a hierarchical fat-tree topology consisting of a cluster
of hosts (running on commodity rack PCs) constituting 10
switches and 8 end systems. Some of these hosts act as
OpenFlow switches with four physical ports by executing
a production-grade software switch (Open vSwitch [32])
attached to the 4-port NIC. The other hosts act as 8 end
systems (end hosts) by executing virtual machines on two
physical machines. The end hosts implement the functionality
to publish and subscribe events. Besides SDN-t, we have also
conducted experiments on a prominent tool for emulating
software-defined networks, namely, Mininet [26] (SDN-m).
Mininet is an extremely flexible tool that allows to conduct
experiments with different types of topology and application
traffic. In order to evaluate the performance of a scaled control
plane, we host the distributed control plane in a small local
area network which includes a cluster of physical machines.
Scaling is realized by hosting multiple configurators on
multiple physical machines where each machine in the cluster
has 4 cores, 3.4 GHz processor, and 8 GB of RAM. Two
separate machines host the dispatcher and the monitor.

In order to generate workload, i.e., events and subscriptions
we use both synthetic as well as real world data. With regards
to synthetic data, the workload was generated using parameters
similar to those used in well established publish/subscribe
literature [8], [30], [41]. So, we used a content-based schema
containing up to 10 attributes [30], where the domain of
each attribute varies in the range [0, 1023]. Most real world
applications, e.g., stock quote dissemination systems, perform
content-based routing with not more than 10 attributes and
similar domain ranges. Experiments are performed on two pre-
dominantly used models for the distributions of subscriptions
and events [30], [8]. The uniform model generates random
subscriptions and events independent from each other. The

11

Fig. 8: Performance evaluations

interest popularity model chooses up to 8 hotspot regions
around which subscriptions/events are generated using the
widely used Zipfian distribution. The rate at which control
requests are sent by the participants (i.e., publishers and
subscribers connected to an SDN network) to the dispatcher
also follows two models of distribution, namely, uniform
and Poisson which are popularly used in literature [41] to
model dynamics of subscription changes (control requests)
over time. A uniform rate implies that the occurrences of
incoming requests at the dispatcher are distributed uniformly
on an interval of time. However, Poisson rate involves a
fluctuating workload while maintaining an average rate of
incoming requests at the dispatcher within a given interval
of time. So, there may be bursts of incoming requests from
time to time along with lull periods to ensure an average rate at
the dispatcher. We also use real-world workload in the form
of stock quotes procured from Yahoo! Finance containing a
stock’s daily closing prices [7] to show the performance of
our system in a realistic environment.

B. Data Plane Performance

Our first set of experiments deals with evaluating the data
plane performance. This includes evaluation of end-to-end
latency and bandwidth efficiency of forwarding.

1) End-to-end delay: This experiment studies the delay
characteristics of the aforementioned SDN-t (with fat-tree
topology). We analyse the end-to-end delay to deliver an

event from a publisher to all interested subscribers w.r.t. the
number of subscriptions in the system. For the experiment,
up to 16, 000 subscriptions are generated using the above
mentioned distributions (i.e., uniform and Zipfian) and divided
among different end hosts. Furthermore, end-to-end delay
measurements are averaged across 10, 000 events published
in the system at a constant rate. Figure 8(a) indicates that the
number of subscriptions does not significantly impact end-to-
end delay. It is worth noting that, for the uniform distribution,
the generated subscription set is randomly divided among all
end hosts (i.e., subscribers). As a result, the possibility of every
end host receiving at least some events is extremely high,
resulting in a near constant end-to-end delay in the system.
However, in case of Zipfian distribution, each end host is
assigned a hotspot and subscribes for subspaces corresponding
to its respective hotspot only. With events also following a
Zipfian distribution, it may so happen that one or more end
hosts do not receive any events. As a result, the average end-
to-end delay in the system may vary (albeit slightly) with
different subscription workloads, as indicated in Figure 8(a).

We would like to stress that using virtual switches does not
invalidate our results, but rather gives very conservative perfor-
mance bounds. In fact, we also performed micro-benchmarks
to evaluate and compare the forwarding delay using an NEC
hardware switch and a virtual switch to validate our results and
indicate additional gain that is expected from using hardware
switches in the following.

12

2) Comparing Hardware and Software Switches: We per-
formed micro-benchmarks on hardware and software switches.
To this end, we measured the round-trip time of packets
that are looped back by the switch to the sending host. By
measuring the round trip time, and with a knowledge of
the propagation, transmission, and queueing delays for our
specific setup, we can calculate the processing time of the
hardware/software switch while varying different parameters.

In the first experiment, we vary the packet size. The
packet size directly influences the transmission delay while
the propagation delay should stay constant. Since the time
for making a forwarding decision is also independent of the
packet size, we also expect the processing delay to be nearly
constant. We measured the round trip times for eight different
packet sizes leading to eight frame sizes ranging from the
minimum allowed Ethernet framesize up to the maximum
frame size for an MTU. These sizes include the layer 2-4
headers and payload of the UDP datagram (8 byte UDP header,
20 byte IPv4 header, 26 byte Ethernet header, UDP payload).
We programmed the switch with 200 flow table entries. Each
entry includes a match on a different destination MAC address.
We sent UDP datagrams to random IP addresses, each one
associated with one of the 200 MAC addresses of the installed
flows. We sent 10000 datagrams and calculated the average
round trip time and standard deviation as well as the minimum
round trip time and average processing delay. Figure 8(b)
depicts the processing delay of the hardware and software
switch. On average, the processing delay of the hardware
switch is only 3.1% of the processing delay of the software
switch for 72 byte frames showing that the hardware switch
is significantly faster than the software switch.

We also analyze the latency of forwarding for a varying
number of flow table entries. We sent frames of the minimum
size of 72 bytes and varied the flow table size. The hardware
switch is restricted in the maximum size of the forwarding
table. Therefore, the maximum flow table size tested for the
hardware switch in our experiments is 45000 entries. Flow
table entries use the network destination (IPv4) address (exact
match), ether type, and ingress port as match criteria. For each
flow table size, we sent 10000 UDP datagrams and calculated
processing delays. Figure 8(c) depicts the processing delays for
different flow table sizes for both switches. As can be seen,
the processing delay of the hardware switch is independent
of the size of the forwarding table. For the software switch,
the processing delay increases very slowly: the minimum and
maximum average processing delay only differ by about 10%.
Therefore, we conclude that both types of switches scale well
with the number of forwarding table entries. Again, hardware
support leads to much smaller forwarding latencies. From the
above results, we can say that microsecond network delay per
hop can be reached for our pub/sub middleware even for larger
forwarding tables.

To see the performance of hardware switches w.r.t. variable-
length prefixes as used in PLEROMA, we extended our eval-
uations with PLEROMA in [4] on a real testbed comprising a
hardware whitebox Openflow-enabled switch from Edge-Core.
Evaluations show that event forwarding delay is not impacted
by variable-length prefixes needed by the publish/subscribe

model when IPv4 multicast addresses were used with prefixes
ranging between 23 and 32.

3) Bandwidth efficiency w.r.t. false positives: We define
the false positive rate (FPR) as a percentage of the number
of unnecessary events received to the total number of events
received by subscribers. Clearly, false positives are undesirable
and the aim of any publish/subscribe system is to keep them to
a minimum. We observe that the longer the dz, the lesser are
the false positives. This follows from the fact that as the length
of the dz increases, the granularity of the subspaces (assigned
to advertisements, subscriptions and events) also increases and
hence the false positives delivered to a subscriber decrease.
Figure 8(d) shows the variation of false positive rate with the
length of dz for different number of subscriptions for both uni-
form as well as Zipfian distribution. As seen in the figure, with
increase in the length of the dz the false positives decrease
for both distributions. The variation of false positives is also
noticeable with number of subscriptions. This is justifiable as
a large number of subscriptions divided randomly among end
hosts almost represents the near-ideal case. As we only have a
limited number of bits, say Ldz , for the representation of dz in
an IP multicast address, subscriptions and events which differ
in dz only after the Ldz cannot be differentiated. Thus, for less
number of subscriptions, an event e might fit into the filtering
criteria of a subspace—which does not actually contain (or
cover) the event e—due to dz truncation and is counted as
a false positive. But for large number of subscriptions, the
same event e might have been contained in (or covered by)
the subspace subscribed by another subscription and hence is
no longer counted as a false positive.

It is quite clear from the above discussion that the Ldz

constraint in the dz representation of subscriptions and events
severely impacts the occurrence of false positives. If the
number of dimensions in the event space is high, the dz
constituting subscription subspaces can be very long and
difficult to be accommodated in limited number of bits (cf.
Section III-C). For this reason we introduced the concept of
dimension selection in this article. To portray the effectiveness
of this concept, we conducted a set of experiments where
the subscriptions were generated using Zipfian distribution
and divided equally among the end hosts. Events for the
experiments are also generated using Zipfian distribution. To
model varying selectivity (across different dimensions of event
space), we impose restrictions on the degree of variance of
event values along certain dimensions. Depending on the
restrictions, three types of Zipfian workloads are generated
and evaluated. Figure 8(e) presents the behavior of FPR on
dimension selection for the generated Zipfian workloads. The
figure clearly indicates that reduction of dimensions proves
to be an effective way for decreasing false positives. This
is because our dimension selection strategy provides means
to increase the expressiveness of certain dimensions while
ignoring others for effective filtering of events.

To ensure that the proposed PLEROMA middleware is
effective in realistic scenarios, we conducted experiments with
real-world stock data where the subscriptions and events were
mapped according to the proposed spatial indexing scheme to
enable line-rate forwarding of events in a stock-based system.

13

In fact, Figure 8(f) shows the benefits of employing dimension
selection in such a system. We plot the benefit in terms of the
percentage of false positives reduced in the system on reducing
the number of selected dimensions. As can be seen in the
figure, the benefit increases with the reduction in number of
dimensions in this real-world scenario.

C. Control Plane Performance

We also evaluate throughput, average processing latency,
and required number of flow operations in a scaled control
plane. We especially compare the performances of state par-
titioning without load balancing (SPA) and state partitioning
with load balancing (SPA-LB) approaches in order to show
the effects of load balancing on this approach. We partition
the event-space into 64 disjoint partitions unless otherwise
specified. Also, 64 subscribers in SDN-m issue up to 200,000
subscriptions and unsubscriptions at various uniform and Pois-
son rates to generate load at the control plane.

1) Throughput: Figure 8(g) shows the throughput of a
scaled control plane for uniform and Zipfian data respectively.
In both SPA and SPA-LB, the throughput increases with
increasing number of configurators for both distributions.
Scaling out provides a lot of flexibility and can be used
effectively to increase control plane throughput as shown in
the graphs. Figure 8(g) also shows that, for control requests
following Zipfian distribution, the throughput of SPA-LB is
higher as compared to SPA. This is because, for Zipfian data,
the workload is not evenly distributed among the partitions.
This means that in SPA, some configurators may be more
heavily loaded while others remain relatively idle. Since SPA
does not attempt to balance this load in contrast to SPA-LB,
SPA-LB clearly outperforms it. Not surprisingly, there is not
much difference between the plots of SPA and SPA-LB for
uniform data.

2) Average Processing Latency: In the context of our
article, responsiveness is directly related to the overall time
it takes for a control request to be processed by the control
plane (i.e., processing latency). We define processing latency
as the time elapsed from the issuance of the request by a
publisher/subscriber to the time when all partial requests for
this request have been processed by the control plane. In
this experiment, we plot the average processing latency of
control requests with increasing number of configurators in a
scaled control plane where subscriptions and unsubscriptions
are generated using both uniform and Zipfian data and sent
to the dispatcher at a Poisson rate of 5000 requests/sec.
Figure 8(h) shows that, for Zipfian data, processing latency
reduces significantly with scaling. We also evaluated with
uniform distribution where the plots were similar for both
SPA and SPA-LB, whereas SPA-LB performs better when
Zipfian data is used due to additional load balancing as can
be seen in the figure. As mentioned before, with uneven load
corresponding to different partitions, and a Poisson rate of
incoming request, the queues formed at different configurators
are of different lengths for SPA. This implies much longer
waiting times for some requests waiting at the end of long
queues resulting in a higher average processing latency. On the

contrary, SPA-LB provides a possibility to migrate partitions
to manage the maximum length of the waiting queues.

It is also interesting to observe the average processing
latency of a control request with increased partitioning of the
event-space when SPA-LB is used. The more the number of
partitions, the more is the possibility of load balancing in SPA-
LB, when dealing with requests following Zipfian distribution.
If a configurator has a large partition with very high load,
moving it to any other configurator will not balance the load.
However, if the partitions are smaller, the possibility of the
load being distributed among these partitions is more, which
increases the flexibility of balancing the load between multiple
configurators. Figure 8(i) shows that for Zipfian data, the av-
erage processing latency reduces significantly with increasing
number of partitions up to a point. However, beyond this point
further partitioning has no benefits as no further load balancing
is possible for the considered workload. In fact, the graph
indicates that once these benefits are no longer applicable,
further partitioning may increase the average latency to some
extent. This is because increased partitioning has an effect
on the number of partial requests that are constructed from
control requests. If the partitioning is more fine granular, the
probability of a control request spanning multiple partitions
is more. This means that multiple CP-configs will be affected
resulting in increased number of flow operations. Figure 8(j)
plots the effects of partitioning on total number of flow
operations. The graph clearly shows that partitioning increases
the number of flow operations significantly which can have an
impact on the flow updates on the network.

3) Reducing Flow Operations: In order to reduce the num-
ber of flow operations on switches, we order control requests
as discussed in the previous section. However, continuous
sorting of a waiting queue at a configurator not only poses
a significant overhead but also results in starvation for some
fine-grained subscription requests that get continuously pushed
down in the sorted queue. As a result, we sort only slices
of contiguous subscriptions at a time and not the complete
waiting queue. This set of experiments plots the number of
flow operations required to process a set of 5000 subscriptions
with increasing slice size. Figure 8(k) clearly shows that with
increasing slice size, the number of flow operations reduces.
However, Figure 8(l) shows that due to starvation of certain
requests, the average latency is affected on increasing the slice
size. We also plot the maximum processing latency for each
slice size that contributes to increasing the average processing
latency. So, there is always a trade-off between the slice size
and fairness in request processing that directly affects the
responsiveness to certain requests. It is important to note that
a slice size of 1 implies an unsorted queue.

VI. RELATED WORK

Various approaches to the many aspects of content-based
pub/sub have been presented in literature [17], [19], [10].
A common drawback of most of these existing systems is
their dependence on the application layer mechanisms to
optimize pub/sub operations. Only a few systems explicitly
take into account the properties of the underlying network

14

and its topology to organize pub/sub broker network [18],
[29], [35]. Although, such systems bear significant cost, it
is still hard to accurately infer advanced underlay properties
such as the current link utilization based on observations
on end systems (such as brokers). The recent advent of
new networking technologies, such as SDN and NetFPGA,
have raised some research efforts towards realizing pub/sub
middleware that can support event filtering and routing within
the network. LIPSIN [20] uses bloom filters in data packets
to enable efficient multicast of events on the network layer.
However, the expressiveness of LIPSIN is limited to topic-
based pub/sub. Zhang et al. [40] address impact of SDN on
the future design of pub/sub middleware and describe the
realization of logically centralized pub/sub controller in a
distributed manner. Nevertheless, to the best of our knowledge
we are the first to thoroughly evaluate the performance of
SDN-enabled content-based pub/sub middleware. Also, there
has been a lot of research in the field of SDN in general,
especially with regards to the limitations of TCAM (e.g.,
limited flow entries, flow update time, etc.) [39], [21], [15] and
maintaining consistency in the data plane of software-defined
networks [42], [33]. These works are orthogonal to ours and
can be incorporated in our system. However, in this article,
we, especially, focus on realizing the pub/sub middleware on
software-defined networks.

Efficient maintenance and handling of dynamically chang-
ing subscriber interests has also been a subject of much
research in overlay-based pub/sub [19], [10]. For instance,
Jayaram et al. [19] propose mechanisms to efficiently handle
subscriptions that change dynamically w.r.t. various parame-
ters (such as location) by introducing the concept of parametric
subscription. These methods, however, cannot be directly
applied to the problems addressed in this article.

In the recent past, the emerging cloud computing model
prompted the realization of pub/sub as a cloud service. In
this respect, the importance of a scalable and elastic pub/sub
with high throughput has been impressed upon in literature.
Li et al., present an attribute-based pub/sub service, Blue-
Dove [28], that organizes multiple servers into an overlay and
achieves high throughput filtering (or matching) of events by
forwarding events to be matched to the least loaded servers.
Likewise, Barazzutti et al. design a scalable pub/sub service,
StreamHub [1], followed by the elastic e-StreamHub [2],
where a set of independent operators take advantage of mul-
tiple cores on multiple servers to perform pub/sub operations
which include subscription partitioning and event filtering. It
is important to note that all these systems target parallelism
of event filtering and do not need to take care of concurrency
control as the servers enabling concurrent filtering of events
do not share any resources.

Scaling the control plane in SDN, however, involves con-
current access to the network, acting as a shared resource,
and has been subject to much research in recent times [27],
[6], [11], [36], [24], [14]. Levin et al. [27] explore the
trade-offs of state distribution in a distributed control plane
and motivate the importance of strong consistency in their
work. They investigate the impact of eventual consistency
on the performance of a load-balancer implemented using

SDN and infer that the lack of strong consistency severely
degrades application performance. To ensure strong consis-
tency of network state between multiple controller instances,
Onix [24] provides a transactional persistent database backed
by a replicated state machine. However, it claims that, for
applications requiring frequent network updates, dissemination
of state updates using this technique yields severe performance
limitations. As a result, to accommodate such applications,
Onix also proposes a mechanism for obtaining eventual con-
sistency using a memory-only DHT which has its limita-
tions w.r.t. consistency guarantees. Similarly, Hyperflow [36]
only provides guarantees of maintaining weak consistency
by passively synchronizing the global network views of all
controllers. This article, in contrast to the aforementioned
literature, focuses on line-rate forwarding of events in the data
plane and on achieving high responsiveness while ensuring
strong consistency in the control plane.

VII. CONCLUSION

In this article we have proposed the PLEROMA mid-
dleware leveraging line-rate performance for content-based
publish/subscribe in software-defined computer networks with
an application-aware control that is capable of enhancing the
responsiveness of the control plane while ensuring consistent
changes to the data plane with low synchronization over-
head even in the presence of network failures. In particular,
we have proposed methods that preserve the performance
characteristics of PLEROMA in the presence of dynamic
subscriptions and publications. Our evaluations show that
PLEROMA i) imposes very low latency in mediating events
between publisher and subscriber, ii) allows for expressive
content filtering in the presence of hardware limitations, iii)
realizes application-aware control distribution that drastically
decreases the response time to control requests (up to 99% in
comparison to a centralized controller) while ensuring control
plane consistency, and iv) reorders control requests resulting
in up to 28% less flow updates on the SDN switches.

REFERENCES

[1] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J.-F. Pineau, M. Pasin,
E. Rivière, and S. Weigert. Streamhub: A massively parallel architecture
for high-performance content-based publish/subscribe. In Proc. of the
7th ACM Int. Conf. on Distributed Event-based Systems, 2013.

[2] R. Barazzutti, T. Heinze, A. Martin, E. Onica, P. Felber, C. Fetzer,
Z. Jerzak, M. Pasin, and E. Rivière. Elastic scaling of a high-throughput
content-based publish/subscribe engine. In Proc. of 34th IEEE Int. Conf.
on Distributed Computing Systems, 2014.

[3] S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel. Bandwidth-
efficient content-based routing on software-defined networks. In Proc.
of the 10th ACM Int. Conf. on Distributed and Event-based Systems,
DEBS ’16.

[4] S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel. Hybrid content-
based routing using network and application layer filtering. In Proc. of
36th IEEE Int. Conf. on Distributed Computing Systems, ICDCS ’16.

[5] S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb, and K. Rothermel.
Distributed control plane for software-defined networks: A case study
using event-based middleware. In Proc. of the 9th ACM Int. Conf. on
Distributed Event-Based Systems, DEBS ’15, 2015.

[6] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A distributed and
robust SDN control plane for transactional network updates. In 2015
IEEE Conf. on Computer Communications, INFOCOM 2015.

[7] A. Cheung and H.-A. Jacobsen. Green resource allocation algorithms
for publish/subscribe systems. In Proc. of the 31st IEEE International
Conference on Distributed Computing Systems (ICDCS), 2011.

15

[8] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: A
scalable interest-aware overlay for topic-based pub/sub communication.
In Proc. of the Int. Conf. on Distributed Event-based Systems, 2007.

[9] O. M. E. Committee. Software-defined Networking: The New Norm for
Networks. Open Networking Foundation, 2012.

[10] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In Proc.
of ACM Symp. on Applied Computing (SAC), 2004.

[11] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards
an elastic distributed sdn controller. In Proc. of the 2nd ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13.

[12] F. Dürr and T. Kohler. Comparing the Forwarding Latency of OpenFlow
Hardware and Software Switches. Technical report, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, 2014.

[13] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
JOURNAL ON APPLIED MATHEMATICS, 17(2):416–429, 1969.

[14] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. Jonathan
Chao. Improving the performance of load balancing in software-defined
networks through load variance-based synchronization. Computer Net-
works, 2014.

[15] Z. Guo, Y. Xu, M. Cello, J. Zhang, Z. Wang, M. Liu, and H. J. Chao.
Jumpflow: Reducing flow table usage in software-defined networks.
Computer Networks, 2015.

[16] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch
models for software-defined network emulation. In Proc. of 2nd ACM
SIGCOMM Wshop. on Hot Topics in SDN, 2013.

[17] H.-A. Jacobsen, A. K. Y. Cheung, G. Li, B. Maniymaran, V. Muthusamy,
and R. S. Kazemzadeh. The PADRES publish/subscribe system. In
Principles and Applications of Distributed Event-Based Systems. 2010.

[18] M. A. Jaeger, H. Parzyjegla, G. Mühl, and K. Herrmann. Self-organizing
broker topologies for publish/subscribe systems. In Proc. of the 2007
ACM Symposium on Applied Computing (SAC), 2007.

[19] K. R. Jayaram, C. Jayalath, and P. Eugster. Parametric subscriptions for
content-based publish/subscribe networks. In Proc. of 11th Int. Conf.
on Middleware, 2010.

[20] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: line speed publish/subscribe inter-networking.
ACM SIGCOMM Computer Communication Review, 2009.

[21] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Infinite cacheflow
in software-defined networks. In Pro. of the 3rd Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14.

[22] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel. The power
of software-defined networking: line-rate content-based routing using
Openflow. In Proc. of the 7th Workshop on Middleware for Next
Generation Internet Computing, MW4NG ’12. ACM, 2012.

[23] B. Koldehofe, B. Ottenwälder, K. Rothermel, and U. Ramachandran.
Moving Range Queries in Distributed Complex Event Processing. In
Proc. of Int. Conf. on Distributed Event-Based Systems (DEBS ’12).

[24] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In
Proc. of USENIX Conf. on OS Design & Implementation, 2010.

[25] D. Kreutz, F. M. V. Ramos, P. J. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking: A com-
prehensive survey. Proc. of the IEEE, 2015.

[26] B. Lantz, B. Heller, and N. McKeown. A network on a laptop: Rapid
prototyping for software-defined networks. In Proc. of 9th ACM Wshop.
on Hot Topics in Networks, 2010.

[27] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann.
Logically centralized?: State distribution trade-offs in software defined
networks. In Proc. of Hot Topics in Software Defined Networks, 2012.

[28] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei. A scalable and elastic
publish/subscribe service. In Proc. of IEEE Int. Parallel & Distributed
Processing Symp., 2011.

[29] A. Majumder, N. Shrivastava, R. Rastogi, and A. Srinivasan. Scalable
content-based routing in pub/sub systems. In Proc. of the 28th IEEE
Int. Conf. on Computer Communications (INFOCOM), 2009.

[30] V. Muthusamy and H.-A. Jacobsen. Infrastructure-free content-based
publish/subscribe. IEEE/ACM Trans. Netw., 2014.

[31] Open Networking Foundation. OpenFlow management and configura-
tion protocol (OF-CONFIG v1.1.1). Technical report, Mar. 2013.

[32] Open vSwitch. http://openvswitch.org/.
[33] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for network update. In Proc. of the ACM SIGCOMM 2012
Conf. on Applications, Technologies, Architectures, and Protocols for
Comp. Comm., SIGCOMM ’12.

[34] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel. PLEROMA:
A SDN-based high performance publish/subscribe middleware. In Proc.
of 15th Int. Middleware Conf., 2014.

[35] M. A. Tariq, B. Koldehofe, and K. Rothermel. Efficient content-based
routing with network topology inference. In Proc. of the 7th ACM Int.
Conf. on Distributed Event-Based Systems, 2013.

[36] A. Tootoonchian and Y. Ganjali. Hyperflow: A distributed control plane
for OpenFlow. In Proc. of Internet Network Management Conf. on
Research on Enterprise Networking, 2010.

[37] G. Vaněček, Jr. BRep-Index: A multidimensional space partitioning
tree. In Proc. of 1st ACM Symp. on Solid Modeling Foundations and
CAD/CAM Applications, 1991.

[38] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang.
Subscription partitioning and routing in content-based publish/subscribe
systems. In Proc. Of Int. Symp. on Distributed Computing, 2004.

[39] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao. Cab: A reactive wildcard
rule caching system for software-defined networks. In Proc. of the 3rd
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14.

[40] K. Zhang and H.-A. Jacobsen. SDN-like: The next generation of
pub/sub. CoRR, 2013.

[41] Y. Zhao, K. Kim, and N. Venkatasubramanian. Dynatops: A dynamic
topic-based publish/subscribe architecture. In Proc. of the 7th ACM Int.
Conf. on Distributed Event-based Systems, DEBS ’13, 2013.

[42] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey. Enforcing
customizable consistency properties in software-defined networks. In
Proc. of the 12th USENIX Conf. on Networked Systems Design and
Implementation, NSDI’15.

Sukanya Bhowmik received her M.Sc. degree in Information Technology
from University of Stuttgart, Germany, in 2013. She is currently pursuing
her doctoral studies at the Distributed Systems research group, University of
Stuttgart, Germany. Her research interests include high performance commu-
nication middleware using software-defined networking with focus on line-rate
performance, bandwidth efficiency, and control plane distribution.

Muhammad Adnan Tariq received the doctoral degree from the University
of Stuttgart, Germany. He is working as a postdoctoral researcher at the
Distributed Systems department of the University of Stuttgart, where he is
involved in the projects related to data stream processing, complex event pro-
cessing, software-defined networking, and geo-distributed cloud computing,
with focus on scalability, fault-tolerance, security and adaptability aspects.

Boris Koldehofe is currently managing director of the DFG Collabortive Re-
search Centre MAKI and group head of the adaptive overlay communication
group at TU Darmstadt. Formerly he worked as senior researcher and lecturer
at the IPVS of the University of Stuttgart and postdoctoral researcher at the
EPFL. He obtained his Ph.D in 2005 at Chalmers University of Technology.
He has extensive research and teaching experience in the area of Networked
and Distributed Systems and Algorithms. In particular, he has focused in the
past adaptive communication middleware and distributed event-based systems.

Frank Dürr is a senior researcher and lecturer at the Distributed Systems
Department of the Institute of Parallel and Distributed Systems (IPVS) at
University of Stuttgart, Germany. He received both his doctoral degree and
diploma in computer science from University of Stuttgart. He has given a
keynote and several tutorials on Software-defined Networking (SDN) at na-
tional and international conferences and symposia. Besides SDN, his research
interests include Time-sensitive (real-time) Networking (TSN), mobile and
pervasive computing, location privacy, and cloud computing aspects overlap-
ping with these topics like mobile cloud computing, edge-cloud computing,
or datacenter networks.

Thomas Kohler received the M.Sc. degree in Computer Science from
Augsburg University, Germany, in 2013. He is currently pursuing the Ph.D.
degree at the Distributed Systems research group, University of Stuttgart,
Germany. His research interests include consistency and determinism in
Software-defined Networking as well as Whitebox networking hardware. In
particular, his research focuses on update consistency, local switch logic and
control plane distribution.

Kurt Rothermel received his doctoral degree in Computer Science from
University of Stuttgart in 1985. Since 1990 he is a Professor for Computer
Science at the University of Stuttgart. From 2003 to 2011 he was head of
the Collaborative Research Center Nexus (SFB 627), conducting research in
the area of mobile context-aware systems. He is a Director of the Institute
of Parallel and Distributed Systems. His current research interests are in the
field of distributed systems, computer networks, and mobile systems.

