b b H Institute of Architecture of Application Systems

Model-as-you-go for Choreographies: Rewinding and
Repeating Scientific Choreographies

Andreas WeiB!, Vasilios Andrikopoulos?, Michael Hahn!, Dimka Karastoyanova3

1University of Stuttgart, Germany
{andreas.weiss, michael.hahn}@iaas.uni-stuttgart.de

2University of Groningen, The Netherlands
v.andrikopoulos@ @rug.nl

3 Kuihne Logistics University (KLU), Hamburg, Germany
dimka.karastoyanova@the-klu.org

BIBTRX:
@inproceedings {ART-2017-12,
author = {Andreas Wei{\ss} and Vasilios Andrikopoulos and Michael Hahn
and Dimka Karastoyanova}l,
title = {{Model-as-you-go for Choreographies: Rewinding and Repeating
Scientific Choreographies}},
journal = {IEEE Transactions on Services Computing},
volume= {PP},
number= {99},
pages = {1--1},
year = {2017}
}

© 2017 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

% Universitat Stuttgart

Germany

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Model-as-you-go for Choreographies: Rewinding

and Repeating Scientific Choreographies
Andreas Weif3, Vasilios Andrikopoulos, Michael Hahn, and Dimka Karastoyanova

Abstract—Scientists are increasingly using the workflow technology as a means for modeling and execution of scientific experiments.
Despite being a very powerful paradigm workflows still lack support for trial-and-error modeling, as well as flexibility mechanisms that
enable the ad hoc repetition of experiment logic to enable, for example, the convergence of results or to handle errors. In this respect, in
our work on enabling multi-scale/field (multi-*) experiments using choreographies of scientific workflows, we contribute a method
comprising all necessary steps to conduct the repetition of choreography logic across all workflow instances participating in a multi-*
experiment. To realize the method, we contribute i) a formal model representing choreography models and instances, including the
re-execute and iterate operations for choreographies, and based on it i) algorithms for determining the rewinding points, i.e. the activity
instances where the rewinding has to stop and iii) enable the actual rewinding to a previous execution state and repetition of the
choreography. We present the implementation of our approach in a message-based, service-oriented system that allows scientists to
model, control, and execute scientific choreographies as well as perform the rewinding and repeating of choreography logic. We also

provide an evaluation of the performance of our approach.

Index Terms—Ad Hoc Changes, Flexible Choreography, Workflow, Multi-* Experiment, Choreography Rewinding, Choreography

Re-execution and Iteration

1 INTRODUCTION

ORKFLOW TECHNOLOGY offers an approach for the

design and implementation of in-silico experiments
such as scientific simulations. By means of scientific workflows,
it supports the goal of eScience to provide generic approaches
and tools for scientific exploration and discovery in different
fields of natural and social sciences [1]. More specifically,
scientific workflows are used to specify the control and
data flow of in-silico experiments and orchestrate scientific
software modules and services. Through the use of workflow
technology in eScience, a significant body of knowledge
and tools from the business process management domain
becomes available to natural scientists. However, at the same
time scientists have different requirements on workflow
modeling and enactment than users in the business domain.
For instance, eScience experiments often demand a trial-and-
error based modeling [2] supporting the use of incomplete,
partially defined workflow models, or the repetition of the
execution of specific experiment steps with different sets of
parameters. In this context, natural scientists are both the
designers and users of a workflow model.

In order to address these requirements, previous work [3]
proposed the Model-as-you-go approach for workflows. A
key aspect of this approach is that it hides the differences
between workflow model and instance by abstracting from

o A. Weifs and M. Hahn are associated with the Institute of Architecture
of Applications Systems (IAAS) at the University of Stuttgart, Universi-
taetsstr. 38, 70569 Stuttgart, Germany
E-mail: {firstname.lastname J@iaas.uni-stuttgart.de

o V. Andrikopoulos is associated with the University of Groningen, Nijen-
borgh 9, 9747AG Groningen, The Netherlands
E-mail: v.andrikopoulos@rug.nl

e D. Karastoyanova is associated with the Kiihne Logistics University (KLU),
Grofler Grasbrook 17, 20457 Hamburg, Germany
E-mail: dimka.karastoyanova@the-klu.org

Manuscript received on May 19, 2017

technical details such as deployment. This works towards
creating the impression of one coherent experimentation
phase where scientists can iteratively model and execute a
scientific workflow. Model-as-you-go also supports two types
of user-initiated operations allowing the ad hoc repetition of
parts of the workflow model without the a priori defini-
tion of execution control artifacts [4]. The iterate operation
allows repeating workflow logic without undoing previously
completed work. This is helpful for scientists to enforce
the convergence of results by repeating some steps of the
scientific workflow. The re-execute operation allows repeating
parts of already executed workflow logic after undoing, or
compensating already completed work. This allows scientists,
for example, to reset the execution environment in case of
detected errors or even when a complete redo of a simulation
is needed.

A known limitation of this approach, however, is the
insufficient support for multi-scale/multi-field, also known
as multi-* experiments, that recent works are addressing [5],
[6]. Multi-scale experiments couple different length or time
scales within the same experiment, e.g. part of the overall
simulation simulates a natural phenomenon on the atomic
scale with nanometer length and transfers the results to
another simulation application simulating structures with
millimeter length. Multi-field experiments use different
scientific fields in the same experiment, for example physics,
biology, or chemistry. In order to provide better support for
these types of in silico experiments, we proposed the use
of choreographies [7]. Every scale and every distinct field is
modeled as an independent choreography participant. This
corresponds to the fact that multi-* experiments typically
involve scientists from different disciplines and organizations
having diverse expertise [5].

Fig. 1 shows a simplified example of a multi-scale
experiment studying the simulation of thermal aging of

IEEE TRANSACTIONS ON SERVICES COMPUTING 2
| Repeat
r r fi h
& h & J rom here
Analyse Select R
5 Snapshot Snapshot 14
8- N .] g
K @ % Run = v v
E Configure KMC Receive Create Plot
] Simulation . . Result
) Simulation
|
|
(oo e |
| |
| |
| E
| CY |
! Configure |
c i Simulation °
2 v
=
g CI
a Compile
[=] Source Code
2 Compilation
necessary? }
Completed Executing
Activity Activity

Fig. 1. An example of a choreographed multi-scale simulation of thermal aging of iron-copper alloys and their material behavior. Adapted from [5]

iron-copper alloys and emerging effects on the mechanical
behavior of the alloys [8]. The coupling of two simulation
methods allows for carrying out simulations on multiple time
and length scales. The first method is a Kinetic Monte Carlo
(KMC) Simulation and simulates the formation of copper
atom clusters (precipitates) in an atom lattice and stores the
intermediate results in snapshots at discrete time steps. The
generated snapshots are analyzed and sent to a Molecular
Dynamics (MD) simulation workflow if the atom clusters
have an appropriate size. The MD simulation workflow and
the services implementing the activities apply forces on each
snapshot to test material behavior after thermal aging. Each
received snapshot triggers the creation of a new workflow
instance of the MD simulation. The results are sent back
to the KMC simulation workflow to generate an overall
graphical plot for each simulation snapshot. Together, the
two simulation workflows form a choreography with each
simulation method being represented by an independent
choreography participant.

Let’s assume now that a scientist started the coupled
simulation workflows and they already have calculated a
simulation snapshot, applied forces on the atom lattice, and
visualized the result graphically. The scientist discovers that
the visualization does not show a plausible graph and wishes
to re-run parts of the overall multi-scale simulation. These
could be, for example, a change of the criteria that are used
to select an appropriate KMC simulation snapshot, the re-
sending of snapshots, and the re-run of the MD simulation.
Essentially, this requires the capability that allows scientists
to select a point in the KMC or MD workflows up to which
the execution of the simulations has to be rewound before
applying any desired changes and repeating the execution of
this part of the simulation. Repeating part of the execution
instead of discarding all intermediate results and starting
from scratch saves a lot of time and effort for the scientists,
especially in the case of typically long running experiments.

Toward supporting such type of control over scientific
experiments, in this work we build on the concepts we

introduced in previous work [4], [5], [6], and present the
complete Model-as-you-go for Choreographies approach
that allows for rewinding and repetition in choreographies.
For this purpose, in Sec. 2 we present a formal description
of choreography models and instances, which we extended
from [6] to incorporate loop constructs typically used in
acyclic choreography and workflow models. Furthermore,
the formal model accounts for the so-called participant
sets that can be used to model a participant that can be
instantiated an arbitrary number of times. Subsequently,
in Sec. 3, we introduce a new method comprising all steps
necessary to rewind and repeat choreography logic, from
determining the rewinding points, through rewinding the
choreography, enacting a repeat or iteration of its logic, and
to resuming the choreography execution. In the same section
we present the algorithm to determine the rewinding points,
which is a combination of its basic version as introduced
in [6] and a significant extension to support loop activity
instances and instances of participant sets. Rewinding points
are activity instances in the participating workflows up to
which the state has to be rewound and where the repetition
begins. We enable the repetition or iteration of choreography
logic by defining and implementing two operations: iterate
and re-execute. For the actual rewinding at the choreography
participants, i.e. the resetting or compensation of activities
in each involved participant instance, we resort to the
concepts of [4], about which we provide the necessary
background details. As with the previous works, the concepts
introduced in this article are independent of a particular
choreography or workflow language and therefore reusable
across technologies. Sec. 4 describes how the concepts
and algorithms for repetition are realized into a message-
based and service-oriented system, the ChorSystem, that
supports the modeling, execution, and control of scientific
choreographies and implements the method we introduced
in Sec. 3. In Sec. 5, the proposed approach is experimentally
evaluated in terms of performance. Finally, Sec. 6 compares
our approach to related ones and Sec. 7 concludes the article.

IEEE TRANSACTIONS ON SERVICES COMPUTING

2 FORMAL MODEL

In this section, we define the underlying formal model for
our approach in two parts: modeling and execution.

2.1

Typically, choreography models show only the publicly
visible communication behavior, because the details of the
workflows implementing the choreography participants
are considered as sensitive information. The usually non-
executable models are defined collaboratively and used to
generate representations of the choreography participants
in an executable workflow language. The collaborating
organizations then refine the resulting workflow models
they own with business logic [9].

A choreography model consists of at least two partic-
ipants, which are represented by service orchestrations,
workflow models, or process models. A process model is a
directed, acyclic graph (DAG) whose nodes represent activ-
ities. Control flow is explicitly modeled by edges denoted
as control flow connectors linking activities. Data flow is
implicitly described through the manipulation of variables as
input and output of activities. The participants communicate
with each other via message links, a second type of edges.

A process model is formally defined as in [10]:

Definition 1 (Process Model, G). A process model is a DAG
G = (m,V,i,0,A, L), where m € M is the name of the
process model, V. C M x S (M = set of names; S = set of
data structures) is the set of variables, i is the map of
input variables, o is the map of output variables, A is the
set of activities, and L is the set of control flow connectors
(control flow links).

Modeling Phase

The set of activities A contains both basic and loop activities
(cf. Definition 2 below). Input variables providing data to
activities can be assigned using an input variable map i :
A — P (V). Output variables to which activities may write data
to are described by the output variable map o : A — P(V).
Finally, the set of control flow connectors is L C A x A x
C. A control flow connector | € L is a triple | = (ay, a1 |
as,a; € At € C Aag # a;) connecting a source and a target
activity, and its transition condition t (where C is the set
of all conditions) is evaluated during run time. Note that
the transition conditions allow to model typical workflow
patterns such as parallel split and exclusive choice [11]. An
activity a € A, is called start activity if it is not the target of a
control flow link: A, CA:={a|a€ AAVI € L,a+ m(l)}.

Loops in the formal model for process models are
expressed as complex activities that execute the loop as a
sub-process according to a defined exit condition [10]. More
formally:

Definition 2 (Loop Activity, a;). A loop activity a; € Ar is a
tuple a; = (m, A, L, €), where m € M is the name of the loop
activity, A is a set of activities, L is a set of control flow
connectors, and € is a function € : A7 — C that assigns an
exit condition to a loop activity.

1. Note that we use the projection operator x, to access the n'"
element of a tuple starting from index 1. (X) denotes the power set of
the set X including the empty set 0. p, .X accesses element X (potentially
a set) of element p,,.

3

A loop activity is a container activity for other activities,
regular (i.e. non-loop) as well as nested loop activities, and
control flow connectors. The loop activity represents a do-
until loop, which is executed at least once before the exit
condition is evaluated. Our definition of a choreography
model integrates the process model tuple as part of its
participant definition:

Definition 3 (Choreography Model, €). A choreography
model is a directed, acyclic graph denoted by the tuple
€ = (mP,Pgey, ML), where m € M is the name of
the choreography model, P is the set of choreography
participants, Ps.; is the set containing participant sets,
ML is the set of message links between the choreography
participants.

A choreography participant p € P is a triple p = (m, type, G),
where m € M is the name of the participant, type : P — T is
the function assigning a type ¢, € T to the participant, and
G € Gy is a process model graph, where G, is the set of all
process model graphs.

Typing the participant allows for several participants of
the same type in the same choreography. Participants of the
same type always possess the same process model graph.
The set of all participants is denoted by P,y. A participant
set pser € Pser is described by pser € Puy. This modeling
construct is used to model a set of choreography participants
whose number can be determined only during run time [12].

The set of message links ML is denoted as
ML C(PUPg;)xPxAXAXC. Amessage link ml € ML is a
tuple ml = (ps, py, as, ar, t), where py, p, are the sending and
receiving participants, which must not be identical: ps # p,.
This also holds for a5 € 75(p;.G) and a, € 75(p,.G), which are
the sending and receiving activities: a; # a,. The transition
condition ¢ € C is evaluated during run time.

2.2 Execution Phase

Choreography models are typically not directly exe-
cutable [7], [13]. Instead, the refined process/workflow
models implementing the choreography participants are in-
stantiated. Together, they form an overall virtual choreography
instance. The virtual choreography instance at any given point
in time can be created by reading monitoring information,
i.e. the execution traces of each process instance. We use
the definitions of activity and process instance from [4] and
extend them for choreography instances. Note that for our
purposes it is sufficient to have a rather static notion of
a choreography instance capturing only the accrued state
at a certain point in time and not the advancement of the
execution. This is due to the fact that the execution progress
is suspended when we apply our algorithm, as we discuss
in the following section.

Definition 4 (Process Instance, p,). An instance of a process
model is a tuple p, = (VI, A4, AT, LE), where V! is the
set of variable instances, A4 is the set of active activity
instances, AF is the set of finished activity instances, and
LF is the set of evaluated links .

For the set of variable instances it holds that: V! = {(v, ¢,) |
v € V,c € DOM(v),t € N}. A variable instance provides
a concrete value ¢ from the domain of v (DOM(v)) for a
variable v at a particular point in time . The set of activity

IEEE TRANSACTIONS ON SERVICES COMPUTING

instances is defined as A’ = {(id, a,s,t,0) | id € ID,a € A, s €
S,t € N,o € X}, where ID is a set of unique identifiers, A
is the set of activities, S is the set of states, N is the set of
natural numbers indicating time, and X is the set of variable
snapshot instances. A variable snapshot instance o € X is
defined as the triple o = (id, VL, 1) | id € ID,VL c V!t e N.

The set S = {S,E,C,F,T,Cmp, D} contains the execu-
tion states an activity instance can take at any point in
time r. Note that we describe states with the following
abbreviations: (S=scheduled, E=executing, C=completed,
F=faulted, T=terminated, Cmp=compensated, D=dead,
Sus=suspended). Completed activity instance have been suc-
cessfully carried out their intended work, while terminated
ones were forcefully aborted during execution.

The state of an activity instance a’ € A’ can be determined
by the function state(a’), whereas its model element is
retrieved by the function model(a'). The set of activity in-
stances A’ contains both non-loop and loop (cf. Definition 6)
activity instances. For the set of active activity instances
the following holds: A* € Al,Va' € A% : state(a’) € {S,E}.
If an activity is executed in a loop, a new instance is
created for each iteration, i.e. there is at most one activity
instance a' of an activity a in the set of active activities
AA. For the set of finished activity instances the following
holds: AT ¢ Al,Va' € AF : state(a’) € {C,F,T, D}. Compen-
sated activity instances (state=Cmp) are not in the set A"
because their effects have been semantically undone. For
the set of evaluated control flow links the following holds:
LE ={(l,c,t) |l € L,c € {true, false},t € N}. Evaluated links
already have an truth value ¢ assigned at time ¢ determining
if the link has been followed during execution. Furthermore:

Definition 5 (Instance Subgraph, g'). An instance subgraph
is a directed, acyclic graph represented by a tuple g’ =
(VI A% AT LE), where g' <, pg.

The <, operator means that the elements of the tuple g’

are a subset or equal to the corresponding elements in the

process instance tuple p,. We include the instance subgraph

definition in order be able to algorithmically handle the

process graph and any subgraphs of it in the same way.

Definition 6 (Loop Activity Instance, a}). A loop activity
instance is a tuple a} = (id, a;, A*, A¥, L¥, ctr, s, 1), where
id € ID is a unique identifier of the instance, a; is the loop
activity, A4 is the set of active activity instances, A is the
set of finished activity instances, LE is a set of evaluated
control flow links, ctr € N is the loop counter of the loop
activity instance, s € S is the current state of the instance,
t € N is the instance’s execution time.

It then follows:

Definition 7 (Choreography Instance, ¢). A choreography
instance is the pair ¢ = (P!, MLF), where P! is the set
of participant instances belonging to the choreography
instance and MLF the set of evaluated message links.

The set of participant instances P! contains pairs of the form
p' = (m, pg), where m is the name of the participant instance
and p, € P4 is a process instance. For ML the following
holds: MLf = {(ml,c,t) | ml € ML,c € {true, false},t € N},
i.e. MLE contains the instantiated message links having
a truth value ¢ indicating the outcome of the transition
condition evaluation at execution time ¢.

3 REWINDING & REPEATING CHOREOGRAPHIES

In this section we present our overall approach for rewinding
and repeating choreography logic in a choreography instance.
We introduce the method our approach follows and the
algorithm for automatic identification of rewinding points.

3.1

A basic assumption for the Model-as-you-go for Choreographies
approach is the existence of a monitoring infrastructure
capturing the execution events and providing information
about instance states of the process models distributed
across different execution engines. These states are correlated
with the corresponding choreography model, both in the
supporting middleware and in the graphical modeling and
monitoring environment a scientist uses. Based on the life
cycle for scientific choreographies, which we introduced
in [13], it is possible to switch between the levels of chore-
ography and workflows during execution for monitoring
purposes on different degrees of detail and to perform
adaptation actions as well starting the repetition on both
levels. Each scientist has access to a common choreography
model and at least to the workflow models she has refined
by herself. This includes the monitoring of the execution
state. Access to all other refined workflow models and the
execution events depends on the access rights given to the
particular scientist by the owner of the workflow model.
Furthermore, scientists must be able to control the execution
of the choreography instance. Choreography instance control
entails the starting, suspending, resuming, and terminating
of participating workflow instances in a coordinated fashion
in order to be enable to react to deviations and errors, and to
perform adaptation actions.

Prerequisites

3.2 Concepts & Method

One way to enable reaction to deviations and errors is
through repeating workflow /experiment logic using either
of two operations we defined for individual (scientific)
workflows. Iteration is the repetition of parts of the logic
in a workflow instance without undoing already completed
work. The executed activities and links in the engine internal
representation are simply reset; note that historical data are
kept and past state changes are not overwritten. Optionally,
the scientist may decide to load stored variable snapshots
for the re-run and not use the current values. Basically,
iteration resembles the execution semantics of a loop con-
struct without having it explicitly modeled. Re-execution
denotes the operation of repeating workflow logic in a single
workflow instance after undoing the already completed
work by invoking compensation activities in the reverse
order for executed service invocations, resetting control flow
links, and by loading stored variable snapshots for the start
activity [4]. In the context of (scientific) choreographies, we
analogously define iteration in a choreography instance as the
repetition of logic in the enacting workflow instances without
undoing already completed work. The workflow instances
participating in the choreography instance are collectively
reset. Re-execution in a choreography instance is the repeat
of logic after compensating already completed work. That
means the choreography instance is reset to a state of its

IEEE TRANSACTIONS ON SERVICES COMPUTING

(1) Suspending
of the
choreography

(4) Distribution

(2) Selection of a (3.) "
tart activity petennination of the rewinding
S N of the rewinding N
instance . points
(6) Reset of the
t:) ing of S
@ the (75 o
choreography the rewinding
instance points

choreography
Fig. 2. Method for rewinding and repetition of choreography logic

instance

v
(5) Termination
of activities in the
choreography
wavefront

instance
(iteration)

(6) Compensation
of the choreo-
graphy instance
(Re-execution)

past. The involved workflow instances have however to be
compensated collectively. The rewinding and repetition of
choreography logic can be conducted by adhering to the
steps of the method depicted in Fig. 2. The steps involved
are explained in the following sub-sections making use of
several conceptual figures? (Fig. 3 - Fig. 5).

3.2.1 Step 1: Suspending of the Choreography Instance

This is done either by a scientist or by the workflow engines
reaching the end of the defined workflow models. The user-
initiated suspend has to be conducted in a coordinated
fashion with all relevant workflow engines by using reliable
messaging [14] and/or transactional concepts [15]. It implies
that no further execution progress in any of the involved
workflow instances occurs until they are collectively resumed
again (cf. Step 8).

3.2.2 Step 2: Selection of a Start Activity Instance

Repeating parts of the logic of choreography instances
is triggered by the scientist choosing a start activity in a
start participant instance (activity ¢y of Participant; in Fig. 3)
during run time via a graphical modeling and monitoring
environment. As multiple (completed) instances for one
model element might exist, especially inside loop activities,
the modeling and monitoring environment must support
a convenient selection, for example by using a graphical
wizard that leads the user through the selection step by
step. The selection can either take place on the level of the
choreography or on the workflow level depending on the
access rights of the scientist.

When monitoring the scientific choreography instance,
data, i.e. the variable values, of the workflow instances is
one factor scientists have to consider for the repetition of
logic. Similar to database logs for recovery [16], in our
existing work [4] we log variable changing events into stable
storage. A snapshot-enabled workflow engine stores the
snapshot instances with every variable-changing activity in
its database. Moreover, it offers a service interface to the
outside to retrieve the snapshot instances related to any
given activity. A snapshot instance contains references to all
variables visible for a particular activity, the current variable
values, and a creation timestamp. Fig. 4 shows the simplest
(i.e. sequential) selection case in a workflow instance. If it is

2. In the following, the subscript of an element denotes a part of the
element name, while the superscript indicates the instance id. However,
we only show the instance id if there are more than one instances of the
same element.

5

Participant,

Participant;

Repeat
rom here

»

Compensate

Legend
OComrﬂeted Q Dead Scheduled O Executing
Activity Activity Activity Activity
O Unscheduled Rewinding 7 Evaluated __7., Evaluated
Activity Point Link Mess. Link

Fig. 3. Example of a choreography instance without loops

Fig. 4. Data handling in the sequential case. Adapted from [4]

to be repeated from activity instance c, the snapshot instance
attached to activity instance b has to be loaded. It is the
nearest snapshot instance, i.e. has the most recent timestamp
(r = 2), on the execution path to activity instance c. The
selection of snapshot instances from parallel execution paths
are also considered in [4], however, we do not recapitulate
these concepts here due to space limitations.

We base our data handling on this concept and allow
the user to select either manually or automatically the
stored snapshot instance with the most recent timestamp
for the start activity instance. This means the corresponding
workflow engine is queried for all snapshot instances related
to the selected start activity instance and the results are
presented to the user in a graphical manner. The option is
provided for both iteration and re-execution. In case of re-
execution, the compensation logic is only responsible for
undoing state which is external to the participant. Therefore,
a snapshot instance is has to be selected and loaded to
provide the desired variable values, which are part of the
internal state of the workflow instance, before starting the
re-execution. In case of iteration it is optional.

The refinement of the choreography participants might
introduce variables which are not part of the choreography
model. Two cases can be distinguished: (i) A scientist wishes

IEEE TRANSACTIONS ON SERVICES COMPUTING

to start the repetition of a choreography instance from the
choreography or workflow level where he/she has access to
the refined workflow model. In this case, graphical facilities
are provided to select the desired snapshot instance and
all or a subset of the variables visible for the start activity
instance. (ii) A scientist wishes to start the repetition on the
level of the choreography from a participant instance where
he/she does not have access to the refined workflow. Here,
the manual selection of snapshots should not be offered.
Instead, the engine internally uses the most recent variable
snapshot instance preceding the start activity instance from
the corresponding workflow engine’s database as shown in
Fig. 4. The same approach is employed for all calculated
rewinding points outside the start participant instance.

3.2.3 Step 3: Determination of the Rewinding Points

An important concept is the notion of iteration body. In [4],
the iteration body is defined as the instantiated activities and
evaluated links reachable from a user-selected start activity
instance of a single process instance. In Fig. 3, the iteration
body of Participant; consists of the activities ¢, di, e1,fi,
g1, M, i1, and the control flow connectors between them.
Note that the path ¢; — d; has not been chosen during
execution and is marked as dead. However, it may be included
into the iteration body when starting a repetition from
activity c¢;. In the context of choreographies, the iteration
body spans across process instances and includes message
link instances between them. In Fig. 3, in addition to the
already enumerated ones, the activities ay, by, ¢, the control
flow links between them as well as the control flow link
c2 — d, and the message link instance ml; are part of the
choreography iteration body. In other words, the choreography
iteration body contains all activity, control flow, and message
link instances reachable from the start activity instance.
The repetition of logic starting in one particular participant
instance affects at least all participant instances that are part
of the choreography iteration body.

Here, two cases can be distinguished. In the first case, the
start participant instance is connected, directly or transitively,
to other participants that are reachable from the manually
selected start activity instance (c¢; in Fig. 3). That means,
the start participant instance contains completed sending
activity instances that have sent messages to other participant
instances which themselves may have invoked further ones.
Already completed activity instances on the execution path
must be rewound, i.e. either be reset (iteration) or com-
pensated (re-execution) across the affected choreography
participant instances. While the start activity instance for
the repetition is simultaneously the so-called rewinding point
in the start participant instance, the rewinding points in
the connected instances have to be identified separately.
Each rewinding point indicates where the resetting or
compensation of activities has to be stopped. In the example,
activity a is the rewinding point of Participant,.

In the second case, participant instances that are not
reachable from the start activity instance may still be affected
by the repetition of logic in other participant instances.
Messages that are not the reply to previous requests and
have been transmitted over incoming message links to the
affected participant instances must be available again in
the case of repetition. This can be done by storing and

6

replaying previously sent messages by the workflow engine
or a middleware component responsible for the respective
participant instance. An example for this case are Participants
and the message link instance ml, in Fig. 3.

The concept for determining the rewinding points in
choreography instances is refined in this work to also con-
sider multiple instances of the same participant, i.e. instantiated
participant sets (cf. Definition 3), as well as loop activity
instances as part of the participant instances. Fig. 5a shows
an example of a choreography instance containing both
loop activity instances and two instances of a choreography
participant modeled with the participant set construct. In
order to find the rewinding points in all participant instances,
all iterations of an instantiated loop activity have to be
traversed. The iterations of a loop activity instance can be
seen as independent instance subgraphs (cf. Definition 5)
where each has to be traversed sequentially. We call this
the loop instance graph of a particular loop iteration. In the
example of Fig. 5a, this means that starting from the initial
start activity instance d] in the first iteration of loop activity
instance cj, the participant instance Partici pant% is reached
via the message link instance ml;. Activity instance a; is the
rewinding point of Partici pant%. After finishing the traversal
of Participant% and the loop activity instance iteration 1,
the loop instance graph of loop activity instance iteration 2
is traversed. Here, Participant% is reached via the message
link instance mi3 and activity instance a can be marked as
rewinding point.

Our approach supports two more cases, both shown
in Fig. 5b. Firstly, we allow users to select an activity
instance in an arbitrary iteration of an loop activity instance.
In the example in Fig. 5b this is the activity instance d?
located in iteration 2 of loop activity instance c¢;. Secondly,
both participant instances possess loops that synchronize
with each other, e.g. participant instance Participant, also
possesses a loop activity instance (c2). Following the message
link instance ml3 to find the rewinding point in Participant,,
the correct loop iteration of c; must be entered to mark the
activity instance d22 as a another rewinding point.

In order to automatically determine the rewinding points,
we introduce an algorithm in Sec. 3.3. The data structure
to store the rewinding points of a choreography instance is
defined in the following way:

Definition 8 (Choreography Rewinding Points, RPg). The
data structure Choreography Rewinding Points RPg C
P! x P(A") is a set of pairs {(p',A],) | p' € PLA], =
{al,....a}} € A"} consisting of a participant instance and
a set of rewinding point activity instances.

The reason that a participant instance can have more than
one rewinding point is the existence of parallel paths in the
process model graph. A participant may receive messages in
parallel that result in independent rewinding points.

3.2.4 Step 4: Distribution of the Rewinding Points

In this step, the automatically determined rewinding points
as well as the optionally selected variable snapshot instance
(of the start participant instance) have to be distributed to the
workflow engines that host the involved workflow instances.
It has to be ensured that the rewinding points reach all

IEEE TRANSACTIONS ON SERVICES COMPUTING

Participa nt%

Participant;

Repeat 0

fromhere |, T
"B

-

/T ml;
P

Choreography
Iteration Body

Choreography
Wavefront

(@)

Choreography
Iteration Body

Wavefront

Legend
@ Completed Scheduled O Executing
Activity Act|V|ty Activity

Evaluated
Link

Loop
Activity

(b)

__T., Evaluated
Message Link

G Loop
Iteration

O Unscheduled

Activity >

‘ Rewinding .
Point

Fig. 5. Loop examples. 5a: Choreography instance with loops and instantiated participant set. 5b: Choreography instance with synchronizing loops

relevant workflow engines, e.g. by using reliable message-
oriented middleware [14] and/or transactional concepts [15].

3.2.5 Step 5: Termination of Activities in the Choreography
Wavefront

Manually triggered repetition of logic on an execution path
can lead to race conditions in individual workflows [4]
as well as in choreographies. Race conditions include the
execution of one path in parallel inside one process or
choreography instance. To deal with this issue the activ-
ities of the choreography wavefront have to be terminated.
The choreography wavefront contains all currently active
instances or scheduled elements such as activities, control
flow connectors, and message links. In Fig. 3, for example,
activities g1 and i1 of Participant; are currently running or
are scheduled, respectively, and will subsequently trigger
the competing execution of activity j; if not terminated
before starting the repetition from activity instance ¢;. The
termination is handled locally in each involved workflow
instance after receiving the rewinding points.

3.2.6 Step 6: Rewinding the Choreography Instances

The rewinding resets the choreography iteration body to a
previous state and moves the choreography wavefront to
the past. This has to be conducted locally by each involved
workflow engine. However, different approaches are used
for iteration and re-execution (cf. Fig. 2). For the rewinding
of each individual workflow instance we reuse the concepts
of [4]. That means in the case of iteration that the activities

and links in the iteration body of each participant instance
are reset by the corresponding workflow engine to enable
a subsequent execution. See Fig. 3 for an example that
shows the resetting direction from the rewinding point
until reaching the choreography wavefront. Optionally, data
snapshots are automatically determined for the rewinding
points (cf. Step 2).

We formally define the iterate operation of choreography
logic in the following way:

Definition 9 (Iterate operation, i.). The iterate operation for
choreographies is defined as the function i. : A’ xZx RP§! x
€l — ¢!, where A’ is the set of activity instances, T is the
set of variable snapshot instances, RPZ'! is the set of all
choreography rewinding points (cf. Definition 8), and €/
is the set of choreography instances.

The iterate operation takes as input the start activity instance
ai, ... € Al, the corresponding variable snapshot instance o €
T of a,,,,, the set of determined rewinding points assigned
to their corresponding participant instances RPg € RP¢!", and
the affected choreography instance ¢/ € €.

The re-execution operation is an extension of iteration,
where additionally to the resetting of control flow connectors,
the iteration body of each participant instance is compensated
in reverse order (cf. Fig. 3) and a data snapshot is automati-
cally determined for the rewinding points in each involved
workflow engine. The semantics of the input parameters is
identical to the iterate operation. Note that the re-execution
operation is only applicable if corresponding compensation

IEEE TRANSACTIONS ON SERVICES COMPUTING

services have been implemented for a particular use case.
We also extended the traversal of the iteration body by
the workflow engines for both operations to also consider
multiple rewinding points.

A special case to be considered is the complete rewinding
of a participant instance. This occurs when the model of
the rewinding point activity instance is an instance creating
activity (for example activity instance ay of Participant, in
Fig. 3). Instead of keeping the participant instance alive, it
should be terminated since it cannot be guaranteed whether
an instance of that particular participant is needed again
during the repetition. The new execution might take a
completely different path. However, simply terminating the
participant instance is not sufficient. In case of re-execution
the iteration body still has to be compensated to undo its
effects. In case of iteration, the iteration body has to be reset
and the variable values have to be stored. If the repeated
execution takes the same path, the variable values have to
be loaded for a new participant instance of the same type.
However, if the participant instance is created on a different
workflow engine, the variable values have to be migrated.

3.2.7 Step 7: Scheduling of the Rewinding Points

The rewinding points are scheduled in their respective
workflow engines to be executed next. An exception are
the rewinding points that are located in participant instances
that have been terminated after rewinding.

3.2.8 Step 8: Resuming of the Choreography Instance

The last step entails the resuming of the execution of the
choreography instance. To each participant instance, with the
exception of the completely rewound and terminated ones, a
message is sent to resume execution.

The method’s steps can be repeated if a scientist rec-
ognizes the need for further repetitions. Here, no new
challenges for the determining of the rewinding points arise.
Furthermore, if one step of the method fails, all steps apart
from the compensation of activities in case of re-execution
can be easily retried by starting the method anew. This is due
to fact that the workflow engines keep their instance state
in stable storage and the calculation of the rewinding points
and resetting already reset activities does not do any damage.
However, retrying the compensation step would need a
idempotent implementation of external services providing
the compensation functionality.

3.3 Determining the Rewinding Points

In the following, we present an algorithm to automatically
determine the rewinding points in a choreography iteration
body, that realizes Step 3 of the proposed method. The main
idea of the algorithm is to traverse the choreography instance
graph beginning from the user-selected start activity instance
in the start participant instance, follow the executed message
link instances and thus identify all choreography participant
instances that are part of the choreography iteration body.
In doing so, the algorithm collects all rewinding points. The
algorithm is divided into four parts and supported by a set
of auxiliary functions, which are defined and explained as
they occur in the algorithm. The rewinding point algorithm
realizes the function p.

Algorithm 1: determineRewindingPoints, p

1 input :Choreography instance ¢, activity instance qf;mlrt,
participant instance p', set of pairs RPs = (p', 4;,,)

2 output: RPg

3 begin

4 if RPg = 0 then

5 ‘ RPg « (Pl, {a;[art})

6 end

7 Loop Activity Instance
a, < getEnclosingLoop(dy,,,,)

8 if a} =1 then

9 |7 (PP P yares RPE)
10 else

1 | APl al,al g RPG)
12 end

13 return RPg

14 end

Algorithm 2: traverselnstanceSubgraph, 7

1 input :Choreography instance d, participant instance P,
instance subgraph g', activity instance a’,,,,, set
of pairs RPg = (p', A],,)

2 output: RPs

3 begin

4 Stack S «— 0

5 S.push(ai,,,,)

6 while S # 0 do

7 a' — S.pop()

8 if a' is not marked as visited then

9 mark @ as visited

10 if model(a’) is sending activity A
state(a') = completed then

1 RPs « x (¢, d', RPs)

12 foreach I' = (I*,c*,t*) € g .LE | I*.a} =

a' A state(c*) = true do

13 | S.push(i*.a})

14 end

15 else if model(a’) is loop activity then

16 | RPg — A(¢,p',d", L, RPg)

17 end

18 end

19 end

20 return RPg

21 end

Definition 10 (Function p). The Determine Rewinding Points
function p is defined as p : €/ x AT x PT x RP¢" — RPZ",
where €! is the set of choreography instances, A! is
the set of activity instances, P! is the set of participant
instances, and RPg” is the set that contains all RP; sets
(cf. Definition 8).

RPs is the data structure that contains the determined
rewinding points for each involved participant instance.
Before the first invocation of p the data structure RPg is
empty: RPg = 0. Algorithm 1 is the starting point for
the automatic determination of the rewinding points. The
initial invocation of the algorithm needs the start participant
instance and the user-selected start activity instance. First,
it is checked if the start activity instance a’,,,, is nested
inside a loop activity instance using the getEnclosingLoop
function (cf. Definition 11 below). If so, the user has selected

IEEE TRANSACTIONS ON SERVICES COMPUTING

an activity instance inside an iteration of a loop activity

instance and the sub-routine A (handleLoopActivity) defined in

Definition 15 and realized by Algorithm 4 is directly invoked.

Otherwise, a', ., is not nested inside a loop and the function

T (traverselnstanceSubgraph) is invoked to traverse the process

instance graph p, of p'.

Definition 11 (Function getEnclosingLoop). The getEnclosin-
gLoop function is defined as getEnclosingLoop : AT — Al,
where A’ is the set of activity instances and A? is the set
of loop activity instances.

The getEnclosingLoop function is used to determine if there
is a loop activity instance af € Al enclosing a given activity
instance a’ € Al. It returns L if a’ does not have a parent
loop activity instance, and function 7 is invoked:

Definition 12 (Function 7). The Traverse Instance Subgraph t
function is defined as 7 : €/ x P" x G x A" x RPZ" —
RPZ!!, where G/ is the set of choreography instances, P!
is the set of participant instances, G’ is the set of instance
subgraphs, A’ is the set of activity instances, and RP¢" is
the set that contains all RPg sets (cf. Definition 8).

The function 7 is used to traverse an instance (sub-)graph.
It is realized by Algorithm 2, the main idea being the
following: beginning from the activity instance a’,,,,, the
instance subgraph g' is traversed in a depth-first manner.
g' can be the complete process instance graph p, or a loop
instance graph of some iteration of a loop activity instance.
For each activity instance a' it is checked if it is a completed
sending activity instance (line 10). If so, the sub-routine y
(handleSendingActivity) as defined in Definition 13 is invoked
(line 11). Subsequently, the outgoing control flow connectors
of every completed activity instance are followed by pushing
them on the stack data structure, provided they have been
evaluated to true (lines 12-14). If the model of a’ (model(a'))
is a loop activity, the sub-routine A (handleLoopActivity, cf.
Definition 15 and Algorithm 4) is invoked instead (lines 15-
17).

Definition 13 (Function x). The Handle Sending Activity
function y is defined as y : € x A’ x RP§!" — RPZ', where
€’ is the set of choreography instances, A! is the set of
activity instances, and RP¢' is the set of pairs containing
the assignment of participant instances to their rewinding
points (RPg, cf. Definition 8).

Algorithm 3 (handleSendingActivity) realizes the function
x. First, the message link instance ml fmverse 4 which is
attached to the sending activity instance a', is retrieved by
evaluating the following conditions: (i) it has been evaluated
to true and (ii) there is a receiving activity instance a’
in the completed state, i.e. a message has been sent and
consumed (line 4). We assume reliable FIFO channels for
communication, i.e. all messages in transit have reached their
destination before we conduct any rewinding. If ml! .
is not empty, the algorithm follows the message link instance
and retrieves the receiving participant instance (lines 5-6).
By exactly identifying the receiving participant instance it
is also possible to consider instances which were modeled
by a participant set. For the receiving participant instance
it is checked if it has already been (partly) traversed by the
algorithm and a (preliminary) rewinding point has been
found. If this is not the case, the receiving activity instance

Algorithm 3: handleSendingActivity, y

1 input :Choreography instance ¢/, activity instance a’, set
of pairs RPs = (p', A} ,)
2 output: RPg

3 begin

4 Message Link Instance mltiraver_se a < (mlx, c*, t’f) |
(ml", &, 1) e MLE Aml* = s Dys A Gy c)ANa =
al A state(c™) = true A state(al.) = completed

5 ifml . .. #Lthen A A '

6 Participant Instance p, «<ml;_,;;

7 if A(p*, A},) € RPg | p* = p.. then

8 RP¢ — RPg U (p!, {al})

9 RPs « p (¢!, d., pi, RPg)

10 else if 3(p*, AY,) € RPg | p* = p. then

11 Boolean recursion «— false

12 foreach a* € Ay, do

13 if succ(al, a*) then

14 A, — Af,\a*

15 recursion « true

16 else if -succ(a*,dal) A =succ(dl, a*) then

17 | recursion « true

18 end

19 end

20 if recursion then

21 Arp, < A7, U a’, '

22 RPs « p (¢, al, pi, RPg)

23 end

24 end

25 end

26 return RPg

27 end

al is added as a rewinding point for the receiving participant
pi and p is invoked recursively using p'. as input (lines 7-9).
If there exists already a rewinding point for pi (line 10),
it is checked if (i) the old rewinding point would be a
successor of the new one (using the succ function defined in
Definition 14 below) or if (ii) both are in parallel branches. In
case (i) the old rewinding point activity instance is removed
before the new rewinding point is added and in case (ii)
both are kept (lines 11-19). In both cases, p is invoked
recursively afterwards (lines 20-23). The recursion in one
participant instance stops when all reachable completed
activity instances have been marked as visited.

Definition 14 (Function succ). The successor function succ
is defined as succ : AT x AT — B, where A’ is the set
of activity instances and B is the set of boolean values
B = {true, false}.

The function determines if the second activity instance is
reachable from the first activity instance, and thus is a
successor in the process instance graph. When determining
the successor property, the iterations of loop activity instances
must also be considered.

The handling of loop activity instances and their iterations
is introduced using the A function.

Definition 15 (Function A). The Handle Loop Activity function
Ais defined as A : €/ x PI x Al x ATxRPE!! — RP&‘”, where
P! is the set of participant instances, A is the set of loop
activity instances, A’ is the set of activity instances, and
RPZ'! is the set of pairs containing the assignment of

IEEE TRANSACTIONS ON SERVICES COMPUTING

participant instances to their rewinding points (RPg, cf.
Definition 8).

Definition 16 (Function getLooplteration). The getLooplter-
ation function is defined as getLooplteration : Al — N,
where A’ is the set of activity instances and N is the set
of natural numbers.

This function is used to determine the loop iteration of the
loop activity instance where a particular activity instance
a’ € Al is located in.

Definition 17 (Function getLooplnstanceGraph).
The getLooplnstanceGraph function is defined as
getLooplnstanceGraph : Ai x N — G!, where A’L is the
set of loop activity instances, N is the set of natural
numbers, and G/ is the set of instance subgraphs.

This function is used to retrieve the instance subgraph g € G/
corresponding to a particular loop iteration ctr € N of an
loop activity instance aj € A] .

The A function’s realization (as required by Algorithm 1)
is introduced in Algorithm 4. If there exists a start activity
instance af,,,, € aj.A* U aj.A" nested in the loop activity
instance a;, the iteration number iter, is retrieved using the
getLooplteration (cf. Definition 16) function (lines 6-9). Other-
wise, iter, has been initialized to 1 and all loop iterations are
traversed. The algorithm iterates while the currently iteration
iterc,,» is smaller or equal to the overall number of iterations
of a indicated by the loop counter a;.ctr (line 10). For each
executed iteration, the instance subgraph of the current
loop iteration is retrieved using the getLoopInstanceGraph (cf.
Definition 17) function (line 11). If a,,, exists and it is the
first traversal of the loop activity instance (iter, = itercyrr),
the sub-routine 7 (traverselnstanceGraph) is directly called.
That means, the traversal does not start at the beginning
of the loop instance graph, but rather from a/,,,, (lines 12-
13). Otherwise, the traversal comprises the complete loop
instance graph g’ and 7 is called for each activity instance a’,
which is a start activity, i.e. model(a’) € A, (cf. Definition 1)
(lines 15-17). After the traversal of g’, itere,, is incremented
by 1.

4 REALIZATION

In the following, we show how our approach for rewind-
ing and repeating of choreography logic is realized in
our ChorSystem. The service-oriented and message-based
ChorSystem enables users to manage the complete life cycle
of choreographies from modeling to execution [17]. The life
cycle starts with choreography modeling, transformation to
and refinement of workflow models. The refined workflow
models are distributed among a set of workflow engines
in an automated manner while a logical representation of
the choreography is created in the so-called ChorSystem
Middleware. When starting a new choreography instance,
a corresponding representation is created and updated by
monitoring execution events. The life cycle management
operations for suspending, resuming, and terminating act
upon this representation. The functionality of the middleware
is defined by composing the different components using
message-based Enterprise Integration Patterns [14]. The
generic architecture and the control and deployment aspects

10

Algorithm 4: handleLoopActivity, A

1 input :Choreography instance ¢, participant instance p’,
activity loop instance !, activity instance a,,,,,
set of pairs RPs = (p', A ,)

2 output: RPs

3 begin

4 Number iterc,r € N « 1

5 Number iter, € N « 1

6

7

8

9

ifal,,,, #1 then

iter, «— getLoopIteration(a
itereyryr <« itery

end

10 while iterc,,r < aj.ctr do
11 Instance Subgraph

g — getLoopInstanceGraph(a;, itercurr)

;tarz)

12 ifal,,, #L Aiter, = iterq,,r then
13 | RPg —7(¢',p',g" al, . RPs)
14 else

15 foreach a’ € g'. AT | model(a') € A, do
16 ‘ RPs «— 7(¢!, pi, g%, a', RPs)
17 end

18 end

19 itercyry < itercyrr + 1

20 end

21 return RPg

22 end

of choreography life cycle management have been initially
introduced in [17]. Due to space limitations we will not
discuss the complete system architecture and functionalities
in detail and will restrict ourselves to showing with the help
of Fig. 6 how the rewinding and repetition method (cf. Fig. 2)
is supported by the ChorSystem.

In the ChorDesigner, which acts as integrated modeling
and monitoring environment as well as control panel for
the life cycle management operations, the user gives the
command to suspend a running choreography instance
(Method step 1). The suspend command is processed by the
Instance Manager in the so-called Control Route [17]. To realize
the repetitions the Instance Manager carries out the Repetition
Route depicted in Fig. 6. The selection of the start activity
instance and the corresponding variable snapshot (step 2) are
conducted together with the ChorDesigner. This information
is sent via messaging to the Instance manager where the
repetition functionality is found using the Content-Based
Router pattern. Step 3 of the method is realized by retrieving
a choreography instance representation from the Event
Registry using a Custom Message Processor and subsequently
calculating the rewinding point in the second Custom Message
Processor implementing the Algorithm introduced in Sec. 3.3.
In step 4 with the help of the Recipient List pattern, the
affected workflow engines are determined by accessing the
Management Registry and translating the repetition message
into the workflow engine specific format and adding the
calculated rewinding points. The messages are then fanned
out to the workflow engines. The reset or compensation of the
involved workflow instances (step 6) and the scheduling of
the rewinding points (step 7) are carried out in the respective
workflow engines as described in Sec. 3 and in [4]. Resuming
execution of the choreography instance is again triggered by
the user in the ChorDesigner.

IEEE TRANSACTIONS ON SERVICES COMPUTING

ChorDesigner Workflow Engine Legend
Event-Driven
Consumer
____________________________ - Content-Based
ChorSystem =l Router

Middleware

Channel

! I
! I

! I

! |

! Instance Manager :

| [Bis] : Custom Message

i H ! Processor

! |

| | Recipient List

| J \ |

! I

: . Management || Message Translator
| Event Registry > i

| Registry | .

| | @ Message Endpoint

Fig. 6. Repetition Route described by the Enterprise Integration Patterns

We have implemented the architecture and our approach
using open source software and standards. We employ
BPEL4Chor [18] as choreography language and BPEL [19] as
executable workflow language. The ChorDesigner and the
ProcessDesigner are based on Eclipse® technologies, while
for the ESB Apache ServiceMix* is employed. The workflow
engines are based on an extended Apache ODE?, and the mes-
sage routes to coordinate the middleware components are
realized with Apache Camel®. The algorithm for finding the
rewinding points is implemented in Java. The ChorSystem
Middleware’s source code is available on GitHub’. Detailed
information on the ChorSystem and its architecture can be
accessed online on our project website [20].

5 EVALUATION

In this section, we evaluate the performance of the proposed
algorithm for the rewinding of choreography instances in
terms of execution time. The focus in this article on the
algorithmical aspect only is due to space reasons. The inter-
ested reader is referred to the evaluation of our prototypical
ChorSystem by means of an case study, which is available
online [20]. All measurements were conducted on an Ubuntu
14.04 LTS virtual machine equipped with 1 CPU core (2.29
GHz) and 4 GB RAM and represent the median values of 5
runs. The evaluation consists of three major parts.

First, we generated (randomly) 6 choreography models
having 10 participants each. The reason for generating
artificial models is that the execution of our motivating
example (cf. Fig. 1) yields execution times of the rewinding
algorithm that are too small for meaningful measurements
(in the range of milliseconds). Each model increases linearly
in size in terms of included activities (from 10K to 35K) and
message links between the participants (from 1.5K to 5.25K).
Subsequently, we generated for each choreography model
10 iteration bodies with varying wavefronts and increasing
size of executed activity instances and traversed message
link instances. Fig. 7 summarizes our findings in terms of
execution time for the 6 generated choreography models. As

3. http:/ /eclipse.org/modeling

4. http:/ /servicemix.apache.org

5. http:/ /www.iaas.uni-stuttgart.de/forschung/projects/ODE-
PGF/

6. http:/ /camel.apache.org

7. https:/ / github.com/chorsystem /middleware

11

0 5000 20000 30000

#Activity Instances in Choreography Iteration Body
-e-10000 Activities/ 1500 Message Links ——15000 Activites/ 2250 Message Links
20000 Activities/ 3000 Message Links —4-25000 Activities/ 3750 Message Links
+-30000 Activities/ 4500 Message Links 35000 Activities/ 5250 Message Links

10000 15000 25000 35000

(a) Absolute size

Execution time ins

10000 15000

#Activity Instances in Choreography Iteration Body
20% -@-30% -*-40% -8-50% ——60% -—%70% -4-80% -+-90% -m-100%

(b) Relative size

20000 25000 30000

—+-10%

Fig. 7. Execution time (in seconds) for choreography models with constant
number of participants and varying size of activities and message links

can be seen from Fig. 7a, the execution time of the rewinding
algorithm is quadratic with the number of generated activity
and message link instances in the iteration body of each
individual model. Likewise, the comparison of the execution
time between different models for the same relative size of
iteration body, e.g. 50% of included activity and message
link instances, shows a quadratic increase of execution
time (Fig. 7b). The quadratic growth of the execution time
with the number of included activity and message link
instances can be explained by looking at Algorithms 2
(traverselnstanceGraph) and 3 (handleSendingActivities). If
no loops are present, Algorithm 2 traverses each participant
instance graph exactly once (O(n), for all participants), while
the succ function used in Algorithm 3 also traverses the
complete participant instance in the worst case. This results
in O(n x n) for each participant instance in the choreography
model, as confirmed by Fig. 7a. and 7b.

The second part of the performance evaluation consists
of the random generation of 6 new choreography models
having 500 activities per participant, but increasing linearly
in size in terms of participants (20 to 70) and message
links (1.5K to 5.25K). Again, 10 different iteration bodies
were generated for each model using the same approach as
described above. Fig. 8 shows the execution time for the 10
generated iteration bodies of all 6 choreography models. As
before, the observed execution time growth is quadratic with
the model size (Fig. 8a). However, the overall execution time
is much smaller compared to the models with increasing
number of activities per participant. This can be explained

IEEE TRANSACTIONS ON SERVICES COMPUTING

10

Execution timeins

0 5000 10000 15000 20000 25000 30000 35000

#Activity Instances in Choreography Iteration Body
—+20 Participants/ 10000 Activities -e-30 Participants/ 15000 Activities
40 Participants/ 20000 Activities -&-50 Participants/ 25000 Activities
+-60 Participants/ 30000 Activities 70 Participants/ 35000 Activities

(a) Absolute size

12

16

Execution time in s

#Participants

H-10% -4-20% 30% -m-40% -@-50%

(b) Relative size

60% —%-70% -4-80% —4-90% -#@100%

Fig. 8. Execution time of choreography models with constant number of activities and varying size of participants and message links

300

250

Execution timein s

2000 4000 6000 8000 10000 12000 14000 16000

#Activity Instances in Choreography Iteration Body
—+#lterations: 10 -e-#lterations: 20 #lterations: 30
—&—#lterations: 40 +-#lterations: 50 #lterations: 60

(a) #Loops=100, Loop Size=3, Increasing #lterations

18000 20000

180

160

140

«
£ 120
£
.= 100
c
LS g
=1
3
1
g 60
]
40
20
0 =
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
#Activity Instances in Choreography Iteration Body
—+-Loop size: 100 -&-Loop size: 150 Loop size: 200
—&—Loop size: 250 »-Loop size: 300 Loop size: 350
(b) #Loops=1, #lterations=10, Increasing Loop Size
180
160
140
«
£ 120
3
£ 100
]
s
2 80
3
1
g 60
w

40

20

0 ®
2000 4000 6000 8000

10000
#Activity Instances in Choreography Iteration Body

12000 14000 16000 18000 20000

-#-#Loops: 100 #Loops: 150 -a-#Loops: 200 #Loops: 250 —e—#Loops: 300 ——#Loops: 350

(c) Loop Size=3, #lterations=10, Increasing #Loops

Fig. 9. Execution time (in seconds) of choreography models with loops
(20K Activities, 3K Message Links)

by the fact that the succ function (cf. Definition 14) has
to traverse a much smaller amount of activity instances
per participant, thus, yielding a faster execution time. This
explanation is also supported by the execution times of the
iteration bodies with the same relative size across the 6
generated models (Fig. 8b), which show a linear increase.

In the third part, in order to evaluate the impact of loops
to our approach, we conducted three different measurements
varying one of three parameters: number of loops per partic-
ipant, number of activities per loop (loop size), and number
of iterations per loop. For each of the three measurements,
we generated a model having 10 participants with 2K activ-
ities each and 3K message links between them. Again, for
each of the three measurements, 10 choreography iteration
bodies of increasing size were generated. If the generated
choreography wavefront lies inside a loop activity, we always
simulate the worst case scenario where all specified iterations
of the corresponding loop activity have been executed. Fig. 9
summarizes the findings of the conducted measurements. In
general, all measurements confirm the quadratic increase of
execution time. Fig. 9a shows execution times when varying
the number of iterations per loop. This increase between
the graphs is induced by the increasing number of activity
instances that need to be traversed with each additional
loop iteration. Fig. 9b shows that the loop activity itself
does not influence the execution time when only increasing
the loop size parameter per participant. Fig. 9c shows the
measurements when only increasing the number of loops per
participant. Again, the loop activities itself do not add any
significant overhead to the execution time and its growth is
also quadratic. We can therefore conclude that the presence
of loops in the choreography models, while adding to the
overall execution time due to an increased number of activity
instances to be traversed, does not significantly affect the
performance of our algorithm.

6 RELATED WORK

There are several areas related to our work, such as ad hoc
repetition in process instances, rollback-recovery and log-
based protocols, and algorithms for consistent global state
and predicate detection in distributed systems. In literature,
the concept of ad hoc repetition in process instances is well

IEEE TRANSACTIONS ON SERVICES COMPUTING

studied. For example, in [21] concepts and algorithms for pre-
modeled or ad hoc backward jumps, which enable the repeat
of logic in process instances enacted by the ADEPT system
are presented. The Kepler system supports the concept of
smart re-runs [22] enabling scientists to repeat parts of
a scientific workflow with a different set of parameters.
Previously stored provenance information is used to avoid
the repetition of parts of the workflow that do not change the
overall outcome of the scientific experiment. In [23] process
flexibility approaches are studied and classified by type. Our
concept for rewinding and repeating choreography instances
could be classified as Flexibility by Deviation — deviating
from the specified control flow in the model. Similarly, our
repetition is one form of the Support for Instance-Specific
Changes as described in [24] for individual process instances.
However, none of the above mentioned works consider
choreography instances and the implications of messages
sent between the participant instances.

Our approach also bears some resemblance to rollback-
recovery and log-based protocols facilitating distributed state
restoration in message passing systems [25], [26]. These
approaches provide means to reset a system of commu-
nicating processes to a rollback point in the execution of
a program in case of failures. Failures may occur in any
participating process and have an effect on other processes in
the system due to passed messages. The proposed protocols
then identify rollback points either by using log information
or by sending checkpoint information. However, there are
major differences between this family of protocols and our
approach. Firstly, we operate one a much higher level with
regard to the employed languages. While the distributed
protocols simply assume a set of communicating low level
processes of some program execution, our approach operates
on complex choreography and workflow instances. They are
explicitly described by corresponding language constructs.
These include the support for parallel execution inside one
participant. Secondly, the intent and scopes of the approaches
are quite different. The rollback-recovery protocols are trig-
gered automatically in case of failures. While our approach
can be used to react to failures, it is rather meant as a means
of user-driven control of a choreography instance during
execution to flexibly react to events. Furthermore, we do
not only support the restoration to a previous state using
the re-execute operation but rather also enable the repeated
execution of logic with the iterate operation resembling an en-
forced loop without it being explicitly modeled. Apart from
the language level the mentioned arguments also apply for
more recent approaches [27], [28], [29] for checkpointing and
rollback-recovery for composite web services/workflows.

With regard to robustness and reliability of workflow
executions, [30] proposes a pattern-based approach for
specifying transactional properties of service compositions.
Furthermore, [31] provides an approach for mining logs of
transactional workflows in order to improve the original
model. While we ensure robustness by allowing the user to
actively influence the execution of a choreography instance
as necessary for explorative modeling and execution in
domains such as eScience, these approaches focus more on
the reliability by design. However, a combination of both
approaches seems promising.

Another class of algorithms possessing similarities to

13

our approach are algorithms for observing consistent global
states and predicate detection. For example, Chandy and
Lamport [32] introduce an algorithm for determining a
snapshot of global state in a distributed system in order
to detect stable predicates such as termination. However,
finding a rewinding point in a choreography instance would
not be possible with this kind of algorithm as it can be
seen as a unstable predicate detection problem. Marzullo
and Neiger [33] present one of the first algorithms using a
centralized monitor to record state changes of all processes
in a distributed system in order to evaluate if certain
unstable predicates hold during execution. This is done by
constructing state lattices. The problem of predicate detection
in general is NP-complete. However, more efficient solutions
for restricted scenarios exist [34]. In our approach, we are
also able to achieve an efficient solution by choosing a graph-
based data structure fitting our purposes.

7 CONCLUSIONS AND FUTURE WORK

In this article, we motivated the need for the capability to
repeat partially or completely the logic in a choreography
instance with a clear focus on the eScience community.
Toward this goal, we presented a formal model describing
choreography models and instances while also considering
loops and multiple instances of a particular participant.
Based on the formal model, we introduced the concept of
repeating logic in choreography instances, which we also
expressed through the steps of a corresponding method. We
distinguish between iteration, which executes logic again
without undoing already completed work, and re-execution,
which aims at the compensation of already completed work
before executing it again. We defined an algorithm that is
able to automatically identify the rewinding points for each
involved participant instance. Furthermore, we presented
a system for execution and monitoring of choreography
instances that supports the proposed concepts and method.
The rewinding algorithm has been experimentally evaluated
in terms of performance and shown to be acceptable for the
purposes of the application domain.

In future, we plan to evaluate our approach and the
supporting system in cooperation with other groups of
scientists in the context of the SimTech project®. In addition,
we will work towards enabling transparent data provisioning
among participants in flexible choreographies in a manner
decoupled from the actual choreography conversations.

ACKNOWLEDGMENTS

This work is funded by the project FP7 EU-FET 600792
ALLOW Ensembles and the German DFG within the Cluster
of Excellence (EXC310/2) SimTech. Furthermore, the authors
would like to thank David R. Schifer for the fruitful discus-
sions during the writing of this article.

REFERENCES

[1] T. Hey, S. Tansley, and K. Tolle, Eds., The fourth paradigm: data-
intensive scientific discovery. Microsoft Research, 2009.

[2] R.Barga and D. Gannon, “Scientific versus Business Workflows,”
in Workflows for e-Science. Springer, 2007, pp. 9-16.

8. http:/ /www.simtech.uni-stuttgart.de

http://www.simtech.uni-stuttgart.de

IEEE TRANSACTIONS ON SERVICES COMPUTING

(3]

(4]
(5]

6]

(7]
(8]

[9]
(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

M. Sonntag and D. Karastoyanova, “Model-as-you-go: An Ap-
proach for an Advanced Infrastructure for Scientific Workflows,”
Grid Computing, vol. 11, no. 3, pp. 553-583, 2013.

, “Ad hoc Iteration and Re-execution of Activities in Work-
flows,” Int.]. On Adv. in Softw., vol. 5, no. 1 & 2, pp. 91-109, 2012.
A. Weifs and D. Karastoyanova, “Enabling coupled multi-scale,
multi-field experiments through choreographies of data-driven
scientific simulations,” Computing, vol. 98, no. 4, pp. 439467, 2016.
A. WeiB, V. Andrikopoulos, M. Hahn, and D. Karastoyanova,
“Rewinding and Repeating Scientific Choreographies,” in CoopIS’15.
Springer, 2015, pp. 337-347.

G. Decker, O. Kopp, and A. Barros, “An Introduction to Service
Choreographies,” Inf. Technology, vol. 50, no. 2, pp. 122-127, 2008.
D. Molnar, R. Mukherjee, A. Choudhury, A. Mora, P. Binkele,
M. Selzer, B. Nestler, and S. Schmauder, “Multiscale simulations
on the coarsening of cu-rich precipitates in a-fe using kinetic
monte carlo, molecular dynamics and phase-field simulations,”
Acta Materialia, vol. 60, no. 20, pp. 6961-6971, 2012.

W. van der Aalst and M. Weske, “The P2P Approach to Interorga-
nizational Workflows,” in CAiSE’01. Springer, 2001, pp. 140-156.
F. Leymann and D. Roller, Production Workflow - Concepts and
Techniques. PTR Prentice Hall, 2000.

W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns,” Dist. and Par. Databases, vol. 14, no. 1, pp. 5-51,
2003.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor:
Extending BPEL for Modeling Choreographies,” in ICWS '07. IEEE,
2007, pp. 296-303.

A. Weif$ and D. Karastoyanova, “A Life Cycle for Coupled Multi-
Scale, Multi-Field Experiments Realized through Choreographies,”
in EDOC’14. IEEE, 2014, pp. 234-241.

G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. ~Addison-Wesley, 2004.
P. Newcomer and E. Bernstein, in Principles of Transaction Processing,
second edition ed. Morgan Kaufmann, 2009.

P. A. Berstein, V. Hadzilacos, and N. Goodman, Concurreny Control
And Recovery in DataData Systems. Addison-Wesley, 1987.

A. Weif3, V. Andrikopoulos, S. Gémez Sdez, M. Hahn, and D. Karas-
toyanova, “ChorSystem: A Message-Based System for the Life
Cycle Management of Choreographies,” in CoopIS’16. Springer,
2016, pp. 503-521.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “Interacting
services: from specification to execution,” Data Knowl. Eng., vol. 68,
no. 10, pp. 946-972, 2009.

OASIS, “Web Services Business Process Execution Language
Version 2.0,” 2007. [Online]. Available: http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html

A. Weifs. Chorsystem project website. [Online]. Available:
http:/ /www.iaas.uni-stuttgart.de/chorsystem/

M. Reichert, P. Dadam, and T. Bauer, “Dealing with forward and
backward jumps in workflow management systems,” Software and
Systems Modeling, vol. 2, no. 1, pp. 37-58, 2003.

I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Collection
Support in the Kepler Scientific Workflow System,” in Provenance
and Annotation of Data. Springer, 2006, pp. 118-132.

H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. van der
Aalst, “Process flexibility: A survey of contemporary approaches,”
in Adv. in Enterprise Eng. I. Springer, 2008, vol. 10, pp. 16-30.

B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware
information systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438-466,
2008.

D. L. Russell, “State Restoration in Systems of Communicating
Processes,” IEEE Softw. Eng., vol. SE-6, no. 2, pp. 183-194, 1980.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
Survey of Rollback-recovery Protocols in Message-passing Systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375-408, 2002.

H. Mansour and T. Dillon, “Dependability and Rollback Recov-
ery for Composite Web Services,” IEEE Transactions on Services
Computing, vol. 4, no. 4, pp. 328-339, 2011.

S. D. Urban, L. Gao, R. Shrestha, and A. Courter, “Achieving
Recovery in Service Composition with Assurance Points and
Integration Rules,” in OTM'10. Springer, 2010, pp. 428-437.

[29]

[30]

[31]

(32]

[33]

[34]

14

Y. Xiao and S. Urban, “Using Rules and Data Dependencies
for the Recovery of Concurrent Processes in a Service-Oriented
Environment,” IEEE Transactions on Services Computing, vol. 5, no. 1,
pp- 59-71, 2012.

S. Bhiri, W. Gaaloul, C. Godart, O. Perrin, M. Zaremba, and
W. Derguech, “Ensuring customised transactional reliability of
composite services,” J. of Database Man., vol. 22, no. 2, pp. 64-92,
2011.

W. Gaaloul, K. Gaaloul, S. Bhiri, A. Haller, and M. Hauswirth,
“Log-based transactional workflow mining,” Dist. and Par. Databases,
vol. 25, no. 3, pp. 193-240, 2009.

K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63-75, 1985.

K. Marzullo and G. Neiger, “Detection of global state predicates,”
in Int. Workshop on Dist. Algorithms. Springer, 1991, pp. 254-272.
C. M. Chase and V. K. Garg, “Detection of global predicates:
Techniques and their limitations,” Distributed Computing, vol. 11,
no. 4, pp. 191-201, 1998.

Andreas WeiB received the M.Sc. degree in
Business Information Systems in 2013 from the
University of Stuttgart and the University of Ho-
henheim, Stuttgart, Germany. Since then, he is
working as a research associate at the Institute
of Architecture of Application Systems (IAAS)
at the University of Stuttgart. His main topics
of research interest lay in the flexible modeling
and execution of choreographies for scientific use
cases such as simulations.

Vasilios Andrikopoulos is an assistant profes-
sor of software engineering at the University of
Groningen. His research is in the area of software
architectures for service-oriented, cloud-based,
and hybrid systems and infrastructures, as well
as software engineering with an emphasis on
evolution and adaptation. He received his PhD
from Tilburg University, the Netherlands. He has
experience in research and teaching Database
Systems and Management, Software Modeling
and Programming, Business Process Manage-

ment and Integration, and Service Engineering. He has participated in a
number of EU projects, including the Network of Excellence S-Cube.

Michael Hahn received the Dipl.-Inf. degree in
Computer Science from the University of Stuttgart
in 2013. Currently, he works as a research as-
sociate and PhD student at the Institute of Ar-
chitecture of Application Systems (IAAS) at the
University of Stuttgart. His research interests are
Service Oriented Computing and Architectures,
focusing on the optimization of data exchange
between choreographed services based on use
cases from the e-Science domain.

Dimka Karastoyanova is an associate professor
of data science and business intelligence at the
Kihne Logistics University. Her research and
teaching activities are in the fields of service-
oriented computing, BPM and flexible workflow
management, data science, and Cloud comput-
ing, and in application domains like eScience,
supply chain management and logistics. She
received her PhD in Computer Science from
Technische Universitat Darmstadt, Germany. She
was on the research and management team of

European Projects like the NoE S-Cube, IP SUPER and FET ALLOWEN-
sambles, and of the German Cluster of Excellence SimTech.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.iaas.uni-stuttgart.de/chorsystem/

