Expressive Content-Based Routing in
Software-Defined Networks

Sukanya Bhowmik, Muhammad Adnan Tariq, Jonas Grunert, Deepak Srinivasan, and Kurt Rothermel

University of Stuttgart, {first name.last name} @ipvs.uni-stuttgart.de

Abstract—With the vision of Internet of Things gaining pop-
ularity at a global level, efficient publish/subscribe middleware
for communication within and across data centers is extremely
desirable. In this respect, the very popular Software-Defined
Networking, which enables publish/subscribe middleware to per-
form line-rate filtering of events directly on hardware, can prove
to be very useful. While deploying content filters directly on
switches of a software-defined network allows optimized paths,
high throughput rates, and low end-to-end latency, it suffers
from certain inherent limitations with respect to number of
bits available on hardware switches to represent these filters.
Such a limitation affects expressiveness of filters, resulting in
unnecessary traffic in the network.

In this paper, we explore various complementary techniques
to represent content filters expressively while being limited by
hardware. We implement and evaluate techniques that i) use
workload, in terms of events and subscriptions, to represent
content, and ii) efficiently select attributes to reduce redundancy
in content. Our detailed performance evaluations show the
potential of these techniques in reducing unnecessary traffic when
subjected to different workloads. Furthermore, the techniques
proposed in this paper require significant updates to the network,
i.e., the data plane, which must be performed in a consistent
manner to ensure desired system behavior. As a result, in this
paper, we, also, design and evaluate a light-weight approach
that ensures data plane consistency in the presence of dynamic
network updates.

Index Terms—Content-based Routing, Software-Defined Net-
working, bandwidth efficiency, hardware limitations

I. INTRODUCTION

The Internet of Things (IoT) has brought with it a global
wave that envisions a future which can seamlessly connect
digital and physical objects with the use of suitable technolo-
gies. This vision is being aptly complemented with the fast
progress in sensors, actuators, cloud computing, and technolo-
gies for efficient and transparent communication. For suitable
communication in IoT, global cloud providers already offer the
very popular publish/subscribe (pub/sub) communication pat-
tern. Pub/sub, especially content-based pub/sub, allows loosely
coupled producers of content (i.e., publishers) and consumers
of published content (i.e., subscribers) to interact transparently
in a bandwidth-efficient manner. Subscribers express specific
interests which are then used to install filters on content-
based routers between publishers and subscribers, ensuring
the dissemination of only relevant content to each subscriber.
Pub/sub forms the backbone of data centers powering the
IoT vision ahead. For example, Google uses Cloud Pub/Sub
to ’connect anything to everything’ in an IoT environment.
Also, Microsoft uses Azure Event Hubs, a highly scalable

pub/sub service to connect devices and applications across IoT
platforms.

In recent times, the foundation of cloud computing has
been influenced by Software-Defined Networking (SDN). In
fact, for almost a decade, Google has been exploiting the
benefits of SDN to power Google’s data center (DC) WAN,
B4 [19]. Microsoft, too, has been using SDN to flexibly
and reliably operate Microsoft Azure [3]. The advantage of
a network architecture like SDN is that it enables software
to flexibly configure the network. SDN allows the extraction
of all control logic from hardware switches and hosts them
on a logically centralized controller, thus establishing a clear
separation between the control plane and the data (forwarding)
plane. The controller has an integrated view of the network
and can flexibly configure it in a resource-efficient manner
with the help of popular standards like Openflow [14]. While
SDN has been extensively considered for dynamic resource
sharing, WAN VPN, etc., across data centers, the potential
of SDN to realize content-based pub/sub, the backbone of
data center communication, has also recently been explored
in literature [9], [35]. Traditionally, content-based pub/sub
systems are implemented as an overlay network of software
brokers (e.g., [32], [12], [18]). Implemented in the application
layer, their performance is still far behind the performance
of communication protocols implemented on the network
layer with respect to throughput, end-to-end latency, etc.
This is because these middleware implementations are unable
to exploit the performance benefits of standard multilayer
switches or hardware routers capable of forwarding packets
at line-rate and achieving data rates of 10 Gbps and more
using dedicated hardware such as Ternary Content Addressable
Memory (TCAM). While IP multicast trees might be enough
to cater to the needs of topic-based pub/sub systems, expres-
sive content-based pub/sub systems have far more demanding
requirements [34], [36]. As a result, recently, the capabilities
of SDN have been used to realize the PLEROMA [9], [35]
middleware that enables in-network content-based filtering of
published events directly on SDN-compliant switches. Since
the logically centralized controller has a global view of the un-
derlying topology, it is the controller that establishes optimized
paths between publishers and relevant subscribers by installing
content filters directly on the switches along these paths, thus
enabling line-rate filtering and forwarding of events.

To show the performance gains, in terms of end-to-end
latency of events, of PLEROMA as compared to a state-of-the-
art overlay-based middleware solution involving software fil-
tering of events, we refer to Figure 1. Please note that the soft-

© 2018 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by

sending a request to pubs-permissions@ieee.org.

This is the author's version of an article that has been published in IEEE Transactions on Parallel and Distributed Systems journal. Changes were made to
this version by the publisher prior to publication.The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2840698

bhowmisa
Text Box
© 2018 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This is the author's version of an article that has been published in IEEE Transactions on Parallel and Distributed Systems journal. Changes were made to this version by the publisher prior to publication.The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2840698

6000
. Hardware Filtering —&—
[} Software Filtering -+
25000 [|
O [R— B
2 soool
5 4000 A
D
©
= 3000 |]
je]
<1
R 2000 |)
[0}
e}
5 1000 |)
o
H A A A
0 T3 n n
1k2k 4k 8k 16k

No. of Subscriptions

Fig. 1: Comparing PLEROMA with state-of-the-art [8]

ware filtering is implemented as a very efficient parallelized
matching pub/sub service that enables one-hop forwarding
of events similar to a state-of-the-art pub/sub system called
Bluedove [26]. Figure 1 clearly shows that hardware filtering
in PLEROMA is significantly faster than software filtering in a
state-of-the-art middleware implementation (cf. [8], Section 7).
Note that end-to-end latency of events in other state-of-the-art
pub/sub systems, that perform filtering in software, is similar
to that of Bluedove and is in the order of several milliseconds
to seconds [5], [28].

Even though the dissemination of content in a software-
defined network occurs at line-rate, nevertheless, content-
based pub/sub using SDN suffers from certain inherent lim-
itations that result in bandwidth wastage. It should be noted
that the effectiveness of content-based routing relies heavily on
the expressiveness of content filters which are responsible for
filtering out unnecessary traffic to ensure bandwidth-efficient
communication. In an SDN-based pub/sub, these content filters
are represented by the match fields of flows in TCAM of
switches. This implies that content filters are limited by the
bits available for filter representation at the selected match field
(e.g., IPv6 address, VLAN tag). For instance, the choice of the
destination IPv6 address to represent content filters allows a
maximum of 128 bits which in reality would further reduce
as the entire range of IP addresses may be shared among
multiple applications. Moreover, IPv6 is not widely deployed
and the use of IPv4 addresses instead can further impede
the expressiveness of filters. Jokela et al., in LIPSIN [22],
also target filtering on hardware in the context of topic-based
pub/sub by encoding forwarding paths in packet headers.
However, for a considerably small topology, even the use of
a staggering 248 bits in the packet header does not suffice to
prevent unnecessary traffic in the system (~10%).

The above limitations may significantly impact bandwidth
usage—something that is truly critical in a cloud environment,
where the network can pose to be a significant bottleneck [24].
As a result, in this paper, we significantly extend a previous
publication [7] to provide a comprehensive exploration of tech-
niques that address concerns with bandwidth efficiency in the
context of content-based filtering on hardware switches. First,
we propose two techniques—selective indexing and adaptive
spatial indexing—that consider workload in the system in
terms of events and subscriptions to expressively map content
to match fields of flows on hardware switches. Then, we

present algorithms with varying complexities to efficiently
identify and neglect redundant attributes or dimensions in the
content-space such that more bits are available to express
more meaningful attributes in content filters. Moreover, these
techniques complement each other and may be combined for
enhanced effectiveness. The techniques proposed in this paper
result in significant updates to the network, i.e., the data plane,
which must be performed in a consistent manner to ensure the
desired behavior of the system. Therefore, the contributions of
this paper also include the design of a light-weight approach
that ensures data plane consistency in the presence of dynamic
network updates when each of the proposed techniques is
employed. Our evaluations show that a significant amount of
irrelevant traffic (up to 97%) can be avoided by employing
each of the techniques, designed to improve bandwidth effi-
ciency, independently or in combination while benefiting from
the advantages of SDN in terms of reduced end-to-end latency,
high throughput, etc. Moreover, evaluation results confirm
that the designed light-weight approach preserves data plane
consistency during dynamic network updates and also manages
to do so in a more resource-efficient manner as compared to
state-of-the-art solutions.

II. PRELIMINARIES AND LIMITATIONS

In this section, we provide an overview of PLEROMA [35],
[9], a content-based pub/sub middleware realized on SDN,
followed by a discussion on the limitations it faces.

A. The PLEROMA Middleware

A content-based in-network filtering solution using SDN,
such as PLEROMA, follows the same principles of the pub/sub
paradigm which consists of two participants—publisher and
subscriber. In PLEROMA, a publisher sends an advertisement
to the controller of the software-defined network to specify
the content it intends to publish. Similarly, a subscriber
specifies the content it is interested in receiving by sending a
subscription to the controller. Based on these advertisements
and subscriptions, along with the global view of the physical
network, the controller installs content filters represented by
match fields of flow table entries (in this paper, we refer to
flow entries as flows) on TCAM of switches along optimized
paths between publishers and their interested subscribers. For
example, in Figure 2, the publisher P and the subscriber S;
send an advertisement and a subscription, respectively, to the
controller which installs content filters (match fields on flows)
along the path between them. Similarly, events are represented
by header fields (corresponding to the selected match fields
on flows) in the packet header. This enables header-based
matching of event packets directly on TCAM of hardware
switches, resulting in line-rate performance.

Content representation follows a content-based subscription
model where published events are attribute-value pairs and
advertisements and subscriptions (i.e., content filters) are con-
junctions of filters on these attributes. An event matches a
subscription only if it lies within the range of values of a
subscription along each attribute. Therefore, in order to map
events and subscriptions of such a model to packet header

fields and match fields of flows on switches, we need to, first,
convert them to binary form. One could argue that since the
controller is aware of all subscriptions in the system, it could
assign each subscription a bit string and these bit strings could
be attached to each event so that it can be forwarded to inter-
ested subscribers. However, in order to do so, (i) either each
event will have to be sent to the control plane such that the
controller can attach the necessary bit strings to the events, or
(i1) the mapping between all subscriptions and their bit strings
has to be known to every publisher. Case (i) is not an option as
sending events to the control plane will incur additional latency
in forwarding of events which will no longer happen purely on
the network layer. As for case (ii), all publishers need to have
the information of all subscriptions and their mapping, because
when publishing an event, a publisher needs to send packets
for that event to all subscribers interested in receiving it. This
is of course not desirable in a content-based publish/subscribe
system and impacts space decoupling between publishers and
subscribers. Moreover, in such a scheme, a publisher will have
to send multiple event packets, each represented by a bit string
corresponding to a matching subscription, for the same event.
This will significantly increase the bandwidth usage of the
network and is of course not desirable. Therefore, we need to
design a scheme that allows a publisher to encode information
of all interested subscribers in a single event packet.

From the above discussion, we derive the requirements for
mapping of content in an SDN-based pub/sub middleware.
Firstly, events should be directly filtered and forwarded by
switches on the data plane in order to achieve line-rate
performance. Please note that switches only support matching
operations (including prefix-based matching) at the match field
of flows. As a result, the content mapping scheme should
ensure that if an event matches a subscription, i.e., the event
is contained by the subscription, then the binary strings of
the subscription and the event should reflect this containment
relation such that matching (more specifically prefix-based
matching) of events is possible at the TCAM of switches.

Secondly, please note that in our system we must ensure
the avoidance of false negatives. False negatives are those
events that are not delivered to subscribers despite their interest
in receiving them. As a result, the controller must install
necessary content filters along all switches along the entire
path between a publisher and its relevant subscriber. The
content mapping scheme must ensure that no false negatives
are introduced in the system.

Finally, in order to provide a bandwidth-efficient solution,
a requirement to reuse paths in the network while forwarding
events becomes necessary. This implies that if two subscrip-
tions have similar interests, i.e., one is contained by the
other in terms of the ranges of attributes comprising the
subscriptions, then multiple copies of the same event should
not be sent over the same links in order to reach the two
subscribers. Instead, a single event packet matching a filter
that represents related subscriptions should be forwarded over
a link that is shared by paths to the two subscribers. This
implies that containment relations between subscriptions must
be preserved during content mapping.

Of all the available techniques for converting content into

Controller
Advertisements/v \ Subscriptions

P

Hardware Filtering using flow tables

Match Field |Instruction |....

Dest IP OutPort |.....

IP Prefix 2
— Subscription (sub,)
Mapping to IPv6 ff0e:c000:* | {T=[50,100] A P =[50, 100]}

¢ T :
* & 100 *l 100

2100 'sub, = o1 Y11 > 010[011/11011

£ g g

2 0 1 2 2 101}
¢ § 00 10 § 00{002J100]
S0 100 S0 100 & O 100

Temperature (T)
1-bit representation

Temperature (T)
2-bit representation

Temperature (T)
3-bit representation

Fig. 2: SDN-based Pub/Sub Middleware

binary form, the above three requirements are fulfilled by
the widely used spatial indexing technique [37], [28], [17].
As a result, PLEROMA, specifically, uses spatial indexing
for content representation. In spatial indexing, an event-space
(denoted by) is modeled as an w-dimensional space where
each dimension represents a content attribute. Recursive binary
decomposition of) generates regular subspaces that serve
as enclosing approximations for advertisements, subscriptions,
and events which are represented by binary strings known as
dzs. Please note that the recursive binary decomposition of
Q is done along each attribute in a round-robin manner. This
results in bits from different dimensions being interleaved in
the resulting dz. Here, we look at an example from Figure 2
where the 2-dimensional event-space is first divided along
the dimension temperature to obtain a dz of 1 bit. For a
2-bit representation, €2 is divided this time along pressure,
and for a 3-bit representation, €2 is again divided along the
first dimension femperature, and this continues till the closest
approximation of a subspace, that needs to be represented by
a dz, is obtained. This enables a subscription to introduce
filtering on each dimension from the very first bits of the
dz. With more and more bits, the filtering gets even more
fine-grained on each dimension. To understand this better, we
present certain characteristic properties of dzs based on the
subspaces they represent. For example, the shorter a dz, the
larger is the subspace it represents. This is visible in Figure 2
where the dz {00} represents a subspace smaller than and
contained by the subspace {0}. Therefore, for a more expres-
sive content filter, the recursive binary decomposition is more
fine granular, and the resulting dzs are longer. The previous
example also points out another property of spatial indexing
that the dz of a subspace has a prefix equivalent to the dz of
the subspace containing it. We also refer to this containment
relation between dzs as a covering relation (denoted by).
This property ensures that a longer dz representing an event
(i.e., a point in §2) is considered a match for all subspaces

(filters) containing it simply through a prefix match. Note that
an increase in the number of attributes (i.e., dimensions) in the
system increases the length of the dz required to accurately
represent content.

After converting content to binary strings, the next step is
to map dzs representing content filters to the selected match
field in flow entries of TCAM and dzs representing events
to the same field in packet headers to enable header-based
matching. For this purpose, we choose a range of IP multicast
addresses (e.g., IPv6) to use as destination IP addresses in
the match field of flows as well as in the packet headers.
The dzs are simply appended to a fixed prefix, e.g., ffOe
(representing the IPv6 multicast address range available to
pub/sub traffic), in the destination IP address. The prefix-based
filtering operation is guaranteed in IP addresses with the help
of Class-less Interdomain Routing (CIDR) style masking sup-
ported by SDN-compliant switches where masking operations
are represented by the ’don’t care’ symbol (*). Please note
that a flow consists of the match field (MF), in our case an
IP multicast address representing a dz, and an instruction set
(IS), which specifies the port through which an event should
be forwarded on account of a match.

We further explain the two-step mechanism of content
representation with the example from Figure 2. Let us assume
that subscriber S; has a subscription sub; : {T =[50, 100] A P
=[50, 100]}. Spatial indexing yields the dz {11} to represent
it as illustrated in the 2-bit representation in the figure. This dz
is then appended to a multicast IPv6 prefix (ff0e) and installed
as a destination IP (ff0e:c000:*/18) in the match field of flows
on the switches. Now, if the event e in Figure 2, lying within
(matching) suby, is represented by the dz {110010}, then it
is converted to an IP address ffOe:c800:: and header-based
matching of this event packet takes place with the installed
flows for sub;.

To establish paths between publishers and subscribers, an
efficient approach to topology reconfiguration is important for
pub/sub on SDN. For this purpose, a spanning tree (comprising
switches) is maintained to account for an acyclic dissemination
structure on which paths are embedded between publishers and
subscribers by installing appropriate flows (filters) on switches
along these paths. A path is a sequence of switches (denoted
as R) on which flows are deployed to ensure connectivity
between the publisher and the subscriber. An acyclic spanning
tree ensures that there is always only a single path between
each publisher and each of its relevant subscribers, thus
avoiding the possibility of cycles or loops in the network. The
flows to be deployed on a switch depend largely on the already
existing pub/sub flows on that switch and as a result it is
important for the controller to identify the state of each switch
in the network. In fact, the network state (denoted by N.S)
consists of (i) all switches constituting the network, (ii) all
links connecting the switches in a spanning tree to account for
an acyclic dissemination structure, and (iii) all pub/sub flows
deployed on each switch. Please recall that, with the advent
of (un)advertisement/(un)subscription requests, the controller
performs reconfiguration of the network by (un)installing
filters on switches to ensure correct dissemination of events
from publishers to interested subscribers. Therefore, when

an (un)advertisement/(un)subscription request arrives at the
controller, it reads the current network state and accordingly
decides on necessary changes to the flows on the network
switches that are required to satisfy the current request (the
details of exactly how the entry and exit of publishers (adver-
tisements) and subscribers (subscriptions) in the system are
handled are provided in [35], [9]).

This decision to make necessary changes to the network
state, on advent of a request at the controller, largely depends
on flow relations. Please note that the containment/covering
relations between dzs is also reflected on flows. For example,
a flow fl; covers (or contains) another flow fl;, denoted by
fly = fl;, if the following two conditions hold: (i) the dz
associated with the destination IP address in the match field
of fl; is covered by the dz of fl;, and (ii) the out ports to
which a packet matching fI; is forwarded are a subset of those
of fl;. Therefore, while establishing a route on advent of a new
subscription, let us assume that a new flow fl,, needs to be
installed on a switch R. Now, if an existing flow fl, on R
already covers f1,, , then no further actions are taken as fI. al-
ready forwards the traffic of fl,,. Therefore, an additional flow
fl, will be redundant on this switch. Similarly, if an existing
flow fl. is covered by fl,,, then fl,, is added and fI. is deleted
from the flow table as, now, fl. is redundant. Likewise, a
partial containment relation () can be defined between flows
of a switch (or flows to be installed on a switch) which may
impact the topology reconfiguration process as well, the details
of which are provided in [35], [9]. Therefore, in a nutshell, the
controller establishes paths, containing content filters, between
publishers and subscribers in this manner to enable filtering
of events on hardware switches in PLEROMA. Please note
that PLEROMA takes advantage of the aforementioned flow
relations to represent multiple similar subscriptions by a single
flow. For example, let us assume that in Figure 2, both .S; and
So subscribe for the same subspace sub; . In such a scenario, a
single flow representing sub; is installed along the path from
publisher P to switch R. At R, again there is a single flow
for the filter sub;, however, this time the IS of this flow will
include both outgoing port 2 and outgoing port 3 in order to
forward a matching packet to both S and Ss. Please note that,
similar to traditional switches, an SDN-compliant switch can
also forward multiple copies of an incoming packet through
multiple ports.

B. Limitations of Content Representation

From the above description on content filter representation
on switches in PLEROMA, we see that expressiveness or gran-
ularity at which spatial indexing can be performed is limited by
the number of bits that can be appended to the destination IP
address. Let us assume that instead of 2 bits only 1 bit can be
accommodated in the IP address reserved for pub/sub traffic.
In such a scenario, subscription sub; will be represented by
the dz {1} as depicted in the 1-bit representation in Figure 2.
This implies that all events matching the entire subspace of
{1} in the figure will be received by subscriber S. Therefore,
the path between P and S will be subjected to unnecessary
traffic which we will henceforth refer to as false positives.

01

Pressure (P)
=
o
Pressure (P)

00

Temperature (T)
(a) Regular Spatial Indexing

Temperature (T)
(b) Indexing in meaningful subspaces

Fig. 3: Avoiding Empty Subspaces

More specifically, we define false positives as follows. False
positives are those events which should be filtered out by
the network but, nevertheless, are forwarded to uninterested
subscribers due to limitations of content filters on switches.

Here, we also define the term false positive rate as follows.
False positive rate is the percentage of total number of events
received at the subscribers that are unnecessary (i.e., false
positives).

We formally define our problem related to limitations of
content representation as follows. Given a fixed number of bits
for filter representation, the goal is to increase expressiveness
of filters such that false positives are minimized in the system
without incurring any false negatives. Here, we relate band-
width efficiency directly with the occurrence of false positives.
We do so as most pub/sub applications, e.g., stock exchange,
network monitoring, environmental monitoring, etc., publish
event packets where the payload is relatively small and the
variation in packet size is, therefore, not significant. As a
result, in literature false positives are used as a good indicator
of unnecessary bandwidth usage [18], [22].

As a result, the remaining part of this paper is dedicated
to the design of various techniques that would improve ex-
pressiveness of content filters installed on hardware switches,
despite their limitations, and render content-based pub/sub
realized on software-defined networks bandwidth-efficient.
The presented techniques are workload dependent, i.e, they
take decisions based on past events and/or subscriptions in
the system. Please note that the distribution of events and
subscriptions can change with time. We assume that the traffic
distribution changes gradually with time as is typically the case
in many IoT applications (e.g., sensor data measuring physical
phenomena). As a result, we employ each of the following
techniques periodically in the system such that decisions can
be taken based on the most recent data. These techniques are
implemented at the control plane. The controller already has
a knowledge of all the subscriptions in the system and has to
additionally collect statistics of events periodically and modify
flows on switches accordingly. In the context of pub/sub,
the control plane may be scaled to distribute this additional
overhead among multiple controllers while guaranteeing the
notion of a logically centralized controller as achieved in
[9]. Please note that the most common notations used in the
following techniques are presented in Table I.

III. WORKLOAD-BASED INDEXING

The effectiveness of the previous attempts to encode content
into binary form has primarily depended on the size of the

TABLE I: Important Notations

Set of MBRs
EE] Subspace in 2
S Set of current subscriptions
s |S]
E? | Set of past events in consideration
v | 1ET
D Set of original dimensions
w D]
SD | Set of selected dimensions € D
n [SDJ
0 Selectivity factor of a dimension
C Covariance matrix
sf Similarity factor between two dimensions

.
o
S
=
o
=)

=

=
sub, sub.

- -

Pressure (P)
Pressure (P)

mbr;

mbr,

o
o

100 100

Temperature (T)
(a) Subscriptions in Q

Temperature (T)
(b) Generating MBRs

mbr,

Pressure (P)

I

[=4

5
Pressure (P)
= =

(=) [

Temperature (T) Temperature (T)

(c) Regular Spatial Indexing (d) Selective Indexing

Fig. 4: Selective Indexing

event-space. The only parameters that play a role in the map-
ping process are the number of available bits and the size of ().
However, in this section, we design two mapping techniques—
selective indexing and adaptive spatial indexing—that consider
the previous two parameters and also look into the workload
of the system (i.e., events and subscriptions) to encode content
to binary strings.

A. Selective Indexing

In-network filtering may result in significant number of
false positives depending on the size of (2, i.e., number of
dimensions and range of values along each dimension. This
is mainly due to the fact that with a fixed number of bits
available for a dz (e.g., 23 bits for IPv4 multicast addresses),
larger the size of €2, less fine granular is the indexing. However,
it should be noted that regular spatial indexing partitions the
entire space into subspaces, even those subspaces that are of
no interest to any subscriber. Here, we introduce the notion of
avoiding the indexing of the entire event-space €2 such that all
empty subspaces with respect to subscription distribution in
Q are left out and the bit strings earlier assigned to these
empty spaces are used for more fine granular indexing of
the populated subspaces. Please note, we do not specifically
consider the event distribution as, in any case, only those
events that lie within the subscriptions are important from
filtering point of view and those lying in other subspaces can
be ignored. To understand the effectiveness of such selective
indexing of (2, we look at an example from Figure 3. We,

specifically, focus on subscription sub; in a 2-dimensional
event-space comprising the dimensions temperature (T) and
pressure (P). For the sake of simplicity, let us assume that
only 2 bits are available to represent sub; through spatial
indexing. Figure 3(a) shows that when the entire event-space
is indexed, then sub; is represented by {11} and it receives
all events lying within this subspace (highlighted in gray).
Now, since there are no subscriptions in subspaces {00} and
{01}, we completely neglect these empty spaces and use the
available strings for finer indexing in the populated subspaces
as illustrated in Figure 3(b). Therefore, in Figure 3(b), sub;
is represented as {01}, and receives only the events lying
within this subspace which is much smaller than the subspace
representing sub; in Figure 3(a). Due to more fine granular
indexing in the latter case, the false positives received by sub;
will also be lower compared to the former case. Therefore, to
this end, we introduce the selective indexing approach where
the main idea is to identify meaningful subspaces with respect
to subscriptions in) and only index those subspaces instead
of the entire event-space.

The first step in the selective indexing approach is to select
subspaces in {2 populated with subscriptions while identifying
the empty spaces to be neglected. To identify meaningful
subspaces, we benefit from the widely used mechanism of
similarity-based subscription clustering [30], [10]. Once sub-
scriptions are clustered into groups, we generate polyspace
rectangles which serve as the closest enclosing approximation
of each of these clusters. These polyspace rectangles are
known as minimum bounding rectangles or MBRs. The set of
generated MBRs encloses all subscriptions in the system such
that every subscription can be represented by a binary filter (or
set of filters) and attempts to leave out as much empty space as
possible. To understand the concept of an MBR, we provide an
example from Figure 4. Here, the subscriptions are distributed
in the event-space as illustrated in Figure 4(a). Figure 4(b)
shows two MBRs covering all subscriptions in the system
clustered together in two groups on the basis of similarity.
Please note that even though two MBRs may partially overlap
as in 4(b), a subscription strictly belongs to a single MBR.
Let us suppose that the controller chooses to have 2 MBRs
for the system. Therefore, for the purposes of our example,
we proceed with the next phase of this approach with the two
MBRs, mbr; and mbr,, obtained from the first phase.

Having identified the MBRs, the next phase is the actual
mapping of subscriptions to dzs. We again employ spatial in-
dexing for the binary conversion of content however, of course,
now, with a difference. Spatial indexing is not employed on the
entire range of values along each dimension to arrive at the
dz of a subscription. Instead, spatial indexing is performed
only on the range of values along each dimension of the
MBR (i.e., subspace in €2) which contains the subscription in
question. This means that two subscriptions belonging to two
different MBRs may end up with the exact same dz as they
occupy the same relative position in their respective MBRs.
However, this would be incorrect as the two subscriptions
occupy different positions relative to the actual event-space.
This problem is mitigated by assigning unique IDs to MBRs.
First, each MBR is assigned an MBR ID which is in binary

form and which depends on the total number of MBRs in the
system. Therefore, if M is the set of MBRs in the system,
then the total bits required to uniquely identify each MBR is
loga|M|. Next, the dz representing a subscription generated
by the recursive decomposition of the MBR is appended to
the MBR ID that the subscription belongs to. The unique ID
prefix makes a dz different from that of another MBR.

The selective indexing approach allows for more fine gran-
ular spatial indexing as it can avoid assigning bits to the
subspaces in () that are not part of any subscription in the
system, thus allowing the use of more bits to represent more
meaningful subspaces. We illustrate our point in Figure 4(c)
and Figure 4(d). Let us focus on the subscription sub; that
needs to be converted to a binary string. Let us assume that
again only 2 bits are available for representing content filters.
Now, since there are two MBRs, a bit is required to uniquely
represent them. However, this bit represents a smaller subspace
as compared to what it would represent in regular spatial
indexing in) as the empty spaces have been removed. The
next step is to perform spatial indexing within mbr; till the
closest approximation of the subscription is reached with the
available number of bits. In this case, the subscription can
afford just one more bit that will be appended to the MBR
ID 1 for mbry. Therefore, for sub, the generated dz is {10}
as depicted in Figure 4(d). However, when spatial indexing
is performed on entire {2 as depicted in Figure 4(c), false
positives are more as the same dz of {10} represents a much
larger subspace in this context.

Of course, for header-based matching of packets to work,
events will also need to be mapped to the selected packet
header field using the selective indexing approach. For this
purpose, publishers need to have information about the MBRs
and their respective bounding values. As a result, the controller
sends this information to each publisher whenever there is a
change in MBR values. The mapping of events to the selected
header field works similar to the mapping of subscriptions
to match fields. However, it should be noted that MBRs may
overlap. For example, in Figure 4(b), mbr; and mbry overlap.
In such a scenario, an event that lies in the overlapping
subspace must be indexed with respect to both MBRs as it can
match subscriptions from both. This ensures the avoidance of
false negatives. Also, please note that all events that do not lie
within any MBR are simply ignored by the publisher and do
not need to be indexed. However, this does not mean that false
negatives are introduced in the system as the events that lie
outside of all MBRs are those that no subscriber is interested
in receiving. As a result, these events, in any case, should not
be forwarded in the network.

B. Adaptive Spatial Indexing

The selective indexing approach uses regular spatial index-
ing to finally convert filters and events to dzs. As discussed
before, spatial indexing divides the event-space repeatedly to
achieve subspaces of maximum possible granularity where
each decomposition divides the current subspace equally into
two halves. Question is whether the employed spatial indexing
technique itself can be modified to obtain more expressive

0 1 1
A A A
[\ \ \
00 | 01 10 | 11 11
sub, A

(a) Spatial Indexing (b) Adaptive Spatial Indexing

Fig. 5: Adaptive Spatial Indexing

filters and, therefore, less false positives in the system. In this
section, we design an adaptive spatial indexing (ASI) approach
to answer the same.

The spatial indexing technique, essentially, performs disjoint
event-space partitioning. We employ a similar technique but
with a difference. For each recursive decomposition, instead of
dividing a subspace into two equal halves in terms of range of
values along dimensions, the basic idea is to divide it into two
subspaces with balanced workload with respect to events and
subscriptions, i.e., number of events matching subscriptions.
This allows indexing to have finer granularity in subspaces
with higher workload in 2. Here, it is extremely important
to first define the term workload. We define workload of a
subspace ss; as Wy, = > |S5%| where SZ* represents

ey, EE
the set of subscriptions within ss; matched by an event ey.

Therefore, when a subspace is further divided during spatial
indexing along a dimension, the workload of it along that
dimension is calculated and the division is made such that
the resultant two subspaces have equal workload, i.e., they
are not necessarily equal in terms of range of values along
dimensions.

We explain the above indexing strategy with the help of
an example from Figure 5 which depicts a 2-dimensional
event-space with events and subscriptions. For the sake of
simplicity, we only explain indexing along one dimension,
i.e., dimension A. Let us assume that, again, only 2 bits
are available for indexing. Now, while performing indexing
to represent subi, in regular spacial indexing, the dimension
range is divided equally into two subspaces {0} and {1} as
depicted by the blue solid line in Figure 5(a). However, in our
adaptive spatial indexing technique, the division is made such
that the workload in the resultant subspaces is equal. Let the
blue solid line in Figure 5(b) illustrate this workload-based
division. This allows for more fine-grained partitioning in the
subspace denoted by {0} where matching traffic is heavy as
compared to {1}. Further divisions in both cases, as depicted
by the red dotted lines in Figure 5(a) and Figure 5(b), clearly
indicate that sub; is represented by a much smaller subspace
{01} in adaptive spatial indexing as compared to {00} in
regular indexing. As a result, sub; suffers from fewer false
positives when represented by adaptive spatial indexing.

All dimensions are divided in the exact same manner to
arrive at the final dz for a subscription or an event in a multi-
dimensional system. By allowing more bits to be assigned to
more meaningful parts of €, false positives can be reduced in
adaptive spatial indexing.

The efficiency of the workload-based indexing approaches

00 | 01 |10 1

01

Pressure (P)
Pressure (P)
Pressure (P)

00

Temperature (T)

Temperature (T)
(a) Indexing along T and P

(b) Indexing along P

Temperature (T)
(c) Indexing along T

Fig. 6: Effects of event distribution

00 01

Pressure (P)
Pressure (P)

01

00

Temperature (T)
(a) Indexing along P

Temperature (T)
(b) Indexing along T

Fig. 7: Event-based Selection

with respect to reducing false positives may still be limited
when the number of attributes (dimensions) in the system is
large. As a result, the next section is dedicated to mechanisms
that influence the number of dimensions to be encoded into
content filters while performing in-network filtering.

IV. DIMENSION SELECTION

As discussed before, more the number of dimensions in
a system, longer are the dzs. As a result, in this section, we
discuss the notion of avoiding the indexing of every dimension
and using the available bits to perform fine granular spatial
indexing only on a subset of dimensions that prove to be more
promising with respect to bandwidth efficiency. While this
notion was briefly introduced in [35], it was not thoroughly
explored and left open questions. In this paper, we use this
notion to propose and thoroughly evaluate a set of algo-
rithms that select dimensions that are beneficial for reducing
false positives and discuss their applicability, complexity, and
performance with respect to realistic workload distributions.
Please note that, while performing dimension selection, our
mapping scheme ensures that, for all dimensions which do
not get selected for indexing, all subscribers have subscribed
for the entire range of values along these dimensions (all
non-indexed dimensions are effectively represented by “*’ in
the filters). As a result, no expressive filtering is done along
these dimensions as, based on the non-selected dimensions,
all events would be forwarded to all subscribers.

A. Event Variance

The distribution of events in 2 plays a major role in
determining the importance of each dimension for filtering in
the system. To this end, the spread of events along a dimension
is an important metric to determine the importance of that
dimension. More spread would require more fine granular
indexing to avoid false positives, rendering the dimension
worthy of being considered for selection. More specifically,
we use variance of events to measure this spread. If E*

Algorithm 1 Event Variance-based Selection

: D — Set of original dimensions

. B — Set of all events

: SD = (// Set of selected dimensions

o — Set of w selectivity factors for w dimensions, where w = |D|
: for all d € D do

|E"|

oa= (3 (ef -

A

e?)?)/|E*|

=1
: SD « Select dimensions corresponding to n highest values in o

SN

denotes the set of all events in €2, then event variance along
a dimension d is measured as (Y (e¢ —e?)?)/|E*| where
el represents the value of the ‘" event along dimension d.
We illustrate this with a very simple example in Figure 6
with respect to a single subscription sub;, where the variance
of events along dimension P is far greater than that along
dimension T. Let us assume that only 2 bits are available
for spatial indexing. Figure 6(a) shows spatial indexing along
both dimensions according to which sub; is represented by
the subspace {10} which means that sub; receives all events
lying in this subspace. Now, if only dimension P, with a
high variance value for events, is selected for indexing, then
suby gets represented by the subspace {00} and receives all
events lying within it as shown in Figure 6(b). In Figure 6(a)
sub; suffers from far more false positives as compared to the
false positives received when only P is selected for indexing.
This is because, the latter can take advantage of the fact
that dimension P has a significantly high variance value for
events as compared to dimension T and thus has the liberty
of more fine granular indexing along P. As a result, most
events that are irrelevant for sub; can be partitioned out into
other subspaces. Since event variance is low along dimension
T, ignoring it does not cost sub; much. However, if the
dimension with low variance value for events, i.e., dimension
T is selected for indexing, Figure 6(c) clearly shows that sub;
would be subjected to more false positives as compared to
indexing along dimension P and, also, indexing along both
dimensions. This example clearly indicates the importance of
event distribution within {2 in dimension selection.

Therefore, the very first dimension selection algorithm that
we present is Event Variance-based Selection (EVS). This
algorithm is, also, formally described in Algorithm 1. EVS
calculates the variance of events along each dimension. Let
D be the set of w dimensions in and E! be the set of
1 events that are being considered for the algorithm in the
current time window ¢. Let SD be a subset of n dimensions of
D, i.e., SD C D and |SD| = n. We assign, to each dimension
d € D, a selectivity factor denoted as o4, which determines
the importance of the dimension in terms of reduction of false
positives if chosen for spatial indexing. Higher the value of
04, higher is the importance (selectivity) of d with respect to
the ability to reduce false positives. For EVS, the selectivity
factor g4 of a dimension d is given by the variance of events
along that dimension (cf. Algorithm 1, line 6). EVS selects
dimensions for SD by selecting n dimensions in D with
the highest variance/selectivity factor values. Spatial indexing
commences now on SD.

The main advantage of this approach lies in its low compu-

Pressure (P)
Pressure (P)

Temperature (T)
(a) Higher selectivity of T based
on subscriptions and events

Temperature (T)
(b) Higher selectivity of P based
on subscriptions and events

Fig. 8: Subscription-based Selection

Algorithm 2 Event Match Count-based Selection

1: D — Set of original dimensions

2: S — Set of all subscriptions

3: E' — Set of all events

4: SD = (// Set of selected dimensions

5: o — Set of w selectivity factors for w dimensions, where w = |D|

6: for all d € D do

7 matches = 0

8: forall e € E' do

9 matches+ = |S¢| // No. of subscriptions that e matches
along d

10: ga =1 — (matches/(|E*| x|S|))

11: SD <« Select dimensions corresponding to n highest values in o

tation overhead with a complexity of O(w *). However, the
consideration of only event distribution may not be enough
in every scenario. For example, in Figure 7(a), since event
variance along dimension P is high, the subscription sub,
when indexed along P, is represented by the subspaces {01},
{10}, and {11} and will receive all events lying within these
subspaces. However, if indexed along dimension T, with lower
event variance, sub; is represented by the subspace {10} and
receives events lying within it as depicted in Figure 7(b).
Here, false positives are lower in the latter case. This clearly
indicates that both events as well as subscriptions play a major
role in the selection process.

B. Subscription Matching

It would be interesting to investigate the role played by
subscriptions in the process of dimension selection. In fact, in
doing so, we identified the importance of subscription over-
laps. Dimensions where subscriptions have a lot of overlaps
are less important for filtering because if an event matches
a subscription along this dimension, then it matches majority
of the subscriptions along this dimension, thus reducing its
importance with respect to the ability to reduce false posi-
tives. For example, Figure 8(a) shows a scenario where there
is a significant overlap of subscriptions along dimension P
(the gray lines indicate overlaps). According to the figure,
selection of dimension T would reduce more false positives
than if P is selected. If indexing is performed along T, events
are matched by interested subscriptions as most events are
matched by disjoint subscriptions. On the contrary, if indexing
is performed along P, then false positives will be high as
most events match multiple overlapping subscriptions on this
dimension but not along T. Note that an event is matched by

Algorithm 3 Correlation-based Selection

: D — Set of original dimensions
: S — Set of all subscriptions
E' — Set of all events
SD = @ // Set of selected dimensions
C « Initialize w * w covariance matrix, where w = |D|
for i=0 to w — 1 do

for j=0 to w — 1 do

sf;; = 0.0 // Similarity factor between dimension i and

dimension j
9: for all e, € E* do
10: sfi = (184 N SEL/1S]
11: sfi i+ =sfe?l
12: cij = 1.0 - (sfi; | |E*]) // covariance value at (i, j

index of C
13: V < Calculate eigenvectors of C
14: A < Calculate eigenvalues of C
15: princComp < Select eigenvector € V' corresponding to highest
eigenvalue € A

16: SD < Select n dimensions € D with highest coefficients in
princComp

BRI e

)th

a subscription if and only if it is matched on all dimensions.
However, again, the selection decision cannot be taken based
on subscription overlaps alone. The reason why the selectivity
of T is higher is because of not only fewer overlaps but also
the distribution of events. For example, in Figure 8(b), we have
the same subscription overlaps as before, however, due to the
distribution of events, the selectivity of T is not too high.

Therefore, it is necessary to consider the combination of
both subscriptions and events to determine selectivity of di-
mensions. As a result, we introduce another algorithm known
as Event Match Count-based Selection (EMCS) which has
higher computational complexity than Event-based Selection
but considers both events and subscriptions to take the selec-
tion decision, rendering it more generic with respect to the
distribution of events and subscriptions in €.

The main idea of EMCS is to deem dimensions where
event traffic matches most subscriptions as less important for
dimension selection. Considering S to be the total set of s
subscriptions in the system, this algorithm determines the set
of subscriptions that each event e € E' matches, i.e., Sg,
along each dimension d and calculates the number of matches
in each case, i.e., |S?|. Now, for each d € D, the selectivity

factor is calculated as o4 = 1—(Y. |S9])/(|E!|*|S|) where
€L
the sum of all the matches of all eevents matching subscriptions

is calculated and represented as a fraction of the maximum
value possible for matches, i.e., |E?| * |S|. Having calculated
Qd for each d, a value between 0.0 and 1.0, n dimensions
with highest values of selectivity factor are added to SD. The
steps of EMCS are more formally presented in Algorithm 2.
This algorithm is more generic than the previous one. This
is mainly because it manages to capture the amount of event
variance within the meaningful subspaces of (), i.e, within
subscriptions, thus addressing the aforementioned problem of
EVS. However, it has a higher time complexity of O (w1 *s).

C. Correlation

Most application domains handle a large amount of data
with numerous attributes. Quite often, such data has redun-

dancy among its attributes. Redundancy in data may occur
due to underlying relations (i.e., correlations) between the
attributes (i.e., dimensions) of the system such that the change
in values in one dimension is positively or inversely correlated
to the change in values in another dimension. Quite often, sub-
scriptions and the events matching them have dimensions that
are correlated or inversely correlated rendering the selection
of these dimensions redundant because if an event matches
a subscription in one dimension, it would also do so in the
others. Such correlation between attributes exists across most
applications. For instance, in IoT, most sensors detect and
measure changes in various physical phenomena (i.e., dimen-
sions) where correlations exist. For example, the sensor data
set provided by the Intel Research Berkeley Lab [2] that has
a 54 node sensor network measuring values for temperature,
humidity, and light shows positive correlation among all the
3 attributes [16]. Again, in a traffic monitoring scenario, for
certain time periods, there may exist an inverse correlation
between car speed and density. In a completely different
domain, i.e., in stock exchange, it is well established that
there exists a correlation between volume and stock prices [1].
Redundancy in data can be utilized to avoid less meaningful
dimensions without loss of much information while selecting
dimensions. However, because of the sheer amount, data is
often fuzzy making it difficult to identify such redundancy.

As a result, our next algorithm, Correlation-based Selection
(CS) tries to take advantage of any redundancy in data, in
the form of correlation, that may exist between dimensions
while also considering the previous two factors, i.e., event
variances and subscriptions across dimensions. In the previous
two algorithms, the selectivity factor ¢ was independently
calculated for each dimension d. However, in order to consider
correlation as well, we construct a covariance matrix, C, which
captures relations between dimensions as well as within them
with respect to selectivity. This algorithm, formally described
in Algorithm 3, consists of primarily two steps—(1) calculating
the covariance matrix and (ii) performing principal component
analysis (PCA) on the calculated matrix.

The basis of this approach is the calculation of the co-
variance matrix C. A covariance matrix holds covariances
representing relations between two random variables, in this
case, dimensions. As before, considering w to be the number
of dimensions, C is an (w*w) matrix where an element
at position (i,j) represents covariance of the " and the
jth dimensions. C captures two types of information—the
relation between dimensions with respect to selectivity as
well as the amount of variance within each dimension. The
diagonal of C captures the latter. For dimension selection,
both of these information are crucial as the former highlights
correlated dimensions and the latter highlights selectivity of
each independent dimension. Quite naturally, it is crucial to
identify the metric representing the covariances, i.e., ¢; ; € C,
depending on the type of relation between dimensions that
needs to be captured. In the context of this algorithm, we
define covariances between dimension pairs with respect to
events consumed by subscriptions along each dimension.

We provide the steps to calculate the covariance matrix
more formally as follows (cf. Algorithm 3, lines 5-12). While

calculating the covariance c; ; between a pair of dimensions
d; and dj, first, for each event e; € E', we calculate a
factor called the similarity factor which calculates the set of
subscriptions that the event e matches along both dimensions
of the dimension pair. Therefore, the similarity factor of a
dimension pair d; and d; for an event e, € E! is calculated as
sfid = (1S% NS&])/|S| (cf. Algorithm 3, line 10). As before,
here, Sg}:' represents the set of subscriptions matched by event
er along dimension d;. As a result, an intersection of set Sg}:'

and set Sg,f provides the set of only those subscriptions that
e, matches along both d; and d;. The number of subscriptions
in this resultant subscription set contributes to the similarity
factor between the two dimensions for this event. To calculate
the aggregated similarity factor (sf; ;) between the dimension
pair d; and d;, the similarity factors of all events are calcu-
lated as mentioned above and aggregated (cf. Algorithm 3,
lines 8-11). Then, the inverse effect of this summed up (or
aggregated) value is considered to measure the dissimilarity
between the two dimensions in order to calculate the covari-
ance between them. Therefore, finally, ¢; ; is calculated as

1.0 - > sfii/|E"| (cf. Algorithm 3, line 12). This value
e EE?
indicatés the covariance between a dimension pair with respect

to the number of times events match subscriptions along both
dimensions of a dimension pair. Along the diagonal of C, the
variance of the match of events with subscriptions within each
dimension gets captured.

Once C is calculated, the technique of principal component
analysis (PCA) is applied [23]. Without going into much
mathematical details, we describe the main steps required
to select dimensions using PCA (cf. Algorithm 3, line 13-
16). First, C is subjected to spectral analysis through the
process of eigendecomposition, i.e., C = VAVT, where
A = {\,..., A} is a diagonal matrix of eigenvalues and
V ={vy,...,v,} is the matrix whose columns are orthogonal
eigenvectors of C. Eigendecomposition projects the original
dimensions (in £2) onto an orthogonal basis of vectors called
eigenvectors. This transformation makes the highest variance
by any projection of the dimensions to lie on the very first
axis (i.e., first principal component). In fact, an eigenvector
v with largest eigenvalue represents the dimension (in the
orthogonal basis) along which variance is maximized (i.e.,
first principal component), and thus this eigenvector v is
used to rank the original dimensions [27]. In more detail,
a higher absolute value of i*" coefficient of v indicates that
the dimension d; is more important to be used for filtering.
Thus, the dimensions (in the original space) that correspond to
the first n coefficients with higher magnitude are selected for
filtering. CS efficiently chooses dimensions based on the idea
of reducing redundancy in data while maximizing variance of
events matched by subscriptions. The time-complexity of the
calculation of the covariance matrix itself is O(w? * 1) * s),
rendering the algorithm more complex than the previous two.

D. Evaluation-based Techniques

The previous algorithms, though effective in their own
ways, do not give an indication of an ideal value of n. As a
result, in this subsection, we introduce two algorithms which

Algorithm 4 Greedy Strategy

: D — Set of original dimensions

: S — Set of all subscriptions

E' — Set of all events

SD — Set of selected dimensions

: combinations, =D

- originalFPR = evaluateFPR(D, S, E*) // Evaluate false positive
rate ranging from O to 1 with original dimensions
7: while w > 1 do

8: lowestFPR,_1 =1

9: sellgnoredDim,,—1 = ()

10: tempD = combinations,,

QU R W~

11: for all d € combinations, do

12: tempD = tempD \ d

13: FPR,_1 = evaluateFPR(tempD, S, E*) // Evaluate false
positive rate when dimension d is ignored

14: if FPR,,_1 < lowestFPR,,_; then

15: lowestFPR,,_1 = FPR,,_1

16: sellgnoredDim,,—1 = d

17: tempD = tempD U d

18: combinations,_1 = combinations,,\ sellgnoredDim,,_1

190 w—=1

20: S < Select combination € combinations with lowest FPR

significantly reduce false positives in the system and also
provide the most suitable value for n. Since the controller has
knowledge of both S and E?, we can implement evaluation-
based techniques to simulate false positives in the system
for various combinations of dimensions and choose the most
beneficial one, thus obtaining even a suitable value for n.
The performances of these techniques are more optimal as
compared to the previous three algorithms. However, these
techniques have relatively higher computational complexities.

Ideally, in order to obtain an optimal set S, a brute
force technique must be employed which calculates the false
positives for all combinations of dimensions and finally selects
the one producing least false positives. In order to do so, a
complete simulation of the entire filtering process must be
performed at the logically centralized controller, given a fixed
value of the number of available bits for filter representation.
With the information of the actual subscription and event
values, their corresponding mappings to binary strings, the
false positive rate can be determined for each combination
of dimensions. However, running such a simulation has expo-
nential computation overhead of O(2% % w * s %).

We reduce the complexity of the brute force algorithm by
using a greedy strategy which is also based on simulation,
however it does not evaluate every combination of dimensions.
We describe the steps of this algorithm as follows and, also,
provide a formal description in Algorithm 4. Initially, the
combination with all w dimensions in D is considered and
the resulting false positive rate noted. Then, all combinations
with w-1 dimensions are evaluated, i.e., each combination
has w-1 dimensions, however in each combination a different
dimension is removed. The combination with the lowest false
positive rate is selected and in the process one dimension
gets removed (cf. Algorithm 4, lines). The next cycle uses
this selected combination with w-1 dimensions as input and
evaluates all combinations with w-2 dimensions to arrive at the
most beneficial combination for w-2 dimensions. The process
continues till the number of dimensions being considered for
the combinations is reduced to 1 by incrementally removing

one dimension in every step. As a result, we have a total
of w combinations where the first combination consists of w
dimensions, the second consists of w-1, and so on till the
last (w'™) combination contains 1 dimension. Quite often,
with decreasing number of dimensions, the false positive
rate decreases till the redundancies in data are removed,
after which the rate increases again due to loss of important
information with further reduction in dimension count. As a
result, different combinations with different dimension counts
can be expected to reduce different number of false positives.
Therefore, of all the aforementioned w combinations, the one
producing least false positives is chosen for SD. By employing
such a technique, we essentially also obtain the most suitable
value of n. The greedy strategy has a time complexity of
O(w? %1 * s).

V. HANDLING DYNAMIC NETWORK UPDATES

All of the above discussed methods rely heavily on past
event traffic and subscription distributions. However, the event
distribution and the current subscriptions in the system may
change over time, degrading the effectiveness of the proposed
techniques. Hence, the controller must periodically collect
workload information over time to monitor the recent dis-
tribution, execute proposed techniques, and deploy necessary
changes in the network. For example, in the case of dimension
selection algorithms, the event traffic distribution may change
over time and the dimensions that were selected previously
by the dimension selection algorithm may need to be replaced
in the next period. This implies that the indexing of content
will be done for a different set of dimensions now, resulting
in completely different dzs. As a result, a new set of flows
would need to be deployed in the network. Therefore, all the
techniques described in this paper require periodic updates
to flows in the network (i.e., removal of existing flows and
deployment of new flows that replace the existing ones)
according to the current indexing decisions.

However, with the need for network updates comes the prob-
lem of ensuring consistency in the data plane. Please recall,
from Section II, that a network state (/V.S) consists of all flows
on all switches in the network. Therefore, when the transition
from one network state to another is being performed, the
event packets in transition in the network may be incorrectly
dropped or forwarded. Let us consider an example of a system
where indexing is performed on 4 dimensions, A, B, C, and D,
resulting in a network state V.S,. Let us assume that dimension
selection is employed to improve the bandwidth efficiency of
the system and now spatial indexing is performed on only
3 dimensions, B, C, and D. In such a scenario, the existing
flows need to be removed and new flows according to the
new indexing (resulting in a network state N.S,) must be
deployed as the old dzs, representing all 4 dimensions, are
semantically different from the new dzs, representing only 3
dimensions. Therefore, while the transition from NS, to N .S,
is being performed, event packets in transition and targeted to
follow IV.S,, may no longer find a path through N.S, or/and be
incorrectly forwarded by N.S,, which is semantically different
from the event packet in question. The same applies to event

packets targeted at IV.S,,. The difference in semantics can be
further explained through an example depicted in Figure 6
where when indexed along both dimensions, temperature and
pressure, sub; has the dz {10} (cf. Figure 6(a)). However,
on indexing only along the dimension pressure, it has a dz
{00} (cf. Figure 6(b)). Clearly, in the context of the new
index, the old one has completely different semantics and
an event published during transition, say with a dz {10001}
lying within sub; and indexed according to the old dimension
set will no longer find a match in the newly deployed flow
representing sub; which now matches {00%}. As a result, this
event may be dropped due to the absence of any flow matching
it or may be incorrectly forwarded by a flow matching the
event but representing a different subscription according to
the new index. Therefore, additional mechanisms must be
employed to ensure that packets are not lost or incorrectly
forwarded in the data plane during transitions. Here, we
would like to point out that, in this paper, we address the
aforementioned problems that arise in the case where the
entire network state gets replaced by a semantically different
network state. It is important to note that modifications to the
network state might be performed due to arrival and departure
of publishers and subscribers. However, these modifications
are completely different (with respect to those required in
complete transition) as, in these modifications, the old state
and the new state of the network are semantically the same
and, therefore, the consistency issues that we face during a
complete transition do not arise. As a result, it is important
to mention that the consistency issues that we discuss and
address in the remaining part of this section are specific to the
case where the entire network state needs to be replaced by a
semantically different network state.

A. Data Plane Consistency in PLEROMA

A lot of work has already been dedicated to ensuring data
plane consistency in SDN [29], [21]. Most works attempt to
provide a general solution to data plane consistency for any
application and are, therefore, computation intensive and/or
resource intensive. However, in our case, we can design a
middleware-specific solution, i.e., a light-weight approach,
that targets only those data-plane consistency issues that
affect the functional requirements of our specific system. Data
plane consistency in SDN is primarily characterized by three
properties—(i) blackhole-freedom, i.e., a packet that should
be forwarded by a switch should not be dropped during the
transition, (ii) loop-freedom, i.e., no packet should loop in the
network, and (iii) packet coherence, i.e., no packet should see
a mix of old and new flows belonging to the old (NV.S,) and
new (IV.S,,) network states, respectively.

Please recall from Section II that the PLEROMA middle-
ware installs paths between publishers and subscribers by first
creating an acyclic spanning tree that covers all switches in the
network and then embedding content filters along these paths.
This ensures the existence of only a single path between two
hosts of a network. Also, here, when we talk about transitions
from one network state to another, we only talk about changing
the content filters that are embedded along the path connecting

(a) NS, (Old State)

(b) NSu + NS, (Intermediate State)

(d) NS, + NS, (New State)

Fig. 9: Light-Weight Approach

a publisher to a subscriber, i.e., the path itself between two
hosts remains the same in a transition. As a result, there is
no possibility of cycles or loops in the network due to the
transition because of which no additional measures need to
be taken to ensure the inherent loop-freedom property of our
system. Therefore, in the context of our middleware, the main
consistency properties that we try to ensure are blackhole-
freedom and packet coherence. Ensuring these two properties
is essential for the system as both of these can lead to false
negatives which is not tolerated in our system.

B. Light-Weight Approach

To ensure the above two properties, the main idea is to
continue to have a path connecting a publisher to a subscriber
when flows are being updated while also ensuring that a packet
sees only one network state while being forwarded to its desti-
nation. To achieve this, Reitblatt et al. [29] propose the method
of versioning, which allows both the old as well as the new
network states to be installed in the network simultaneously
with different version numbers. A packet with one of the two
version numbers is forwarded by the old or the new network
state depending on its version number but never forwarded by
a mixture of both. However, this implies that each switch will
require almost double the number of flows to accommodate
both the old as well as the new version. Please note that
TCAM is a very expensive and power-hungry resource and
current vendors design SDN-compliant switches that can ac-
commodate only a few thousand flows [15]. Moreover, as these
flows are shared between applications, only a fraction may
be available to pub/sub traffic to represent its content filters.
Clearly, there may not be any TCAM space available to install
another version for the same filters. Therefore, we attempt to
avoid such a resource-intensive solution by designing a light-
weight approach which is loosely based on the versioning
method. The main idea of the light-weight approach (LWA)
is, also, to always have a path connecting each publisher to its
relevant subscribers so that false negatives, due to packet drops
or incorrect forwarding of event packets, can be avoided. In
fact, we use a temporary intermediate network state that can
be used to forward events which are targeted at either the
old network state or the new one while network updates are

being performed. Let us take an example depicted in Figure 9
where there is a need to transition from N.S, (cf. Figure 9(a))
to NS, (cf. Figure 9(e)) on switch R;. In Figure 9 each flow
in the flow table of R; is represented by its incoming port
(¢P), match field (represented by dz), outgoing ports (oP)
which specifies the ports through which matching events are
forwarded, and flow priority (PO). The priority of a flow may
be important in certain cases as, please note that, when an
event satisfies the matching criteria of multiple flows, the flow
with the highest priority is allowed to forward it.

Once the decision to make the switch to IV.S,, is taken, first,
a resource-efficient intermediate network state, i.e., N.S}, com-
prising flows matching any pub/sub event is installed along all
paths connecting publishers to their relevant subscribers. The
purpose of this temporary intermediate state is to always have
paths for any pub/sub event no matter which network state
it is targeted at. More specifically, for each incoming port,
say, ¢P, on a switch, all flows on the switch, belonging to
the old network state N.S,, which have P as their incoming
port are identified and a set of outgoing ports oP is created
from the union of all outgoing ports to which the identified
flows forward packets on account of a match. For example, in
Figure 9(b), for the incoming port ¢ P=1, the flows fl; and fl
are identified and a union of the outgoing ports to which these
flows forward events is performed yielding the outgoing port
set oP={2,3}. Next, a single flow that forwards all pub/sub
traffic (representing the entire event-space 2) through all ports
in oP is installed on the switch for this incoming port. In
Figure 9(b), this is represented by fl; which forwards all
incoming pub/sub traffic through the outgoing ports {2,3}.
Please note that as this flow represents the dz {*}, covering
entire (2, it forwards any pub/sub traffic, irrespective of the
semantics of the event and as long as it is part of the pub/sub
traffic. This is done for every incoming port on each switch of
the network during the transition. Therefore, in the example
in Figure 9, the same is done for the incoming port 3 as there
exists a flow fls in the old network state where incoming
traffic arrives at port 3. The flows, covering the entire event-
space, constitute the intermediate network state N.S;. For
each incoming port of a switch, replacing fine-grained filters
of NS, with a single flow covering {2 ensures the use of

. . .
Versioning ==
LWA ~Ela

18000
16000
14000 Pt 1
12000 = —

of flows

10000 e 1
8000 [¢ 1
6000 1

Total no.

4000 b
2000 b

o
0 20 40 60 80 100 120 140
Network Size

Fig. 10: Versioning vs light-weight approach (LWA)

minimum additional flows during the transition to maintain
data plane consistency. In fact, in our light-weight approach,
at any given time, the maximum number of additional flows
installed on a switch to avoid false negatives is the total
number of incoming ports of the switch. This is because at
most a temporary flow belonging to N.S; may be added for
each incoming port. This is in sharp contrast to the traditional
versioning method [29] which would result in almost double
the number of old flows during the transition to guarantee
consistency. The impact on number of flows in the pub/sub
network for our light-weight approach as compared to the
versioning method is depicted in Figure 10. Please recall that
TCAM space is limited. Therefore, where TCAM is scarce, the
figure clearly shows the advantage of our designed approach
over the traditional versioning method. Please note that the
effectiveness of the light-weight approach lies in ensuring
data plane consistency during network updates in a resource-
efficient manner as compared to traditional versioning which
would require double the number of flows to ensure the same
when the network state is transitioning. However, when the
network state is not transitioning, the light-weight approach is
not a means to reduce filters that should exist on switches for
correct forwarding of events to interested subscribers as this is
a completely different problem that has been addressed in [6].

Once N St is deployed in the network, the flows constituting
NS, can be removed as there is already an alternate set
of flows connecting each publisher to at least its relevant
subscribers through N.S;. This step is depicted in Figure 9(c).
Once NS, is removed, flows constituting N S,, are added
to the switches of the network (cf. Figure 9(d)). However,
the priority of the flows in NS, is kept lower than the
priority of the flows in NSy such that any event that was
targeted at V.S, matches the flows in N.S; and never those
in NS,,. We do so to satisfy the packet coherence property
in the context of our approach that prohibits a packet to see
a mix of old and new flows belonging to NS, and NS,
respectively. Please note that in our approach we provide
a form of packet coherence where packet coherence is not
considered to be violated if a packet sees a mix of old (¢ NS,)
and intermediate (¢ N.S;) flows or a mix of intermediate
(¢ NSy) and new (¢ N.S,,) flows. This is mainly because
the intermediate state semantically applies to both N.S, and
N S, and an event belonging to either is a valid event for N.S;.
Once all flows in V.S, have been deployed, the publishers are
notified to index events according to the new chosen indexing

approach such that events can now be targeted towards the
already deployed new network state INV.S,,. Therefore, at this
point the publishers start indexing events according to the new
chosen indexing scheme. Please note that the subscribers do
not need to be aware of any indexing changes as the design of
PLEROMA ensures that subscribers remain oblivious to the
underlying details of the middleware [35]. After a given time
bound (depending on the bounds on the forwarding latency of
the longest path in the network) that ensures that all events
matching the old network state N.S, have been delivered to
the subscribers, all flows constituting N.S; are removed (cf.
Figure 9(e)).

In this way a transition from NS, to NS, is performed
in the network without violating the blackhole-freedom and
packet coherence properties. As a result, the pub/sub system
does not suffer from any false negatives. Of course, as,
for each incoming port, the fine-grained content filters are
temporarily substituted by a single flow representing the entire
event-space, the pub/sub system experiences additional false
positives temporarily during the transition (cf. Figure 14(c)).

VI. PERFORMANCE EVALUATIONS

This section is dedicated to evaluating and analyzing the
performances of each of the presented approaches. We con-
duct a series of experiments to measure and compare the
overall false positive rate at the subscribers of an SDN-
based publish/subscribe system for all the techniques. We,
especially, show the impact of different types of workload on
the performance of each of the approaches in order to highlight
their applicability in various scenarios.

Experimental Setup : For our experiments, we have used
a prominent tool for emulating software-defined networks,
namely, Mininet [25]. Based on the concept of OS-level
lightweight virtualization for network emulation, Mininet en-
ables users to experiment with various topologies and appli-
cation traffic. We use Mininet to experiment with up to 728
switches and 256 end-hosts on different topologies. At the
control plane, we use the popular Floodlight controller that
collects subscriptions and events from the data plane and runs
the techniques proposed in this paper. Our evaluations include
up to 10,000 subscriptions and up to 100,000 events. In order
to generate workload, i.e., events and subscriptions we use
both synthetic as well as real world data. In synthetic data,
a content-based schema containing up to 8 attributes is used
where the domain of each attribute varies between the range
[0,4095]. With regards to the distributions of subscriptions and
events for synthetic data, experiments are performed on two
models that have been predominantly used to evaluate pub/sub
solutions in the past [28], [12]. The uniform model generates
subscriptions and events independent of each other, whereas,
the interest popularity model chooses up to 8 hotspot regions
around which it generates subscriptions and events using the
widely used zipfian distribution. We use synthetic data to
especially highlight certain properties of the designed algo-
rithms by adjusting correlation between dimensions, matching
traffic variances, number of correlated dimensions, etc. We
also use real world workload in the form of stock quotes pro-
cured from Yahoo! Finance containing a stock’s daily closing

prices [13] to show the performance of our algorithms in a
realistic environment. In the following evaluations, we show
the effectiveness of our techniques even when the number of
available bits for spatial indexing is restricted to just 23 bits
as available in IPv4 multicast addresses.

Workload-based Indexing : The first set of experiments
evaluates the behavior of the selective indexing (SI) approach
when subjected to both uniform as well as zipfian data. Fig-
ure 11(a) plots the false positive rate with increasing number
of subscriptions for both selective indexing as well as regular
indexing (RI) when uniform data is used. Figure 11(b) shows
the same when zipfian data is used instead. These plots show
that indexing within MBRs has significant benefits over regular
indexing. In Figure 11(b), the benefit of indexing within MBRs
for fewer number of subscriptions is even more significant
as compared to uniform distribution. This is because, in the
case of zipfian distribution, precise MBRs can be generated
due to the similarity of subscriptions concentrated around
hotspots. However, with a large number of subscriptions, it
becomes comparable to the benefits of uniform distribution.
This is because, when a large number of subscriptions are
concentrated around a hotspot, even a slight approximation in
representing a subscription may generate a lot of false positives
as the number of events around a hotspot is extremely high in
the generated zipfian data.

We, also, conducted a set of experiments to evaluate the
impact of adaptive spatial indexing (ASI) on false positive
rate of a system. We evaluated the effect of this technique
when both uniform and zipfian data are used to generate events
and subscriptions. Figure 11(c) (uniform) and Figure 11(d)
(zipfian) clearly show that in-network filtering gains from the
use of adaptive spatial indexing as opposed to regular indexing.
For both uniform and zipfian data and for every subscription
count, ASI results in a lower false positive rate when compared
to RI and the plots behave similar to SI.

Dimension Selection : We conducted a series of exper-
iments to evaluate the behavior of all presented dimension
selection algorithms when subjected to various types of work-
load. In the following experiments, we primarily calculate
the false positive rate at the subscribers of the system when
the number of selected dimensions are gradually reduced for
a specific workload. We also evaluate the runtime of each
approach to compare their complexities.

While generating workload (i.e., subscriptions and events),
we mainly specify two factors. The first is the variance factor
which can be either random or uniform. Random variance
factor means that the variance of events in certain dimensions
may be high whereas they may be low in others and this
is decided at random. Uniform variance factor signifies
similar variance of events across all dimensions. The second
factor that we define is the correlation factor. Here, a high
correlation factor implies high correlation between multiple
dimensions while very few dimensions are independent. A low
correlation factor signifies low correlation between very few
dimensions while most dimensions are independent.

The first set of experiments is dedicated to evaluating the
performance of the least complex algorithm, Event Variance-
based Selection (EVS). These experiments highlight the bene-

fits of dimension selection on reduction of false positives and
also show that even a simple approach like EVS performs
better than a random dimension selection (RS) approach.
Figure 12(a) plots false positive rate when EVS and random
selection approaches are employed on multiple datasets having
8 dimensions with a random variance factor. The figure shows
that, when EVS is used, reducing dimensions up to a point
reduces false positives, however, after that false positives rise
again. This is because, for example, in the case of Figure 12(a),
EVS benefits by removing 3 less selective dimensions and as-
signing the additional bits to the 5 more selective dimensions.
However, ignoring one or more of these 5 dimensions implies
major information loss which again increases the false positive
rate. EVS performs better than a random selection approach as
it takes advantage of the random variance factor which allows
certain dimensions to have higher selectivity than the others.

We evaluated the next set of experiments, however, with
uniform variance factor instead of a random variance factor
as before. We again plot the performance of EVS in such a
scenario and as expected, due to uniform event variance in all
dimensions, it does not succeed in reducing false positives as
can be seen in Figure 12(b). In fact, its performance can be
compared to random selection. However, in such a scenario,
the Event Match Count-based Selection (EMCS) approach per-
forms much better than EVS, providing a significant benefit in
terms of reduction of the false positive rate (cf. Figure 12(b)).
When event distribution alone cannot differentiate between
selectivity of dimensions, then it is necessary to look at both
events and subscriptions to determine selectivity and this is
the reason why EMCS performs much better in this case.

EMCS works very well in the previous scenario. However,
in the following experiments we compare its performance to
Correlation-based Selection (CS) when the correlation factor
is both high and low. Figure 12(c) plots false positive rate
when selected dimensions are gradually reduced for data
with high correlation factor. The figure clearly shows that
CS gains significantly over EMCS in the presence of high
correlation as CS is designed to remove the redundancy in data
due to correlation. When the correlation factor is low, quite
understandably EMCS and CS perform similarly as depicted
in 12(d). However, please note that even with low correlation
CS does not perform worse than EMCS.

The next set of experiments compares the performance of
the greedy selection (GS) algorithm with CS when a high
correlation factor is used while data generation. Figure 12(e)
shows that GS outperforms CS even in the very best case
for CS, i.e., high correlation. Since GS is an evaluation-
based technique, it performs in most cases better than the
other techniques and is very close to the performance of ideal
selection, i.e., Brute-Force Selection (BRS), as can be seen in
Figure 12(f) and Figure 12(g) for uniform and zipfian data,
respectively. BRS, of course, produces the most optimal set
of dimensions, however, as can be seen from the results, the
performance of GS is almost equivalent to this optimal.

The dimension selection evaluation results show the per-
formance of the selection algorithms in increasing order of
effectiveness, i.e., EVS, EMCS, CS, GS, and BRS. However,
better the performance, higher is the time complexity of

__ 100 5 __ 100 __ 100 p __ 100
» RI =@ | o [RE Y) ey RI =@ | o P y—,
~ SI = NoRa ° ~ ASI = O ©

L | L L 1o L
B 80 % 80 E 80 ﬁ 80
& @ e & g 4
o 60 Qe Dy 60T o 60Ff - - v 60@]
i o A 2 oo A
W o40r @ 1m 40rF ° 4% 40 1
o o o o
A o} & & A
o 20r 19 20¢ o 19 20¢ f
= o RI =@ ° o RI = O
LT ‘ ‘ B ‘ ‘ i g, ‘ ‘ T ‘ ‘ AST

1k 2k 4k 8k 1k 2k 4k 6k 8k 1k 2k 4k 8k 1k 2k 4k 6k 8k

of Subscriptions # of Subscriptions # of Subscriptions # of Subscriptions
(a)SI vs RI-Uniform data (b)SI vs RI-Zipfian data (c)ASI vs RI-Uniform data (d)ASI vs RI-Zipfian data
Fig. 11: Performance Evaluations: Workload-based Indexing

—~ 100 B _. 100 _ 100
o EVS @ T o * EMCS @+ @ oo EMCS @ @
= RS = - cs i Q.. cs i
g 80 Sq0 O 80 @, 4 o 8ot g
9 o |5 5 g S N
3 ; & I~ .. d— [~ Q,
o 60 § 1 60 @, B 60 i
> 2 2 S 2 ®, E
g A A <) b 5]
It 5 2 g
o 40 14 w40 rF 1 @ 40 r Q.. 3 1
o o o o
1 v A A
o 20F 1o 0 20 F 1 o 20¢ 1
0 0 a 0}
L= R N © I —~ T‘U T\S
& o N S g . . g L 0 [

6 5 4 3 2
of Selected Dimensions
(a)EVS vs RS

1 8 7 6 5 4 3 2
of Selected Dimensions

(b) ECMS vs EVS vs RS

1

0
8 7 6 5 4 3 2
of Selected Dimensions

(d)CS vs ECMS-low correlation

8 7 6 5 4 3 2
of Selected Dimensions

(c)CS vs ECMS-high correlation

1 1

__ 100 __ 40 _. 60
o GS O > GS O Q N
e cs ~ 35 [BRS =¥ 7 4~ 551 f
o so@ 19 /]
] Y 30T i 1w 50T 1
~ “Q [:9 i ~ L |
o 60 PR LY ; 1 45
> i > i >
- i b i 4 a0 F f
a e @ het ' a
w 40 ¢ 1% 1% 35t B
o o o
a a oy
Q 4 30 4
o 20 . 1 0 %
A 3 1 25 - @S O 4
8 7 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1
of Selected Dimensions # of Selected Dimensions # of Selected Dimensions
(e)GS vs CS (f)BRS vs GS-Uniform data (g)BRS vs GS-Zipfian data
Fig. 12: Performance Evaluations: Dimension Selection - False Positive Rate
80 - a EVS @ 80 a EVS O]
EMCS i EMCS
70 cs q 70 g cs —A—
0 @s B 0 i Gs [
%’ 60 B % 60 | g
o o L]]
50 ; 1 50 L
] 5] 3 :
@ 40 , w40 4
0 b 1 [}
e ® £
B 20 M A B A
10l
0 -

40k 100k
of Events
(a)Effect of # of events on runtime

10k20k

4k 6k 8k 10k
of Subscriptions
(b)Effect of # of subscriptions on runtime

Fig. 13: Performance Evaluations: Dimension Selection - Runtime Overhead

the selection algorithm. This is visible in the next set of
experiments that we conducted. The first set of experiments
shows the impact of increasing the number of events on the
time required to select a set of 4 dimensions from a set of 8
dimensions when the number of subscriptions is fixed to 1000.
Figure 13(a) clearly shows that EVS and EMCS require least
computation time (in the order of milliseconds), whereas CS
takes significantly more time than them with GS requiring
most. Similarly, the impact of number of subscriptions on
computation time, with the event count set to 100,000, can
be seen in Figure 13(b). As expected, again EVS performs

fastest, followed by EMCS, CS, and finally GS.

Combining Approaches : The next set of experiments are
dedicated to highlighting the effect of combining various algo-
rithms. We used zipfian distribution to generate data for these
experiments with a random selectivity factor. Figure 14(a)
shows the performance of CS and GS both independently and
when combined with adaptive spatial indexing. As expected,
the combinations perform much better than CS or GS alone.
In fact, for GS+ASI, the false positive rate goes down from
80% (if regular indexing is performed on 8 dimensions) to
merely 3.33%.

To ensure that our approaches are effective in realistic

EVS+SI @
CS+SI
GS+SI

[%]
[%]

A d

False Positive Rate
>
o
T
.
False Negative Rate

100 100
o 804y o 904
i - D
T ©
~ ~ 80 [
o 60F °
2 >
. 2 L
2 i 2 70
g 40 o
o L
A x 60
) L -, o
w 20 -, w s |
. B.. .
m e, & =4
0 . . n \ . 40 .
8 7 6 5 4 3 2 1 6 5
of Selected Dimensions - (a)

.
4
of Selected Dimensions -

3 2 1
(b)

50100
Time (sec)

200 300 400

- (c)

Fig. 14: Performance Evaluations: Combined Approaches and Dynamism

scenarios, we conducted experiments to show their effects on
real world stock data. As can be seen in Figure 14(b), our
algorithms are capable of significantly reducing false positives
in a real world system. This time we combine EVS, CS,
and GS with selective indexing. The plots show that even
an approach combined with EVS reduces false positive rate
by 48% when 2 dimensions are selected. Also, in this case,
GS, CS, and EVS, when combined with SI, have very similar
performances. GS successfully reduces the false positive rate
by up to 53%. These evaluation results further highlight the
applicability of the approaches presented in this paper.

Our evaluations show that out of the various combinations,
GS+ASI and GS+SI have the best performance (we do not
consider BRS as it is not a scalable solution). This is ex-
pected considering the fact that, irrespective of the event and
subscription distribution, GS always has the best performance
among the dimension selection techniques. However, between
SI and ASI, the event distribution and current subscriptions
determine the better technique.

Handling Dynamics : The final set of experiments have
been conducted to show the dynamic behavior of the system
with the passage of time in Figure 14(c). Therefore, we
start evaluating false positive rate for a system on which CS
has been recently employed and then plot its behavior with
changing dynamics over time. Initially, the false positive rate
is quite low due to the recent execution of CS that selected
dimensions based on the recent traffic distribution. However,
around the 95" second the traffic distribution changes because
of which the dimensions chosen in the previous period become
less effective. As a result, the false positive rate goes up
significantly in the system. Please note that, in our system, the
dimension selection algorithms may be periodically executed
on the system or may be executed once the false positive rate
in the system exceeds a threshold value. In fact, in this set of
experiments, we consider a system where CS is periodically
executed. As a result, around the 350%" second, CS is again
executed and indexing is done based on the current selected
dimensions chosen according to the current traffic distribution.
Now, new flows are installed in the system following the light-
weight approach. Here, we define the term false negative rate
as follows. False negative rate is the percentage of events
dropped in the network that should have been forwarded to
interested subscribers. Our evaluation results confirm that there
are no false negatives in the system when LWA is employed.
As expected, during this process, the false positive rate is very
high as the fine-grained filters are temporarily replaced by

filters representing the entire event space. However, around the
410" second, the deployment of the new flows is complete
and the false positive rate goes down significantly as indexing
is now according to the current traffic distribution.

VII. RELATED WORK

The past decade has seen a significant amount of effort
devoted to the realization of scalable and efficient pub/sub
systems [30], [12], [18], [32]. The primary focus of most
of these systems has been efficient communication that en-
sures scalability and, also, preserves expressiveness of con-
tent in order to avoid unnecessary traffic in the system. A
very widely used technique employed in overlay networks
is subscription clustering where events are flooded within
clusters [30], [12], [31]. These approaches have very sig-
nificant problems. Clusters have to be recomputed in the
presence of subscription/advertisement churn and, depending
upon the subscriptions, there might be a large number of false
positives in the system (e.g., in the scenario of dissimilar
subscriptions) [36]. Moreover, these approaches do not allow
fine-grained filtering within a cluster. For example, Riabov et
al. perform clustering for content-based pub/sub systems by
grouping subscribers into multicast channels and performing
IP multicast thereafter [30]. However, this approach largely
depends on the similarity of subscriptions within generated
clusters and may fail to ensure minimal false positives as
multicasting is eventually employed within a cluster. Please
note that, in this paper, we are the first to combine the
concept of subscription clustering (essentially an overlay-level
mechanism) with in-network filtering on a software-defined
network to avoid unnecessary traffic. Such a combination
largely preserves expressiveness of a content-based subscrip-
tion model.

Linearizing content-space (e.g. hashes, bit strings, etc.) for
fast matching of events with subscriptions while balancing
the load in structured P2P overlay network has been much
researched in the past [4], [28]. Most of these works are
based on distributed hash tables (DHT) that are load-balanced
and self-organizing. Baldoni et al. in [4], realize a Chord-
based [33] publish/subscribe where events and subscriptions
are mapped to bit strings. Where on one hand, [4] maps
subscriptions and events to multiple nodes, on the other hand,
Muthusamy et al. in [28] design a protocol that primarily
indexes subscriptions at a single node. Of course, linearizing
content-space is also of extreme relevance to content-based
routing in software-defined networks. However, in order to

directly employ the above techniques, the SDN-compliant
switches would have to support far more expressive operations.
As a result, none of these linearizing techniques can be directly
deployed in an SDN-based pub/sub system.

While attempting efficient content-based routing, consider-
able work has been dedicated to subscription summarization
techniques that compact subscription information. With re-
gards to this, various data structures and matching algorithms
have been developed. For example, Jerzak et al., in [20],
use Bloom filters [11] to encode subscriptions and events.
While this expedites content-based routing, it suffers from
the inherent limitations of a Bloom filter with respect to
presence of considerable amount of false positives in the
system. Again, the system MICS [18] uses Hilbert space
filling curve to generate a one-dimensional representation of
events and subscriptions. However, MICS too suffers from
false positives in the system.

The above systems primarily work on overlay networks.
However, the recent past has seen the use of networking
technologies such as NetFPGA and SDN to realize filtering of
events in the network layer. For example, LIPSIN [22] uses
Bloom filters to encode the routing path of an event in its
packet header. This enables a packet to be routed directly on
the network layer. However, since a packet header is limited
in size, LIPSIN uses a limited fixed length Bloom filter for en-
coding, which results in false positives. Similarly, systems [35]
that exploit the capabilities of SDN to achieve line-rate for-
warding of events also suffer from the limitations of hardware
and are subjected to unnecessary traffic. Recently, Bhowmik et
al. [8] have proposed a hybrid pub/sub middleware which may
be used to offload some of the content filters from switches in
a software-defined network to the application layer, resulting
in filtering of events in both software and hardware. However,
such a middleware loses some of the advantages of a pure
network layer implementation. In comparison, the techniques
in this paper improve bandwidth efficiency and also benefit
from line-rate forwarding.

VIII. CONCLUSION

In this paper, we address the limitations of an SDN-
based publish/subscribe middleware with respect to bandwidth
efficiency. We present a series of algorithms that improve the
performance of such a system and provide extensive evaluation
results to analyze their behavior. The proposed techniques
complement and can build on top of each other to considerably
impact unnecessary traffic in the middleware. Our evaluation
results show that these strategies can significantly reduce false
positive rate in the system (up to 97%) when subjected to
various kinds of workload. Each of these algorithms preserve
the benefits of using SDN for pub/sub by ensuring line-
rate forwarding of events directly on switches while also
preserving the benefits of content-based routing by focusing
on bandwidth-efficient communication. Moreover, evaluation
results, also, show the effectiveness of our proposed light-
weight approach in completely avoiding false negatives in the
system during dynamic network updates.

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]
[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

REFERENCES

Correlation in Stock Exchange Data.
articles/technical/02/010702.asp.

Intel Research Berkeley Lab Sensor Data Set. http://www.cs.cmu.edu/
~guestrin/Research/Data/.

Report from Open Networking Summit: Achieving Hyper-Scale with
Software Defined Networking, 2015.

R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-based
publish-subscribe over structured overlay networks. In Proc. of the 25th
IEEE Int. Conf. on Distributed Computing Systems, ICDCS ’05, 2005.
R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J.-F. Pineau, M. Pasin,
E. Riviere, and S. Weigert. Streamhub: A massively parallel architecture
for high-performance content-based publish/subscribe. In Proc. of the
7th ACM Int. Conf. on Distributed Event-based Systems, 2013.

S. Bhowmik, M. A. Tariq, A. Balogh, and K. Rothermel. Address-
ing TCAM limitations of software-defined networks for content-based
routing. In Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems, DEBS, 2017.

S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel. Bandwidth-
efficient content-based routing on software-defined networks. In Proc.
of the 10th ACM Int. Conf. on Distributed and Event-based Systems,
DEBS, 2016.

S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel. Hybrid content-
based routing using network and application layer filtering. In Proc. of
the 36th IEEE Int. Conf. on Distributed Computing Systems, 2016.

S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Diirr, T. Kohler, and
K. Rothermel. High performance publish/subscribe middleware in
software-defined networks. In IEEE/ACM Trans. on Networking, 2016.
S. Bianchi, P. Felber, and M. G. Potop-Butucaru. Stabilizing distributed
r-trees for peer-to-peer content routing. [EEE Trans. Parallel Distrib.
Syst., 21(8):1175-1187, 2010.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Comm. of the ACM, 1970.

C. Chen, Y. Tock, and H. Jacobsen. Overlay design for topic-based pub-
lish/subscribe under node degree constraints. In 36th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2016.

A. K. Y. Cheung and H. Jacobsen. Green resource allocation algorithms
for publish/subscribe systems. In 2011 International Conference on
Distributed Computing Systems, ICDCS, 2011.

O. M. E. Committee. Software-defined Networking: The New Norm for
Networks. Open Networking Foundation, 2012.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In Proc. of the ACM SIGCOMM 2011 Conf.

C. Dong, Q. Xiuquan, J. Gelernter, L. Xiaofeng, and M. Luoming.
Mining data correlation from multi-faceted sensor data in the internet
of things. In China Comm., 2011.

V. Gaede and O. Giinther. Multidimensional access methods.
Comput. Surv., 30(2), 1998.

H. Jafarpour, S. Mehrotra, N. Venkatasubramanian, and M. Monta-
nari. MICS: An Efficient Content Space Representation Model for
Publish/Subscribe Systems. In Proc. of the 3rd ACM Int. Conf. on
Distributed Event-Based Systems, DEBS ’09.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hoélzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. In Proc. of the ACM SIGCOMM 2013 Conf.

Z. Jerzak and C. Fetzer. Bloom filter based routing for content-based
publish/subscribe. In Proc. of the 2nd Int. Conf. on Distributed Event-
based Systems, 2008.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In Proceedings of the 2014 ACM Conference on SIGCOMM.

P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: line speed publish/subscribe inter-networking.
ACM SIGCOMM Computer Communication Review, 2009.

L. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo: Network-
aware task placement for cloud applications. In Proc. of the 2013 Conf.
on Internet Measurement, IMC *13.

B. Lantz, B. Heller, and N. McKeown. A network on a laptop: Rapid
prototyping for software-defined networks. In Proc. of 9th ACM Wshop.
on Hot Topics in Networks, 2010.

M. Li, F. Ye, M. Kim, H. Chen, and H. Lei. A scalable and elastic
publish/subscribe service. In Proc. of IEEE Int. Parallel & Distributed
Processing Symp., 2011.

http://www.investopedia.com/

ACM

(271

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(351

[36]

(371

A. Malhi and R. X. Gao. PCA-based feature selection scheme for ma-
chine defect classification. IEEE T. Instrumentation and Measurement,
2004.

V. Muthusamy and H.-A. Jacobsen. Infrastructure-free content-based
publish/subscribe. IEEE/ACM Trans. Netw., 22(5):1516-1530.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In Proc of the ACM SIGCOMM
Conf. on Applications, Technologies, Architectures, and Protocols for
Computer Communication, 2012,

A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering
algorithms for content-based publication-subscription systems. In Proc.
of the 22nd Int. Conf. on Distributed Computing Systems, 2002.

P. Salehi, C. Doblander, and H. Jacobsen. Highly-available content-
based publish/subscribe via gossiping. In Proc. of the 10th ACM Int.
Conf on Distributed and Event-based Systems, DEBS, 2016.

P. Salehi, K. Zhang, and H. Jacobsen. Popsub: Improving resource
utilization in distributed content-based publish/subscribe systems. In
Proc. of the 11th ACM Int. Conf. on Distributed and Event-based
Systems, DEBS, 2017.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proc. of the 2001 Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM 01, 2001.
M. A. Tariq. Non-functional requirements in publish, subscribe systems.
PhD thesis, University of Stuttgart, 2013.

M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel. PLEROMA:
A SDN-based high performance publish/subscribe middleware. In Proc.
of the 15th ACM/IFIP/USENIX International Middleware Conference,
Middleware ’14, pages 217-228, 2014.

M. A. Tarigq, B. Koldehofe, G. G. Koch, and K. Rothermel. Dis-
tributed spectral cluster management: A method for building dynamic
publish/subscribe systems. In Proc. of the 6th ACM Int. Conf. on
Distributed Event-Based Systems, 2012.

X. Yang and Y. Hu. A DHT-based infrastructure for content-based
publish/subscribe services. In Proc. of Int. Conf. on Peer-to-Peer
Computing (P2P), 2007.

Sukanya Bhowmik received her doctoral degree
from University of Stuttgart, Germany, in 2017. She
is currently working as a postdoctoral researcher
at the Distributed Systems research group, Uni-
versity of Stuttgart. Her research interests include
high performance communication middleware using
software-defined networking with focus on line-
rate performance, bandwidth efficiency, and control
plane distribution.

Muhammad Adnan Tariq received his doctoral
degree from the University of Stuttgart, Germany.
He worked as a postdoctoral researcher at the Dis-
tributed Systems department of the University of
Stuttgart, where he was involved in the projects
related to data stream processing, complex event
processing, software-defined networking, and geo-
distributed cloud computing. Currently he is an
Assistant Professor at National University of Com-
puting and Emerging Sciences, Pakistan.

Jonas Grunert studied Bachelor of Science and
Master of Science in Software Engineering at the
University of Stuttgart. During that time he worked
as research and teaching assistant for the distributed
systems and reliable software departments. He was
involved at university open source projects and
worked as free software developer in 3D graphics.
Now he is working as a software engineer at Google
in Munich.

Deepak Srinivasan is an M.Sc. graduate from Uni-
versity of Stuttgart. He is a software developer inter-
ested in Distributed Systems and Cloud Computing
& Automation.

Kurt Rothermel received his doctoral degree in
Computer Science from University of Stuttgart in
1985. From 1986 to 1987 he was a Post-Doctoral
Fellow at IBM Almaden Research Center in San
José, U.S.A., and then joined IBM’s European Net-
working Center in Heidelberg. Since 1990 he is a
Professor for Computer Science at the University
of Stuttgart. From 2003 to 2011 he was head of
the Collaborative Research Center Nexus (SFB 627),
conducting research in the area of mobile context-
aware systems. His current research interests are in

the field of distributed systems, computer networks, and mobile systems.

