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Stream Processing (SP) has evolved as the leading paradigm to process and gain value from the high volume
of streaming data produced e.g. in the domain of the Internet of Things. An SP system is a middleware that
deploys a network of operators between data sources, such as sensors, and the consuming applications. SP
systems typically face intense and highly dynamic data streams. Parallelization and elasticity enables SP
systems to process these streams with continuously high quality of service. The current research landscape
provides a broad spectrum of methods for parallelization and elasticity in SP. Each method makes speci�c
assumptions and focuses on particular aspects of the problem. However, the literature lacks a comprehensive
overview and categorization of the state of the art in SP parallelization and elasticity, which is necessary to
consolidate the state of the research and to plan future research directions on this basis. Therefore, in this
survey, we study the literature and develop a classi�cation of current methods for both parallelization and
elasticity in SP systems.
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1 INTRODUCTION
With the surge of the Internet of Things and digitalization in all areas of life, the volume of digital
data available raises tremendously. A large share of this data is produced as continuous data streams.
Stream Processing (SP) systems have been established as a middleware to process these streams
to gain valuable insights from the data. For stepwise processing of the data streams, SP systems
span a network of operators—the operator graph. To ensure high throughput and low latency with
the massive amount of data, SP systems need to parallelize processing. This parallelism comes
with two major challenges: First, how to parallelize the processing in SP operators. SP systems
require mechanism to increase the level of parallelization, which is especially hard for stateful
operators that require the state to be partitioned onto di�erent CPU cores of a multi-core server
or even di�erent processing nodes in a shared-nothing cloud-based infrastructure. Frequent state
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synchronization must not hamper parallel processing, while the processing results have to remain
consistent. Research proposes di�erent approaches for parallel, stateless and stateful SP. They
di�er in assumptions about the operator functions and state externalization mechanisms an SP
system supports. This led to the development of a broad range of parallelization approaches tackling
di�erent problem cases.

Second, how to continuously adapt the level of parallelization when the conditions of the SP
operators, e.g. the workload or resources available, change at runtime. On the one hand, an SP
system always needs enough resources to process the input data streams with a satisfying quality of
service (QoS), e.g. latency or throughput. On the other hand, continuous provisioning of computing
resources for peak workloads wastes resources at o�-peak hours. Thus, an elastic SP system scales
its resources according to the current need. Cloud computing provides on-demand resources to
realize such elasticity [9]. The pay-as-you-go business model of cloud computing allows to cut costs
by dynamically adapting the resource reservations to the needs of the SP system. It is challenging
to strive the right balance between resource over-provisioning—which is costly, but is robust
to workload �uctuations—and on-demand scaling—which is cheap, but is vulnerable to sudden
workload peaks. To this end, academia and industry developed elasticity methods. Again, they
di�er in their optimization objectives and assumptions about the operator parallelization model
employed, the target system architecture, state management as well as timing and methodology.

While there are many works that propose methods and solutions for speci�c parallelization and
elasticity problems in SP systems, there is a severe lack of overview, comparison, and classi�cation
of these methods. When we investigated these topics in more depth, we found more than 40 papers
that propose methods for SP parallelization, and more than 25 papers that propose methods for
SP elasticity. An even higher number of papers addresses related problems such as placement,
scheduling and migration of SP operators. Every year, dozens of new publications appear in the
major conferences and journals of the �eld. Furthermore, the authors of those papers are located in
di�erent sub-communities of the stream processing domain. While they work on the same topics,
they have a di�erent view on the problems in SP parallelization and elasticity. Hence, there is
an urgent need for a broad investigation, classi�cation and comparison of the state of the art in
methods for SP parallelization and elasticity.

1.1 Complementary Surveys
Cugola and Margara [31] presented a general overview of SP systems, languages and concepts,
but did not take into account parallelization and elasticity methods. In their survey, Hirzel et al.
[67] compared di�erent general concepts to optimize SP operators; however, the authors did not
investigate elasticity. Heinze et al. [58] in their tutorial provided a broad overview of SP systems
for cloud environments, but did not particularly focus on parallelization and elasticity. Mencagli
and De Matteis [36] investigated parallelization patterns for window-based SP operators. They did
neither take into account other parallelization strategies nor discussed elasticity methods. Flouris
et al. [47] discussed issues in SP systems that are executed in cloud environments. The authors
discussed query representations, event selection strategies, probabilistic event streams, eager and
lazy detection approaches, optimization with query rewriting, and memory management. However,
they only brie�y mentioned parallelization and elasticity. Basanta-Val et al. [15] presented patterns
to optimize real-time SP systems. These patterns cover operator decomposition and fusion, data
parallelization, operator placement, and load shedding. The authors included a theoretical analysis
of capabilities and overhead of those patterns. Their focus is on mathematical theory rather than a
comprehensive study of speci�c parallelization and elasticity methods. Many elastic SP systems
apply methods from control theory to adapt the parallelization degree of the operators. Shevtsov
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et al. [129] provide a systematic literature review on control-theoretical software adaptation that
goes beyond SP systems. It can be read as a complement of this survey to get a larger view on
adaptive software beyond SP systems. In a recent article, Assuncao et al. [33] investigated parallel
SP systems with a strong focus on infrastructure and architecture, details on how to implement
SP and descriptions of open-source SP frameworks as well as SP in cloud environments. Their
discussion of elasticity approaches however lacks a �ne grained classi�cation e.g. on parallelization
strategy, timing, provided QoS and the methodology focus that is needed to understand the broad
range of elasticity concepts. Again, it can be read as a complement of this survey with details how
to realize parallel, elastic SP and a stronger focus on frameworks and SP in cloud computing. We
conclude that even though surveys for many aspects of SP systems are available, there is a need for
a comprehensive study that navigates through available methods for parallelization and elasticity
in SP systems to continously deliver high QoS.

1.2 Our Contributions
In this article, we provide a broad analysis of properties relevant for parallel and elastic SP and
introduce the methods for parallelization and elasticity. We further summarize and classify the
parallelization and elasticity approaches in SP systems. This includes a discussion of research
gaps and trends in the �eld. In addition, we discuss issues that are related to parallelization and
elasticity, such as placement, scheduling and migration. These contributions should be helpful both
to researchers as well as practitioners to assess the applicability of the state of the art methods to
concrete scenarios. Further, they serve as a basis for future research.

1.3 Structure of the Survey
We structured this survey as follows: In Section 2, we discuss fundamentals of parallel SP systems
and introduce the main methods for parallelization and elasticity. In Section 3, we classify published
work for parallel and elastic SP. Finally, we discuss related topics in Section 4 and conclude the
survey in Section 5.

2 GENERAL SYSTEM MODEL AND CLASSIFICATION
In this section, we brie�y introduce a generic SP system model, properties of SP systems related to
parallelization and parallelization and elasticity techniques.

2.1 General System Model
An SP system processes data streams as the data arrives. It aggregates, �lters and analyzes the data
items and thus gains fast insights, reactions to observed situations and higher level information.
Examples are continuous trend analysis of Twitter feeds, automatic stock trading, fraud detection
and tra�c monitoring. An SP systems core is the directed, acyclic operator graph that processes
and forwards the input data in streams, also called its topology. Also to the topology belong the
data sources that emit data items in streams into the graph and the sinks that consume the output.
In Fig. 1, we provide a schematic of an exemplary SP system. Data sources are the rectangles on the
left, operators the circles, connected by edges that represent the �ow of data streams. The rectangle
on the right depicts the sink. In a distributed SP system, the operators run on multiple processing
nodes that are connected via a communication network.

As SP systems are designed to analyze data streams online, low latency and high throughput are
the primary quality of service (QoS) goals for SP systems and the major focus of parallelization and
elasticity strategies. If a system does not meet its QoS goal, penalty fees may arise or the system,
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Fig. 1. Schematic of an SP System. Sources emit streams of data items to be processed by a set of operators.
A sink consumes the output data stream.

e.g. low latency alarm systems, becomes less useful. Secondary QoS goals, for example balanced
load, node utilization, and fault tolerance, are often set to support low latency and high throughput.

2.2 Parallel Stream Processing
If the arrival rate of data items exceeds an operator’s processing rate, the operator’s input queue
grows and induces queuing latency for the data items. Additionally, back-pressure might throttle
operators that need to wait until the bottleneck downstream operator processes its input queue. The
SP system’s QoS goals might be jeopardized. Parallel SP reduces queuing latencies and increases
throughput as it processes multiple data items simultaneously instead of sequentially. SP systems
can parallelize their processing in the multiple ways that we describe in the following. We start
with a discussion of those SP system properties that in�uence the systems parallelization potential
and continue with the parallelization methods.

2.3 Properties of Parallel SP Systems
In this section, we introduce those properties of SP systems that in�uence the SP systems paral-
lelization potential and are necessary for the discussion of approaches in Section 3.1.

2.3.1 Type of SP System. The type of the SP system determines what operations the system
supports. We distinguish General SP systems (GP) and the more specialized CEP systems (CEP):
General SP systems. General SP systems apply continuous operations on streams of data items.

Each operator either produces an output stream of result data items (that itself can be the input
stream of another operator) or make the result available to other applications, e.g., by writing them
into a data storage or forwarding them to consuming sinks. In general SP systems, we include Data
Stream Management Systems (DSMS) that apply continuous queries on data streams. A continuous
query is a — usually relational— query continuously applied on a changing set of data like a data
stream as opposed to traditional database applications that apply a changing set of queries on a �xed
data set. Classical examples of non-parallel DSMS systems are Aurora [1] and TelegraphCQ [25].
Modern GP systems are for example Apache Storm [48] and Apache Flink [20].

CEP. CEP systems are SP systems dedicated to detect patterns of events and thereof derive higher
level information. The patterns represent a complex situations of interest, e.g. the pattern “Smoke and
high temperature” represents “Fire”. The input streams of CEP systems consist of events triggered
by observations of the surrounding world. The operators of CEP systems search for those sequences
of events in the input streams that ful�ll the patterns. If an operator detects a pattern, it emits
an output event (sometimes referred to as a complex event, e.g. “Fire”). When parallelizing CEP
systems, it is necessary to divide the input stream onto parallel instances so that patterns will still
be detected. Common applications of CEP pattern detection are automatic stock trading [12, 98],
�nancial fraud detection [4, 114] and tra�c monitoring [96]. A well-established open source CEP
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system is, for instance, Esper [41]. Besides that, there are general purpose SP systems that provide
CEP functionality as a library, e.g., Apache Flink [20].

2.3.2 Programming Model. The programming model de�nes if programmers use declarative
queries or an explicit imperative implementation to specify the operations or patterns of an SP
system. Parallelization solutions for declarative systems might not work for imperative systems
and vice versa. In addition, the programming model impacts the data model of the SP system.

Declarative. A declarative query follows syntax and semantics of a speci�c query language. There
are di�erent query languages for CEP and for GP systems that di�er in their expressiveness, i.e.,
which kind of queries can be speci�ed in the language. For CEP systems, query languages such as
Snoop [24], SASE [145], EPL [41], or TESLA [29], have been proposed. Prominent DSMS-languages
are Continuous Query Language (CQL) [8] and (SPL), a query language for IBM’s System S [132].
Declarative SP systems automatically deploy an operator graph that implements the query. This
automatic deployment step can include optimizations, e.g., fusion or splitting of operators or
enabling multiple queries to share operators, c.f. Section 4.3. Declarative SP systems usually require
a structured data model for input data items. This data model is de�ned within the query. The
query can then refer to this structure. A common meta model for the structured data model is the
relational model.

Imperative. A large group of SP systems follows the imperative programming model. It requires
a programmatic speci�cation of the operator graph. This includes both the speci�cation of the
operators themselves, e.g., by implementing an API of the SP system, and the speci�cation of the
topology of the operator graph, i.e., how the operators are connected. Imperative programming
increases expressiveness as the de�nition of operations is not limited by a declarative language. The
widely used open source frameworks Storm, Heron, and Flink follow an imperative programming
model [48], [49], [80]. A shortcoming of the imperative model is that due to its less structured
nature, automatic optimizations of the operator graph are harder to achieve as in the declarative
model. Further, programmatic operators are black boxes to the SP system. The SP system lacks
information about the operators internals and cannot exploit them for parallelization. Imperative
SP systems give the programmers more freedom for the structure of data items. While these items
might still have de�ned header �elds, the payload can be arbitrary.

It is possible to combine imperative and declarative programming. For example, declaratively
de�ned operators are assembled imperatively into an operator graph [133]. The operator graph
as the set of operators and their connections is termed the “logical plan" of an SP system. The
assignment of this logical plan to a target infrastructure is referred to as the “physical query plan”

2.3.3 Sub-Stream Processing. Operators usually process the input stream sub-stream wise. They
extract sub streams based on keys or windows. Key-based extraction groups data items by a the
value of a key each data item needs to provide, leading to a sub stream per key value. E.g. in
automatic stock trading, a possible key is the stocks class of business, where the trading SP system
individually analyzes technology stocks and �nance stocks [64].
Window-based extraction builds sub streams according to a window policy. A window-policy

de�nes a scope and a slide. The scope describes the window size which, among others, can be
count-based (number of data items) or time-based (data items within an interval). The window
slide de�nes the intervals the operator starts a new window on the input stream. It, too, can be
time- or count based or rely on a predicate [8, 56, 96]. For a deeper discussion of windows and
classi�cation of windowing policies, we point to the literature [50, 70].
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2.3.4 Infrastructure Model. The infrastructure on which an SP system is deployed drastically
in�uences the system’s performance and thus the need and capability to parallelize the processing.
This applies in particular to the type of processing nodes and the memory architecture.

Type of Infrastructure. Infrastructure types for SP systems are single nodes, cluster, cloud or fog
solutions. Single node solutions run on a single, multi-core machine with scalability limited by
the machine size. An SP system can scale up only, i.e. add more threads, as long as the node size
permits. Clusters provide a �xed set of processing nodes. The cluster size limits the SP systems
scalability. A common optimization objective for single node and cluster solutions is high resource
utilization. SP systems running in a cloud environment have less limited scalability. They face the
trade-o� between processing performance and cost. The communication between stream sources
and the cloud can induce a signi�cant latency which can be critical in low-latency SP applications.
Finally, the a fog infrastructure is limited in scalability, too, but often provides low communication
latency as the processing can be performed close the sources. Heterogeneous processing nodes
might in�uence the processing speed of the SP application in all types of infrastructure.

Some solutions explicitly integrate specialized hardware, especially GPUs and FPGAs. Exploiting
this hardware properly requires additional e�orts in the system design. For instance, GPUs provide
a high throughput for highly parallel problems, but incorporate a latency and bandwidth penalty
for �rst transferring the input events from the host memory to the device memory.

Memory Architecture. Generally, SP operators communicate asynchronously via message passing.
Some systems support operations on shared memory for communication and state management,
e.g., when multiple operators are placed on the same host. This reduces communication and
state-migration e�orts [98] but has higher access synchronization e�orts.

2.3.5 Operator State Models. SP systems further di�er in their operator state model, i.e. whether
and how they support stateful processing and state management in general and per operator.
Operator state models are stateless or stateful. It is common that SP systems comprise stateless
and stateful operators at the same time. The operator state model in�uences if, where in the
operator graph and to what extend parallel processing is possible. Additionally, it in�uences the
synchronization and access coordination overhead that parallel processing might induce.

Stateless Operators. Stateless operators consider one single data item at a time. It does not store
results or information from formerly processing data items; instead, it treats each single data item
the same way, regardless of former processing. Examples for stateless operators are �lters on
temperature data or rescaling of frames in video streams.

Stateful Operators. A stateful operator stores received data items or intermediate results as state. It
uses and updates this state when it processes subsequent data items. An example is a �re detection
application that raises an alarm if the temperature is above 50 degrees Celsius and smoke has been
detected in the same area before.

The state an operator manages can be limited in scope and lifetime. The scope is limited when an
operator processes only the sub streams of a certain set of keys and thus only keeps the respective
state for this key set. Time is limited when state is kept for window-based sub streams and dropped
once the window is processed. An example for window-limited state is to calculate the average
temperature of the last week from daily temperature measurements. It is possible to combine both
dimensions, e.g., to limit an operators by a key and additionally limit the lifetime of the state with
a window model. A detailed model of partitioned state in SP operators is available [34].

State Management. State management de�nes if an SP system externalizes state of operators.
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Fig. 2. In task parallelization, an SP system
runs di�erent operators in parallel. The split-
ter or multiplier distributes incoming events
to all operators. The merger summarizes the
results into one output stream and forwards
it to the sink.
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Fig. 3. In pipelining, each operator receives processed
the output events its preceding operator. Sometimes,
an operator additionally received a copy of the original
input stream.

Externalized State. To externalize state, an SP system provides a way to access internal operator
state, e.g. via an API or a shared data storage. For instance, in operators with key-partitioned state,
internal operator state is externalized to a key-value store [44]. Managed state access become
a bottleneck. A discussion of this issue, including a mathematical modeling of the problem, is
provided by Wu et al. in [146]. A practical example of applying such a scheme is provided by
Hochreiner et al. [69] in their distributed SP system PESP. Finally, Danelutto et al. [32] provide a
systematic classi�cation of state access patterns in SP systems.
Internal (Hidden) State. In most SP systems, the internal operator state stays hidden to the rest

of the SP system (c.f. Section 3). While this avoids access management, it hampers parallelization,
elasticity, load balancing and state migration.

2.4 Operator Parallelization Methods
In the following, we provide a detailed introduction of two parallelization concepts for SP operators:
task parallelization (Section 2.4.1) and data parallelization (Section 2.4.2).

2.4.1 Task Parallelization. In task parallelization, the SP system runs multiple operations on the
same input stream in parallel. As an example, see Figure 2: A multiplier replicates the input data
items and sends the replicas to operators A, B and C-The merger uni�es the resulting data streams
into one output stream. An example for task parallelism is the encoding of a video stream in a
live-streaming situation into di�erent formats in parallel. Task parallelization enables pipelining
where the output of one operator is the input of the next operator. In the context of SP systems,
pipelining splits up bigger operators into consecutive sub-operators that can run in parallel (cf.
Figure 3 where an operator that detects a sequence “A”, “B”, and “C’ is split into three sub-operators).
A requirement for task parallelization is that multiple operations (i.e. tasks) can run in parallel on
the same input. Applicability thus depends on the concrete application.

2.4.2 Data Parallelization. The second parallelization method is data parallelization. It executes
multiple instances of an operator, i.e., identical operator copies, in parallel on di�erent parts of
the input data. The number of instances is the parallelization degree of the operator. To enable
data parallelization, the input streams needs to be partitionable. A splitter component splits the
input stream into sub-streams. The splitter can be a process on its own or integrated into operator
instances, depending on the splitting strategy. A merger aggregates the instances output again into
a single stream and, if necessary, ensures in-order delivery to the downstream operators. Figure 4
shows the basic architecture of a data-parallel SP operator.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:8 Henrie�e Röger and Ruben Mayer

Α1 

Α2 

Α3 

Source Sink 
Splitter Merger 

Operator  
Instances 

Fig. 4. In data parallelization, a spli�er divides the input stream and distributes the data items among
instances, i.e., identical copies, of an operator. The instances process in parallel their assigned part of the
input stream, i.e., they all perform the same operation on di�erent parts of the data. A merger receives results
from each instance and bundles them into one output stream.

Stateful operators require special attention in data parallel SP systems: The input stream should
be distributed among the operator instances such that each instance can keep an individual state.
This avoids interference in between the di�erent operator instances.

In the following, we describe the three types of splitting strategies common in data parallelization:

Shu�e Grouping. With shu�e grouping, the splitter shu�es data items across the operator in-
stances. This is applicable in particular for stateless SP operators (cf. Section 2.3.5), that process data
items independent from each other. The splitter itself can be stateless, too, making an independent
assignment to an instance for each single data item. A common example is Round-Robin splitting
that assigns input data items to the operator instances in a Round-Robin fashion.

If the SP operator implements an associative function, shu�e grouping can also be applied to
operators that have key-partitioned state [108]. Each operator instance keeps its own state for each
key it has received. A combiner periodically combines the states of each key to the complete state.
An example is a word counting application where each instance counts appearances per word and
the combiner then calculates the word-wise total. Depending on the number of keys and instances,
the combine stage can become very expensive.

A stateful operator can implement shu�e grouping if all instances can access the complete
operator state. The order of state access shall unrestricted to avoid sequential processing [32].

Key-based Splitting. Key-based splitting is applicable if operators are stateless or manage state
per individual key. Balkesen et al. [14] therefore name it content sensitive splitting as opposed to
content insensitive splitting like window-based or shu�e. In the following, we simply denote the
value of a key parameter itself as “key”. Di�erent ranges of keys are assigned to di�erent operator
instances, such that each operator instance keeps the state of a distinct, non-overlapping key range.
A schematic of key-based splitting is depicted in Fig. 5. The di�erent gray-scales of the events
visualize their key-range, e.g., a speci�c stock symbol. The splitter forwards data items with the
same key-range to the same operator instance.

Window-based Splitting. In window-based splitting, the splitter partitions the input event stream
into subsequences, i.e windows of data items. It then assigns the windows to the instances of the
operator (cf. Fig. 6). Depending on the window policy, Li et al. [87] di�erentiate between two types
of context—backward context and forward context—needed in order to determine which windows
a given data item belongs to. Backward context of an data item e may contain any information
about previous data that arrive at the operator, whereas forward context refers to information from
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Fig. 5. In key-based spli�ing, the spli�er divides
the input stream based on keys. These keys are
a�ributes of the events. Each operator instance
is responsible for a sub-range of the total key set.
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w2 

Fig. 6. In window-based spli�ing, the spli�er divides
the input stream into windows of subsequent events.
Each operator instance processes a sub set of all win-
dows.

subsequent data in the input stream after e . In backward context approaches, when an data item e
is processed in the splitter, a new window can immediately be opened and scheduled to an operator
instance, if applicable. However, this is not feasible if the window policy requires forward context.

Pane-based Splitting. We have discussed in Section 2.4.2 that window-based splitting can increase
communication overhead for overlapping windows. Furthermore, processing each window from
scratch is often not necessary and parts of the computation results in overlapping windows could
be shared by all windows. Pane-based splitting has been proposed by Balkesen et al. [13] and Li
et. al [86]. Pane-based splitting partitions the input stream into non-overlapping sub-sequences,
called panes; each pane belongs to one or more windows (cf. Fig. 7). The panes are processed
independently and in parallel by operator instances. After the processing, the merger assembles the
received results from the panes according to the window policy of the operator. For instance, when
the max temperature value in a window with a scope of 1 minute and a shift of 10 seconds shall
be computed, the input stream can be split into panes of 10 seconds each. The operator instances
compute the max value in each pane in parallel and send the results to the merger. The merger
computes the max value of a speci�c window by determining the max value from all 6 panes that
belong to that window.

2.4.3 Limitations of Operator Parallelization Methods. In the following, we brie�y discuss each
of the presented parallelization methods. We aim to give a better understanding of the opportunities
and drawbacks of each method.

Limitations of Task Parallelization. Whilst being a well-established parallelization method, task
parallelization, including pipelining, has three major drawbacks: First, it can increase network
tra�c when each operator has to receive the complete input stream. Second, there is the risk of load
imbalance between the operators if they di�er in processing speed. Third, the scalability of task
parallelization is limited: A given operator can only be divided into a limited set of sub-operators
until an atomic operation is reached or, which is more likely, the cost of distributing the processing
outweighs the gains drawn from further parallelization.

Limitations of Data Parallelization. The major challenge in data parallelization is to achieve well-
balanced workload and in-order delivery of data items to downstream operators. Key-based data
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Fig. 7. In pane-based spli�ing, the spli�er divides the input stream into non-overlapping sub-sequences of
events, called panes. Each pane belongs to one or more windows. The merger assembles the results according
to the windows they belong to.

parallelization has three limitations: Expressiveness, scalability and load balancing. Expressiveness
and scalability are limited by the the number of distinct partitions, i.e. distinct key-values. For
instance, when checking the stock market for stock patterns, the key-based parallelism is constrained
to the number of distinct stock symbols. Further, key-based splitting is applicable only if the data
items provide the respective key-values. Explicit load balancing between the operator instances is
required when the keys are distributed unevenly across the input data. Situations can occur where
one instance experiences a high arrival rate while other instances run idle [118].

Window-based splitting might increase communication overhead: When di�erent overlapping
windows are assigned to di�erent operator instances, the data items from the overlap of those
windows have to be replicated to all corresponding operator instances. To reduce this overhead,
window batching assigns multiple subsequent overlapping windows to the same operator instance
[13, 36, 99]. The strength of window-based splitting is more �exibility in the input data structure,
e.g. does not require keys for splitting.

Pane-based splitting requires the operator function to be dividable into two stages: One stage
where the single panes are processed, and one stage where the windows’ results are assembled from
several panes’ results. However, it does not require associative operations as opposed to key-based
splitting: the system still processes the data items in sorted groups in the panes, preserving the
ordering of the items.

2.5 Operator Elasticity Methods
The employed parallelism of an SP System shall ensure the primary QoS goals (c.f. Section 2.1). As
SP Systems are usually long-running, circumstances change: Workload increases or decreases, the
hosting infrastructure might have to be shared with other applications and also the content-related
properties, e.g. the distribution of keys, can change. For instance, in tra�c monitoring, rush hours
impose higher workload than low tra�c at night. To meet its QoS goals, an SP system has to
provide parallelization accordingly, e.g. high parallelism for high workload. Still, a high degree
of parallelism requires resources and it is wasteful to always provide those resources needed to
handle potential workload spikes. Latest with the surge of cloud computing and its pay-as-you-go
business model, it becomes attractive to keep the reserved resources as minimal as possible. Thus,
running SP systems comes with the continuous task to de�ne the required degree of parallelism to
meet its QoS goals while being resource minimal. Therefore, research developed methods to adapt
the degree of parallelism according to the current circumstances while minimizing resource costs of

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.



A Comprehensive Survey on Parallelization and Elasticity in Stream Processing 1:11

the SP system. A precise adaptation thereby is the optimal balance between meeting the QoS goals,
and minimize the required resources, i.e. the cost. These SP systems, that can adapt the degree of
parallelism at runtime, are called elastic SP systems.

Elasticity, i.e. adapting parallelism, changes resource requirements of the SP system at runtime,
e.g. new processing nodes are required for parallelization increase and instances need to shut
down due at a decrease. Therefore, adapting parallelism requires to de�ne how resources can
be — fast and e�cient — acquired and released, e.g. with idle nodes or anticipated future node
requirement and according placement, scheduling and migration strategies. While this survey
focuses on parallelization strategies, we mention the former in the discussion in Section 3.2 where
applicable and point to related work (Section 4)s for more detailed approaches. Finally, the adaptation
overhead needs to be balanced with the adaptations bene�ts.

In the following, we discuss the properties of elasticity approaches that we use to categorize
elastic SP systems in Section 3.2.

2.5.1 Input Data. Elasticity methods base on data from system information and workload in-
formation. System information comprises CPU utilization, throughput, latencies for queuing and
processing as well as memory consumption. Workload information is the number of data items in
the input streams and their data type. What information is chosen depends mainly on information
availability, required precision level and optimization objective. The information can be per indi-
vidual operator instance, processing node, for a sub-graph or the complete application. Often, the
elasticity component uses aggregated data, e.g. averages, predicted trends or a learned distribution.

2.5.2 Timing. The timing when an elasticity method adapts the SP system can be reactive or
proactive. Reactive approaches adapt when the system detects that its QoS goal is violated. In
proactive approaches, the system anticipates a violation and adapts before it violation occurs, e.g.
with prediction models. Reactive approaches adapt the system according to measured data and can
thus adapt the parallelization degree to meet the current workload accurately. They are usually
simpler because they lack a prediction model. However, due to the delay until the adaptation is fully
e�ective, they might temporarily lead to over-utilization of operator instances, data loss, or SLA
violations. Proactive approaches model a future system state and can thus prevent QoS violations.
However, the quality of the prediction strongly in�uences the approaches precision. We also �nd
hybrid approaches that combine reactive and proactive elasticity.

2.5.3 Objective. Each elasticity method has an optimization objective limited by side conditions.
The objective aligns with the system’s QoS goals, e.g. maximize throughput or minimize latency.
Approaches that target high utilization are contrary to approaches that maximize throughput
or minimize latency, because high utilization hampers these QoS goals. The side conditions are
usually de�ned by a cost model that describes the SP system’s cost, e.g. in terms of used resources.
Additionally, adaptation costs can be considered, e.g. if the system halts processing during adaptation
which leads to latency spikes. In case of adaptation costs, system stability becomes an important
side condition. Some approaches add balanced load, node utilization and fault tolerance to their
objective. If noteworthy, we shortly present the cost model when we describe the approaches.

2.5.4 Guarantees. Most elastic approaches keep their QoS goals in a best e�ort manner, i.e. on
average over a wider amount of time. However, some provide real-time guarantees. This includes
probabilistic soft-guarantees, e.g. that the application keeps in 90% of the time its latency limit.

2.5.5 Methodology. The methodology de�nes how an elastic approach comes to its adaptation
decisions. Methodology types are threshold policy driven, model driven and learning based. Threshold-
policy approaches directly compare the input data against a set threshold. An expressive threshold
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ensures that elasticity is triggered neither too early nor too late. While thresholds facilitate decision
making, �nding expressive thresholds, e.g. with pro�ling, is challenging. Model-driven approaches
use the input data to calculate with a mathematical model the new degree. These approaches face
the challenge of �nding model that represents the system’s real behavior. Learned base approaches
learn a model from measured or pro�led data that. These models are usually re�ned at runtime
which improves precision but requires a critical amount of data for learning.

2.5.6 Centralized and Distributed. Elasticity approaches di�er in where the adaptations are
controlled: Many approaches are centralized, i.e. one central component manages the parallelism
for the complete operator graph. A centralized component has the global view and can thus thrive
towards a global optimum. However, the central component can become a bottleneck and introduce
communication overhead. Thus, some solutions implement a distributed approach.

2.5.7 State migration. Changing the parallelization degree of a stateful operator might require
state migration. Consider, for example, an application with key-based states where each oper-
ator instance is assigned a key range and processes those data items whose key falls into the
instance’s range. If the parallelization degree, hence the number of instances, changes, so has
to the distribution of the key ranges. The respective state of the re-distributed keys needs to be
re-distributed accordingly. To manage these state migrations, most elasticity approaches provide
a state-migration protocol, e.g., [34, 37]. To realize the migration and avoid inconsistencies, in
most SP systems, the processing stops completely or partially during the state migration. Stopping
the processing however adds a waiting latency. A common optimization dimension for elastic SP
systems is therefore to minimize the number of migrations or the related downtimes [23, 59]. One
solution to minimize the number of state-migrations for key-based states is consistent hashing.
A consistent hashing function ensures balanced load and minimal state migrations when it (re-)
distributes key-ranges upon adding and removing nodes [14, 72]. Additionally, Gedik [51] proposes
partitioning functions that even outperform consistent hashing.

To enable state migration, many key-based SP systems use the Flux-operator in their splitter
[127]. It supports re-partitioning of key-ranges, state migration and load balancing. A bu�er absorbs
short-term imbalances. For long-term imbalances the bu�er cannot absorb, Flux re-distributes
the key-ranges to remove the imbalances and consistently migrates the a�ected state. To keep
consistency, the processing at the instances involved in the migration stops and their input is
bu�ered. Due to this bu�er, those instances not involved in migration can continue processing.

Shukla and Simman recently proposed two solutions for a reliable and fast execution of state
migrations [130] for the SP system Storm [48]. Storm natively stops operators and drops input-
queues before migration. However, this induces the need for frequent checkpointing and data-item
replay to ensure consistent stream processing. The author’s �rst solution stops sources from
emitting further data items, processes all input queues before stopping the tasks, checkpoints the
state and re-uses it after scaling is �nished. This solution avoids re-play of data items and requests
checkpointing at migration time only. Their second solution further reduces latencies with faster
checkpointing. Additionally, input and ouput queues are stored together with the checkpoints to
be resumed by the new instances responsible.

2.5.8 Evaluation. Some elasticity approaches evaluate the e�ect of an adaptation. They continu-
ously improve their decision making process. Examples are a black-list for non-e�ective adaptations
or model updates of learning agents. Again, we highlight those approaches in our discussion in
Section 3.2 where applicable.
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3 CATEGORIZATION OF PARALLELIZATION AND ELASTICITY APPROACHES
This section discusses approaches for parallel and elastic SP. Further, two tables give an overview
and how the approaches are classi�ed according to the properties introduced in Section 2.2 and
Section 2.5, respectively.

3.1 Parallelization
In Table 1, we provide a systematic categorization of the literature on operator parallelization. The
�rst column contains the name of the �rst author and the reference number in the bibliography. In
the “processing" columns, we show the system type and the programming model. As the majority
of approaches uses internal state mangement, we highlight in the External State column, if a system
exposes the state of operators to other parts of the system. We further show the used infrastructure
and the memory architecture. For the memory architecture, the default value is shared nothing.
If shared memory is assumed, we mark this with a tick in the column SM. In the parallelization
columns, we show the approaches type of parallelization. TP is task parallelization, SG for shu�e
grouping, KS for key-based splitting, WS for window-based splitting, and PS for pane-base splitting.
All entries are sorted by the year of publication.

We can see from the table that the amount of work on operator parallelization started to boost
around the year 2010, when cloud computing started its surge. Most research targets general SP.
The popularity of data parallelization in research papers is very high with a clear dominance of
key-based splitting.

In the following, we discuss approaches for SP parallelization in detail. We build three groups:
Open source frameworks, parallelization approaches for CEP, and parallelization approaches for GP.
Within each group, we highlight the distinctive points in the respective systems or approaches, and
provide a �ner-grained grouping based on commonalities of the di�erent approaches, if applicable.

3.1.1 Open source frameworks. Many parallelization and elasticity approaches we discuss in
this article base their research on an open source SP framework. In this section, we present the
most common ones. We explicitly focus on how they enable parallel SP. For each framework, we
thus brie�y discuss how they provide parallelization options for SP application developers. Only
Spark inherently supports elasticity. The other frameworks have interfaces to control parallelism at
runtime. For a more detailed discussion of these frameworks with a higher focus on their internal
architecture we point to Assuncao et al. [33]. Esper [41]: Esper is a declarative SP system for CEP.
Developers declaratively de�ne topologies with EPL, a language similar to SQL. The open source
version supports scale up and down on a multi-core node with four options for multi threading.
Esper does not guarantee in-order processing when multi-threading. The input stream can be split
with windows or context. Context can be built from keys, hash values, categories or time e.g. detect
events between 9:00 AM and 5:00 PM.

Heron [80]: Heron is a GP SP framework that supports key-based and window-based splitting. It
has prede�ned splitting strategies an additional API for custom strategies. Heron provides multiple
APIs to imperatively build SP applications. It is thereby API compatible with Apache Storm. Task
parallel processing and pipelining can be incorporated by de�ning the topology accordingly.

Storm [48]: In terms of parallelization, Storm provides the same options as Heron does. Also
input tuples and operator types are the same. Yet alone the API to de�ne topology di�ers as Heron
provides more API-options (e.g. the Streamlet API) than Storm does. Their major di�erences lie in
architectural details that are out of the scope of this article. We point to Kularkni et al[80].
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Processing Parallelization
Ref, Name System

Type
Prog.
Model

External
State

Infrastructure SM TP SG KS WS PS

Esper [41] CEP Dec Cluster x x x x
Storm [48] GP Imp Cluster, Cloud, Fog x x x x
Heron [80] GP Imp Cluster, Cloud, Fog x x x x
Spark [154] GP Both Cluster, Cloud, Fog x x x x
Flink [20] Both Imp Cluster, Cloud, Fog x x x x
Thies, Gordon [54, 55, 136] GP Imp Stateless Grid x x x
Cherniack [26] GP Dec Cluster x x x x
Brenna [18] CEP Dec Cluster x x
Khandekar [75] GP Imp Cluster (he) x
Woods [144] CEP Dec External FPGA x
Neumeyer [110] GP Imp Cluster, Cloud x
Andrade [6] GP Imp Cluster x x
Balkesen [13] GP Imp Cluster x x
Zeitler [155] GP Imp Cluster x
Schneider [124] GP Dec Cluster x x
Gulisano [57] GP Dec Cluster x x
Wu [146] GP Dec External Cluster x x x
Hirzel [64] GP Dec External Cluster x
Cugola [30] CEP Dec External Single Machine x x x
Fernandez [44] GP Imp External Cloud x
Balkesen [12] CEP Dec Cluster x x x
Balkesen [14] GP Imp Cluster, Cloud x x x
Wang [140] CEP Dec Cluster x x x
Tang [133] GP Imp Single Machine x
Fernandez [45] GP Imp External Cloud x x
Lohrmann [91] GP Imp Cluster, Cloud x x
Zygouras [158] CEP Dec Cloud x
Schneider [125] GP Dec Cloud x x
Rivetti [118] GP Imp Cluster x
Mayer [96, 99] CEP Imp Cloud x
Wu [147] GP Imp (External) Cluster x
Nasir [108, 109] GP Imp Cluster x x
Saleh [120] CEP Dec Cluster x x
Koliousis [78] GP Dec GPU x x x
Zacheilas [153] CEP Dec Cloud x
Nakamura [107] GP Imp Fog x
Gedik [53] GP Dec Single Machine x x x
Mayer [97] GP Imp Cloud x x
Rivetti [117] GP Imp Stateless Cluster x
Schneider [126] GP Dec Stateless Cluster (he) x x
Katsipoulakis [73] GP Both Single Machine, Cluster (x) x x
Mayer [98] CEP Imp External Single Machine x x
Mencagli [105] GP Imp Single Machine x x
Mencagli [103, 104] GP Imp Single Machine x x

Table 1. Categorization of SP operator parallelization literature. The "Processing" Columns show the type of
SP system. “State External" marks approaches that either externalize state or are limited to stateless operators.
The Infrastructure section shows the target infrastructure and if the approach uses shared memory (SM).
The last columns mark Task Parallelization (TP), Data parallelization with Shu�le Grouping (SG), spli�ing
key-(KS), window-(WS) or pane-based (PS). Open source frameworks are followed by research approaches in
order of their date of publication.
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Spark Streaming and Structured Streaming by Spark[154]: As Spark applications originally
processed batches, the Spark Streaming extensions process streamed data in micro batches. Struc-
tured Streaming interprets data streams as an unbounded table where each new data item extends
the table. Operators are queries on this table. A speci�c schema for input data is required. Data can
be split using properties (i.e. keys) and aggregated as windows. Operators are de�ned declaratively.
The parallelism degree can be set explicitly in the topology or via a default value in the con�guration
�les. Opposed to the other frameworks, Spark has a Dynamic Resource Allocation module for
elasticity. According to the documentation, it releases unused resources in low workload times and
requests them again in peak workload times.

Flink[20]: Flink supports key-based and window-based splitting. The parallelization degree for
data parallelism can be set in the topology implementation or via an interface. As default, Flink
places one instance per operator on each core. To the best of our knowledge, custom grouping
mechanisms are not available. Besides a DataStream API, Apache Flink provides two APIs - the
Table API and SQL- API - to use relational-oriented query descriptions. For CEP-oriented queries, a
CEP library is available.

3.1.2 Parallelization in CEP. This section summarizes approaches for parallelization in CEP.
Brenna et al. [18] extend Cayuga [39], a centralized, multi-query SP system for pattern matching.

They enable pipelining and key-based data parallelization and distribute the processing of Cayuga.
It resembles the pipelining approach of Balkesen et al. [12] (cf. Section 2.4.1).

Woods et al. [144] implement the CEP operators directly on FPGAs (Field Programmable Gate
Arrays) for fast CEP. They focus on the so called “network-memory-bottleneck”. This bottleneck
occurs when a SP system writes the content of the event network packages to the main memory
to be accessible by the CPU. The FPGA interprets the event network packages without writing
them to main memory �rst. Only detected patterns are forwarded to the main memory. To exploit
the parallelism of FPGAs, the authors introduce a query language that uses partition keys and
predicates. The system keeps state per key. As FPGA hardware limits the number of keys to be
stored, the authors propose a time limit for the storage of keys. With this limit they discard the
state of a key, if out of a �xed number of past events in the input stream, none has had the speci�c
key. While the approach is less �exible and scalable due to its hardware-centric nature, it can be
bene�cial for highly latency sensitive applications.

Cugola and Margara [30] propose two algorithms for pattern matching in CEP operators. The �rst
algorithm, “automata-based incremental processing (AIP)”, detects patterns with a non-deterministic
�nite automaton, while the second algorithm, “column-based delayed processing (CDP)”, uses lazy
pattern matching. Both algorithms enable pipelining parallelism in multi-stage pattern matching
operators, and task parallelism when multiple queries evaluate the same input event stream. An
outstanding merit in the work of Cugola and Margara is that they take into account a heterogeneous
computing environment with CPUs and GPUs. Based on evaluations, the authors recommend to
use the GPU if there are few, but complex operators in the system, and multi-core CPUs for a high
number of less computational-intensive, operators.

Balkesen at al. [12] propose the window-based data parallelization approach “Run-based Intra-
operator Parallelization (RIP)” for CEP. They implement the operator query as �nite state machines
(FSM) and start a new FSM instance for each incoming event. Additionally, each event is processed
by the already running FSM instances. The authors propose to split the input event stream into
overlapping batches of events based on the window policy of the operator. Each batch is assigned
a thread that then runs those FSM instances started by the events in that batch. This approach
requires bounded window sizes.
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The system proposed by Mayer et al. [96] is a distributed, window-based data parallelization
framework. Input event streams of an operator are split into windows that are scheduled to an elastic
set of distributed operator instances, where each operator instance processes its assigned windows
“from scratch”. This leads to a very high expressiveness of the framework, as the authors show on
operators de�ned in the Snoop [24] and CQL [8] query languages; basically, any window-based
operator can be integrated into the framework. To expose the window policies of the operator
to the splitter, a programming API has been integrated into the system, so that operators can be
plugged into the system with minimal inference to the operator code.

Later work of Mayer et al. [99] discusses the trade-o� between communication overhead and
load balancing when performing window batching. The authors propose a model-based batch
scheduling controller that predicts the latency peak when assigning a window to an operator
instance. Based on that, the controller assigns the windows to the operator instances in such a way
that communication overhead is minimized while a latency bound in the operator instances is met.

Wang et al. present in [140] an approach that computes sequence pattern matches by splitting the
event stream into uniformly sized batches, which resemble panes. Operator instances process those
panes in parallel. The pattern matching is thus done per pane at �rst. Further, the relationships
between events that build any sub-pattern of the complete pattern are stored. A merge stage �nds
complete patterns by stitching together the sub-patterns reported from the operator instances.

Hirzel [64] proposes a pattern syntax and a translation scheme for IBM’s System S that supports
pattern matching. An algorithm translates the match-expressions (the pattern to be found) into
nondeterministic �nite automata (NFAs) at compile time and generates C++ code for it. A “partition
map” stores each NFA-state together with the aggregated results computed so far for the state. A
“partition-by” attribute in the match-expression selects all states from the map that are relevant
when a new event arrives. Parallelization is achieved by splitting the input stream on the same
keys (partition-by attributes) that are used to select the partition maps.

Zygouras et al. [158] implemented a highly distributed and parallel Big Data processing system
that includes stream and batch processing capabilities. Special about this approach is that it combines
the frameworks Esper [41] and Storm [48].

Saleh et al. [120] consider stream and operator splitting of CEP applications. As a basis, the authors
use PipeFlow, their distributed CEP system that provides features for data parallelization [121]. The
input stream can be split based on keys. However, task parallelization with operator splitting is the
focus of their work. The authors partition each CEP operator into sub-operators by rewriting the
query according to rewriting rules. The rewritten query is then easier to split. To decide about the
size of partitions, the system statically assigns costs for latency and memory consumption for each
possible partition. A greedy algorithm then �nds the cost-optimal set of operator graph partitions
for the available set of computing nodes.

Mayer et al. [97] developed GraphCEP, an SP system that allows for combining stream analytics
with graph processing. Event streams are partitioned by a key and fed into operator instances. Each
operator instance has access to a graph processing engine [95] to perform heavy-weight parallel
computations on a large, shared graph. Further, the merger allows for stateful computations that
combine results from multiple operator instances.

In a window-based splitting approach, an event may belong to multiple windows due to a window
overlap. Consumption policies can de�ne, that if an event contributes to one detected pattern, it
cannot be part of another pattern detection, possibly in another window [157]. Hence, the processing
of overlapping windows becomes interdependent. Some SP pattern de�nition languages that enable
these policies are Snoop [24], Amit [2] and TESLA [29]. The SPECTRE system by Mayer et al.
[98] is the �rst work that addresses this interdependency by means of speculative processing. In
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particular, SPECTRE creates multiple versions of dependent windows that assume di�erent event
consumptions and assigns the most probable versions to operator instances. SPECTRE is designed
for multi-core shared memory environments.

3.1.3 Parallelization for General Stream Processing. The following paragraphs discuss paral-
lelization in general SP systems. Due to the high amount of approaches, we further group them
according to the parallelization type, i.e. task or data parallelization. A special case are key-based
data parallelization techniques: This biggest group of approaches is further split up for approaches
that provide advanced key-partitioning functions, approaches that apply key-based splitting and
approaches that focus on key-based state management. Please notice that these groups overlap and
we assigned approaches according to the approaches focus.

Approaches implementing Task Parallelization. The StreamIt language by Thies et al. [136] is a
high-level programming language that supports both task parallelization and pipelining. StreamIt
provides a programming abstraction for managing the event streams and operators. The compiler of
StreamIt is described in two further publications [54, 55], leveraging and optimizing task, pipeline
and data parallelism.

COLA by Khandekar et al. [75] is a pipelining optimization algorithm for IBM’s System S. It
optimizes queries at compile time, before the deployment of the operator graph. It fuses operators
from the logical plan of the query into coarser-grained operators. The fused operators process the
input stream in a pipelined way. The fusion balances communication cost and CPU capacities of
the heterogeneous processing nodes.

Lohrmann et al. [91] propose Nephele-Streaming that extends their batch processing framework
Nephele [141]. To enable SP on top of Nephele, Lohrmann et al. adopt a micro batching approach
[154]. It processes data items in a stream of small batches. By changing the granularity of the
operator graph, Nephele-Streaming enables pipeline parallelism in the operators.

Nakamura et al. present in [107] an SP middleware that is based on their earlier system called
“Information Flow of Things” (IFoT) [151]. They designed a layer fog-computing architecture that
uses Raspberry Pi-nodes. On these nodes run so called neurons that perform real-time data stream
analysis. The middleware divides each application into tasks according to recipes that describe
how the input data should be processed within the application. Tasks might be shared by di�erent
applications. Each neuron executes a set of tasks and can exchange information with other nodes
via the connected "neuron layer". The input and output event stream of the sensors and actuators
is managed by the neurons using the publish/subscribe paradigm [42].

Tang and Gedik [133] introduce task parallelism and pipelining in an SP system. In their system,
each threads processes a sequence of operators as a sequence of function calls. To enable pipelining,
an additional thread inserted into this sequence to execute the downstream operators and frees the
upstream thread to process the next tuple. Their approach provides an elasticity mechanism we
describe in Section 3.2. It runs on a single, multi-core node.

Approaches implementing Shu�e Grouping. Approaches that implement shu�e grouping focus
on load balancing. Schneider et al. [126] propose an approach that balances load for parallelized
stateless operators where the operator instances may di�er in throughput. Their System S extension
monitors the TCP blocking rate per connection between the splitter and each operator instance.
Minimizing the maximal blocking rate among all operator instances balances the load.

Rivetti et al. [117] propose an approach that tackles imbalanced processing latencies of instances.
They focus on applications where the data item processing latency can depend on the content and
propose “Online Shu�e Grouping”, an algorithm for proactive online scheduling of input data
based on an estimation of the data items processing time.
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Another splitting variant mixing key-based splitting and shu�e grouping is known as “partial
key grouping”, proposed by Nasir et al. [108]. The shu�ing phase is restricted to two deterministic
options according to two di�erent hash functions (i.e., key-based splitting with two hash functions
instead of one). A number of parallel splitters can pick dynamically to which of the two operator
instances to send an event, focusing on the one with less load. This optimization technique is
known as “the power of two choices” and provides signi�cant improvement in load balancing [10].
Later, Nasir et al. extend their approach to allow for more than two choices for “hot” keys that
impose most of the workload [109]. In all of these approaches, a combiner is needed to combine
the shu�ed state of each key.

An early attempt of key-aware shu�e grouping has been proposed by Balkesen et al. [14].
When an SP operator has key-partitioned state, the input stream is split by a variant of consistent
hashing (“frequency-aware hash-based partitioning”). This variant considers the key frequencies.
In particular, the k keys with the highest frequency are further split into sub-keys that are shu�ed
around the operator instances—the number of splits depends on the frequency.

Recently, Katsipoulakis et al. [73] proposed to consider aggregation cost in the combiner when
deciding where to route which key. Based on a mathematical formulation of imbalance and ag-
gregation cost (where aggregation cost directly depends on the number of operator instances that
receive and process events with the same key), they propose several heuristic splitting methods
that aim to minimize both imbalance and aggregation cost for a given operator and workload.

In a data-parallel SP operator, the splitter can become a bottleneck if the input event rates are very
high. Zeitler and Risch [155] address this problem by proposing a two-stage splitting processing. In
the �rst stage, they split the input stream into �xed-size batches. They then route these batches to
a number of parallel splitter instances. Those parallel splitters then perform the actual key-based
event routing to the operator instances. The authors provide a mathematical model to compute the
optimal batch size for the �rst splitting stage as well as the optimal number of parallel splitters.
The approach works both for stateless splitters as well as key-based splitters.

Key-partitioning Functions. This section summarizes SP approaches apply key-based splitting
and put a particular focus on the key-partitioning function.

Rivetti et al. [118] propose an algorithm that learns which keys are currently the most common
ones. Based on that, they apply a greedy algorithm to compute a nearly load optimal distribution,
balancing frequent and rare keys among the available nodes. The same problem is also tackled by
Zacheilas et al. [153], who formulate it as a variation of the job shop scheduling problem and apply
an extension of the “Longest Processing Time” algorithm, a greedy heuristic solution.

In [26], Cherniack et al. deploy the SP system Aurora [1] in a distributed setting. To enable data
parallelism, they split the operator (“box splitting”) and add a splitter and merger instance. The
splitter (called “�lter with a predicate”) routes tuples based on predicates, giving the user advanced
options to specify the splitting key with user-de�ned predicates. The merger can implement, e.g.,
a union of the output tuples or a sorting algorithm. The authors provide a deeper discussion on
challenges of splitting and merging data streams.

Gulisano et al. [57] propose “StreamCloud", an elastic and scalable SP system. Their key-based
data parallelization method minimizes distribution overhead. They propose partitioning functions
for di�erent stateful SP operators (equijoin, cartesian product, and aggregate operator).

State Management for Key-based Splitting. Fernandez et al. [44] propose SEEP, a key-based
data-parallel SP system. In SEEP, operators expose their internal, key-partitioned state to the SP
system through a set of state management primitives. SEEP performs state management both for
scale-out as well as recovery of operators. In their later work, Fernandez et al. [45] propose the
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abstraction “stateful data-�ow graphs” (SDG) that separates data from mutable operator state. In
their model, state elements can be partitioned by a key and dispatching is performed by hash- or
range-partitioning on a key or by shu�e grouping. If a state element cannot be partitioned, it is
replicated, and state updates are combined by a “merge logic”. Further, Fernandez et al. provide
a tool “java2sdg” [43] that translates annotated Java programs to SDGs for execution in the SDG
runtime system.

Chronostream by Wu and Tan [147] splits the computational state (based on keys) into so-called
slices. This state splitting supports horizontal and vertical scaling. The slices are distributed and
replicated across di�erent machines, leading to e�cient load balancing and enabling fault tolerance.

Wu et al. [146] extend IBMs System S and enable it to handle shared state in data parallel
processing. They implement a round-robin and a hash-based splitting routine. Special about their
approach is a theoretical model. It analyzes if parallel processing improves the performance of an
SP systems that employs shared state. The model predicts the waiting time and the time overhead
that the shared state access induces.

Approaches implementing Key-based Splitting. Schneider et al. [124] present a compiler and a
runtime environment for their SP language SPL [65] (Stream Processing Language) that enables
data parallelization. Based on hints provided in SPL, the complier de�nes parallel regions, which are
sequences of multiple operators and automatically replicates them. The system supports stateful
and stateless operators and splits the input stream of a parallel region based on keys or, if the
operator is stateless, with Round-Robin shu�e grouping. Fusion of operators further reduces
network communication. In a later publication [125], the authors add support for operators that
produce a dynamic number of output data items per input data item.

Gedik et al. [53] propose an approach for “pipelined �ssion”, a combination of pipelining and key-
based data parallelization. They fuse groups of operators into so-called pipelines with a heuristic
optimization algorithm. Di�erent threads can then execute these pipelines independently to enable
parallelism. Additionally, stateless or key-partitioning pipelines can be further parallelized by a
split–process–merge architecture to exploit data parallelism.

Neumeyer et al. [110] propose the highly scalable SP system S4. The system scales with Processing
Engines (PE) where one PE is responsible for a speci�c key and processes all corresponding data
items. A processing node (PN) manages multiple PEs, i.e., a subset of the key domain, and instantiates
new PEs if a new key occurs that is not covered by an existing PE yet.

Approaches implementing Window-based Splitting. Andrade et al. [6] present a low-latency SP
implementation in IBM’s System S. This implementation splits the input stream of an operator on
two levels: On the �rst level key-based, on the second level, for each of the key ranges, window-based.
Thus, it is for example possible to calculate an average over a time window, i.e. a window-based
operation, for the stock value of di�erent companies, i.e. on a key-based split input data stream.
The authors name this pattern the “split/aggregate/join" pattern.

The work of Mencagli et al. [105] propose a novel execution model, “agnostic worker” for multi-
core shared memory environments. An agnostic worker parallelizes operators with window policies
that require forward context (cf. Section 2.4). The splitter does not only determine the window
extents on the input stream, but also when a window computation is triggered (i.e., when the query
function is called.). The actual computation of the window results, i.e., the execution of the query
function, is then scheduled to one of the available operator instances.

Approaches implementing Pane-based Splitting. Mencagli et al. [103, 104] split large panes into
sub-panes with a proportional-integrative-derivative controller (PID) that automatically adjusts the
splitting threshold. Their work focuses on burstiness in event arrival rates as to avoid bottlenecks.
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Balkesen et al. [13] parallelize sliding window processing on data streams with pane-based
splitting. A ring-based pane-partitioning splits the input stream and assigns panes to processing
nodes that are logically ordered in a ring. The ring structure eases ordered processing and reduces
communication overhead. Their approach �rst assigns windows to the ring-ordered nodes round-
robin. Each node then processes those panes that belong to its assigned windows. A pane result
calculated on one node can then be easily forwarded to the next node where the next window
this pane belongs to assigned. A merge node aggregates the pane-results whereby it allows for a
constrained degree of disorder to balance e�ciency and output quality.

Koliousis et al. propose SABER [78], an SP engine that manages query processing on heteroge-
neous hardware with CPU and GPU cores. A splitter �rst splits the incoming event streams into
batches of a �xed size and assigns them to a processing unit, i.e., a CPU core or a GPU processor.
Each processing unit executes a “query task”, i.e., a function that takes n batches, one from each of
the n incoming event streams and calculates a function on those n batches in parallel applying an
n-ary operator function. SABER aims to keep the size of the batches independent from the window
policy, i.e., from the window size and slide. To this end, the operator function is divided into a
fragment operator function and an assembly operator function. The fragment operator function
de�nes the processing of a sequence of window fragments and produces window fragment results.
The assembly operator function constructs the complete window result by combining the window
fragment results. This way, di�erent from classical pane-based splitting, the size of the processed
batches is independent of the window slide.

3.2 Elasticity
This section discusses elasticity solutions for SP systems. It starts with centralized approaches
where a single controller adapts the parallelism for the complete operator graph. Then, we discuss
decentralized approaches where multiple controllers — each responsible for a sub-set of operators—
adapt the parallelism. Table 2 gives an overview of the approaches according to the properties
described in Section 2.5. A tick marks that an elasticity approach provides the property. These
properties are: (1) Does the approach provide real-time guarantees? (2) Does it use a model rather
than a threshold (only), (3) Is it a distributed approach? (4) Does it consider state migration?,(5)
Does it evaluate its actions to improve its decision making process? Approaches without a tick
either exclude these properties or do not consider them further.

3.2.1 Centralized Elasticity Solutions. This section presents elasticity solutions that implement a
centralized controller. To further group the approaches, it begins with threshold-based approaches
and continues with approaches that rely on a model for their scaling decision.

Threshold-based approaches. The following approaches reactively scale up or out when a threshold
is met.

Satzger et al. [122] propose a distributed SP platform in Erlang called ESC for balanced, fault tol-
erant elastic stream processing in homogeneous cloud-environments. With this platform, program-
mers can adapt policies for thresholds, policies for scaling and splitter rules where the thresholds are
set for workload and queue length. Their platform follows the vision of autonomic computing [74].
An “autonomic manager” controls the number of VMs and the distribution of operator instances
on them. The contribution of ESC is rather its extensible architecture than the speci�c methods for
elasticity control. While operators can be stateful, the authors do not describe a state migration
process. They further leave interference e�ects of multiple operators on a shared node as future
work.
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Schneider [123] x RE TP U x x SM 2009
Satzger [122] x RE Lat O Cloud 2011
Gulisano [57] x RE Res. U x Cloud 2012
Tang [133] x RE TP U x x x SM 2012
Fernandez [44] x x RE TP O x Cloud 2013
Balkesen [14] x PR Lat x O x Cluster 2013
Akidau [3] x x RE LB, Lat U, O x Cluster, Cloud 2013
Gedik [52] x RE TP O x x x Cluster 2014
Kumbhare [82] x x PR TP O x Cloud 2014
Lohrmann [91] x RE Lat, TP x O x x Cluster 2014
Heinze [61] x RE Util, Lat O x* x x Cluster 2014
Heinze [59] x RE Migr., Lat x O x x x Cluster 2014
Heinze [62] x RE Lat x O x x x Cluster 2015
Lohrmann [90] x x PR Lat x O x x Cluster 2015
Mayer [96] x PR Lat x O x x Cluster 2015
Zacheilas [152] x PR Lat x O x x Cloud 2015
Sun [131] x PR Lat O x Cloud 2015
Hochreiner [69] x RE Lat O x Cloud 2016
Hochreiner [68] x x RE Lat O x Cloud 2016
Mencagli [102] x RE TP O x x Cluster 2016
De Matteis [34, 37] x x PR Lat x U x x SM 2016
De Matteis [35] x x PR Lat x O x x Cluster 2017
Hidalgo [63] x x R/P TP U x x Cluster 2017
Kombi [79] x x PR TP, Stab. U, O x x Cloud 2017
Cardellini [23] x x PR Lat U, O x* x Cloud, Fog 2018
Mencagli [103] x x PR LB, Lat U, O x x Cloud 2018

Table 2. Categorization of SP operator elasticity literature. The first column contains the first author and the
reference. The other columns specify the categorization according to the criteria introduced in Section 2.5. We
ordered the table by publication date (last column). Abbreviations: RE or PR : reactive or proactive approach;
Objectives (Obj.): TP : Throughput, Lat : Latency, Res: Resources, LB: Load Balancing, Util: Resource Utilization,
Migr : Number of migrations, Stab: Number of re-configurations; RT : real-time guarantees; Ev.: evaluation of
scaling e�ects; SM: Single Machine; *: Model-based with learning.

The elasticity component in VISP by Hochreiner et al. [68] uses thresholds on queue size or delay
for each operator. VISP is a distributed SP system specialized on Internet of Things applications.
It provides data integration, a “marketplace” for operators and operator topologies, and billing.
Special is a shared key-value store for state that prevents state migrations.

With an upper and lower threshold for CPU utilization, in “StreamCloud" by Gulisano et al. [57]
an “Elasticity Manager" reactively controls the average CPU utilization of the cluster hosting the
operator graph. The authors propose the elasticity management in addition to a new key-based
parallelization technique as described in Section 3.1. Their goal is to minimize resource consumption
of an SP system in a private cloud to free resources for other applications. To scale out fast, a
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resource manager provides a pool of idle machines that can be activated when needed. To manage
state, the authors propose an overlap phase and a state migration protocol. The involved operator
instances agree on a start time where the former and the now responsible operator instance either
start to process the same data until the state can be discarded at the old instance (overlap phase for
sliding windows) or migrate state and bu�er input data until the migration is �nished (migration).

Similarly, Fernandez et al. [44] reactively scale out their SP system based on CPU thresholds:
Their elasticity mechanism heuristically removes throughput bottlenecks where the average user
and system CPU utilization exceed a threshold. The system CPU utilization tells about the real load
on the machine, possibly induced by other, interfering applications. Again, the solution increases
the scale out speed by keeping a “pool” of idle VMs. To easily migrate state and be fault tolerant,
the implementation frequently stores checkpoints of operator states. Scale in, i.e. merging of states,
is mentioned as future work. Madsen and Zhou present in [93] a similar approach to reduce the
latency induced by the state migration with re-using availabe checkpoints.

The MillWheel framework proposed by Akidau et al. [3] scales up or out based on thresholds
on CPU or memory utilization. The framework provides a fault tolerant, exactly once semantic
for highly scalable SP applications and key-based, elastic data parallelization. Consistent state
migration is supported with atomic state write operations and tokens that enforce single writer
semantics.

Reactive Model-based approaches. With a greedy algorithm, Tang and Gedik [133] dynamically
adapt the level of pipelining of an SP system on a multi-core machine. The authors use the assump-
tions that less utilized threads have a higher throughput and that pipelining and task parallelism
are inherently available in the operator graph. Their solution minimizes the overall utilization
for all threads. For fast processing, an exhaustive tree based aggregation reduces the search space
of the algorithm. To continuously improve, the approach reverses and blacklists adaptations that
do not su�ciently improve throughput. To migrate state, the system blocks while spawning new
threads.

The group around Thomas Heinze published three approaches in the topic of elastic scaling. The
�rst compares di�erent auto-scaling strategies. The second tackles the problem of latency spikes
due to state migration and the third tackles the question how to �nd optimal system parameters
to con�gure an elastic SP system. Heinze et al. [61] analyze three di�erent auto-scaling strategies
on a cluster: global thresholds, local thresholds and reinforcement learning (RL). The goal is to
maximize the utilization of processing nodes (i.e. to reduce the number of required nodes) while
keeping the latency low. They use their system FUGU [60] for evaluations. The global threshold
strategy scales based on to the average CPU utilization of the cluster, the local based on the CPU
utilization per processing node. The rewards used in the RL approach depend on the degree the host
utilization di�ers from a target utilization. The authors emphasize the importance to update the RL
model according to experienced success or failure. The comparison shows that global threshold
methodologies are not feasible for fast adaption of SP systems and that the RL-approach leads to
the lowest latency with the highest utilization.

The latency spike a state migration induces is the focus of the follow up work by Heinze et al.
[59]. They propose a reactive model-based controller that scales their SP system and guarantees
an average end-to-end latency bound while keeping the resource utilization high. Their approach
di�erentiates mandatory and optional migrations. Mandatory are migrations due to node overload
(scale out). Optional migrations are due to node underload to improve the overall node utilization
(scale in). These optional migrations are carried out only when the expected latency spike due to
migration does not violate the latency bound. To predict the spike, the algorithm considers the
size of the state to migrate, the total numbers of operators to move and the current arrival rate
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of the system. The latency values used for the cost model are calculated from the expected queue
lengths if the system pauses. To improve the decision making, the system continuously updates its
expected pausing times with measured values from performed migrations. In case of an optional
migration, if releasing a complete host violates the latency bound, operators are migrated stepwise
until the host can be shut down. The authors employ the FLUX-state migration protocol [127].
Their bin packing algorithm (cf. [60]) reassigns the selected operators to migrate to new machines
based on CPU utilization.

Finally, Heinze et al. [62] handle the problem that elasticity strategies require user de�ned param-
eters, for example sampling frequencies, thresholds and placement strategies. As these parameters
signi�cantly in�uence the system’s performance and cost, they need to be set carefully. The authors
propose a model-based parameter-optimization method. With simulations, it automatically tunes
six di�erent thresholds to achieve cost-optimality with Heinze et al.’s reactive scaling-method.

Proactive Model-based approaches. Balkesen et al. [14] propose a multi-query SP framework
with key- and pane-based data parallelization that manages how input streams are assigned to
splitter nodes. Their goal is to minimize the number of processing nodes while keeping end-to-end
latency bounds and balanced load. With an exponential smoothing technique and user-provided
meta-data, they predict the future arrival rate and the change behavior of the input stream. Given
this data, they calculate the number of required splitter nodes and assign them the input streams
with a packing algorithm. Additionally, a mathematical equation is used to calculate the required
parallelization degree given the predicted workload, node capacity and processing cost of input
data items. A pool of idle nodes enables fast scale out. To add an operator instance, splitter and
merger stop to connect to the new node. The approach does not include state migrations.

Sun et al. [131] propose Re-Stream, a scheduler for distributed and parallel SP systems that is both
latency- and energy-aware. A re-scheduling algorithm minimizes the response time of operators on
the critical path and schedules the other operators to minimize energy consumption of the system.

Solutions that employ the Kingman’s formula from Queuing Theory (QT) [76] to calculate
parallelization degrees come from Lohrmann et al. [90] and De Matteis and Mencagli [34, 37]. This
formula provides average queuing delays for general arrival and processing distributions (G/G/x
queues) under heavy load. Worst case analysis with QT (cf. Mayer et al. [96]) is possible for speci�c
distributions only.

Lohrmann et al. [90] extend their system Nephele-streaming [91] we describe in Section 3.2.2
with a centralized controller to guarantee an average latency bound while minimizing resource
consumption. With Kingman’s formula, they predict queuing latencies and adapt the data paral-
lelization degree of the operators in the SP system accordingly. To quickly react to sudden workload
burst, a reactive component additionally doubles the parallelization degree if an operator becomes
a bottleneck. The authors assume homogeneous processing nodes. Concerning state migration
techniques they refer to other publications in this �eld.

De Matteis and Mencagli [34, 37] propose latency-aware and energy-e�cient scaling of key-based
data parallel SP operators. With a Model Predictive Control strategy, they control queuing latencies
and energy consumptions on multi-core machines. Their goal is to minimize a latency-violation
penalty, energy-consumption cost and consider a system stability value to avoid oscillation. Similar
to the work of Mayer et al. [96], a disturbance forecaster predicts the future arrival rate and
processing time. As in Lohrmann et al. [90], De Matteis and Mencagli predict the average per-tuple
latency with QT. Moreover, De Matteis and Mencagli propose a power consumption model that
predicts energy consumption for a CPU frequency and number of active cores. A state migration
protocol exchanges state with a shared memory state storage. Special about this migration protocol
is that only those instances pause their processing that are involved in the state migration. The

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:24 Henrie�e Röger and Ruben Mayer

other instances continue processing. Later, De Matteis and Mencagli extend their approach to
horizontal scaling across several machines [35], building on the same predictive control model.

Zacheilas et al. [152] use a shortest path algorithm to proactively scale applications written with
their SP framework (cf. [158]). Their algorithm minimizes resource cost, penalties for missed tuples
due to operator overload and the state migration downtimes. The approach predicts latency and
workload using a Gaussian Process and then models possible system con�gurations as a directed,
acyclic graph. A shortest path algorithm �nds the cost minimal sequence of con�gurations.

Hidalgo et al. [63] propose a hybrid reactive and proactive elasticity controller implemented
on top of the S4 SP system [110]. The elasticity controller has two parts, a reactive short-term
adaptation and a proactive mid-term adaptation. It controls the load of an operator based on its
workload-to-throughput ratio and aims to maximize the system’s throughput, avoiding bottlenecks.
The short-term adaptation reactively changes the parallelization degree of an operator based on
utilization-thresholds. The mid-term adaptation predicts the future load-state of an operator with
a Markov-Chain model. It adapts the parallelization degree to the most probable load-state. The
authors mention possible state migration solutions that can be included into their approach.

Kombi et al. [79] published the AUTOSCALE approach that centrally adapts the parallelization
degrees of the operators in an operator graph based on predictive input values. Their goal is to
proactively avoid congestion within the operator graph but be resource optimal and avoid too
frequent recon�gurations. For each operator, AUTOSCALE predicts its future input in two ways:
First, using linear regression, it predicts the input event rate of each operator using data from the
last monitoring interval. Second, it predicts the input event rate from the predicted output event
rate of the upstream operators and its selectivity. To decide about adapting the parallelization
degree of a given operator, they combine these two input-estimations and calculate an activity
metric from the input and the operators processing capacity. The scaling decisions then consider
the activity metric and the derivative of the linear regression function where the letter serves as
trend-indicator for the input load. While the solution considers stateful operators, the authors do
not discuss state migration.

Cardellini et al. [23] propose a hierarchical controller for a distributed SP system to manage the
parallelization degree and placement of operators. Local components send elasticity and migration
requests to a global component that prioritizes and approves the requests based on bene�t and
urgency of the requested action. The cost-metric the global controller minimizes comprises the
downtime caused by an action, the performance penalty in case of overloaded operators, and the cost
for required resources. The global approval is made using a token bucket implementation. Regarding
elasticity, the authors propose two concepts: A CPU-threshold based and a reinforcement learning
based one. The reinforcement concept is further split up in a basic and a model supported solution.
The basic solution switches between exploitation and exploration phases. The model supported
solution pre-computes possible long-term costs based on the probabilities for parallelization degrees
and arrival rates. It updates its knowledge at runtime which supersedes an exploitation phase.
Their implementation in D-Storm (cf. [88]) migrates state with downtimes. Due to its decentralized
nature, the controller is applicable in widely distributed environments.

Mencagli et al. [103] propose a two-level autonomic adaptation system for pane-based SP opera-
tors with two control loops: An inner loop schedules incoming events to worker threads to balance
load at bursty data arrival rates. An outer loop controls the number of workers for long-term trends
in the average data arrival rate. The authors argue that the mathematical models for conventional
Control Theory methods are too complex given a system with multiple components and interde-
pendent dynamics. Hence, they apply a Fuzzy Logic Controller which a domain expert con�gures.
Several synthetic and real-world scenarios show the Controllers ability to deal with �uctuating
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workload. In case of changes in the thread level, the system updates the information that ensures
that workers consistently assemble the pane results in the second stage of the pane-based operator.

Most of the elasticity controllers assume that the performance of allocated compute resources is
stable. However, Kumbhare et al. [83] observe performance variations in VMs on multi-tenant clouds
that require frequent adaptation of the con�guration of the SP system (elasticity and placement of
operator components). They propose a predictive controller to dynamically re-plan the allocation
of elastic cloud resources which mitigates the impact of both resource and workload �uctuations.

3.2.2 Distributed Elasticity Solutions. There are a couple of papers that explore distributed
elasticity controllers in charge of observing and controlling di�erent sub-parts of the operator
graph. We group them into approaches where a controller is responsible for multiple operators and
approaches that focus on the control of single operators.

Multi-Operator Solutions. Some solutions �nd global consensus where the controllers communi-
cate in order to �nd agreements in their recon�guration choices. Early work by Weigold et al. [142]
proposes a rule-based autonomic controller for distributed components in grid computing. The
authors propose an architecture and discuss some implications of their design choices, but do not
explicitly state how to con�gure the controller (i.e., the rules) in order to achieve speci�c optimiza-
tion goals. Mencagli [102] proposes a distributed solution that employs a game-theoretic controller
for each SP operator. By starting a game, each local controller determines the optimal parallelization
degree for its operator, thereby maximizing the throughput while minimizing the monetary cost.
Mencagli compares a non-cooperative and an incentive-based approach that encourages coopera-
tion. The latter leads to a better solution for the whole system than the non-cooperative approach.
Additionally, Mencagli et al. [101, 106] examine distributed elasticity control by applying Model
Predictive Control in combination with a cooperative optimization framework. In particular, the
e�ects of switching costs between con�gurations is modeled by a mathematical function which is
used by a proactive control strategy to globally optimize the elasticity decisions. To �nd agreement
between the distributed controllers, they apply the distributed subgradient method to optimize the
sum of cost functions over all operators.

Lohrmann et al. [91] propose Nephele-Streaming, an SP framework that uses micro batching of
data items. The authors reactively balance throughput and latency, aiming to keep throughput high
but keep the average end-to-end latency withing user-de�ned bounds. They therefore use dynamic
output bu�er sizes (“adaptive output bu�er sizing”) and task fusion (“dynamic task chaining”). The
former reduces the output batch size and thus waiting latencies. The latter increases the number of
tasks that run within the same thread to reduce communication latencies (“reverse pipelining").
They propose a distributed, model-based approach with a set of QoS managers. Each manager
manages the latency constraints for one part of the operator graph based on latency and CPU load
measurements. When fusing tasks, i.e. omitting queues between them, the system either drops the
data items in these queues or waits until the data items in the queues are processed. Their solution
targets big cluster of nodes, which motivates the decentralized approach.

Single-Operator Solutions. This section summarizes three threshold and one model based ap-
proaches that provide elasticity control for single operators (or a limited sequence of operators)
only instead of the complete operator graph. Schneider et al. [123] provide an algorithm that adapts
the thread level of a single SP operator to control its throughput. The algorithm greedily adapts
the thread level until throughput is not increased further. Then a stability condition is met and
the thread level is kept. If the system detects changes in the throughput, it re-runs the algorithm
to adapt the thread level according to changes in the workload as well as higher external load on
the system. Noteworthy is that the authors provide one global queue the threads share as input

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:26 Henrie�e Röger and Ruben Mayer

queue. They further explicitly consider interferences on the node with other processes and adapt
the thread level accordingly. They assume a single node environment.

Gedik et al. [52] propose an extension of their key-based data parallelization framework [124]
that reactively adapts the parallelization degree of parallel regions according to changes in the
workload. Their goal is high throughput at low resource usage in a best e�ort manner. A threshold
based congestion-detection model uses back pressure information to decide about scaling. The
splitter detects congestion and measures throughput of its operator. To avoid frequent scaling, the
elasticity component remembers e�ective operating states of the system (parallelization degree) for
the current workload. When the workload changes, the remembered system states are purged, and
the system settles again to the new workload. A level function de�nes how many instances to add
or remove. Setting the level function can make the adaptation more or less aggressive. To migrate
state, instances store it in a database to make it available to newly spawned operator instances.
During migration, the splitter stops. The proposed consistent hash function minimizes required
state migration and ensures load balancing. To apply this solution in a multi-operator graph, one
provides one splitter per parallel region (cf. [124], Section 3.1.3).

Hochreiner et al. [69] propose a reactive elasticity controller for their distributed SP platform
PESP. For each operator, the controller minimizes monetary costs while ensuring moderate queuing
times and CPU utilization with threshold driven scaling. The optimization algorithm considers
real cloud provider pricing models that include a minimum time a VM needs to be rented. If an
instance shall be shut down due to over provision, the controller selects the instance that has the
least left time already paid for. With state being stored in a shared directory, operator scaling does
not require state migration.

A proactive, model-based approach comes from Mayer et al. [96]. They provide a window-based
data parallelization single operator framework. The operator instances can thereby be distributed
to multiple machines. An elasticity controller proactively ensures a worst case latency limit using a
queuing-theory based model. Thereby, all operator instances are assumed to behave homogeneously,
i.e. have the same service times. While this model is limited to speci�c probabilistic distributions
of arrival and processing rates, it enables the worst case limitation of queuing latency. In their
framework, windows, when assigned to an operator instance once, will not be migrated. If an
instance shall be shut down, it �nishes the processing of its assigned windows and shuts down
afterwards. Hence, scaling does not require state migration or downtime.

4 RELATED WORK
While this survey focusses on SP operator parallelization and elasticity, there are further important
aspects when it comes to manage SP systems. This section provides a brief overview and discussion.
The following aspects are discussed: Placement of SP operators, e�cient resource provision, and
e�cient processing algorithms for SP operators. Furthermore, we discuss the relation of SP systems
to batch processing systems.

4.1 Operator Placement
One important aspect in SP system management is the placement of SP operators in a distributed
infrastructure. In the realm of SP system, this problem is often referred to as the scheduling problem,
i.e., where to execute which parts of the operator graph. This regards the coarse-plained operator
placement in di�erent domains, e.g., in di�erent data centers, but also the �ne-grained placement
within a single domain, e.g., within a single data center. Due to dynamic workloads of an SP system,
operator placement cannot be a static decision, but operators need to be frequently migrated. In
this section, we discuss some general challenges and solutions to this end.
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Cardellini et al. [21] formulate the placement problem as an integer linear program (ILP) that can
be solved optimally with an ILP solver. However, due to the NP-completeness of the problem, there
is the need for e�cient heuristics. SBON by Pietzuch et al. [113] is a placement algorithm that is
based on a spring relaxation model and optimized the network utilization. Rizou et al. [119] propose
another placement algorithm that uses the gradient descent method and optimizes the network
utilization. SODA [143] by Wolf et al. is an early scheduler proposed for IBM’s System S. To neither
overload the network nor processing capacities of the computing nodes, SODA periodically admits
or rejects new operator graphs and places them optimally. Amini et al. [5] propose a two-tiered
scheduler that maximizes system throughput. The �rst tier decides about long-term operator
placement, while the second tier reacts to bursts in workload with short-term CPU scheduling and
event �ow control on each computing node. When sources and sinks in the operator graph are
mobile, the optimal operator placement changes over time, so that operators need to be migrated.
To this end, MigCEP [112] by Ottenwälder et al. performs a plan-based migration of operators by
predicting mobility patterns. Operator migration can in some cases be too expensive or infeasible.
Xing et al. [148] have developed a placement algorithm that provides resilient placements that can
withstand workload changes without operator migrations. Similarly, Drougas and Kalogeraki [40]
propose a method for operator placement and parallelization that is resilient to sudden bursts in
the input streams.

With the increasing need for operator parallelization and elasticity, �ne-grained placement,
i.e., where to place which operator components, has become an urgent problem. Aniello et al. [7]
propose an adaptive online scheduler tailored to the Storm ESP system that takes into account tra�c
patterns between components of the ESP system to reduce inter-node tra�c. The T-Storm scheduler
by Xu et al. [149] follows a similar goal; in comparison to Aniello et al. [7], T-Storm introduces a
couple of further optimizations tailored to the Storm SP system. Fischer and Bernstein [46] model
the communication between the instances in Storm as a graph and solve a graph partitioning
problem to minimize the communication while keeping the computational load between the nodes
balanced. Their approach shows a better performance than the aforementioned adaptive online
scheduler by Aniello et al. [7].

There are also combined approaches which regard determining the operator parallelization
degree and the �ne-grained placement of operator instances as a holistic problem. Cardellini et
al. [22] formalized the combined problem for data-parallel SP as an integer linear program (ILP)
that can be solved optimally with an ILP solver. P-Deployer [89] by Liu and Buyya models the
same problem as a bin-packing problem and solves it by a heuristic that is based on the �rst �t
decreasing method. Backman et al. [11] propose a scheduling framework that can exploit data and
task parallelism in SP operators. It minimizes the end-to-end latency with operator parallelism
and the scheduling of the corresponding operator components on the available computing node.
The authors use a tiered bin-packing problem, which allows for prioritizing operators, and solve
the optimization problem using simulation-based latency estimation. Madsen et al. [94] provide
a solution to integrate load balancing, collocating (i.e., placement), and horizontal scaling (i.e.,
determining the parallelization degree of operators). They model the problem as a Mixed-Integer
Linear Program, solved with a heuristic greedy algorithm. While the papers discussed in this
paragraph have some overlap with the work on operator elasticity discussed in Section 3.2 their
focus is more on the placement problem than on elasticity control.

4.2 E�icient Resource Provisioning
Another aspect that is related both to parallelization and elasticity is how to e�ciently provide the
required resources in cloud environments.
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The SP system Stela by Xu et al. [150] tackles the problem which operator to scale out when
there are more resources added to the system, and which operators to scale in when resources are
removed. Stela maximizes the post-scaling throughput by scaling out the operators that have the
highest predicted impact on the application throughput based on an analysis of the congestion in
the operator graph.

Borkowski et al. [17] tackle the problem of minimizing the number of super�uous scaling
activities at highly noisy workloads. To this end, they employ non-linear �ltering techniques from
the �eld of signal processing.

Lombardi et al. [92] make the observation that the scaling of operators and the scaling of resources
are two independent tasks that do not necessarily have to be performed jointly. They propose
the ELYSIUM controller that �rst adapts the parallelization degree for each operator, and then
adapts the resource provisioning only when needed. To this end, they leverage a resource estimator
that predicts the resource consumption based on the current resource utilization. Similarly, Van
der Veen et al. [138] propose a controller to automatically adjust the number of virtual machines
assigned to a deployment of the Storm ESP system.

4.3 E�icient Operator Execution and Re-Use
Besides questions of scaling and placement of SP operators, the e�cient execution of operators and
whole operator graphs has received a lot of attention in the literature. On the one-hand side, the
execution of single operators is optimized by e�cient processing algorithms. On the other-hand
side, the execution of overall operator graphs is optimized by operator re-use among multiple
concurrent queries.

ZStream by Mei et al. [100] implements a tree-based pattern-plan structure and dynamically
�nds the optimal plan to evaluate the CEP-pattern.

The work of Poppe et al. [114] manages the trade-o� between memory consumption and pro-
cessing throughput when detecting sequences of arbitrary, statically unknown length, e.g. Kleene-
closure queries. The approach stores common subsequences of multiple pattern instances for re-use,
to decreasing the processing load at the cost of memory consumption.

There is a large body of work on the e�cient incremental processing of general queries on
sliding windows in SP operators. The tutorial by Hirzel et al. [66] provides a comprehensive
overview. Tangwongsan et al. in [135] and [134] optimize processing depending on the mathematical
properties of the operator function (invertability, associativity and commutativity). Le-Phuoc et al.
[85] propose an incrementally sliding window approach for the parallel processing of multiway
join and aggregation operations.

When there are multiple queries in an SP system, re-use of results from one query in another
query is a common method to reduce overhead. The RECEP system by Ottenwälder et al. [111]
tackles multi-query SP systems in mobile scenarios, where there are many similar queries that show
overlapping ranges of interest in time and space. RECEP allows to re-use results of similar queries,
guaranteeing a user-de�ned quality requirement with precision and recal. SQPR by Kalyvianaki
et al. [71] and SPASS by Ray et al. [116] are placement optimizers that leverage the sharing of
computations between the sub-patterns of multiple queries. SlickDeque by Shein et al. [128]
improves throughput and latency of incremental invertible and noninvertible SP operators and
supports e�cient multi-query processing.

Verner et al. [139] propose a deadline-aware scheduler for hybrid compute platforms for operators
that process multiple di�erent input streams in a highly-parallel fashion. Their solution consist of
multiple CPUs and a single accelerator (such as a GPU).
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4.4 Batch Processing Systems
Modern batch processing systems make heavy use of data parallelism. Those systems are often
based on the MapReduce paradigm presented by Dean and Ghemawat [38], that splits the input data
with keys. A couple of works push the traditional MapReduce more toward a streaming behavior.
In [84], Lam et al. present Muppet, a MapReduce modi�cation where an “update” function" replaces
the reduce function. The update function makes intermediate results accessible any time, giving the
impression of a results stream. Similarly, Hadoop Online by Condie et al. [27, 28] allows users to
see “early returns”, i.e., intermediate results of the reduce function. Stream MapReduce by Brito et
al. [19] introduces “windowed reducers” to output a stream of results according to a window policy.
Kumbhare et al. [81] extend Stream MapReduce by methods for adaptive load-balancing, runtime
elasticity and fault tolerance. Beyond approaches to adapt a streaming model in MapReduce, Apache
Flink [20], Apache Spark [154] and AJIRA [137] support batch and stream processing.

5 CONCLUSION AND OUTLOOK
As the rate of publications on parallelization and elasticity in SP is still increasing, we see the demand
for a structured overview of this �eld. In this survey, we discussed and classi�ed solutions for
parallelization and elasticity in SP systems to provide a comprehensive overview. Besides providing
an overview, with our work we hope to enhance the mutual understanding of research communities
that look at SP systems from di�erent angles. For instance, we noticed that researchers from the
general SP domain typically assume SP operators that have key-partitioned state. In contrast,
researchers from the CEP domain focus on window-based operations. Hence, the solutions for
parallelization and elasticity that are proposed from the di�erent domains are di�erent. For future
research in parallel and elastic SP, we observe a couple of recent trends that will impact SP systems.
These general trends are fog and edge computing, in-network computing (e.g., on smart NICs), and
sophisticated cloud cost models.

As we found in this survey, most of the current solutions on SP parallelization and elasticity are
developed for homogeneous resources, often provided by a cloud data center. As a future work, we
encourage an extension towards heterogeneous resources, especially considering the upcoming
trend toward fog and edge computing that comes with more heterogeneous processing nodes [16].
Further, fog and edge compute nodes are limited in their computational capabilities, so that the
“illusion of unlimited hardware” provided by cloud computing may not hold at the edge. Here, load
shedding or approximate computing may be unavoidable, and we see �rst methods for approximate
SP being proposed [115].

We see an emerging �eld of new programmable network devices that allow for o�oading
computing from CPUs to the network, along with network programming languages such as P4.
Early work on in-network CEP points to tremendous potential of in-network computing for this
domain, but also reveals challenges due to limitations both in the programmable hardware as well
as in the network programming language [77].

Finally, promising QoS-metrics to consider in elasticity approaches are energy consumption to
support environmental friendly IT solutions and the cost models of cloud providers that go beyond
the standard "pay-as-you-go" model. These models support, e.g, "spot instances" and thus make
room for �nancial savings [156].
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