
State-Aware Load Shedding from Input Event
Streams in Complex Event Processing

Ahmad Slo, Sukanya Bhowmik, Kurt Rothermel

Abstract—In complex event processing (CEP), load shedding
is performed to maintain a given latency bound during overload
situations when there is a limitation on resources. However,
shedding load implies degradation in the quality of results (QoR).
Therefore, it is crucial to perform load shedding in a way
that has the lowest impact on QoR. Researchers, in the CEP
domain, propose to drop either events or partial matches (PMs)
in overload cases. They assign utilities to events or PMs by
considering either the importance of events or the importance
of PMs but not both together. In this paper, we combine these
approaches where we propose to assign a utility to an event
by considering both the event importance and the importance of
PMs. We propose two load shedding approaches for CEP systems.
The first approach drops events from PMs, while the second
approach drops events from windows. We adopt a probabilistic
model that uses the type and position of an event in a window
and the state of a PM to assign a utility to an event. We, also,
propose an approach to predict a utility threshold that is used to
drop the required amount of events to maintain a given latency
bound. By extensive evaluations on two real-world datasets and
several representative queries, we show that, in the majority of
cases, our load shedding approach outperforms state-of-the-art
load shedding approaches, w.r.t. QoR.

Index Terms—Complex Event Processing, Stream Processing,
Load Shedding, Approximate Computing, latency bound, QoS,
QoR.

I. INTRODUCTION

Complex event processing (CEP) systems are used in many
applications to detect patterns in input event streams [1], [2],
[3]. The criticality of detected patterns (also called complex
events) depends on the application. For example, in fraud
detection systems in banks, detected complex events might
indicate that a fraudster tries to withdraw money from a vic-
tim’s account. Naturally, the complex events in this application
are critical. On the other hand, in applications like network
monitoring, soccer analysis, and transportation [4], [5], [6],
the detected complex events might be less critical. As a result,
these applications might tolerate imprecise detection or loss of
some complex events.

In CEP systems, input events are streamed continuously
to CEP operators where the input events (or simply events)
are partitioned into windows of events [1], [2]. Events within
windows are processed by CEP operators to detect patterns
(called pattern matching). A detected part of a pattern within
a window is called a partial match (denoted by PM) where the

Ahmad Slo, Sukanya Bhowmik, and Kurt Rothermel are with
the Department of Distributed Systems, Institute for Parallel and
Distributed Systems, University of Stuttgart, Universitaetsstrasse 38,
70569 Stuttgart, Germany. E-mail: {ahmad.slo@ipvs.uni-stuttgart.de;
sukanya.bhowmik@ipvs.uni-stuttgart.de; kurt.rothermel@ipvs.uni-
stuttgart.de}

partial match could become a complex event if the full pattern
is matched. Within a window, there might exist several PMs
at the same time where PMs represent an important part of
the internal state of a CEP operator.

For most applications, it is important to detect complex
events within a certain latency bound (LB) where the late
detected complex events become useless [7], [8]. However,
if the rate of input events exceeds the processing capacity of
CEP operators, the input events queue up and the detection
latency of complex events increases, possibly resulting in
violation of the given latency bound. For CEP applications
that tolerate imprecise detection of complex events and have
limited processing resources, one way to keep the given
latency bound is by using load shedding [5], [6], [9], [10].
Load shedding reduces the overload on a CEP operator by
either dropping events from the operator’s input event stream
or by dropping a portion of the operator’s internal state. This
results in decreasing the number of queued events and in
increasing the operator processing rate, hence maintaining the
given latency bound.

Of course, load shedding may impact the quality of results
(QoR) as it might falsely drop complex events (denoted by
false negatives) or/and falsely detect complex events (denoted
by false positives). Therefore, it is crucial to shed load with
minimum adverse impact on QoR. In [5], [9], the authors
propose two black-box load shedding approaches for CEP
systems where their approaches drop input events that have
the lowest utility. The approach in [5] uses event type and
position within windows as features to probabilistically learn
about the utility of events in windows. In [9], the event utility
depends on the frequency of events in patterns and in the input
event stream. In [6], [10], the authors propose two white-box
approaches to perform load shedding in CEP where the focus
is on dropping partial matches. However, the approach in [10]
might also drop input events if the given latency bound might
be violated. Both approaches depend on the following features
to learn about the utility of PMs: the progress/state of the
PM in the window and the number of remaining events in the
window. These two features are used to predict the completion
probability and the processing cost of the PMs and hence the
PM utilities.

In the black-box approach, load shedding is performed in
a finer granularity (event granularity), i.e., it drops individual
events from windows, in comparison to white-box dropping
approaches which mainly drop PMs, i.e, dropping in a coarser
granularity. As a result, the white-box approaches might drop
PMs that have relatively high utilities which adversely impacts
QoR even if there exist events that may be dropped without

c© IEEE, [2020]. This is the author’s version of the work. It is posted here by permission of IEEE for your personal
use. Not for redistribution. The definitive version will be published in IEEE Transactions on Big Data.

impacting QoR. On the other hand, the black-box approaches
neither consider the importance nor the state of PMs. An event
might have different utilities for individual PMs, depending
on the importance and the state of PMs. As mentioned above,
the work in [10] also drops events in overloaded cases where
events with the lowest utilities might be dropped from all PMs.
Events that belong to PMs with low utilities are considered
to also have low utilities. However, low utility PMs might
also contain highly important events. Hence, dropping these
events might adversely impact QoR. Moreover, this approach
is limited to skip-till-any-match pattern semantic [11].

In this paper, we extend our findings in [12] where we pro-
pose a new white-box load shedding strategy called hSPICE
that combines the best of both black-box and white-box
approaches. In particular, hSPICE is a white-box load shedding
approach that drops events either from windows or from
PMs– it sheds on the event-granularity– while considering
the operator’s internal state. In hSPICE, events have different
utilities/importances for different PMs. Moreover, hSPICE
supports all well-known CEP event operators and selection
and consumption policies [13], [14], [15]. hSPICE predicts the
utility of the events using a probabilistic model. The model
uses the event type, the event position within a window, and the
state of partial matches in a window to learn about the utility
of events within windows. An important factor that influences
the effectiveness of a load shedding approach is its overhead in
performing the load shedding. A high load shedding overhead
implies that a high percentage of the available processing
power will be used to take the shedding decision. This results
in reducing the available processing power to perform pattern
matching, thus adversely impacting QoR. As we will show,
hSPICE is a lightweight, efficient load shedding approach.

More specifically, our contributions in this paper are as
follows:

• We propose a white-box load shedding approach for
complex event processing called hSPICE. hSPICE per-
forms load shedding at two granularity levels by dropping
events either from windows or from PMs. hSPICE uses
a probabilistic model to learn the utility of an event for
each PM within a window. This event utility is then used
to perform fine-grained event shedding from individual
PMs. Additionally, hSPICE can perform event shedding
at a coarser granularity, i.e., from windows, by using the
utility of an event for all PMs within a window to learn
the utility of the event within the window. As learning
features, we use the type and position of the event within
the window and the state of the PM.

• We provide an algorithm to estimate the number of events
to drop to maintain the given latency bound. Additionally,
we propose an approach that enables hSPICE to perform
load shedding in a lightweight manner.

• We provide extensive evaluations on two real-world
datasets and a representative set of CEP queries to prove
the effectiveness of hSPICE and to show its performance,
w.r.t. its adverse impact on QoR, in comparison to state-
of-the-art load shedding approaches.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Complex Event Processing

A CEP system consists of a set of operators that are
connected in the form of a directed acyclic graph (DAG). An
operator in a CEP system correlates input events to detect
patterns. The detected patterns are called complex events. An
event in the input event stream (denoted by Sin) consists of
meta-data and attribute-value pairs. The meta-data contains
event type, sequence number and/or timestamp, while the
attribute-value pairs represent the event data. For example, the
type (denoted by Te) of event e might represent a company
name in a stock application, a player ID in a soccer application,
or a bus ID in a transportation application. The event data
might contain stock quotes, player positions, or bus locations
in these applications. Events in the input event streams have
global order, for example, by using the sequence number or
the timestamp and a tie-breaker.

Our focus in this paper is on CEP systems consisting of
a single operator, where the operator matches one or more
patterns (i.e., multi-query). We define the set of patterns that
the operator matches as Q = {qi : 1 ≤ i ≤ n}, where n is the
number of patterns. Since patterns might have different impor-
tances, each pattern has a weight reflecting its importance. The
patterns’ weights are determined by a domain expert and they
are defined as follows: WQ = {wqi : 1 ≤ i ≤ n}, where wqi
is the weight of pattern qi. In CEP systems, the input event
stream Sin is continuous and infinite, where the input event
stream is partitioned into windows of events. Windows in CEP
are opened depending on predicates such as time-based, count-
based, or logical predicates. Moreover, the length of windows
might be defined by time, event count, or logical conditions
[2], [16]. The number of events in a window is defined as
window size (denoted by ws). Each event in window w has
a position where the position Pe of event e represents the
number of events that precedes event e in window w. Windows
might overlap which means that there may exist more than
one open window at the same time. Hence, event e might
belong to multiple windows, where it has different positions
Pe within different windows. To clarify the system model, let
us introduce the following example.

Example 1. In a stock application, an operator matches
pattern q which correlates stock events from three companies.
Pattern q is defined as follows: generate a complex event if a
change in the stock quote of company A results in a change
in the stock quote of company B, followed by a change in
the stock quote of company C. We may write this pattern as a
sequence operator [13]: q = seq(A;B;C). Hence, the set of
patterns that the operator matches is Q = {q}. In this example,
the event type Te might represent the company name, i.e., A,
B, and C. Assume that a count-based predicate is used to
open windows where a window is opened every two events,
i.e., window slide size is two. Figure 1 depicts this example.
Figure 1(a) shows that events in the input event stream (Sin)
are ordered by the sequence number. Moreover, it shows that
there are three open windows which overlap. Event A4, for
example, in Sin represents an instance of event type A. As
an example to show how the same event may have different

2

s0start s1 s2 s3
A

B|C

B

A|C

C

A|B

State machine of pattern q = seq (A;B;C).

A0A1B2B3A4C5B6
...

recent event
input event
stream (Sin)

time
A0A1B2B3A4C5B6

...
w1

B0B1A2C3B4
...

w2

A0C1B2
...

w3

(a)

w1

cplx1 s0 s1 s2 s3
A0 B2 C5

γ2 s0 s1 s2
A1 B3

γ3 s0 s1 s2
A4 B6

γ4 s0

w2

γ1 s0 s1 s2
A2 B4

γ2 s0

w3

γ1 s0 s1 s2
A0 B2

γ2 s0

(b)

Fig. 1: Example 1.

positions within different windows, we see that the event A4

from the input event stream belongs to all three windows,
where it has the positions 4, 2, and 0 within windows w1, w2,
and w3, respectively.

Windows of events are first pushed to the input queue of
a CEP operator. The operator continuously gets events from
the input queue where, within every window to which an
event belongs, the operator checks if the event matches the
given pattern(s). We refer to this checking as processing the
event within the window. As mentioned above, windows might
overlap. However, events within each window are processed
independently.

There exist several methods (a.k.a. computational models)
to detect a pattern in CEP, e.g., finite state machine-based
methods [1], [11], [14], [17], [18], tree-based methods [13],
[19], [20], string-based methods [21], and Petri Nets-based
methods [22]. To simplify the presentation and since finite
state machine is the most commonly used computational
model in CEP, in this work, we assume that a pattern in CEP
is modeled as a finite state machine (cf. Figure 1(a)). Please
note that our proposed load shedding approach is agnostic
to the used computational model where we later show how
our approach supports other computational models. The set
of all possible states Sqi of pattern qi ∈ Q is defined as:
Sqi = {sk : j ≤ k < j + mi}, where mi represents the
number of all possible states of pattern qi and j represents the
sum of the number of all possible states of all patterns ql ∈ Q
where l < i, i.e., j =

∑i−1
l=1 ml. In Example 1, pattern q has

four states (i.e., mi = 4) where Sq = {s0, s1, s2, s3} as shown
in Figure 1(a). In the figure, s0 represents the initial state of
pattern q and s3 represents its final state. We define the set of
all possible states for all patterns as follows: SQ =

⋃n
i=1 Sqi .

In Example 1, since there is only one pattern (i.e., Q = {q}),
SQ = Sq = {s0, s1, s2, s3}.

Whenever an operator starts to process events within a
window, it starts an instance of the state machine of every
pattern qi ∈ Q at the initial state. During event processing
within a window, an event is matched with the state machine
instances of pattern qi ∈ Q. The event might cause the state
machine instance(s) of pattern qi to transit between different

states of Sqi . Please recall that we have already defined
a partial match. However, let us define it more formally.
An instance of the state machine of pattern qi is called a
partial match (short PM), where the partial match completes
and becomes a complex event if the state machine instance
transits to the final state. Hence, processing an event within a
window implies that the event is matched with PMs within
the window. We define a partial match γ of pattern qi as
γ ⊂ qi. Moreover, we refer to matching event e with PM
γ ∈ qi as processing event e with PM γ, denoted by e ⊗ γ.
In Example 1, assume that the operator matches the events
in windows chronologically [13] and the operator has already
processed all available events in all open windows, i.e., the
operator has processed the last event of type B (B6 in the input
event stream) in all windows. Figure 1(b) shows the result of
pattern matching in all windows. In window w1, the operator
has detected one complex event (cplx1) while there are still
three open PMs in window w1: γ2, γ3, and γ4 . Similarly,
there are two PMs in windows w2 and w3 each: γ1 and γ2.

Partial match γ ⊂ qi might be at any state of pattern qi
except the final state, where PM γ at the final state has already
completed and become a complex event. Therefore, the set of
all possible states (Sγ) of PM γ is defined as follows: Sγ =
Sqi \{final states}. Hence, the set of all possible states SΓ of
all PMs of all patterns is defined as follows: SL =

⋃n
i=1 Sγi :

γi ⊂ qi. In example 1, for PM γ ⊂ q, Sγ = {s0, s1, s2}
and SL = Sγ = {s0, s1, s2}, as there is only one pattern in
this example. We refer to the current state of PM γ as Sγ .
Additionally, we refer to PM γ at state s as γs. If processing
event e with PM γ ⊂ qi at state s (i.e., e ⊗ γs) causes γ
to progress, i.e., e matches qi and causes the state machine
instance to transit, we refer to this as event e contributes to
PM γ at state s, denoted by e ∈ γs. In Example 1, event B0

in window w2 has been processed with γ1 at state s0 (i.e.,
B0 ⊗ γ1s0) but it did not cause γ1 to progress. While in the
same window w2, event A2 has been processed with γ1 at
state s0 (i.e., A2 ⊗ γ1s0

) and it caused γ1 to progress to state
s1. Hence, event A2 contributes to PM γ1 at state s0, i.e.,
A2 ∈ γ1s0

. In window w, at a certain window position P ,
there might exist one or more PMs belonging to the same

3

or different patterns qi ∈ Q. We denote the set of PMs that
are currently active at window position P by

LP
w . Also, we

denote the total number of PMs that are opened until the end
of window w by

LT
w. In Example 1 Figure1(b), the set of

current PMs in windows w1, w2 and w3 are as follows:
L6
w1

=
{γ2, γ3, γ4},

L4
w2

= {γ1, γ2}, and
L2
w3

= {γ1, γ2}. Please
note that in the negation operator [17], [18] if the negated event
e′ contributes to PM γ (i.e., e′ ∈ γ), PM γ is abandoned. For
ease of presentation, hereafter, we also refer to the abandoned
PMs as completed PMs.

In CEP, there exist several event operators, e.g., sequence,
negation, any, conjunction, disjunction, and Kleene closure
operators [13], [14], [18], [20]. Moreover, there exist several
selection and consumption policies, e.g., first, last, each, and
cumulative selection policy and zero or consumed consumption
policy [13], [14], [15]. Selection policies are used to determine
exactly which event instances of the same event type should
be used in detecting complex events, hence avoiding any
ambiguity if event instances of the same event type occur many
times in a window. While consumption policies determine
whether an event that is already used in detecting a complex
event is allowed to be reused in the detection of other complex
events. We do not assume a specific event operator or a
specific selection and consumption policy. In general, hSPICE
supports the commonly used aforementioned event operators
and selection and consumption policies.

B. Quality of Results

In this paper, we represent the quality of results (QoR) by
the number of false positives and negatives. A false positive is
a situation (a complex event) that should not be detected but
has been falsely detected. While a false negative is a situation
(a complex event) that should be detected but has not been
detected.

There might exist several instances of each event type within
a window, where the selection and consumption policy are
used to exactly define which instance(s) of an event type must
be used to detect complex events in the window. However, for
many applications, it is sufficient to detect complex events
regardless of the exact event instances that contribute to
detect these complex events. Moreover, in many cases, the
consecutive event instances of an event type represent only
slight updates for the same event. Therefore, false positives
and negatives can be defined in different ways depending
on whether the application needs to match the exact event
instances or not. In the following, we introduce two ways to
define false positives and negatives, i.e, to define QoR.

Strict Quality of Results. In the strict quality of results, false
positives and negatives are defined depending on the exact
event instances. This type of QoR is important for applications
in which the order of event instances or the causal relations
between event instances are important. For example, in a
security application, an employee opens a door with his/her ID
card and there is a camera installed on the door. Hence, there
are two event types: 1) event type ID indicates that the ID card
opened the door, and 2) event type F represents a video frame.
A CEP operator detects if the ID card that is used to open the

door belongs to the same person (employee) who opened the
door. Several persons might open the same door successively
in a short time interval which means that there exist several
instances of the ID event type (Te = ID) and the frame event
type (Te = F). Dropping event instances of any of these two
types might result in matching a wrong ID event with a wrong
frame event. This might result in detecting that a different
person opens the door (false positive) or detecting that a certain
person has not opened the door (false negative). In another
application, social networks for example, an analyst might be
interested to detect which person has started a discussion on a
certain topic. Let us assume that a person A has commented on
a post. Then, a person B wrote a comment as a reaction to the
comment of person A. After that, person A commented back.
In this example, dropping event instances of the event types
A and/or B might change the correct order of the comments.
Hence, it might lead to incorrectly determine which person
has started the discussion.

To define the strict QoR more precisely, in Example 1 (cf.
Section II-A, Figure 1), let us consider window w1 contains
the following events (B6, C5, A4, B3 B2, A1, A0). Each
event type has one or more event instances in the window.
For instance, the event type A has three event instances (i.e.,
A0, A1, and A4) in window w1. By processing window w1,
the operator detects a complex event cplxo from the events A0,
B2, and C5, i.e., cplxo = (A0, B2, C5). Let us assume that
due to load shedding, event B2 is dropped from the window.
In this case, the operator detects a new complex event cplxl
from the events A0, B3, and C5, , i.e., cplxl = (A0, B3, C5).
Since the new complex event cplxl is not detected from the
same event instances as the complex event cplxo, in the strict
QoR, complex event cplxl is considered as a false positive.
Moreover, as complex event cplxo is not detected in window
w1 due to load shedding, we count this case as a false negative.
Hence, dropping event B2 from window w1 results in one false
positive and one false negative.

Relaxed Quality of Results. In the relaxed quality of results,
false positives and negatives are defined irrespective of the
exact event instances, i.e., it is not important which instances
of an event type contributed to detect a complex event. This
type of QoR is useful for many applications, e.g., stock market,
soccer, transportation, etc. For example, in a stock market
application, stock events might come at a high frequency (e.g.,
every 1 minute), hence two consecutive stock events e and e′ of
a certain company (i.e., Te = T ′e) might have a slight or even
no difference in the stock quote (slight or no change in price).
Therefore, to detect that a stock company A has influenced
a stock company B in a certain time interval (window), it is
enough to find a correlation between any event instance of
stock company A and any event instance of stock company B
in that time interval.

To clearly define relaxed QoR, in the above example, the
newly detected complex event cplxl is considered equivalent
to the complex event cplxo. Hence, dropping event B2 from
window w1 does not result in any false positive or negative in
the case of relaxed QoR.

4

C. Problem Statement

A CEP operator might have limited resources where, in
overload cases, it must perform load shedding by dropping
a portion of the input events to avoid violating a given latency
bound (LB). However, dropping events might degrade QoR,
i.e., resulting in false positives and false negatives. Therefore,
the load shedding must be performed in a way that has
minimum adverse impact on QoR.

As we mentioned above, an operator might detect multiple
patterns Q and each pattern has its weight (i.e., WQ). For
pattern qi ∈ Q, we define the number of false positives as
FPqi and the number of false negatives as FNqi . The total
number of false positives (denoted by FPQ) for all patterns
is defined as the sum of the number of false positives for
each pattern multiplied by the pattern’s weight (cf. Equation
1). Similarly, the total number of false negatives (denoted by
FNQ) for all patterns is defined as the sum of the number
of false negatives for each pattern multiplied by the pattern’s
weight (cf. Equation 2).

FPQ =
∑
qi∈Q

wqi ∗ FPqi (1)

FNQ =
∑
qi∈Q

wqi ∗ FNqi (2)

As a result, the impact of load shedding on QoR is measured
by the sum of the total number of false positives (FPQ) and
the total number of false negatives (FNQ). The objective
is to minimize the adverse impact on QoR, i.e., minimize
(FPQ + FNQ), while dropping events such that the given
latency bound LB is met. More formally, the objective is
defined as follows.

minimize (FPQ + FNQ)

s.t. le ≤ LB ∀ e ∈ Sin
(3)

where le is the latency of event e that represents the sum of
the queuing latency of event e and the time needed to process
event e within all windows to which event e belongs.

III. LOAD SHEDDING IN CEP

We extend a CEP operator with our proposed load shedding
system (hSPICE) that in overload cases drops a portion of
the input events to maintain the given latency bound (LB).
In CEP, a load shedding system must perform the following
three tasks: 1) deciding when input events must be dropped, 2)
computing the time interval and the number of events that must
be dropped in every time interval (denoted by drop interval)
to maintain LB, and 3) dropping input events that have the
lowest adverse impact on QoR. Tasks 1 and 2 have already
been well studied in literature [5], [6]. Therefore, our focus
in this paper is on task 3, i.e, deciding which events to drop.
In the following, we shortly explain how tasks 1 and 2 might
be performed. Figure 2 depicts a CEP operator extended with
two components to enable load shedding: 1) overload detector
and 2) load shedder (LS).

The given latency bound (LB), the rate of incoming input
events, and the operator throughput (maximum service rate)

windows

input queue process

operator

PMs
LS

complex
events

overload
detector commands

Fig. 2: The hSPICE Architecture.

can be used as parameters to decide when to drop events. The
overload detector periodically monitors these parameters. If
the input event rate (R) is higher than the operator throughput
(µ) for a long enough period, the given latency bound (LB)
might be violated. To prevent violating LB, the overload
detector requests the load shedder to drop a certain amount of
input events. As a drop interval (λ), we might use the window
size ws or a part of it as proposed in [5]. Our approach works
with any drop interval. However, in this paper, to simplify
the presentation, we consider that the drop interval equals
the window size, i.e., λ = ws. The number of events that
must be dropped in every window to maintain LB can be
computed depending on the input event rate R and the operator
throughput µ, where the overload detector computes the drop
amount ρ per window (i.e., per drop interval) as follows:
ρ = (1 − µ

R
) ∗ ws. After that, the overload detector sends

a command containing the drop interval λ and the number of
events ρ to drop per λ to the load shedder. The load shedder
drops ρ events per drop interval λ to maintain LB.

hSPICE
During overload, to maintain the given latency bound (LB),

hSPICE drops input events that have the lowest adverse impact
on QoR, i.e, on the number of false positives and negatives. To
do that, hSPICE assigns utility values to the events where an
event that has a high impact on QoR has a high utility and vice
versa. hSPICE drops events either from windows (referred to
as window granularity) or from PMs within windows (referred
to as partial match granularity). Determining the utility of
events on the PM granularity can be achieved more accurately
since PM granularity is more fine-grained than window granu-
larity. Of course, accurately predicting the event utilities might
significantly reduce the adverse impact of load shedding on
QoR. Another factor that influences the load shedding impact
on QoR is the overhead of performing load shedding. A high
load shedding overhead implies that more processing power is
used by the load shedder, hence more events must be dropped
which adversely impacts QoR. Performing load shedding on
the window granularity imposes a lower overhead compared
to performing load shedding on the PM granularity since the
load shedding is performed on a coarser granularity. Therefore,
there is a trade-off between accurately determining the event
utilities and the load shedding overhead. In the next sections,
for both window and PM granularities, we study how to predict
the event utilities and analyze the imposed load shedding
overhead on the operator.

On a high abstraction level, hSPICE works as follows. 1)
As mentioned above, an event in a window is processed with

5

PMs within the window. Therefore, in a window, when using
PM granularity, hSPICE assigns utility values to an event for
each PM within the window individually, i.e., the event gets
a certain utility value for each PM within the window. For
the window granularity, on the other hand, hSPICE assigns
only a single utility value to each event within the window,
depending on the event utilities for PMs within the window.
2) hSPICE performs load shedding by dropping events either
from windows (window granularity) or from partial matches
within windows (PM granularity). Dropping an event from a
window w means that hSPICE prevents processing the event
with all current PMs (

LP
w) within the window. While dropping

an event from PM γ within a window means that hSPICE
prevents processing the event with PM γ within the window.

hSPICE, primarily, performs two tasks: 1) model building
and 2) load shedding. In the model building task, hSPICE
predicts the event utilities and summarizes the event utilities
to reduce the degradation in QoR in overload situations.
In the load shedding task, hSPICE drops events to avoid
violating the given latency bound. The model building task
is not time-critical and can afford to be heavyweight. On
the other hand, the load shedding task is time-critical and
hence must be lightweight. In the next sections, for both
window and PM granularities, we describe the above tasks
in detail. First, we describe how the utility of an event is
defined. Then, we explain the way hSPICE predicts the event
utility using a probabilistic model. After that, we describe how
hSPICE computes the number of events to drop to maintain
the given latency bound. To perform load shedding efficiently,
we explain how to predict a utility value that can be used as a
threshold utility to drop the required number of events. Finally,
we describe the functionality of the load shedder in hSPICE.

A. Partial Match Granularity
1) Event Utility: In a window, only some PMs might

complete and become complex events. Hence, PMs in a
window might have different importances, w.r.t. QoR. If a PM
completes, it is an important PM for QoR. Otherwise, it has
no impact on QoR. Moreover, as mentioned above, an event
might be processed with one or more PMs within a window,
where the event might contribute only to some of these PMs.
An event that contributes to a PM might be an important event
for the PM since dropping the event from the PM might hinder
the PM completion and hence adversely impact QoR. On the
other hand, an event that does not contribute to a PM is not
important for the PM since dropping the event from the PM
does not influence its completion. Therefore, for different PMs
in a window, an event might have different importances. As a
result, in a window, for event e and PM γ within the window,
hSPICE assigns a utility value to event e (denoted by the utility
of event e for PM γ) depending on the importance of PM
γ in the window and on the importance of event e for γ.
Higher is the importance of γ in the window and higher is the
importance of event e for γ, higher is the utility of event e for
γ.

The utility of event e for PM γ of pattern qi ∈ Q within a
window (denoted by Ue,γ) depends on three factors: 1) contri-
bution probability—the probability that event e contributes to

PM γ, i.e., e ∈ γ, 2) completion probability—the probability
that PM γ completes, and 3) pattern weight wqi (given by a
domain expert). Clearly, if event e has a high probability to
contribute to PM γ, event e is an important event for PM γ. We
consider the completion probability of a PM in computing the
event utility as well since the PM is only useful if it completes.
Therefore, if event e has a high probability to contribute to
PM γ and γ has a high probability to complete, event e is an
important event and should be assigned a high utility value.
This is because dropping event e may hinder PM γ to complete
and hence it may adversely impact QoR.

As a result, the utility Ue,γ of event e for PM γ ⊂ qi within
a window depends on the pattern weight wqi and the following
probability: P (e ∈ γ ∩ γ completes), i.e., the probability that
PM γ completes and event e contributes to PM γ. In window
w, to predict P (e ∈ γ ∩ γ completes) and hence Ue,γ ,
hSPICE uses three features: 1) current state Sγ of PM γ, 2)
event type Te, and 3) position Pe of event e in window w.
Therefore, the utility Ue,γ of event e for PM γ of pattern qi
(i.e., γ ⊂ qi) is defined as a function (called utility function)
of these three features as shown in Equation 4:

Ue,γ = f(Te, Pe, Sγ) = wqi ∗P (e ∈ γ ∩ γ completes) (4)

The current state Sγ of PM γ determines which event type(s)
enables PM γ to progress, i.e., to transit to a new state(s).
Therefore, those two features, i.e., current state Sγ of the PM
and event type Te are important features for computing Ue,γ .
For instance, in Example 1, PM γ at state s0 (i.e., γs0), might
transit to state s1 only if event e of type Te = A is processed
with PM γ (i.e., e⊗ γs0).

The position Pe of event e in window w is an important
feature to compute Ue,γ as well since it determines the number
of remaining events in the window. If there are still many
events remaining in a window, the probability of a PM to
complete might be higher than the case where there are only
a few remaining events in the window. This is because, in case
of many remaining events in a window, a PM has a chance
to be processed with more events than in case of only a few
remaining events in the window and hence the PM has a higher
chance to progress. Moreover, the event position Pe represents
the temporal distance between events within the same window.
It determines which event instance(s) of the same event type
has a higher probability to contribute to a PM in the window as
shown in [5]. This is because there exists a correlation between
events of certain types at certain positions within a window. A
change in an event of a certain type influences the change of
events of other types within a certain time interval, i.e., certain
position(s) within the window. In Example 1, in window w, a
change in the stock quote of company A, i.e., Te = A, at a
certain point of time t1 (i.e., at a certain position in window),
might cause a change in the stock quote of company B, i.e.,
Te = B, within a certain time interval]t1, t2], i.e., within
certain position(s) in the window.

2) Predicting Event Utility: Having defined the utility
Ue,γ of event e for PM γ, now, we describe how hSPICE
predicts the utility Ue,γ within a window, i.e., P (e ∈
γ ∩ γ completes), hence predicting the value of utility
function f(Te, Pe, Sγ) in Equation 4. For ease of presentation,

6

s0start s1 s2
A

B

B

A

State machine for pattern q = seq (A;B).

Te/Pe 0 1 2 3 4
A x x x x
B x x x

TABLE I: Event distribution within windows.

A0 obe〈1− 2, s0, s1, A0〉 : 2
6

A2 obe〈3− 4, s0, s1, A2〉 : 2
4

A3 obe〈5− 6, s0, s1, A3〉 : 2
2

B3 obe〈1, s1, s2, B3〉 : 1
4

B4 obe〈2− 3, s1, s2, B4〉 : 2
5

obγ〈1− 3, completed〉
obγ〈4− 6, not completed〉

TABLE II: Contribution obe and completion obγ observations.

Fig. 3: Observations gathered from six PMs.

s0

Te/Pe 0 1 2 3 4
A 33 0 25 0 0
B 0 0 0 0 0

s1

Te/Pe 0 1 2 3 4
A 0 0 0 0 0
B 0 0 0 25 40

Fig. 4: Computing event utility Ue,γ for a partial match.

we introduce a simple running example which is depicted in
Figures 3 and 4.
Example 2. Let us assume that an operator matches a pattern
q = seq (A;B), where Sq = {s0, s1, s2} and Sγ = {s0, s1},
γ ⊂ q. The used window length is 5 events (i.e., ws = 5) and
there are only two event types in the input event stream: A
and B.

To predict the utility Ue,γ of event e for PM γ of pattern
qi in window w, we first need to predict the completion
probability of PM γ, i.e., find the probability that PM γ
at state Sγ and at position Pe in window w will complete.
Additionally, we need to predict the contribution probability
of event e to PM γ, i.e., the probability that event e of
type Te at position Pe in window w contributes to PM γ
(e ∈ γ). If the contribution and completion probabilities are
high, then the event utility Ue,γ is high. On the other hand, if
the contribution and/or completion probabilities are low, then
the event utility Ue,γ is low. hSPICE uses statistics gathered
over already processed windows to predict the completion and
contribution probabilities, thus predicting the event utility for
PMs. Next, we first show which statistics hSPICE gathers.
Then, we explain the way the event utility Ue,γ for PMs is
predicted depending on those gathered statistics.

Statistic Gathering. To predict the contribution and com-
pletion probabilities (i.e., to predict P (e ∈ γ ∩ γ completes)),
thus predicting the value of utility function f , hSPICE gathers
statistics on the progress of PMs within windows during event
processing in an operator. To do that, hSPICE uses two types
of observations: 1) contribution observation, denoted by obe,
and 2) completion observation, denoted by obγ . In window
w, for each event e within w, whenever event e is processed
with PM γ at state s = Sγ (i.e, e ⊗ γs), the operator builds
an observation of type contribution obe〈id, s, s′, e〉, where id

is the id of PM γ. s′ represents the state of PM γ after
processing event e. If s 6= s′, event e has contributed to
PM γ at state s, i.e., e ∈ γs. Additionally, in window w,
if PM γ completes, the operator builds an observation of type
completion obγ〈id, completed〉, where again id is the id of PM
γ. When window w closes (i.e., all its events are processed),
all still open PMs in window w, i.e.,

LP
w , (here P is the last

position in w) are considered as not completed PMs.

Figure 3 shows an example of gathered observations on six
PMs. Table I shows the distribution of event types in different
positions within a window where a cell with x sign in the
table means that the corresponding event type might be present
at the corresponding position within a window. Please note
that event types might not be present in all positions within
a window. In the table, for example, the event type A never
comes at position 4 in any window and event type B does
not come at positions 0 and 1 in any window. Table II shows
observations on event e of type Te at position Pe in a window
and PM γ at state s only if e contributes to γ (i.e., e ∈ γs).
For example, in the table, event B3 of type Te = B at position
Pe = 3 within windows has never contributed to PM γ at state
s0. Therefore, there are no observations shown in the table on
event B3 with a PM at state s0. Clearly, if event e is not
present at a certain position within windows, event e can not
contribute to any PM at this window position. For example, as
shown in Table I, the event of type B never comes at position
1 within windows. Therefore, there are no observations on the
event type B at position 1 within windows with a PM at any
state. In Table II, next to each observation of type contribution
obe, we show the number of PMs at state s to which an event
contributed divided by the total number of PMs at state s with
which an event is processed, i.e., |{e:e∈γs}||{e:e⊗γs}| . For example, in
the table, obe〈3 − 4, s0, s1, A2〉 : 2

4 means that the event of

7

type Te = A at position 2 within windows has been processed
with four PMs at state s0. However, it has contributed only to
two PMs, in particular, it has contributed to PMs 3 and 4. The
table also shows which PMs have completed. For example, in
the table, PMs γ1, γ2, and γ3 have completed while PMs γ4,
γ5, and γ6 have not completed.

After gathering statistics from η observations, hSPICE uses
these observations to predict the utility Ue,γ of event e for PM
γ within window w, i.e., to predict the utility function f (cf.
Equation 4).

Utility Prediction. hSPICE uses the gathered observations
of both types (contribution obe and completion obγ) to predict
the probability value P (e ∈ γ ∩ γ completes), hence
predicting Ue,γ . First, from both these observation types,
hSPICE computes the utility of event e for the set of all
possible states of PM γ (i.e., Sγ) as follows:

Ue,s =
|{e : e ∈ γs & γ completed}|

|{e : e⊗ γs}|
(5)

where Ue,s = P (e ∈ γs ∩ γ completes). For event e of
certain type Te at certain position Pe within window w and
for PM γ at certain state s, Ue,s is computed as a ratio between
the number of times PM γ completes and event e contributes
to PM γ at state s (i.e., e ∈ γs) and the total number of times
event e is processed with PM γ at state s (i.e., e⊗ γs).

Figure 4 shows the computed utility values Ue,s from the
observations shown in Table II. The values are shown as
percentage values. The table shows the utility value of event
e of type Te at position Pe within a window for PMs at states
s0 and s1. For example, in the table, event e = A2 of type
Te = A at position Pe = 2 within a window is processed
with four PMs at state s0 (PMs 3, 4, 5, and 6). However, it
has contributed only to two PMs (3 and 4). Moreover, since
only PM 3 completed, we account for the contribution of event
e = A2 only to PM 3. Therefore, in the table, the utility of
event type Te = A at position Pe = 2 within a window for
a PM at state s0 equals to 25%, i.e., Ue,s0 = 1

4 = 25%. The
event type Te = A has never contributed to a PM at state s1

since only the event type Te = B may contribute to a PM at
state s1. Therefore, the utility of an event of type Te = A at
any position within a window for a PM at state s1 is always
zero as shown in the table. Similarly, the event type Te = B
never contributes to a PM at state s0. Hence, the utility of an
event of type Te = B at any position within a window for a
PM at state s0 is always zero.

The utility values for all states of PM γ of pattern qi ∈ Q
together multiplied by the pattern weight wqi represent the
predicted utility Ue,γ of event e for PM γ ⊂ qi, where
Ue,γs = f(Te, Pe, s) = wqi ∗ Ue,s. Now, we need to store
these predicted utility values Ue,γ for all patterns (i.e., for Q)
so that, during load shedding, hSPICE can retrieve them. To
reduce the storage overhead, in case of large window size,
we use bins to group event utilities. Within window w, the
utility values of event e of type Te at several consecutive
window positions (i.e., bin size bs) for PM γs at state s
are grouped together by taking the average utility value of
this event type Te over all these positions for PM γs. For
ease of presentation, we will use the bin of size bs = 1 if

not otherwise stated. To efficiently retrieve the utility values
during load shedding, we store the utilities in a table (called
utility table UT) of three dimensions (M × N × K), where
M represents the number of different event types, N = ws

bs ,
and K is the number of all possible states of all PMs of all
patterns, i.e., K = |SL|. Therefore, the storage overhead of the
utility table UT is O(M.N.|SL|). Each cell UT (Te, Pe, Sγ) in
the utility table stores the utility value Ue,γ of event e of type
Te at position Pe within a window for PM γ at state Sγ , i.e.,
Ue,γ = f(Te, Pe, Sγ) = UT (Te, Pe, Sγ). Hence, to get the
utility Ue,γ of event e for PM γ, hSPICE needs to perform
only a single lookup in the utility table UT . This means that
the time complexity to get Ue,γ is O(1) which considerably
reduces the overhead of load shedding.

The input event stream might change over time, hence the
predicted utilities of events for PMs might become inaccurate.
One way to capture the changes in the input event stream
and keep the event utility accurate is by periodically gathering
statistics and recomputing the utility value Ue,γ .

3) Drop Amount: As we mentioned above, to maintain the
given latency bound (LB) in an overload situation, we must
drop ρ events from every window. However, hSPICE drops
events from PMs, not from windows, where an event might
be dropped from a PM while it is processed with another PM
within the same window. Therefore, we must find a mapping
between the number of events to drop per window (ρ) and the
number of events to drop per PM within the window. To do
that, let us first define the virtual window.

Virtual Window. The virtual window (vw) of window w
is a set which contains triplets (e, s,O) consisting of event
e of type Te at position Pe within w, state s ∈ SL, and the
number of occurrences O > 0 which represents the number of
times event e has been processed with a PM at state s within
window w. More formally: vw = {(e, s,O) : ∀ e ∈ w, ∀ γ ∈LT
w, O = |{γ : e ⊗ γs}| > 0}. The virtual window vw of

window w contains information on the number of times event
e within window w is processed with each distinct state s of
a PM in window w. The virtual window depends on the states
of PMs in a window. Therefore, it is only possible to know the
exact virtual window of window w when all events in window
w are processed, i.e., when the set of all PMs

LT
w and their

states in window w are known. However, we need to know
the virtual window of window w before processing all events
in window w since we use the virtual window to decide how
many and which events must be dropped from PMs within
window w.

Therefore, hSPICE predicts virtual window vw of window
w by gathering statistics from the operator on already pro-
cessed windows, denoted by Wstat. As mentioned above, in
different windows, event distribution might be different (cf.
Table I). Additionally, the occurrences of PM states at certain
window positions might also be different in different windows.
Hence, different windows might have different corresponding
virtual windows. Therefore, to predict virtual window vw
of window w, hSPICE first computes virtual window vwj
for each window wj in the gathered statistics Wstat, where
j = 1, .., |Wstat|. Then, hSPICE combines all triplets (e, s,O)
from these virtual windows vwj to construct the virtual

8

window vw by taking the average value for the number of
occurrence O of each triplet, i.e., vw = {(e, s,O) : e =
ej , s = sj , O = O +

Oj
|Wstat| , ∀ (ej , sj , Oj) ∈ vwj}. The size

of virtual window vw (denoted by wsv) is computed as the
total number of occurrences of each triplet in vw as follows:
wsv =

∑
(e,s,O)∈vw O. The virtual window size represents the

number of times events are processed with PMs in a window.
Therefore, the average number of times (avgO) an event is
processed with a PM in window w is computed as follows:
avgO = wsv

ws . For example, if every event is processed with
two PMs within window w, then the virtual window size wsv
is twice the window size ws (i.e., wsv = 2.ws) and avgO = 2.

Dropping an event from window w implies that the event
is dropped from the set of all current PMs

LP
w within window

w. Therefore, if ρ events must be dropped from window w,
it implies that, in total, ρv ≈ ρ ∗ avgO ≈ ρ ∗ wsv

ws events
must be dropped from all PMs

LT
w in window w (from virtual

window vw of window w, as a shorthand). Hence, dropping
ρ events from a window is similar to dropping ρv events
from its virtual window. One approach to drop ρv events
from a virtual window (i.e., ρv events in total from all PMs
in a window) is to drop events equally (for example, equal
percentage) from every PM in the window. However, not all
PMs in a window have the same importance/same completion
probability. Therefore, the drop amount per PM should take
into consideration the importance of PMs in the window which
in turn minimizes the adverse impact of dropping on QoR.
Please note that it is not possible to get the utility of all events
for all PMs in a window and then sort them. After that, drop
those ρv events from PMs that have the lowest utilities. The
reason for this is that the event utilities for PMs in a window
are only known after processing all events in the window. This
is because the event utilities depend on the current state of PMs
(
LP
w) in the window which is only known after processing

the events in the window. Next, we explain how to drop the
required number of events (ρv) from the virtual window of
each window while considering the importance of PMs in the
window.

Utility Threshold. The approach is to find a utility value
(called utility threshold uth) that is used as a threshold value
to drop the needed amount of events from virtual window
vw of window w. For each triplet (e, s,O) in virtual window
vw, we get the utility value u = Ue,γs = f(Te, Pe, s) from the
utility table UT . As the number of occurrences O in the triplet
represents the number of times state s might occur at window
position Pe, the number of occurrences O implies that the
utility value u = Ue,γs might occur O times in virtual window
vw, denoted by the utility occurrences Ou for utility u, i.e,
Ou = O. We accumulate the number of utility occurrences
Ou for all utility values in vw in ascending order, denoted
by the accumulative utility occurrences OCu for the utility
u, as follows: OCu =

∑
u′≤uO

′
u. The accumulative utility

occurrences OCu for utility u means that there exist OCu
events in virtual window vw which have a utility value less
or equal to the utility value u.

Therefore, using u as a threshold utility uth enables hSPICE
to drop OCu events from PMs in a window. Hence, to drop
ρv events from the virtual window, we must find a utility

value u = uth, where OCu = ρv . To efficiently retrieve the
utility threshold, we store the accumulative utility occurrences
in an array (denoted by utility threshold array (UTth)) of
the same size as the virtual window size wsv as follows:
UTth(i) = u, where i = 1, .., wsv and OCu ≥ i and
OCu < OCu′ ∀ u < u′. Therefore, to drop ρv events
from the virtual window, uth = UTth(ρv). Hence, the time
complexity to get uth is O(1). Please note that predicting
the virtual window and building the utility threshold array are
done during the model building task. While during the load
shedding, hSPICE performs the following two tasks that have
a time complexity of O(1): 1) computing how many events
to drop (i.e., ρv) per virtual window, and 2) determining what
utility threshold (i.e., uth) to use.

4) Load Shedding: In the above sections, we showed how
to compute the utility of events for PMs within a window and
how to predict the utility threshold. Now, we describe how
hSPICE performs the load shedding, i.e., deciding whether
an event should be dropped from a PM or not. Algorithm 1
clarifies how load shedding is performed.

For each event e within window w, before processing e with
PM γ in window w, the operator asks the load shedder (LS)
whether to drop event e from PM γ. If the LS returns True,
the operator drops event e from PM γ, otherwise, it processes
event e with PM γ. If there is no overload on the operator,
there is no need to drop events and hence LS returns False
which means that the operator can process event e with PM γ
(cf. Algorithm 1, lines 2-3). On the other hand, if there is an
overload on the operator, LS checks whether the utility Ue,γ
of event e for PM γ is higher than the utility threshold uth.
Therefore, the LS first gets the utility Ue,γ of event e for PM
γ from the utility table UT , where Ue,γ = f(Te, Pe, Sγ) =
UT (Te, Pe, Sγ). After that, hSPICE compares the utility value
with the utility threshold uth, where it returns True if Ue,γ ≤
uth, otherwise hSPICE returns False (cf. Algorithm 1, lines 4-
7). This shows that hSPICE is lightweight in performing load
shedding where the time complexity to decide whether or not
to drop an event from a PM is O(1).

Algorithm 1 Load shedder (PM granularity).

1: drop (Te, Pe, Sγ) begin
2: if !isOverloaded then . there is no overload hence no need to drop events
3: return False
4: else if UT (Te, Pe, Sγ) ≤ uth then
5: return True
6: else
7: return False
8: end function

Having explained how to define the event utility, predict
the event utility, find the utility threshold, and perform load
shedding on the PM granularity, next, we describe how load
shedding is performed on the window granularity.

B. Window Granularity

In the partial match granularity, as we showed above, for
event e in window w, hSPICE must perform a check (lookup
in UT) for every PM γ in w (i.e., for each γ ∈

LP
w) to decide

whether or not to drop event e from PM γ. This implies that

9

the time complexity to perform load shedding is (|
LP
w |.O(1))

for every event within a window, where hSPICE must perform
|
LP
w | lookups in UT . Although this shows that the overhead of

performing load shedding in the PM granularity is low, in this
section, we propose to perform load shedding on the window
granularity which reduces the overhead of load shedding even
further. The load shedding overhead for an event represents an
additional latency which adds up to the processing latency of
the event. Higher is the load shedding overhead for event e,
higher is the processing latency of event e and hence lower is
the operator throughput µ. This implies that reducing the load
shedding overhead increases the operator throughput µ which
in turn reduces the number of events that must be dropped
to maintain LB, hence reducing the adverse impact of event
shedding on QoR.

Performing load shedding on the window granularity im-
plies that events are dropped from windows, i.e., in a window,
an event is either dropped from all PMs or from none. This
way, the load shedding is performed only once for every event
in a window regardless of the number of current PMs

LP
w in the

window which might considerably reduce the load shedding
overhead. Of course, the event utility in the window granularity
is less precise than the event utility in the PM granularity,
which might adversely impact QoR. To drop events from a
window, next, we introduce the event utility in a window,
where, in overload cases, events with the lowest utilities are
dropped from windows.

1) Event Utility: As mentioned above, an event in a win-
dow is processed with all current PMs

LP
w in the window.

Therefore, the utility of event e in window w (denoted by
Ue,w) depends on the utility of event e for all current PMsLP
w in window w. We represent the utility Ue,w of event e of

type Te at position Pe within window w as the sum of the
utility of event e for all current PMs in window w, i.e.,

LP
w ,

as shown in Equation 6.

Ue,w =
∑
γ∈

LP
w

f(Te, Pe, Sγ) (6)

Computing Ue,w as shown in this equation means that for each
PM in a window, hSPICE must perform a lookup in the utility
table UT , i.e., |

LP
w | lookups. However, this will result in the

same overhead (|
LP
w |.O(1)) as performing load shedding on

the PM granularity.
To minimize this overhead, we must reduce the number of

lookups in the utility table UT . To do that, we keep a summary
on the distinct PM states and the number of occurrences of
each distinct state in the window. In window w, at position
P , multiple PMs might be at the same state. We define PM
summary (denoted by SMP

w) in window w at position P as
a multiset that contains all distinct states of current PMs

LP
w

at position P in window w and the number of occurrence of
these PM states. Each element in PM summary is defined as a
pair (sk, O), where sk represents a PM state and O represents
the number of occurrences of state sk in

LP
w , i.e., SMP

w (sk) =
|{γ : γ ∈

LP
w , sk = Sγ}|.

We use the PM summary SMP
w to compute the utility Ue,w

of event e in window w as follows:

Ue,w =
∑

Sγ∈SMP
w

f(Te, Pe, Sγ) ∗ SMP
w (Sγ) (7)

For each distinct state of the current PMs (
LP
w) in window

w, hSPICE performs the lookup only once in the utility table
UT to get the utility Ue,γ = f(Te, Pe, Sγ) of event e for PM
γ. Then, hSPICE multiplies the utility Ue,γ with the number
of occurrences of state Sγ in w (i.e., SMP

w (Sγ)). The event
utility Ue,w represents the sum of all multiplication results.
Using Equation 7 might reduce the overhead of computing
the utility Ue,w considerably. This is because multiple PMs
in a window might have the same state which means that the
PM summary size might be much smaller than the number of
PMs in a window, hence much less lookups in the utility table
UT . This is more likely to happen if the number of states
of all patterns is lower than the number of current PMs in a
window, i.e., |SL| < |

LP
w | where multiple PMs must be at the

same state. The operator maintains the PM summary SMP
w

for each window w, where the PM summary is changed only
if the state of PM γ ∈

LP
w in window w changes, which does

not happen frequently. Hence, maintaining the PM summaries
for windows imposes only a small overhead on the operator.

2) Utility Threshold: As we mentioned above, to maintain
the given latency bound (LB), the LS must drop ρ events from
every window. To drop those ρ events from a window, similar
to the PM granularity, we need to a find a utility threshold uth
in a window which enables the LS to drop those ρ events from
a window. As in the PM granularity, we gather statistics on
event distribution and on the distribution of PM summaries in
the window. Then, we use these gathered statistics to compute
the utility threshold uth.

3) Load Shedding: Now, we describe the way hSPICE
drops events from windows. Algorithm 2 clarifies how the
load shedding is performed. Similar to dropping events from
PMs, for each event e within window w, before processing
event e with any PM in window w, the operator asks the LS
whether or not to drop event e from window w. If LS returns
True, the operator drops event e from window w, otherwise it
processes event e with all current PMs

LP
w in window w.

If there is no overload on the operator, there is no need
to drop events and hence LS returns False which means that
the operator can process event e in window w (cf. Algorithm
2, lines 2-3). On the other hand, if there is overload on the
operator, the LS checks whether the utility Ue,w of event e
in window w is higher than the utility threshold uth, where
the event must be dropped if Ue,w ≤ uth. To do that, the LS
uses Equation 7 to compute the utility Ue,w. After that, LS
compares the utility value Ue,w with the utility threshold uth,
where it returns True if Ue,w ≤ uth, otherwise LS returns
False (cf. Algorithm 2, lines 4-9). This shows that hSPICE
performs load shedding for window granularity in the worst
case in a time complexity of (|

LP
w |.O(1)).

C. Supporting CEP Computational Models

So far, we have focused on using finite state machine [1],
[11], [14], [17], [18] as a computational model to detect
patterns. However, as we mentioned in Section II, there exist

10

Algorithm 2 Load shedder (window granularity).

1: applyLS (Te, Pe, SMP
w) begin

2: if !isOverload then . there is no overload hence no need to drop events
3: return False
4: else
5: compute Ue,w using Equation 7
6: if Ue,w ≤ uth then
7: return True
8: else
9: return False

10: end function

several other computational models such as tree-based models
[13], [19], [20], string-based models [21], and Petri Nets-based
models [22]. In this section, we explain how our load shedding
approach supports all the above computational models.

As we explained above, to assign a utility value to an event
e, hSPICE (for both hSPICEPM and hSPICEW) depends on
three features: 1) the current state of PM(s), 2) event type Te,
and 3) event position Pe in the window. Event type and event
position in the window are independent of the computational
model. Hence, to show that hSPICE supports other computa-
tional models, we must show that hSPICE is able to get PM
states in these computational models, similar to the finite state
machine model. To do that, let us first define a CEP pattern,
a PM, and a PM state irrespective of the used computational
model. In CEP, a pattern q is formed by using a set of events,
event operators, and constraints [13]. For pattern q, a PM γ
of pattern q represents an incomplete matching instance of
pattern q, denoted by γ ⊂ q. For each event in pattern q, we
assume that there is an assigned state that represents the state
on a PM of pattern q. Additionally, there exists an initial state
for pattern q. For example, in pattern q = seq(A;B;C), we
may assign state s1 to event A, state s2 to event B, and state
s3 to event C. In this example, a PM at state s3 represents a
complete match of pattern q, i.e., a complex event. Moreover,
we may use state s0 as the initial state of pattern q. Hence,
a PM γ ⊂ q starts at state s0. If an event instance of event
type A matches pattern q, the state of PM γ is updated to
state s1. Similarly, the state of PM γ changes to state s2

or s3 if an instance of event type B or C matches pattern
q, respectively. Regardless of the used computational model,
it is straightforward to assign states to PMs and update a
PM state whenever an event matches the pattern and the PM
progresses. Hence, hSPICE can support other computational
models without any remarkable complexity.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of hSPICE, for
both PM and window granularities, by using two real-world
datasets and several representative queries.

A. Experimental Setup

Evaluation Platform. We run our evaluations on a machine
that is equipped with 8 CPU cores (Intel 1.6 GHz) and a main
memory of 24 GB. The OS used is CentOS 6.4. We run a
CEP operator in a single thread on this machine, where this
single thread is used as a resource limitation. Please note,

the resource limitation can be any number of threads/cores
and the behavior of hSPICE does not depend on a specific
limitation. We implemented hSPICE by extending a prototype
CEP framework that is implemented using Java.

Baseline. We compare the performance of hSPICE with
three state-of-the-art load shedding strategies: 1) eSPICE:
it is a black-box load shedding approach that drops events
from windows [5]. 2) BL: we also implemented a black-
box load shedding strategy (denoted by BL) similar to the
one proposed in [9]. Additionally, it captures the notion of
weighted sampling techniques in stream processing [23]. BL
drops events from windows, where an event type (e.g., player
ID or stock symbol) receives a higher utility proportional to
its repetition in patterns and in windows. Then, depending on
event type utilities, it uses uniform sampling to decide which
event instances to drop from the same event type. 3) pSPICE:
it is a white-box load shedding strategy that drops PMs [6].

Datasets. We use two real-world datasets. 1) A stock quote
stream from the New York Stock Exchange, which contains
real intra-day quotes of different stocks from NYSE collected
over two months from Google Finance [24]. 2) A position data
stream from a real-time locating system (denoted by RTLS) in
a soccer game [25]. Players, balls, and referees are equipped
with sensors that generate events containing their position,
velocity, etc.

Queries. We apply five queries (Q1, Q2, Q3, Q4, and
Q5) that cover an important set of operators in CEP as
shown in Table III: sequence operator, sequence operator with
repetition (which also contains Kleene closure), disjunction
operator, sequence with negation operator, and sequence with
any operator [13], [14], [18], [20]. We use the first selection
policy for all events in all queries. Additionally, we use the
consumed consumption policy for the first event in all queries
and the zero consumption policy for the rest events in all
queries. Moreover, for all queries, we use time-based sliding
window strategy.

In Table III, we use ws to refer to the window length.
For stock queries (Q1, Q2, Q3, and Q4), Ci represents the
stock quote of company i. Q1 detects a complex event when
rising or falling stock quotes of 10 certain stock symbols, by a
given percentage, are detected within ws minutes in a certain
sequence. Q2 detects a complex event when 10 rising or 10
falling stock quotes of certain stock symbols with repetition,
by a given percentage, are detected within ws minutes in a
certain sequence. Q3 detects a complex event if either Q1

or Q2 matches. Q3 represents a multi-pattern operator. Q4 is
similar to Q1 but it detects a complex event only if the stock
quote of a certain company (i.e., C5) does not change by a
given percentage. Q5 uses the RTLS dataset and it detects
a complex event when any 3 defenders of a team (defined
as Di) defend against a striker (defined as S) from the other
team within ws seconds from the ball possessing event by the
striker. The defending action is defined by a certain distance
between the striker and the defenders. For this query, we use
two strikers, one from each team.

11

Stock queries

Q1

pattern seq(C1;C2; ..;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes

Q2

pattern seq(C1;C1;C2;C3;C2;C4;C2; C5;C6;C7;C2;C8;C9;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes

Q3 Q1 ∨Q2

Q4

pattern seq(C1;C2;C3;C4; !C5;C6;C7;C8;C9;C10)
where all Ci rise by x% and C5 does not rise by y%
or all Ci fall by x% and C5 does not fall by y%
, i = 1..10 and i 6= 5

within ws minutes
Soccer queries

Q5

pattern seq(S;any(3, D1, D2, .., Dn))
where S possesses ball and distance(S,Di) ≤ x meters

, i = 1..n and n is the number of players in a team
within ws seconds

TABLE III: Queries.

B. Experimental Results

In this section, we evaluate the performance of hSPICE in
comparison with other load shedding strategies. First, we show
its impact on QoR, i.e., the number of false negatives and
the number of false positives, using both strict and relaxed
QoR. Then, we show how good hSPICE is in maintaining
the given latency bound (LB). We refer to hSPICE when
dropping events on window granularity as hSPICEW. While
we refer to hSPICE when dropping events on PM granularity
as hSPICEPM.

If not stated otherwise, we use the following settings. For
all queries Q1, Q2, Q3, Q4, and Q5, we use a time-based
sliding window and a time-based predicate. We stream events
to the operator from the datasets that are stored in files. We
first stream events at input event rates which are less or equal
to the operator throughput µ (maximum service rate) until the
model is built. After that, we increase the input event rate to
enforce load shedding as we will mention in the following
experiments. The used latency bound LB = 1 second. We
configure all load shedding strategies (i.e., hSPICE, eSPICE,
BL, and pSPICE) to have a safety bound, where they start
dropping events/PMs when the event queuing latency is greater
than or equal to 80 % of LB, i.e., the safety bound equals to
200 milliseconds. We execute several runs for each experiment
and show the mean value and standard deviation.

An important factor that might influence QoR is the input
event rate. Higher is the input event rate, higher is the amount
of events that must be dropped and hence higher is the impact
of load shedding on QoR. Additionally, other factors that
might impact QoR are the query properties, e.g., the used
window size. Therefore, next, we show the impact of these
factors on QoR, i.e., on false negatives and positives. Please
note that in the case of using strict QoR, applying load
shedding might result in false positives and false negatives
for all queries (i.e., Q1, Q2, Q3, Q4, and Q5). Additionally,
when using relaxed QoR, applying load shedding might result
in false negatives for all queries as well. However, it might
result in false positives only in case of Q4 since Q4 has a
negation operator. If the negated event is dropped by the load
shedder, it might result in a false positive.

1) Impact of Event Rate on QoR: To evaluate the perfor-
mance of hSPICE, we run experiments with queries Q1, Q2,

Q3, Q4, and Q5. To show the impact of input event rate, we
stream both datasets to the operator with input event rates
that are higher than the operator throughput µ by 20%, 40%,
60%, 80%, and 100% (i.e., event rate= 120%, 140%, 160%,
180%, and 200% of the operator throughput µ). Moreover,
for Q1, Q2, Q3 and Q4, we use the following window sizes,
respectively: 18, 35, 35, and 20 minutes. For Q5, the used
window size is 30 seconds. A new window is opened for Q1,
Q2, Q3, and Q4 every 1 minute, i.e., the slide size is 1 minute.
For Q5, a new window is opened every 1 second. The average
measured operator throughput µ (without load shedding) for
queries Q1, Q2, Q3, Q4, and Q5 are as follows: 23K, 14K,
8K, 36K, 27K events/second, respectively.

Impact on False Negatives. Figure 5 depicts the impact of
event rates on false negatives for all queries. Figure 6 shows
the ratio of dropped events or PMs (for pSPICE) with different
event rates for Q1 and Q5. We observed similar results for
Q2, Q3, and Q4, hence we do not show them. In both figures,
the x-axis represents the event rate. The y-axis in Figure 5
represents the percentage of false negatives while, in Figure
6, it represents the ratio of dropped events/PMs.

The percentage of false negatives might increase if the
input event rate increases since more events/PMs must be
dropped. Figure 5a and Figure 6a show the percentage of
false negatives using strict QoR and the percentage of drop
ratio for Q1, respectively. As shown in Figure 5a, hSPICEPM
has almost no impact on false negatives when the event rate
is less or equal to 160% although hSPICEPM drops up to
80% of events when the event rate is 160% as depicted in
Figure 6a. Increasing the event rate by more than 160% forces
hSPICEPM to produce false negatives where the percentage
of false negatives is 17% and 23% using event rates of 180%
and 200%, respectively. The drop ratio starts to decrease when
using a high event rate as shown in Figure 6a when using
the event rate of 200%. The reason behind this is that when
more events should be dropped, events with high utilities might
be dropped. Dropping events with high utilities might hinder
opening new PMs which in turn reduces the number of events
that must be dropped. Since hSPICEPM drops more events
compared to other load shedding strategies, i.e., eSPICE and
BL, the impact of shedding in hSPICEPM on opening new
PMs is higher which results in decreasing its drop ratio when
the event rate is 200%. However, not opening those PMs might
increase the number of false negatives.

The percentage of false negatives caused by other load
shedding strategies also increases when the event rate in-
creases. As depicted in Figure 5a, when the event rate increases
from 120% to 200%, the percentage of false negatives for
hSPICEW, eSPICE, BL, and pSPICE increases from 8% to
45%, from 4% to 38%, from 48% to 84%, and from 16%
to 70%, respectively. Moreover, the drop ratio increases with
the event rate as shown in Figure 6a. hSPICEW performs,
w.r.t. the percentage of false negatives, worse than hSPICEPM
since hSPICEPM predicts the event utilities more accurately.
Additionally, the used window size has a considerable impact
on the performance of hSPICEPM. Please note that the used
window sizes, in these experiments, are reasonable window
sizes for the used datasets. However, if the window size

12

120 140 160 180 200
% event rate

0
20
40
60
80

100
%

 fa
lse

 n
eg

at
iv

es hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(a) Q1: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(b) Q1: relaxed QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(c) Q2: : relaxed QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(d) Q3: relaxed QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(e) Q4: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100
%

 fa
lse

 n
eg

at
iv

es
hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(f) Q4: relaxed QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(g) Q5: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(h) Q5: relaxed QoR

Fig. 5: Impact of event rate on false negatives.

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 d

ro
p

ra
tio

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(a) Q1

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 d

ro
p

ra
tio

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(b) Q5

Fig. 6: Impact of event rate on drop ratio.

is much higher, which might be used in some applications,
hSPICEW may perform better than hSPICEPM as we will
show in Section IV-B2. The performance of hSPICEW is also
worse than the performance of eSPICE as shown in Figure 5a.
This is because hSPICEW drops more events than eSPICE
as depicted in Figure 6a as the overhead of hSPICEW is
higher than the overhead of eSPICE. The result shows that
hSPICEPM significantly outperforms, w.r.t. the percentage
of false negatives, all other load shedding strategies for Q1

(sequence operator). Similar behavior is observed when using
relaxed QoR as shown in Figure 5b.

Figures 5c shows results for Q2 when using relaxed QoR.
We observed similar behavior when using strict QoR, hence
we do not show it. The figure shows that the performance,
w.r.t. the percentage of false negatives, of all load shedders
except eSPICE over Q2 (sequence with repetition operator) is
similar to their performance with Q1 (sequence operator). The
performance of eSPICE over Q2 is worse than its performance
over Q1. The figure shows that the performance of hSPICEW
is better than the performance of eSPICE over Q2. However,
the performance of hSPICEPM is, again, better than the
performance of hSPICEW. The results show that hSPICEPM
outperforms, w.r.t. the percentage of false negatives, all other

load shedding strategies. The results for Q3 (multi-pattern
operator) are similar to the results for Q2 as depicted in Figure
5d. The performance of hSPICEPM over Q3 is, again, better
than the performance of all other load shedding strategies. We
observed similar results for Q3 when using strict QoR.

Figure 5e and 5f depict the percentage of false negatives
for Q4 (sequence with negation operator) using strict and
relaxed QoR, respectively. In Q4, we limit the number of
complex events to only one event per window, where the
window is closed if a complex event is detected. We do
that to determine the impact of the negation operator on the
matching output. The performance of hSPICEPM, w.r.t. the
percentage of false negatives, over Q4 is considerably better
than the performance of hSPICEPM over Q1, Q2, and Q3.
The reason behind this is that, in Q4, there is at most one
complex event per window in comparison to Q1, Q2, and Q3

that detect all possible complex events in a window. Hence,
in the case of Q4, there exist many events in the window that
have low utilities where dropping those events do not influence
the percentage of false negatives. Figures 5e and 5f show
that using hSPICEPM with different event rates introduces
almost zero false negatives. The percentage of false negatives
caused by using other load shedding strategies increases with
increasing event rate. This shows that, for Q4, hSPICEPM
drastically reduces the percentage of false negatives compared
to the other load shedding strategies.

Figures 5g and 5h show the percentage of false negatives
for Q5 (sequence with any operator) using strict and relaxed
QoR, respectively. While Figure 6b shows the ratio of dropped
events/PMs for Q5. The drop ratio in Figure 6b increases when
the event rate increases. However, the drop ratio of hSPICEPM
and hSPICEW for Q5 is lower than their drop ratio for Q1.
This is because the cost of processing events in Q5 is higher
than the cost of processing events in Q1. Therefore, in Q5,
the overhead of performing load shedding in comparison to

13

the event processing cost is lower which results in a low drop
ratio. In Figures 5g and 5h, the percentage of false negatives
caused by all load shedders increases when the input event
rate increases.

Figure 5g shows that the performance of hSPICEPM
is better than the performance of hSPICEW, eSPICE, and
BL. However, pSPICE outperforms hSPICEPM. However,
Figure 5h (i.e., using relaxed QoR) shows that hSPICEPM
and hSPICEW perform almost worse than all other load
shedding strategies. The reason behind this is that the impact
of eSPICE and BL on the percentage of false negatives is
reduced if there is no need to match the exact event instances
(i.e., if the relaxed QoR is used). Moreover, the overhead of
hSPICEPM and hSPICEW is high in comparison to other load
shedding strategies. For every event in a window, hSPICEPM
checks whether to drop the event or not from every individual
PM within the window which increases the overhead of
performing load shedding in hSPICEPM. Similarly, the
overhead of hSPICEW is proportional to the number of PMs,
as we discussed in Section III-B. While eSPICE and BL, for
example, check whether to drop the event or not from the
window regardless of the number of PMs within the window
which reduces the overhead of performing load shedding in
these approaches. The overhead of hSPICEPM and hSPICEW
is high in all queries, however, the overhead impact is worse
in Q5. This is because in Q5 the utility values are spread and
less accurately predicted since Q5 represents an any operator
in comparison to other queries that use a sequence operator.
Q5 matches an event of any type (any player) with a PM at
any state, unlike the sequence operator that matches only an
event of a certain type with a PM at a certain state. Hence,
in the case of Q5, the majority of events in a window have
similar utilities for all PM states.

Impact on False Positives. As we mentioned above, for
all queries, dropping events might result in false positives
when using strict QoR. However, for only Q4 (sequence
with negation operator), dropping events might result in false
positives in the case of using relaxed QoR. Please recall that
Q4 detects at most one complex event per window. Figure 7
depicts the percentage of false positives with different event
rates for queries Q1, Q4, and Q5. We observed similar results
for Q2 and Q3, hence we do not show them. In the figure, the
x-axis represents the event rate and the y-axis represents the
percentage of false positives. Figure 7 shows that hSPICEPM
and hSPICEW perform very well with all queries where the
percentage of false positives caused by both hSPICEPM and
hSPICEW is almost zero for different event rates.

The percentage of false positives caused by eSPICE in the
case of Q1 is negligible as depicted in Figure 7a. While the
percentage of false positives caused by eSPICE increases with
increasing the event rate for Q4 and Q5. Figure 7 shows that,
for the majority of queries, the percentage of false positives
produced when using BL decreases when increasing the event
rate. The reason behind this is that, for low event rates, BL
needs to drop fewer events, and hence more redundant events
might exist in windows that might match the pattern. On the

other hand, with a high event rate, BL must drop more events
which makes it hard to have redundant events that might match
the pattern. Higher is the probability to match the pattern,
higher is the probability to get false positives. pSPICE drops
PMs, therefore, it might results in false positives only if the
strict QoR is used. The percentage of false positives caused
by pSPICE in the case of Q1 and Q5 is negligible as depicted
in Figures 7a and 7d. While the percentage of false positives
caused by pSPICE slightly decreases with increasing the event
rate for Q4, using strict QoR.

2) Impact of Window Size on QoR: In this section, we
analyze the impact of window size on QoR. A very large
window might result in a large utility table (UT) that does
not fit into the cache memory, and hence the lookup time
in UT might increase. This results in increasing the load
shedding overhead of hSPICEPM, hence dropping more events
(i.e., adversely impact QoR). Moreover, using a very large
window might increase the number of concurrent PMs

LP
w in

the window, hence, also, increasing the load shedding overhead
of hSPICEPM. A large utility table UT and a high number of
concurrent PMs

LP
w might increase the load shedding overhead

of hSPICEW as well. However, a high number of concurrent
PMs

LP
w implies that there exist many PMs at the same state,

hence hSPICEW needs to perform only few lookups in UT
compared to hSPICEPM since hSPICEW performs a lookup
in UT only once for each distinct PM state (cf. Section III-B).
This implies that the overhead of hSPICEW for large windows
might be much lower than the overhead of hSPICEPM, hence
the impact of hSPICEW on QoR using large windows might
be much lower than the impact of hSPICEPM on QoR. Please
note that we may reduce the size of UT by using bins as we
discussed in Section III. However, there still exist situations
where the utility table UT might be large since bins can help
only in the case of very large window sizes. For example, if
the number of event types is high, the size of UT might also
be large.

To show the impact of window size on QoR, we run
experiments with queries Q1 and Q2 where we use a fixed
event rate of 180%, i.e., the input event rate is higher than
the operator throughput µ by 80%. To show the impact of
window sizes, we vary the window size for both Q1 and Q2.
The used window sizes for Q1 and Q2 are as follows: 100,
200, 300, 400, and 500 minutes. A new window is opened for
Q1 and Q2 every 5 minutes, i.e., the slide size is 5 minutes.
Figure 8 and Figure 9 depict the results for both queries. In
both figures, the x-axis represents the event rate. The y-axis
in Figure 8 represents the percentage of false negatives while
the y-axis in Figure 9 represents the percentage of positives.
We observed similar results for Q3, Q4, and Q5, hence we do
not show them.

Figure 8a depicts the percentage of false negatives for Q1

using strict QoR. The figure shows that for the window sizes
100 and 200 minutes, the performance, w.r.t. the percentage
of false negatives, of hSPICEPM is similar to the performance
of hSPICEW. However, hSPICEPM still performs better than
other load shedding strategies (i.e., eSPICE, BL, and pSPICE).
For very large window sizes, the performance of hSPICEPM
might become worse due to the following reasons. Increasing

14

120 140 160 180 200
% event rate

0
20
40
60
80

100
%

 fa
lse

 p
os

iti
ve

s hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(a) Q1: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(b) Q4: : strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(c) Q4: relaxed QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(d) Q5: strict QoR

Fig. 7: Impact of event rate on false positives.

100 200 300 400 500
window size (min.)

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(a) Q1: strict QoR

100 200 300 400 500
window size (min.)

0
20
40
60
80

100
%

 fa
lse

 n
eg

at
iv

es hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(b) Q1: relaxed QoR

100 200 300 400 500
window size (min.)

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(c) Q2: strict QoR

100 200 300 400 500
window size (min.)

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(d) Q2: relaxed QoR

Fig. 8: Impact of window size on false negatives.

100 200 300 400 500
window size (min.)

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(a) Q1: strict QoR

100 200 300 400 500
window size (min.)

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s hSPICEPM

hSPICEW
eSPICE
BL
pSPICE

(b) Q2: strict QoR

Fig. 9: Impact of window size on false positives.

the window size might result in increasing the completion
probability of PMs within the window. This implies that more
events in the window might acquire a high utility value.
Therefore, in this case, the load shedding impact on QoR might
increase. Moreover, increasing the window size might increase
the number of concurrent PMs within the window where
more PMs might open. This implies that the overhead of load
shedding of hSPICEPM might increase with increasing the
window size since its overhead is proportional to the number
of PMs in windows. This might result in dropping more events,
hence increasing the impact on QoR. This is observed in
Figure 8a where the percentage of false negatives caused by
hSPICEPM increases when the window size increases. The
figure shows that for large window sizes (i.e., 400 and 500
minutes), the performance, w.r.t. the percentage of false nega-
tives, of hSPICEPM is similar to the performance of eSPICE
and pSPICE. However, hSPICEW considerably outperforms
hSPICEPM when the window size is larger than 200 minutes
as depicted in the figure. The percentage of false negatives
caused by hSPICEW slightly increases when the input event
rate increases. The percentage of false negatives caused by

eSPICE, also, increases with increasing the window size as
shown in the figure. The results for pSPICE are also similar.
The results for BL shows that the percentage of false negatives
is only slightly increasing when increasing the window size
to 200 minutes after that it starts to decrease. This shows that
hSPICEW performs, w.r.t. the percentage of false negatives,
very well with relatively large window sizes and it outperforms
eSPICE, BL, and pSPICE regardless of the used window size.

In the case of using relaxed QoR for Q1, hSPICEPM,
hSPICEW, and pSPICE produce similar results to the results
when using strict QoR as depicted in Figure 8b. However,
the percentage of false negatives caused by eSPICE and
BL decreases compared to the case when using strict QoR.
The figure shows that for a window size longer than 300
minutes, eSPICE outperforms hSPICEPM. The performance
of hSPICEW is, again, better than the performance of hSPI-
CEPM, eSPICE, BL, and pSPICE regardless of the used
window size as depicted in the figure. The results for Q2

show similar behavior as depicted in Figures 8c and 8d
where hSPICEW performs very well regardless of the used
window size. Figures 9a and 9b depict the percentage of
false positives for Q1 and Q2, respectively. The figures show
that the percentage of false positives caused by hSPICEPM
is only slightly increasing when the window size increases,
while the percentage of false positives caused by hSPICEW is
almost same with different window sizes. On the other hand,
the percentage of false positives caused by eSPICE and BL
increases with increasing the window size. pSPICE results in
almost zero false positives for both Q1 and Q2.

3) Maintaining Latency Bound: The main objective of
hSPICE is to minimize the degradation in QoR while main-
taining a given latency bound (LB). As mentioned above,
LB is 1 second and hSPICE drops events when the event
queuing latency is greater than or equal to 80% of LB (i.e.,

15

0 5 10 15

time (sec.)

0.0

0.2

0.4

0.6

0.8

1.0

la
te

n
cy

 (
se

c.
)

event rate: 120%

event rate: 140%

event rate: 160%

event rate: 180%

event rate: 200%

(a) Q1

0 5 10 15 20 25 30

time (sec.)

0.0

0.2

0.4

0.6

0.8

1.0

la
te

n
cy

 (
se

c.
)

event rate: 120%

event rate: 140%

event rate: 160%

event rate: 180%

event rate: 200%

(b) Q2

0 5 10 15 20

time (sec.)

0.0

0.2

0.4

0.6

0.8

1.0

la
te

n
cy

 (
se

c.
)

event rate: 120%

event rate: 140%

event rate: 160%

event rate: 180%

event rate: 200%

(c) Q5

Fig. 10: Maintaining latency bound.

800 milliseconds). The event rate is an important factor that
influences the ability of hSPICE to maintain LB. Therefore,
in this section, we show the ability of hSPICE to maintain the
given latency bound (LB) with different event rates. Figure
10 shows the event latency for Q1, Q2, and Q5 where the
event latency is the sum of the event queuing latency and
the event processing latency. The event latency depicted in
Figure 10 is measured when evaluating those three queries
using the same settings as in Section IV-B1. In the figure, the
x-axis represents the event rate and the y-axis represents the
induced event latency. We observed similar results for Q3 and
Q4 and all other queries when using different settings (e.g.,
using different window sizes), hence we do not show them.

Figures 10a, 10b, and 10c depict results for Q1, Q2, and Q5,
respectively. The figures show that hSPICE always maintains
the given latency bound irrespective of the event rate. In the
figure, the induced event latency stays around 800 milliseconds
(i.e., 80% of LB which is used to have a safety bound). As
can be seen, the objective of maintaining the latency bound is
successfully achieved by hSPICE.

4) Discussion: hSPICE shows its ability to maintain the
given latency bound while minimizing the degradation in
QoR. Through extensive evaluations, we show that hSPICE
outperforms, w.r.t. QoR, eSPICE, BL, and pSPICE for the
majority of queries– especially for sequence operators. The
performance of hSPICE for the any operator is worse than
the performance of other load shedding strategies when using
relaxed QoR. We also show that significantly increasing the
window size might increase the impact of hSPICEPM on QoR.
In short, we show that hSPICEPM has a considerably good
performance, w.r.t. QoR, in the case of reasonable window
sizes. Whereas hSPICEW is only slightly influenced by the
increased size of the windows. Hence, depending on the
window size requirement of the application, either hSPICEPM
or hSPICEW might be used to minimize the load shedding
impact on QoR.

V. RELATED WORK

Complex event processing (CEP) systems are used in
many applications to detect interesting patterns in input event
streams [1], [2], [3], [26]. There exist several well-defined
event patterns in CEP (also called event operators), e.g., se-
quence, negation, any, disjunction, and conjunction [13], [18],
[27]. In CEP systems, the input event stream is continuous
and may have a high volume. Moreover, the events are usually

required to be processed in near real-time [7], [8]. Therefore,
in CEP, there exist several techniques aiming to process the
input events in a given latency bound such as parallelism,
optimizations, and pattern sharing [1], [2], [17], [18]. However,
these techniques are not always sufficient or even possible,
therefore, researchers propose to use load shedding.

Recently, there have been several works on load shedding in
CEP [5], [6], [9], [10]. All these approaches aim to minimize
the impact of load shedding on QoR. The approaches in [5],
[9] propose to drop events with the lowest utility from a CEP
operator while the work in [6] drops PMs with the lowest
utility in overload situations. In [9], the utility of an event
depends on the event type and its frequency in the input
event stream. While in [5] the utility of an event depends
on the event type and its position in the window. In [6], the
utility of a PM depends on its completion probability and its
estimated processing cost. To predict the utility of a PM, the
authors propose to use as learning features the current state
of the PM and the remaining events in the window. Unlike
all these approaches, our approach drops events from PMs
where an event might have different importance for different
PMs. As a result, our approach predicts the event utilities
more accurately and performs dropping more precisely, thus
reducing the adverse impact of load shedding on QoR.

In [10], the authors propose a load shedding approach to
drop PMs and events. They assign utilities to PMs in a similar
way to [6], i.e., depending on the completion probability of
PMs and their estimated processing cost. When load shedding
is triggered, the approach performs the following: 1) it selects
a set of PMs (called PM shedding set) with the lowest utilities
and adds all events that belong to PMs in the PM shedding
set to an event shedding set (denoted by ED). 2) It first drops
all PMs in the PM shedding set. Then, it drops incoming
events e that belong to the event shedding set from all PMs,
i.e., if e ∈ ED, drop e. The event dropping stops when the
given latency bound is not violated anymore. The approach
assumes that events that are part of low utility PMs have
low importance and can be dropped with a low impact on
QoR. However, this is not necessarily true as a PM with low
utility may also contain highly important events. This might
result in dropping important events. Furthermore, as this load
shedding approach depends only on PMs to build the event
shedding set, this implies that different events in a pattern have
different probabilities to be chosen for the event shedding set.
Moreover, this load shedding approach uses event content to

16

check if an event belongs to the event shedding set. However,
if events contain floating point, text, or image content, it is
hard to find an exact match with events in the event shedding
set. Hence, in these cases, it is not clear if this approach
could maintain the given latency. Additionally, using events
with their content in the event shedding set might consider-
ably increase the load shedding overhead. The load shedding
overhead in hSPICE, on the other hand, is independent of the
event content. Furthermore, the load shedding approach in [10]
seems to only support skip-till-any-match semantic [11] which
represents a small set of known pattern semantics in CEP
[13], [14], [15]. Moreover, this approach does not support the
negation operator. In contrast, hSPICE supports all commonly
used event operators and selection and consumption policies.

In the domain of approximate CEP, the authors in [28]
propose a white-box approach (called RC-ACEP) to drop
events from PMs in overload cases. The approach aims to
minimize the degradation in QoR. They assign utilities to PMs
depending on completion probabilities of the PMs– higher
is the completion probability, higher is the utility. The idea
is to process input events firstly with PMs that have the
highest utilities. For each newly coming input event, RC-
ACEP stops processing the previous event, recalculates and
sorts PM utilities, and then processes the new events with the
sorted PMs. However, recalculating and sorting PM utilities
for every input event imposes a high overhead. Moreover, they
do not consider the importance of input events for PMs where
input events might have different importance for different PMs.

Various approximation techniques are frequently used to
avoid resource constraints in various domains such as dis-
tributed graph processing [29], in-network processing [30],
[31], stream processing [4], [23], [32], etc. Load shedding has,
especially, been extensively studied in the stream processing
domain [4], [7], [16], [23], [32], [33], [34], [35]. In [4], [23],
[34], the authors assume that the importance of a tuple depends
on the tuple’s content. [23] assumes the mapping between
the utility and tuple’s content is given, for example, by an
application expert, while [4], [23] learn this mapping online
depending on the used query. The authors in [32] assume that
the importance of a tuple depends on the processing latency of
the tuple– higher is the processing latency of a tuple, lower is
its importance. Therefore, they drop those tuples that have the
highest processing latencies. In [7], the authors fairly select
tuples to drop from different input streams by combining two
techniques: stratified sampling and reservoir sampling. The
authors in [35] also propose to use stratified sampling and
reservoir sampling to perform the approximate join. In both
these papers, the authors assume that tuples have the same
utility values and impose the same processing latency. All
these works do not capture the correlation between events in
patterns which is important in CEP. For example, if the pattern
is seq(A;B), then events of type A are only important if the
stream contains events of type B and vise-versa. Our approach
implicitly captures this correlation.

VI. CONCLUSION

In this paper, we proposed an efficient, lightweight load
shedding strategy called hSPICE which combines the advan-

tages of both black-box and white-box state-of-the-art load
shedding strategies. hSPICE consists of two load shedding ap-
proaches hSPICEPM and hSPICEW. hSPICEPM drops events
from PMs within windows, while hSPICEW drops events from
windows. In overload cases, hSPICE drops events from partial
matches (i.e., using hSPICEPM) or from windows (i.e., using
hSPICEW) to maintain a given latency bound. To assign a
utility value to an event for a partial match, hSPICE uses three
features: 1) event type, 2) event position in the window, and 3)
the current state of the partial match. By using a probabilistic
model, hSPICE uses these features to predict the event utility.
Through extensive evaluations on two real-world datasets and
several representative queries, we show that, for the majority of
queries, hSPICE outperforms, w.r.t. QoR, state-of-the-art load
shedding strategies. Moreover, we show that hSPICE always
maintains the given latency bound regardless of the incoming
input event rate.

ACKNOWLEDGEMENT

This work was supported by the German Research Foun-
dation (DFG) under the research grant ”PRECEPT II” (BH
154/1-2 and RO 1086/19-2). The authors would like to thank
Nabila Hashad for helping with implementation.

REFERENCES

[1] R. Mayer, A. Slo, M. A. Tariq, K. Rothermel, M. Gräber, and U. Ra-
machandran, “Spectre: Supporting consumption policies in window-
based parallel complex event processing,” in Proc. of the 18th ACM/I-
FIP/USENIX Middleware Conf., 2017.

[2] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul, “Rip: Run-based
intra-query parallelism for scalable complex event processing,” in Proc.
of the 7th ACM DEBS Conf. on Distributed Event-based Systems, 2013.

[3] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and D. Gunop-
ulos, “Elastic complex event processing exploiting prediction,” in IEEE
Int. Conf. on Big Data, 2015.

[4] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” in Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, 2003.

[5] A. Slo, S. Bhowmik, and K. Rothermel, “espice: Probabilistic load
shedding from input event streams in complex event processing,” in
Proceedings of the 20th International Middleware Conference, ser.
Middleware ’19. ACM, 2019.

[6] A. Slo, S. Bhowmik, A. Flaig, and K. Rothermel, “pspice: Partial match
shedding for complex event processing,” in IEEE BigData 2019.

[7] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“Streamapprox: Approximate computing for stream analytics,” in Proc.
of the 18th ACM/IFIP/USENIX Middleware Conf., 2017.

[8] H. Röger, S. Bhowmik, and K. Rothermel, “Combining it all: Cost mini-
mal and low-latency stream processing across distributed heterogeneous
infrastructures,” in Proceedings of the 20th International Middleware
Conference, ser. Middleware ’19, 2019.

[9] Y. He, S. Barman, and J. F. Naughton, “On load shedding in complex
event processing,” in ICDT, 2014.

[10] B. Zhao, N. Q. Viet Hung, and M. Weidlich, “Load shedding for complex
event processing: Input-based and state-based techniques,” in ICDE
2020.

[11] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern
matching over event streams,” in Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’08. New York, NY, USA: Association for Computing Machinery,
2008, p. 147160.

[12] A. Slo, S. Bhowmik, and K. Rothermel, “Hspice: State-aware event
shedding in complex event processing,” in Proceedings of the 14th ACM
International Conference on Distributed and Event-Based Systems, ser.
DEBS 20. New York, NY, USA: ACM, 2020, p. 109120.

[13] S. Chakravarthy and D. Mishra, “Snoop: An expressive event specifica-
tion language for active databases,” Data Knowl. Eng., vol. 14, no. 1,
pp. 1–26, Nov. 1994.

17

[14] G. Cugola and A. Margara, “Tesla: A formally defined event spec-
ification language,” in Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’10. New
York, NY, USA: ACM, 2010, pp. 50–61.

[15] D. Zimmer, “On the semantics of complex events in active database
management systems,” in Proceedings of the 15th International Con-
ference on Data Engineering, ser. ICDE ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 392–.

[16] N. Tatbul and S. Zdonik, “Window-aware load shedding for aggregation
queries over data streams,” in Proc. of the 32nd Int. Conf. on Very Large
Data Bases, 2006.

[17] M. Ray, C. Lei, and E. A. Rundensteiner, “Scalable pattern sharing on
event streams,” in Proc. of the Int. Conf. on Management of Data, 2016.

[18] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” in Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, 2006.

[19] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, “Com-
posite events for active databases: Semantics, contexts and detection,”
in Proceedings of the 20th International Conference on Very Large Data
Bases, ser. VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, p. 606617.

[20] Y. Mei and S. Madden, “Zstream: a cost-based query processor for
adaptively detecting composite events,” in SIGMOD Conference, 2009.

[21] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “Expressing and
optimizing sequence queries in database systems,” ACM Trans. Database
Syst., vol. 29, no. 2, p. 282318, Jun. 2004.

[22] S. Gatziu and K. R. Dittrich, “Events in an active object-oriented
database system,” in Rules in Database Systems, N. W. Paton and M. H.
Williams, Eds. London: Springer London, 1994, pp. 23–39.

[23] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in Proc. of the 29th Int. Conf.
on Very Large Data Bases, 2003.

[24] “Google Finance,” https://www.google.com/finance, 05.05.2019.
[25] DEBS 2013. Accessed: 2019-08-16. [Online]. Available:

https://debs.org/grand-challenges/2013/
[26] G. F. Lima, A. Slo, S. Bhowmik, M. Endler, and K. Rothermel,

“Skipping unused events to speed up rollback-recovery in distributed
data-parallel cep,” in 2018 IEEE/ACM 5th International Conference
on Big Data Computing Applications and Technologies (BDCAT), Dec
2018, pp. 31–40.

[27] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. Claypool,
“Sequence pattern query processing over out-of-order event streams,” in
IEEE 25th Int. Conf. on Data Engineering, 2009.

[28] Z. Li and T. Ge, “History is a mirror to the future: Best-effort approxi-
mate complex event matching with insufficient resources,” Proc. VLDB
Endow., vol. 10, no. 4, pp. 397–408, Nov. 2016.

[29] Z. Shang and J. X. Yu, “Auto-approximation of graph computing,”
Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 1833–1844,
2014.

[30] S. Bhowmik, M. A. Tariq, J. Grunert, D. Srinivasan, and K. Rothermel,
“Expressive content-based routing in software-defined networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 11, pp.
2460–2477, Nov 2018.

[31] S. Bhowmik, M. A. Tariq, A. Balogh, and K. Rothermel, “Address-
ing TCAM limitations of software-defined networks for content-based
routing,” in Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems (DEBS), 2017.

[32] N. Rivetti, Y. Busnel, and L. Querzoni, “Load-aware shedding in stream
processing systems,” in Proc. of the 10th ACM Int. Conf. on Distributed
and Event-based Systems, 2016.

[33] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “Themis:
Fairness in federated stream processing under overload,” in Proc. of
the Int. Conf. on Management of Data, 2016.

[34] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “Concept-
driven load shedding: Reducing size and error of voluminous and
variable data streams,” in IEEE Int. Conf. on Big Data, 2018.

[35] W. H. Tok, S. Bressan, and M.-L. Lee, “A stratified approach to
progressive approximate joins,” in Proc. of the Int. Conf. on Extending
Database Technology: Advances in Database Technology, 2008.

Ahmad Slo received the BS degree in computer
science from Aleppo University, Aleppo, Syria, and
the MS degree in computer and communications
systems engineering from the Technical University
of Braunschweig, Braunschweig, Germany. He is
currently working toward the Ph.D. degree at the
University of Stuttgart, Stuttgart, Germany. He is
currently with the Distributed Systems Research
Group, University of Stuttgart. His research interests
include complex event processing, stream process-
ing, load shedding, and low latency event processing.

Sukanya Bhowmik received her doctoral degree
from University of Stuttgart, Germany, in 2017. She
is currently working as a postdoctoral researcher at
the Distributed Systems research group of University
of Stuttgart. Her research interests include stream/-
complex event processing, high performance com-
munication middleware, in-network event process-
ing, software-defined networking, and distributed
graph processing, with a focus on scalability, line-
rate performance, resource efficiency, and adaptabil-
ity aspects.

Kurt Rothermel received his doctoral degree in
Computer Science from University of Stuttgart in
1985. From 1986 to 1987 he was a Post-Doctoral
Fellow at IBM Almaden Research Center in San
José, U.S.A., and then joined IBM’s European Net-
working Center in Heidelberg. Since 1990 he is a
Professor for Computer Science at the University
of Stuttgart. From 2003 to 2011 he was head of
the Collaborative Research Center Nexus (SFB 627),
conducting research in the area of mobile context-
aware systems. His current research interests are in

the field of distributed systems, computer networks, and mobile systems.

18

