https://doi.org/10.1016/j.ress.2021.107533

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Scalable k-out-of-n Models for Dependability
Analysis with Bayesian Networks

Frank Diirr
University of Stuttgart

Otto Bibartiu

Institute for Parallel and Distributed Systems (IPVS)

Universititsstrasse 38 Stuttgart, Germany
{first name}.{last name} @ipvs.uni-stuttgart.de

Abstract—Availability analysis is indispensable in evaluating
the dependability of safety and business-critical systems, for
which fault tree analysis (FTA) has proven very useful throughout
research and industry. Fault trees (FT) can be analyzed by means
of a rich set of mathematical models. One particular model
are Bayesian networks (BNs) which have gained considerable
popularity recently due to their powerful inference abilities.
However, large-scale systems, as found in modern data centers for
cloud computing, pose modeling challenges that require scalable
availability models. An equivalent BN of a FT has no scalable
representation for the k-out-of-n (k/n) voting gate because the
conditional probability table that constitutes the k/n voting gate
grows exponentially in n. Thus, the memory becomes the limiting
factor.

We propose a scalable k/n voting gate representation for BNs,
based on the temporal noisy adder. The resulting model reduces
the initial exponential to polynomial memory growth without a
custom inference algorithm. Previous BN implementations of the
k/n voting gate could only handle around 30 input events until
memory limits make inference infeasible. However, our evaluation
shows that our scalable model can handle more than 700 input
events per gate, making it possible to evaluate large scale systems.

I. INTRODUCTION

Availability analysis plays an integral part in the devel-
opment of dependable systems. Companies in the industry
and service sectors are obligated to provide high availability
for their safety and business-critical systems. This includes
classical domains such as the automotive, aviation, telecom-
munication and financial institutions, and also new areas that
emerged with the rise of cloud computing, such as smart
grids [1], |2], connected cars |3], 4], e-health [5], smart
factories |6], [7], to name a few. Due to the criticality of these
areas, availability assessments are mandatory during the design
and development of such systems. Failing to provide adequate
availability might lead to financial or legal consequences or
go as far as harming human life.

There are several methods to evaluate the availability of a
system, among which Fault tree analysis (FTA) in conjunction
with Bayesian networks (BNs) has gained large acceptance in
the industry and research fields [8]—[12]. Fault trees (FTs) are
graphs that describe how certain combinations of component
faults, known as base events, can lead to an undesired system
failure, known as the top event. Logic gates are used to
create intermediate events, by forming a Boolean expression

Kurt Rothermel

Beate Ottenwilder Andreas Grau
Robert Bosch GmbH
Bosch IoT Cloud
Stuttgart, Germany
Beate.Ottenwaelder@de.bosch.com
Andreas.Grau2 @de.bosch.com

to describe what combinations of base events lead to a system
failure [8]. There are three basic gate types: the AND gate,
OR gate, and the k-out-of-n (k/n) voting gate. The AND/OR
gates propagate a fault if all or one input event triggers a
fault, respectively. The k/n voting gate propagates a fault when
more than k-out-of-n components fail, i.e., at least k inputs are
fault events. The voting gate is suitable to model groups of
redundant components, where a group is considered available
as long as no more than n — k + 1 components are available.
FTs provide a large variety of quantitative analysis methods
to compute the system’s fault probability, i.e., the probability
to trigger the top event. A well-known method is to enumerate
all minimal cut-sets (MCSs), i.e., sets containing a minimal
number of base events that can cause the system to fail,
and compute the probability that at least one MCS occurs.
Finding such sets is in general NP-complete |13]], which can
make some FTs infeasible to evaluate by solely using this
method. Other quantitative analysis methods are also possible,
such as exploiting the FT structure to compute MCSs more
efficiently [14], applying simulation for approximation [15],
or using algebraic methods [16]. In this work, we focus on
transforming FTs into BNs, where inference is applied to
compute the system’s fault probability [17], [18]. BNs are
probabilistic graph models, where nodes represent discrete
random variables, and directed edges model conditional de-
pendencies between these nodes. BNs have proven useful
in representing and evaluating equivalent FTs, due to their
powerful modeling abilities and simple notation [[19]-[22].
Nevertheless, representing k/n voting gates in BNs poses
a scalability problem for a large number of input events
regarding the quantitative representation of the BN. Large-
scale systems, such as data stores in cloud computing or
modern replicated database systems, have hundreds of storage
and compute nodes, which are used as a failover in the case
of node failures [23]. If we were to model these systems with
the help of FTs, we might end up with a BN structure that
becomes computational infeasible due to storage limitations.
For example, previous methods to evaluate FTs with BNs use
one random variable to represent a gate, c.f. Figure |1} where
the variable’s conditional probability table (CPT) constitutes
the Boolean expression of the appropriate gate. We consider
this representation the naive model. If the gate has many input

2/3 Voting Gate®
Example

C
T
C2 F|F
F
0
1

B EIEIE]

o a|m|ala

~ o|a|n[n

o af-|m|=

o o |=|alm
o =[a]|al=

Fig. 1: BNs example of a 2/3 voting gate.

events, then the corresponding CPT of the random variable
representing the k/n voting gate grows exponentially with the
number of input events. For every possible combination of
input states, the CPT stores an appropriate distribution for the
random variable that constitutes the k/n voting.

For example, Figureshows the BN representation of a 2/3
voting gate, where node K is a binary random variable that
constitutes the voting gate and nodes Cy to C5 represent the
base events. Since node K is conditionally dependent on three
child nodes, denoted by the incoming edges, its CPT requires
eight entries to describe the conditional probability distribution
of K, c.f. the table in Figure Here, F' corresponds to the
working state, while 7' corresponds to the failed state. For
every state combination of K’s parent nodes, we define a
probability distribution for observing the states F' and 7. If
we observe at least two input events in the state 7', then the
probability of the corresponding gate K triggering a fault event
rises up to 1.

Consequently, if the input size is n then the CPT needs to
store 2™ probability distributions for K. Assume we want to
model the availability of a distributed computing system with
30 nodes where the majority of nodes need to be available
to have a working system. Suppose, for simplicity reasons,
we model the system as an FT with one k/n voting gate and
the parameters n = 30 and £ = 15. The CPT representing the
30/15 voting gate has 23° entries. If each entry amounts to just
one byte, then the total memory demand will be 16 GB to store
the CPT, making memory space a limiting factor. This hinders
us from assessing the availability of large-scale systems, such
as modern cloud computing infrastructures. The exponential
increase of the memory in the number of the input size is also
known as the exponential memory blow-up problem. So far,
BNs have scalable implementations to represent the AND/OR
gates [24]|—-|26|; however, a scalable representation for the k/n
voting gate is missing.

To use the k/n voting gate in settings as they occur in current
large-scale systems, where we have large sets of redundant
server clusters, we provide a scalable BN representation of the
k/n voting gate. This work is based on our previous work [27],
where we showed that the scalable k/n model can be built with
the temporal noisy adder by Heckerman [24]]. The BN model
of the noisy adder is a random variable representing a counter
and a probability distribution that defines the likelihood of
observing a certain count. However, the BN model of the

noisy adder still suffers from the exponential memory problem.
Therefore, Heckerman proposed the noisy temporal adder,
which is the scalable version of the general noisy adder.
With the temporal noisy adder notion, we can reduce the
space complexity from exponential to polynomial. We will
discuss the temporal noisy adder in more detail when we
derive the scalable k/n voting gate model later. In this article,
we extend our previous work as follows. We enhance the
modeling capabilities of the scalable k/n voting gate and
provide an extensive evaluation. Experiments show that we
can successfully represent and model k/n voting gates with
more than 700 input events while still providing reasonable
inference performance in the order of a few minutes.
The contributions we make are as follows

1) We show how to build an equivalent and scalable BN
model of the k/n voting gate.

2) We discuss two approaches to implement a noisy k/n
voting gate representation in BNs.

3) We show how to replace any naive BN implementation
with a scalable k/n voting gate in existing BNs.

4) We also show that our scalable k/n voting gate model
can be used with any standard (exact or approximate)
inference algorithm.

5) We present numerical evidence, showing that the scal-
able k/n voting gate can be applied in availability
analysis for large scenarios.

The remainder of this paper is structured as follows. First,
we present related work in Section summarizing the re-
search on BN dependability analysis and model scalability.
Then, in Section we give a brief introduction to the notion
of BNs. We illustrate the exponential memory growth problem
of current approaches and state the aim of our research in
Section[IV] In Section|[V] we introduce the scalable k/n model,
and in Sectionwe provide an algorithmic approach on sub-
stituting a naive k/n voting gate instance in an already existing
BN with the scalable model. Afterward, in Section we
provide evaluations to illustrate the performance and memory
benefits of our solution. In Section we discuss possible
modeling limitations and future work. Finally, we conclude

the paper in Section

II. RELATED WORK

In this section, we discuss important research on FTA with
a BN, focusing on the scalability aspects of the model.

Bobbio et al. [[17] established the concepts for assessing
static FTs with BNs, introducing the naive implementation of
the k/n voting gate. Boudali and Dugan [18]], [28] noticed the
scalability problem of the k/n voting gate without providing a
solution to it. However, they did suggest solutions for scalable
AND/OR gates. The main idea is to divide the gates into
smaller cascading AND/OR gates resulting in a lower number
of input events per gate. This concept is also known as the
parent-divorce method by Olesen et al. [29].

In the beginning of probabilistic graph modeling, knowledge
engineers introduced the notion of causal independence to

provide efficient BN structures and to ease knowledge acqui-
sition |24/, [25]. Some important models are the noisy AND/
OR [25], [26], [30]-[32], noisy MAX [33], and the noisy
adder [34], [35]. As a result, this research already provides
scalable AND/OR gates representations for BNs. However, a
scalable k/n model was still missing.

Iris and Kiureghian [36] have recently tackled the exponen-
tial memory growth of the k/n voting gate and proposed a
lossless compression algorithm based on run-length encoding
and Lempel Ziv compression to reduce the exponential size
of the CPT. Nonetheless, their evaluations indicated that
their approach does not scale for systems with hundreds of
redundant components. Moreover, their approach requires a
custom inference algorithm to handle the compression.

Our scalable k/n voting gate representation is an extension
of the temporal noisy adder by Heckerman |24|, which we use
to solve the initial sub-problem of enumerating all possible
state combinations of input events in a scalable manner. The
temporal noisy adder already reduces the space complexity
from exponential to polynomial, which helps us to implement
the “scalable” part of the k/n voting gate.

III. BACKGROUND

In this section, we describe necessary background informa-
tion on BNs and fault modeling.

A (discrete) BN [26] is a directed acyclic graph G =
(X,FE) with a joint probability P(X). The nodes X =
{X1, Xo,... X, } are representations of random variables. We
use the term variable or node interchangeably throughout the
paper. Edges £ C X x X represent conditional dependencies.
The tuple (X, X;) € E defines an edge where X, is said to be
a parent node of X;, and X is a child node of X;. We assign
a conditional probability distribution to each variable, given
its parents nodes pa(X;) = {X, : ¥(X,,X;) € E}. Hence,
P(X; = zi|pa(X;)) describes the probability to observe a
particular state X; = x; given a specific state combinations
of its parent variables. Nodes without parents are called root
nodes, and have a prior probability distribution P(X; = x;).

Since random variables are discrete and finite, it is common
to express their conditional probability distributions in tabular
form, known as conditional probability tables (CPTs). For
example, Figureshows a simple BN with four binary random
variables with the states {1, F'}. C; to Cs5 are root nodes with
different prior probabilities. We consider K to be a child node
of Cy to C3, and C to Cj as the parent nodes of K. The CPT
of K describes the conditional probability distribution given
its parent nodes (right table). K’s CPT contains a probability
distribution for every state combination of K’s parent nodes.
Here, this BN represents a k/n voting gate (hence the name K
for the node) of a FT’s 2/3 voting gate. C; to C3 represent the
probability of observing a fault event of the input events, and
K represents the gate’s Boolean expression to trigger a fault
when at least 2-out-of-3 input events are in a faulty state F'.
We set K = F' with probability one whenever the sum of its
parent nodes that are in state F is greater or equal to k = 2.

[Top Event] System
Failure

[

Memory Array Fault

Memory Fault

olielie

Fig. 2: FT of the computing system.

Compute Unit Fault

Memory Fault Memory Fault

Finally, a BN defines a joint probability distribution as the
product of all its conditional probability distributions:

P(X) = [] P(xlpa(x)) (1)

zeX

In this work, we use the concepts proposed by Bobbio et
al. [[17] as building blocks in order to translate FT gates into
their equivalent BN structure. For example, suppose we want
to assess the availability of a simple compute system with the
help of a BN. The system .S consists of a compute unit U and
an array of three redundant main memory units M;, M, and
Ms. The system fails when the compute unit or at most two
memory units fail. The compute unit fails with a probability
of 2%, and each memory unit with a probability of 10%, 15%,
and 20%, respectively. Figure |2| shows the corresponding FT.
The top event is the system’s failure, which is the output of the
OR gate S. The OR gate has the fault events of the compute
unit and the memory array as its inputs. The memory array
triggers a fault event when at least 2-out-of-3 memory units
fail, as indicated by the 2/3 voting gate K.

Figure (3| shows the corresponding BN, where we encode
the probabilities of a component fault as its eponymous
binary random variables {U, M7, Mo, Ms, K, S}, with the
states {F,T}. Here, F' corresponds to the working state,
while T' corresponds to the failure state. Node U, M;, Mo,
and Ms are the so-called root nodes containing prior fault
probabilities. Node K represents the 2/3 voting gate and
has three parent nodes constituting eight different observable
state combinations; from “all memory units work”, up to “all
units are faulty”. For each state combination, we count the
number of faults represented by the parent nodes and set
the corresponding probability distribution of K with 100%
certainty to 7" if we have more than two faults.

Node S defines the system’s failure. Since S is conditionally
dependent on two parent nodes, for each state combination of
the parents we need to define a probability distribution. In our

P(U) P(M4) P(My) P(M3)
U=T[02 [[M=T|.1 ||Mp=T]|15 |[Ms=T]| .2
U=F |98 |[My=F|.9 |[My=F|85|[Ms=F| .8

P(K| My, Mp, Mg)

My F|T|F|[T|F|[T|F|T
My [FIF|T|T[F|F|T|T
Mg |F|F|F|F|T|T|T|T
K=T|o|o|of1]|o|1]1]1
K=F|1]|1]|1]o]1]|0]0 |0
K)
U |F|T|F|T
K |F|F|T|T
s=T|o|1]1[1
s=F|1|0]0]o0

Fig. 3: BNs example of the computing system.

case, we model the system failure with the help of an OR gate
representation [17].

Finally, we use inference to compute the system’s fault
probability, i.e., the top event. Generally, inference computes
the posterior probability distribution P(Q|K) of some query
@ C X of uncertain variables, where K C X\Q is a
subset of given observations of the remaining variables. Exact
and approximate inference algorithms are in general NP-
hard |34], [37]. Yet, many BNs allow for fast inference times.
For example, inference in BNs with a polytree topology has
linear computation complexity [25]. Throughout this work,
we will use abbreviations for readability reasons: the general
term X; = x; simply as lower capital z; to distinguish
between the random variable from its asserted/observed state.
We compute the fault probability of our example by inferring
the marginalization of the top event P(S =T).

>

YVu,mi,ma,mz,k€{F,T}

PS=T)= P(u,myi,mo,ms, k,S=T)

where we use the definition from Equation[I]to compute the
joint probability using the CPTs from the BN.

P(u,myi,mo,ms, k,S=T) = P(S =T|u, k) x P(u)
><P(k|m1,m2,m3) X P(’I’)’Ll) X P(mg) X P(mg)

IV. PROBLEM STATEMENT

Consider the BN in Figure also known as a converging
network that constitutes the general structure to implement
a k/n voting gate for arbitrary k and n. We refer to this
BN structure as the naive implementation. For every state
combination of the parent nodes, we set K = T with
probability one if at least k-out-of-n parent nodes are in state
T. The CPT for K has the following definition for the k/n

model, where we use the notation cy,...,c, to define one
instance of state combinations of the parent nodes.

VCl,...,Cn S {F,T}n
1 " o1p(e) >k
P(K =Tlc1,...,¢cn) = lel.T(c)*
0 otherwise
P(K=Fley,...,cn)=1—P(K =Tl|c1,...,¢cn) (2)

where 17(x) is an indicator function such that

1 ife=T
17(x) .= ’
r(@) {O otherwise.

For each combination of parent states we use Equation
to create an entry P(K|Cy =c¢1,...,C, = ¢,) for K’s CPT.
Hence, if all cause variables have a binary state, we need 2"
entries in K’s CPT leading to an exponential growth of its
probability table for an increasing number of parent nodes.

Complex systems with many redundant components, n =
30, already require a CPT with 16 GB of memory. For
example, suppose we have a larger redundant storage service
consisting of 60 units tolerating 30 faults. The CPT of the
node K requires, in the end, 29 entries because we explicitly
enumerate and provide a conditional probability distribution
for every fault combination of the gate’s input events. If we
need one byte to store one entry in the CPT of K, we need 260
bytes to store the whole table. This results in 1 Zetabyte of
memory for one random variable, which is impossible in the
case of state-of-the-art compute infrastructures. Consequently,
our objective is to reduce the exponential memory growth
to a polynomial memory growth, in order to model larger
redundant systems with BNs.

Fig. 4: Converging BN of a k/n voting gate model (Simple
scenario).

V. SCALABLE K-OUT-OF-N MODEL

Next, we show how to build the scalable k/n model for BNs
by extending the temporal noisy adder to support the semantics
of the k/n voting gate. First, we introduce the temporal noisy
adder. Then, we continue with the description of the scalable
k/n model. In the end, we discuss two possibilities to also
implement a noisy k/n voting gate with BNs.

A. Temporal Noisy Adder Model

The temporal noisy adder BN model was introduced by
Heckerman [24] as a scalable solution to the general noisy
adder. A noisy adder is a random variable that represents a
counter. Its probability distribution defines the likelihood of
observing a certain count. In a general setting, the random
variable of the noisy adder is conditionally dependent on the
so-called cause variable. The noisy adder’s goal is to infer the
probability of observing a certain number of cause variables
being in a defined distinguished state (including some uncer-
tainty in the form of noise). The qualitative representation
of the noisy adder would again resemble a converging BN,
as shown in Figure [4| Here, the nodes C; to C,, would be
the cause variables with binary state {F, 7T}, and instead of
having binary states for node K, node K now has the domain
dom(X) = [0, n]. Suppose the distinguished state of the cause
variables is T, then P(K = mlcy,...,ca) would define the
conditional probability of observing m cause variables being
in the state 7', given the observed states of the cause variables.
Thus, P(K = m) would then define the posterior probability
of observing m cause variables in the state 7". However, using
a converging BN structure to represent a noisy adder leads
again to the exponential memory blow-up problem.

To solve the exponential memory blow-up problem, Heck-
erman [24] proposed the temporal noisy adder. Figure(gray
boy) shows the general BN structure of the temporal noisy
adder, which is a causal chain consisting of two node types.
The upper row are cause variables and the bottom row with the
nodes F; to F, define the adder part. £; to E,, are also known
as contribution variables. We use the contribution variable
FE; to store the intermediate count of all cause variables that
are in the distinguished state up to the i-th cause variable
C;. Thus, E; can count at most 7 observations, hence its
possible states are dom(F;) = {0,...,:}. The noisy adder
considers noise by supplementing each contribution variable
FE; with the probability ¢; that determines the chance of
actually incrementing the counter when C; = T. We define
the CPT of the contribution variables E; as follows:

Vie [l,n]Vm:m <i
P(El :m—|—1|Ei,1 =m,C; =T
P(El = m|Ei,1 =m, Cz =T
P(EZ = ’ITL|EZ‘_1 = m,Ci =F
Here, we increment F; whenever C; is assumed to be in state
T. Assuming that the previous state of F;_; is m, we set E;
to m + 1 with probability g;. However, if C; = F, then E;
propagates the current state of his parent node FE;_;. Note,
that the CPT of Ej is initialized to P(Ey = 0) = 1. Finally,
the last contribution variable F,, contains the count of N of
the observed states of all causes.
B. Scalable k-out-of-n Model Construction

In the following section, we show how to build the scalable
k/n voting gate for BNs. We start with the naive k/n voting

N

Fig. 5: Temporal representation of the noisy adder (gray
box). The overall structure, including node K, represents the
scalable BN structure for the k/n voting gate.

Y,

gate representation, whose structure we gradually change into
its scalable form.

Consider the naive implementation of the k/n voting gate
from Equation [2| and its representation from Figure [4| The
conditional probability P(K = T|c1,...,cy) is 1 if at least
k of the parent variables are in state 7', and O otherwise. We
compute the marginal probability distribution P(K = T') with
the help of the joint probability distribution (c.f. Equation [T).

P(K=T)=
> P(E=Tlc,...

C1y--+,Cn

sen)P(c1) ... P(ey)

If the parent variables are not independent, we can change
the products P(cy) x -+ X P(cy,) to their joint probability
distribution P(c; X -+ X ¢y).

In Equation [2| the number of parent variables in state 7T’
influences the conditional probability of node K. Assuming
causal independence, we define a distinguished state, de-
noted as F', as a neutral event that does not influence K.
Causal independence assumes that each parent node has an
individual influence on the conditional probability of their
child node [38]. Thus, we rewrite the conditional probability
distribution of P(K = T|c1,...,¢c2) as P(K = T|N = n)
where K is conditionally dependent on a new random variable
N with the domain [0,n]. Here, N represents the number of
parent variables that are in state 7. We define the CPT of N
as follows:

1 P lp(a) =
P(N:m|cl’-‘-acn): ZZ:l-T(C) "
0 otherwise.

Thus, N implements an adder model since N counts the
occurrences of a distinguished state of its parent variables.

Next, we include N into the conditional probability distri-
bution of K to compute the marginal P(K = T).

P(K=T)=
> > P(K=TIN=m)xP(N=mle,...,cp)

C1,...,¢n mE[0,n]

X P(Cl :Cn)P(CQ :CQ)
The CPT of K has linear size now, due to its new conditional
dependency to N.
1 m>k

P(K=T|N =m) = .
0 otherwise.

However, the issue of the exponentially growing CPT shifts
to N now, due to its conditional dependency on the variables
C1 to C,. We rearrange the summations to isolate N and to
apply the temporal transformation of the adder model.

PK=T)=
> P(K=TIN =m)
me[0,n] (3)
X P(N =mley,...,cn) XxP(e1) ... Pley)
Cl,.sCn B

We substitute the conditional probability distribution of N with
the temporal-adder model in B, where B is defined as follows:

B = P(E() = 0) Z H P(EZ = 6i|Ei_1 = 67;_1701' = Ci).

eq,...
ep=m

i€[1,n]

The last term defines the adder model of N. Figure |5| depicts
the resulting BN of Equation [3] K is now a child node of
the contribution variable F,, in the causal chain. Since F,,
represents the total count of the causes C7 to C,, K can
enforce the Boolean expression of the k/n voting gate. K sets
the conditional probability for K = T, when the count is at
least k£ with P(K = T|N > k)=1, otherwise 0. By extending
the temporal adder model with an additional random variable
at the end of the chain, we can build a scalable k/n voting
gate model. As a result, we can use any standard exact or
approximate inference algorithm for inference because we did
not deviate from the standard BN formalism.

C. Noisy k/n Voting Gate

Next, we discuss two options to implement a noisy k/n vot-
ing gate. The first option includes uncertainty in propagating a
fault even in the case of more than £ fault events at the inputs.
The second option presupposes an uncertain observation of
the fault event of certain inputs. We might observe inputs that
trigger faults, although no fault has actually occurred (false
positives) or vice-versa, where inputs trigger faults but we
failed to observe them. Both options can be combined to a
noisy k/n voting gate that models input and output uncertainty.

For the first option, we add noise at node K, where K
triggers a fault with a constant probability gy:

PK=T|N=m)={% m=F
0 otherwise.

Even though we count more than k fault events, the k/n voting
gate might still not trigger a fault for m > k with probability
P(K=F|N=m)=1-q.

As a second option to implement a noisy k/n voting gate, we
can use the original notation of the temporal noisy-adder. Each
contribution variable has its probability of accepting the result
of its cause variable to the counter. In this way, the knowledge
engineer can assign a probability of observing the fault event
correctly or not to each input event of the k/n voting gate.

D. Complexity

In the following, we analyze the computational and space
complexity of the scalable k/n model.

The CPT of node K grows linearly in the number of
cause variables. However, the overall space complexity of the
temporal noisy adder grows polynomially with the number of
cause variables. The total number of contribution variables
equals the number of cause variables. The table size of a
contribution variable is at most n2. Hence, since we have a
total of n CPTs, we also have a space complexity of O(ng),
constituting a polynomial growth in the number of causes.

The computational complexity of node K is linear in the
number of cause variables, and the computational complexity
of the temporal noisy adder is O(n3) |24]. Hence, the overall
computational complexity is O(n?).

VI. THE SCALABILITY TRANSFORMATION OF THE NAIVE
K:N MODEL

Next, we show how to translate a BN that contains a
naive implementation of the k/n voting gate into an equivalent
scalable model.

Assume that C; to C,, are parent nodes of a converging
network structure with child node K. Then, the conversion of
this BN into a scalable k/n model includes the following steps:

1) For each C; a contribution variable E; with the domain
[0, 7] must be created.

2) Let E; be a child of C; and E;_4. Let K be a child E,,.
For each F; define the temporal adder model:

PE,=k+1E_1=kC;=T)=1
P(E;,=k|lE;_1 =k, C;=T)=0
PE,=klE,1 =k, C;=F)=1
3) Define the conditional probability distribution of
P(K|E,) with:
PK=TIN>k)=1
P(K=FIN>k)=0
P(K=T|IN<k)=0
P(K=FIN<k)=1
This algorithm introduces new nodes into the BN. These
nodes should not have any other parent nodes, except for
their associated cause variables. If the existing BN model has
multiple voting gates, denoted by the nodes K to k,,, then
we apply the transformation in the same manner to each gate.
We denote the contribution variable of the i-th cause node that

belongs to the j-th voting gate model as FE; ;, to certify that
association to the voting gate is unambiguous.

VII. NUMERICAL EVALUATION

We evaluate the performance of our scalable k/n voting gate
implementation w.r.t. inference time and memory consump-
tion for three different scenarios. The first scenario uses a
converging BN representing a set of redundant components.

The remaining scenarios use a mixed serial-parallel reliability
block diagram example introduced by Tien et al. [36]. For
each scenario, we model the system in two ways. First, we
use the naive implementation for the BN availability model
of the system, and afterwards we use the scalable k/n voting
gate.

A. Experimental Setup

We evaluated all BN models on a 64-bit machine with
an Intel(R) Xeon CPU with eight 3.4 GHz processor cores
and 16 GB of RAM. We used three different BN libraries to
perform inference.

pgmpy (ver. 0.1.7) Python package, which offers an exact
inference algorithm (the variable elimi-
nation method)

R library for BN learning, which pro-
vides an approximate inference algo-
rithm using Monte Carlo particle fil-
ters [39].

R library for probabilistic graph infer-
ence [40], which provides an exact in-
ference using the Lauritzen and Spiegel-
halter propagation algorithm [41].

bnlearn (ver. 4.5)

gRain (ver. 1.2.3)

We apply these three inference libraries/algorithms in all our
experiments to the naive and scalable BN models, in order to
show that our scalable k/n model can be used by any standard
inference algorithm.

B. Experimental Scenarios

The first scenario is a simple system with n redundant
components where at least £k component failures are tolerated.
We model this system as one k/n voting gate using the
converging BN shown in Figure 4| We call this scenario the
simple scenario. All random variables have the states {F, T'}.
C; represents the fault of the i-th component. For simplicity
reasons and w.l.0.g. each component has a fault probability of
20%. However, the scalable model also supports independent
input events with different fault probabilities. We use a fixed
k, i.e., the majority set with k = [%], in all three scenarios
for convenience, because different £ do not change the size of
the conditional probability table of the k/n voting gate.

The next two scenarios are based on the example problems
from Tien et al. [36]. Figure (top) depicts a reliability
block diagram of (RBD) a mixed serial-parallel system with
its corresponding FT (bottom). The upper part of the RBD
belongs to a parallel subsystem of redundant components,
where each component has a fault probability of 20%. The
bottom and right parts are serial subsystems where each
component has a fault probability of 1%. When the parallel
and the bottom serial subsystems, or Cy, or C} fail, the system
fails. We call this scenario the parallel scenario.

Figure shows the corresponding BN structure of the
parallel scenario (using the naive implementation). In each
experiment, we increase the parallel sub-system’s component
number (from C to C),). We define the probability of a system
failure with the random variable SYS. The system fails if the

parallel (C; to C,,) and the serial (from C, 41 to C,,43) sub-
systems fail, which we enforce with the AND node. We model
the serial subsystem by connecting all its nodes to the OR;
node, which encompasses the Boolean expression of the OR
gate.

Next, Figureillustrates the third scenario, using the same
system as before, with an emphasis on the serial subsystem.
The serial subsystem is modeled through the OR; model. As
discussed in Section there are already existing scalable
AND/OR implementations [24]. Therefore, we use the third
scenario to contrast how the scalable k/n model compares to
the AND/OR gate’s scalable versions. We call this scenario
the serial scenario. Components C; to Cs are part of the
parallel sub-systems using a 2-out-of-3 redundancy model.
The components Cg to C,,4¢ are part of the bottom serial
subsystem. The fault probabilities are the same as in the
second scenario. The goal is to analyze the performance and
memory space of the OR; node for increasing the component
number in the serial subsystem. Note that the scalable BN
implementation of the OR; node uses binary contribution
variables resulting in a linear memory growth. Figure shows
the corresponding BN of the third scenario. This BN is similar
to the network of the parallel scenario, with a variable number
of component nodes for the serial subsystem.

We evaluate all scenarios with two different BNs. The first
network uses the naive approach to implement the k/n voting
gate and the AND/OR models, while the second network uses
their scalable representations. For example, Figure shows the
BN of the parallel scenario using the scalable model for the
voting gate with n = 4 and k = 2. The nodes Ej to E are the
contribution variables of the temporal noisy adder, whereas the
CPT of Ks.4 implements the at least two-out-of-four semantic.

C. Availability

We compute the availability, for all systems, for all three
scenarios for increasing numbers of components n, using
the inference algorithms from pgmpy, bnlearn, and gRain to
infer their availability. For the first scenario, we compute the
system’s availability with the query P(K = F'), and for
the second and third scenarios, we compute the availability
with the query P(SYS = F), ie., the top event is not
triggered. We did not use evidence-based queries for simplicity
reasons, although the scalable implementation also supports
such queries.

Figure E] shows the resulting system availability for each
scenario where we compare the naive and scalable BN im-
plementations to each other. All three inference algorithms
compute the same expected availability demonstrating that
the scalable model is equivalent to the naive model. We
repeated each experimental run 20 times and computed their
95% confidence intervals since the result of the approximate
inference algorithms might vary slightly by nature with every
execution for both models. We can state with 95% confidence
that there is no significant difference in the inference results

‘ Cn+1 Fauk

o]

’ Cn+2Fault

I
oz

‘ Cn+3Fault

I

o]

I I
| I — | ——
Oeee O

(a) Parallel scenario: complex system with variable parallel sub-system
and its FT representation.

1

1st Serial Sub-
systemFauk

ParalelSerial Sub-
systemFault

Cs Faut

I
‘ ares H coree H coro H corou ‘ ‘

55 5 B

(b) Serial scenario: complex system with variable serial sub-system
and its FT representation.

Cp+6 Fauk ‘

I
6]

Fig. 6: Reliability block diagram and FT of a complex system.

(b) BN representation of the serial scenario.

Fig. 7: BNs of the complex system.

Fig. 8: BN representation of the parallel sub-system using the
scalable model for the k/n voting gate with n =4 and k£ = 2.

for all inference algorithms for the naive and scalable imple-
mentations in all scenarios.

We only compared the availability for systems with n up
to 27 components, because a further increase of components
exceeds the main memory for the naive implementations in our
experimental setup. It makes no sense to increase the server’s
main memory to evaluate larger networks for the naive k/n
voting gate model. A system with 100 redundant components
using the naive implementation is beyond the reach of any

Inference for P(SYS)

100 B e T]
a— -
0.95 A
090 { g
> 0.85
Z
© 0.80 4
]
z
0757 Naive BN with BNlearn
® Naive BN with gRain
0.707 o Naive BN with pgmpy
4 Scalable BN with BNlearn
0.651 » Scalable BN with gRain
X - Scalable BN with pgmpy
0.60 T T T T T T T
3 6 9 12 15 18 21 24 27 30
n
(a) Simple scenario
Inference for P(SYS)
1.00
[L S L S L S *--- L B - L . *
0.95 A
0.90 A
> 0.85
3
S 0.80 4
3
Ed
0751 4 Naive BN with BNlearn
® Naive BN with gRain
0.70 « Naive BN with pgmpy
4 Scalable BN with BNlearn
0.65 » Scalable BN with gRain
X - Scalable BN with pgmpy
0.60 T T T T T T T T ™ T
3 6 9 12 15 18 21 24 27 30
n
(b) Parallel scenario
Inference for P(SYS)
100 + Naive BN with BNlearn
'\ | Naive BN with gRain
0.95 1 A e Naive BN with pgmpy
.. - 4 Scalable BN with BNlearn
0.90 4 N » Scalable BN with gRain
“'\ X Scalable BN with pgmpy
> 0.85 ‘\“\
3 -
2 0.80 4 s
T L
2 .-
0.75 .
L]
0.70
0.65

3 6 9 12 15 18 21 24 27 30
n

(c) Serial scenario

Fig. 9: Computing the availability for all three scenarios with
an increasing number of components.

computational effort. However, the scalable k/n voting gate
model is capable of representing even larger systems. For
example, Figure shows evaluations of the simple scenario
with the scalable BN representation for n > 700, which we
discuss next.

D. Time

Our scalable k/n voting gate introduces new nodes into the
BN. These nodes increase the original network size influencing
the inference time. Consequently, we compare the inference
time of the naive model with the scalable model for all
three scenarios. Our evaluation shows that the scalable model
reduces the memory overhead and reduces inference time for
these BN models.

Figure shows the mean inference time that is necessary
to compute the fault probability. The y-axis has a log-scale,
plotting the inference time against the system’s size, i.e., the
number of components n. We repeated each experiment 20
times, and we are able to report a 95% confidence level of
a significant difference in the inference time for all three
inference algorithms in all naive and scalable implementations
for all scenarios for n > 18.

Larger systems profit from the scalable BN implementation,
whereas smaller systems still profit from the naive represen-
tation of the gates. For n > 24, the scalable model is two
orders of magnitude faster than the best inference time of
the naive models. However, for n < 18, the scenarios show
no significant difference between the scalable and the naive
implementations in the majority of experiments. For n < 12,
the naive model outperforms the scalable model when using
gRain (exact inference). The naive model performs better for
smaller n because it does not have the additional nodes of the
scalable model that adds an initial overhead to the BN.

The scalable k/n model enables us to build and evaluate
BNs with more than 700 nodes, as shown in Figure (a
continuation of Figure). The gRain library performs better
than the approximate inference algorithm of bnlearn until n =
300. The serial scenario in Figure m uses an efficient OR
gate implementation. Since the efficient OR only has linear
space complexity, gRain performs best, followed by bnlearn.
The logarithmic growth of the curve with increasing number
of components shows that the average inference time grows
polynomially in our scenarios. In contrast, the inference time
for the naive model increases exponentially, as seen by the
linear increase in the semi-log plot in Figure Although
inference is theoretically NP-hard, our solution scales up to
two orders of magnitude with our improvements compared to
the naive implementation.

E. Space

Next, we compare the memory utilization and the num-
ber of CPT entries in the case of the naive and scalable
implementation, and show that the scalable model exhibits
a polynomial memory growth. Figure@ shows the memory
size of serializing the BN to main memory. We measured the
memory space of every BN instance in all three scenarios.

Inference Time for P(SYS)

+ Naive BN with BNlearn .
102 4 ® Naive BN with gRain
« Naive BN with pgmpy
4 Scalable BN with BNlearn
101 { » Scalable BN with gRain "
X - Scalable BN with pgmpy % x
x
—_ x
§ 10° § x [
2 . x
g x *
£ 10-14
£ 10 x]
. +
. ¢ L]
10729 * Y ¢ a ¢
¢ 4 > d >
~ + » » o e
1073 § > 4
N L
3 9 12 15 18 21 24 27 30
n
(a) Simple scenario
Inference Time for P(SYS)
+ Naive BN with BNlearn *
® Naive BN with gRain
1023« Naive BN with pgmpy .
4 Scalable BN with BNlearn
1| ® Scalable BN with gRain [
. X - Scalable BN with pgmpy
x x : x
g X]
8 1004 . X
o X
x +
o] x . L]
10 x
. * +
v 'Y . ¢ *
1072 4 ¢ ¢ ¢
¢ >
¢ , B o> d
10721 B H E .
3 6 9 12 15 18 21 24 27 30
n
(b) Parallel scenario
Inference Time for P(SYS)
+ Naive BN with BNlearn o
® Naive BN with gRain
1023 o Naive BN with pgmpy p
4 Scalable BN with BNlearn -
10! 4 » Scalable BN with gRain
X - Scalable BN with pgmpy N
)]
% 1004 . x
“, x x
o x x
£ ¥ * u +
" 101
x
x o -
+
-2 >4
10 . ‘ . . .] ¢
]
¢ R » > » > > N
-3
10 - N » L]
3 6 12 15 18 21 24 27 30

(c) Serial scenario

Fig. 10: Inference time to compute the availability of all three

scenarios for increasing n up to 30

10

Inference Time for P(SYS)

o + Scalable BN with BNlearn
) oo ¢ | Scalable BN with gRain
10° 4 e Scalable BN with pgmpy
o []
. [L] .
10ty * Ll
g
&
o 0
2 10
=
10-1 4
10-2 4
100 300 400 500 600 700
n
(a) Simple scenario
Inference Time for P(SYS)
oo’ + Scalable BN with BNlearn
102 4 ® Scalable BN with gRain
« Scalable BN with pgmpy
10! 4
I~
&
o 1073
£
=
1071 4
1072 4
L]
100 200 300 400 500 600 700
n
(b) Parallel scenario
Inference Time for P(SYS)
gy
oo, ...n,--.-.-""'"‘"'
102 4 o o000t e
et
...u'
10! 4
g
&
- 104
£
=
10-14
- + Scalable BN with BNlearn
1074 ® Scalable BN with gRain
« Scalable BN with pgmpy

Fig. 11: Inference time for larger systems with scalable models

with n up to 700.

200 300 400 500

600 700
n

(¢) Serial scenario

Solid lines stand for the CPT count and memory size of the
naive implementations, whereas dashed lines illustrate the CPT
count and memory sizes of the scalable implementations.

Figure and Figure show the total number of CPT
entries and the memory consumption of the naive and scalable
BNs. The CPT size of the naive implementations grows
exponentially for the naive case, such that all scenarios have
almost the same memory size and number of CPT entries for
n > 9. Systems with n < 9 require less memory and has less
number of CPTs with the naive implementation by comparison
to the scalable approach. This is the case, because of the initial
number of CPTs by the contribution variables. Again, the naive
implementations reach their memory limit at n = 27. Overall,
as one would expect, the number of CPT entries is direct
proportional to the memory size of the BN since the CPT
has the largest memory contribution when serializing the BN.

Figure and Figure show the continuation of the
former figures, showing just scalable BN implementations of
the scenarios. The logarithmic growth of all three scenarios
in the semi-log plot indicates a polynomial growth of the
memory size and number of CPT entries, respectively. More-
over, the serial scenario grows slower than the simple and
parallel scenarios. This occurs because we use the efficient
OR gate implementation for node OR;, which uses only binary
contribution variables; each contribution variable has just eight
CPT entries. Therefore, the overall size has a linear space
complexity of O(n). This clearly shows the contrast to the
k/n voting gate that uses O(n®) memory space compared to
the OR gate implementation.

VIII. DISCUSSION

Our evaluations show that the scalable k/n implementation
increases our capabilities to evaluate and represent gates with
hundreds of input events. However, if a voting gate has few
input events, e.g., n < 10, we can still use the naive voting
gate implementation. As our evaluations indicate, the naive
voting gate performs better for small n because it does not
have the initial overhead of the contributing variables of the
scalable implantation, which hinders performance benefits in
the beginning. Nevertheless, for larger n, one should use the
scalable implementation instead.

However, we cannot assume that, in general, inference time
decreases as well. The execution time depends on the overall
BN and the type of the inference algorithm. For instance, the
scalable k/n model might be a sub-graph in a much larger
BN. If we use an exact inference algorithm, such as the
Lauritzen and Spiegelhalter (L&S) propagation algorithm [41]]
used in gRain, then the performance is dependent on finding
an optimal triangulation in the BN. However, searching for
an optimal triangulation is NP-complete [42], but we can
consider heuristics to approach this problem. To provide an
example, according to the documentation of gRain, it uses the
minimum clique weight heuristic by Kjerulff [43], [44]. We
recommend using heuristics to avoid performance degradation
in exact inference algorithms since we add new random

11

—+ simple Scenario (naive)
—— Serial Scenario (naive)
—— Parallel Scenario (naive)
~+- Simple Scenario (scalable)
%~ Serial Scenario (scalable)
e~ Parallel Scenario (scalable)

#CPT Entries

(a) Number
30.

fo CPT entries of naive and scalable scenarios for n up to

109 4 — Simple Scenario (naive)
ve)

—x— serial Scenario (nai
—— Parallel scenario (naive)
~+- simple scenario (scalable)
-~ Serial Scenario (scalable)
e Parallel Scenario (scalable)

Memory [bytes]

109

(b) Memory size of the scenarios with the scalable BN structures for
n up to 700.

o Simpie Scenaro ecaable —
~x- Serial Scenario (scalable) Jme s
108 4 ~e- Parallel Scenario (scalable) M"’M
M
M,uv“'
i
107 ,/‘
Pt
»
P
8 108 P
/
£ I
L
{
104
xxx’o‘x»a”‘WW
0)Xexe«**
R e R . R ™ R
Y
(c) Number fo CPT entries of naive and scalable scenarios for n up to
760.
o Sie Sconaro ocaable
1094 13 Sort scemariotscatable) o
~e- Parallel Scenario (scalable) ’",,.v““
M"M
108 ‘,w'"“
cv‘/
.
N
A
= 108 /"
J
{ oso00000a008I000HR0D00
” 00000 0000000000
~
104

(d) Memory size of the scenarios with the scalable BN structures for
n up to 700.

Fig. 12: Number of CPT and memory size of naive and
scalable BN for all three scenarios.

variables with the scalable k/n model, thus increasing the BN
complexity.

Generally, the scalable k/n model is applicable whenever
representing the FI’s k/n voting gate and is suitable for
independent input events, with different constant failure rates.
However, we need to resort to the naive implementation if
the parent (cause) nodes, i.e., the input events of the gate, are
not causally independent |38]. This is a special case when one
wants to model a voting gate with noise, and the noise depends
on some specific state combinations of the input events. Causal
independence is obtained when each parent node has a separate
influence on the child node’s probability distribution. For the
standard k/n voting gate and the here presented noisy k/n
voting gate, the input events are causally independent. So,
suppose the CPT of a child node representing a gate cannot
be related to the individual contributions of each input event.
In that case, the causal independence assumption might be
invalid, and we cannot use the scalable implementation. In
this case, we have to use the naive implementation instead
of expressing the fault relations for each state combination
individually.

IX. CONCLUSION AND FUTURE WORK

In this work, we presented a scalable k/n voting gate
representation for BNs, which enables us to assess system
dependability with hundreds of redundant components. We
showed that a naive implementation of the k/n voting gate
for BNs is impractical, due to the exponential growth of the
CPT for large n. To solve this problem, we proposed a scalable
k/n model that reduces the space complexity from exponential
to polynomial by exploiting the causal independence between
input events. Our solution is an extension of the temporal
noisy adder for BNs, where we count the number of fault
occurrences and check if they exceeded the required number
of faults. In our evaluation, we compared the inference time
and memory size of the naive with the scalable k/n voting
gate implementation for three complex systems in different
size variations. Our experimental results show a significant
decrease in memory space while still computing the same
availability and preserving its compatibility with standard
inference algorithms.

Currently, all gates have a scalable BN model for static
FTs. As future work, we plan to provide scalable BN rep-
resentations for gates of important FT extensions, such as
dynamic FTs. Dynamic FTs provide new gates that have tem-
poral properties. While dynamic BN solutions that represent
dynamic FTs are already available, scalable implementations
for the new gates do not exist. However, since dynamic FTs
use the dynamic BN formalism, we might face new modeling
challenges and scalability issues. We therefore consider these
challenges for future work.

X. ACKNOWLEDGMENTS

This work was supported by the Robert Bosch GmbH.

12

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing - MCC '12. ACM Press,
2012. doi: 10.1145/2342509.2342513 pp. 13-16.

N. Mishra, V. Kumar, and G. Bhardwaj, “Role of cloud computing in
smart grid,” in 2019 International Conference on Automation, Compu-
tational and Technology Management (ICACTM). 1EEE, apr 2019. doi:
10.1109/icactm.2019.8776750. ISSN null pp. 252-255.

B. Yin, L. Mei, Z. Jiang, and K. Wang, “Joint cloud collaboration
mechanism between vehicle clouds based on blockchain,” in 2019
IEEE International Conference on Service-Oriented System Engineering
(SOSE). 1EEE, apr 2019. doi: 10.1109/s0se.2019.00039. ISSN 2640-
8228 pp. 227-2275.

J. Kang, D. Lin, E. Bertino, and O. Tonguz, “From autonomous
vehicles to vehicular clouds: Challenges of management, security
and dependability,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, jul 2019. doi:
10.1109/icdcs.2019.00172. ISSN 1063-6927 pp. 1730-1741.

N. Sultan, “Making use of cloud computing for healthcare
provision: Opportunities and challenges,” International Journal
of Information Management, vol. 34, no. 2, pp. 177-184,

apr 2014. doi: 10.1016/j.ijinfomgt.2013.12.011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0268401213001680

F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in industry
4.0: A review of the concept and of energy management approached in
production based on the internet of things paradigm,” in 20/4 IEEE
International Conference on Industrial Engineering and Engineering
Management. 1EEE, dec 2014. doi: 10.1109/ieem.2014.7058728. ISSN
2157-362X pp. 697-701.

H. Choi, J. Song, and K. Yi, “Brightics-IoT: Towards effective industrial
IoT platforms for connected smart factories,” in 2018 IEEE Interna-
tional Conference on Industrial Internet (ICII). IEEE, oct 2018. doi:
10.1109/icii.2018.00024. ISSN null pp. 146-152.

M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback, “Fault tree handbook with aerospace applications,” Office
of safety and mission assurance NASA headquarters, 2002.

E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools,” Computer science review,
vol. 15, pp. 29-62, 2015.

Y. Zhang and W. Weng, “Bayesian network model for buried gas
pipeline failure analysis caused by corrosion and external interference,”
Reliability Engineering & System Safety, vol. 203, p. 107089, nov 2020.
doi: 10.1016/j.ress.2020.107089

O. Kammouh, P. Gardoni, and G. P. Cimellaro, “Probabilistic framework
to evaluate the resilience of engineering systems using bayesian and
dynamic bayesian networks,” Reliability Engineering & System Safety,
vol. 198, p. 106813, jun 2020. doi: 10.1016/j.ress.2020.106813

W. Xiang and W. Zhou, “Bayesian network model for
predicting probability of third-party damage to underground
pipelines and learning model parameters from incomplete datasets,”
Reliability Engineering & System Safety, vol. 205, p. 107262,
jan 2021. doi: 10.1016/j.ress.2020.107262. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832020307614

B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs
is NP-complete,” IEEE Transactions on Computers, vol. 45, no. 9, pp.
993-1002, 1996. doi: 10.1109/12.537122

K. Stecher, “Evaluation of large fault-trees with repeated events using
an efficient bottom-up algorithm,” IEEE Transactions on Reliability,
vol. 35, no. 1, pp. 51-58, April 1986. doi: 10.1109/tr.1986.4335344
K. D. Rao, V. Gopika, V. S. Rao, H. Kushwaha, A. Verma,
and A. Srividya, “Dynamic fault tree analysis using monte

carlo simulation in probabilistic safety assessment,” Reliability
Engineering & System Safety, vol. 94, no. 4, pp. 872-883,
apr 2009. doi: 10.1016/j.ress.2008.09.007. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0951832008002354

G. Merle, J.-M. Roussel, J.-J. Lesage, and A. Bobbio, “Probabilistic
algebraic analysis of fault trees with priority dynamic gates and repeated
events,” IEEE Transactions on Reliability, vol. 59, no. 1, pp. 250-261,
mar 2010. doi: 10.1109/tr.2009.2035793

A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving
the analysis of dependable systems by mapping fault trees into bayesian

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

networks,” Reliability Engineering & System Safety, vol. 71, no. 3, pp.
249-260, mar 2001. doi: 10.1016/50951-8320(00)00077-6

H. Boudali and J. Dugan, “A discrete-time bayesian network re-
liability modeling and analysis framework,” Reliability Engineering
& System Safety, vol. 87, no. 3, pp. 337-349, mar 2005. doi:
10.1016/j.ress.2004.06.004

R. xing Duan and H. lin Zhou, “A new fault diagnosis method based on
fault tree and bayesian networks,” Energy Procedia, vol. 17, pp. 1376—
1382, 2012. doi: 10.1016/j.egypro.2012.02.255

M. Bensi, A. D. Kiureghian, and D. Straub, “Efficient bayesian network
modeling of systems,” Reliability Engineering & System Safety, vol. 112,
pp. 200-213, apr 2013. doi: 10.1016/j.ress.2012.11.017

J. G. Torres-Toledano and L. E. Sucar, “Bayesian networks for reliability
analysis of complex systems,” in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1998, pp. 195-206.

P. Weber and L. Jouffe, “Complex system reliability modelling with
dynamic object oriented bayesian networks (DOOBN),” Reliability
Engineering & System Safety, vol. 91, no. 2, pp. 149 — 162, feb 2006.
doi: 10.1016/j.ress.2005.03.006 Selected Papers Presented at QUALITA
2003. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0951832005000967

A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 3540, apr 2010. doi: 10.1145/1773912.1773922. [Online].
Available: https://doi.org/10.1145/1773912.1773922

D. Heckerman, “Causal independence for knowledge acquisition and
inference,” in Uncertainty in Artificial Intelligence. Elsevier, 1993, pp.
122-127.

J. Kim and J. Pearl, “A computational model for causal and diagnostic
reasoning in inference systems,” in Proceedings of the Eighth Interna-
tional Joint Conference on Artificial Intelligence (I), vol. 1, 1983, pp.
190-193.

J. Pearl, “Probabilistic reasoning in intelligent systems: Networks of
plausible reasoning,” Morgan Kaufmann Publishers, Los Altos, 1988.
O. Bibartiu, F. Durr, K. Rothermel, B. Ottenwalder, and A. Grau,
“Towards scalable k-out-of-n models for assessing the reliability of
large-scale function-as-a-service systems with bayesian networks,” in
Proceedings of the 12th IEEE International Conference on Cloud
Computing (CLOUD). 1EEE, jul 2019. doi: 10.1109/cloud.2019.00095.
ISSN 2159-6182 pp. 514-516.

H. Boudali and J. Dugan, “A new bayesian network approach to
solve dynamic fault trees,” in Proceedings of the Annual Reliability
and Maintainability Symposium, 2005, TEEE. IEEE, 2005. doi:
10.1109/rams.2005.1408404 pp. 451-456.

K. G. Olesen and S. Andreassen, “Specification of models in large expert
systems based on causal probabilistic networks,” Artificial Intelligence
in Medicine, vol. 5, no. 3, pp. 269-281, 1993. doi: 10.1016/0933-
3657(93)90029-3

K. Laskey, “Sensitivity analysis for probability assessments in bayesian
networks,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 25, no. 6, pp. 901-909, jun 1995. doi: 10.1109/21.384252

S. Srinivas, “A generalization of the noisy-or model,” in Uncertainty in
Artificial Intelligence. Elsevier, 1993, pp. 208-215.

K. Zhou, A. Martin, and Q. Pan, “The belief noisy-OR model applied
to network reliability analysis,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 24, no. 06, pp. 937-960,
nov 2016. doi: 10.1142/s0218488516500434

F. J. Diez, “Parameter adjustment in Bayes networks. The generalized
noisy OR—gate,” in Uncertainty in Artificial Intelligence, 1993. Elsevier,
1993, pp. 99-105.

P. Dagum and M. Luby, “Approximating probabilistic inference in
bayesian belief networks is NP-hard,” Artificial Intelligence, vol. 60,
no. 1, pp. 141-153, mar 1993. doi: 10.1016/0004-3702(93)90036-b

P. Dagum and A. Galper, “Additive belief-network models,” in Uncer-
tainty in Artificial Intelligence. Elsevier, 1993, pp. 91-98.

L. Tien and A. D. Kiureghian, “Algorithms for bayesian network mod-
eling and reliability assessment of infrastructure systems,” Reliability
Engineering & System Safety, vol. 156, pp. 134-147, dec 2016. doi:
10.1016/j.ress.2016.07.022

G. F. Cooper, “The computational complexity of probabilistic inference
using bayesian belief networks,” Artificial Intelligence, vol. 42, no. 2-3,
pp- 393-405, mar 1990. doi: 10.1016/0004-3702(90)90060-d

13

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. L. Zhang and D. Poole, “Exploiting causal independence in bayesian
network inference,” Journal of Artificial Intelligence Research, vol. 5,
pp. 301-328, dec 1996. doi: 10.1613/jair.305

M. Scutari, “Learning bayesian networks with thebnlearnRPack-
age,” Journal of Statistical Software, vol. 35, no. 3, 2010. doi:
10.18637/js5.v035.103

S. Hgjsgaard, “Bayesian networks in R with the gRain package,” Rel
téc Aalborg University, pp. 1-15, 2015.

S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert
systems,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 50, no. 2, pp. 157-224, jan 1988. doi: 10.1111/j.2517-
6161.1988.tb01721.x

D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

S. H. jsgaard, “Graphical independence networks with thegRainPackage
forR,” Journal of Statistical Software, vol. 46, no. 10, pp. 1-
26, 2012. doi: 10.18637/jss.v046.i10. [Online]. Available: |https:
/Iwww.jstatsoft.org/v046/i10:

U. Kjerulff, “Triangulation of graphs—algorithms giving small total state
space,” 1990.

