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Dynamische adaptive Lastbalancierung fur grol3e
heterogen konkurrierende Anwendungen

Selbst ein beschrankter Geist, der sich einem einzigen wissenschaftlichen Arbeitsgebiet widmet,
mul3 darin unweigerlich zu grof3en Fortschritten gelangen. - Mary Shelley: Frankenstein.

1 Kurzfassung

In dieser Arbeit wird ein Konzept entwickelt, das eine automatische Verteilung der
Rechenlast auf parallelen Rechnersystemen ermoglicht. Durch die strukturelle unc
algorithmische Flexibilitat des entwickelten Lastbalancierungskonzeptes kann fir
einen grof3en Bereich von Anwendungen auf verschiedenen Systemen durch dynam
sche Planung und Regelung der Gesamtdurchsatz deutlich gesteigert werden.

DasHiCon-Lastbalancierungskonzept weist gegeniiber bisher bekannten Ansatzen vie
Eigenschaften auf, die eine grél3ere Flexibilitat und ein erhéhtes Optimierungspotentia
bewirken. Die Aufgabe der Lastbalancierung kann den Systemcharakteristiken ange
paldt in einer gemischt zentralen und verteilten Kooperationsstruktur konfiguriert wer-
den, um die Vorteile zentraler Strukturen bei uneingeschrénkter Skalierbarkeit zu
erhalten. Durch Messung des System- und Anwendungsverhaltens zur Laufzeit unc
Ausnutzung von Vorabschatzungen seitens der Anwendungen zur Laufzeit kann de
Lastbalancierungsalgorithmus sowohl planend als auch reagierend wirken. Mit Hilfe
einiger Regelparameter kann die Lastbalancierung ihren Entscheidungsalgorithmu:
dynamisch auf das tatsachliche System- und Anwendungsverhalten abstimmen. Dit
Lastbalancierung bertcksichtigt zur Durchsatzoptimierung neben der Ressourcenau:
lastung auch Datenkommunikation.

Die Untersuchungen basieren auf einem Client - Server strukturierten Ablaufmodell
mit Kooperation auf gemeinsamen Daten. Das entwickelte Konzept wurde durch eine
prototypische Laufzeitumgebung auf Workstation-Netzen validiert, auf der verschie-
denartige parallele Anwendungen einzeln und konkurrierend unter Einwirkung der
Lastbalancierung beobachtet wurden. Hhi€on-Konzept wurden neue Ansatze ent-
wickelt und einige allgemein interessante Ergebnisse gewonnen (Abschnitt 6.1).
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2 Grundkonzepte der Lastbalancierung

In diesem Kapitel wird die Problematik und Notwendigkeit automatischer Lastbalan-
cierung erlautert, die Aufgaben und Ziele der Lastbalancierung ausgearbeitet und die
wichtigsten Grundkonzepte vorgestellt. Einzelne Facetten der Begriffsbildung und
Klassifikation lehnen sich an die vorhandene Literatur an; eine Ubersicht in &hnlicher
Klarheit und Allgemeinheit existiert jedoch bislang nicht. Die Begriffsbildung ist, ohne
die Allgemeinheit einzuschranken, auf das Konzept dieser Arbeit zugeschnitten. In den
weiteren Kapiteln wird das in dieser Arbeit entwickelte Konzept vorgestellt und unter-
sucht.

2.1 Parallele Rechnersysteme

Die Rechnerarchitekturen und Strukturen, die sich derzeit zur Berechnung komplexer
Anwendungen und zum Arbeiten auf gemeinsamen Ressourcen durchsetzen, sind lose
gekoppelte Rechnersysteme mit hoher Parallelitat und grof3e heterogene Workstation-
Netze. Darunter werden zunehmend anstelle von Einprozessor-Rechenknoten Mehr-
prozessorsysteme mit gemeinsamem Haupt- und Sekundarspeicher und méafiger Paral-
lelitat eingesetzt. Der Grund liegt vor allem darin, dafl3 die Leistung einzelner
Prozessoren nicht grenzenlos weiter gesteigert werden kann, wahrend es weniger pro-
blematisch ist, sehr viele Prozessoren zu einem geeigneten Netzwerk zusammen zu
fugen und so die akkumulierte Rechenleistung beliebig zu steigern. Gro3e Zahlen von
Standardkomponenten sind durch Massenproduktion sehr preisgunstig. Systeme mit
gemeinsamen Ressourcen wie Hauptspeicher oder Sekundarspeicher sind Software-
seitig leichter zu handhaben, jedoch nicht beliebig skalierbar, weil die Synchronisation
und die Nutzung zentraler Bussysteme und Controller zum Engpald werden. Im Rah-
men dieser Arbeit soll auf Vektor- und Pipeline-Strukturen sowie SIMD-Parallelrech-
ner nicht weiter eingegangen werden, da keine Lastbalancierung auf dieser Ebene
betrachtet wird. Weiterhin sollen Architekturaspekte in Bezug auf Hardware- und Soft-
ware-seitige Fehlertoleranz nicht ndher beleuchtet werden.

Die seither verwendeten Grol3rechner mit nur einem sehr leistungsfahigen Prozessor
sind vergleichsweise leicht effizient zu nutzen, da einfache sequentielle Programme die
volle Kapazitat ausschopfen kbnnen und mehrere Anwendungen durch Prozel3wechsel
guasi-parallel ablaufen kénnen. In parallelen und verteilten Systemen kdnnen viele

konkurrierende Anwendungen tatsachlich parallel bearbeitet werden, ohne dafl3 grol3e
Anderungen der Anwendungsprogramme erforderlich sind. Eine einzelne sequentielle

Anwendung kann jedoch nur die Rechenleistung einer der Prozessoren, nicht die akku-
mulierte Systemleistung, ausnutzen. Aul3erdem sind die Daten, auf denen die Anwen-
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dungen operieren, Uber das System verteilt und missen entsprechend verwalt
werden.

Wenn verschiedene Anwendungen mit gemeinsamen Datenbestanden arbeiten ur
Anwendungen mit hohem Ressourcenbedarf parallelisiert werden, um die Rechenlei
stung mehrerer Prozessoren zu nutzen, stellen Kommunikation, Synchronisation unt
Datentransfer neue Probleme dar, die die volle Ausnutzung der Systemleistung
beschranken. Anstatt die zur Verfligung stehende Rechenkapazitat voll zu verwender
warten die Prozesse der Anwendungen einen Teil der Zeit auf Daten oder auf Meldun
gen anderer Prozesse derselben Anwendung.

Die Verwaltung gemeinsamer Daten, der Start, der Ablauf und die Terminierung paral-
leler Anwendungen, die Kommunikation und Synchronisation auf parallelen und ver-
teilten Systemen sollte durch ein verteiltes Betriebssystem unterstitzt werden. Derzel
wird die Funktionalitat noch oft durch Laufzeitsysteme, die auf herkdmmliche mono-

lytische Betriebssysteme aufgesetzt sind, realisiert (Beispiele hierftir sind Transaction:
Processing-Monitore fur Datenbankanwendungen oder Umgebungen wie PVM odel
DCE fur heterogen paralleles bzw. verteiltes Rechnen). Auf der Ebene des verteilter
Betriebssystems oder eines entsprechenden Laufzeitsystems wird Ublicherweise auc
die Funktion der automatischen, anwendungsunabhangigen Lastbalancierung angesi
delt.

2.2 Lastverteilung im Mehrbenutzerbetrieb

Grol3e Rechnersysteme und Rechnernetze werden in der Regel nicht exklusiv durc
eine Anwendung belegt, sondern viele Benutzer und Rechenaufgaben sind gleichzeiti
aktiv. Die Anwendungen laufen im Prinzip unabhangig voneinander; sie benutzen evtl.
gemeinsame globale Daten mit gewissen Synchronisationsbedingungen (z.B. Dater
bankanwendungen).

Die Vielzahl unabhangiger Anforderungen ermoglicht eine gute Ausnutzung der vor-
handenen Rechenkapazitaten, sofern die anstehende Last gut tiber das System vert
ist. Das ist jedoch nicht selbstverstandlich, da die verschiedenen Anwendungen geger
seitig nicht voneinander wissen und auch von verschiedenen Stellen aus in das Recl
nersystem gelangen. Die Lastbalancierung der Anwendungen im System besteht in de
Zuordnung und Verteilung der Anwendungen, so dal3 eine gleichmalRRige Auslastung
der Ressourcen erreicht wird. Das verspricht den gro3tmdglichen Durchsatz del
Anwendungen insgesamt.
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2.3 Lastverteilung in parallelen Anwendungen

Wahrend ein einzelner Rechner durch eine Anwendung voll genutzt werden kann, ist
es sehr schwierig, eine Anwendung so in verschiedene Teile zu zerlegen, dal’ sie, auf
ein paralleles System verteilt, tatsachlich schneller ablauft. Probleme wie Datenabhan-
gigkeiten und Kommunikationsaufwand zwischen den Teilprozessen der Anwendung
hangen vom verwendeten Algorithmus ab. Darlber hinaus stellt sich aber auch die
Frage, wie die Teilablaufe und Daten sinnvoll auf das parallele System zu verteilen
sind. Die Lastbalancierung einer parallelisierten Anwendung besteht in der Ausnut-
zung der Parallelitat, soweit sie die Anwendung beschleunigt, und in der Zuordnung
und Gruppierung der parallelen Anwendungsteile auf das System, so dal3 der Zusatz-
aufwand, der durch Synchronisation und Datenaustausch verursacht wird, gering
gehalten wird. Gegentber der Balancierung vieler unabhangiger Anwendungen bringt
die Balancierung parallelisierter Anwendungen die Probleme der Datenkommunika-
tion und der Synchronisationswartezeiten mit sich. Das Ziel der Lastbalancierung
besteht hier meist in der schnellstmdglichen Abwicklung der Gesamtanwendung.

2.4 Ziele und Gro3en in der Lastbalancierung

Dieser Abschnitt wird, ausgehend von einer groben Zieldarstellung fir die Lastbalan-
cierung, eine genauere Gliederung der relevanten Elemente und Gro3en vorstellen. Fir
eine globale Klassifikation von Lastbalancierungsverfahren sei lediglich auf [Casa88]
verwiesen.

2.4.1 Motivation des Lastbegriffs

Der Begriff Lastbalancierungwird im Bereich des parallelen Rechnens, ebenso wie

die ahnlich klingenden BegriffeastausgleichundLastverteilungfir die Aufgabe ver-
wendet, Last in Form von Rechenaufgaben geschickt Gber ein System mit mehreren
Rechenkomponenten zu verteilen. Dahinter steht die Beobachtung, dal3 die anstehende
Rechenlast ohne Zutun einer Lastbalancierung ungunstiger verteilt ist. Es ist relativ
leicht erkennbar, daf? in parallelen und verteilten Systemen oft Rechenknoten nichts
sinnvolles zu tun haben. Das bedeutet, dal3 einige Rechenknoten (Abschnitt 2.4.3) zeit-
weise keine Rechenaufgaben bekommen haben, oder dal3 sich alle Rechenaufgaben,
die sie bearbeiten, gerade in einem Wartezustand befinden. Ebenso leicht laf3t sich fest-
stellen, daR oft Rechenknoten (iberlastet sind. Als Uberlast bezeichnet man in diesem
Zusammenhang die Situation, dal3 der Prozessor aus Sicht der einzelnen Auftrage
unerwartet langsam arbeitet. Es ist klar, dal3 ein Rechenknoten sich nicht in dem Sinne
uberlasten kann, dal3 er mehr arbeitet, als seine maximale Rechenleistung zulaf3t. Er
kann nur pausenlos sinnvoll fir Anwendungen tatig sein.
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Wahrend also der Begriff der Unterbelastung eines Rechenknotens meist einfach defi
niert wird durch den Zeitanteil, in dem er nichts sinnvolles fir Anwendungen zu tun

hat, ist es schwierig, Uberlast konkret zu fassen. Interessant ist im Rahmen der Lastb:
lancierung, wieviel Prozessorleistung fir einen neuen Auftrag (Abschnitt 2.4.4) effek-
tiv zur Verfugung stehen wirde. Wenn ein neuer Auftrag die volle Leistung des

Prozessor erhalten wirde, so betrachtet man den Prozessor als unbelastet (als Fak
gesehen ein Lastwert von 1). Wenn der Auftrag nur ein Drittel der vollen Prozessorlei-
stung erhalten wurde, d.h. dal3 er sich die Leistung wohl mit zwei weiteren Prozessel
teilen mufite, die dort zur Zeit bearbeitet werden, so kann man ihm einen Lastwert vor
3 zumessen. Das am haufigsten verwendete Mal3 fiir die Belastung eines Prozessc
Uber ein Zeitintervall ist die mittlere Anzahl laufbereiter Prozesse. Dabei ist ein Prozel3
auf einem Prozessor laufbereit, wenn er gerade ausgefuhrt wird oder wenn er auf ein
Zeitscheibe zur Ausfihrung wartet. Er ist nicht laufbereit, wenn er auf Ein- / Ausgabe,
Nachrichten oder Synchronisationsbedingungen (etwa Sperren oder Semaphore) wa
tet. Dieses Mal} setzt voraus, dald jeder Rechenknoten ein Multi-Tasking Betriebssy
stem einsetzt, d.h. im Zeitscheiben- oder Prioritatenverfahren zwischen mehrerer
Anwendungsprozessen wechseln kann.

Da die meisten Betriebssysteme eine virtuelle Speicherverwaltung anbieten, kann jede
Anwendungsprozel3 und alle Anwendungsprozesse in der Summe mehr Speiche
benutzen, als Hauptspeicher auf dem Knoten vorhanden ist. Dies wird durch automati
sche Ein- und Auslagerung von Hauptspeicherseiten auf einen bzw. von einem Sekur
darspeicher realisiert. Verwenden nun die Prozesse auf einem Knoten tatséchlich in de
Summe mehr Hauptspeicher, als real vorhanden ist, d.h. sie sprechen diese Speiche
seiten haufig an, dann beobachtet man einen Leistungszusammenbruch aus Sicht c
Anwendungsprozesse. Bei Speichertberlastung missen die Anwendungsprozesse (
warten, bis die angesprochene Speicherseite vom Sekundéarspeicher nachgelads
wurde. So ist zwar die Anzahl der laufbereiten Prozesse gering, aber die Rechenlel
stung des Rechenknotens sinkt drastisch. Oft wird daher der oben vorgestellte Lastfak
tor korrigiert, indem man solche Prozesse, die auf Einlagerung ihrer Speicherseite
warten, mit zu den laufbereiten Prozessen z&ahlt. Dabei handelt es sich freilich um ein.
einfache Heuristik.

Nicht alle Anwendungsprozesse verlangen nur Prozessorrechenleistung. Viele Anwen
dungen enthalten einen betrachtlichen Zeitanteil an Ein- / Ausgabeoperationen. Nur
konnen die Ein- / Ausgabegerate des Rechenknotens (z.B. Plattenlaufwerke oder Drul
ker) ebenfalls durch mehrere konkurrierende Anwendungsprozesse belastet werdel
Hierbei gelten entsprechende Mafe der Unter- und Uberlastung, die aussagen, welct
Leistung ein Rechenknoten einem neuen Anwendungsprozeld zur Verfiigung stelle
wurde. Insgesamt mufl3 bei Betrachtung mehrerer Ressourcen eines Rechenknote
(z.B. Rechenleistung, Speicherkapazitat und Bandbreite des Sekundarspeichers) mei
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die am starksten belastete Ressource als Gesamtlast verwendet werden, da sie die ver-
fugbare Leistung des Knotens flr den Anwendungsprozeld beschrankt.

In parallelen und verteilten Systemen genugt es meist nicht, die Last einzelner Rechen-
knoten zu beurteilen. Das Gesamtsystem wird auch durch die Kommunikation zwi-
schen den Rechenknoten belastet. Analog zur Belastung einer Ressource eines
Rechenknotens kann man die Belastung einer Netzverbindung zwischen mehreren
Rechenknoten dadurch charakterisieren, welcher Durchsatz an Nachrichten seitens der
Anwendungsprozesse vom Netz gefordert wird. So kann eine Netzverbindung mit dem
Lastwert 3 beziffert werden, wenn dreimal so viele Daten pro Zeiteinheit zur Ubertra-
gung anstehen wie die Verbindung tbertragen kann.

2.4.2 Zweck und Potential der Lastbalancierung

Nach der Motivation des Lastbegriffs ist leicht feststellbar, dal3 die Ressourcen eines
parallelen Systems im normalen Betrieb ohne Lastbalancierung ungleich belastet sind.
Nun ist automatische Lastbalancierung kein Selbstzweck, sondern soll helfen, die Lei-
stung des gesamten parallelen Systems besser auszunutzen. Auch das ist noch nicht
genau ausgedrtickt, denn die Anwendungen im System sollen mdglichst schnell ablau-
fen, unabhangig davon, ob tatséachlich jede Ressource im System voll bzw. gleichstark
ausgelastet wird. Die Begriffeastbalancierung Lastausgleichund Lastverteilung
werden jedoch allgemein fir die Aufgabe verwendet, konkurrierende und parallele
Anwendungen so auf dem System abzuwickeln, dal} sie fur sich isoliert oder im Mittel
zusammen moglichst schnell ablaufen. Oft wird auch die Stabilisierung der Antwort-
zeiten einzelner Anwendungen (d.h. Verringerung der Laufzeitschwankungen) als Ziel
der Lastbalancierung deklariert. In vielen Anséatzen wird das Ziel der Durchsatzsteige-
rung tatsachlich allein dadurch angestrebt, dafld Lastbalancierung die oben definierte
Auslastung der Prozessoren ausgleicht.

Lastbalancierung unterscheidet sich tblicherweise dadurch vom sogenaainéeiu-

ling, dal’ sie die Verarbeitung eines endlosen Flusses von Auftrégen optimiert, wahrend
im Schedulingeine endliche, oft statisch festgelegte Menge von Auftrdgen mit maxi-
malem Durchsatz abzuwickeln ist. Es besteht jedoch in der Literatur eine gewisse
Uberlappung der Begriff§chedulingundstatische Lastbalancierundn dieser Arbeit

wird die Unterscheidung gemal3 Kapitel 2.5 verwendet.

Inwiefern Lastbalancierung ihr Ziel erreicht, ist schwer festzustellen. Im Bereich des
parallelen Rechnens ist es gebrauchlich, die effektive Beschleunigung der Anwendun-
gen zur verfigbaren parallelen Rechenleistung ins Verhéaltnis zu setzen (der sogenannte
Speeduplient oft als Mal3). Aul3erdem wird durch den Begriff der Skalierbarkeit (als
Mafd wird der sogenanntecaleupverwendet) bewertet, wie weit man bei Vergrole-
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rung der Anwendungen durch Zufligen weiterer paralleler Rechenleistung die Laufzei-
ten gleich erhalten kann. Lastbalancierung hilft zwar auch Speredupind Scaleup

von Anwendungen in parallelen Systemen zu verbessern, aber das Potential der Las
balancierung und die Gute, d.h. der tatsachlich erbrachte Nutzen laf3t sich nicht direk
durch SpeedupderScaleupmessen. Das Potential flr Lastbalancierung hangt davon
ab, wie grol3 die theoretisch behebbare Ungleichverteilung im System ist. Die Giite
einer automatischen Lastbalancierung kann daran gemessen werden, inwieweit sie d
Ungleichverteilung erkennt und wieviel davon sie tatsachlich verbessern kann.

In einer Zeit, die im Workstation-Bereich durch jahrliche Geschwingikeitssteigerungen

der Rechenleistung um etwa 50% gekennzeichnet ist, erscheint es zunachst mufi
Konzepte zur automatischen, anwendungsunabhangigen dynamischen Lastbalanci
rung zu entwickeln, die erfahrungsgemalf im langfristigen Mittel Durchsatzsteigerun-
gen zwischen 5 und 10% erbringen konnen. Wahrend also die

Lastbalancierungskonzepte durch Messung dieser Durchsatzsteigerungen validiert un
untereinander verglichen werden, besteht die hauptsachliche Motivation flr derartige
Lastbalancierung in drei anderen Vorteilen:

1. Dynamische Lastbalancierung verhindert katastrophales Durchsatzverhalten un
extrem grol3e Antwortzeitschwankungen, die durch unkoordinierte bzw. zufallige
Lastverteilung haufig entstehen.

2. Automatische Lastbalancierung reduziert die Komplexitat paralleler Anwendungen
und erhoht deren Flexibilitat und Portabilitat, indem sie die Anwendungslogik von
der wiederholten, meist systemspezifischen Losung der Lastverteilungsproblematik
entbindet.

3. Dynamische Lastbalancierung ist ein Betriebssystemdienst, der anwendungsubel
greifend die Ressourcennutzung verschiedener, konkurrierend ablaufender sequent
eller und parallelisierter Anwendungen in parallelen verteilten Systemen optimiert.

2.4.3 Rechenknoten als Lastempfanger

Fir die weiteren Kapitel dieser Arbeit sollen nun die fur die Lastbalancierung relevan-
ten Elemente und GroR3en erklart werden. In der Literatur finden sich unterschiedliche
Namensgebungen, daher wird hier eine Namensgebung gewahlt, die verbreitet ist un
sich fir die im Rahmen dieser Arbeit entwickelten Konzepte eignet.

Die wichtigsten Elemente sind die Rechenknoten des Systems. Das parallele und ve
teilte System wird als ein Netz von Rechenknoten betrachtet. Ublicherweise versteh
man unter einem Rechenknoten ein Prozessormodul, d.h. einen Prozessor mit seine
Hauptspeicher und seiner Peripherie. Es ist aber sinnvoller, die Einheit Rechenknote
zu nennen, die von der Lastbalancierung als ein belastbares Element betrachtet wirt

11
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auf dem Anwendungsprozesse laufen. Dadurch kann die Lastbalancierung z.B. engge-
koppelte Multiprozessoren als einen Rechenknoten betrachten, wenn sie sich um die
Ablaufe und die Lastverteilung innerhalb dieses Multiprozessors nicht kimmert. So
uberla3t man in den meisten bekannten Lastbalancierungsansatzen die Prozel3vertei-
lung innerhalb eines Multiprozessors mit gemeinsamem Speicher der vorhandenen
Prozel3verwaltung des Betriebssystems, da sie meist zentral ablauft und sehr gut balan-
ciert. Die ldee besteht darin, eine Warteschlange laufbereiter Prozesse zu verwalten,
und den ersten Prozeld daraus auf den Prozessor zu legen, der als nachstes frei wird.
Jeder Prozel3, der seine Zeitscheibe verbraucht oder aus anderen Griinden angehalten
wird, kommt wieder in die zentrale Warteschlange. Abbildung 1 zeigt ein paralleles
Beispielsystem mit Rechenknoten, Abbildung 2 zeigt Beispiele flr den internen Auf-
bau von Rechenknoten.

lose gekoppelter Legende:
Parallelrechner Rechent
. knoten

Workstations Netzwerk-
verbindung

Abbildung 1: Paralleles System als Netzwerk von Rechenknoten.

Legende:
Ein- Multi-
prozessor- prozessor- . Rechenknoten
knoten knoten Il Prozessor

D Hauptspeicher
Ej Sekundarspeich

(D
—_

Abbildung 2: Interner Aufbau von Rechenknoten.

Ein Rechenknoten hat fur Lastbalancierungszwecke einige statische Attribute, die sich
wahrend der Laufzeit von Anwendungen nicht andern. Am wichtigsten ist die Anzahl
der Prozessoren auf dem Rechenknoten und ihre Rechenleistungen. Prozessorleistun-
gen werden gewdhnlich durch sogenanmBechmarkProgramme bestimmt und in
Einheiten wie MIPS oder MFLOPS angegeben. Weitere Attribute sind die Grol3e des
Hauptspeichers, meist in Byte gemessen, und die Grol3en und Geschwindigkeiten der
angeschlossenen Sekundarspeicher. Wahrend die Grof3e (Speicherkapazitét) in Byte
gemessen wird, interessiert fiur die Geschwindigkeit von Sekundarspeichern die
Zugriffszeit fir das Auffinden eines Datensatzes und der Durchsatz (gemessen in Bytes
pro Sekunde). Die Grél3e des realen Hauptspeichers ist fir Lastbalancierung gewodhn-
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lich nur wegen der Effekte der virtuellen Speicherverwaltung interessant (Abschnitt
2.4.1). Die Plattenspeicherkapazitat wird aul3erst selten beachtet; gewdhnlich sieht ma
die Aufgabe der Lastbalancierung nicht darin, Speicheriberlauf zu vermeiden, sonder!
den Systemdurchsatz zu steigern unter der Annahme, daf} gentigend Speichermedi
vorhanden sind.

Die Attribute eines Rechenknotens, die sich zur Laufzeit andern, charakterisieren die
Belastung des Knotens. Dazu wird hier der Begriff der Auftrage verwendet, der unten
genauer spezifiziert wird. Wie in den Abschnitten 2.4.1 und 2.4.8 erlautert, kann ein
Rechenknoten mehrere Auftrage quasi-parallel bearbeiten, indem er zwischen de
laufbereiten Prozessen wechselt. Fir die Lastbalancierung ist wichtig, wieviele Auf-
trdge momentan auf dem Rechenknoten zur Bearbeitung liegen und wie stark sie wel
che Ressourcen des Rechenknotens tatsachlich auslasten (Abschnitt 2.4.1).

2.4.4 Auftrage als Lasterzeuger

Die Anwendungen, Gruppen von Anwendungen oder Teile von Anwendungen, die aus
Sicht der Lastbalancierung Last-erzeugende Objekte sind, unterscheiden sich in de
verschiedenen veroéffentlichten Ansatzen. In dieser Arbeit wird mit Auftrag der klein-
ste Objekttyp bezeichnet, den die Lastbalancierung identifizieren, beobachten und evt
beeinflussen kann. Das mul3 nicht ein Auftrag (oder eine Aufgabe, Anwendung) im
Sinne eines Benutzers sein. In der Literatur werden oft die Betriebssystem-Prozess
(oder auch sogenannte Threads) als Auftrage betrachtet, seltener Gruppen von Proze
sen, die eine Anwendung ausfihren. In Datenbank-Umgebungen werden oft Daten
bank-Transaktionen als Auftrage betrachtet. Im folgenden soll die Einschrankung
gelten, dal} jeder Auftrag im Prinzip auf einem einzigen Rechenknoten ablaufen kann
LAuftrage®, die mehrere Rechenknoten - parallel oder nacheinander - verwenden, mus
sen in diverse Auftrage zerteilt werden. Da in dieser Arbeit anwendungsunabhangige
Lastbalancierung untersucht wird, ist das Auftragsgranulat allein durch die Anwen-
dung bestimmt.

Fur die Belange der Lastbalancierung hat jeder Auftrag statische Attribute, d.h. Eigen-
schaften, die wahrend seiner Existenz unveranderlich sind. Wichtig ist vor allem die
GroRe des Auftrags, d.h. der Gesamtbedarf an verschiedenen Ressourcen. D
genauere Ablaufstruktur innerhalb eines Auftrages wird von der Lastbalancierung
gewohnlich nicht betrachtet, da nach obiger Definition des Auftragsbegriffs Auftrage
nur als ganze beobachtet und balanciert werden. Innerhalb von Auftragsgruppen kan
jeder Auftrag Vorganger- und Nachfolgeauftrdge besitzen; d.h. Auftrdge, auf deren
Beendigung er warten mul3 und Auftrage, die auf seine Beendigung warten. Schliel3
lich kann ein Auftrag vom Anwender eine gewisse Prioritat zugemessen bekommen
Bei Verwendung von Prioritdten gewichten die Anwender normalerweise die Wartezei-
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ten (Laufzeiten der Auftrage) nach den Prioritaten. Zur Beurteilung des Gesamtdurch-
satzes ist es dann wichtig, dal3 die Auftrage mit hoher Prioritdt besonders schnell
ablaufen. Es sei noch erwéhnt, dal} fir Auftrdge auch Zeitgrenzen bestehen kdnnen, die
bei der Bearbeitung einzuhalten sind. In dieser Arbeit werden jedoch Benutzer-gege-
bene Prioritaten und Zeitgrenzen fur Auftradge nicht weiter betrachtet.

Dynamische Attribute beschreiben den Bearbeitungszustand eines Auftrags. Relevant
sind dabei der bisher bereits abgelaufene Arbeitsanteil sowie der Rechenknoten, auf
dem der Auftrag momentan wartet oder bearbeitet wird. Weiterhin ist die Zeit wichtig,
die seit Absendung des Auftrages bereits verstrichen ist. Bei einzelnen Auftrage ist das
nur interessant fir die Antwortzeiten, aber innerhalb von zusammenh&ngenden Auf-
tragsgruppen kann es auch den Durchsatz beeinflussen, da an jedem Auftrag Folgeauf-
trdge hangen kénnen, die auf ihn warten.

Auftrage sind zwar die Objekte, die von der Lastbalancierung direkt betrachtet und
manipuliert werden, aber es ist oft vorteilhaft, die Zusammenhange zwischen verschie-
denen Auftragen zu bertcksichtigen. Zwischen den Auftrdgen einer Gruppe kdnnen,
wie oben erwéhnt, Reihenfolgebeziehungen bestehen. Dadurch kann die Lastbalancie-
rung ermitteln, welche Auftragslast wann entstehen wird. Weiterhin kbnnen zwischen
Auftragen einer Gruppe Kommunikationsbeziehungen bestehen. Meist wird spezifi-
ziert, wie haufig welche Datenmengen zwischen Auftragspaaren ausgetauscht werden.
Alternativ kann ein Datenflul3 spezifiziert werden, d.h. welche oder wieviel Ergebnis-
daten fur welche Folgeauftrage als Eingabedaten verwendet werden. Als dynamisches
Attribut ist fir Lastbalancierungszwecke der Bearbeitungszustand der Auftrédge in
einer Gruppe relevant.

2.4.5 Netzwerk und Kommunikation

Die Netzwerkverbindungen zwischen den Rechenknoten des parallelen und verteilten
Systems sind wichtige Objekte flr die Lastbalancierung. Hier soll eine bidirektionale
Verbindung zwischen mehreren Rechenknoten als ein Netzwerkkanal bezeichnet wer-
den. Abhangig von der Netzwerktopologie kann ein Kanal eine Punkt-zu-Punkt Ver-
bindung zwischen zwei Rechenknoten, oder eine Stern-, Ring- oder Busverbindung
zwischen mehreren Rechenknoten sein. Wichtig ist jedoch, dal3 ein Netzwerkkanal
genau ein Medium ist, d.h. eine eindeutige Nachrichtenbelastung aufweist.

Fur die Lastbalancierung sind als statische Attribute der Durchsatz und die Latenzzeit
eines Kanals wichtig. Der Durchsatz ist die Datenmenge, die in einer bestimmten Zeit
Ubertragen werden kann, gemessen in der Einheiten wie Bytes pro Sekunde. Die
Latenzzeit ist der Zeitbedarf, um eine kurze Nachricht zwischen Rechenknoten auszu-
tauschen. Dabei wird meist die sogenannte Software-Latenzzeit verwendet; sie enthalt
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neben der reinen Netzibertragung auch die Zeit auf den Rechenknoten, die vor
Betriebssystem bendtigt wird, um die Nachrichten den Prozessen abzunehmen bzv
zuganglich zu machen.

Last auf Kanélen wird durch Auftrage erzeugt, die miteinander kommunizieren. Diese
Netzbelastung wird in den diversen Lastbalancierungskonzepten unterschiedlich
gefaldt. Einige Ansétze betrachten die Haufigkeit und mittlere GroRe der Nachrichter
zwischen Auftragen, andere unterscheiden lediglich, ob Kommunikation zwischen
Auftragspaaren stattfindet, d.h. eine logische Verbindung besteht. Schliel3lich betrach
ten einige Lastbalancierungskonzepte Datensatze, die zwischen Auftrdgen ausge
tauscht oder weitergegeben werden und dabei Netzlast erzeugen (Abschnitt 2.4.6).

In Lastbalancierungsanséatzen, die als belastbare Elemente nur Rechenknoten betrac
ten, mussen Netzverbindungen bei jedem Rechenknoten als Ein- / Ausgabegeré
betrachtet werden.

2.4.6 Daten als besondere Ressourcen

Einige Ansatze zur Lastbalancierung enthalten Daten explizit als Elemente im Modell.
Die Objektorientierung verlangt, dal? alle Daten durch darauf definierte Funktionen
gekapselt werden, doch im Bereich der Datenverwaltung und in allen gangigen
Betriebssystemen gibt es globale Daten. Flichtige Daten werden in gemeinsame
Hauptspeicherseiten, persistente Daten in Dateien aufbewahrt. Relevant fur Lastbalar
cierung ist die Grol3e der Daten und der Aufenthaltsort. Das kdnnen je nach Syster
statische oder dynamische Eigenschaften sein. Die Menge der Daten ist wichtig, un
den Speicherbedarf, den Aufwand fur Zugriffe und den Aufwand zur Bewegung der
Daten zwischen Rechenknoten abzuschatzen. Wenn von Daten Kopien (allgemeine
Versionen) existieren kénnen, so ist auch der Aufenthaltsort der Kopien relevant fur
die Lastbalancierung, denn sie kann die lokale Verfligbarkeit bei lesenden Zugriffen
abschatzen und bei Modifikation der Daten den Aufwand abschétzen, um alle Kopier
zu invalidieren oder zu aktualisieren.

2.4.7 Weitere Elemente in der Lastbalancierung

Wenn die Aufgabe der Lastbalancierung nicht zentral fir das gesamte System wahrge
nommen wird, sondern in mehrere Komponenten aufgeteilt wird, so sind Nachbar-Clu-
ster und benachbarte Lastbalancierungskomponenten ebenfalls relevante Elemente f
die Lastbalancierung. Die Zusammenarbeit ist natirlich nicht auf unmittelbare physi-
sche Nachbarschaft beschrankt. Abschnitt 2.5.3 stellt Verfahren zur Strukturierung de!
Lastbalancierungsaufgabe vor. Uber ganze Cluster (Abschnitt 2.5.3.2) benétigt Lastba
lancierung moglichst aggregierte statische und dynamische Informationen, die ausse
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gen, welches Leistungspotential und welche Belastung in den Clustern aktuell
vorhanden ist.

Schliel3lich sollte sich die Lastbalancierung ihrer selbst bewul3t sein, d.h. sie sollte den
Nutzen und die Kosten, die sie mit sich bringt, einbeziehen. Informationen Uber den
Nutzen der Lastbalancierung bestehen hauptsachlich aus Vorabschatzungen, wie die
Lastsituation und die Anwendungsverlaufe sich andern, wenn die Lastbalancierung in
den Systemablauf eingreift. Dadurch kann fur weitere Planung schon von einer durch
die Lastbalancierung verbesserten Situation ausgegangen werden. Information tber die
Kosten der Lastbalancierung ist etwa die Rechenlast, die bei der Durchfihrung der
Lastbalancierungsaufgabe entstehen, denn die Lastbalancierung findet Ublicherweise
auf Betriebssystemebene selbst statt und kostet Rechenzeit. Weiterhin verursacht die
Lastbalancierung durch die Entscheidungs-, Zuweisungs- und Umverteilungsprozesse
auch Verzdgerungen der Auftragsausfiihrung.

2.4.8 Das Modell zur Bearbeitung von Auftragen

Die Ablaufe in dem parallelen und verteilten Rechnersystem sollen im folgenden mit
den Elementen modelliert werden, die in den obigen Abschnitten eingeflhrt wurden.
Aus Sicht der Lastbalancierung ist eine nicht endende Menge irgendwann in das Rech-
nersystem kommender Auftrage abzuarbeiten, so dal3 das Rechnersystem mdglichst
viel Auftragsgrof3e pro Zeiteinheit erledigt (Maximierung des Systemdurchsatzes). Die
Bearbeitung eines Auftrages kann im Prinzip auf einem beliebigen Rechenknoten des
Systems erfolgen (siehe auch unten), indem der Rechenknoten dem Auftrag eine Zeit-
lang gewisse Ressourcen zur Verfugung stellt. Wie ein Auftrag auf einem Rechenkno-
ten genau verarbeitet wird, entzieht sich dem Zustandigkeitsbereich der
Lastbalancierung. Sie kann aber statische und dynamische Informationen Uber den
(verbleibenden) Ressourcenbedarf eines Auftrags und das (momentane) Ressourcenan-
gebot eines Rechenknotens haben, wie in den Abschnitten 2.4.3 und 2.4.4 aufgelistet
wurde.

Auftrage werden auf Rechenknoten berechnet und erzeugen dabei Last. Zwei Ablauf-
modelle sind im Bereich der Lastbalancierung am starksten verbreitet: das Warte-
schlangenmodell und dadultitaskingModell. Im Warteschlangenmodell bearbeitet

ein Rechenknoten die Auftrage streng sequentiell und besitzt eine Warteschlange flr
die eingetroffenen Auftrage. DadultitaskingModell entspricht dem Verarbeitungs-
prinzip der heute Ublichen Betriebssysteme. Alle Auftrage (Prozesse) auf dem Rechen-
knoten werden im Zeitscheiben- oder Prioritatsverfahren quasi-parallel bearbeitet.
Dabei kbnnen auf Multiprozessorknoten entsprechend mehrere Auftrage wirklich par-
allel bearbeitet werden. Die Auftrage beanspruchen nicht alle dauernd die eigentliche
Prozessorleistung des Rechenknotens, sondern tatigen auch Zugriffe auf Ein- / Ausga-
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begerate oder warten auf das Eintreten bestimmter Synchronisationsbedingungen. D:
ubliche Ablaufmodell befahigt daher jeden Rechenknoten, die verschiedenen Res
sourcenbedurfnisse der Auftrage gleichzeitig zu befriedigen, solange sie sich nicht
Uberschneiden. Das bedeutet zum Beispiel, dal3 ein Auftrag Daten von einer Festplat
lesen kann, wahrend ein anderer Auftrag im Prozessor rechnet. In der Realitat ist z
beachten, daf’ das haufige Umschalten zwischen Auftragsbearbeitungen auf einem Pr
zessor (Kontextwechsel) erheblichen Zusatzrechenaufwand im Betriebssystem mi
sich bringt, d.h. den Durchsatz der Anwendungen reduziert.

Oft wird zwischen preemptiven und nicht-preemptiven Ablaufmodellen unterschieden.
Bei preemptiven Ablaufen kann ein laufender Auftrag jederzeit unterbrochen und spa-
ter, evtl. auf einem anderen Rechenknoten fortgesetzt werden. In nicht-preemptiver
Ablaufen belegt jeder Auftrag den Rechenknoten ununterbrochen, bis er abgeschlosse
ist. Die meisten Betriebssysteme ermoglichen heute preemptive Ablaufe, wobei Pro-
zessorwechsel nur innerhalb eines Rechenknotens maoglich sind (dieses Ablaufmode
wird auch als lokal-preemptiv bezeichnet).

Ein weiteres fur Lastbalancierung relevantes Ablaufkonzept ist das Client - Server
Modell. Es gibt im System eine Reihe von Diensten, die man auch Funktionen odel
Serverklassen nennt. Jeder Auftrag verlangt die Ausfiihrung eines bestimmten Dienste
mit bestimmten Parametern. Das Modell ist fur Lastbalancierung dann interessant
wenn die Instanzen solcher Dienste als feststehende Prozesse im System warten u
nicht multi threadedsind, d.h. wirklich einen Auftrag nach dem anderen sequentiell
abarbeiten. Ein Auftrag bewirkt dann die zeitweilige Aktivierung einer der zur Verfi-
gung stehenden Dienstprozesse. Das Modell wird eingesetzt, wenn Auftrage sehr hat
fig und kurz sind, oder aus anderen Griinden das Erzeugen und Beenden von Prozess
fur das Betriebssystem sehr aufwendig ist. FUr die Lastbalancierung bedeutet das, de
auf jedem Rechenknoten durch Auftrage hochstens alle dort wartenden Serverprozes:
aktiviert werden konnen, wéhrend weitere Auftrdge fir diesen Rechenknoten an
irgendeiner Stelle warten missen. Andernfalls missen weitere Prozesse fir den Dien
gestartet werden.

Zuletzt mul festgelegt werden, ob jeder Auftrag von jedem Rechenknoten alleine sein
gesamten Ressourcenbedirfnisse erhalten kann. Es gibt Lastbalancierungsansatze,
denen Auftrdge nur auf bestimmten Rechenknoten ausgeflhrt werden kénnen (z.B
weil dort der ausfiihrbare Programmcode oder bestimmte Daten vorhanden sind). In
folgenden soll das Modell verwendet werden, dald jeder Rechenknoten alle Auftrage
ausfihren kann. Das setzt voraus, dal3 alle Daten im verteilten Rechnersystem vo
jedem Knoten aus zugreifbar sind (nicht unbedingt mit gleichem Aufwand). Das
Modell ist nicht anwendbar, wenn einige Rechenknoten besondere Ressourcen, wi
z.B. bestimmte Ein- / Ausgabegeréte besitzen, die andere Knoten nicht aufweisen.
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Die Bearbeitung eines Auftrags kann also alleine auf einem Knoten ablaufen unter der
Annahme, dal} jeder Knoten alle Ressourcen verfligbar hat. Der Auftrag kann aber
neben dem Konsum verschiedener Ressourcen mit anderen Auftragen zusammenarbei-
ten, d.h. mit ihnen Nachrichten austauschen oder auf bestimmte Synchronisationsbe-
dingungen warten. In Lastbalancierungskonzepten, die gemeinsame bzw. globale
Daten kennen, mufd auch der Zugriff auf gemeinsame Daten modelliert werden.
Zugriffe auf Daten, die lokal auf dem Rechenknoten vorhanden sind, werden ublicher-
weise als kostenlos betrachtet. Zugriffe auf Daten, die auf anderen Rechenknoten lie-
gen, erzeugen Wartezeiten fur den zugreifenden Auftrag, Kommunikationslast auf den
Verbindungskanélen zu dem Rechenknoten, bei dem die Daten liegen und euvtl.
Rechenlast auf einem oder auf beiden Rechenknoten. In manchen Lastbalancierungs-
ansatzen bleiben Daten statisch auf ihren Knoten liegen, in anderen kdnnen sie sich
bewegen. AulRerdem muf3 im Verarbeitungsmodell festgelegt werden, ob ein Datenzu-
griff eines Auftrags die Daten heranholt, um auf ihnen zu arbeiten, oder ob er eine
Zugriffsoperation an den Rechenknoten sendet, der dann den Zugriff ausfihrt.

2.5 Aufgaben und Struktur der Lastbalancierung

Das Ziel der Lastbalancierung ist, wie bereits erklart, die Verbesserung des System-
durchsatzes. Sie soll durch Regelung der Prozessorlasten, der Kommunikationslasten
und der Belastung der Ein- / Ausgabegerate sinnvolle Arbeitspunkte fur die Rechen-

knoten und damit maximalen Durchsatz erreichen. Bestehende Verteilungen sind zu

verbessern und durch Vorplanung sind Ressourcen flr erwartete Auftragslasten geeig-
net zu reservieren.

In diesem Kapitel werden zunéchst die Erwartungen an Lastbalancierungsmechanis-
men vorgestellt. Dann wird untersucht, wie diese Funktionalitat einzuteilen ist und wie
Lastbalancierung auf das System verteilt werden kann. Schliel3lich werden maogliche
Flexibilitatsstufen der Lastbalancierung vorgestellt.

2.5.1 Aufgaben der Lastbalancierung

Unter dem oben beschriebenen System- und Verabeitungsmodell hat Lastbalancierung
hauptsachlich die Aufgabe, Auftrdge geschickt auf das System zu verteilen bzw. umzu-
verteilen. Sie hat zu entscheiden, wann und wo Auftrdge bearbeitet werden sollen.

Bei preemptiven Verfahren kann Lastbalancierung jeden Auftrag stlickweise auf ver-
schiedenen Rechenknoten bearbeiten lassen (Migration) und ihn evtl. zwischendurch
warten lassen (suspendieren). Bei nicht-preemptiven Verfahren kann sie jeden Auftrag
nur zu einem beliebigen Zeitpunkt auf einem beliebigen Rechenknoten starten.
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Es gibt im Bereich der rein funktionalen Auftrage auch die Mdglichkeit, Auftrage zu
duplizieren. Ein Auftrag wird auf mehreren Rechenknoten, d.h. mehrfach gestartet unc
entweder wird das Ergebnis des ersten verwendet oder jeder der duplizierten Auftrag
gibt sein Ergebnis an einen der Folgeauftrdge weiter. Auf die Moglichkeit der Auf-
tragsduplikation zur Lastbalancierung soll hier nicht weiter eingegangen werden, da in
der Realitat fast alle Auftragstypen Seiteneffekte haben, weil sie auf globalen Daten
arbeiten oder einen globalen Bearbeitungszustand andern.

Viele Betriebssysteme bericksichtigen bei der (quasi-) parallelen Bearbeitung der Pro
zesse auf einem Rechenknoten auch Prozel3prioritaten. So bekommen Auftrage hoh
rer Prioritat ofter Zeitscheiben oder langere Zeitscheiben, in manchen Systemen wirc
die Bearbeitung eines Prozesses unterbrochen zugunsten eines hdher-priorisierten, ¢
laufbereit wurde. Lastbalancierung kann den Auftrdgen entsprechende Prozel3priorita
ten zuweisen, um kritischere Auftrage schnell zu Ende zu filhren auch wenn auf den
Rechenknoten noch andere Auftrage konkurrierend laufen.

Anwendungsspezifische Lastbalancierungsverfahren haben teilweise Einflu auf da
Auftragsgranulat. Sie kdnnen z.B. Auftrdgen mitteilen, dafl3 sie sich in mehrere Auf-
trage feineren Granulats zerspalten sollen, oder die Lastbalancierungsverfahren gebe
den Auftragen Hinweise Uber ein sinnvolles Granulat etwa entstehender Folgeauftrage
In dieser Arbeit soll jedoch nur anwendungsunabhangige Lastbalancierung verfolgt
werden.

Wenn das Modell fir die Lastbalancierung explizit Daten kennt (Abschnitt 2.4.6), so
kann die Lastbalancierung den Verarbeitungsdurchsatz der Auftrage auch dadurcl
beeinflussen, dalR sie Datensatze auf bestimmte Rechenknoten plaziert, sie migriel
oder geeignet Kopien anlegen laf3t. Anwendungsspezifische Lastbalancierung kénnt
weiterhin auch Einflul3 auf das Granulat der Datensétze nehmen.

Lastbalancierung kann auch die Konfiguration des Systems kontrollieren, d.h. Rechen
knoten zu- oder abschalten, Server auf Rechenknoten zuaddieren oder stillegen od
den Grad an genutzter Quasi-Parallelitat (Multitasking) auf den Rechenknoten andern

2.5.2 Komponenten in der Lastbalancierung

Die Aufgaben der Lastbalancierung werden gewohnlich in drei Teilbereiche geglie-
dert: die Sammlung und Verwaltung relevanter Informationen (die sogenannte Infor-
mationssammel-Strategie), die Entscheidung, ob das Lastungleichgewicht so grof3 is
dalR Auftrage verlagert werden sollten zusammen mit der Entscheidung, welche Auf-
trdge zu verlagern sind (Transferstrategie) und schlie3lich die Entscheidung, wohin
diese Auftrage zu migrieren bzw. zuzuweisen sind (Lokationsstrategie). Obwohl sich

19



Grundkonzepte der Lastbalancierung

diese Einteilung in der Literatur durchgesetzt hat, ist sie nicht allgemein und entstammt
den dezentralen Lastbalancierungsansatzen (siehe unten). Etwas allgemeiner erfullt
Lastbalancierung ihre Aufgabe durch folgende Aktivitaten.

Die Informationsverwaltung sammelt, speichert und interpretiert die gemessenen (a
posteriori) Zustandsinformationen der Rechenknoten, der Netzwerkkanale, der Auf-
trdge und der Daten sowie die von Auftrdgen oder Auftragsgruppen erhaltenen Vorab-
schatzungen. Sie entscheidet, welche MelRwerte relevant sind und wie akkurat bzw.
aktuell sie sein missen. Die Informationsverwaltung aktiviert die anderen Komponen-
ten der Lastbalancierung periodisch oder aufgrund neuer Informationen, die Hand-
lungsbedarf fordern. Die Informationsverwaltung selbst wird entweder periodisch
aktiv, um Mel3werte zu sammeln, oder wird durch eintreffende Mel3werte, Prognosen
oder Meldungen angestol3en.

Eine Zuweisungskomponente entscheidet, wann welche Auftrdge auf welchem
Rechenknoten gestartet werden sollen. Sie verwaltet daher die Auftrage, die noch nicht
in Bearbeitung sind oder die zwischenzeitlich wieder aus der Bearbeitung suspendiert
worden sind. Sie wird aktiv, wenn neue Auftradge in das System gelangen oder sich der
Systemlastzustand signifikant andert.

Eine Korrekturkomponente schlie3lich entscheidet, wann der Systemzustand nicht
mehr akzeptabel ist bzw. wann sich ein Eingriff durch die Lastbalancierung lohnt. Die
Lastbalancierung kann den Verarbeitungsverlauf beeinflussen, indem sie laufende Auf-
trdge suspendiert und der Zuweisungskomponente ubergibt. Die Zuweisungskompo-
nente kann suspendierte Auftrage spater weiterarbeiten lassen und sie evtl. auch vorher
auf andere Rechenknoten migrieren.

Entsprechende Komponenten werden bendtigt, wenn die Lastbalancierung Daten kennt
und sich um deren gunstige Verteilung kimmert. Weiterhin ist je nach Aufgabenbe-
reich der Lastbalancierung eine Komponente fir langerfristige Anderungen der
Systemkonfiguration verantwortlich. Sie wird seltener aktiviert, namlich dann, wenn
durch Eingriffe der Zuweisungs- und Korrekturkomponenten keine Verbesserung der
Systemlastsituation erreichbar ist. In adaptiven Lastbalancierungsansétzen ist eine wei-
tere Komponente daflr zustandig, die Strategie an die aktuellen Gegebenheiten anzu-
passen (Abschnitt 2.5.6).

2.5.3 Struktur der Lastbalancierung

Wahrend im Abschnitt 2.5.2 die Funktionalitat der Lastbalancierung logisch in Teil-
funktionen gegliedert wurde, soll hier untersucht werden, wie Lastbalancierung phy-
sisch auf gro3en parallelen und verteilten Systemen realisiert werden kann. Damit sind
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zentrale Strukturen bzw. Kooperationsstrukturen mehrerer - im Prinzip vollstandiger
und autonomer - Lastbalancierungsagenten gemeint.

2.5.3.1 Zentrale Lastbalancierung

In zentraler (oft auch als ‘global’ bezeichneter) Lastbalancierung [Chow79], [Cope88],
[Efe89], [Lin92] ist ein einziger Agent fur die gesamte Funktionalitat, d.h. Informati-
onssammlung und Entscheidungsfindung fir das gesamte System zustandig (Abbil
dung 3). Rein logisch betrachtet ist diese Struktur aus mehreren Grinden optimal:

Legende:

J:l\ . Rechenknoten

[ Lastbalancierungsagent

T | Zustandigkeit
...... MWMWM

Auftragsaustausch

Abbildung 3: Zentrale (globale) Lastbalancierungsstruktur.

- Die gemessenen Informationen und Prognosen Uber den Systemlast- und Anwer
dungszustand sind eindeutig beim zentralen Agenten verfiigbar und missen nich
Uber das System verteilt oder repliziert werden. Die Verteilung und Replikation der
Informationen wirde dagegen Nachrichtenverkehr erzeugen und hatte unterschied
lich genaue und verschieden alte Informationen zur Folge. Das wiederum wiurde zL
widersprechenden Entscheidungen flhren.

- Die Lastbalancierung kann das globale Wissen Uber den Zustand des Systems, tb
den Verlauf der Anwendungen und die Abhangigkeiten zwischen den Auftragen der
Anwendungen ausnutzen. Das ermoéglicht globale Lastbalancierung im Zusammen:
spiel der Ressourcen und Auftrdge und vermeidet kontra-produktive Entscheidun-
gen, wie sie durch verschiedene Agenten, die mit Teilinformationen arbeiten,
auftreten wirden. Fortgeschrittene komplexe Strategien kdnnen realisiert werden.

- Eine zentrale Zuweisung neu angekommener Auftrage kann starke Lastungleichge
wichte von Anfang an vermeiden, wenn ein Balancierungsagent alle Auftrage zen-
tral ginstig auf das System verteilt. Lastungleichgewicht tritt dann nur durch
mangelnde Vorhersehbarkeit der Auftragsprofile oder suboptimale Entscheidungsal-
gorithmen auf. In dezentralen Strukturen ebenso wie in zentralen Strukturen, bel
denen die Auftrage zunachst auf ihren Ursprungskonten verbleiben, entsteht dage
gen Last zunachst auf den Knoten, auf denen die Auftrage erzeugt wurden, worauf
hin die Lastbalancierung versucht, die Last auszugleichen.

21



Grundkonzepte der Lastbalancierung

Es gibt keine logischen Nachteile zentraler Lastbalancierungsstrukturen (in Bezug auf
das Lastbalancierungspotential, Aspekte wie Fehlertoleranz werden hier nicht betrach-
tet). Die Grenzen der zentralen Lastbalancierung sind die Anzahl entstehender Auf-
trdge und die Anzahl der Rechenknoten im System. Zentrale Lastbalancierung ist nicht
beliebig skalierbar, denn der mit Lastbalancierung verbundene Rechenaufwand und die
entstehenden Verzdgerungen wachsen zumindest linear mit der Ankunftsrate neuer
Auftrage und der Anzahl verfliigbarer Rechenknoten. Eine genauere Aufwandsabschat-
zung lafit sich nur fur konkrete Balancierungsalgorithmen angeben, generell missen
aber gemessene und prognostizierte Informationen von allen Rechenknoten und Auf-
tragen (sofern verfligbar) gesammelt werden. Bei jeder Zuweisungs- oder Migrations-
entscheidung, genauer gesagt bei jedem Versuch einer solchen Entscheidung muf} - bei
wachsender SystemgrofRe und Auftragszahl - mehr Information durchgearbeitet und
mehr Alternativen gegeneinander erwogen werden. Dadurch verbraucht der Lastbalan-
cierungsagent selbst zunehmend Rechenzeit, die eigentlich zur Bearbeitung von Auf-
trdgen genutzt werden sollte und die Zeitspanne zwischen der Entstehung eines
Auftrags und dem Bearbeitungsbeginn wéchst. Diese Verluste verringern die durch
Lastbalancierung theoretisch mdgliche Durchsatzsteigerung.

2.5.3.2 Dezentrale Lastbalancierung

Dezentrale Lastbalancierung (oft auch als ‘verteilt’ bezeichnet) verteilt die Informati-
onsverwaltung oder die Zuweisungs- und Migrationsentscheidungen (zumeist alle
drei) auf das Rechnersystem. Am haufigsten wird die vollig dezentrale Struktur
gewéhlt [Baum88], [Kale88], [Lin87], [LUli91], bei der jeder Rechenknoten einen
eigenen, vollstandigen Lastbalancierungsagenten beherbergt (Abbildung 4 links), es
gibt aber auch Ansatze [Evan94], [Gopi9l], [Zhou92], bei denen Cluster durch zen-
trale Balancierungsagenten verwaltet werden und die Agenten untereinander dezentral
kooperieren (Abbildung 4 rechts). Die Idee besteht darin, dafl3 sehr grof3e Systeme in
Teile zerspalten werden, so dald immer Rechenknoten, die durch leistungsfahige Kom-
munikationskanale verbunden sind, ein Cluster ergeben. Innerhalb eines Clusters wird
zentrale akkurate Lastbalancierung durchgeftihrt, wahrend zwischen Clustern nur lose
Interaktion fir groben Lastausgleich stattfindet. Wenn diese Zerteilung des Systems
nicht flach ist, sondern rekursiv erfolgt, erhélt man eine hierarchische Struktur
(Abschnitt 2.5.3.3). In jedem Falle mul3 bei grolen Systemen die Kooperation zwi-
schen Lastbalancierungsagenten auf direkte geometrische oder etwas erweiterte Nach-
barschaftsbeziehungen eingeschréankt werden. Ansonsten entstehen dieselben
Engpasse wie bei zentraler Balancierung, d.h. der Balancierungsaufwand steigt mit der
Zahl der Nachbar-Cluster.

In der dezentralen Struktur hat jeder Lastbalancierungsagent Informationen tber seine
Rechenknoten und dortige Auftrdge sowie Uber die Lastsituation der Nachbar-Cluster.
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Abbildung 4: Volistdndig dezentrale und allgemein dezentrale Balancierungsstruktur.

Er teilt den Nachbar-Clustern signifikante Anderungen seiner Systemlast mit. Jedel
Agent kann Auftradge von Nachbar-Clustern anfordern, wenn er sich unterbelastet fuhli
(sogenannte Empfanger-initiierte Lastbalancierung [Eage86]) oder er kann Auftrage ar
Nachbarn abgeben, wenn er meint, daf diese Nachbar-Cluster signifikant weniger La:
aufweisen (Sender-initiierte Lastbalancierung). Einige Ansétze bedienen sich komple-
xerer Verhandlungsschemata zwischen den Lastbalancierungsagenten.

Es gibt in der dezentralen Struktur keinen Ort im System, an dem globale Last- ode
Zustandsinformationen verflgbar sind; alle Entscheidungen werden autonom von der
Balancierungsagenten getroffen. Diese Struktur ist offensichtlich skalierbar, da wach-
sende Prozessorzahlen keinen Mehraufwand fir die einzelnen Lastbalancierungsage
ten zur Folge haben. Der andere Hauptvorteil der dezentralen Struktur liegt darin, dal
Lastbalancierung nicht viel zu tun hat, wenn die Last auf dem System einigermal3er
gleichverteilt ist; sie erzeugt dann auch keine Stérungen oder Behinderungen der Auf
tragsbearbeitung. In dezentralen Verfahren wird meist jeder Auftrag zuerst dort gestar
tet bzw. in eine Warteschlange eingereiht, wo er entstand. Nur bei Lastausgleich weis
die Lastbalancierung ihn einem anderen Knoten zu bzw. migriert ihn. Speziell in Situa-
tionen hoher Gesamtlast im System ist es wichtig, dal3 Lastbalancierung keine unnd
tige Zusatzlast erzeugt. Zentrale Lastbalancierung wird dagegen um so aktiver, je mer
und je haufiger Auftrdge im System entstehen, denn sie mul} tGber jeden Auftrag ent
scheiden.

Derartige Gegentiberstellung zentraler und dezentraler Strukturen [Thei88] fallt in der
Literatur oft zu grob aus. Eine stabile Hochlastsituation durch langlaufende Auftrage
macht der zentralen Lastbalancierung noch keine Probleme, da nicht viele Entschel
dungen zu treffen sind. Kritisch sind dagegen Wellen hoher Ankunftsraten, die meist
sehr schiefe Lastverteilung bewirken, weil sie durch eine oder wenige Anwendungen
verursacht werden. Hier wird zentrale Lastbalancierung zwar schnell Gberlastet, abe
sie kann die Ungleichverteilung von vornherein abfangen, wahrend bei dezentralet
Lastbalancierung eine langere Periode von Lastausgleichsaktionen folgt, bis sich dit
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Auftragslast sukzessive einigermal3en auf das System verteilt hat. Gegenuliber zentraler
Balancierung besteht aul3erdem die Gefahr, dal3 Auftrage in kritischen Situationen
mehrfach zwischen Rechenknoten ausgetauscht werden, bevor sie endlich bearbeitet
werden.

Sehr kurze Auftrage kdnnen nicht gut auf parallele Systeme verteilt werden. Dezen-
trale Ansatze lassen kurze Auftrage meist grundsétzlich lokal ablaufen und vermeiden
dadurch Lastbalancierungsaufwand, der sich fir die kurzen Auftrdge nicht lohnt; Es
gibt aber nur wenige dezentrale Ansatze, die solche Vorabschéatzungen tberhaupt ver-
wenden - meist werden alle Auftréage als gleich grol3 angenommen. Zentrale Strukturen
haben hingegen einen festen Mindestaufwand auch flr kurze Auftrage, so dald sie bei
zu feinem Auftragsgranulat und hohen Auftragsankunftsraten leicht tberlastet werden.

2.5.3.3 Hierarchische Lastbalancierungsstrukturen

In hierarchischen Strukturen wird jeweils eine Gruppe von Lastbalancierungsagenten
durch einen Agenten einer hoheren Ebene verwaltet (Abbildung 5). Agenten hdherer
Ebenen haben einen groReren Uberblick und sollten abstrakte Entscheidungen treffen.
Sie verwalten meist Rechenknoten-Gruppen und Auftragsgruppen und treffen Zuwei-
sungsentscheidungen, die auf niedrigeren Ebenen verfeinert werden [Ahma94],
[Tilb81], [Tilb84]. Die hierarchische Verteilung erfordert zunadchst mehr Informations-
verwaltung und mehr Entscheidungen von Agenten héherer Ebene. Daher ist es unbe-
dingt notwendig, dal3 Informationen nach oben hin aggregiert werden und
Entscheidungen nur fur sehr grol3e Auftrage oder fiir ganze Auftragsgruppen weiter
oben getroffen werden.

Gewohnlich missen fur die Balancierungsagenten unterster Ebene andere Strategien
verwendet werden wie auf héheren Ebenen. In manchen Ansatzen werden Rechenkno-
ten allein fir Lastbalancierungsagenten reserviert. Neben der zusatzlichen algorithmi-
schen Komplexitat muf3, wie in dezentralen Strukturen allgemein, die zuséatzliche
Pfadlange fur Migrationen und Entscheidungen mehrerer Agenten entlang des Pfades
in Kauf genommen werden.

2.5.3.4 Implizite und explizite Ansatze fur dezentrale Strukturen

Wie aus obigen Abschnitten deutlich wurde, hat zentrale Lastbalancierung einige Vor-
zlige. Fur grolRe Rechnersysteme ist aber eine dezentrale Struktur unbedingt notwen-
dig. Die allgemeine dezentrale Struktur besteht aus kooperierenden
Lastbalancierungsagenten, die je ein Cluster zentral verwalten. Auf Ebene der Infor-
mationsverwaltung und Entscheidungsfindung gibt es zwei Alternativen, um die
Balancierung innerhalb eines Clusters und den Lastausgleich zwischen Clustern zu
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Abbildung 5: Hierarchische Lastbalancierungsstruktur.

koordinieren. Sie sollen in dieser Arbeit mit ‘expliziter’ und ‘impliziter’ dezentraler
Lastbalancierung benannt werden.

Im expliziten Ansatz behandelt der Lastbalancierungsagent die Knoten seines Cluster
grundsatzlich anders als benachbarte Cluster (seine Sichtweise entspricht Abbildun:
4). Die Idee besteht darin, dal3 jeder Agent sich normalerweise um die Lastsituatior
und Auftragsverteilung in seinem Cluster kiimmert. Von Zeit zu Zeit tauscht er jedoch
aggregierte Lastinformationen mit den Nachbaragenten aus. Wenn ein Nachbar-Cluste
signifikant weniger belastet ist als das eigene, dann kann er dem Nachbar-Cluster eir
Reihe eigener Auftrage abgeben. Lokale Zustandsinformation und lokale Lastbalancie
rung wird explizit getrennt gegentber der Zustandsinformation anderer Cluster und de
Lastverteilung zwischen Clustern.

Die implizite Technik der dezentralen Balancierung hat im Prinzip nur eine Art von
Systeminformationen tber Rechenknoten, Auftrage und Cluster und sie verwende
einen einzigen Algorithmus zur Auftragszuweisung bzw. -Migration innerhalb des
lokalen Clusters und zwischen Clustern. Ein Nachbar-Cluster wird als weiterer ‘loka-
ler’ Rechenknoten betrachtet, der evtl. etwas unterschiedliche Charakteristik aufweis
(die Sichtweise eines Lastbalancierungsagenten ist in Abbildung 6 angedeutet). Diese
.Nachbar-Cluster-Rechenknoten” hat genau wie lokale Rechenknoten laufende Auf-
trdge und eine Ressourcenbelastung. Die Informationen bekommt der Lastbalancie
rungsagent in Wirklichkeit als aggregierte Informationen vom
Lastbalancierungsagenten des Nachbar-Clusters. Nachbar-Cluster werden genau w
lokale Rechenknoten in Zuweisungs- oder Migrationsentscheidungen ausgewahlt.

Der Hauptvorteil impliziter Verteilung ist die Einfachheit. Man benétigt nur eine ein-

zige Lastbalancierungsstrategie und keine getrennten Algorithmen und Informations-
grofRen. Es gibt keinen Unterschied zwischen zentralisierter Lastbalancierung kleine
Systeme und einer dezentralen Balancierungsstruktur eines beliebig in Cluster geglie
derten grofRen Systems. Die grundsatzlichen Vorteile zentraler Balancierung kénner
teilweise auf die dezentrale Struktur Gbertragen werden, je nachdem wie akkurat die
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Abbildung 6: Implizit verteilte Lastbalancierungsstruktur.

zwischen Nachbar-Clustern ausgetauschten Informationen sind. Es ist klar, dal3 man im
Extremfall, wenn jeder Lastbalancierungsagent die exakten Informationen tber die
Rechenknoten und Auftrage der anderen Cluster hat, zwar viele Vorteile, aber auch alle
Nachteile der zentralen Balancierung erhalt.

Die explizit dezentrale Struktur weist gewdhnlich eine grol3e Licke auf zwischen einer
sehr ausgefeilten, genauen zentralen Strategie, die durch den ‘globalen’ Uberblick und
komplexe Lastwerte und Profilabschatzungen sehr ausgeglichene Last erzeugt, und der
vergleichsweise stupiden, groben dezentralen Strategie zur Kooperation mit Nachbar-
Clustern.

Die implizite Verteilung wirft im Detail einige Probleme auf, da sich manche Eigen-
schaften benachbarter Cluster nicht aquivalent auf KenngréR3en flr Rechenknoten
reduzieren lassen. Im Rahmen dieser Arbeit wurden beide Ansatze entwickelt und
evaluiert.

2.5.4 Statische Ablaufplanung

Das Ziel statischer Ablaufplanung (oft auch ,statische Lastbalancierung“ oder ,Sche-
duling” genannt) ist es, flr eine Gruppe fest vorgegebener Auftrage einen Fahrplan zu
erstellen, wo und wann die einzelnen Auftrdge ausgefuhrt werden sollen, so dal’ die
Antwortzeit minimal wird. Lastbalancierung hat also hier, wie bereits in Abschnitt
2.4.2 erwahnt, nicht die Aufgabe, den Durchsatz eines endlosen Flusses von Auftragen
zu optimieren, sondern eine endliche Menge von Auftragen moglichst schnell abzu-
wickeln. Da es sich hier meist um eine grof3e Anwendung handelt, wird die Antwort-
zeit durch das Ende des letzten Auftrags bestimmt. Die Ressourcenbedurfnisse der
einzelnen Auftrdge werden meist als bekannt angenommen und die Rechenknoten ste-
hen allein zur Ausflhrung dieser Auftragsgruppe zur Verfigung.
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Statische Lastbalancierung findet komplett vor der Bearbeitung der Auftrage statt. Sie
berechnet fur jeden Auftrag einen Startzeitpunkt und einen Rechenknoten, auf dem €
bearbeitet werden soll. Bei preemptiven Ablaufmodellen kann sie fur jeden Auftrag
mehrere Bearbeitungsphasen anordnen. Dann wird der Auftrag suspendiert und spat
evtl. auf einem anderen Prozessor weiter bearbeitet. Das Betriebssystem versucht, si
an den Ablaufplan der statischen Balancierung zu halten. Wenn die Auftragslaufzeiter
unterschatzt wurden, so entstehen Verspatungen oder Phasen, in denen mehrere A
trdge quasi-parallel auf einem Rechenknoten ablaufen. Wurden Auftragsgréf3en lber
schatzt, so entstehen nutzlose Leerlaufzeiten.

Strategien zur statischen Lastbalancierung versuchen, méglichst wenig Leerlaufzeitel
auf den Prozessoren zu bekommen und dadurch die Kapazitat des parallelen Syster
voll auszunutzen. Anspruchsvollere Verfahren, die Rechenknoten mit unterschiedli-
chen Leistungen einbeziehen, achten darauf, dal3 vorrangig die schnellen Rechenkn:
ten genutzt werden und langsamere Knoten mit weniger kritischen Auftragen
aufgefillt werden. Wie kritisch bzw. wichtig ein Auftrag im Rahmen der gesamten
Auftragsgruppe ist, kann durch seine Gréf3e oder durch Abhangigkeiten zwischen Auf-
trdgen bestimmt werden (siehe unten). Weiter verfeinerte Verfahren bertcksichtiger
auch die durch Kommunikation entstehenden Verzdgerungen bei der Erstellung de:
Ablaufplans. Manche Ansétze bertcksichtigen weitere Randbedingungen, etwa dal
Auftrage nur auf bestimmten Rechenknoten ablaufen dirfen oder dafld Auftrage fest:
Zeitschranken besitzen, bis wann sie fertig bearbeitet sein missen (solche Bedingur
gen treten oft in der Echtzeitdatenverarbeitung auf).

Der Rechenaufwand, um einen optimalen statischen Ablaufplan ftr eine Gruppe vor
Auftragen auf einem parallelen und verteilten Rechnersystem zu generieren, wachst ir
allgemeinen Fall exponentiell mit der Anzahl der Auftrdge und der Anzahl der Rechen-
knoten (als Basis). Es handelt sich um ein NP-hartes Problem. Die Komplexitat soll
hier nicht nachgewiesen, sondern nur plausibel gemacht werden: allgemein dibt es k
maogliche Kombinationen, um a Auftrdge auf k Rechenknoten zu verteilen (wenn es flr
a-1 Auftrage R Kombinationen gibt, dann kann ein weiterer Auftrag zu jeder dieser
Kombinationen auf k verschiedene Knoten gelegt werden; das effitit Kombina-
tionen). Darunter kdnnen r Auftrage, die auf demselben Rechenknoten ablaufen, dor
in r! verschiedenen Reihenfolgen ablaufen (ohne Betrachtung quasi-paralleler
Ablaufe). Die Komplexitat kann durch verschiedene - leider meist unrealistische - Ein-
schrankungen reduziert werden. So reduzieren Reihenfolgeabhéangigkeiten zwische
Auftragen die Kombinationsmaoglichkeiten, wahrend unter der Annahme gleichartiger
Rechenknoten oder homogener Auftrage viele Kombinationsmadglichkeiten bezuglich
der Antwortzeit aquivalent sind.
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Quasi-statische Ansatze [Blaz88], [Bono88], [Bono90], [Kim92], [Ross91], [Tant85]
berechnen statische Wahrscheinlichkeiten, geméall denen die Knoten zur Laufzeit
ankommende Auftrage an andere Knoten abgeben.

Der Ansatz der statischen Lastbalancierung enthélt zwei grol3e Probleme: das erste
Problem ist, dal} die tatsachlichen Ressourenbedurfnisse der Auftrage in der Realitat
nicht genau vorhersagbar sind. Oft sind sie genauer absehbar, wenn ein Auftrag tat-
sachlich ausfihrbereit wird, was fir dynamische Lastbalancierung genutzt werden
kann. Der Nutzen statischer Ablaufplanung mit den bisher bekannten Algorithmen
geht aber bereits bei geringen Schwankungen der Auftragsgrof3en gegentiber den Vor-
hersagen verloren. Dazu kommt, dafd viele Anwendungen auch die Anzahl ihrer Auf-
trdge sowie die Beziehungen zwischen ihnen nicht exakt im voraus angeben konnen,
weil diese zur Laufzeit erzeugt werden. Das zweite Problem liegt darin, dal3 grol3e par-
allele Rechnersysteme meist nicht nur fir eine Auftragsgruppe alleine reserviert sind,
sondern andere Anwendungen konkurrierend ablaufen. In jedem Falle schliel3en sich
unmittelbar davor und danach weitere Anwendungen an. Die Realitat stellt daher meist
die Anforderung, Auftrdge in einen kontinuierlichen Fluf3 konkurrierender Aktivitaten
gut einzupassen.

Statisches Scheduling wird bereits seit langer Zeit entwickelt, wobei die Problemstel-
lungen meist aus eher theoretischem Blickwinkel untersucht wurden. Im folgenden
sollen die Grundkonzepte flr die vier wesentlichen Problemklassen erlautert werden.
Man beachte, dal’ diese Strategien allesamt Heuristiken sind, die bei akzeptablem Pla-
nungsaufwand recht gute Resultate aufweisen. Nachweislich optimale Verfahren mit
polynomiellem Aufwand existieren nur flr Spezialfalle.

2.5.4.1 Statische Lastbalancierung unabhéngiger Auftrage

Fur eine Menge unabh&ngiger Auftrage ist ein preemptiver bzw. nicht-preemptiver
Ablaufplan zu erstellen. Das Hauptaugenmerk der Verfahren liegt darin, bis zuletzt
moglichst viel Parallelitat (und damit Rechenkapazitat) im System zu nutzen, und nicht
am Ende noch auf einzelne langlaufende Auftrage warten zu mussen. Fir nicht-pre-
emptive Ablaufplane [Li90] wird im Prinzip folgendermal3en verfahren: wéhle den
grol3ten (noch tbrigen) Auftrag und plaziere ihn auf dem Ablaufplan, so dal3 er mog-
lichst friih beendet wird. Bei homogenen Rechenknoten geniigt es, den Rechenknoten
zu wahlen, der bisher als erster wieder frei ist. Bei heterogenen Rechenknoten muf3
man berlcksichtigen, dal3 die Auftrdge auf den Knoten unterschiedlich lange laufen.

Preemptive Ablaufplane [Blaz86] sind schwieriger zu erzeugen, weil die einzelnen
Auftrage zerstlckelt werden konnen. Man schatzt daher zuerst ab, wie grofl3 die Ant-
wortzeit bei einer guten Lastbalancierung ausfallen wird. Nun fullt man den schnell-
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sten Rechenknoten bis zu diesem Zeitpunkt mit Auftragen auf (wie oben beginnenc
mit dem grof3ten Auftrag), fullt danach den zweitschnellsten Knoten u.s.w., bis alle
Auftrage zugewiesen sind. Auftrage, die hinten Uber die Zeitachse eines Rechenkno
tens herausragen wirden, werden (preemptiv) auf dem nachsten Rechenknoten a
Anfang fortgesetzt.

2.5.4.2 Statische Lastbalancierung Reihenfolge-abhangiger Auftrage

Reihenfolgebeziehungen zwischen Auftrdgen schranken die Zuweisungsmaglichkeiter
ein. Eine effiziente Nutzung des Systems erfordert aber komplexere Planungsalgorith
men. Zuné&chst wird anhand dreier Beispiele die Problemstellung verdeutlicht, danr
werden die beiden wichtigsten Verfahren zur Generierung statischer Ablaufpl&ne vor-
gestellt.

Auftragsgraphen sind Mengen von Auftragen, die durch gerichtete Kanten verbunder
sind. Eine Kante vom Auftrag A zum Auftrag B stellt eine Reihenfolgebeziehung dar;

sie legt fest, dal3 zuerst Auftrag A beendet werden muld bevor Auftrag B gestartet wer
den darf. Auftragsgraphen durfen selbstverstandlich keine Zyklen enthalten. Jede!
Auftragsgraph enthalt daher Auftrage, die sofort starten konnen (Startauftrage) unc
Auftrage, auf die keine weiteren Auftrage mehr warten (Endauftrage). Als Pfad durch
einen Auftragsgraphen wird eine Reihe von Auftragen bezeichnet, die durch Reihen:
folgebeziehungen sequentiell nacheinander ablaufen missen. Die Lange eines Pfad
ist die Summe der Auftragsgro3en dieser Auftradge. Als kritisch bezeichnet man die
langsten Pfade durch den gesamten Auftragsgraphen, d.h. von einem Startauftrag :
einem Endauftrag.

Die drei Beispiele sollen zeigen, worin die Herausforderung bei der statischen Lastba
lancierung Reihenfolge-abhangiger Auftrage liegt und welches Potential an Durchsatz.
steigerung vorhanden ist. Die Beispiele sind auf das wesentlichste reduziert; sie
verwenden ein System homogener Rechenknoten. Die Abbildungen zeigen jewells
links den Abhangigkeitsgraphen der Auftrage und rechts zwei mogliche Ablaufplane.
Dabei werden keine spezifischen Lastbalancierungsalgorithmen verwendet sonder
intuitiv gute Plane angegeben, die die Reihenfolgebeziehungen zwischen den Auftra
gen ignorieren (a) bzw. sie bertcksichtigen (b).

Im ersten Szenarium (Abbildung 7) beginnt der kritische Pfad D-E-F nicht mit dem
grofRten Auftrag. Der Ablauf (b) ist schneller, weil er nicht nur die Auftragsgrof3e als
Prioritat fur die Zuweisung verwendet, sondern die gesamte Pfadlange vom Auftrag
bis zum Endauftrag. Derselbe Effekt tritt ein, wenn anstelle des Auftrages E eine
Sequenz zweier kleiner Auftrdge E1 und E2 stlinde.
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Abbildung 7: Bericksichtigung des kritischen Pfades.

Das zweite Szenarium (Abbildung 8) ist eine &hnliche Konstellation. Der kritische Tell
besteht hier nicht nur aus einer sequentiellen Reihe von Auftragen. Das Problem
besteht darin, mehrere kritische Auftrage einzuplanen. Die Ablaufplanung zu (b)
erkennt die Auftrdge A und C als besonders wichtig und erzeugt so die schnellere Aus-

fuhrung.
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Abbildung 8: Berticksichtigung mehrerer kritischer Pfade.

Das dritte Beispiel (Abbildung 9) enthalt Gberhaupt keinen kritischen Pfad, da alle
Pfade durch den Graphen gleichlang sind. Es ist jedoch ein kritischer Teil (DFGHI)
erkennbar, der mit hoherer Prioritdt ausgeflhrt werden sollte, da er insgesamt mehr
parallele Rechenleistung erfordert als andere. Diese potentielle Parallelitat kann man
den linksstehenden Auftragen noch nicht ansehen, sie entsteht erst in der rechts folgen-
den Ebene. Der Ablaufplan (b) ist giinstiger, weil er den Auftrag D wegen seines hohen
Grades an nachfolgender Parallelitat bevorzugt.
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Abbildung 9: Reservierung nachfolgender Parallelitat im kritischen Bereich.
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Die Beispiele zeigten die Herausforderungen nur fur den einfachen Fall homogenel
Rechenknoten. Die Bertcksichtigung von Auftrags-Abhangigkeiten sollte bei Rechen-
knoten mit unterschiedlichen Leistungen die Auftrage mit hdherer Prioritat auf schnel-
lere Rechenknoten plazieren.

Nach der Einfuihrung in die Problemstellung sollen die beiden klassischen Verfahren
zur statischen Lastbalancierung von Auftragsgruppen unter Berticksichtigung von Rei-
henfolgebeziehungen vorgestellt werden.

Ein einfaches Verfahren, dfighest level first schedulimgenannt, teilt den Auftrags-
graphen in Ebenen auf [Lam75], [Chan75], [Brun85], [Papa87]. Die erste Ebene ent-
halt die Startauftrdge, die zweite Ebene enthalt Auftrdge, die nur Startauftrdge als
Vorganger haben und so fort. Abbildung 10 zeigt links die Ebenen-Einteilung der Auf-
trdge aus obigem zweiten Beispiel. Die statische Lastbalancierung weist zuerst die
Auftrage der ersten Ebene zu, dann die Auftrage der zweiten Ebene und so fort. Innet
halb einer Ebene werden die Auftrage der Grol3e nach priorisiert, weesaglest node

first Verfahren bekannt ist.

(A E

Ebene 1 Ebene 2! Ebene 3

Abbildung 10: Einteilung des Auftragsgraphen in Ebenen (links) bzw.
Auftragsprioritaten gemal der Pfadlange nachfolgender Auftrage (rechts).

Ein anspruchsvolleres Verfahren, das sogengmmbety scheduling vergibt Priorita-

ten entsprechend der Pfadlange der Auftrage zum letzten Endauftrag (exit path)
Dahinter seht die Beobachtung, dal? die Auftrdge entlang des kritischen Pfades seque
tiell abzuarbeiten sind und so die Antwortzeit der gesamten Auftragsgruppe bestim-
men. Die Prioritaten werden folgendermalRen berechnet: Endauftrage bekommel
Prioritdten entsprechend ihrer Auftragsgrof3e. Danach kdnnen die anderen Prioritate
sukzessiv bestimmt werden. Die Prioritat eines Auftrags ist seine Auftragsgrofi3e
zuzuglich der héchsten Prioritat seiner Folgeauftrdge. Abbildung 10 zeigt rechts die
Prioritatszuweisung an die Auftrdge aus obigem ersten Beispiel, wobei Auftragsgrof3er
von 5, 10 und 20 angenommen wurden. Die Auftrdge werden nun nach ihrer Priorita
eingeplant: der ausfuhrbereite Auftrag mit der hochsten Prioritdt wird dem besten
Rechenknoten zugewiesen, d.h. dem Knoten, der ihn zum frihesten Zeitpunkt beend:
haben wird.
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Die Prioritatsberechnung kann um eine gewichtete Pfadlange erweitert werden. Das
beruht auf der Idee, Auftrage, die hohe Parallelitdt nach sich ziehen, hoher zu priorisie-
ren. Man kann zu der wie oben bestimmten Prioritdt eines Auftrags die Prioritaten-
summe der Folgeauftrage (mit Ausnahme der grof3ten), dividiert durch die Anzahl der
Rechenknoten zuaddieren. Man beachte, dal3 dies ein im Rahmen der vorliegenden
Arbeit entwickeltes Verfahren ist. Alle in der Literatur veroffentlichten Vorschlage nor-
malisieren die Summe, indem sie durch die hochste Prioritat dividieren, was jedoch nur
sinnvoll ist, wenn die Auftragsgrof3en in der Grél3enordnung von Eins liegen. Die hier
gegebene Formel gewichtet gemal der Relevanz der bendtigten Parallelitat (das Ver-
haltnis zur verfugbaren Parallelitdt im System). Abbildung 11 zeigt die Prioritaten der
Auftrage aus obigem dritten Beispiel, rechts um die Gewichtungen verfeinert.
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Prioritaten proportional zur Lange des Pfades zum Endauftrag ... Prioritdten mit Gewichtung

Abbildung 11: Vergleich normaler und gewichteter Berechnung von Prioritaten.

Die Beachtung von Reihenfolge-Abhangigkeiten wird wegen ihres Aufwandes und des

genauen Informationsbedarfs fast ausschlief3lich in statischer Lastbalancierung einge-
setzt. In dieser Arbeit wird ein neues Verfahren vorgestellt, das solche Uberlegungen
sinnvoll in dynamische Lastbalancierung integriert.

2.5.4.3 Statische Lastbalancierung kommunizierender Auftrage

In der Realitat laufen die Auftrage einer Anwendung im System nicht vollig entkoppelt
ab, sondern arbeiten in bestimmten Formen zusammen. Der Nachrichtenaustausch
erzeugt Wartezeiten und belastet die Kanale des Systems. In nahezu allen Anséatzen zur
statischen Lastbalancierung unter Berlcksichtigung der Kommunikation zwischen
Auftragen wird angenommen, daf3 Kommunikation innerhalb eines Rechenknotens
keine Verzogerungen und keine Netzlast mit sich bringt, wahrend bei Kommunikation
zwischen Auftragen auf unterschiedlichen Knoten beides signifikant auftritt. Die Ubli-
chen Vorgehensweisen, um Kommunikation bei der statischen Ablaufplanung einzube-
ziehen, hdngen vom zugrundeliegenden Ablaufmodell ab und kénnen im wesentlichen
in drei Kategorien eingeteilt werden:
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Das erste Ablaufmodell ist vor allem auf komplexe parallelisierte Anwendungen zuge-
schnitten. Eine parallele Anwendung besteht dabei aus einer relativ feststehende
Gruppe von Auftragen, die zu Beginn gestartet werden und die dann von Zeit zu Zeit
untereinander Synchronisationsnachrichten oder Daten austauschen. Zu jedem Pa
von Auftragen wird nun die voraussichtliche Kommunikationsintensitat angegeben.
Die Auftrage bilden damit einen ungerichteten Graphen, dessen Kantengewichte die
Kommuikationsintensitaten zwischen den Auftragsknoten beziffern. Das parallele
Rechnersystem wird ebenfalls als ungerichteter Graph angesehen, wobei die Kommt
nikationskanéle als Kanten mit inrem Durchsatz bzw. ihrer Nachrichtenverzdgerung
gewichtet sind. Ob der Durchsatz oder die Verzdgerungszeit (Abschnitt 2.4.5) relevant
sind, hangt davon ob, ob sehr lange oder viele kurze Nachrichten ausgetauscht werde
Der Ablaufplan wird nun entweder so erstellt, dal3 auf allen Kanalen in der Summe die
Durchsatzanforderungen nicht Uberschritten werden, oder die Gesamtsumme alle
Kommunikationswartezeiten durch Nachrichtenaustausch zwischen Rechenknoter
minimiert wird. Die eigentliche Verteilung der Auftrage an die Rechenknoten - um die
reine Rechenzeit zu minimieren (vergleiche Abschnitt 2.5.4.1) - ist hier vereinfacht, da
ja alle Auftrage zugleich am Anfang auf dem System gestartet werden: man muf3 nu
die Gesamtanforderungen der Auftrdge gleichmafiig auf die Rechenknoten verteilen
Die Ablaufplanung wird Ublicherweise durch rekursive Aufspaltung des Auftragsgra-
phen [Bokh81], [Bowe88], [Ma82] oder sogenangtaph matchindLo88], [Shen85],
integer linear programmingder dhnliches [Bowe92], [Stra88], [Lee92] oder geneti-
sche [Kane91] Algorithmen realisiert.

Das zweite Ablaufmodell bezieht sich auf Datenflul3-orientierte Strukturen oder auch
Pipeline-Verarbeitung. Jeder Auftrag bekommt beim Start Zwischenergebnisse seine
Vorganger-Auftrage als Eingabedaten und berechnet daraus weitere (Zwischen-
Ergebnisse, die evtl. von Folgeauftrdgen weiterverarbeitet werden. Das Grundprinzif
ist hier, jeden Folgeauftrag mdglichst auf denselben Rechenknoten zu legen wie sein
Vorgangerauftrage, um die Kommunikationswartezeit beim Auftragsstart zu minimie-
ren. Zumindest sollte der Rechenknoten flir den Folgeauftrag schnelle Netzverbindun
gen zu den Rechenknoten der Vorganger besitzen. Die hier verwendeten Algorithmel
zur Generierung von Ablaufplanen sind meist Erweiterungen von in Abschnitt 2.5.4.2
vorgestellten Verfahren, die Reihenfolgebeziehungen zwischen Auftragen einbezieher
[Ange90], [Chou82], [Coli91], [Indu86], [Lewi93]. Die durch Weitergabe der Zwi-
schenergebnisse entstehenden Verzégerungen werden bei der Auswahl des Reche
knotens flr einen Auftrag zur reinen Berechnungsdauer auf diesem Rechenknote
zuaddiert.

Das dritte Ablaufmodell betrachtet Auftrage, die auf gemeinsamen Daten operieren.
Das kdnnen kooperierende Auftrage innerhalb einer komplexen parallelen Anwendun
sein oder auch unabhangige Auftrage, die auf globalen Daten (etwa Dateien ode
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Objekten einer Datenbank) arbeiten. Hier ist das Bestreben der statischen Lastbalancie-
rung, die Auftrage dort zu plazieren, wo der grofdte Teil der bendtigten gemeinsamen
Daten liegt [Bara85], [Yu86], [Yu91]. Als zusatzlicher Faktor ist neben der Rechenlei-
stung und Belastung der Rechenknoten auch die Summe der Wartezeiten auf Daten-
satze, die nicht lokal auf dem Rechenknoten verfiigbar sind, bestimmend fir die
Laufzeit eines Auftrags. In Ablaufmodellen, die keine Migration oder Replikation
gemeinsamer Daten zulassen (Abschnitte 2.4.6 und 2.4.8), mul3 anstelle eines direkten
Zugriffs auf nicht-lokale Datensétze eine Zugriffsanforderung an den Besitzerknoten
der Daten gesandt werden, der dort die Zugriffsoperation ausfuhrt. Die Bericksichti-
gung von Datenaffinitaten in statischer Lastbalancierung setzt nattrlich voraus, daf3 die
Lokationen der Datenséatze statisch sind.

2.5.5 Dynamische Ablaufregelung

Zu Beginn des vorigen Abschnitts wurde bereits das Problem der statischen Lastbalan-
cierung angesprochen, dal3 namlich die Auftragslast nicht oder nicht gentigend genau
Im voraus abgeschéatzt werden kann. Aul3erdem ist gewdhnlich ein stetiger Fluld von
kooperierenden und unabhangigen Auftragen zu balancieren und nicht eine fixe endli-
che Menge von Auftragen. Dynamische Lastbalancierung soll die Durchsatzoptimie-
rung wahrend der Laufzeit des Systems durchfihren und dabei auf die tatséchlich
auftretenden Lastsituationen reagieren.

Die Grundidee dynamischer Lastbalancierung ist es, die Auslastung der Rechenknoten
wahrend der Laufzeit periodisch zu messen. Neue Auftrage werden mdglichst auf
momentan relativ gering belastete Knoten geschickt [Ezza86], [Graf93], [Grim91],
[Hac86], [Hsu86], [Kuch90], [Mutk87], [Osse92], [Zhou87]. Bei starken Lastdifferen-
zen der Knoten werden - in preemptiven Ablaufmodellen - laufende Auftrdge von
Uberlasteten zu gering belasteten Rechenknoten migriert [Bemm90], [Doug91],
[Eage86], [Krem92], [LUli91], [Mirc89]. Dies ist eine globale Sichtweise. Da dynami-
sche Lastbalancierung haufig dezentral strukturiert ist, kann man das Grundkonzept
auch folgendermaf3en beschreiben: jeder Rechenknoten tauscht seine momentane Last-
situation periodisch mit einigen Nachbarknoten aus. Wenn er starke Lastdifferenzen
feststellt, so verschiebt er einige seiner Auftrage an die minderbelasteten Knoten bzw.
fordert von hoherbelasteten Auftrage an. Wenn bei ihm neue Auftrage entstehen, so
entscheidet er, ob er sie lokal startet oder sofort an einen momentan minderbelasteten
Nachbarknoten abgibt.

Der Ansatz der dynamischen Lastbalancierung wird noch nicht so lange verfolgt wie
die statische Lastbalancierung. Bisher wurden fast ausschlie3lich sehr simple, dezen-
tral strukturierte Verfahren veroffentlicht, die obige Grundidee mit sehr einfachen Auf-
tragsmodellen und Lastkenngrol3en realisieren.
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Haufig liegt der Forschungsschwerpunkt noch in der Implementierung von preempti-
ven Ablaufmodellen, die in heutigen Betriebssystemen nicht adaquat unterstitzt wer-
den. In den heute verfligbaren, monolythischen Betriebssystemen ist Prozel3migratio
technisch schwer zu realisieren, da Zugriffe auf lokale Ressourcen oder Speicherstruk
turen wie etwa Bildschirmspeicher auf anderen Prozessoren nicht dieselben Auswir:
kungen zeigen. In heterogenen Systemen wird die allgemeine Prozelmigration noc
lAngere Zeit unmoglich sein. Stattdessen mufdten Anwendungen einen sogenannte
Checkpoint / Restart Mechanismus unterstitzen, um von der Lastbalancierung migrier
werden zu kénnen, d.h. sie speichern ihren Bearbeitungszustand, so dal3 sie auf eine
anderen Prozessor dort fortfahren kénnen. Weitere Probleme des preemptiven Ansa
zes sind die Einschatzung der restlichen Auftragslaufzeit um zu entscheiden, ob sicl
eine Migration noch lohnt, die hohen Migrationskosten, und die Gefahr der unndtig
haufigen Hin- und Rickmigration von Auftragen.

Insgesamt bestehen weiterhin noch ungeklarte Fragen zum Konzept der dynamische
Lastbalancierung:

- Ist der vollstandig dezentrale Ansatz im allgemeinen Fall der einzig erfolgverspre-
chende [Thei88], [Zhou92]?

- Ist es Uberhaupt gewinnbringend, komplexere Strategien einzusetzen [Efe89],
[Ferg88], [Ferr86], [Smit80]?

- Wieviel Potential zur Durchsatzsteigerung enthalt der Ansatz der Migration laufen-
der Auftrage [Eage88], [Krue88]?

Wie im Gebiet der statischen Lastbalancierung findet man auch in dynamischen Ansat
zen vorwiegend unrealistische Rechenmodelle oder sehr simple, anwendungsspezif
sche Implementierungen. In der vorliegenden Arbeit wird ein Konzept zur
dynamischen Lastbalancierung vorgestellt, das sehr ausgereifte, komplexe Strategie
enthalt, fir ein breites Anwendungsfeld einsetzbar ist, realisiert und durch Messunger
validiert wurde. Es gibt derzeit keine anderen Konzepte von vergleichbarer Machtig-
keit und Flexibilitat.

Der Ansatz der dynamischen Lastbalancierung bringt einige Grundprobleme mit sich.
Da Lastbalancierung als Teil oder Erweiterung des (verteilten) Betriebssystems selbs
Rechenzeit verbraucht, mufd der Aufwand flir die Lastbalancierungsaufgabe moglichs
gering gehalten werden. Die fir Lastbalancierung verbrauchte Rechenleistung minder
ja Gesamtdurchsatz der Anwendungen im System. Es muf3 also ein Kompromil3 zwi
schen dem Aufwand und dem Nutzen gefunden werden.

Ein analoges Problem sind die Verzogerungen, die durch die Lastbalancierung verur
sacht werden. Wenn ein neu entstandener Auftrag lange Zeit in Entscheidungsalgorith
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men und Warteschlangen zur Verzégerung der Zuweisungsentscheidung zubringt, so
verlangert das die Antwortzeit, weil er nicht unverziglich bearbeitet wird. Auch die
Zeitdauer fur eine Auftragsmigration verlangert die Antwortzeit des Auftrags. Man
beachte dabei, dal’ in dieser Arbeit der Schwerpunkt der Lastbalancierung auf die
Durchsatzsteigerung und weniger auf die Minimierung einzelner Antwortzeiten gelegt
wird. Daher sind Wartezeiten fir Auftrdge kein Verlust, solange die Rechenkapazitaten
des Systems anderweitig ausgenutzt werden kénnen, und auch in Zukunft noch genutzt
werden kdnnen, denn der Auftrag kann ja eine grol3e Menge evtl. paralleler Folgeauf-
trdge haben, die auch erst spater starten kénnen, wenn der Auftrag verzogert wird
(Abschnitt 2.5.4.2).

Das dritte Problem des dynamischen Ansatzes ist die mangelnde, ungenaue und veral-
tete Information. Die aktuelle Auslastung eines Rechenknotens beruht auf Messungen
Uber kurze Zeitintervalle. Meist wird eine exponentielle Glattung eingesetzt (frihere
MelRwerte werden mit geringerer Gewichtung einbezogen), um kurzfristige Schwan-
kungen abzuschwachen. Die aktuelle Auslastung beschreibt daher lediglich die Lastsi-
tuation der Vergangenheit. Die Auftragszuweisungen und -Migrationen auf Basis
dieser Information extrapolieren somit den Lastzustand fir die nahe Zukunft mit einer
Ansatzfunktion Null-ten Grades, d.h. sie nehmen an, dal3 er konstant bleibt. Relevant
fur Balancierungsentscheidungen ist aber die zuklnftige Lastsituation, wie sie ja auch
in statischen Verfahren (Abschnitt 2.5.4) eingesetzt wird. Vorabinformationen tber die
entstehende Auftragslast wird in den meisten Anséatzen gar nicht eingesetzt. Das
bedeutet aber, dal’ die dynamische Lastbalancierung einerseits stets annimmt, daf3 das
System stabil ist und keine weiteren auftrage entstehen werden, andererseits alle Auf-
trdge als homogen (d.h. mit identischen Ressourcenanforderungen) betrachtet. Fir die
Abschatzung der verbleibenden Laufzeit eines laufenden Auftrags (fur die Uberlegung,
ob sich eine Migration noch Iohnt), wird meist eine exponentialverteilte Laufzeit ange-
nommen, d.h. man vermutet, dal3 ,der Auftrag nochmal solange lauft wie bisher“. Rei-
henfolgebeziehungen oder Kommunikation zwischen Auftragen wird ebenso selten im
voraus einbezogen [John93], [Winc92]. Entstehender Kommunikationsaufwand wird
allenfalls gemessen, woraufhin kommunizierende Auftrage evtl. auf denselben
Rechenknoten verlagert werden.

Dynamische Lastbalancierung kann auch die Datenverteilung im System so regeln,
dal3 die Auftrdge moglichst viel auf lokale Daten zugreifen [Vara88]. Doch auch hier
gilt, wie eben bei der dynamischen Bericksichtigung von Kommunikation und Rei-
henfolgebeziehungen erwdhnt, dal} solche Strategien auf Vorabschatzungen basieren.
Die meisten dynamischen Verfahren sind bislang nur reaktiv und nutzen kein Vorwis-
sen Uber Auftrage oder Auftragsgruppen.
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Rein dynamische Lastbalancierung hat durch die drei Grundprobleme im Vergleich zu
statischen Lastbalancierungsansatzen viel weniger Moglichkeiten, den Systemdurch
satz zu verbessern. Daflr ist sie in der Lage, auf unerwartete Lastsituationen, die kats
strophales Systemverhalten zur Folge haben, zu reagieren und wieder einigermal3e
gunstige Lastverteilung einzustellen. Es gibt bereits Ansatze, die dynamische Lastba
lancierung durch vorgelagerte statische Planungsalgorithmen verbessern [Igba86]. |
dieser Arbeit wird ein Ansatz vorgestellt, der Auftragsvorabschatzungen (wie Auf-
tragsgrofRe oder Datenreferenzmuster) und vermutete Beziehungen zwischen Auftré
gen in ein dynamisches Lastbalancierungsverfahren integriert.

2.5.6 Adaptive Ablaufregelung

Das Ziel der adaptiven Lastbalancierung ist die weitere Flexibilisierung und Anpas-
sungsfahigkeit der dynamischen Lastbalancierung. Die Bedgiffamischaeindadap-

tive Lastbalancierung sind in der Literatur noch nicht klar getrennt und es gibt keinen
prinzipiellen Unterschied, denn beide Ansatze verwenden zur Laufzeit ermittelte Werte
fur Entscheidungen. Ein Ansatz zur Adaption besteht darin, dynamisch zwischen Stra
tegien zu wechseln. Bekannte Arbeiten unterscheiden leichte, mittlere und hohe
Systemlast und schalten jeweils auf eine daflir geeignete Strategie um [Eage86]
[Eage88]. Andere Ansatze zur Adaption lernen aus friherem Verhalten oder der
Ergebnissen friherer Entscheidungen, d.h. setzen frihere Mel3werte im Entscheidung
prozeld ein. Typischerweise werden Entscheidungsparameter aufgrund langerfristige
Beobachtungen geregelt. Beispielsweise kdonnen die beobachteten Ressourcenbedi
nisse von Auftrdgen oder Anwendungen protokolliert und als Vorabschéatzungen fir
die spatere Zuweisung ahnlicher Auftrage verwendet werden. Da dynamische Lastba
lancierung zur Laufzeit durchgefuhrt wird, sind aufwendigere Lernverfahren nicht

tragbar. Diese generellen Ansétze finden sich in der Literatur in verschiedensten For
men, motiviert durch verschiedene Mangel in Balancierungsstrategien, die sich in dre
Problemfelder einteilen lassen:

1. Adaptive Anpassung und Korrektur der Vorabschéatzungen fur Auftragsprofile und
das Systemlastverhalten

Dynamische Lastbalancierung entscheidet aufgrund von Informationen (ber
Anwendungsanforderungen und der Systemauslastung, die oft ungenau oder nict
verfigbar sind. Auch wenn oft explizit keine Annahmen tber das kiinftige Auftrags-
oder Systemverhalten gemacht werden, sondern nur auf aktuelle Messungen reagie
wird, liegt implizit eine Extrapolation nullten oder ersten Grades zugrunde. Weiter
ausgebaute Ansatze kdnnen Lastprofilangaben einsetzen, die aus eigenen Beobac
tungen oder von den Anwendungen stammen [Deva89], [Gosw93], [Kunz91],
[Osse92], [Rahm86]. Durch Vergleich der friiheren Vorhersagen mit dem tatséchli-
chen Systemverhalten kann Lastbalancierung adaptiv die Genauigkeit und den Wel
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der Vorabinformationen beurteilen und sie entsprechend korrigieren. Beispielsweise
wird in [Yu86], [Yu91] periodisch durch Regressionsanalyse die Korrelation zwi-
schen den angenommenen und den beobachteten Antwortzeiten ermittelt und die
Abweichungen durch Korrekturfaktoren fur weitere Routing-Entscheidungen ver-
ringert.

2. Regelung schwieriger Entscheidungsgrof3en durch Riuckkopplung

Eine weitere Schwache dynamischer Balancierungsverfahren ist das ungenaue Aus-
fuhrungsmodell, auf dem der Entscheidungsalgorithmus basiert. In realen parallelen
und verteilten Systemen und grol3en, realen Anwendungen ist es aulerst schwierig,
alle Effekte und Abhangigkeiten in einem kompakten Modell zu erfassen. Weil Ent-
scheidungen zur Laufzeit getroffen werden, mussen sie sich auf simple Rechenmo-
delle beschrdnken. Somit ist die Korrelation zwischen den GrolRen, die die
Lastbalancierung einbezieht (z.B. di;n queue lengtller Prozessoren) und dem
Gesamtdurchsatz, der optimiert werden soll, nicht in allen Situationen stark genug.
Beispielsweise hdngen die Kosten fir entfernte Datenzugriffe von der Gréf3e und
Komplexitat der Daten, von der Auslastung des Netzwerks, von Sperrwartezeiten
und von der Auslastung des Datenbesitzers ab, was sich schlecht kompakt ausdrik-
ken laft.

3. Adaptive Optimierung des Kosten - Nutzen Verhéltnisses der Lastbalancierung

Der Nutzen dynamischer Lastbalancierung wird durch ihren Aufwand geschmalert.,
da sie zur Informationssammlung und Entscheidungsfindung Kommunikations-,
Rechenlast und Verzdgerungen erzeugt. Ohne Adaption nimmt Lastbalancierung an,
dal3 ihr Aufwand stets angemessen ist, was nicht fur alle Situationen und Lastprofile
zutrifft. Lastbalancierung sollte also ihren Aufwand minimieren oder sogar das
Kosten - Nutzen Verhéltnis beobachten und regeln [Sale90]. Beispielsweise sollte
dezentrale Lastbalancierung in Situationen global hoher Systemlast weniger Lastin-
formationen austauschen, weil wenig migriert werden sollte und sich die Zusatz-
kommunikationslast nicht lohnt, und sie sollte anstatt aufwendiger Sender-
Initiierung auf Empfanger-Initiierung wechseln, weil die Suche nach gering belaste-
ten Knoten aufwendig und wenig aussichtsreich ist.

2.5.7 Optimierungskriterien fir dynamische Lastbalancierung

Um die Vorstellung der Konzepte im Bereich der Lastbalancierung abzuschliel3en, sol-
len die Ansatze fir dynamische Lastverteilung auf ihre Ziele hin unterschieden wer-
den. Das durch Scheduling oder Lastbalancierung mogliche Optimierungspotential
sowie die notwendige Komplexitat hangt von dem zugrundeliegenden Optimierungs-
kriterium ab. Wie in Abschnitt 2.5.5 erwéhnt, ist dynamische Lastbalancierung fur den
Dauerbetrieb ausgelegt. Sie versucht nicht, eine feste endliche Menge von Auftragen in
insgesamt kirzester Zeit abzuarbeiten, sondern den Systemdurchsatz bei der Abarbei-
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tung eines unendlichen Stroms von Auftragen zu maximieren. Dieses Ziel kann jedock
nicht unmittelbar als Optimierungskriterium in Lastbalancierungsstrategien, d.h. in
Form eines Entscheidungsalgorithmus, realisiert werden.

Im Folgenden werden vier Optimierungskriterien herausgearbeitet, die in dynamischer
Verfahren verwendet werden. Dabei steigt das theoretische Optimierungspotential mi
dem Entscheidungsaufwand ebenso wie die erforderliche Anzahl und Giite der Vorab
und Mess-Informationen Uber das System- und Anwendungsverhalten vom ersten bi
zum dritten Kriterium an; die Komplexitat sinkt wieder beim vierten Kriterium,

1. Vermeidung arbeitsloser Rechenknoten.

Dieses sehr haufig verwendete Kriterium beruht auf der Uberlegung, da unbescha
tigte Rechenknoten im System den maximal moglichen Durchsatz verringern. Last-
balancierung versucht daher, unbeschéftigte Knoten durch neue Auftrage oder durc
Verlagerung von Auftrdgen Uberlasteter Knoten wieder zu nutzen. Diese Technik
kann ohne Vorwissen Uber Auftragsverhalten auskommen, enthalt aber die implizi-
ten Annahmen homogener Rechenkapazitdten der Knoten, homogener Auftragsprc
file und volliger Isolation und Ortsunabhangigkeit (z.B. bzgl. Datenzugriffen) der
Auftrage.

2. Minimale Antwortzeit fur Einzelauftrage.

Dieses Optimierungskriterium wird angestrebt, indem die Lastbalancierung jeden
Auftrag dem Rechenknoten zuweist, der ihn am Schnellsten abzuarbeiten verspricht
Wenn Auftragsmigration moglich ist, kbnnen auf3erdem laufende Auftrage auf Kno-

ten verlagert werden, wenn sie dort aufgrund neuer Informationen schneller fertig-
gestellt werden kénnen. Solche Verfahren sind in der Lage, unterschiedlich
leistungsfahige Rechenknoten zu beriicksichtigen, da es vorteilhaft sein kann, star
kere Rechenknoten hoher zu belasten und sogar schwache Knoten unbeschétftigt :
lassen. Weiterhin kénnen Vorabschatzungen Uber Auftragsprofile bericksichtigt
werden, um die Antwortzeiten der Auftrage zu erwagen. Das Kriterium ermoglicht

es weiterhin, Orts- und Kommunikationsabhangigkeiten von und zwischen Auftra-

gen flr die Abschéatzung von Antwortzeiten auf bestimmten Knoten einzubeziehen.
Verfahren, die dieses Kriterium anstreben, sind bisher selten [Yu86].

3. Minimale Gesamtlaufzeit des Systems.
Das Kriterium entspricht dem der statischen Lastbalancierung, denn es wird ange
nommen, dal’ aulRer den momentan bekannten, d.h. den angekindigten, den ausfll
baren und den bereits zugewiesenen Auftragen keine weiteren Auftrage mehi
kommen. Lastbalancierung weist daher Auftrdge so den Rechenknoten zu, dal3 di
Gesamtlaufzeit, d.h. die Zeit, bis der letzte Auftrag beendet ist, mdglichst klein wird.
Wichtige Grundprinzipien sind dabei die Vermeidung von Licken in der Auslastung
der Knoten, die Beriicksichtigung von Reihenfolgebeziehungen und des Kommuni-
kationsaufwands zwischen Auftragen, die Beachtung unterschiedlicher Antwortzei-
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ten auf verschieden schnellen Rechenknoten und vor allem die volle Nutzung aller
Knoten bis zum Ende aller Bearbeitungen. Letzteres ist wichtig zur Vermeidung
einer langen Auslaufphase, in der nur noch wenige Rechenknoten beschéftigt sind.
Dynamische Lastbalancierungsansatze mit diesem Optimierungsziel sind noch
aul3erst rar [Chow79].

4. Maximaler Gesamtdurchsatz des Systems bis zum Eintreffen des nachsten Auftrags.
Da dynamische Lastbalancierung eigentlich fir den Dauerbetrieb ausgelegt ist,
bleibt das im dritten Punkt beschriebene Kriterium suboptimal. Die Schwierigkeit
besteht darin, daf die Lastbalancierung um das Eintreffen weiterer Auftrage weil3,
aber nicht beliebig weit im voraus ahnt, wieviele, wo, wann und welche Auftrage
folgen ankommen werden. Unter diesen Voraussetzungen ist es am besten, nur fur
den Zeitraum bis zum (vermutlichen) Eintreffen weiterer Auftrage das System opti-
mal zu nutzen. Die Planung flr die weitere Zukunft wird erst nach dem Eintreffen
weiterer Auftrage unter den dadurch gednderten Umstadnden vorgenommen. Zuséatz-
lich zu den fir das dritte Kriterium erforderlichen Informationen ist hier eine
Abschatzung notwendig, wie lange nach Eintreffen eines Auftrags oder Auftrags-
schubs mit einer weiteren Auftragsankunft zu rechnen ist. Die Zuweisungs- bzw.
Migrationsstrategie wird weniger aufwendig, da sie nur begrenzte Zeit vorausblik-
ken mul3, was bei der Ungenauigkeit und Unsicherheit der Informationen in dynami-
scher Lastbalancierung ohnehin ratsam ist.

Wie beim dritten Punkt besteht auch hier die Optimierungsmaéglichkeit, langere Ant-
wortzeiten einzelner Auftrage zugunsten einer gleichmaligen Vollauslastung der
Ressourcen in Kauf zu nehmen und die Mdglichkeit, die Bearbeitung unkritischer
Auftrage zeitlich nach hinten zu verschieben. Gegentber dem dritten Punkt besteht
hier aul3erdem die Moglichkeit, die Einplanung von tber das Zeitintervall hinausge-
henden Bearbeitungen noch aufzuschieben; moglichst spate Entscheidungen sind
wichtig im Bereich der dynamischen Lastbalancierung. Die Lastbalancierung kann
hier ein ,ausfransen’ der Bearbeitungen auf den Prozessoren hinter dem Zeitintervall
in Kauf nehmen, denn bis das Intervall verstrichen ist, sind weitere Auftrage zur
Verteilung eingetroffen oder die momentan noch nicht zugewiesenen Auftrage kon-
nen dann geeignet verteilt werden.

Allgemein sind Durchsatzmaximierung und Antwortzeitminimierung orthogonale Kri-
terien. Minimierung einzelner Antwortzeiten ist wichtig, wenn das System nahezu
unbelastet ist, oder wenn die Antwortzeit eines Auftrags kritisch ist, weil ein Benutzer
darauf wartet oder weitere Auftrage innerhalb einer Anwendung von diesem Auftrag
abhangen. In starker belasteten Systemen, wo meist mehrere ausfiuhrbare Auftrage zur
Verfligung stehen, die Ressourcen konkurrierend nutzen konnen, ist es global wichtig,
den Gesamtdurchsatz des Systems zu erhéhen. Der Durchsatz ist die Summe aller sinn-
voll verwendeten Ressourcen des Systems, wobei meist die nur die Summe der ver-
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brauchten Prozessorzeiten betrachtet wird. Somit kann man einen maximaler
Durchsatz schon erreichen, indem man lediglich Prozessorleerlaufzeiten vermeidet (1
Kriterium). Dal3 Auftrage auf stark belasteten oder langsameren Knoten deutlich lange
laufen, andert am Gesamtdurchsatz nichts. Unausgewogene Lastverteilung verschlec
tert jedoch den Systemdurchsatz, wenn durch lange Laufzeit eines Auftrags Leerlauf
zeiten entstehen, weil abhangige Auftrage nicht rechtzeitig starten kbénnen, oder weni
durch Datenkommunikation Leerlaufzeiten in Form synchronen Wartens entstehen.

Das in der vorliegenden Arbeit entwickelte Verfahren zur dynamischen Lastbalancie-
rung basiert auf dem vierten Optimierungskriterium. Bisher sind noch keine vergleich-
bar allgemeinen, dynamischen Ansatze dieser Klasse veroffentlicht worden.
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3 DasHiCon Konzept zur dynamischen Lastbalancierung

In diesem Kapitel werden die Konzepte vorgestellt, die im Rahmen der vorliegenden
Arbeit entwickelt wurden. Dabei werden die Begriffe und Grundlagen aus Kapitel 2
verwendet.HiCon ist ein alteres Projekt-Akronym mit der Bedeuturdlgrachical
COntrolled Network computing

3.1 Motivation

Basierend auf einem realistischen parallelen Rechnersystem soll durch automatisch
Lastbalancierung der Ablauf verschiedener grol3er Anwendungen optimiert werden.

Dabei sollen realistsche Rechnerstrukturen untersttitzt werden: Die Rechenkapazitate
in der Industrie bestehen zunehmend aus einer Menge vernetzter Workstations un
wenigen Parallelrechnern. Die Rechenknoten sind dabei relativ lose gekoppelt, d.h
einer sehr hohen Prozessor-Rechenleistung steht ein langsames Netzwerk gegenlibe

Weiterhin sollen im HiCon-Modell realistische Anwendungsprofile unterstitzt werden:
Die Rechenlast auf diesem System setzt sich zum Grof3teil aus komplexen, teilweis
bereits parallelisierten Anwendungen und einigen kleineren Anwendungen zusammen
Grol3e Anwendungen waren bisher wissenschatftliche und kommerzielle Produktions:
laufe, wahrend kleinere Auftrage meist interaktive Kommunikations- und Entwick-
lungsvorgange der Benutzer waren. Neuere Softwaretechnologie bewirkt eine
Vermischung der Anwendungsklassen: graphische Aufbereitung und Benutzeroberfla
chen konsumieren viel Rechenleistung, die Funktionalitat groRerer Anwendungspakett
wird auf das Rechnernetz verteilt und erzeugt nichttriviale Lastprofile; schliel3lich
basieren verschiedene gréf3ere Anwendungen zunehmend auf Datenverwaltungssyst
men, auf die sowohl konkurrierende interaktive Zugriffe als auch langlaufende Auf-
trdge abgebildet werden.

Betriebssystem-Plattformen befinden sich auf dem Wege zu einer einheitlichen
Funktionalitdt gegentiber den Anwendungen. Das ermdglicht es, Anwendungen mi
geringem Aufwand fur verschiedene Rechnertypen zur Verfligung zu stellen und grof3e
Anwendungen sogar auf heterogene Systeme zu verteilen und zu parallelisieren. Dies
Mdoglichkeit zusammen mit den stark gemischten und wechselnden Lastprofilen bendé
tigen eine automatische Lastbalancierung, die solche Lasten dynamisch geeignet al
heterogene Rechnersysteme verteilt. Dabei sind nicht nur die reinen Rechenzeitanfol
derungen zu betrachten, sondern auch die Kommunikation in parallelen Anwendunget
und die Arbeit auf gemeinsamen Datenbasen. Wie unten hervorgehoben wird, ist e
nicht leicht, verschiedene komplexe Anwendungen gut zu balancieren. Heute verfig:
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bare Ansatze stellen nur einen Anfang dar. Beliebig starke Verteilung paralleler Auf-
trdge innerhalb einer Anwendung bringt keine optimale Effizienz, sondern ein
verninftiges MalR muld gefunden werden. Sehr verschiedene Lastprofile und Granulate
kénnen nicht mit einem einfachen Verfahren, erst recht nicht gleichzeitig zusammen
balanciert werden. Bestehende Anséatze sind in bezug auf verschiedenartige Anwen-
dungstypen, Rechnersysteme und Lastsituationen noch recht unflexibéli@as
Konzept soll durch drei Ansatze flexible Lastbalancierung erméglichen:

- Die Balancierungsstrategie berticksichtigt verschiedene Informationstypen uber
Anwendungen und Rechnersystem, die sowohl Vorabschéatzungen als auch gemes-
sene Werte enthalten. Beispiele fur Laufzeitinformationen sind die Prozessorausla-
stung, Hauptspeicherausnutzung, die Datenverteilung im System, Auftragsgrofien,
Datenreferenzprofile und Reihenfolgebeziehungen zwischen Auftragen.

- Lastbalancierung kann durch eine skalierbare, gemischt zentrale und dezentrale
Struktur auf beliebige Systemkonfigurationen angepaldt werden, und kann vor allem
die Vorteile zentraler Verfahren nutzen. Innerhalb von Clustern kann die Last zentral
durch komplexe Strategien koordiniert werden, wahrend zwischen benachbarten
Clustern ein grober Lastausgleich erfolgt.

- Die Lastbalancierung ist in der Lage, ihre Entscheidungsparameter durch Beobach-
tung des tatsachlichen Systemverhaltens dynamisch anzupassen. So kdnnen etwa die
tatsachlichen Datenkommunikationskosten gemessen und fur weitere Entscheidun-
gen verwendet werden; Der Lastbalancierungsaufwand kann durch Wahl einer
geeigneten Strategie in sinnvollem Rahmen gehalten werden.

Das Konzept ist auf datenintensive Anwendungen ausgerichtet. Ublicherweise werden
die Anwendungen aus dem Bereich der Datenverwaltung als datenintensiv bezeichnet.
Allgemein sind jedoch solche Auftragstypen datenintensiv, deren Anteil an reinen
Datenzugriffen im Verhaltnis zur Rechenarbeit signifikant istHi@on-Modell kon-

nen naturlich auch rechenintensive Anwendungen bericksichtigt werden, da sie einfa-
cher zu balancieren sind. Das Ablaufmodell kennt explizit globale, fliichtige und
persistente Datensatze, auf denen Auftrage einer oder mehrerer Anwendungen gemein-
sam arbeiten. Es ist somit flr typische Datenbankanwendungen sehr gut geeignet. In
dieser Arbeit wird jedoch darauf geachtet, die breite Anwendbarkeit des Ablaufmo-
dells zu demonstrieren (Abschnitt 5.2), indem auch andere Anwendungstypen fir die
betrachteten grobgranularen parallelen Systemen so strukturiert und parallelisiert wur-
den, dal’ sie Uber gemeinsame Daten kooperieren (Ablaufmodell Abschnitt 3.4).

Die Motivation schliel3t mit einer kurzen Betrachtung, warum es sinnvoll ist, komplexe
zentrale Verfahren zur Lastbalancierung zu entwickeln, obwohl bisher die meisten Ver-
offentlichungen vdllig dezentrale (und einfache) Verfahren favorisieren. Beginnend
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mit der Grundidee der Lastbalancierung werden schrittweise reale Anforderungen ein
bezogen.

Lose gekoppelte Parallelrechner und Rechnernetze sind erfahrungsgemal selten vc
und gleichmaRig ausgelastet; einige Rechenknoten sind Uberlastet, wahrend de
Grol3teil der Ressourcen kaum genutzt wird [Mutk92]. Daher werden automatische
Lastverteilungsmechanismen entwickelt, die eine bessere Systemnutzung ermégli
chen.

Der Grundansatz zur Lastbalancierung besteht darin, jeden Rechenknoten gleic
stark auszulasten. Keiner der Rechenknoten soll leer laufen, keiner Uberlastet seir
Je nachdem, ob das Ablaufmodklultitasking enthalt oder nicht, kann man die
mittlere Zahl laufbereiter Auftrdge (Prozesse) oder die Langen der Auftragswarte-
schlangen der Rechenknoten als einfaches Lastmald verwenden.

Parallele und verteilte Rechnersysteme sind heterogen, sobald nicht nur ein einzel
ner Parallelrechner oder ein vollig homogenes Cluster isoliert betrieben wird. Man-
che Rechenknoten haben hdhere Rechenleistung oder mehrere Prozessoren, c
parallel arbeiten. Solche Rechenknoten vertragen mehr Last; wenn man ihnen die
selbe Anzahl von Auftragen anvertraut wie langsameren, so wird die Gesamtsystem
leistung nicht optimal genutzt. Es kann glinstiger sein, schwache Rechenknoten lee
laufen zu lassen, wahrend andere stark belastet sind.

Auftrage sind nicht homogen. Wenn verschiedene Anwendungen konkurrierend
ablaufen, sind unterschiedliche Auftragsprofile zu berticksichtigen. Aber auch inner-
halb einer Anwendung erscheinen Auftrage mit unterschiedlichen Profilen, die meist
von Laufzeitparametern abhangen. Die bearbeitenden Knoten mussen den Auftré
gen entsprechend als hoher belastet bzw. langer belegt angesehen werden, de
andere, weitere Auftrage wirden dort starker gebremst bzw. muften langer in de
Warteschlange verbleiben.

In der Realitat ist nicht nur eine Vielzahl unabhéngiger, sequentieller Auftrdge zu
balancieren, sondern ein heterogenes Gemisch mehrerer in sich paralleler Anwer
dungen. Lastbalancierung muf3 daher mit wechselnden, unvorhersehbaren Lastsitu:
tionen fertig werden.

Die Einzelauftrdge in komplexen Anwendungen sind durch Reihenfolgebeziehun-
gen verknupft. Auftrage kdnnen grol3e bzw. viele, sequentielle oder parallele Folge-
auftrage haben. Damit solche Auftragsgruppen moglichst schnell zu ihrem néchster
Synchronisationspunkt gelangen (Ende der Anwendung oder Punkt mit geringer
Parallelitéat, z.B. am Ende einer parallelen Schleife), sollten alle Auftrage etwa
zugleich enden. Das ergibt neben kurzen Antwortzeiten auch die beste Nutzung de
Parallelitdt im System. Daher sind manche Auftrage mit héherer Prioritat zu bear-
beiten.
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- Auftrage innerhalb einer Anwendung und auch konkurrierende Auftrdge aus ver-
schiedenen Anwendungen operieren auf gemeinsamen Daten, z.B. Zwischenergeb-
nissen, Dateisatzen oder Datenbankobjekten. Die Antwortzeit solcher Auftrage
hangt stark davon ab, wieviele der benétigten gemeinsamen Daten lokal auf dem
Rechenknoten verfugbar sind. Datenkommunikation erzeugt Netzbelastung und
Wartezeiten und sollte daher gering gehalten werden.

- Weitere Randbedingungen sind von grol3er Bedeutung flr die Effizienz des paralle-
len Systems. Rechenknoten laufen nicht in jedem Arbeitspunkt effizient; zu viele
Prozel3wechsel oder Hauptspeicheriberlastung durch hohe quasi-Parallelarbeit ver-
ursachen erhebliche Zusatzkosten. Auch Uberlastung von Kommunikationskanélen
oder der Lastbalancierungskomponenten erzeugt Zusatzkosten und Wartezeiten. Es
muf} also ein verninftiges Mald an Parallelitdt im System und ein sinnvolles Mal3 an
Lastbalancierungsunterstiitzung gefunden werden.

- Einige in Balancierungsstrategien verwendeten Grof3en haben je nach Lastsituation
und Anwendungsprofilen unterschiedliche grof3e Bedeutung. Ihre Gewichtung lafit
sich selten statisch vorab ermitteln. Solche Gréf3en mussen von der Lastbalancie-
rung selbst beobachtet und bewertet werden, um die Entscheidungsparameter opti-
mal zu justieren und die Betrachtung auf die relevanten Grol3en zu beschranken.

Manche der oben genannten Herausforderungen an reale dynamische Lastbalancie-
rungsverfahren konnen bereits mit einfachen Optimierungskriterien (Abschnitt 2.5.7)
erfal3t werden. DdidiCon-Ansatz integriert erstmalig alle genannten Anforderungen in
einem allgemein verwendbaren dynamischen Lastbalancierungskonzept.

3.2 Klassifikation des Ansatzes

Kapitel 2 gab einen Uberblick tber diverse Techniken zur Lastbalancierung. Bevor der
HiCon-Ansatz detailliert vorgestellt wird, soll er kurz charakterisiert werden. Die Klas-
sifikation richtet sich dabei nach bekannten Ubersichtsartikeln zur dynamischen Last-
balancierung [Bern93], [Casa88], [He89], [Scha92], [Shir92].

Als Systemplattform werden Workstations und lose gekoppelte Parallelrechner ange-
nommen. Ein Rechenknoten besteht aus einem Prozessor oder mehreren speicherge-
koppelten Prozessoren sowie Sekundarspeicher, Ein- / Ausgabegeraten und
Netzwerkanschlissen. Jede Workstation stellt also einen Rechenknoten dar, ebenso ein
SMP Ghared memory procesgoParallelrechner, wéhrend die Knoten eines MPP
(massively parallel processor, shared nothifgarallelrechners als einzelne Rechen-
knoten balanciert werden kdnnen.

46



Klassifikation des Ansatzes

Mehrbenutzerbetrieb durch konkurrierende Anwendungen im System ist moglich. Jede
der Anwendungen kann aber auch aus diversen, teilweise parallel laufenden und koc
perierenden Teilauftragen bestehen. Anwendungen sind Client - Server strukturier
(Abschnitt 3.4): Auftrage sind Serverklassenaufrufe; Auftrage konnen dabei komplette
Anwendungen oder Teilaufgaben einer Anwendung reprasentieren. Jeder Auftrag kan
auf einem beliebigen Rechenknoten ausgefuhrt werden.

Die Ausfiihrung eines Auftrags erfolgt imultitasking(Prioritdten- oder Zeitscheiben-
verfahren, je nach Betriebssystem) auf einem Knoten. Einmal gestartet, kann er nich
mehr migriert werden. Es besteht auch die Moglichkeit, Auftrage in einer lokalen War-
teschlange je Knoten zu puffern, so dal3 nicht notwendigerweise alle dort plazierter
Auftrage parallel oder quasi-parallel ablaufen missen. Die Ausfiihrung eines Auftrags
beansprucht Prozessorrechenzeit, Ein- / Ausgabeleistungen und Kommunikation. Da
genaue Ablaufmodell folgt in Abschnitt 3.4.

Das Netzwerk verbindet Rechenknoten untereinander und hat eine beliebige Struktul
Kooperation zwischen Auftrdgen geschieht tber synchronisiertes Arbeiten auf gemein:
samen Daten. Daten kbnnen migriert und kopiert werden. Es gibt keine entfernter
Operationen auf Daten im Sinne eimesiote memory accessondern die Daten mus-

sen zu dem Rechenknoten transportiert werden, auf dem der zugreifende Auftrac
ablauft - oder es wird ein Auftrag verschickt, der einen Server bei den Daten aktiviert.

Die Lastbalancierung setzt, wie in Abbildung 12 angedeutet, nur anwendungsunabhar
gige Informationen ein. Da die Lastverteilung Teil eines verteilten Betriebssystems
sein sollte, konnen keine Eigenschaften und Kenntnisse einer speziellen Anwendun
ausgenutzt werden, wie etwa in [Bogl92], [Cap92], [Kreu89], [Sinh93], [Will91].
HiCon-Lastbalancierung mif3t nicht nur die Ressourcenauslastung auf Systemeben
und setzt sie fur reaktive Entscheidungen ein, sondern verwendet auch Vorabschétzul
gen von Anwendungen uber Auftragsprofile und Auftragsgruppenprofile.

Lastbalancierungsinformationen

anweﬁaungs- anwendungs-
spezifisch unabhangig

Messungen Vorabschatzungen

Abbildung 12: Klassifikation der genutzten Lastbalancierungsinformationen.

In Abbildung 13 sind die Aufgaben und damit Einflul3maoglichkeiten der Lastbalancie-
rung klassifiziert. Der hier vorgestellte Ansatz beschrankt sich in der Auftragsverwal-
tung auf die Zuweisung von Auftrdgen, da die Migration laufender Prozesse in
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heterogenen Systemen noch nicht mit verntnftigem Aufwand realisierbar ist. Der
Zuweisungszeitpunkt fur Auftrage ist beliebig, d.h. nicht unbedingt sofort bei Entste-
hung des Auftrags und nicht unbedingt erst, wenn ein Knoten oder Server leer lauft.
Die Mdoglichkeit der Auftragsduplikation ist nur flr kontextfreie Auftrage, keinesfalls

fur Berechnungen auf globalen Daten anwendbar: gibt man einen Auftrag mehrfach
aus, um das Ergebnis des schnellsten Bearbeiters weiter zu verwenden und die anderen
Bearbeitungen zu verwerfen, so darf der Auftrag keine globalen Daten verandern (oder
die Modifikationen der anderen Bearbeiter missen riickgangig gemacht werden).

Im Bereich der Datenverwaltung kann Lastbalancierung sowohl die Verlagerung von
Daten als auch die Verteilung von Datenkopien beeinflussen. Die realisierten Strate-
gien nutzen dieses Potential jedoch nur indirekt durch Auftragsplazierungen, worauf-
hin Datenverschiebungen automatisch durch eine Datenverwaltungkomponente des
verteilten Betriebssystems erfolgen (Abschnitt 3.5).

Auftrags- Daten-
ygltung verwaltung
intra Auftrags- Auftrags- Auffrags- Daten- Daten-
Prozessorzuweisungmigration duplikation migration replikation
scheduling

Abbildung 13: Klassifikation der Lastbalancierungsaufgaben.

Die Struktur der Lastbalancierung kann rein zentral sein, kooperierende Cluster unter-
stitzen, oder vollig dezentral konfiguriert werden. Dezentrale Konfigurationen kdnnen
mit explizit oder implizit verteilter Lastbalancierung betrieben werden. Die zentrale
Struktur kennt keine Unterscheidung zwischen Sender- und Empfanger-Initiierung.
Die dezentrale Erweiterung verlauft Sender-initiiert, da Lastbalancierungsagenten Auf-
trdge an weniger belastete Nachbar-Cluster abgeben.

Der Lastbalancierungsansatz ist dynamisch, da Entscheidungen zur Laufzeit aufgrund
aktueller Informationen getroffen werden. Er ist adaptiv, weil Entscheidungsparameter

zur Laufzeit durch Auswertung langerfristiger Beobachtungen angepal3t werden.

Obwohl der Ansatz dynamisch ist, werden zuséatzlich Techniken statischer Balancie-
rungsverfahren eingesetzt.

Im Sinne der gebrauchlichen Klassifikationen [Casa88] ist der Ansatz suboptimal und
heuristisch. Er garantiert keine Bestverteilung der Last, sondern erreicht durch Ausnut-
zung grober und vereinfachter Zusammenhange eine Verbesserung des Systemdurch-
satzes. Weiterhin ist sowohl isolierte Lastbalancierung einzelner Auftrdge moglich als
auch sogenannte soziale Lastbalancierung, d.h. Interaktionen, Abh&ngigkeiten und
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gegenseitige Behinderungen zwischen Auftragen werden berticksichtigt. Diverse Last
kenngrdéRen kdnnen zur Entscheidungsfindung genutzt werden (Abschnitt 3.7.1, 3.7.2]

3.3 Kurzvorstellung das Gesamtsystems

Abbildung 14 gibt einen Gesamtluberblick eines Clusters im Gesamtsystem: das ver
teilte Betriebssystem, die Komponenten zur Abwicklung der Lastbalancierung, und die
Komponenten der Anwendungen, d.h. Clients, Server und Serverklassen (Abschnit
3.4). AulRerdem ist das Konzept der gemeinsamen Daten skizziert. Das gesamte Lau
zeitsystem zur Abwicklung der Anwendungen sollte Teil eines geeigneten verteilten
Betriebssystems sein, wobei manche Teile heutzutage als Datenbankkomponente od
Transaction-Processing Monitorealisiert sind. Charakteristisch sind in diesem

Systemmodell - im Vergleich zu vielen anderen Projekten - zum einen die logisch zen-
tralisierten Funktionen der Lastbalancierung, die Verwaltung der Systemzustandinfor-
mation, das Treffen der Balancierungsentscheidungen und die Adaption der Strategie
zum anderen die Auftrennung der Lastbalancierung in eine unmittelbar agierende
Komponente zur Bewertung und Auftragszuweisung, und eine Anpassungskompo-
nente, die dynamische Adaption der Lastbalancierungsstrategie ermoglicht. Es wirc
keine spezifische Prozessor- oder Netzwerktopologie vorausgesetzt. Das Bild gibt dit
Struktur eines Clusters wieder. Zur Skalierung auf sehr grof3e Systeme kdnnen beliebi
viele Cluster dieser Art vernetzt werden (Abschnitt 3.6), die dezentral kooperieren.

Die unten in der Abbildung verlaufenden Querbalken sollen die Rechenknoten eines
Clusters symbolisieren. Auf diese Knoten sind die Anwendungen verteilt. Eine
Anwendung besteht jeweils aus einem Client (als weil3e Ellipsen angedeutet), der Auf
trage zur Bearbeitung generiert. Uber das System sind Server verteilt (ebenfalls durc
weil3e Ellipsen dargestellt). Server sind nach Funktionsgruppen in Serverklasser
(schwarze Hinterlegung) eingeteilt und kénnen die Auftrdge der Anwendungen bear-
beiten. Die Funktionalitéat des verteilten Betriebssystem ist in einem Kasten daribel
skizziert. Sie besteht in der Realitat aus zentralen Teilen und solchen, die auf die Kno
ten verteilt sind. Auch die Messung der Resourcenbelastung ist auf das System verteil
Die Lastbalancierung ist in der Abbildung auf oberster Ebene angesiedelt, da sie von
Laufzeitsystem Informationen erhalt und Uber das Laufzeitsystem die Verteilung der
Anwendungsauftrage vornimmt. Sowohl die Lastbalancierung als auch das verteilte
Betriebssystem kooperieren mit den entsprechenden Komponenten benachbarter CIi
ster. Im folgenden werden die Komponenten und ihre Funktion genauer beschrieben.
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Abbildung 14: Komponenten eines Clusters im Gesamtsystem - Anwendungen,
Betriebssystem und Lastbalancierung.

3.4 Verarbeitungsmodell fir Anwendungen

Je allgemeiner die Ablaufstrukturen, die Kooperation und die Synchronisation in paral-
lelisierten Anwendungen und zwischen konkurrierenden Auftragen sind, desto schwie-
riger ist es, die Auslastung des Systems zu interpretieren, um geeignete MalRnahmen
zur gunstigeren Lastverteilung treffen zu kdnnen. Es finden sich zahlreiche Arbeiten,
in denen eine beliebige Menge kommunizierender und unabhangiger Prozesse betrach-
tet wird. Automatische Lastverteilung ist hier aufgrund der mangelnden Informationen
Uber die laufenden Anwendungen nur begrenzt mdglich. Extreme Leistungssteigerun-
gen wurden dagegen in Projekten erreicht, die fir spezielle parallelisierte Anwendun-
gen dedizierte Lastausgleichsverfahren entwickelt haben. Der hier vorgestellte Ansatz
benutzt ein eingeschranktes Ablaufmodell, das der Lastbalancierung eine Interpreta-
tion des Systemverhaltens ermdglicht, und er erlaubt den Anwendungen, die an sich
anwendungsunabhéngige Lastbalancierung durch Hinweise zu unterstttzen.

Client - Server Modell. Als Verarbeitungsmodell wird das Client - Server Modell ver-
wendet. Dieses Modell hat sich in Datenbank-Umgebungen und bei nahezu allen gro-
Reren, parallelen und verteilten Anwendungen seit langerem bewdahrt. Das Client -
Server Modell ist ein einfaches Wechselspiel zwischen Funktionsaufruf, Bearbeitung
und Ergebnisrickgabe, erlaubt aber durch die Konzepte der Serverklassen eine sehr
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flexible Verteilung, Parallelisierung und Lastbalancierung innerhalb und zwischen
Anwendungen.

Serverklassen Anwendungstypen oder auch Teilfunktionen von Anwendungstypen
werden als Serverklassen bezeichnet. Eine Serverklasse stellt eine bestimmt
Funktionalitat als Dienst zur Verfiigung. Die Funktion einer Serverklasse besitzt Ein-
gabeparameter, die beim Funktionsaufruf belegt werden. Da eine Serverklasse bl
cherweise mehrere Funktionen zur V\erfiugung stellt, z.B. verschiedene
Zugriffsoperationen auf einem bestimmten abstrakten Datentyp, teilt man die
Funktionalitat einer Serverklasse in Subklassen (Auftragstypen) ein.

Server. Zur Ausfihrung einer solchen Funktion benétigt man einen Server, der die
Funktionalitat der Serverklasse anbietet. Das ist in der Regel ein Prozel3, der entspr:
chenden Programmcode ausfihrt. Prinzipiell kann ein Server auch durch mehrere koc
perierende Prozesse realisiert werden, abeHi@on-Modell ist jeder Server durch
einen sequentiellen Prozel3 realisiert. Ein Server durchlauft eine endlose Schleife, ii
der er jeweils auf Aufrufparameter wartet, die Funktion durchfuhrt und dann die
Ergebnisse zurlckschickt. Es wird also nicht fir jede Funktionsausfiihrung ein Servel
kreiert, sondern es wird eine gewisse Anzahl an Servern auf dem System konfigurier
die fur Funktionsausfiihrungen bereitstehen. Nach Ausfiihrung eines Funktionsaufrufs
steht der Server sofort wieder zur Ausfihrung des nachsten Auftrags bereit. Pro Ser
verklasse kdnnen im System beliebig viele Server gleichzeitig aktiv sein. Server ver-
brauchen keine Ressourcen, solange sie keinen Auftrag zu bearbeiten haben.

Clients. Die Ausfuhrung einer Anwendung wird durch einen Client reprasentiert. Ein

Client ist ein beliebiger Prozel3, der die Verarbeitung einer Anwendung durch Absen-
den verschiedener Aufrufe (Auftrdge) an Serverklassen koordiniert. Clients kénnen
genau einen Serverklassenaufruf tatigen, der die gesamte Anwendungsarbeit ausfihi
sie kdnnen jedoch auch beliebige Aufrufsequenzen und parallele Aufrufe an dieselbe
und unterschiedliche Serverklassen durchfihren. Server kdnnen auch selbst Unterau
rufe an andere Serverklassen absetzen und nehmen dabei die Rolle eines Clients an.

Auftragsbearbeitung. Auftrdge sind Serverklassenaufrufe, die von Clients abgesetzt
werden. Beim Absetzen eines Auftrags spezifiziert der Client die gewtinschte Funktion
(Serverklasse) und gibt die Aufrufparameter an. Die Struktur der Parameter ist anwen
dungsabhangig. Der Auftrag wird vom Betriebssystem entgegengenommen. Es garar
tiert, dal3 der Auftrag irgendwann ausgefihrt wird und ein Ergebnis zurtckliefert. Jeder
Auftrag muf3 also sofort ausfiihrbar sein, wenn er vom Client abgesandt wird (d.h. er is
sofort zur Bearbeitung freigegeben). Nach Absendung eines Auftrags kann der Clien
weiterlaufen; Er ist nicht blockiert bis das Ergebnis eintrafiyfichronous remote pro-
cedure cal). Auf diese Art kann er verschiedene Auftrage (auch derselben Server-
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klasse) parallel bearbeiten lassen. Das Ablaufmodell garantiert nicht, dal3 die Auftrage
in derselben Reihenfolge gestartet oder bearbeitet werden, wie der Client sie abge-
schickt hat. Nicht einmal die Ergebnisse mussen in derselben Reihenfolge eintreffen.
Die Server geben am Ende der Bearbeitung eines Auftrags Ergebniswerte ab, deren
Struktur ebenfalls anwendungsabhangig gewahlt werden kann. Das Betriebssystem
sendet die Resultate zuriick an den Aufrufer (Client), wo sie ggfs. gepuffert werden.

Sobald ein Client die Ergebnisse eines oder mehrerer Auftrage bendtigt, um fortfahren
zu kénnen, so kann er warten bis er Ergebnisse friherer Aufrufe erhalt. Die haufige
Einschrankung, dafd asynchrone Aufrufe kein Resultat haben durfen, existiert im

HiCon-Ablaufmodell nicht.

Abbildung 15 skizziert die Entstehung, Verwaltung und Bearbeitung von Auftragen
innerhalb eines Clusters. Ein Client erzeugt einen Auftrag mit Parametern und einer
Profil-Vorabschéatzung zur Unterstlitzung der Lastbalancierung (1). Die zentrale Last-
balancierung ordnet den Auftrag in der zentralen Warteschlange ein (2). Dabei werden
evtl. Prioritdten bericksichtigt. Die Lastbalancierung trifft sofort oder spéter eine
Zuweisungsentscheidung (3), woraufhin der Auftrag an einen Server gesandt wird.
Wenn der betreffende Server bereits arbeitet, wird der Auftrag dort in die lokale Warte-
schlange eingereiht (4). Der Server bearbeitet den Auftrag vollstandig (5). Wenn auf
dem Prozessor mehrere Server arbeiten, so teilen sie sich die Rechenzeit gemal der
Scheduling-Strategie des lokalen Betriebssystems. Die Ricksendung des Resultats ist
ein Ereignis, das die Lastbalancierung aktiviert (6). Sie kann auf die neue Situation hin
Auftrage neu bewerten und evtl. Auftrdge an Server oder Nachbar-Cluster zuweisen.

Clientl1 o O

Client 2

Lastbalancierurig__}

Server [ Y. S

Server D T

Server G

=P Auftrag A, == Auftrag B, —> Auftrag C

Abbildung 15: Entstehung, Verwaltung und Bearbeitung eines Auftrags.

Daten. In realen Anwendungen arbeiten Server nicht kontextfrei (rein von Aufrufpara-
metern abhangend), sondern verwenden und modifizieren bei der Auftragsbearbeitung
globale Daten, seien es gemeinsame Daten in einer Anwendung oder globale, evtl. per-
sistente Datenbestande. Persistente Daten existieren Uber den Ablauf einer Anwendung
hinweg, woflr Datenbankobjekte das wichtigste Beispiel darstellen. Gemeinsame
Daten einer Anwendung, z.B. grof3e Matrizen, existieren hingegen nur fur den Verlauf
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der Anwendung existieren. DasCon-Modell erlaubt daher kontextsensitive Bearbei-
tungen. Kontextsensitive Serverklassen bieten eine Funktionalitat, bei der die Resultat
vom aktuellen Anwendungs- oder globalen Kontext abhangen. Weiterhin haben diese
Serverklassen auch Seiteneffekte, d.h. geben nicht nur Ergebnisse zuriick sondel
modifizieren auch den Kontext.

Dazu werden Daten explizit in das Verarbeitungsmodell fuHi&on-Lastbalancie-

rung integriert: Anwendungen arbeiten auf globalen Datenséatzen. Datensatze werde
von Anwendungen kreiert und benannt. Die Strukturen und Speicherungsformen de
Datensatze sind anwendungsspezifisch, d.h. jeder Datensatz kann beliebig aus Hauj
und Sekundarspeicherstrukturen bestehen. Datensatze kdénnen global innerhalb ein
Anwendungslaufs, global innerhalb einer Serverklasse oder systemglobal sein. Die
Datensatze konnen flr die Dauer einer Anwendung existieren oder persistent sein. Jec
Anwendung kann Uberall auf gemeinsame Datensatze zugreifen, da die Synchronise
tion, Datenlokalisierung und Replikationsverwaltung vom verteilten Betriebssystem
tubernommen wird. Fir nichtdeterministische parallele Ablaufe oder unabhangig paral-
lel arbeitende Auftrdge konnen Zugriffe auf gemeinsame Daten durch geeignete Spel
ren synchronisiert werden. Den Anwendungen wird also durch die
Datenverwaltungskomponente des verteilten Betriebssystems ein virtueller gemeinsa
mer Speicher zur Verfligung gestellt. Alle Synchronisation und Datenkommunikation
innerhalb und zwischen Anwendungen wirdhkii€on-Modell durch die Clients (Auf-
rufverhalten, Parameter) und durch die Server (Arbeit auf gemeinsamen Daten) reali
siert.

DasHiCon-Verarbeitungsmodell ist so allgemein gehalten, daf} die genaue Funktions-
weise der Datenverwaltungskomponente unerheblich ist. Das Verfahren zur Realisie
rung, Lokalisierung, Synchronisation und Verteilung der virtuell gemeinsamen Daten
wird im HiCon-Modell nicht vorgeschrieben. Fir die Lastbalancierung ist lediglich
wichtig, dafld gemeinsame Daten existieren, die physisch auf das System verteilt sinc
dalR Server aud ihnen operieren, und dal3 Zugriffe auf nicht-lokal vorliegende Daten
Zusatzaufwand verursachen. Auftragsbearbeitungen der Server kénnen also durc
Zugriffe auf Daten, die momentan nicht lokal vorhanden sind, unterbrochen werden,
weil die Server auf die Daten warten missen.

Zum besseren Verstandnis der folgenden Kapitel soll hier kurz ein allgemeines, flexi-
bles Schema zur Verwaltung logisch gemeinsamer, physisch verteilter Daten skizzier
werden, das auch in der prototypischen Implementierung realisiert wurde (Abschnitt
5.1). Heute verfugbare Verfahrenvirtual shared memorpystemen und Datenver-

waltungssystemen sind ahnlich, jedoch meist weniger flexibel. Als Zustandiger (Besit-
zer) eines Datensatzes gilt jeweils der Server, der zuletzt eine Anderungsoperatiol
darauf durchgefihrt hat. Dort werden die zentralen Verwaltungsinformationen und -
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Operationen fir diesen Datensatz gespeichert / durchgefiihrt. Datensatzkopien werden
auf Zugriffsanforderungen hin automatisch im System verteilt und vor Anderungsope-
rationen wieder invalidiert (d.h. nicht nach Anderungsoperationen aktualisiert). Eine
derartige Datenverwaltung optimiert den Zugriffsaufwand, sofern die Server eine
gewisse Lokalitat im Datenrefernzverhalten aufweisen: Wiederholte Lesezugriffe auf
lokale Datenkopien sind sehr guinstig, und die Anzahl und Verteilung von Kopien palf3t
sich automatisch an das Lese-/Schreibverhaltnis der Datenzugriffe aiiCne-
Lastbalancierung versucht, diese Zugriffslokalitdt zu erh6hen. Konsistenz wird gesi-
chert, indem Server Zugriffe auf Datenséatze durch entsprechende Schreib-/Lesesperren
kapseln. Abbildung 16 skizziert den Ablauf eines Datenzugriffs beispielhaft fir den
Fall, dal3 ein Server einen Datensatz exklusiv bendétigt und aul3er dem derzeitigen
Besitzer zwei weitere Server gultige Kopien besitzen. Wichtig fur die Lastbalancierung
Ist aul3erdem, dald solche durch Datenkommunikation entstehenden Wartezeiten durch
Berechnungen anderer Server auf dem Knoten genutzt werden konnen.

anfordernder aktiv__ wartend
Server

&
<
Datenverwalter |:| ’% ;US’
des Clusters \;T Q
>

momentaner
Besitzer der )
Daten (Server)

momentane
Kopienbesitzer %

—® Zeit

halt Sperre

Abbildung 16: Kommunikationsablauf flr exklusiven Zugriff auf nicht-lokale Daten.

Konsequenzen des Modells fir Lastbalancierung und Anwendungemie Wahl

des Ablaufmodells hat starken Einflu3 auf die Existenz und Relevanz von Lastkenn-
groRen und auf das grundsatzliche Verbesserungspotential der Lastbalancierung.
AuBerdem sollte das Ablaufmodell effiziente und einfache Entwicklung, Strukturie-
rung und Ausfiihrung von Anwendungen ermoglichen.

Das Client - Server Verarbeitungsmodell hat sich in nahezu allen Datenverwaltungssy-
stemen und in allen grol3en, weitrdumig verteilten Anwendungen als brauchbar erwie-
sen und durchgesetzt. Andererseits sind viele existierende parallele Anwendungen,
insbesondere auf Grol3rechnern bzw. enggekoppelten Systemen und im ingenieurwis-
senschaftlichen Bereich, nach dem SPMD-Modell (single program multiple data) bzw.

nach dem CSP-Modell (communicating sequential processes) strukturiert. Im SPMD-

Modell werden beim Start der Anwendung gleichartige Prozesse auf die Rechenknoten
geladen, die dann rechnen und miteinander kommunizieren; Die Synchronisation und
der Datenaustausch erfolgt allein durch Nachrichten, die beliebig zwischen diesen Pro-
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zessen ausgetauscht werden. Im CSP-Modell bestehen Anwendungen aus beliebige
Prozessen, die beliebig kommunizieren.

Das Konzept der Serverklassenaufrufe erlaubt eine sehr flexible Verteilung der Auf-
trdge im parallelen System. Jeder Serverklassenaufruf kann auf einem beliebigel
Rechenknoten ausgefiihrt werden. Lastbalancierung kann Profilabschatzungen un
Beobachtungen fur bestimmte Serverklassen machen. Die Bearbeitungen von Auftra
gen durch Server ist ein sehr einfaches Modell, das auch einfache Vorabschatzunge
der entstehenden Last erlaubt, wahrend das Verhalten beliebig kommunizierender Prc
zesse schwer geeignet zu modellieren ist. Das Konzept der Kooperation Uber gemeir
same Daten ermdoglicht eine flexible Verteilung der Auftrdge im System auch fir
Serverklassen, die nicht kontextfrei sind. Die gemeinsamen Daten sind fur die Lastba
lancierung Objekte, anhand derer sie sowohl die Kommunikation zwischen Auftréagen,
die Weitergabe von Zwischenergebnissen zwischen Auftrdgen als auch die
Datenaffinitat bei Zugriffen auf globale, persistente Daten in ihr Kostenmodell einbe-
ziehen kann.

Das Client - Server Modell mit asynchronen Serverklassenaufrufen und Kooperation
Uber gemeinsame Daten ist nicht fur alle Anwendungen das eleganteste oder effizient
ste Programmiermodell. In dieser Arbeit sollen die verschiedenen Programmierpara:
digmen nicht detailliert diskutiert werden; Es sei lediglich darauf hingewiesen, dal’ das
Modell sehr méachtig und flexibel, einfach zu programmieren und nachvollziehbar ist.
In Abschnitt 5.2 werden auch Anwendungen betrachtet und erfolgreich Client - Server
strukturiert, die typische Vertreter des SPMD-Modells sind. Die Praxis hat jedoch klar
erwiesen, dald die in SPMD und CSP verwendete Synchronisation bzw. Datenfluf3
steuerung durch direkte Nachrichten zwischen Auftragen fir bestimmte Anwendungs-
klassen - im Vergleich zum Client - Server Modell und dem Konzept der Arbeit auf

gemeinsamen Daten - feinere Auftragsgranulate und hohere Parallelisierung ermaogli
chen.

3.5 Das Betriebssystem zur Verwaltung der Anwendungslaufe

Anwendungsunabhéngige dynamische Lastbalancierung sollte in ein verteiltes
Betriebssystem eingebettet sein. Ein verteiltes Betriebssystem tbernimmt die Prozelf:
Server-Verwaltung, die Datenverwaltung und die Verwaltung von Kommunikations-

vorgangen zwischen Prozessen. Das sind lediglich die flr Lastbalancierung unmittel-
bar relevanten Funktionen. Die ProzelRverwaltung ladt auszufihrende Programme al
Prozesse in den Hauptspeicher der Knoten, startet sie und wechselt die Ausflihrun
zwischen mehreren ausfiihrbereiten Prozessen auf einem Prozessor im Zeitscheibe
oder Prioritdtenverfahren. Die Datenverwaltung stellt den Programmen Hauptspeicher:
daten durch lineare Adressierung und Sekundarspeicherdaten durch Dateinamen ur
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stickweise Einlagerung in den Hauptspeicher zur \erfigung. ldealerweise sind
Dateien Uber ihren Namen im gesamten parallelen und verteilten System fir die
Anwendungen gleichermal3en sichtbar. Kommunikation zwischen Prozessen wird
durch logische Verbindungen und gepufferten Transfer von Hauptspeicherdaten
ermdoglicht. Die Realisierung der virtuellen Speicherverwaltung (Abschnitt 2.4) ist eine
weitere Funktionalitdt des Betriebssystems, die fur Lastbalancierungsbemihungen
wichtig ist.

Im Rahmen dieser Arbeit soll die Funktionalitat verteilter Datenverwaltungssysteme
ebenfalls als Teil des verteilten Betriebssystems betrachtet werden, obwohl Datenver-
waltungssysteme heute meist noch zentraler Struktur sind und in vielen Betriebssyste-
men als einzelne, unabhangige Schicht aufgesetzt werden. Ein solches
Datenverwaltungssystem bietet zum einen den Prozessen eine einfache Funktionalitat
zum Arbeiten auf gemeinsamen Sekundarspeicherdaten: Einzelne Datensatze von fei-
nem Granulat konnen global adressiert werden und die Anwendungen kdnnen sehr
effizient darauf zugreifen, wobei bestimmte Synchronisationsregeln automatisch ein-
gehalten werden. Weiterhin stellen viele Datenverwaltungssysteme durch sogenannte
Transaction Processing Monitorine Prozel3- und Auftragsverwaltung dhnlich dem
Client - Server Konzept zur Verfiugung (Abschnitt 3.4). Das ermdglicht eine flexible
Verteilung und Parallelisierung von Anwendungen bei relativ feinem Auftragsgranulat.

Im folgenden sollen die drei Komponenten des Betriebssystems naher spezifiziert wer-
den, die fur die Einbettung und Einflulinahme i€ on-Lastbalancierung wesentlich

sind. Das Betriebssystem verwaltet die Konfiguration der Server auf den Rechenkno-
ten, die Zuweisung von Auftragen an die Server und die Verteilung der gemeinsamen
Daten auf die Rechenknoten bzw. Server.

Die Konfigurationsverwaltundpetreibt auf jedem Rechenknoten eine gewisse Anzahl
von Prozessen, die die Funktionalitat der Serverklassen realisieren. Die Anzahl der
verfigbaren Server pro Knoten kann durch die Lastbalancierung zur Laufzeit geregelt
werden. Jeder Server wird als sequentieller Betriebssystemprozel3 realisiert. Neuere
Betriebssysteme ermdglichen sogenammitdti threadedServer. Dabei kann fir jede
Auftragsbearbeitung ein neuer Thread im Serverprozel3 kreiert werden, was eine flexi-
ble und kostengiinstige Handhabung der Parallelbearbeitung erlaubt. Threads kénnen
innerhalb eines Prozesses konkurrierend laufen. Thread-basierte Server haben auler-
dem den Vorteil, dal3 Wartezeiten in einer Bearbeitung durch den schnellen Tread-
Wechsel effizient fir andere Bearbeitungen genutzt werden kénnen. Im vorgestellten
Lastbalancierungsmodell werdemulti threaded Server nicht explizit unterstitzt
(Abschnitt 6.2). Solange der virtuelle Speicher ausreicht, kénnen beliebig viele Server
pro Knoten konfiguriert werden, ohne dal} die Rechenknoten dadurch zusatzlich bela-
stet werden, denn Server verbrauchen keine Ressourcen, solange sie keine Auftrage
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bearbeiten. Dennoch ist es wichtig, die Anzahl der konfigurierten Server nicht wesent-
lich groRer zu wahlen als die tatsachlich genutzte Parallelitat der Serverklasse. Eir
Grund ist, dal3 Auftrdge durch die Lastbalancierung nicht an Rechenknoten, sondern a
einzelne Server zugewiesen werden. Dadurch steigt der Verwaltungs- und Entschei
dungsaufwand fUr die Lastbalancierung mit der Anzahl der verfligbaren Server. Aul3er-
dem steigt gewohnlich bei jeder Implementierung der Aufwand fur die
Lastbalancierung und das Betriebssystem mit der Anzahl der Server, und meist auc
der Speicherbedarf durch mehrfach replizierte Daten auf Knoten.

Die Auftragsverwaltungst fir die Entgegennahme und Abwicklung von Auftrdgen
(Serverklassenaufrufen) zustandig. Wie in Abbildung 17 skizziert, kbnnen Auftrage
zuerst in einer globalen Warteschlange je Cluster aufbewahrt werden. Zu einem belie
bigen Zeitpunkt, der von der Lastbalancierung bestimmt wird, werden Auftrdge an Ser-
ver zugewiesen, d.h. in deren lokale Warteschlange eingereiht. Dies mul3 nicht in de
Reihenfolge geschehen, in der die Auftrdge ins System kamen. Die Zuweisung eine
Auftrags an einen Server ist endgtiltig, d.h. danach ist keine Migration mehr mdglich.
Die Server arbeiten die Auftrage in ihrer lokalen Warteschlange sequentiell in der Rei-
henfolge ab, in der sie in der Warteschlange eintrafen. Parallelarbeit auf einem Recher
knoten, d.h. Multitasking bzw. echte Parallelitdt auf Multiprozessorknoten, kann durch
mehrere aktive Server pro Knoten erreicht werden. Auftragsergebnisse werden von
Betriebssystem an die zugehotrigen Clients zurtickgeschickt. Das Betriebssysten
garantiert also weder, dal3 Auftrage in derselben Reihenfolge bearbeitet werden, in de
sie von Clients generiert wurden, noch, dal3 sie unmittelbar gestartet werden. Das Wa
teschlangen ist wichtig, weil irlliCon-Modell keine Migration von Auftragen mog-

lich ist. So kann die Lastbalancierung die Auftragszuweisung beliebig handhaben, d.h
Auftrage frah auf die Server verteilen, wenn die Strategie sehr einfach agieren mul.
(etwa weil sie Uberlastet ist) oder sie einen weiten Vorausblick auf das zuktinftige Last-
verhalten hat, oder wenn die Auftrage sehr klein sind. Ansonsten kann sie Auftrage
madglichst spat (etwa wenn der momentan beste Server frei ist) zuweisen, um bei de
Zuweisung die aktuelle Situation zu bertcksichtigen.

Aufgabe derDatenverwaltungist die Bereitstellung eines virtuellen gemeinsamen
Datenspeichers fir die Anwendungen. Die Anwendungen koénnen beliebige Daten-
strukturen aus Haupt- und Sekundarspeicher als gemeinsam deklarieren und melde
lesende oder exklusive Zugriffe jeweils beim Betriebssystem an. Da die Rechenknotel
keine gemeinsamen Speichermedien haben, mul3 das Betriebssystem bei Zugriffsanfc
derungen die Daten tber das Netzwerk zum anfordernden Server schicken. Flr Lastb:
lancierungserwéagungen ist es wichtig zu wissen, dall Operationen auf gemeinsame
Daten teuer sein kbnnen, d.h. Wartezeiten bei der Bearbeitung und Last auf dem Netz
werk erzeugen, wenn die Daten nicht lokal beim Server vorliegen (Abschnitt 3.4).
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Abbildung 17: Auftragsverwaltung mit zentralen und lokalen Warteschlangen

3.6 Ein Netzwerk kooperierender Lastbalancierungsagenten

Fur das verteilte Betriebssystem wird angenommen, dal3 es beliebig grol3e Rechnersy-
steme uberspannen kann. Um diese Skalierbarkeit zu gewéhrleisten, darf es keine zen-
tralisierten Funktionen fir das Gesamtsystem enthalten. Kritische Komponenten sind
dabei sowohl die Konfigurations- als auch die Auftrags- und Datenverwaltung. Die
Konfigurationsverwaltung sollte jeweils fur Cluster autonom realisiert sein, um die
Wartung und den Betriebsablauf zu vereinfachen. Die Auftragsverwaltung hat pro Ser-
verklasse eine zentrale Warteschlange fur Auftrage, die noch keinem Server zugewie-
sen sind. Derartiges kann lediglich fir Cluster begrenzter Grof3e realisiert werden.
Skalierbarkeit verlangt auch, daR die Datenverwaltung keinen globalen Uberblick des
Gesamtsystems haben kann, sondern nur je ein Cluster verwaltet. Auftrage und Infor-
mationen Uber Daten-Aufenthaltsorte missen daher zwischen den jeweiligen Auftrags-
und Datenverwaltungskomponenten ausgetauscht werden, wenn sie Cluster-Grenzen
uberschreiten.

Im HiCon-Modell wird die Lastbalancierungsstruktur an die Struktur des verteilten
Betriebssystems angepalit, d.h. es wird die in Abschnitt 2.5.3.2 eingefiihrte dezentrale
Struktur verwendet. Zahlreiche Studien haben aufgezeigt, dal3 eine zentralisierte Last-
balancierung nicht unbegrenzt skalierbar ist. Wird das zu regelnde System oder die
Anzahl und Ankunftsrate von Auftragen sehr grol3, so verbraucht die Lastbalancierung
selbst viel Speicher und Rechenleistung, und die Verzégerung zwischen Absendung
eines Auftrages und dessen Bearbeitungsbeginn wéchst an. Zentrale Lastbalancierung
wird zum Engpal}, wenn ihr Ressourcenbedarf in derselben Grél3enordnung liegt wie
der Ressourcenbedarf der laufenden Anwendungen oder die Verzégerung von Auftra-
gen in der GrolRenordnung der eigentlichen Auftragsbearbeitungszeiten liegt. Wie in

58



Aufbau und Ablauf der Lastbalancierung

Abschnitt 2.5.3.1 diskutiert, hat aber zentrale Lastbalancierung entscheidende Vorteile
so dald jeweils moglichst grol3e Cluster durch zentrale Verfahren balanciert werder
sollten.

DasHiCon-Modell sieht vor, dal’ jeder Lastbalancierungsagent einen maglichst grof3en
Teil (Cluster) des gesamten Systems zur lokal-zentralen Balancierung zugewiesel
bekommt. Was Uber die Kapazitat eines Agenten hinaus geht, wird in mehrere Cluste
aufgeteilt. Zwischen den Clustern kdnnen, vollig transparent fur die Anwendungen,
Lastinformationen, Auftrdge und Daten ausgetauscht werden. Dahinter steht die ldee
dal3, solange Anwendungen innerhalb eines Clusters verninftig ablaufen kbnnen un
zwischen verschiedenen Clustern keine allzu gro3en Lastdifferenzen auftreten, alle
zentral und somit effizient abgewickelt wird. Cluster-Ubergreifende Aktionen sind mit

zuséatzlichem Aufwand verbunden und treten nur bei groben Auslastungsdifferenzer
oder sehr gro3en Auftragen bzw. Auftragsgruppen auf.

Die Cluster bilden eine beliebig vernetzte Struktur. Die Lastbalancierungsagenten
direkt benachbarter Cluster tauschen periodisch Lastinformationen und Auftrage unter:
einander aus. An keiner Stelle im System liegen globale Lastinformationen Uber da:
System vor, und nirgendwo werden globale Lastbalancierungsentscheidungen fir da
Gesamtsystem getroffen. Es wird keine funktional hierarchische Struktur verwendet,
sondern die Agenten der Cluster kooperieren auf derselben Ebene, d.h. haben diesel
Blickweite und dieselben Aufgaben.

Sowohl explizite als auch implizite Verfahren der dezentralen Lastbalancierung
(Abschnitt 2.5.3.4) kbnnen eingesetzt werden. Bei expliziter Verteilung werden zwi-
schen Clustern dezentrale Lastbalancierungsverfahren eingesetzt; Lastbalancierer ta
schen periodisch Informationen aus und verschieben Auftrage an Nachbar-Cluster, di
weniger belastet sind. Bei impliziter Verteilung kann jeder Nachbar-Cluster wie ein
eigener lokaler Server mit Auftragen bedacht werden und wird durch ahnliche Lastgro-
Ben charakterisiert wie ein lokaler Server. DieHi@on-Modell aufgrund von Erfah-
rungen mit der Balancierungsumgebung unter verschiedenartigen Anwendungstypel
und Systemkonfigurationen favorisierte Struktur wird in Abschnitt 3.7.3 beschrieben;
Vergleiche zwischen expliziten und impliziten Ansétzen wurden in [Beck94c] durch-
geflhrt.

3.7 Aufbau und Ablauf der Lastbalancierung

Die hier vorgestellte Lastbalancierung besteht logisch aus drei Komponenten (verglei-
che Abschnitt 2.5.2). Die erste dient der Informationssammlung, die zweite trifft Ent-

scheidungen und die dritte pafit die Lastbalancierungsstrategie an. Es wird hier nich
explizit zwischen Transfer- und Lokationsstrategie unterschieden. Der Entscheidungs
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algorithmus geht stets in der Reihenfolge vor, dal3 zuerst bestimmt wird, welche Auf-
trdge wann zuzuweisen sind (Transferstrategie), und dann entschieden wird, wohin sie
zuzuweisen sind (Lokationsstrategie). Abbildung 18 skizziert, wie eine Lastbalancie-
rungskomponente durch Ereignisse Uber das Laufzeitsystem angestol3en wird und rea-
giert und welche Ablaufe in welchen Komponenten der Balancierung angesiedelt sind.
Links wird symbolisiert, wie ein Client Vorankindigungen tber kommende Auftrags-
gruppen abgeben kann, woraufhin die Informationssammlung der Lastbalancierung
Prioritaten fur Auftrage zwischenspeichern kann. Wenn ein Client oder ein benachbar-
tes Cluster einen Auftrag zur Bearbeitung schickt, wird dieser von der Entscheidungs-
komponente zunachst in eine zentrale Auftragswarteschlange eingereiht. Zugleich wird
ein Bewertungs- und Zuweisungsvorgang angestof3en, infolgedessen Auftrage zuge-
wiesen werden kdnnen, wobei die betroffenen Zustande in der Informationssammlung
aktualisiert werden. Resultate bearbeiteter Auftrage, Lastmessdaten und Auslastungs-
daten von Nachbarclustern werden in der Informationssammlungskomponente ausge-
wertet, und je nach Situation kann jeweils wiederum ein Bewertungs- und
Zuweisungsvorgang angestol3en werden. Zuséatzlich werden die Zustandsinformatio-
nen in der Adaptionskomponente verwendet. um Regelgrof3en und Vorabschatzungs-
groBen fur zukinftige Entscheidungen zu erzeugen bzw. zu justieren. Rechts im Bild
ist schliel3lich die Involvierung der Lastbalancierung in die Datenverwaltung skizziert,
wobei die Informationssammlung grobe Zustandsdaten Uber Aufenthaltsorte, Zugriffs-
charakteristik und Zugriffsaufwand erhalt. Auch hier kann die Adaptionskomponente
lAngerfrisitge Auswertungen der Informationen durchfthren.

Adaption Adaption verschiedener RegelgréRen
Ei i i B t fugb Auftra A 4
, insortieren in ewertung verflgbarer Auftrage,
Entscheidung zentrale Schlange *Zuweisung, Verschiebung -
Informations- | Berechnung von ‘Aktualisierung der erwarteten  Aktualisierung Aktualisierung
sammlung Auftragsprioritaten| Systemlast & Datenverteilung  der Systemlast der Datenvgrtellung
A Zuweisungy Verschiebung A + A A
. | Datenort-
Betriebssystem Auftragsverwaltung Lastmessung verwaltung
Gruppen- Auftrag N Resultatl  Lastinformation  entfefnter
anktndigung R Datenzugriff
O e e O L
Client oder Serverund = = o~ = “---- !
Client Nachbar-Cluster Nachbar-Cluster  Server Nachbar-Cluster  Server

Abbildung 18: Aktivierung und interner Ablauf von Betriebssystem und
Lastbalancierung.
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3.7.1 Informationssammliung

Die Informationssammlungs-Komponente besteht aus Ruckrufprozeduren, die durcl
verschiedene Ereignisse vom Betriebssystem aktiviert werden und neue Informationel
in die Datenstrukturen der Lastbalancierung eintragen. Am Ende des Abschnitts sinc
alle Informationen und Parameter flr die Lastbalancierung noch einmal zusammenge
stellt. Zur Lastbalancierung relevante Ereignisse sind im Folgenden aufgelistet:

- Vorankindigung von Auftragsgruppedm die Beziehungen zwischen Auftrédgen
innerhalb einer Anwendung zur Lastbalancierung nutzen zu kénnen, kdnnen Clients
Vorabschatzungen lber die Gesamtstruktur einer anstehenden Gruppe von Auftra
gen angeben. Auf eine Vorankindigung hin berechnedfien-Lastbalancierung
Prioritaten fur die Auftrage der Gruppe (Abschnitt 3.7.4). Die Vorabschatzungen
beschranken sich im vorliegenden Modell auf die Angabe von Reihenfolgebezie-
hungen zwischen Auftragen und des Ressourcenbedarfs der einzelnen Auftrage
Kommunikationsbeziehungen bzw. Zugriffsmuster auf gemeinsame Daten werden
zu diesem Zeitpunkt noch nicht bendétigt, denn Hi€on-Lastbalancierung erhéalt
und nutzt sie erst bei Eingang der einzelnen Auftrage. Die Auftrdge werden einfach
durch anwendungsdefinierte Namen innerhalb einer Anwendung spezifiziert. Die
Lastbalancierung erkennt vorangekiindigte Auftrage spater anhand des Namens wie
der, wenn sie vom Client abgeschickt werden. Die Vorabinformationen mussen
weder vollstandig noch korrekt sein, und die Clients sind fur die Einhaltung der Rei-
henfolgebeziehungen selbst zustandig: abgesandte Auftrage sind sofort ausfihrbar.

- Eintreffen neuer AuftrageEin solches Ereignis tritt jedesmal ein, wenn ein Client
oder ein benachbartes Cluster einen Auftrag (Serverklassenaufruf) gesandt hat. Di
Lastbalancierung registriert, dafl3 ein ausfihrbarer Auftrag mehr im System ist, der
noch beliebig an einen Server der angegebenen Klasse zugewiesen werden kan
und sie notiert die Ankunftszeit des Auftrags. Weiterhin werden eventuelle Vorab-
schatzungen des Client Uber das Auftragsprofil ausgewertet. Wenn der Client der
Auftrag mit einem Namen versehen hat, so wird in einer Tabelle nachgesehen, ob fu
diesen Auftrag bereits Informationen vorliegen, die etwa im Rahmen einer Auftrags-
gruppenvorankindigung abgespeichert wurden. Vorabschéatzungen des Clients Ube
das Auftragsprofil kdnnen folgendes enthalten: den Integer- und FlieRkomma-
Rechenaufwand des Auftrags, den Ein-/Ausgabe-Ressourcenbedarf, den Speiche
bedarf und schlie3lich Datenreferenzmuster. Abschatzungen tber Datenreferenze
sind Aufzahlungen bestimmter Datensatznamen oder -Namensbereiche. Dabei kan
zu jedem Datensatzname bzw. Namensbereich eine Wahrscheinlichkeit fur exklusi-
ven Zugriff angegeben werden.

Der eingetroffene Auftrag wird gemal3 seiner Prioritat in die zentrale Auftragswarte-
schlange einsortiert. Die Prioritdt wird entweder aufgrund einer vorhergehenden
Gruppeneinplanung (Abschnitt 3.7.4) bestimmt und ist ansonsten bei Einzelauftra-
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gen proportional zu ihrer geschatzten Auftragsgrof3e. Prioritat wird in Instruktionen
gemessen. Die Prioritdten der Auftrage wachsen linear mit der Zeit, die sie in der
zentralen Warteschlange stehen. Wird daher ein neuer Awafteagsortiert, dann

wird die Prioritat der anderen Auftrage beim Vergleich um die Rechenzeit erhoht,
die sie in der Zwischenzeit in der Warteschlange ‘verpal3t’ haben. Dazu wird eine
mittlere Systemleistung zugrundegelegt:

Fallsa innerhalb einer Gruppe vorangekindigt war, gilt
priority, = announcedPriorityx computeTimeAdapg ,
sonst
priority , = instructiong x computeTimeAdapt.

Stammta von einem Nachbarcluster, so wird die dort ‘verpal3te’ Rechenzeit

tspentInCentralQueugg) x anK(M FLOPSJ

addiert. Schliel3lich wiré hinter dem ersten Auftraly eingefiigt, der - inklusive
seiner durch Wartezeit gestiegenen Prioritat - eine hdhere Prioritat hat:

priorityaS priorityb + tspentlnCentralQueucgp) X an«(MFLOP%) '

Der KorrekturfaktocomputeTimeAdagtder Serverklasseund des Auftragstyps
dieser Klasse wird adaptiv geregelt (Abschnitt 3.7.5).

Anderungen im Arbeitszustand von Servdedesmal, wenn Server einen Auftrag
abgeschlossen haben, schicken sie ein Resultat zum Client zurlick. Dabei geben sie
der Lastbalancierung mit dem Ergebnis automatisch einige Informationen tber den
Bearbeitungsverlauf des Auftrages und die verbleibende Last (Bearbeitungszeit) an
Auftragen in ihrer lokalen Auftragswarteschlangg,ainingworkS) mit. Informatio-

nen Uber den Verarbeitungsverlauf enthalten die Laufzeit im Server, Wartezeiten
durch Datenkommunikation und eventuelle Leerlaufzeiten des Servers zwischen
Auftragen. Die Adaption regelt anhand der vom Server mitgelieferten Informationen
die GrolencpuUtilAdapts , computeTimeAdagt und dataTimeAdap nach
(Abschnitt 3.7.5).

Anderungen in der Ressourcen-Auslastubas Betriebssystem mifRt periodisch die
Auslastung der Ressourcen auf den Rechenknoten. Wenn sich die Auslastung einer
Ressource (d.h. einer der Kenngrol3en gegentber der vorherigen Meldung) signifi-
kant geandert hat, so wird es der Lastbalancierung als Ereignis gemeldet. Als Res-
sourcen werden hier die Prozessorenauslastung (CPU-Nutzung und mittlere Anzahl
laufbereiter Prozesse), der Hauptspeicherbedarf (Seiteneinlagerungsrate durch
Speicheriberlastung), die Plattennutzung und die Nachrichtenlast auf Netzverbin-
dungen zwischen den Knoten angesehen.

Bewegung von Datensatzen und Verteilung von DatenkoBemeinsame Daten-
satze werden vom Betriebssystem jeweils zu dem Server transportiert, der auf sie
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zugreifen mdchte (Abschnitt 3.4). Die Entstehung neuer Datenséatze, die Migration
und die Kopienverteilung von Daten sind jeweils Ereignisse, woraufhin die Informa-
tionssammlung ihre TabellamvnerS ownerClund hasCopyiiber die vermutliche
Datenverteilung im System aktualisiert sowie die AdaptionsgrasaComm-
Costy , dataCommCostRematgunddataReadWritg, justiert (Abschnitt 3.7.5).

- Zustandsanderungen in einem Nachbar-Clustar HiCon-Modell kooperieren
jeweils die Balancierungsagenten benachbarter Cluster (Abschnitt 3.6). Ein Clustel
Ist ein Teilsystem, flr das ein zentraler Lastbalancierungsagent konfiguriert wurde.
Ebenso kann die Nachbarschaftstopologie zwischen Clustern konfiguriert werden
Die Informationssammlung eines Clusters verwaltet daher aggregierte Lastinforma-
tionen Uber ihr Cluster. Bei signifikanten Anderungen im Lastzustand des Clusters
benachrichtigt sie die benachbarten Lastbalancierungsagenten. Beim Eintreffen vor
Information Uber ein Nachbar-Clustet wird die geschatzte Anwendungslast
applLoaq, und die verfluigbare GesamtrechenleisttiMi-LOPS, des Nachbar-Clu-
sters aktualisiert (Abschnitt 3.7.3).

. Anderung in der Auslastung der Lastbalancierung seNgé in Abschnitt 2.4.7
erklart, sieht die Lastbalancierung iiCon-Modell sich selbst ebenfalls als Teill
des Systems. Die Informationssammlung verfolgt daher auch die Rechenlast und di
Verzbgerungen, die durch die Lastbalancierungsfunktion entstehen. Daraufhin kanr
die Lastbalancierung ihre Strategie anpassen (Abschnitt 3.7.5).

Die Informationssammlung erhdlt also durch jedes Ereignis neue Vorab- oder Melin-
formationen Uber die Lastsituation im System und den Verarbeitungsverlauf der
Anwendungen. Sie kann auf jedes Ereignis hin die Entscheidungskomponente aktivie
ren. Erfahrungen haben gezeigt, dal3 es genugt, bei Ankunft und Fertigstellung vor
Auftrdgen den Entscheidungsalgorithmus zu aktivieren. Die Infomrationssammlung
aktualisiert zumindest stets die Informationsstrukturen, auf denen die Balancierungs
entscheidungen basieren. Die Informationstypen, di¢li@on-Modell Verwendung
finden, werden im folgenden zusammengestellt. Die Vielzahl an Informationstypen
erweckt zunéchst den Eindruck, daf3 die Lastbalancierung sehr grofl3en Aufwand treibt
um die Lastsituation und den Verlauf der Anwendungen akkurat zu verfolgen. Bei
genauerer Betrachtung mussen jedoch fast keine Informationstypen separat gewonne
oder gespeichert werden, sondern sie sind im verteilten Betriebssystem ohnehin vel
fugbar und verursachen auch keine zusatzlichen Aktualisierungsnachrichten.

Informationen Uber Rechenknotetu jedem Rechenknotdnwerden die Anzahl

der ProzessorenumberOfProcessogssamt ihren theoretischen Rechenleistungen
fur Integer- und FlieRkomma-Operation&hPS, , MFLOPS, sowie die Leistungen

der sonstigen Ressourcen (Hauptspeicher, E/A-Geschwindigkeit) gespeichert. Da:
sind statische Werte, die durch die Lastbalancierung beim Start mittels kurzer
Benchmarks bestimmt werden. Dynamische Laufzeitinformationen sind die Anzahl
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der auf den Knoten konfigurierten Server und die aktuelle Belastung der Prozesso-
ren in Form derun queue lengtifAbschnitt 2.4). Die Speicherbelastung des Kno-
tens wird durch die Speichereinlagerungsrate gemessen (Abschnitt 2.4). Die
Informationen tber Rechenknoten dienen zur Abschatzung, wie schnell ein weiterer
Auftrag bearbeitet wirde, wenn er auf dem Knoten plaziert wirde; sie werden nicht
- wie in den meisten Ansatzen zur dynamischen Lastbalancierung - dazu verwendet,
um die Last zwischen Knoten zu vergleichen und Ausgleich zu schaffen, da dies im
vorliegenden Ansatz nicht priméres Ziel ist (Abschnitt 3.2).

Informationen Uber Netzverbindungefwischen den Knoten kdnnte statisch pro
Kanal die Kapazitdt und die Verzbgerungszeit gespeichert werden. Dynamisch
konnte die Anzahl der Nachrichten pro Zeiteinheit verfolgt werden. Je nach
Betriebsprotokoll des Kanals kdnnte auch die relative Nutzungsdauer oder Anzahl
der kollidierenden Nachrichtenpakete wichtig sein. Informationen tber Netzverbin-
dungen dienen dazu, die bei Datenkommunikation zu erwartenden Verzdgerungen
abzuschétzen. Die Minimierung der Kommunikation ist jedoch kein priméres Ziel
der Lastbalancierung; das Ziel ist der gré3stmdgliche Durchsatz der Anwendungen.
Im HiCon-Modell werden Leistung und Auslastung der Netzverbindungen derzeit
nur indirekt durch Beobachtung der Datenkommunikationskosten auf Datentyp-
Ebene beriicksichtigt (siehe Informationen Uber Auftrdge und Auftragsgruppen).

Informationen Uber Serverklassen und Auftragstyp&ne. Serverklasse wird die
Anzahl und Verteilung der konfigurierten Server gespeichert. Die adaptive Lastba-
lancierung verwaltet Informationen lber Serverklassemd deren Subklassen
(Auftragstypen): den mittleren CPU-NutzungsantpilUtilAdapts den Auftrags-
rechenzeit-KorrekturfaktocomputeTimeAdagt und den Auftragsdatenkommuni-
kations-KorrekturfaktodataTimeAdapy .

Informationen Uber Servefu jedem Serves wird als statische Information verwal-

tet, zu welcher Serverklasse er gehoért und auf welchem Rechenknoten er konfigu-
riert ist. Dynamische Informationen sind die Anzahl der Auftrage in der lokalen
Warteschlange sowie die Summen der Ressourcenbedurfnisse Uber die Auftrage in
der lokalen Warteschlange. Diese Informationen dienen einerseits zur Abschatzung,
welche Last der Server auf seinem Rechenknoten in Zukunft noch erzeugen wird,
andererseits der Abschatzung, wieviel ZgifyainingworkS) NOch vergeht, bis ein
weiterer Auftrag zur Bearbeitung an die Reihe kdame, wenn er nun dem Server zuge-
wiesen wirde. Weiterhin wird die Zeit gespeichert, seit wann der Server an seinem
derzeitigen Auftrag arbeitet, um abzuschatzen, wieviel Zeit er noch daftir benotigt.
Hinterher kann dabei auch beurteilt werden, um wieviel die tatsachliche Bearbei-
tungszeit von der vorabgeschatzten abgewichen ist. AuRerdem wird flr jeden Server
die fir einen weiteren Auftrag momentan bzw. zum Zeitpunkt verfligbare
RechenkapazitgirocPowef(a,s,t)auf dem Knoten verwaltet.
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Bei implizit verteilter Lastbalancierung (Abschnitt 2.5.3.4) betrachtet die Lastbalan-
cierung zwar die Nachbar-Cluster als besondere Server auf besonderen Rechenkn
ten, aber die Informationen Uber diese Server bzw. Knoten sind aggregierte
Informationen Uber ganze Serverklassen bzw. tber die Rechenknoten eines ganze
Clusters.

Informationen Gber Anwendungefwischen Clustern werden nur jeweils die Auf-
trdge ganzer Anwendungen ausgetauscht. Es wird also entschieden, alle noch nicl
zugewiesenen und alle noch folgenden Auftrage einer Anwendung bis auf weiteres
an ein anderes Cluster abzugeben. Dazu sind Informationen Uber Anwendungen
notwendig. So werden die vermutlichen DatenaustauschkostgataCost zwi-

schen Clustern verwaltet. Diese Grol3e schétzt die Summe der Wartezeiten zum Vel
schieben aller momentan in der Anwendung aktiven globalen Daten
(activeGlobalDatag) ab. Pro Anwendung wird auch die verbleibende Restlaufzeit
der AnwendungememainingProcessingTime, abgeleitet aus den Vorabschéatzun-
gen des Client, verwaltet. Schliel3lich werden die seit der letzten Verschiebung dei
Anwendung ins Cluster abgeleisteten Auftragsbearbeitungsagit@Brocessing™)
protokolliert.

Informationen Uber Auftrage und AuftragsgruppEir einzelne Auftraga werden
Vorabinformationen gespeichert, die als Abschéatzungen des Client beim Aufruf mit-
gegeben werden bzw. daraus abgeleitet werden. Darunter zahlen der vermutlich
Rechenaufwanhstructiong, und der Bedarf an sonstigen Ressourcen, wie Haupt-
speicher oder Plattenein- / -ausgabe. Der Rechenaufwand wird in der Einheit
‘Instruktionen’ abgeschéatzt, da die resultierende Rechenzeit von der jeweiligen Pro-
zessorleistung und -belastung abhangig ist. Der Anteil an FlieRkomma- und Inter-
ger-RechnundloatPortion, , intPortion, kann ebenfalls angegeben werden. Weiter
konnen  Datenzugriffsmuster durch  Auflistung von Namensbereichen
dataRefRange \(a) angegeben werden. Zu jedem Datenbereich kann eine Wahr-
scheinlichkeitdataRangeWritePrqota) dafiir spezifiziert werden, dafd im Rahmen
des Auftrags auf diese Daten exklusiv zugegriffen wird. Zu jedem Auftrag wird wei-
terhin die Zeittspentincentraiqueuéd) 9gespeichert, die er seit seiner Entstehung in
zentralen Warteschlangen verbracht hat. Schlie3lich kann die Lastbalancierung
erwartete Ausfihrungszeiteétp,mptés,a) und DatenwartezeiteQjaiacomrks,2) auf
bestimmten Servern unter den aktuellen Bedingungen speichern, die sie ausgerecl
net hat. Uber vollendete Auftrage sind die tatsachlich benétigten IgjteNtereal
tyatareaverfugbar.

Clients kénnen innerhalb einer Anwendung Abhéangigkeiten zwischen zuktinftigen
Auftragen einer Gruppe angeben. Die Angabe der Nachfolgeauftrage spezifiziert
einen Graph der vermuteten Reihenfolge-Beziehungen zwischen den Auftrager
einer Gruppe. Fur vorangeklndigte Auftrage, die noch nicht als ausfihrbare Auf-
trdge eingetroffen sind, werden Informationen Uber die vermutete Auftragsgrofie
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(Instruktionen) und eine Liste von Nachfolgeauftrdgen gespeichert. Durch den Pla-
nungsalgorithmus der Lastbalancierung kdnnen dazu noch Priortéateunced-
Priority, beigefligt werden (Abschnitt 3.7.4). Aus diesen kann, zusammen mit der
bisherigen Wartezeit in zentralen Warteschlangen, eine dynamische Ppoatat

rity, fur einen Auftrag abgeleitet werden. Kommunikationsaufkommen innerhalb
einer Auftragsgruppe wird lediglich durch die Datenreferenzabschatzungen der ein-
zelnen Auftrage bericksichtigt.

Informationen Uber globale Datensatze und Datentypen.gemeinsamen Daten-
satzen liegen jeweils Informationen vor, welcher SeovererS(dataRefnomentan

im “Besitz des Originals” ist (d.h. fir den Datensdtzustandig ist), und welche
Servers uber gultige Kopien verfigehasCopy(s,dataRef)n dezentralen Struktu-

ren ist die genaue Datenverteilung nur innerhalb des Clusters bekannt, und aul3er-
dem die Information, bei welchen Nachbar-ClustemmerCl(dataRef)Originale

oder Kopien der DatensatzeasCopy(cl,dataRefgu suchen sind. Die Informatio-

nen der Lastbalancierung spiegeln dabei nicht den aktuellen, sondern den erwarteten
Zustand wieder, da sie bei Auftragszuweisungen bzw. Auftragsverschiebungen an
Nachbar-Cluster bereits vorab gemal der Datenreferenzabschatzungen der Clients
aktualisiert werden. Weiterhin wird pro Serverklassend Datenty der mittlere
Aufwand zum entfernten Zugriff auf Daten, unterschieden nach Austausch inner-
halb eines ClustersiataCommCosgt , und zwischen ClusterdataCommcCostRe-
motgg , adaptiv ermittelt. Durch diese Informationen werden die GroRe der
Datensatze, die Sperrwartezeiten, die Geschwindigkeit und die Auslastung des Netz-
werks berucksichtigt. Weiterhin wird die mittlere Anzahl aufeinanderfolgender
Lesezugriffe zwischen zwei exklusiven ZugriffelataReadWritgy je Datentyp
adaptiv verwaltet.

Informationen Uber ClusteDie Informationssammlung einer Lastbalancierungs-
komponente verwaltet auch aggregierte Informationen Uber den globalen Zustand
ihres Clusters und dieselben Informationen lber die benachbarten Cluster (dezen-
trale Struktur). Darunter fallt die dortige AuftragslagiplLoaq, , d.h. die Anzahl

der dort aktiven AnwendungerctiveApplg dividiert durch die Summe der Prozes-
sorenleistungen der Rechenknoten, die mittlere Prozessorbelastung der Rechenkno-
ten und die Anzahl der insgesamt momentan arbeitenden Server. Weiterhin wird flr
das eigene Cluster die Anzahl der Auftrage in der zentralen Wartesch&miga-
QueueSizend die Summe der Auftragsgrof3en (Ressourcenbedirfnisse) in den zen-
tralen Warteschlangen mitgefihrt.

Informationen Uber die LastbalancierunBie Lastbalancierung kann sich selbst
beobachten, indem sie die Anzahl der unverarbeiteten anstehenden Erexgngse
QueueSizézw.eventQueueSiZexponentiell geglattet) und die durch Lastbalancie-
rungsberechnungen erzeugte Prozessorbelastung beobachtet. Diese Informationen
dienen nicht unmittelbar Balancierungsentscheidungen, sondern der Adaption der
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Strategie (Abschnitt 3.7.5), denn sie zeigen an, wann die Lastbalancierung tiberlaste
wird bzw. Ubermafig grofRe Verzogerungen und Zusatzlast mit sich bringt.

Alle Informationen und Parameter fur die Lastbalancierung sind im folgenden noch

einmal zusammengestellt:

Parameter
activeAppls;

activeGlobalData 4
announcedPriority
applLoaq,

centralQueueSize

computeTimeAdag]

cpuUtilAdapt

CPUrunQueuelLen
dataCommCosg};

dataCommCostRemaqte

dataRangeWriteProp n(a)

Bedeutung

Anzahl von Anwendungen, die im Clustgerzeit
laufen (und nicht an andere Cluster verschoben sind).

Tabelle der Anzahl an benutzter Datensatze pro Daten-
typ d und Anwendung.

Vom Client angeklndigte Prioritat eines Auftrags.
Dient der Lastbalancierung zur Initalisierung \aio-
rity 5.

Cluster-Belastung durch AnwendungestiveAppls,.

Anzahl der Auftrage in der zentralen Warteschlange
einse Clusters.

Adaptionsfaktor pro Serverklass@ind Auftragstyp
(Subklasse$, der das Verhéltnis zwischen den von
Clients abgeschéatzten Auftragsgrof3eist(uctions)
und den tatsachlich beobachteten Auftragsgrofien
angibt.

Adaptionsfaktor pro Serverklasseind Auftragstyp
(Subklasse$, der den mittleren CPU-Bedarf solcher
Auftrage abschatzt.

Momentaneun queue lengtleines Knotens.

Adaptionsgrol3e pro Serverklassend Datentyl,

die die Wartezeit auf einen Datensatz angibt, wenn ein
Server den Datensatz von einem anderen Server im
Cluster besorgen mul3.

Adaptionsgrof3e pro Serverklagsend Datentypl,

die die Wartezeit auf einen Datensatz angibt, wenn ein
Server den Datensatz von einem anderen Server aus
einem anderen Cluster besorgen muf3.

Abschatzung des Clients, wie hoch die Wahrschein-
lichkeit fir exklusiven Zugriff auf die in
dataRefRangge \(a) angegebenen Datenbereiche bei
Bearbeitung von Auftrag ist.
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dataReadWritgy

dataRefj(a)
dataRefRange \(a)

dataTimeAdapt

doverrate

eventQueueSize

eventQueueSize
floatPortion,

hasCopy

instructiong,
intPortion,
maxTasksConsidered
MFLOPS

migDataCost

MIPS,

Adaptionsgrol3e pro Serverklassend Datentyl,
die abschatzt, wieviel Lesezugriffe im Mittel zwischen
zwei Schreibzugriffen auf solche Datensétze erfolgen.

Einzelne Datenreferenz im BereidhtaRefRange

Abschéatzung des Clients, welche Liste von Datenbe-
reichen Auftraca referenzieren wird.

Adaptionsfaktor pro Serverklass@ind Auftragstyp
(Subklasse$, der das Verhéltnis zwischen den Daten-
wartezeiten wahrend der Ausflihrung solcher Auftrage
(aufgrund von Clients angegebenen Datenreferenzmu-
stern und der Datenverteilung abgeschatzt) und den
tatsachlich beobachteten Datenwartezeiten je Auftrag
angibt.

Faktor, mit dem die vermuteten Datenwartezeiten ftr
Auftradge auf Servern kinstlich Gberbewertet werden.

Anzahl der anstehenden, unverarbeiteten Ereignisse
einer Latbalancierungskomponente

Anzahl der anstehenden, unverarbeiteten Ereignisse
einer Latbalancierungskomponente (exponentiell
geglattet).

Anteil der FlieRkommaoperationen in Auftrag

Tabelle, die vermutliche Kopienbesitzer (Server) von
Datensatzen enthalt.

Vom Client abgeschéatzte Auftragsgrole, die sich aus
Integer- und Flieskommaoperationen anteilig zusam-
mensetztfloatPortion, , intPortion,)

Anteil der Integer-Operationen in Auftrag

Anzahl betrachteter Auftrage in der zentralen Warte-
schlange fir Zuweisungsentscheidungen.

Bauartbedingte FlieRkommarechenleistung des Kno-
tensk (Millionen Instruktionen pro Sekunde).

Vermutlich bendtigte Zeit, um die aktiven Datect{-
veGlobalData) der Anwendund) in ein Nachbar-
Cluster zu migrieren, fall& dorthin verschoben wird.

Bauartbedingte Integer-Rechenleistung des Kndtens
(Millionen Instruktionen pro Sekunde).
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numberOfProcessogs
ownerCl

ownerS

priority

procPoweg(a,s,t)

remainingProcessingTime
serverg

tadvance

tcomputéS:@)
tcomputeReaI
tdataAccedsS aul.))

tyatacomrkS: @)

lyatareal
tlocalProcessinQA\)
tremainingworkS)

tspentincentralQueuéd)

w

Prozessorzahl des Knoteks

Tabelle, die die vermutlichen derzeitigen Besitzer-Clu-
ster von Datensatzen enthalt.

Tabelle, die die vermutlichen derzeitigen Besitzer
(Server im Cluster) von Datensatzen enthalt.

Prioritat eines Auftraga in der zentralen Warte-
schlange. Gemessen in Instruktionen. Bedeutung:
Lange des kritischen Pfades, der nach dem Auftrag
folgt (inklusive des Auftrags selbst) zuztglich der
Instruktionen, die mittlerweile hatten abgearbeitet
werden kénnen, wahrend der Auftrag statttdessen in
der Warteschlange lag.

Zum Zeitpunkt vermutlich verfigbare Gesamtre-
chenleistung beim Serveiflir Auftraga.

Vermutete Restlaufzeit der AnwenduAg
Liste der Server auf Knotdn

Zeitspanne, fur die die Lastbalancierung im voraus
Knoten auszulasten versucht.

Erwartete Ausfiihrungszeit von Auftragauf Serves.
Real gemessene Rechenzeit eines Auftrags.

Vermutete Wartezeit durch Datenzugriff alafta-
Ref;(a) bei Serves flr Auftraga.

Erwartete Datenwartezeit von Auftraquf Serves.
Real gemessene Datenwartezeit eines Auftrags.

Seit der letzten Verschiebung der Anwendézyvi-
schen Clustern im Cluster abgeleistete Auftragsre-
chenzeit.

Vermutete Restzeit, die Senemomentan bendtigt,
um seine Auftragswarteschlange abzuarbeiten.

Zeit, die Auftraga bisher in zentralen Warteschlangen
verbracht

Momentane Eignung einer Anwendung zur Verschie-
bung in ein Nachbar-Cluster.
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3.7.2 Entscheidung: Bewertung und Zuweisung

Die Entscheidungskomponente der Lastbalancierung bestimmt, wann und wohin wel-
che Auftrage oder Daten zugewiesen werden.

Auftragsplazierung meint ifHiCon-Modell die Zuweisung von Auftragen, die aus-
fuhrbar in der zentralen Warteschlange liegen, an Server. Nach der Zuweisung an einen
Server ist keine Migration von Auftragen mehr zulédssig. An Nachbarsysteme verscho-
bene Auftrage kdnnenallerdings dort noch beliebig zugewiesen, weiterverschoben oder
zuruckverschoben werden (Abschnitt 3.7.3).

Die Plazierung, Migration und Replikation gemeinsamer Daten wird nicht durch sepa-
rate Lastbalancierungsaktionen angestof3en. Daten liegen zuerst bei dem Server, der sie
erzeugt hat. Durch lesende Zugriffe anderer Server verschickt das verteilte Betriebssy-
stem Kopien, durch Anderungszugriffe wandern die Datensatze zu den entsprechenden
Servern. Obwohl die Lastbalancierung prinzipiell direkt auf die Datenverteilung Ein-
fluld nehmen kdnnte, wurden aus Zeitgrindeidi@on-Projekt bislang nur Strategien
realisiert, die Auftrage unter Berlcksichtigung der aktuellen Datenverteilung und des
vermuteten Aufwandes fir die notwendigen (automatisch folgenden) Datenumvertei-
lungen zuweisen. Die Datenverteilung wird also mittelbar beeinflufdt, indem die Auf-
trdge Daten zu dem Server ziehen, auf dem sie bearbeitet werden.

Die Entscheidungskomponente wird durch die Informationssammelkomponente akti-
viert. Ereignisse aktivieren ja zuerst die Informationssammelkomponente (Abschnitt
3.7.1) , die neue Informationen extrahiert und einordnet und dann eventuell die Ent-
scheidungskomponente aufruft. Wenn die Entscheidungskomponente aktiviert wird, so
betrachtet sie die Systemsituation und greift gegebenenfalls durch Zuweisung verflig-
barer Auftrage aus der zentralen Warteschlange ein. Die Zuweisung von Auftragen
kann zu beliebigen Zeitpunkten erfolgen, denn die Server haben lokale Auftragswarte-
schlangen, die sie der Reihe nach abarbeiten (Abschnitt 3.5).

Der im folgenden beschriebene Zuweisungsalgorithmus ist nur vom groben Ablauf her
fur denHiCon-Lastbalancierungsansatz bindend; die Detailberechnungen sind ledig-
lich als eine Mdglichkeit zu verstehen, der sich bewahrt hat. In verschiedenen Verof-
fentlichungen Uber dasHiCon-Modell wurden unterschiedliche Algorithmen
untersucht. Keiner der Algorithmen setzt alle Lastinformationen ein, die das Lastbalan-
cierungskonzept zur Verfiigung stellt. Je nach Grol3e und Struktur des Rechnersystems
und abhangig vom Typ der betrachteten Anwendungen sind im Entscheidungsalgorith-
mus unterschiedliche Informationen relevant. Durch automatische Adaption (Abschnitt
3.7.5) soll stets ein passender effizienter Entscheidungsalgorithmus eingestellt werden.
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Die verfligbaren Auftrage in der zentralen Warteschlange nach ihrer Prioritat sortiert.
Ohne Anmeldungen von Auftragsgruppen entspricht das der zeitlicher Ankunftsrei-
henfolge (Abschnitt 3.7.1).

Der Entscheidungsalgorithmus bestimmt zunachst, welche Strategie (siehe unten
momentan zu verwenden ist: er schaltet auf eine einfache Uberlaststrategie um, soba
eventQueueSize >Wird, und zurtick auf die komplexe Strategie, soba@queueSize <wird
(Abschnitt 3.7.5). Danach wird bestimmt, wie gro3 momentan die Zeitspangs.e

zu wahlen ist, fur die Knoten im voraus mit Auftrdgen zu beladen sind (Abschnitt
3.7.5). Weiterhin wird eingestellt, ob derzeit mehr auf Durchsatz oder auf Antwortzeit
hin optimiert werden soll: wenn die Knoten gut ausgelastet sind, d.h. z.B. héchstens
einer unterbelastet ist, dann werden die Datenkommunikationszeiten durch einen Fak
tor, proportional zur Systemlast und zur Belastung der Balancierungskomponente
Uberbewertet:

doverrate= 1 + centralQueueSize + eventQueueSize

Dieser Faktor wird weiter unten verwendet. Wahrend bei normaler Beriicksichtigung
der Datenwartezeiten vorrangig die Antwortzeiten der einzelnen Auftrdge minimiert
werden, bewirkt eine Uberbewertung der Datenkommunikation, daR unproduktive
Netzlast und Leerlaufzeiten durch Datenkommunikation reduziert werden, was den
Gesamtdurchsatz im System steigert, aber fir einzelne Auftradge nachteilig sein kann.

Nun betrachtet der Algorithmus nacheinander die zentral wartenden Auftrage, begin-
nend vom hoéchstpriorisierten, bis eine MaximalzabkTasksConsideradn Auftra-

gen betrachtet wurde oder die zentrale Warteschlange leer ist. Audtiégederzeit

an Nachbar-Cluster verschobenen Anwendurfgéibschnitt 3.7.3) werden sofort an

das Nachbar-Clusteel geschickt, wobei ihre Verweilzeit in der zentralen Warte-
schlangetspentincentraiQueuéd) €rhoht wird, und der bisher zum Nachbarn gesandte
Auftragsumfang aktualisiert wird:

tiocalProcessin§®) += instructiong, x computeTimeAdagl/ avg in clusteMFLOPS

und die Tabellen der vermutlichen Datenorte gemafR der im Auftrag angegebenel
DatenreferenzerN\(Bereiche mit jé\; Datensatzen) aktualisiert werden:

ownerCl(dataRef(a)) = cl fur allei=1..N, j=1..N; .

Die Ubrigen Auftrage werden, falls noch Prozessoren vorhanden sind, die in nahe
Zukunft nicht mehr gentigend ausgelastet sind, daraufhin untersucht, ob sie nun einer
Server zugewiesen werden konnen. Durch diese Struktur des Entscheidungsalgoritt
mus verfolgt die Lastbalancierung das in Abschnitt 2.5.7 vorgestellte vierte Optimie-
rungskriterium, wobet,qyance @nstelle der vermuteten Zeit bis zum Eintreffen des
nachsten Auftrags verwendet wird. Jeder Auftrag wird folgendermal3en bewertet:
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1.

Bestimmung des momentan bestgeeigneten Se®férsden Auftraga: Wenn die
Uberlaststrategie aktiv ist, so wird der Server gewahlt, der bei der ersten Bewertung
des Auftrags, d.h. bei seiner Ankunft, ermittelt wurde. Es wird also dann keine Neu-
bewertung wartender Auftrage in der zentralen Warteschlange durchgeftihrt.

Wenn die komplexe Strategie aktiv ist, werden alle im Cluster konfigurierten Server
s der betreffenden Klasse verglichen. Auch Server, die momentan beschéftigt sind,
werden mitbetrachtet. Es wird der Server gewahlt, der den Audtfidlassec, Auf-
tragstyps) vermutlich zuerst abschlieen kdnnte, wenn er ihn jetzt zugewiesen
bekame. Dabei werden die Rechenzeit flr den Auftrag, die Wartezeit bis zur Been-
dung der bereits beim Server wartenden Auftrage und die zu erwartenden Verzoge-
rungen durch Zugriffe auf nicht lokal vorhandene Datensatze bericksichtigt:

S= MINs(tcomput(gS’a) + tdataComr‘S’a) x doverrate+tremainingWor(S)) )
Die bei Serves zu erwartende Rechenzeit wird durch
teomputdS:@ = instructions x computeTimeAdapix procPowe(a,s, temainingworkS)

abgeschatzt. Grundlage ist dabei die vom Rechenkhkodes Servers zu erwar-
tende Rechenleistung zu dem Zeitpunkt, an dem der Server vermutlich die Bearbei-

tung des Auftrags beginnen kdnnte. Die Rechenleistung wird gemalf
floatPortion, x MFLOPS +intPortion, x MIPS,

procPowel(a,s,) = = = - o
ot
DZ‘Dse”’er%Dtremaimngm,(i)>tcpuun Adapt 1E(num erOfProcessofs

abgeschatzt, wobei im Prinzip die theoretische Leistung des Prozessors, bzw. eines
Prozessors bei Multiprozessor-Knoten, durch die Anzahl der sonstigen dann aktiven
Server auf dem Prozessor - plus eins, da der betrachtete Server dann frei ist - geteilt
wird. Bei Multiprozessor-Knoten wird die Anzahl der aktiven Server durch die
Anzahl der Prozessoren dividiert. Ein Vierprozessor-Knoten zeigt beispielsweise bei
drei arbeitenden Servern fur einen weiteren Auftrag immer noch die volle Leistung
eines Prozessors. Die theoretische Leistung der Prozessoren wird von der Lastbalan-
cierung beim Start durcBenchmarkdestgestellt und nach Integer- und FlielRkom-
marechenleistung unterschieden. Anwendungen kénnen bei Aufrufen die Anteile an
Integer- und FlieRkomma-Operationen der Auftrage abschatzen. Die Knotenleistung
fur den Auftrag wird nach diesen Anteilen gewichtet aufsummiert. In Abschnitt
3.7.5 wird erlautert, wie die Prozessorbelastung anhand des mittleren Prozessornut-
zungsanteils von Auftragstypen adaptiv, durch langerfristige Rickkopplung mit der
Im System gemessenen Prozessorbelastung, justiertcwist die Serverklasse und

s' der Auftragstyp des bei Sen@momentan bearbeiteten Auftrags.

Die Hauptspeicheriberlastung kann mitbericksichtigt werden, indem ab einer
gewissen Speicherseiten-Einlagerungsrate die Knotenlast kinstlich erhéht wird.
Hierzu wurde jedoch keine Evaluierung durchgefthrt.
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Die vom Client beim Aufruf vermutete Auftragsgrof3e wird durch einen Adaptions-
faktor computeTimeAdagtje Auftragstyp korrigiert (Abschnitt 3.7.5).

Zur Antwortzeit zahlt weiterhin die Wartezej,i.commauf vermutlich bendotigte
Daten, die der Server nicht lokal vorliegen hat. Diese Zeit wird aufgrund der Daten-
referenzvorabschatzungen des Client, der momentan vermuteten Datenverteilun
und der in der letzten Zeit beobachteten Kommunikationskosten der betroffenen
Datentyperd abgeschatzt. Pro vermuteter DatenrefedataRef;(a) entstehen fol-

gende Kostemy,iaaccess, a.i.j) =
0 falls ownerCl(dataRef(a)) U Cluster
undownerS(dataRgfa))=s,
dataRangeWritePrqte) x dataCommCogt  falls hasCopyS(dataRefa))=s,
dataCommCosg} falls ownerCl(dataRef(a)) U Clustey
dataCommCostRemate ansonsten.
Datenzugriffskosten werden nach Zugriffen innerhalb eines Clusters und Zugriffen
zwischen Clustern getrennt. Fir vermutete Lesezugriffe genlgt es, wenn der Serve
eine Kopie der Daten besitzt, fir Schreibzugriffe bendétigt er das Original. Die Werte
dataCommCosterden adaptiv bestimmt (Abschnitt 3.7.5). Obige Formel wird
zwar fur die Abschéatzung der Datenzugriffskosten verwendet, aber fiur den Ver-
gleich der Antwortzeiten zwischen den Servern werden die Zugriffskosten auf
Kopien um den adaptiv geregelten FaktbmtaReadWritg, geringer bewertet
(Abschnitt 3.7.5), um das Anlegen mehrfach verwendbarer Kopien zu férdern.

Insgesamt ergibt sich fur den Auftrag

N N

tdataComn(S’ a) = dataTimeAdanx z thataAcces@'a’ i'j)

i=1j=1
an Zeitbedarf fur Datenkommunikation durch nicht-lokale Datenreferenzen, wobei
dataTimeAdapt wiederum eine Adaptionsgrof3e ist (Abschnitt 3.7.5).

SchlieB3lich zahlt auch die Wartezginainingworks), bis die schon beim Server war-
tenden oder in Ausftihrung befindlichen Auftrage erledigt sind, zur Antwortzeit des
Auftrags auf diesem Server. Diese Zeit wird jeweils bei Zuweisung eines Auftrags
aktualisiert (siehe unten). Die Zeit, die der Server bereits an seinem aktuellen Auf-
trag gearbeitet hat, kann abgezogen werden, da bekannt ist, wann er das letzte Res
tat zurlckgeschickt hatte. Da die AuftragsgrofRen nur Abschéatzungen seitens de
Clients sind und die Ausfuhrungszeiten nur durch heuristische Abschéatzungen
ermittelt werden, kann es passieren, dal3 ein Server an einem Auftrag langer rechni
als vermutet. Dann wird - fir die Schatzung der Antwortzeit - angenommen, dal} der
Auftrag nun unverzuglich fertig wirdf t,emainingworkS)<0 then femainingworkS)=0.

. Der Auftraga wird nun dem Serves zugewiesen, sofern sein Knotefur die nach-
ste Zeit dadurch nicht tGberlastet wird:
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O i L+ 10 i <2.
DZ(iDserveriDtremammng&i)>tadvancéCDUUtIIAdapEg 1[(numberOfProcessoES}cpuUtllAdapES 2

Dabei ist 2 ein Erfahrungswert mit der Bedeutung, dal3 Workstations bei durch-
schnittlich 2 laufbereiten Prozessen recht guten Durchsatz bieten. Ansonsten ver-
bleibt der Auftrag in der zentralen Warteschlange und wird bei der nachsten
Aktivierung des Entscheidungsalgorithmus erneut betrachtet. Da der Zuweisungsal-
gorithmus stets mehrere Auftrage betrachtet und jeweils ihrem bestgeeigneten Ser-
ver zuzuweisen versucht, kann es passieren, daf viele Auftrage einem gunstig
erscheinenden Server zugeteilt werden sollen, dessen Prozessor aber momentan
geniugend lange ausgelastet ist. Wahrend eines Laufs des Entscheidungsalgorithmus
muld daher die Wartezeit an solchen Servern auch dann temporar erhdht werden
durch

tremainingWor(S) +=lgatacomntt computer
wenn ein Auftrag dorthin mochte, aber jetzt nicht zugewiesen wird, weil der Prozes-
sor ausgelastet ist. Dadurch wird bei der Betrachtung der nachfolgenden Auftrage
berlcksichtigt, dafd schon andere Auftrdge auf den Server kommen sollen.

Bei der Zuweisung wird der (seit der letzten Verschiebung von Anwendlung
Cluster) lokal zugewiesene Auftragsumfang aktualisiert:

tiocalProcessin) = tcomputéS:a).
und die Tabellen der vermutlichen Datenorte werden gemal der im Auftrag angege-
benen DatenreferenzeN Bereiche mit jeN; Datensatzen) aktualisiert:

ownerCl(dataRef(a)) = lokales CIusteUndownerS(dataRg](a)):S fur allei=1..N, j=1..N; .

Im Zuweisungsalgorithmus wird also die Bestimmung des bestgeeigneten Auftrag -
Server- Paares in zwei Schritte zerlegt: Es wird jeweils zuerst der wichtigste Auftrag
und danach der fur ihn bestgeeignete Server bestimmt. Pro Auftrag entsteht, zur Ein-
sortierung in die zentrale Warteschlange gemalf der Auftragsprioritat (Abschnitt 3.7.4),
einmaliger Aufwand, der hoéchstens proportional zur Anzahl der Auftrage in der zen-
tralen Warteschlange ist, gewohnlich aber vernachlassigbar ist, denn die meisten Auf-
trdge werden direkt bei niedrigster Prioritat eingereiht (da die Prioritaten der bereits in
der Warteschlange liegenden Auftrage standig wachsen). So wéachst der Entschei-
dungsaufwand je Aktivierung des Algorithmus lediglich linear mit der Anzahl der Ser-
ver pro Klasse multipliziert mit der Anzahl der Auftrage in der zentralen
Warteschlange, wobei maximal dieaxTasksConsiderd@chst-priorisierten Auftrage

in der zentralen Warteschlange betrachtet werden. In Uberlastungssituationen, solange
die einfache Strategie aktiv ist, sinkt der Balancierungsaufwand, da nur einmal pro
Auftrag ein Vergleich aller Server durchgefiihrt wird.
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Im Prinzip kbnnte zur Zuweisung jeweils das optimale Paar bestimmt werden
(Betrachtung und Bewertung aller Zuweisungskombinationen Auftrag - Server). Dabei
wurde jedoch der Entscheidungsaufwand stark steigen, was sich durch die moglicher
weise besseren Entscheidungen nicht auszahlt; Es wurden jedd¢iCam-Modell
bislang keine Vergleiche durchgefihrt. Die Trennung und Reihenfolge der Paar-
Bestimmung hat folgenden Hintergrund: Fir die Auftragszuweisung ist es wichtig, dafl3
die alten bzw. sehr wichtigen Auftrdge baldmdglichst bearbeitet werden; daher wird
zuerst der Auftrag gewahlt. Danach kann der passende Server bestimmt werden. Eir
umgekehrte Reihenfolge birgt die Gefahr, dal3 Auftrdge sehr lange in der Warte-
schlange verbleiben, solange die Server andere verfiigbare Auftrage als besser geeigr
betrachten.

Die Netzwerkleistung und Netzwerkbelastung werden in der Informationssammlung
und im Entscheidungsalgorithmus desCon-Konzepts nicht explizit bertcksichtigt.

Das Modell enthalt explizit nur Verzégerungen durch Austausch von Daten, die in
erster Linie, d.h. bei kurzen Synchronisations- und Informationsnachrichten, mit den
Latenzzeiten des Netzwerks korrelieren. Fir Nachrichten, die grof3ere Datensatze zw
schen Servern austauschen, spiegelt die Datenaustausch-Zeitverzégerung jedoch au
die effektiv momentan verfigbare Bandbreite wieder. Durch Einsatz der adaptiv gere-
gelten EntscheidungsparametiataCommCogt (Abschatzung der zu erwartenden
Datenzugriffszeit je Datensatz innerhalb eines Clusters und dasselbe flr Zugriffszeitet
zwischen Clustern) bericksichtigt ditiCon-Lastbalancierung implizit sowohl den
effektiven Durchsatz als auch die Nachrichtenverzogerung der Netzwerke.

3.7.3 Entscheidung: Austausch von Anwendungen zwischen Clustern

Ein separater Entscheidungsalgorithmus erwagt und initiiert die Verschiebung ganze
Anwendungen zu Nachbar-Clustern. Dieser Entscheidungsalgorithmus kann ebenfall:
durch verschiedene Ereignisse aktiviert werden, wie z.B. durch den Empfang einel
Lastinformation von einem Nachbar-Cluster. Die Verschiebung einer lokalen Anwen-
dung zu einem Nachbarn bedeutet, dal3 ab diesem Zeitpunkt alle Auftrdge der Anwer
dung direkt an das Nachbar-Cluster geschickt werden. Clients selbst lassen sich ja ir
HiCon-Modell nicht migrieren, da in heterogenen Systemen keine automatische Pro-
zel3migration moglich ist. Anwendungsaustausch zwischen Clustern ist Sender-initi-
lert. Das Ziel-Cluster kann die Anwendungen bei Bedarf jederzeit wieder

zurtickverschieben, und kann ebenso Anwendungen, die von anderen Clustern an ih
geroutet wurden, weiter verschieben. Da die Auftrage einer verschobenen Anwendun
weiterhin beim Client im Ursprungs-Cluster entstehen, werden sie ggfs. durch die
Balancierungskomponenten mehrerer Cluster geschleust.
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DasHiCon-Verfahren zum Anwendungsaustausch zwischen Clustern ist dezentral und
recht simpel im Vergleich zur komplexen zentralen Intra-Cluster-Balancierung. Da die
Netzverbindungen zwischen Clustern oft langsam sind, und weil nur wenig Informa-
tionen fur feingranulare Balancierungsentscheidungen verflgbar sind, werden ledig-
lich komplette (parallele) Anwendungen zwischen hoéher und geringer belasteten
Clustern verschoben. Lastbalancierungskomponenten tauschen dazu gelegentlich
aggregierte Statusinformationen tber ihre Cluster aus. Im Gegensatz zu vielen bekann-
ten dezentralen Ansétzen ist die Informationsaustauschfrequenz unkritisch, da nur
wenig Information nach signifikanten Anderungen, d.h. wenn ajgblLoad, um

einen bestimmten Faktor gegeniber dem zuletzt verschickten Wert anderte, verschickt
wird. Bei grof3en Anwendungen treten diese Lastzustandsanderungen weniger haufig
auf. Ansonsten kann die Informationsaustauschfrequenz bei hoher Belastung der
Balancierung oder des Netzwerks reduziert werden. Bei hoher Gesamtlast, solange
Cluster nicht vollig leer laufen, sorgen ja die Lastkontrolimechanismen der zentralen
Balancierungskomponenten fiir optimale Ressourcennutzung innerhalb der Cluster, so
dalR ein grober Lastausgleich zwischen Clustern aufgrund weniger haufigen Informa-
tionen genugt.

Die Balancierungskomponente eines Clusters verschiebt dann eine Anwénziumg
minimal belasteten Nachbar-Clustérwenn gilt

applLoad, < (activeAppls- ( T 1))/ZKMFLOP$( ,

wobei die Last eines Clusters, das die Knd&tenthalt, durch

activeAppls

applLoad, =
priL-oad, ZKMFLOP$<

bestimmt wird.

Ein fixer Differenzschwellwert bestimmt, ab welcher Lastdifferenz eine Anwendung

an ein geringer belastetes Cluster abgegeben wird. Nun wird die bestgeeignete Anwen-
dung A zum Verschieben ausgewahlt: sie hat im Cluster entweder noch gar nicht
gerechnet, oder hat den gréf3ten Eignungswaegeman Abschnitt 3.7.5. Ein weiterer
Schwellwert bestimmt, wieviele Ressourcen die bestgeeignete Anwendung im Cluster
konsumiert haben muf3, bevor sie erneut verschoben werden darf, und welchen verblei-
benden Ressourcenbedarf sie noch aufweisen muf3. Das verhindert zu haufige Ver-
schiebung von Anwendungen, d.h. vermeidet fruchtlose Zusatzbelastung, Wartezeiten
und Datenverschiebungen, und verhindert, dal3 sehr kurze Anwendungen oder grol3e
Anwendungen kurz vor ihrem Abschlul3 noch verschoben werden. In Abschnitt 3.7.5
wird beschrieben, wie dieser Schwellwert adaptiv geregelt wird.
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An benachbarte Cluster abgegebene Auftrage werden dort in die zentrale Warte
schlange eingereiht, wobei zu ihrer Prioritat die bisherige Wartezeit in zentralen Warte-
schlangen  anderer  Cluster addiert wird. Die hier vorgestellten
Entscheidungsalgorithmen realisieren eine explizit dezentrale Balancierungsstruktul
(Abschnitt 2.5.3.4), es wurden iHiCon-Modell jedoch auch implizite Strukturen
untersucht und verglichen [Beck94c].

Eine wichtige Anforderung an Balancierungsmechanismen ist die Stabilitdt. Darunter
versteht man im allgemeinen, dafl? die Wahrscheinlichkeit flr krasses Fehlverhalten de
Lastbalancierung gering ist, d.h. es wenige Situationen gibt, in denen die Lastbalancie
rung stark stort oder extrem schlechte Ressourcennutzung bewirkt. Der Stabilitatsbe
griff erscheint meist in dezentralen Ansatzen und bewertet einerseits, ob unndotig viele
bzw. unnétig haufig Auftrage zwischen Rechenknoten ausgetauscht werden und ande
rerseits, ob unterbelastete Knoten Gefahr laufen, in Kilirze von Auftrdgen mehrerel
hoher belasteter Knoten tberhauft zu werden. Der unerwiinschte Effekt, dal3 Auftrage
zu oft zwischen Knoten hin und her verschoben werden, tritt auf, wenn alle Knoten
gleichmaRig und ausreichend belastet, wenige aber Uberlastet sind. AuRerdem ist d
Effekt zu beobachten, wenn die Knotenlasten sehr schnell schwanken, so dal3 Migrat
onsentscheidungen schnell wieder obsolet werden. Zentrale oder hierarchisch struktt
rierte  Lastbalancierungsansatze sind weniger anfallig gegeniber solchen
Instabilitdtserscheinungen. Die Stabilitat wird HiCon-Ansatz bei dezentraler Last-
balancierung durch drei Techniken angestrebt: Erstens verhindert die Lastkontrolle ir
der zentralen Lastbalancierung jedes Clusters, dal’ die Ressourcenbelastung im Syste
durch viele ankommende Auftrage zu hoch wird, indem sie entsprechend viele Auf-
trdge in der zentralen Warteschlange zurlckhélt. Zweitens werden nur grol3e Anwen
dungen verschoben, die noch lange genug laufen, daf sich die Verschiebung lohne
kann. Drittens wird die haufige Verschiebung einer Anwendung auf ein verntinftiges
Mald beschrankt, indem zwischen zwei Migrationen gewisse Mindestrechenzeiten de
Anwendungen gefordert werden (Abschnitt 3.7.5).

3.7.4 Dynamische Einplanung von Auftragsgruppen

Um den Durchsatz von unkorrelierten konkurrierenden Auftrdgen zu optimieren,

genugt es, die einzelnen Auftrage isoliert und die Gesamtlasten auf den Rechenknote
zu betrachten. Vor allem in parallelisierten Anwendungen bestehen jedoch Abhangig-
keiten zwischen den einzelnen Auftragen, die bei der Lastbalancierung beachtet wer
den sollten. Abschnitt 2.5.4.2 begrindet die Notwendigkeit und stellt die wichtigsten
Planungsverfahren vor, wie sie in statischer Lastbalancierung eingesetzt werden. Die i
Abschnitt 2.5.4.3 vorgestellten Ansatze zur Bertcksichtigung der Kommunikation

bendtigen im vorliegenden Ansatz keine separaten Planungsalgorithmen; es gentg
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die Datenkommunikation, die ja durch Zugriffe auf gemeinsame Datensatze ablauft,
isoliert fUr jeden Auftrag bei der Zuweisung zu bericksichtigen.

Vorwissen Uber Reihenfolgebeziehungen kann genutzt werden, um den Ablauf paralle-
ler Anwendungen vorherzusehen. Gegeniiber den statischen Ansétzen ergeben sich
jedoch fir die dynamische Lastbalancierung drei neue Probleme: Zum ersten sind die
Reihenfolgebeziehungen nicht alle beim Start des Systems global vorgegeben, sondern
es kommen zur Laufzeit hin und wieder Anwendungen in das System, die in die aktu-
elle Situation eingebunden werden missen. Zum zweiten herrscht unkoordinierter
Mehrbenutzerbetrieb, d.h. es sind Reihenfolgebeziehungen jeweils innerhalb von
Gruppen von Auftragen bekannt, wobei aber die verschiedenen Gruppen und andere
Einzelauftrage unkorreliert und zu beliebigen Zeiten ablaufen. Das dritte Problem ist
die Ungenauigkeit der angegebenen Reihenfolgebeziehungen; bei dynamischer Last-
balancierung wird davon ausgegangen, dal3 das System unvorhersehbar belastet wird
und die Lastbalancierung daher durch Beobachtung des Ist-Verhaltens den Durchsatz
optimieren mulf3. Vorabschatzungen von Clients Uber Auftragsgruppen sind daher
ebenso wie Vorabschatzungen Uber einzelne Auftrage nur als Hinweise zu verstehen
und mussen nicht zutreffen. Es kbnnen sogar andere, mehr oder weniger Auftrage sein
und sie unterliegen womaoglich nicht den vermuteten Reihenfolgebeziehungen. Trotz
dieser drei Probleme soll der Ablauf korrekt sein und die Lastbalancierung durch flexi-
ble Lastverteilung zur Laufzeit Durchsatzsteigerung erbringen.

Im HiCon-Projekt wurde aufgrund der obigen Anforderungen ein Ansatz entwickelt,
der eine flexible Vorplanung von Auftragen unter Bertcksichtigung von Reihenfolge-
beziehungen ermdglicht, der zur Laufzeit agiert, dem Mehrbenutzerbetrieb gerecht
wird und Ungenauigkeiten toleriert.

Bei Ankindigung einer Auftragsgruppe in Form eines gerichteten, Auftragsgraphen
(Abschnitt 3.7.1) geben Clients die vermuteten Grél3en von Auftragen (d.h. die
Ressourcenbedurfnisse) und Reihenfolgebeziehungen zwischen ihnen an. Auftrags-
gruppen sind vom Client gewdahlte, beliebige Teilausschnitte einer Anwendung. Die
Auftrage der Gruppe werden durch Namen identifiziert. Die Lastbalancierung kann
nun durch verschiedene Verfahren Prioritdten zu den Auftrdgen berechnen. Wenn Auf-
trdge ankommen, die auf diese Weise vorangekiindigt waren, so bekommen sie diese
Prioritat zugewiesen und kdnnen (je nach Strategie) entsprechend in die zentrale War-
teschlange einsortiert werden. Dabei wird neben der Prioritat auch das Alter der Auf-
trdge bertcksichtigt. ImHiCon-Modell wurden funf verschiedene Verfahren
untersucht, wobei als einzige Ressource die Prozessorrechenzeit (gemessen in Instruk-
tionen) betrachtet wurde. Die Verfahren wurden bereits in Abschnitt 2.5.4.3 vorge-
stellt:
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1. Keine Prioritatsberechnung. Vorankiindigungen werden ignoriert. Die fehlende Vor-
planung impliziert, dal3 ankommende Auftrage grundsatzlich nach inrem Alter in die
zentrale Warteschlange eingeordnet werden.

2. Die Prioritat jedes Auftrags wird isoliert, proportional zu seiner vermuteten Grol3e,
bestimmt.

3. Die Prioritat jedes Auftrags ist proportional zu seiner Ebene, d.h. sie entspricht der
mittleren AuftragsgrofRe der Gruppe multipliziert mit der Anzahl der Folgeauftrage
auf dem langsten Pfad zu einem Endauftrag. Man beachte, dal3 diese Priorisierun
nur scheinbar derhighest level first schedulinghnelt. Jenes Verfahren teilt die
Ebenen von den Startauftragen her ein (die erste Ebene enthélt die Auftrage ohn
Vorganger) und weist die Auftrage strikt Ebene flr Ebene zu.

4. Die Prioritat jedes Auftrags ist proportional zu seiner Auftragsgrof3e zuzuglich der
Summe der Auftragsgrol3en entlang des langsten Pfades zu einem Endauftrag.

5. Die Prioritdten werden wie oben betsimmt, erweitert um gewichtete Pfadlangen.

Man beachte, dal’ das vorgestellte dynamische Planungsverfahren im Gegensatz zu d
statischen Lastbalancierungsverfahren den Auftrdgen hier noch keinen Prozessor un
noch keinen Zuweisungszeitpunkt berechnet (und auch keine Ressourcen reserviert
sondern lediglich Prioritaten bestimmt. Die Prioritdten der Auftrage bewirken vorran-
gige, d.h. schnellere Zuweisung und damit schnellere Abarbeitung durch die Sortie-
rung der Auftrage nach Prioritatenfolge in den zentralen Warteschlangen. Dadurct
erlangen die hoher-priorisierten Auftrage in der Regel auch die leistungsfahigeren
Knoten. Wann die Auftrage wohin zugewiesen oder an Nachbar-Cluster verschober
werden, wird weiterhin durch den Entscheidungsalgorithmus bestimmt, der aktuelle
Laufzeitinformationen berucksichtigt. Weiterhin ist zu beachten, dal? die Beriicksichti-
gung von Auftragsprioritdten der Durchsatzsteigerung, nicht der Minimierung einzel-
ner Auftrags-Antwortzeiten dient. Dies wird inHiCon-Modell automatisch
beriicksichtigt, da eine Einsortierung der Auftrage natirlich nur in Situationen hoher
Last, wenn die zentrale Auftragswarteschlange nicht leer ist, erfolgt. In Hochlastsitua-
tionen optimiert ditkHdiCon-Balancierung ohnehin verstarkt auf Systemdurchsatz.

Die Prioritat von Auftrdgen wird in Instruktionen gemessen und stellt jeweils die

GroRe des Auftrags samt den GrofRen seiner Folgeauftrdge dar. Prioritdten kbnne
dadurch auch zwischen Auftragen unterschiedlicher konkurrierender bzw. friher odel
spater eingeplanter Anwendungen miteinander verglichen werden, weil das Mal3 unab
hangig von Anwendung oder Knotenleistung ist. Das ermdglicht die dynamische
Bericksichtigung von Reihenfolgebeziehungen im heterogenen Mehrbenutzerbetrieb.

Bei der Einsortierung eines Auftrags in die zentrale Warteschlange werden nicht alleir
die Prioritaten zum Einplanungszeitpunkt betrachtet, sondern auch die bisherige War
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tezeit der Auftrage in der zentralen Warteschlange (Abschnitt 3.7.2): Die Prioritat der

auf Verschiebung oder Zuweisung wartenden Auftrage wird um den Betrag (an

Instruktionen) erhoht, den sie seit ihrer Entstehung auf einem durchschnittlichen

Rechenknoten an Bearbeitung erhalten hatten. Dadurch wird verhindert, dal3 Auftrage
mit geringer Prioritat beliebig lange in der Warteschlange bleiben, solange héher-prio-
risierte Auftrage verfigbar sind. Eine Leistungsbewertung der Ansatze findet sich in

Abschnitt 5.6.1.

3.7.5 Dynamische Adaption

DasHiCon-Konzept enthalt Konzepte zur dynamischen Anpassung der Balancierung
gemald Abschnitt 2.5.6. Die Lastbalancierung lernt also selbstandig aus friiheren Ent-
scheidungen; sie paldt ihre Vorgehensweise in den ungenaueren Teilen ihres Modells
dem real gemessenen Verhalten an und optimiert durch Selbstbeobachtung ihr Kosten-
Nutzen-Verhaltnis. Wahrend die erste der folgenden Techniken die dezentrale Balan-
cierung betrifft, sind die Ubrigen fur zentrale Balancierung entwickelt. Eine Leistungs-
bewertung der Ansatze findet sich in Abschnitt 5.6.2.

1. Adaptive Regelung des Schwellwerts zur Verschiebung von Anwendungen zwi-
schen Clustern

Da Auftragsverschiebung zwischen Clustern teuer ist und vor allem eine entspre-
chende Menge an Datenkommunikationskosten nach sich zieht, versudi@ aine
Lastbalancierung, die Auftragslast moglichst innerhalb des Clusters zu verteilen.
Wie in Abschnitt 3.7.3 beschrieben, werden dazu fixe Schwellwerte eingesetzt. Es
wird aber auch ein Kriterium verwendet, das dynamisch der Netzwerkkapazitat, den
Datenkommunikationskosten und dem Volumen aktiver gemeinsamer Daten der
Anwendungen angepal3t wird: Die Komponente zur Anwendungsverschiebng
betrachtet bei der Suche nach der zum Verschieben bestgeeigneten Anwendung nur
solche, die die Bedingung

w>1[0OremainingProcesin gime, >migDataCosf

erfullen. Dabei wird die Eignung der Anwendung zur Verschiebung durch

_ tIocaIProcesx;in Q(A)
~ migDataCosf

mit Hilfe der Abschéatzung

migDataCosf = Z dataCommCostRemqteactiveGlobalData

bestimmt. Dies sind nur grobe Grenzen, die vollig aussichtslose Verschiebungen
verhindern sollen. Die Menge der von der Anwendung benutzten Daten, d.h. die
Anzahl an Datensatzen je Datentyp, kann von der Datenverwaltungskomponente des
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Laufzeitsystems recht einfach grob abgeschatzt werden. Die Absché&uag
ningProcessingTimgekann aus den kritischen Pfadangaben der Auftragsvorabschat-
zungen gewonnen werden.

. Automatische Vermeidung von Uberlastungen der Balancierungskomponente

Dieser Ansatz optimiert das Kosten-Nutzen-Verhaltnis der zentralen Lastbalancie-
rung innerhalb eines Clusters. Zentrale Lastbalancierurdi@on-Modell bewirkt

in der Regel eine deutliche Durchsatzsteigerung fur einen breiten Anwendungsbe:
reich. Obwohl man also annehmen kann, daf3 sich der Balancierungsaufwand lohni
kann die Balancierung in grof3en Systemen und in Hochlastsituationen aufgrund de
Informationssammlung und -Verarbeitung und der Entscheidungsfindung Uberlaste:
werden. Permanente Uberlastungen sollten durch Verfeinerung der Cluster-Struktu
behoben werden, aber kurzfristige Uberlasterscheinungen missen durch die Lastb:
lancierung selbst erkannt und vermieden werden, indem der Aufwand zur Informati-
onsverwertung und Entscheidung reduziert wird.

Im HiConAnsatz reduziert die Adaption sowohl die Komplexitat als auch die Hau-
figkeit der Entscheidungsberechnungen, solange der die Balancierungskomponent
beherbergende Prozessor stark belastet ist oder die Entscheidungen nicht mehr zlg
genug getroffen werden kdnnen. Die Anzahl der zur Bearbeitung anstehender
Ereignisse stellte sich als bestes Mal} fir die Belastung der Balancierungskompo
nente heraus. Dazu verwaltet die Balancierung sowohl den aktuellen Wert als aucl
einen exponentiell geglatteten. Um unmittelbar auf Uberlastsituationen reagieren zt
kénnen, schaltet die Balancierung von der komplexen Strategie auf eine einfacher:
um, sobald die momentane Ereigniswarteschlangenldnge einen Schwellert

steigt: Die vereinfachte Strategie bewertet Auftrage nur einmal bei ihrer Ankunft,
und bestimmt dort den bestgeeigneten Server, anstatt bei jeder Aktivierung des Ent
scheidungsalgorithmus erneut aufgrund aktuellerer Daten zu bewerten. Erst went
die geglattete Ereignisschlangenlange uSteurtickfallt, wird wieder auf die kom-
plexe Strategie umgeschaltet, um haufiges Umschalten zu vermeiden.

Weiterhin wird der Zeitraumyg,ance: fUr den die Lastbalancierung im voraus Auf-
trdge an Server zuweist, adaptiv durch

tadvance™ tdefault* (€ventQueuesSize + 1)

geregelttyesqyit ISt €ine Konstante, die recht klein sein sollte, um spate Zuweisung
aufgrund moglichst aktueller Informationen zu gewahrleisten. Der empirische Wert
von 1 sec hat sich hier als brauchbar erwiesgpanceWird also proportional zur
Belastung der Balancierungskomponente erh6ht, um mehr Auftrage aus der zentra
len Warteschlange zu entfernen, die ja wiederholt bewertet werden missen, un
abzusichern, dal3 die Server trotz hoher Belastung der Balancierungskomponent
durchgehend arbeiten kbnnen.
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Die Erfahrungen ergeben, dal3 komplexe zentrale Balancierung effektiv ist, solange
sie die Informationssammlung und Entscheidungsfindung noch rechtzeitig bewal-
tigt, aber leichte Uberlastungen zerstoéren schnell die Gewinne aufwendiger Strate-
gien und missen vermieden werden. Vereinfachte Strategien missen sorgfaltig
gewahlt werden, da die Balancierungsaufgabe nicht einfacher wird: Beispielsweise
kann schon das Ignorieren von Datenaffinitdten die Ausfiihrungszeiten mancher
Anwendungen verzehnfachen. DMiICon-Ansatz verringert den Entscheidungsauf-
wand, indem er auf weniger aktuellen Informationen basierende Entscheidungen in
Kauf nimmt.

. Adaptive Justierung von Auftragsgroéf3en-Vorabschatzungen

Der Entscheidungsalgorithmus verwendet Vorabschéatzungen utber die Auftragsgro-
Ben, um die bestgeeigneten Server zu ermitteln. Diese von den Clients beim Aufruf
mitgegebenen Informationen sind jedoch nur grobe Schatzungen. Sie treffen meist
die relativen GrolRenverhaltnisse zwischen Auftrdgen eines Typs gut, nicht aber die
von den Eingabedaten (Problemstellung) abhéngigen GroélRenveréanderungen. Die
HiCon-Lastbalancierung vergleicht daher die tatsachlich beobachtete Ausfiihrungs-
zeit (deren Rechenantet,mputereaMit der aus den Vorabschatzungen des Clients
abgeleiteten, vermuteten Rechenzgit,,tS,2) und regelt einen Korrekturfaktor
computeTimeAdag{pro Serverklasse und Auftragstyp entsprechend mit exponenti-
eller Glattung (Gewichtung) nach:

computeTimeAdapt = (1-a) [computeTimeAdapt+a [, ,,.{S,8)/t

computeReal?

mit dem weitere Auftragsgrol3enabschatzungen der Clients korrigiert werden.

. Adaptive Bestimmung von Datenkommunikationskosten

Die Kosten (Wartezeiten), um Daten zwischen Servern auszutauschen oder zu
kopieren, hangt von sich dynamisch &ndernden Faktoren ab, die schwer zu ermitteln
und geeignet zu bertcksichtigen sind, wie z.B. der momentanen Netzwerkausla-
stung durch Mehrbenutzerbetrieb oder Anwendungs-interner Parallelitat, momenta-
nen Datengréf3en und Sperrwartezeiten ab. Daher paRtChe-Lastbalancierung

die DatenzugriffskostedataCommCog}; je Serverklasse und Datentypd durch
exponentielle Glattung aufgrund der tatsachlich beobachteten Zeiten der letzten Zeit
an und verwendet diese Werte, um die Datenwartezeiten fir Auftrdge bei Servern
abzuschatzen, die einige der vermutlich bendétigten Daten momentan nicht lokal ver-
fugbar haben. Die Verwendung aktueller Wartezeiten ist aufgrund starker Schwan-
kungen sinnlos, aber langerfristige Anderungen der Datenkommunikationskosten
sollten unbedingt bertcksichtigt werden.

Da der Kommunikationsaufwand zwischen Clustern gewoéhnlich deutlich gré3er ist,
werden separate AdaptionsfaktosataComm~CostRematgverwaltet.
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Um die Verteilung von Kopien zu férdern, werden die Kostenabschatzungen flr
lesende Datenzugriffe um den FaktataReadWritgy verringert. Der Faktor wird

fur jeden Datentyp adaptiv geregelt durch Beobachtung, wieviel lesende Zugriffe
durchschnittlich zwischen zwei exklusiven Zugriffen erfolgen. Dieser Faktor ist not-
wendig, da sonst bei Betrachtung einzelner Auftrdge nur der grof3e Aufwand zum
Anlegen der Kopie bericksichtigt wird, und nicht der Nutzen fir nachfolgende
lokale Lesezugriffe auf diese Kopie.

. Adaptive Korrektur der Vorabschatzungen des Datenkommunikationsaufwands vor
Auftragen

Bei der Auswahl des bestgeeigneten Servers flr einen Auftrag schatzt der Entsche
dungsalgorithmus auch jeweils die zu erwartenden Datenkommunikationskosten fur
den Auftrag ab. Clients kénnen beim Aufruf Datenreferenzmuster angeben, die
jedoch oft nur grob und unvollstandig sind. Es ist sinnlos, die tatsachlich referen-
zierten Datensatze eines Auftrags mitzuverfolgen, um sie fur weitere Auftrage als
Vorabschatzung zu verwenden, weil diese mit hoher Wahrscheinlichkeit wechseln.
Die Auftrage einer parallelisierten Schleife arbeiten beispielsweise meist auf der
gleichen Menge von Daten, aber auf disjunkten Datensatzen. Jedoch kann der Ante
der fehlenden oder falsch vorgegebenen Datenreferenzen, und damit die relativ
Abweichung der gesamten realen Datenkommunikationskosten von den vorabge
schatzten pro Auftragstyp beobachtet werden, um die Datenwartezeit flur spéatere
Auftrage entsprechend korrigieren zu kbnnen. Dazu wird ein Fd&taifimeAdap-

t.s mit exponentieller Glattung (Gewichtung jeweils nach Beendigung eines Auf-
tragsa durch

dataTimeAdapt = (1-a) [MataTimeAdapt+ o [y, acomdS A/t

dataReal

geregelt. Generell ist exponentielle Glattung ein Verfahren, das dynamische Anpas.
sung bei gewisser Robustheit bewirkt und nicht rechen- oder speicherintensiv ist.

. Adaptive Einschéatzung der CPU-Last durch Auftragsausfiilhrungen und Lastbalan-
cierungsaktivitat

Der Entscheidungsalgorithmus verwendet zur Vorabschéatzung von Auftragslaufzei-
ten die Lastfaktoren der Prozessoren, die durch konkurrierend laufende Server ode
durch die Lastbalancierung entstehen. Einfache Mdglichkeiten bestehen darin, die
Prozessorleistung durch die Anzahl der momentan aktiven Server oder aber durcl
die vom Betriebssystem ermittelte CRPUh queue lengtlzu dividieren. Ersteres
birgt die Fehlerquelle, dal? die Server nicht alle standig voll die CPU beanspruchen
sondern auch Ein-/Ausgabe durchfiihren und kommunizieren, so daf3 die Prozesso
belastung lUberschétzt wird. Die Verwendung der @Rigueue lengthdie von den
Betriebssystemen als ganzzahliger, tUber langere Zeit gemittelter Wert zur Verfligunc
gestellt wird (beispielsweise alle 5 Sekunden in UNIX-Systemen), ist sehr ungenau,
enthalt kurzfristige Lastspitzen und erlaubt keine Vorabschétzung der Belastung fur
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die nahe Zukunft. InHiCon-Ansatz wird daher die CPin queue lengtimur ver-
wendet, um AbschatzungsfaktorepuUtilAdaptg fur die mittlere CPU-Nutzung
von Auftragstypen langerfristig zu regeln. Die Belastung des Kndtenseinem

Zeitpunktt kann dadurch mittels
=0 i a
l DZ (i Oserverg Dtremaminngr(i) >t) cpuUtIIAdap{:.g * 1[|

abgeschatzt werden, was auch fir die nahe Zukunft akkurate Vorabschatzungen
ermdglicht. Der real (vom Betriebssystem) gemessene mittlere CPU-Nutzungsanteil
der Balancierungskomponente der letzten Sekunden wird zuaddiert, falls auf dem
Knotenk wie die Balancierungskomponente lauft. Durch Vergleich mit der real vom
Betriebsystem gemessenen mittleren QB queue lengtlder letzten Sekunden
kénnen die Abschatzungsfaktoren mit exponentieller Glattung (Gewichrjummag-

tels

cpuUtilAdapt, = (1-a) xcpuUtilAdapt +a x (CPUrunQueuelLer numberOfProcesspd)

nachgeregelt werden. Dabei werden durobkursiv die Abschatzungsfaktoren der
sonstigen momentan auf dem Knoten laufenden Auftragstypen mitverwendet.
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4 Vergleich mit relevanten Forschungsarbeiten

DasHiCon-Modell soll mit den wichtigsten vero6ffentlichten Ansatzen verglichen wer-
den, die vergleichbare Problemstellungen betrachten oder verwandte Ansétze entwik
keln. Interessant sind zentrale Verfahren, Balancierungsverfahren im Bereich del
Datenverwaltung, dezentrale Ansatze und spezielle Verfahren fir Workstation-Netze.

4.1 Zentrale adaptive Transaktionsplazierung im Datenbankbereich

Im Bereich der Datenbankapplikationen wird automatische Lastverteilung seit langem
durchTransaction Processiniglonitore untersttitzt [Borr90]. In Bezug auf dynamische
Lastbalancierung nehmen diese Systemkomponenten die Aufgaben der Pufferung vo
einlaufenden Transaktionen, der Zuweisung an geeignete Ausflhrungseinheiten (Sel
ver) sowie der Konfigurationsverwaltung wahr. Charakteristisch fur die Systemlastpro-
file sind im Datenverwaltungsbereich einerseits die einzelnen, sequentiellen
Transaktions-Auftrage, die in hoher Parallelitat auftreten und aufgrund der ausgereif-
ten, optimierenden Anfragelbersetzer automatisch mit Profilabschatzungen versehe
werden kdnnen. Andererseits greifen die Transaktionsauftrage zu einem erheblichel
Zeitanteil auf grol3e Mengen globaler Daten zu. Dies ergibt fur Lastbalancierung ahnli-
che Anforderungen und Randbedingungen, wie siéli@on-Modell zugrundegelegt
werden. Umverteilung oder Replikation von Daten wurde allerdings bisher wenig
betrachtet, was an den Grenzen der zugrundeliegenden Datenbanksystemen liegt.

Als wichtigster Ansatz sollen die Arbeiten von [Yu86], [Yu91] vorgestellt werden.
Eine zentrale Lastbalancierungskomponente verteilt einlaufende Transaktions-Auf-
trdge auf ein paralleles System, dessen Knoten jeweils Teile einer grofden Datenban
verwalten. Zuweisungsentscheidungen werden dynamisch getroffen, eine spater
Migration laufender Transaktionen ist nicht mdglich. Das Ablaufmodell eines Trans-
aktions-Auftrags besteht aus lokalen Berechnungen auf dem zugewiesenen Knoten, d
durch die eigentlichen Datenbankanfragen / -Operationen unterbrochen werden. Die
Datenbankanfragen mussen jeweils zu dem Knoten geschickt werden, der den betroffe
nen Teil der Daten verwaltet, da keine Daten kopiert oder migriert werden kdnnen
(shared disk Modell). Dies erzeugt Kommunikationsaufwand und Rechenaufwand bei
den betroffenen Knoten. Das Lastbalancierungskonzept ermdglicht Zuweisungsent:
scheidungen, die aufgrund von Profilvorabschatzungen der Auftrage und Kenntnis
Uber die Datenverteilung und aktuelle Systemauslastung die Antwortzeiten der Auf-
trage zu minimieren versuchen. Die Antwortzeit eines Auftrags wird dabei durch die
Rechenkapazitat des zugewiesenen Knotens fur die lokalen Berechnungen, Kommun
kationswartezeiten fur nicht-lokale Anfragen und Rechenzeit fur die Datenbankanfra-
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gen auf den zustandigen Knoten aufsummiert. Da die \Vorabschatzungen der
Transaktionsprofile und der verschiedenen Komponenten des Bearbeitungsaufwands
ungenau und fehlerhaft sind, werden durch periodische Regressionsanalysen Korrek-
turfaktoren fur den Zusatzaufwand durch entfernte Datenbankanfragen sowie fir die
gesamte Antwortzeitschatzung aufgrund des real beobachteten Verhaltens nachgere-
gelt. Im Vergleich zunHiCon-Ansatz ist das Modell lediglich eine Simulationsstudie,

die in ihrer Anwendbarkeit auf den Bereich der klassischen Datenbank-Applikationen
beschrankt ist.

In [Rahm93] werden Ansatze zur dynamischen Zuweisung von Auftragen mit transak-
tionsinterner Parallelitat am Beispiel der parallelen Verbundberechnung im Ein- und
Mehrbenutzerbetrieb entwickelt. Dabei wird die einzusetzende Parallelitdt und die
Datenzuordnung aufgrund aktueller GroRen wie Datenumfang, Rechenaufwand, Puf-
fergroéfien, Netzwerkleistung etc. dynamisch bestimmt.

Dynamische Balancierung durch Reorganisation der Datenverteilung in Datenbankver-
waltungssystemen wird in [Jian89] entwickelt, um trotz durch héaufige Einflige- und
Anderungsoperationen verstreuter Daten teure Retrieval-Operationen durch Clustering
und Lokalitat effektiv zu erhalten.

4.2 Lastbalancierung in Workstation-Netzen

In den letzten Jahren wurden verstarkt Anséatze zur automatischen Lastverteilung flr
Workstation-Netze entwickelt [Bern93]. Hier gelten besondere Randbedingungen:
Workstations eines Clusters sind gewdhnlich durch ein vergleichsweise langsames
gemeinsames Netz verbunden und die Dateien der Dienstprogramme sowie die Benut-
zerdaten werden zentral auf Fileservern verwaltet. Es gibt kein verteiltes Betriebssy-
stem, die Workstations agieren autonom und sind meist bestimmten Benutzern /
Besitzern zugeordnet. Da Workstations zugleich Benutzer-Endgeréate sind und aufwen-
dige graphische Benutzeroberflachen anbieten, wird oft verlangt, dafd dem interaktiven
Benutzer einer Workstation mehr Rechenleistung zur Verfugung gestellt werden muf3
als anderen Anwendungen, die den Rechner lediglich als Knoten eines parallelen
Systems nutzen. Die Lastcharakteristiken von Workstation-Clustern zeigen bei starker
Uberlastung einzelner Rechner zu Spitzenzeiten und groRen Leerlaufzeitspannen auf
den meisten Knoten eine mittlere Gesamtsystemauslastung von unter 10% [Mutk92].
Wahrend Workstations bisher hauptsachlich als Entwicklungs-, Verwaltungs- und
Barokommunikationsmaschinen eingesetzt wurden, werden sie zunehmend flr grol3e
parallele Anwendungen aus dem Produktions- und Datenverwaltungsbereich genutzt.
Die wichtigsten Projekte zur automatischen Lastverteilung in Workstation-Clustern
sollen kurz charakterisiert werden.
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Das dezentrale VerfahrddEST[Ezza86] zur dynamischen Auftragsplazierung von
UNIX-Prozessen wurde fur Workstations realisiert. Migration laufender Prozesse ist
nicht moglich. Als Lastinformationen Gber Knoten werden die @RUqueue length

und der Prozessornutzungs-Zeitanteil ausgetauscht. Uber die Prozesse werden keil
Vorabinformationen verwendet.

Die UmgebungUtopia [Zhou92] weist UNIX-Prozesse bei ihrer Entstehung wenn
maoglich Workstations zu, die momentan frei sind, anstatt sie lokal zu starten. Migra-
tion laufender Prozesse ist nicht moglich, da heterogene Architekturen unterstttzt wer
den. Informationsverwaltung und Entscheidung ist innerhalb von Clustern dezentral
organisiert, wahrend die Kooperation zwischen Clustern durch jeweils einen Knoten
gebundelt ablauft. Zu Prozessen kann als Vorabschatzung mitgeteilt werden, ob si
vorwiegend Rechenzeit-, Hauptspeicher- oder Ein-/Ausgabe gebunden sind. Als Last
grofRen fur Zuweisungsentscheidungen kénnen die @iAlyueue lengthund CPU-
Nutzung, der freie Hauptspeicher, die Disk-Zugriffsrate, sowie die Anzahl der Benut-
zer betrachtet werden. Der verwandesk BrokerAnsatz [Graf93] kann weiterhin
geeignete Server fur Auftrage mit speziellen Anforderungen wie FlieRkomma- oder
Grafik-Beschleunigern beriicksichtigen. In diesem Ansatz sendet eine zentrale Balan
cierung pro Auftrag Anfragen an Knoten, die mit Angeboten antworten. Aus diesen
wahlt die Balancierung den bestgeeigneten Server. Auftrage werden in Warteschlange
aufbewahrt, bis ein geeigneter Server verfiigbar ist. Die Umgebaad Leveler
[IBM95] bietet verschiedene Warteschlangen fur Auftrdge mit verschiedenen Charak-
teristiken (Klassen). Bei Definition eines Auftrags kdnnen Ressourcenbeduirfnisse wie
Anzahl paralleler Prozessoren oder benétigte Dateien spezifiziert werden. Die Lastba
lancierung fuhrt Staisitken Uber den tatsédchlichen Ressourcenverbrauch der Klasse
und weist Auftrage so zu, dal3 die Knotenauslastung nicht zu hoch ist und die
Ressourcenbedurfnisse erflllt werden kdnnen.

Die UmgebundCondor|[Litz88] und die verwandte Umgebusprite[Doug91] bieten
dynamische Lastbalancierung von UNIX-Prozessen in homogenen Systemen, inden
sie grol3e Prozesse in Knoten-Warteschlangen verwaltet und auf Workstations starter
an der seit einer gewissen Zeit kein interaktiver Benutzer mehr tatig war. Ein zentraler
Koordinator Uberprift periodisch, welche Knoten verfligbar sind, und ebenso, ob
Benutzer ihre Workstations wieder interaktiv nutzen und |3t dort die Prozesse durct
einen Checkpoint-Restart Mechanism@oigdon bzw. durch Migration des Prozel3-
kontrollblocks und Umverlagerung der Speicherseiten bei Be8arit§ wieder auf

dem Ursprungsknoten zuriickverlegen. Die Umgebung PVM [PVM93] zur einfachen,
Plattform-unabhangigen Realisierung und Verwaltung paralleler Anwendungen, die
Uber Nachrichten kommunizieren, verfiigt ebenfalls Uber einen Prozel3migrationsme:
chanismus, der Prozesse von uberlasteten Workstations oder solchen, die wieder inte
aktiv genutzt werden, auf freie Workstations migriert [Casa94].
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Insgesamt stellen diese Ansétze simple, pragmatische Verbesserungen der Lastvertei-
lung in Workstation-Netzen dar. Im Vergleich zi#tiCon-Ansatz sind sie flr existie-

rende Anwendungen direkt einsetzbar, haben jedoch ein deutlich geringeres
Optimierungspotential, sind nicht fiir groRe, komplexe und parallele Anwendungen
ausgelegt und verfugen nicht tGber geeignete Modelle zur Berticksichtigung der Daten-
kommunikation.

4.3 Dezentrale Lastbalancierung fir Parallelrechner

Fur Parallelrechner mit groRer Anzahl von Knoten bzw. fiir grol3e parallele und ver-
teilte Systeme werden dezentrale Lastausgleichsverfahren entwickelt, die entweder die
Auftrage einer massiv parallelen Anwendung oder grof3e Zahlen unabhangiger Einzel-
auftrdge im System balancieren sollen. Wegen der hohen Frequenz von Auftragsein-
gangen und Auftragsbeendungen und der grol3en Knotenzahl soll Skalierbarkeit durch
vOllig dezentrale Ansatze garantiert werden, bei denen auf jedem Knoten Balancie-
rungskomponenten laufen, die mit Nachbarn Lastinformationen und Auftrdge austau-
schen.

In [LUI91] werden die wichtigsten dezentralen Ansatze vergleichend auf einem grof3en
Transputersystem fur eine baumstrukturierte parallele Anwendung simuliefar®ie
dientemethodgLin87] verwendet drei Lastzustdnde pro Knoten, basierend auf der
CPU run queue lengthKnoten informieren bei Lastzustandswechsel inre Nachbarn,
wobei jeder Knoten seine klrzeste Entfernung zu einem unterbelasteten Knoten angibt.
So konnen Uberlastete Knoten Auftrdge entlang des steilsten Gradienten in Richtung
des nachsten unterbelasteten Knotens absenden. Im Ver@weacting with Neigh-
borhood[Sale90] wandert jeder neue Auftrag eine gewisse Mindest- und Hochstzahl
an Knoten von seinem Ursprungsknoten weg und bleibt auf dem Knoten mit minimaler
Last. Der Suchradius kann adaptiv aufgrund der Gesamtsystemlast geregelt werden.
[Kale88] vergleicht obige Verfahren.

Insgesamt sind die dezentralen Verfahren uneingeschrankt skalierbar, da der Balancie-
rungsaufwand proportional zur festen Anzahl von Nachbarn je Knoten ist. Sie verwen-
den jedoch nur simple Lastmodelle, erreichen auch nur sehr langsam Lastausgleich
zwischen entfernten Teilen des Systems und neigen mangels zentraler Koordination zu
kontraproduktiven Entscheidungen (Abschnitt 2.5.3.2).
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4.4 Dynamische Lastbalancierung unter Verwendung von
Vorabinformationen

Dynamische Lastbalancierungsansatze, die Vorabschéatzungen nicht fur Client-Serve
Ablaufmodelle (Abschnitt 4.1), sondern fir das Modell unabhéangiger einzelner Pro-
zesse einsetzen, verwenden entweder beim interaktiven Programmstart vom Benutze
mitgegebene Hinweise wie Laufzeit, Eignung zur Migration oder CPU-, Hauptspei-
cher-, Ein/Ausgabebedarf [Graf93], oder fihren eine Liste der haufiger laufenden Pro-
grammdateinamen, deren Ablaufprofile sie beobachten und statistisch registrierer
[Gosw93]. Diese Statistiken kdnnen spater fur Vorabschatzungen wiederverwende
werden.

Der HiCon-Ansatz kombiniert beide Mdglichkeiten und kann durch Verwendung des

Client-Server Ablaufmodells akkuratere Auftragsprofilvorabschatzungen speziell fir
Serverklassen und deren Auftragstypen verwalten. Tatsachlich beobachtete Ausfiih
rungsprofile werden zur adaptiven Korrektur weiterer Vorabschatzungen verwendet.

4.5 Komplexe zentrale dynamische Lastbalancierung

Es gibt bisher nur wenige dynamische Lastbalancierungsverfahren, die detaillierte
Ablaufmodelle verwenden und komplexe Zuweisungsalgorithmen darauf anwenden.
Als wichtigster Ansatz soll das durch Simulation evaluierte Balancierungskonzept von
[Chow79] vorgestellt werden. Eine zentrale Lastverteilungskomponente tdbernimmt
die Zuweisung neuer Auftrdge. Es werden drei Strategien vorgeschlagen und vergli:
chen, die in etwa den zweiten bis vierten Optimierungskriterien aus Abschnitt 2.5.7
gerecht werden. Die erste Strategie minimiert die Antwortzeit der einzelnen Auftrage,
wobei gleiche AuftragsgroRen angenommen werden: Jeder Auftrag wird dem Prozes
sor zugewiesen, dessen Quotiemtahl laufender Prozesse / Prozessorleistang kleinsten

ist. Die zweite Strategie minimiert die Zeit, bis alle zur Zeit im System befindlichen
Auftrage einschlie3lich des neuen Auftrags beendet sind. Die Auftragsgréf3en sino
dabei vorab bekannt. Jeder Auftrag wird so zugewiesen, dal} die RestBalffteits-

langen seiner Auftrage / Prozessorleistugs Prozessors mit der lAngsten Restlaufzeit mini-
mal ist. Die dritte Strategie bendtigt zusatzlich Wissen Uber die Ankunftszeit des
nachsten Auftrags, und weist Auftrage so zu, dal’ der Systemdurchsatz bis zur nachst:
Auftragsankunft maximal wird: Jeder Auftrag wird so zugewiesen, dal3 die Summe der
Arbeit der Prozessoren bis zur nachsten Auftragsankunft maximal wird, wobei der
Arbeitsumfang eines Prozessors das Produkt aus Prozessorleistung und der Interva
l&nge ist, in der er Auftrage zur Bearbeitung hat.

Ansatze dieser Kategorie kommen dem Ablaufmodell und Balancierungskonzept des
HiCon-Modells sehr nahe, allerdings wurden solche Anséatze bisher nicht realisiert und
es fehlen geeignete Modellierungskonstrukte fir Datenkommunikation.
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5 Leistungsbewertung des Ansatzes

Das dem Lastbalancierungsansatz zugrundeliegende Ablaufmodell ist zu komplex, al:
dalR es durch geschlossene stochastische Modelle oder durch Simulationen bewert
werden konnte. Zahlreiche Effekte, die signifikanten Einflul3 auf den Bearbeitungver-
lauf im System haben, wirden aulRer acht gelassen. Vereinfachte synthetische Lastpr
file treffen bei weitem nicht das Verhalten komplexer realer Anwendungen. Komplexe
Anwendungen mit nichttrivialen Abh&ngigkeiten zwischen Auftrdgen bilden jedoch
den Anwendungsbereich des Lastbalancierungsansatzes. Die Leistungsbewertung sc
daher anhand einer prototypischen Laufzeitumgebung unter Belastung durch divers
reale Anwendungen erfolgen. In diesem Kapitel werden zuerst die prototypische Imp-
lementierung der Umgebung, danach realisierte Applikationen und schlie3lich einige
Mel3ergebnisse vorgestellt.

5.1 Die prototypische Lastbalancierungsumgebung

Die prototypische Lastbalancierungsumgebung soll hauptsachlich den Anforderunger
der Portabilitdt, eines moglichst simplen Laufzeitsystems, das die geforderte
Funktionalitat des Ablaufmodells realisiert, eines geringen Zusatzaufwandes gegen
uber unbalancierten Ablaufen und der Flexibilitat gegentiber verschiedenen zu inte:
grierenden Lastbalancierungsverfahren gentigen.

Aus Grunden der Portabilitdt wurde das UNIX-Betriebssystem als Plattform gewabhilt.
Wegen teilweise erheblicher Unterschiede in den Realisierungen des Betriebssysten
kerns verschiedener UNIX-Derivate basiert die Lastbalancierungsumgebung aus
schlie8lich auf standardisierten Systemaufrufen und verlangt weder besondere
Benutzerprivilegien, noch Modifikationen des Betriebssystems noch das Aufsetzen
spezieller Dienstprozesse. Die Implementierung wurde in der plattformunabhéngigen
Programmiersprache C durchgefthrt.

Da die Thread-Konzepte noch nicht durchgehend standardisiert bzw. noch nicht brei
verfigbar sind, wurde nur das Prozel3konzept verwendet; In Abschnitt 6.2 werden lau
fende Entwicklungsarbeiten an einem Thread-basierten Laufzeitsystem angesprochel
Aufgrund der hohen Kosten fiir ProzelRwechsel und Interprozel3kommunikation in
UNIX-Betriebssystemen wurden moglichst wenige Prozesse eingesetzt. So sind Teile
des Laufzeitsystems mit der Lastbalancierungskomponente zu einem zentralen Proze
zusammengebunden und andere Teile des Laufzeitsystems als Bibliotheken an die CI
ents und Server gebunden. Jeder Client und jeder Server ist als Prozel3 realisiert, und
Rechenknoten wird die Lastmessung durch einen weiteren Prozel3 dbernommen. |
dezentralen Konfigurationen existiert fur jedes Cluster ein Lastbalancierungsprozel3.
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Die InterprozelRkommunikation basiert auf der TCP/IP-Protokollfamilie, die derzeit als
einzige breit verfigbare Schnittstelle in heterogenen Systemen Kommunikation zwi-
schen Prozel3paaren ermoglicht. Da die Anzahl der moglichen Verbindungen je Prozel3
und je Rechenknoten beschrankt ist, wurde das verbindungslose UDP-Protokoll ver-
wendet, das schnelle, aber keine sichere, duplikatfreie oder Reihenfolge-erhaltende
Paketiibermittlung garantiert. Die Beschrankung auf eine einfache Kommunikations-
und Prozel3struktur erlaubt es, die Lastbalancierungsumgebung beliebig auf heteroge-
nen Workstation-Netzen unterschiedlicher Hersteller ablaufen zu lassen. Dies ist vor
allem wichtig, um Melreihen auf groRen Systemen und zwischen unterschiedlichen
Rechenzentren zu ermdglichen.

Die Laufzeitumgebung stellt den Anwendungen Serverklassen-Aufrufe und Resultat-
rickgaben sowie Sperranforderungen zum Zugriff auf globale Datensatze zur Verfi-
gung. Die Konvertierung globaler Datensatze der Anwendungen zum Versenden
geschieht durch anwendungsspezifische Ruckrufprozeduren in den Servern, wodurch
die Struktur der Hauptspeicher- oder Sekundarspeicherdaten vollig beliebig ist. Die
Lastbalancierung wird durch Ruckruffunktionen vom Laufzeitsystem Uber alle rele-
vanten Ereignisse informiert; sie kann beliebige Informationen Uber den System- und
Anwendungszustand verwalten und Auftrage, Prozessoren, Server sowie Nachbar-Clu-
ster fir Zuweisungs- oder Verschiebungsentscheidungen bewerten. Das Laufzeitsy-
stem und das Konzept der zentralen sowie Server-lokalen Auftragswarteschlangen
erlaubt es, der Lastbalancierung voéllig frei zu stellen, wann und wie sie die Auftrage an
Server zuweist oder an Nachbar-Cluster verschiebt. Zugewiesene Auftrage kdnnen
nicht mehr aus der Server-Warteschlange zuriickgenommen werden, sondern werden
vom Server irfirst-in-first-outReihenfolge bearbeitet. Laufende Auftragsausfiihrungen
konnen nicht suspendiert werden, sondern werden pro Knoten mit gleicher Prozel3prio-
ritat abgewickelt.

Melreihen werden durch ein Skript pro Cluster beschrieben und durch Start einer Last-
balancierungskomponente initiiert. Diese startet die Lastbalancierungskomponenten
fur die konfigurierten Nachbar-Cluster und die weiteren bendtigten Prozesse. Die Cli-
ents mussen nicht alle zugleich starten, sondern kénnen mit beliebigen Verzégerungen
relativ zum Startzeitpunkt der Mel3reihe ihre Anwendung beginnen. Dadurch sind
beliebige Mehrbenutzer-Betriebsszenarien realisierbar. Nachdem alle Clients ihre
Anwendungen fertig abgewickelt haben, terminiert der Mel3lauf. Wahrend eines Mel3-
laufs protokolliert jede beteiligte Lastbalancierungkomponente in komprimiertem For-
mat die wichtigsten Ereignisse in Dateien. Ein speziell entwickeltes
Prasentationswerkzeug ermoéglicht nach Mel3laufen die Auswertung dieser Protokoll-
dateien, um das Verhalten der Anwendungen und die Wirkung der Lastbalancierung zu
analysieren.
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Mehrbenutzerbetrieb und heterogen gemischte Lastprofile kénnen durch beliebige
Mischung von Anwendungen untersucht werden. Alle Anwendungen kdnnen dabei
jeweils mehrfach zugleich ablaufen, auf gemeinsamen globalen Daten und auf anwer
dungseigenen globalen Daten arbeiten. Die Server sind in der Lage, wechselnd Auf
trage verschiedener Anwendungen (ihrer Klasse) zu bearbeiten und verwenden dab
automatisch die betreffenden globalen Datenséatze.

Da die Lastbalancierung als Betriebssystemdienst betrachtet wird, sollte sie alle irr
System laufenden Auftrage kennen. In der prototypischen Umgebung konnen jedoct
auch Prozesse im System laufen, die nicht tber die Balancierungsumgebung gestart
wurden. Sie werden von der Lastbalancierung nur implizit als Stérlast wahrgenommen

Die zentral strukturierte Lastbalancierung bringt in der prototypischen Realisierung
Zeit- und Kommunikationsaufwand mit sich, der bei geeigneter Einbettung in ein ver-
teiltes Betriebssystem entféllt. Die Erweiterungen flr die dezentrale Struktur der Last-
balancierung sind vom Zeit- und Kommunikationsaufwand her einer realistischen
Implementierung ahnlich. Fir die Ablaufe in der zentralen Lastbalancierung sind daher
folgende Punkte zu beachten:

1. Bei Einbettung in ein Betriebssystem entstehen keine nennenswerten Nachrichter
kosten durch die Kooperation zwischen Anwendungsprozessen und Laufzeitsysten
oder zwischen Laufzeitsystem und Lastbalancierung innerhalb eines Rechenkno
tens. In der prototypischen Umgebung kommunizieren die Anwendungsprozesse
hingegen durch Nachrichten untereinander und mit dem zentralen Prozel3, der Teil
des Laufzeitsystems und der Lastbalancierung enthalt. Dabei sind Nachrichter
innerhalb eines Rechenknotens nur unwesentlich weniger aufwendig als Nachrich:
ten zwischen verschiedenen Rechenknoten.

2. Bei geeigneter Einbettung in ein Betriebssystem konnen die Anwendungen inner-
halb eines Rechenknotens Dateien und Speicherblécke gemeinsam benutzen. Ii
verwendeten Prototyp wird die Datenverwaltung hingegen auf Server-Ebene durch-
gefuhrt, d.h. Server auf demselben Knoten tauschen Speicherbereiche und Dateie
ebenso durch Nachrichten aus, wie es tber Knotengrenzen hinweg notwendig ist.

3. Die Komponente des Laufzeitsystems, die den Zugriff auf virtuell gemeinsame
Daten koordiniert, sollte als separater Dienst im Betriebssystem angesiedelt werder
Die prototypische Realisierung schleust hingegen alle Anforderungen an nicht-
lokale Daten durch den zentralen Prozel3, der gleichzeitig Lastbalancierugsfunktio-
nen Ubernimmt und daher durch haufige Datenbewegungen erheblich gestért werde
kann. Er arbeitet Anforderungen an globale Datenséatze, die er jeweils an den aktuel
len Besitzer der Daten weiterleitet, nach dinst-in-first-out Prinzip mit gleicher
Prioritat ab wie neue Auftrage, Resultate oder Lastinformationen.
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5.2 Untersuchte Anwendungstypen

Der Schwerpunkt der hier vorgestellten Untersuchungen liegt auf der Lastbalancierung
fur grol3e, parallelisierte Anwendungen. Daher werden keine kleinen oder sequentiel-
len, unkorrelierten Auftrage bzw. Prozesse untersucht, sondern Anwendungen, deren
Teilauftrage auf gemeinsamen Daten operieren, wobei die Datenkommunikation einen
nicht zu vernachlassigenden Anteil an den Gesamtkosten der Bearbeitung einnimmt.
Weiterhin kénnen die Anwendungen konkurrierend auf globalen, persistenten Daten
arbeiten. Die Zielumgebung ist weniger der in heutigen Workstation-Netzen und an
Universitaten charakteristische Entwicklungs-, Ubungs-, Test- und Verwaltungsbe-
trieb, sondern mehr der Produktionsbetrieb. Dabei soll das Rechnernetz aus Workstati-
ons und lose gekoppelten Parallelrechnern nicht flr einzelne Anwendungslaufe
reserviert sein, sondern durchaus fur gemischten Betrieb konkurrierender grof3er
Anwendungen zur Verfiugung stehen. Das Konzept der Serverklassen wiliCan

Modell neben dem klassischen Einsatzbereich in Datenbankanwendungen auch ftr
numerische Algorithmen eingesetzt. Die untersuchten Anwendungen wurden dahinge-
hend ausgewahlt, dal} sie einen breiten Bereich an Lastprofilen abdecken und unter-
schiedliche Schwierigkeiten flr automatische dynamische Lastbalancierung
aufweisen.

5.2.1 Parallele Wegesuche in gerichteten Graphen

Diese Anwendung sucht in einem gerichteten Graphen, dessen Kanten unterschiedli-
che Langen besitzen, den kirzesten Weg zwischen zwei vorgegebenen Knoten. Zur
Lésung wurde eine Breitensuche ausgewahlt. Ein Client steuert die Suche vom Start-
punkt zum Ziel folgendermal3en: Er ruft die Such-Serverklasse auf mit einer Liste von
Knoten, die zuletzt erreicht wurden. Am Anfang enthéalt diese Liste nur den Startkno-
ten. Die Such-Server finden die Knoten, die in einem Schritt direkt erreichbar sind, und
geben diese Liste zuriick. Der Client tragt die Ergebnisse in seine Tabelle der erreich-
ten Knoten ein und startet mit den neu entdeckten oder gunstiger erreichten Knoten
neue Suchauftrage. Der Graph ist in Form mehrerer Dateien abgespeichert. Eine Datei
enthalt jeweils alle Kanten, die von einem bestimmten Knotenbereich ausgehen
(Abbildung 19 veranschaulicht links die Aufteilung eines Graphen). Jede Datei bildet
einen Datensatz bezuglich der Lastbalancierung, ist also das Granulat der Verteilung
und Synchronisation. Da der Graph wahrend der Suche statisch ist, lohnt es sich, zum
parallelen Suchen Kopien an die Server zu verteilen. Der Client teilt neue Auftrage so
ein, dal3 jeweils alle Startknoten eines Partitionsbereichs zu einem Aufruf gebindelt
werden. Abbildung 19 skizziert in der Mitte und rechts den Ablauf zweier
Suchschritte.
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Abbildung 19: Aufteilung der Graphdaten und der Aufrufe in der Wegesuche.
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Abbildung 20: Typisches Ablaufschema der Auftrage einer Wegesuche.

Charakteristisch fur diese Anwendung sind die wellenweise erscheinenden Auftrage
(Abbildung 20) mit wechselnder, von der Struktur und Lokalitat des Graphen abhangi-
ger Parallelitat. Es werden nur lesende Zugriffe auf gemeinsame Daten durchgefthrt
da der Suchzustand jeweils vom Client verwaltet wird; ansonsten tritt keine Datenkom-
munikation auf. Die Anwendung ist sehr rechenintensiv, das mittlere Auftragsgranulat
ist einstellbar; es schwankt stark, ist aber relativ prazise vorhersehbar. Datenreferenze
sind exakt vorhersehbar. Die Anwendung ist gut parallelisierbar, da sie, abgesehen vo
der Synchronisation durch den Client, kaum Netzlast und Wartezeiten durch Ande-
rungsoperationen auf gemeinsamen Daten enthalt. Lediglich das Auftragsgranulat un
die Synchronisation nach jedem Suchschritt begrenzen die sinnvoll nutzbare
Parallelitdt. Das Hauptproblem fir die Lastbalancierung besteht darin, innerhalb einel
Iteration die Auftrage so auf die Prozessoren zu verteilen, dal3 alle mdglichst gleichzei
tig fertig werden, um die potentielle Parallelitat maximal zu nutzen.

In Messungen werden Auftragslaufzeiten im Bereich 1...20 Sekunden beobachtet. Die
20 Dateien des Graphen haben eine mittlere Grél3e von 15 KBytes. Gesucht wird de
kirzeste Weg zwischen zwei Graphknoten auf einem Graphen mit 1000 Knoten unc
200000 Kanten, der so generiert wurde, dal3 im Mittel 90% der Kanten zwischen Kno-
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ten derselben Graph-Partition verlaufen. Dieses Mal3 an Lokalitat im Graphen hat star-
ken Einfluld auf das Parallelisierungs- und auf das Lastbalancierungspotential: Wenn
sich die Suche innerhalb eines Schrittes sehr zerstreut, d.h. die Liste der erreichten
Knoten viele Knoten aus verschiedenen Partitionen beinhaltet, entsteht eine Vielzahl
sehr kleiner Folgeauftrage.

5.2.2 Parallele Flachenerkennung in Punktrasterbildern

Aufgabe der Flachensegmentierung ist es, ein gegebenes Punktrasterbild in eine
Menge homogener Flachen (Polygone) zu konvertieren. Dieser Vorgang ist gewohn-
lich die erste Phase einer Bilderkennung. Eine Flache soll farblich beieinander lie-
gende Punkte mit einem kleinen Anteil von Ausnahmen enthalten. Der verwendete
Algorithmus besteht aus vier Schritten (Abbildung 22): Ausgehend von einer initialen
Rasterung wird versucht, benachbarte Quadrate zusammenzufassen (Square Merge),
sofern das neue Quadrat eine homogene Flache ergibt. Parallel dazu werden die Qua-
drate solange verfeinert (Square Split), bis jedes Quadrat eine homogene Flache ent-
halt. Danach werden soviel als mdglich benachbarte Quadrate zu beliebigen Polygonen
zusammengefaldt (Polygon Merge). In der letzten Phase werden die Kantenzlige
berechnet, welche die Polygone umgeben (Boundary Search). Abbildung 21 veran-
schaulicht das parallele Ablaufprinzip einer Flachensegmentierung.

]
B Quad-Merge unC1 Quad-Split Merge Update Boundary-Trage

Abbildung 21: Paralleler Ablauf einer Flachenerkennung.

Im wesentlichen werden zwei globale Datenstrukturen verwendet: Ein zweidimensio-
nales Datenfeld enthalt fir jeden Bildpunkt die Farbe und die derzeitige Zuordnung zu
einer Flache; eine Liste enthélt fir jede Flache statistische Informationen (Farbmittel-
wert und Anteil der einzelnen Farben) bzw. eine Zugehdorigkeit zu einer anderen Fl&-
che.
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Abbildung 22: Schritte des Bildsegmentierungs-Algorithmus.

Split- und Merge-Operationen sind meist sehr feingranular (wenige Millisekunden).
Daher werden sie soweit mdglich nach Bildsegmenten zusammengefaldt und jeweils i
einem Aufruf bearbeitet. Dennoch ist die Anzahl und das Granulat der Auftrédge stark
von der jeweiligen Bildstruktur abhangig und beeinflut die sinnvoll nutzbare

Parallelitat. In der Polygon-Merge-Phase ist es nicht mehr so gut moglich, die Opera:
tionen auf disjunkte Bildteile anzusetzen, da die Polygonformen beliebig sind. Das ver-
ursacht je nach Bildstruktur starke Datenkommunikation und schrankt die Parallelitat
ein. Dieselbe Beobachtung gqilt auch fir die anschlieBende Berechnung der
Polygonréander.

Die Anwendung besteht insgesamt aus mehreren aufwendigen Phasen mit sehr unte
schiedlichen Profilen. Insgesamt und innerhalb mancher Phasen treten sehr unte
schiedliche AuftragsgrofRen auf. Die Auftrdge verursachen sehr viele Datenzugriffe auf
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grof3e Mengen von Daten, viele davon schreibend. Die Datenzugriffe sind in manchen
Phasen schwer vorhersehbar. Die Flachenerkennung ist nicht beliebig hoch paralleli-
sierbar, da kurzlaufende Auftrage oft schreibend auf Daten zugreifen, die nicht disjunkt
partitioniert werden kénnen. Die Synchronisationspunkte zwischen den Phasen schran-
ken hier die Parallelisierung nicht wesentlich ein. Die Anwendung ist schwer automa-
tisch auszubalancieren, weil die AuftragsgrofRen und Datenreferenzen von der
Bildstruktur abh&ngen und nicht prézise vorabsehbar sind, andererseits aber die
Lokalitat der Datenzugriffe groRen Einfluld auf die Laufzeit hat, und weil die
Parallelitat in der ersten Phase unstrukturiert und unvorhersehbar grol3 ist.

Fur die Messungen gelten folgende GrolRenordnungen: Das Datenfeld der Bildpunkte
besteht aus 900 Partitionen zu je 256 Bytes, die Liste der ca. 3300 entstandenen Fla-
chen ist in 410 Blocke der Gréf3e 1400 Bytes partitioniert. Die Bearbeitungszeit pro
Auftrag liegt zwischen 0.1 und 20 Sekunden. Von der Gesamtrechenzeit entfallen etwa
15% auf die Phase Square-Merge und -Split, 75% auf Polygon-Merge und 10% auf die
Phase Boundary-Search.

5.2.3 Parallele Verarbeitung komplexer relationaler Anfragen

Der relevante Anteil an Rechenaufwand und Ein-/Ausgabe-Aufwand in der kommerzi-
ellen Datenverarbeitung besteht im Auffinden, in der Verkntpfung und in der Filterung
sowie Modifikation von Daten in einer Menge grol3er, inhaltlich korrelierter Datenbe-
stande. In relationalen Datenbankverwaltungssystemen werden aufwendige Operatio-
nen auf groRen Datenmengen in einer deskriptiven, mengenorientierten Sprache
interaktiv oder in Anwendungsprogrammen formuliert. Diese Operationen werden
automatisch in einen Satz sehr einfacher Grundoperationen konvertiert, die vom
Datenbanksystem zur Laufzeit ausgeftihrt werden kdnnen.

Im Rahmen eines Anwendungsszenarios werden derartige Operationen ausgefuhrt. Die
Grundoperationen bestehen hier im wesentlichen aus folgenden vier Typen: die Scan-
Operation durchsucht groRe Datenmengen (Ublicherweise Dateien oder Relationen)
nach Datensatzen, die bestimmte Bedingungen erflllen. Die Projektion filtert aus gro-
Ren Datenmengen die relevanten Eigenschaften (Attribute) der Datenséatze heraus. Die
Verbundoperation verknipft verschiedene Datenmengen aufgrund eines bestimmten
Kriteriums, d.h. bildet inhaltlich zusammengehdrige Paare von Datensétzen. Die Lade-
operation fligt groRe Mengen neuer Datensétze in die Datenbank ein.

Die Grundoperationen héngen teilweise voneinander ab und tauschen grol3e Mengen
von Daten (Zwischenresultate) aus. Anfragelbersetzer und -optimierer zerlegen
deskriptiv vorgegebene, komplexe Operationen funktional und erzeugen eine Struktur
von Auftragen, die funktionale Parallelitdt und auch Datenparallelitat innerhalb der
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Grundoperationen enthalten kbnnen. Zur Ausnutzung der Datenparallelitat werden die
Basisrelationen sowie die Zwischenergebnisse nach Attributwertebereichen auf ver
schiedene Dateien partitioniert. Reihenfolge-Abh&ngigkeitsgraphen sind in diesem
Bereich meist baumstrukturiert.

Die parallele Ausfiihrung solcher Operationen ergibt charakteristische Lastprofile fur
kommerzielle Datenverarbeitung, die als Basisdienste flr verschiedenartige Anwen-
dungen verwendet werden. Fir die Lastbalancierung solcher Profile konnen die Auf-
tragsgraphen, meist mit Abschatzungen tber die Grol3en und die Datenreferenzmust
der einzelnen Auftrage bereits zu Beginn der Bearbeitung der komplexen Operatior
verwendet werden, da sie von Anfrageibersetzern und Anfrageoptimieren generier
und abgeschéatzt wurden. Statische Lastbalancierung zur Ubersetzungszeit ist jedoc
unzureichend, wenn sich die Grof3en der Basisrelationen und in Folge der Rechenau
wand der Auftrage im laufenden Betrieb dndern, wenn die Systemauslastung schwank
und wenn sich die Lageorte der Daten im System dynamisch &ndern. Dynamisch
Anfrageoptimierung ist notwendig, stellt aber derzeit noch ein aktuelles Forschungs-
thema dar [Grae93], [Cole94].

Die realisierte Anwendung ermdglicht die Ausfihrung beliebiger als Auftragsgraph
strukturierter, komplexer relationaler Anfragen und Ladeoperationen. Als Grundopera-
toren sind die oben erklarten Scan-, Projektion-, Verbund- und Ladeoperationen au
Relationen verfligbar. Die unten vorgestellten Messungen basieren auf der Ausftihruns
der folgenden Anfrage (in der Notation der relationalen Algebray @41>15000R0)
X20=a0R1) Xa0=20(M20(031>108%2)). Abbildung 23 zeigt links den Operatorbaum einer
Beispielanfrage und rechts den Abhangigkeitsgraphen einer méglichen Daten-paralle
lisierten Ausfiihrung des Auftragsgraphen.

Ro »R;=0Ry

Y

RS:R3XR1

R2 e R4=0'R2 —p RG:I_I R4

Abbildung 23: Operatorbaum und Ausfiihrungsgraph fur das Beispielszenario.
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5.2.4 Datenbankoperationen auf geometrischen Objekten

Die vierte realisierte Anwendung fiihrt geometrische Operationen auf Polygonen
durch. Polygone werden in Relationen abgespeichert; zu jeder Polygon-Relation wird
zusatzlich ein R-Baum verwaltet, der inhaltsbezogene Zugriffe beschleunigt. Dies ist
eine in datenbankbasierten CAD-Systemen und geographischen Anwendungen ubliche
Struktur, die inhaltsbezogene Zugriffe wie Selektionen oder Verbundoperationen mit
raumlichen Suchpradikaten wie Uberlappung, Enthaltensein oder Hochstabstand zwi-
schen geometrischen Objekten effizient ermdglicht.

Sowohl die Polygone einer Relation als auch die Knoten des zugehdérigen R-Baums
sind partitioniert und auf verschiedene Dateien verteilt. Abbildung 24 skizziert einen
R-Baum, wobei die Rechtecke die Partitionierung der Daten angeben. Die Anwendung
realisiert eine Mischung von Einflige- und Verbundoperationen auf mehreren Polygon-
Relationen, die gro3tenteils parallel ablaufen dirfen. Das Aufsuchen und Kombinieren
von Tupeln besteht nur aus lesenden Zugriffen auf die Zugriffs- und Datenstrukturen.
Diese Operationen kdnnen durch Verteilung der Polygone und der passenden R-Baum-
Teile bzw. durch Anlegen von Kopien effizient parallelisiert werden.

Charakteristisch sind fur diese Anwendung die wellenweise auftretenden Auftrage,
denn die graphische Aufbereitung und geometrische Manipulation komplexer Objekte
in hdheren Anwendungsschichten resultiert auf Datenbankebene in einer Vielzahl von
Scan- und Verbundoperationen. Das Laden und Generieren geometrischer Konstruktio-
nen erzeugt eine Reihe von Einflgeoperationen einfacher Grundobjekte im Daten-
banksystem. Fir die Evaluierung wurden daher zwei Auftragstypen, die
Einfligeoperation und die Verbundberechnung, realisiert. Die Parallelitat sowie der
Ablauf und die Auftragsgrof3en sind relativ frei konfigurierbar, da es sich bei der vor-
liegenden Anwendung nur um ein Ablaufskript handelt. eine in der Praxis darauf auf-
setzende Anwendung wie z.B. CAD wurde nicht realisiert, sondern nur deren typische
Anfrageformen an die Datenverwaltung nachgebildet. Die Einflgeoperationen sind
sehr kleine Auftrage, die Anderungen auf mehreren globalen Datensatzen durchfiihren.
Die genauen Datenreferenzen sind schwer vorherzusagen. Die Verbundberechnungen
bilden sehr grol3e Auftrage, da jede Verbundberechnung sequentiell ablauft. Der
Rechenaufwand und die Datenreferenzen sind auch hier schwer vorhersehbar, aber es
wird nur lesend auf Daten zugegriffen und der Rechenaufwand ist im Vergleich zum
Datenkommunikationsaufwand recht grof3. Im allgemeinen lohnt sich daher eine belie-
bige Parallelisierung mehrerer anstehender Verbundoperationen. Die Einfligeoperatio-
nen sind daher datengebunden, die Verbundoperationen eher rechenleistungsgebunden.

Bei Einfligeoperationen missen Zugriffs- und Datenpartitionen modifiziert werden. Im
Gegensatz zu eindimensionalef+Baumen beschranken sich die Anderungen meist
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Abbildung 24: Verteilte Datenstrukturen zur Verwaltung der Polygone.

nicht auf die Blatter, sondern die umgebenden Rechtecke mussen relativ weit del
Baum hinauf angepaldt werden. Parallele Einfligeoperationen verlangen daher von de
Lastbalancierung gute Ausnutzung der Datenaffinitat und schranken die Anzahl dei
Datenkopien ein. Ein weiteres Problem besteht darin, daf3 Einfligeoperationen seh
feingranular sind, wahrend Verbundoperationen relativ grol3e, jeweils sequentielle,
Auftrage sind. Fur die Messungen werden insgesamt 5 * 510 Polygone eingefiigt und *
* 3 Verbunde mit rAumlichen Pradikaten berechnet; Abbildung 25 zeigt das Ablaufpro-
fil, das ein Client erzeugt. Die Auftragsgréf3en schwanken zwischen 2 und 700 Sekun
den. Die Polygone sind in 27 Dateien zu je ca. 10 KBytes partitioniert, die

Zugriffstrukturen belegen 350 Dateien einer Gréfl3e um je 100 Bytes.

| \
>

Einfige-  Einflge-

operationen operationen raumliche Verbundberechnungen

Abbildung 25: Mdéglicher Ablauf einer Anwendung auf R-Baumen.

5.2.5 Parallele Spannungsberechnung nach der Methode der finiten
Elemente

Die Methode der finiten Elemente wird vor allem in der Mechanik und Thermodyna-
mik angewandt, um das Verhalten von Konstruktionen und Kdrpern unter Einwirkung
von Kraften und Temperatureinflissen durch Simulation zu untersuchen. Die zu unter:
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suchenden Gebilde werden geeignet in eine Vielzahl kleiner Elemente zerlegt. Inner-
halb der Elemente und zwischen benachbarten Elementen werden die physikalischen
Gesetze, die gewoOhnlich durch Differentialgleichungen spezifiziert sind, mit Hilfe von
numerischen Naherungsverfahren berechnet. Dies flihrt insgesamt zu einem grof3en
Gleichungssystem, das die EinfluRgréfien der Einzelelemente aufeinander enthéalt. Die
Losung des Gleichungssystems ergibt einen Ergebnisvektor, der die Verschiebungen,
Spannungen, Dricke oder Temperaturen der einzelnen Elemente des Gebildes enthalt.

Die Berechnung der gegenseitigen Einflisse der einzelnen Elemente auf das Gesamt-
system hangt sehr stark vom betrachteten physikalischen Problem, von der Struktur der
Elemente, der Art der Randbedingungen und dem Grad der Ansatzfunktionen zur
naherungsweisen Ldsung der durch Differentialgleichungen beschriebenen Gleichge-
wichtsbedignungen ab. Hier wurde ein einfaches Problem mit einem einzigen Ele-
menttyp und linearen Ansatzfunktionen betrachtet: Es werden Spannungen und
Dehnungen an einem Stab berechnet, der an einer Seite fixiert ist, und auf der anderen
Seite belastet wird. Die Belastung und Verteilung der Fixknoten, die Ausmalie des
Stabs und das Granulat der Diskretisierung konnen variiert werden. Die Lésung des
grofRen Gleichungssystems erfolgt, zumindest in parallelen Implementierungen, bli-
cherweise durch das iterative Naherungsverfahren der konjugierten Gradienten. Die
parallelisierte Anwendung realisiert kein generisches Finite-Elemente-Berechnungspa-
ket, sondern die Berechnung eines speziellen Problems und L&sungsansatzes. Um
andere Problemstellungen zu I6sen, mul3 jedoch lediglich das Modul zur Berechnung
der Einflisse der einzelnen Elemente und die Module zur Bertcksichtigung der Lasten
und der Randbedingungen (die unten beschriebenen ersten drei Schritte) ausgetauscht
werden. Das Laufzeitverhalten des speziellen Szenarios ist charakteristisch fur alle
Berechnungen nach der Methode der finiten Elemente; Variationen kénnen nur im
Zugriffsmuster auf die globale Matrix des Gleichungssystems bei den ersten drei
Schritten auftreten, da es vom Numerierungsschema der Elemente und Knoten, von der
Geometrie der Korper und von der Kardinalitdt der Nachbarschaftsbeziehungen
abhangt.

Weiterhin wird hier nur eine statische Berechnung durchgefiihrt. Bei Berechnung von
zeitabhangigen Vorgangen ist diese Berechnung fiir jeden Zeitschritt wiederholt durch-
zufihren.

Eine Berechnung besteht im wesentlichen aus 5 Schritten, die nacheinander ausgefiuhrt
werden (Abbildung 26):

1. Einlesen der SzenenbeschreibuHger werden die Elemente und Knoten des Kor-
pers aus einer Datei eingelesen. Aul3erdem wird der Einflul3 der Lasten, d.h. der von
aulR3en auf die Knoten einwirkenden Krafte, berechnet.
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Abbildung 26: Ablauf einer Berechnung nach der Methode der finiten Elemente.

2. Elementberechnundriir jedes Element des diskretisierten Korpers wird sein Einflul3
auf das Gesamtsystem berechnet. Das Granulat der Parallelitat kann durch eine Kot
stante eingestellt werden, die angibt, wieviele Elemente durch je einen Auftrag
berechnet werden.

3. Berucksichtigung der Randbedingungdn verwendeten Szenario missen die Ein-
flisse der fixierten Knoten auf das System einbezogen werden.

4. L6sung des linearen GleichungssysteDss Gleichungssystem beschreibt das glo-
bale Kraftegleichgewicht und ergibt die Verschiebungen und damit Spannungen unc
Dehnungen der Einzelelemente. Diese Phase besteht aus einer Sequenz von Iterat
nen, bis der verbleibende Fehler klein genug ist. Die Anzahl der notwendigen ltera-
tionen ist problemabhangig. Jede Iteration besteht aus folgender Sequenz vol
Berechnungsschritten, wobei jeder Schritt in eine Menge paralleler Auftrage aufge-
spalten ist; Das Granulat der Parallelitat kann wiederum durch eine Konstante einge
stellt werden kann, die angibt, wieviele Zeilen bzw. Spalten der Matrix und der
Vektoren in je einem Auftrag berechnet werden.

4.1.Eine Matrix-Vektor-Multiplikation, die nach Zeilen der Matrix parallelisiert ist. Es
werden nur die tatsachlich von Null verschiedenen Elemente der diinnbesetzten
Matrix multipliziert. Dieser Schritt ist der aufwendigste der drei Teilschritte. Die
Teilschritte 4.2 und 4.3 sind vor allem deshalb parallelisiert, um die Verteilung der
Daten weiter zu nutzen und nicht alle Daten an einen zentralen Knoten schicken zu
mussen.

4.2.Zwei Skalar-Vektor-Multiplikationen zur Aktualisierung des Verschiebungsvektors
und des Gradientenvektors und ein Skalarprodukt zur Bestimmung des Residuums
Diese Operationen sind ebenfalls nach Zeilen der Vektoren parallelisiert. Sie kon-
nen jedoch nicht unmittelbar an die entsprechenden Berechnungen des Schritts 4.
gehangt werden, weil der bendtigte Faktor erst am Ende aller Teilberechnungen
von Schritt 4.1 feststent.

4.3.Zwei Vektor-Vektor-Additionen und eine Skalar-Vektor-Multiplikation zum Voran-
schreiten des Ldsungsvektors entlang des Gradienten. Auch diese Operationen sin
nach Zeilen der Vektoren parallelisiert und kbnnen nicht unmittelbar an die ent-
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sprechenden Berechnungen des Schritts 4.2 gehangt werden, weil der bendtigte
Faktor erst am Ende aller Teilberechnungen von Schritt 4.2 feststeht.

5. Berechnung der Spannungen und Dehnungen in den einzelnen Eleni#agen
Phase wird wiederum als ein einziger sequentieller Auftrag realisiert, da sie verhalt-
nismalfig wenig Zeit beansprucht.

Abbildung 27 zeigt das Ergebnis einer Berechnung. Die Spannungen sind durch Hel-
ligkeitsabstufungen visualisiert, wobei dunkle Farbung starke Spannung bedeutet.

Abbildung 27: Visualisierung der berechneten Spannungen eines Beispielstabs.

Die globalen Daten fir eine Berechnung bestehen aus folgenden Strukturen (die
gemeinsamen Datenstrukturen sind in Blocke mit je einer festen Anzahl an Elementen
pro Block partitioniert, um paralleles Arbeiten auf den Daten zu ermdglichen):

- Beim Einlesen der Szenenbeschreibung aus einer Datei wird eine Liste der Knoten
(Koordinaten und ein Indikator, ob fixiert oder beweglich), eine Liste der Elemente
(mit je 8 Eckknotennummern), und ein Kraftvektor (Krafte, die auf die Knoten ein-
wirken) erzeugt. Weiterhin wird die globale Steifigkeitsmatrix in einer fr dinnbe-
setzte Matrizen optimierten Speicherungsform angelegt: Fiur jeweils K Zeilen
werden nur die von Null verschiedenen Elemente in einer Liste gespeichert.

- Wahrend der Elementberechnungen werden die Einflisse der Elemente in der globa-
len Steifigkeitsmatrix aufsummiert (assembliert).

- Fur die Losung des Gleichungssystems werden drei Vektoren bendtigt. Der Residu-
envektor enthélt den Restfehler wahrend der Gleichungslésung. Fir den Relaxati-
onsrichtungsvektor wird der Kraftvektor weiterverwendet. Zur
Zwischenspeicherung des Matrix-Vektor-Produktes wird ein weiterer Vektor als glo-
baler Datensatz verwendet. Weiterhin wird ein Vektor flr das Ergebnis initialisiert,
der die Verschiebungen der Knoten enthalt. Er wird wahrend der L6sung des Glei-
chungssystems iterativ korrigiert.

Diese Anwendung verlangt von der dynamischen Lastbalancierung, daf’ die paralleli-
sierten Schleifen moglichst gleichméafig auf die Knoten verteilt werden, um abfallende
Parallelitdt vor Synchronisationspunkten zu vermeiden. Andererseits sollte durch Wie-
derverwendung derselben Server fur Indexbereiche Datenaffinitat genutzt werden, da
die Auftrage teilweise relativ kurz sind, aber grof3e Datenmengen modifizieren.
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5.3 Leistungssteigerung durch dynamische Lastbalancierung

Die tatsachlich erreichte Leistungssteigerung durch ein dynamisches Lastbalancie
rungskonzept mufd durch Vergleich mit unbalancierten Ablaufen bewertet werden. In
den haufiger anzutreffenden dezentralen Lastbalancierungsverfahren erhélt man unb:
lancierte Referenzablaufe, indem man jeden Auftrag auf dem Knoten ausfiihren laf3t
auf dem er initiert wurde. Wenn auf dem System jedoch nicht nur unkorrelierte
sequentielle Auftrage, sondern auch parallele Anwendungen ablaufen, ist es bereit
schwieriger, einen geeigneten unbalancierten Ablauf zu erhalten. Wenn solche Anwen
dungen bereits einen eigenen \erteilungsmechanismus enthalten, so muf3 die Le
stungssteigerung des automatischen Lastbalancierungsverfahrens gegentber dies
vorhandenen anwendungsinternen Mechanismen bewertet werden. Parallele Anwer
dungen, die selbst keine Auftragsverteilung vornehmen, bendtigen einen Lastvertei:
lungsmechanismus; hier kénnen zum \Vergleich nur triviale, primitive
Balancierungsverfahren betrachtet werden. Das gilt auch fur zentrale Lastbalancie
rungsverfahren wie inHiCon-Konzept: Bei zentralen, nicht-preemptiven Lastbalan-
cierungsverfahren gibt es den unbalancierten Fall von Natur aus nicht, sonderr
Auftrdge konnen nur mit mehr oder weniger aufwendigen Strategien zugewiesen wer:
den. Auch wenn Auftrage lokal, d.h. auf ihrem Entstehungsknoten, bearbeitet werden
gehen sie den Weg Uber die zentrale Lastbalancierungskomponente. Ein Grundau
wand ist daher stets vorhanden (Abschnitt 5.4), und eine einfache Lastverteilung durcl
Reihum-Zuweisung oder Zufallsverteilung zeigt in vielen Fallen bereits eine deutliche
Verbesserung gegenuber unbalancierten Ablaufen in dezentralen Ansétzen.

In diesem Abschnitt soll die tatsachlich erreichbare Leistungssteigerung des zentralel
Balancierungskonzepts imiCon-Modell fiir jeden Anwendungstyp und fur Mischla-
sten evaluiert werden. Das Potential zur Durchsatzsteigerung durch die dezentral
Balancierungsstrategie iiCon-Modell wird lediglich in Abschnitt 5.5 grob evalui-

ert.

Die Anwendungen werden jeweils alleine sowie im MehrbenutzerbetriebHitten
Lastbalancierung, mit simpler Lastbalancierung (zuféallige Verteilung der Auftrage)
und ohne Lastbalancierung beobachtet. Ohne Lastbalancierung lauft jede Anwendun
sequentiell auf dem Knoten des Client ab. Im Mehrbenutzerbetrieb wurde im Falle der
Flachenerkennung und der Datenbankoperationen bereits eine recht gunstige, d.|
balancierte Situation vorgegeben, da jeder Client, d.h. jede der Anwendungen, au
einem einzelnen Knoten ablief. Die Prozessoren sind jedoch unterschiedlich leistungs
fahig. Bei der Finite-Elemente-Berechnung wurde im Mehrbenutzerbetrieb ein Lastun-
gleichgewicht vorgegeben, indem nur auf dreien der fiunf Knoten Anwendungen
gestartet wurden. Als Rechnersystem wurde das in Abbildung 28 links oben gezeigte
heterogene Workstation-Cluster gewahlt. Im Bild sind auch die real gemessenen Lauf
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zeiten der Anwendungen gegentber gestellt. Im Mehrbenutzerbetrieb ergibt sich die
Zeit fur den unbalancierten Ablauf aus der Zeit fur die Anwendung auf dem langsam-
sten Knoten; Die unbalancierten Einzelanwendungen wurden hingegen auf einem
Knoten mittlerer Leistung gemessen.

Eine Zufallsverteilung erbringt durch die Parallelitat bereits eine starke Beschleuni-
gung aller einzelnen Anwendungen sowie des R-Baum-Operationsmixes (eine Folge
jeweils 100 parallelen Polygon-Einfligeoperationen, abgeschlossen von 15 parallelen
aufwendigen Verbundoperationen). Dennoch kann die Lastbalancierung durch Beruck-
sichtigung der unterschiedlichen Rechnerleistungen, der tatsachlichen aktuellen
Systemlast, der verschiedenen Auftragsgrof3en und der Datenkommunikation zwischen
den Servern eine weitere Verbesserung um 24% (Bilderkennung), 16% (FE-Berech-
nung), 44% (Datenbank) bzw. 31% (Wegesuche) erreichen. Die Verbesserung um wei-
tere 10% resultiert beim R-Baum-Operationsmix vor allem aus der Einschrankung der
genutzten Parallelitat in Phasen hoher Einfligeparallelitat.

Im Mehrbenutzerbetrieb ohne Balancierung hangt die Gesamtlaufzeit von den Anwen-
dungen auf den langsamen Knoten ab, da jeweils Anwendungen gleichen Aufwands
gewéahlt wurden. Eine einfache Lastbalancierung, die alle Auftrdge wabhllos verteilt,
verschlechtert bei der Flachenerkennung sogar den Durchsatz, weil hohe Datenkom-
munikationskosten entstehen, obwohl die Rechenkapazitaten im Mittel besser genutzt
werden konnten als ohne Lastbalancierung. Die Lastbalancierung nacHiGem

Modell bewirkt bei den Flachenerkennungs-Rechnungen trotz der im Prinzip mit
Anwendungen gleich beladenen Rechner eine Durchsatzsteigerung von 5.4%, indem
sie unter Beachtung der entstehenden Kommunikationskosten, d.h. geeigneter Partitio-
nierung der Daten, die Anwendungen parallel laufen laf3t und stets die Phasen geringe-
rer Parallelitat in einer Anwendung fur Berechnung anderer Anwendungen nutzt. Eine
Zufallsverteilung der Finite-Elemente-Berechnung im Mehrbenutzerbetrieb verbessert
den Ablauf bereits um deutliche 34%, da sie die beiden freien Prozessoren nutzt. Die
HiCon-Lastbalancierung kann den Durchsatz jedoch um weitere 17% steigern. Die
Datenbankoperationen sind aufgrund der Abhangigkeiten innerhalb der einzelnen
Anfragen und wegen der sehr unterschiedlichen Auftragsgrof3en schwer effizient zu
balancieren. Eine wahllose Verteilung des Mehrbenutzerbetriebs erbringt 18% Steige-
rung, was durch geeignete Lastbalancierung um weitere 28% gesteigert werden kann.
Vergleichsmessungen ergeben, dal3 allein durch priorisierte Zuweisung der kritischen
Auftrage ca. 10% Gewinn erzielt werden. Bei der recht simplen Wegesuche erbringt
Lastbalancierung weitere 42%, weil durch Abschatzung der Auftragsgrof3en und spéate
Zuweisung innerhalb jeder Iteration alle Knoten bis zum Ende genutzt werden.

Zuletzt soll ein heterogenes Gemisch von Lasten auf dem parallelen System unter ver-
schiedenen Balancierungsstrategien und -strukturen beobachtet werden. Dazu werden
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Abbildung 28: Systemkonfiguration und Laufzeiten der Anwendungen im Ein- und
Mehrbenutzerbetrieb bei unterschiedlicher Lastbalancierungsuntersttitzung.

Flachenerkennungen, Finite-Elemente-Berechnungen und Datenbankoperatione
jeweils zweifach konkurrierend abgewickelt. Dabei wurden die Problemstellungen so
dimensioniert, dal3 alle 6 Anwendungen etwa denselben Gesamtrechenaufwand verlal
gen. Abbildung 29 zeigt die Konfiguration und die Laufzeiten bei verschiedener Last-
balancierungsunterstitzung: Weder die Zuweisung an den ersten jeweils freien Serve
der Klassen noch eine Zufallsverteilung konnen der Komplexitat des Balancierungs-
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problems gerecht werden. Erst die komplexe Strategie erreicht eine hohe, sinnvolle
Systemnutzung und reduziert den Datenkommunikationsaufwand.

27 MIPS ] Lastbalancierung A Gesamtlaufzeit [sec]
1.5 MFLO 1 58 MIPS
26 |\/||ps 3 1 MFLOPS 1075

RN: Zufallsverteilung
LB: HiCon Lastbalancierung oL

1001
15 MFL 27 MIPS 10001
45 MIPS . 1.5 MFLOPS
2.5 MFLOPS 5001 456
FF: Zuweisung an den erstbesten freien Server

FF RN LB

Abbildung 29: Konfiguration und Laufzeiten des heterogenen Lastszenarios.

5.4 Zusatzaufwand durch dynamische Lastbalancierung

Dynamische Lastbalancierung bringt als Betriebssystemdienst neben zusatzlicher
Komplexitdt auch zusétzliche Kosten mit sich. In diesem Abschnitt sollen die Kosten
desHiConAnsatzes anhand einiger Mel3reihen betrachtet werden. Die Beurteilung des
Zusatzaufwands bringt drei Probleme mit sich: Erstens laf3t sich der Aufwand des
Laufzeitsystems zur Auftrags- und Datenverwaltung schlecht vom eigentlichen Last-
balancierungsaufwand trennen, da die Lastbalancierungsfunktionalitat in die Prozel3-
und Kommunikationsstruktur des Laufzeitsystems eingebunden ist. Zweitens besteht
die Grundidee dediCon-Ansatzes darin, die Lastbalancierung effizient in ein verteil-

tes Betriebssystem zu integrieren. Der Zusatzaufwand, der in dem realisierten Prototyp
entsteht, ist also nicht so entscheidend, weil die Realisierung Betriebssystem-unabhan-
gig auf Anwendungsebene erfolgte. Drittens kdnnen keine vdllig unbalancierten
Ablaufe ohne Zusatzaufwand als Vergleich herangezogen werden: In vielen anderen
Ansatzen beobachtet die Balancierung lediglich ein laufendes System und optimiert
den Durchsatz, indem sie neue Auftrage auf andere Knoten umlenkt - meist werden nur
unabhangige sequentielle Auftrage betrachtet, die ohne Balancierung auf dem Knoten
gestartet wirden, auf dem sie entstanden sind und indem sie laufende Auftrage (Pro-
zesse) auf andere Knoten migriert. HiCon-Konzept werden jedoch innerhalb eines
Clusters alle Auftrage zentral zugewiesen und keine laufenden Auftrage migriert. Ohne
zentrale Auftragsverteilung wirden alle Auftrage auf den Rechenknoten bearbeitet
werden, auf denen der Client der Anwendung liegt, was bei grof3en parallelisierten
Anwendungen katastrophal ware. Die Lastbalancierung zwischen Clustern kann ana-
log zu dezentralen Ansatzen abgeschaltet werden, um den Zusatzaufwand beurteilen zu
konnen. Die zentrale Lastbalancierung kann allenfalls auf Zufallsverteilung eingestellt,
nicht aber ganz herausgenommen werden. Im Folgenden werden die verschiedenen
Kostenfaktoren fiir die dynamische Lastbalancierung gemessen.
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5.4.1 Rechenaufwand fir Lastbalancierungsentscheidungen

Lastbalancierungsentscheidungen mussen zur Laufzeit auf den Knoten des Systen
berechnet werden und verbrauchen somit Rechenzeit, die ansonsten zur Anwendung
verarbeitung genutzt werden konnte. HiCon-Ansatz werden die Entscheidungen
innerhalb eines Clusters durch einen zentralen Prozel3 auf einem der Knoten berechn
Da hier Systeme mit einer maligen Anzahl leistungsfahiger Rechenknoten je Cluste
zugrundegelegt werden, kann kein Knoten fiir Lastbalancierung dediziert werden, son
dern auf einem der Knoten werden zusatzlich die Lastbalancierungsentscheidunge
durchgefuhrt. Wie in Abschnitt 3.7.5 beschrieben, wird diese Belastung adaptiv in den
Entscheidungen bertcksichtigt.

Hohe Rechenlast fur Lastbalancierungsentscheidungen ist bei einer grol3en Anzal
(und damit einer hohen Auswahlmaéglichkeit) an Servern und einer hohen Ankunftsrate
von Auftragen zu erwarten. Sie ist auf3erdem um so hoéher, je schwieriger die Auftrage
zu beurteilen sind, d.h. zu entscheiden, wann und wohin sie zugewiesen werden sol
ten. In Situationen hoher Gesamtlast im System halt der Lastkontrollmechanismus de
Lastbalancierung verstarkt Auftrage zurick; trotzdem muissen bei jeder Situationsan
derung, die den Entscheidungsalgorithmus aktiviert, die zentral einbehaltenen Auf-
trdge erneut bewertet werden, um zu ermitteln, ob sie nun auf andere, weniger belaste
Rechenknoten zugewiesen werden konnen. Wenn alle Knoten ausgelastet sind, i
keine Neubewertung notwendig und bei Uberlastung der Balancierungskomponente
wird auch auf Neubewertung verzichtet (Abschnitt 3.7.5). Hohe Gesamtlast im System
bei ungleichverteilter Knotenauslastung kann also die Anzahl der Entscheidungsversu
che pro Auftrag erhdhen. Ungleiche Knotenauslastung ist bei Abwicklung weniger
komplexer parallelisierter Anwendungen aufgrund von Datenkommunikationserwé-
gungen oft sinnvoll.

Bei kleinen Clustern, hoher Ressourcenauslastung und grof3en Anzahlen aufwendig z
balancierender Auftrdge konsumiert ddrCon-Lastbalancierungsdienst typischer-
weise 1%, in Extremfallen bis zu 12.5% der Gesamtrechenkapazitat des Systems. Di
Lastkontrolle verhindert ja, dal3 die Knoten durch parallele Auftrage liberlastet werden;
wenn jedoch die Balancierungskomponente selbst tiberlastet wird, dann vereinfacht si
ihren Entscheidungsaufwand adaptiv, wodurch sowohl der Rechenaufwand als aucl
der Gewinn durch Lastbalancierung sinkt (Abschnitt 5.6.2). Als Extrembeispiel kann
das Diagramm in Abschnitt 5.6.2, unten links in Abbildung 40 betrachtet werden. Die
schwarz geflllte Kurve zeigt den Rechenbedarf der Balancierungskomponente (ohn
Uberlastschutz) fir ein sehr aufwendiges Szenario mit Flachenerkennung im Mehrbe
nutzerbetrieb.
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5.4.2 Verzogerung durch Entscheidungsfindung

Neu entstandene Auftrage werdenHhinCon-Ansatz nicht unmittelbar durch einen Ser-

ver bearbeitet, sondern zunéchst in einer zentralen Warteschlange gepuffert, bis die
Lastbalancierung die Zuweisung an einen Server flr gunstig halt und die Entscheidung
Uber den bestgeeigneten Server getroffen hat. Intuitiv muf diese Zeit bis zum Bearbei-
tungsbeginn zur Antwortzeit des Auftrags mitgezahlt werden, denn sie verzdgert den
Ablauf komplexer paralleler Anwendungen mit Reihenfolgeabhangigkeiten und kann
Leerlaufzeiten im System bewirken. Die Wartezeiten durch Aufenthalt in der zentralen
Warteschlange sind jedoch kein wirklich negativer Effekt der Lastbalancierung, denn
sie dienen nur der Lastkontrolle auf den Rechenknoten und der moéglichst spéaten
Zuweisungsentscheidung. Auftrdge werden solange in der zentralen Warteschlange
aufbewahrt, bis der Knoten des momentan bestgeeigneten Servers durch die Bearbei-
tung des Auftrags nicht tberlastet wird und der Server den Auftrag in Kiirze bearbeiten
kann, bevor die Zuweisungsentscheidung veraltet ist. Nachteilig ist also lediglich die
Verzogerung des Auftragsbearbeitungsbeginns durch den Zeitbedarf fur die Zuwei-
sungsentscheidung. Ebenso sollen die Wartezeiten der Auftrage in den lokalen Warte-
schlangen der Server nicht betrachtet werdetji@on-Modell wird ja nicht fir jeden
Auftrag ein Bearbeitungsserver kreiert, sondern ein existierender Serverprozeld wird
wiederverwendet, um Prozel3erzeugung und -Terminierung, Prozel3wechsel und den
Speicherbedarf durch viele Prozesse auf den Rechenknoten auf ein verninftiges Mal3
beschranken.

Die Verzogerungszeiten durch die Entscheidungsberechnung innerhalb eines Clusters
wurden anhand der Szenarios aus Abschnitt 5.3 quantifiziert. Der mittlere Zeitbedarf
pro Auftrag fir Entscheidungen inklusive Bewertungen betrug im Mittel 16...25 msec.
Die Auftragsgrofien liegen, je nach Phasen der Anwendungen, im Bereich von 0.7...40
sec. Auf Ublichen Netzwerken (Ethernet) kommt je Auftrag eine Sendeverzégerung
von ca. 2*50Qusec hinzu, da jeder Auftrag vom Client Uber die Balancierungskompo-
nente zum Server und das Ergebnis Uber die Lastbalancierung zuriick geschickt wird
(zwei zusatzliche Nachrichten). Die Verzdgerungen durch die Balancierung liegen

daher in der prototypischen Realisierung pro Auftrag im Bereich von

0.016..0.025+ 200.0005— () 04...3.7%
0.7...40 T

5.4.3 Kommunikationslast durch Informations- und Auftragsaustausch

Durch die zentrale Lastbalancierung entsteht pro Auftrag, wie oben erklart, neben den
notwendigen (meist kurzen) Aufruf- und Resultatnachrichten zwischen Client und Ser-
ver ein Zusatzaufwand von zwei kurzen Nachrichten (ca. 50 Bytes). In der Flachener-
kennungsanwendung mit phasenweise sehr feinem Auftragsgranulat werden, bei guter
Balancierung in kleinen Clustern (5 Knoten), im Mittel 15 Datenkommunikationsnach-
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richnten je Auftrag gesendet, von denen 66% kurze und 33% lange Nachrichten
(100..3000 Bytes) sind. Die Nachrichten zur Messung der Knotenauslastungen kénne
vernachldssigt werden. Zentrale Lastbalancierung erzeugt daher grob

2 [b0Byte — 0
077 e SO Ey 1.2% Zusatzlast auf dem Netzwerk.

Die Lastbalancierungskomponenten benachbarter Cluster tauschen Lastinformatione
mit Nachbarn aus und schicken sich gegenseitig Auftrage zu. Hierzu wurde ein
Szenario betrachtet, in dem 4 Cluster mit je 3 - 4 heterogenen Knoten dezentral gekor
pelt waren. Ein extremes Lastungleichgewicht wurde erzeugt, indem 7 parallele Fl&-
chenerkennungen in einem der Cluster gestartet wurden. Dadurch wurden fast alls
Anwendungen mit insgesamt mehreren tausend Auftragen zwischen Clustern verschc
ben. In diesem Szenario wurden im Gesamtsystem im Mittel 6 + 278 Bytes pro
Sekunde (Bps) zur Lastinformation bzw. Auftragsverschiebung zwischen Clustern ver-
schickt. Bei 76842 Bps Nutz-Nachrichtenaufkommen und 643 Bps Nachrichtenauf-
wand zur zentralen Lastbalancierung, erzeugte die Lastbalancierung insgesamt etw

284Bpst 6438ps — 1 204 Zusatzlast auf dem Netzwerk.
7684Bps

5.5 Skalierbarkeit der Lastbalancierung

In der Literatur ist es Ublich, die “unbegrenzte Skalierbarkeit” als eine der wichtigsten
Anforderungen an Lastbalancierungskonzepte zu betrachten. Wahrend alle realisierte
Ansatze bisher Systeme in der GrofRenordnung von 19Krdten verwalten, werden

fast ausschlieBlich Ansétze fiir Systeme der GroRenordnifng 11 Knoten konzi-

piert. Wahrend noch nicht klar ist, ob Systeme dieser Gro3enordnung sinnvoll in
homogener Weise, d.h. ohne hierarchische Strukturierung im Betriebssystem, betriebe
werden kdnnen, ist es offensichtlich, dal3 globale Lastbalancierung mit zentraler Infor-
mationsverwaltung oder zentraler Entscheidungsfindung nicht mehr maoglich ist. Die
friheren zentralen Anséatze wurden daher durch véllig dezentrale abgelost, bei dene
jeder Knoten Teilinformationen verwaltet und autonom Entscheidungen trifft. Der Ver-

lust an Lastbalancierungspotential gegenuber zentralen Ansatzen wird selten evaluier

Lastbalancierungsansatze mit einer Struktur, die dem Clustering in realen Systeme
entspricht, werden erst seit kurzem untersucht. Das liegt vor allem an der bisher ser
theoretischen Ausrichtung der Disziplin: wahrend zentrale und vollig dezentrale Ver-
fahren - nach starker Vereinfachung - durch Warteschlangenmodelle oder &hnliche
stochastische Modelle geschlossen darstellbar sind und somit Konvergenz gegen eir
Lastgleichverteilung bzw. garantierte Hochstabweichung von einer optimalen Balan-
cierung nachgewiesen werden kann, konnen Clustering-Ansatze meist nur durch Simu
lation oder reale Messungen bewertet werden. HD€on-Ansatz soll hier ebenfalls
aufgrund weniger Mel3reihen auf seine Skalierbarkeit hin untersucht werden.
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Zuerst soll ein grofRes Netzwerk von Workstations unter verschiedenen Clustering-
Strukturen der Lastbalancierung beobachtet werden, um die Grenzen der zentralen
Balancierung und die Gite dezentral kooperierender Lastbalancierungsagenten fir
Cluster zu ermitteln. Abbildung 30 zeigt drei verschiedene Lastbalancierungsstruktu-
ren flr ein groRes Workstation-Netz. Hier wird speziell die Quad-Split- und Quad-
Merge-Phase der Flachenerkennung betrachtet, in der sehr viele kurze, aber durch
hohen Anteil exklusiver Zugriffe auf gemeinsame Daten nicht leicht balancierbare
Auftrage in hoher Parallelitat auftreten. Die Anwendung lauft 15-fach konkurrierend
auf dem System ab, wobei durch die Lage der Clients bereits ein recht gutes Last-
gleichgewicht zwischen den Knoten sowie zwischen den Clustern vorliegt. Auf jedem
Knoten sind drei Server konfiguriert. Die dezentrale Struktur zeigt deutlich das beste
Resultat (links unten in Abbildung 30). Die zentrale Lastbalancierung ist hier tberla-
stet: Rechts unten im Bild ist die Warteschlange der zu bearbeitenden Ereignisse der
Lastbalancierung gezeigt. Nachdem die Mehrzahl der Anwendungen etwa gleichzeitig
die kritischen Phasen abgeschlossen haben, verkiirzt sich die Ereigniswarteschlange
der Lastbalancierung wieder. Abschnitt 2.5.6 stellt Konzepte zur Vermeidung solcher
Uberlastung vor, die hier nicht aktiviert wurden. Das System ist jedoch mit dieser Bela-
stung deutlich zu groR} fir ein Cluster. Man beachte, daf? die Balancierungskomponente
hier zusatzlich durch die haufigen entfernten Datenzugriffe belastet wird, weil in der
Realisierung die Datenortverwaltungskomponente im selben Prozel3 realisiert ist wie
die Lastbalancierung. Die gemischte und die vollig verteilte Struktur erzeugen weniger
Balancierungsaufwand, weil im vorliegenden Szenario bereits eine gleichmalige Voll-
auslastung des Gesamtsystems vorliegt, wodurch zwischen den Clustern wenig
Interaktion stattfindet.

Wahrend obiges Szenario ein idealer Fall fir dezentrale Balancierung ist, soll ein zwei-
tes Szenario quantifizieren, dal3 zentrale Lastbalancierung ein deutlich héheres Poten-
tial zur Leistungssteigerung besitzt. In groRen Systemen ist also stets durch
verninftiges Clustering ein Kompromif3 zwischen Lastbalancierungsaufwand und -
gewinn zu erreichen.

Suboptimale Lastbalancierung resultiert in dezentralen Strukturen auch aus dem Ver-
lust und der Vergréberung von Informationen zwischen den Clustern. Nirgends im
System ist globale Zustandsinformation verfligbar, und Balancierung basiert auf parti-
ellen Informationen. Information veraltet, bis sie in anderen Clustern verwendet wer-
den kann, und durch die Aggregation von Informationen zwischen Clustern kénnen
wichtige Details verloren gehen. Die Messung vergleicht das durch Informationsver-
lust sinkende Balancierungspotential. Explizit verteilte Balancierungsstrategien
(Abschnitt 2.5.3) verwenden nur sehr wenig Informationen und streben lediglich eine
grobe Lastverteilung zwischen den Clustern an. Implizit verteilte Strategien kdnnen
genauere Informationen verwenden. Da sie die Nachbarn jeweils als Server betrachten,
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Abbildung 30: Konfiguration und Laufzeiten verschiedener
Lastbalancierungsstrukturen zur Verwaltung grof3er Systeme.

konnen sie entsprechende GrofRen wie fur lokale Server austauschen. Trotzdem ge
durch die Aggregation Information verloren. Beispielsweise ist die Auslastung der ein-
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zelnen Knoten des Nachbarn oder die genaue Verteilung der Daten auf den dortigen
Servern nicht bekannt.

In der Messung wurde die R-Baum-Anwendung eingesetzt, weil in Phasen haufiger
kurzer Einflgeoperationen die genaue Bericksichtigung der Datenaffinitdten auf3erst
wichtig ist, wovon implizit verteilte Balancierung noch eine grobe Ubersicht hat, wah-
rend die explizit verteilte diese Information zwischen Clustern nicht nutzen kann.
Abbildung 31 zeigt die Konfiguration und die Laufzeiten, wobei 1510 Einfligeopera-
tionen mit einer Parallelitat von 20, gefolgt von 3 parallelen Verbundoperationen ablie-
fen. Die zentrale Balancierung zeigt das beste Ergebnis, wobei die implizit verteilte
Konfiguration mit grobem Wissen Uber die Datenorte gegenuber der expliziten auch
noch recht gut ablauft. Der Vergleich mit einer einfachen zentralen Reihumverteilung
zeigt, dal3 auch explizit dezentrale Lastbalancierung Leistungssteigerung ergibt. Um
die Messung ubersichtlich zu halten, wurde eine Variante der dezentralen Balancierung
verwendet, die nicht nur Anwendungen, sondern auch einzelne Auftrdge zwischen
Clustern austauscht.

@33 MIPS

/ 70 M|P§\ 2 x 70 MIP

Laufzeit [sec]

-

1000

)

Dezentral

Zentral

[ ]

zentral
komplex komplex

impl. dist. expl. dist.

komplex

zentral
reihum

Abbildung 31: Messungen zum Informationsverlust durch dezentrale Balancierung.

5.6 Flexibilitat der Lastbalancierung

Unter Flexibilitdt eines Lastbalancierungsverfahrens versteht man die Breite des Spek-
trums an verschiedenen Systemen, Lastmustern und Lastsituationen, die das Verfahren
effektiv kontrollieren kann, sowie die Fahigkeit, sich geeignet auf andernde Situatio-
nen anzupassen. Die Flexibilitat kann auch als Allgemeingdiltigkeit und automatische
Anpassungsfahigkeit des Verfahrens betrachtet werden. In den vorigen Abschnitten
wurde dasHiCon-Konzept bereits verschiedentlich unter Last durch unterschiedliche
Anwendungstypen auf verschiedenen Systemstrukturen untersucht. Die Anwendungs-
typen unterscheiden sich deutlich im Auftragsgranulat, in der méglichen Parallelitét, in
der RegelméaRigkeit der Ablaufstrukturen und Synchronisationsmuster sowie in der
Sensitivitdt gegenutber Datenaffinitaten.
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In diesem Abschnitt sollen noch weitere Aspekte evaluiert werden: Das Potential durck
explizite BerUcksichtigung von abhangigen Auftragen innerhalb kleiner Gruppen und
das Potential automatischer adaptiver Justierung von Entscheidungsparametern.

5.6.1 Berucksichtigung von Auftragsabhéngigkeiten

Das Verhalten der Datenbankanwendung soll durch Vergleichsmessungen mit unter
schiedlichen Verfahren zur Bertcksichtigung von Reihenfolgebeziehungen in Auf-
tragsgruppen betrachtet werden. Die Messungen wurden auf einem kleinen Cluster at
drei heterogenen Workstations (im Bilg P. ;) durchgefthrt. Lastbalancierung muf3
daher sowohl die unterschiedlichen Prozessorleistungen bertcksichtigen, als auch m
der schwierigen Situation fertig werden, dafd mehr ausfiihrbare Auftrdge als Knoter
vorhanden sind. Abbildung 32 vergleicht die Laufzeiten des in Abschnitt 5.2.3 gezeig-
ten Beispielszenarios unter verschiedenen Varianten zur Balancierung. Die Breite de
Auftragsrechtecke ist proportional zur Ausfiihrungszeit der Auftrage, die in der Gro-
Renordnung von 3 Sekunden bis zu 2 Minuten liegen. Die Basisrelationen wurden ir
14, 21 bzw. 28 Partitionen unterteilt und werden zu Beginn mit 1000 Datensétzen prc
Partition geladen. Eine nichttriviale Parallelisierung (Abbildung 23) wurde ausgewahlt
um beurteilen zu konnen, inwiefern die Fahigkeit des Lastbalancierungskonzepts
dynamisch Reihenfolgebeziehungen zwischen Auftragen zu beriicksichtigen, auf allge:
meine Auftragsstrukturen anwendbar ist. Die Mel3ergebnisse zeigen, dal3 Ignorierel
der Reihenfolgebeziehungen oder die alleinige Gewichtung der Auftrage nach ihrer
GrolRe ebenso unzureichend ist wie die Gewichtung nach Anzahl der Nachfolger. Die
Gewichtung gemald der kritischen Pfadlangexit(path$ zeigt signifikant kiirzere
Laufzeiten.

Abbildung 33 zeigt schlie3lich das Verhalten der Strategien im Mehrbenutzerbetrieb,
wobei der Einfachheit halber die Beispielanfrage dreifach konkurrierend, auf disjunk-
ten Relationen arbeitend, ins System gespeist wurde. Der Laufzeitvergleich zeigt, dal
die Beachtung der Abh&ngigkeiten im Mehrbenutzerbetrieb noch deutlichere Vorteile
bringt. Wahrend namlich die Ressourcenbedurfnisse einer einzelnen Anwendung grol
Ebene fir Ebene anfallen und somit implizit die Vorteileldighest Level FirsSche-
duling nutzen, werden bei konkurrierenden Anwendungen - ohne Bertcksichtigung
von Abhangigkeiten bzw. ohne Berlcksichtigung verschiedener Auftragsgraphen im
Zusammenhang - oft Auftrage in Zeitscheiben gelegt, die andere Anwendungen fir
dringende Auftrage bendtigt hatten.
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Abbildung 32: Gantt-Diagramm der Ausfihrung bei verschiedenen Verfahren zur
Einplanung von Auftragsgruppen

5.6.2 Automatische Anpassung von Entscheidungsparametern

Die in Abschnitt 3.7.5 vorgestellten Ansatze zur adaptiven Balancierung sollen durch
je eine Melreihe kurz bewertet werden. Bi€on-Lastbalancierung ist durch diese
Ansatze fur ein breiteres Spektrum von Lastmustern und Lastsituationen anwendbar.

1. Adaptive Regelung des Schwellwerts zur Anwendungsverschiebung zwischen Clu-
stern

Zur Bewertung wurde ein Netzwerk aus vier heterogenen Clustern in Stuttgart,
Bonn, Toulouse und Belfast mit je vier Workstations betrachtet. Durch die langsa-
men Weitverkehrsverbindungen kommen die Datentransferkosten bei Anwendungs-
verschiebungen deutlich zum tragen. Sieben Bilderkennungsanwendungen wurden
im Abstand weniger Sekunden in einem Cluster gestartet, um deutliches Lastun-
gleichgewicht zu erzeugen, bei dem sich geeignete Verschiebungen lohnen. Abbil-
dung 34 vergleicht die Laufzeiten verschiedener Schwellwerte und
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Abbildung 33: Gantt-Diagramm der Ausfiihrung bei verschiedenen Verfahren zur
Einplanung von Auftragsgruppen im Mehrbenutzerbetrieb.

Anwendungsauswahl-Strategien der dezentralen Balancierung. Der erste nicht
adaptive Ansatz (1) mit Lastdifferenzschwellwert verschiebt jeweils eine beliebige
Anwendung, wahrend der zweite Ansatz (2) die bestgeeignete ermittelt. Der adap:
tive Ansatz (3) schrankt diese Auswahl auf die Anwendungen ein, deren Verschie-
bung sich trotz der Datentransferkosten noch lohnen kénnte. In diesem Szenaric
wird der Zeitverlust durch zu haufige, ungeeignete Verschiebungen zwischen Clu-
stern, trotz der Beobachtung sehr weniger, grol3er Anwendungen, deutlich.

Kein Lastausgleich zwischen Clustern | INNENGgGQEEEEEEEEE 543 scc
Lastausgleich mit Schwellweft(1) 572 sec
Lastausgleich mit Schwellweft(2) 328 sec

Lastausgleich mit beiden Schwellen (3_ 305 sec

Abbildung 34: Effekt des Datenkommunikations-sensitiven Verschiebungs-
Schwellwerts fir Anwendungen.

2. Automatische Vermeidung von Uberlastungen der Balancierungskomponente

117



Leistungsbewertung des Ansatzes

Hier wird ein Cluster mit 11 heterogenen Workstations und 2 Servern je Workstation
betrachtet, das durch 15 parallele Bilderkennungs-Anwendungen mit unterschiedli-
chen Problemgro3en belastet wird. Wahrend zwei Anwendungen sofort starten und
der Balancierung maRigen Aufwand bescheren, folgen nach 50 Sekunden die ande-
ren 13 Anwendungen in einem Zeitbereich von 5 Sekunden, und generieren grol3e
Mengen kleiner paralleler Auftrage, die wegen ihrer Datenabhangigkeiten sorgfaltig
verteilt werden mussen, und so die komplexe zentrale Balancierung stark Giberlasten
kénnen. Abbildung 35 zeigt links den Balancierungsaufwand tber ein Zeitintervall
ohne Einsatz der Adaptionstechnik: Die Warteschlange der zu bearbeitenden Ereig-
nisse wachst rapide, was starke Verzdogerungen bei der Auftragsverteilung und
dadurch auch Leerlaufzeiten bei den Servern verursacht. Die Lastbalancierung kon-
sumiert die gesamte Rechenzeit, die sie auf dem Knoten erhalten kann, anstatt die
Rechenzeit den Servern zur Verfligung zu lassen. Auf der rechten Seite ist entspre-
chend der Balancierungsaufwand bei eingeschalteter Adaption gezeigt, wo die Last-
balancierung ihre Uberlastung erkennt und erfolgreich bekampft. Sie konsumiert
immer noch erhebliche Prozessorrechenzeit, die aber durch den Gewinn gerechtfer-
tigt ist.

476

115 volle Adaption

eventQueueSize
(grob protokolliert)

Zeit [sec]

CPU Nutzung
der Balancierungskomponente
Zeit [sec] (grob protokolliert)
5 0

eit [sec]
0 50 0

Abbildung 35: Uberlastung einer zentralen Balancierungskomponente.

Abbildung 36 vergleicht die Gesamtausfiihrungszeiten bei verschiedenen Techni-
ken. Lastbalancierung ohne Uberlastschutz wirkt bei Uberlastung verheerend, eine
generelle Erhéhung vogyanceUm den Faktod00 kann das Problem noch nicht
beheben. Erst durch Umschaltung des Entscheidungsalgorithmus bei einem
Schwellwert voneventQueueSizd0 oder gar schon bel kann die Verstopfung
erfolgreich verhindern. Es wurde jeweils lEentQueueSize<2uriickgeschaltet,
wodurch die Balancierung hier etwa die halbe Zeit die simple Strategie benutzte und
alle 3..15 Sekunden wechselte.

3. Adaptive Justierung von Auftragsgrofien-Vorabschatzungen
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Keine Adaption: durchweg komplexe Strategie I 1 0000 sec
Fixe Erhohung des Zuweisungsintervalls, durchweg komplexe Strdtegie 10800 sec
Volle Adaption, Umschaltschwelle 40 | 1065 sec
Volle Adaption, Umschaltschwelle 4 ] 678 sec

Abbildung 36: Vergleich von Ausfiihrungszeiten in Uberlastsituationen.

Um diese dynamische Justierung zu evaluieren, wurden zwei tUberlappend parallels
Flachenerkennungsanwendungen beobachtet, die durch eine zentrale Lastbalanci
rung auf vier heterogenen Workstations zu verteilen waren. Fur jede der vier
Anwendungsphasen (unterschiedliche Auftragstypen) wird ein separater Faktor
computeTimeAdagtverwaltet. Abbildung 37 zeigt die charakteristische Minderung
der Abweichung zwischen den Vorabschatzungen der Clients und den real beobact
teten Rechenzeiten fur zwei Zeitintervalle auf logarithmischer Skalierung. Insge-
samt konnte das Adaptionsverfahren die Abschatzungsfehler um Faktoren bis zt
1000 reduzieren. Zu Beginn der Split-Auftrdge wurden die Auftragsgrof3en um den
Faktor 100 unterschéatzt, wahrend sie spéater stark tGberschatzt wurden. Das flhrte 2
zwischenzeitlichen Verschlechterungen der Vorabschatzungen durch Adaption, bis
der Korrekturfaktor wieder eingeregelt war. Derlei Effekte sind in dieser Anwen-
dung abhangig von den Bildstrukturen, was eine dynamische Nachregelung der Kor-
rekturfaktoren unerla3lich macht. Die Adaptionstechnik konnte in diesem Szenario
die Laufzeiten um 8% von 333 auf 276 sec reduzieren. In einigen Anwendungen
werden ganze Schibe von Auftragen generiert (typisch etwa flr parallelisierte
Schleifen), was der Adaption keine Gelegenheit zur direkten Nachregelung gibt,
weil das Feedback fehlt, so dal3 die Adaption erst bei nachfolgenden Iterationer
wirksam wird.

A Abweichung der Auftragsgr('jféenschatzungen von den tatséchlichen
10° Fis ".T;:_u =
" Bl A W | |||L|I| Ik | '||Il|h|l|.li|| |
T . SEELEAL e
| | A A
lj—== |5l tatsachliche Auttragsgrolie (Abweichungstakior 1) L B
10! " P F_r [
N
102 i Zeit [sec]
0 20 29= .35
o ﬁzai:zﬂﬂzg gz: ,lz\%rsricgjrizi;;eunngA::iiZTZCljl?eglnts | erfolgreiche Korrektur | Verschlechterung durch Korrektur

Abbildung 37: Adaptive Korrektur der Auftragsgrofien-Vorabschéatzungen.
4. Adaptive Bestimmung von Datenkommunikationskosten
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Zur Bewertung der Adaptionstechnik wurde ein dem obigen ahnliches Szenario ver-
wendet, wobei zuerst eine Flachenerkennung auf ein grofRes, aufwendiges Bild, und
nach 400 sec zusatzlich die Erkennung eines kleineren Bildes gestartet wurde. FUr
die Vergleichsmessung ohne Adaption wurden die bestmoglichen statischen Kosten-
abschatzungen verwendet, die durch einen vorhergehenden Lauf mit Adaption
ermittelt wurden. Adaption konnte die Gesamtlaufzeit um 9% von 950 auf 860 sec
hauptsachlich dadurch reduzieren, dal3 sie in Situationen mit stark konkurrierenden
Datenzugriffen bzw. hoher Netzbelastung (Quad-Split und -Merge Phasen) die
erhohten Kosten erkannte und infolgedessen die Parallelitat einschrénkte und Server
mit guter Datenaffinitat trotz eventueller Prozessorleistungs- / Belastungs-Nachteile
starker bevorzugte. Abbildung 38 zeigt die zeitliche Nachregelung der Datenzugriff-
kosten fur zwei wesentliche Datenstrukturen der Anwendung. Hier ist weiterhin
erkennbar, dal3 die Datenaustauschkosten im Mittel wahrend der zweiten, kleineren
Anwendung geringer waren. Der starke Anstieg gegen Ende rihrt vom Zusammen-
treffen der Boundary-Trace Phasen beider Anwendungen, die hohe Zugriffsparalle-
litat und Netzlast erzeugen. Beim Zusammentreffen der Quad-Phasen zweier
Anwendungen in einem ahnlichen Szenario wurde ein Ansteigen der Datenzugriffs-
kosten um den Faktor 1.5 gegeniber den hier abgebildeten beobachtet, was die Not-
wendigkeit dynamischer Regelung dieser Kostenschatzung unterstreicht.

5 432083, 2 s
= Datensatz des Originalbild;égs (je 16x16 Pixel) Y '% L%
2 256 Bytes ; BSS
S o0 I  — ,‘% 28
2 1514920 : ISRT
’z;a Regions-Datensatze (anfanglich je 8x8 Regionen) | =g=f_§ g
N 50...1000 Bytes | B QE
> Q0
IS 0,0 . e o I i . oo SRR L LX
o~ 400 Zeit [sec]

Abbildung 38: Dynamische Regelung der Datenzugriffskostenschatzungen.

Fur die Beobachtung des Lese-/Schreibverhéltnisses von Datentypen zur kinstli-
chen Abwertung der Kosten flr das Anlegen von Kopien wird keine separate Mes-
sung vorgestellt. Die Notwendigkeit wird bei Betrachtung von Anwendungen wie
z.B. der Wegesuche, die massiv auf gro3e Datenmengen lesend zugreifen, offen-
sichtlich: Ohne die adaptive Abwertung werden solche Anwendungen weitgehend
sequentiell abgewickelt, da sich fur jeden einzelnen Auftrag das Verschicken der
Kopien nicht lohnt.

5. Adaptive Korrektur der Vorabschatzungen des Datenkommunikationsaufwands von
Auftragen
Wiederum diente das obige Szenario zur Bewertung dieses Regelungskonzepts.
Abbildung 39 zeigt, wie die Vorabschéatzungen in der Anfangsphase durch die gere-
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gelten Korrekturfaktoren verbessert werden konnten. Die Abweichungen der Vorab-
schatzungen wurden im Mittel um den Faktor 20 verringert. Einige Ausnahmen, wo
durch falsche Datenreferenzangaben Fehleinschatzungen umPhisrk6mmen,
konnen nicht vollstdndig kompensiert werden, die Regelung bleibt jedoch stabil. In
den anderen Phasen der Bilderkennung wurden Verbesserungen um den Faktor 1(
erreicht.

A Abweichung der Datenkommunikationskosten-Schatzungen von den tatsachlichen
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Abbildung 39: Adaptive Korrektur der Datenkommunikationskosten fur Auftrage.

6. Adaptive Einschatzung der CPU-Last durch Auftragsausfiihrungen und Lastbalan-
cierungsaufwand

Die adaptive Prozessorlastermittlung wurde anhand eines Mehrbenutzer-Szenario
von vier Flachenerkennungen unterschiedlicher Problemgrof3e auf einem heteroge
nen Cluster von vier Workstations mit je drei Servern evaluiert. Abbildung 40 zeigt
die geschéatzten Prozessorauslastungen und die vom Betriebssystem erhaltene CF
run queue lengthitr drei der Prozessoren. Links wurde die Last mithilfe der Auf-
tragstyp-spezifischen, langfristig anhand der Cetuqueue lengtmachgeregelten
Lastfaktoren sowie der gemessenen Balancierungslast (P4) abgeschatzt, rech
wurde angenommen, dal} jeder aktive Server seinen Prozessor voll nutzen mécht
Man sieht, daf’ die Quad-Split-Auftrage (hellgrau) etwa 30% CPU-Nutzung erzeug-
ten, weil sie stark kommunizieren. Ohne Adaption wurde daher die Belastung der
Knoten stark tUberschéatzt (siehe etwa P3). Die @irUqueue lengtkann, wie in
Abschnitt 3.7.5 erlautert, wegen der groben Aufldsung, der trotz Glattung verblei-
benden Lastspitzen, der fehlenden Korrelation zu Auftragsbeginn und -Ende und de
fehlenden Moglichkeit zur sinnvollen Extrapolation nicht direkt verwendet werden.
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Abbildung 40: Adaptive Abschatzung der Prozessorbelastungen.
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6 Zusammenfassung der Ergebnisse

6.1 Zusammenfassung

In dieser Arbeit wurden die Grundkonzepte dynamischer Lastbalancierung eingeflhrt.
Es wurde ein Konzept zur dynamischen Lastbalancierung grof3er paralleler, konkurrie:
render Anwendungen auf lose gekoppelten parallelen und verteilten Systemen vorge
stellt. Workstation-Cluster sind eine derzeit zukunftstrachtige Systemarchitektur fir
viele Bereiche in Wirtschaft und Wissenschaft. Das Konzept wurde prototypisch
implementiert und flir ein breites Anwendungsspektrum anhand realer Messunger
validiert. Neben neuen und weiterentwickelten Balancierungstechniken, wie komple-
xer zentraler Balancierung fur Cluster und dezentralem Ausgleich zwischen Clustern,
der Bertcksichtigung von Datenaffinitaten und Auslegung fir grol3e, parallele Anwen-
dungen im Mehrbenutzerbetrieb, erbrachte die Arbeit folgende allgemeinen Ergeb-
nisse, die fir paralleles Rechnen und automatische Lastbalancierung interessant sind

- Im allgemeinen kann anwendungsunabhé&ngige dynamische Lastbalancierung ir
Situationen mit bereits recht guter, zufalliger Lastverteilung etwa 5 bis 10% Durch-
satzsteigerung erzielen. Lastbalancierung verhindert aber katastrophale Verteilunge
und kann dabei den Durchsatz um Grél3enordnungen steigern. Sie erhoht weiterhi
die Portabilitat und Flexibilitat verteilter und paralleler Anwendungen, und reduziert
den hohen Aufwand, um in parallelen und verteilten Systemen akzeptablen Durch-
satz zu erzielen. Daher sollte das Hauptaugenmerk bei der Entwicklung von Balan:
cierungskonzepten auf breiter Anwendbarkeit und hoher Flexibilitat beztglich der
maoglichen Lastprofile im System liegen.

- Der Forderung nach grenzenloser Skalierbarkeit dynamischer Lastbalancierungsver
fahren wird meist durch vollig dezentrale Ansétze Rechnung getragen. Dabei wer-
den die groRen Vorteile zentraler Balancierungsverfahren nicht beachtet, die
besonders in realen, komplexen Systemen und Lastprofilen deutlich werden. Hiel
konnen Entwicklungen aus dem Bereich der statischen Lastbalancierung und de
Transaktions-Routing in Datenbanksystemen einbezogen werden.

- Fur paralleles und verteiltes Hochleistungsrechnen ist hohe Netzwerkleistung abso
lut notwendig, erhdht aber nicht priméar die Gesamtrechenleistung oder den Durch-
satz von Anwendungen. Sie ermoglicht nur ein feineres Granulat an Parallelitat
innerhalb von Anwendungen, mehr Datenkommunikation und Zugriffe auf entfernte
Daten sowie eine feinere Lastverteilung im System. Erst wenn Anwendungen und
dynamische Lastbalancierung das optimale Verhéltnis zwischen voller Nutzung der
Rechenkapazitdten und dem entstehenden Kommunikationsaufwand erkennen, kar
hohe Netzwerkleistung durch Anpassung der Parallelitat, des Auftrags- und Daten-
granulats sowie der Genauigkeit des Lastausgleichs den Systemdurchsatz erhdhe
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Dies ist bisher nur fir einfache, einzelne Anwendungen mdglich. Da feingranulare
Ablaufe haufigere, kurze Kommunikationsvorgange hervorrufen, wird dabei neben
der Netzbandbreite zunehmend die Latenzzeit ein kritischer Faktor.

Bei der Parallelisierung grof3er Anwendungen wird zunehmend ein portables und
flexibles Ablauf- und Kooperationskonzept wichtig. Der bisher haufigste Ansatz,
kommunizierende Prozesse statisch auf Knoten zu verteilen, ist sehr effizient, wéah-
rend Client - Server Strukturen bei feinem Auftragsgranulat und stark gekoppelten
parallelen Ablaufen Ublicherweise mehr Zusatzaufwand verursachen. Sie verlangen
grobere Dekomposition und Vermeidung unnétiger Datenkommunikation, sind
jedoch deutlich flexibler, um in heterogenen parallelen und verteilten Systemen im
Mehrbenutzerbetrieb effizient ablaufen zu kénnen.

Die dynamische Bericksichtigung von Abhangigkeiten zwischen Auftragen hat sich
als sinnvoll erwiesen. Die Erfahrung zeigte allerdings, dal3 die sinnvolle Zusammen-
stellung von Auftragsgruppen durch die Clients nur in wenigen Anwendungsklassen
naheliegend ist. Daher wird iliCon-Modell nur noch eine vereinfachte Planung
eingesetzt, bei der Clients fur einzelne Auftrage kritische Folgepfade und nachfol-
gende Parallelitat explizit angeben konnen. Die Lastbalancierung bendétigt dann kein
Auftragsgruppenkonzept, und fir viele Anwendungen ist es einfacher, Folgepfad-
langen von Auftragen abzuschéatzen, als explizit Gruppen anzugeben.

Lastbalancierung fur komplexere Anwendungen bendtigt ein einfaches, flexibles
Modell zur Erfassung und Berticksichtigung von Datenkommunikation im System.
Das in dieser Arbeit vorgeschlagene Konzept kann als mdgliches, im betrachteten
Anwendungs- und Systembereich erfolgreiches, Beispiel dafiir angesehen werden.

6.2 Ausblick

Im vorgestellten Lastbalancierungskonzept muf3ten einige Aspekte unbertcksichtigt

bleiben bzw. konnten nicht detaillierter untersucht und entwickelt werden. Sie bieten

Ansatze, um das Konzept weiter zu flexibilisieren, so daf} die Lastbalancierung mehr
Optimierungspotential und stabileres Verhalten erlangt und auch mit weiteren schwie-
rigen Situationen zurecht kommt. Aul3erdem blieben Optimierungen im Konzept des
Laufzeitsystems bisher ungenutzt.

- Der dezentrale Lastausgleich zwischen Clustern wurde nur sehr grob entwickelt, da

er nicht Hauptgegenstand des Projekts war. Die dezentrale Balancierung konnte
nicht fir sehr grol3e Systeme erprobt werden. Im dezentralen Bereich existieren
zahlreiche Verdéffentlichungen, die zunehmend auch eine zweistufige Struktur - intra
Cluster und inter Cluster - aufweisen. DgiConAnsatz kénnte beispielsweise
gemald dem Gradientenverfahren Ziel-Cluster ermitteln, oder gemalf einer Erweite-
rung dessen die Schwelle zur Verschiebung von Anwendungen einstellen: Wenn ein
Nachbar sehr hohe Last hat, gibt er bereits Last an andere ab, auch wenn noch nicht
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hoher belastet ist, weil vom hochbelasteten Cluster Auftrage zu erwarten sind. Das
beschleunigt die Lastverteilung bei grol3en Ungleichgewichten. Datenkommunika-
tion ist dagegen in dezentralen Strukturen schwer zu bertcksichtigen und wurde bis
her meist ignoriert. Zur Verbesserung der groben Lastbalancierung zwischen
Clustern sind genauere Abschatzungen notig, wieviel Last Anwendungen wirklich
erzeugen, wie leistungsfahig und ausgelastet die Cluster wirklich sind, um abschéat
zen zu konnen, ob eine Anwendung im Nachbar-Cluster wirklich schneller ablauft.

Die tatsachliche Migration von Clients zwischen Clustern kénnte vermeiden, daf3
der Auftrags- und Ergebnisstrom verschobener Anwendungen dauernd Uber die Clu
stergrenzen laufen missen. Das verlangt keine konzeptuelle Anderung sondern is
lediglich ein Implementierungsproblem, da Prozel3migration @deckpointingauf
Anwendungsebene notwendig wird.

Eine automatische dynamische Anpassung der dezentralen Balancierungsstruktur i
denkbar, wobei entweder Knoten an andere Cluster abgegeben werden oder net
Cluster kreiert bzw. wieder zusammengefalit werden kdnnen. Diese Flexibilisierung
verlangt keine Abanderung, aber eine Erweiterung des Balancierungskonzepts un
die Entscheidung, wann und wie die Cluster-Struktur verbessert werden kann; Meist
soll eine langerfristige Uberlastung der zentralen Balancierungskomponente eines
Clusters behoben werden, oder auf eine Anderung der Topologie reagiert werden
Weiterhin kdnnte die Anzahl der bereitstehenden Server pro Knoten dynamisch vari-
lert werden. Dadurch kdnnte Lastbalancierung einerseits hohere Parallelitat ermdgli-
chen und andererseits Hauptspeicherbedarf und Verwaltungsaufwand einsparen.

Die Systemkomponente zur Verwaltung der globalen Daten im System konnte auf
verschiedene Weisen effizienter bzw. flexibler gestaltet werden, was jedoch geringe
Auswirkungen auf das Lastmodell der Balancierungsstrategie hat. Optimierungs-
maoglichkeiten bestehen etwa in der Begrenzung der Anzahl gleichzeitig im System
existierender Kopien pro Datensatz, um in kritischen Fallen ein Uberlauf des Haupt-
oder Sekundarspeichers zu vermeiden und um den Invalidierungsaufwand bei exklu
siven Datenzugriffen gering zu halten. Die ideale Anzahl an Kopien kdnnte durch
die Lastbalancierung anhand der Speicherkapazitaten und der Anderungshaufigke
ten geregelt werden. Alternativ zum Konzept der Kopien-Invalidierung kénnte auch
das Konzept der Aktualisierung aller Kopien nach Anderungsoperationen verwendet
werden. Eine weitere Optimierungsmadglichkeit besteht darin, dal3 Anwendungen
asynchron Daten vorab anfordern, wahrend sie noch andere Dinge rechnen kénnel
Server innerhalb eines Knotens sollten real gemeinsamen Speicher fur Zugriff auf
globale Daten nutzen kdnnen, um Nachrichten und Datenkopien einzusparen
Dadurch kanMultitaskingauf den Knoten auch innerhalb einer parallelen Anwen-
dung effizienter genutzt werden. Dazu wurde eine Variantelidas-Prototyps auf

Basis leichtgewichtiger Prozesse (Threads) entwickelt, die jedoch in dieser Arbeit
noch nicht genauer vorgestellt werden kann.
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- Der entwickelte und prototypisch relaisierte Ansatz ist nicht geeignet, um direkt in
kommerzielle Software intgriert zu werden. Neben der oben erwdhnten Aspekte, die
weiterer Entwicklung bedtrfen, enthélt das Ausfihrungs- und Datenmodell fir die
Praxis zu starke Einschrankungen, die fir die Forschungsarbeiten ein kompaktes
Modell und eine effiziente Realisierung ermaoglichten, aber fur viele existierenden
Anwendungen und Basissysteme gravierende Umstellungen verlangen wirden. Die
entwickelten Konzepte koénnen auszugsweise innerhalb von Betriebssystemen,
Transaction Processing Monitoren und Datenbanksystemen integriert werden. Vom
Modell und der Umsetzbarkeit her am nachsten stehen jedoch neuere Umgebungen
wie PVM [PVM93] oder MPI [MPI94], die Plattform-unabh&ngig Primitiven zur
ProzelRverwaltung, Kommunikation und zur Verwaltung und Nutzung von Diensten
anbieten. Diese verwenden ebenfalls einfache, restriktive Ablaufmodelle, die dem
Lastbalancierungsdienst Plattform-unabhangig mehr Informationen und bessere
Einwirkungsmaglichkeiten geben (Abschnitt 4.2).
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