
Konzepte und Techniken der
Datenversorgung für komponentenbasierte

Informationssysteme

Von der Fakultät Informatik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von Jürgen Sellentin aus Bremerhaven

Hauptberichter: Prof. Dr.-Ing. habil. B. Mitschang
Mitberichter: Prof. Dr. rer. nat. T. Ertl

Tag der mündlichen Prüfung: 9.11.1999

Institut für Parallele und Verteilte Höchstleistungsrechner (IPVR)
der Universität Stuttgart

1999

3

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Doktorand in der Forschungs-
abteilung „Prozeßkette Produktentwicklung“ (FT3/EK) der DaimlerChrysler AG und als
Promotionsstudent in der Arbeitsgruppe von Prof. Dr. Bernhard Mitschang an der TU München
und später an der Universität Stuttgart. Zum Gelingen dieser Arbeit haben eine Vielzahl von
Personen beigetragen, denen ich an dieser Stelle noch einmal ausdrücklich danken möchte.

Mein Dank gilt in erster Linie meinem akademischen Lehrer Prof. Dr. Bernhard Mitschang für
die Bereitschaft, meine Arbeit zu betreuen und für seine Mitgestaltung an meinem Promotions-
thema. Ohne seine Überzeugungsarbeit hätte ich vermutlich auch nie eine Promotion begonnen.
Ich möchte mich ferner bei ihm für seine Diskussionsbereitschaft und seine fortlaufende Unter-
stützung bedanken. Herrn Prof. Dr. Thomas Ertl danke ich, daß er sich trotz der nicht unerheb-
lichen zeitlichen Belastung bereit erklärt hat, die zweite Berichterstattung zu übernehmen.

Mein besonderer Dank gilt meinem früheren Kollegen Dr. Wolfgang Käfer für die Anregung,
mich mit dem Thema „STEP und CORBA“ zu befassen. Seine Einführung in das Thema STEP
war von unschätzbaren Wert für mich und hat mit Sicherheit viele Stunden Literaturrecherche
erspart. Ihm und meinem derzeitigen Kollegen Dr. Günter Sauter möchte ich sowohl für die
Betreuung meiner Arbeit von Seiten der DaimlerChrysler AG, als auch für ihre Unterstützung
und Diskussionsbereitschaft meinen Dank aussprechen. In diesem Sinne bin ich auch meinen
ehemaligen und derzeitigen Vorgesetzten Dr. Dieter Haban, Peter Schneider und Robert Win-
terstein für die Gewährung des nötigen wissenschaftlichen Freiraums und ihr Vertrauen in
meine Arbeit zu Dank verpflichtet.

Den Studenten Ralf Mayr, Werner Buchert und Toni Maurer danke ich für ihre Unterstützung
im Projekt PHRAMES und ihr Engagement im Rahmen von Systementwicklungsprojekten,
Diplomarbeiten und Hiwi-Jobs. Insbesondere Toni Maurer hat eine nicht mehr zu überbietende
Motivation und Freude an der Arbeit entwickelt und selbst nach dem Abschluß seiner Diplom-
arbeit noch so manche Nacht mit weiteren Messungen verbracht. Den früheren und derzeitigen
Kolleg(inn)en Aiko Frank, Klaudia Hergula, Michael Jaedicke, Henrik Loeser, Gregor Lorenz,
Roland Nagel, Dr. Norbert Ritter, Stefan Sarstedt, Kerstin Schneider, Ulrich Schäfer, Hans-
Peter Steiert und Jürgen Zimmermann möchte ich für die fruchtbaren Diskussionen danken, die
mir so manchen Denkanstoß für meine Arbeit geliefert haben. Weiterhin bedanke ich mich bei
Aiko Frank, Michael Jaedicke und Jochen Rütschlin für das Korrekturlesen der Arbeit und die
hilfreichen Anregungen.

4

Meiner Mutter und meinen Paten bin ich sehr dankbar dafür, daß sie mir und meinem Bruder
nach dem frühen Tod unseres Vaters eine umfangreiche Ausbildung ermöglicht haben und wir
uns immer auf ihre Hilfe verlassen konnten. Abschließend möchte ich mich noch bei meiner
Freundin Birgit für ihre Unterstützung und ihr Verständnis für meine häufige Abwesenheit
bedanken.

Stuttgart, im August 1999

Jürgen Sellentin

5

Inhaltsverzeichnis

Vorwort 3

Inhaltsverzeichnis 5

Zusammenfassung 11

1. Einleitung 13

1.1 Anwendungsszenario: Entwurfsumgebungen ... 14
1.2 Rahmenbedingungen ... 15
1.3 Anforderungen und Ziele .. 17
1.4 Vorgehensweise und Aufbau der Arbeit ... 19

2. Grundlagen 23

2.1 Komponenten und Komponentenmodelle ... 24
2.1.1 Vorteile einer komponentenbasierten Architektur ..25
2.1.2 Nachteile einer komponentenbasierten Architektur ..26
2.1.3 Voraussetzung für den Einsatz von Komponenten ...27
2.1.4 Komponentenmodelle ...27

2.2 Business Objects .. 28
2.3 Strukturierung von Systemen .. 28

2.3.1 Mehrebenenarchitektur (Multi Tier) und Schichtenmodelle 29
2.3.2 Client/Server-Grenzen ...30
2.3.3 Beispiel ..31

2.4 Middleware .. 32
2.4.1 Remote Procedure Call (RPC) ..33
2.4.2 Message Oriented Middleware (MOM) ..34
2.4.3 Objektorientierte Middleware ...34
2.4.4 Datenbankverwaltungssysteme (DBVS) und Middleware ...35

2.4.4.1 Zugriff auf einzelne DBVS ..35
2.4.4.2 Homogener Zugriff auf heterogene DBVS ..37

2.5 Grundbegriffe einer allgemeinen Datenversorgung .. 38
2.5.1 Modellierung ...38
2.5.2 Datenintensive und auftragsbezogene Verarbeitung:

Data Shipping versus Operation Shipping ..39
2.5.3 Effizienz der Datenversorgung ...40

2.6 Entwurfsumgebungen .. 41
2.6.1 Frameworks ...42
2.6.2 Isolation und Kooperation ...43
2.6.3 Workflow, Groupware und CSCW ...44

6

2.7 WWW, Internet und Intranet ...44
2.7.1 Das Common Gateway Interface (CGI) und JavaScript ... 45
2.7.2 Java ... 46
2.7.3 Warum Java? .. 46
2.7.4 Intranet und Internet: Mehr als ein Präsentationsmedium? .. 49
2.7.5 Ist Pure Java die ultimative Lösung? ... 49

2.8 Zusammenfassung ...50

3. Der Internationale Standard STEP 51

3.1 Die Modellierungssprache EXPRESS ...53
3.1.1 Schemata ... 53
3.1.2 Typen .. 54
3.1.3 Objekte (Entities) .. 55

3.1.3.1 Beziehungen zwischen Objekten ... 56
3.1.3.2 Beziehungen zwischen Objekten unterschiedlicher Schemata 56

3.1.4 Algorithmen und Regeln .. 57
3.1.5 Beispiel ... 59

3.2 Die Zugriffsschnittstelle SDAI ..61
3.2.1 Strukturierung der Daten .. 63
3.2.2 Manipulation von Daten ... 64
3.2.3 Sessions und Transaktionen .. 65

3.2.3.1 Synchronisation und Mehrbenutzerbetrieb .. 65
3.2.3.2 Zustandsmodell für Transaktionsebene 3 .. 66

3.2.4 Auswertung von Regeln ... 67
3.2.5 Early und Late Binding .. 68
3.2.6 Sprachanbindungen .. 68
3.2.7 Implementierungsklassen ... 69

3.3 Standardisierte Schemata ...69
3.4 Zusammenfassung ...70

4. Der CORBA-Standard 71

4.1 Das Objektmodell und die Modellierungssprache IDL ...73
4.1.1 Das Objektmodell ... 74
4.1.2 Basis-Typen (Basic Types) ... 74
4.1.3 Zusammengesetzte Typen (Constructed Types) und Namensräume 75
4.1.4 Objekte und Objektreferenzen .. 75

4.2 Die Kern-Architektur von CORBA ...78
4.2.1 Sprachanbindung, Stubs und Skeletons .. 79
4.2.2 Verarbeitungsszenario: Bruchrechnung ... 81
4.2.3 Objekt-Adapter ... 83

4.2.3.1 Basic Object Adapter (BOA) ... 84
4.2.3.2 Library und Object Oriented Database Adapter (LOA, OODA) 84
4.2.3.3 Portable Object Adapter (POA) .. 85

4.2.4 Kommunikation und Interoperabilität .. 85

4.3 Services ..86
4.3.1 Der CORBA Event Service .. 88

4.3.1.1 Allgemeine Spezifikationen .. 89
4.3.1.2 Event Channel ... 90

7

4.3.2 Die CORBA Persistent Object und Persistent State Services 93
4.3.3 Der CORBA Lifecycle Service ..94
4.3.4 Der CORBA Transaction Service ...96
4.3.5 Der CORBA Query Service ..98

4.4 Entwurf und Programmierung in CORBA-Umgebungen 100
4.5 Modellierung von Daten-Objekten, Migration und Leistungsaspekte 102
4.6 Verwendete CORBA-Systeme .. 104

4.6.1 Orbix ...104
4.6.2 ORBacus ...105
4.6.3 Component Broker ..106

4.7 Komponenten in CORBA ... 107
4.7.1 Die Business Object Component Architecture (BOCA) ...107
4.7.2 CORBA Components ..108

4.8 Abgrenzung zu anderen Middleware-Lösungen ... 108
4.8.1 DCE ...109
4.8.2 (D)COM, OLE und ActiveX ...109
4.8.3 (D)SOM ...111

4.9 Zusammenfassung ... 111

5. Datenquellen und Datenzugriff 113

5.1 Charakterisierung von Datenquellen ... 114
5.1.1 Dateien ..114
5.1.2 Relationale DBVS ...115
5.1.3 Objektorientierte DBVS ..116
5.1.4 Objektrelationale DBVS ...117
5.1.5 Durch Anwendungsprogramme gekapselte Datenquellen ..118
5.1.6 Zusammenfassung ...118

5.2 Integration und Zugriff über DB-Middleware ... 120
5.3 Abbildung objektorientierter Datenmodelle auf RDBVS 121
5.4 Datenquellen und Data Shipping in CORBA-Umgebungen 125

5.4.1 Anforderungen und Modellierung ...125
5.4.2 Einsatz des CORBA Persistent Object bzw. des Persistent State Services 126
5.4.3 Datenzugriff über den CORBA Query Service ...126
5.4.4 Migration von Objekten über den CORBA Lifecycle Service 127
5.4.5 Datenaustausch über den CORBA Externalization Service 128
5.4.6 Proprietäre Kopplung zu OODBVS ..129
5.4.7 Proprietäres Data Shipping ohne Einsatz von Common Object Services 131
5.4.8 Proprietäre Erweiterungen von CORBA-Systemen am Beispiel Orbix 133
5.4.9 Forschungsprototypen zur Integration von CORBA und DBVS 134

5.4.9.1 MIND ...134
5.4.9.2 SHORE ...135
5.4.9.3 TeleMed ...135
5.4.9.4 InterGIS ..136
5.4.9.5 DICE ...136

5.4.10Kommerzielle Produkte zur DB-Anbindung ..137
5.4.10.1DB-Anbindung über interne Adapter von CORBA-Produkten 137
5.4.10.2DB-Anbindung über CORBA-konforme Datenversorgungsmodule 138

5.4.11Zusammenfassung ...138

8

5.5 Data Shipping im Intra-/Internet ..140
5.5.1 HTML-Seiten mit JavaScript und CGI-Skripte im Server 141
5.5.2 HTML-Seiten mit Java-Applets ... 141

5.5.2.1 Java-Applets mit einer Datenversorgung über CORBA 141
5.5.2.2 Java-Applets mit einer Datenversorgung über JDBC 142
5.5.2.3 Java-Applets mit einer Datenversorgung über Java RMI/OS 142

5.5.3 Zusammenfassung .. 142

6. Entwurf und Implementierung einer modularen Datenversorgung 145

6.1 Die JavaSDAI Socket Bar:
Eine modulare Zugriffsschnittstelle auf Basis des SDAI ..146
6.1.1 Konzeptuelle Probleme während der Design-Phase ... 147

6.1.1.1 Anzahl und Umfang von Klassen .. 148
6.1.1.2 Erzeugung und Freigabe von Instanzen ... 148
6.1.1.3 Aufzählungstypen .. 149
6.1.1.4 Multiple Vererbung ... 150
6.1.1.5 Verteilung und Transaktionen ... 157

6.1.2 Die resultierende Gesamtarchitektur .. 158

6.2 Entwurf und Implementierung der Data Modules ...161
6.2.1 Proprietäres Data Shipping über CORBA .. 162
6.2.2 Data Shipping über den CORBA Query Service ... 166

6.2.2.1 Anfragesprache und Datenstrukturen .. 167
6.2.2.2 Implementierung der Server .. 170
6.2.2.3 Implementierung des Clients ... 172

6.2.3 Data Shipping über JDBC .. 175
6.2.4 Operation Shipping gemäß ISO 10303-26 ... 176
6.2.5 Gegenüberstellung und Zusammenfassung .. 178

6.3 Verwendete Applikationen ..180
6.3.1 Binäre Bäume ... 180
6.3.2 Der oo7-Benchmark ... 181
6.3.3 Direkte Gegenüberstellung von Operation Shipping und Data Shipping 182

6.4 Messungen ...183
6.4.1 Vergleich von Operation Shipping und Data Shipping über SDAI 184
6.4.2 Direkte Gegenüberstellung von Operation Shipping und Data Shipping 186
6.4.3 Bewertung verschiedener Ansätze zum Data Shipping über JavaSDAI 189

6.4.3.1 Allgemeiner Vergleich aller Data Modules ... 190
6.4.3.2 Leistungssteigerungen durch Prefetching ... 191
6.4.3.3 Pufferverwaltung mit Verdrängung von Objekten 193
6.4.3.4 Lohnt sich der Einsatz von JavaStations? ... 194
6.4.3.5 Entwicklung von JDK-Versionen, JIT-Compilern und JavaSDAI 195
6.4.3.6 Zusammenfassung ... 197

6.5 Verwandte Arbeiten im Bereich STEP/SDAI und CORBA198
6.5.1 Das NIIIP-Projekt ... 199
6.5.2 Das ESPRIT-Projekt VEGA und seine COAST-Architektur 200
6.5.3 Die O.P.E.N.-Plattform .. 200
6.5.4 Harmony: Prototyp eines CORBA Query Service ... 201

6.6 Wo liegt der Flaschenhals? ..201
6.7 Erfahrungen und Probleme mit CORBA-Implementierungen202

9

7. Zusammenfassung und Ausblick 205

Anhang: Literatur 211

10

11

Zusammenfassung

Rechnergestützte Informationssysteme stellen heutzutage für viele Branchen ein unverzichtba-
res Hilfsmittel dar. Ohne sie wäre die Komplexität von Abläufen und die damit verbundene
Menge von Daten kaum noch zu bewältigen. Dieser Sachverhalt trifft insbesondere für die Ent-
wicklung neuer Produkte zu, bei der zunächst extrem viele Daten aus vorangegangenen Arbei-
ten und zugrundeliegenden Richtlinien zu berücksichtigen sind. Gleichzeitig entsteht während
der Entwicklung eine Menge neuer Daten, die später als Grundlage der Produktion dienen. Wir
betrachten deshalb rechnergestützte Entwurfsumgebungen als repräsentatives Beispiel für
datenintensive Informationssysteme, bei denen sowohl große Mengen von Daten gelesen als
auch erzeugt bzw. geschrieben werden. Anhand dieses Szenarios werden wir deshalb die ein-
zelnen Aspekte und Probleme diskutieren und verdeutlichen.

Wirft man nun einen genaueren Blick auf Entwurfsumgebungen und die darin enthaltenen Ent-
wurfswerkzeuge, so ist es sicherlich unbestritten, daß diese die Entwicklung neuer Produkte
beschleunigen und zugleich eine Steigerung der Qualität bewirken. Weiterhin ermöglichen sie
eine verstärkte Wiederverwendung vorhandenen „Wissens“, das in Form gespeicherter Daten
vorliegt. Die einzelnen Werkzeuge sind meist sehr weit entwickelt und weisen dementsprechend
nur wenig Potential für weitere Optimierungen auf. Entlang der gesamten Prozeßkette werden
aber eine Reihe verschiedener Werkzeuge und Programme benötigt, die meist nur eine unzurei-
chende Interoperabilität bieten. Insbesondere der Datenaustausch zwischen den Werkzeugen ist
häufig mit einem Informationsverlust durch inkompatible Datenmodelle verbunden. Es ist also
eine umfassende Integration aller Programme nötig, die eine einheitliche Verarbeitung entlang
der Prozeßkette garantiert. Hierfür bieten sich sog. Komponentenmodelle an, mit denen alle
Werkzeuge als gekapselte Komponenten zu einem Gesamtsystem integriert werden. Das Kom-
ponentenmodell sollte dabei von der heterogenen Realisierung einzelner Bausteine (Program-
miersprache, Betriebssystem, Rechner usw.) abstrahieren und eine offene Architektur des
Gesamtsystems ermöglichen, die sich bei Bedarf um zusätzliche Werkzeuge erweitern läßt. Die
Basis für die Interoperabilität der einzelnen Komponenten bildet dabei ein globales Datenmo-
dell. Weiterhin sollten Daten nicht unkontrolliert zwischen den Werkzeugen kopiert werden
(Data Exchange), sondern es ist eine gemeinsame Nutzung aller Datenquellen anzustreben
(Data Sharing). Dabei ist natürlich o.g. Heterogenität entsprechend zu überbrücken. Im Rah-
men dieser Arbeit wollen wir deshalb geeignete Strategien für eine globale Datenversorgung
finden, bei denen alle diese Aspekte berücksichtigt werden. Obwohl unsere Rahmenbedingun-
gen speziell durch Entwurfsumgebungen geprägt werden, so sind die entwickelten Konzepte
und Ideen im allgemeinen aber auch auf andere Informationssysteme übertragbar.

12

Bei der Datenversorgung gilt es vor allem zwei Schwerpunkte zu betrachten: Zuerst einmal
benötigen wir eine formale Sprache zur Beschreibung des globalen Datenmodells. Beides
(Sprache und Modell) sollte möglichst standardisiert (und somit weit verbreitet) sein. Andern-
falls erhält man ein proprietäres System, das kaum erweiterbar ist. Im Bereich der Entwicklung
und Produktion von Waren sehen wir z.B. den STEP-Standard (ISO 10303, Standard for the
Exchange of Product Data) als den geeigneten Kandidaten. Er enthält sowohl eine eigene
Datenmodellierungssprache als auch standardisierte Schemata für ausgewählte Anwendungs-
bereiche.

In einem zweiten Schritt ist eine ausreichende Schnittstelle zum Datenzugriff zu gewährleisten.
Diese muß das ausgewählte (globale) Datenmodell unterstützen und die Heterogenität aller
beteiligten Komponenten angemessen überbrücken. In diesem Sinne muß sie natürlich auch mit
dem zugrundeliegenden Komponentenmodell harmonieren (wiederum möglichst standardi-
siert). Es ergibt sich also eine enge Verzahnung zwischen Datenquelle(n), technischer Infra-
struktur zur Überwindung von Rechnergrenzen und Heterogenität (sog. Middleware) und Kom-
ponentenmodell. Nach einer Begriffsklärung wollen wir deshalb einen genaueren Blick auf den
CORBA-Standard (Common Object Request Broker Architecture) werfen, der sowohl ein Kom-
ponentenmodell als auch eine Middleware-Lösung verspricht. Wir werden erkennen, daß
CORBA zwar mächtige Konzepte für eine auftragsorientierte Verarbeitung hat, gleichzeitig
aber deutliche Mängel im Bereich datenintensiver Anwendungen aufweist. Nach einer Klassi-
fikation von Datenquellen und ihren typischen Schnittstellen werden wir deshalb untersuchen,
wie sich diese in eine CORBA-Umgebung integrieren lassen.

Neben der reinen Diskussion von Datenversorgungsstrategien wollen wir weiterhin ausgewählte
Methoden anhand eines Prototypen evaluieren. Als Basis dient uns dabei die neu entwickelte
Anbindung des SDAI (Standard Data Access Interface) von STEP an die Sprache Java (ISO
10303-27). Diese wurde im Rahmen der vorliegenden Arbeit wesentlich mitgestaltet und
ermöglicht den simultanen Zugriff auf unterschiedliche Datenquellen über unterschiedliche
Datenversorgungsstrategien. Wir werden mit unseren Prototypen zwei verschiedene CORBA-
basierte Lösungen einem JDBC-basierten Ansatz gegenüberstellen. Die Datenquellen und ihre
Zugriffsschnittstellen sind dabei als sog. Data Modules in die SDAI-Schnittstelle integriert. Es
zeigt sich, daß CORBA unter gewissen Umständen zur Realisierung einer effizienten Datenver-
sorgung benutzt werden kann, das zugrundeliegende Modell aber nicht dem eigentlichen
Grundgedanken von CORBA entspricht. Insbesondere lassen sich nur wenige der standardisier-
ten CORBA-Komponenten (sog. Services und Facilities) benutzen.

Ergänzend zum Aspekt der Datenversorgung werden wir erkennen, daß weder CORBA noch
konkurrierende Ansätze wie DSOM, DCOM oder Java Beans ein vollständiges Komponenten-
modell (entsprechend unseren Anforderungen) realisieren.

Abgerundet wird diese Arbeit durch eine Abgrenzung zu verwandten Projekten im Bereich
STEP und CORBA. In einigen Fällen haben wir sogar in Zusammenarbeit mit den beteiligten
Gruppen gemeinsame Prototypen entwickelt, um die jeweiligen Konzepte besser vergleichen zu
können.

13

Kapitel 1
111

Einleitung

In vielen Bereichen kann heutzutage nicht mehr auf rechnergestützte Informationssysteme ver-
zichtet werden. Dies betrifft nicht nur die industrielle Verarbeitung und Fertigung, sondern häu-
fig auch private Haushalte. Sei es nun die WWW-Seite mit dem Kinoprogramm, Home Ban-
king, die Buchung einer Reise über das Internet oder die Konstruktion eines neuen Motors im
CAD-Labor - alle Informationssysteme haben eines gemeinsam: Sie verarbeiten Daten. Ohne
die Möglichkeit zum Extrahieren und Speichern von Daten wären sie vollkommen nutzlos. Wir
benötigen also entsprechende Techniken zur Datenversorgung. Diese muß im allgemeinen zwei
Arten des Zugriffs unterstützen: lesen und schreiben. Manche Informationssysteme basieren
lediglich auf rein lesenden Operationen. Ein Beispiel hierfür sind Systeme zum Information
Retrieval (die leider häufig schon Informationssystemen im allgemeinen gleichgesetzt werden).
Sie stellen unserer Ansicht nach aber nur die einfachere Variante dar. Schwieriger wird es, wenn
auch der schreibende Zugriff unterstützt werden muß. Beispiele hierfür sind Buchungs- oder
Reservierungssysteme (oder Home Banking). Aber auch diese benötigen im allgemeinen für
jeden Verarbeitungsschritt nur eine relativ kleine Menge von Daten als Ein- und Ausgabe. Wirk-
lich komplex wird es erst, wenn für jede Operation größere Mengen von Daten benötigt werden.
Ein repräsentativer Vertreter dieser Kategorie sind z.B. Informationssysteme, die der Entwick-
lung neuer Produkte dienen (wie etwa Entwurfswerkzeuge). Hier sind zunächst extrem viele
Daten aus vorangegangenen Arbeiten und zugrundeliegenden Richtlinien zu berücksichtigen.
Gleichzeitig entstehen aber während der Entwicklung eine Menge neuer Daten, die später als
Grundlage der Produktion dienen. Dieses Szenario stellt somit das anspruchsvollste Einsatzge-
biet für Informationssysteme dar. Nachdem es die mächtigsten Strategien zur Datenversorgung
benötigt, wollen wir es als zugrundeliegendes Anwendungsgebiet dieser Arbeit wählen. Mit
dieser Entscheidung erreichen wir, daß die erzielten Ergebnisse und die entwickelten Konzepte
recht einfach auf andere Typen von Informationssystemen zu übertragen sind. Letztendlich stel-
len sie somit einen allgemeinen Ansatz zur Datenversorgung dar. Im folgenden wollen wir uns
daher verstärkt der Problematik sog. Entwurfsanwendungen zuwenden. In den nächsten
Abschnitten beginnen wir dafür mit einer Einleitung in die Charakteristika derartiger Systeme
und einer Vorstellung der konkreten Rahmenbedingungen dieser Arbeit.

14

1.1 Anwendungsszenario: Entwurfsumgebungen
Bei der Entwicklung neuer Produkte kann heutzutage nicht mehr auf den Einsatz rechnerge-
stützter Entwurfswerkzeuge, wie z.B. CAD-Programme, verzichtet werden. Dies liegt einerseits
an der Komplexität moderner Produkte, deren Beschreibung mit konventionellen Methoden
nicht mehr handhabbar ist, andererseits an der Anforderung, in immer kürzeren Abständen neue
Modelle auf den Markt zu bringen. Diese Waren können aber nur dann erfolgreich sein, wenn
sie neue, innovative Ideen realisieren, was wiederum höhere Anforderungen an den Entwurfs-
prozeß stellt. Letztendlich stellen Dauer und Kosten der Entwurfsphase ein entscheidendes Kri-
terium dar, das ein hohes Potential für Optimierungen bietet. Aus diesem Grunde muß die in
diesem Bereich verwendete Software hochgradig an die Bedürfnisse des jeweiligen Entwickler-
Teams angepaßt sein. Sie sollte sowohl alle benötigten Werkzeuge umfassen, als auch alle Daten
bestehender Produkte langfristig speichern, so daß diese für zukünftige Entwicklungen nutzbar
sind. Man spricht in diesem Fall von Entwurfsumgebungen.

In den letzten Jahren haben sich nun einige solcher Software-Systeme am Markt etabliert, die
aber nicht immer eine ausreichende Unterstützung bieten. Oftmals sind die einzelnen Werk-
zeuge selbst zwar hochgradig optimiert, es fehlt aber eine angemessene Unterstützung für die
Interaktion. So gibt es häufig keine umfassende Kopplung zwischen Stücklistenverwaltung und
CAD-Programm: Wird die 3D-Zeichnung um weitere Teile ergänzt, so muß die Stückliste
anschließend manuell aktualisiert werden. Anhand dieses Beispieles wird deutlich, daß vielfach
eine höhere Integration der einzelnen Werkzeuge wünschenswert wäre. Dies ist aber nicht so
einfach möglich. Entweder ist die gesamte Entwurfsumgebung von einem einzigen Software-
Hersteller entwickelt worden, so daß man auf dessen Mitwirkung angewiesen ist (die Schnitt-
stellen zwischen den einzelnen Werkzeugen sind meist nicht von außen sichtbar), oder die ein-
zelnen Werkzeuge sind zwar von unterschiedlichen Herstellern, ihre Schnittstellen sind aber
nicht offen bzw. mächtig genug, um die gewünschte Interoperabilität zu erreichen. Ein weiterer,
sehr wesentlicher Punkt, der von praktisch keiner kommerziell verfügbaren Systemlösung
unterstützt wird, ist die Integration von existierenden Altsystemen (sog. Legacy-Systemen).
Häufig gibt es Programme mit korrespondierenden Datenbeständen, die sich seit Jahren oder
gar Jahrzehnten etabliert haben und deren Ablösung weder wünschenswert noch sinnvoll wäre.
Hier sprechen alleine die Kosten für die Software und die Umschulung der Mitarbeiter dagegen.
Zusätzlich bergen neue Systeme auch immer neue Fehlerquellen.

Letztendlich wäre es also wünschenswert, daß ohne großen Aufwand für jeden Entwickler eine
individuelle Lösung erstellt werden kann, die genau auf dessen Bedürfnisse abgestimmt ist.
Dabei sollten die einzelnen Entwurfswerkzeuge quasi als Bausteine zu einer integrierten Umge-
bung zusammengestellt werden können. Insbesondere sollte es auch möglich sein, existierende
Altsysteme als einen dieser Bausteine zu verwenden. Dabei ist es natürlich entscheidend, daß
nicht für jeden Entwickler alles neu implementiert werden muß. Vielmehr sollte es einen Satz
von grundlegenden Werkzeugen bzw. Bausteinen geben, die sich dann individuell gruppieren
und konfigurieren lassen. In der Literatur werden diese Basis-Bausteine im allgemeinen als
Komponenten bezeichnet, mit denen dann die gewünschte Umgebung erstellt wird.

15

Damit die resultierenden Systeme nicht wiederum proprietär und abhängig von der Produktpa-
lette einzelner Software-Hersteller sind, sollten alle Komponenten wohldefinierte Schnittstellen
haben und auf einem allgemein anerkannten Modell zur Interaktion basieren. Zu empfehlen ist
in beiden Punkten die Verwendung internationaler Standards. Nur so läßt es sich erreichen, daß
einmal erworbene und eingesetzte Bausteine auch zukünftig weiterverwendet werden können.

Im folgenden wollen wir nun untersuchen, wie sich internationale Standards zur Modellierung
von Komponenten und den daraus resultierenden Entwurfsumgebungen einsetzen lassen. Die in
diesen Systemen zu verarbeitenden Daten beschreiben sowohl Produkte oder Dienstleistungen
als auch Prozeßabläufe und sog. Business Rules. Die Menge aller Daten stellt somit einen erheb-
lichen Teil des (technischen) Wissens eines Unternehmens dar. Ihre Verfügbarkeit ist daher ent-
scheidend für die Entwicklung neuer Produkte, so daß wir einen besonderen Schwerpunkt auf
die Realisierung einer effizienten Datenversorgung legen werden. Natürlich würde eine Diskus-
sion dieses Themas in aller Allgemeinheit den Rahmen dieser Arbeit bei weitem sprengen. Wir
werden deshalb von konkreten Rahmenbedingungen ausgehen, die im folgenden erörtert wer-
den. Anhand dieser stellen wir anschließend die resultierenden Anforderungen und Ziele vor,
die uns als Basis für das weitere Vorgehen dienen.

1.2 Rahmenbedingungen
Das in der vorliegenden Arbeit beschriebene und zugrundegelegte Szenario wird im wesentli-
chen durch die Projekte innerhalb der Abteilung “Prozeßkette Produktentwicklung - FT3/EK”
des DaimlerChrysler Forschungszentrums Ulm bestimmt. Diese beschäftigt sich bereits seit
einigen Jahren mit der Entwicklung integrierter Entwurfsumgebungen, um die einzelnen
Geschäftsfelder des Konzerns in geeigneter Weise zu unterstützten. Dabei gilt es, eine Menge
verschiedener Produkte und Produktklassen zu berücksichtigen: Personenkraftwagen und Nutz-
fahrzeuge von Mercedes-Benz, Flugzeuge, Helikopter und Raumfahrttechnik der DASA, Schie-
nenverkehrsmittel von Adtranz und vieles mehr. Aufgrund der Vielfältigkeit dieser Palette
sowie der Komplexität der einzelnen Waren gibt es letztendlich eine Unmenge verschiedener
Entwurfswerkzeuge, die nur selten eine geeignete Schnittstelle zur Interaktion bieten. Resultie-
rend zerfällt die Entwicklung immer noch in viele Abschnitte (sog. Insellösungen), zwischen
denen die erzielten Ergebnisse sowie die gewonnenen Daten mit erheblichen Aufwand konver-
tiert oder aufbereitet werden müssen. Ziel ist es nun, eine durchgehende Prozeßkette zu errei-
chen, bei der alle zur Entwicklung eines Produktes benötigten Software-Systeme und Werk-
zeuge interagieren und der gesamte Prozeß möglichst automatisch, z.B. mit einem Workflow-
System, kontrolliert werden kann. Weiterhin sollte es möglich sein, gezielt in der Vergangenheit
erworbene Erkenntnisse zu nutzen, um z.B. die Zahl der konkret zu produzierenden Prototypen
und durchzuführenden Testläufe zu reduzieren. Diese Art der Entwicklung wird auch als Digital
Mockup bezeichnet.

Natürlich läßt sich dieses Ziel nicht von heute auf morgen erreichen. Vielmehr muß zuerst unter-
sucht werden, welche Probleme einer Integration im Wege stehen, um anschließend erste Pro-
totypen in ausgewählten Bereichen zu testen. Dabei gilt es eine Reihe weiterer Faktoren zu

16

berücksichtigen. So ist z.B. bei den meisten Produkten davon auszugehen, daß nicht alles selbst
gefertigt, sondern einige Bestandteile von Zulieferern bezogen werden. Sind diese Teile bereits
auf dem Markt erhältlich, so muß ihre Beschreibung, dessen Format im wesentlichen durch den
Zulieferer gegeben ist, in geeigneter Weise in das eigene System eingespeist werden. Anders
herum kann es natürlich auch vorkommen, daß Teile zwar intern spezifiziert worden sind, man
ihre Herstellung aber delegieren will. In diesem Fall müssen die Daten dem Zulieferer geeignet
übermittelt werden. Im Prinzip kann es sogar vorkommen, daß bei der Spezifikation bereits auf
die spezielle Umgebung des Herstellers einzugehen ist - sowohl im Bezug auf die eingesetzte
Software als auch auf vorhandene Produktionsanlagen. Im Idealfall wären wiederum alle
Systeme integriert und man spräche von sog. Virtual Enterprises.

Das gerade geschilderte Szenario deutet bereits auf einen weiteren Aspekt hin: die Modularität
von Produkten. Heutzutage ist es durchaus üblich, daß einzelne Teile gleichzeitig für mehrere
Produkte entwickelt werden, die nicht unbedingt dem gleichen Geschäftsfeld zugeordnet sind.
Warum sollte man z.B. nicht den Motor eines PKW auch für kleinere Nutzfahrzeuge verwen-
den? Die Prozeßketten und Systeme dieser Bereiche können also nicht isoliert betrachtet wer-
den, sondern es müssen von vornherein geeignete Schnittstellen zur Interaktion bereitgestellt
werden. Im Rahmen einer Übergangslösung kann dies durch Datenaustausch in abgesprochenen
Formaten geschehen. Langfristig ist aber auch hier eine Integration aller Systeme anzustreben.

Ein weiterer Aspekt ist schließlich die Archivierung von Daten. Für einige Produkte muß auch
nach Jahrzehnten noch eine kompetente Wartung garantiert werden, für die unter Umständen
der Zugriff auf die während der Entwicklung angefallenen Daten nötig ist. Wurden diese nur im
meist proprietären Format der Entwicklungswerkzeuge abgespeichert, so können sie dann mög-
licherweise nicht mehr gelesen werden, da die entsprechenden Systeme inzwischen abgelöst
wurden. Die Nachfolger-Systeme sind oftmals nicht mehr in der Lage, die Daten korrekt zu
interpretieren. Insbesondere für dieses Problem, wie aber auch für die beiden zuvor angespro-
chenen Punkte (die Einbindung von Zulieferern und die geschäftsfeldübergreifende Entwick-
lung), ist die Verwendung eines einheitlichen, langfristig und global verfügbaren und interpre-
tierbaren Datenformates bzw. -modelles von entscheidender Bedeutung. Die DaimlerChrysler
AG (bzw. die ursprüngliche Daimler-Benz AG) hat sich deshalb bereits vor Jahren entschieden,
an der Entwicklung eines international akzeptierten Standards für die Verarbeitung von Pro-
duktdaten mitzuwirken und diesen auch einzusetzen. Die Wahl ist dabei auf den ISO-Standard
10303 (STEP - Standard for the Exchange of Product Data) gefallen, der u.a. das Application
Protocol 214 (kurz AP 214) definiert, welches ein speziell für die Automobilindustrie abge-
stimmtes Schema beschreibt. Neben der Archivierung soll dieses Format auch zunehmend als
Basis für den Datenaustausch (sowohl intern als auch mit Zulieferern) benutzt werden sowie
langfristig die Grundlage für ein globales Datenmodell integrierter Systeme bilden.

In einem ersten Schritt wurde nun in den letzten Jahren damit begonnen, die Vielzahl existie-
render Werkzeuge dahingehend zu erweitern, daß STEP-basierte Daten sowohl importiert als
auch exportiert werden können. Auf diese Weise hat man erreicht, daß die in den einzelnen
Schritten der Prozeßkette verwendeten Systeme entkoppelt wurden und nicht mehr von den im
vorausgehenden oder nachfolgenden Schritt verwendeten Systemen und deren oftmals herstel-
lerspezifischen Formaten abhängen. Somit ist es auch nicht mehr nötig, umfangreiche Konver-
tierungsprogramme, sog. Prozessoren, von einem proprietären Format in ein anderes zu schrei-

17

ben. Es ist jetzt ausreichend, für jedes Format einen Import- sowie einen Export-Filter zum
STEP AP 214 zur Verfügung zu haben. Natürlich bleiben so die existierenden Insellösungen
erhalten, und es kann noch keine integrierte Entwurfsumgebung realisiert werden. Jedoch ist es
ein erster Schritt zur Kapselung einzelner Programme und Werkzeuge, die später als eigenstän-
dige Komponenten in ein Gesamtsystem einzubetten sind. Vor diesem Schritt bleibt aber zu klä-
ren, welches Modell zur Interaktion und Integration verwendet werden kann. Ganz wichtig ist
dabei, daß möglichst viele normierte oder standardisierte Schnittstellen verwendet werden und
keine neuen Abhängigkeiten gegenüber einzelnen Herstellern entstehen. Diese sind vielmehr
weitestgehend zu reduzieren, so daß einzelne Komponenten auch durch Programme anderer
Software-Hersteller zu ersetzen wären. Weiterhin ist es wünschenswert, daß möglichst viele
Komponenten durch existierende oder auf dem Markt verfügbare Massen-Software (sog. Com-
mon of the Shelf Software - COTS) realisiert werden können. Insbesondere sollen nur wenig
eigene Ergänzungen nötig sein, so daß keine teuren Spezial-Lösungen entstehen. Innerhalb des
Konzerns wird derzeit zunehmend der von der OMG (Object Management Group) entwickelte
CORBA-Standard (Common Object Request Broker Architecture) als die globale Integrations-
und Kommunikationsplattform in Betracht gezogen. Ein besonderer Vorteil dieses Standards ist
die Unabhängigkeit von Programmiersprachen und Betriebssystemen, so daß z.B. auch in Java
geschriebene, Intra-/Internet-fähige Client-Komponenten integriert werden könnten. Gerade im
Hinblick auf weltweite Unternehmenszusammenschlüsse, Virtual Enterprises sowie einzelne
Kooperationen bei der Produktion von Waren ist dies besonders wichtig.

1.3 Anforderungen und Ziele
Wenn wir die gerade erwähnten Rahmenbedingungen betrachten, so gilt es vor dem Entwurf
integrierter Entwurfsumgebungen, zuerst einmal folgende Aufgabe zu lösen: Wir benötigen ein
geeignetes Komponentenmodell mit den dazugehörigen Schnittstellen und Datenformaten. So
einfach das auch klingt, die Frage, was denn nun überhaupt geeignet bedeutet, ist schon kom-
plex genug. Wir wollen daher kurz einige Anforderungen aus dem letzten Abschnitt extrahieren:

• Unterstützung einer durchgehenden Prozeßkette

• Realisierung einer übergreifenden Ablaufkontrolle (Workflow)

• Geschäftsfeld- sowie unternehmensübergreifende Verarbeitung

• Unabhängigkeit von einzelnen Software-Herstellern

• Verwendung von Standards und standardisierten Schnittstellen

• Integration existierender Werkzeuge, keine Re-Implementierung

• Kapselung von Komponenten (Austauschbarkeit), Einsatz von COTS zur Kostensenkung

• STEP als einheitliches Datenmodell

• Anbindung an das Intra-/Internet, Bildung sog. Virtual Enterprises

• Unterstützung heterogener Umgebungen (Hardware und Software).

18

Anhand dieser Punkte wird bereits deutlich, daß die Suche nach einem reinen Kommunikations-
mechanismus alleine nicht ausreicht. Vielmehr benötigen wir ein umfassendes Modell, das
Konzepte und Techniken von Netzwerk-Protokollen bis hin zu Schnittstellen auf der Werkzeug-
ebene festlegt. Gleichzeitig darf es aber nicht die Palette der Programmiersprachen, Betriebssy-
steme und Rechnerumgebungen einschränken oder auf ein Software-Hersteller fixiert sein
(sonst könnten nicht alle Altsysteme integriert werden). Wenn wir uns dieser Tatsache bewußt
werden, so ist die Verwendung des bereits zitierten CORBA-Standards eigentlich nur allzu
offensichtlich. Auf den ersten Blick gibt es keinen anderen Standard, der so umfassend ist und
mit diesen oder ähnlichen Punkten wirbt. Wir könnten nun die Hände in den Schoß legen und
verkünden, daß die Lösung gefunden ist - das wäre aber allzu naiv: Nur weil es (derzeit) keinen
anderen Standard gibt, heißt das nicht, daß CORBA nun die ultimative Lösung ist. Im Gegenteil,
wir sollten genau überprüfen, inwieweit CORBA die oben genannten Punkte erfüllt, und, was
noch viel wichtiger ist, wir müssen untersuchen, ob eine Reihe impliziter Anforderungen erfüllt
werden, die gar nicht mehr aufgeführt sind, da sie für heutige Systeme bereits selbstverständlich
sind. Stellvertretend sind im Rahmen dieser Arbeit die folgenden zu nennen:

• Effizienz

Wie sieht das Laufzeitverhalten von CORBA-Komponenten aus? Können sie ähnlich effi-
zient realisiert werden wie bestehende Programme oder führt das zugrundeliegende Modell
zu inakzeptablen Leistungseinbußen? Wo liegen die Grenzen?

• Lokalität und Pufferung von Daten

In der Informatik ist es unbestritten, daß die meisten Berechnungsschritte eine relativ hohe
Lokalität aufweisen, d.h., daß in der Regel zu einem Zeitpunkt nur ein relativ kleiner Pro-
grammabschnitt auf einem kleinen Satz von Daten arbeitet. Beides sollte somit möglichst
lokal verfügbar sein. Wird dies, insbesondere die Pufferung von Daten (sog. Caching),
geeignet durch CORBA unterstützt?

• Integration und Zugriff auf Datenquellen bzw. Archive

Lassen sich Datenquellen, die ja quasi das Wissen eines Unternehmens darstellen, in ange-
messener Weise in eine CORBA-Umgebung integrieren? Kann weiterhin die Effizienz und
Mächtigkeit der in den letzten 20 Jahren entwickelten Datenbankverwaltungssysteme
(DBVS) genutzt werden?

Ziel und Kern dieser Arbeit ist es also, kritisch hinter die Kulissen von CORBA zu schauen und
zu untersuchen, ob die genannten Kriterien erfüllt werden können. Neben einer Betrachtung der
aus den Rahmenbedingungen entstandenen Anforderungen soll der Schwerpunkt aber mehr auf
der Beantwortung der Frage liegen, ob und in welcher Art und Weise eine effiziente Datenver-
sorgung für Komponenten einer CORBA- und STEP-basierten, integrierten Entwurfsumgebung
zu realisieren ist. Selbstverständlich werden wir dabei auch ein wenig über den Tellerrand
schauen und uns zu verwandten Konzepten abgrenzen.

Auf der anderen Seite soll in dieser Arbeit gerade nicht ein weiteres Konzept zu Schema-Inte-
gration heterogener Datenquellen entwickelt werden. Hierzu gibt es genügend andere Arbeiten,
z.B. [Sa98], so daß wir den STEP-Standard zur Definition eines globalen Schemas benutzen,
ohne dabei näher auf notwendige Abbildungen zu lokalen Schemata einzugehen. Weiterhin
untersuchen wir hier auch nicht die Probleme bei der Abbildung von standardisierten Schnitt-

19

stellen auf die jeweiligen Altsysteme. Dazu sei z.B. auf [SSSM99] verwiesen. Wir wollen im
Rahmen unserer Untersuchungen lediglich sicherstellen, daß die zugrundeliegenden System-
konzepte den Einsatz sog. Wrapper prinzipiell ermöglichen.

1.4 Vorgehensweise und Aufbau der Arbeit
In den letzten Abschnitten ist deutlich geworden, daß die gestellten Anforderungen nur durch
die Verwendung einer modularen und aus Bausteinen bzw. Komponenten gebildeten Architek-
tur erfüllt werden können. Wir haben aber noch nicht definiert, was wir genau unter diesen
Begriffen verstehen. Aus diesem Grund wollen wir in Kapitel 2 klären, was sich hinter den
Schlagwörtern Komponente, Business Object, Middleware, Multi Tier, Entwurfsumgebung und
Framework verbirgt und wie sie im Kontext dieser Arbeit verwendet werden. Ergänzend dazu
diskutieren wir einige allgemeine Grundbegriffe der Datenversorgung sowie Charakteristika
einer möglichen Anbindung an das Intra-/Internet. Wir werden erkennen, daß in den meisten
Fällen eine datenintensive Verarbeitung vorliegt, für die eine lokale Pufferung der aktuell benö-
tigten Daten sinnvoll oder gar erforderlich ist, so daß das Konzept des Data Shipping von zen-
traler Bedeutung für die anzustrebende Datenversorgung ist. Im Gegensatz dazu kann es aber
auch vereinzelte Komponenten geben, die eher auftragsbasiert sind und keine Pufferung benö-
tigen. Man spricht in diesem Fall von Operation Shipping. Dieses Konzept sollte ebenfalls
unterstützt werden.

In Kapitel 3 geben wir anschließend eine Einführung in den STEP-Standard, der ja bereits als
das Mittel zur Modellierung eines globalen Datenmodells vorgegeben wurde. Ausgehend von
einem allgemeinen Überblick stellen wir die zugrundeliegende Datenmodellierungssprache
EXPRESS (EXPRESSive Power), die Zugriffsschnittstelle SDAI (STEP Data Access Interface)
sowie die enthaltenen Schemata, die sog. Application Protocols, vor.

In Kapitel 4 werfen wir schließlich einen genaueren Blick auf den CORBA-Standard und kom-
men damit dem Kern der Arbeit erheblich näher. Beginnen werden wir mit Einführungen in die
zugrundeliegende Object Management Architecture (OMA), die Interface Definition Language
(IDL), die eigentliche Kern-Architektur von CORBA und die darauf aufsetzenden Common
Object Services und Facilities. Diese Konzepte werden anhand eines relativ einfachen Beispie-
les verdeutlicht, das dann genutzt wird, um kurz auf die Möglichkeiten bei der Modellierung
von Daten sowie die dadurch resultierenden Leistungsaspekte einzugehen. Anschließend stellen
wir die von uns verwendeten CORBA-Systeme (Orbix, ORBacus und Component Broker) vor.
Beendet wird das Kapitel mit einer Abgrenzung zu verwandten Konzepten wie OSF-DCE,
Microsofts (D)COM, ActiveX und OLE sowie IBMs DSOM.

Aufbauend auf einer einleitenden Diskussion typischer Datenquellen wollen wir uns in
Kapitel 5 letztendlich mit dem Thema einer effizienten Datenversorgung von Komponenten
auseinandersetzen. Der Fokus liegt hier klar auf dem Konzept des Data Shipping, dessen Bedeu-
tung wir zuvor in Kapitel 2 unterstrichen haben. Beginnen werden wir mit einer Diskussion der
Einsatzgebiete sogenannter DB-Middleware, einer modernen Technik zur Integration heteroge-
ner Datenquellen. Obwohl die darauf basierenden Systeme als Grundlage dienen können, so

20

werden wir zeigen, daß sie aber nicht ausreichend für unsere Anforderungen sind. Anschließend
folgt dann eine Betrachtung verschiedener Möglichkeiten zur Realisierung von Data Shipping
in CORBA-Umgebungen. Diese bezieht sich zunächst einmal auf grundlegende Modellierungs-
aspekte und damit im Zusammenhang stehende Common Object Services, wie z.B. den Query,
Persistent Object oder Lifecycle Service. Weitere Diskussion betreffen kommerzielle Produkte
zur Datenbankintegration (z.B. den Orbix & ObjectStore Adapter) und verwandte Forschungs-
arbeiten, die meist eigene Prototypen von CORBA- und Datenbanksystemen integrieren (z.B.
MIND, SHORE). Ergänzend dazu untersuchen wir, inwieweit schon Konzepte zum Data Ship-
ping in einzelnen Programmiersprachen enthalten sind und welche Möglichkeiten es für Data
Shipping im Bereich des Intra-/Internet gibt.

Ausgehend von diesen theoretischen Ergebnissen wurde nun ein Prototyp entwickelt, mit dem
einige der hier vorgestellten Konzepte evaluiert wurden (siehe Kapitel 6). Beim Design war ins-
besondere auf den Praxisbezug und die Verwendung standardisierter Schnittstellen zu achten,
damit die erzielten Ergebnisse möglichst direkt für den Einsatz innerhalb der DaimlerChrysler
AG genutzt werden können. Wir haben uns deshalb entschieden, mehrere Datenversorgungs-
komponenten zu realisieren, auf die jeweils über die im STEP-Standard enthaltene Zugriffs-
schnittstelle SDAI zugegriffen werden kann. Dabei bot es sich an, aktiv an einer Java-Anbin-
dung der SDAI-Schnittstelle mitzuwirken, deren Entwicklung von der ISO im Jahre 1996 initi-
iert wurde. Auf diese Weise konnte gleichzeitig eine Anbindung an das Internet getestet werden.
Es stellte sich nun auch heraus, daß Java ebenfalls eine geeignete Plattform zur Integration hete-
rogener Datenversorgungstechniken ist, die uns zur Entwicklung der JavaSDAI Socket Bar ver-
anlaßte. Diese wurde in die internationale Standardisierung eingebracht und ist mittlerweile
Bestandteil von ISO 10303-27. Über die Socket Bar kann eine Abstraktion von den verwendeten
Kommunikationsmechanismen und Komponentenmodellen erreicht werden, so daß darauf auf-
setzende Applikationen über eine homogene Schnittstelle auf weltweit verteilte Datenbestände
zugreifen können. Dies führte insbesondere zu dem Vorteil, daß alle Datenversorgungskompo-
nenten simultan mit einer einzigen Applikation getestet und ausgemessen werden konnten.

Natürlich sind wir bei unserer Implementierung auf einige Probleme gestoßen, die überwiegend
darauf zurückzuführen sind, daß Java und CORBA relativ neue Technologien sind. Neben den
bereits in Kapitel 5 präsentierten konzeptionellen Schwächen gibt es weitere Probleme bzgl. der
verwendeten Systeme (siehe Kapitel 6.7). Im Rahmen des hohen Konkurrenzdrucks mußten
diese schnell auf den Markt gebracht werden und bergen dementsprechend noch eine Reihe von
Schwächen.

Nach der Diskussion der mit dem Prototyp gewonnenen Ergebnisse wollen wir schließlich noch
verwandte Arbeiten und ihre Ergebnisse im Bereich von STEP und SDAI betrachten. Hier sind
insbesondere das amerikanische NIIIP-Projekt (National Industrial Information Infrastructure
Protocols) sowie das europäische ESPRIT-Projekt VEGA mit seiner COAST-Architektur
(CORBA Access to STEP Information Storage) zu nennen. Beide beschäftigen sich ebenfalls mit
dem STEP-basierten Datenzugriff innerhalb von komponentenbasierten Architekturen (siehe
Kapitel 6.5).

21

Den Abschluß der vorliegenden Arbeit bildet die Zusammenfassung der erzielten Ergebnisse
sowie ein Ausblick auf zukünftige Themen und Entwicklungen. Wir werden sehen, daß der hier
eingeschlagene Weg in die richtige Richtung führt, wir aber noch lange nicht am Ziel sind.
Einerseits sind z.B. ergänzende Forschungsaktivitäten im Bereich der Abbildung globaler APIs
auf die Schnittstellen der lokalen Systeme nötig. Andererseits sollten aber gerade die verwen-
deten CORBA-Systeme ein höheres Maß an Stabilität und Effizienz bieten sowie eine größere
Palette der Common Object Services realisieren.

22

23

Kapitel 2
222

Grundlagen

Die Einleitung hat bereits verdeutlicht, daß für die Entwicklung moderner Software-Systeme
eine modulare bzw. komponentenbasierte Architektur nötig ist. Wir wollen nun die dafür erfor-
derlichen Grundlagen diskutieren sowie einige Begriffe definieren. Als Basis dient uns die in
Kapitel 2.1 enthaltene Beschreibung von Komponenten und Komponentenmodellen. Welche
Vor- und Nachteile entstehen und was sind die Voraussetzungen für ihren Einsatz? Im Anschluß
folgt in Kapitel 2.2 die Vorstellung einer ähnlichen, speziell auf verteilte, objektorientierte
Systeme abgestimmten Technologie: die sog. Business Objects. An dieser Stelle haben wir aber
erst eine Möglichkeit zur Strukturierung von Systemen behandelt. Kapitel 2.3 widmet sich des-
halb der Thematik von Schichtenmodellen und Client/Server-Grenzen, die zwei weitere Techni-
ken zur Gliederung von Architekturen darstellen. Letztere führt in der Implementierungsphase
zu getrennten Programmen, die durch geeignete Kommunikationsmechanismen zu koppeln
sind. Dafür bietet sich der Einsatz von Middleware an, deren verschiedene Varianten in
Kapitel 2.4 vorgestellt werden. Über die Diskussion sog. DB-Middleware kommen wir schließ-
lich zum Thema Datenversorgung, dem sich Kapitel 2.5 widmet. Wichtige Aspekte sind hier die
nötige Modellierung von Daten sowie eine allgemeine Charakterisierung von Programmen. Die
Partitionierung in auftragsbezogene und datenintensive Anwendungen sowie die korrespondie-
renden Konzepte des Operation Shipping und Data Shipping sind von zentraler Bedeutung für
die gesamte Arbeit. Nach der Diskussion grundlegender Begriffe und Techniken wenden wir
uns in Kapitel 2.6 wieder unserem eigentlichen Anwendungsszenario zu: den Entwurfsumge-
bungen. In welchem Zusammenhang stehen sie zu Frameworks, Workflow, Groupware und
CSCW? Welche Techniken sind zur Unterstützung der Kooperation zwischen Teams oder ein-
zelnen Designern erforderlich? In Kapitel 2.7 betrachten wir dann abschließend moderne
Schlagworte wie Internet, WWW und Intranet: Welche Bedeutung haben sie für uns? Wo liegen
die Stärken und Schwächen dieser Technologie? Einige Konzepte werden wir für unser weiteres
Vorgehen übernehmen.

24

2.1 Komponenten und Komponentenmodelle
In den letzten Abschnitten haben wir immer wieder den Bedarf für modulare, aus einzelnen
Bausteinen bestehende Systeme betont. Diese Anforderung ist nicht völlig neu und hat in der
Informatik bereits vor einigen Jahren zur Entwicklung von Komponenten geführt. Natürlich gibt
es in der Literatur viele verschiedene Definitionen, die aber alle mehr oder weniger den gleichen
Inhalt haben. In dieser Arbeit wollen wir uns an ein Zitat von Jed Harris, Präsident der CI Labs,
halten [OHE96]:

A component is a piece of software small enough to create and maintain, big enough
to deploy and support, and with standard interfaces for interoperability.

Diese Aussage paßt genau zu den von uns gestellten Anforderungen. Gleichzeitig unterstreicht
sie den Bedarf für modulare Implementierungen aus Sicht der Software-Industrie. Die monoli-
thischen Systeme der siebziger Jahre waren letztendlich zu komplex und undurchschaubar
geworden, um sie sinnvoll warten zu können. Dies lag nicht nur daran, daß sich neue Angestellte
in den Code einarbeiten mußten. Auch die ursprünglichen Entwickler selbst verloren irgend-
wann den Überblick. Aus diesem Grund galt es nun, Teilaufgaben mit einem angemessenen
Umfang zu definieren. Dabei sollten die Schnittstellen sowie das Verhalten der zu realisierenden
Komponenten möglichst abstrakt und allgemein spezifiziert werden. Technische Details, die nur
für die Implementierung einer Komponente, aber nicht für deren Benutzung von Interesse
waren, durften nicht an der Schnittstelle sichtbar sein. Diese Anforderungen werden durch ein
weiteres Zitat aus [OHE96] präzisiert:

The Component Declaration of Independence:

We, the components, declare our freedom from the tyranny of languages, tools, oper-
ating systems, address spaces, vendors, networks, compilers and applications.

Erreicht wird diese Unabhängigkeit und Abstraktion durch eine klare Trennung von Schnittstel-
len und Implementierungen. Die Schnittstellen sind im allgemeinen in einer geeigneten Spezi-
fikationssprache definiert. Sie umfassen die Signaturen sowie eine deklarative Beschreibung der
enthaltenen Operationen. Deklarativ bedeutet in diesem Kontext, daß nur das Ergebnis oder der
Folgezustand einer Operation spezifiziert werden, nicht aber der konkrete Algorithmus oder der
interne Aufbau einer Komponente. Letzteres ist einzig und alleine der Implementierung vorbe-
halten. Man bezeichnet diese Vorgehensweise auch als Kapselung.

Im Prinzip entstehen hier sehr viele Parallelen zur objektorientierten Technologie, deren Kon-
zepte seit den achtziger Jahren wesentlichen Einfluß auf die Informatik genommen haben
[KA95]. Auch dort ist die Kapselung ein zentraler Punkt. Es gilt jedoch der Grundsatz: Alles ist
ein Objekt. Objekte können von beliebiger Granularität sein (etwa eine Schraube oder gar eine
ganze Fabrik) und sich wiederum aus anderen Objekten zusammensetzen (ein Auto enthält
Motor, Karosserie, Getriebe usw). Somit sind komplexe Netzwerke von Objekten möglich.
Komponenten sind hingegen ein Baustein zur Lösung einer speziellen Aufgabe. Ihre Granular-
ität ist ganz und gar nicht beliebig. Weiterhin spricht man bei Komponenten nicht davon, daß
sie aus anderen Komponenten zusammengesetzt sind. Sie benutzen sich vielmehr gegenseitig.

25

Dadurch wird die Bildung von Hierarchien vermieden und es kann eine Komponente ersetzt
werden, ohne daß andere davon betroffen sind. Ersetzt man hingegen ein Objekt, z.B. ein Auto,
so sind in der Regel auch die enthaltenen Objekte wie Motor und Karosserie zu berücksichtigen.
Letztendlich bedingt der Einsatz objektorientierter Technologie auch nicht das Maß an Abstrak-
tion von technischen Details, wie es von Komponenten gefordert wird.

Generell könnte man sagen, daß sich beide Techniken ergänzen und die objektorientierte Tech-
nologie sowohl bei der Modellierung der Schnittstellen von Komponenten, als auch bei deren
Implementierung genutzt werden kann. Weiterhin kann es mehrere Implementierungen zu einer
Schnittstelle geben, bei der eine prozedural, die andere objektorientiert und die dritte funktional
programmiert wurde. Unterliegen die Schnittstellen und Implementierungen einem objektorien-
tierten Modell, das zur Laufzeit die Verteilung einzelner Komponenten auf mehrere Rechner
unterstützen soll, so spricht man auch von Distributed Objects [OHE96].

2.1.1 Vorteile einer komponentenbasierten Architektur

Grundsätzlich ergeben sich durch die Kapselung von Komponenten eine Menge Vorteile. Ent-
scheidend für unsere Arbeit ist natürlich die dadurch geschaffene Möglichkeit zur Integration
existierender Altsysteme. Daneben gibt es eine Reihe weiterer Aspekte, die wir aus zwei ver-
schiedenen Blickwinkeln betrachten wollen.

Für Software-Hersteller ist es nun erheblich einfacher den Entwurf neuer Produkte auf einzelne
Teams aufzuteilen. Bei klar definierten Schnittstellen kann es hinterher kein Gerangel um
Zuständigkeiten mehr geben. Fehler können entweder klar einem Team zugewiesen werden
oder sie basieren auf einer mangelhaften Spezifikation. Weiterhin kann die Funktionalität ein-
zelner Komponenten so gewählt werden, daß sie Bestandteil mehrerer Produkte wird. Dadurch
lassen sich einmal erprobte und optimierte Bausteine wiederverwenden. Anders herum können
aber auch fehleranfällige oder auf veralteter Technologie basierende Komponenten durch neue
ersetzt werden. Hier sei z.B. an die Ablösung relationaler Datenbankverwaltungssysteme
(RDBVS) durch objekt-relationale (ORDBVS) gedacht. Somit reduziert sich der benötigte Ent-
wicklungsaufwand, so daß neue Produkte schneller auf den Markt kommen. Außerdem ist zu
erwarten, daß sich standardisierte Komponenten in einer höheren Stückzahl und einem dement-
sprechend niedrigeren Preis verkaufen lassen.

Neben dem zuletzt genannten Aspekt gibt es nun auch aus Sicht des Anwenders noch eine Reihe
weiterer Vorteile. Zuerst einmal kann er sich mit den verfügbaren Komponenten ein individuel-
les System zusammenstellen, das genau die benötigte Funktionalität umfaßt. Dabei bleibt das
resultierende System aber offen und erweiterbar genug, um auch später noch neue Anforderun-
gen durch das Hinzufügen weiterer Komponenten erfüllen zu können. Durch standardisierte
Schnittstellen werden Abhängigkeiten gegenüber einzelnen Herstellern vermieden und einzelne
Bausteine lassen sich wiederum beliebig austauschen, sei es nun aus Leistungsaspekten oder zur
Einführung neuer Technologien. Weiterhin ist zu erwarten, daß es am Markt mehrere alternative
Implementierungen für eine Komponente gibt. Dadurch entsteht ein gesunder Wettbewerb, der
neben der bereits angesprochenen Preissenkung hoffentlich auch zu einer höheren Qualität der
jeweiligen Software führt.

26

Grundsätzlich vereinfacht ein komponentenbasierter Entwurf auch die Integration einer Last-
verteilung. So können bei Bedarf Replikate einer Komponente auf anderen Rechnern gestartet
werden. Weiterhin wird auch die Realisierung einer Zugriffskontrolle erleichtert. Jeder Baustein
kann bei Bedarf seine eigene Autorisierung und Authentifizierung durchführen oder diese Auf-
gabe an eine übergeordnete Komponente delegieren. Ähnliches gilt auch für eine Konsistenz-
kontrolle mit Hilfe von Transaktionen. Diesem Thema widmen wir uns aber genauer in
Kapitel 5. Alle drei Aspekte sind besonders nützlich bei Systemen, die sowohl für den internen
Gebrauch, als auch für den Zugriff über das Internet gedacht sind.

2.1.2 Nachteile einer komponentenbasierten Architektur

Gegenüber der relativ langen Liste von Vorteilen lassen sich eigentlich nur zwei Nachteile fin-
den. Einerseits führt die Einführung von Komponenten zu einer verstärkten Kommunikation
(zwischen genau diesen). Ist die Granularität der Bausteine nun zu fein gewählt, so sinkt die Lei-
stung des Gesamtsystems in inakzeptabler Weise. Dieser Aspekt ist somit kritisch für das
Design und sollte wohlüberlegt geschehen. Wir werden in den folgenden Kapiteln sehen, daß
selbst internationale Standards in diesem Punkt erhebliche Schwächen aufweisen. Im Prinzip
läßt sich dies aber auch gar nicht vermeiden. Es gibt keine allgemein gültigen oder korrekten
Kriterien für die Granularität von Komponenten. Vielmehr muß diese für jedes System und
jedes neue Verarbeitungsszenario jeweils individuell bestimmt werden. Insofern sollten Stan-
dards in diesem Punkt eine gewisse Flexibilität aufweisen. Optimal werden sie im konkreten
Fall aber nur selten sein (sie haben dafür andere Vorteile).

Der zweite Nachteil betrifft die Integration einer komponentenbasierten Architektur in eine
bestehende Systemumgebung. Im Idealfall würden sich alle bestehenden Programme als eine
Komponente in die neue Architektur einfügen. Dafür müßten diese Altsysteme aber geeignete
Schnittstellen haben, die leider häufig fehlen. Oftmals sind nur grafische Benutzeroberflächen
oder Terminal-Masken vorhanden. Eine komponentenbasierte Architektur trennt aber im allge-
meinen diese Ein-/Ausgabe-Routinen von der eigentlichen Funktionalität, so daß unter Umstän-
den doch die Ablösung einiger Altsysteme nötig ist. Ergänzend dazu wird häufig die Ansicht
vertreten, daß für die Einführung einer komponentenbasierten Architektur automatisch die
Restrukturierung betrieblicher Abläufe nötig ist. Man spricht dabei auch von Business Process
Reengineering [SV96]. Dies ist jedoch häufig eine falsche Argumentationsweise. Gerade im
Bereich der Produktdatenverwaltung (Product Data Management, PDM) liegt der eigentliche
Grund oftmals im geplanten Einsatz von kommerziellen PDM-Komponenten, deren Ablaufmo-
delle vielfach noch zu starr und dementsprechend nicht an bestehende Modelle anzupassen sind.
Unbestritten ist, daß eine Strukturierung der betrieblichen Abläufe nötig ist. Diese erhöht viel-
fach auch die Produktivität eines Unternehmens. Die Einführung eines PDM-Systems (oder
einer komponentenbasierten Architektur im allgemeinen) sollte aber im Falle einer bereits exi-
stierenden Strukturierung der Abläufe keinesfalls eine Restrukturierung erfordern.

27

2.1.3 Voraussetzung für den Einsatz von Komponenten

Für die Einführung einer komponentenbasierten Architektur gibt es im Prinzip drei Vorausset-
zungen. Zuerst einmal benötigt man eine geeignete Modellierungssprache, mit der die Schnitt-
stellen der Komponenten beschrieben werden. Diese Sprache sollte möglichst genormt sein, um
Mißverständnisse bezüglich Syntax oder Semantik von vornherein auszuschließen. Für die
Kommunikation zwischen den einzelnen Bausteinen ist weiterhin ein geeignetes Modell zur
Interaktion erforderlich. Dieses ist abhängig von der jeweiligen Modellierungssprache. Es
regelt z.B. wie die Implementierung einer Komponente (unter Benutzung der mit der Modellie-
rungssprache spezifizierten Schnittstellen) auf eine andere Komponente zugreift. Dafür ist es
nötig, daß es standardisierte Abbildungen von dieser abstrakten Sprache auf korrespondierende
Konstrukte in verwendeten Programmiersprachen gibt. Die Integration von Legacy-Systemen
setzt schließlich noch voraus, daß Schnittstellen oder APIs von Altsystemen eine ausreichende
Funktionalität bieten, um sie als eigenständige Komponente in ein Gesamtsystem einzubetten.

2.1.4 Komponentenmodelle

Unter einem Komponentenmodell verstehen wir die Kombination einer Modellierungssprache
mit dem dazugehörigen Modell zur Interaktion. Beispiele hierfür sind z.B. der internationale
CORBA-Standard (siehe Kapitel 4), IBMs DSOM (Distributed System Object Model, siehe
[La95]) oder Microsofts DCOM (Distributed Component Object Model, siehe [Ses98]). Alle
drei Modelle führen zu einem objektorientierten Entwurf und berücksichtigen bereits eine mög-
liche Verarbeitung über Rechnergrenzen hinweg. Ein kurzer Vergleich ihrer Konzepte und der
daraus resultierenden Einschränkungen gegenüber dem gerade definierten Begriff von Kompo-
nenten ist in Kapitel 4.8 enthalten.

Erste Versionen von Komponentenmodellen waren ursprünglich nur für die (lokale) Bearbei-
tung von zusammengesetzten Dokumenten, sog. Compound Documents, definiert worden. Sie
sollten eine Infrastruktur anbieten, um einzelne Teile eines Dokumentes weiterhin mit den
gewohnten Programmen zur Textverarbeitung, Tabellenkalkulation usw. bearbeiten zu können,
gleichzeitig aber eine einheitliche Oberfläche realisieren. Beispiele hierfür sind z.B. das von CI
Labs (Components Integration Laboratories) spezifizierte OpenDoc oder Teile von Microsofts
OLE (Object Linking and Embedding). Für eine Einführung und den Vergleich der zugrunde-
liegenden Konzepte sei auf Kapitel 23 von [OHE94] verwiesen. Inzwischen wurden beide
Modelle erweitert, so daß sich mit ihnen nun allgemeine Komponenten realisieren lassen. Open-
Doc benutzt dafür wahlweise IBMs DSOM oder ein CORBA-System, OLE ist mittlerweile
Bestandteil der DCOM-Architektur. Prinzipiell müßte man an dieser Stelle auch die von SUN
spezifizierten Java Beans und Enterprise Java Beans [Sun97d, Sun98a] als Beispiel für Kom-
ponentenmodelle nennen. Allerdings sind diese Konzepte einzig und alleine auf die Sprache
Java zugeschnitten. Diese ist zwar unabhängig vom verwendeten Betriebssystem und es können
auch in anderen Programmiersprachen geschriebene Komponenten integriert werden, das
zugrundeliegende Modell ist aber nicht so abstrakt gehalten wie in den letzten Abschnitten
gefordert. Trotz einer Anbindung an CORBA [Sun98b] fehlt gerade die Verwendung einer
Modellierungssprache: Alle Schnittstellen werden direkt in Java spezifiziert.

28

2.2 Business Objects
Im Rahmen der immer größeren Verbreitung objektorientierter Technologie und dem gleichzei-
tigen Bedarf an komponentenbasierten Architekturen hat sich in den letzten Jahren eine Tech-
nologie etabliert, die mit dem Schlagwort Business Objects bezeichnet wird. Im Prinzip ist aber
kein neues Konzept entstanden. Business Objects sind grundsätzlich nichts anderes als eine
objektorientiert modellierte Komponente. In [OHE96] werden sie daher auch als “The Ultimate
Components” bezeichnet. In den letzten Jahren haben allerdings unter diesem Begriff eine
Reihe Forschungsaktivitäten begonnen. Sie haben überwiegend das Ziel, die Entwicklung und
Standardisierung von Komponenten noch stärker an die Bedürfnisse von Geschäftsprozessen
anzulehnen. So hat z.B. die Object Management Group (OMG) im Rahmen ihrer CORBA-Stan-
dardisierung festgestellt, daß es nicht ausreicht, nur grundlegende Basis-Funktionalität zu nor-
mieren. Vielmehr muß es auch ein abstrakteres Modell zur Realisierung von Komponenten für
einzelne Geschäftsprozesse geben. Aus diesem Grund wurde innerhalb der OMG die Business
Object Domain Task Force gegründet, die sich auf folgende Aussage einigte [OMG96b]:

A business object is defined as a representation of a thing active in the business
domain, including at least its business name and definition, attributes, behaviors, rela-
tionships, rules, policies, and constraints.

In der Literatur finden sich weitere Definitionen, die aber alle ähnliche Inhalte haben [ES98,
Ja98, KA95, MM97, OHE96, SS99]. Häufig wird auch die mögliche Integration von Legacy-
Systemen betont. Es sind sogar neue Konferenzen zu diesem Thema ins Leben gerufen worden,
wie z.B. ein jährlicher Workshop im Rahmen der Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA, siehe [Su98]). Im Rahmen dieser
Arbeit wollen wir nun gar nicht genauer auf die einzelnen Aspekte von Business Objects einge-
hen, sondern sie lediglich als eine Art von Komponenten betrachten.

2.3 Strukturierung von Systemen
Bereits in der Einleitung haben wir den Bedarf für modulare und damit auch strukturierte
Systeme unterstrichen. Anschließend haben wir den Begriff der Komponente eingeführt, um
diese Anforderung zu erfüllen. Im wesentlichen ist dadurch eine Architektur entstanden, die das
System in Bausteine aufteilt, die jeweils einen abgeschlossenen Teil der gesamten Funktionali-
tät realisieren. Diese Art der Strukturierung ist primär für das Design von Systemen bestimmt
und nimmt keinerlei Bezug auf die spätere Implementierungsphase oder eine Verteilung auf
mehrere Rechner. Natürlich bietet es sich an, in einer verteilten Umgebung einzelne Komponen-
ten auf die verfügbaren Rechner aufzuteilen, aber dies ist nicht Teil der Spezifikation.

Neben der Strukturierung durch einen komponentenbasierten Entwurf gibt es nun zwei weitere
Möglichkeiten zur Gliederung von Systemen: Die Definition horizontaler Schichten
(Kapitel 2.3.1) und die Charakterisierung entsprechend der geplanten Client/Server-Grenzen
(Kapitel 2.3.2). Alle drei Konzepte sind prinzipiell orthogonal zueinander. So kann sich eine

29

Komponente über mehrere Schichten erstrecken und dabei beliebige Client/Server-Grenzen
überbrücken. Dieser Sachverhalt wird in Kapitel 2.3.3 am Beispiel eines fiktiven Reservie-
rungssystems für Reisebüros verdeutlicht.

2.3.1 Mehrebenenarchitektur (Multi Tier) und Schichtenmodelle

In Anlehnung an das ISO/OSI-Referenzmodell (Open Systems Interconnection Reference
Model, siehe [DZ83, Ta92]), das eine allgemeine Schichtenbildung für die Kommunikation zwi-
schen Rechnern definiert, hat sich in den letzten Jahren auch im Bereich des Systementwurfs
eine horizontale Schichtenbildung durchgesetzt. In beiden Fällen soll durch jede weitere
Schicht ein höherer Grad an Abstraktion erreicht werden. Resultierend sind auf jeder Ebene nur
die wirklich benötigen Details der darunterliegenden Schichten sichtbar, so daß keine unnötigen
Abhängigkeiten entstehen. Änderungen in einer Schicht sollten möglichst keine Anpassungen
auf höherer Ebene erfordern. Im ISO/OSI-Modell wurden dafür genau sieben Schichten mit
ihren Schnittstellen und der zu realisierenden Funktionalität definiert. Leider hat sich bei der
Strukturierung von Systemen noch kein Modell durchgesetzt. Weder bei der Anzahl der Schich-
ten, der sog. Tier, noch bei deren Schnittstellen herrscht Einigkeit. In der Literatur finden sich
deshalb viele verschiedene Ansätze. Das verbreitetste Modell ist dabei die in [Ge95, Dew93]
beschriebene Aufteilung in die drei Ebenen Präsentation, Ausführung und Datenhaltung (siehe
Abb. 2.1a). Daneben gibt es noch eine Reihe weiterer Konzepte, die teilweise bis zu fünf
Schichten definieren. Als Beispiel dafür sei die in Abb. 2.1b illustrierte Strukturierung gemäß
[MM97] erwähnt. Man spricht verallgemeinernd auch von Multi Tier-Architekturen.

Abb. 2.1: Klassifikation von Mehrebenenarchitekturen

Ein Grund für die fehlende Genauigkeit der einzelnen Definitionen könnte in der großen Ähn-
lichkeit zur Strukturierung durch Komponenten liegen. Beide Konzepte verfolgen ähnliche
Ziele, insbesondere im Bereich der Abstraktion. Komponenten können jedoch horizontal und
vertikal gegliedert sein und sich über mehrere Schichten erstrecken. Sie sind damit flexibler.
Weiterhin realisieren sie mehr oder weniger abgeschlossene Funktionalität, die sich auch eigen-
ständig vermarkten läßt. Im Gegensatz dazu macht es keinen Sinn, ein Produkt zu verkaufen,
das die komplette Schicht n in einer Mehrebenenarchitektur implementiert. Es müßte extrem
umfangreich und offen gegenüber möglichen Erweiterungen sein, so daß keine ausreichende
Leistung zu erwarten wäre. Im Zeitalter des Intra- und Internet und der Informationsverbreitung
über das WWW (World Wide Web) wird häufig ein Dreischichtenmodell benutzt. Die Präsenta-

Business Model

DatenbankenDatenbanken Datenbanken Datenbanken
Datenzugriff Datenzugriff Datenzugriff

Business Logic Business Logic
Applikationen

Applikationen
Applikationen

Applikationen
Präsentation
Ausführung

Datenhaltung

(b)Schichtenmodelle gemäß [MM97]

(a) Dreischichtenmodell
gemäß [Ge95, Dew93]

Two Tier
Three Tier

Four Tier
Five Tier

30

tion erfolgt dabei über HTML-Seiten oder Java Applets im WWW-Browser des Anwenders
(siehe auch Kapitel 2.7). Die mittlere Ebene entspricht einem WWW-Server, der Zugriff auf die
in der unteren Schicht enthaltenen Datenbanken und die darin gespeicherten Informationen hat.

Betrachtet man die Architektur integrierter, komponentenbasierter Systeme, so kann vielfach
gar nicht die genaue Anzahl von Schichten bestimmt werden. Dies liegt zum einen daran, daß
einige Komponenten bereits ihre eigene Präsentation realisieren und man gar nicht weiß, wie
sie intern aufgebaut sind. Weiterhin ist es möglich, daß einige Abläufe die direkte Visualisie-
rung der gespeicherten Daten erfordern, während andere mehrstufige Verarbeitungsschritte zur
Grundlage haben. Daher ist es unter Umständen sinnvoller, bei komponentenbasierten Archi-
tekturen nur die Schichtenbildung innerhalb der einzelnen Bausteine zu berücksichtigen.

2.3.2 Client/Server-Grenzen

In den letzten Abschnitten haben wir im wesentlichen nur die rein logische Strukturierung von
Systemen betrachtet. Ergänzend dazu ist es aber angebracht, mögliche Verteilungen der gesam-
ten Funktionalität auf mehrere Rechner, Prozessoren oder ähnliches zu berücksichtigen. Man
spricht in diesem Fall von der Client/Server-Grenze. Wichtig ist dabei, daß diese zur Laufzeit
keine konkrete physische Rechnergrenze zur Folge haben muß. Vielmehr ermöglicht sie ledig-
lich eine spätere Verteilung auf verschiedene Rechner, Prozessoren, Prozesse oder Threads. Die
Client/Server-Grenze ist also eine logische Strukturierung zur Unterstützung der physischen
Verteilung in einer konkreten Systemumgebung. Deshalb sollten die einzelnen Funktionsblöcke
möglichst abgeschlossen sein und nur wenig Interaktion untereinander erfordern. Andernfalls
entsteht zur Laufzeit (im Falle einer physischen Verteilung) ein unnötiges Kommunikationsauf-
kommen zwischen den beteiligten Rechnern, das die Leistung des gesamten Systems reduziert.
Gleichzeitig sind natürlich die individuellen Voraussetzungen zu berücksichtigen. Oftmals exi-
stieren schon bewährte Programme oder Datenbanken auf ausgezeichneten Rechnern, deren
Ablösung aber nicht ratsam erscheint. Sind diese Rechner bereits ausgelastet, so ist hier eine
implizite Client/Server-Grenze vorgegeben.

Abb. 2.2: Mögliche Client/Server-Grenzen einer Dreischichtenarchitektur

Grundsätzlich ist zu betonen, daß die Rolle von Client oder Server natürlich nicht eindeutig ist.
So kann ein Server für Reservierungssysteme gleichzeitig die Rolle eines Clients von Daten-
banksystemen übernehmen. Weiterhin kann es mehrere Client/Server-Grenzen innerhalb eines
Systems, einer Komponente oder einer der im letzten Abschnitt definierten Schichten geben. In

Datenhaltung

Ausführung

Ausführung
Präsentation

Präsentation
Präsentation

Datenhaltung

Ausführung

Präsentation

Datenhaltung

Ausführung

Präsentation

Datenhaltung

Präsentation

Ausführung

Datenhaltung

Ausführung

Datenhaltung

Client

Server

31

den meisten Fällen wird allerdings durch die Schnittstelle einer Komponente auch gleichzeitig
eine Client/Server-Grenze gebildet. Dies vereinfacht die Kapselung und Austauschbarkeit von
Komponenten erheblich (sie können dann z.B. in eigenen Prozessen ablaufen). Oftmals ist die
Client/Server-Grenze also eine Verfeinerung der Strukturierung durch Komponenten. Das muß
allerdings nicht immer so sein (siehe Kapitel 2.3.3). Betrachtet man hingegen Schichten und
mögliche Client/Server-Grenzen, so läßt sich keine klare Verbindung oder Abhängigkeit finden.
Anhand der in Abb. 2.2 dargestellten Möglichkeiten zur Aufteilung einer Dreischichtenarchi-
tektur auf zwei Rechner ist klar zu erkennen, daß die Grenze einer Ebene nicht zwangsweise
einer Client/Server-Grenze entsprechen muß.

2.3.3 Beispiel

In diesem Abschnitt wollen wir ein kurzes Beispiel präsentieren, das die drei Strukturierungs-
möglichkeiten noch einmal verdeutlicht. Gegeben sei dafür ein Reservierungssystem für Reise-
büros, mit dem Hotels, Flüge und Bahnfahrten gebucht und reserviert werden können. Für jede
dieser Aufgaben gibt es jeweils eine eigenständige Komponente, die bereits eine grafische
Oberfläche in Form von Java Beans besitzt (siehe Abbildung 2.3a).

Abb. 2.3: Strukturierung über Komponenten, Schichten und Client/Server-Grenzen

Oberhalb dieser drei Bausteine gibt es eine weitere Komponente zur globalen Kontextverwal-
tung und zur Realisierung einer einheitlichen Oberfläche. Sie ist nötig, um auch zusammenhän-
gende Buchungen von Hotel und Flug innerhalb eines Geschäftvorganges zu ermöglichen. Wir
erkennen an dieser Stelle, daß alle vier Komponenten Funktionen zur Präsentation umfassen.
Gleichzeitig enthält die oberste Schicht noch die Kontextverwaltung, die der Ausführung zuzu-
ordnen ist. Somit ist es nicht möglich, eine Schichtenbildung für das Gesamtsystem in
Abbildung 2.3a zu integrieren. Wir wollen deshalb einen detaillierten Blick auf die TRS-Kom-

HRS

Hotel
Reservation

System

FRS

Flight
Reservation

System

Globale Benutzerschnittstelle
&

Kontextverwaltung

Java Beans GUI

TRS-Client
Cache & Lokale Operationen

TRS-Server
Zentrale Verwaltung

DBVS-Client
SQL-CLI, ODBC oder JDBC

DBVS

PC
im

Reisebüro

Zentralrechner
der

Deutschen
Bahn

MVS-Host

Präsentation

Ausführung

Datenhaltung

Komponenten Schichten
Client/Server-

Grenzen

TRS

Train
Reservation

System

(a) Gesamtsystem (b) TRS-Komponente

32

ponente werfen (siehe Abbildung 2.3b). Innerhalb dieser können die einzelnen Ebenen der von
uns verwendeten Dreischichtenarchitektur (Präsentation, Ausführung und Datenhaltung) nun
sehr genau bestimmt werden. Wir sehen also, daß es häufig sinnvoller ist, nur die Schichtenbil-
dung innerhalb von Komponenten zu betrachten. Daneben ist weiterhin zu erkennen, daß die
Grenzen dieser Schichten orthogonal zu den Client/Server-Grenzen liegen. Letztere lassen sich
nun wiederum auch im Bezug auf das Gesamtsystem betrachten: Die oberste Komponente wird
sicherlich auch auf dem PC im Reisebüro installiert sein. Somit befindet sich zwischen ihr und
den HRS-, FRS- und TRS-Komponenten keine Client/Server-Grenze. Wir sehen, daß eine
Strukturierung durch Komponenten nicht unbedingt korrespondierende Client/Server-Grenzen
definiert (auch wenn es häufig der Fall ist). Letztendlich sollte uns klar werden, daß alle drei
Strukturierungsmöglichkeiten prinzipiell orthogonal zueinander sind. Je nach verwendeter
Technologie können im konkreten Fall natürlich Abhängigkeiten entstehen.

2.4 Middleware
Nachdem wir uns in den letzten Kapiteln überwiegend mit der Modellierung und Gliederung
von Systemen beschäftigt haben, wollen wir nun Techniken für die physische Verteilung von
Funktionalität auf mehrere Rechner betrachten. Es ist unbestritten, daß die Verwendung mehre-
rer Rechner für die Skalierbarkeit eines Systems unverzichtbar ist. Weiterhin vereinfacht es die
Integration bestehender Programme sowie die Bildung von Virtual Enterprises (siehe
Kapitel 1). Auch im Hinblick auf einen Einsatz im Intra-/Internet gibt es gar keine andere Wahl.
Wie wir in Kapitel 2.3.2 gesehen haben, wird die mögliche Verteilung eines Systems nun im
wesentlichen durch die verfügbaren Client/Server-Grenzen bestimmt. Rechnerübergreifende
Kommunikation ist nur an diesen Stellen möglich. Anders herum ist sie aber nicht zwingend
vorgeschrieben: Eine Client/Server-Grenze kann auch Kommunikation zwischen zwei Prozes-
sen auf dem gleichen Rechner zur Folge haben oder gar auf interne Prozeduraufrufe innerhalb
eines einzigen Prozesses abgebildet werden. Nun wäre es natürlich fatal, wenn man bei der Pro-
grammierung eines Clients oder Servers alle diese Fälle berücksichtigen müßte. Aus diesem
Grund hat sich sog. Middleware etabliert, die vom eigentlichen Kommunikationsmechanismus
abstrahiert. Sie realisiert eine einheitliche Schnittstelle, die für Client und Server quasi das Aus-
sehen eines lokalen Prozedur- oder Methodenaufrufes hat. In [Ge95] wird Middleware auch als
Softwareinfrastruktur zur Überbrückung der Verteilung bezeichnet. Frei nach [OHE94] könnte
man auch sagen:

Middleware is the slash (/) between client and server. It is the glue that lets a client
obtain a service from a server.

Sie umfaßt sowohl geeignete Schnittstellen auf dem Client (häufig auch als Stub oder Proxy
bezeichnet), die eigentliche Kommunikation, als auch Mechanismen zum Aufruf der gewünsch-
ten Funktion auf dem Server (sog. Skeletons). Primär wird dadurch eine Abstraktion von der
konkreten Client/Server-Grenze (z.B. Rechner- oder Prozeßwechsel) sowie der verwendeten
Hardware erreicht. Einige Middleware-Lösungen realisieren weiterhin eine vollständige

33

Abstraktion von eingesetzten Betriebssystemen und Programmiersprachen. An dieser Stelle
wollen wir auch gleich einen leider immer noch weit verbreiteten Irrtum beseitigen: Manche
Aufsätze oder Bücher erwecken den Eindruck, daß Middleware die mittlere Ebene einer Drei-
schichtenarchitektur ist. Dies ist falsch! Middleware ist (in ihrer ursprünglichen Form) lediglich
eine Implementierungshilfe bei der Strukturierung durch Client/Server-Grenzen. In Kapitel 2.3
haben wir gesehen, daß diese Grenze unabhängig von einer möglichen Schichtenbildung ist.

In den nächsten Abschnitten gehen wir nun kurz auf die Entwicklung von Middleware ein. Die
älteste Variante ist der sog. Remote Procedure Call (RPC, siehe Kapitel 2.4.1). Das Konzept rea-
lisiert quasi einen synchronen Prozeduraufruf und wurde Anfang der achtziger Jahre entwickelt.
Es ist somit älter als der Begriff Middleware selbst. Daneben behandeln wir in Kapitel 2.4.2
noch eine asynchrone Verarbeitung über sog. Message Oriented Middleware (MOM). Beide
Verfahren bilden die Grundlage für modernere Mechanismen, die auch dem Trend der objekt-
orientierten Technologie gerecht werden (siehe Kapitel 2.4.3). Diese realisieren gleichzeitig ein
Komponentenmodell und werden uns daher im weiteren Verlauf der vorliegenden Arbeit noch
öfter beschäftigen.

Neben dieser (relativ allgemeinen) Middleware sind in den letzten Jahren auch spezielle Lösun-
gen für den Zugriff auf Datenbankverwaltungssysteme (DBVS) entwickelt worden
(Kapitel 2.4.4). Wir unterscheiden dabei, ob sie den Zugriff auf genau eine Datenbank unterstüt-
zen, oder ob sie gar eine homogene Schnittstelle für die simultane Anfrageverarbeitung über
mehrere heterogene DBVS bieten. Im letzten Fall hat sich zunehmend das Schlagwort DB-Mid-
dleware durchgesetzt.

2.4.1 Remote Procedure Call (RPC)

Die einfachste Form von Middleware wird im Prinzip durch den Remote Procedure Call (RPC)
realisiert. Unter diesem Begriff versteht man die Fähigkeit, eine rechnerübergreifende Verarbei-
tung wie einen lokalen Prozeduraufruf behandeln zu können. Der konkrete Ablauf eines RPC
sowie mögliche Schnittstellen sind nicht standardisiert. Es gibt lediglich eine Beschreibung des
abstrakten Konzeptes [Blo92, BN84, Sch92, Ta92] sowie eine Menge von (Betriebs-)Systemen,
die RPC-Unterstützung bieten. Als Beispiel sei z.B. der Sun-RPC genannt, der in die SunOS-
und Solaris-Plattform integriert ist [Sun94]. Wie die meisten anderen Produkte benutzt auch
dieser die Programmiersprache C zur Definition der Schnittstellen, aus denen anschließend mit
dem zugehörigen RPC-Compiler Stubs für den Client, Skeletons für den Server und Datenkon-
vertierungsroutinen für die Kommunikation erzeugt werden (siehe Abb. 2.4). Letztere sind
nötig, um Unterschiede zwischen verwendeter Hardware und Betriebssystemen auszugleichen,
beispielweise die Konvertierung der Bitreihenfolge von Little Endian auf Big Endian [HP90,
Ta92]. Man spricht dabei auch von Parameter Marshalling, für das häufig das XDR-Format
benutzt wird (External Data Representation, siehe auch [Blo92]). Ein Nachteil vieler RPC-
Lösungen ist jedoch, daß sie nur unzureichend von der tatsächlichen Client/Server-Grenze
abstrahieren. Oft muß die genaue Adresse des Servers (Rechner und Port) zur Laufzeit spezifi-
ziert werden [Sun94]. Aus diesem Grund wird teilweise bestritten, daß es sich beim RPC bereits
um Middleware handelt.

34

Abb. 2.4: Der RPC-Compiler

2.4.2 Message Oriented Middleware (MOM)

Neben dem synchronen RPC gibt es ein weiteres Middleware-Konzept, das aber asynchrone
Kommunikation zugrundelegt: MOM - Message Oriented Middleware [OHE94]. Man könnte
sagen, daß der RPC einem Telefonat entspricht, während MOM ähnlich zum Verschicken von
Briefen ist. Wir benötigen dafür eine Vermittlungsstelle (sog. Queues) zwischen Client und Ser-
ver, welche die eingehenden Nachrichten puffert, bis sie vom jeweiligen Empfänger abgeholt
werden. Für die Bearbeitung eines Auftrages sind unter Umständen zwei Queues erforderlich:
Eine für Nachrichten bzw. die eigentlichen Aufträge vom Client zum Server, die zweite für die
Antworten vom Server zum Client. Eine detaillierte Beschreibung der Konzepte und Techniken
eines prototypischen MOM-Systems ist z.B. in [SZ98] enthalten.

Streng genommen abstrahiert MOM eigentlich auch nur unvollständig von der Client/Server-
Grenze. Im Gegensatz zum RPC müssen hier zwar keine physischen Parameter angegeben wer-
den, der Client muß sich aber der Tatsache bewußt sein, daß die Bearbeitung seines Auftrages
asynchron erfolgt und er keine direkte Antwort bekommt.

2.4.3 Objektorientierte Middleware

In Anlehnung an den RPC bieten die meisten der bereits in Kapitel 2.1 erwähnten Komponen-
tenmodelle auch einen Mechanismus zur Überbrückung der Client/Server-Grenze an. Hier sind
insbesondere (D)COM/OLE bzw. ActiveX von Microsoft, DSOM von IBM und das von der
OMG standardisierte CORBA zu nennen [Ses98, La95, OMG96a]. Sie benutzen im wesentli-
chen die in der zugehörigen Schnittstellenbeschreibungssprache spezifizierten Definitionen von
Komponenten, um auch erforderliche Stubs, Skeletons und Konvertierungsroutinen zu erzeu-
gen. Im Zusammenhang mit der detaillierten Diskussion des CORBA-Standards werden wir in
Kapitel 4.8 noch einen genaueren Blick auf die zugrundeliegenden Konzepte legen.

Abschließend sei noch erwähnt, daß objektorientierte Middleware häufig synchrone (RPC-ähn-
liche) und asynchrone (MOM-basierte) Verarbeitung unterstützt. Dazu gibt es in CORBA z.B.
einen Event Service zur Pufferung und Verwaltung von Nachrichten (siehe Kapitel 4.3).

RPC

Server-Skeletons

Datenkonvertierungs-

Client-Stubs

RPC-Compiler
routinen

Schnittstellen-
Beschreibung

35

2.4.4 Datenbankverwaltungssysteme (DBVS) und Middleware

Neben der Diskussion allgemeiner Konzepte zur Verteilung von Software ist es auch sinnvoll,
speziell auf die Bedürfnisse von Datenbankverwaltungssystemen (DBVS) einzugehen. Bereits
in der Einleitung haben wir erkannt, daß Daten in gewisser Weise das „Wissen“ eines Unterneh-
mens repräsentieren und ihre Verwaltung somit besonderer Aufmerksamkeit bedarf. Auf die
mächtigen Konzepte moderner DBVS [Da94, EN94, LS87] sowie die zugehörige Konsistenz-
sicherung durch das ACID-Prinzip [HR83, GR93] kann heutzutage nicht mehr verzichtet wer-
den. Für eine effiziente Verarbeitung sowie kurze Antwortzeiten ist es weiterhin nötig, daß die
DBVS auf getrennten Rechnern installiert sind oder gar verteilte DBVS eingesetzt werden.
Gleichzeitig muß aber die entstehende Client/Server-Grenze zwischen dem DBVS und der dar-
auf zugreifenden Client-Komponente in geeigneter Weise überbrückt werden. Insbesondere ist
darauf zu achten, daß die durch das DBVS angebotene Anfrageverarbeitung dem Client im
gewohnten Umfang zur Verfügung steht. Wir benötigen also eine spezielle Art von Middleware,
die diese Anforderungen erfüllt.

2.4.4.1 Zugriff auf einzelne DBVS

Im einfachsten Fall gilt es, die Lücke zwischen Client und einem einzigen DBVS zu schließen.
Dabei sollte eine geeignete Schnittstelle zur Verfügung stehen, die von den Eigenschaften des
konkreten DBVS abstrahiert. Andernfalls hätte der mögliche Austausch des DBVS durch ein
anderes Produkt unnötige Änderungen im Client-Code zur Folge. Gewisse Abhängigkeiten ent-
stehen allerdings durch die Wahl eines relationalen oder objektorientierten DBVS. Die Unter-
schiede dieser Paradigmen sind zu groß, um eine allgemeine Schnittstelle für beide zu definie-
ren. Dies betrifft insbesondere die zu unterstützende Anfragesprache: Für relationale DBVS
(RDBVS) wird im allgemeinen der ISO-Standard SQL (Structured Query Language, siehe
[DD97, Me90]) verwendet, für objektorientierte (OODBVS) die von der Object Database
Management Group (ODMG) definierte Object Query Language (OQL, siehe [CB97]). Es
besteht allerdings die Hoffnung, daß die objektrelationale Technologie [SBM98] und die in die-
sem Zusammenhang laufende Standardisierung von SQL3 [MPD99] letztendlich ein einheitli-
ches und umfassendes Modell zur Verfügung stellen. Wir wollen deshalb in diesem Kapitel den
Fokus auf RDBVS und OODBVS legen.

Beginnen wir dabei mit der älteren Technologie: den relationalen DBVS. Für sie gibt es eine
Reihe SQL-basierter Schnittstellen zur Anfrageverarbeitung. Eine der ersten war das von der
Open Group (X/Open) verabschiedete SQL Call Level Interface (CLI, siehe [OG95]). Es
beinhaltet eine abstrakte Beschreibung der Funktionalität sowie Abbildungen auf Konstrukte in
den Sprachen COBOL und C. Es ist damit im wesentlichen auf in diesen Sprachen geschriebene
Clients beschränkt. Für Microsoft-Plattformen gibt es weiterhin das auf dem CLI basierende
ODBC (Open Database Connectivity, siehe [Mi95]). Dessen Spezifikation beschränkt sich zwar
auch auf die Sprache C, jedoch gibt es im Rahmen der Microsoft-Entwicklungsumgebungen
wie z.B Visual Basic oder Visual C++ quasi-standardisierte Abbildungen auf weitere Sprachen.
Neben dem CLI und ODBC, die mittlerweile von jedem größeren RDBVS unterstützt werden,
ist noch die von der Firma Sun entwickelte Java Database Connectivity zu nennen (JDBC, siehe
[Sun97a]). JDBC basiert auf dem CLI, enthält aber auch eine Abbildung auf ODBC. Wir haben
damit drei ähnliche Möglichkeiten zum SQL-basierten Zugriff auf relationale Systeme, die pri-

36

mär die Sprachen COBOL, C (und damit auch C++) sowie Java abdecken. Alle drei abstrahieren
von den Eigenschaften konkreter DBVS. Sie benutzen standardisierte SQL-Syntax für Anfra-
gen, das sog. SQL-92 oder kurz SQL2, und definieren generische Datenstrukturen für die
Ergebnismenge. Das CLI-, ODBC- oder JDBC-API für den Client besteht im allgemeinen aus
einer vorübersetzten Bibliothek, die mit dem jeweiligen RDBVS ausgeliefert und zum Client-
Prozeß hinzugebunden wird (JDBC-Treiber liegen in Form eines oder mehrerer Java-Packages
vor). Die Verarbeitung zur Laufzeit ist dann recht einfach: Der Client übergibt dem API die
Anfrage in Form eines Strings und erhält eine Referenz auf eine generische Datenstruktur mit
dem Ergebnis zurück. Beim CLI muß vorher noch ein ausreichend großer Pufferbereich zur
Aufnahme des Ergebnisses allokiert werden.

Eine andere Form der Programmierung und Verarbeitung wird durch das sog. Embedded SQL
[Da94, DD97] spezifiziert. Es stellt im Prinzip die Erweiterung einer Programmiersprache (die
sog. Wirtssprache) um einige DB-spezifische Befehle dar. Man unterscheidet dabei zwischen
der Einbettung in eine Sprache und einer vollständigen Integration [NHR99]: Die Einbettung
führt zu einer zweiphasigen Verarbeitung: Zuerst wird das Client-Programm mit einem sog.
Precompiler übersetzt, der mit dem RDBVS ausgeliefert wird und die Befehle der Spracherwei-
terung durch DBVS-spezifische Routinen in der jeweiligen Wirtssprache ersetzt. Anschließend
kann der gesamte Client mit einem gewöhnlichen Compiler übersetzt und gebunden werden.
Bei der vollständigen Integration wird der Umfang der Wirtssprache hingegen um die DB-
Befehle erweitert und ein neuer Compiler erstellt. Dementsprechend ergibt sich eine einphasige
Verarbeitung. In der Praxis wird aber meist die Einbettung verwendet, um bestehende Compiler
für Wirtssprachen nutzen zu können.

Wenn wir nun unsere Aufmerksamkeit von den RDBVS auf die OODBVS verlagern, so gibt es
auf dem Wege dorthin ein nicht klar einzuordnendes Konzept: Das von Microsoft entwickelte
OLE-DB [Ra96]. Es benutzt die beiden Modelle OLE (Object Linking and Embedding) und
COM (Component Object Model), um einen allgemeinen Zugriff auf Daten zu realisieren. Diese
müssen aber nicht zwangsweise das Resultat einer Anfrage an eine DBVS sein, sie können auch
das Ergebnis eines Methodenaufrufes repräsentieren. Weiterhin sind beliebige Datenquellen
zulässig, wie z.B. relationale und objektorientierte DBVS, aber auch einfache Textdateien. Lei-
der steht OLE-DB im Prinzip nur auf Microsoft-Plattformen zur Verfügung, so daß dieses Kon-
zept für integrierte Systeme oberhalb heterogener Plattformen kaum von Interesse ist. Zwar gibt
es zum Teil schon Produkte wie den ISG Navigator [ISG99], die selbst unter UNIX oder MVS
eine sog. OLE DB Engine zur Verfügung stellen. Diese Produkte sind aber proprietär und bergen
damit langfristig erhebliche Risiken.

Damit sind wir dann auch schon bei der Diskussion von Middleware-Lösungen für den Zugriff
auf objektorientierte DBVS. Hier ist zu berücksichtigen, daß OODBVS (im Anfangsstadium
ihrer Technologie) häufig nur ein Hilfsmittel zur persistenten Speicherung der innerhalb eines
Programmes benutzten Objekte waren. Somit ist ein Teil der Zugriffsschnittstelle bereits durch
die Programmiersprache selbst gegeben. Weiterhin sind eigentlich alle OODBVS bereits Client/
Server-basiert, d.h. sie stellen sowohl ein Client-API als auch die Kommunikationsroutinen zum
Server bereit. Aspekte wie Transaktions- und Anfrageverarbeitung waren aber ursprünglich
proprietär und hatten bei jedem System eine andere Schnittstelle. Aus diesem Grund wurde die
Object Database Management Group (ODMG) gegründet, der alle bedeutenden Hersteller von

37

OODBVS angehören. Sie hat inzwischen den ODMG-Standard in der Version 2.0 verabschie-
det [CB97], der eine einheitliche Object Query Language (OQL) sowie Abbildungen auf die
Sprachen C++, Smalltalk und Java umfaßt. Aufgrund dieser standardisierten Schnittstelle sowie
der impliziten Client/Server-Unterstützung gibt es im Bereich der OODBVS eigentlich keinen
Bedarf für weitere Middleware.

2.4.4.2 Homogener Zugriff auf heterogene DBVS

Vielfach sind die von einem Programm benötigten Daten nicht mehr in einem einzigen DBVS
gespeichert, sondern auf mehrere Datenbanken verteilt. Dabei können sowohl die Systeme, als
auch die zugrundeliegenden Schemata heterogen sein. Es wäre nun sehr unpraktisch, wenn eine
Applikation über n Schnittstellen auf m verschiedene Schemata zugreifen müßte. Statt dessen
sollte es eine einzige Schnittstelle geben, die ein föderiertes Schema anbietet. Die tatsächliche
Verteilung der Daten sowie die nötige (verteilte) Verarbeitung sind dabei für den Client trans-
parent. Nun wollen wir uns an dieser Stelle aber nicht vertieft mit der Problematik der Schema-
Integration und Föderierten Datenbankverwaltungssystemen auseinandersetzen. Dafür sei z.B.
auf [Sa98] verwiesen. Vielmehr gilt es die Frage zu beantworten, welche Mechanismen für den
globalen Zugriff zur Verfügung stehen. In den letzten Jahren haben sich dafür eine Reihe Pro-
dukte auf dem Markt etabliert, die häufig unter dem Stichwort DB-Middleware eingeordnet
werden. Hier sind z.B. das ORACLE Transport Gateway [Hu96], Information Builders EDA/
SQL [IB97] sowie der IBM DB2 DataJoiner [IBM97] zu nennen. Diese Systeme realisieren
einen homogenen Zugriff auf heterogene DBVS, teilweise sogar auf beliebige Datenquellen wie
Text- oder HTML-Dateien. Eine von DaimlerChrysler FT3/EK durchgeführte Analyse von drei
Produkten hat gezeigt, daß Umfang und Mächtigkeit dieser Technologie durchaus vielverspre-
chend sind [RH98]. Aus diesem Grund wurde der IBM DB2 DataJoiner bereits zur Integration
heterogener Datenquellen im Projekt MEntAs (MotorEntwicklungsAssistent) eingesetzt
[Rez+98]. Ein Nachteil, der im Rahmen dieses Projektes nicht von Bedeutung ist, bleibt aller-
dings zu erwähnen: Das globale Schema ist immer relational. Unterstützung für objektorien-
tierte Strukturen ist erst mit der endgültigen Einführung von SQL3 zu erwarten.

Zufriedenstellend ist die Lage hingegen bzgl. Schnittstellen und APIs. Zwar gibt es (bisher)
keine konkrete Standardisierung im Bereich von DB-Middleware, die verfügbaren Lösungen
für den Zugriff auf einzelne DBVS lassen sich aber im allgemeinen auch für den globalen
Zugriff benutzen. Dementsprechend bieten mehr oder weniger alle Produkte standardisierte
APIs für den globalen Zugriff an (wie z.B. das CLI, JDBC oder Embedded SQL). Für den Client
ist die Verarbeitungsweise damit häufig äquivalent zum Zugriff auf ein einzelnes (R)DBVS: Die
Middleware erlaubt die Definition eines globalen Schemas (und abstrahiert damit von der kon-
kreten Verteilung der Daten) und kapselt weiterhin die verteilte Transaktionsverarbeitung (diese
läuft intern in der Middleware ab). So waren z.B. erste Erfahrungen in [RH98] und [Rez+98]
sehr positiv. Dort wurde der globale Zugriff über Embedded SQL und JDBC getestet.

Ein anderer Ansatz zur Integration läßt sich über Microsofts OLE-DB realisieren [Bla97]. Mit
Hilfe dieses Konzeptes können prinzipiell auch objektorientierte Strukturen berücksichtigt wer-
den, jedoch ist es (wie bereits oben erwähnt) spezifisch für Microsoft-Plattformen. Wir werden
diesen Ansatz deshalb im folgenden nicht weiter betrachten.

38

2.5 Grundbegriffe einer allgemeinen Datenversorgung
Im letzten Abschnitt haben wir Mechanismen zur Überbrückung der Client/Server-Grenze für
eine Datenversorgung über Datenbankverwaltungssysteme diskutiert. Nun sind aber nicht alle
von einem Programm oder einer Komponente benötigten Daten in einem oder gar mehreren
DBVS gespeichert. Viele Informationen sind in eher unstrukturierten Datenquellen (wie z.B.
Dateien) enthalten oder repräsentieren gar das Ergebnis eines Funktionsaufrufes. Wir benötigen
also allgemeinere Techniken zur Datenversorgung. In den nächsten Abschnitten werden wir
deshalb einige Grundlagen betrachten, die als Basis für das weitere Vorgehen innerhalb dieser
Arbeit dienen. Hier sind insbesondere die Definition eines einheitlichen Datenmodells
(Kapitel 2.5.1), die Unterscheidung zwischen datenintensiver und auftragsbezogener Verarbei-
tung (Kapitel 2.5.2) sowie die Beurteilung der Effizienz zu nennen (Kapitel 2.5.3).

2.5.1 Modellierung

Bereits in der Einleitung haben wir die Verwendung integrierter, aus Bausteinen aufgebauter
Architekturen motiviert. Innerhalb dieser macht die Bearbeitung von Daten durch mehrere
Werkzeuge aber nur dann Sinn, wenn die Daten von allen beteiligten Komponenten gleich inter-
pretiert werden, d.h., daß in allen Fällen die gleiche Semantik zugrundeliegen muß. Es wäre z.B.
fatal, wenn eine Linie von einem Werkzeug als Kabelbaum, vom nächsten aber nur als Begren-
zung aufgefaßt würde. Natürlich wird es sich nie vermeiden lassen, daß unterschiedliche Kom-
ponenten intern auch unterschiedliche Datenformate verwenden. Dies gilt insbesondere im
Bereich von CAD-Programmen. Ergänzend dazu kann man aber für jede Entwurfsumgebung
ein globales Datenmodell definieren, in dem alle Daten ausgetauscht und archiviert werden.
Jede Komponente, die intern ein anderes Format benutzt, muß dann einen Import/Export-Filter
für die nötige Konvertierung zur Verfügung stellen. Dadurch entsteht zwar ein etwas höherer
Aufwand, es gibt aber keine bessere Möglichkeit zur Realisierung eines globalen Datenmodells
mit einheitlicher Semantik. Würden z.B. alle Werkzeuge ihre Daten im eigenen (proprietären)
Format weitergeben, so müßte jede Komponente Import-Filter für alle vorhandenen Formate
enthalten. Bei n Werkzeugen gäbe es dementsprechend ca. n2 verschiedene Filter. Im Gegensatz
dazu sind bei der Verwendung eines globalen Datenmodells lediglich 2*n Filter nötig. Außer-
dem gestaltet sich im letzten Fall die Integration neuer Werkzeuge deutlich einfacher: Es müs-
sen nicht die bestehenden Komponenten um neue Filter erweitert werden, sondern nur die neue.
Bei Änderungen des Schemas einer Komponenten entsteht in beiden Fällen ein ähnlich hoher
Aufwand: Ohne globales Schema müßte man n Import-Filter überarbeiten, mit globalem
Schema müßte genau dieses aktualisiert und anschließend alle Import/Export-Filter angepaßt
werden (2*n).

Gerade im Hinblick auf die bereits erwähnten Virtual Enterprises ist es nun aber nicht sinnvoll,
daß für jede Entwurfsumgebung ein eigenes Datenmodell benutzt wird. Es bietet sich vielmehr
die Verwendung international standardisierter Schemata an, z.B. ISO 10303 (STEP) im Bereich
der Produktdatenverwaltung (siehe Kapitel 3). Diese Datenformate dienen dann primär dem
Datenaustausch zwischen den einzelnen Komponenten eines integrierten Systems. Man kann
sie natürlich auch als lokales Schema der beteiligten DBVS verwenden (dadurch würden eine

39

Menge Konvertierungen eingespart), dieser Schritt ist aber nicht zwingend erforderlich. Bezug-
nehmend auf die Integration vorhandener Datenbestände ist es sogar nötig, daß innerhalb der
DBVS andere Formate verwendet werden können. An dieser Stelle tritt auch gleich ein gewisser
Nachteil des STEP-Standards zu Tage: Alle Schemata sind objektorientiert modelliert. Dadurch
realisieren sie zwar eine sehr präzise Abbildung der realen Welt, sie lassen sich damit aber nicht
als logisches Schema der (immer noch bevorzugt) eingesetzten RDBVS benutzen. Auch hier
besteht allerdings große Hoffnung, daß dieses Problem mit der Einführung von SQL3 entfällt.
Vorhandene Datenbestände könnten dann z.B. über DB-Middleware (siehe Kapitel 2.4.4.2)
integriert werden, so daß es aus Sicht der Werkzeuge nur noch ein globales DBVS gäbe.

2.5.2 Datenintensive und auftragsbezogene Verarbeitung:
Data Shipping versus Operation Shipping

Vor der Definition eines globalen Schemas stellt sich die Frage, inwieweit überhaupt Bedarf für
einen Datenaustausch zwischen den einzelnen Komponenten (oder noch allgemeiner zwischen
Client und Server) besteht. Dafür wollen wir zunächst Client/Server-basierte Anwendungen in
zwei Kategorien aufteilen. Dabei ist es unerheblich, ob die Client/Server-Grenze nur durch die
Software oder auch durch die Hardware vorgegeben ist (vgl. Kapitel 2.3.2). Die erste Gruppe
fassen wir unter dem Begriff auftragsbezogene Anwendungen zusammen. Die Clients senden
hier einen Auftrag sowie benötige Parameter an den Server und erhalten später das Ergebnis
zurück, ohne daß weitere Kommunikation zwischen ihnen nötig ist. Die eigentliche Verarbei-
tung erfolgt typischerweise vollständig im Server. Beispiele hierfür sind Buchungs- oder Reser-
vierungssysteme. Die resultierende Verarbeitungsweise bezeichnen wir als Operation Shipping
(siehe linke Hälfte von Abb. 2.5).

Abb. 2.5: Auftragsbezogene und datenintensive Client/Server-Architekturen

Die zweite Sparte sind datenintensive Anwendungen. Server dienen hier überwiegend als
Datenhaltungskomponente und versorgen die Clients, welche die eigentliche Verarbeitung lokal
durchführen, mit den benötigten Daten. Traditionell setzt man in diesen Umgebungen Client/

DB

Server

Client

Auftrag Ergebnis
Daten-

Anforderung
Daten-

Übertragung

Applikation
Applikation

Puffer

Daten-Service

DB

(Operation Shipping) (Data Shipping)
- auftragsbezogen - - datenintensiv -

Auftrags-Service

Puffer

40

Server-basierte DBVS ein, die im wesentlichen für den Transport der Daten zum Client sorgen
(und diese dort puffern1) sowie ein umfassendes Schutzkonzept (z.B. ACID-Transaktionen,
siehe [HR83]) realisieren. Wichtige Kriterien sind weiterhin die Minimierung der Kommunika-
tion sowie das Verhalten im Fehlerfall. Eine Spezialisierung datenintensiver DB-Anwendungen
sind kooperative Anwendungen, bei denen mehrere Clients gleichzeitig auf den selben Daten
arbeiten wollen. Ergänzend zur exklusiven Synchronisation des ACID-Konzeptes sind hier
kooperative und notifizierende Protokolle nötig (z.B. Replikation über Transaktionsgrenzen
hinweg), die Änderungen in geeigneter Weise (etwa über sog. Events) an alle existierenden
Kopien propagieren. Beispielsweise sollte während des Entwurfs eines Produktes die Änderung
eines Sub-Moduls bei allen beteiligten Partnern unverzüglich sichtbar sein. Sowohl bei daten-
intensiven, als auch bei kooperativen Anwendungen bezeichnen wir das zugrundeliegende Kon-
zept als Data Shipping (siehe rechte Hälfte von Abb. 2.5).

Abschließend stellt sich die Frage, welches der beiden Konzepte (Operation Shipping oder Data
Shipping) denn häufiger benötigt wird bzw. wo noch die größten Probleme liegen. Generell läßt
sich erkennen, daß die objektorientierte Technologie eine gute Grundlage für auftragsbezogene
Architekturen bildet: Jede Methode eines Objektes bearbeitet quasi einen speziellen Auftrag.
Dementsprechend bieten objektorientierte Komponentenmodelle auch eine gute Basis zum Ent-
wurf derartiger Systeme. In [SM97] haben wir diese Aussage exemplarisch am Beispiel
CORBA diskutiert. Im Gegensatz dazu wird Data Shipping eigentlich nur durch Client/Server-
basierte DBVS in geeignetem Umfang unterstützt. In den letzten Kapiteln ist aber deutlich
geworden, daß diese Systeme für eine allgemeine Datenversorgung alleine nicht ausreichend
sind. Wir benötigen vielmehr eine Unterstützung der datenintensiven Verarbeitung durch die
verwendeten Komponentenmodelle und eingesetzte Middleware. Hier ergeben sich eine Reihe
offener Fragen.

Bei einer genaueren Betrachtung von Entwurfsumgebungen läßt sich nun klar erkennen, daß
überwiegend eine datenintensive Verarbeitung vorliegt. Dies trifft insbesondere auf den Bereich
der CAD-Modellierung zu, die ohne lokale Pufferung der Daten undenkbar wäre. Aus diesem
Grund, aber auch unter Berücksichtigung der Tatsache, daß im Bereich Operation Shipping
bereits gute Konzepte und Lösungen existieren, liegt der Fokus der vorliegenden Arbeit somit
ganz klar auf der Untersuchung geeigneter Konzepte für das Data Shipping.

2.5.3 Effizienz der Datenversorgung

Will man die Qualität einer Datenversorgung, und damit insbesondere auch deren Effizienz,
beurteilen, so gilt es zunächst geeignete Bewertungskriterien zu finden. Der wichtigste Aspekt
wird im allgemeinen die Zeitspanne sein, die benötigt wird, um einer Anwendung die angefor-
derten Daten im gewünschten Format zur Verfügung zu stellen. Man spricht an dieser Stelle von
Antwortzeit oder Zugriffszeit. Bei der Durchführung von Messungen ist es sehr wichtig, daß
auch die für evtl. erforderliche Konvertierungen benötigte Zeit berücksichtigt wird. Andernfalls
würde man quasi Äpfel mit Bananen vergleichen. Keine Komponente kann etwas mit Daten
anfangen, deren Format sie nicht interpretieren kann.

1. ganze Seiten bei objektorientierten (navigierenden) DBVS, Teilergebnisse von Anfragen bei relationalen DBVS

41

Neben der Antwortzeit, die nur die Bedürfnisse einer einzigen Anwendung berücksichtigt, ist
häufig der Durchsatz der Datenversorgung von Interesse. Er ist ein Maß dafür, wie viele Daten
innerhalb einer Zeitspanne allen Anwendungen (insgesamt) zur Verfügung gestellt wurden.
Während aus der Sicht eines Anwenders natürlich primär die Antwortzeit zu optimieren ist, so
sollte gerade in Systemen mit mehreren Benutzern auf einen ausreichenden Durchsatz geachtet
werden. Leider sind beide Aspekte aber nicht unabhängig voneinander. Wird z.B. einigen sehr
umfangreichen Anforderungen eine höhere Priorität eingeräumt, um ihre Antwortzeiten zu
reduzieren, so verschlechtert sich der Durchsatz, wenn dadurch viele kleine (und damit
ursprünglich schneller zu bearbeitende) Anforderungen zurückgestellt werden. Verkürzt man
hingegen die Antwortzeit aller Anforderungen, so steigt natürlich auch der Durchsatz. Mögli-
che Mechanismen hierfür sind z.B. die Pufferung von Daten, der Einsatz schneller Festplatten
(und sonstiger Speichermedien) sowie die Verwendung effizienter Kommunikationsprotokolle.
Letztere beziehen sich sowohl auf die physische Übertragungszeit, als auch auf den Einsatz
geeigneter Multicast-Algorithmen [Ta92]. Ein weiteres Konzept ist das sog. Prefetching, bei
dem man Daten abhängig vom aktuellen Verarbeitungskontext im voraus zur Verfügung stellt:
Beispielsweise kann sich der Benutzer in Ruhe die erhaltenen Daten eines Motors ansehen,
während im Hintergrund bereits die Daten des Getriebes übermittelt werden. Insgesamt erken-
nen wir also eine Reihe von Kriterien, welche die Effizienz der Datenversorgung bestimmen.

Unglücklicherweise wird in einigen Veröffentlichungen der Aspekt der Effizienz aber nur sehr
ungenau betrachtet oder definiert. In [Vo98] wird z.B. vorgeschlagen die Effizienz der Daten-
versorgung dadurch zu steigern, daß man eigenständige Threads [Ta92] für die Programmie-
rung der grafischen Benutzeroberfläche verwendet. Dadurch stehe das System dem Benutzer
wieder schneller zur Verfügung. Dies ist natürlich korrekt. Allerdings wird dabei nur die Ant-
wortzeit der Oberfläche, und eben nicht die der Datenversorgung, optimiert. Im Rahmen dieser
Arbeit gehen wir daher im wesentlichen auf eine mögliche Optimierung der tatsächlichen Ant-
wortzeit der Datenversorgung ein. Dabei betrachten wir zusätzlich die Auslastung einzelner
Komponenten und Programme, um frühzeitig mögliche Engpässe zu erkennen, die später den
Durchsatz des gesamten Systems reduzieren könnten.

2.6 Entwurfsumgebungen
Nachdem wir in den letzten Kapiteln grundlegende Begriffe und Techniken diskutiert haben,
wollen wir uns nun dem Szenario widmen, das den Rahmen für die durchgeführten Untersu-
chungen bildet: Entwurfsumgebungen. Sie sind aus dem Grund entstanden, daß der Industrie für
die Entwicklung neuer Produkte immer weniger Zeit zur Verfügung steht. Neben dem Entwurf
neuer Bausteine erhält die Wiederverwendung und Anpassung bestehender Teile eine immer
größere Bedeutung. Die riesigen Datenmengen für die Beschreibung einzelner Versionen kön-
nen jedoch nur mit einer effizienten Oberfläche bearbeitet werden. Diese muß dem jeweiligen
Ingenieur sowohl eine breite Palette von Werkzeugen für die Manipulation als auch für die Spei-
cherung der einzelnen Objekte anbieten. Weiterhin sollte es eine mächtige Anfragesprache bzw.
-oberfläche geben, die einen schnellen Zugriff auf gewünschte Einheiten bietet. Auch die par-

42

allele Bearbeitung der Daten durch mehrere Arbeitsgruppen muß hinreichend unterstützt wer-
den, ohne daß einzelne Teams längere Zeit blockiert sind. Je nach Einsatzgebiet können die
gerade genannten Anforderungen jedoch stark differieren, so daß eine komponentenbasierte
Architektur des Systems wünschenswert ist. Entsprechend der konkreten Umgebung könnte
jedes einzelne Programmpaket quasi wie aus einem Baukasten zusammengestellt werden.

Unabhängig von jeglicher Spezifikation werden wir immer gewisse Basisdienste benötigen.
Hierzu zählen Kommunikationsverfahren, Konvertierung der Daten in heterogenen Netzen,
Datenhaltung, grundlegende Betriebsoberflächen (z.B. Fenstersysteme) sowie Entwicklungs-
und Integrationsdienste. Die Kombination dieser Bausteine bezeichnen wir im folgenden als
Rumpfumgebung oder auch Framework. Die eigentlichen Werkzeuge werden dann auf diese
aufgesetzt und sollten somit portabel sein. Das von der Anwendungsdomäne abhängige
Gesamtsystem wird schließlich als Entwurfsumgebung bezeichnet [RS92].

Abb. 2.6: Schichtenbasierte Architektur von Entwurfsumgebungen [RS92]

Abbildung 2.6 veranschaulicht eine mögliche Schichtenbildung. Innerhalb dieser ist Schicht 2
von besonderem Interesse für uns, da sie die Datenversorgung beinhaltet. Ähnliche Modelle
werden auch in [HNSB90] und [Wo94] beschrieben. Dabei sollten wir immer berücksichtigen,
daß die Schichtenbildung nicht zwangsweise einer Aufteilung in Komponenten entsprechen
muß (siehe Kapitel 2.3.1).

2.6.1 Frameworks

Bezugnehmend auf Abb. 2.6 sollten wir erwähnen, daß der Begriff Framework in der Literatur
nicht immer mit der gleichen Bedeutung verwendet wird. Im allgemeinen bezeichnet er aber die
Bereitstellung von Infrastruktur und Regeln für eine Interaktion von Objekten, prozeduralen
bzw. funktionalen Bausteinen oder gar Komponenten. Die zugrundeliegende Modellierung ist

Anwendungen (Werkzeuge)

Integrationsdienste
Entwicklungsdienste

Allg. Datenhaltungs-, Betriebsoberflächen-,
Kommunikations- und Portabilitätsdienste

Betriebssystem
Hardware

Schicht 4

Schicht 3

Schicht 2

Schicht 1
Fr

am
ew

or
k

E
nt

w
ur

fs
um

ge
bu

ng

43

in den meisten Fällen auf einen speziellen Anwendungsbereich zugeschnitten. Trotz der unter-
schiedlichen Verwendungen des Begriffes Framework haben Ralph Johnson und Vincent Russo
folgende allgemeine Definition aufgestellt [OHE96]:

An abstract class is a design for a single object. A framework is the design of a set of
objects that collaborate to carry out a set of responsibilities. Thus frameworks are
larger scale designs than abstract classes. Frameworks are a way to reuse high-level
design.

Diese Begriffsbildung stimmt im wesentlichen mit der bisher von uns verwendeten Semantik
überein. Vielfach sind Frameworks auch aus sog. Design Patterns aufgebaut, die weit verbrei-
tete und akzeptierte Entwurfskonzepte beschreiben [MM97]. Wir werden allerdings im folgen-
den nicht genauer auf diese Begriffe eingehen, sondern auf Kapitel 12 von [OHE96] verweisen.

2.6.2 Isolation und Kooperation

Entwurfsumgebungen zeichnen sich im allgemeinen dadurch aus, daß sie die verteilte Entwick-
lung von Produkten oder Bauteilen durch mehrere Ingenieure unterstützen. Dementsprechend
müssen Datensätze unter Umständen mehreren Benutzern gleichzeitig zur Verfügung stehen.
Das aus der DBVS-Technologie bekannte ACID-Konzept [HR83, GR93] kann somit nicht
direkt zur Realisierung einer konsistenten Datenverarbeitung übernommen werden. Es würde
die Isolation aller Beteiligten zur Folge haben und damit jede Form von Kooperation verhindern
(insbesondere im Bezug auf lang andauernde Entwurfsprozesse). Aus diesem Grund sind in den
letzten Jahren einige erweiterte Transaktionsmodelle bzw. verwandte Konzepte entstanden
[BS95, EG89, Ri97]. Die Form der Verarbeitung und Konsistenzkontrolle variiert dabei stark.
Ein Extrem ist die mehr oder weniger unkontrollierte Replikation von Daten, wie sie beispiels-
weise in Lotus Notes realisiert ist [DS96, BS95]. Lediglich am Ende der Verarbeitungsschritte
wird der Benutzer benachrichtigt, falls eine konkurrierende Kopie der gleichen Daten existiert.
Es gibt jedoch keinen Mechanismus zum Auflösen dieser Konflikte. Auf der anderen Seite sind
Systeme mit einer umfangreichen, teilweise mehrstufigen, Konsistenzkontrolle zu nennen. Bei
ihnen wird oft ein sog. Check-In/Check-Out-Mechanismus verwendet [Ri97, Sh+96]. Sollen
Daten lokal bearbeitet werden, so ist vorher ein Check-Out nötig. Anschließend sind diese
Daten für andere Benutzer nicht zur Modifikation verfügbar. Vielfach können sie allerdings
gelesen werden. Im Unterschied zur Isolation beim ACID-Konzept können alle Anwender klar
erkennen, wer nun welche Daten bearbeitet. Man spricht dabei auch von Group Awareness. Am
Ende eines Verarbeitungsschrittes müssen die lokal modifizierten Daten über ein Check-In in
den globalen Datenbestand integriert werden. Während dieses Vorganges wird kontrolliert, ob
alle spezifizierten Design-Anforderungen weiterhin erfüllt sind. Ist dies nicht der Fall, so wird
das Check-In zurückgewiesen.

Eine andere Form der kooperativen Datenverarbeitung wird in TOGA realisiert [SFM99]. Hier
wird innerhalb einer Gruppe über jeden Verarbeitungsschritt abgestimmt. Eine Aktion muß
zurückgesetzt werden, sobald ein Mitglied nicht zugestimmt hat. Die Abstimmungssphase wird
dabei durch ein 2-Phasen-Commit-Protokoll [GR93] überwacht.

44

2.6.3 Workflow, Groupware und CSCW

Mit der im letzten Abschnitt geführten Diskussion haben wir im Prinzip schon den Bedarf für
eine Kontrolle kooperativer Abläufe motiviert. Nun ist es aber nicht ausreichend, nur die Inte-
grität der Daten zu betrachten. Es sollte insbesondere eine geeignete (automatische) Steuerung
der einzelnen Schritte des Entwurfsprozesses geben. Lassen sich alle Phasen durch ein vorher
definiertes Ablaufschema beschreiben, so spricht man von einem Workflow [JBS97]. Das
Schema wird dann als Eingabe für ein Workflow Management System (WFMS) benutzt, welches
die gesamte Verarbeitung koordiniert. Es sorgt für die korrekte Weiterleitung von Zwischener-
gebnissen sowie die Initiierung der folgenden Verarbeitungsphase. Ist der Entwurfsprozeß hin-
gegen hochgradig dynamisch, d.h. er läßt sich nicht im voraus durch ein Ablaufschema
beschreiben, so braucht man flexiblere Konzepte. Man spricht in diesem Bereich von Computer
Supported Cooperative Work (CSCW, auf der konzeptuellen Ebene) und Groupware (bei der
Realisierung von konkreten Systemen). Dabei werden WFMS und Groupware meist als eine
Kategorie von CSCW angesehen [BS95]. Es gibt jedoch auch einige Modelle, die sich in keine
dieser Kategorien einordnen lassen. Ein Beispiel hierfür ist das CONCORD-System [Ri97].
Das zugrundeliegende Konzept wird als Designflow bezeichnet und ist besonders gut auf CAD-
basierte Entwurfsprozesse abgestimmt.

Im Rahmen dieser Arbeit wollen wir das Thema Kooperation und Koordination aber gar nicht
weiter vertiefen. Für uns ist es entscheidend, daß eigentlich alle Komponenten und Werkzeuge
eine effiziente Datenversorgung benötigen. Bereits in Kapitel 2.5.2 haben wir erkannt, daß
kooperative Abläufe (im Bezug auf die Datenversorgung) nur ein Spezialfall datenintensiver
Verarbeitungsweisen darstellen. Die erzielten Ergebnisse gelten also in beiden Bereichen. Sollte
einmal an einer Stelle eine unterschiedliche Behandlung nötig sein, so werden wir das Thema
dann explizit diskutieren. Ansonsten gelten alle Aussagen implizit als Grundlage für beide
Kategorien.

2.7 WWW, Internet und Intranet
In den letzten Jahren ist die Präsenz im Internet und WWW (World Wide Web, siehe [W3C])
für die meisten Firmen immer bedeutender geworden. Diese Medien bieten die Möglichkeit zur
schnellen Verbreitung von Information und stellen damit eine ideale Voraussetzung zur Ver-
marktung von Produkten dar. Ursprünglich konnten dafür nur statische, in HTML (Hypertext
Markup Language, siehe [RLA+98, Da+98]) geschriebene Seiten benutzt werden. Aufgrund
der Dynamik von Produktdaten mußten diese aber laufend angepaßt werden. Dafür stand jedoch
keine geeignete maschinelle Unterstützung zur Verfügung, so daß im Endeffekt viele Seiten ver-
altet oder inkonsistent waren. Außerdem bietet pures HTML keine Möglichkeit, um Feedback
vom Leser einer Seite zum Server zu propagieren. Dies wäre sehr nützlich.

Aufgrund der gerade erwähnten Probleme wurden in den letzten Jahren mehrere Techniken ent-
wickelt, die den dynamischen Aufbau von Informationsseiten und die bidirektionale Interaktion
zwischen Leser und WWW-Server ermöglichen. Dabei soll es insbesondere möglich sein, in
DBVS gespeicherte Daten direkt zu verwenden. Eine Variante ist die Verwendung einer Kom-

45

bination aus JavaScript und CGI-Komponenten, die in Kapitel 2.7.1 beschrieben wird. Sie führt
allerdings zu Problemen bei der Verwaltung von Zuständen und Transaktionen, so daß wir die
in Kapitel 2.7.2 präsentierte Java-Lösung bevorzugen. Ein Beispiel zur Begründung für diese
Entscheidung ist in Kapitel 2.7.3 enthalten. Abschließend gehen wir auf die Unterschiede zwi-
schen Intranet und Internet ein und diskutieren die Frage, ob beide weitere Möglichkeiten als
die reine Präsentation von Informationen bieten. Eine gute Zusammenfassung aktueller WWW-
Technologien ist auch in [Loe98] enthalten.

2.7.1 Das Common Gateway Interface (CGI) und JavaScript

Ausgehend von einem steigenden Bedarf an dynamisch erzeugten Informationsseiten im
WWW wurde 1994 das sog. Common Gateway Interface [CGI] entwickelt. Mit diesem Konzept
kann ein WWW-Server um Komponenten ergänzt werden, die z.B. auf verfügbare DBVS
zugreifen und mit den daraus gewonnenen Daten aktuelle HTML-Seiten erstellen. Die Pro-
gramme liegen dabei in einem speziellen Unterverzeichnis des WWW-Servers und lassen sich
(wie normale HTML-Seiten) über URLs (Uniform Resource Locator) adressieren. Weiterhin ist
es möglich Parameter zu übergeben, beispielsweise indem man diese an das Ende der URL
anhängt (weitere Varianten sind in [YMG96] beschrieben). Damit ist auf dem WWW-Server
alles nötige vorhanden. Es muß allerdings noch eine Technik gefunden werden, welche die Ein-
gabe von Daten in HTML-basierte Formulare auf dem Client (also im WWW-Browser) ermög-
licht. An dieser Stelle hat sich die HTML-Erweiterung JavaScript etabliert, die aber keineswegs
mit der Programmiersprache Java verwechselt werden sollte. Wir werden im nächsten Abschnitt
sehen, daß beide nichts miteinander zu tun haben. JavaScript wird inzwischen von den meisten
Browsern unterstützt und bietet damit eine gute Möglichkeit, um einfache Eingabemasken zu
erstellen. Dementsprechend ist die Kombination aus CGI und JavaScript (bzw. korrespondie-
render Technologien, siehe [Loe98]) heutzutage auch weit verbreitet.

Leider ergeben sich aber immer noch gravierende Nachteile. Zuerst einmal sind die Skripte bzw.
Programme häufig recht komplex und unstrukturiert, so daß eine Wartung dieser Komponenten
sehr umständlich und fehleranfällig ist. Natürlich ist dieser Zustand überwiegend den jeweiligen
Programmierern anzulasten, aber beide Konzepte erzwingen eben keine strukturierte Vorge-
hensweise. Das größere Problem betrifft jedoch die Realisierung einer transaktionsorientierten
Verarbeitung. Gerade im Bereich von Systemen zur Online-Bestellung von Waren und Dienst-
leistungen ist diese unverzichtbar. Die Ursache liegt im zugrundeliegenden Hypertext Transfer
Protocol (HTTP, siehe [W3C]), das zu einer zustandslosen Kommunikation führt. Vielfach ver-
gibt man deshalb spezielle Kontext-IDs, die eine Referenz auf die zugeordnete Transaktion im
WWW-Server darstellen und jeder Übertragung angehängt werden. Aber auch dieser Trick
führt nicht zu einer zustandsorientierten Verbindung gemäß dem ISO/OSI-Schichtenmodell
[DZ83]. Wir halten diese Lösung deshalb (langfristig gesehen) für unbefriedigend.

46

2.7.2 Java

Will man im Internet nicht auf gewohnte Charakteristika und Grundlagen, wie etwa eine trans-
aktionsorientierte Datenverarbeitung, verzichten, so bietet sich die Verwendung altbewährter
Konzepte entsprechend der neuen Rahmenbedingungen an. Bei der Entwicklung von HTTP,
HTML, CGI und JavaScript (siehe letzter Abschnitt) hat man dies leider nur teilweise berück-
sichtigt. Anders sieht es bei der objektorientierten Programmiersprache Java [AG98, GJS96,
Java] aus, die von der Firma Sun entwickelt wurde. Sie stellt unter anderem ein mächtiges Werk-
zeug zur Entwicklung WWW-basierter Anwendungen dar. Der Erfolg von Java beruht im
wesentlichen auf zwei Aspekten: Portabilität und Sicherheit. Syntax und Semantik der Sprache
sind klar definiert, so daß Java-Programme ohne Änderungen auf allen Plattformen (die Java
unterstützen) laufen. Weiterhin können sie als sog. Applets über WWW-Server verbreitet und
anschließend im Browser des Clients ausgeführt werden. Hier gilt es natürlich trojanische
Pferde zu vermeiden, so daß von Sun einige Sicherheitsvorschriften definiert wurden: Jedes
Java-Applet läuft z.B. in einer abgeschotteten Umgebung ab und hat insbesondere keinen
Zugriff auf lokale Verzeichnisse usw. Diese Einschränkungen können allerdings selektiv vom
Anwender (und eben nicht vom Programmierer!) aufgehoben werden. Daneben werden Java-
Programme nicht als Quellcode, sondern in einer Zwischenstufe, dem sog. Byte Code, übertra-
gen. Dieser kann vom Client auf Konsistenz und unzulässige Modifikationen überprüft werden.

Neben diesen allgemeinen Konzepten bietet Java standardmäßig einige Mechanismen zur
zustandsorientierten Kommunikation und Datenversorgung an. So sind z.B. TCP/IP-Sockets
und die darauf aufbauende Java Database Connectivity (JDBC, siehe auch Kapitel 2.4.4.1 und
6.2.3) bereits Bestandteil der Sprache selbst. Entsprechend dem zugrundeliegenden objektori-
entierten Design wurden sie als eigenständige Module, sog. Java-Packages, realisiert.

Natürlich ergeben sich durch die Verwendung von Java auch einige Nachteile. Diese betreffen
insbesondere Aspekte wie multiple Vererbung, das Erzeugen, Puffern und Löschen von Objek-
ten sowie die Leistung (der Java Byte Code muß interpretiert bzw. vom Client bei Bedarf über-
setzt werden). Eine detaillierte Diskussion dieser Themen ist Bestandteil von Kapitel 6.1.1 bzw.
[SM98, SM99b]. Trotz aller Probleme halten wir Java für ein geeignetes Mittel zum Erstellen
portabler Clients für WWW-basierte Anwendungen. Wir wollen diese Ansicht anhand des fol-
genden Beispieles begründen:

2.7.3 Warum Java?

Fast alle Unternehmen bieten heutzutage detaillierte Information zu ihren Produkten und
Dienstleistungen über eigene WWW-Server an. Dabei wird häufig eine Kombination aus
HTTP/HTML, CGI und JavaScript verwendet (siehe Kapitel 2.7.1). Informationen liegen ent-
weder in Form statischer HTML-Seiten vor oder sie werden von CGI-Programmen, die in spe-
ziellen Unterverzeichnissen des WWW-Servers liegen, dynamisch erstellt. Diese Programme
haben meist Zugriff auf lokale DBVS (sog. WWW-DBVS), die replizierte Daten in einem
unternehmensspezifischen Format enthalten. Durch die Replikation erhofft man sich eine bes-
sere Lastverteilung sowie eine höhere Verfügbarkeit der operativen DBVS mit den Original-
Daten. Ein Beispiel für derartige Systeme ist der Mercedes-Benz Configurator MBKS Online

47

[MB99]. Kunden können hier interaktiv die Ausstattungsmerkmale ihres neuen Fahrzeuges
wählen und anzeigen lassen. Jeder Wunsch wird zum Server übertragen, der daraus das neue
Bild berechnet und automatisch die Baubarkeit des Automobils prüft. Dieses Szenario ist in der
linken Hälfte von Abbildung 2.7 dargestellt.

Abb. 2.7: WWW-basierte Produktkonfiguration

Bei der zugrundeliegenden Verarbeitung lassen sich jedoch folgende Nachteile erkennen:

• Eingeschränkte Funktionalität von JavaScript

JavaScript ist keine vollständige Programmiersprache wie C, C++, Smalltalk oder Java. Es
ist deshalb schwierig oder gar unmöglich komplexe Operationen, wie z.B. die Transforma-
tion von Vektordaten in Rasterdaten oder eine 3D-Rotation, auf dem Client auszuführen.

• Konsistenz und Aktualität der replizierten Daten

Aufgrund inkompatibler Datenformate innerhalb eines Unternehmens, fehlender oder zu
langsamer Netzverbindungen sowie Mechanismen für Lastverteilung und Zugriffsschutz
greifen die meisten CGI-Programme (wie bereits erwähnt) auf DBVS mit replizierten
Daten zu. Um die Aktualität dieser Daten zu garantieren, müssen Änderungen in den ope-
rativen DBVS in konsistenter Weise in die WWW-DBVS eingebracht werden. Die Zusam-
menführung von Daten aus mehreren DBVS ist jedoch ein großes Problem, das nur selten
zufriedenstellend unterstützt wird. Dementsprechend wird dieser Schritt häufig manuell
durchgeführt, so daß eine neue, nicht zu unterschätzende Fehlerquelle entsteht.

• Verschiedene Datenmodelle und Schemata

Betrachtet man Informationssysteme wie [MB99] im Bezug auf Virtual Enterprises, so
wäre es wünschenswert, Systeme und Datenquellen anderer Firmen einbeziehen zu können
(beispielsweise für Teile, die nicht selbst hergestellt, sondern von Zulieferern bezogen wer-

Enterprise
WWW
Server

CGI

File
System

WWW-DBS

HTTP
(Intra-/Internet)

Java Applet:
Produkt-

3D Viewer

STEP-DBS1 STEP-DBSn...

Middleware
(z.B. CORBA)

z.B. JDBC

z.B. SQL-CLI

startet/
enthält

...

z.B. IIOP

Konfiguration

(a) Aktuell verwendete Architektur [MB99] (b) Ziel-Architektur

48

den). Andernfalls müßten sogar externe Daten in das WWW-DBVS eingebracht werden.
Hier könnte man ohne komplexe Absprachen mit Sicherheit keine Aktualität und Konsi-
stenz der replizierten Daten garantieren.

• Zustandslose Kommunikation (siehe Kapitel 2.7.1)

Letztendlich benötigen wir also ein System, welches

• die Leistung von Client-Maschinen für die Pufferung von Daten oder lokale Berechnungen,
z.B. 3D-Operationen und Datenkonversionen, nutzt, um unnötige Kommunikation über das
Netz zu reduzieren.

• eine zustandsorientierte Kommunikation zur Interaktion mit beliebigen Komponenten rea-
lisiert und damit eine abgesicherte, verteilte, transaktionsbasierte Verarbeitung ermöglicht.

• einen Mechanismus zur konsistenten, unternehmensübergreifenden Integration operativer
Datenbestände umfaßt. Diese sollte nicht auf manueller Replikation basieren.

• geeignete DB-Middleware (siehe Kapitel 2.4.4.2) oder ähnliche Mechanismen zur Lastbal-
ancierung benutzt, um die operativen DBVS sowohl intern als auch für WWW-Anwendun-
gen effizient nutzen zu können.

Eine Lösung für diese Anforderungen ist der Einsatz von Java Applets, die in HTML-Seiten ein-
gebettet sind. Sie ermöglichen die Interaktion mit beliebigen Komponenten oder Datenquellen
über zustandsorientierte Kommunikationsprotokolle (z.B. TCP/IP Sockets, JDBC, usw). Wei-
terhin können so komplexe Berechnungen lokal auf dem Client ausgeführt werden. Zwischen-
ergebnisse und andere Daten lassen sich außerdem im Hinblick auf weitere Aktionen puffern
(sog. Caching). Beispielsweise könnte man die ein Fahrzeug beschreibenden Vektordaten in
komprimierter Weise zum Client übertragen, sie dort in Rasterdaten konvertieren und anschlie-
ßend visualisieren. Eine Änderung der Konfiguration durch den Anwender muß nun nicht mehr
zum Server übertragen werden, sondern sie läßt sich durch lokale Operationen behandeln.

In einem weiteren Schritt ersetzen wir die WWW-DBVS durch standardisierte Zugriffsmetho-
den auf die operativen DBVS. Sind diese (bzw. die Daten der darüberliegenden Middleware)
durch standardisierte, innerhalb der Branche akzeptierte Schemata modelliert, so können die
Daten ohne Replikation für unternehmensübergreifende Informationssysteme genutzt werden.
Im Bereich des Produktdatenmanagements ist hier erneut ISO 10303 (STEP) zu nennen (siehe
Kapitel 3). Im Prinzip lassen sich sogar komplette Komponenten gemeinsam benutzen. Die
resultierende Architektur ist in der rechten Hälfte von Abb. 2.7 veranschaulicht. Die HTML-
Seiten sowie der Byte Code der Applets werden dabei wie bisher über den WWW-Server zur
Verfügung gestellt.

Anhand dieses Beispiels könnte nun leicht der Eindruck entstehen, daß wir generell die Verla-
gerung von Funktionalität vom Server auf den WWW-Client bevorzugen (sog. Fat Clients).
Dies ist ganz und gar nicht der Fall. Mit den zugrundeliegenden Konzepten und Modellen einer
Architektur sollte es aber möglich sein, auf die speziellen Eigenschaften jeder einzelnen
Anwendung einzugehen. Dementsprechend kann es in einem System sowohl Thin als auch Fat
Clients geben, die unter Umständen sogar interagieren.

49

2.7.4 Intranet und Internet: Mehr als ein Präsentationsmedium?

Bisher haben wir nur die Nutzung des Internets im Sinne von WWW-basierten Informationssy-
stemen betrachtet. Es stellt sich nun die Frage, ob das Internet für weitere Aufgaben genutzt
werden kann. Anhand von Abb. 2.7 und der im letzten Abschnitt geführten Diskussion läßt sich
bereits erahnen, daß dies der Fall ist. Ein Applet kann nämlich beliebige Funktionalität imple-
mentieren und beispielsweise auch ein Design-Werkzeug für Entwurfsumgebungen realisieren.
In den letzten Jahren hat sich daher ein Trend abgezeichnet, bei dem komplette Anwendungs-
systeme (wie z.B. das Corel Office-Paket) in Java entwickelt, zentral installiert und dann auf
beliebigen Clients in einem Browser gestartet werden. Auf den Client-Rechnern muß dann
keine Software mehr installiert sein, so daß der Aufwand für die Wartung erheblich sinkt. Wird
sogar das Betriebssystem von einem zentralen Server gebootet, so spricht man vom sog. Net
Computer. Ein Beispiel dafür ist Suns JavaStation [Sun98c], die wir in Kapitel 6 für verglei-
chende Messungen herangezogen haben. Aufgrund von Leistungsproblemen hat sich diese
Technik aber bisher nicht durchsetzen können.

Im Sinne dieser Verarbeitungsweise könnte man das Internet eigentlich als eine auf hohem
Niveau modellierte Netzwerkschicht betrachten (quasi als Ergänzung zum ISO/OSI-Schichten-
modell [DZ83, Ta92]). Es läßt sich so auch sehr gut mit dem Intranet vergleichen: Im Rahmen
dieser Arbeit wollen wir das Internet als weltumspannendes, allgemein zugängliches Netzwerk
ansehen, während das Intranet die lokale Netzstruktur innerhalb eines Unternehmens darstellt.
Mit beiden kann die gleiche Funktionalität realisiert werden, jedoch gibt es zwei wesentliche
Unterschiede. Der erste betrifft die Bandbreite der Netzverbindungen. Nachdem das Intranet
intern verwaltet wird, erwarten wir, daß sich die Leistung (gemäß den technischen Möglichkei-
ten) beliebig verbessern läßt. Im Internet sollte man dagegen prinzipiell von einer sehr geringen
Übertragungsrate ausgehen. Der zweite Unterschied betrifft die Sicherheit. Innerhalb des
Intranet gelten alle Clients und Server als vertrauenswürdig. Im Gegensatz dazu sollte man alle
Rechner und Verbindungen im Internet prinzipiell als nicht vertrauenswürdig ansehen. Hier sind
also ergänzende Maßnahmen zur Autorisierung, Authentifizierung und Verschlüsselung nötig.
An der Schnittstelle zwischen Intranet und Internet werden dafür im allgemeinen sog. Firewalls
eingesetzt [YMG96].

Abschließend sei noch erwähnt, daß mit dem Begriff Intranet oftmals nur das lokale, schnelle
und unternehmensinterne Informationssystem bezeichnet wird, während man die eher langsame
weltweite Informationsverbreitung über das WWW mit dem Internet gleichsetzt. Diese Sicht-
weise halten wir für zu restriktiv und unangemessen: Bei großen Konzernen kann selbst das
Intranet weltweite Verbreitung erfordern. Dementsprechend charakterisieren beide Begriffe
lediglich die gewünschte Verbreitung (unternehmensintern oder öffentlich), nicht aber die
zugrundeliegende Verteilung oder Kommunikationsbandbreite.

2.7.5 Ist Pure Java die ultimative Lösung?

Aufgrund der hohen Portabilität von Java-Programmen bietet es sich an, Java als Grundlage für
neue Implementierungen zu nutzen. Insbesondere bei komponentenbasieren Architekturen wird
so ein Höchstmaß an Flexibilität und Wiederverwertbarkeit gewonnen. Java bietet weiterhin

50

bereits ein internes Komponentenmodell (Java Beans und Enterprise Java Beans, siehe
Kapitel 2.1 bzw. [Sun97d, Sun98a]) und Middleware-Mechanismen wie Remote Method Invo-
cation und Object Serialization an (RMI bzw. OS, siehe [Sun97b, Sun97c]). Aus diesem Grund
wird vielfach die Ansicht vertreten, daß Java für alle Bestandteile eines Systems verwendet wer-
den (und eben nichts anderes zum Einsatz kommen) sollte. Wir halten diese Sichtweise für sehr
gefährlich und falsch. Natürlich bietet sich Java für die Implementierung portabler Clients an.
Wir haben aber bereits in Kapitel 2.1 den Bedarf für die abstrakte Modellierung von Kompo-
nenten und die strikte Trennung von Schnittstelle und Implementierung erkannt. Dies ist bei
einer puren Verwendung von Java nicht der Fall, so daß wir den Einsatz von Komponentenmo-
dellen wie CORBA befürworten (siehe Kapitel 4). In vielen Fällen, beispielsweise bei der Inte-
gration von Legacy-Systemen, ist es nämlich nötig von der benutzten Programmiersprache zu
abstrahieren. Weiterhin favorisieren wir auf dem Server nach wie vor C++ oder ähnliche Spra-
chen. Auch wenn die Leistung von Java sich der von C++ annähern wird, so gibt es immer noch
einige Konzepte (wie z.B. multiple Vererbung oder eine effiziente Pufferverwaltung, siehe
Kapitel 6.1.1), die in Java nur schwer zu realisieren sind. Letztendlich stellt sich auch noch die
Frage, welche Programmiersprache denn in zehn Jahren aktuell ist. Wer hat 1990 schon an Java
gedacht? Will man immer wieder alle Systeme neu implementieren? Ein Austausch einzelner
(Client-)Komponenten ist mit Sicherheit wirtschaftlicher und schneller zu realisieren.

2.8 Zusammenfassung
In diesem Kapitel haben wir einige Grundlagen diskutiert, die wesentlich für das weitere Ver-
ständnis der vorliegenden Arbeit sind. Zunächst einmal haben wir den Begriff von Komponen-
ten und Komponentenmodellen definiert. Von besonderer Bedeutung ist hier die strikte Tren-
nung von Schnittstellenbeschreibung und Implementierung, die im allgemeinen durch eine for-
male Beschreibungsmethode erreicht wird und die Austauschbarkeit und Wiederverwend-
barkeit einzelner Bausteine ermöglicht. Neben der Bildung von Komponenten lassen sich Soft-
ware-Architekturen dann noch mittels zwei weiterer Methoden strukturieren: Durch die Bil-
dung von Schichten entsteht eine horizontale, logische Partitionierung von Systemen, während
Client/Server-Grenzen eine implementierungsnahe Möglichkeit zur Aufteilung von Software
auf mehrere Rechner darstellen. Für die Kommunikation zwischen diesen Rechnern benötigt
man sog. Middleware. Neben den rudimentären Varianten RPC und MoM sind hier objektori-
entierte Erweiterungen (wie z.B. CORBA oder DCOM) sowie Speziallösungen für DBVS von
Bedeutung. Alle Varianten werden wir noch ausführlich im Rahmen dieser Arbeit betrachten.
Dabei gilt es zwei verschiedene Szenarien zu unterscheiden: Auftragsbezogene (Operation
Shipping) und datenintensive Systeme (Data Shipping), deren Leistung jeweils durch unter-
schiedliche Aspekte beeinflußt wird. Eine angemessene Modellierung ist deshalb unabdingbar.
Aufbauend auf diese allgemeinen Grundlagen haben wir uns dann den speziellen Rahmenbe-
dingungen dieser Arbeit gewidmet: den Entwurfsumgebungen. Hier sind wir kurz auf die
Begriffe Workflow, CSCW, Groupware sowie Isolation und Kooperation eingegangen.
Abschließend haben wir dann eine mögliche Anbindung an das Intra-/Internet betrachtet und
dabei den Einsatz von Java zur Erstellung mächtiger Anwendungen motiviert.

51

Kapitel 3
333

Der Internationale Standard
STEP

Wir haben bereits in den letzten Kapiteln die Verwendung standardisierter Datenmodelle und
zugehöriger Zugriffsschnittstellen motiviert. Mit dieser Maßnahme wird garantiert, daß der von
uns benötige Austausch und die Archivierung von Produktdaten auch über Komponenten-,
Rechner- und Unternehmensgrenzen hinweg erfolgen kann. Er sollte insbesondere unabhängig
von verwendeten Rechnerarchitekturen, Betriebssystemen, Programmiersprachen sowie Daten-
bankverwaltungssystemen (DBVS) und internen Datenmodellen bzw. Schemata sein. Wichtig
ist letztendlich, daß sich der gesamte Entwicklungsprozeß eines Produktes einheitlich archivie-
ren und dokumentieren läßt. Im Bereich des Produktdatenmanagements bietet sich dafür der
Einsatz des ISO-Standards 10303 an. Dieser hat den Titel Industrial Automation Systems and
Integration - Product Data Representation and Exchange, wird aber häufig unter dem Akronym
STEP (Standard for the Exchange of Product Data) referenziert.

STEP [ISO94a, Ow93] wurde von der International Organization for Standardization (ISO)
verabschiedet, die ein Zusammenschluß von nationalen Standardisierungsgremien ist. Die
eigentliche Arbeit wird von sog. Technical Committees erledigt. In diesen sitzen Vertreter aller
beteiligten Organisationen. Für die Verabschiedung eines Standards müssen mindestens 75%
der Mitglieder stimmen. Zuständig für STEP ist das Technical Committee ISO/TC 184, Indu-
strial Automation Systems and Integration, Subcommittee SC4, Industrial Data (kurz ISO
TC184/SC4). Bei den dreimal pro Jahr stattfindenden Treffen dieses Ausschusses sind durch-
schnittlich 200 bis 300 Delegierte anwesend. Ein Großteil davon sind direkt von der Industrie
entsandte Vertreter. Man kann also davon ausgehen, daß STEP nicht einfach nur ein weiterer
Standard auf dem Papier ist. Im Gegenteil, die enthaltenen Modelle und Ideen stoßen auf ein
breites Interesse und hohe Akzeptanz, insbesondere innerhalb der Automobilindustrie.

Zur Strukturierung der umfangreichen Konzepte und Schemata wurde STEP in verschiedene
Serien (Parts) unterteilt. Die Serien 1-10 beschreiben die Grundlagen und den allgemeinen Auf-
bau von STEP. In den Serien 11-20 werden Beschreibungs- und Spezifikationsmethoden behan-
delt, darunter auch die in Kapitel 3.1 vorgestellte Datenmodellierungssprache EXPRESS
[ISO94b, SW94]. Die Serien 21-30 beinhalten Implementierungsmethoden, z.B. das Format
zum Produktdatenaustausch über ASCII-Dateien, die sog. STEP Physical Files [ISO94c], oder
die Zugriffsschnittstelle SDAI [ISO98a], deren Eigenschaften wir in Kapitel 3.2 noch genauer

52

betrachten werden. In den Serien 31-40 sind Methoden und Kriterien für Konformitätstests
beschrieben. Grundlegende Datenstrukturen, sog. Integrated Resources, werden durch die
Serien 41-50 definiert. Sie dienen als Grundlage für die in den Serien 201-300 beschriebenen
Application Protocols, die normierte Schemata für spezielle Anwendungsbereiche definieren.
Für Entwurfsumgebungen und andere Systeme bei DaimlerChrysler ist insbesondere das auf
den Produktlebenszyklus in der Automobilindustrie abgestimmte AP 214 von Bedeutung.

Jedes einzelne Dokument unterläuft während der Standardisierung verschiedene Phasen. Neue
Projekte beginnen in der Regel als New Work Item (NWI), das eine Anforderungsanalyse sowie
die Definition der Zielsetzung umfaßt. Anschließend folgt die Erstellung sog. Working Drafts
(WD), anhand derer erste Ideen und Lösungen fixiert werden. Ist ein technisch stabiler Zustand
erreicht, so folgt die Verabschiedung eines Committee Drafts (CD). Über diesen wird nun zum
ersten mal international abgestimmt. Entsprechend der von den Ländervertretern eingeschick-
ten Kommentare sind in diesem Stadium noch grundlegende technische Änderungen möglich.
Wurde ein CD akzeptiert, so folgen die Phasen Draft International Standard (DIS), Final Draft
International Standard (FDIS) und schließlich International Standard (IS). Innerhalb dieser
sind keine technischen Änderungen mehr erlaubt.

Tabelle 3.1: Dokument-Klassen und Serien innerhalb von ISO 10303 (STEP)

Eine Auflistung einiger Dokumente und ihrer Stati ist in Tabelle 3.1 enthalten1. In der ersten
Spalte sind die Klassen des STEP-Standards mit den dazugehörenden Bereichen für die Num-
mern der Serien aufgeführt. In der zweiten, dritten und vierten Spalte werden ausgewählte

1. Diese Tabelle wurde aus [Sa98] übernommen und entsprechend der fortgeschrittenen Standardisierung aktualisiert.

Klasse Serie Kurzbeschreibung Status

Umfang und Architektur (1-10) 1 Überblick und fundamentale Prinzipien [ISO94a] IS

Beschreibungsmethoden
(11-20)

11 Definition der Sprache EXPRESS [ISO94b] IS

Implementierungsmethoden
(21-30)

21 Format von Austauschdateien (STEP Physical File)
[ISO94c]

IS

22 Definition der Schnittstelle SDAI [ISO98a] FDIS

23 SDAI Language Binding für C++ [ISO98b] DIS

26 SDAI Language Binding für IDL [ISO98c] DIS

27 SDAI Language Binding für Java [ISO99a] CD

Testmethodik (31-40) 31 Generelle Konzepte zur Konformitätsprüfung IS

Integrated Resources
(41-50)

41 Generelle Informationen zur Produktbeschreibung IS

42 Darstellung von Geometrie IS

Application Protocols
(201-299)

203 Darstellung konfigurierbarer Geometrie IS

212 Elektrotechnische Informationen DIS

214 Produktlebenszyklus in der Automobilindustrie [ISO99b] DIS

53

Dokumente mit Nummer, einer kurzen Beschreibung sowie ihrem Status benannt. Einige Serien
(insbesondere die Implementierungsmethoden) werden wir in den folgenden Abschnitten noch
genauer betrachten, andere (wie z.B. die Testmethodik) sind hingegen ohne Bedeutung für die
hier geführte Diskussion.

Neben dem Einsatz im Szenario des Produktdatenmanagements werden einige Dokumente der
10’er- und 20’er-Serien inzwischen auch in anderen Bereichen verwendet. Beispielsweise wird
EXPRESS auf europäischer Ebene zur Modellierung von Geodaten und GIS (Geographic Infor-
mation Systems) benutzt. Damit ergibt sich ein deutlich breiteres Einsatzgebiet für eine
EXPRESS-basierte Datenversorgung. Im Rahmen der vorliegenden Arbeit werden wir deshalb
nicht speziell auf die in den Application Prototcols definierten Modelle eingehen, sondern eine
allgemeine Datenversorgung für beliebige EXPRESS-Schemata betrachten. Als Grundlage
dient uns dabei die Vorstellung der Konzepte und Techniken der Datenmodellierungssprache
EXPRESS und der Zugriffsschnittstelle SDAI in den Kapiteln 3.1 und 3.2. Der Vollständigkeit
halber geben wir in Kapitel 3.3 noch einen Überblick über den allgemeinen Aufbau von Appli-
cation Protocols und deren Beziehung zu Integrated Resources. Kapitel 3.4 faßt abschließend
die gewonnenen Erkenntnisse zusammen.

3.1 Die Modellierungssprache EXPRESS
EXPRESS (Expressive Power) ist eine strukturell objektorientierte Datendefinitionssprache
[Di87], die eine sowohl für den Menschen als auch eine Maschine verständliche Spezifikation
von Daten ermöglichen soll. Sie ist in Serie 11 von ISO 10303 definiert [ISO94b]. Im folgenden
werden die einzelnen Bestandteile der Sprache kurz vorgestellt und durch abstrakte Beispiele
oder Auszüge der in Kapitel 3.1.5 enthaltenen Beispielanwendung veranschaulicht. Für eine
weitergehende Diskussion von EXPRESS sei z.B. auf [SW94] verwiesen.

3.1.1 Schemata

“A schema defines a universe of discourse in which the objects declared have a mean-
ing and purpose. It is the basis for partitioning and intercommunication [ISO94b].”

Wie in relationalen Systemen werden die Daten auch in EXPRESS nicht nur durch ein Schema,
sondern unter Umständen mit Hilfe mehrerer Schemata modelliert. Dadurch lassen sich Meta-
daten bereits anwendungsspezifisch partitionieren. Ein Schema stellt einen eigenen Namens-
raum für alle enthaltenen Komponenten dar, wobei allerdings auch Verweise zwischen Objekten
unterschiedlicher Schemata möglich sind (siehe Kapitel 3.1.3.2). Die Spezifikation eines Sche-
mas wird durch das Schlüsselwort Schema eingeleitet. Anschließend folgt die Deklaration von
Typen (Kapitel 3.1.2), Objekten (sog. Entities, siehe Kapitel 3.1.3), Regeln und Algorithmen
(Kapitel 3.1.4). Die Reihenfolge ist dabei beliebig und unbedeutend. Kapitel 3.1.5 veranschau-
licht die Spezifikation eines Schemas anhand eines kurzen Beispieles.

54

3.1.2 Typen

Für die Definition eines EXPRESS-Schemas stehen folgende Typen und Typkonstruktoren zur
Verfügung. Ihre Verwendung wird in Beispiel 3.1 und Kapitel 3.1.5 illustriert.

• Basistypen (Simple Types)

EXPRESS bietet bereits eine Reihe von Basistypen an: REAL, INTEGER, NUMBER (Supertyp
von REAL und INTEGER), Boolean (mit den Werten TRUE oder FALSE), LOGICAL (TRUE,
FALSE oder UNKNOWN), STRING und BINARY (eine Liste von Bits). Über die Genauigkeit und
Länge von REAL- oder INTEGER-Werten wird im Standard leider keine Aussage gemacht.

• Aggregate (Aggregation Data Types)

Für die Definition von Aggregaten gibt es die Konstruktoren ARRAY (feste Länge, feste Rei-
henfolge), LIST (variabel lang, feste Reihenfolge), BAG (variabel lang, keine Ordnung auf
den Elementen, Duplikate erlaubt) und SET (BAG ohne Duplikate). Aggregate lassen sich
über beliebige Typen bilden. Dabei können Kardinalitätsrestriktionen in Form unterer und
oberer Schranken spezifiziert werden.

• Allgemeine Supertypen (Select Data Type)

Zur Realisierung einer Typ-Hierarchie kann mit dem SELECT-Konstrukt ein Supertyp
deklariert werden. Der Wertebereich ist die Vereinigung der Wertebereiche aller zugrunde-
liegenden Typen. So gilt z.B. NUMBER = SELECT (INTEGER, REAL). Ein SELECT-Typ ist
aber nicht mit der Definition einer Superklasse im objektorientierten Sinne zu verwech-
seln! Eine Instanz dieses Typs kann zur Laufzeit immer nur die Rolle einer Instanz eines
Basistyps annehmen, niemals die von zweien. Weiterhin ist eine Instanz eines Basistyps
keine Instanz des SELECT-Typs.

• Aufzählungstypen (Enumeration Data Type)

Aufzählungstypen können in gewohnter Weise deklariert werden. Dabei können die glei-
chen Namen für Elemente in unterschiedlichen Typen auftreten.

Beispiel 3.1: Typdeklarationen in EXPRESS

-- Kommentare werden durch “--” eingeleitet

-- Defined / Aggregation / Simple Data Type:
TYPE vector = ARRAY [1..3] OF INTEGER;
END_TYPE;

-- Defined / Enumeration Data Type:
TYPE figure = ENUMERATION OF (circle, box);
END_TYPE;

-- Defined / Simple Data Type with Where-Clause:
TYPE positive = INTEGER;
WHERE

notnegative : SELF >= 0;
END_TYPE;

-- Defined / Select / Simple Data Type:
TYPE own_number = SELECT (NUMBER, positive);
END_TYPE;

55

• Objekte (Entity Data Type)

Eine ENTITY-Definition beschreibt den Aufbau eines Daten-Objektes (siehe auch
Kapitel 3.1.3). Diese Objekte können in Typ-Deklarationen und Parameterlisten wie nor-
male Typen verwendet werden (siehe Beispiel 3.3 auf Seite 58).

• Benutzerdefinierte Typen (Defined Data Type)

Mit dem TYPE-Konstrukt können unter Benutzung der bisher erwähnten Typen und Typ-
konstruktoren neue Typen definiert und benannt werden. Weiterhin lassen sich durch sog.
WHERE-Klauseln Regeln formulieren, die z.B. den verwendeten Wertebereich einschränken
(siehe auch Kapitel 3.1.4).

3.1.3 Objekte (Entities)

“The language focuses on the definition of entities, which are the things of interest.
The definition of entities is in terms of data and behaviour [ISO94b].”

Die Objekte eines Schemas werden in EXPRESS durch sog. Entities beschrieben. Diese können
im Prinzip mit Klassen in allgemeinen objektorientierten Modellen verglichen werden [CB97].
Sie entsprechen weiterhin dem in [At+89] definierten Objektbegriff. Mit Hilfe von Entities kann
man ganze Hierarchien von Typklassen definieren, wobei auch multiple Vererbung erlaubt ist
(d.h. ein Entity kann unter Umständen von mehreren Superklassen erben).

Die Deklaration eines Entities beginnt mit dem Schlüsselwort ENTITY. Anschließend folgt der
Name des (neuen) Typs, die Angabe der Vererbungsbeziehung zu Super- und Subtypen, eine
Liste mit Attributen sowie die Definition von lokalen Regeln (siehe Kapitel 3.1.4). Die Reihen-
folge innerhalb der Deklaration von Attributen und Regeln ist unbedeutend.

Wird das Konzept der Vererbung benutzt, so enthält die Subklasse alle Bestandteile ihrer Super-
klasse(n). Eine Redefinition von Regeln ist nicht möglich, die Regelmenge kann nur durch wei-
tere ergänzt werden. Für Attribute gibt es jedoch folgende Möglichkeiten:

• Ein Supertyp (Select Data Type) wird durch einen seiner Basistypen eingeschränkt (ein
Attribut vom Typ NUMBER läßt sich beispielsweise auf den Typ INTEGER reduzieren).

• Ein optionales Attribut wird verpflichtend vorgeschrieben (ein Auto hat immer eine Farbe,
ein beliebiges Produkt evtl. nicht, siehe ENTITY Auto in Bsp. 3.4 auf Seite 60).

• Ein explizites Attribut wird durch eine Ableitungsregel (DERIVE) spezifiziert (eine Frau
muß weiblichen Geschlechts sein, siehe ENTITY Frau in Bsp. 3.5 auf Seite 61).

Der Namensraum von Entities setzt sich aus dem eigenen und denen aller Superklassen zusam-
men. Wichtig bei der Redeklaration von Attributen ist die Verwendung des Schlüsselwortes
SELF (siehe Bsp. 3.4 auf Seite 60 oder Bsp. 3.5 auf Seite 61). Würde dieses ausgelassen, so
wären prinzipiell beide Attribute (das gerade definierte und das der Basisklasse) sichtbar,
obwohl sie den gleichen Namen tragen!

56

Eine weitere Besonderheit von EXPRESS ist die Unterstützung verschiedener Vererbungsfor-
men. Wird beispielsweise der Typ Person als Supertyp von Frau und Mann deklariert, so gibt
es dafür drei verschiedene Möglichkeiten. Die erste Variante ergibt sich durch die Verwendung
der Klausel SUPERTYPE OF ONEOF (Frau, Mann) (vgl. Entity Person in Bsp. 3.5 auf
Seite 61). Sie entspricht der üblichen und erwarteten Semantik: Eine Person ist entweder eine
Frau oder ein Mann. Wird hingegen mehrfache Typzugehörigkeit gewünscht, so können die
Schlüsselwörter ANDOR (eine Person ist eine Frau, ein Mann, oder beides) oder gar AND (eine Per-
son ist immer Frau und Mann) verwendet werden (siehe auch Kapitel 9.3.3.5 in [ISO94b]). Wird
keines der drei Schlüsselwörter benutzt, so gilt automatisch ANDOR-Vererbung.

3.1.3.1 Beziehungen zwischen Objekten

Wird innerhalb einer Entity-Deklaration ein Attribut vom Typ eines Entities spezifiziert, so stellt
dieses Attribut eine Referenz zwischen beiden Entity-Typen her. Diese kann sowohl innerhalb
eines Typs (Waren bestehen aus anderen Waren) als auch zwischen verschiedenen Typen defi-
niert sein (z.B. zwischen Frau und Mann). In dem in Kapitel 3.1.5 vorgestellten Szenario werden
Varianten aller möglichen Beziehungstypen (1:1, 1:n, n:m) illustriert: Eine Frau ist mit maximal
einem Mann verheiratet (und umgekehrt, 1:1), ein Hersteller produziert mehrere Produkte, die
genau einen Hersteller haben (n:1), ein komplexes Produkt besteht aus mehreren Produkten, die
Bestandteil mehrerer komplexer Produkte sein können (n:m) usw.

Im Sinne der Konsistenzerhaltung sowie einer einfacheren Navigation können zu jeder Referenz
auch Gegenreferenzen in Form von inversen Attributen deklariert werden (Schlüsselwort
INVERSE). Dabei ist zu beachten, daß in der INVERSE-Klausel aufgeführte Attribute nicht mate-
rialisiert werden müssen, sondern lediglich einen Mechanismus für die Überwachung der refer-
entiellen Integrität bieten. Im Prinzip stellen sie nur eine Form von lokalen Regeln dar (siehe
auch Kapitel 3.1.4). Die Verwendung des Schlüsselwortes OPTIONAL ist hier nicht erlaubt,
Kardinalitätsrestriktionen lassen sich aber über die Konstrukte „SET [0:1]“ (maximal eine),
„SET [0:n]“ (maximal n) bzw. „SET [0:?]“ (beliebig viele Gegenreferenzen) nachbilden.

Gerade bei der Modellierung von 1:1-Beziehungen ergeben sich verschiedene Möglichkeiten,
die durch Beispiel 3.3 auf Seite 58 illustriert werden (siehe auch Kapitel 3.1.4).

3.1.3.2 Beziehungen zwischen Objekten unterschiedlicher Schemata

Beziehungen zwischen Objekten aus verschiedenen Schemata lassen sich im Prinzip genauso
wie lokale Referenzen modellieren. Dafür werden die jeweils fremden Entity-Typen in den
Namensraum des lokalen Schemas eingeblendet (durch die Verwendung der Schlüsselworte
USE oder REFERENCE). Beim Einsatz der USE-Klausel lassen sich die importierten Entities wie
lokal deklarierte Typen verwenden. Sie können insbesondere auch von einem dritten Schema
mit einer der beiden Klauseln importiert werden: SCHEMA C in Bsp. 3.2 kann ENTITY a2 aus
SCHEMA B referenzieren, obwohl es eigentlich in SCHEMA A definiert wurde. Im Gegensatz dazu
können alle über die REFERENCE-Klausel importierten Typen nur für die Modellierung von
Beziehungen innerhalb des jeweiligen Schemas benutzt werden. Sie sind nach außen nicht mehr
sichtbar: SCHEMA C könnte nicht ENTITY a1 aus SCHEMA B importieren (weder über USE, noch
mittels REFERENCE). Sinnvoll ist dies, wenn SCHEMA C nichts von der Existenz von SCHEMA A
wissen soll bzw. darf.

57

Beispiel 3.2: Vergleich der USE- und REFERENCE-Klauseln

Aufzählungs- und benutzerdefinierte Typen, Konstanten, Funktionen, Prozeduren usw. können
nur wie externe Werte behandelt werden, d.h., daß man sie nur über die REFERENCE-Klausel
importieren darf. Rekursiv benötigte Strukturen sind implizit deklariert, können aber nicht
explizit (z.B. für weitere Definitionen) verwendet werden.

3.1.4 Algorithmen und Regeln

Wir haben bereits in Kapitel 3.1.3 erwähnt, daß Attributwerte automatisch berechnet werden
können. EXPRESS bietet dafür die Möglichkeit zur Definition von Algorithmen, die wahlweise
Prozeduren oder Funktionen sind. In Anlehnung an Programmiersprachen stehen Konstrukte
zur Bildung von Schleifen und Verzweigungen sowie einige vordefinierte Basis-Funktionen zur
Verfügung (z.B. LOINDEX, HIINDEX, LOBOUND, HIBOUND, INSERT und REMOVE zur Verarbeitung
von Aggregaten). Parameter können den Algorithmen entweder mit call-by-reference- (VAR-
Klausel) oder call-by-value-Semantik (Standard) übergeben werden. Für Generalisierungen
gibt es weiterhin die Schlüsselworte AGGREGATE (es wird einer der vier möglichen Aggregat-
Typen erwartet) und GENERIC (es wird ein beliebiger Typ zugelassen). Lokale Variablen können
ebenfalls deklariert werden. Die in Beispiel 3.4 auf Seite 60 definierte Funktion
Berechne_Gewicht illustriert exemplarisch die Benutzung einiger Konstrukte. Interessant ist
der Aspekt, daß der Zugriff auf das Attribut Gewicht der beteiligten Instanzen aufgrund der
DERIVE-Klausel automatisch einen rekursiven Aufruf dieser Funktion bewirkt, sofern es sich
dabei um ein komplexes Produkt handelt.

Neben der automatischen Berechnung von Attributwerten lassen sich Algorithmen auch zur
Spezifikation von Regeln verwenden. Diese lassen sich in drei Kategorien unterteilen:

• Lokale Regeln, die innerhalb einer Entity-Deklaration spezifiziert und auf einer einzelnen
Instanz ausgewertet werden können, z.B. Beschränkungen des Wertebereiches, Anzahl von
Listenelementen, Sortierreihenfolge in dynamischen Strukturen usw.

• Lokale Regeln, die innerhalb einer Entity-Deklaration spezifiziert, aber auf der Menge
aller existierenden Instanzen dieses Typs ausgewertet werden müssen, z.B. Kardinalitäts-
restriktionen ([low:high] für Aggregate), Eindeutigkeit (UNIQUE), referentielle Integrität
(INVERSE) usw.

• Globale Regeln, die zwar innerhalb eines Schemas, aber außerhalb von Entity-Deklaratio-
nen spezifiziert und auf der Menge aller Instanzen ausgewertet werden.

SCHEMA A;
ENTITY a1;

...
END_ENTITY;
ENTITY a2;

...
END_ENTITY;

END_SCHEMA;

SCHEMA B;
REFERENCE FROM A(a1);
USE FROM A(a2);

ENTITY b;
...

END_ENTITY;
END_SCHEMA;

SCHEMA C:
REFERENCE FROM B(a2);
REFERENCE FROM B(b);
...

END_SCHEMA;

58

Beispiel 3.3: Modellierung von 1:1-Beziehungen

Alle drei Varianten sind in Beispiel 3.3 anhand alternativer Möglichkeiten zur Modellierung der
1:1-Beziehung verheiratet illustriert. Obwohl alle Fälle das gleiche Ergebnis auf der Schema-
Ebene haben, so ergeben sich zur Laufzeit doch gravierende Unterschiede: Im ersten Fall muß
zur Auswertung der Bedingung (bzgl. einer Person) nur auf zwei Instanzen zugegriffen werden
(sofern inverse Attribute materialisiert und nicht erst zu berechnen sind). Im dritten Fall werden
immer alle Instanzen gelesen. Andererseits ist hier die Integritätsprüfung des gesamten Daten-

-- Fall 1: Verwendung der INVERSE-Klausel

ENTITY Frau SUBTYPE OF Person;
Ehefrau_von : OPTIONAL Mann;
...

END_ENTITY;

ENTITY Mann SUBTYPE OF Person;
...

INVERSE
Ehemann_von : SET [0:1] OF Frau FOR Ehefrau_von;

END_ENTITY;

-- Fall 2: optionale Attribute und lokale Regeln

ENTITY Frau SUBTYPE OF Person;
Ehefrau_von : OPTIONAL Mann;

WHERE
rf : (NOT EXISTS (SELF.Ehefrau_von)) OR

(SELF.Ehefrau_von.Ehemann_von :=: SELF);
END_ENTITY;

ENTITY Mann SUBTYPE OF Person;
Ehemann_von : OPTIONAL Frau;

WHERE
rm : (NOT EXISTS (SELF.Ehemann_von)) OR

(SELF.Ehemann_von.Ehefrau_von :=: SELF);
END_ENTITY;

-- Fall 3: optionale Attribute und eine globale Regel

ENTITY Frau SUBTYPE OF Person;
Ehefrau_von : OPTIONAL Mann;

END_ENTITY;

ENTITY Mann SUBTYPE OF Person;
Ehemann_von : OPTIONAL Frau;

END_ENTITY;

RULE verheiratet FOR (Frau, Mann);
WHERE

r1 : SIZEOF (
QUERY(tf <* Frau | EXISTS (tf.Ehefrau_von) AND

(tf.Ehefrau_von.Ehemann_von :<>: tf))
) = 0;

r2 : SIZEOF (
QUERY(tm <* Mann | EXISTS (tm.Ehemann_von) AND

(tm.Ehemann_von.Ehefrau_von :<>: tm))
) = 0;

END_RULE;

59

bestandes einfacher: Man muß nur die Auswertung einer Regel anstoßen. In Fall 1 ist hingegen
für jede Instanz des Typs Mann die entsprechende Methode aufzurufen. Eine allgemeine Bewer-
tung einzelner Varianten ist somit nicht möglich.

Im Hinblick auf eine mengenorientierte und regelbasierte Datenverarbeitung bietet sich nun
noch die Betrachtung der Standard-Funktion QUERY an. Diese erhält ein Aggregat und eine logi-
sche Bedingung (Ergebnistyp Logical) als Eingabe. Die Ausgabe besteht dann aus einem
Aggregat, das alle Elemente der Eingabe enthält, welche die übergebene Bedingung erfüllen.
So wird z.B. in der globalen Regel verheiratet in Beispiel 3.3 auf Seite 58 der Variablen tr
die Menge aller Frauen zugewiesen, die anschließend mit dem QUERY-Konstrukt auf diejenigen
beschränkt wird, die mit einem Mann verheiratet sind, der mit einer anderen Frau verheiratet ist.
Diese Menge sollte sinnvollerweise leer sein.

3.1.5 Beispiel

Zum besseren Verständnis der in den letzten Abschnitten vorgestellten Konzepte von EXPRESS
wollen wir abschließend ein fiktives Beispiel aus der Automobilindustrie spezifizieren, anhand
dessen die meisten Konstrukte veranschaulicht werden. Die Modellierung der Daten ist in
Abb. 3.1 dargestellt. Sie basiert auf den EXPRESS-Definitionen in Bsp. 3.4 und Bsp. 3.5.

Abb. 3.1: Schema der Beispielanwendung

Ergänzend zu den bereits in der Einleitung zu Kapitel 3.1.3 erwähnten Formen der Vererbung
(ONEOF, ANDOR und AND) möchten wir noch auf das Schlüsselwort ABSTRACT hinweisen (siehe
ENTITY Produkt in Beispiel 3.4). Es verhindert, daß es zur Laufzeit Instanzen dieses Typs gibt.
Innerhalb der Entity-Deklaration wird weiterhin die Klausel UNIQUE Gewicht, Farbe benutzt.
Sie besagt, daß die Kombination aus diesen beiden Attributen eindeutig sein muß (nicht jedes
Attribut für sich). Der Zugriff auf das Gewicht führt aber unter Umständen zum Aufruf der Pro-
zedur Berechne_Gewicht, die dann rekursive Aufrufe verursacht usw. Weiterhin ist Farbe
optional, d.h., daß kein Wert spezifiziert sein muß. Was heißt aber in diesem Fall eindeutig? Der
Standard macht darüber keine Aussage.

SDAI-Schema

Produkt Produzent Ort

Personkomplexeseinfaches

Auto

PKW

Produkt Produkt

BeziehungVererbung

n : 1 n : m

n : 1n : 1

n : m

Frau Mann
1 : 1

60

Beispiel 3.4: EXPRESS-Definitionen des Schemas Produkt

SCHEMA Produkt;
REFERENCE FROM Produzent (Produzent);

TYPE Art = ENUMERATION OF (komplex,einfach);
END_TYPE;

TYPE Farbton = ENUMERATION OF (rot, blau, gelb, grün, weiß);
END_TYPE;

TYPE Produkte = SET [2:?] OF Produkt;
END_TYPE;

FUNCTION Berechne_Gewicht (in : Produkte) : REAL;
LOCAL

result : REAL:=0;
END_LOCAL;
REPEAT i:=LOINDEX(in) TO HIINDEX(in);

result:=result + in[i].Gewicht;
END_REPEAT;
RETURN (result);

END_FUNCTION;

ENTITY Produkt ABSTRACT SUPERTYPE OF
ONEOF (Einfaches_Produkt, Komplexes_Produkt);

Produkt_Typ : Art;
Gewicht : REAL;
Farbe : OPTIONAL Farbton;

INVERSE
hergestellt_von : Produzent FOR produziert;
benötigt_für : SET [0:?] OF Komplexes_Produkt FOR besteht_aus;

UNIQUE
Gewicht, Farbe;

END_ENTITY;

ENTITY Einfaches_Produkt SUBTYPE OF (Produkt);
DERIVE

SELF\Produkt_Typ : Art := einfach;
END_ENTITY;

ENTITY Komplexes_Produkt SUBTYPE OF (Produkt);
besteht_aus : Produkte;

DERIVE
SELF\Produkt_Typ : Art := komplex;
SELF\Gewicht : REAL := Berechne_Gewicht (besteht_aus);

END_ENTITY;

ENTITY Auto SUBTYPE OF (Komplexes_Produkt);
SELF\Farbe : Farbton; -- jetzt vorgeschriebenes Attribut

END_ENTITY;

ENTITY PKW SUBTYPE OF (Auto);
...

WHERE
Gewichts_Regel : (Gewicht < 2,8 t);

END_ENTITY;

END_SCHEMA;

61

Beispiel 3.5: EXPRESS-Definitionen des Schemas Produzent

3.2 Die Zugriffsschnittstelle SDAI
Während wir bisher nur die Modellierung der Daten betrachtet haben, so werden wir uns nun
dem zur Laufzeit stattfindenden Zugriff auf Instanzen widmen. Der STEP-Standard enthält
dafür das STEP Data Access Interface, kurz SDAI [ISO98a]. Es stellt eine einheitliche Schnitt-
stelle zur Verarbeitung EXPRESS-basierter Daten dar, die vollständig von der tatsächlichen
Datenspeicherung und möglicherweise verwendeten DBVS (und der damit verbundenen physi-

SCHEMA Produzent;
REFERENCE FROM Produkt (Produkt);

TYPE Geschlecht = (weiblich, männlich, unbekannt);
END_TYPE;

ENTITY Produzent;
Name : String;
produziert : SET [1:?] OF Produkt;
Zweigwerke_in : SET [1:?] OF Ort;
Mitarbeiter : SET [1:?] OF Person;

UNIQUE
Name;

END_ENTITY;

ENTITY Person SUPERTYPE OF ONEOF (Frau, Mann);
Name, Vorname : STRING;
Geburtsjahr : INTEGER;
Geschlecht : Geschlecht;
Hauptwohnsitz : Ort;

INVERSE
arbeitet_bei : SET [0:1] OF Produzent FOR Mitarbeiter;

END_ENTITY;

ENTITY Frau SUBTYPE OF Person;
Ehefrau_von : OPTIONAL Mann;

DERIVE
SELF\Geschlecht : Geschlecht := weiblich;

END_ENTITY;

ENTITY Mann SUBTYPE OF Person;
DERIVE

SELF\Geschlecht : Geschlecht := männlich;
INVERSE

Ehemann_von : SET [0:1] OF Frau FOR Ehefrau_von;
END_ENTITY;

ENTITY Ort;
Name : STRING;

INVERSE
ansässige_Firmen : SET [0:?] OF Produzent FOR Zweigwerke_in;
Einwohner : SET [1:?] OF Person FOR Hauptwohnsitz;

END_ENTITY;

END_SCHEMA;

62

schen Verteilung) abstrahiert. Das SDAI kann somit als abstrakte Beschreibung der Schnittstelle
einer Datenhaltungskomponente betrachtet werden, deren Verwendung ein wichtiger Schritt für
die Realisierung einer komponentenbasierten, modularen und offenen Architektur ist (wie wir
sie in Kapitel 2.1 skizziert und gefordert haben). Die erzielte Kapselung wird durch Abb. 3.2
illustriert: Die Implementierung von Applikationen basiert nur auf der SDAI-Spezifikation. Ein
Austausch der konkreten Datenhaltung bleibt für die Anwendungsprogramme transparent.

Abb. 3.2: Kapselung von Komponenten durch den Einsatz der SDAI-Schnittstelle

Innerhalb des SDAI werden alle anfallenden Informationen in drei Sparten aufgeteilt: Die
eigentlichen Daten (Application Data), Metadaten (SDAI Dictionary Data) sowie Kontextinfor-
mationen zum aktuellen Zustand der Verarbeitung, laufenden Transaktionen usw. (SDAI Session
Data). Letztere können im allgemeinen transient im Hauptspeicher gehalten werden. Daten und
Metadaten sind hingegen in sog. Repositories abgelegt. Diese realisieren quasi virtuelle Daten-
banken, deren Inhalt persistent zu speichern ist (wie und in welchem Format auch immer).

Der Zugriff auf die Daten bzw. Objekte erfolgt nun einheitlich über das SDAI Programming
Interface. Die einzelnen Funktionen und Typen der Schnittstelle werden in Serie 22 von ISO
10303 [ISO98a] spezifiziert, wobei alle benötigten Typen in EXPRESS modelliert sind. Die
Signatur und Semantik von Methoden wird hingegen in einer Pseudo-Sprache beschrieben. Für
die Einbettung in eine konkrete Programmiersprache gibt es jeweils ein eigenes Dokument
(siehe auch Kapitel 3.2.6). Aufgrund der Tatsache, daß die Formate von Daten und Metadaten
mit Hilfe von EXPRESS modelliert werden, kann der Zugriff auf beide über die gleichen Funk-
tionen erfolgen. Dabei ist zu beachten, daß Metadaten nicht geschrieben werden können, son-
dern nur (automatisch) als Nebenwirkung von Operationen aktualisiert werden.

Ein Problem ergibt sich leider aus der Tatsache, daß das SDAI per Definition nur für den Ein-
benutzerbetrieb gedacht ist. Das enthaltene Transaktionsmodell kann aber zusammen mit den
spezifizierten Fehlercodes und Zustandsübergängen zur Implementierung eines Mehrbenutzer-
betriebes benutzt werden (siehe Kapitel 3.2.3 und Kapitel 6.1.1). Aus der Sicht der Anwendung
oder eines Benutzers ändert sich dabei nichts.

Repository 1

SDAI Dictionary Application
DataData

Repository 2

SDAI Dictionary Application
DataData

SDAI Session Data

SDAI-Schnittstelle

2
Applikation

1
Applikation

3
Applikation

63

In den folgenden Abschnitten wollen wir noch auf einige Details des SDAI eingehen. In Kapitel
3.2.1 werden dafür die verschiedenen Möglichkeiten zur Strukturierung und Partitionierung von
Daten anhand eines Beispieles erörtert. Im Anschluß daran betrachten wir in Kapitel 3.2.2 die
Manipulation von Daten. Verarbeitungszustände, mögliche Übergänge, Transaktionen und Ses-
sions sind hingegen das Thema von Kapitel 3.2.3. Die weitere Diskussion betrifft dann die Aus-
wertung von Regeln (Kapitel 3.2.4), die Abhängigkeit von Implementierungen gegenüber den
verwendeten EXPRESS-Schemata (Early und Late Binding, Kapitel 3.2.5), Anbindungen an
konkrete Programmiersprachen (Kapitel 3.2.6) sowie Implementierungsklassen (Kapitel 3.2.7).
Neben diesen Aspekten ist für das SDAI noch ein Konstrukt zur Bildung geschachtelter
Namensräume (sog. Scopes) spezifiziert, das für den Rest der Arbeit aber nicht von Interesse ist.

3.2.1 Strukturierung der Daten

Wie wir bereits in Kapitel 3.1.1 gelernt haben, werden die Metadaten in einzelne Schemata par-
titioniert, die damit implizit mehrere Mengen von Entity-Instanzen bilden, denen jeweils ein
eigenes Schema zugrunde liegt. Diese Einteilung ist aber noch recht grob. Eine feinere Auftei-
lung der auf einem Schema basierenden Entities ergibt sich durch das Model-Konstrukt: Jedes
Entity muß in genau einem Model enthalten sein, dem genau ein Schema zugrunde liegt. Somit
erhalten wir eine strikte Partitionierung der Daten.

Probleme bereitet nun die Verknüpfung der Daten mehrerer Models oder Schemata mittels
Referenzen. Wie soll man z.B. einen effizienten Mechanismus zur Überprüfung der referentiel-
len Integrität bereitstellen, wenn dieser den gesamten Datenbestand untersuchen müßte? Aus
diesem Grund wurden sog. Schema Instances eingeführt, die auf genau einem Schema basieren
und einen Kontext für die Auswertung von Regeln bilden. Sie realisieren keinen Datencontainer
wie z.B. Models, sondern lediglich eine logische Schutzhülle. Weiterhin kann es mehrere
Schema Instances für ein Schema geben. Models, und somit implizit die enthaltenen Entities,
können ebenfalls in mehreren Schema Instances enthalten sein. Wird nun ein Model in eine
Schema Instance eingefügt, so müssen entweder beide vom gleichen Schema abgeleitet, oder
die beiden Schemata im SDAI Data Dictionary als interoperabel deklariert sein. Letzteres
erfolgt bereits automatisch durch die Verwendung der USE- bzw. REFERENCE-Klausel in den
zugrundeliegenden EXPRESS-Definitionen. Unbedingt beachten sollten wir die Tatsache, daß
beim Einsatz des SDAI alle Regeln im Kontext einer Schema Instance evaluiert werden, so
bezieht sich z.B. die UNIQUE-Klausel nicht mehr auf alle Instanzen eines Entity-Typs!

Schema Instances, Models und deren Entity-Instanzen sind genau einem Repository zugeordnet.
Schema Instances können allerdings mit Models in anderen Repositories assoziiert sein (s.o.).
Die Zuordnung von Schemata zu Repositories ist hingegen nicht spezifiziert. Referenzen zwi-
schen zwei Entity-Instanzen sind nur dann erlaubt, wenn beide im gleichen Model enthalten
sind, oder es eine Schema Instance gibt, in der die beiden unterschiedlichen Models (und damit
auch die beiden Entity-Instanzen) enthalten sind. An dieser Stelle liegt die Folgerung nahe, daß
damit nur Referenzen innerhalb eines Repositories möglich sind. Dies ist aber nicht der Fall, da
sich Schema Instances über mehrere Repositories erstrecken können, obwohl sie (administrativ
gesehen) nur einem zugeordnet sind.

64

Abb. 3.3: Mögliche Ausprägung für die Beispielanwendung in Kapitel 3.1.5

Eine mögliche Ausprägung für das in Kapitel 3.1.5 definierte Beispiel wird durch Abb. 3.3 ver-
anschaulicht. Die Objekte der linken Seite basieren auf dem Schema Produkt, die der rechten
auf dem Schema Produzent. Die beiden Schema Instances beziehen sich jeweils auf das
Schema mit dem gleichen Namen. Obwohl alle Models in beide Schema Instances eingehängt
werden müssen (sonst wären die Referenzen zwischen den Models nicht erlaubt), so sind z.B.
die Entity-Instanzen Ulm, Egon Müller, Erika Müller, Ingoldstadt, Kuno Meier und Karin
Meier nicht in der Schema Instance Produkt enthalten, da ihre Typen in der EXPRESS-Defi-
nition nicht mit der USE- bzw. REFERENCE-Klausel verknüpft sind. Dieser Fakt vereinfacht die
Auswertung von Regeln zur referentiellen Integrität. Wir sollten uns aber darüber im klaren
sein, daß die Zugehörigkeit von Entity-Instanzen zu Schema Instances nicht an der Schnittstelle
sichtbar ist, sondern nur eine logische Sichtweise darstellt. Abschließend sei bemerkt, daß die
Daten dieser Beispielanwendung in maximal vier Repositories abgespeichert werden können
(jedes Model in ein eigenes).

3.2.2 Manipulation von Daten

Für die Bearbeitung einzelner Objekte wird ein ausreichender Satz von Prozeduren definiert. So
kann beispielsweise ein Attribut mit den Operationen Get bzw. Put Attribute gelesen oder
verändert, oder ein Entity mittels Copy bzw. Delete Application Instance kopiert oder
gelöscht werden. Auch Funktionen für die Abfrage der zugrundeliegenden Schemata, Typen,
Models oder Schema Instances werden zur Verfügung gestellt. Eine von relationalen DBVS
gewohnte mengenorientierte Verarbeitung ist hingegen nur eingeschränkt über das SDAI
Query-Konstrukt [ISO98a] möglich. Dieses unterstützt relativ einfache Selektionsbedingungen
auf Attributwerten und läßt sich auf eine der folgenden vier Quellen anwenden: Aggregate,

Schema Instance „Produkt“

Schema Instance „Produzent“

Motor 1 Reifensatz 1 Karosserie 1

Mercedes 190 D

Daimler

Ulm

Egon Müller Erika Müller

Audi 80 Audi

Ingoldstadt
Motor 2 Karosserie 2

Kuno Meier Karin Meier

Entity Instance Model Schema Instance Referenz

65

Model, Schema Instances oder Repositories. Dabei gibt es allerdings einige Einschränkungen,
so daß sich die Mächtigkeit z.B. nur schwer mit der von SQL vergleichen läßt. Auf jeden Fall
sollte das SDAI Query-Konstrukt nicht mit der in EXPRESS enthaltenen Standard-Funktion
QUERY [ISO94b, Kapitel 3.1.4] verwechselt werden!

3.2.3 Sessions und Transaktionen

Mit Hilfe von Sessions wird ein globaler Kontext für Applikationen modelliert, ohne den keine
Operationen möglich sind. In ihm werden alle verfügbaren Repositories und Schema Instances
vermerkt sowie der Zustand von Models, Transaktionen und Repositories gespeichert. Zu einem
Zeitpunkt kann allerdings immer nur eine Session je Applikation geöffnet sein. Innerhalb dieser
läßt sich dann maximal eine Transaktion starten. Dabei ist jedoch zu erwähnen, daß die SDAI-
Spezifikation drei Ebenen für die Unterstützung von Transaktionen definiert. Für jede Imple-
mentierung muß dann angegeben werden, welche dieser Ebenen realisiert wird (siehe auch
Kapitel 3.2.7). Im einfachsten Fall gibt es überhaupt keine Unterstützung einer transaktionsori-
entierten Verarbeitung (Ebene 1). Einfache Save- und Undo-Operationen bietet Ebene 2. Diese
Befehle beziehen sich immer auf alle in einem Model enthaltenen Daten. Erst in Ebene 3 wird
der eigentliche Begriff von Transaktionen eingeführt. Leider erfüllt aber selbst dieser nicht die
Anforderungen des ACID-Konzeptes [HR83, GR93]. Lediglich die Atomizität (A) und Dauer-
haftigkeit (D) von Aktionen kann garantiert werden. Die Isolation (I) wird hier nicht durch die
Verwendung eines Synchronisationskonzeptes innerhalb von Transaktionen erreicht, sondern
durch den Einbenutzerbetrieb per Definition. Weiterhin wird die Konsistenz der Daten (C) nicht
automatisch durch das System, sondern nur auf explizite Anforderung der Applikation über-
prüft (siehe auch Kapitel 3.2.4). Die Auswertung aller definierten Regeln kann dabei (je nach
Anzahl der Schema Instances und Regeln) zu einer langen Befehlsfolge führen.

Nachdem wir den Einsatz von Transaktionen in verteilten Umgebungen für unverzichtbar hal-
ten, wollen wir uns in der vorliegenden Arbeit auf die Verwendung von Transaktionsebene 3
beschränken (auch wenn man selbst bei dieser kaum von eigentlichen Transaktionen gemäß
[HR83, GR93] sprechen kann). In Kapitel 3.2.3.1 diskutieren wir diesbezüglich einige Pro-
bleme, die bei einer möglichen Erweiterung zum Mehrbenutzerbetrieb entstehen.
Kapitel 3.2.3.2 präsentiert schließlich das für Transaktionsebene 3 spezifizierte Zustandsmo-
dell, das anhand eines kurzen Beispieles erläutert wird.

3.2.3.1 Synchronisation und Mehrbenutzerbetrieb

Obwohl das SDAI nur für den Einbenutzerbetrieb definiert ist, so wollen wir doch auf zu erwar-
tende Probleme in verteilten Umgebungen mit mehreren Anwendern eingehen. Zwar erlaubt das
SDAI (in Transaktionsebene 3) den Zugriff auf Daten erst nach dem expliziten Öffnen von Ses-
sions, Transaktionen und Models, es kann aber nicht von einer Sperrverwaltung im herkömm-
lichen Sinne gesprochen werden. Das explizite Schließen einzelner Models und Repositories
würde quasi die Freigabe von Sperren zu beliebigen Zeitpunkten ermöglichen. Dieser Umstand
führt aber im Mehrbenutzerbetrieb zu nicht mehr kontrollierbaren Anomalien. Nicht nur Phan-
tome, sondern auch lost-update und dirty-read wären die Folge [HR99]. Wünschenswert wäre

66

ein zweiphasiges Sperr- und Commit-Protokoll, mit dem auch verteilte Anwendungen realisiert
werden könnten. Eine SDAI-Implementierung für den Mehrbenutzerbetrieb sollte daher die
Freigabe von Sperren durch das Schließen von Models und Repositories implizit bis zum Ende
einer Transaktion verzögern.

Ein größeres Problem stellt die Behandlung von Deadlocks dar. Es gibt zwar eine Reihe von
Fehlermeldungen, diese besitzen aber bereits eine andere Semantik. Die Operation Start Read
Only Access (für ein Model) kann z.B. die Meldung TR_NEXS (Transaction does not exist),
TR_NAVL (Transaction not available), TR_EAB (Transaction ended abnormally) oder MX_NVLD
(SDAI Model access invalid) verursachen. Letztere zeigt aber eine Verletzung von Zugriffsrech-
ten an, während die erste auf das fehlende Öffnen einer Transaktion hinweist. TR_NAVL kann
auch nicht benutzt werden, da sie einen temporären Fehler anzeigt, Deadlocks aber endgültig
sind. Auch TR_EAB stellt nur eine bedingt brauchbare Alternative dar, da unter Umständen nicht
die ganze Transaktion zurückgesetzt werden muß. Häufig wird daher der allgemeine Fehlercode
SY_ERR (Underlying System Error) benutzt. Er zeigt der Applikation an, daß die letzte Opera-
tion aufgrund eines allgemeinen Systemfehlers nicht erfolgreich ausgeführt werden konnte.

3.2.3.2 Zustandsmodell für Transaktionsebene 3

Die SDAI-Spezifikation definiert für Transaktionsebene 3 ein Zustandsmodell, das durch
Abbildung 3.4 illustriert wird. In Beispiel 3.6 ist weiterhin eine mögliche Befehlsfolge inner-
halb einer SDAI-Session dargestellt. Dabei ist zu beachten, daß die Syntax einer Pseudo-Spra-
che entspricht und nicht im Standard spezifiziert ist. Für eine Erklärung von Transaktionsebene
2 sei auf die SDAI-Spezifikation selbst [ISO98a] oder [Sel96] verwiesen.

Abb. 3.4: Zustandsübergänge in der SDAI-Schnittstelle (Transaktionsebene 3)

No Session

Session

Transaction Started RO Transaction Started RW

RO Repository Open RW Repository Open

RO Model Started RO RW Model Started RO RW Model Started RW

1 2

3

4 5

6

7 8 9 10

11

12

13

14 15

16

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

Open Session

Close Session

Start Transaction RO Access

End Transaction RO And Abort/Commit

End Transaction RW And Abort/Commit

Start Transaction RW Access

Open Repository

Close Repository

Open Repository

Close Repository

Start RO

End RO

Start RO

End RO

15:

16:

End RW

Start RW

67

Allgemein gilt, daß in Transaktionsebene 3 nach dem Öffnen einer Session auch eine neue
Transaktion zu starten ist. Abhängig von deren Modus (read-only oder read-write) kann dann
der Zugriff auf einzelne Repositories und Models erlaubt oder beendet werden. Im read-write-
Modus durchgeführte Änderungen können wir mittels Commit bzw. Abort persistent machen
oder zurücksetzen. Ein Ende der Transaktion wird erst mit End Transaction Access And Commit
bzw. Abort eingeleitet. Vorher sollten wir aber alle geöffneten Repositories mittels Close Repos-
itory explizit schließen. Diese Operation scheitert, wenn noch Schreibzugriffe auf Models
erlaubt sind, diese also noch nicht explizit geschlossen wurden. Der Aufruf von Close Session
kann hingegen jederzeit erfolgen und verursacht das Rücksetzen aller Änderungen sowie das
Schließen aller Models, Repositories und der aktuellen Transaktion.

Beispiel 3.6: Mögliche Befehlsfolge innerhalb einer SDAI-Session (Transaktionsebene 3)

3.2.4 Auswertung von Regeln

Leider gilt für das SDAI, daß Regeln nur auf expliziten Wunsch der Applikation ausgewertet
werden. Der Standard definiert dafür Prozeduren für die Auswertung von globalen Regeln, ref-
erentieller Integrität und Eindeutigkeit (jeweils im Kontext einer Schema Instance, siehe auch
Kapitel 3.2.1) sowie Auswertung von INVERSE- und WHERE-Klauseln, Kardinalitätsrestrik-
tionen usw. (jeweils bzgl. einer einzigen Entity-Instanz). Lediglich der Typ von Objekten und
Daten wird (abhängig von der verwendeten Programmiersprache) bei der Zuweisung eines
Attributes überprüft.

current_session = Open_Session ();

current_ta = Start_Transaction_RW_Access (current_session);

Open_Repository (current_session, repository_1);
Start_RW (model_1);

... // Manipulation von Instanzen in model_1
// model_1 befindet sich in repository_1

End_RW (model_1);

Commit (current_ta);
// Die Änderung von model_1 wird persistent gemacht,
// aber: Die Transaktion current_ta läuft weiter !!!

Start_RW (model_2);
... // Manipulation von Instanzen in model_2

// model_2 befindet sich ebenfalls in repository_1
Close_Repository (repository_1);
// Die Operation scheitert, da noch Zugriffe auf model_2
// erlaubt sind. Es wird ein Fehlercode zurückgegeben.

End_RW (model_2);
Close_Repository (repository_1);

End_Transaction_Access_And_Abort (current_ta);
// Die Änderung von model_2 wird ignoriert,
// und die Transaktion current_ta wird beendet.
// Beachte: Die Änderungen in model_1 bleiben persistent !!!

Close_Session (current_session);

68

3.2.5 Early und Late Binding

Die in der SDAI-Spezifikation benutzten Begriffe Early und Late Binding sind leider etwas irre-
führend. Sie haben nämlich nichts mit dem Bindezeitpunkt von Programmen (im Sinne eines
Programmiersprachen-Compiler) zu tun. Sie beziehen sich vielmehr auf die Abhängigkeit eines
Programmes vom jeweiligen EXPRESS-Schema. Beim Early Binding wird das EXPRESS-
Schema direkt in die Struktur der Applikation eingebracht. Die Modellierung der Daten muß
also beim Erstellen des Programms bekannt sein und darf sich dann auch nicht mehr ändern.
Somit sind in dieser Applikation auch keine Zugriffe auf die Metadaten (SDAI Dictionary Data)
nötig. Im Gegensatz dazu werden Anwendungsprogramme mit Late Binding in einer vom
EXPRESS-Schema unabhängigen Form geschrieben. Sie greifen erst während der Laufzeit auf
die Metadaten zu, können diese allerdings nicht verändern. Die Manipulation von Daten erfolgt
in diesem Fall über generische Funktionen, denen neben dem eigentlichen Wert auch dessen
Typ übergeben werden muß.

3.2.6 Sprachanbindungen

Wir haben in der Einleitung zu diesem Kapitel bereits erwähnt, daß Serie 22 von ISO 10303
[ISO98a] eine abstrakte Definition der Funktionalität des SDAI enthält. Daneben gibt es weitere
Dokumente mit Abbildungen auf die gebräuchlichsten Programmiersprachen (siehe auch
Tabelle 3.1 auf Seite 52). Hier sind Serie 23 [ISO98b] für C++ , Serie 24 [ISO96] für C, Serie
26 [ISO98c] für die Interface Definition Language (IDL) von CORBA [OMG96a] sowie Serie
27 [ISO99a] für Java zu nennen. Innerhalb dieser Dokumente werden alle in Serie 22 (abstrakt)
spezifizierten Operationen und Datenstrukturen sowie die in Serie 11 enthaltenen EXPRESS-
Datentypen auf Konstrukte der jeweiligen Programmiersprache abgebildet. Für den von uns ent-
wickelten Prototypen (siehe Kapitel 6) sind insbesondere die Dokumente für Java und IDL von
Interesse. Wir werden in den folgenden Kapiteln erkennen, daß die Abbildung auf IDL zu sog.
Operation Shipping (Kapitel 2.5.2) führt. Diese Form der Verarbeitung ist aber häufig nicht
erwünscht, so daß alternative Konzepte zu entwickeln sind (siehe Kapitel 5.4). Die Entwicklung
von Serie 27 (Java) wurde hingegen im Rahmen dieser Arbeit aktiv mitgestaltet. Die zugrunde-
liegenden Konzepte entsprechen somit im wesentlichen unseren Anforderungen und Ergebnis-
sen. Eine detaillierte Diskussion von JavaSDAI befindet sich in Kapitel 6.

Tabelle 3.2: Mögliche Implementierungsklassen einer SDAI-Implementierung

Implementierungsklasse 1 2 3 4 5

Ebene für Transaktionen 1 2 3 3 3

Ebene für Regeln und abgeleitete Attribute 1 2 2 3 4

Ebene für Fehlermeldungen 1 2 2 2 2

Ebene für Namensräume 1 1 1 1 2

Ebene für Interoperabilität 1 1 2 2 2

69

3.2.7 Implementierungsklassen

Obwohl SDAI eine genormte Standard-Schnittstelle darstellt, so kann es für einige Implemen-
tierungen sinnvoll sein, nur einen Teil der beschriebenen Funktionalität zu benutzen bzw. anzu-
bieten. Aus diesem Grund werden in Kapitel 13 von [ISO98a] mehrere Implementierungsklas-
sen beschrieben, die jeweils eine Untermenge des Standards darstellen (siehe Tabelle 3.2). Sie
werden durch verschiedene Ebenen der Unterstützung von Transaktionen, Regeln, Sessions,
Scopes und Interoperabilität definiert, die in Tabelle 3.3 aufgeführt sind.

Tabelle 3.3: Ebenen der Unterstützung für SDAI-Implementierungen

3.3 Standardisierte Schemata
Bereits in der Einleitung zu diesem Kapitel haben wir gesehen, daß der STEP-Standard auch
Datenmodelle für mehrere Einsatzbereiche des Produktdatenmanagements definiert. Dafür
werden einige Schemata spezifiziert, die sich in zwei Kategorien unterteilen lassen: anwen-
dungsunabhängige Schemata, die sog. Integrated Resources (IR), und anwendungsabhängige
Schemata, die sog. Application Protocols (AP). Mit Hilfe dieser Aufteilung soll erreicht wer-
den, daß allgemein benötigte Strukturen zur Beschreibung von Geometrie, Versionierung,
Zusammenbauten usw. nur in einem IR-Dokument enthalten sind und eben nicht mehrfach stan-
dardisiert werden. Die Modellierung der eigentlichen Anwendungsgebiete erfolgt dann durch

Kategorie Ebene Beschreibung

Transaktionen 1 keine Transaktionen

2 Save und Undo für Models

3 volle Unterstützung von Transaktionen, kein Save und Undo für Models

Auswertung von
Regeln und abge-
leiteten Attributen

1 jede Auswertung einer Regel hat das Ergebnis UNKNOWN

2 Unterstützung einfacher Regeln, keine Auswertung von globalen Regeln und
WHERE-Klauseln

3 wie 2, zusätzlich globale Regeln und WHERE-Klauseln ohne Unteranfragen und
selbst definierte Funktionen

4 komplette Unterstützung aller Regeln

Archivierung von
Fehlermeldungen

1 keine Archivierung

2 Fehlermeldungen innerhalb von Sessions werden gespeichert

Namensräume
(Scopes)

1 keine Unterstützung

2 Namensräume werden unterstützt

Interoperabilität 1 keine Unterstützung

2 Unterstützung von Interoperabilität zwischen Entity-Instanzen, die auf
unterschiedlichen Schemata basieren

70

jeweils ein AP-Dokument, das die Schemata der IR-Dokumente quasi als Bausteine benutzt.
Als Beispiel sei hier das AP 214 [ISO99b] genannt, mit dem sich der Produktlebenszyklus in
der Automobilindustrie dokumentieren läßt.

An der Erstellung eines Application Protocols sind in der Regel zahlreiche Anwender beteiligt,
die wesentlich zur Vollständigkeit und späteren Akzeptanz der Dokumente beitragen. In der
endgültigen Fassung eines AP sind schließlich alle definierten Objekte (Entities) in dreifacher
Ausführung spezifiziert: als EXPRESS-G-Diagramm (einer grafischen Repräsentation des
EXPRESS-Schemas), als textuelle EXPRESS-Definition (da sich nicht alle EXPRESS-Kon-
strukte, wie z.B. Regeln, durch EXPRESS-G visualisieren lassen) und als umgangssprachliche
Beschreibung (um die Semantik und Bedeutung einzelner Attribute und Beziehungen näher zu
erläutern).

Wie schon zuvor erwähnt, werden wir uns in den folgenden Kapiteln mit einer generischen
Datenversorgung für beliebige EXPRESS-basierte Daten beschäftigen. Dementsprechend sind
die IR- und AP-Dokumente nur von geringem Interesse für die vorliegende Arbeit.

3.4 Zusammenfassung
In diesem Kapitel haben wir eine Einführung in den ISO-Standard 10303 (STEP) gegeben, des-
sen primäres Einsatzgebiet im Bereich des Austausches von Produktdaten zu sehen ist. Dafür
gibt es eine Reihe anwendungsspezifischer Schemata (Application Protocols und Integrated
Resources), die mit der ebenfalls im Standard enthaltenen, strukturell objektorientierten Daten-
modellierungssprache EXPRESS definiert wurden. Für den einheitlichen Zugriff auf die Daten
steht außerdem das STEP Data Access Interface (SDAI) zur Verfügung. Wir haben weiterhin
erkannt, daß EXPRESS eine sehr mächtige Sprache ist, die z.B. weit über die Modellierungs-
konzepte einer objektorientierten Programmiersprache wie C++ hinaus geht (so gibt es z.B. drei
verschiedene Formen von Vererbung, abgeleitete Attribute, Regeln usw). Es bietet sich daher
an, EXPRESS auch zur Modellierung außerhalb des Produktdatenmanagements zu benutzen. In
Verbindung mit dem SDAI steht also ein standardisierter Mechanismus für eine allgemeine
Datenversorgung zur Verfügung. Leider realisiert das SDAI aber nur einen navigierenden
Zugriff sowie ein rudimentäres Transaktionsmodell, das nicht dem ACID-Konzept entspricht.
Eine Überprüfung der Praxistauglichkeit ist somit nötig. So werden wir in Kapitel 5 erkennen,
daß die standardisierte Abbildung des SDAI auf die IDL von CORBA im allgemeinen zu reinem
Operation Shipping (Kapitel 2.5.2) und einer unzureichenden Leistung führt. In Kapitel 6 stel-
len wir deshalb einen Prototypen vor, mit dem verschiedene Techniken der Datenversorgung
über ein in Java implementiertes SDAI integriert und bewertet werden. Die gewonnenen Ergeb-
nisse sind bereits in den Standardisierungsprozeß eingeflossen und damit auch Bestandteil der
Abbildung des SDAI auf die Programmiersprache Java [ISO99a].

71

Kapitel 4
444

Der CORBA-Standard

Bereits in der Einleitung sowie bei der Diskussion einiger Grundlagen in Kapitel 2 haben wir
die Verwendung von Komponenten motiviert. Wir haben gleichzeitig erkannt, daß wir dafür
sowohl ein geeignetes Komponentenmodell (Kapitel 2.1) als auch eine passende Infrastruktur
(sog. Middleware, Kapitel 2.4) benötigen. Dabei erschien uns CORBA (Common Object
Request Broker Architecture) aus einer oberflächlichen Betrachtung der realisierten Konzepte
bereits als am besten geeignet. An dieser Stelle wollen wir nun einen genaueren Blick auf den
Standard werfen und seine Stärken, aber auch seine Schwächen diskutieren.

Zuständig für die Standardisierung von CORBA ist die Object Management Group (OMG), ein
Zusammenschluß führender Software-Firmen. Sie begann 1989 ihre Arbeit mit dem Ziel, die
Komplexität und die damit verbundenen Kosten für die Entwicklung und Wartung von Software
zu reduzieren. Der Einsatz objektorientierter Konzepte erschien den Mitgliedern dabei von
Anfang an am geeignetsten. Dementsprechend wurde die Object Management Architecture
(OMA) definiert, eine Architektur für verteilte Objekte in heterogenen Umgebungen. Durch den
Einsatz wohldefinierter Schnittstellen sollte die Entwicklung modularer, gekapselter und damit
interoperabler, portabler und wiederverwendbarer Software ermöglicht werden. Obwohl die
OMG den Begriff von Komponenten nicht explizit verwendet, so lassen sich doch viele der von
uns für Komponentenmodelle geforderten Eigenschaften in der Zielsetzung der OMA wieder-
finden. Eine sehr gute Beschreibung der OMA und des zugrundeliegenden Objektmodells
befindet sich in [OMG97]. Im folgenden wollen wir kurz auf die wesentlichen Bestandteile ein-
gehen.

Zur Definition der Schnittstellen von Objekten wurde zuerst einmal eine eigene Interface Defi-
nition Language (IDL) entwickelt. Der Umfang dieser Sprache wird im wesentlichen durch das
der OMA zugrundeliegende Objektmodell bestimmt: Objekte sind identifizierbar und geka-
pselt. Sie bieten Dienstleistungen bzw. Operationen für andere Objekte an. Sowohl dieses
Objektmodell als auch IDL selbst werden wir noch genauer in Kapitel 4.1 betrachten.

Aufbauend auf dem Objektmodell wurde von der OMG das OMA-Referenzmodell definiert
(siehe Abb. 4.1). Das Herzstück dieser Architektur bildet der Object Request Broker (ORB). Er
realisiert die Infrastruktur (häufig auch Objekt-Bus genannt) für eine fehlertolerante und orts-
transparente Verarbeitung. Dabei abstrahiert er vollständig von der von den einzelnen Objekten
konkret verwendeten Hardware, Betriebssystemen oder Programmiersprachen. Neben dieser
generischen Komponente gibt es noch standardisierte Abbildungen von IDL auf die Program-

72

miersprachen C, C++, Java, Smalltalk, Ada und Cobol. Anhand dieser werden von einem IDL-
Compiler applikationsspezifische Ergänzungen für das Laufzeitsystem des ORB generiert (wie
etwa Stub-Objekte für den Client oder Routinen zur Parameterkonvertierung zwischen unter-
schiedlichen Plattformen). Die Spezifikation des ORB bildet zusammen mit den einzelnen
Sprachanbindungen die eigentliche Kern-Architektur von CORBA. Die derzeit aktuelle Version
ist CORBA 2.2 [OMG98f]. Sie wird in Kapitel 4.2 beschrieben.

Abb. 4.1: Der Aufbau des OMA-Referenzmodelles

Zur Bildung eines höherwertigen Komponentenmodelles, das gleichzeitig die mehrfache Imple-
mentierung von Funktionalität vermeiden soll, gibt es noch eine Reihe weiterer Bausteine.
Zuerst sind hier die Object Services zu nennen (siehe auch Kapitel 4.3). Sie realisieren grund-
legende Dienstleistungen, die mehr oder weniger von jeder Anwendung benötigt werden. Dem-
entsprechend sollten sie eigentlich von jedem CORBA-System zur Verfügung gestellt werden.
Beispiele sind der Naming und Trader Service (analog zum Telefonbuch und den “Gelben Sei-
ten”), der Event Service (asynchrone Kommunikation und/oder Message Queues) sowie der
Transaction, Synchronization und Query Service.

Ergänzend zu den Object Services gibt es die Common Facilities. Sie bieten wiederum grund-
legende Dienstleistungen an, diesmal aber speziell für einen bestimmten Anwendungsbereich.
Beispiele sind der PDM Enabler, der rudimentäre Funktionen für das Produktdatenmanagement
(PDM) bereitstellt, oder die Workflow Management Facility zur Modellierung prozeßorientier-
ter Abläufe.

Object Services und Common Facilities werden schließlich zur Definition sog. Domain Inter-
faces genutzt, die Schnittstellen zu branchenspezifischer Software auf einem relativ hohen
Niveau bereitstellen. Die angebotene Funktionalität soll direkt von den Anwendungssystemen
genutzt werden können. In einer Mehrebenenarchitektur (Kap. 2.3.1) lassen sich die Domain
Interfaces dann über die Application Interfaces der Präsentationsschicht zur Verfügung stellen.

Mit Ausnahme der Application Interfaces werden die Schnittstellen aller Bestandteile der OMA
bzw. CORBA von der OMG standardisiert. Auf diese Weise soll die Interoperabilität und Aus-
tauschbarkeit von Komponenten erreicht werden. Aufgrund der Modularität der gesamten

Object Request Broker

Application Interfaces Domain Interfaces Common Facilities

Object Services

Applikationsspezifische
Schnittstellen (nicht standardisiert)

Schnittstellen für bestimmte
Anwendungsbereiche

Anwendungsübergreifende
Schnittstellen

Schnittstellen für grundlegende Basisfunktionalität

73

Architektur stellt dieser Ansatz gleichzeitig einen Investitionsschutz für Unternehmen dar: Es
muß nie das gesamte System, sondern lediglich ein einzelnes (z.B. fehleranfälliges oder lei-
stungsschwaches) Modul ausgetauscht werden. Könnte man bei einer Diskussion des ORB
noch auf die Idee kommen, daß CORBA lediglich einen objektorientierten RPC (siehe
Kapitel 2.4.1), also ein reines Middleware-System, realisiert, so muß man spätestens an dieser
Stelle erkennen, daß die OMG gleichzeitig ein weitreichendes Komponentenmodell definiert
hat. Leider ist die Standardisierung aber bei weitem noch nicht abgeschlossen. Während sich
die Kern-Architektur und die Object Services als überwiegend stabil bezeichnen lassen (natür-
lich gibt es ab und zu sinnvolle Erweiterungen), so sind im Bereich der Common Facilities und
Domain Interfaces überhaupt noch keine standardisierten Lösungen verabschiedet. Zwar wer-
den z.B. bereits erste Entwürfe der PDM Enabler Facility praktisch evaluiert, eine endgültige
Lösung scheint aber noch nicht in Sicht zu sein. Im Bereich der Domain Interfaces sind noch
gar keine Vorschläge verfügbar. Wir werden uns in dieser Arbeit daher auf eine Diskussion der
Kern-Architektur sowie ausgewählter Object Services beschränken. Anhand dieser lassen sich
bereits die Stärken und Schwächen von CORBA in datenintensiven Umgebungen erkennen.

Ausgehend von Einführungen in IDL (Kap. 4.1), die Kern-Architektur von CORBA (Kap. 4.2)
und einige Object Services (Kap. 4.3) präsentieren wir in Kapitel 4.4 ein Beispiel zur Illustra-
tion der Modellierung und Programmierung in CORBA-Umgebungen. Im Anschluß daran leitet
Kapitel 4.5 zum eigentlichen Thema dieser Arbeit über: Wie lassen sich Daten in IDL model-
lieren, so daß auch in datenintensiven Anwendungen eine ausreichende Leistung erzielt wird?
Leider müssen wir erkennen, daß an dieser Stelle eine Reihe Probleme entstehen, für die wir im
Rahmen der verbleibenden Arbeit Lösungen erarbeiten wollen. In Kapitel 4.6 stellen wir
anschließend kurz die von uns eingesetzten CORBA-Systeme vor. Nachdem wir immer wieder
von Komponenten und komponentenbasierter Architekturen sprechen, wollen wir in Kapitel 4.7
noch einen Blick auf die derzeit in der Entwicklung befindliche Business Object Component
Architecture (BOCA) und die CORBA Components werfen. Letztere definieren allerdings
weniger ein Komponentenmodell, sondern eher implementierungnahe Details zur Konfigura-
tion von Software-Paketen und ihrer Installation. In Kapitel 4.8 vergleichen wir dann CORBA
mit anderen Middleware-Standards und Produkten wie DCE, (D)COM, OLE und (D)SOM.
Abschließend fassen wir die erzielten Ergebnisse kurz zusammen (Kapitel 4.9).

Für eine weitergehende Beschreibung der Kern-Architektur von CORBA, der Objects Services
und der Common Facilities sei auf [Si96] oder [OHE96] verwiesen. Eine gute Einführung in die
Programmierung mit dem CORBA-System Orbix von IONA befindet sich z.B. in [Red96].

4.1 Das Objektmodell und die Modellierungssprache IDL
Grundlage der OMA ist das bereits erwähnte Objektmodell der OMG. Es ist eng verzahnt mit
der ebenfalls von der OMG standardisierten Interface Definition Language (IDL). Diese stellt
eine Reihe von Basistypen und Templates zur Verfügung, mit denen sich komplexe Typen wie
Strukturen oder Aggregate definieren lassen. Sowohl benutzerdefinierte als auch Basistypen
können schließlich zur Modellierung der Schnittstellen von Objekten benutzt werden.

74

4.1.1 Das Objektmodell

Objekte sind identifizierbar und gekapselt. Sie bieten Dienstleistungen bzw. Operationen für
andere Objekte an. Ein Objekt (Client) kann eine Dienstleistung in Anspruch nehmen, indem es
eine Nachricht (Request) an das anbietende Objekt (Server) schickt. Dabei können Parameter
und ein optionaler Kontext übergeben werden. Nach Abarbeitung des Auftrages wird im allge-
meinen ein Ergebnis zurückgegeben. In diesem Fall erfolgt die Verarbeitung synchron, d.h. der
Client ist bis zum Erhalt des Ergebnisses blockiert. Tritt während der Bearbeitung ein Fehler
auf, so wird eine Exception an das aufrufende Objekt zurückgegeben. Das Ergebnis der Opera-
tion ist in diesem Fall undefiniert.

Wurde für eine Operation kein Ergebnistyp definiert, so wird der Client nicht blockiert. Aller-
dings erhält er auch keine Benachrichtigung über den Ausgang oder Erfolg einer Operation. Es
können in diesem Fall auch keine Exceptions spezifiziert oder ausgelöst werden. Man kann an
dieser Stelle also nicht von asynchroner Kommunikation sprechen. Dementsprechend erkennen
wir auch keine sinnvollen Einsatzgebiete dieser Variante.

CORBA-Objekte werden mit Hilfe der interface-Klausel von IDL modelliert (siehe
Kapitel 4.1.4). Ihr Zustand (bzw. ein Teil davon) läßt sich an der Schnittstelle in Form von Attri-
buten zur Verfügung stellen. Dienstleistungen bzw. Operationen werden in Form von Methoden
deklariert. Jede Verwendung des Schlüsselwortes interface führt zur Definition eines neuen
(Objekt-) Typs, der zur Deklaration von Parametern oder Rückgabewerten von Methoden
benutzt werden kann (sowohl innerhalb der eigenen Definition als auch für andere Schnittstel-
len).

4.1.2 Basis-Typen (Basic Types)

IDL enthält analog zu den meisten Programmiersprachen einen umfangreichen Satz an Basis-
typen. So gibt es zur Darstellung von Zahlen und Zeichen(ketten) Typen für 16-Bit und 32-Bit
Kardinalzahlen mit oder ohne Vorzeichen in 2’er-Komplement-Darstellung (short, long,
ushort, ulong), 32-Bit und 64-Bit IEEE-Fließkommazahlen (float, double), durch 8 Bit
kodierte Zeichen (char) und daraus aufgebaute Zeichenketten mit fester oder variabler Länge
(string). Daneben gibt es den Typ boolean mit den Werten TRUE und FALSE, sowie einen opa-
quen 8-Bit Typ octet, der auch bei der Übertragung zwischen heterogenen Architekturen
garantiert keiner Konvertierung unterliegt. Benutzerdefinierte Aufzählungstypen lassen sich
über das Schlüsselwort enum definieren (dabei wird die Ordnung der Elemente übernommen).

Eine Besonderheit von IDL ist der Typ any, der zur Laufzeit den Wert eines beliebigen Typs
annehmen kann. Er besteht aus einem Diskriminator sowie dem eigentlichen Wert. Dies unter-
scheidet ihn z.B. vom Typ void der Programmiersprache C++, der lediglich den Wert selbst ent-
hält (aber eben keinerlei Typinformation).

Mit der Version 2.1 des CORBA-Standards wurde weiterhin der Typ wchar (Wide Character)
in die Sprache aufgenommen. Er ist für Zeichensätze gedacht, deren Repräsentation mehr als 8
Bit je Zeichen in Anspruch nimmt. Zur Bildung von Zeichenketten steht darüber hinaus der Typ
wstring zur Verfügung.

75

4.1.3 Zusammengesetzte Typen (Constructed Types) und Namensräume

Mit Hilfe der gerade vorgestellten Basis-Typen lassen sich eine Reihe zusammengesetzter
Typen definieren. Als Typkonstruktoren stehen dafür Strukturen bzw. Records (struct), sog.
variante Records (union) sowie Kollektionstypen (sequence und array) zur Verfügung. Ihre
Definition kann mit der module-Klausel in eigene, unter Umständen geschachtelte Namens-
räume eingebettet werden. Die Verwendung der Schlüsselworte ist in Beispiel 4.1 veranschau-
licht. Kommentare werden in IDL mittels „//“ eingeleitet.

Beispiel 4.1: Definition zusammengesetzter Typen in IDL

Strukturen (struct) sind eine Menge von Attributen, auf die alle einzeln zugegriffen werden
kann. Eine union kann hingegen immer nur zwei Werte enthalten: Den Diskriminator sowie den
korrespondierenden Attributwert. Eine Instanz des Typs SeatProp aus Beispiel 4.1 enthält ent-
weder einen Wert für das Attribut cpt_no (wenn der Diskriminator den Wert Compartment hat)
oder einen Wert für das Attribut table (wenn der Diskriminator den Wert Open_plan hat).

Ein array ist eine ein- oder mehrdimensionale, geordnete Liste mit fester Länge in jeder
Dimension. Eine sequence ist eine eindimensionale, geordnete Liste mit variabler Länge.
Allerdings läßt sich die maximale Länge in der Typdefinition angeben (z.B.
sequence<short, 10> für eine sequence mit maximal 10 Einträgen vom Typ short).

4.1.4 Objekte und Objektreferenzen

Neben den Basistypen und zusammengesetzten Typen enthält die OMA eine weitere Kategorie:
Objekttypen bzw. Objektreferenzen. Neue Objekttypen werden durch das Schlüsselwort
interface definiert (genau genommen dürfte man eigentlich nur von einer Deklaration spre-
chen, da lediglich die Schnittstelle und eben nicht die Implementierung von Objekten beschrie-
ben wird). Verwendet man diesen Typ innerhalb der gleichen oder einer anderen Typdefinition,
so spricht man an dieser Stelle von einer Objektreferenz. Nachdem wir in Kapitel 4.1.1 bereits
auf die Semantik des Objektmodells eingegangen sind, wollen wir hier einen genaueren Blick

module TRS {
// TRS == Train Reservation System

enum Category { Compartment,
Open_plan};

struct ResData {
short day, month, year;
short dept_station,

dest_station; // coded
Category cat_wish;
boolean smoker;

};

typedef sequence<ResData> ResDataSeq;
typedef ResData[10] ResDataArray;

union SeatProp switch (Category) {
case Compartment: short cpt_no;
case Open_plan: boolean table;

};

struct Seat {
short coach_no, seat_no;
SeatProp properties;
any additional_info;

};

// etc ...

}; // end of module

76

auf die Definition von Objekttypen werfen. Im Prinzip lassen sich drei Blöcke charakterisieren:
Der Kopf mit Angabe von Vererbungsbeziehungen, die Auflistung der sichtbaren Attribute
sowie die Deklaration der Methoden. Im folgenden veranschaulichen wir die einzelnen Aspekte
anhand von Beispiel 4.2. Grundlage bilden dabei die Datentypen aus Beispiel 4.1.

Beispiel 4.2: Definition von Schnittstellen in IDL (basiert auf Beispiel 4.1)

Der Kopf eines Objekttyps besteht aus dem Namen (Reservation_Service) sowie einer Liste
von Objekttypen, von denen alle Attribute und Methoden geerbt werden sollen (IDL unterstützt
mehrfache Vererbung). Im Beispiel haben wir drei Vererbungsbeziehungen verwendet, die
angeben, daß der neue Typ einen Push Supplier des CORBA Event Service (siehe Kap. 4.3.1)
sowie eine Transactional Resource des CORBA Transaction Service (eine Kombination aus
CosTransaction::TransactionalObject und CosTransaction::Resource, siehe
Kapitel 4.3.4) darstellt. An dieser Stelle ist zu betonen, daß lediglich die Signatur (also die
Schnittstelle) von Methoden und Attributen geerbt wird, nicht die Implementierung. Insbeson-
dere stellen Implementierungen der CORBA Services (COSS) im allgemeinen keine Implemen-
tierung der o.g. Schnittstellen bereit. Diese sollen vielmehr von Objekten wie dem hier spezifi-
zierten Reservation_Service implementiert werden (siehe auch Kapitel 4.3).

Die Angabe von Attributen eines Objekttyps erfolgt mit dem Schlüsselwort attribute. Ihm
folgen der zugrundeliegende Typ (short) sowie der Name (status_flag). Soll ein Attribut wie
in unserem Fall lediglich gelesen, aber nicht geschrieben werden können, so bietet sich die Ver-
wendung des Schlüsselwortes readonly an.

Die Spezifikation der Signatur von Methoden ist komplexer und läßt sich wie folgt beschreiben:

[oneway] <op_type_spec> <identifier> (<param_1>, ..., <param_L>)
[raises (<exception_1>, .., <exception_M>)]
[context(<name_1>, ..., <name_N>)];

Jede Deklaration besteht mindestens aus der Angabe des Namens der Methode (identifier),
dem Ergebnistyp (op_type_spec) sowie einer Liste von Parametern (param_X). Für jeden Para-
meter wird die Art bzw. der Datenfluß (in, out oder inout), der Typ und der Name festgelegt.

module TRS {
// TRS == Train Reservation System
// Beachte: IDL-Module lassen sich erneut öffnen (z.B. in anderen IDL-Dateien).

exception NoSeatAvailable {CosEventChannelAdmin::ProxyPushSupplier waitList;};
exception TrainNotAvailable {string explanation;};

interface Reservation_Service : CosEventComm::PushSupplier,
CosTransaction::TransactionalObject,
CosTransaction::Resource {

// attribute declaration:
readonly attribute short status_flag; // kodiert

// method declaration:
Seat ReserveTrain (in long train_no, in ResData data)

raises (NoSeatAvailable, TrainNotAvailable);
};

}; // end of module

77

In Beispiel 4.2 haben wir eine Methode mit dem Namen ReserveTrain, dem Ergebnistyp Seat
und zwei Parametern train_no vom Typ long und data vom Typ ResData deklariert. Beide
Parameter sind reine Eingabeparameter, d.h. sie werden lediglich vom Client zum Server über-
tragen (aber nicht mehr zurück). Hätten wir das Schlüsselwort inout verwendet, so würden
mögliche Änderungen dieser Daten (durch den Server) nach Abarbeitung der Methode zusam-
men mit dem Ergebnis zurück zum Client übertragen. Mit Hilfe von out-Parametern lassen sich
quasi mehrere Ergebnisse einer Methode spezifizieren. Sie werden nur vom Server zum Client,
aber eben nicht initial vom Client zum Server übertragen.

Optional läßt sich in IDL noch eine Liste von benutzerdefinierten Exceptions spezifizieren, über
die der Client auf bestimmte Fehlersituationen bei der Abarbeitung der Methode reagieren
kann. CORBA definiert bereits eine Reihe von System Exceptions, jedoch sollte man für vorher-
sehbare Fehlerfälle immer eigene Exceptions definieren. Diese können dann auch Daten zur
Beschreibung der Ausnahmesituation enthalten (z.B. TrainNotAvailable mit dem Attribut
explanation). Exceptions werden außerhalb des Objekttyps spezifiziert und sind damit für
mehrere Typen verwendbar. Bei jeder Methode muß man aber angeben, welche Exceptions
potentiell auftreten können.

Neben Exceptions kann man bei der Deklaration von Methoden noch Kontexte definieren. Über
diese wird beim Aufruf einer Methode der aktuelle Zustand der Client-Umgebung zum Server
übertragen. Diese Möglichkeit ist für die weitere Arbeit aber nicht von Interesse, so daß wir sie
hier nicht weiter behandeln wollen. Der interessierte Leser sei dafür auf [OMG98f] verwiesen.

Von großer Bedeutung ist hingegen die resultierende Art sowie die Qualität der Kommunikation
beim Aufruf einer Methode. Die vorliegende Deklaration von ReserveTrain führt zu einer syn-
chronen Kommunikation: Der Client ist (analog zu einem lokalen Prozeduraufruf) während der
Abarbeitung der Methode blockiert. Das CORBA-System garantiert dabei, daß die Methode
entweder genau einmal erfolgreich ausgeführt oder eine Exception ausgelöst wird. Benutzt man
hingegen das optionale Schlüsselwort oneway, so wird lediglich der Aufruf der jeweiligen
Methode initiiert. Der Client blockiert nicht, er erhält aber auch keine weitere Nachricht über
den Ausgang des Aufrufes. Dementsprechend lassen sich in diesem Fall auch keine out- oder
inout-Parameter, ein Ergebnis oder Exceptions spezifizieren (der Ergebnistyp muß void sein).
Man kann hier also nicht von asynchroner Kommunikation sprechen! Allerdings befindet sich
derzeit das sog. CORBA Messaging in der Entwicklung, das in zukünftigen Versionen des
CORBA-Standards auch asynchrone Kommunikationsmodi unterstützen soll [OMG98e].

Abschließend wollen wir noch einen generellen Blick auf die Semantik von Parametern und
Ergebnissen werfen. Bei Objekttypen werden bei jedem nötigen Kommunikationsschritt ledig-
lich Referenzen auf das eigentliche Objekt kopiert (also der Client Stub). Sender und Empfänger
arbeiten somit immer auf dem identischen Objekt. Die Werte von Basistypen und zusammen-
gesetzten Typen werden hingegen immer kopiert, d.h. sowohl der Sender als auch der Empfän-
ger haben nach der Kommunikation eine eigene Kopie, die sie unabhängig voneinander modi-
fizieren können. Nun ist aber noch zu beachten, daß z.B. inout-Parameter nur bei synchroner
Kommunikation möglich sind. Dementsprechend ist der Client während des Methodenaufrufes
blockiert und kann in dieser Zeitspanne seine Kopie der Parameter nicht modifizieren. Letztend-
lich ergeben sich die in Tabelle 4.1 dargestellten Möglichkeiten. Für Objekttypen gilt dabei fol-

78

gendes: Wird ein Objekttyp als in- oder out-Parameter einer Methode benutzt, so wird zur
Laufzeit jeweils eine Kopie der Objektreferenz übertragen. Beide Referenzen zeigen aber auf
das selbe Objekt, d.h. wir erhalten eine Call-By-Reference-Semantik im Bezug auf das Objekt
(Client und Server referenzieren das selbe Objekt). Bei inout-Parametern wird zwar auch eine
Kopie der Objektreferenz übertragen, zum Ende der Methode wird deren Inhalt aber wieder
zurück kopiert. Somit erhalten wir eine Call-By-Reference-Semantik im Bezug auf die Objekt-
referenz (Client und Server benutzen die selbe Objektreferenz). Im Gegensatz zum ersten Fall
könnte die Referenz nach dem Methodenaufruf z.B. auf ein ganz anderes Objekt zeigen.

Tabelle 4.1: Semantik von Parametern in IDL

Derzeit arbeitet die OMG weiterhin an dem neuem IDL-Schlüsselwort value [OMG98d]. Mit
ihm soll sich eine zweite Kategorie von Objekttypen definieren lassen, die dann der Call-By-
Value-Semantik unterliegen. Dieser Vorschlag ist noch nicht in der aktuellen CORBA-Version
enthalten, wir werden ihn aber in unsere Diskussion über Modellierung (Kap. 4.5) einbeziehen.

4.2 Die Kern-Architektur von CORBA
Häufig wird CORBA bzw. der zugrundeliegende ORB als Steckleiste bezeichnet, in die man die
Server (sog. Services) und Clients beliebig einklinken kann. Diese Sichtweise betont die orts-
transparente Verarbeitung des Systems, dessen Architektur in Abbildung 4.2 veranschaulicht
ist. Neben den dort dargestellten Komponenten gibt es noch einen IDL-Compiler, der die IDL-
Definitionen in Konstrukte der jeweils gewünschten Programmiersprache übersetzt.

Die Basis-Komponente von CORBA ist der Kern des ORB (ORB Core), der für die Kommuni-
kation, die Konvertierung von Daten (z.B. Little Endian in Big Endian) sowie die Registrierung
und Lokalisierung von Objekten zuständig ist. Er kann dafür sowohl auf ein Interface Reposi-
tory, in dem alle Schnittstellen abgelegt sind, als auch auf ein Implementation Repository, das
Informationen über verfügbare Objekte bzw. Implementierungen enthält, zugreifen. Ein Teil
seiner Funktionalität wird über das ORB Interface allen Komponenten zur Verfügung gestellt.
Beispielsweise lassen sich Objektreferenzen in Strings konvertieren (und umgekehrt). Durch
Austauschen der Strings kann man initiale Verbindungen über ORB-Grenzen hinweg aufbauen.

Kategorie des Parametertyps Art Resultierende Semantik

Objekttyp bzw. Objektreferenz in, out Call-By-Reference (bezogen auf das eigentliche Objekt)

Objekttyp bzw. Objektreferenz inout Call-By-Reference (bezogen auf die Objektreferenz)

Basistyp oder Zusammengesetzter Typ in Call-By-Value (Client to Server)

Basistyp oder Zusammengesetzter Typ out Call-By-Value (Server to Client)

Basistyp oder Zusammengesetzter Typ inout Call-By-Reference
(sofern der Server seine Kopie nach der Abarbeitung der
Methode löscht)

79

Clients können zum Absenden ihrer Aufträge an den Server wahlweise die vom IDL-Compiler
erzeugten Stub-Prozeduren (IDL Stubs) benutzen oder über Funktionen des Dynamic Invoca-
tion Interface Schnittstellenbeschreibungen aus dem Interface Repository extrahieren und damit
zur Laufzeit einen Auftrag erzeugen. Dies wird häufig auch als Early bzw. Late Binding
bezeichnet. Zu jeder interface-Definition wird vom IDL-Compiler ein Skeleton erzeugt, das
die vom Kern übertragenen Daten entsprechend aufbereitet (z.B. Parameter-Instanzen erzeugt
und korrekt initialisiert). Alle Skeletons sind eingebettet in einen Objekt-Adapter, der die Kopp-
lung zum Kern bildet. Neben dieser Aufgabe sowie der Realisierung von Funktionen zur
Zugriffskontrolle ist der Adapter für die Aktivierung1 von Objekten zuständig.

Abb. 4.2: Die Kern-Architektur von CORBA

Im folgenden wollen wir noch einen genaueren Blick auf einzelne Aspekte werfen. In
Kapitel 4.2.1 betrachten wir zunächst die standardisierten Sprachanbindungen. Sie bilden die
Grundlage für den vom IDL-Compiler generierten Code (Stubs für den Client und Skeletons für
den Server). Anschließend illustrieren wir in Kapitel 4.2.2 die Verarbeitungsweise innerhalb des
ORB anhand eines kurzen Beispieles aus der Bruchrechnung. In Kapitel 4.2.3 widmen wir uns
dann den Objekt-Adaptern, die wesentlich die Leistung des Gesamtsystems beeinflussen. Wir
werden in den folgenden Kapiteln noch öfter auf sie Bezug nehmen. Kapitel 4.2.4 bezieht sich
schließlich auf die standardisierte Kommunikation von ORB zu ORB und die dadurch erreichte
Interoperabilität zwischen CORBA-Systemen unterschiedlicher Hersteller. Auf die Details des
ORB und Dynamic Invocation Interface sowie die Implementation und Interface Repositories
gehen wir nicht näher ein, da sie für uns unbedeutend sind (siehe statt dessen z.B. [OMG98f]).

4.2.1 Sprachanbindung, Stubs und Skeletons

Prinzipiell kann man sich eine Anbindung von CORBA an jede Sprache vorstellen, die über eine
ausreichende Unterstützung für die IDL-Datentypen, Namensräume und Kommunikationsme-
thoden verfügt. In CORBA 2.2 [OMG98f] ist die Abbildung auf die Programmiersprachen C,
C++, Java, Smalltalk, Ada und Cobol spezifiziert. Weitere Anbindungen sind denkbar, aber
gemäß den Informationen der OMG nicht geplant.

1. Ruft ein Client die Methode eines Servers (Objektes) auf, von dem gerade keine Instanz verfügbar ist, so kann das CORBA-
System unter Umständen einen neuen Server erzeugen und den aktuellen Auftrag an ihn weiterleiten.

gleiche Schnittstelle für alle ORB-Implementierungen
es gibt Stubs und Skeletons für jeden Objekt-Typ

es kann mehrere Objekt-Adapter geben
von der ORB-Implementierung abhängig

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Objekt-ImplementierungClient

IDL
Skeleton Objekt-

Adapter
Implementation

Repository
Interface

Repository

80

Gleichzeitig ist aber zu betonen, daß nicht jede Sprachanbindung unbedingt sinnvoll und prak-
tikabel ist. So stellt sich z.B. bereits bei der Kopplung zur Sprache C die Frage, ob die objekt-
orientierten Konzepte von IDL angemessen abgebildet werden. C enthält keine Klassen und
unterstützt damit nicht das Konzept der Vererbung. Dieses muß also durch redundante Defini-
tion von Attributen und Methoden nachgebildet werden (siehe Abb. 4.3).

Abb. 4.3: Transformation von IDL-Definitionen in die Sprache C

Passender erscheint die objektorientierte Programmiersprache C++. Die zugrundeliegenden
Konzepte stimmen im wesentlichen mit denen der IDL überein. So werden in IDL definierte
struct- und interface-Konstrukte jeweils auf eine eigene Klasse abgebildet (siehe Abb. 4.4).
Dabei wird insbesondere der Vererbungsmechanismus dieser Programmiersprache ausgenutzt.

Abb. 4.4: Transformation von IDL-Definitionen in die Sprache C++

Ähnliches gilt für die derzeit sehr populäre Sprache Java. Aufgrund der sehr strikten Definition
von Java ist die Abbildung von IDL-interfaces allerdings etwas komplizierter. Java unter-
scheidet bei Objekten (im Unterschied zu C++) zwischen Schnittstellen (interfaces) und
Implementierung bzw. Klassen (class). Für Schnittstellen wird multiple Vererbung unterstützt,
für Klassen nur einfache. Nachdem CORBA nur Schnittstellen definiert, bietet sich natürlich die
Abbildung von IDL-interfaces auf Java-interfaces an. Dieses wurde auch standardisiert.
Probleme entstehen nun aber bei der Spezifikation von statischen (static) Methoden der Client
Stubs, wie sie z.B. für CORBA-spezifische Cast-Operationen oder das Einfügen von Objekten
in eine Instanz des any-Typs benötigt werden. Schnittstellen können keine statischen Methoden
enthalten, so daß man gezwungen war sog. Helper Classes einzuführen. Weiterhin unterstützt
Java bei der Übergabe von Parametern nur Call-By-Value-Semantik (wiederum im Gegensatz

IDL to C Compiler

// IDL:
interface example1 {

void op1 ();
};
interface example2:example1 {

void op2 ();
};

// IDL:
interface example1 {

void op1 ();
};
interface example2:example1 {

void op2 ();
};

// C:
typedef CORBA_Object example1;
extern void example1_op1 ();

typedef CORBA_Object example2;
extern void example2_op1();
extern void example2_op2();

// C:
typedef CORBA_Object example1;
extern void example1_op1 ();

typedef CORBA_Object example2;
extern void example2_op1();
extern void example2_op2();

IDL to C++ Compiler

// IDL:
interface example1 {

void op1 ();
};
interface example2:example1 {

void op2 ();
};

// IDL:
interface example1 {

void op1 ();
};
interface example2:example1 {

void op2 ();
};

// C:
typedef CORBA_Object example1;
extern void example1_op1 ();

typedef CORBA_Object example2;
extern void example2_op1();
extern void example2_op2();

// C++:
class example1 {

void op1 ();
};
class example2:example1 {

void op2();
};

81

zu C++). Für Parameter, die in IDL als inout deklariert wurden, kann also nicht einfach der kor-
respondierende Java-Typ zur Erstellung des Java-interface verwendet werden. Aus diesem
Grunde wurde sog. Holder Classes eingeführt. Sie werden bei inout-Parametern als Basistyp
verwendet und können genau eine Instanz oder einen Wert aufnehmen bzw. kapseln. Letztend-
lich werden also bereits für den Java-Client für jedes IDL-interface zwei Java-Klassen und
eine Java-Schnittstelle generiert. Hingegen lassen sich IDL-Strukturen (struct) direkt auf
Java-Klassen und IDL-Aggregate auf Java-Arrays abbilden.

Trotzdem ist die Einführung der Abbildung auf Java sehr zu begrüßen. Aufgrund der Plattform-
unabhängigkeit der Sprache entsteht eine weitere Flexibilität bei der Entwicklung von Kompo-
nenten, die insbesondere in WWW- bzw. Inter/Intranet-basierten Umgebungen sehr hilfreich ist.
Wir werden diesen Aspekt im weiteren Verlauf dieser Arbeit noch häufiger betrachten. Im all-
gemeinen werden wir dabei Server, die sehr leistungsfähig und eher weniger portabel sein müs-
sen, in C++ und Clients, für die Portabilität und Internet-Tauglichkeit von Bedeutung ist, in Java
entwickeln.

4.2.2 Verarbeitungsszenario: Bruchrechnung

In diesem Abschnitt wollen wir nun die Kommunikationsfähigkeiten von CORBA mit einem
kurzen Beispiel aus der Mathematik veranschaulichen. Es gibt einen Server, der die Grundre-
chenarten für die Bruchrechnung realisiert, und Clients, die Aufträge an diesen schicken.
Beispiel 4.3 enthält die dafür erforderlichen Definitionen.

Beispiel 4.3: IDL-Definitionen für die Grundrechenarten der Bruchrechnung

Mit dem zum CORBA-System gehörenden Compiler werden die IDL-Konstrukte z.B. in Klas-
sen der Programmiersprache C++ übersetzt. Für jedes IDL interface (hier: Bruchrechnung)
gibt es in C++ jeweils zwei korrespondierende Klassen: Den Client Stub (die Instanzen sind
Objektreferenzen) sowie das Skeleton für die Implementierung des Server-Objektes. Strukturen
(hier: Bruch) werden hingegen nur auf eine einzige Klasse in C++ abgebildet. Diese wird
sowohl im Client als auch im Server verwendet.

Auszüge einer möglichen Realisierung des Clients sind in Bsp. 4.4 wiedergegeben. Wir benut-
zen dabei die vom IDL-Compiler erzeugten Stub-Prozeduren. Der Stub enthält eine statische
Methode _bind1, die zur Laufzeit eine gültige Objektreferenz auf ein Server-Objekt des Typs
Bruchrechnung zurückgibt. Existieren mehrere laufende Implementierungen des gewünschten

1. Diese Methode ist nicht im CORBA-Standard spezifiziert, sie entspricht der Realisierung in Orbix. Es bleibt jeder CORBA-
Implementierung überlassen, welche Funktionen sie zum Binden bzw. Lokalisieren von Objekten anbietet.
Beachte: Mit dem „Binden von Objekten“ ist an dieser Stelle die Lokalisierung der Objekte und nicht das Binden von Pro-
zessen gemeint!

struct Bruch {
long Zaehler;
long Nenner;

};

interface Bruchrechnung {
Bruch add (in Bruch bruch1, in Bruch bruch2);
Bruch sub (in Bruch bruch1, in Bruch bruch2);
Bruch mul (in Bruch bruch1, in Bruch bruch2);
Bruch div (in Bruch bruch1, in Bruch bruch2);

};

82

Services, so wählt das System den günstigsten1. Gibt es hingegen keine, so kann unter Umstän-
den ein neuer Server vom zuständigen Objekt-Adapter gestartet werden. Aus Sicht des Clients
entspricht nun der Aufruf von Funktionen dem von Methoden lokaler Objekte.

Beispiel 4.4: Auszüge aus dem Client-Programm

Wir wollen an dieser Stelle aber einen Blick auf die Abläufe innerhalb des ORB werfen. Dabei
beziehen wir uns auf die Markierungen in Beispiel 4.4 und Abb. 4.5. Als Resultat des _bind-
Befehles (�) wird im Client eine Objektreferenz (Client Stub) auf das Server-Objekt erzeugt
(❶). Anschließend erzeugt der Client zwei lokale Instanzen bruch_1 und bruch_2 des Typs
Bruch (�), deklariert eine weitere Variable bruch_3 (�), die später das Ergebnis aufnehmen
soll, und ruft letztendlich die Methode mul des Stubs auf (�, ❷). Aufgrund dieses Aufrufes wer-
den vom CORBA-System Kopien von bruch_1 und bruch_2 an das Server-Objekt weitergelei-
tet und dessen Methode mul aufgerufen (❸, ❹). Das Server-Objekt berechnet das Ergebnis
res_bruch und gibt eine Kopie davon an den Client zurück (❺, ❻). Dieser instantiiert die Kopie
in der Variablen bruch_3 (❼, �).

Abb. 4.5: Aufruf einer Methode des CORBA-Objektes Bruchrechnung

Stürzt der Server-Prozeß bzw. dessen Rechner zur Laufzeit ab, so versucht das CORBA-System
beim Aufruf einer Bruchrechnungsfunktion einen weiteren Server zu lokalisieren (oder einen
neuen zu starten). Ist dies nicht möglich, so wird im Client eine System Exception ausgelöst
(siehe Kapitel 4.1.4).

1. Auch dieser Algorithmus ist nicht genormt. Liegt ein Server-Objekt auf dem gleichen Rechner wie der Client, so sollte die-
ses bevorzugt werden. Unter Umständen kann man dabei die gesamte Kommunikation durch den ORB umgehen.

main {
Bruchrechnung *obj_ref = Bruchrechnung::_bind(); �
Bruch bruch_1 = Bruch (1,2); �
Bruch bruch_2 = Bruch (2,4);
Bruch bruch_3; �
...
bruch_3 = obj_ref->mul (bruch_1, bruch_2); �
...

}

ORB-Kern

IDL
Stubs

IDL
Skeleton Objekt-

Adapter

main

obj_ref

bruch_3
bruch_2

bruch_1 res_bruch

Bruchrechnung

bruch_2’
bruch_1’

bruch_2’
bruch_1’

res_bruch’

bruch_2’
bruch_1’

res_bruch’

Client Objekt-Implementierung

❶

❸

❹ ❺
❼

❻

❷

83

4.2.3 Objekt-Adapter

Wie man aus Abbildung 4.2 auf Seite 79 entnehmen kann, wird die Anbindung von Server-
Objekten an den ORB-Kern über Objekt-Adapter (OA) und Skeletons realisiert. Sie abstrahieren
von der konkreten Implementierung des ORB (sind also abhängig von dieser) und garantieren
eine rudimentäre Portabilität der darüber liegenden Komponenten.

Abb. 4.6: Kommunikation zwischen dem Objekt-Adapter und dem Server-Objekt

Der mögliche Ablauf einer Methoden-Aktivierung im Server-Objekt wird in Abbildung 4.6
beschrieben: Erhält der zuständige OA eine Referenz auf ein Objekt, zu dem es noch keine
aktive Implementierung gibt, d.h., daß kein Prozeß, Programm usw. läuft, das den verlangten
Dienst anbietet, dann wird eine Implementierung gestartet (❶). Die dafür benötigten Informa-
tionen können aus dem Implementation Repository extrahiert werden. Nachdem die Initialisie-
rung abgeschlossen ist, meldet die Implementierung dem OA, daß sie zum Empfang von Nach-
richten bereit ist (❷). Je nach Aktivierungsmodus [OMG98f] gibt es zu diesem Zeitpunkt evtl.
noch keine Instanzen der eigentlichen Server-Objekte. Das Erzeugen geschieht dann erst mit
einer expliziten Aktivierung einzelner Ausprägungen (❸). Anschließend können die gewünsch-
ten Methoden über das zugehörige Skeleton aufgerufen werden (❹). Bei deren Abarbeitung
kann es zu weiteren Aufträgen an den OA kommen (❺).

Im allgemeinen wird zu jedem IDL Interface eine eigene Skeleton-Klasse generiert, die für
die Aktivierung der einzelnen Methoden zuständig ist. Im Gegensatz dazu sollte es nur wenige
OA-Klassen geben, die auf die wesentlichen Unterschiede der Objekte eingehen und sie damit
implizit gruppieren. So könnte man sich zum Beispiel eigene Adapter für Datenbanksysteme,
Entwurfswerkzeuge, Administrationskomponenten usw. vorstellen. Sollen vom CORBA-
System Funktionen für die Zugriffskontrolle und Sicherheit der Daten angeboten werden, so
müssen diese explizit in den Objekt-Adapter (OA) integriert werden. Der ORB-Kern bietet
dafür über das ORB Interface Methoden an, mit denen der OA den Initiator des gerade zu bear-
beitenden Auftrags abfragen kann.

Bis zur Version 2.1 enthielt der CORBA-Standard mehrere vordefinierte OA (die Basic, Library
und Object Oriented Database Adapter - BOA, LOA, OODA), die entweder direkt oder als
Basis für eigene Erweiterungen benutzt werden konnten. Wir diskutieren diese Adapter in den
Abschnitten 4.2.3.1 und 4.2.3.2. Dabei werden wir erkennen, daß sie sich z.T. nicht sinnvoll rea-
lisieren lassen bzw. ergänzender Spezifikationen bedürfen. Die OMG hat deshalb in der Version
2.2 von CORBA nur noch den Portable Object Adapter (POA) definiert, der als Basis für
systemspezifische OA zu benutzen ist (siehe Abschnitt 4.2.3.3).

Objekt-Implementierung
Methoden

Objekt-Adapter (OA)

ORB-Kern

Skeleton

❶ ❷ ❸ ❹ ❺

84

Aufgrund der vielfältigen Aufgaben eines OA hat dessen Auswahl bzw. Spezifikation einen
erheblichen Einfluß auf die Leistungsfähigkeit des resultierenden Gesamtsystems. Insbeson-
dere in datenintensiven Umgebungen entstehen hier einige Probleme, die wir noch genauer in
Kapitel 4.5 betrachten werden. Unglücklicherweise hängen OA von der internen Schnittstelle
des ORB ab, so daß neue OA nur vom Entwickler des CORBA-Systems selbst implementiert
werden können. In den meisten Fällen ist man damit auf die Verwendung des BOA bzw. POA
angewiesen, da aktuelle CORBA-Implementierungen kaum andere OA zur Verfügung stellen.

4.2.3.1 Basic Object Adapter (BOA)

Der CORBA-Standard definierte bis zur Version 2.1 einen Basic Object Adapter (BOA) als
Grundlage für alle OA eines Systems. Der BOA stellt rudimentäre Funktionalität zur Verfü-
gung, die von jedem System benötigt wird. Sie umfassen beispielweise die Erzeugung und
Interpretation von Objekt-Referenzen, Authentifizierung von Clients, Aktivierung und Deak-
tivierung von Objekten und Implementierungen (Prozeß, Programm o.ä.) sowie den Aufruf von
Server-Objekt-Methoden durch das jeweilige Skeleton. Bei der Verwendung des BOA bleiben
alle auf einem IDL interface basierenden Objekte permanent auf dem Rechner, auf dem sie
erzeugt bzw. registriert wurden. Alle anderen Objekte werden (wie in Kapitel 4.2.2 geschildert)
bei der Verwendung als Parameter oder Ergebnis einer Methode kopiert.

4.2.3.2 Library und Object Oriented Database Adapter (LOA, OODA)

Zur besseren Erklärung weiterer OA wollen wir zunächst auf eine Schwäche des BOA einge-
hen. Betrachten wir dazu Server-Objekte, die häufig benutzte Operationen an ihrer Schnittstelle
anbieten (z.B. eine Funktionsbibliothek zur Berechnung komplexer Zahlen). Weiterhin gibt es
einen Client, der auf einem anderen Rechner als das Server-Objekt liegt, aber häufig dessen
Methoden aufruft. Wird das Server-Objekt nun über den BOA verwaltet, so führt jeder Aufruf
einer Methode durch den Client zu Rechner-Rechner-Kommunikation über den ORB. Diese Art
der Berechnung ist natürlich sehr ineffizient. Ursprüngliche Versionen des CORBA-Standards
enthielten deshalb den Library Object Adapter (LOA). Dessen Definition besagt, daß beim Ein-
satz des LOA die Implementierung des CORBA-Objektes im Adreßraum des Clients verfügbar
ist. Obwohl der Standard sich kurz faßt und die Migration von Objekten nicht explizit erwähnt,
so ist diese Fähigkeit unserer Ansicht nach impliziter Bestandteil des LOA. Gerade bei der Ver-
arbeitung von Datenobjekten stört aber noch der Aspekt, daß alle Objekte einzeln und erst beim
Zugriff transportiert werden. Abhilfe schuf der Object Oriented Database Adapter (OODA),
der gemäß Definition eine Anbindung an objektorientierte Datenbanksysteme (OODBS) reali-
siert. Wie schon beim LOA ist der Standard auch hier recht knapp. Wir sind aber der Ansicht,
daß eine sinnvolle Anbindung an OODBS automatisch den Transport ganzer Seiten von Objek-
ten zum Client umfaßt. Dieser Aspekt ist allerdings umstritten.

Ein generelles (und ungelöstes) Problem bei der Migration von CORBA-Objekten ist der fol-
gende Punkt: Migriert ein Objekt im Rahmen der LOA- oder OODA-Funktionalität auf einen
anderen Rechner, so muß die Implementierung entweder bereits auf der Client-Seite verfügbar
sein oder mit dem Zustand des Objektes übertragen werden. Letzteres wäre aber weder standar-
disiert noch allgemein möglich: Wie soll z.B. die in C++ geschriebene Implementierung eines
Server-Objektes von einem Java-Client sinnvoll genutzt werden? Lediglich bei der homogenen

85

Verwendung von Java für den Client und den Server wäre die Übertragung der Implementierung
in Form von Java Byte Code möglich. Darüber hinaus entsteht noch ein Problem: Referenziert
ein CORBA-Objekt externe Ressourcen wie z.B. Dateien, so sind diese u.U. nicht auf dem
Rechner des Clients verfügbar. In diesem Fall müßte das migrierte Objekt (auf dem Client) also
weiterhin Zugriff auf einige Bestandteile des ursprünglichen Objektes auf dem Server haben.

Die gerade geschilderten Probleme sowie Unstimmigkeiten über die Definition des LOA und
OODA haben die OMG dazu bewegt, die sowieso recht knapp gehaltenen Definitionen dieser
beiden OA mit der Version 2.2 aus dem CORBA-Standard zu entfernen.

4.2.3.3 Portable Object Adapter (POA)

Mit der Version 2.2 des CORBA-Standards wurden alle bisherigen OA durch den Portable
Object Adapter (POA) ersetzt. Portabel bezieht sich in diesem Sinne nicht auf Laufzeitaspekte
oder Rechnerarchitekturen, sondern auf die Portabilität von Source Code zum Entwicklungs-
zeitpunkt: Die Implementierung von Server-Objekten soll ohne Probleme zwischen CORBA-
Systemen unterschiedlicher Hersteller ausgetauscht werden können. Ansonsten hat der POA
mehr oder weniger die selben Aufgaben wie der BOA. Allerdings mußten die Schnittstellen nun
sehr viel genauer definiert werden. Die Spezifikation nimmt inzwischen ein eigenes Kapitel
statt weniger Absätze ein (siehe Kapitel 9 von [OMG98f]). Besonderer Wert wird dabei auf die
standardisierte Initialisierung von Server-Prozessen sowie Schnittstellen für die Unterstützung
unterschiedlicher Arten von Objekten gelegt: Transiente und persistente Objekte, Objekte mit
und ohne ID, IDs die wahlweise vom Benutzer oder vom System erzeugt werden, usw. Anhand
der Spezifikation des POA wird nun auch klar deutlich, daß die Migration von Objekten zur
Laufzeit keine Aufgabe des OA ist. Der POA enthält lediglich umfangreiche Möglichkeiten zur
Einbettung von Objekten, deren persistenter Zustand in einem Datenbankverwaltungssystem
(DBVS) gespeichert sein kann (siehe auch Kapitel 4.5 und 5.4).

4.2.4 Kommunikation und Interoperabilität

Im Rahmen einer standardisierten Middleware sollte es natürlich möglich sein, daß CORBA-
Systeme unterschiedlicher Hersteller miteinander interagieren können. Dafür ist es nötig, die
Kommunikation (also das Protokoll) zwischen den beteiligten ORBs zu standardisieren. Diese
Spezifikation sollte natürlich die Vielfalt der verfügbaren Netzwerkprotokolle berücksichtigen.
Die OMG hat daher zwei abstrakte Protokollklassen für die Kommunikation zwischen ORBs
definiert: Das General Inter-ORB Protocol (GIOP) für allgemeine, verbindungsorientierte
Netzwerke sowie das Environment-Specific Inter-ORB Protocol (ESIOP), daß spezielle Opti-
mierungen auf die aktuell verwendete Umgebung zuläßt [OMG98f].

Eine Ausprägung des GIOP für TCP/IP-basierte Netzwerke ist das Internet Inter-ORB Protocol
(IIOP). Es muß als einziges Protokoll von allen CORBA-konformen Systemen angeboten wer-
den und ist mittlerweile auch die Kommunikationsbasis fast aller angebotenen ORBs. Dement-
sprechend läßt sich die Interoperabilität zwischen CORBA-Systemen auf dieser Ebene als
gelöst betrachten (abgesehen von kleineren Problemen mit IIOP-Versionen: manche Systeme
benutzen IIOP 1.0 aus CORBA 2.0, andere aber bereits IIOP 1.1 aus CORBA 2.1).

86

4.3 Services
Aufbauend auf der Kern-Architektur von CORBA, die ja im Prinzip nur eine umfangreiche
Infrastruktur zur Kommunikation definiert, hat die OMG einige sog. Common Object Services
spezifiziert. Diese realisieren gekapselte Komponenten mit grundlegender Funktionalität, die
sowieso von den meisten Systemen benötigt wird. Auf diese Weise wird die mehrfache Imple-
mentierung ähnlicher Module vermieden. Gleichzeitig kann so natürlich bei der Entwicklung
von Systemen auf diese Services zurückgegriffen werden, um den Implementierungsaufwand
zu reduzieren (siehe auch Abb. 4.1 auf Seite 72). Durch die klar definierten Schnittstellen lassen
sich einzelne Services austauschen, ohne daß darauf zugreifende Komponenten zu ändern sind.

Jeder Service basiert auf einer Reihe von IDL-Definitionen, deren interfaces sich in zwei
Kategorien unterteilen lassen: Die erste Sparte beschreibt Schnittstellen von Objekten, die vom
jeweiligen Service selbst implementiert werden. Die zweite Kategorie beschreibt Schnittstellen,
die Clients erfüllen müssen, um die Dienste des Services in Anspruch nehmen zu können. So
enthält der in Kapitel 4.3.1 beschriebene Event Service z.B. ein interface EventChannel.
Dieses wird vom Service selbst implementiert und regelt die Weiterleitung von Ereignissen. Im
Gegensatz dazu gibt es ein interface PushConsumer, das von den Clients eines Event Channel
implementiert werden muß, sofern sie unmittelbar über Ereignisse informiert werden wollen.
Dementsprechend ist der Client eines Object Services in den meisten Fällen kein reiner Client
im Sinne der Kernarchitektur: So ist z.B. die Implementierung des PushConsumer ein CORBA-
Objekt, das über einen Objekt-Adapter und ein Skeleton an den ORB angebunden wird. Damit
ist es aus Sicht des ORB ebenfalls ein Server-Objekt, dessen Methoden von anderen Objekten
aufgerufen werden können. Insbesondere in WWW-basierten Umgebungen ist dieser Umstand
zu beachten. Viele CORBA-Implementierungen bieten sog. Client-ORBs mit reduzierter Funk-
tionalität an, um z.B. die Ladezeiten für Applets zu verkürzen. Diese Client-ORBs enthalten
aber keine Objekt-Adapter oder Skeletons und erlauben nur die Weiterleitung von Methoden-
aufrufen des Applets zum Server. Somit kann das Applet nicht Client eines EventChannel sein,
da es keine Möglichkeit gibt, Implementierungen für PushConsumer zur Verfügung zu stellen.

Die Definition eines Services umfaßt neben den gerade erwähnten IDL-Definitionen noch die
umgangssprachliche Beschreibung der zugrundeliegenden Semantik. Alle Services sind in
einem Dokument spezifiziert [OMG98h], der sog. Common Object Services Specification
(COSS). Eine Aufstellung aller bisher standardisierten Services sowie eine kurze Beschreibung
ihrer Aufgabe ist in Tabelle 4.2 enthalten.

Durch die strikte objektorientierte Modellierung jeglicher Funktionalität ergeben sich bei der
Verwendung aller Services letztendlich sehr viele feingranulare Objekte, die über die definierten
Schnittstellen miteinander interagieren. Wir bezeichnen dies als die „Philosophie von
CORBA“: Der Lifecycle Service definiert die separate Erzeugung sog. Factory-Objekte für
jeden verfügbaren Objekttyp (also ein weiteres Objekt je Objekt-Typ). Mit ihm werden Instan-
zen dieses Typs erzeugt. Der Relationship Service beschreibt weitere Objekte zur Modellierung
von Beziehungen zwischen zwei oder mehr Objekten (ein Objekt je Beziehung). Der Property
Service enthält Objekte zur Beschreibung der Eigenschaften von Objekten (mindestens ein
Objekt je Objekt mit Eigenschaften). Gerade in verteilten Umgebungen führt die große Zahl von
Objekten aber zu einem übermäßig hohen Kommunikationsvolumen - und damit zu Leistungs-

87

einbußen. Dieser Aspekt wurde bereits häufig bemängelt, spiegelt sich aber selbst noch in der
aktuellen Entwicklung von CORBA Facilities wider (die auf die Object Services aufsetzen,
siehe Abb. 4.1 auf Seite 72). Beispielsweise enthalten erste Vorschläge für den PDM Enabler
(der geplanten Facility für das Produktdatenmanagement) eine extrem feingranulare Modellie-
rung [OMG98a]. Dementsprechend gewinnt die Migration und lokale Verarbeitung von Objek-
ten, wie wir sie bereits in Kapitel 4.2.3 eingeführt haben, eine noch größere Bedeutung. Wir
werden diesen Aspekt aber erst im Zusammenhang mit der allgemeinen Modellierung von
Daten(objekten) in Kapitel 4.5 betrachten.

Tabelle 4.2: Bisher definierte Common Object Services

Name Standardisiert
seit

Beschreibung

Naming Dezember 1993 Quasi das Telefonbuch der Objekte - Objekte können eine Referenz auf
sich unter einem bestimmten Namen registrieren lassen, müssen es aber
nicht. Geschachtelte Namensräume sowie die Einbettung externer
Hierarchien über Links werden analog zum UNIX-Dateisystem unterstützt.

Event Dezember 1993 Siehe Diskussion in Kapitel 4.3.1.

Persistent Obj. April 1994 Siehe Diskussion in Kapitel 4.3.2 (Ablösung geplant)

Lifecycle Dezember 1993 Siehe Diskussion in Kapitel 4.3.3

Concurrency Dezember 1994 Regelt den konkurrierenden Zugriff auf Objekte. Analog zu Datenbankver-
waltungssystemen werden die Sperrmodi IR, R, U, IW und W unterstützt.
Die Benutzung ist i.a. eng verzahnt mit dem Transaction Service.

Externalization Dezember 1994 Definiert Schnittstellen, um den Zustand von Objekten in einen Stream zu
schreiben bzw. ihn daraus wiederherzustellen.

Relationships Dezember 1994 Enthält umfangreiche Schnittstellen zur Modellierung von Beziehungen
zwischen Objekten sowie deren Rollen und Identität. Zur Unterstützung
von m:n-Relationen werden Beziehungen immer über eigenständige
CORBA-Objekte (und eben nicht als Objektreferenz) dargestellt.

Transaction Juni 1997 (v 1.1) Siehe Diskussion in Kapitel 4.3.4

Query März 1995 Siehe Diskussion in Kapitel 4.3.5

Licensing November 1995 Dient der rudimentären Kontrolle über lizenzierte Software, benötigt aber
sichere Kommunikation, Authentifizierung und Autorisierung und ist damit
nur in Kooperation mit dem Security Service sinnvoll.

Property November 1995 Dient zur Angabe von Eigenschaften einzelner Objekte, die über feste
Schnittstellen abgefragt und modifiziert werden können.

Time März 1996 Definiert Datenstrukturen zur Repräsentation von Zeit(intervallen) sowie
Schnittstellen zur Verarbeitung von Zeitstempeln und einen Timer.

Security November 1996 Definiert sichere Kommunikation, Authentifizierung, Autorisierung usw.

Trading Oktober 1996 Quasi die “Gelben Seiten” der Objekte (ergänzend zum Naming Service),
definiert umfangreiche Schnittstellen zur mengenorientierten Anfrage.

Collection Oktober 1996 Umfangreiche Definition verschiedener Aggregattypen und Iteratoren

Persistent State in Arbeit Ablösung des Persistent Object Services, siehe Diskussion in Kapitel 4.3.2

88

An dieser Stelle sei aber noch auf einen weiteren Aspekt im Zusammenhang mit komponenten-
basierten Architekturen (siehe Kapitel 2.1) hingewiesen: Obwohl man jeden Service aufgrund
der wohldefinierten Schnittstellen prinzipiell als eine eigenständige, gekapselte Komponente
ansehen könnte, so ergeben sich leider doch eine Reihe von Abhängigkeiten gegenüber dem
ORB. Zuerst einmal definieren fast alle Object Services ein Kontext-Objekt (current), das über
Methoden des ORB Interface (siehe Abb. 4.2 auf Seite 79) abgefragt werden kann. Es ist aber
weder standardisiert, wie der ORB initiale Verbindungen zum Service aufbauen, noch wie er die
Referenz auf diesen Kontext erhalten kann. Insbesondere beim Transaction Service ergeben
sich weitere Probleme: Wurde eine Transaktion geöffnet, so muß der jeweilige Transaktions-
kontext (vom ORB des Clients) bei jedem Aufruf einer Methode implizit (an den ORB des Ser-
vers) übergeben werden. Hier ist also eine enge Verzahnung mit dem ORB nötig. Ähnliches gilt
für den Security Service: Eine sichere Kommunikation oder Verschlüsselung läßt sich nur in
Interaktion mit dem ORB erreichen. Dementsprechend wird sich ein Object Service des Her-
stellers A nur selten direkt an den ORB des Herstellers B ankoppeln lassen [DC99]. Eine wei-
tergehende Standardisierung der Schnittstellen zwischen ORB und Object Services ist somit
mehr als wünschenswert. In der Zwischenzeit ist man leider darauf angewiesen, den ORB
zusammen mit allen benötigten Services von einem einzigen Hersteller zu beziehen. Leider wird
die Auswahl dadurch aber erheblich eingeschränkt, denn die meisten CORBA-Systeme umfas-
sen bisher nur wenige Object Services.

Im folgenden wollen wir nun näher auf einige ausgewählte Common Object Services eingehen,
die für den Rest der Arbeit von größerer Bedeutung sind. Dies sind der Event (Kapitel 4.3.1),
Lifecycle (Kapitel 4.3.3), Persistent Object/State (Kapitel 4.3.2), Transaction (Kapitel 4.3.4)
und Query Service (Kapitel 4.3.5). Dabei werden wir den Event Service etwas ausführlicher
behandeln, um die generelle Benutzung von Object Services zu demonstrieren. Die Diskussion
der anderen Services beschränkt sich dann auf die grundlegende Funktionalität bzw. daraus ent-
stehende Probleme. Für eine weitergehende Einführung in die Common Object Services sei z.B.
auf [OHE96] verwiesen.

4.3.1 Der CORBA Event Service

Die bisher beschriebene Verarbeitung in CORBA erlaubt lediglich die synchrone Kommunika-
tion mit bereits bekannten Objekten, d.h. es muß explizit die jeweilige Methode eines Objektes
(bzw. dessen Client Stub) aufgerufen werden. Oftmals ist es aber erwünscht, daß ein Objekt auf
Zustandsänderungen reagiert, die ihm nicht direkt von einem Client mitgeteilt werden (unter
Umständen gibt es überhaupt keinen expliziten Client dieses Objektes). Man stelle sich z.B.
einen System-Monitor vor, der auf unterschiedliche Ereignisse - wie etwa eine volle Festplatte -
reagieren soll. Bisher wäre es nötig, daß das Betriebssystem eine spezielle Methode dieses
Monitor-Objektes aufruft. Diese Form der Verarbeitung ist aber nicht sinnvoll, da der Monitor
nicht immer verfügbar sein muß. Vielmehr bietet es sich an, einen sog. Event Channel für diesen
Fall zu definieren, der alle Ereignisse puffert und zu gegebener Zeit an daran interessierte
Objekte weiterleitet (s. Abb. 4.7). Das Event-Channel-Objekt wird beim Systemstart erzeugt,
der Prozeß zur Festplattenverwaltung baut anschließend eine Verbindung zu diesem auf. An
Events interessierte Objekte kommunizieren dann lediglich mit dem Event Channel-Objekt.

89

Abb. 4.7: Beispiel für die Verarbeitung in einem Event Channel

4.3.1.1 Allgemeine Spezifikationen

Der Event Service ist einer der wenigen Services, der prinzipiell unabhängig vom jeweiligen
ORB ist. Er definiert einige Schnittstellen, deren Implementierungen reine Server-Objekte im
Sinne der Kernarchitektur sind. Events werden dabei nicht durch eigene Objekte, sondern durch
den Aufruf spezieller Methoden modelliert. Sie können entweder generisch (Typ any) oder von
einem speziellen Typ (d.h. klassifiziert) sein. Klassifizierte Events verwenden die Schnittstellen
für generische Events als Templates für die Erzeugung spezifischer Schnittstellen. Wir werden
daher im folgenden nur den generischen Ansatz betrachten.

Der Event Service definiert zwei verschiedene Kommunikationsarten: push style, bei der ein
Erzeuger das Event auslöst und die Übertragung der nötigen Daten initiiert, und pull style, bei
der ein Konsument ein Event anfordert (blockierend oder per Polling). Dementsprechend sieht
der Standard die vier Schnittstellen PushSupplier, PushConsumer, PullSupplier und Pull-
Consumer vor (siehe Beispiel 4.5).

Beispiel 4.5: Definition der Kommunikations-Schnittstellen (generischer Ansatz)

Die gerade beschriebenen Schnittstellen alleine reichen aber nicht aus, um die Erzeugung und
Verarbeitung von Events von den einzelnen Objekten zu entkoppeln (hier haben die Objekte
weiterhin gegenseitig Kenntnis voneinander, siehe Abb. 4.8).

Event Channel
’Platte voll’

I / O

Administration
I / O

Administration

System
Monitor

Resource
Manager

create event

send event

send event

Kommunikation

module CosEventCom {

exception Disconnected();

interface PushConsumer {
void push (in any data)

raises(Disconnected);
void disconnect_push_consumer();

};

interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull() raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

}; // end module

90

Abb. 4.8: Push style-Verarbeitung ohne Event Channel

4.3.1.2 Event Channel

Zur Lösung des Problems wurde von der OMG ein sog. Event Channel definiert, der quasi die
Verwaltung aller an einem Ereignis interessierten Objekte übernimmt. Diese können sich wahl-
weise als Erzeuger oder Konsument beim Event Channel anmelden, wobei sowohl push style-
als auch pull style-Kommunikation möglich ist (auch gemischt, siehe Abb. 4.9). Ein von einem
Erzeuger initiiertes Event wird an alle registrierten Konsumenten verteilt. Der Supplier muß
dafür nicht wissen, wieviel und welche Consumer es gibt!

Abb. 4.9: Verarbeitung mit Event Channel (push style gemischt mit pull style)

In Abb. 4.9 wird ein mögliches Szenario dargestellt, bei dem mehrere Objekte an Änderungen
eines Text-Dokumentes interessiert sind. Die beiden Browser 1 und 2 zeigen immer die aktuelle
Version. Sie blockieren so lange im pull-Aufruf, bis eine Änderung vorliegt und sie die neuen
Daten laden müssen. Browser 3 hat die push-style-Kommunikation gewählt und kann in der
Zwischenzeit (bis seine push-Methode vom Event Channel aufgerufen wird) andere Aktionen
ausführen.

ProducerConsumer

disconnect

push, disconnect

Objektreferenz

Event Channel
’aktualisiere’

Browser
1

Browser
2

Editor
1

Editor
2

Editor
3

Browser
3

push

push

pushpu
sh

push

pull

pull

Objektreferenz vom / zum Konsumenten

Objektreferenz vom Erzeuger

91

Die gewählte Konfiguration der drei Produzenten kann hier einige Probleme mit unterschiedli-
chen (und falschen) Verarbeitungszuständen verursachen: Editor 2 und 3 erzeugen Events ohne
die Events der anderen beiden Supplier jemals zu erhalten. Editor 1 ist hingegen Erzeuger und
Konsument und sieht somit alle Events. Alle Erzeuger verwenden hier die push-style-Kommu-
nikation, es wäre aber auch pull style möglich (wenn auch nicht unbedingt sinnvoll).

Leider werden vom Standard aber weder Atomizität noch Reihenfolgeerhaltung garantiert. Ein
Supplier kann sich also nicht sicher sein, daß wirklich alle Consumer sein Event erhalten haben
(denkbar wäre, daß eine Netzverbindung zusammenbricht und ein neues Routing durchgeführt
wird, die in der Zwischenzeit ausgelösten Events aber verloren gehen). Weiterhin stellt insbe-
sondere die mögliche Änderung der Reihenfolge für o.g. Anwendung ein Problem dar: Wird ein
Event in der Form „Lösche Zeichen 12 bis 18“ kodiert, so sind diese Ereignisse natürlich kon-
textsensitiv und somit reihenfolgeabhängig. Auch die konkrete Angabe der zu löschenden Zei-
chen kann zu Problemen führen, wenn das vorherige Event, mit dem ein Teil dieser Zeichen
gerade erst eingefügt wurde, noch nicht eingetroffen ist. Wir sehen also, daß unter Umständen
ergänzende Maßnahmen nötig sind. Die OMG arbeitet aus diesem Grund an einer Erweiterung
des Event Service, dem sog. Notification Service [OMG98c]. Er soll insbesondere umfangreiche
Filtermechanismen sowie die persistente Pufferung und die Einhaltung der Reihenfolge von
Nachrichten garantieren können (konfigurierbarer Quality of Service).

Wir werden uns im Rahmen der vorliegenden Arbeit aber auf den ursprünglichen Event Service
beschränken. Zur Verwaltung von Event Channels gibt es insgesamt sieben Schnittstellen, die
in Beispiel 4.6 aufgeführt sind. Ihre Verwendung wird durch Abbildung 4.10 illustriert:

Abb. 4.10: Verbindungsaufbau zum Event Channel

Über das eigentliche Objekt für den Event Channel können lediglich Referenzen auf die
Objekte zur Verwaltung der Supplier und Consumer erhalten werden. Mit dieser Maßnahme
wird ein rudimentärer Zugriffsschutz eingeführt: Soll ein Objekt einer Applikation z.B. nur
Events empfangen können, so darf es nur eine Referenz auf den ConsumerAdmin erhalten (durch
den Aufruf der Methode for_consumers des EventChannel, siehe Abb. 4.10 - (1)). Will sich
dieses Objekt nun als push-style-Consumer beim Event Channel anmelden, so erwirbt es zuerst
durch den Aufruf der Methode obtain_push_supplier (2) des ConsumerAdmin eine Referenz
auf einen ProxyPushSupplier, der jetzt aus Sicht dieses Objektes der Erzeuger aller Events ist.
Anschließend muß noch durch den Aufruf der Methode connect_push_consumer des Proxy-

Event Channel
(logisch)

Event
Channel

Consumer
Admin

ProxyPush
Supplier

Application
Object

1

2

3

4

Physisches Objekt

Logisches Objekt

Objektreferenz

92

PushSuppliers die Verbindung hergestellt werden (3). Dabei wird eine Referenz auf das aktu-
elle Objekt übergeben. Der Event Channel leitet nun alle Events durch Aufruf der Methode push
des ApplicationObject (welche das interface PushConsumer implementieren muß) weiter
(4). Der Aufbau der anderen Kommunikationsarten erfolgt analog dazu. Selbst für klassifizierte
Events ist kein neues Verfahren nötig. Es müssen lediglich für jeden Event-Typ neue Klassen
für Push/Pull Supplier bzw. Push/Pull Consumer definiert werden [OMG98h].

Beispiel 4.6: Standardisierte Schnittstellen für Event Channels

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier

(in CosEventComm::Push_Supplier push_supplier)
raises(Already_connected);

};

interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer

(in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier

(in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

};

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer

(in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, Type_Error);

};

}; // end module

93

4.3.2 Die CORBA Persistent Object und Persistent State Services

Die OMG hatte bereits relativ früh mit der Arbeit am Persistent Object Service (POS) begonnen.
Mit ihm sollte eine allgemeine Anbindung an persistente Speichermedien geschaffen werden,
d.h. der Zustand von Objekten sollte z.B. wahlweise in Dateien, relationalen oder objektorien-
tierten Datenbankverwaltungssystemen (RDBVS bzw. OODBVS) gespeichert werden können.
An der Schnittstelle der CORBA-Objekte sollte die Wahl des Speichermediums nicht sichtbar
sein. Gerade der letzte Aspekt hat aber dazu geführt, daß die Spezifikation des Services nur ein
mehr oder weniger fraglicher Kompromiß ist. Ursprünglich gab es zwei Vorschläge: Ein auf den
Einsatz von OODBVS optimierter aus dem Lager der ODMG, sowie ein weiterer von IBM, der
speziell auf die Eigenschaften von RDBVS einging. Auf Druck der OMG wurden beide Doku-
mente Anfang 1994 zum POS verschmolzen [Ses96]. Die resultierende Strukturierung des Ser-
vices ist in Abbildung 4.11 dargestellt. Aus der Sicht des Clients gibt es jeweils ein Objekt mit
persistentem Zustand (PO) sowie eine zugehörige persistente ID (PID), mit der ein Objekt loka-
lisiert werden kann. Jedes PO kommuniziert mit einem Persistent Object Manager (POM), der
eine einheitliche Schnittstelle zur Verarbeitung des Zustandes bietet. Nur der POM kennt dann
das konkrete Speichermedium sowie den zugehörigen Persistent Data Service (PDS). Weiterhin
initiiert er die Übertragung des jeweiligen Zustandes über das zum PDS gehörende Protokoll.
Der PDS kommuniziert schließlich mit dem eigentlichen Speichermedium. Der Standard ent-
hält dafür bereits eine Reihe weiter spezialisierter PDS-Schnittstellen für DBVS u.ä., auf die wir
hier aber nicht weiter eingehen wollen.

Abb. 4.11: Die Struktur des Persistent Object Services (POS)

Anhand von Abbildung 4.11 läßt sich leicht erkennen, daß der POS eine recht komplexe
Schnittstelle besitzt. So umfaßt bereits das Laden und Speichern von Objektzuständen mehrere
Operationen und Kommunikationsschritte. Dabei muß jeder Zustand einzeln verarbeitet wer-
den, eine mengenorientierte Übertragung ist nicht möglich. Weiterhin wird die Anzahl der
Objekte durch das assoziierte PID-Objekt schlicht verdoppelt. Diese Umstände sind in verteil-
ten Umgebungen aber inakzeptabel und dementsprechend ist uns bisher auch keine Implemen-
tierung des POS bekannt. Vielmehr vertreten die meisten Hersteller von CORBA-Produkten wie
wir die Ansicht, daß eine effektive und effiziente Umsetzung der POS-Spezifikation nicht mög-
lich ist. Die OMG bezeichnet den POS deshalb teilweise auch schon als deprecated (abgelöst).

Client

PO PID

POM

PDS

Persistent Object Persistent Identifier

Protokoll Persistent Object Manager

Persistent Data Service

Datenquelle
Datenübertragungsprotokoll

Assoziation

Objektrefrenz

94

Als Ersatz für den POS wird derzeit an der Entwicklung des Persistent State Service (PSS) gear-
beitet. Er soll die Nachteile des POS vermeiden und gleichzeitig eine sinnvolle Integration mit
dem Transaction und Query Service bilden. Bis Dezember 1998 wurden drei vielversprechende
sog. Joint Revised Submissions bei der OMG eingereicht, die alle auf neuesten Entwicklungen
wie dem Portable Object Adapter (POA, siehe Abschnitt 4.2.3.3) und dem IDL value-Typ
(Kapitel 4.1.4) basieren. Letzterer ermöglicht insbesondere den Transfer von Objektzuständen
vom Server zum Client. Diese Fähigkeit ist in datenintensiven Umgebungen besonders wichtig
(siehe Kapitel 4.5). Eine endgültige Entscheidung der OMG sowie erste Implementierungen
werden für 1999 erwartet. Nähere Informationen können der zugehörigen WWW-Seite entnom-
men werden [OMG99].

4.3.3 Der CORBA Lifecycle Service

Der Lifecycle Service definiert Funktionalität zum Erzeugen, Kopieren, Migrieren und Löschen
von Objekten. Er spiegelt damit einen wesentlichen Aspekt der Philosophie von CORBA sowie
verteilter Umgebungen allgemein wider.

Beispiel 4.7: Auszüge aus der Spezifikation des Lifecycle Service

Betrachten wir zunächst einmal die Erzeugung von Objekten. Hier reicht die bei lokaler Verar-
beitung bewährte Verwendung von Konstruktoren nicht aus. Erstens sind Konstruktoren immer
statische Methoden einer Implementierungsklasse, die sich nicht mit einer Schnittstellenbe-
schreibungssprache wie IDL definieren lassen, und zweitens operieren Konstruktoren eben
immer lokal, d.h. mit ihnen können keine Objekte auf anderen Rechnern erzeugt werden.
Gemäß der Spezifikation des Lifecycle Service sollte es daher auf jedem Rechner für jeden dort

module CosLifeCycle {

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence<Factory> Factories;
struct NameValuePair {Naming::IString name; any value;};
typedef sequence<NameValuePair> Criteria;

... // definition of several exceptions

interface FactoryFinder {
Factories find_factories (in Key factory_key) raises (NoFactory);

};

interface LifeCycleObject {
LifecycleObject copy (in FactoryFinder there, in Criteria the_criteria)

raises (NoFactory, NotCopyable, InvalidCriteria, ...);
void move (in FactoryFinder there, in Criteria the_criteria)

raises (NoFactory, NotMovable, InvalidCriteria, ...);
void remove () raises (NotRemovable);

};

...

}; // end module

95

implementierten Objekttyp eine eigene sog. Factory geben. Diese enthält eine Methode zum
Erzeugen und Initialisieren eines Objektes, das im selben Adreßraum wie die Factory angelegt
wird. Die Signatur dieser Methode ist allerdings nicht standardisiert. Das erzeugte Objekt
implementiert dann das interface LifeCycleObject, welches die Methoden copy, move und
remove definiert (siehe IDL-Definitionen in Beispiel 4.7). Dieses interface wird also nicht
vom Service, sondern von den einzelnen CORBA-Objekten selbst implementiert.

Zur Unterstützung der Operationen copy und move, deren Semantik eigentlich der ortstranspa-
renten Verarbeitung von CORBA widerspricht, wurden sog. FactoryFinder eingeführt. Sie
repräsentieren quasi den Adreßraum, in den die Objekte kopiert oder migriert werden sollen.
Referenzen auf FactoryFinder kann man beispielsweise über den Naming Service erhalten.
Der prinzipielle Ablauf der Operation copy wird durch die linke Hälfte von Abbildung 4.12 ver-
anschaulicht. Ziel ist es, das Objekt X von Server 1 auf Server 2 zu kopieren. Beide Server basie-
ren auf der gleichen Implementierung und dem selben ORB. Die Implementierung der copy-
Methode des Objektes X lokalisiert zuerst einen FactoryFinder auf dem Server 2 (z.B. über
den Naming Service) und ruft dessen Methode find_factories auf (❶), die anhand der über-
gebenen Kriterien eine entsprechende Factory sucht (❷) und eine Referenz darauf an die aufru-
fende copy-Methode zurück gibt. Diese ruft die nicht standardisierte create-Methode der Fac-
tory auf und übergibt dabei den Zustand des zu kopierenden Objektes in einem internen Format
(❸). Die Factory erzeugt anschließend die eigentliche Kopie des Objektes (X’, ❹) und gibt eine
neue Objektreferenz an die copy-Methode des ursprünglichen Objektes zurück. Im Fall der
move-Operation müßte außerdem die alte Objektreferenz gültig bleiben, d.h. die ID eines
Objektes ist dann ebenfalls zu transferieren (anschließend muß natürlich das alte Objekt
gelöscht werden).

Abb. 4.12: Illustration der Operation copy des Lifecycle Service

Object X

interface A

copy

FactFind2

FactoryFinder

find_factories

Factory_A2

Factory_for_A

create

Object X’

interface A

❷ Lokalisiere über Kriterium

Erzeuge und initialisiere Kopie von X
❹

Server 2

Server 1

❶

❸

Internes
Protokoll

FactFind3

FactoryFinder

find_factories

Factory_A3

Factory_for_A

create

� ??? Kriterium bekannt ???

Server 3

Kompatible
Protokolle

???

�

�

ORB 1 ORB 2

96

Problematisch ist nun die Anwendung der Operationen des Lifecycle Service beim Einsatz ver-
schiedener Server-Implementierungen oder gar mehrerer CORBA-Systeme. Wie bereits
erwähnt ist das interface LifeCycleObject von jedem einzelnen CORBA-Objekt selbst zu
implementieren. Dies ist sinnvoll, da nur sie bzw. die korrespondierenden Factories Kenntnis
über den internen Zustand und notwendige Initialisierungen haben. Gleichzeitig kann ein ande-
rer Server die gleichen IDL-Schnittstellen natürlich vollkommen anders implementieren und
auch andere Factories definieren. Wie soll nun aber z.B. die Implementierung der copy-Opera-
tion von Objekt X eine Kopie auf Server 3, der auf einer anderen Implementierung und einem
anderen ORB basiert, anlegen? Eine Referenz auf einen FactoryFinder von Server 3 kann
sicherlich erworben werden (�), aber kann dieser die übergebenen Kriterien nutzen, um eine
entsprechende Factory zu finden (�)? Selbst wenn diese Operation erfolgreich ist, so wird spä-
testens ein Aufruf der create-Methode der Factory scheitern (�), da hierfür ein internes Pro-
tokoll der jeweiligen Implementierung verwendet wird. Was passiert weiterhin, wenn Objekt X
Referenzen auf offene Dateien hält, auf die Server 3 keinen Zugriff hat? Diese Fragen sind bis-
her ungelöst und haben dazu geführt, daß fast kein CORBA-System einen Lifecycle Service ent-
hält. Uns ist lediglich eine Implementierung im Rahmen des IBM Component Broker [IBM98a]
bekannt, der copy und move aber nur intern zur Verfügung stellt. Letztendlich muß die Praxis-
tauglichkeit des aktuell spezifizierten LifeCycle Service mehr als bezweifelt werden. Nachdem
die meisten Operationen sowie implementierungsabhängig sind, kann man sie auch durch
interne Funktionen in den einzelnen CORBA-Servern realisieren.

4.3.4 Der CORBA Transaction Service

Mit dem Transaction Service soll eine transaktionsorientierte, konsistente und durch das System
kontrollierbare Verarbeitung von Daten ermöglicht werden, wie sie sich bereits seit Jahrzehnten
im Bereich von Datenbankverwaltungssystemen etabliert hat. Grundlage bildet in beiden Fällen
das ACID-Konzept [HR83], das hier aber an die Eigenschaften verteilter Objekte anzupassen
ist. Hierfür wurden mehrere Kategorien von Objekten und Servern definiert, deren Interaktion
mit dem Transaction Service in Abbildung 4.13 illustriert ist.

Abb. 4.13: Kategorien von Objekten bei Verwendung des CORBA Transaction Service

Jeder Client, der eine transaktionsbasierte Verarbeitung einleitet, ist automatisch ein Transac-
tional Client. Er muß dazu keine speziellen Schnittstellen implementieren. Zum Starten einer
neuen Transaktion (TA) erwirbt der Client über das ORB Interface (siehe Abbildung 4.2 auf

Transactional
Object Resource

Recoverable
Object

Transaction ServiceTransaction
Context

Transactional Client

Transactional Server Recoverable Server

BOT / EOT

Transactional

Operation

Rollback

Transactional

Operation

Register,
Rollback EOTEOT

97

Seite 79) eine Referenz auf das sog. current-Objekt des Transaction Service und ruft dessen
Methode begin auf (Begin of Transaction - BOT). Das current-Objekt repräsentiert dann den
Transaction Context, der bei jedem Aufruf einer transaktionsbasierten Methode an den Server
übergeben wird. Die Server-Objekte selber lassen sich in zwei Kategorien gliedern. Transactio-
nal Objects umfassen Methoden, die zwar innerhalb einer TA ausgeführt werden müssen, aber
nicht an der Commit-Phase beteiligt sind (die Objekte rufen nur weitere Methoden auf, enthalten
aber keinen persistent zu speichernden Zustand). Allerdings können sie eine TA bei Bedarf
zurücksetzen (Rollback). Recoverable Objects enthalten oder benutzen hingegen persistente
Daten, die im Rahmen einer TA verändert werden können. Sie müssen somit an der Commit-
Phase oder einem Rollback (den sie u.U. selbst initiiert haben) beteiligt werden. Häufig sind sie
mit einem oder mehreren Resource Objects assoziiert, die sie beim Transaction Service regi-
strieren lassen. Die Resource Objects kapseln allgemeine Ressourcen wie z.B. Datenquellen
(oder lediglich einzelne persistente Objekte). Sie sind ebenfalls an der Commit-Phase oder
einem Rollback beteiligt, können aber beides nicht initiieren. Transactional Clients können
jederzeit über das current-Object ein Commit oder Rollback einleiten und damit die TA been-
den (End of Transaction - EOT).

Die Spezifikation des Transaction Service definiert u.a. zwei Schnittstellen, die von den jewei-
ligen Server-Objekten zu implementieren sind und sie charakterisieren: Transactional Objects
implementieren das interface TransactionalObject, dessen IDL-Definition allerdings
einen leeren Rumpf hat. Es dient lediglich der Kennzeichnung der transaktionsbasierten Verar-
beitung auf der Ebene der IDL-Definitionen eines Servers. Resource Objects implementieren
das interface Resource mit den Methoden rollback, commit_one_phase, prepare und
commit. Sie unterstützen damit wahlweise ein ein- oder zweiphasiges Commit-Protokoll
[GR93]. Recoverable Objects implementieren einfach beide Schnittstellen.

Ergänzend zu der gerade diskutierten Kategorisierung von Objekten wurden zwei verschiedene
Transaktionsmodi spezifiziert: Beim impliziten Modus wird eine Referenz auf den Transaction
Context bei jedem Aufruf einer Methode automatisch vom ORB des Clients an den ORB des
Servers übetragen. Im expliziten Modus muß der Transaction Kontext explizit als Parameter
einer Methode in IDL spezifiziert und zur Laufzeit übergeben werden. In beiden Fällen gilt:
Wurde vom Client bisher keine TA gestartet, so löst der Server entweder eine Exception aus,
oder er führt die jeweilige Methode in einer neuen TA aus, die er auch gleich wieder beendet
(das Ergebnis der Methode läßt sich in diesem Fall also nicht mehr per Rollback zurücksetzen).

Die einzelnen Operationen und Protokolle des Transaction Service wurden so gewählt, daß eine
Integration von Systemen mit Transaktions- bzw. Resource-Managern gemäß den folgenden
Normen möglich ist [GR93]:

• X/Open TX Schnittstelle (X/Open Distributed Transaction Protocol)

• X/Open XA Schnittstelle (X/Open DTP compliant Resource Manager)

• OSI TP Protokoll (transactional protocol defined by ISO)

• SNA LU 6.2 Protokoll (transactional protocol defined by IBM)

• ODMG Standard [CB97]

98

Insgesamt kann man den Transaction Service als eine sehr sinnvolle und nötige Komponente zur
Integration von Transaktionen in eine CORBA-basierte Umgebung bezeichnen. Seine Spezifi-
kation ist aufgrund der Komplexität des Themas zwar sehr umfangreich, beschränkt sich aber
auf eine effektive Modellierung unbedingt notwendiger Aspekte. Optional werden sogar Nested
Transactions unterstützt [GR93, HR93]. Probleme entstehen lediglich durch die bereits ange-
sprochene Art der Modellierung von Objekten in CORBA: Es gibt einfach zu viele feingranu-
lare Objekte. Stellen diese alle ein Resource oder Recoverable Object dar, so steigt die benötigte
Kommunikation je Commit unangemessen und der Transaction Service wird schnell zum Fla-
schenhals. Modelliert man hingegen nur wenige dieser Objekte (z.B. als Database Wrapper),
so kann man prinzipiell eine sehr effiziente Verarbeitung erreichen.

4.3.5 Der CORBA Query Service

Einen ersten Schritt in Richtung mengenorientierter Verarbeitung von Daten und Objekten
wurde mit der Spezifikation des CORBA Query Service (QS) erreicht. Nachdem wir diese Form
der Verarbeitung schon mehrfach gefordert haben, wird der QS von wesentlicher Bedeutung für
die weitere Arbeit sein. Er definiert eine generische Schnittstelle, um Anfragen an beliebige
Datenquellen (also nicht nur DBVS) zu stellen. Daneben enthält die Spezifikation einige grund-
legende Aggregattypen (sog. Collections), die aber mittlerweile durch den Object Collection
Service (siehe Tabelle 4.2 auf Seite 87) abgelöst wurden. Das zugrundeliegende Verarbeitungs-
konzept des QS wird durch Abbildung 4.14-a illustriert: Clients senden Anfragen als string an
den QS, welcher das Ergebnis in einer Instanz des generischen IDL-Typs any zurückgibt.

Abb. 4.14: Architektur des CORBA Query Service

In Bezug auf die Anbindung an relationale Datenbankverwaltungssysteme (RDBVS) läßt sich
die Schnittstelle des QS sehr gut mit dem X/Open Call Level Interface (CLI, siehe [OG95]),
Microsofts Open Database Connectivity (ODBC, siehe [Mi95]) oder der Java Database Con-
nectivity (JDBC, siehe [Sun97a]) vergleichen. Dementsprechend kann man RDBVS auch recht
einfach über sog. Wrapper in eine CORBA-Umgebung integrieren (siehe Abbildung 4.14-b):
So könnte z.B. die SQL-Anfrage eines Clients vom Wrapper über das CLI an DB/2 weiterge-

DB/2

CLI Wrapper

QS Server Skeleton

X/Open CLI

QS Server Skeleton

O2

OQL Wrapper

QS Server Skeleton

OQL Interface

Applikation

QS Client Stub

Object Request Broker (ORB)

Query Engine

QS Server Skeleton

Datenquelle

Applikation

QS Client Stub

Object Request Broker (ORB)

Generierter Code

Code des DBVS

DJ Wrapper

Data Joiner

DB/2

IMS Oracle

Query (string)

Result (any)

(a) Allgemeine Architektur (b) Beispiel: Zugriff auf DBVS

99

leitet werden. Anschließend konvertiert der Wrapper das Ergebnis (eine Menge relationaler
Tupel) in eine sequence von IDL-Basistypen und sendet diese an den Client zurück (gekapselt
in einer Instanz vom Typ any). Will man sogar mehrere (R)DBVS auf einmal anbinden, so bietet
sich der Einsatz von DB-Middleware wie z.B. der IBM DataJoiner [IBM97] an (siehe auch
Kapitel 2.4.4.2). Auf derartige Systeme kann meist auch über das CLI, ODBC oder JDBC zuge-
griffen werden, so daß sie aus der Sicht des Wrappers wie ein einziges (R)DBVS wirken. Selbst
die Integration von ODMG-konformen OODBVS ist ähnlich. Nur werden in diesem Fall Anfra-
gen in OQL statt SQL formuliert. Außerdem sind natürlich komplexere Ergebnistypen denkbar.

Die Hierarchie der IDL-Schnittstellen des Query Service ist in Abbildung 4.15-a dargestellt.
Das interface QueryEvaluator beschreibt Methoden für ad-hoc-Anfragen und die Abfrage
der unterstützten Anfragesprachen (Query Language Types). Der QueryManager deklariert eine
ergänzende Methode zur Erzeugung sog. Query-Objekte für mehrfach benötigte Anfragen. Die
konkrete Anfrage muß dieser Methode als Parameter übergeben werden und läßt sich später
nicht mehr ändern (allerdings sind Parameter möglich). Das Query-Objekt selbst bietet dann
Methoden zum Vorübersetzen und Ausführen der Anfrage, zur Abfrage des Ergebnisses sowie
ein Status-Flag. Das interface Collection beschreibt einfache Aggregate, ist aber mittler-
weile durch den Collection Service abgelöst worden. Das interface QueryableCollection
enthält keine weiteren Methoden.

Der QS beschreibt zwei verschiedene Ebenen der Anfrageverarbeitung. Die erste bietet ledig-
lich die Möglichkeit für ad-hoc-Anfragen. Sie umfaßt die Schnittstellen QueryEvaluator und
QueryableCollection. Der Aufruf der execute-Methode des QueryEvaluator bewirkt
implizit das Übersetzen, Optimieren und Ausführen einer Anfrage, auch wenn die selbe
Anfrage mehrfach gestellt wird. Die zweite Ebene benutzt zusätzlich spezielle Query-Objekte.
Durch das Vorübersetzen häufig benutzter Anfragen lassen sich hier erhebliche Leistungsstei-
gerungen erzielen. Wir werden diese Ebene für eigene Implementierungen des QS benutzen
(siehe Kapitel 5.4.3 und 6.2.2). In beiden Ebenen wird (wie bereits erwähnt) das Ergebnis einer
Anfrage in Form einer Instanz des Typs any zurückgegeben. In dieser Instanz lassen sich belie-
bige Daten übertragen, deren Format in IDL definiert werden kann.

Abb. 4.15: Hierarchie der IDL-Schnittstellen des CORBA Query Service

Das interface QueryLanguageType beschreibt die Wurzel einer weiteren Hierarchie von
IDL-Schnittstellen, die allerdings leere Rümpfe haben (siehe Abbildung 4.15-b). Anhand dieser
Typen lassen sich die von einer QS-Implementierung unterstützten Anfragesprachen, also Syn-

Collection

QueryableCollection

Query

QueryManager

QueryEvaluator

QueryLanguageType

Vererbung
Assoziation

QueryLanguageType

SQLQuery OQL

SQL_92Query

OQL_Basic

OQL_93

OQL_93Basic
... ...

...

(a) Hierarchie der IDL-Schnittstellen (b) Hierarchie der Query Language Types

100

tax und Semantik des Anfrage-Strings, bestimmen. Derzeit muß ein QS entweder SQL_92Query,
OQL_93, OQL_93Basic oder eine Kombination dieser Sprachen unterstützen. Die Definition
einer neuen Anfragesprache setzt die Spezifikation einer weiteren IDL-Schnittstelle voraus, die
von mindestens einer der vordefinierten Schnittstellen erbt (angedeutet durch die jeweils drei
Punkte in Abbildung 4.15-b). Für weitergehende Informationen sei auf die Spezifikation des QS
verwiesen (Kapitel 11 von [OMG98h]).

Große Erwartungen werden derzeit in die Harmonisierung von SQL und OQL gesetzt. Sollten
diese Sprachen einmal eine ausreichende Überschneidung haben, so soll diese laut Angaben der
OMG als einzig zulässige Anfragesprache für den QS benutzt werden.

Eine Implementierung des QS kann selbstverständlich mit anderen Object Services kooperieren.
Zur Kopplung mit dem Transaction Service bietet es sich z.B. an, daß die Implementierung
eines QueryManagers gleichzeitig auch ein Resource oder Recoverable Object darstellt (siehe
Kapitel 4.3.4). Weiterhin bietet sich bei der Modellierung von Aggregaten und korrespondieren-
den Iteratoren natürlich die Verwendung des Collection Services an.

4.4 Entwurf und Programmierung in CORBA-Umgebungen
Nachdem wir bisher die Grundlagen von CORBA sowie ausgewählte Object Services diskutiert
haben, wollen wir nun den gesamten Entwicklungsprozeß in einer CORBA-Umgebung illu-
strieren. Dazu benutzen wir das bereits in Abbildung 2.3 auf Seite 31 eingeführte Beispiel eines
Reservierungssystems. Wir wollen an dieser Stelle die Ausführungsschicht der TRS-Kompo-
nente implementieren. CORBA dient hier in diesem Sinne also nur zur Überbrückung der Cli-
ent/Server-Grenze. Andererseits könnte man den TRS-Server aber auch als eine eigenständige
Komponente betrachten. Man beachte aber bitte, daß der Begriff CORBA Components von der
OMG in einem anderen Sinne verwendet wird (siehe Kapitel 4.7).

Abb. 4.16: Verarbeitungsszenario innerhalb der TRS-Komponente

Der TRS-Server soll im wesentlichen nur eine Methode zur Reservierung von Zügen anbieten.
Ist im gewünschten Zug kein Platz mehr frei, so soll eine Exception ausgelöst und die Möglich-
keit geboten werden, sich auf einer Warteliste einzutragen. Die Warteliste entspricht dabei
einem EventChannel des Event Service (Kapitel 4.3.1). Weiterhin soll die ganze Verarbeitung
durch den Einsatz des Transaction Service abgesichert werden. Hierfür ist der TRS-Server als

Reservierungssystem
im Reisebüro

CORBA
Transaction

Service

TRS
Client

CORBA
Event

Service

TRS Server

EventChannel
für ICE 982

Reservation
Service

.........

BOT

EOT
Reserve_Train

register

connect
create

create

connect

push

push

❶

❷ ❸
❹

❺
❻ �

�

101

Recoverable Object zu modellieren (siehe Kapitel 4.3.4). Dementsprechend benötigte IDL-
Schnittstellen sind in Beispiel 4.2 auf Seite 76 enthalten (wir haben sie bereits zur Illustration
der Eigenschaften von IDL benutzt). Das resultierende Verarbeitungsszenario ist in
Abbildung 4.16 dargestellt. Die linke Hälfte beschreibt die Rechnerumgebung im Reisebüro,
die rechte repräsentiert das Rechenzentrum der Deutschen Bahn AG.

Wir wollen nun kurz die einzelnen Schritte zur Durchführung einer Reservierung betrachten.
Zuerst einmal muß vom Reservierungssystem im Reisebüro eine neue Transaktion gestartet
werden (BOT). Nachdem wir auch die Buchung von Flügen, Hotels und Bahnfahrten innerhalb
einer einzigen TA unterstützen wollen, wird dieser Schritt i.a. von der globalen Komponente des
Reservierungssystems (und eben nicht vom TRS-Client) durchgeführt. Anschließend ruft der
TRS-Client die Methode ReserveTrain des Reservation_Service auf (❶). Dabei übergibt
der ORB automatisch den jeweiligen TA-Kontext. Der Reservation_Service registriert sich
daraufhin beim Transaction Service als Resource der laufenden TA (❷), um später an der Com-
mit- oder Rollback-Phase beteiligt zu werden. Ist ein Platz im gewünschten Zug (ICE 982) ver-
fügbar, so wird die Reservierung ausgeführt und das Ergebnis an den TRS-Client zurückgege-
ben. Ist der Zug bereits ausgebucht, so erstellt der Reservation_Service eine Warteliste für
diesen (sofern noch keine existiert). Dazu benutzt er den Event Service, der ihm eine Referenz
auf den neuen EventChannel zurückgibt (❸, ❹). Anschließend stellt er eine Verbindung zu die-
sem her (❺) und beendet die Abarbeitung der Methode ReserveTrain mit dem Auslösen der
Exception NoSeatAvailable. Als Attribut der Exception übergibt er dem Client gleichzeitig
eine Referenz auf den EventChannel. Will dieser über frei werdende Plätze informiert werden,
so kann er sich beim EventChannel als PushConsumer registrieren lassen (❻). Wird nun zu
einem späteren Zeitpunkt ein Platz im ICE 982 frei, so kann der TRS-Server eine Nachricht an
den EventChannel weiterleiten (�), der daraufhin alle TRS-Clients auf der Warteliste infor-
miert (�). Unabhängig vom Ausgang der Buchung kann das Reservierungssystem im Reise-
büro die laufende TA zu jedem Zeitpunkt beenden. Im Fall eines Rollback muß eine erfolgte
Buchung natürlich kostenlos storniert werden (was z.B. der Auslöser dafür sein könnte, daß ein
Platz in einem ausgebuchten Zug frei wird und die Abarbeitung der Warteliste beginnt).

Neben dieser funktionalen Betrachtung der Laufzeitaspekte wollen wir nun aber noch den
eigentlichen Entwicklungs- und Programmierprozeß untersuchen. Zunächst werden die IDL-
Definitionen aus Beispiel 4.2 auf Seite 76 als Eingabe für den IDL-Compiler benutzt, um die
Stubs und Skeletons in der jeweiligen Programmiersprache zu erzeugen. Genau genommen wird
eigentlich nur ein einziges Skeleton für das interface Reservation_Service generiert, das
nun zu implementieren ist. Neben der explizit enthaltenen Methode ReserveTrain und dem
Attribut status_flag müssen wir zusätzlich Code für die geerbten Schnittstellen des Event und
Transaction Service zur Verfügung stellen: connect_push_consumer aus dem interface
CosEventComm::PushSupplier sowie prepare, rollback, commit und commit_one_phase
aus dem interface CosTransactions::Resource (der Rumpf von CosTransactions::
TransactionalObject ist leer). Die Implementierungen dieser Methoden können natürlich auf
weitere Object Services zugreifen. Neben der Programmierung des Objektes
Reservation_Service muß natürlich noch ein Hauptprogramm für den TRS-Server geschrie-

102

ben werden, das aber im wesentlichen nur für die Initialisierung des Objektes sowie dessen
implizite Registrierung beim Objekt-Adapter sorgt (evtl. bietet sich noch ein Eintrag beim
Naming Service an). Damit ist der Server dann für externe Clients verfügbar.

Für die Realisierung des TRS-Clients reicht nun aber nicht alleine die Verwendung der gene-
rierten Client Stubs aus. Vielmehr ist auch hier ein neues CORBA-Objekt zu realisieren. Es muß
das interface CosEventComm::PushConsumer mit den Methoden push und
disconnect_push_consumer implementieren, damit der TRS-Client dem EventChannel
gegenüber als Push Consumer auftreten kann. Anschließend ist der TRS-Client in das globale
Reservierungssystem des Reisebüros einzubetten.

Für eine detailliertere Einführung in die Programmierung in CORBA-Umgebungen sei auf
[Red96] verwiesen. Dieses Buch behandelt die Implementierung von Software in den Program-
miersprachen C++ und Java. Es basiert auf den CORBA-Systemen Orbix bzw. OrbixWeb von
IONA (siehe Kapitel 4.6.1).

4.5 Modellierung von Daten-Objekten, Migration und
Leistungsaspekte

Die Modellierung von Datenobjekten kann in CORBA 2.2 auf zwei Arten erfolgen. Die erste ist
die Spezifikation von IDL-Datenstrukturen mit dem Schlüsselwort struct (z.B. ResData und
Seat in Beispiel 4.1 auf Seite 75). Diese werden in objektorientierten Programmiersprachen auf
jeweils eine Klasse abgebildet. Gegenüber dem aus C++ bekannten struct-Konstrukt gibt es
in IDL aber zwei Einschränkungen: Es ist weder die Definition von Methoden noch die Angabe
einer Vererbungshierarchie möglich. Abhilfe schafft die andere Variante, nämlich die Benut-
zung des interface-Konstruktes von IDL. Dieses ist zwar primär für die Deklaration neuer
Services gedacht (z.B. der Reservation_Service in Beispiel 4.2 auf Seite 76), kann aber auch
zur Spezifikation von Objekten mit Daten (Attributen) und Funktionen (Methoden) verwendet
werden. Dabei wird unter anderem das von C++ bekannte Konzept der multiplen Vererbung
unterstützt. Für die Modellierung ganzer Hierarchien von Datenobjekten mit Methoden bleibt
also nur die letzte Möglichkeit. Leider führen beide Varianten aber zu unterschiedlichen Verar-
beitungsmodellen im ORB:

Strukturen (wie auch alle Werte von Basistypen) werden vom ORB bei Bedarf (z.B. bei der
Parameterübergabe) kopiert und weitergeleitet. Sie unterliegen keiner Registrierung durch den
ORB und werden auch nicht von einem Objekt-Adapter verwaltet. Dementsprechend gibt es
keine Kontrolle über angelegte Kopien, und es muß mit erheblichen Kohärenz-Problemen
gerechnet werden. Das CORBA-System bietet lediglich einige Klassen (sog. Handle-Klassen)
an, die das Speichermanagement für dynamisch allokierte Daten im jeweiligen Prozeß verein-
fachen. Bei der Übertragung dieser Instanzen werden vom ORB alle durch die Rechnerarchi-
tektur bedingten Konvertierungen vorgenommen (z.B. Little Endian in Big Endian usw).

103

Im Gegensatz dazu werden alle auf einem interface-Konstrukt basierenden Objekte beim
ORB registriert und in Kooperation mit einem Objekt-Adapter verwaltet. Sie werden grundsätz-
lich nicht kopiert und sind identifizierbar und strikt gekapselt: Clients erhalten nur Objektrefe-
renzen, niemals das Objekt selbst. Nachdem die derzeit verfügbaren Objekt-Adapter keine
Migration von Objekten unterstützen (siehe Kapitel 4.2.3), bleiben diese Objekte leider dauer-
haft im Adreßraum des Server-Prozesses, in dem sie angelegt wurden. Gleichzeitig stellt die
Modellierung über die interface-Klausel aber die einzige Möglichkeit dar, um Objekte mit
den Common Object Services (siehe Kapitel 4.3) interagieren zu lassen. Prinzipiell ergibt sich
dadurch natürlich die Möglichkeit, Objekte mit der move-Operation des Lifecycle Service zu
migrieren. Für einzelne Objekte mag dies u.U. möglich sein, jedoch ist das zugrundeliegende
Protokoll für das temporäre Caching größerer Objektmengen ungeeignet (siehe Kapitel 4.3.3).

Bedingt durch die zunehmende Kritik an den Möglichkeiten zur Modellierung von Objekten in
CORBA hat sich die OMG zur Erweiterung von IDL um einen sog. value-Typ entschieden. Die
Spezifikation ist mehr oder weniger abgeschlossen, jedoch wird diese Klausel frühestens mit
der Publikation von CORBA 2.3 standardisiert. Trotzdem wollen wir die zugrundeliegenden
Konzepte bereits an dieser Stelle diskutieren. Value-Objekte sind quasi eine Mischung aus
struct und interface. Sie unterstützen die Deklaration von Methoden und einfachen Verer-
bungsbeziehungen (allerdings keine multiple Vererbung), sind aber keine CORBA-Objekte im
eigentlichen Sinne: Wie Strukturen sind sie weder beim ORB registriert, noch werden sie durch
einen Objekt-Adapter verwaltet. Weiterhin unterliegen sie bei der Parameterübergabe der Call-
By-Value-Semantik (im Gegensatz zu Call-By-Reference bei interface-Objekten). Bei in-
Parametern würde der Zustand eines Objektes also vom Client zum Server kopiert und dort zur
Instantiierung eines Objektes mit genau diesem Zustand benutzt. Dafür muß der Server natür-
lich eine Implementierung dieses Objektes zur Verfügung stellen. Das neu erzeugte Objekt steht
dann in keinerlei Beziehung zum ursprünglichen Objekt mehr (beide Objekte existieren unab-
hängig voneinander). Bei der Parameterübergabe wird allerdings garantiert, daß jede value-
Instanz nur einmal übertragen und auf dem Server instanziiert wird. Benutzt man z.B. das glei-
che value-Objekt für zwei verschiedene Parameter einer Methode, so werden beide Parameter
auf dem Server durch das gleiche Objekt repräsentiert. In diesem Sinne wird also schon die
Identität von Objekten berücksichtigt (bei der Verwendung von Strukturen als Parameter wür-
den zwei Strukturen mit gleichem Inhalt übertragen und auf dem Server angelegt werden).

Value-Typen können von einem oder mehreren interface-Typen erben. Man spricht dabei
allerdings von unterstützen (Schlüsselwort support). Anders herum können interfaces aber
nicht von value-Typen erben. Durch die Verwendung von interfaces als Supertyp von value-
Typen wird erreicht, daß auch Instanzen von value-Typen beim ORB registriert werden (da sie
letztendlich Instanz eines interface-Typs sind). Allerdings läßt sich diese Technik nicht zur
Migration benutzen: Bei der Parameterübergabe wird immer noch der Zustand übergeben, um
anschließend eine neue Instanz mit dem gleichen Zustand anzulegen. Diese Instanz ist dann als
weiteres CORBA-Objekt registriert. Somit bleibt die Identität nicht gewahrt.

Eine abschließende Gegenüberstellung der wichtigsten Eigenschaften von Datenobjekten in
Abhängigkeit der jeweiligen Modellierung über die IDL-Klauseln struct, interface und
value ist in Tabelle 4.3 enthalten.

104

Tabelle 4.3: Eigenschaften von Daten-Objekten in CORBA

4.6 Verwendete CORBA-Systeme
An dieser Stelle wollen wir kurz auf die einzelnen Implementierungen von CORBA-Systemen
eingehen, mit denen wir in den letzten Jahren praktische Erfahrungen gesammelt haben. Neben
den hier vorgestellten Produkten gibt es natürlich noch eine Reihe weiterer Systeme auf dem
Markt. Unsere Auswahl bezog sich immer auf projektspezifische Kriterien und läßt sich somit
nicht als allgemeines Testurteil verstehen. Ein Übersicht mit weiteren Produkten befindet sich
z.B. in [iX98]. Aufgrund der rasanten Entwicklung dieser Technologie dürfte aber selbst diese
in kürzester Zeit überholt sein. Vor der Auswahl eines Systems sollte immer die erneute
Betrachtung des Marktes stehen.

4.6.1 Orbix

Orbix bzw. OrbixWeb wird von IONA Technologies in Irland entwickelt und ist ein zu CORBA
2.0 kompatibler ORB. Es steht jeweils eine Entwicklungsumgebung für C++ (Orbix) und Java
(OrbixWeb) zur Verfügung. Die verwendeten Versionen sind Orbix 2.3 MT [IONA98b] und
OrbixWeb 3.1 [IONA98c] auf der Plattform SUN Solaris. Orbix ist aber für fast alle gängigen
Plattformen verfügbar, u.a. auch MVS und OS/390. Kopplungen zu Windows-Plattformen und
DCOM sind über OrbixCOMet möglich. Die Entwicklungsumgebung für OrbixWeb wird hin-
gegen nur für Solaris, HP-UX und Windows angeboten. Aufgrund der Portabilität von Java läuft
der entwickelte Code aber auf allen Rechnern mit einer Java Virtual Machine.

Eigenschaft struct-
Objekte

interface-Objekte value-Objekte

Attribute ja ja ja

Methoden nein ja ja

Vererbung nein ja
(mehrfach)

ja
(einfach von value-Typen,

mehrfach von interfaces)

Registrierung/Verwaltung
durch ORB/Objekt-Adapter

nein ja bedingt
(nur bei interface-Supertypen)

Interaktion mit
Common Object Services

nein ja bedingt
(nur bei interface-Supertypen)

Migration nein
(Kopien)

bedingt
(über den LifeCycle Service)

nein
(Kopien)

Duplikate ja nein ja

Verfügbarkeit ja ja nein (CORBA 2.3)

105

Sowohl Orbix als auch OrbixWeb kommunizieren immer über das standardisierte IIOP (siehe
Kapitel 4.2.4) und lassen sich damit sowohl untereinander als auch mit anderen CORBA-Syste-
men koppeln. Sollte ein kompletter ORB in einer spezifischen Umgebung zu viele Ressourcen
benötigen (Speicher, CPU usw), so steht auch eine sog. IIOP Engine in Form einer C-Bibliothek
zur Verfügung. Mit ihr kann eine rudimentäre Kommunikation auf Basis des GIOP/IIOP
erreicht werden, die aber keine weitere Funktionalität von CORBA bietet.

Ergänzend zum ORB (Orbix bzw. OrbixWeb) werden von IONA einige Services und Adapter
angeboten. Diese stellen aber eigene Produkte dar und sind dementsprechend extra zu erwerben.
Verfügbar sind ein Naming Service (OrbixNames), ein Event Service (OrbixEvents bzw.
OrbixTalk und Orbix+MQSeries), ein Trading Service (OrbixTrader), ein Transaction Service
(OrbixOTS) sowie ein Security Service (OrbixSecurity). Letzterer basiert auf OrbixSSL, wel-
ches die Kommunikation über IIOP durch eine mittels SSL abgesicherte Variante des IIOP
ersetzt. Die Kombination aus Orbix und allen Object Services kann komplett als OrbixOTM
(Orbix Transaction Monitor) bezogen werden. Neben diesen Produkten gibt es noch spezifische
Adapter zum Zugriff auf die objektorientierten DBVS Versant und ObjectStore sowie ein gener-
isches Object Database Adapter Framework (ODAF), mit dem sich weitere Adapter erstellen
lassen [IONA97]. Ohne diese Adapter verwendet Orbix immer den Basic Object Adapter
(BOA) zur Einbettung von Objekten. Der Portable Object Adapter (POA) aus CORBA 2.2 wird
noch nicht unterstützt.

Streng nach Spezifikation lassen sich mit dem ODAF erstellte Adapter als Object Oriented
Database Adapter (OODA) von CORBA 2.0 bezeichnen, sie unterstützen allerdings nicht die
von uns geforderte Migration von Objekten bzw. Objektmengen (siehe auch Abschnitt 4.2.3.2).
Wir werden das ODAF trotzdem noch genauer in Kapitel 5.4.10 (Modellierung) sowie
Kapitel 6.2.4 (Prototyp) diskutieren. An dieser Stelle betrachten wir dann auch einige Erweite-
rungen von Orbix gegenüber dem CORBA-Standard: So lassen sich Objekte mit einem Marker
versehen, welcher die benutzerdefinierte Identifikation von Instanzen ermöglicht. Außerdem
kann die effiziente Registrierung und Erzeugung von Objekten über sog. Loader kontrolliert
werden. Einfaches Caching einzelner Attribute auf dem Client läßt sich schließlich über Smart
Proxies erreichen, die quasi modifizierte Client Stubs darstellen.

Weitere Informationen und White Paper zur Produktfamilie von Orbix lassen sich auf der
WWW-Seite von IONA finden (www.iona.com).

4.6.2 ORBacus

Das zweite von uns verwendete CORBA-System ist ORBacus (ehemals OmniBroker) von
Object Oriented Concepts (OOC). Das System unterliegt der Royalty-Free Public License und
ist damit für die nicht kommerzielle Nutzung kostenlos verfügbar. Es kann inklusive dem
Source Code aus dem Internet heruntergeladen werden (www.ooc.com). Die enthaltenen Make-
files gestatten eine komfortable Installation auf fast allen Pattformen. Für uns war insbesondere
die Verfügbarkeit unter Linux entscheidend. ORBacus gibt es für C++ und Java [OOC98]. Die
aktuelle Version ist 3.1.1, unter Linux haben wir aufgrund von Problemen mit dem Compiler
z.T. aber noch Version 3.0.1 benutzt. ORBacus basiert generell auf der Kommunikation über das

106

IIOP. Die Basis-Installation umfaßt bereits Naming, Event und Property Services. Außerdem
gibt es ein Plug In zur sicheren Kommunikation über SSL (ORBacusSSL), das aber keinen
Security Service realisiert. Weiterhin kann ein separater Trading Service erworben werden. Die-
ser ist allerdings generell kostenpflichtig. Durch den freien Source Code lassen sich im Prinzip
eigene Ergänzungen des ORB sowie weitere Object Services entwickeln. Dieses wird von OOC
auch ausdrücklich unterstützt.

Besonders positiv fällt beim ORBacus das Handbuch auf: Es ist gegenüber Orbix zwar relativ
knapp gehalten (und eher für den erfahrenen CORBA-Programmierer gedacht), enthält aber
genaue Hinweise darauf, welche Methoden denn nun konform zum Standard sind und welche
proprietäre Ergänzungen realisieren.

Weitere Informationen, Handbücher sowie ORBacus selbst können wiederum vom WWW-Ser-
ver bezogen werden (www.ooc.com bzw. www.ooc.de).

4.6.3 Component Broker

Der Component Broker (CB) von IBM enthält neben dem ORB und fast allen Object Services
eine mächtige Entwicklungs- und Laufzeitumgebung [IBM98a]. Der Entwickler kann sein
Business Model z.B. in UML grafisch spezifizieren und es direkt in den ObjectBuilder (OB) von
CB importieren. Mit dem OB können dann alle erforderlichen Objekte sowie die Anbindung an
persistente Speichermedien (z.B. DBVS) generiert werden [IBM98b, IBM98c]. Der Entwickler
braucht sich dabei nicht mehr um die Programmierung für die recht komplexe Interaktion mit
den Object Services zu kümmern, kann dies bei Bedarf aber tun [IBM98d]. Zwar benutzt der
CB intern die von der OMG standardisierten Schnittstellen, letztendlich kann man den CB und
seine Vielzahl von Erweiterungen aber nicht mehr als CORBA-System im eigentlichen Sinne,
sondern nur als eine Middleware-Lösung auf einer höheren Ebene ansehen. Dieser Aspekt wird
von IBM auch betont. Neben der Konformität zu CORBA ist IBM weiterhin bestrebt, eine Har-
monisierung mit Enterprise Java Beans (EJB, siehe [Sun98a]) zu ermöglichen. Genau genom-
men bildet der CB bereits ein auf EJB basierendes, aber deutlich allgemeineres Komponenten-
modell an.

Die Beta-Version 1.3 des CB wurde im November und Dezember 1998 im Rahmen einer kon-
zernweiten Evaluierung bei DaimlerChrysler getestet [DC99]. Wir waren dabei für das Arbeits-
paket „Architektur und Standardkonformität“ verantwortlich. Zu diesem Zeitpunkt war nur eine
Implementierung für Windows NT verfügbar. Zum Betrieb von CB sind ein leistungsfähiger
Rechner (Pentium II mit 400 MHz, 256 MByte Hauptspeicher und 10 GByte Festplatte) sowie
weitere Software-Pakete nötig: Das DBVS DB/2, Visual Age für C++ und Java, JDK 1.1.6,
Rational Rose (für die Modellierung in UML) und DCE (siehe auch Kapitel 4.8.1) als Basis für
den Naming und Security Service. Neben einigen Bugs fiel uns beim CB insbesondere die unnö-
tig hohe Kommunikation beim Zugriff auf Attribute auf: Entsprechend der Philosophie von
CORBA werden Datenobjekte vom OB mittels der interface-Klausel von IDL auf viele fein-
granulare Objekte abgebildet (siehe auch Kapitel 4.5). Bei der Kopplung zu DBVS erhöht sich
die Anzahl der Objekte noch durch ein oder mehrere Abstraktionsstufen: Es gibt jeweils ein
vom Speichermedium unabhängiges Data Object (DO) sowie ein oder mehrere Persistent

107

Objects (PO). Letztere sind für den DB-Zugriff und evtl. benötigte Abbildungen der Datenmo-
delle (z.B. relational auf objektorientiert) zuständig. Obwohl eine Kapselung und Schichtenbil-
dung grundsätzlich zu begrüßen ist, so befürchten wir an dieser Stelle doch erhebliche Lei-
stungseinbußen. Eine kleinere Testimplementierung auf Basis der Beta-Version zeigte jeden-
falls kein akzeptables Laufzeitverhalten. Konkrete Messungen, Leistungsbeurteilungen und
allgemeine Bewertungen sollten aber erst anhand der ersten kommerziell verfügbaren Version
2.0 erstellt werden. Diese wird noch Jahre 1999 erwartet. Von IBM wird in diesem Zusammen-
hang auch betont, daß Windows NT mehr als Entwicklungsplattform gedacht ist, während OS/
390 die eigentliche Plattform für leistungsfähige Laufzeitumgebungen darstellt.

Neben der bereits angesprochenen Untersuchung haben wir den Component Broker für keine
weitere Implementierung im Rahmen der vorliegenden Arbeit genutzt. Bedingt durch den Beta-
Status von CB wären hier keine sinnvollen Ergebnisse zu erwarten gewesen.

4.7 Komponenten in CORBA
Betrachtet man den Umfang und die Mächtigkeit von IDL, so fällt schnell die fehlende Mög-
lichkeit zur Spezifikation der Semantik von Methoden auf. Zur Modellierung von Komponenten
entsprechend unserer Definition aus Kapitel 2.1 wäre dies aber nötig. Eine reine Beschreibung
der Syntax von Schnittstellen erscheint wenig hilfreich. Die OMG hat diesen Punkt auch
erkannt und die Spezifikation der Business Object Component Architecture (BOCA) sowie der
zugehörigen Component Description Language (CDL) eingeleitet. Daneben gibt es noch die
CORBA Components, die aber eher implementierungsnahe Details sowie die Installation von
Software betreffen. Im folgenden wollen wir beide Entwicklungen kurz vorstellen.

4.7.1 Die Business Object Component Architecture (BOCA)

Mit Hilfe der Business Object Component Architecture [OMG98b] soll eine grundlegende
Architektur sowie eine Schnittstellenbeschreibungssprache für Komponenten geschaffen wer-
den. Nachdem IDL hierfür nicht ausreichend ist, wurde die Component Description Language
(CDL) entwickelt. Mit ihrer Hilfe läßt sich die Semantik von Komponenten beschreiben (z.B.
über Vor- und Nachbedingungen von Methoden oder globale Regeln). Mit Hilfe des CDL to IDL
Mapping können dann IDL-Definitionen als Basis für die Implementierung generiert werden.
Ein Beispiel für die mögliche Anwendung der BOCA und CDL zur Definition eines föderierten
API zur Integration verschiedener Anwendungssysteme ist in [SSSM99] enthalten. Die Details
sind im Rahmen dieser Arbeit nicht weiter von Interesse.

Leider wurden von der OMG die Arbeiten an der CDL mittlerweile wieder eingestellt. Statt des-
sen soll eine textuelle Beschreibung der UML entwickelt werden. Weiterhin ist auch die BOCA
selbst innerhalb der OMG umstritten, so daß ihr Status allgemein unklar ist. Aus diesem Grunde
wollen wir das Thema an dieser Stelle nicht weiter vertiefen und verweisen lieber auf aktuelle
Informationen der OMG (siehe www.omg.org).

108

4.7.2 CORBA Components

Orthogonal zur BOCA wird seit einiger Zeit an der Entwicklung der CORBA Components gear-
beitet, deren Spezifikation bisher noch nicht von der OMG verabschiedet wurde. Gleichzeitig
ist der Name etwas irreführend. Es handelt sich hier nicht um ein Komponentenmodell entspre-
chend unserer Definition in Kapitel 2.1, sondern um eine implementierungsnahe Modularisie-
rung von Software: Eine CORBA Component soll eine gekapselte Implementierung von Funk-
tionalität sein, deren Installation und Laufzeitverhalten klar spezifiziert sind. Sie sollen die
Portabilität von Software sowie die Erstellung von Applikationen vereinfachen [OMG98g]:

“CORBA components extend the CORBA core object model and introduce a deploy-
ment model into the OMA. They also provide a higher level of abstraction of CORBA
and object services, greatly simplifying CORBA application development.”

CORBA Components sind angelehnt an das Komponentenmodell der Enterprise Java Beans
(EJB, siehe [Sun98a]) und basieren auf neuesten Entwicklungen der OMG: Dem IDL value
type (Kapitel 4.5), dem Portable Object Adapter (POA, Kapitel 4.2.3.3), dem Persistent State
Service (PSS, Kapitel 4.3.2) sowie dem Notification Service (Kapitel 4.3.1 und [OMG98c]).
Ergänzend dazu definieren die CORBA Components den neuen und für sie zentralen IDL-Typ
component. Analog zu EJB und DCOM (siehe Kapitel 4.8.2) bietet jede CORBA Component
genau ein standardisiertes Component Interface sowie eine Menge weiterer Schnittstellen an.
Letztere beschreiben die eigentliche Funktionalität der CORBA Component. Über das Compo-
nent Interface kann die Menge der angebotenen Schnittstellen abgefragt sowie eine Referenz
auf Objekte erworben werden, welche die jeweilige Funktionalität implementieren. Alle
Schnittstellen von Objekten und Methoden werden wie gewohnt als IDL interface modelliert,
so daß keine Spezifikation der Semantik von Methoden möglich ist. Dies ist auch der Grund
dafür, daß wir die CORBA Components nicht als vollständiges Komponentenmodell ansehen.

Zur Verbreitung und Installation von CORBA Components enthält die Spezifikation einen
XML-basierten Component Descriptor. Dieser beschreibt die Eigenschaften der jeweiligen
Implementierung (Sprache, Version, Autor, Abhängigkeiten, bevorzugter ORB, Lizenzen usw).

Eine umfangreiche Beschreibung des Laufzeitverhaltens von CORBA Components (z.B. die
Interaktion mit dem Transaction Service) sowie ein eigenes Component Meta-Model ist eben-
falls Bestandteil der Spezifikation.

4.8 Abgrenzung zu anderen Middleware-Lösungen
Neben dem CORBA-Standard gibt es natürlich weitere Middleware-Produkte und Standards,
deren Aufzählung alleine den Rahmen dieser Arbeit sprengen würde. Wir wollen uns deshalb
auf die Lösungen beschränken, die weit verbreitet sind und eine ernsthafte Alternative zu
CORBA darstellen. Dies sind im wesentlichen das Distributed Computing Environment (DCE)
der Open Systems Foundation (OSF, siehe Kapitel 4.8.1), Microsofts (D)COM/OLE
(Kapitel 4.8.2) und IBMs Distributed System Object Model (DSOM, Kapitel 4.8.3). Ergänzend

109

dazu könnte man noch die bereits häufiger erwähnten Enterprise Java Beans (EJB) betrachten
[Sun98a]. Nachdem sich diese aber auf eine einzige Sprache beschränken und eine Harmonisie-
rung mit CORBA im Rahmen der CORBA Components (Kapitel 4.7.2) bereits in der Entwick-
lung ist, wollen wir sie an dieser Stelle nicht weiter betrachten.

4.8.1 DCE

Das Distributed Computing Environment (DCE) wurde von der Open Systems Foundation
(OSF) mit einer ähnlichen Zielsetzung entwickelt wie CORBA [OHE94, OHE96]. Es regelt die
Interaktion in verteilten Umgebungen und umfaßt ebenfalls eine Interface Definiton Language
(IDL). Für die Kommunikation zwischen Objekten wurde der DCE-RPC (Remote Procedure
Call) definiert. Im Gegensatz zu CORBA gibt es aber nur zwei Services: Den Security und den
Cell Directory Service (CDS). Der Security Service ist direkt mit dem DCE-RPC verknüpft und
ermöglicht dementsprechend eine sichere Kommunikation. Der CDS entspricht quasi dem
Naming Service von CORBA.

In der Literatur wird häufig darum gestritten, ob DCE und CORBA nun konkurrierende oder
ergänzende Technologien sind [OHE96]. Wir vertreten die Ansicht, daß letzteres der Fall ist:
DCE hat quasi das gleiche Objektmodell und bildet eine mächtige Grundlage für eine sichere
und effiziente Kommunikation zwischen mehreren ORBs. Im CORBA-Standard ist das DCE/
ESIOP bereits als ein Beispiel für sog. Environment Specific Inter-ORB Protocols (siehe Kapitel
4.2.4) beschrieben. Es basiert auf dem DCE-RPC und ist aufgrund der höheren Sicherheit eine
gute Alternative zum IIOP. Ergänzend dazu wurde von IBM der Beweis für eine mögliche und
sinnvolle Integration der zugrundeliegenden Services erbracht: Der Component Broker benutzt
DCE bzw. CDS als Basis für den CORBA Security und Naming Service.

4.8.2 (D)COM, OLE und ActiveX

Parallel zu CORBA wurde von Microsoft das speziell auf die Windows-Plattform abgestimmte
Component Object Model (COM) und das darauf aufbauende Distributed Component Object
Model (DCOM) entwickelt [Ses98]. Mit dieser Technologie soll ebenfalls die Interaktion von
Komponenten in einer verteilten (Windows-)Umgebung ermöglicht werden. DCOM besitzt
ebenfalls eine Interface Definition Language (MS-IDL) und ist angelehnt an OSF DCE (aber
nicht kompatibel). (D)COM-Objekte werden meist entsprechend der Notation in
Abbildung 4.17 grafisch beschrieben. Jedes Objekt implementiert mindestens die Schnittstelle
IUnknown, die Methoden zur Steuerung der Lebensdauer von Instanzen sowie eine Möglichkeit
zur Abfrage aller unterstützten Schnittstellen eines Objektes bietet. Daneben kann jedes Objekt
weitere Schnittstellen implementieren, die aber von IUnknown erben müssen. Die Definition des
(D)COM-Objektes selbst besteht schließlich nur noch aus einer Aufzählung der unterstützten
Schnittstellen. Für jeden Objekt-Typ (Klasse) und jede Schnittstelle wird eine global eindeutige
ID erzeugt, die in der sog. Windows Registry gespeichert ist. Anhand dieser Klassen-ID kann
ein Client die Erzeugung eines neuen (D)COM-Objektes initiieren. Im Unterschied zu CORBA
gibt es in DCOM keine Object Services, sondern nur eine auf der Windows Registry basierende

110

Laufzeitumgebung. In dieser werden u.a. alle verfügbaren Implementierungen zu einer Klassen-
ID gespeichert. Zur Erzeugung eines Objektes sucht die (D)COM-Laufzeitumgebung nach
einer Implementierung der gewünschten Klasse und leitet die Instantiierung im Adreßraum des
zugehörigen Server-Prozesses ein. Clients erhalten grundsätzlich keine Referenz auf das eigent-
liche Objekt, sondern nur eine Referenz auf eine ausgewählte Schnittstelle des Objektes. Nach
der Erzeugung eines neuen Objektes wäre dies z.B. ein Zeiger auf die immer vorhandene
Schnittstelle IUnknown (❶). Über diese kann der Client nun eine Referenz auf eine andere
Schnittstelle erwerben (IUserDefIntf_1, ❷) und eine beliebige Methode von
IUserDefIntf_1 aufrufen (❸).

Abb. 4.17: Beschreibung und Benutzung der Schnittstellen von (D)COM-Objekten

Im Gegensatz zu CORBA unterstützt (D)COM nur einfache (statt multipler) Vererbung auf der
Ebene von Schnittstellen. Weiterhin ist in (D)COM überhaupt keine Vererbung auf der Ebene
der Implementierungen möglich. Im wesentlichen liegt dies an der komplexen Interaktion zwi-
schen der Laufzeitumgebung und der Windows Registry. CORBA läßt diesen Punkt hingegen
offen, da nur Schnittstellen (und eben keine Implementierungen) beschrieben werden. Detail-
liertere Informationen zu diesem Thema befinden sich in [Be98, Ses98].

Trotz aller Unterschiede kann man die Objektmodelle beider Technologien als ähnlich bezeich-
nen. Aus diesem Grund hat die OMG auch das Interworking Object Model definiert [RC98,
OMG98f]. Ausgehend von einer Charakterisierung der Unterschiede zwischen (D)COM und
CORBA definiert dieses Modell eine Integration beider Welten auf Basis einer bidirektionalen
Brücke, d.h. es können sowohl CORBA-Clients auf DCOM-Server als auch DCOM-Clients auf
CORBA-Server zugreifen. Eine ausgezeichnete Beschreibung der dabei zu lösenden Probleme
sowie eine Dokumentation der gravierendsten Unterschiede wurde im Rahmen einer Diplomar-
beit zur Integration zweier DCOM- und CORBA-basierter PDM-Systeme erarbeitet [Be98], auf
die an dieser Stelle verwiesen sei. Der Beweis für die Realisierbarkeit der spezifizierten Brücke
wurde u.a. durch das Produkt OrbixCOMet von IONA erbracht (siehe Kapitel 4.6.1), welches
die Interaktion des CORBA-Systems Orbix mit DCOM-Komponenten ermöglicht. Ein Ver-
gleich zwischen DCOM und CORBA auf Basis von Code-Fragmenten und zugrundeliegender
Kommunikationsmechanismen ist weiterhin in [CHY+97] enthalten.

Abschließend wollen wir noch kurz auf die ebenfalls von Microsoft definierten Konzepte Object
Linking and Embedding (OLE) und ActiveX eingehen. OLE wurde ursprünglich zur Bearbei-
tung sog. Verbunddokumente spezifiziert. Damit können einzelne Teile eines Dokumentes mit
unterschiedlichen Anwendungsprogrammen erstellt werden, ohne daß der Benutzer explizit
zwischen den einzelnen Programmen wechseln muß (die verfügbaren Funktionen werden auto-

(D)COM-Objekt(D)COM-Objekt

IUnknown

IUserDefIntf_1

IUserDefIntf_n
...(D)COM-ObjektClient

❸
❷

❶

111

matisch an den aktuellen Kontext angepaßt). ActiveX definiert hingegen nützliche Steuerele-
mente, die von allen Programmen genutzt werden können. Sie ermöglichen z.B. den Zugriff auf
spezielle Hardware (wie etwa eine Soundkarte). Mittlerweile lassen sich beide Technologien
aber als eine ergänzende Schicht oberhalb von DCOM ansehen. Es sind quasi DCOM-Kompo-
nenten mit spezifischen Schnittstellen. Deshalb ist weder für OLE, noch für ActiveX eine wei-
tere Harmonisierung mit CORBA nötig. Die o.g. Brücke zwischen DCOM und CORBA ist
bereits vollkommen ausreichend [Be98, Ses98].

4.8.3 (D)SOM

Ähnlich wie Microsoft hatte auch IBM ursprünglich ein eigenes Komponentenmodell mit dem
Namen System Object Model (SOM) entwickelt. Es ist speziell auf die OS/2-Plattform zuge-
schnitten und wurde mit der Netzwerkfähigkeit von OS/2 Warp Connect zum Distributed
System Object Model (DSOM) erweitert. Im Gegensatz zu Microsoft hat IBM aber von Anfang
an Wert auf die Kompatibilität zum CORBA-Standard gelegt und diesen schon in frühen Phasen
aktiv durch eigene Erfahrungen und Arbeiten bereichert. Insofern wird (D)SOM häufig auch als
ein zum Standard konformes CORBA-Produkt mit optionalen Erweiterungen angesehen
[Ses96]. Das Objektmodell stimmt überein und die IDL von (D)SOM basiert auf der OMG-IDL.
Dementsprechend ist auch keine Brücke zwischen beiden Modellen nötig - es ist einfach die
selbe Technologie. Belegt wird dies wiederum durch den Component Broker (siehe Kapitel
4.6.3): Die Version für Windows NT basiert z.T. auf der bewährten SOM-Technologie.

4.9 Zusammenfassung
In diesem Kapitel haben wir eine rudimentäre Einleitung in die Konzepte und Techniken des
CORBA-Standards gegeben sowie bereits auf einige Stärken und Schwächen hingewiesen.
Ausgehend von unseren Anforderungen aus Kapitel 1 haben wir CORBA dabei in zwei Rollen
betrachtet: Als Middleware und als Komponentenmodell. Für die erste Rolle bietet der Standard
eine umfangreiche Funktionalität, die lediglich im Bereich datenintensiver Anwendungen auf-
grund der feingranularen Modellierung und fehlender Konzepte zur Migration von Objektmen-
gen große Probleme bereitet. Wir werden diesen Aspekt in den nächsten Kapiteln noch genauer
beleuchten und mögliche Lösungen hierfür erarbeiten. Im Gegensatz dazu ist die Kernarchitek-
tur von CORBA in der Rolle eines Komponentenmodelles generell nicht ausreichend. Mit Hilfe
von IDL läßt sich nur die Syntax, aber eben nicht die Semantik von Schnittstellen beschreiben.
Mit der Definition der BOCA und einem Nachfolger der CDL (siehe Kapitel 4.7.1) versucht die
OMG nun dieses Defizit zu beseitigen. Nachdem die Standardisierung hier noch lange nicht
abgeschlossen bzw. unklar ist, wollen wir hier keine abschließende Bewertung zu diesem
Aspekt abgeben. Es sieht jedoch vielversprechend aus.

In Kapitel 4.8 haben wir schließlich noch erkannt, daß CORBA im Prinzip gar nicht mit anderen
Middleware-Lösungen wie (D)COM, DCE oder (D)SOM in Konkurrenz steht. Im Gegenteil,
die Objektmodelle aller Technologien sind ähnlich und eine Integration aller Systeme mit

112

CORBA ist bereits erfolgt. Somit gibt es auch keine Gewinner oder Verlierer. Alle Systeme wer-
den vermutlich in der Zukunft weiterhin nebeneinander existieren und kooperieren. Allerdings
ergibt sich dieses Resultat nur bei einem Vergleich in der Rolle von Middleware. Betrachtet man
die jeweiligen Ansätze eines Komponentenmodelles, so ergeben sich doch weitere Unter-
schiede. Vielfach kann eigentlich gar nicht mehr von einem Komponentenmodell (entsprechend
unserer Definition in Kapitel 2.1) gesprochen werden: DCE definiert im Prinzip nur eine Infra-
struktur zur Kommunikation und DCOM ist sehr eng auf die Windows-Plattform zugeschnitten.
Hier ergeben sich also starke Abhängigkeiten zur jeweiligen Implementierung, wie wir sie
eigentlich vermeiden wollen.

Letztendlich sollte aber noch einmal betont werden, daß sich insbesondere CORBA noch in der
Entwicklung befindet und positive wie auch negative Forschungsergebnisse immer noch Ein-
fluß auf die weitere Standardisierung nehmen können.

113

Kapitel 5
555

Datenquellen und Datenzugriff

Nach einer Diskussion der spezifischen Standards STEP und CORBA wollen wir uns nun wie-
der einem breiteren Thema widmen: der Datenversorgung von Systemen. Hier sind im Prinzip
zwei wesentliche Aspekte zu betrachten. Zunächst einmal stellt sich die Frage, wie und in wel-
chem Format Daten denn überhaupt gespeichert werden. Letztendlich entspricht dies einer Cha-
rakterisierung von Datenquellen, die aber ein weitaus größeres Spektrum umfassen als nur reine
Datenbankverwaltungssysteme (DBVS). Darauf aufbauend ist dann zu klären, welche Schnitt-
stellen für den Zugriff auf Datenquellen zur Verfügung stehen bzw. welche Formen des Zugriffs
aus Sicht einer Anwendung nützlich wären. Hierbei ist insbesondere die Kategorie der Anwen-
dung zu berücksichtigen: Handelt es sich um eine auftragsbezogene oder eine datenintensive
Verarbeitung? Ist dementsprechend reines Operation Shipping ausreichend oder muß man
umfangreiche Mechanismen zum Data Shipping (vgl. Kapitel 2.5) realisieren? Neben diesem
Aspekt ist häufig ein Bruch der Datenmodelle zu überbrücken: Beispielsweise sind moderne
Anwendungen meist objektorientiert modelliert, während langfristig gewachsene Datenbe-
stände häufig in relationalen DBVS gespeichert sind. Vielfach bietet es sich daher an, eine
Schicht oder Komponente zur Konvertierung der Datenmodelle einzuführen.

Bedingt durch unser Anwendungsszenario, dem Produktdatenmanagement (PDM), liegt der
Schwerpunkt dieses Kapitels klar auf Konzepten zur Unterstützung datenintensiver Umgebun-
gen mit einem objektorientierten Datenmodell innerhalb der Applikation. Auf dieser Ebene ist
insbesondere die Modellierung mit EXPRESS bzw. der Zugriff über SDAI zu ermöglichen
(siehe Kapitel 3). Gleichzeitig sollen aber alle Arten von Datenquellen unterstützt werden (also
nicht nur relationale oder objektorientierte DBVS). Unterhalb der Datenversorgungsschnitt-
stelle für die Applikation (beispielsweise SDAI) ist somit eine allgemeine Schicht zur Daten-
versorgung und Konvertierung unterschiedlicher Modelle nötig. Diese greift letztendlich auf die
eigentlichen Datenhaltungssysteme mit ihren jeweiligen Schnittstellen zu. Bei der Datenversor-
gung wird unser Fokus insbesondere auf Data Shipping in CORBA-basierten Systemen liegen.
Die so gewonnenen Ergebnisse dienen schließlich als Grundlage zur Definition der JavaSDAI-
Schnittstelle sowie dem Entwurf des zugehörigen Prototypen in Kapitel 6.

Im folgenden werden wir zunächst mit der Charakterisierung möglicher Datenquellen und ihren
typischen Zugriffsschnittstellen beginnen (Kapitel 5.1). Darauf aufbauend betrachten wir in
Kapitel 5.2 die Integration mehrerer Datenquellen über sog. DB-Middleware. Vielfach ist diese
aber noch auf relationale Verarbeitungskonzepte beschränkt, so daß wir in Kapitel 5.3 eine
ergänzende Abbildung von objektorientierten Datenmodellen auf relationale Schemata untersu-

114

chen. Kapitel 5.4 ist dann der Diskussion allgemeiner Datenversorgungsstrategien unter Ver-
wendung von CORBA gewidmet. Hierbei gehen wir sowohl auf die Modellierung mit IDL, den
möglichen Einsatz der Common Object Services, konzeptuelle Stärken und Schwächen des
Standards, verwandte Forschungsarbeiten und kommerzielle Produkte zur DB-Integration, als
auch auf proprietäre Erweiterungen ein. In Kapitel 5.5 betrachten wir abschließend noch Daten-
versorgungsstrategien und Techniken im Bereich des Intra-/Internet. Einen Schwerpunkt bildet
dabei die Sprache Java.

5.1 Charakterisierung von Datenquellen
Die wiederholte Verarbeitung größerer Mengen von Daten ist nur dann sinnvoll, wenn diese
auch persistent gespeichert werden können und nicht für jeden Verarbeitungsschritt erneut ein-
zugeben sind. Gleichzeitig ist es natürlich notwendig, daß sich einmal gespeicherte Daten auch
möglichst schnell wiederfinden lassen (effizienter Zugriff) bzw. Änderungsoperationen unter-
stützt werden. In den letzten Jahren hat sich in diesem Bereich der Einsatz der mittlerweile
hochgradig optimierten und effizienten Datenbankverwaltungssysteme (DBVS) etabliert. In
einigen Fällen (wie etwa digitalisierten Filmen oder großen Multimedia-Objekten) bietet sich
aber nach wie vor die Ablage in einfachen Dateien an. Daneben kann noch der Fall auftreten,
daß die eigentliche Datenquelle bereits durch ein spezielles Anwendungsprogramm gekapselt
wird. Dieses bietet dann nur ein meist proprietäres API (Application Programming Interface)
an, das von der konkreten Speicherung abstrahiert. Oftmals sind die Daten dabei nur das Ergeb-
nis komplexer Funktionsaufrufe, d.h. ein direkter Zugriff auf einzelne Daten ist evtl. gar nicht
möglich. Im folgenden wollen wir deshalb kurz auf einige Varianten von Datenquellen einge-
hen, nämlich die Datenspeicherung in Dateien (Kapitel 5.1.1), relationalen DBVS
(Kapitel 5.1.2), objektorientierten DBVS (Kapitel 5.1.3) sowie den neueren objektrelationalen
DBVS (Kapitel 5.1.4). Für eine Einführung in weitere Arten von DBVS (etwa auf dem Netz-
werkmodell basierende hierarchische Datenbanken) sei auf [Da94] verwiesen. In Kapitel 5.1.5
betrachten wir dann alternative Speicherungsformen und Schnittstellen, wie den gerade erwähn-
ten Datenzugriff über APIs ausgezeichneter Anwendungssysteme. Die Eigenschaften aller
betrachten Varianten von Datenquellen fassen wir abschließend in Kapitel 5.1.6 zusammen.

5.1.1 Dateien

Die Ablage von Daten in Dateien ist im Prinzip die älteste Form der persistenten Speicherung:
Jede Datei ist eine sequentielle Folge von Bytes, die man mit sehr einfachen Lese- und Schreib-
operationen bearbeiten kann. Früher war nur ein sequentielles Lesen und Schreiben vom
Anfang bis zum Ende einer Datei möglich, heutzutage wird meist auch die wahlfreie Positionie-
rung innerhalb einer Datei unterstützt. Schreibende Zugriffe, bei denen nachfolgende Daten-
sätze bei Bedarf automatisch verschoben werden, oder eine durch Transaktionen abgesicherte
Verarbeitung gibt es hingegen nicht. Die Zugriffsfunktionen stehen einem Programmierer im
allgemeinen als Bibliothek der verwendeten Programmiersprache zur Verfügung.

115

Aufgrund einer fehlenden Formatvorschrift sind Dateien sehr flexibel, bergen gleichzeitig aber
auch ein hohes Risiko: Wie stellt man sicher, daß der Inhalt einer Datei von jedem Programm
gleich interpretiert wird? Früher wurde das Format der Daten zur Einsparung von Speicherplatz
direkt in die Lese- und Schreibroutinen der Anwendungsprogramme eincodiert. In den Dateien
selber waren keine derartigen Metadaten enthalten. Dieser Zustand ist akzeptabel solange
immer nur die gleichen Anwendungen, deren Konsistenz von einem einzigen Administrator
überwacht wird, auf diese Dateien zugreifen. Mit der zunehmenden Vernetzung und dem Aus-
tausch von Daten ist dieser Ansatz aber zum Scheitern verurteilt. Es haben sich daher mehrere
standardisierte Dateiformate etabliert, deren Typ häufig über die Endung des Dateinamens
sowie einen Kopf mit Metadaten bestimmt wird. Beispiele hierfür sind die Multimedia-Formate
GIF, JPEG oder MPEG, die Strukturierung und Verknüpfung von Text-Dateien mit HTML
[RLA+98, Da+98] oder ASCII-basierte STEP Physical Files (siehe Kapitel 3) als Austausch-
format für das Produktdatenmanagement.

5.1.2 Relationale DBVS

Mit der Verwendung relationaler DBVS (RDBVS) steht ein mächtiges Werkzeug zur Verarbei-
tung großer Datenmengen zur Verfügung, dessen zugrundeliegende Technologie in den letzten
20 Jahren kontinuierlich verbessert wurde [Da94]. Das Schema einer relationalen Datenbank
besteht aus einer Menge von Tabellen, die jeweils eine Reihe von Attributen umfassen. Der Typ
von Attributen ist auf Basistypen für Zahlen, Zeichen, Zeichenketten sowie Zeitstempel und
Intervalle beschränkt. Ein Datensatz entspricht dann einer Zeile in einer Tabelle und wird als
Tupel bezeichnet. Die Identität von Tupeln wird in RDBVS nicht über eine ID, sondern über die
Daten selbst bestimmt. Dafür wird je Tabelle ein Attribut (bzw. eine Kombination mehrerer
Attribute) als Primärschlüssel definiert. Einfache Beziehungen (1:1 und n:1) werden ebenfalls
über den Wert der Daten modelliert, indem der Primärschlüssel des referenzierten Tupels in den
jeweiligen Datensatz aufgenommen wird. Kollektionstypen werden vom relationalen Modell
hingegen nicht unterstützt. Dies führt auch dazu, daß mehrwertige Beziehungen (n:m) nur über
eigenständige Tabellen zu realisieren sind, welche lediglich die beiden Primärschlüssel der
beteiligten Relationen umfassen. Vererbungskonzepte (Klassifikation und Generalisierung,
siehe [MMM93]) sind ebenfalls nicht enthalten. Regeln zur Zusicherung der Integrität des
Datenbestandes können hingegen bei den meisten RDBVS spezifiziert werden. Diese Funktio-
nalität ist aber weniger Bestandteil des relationalen Modells, sondern vielmehr eine proprietäre
Erweiterung der einzelnen RDBVS.

Zum Lesen und Schreiben von Tupeln steht die von der ISO standardisierte Structured Query
Language (SQL 2, siehe [DD97]) zur Verfügung. Sie ermöglicht eine mengenorientierte Anfra-
geverarbeitung. Jede Anfrage kann dabei von einem sog. Query Optimizer umgeschrieben und
damit (z.T. erheblich) beschleunigt werden. Jegliche Verarbeitung ist weiterhin durch ACID-
Transaktionen [HR83] abgesichert. Ist ein RDBVS als Client/Server-System ausgelegt, so fin-
det die gesamte Verarbeitung trotzdem auf dem Server statt. Der Client realisiert lediglich die
Schnittstelle zur Applikation, d.h. er leitet die Anfrage sowie evtl. nötige Parameter an den Ser-
ver weiter und gibt anschließend das Ergebnis (eine Multimenge relationaler Tupel) an die
Applikation zurück. Eine Pufferung von Daten im Client findet im allgemeinen nicht statt.

116

Beispiele für Schnittstellen zu RDBVS sind Embedded SQL [Da94], Remote Database Access
(RDA, siehe [DD97]), das X/Open SQL Call Level Interface (CLI, siehe [OG95]), Microsofts
Open Database Connectivity (ODBC, siehe [Mi95]) sowie die Java Database Connectivity
(JDBC, siehe [Sun97a]) von SUN. Alle diese Schnittstellen lassen sich sowohl für eine lokale,
wie auch für die gerade beschriebene Client/Server-basierte Verarbeitung benutzen.

5.1.3 Objektorientierte DBVS

Mit dem Einzug der objektorientierten Technologie in den achtziger Jahren stellte sich die
Frage, wie man denn Objekte am besten persistent speichern könnte. Als einfachste Lösung
erschien es, Persistenz als eine Eigenschaft von Objekten zu betrachten. Dementsprechend
brauchte man keine neue Modellierungssprache, sondern eine Möglichkeit diese Eigenschaft zu
beschreiben. Es entwickelten sich die objektorientierten DBVS (OODBVS). Sie stellen im
wesentlichen eine Erweiterung der jeweiligen Programmiersprache (meist C++) um persistente
Objekte dar. Dementsprechend gibt es in den ursprünglichen Systemen auch keine Anfragespra-
che oder eine mengenorientierte Verarbeitung, sondern lediglich eine Navigation über die in der
Programmiersprache definierten Referenzen zwischen einzelnen Objekten. Ein zum OODBVS
gehörender Precompiler erkennt die Deklarationen zur Persistenz und erzeugt daraus nötige
Befehle für die Laufzeitumgebung des OODBVS. Abgesehen vom explizit notwendigen Starten
und Beenden von Transaktionen ist die gesamte Verarbeitung (bzgl. Datenspeicherung) trans-
parent für die Applikation.

Durch die ursprünglich fehlende Standardisierung von OODBVS bzw. das Fehlen eines allge-
mein anerkannten Modelles (wie etwa dem relationalen Modell bei RDBVS) und die enge
Kopplung zu jeweils einer Programmiersprache entstanden viele Produkte mit sehr unterschied-
lichen Schnittstellen und Konzepten. Dementsprechend konnten Programme auch nur sehr
schwer auf mehrere OODBVS zugreifen oder gar von einem OODBVS auf ein anderes portiert
werden. Dieser Sachverhalt bewegte die Hersteller objektorientierter DBVS zur Gründung der
ODMG (Object Database Management Group) und zur Definition des ODMG-Standards
[CB97]. Dieser definiert ein abstraktes Objektmodell, eine Object Definition Language (ODL)
zur Modellierung von Persistenz, Aggregaten und Beziehungen sowie eine Object Query Lan-
guage (OQL) für eine rudimentäre, mengenorientierte Anfrageverarbeitung in objektorientier-
ten Umgebungen. Für konkrete Implementierungen gibt es dann sog. Language Bindings für die
gebräuchlichsten objektorientierten Programmiersprachen (C++, Smalltalk, Java). Die Kon-
zepte des ODMG-Standards, insbesondere ODL, sind sehr stark angelehnt an den CORBA-
Standard und dessen IDL (vgl. Kapitel 4). Dementsprechend gibt es auch schon einige Produkte
zur Kopplung von CORBA-Systemen und OODBVS, die häufig als OODA (vgl. Kapitel 4.2.3)
bezeichnet werden. Dabei auftretende Probleme werden wir noch genauer in Kapitel 5.4.10
betrachten.

So gut wie alle OODBVS sind als Client/Server-System realisiert. Im Gegensatz zu RDBVS
kann man hier allerdings drei verschiedene Architekturen unterscheiden, die jeweils ein anderes
Granulat zur Kommunikation zwischen Client- und Server-Komponenten des OODBVS benut-
zen [HMNR95]: Object Server, Page Server und Query Server. Beim Object und Page Server

117

ist der Server quasi nur für die Speicherung von Objekten bzw. Seiten und die Verwaltung von
Sperren zuständig. Die eigentliche Verarbeitung von Objekten geschieht vollständig auf dem
Client. Bei sehr komplexen Anfragen muß u.U. sogar die gesamte Datenbank zum Client trans-
feriert werden, obwohl das Ergebnis vielleicht nur wenige Objekte umfaßt. Beim Query Server
können hingegen Anfragen auf dem Server ausgewertet werden, der Client erhält jeweils nur
das Ergebnis.

Einen interessanten Aspekt bei OODBVS stellt weiterhin die Identität von Objekten und die
damit verbundene Realisierung von Referenzen dar. Jedes Objekt besitzt i.a. eine systemspezi-
fische ID, die unabhängig von den enthaltenen Daten ist und sich während der Lebensdauer
eines Objektes nicht verändert. Anhand dieser ID (oft auch als OID bezeichnet) kann jedes
Objekt in der Datenbank lokalisiert werden. Oftmals ist dies zugleich die einzige Möglichkeit
zur Identifikation, so daß Referenzen auf Objekte nur unter Benutzung dieser OID möglich sind.
Gleichzeitig soll zur Laufzeit aber eine Navigation zwischen Objekten analog zum Traversieren
von Zeigern im Hauptspeicher möglich sein (DB-Objekte sind aus Sicht der Applikation nur
ausgezeichnete Objekte im Adreßraum der Anwendung). Dementsprechend muß beim Einla-
gern von Objekten in den Puffer des OODBVS-Clients eine Konvertierung der Referenzen vom
ID-basierten Format auf dem Externspeicher zum Zeiger-basierten Format im Hauptspeicher
stattfinden. Man spricht an dieser Stelle von Pointer Swizzling [KK93].

5.1.4 Objektrelationale DBVS

Nachdem RDBVS keine ausreichende bzw. komfortable Unterstützung für objektorientierte
Anwendungen bieten und existierende OODBVS bisher nicht die erwartete und von RDBVS
bekannte Leistung erbrachten, wurde Mitte der achtziger Jahre die Entwicklung der sog. objekt-
relationalen DBVS (ORDBVS) eingeleitet. Sie stellen im Prinzip eine Einbettung objektorien-
tierter Technologie in das relationale Verarbeitungskonzept dar: Der Typ von Attributen einer
Tabelle ist nun nicht mehr auf die in Kapitel 5.1.2 beschriebenen Basistypen beschränkt, son-
dern es können dafür benutzerdefinierte Objekttypen spezifiziert werden. Diese Sichtweise ist
natürlich stark vereinfacht, im Rahmen der vorliegenden Arbeit aber ausreichend. Für eine ver-
tiefte Einführung in die Konzepte von ORDBVS sei z.B. auf [SBM98] verwiesen.

Zur Modellierung benutzerdefinierter Typen sowie zur Formulierung von Anfragen wird der
SQL-Standard derzeit von der ISO erweitert: SQL 3 soll die Basis für ORDBVS bilden, wäh-
rend die ältere Version SQL 2 weiterhin für RDBVS zur Verfügung steht. Aufgrund der noch
nicht ganz abgeschlossenen Standardisierung von SQL 3 haben wir diese Technologie aber noch
nicht zur Implementierung unseres Prototypen benutzt. Gleichzeitig ist allerdings zu betonen,
daß die Schnittstelle des CORBA Query Service (siehe Kapitel 4.3.5) bereits ausreichend für
den Einsatz von ORDBVS wäre (bei Verwendung von SQL 3 als Anfragesprache). Dementspre-
chend könnte unser in Kapitel 6.2.2 beschriebenes Data Module nach Abschluß der Standardi-
sierung ohne größere Probleme auf ORDBVS portiert werden. Dadurch würde die Implemen-
tierung sogar erheblich vereinfacht.

118

5.1.5 Durch Anwendungsprogramme gekapselte Datenquellen

Gerade bei der Integration existierender Systeme ist es häufig nicht möglich, direkten Zugriff
auf eine Datenquelle zu erhalten. Statt dessen müssen meist proprietäre API-Funktionen des zu
integrierenden Systems aufgerufen werden. Dies kann einerseits an dem monolithischen Cha-
rakter der zugrundeliegenden Software-Architektur liegen (es sind einfach keine Schnittstellen
für den direkten Datenzugriff vorgesehen), andererseits aber auch auf einer gewissen Form von
Zugriffsschutz und Integritätserhaltung basieren. Beispiele für derartige Architekturen sind
PDM-Systeme wie Metaphase [SDRC] oder SAP R/3 [SAP]. Sie stellen beide nur stark einge-
schränkte Schnittstellen für den externen Datenzugriff zur Verfügung. Bei SAP hätte eine
direkte Modifikation der Daten in den benutzten DBVS sogar fatale Folgen: Die Konsistenz von
Daten wird hier nicht durch Regeln innerhalb des DBVS überprüft, sondern im darüberliegen-
den SAP-System. Ein direkter Zugriff auf die DBVS, der nicht mit der SAP-Laufzeitumgebung
abgestimmt ist, könnte also die Integrität des gesamten Datenbestandes gefährden.

Will man o.g. Systeme als Datenquelle in eine Umgebung mit datenintensiver Verarbeitung
(Data Shipping) einbinden, so liegt das größte Problem in den Unterschieden der einzelnen
APIs und Datenformate: Vielfach haben die angebotenen Operationen zu viele Seiteneffekte
(d.h. Änderungen) im Anwendungssystem zur Folge, es ist auf bestimmte Informationen gar
kein Zugriff möglich oder der Schutz durch Transaktionen fehlt. Je nach Anforderungen sollte
dann eher auf Operation Shipping ausgewichen werden, bei dem direkt die Operationen des zu
integrierenden Systems angesprochen werden. Aufgrund der Komplexität des Themas können
wir diesen Aspekt im Rahmen der vorliegenden Arbeit aber nicht weiter vertiefen. Erste
Ansätze zur Integration heterogener APIs können z.B. [SSSM99] entnommen werden.

5.1.6 Zusammenfassung

In diesem Kapitel haben wir ausgewählte Formen von Datenquellen besprochen. Dateien stellen
die einfachste Form der Datenhaltung dar. Sie sind ausreichend für größere Objekte, die entwe-
der ganz oder gar nicht gelesen und nur selten modifiziert werden (z.B. Bilder im GIF- oder
JPEG-Format). DBVS bieten ein mächtiges Modell und eine durch Transaktionen abgesicherte
Verarbeitung an. Je nach Anforderung stehen relationale, objektorientierte oder objektrelatio-
nale DBVS zur Verfügung. Schwer zu charakterisieren sind hingegen Datenquellen, deren
Zugriff durch Anwendungsprogramme (AP) gekapselt ist. Hier muß unter Umständen eine API-
Integration und der Wechsel auf Operation Shipping erfolgen. Eine Gegenüberstellung der
wichtigsten Eigenschaften von Datenquellen ist in Tabelle 5.1 enthalten.

Betrachtet man jeweils das Zugriffsverhalten, so fällt bei Dateien ein Aspekt besonders auf:
Hier wirkt sich nämlich die Einfügereihenfolge auf den späteren Datenzugriff aus. Ohne den
Einsatz einer zusätzlichen Indexstruktur (und der Fähigkeit zur direkten Positionierung inner-
halb einer Datei) müssen bei der Suche nach einem Datum immer alle zuvor eingefügten Daten
gelesen werden. Bei RDBVS wird hingegen durch die mengenorientierte Verarbeitung von der
konkreten Einfügereihenfolge abstrahiert (sie ist für die Anwendung nicht mehr zu erkennen).
Ähnliches gilt für O(R)DBVS. Hier wird lediglich die Anordnung der Elemente innerhalb von
geordneten Kollektionen (Array und Liste) beibehalten - dies ist aber nötig und erwünscht.

119

Tabelle 5.1: Gegenüberstellung unterschiedlicher Formen von Datenquellen

Eigenschaft Dateien RDBVS OODBVS ORDBVS AP

Datenmodell keines relational objektorientiert relational mit OO-
Erweiterungen

proprietär

Modellierungssprache

-

SQL 2 - DDL keine bzw.
ODMG-ODL

SQL 3 - DDL
(geplant)

durch AP
bestimmt

Vererbung nein ja ja

Aggregate nein ja ja

Identifikation
von Daten

über Werte der
Daten

über eine OID über
Werte & OID

Darstellung
von Referenzen

über Werte
(Primär- und

Fremdschlüssel)

als
HSP-Zeiger

bzw. über OID

gemischt

Integritäts-
bedingungen

ja als Verhalten
von Objekten

ja

Typische Schnittstellen Read,
Write,
Seek

 Embedded SQL,
RDA,

X/Open CLI,
ODBC, JDBC

proprietär
bzw.

ODMG

bisher wie
RDBVS

(proprietäre
Erweiterungen)

proprietär

Anfragesprache - SQL 2 - DML keine bzw.
ODMG - OQL

SQL 3 - DML
(geplant)

durch AP
bestimmt

Zugriffsart sequentiell
bzw. index-
sequentiell

mengenorientiert navigierend mengenorientiert
und navigierend

Transaktionen nein ja (ACID) ja (ACID) ja (ACID)

Zugriffsverhalten
unabhängig von der
Einfügereihenfolge?

nein ja bedingt
(gilt z.B. nicht
für Aggregate)

bedingt
(s. OODVS)

Client/Server-basierte
Verarbeitung

bedingt
(z.B. NFS:
Network

File
System)

möglich fast immer möglich

durch AP
bestimmt

Anfrage-
verarbeitung

-

im Server im Client
(Object und

Page Server)
im Server

(Query Server)

im Server

Cache im Client nein ja nein

120

5.2 Integration und Zugriff über DB-Middleware
Im Zeitalter zunehmender Unternehmensfusionen und der damit verbundenen Integration von
Systemen und Datenbeständen kann häufig nicht mehr davon ausgegangen werden, daß alle von
einer Anwendung benötigten Daten in einer Datenquelle gespeichert sind bzw. durch ein einzi-
ges DBVS verwaltet werden. Gleichzeitig ist es aber wünschenswert, daß es aus Sicht der
Applikation jeweils nur eine einzige logische Datenquelle gibt. Dafür sind im wesentlichen
zwei Aspekte zu berücksichtigen. Zunächst muß auf der konzeptuellen Ebene eine einheitliche
Modellierung der Daten gefunden werden, d.h. die zugrundeliegenden Schemata der beteiligten
Datenquellen sind zu einem föderierten Schema zu integrieren [Sa98]. Anschließend gilt es
dann, die eher technische Problematik einer globalen Zugriffsschnittstelle zu lösen.

In Kapitel 2.4.4.2 haben wir bereits einen möglichen Ansatz zur Integration betrachtet: die Ver-
wendung kommerzieller DB-Middleware. Diese Systeme ermöglichen den homogenen Zugriff
auf heterogene Datenbestände, die durch mehrere DBVS verwaltet werden. Allerdings gibt es
dabei eine Reihe von Einschränkungen. So stehen auf der globalen Ebene meist nur relationale
bzw. an die Entwicklung von SQL3 angelehnte objektrelationale Konzepte zur Verfügung. Die
Modellierung des föderierten Schemas erfolgt dementsprechend über SQL-Sichten. Hier tritt
aber in vielen Fällen das Problem auf, daß die Propagierung von Änderungen an die zugrunde-
liegenden DBVS nicht entscheidbar ist und somit nur ein lesender Zugriff unterstützt werden
kann [Sa98]. Weiterhin gibt es bereits einige standardisierte globale Schemata (wie etwa die
Application Protocols des STEP-Standards, siehe Kapitel 3), die man an dieser Stelle gerne
benutzen würde. Teilweise gibt es sogar schon Konzepte zur Abbildung dieser globalen Sche-
mata auf heterogene Datenquellen, die auch einen schreibenden Zugriff unterstützen sollen. Als
Beispiele seien hier die sog. Mapping-Sprachen BRIITY [Sa96] und EXPRESS-X (STEP)
genannt.

Ein anderes Problem betrifft die zur Verfügung stehenden Schnittstellen. Aus Sicht der in
Kapitel 2.4.4.2 diskutierten Integration heterogener (O)RDBVS sind Embedded SQL, RDA, das
X/Open CLI, ODBC oder JDBC natürlich völlig ausreichend. Betrachtet man hingegen in
EXPRESS modellierte Datenmodelle (wie etwa die STEP APs), so wären Schnittstellen wie das
SDAI (Kapitel 3.2) angemessener. Ähnliches gilt allgemein für objektorientierte Schemata (es
gibt keine auf ODMG/OQL basierende DB-Middleware). Zwar könnte mit der Standardisie-
rung von SQL 3 evtl. eine Abbildung von EXPRESS auf das objektrelationale Modell erfolgen
[HLS98], dies hängt aber sehr stark von einer Unterstützung für multiple Vererbung ab. Und es
sieht derzeit so aus, daß SQL 3 keine multiple Vererbung unterstützten wird (die entstehenden
technischen Probleme sind bisher nur unzureichend gelöst).

Letztendlich stellt sich noch die Frage, auf welche Art denn Datenquellen wie Dateien oder
durch Anwendungsprogramme gekapselte Datenbestände zu integrieren sind. Diese bieten
keine Form von Anfrageverarbeitung an und können deshalb nur bedingt mit DB-Middleware
interagieren, die häufig auf SQL- oder OQL-basierte Schnittstellen der lokalen Datenquellen
angewiesen ist (sie ist primär auf die Anbindung lokaler DBVS ausgerichtet).

Wir erkennen also, daß DB-Middleware zur Bildung allgemeiner, integrierter Datenquellen
alleine nicht ausreichend ist. In den folgenden Kapiteln werden wir deshalb alternative bzw.
ergänzende Techniken diskutieren.

121

5.3 Abbildung objektorientierter Datenmodelle auf RDBVS
Soll eine objektorientiert modellierte Anwendung ihre Daten persistent in einem RDBVS spei-
chern, so sind die Attribute aller Klassen auf relationale Tabellen abzubilden. Dabei sollte einer-
seits die Semantik des zugrundeliegenden Datenmodells (wie z.B. Vererbungsbeziehungen)
erhalten bleiben, andererseits aber auch ein effizienter Zugriff über SQL-Anfragen ermöglicht
werden. Diesen z.T. widersprüchlichen Zielen werden wir uns im folgenden widmen. Die
Abbildung des Verhaltens von Objekten (d.h. den Methoden) ist hingegen nicht möglich.
Moderne RDBVS unterstützen zwar dynamische Aspekte wie Integritätsbedingungen oder sog.
ECA-Regeln [WC95], diese reichen meist aber nicht zur Abbildung allgemeiner Methoden der
Anwendungsprogramme aus. Außerdem würde dieser Schritt nur zu unerwünschter Replikation
von Code führen (auch OODBVS speichern keine Methoden oder Programme - sie benutzen
direkt das Anwendungsprogramm).

Bei der Abbildung einer Klassenhierarchie (und darin enthaltenen Attributen) auf relationale
Tabellen entstehen nun im wesentlichen die folgenden vier Probleme:

• Wie kann die Identität von Objekten modelliert und garantiert werden?

Objekte werden im allgemeinen über einen sog. Object Identifier (OID) identifiziert. Die-
ser ist in geeigneter Weise auf die Primärschlüssel der resultierenden Tabellen abzubilden.
Dabei muß beachtet werden, daß eine OID eindeutig bzgl. aller Sub- und Superklassen zu
sein hat.

• Wie werden Aggregate abgebildet?

Das relationale Modell unterstützt keine Modellierung von Aggregaten. Aus diesem Grund
müssen ergänzende Tabellen für jeden Typ von Aggregaten definiert werden. Beispiels-
weise könnte man eine Tabelle mit den drei Spalten AggrID, Index und Value definieren
[HLS98]. Ein Eintrag in einem Aggregat entspricht dann einem Tupel der Tabelle, welches
über AggrID (ID des Aggregates) und Index (Position innerhalb des Aggregates) identifi-
ziert wird. In Value ist der eigentliche Wert enthalten.

• Wie lassen sich Beziehungen zwischen Objekten darstellen?

In Kapitel 5.1.2 haben wir bereits erkannt, daß mehrwertige Beziehungen (1:n und m:n) auf
eigene Tabellen mit den Primärschlüsseln der beteiligten Tupel abgebildet werden. Diese
Lösung läßt sich hier übernehmen. Allerdings muß man darauf achten, daß sich Beziehun-
gen auch über Instanzen der Subklassen erstrecken können (und die Primärschlüssel eines
an der Beziehung beteiligten Typs u.U. auf mehrere Tabellen aufgeteilt sind, siehe folgen-
der Punkt).

• Inwieweit kann Vererbung durch relationale Tabellen nachgebildet werden?

Der schwierigste Punkt bei der Abbildung auf Tabellen ist die Wahl eines geeigneten Ver-
fahrens zur Darstellung der Vererbungshierarchie zwischen den gegebenen Klassen
[IBM98c, Lof98, Ma97, HLS98]. Man kann die Instanzen einer Typhierarchie entweder
entsprechend ihres Basistyps auf mehrere Tabellen partitionieren oder alle Instanzen der
gesamten Typhierarchie in einer einzigen Tabelle speichern. Beide Verfahren wollen wir im
folgenden anhand des in Abbildung 5.1 dargestellten Klassendiagramms veranschauli-
chen. Dabei gehen wir auch auf Auswirkungen auf die zuvor betrachteten drei Punkte ein.

122

Abb. 5.1: Abbildung von Klassenhierarchien auf partitionierte Tabellen

Produkt

ID
Name
Preis
Hersteller

PKW

AnzTüren
Sitzplätze

LKW

Nutzlast
ID Name Preis Hersteller

1 A-Klasse 35 000 Mercedes-Benz

2 SLK 60 000 Mercedes-Benz

3 Transporter 100 000 Mercedes-Benz

4 Monster Truck 500 000 Mercedes-Benz

5 Elch 70 Rhön Plüschtiere

ID AnzTüren Sitzplätze

1 5 5

2 2 2 + 2

ID Nutzlast

3 10 t

4 30 t

Tabelle für Produkt

Tabelle für PKW Tabelle für LKW

ID Name Preis Hersteller

5 Elch 70 Rhön Plüschtiere

Tabelle für Produkt

ID Name Preis Hersteller AnzTüren Sitzplätze

1 A-Klasse 35 000 Mercedes-Benz 5 5

2 SLK 60 000 Mercedes-Benz 2 2 + 2

Tabelle für PKW

ID Name Preis Hersteller Nutzlast

3 Transporter 100 000 Mercedes-Benz 10 t

4 Monster Truck 500 000 Mercedes-Benz 30 t

Tabelle für LKW

ID
eindeutig?

Horizontale
Partitionierung

Vertikale
Partitionierung

Objektorientiertes Klassendiagramm (UML)

123

Abb. 5.2: Abbildung von Klassenhierarchien auf eine einzige Tabelle

Die Aufteilung einer Typhierarchie auf mehrere Tabellen kann auf zwei verschiedene Arten
erfolgen (vgl. Abbildung 5.1): Bei der Vertikalen Partitionierung werden jeweils alle in einer
Klasse neu definierten Attribute sowie die OID in einer eigenen Tabelle gespeichert. Dieses Ver-
fahren hat zwei Vorteile: Zuerst einmal kann die Menge aller Instanzen einer Klasse (die auch
die Instanzen der Subklassen umfaßt) mit einer einzigen Anfrage auf die korrespondierende
Tabelle bestimmt werden. Dementsprechend läßt sich die Eindeutigkeit der OIDs einer Typhier-
archie auch mit einer simplen Integritätsbedingung auf der Tabelle für die allgemeinste Super-
klasse kontrollieren. Auf der anderen Seite ist die Abfrage aller Attribute einer Instanz aber nur
mittels einem SQL-Join über das OID-Attribut aller Tabellen der Typhierarchie möglich. Diese
Anfrage kann unter Umständen sehr teuer sein.

Entgegengesetzt ist es bei der Horizontalen Partitionierung: Hier werden jeweils alle Attribute
einer Klasse (also auch geerbte) in einer eigenen Tabelle gespeichert. Die Abfrage aller Attri-
bute einer spezifischen Instanz ist somit einfach (sofern der genaue Typ bekannt ist), die Bestim-
mung aller Instanzen einer Klasse ist hingegen komplizierter. Hierfür ist der Zugriff auf alle
Tabellen der jeweiligen Typhierarchie nötig. Ein ähnlich hoher Aufwand entsteht im Prinzip
auch bei der Überprüfung der Eindeutigkeit von OIDs. Dieser läßt sich allerdings vermeiden,
wenn man den Typ der Instanz in die OID einkodiert (z.B. die letzten drei Ziffern hierfür
benutzt). Dadurch enthält das ID-Attribut allerdings eine zusätzliche semantische Bedeutung,
die gut dokumentiert werden sollte (und vor allem mit der Verarbeitung und Erzeugung von
OIDs harmonieren muß).

ID Typ Name Preis Hersteller Anz-
Türen

Sitz-
plätze

Nutz-
last

1 PKW A-Klasse 35 000 Mercedes-Benz 5 5

2 PKW SLK 60 000 Mercedes-Benz 5 2 + 2

3 LKW Transporter 100 000 Mercedes-Benz 10 t

4 LKW Monster Truck 500 000 Mercedes-Benz 30 t

5 Produkt Elch 70 Rhön Plüschtiere

Tabelle für Produkt und alle Subklassen (explizite Attribute)

ID Typ Wert

1 PKW A-Klasse / 35 000 / Mercedes-Benz / 5 / 5

2 PKW SLK / 60 000 / Mercedes-Benz / 5 / 2 + 2

3 LKW Transporter / 100 000 / Mercedes-Benz / 10 t

4 LKW Monster Truck / 500 000 / Mercedes-Benz / 30 t

5 Produkt Elch / 70 / Rhön Plüschtiere

Tabelle für Produkt und alle Subklassen (generisch)

Abbildung ohne
Partitionierung

(typisiert oder generisch)

124

Unabhängig von der jeweiligen Partitionierung ist die Modellierung von Aggregaten und Bezie-
hungen. Sie kann über eigenständige Tabellen erfolgen (siehe oben und Kapitel 5.1.2). Ein
genereller Vorteil der Partitionierung ist weiterhin die kompakte Speicherung aller Attribute: In
jeder Tabelle werden alle Spalten von jedem Tupel sinnvoll mit Daten belegt.

Eine vollkommen andere Methode ist die Abbildung einer vollständigen Typhierarchie auf eine
einzige Tabelle (siehe Abbildung 5.2). Neben der OID muß hier im allgemeinen noch eine
Spalte mit dem genauen Typ eines Tupels (bzw. des korrespondierenden Objektes) definiert
werden. Unter Umständen läßt sich diese Information jedoch auch in der OID kodieren.

Wie bei der Partitionierung, so sind auch hier zwei verschiedene Arten der Abbildung zu unter-
scheiden: Bei der typisierten Methode werden alle Attribute aller Klassen auf jeweils eine
Spalte der relationalen Tabelle abgebildet. Für jede Instanz werden dann nur die Spalten für die
jeweils gültigen Attribute mit Werten belegt. Alle anderen Spalten enthalten sog. Nullwerte. Bei
umfangreichen Typhierarchien kann es dementsprechend zu sehr viel ungenutztem Speicher-
platz (sog. Sparsity) kommen. Andererseits lassen sich alle Nachteile der verschiedenen Parti-
tionierungsarten vermeiden.

Tabelle 5.2: Vergleich der Abbildungsverfahren von Klassenhierarchien auf Tabellen

Eine etwas ungewöhnliche und weniger verbreitete Form ist die generische Abbildung auf eine
Tabelle mit den drei Spalten ID, Type und Wert [Ma97]. Läßt sich die Typzugehörigkeit bereits
aus der ID extrahieren, so kann die Spalte Typ sogar eingespart werden. Die Spalte Wert ist vom
Typ VARCHAR oder CLOB (Character Large Object) und enthält einen String mit den konka-
tenierten Werten aller Attribute (getrennt durch ein spezielles Delimiter-Zeichen). Bei dieser
Variante ist aber keine wertbezogene Anfrageverarbeitung mehr möglich, sie kann lediglich für
den Zugriff auf Objekte über die OID bzw. den Typ dienen. Gleichzeitig werden allerdings alle
dargestellten Nachteile der bisherigen Verfahren vermieden. Wir werden dieses Verfahren des-
halb als Grundlage für ein JavaSDAI Data Module unseres Prototypen verwenden (siehe
Kapitel 6.2.3). Eine Gegenüberstellung aller vier Varianten ist in Tabelle 5.2 enthalten. Für eine
weiterführende Diskussion und eine beispielhafte Implementierung einer objektorientierten
Klassenbibliothek oberhalb eines RDBVS sei z.B. auf [RLPG96] verwiesen.

Partitionierung Abbildung auf eine Tabelle

vertikal horizontal typisiert generisch

Zugriff auf alle Instanzen einer Klasse
(inkl. der Instanzen aller Subklassen)

einfach teuer einfach einfach

Zugriff auf alle Attribute eines Objektes teuer einfach einfach einfach

Kontrolle der Eindeutigkeit von OIDs einfach teuer einfach einfach

Sparsity nein nein ja nein

Wertbezogener Zugriff und
Anfrageverarbeitung

ja ja ja nein
(nur OID / Typ)

125

5.4 Datenquellen und Data Shipping in CORBA-Umgebungen
Nachdem wir in den letzten Kapiteln die verschiedenen Formen von Datenquellen diskutiert
sowie die Integration mehrerer DBVS über DB-Middleware und eine Abbildung objektorien-
tierter Strukturen auf relationale Tabellen betrachtet haben, so wollen wir uns in diesem Kapitel
nun der zentralen Frage der vorliegenden Arbeit widmen: Wie kann man Datenquellen (und
zwar nicht nur DBVS, sondern auch Dateien usw.) in CORBA-Umgebungen integrieren, so daß
auch datenintensive Anwendungen geeignet unterstützt werden? Oder anders ausgedrückt: Wie
läßt sich Data Shipping in CORBA-Umgebungen realisieren? Im folgenden werden wir kurz die
dabei entstehenden Anforderungen skizzieren (Kapitel 5.4.1), verschiedene Lösungsansätze
diskutieren (Kapitel 5.4.2 bis 5.4.8) sowie verwandte Forschungsarbeiten (Kapitel 5.4.9) und
ausgewählte kommerzielle Produkte zur DB-Anbindung betrachten (Kapitel 5.4.10). Eine
abschließende Zusammenfassung der wichtigsten Ergebnisse ist in Kapitel 5.4.11 enthalten.

5.4.1 Anforderungen und Modellierung

Bevor wir auf konkrete Ansätze zum Data Shipping eingehen, wollen wir nochmal kurz die
Anforderungen an eine Datenversorgung für datenintensive Anwendungen skizzieren. Im
Gegensatz zum Operation Shipping (siehe Kapitel 2.5.2) ist hier insbesondere die lokale Ver-
fügbarkeit von Daten im Client (d.h. in der Applikation) entscheidend. Allerdings sollte dies
nicht durch das Anlegen von Kopien, sondern durch eine vom System kontrollierte Migration
oder Pufferung (Caching) der benötigten Daten bzw. Objekte erfolgen. Dafür ist die gesamte
Verarbeitung durch Transaktionen abzusichern. Weiterhin wäre die Unterstützung einer men-
genorientierten Anfrageverarbeitung wünschenswert, die zur Beschleunigung der Kommunika-
tion auch die kompakte Übertragung größerer Datenmengen zuläßt (Bulk Transfer). In diesem
Kapitel gehen wir außerdem davon aus, daß allen Anwendungen ein objektorientiertes Daten-
modell zugrunde liegt. Gleichzeitig wollen wir aber alle Arten von Datenquellen anbinden kön-
nen, d.h. es ist unter Umständen eine Konvertierung oder Aufbereitung der Daten nötig. Dieser
Verarbeitungsschritt kann nun wahlweise im Server oder im Client erfolgen. Dementsprechend
ist für die Modellierung des Datentransportes durch CORBA entweder das Datenmodell der
Applikation oder das Format der jeweiligen Datenquelle zu benutzen.

Die Grundlage für jeden der hier vorgestellten Ansätze bildet erst einmal die Definition von
geeigneten Schnittstellen mittels der IDL von CORBA (Kapitel 4.1). Wir gehen an dieser Stelle
davon aus, daß der noch in der Entwicklung befindliche value-Typ ohne größere Änderungen
in die nächste Version des CORBA-Standards übernommen wird. Somit stehen uns für die
Modellierung von Objekten die struct, interface und value-Klauseln zur Verfügung. Die
Vor- und Nachteile aller drei Varianten haben wir bereits in Kapitel 4.5 erörtert (siehe insbeson-
dere Tabelle 4.3 auf Seite 104). Relationale Daten lassen sich hingegen sehr einfach und ange-
messen über sequences und unions von IDL-Basistypen darstellen. Diese Form der Modellie-
rung ist auch für die generische Übertragung serialisierter Objektmengen geeignet (siehe
Kapitel 5.4.7, 6.2.1 und 6.2.2). Einige der folgenden Ansätze setzen allerdings eine spezifische
Modellierung voraus.

126

5.4.2 Einsatz des CORBA Persistent Object bzw. des Persistent State Services

In Kapitel 4.3.2 haben wir bereits den Persistent Object Service (POS) des CORBA-Standards
betrachtet. Nach einem Blick auf dessen Zielsetzung (die persistente Speicherung von Objekt-
zuständen in beliebigen Speichermedien) würde man ihn vermutlich als die intuitive Lösung zur
Anbindung von Datenquellen an CORBA erachten. Sein Einsatz ist aber eher problematisch. So
kann der POS nur für Objekte verwendet werden, welche auf der interface-Klausel basieren.
Dementsprechend bleiben diese Objekte aber im Server des POS, und es ist keine lokale Verar-
beitung im Client möglich (siehe Kapitel 4.5). Zusätzlich wird durch die feingranulare Struktur
des POS und seine relativ komplexen Schnittstellen eine effiziente Verarbeitung verhindert
(siehe Kapitel 4.3.2).

Eine bessere Lösung könnte der noch in der Standardisierung befindliche Persistent State Ser-
vice (PSS) sein [OMG99]. Dieser hat prinzipiell die gleiche Zielsetzung wie der POS, soll aber
dessen Probleme bzgl. Schnittstellen, Komplexität und zu erwartender Effizienz vermeiden.
Bisher gibt es drei konkurrierende Vorschläge (sog. Joint Revised Submissions), so daß die end-
gültige Form des PSS noch nicht abzusehen ist. Alle Vorschläge basieren aber mehr oder weni-
ger auf der Modellierung persistenter Objekte über die value-Klausel. Sollte dieser Vorschlag
letztendlich von der OMG verabschiedet werden, so würde ein Client des PSS automatisch eine
lokale Kopie des jeweiligen Objektes sowie aller referenzierten value-Objekte erhalten. Der
Anspruch einer lokalen Verarbeitung und der kompakten Übertragung von Daten wäre also
erfüllt. Auf der anderen Seite führt das Anlegen von Kopien auf dem Client natürlich nicht zu
der ebenfalls gewünschten Migration oder einem kontrolliertem Caching von Daten. Gemäß
dem aktuellen Entwurf für den value-Typ führt dessen Einsatz zu kopierten Objekten auf dem
Client, die eine andere Identität haben als die Server-Objekte. Dementsprechend ließe sich der
PSS nicht sinnvoll mit dem Synchronization oder Transaction Service kombinieren (eine Sperre
auf einem Objekt würde nicht den Zugriff auf die Kopie verhindern). Wir erwarten allerdings
eine generelle Überarbeitung aller Object Services nach der Verabschiedung des value-Typs.

Sowohl der POS als auch der PSS setzen eine objektorientierte Modellierung aller Daten inner-
halb der gesamten CORBA-Umgebung voraus. Die Abbildung oder Konvertierung auf relatio-
nale oder sonstige Speicherungsverfahren kann lediglich im POS oder PSS selbst erfolgen.

Zusammenfassend läßt sich also sagen, daß ein durch CORBA unterstütztes Data Shipping rela-
tionaler Daten oder serialisierter Objektmengen über den POS bzw. PSS nicht möglich ist.

5.4.3 Datenzugriff über den CORBA Query Service

Mit dem Query Service (QS, siehe Kapitel 4.3.5) stellt die OMG einen weiteren Service zum
Zugriff auf Daten zur Verfügung. Die Zielsetzung ist jedoch orthogonal zum POS/PSS: Der
POS/PSS ist verantwortlich für die persistente Speicherung der Zustände von Objekten, wäh-
rend der QS allgemeine Schnittstellen zur Anfrageverarbeitung realisiert. Insofern könnte man
denken, daß neben dem QS noch weitere Mechanismen zum Zugriff auf Datenquellen erforder-
lich sind. Dies ist aber nicht notwendigerweise der Fall. Wir wollen kurz die Gründe skizzieren:
Entsprechend ihrem Objektmodell (siehe Kapitel 4.1.1) und dessen Ähnlichkeit zum ODMG-
Modell für OODBVS möchte die OMG Persistenz als eine Eigenschaft von Objekten ansehen,

127

die transparent für Clients und deren Verarbeitung ist. In diesem Sinne kann der QS nicht alleine
zum Zugriff auf Datenquellen genutzt werden (es ist die Kooperation des POS/PSS erforder-
lich). Auf der anderen Seite wollen wir aber eine Möglichkeit zum Data Shipping in CORBA-
Umgebungen realisieren. In diesem Fall kann es sogar wünschenswert sein, daß die persistente
Speicherung von Daten explizit durch den CORBA-Client gesteuert wird (z.B. per SQL
Updates). Dieses Szenario führt dann zu dem bereits in Kapitel 4.3.5 diskutierten Vergleich mit
dem X/Open CLI, ODBC oder JDBC. Die Anfrageverarbeitung ist hier aber keinesfalls nur auf
relationale Daten beschränkt. Nachdem das Ergebnis in einer Instanz des any-Typs zurückge-
geben wird, lassen sich hier auch ganze Netze von value-Objekten oder auch Objektreferenzen
übertragen. Je nach unterstützter Anfragesprache (siehe Kapitel 4.3.5) und den korrespondie-
renden Datentypen reicht das Spektrum also vom Data Shipping relationaler Tupel bis hin zum
Operation Shipping über den Austausch von Objektreferenzen.

Analog zum PSS besteht auch beim QS die Gefahr, daß Data Shipping zur unkontrollierten
Erzeugung von Kopien im Client führt. Im Bezug auf den value-Typ läßt sich dies auch nicht
vermeiden (die Semantik ist durch CORBA bzw. die OMG vorgegeben). Bei der Anbindung
von RDBVS kann allerdings ein Zugriffsschutz über den Einsatz des Transaction Service (TAS)
erreicht werden. Dafür wird die Transaktion des RDBVS in die vom CORBA-Client gestartete
Transaktion des TAS eingebettet. Nun hat der Client zwar Kopien der Daten des RDBVS,
bedingt durch die Sperrverwaltung des RDBVS kann aber kein anderer CORBA-Client (im
Rahmen einer anderen TAS-Transaktion) auf diese Daten (im RDBVS) zugreifen. Probleme
können lediglich entstehen, wenn andere (vom Client benutzte) CORBA Server selber als Client
des RDBVS agieren und im Rahmen der selben TAS-Transaktion auf das RDBVS zugreifen.
Hier könnte es dann mehrere Puffer innerhalb der selben Transaktion geben, die manuell zu syn-
chronisieren wären.

Insgesamt gesehen kann der QS aber als eine sehr flexible Möglichkeit zum Zugriff auf Daten-
quellen in CORBA-Umgebungen bezeichnet werden. Wir werden dieses Verfahren deshalb
auch für eines der JavaSDAI Data Modules unseres Prototypen verwenden (siehe
Kapitel 6.2.2).

5.4.4 Migration von Objekten über den CORBA Lifecycle Service

Bisher haben wir mehrfach auf die fehlenden Möglichkeiten zur Migration von Objekten hin-
gewiesen, die mit der interface-Klausel modelliert wurden. Es stellt sich nun die Frage,
warum nicht die move-Operation des Lifecycle Service (siehe Kapitel 4.3.3) dafür benutzt wer-
den kann und ob diese Maßnahme nicht doch einen sinnvollen Einsatz des POS (siehe
Kapitel 5.4.2) ermöglichen würde? Wir können diese Frage klar mit nein beantworten. Zunächst
einmal haben wir bereits in Kapitel 4.3.3 gesehen, daß die Implementierung der move-Operation
auf proprietären Protokollen zur Übertragung des Objektzustandes basiert. Somit wird diese
Methode nur innerhalb eines CORBA-Systems, aber eben nicht in offenen Systemverbunden
zur Verfügung stehen. Weiterhin müßte die move-Operation für jedes Objekt einzeln angestoßen
werden. Dies steht aber im Widerspruch zu dem von uns gewünschten Bulk Transfer.

128

5.4.5 Datenaustausch über den CORBA Externalization Service

Mit dem CORBA Externalization Service (ES, siehe Kapitel 8 von [OMG98h]) wird eine Mög-
lichkeit geboten, um den Zustand von Objekten in einen sog. Stream zu schreiben bzw. ihn dar-
aus zu lesen. Die zu serialisierenden Objekte müssen dafür mit der interface-Klausel model-
liert sein und das interface Streamable mit den Methoden externalize_to_stream und
internalize_from_stream implementieren. Der ES selbst stellt dann das eigentliche Stream-
Objekt sowie ein StreamIO-Objekt mit Zugriffsmethoden auf den Stream (read<type> bzw.
write<type>) zur Verfügung. Es lassen sich allerdings nur CORBA-Basistypen oder weitere
Streamable-Objekte lesen bzw. schreiben. Das Lesen aus einem Stream und die damit verbun-
dene Erzeugung von Objekten ist eng verzahnt mit den Factories des Lifecycle Service (siehe
Kapitel 4.3.3).

Für uns stellt sich nun die Frage, ob der ES zur kompakten und effizienten Übertragung größerer
Datenmengen (im Rahmen einer Migration von Objekten) genutzt werden kann? Dafür wollen
wir einen genaueren Blick auf den Stream selber sowie auf den Vorgang der (De-)Serialisierung
werfen: Jeder Stream basiert auf dem interface Stream und ist damit ein registriertes
CORBA-Objekt, das prinzipiell keine Migration unterstützt (vgl. Kapitel 4.5). Weiterhin wird
beim Serialisieren von Objekten jedes Attribut einzeln über Zugriffsmethoden des StreamIO-
Objektes in den Stream geschrieben. Das Deserialisieren verläuft analog dazu, jedoch wird
jedes Objekt noch über eine Factory erzeugt. Die Verarbeitung ist also recht aufwendig und
extrem feingranular: Der Stream verbleibt im Adreßraum des Servers, so daß zumindest beim
Deserialisieren für jedes einzelne Attribut eine erneute Client/Server-Kommunikation nötig ist.
Besser verhält es sich, wenn der Inhalt des Stream per Bulk Transfer zum Client transferiert wer-
den könnte. Zwar stellt der CORBA-Standard keine entsprechenden Mechanismen zur Verfü-
gung, es lassen sich aber ergänzende Maßnahmen modellieren. Beispielsweise könnte man alle
Daten per sequence<Octet> übertragen oder den Stream in eine Datei schreiben lassen, die
dann mit Methoden des Dateisystems zum Rechner des Clients übertragen wird. Liegen Client
und Server auf einem Rechner, so käme auch Kommunikation über Shared Memory in Frage.
Mit wenigen Ergänzungen (die allerdings zum Teil außerhalb der CORBA-Funktionalität lie-
gen) ließe sich der ES also zum Bulk Transfer von Daten einsetzen. Wir wollen an dieser Stelle
aber nicht von echtem Data Shipping entsprechend unseren Anforderungen sprechen, denn es
werden wiederum nur Kopien der Objekte auf dem Client angelegt. Eine Migration oder kon-
trollierte Pufferung von Objekten läßt sich mit dem ES leider nicht erreichen. Weiterhin ist er
nur zur Verarbeitung von Objekten geeignet, die mit der interface-Klausel modelliert wurden.
Im Prinzip läßt sich das Verarbeitungskonzept des ES mit allgemeinen Serialisierungskonzepten
wie z.B. Java Object Serialization vergleichen (siehe Kapitel 5.5.2.3).

Neben der Übertragung von Daten ist aber noch zu klären, ob der ES auch zum Zugriff auf
Datenquellen geeignet ist. Aufgrund seiner Schnittstelle und Verarbeitungssemantik bietet sich
natürlich die bereits oben angesprochene Assoziation von Streams mit Dateien an. Erfolgt der
Datenaustausch zwischen einzelnen Verarbeitungsschritten ohnehin über Dateien (ähnlich zu
STEP Physical Files, siehe Kapitel 3), so bietet der ES eine gute Möglichkeit zum CORBA-
basierten Zugriff auf diese. Eine Kopplung zu DBVS wird vom ES hingegen nicht adäquat

129

unterstützt: Einerseits macht die explizite Serialisierung keinen Sinn, andererseits fehlt eine
Schnittstelle zur Anfrageverarbeitung. Auch der Einsatz des ES zur Anbindung von Datenquel-
len, die durch Anwendungsprogramme gekapselt sind, erscheint wenig sinnvoll.

5.4.6 Proprietäre Kopplung zu OODBVS

Angelehnt an die Verarbeitungsweise des POS (vgl. Kapitel 5.4.2) könnte man den Zustand von
interface-Objekten natürlich auch über selbst definierte Mechanismen in einem OODBVS
ablegen. Zwar führt dieser Schritt weiterhin nur zu Operation Shipping (und eben nicht zum
gewünschten Data Shipping), man würde aber die Implementierung der komplizierten Schnitt-
stellen des POS vermeiden und vermutlich eine höhere Effizienz erreichen. Die resultierende
Lösung ist dann quasi ein Kompromiß zwischen dem POS, dessen Schnittstellen uns ungeeignet
erscheinen, und einem Object Oriented Database Adapter (OODA, siehe Kapitel 4.2.3.2), der
nur vom Hersteller des CORBA-Systems selbst erstellt werden kann. Steht weiterhin noch eine
Implementierung des Lifecycle Service (siehe Kapitel 4.3.3 und 5.4.4) zur Verfügung, so läßt
sich über dessen move-Operation sogar ein rudimentäres Data Shipping erreichen. Eine men-
genorientierte Anfrageverarbeitung ist hingegen auf diesem Wege generell unmöglich (für jedes
Objekt müßte die move-Operation einzeln aufgerufen werden).

Bei der Konzeption einer Kopplung sind nun einige Aspekte zu berücksichtigen, auf die wir im
folgenden kurz eingehen wollen. Grundsätzlich muß man davon ausgehen, daß es zur Laufzeit
zu jedem (benötigten) persistenten Objekt im OODBVS ein korrespondierendes transientes
CORBA-Objekt (Tie) gibt. Diese Maßnahme basiert auf der Tatsache, daß interface-Objekte
einige Attribute mit Verwaltungsinformationen des ORB enthalten. Die persistente Speicherung
dieser Attribute ist jedoch überflüssig, sie erfordert selbst bei lesenden Zugriffen des Clients
Transaktionen mit schreibendem Zugriff (für die Attribute des ORB) und sie kann nach einem
erneuten Start des Server-Prozesses sogar zu Fehlern führen (wenn alte Zustandsinformation im
neuen Kontext benutzt wird). Will ein CORBA-Client also auf ein persistentes Objekt zugrei-
fen, so muß das zum OODBVS-Objekt korrespondierende CORBA-Objekt erzeugt werden.
Man spricht an dieser Stelle von Aktivierung. Greift ein Client aber auf sehr viele Objekte zu,
so können unter Umständen nicht mehr alle Tie-Objekte im Hauptspeicher gehalten werden. Es
ist also ebenfalls eine Verdrängung von CORBA-Objekten vorzusehen (die sog. Deaktivierung).
Hierbei ist darauf zu achten, daß Clients noch Referenzen auf verdrängte Objekte haben können
(in Form von Client Stubs). Die Benutzung dieser Stubs sollte natürlich weiterhin möglich sein,
d.h. beim Zugriff sollte das korrespondierende Tie-Objekt automatisch reaktiviert und mit dem
korrekten Zustand aus dem OODBVS initialisiert werden. Anhand der vom Client Stub übertra-
genen Interoperable Object Reference (IOR) kann der Server-ORB zwar automatisch eine
Instanz der korrekten Klasse erzeugen, diese Information ermöglicht so aber noch nicht den
Zugriff auf das korrekte OODBVS-Objekt. Zwar könnte man die IOR der Tie-Objekte in einem
Attribut der OODBVS-Attribute speichern und es anschließend dazu benutzen, um den Zustand
für das reaktivierte Objekt abzufragen. Dieses Vorgehen ist aber zum Scheitern verurteilt: Einer-
seits würde dann wieder Zustandsinformation des ORB in der DB liegen (und eine schreibende
TA erfordern), andererseits kann sich die IOR bei jeder Aktivierung ändern. Bei mehreren Cli-
ents könnte es dann zu Problemen kommen: Angenommen der erste Client reaktiviert das

130

Objekt, für dieses wird eine neue IOR erzeugt, das Objekt wird später deaktiviert und die neue
IOR im OODBVS gespeichert. Nun will der zweite Client das selbe Objekt mit der alten IOR
reaktivieren. Es kommt dementsprechend zu einem Verarbeitungsfehler, da die ursprüngliche
IOR nicht mehr im OODBVS zu finden ist.

Mit einem kleinen Trick läßt sich das Problem jedoch recht einfach lösen: Die IORs werden
zwar automatisch vom CORBA-System erzeugt (und sind auch eindeutig im Sinne des ORB),
sie enthalten jedoch ein Feld für benutzerdefinierte Ergänzungen. In dieses schreiben wir nun
eine geeignet modellierte OID des OODBVS-Objektes. Bei der Reaktivierung extrahiert der
Konstruktor des Tie-Objektes dann die OID aus der IOR und greift darüber auf das korrespon-
dierende OODBVS-Objekt zu. Die OID könnte beispielsweise aus den IDs der Datenbank, des
Segmentes innerhalb der DB, des Typs und einer laufenden Nummer je Typ bestehen. Dieses
Vorgehen ist vergleichbar mit dem Marker-Konzept des CORBA-Systems Orbix (siehe
Kapitel 5.4.8). Clients könnten nun auch die in einen String konvertierte IOR eines Tie-Objektes
persistent speichern (z.B. in einer Datei) und diese selbst nach einem mehrfachen Neustart des
Server-Prozesses zum Reaktivieren des Tie-Objektes benutzen.

Aufgrund der Modellierung benutzerdefinierter OIDs können wir nun leider nicht mehr die von
manchen CORBA-Systemen (z.B. Orbix) angebotene automatische Generierung von Tie-
Objekten benutzen. Diese hätte aber ohnehin den Nachteil, daß die Signatur aller Attribute und
Methoden der Tie-Objekte genau denen der OODBVS-Objekte entsprechen müßte. Für die
Implementierung unserer Tie-Objekte schreiben wir deshalb eigene Klassen, die von den gene-
rierten Skeleton-Klassen erben. Diese können dann im Gegensatz zu generierten Tie-Objekten
auch eigene Methoden (wie etwa den o.g. Konstruktor) implementieren.

Aufgrund der möglicherweise sehr hohen Anzahl von Tie-Objekten sollte deren Registrierung
und Lokalisierung durch den ORB möglichst effizient erfolgen (z.B. durch Hash-Tabellen über
die OID). Manche CORBA-Systeme bieten hierfür (allerdings proprietäre) Mechanismen an.

Letztendlich läßt sich die gerade beschriebene Lösung zwar ohne Eingriffe in das CORBA-
System lösen, sie simuliert aber nur einen auf Operation Shipping basierenden Object Oriented
Database Adapter (OODA). Steht bereits ein ausreichender Adapter für die verwendete Kom-
bination aus CORBA-System und OODBVS zur Verfügung, so bietet sich statt der Implemen-
tierung eigener Software natürlich dessen Verwendung an. Ein Beispiel wäre der Orbix &
ObjectStore Adapter. Beim Einsatz von Orbix lassen sich mit dem Object Database Adapter
Framework (ODAF) sogar eigene Adapter zu weiteren DBVS erzeugen. Das ODAF stellt aller-
dings einen Eingriff in die internen Komponenten eines CORBA-Systems dar (siehe
Abschnitt 5.4.10.1).

Ein Beispiel für eine proprietäre Kopplung des zu CORBA 1.2 kompatiblen Systems ORBeline
(Version 1.2) mit dem OODBVS ObjectStore (Version 3.x) haben wir in [Sel96] beschrieben.
Als Testanwendung diente der auf einer SDAI-Schnittstelle (siehe Kapitel 3.2) aufsetzende oo7-
Benchmark [CDN93]. Die erzielten Ergebnisse belegen bereits klar die Mängel des Operation
Shipping gegenüber dem Data Shipping sowie die Notwendigkeit einer effizienten Registrie-
rung von Objekten. Selbst die Portierung des Prototypen auf ein moderneres CORBA-System
brachte (unter Beibehaltung der Konzepte) keine nennenswerte Verbesserung. Dieses Verhalten
basiert allerdings auf der extrem datenintensiven Verarbeitungsweise. Bessere (und durchaus

131

zufriedenstellende) Ergebnisse sind hingegen in eher interaktiven Umgebungen zu erwarten, die
für jeden Bearbeitungsschritt jeweils nur einen relativ kleinen Satz von Daten benötigen. Ein
Beispiel hierfür ist das in Abschnitt 5.4.9.3 beschriebene TeleMed-System.

5.4.7 Proprietäres Data Shipping ohne Einsatz von Common Object Services

Neben der Verwendung standardisierter Common Object Services kommt natürlich noch die
Modellierung proprietärer Schnittstellen zum Data Shipping oder gar eine Erweiterung der
CORBA-Funktionalität in Betracht. Hier sind prinzipiell zwei Kategorien zu unterscheiden.
Einerseits gibt es Programme oder Komponenten mit proprietären IDL-Schnittstellen, deren
Implementierung aber nur standardisierte CORBA-Funktionalität benutzt. Sie lassen sich auch
in Umgebungen mit beliebigen CORBA-Systemen einsetzen. Auf der anderen Seite gibt es
proprietäre Erweiterungen der CORBA-Systeme selbst. Sie unterbinden die Portabilität von
Implementierungen und widersprechen streng genommen der CORBA-Philosophie. Trotzdem
werden wir ausgewählte Beispiele in Kapitel 5.4.8 betrachten. Im folgenden wollen wir uns
aber einem Ansatz für die Modellierung einer proprietären Datenzugriffskomponente widmen,
die ohne Erweiterungen der zugrundeliegenden CORBA-Systeme auskommt. Sie bildet die
Grundlage für das in Kapitel 6.2.1 beschriebene JavaSDAI Data Module unseres Prototypen.

Beispiel 5.1: Modellierung serialisierter Objekte in IDL (Auszug)

Stellen wir uns also die Aufgabe, eine IDL-Schnittstelle für die Übertragung und den Zugriff
auf Daten zu definieren, die mit der Sprache EXPRESS des STEP-Standards (siehe Kapitel 3.1)
modelliert wurden. In Kapitel 4.5 haben wir erkannt, daß Data Shipping in CORBA-Umgebun-
gen nur bei Verwendung der struct- oder value-Klauseln möglich ist. Dementsprechend

struct objectHandle {
short repoID, modelID, objectTypeID;
long objectID;

};
typedef sequence<objectHandle> seqObjectHandle;
typedef sequence<seqObjectHandle> seqSeqObjectHandle;

enum attributeUnionSwitch {
typeLong, typeFloat, typeString, typeObjectHandle,
... // enumeration of all possible attribute base types

};

union attrUnion switch (attributeUnionSwitch) {
case typeLong: long longVal;
case typeFloat: float floatVal;
case typeString: string stringVal;
case typeObjectHandle: objectHandle objectHandleVal;
... // case labels for all possible attribute base types

};
typedef sequence<attrUnion> seqAttrUnion;

struct objectData {
objectHandle OID;
seqAttrUnion objectAttrs;

};
typedef sequence<objectData> seqObjectData;

132

scheidet die interface-Klausel zur Modellierung von Daten aus, und es ist keine direkte
Abbildung der EXPRESS-Definitionen auf IDL mehr möglich (weder die struct- noch die
value-Klausel unterstützen die in EXPRESS verfügbare multiple Vererbung). Zur Übertragung
der Daten haben wir deshalb eine generische Struktur definiert, die Objekte als eine Kombina-
tion aus der OID (objectHandle) und einer Liste von Attributen (seqAttrUnion) repräsentiert
(siehe Beispiel 5.1). Dieses Verfahren entspricht damit im Prinzip der in Abb. 5.2 auf Seite 123
dargestellten generischen Abbildung auf RDBVS. Wir sprechen an dieser Stelle allerdings von
serialisierten Objekten. Die OID wurde bereits so modelliert, daß eine Speicherung in einem
(R)DBVS oder der Zugriff über das SDAI von STEP (siehe Kapitel 3.2) möglich ist. Sie enthält
dafür einen Verweis auf die Datenbank bzw. das SDAI Repository (repoID), das Segment inner-
halb der DB bzw. das SDAI Model (modelID) und die Typ-ID des Objektes (objectTypeID).

Beispiel 5.2: Modellierung einer Zugriffsschnittstelle auf serialisierte Objekte (Auszug)

Für den eigentlichen Datenzugriff haben wir genau ein IDL interface definiert (dataServer,
siehe Beispiel 5.2). Es enthält zwei Methoden zum Datenzugriff und eine Methode zur kompak-
ten Propagierung von Änderungen. Mit GetObject kann die Übertragung genau eines Objektes
angestoßen werden. Dafür muß die OID des gewünschten Objektes übergeben werden. Nach-
dem wir Aggregate ebenfalls als Objekte mit einer eigenen OID auffassen, lassen sich diese
(inkl. aller enthaltenen Daten) mittels GetAggregate anfordern. Enthält das Aggregat Objekte,
so werden diese ebenfalls übertragen (aus diesem Grund wurde seqObjectData als Ergebnistyp
gewählt). Mit PropagateCommit werden schließlich alle Änderungen zum Server übertragen.

Die so erhaltenen Daten eignen sich natürlich nicht für die weitere Verarbeitung im CORBA-
Client. Vielmehr sollte man diese Strukturen zur Erzeugung lokaler Objekte im Client nutzen.
Dafür ist keine Modellierung in IDL nötig, sondern es kann direkt die jeweilige Programmier-
sprache verwendet werden. In unserem Prototyp haben wir beispielsweise Instanzen der
EXPRESS-Objekte entsprechend dem entwickelten Java Language Binding für das SDAI
erzeugt. Es sind aber beliebige Typen möglich.

exception DataServerException {
string reason;

};

interface dataServer {
objectData GetObject (in objectHandle handle)

raises (DataServerException);

seqObjectData GetAggregate (in objectHandle handle)
raises (DataServerException);

void PropagateCommit (in seqObjectData updatedObjectData,
in seqObjectHandle objectsToDelete
... // some metadata

)
raises (DataServerException);

... // weitere Methoden zum Zugriff auf Metadaten usw.
};

133

Nachteilhaft erweist sich auch bei unserer Lösung, daß der Client wiederum nur (unkontrol-
lierte) Kopien der Daten erhält. Weiterhin lassen sich die lokal im Client verfügbaren Objekte
nun gar nicht mehr in IDL modellieren oder durch das CORBA-System kontrollieren. Analog
zum Query Service ist also eine Zugriffskontrolle im Server nötig. Auch hier ist beispielsweise
eine Registrierung des dataServer beim Transaction Service denkbar. Die Implementierung
des dataServer könnte die Daten dann in einer beliebigen Datenquelle ablegen. Zwar erzwingt
die Methode PropagateCommit bereits eine quasi atomare Propagierung von Änderungen, für
eine transaktionsorientierte Verarbeitung ist aber die Verwendung eines DBVS anzustreben.

Neben serialisierten Objekten lassen sich mit dem gerade beschriebenen Ansatz auch relatio-
nale oder anderweitig modellierte Daten übertragen. Dafür müssen im wesentlichen die Daten-
strukturen in Beispiel 5.1 an die neuen Bedürfnisse angepaßt werden. Bei einer rein relationalen
Kopplung zu RDBVS sollte allerdings geklärt werden, ob der Query Service mit seiner
generischen Anfrageschnittstelle nicht eine bereits ausreichende (und vor allem standardisierte)
Lösung darstellt.

5.4.8 Proprietäre Erweiterungen von CORBA-Systemen am Beispiel Orbix

Die von uns dargelegten Probleme beim Einsatz von CORBA in datenintensiven Umgebungen
haben teilweise dazu geführt, daß die Hersteller von CORBA-Systemen eine Reihe proprietärer
Erweiterungen in ihre Produkte integriert haben. Diese betreffen vor allem die Verarbeitung von
Objekten, welche über die interface-Klausel modelliert wurden, und sollen die benötigte
Kommunikation zwischen Client und Server reduzieren sowie eine effiziente Anbindung des
Servers an persistente Speichermedien ermöglichen. Wir können an dieser Stelle natürlich nicht
alle Produkte und ihre speziellen Mechanismen vorstellen. Deshalb wollen wir uns auf die Dis-
kussion einiger Aspekte des von uns verwendeten CORBA-Systems Orbix (C++) bzw. Orbix-
Web (Java) von IONA beschränken [IONA98b, IONA98c].

Zunächst einmal ermöglicht das System die Erstellung benutzerdefinierter Client Stubs (sog.
Smart Proxies). In diese kann z.B. eine Pufferung bereits gelesener Attributwerte oder gar ein
Mechanismus zum Prefetching aller Attribute eines Objektes integriert werden. Dabei ist natür-
lich auf die Konsistenz und Aktualität der Daten zu achten. Insbesondere kann hier nur sehr ein-
geschränkt auf evtl. vorhandene Common Object Services zurückgegriffen werden, da Client
Stubs keine registrierten CORBA-Objekte sind.

Einen weiteren interessanten Punkt stellen die von Orbix angebotenen Marker in Kombination
mit speziellen Loader-Objekten und save-Methoden dar. Die Marker selbst realisieren noch
einen zum Standard konformen Weg zur Spezifikation benutzerdefinierter IDs oder Namen für
Objekte. Sie werden in die zugehörige Objektreferenz, die sog. Interoperable Object Reference
(IOR), eingebettet und werden auch bei der Konvertierung von IORs in einen String berücksich-
tigt (vgl. Kapitel 5.4.6). Proprietär ist hingegen die Verwendung dieser Marker zum automati-
schen Laden von Objekten über spezielle Loader: Wird eine IOR dereferenziert, ohne daß das
korrespondierende Objekt im System verfügbar ist, so übergibt das System den in der IOR ent-
haltenen Marker an einen Loader und stößt damit die Instantiierung des referenzierten Objektes
an. Der Loader analysiert den Marker und kann entsprechend der enthaltenen Information unter

134

Umständen den Zustand des Objektes wiederherstellen. Beispielsweise könnte der Name einer
Datenbank sowie die ID des Objektes im Marker kodiert sein. Damit kann der Loader den
Zustand aus der DB lesen und das neu instantiierte CORBA-Objekt korrekt initialisieren.
Anders herum wird von Orbix beim Beenden eines Prozesses die save-Methode aller registrier-
ten CORBA-Objekte aufgerufen. Mit dieser könnte nun jedes Objekt seinen Zustand persistent
speichern. Dieser Mechanismus macht den Einsatz des POS (zu dem es bisher sowieso keine
Implementierung gibt) prinzipiell überflüssig, ist aber nicht durch Transaktionen abgesichert
oder kompatibel mit dem Transaction Service (TAS): Nach der Terminierung eines Prozesses,
die nicht notwendigerweise einem Commit entsprechen muß, kann natürlich keine weitere Ver-
arbeitung durch den TAS angestoßen werden. Ein ergänzender Vergleich mit dem PSS ist an
dieser Stelle sinnlos, da Orbix bisher keine value-Objekte unterstützt.

Abschließend sollte noch einmal betont werden, daß eine Verwendung proprietärer Mechanis-
men in fast allen Fällen zu einer Beschränkung auf Umgebungen mit einem einzigen CORBA-
System führen. Dies widerspricht der CORBA-Philosophie und verhindert auch die
Interoperabilität zwischen heterogenen Systemen. Gleichzeitig lassen sich proprietäre Erweite-
rungen aber nicht generell verurteilen, denn Erfahrungen mit diesen bildeten z.T. schon die
Basis für sinnvolle Überarbeitungen des CORBA-Standards.

5.4.9 Forschungsprototypen zur Integration von CORBA und DBVS

In den letzten Jahren wurden mehrere Forschungsprojekte begonnen, die CORBA (oder ähnli-
che Konzepte) zum Zugriff auf DBVS oder zur Implementierung verteilter DBVS benutzen.
Wir wollen deshalb einen kurzen Blick auf einige Beispiele werfen und dabei analysieren, wie
diese Prototypen den Zugriff auf Daten sowie deren Übertragung realisieren.

5.4.9.1 MIND

An der Middle East Technical University (METU) wurde in den letzten Jahren ein föderiertes
DBVS mit dem Namen MIND (METU Interoperable DBMS) entwickelt, dessen interne Struk-
tur auf CORBA basiert [Do+96, DDÖ98]. Das System besteht aus einem Global Database
Agent (GDA), einem Schema Integration Service (SI), einem oder mehreren Query Processors
(QP) sowie einem Local Database Agent (LDA) je angebundenem DBVS. Jede dieser Kompo-
nenten besteht aus einem einzigen registrierten CORBA-Objekt. Die LDA besitzen eine generi-
sche Schnittstelle, die unabhängig von einem spezifischen DBVS ist. Sie greifen über das X/
Open CLI (siehe Kapitel 5.1.2) auf das ihnen zugeordnete DBVS zu. Dementsprechend werden
Anfragen in MIND in einer an SQL angelehnten Syntax gestellt [GV92, SRL93]. Das globale
Schema wird hingegen in MIND ODL (Object Definition Language), einer Obermenge der
CORBA IDL, definiert und über spezielle Mapping-Klauseln auf SQL-Anfragen an die lokalen
DBVS abgebildet [DDÖ98]. Derzeit werden Kopplungen zu Oracle7, Sybase, Adabas D und
MOOD (METU OO Database System) angeboten. Unklar bleibt allerdings, wie sich MOOD
und OODBVS allgemein an die CLI/SQL-basierten LDAs anbinden lassen.

135

MIND wurde mit dem DEC ObjectBroker realisiert, einem CORBA-System mit Unterstützung
für die Sprache C. Dementsprechend werden die in ODL spezifizierten Datenobjekte nicht vom
IDL-Compiler in C-Datenstrukturen übersetzt, sondern vom (zusätzlich vorhandenen) ODL-
Compiler zur Erzeugung objektorientierter Klassen (C++) für den Client verwendet. Durch den
ORB werden lediglich serialisierte Strukturen übertragen. Folglich verwendet MIND die von
uns geforderte (generische) Form von Data Shipping mit sehr wenig registrierten CORBA-
Objekten. Der genaue Mechanismus dafür wurde jedoch nicht publiziert. Vermutlich sind die
LDAs aber ähnlich zu einem SQL-basierten CORBA Query Service unter Verwendung gener-
ischer Datenstrukturen (wie etwa unser in Kapitel 6.2.2 beschriebenes JavaSDAI Data Module).

Zu Beginn des MIND-Projektes waren keine CORBA Common Object Services (COSS) ver-
fügbar, so daß MIND z.B. proprietäre Mechanismen zur Transaktionsverwaltung benutzt.
Gemäß [DDÖ98] ist eine Kopplung mit den COSS aber ohne größere Probleme möglich.

5.4.9.2 SHORE

SHORE (Scalable Heterogeneous Object REpository) ist ein föderiertes und paralleles
OODBVS, das an der Universität von Wisconsin-Madison entwickelt wurde [Ca+94]. Obwohl
SHORE eigentlich überhaupt nichts mit CORBA zu tun hat, so realisiert das System doch ein
Verarbeitungsszenario, wie wir es uns für CORBA-Umgebungen wünschen würden: Daten sind
in der an CORBA-IDL und ODMG-ODL angelehnten SDL (SHORE Data Language) zu
modellieren und angeforderte Objekte werden in einem vom System kontrollierten Cache auf
dem Client eingelagert. Weiterhin ist das System offen zur Integration weiterer Datenquellen
(OODBVS oder Dateien). Analog zu CORBA benutzt SHORE intern einen RPC-basierten
Kommunikationsmechanismus (siehe Kapitel 2.4.1). Im Gegensatz zu CORBA unterstützt die-
ser aber die Migration von Objekten bzw. ein (kontrolliertes) Caching im Client. Damit hat sich
gezeigt, daß eine auf Data Shipping basierende Middleware-Lösung realisierbar ist. SHORE ist
allerdings zu stark auf eine reine Datenversorgung zugeschnitten, so daß letztendlich eine Kom-
bination aus SHORE und CORBA wünschenswert wäre.

5.4.9.3 TeleMed

Am Los Alamos National Laboratory wurde in den letzten Jahren ein verteiltes medizinisches
Informationssystem mit dem Namen TeleMed entwickelt [TeleMed]. Es dient der Verwaltung
von Daten über Patienten und enthält neben textuellen Datensätzen auch Multimedia-Objekte
wie Röntgenbilder oder dreidimensionale CT-Diagramme. Die Architektur des Systems basiert
auf dem CORBA-Standard sowie einem OODBVS als Datenquelle. Die Kopplung zwischen
dem verwendeten CORBA-System Orbix und dem OODBVS ObjectStore wurde von Francisco
Reverbel im Rahmen seiner Dissertation entwickelt [Rev96]. Sie basiert auf einer Modellierung
von Objekten mit der interface-Klausel und führt somit zu Operation Shipping.

Analog zu Kapitel 5.4.6 diskutiert die Arbeit im wesentlichen drei Ansätze zur Abbildung von
transienten CORBA-Objekten auf persistente OODBVS-Objekte: Pseudopersistence, Smart
Pointer-Based Persistence sowie Virtual Persistence. Alle drei Konzepte simulieren quasi einen
Object Oriented Database Adapter (OODA, siehe Kapitel 4.2.3.2), der Zustände von CORBA-
Objekten in OODBVS speichert und keine Migration oder Pufferung von Objekten unterstützt.
Sie unterscheiden sich dabei in der Modellierung von OIDs und Referenzen, der Aktivierung

136

von Objekten bei der Kopplung zu Skeletons (generierte oder benutzerdefinierte Tie-Objekte)
sowie bei der Anbindung zum OODBVS (Ausnutzung proprietärer Eigenschaften von Object-
Store). Unklar bleibt in der verfügbaren Dokumentation aber leider die verwendete Modellie-
rung von Multimedia-Objekten wie etwa Röntgenbildern. Vermutlich erfolgt der Zugriff auf
diese nicht über das CORBA-System, sondern direkt auf die jeweiligen Dateien.

Der gewählte Ansatz des Operation Shipping wurde in [Rev96] generell positiv bewertet. Im
Gegensatz zu dem von uns behandelten Szenario des Produktdatenmanagements ist das Tele-
Med-System aber mehr interaktiv als datenintensiv (unter der Annahme, daß Multimedia-
Objekte außerhalb der CORBA-Umgebung verwaltet werden). In diesem Fall scheint Operation
Shipping also ausreichend zu sein.

5.4.9.4 InterGIS

In der Abteilung Informationssysteme der Universität Oldenburg wird derzeit eine Architektur
für einen verteilten, komponentenbasierten GeoServer entwickelt [Fr99]. Dieser soll sowohl
verschiedene Kommunikationsprotokolle und Middleware-Technologien unterstützen als auch
den Zugriff auf heterogene Datenquellen ermöglichen (OODBVS, RDBVS und spezielle GIS-
Produkte). Die Kommunikationsschicht selbst ist durch eine abstrakte Schnittstelle gekapselt
und kann wahlweise auf TCP/IP-Sockets, Named Pipes, Shared Memory oder CORBA basieren.
Im letzten Fall werden Daten über die interface-Klausel modelliert. Aufgrund des resultieren-
den Operation Shipping erwarten die Entwickler eine deutlich schlechtere Leistung im Ver-
gleich zu den anderen Varianten. Allerdings unterstützt der aktuelle Prototyp noch keine
CORBA-basierte Kommunikation, so daß an dieser Stelle noch keine konkrete Bewertung oder
Abgrenzung zu unseren Konzepten möglich ist.

5.4.9.5 DICE

Im Projekt DICE (Databases in Cooperative Environments) am Fachbereich Informatik der
Universität Rostock werden CSCW-Techniken und existierende CSCW-Komponenten auf ihre
Anforderungen an die zugrundeliegenden DBVS untersucht [FM97]. Eine exemplarische
Kopplung zu ODMG-konformen OODBVS wurde von Eduard Neuwirt im Rahmen seiner
Diplomarbeit entwickelt [Neu97]. Entsprechend der CORBA-Philosophie wurde bewußt eine
Modellierung von Daten über die interface-Klausel gewählt, um damit Operation Shipping
auf gekapselte Objekte zu realisieren. Die Arbeit ist daher sehr ähnlich zum TeleMed-Projekt
(Abschnitt 5.4.9.3) oder dem in Kapitel 5.4.6 diskutierten Ansatz.

Beispiel 5.3: Modellierung eines Laufzeittests im Projekt DICE [Neu97]

Die präsentierte Beispielanwendung stellt unserer Ansicht nach aber eher eine Mischform zwi-
schen Operation und Data Shipping dar (vgl. Beispiel 5.3): Der Inhalt eines Absatzes ist als ein
einziger String modelliert, der beim Zugriff auf den Client kopiert und dann lokal bearbeitet

interface paragraph {
readonly attribute string_name;
attribute string inhalt;

};
typedef sequence<paragraph> paragraphs;

interface text {
short put (in string p_name);
paragraph get (in string P-Name);
paragraphs all_paragraphs ();

};

137

wird. Dementsprechend wurden bei den durchgeführten Laufzeittests auch zufriedenstellende
Ergebnisse erzielt. Eine direkte Übertragung der gewonnenen Resultate auf die Bearbeitung von
komplexen CAD-Objekten oder feingranularen Produktdaten (wie etwa hierarchischen Stück-
listen) erscheint uns aber eher fragwürdig. Hier wären deutlich mehr Attributzugriffe nötig, die
zu einer ORB-basierten Kommunikation (also reinem Operation Shipping) führen.

5.4.10 Kommerzielle Produkte zur DB-Anbindung

In diesem Kapitel wollen wir nun kurz betrachten welche der zuvor diskutierten Konzepte und
Ideen in kommerziellen Produkten zum Einsatz kommen. Hier ist klar zu betonen, daß kein der-
artiges System eine Datenversorgung über standardisierte Common Object Services ermöglicht.
Bisher werden lediglich zwei Ansätze unterstützt: Die persistente Speicherung der Zustände
von interface-Objekten über systemspezifische Adapter (Abschnitt 5.4.10.1) oder ein gener-
isches Data Shipping über proprietäre Schnittstellen (Abschnitt 5.4.10.2).

5.4.10.1 DB-Anbindung über interne Adapter von CORBA-Produkten

Neben den in Kapitel 5.4.8 angesprochenen proprietären Erweiterungen bieten die Hersteller
einiger CORBA-Systeme inzwischen auch spezielle Kopplungen zu DBVS an. Diese basieren
jedoch alle auf einer Modellierung über die interface-Klausel und führen somit zu Operation
Shipping. Sie realisieren damit einen OODA ohne Unterstützung für die Pufferung oder Migra-
tion von Objekten zum CORBA-Client (vgl. Kapitel 4.2.3.2). Im Gegensatz zu dem in
Kapitel 5.4.6 vorgestellten Verfahren ist hier aber eine höhere Leistung zu erwarten, da die
Adapter von den Herstellern der CORBA-Systeme selbst entwickelt und damit auf interne
Abläufe im ORB optimiert wurden. Die konzeptuellen Schwächen des Operation Shipping
überwinden sie dadurch aber nicht.

Ein Beispiel für derartige Produkte ist das Orbix Database Adapter Framework (ODAF) zur
Erstellung eigener OODA [IONA97]. Dieses Werkzeug ermöglicht die Integration neuer
Loader-Klassen (siehe Kapitel 5.4.8), die Definition spezifischer OIDs und Marker, die Kopp-
lung zum Orbix Transaction Service (OTS) sowie die Implementierung eigener Verwaltungs-
routinen im ORB (z.B. für eine effiziente Registrierung und Verdrängung von Objekten). Der
so erstellte Adapter enthält dann eine Erweiterung für den IDL-Compiler, mit dem sich die
Klassen für benötigte Tie-Objekte anhand der IDL-Definitionen generieren lassen. Dieser Punkt
ist ein wesentlicher Vorteil gegenüber dem Vorgehen in Kapitel 5.4.6, bei dem alle Tie-Klassen
selbst implementiert werden mußten. Mit dem ODAF wurden beispielsweise auch die vorgefer-
tigten Orbix & ObjectStore und Orbix & Versant Adapter erstellt (siehe www.iona.com).

Ein weiteres Beispiel sind die DB2 und Oracle Application Adapter des ComponentBroker
[IBM98e]. Diese enthalten zusätzlich noch eine Abbildung der objektorientiert modellierten
Daten auf relationale Schemata. Dabei werden wahlweise die horizontale oder vertikale Parti-
tionierung oder die typisierte Abbildung auf eine Tabelle unterstützt (vgl. Kapitel 5.3).

138

5.4.10.2 DB-Anbindung über CORBA-konforme Datenversorgungsmodule

Neben der gerade beschriebenen Integration der Datenversorgung in den ORB gibt es noch die
bereits in Kapitel 5.4.7 beschriebene Möglichkeit zur Modellierung von Datenversorgungsmo-
dulen, deren Schnittstellen wie ganz normale Applikationen in IDL deklariert werden. Diese
Idee wurde z.B. von der Firma I-Kinetics zur Erstellung ihres Produktes DataBroker genutzt
[Hi97, IK99]. Dieser definiert unter anderem eine an JDBC angelehnte IDL-Schnittstelle zum
Data Shipping. Der Server kann dann simultan eine Datenversorgung über CORBA, JDBC oder
ODBC unterstützen. Eine weitergehende Verwendung dieser Daten in anderen CORBA-Kom-
ponenten (insbesondere standardisierten Common Object Services) ist damit natürlich weitge-
hend ausgeschlossen (das zugrundeliegende Schema ist nicht in IDL modelliert).

5.4.11 Zusammenfassung

In den letzten Abschnitten haben wir verschiedene Ansätze zur Datenversorgung in CORBA-
Umgebungen diskutiert sowie ihre Realisierung in Prototypen und Produkten betrachtet. An
dieser Stelle wollen wir noch einmal die wichtigsten Eigenschaften und Unterschiede zusam-
menfassen (vgl. Tabelle 5.3). Zunächst lassen sich die vorgestellten Konzepte in zwei Katego-
rien einteilen. Die erste umfaßt Ansätze unter Verwendung standardisierter Common Object
Services. Aufgrund der beschriebenen Probleme gibt es hier aber so gut wie keine Prototypen
oder gar kommerzielle Produkte. Eine größere Zahl von Implementierungen gibt es hingegen
bei Datenversorgungskomponenten mit proprietären Schnittstellen oder Mechanismen, welche
die zweite Sparte bilden. Dieser Zustand unterstreicht die eingeschränkte Eignung von CORBA
und den bisher standardisierten Services im Bereich datenintensiver Anwendungen.

Beginnen wir trotzdem mit einem Blick auf die erste Kategorie. Der Einsatz des Persistent
Object Service (POS) führt generell zu interface-Objekten und Operation Shipping. Weiter-
hin ist seine Spezifikation nicht mit anderen Services (wie dem Transaction oder Query Service)
abgestimmt, d.h. eine Kooperation zwischen diesen Komponenten ist immer proprietär. Im
Gegensatz dazu erzwingt der Persistent State Service (PSS) die Modellierung von Daten über
die value-Klausel und ermöglicht damit Data Shipping (die Verwendung von interface-
Objekten ist erlaubt, allerdings muß deren Zustand über die value-Klausel definiert sein). Die
Serialisierung eines Objektes sowie aller referenzierten Objekte wird dabei automatisch vom
ORB durchgeführt. Allerdings erhält der Client nur Kopien.

Sehr flexibel ist man bei der Verwendung des Query Service. Aufgrund der generischen Schnitt-
stelle kann hier jede Form der Modellierung von Daten benutzt werden. Diese bestimmt aber
wesentlich das Verhalten der Implementierung: interface-Objekte führen zu Operation Ship-
ping während Daten, welche über die value- oder struct-Klausel definiert sind, als Kopie zum
Client übertragen werden. Unser Prototyp (siehe Kapitel 6.2.2) verwendet ausschließlich Struk-
turen und ermöglicht damit auch Bulk Transfer von Daten.

Die einzige Möglichkeit zur kontrollierten Migration von registrierten interface-Objekten
bietet die Verwendung der move-Operation des Lifecycle Service. In Kombination mit dem POS
kann so das Data Shipping einzelner Objekte angestoßen werden. Die dafür benötigte Seriali-
sierung des Zustandes erfolgt zwar automatisch durch den Lifecycle Service, das Format ist aber

139

proprietär und somit nicht portabel über die Grenzen eines ORB-Produktes hinweg. Weiterhin
ist auch hier (bedingt durch die Spezifikation des POS) nur eine eingeschränkte Kooperation mit
anderen Services möglich.

Tabelle 5.3: Vergleich von Ansätzen zum CORBA-basierten Zugriff auf Datenquellen

Einen Spezialfall, der neben dem ORB noch die Möglichkeit zum Austausch von Dateien erfor-
dert, stellt die Verwendung des Externalization Service zur Erzeugung von Dateien mit serial-
isierten Objekten dar. Dieses Verfahren führt wiederum zum Data Shipping und der Erzeugung
von Kopien auf dem Client. Alle Daten sind hierfür als interface-Objekte zu modellieren.
(eine Abstimmung der neuen value-Klausel mit dem Externalization Service steht noch aus).

POS PSS QS POS
+

LS

ES
+

Dateien

Proprietäre
Kopplung

zu OODBVS

Proprietäres
Data

Shipping

Konzept beschrieben in Kapitel 5.4.2 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7

Implementierung beschrieben
in Kapitel

6.2.2 6.2.4 6.2.1

Eingesetzt im Projekt - - - - - TeleMed
DICE

-

Grundlage für das Produkt - - - - - Orbix ODAF,
Component-

Broker

DataBroker

Modellierung über

interface � (�) � � � � -

value - � � - (-) - -

struct - - � - - - �

Objektorientierte Modellierung
von Daten im Server

� � (�) � � � nur
serialisiert

Übertragung relationaler Daten
oder serialisierter Objekte

- - (�) - (-) - �

Operation Shipping (OS) oder
Data Shipping (DS)?

OS DS OS /
DS

(DS) DS OS DS

Migration - - - � - - -

Kopien - � (�) - � - �

Bulk Transfer - � (�) - � - �

Kooperation mit Object Services

Transaction Service � � � � (�) � (�)

Query Service � � � (�) � -

Portabel über CORBA-Systeme
hinweg

� � � - (�) - �

140

Bei Bedarf können die Dateien auch gleich zur persistenten Speicherung der Objekte dienen
(allerdings ist hier eine geeignete Verwaltung und Konsistenzsicherung nötig). Problematisch
ist grundsätzlich die Kooperation mit dem Transaction Service, da die erzeugten Dateien nicht
unter der Kontrolle des ORB stehen. Eine Kopplung mit dem Query Service ist hingegen sinn-
voll (z.B. zum Übertragen der aus interface-Objekten bestehenden Ergebnismenge einer
Anfrage). Aufgrund des proprietären Dateiformats ist dieser Ansatz aber unter Umständen nicht
portabel zwischen den Externalization Services unterschiedlicher ORBs.

Werfen wir nun aber noch einen Blick auf Ansätze der zweiten Kategorie, die keine Common
Object Services verwenden. Hier ist zunächst die proprietäre Kopplung zu OODBVS (oder auch
Datenquellen allgemein) zu nennen. Sie realisiert quasi einen Object Oriented Database Adap-
ter ohne eine Unterstützung der Migration von Objekten (siehe Kapitel 4.2.3.2) und führt dem-
entsprechend zu Operation Shipping. Diese Lösung ermöglicht zwar die Kopplung zu anderen
Services, ist aber nicht konform zum CORBA-Standard. Damit ist sie ebenfalls nicht portabel
zwischen verschiedenen ORB-Produkten.

Quasi entgegengesetzte Eigenschaften erhält man bei der Verwendung proprietärer IDL-
Schnittstellen zur Realisierung von Data Shipping. Aufgrund der Modellierung der Austausch-
strukturen in IDL ist dieser Ansatz portabel zwischen unterschiedlichen CORBA-Systemen.
Auf der anderen Seite ermöglicht er aber nur eine eingeschränkte Integration mit Services. Zwar
könnte man den implementierten Datenversorgungsserver beim Transaction Service registrie-
ren, eine Kopplung zum Query Service ist aber beispielsweise unmöglich (die proprietären
Schnittstellen übernehmen bereits dessen Funktionalität).

Gemeinsam ist allen in Tabelle 5.3 aufgeführten Ansätzen, daß sie im Prinzip beliebige Formen
von Datenquellen unterstützen (siehe Kapitel 5.1). Zwar ist beispielsweise die in Kapitel 5.4.6
beschriebene proprietäre Kopplung zu OODBVS primär auf eine Integration von OODBVS
zugeschnitten, sie kann aber auch für RDBVS (vgl. Abschnitt 5.4.10.1) oder Dateien verwendet
werden. In diesem Fall ist natürlich ein höherer Aufwand zur Konvertierung der Datenmodelle
nötig. Mit den anderen Ansätzen verhält es sich ähnlich. Problematisch kann hingegen die Inte-
gration von Datenquellen sein, die über spezielle APIs gekapselt sind. Insbesondere schreibende
Zugriffe müssen hier auf Operationen des API abgebildet werden, die häufig Seiteneffekte (d.h.
implizite Änderungen weiterer Daten) zur Folge haben. Diese sind in geeigneter Weise auf den
korrespondierenden CORBA-Objekten nachzuziehen. Eine Unterstützung von Anfragen
(Query Service) ist nur sinnvoll falls das zur Verfügung stehende API diese Funktionalität anbie-
tet. Die Simulation einer Query Engine oberhalb eines API für den eher navigierenden Zugriff
erscheint uns zu ineffizient (dies mag z.B. beim Zugriff auf Dateien sinnvoll sein).

5.5 Data Shipping im Intra-/Internet
Nach einer Diskussion der Datenversorgung in CORBA-Umgebungen gehen wir nun noch auf
spezielle Anforderungen und Techniken im Bereich des Intra-/Internet ein. In Kapitel 2.7 wurde
bereits das zugrundeliegende Szenario geschildert sowie der Einsatz der Programmiersprache

141

Java motiviert. Darauf aufbauend wollen wir hier die verschiedenen Verarbeitungsvarianten
hinsichtlich ihrer Eignung für datenintensive Anwendungen und das zugrundeliegende Data
Shipping untersuchen.

5.5.1 HTML-Seiten mit JavaScript und CGI-Skripte im Server

Die in Kapitel 2.7.1 beschriebene Kombination aus HTML-Seiten mit eingebettetem JavaScript
auf dem Client und CGI-Skripten auf dem Server ist heutzutage eine weit verbreitete Lösung
zur Bereitstellung von dynamischen Informationen im WWW. Sie ist gut geeignet zur Präsen-
tation von Textdokumenten mit eingebetteten Grafiken, bei denen der Anwender Eingaben über
vordefinierte Felder oder Pulldown-Menüs machen kann. Ausgehend von einer statischen Ein-
stiegsseite berechnet der Server (das CGI-Skript) die Folgeseite jeweils individuell für jeden
Benutzer anhand dessen Eingaben. Das Dokument wird dann in einem Kommunikationsschritt
zum Client übertragen und dort angezeigt. Eingebettete Grafiken werden vom HTML-Parser
des Browser in einem getrennten Kommunikationsschritt angefordert. Fast alle Browser ermög-
lichen weiterhin die Pufferung von Dokumenten und Grafiken in einem Client-Cache. Die Iden-
tifikation erfolgt dabei über die URL. Zur Erstellung oder Berechnung von HTML-Seiten kann
das CGI-Skript auf beliebige Datenquellen, insbesondere auch DBVS, zugreifen. Einige
moderne DBVS (z.B. Oracle8i) bieten sogar schon eigene Module zur Präsentation von gespei-
cherten Daten im WWW an [Or99].

Die Verarbeitung über CGI-Skripte stellt generell eine Mischform aus Operation und Data
Shipping dar. Einerseits fällt sie in die Kategorie Operation Shipping, da alle Berechnungen im
Server ausgeführt werden (der Client ermöglicht nur die Eingabe von Daten). Andererseits wer-
den aber alle Dokumente und Grafiken zum Client übertragen und dort evtl. auch gepuffert, was
eine typische Eigenschaft von Data Shipping ist. Wir wollen diese Lösung nun aber nicht weiter
charakterisieren, sondern sie als eine angemessene Technik zur Browser-basierten Präsentation
von Informationen betrachten, die keine weitergehende Verarbeitung im Client ermöglicht.

5.5.2 HTML-Seiten mit Java-Applets

Mit der Einbettung von Java-Applets in HTML-Seiten steht dem WWW-Client die volle Mäch-
tigkeit einer Programmiersprache zur Verfügung. Somit lassen sich nun komplexe Berechnun-
gen lokal ausführen (vgl. Kapitel 2.7.3). Weiterhin ist die Java-Laufzeitumgebung mittlerweile
auch Bestandteil der meisten Browser, so daß (neben diesem) keine weitere Software auf dem
Client-Rechner zu installieren ist. Es stellt sich allerdings die Frage nach einer geeigneten
Datenversorgung, für die wir im folgenden drei mögliche Varianten vorstellen wollen.

5.5.2.1 Java-Applets mit einer Datenversorgung über CORBA

Bei einer Datenversorgung über CORBA kommen prinzipiell alle in Kapitel 5.4 bzw.
Tabelle 5.3 auf Seite 139 betrachteten Ansätze in Frage. Neben der Festlegung auf die Sprache
Java im Client sowie einer möglicherweise eingeschränkten Kommunikationsbandbreite gibt es
keine Einschränkungen gegenüber einer allgemeinen CORBA-Umgebung. Wir wollen deshalb

142

nicht erneut auf die Vor- und Nachteile der einzelnen Varianten eingehen. Allerdings sollte noch
betont werden, daß nicht jede in einem Browser enthaltene Java-Laufzeitumgebung automatisch
einen ORB umfaßt. Unter Umständen müssen hier initial noch ORB-Klassen im Umfang von
ca. 100 bis 500 KByte vom Server geladen werden. In allen Fällen sind weiterhin die vom IDL-
Compiler erzeugten Client-Stubs zu übertragen.

5.5.2.2 Java-Applets mit einer Datenversorgung über JDBC

Beim Einsatz von RDBVS bietet sich unter anderem eine Datenversorgung über die bereits in
der Java-Laufzeitumgebung enthaltene Java Database Connectivity (JDBC) an (vgl.
Kapitel 2.4.4 und 5.1.2). Über SQL-Anfragen lassen sich so relationale Tupel zum Client über-
tragen. Bei einem objektorientierten Datenmodell innerhalb der Applikation können diese auch
innerhalb des Clients gemäß den in Kapitel 5.3 dargestellten Verfahren in Java-Objekte konver-
tiert werden.

5.5.2.3 Java-Applets mit einer Datenversorgung über Java RMI/OS

Soll ein Java-Applet nicht direkt auf ein RDBVS, sondern auf eine allgemeine, objektorientiert
modellierte Server-Komponente zugreifen, so bietet sich der Einsatz von Java Remote Method
Invocation (RMI) und Object Serialization (OS) an [Sun97b, Sun97c]. Man könnte diesen
Mechanismus als eine auf Java beschränkte Variante von CORBA bezeichnen: Über RMI ist ein
RPC-ähnlicher Zugriff (siehe Kapitel 2.4.1) auf die Methoden eines in Java implementierten
Servers möglich, dessen Schnittstellen als ein spezielles Java-Interface definiert werden. Ein
Compiler erzeugt daraus (analog zu CORBA) benötigte Stubs und Skeletons. Im Gegensatz zu
CORBA gibt es in Java aber nur eine Klausel zur Modellierung von Schnittstellen und Daten:
Java-Interfaces. Diese unterstützen sowohl Attribute und Methoden als auch Vererbung. Je nach
Vererbungshierarchie ergibt sich allerdings eine unterschiedliche Verarbeitungssemantik: Erbt
eine Schnittstelle von java.rmi.Remote, so steht deren Implementierung als Server für RMI-
Methoden zur Verfügung. Benutzt man eine von java.io.Serializable abgeleitete Schnitt-
stelle als Parametertyp einer RMI-Methode, so wird eine Instanz zur Laufzeit automatisch zwi-
schen Client und Server übertragen (serialisiert). Referenzierte Objekte, die ebenfalls die
Schnittstelle java.io.Serializable implementieren, werden im gleichen Kommunikations-
schritt mit übertragen (man könnte also von Bulk Data Transfer sprechen).

5.5.3 Zusammenfassung

In diesem Kapitel sind wir auf Ansätze zur Datenversorgung im Intra-/Internet eingegangen.
Eine weit verbreitete Möglichkeit ist die Verbreitung von dynamisch erstellten Dokumenten und
Grafiken über HTML-Seiten und CGI-Skripten. Diese Variante erlaubt aber keine Verarbei-
tungsschritte im Client, die erst mit dem Einsatz von Java-Applets möglich werden. Für diese
kann zwischen einer Datenversorgung über CORBA (mit all den bereits beschriebenen Vor- und
Nachteilen) und den direkt zur Sprache gehörenden Lösungen (wie etwa JDBC oder RMI/OS)
gewählt werden. Eine Gegenüberstellung der Eigenschaften aller Varianten ist in Tabelle 5.4
enthalten.

143

Tabelle 5.4: Ansätze zur Datenversorgung im Intra-/Internet

HTML,
JavaScript

&
CGI-Skripte

Java-
Applets

&
CORBA

Java-
Applets

&
JDBC

Java-
Applets

&
RMI/OS

Client

Kann in einem Browser ausgeführt werden? � � � �

Ergänzende Software nötig?
(neben dem Browser)

- ORB - -

Komplexe Berechnungen lokal im Client - � � �

Puffer enthält
Dokumente

Grafiken
Daten Daten Daten

Kommunikation und Datenzugriff

Bulk Data Transfer (�)

je
nach

gewählter
Variante

aus
Tabelle 5.3

auf
Seite 139

� �

Unterstützung für mengenorientierte
Anfragen

- � -

Datenmodell
Textdokumente

mit eingebetteten
Grafiken

relational
objektori-

entiert

Unterstützte Datenquellen alle (O)RDBVS alle

Kapselung der Datenquelle durch den Server � - �

Server

Programmiersprache bzw.
Verarbeitungsmodell

CGI-Skripte beliebig
SQL-

Anfragen
+ Java

Java

Datenversorgungs-Server kann auf anderem
Rechner liegen als der WWW-Server?

- � � �

144

145

Kapitel 6
666

Entwurf und Implementierung
einer modularen Datenver-
sorgung

In den letzten Kapiteln haben wir die konzeptuellen Grundlagen einer effizienten Datenversor-
gung diskutiert. Nun wollen wir uns einer beispielhaften Implementierung zuwenden, anhand
derer die verschiedenen Ansätze zu evaluieren sind. Als Anwendungsszenario dient uns dabei
die Produktdatenverwaltung über den STEP-Standard (siehe Kapitel 3). Es bietet sich also an,
die gesamte Datenversorgung mit Hilfe der SDAI-Schnittstelle zu kapseln. Nun wollen wir aber
nicht jede Datenquelle über eine separate SDAI-Schicht kapseln, sondern einen homogenen
Zugriff auf alle zu bearbeitenden Datenquellen anbieten. In diese Zugriffsschicht können dann
bei Bedarf Adapter zu den einzelnen Datenquellen eingeklinkt werden. Diese Adapter sollen
eine verteilte Verarbeitung über das Intra- bzw. Internet ermöglichen (vgl. Abbildung 6.1).

Abb. 6.1: Allgemeine Architektur einer modularen Datenversorgung

Die von der ISO eingeleitete Entwicklung einer Abbildung der abstrakten SDAI-Schnittstelle
auf die Programmiersprache Java bot uns die Chance, einen eigenen Vorschlag zur Standardi-
sierung zu machen. Dieser sollte natürlich nicht nur auf die ursprüngliche Verarbeitungsweise

Abstrakte Datenversorgungsschnittstelle

Intra- / Internet

Protokoll 3Protokoll 1

Adapter für

Prototkoll 2

Datenquelle
4

Adapter für
Datenquelle

3

Adapter für
Datenquelle

2

Adapter für
Datenquelle

1
Adapter fü

r

Datenquelle

n

Protokoll 4

Datenquelle 4Datenquelle 3Datenquelle 2Datenquelle 1

146

des SDAI beschränkt sein, sondern insbesondere die gerade skizzierte Funktionalität anbieten.
Gerade die Sprache Java bietet im Bezug auf eine Verarbeitung über das Intra-/Internet eine sehr
gute Unterstützung. Allerdings ergaben sich aufgrund der in anderen Bereichen eher einge-
schränkten Funktionalität von Java auch einige Probleme. In Kapitel 6.1 diskutieren wir deshalb
die Entwicklung unserer JavaSDAI Socket Bar, die eine modulare Datenversorgungsschnitt-
stelle gemäß Abbildung 6.1 darstellt. Sie wurde mittlerweile als Conformance Level 1 in den
korrespondierenden ISO-Standard aufgenommen [ISO99a]. Aufgrund der offenen und modula-
ren Architektur lassen sich verschiedene Datenquellen gleichzeitig über unterschiedlichste
Kommunikationsprotokolle anbinden. Dafür werden sie jeweils als ein gekapseltes Data
Module in das Gesamtsystem integriert. Nachdem der Einsatz von STEP typischerweise zu
einer datenintensiven Verarbeitung führt, stellt die Socket Bar somit ein ideales Werkzeug zur
Evaluierung der Konzepte für das Data Shipping dar. In Kapitel 6.2 entwickeln wir deshalb
einige Data Modules, die jeweils einen spezifischen Ansatz zum Data Shipping implemen-
tieren. Für die Beurteilung ihrer Leistungsfähigkeit benutzen wir zwei Benchmark-Applikatio-
nen, die in Kapitel 6.3 beschrieben sind. Ausgewählte Ergebnisse einiger Messungen diskutie-
ren wir anschließend in Kapitel 6.4. Zusätzlich betrachten wir in Kapitel 6.5 noch verwandte
Arbeiten im Bereich datenintensiver Systeme auf Basis von STEP und CORBA. Alle Ergeb-
nisse zusammen bilden schließlich die Grundlage für einige allgemeine Schlußfolgerungen in
Kapitel 6.6.

Während der Implementierungsphase und den zugehörigen Analysen haben sich (ergänzend zu
den bereits in Kapitel 4 angesprochenen Aspekten) weitere Probleme beim Einsatz von CORBA
herausgestellt. Sie sind das Thema von Kapitel 6.7 und beziehen sich sowohl allgemein auf den
Standard als auch auf einzelne CORBA-Produkte.

6.1 Die JavaSDAI Socket Bar:
Eine modulare Zugriffsschnittstelle auf Basis des SDAI

Im Oktober 1996 hat die ISO aufgrund der steigenden Popularität von Java die Entwicklung
einer korrespondierenden Sprachanbindung für die Zugriffsschnittstelle SDAI gestartet. Nach-
dem die Abteilung FT3/EK des DaimlerChrysler Forschungszentrums Ulm bereits seit Jahren
an der STEP-Standardisierung beteiligt war, haben wir diese Chance genutzt und uns von
Anfang an in der zuständigen Arbeitsgruppe des ISO TC184/SC4/WG11 engagiert. Unser Ziel
war und ist die Definition eines flexiblen Language Bindings, welches neben der bekannten
SDAI-Funktionalität auch den mittlerweile entstandenen Anforderungen im Bereich des Intra/
Internet gerecht wird. Insbesondere wollen wir auch die Erstellung von Java Applets ermögli-
chen, die über WWW-Server verbreitet und in einem beliebigen Browser ausgeführt werden
können. Zur Entwicklung einzelner Implementierungen sollen dabei möglichst viele Konzepte
und Techniken zur Verfügung stehen, so daß eine standardisierte SDAI-Schnittstelle abstrakt
und unabhängig von jeglicher Form der Datenhaltung oder Datenversorgung sein muß.

147

Im Rahmen des weltweit ersten JavaSDAI-Prototypen haben wir einen Vorschlag für eine
Sprachanbindung entwickelt und im März 1997 auf dem ISO-Meeting in Chester präsentiert
[SS97, SM98]. Bedingt durch die recht hohe Ähnlichkeit von Java und C++ war dieser sehr
stark an die Abbildung der SDAI-Schnittstelle auf C++ angelehnt [ISO98b]. Obwohl die ersten
Ergebnisse unserer Arbeit sehr vielversprechend waren, so fiel letztendlich doch die mangelnde
Interoperabilität zwischen unserem Prototypen und möglichen anderen SDAI-basierten Daten-
versorgungskomponenten auf. Gemäß unserem Konzept ließ sich zwar jede Implementierung
individuell und sehr flexibel erstellen, gleichzeitig war sie aber auf eine einzige Form der Daten-
versorgung fixiert. Dementsprechend haben wir unseren Vorschlag überarbeitet und das Kon-
zept der JavaSDAI Socket Bar eingeführt. Diese standardisiert quasi die Schnittstelle einer
abstrakten Steckleiste, in die sich auch mehrere Datenversorgungsmodule bei Bedarf einklinken
lassen. Im folgenden wollen wir nun die zugrundeliegende Architektur vorstellen und auf ein-
zelne Aspekte detailliert eingehen. Beginnen werden wir in Kapitel 6.1.1 mit der Diskussion
von konzeptuellen Problemen, die während der Entwurfsphase aufgetreten sind. Sie basieren im
wesentlichen auf den Eigenschaften der Sprache Java sowie der SDAI-Schnittstelle selbst.
Anschließend stellen wir in Kapitel 6.1.2 unseren Vorschlag für ein Language Binding sowie
die Architektur und die Konzepte der JavaSDAI Socket Bar vor.

6.1.1 Konzeptuelle Probleme während der Design-Phase

Die Konzepte der Programmiersprache Java sind zwar zum größten Teil besser durchdacht als
z.B. diejenigen von C++ (und auch präziser definiert), gleichzeitig schränken sie aber auch die
aus C++ gewohnte Flexibilität ein. Dies betrifft insbesondere die Definition von Klassen mit
mehreren Superklassen (sog. multiple Vererbung). Weiterhin sollte man bereits beim Entwurf
von Programmen einen späteren Einsatz als Applet und die damit verbundene Verteilung
berücksichtigen. Generell gilt auch, daß die Erzeugung und Freigabe von Instanzen zur Laufzeit
recht teuer ist. Bei einer Abbildung der SDAI-Schnittstelle tritt nun außerdem das Problem auf,
daß die Spezifikation prinzipiell mehrere Ebenen der Transaktionsverarbeitung vorsieht. Diese
sind aber nicht alle für einen Einsatz im Bereich des Intra-/Internet geeignet, so daß auch hier
Einschränkungen nötig sind. Im folgenden wollen wir nun detailliert auf die einzelnen Aspekte
eingehen und die von uns gewählte Lösung beschreiben.

Ein weiteres Problem ist die allgemein zu schlechte Leistung von Java. Bedingt ist dies durch
die Tatsache, daß Java nicht vollständig in Maschinensprache übersetzt wird, sondern in eine
Zwischenstufe, den sog. Bytecode. Dieser muß dann noch von der Java Virtual Machine (JVM)
interpretiert werden. Zusätzlich ermöglicht Java prinzipiell keine Pufferverwaltung, bei der ein-
zelne Objekte bei Bedarf verdrängt werden können. Diese Fähigkeit wäre bei datenintensiver
Verarbeitung von großem Nutzen. Beide Probleme betreffen jedoch nicht primär das Design der
SDAI-Schnittstelle, sondern die spätere Implementierungsphase. Wir werden sie deshalb in
Kapitel 6.2 und Kapitel 6.4 betrachten.

148

6.1.1.1 Anzahl und Umfang von Klassen

Benutzt man ein Java-Applet im Intra-/Internet, so müssen alle benötigten Klassen vom WWW-
Server geladen werden. Beim Einsatz des JDK 1.0.x waren hierfür sogar einzelne HTTP-
Requests je Klasse nötig, die selbst bei einem lokalen Zugriff (der WWW-Server läuft auf dem
gleichen Rechner wie der Browser) jeweils mehrere Sekunden beanspruchen können. Mit dem
JDK 1.1 wurden zum Glück komprimierte Java Archives (JAR) eingeführt, mit denen sich der
benötigte Code in einem Kommunikationsschritt herunterladen läßt. Je nach Anzahl und
Umfang von Klassen ist das Archiv unter Umständen aber trotzdem noch bis zu mehreren
Megabytes groß. Selbst ein einzelner Kommunikationsschritt stellt somit eine störende Verzö-
gerung dar. Dies trifft insbesondere bei einem Einsatz im Internet (das fast immer hoffnungslos
überlastet ist) oder der Kommunikation über Modem-Verbindungen zu.

Ergänzend zum Laden ist auch die Verwaltung von Klassen zu betrachten: Je mehr Klassen es
gibt, desto größer ist auch die korrespondierende Hilfsstruktur der JVM (vermutlich eine Hash-
tabelle). Folglich steigt auch die Zeit zum Einlagern und Suchen von Class Files. Letzteres ist
z.B. bei jeder Erzeugung von Instanzen nötig.

Letztendlich sollte man sich also beim Entwurf auf eine unbedingt benötigte Anzahl von Klas-
sen beschränken sowie auf die Wiederverwendung von Code achten: Häufig lassen sich mehrere
Methoden zu einer generischen Methode mit leicht geänderter Signatur zusammenfassen. Bei
der Abbildung der SDAI-Schnittstelle haben wir deshalb voneinander abhängige SDAI-Klassen
aus dem C++ Mapping (z.B. Repository und Repository_contents) zu einer JavaSDAI-
Klasse (Repository) zusammengefaßt. Damit reduziert sich die Zahl der Klassen, und es ent-
fallen einige Methoden zur Navigation zwischen Objekten (z.B. die von Repository auf
Repository_contents). Weiterhin werden Aggregate direkt auf Java Arrays abgebildet statt
auf eigene Aggregatklassen je SDAI Entity.

6.1.1.2 Erzeugung und Freigabe von Instanzen

Neben der Anzahl von Klassen ist auch die Anzahl von Instanzen sowie deren Erzeugung und
Freigabe ein entscheidender Faktor für die Leistung zur Laufzeit. Java ist eine interpretierte
Sprache und dementsprechend sind eigentlich alle Operationen relativ langsam. Gerade die
Erzeugung von Instanzen ist aber extrem teuer. Zunächst einmal muß von der JVM das jeweilige
Class File gesucht werden. Anschließend ist ein ausreichend großer (und freier) Bereich im
Hauptspeicher zu finden und korrekt zu initialisieren (durch Aufruf des Konstruktors). Die dafür
benötigte Freispeicherverwaltung scheint in Java aber recht ineffizient gelöst zu sein. Weiterhin
kennt Java nur einen Befehl new zur Erzeugung von Instanzen, aber keinen delete-Operator für
deren explizite Freigabe: Das System löscht nicht mehr referenzierte Objekte automatisch über
einen sog. Garbage Collector. Zum Freigeben von Instanzen muß man also alle Referenzen auf
diese löschen und auf den Garbage Collector hoffen (dessen Ausführung angestoßen, aber nicht
erzwungen werden kann). Dieser Schritt ist natürlich deutlich teurer als der Aufruf einer
delete-Operation: Hier müssen alle Objekte im Heap auf Referenzen überprüft werden, und
nicht nur das eigentlich zu löschende! Vielfach kann auch gar nicht garantiert werden, daß alle
Referenzen auf ein Objekt gelöscht wurden: Selbst wenn z.B. eine SDAI-Implementierung
intern alle Verweise auf ein Objekt löscht, so kann die Applikation immer noch Referenzen dar-
auf haben (oder umgekehrt). Aufgrund der fehlenden Kontrolle über die Freispeicherverwal-

149

tung besteht in datenintensiven Umgebungen mit vielen temporären Objekten weiterhin eine
erhöhte Gefahr der Fragmentierung (es können im Gegensatz zu C++ keine speziellen Puffer
zur Aufnahme von Objekten mit bestimmter Größe definiert werden).

Eine Abbildung der SDAI-Schnittstelle sollte also zusammengehörende Klassen zu einer
Klasse (und damit einer Instanz) zusammenfassen und möglichst keine Erzeugung von tempo-
rären Objekten erzwingen. Der erste Punkt beschleunigt damit gleichzeitig die im letzten
Abschnitt angesprochene Übertragung der Class Files.

6.1.1.3 Aufzählungstypen

In Java fehlt das von anderen Programmiersprachen bzw. aus IDL und EXPRESS bekannte
Konzept der Aufzählungstypen (den sog. Enumeration Types). Diese lassen sich in Java aber
relativ einfach durch Klassen mit Konstanten simulieren. Unser Vorschlag für eine Abbildung
von EXPRESS Enumeration Types auf Java-Klassen ist in Beispiel 6.1 illustriert:

Beispiel 6.1: Abbildung von EXPRESS Enumeration Types auf Java-Klassen mit Konstanten

Bei der Definition dieser Abbildungsvorschrift haben wir darauf Wert gelegt, daß Werte von
Aufzählungstypen zur Laufzeit wie Basistypen repräsentiert werden und keine unnötigen
Instanzen zu erzeugen sind. Aus diesem Grund enthalten die Klassen für Enumeration Types nur
statische Konstanten und Methoden. Es werden niemals Instanzen von ihnen angelegt. Besitzt
ein EXPRESS Entity ein Attribut vom Typ eines EXPRESS Enumeration Type (z.B.
Geschlecht), so wird dieses in der korrespondierenden Java-Klasse auf ein Attribut vom Typ

// in EXPRESS:

TYPE Geschlecht = (weiblich, männlich, unbekannt);
END_TYPE;

// in Java:

public final class CGeschlecht {
public static final int unset = java.lang.Integer.MIN_VALUE;
public static final int WEIBLICH = 0;
public static final int MÄNNLICH = 1;
public static final int UNBEKANNT = 2;
public static final int dim = 3; // Anzahl der Enumeratoren

 // (Dimension)
public static final String values[] =
{“WEIBLICH”, “MÄNNLICH”, “UNBEKANNT”};

public static String toString (int v) {
if (v == unset) return “unset”;
return values[v];

};
public static int toInt (String v) {

for (int i=0; i<=dim; i++) {
if (values[i].equalsIgnoreCase(v)) return i;

};
return unset;

};
public static boolean isSet (int v) {

return (v>=0 && v<dim);
};

};

JavaSDAI

150

int abgebildet. Die zulässigen Werte für dieses Attribut werden dabei durch die Konstanten in
der Java-Klasse des Enumeration Type (CGeschlecht) beschrieben. Vergleiche und Zuweisun-
gen erfolgen immer auf der Basis von int-Werten (siehe Beispiel 6.2).

Beispiel 6.2: EXPRESS Entities mit Attributen vom Typ eines EXPRESS Enumeration Type

Unser Ansatz unterscheidet sich damit deutlich vom Mapping der CORBA-IDL auf Java
[OMG98f]. Zwar bildet die OMG Aufzählungstypen auch auf korrespondierende Java-Klassen
ab, von dieser werden aber (im Gegensatz zu unserer Lösung) zur Laufzeit Instanzen erzeugt.
Einerseits reduziert dieser Schritt natürlich die zu erwartende Leistung des Systems (siehe
Kapitel 6.1.1.2), andererseits ermöglicht er aber eine stärkere Typbindung von Attributen: Die
Java-Klasse für einen Enumeration Type kann nun direkt als Ergebnis- bzw. Parametertyp von
Zugriffsmethoden verwendet werden. Würde man z.B. das ENTITY Person aus Beispiel 6.2 als
IDL interface definieren, so hätte die korrespondierende Java-Zugriffsmethode die Signatur
public Geschlecht getGeschl() (statt public int getGeschl() in JavaSDAI). Wir halten
die durch das Erzeugen von Objekten bedingte Leistungseinbuße aber für zu hoch und bevorzu-
gen deshalb unseren o.g. Ansatz mit einer schwächeren Typbindung. Mit den in Beispiel 6.1
illustrierten Hilfsmethoden steht dabei eine ausreichende Unterstützung für eine typbezogene
Verarbeitung zur Verfügung.

6.1.1.4 Multiple Vererbung

Im Gegensatz zu den meisten Programmiersprachen unterscheidet Java zwischen der Beschrei-
bung von Schnittstellen (Schlüsselwort interface) und Klassen (Schlüsselwort class).
Schnittstellen können dabei nur Konstanten und die Signatur von Methoden (also nur deren
Deklaration) umfassen. Die Definition von Attributen und Methoden (also deren Implementie-
rung) ist hingegen Bestandteil von Klassen. Auf der Ebene von Schnittstellen wird mehrfache
Vererbung unterstützt, für Klassen nur einfache. Mit dieser Maßnahme werden mögliche Kon-
flikte zur Laufzeit vermieden. Wir wollen diesen Aspekt kurz erläutern. Betrachten wir dazu
Beispiel 6.3: Es gibt zwei Schnittstellen A und B, die jeweils die Signatur einer Methode doSo-
mething deklarieren. Weiterhin erbt die Schnittstelle AB von den Schnittstellen A und B. Obwohl
sie damit im Prinzip zweimal die Signatur von doSomething erbt, so tritt an dieser Stelle kein
Konflikt auf. Letztendlich bedeutet es nur, daß eine Implementierung von A, B oder AB (z.B. die

// in EXPRESS:

ENTITY Person;
Name : STRING;
Geschl : Geschlecht;

END_ENTITY;

// in Java (gekürzt):

public interface EPerson {
public void setName(String val);
public String getName();
public void setGeschl(int val);
public int getGeschl();

};

// Beispiel für Vergleich/Zuweisung in einer Methode:
...
EPerson pers1 =
pers1.setGeschl(CGeschlecht.WEIBLICH);
...
int tmp = pers1.getGeschl();
if CGeschlecht.isSet(tmp) { ...};
...

JavaSDAI

151

Klasse C) eine Methode mit entsprechender Signatur implementieren (also definieren) muß.
Gleiches gilt wenn es keine Schnittstelle AB gibt und die Klasse C direkt von den Schnittstellen
A und B erbt.

Beispiel 6.3: Mehrfache Vererbung bei Schnittstellen (konfliktfrei)

Anders sieht es hingegen aus, wenn man mehrfache Vererbung auf der Ebene von Klassen zulas-
sen würde (siehe Beispiel 6.4). Gehen wir einmal von zwei Klassen A und B aus, die jeweils eine
Methode doSomething implementieren (also definieren). Erbt nun eine Klasse C von A und B,
so erbt sie damit auch beide Implementierungen dieser Methode. Welche von den beiden sollte
von einer Instanz der Klasse C aber zur Laufzeit ausgeführt werden? Hier liegt klar ein Konflikt
vor. Gleiches gilt für das Attribut description, das ebenfalls von beiden Basisklassen definiert
wird (es wird also vom jeweiligen Konstruktor Speicherplatz allokiert). Eine Instanz von C
könnte nicht entscheiden, auf welches Attribut (also auf welchem korrespondierenden Speicher-
bereich) ein Zugriff erfolgen soll. Aus diesen Gründen wird mehrfache Vererbung auf der Ebene
von Klassen durch Java nicht unterstützt.

Beispiel 6.4: Konfliktszenario für den Fall mehrfacher Vererbung bei Klassen

Bei einer Abbildung der SDAI-Schnittstelle auf Java müssen wir uns nun entscheiden, wie wir
in STEP modellierte Vererbungsbeziehungen in Java nachbilden. EXPRESS unterstützt generell
mehrfache Vererbung auf der Ebene von Entities (siehe Kapitel 3.1). Will man also alle dort
deklarierten Hierarchien in Java erhalten, so bleibt nur die Repräsentation von Entities durch
Java-Schnittstellen (d.h. die Abbildung von EXPRESS Entities auf Java-Schnittstellen wird

interface A {
int doSomething ();

};

class C implements AB {
int doSomething () {

// ... mache etwas
};

};

interface AB extends A, B {
// erbt alle Methoden von A und B

};

interface B {
int doSomething ();

};

class A {
int doSomething () {

// ... mache etwas
// anderes als Klasse B

};
String description;

};

class C extends A, B {
// alle Methodenimplementierungen
// und Attribute geerbt, aber:
// Konflikt bei “doSomething”
// => 2 verschiedene Implementierungen!
// und bei “description”
// => Attribut zweimal vorhanden!

};

class B {
int doSomething () {

// ... mache etwas
// anderes als Klasse A

};
String description;

};

152

durch JavaSDAI standardisiert). Dieses Vorgehen hat gleichzeitig den Vorteil, daß Entwickler
bei der Auswahl von Technologien und Konzepten nicht unnötig eingeschränkt werden: Jede
Schnittstelle (interface) ist standardisiert, deren Implementierung (class) kann aber beliebig
aussehen. Auf der anderen Seite gibt es natürlich auch Nachteile: Zunächst einmal gibt es nun
zu jedem Entity-Typ eine Schnittstelle und eine Implementierungsklasse. Für beide erzeugt der
Java Compiler jeweils ein Class File, das zur Laufzeit geladen werden muß (vgl.
Abschnitt 6.1.1.1). Weiterhin unterstützt Java das Konzept der mehrfachen Vererbung eben nur
für Schnittstellen - zur Definition der korrespondierenden Klassen steht es nicht zur Verfügung.
Hier muß mit der Replikation von Code gearbeitet werden, die im Prinzip zu unnötig großen
Klassen und einem höheren Wartungsaufwand führt. Wir schlagen vor, daß Klassen jeweils von
der Superklasse mit den meisten Attributen (bzgl. des EXPRESS-Schemas) erben und den Code
für Attribute der anderen Superklassen replizieren.

Selbst bei der Verwendung von Schnittstellen für die Modellierung von Entities gibt es aber
noch Probleme bei der korrekten Abbildung der Semantik von EXPRESS. Dieser Aspekt
betrifft die Deklaration von Attributen mit gleichem Namen in verschiedenen Superklassen. In
Beispiel 6.5 gibt es zwei Entities A und B, die jeweils zwei Attribute mit dem Namen a und b
haben. Attribut a ist immer vom gleichen Typ, Attribut b basiert auf unterschiedlichen Typen.
Gemäß der Semantik von EXPRESS besitzt das Entity C nun sechs (!) Attribute, auf die zuge-
griffen werden kann. Die Java-Schnittstelle für C muß also z.B. nach A.a und B.a unterscheiden.

Beispiel 6.5: Mehrfache Vererbung in EXPRESS: Attribute mit gleichem Namen

Auf den Sitzungen der ISO gab es in den letzten Jahren nun lebhafte Diskussionen, wie man
diesen Fall auf Java abbilden soll. Nachdem sich die Semantik von EXPRESS und Java hier
deutlich unterscheidet, ließ sich keine offensichtliche Lösung finden. Bei der Entwicklung
neuer Konzepte galt es nun vor allem folgende Anforderungen zu berücksichtigen:

• Erhaltung der Vererbungshierarchie

Die in EXPRESS deklarierte Vererbungshierarchie ist vollständig auf Java-Schnittstellen
zu übertragen. Insbesondere sollte es möglich sein, daß Instanzen eines Sub-Entity (z.B. C)
in einem Aggregat vom Typ des Super-Entity (z.B A oder B) enthalten sind und Applikatio-
nen über dieses Aggregat iterieren können. Eine Instanz von C muß dabei das gleiche Ver-
halten wie eine Instanz von A oder B zeigen.

• Zugriff auf geerbte Attribute mit gleichem Namen

Eine Instanz des Sub-Entity (z.B. C) muß den Fall unterstützen, daß Attribute mit gleichem
Namen von mehreren Super-Entities geerbt werden (z.B. a und b von A und B). Dies gilt

ENTITY A
a : INTEGER;
b : INTEGER;
e : REAL;

END_ENTITY;

ENTITY B
a : INTEGER;
b : REAL;
f : REAL;

END_ENTITY;

ENTITY C
SUBTYPE OF (A,B)

END_ENTITY;

gleicher Name und gleicher Typ
gleicher Name, aber anderer Typ

153

unabhängig davon, ob der Typ der Attribute übereinstimmt oder nicht. Die korrespondie-
rende Java-Schnittstelle für C muß Zugriffsmethoden für jedes einzelne Attribut enthalten
(also z.B. auf irgendeine Art nach A.a und B.a unterscheiden).

• Wiederverwendung von existierendem Code

In der Praxis tritt häufig der Fall auf, daß existierende Klassenbibliotheken als Basis für
eigene Klassen bzw. Entities benutzt werden. Nehmen wir z.B. an, daß es bereits Imple-
mentierungen für A und B gibt und wir C neu definieren. In diesem Fall möchten wir natür-
lich die Implementierung von A und B unverändert übernehmen und nur die neue Imple-
mentierung für C selber entwickeln.

• Namenskonventionen unabhängig von Vererbung

Der Name von Zugriffsmethoden sollte unabhängig davon sein, ob ein Attribut an ein Sub-
Entity vererbt oder von einem Super-Entity geerbt wird. Dieser Aspekt steht in direktem
Zusammenhang mit der Wiederverwendung von Code, da EXPRESS Schemata (z.B. stan-
dardisierte Integrated Resources - IR, siehe Kapitel 3) vielfach als Basis für komplexere
Schemata verwendet werden (z.B. standardisierte Application Protocols - AP).

• Keine verwirrenden Parameter

Zugriffsmethoden für Attribute sollten keine Parameter besitzen, deren Bedeutung nicht
offensichtlich ist oder bei denen der zu übergebende Wert von der aktuellen Vererbungs-
hierarchie abhängt. Dieses Verfahren wird in Ansatz C und H (siehe Beispiel 6.6) zur Auf-
lösung von Konflikten bei geerbten Attributen mit gleichem Namen benutzt.

• Möglichst kurze Namen für Zugriffsmethoden

Der Name von Zugriffsmethoden für Attribute sollte möglichst kurz sein. Alle Namen von
Methoden sind im Klartext in den vom Java-Compiler erzeugten Class Files enthalten und
haben damit direkten Einfluß auf die Größe des Codes. Dies betrifft sowohl die Definition
der Methode als auch jeden Aufruf. Beeinflußt wird sowohl die Zeit zum Laden von
Applets als auch der zur Laufzeit benötigte Platz im Hauptspeicher.

• Harmonisierung mit anderen SDAI-Sprachanbindungen

Eine Lösung sollte möglichst konform zu anderen SDAI-Sprachanbindungen sein.
Ursprünglich wurde vor allem eine Harmonisierung mit ISO 10303-26 angestrebt (der
Abbildung der SDAI-Schnittstelle auf die IDL von CORBA), um auch auf dieser Serie
basierende CORBA-Implementierungen mit Java-Clients zu unterstützen. Die Anwendung
des von der OMG standardisierten IDL-Java-Mappings auf Serie 26 müßte dafür das glei-
che Resultat wie JavaSDAI erzeugen. Mittlerweile wird dieser Punkt aber vernachlässigt,
da sich Serie 26 ohnehin als ineffizient herausgestellt hat (die resultierende Verarbeitung
führt zu Operation Shipping statt Data Shipping, siehe [Sel96] und Kapitel 6.2.4).

Entsprechend der Gewichtung dieser Anforderungen durch die jeweiligen Delegierten (bzw.
ihre Firmen) wurden auf den ISO-Sitzungen nun insgesamt acht Ansätze A bis H vorgestellt.
Sie sind in Beispiel 6.6 unter Verwendung des EXPRESS-Schemas aus Beispiel 6.5 illustriert.

154

Beispiel 6.6: Ansätze zur Auflösung von Konflikten bei multipler Vererbung

A. Fully Qualify Names in the Supertype

interface A {
int getA_A();
void setA_A(int val);
int getA_B();
void setA_B(int val);
double getA_E();
void setA_E(double val);

};

interface B {
int getB_A();
void setB_A(int val);
double getB_B();
void setB_B(double val);
double getB_F();
void setB_F(double val);

};

interface C extends A, B {};

B. Qualify Names in the Supertype
Only When Clash Occurs

interface A {
int getA_A();
void setA_A(int val);
int getA_B();
void setA_B(int val);
double getE();
void setE(double val);

};

interface B {
int getB_A();
void setB_A(int val);
double getB_B();
void setB_B(double val);
double getF();
void setF(double val);

};

interface C extends A, B {};

C. Qualify Name in the Subtype
(With Dummy Argument)

interface A {
int getA(int dummy);
void setA(int val);
int getB(int dummy);
void setB(int val);
double getE(double dummy);
void setE(double val);

};

interface B {
int getA(int dummy);
void setA(int val);
double getB(double dummy);
void setB(double val);
double getF(double dummy);
void setF(double val);

};

interface C extends A, B {
int getA_A(int dummy);
void setA_A(int val);
int getA_B(int dummy);
void setA_B(int val);
int getB_A(int dummy);
void setB_A(int val);
double getB_B(double dummy);
void setB_B(double val);
// the implementation class shall
// throw an exception on a call to
// getA, setA, getB and setB

};

D. Qualify Name in the Subtype
(Without Dummy Argument)

interface A {
int getA();
void setA(int val);
int getB();
void setB(int val);
double getE();
void setE(double val);

};

interface B {
int getA();
void setA(int val);
int getB();
void setB(int val);
// attribute b of same name, but
// different type not supported;
// retyping necessary!
double getF();
void setF(double val);

};

interface C extends A, B {
int getA_A();
void setA_A(int val);
int getA_B();
void setA_B(int val);
int getB_A();
void setB_A(int val);
double getB_B();
void setB_B(double val);
// the implementation class shall
// throw an exception on a call to
// getA, setA, getB and setB

};

155

Beispiel 6.6: Ansätze zur Auflösung von Konflikten bei multipler Vererbung (Fortsetzung)

E. Fully Qualify Names by Type

interface A {
int getIntA(Class cl);
void setIntA(int val, Class cl);
int getIntB(Class cl);
void setIntB(int val, Class cl);
double getRealE(Class cl);
void setRealE(double val, Class cl);

};

interface B {
int getIntA(Class cl);
void setIntA(int val, Class cl);
double getRealB(Class cl);
void setRealB(double val, Class cl);
double getRealF(Class cl);
void setRealF(double val, Class cl);

};

interface C extends A, B {
// use class file for interface A
// as a parameter to getIntA
// to access attribute a of Entity A;
// cl might be null if no clash occurs,
// e.g. call “getRealE(null)”

};

F. Combine Approach B and D

interface A {
int getA();
void setA(int val);
// no change for attribute with same
// name and type
int getA_B();
void setA_B(int val);
// qualification in case of attribute
// with same name, but different type
double getE();
void setE(double val);

};

interface B {
int getA();
void setA(int val);
double getB_B();
void setB_B(double val);
double getF();
void setF(double val);

};

interface C extends A, B {
int getA_A();
void setA_A(int val);
int getB_A();
void setB_A(int val);
// the implementation class shall
// throw an exception on a call to
// getA and setA

};

G. Cut Inheritance Hierarchy in Case of
Attr. With Same Name / Different Type
(Otherwise use D)

interface A {
...
// no qualification, see approach D

};

interface B {
...
// no qualification, see approach D,
// but no retyping for attribute b:
double getB();
void setB(double val);

};

interface C { // no inheritance
// qualification if clash occurs,
// see Approach D

};

H. Qualification by Dummy Parameter

interface A {
int getA(A dummy);
void setA(int val, A dummy);
int getB(A dummy);
void setB(int val, A dummy);
double getE(A dummy);
void setE(double val, A dummy);

};

interface B {
int getA(B dummy);
void setA(int val, B dummy);
double getB(B dummy);
void setB(double val, B dummy);
double getF(B dummy);
void setF(double val, B dummy);

};

interface C extends A, B {
// use a casted null for qualif.:
// e.g. “setA(4, (A) null)”
// use null if no clash occurs:
// e.g. “setE(47.11, null)”

};

156

Anhand von Tabelle 6.1 kann man schließlich ablesen, inwieweit einzelne Lösungen die
genannten Anforderungen erfüllen.1 Dabei ist klar zu erkennen, daß in keinem Fall alle Aspekte
abgedeckt werden. Der mächtigste Vorschlag im Sinne der unterstützten Funktionalität ist
sicherlich Ansatz A.

Tabelle 6.1: Bewertung von Ansätzen zur multiplen Vererbung in JavaSDAI

Innerhalb der ISO-Arbeitsgruppe hat man sich allerdings auf Ansatz D geeinigt. Wir wollen die
Gründe für diese Entscheidung kurz erläutern: Zunächst einmal standen bei der Abbildung auf
Java Leistungsaspekte im Vordergrund. Die Sprache wird ohnehin von vielen als zu langsam
bezeichnet und man wollte die Ausführung von Programmen sowie das Laden von Applets nicht

1. Bei den Ansätzen E und H kann zwar während der Iteration über ein Aggregat des Supertyps mit dessen Methoden auf die
Instanzen des Subtyps zugegriffen werden, es muß aber in diesem Fall ein Wert bzw. Typ für den dummy-Parameter über-
geben werden (bei Instanzen des Supertyps ist dies nicht erforderlich). Deshalb verwenden wir hier die Notation “(�)“.

Anforderung
Ansatz

A B C D E F G H

Unterstützung für Attribute mit gleichem Namen

... und gleichem Typ � � � � � � � �

... und unterschiedlichen Typen � � � - � � � �

Vererbungshierarchie bleibt bestehen

... wenn keine Attribute mit gleichem Namen, aber
unterschiedlichen Typen auftreten

� � � � � � � �

... in allen Fällen � � � - � � - �

Iteration über Aggregat eines Supertyps mit Instanzen des Subtyps
unter Verwendung der Zugriffsmethoden des Supertyps möglich

... für Attribute mit eindeutigen Namen � � � � � � � �

... für Attribute mit gleichem Namen und Typ � � - - (�) - - (�)

... für Attribute mit gleichem Namen,
aber unterschiedlichen Typen

� � - - (�) - - (�)

Schnittstelle und Implementierung der Supertypen können übernommen werden
(keine Änderungen existierenden Codes nötig)

... wenn keine Attribute mit gleichem Namen,
aber unterschiedlichen Typen auftreten

� - � � � � � �

... in allen Fällen � - � - � - � �

Gleiche Namenskonvention für alle Entities
(unabhängig von der Vererbungshierarchie)

� - - - � - - �

Keine neuen Parameter erforderlich � � - � - � � -

Möglichst kurze Signaturen für Zugriffsmethoden - � � � - � � -

Ansatz bereits verwendet in Serie 26 - - - - - - -

157

unnötig verzögern. Dementsprechend waren möglichst kurze Signaturen bzw. Namen für
Methoden erforderlich. Ihre Länge beeinflußt sowohl die Übertragungszeit als auch den beleg-
ten Platz im Hauptspeicher. Ergänzend galt es, die Deklaration neuer Parameter zu vermeiden.
Diese würden einerseits die Signatur von Methoden verlängern und andererseits beim Aufruf
auch Platz auf dem Stack belegen. Außerdem sollte existierender Code für Supertypen über-
nommen werden können, um die Entwicklungskosten für Software nicht unnötig zu erhöhen.
Somit blieben nur die Ansätze D, F und G übrig. Bei diesen fällt aber auf, daß geerbte Attribute
mit gleichem Namen und unterschiedlichen Typen nur unzureichend unterstützt werden: Ansatz
D und F erzwingen in diesem Fall Änderungen in den Supertypen (verhindern also die Wieder-
verwendung von Code), Ansatz G zerstört die Vererbungshierarchie. Folglich einigte man sich,
daß JavaSDAI bei mehrfacher Vererbung keine Attribute mit gleichem Namen aber unterschied-
lichen Typen unterstützt. Unter Berücksichtigung dieser Entscheidung sind die drei Ansätze D,
F und G aber äquivalent, so daß letztendlich Ansatz D gewählt wurde (er basiert auf einer mini-
malen Anzahl von Regeln und ist damit am einfachsten zu handhaben).

6.1.1.5 Verteilung und Transaktionen

Die in den letzten Abschnitten betrachteten Probleme bei der Abbildung der SDAI-Schnittstelle
betrafen Leistungsaspekte oder Einschränkungen aufgrund der Verwendung von Java. Im
Bezug auf Transaktionen, Mehrbenutzerbetrieb und Verteilung ist es genau anders herum. Java
bietet einige Konzepte, die SDAI-Schnittstelle ist gemäß [ISO98a] aber nur für den lokalen
Zugriff eines Benutzers definiert. Zwar kann man gleichzeitig auf mehrere SDAI Repositories
zugreifen, diese wirken aber eher wie lokale Datenbanken und ihre Existenz sowie das zugrun-
deliegende EXPRESS-Schema müssen auch fest in eine SDAI-Implementierung einkodiert sein
(diese Informationen lassen sich nicht zur Laufzeit konfigurieren). Weiterhin stehen selbst in
Transaktionsebene 3 keine vollständigen ACID-Transaktionen nach [HR83] zur Verfügung
(siehe Kapitel 3.2.3).

Bei der Entwicklung von JavaSDAI wollten wir natürlich die Vorteile von Java nutzen und damit
insbesondere einen Einsatz im Intra- und Internet ermöglichen. Dieser sollte den Zugriff auf
physisch verteilte Datenquellen einschließen. Wir fassen JavaSDAI daher als eine Komponente
im Client auf, welche einen homogenen Zugriff auf heterogene Datenquellen zuläßt. Aus Sicht
der Applikation sollte die Verarbeitung über JavaSDAI wie ein lokaler Zugriff im isolierten Ein-
benutzerbetrieb wirken. Innerhalb der JavaSDAI-Schicht lassen sich dann unterschiedlichste
Protokolle für eine transaktionsbasierte Interaktion mit heterogenen, verteilten Datenquellen
realisieren. Dafür ist intern die Verwendung von ACID-Transaktionen und einem zweiphasigen
Commit-Protokoll erforderlich. Für die JavaSDAI-Schnittstelle selbst benutzen wir dann SDAI-
Transaktionsebene 3. Sie ist in diesem Fall ausreichend, da wir uns für eine schlanke SDAI-
Abbildung ohne Unterstützung für Regeln entschieden haben (bedingt durch ihre Semantik
garantieren diese sowieso keine Konsistenz der Daten, siehe Kapitel 3.2.4 und 6.1.2).

158

6.1.2 Die resultierende Gesamtarchitektur

Bei der Abbildung der SDAI-Schnittstelle auf Java haben wir uns (unter Berücksichtigung der
im letzten Kapitel diskutierten Aspekte) für eine schlanke, aber sehr flexible Architektur mit
möglichst wenig Klassen bzw. Schnittstellen entschieden. Sie soll dabei nur den Teil der SDAI-
Funktionalität umfassen, der auch bei einer verteilten Verarbeitung über das Intra- bzw. Internet
benötigt wird. Dementsprechend unterstützt JavaSDAI keine in EXPRESS deklarierten Regeln1

oder Scopes und basiert damit auf SDAI-Implementierungsklasse 1 (siehe auch Kapitel 3.2.7)
Es gibt allerdings folgende Ausnahmen:

• JavaSDAI erfordert Transaktionsebene 3,

• JavaSDAI ermöglicht Ausnahmebehandlungen über Java-Exceptions,
aber kein Event Recording, und die

• Unterstützung für abgeleitete (derived) und inverse Attribute ist optional.

Weiterhin enthält unsere Spezifikation nur eine typisierte Schnittstelle für EXPRESS Entities:
Jede Entity-Definition wird auf eine Java-Schnittstelle abgebildet (Early Binding). Generische
Zugriffe und das zugehörige SDAI Data Dictionary (Late Binding) stehen nicht zur Verfügung.
Sie würden die Menge der erforderlichen Klassen und Schnittstellen unnötig vergrößern.

Neben der Abbildung der SDAI-Funktionalität waren für JavaSDAI nun noch Erweiterungen
nötig, um auch den simultanen Zugriff auf unterschiedliche Datenquellen sowie deren Anbin-
dung und Konfiguration zur Laufzeit zu ermöglichen. Wir haben deshalb eine modulare und
erweiterbare Architektur definiert (siehe Abbildung 6.2). Sie besteht quasi aus einer Steckleiste
(der sog. Socket Bar), in die verschiedene Bausteine (sog. Session oder Data Modules) bei
Bedarf eingesteckt werden.

Abb. 6.2: Die Architektur der JavaSDAI Socket Bar

Ein Session Module verwaltet den lokalen Verarbeitungskontext einer SDAI-Implementierung.
Zur Laufzeit muß genau ein solches Modul benutzt werden. Jedes Data Module kapselt hinge-
gen eine Datenquelle, die als ein SDAI Repository in den aktuellen Verarbeitungskontext inte-

1. Den definierten Mechanismus zur Auswertung von Regeln halten wir generell für unbrauchbar, da er keine automatische
Kontrolle für die Konsistenz der Daten bietet.

Applikation

Standardisierte JavaSDAI Socket Bar

Intra- / Internet

Java
RMI/OS JDBC CORBA

STEP
Physical

File

Session
Module

Data
Module

Data
Module

Data
Module

Data
Module

Socket

STEP
Physical

File
RDBMS OODBMS

159

griert wird. Zur Laufzeit kann dann auf beliebig viele Data Modules zugegriffen werden. Jedes
Modul kann auf unterschiedlichen Technologien zur Datenversorgung beruhen - wie etwa Java
RMI/OS, JDBC, rudimentären Socket-Verbindungen oder CORBA-basierten Verfahren. Über
das gewählte Protokoll lassen sich dann beliebige Datenquellen ansprechen. Neben DBVS sind
hier insbesondere ASCII-basierte STEP Physical Files zu nennen (siehe Kapitel 3). Um diese
Flexibilität zu erreichen, müssen die Schnittstellen einzelner Module sowie deren Interaktion
klar geregelt sein. Weiterhin darf man nicht die Java-Klassen standardisieren, sondern nur die
korrespondierenden Java-Schnittstellen. Andernfalls würde die Menge der uns zur Verfügung
stehenden Technologien unnötig eingeschränkt. So erfordern manche Ansätze z.B. spezielle
Vererbungshierarchien auf der Ebene von Klassen.

Bei der Definition der Schnittstellen konnten wir bereits einen großen Teil durch existierende
SDAI-Funktionalität abdecken. Nur wenige Erweiterungen waren nötig. Für die Schnittstelle
des Session Module haben wir die existierenden Deklarationen für Session und Transaction
verwendet. Lediglich Session mußte um eine Methode OpenInterOpRepo ergänzt werden, um
weitere Data Modules bzw. Repositories zur Laufzeit hinzubinden zu können (siehe
Beispiel 6.7). Dabei wird die URL und der Name der Repository-Klasse als Parameter überge-
ben (urlStr und className). Die Implementierung des gesamten Data Module wird dann wie
ein Applet geladen und zur laufenden Umgebung hinzugebunden.

Beispiel 6.7: Signatur der Methode Session.OpenInterOpRepo

In einer verteilten Umgebung ist nun weiterhin die Unterstützung für eine Autorisierung bzw.
Authentifikation von Anwendern bzw. eine verschlüsselte Kommunikation von Bedeutung. Aus
diesem Grund besitzt die Methode OpenInterOpRepo zwei ergänzende Parameter propForLoad
und propForInit. Mittels dieser können verschiedene Keyword/Value-Paare in einer Instanz von
java.util.Properties übergeben werden. Denkbare Werte sind z.B. Login und Password
oder Public Keys. Der Parameter propForLoad wird für das Laden der Implementierung ausge-
wertet während propForInit direkt an die Methode InterOpRepository.InitRepo propagiert
wird (siehe Beispiel 6.8). Die Menge der benötigten Properties ist implementierungsabhängig
und dementsprechend nicht standardisiert. Sollte ein Wert fehlen oder ungültig sein, so wird die
ebenfalls neu eingeführte InvalidPropertyException ausgelöst.

In Bezug auf Data Modules haben wir die Schnittstellen für Repository, Model,
Model_contents, Session_instance und App_inst übernommen sowie Regeln für die
Abbildung benutzerdefinierter EXPRESS-Entities und anderer Datentypen erstellt (siehe auch
Kapitel 6.1.1.4). Ergänzend dazu mußten wir eine neue Java-Schnittstelle InterOpRepository
einführen, die von Repository erbt und die Interaktion mit dem Session Module ermöglicht
(siehe Beispiel 6.8). Sie wird nur intern von Session und Transaction benutzt und ist für die
Applikation nicht sichtbar.

public interface Session extends Session_instance {
... // andere SDAI-Methoden
public Repository OpenInterOpRepo(String urlStr, String className,

Properties propForLoad,
Properties propForInit)

throws SdaiException, InvalidPropertyException;
};

160

Beispiel 6.8: Deklaration der internen Java-Schnittstelle InterOpRepository

Neben diesen Java-Schnittstellen gibt es noch wenige Java-Klassen und Exceptions, die sowohl
vom Session als auch von den Data Modules benutzt werden. Sie repräsentieren u.a. Konstanten
sowie standardisierte Aufzählungstypen entsprechend unserem Ansatz aus Kapitel 6.1.1.3. Wir
wollen sie an dieser Stelle aber nicht weiter betrachten. Die resultierende Hierarchie aller durch
JavaSDAI spezifizierter Schnittstellen, Klassen und Exceptions ist in Abbildung 6.3 dargestellt.
Alle Deklarationen bzw. Definitionen sind im package SDAI.lang enthalten.

Abb. 6.3: Hierarchie der standardisierten JavaSDAI-Schnittstellen, Klassen und Exceptions

Neben den von jedem Schema unabhängigen Spezifikationen im package SDAI.lang sind nun
noch Schnittstellen und Klassen für das jeweilige EXPRESS-Schema nötig. Diese werden
anhand der bereits oben genannten Regeln erzeugt: Entities und Select-Typen werden auf Java-

public interface InterOpRepository extends Repository {
public CImplementation getImplementation();

// returns description of implementation;
// SDAI method defined on Session, but also used here

public String[] getNeededProperties();
// returns list of properties needed for InitRepo

public void InitRepo(Session session, Properties propForInit)
 throws SdaiException, InvalidPropertyException;

// Initializes Repository and data shipping protocols; will be
// called by Session.OpenInterOpRepo before calling this.OpenRepo

public void OpenRepo() throws SdaiException; // open repository
public void CloseRepo() throws SdaiException; // close repository
public Model[] getActive_models() throws SdaiException;

// needed by Session.getActive_models to obtain open models

public void StartTransaction(int mode) throws SdaiException;
public boolean PrepareCommit() throws SdaiException;

// phase 1 of 2PC; returns true to vote commit, false otherwise
public void Abort(boolean endXaction) throws SdaiException;

// phase 2 of 2PC in case of abort
public void Commit(boolean endXaction) throws SdaiException;

// phase 2 of 2PC in case of commit
};

BOOLEAN

LOGICAL

Access_type

Commit_mode

Implementation

SdaiSecurityManager

NUMBER

INTEGER
REAL

Java Classes:

Session_instance

Session
Transaction
Repository InterOpRepository

Model

Model_contents

App_inst

Select

SdaiException

SdaiRuntimeException

InvalidPropertyException

Java Interfaces:

Java Exceptions:

Vererbung

Neu in JavaSDAI (nicht Teil des allg. SDAI)

161

Schnittstellen abgebildet, Aggregate entsprechen Java Arrays und Aufzählungstypen führen zur
Definition korrespondierender Java-Klassen (siehe auch Kapitel 6.1.1). Die so erzeugten
Schnittstellen und Klassen sind dann im package SDAI.S<schemaName> enthalten. Die Menge
aller Java Packages für verwendete EXPRESS-Schemata sowie das package SDAI.lang bilden
schließlich die eigentliche JavaSDAI Socket Bar. Das Session Module sowie die einzelnen Data
Modules enthalten lediglich die Implementierung für die standardisierten Schnittstellen. Das
Design und die Konzepte ausgewählter Implementierungen von Data Modules stellen wir in
Kapitel 6.2 vor. Dabei behandeln wir auch die Frage, wie sich Referenzen zwischen Entities rea-
lisieren lassen, die in unterschiedlichen Data Modules bzw. Repositories gespeichert sind.

Abschließend wollen wir uns aber noch der Frage widmen, was eigentlich neu an unserem
Ansatz ist bzw. was erst durch die Verfügbarkeit von Java möglich wurde. Ein zentraler Aspekt
unserer Architektur ist sicherlich die Tatsache, daß Data Modules dynamisch (also zur Laufzeit)
hinzugebunden werden können. Ihre Existenz muß dabei in keinem anderen Code-Fragment
berücksichtigt werden (auch nicht in der Applikation). Es reicht völlig, wenn der Benutzer zur
Laufzeit die URL der Repository-Klasse eingibt. Voraussetzung ist natürlich, daß Applikation
und Data Module auf den selben EXPRESS-Schemata basieren und dementsprechend auch die
selben Schnittstellen benutzen. Ermöglicht wird dieses Vorgehen dadurch, daß Java zwischen
Schnittstelle (interface) und Implementierung (class) unterscheidet und auch Class Files
dynamisch nachladen kann.

Der erste Punkt ist sicherlich nicht neu: So ermöglicht z.B. C bzw. C++ die Deklaration von
Datenstrukturen und Klassen in sog. Header Files. Mit ihnen lassen sich ebenfalls Anwendun-
gen von Klassen schreiben, deren Implementierung zur Entwicklungszeit nicht vorliegt.

Auch das Nachladen von Klassenbibliotheken wurde nicht erst von Java eingeführt: Microsoft
verwendet unter Windows bereits seit Jahren sog. DLLs (Dynamic Link Libraries), die sich zur
Laufzeit installieren und konfigurieren lassen (allerdings nur lokal und nicht über das WWW).

Letztendlich gibt es eigentlich kaum einen wirklich neuen Aspekt in Java. Es ist vielmehr die
Kombination aller Punkte, die den Reiz der Sprache ausmacht und uns zur Definition eines
neuen Ansatzes bewegt hat. Aufgrund der Plattformunabhängigkeit ergibt sich alleine eine viel
höhere Flexibilität für eine verteilte Verarbeitung. In Kombination mit der direkten Einbettung
von Konzepten für eine verteilte Verarbeitung über das World Wide Web stellt Java derzeit sogar
eine einzigartige Lösung dar. Gegenüber der ursprünglichen Definition der SDAI-Schnittstelle
in Serie 22 [ISO98a] bietet unser Ansatz sicherlich deutlich mehr Flexibilität und vor allem
Interoperabilität. Im Zeitalter des Intra- und Internet halten wir dies für unverzichtbar.

6.2 Entwurf und Implementierung der Data Modules
Nachdem wir uns im letzten Kapitel dem Design der standardisierten JavaSDAI-Schnittstelle
gewidmet haben, wollen wir uns nun der Implementierung ausgewählter Data Modules zuwen-
den. Diese werden in Kapitel 6.4 zur Bewertung unterschiedlicher Datenversorgungsstrategien
dienen. In Kapitel 6.2.1 beginnen wir mit der Präsentation eines Moduls zum proprietären Data

162

Shipping über CORBA. Der Server speichert dabei alle Daten über den Gnu Database Manager
(GDBM). Mehr oder weniger der gleiche Server wird auch für das in Kapitel 6.2.2 vorgestellte
Data Module verwendet. Es basiert allerdings auf einer standardisierten Kommunikation über
die Schnittstellen des CORBA Query Service. Neben diesen beiden auf CORBA basierenden
Ansätzen betrachten wir in Kapitel 6.2.3 eine dritte Lösung zum Data Shipping, die aber auf
JDBC und einer persistenten Speicherung in RDBVS beruht. In Kapitel 6.2.4 stellen wir dann
ein Modul zum Operation Shipping vor, das seine Daten in einem OODBVS ablegt. Eine
Gegenüberstellung und Zusammenfassung der Eigenschaften aller vier Module ist abschließend
das Thema von Kapitel 6.2.5.

6.2.1 Proprietäres Data Shipping über CORBA

Unser erstes Data Module basiert auf proprietärem Data Shipping über die IDL struct-Klausel
(siehe Kapitel 5.4.6). Es wurde ursprünglich als eigenständiger SDAI-Prototyp entworfen
[SM98], dessen Ergebnisse erst zur Definition der JavaSDAI Socket Bar führten [SM99b]. Wir
werden deshalb mit einer Vorstellung der Konzepte des eigenständigen Prototypen beginnen
und dann abschließend kurz auf dessen Konvertierung in ein Data Module eingehen. Dabei kann
man gut erkennen, wie leicht sich eine monolithische Implementierung unter Verwendung der
von uns vorgestellten JavaSDAI-Schnittstellen strukturieren läßt.

Die Architektur unserer ursprünglichen Prototypen ist in Abbildung 6.4 illustriert. Sie basiert
auf einem Java-Client und einem in C++ geschriebenem Server. Der Client umfaßt dabei die
IDL Stubs, einen darüberliegenden Objektpuffer mit SDAI-Schnittstelle sowie die Applikation.
Der Server besteht aus den IDL Skeletons und einer Schicht zur Speicherung von Objekten über
den Gnu Database Manager (GDBM, siehe [GN94]).

Abb. 6.4: Architektur des ersten JavaSDAI-Prototypen

Die Kommunikation zwischen Client und Server basiert auf den IDL-Datenstrukturen aus
Beispiel 5.1 auf Seite 131. Sie führen zur Übertragung serialisierter Objekte. Ein Objekt kann
entweder ein EXPRESS Entity oder ein Aggregat sein. Wir fassen Aggregate bewußt nicht als
einen Teil von Entities auf (was sie gemäß den EXPRESS-Definitionen eigentlich wären), um

GDBM

Model AModel B

IDL Skeleton
Data Server

Applikation

Java-SDAI Layer

Objektpuffer

CORBA Client Stub

Model A

Java Client

C++ Server

Model B

Object Request Broker

(Applet oder Application)

163

sie (erst bei Bedarf) getrennt von den Daten des Entity übertragen zu können. Jedes Objekt (vom
Typ objectData) besteht dabei aus einer OID (objectHandle) sowie einer Liste von Attributen
(seqAttrUnion). Eine OID besteht aus den IDs für das Repository, das Model und den
EXPRESS-Typ sowie einer laufenden Nummer relativ zu diesen Werten. Ein Attribut wird
durch die IDL union attrUnion repräsentiert, die eine variante Struktur zur Aufnahme von
Basistypen oder OIDs darstellt. Die eigentliche Schnittstelle des CORBA-Servers ist schließlich
in Beispiel 6.9 dargestellt. Sie enthält im wesentlichen zwei Methoden zur Anforderung von
Objekten (GetObject und GetAggregate) sowie eine Methode zur kompakten Propagierung
von Änderungen im Rahmen der Commit-Behandlung (PropagateCommit).

Beispiel 6.9: IDL-Schnittstelle des CORBA-Servers (Auszug)

Mit GetObject lassen sich einzelne Objekte über ihre OID anfordern. Im Gegensatz dazu führt
ein Aufruf von GetAggregate zur Übertragung eines Aggregates inkl. aller darin enthaltenen
Objekte. Der Parameter muß dabei auf die OID eines Aggregates verweisen (andernfalls wird
eine DataServerException ausgelöst). Änderungen werden grundsätzlich lokal im Client
gepuffert und erst zum Commit-Zeitpunkt an den Server propagiert (mittels PropagateCommit).
Nachdem der Prototyp ohnehin auf den Einbenutzerbetrieb eingeschränkt ist, ersparen wir uns
damit die Implementierung einer weitergehenden Transaktions- und Sperrverwaltung im Server
(GDBM bietet leider keine Transaktionen). Neben zwei Listen mit geänderten Objekten und
den OIDs von gelöschten Objekten gibt es zwei weitere Listen von Listen zur Optimierung der
Kommunikation bei Aggregaten von Entities (diese bestehen genau genommen aus einem
Aggregat von OIDs). Häufig gibt es sehr große Aggregate, in die jeweils nur wenige Entities
eingefügt oder aus denen nur einzelne Entities gelöscht werden. In diesem Fall muß nun nicht
das gesamte Aggregat zum Server zurück übertragen werden, sondern nur eine Liste mit einzu-
fügenden (insertInAggr) bzw. zu löschenden OIDs (removeFromAggr). Die erste OID in einer
Liste referenziert dabei das Aggregat selbst. Insgesamt ergibt sich in beiden Fällen jeweils eine
Liste von Listen von OIDs (seqSeqObjHandle), da natürlich mehrere Aggregate geändert worden
sein können.

Vor einer genaueren Betrachtung des eigentlichen Laufzeitverhaltens wollen wir nun aber
zunächst einen Blick auf den Start und die Initialisierung des gesamten Prototypen werfen.
Diese Phase ist in Abbildung 6.5 in Bezug auf eine Applet-basierte Verwendung des ursprüng-
lichen Prototypen veranschaulicht. Alles beginnt damit, daß der Anwender die HTML-Seite mit
dem eingebetteten Java-Applet vom WWW-Server anfordert (1). Der WWW-Server lokalisiert

interface dataServer {
... // some methods to obtain metadata
objectData GetObject (in objHandle handle)

raises (DataServerException);
seqObjectData GetAggregate (in objHandle handle)

raises (DataServerException);
void PropagateCommit(... // propagate metadata

in seqObjectData newObjectData,
in seqObjHandle objectsToDelete,
in seqSeqObjHandle insertInAggr,
in seqSeqObjHandle removeFromAggr)

raises (DataServerException);
};

164

nun die gewünschte Seite in seinem Dateisystem (2) und schickt sie als Antwort an den Browser
des Clients (3). Der Browser stellt die Seite dar, erkennt den Verweis auf das enthaltene Applet
und fordert dessen Code vom WWW-Server an (4). Dieser sucht erneut in seinem Dateisystem
(5) und schickt den Code als Antwort zurück (6). Anschließend wird das Applet von der Java
Virtual Machine (JVM) im Browser gestartet. Das Applet kontaktiert nun initial den Orbix
Daemon, um eine Verbindung zum Data Server aufzubauen (7). Der Orbix Daemon bedient
sich dafür der im Implementation Repository (IR) gespeicherten Informationen (8). Gibt es noch
keine laufende Implementierung des gewünschten Servers, so startet der Daemon eine neue (9).
Anschließend gibt er eine Objektreferenz auf den Server an das Applet zurück (10). Das Applet
benutzt diese Referenz im folgenden für jede weitere Kommunikation mit dem Data Server
(11). Bei einer Verwendung als Java-Applikation entfallen die Schritte 1 bis 6, da der Code
bereits lokal installiert ist.

Abb. 6.5: Initialisierungsphase des ersten Prototypen

Nach dieser Initialisierung startet die eigentliche Verarbeitung über die SDAI-Schnittstelle.
Diese beginnt typischerweise mit dem Öffnen von Session, Transaction, Repository und Model
sowie dem Laden eines Model Contents oder Entity Extents. Hierfür muß natürlich der Name
von Repository und Model bekannt sein (bei Entity Extents zusätzlich der Name des Entity-
Typs). Sowohl Model Contents als auch Entity Extents sind intern als Aggregate mit eigener
OID modelliert. Anhand der Metadaten kann die SDAI-Implementierung aus den Namen von
Repository, Model (und Typ) die OID des jeweiligen Aggregates bestimmen und dessen Inhalt
mittels GetAggregate vom Data Server anfordern. Der Server schickt die Ergebnismenge im
Rahmen der Antwort (also in einem einzigen Kommunikationsschritt) an den Client. Dort wird
jedes einzelne Objekt deserialisiert und in den Objektpuffer eingelagert. Attribute vom Typ
eines Aggregates oder solche zur Darstellung von Referenzen zwischen Entities bleiben vorerst
in der serialisierten Form, d.h. sie sind weiterhin durch die OID des referenzierten Objektes
repräsentiert. Erst bei einem Zugriff auf das Attribut wird überprüft, ob das referenzierte Objekt
bereits im Puffer liegt. Ist dies der Fall, so wird die OID direkt durch eine Hauptspeicherreferenz
auf das gepufferte Objekt ersetzt. Andernfalls wird vorher das Objekt vom Server angefordert
und in den Puffer eingelagert. Gemäß [KK93] läßt sich diese Strategie als lazy, direct und in-
place Pointer Swizzling bezeichnen.

Orbix
Daemon
(orbixd)

HMTL Text

Browser

Applet

IR

8

WWW
Server
(httpd)

2, 5

Data
Server

GDBM

Intra- / Internet

File System

1, 4

3, 6

7 11

10

9

HTTP-Kommunikation

Kommunikation über Orbix

165

Aufgrund der Diskussion in Kapitel 6.1.1.1 basiert der erste Prototyp auf Konzepten ohne
Unterstützung für mehrfache Vererbung. Diese Entscheidung vereinfacht auch die Serialisie-
rung von Entities deutlich: Es gibt nur maximal einen Supertyp. Dementsprechend bietet es sich
an, bei der Serialisierung mit den Attributen des Supertyps zu beginnen. Die Attribute eines
Typs in der Vererbungshierarchie stehen dann immer an der gleichen, fest definierten Stelle
innerhalb der Attributliste. Bei multipler Vererbung könnte dies nicht garantiert werden (siehe
Kapitel 6.2.2).

Mittlerweile wurde der erste Prototyp in ein Data Module für die Socket Bar konvertiert. Dabei
blieben mehr oder weniger alle Design-Entscheidungen bestehen. Insbesondere unterstützt die
Implementierung nach wie vor keine mehrfache Vererbung, obwohl die Schnittstellen dies
zulassen würden.

Die Konvertierung selbst war einfacher als wir ursprünglich erwartet hatten. Zunächst einmal
mußte die Klasse Repository um die Methoden aus dem interface InterOpRepository
erweitert werden. Hierfür wurden einige Methoden aus den alten Klassen Transaction und
Session wiederverwendet:

• Die Transaktionsverarbeitung wurde größtenteils aus Transaction übernommen.

• Der globale Puffer in Session wurde zu einem lokalen Puffer je InterOpRepository.

• Der Code für das Auflösen von OIDs und Nachladen von Objekten konnte mit leichten
Änderungen wiederverwendet werden. Leichte Modifikationen ergaben sich lediglich bei
der Modellierung von OIDs. Sie betreffen Referenzen auf Entities in anderen Repositories.
Bei der Speicherung müssen diese in eine OID konvertiert werden. Aufgrund der strikten
Kapselung von Data Modules kann hierfür aber nicht auf den internen Mechanismus des
anderen Repositories zugegriffen werden. Vielmehr muß die OID über Methoden der
JavaSDAI-Schnittstelle konstruiert werden. Wir benutzen dafür die standardisierte
Methode GetPersistentIdentifier, die einen String mit der persistenten ID (PID) eines
Entity zurückgibt. Die PID ist eindeutig im Bezug auf das jeweilige Repository. In Kombi-
nation mit dem Namen des Repository (der laut SDAI-Spezifikation immer eindeutig ist)
stellt der resultierende Typ interOpHandle damit eine gute Möglichkeit zur Modellierung
von Referenzen auf Entities in anderen Repositories dar (siehe Beispiel 6.13). Zur Reprä-
sentation interner Referenzen bietet sich dieses Verfahren hingegen nicht an: Die Verarbei-
tung von Strings ist zu teuer und benötigt auch unnötig viel Speicherplatz. Wir benutzen
deshalb den ursprünglichen OID-Typ zur Darstellung lokaler Referenzen (neuer Name:
localObjectHandle). Im Prinzip hätte man noch das Attribut repoID streichen können.
Wir haben uns jedoch dagegen entschieden, um auch mehrere Repositories von einem ein-
zigen Data Server verwalten lassen zu können.

Bis auf ein paar Kleinigkeiten war damit im Prinzip schon alles getan. Wir haben die Gelegen-
heit allerdings genutzt, um gleichzeitig ein paar kleinere Optimierungen vorzunehmen. Sie
betreffen insbesondere die Verwaltung der Aggregate für Entity Extents und Model Contents
sowie deren Übertragung. Bisher wurden auch diese Aggregate beim Commit zum Data Server
übertragen und von diesem gespeichert. Der Server entsprach damit eigentlich einer per-
sistenten Hashtabelle, bei der die OID von Objekten als Schlüssel verwendet wurde. Nun haben
wir eine Verwaltung für Model Contents und Entity Extents in den Data Server integriert. Beim

166

Commit müssen die jeweiligen Aggregate nicht mehr übertragen werden, sondern sie werden
vom Server entsprechend der erhaltenen Daten (neue bzw. zu löschende OIDs) gewartet. Die
OID eines Entity wird dabei in den Extent des aktuellen Typs sowie in die Extents aller Super-
typen eingefügt. Dadurch sind diese Aggregate immer vollständig und können bei Bedarf direkt
zum Client übertragen werden.

6.2.2 Data Shipping über den CORBA Query Service

Zur Vermeidung proprietärer Schnittstellen zwischen Client und Server haben wir ein zweites
Data Module entwickelt, das auf den Schnittstellen des CORBA Query Service basiert. Die
Architektur ist dabei stark an unser erstes Modul aus Kapitel 6.2.1 angelehnt (siehe
Abbildung 6.6). Allerdings haben wir diesmal zwei verschiedene Server vorgesehen: Eine
GDBM-basierte Version (quasi eine Aktualisierung des Servers aus Kapitel 6.2.1) sowie einen
Query Service zur Verarbeitung von STEP Physical Files.

Abb. 6.6: Architektur des auf einem CORBA Query Service basierendem Data Module

Zur Laufzeit wird jeweils alternativ einer der beiden Server verwendet. Die Initialisierung voll-
zieht sich dabei ähnlich zu der unseres ersten Moduls (siehe Abbildung 6.5). Allerdings wird
die Referenz auf den CORBA Server nicht mehr über den Orbix Daemon erworben (dieser steht
bei Verwendung anderer CORBA-Systeme wie z.B. ORBacus sowieso nicht zur Verfügung),
sondern über eine Datei auf dem WWW-Server. Diese Datei enthält einen String mit der IOR
(Interoperable Object Reference) des Server-Objektes für die Initialisierung (siehe detaillierte
Beschreibung des Servers in Kapitel 6.2.2.2). Beide Data Server werden automatisch beim
Hochfahren des Server-Rechners gestartet und laufen dann dauerhaft.

Werfen wir nun aber noch einen Blick auf die Kommunikation zwischen Client und Server. Bei
der Diskussion des CORBA Query Service in Kapitel 4.3.5 haben wir bereits erkannt, daß seine
Spezifikation nur die Schnittstellen der Server-Objekte standardisiert. Offen bleiben hingegen
die Anfragesprache sowie die Definition von Datenstrukturen zur Übertragung der Ergebnisse.

Query Service
Data Module

Orbix / ORBacus
Server Skeleton

Query Service
(STEP Physical Files)

Query Service
(GDBM)

GDBM
Repository

STEP
Physical

File

OrbixWeb / ORBacus

Orbix / ORBacus
Server Skeleton

Client Stub

JavaSDAI Socket Bar
... ...

Applikation

IIOP
(either or)

Java

C++

(Client)

(Server)

Objektpuffer

167

Aus diesem Grund entwickeln wir in Kapitel 6.2.2.1 zunächst zu verwendende IDL-Strukturen
für EXPRESS-basierte Daten sowie einige rudimentäre Anfragen (die nach der Verabschiedung
des SQL3-Standards entsprechend ersetzt werden sollen). In Kapitel 6.2.2.2 folgt dann eine
Beschreibung der Implementierungen beider Server. Anschließend diskutieren wir in
Kapitel 6.2.2.3 die Realisierung des Java-Clients. Dieser umfaßt gegenüber dem alten Data
Module aus Kapitel 6.2.1 deutlich mehr Funktionalität. Genauere Details zum Entwurf und
erste Erfahrungen mit diesem Data Module sind in [SM99a] enthalten.

6.2.2.1 Anfragesprache und Datenstrukturen

Vor der Implementierung des Query Service müssen wir zuerst die unterstützte Anfragesprache
sowie Datenstrukturen für die Übertragung der Ergebnismenge festlegen. Entsprechend der
Spezifikation des CORBA Query Service müssen wir dabei SQL 92, OQL 93, OQL 93 Basic
oder eine beliebige Untermenge bzw. Kombination dieser Sprachen unterstützen (siehe
Kapitel 4.3.5). Jede dieser drei Sprachen bietet für sich leider keine angemessene Unterstützung
zur Verarbeitung EXPRESS-basierter Daten. Wir haben uns deshalb zur Definition einer neuen
Sprache EXPRESS_SQL entschlossen, die mehr oder weniger eine Untermenge von SQL 92
darstellt - allerdings verwendet sie andere Datentypen als SQL. Die zur Deklaration der Sprache
erforderliche IDL-Schnittstelle ist in Beispiel 6.10 auf Seite 169 enthalten.

Tabelle 6.2: Durch den Query Service unterstützte Anfragen

EXPRESS_SQL unterstützt nur eine kleine Menge unbedingt erforderlicher Anfragen, die in
Tabelle 6.2 aufgelistet sind. Sie sind ausreichend für die Verarbeitung EXPRESS-basierter
Daten über eine SDAI-Schnittstelle. Nach Abschluß der Standardisierung von SQL3 wollen wir
dann aber die vollständige Mächtigkeit von SQL3 nutzen. Dafür arbeiten wir derzeit an einer
Abbildung von EXPRESS auf SQL. In diesem Zusammenhang hoffen wir auch darauf, daß

Kategorie Unterstützte Anfragen

Data Retrieval (1) SELECT * FROM Repository

(2) SELECT * FROM Repository WHERE typeID=#1

(3) SELECT * FROM Repository WHERE typeID=#1 OR SUBTYPE

(4) SELECT * FROM Repository WHERE oid=#1

(5) SELECT * FROM Repository WHERE modID=#1

(6) SELECT * FROM Repository WHERE modID=#1 AND typeID=#2

(7) SELECT * FROM Repository WHERE modID=#1 AND (typeID=#2 OR SUBTYPE)

Metadata Retrieval (8) SELECT * FROM MetaData

Data Modification (9) INSERT #1 INTO Repository

(10) UPDATE #1 IN Repository

(11) DELETE FROM Repository WHERE oid=#1

(12) DELETE Model FROM Repository WHERE modelID=#1

Metadata Modification (13) CREATE Model #1

(14) RENAME Model TO #1 WHERE modelID=#2

168

künftige ORDBVS-Produkte dann einen CORBA Query Service umfassen (und wir diesen
direkt verwenden können). Zur Unterstützung der in dieser Arbeit durchgeführten Messungen
hat sich der derzeitige Ansatz aber als vollkommen ausreichend erwiesen.

Nun wollen wir uns aber den zu verwendenden Datenstrukturen zuwenden. Nachdem wir einen
auf Data Shipping basierenden Ansatz anstreben, bleibt für die Modellierung von Objekten (bis
zur Verfügbarkeit des IDL-Typs value) nur die Verwendung der struct-Klausel (vgl.
Kapitel 4.5). Die hierfür entwickelten IDL-Definitionen sind in Beispiel 6.10 auf Seite 169 dar-
gestellt. Sie ermöglichen die generische Übertragung beliebiger EXPRESS-basierter Daten,
d.h. sie sind unabhängig vom jeweiligen EXPRESS-Schema. Für jeden EXPRESS-Typ wird
deshalb eine Typ-ID (TypeID) erzeugt, die mit jeder serialisierten Instanz übertragen wird (siehe
Feld type in ObjectOrAggr). Die Zuordnung zwischen Typnamen und ID ist in den Metadaten
enthalten (Felder typeIDs und typeNames von MetaData). Analog zum ersten Data Module
stellen wir Entities und Aggregate als Objekte mit eigener OID dar. Alle anderen Werte sind
Attribute von Entities und werden direkt mit diesen übertragen. Neu ist allerdings, daß wir alle
möglichen EXPRESS-Typen unterstützen (bisher waren z.B. keine Select-Typen oder
geschachtelte Aggregate erlaubt).

Die Menge der unterschiedlich zu repräsentierenden EXPRESS-Basistypen beschreiben wir
durch den Aufzählungstyp ExpressType. Der EXPRESS-Typ NUMBER wird dabei durch
REAL repräsentiert (gleicher Wertebereich). EXPRESS-Enumerations bilden wir auf INTEGER
ab (analog zur JavaSDAI-Definition in Kapitel 6.1.1.3) und für benutzerdefinierte Typen
(EXPRESS TYPE) verwenden wir jeweils direkt den zugrundeliegenden Typ. Identifizierbare
Objekte mit eigener OID (also Entities und Aggregate) werden als EObjOrAggr beschrieben.
Bei Aggregaten unterscheiden wir allerdings nach der Schachtelungstiefe: Das äußere Aggregat
besitzt eine OID und ist somit über EObjOrAggr charakterisiert. Innere (geschachtelte) Aggre-
gate werden hingegen immer zusammen mit dem umfassenden Aggregat übertragen und besit-
zen deshalb keine eigene OID. Wir beschreiben sie deshalb als ENestedArry, ENestedBag,
ENestedList oder ENestedSet. Die Felder EUnset und EUnknown dienen der Kennzeichnung
von undefinierten oder temporär (aus technischen Gründen) nicht verfügbaren Attributen.

Auf Basis dieser Liste von möglichen Typen wurde nun die variante Struktur union ExpValue
zur Darstellung beliebiger EXPRESS-Werte definiert. In den meisten Fällen benutzten wir
dabei IDL-Basistypen. Lediglich für SELECT-Typen mußten wir eine weitere Struktur Select-
Type einführen. Sie enthält eine Liste von Typ-IDs sowie den endgültigen Wert (auch SELECT-
Typen können geschachtelt sein - in diesem Fall reicht aber die Auflistung der auf der jeweiligen
Stufe gewählten Typ-ID). Zur Darstellung des Wertes war leider eine weitere variante Struktur
union FinalSelectValue erforderlich, um zyklische Abhängigkeiten zwischen SelectType
und ExpValue zu vermeiden (diese sind in IDL nicht erlaubt). Innerhalb dieser brauchten wir
nun deutlich weniger Fälle zu unterscheiden: Geschachtelte SELECT-Typen können nicht mehr
auftreten (sie sind in der ID-Liste kodiert), im Fall undefinierter oder nicht verfügbarer Attribute
gäbe es gar keinen SELECT-Wert und geschachtelte Aggregate können nur innerhalb eines
durch EObjOrAggr klassifizierten Objektes auftreten.

169

Beispiel 6.10: IDL-Datenstrukturen für EXPRESS-basierte Daten

module ExpressQuery {

interface Express_SQL_Query : CosQuery::SQL92Query {};

typedef short TypeID;
typedef sequence<TypeID> seqTypeID;

struct OID {
long lsl;
short msl, modID;
char flag;

};
enum ExpressType {

EInteger, EReal, EBoolean, ELogical, EString, EBinary, EObjOrAggr, ESelect,
ENestedArray, ENestedBag, ENestedList, ENestedSet, EUnset, EUnknown

};

union FinalSelectValue switch (ExpressType) {
case EInteger: long intVal;
case EReal: double realVal;
case EBoolean: char boolVal;
case ELogical: char logVal;
case EString: string stringVal;
case EObjOrAggr: OID oidVal;

};
struct SelectType {

seqTypeID type;
FinalSelectValue value;

};

union ExpValue switch (ExpressType) {
case EUnset: char unsetVal;
case EUnknown: char unknownVal;
case EInteger: long intVal;
case EReal: double realVal;
case EBoolean: char boolVal;
case ELogical: char logVal;
case EString: string stringVal;
case EBinary sequence<octet> binVal;
case EObjOrAggr: OID oidVal;
case ESelect: SelectType selVal;
case ENestedArray: sequence<ExpValue> nestArrayVal;
... // same for nested bag, list, set

};
struct ObjectOrAggr {

OID oid;
TypeID type;
sequence<ExpValue> values;

};
typedef sequence<ObjectOrAggr> seqObjectOrAggr;

struct MetaData {
short msl;
long lsl;
sequence<short> modIDs;
sequence<string> modNames;
sequence<typeID> typeIDs;
sequence<string> typeNames;

};
};

170

Die Struktur ObjectOrAggr dient schließlich der Übertragung von Entities und (äußeren)
Aggregaten. Sie besteht aus der OID, der Typ-ID und einer Liste von EXPRESS-Werten. Im
Fall eines Aggregats wird oid.flag mit einem “A”, “B”, “L” oder “S” (für Array, Bag, List,
Set) belegt. Die Liste values enthält dann das Aggregat und type beschreibt in diesem Fall den
Basistyp des Aggregates (bei geschachtelten Aggregaten den letztendlichen Basistyp). Bei
geordneten Aggregaten entspricht die Reihenfolge der Liste der Sortierung des Aggregates. Für
Entities wird das Feld oid.flag mit einem “E” belegt. Die ID des Entity-Typs ist in type
codiert. Die Liste values enthält in diesem Fall die Werte der Attribute. Die Reihenfolge ergibt
sich dabei wie folgt: Attribute von Supertypen treten immer zuerst auf (rekursiv). Bei mehreren
Supertypen wird die Reihenfolge innerhalb der SUBTYPE OF-Klausel übernommen. Attribute
von Supertypen, die über mehrere Pfade geerbt wurden, dürfen natürlich nur bei ihrem ersten
Auftreten berücksichtigt werden. Innerhalb eines Typs treten alle Attribute wiederum in der
Reihenfolge ihrer Deklaration auf. Optional unterstützte inverse Attribute stehen nach allen
anderen Attributen. Innerhalb ihrer Auflistung gilt dann wieder die gleiche Reihenfolge wie für
normale Attribute.

Anhand der Datenstruktur für die OID läßt sich erkennen, daß unser Ansatz keine Referenzen
zwischen Entities in verschiedenen Repositories erlaubt: Die OID enthält lediglich die ID für
das Model. Wir haben uns zu dieser Einschränkung entschlossen, da wir den Query Service auch
für den direkten Zugriff (und eben nicht nur für SDAI-Implementierungen) nutzen wollen. In
diesem Fall kann aber nicht garantiert werden, daß das andere Repository (bzw. die andere
Datenquelle) auch einen CORBA Query Service zum Zugriff anbietet. Models stellen hingegen
eine interne Segmentierung dar, die auch ohne die Verwendung einer SDAI-Schicht Sinn macht.
Die Kombination aus msl/lsl repräsentiert eine logische Nummer, deren Konkatenation mit der
modID eindeutig im Bezug auf die gesamte Datenquelle sein muß. Die Aufteilung in msl und
lsl ermöglicht die lokale Erzeugung neuer OIDs im Client: Jeder Client bekommt über die
Metadaten eine eindeutige msl zugewiesen, die er für alle neuen OIDs verwendet. Dabei benutzt
er die ebenfalls erhaltene lsl, die er für jedes neue Objekt um eins inkrementiert. IDs für neue
Models müssen hingegen vom Server angefordert werden (siehe Liste der Anfragen in
Tabelle 6.2 auf Seite 167). Die Zuordnung zwischen IDs und Namen von Models läßt sich den
Metadaten entnehmen.

6.2.2.2 Implementierung der Server

Wie bereits zuvor erwähnt, haben wir für dieses Data Module zwei verschiedene Server erstellt,
die alternativ benutzt werden können. Der Einsatz existierender Produkte kam leider nicht in
Frage. Einerseits ist uns keine kommerziell verfügbare Implementierung eines Query Service
bekannt (der IBM ComponentBroker lag nur in einer instabilen Beta-Version für Windows NT
vor) und andererseits hätten wir diese aufgrund der mangelnden Eignung von SQL 92 bzw.
OQL 93 auch gar nicht nutzen können. Wir hoffen an dieser Stelle jedoch auf SQL3 und darauf
basierende ORDBVS.

Bei der Implementierung unserer Server wollten wir es natürlich vermeiden, eine vollständige
Query Engine implementieren zu müssen. Aus diesem Grund gibt es für jede Anfrage aus
Tabelle 6.2 jeweils ein korrespondierendes CORBA-Objekt, das auf der standardisierten Query-
Schnittstelle basiert (siehe Abbildung 4.15 auf Seite 99). Der Code zur Ausführung der Anfrage

171

ist dabei fest in die Implementierung der Methode execute einkodiert. Alle 14 Query-Objekte
werden durch einen ebenfalls standardisierten QueryManager verwaltet. Über diesen lassen sich
auch Referenzen auf die einzelnen Query-Objekte erwerben.

Beispiel 6.11: Ergänzende IDL-Schnittstellen zur Transaktionsverarbeitung

Nachdem uns keine Implementierung eines CORBA Transaction Service zur Verfügung stand,
haben wir ergänzend zu den Datenstrukturen aus Beispiel 6.10 zwei weitere Schnittstellen zur
Transaktionsverwaltung definiert (siehe Beispiel 6.11). Diese dienen gleichzeitig als Einstiegs-
punkt für die gesamte Verarbeitung: Jeder Client erhält initial eine Referenz (IOR) auf die
DB_QueryTAManagerFactory im Server. Über deren create-Methode erwirbt der dann eine
Referenz auf einen DB_QueryTAManager, der nur für ihn zuständig ist (der Server erzeugt eine
Instanz je Client). Als Parameter muß dabei der Name der Datenbank bzw. des Repositories
angegeben werden (der Server kann also im Prinzip mehrere Datenbanken verwalten). Mit den
Methoden des DB_QueryTAManager kann der Client Transaktionen starten und beenden bzw.
zum korrespondierenden QueryManager navigieren (es gibt wiederum einen QueryManager je
Client bzw. je DB_QueryTAManager).

Die Implementierung des GDBM-basierten Servers ist ähnlich zur alten Version aus
Kapitel 6.2.1: Die serialisierten Objekte werden über ihre OID in GDBM-Dateien gespeichert.
Für jede Datenbank bzw. für jedes Repository gibt es ein Unterverzeichnis im Dateisystem, das
eine Datei je Model enthält. Neben den Objekten werden jeweils noch Listen mit den OIDs aller
Instanzen eines Models (Model Contents) bzw. aller Instanzen eines Typs je Model (Entity
Extent) verwaltet und gespeichert. Im Gegensatz zum alten Data Module fragt der Client diese
Aggregate aber nicht über spezielle OIDs ab, sondern mittels der Anfragen aus Tabelle 6.2. Die
Listen dienen also nur der beschleunigten Verarbeitung im Server. Neben dieser Maßnahme
wurden keine weiteren Optimierungen vorgesehen. Insbesondere gibt es im Server (neben dem
ohnehin vorhandenen GDBM-Cache) keinen Objekt-Puffer.

module ExpressQuery {
// re-open IDL module already containing data structures

enum DB_TAMode {RO, RW}; // RO == read only, RW == read write

interface DB_QueryTAManager {
void BOT (in DB_TAMode theMode); // some server side implementations may

// ignore theMode, it's just a hint ...
void Abort ();
boolean PrepareCommit (); // return TRUE -> vote Commit

// return FALSE -> vote Abort
void Commit ();
CosQuery::QueryManager GetQueryManager ();
void DeleteQuery (in CosQuery::Query theQuery);

};

interface DB_QueryTAManagerFactory {
DB_QueryTAManager create (in string DBname);

};
};

172

Die zweite Implementierung für STEP Physical Files realisiert hingegen eine vollkommen
andere Verarbeitungsweise. Alle Daten eines Repositories stehen (gemäß der Spezifikation) in
einer einzigen Datei. Diese wird beim Start des Servers vollständig gelesen, um Instanzen für
alle enthaltenen Objekte zu erzeugen. Das Lesen einzelner Objekte bei Bedarf bietet sich auf-
grund der Struktur von STEP Physical Files nicht an. Neben dem Puffer mit Instanzen von
Objekten gibt es auch hier Hilfsstrukturen zur Verwaltung von Model Contents und Entity
Extents. Der resultierende Server wurde zwar nicht für Messungen im Rahmen dieser Arbeit
benutzt, er hat sich aber schon mehrfach bei Projekten innerhalb von DaimlerChrysler FT3/EK
bewährt.

6.2.2.3 Implementierung des Clients

Die Funktionalität des Clients wurde gegenüber dem ersten Data Module aus Kapitel 6.2.1
erheblich erweitert. Zunächst einmal wird nun auch multiple Vererbung unterstützt. Dafür
waren umfassende Änderungen in der Struktur der Java-Klassen sowie bei der Serialisierung
und der Verwaltung von Entity Extents nötig. Ergänzend dazu wurde eine neue Pufferverwal-
tung entworfen, die bei der Verarbeitung größerer Datenmengen (die nicht mehr komplett in den
Hauptspeicher des Clients passen) einzelne Objekte temporär verdrängen kann. Dieser Vorgang
ist natürlich transparent für die Applikation. Abschließend wurde noch die Transaktionsverwal-
tung überarbeitet, so daß nun auch der Mehrbenutzerbetrieb effizient unterstützt wird. Alle Kon-
zepte und Entscheidungen sind ausführlich in [Ma98] dokumentiert. An dieser Stelle wollen wir
nur kurz auf die wesentlichen Punkte eingehen:

Multiple Vererbung

In Abschnitt 6.1.1.4 haben wir bereits entstehende Probleme bei der Abbildung von mehrfacher
Vererbung in EXPRESS auf Java betrachtet. Zur Auflösung der angesprochenen Konflikte auf
der Ebene von Schnittstellen (Java Interfaces) haben wir Ansatz D übernommen (siehe
Tabelle 6.1 auf Seite 156 und Beispiel 6.6 auf Seite 154). Ergänzend dazu mußte auf der Ebene
von Klassen ein Teil der geerbten Funktionalität re-implementiert werden (Java erlaubt nur
maximal eine Superklasse). Wir benutzen dafür die Reihenfolge der Supertypen innerhalb der
EXPRESS-Definitionen, um von der Klasse für den ersten Supertypen zu erben und den Code
der anderen Klassen zu duplizieren. Dieser Schritt stellt quasi die einfachste Lösung dar und
vereinfacht dementsprechend die Implementierung des Code-Generators. Nachdem dessen
Komplexität aber nicht das Laufzeitverhalten der SDAI-Implementierung beeinflußt, entsteht
an dieser Stelle ein weiteres Optimierungspotential, das in zukünftigen Versionen genutzt wer-
den soll: Eine Minimierung von dupliziertem Code läßt sich erreichen, indem nicht einfach von
der ersten Superklasse geerbt wird, sondern von derjenigen mit den meisten Attributen und
Methoden. Die resultierende Reduktion des Codes führt zum schnelleren Laden von Applets
und einem geringeren Speicherbedarf im Hauptspeicher des Clients. Letzteres gilt sowohl für
den eigentlichen Code (die gepufferten Class Files), als auch für die Instanzen von Entities (sie
besitzen jetzt u.U. weniger Attribute).

173

Serialisierung und Deserialisierung

Im Rahmen der Unterstützung für mehrfache Vererbung ist nun weiterhin eine Überarbeitung
der Methoden zur (De-)Serialisierung nötig. Dieser Aspekt betrifft insbesondere die Reihen-
folge der Attribute. Bisher reichte die Definition, daß zuerst die Attribute der EXPRESS-Super-
typen kommen und dann die eigenen (entsprechend der Reihenfolge innerhalb der EXPRESS-
Definition). Dieses Verfahren läßt sich prinzipiell beibehalten, allerdings müssen die Attribute
aller Supertypen gemeinsam betrachtet werden. Eine isolierte Betrachtung einzelner Superty-
pen scheidet aus. Wir wollen diesen Sachverhalt kurz illustrieren. Betrachten wir dafür die Typ-
Hierarchie in Beispiel 6.12: Entity D erbt das Attribut a von Entity A durch beide Supertypen
(Entity B und C). Würde man beide Supertypen getrennt betrachten, so würde a zweimal seria-
lisiert. Dies wäre natürlich falsch.

Beispiel 6.12: Mehrfache Vererbung mit gemeinsamem Supertyp

Aus diesem Grund muß eine eindeutige Reihenfolge festgelegt werden, in der jeder Supertyp
genau einmal vorkommt. Wir haben uns für eine Art Tiefensuche auf Basis der EXPRESS-Defi-
nition entschieden: Die Attribute von Supertypen kommen vor den eigenen, die Supertypen
werden entsprechend der Reihenfolge in der Subtype-Klausel bearbeitet und vor der Serialisie-
rung eines Typs wird überprüft, ob dieser nicht bereits bearbeitet wurde. Für eine Instanz des
Typs D aus Beispiel 6.12 ergäbe sich damit folgende Reihenfolge für die Serialisierung der
Attribute: A.a - B.b - C.c - D.d.

Ein Nachteil dieses Verfahrens liegt in der Dynamik, die während der Serialisierung (also zur
Laufzeit) die Verwaltung einer Liste mit bereits serialisierten Typen erfordert. Mit einem klei-
nen Trick läßt sich dieser Aspekt aber vermeiden: Für die Implementierung der zu einem Entity-
Typ korrespondierenden Klasse müssen wir bei multipler Vererbung ohnehin den Code für
einige Attribute duplizieren. Entsprechend unserer o.g. Entscheidung würden wir z.B. von der
Klasse für Entity B erben und die Attribute von C duplizieren. Dabei tritt bereits das gleiche Pro-
blem auf: Attribut a von Entity A darf nicht dupliziert werden, da es bereits von der Klasse für
Entity B geerbt wird. Dementsprechend wird nur C.c dupliziert. Betrachtet man nun die dupli-
zierten Attribute als “eigene” Attribute der Klasse für Entity D, so läßt sich der Serialisierungs-
algorithmus aus dem alten Data Module beibehalten: Zuerst werden die Attribute der (einzigen)
Superklasse serialisiert, dann die eigenen (und zwar erst die duplizierten, dann die des korre-
spondierenden Entity-Typs).

A

B C

D

ENTITY A
a : INTEGER;

END_ENTITY;

ENTITY B
SUBTYPE OF (A)
b : REAL;

END_ENTITY;

ENTITY C
SUBTYPE OF (A)
c : REAL;

END_ENTITY;

ENTITY D
SUBTYPE OF (B, C)
d : NUMBER;

END_ENTITY;

(a) Typ-Hierarchie (b) EXPRESS-Definitionen

174

Verwaltung von Entity Extents

Entity Extents stellen ein Aggregat mit allen Instanzen eines Entity-Typs dar (inkl. Subtypen).
Somit ist also jede Instanz im Extent des korrespondierenden Entity-Typs sowie in allen Extents
der Supertypen enthalten. Bei der Implementierung des Clients stellt sich nun die Frage, ob man
die Aggregate für Extents jeweils vollständig materialisiert (d.h. eine Instanz entsprechend der
Typ-Hierarchie in mehreren Aggregaten enthalten ist, siehe Abb. 6.7a) oder die Aggregate
jeweils nur die Instanzen des exakt korrespondierenden Typs enthalten und gleichzeitig auf die
Aggregate der Subtypen verweisen (siehe Abb. 6.7b).

Abb. 6.7: Strategien zur Verwaltung von Entity Extents (basierend auf Beispiel 6.12)

Wir haben uns für Variante (b) entschieden, da diese deutlich schneller beim Erzeugen und
Löschen von Objekten ist. Im Gegensatz dazu hat sich der Mehraufwand für die Verknüpfung
der Extents als relativ gering herausgestellt. Im Prinzip ist hier nur eine statische Liste mit Refe-
renzen auf die Aggregate aller Subtypen erforderlich, die nur einmal während der Initialisie-
rungsphase erzeugt wird. Jede Liste muß allerdings vollständig sein (d.h. auch alle transitiven
Subtypen referenzieren). Andernfalls würden im Fall multipler Vererbung einige Instanzen dop-
pelt aufgezählt werden: In Abb. 6.7b wird das Aggregat für Extent D sowohl von B als auch von
C referenziert. Würde A nicht direkt auf D verweisen, so würde D beim iterieren über A zwei-
mal berücksichtigt: einmal als Subtyp von B und einmal als Subtyp von C. Die Kombination der
Verweise ist somit nicht als Hierarchie aufzufassen!

Pufferverwaltung: Verdrängung von Objekten

Die Verarbeitung größerer Datenmengen (die den Umfang des Hauptspeichers im Client über-
steigen) erfordert es, daß temporär unbenötigte Objekte zwischenzeitlich ausgelagert oder ver-
drängt werden. Dieser Vorgang sollte transparent für die Applikation sein. Insbesondere sollten
Referenzen auf verdrängte Objekte gültig bleiben. Derartige Mechanismen haben sich bereits
im Bereich datenintensiver Systeme etabliert, lassen sich aber leider nicht direkt auf Java-
Umgebungen übertragen. Speicherbereiche oder Puffer werden hier nur vom System verwaltet
und können nicht durch Programme gesteuert werden. Insbesondere das Löschen von Objekten
ist nicht direkt möglich. Es kann nur über den sog. Garbage Collector erfolgen, der alle Objekte
aus dem Speicher entfernt, auf die keine Referenzen mehr existieren. Zum Löschen eines
Objektes müssen also zunächst einmal alle Referenzen auf dieses gelöscht und dann der Gar-
bage Collector angestoßen werden. Nun kann eine SDAI-Implementierung aber nicht Einfluß

a1, a2, b1, c1, d1

b1, d1 c1, d1

d1

a1, a2

b1 c1

d1

(a) materialisiert, unverknüpft (b) verknüpft

xi
Instanz i

Entity Extent

A

B C

D

A

B C

D
X für Entity X

vom Typ X

175

auf lokale Variablen der Applikation nehmen, die vielleicht noch Referenzen auf zu verdrän-
gende Objekte enthalten. Aus diesem Grund muß die Pufferverwaltung eine Indirektion enthal-
ten: Für jede Entity-Instanz gibt es einen sog. Wrapper, der im Prinzip nur eine Referenz auf das
eigentliche Objekt enthält und alle Methodenaufrufe an dieses weiterleitet. Diese Technik ist
mit dem Indirect Pointer Swizzling aus [KK93] vergleichbar (nur werden dort Adreßlisten an
Stelle der Wrapper benutzt). Der Wrapper ist sehr klein und kann permanent im Hauptspeicher
bleiben. Referenzen auf eine Entity-Instanz werden grundsätzlich als Referenz auf den korre-
spondierenden Wrapper modelliert und bleiben damit dauerhaft gültig. Das eigentliche Objekt
kann bei Bedarf verdrängt werden, indem die auf das Objekt zeigende Referenz im Wrapper
gelöscht (diese ist garantiert die einzige) und der Garbage Collector angestoßen wird. Vorher
muß natürlich der evtl. geänderte Zustand des Objektes gesichert werden. Ein erneuter Zugriff
auf den Wrapper (aus Sicht der Applikation stellt dieser ja das Objekt dar) führt dann zur erneu-
ten Einlagerung des Objektes. Damit der Mechanismus funktioniert müssen natürlich auch
interne Referenzen im Puffer über die Wrapper modelliert werden. Die Laufzeiteinbußen durch
die zusätzliche Dereferenzierung haben sich dabei als gering herausgestellt (siehe Kapitel 6.4).

Transaktionsverwaltung und Mehrbenutzerbetrieb

Der größte Teil der Transaktionsverarbeitung (insbesondere die Sperrverwaltung) ist im Server
realisiert. Die Synchronisation mehrerer Clients erfolgt auf Basis der übermittelten Anfragen
(analog zu SQL und RDBVS). Ändert die Applikation ein Objekt (oder erzeugt sie ein neues),
so wird diese Operation beim ersten mal direkt per Update Query an den Server propagiert, um
eine entsprechende Schreibsperre zu erwerben. Anschließende Modifikationen werden lokal im
Client bearbeitet und erst beim Commit an den Server propagiert. Auf diesem Wege wird die
nötige Kommunikation auf ein Mindestmaß reduziert.

6.2.3 Data Shipping über JDBC

Das dritte Data Module basiert auf einer Datenspeicherung in RDBVS und einem Zugriff über
die Java Database Connectivity (JDBC, siehe Abschnitt 5.5.2.2). Es kommt damit ohne den
Einsatz von CORBA aus und dient der Gegenüberstellung und Evaluierung beider Technolo-
gien. Die Architektur des Data Module ist in Abb. 6.8 illustriert. Für jedes SDAI Repository
werden 2 relationale Datenbanken angelegt: Eine für die eigentlichen Daten (Entity-Instanzen)
und eine weitere für Metadaten (Beschreibung der verfügbaren SDAI Models und bereits ver-
gebener OIDs). Diese Aufteilung war nötig, um einen effizienten Mehrbenutzerbetrieb zu unter-
stützen: Jede SDAI-Transaktion wird auf eine Transaktion auf der DB mit den Daten abgebildet,
d.h. die Transaktions- und Sperrverwaltung erfolgt im wesentlichen direkt durch das RDBVS.
Im Gegensatz dazu wird auf der Metadaten-DB nur mit kurzen Transaktionen gearbeitet, die nur
eine einzige Anfrage umfassen. Dadurch wird eine unnötige Blockade zwischen mehreren
SDAI-Clients vermieden. Legt z.B. eine Applikation eine Entity-Instanz an, so liest und inkre-
mentiert der SDAI-Client in der Metadaten-DB die höchste bereits vergebene OID und erzeugt
damit ein neues Objekt (lokal im Client). Die TA auf der Metadaten-DB ist damit beendet, die
SDAI-TA kann hingegen noch länger laufen. Will nun ein zweiter SDAI-Client ebenfalls eine
neue Entity-Instanz des gleichen Typs erzeugen, so kann er ebenfalls auf die Metadaten-DB

176

zugreifen und die gleiche Operation ausführen. Bei einer gemeinsamen Speicherung von Daten
und Metadaten wäre dies nicht möglich gewesen: Der erste SDAI-Client würde eine Schreib-
sperre auf die Metadaten-Tabelle bis zum Ende der SDAI-TA halten, so daß die Anfrage des
zweiten SDAI-Clients (zur Bestimmung der höchsten vergebenen OID) bis zum Ende der
SDAI-TA des ersten SDAI-Clients verzögert würde. Diese Verzögerung wäre aber unnötig und
inakzeptabel.

Abb. 6.8: Architektur des JDBC Data Module

Innerhalb der DB mit den eigentlichen Daten wird für jedes SDAI Model eine eigene Tabelle
angelegt, in der die einzelnen Instanzen als serialisierte Objekte gespeichert werden. Die resul-
tierende Tabelle hat die drei Spalten OID (VARCHAR), Typ (VARCHAR) und Wert (CLOB)
und entspricht damit der zweiten Variante in Abb. 5.2 auf Seite 123. Referenzen zwischen Enti-
ties werden durch die Konkatenation aus Model ID, Typ und OID dargestellt (Referenzen in
externe Repositories werden nicht unterstützt).

Die meisten Verarbeitungsschritte im Client sind ähnlich zum Query Service Data Module
(Abschnitt 6.2.2.3) realisiert. Wir wollen sie deshalb an dieser Stelle nicht noch einmal betrach-
ten. Eine weitergehende Dokumentation der Implementierung wird durch [Ma97] gegeben.

6.2.4 Operation Shipping gemäß ISO 10303-26

Die drei bisher vorgestellten Data Modules basieren allesamt auf Data Shipping. Zur Gegen-
überstellung und Evaluierung der verschiedenen Technologien wollen wir nun auch noch die
Architektur eines Data Modules vorstellen, das auf Operation Shipping basiert. Dabei bietet
sich die Benutzung der in ISO 10303-26 standardisierten IDL-Schnittstellen für das SDAI an
[ISO98c]. Bereits in [Sel96] hatten wir einen Prototypen vorgestellt, der diese Schnittstellen auf
Basis des damals verfügbaren CORBA-Systems ORBeline [PMC94] implementierte. Die
gewonnenen Erfahrungen wiesen auf eine Reihe konzeptueller Probleme hin, die im wesentli-

JDBC
Data Module

JDBC Server Daemon

JDBC Client Driver

JavaSDAI Socket Bar
... ...

Applikation

Java (Client)

C++ (Server)

Objektpuffer

Call Level Interface (CLI)
Kommerzielles RDBMS

RDB: DataRDB: Metadata

177

chen auf CORBA und das verwendete Operation Shipping zurückzuführen waren. Daneben gab
es aber auch einige durch das Design von ORBeline hervorgerufene Aspekte. Aus diesem
Grund haben wir uns zur Entwicklung eines neuen Data Modules entschlossen, das intern eben-
falls die Schnittstellen aus ISO 10303-26 verwendet, gleichzeitig aber die Vorteile moderner
CORBA-Systeme nutzt. Die resultierende Architektur ist in Abbildung 6.9 dargestellt. Der Cli-
ent besteht lediglich aus den Client Stubs für die standardisierten IDL-Schnittstellen sowie einer
Implementierung für das interface InterOpRepository (siehe Kapitel 6.1.2). Letztere ist
insbesondere für die Initialisierung des Data Module zuständig. Beim Einsatz des CORBA-
Systems Orbix benutzen wir dafür den sog. Orbix Daemon, der anhand seines Implementation
Repository den gewünschten SDAI Server lokalisiert bzw. startet und eine Referenz darauf an
den Client zurückgibt. Prinzipiell kann die Initialisierung aber auch über einen Naming Service
oder den Austausch der in einen String konvertierten IOR (Interoperable Object Reference)
erfolgen (beide Verfahren sind durch die OMG standardisiert).

Abb. 6.9: Architektur des auf ISO 10303-26 basierendem Data Module

Anstatt der vom IDL-Compiler generierten Client Stubs benutzen wir eine (allerdings
proprietäre) Erweiterung des von uns verwendeten CORBA-Systems OrbixWeb: User-Defined
Smart Proxies. Sie stellen quasi eine benutzerdefinierte Subklasse der generierten Client Stubs
dar. Über sie lassen sich insbesondere Attributwerte für den erneuten Zugriff im Client puffern.
Weiterhin benutzen wir diese Technik, um die leicht abweichende Signatur von JavaSDAI (ISO
10303-27) und der Abbildung der standardisierten IDL-Schnittstellen (ISO 10303-26) auf Java
auszugleichen. Smart Proxies sind eine lokale Erweiterung im Client und können deshalb mit
jedem CORBA-Server kommunizieren, der auf den selben IDL-Schnittstellen basiert. Im Client
wird jeweils lediglich eine Instanz der Smart Proxies anstatt einer Instanz der generierten Client
Stubs erzeugt.

Im Server verwenden wir die generierten IDL Skeletons als Basis für die Implementierung der
einzelnen CORBA-Objekte. Nach den Erfahrungen aus [Sel96] haben wir uns aber auch hier
einiger (proprietärer) Erweiterungen bedient. So benutzen wir zur Verwaltung der registrierten

JDBC
Data Module

Orbix Server Skeleton

JavaSDAI Socket Bar
... ...

Applikation

Java (Client)

C++ (Server)

ISO 10303-26 SDAI Server

OODBVS

Orbix Object Buffer

User-Defined Smart
Proxies (OrbixWeb)

Init

Orbix
Daemon

Orbix Impl. Rep.

Start

ISO 10303-26 (IDL)

ISO 10303-27 (Java)

178

CORBA-Objekte eine optimierte Hashtabelle (ORBeline hatte hierfür eine lineare Liste
erzeugt, die bei jedem Zugriff linear durchsucht wurde). Orbix ermöglicht an dieser Stelle zum
Glück Eingriffe in die Interna des ORB. Neben der Hashtabelle wurde weiterhin eine komplette
Pufferverwaltung für CORBA-Objekte realisiert, die auch die temporäre Verdrängung von
Objekten zuläßt. Dafür benutzen wir die von Orbix angebotenen Marker und Loader. Die
zugrundeliegenden Konzepte haben wir bereits in Kapitel 5.4.6 betrachtet, so daß wir an dieser
Stelle nicht weiter darauf eingehen wollen. Nachdem wir zur Datenspeicherung das OODBVS
ObjectStore benutzen, hätte man für Teile der Arbeit statt eigener Implementierungen auch
direkt den Orbix & ObjectStore Adapter von IONA benutzen können (siehe Abschnitt 5.4.10.1).
Aus Kostengründen haben wir uns jedoch dagegen entschieden.

Auch für den Server gilt (wie für den Client), daß er intern zwar proprietäre Erweiterungen
benutzt, gleichzeitig aber eine standardisierte Schnittstelle hat. Damit können alle Clients, die
auf den selben IDL-Schnittstellen basieren, auf unseren Server zugreifen.

6.2.5 Gegenüberstellung und Zusammenfassung

Nach der Vorstellung der einzelnen Data Modules wollen wir nun noch kurz die wichtigsten
Eigenschaften und Unterschiede gegenüberstellen (siehe Tabelle 6.3). Nachdem der Schwer-
punkt dieser Arbeit auf einer Unterstützung für datenintensive Umgebungen liegt, basieren
dementsprechend drei der vier Module auf Data Shipping: Das proprietären CORBA-Modul
(CO, siehe Kapitel 6.2.1), das Query Service Modul (QS, siehe Kapitel 6.2.2) und das JDBC-
Modul (JD, siehe Kapitel 6.2.3). Die CO- und QS-Module kommunizieren weiterhin über
CORBA, um die Einsatzmöglichkeiten dieses Standards in datenintensiven Bereichen zu evalu-
ieren. Sie lassen sich direkt mit dem JD- Modul vergleichen, das JDBC als Middleware benutzt.

Das vierte Modul (OS, siehe Kapitel 6.2.4) realisiert Operation Shipping über CORBA und ent-
spricht damit der typischen Verarbeitungsweise in CORBA-Umgebungen. Es ist sogar zu zwei
Language Bindings des SDAI konform, nämlich zu denen auf Java (Serie 27, Conformance
Level 1) und IDL (Serie 26). Aufgrund der in den letzten Kapiteln diskutierten konzeptuellen
Probleme des Operation Shipping wird es aber nicht die gleiche Leistung wie die anderen
Module erreichen können. Es dient daher im wesentlichen nur zur Gegenüberstellung der Tech-
nologien und unterstreicht nochmal die Notwendigkeit des Data Shipping.

Die Implementierung einiger Data Modules unterstützt z.T. nicht die gesamte Funktionalität der
SDAI-Schnittstelle, wie sie in ISO 10303-27, Conformance Level 1 gefordert wird (z.B.
geschachtelte Aggregate oder SELECT-Typen). Die Schnittstellen sind jedoch vorhanden und
die fehlende Realisierung hat im Prinzip keine Auswirkung auf die in dieser Arbeit erzielten
Ergebnisse.

Leistungsunterschiede beim Erzeugen von Objekten ergeben sich vor allem durch eine unter-
schiedliche Verwaltung der Entity Extents. Das CO Data Module besitzt keine aktive Extent-
Verwaltung im Server, d.h. nach der Erzeugung eines Objektes müssen sowohl das Objekt als
auch die Aggregate für die betroffenen Entity Extents zum Server propagiert werden. Beim QS
Data Module braucht hingegen nur das neue Objekt übertragen zu werden. Der Server fügt es
dann selbst in die Aggregate der betroffenen Entity Extents ein.

179

Beim JD Data Module ist sogar überhaupt keine Extent-Verwaltung in der DB nötig. Hier wer-
den die Extents direkt über mengenorientierte SELECT-Anfragen geladen.

Tabelle 6.3: Eigenschaften und Unterschiede der realisierten Data Modules

Data Module

CO QS JD OS

Design beschrieben in Kapitel 6.2.1 6.2.2 6.2.3 6.2.4

Schnittstelle konform zu ISO 10303 Serie 27 (CL 1) 27 (CL 1) 27 (CL 1)
27 (CL 1)
26 (intern)

Unterstützte SDAI-Funktionalität

Multiple Vererbung - � - �

Referenzen zwischen
unterschiedlichen SDAI Repositories

� � - -

Aggregate einfach / flach geschachtelt einfach / flach geschachtelt

Inverse Attribute (Gegenreferenzen) - � - �

SELECT-Typen - � - -

Zugrundeliegende Technologie

... beschrieben in Kapitel 5.4.7 5.4.3 5.5.2.2 5.4.6

Data Shipping / Operation Shipping DS DS DS OS

Verwendete Middleware CORBA CORBA JDBC CORBA

Datenquelle GDBM GDBM
RDBVS

(IBM DB2)
OODBVS

(ObjectStore)

Puffer im Client (Object Cache) � � � -

Verdrängung von Objekten möglich - � - -

Strategie bei Änderungsoperationen:
write back (wb) oder write through (wt)

wb wt / wb wt / wb -

Kommunikation

Datenformat
IDL struct

(proprietär)

IDL struct
(proprietär,
Standardis.

beabsichtigt)

über JDBC
(proprietär)

IDL interface
(stand.)

Aggregate als eigene Objekte mit
interner OID

� � �
-

(IDL seq.)

Puffer im Server (Object Cache) in GDBM in GDBM - �

... mit Verdrängung von Objekten durch GDBM durch GDBM - �

Entity Extents im Server materialisiert � � - �

Aktive Extent-Verwaltung im Server - � nicht nötig �

180

Die unterschiedlichen Pufferungsstrategien beeinflussen hingegen nicht das Erzeugen von
Objekten. Neue Objekte werden in allen Fällen lokal erzeugt (allerdings muß das JD Data
Module die neue OID vom Server anfordern). Nur bei Änderungsoperationen auf existierenden
Objekten machen sich die unterschiedlichen Verfahren bemerkbar: Das CO Data Module kann
alle Änderungen lokal durchführen und Kommunikation mit dem Server bis zum Commit ver-
zögern (write back), die QS und JD Data Modules müssen hingegen die erste Änderung eines
Objektes direkt zum Server propagieren, um die nötige Sperre zu erwerben (write through). Erst
danach können folgende Änderungen auf dem selben Objekt bis zum Commit verzögert werden
(write back).

6.3 Verwendete Applikationen
Zum Bewerten der unterschiedlichen Implementierungen und Konzepte haben wir mehrere
Applikationen entwickelt bzw. benutzt, die auf der zuvor beschriebenen JavaSDAI-Schnittstelle
aufsetzen. Sie dienen insbesondere dem Vergleich der Leistungsfähigkeit beim Datenzugriff.
Erste Tests wurden mit einer Anwendung zum Erzeugen und Lesen von binären Bäumen durch-
geführt (Kapitel 6.3.1). Diese ist sehr einfach und gut skalierbar. Im Anschluß daran haben wir
den komplexeren oo7-Benchmark auszugsweise auf JavaSDAI portiert (Kapitel 6.3.2). Zur
direkten Gegenüberstellung von Data Shipping und Operation Shipping über CORBA haben
wir weiterhin ein rudimentäres Testprogramm entwickelt, das direkt auf Daten-Objekten arbei-
tet und keine SDAI-Schnittstelle verwendet (Kapitel 6.3.3). Es überträgt wahlweise alle Daten
zum Client und bearbeitet sie dort lokal (Data Shipping) oder es wickelt die Verarbeitung auf-
tragsorientiert im Server ab (Operation Shipping).

6.3.1 Binäre Bäume

Die einfachste Anwendung erzeugt und liest binäre Bäume. Das Szenario ist vergleichbar mit
dem Zugriff auf Produktdaten (z.B. hierarchische Stücklisten) und sehr gut skalierbar über die
Anzahl der Knoten eines Baumes. Weiterhin läßt sich mit diesem Vorgehen bereits ein großer
Teil der Funktionalität der SDAI-Schnittstelle testen und bewerten. So umfaßt das zugrundelie-
gende und in Beispiel 6.13 dargestellte EXPRESS-Schema bereits Aggregate und Vererbung.

Die Knoten eines Baumes werden durch Instanzen der Klasse Node (bzw. deren Subklassen)
gebildet: Die Wurzel wird grundsätzlich durch einen String_Node repräsentiert, alle folgenden
Knoten durch einen Integer_Node. Zu jedem Baum gibt es zusätzlich einen Administrator,
der ein Aggregat mit Verweisen auf alle Knoten und ein weiteres Test-Attribut für den
EXPRESS-Typ BOOLEAN enthält. Jeder Knoten (Node) enthält außerdem eine Gegenreferenz auf
den zugehörigen Administrator. Nachdem die Implementierung einiger Data Modules keine
inversen Attribute unterstützt, haben wir diese Gegenreferenz allerdings als normales Attribut
modelliert, das von der Applikation selbst gewartet werden muß (im Gegensatz zu inversen
Attributen, die von der SDAI-Implementierung gewartet werden). Alle Bäume werden grund-

181

sätzlich balanciert erzeugt. Alle Integer_Nodes sind in LWR-Ordnung (Links-Wurzel-Rechts)
aufsteigend numeriert. Anhand dieser Ordnung wird gleichzeitig die Korrektheit der Pro-
gramme überprüft.

Beispiel 6.13: EXPRESS-Definitionen für die Applikation mit binären Bäumen

Für Messungen werden zwei Operationen angeboten: Das Lesen aller Knoten oder die Suche
nach dem Knoten mit der Nummer “1”. Letzterer ist immer der Knoten links unten im Baum,
d.h. die Zahl der gelesenen Knoten entspricht der Höhe des Baumes. Weiterhin läßt sich für jede
Operation auswählen, ob bei leerem Puffer alle Objekte einzeln vom Server angefordert (Single
Object Fault) oder ob alle Objekte zu Beginn auf einmal übertragen werden (Prefetching & Bulk
Transfer of Entity Extents). Dementsprechend ergeben sich je Baumgröße und Data Module
also vier verschiedene Konfigurationen, für die es jeweils einen eigenen Baum in einem sepa-
raten SDAI Model gibt. Für jede Konfiguration wird nun noch nach Cold Run (leerer Puffer im
Client, d.h. es müssen noch alle Objekte geladen werden) und Hot Run unterschieden (alle
Objekte befinden sich im Puffer des Clients, d.h. es ist keine Client/Server-Kommunikation
mehr nötig). Beim Hot Run ist die Konfiguration für das Prefetching allerdings ohne Bedeutung,
so daß sich insgesamt 6 Meßwerte je Baumgröße und Data Module ergeben.

Neben diesen konzeptuellen Unterschieden gibt es natürlich noch weitere Parameter für die
Messungen. Dies sind etwa die verwendete Rechnerarchitektur (Intel, SUN Sparc usw), das
Betriebssystem (Solaris, Linux usw.) oder die Java-Version (JDK 1.1.x, JIT Compiler). Diese
Details werden wir bei den jeweiligen Messungen in Kapitel 6.4 diskutieren.

6.3.2 Der oo7-Benchmark

Der oo7-Benchmark wurde ursprünglich an der Universität von Wisconsin-Madison entwickelt,
um die Leistungsfähigkeit von OODBVS zu bewerten [CDN93]. Er definiert dazu einige für
Ingenieursanwendungen typische Datenstrukturen und Operationen (Traversals, Updates und
Queries), die insbesondere auch den Datenbank-Cache sowie die Vorteile einer Cluster-Bildung
bei der Speicherung komplexer Objekte betrachten. Unsere JavaSDAI-Implementierung ist
zwar kein OODBVS, sie dient aber der Datenversorgung in ähnlichen Szenarien. Außerdem ent-

SCHEMA BINTREE;

ENTITY Node
ABSTRACT SUPERTYPE OF (ONEOF(Integer_Node,String_Node));
Admin : Administrator;
Left_Son : Node;
Right_Son : Node;
Father : Node;

END_ENTITY;

ENTITY Integer_Node
SUBTYPE OF (Node);
intVal : INTEGER;

END_ENTITY;

ENTITY String_Node
SUBTYPE OF (Node);
strVals : BAG [0:?] OF STRING;

END_ENTITY;

ENTITY Administrator;
Nodes : SET [0:?] OF Node;
checked : BOOLEAN;

END_ENTITY;

END_SCHEMA;

182

halten einige Data Modules ebenfalls einen Puffer im Client und bieten auch die Möglichkeit
zur Cluster-Bildung über SDAI Models. Aus diesem Grunde erscheint die Verwendung einer
leicht modifizierten Version des oo7-Benchmarks als geeignet [Bu98]. Ähnliche Ansätze wur-
den bereits in [Dr95] und [Sel96] verfolgt.

Die Ergebnisse von Messungen mit dem oo7-Benchmark werden in Kapitel 6.4.1 lediglich zur
prinzipiellen Gegenüberstellung von Operation Shipping und Data Shipping verwendet, so daß
wir an dieser Stelle auf eine detaillierte Beschreibung der Datenstrukturen und Operationen ver-
zichten wollen. Dafür sei auf [CDN93, Dr95, Sel96] verwiesen. Wie bei der Applikation mit
binären Bäumen gilt aber auch hier, daß zwischen Cold Run (leerer Puffer bzw. Cache) und Hot
Run (gefüllter Puffer bzw. Cache) unterschieden wird.

6.3.3 Direkte Gegenüberstellung von Operation Shipping und Data Shipping

Neben dem oo7-Benchmark haben wir eine weitere Testapplikation mit binären Bäumen ent-
wickelt, um nun direkt auf die Unterschiede zwischen Operation Shipping und Data Shipping
in CORBA-Umgebungen eingehen zu können. Dafür haben wir rudimentäre IDL-Definitionen
entworfen, die in Beispiel 6.14 dargestellt sind und als Basis für unsere in C++ geschriebene
Implementierung dienen. Alle Tests arbeiten weiterhin auf reinen Hauptspeicherstrukturen, um
die Meßwerte nicht durch Zugriffszeiten auf Externspeicher zu verfälschen.

Beispiel 6.14: IDL-Definitionen der zweiten Testapplikation mit binären Bäumen

Im Fall von Operation Shipping werden die zwei auf der linken Seite aufgeführten Schnittstel-
len benutzt. Der Server erzeugt während der Initialisierung ein Objekt vom Typ admin, schreibt
dessen Objektreferenz (IOR) in eine Datei (welche der Client später liest, um die Verbindung
aufzubauen) und erzeugt anschließend die als Parameter übergebene Anzahl von Objekten (Typ
node). Nun wird der Client gestartet, der über die IOR die Verbindung zum admin-Objekt auf-
baut, über dessen Methode getRootNode eine Referenz auf die Wurzel des Baumes erwirbt und
diesen anschließend in LWR-Ordnung (Links-Wurzel-Rechts) durchläuft. Bei manchen
CORBA-Systemen erfolgt erst beim ersten Durchlauf eine Registrierung der CORBA-Objekte
im Server, so daß wir die Zeiten für den ersten Durchlauf ignorieren und den Client noch einmal
starten. Dies geschieht wahlweise auf dem gleichen Rechner, auf dem auch der Server läuft,

// IDL definitions for
// Operation Shipping:

interface node {
 node leftSon ();
 node rightSon ();
 long val ();
};

interface admin {
 node getRootNode ();
 long getNoOfNodes ();
};

// IDL definitions for Data Shipping:

struct nodeData {
 long val;
 long OID;
 long leftOID; // OID 0 == NULL reference
 long rightOID; // OID 0 == NULL reference
};
typedef sequence<nodeData> nodeDataSeq;

interface admin {
 nodeDataSeq getAllNodes ();
 nodeData getNode (in long OID);
 long getNoOfNodes ();
};

183

oder auf einer anderen Maschine. Dementsprechend erhalten wir je Baumgröße zwei Meßwerte:
Local und Remote. Bei der Konfiguration Remote wurde grundsätzlich auf ein unbelastetes
Netzwerk geachtet.

Im Gegensatz dazu benutzen wir zur Realisierung von Data Shipping die IDL-Typen aus der
rechten Hälfte von Beispiel 6.14. Der Server enthält wiederum ein admin-Objekt, das diesmal
aber eine sequence von Strukturen (struct nodeData) verwaltet. Auf die Daten für einen
Knoten kann dabei direkt über die OID zugegriffen werden: Der Index in der sequence ergibt
sich aus OID - 1. Die Initialisierung des Servers erfolgt dann analog zum Operation Shipping.

Der Client liest wiederum die IOR des Servers und baut die Verbindung zu diesem auf.
Anschließend ermittelt er über getNoOfNodes() die Anzahl der vorhandenen Knoten und
berechnet daraus die OID der Wurzel. Wurde Prefetching konfiguriert, so folgt nun die Übertra-
gung aller Daten mit getAllNodes() und deren Einlagerung in den Puffer des Clients (ein
array mit der OID als Index). Dabei werden die Daten zur Erzeugung gekapselter Objekte
genutzt, die eine ähnliche Schnittstelle wie der Typ node aus Beispiel 6.14 aufweisen (diesmal
aber in C++). Anschließend wird der Baum wieder in LWR-Ordnung durchlaufen. Im Puffer
nicht vorhandene Knoten werden dabei einzeln vom Server angefordert (über getNode), in
Objekte konvertiert und eingelagert. In diesem ersten Durchlauf wird die Zeit für den sog. Cold
Run gemessen. Anschließend folgen fünf weitere Durchläufe, die auf dem inzwischen gefüllten
Puffer navigieren. Die gemessenen Zeiten werden gemittelt und bilden das Ergebnis für den sog.
Hot Run. Somit erhalten wir drei Zeiten (Cold Run ohne Prefetching, Cold Run mit Prefetching
und Hot Run), die jeweils in den Konfigurationen Local und Remote vorkommen. Insgesamt
ergeben sich damit beim Data Shipping sechs Meßwerte je Baumgröße.

6.4 Messungen
In diesem Kapitel wollen wir nun die bisher aufgestellten Theorien anhand von Messungen
belegen sowie die diskutierten Technologien und Konzepte gegenüberstellen und bewerten. Als
Meßwerkzeug dienen dabei die im letzten Abschnitt beschriebenen Applikationen. Beginnen
wollen wir in Kapitel 6.4.1 mit einem konzeptuellem Vergleich von Operation Shipping und
Data Shipping anhand des oo7-Benchmarks. Aufgrund verschiedener Probleme sind diese
Ergebnisse aber noch nicht zufriedenstellend, so daß in Kapitel 6.4.2 ein weiterer Vergleich der
Paradigmen auf Basis einer rudimentären Testapplikation für binäre Bäume erfolgt. An dieser
Stelle verzichten wir vollständig auf eine SDAI-Schnittstelle oder Externspeicherzugriffe.
Betrachtet man die erzielten Ergebnisse, so ist klar die konzeptuelle Überlegenheit des Data
Shipping zu erkennen. In Kapitel 6.4.3 benutzen wir deshalb die von uns entwickelte JavaSDAI-
Schnittstelle zur Gegenüberstellung und Bewertung verschiedener Strategien zur Realisierung
von Data Shipping.

184

6.4.1 Vergleich von Operation Shipping und Data Shipping über SDAI

Ursprünglich sollte die Gegenüberstellung von Operation Shipping und Data Shipping anhand
eines detaillierten Vergleiches der vier in Kapitel 6.2 vorgestellten Data Modules erfolgen.
Unglücklicherweise konnte aber das auf Operation Shipping basierende Data Module
(Kapitel 6.2.4) aufgrund verschiedener Probleme im Projekt sowie einiger Fehler in der einge-
setzten Software nicht zum Einsatz gebracht werden. Wir benutzen deshalb die Ergebnisse aus
früheren Arbeiten, um sie mit dem auf Data Shipping basierendem CO Data Module
(Kapitel 6.2.1) zu vergleichen. Als Grundlage dienen uns dabei ausgewählte Operationen des
oo7-Benchmarks (Kapitel 6.3.2).

Tabelle 6.4: Meßergebnisse des oo7-Benchmarks für verschiedene SDAI-Prototypen (in ms)

Bereits in [Sel96] hatten wir einen SDAI-Prototypen entwickelt, der konform zu ISO 10303-26
ist und auf Operation Shipping basiert. Die damals erzielten Ergebnisse waren katastrophal
schlecht. Neben den zu erkennenden konzeptuellen Problemen des Operation Shipping lag dies
aber vor allem an der ineffizienten Implementierung des verwendeten CORBA-Systems
ORBeline [PMC94]. Aus diesem Grunde haben wir den Prototypen 1997 auf das CORBA-
System Orbix (siehe Kapitel 4.6.1) portiert. Die Ergebnisse waren besser, aber immer noch viel
zu schlecht. Ein erheblicher Teil der gemessenen Zeiten wurden nach wie vor durch den
CORBA-Server (CPU-Zeit gemäß UNIX top-Kommando) benötigt. Deshalb hatten wir uns zur

Benchmark-
Operation

Cold Run (leerer Puffer) Hot Run (gefüllter Puffer)

Operat. Shipping Data Shipping Operat. Shipping Data Shipping

System aus

[Sel96] [Sel96]
portiert

auf Orbix

[Bu98]
Typ 1

[Bu98]
Typ 2

[Sel96] [Sel96]
portiert

auf Orbix

[Bu98]
Typ 1

[Bu98]
Typ 2

T1 189.900 108.300 2.717 3.667 148.600 78.300 36 38

T2 A 196.000 105.800 3.660 3.602 161.200 77.000 533 495

T2 B 244.300 116.400 3.315 4.365 214.600 88.300 547 495

T2 C 450.900 158.300 3.355 4.489 415.600 130.600 557 521

T6 27.900 14.100 1.252 1.258 13.600 8.500 3 5

T8 6.000 3.900 1.206 1.350 430 200 294 306

T9 5.600 3.800 662 738 390 210 3 4

Q1 15.500 20.100 159 241 5.100 15.300 6 10

Q2 12.200 6.300 140 205 810 1.900 3 4

Q4 150.700 75.000 989 1.293 138.500 69.800 6 9

Q5 19.600 9.500 740 821 5.900 4.500 4 5

Q7 15.600 6.300 193 215 1.140 1.900 42 50

Q8 17.900 13.900 389 456 2.800 8.900 7 12

185

Entwicklung eines neuen Data Module entschlossen, das effizientere Mechanismen zur Verwal-
tung der CORBA-Objekte realisiert (und damit erst sinnvolle Messungen zum Vergleich von
Operation Shipping und Data Shipping ermöglicht). Wie bereits gesagt, konnte dieses Modul
aber leider nicht fertig gestellt werden. Dementsprechend haben wir in Tabelle 6.4 nun doch die
alten Ergebnisse (aus [Sel96] und die des portierten Prototypen) direkt mit zwei Varianten des
CO Data Module gegenübergestellt ([Bu98] Typ 1 und 2).

In gewisser Weise entspricht dies aber leider einem „Vergleich von Äpfeln mit Birnen“, da alle
Messungen auf unterschiedlichen Rechnern durchgeführt wurden und die oo7-Applikation
inzwischen in einer leicht geänderten Variante vorliegt [Bu98]. Weiterhin ist die Anwendung in
[Bu98] ein Java-Client, während der Prototyp in [Sel96] vollständig in C++ geschrieben wurde.
Trotzdem halten wir alleine die Größenordnung der Unterschiede für sehr interessant.

Tabelle 6.5: Relative Unterschiede der oo7-Meßergebnisse (architekturbereinigte Faktoren)

Die Messungen in [Sel96] beziehen sich auf eine SUN SparcStation 20 (1 Prozessor mit 60
MHz, 112 MB Speicher, 1 MB 2nd Level Cache) unter SUN-OS 4.1.4. Der auf Orbix portierte
Prototyp wurde auf einer SUN Sparc Classic (1 Prozessor mit 50 MHz, 48 MB Speicher) unter
Solaris 2.5 getestet. Verglichen mit der ersten Messung ist dieser Rechner um ca. 40% langsa-
mer. Die Ergebnisse aus [Bu98] basieren auf einer SUN Ultra 1 (1 Prozessor mit 167 MHz, 196
MB Speicher) unter Solaris 2.5.1. Dieser Rechner ist ca. 8 mal schneller als die verwendete

Benchmark-
Operation

Cold Run (leerer Puffer) Hot Run (gefüllter Puffer)

Operat. Shipping Data Shipping Operat. Shipping Data Shipping

System aus

[Sel96] [Sel96]
portiert

auf Orbix

[Bu98]
Typ 1

[Bu98]
Typ 2

[Sel96] [Sel96]
portiert

auf Orbix

[Bu98]
Typ 1

[Bu98]
Typ 2

T1 14,56 4,98 1 1,35 859,95 271,88 1 1,06

T2 A 11,16 3,61 1 0,99 63,01 18,06 1 0,93

T2 B 15,35 4,39 1 1,32 81,73 20,18 1 0,90

T2 C 28,00 5,90 1 1,34 155,45 29,31 1 0,94

T6 4,64 1,41 1 1,01 944,44 354,17 1 1,67

T8 1,04 0,40 1 1,12 0,30 0,09 1 1,04

T9 1,76 0,72 1 1,11 27,08 8,75 1 1,33

Q1 20,31 15,80 1 1,52 177,08 318,75 1 1,67

Q2 18,15 5,63 1 1,46 56,25 79,17 1 1,33

Q4 31,75 9,48 1 1,31 4809,03 1454,17 1 1,50

Q5 5,52 1,60 1 1,11 307,29 140,63 1 1,25

Q7 16,84 4,08 1 1,11 5,65 5,65 1 1,19

Q8 9,59 4,47 1 1,17 83,33 158,93 1 1,71

186

Sparc Classic. Für einen besseren Vergleich haben wir deshalb in Tabelle 6.5 die relativen
Unterschiede der Laufzeiten gegenübergestellt: Die Zeiten aus [Bu98] wurden mit 100% gewer-
tet, die anderen Spalten stellen die Faktoren zwischen den Laufzeiten dar. So benötigte der Pro-
totyp aus [Sel96] für die Operation T1 im Cold Run 14,56 mal länger als der Prototyp aus
[Bu98]. Dabei wurden die gerade genannten Unterschiede bei der Leistungsfähigkeit der Rech-
ner einberechnet. Unberücksichtigt bleiben hingegen die verschiedenen Programmiersprachen.
Sie machen sich besonders bei T8 und T9 bemerkbar, die auf sehr wenige (aber große) Textat-
tribute zugreifen und diese modifizieren. Derartige Operationen sind in Java erheblich teurer.
Zusätzlich ist zu berücksichtigen, daß T8 und T9 in allen Fällen zu Data Shipping und einer ver-
gleichbaren Verarbeitung führen: In IDL modellierte Textattribute werden ebenfalls zum Client
kopiert und dort lokal bearbeitet.

Insgesamt ist die Aussagekraft der dargestellten Ergebnisse natürlich nicht sehr hoch. Das vierte
Data Module wäre also dringend erforderlich. Nachdem wir es aber nicht realisieren konnten,
haben wir uns zur Implementierung eines rudimentären Prototypen entschieden, der ohne eine
SDAI-Schnittstelle auskommt und die Unterschiede zwischen Data Shipping und Operation
Shipping auf sehr einfache Weise dokumentiert (siehe Kapitel 6.3.3). Die damit erzielten Ergeb-
nisse sind im folgenden beschrieben.

6.4.2 Direkte Gegenüberstellung von Operation Shipping und Data Shipping

Aufgrund der unzureichenden Qualität der Meßdaten des letzten Kapitels sowie dem Scheitern
der Implementierung des vierten, auf Operation Shipping basierendem Data Module sind noch
weitere Messungen für eine fundierte Bewertung der Unterschiede zwischen Data Shipping und
Operation Shipping nötig. Diese haben wir mit dem in Kapitel 6.3.3 beschriebenen Prototypen
erzielt. Bei allen Messungen lief der Server auf einem COMPAQ LTE 5300 mit einem Pentium-
133 und 48 MByte Hauptspeicher. Das verwendete Betriebssystem war S.u.S.E. Linux 5.3 mit
dem gcc 2.7.2. Als CORBA-System diente ORBacus 3.0 von OOC (siehe Kapitel 4.6.2). Bei
der Konfiguration Remote wurde zusätzlich ein Pentium-100 mit 32 MByte Hauptspeicher (und
gleicher Software) für den Client benutzt. Beide Rechner waren über ein 10 MBit-LAN
(10BaseT) lokal vernetzt (Direktverbindung ohne störende Einflüsse). Bei allen Grafiken gilt
weiterhin, daß die Einträge in der Legende die gleiche Reihenfolge haben wie die einzelnen
Meßkurven.

Alle Werte für Operation Shipping sowie die Ergebnisse für Cold Runs beim Data Shipping sind
in Abbildung 6.10 gegenübergestellt. Die rechte Grafik enthält alle Werte, während die linke
Hälfte eine detailliertere Sicht auf die Ergebnisse für Bäume mit maximal 2.500 Knoten bietet.
In beiden Fällen verschmelzen die Kurven für Data Shipping mit Prefetching mit der X-Achse.
Wir werden die einzelnen Messungen für Data Shipping deshalb später noch genauer betrach-
ten. Zuerst wollen wir uns aber auf die Unterschiede zwischen Operation Shipping und dem
schlechtesten Fall beim Data Shipping (Cold Run ohne Prefetching) konzentrieren. Es fällt auf,
daß die Kurven beim Data Shipping (generell) linear skalieren, während die Ergebnisse für
Operation Shipping ein eher polynomiales Wachstum aufweisen. Wir haben deshalb die Meß-
werte für den Server beim Operation Shipping genauer untersucht. Zuerst fiel auf, daß ca. 95%

187

der gesamten Laufzeit der CPU-Zeit des Servers entspricht (gemäß UNIX top-Kommando).
Für einen Baum mit 10.000 Knoten benötigte dieser 0,2 Sekunden zum Erzeugen der CORBA-
Objekte (mittels new-Operator), 470 Sekunden für den ersten Durchlauf und 343 Sekunden für
den zweiten (der dann in die Meßkurve einging). Wir schließen aus diesem Ergebnis, daß
ORBacus die CORBA-Objekte erst während des ersten Durchlaufes registriert (beim Erzeugen
korrespondierender Objektreferenzen für Clients in anderen Prozessen). Dafür wurden ca. 125
Sekunden benötigt (Unterschied zwischen erstem und zweitem Durchlauf).

Abb. 6.10: Vergleich der Messungen für Operation Shipping und Data Shipping (Cold Run)

Viel mehr Zeit wurde aber zum Auflösen von Objektreferenzen, d.h. zum Lokalisieren der
Objekte benötigt. Hierfür muß die gesamte Laufzeit im zweiten Durchlauf gewertet werden
(immerhin 343 Sekunden), da der Server in diesem Fall keine andere Operation ausführt. Das
polynomiale Wachstum deutet darauf hin, daß ORBacus alle Objekte in einer linearen Liste ver-
waltet, die jeweils auch linear durchsucht wird. Dadurch ergäbe sich ein Algorithmus mit qua-
dratischer Komplexität.

Selbst wenn man die Registrierung der Objekte optimieren würde, so gibt doch folgender Punkt
zu denken: Operation Shipping ist bei unseren Messungen immer langsamer als Data Shipping.
Auch bei wenigen Objekten! Und entsprechend der Ergebnisse für die Konfigurationen Remote
und Local ist der Overhead für die Kommunikation zwischen Rechnern nur sehr gering - in der
rechten Grafik von Abbildung 6.10 sind die beiden Kurven quasi identisch.

Abb. 6.11: Vergleich verschiedener Strategien beim Data Shipping (Cold Run)

0

500

1000

1500

2000

0 5000 10000 15000 20000 25000
E

la
ps

ed
 T

im
e

in
 S

ec
on

ds
Nodes per Tree

Operation Shipping, remote
Operation Shipping, local

Data Shipping, remote, no prefetching
Data Shipping, local, no prefetching
Data Shipping, remote, prefetching

Data Shipping, local, prefetching

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Nodes per Tree

Operation Shipping, remote
Operation Shipping, local

Data Shipping, remote, no prefetching
Data Shipping, local, no prefetching
Data Shipping, remote, prefetching

Data Shipping, local, prefetching

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Nodes per Tree

Data Shipping, remote, no prefetching
Data Shipping, local, no prefetching
Data Shipping, remote, prefetching

Data Shipping, local, prefetching

0

100

200

300

400

500

600

700

800

900

1000

0 100000 200000 300000 400000 500000

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Nodes per Tree

Data Shipping, remote, no prefetching
Data Shipping, local, no prefetching
Data Shipping, remote, prefetching

Data Shipping, local, prefetching

188

Nun wollen wir aber noch einen Blick auf die einzelnen Ergebnisse beim Data Shipping werfen.
Abbildung 6.11 stellt dafür die Kurven für Cold Runs mit und ohne Prefetching gegenüber (die
linke Grafik bezieht sich wiederum auf Bäume mit weniger Knoten). Das Wachstum ist in allen
Fällen annähernd linear, es läßt sich aber (wie erwartet) klar der Vorteil durch das Prefetching
erkennen. Bei der Kommunikation zwischen ORBs ist die einmalige Übertragung einer größe-
ren Menge von Daten also deutlich effizienter als die mehrfache Anforderung kleinerer Pakete.

Bei der Gegenüberstellung der Zeiten für Cold Runs mit Prefetching und Hot Runs läßt sich
schließlich die benötigte Zeit für die einmalige Übertragung aller Daten ablesen (siehe
Abbildung 6.12). Dabei ist der Unterschied zwischen lokaler und entfernter Verarbeitung (Kon-
figuration Local gegenüber Remote) deutlich größer, d.h. hier stoßen wir langsam an die physi-
kalischen Grenzen (bedingt durch die Netzkommunikation). Bei der Konfiguration Local wird
natürlich ein erheblicher Anteil der Laufzeit durch die Prozeßwechsel zwischen Client und Ser-
ver benötigt. Noch deutlichere Ergebnisse wären deshalb mit einem Mehrprozessorrechner zu
erzielen, der uns aber leider nicht in der benötigten Konfiguration zur Verfügung stand.

Abb. 6.12: Data Shipping: Cold Runs mit Prefetching im Vergleich zu Hot Runs

Im Bezug auf die rechte Grafik in Abbildung 6.12 sollten noch zwei Aspekte erwähnt werden:
Zunächst hört die Kurve für den Cold Run mit Prefetching in der Konfiguration Remote (oberste
Kurve) leider schon bei 100.000 Knoten auf. Bei der Messung mit 500.000 Knoten stand auf
dem Rechner des Clients nicht genügend Hauptspeicher zur Verfügung, um alle (per Bulk
Transfer) erhaltenen Daten in Objekte konvertieren zu können. Das resultierende Swapping
machte die Ergebnisse deshalb unbrauchbar. Der zweite Punkt bezieht sich auf die beiden Kur-
ven für Hot Runs, die eigentlich identisch sein müßten. Sie weichen jedoch leicht voneinander
ab, da unterschiedliche Rechner eingesetzt wurden (siehe Legende).

Fassen wir die Ergebnisse aller Messungen zusammen, so kann es eigentlich nur eine Aussage
geben: Operation Shipping ist für datenintensive Anwendungen in CORBA-Umgebungen nicht
akzeptabel. Zur Verdeutlichung haben wir in Tabelle 6.6 noch einmal die Ergebnisse für das
Durchlaufen eines Baumes mit 25.000 Knoten gegenübergestellt. Im Extremfall liegt hier ein
Faktor von fast 80.000 zwischen den gemessenen Zeiten (Operation Shipping gegen den Hot
Run beim Data Shipping)! Und selbst bei der ungünstigsten Konfiguration ist Data Shipping
immer noch 40 mal schneller.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Nodes per Tree

Data Shipping, remote, prefetching
Data Shipping, local, prefetching
Data Shipping, remote, Hot Run

Data Shipping, local, Hot Run

0

2

4

6

8

10

0 100000 200000 300000 400000 500000

E
la

ps
ed

 T
im

e
in

 S
ec

on
ds

Nodes per Tree

Data Shipping, remote, prefetching
Data Shipping, local, prefetching

Data Shipping, Hot Run, Pentium-100
Data Shipping, Hot Run, Pentium-133

189

Tabelle 6.6: Meßwerte für das Durchlaufen eines binären Baumes mit 25.000 Knoten

Natürlich lassen diese Meßwerte einige Aspekte außer Betracht. So erfordert Data Shipping in
einer Mehrbenutzerumgebung z.B. einen ergänzenden Mechanismus zur Vermeidung von
Kohärenzen zwischen verschiedenen Puffern in den Clients. Angesichts der dramatischen Lauf-
zeitunterschiede dürfte hier aber genügend Spielraum für derartige Algorithmen sein. Schade
bleibt aber vor allem, daß die vom CORBA-Standard angebotenen Services in datenintensiven
Umgebungen wohl nicht entsprechend ihrer Philosophie genutzt werden können.

6.4.3 Bewertung verschiedener Ansätze zum Data Shipping über JavaSDAI

Nachdem im letzten Kapitel die klare Überlegenheit von Data Shipping deutlich wurde, wollen
wir nun verschiedene Ansätze zum Data Shipping vergleichen und bewerten. Dazu benutzen
wir die in Kapitel 6.2 entwickelten Data Modules unseres JavaSDAI-Prototypen. Als Anwen-
dung dient grundsätzlich die in Kapitel 6.3.1 beschriebene Applikation zum Lesen von binären
Bäumen. Für alle Grafiken gilt auch hier, daß die Reihenfolge der einzelnen Kurven immer mit
der Reihenfolge innerhalb der Legende übereinstimmt. Weiterhin standen uns vier verschiedene
Rechnertypen zur Verfügung:

• eine SUN Ultra 1 mit einem 167 MHz Sparc Prozessor und 196 MByte Hauptspeicher
unter Solaris 2.5.1,

• eine SUN Ultra 10 Creator 3D mit einem 333 MHz Sparc Prozessor und 128 MByte Haupt-
speicher unter Solaris 2.6,

• ein PC mit einem Pentium 133 und 64 MByte Hauptspeicher unter S.u.S.E. Linux 6.0 und

• eine SUN JavaStation 1 (sparc) mit 32 MByte Hauptspeicher, die wahlweise unter JavaOS
1.0 (JDK 1.0.2) oder JavaOS 1.1 mit HotJava Views 1.1.1 (JDK 1.1.4) betrieben wurde.

In Kapitel 6.4.3.1 wollen wir zunächst allgemein die Meßergebnisse für alle Data Modules
gegenüberstellen. In den weiteren Abschnitten folgt dann eine Diskussion einzelner Aspekte,
welche die Leistung des Systems z.T. erheblich beeinflussen (z.B. Prefetching). In
Kapitel 6.4.3.6 fassen wir die Ergebnisse schließlich zusammen und beantworten damit die
Frage, was denn eigentlich die kritischen Leistungsfaktoren zur Laufzeit sind.

Typ Lauf Prefetching Konfiguration benötigte Zeit in ms

Operation Shipping
- - Remote 1.980.000

- - Local 1.960.000

Data Shipping

Cold Run nein Remote 49.000

Cold Run nein Local 39.000

Cold Run ja Remote 720

Cold Run ja Local 430

Hot Run - - 25

190

6.4.3.1 Allgemeiner Vergleich aller Data Modules

Beginnen wollen wir die Diskussion mit einer Gegenüberstellung aller auf Data Shipping basie-
render Data Modules: Dem proprietären CORBA-Modul (CO, siehe Kapitel 6.2.1), dem Query
Service Modul (QS, siehe Kapitel 6.2.2) und dem JDBC-Modul (JD, siehe Kapitel 6.2.3).

Zunächst haben wir Testläufe mit allen drei Modulen auf einer SUN Ultra 10 durchgeführt
(siehe Abbildung 6.13). Dabei benutzten wir die Scan-Operation, um auf alle Knoten des jewei-
ligen Baumes zuzugreifen. In der linken Grafik sind die Ergebnisse für den Cold Run darge-
stellt. Sie wurden mit dem JDK 1.1.6 unter Verwendung eines JIT-Compilers erzielt. Es fällt auf,
daß das JD-Modul erheblich langsamer ist als die beiden anderen (insbesondere ohne Prefet-
ching). Wir führen diesen Umstand auf die Architektur des JDBC-Treibers von IBM zurück.
Dieser arbeitet wie folgt: Der Treiber im Client leitet die Anfrage an einen sog. JDBC Daemon
(einen eigenständigen Prozeß) auf dem Server weiter. Dieser kontaktiert dann über die CLI-
Schnittstelle von DB2 das eigentliche DBVS. Bei der Verarbeitung des Ergebnisses wird dieses
dann im DBVS, im Daemon und schließlich nochmal im Client aufbereitet. An dieser Stelle
scheint sehr viel Zeit verloren zu gehen. Demgegenüber sind die Unterschiede zwischen den
CO- und QS-Modulen deutlich geringer. Allerdings benötigt das QS-Modul aufgrund der
umfangreicheren IDL-Schnittstellen des Servers sowie der komplexeren Pufferverwaltung fast
doppelt soviel Zeit zum Anfordern und Einlagern der Objekte. Während Prefetching beim JD-
Modul noch fast eine Beschleunigung um den Faktor 18 bewirkt, so liegt dieser beim QS-Modul
nur noch bei ca. 4 und beim CO-Modul bei ca. 2. Bei Testläufen mit Prefetching sind die Ergeb-
nisse für die CO- und QS-Module quasi identisch. Die einzelnen Auswirkungen von Prefetching
werden wir in Kapitel 6.4.3.2 noch detaillierter betrachten.

Abb. 6.13: Data Shipping: Gegenüberstellung aller Data Modules (SUN Ultra 10)

Die rechte Grafik in Abbildung 6.13 illustriert die Ergebnisse für den Hot Run. Diese basieren
wiederum auf dem JDK 1.1.6, allerdings einmal mit und einmal ohne JIT-Compiler. Im Prinzip
differieren die Zeiten für alle Module nur unwesentlich. Dies war auch zu erwarten, da sich die
Module vor allem durch unterschiedliche Datenversorgungsstrategien unterscheiden. Sind die
Daten erst einmal im Client vorhanden, so muß nur noch der Puffer ausgelesen werden. Hier
erkennt man auch deutlich die Leistungssteigerung durch Caching: Die Hot Runs sind um einen
Faktor von 1000 bis 18000 schneller als die Cold Runs! Demgegenüber läßt sich durch den Ein-
satz von JIT-Compilern nur eine Beschleunigung um den Faktor 3 erreichen.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JD Module, no prefetching, JIT
QS Module, no prefetching, JIT
CO Module, no prefetching, JIT

JD Module, prefetching, JIT
QS Module, prefetching, JIT
CO Module, prefetching, JIT

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JD Module, no JIT
QS Module, no JIT
CO Module, no JIT

JD Module, JIT
QS Module, JIT
CO Module, JIT

191

Abb. 6.14: Data Shipping: Gegenüberstellung aller Data Modules (Pentium 133)

Abbildung 6.14 illustriert schließlich die Ergebnisse der selben Testläufe auf einem PC (Pen-
tium 133). Im großen und ganzen sind hier keine wesentlichen Unterschiede festzustellen. Die
Kurven für die Hot Runs (rechte Grafik) weisen mehr oder weniger die gleiche Charakteristik
auf, der PC ist lediglich um den Faktor 2 langsamer. Weiterhin ist die Beschleunigung durch JIT-
Compiler geringer (ca. Faktor 2 statt Faktor 3 auf der Ultra 10). Beim Cold Run (linke Grafik
von Abbildung 6.14) läßt sich vor allem ein etwas anderes Verhalten des JD-Moduls beobach-
ten: Die Abweichung des JD-Moduls gegenüber den CO- und QS-Modulen ist hier sowohl mit
als auch ohne Prefetching annähernd gleich. Unter Linux ist also nicht die Anzahl der JDBC-
Zugriffe entscheidend, sondern das Datenvolumen insgesamt (das durch Prefetching natürlich
nicht beeinflußt wird). Wir vermuten weiterhin, daß die Implementierung des Typs ResultSet
(eine Klasse des JDBC-Treibers) hier nicht sonderlich effizient realisiert wurde.

6.4.3.2 Leistungssteigerungen durch Prefetching

Nach einer allgemeinen Gegenüberstellung aller Module im letzten Abschnitt wollen wir nun
gezielt auf die Auswirkungen von Prefetching eingehen. Dafür betrachten wir die Ergebnisse
der Cold Runs für die Operationen Scan 100%, Scan 25% und Search (greift auf log2n Knoten
zu). Nachdem Prefetching die einzelnen Datenversorgungsstrategien unterschiedlich stark
beeinflußt, wollen wir die Messungen mit den einzelnen Data Modules getrennt betrachten.
Weiterhin wurden alle in diesem Abschnitt dargestellten Ergebnisse mit dem JDK 1.1.6 unter
Verwendung eines JIT-Compilers erzielt (Auswirkungen von JIT-Compilern auf Cold Runs dis-
kutieren wir in Kapitel 6.4.3.5). Die linke Hälfte aller Grafiken repräsentiert jeweils die Werte
für die SUN Ultra 10, während sich die rechte Hälfte auf den PC (Pentium 133) bezieht.

Abbildung 6.15 stellt die Ergebnisse für das CO-Modul gegenüber. Bei beiden Rechnerarchi-
tekturen ist klar zu erkennen, daß Prefetching bei allen drei Operationen zu annähernd gleichen
Laufzeiten führt. Dieser Umstand ist auch zu erwarten, da Cold Runs wesentlich durch die Zeit
zum Laden der Objekte beeinflußt werden (und in diesem Fall immer gleich viele -nämlich alle-
Objekte eingelagert werden). Gleichzeitig wird deutlich, daß Prefetching beim CO-Modul zwar
eine Beschleunigung der Operation Scan 100% um einen Faktor von ca. 2 bewirkt, die Opera-
tion Scan 25% aber ohne Prefetching schneller ist. Die Grenze (ab der sich Prefetching lohnt)
liegt für das CO-Modul bei ca. 40-50%.

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JD Module, no prefetching, JIT
QS Module, no prefetching, JIT

JD Module, prefetching, JIT
CO Module, no prefetching, JIT

CO Module, prefetching, JIT
QS Module, prefetching, JIT

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JD Module, no JIT
QS Module, no JIT
CO Module, no JIT

QS Module, JIT
JD Module, JIT
CO Module, JIT

192

Abb. 6.15: CO-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Die Laufzeiten für die Search-Operation ohne Prefetching liegen bei allen drei Modultypen
(CO, QS und JD) und bei beiden Rechnerarchitekturen (Ultra 10 und PC) an der Grenze der
Meßgenauigkeit. Sie fallen somit mit der X-Achse zusammen und illustrieren damit sehr deut-
lich, daß Prefetching unter Umständen auch zu dramatisch schlechteren Resultaten führen kann.

Wenden wir uns nun aber den Ergebnissen für das QS-Modul zu (siehe Abbildung 6.16). Sie
sind sehr ähnlich zu denen des CO-Moduls, nur ist die Laufzeit für die einzelnen Durchläufe
ohne Prefetching beim QS-Modul ca. doppelt so hoch. Dementsprechend lohnt sich Prefetching
hier auch schon ab dem Zugriff auf mindestens 25% der Daten. Begründet wird dieser Aspekt
durch die komplexeren IDL-Schnittstellen des Servers sowie den höheren Aufwand für die Puf-
ferverwaltung (das QS-Modul unterstützt die temporäre Verdrängung von Objekten).

Abb. 6.16: QS-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Im Gegensatz zu den CO- und QS-Modulen unterscheiden sich beim JD-Modul die Ergebnisse
für die beiden Rechnerarchitekturen deutlich (siehe Abbildung 6.17, wie bisher links Ultra 10
und rechts PC). Auf der SUN sind alle Kurven für Operationen mit Prefetching wirklich iden-
tisch und Prefetching lohnt sich hier schon ab einem Zugriff auf ca. 5% der Daten. Demgegen-
über ist Prefetching auf dem PC erst ab einem Zugriff auf ca. 20-25% der Daten sinnvoll.

Diese massiven Differenzen lassen sich nur durch konzeptuelle Unterschiede der zugrundelie-
genden JDBC-Treiber erklären: In den Messungen mit den CO- und QS-Modulen hat sich
bereits gezeigt, daß die JDK-Umgebungen auf beiden Rechnerarchitekturen vergleichbar sind.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 100%, prefetching
scan 25%, prefetching

search, prefetching
scan 25%, no prefetching

search, no prefetching

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 100%, prefetching
scan 25%, prefetching

search, prefetching
scan 25%, no prefetching

search, no prefetching

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 25%, no prefetching

scan 100%, prefetching
scan 25%, prefetching

search, prefetching
search, no prefetching

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 25%, no prefetching

scan 100%, prefetching
scan 25%, prefetching

search, prefetching
search, no prefetching

193

Weiterhin ist der Code für das JD-Modul ebenfalls in beiden Fällen identisch. Zwar verwenden
wir immer das gleiche DBVS (IBM DB2), der JDBC-Treiber bzw. der zugrundeliegende
Daemon auf dem Server scheint für beide Betriebssysteme aber anders realisiert zu sein. Auf-
grund dieses Aspektes läßt sich aus den Messungen für das JD-Modul auch nicht mehr die Fol-
gerung ableiten, daß die Ultra 10 ungefähr doppelt so schnell ist wie der PC.

Abb. 6.17: JD-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Fassen wir die Ergebnisse der Messungen mit allen drei Modulen zusammen, so lassen sich im
Prinzip zwei Schlußfolgerungen ziehen: Erstens kann keine generelle Grenze bestimmt werden,
ab der sich Prefetching grundsätzlich lohnt. In datenintensiven Umgebungen werden wir zwar
häufig einen Großteil der Daten benötigen, so daß Prefetching im allgemeinen zu signifikanten
Verbesserungen führen wird. Jedes Modul hat aber andere Charakteristika. Dies bedeutet insbe-
sondere auch, daß Prefetching im ungünstigsten Fall eine deutliche Verschlechterung der Lauf-
zeit bewirken kann. In einem zweiten Schritt haben wir erkannt, daß selbst beim Einsatz eines
einzigen Moduls die Rechnerplattform berücksichtigt werden sollte: Das JD-Modul hat auf dem
PC ein völlig anderes Verhalten gezeigt als auf der SUN.

6.4.3.3 Pufferverwaltung mit Verdrängung von Objekten

In datenintensiven Umgebungen können häufig nicht alle für eine lang andauernde Verarbeitung
benötigten Daten im Puffer des Clients gehalten werden. Aus diesem Grund haben wir in das
QS-Modul einen Mechanismus zur temporären Verdrängung von Objekten eingebaut, der für
die Anwendung nicht sichtbar ist (siehe Kapitel 6.2.2). Die Anwendung kann also bestehende
Referenzen auf Objekte weiterhin so verwenden, als ob die Objekte noch im Hauptspeicher
wären. Dafür ist eine weitere Indirektion bei der Verarbeitung nötig, d.h. es wird ein Proxy-
Objekt zwischen Anwendung und Daten-Objekt geschaltet. Dieses ist extrem klein (es enthält
nur eine Referenz auf das eigentliche Daten-Objekt) und bleibt immer im Puffer. Referenzen der
Applikation auf das Proxy-Objekt bleiben also dauerhaft gültig. Lediglich das Daten-Objekt
wird bei Bedarf verdrängt und später wieder eingelagert. Diese Indirektion verursacht natürlich
(insbesondere bei der reinen Navigation zwischen Objekten) höhere Kosten, die wir an dieser
Stelle beurteilen wollen. Dafür haben wir die Ergebnisse der Hot Runs für die CO- und QS-
Module auf beiden Rechnerarchitekturen in Abbildung 6.18 gegenübergestellt. Alle Ergebnisse
wurden mit dem JDK 1.1.6 unter Verwendung eines JIT-Compilers erzielt.

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 25%, no prefetching

scan 25%, prefetching
search, prefetching

scan 100%, prefetching
search, no prefetching

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, no prefetching
scan 25%, no prefetching

scan 100%, prefetching
scan 25%, prefetching

search, prefetching
search, no prefetching

194

Abb. 6.18: Gegenüberstellung der Hot Runs für die CO und QS-Module (Ultra 10 und PC)

Bei fast allen Operationen läßt sich erkennen, daß die zusätzliche Indirektion beim QS-Modul
nur eine unwesentliche Verschlechterung der Laufzeit bewirkt (ca. 10-15%). Auf der Ultra 10
liegen die Ergebnisse sogar an der Grenze der Meßgenauigkeit (1 ms), so daß hier eigentlich
keine genauen Zahlen sinnvoll sind. Bezogen auf den enormen Vorteil der erweiterten Puffer-
verwaltung erscheint die leichte Verschlechterung mehr als akzeptabel. Betrachtet man weiter-
hin die etwas anders realisierte Pufferverwaltung des JD-Moduls (das keine Verdrängung unter-
stützt), so ist diese in manchen Fällen sogar langsamer als die des QS-Modul (vgl. rechte Grafik
von Abb. 6.13 und 6.14).

6.4.3.4 Lohnt sich der Einsatz von JavaStations?

Nachdem SUN in den letzten Jahren mehrfach den Einsatz von JavaStations als ultimative
Lösung angepriesen hat, wollen wir an dieser Stelle kurz betrachten, ob sich die Verwendung
derartiger Systeme wirklich anbietet. Leider ist der Vergleich nicht ganz fair, da die vorhandene
JavaStation1 mittlerweile drei Jahre alt ist, während die Ultra 10 gerade mal vor 6 Monaten
geliefert wurde.

Abbildung 6.19 stellt die mit dem CO-Modul erzielten Ergebnisse für die Operation Scan 100%
gegenüber. Im Gegensatz zu allen anderen Messungen war der Client diesmal ein Java Applet
(die JavaStation unterstützt keine reinen Java Applications). Insgesamt wurden drei Konfigura-
tionen getestet, bei denen der Client jeweils auf anderen Rechnern gestartet wurde. Die Server
(WWW-Server und CORBA-Server) liefen immer auf der selben Ultra 10. Client und Server
waren in allen Fällen über das selbe 10 MBit LAN miteinander verbunden. Die Ergebnisse für
Cold Runs sind in der linken Grafik dargestellt. Die Charakteristik der Kurven ist in allen Fällen
gleich: Prefetching bewirkt immer eine Beschleunigung um den Faktor 2. Die JavaStation ist
hingegen ca. zehnmal langsamer als die Ultra 10, während die Verlagerung des Clients auf eine
zweite Ultra 10 (Konfiguration remote) zu kaum meßbaren Verschlechterungen führt. Im Hot
Run (hier stellt die Konfiguration remote natürlich keinen Unterschied dar) liegt die Differenz
zwischen der JavaStation und der Ultra 10 nur noch bei einem Faktor von ca. 4,5.

1. Unser Dank geht an dieser Stelle an die Firma debis T&M (mittlerweile DaimlerChrysler TSS), die uns freundlicherweise
eine JavaStation zur Verfügung gestellt hat.

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, QS Module
scan 100%, CO Module

scan 25%, QS Module
scan 25%, CO Module

search, QS Module
search, CO Module

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, QS Module
scan 100%, CO Module

scan 25%, QS Module
scan 25%, CO Module

search, QS Module
search, CO Module

195

Abb. 6.19: CO-Modul: JavaStation gegenüber SUN Ultra 10 (Applet)

Betrachtet man letztendlich noch das Alter der JavaStation, so würden die Abweichungen beim
Einsatz moderner Hardware vermutlich nur noch unwesentlich sein. Insofern spricht im Bezug
auf die zu erwartende Leistung nichts gegen die Einführung dieser Rechnerarchitektur. Anders
sieht es hingegen bei der Flexibilität des Betriebssystems JavaOS aus: Die mangelnde Unter-
stützung für Java Applications und einfache Copy&Paste-Operationen zwischen verschiedenen
Applets halten wir für inakzeptabel.

6.4.3.5 Entwicklung von JDK-Versionen, JIT-Compilern und JavaSDAI

Häufig wurde (und wird) Java als eine zu langsame Technologie bezeichnet, die keine Erstel-
lung effizienter Anwendungen ermöglicht. Dieser Aussage haben wir uns vor wenigen Jahren
noch angeschlossen [SM98]. Mittlerweile gab es aber eine deutliche Leistungssteigerung und
wir erwarten weitere für die Zukunft. Insofern sollten derartige Aussagen immer auf einen Zeit-
punkt und konkrete Anforderungen bezogen werden (was wir damals schon getan haben). Um
einen besseren Eindruck über diesen Aspekt zu erhalten, wollen wir im folgenden kurz die Ent-
wicklung von Java und JavaSDAI innerhalb der letzten zwei Jahre skizzieren.

Abbildung 6.20 illustriert Optimierungen durch neue JDK- und JavaSDAI-Versionen. Die dar-
gestellten Ergebnisse wurden alle mit dem CO-Modul und der Operation Scan 100% auf einer
SUN Ultra 1 erzielt. Dabei ist zu beachten, daß das CO-Modul des alten Prototypen generell
kein Prefetching unterstützt.

Betrachten wir zunächst die Ergebnisse für den Cold Run (linke Grafik): Während der Wechsel
von JDK 1.0.2 auf 1.1.1 nur eine relativ geringe Verbesserung bewirkt, so ist der Sprung zum
neuen Prototypen und JDK 1.1.6 doch erheblich. Dies hat zwei Gründe, die wir leider nicht pro-
zentual aufteilen können: Zunächst ist die Laufzeitumgebung des JDK 1.1.6 wirklich erheblich
schneller (als die des JDK 1.1.1). Zugleich haben wir unsere Implementierung aber auch erheb-
lich optimiert. Stellte der erste Prototyp noch eine mehr oder weniger direkte Umsetzung von
altbewährten Konzepten in C++ nach Java dar, so geht das neue CO-Modul nun direkt auf die
Stärken und Schwächen von Java ein. Dies betrifft insbesondere die Granularität von Objekten
und die Modellierung von Aggregaten. Weiterhin wurde versucht, die Erzeugung temporärer
Objekte zu vermeiden.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JavaSt. remote, JDK 1.1.4, no pref.
JavaSt. remote, JDK 1.1.4, pref.

Ultra 10 remote, JDK 1.1.6, no pref.
Ultra 10 local, JDK 1.1.6, no pref.
Ultra 10 remote, JDK 1.1.6, pref.

Ultra 10 local, JDK 1.1.6, pref.

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JavaStation, JDK 1.1.4
Ultra 10, JDK 1.1.6

196

Abb. 6.20: CO-Modul: Optimierung durch neue JDK- und JavaSDAI-Versionen (Ultra 1)

Optimierungen im Hot Run (siehe rechte Grafik von Abb. 6.20) basieren im wesentlichen auf
JDK-Versionen. Im CO-Modul selbst finden hier fast nur Traversierungen über Hauptspeicher-
referenzen statt, die kaum Potential für Verbesserungen bieten.

Ergänzend zu den Testläufen auf der Ultra 1 haben wir vergleichende Messungen auf der Java-
Station durchgeführt (siehe Abbildung 6.21). Hier konnten wir wahlweise den alten Prototypen
unter JavaOS 1.0 mit JDK 1.0.2 (jeweils die oberste Kurve) oder das neue CO-Modul unter
JavaOS 1.1 mit JDK 1.1.4 (alle anderen Kurven) benutzen.

Abb. 6.21: CO-Modul: Optimierung durch neue JDK- und JavaSDAI-Versionen (JavaStation)

Beim Cold Run (linke Grafik) lassen sich auf der JavaStation keine so deutlichen Sprünge wie
auf der Ultra 1 feststellen. Allerdings steht uns hier auch nicht das JDK 1.1.6, sondern nur das
JDK 1.1.4 zur Verfügung. Verwunderlich ist allerdings die Tatsache, daß sich beim Hot Run
(rechte Grafik) eine Beschleunigung um den Faktor 20 ergibt. Dieser widerspricht im Prinzip
den Erfahrungen auf der Ultra 1, bei der im Hot Run (im Vergleich zum Cold Run) deutlich
geringere Unterschiede gemessen wurden. Nachdem die verwendete Software in beiden Fällen
identisch ist, führen wir diesen Umstand auf Unterschiede in der Java Virtual Machine zurück.
Hier waren bei der JavaStation scheinbar erhebliche Optimierungen der Hauptspeicherverwal-
tung möglich. Ergänzend dazu können wir im Bezug auf die Diskussion in Kapitel 6.4.3.2 noch
sagen, daß sich Prefetching beim CO-Modul auch auf der JavaStation erst ab einem Zugriff auf
etwa 50% der Daten lohnt.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JDK 1.0.2 (old prototype)
JDK 1.1.1 (old prototype)

JDK 1.1.6, no prefetching, no JIT
JDK 1.1.6, no prefetching, JIT
JDK 1.1.6, prefetching, no JIT

JDK 1.1.6, prefetching, JIT

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JDK 1.0.2 (old prototype)
JDK 1.1.1 (old prototype)

JDK 1.1.6, no JIT
JDK 1.1.6, JIT

0

50000

100000

150000

200000

250000

300000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JDK 1.0.2, scan 100%, no pref.
JDK 1.1.4, scan 100%, no pref.

JDK 1.1.4, scan 100%, pref.
JDK 1.1.4, scan 25%, pref.

JDK 1.1.4, search, pref.
JDK 1.1.4, scan 25%, no pref.

JDK 1.1.4, search, no pref.

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

scan 100%, JDK 1.0.2
scan 100%, JDK 1.1.4
scan 25%, JDK 1.1.4

search, JDK 1.1.4

197

Abschließend wollen wir noch einen gezielten Blick auf die lediglich durch JDK-Versionen
oder JIT-Compiler bedingten Verbesserungen werfen. Dafür betrachten wir die Unterschiede
zwischen dem JDK 1.1.5 und 1.1.6 sowie dem JDK 1.1.6 mit und ohne JIT-Compiler. Die in
Abbildung 6.22 illustrierten Ergebnisse basieren diesmal allerdings auf dem QS-Modul. Im
Cold Run (linke Grafik) haben wir auf die Darstellung der Ergebnisse für das JDK 1.1.5 ver-
zichtet, um die Lesbarkeit der Kurven zu garantieren.

Abb. 6.22: QS-Modul: Optimierung durch neue JDK-Versionen und JIT-Compiler (PC)

Bei den Werten für den Cold Run läßt sich erkennen, daß JIT-Compiler eine Beschleunigung um
den Faktor 1,4 bewirken (und zwar unabhängig davon, ob Prefetching benutzt wird oder nicht).
Die Kurven für die Search-Operation fallen allerdings wie zuvor mit der X-Achse zusammen.
Im Hot Run (siehe rechte Grafik von Abb. 6.22) läßt sich eine durch JIT-Compiler bedingte
Beschleunigung um den Faktor 1,8 ablesen. Ähnliche Ergebnisse hatten wir bereits in Abb. 6.13
und 6.14 erzielt (Faktor 2 auf dem PC und Faktor 3 auf der Ultra 10). Die Unterschiede zwi-
schen dem JDK 1.1.5 und 1.1.6 sind hingegen deutlich geringer. Sie liegen nur bei ca. 10-20%.

6.4.3.6 Zusammenfassung

Nach der Diskussion aller mit dem JavaSDAI-Prototypen durchgeführten Messungen wollen
wir nun die wichtigsten Ergebnisse zusammenfassen und damit die Frage beantworten, durch
welchen Teil des Systems denn nun die Leistung begrenzt wird. Ist es der Server, der Client, das
Netzwerk, CORBA, die Java Virtual Machine (JVM) oder etwas ganz anderes?

Zunächst einmal fällt der große Unterschied zwischen Cold Runs und Hot Runs auf. Letztere
sind immerhin um einen Faktor 1000-2000 schneller. Die Datenversorgung ist also teuer und
Caching wird zu einem unverzichtbaren Bestandteil datenintensiver Umgebungen.

Nun stellen sich zwei weitere Fragen: Erstens, warum ist die Datenversorgung so teuer, und
zweitens, wie kann man sie beschleunigen? Die letzte Frage haben wir bereits beantwortet:
durch Prefetching (zumindest beim Zugriff auf große Datenmengen). Die erste Frage ist nicht
so einfach zu beantworten. Am Server liegt es garantiert nicht. Diese haben selbst beim gleich-
zeitigen Starten mehrerer Clients stets das gleiche Antwortzeitverhalten gezeigt. Am Netzwerk
kann es auch nicht liegen: Die Unterschiede zwischen den Konfigurationen local und remote in
Abbildung 6.19 können vernachlässigt werden1. Es muß also irgendwie am Client liegen. Nach-
dem Prefetching eine Verbesserung bewirkt, hat aber anscheinend auch die Anzahl der Kommu-

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

JDK 1.1.6, scan 100%, no pref.
JDK 1.1.6 JIT, scan 100%, no pref.

JDK 1.1.6, scan 25%, pref.
JDK 1.1.6 JIT, scan 25%, pref.

JDK 1.1.6, search, no pref.
JDK 1.1.6 JIT, search, no pref.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500

E
la

ps
ed

 T
im

e
in

 m
s

Nodes per Tree

Scan 100%, JDK 1.1.5, no JIT
Scan 100%, JDK 1.1.6, no JIT

Scan 100%, JDK 1.1.6, JIT
Search, JDK 1.1.5, no JIT
Search, JDK 1.1.6, no JIT

Search, JDK 1.1.6, JIT

198

nikationsschritte eine erhebliche Auswirkung. Folglich wird ein wesentlicher Teil der Laufzeit
durch den ORB bzw. den JDBC-Treiber im Client verbraucht (die Aufbereitung der Daten und
deren Einlagerung in den Puffer des Clients ist mit und ohne Prefetching gleich aufwendig - hier
kommt es nur auf das Datenvolumen insgesamt an). Dieses Ergebnis wird auch durch die Erfah-
rungen mit den CO- und QS-Modulen bestätigt: Das QS-Modul benötigt aufgrund der komple-
xeren IDL-Schnittstellen ohne Prefetching fast doppelt soviel Zeit wie das CO-Modul.

Nun können wir aber nicht alle Schuld dem ORB oder dem JDBC-Treiber zuschieben. Die
JavaSDAI-Schicht selbst birgt natürlich auch Optimierungspotential. Während der letzten Jahre
konnten wir insbesondere feststellen, daß die Erzeugung von Objekten eine sehr teure Operation
ist. Noch aufwendiger ist allerdings das Löschen: Hierfür muß der komplexe Algorithmus des
Garbage Collector durchlaufen werden. Folglich ist die Erzeugung temporärer Objekte auf
jeden Fall zu vermeiden. Mit diesem Wissen können wir uns auch gleich ein genaueres Bild von
dem zuvor behandelten Aspekt machen: Sowohl der ORB als auch der JDBC-Treiber erzeugen
eine Menge temporärer Objekte.

Letztendlich liegt der entscheidende Faktor also beim Client, dessen Rechner im allgemeinen
zu 90 bis 100% durch die JVM ausgelastet ist. Eine Beschleunigung des JDK bzw. dessen JVM
hat somit erhebliche Auswirkungen auf die Laufzeit des Systems. Zur Bildung einer allgemei-
nen Schlußfolgerung (siehe Kapitel 6.6) wollen wir aber noch die Ergebnisse anderer Projekte
betrachten.

6.5 Verwandte Arbeiten im Bereich STEP/SDAI und CORBA
Nach der Vorstellung unseres Prototypen und einer Diskussion der erzielten Ergebnisse werfen
wir nun kurz einen Blick auf verwandte Arbeiten im Bereich des Datenzugriffs über STEP/
SDAI und CORBA. Viele Parallelen zu unseren Ansätzen weist das amerikanische Projekt
NIIIP auf (National Industrial Information Infrastructure Protocols, siehe Kapitel 6.5.1). Aus
diesem Grund haben wir mit einigen Projektpartnern auch einen gemeinsamen Prototypen
erstellt, der sich in einem transatlantischen Experiment bewährt hat. Einen etwas anderen
Ansatz verfolgt hingegen das europäische ESPRIT-Projekt VEGA mit seiner COAST-Architek-
tur (CORBA Access to STEP, siehe Kapitel 6.5.2). Hier wurde eine alternative Schnittstelle zum
Datenzugriff über CORBA entwickelt, die nichts mehr mit dem SDAI zu tun hat. Lediglich die
Daten werden weiterhin in EXPRESS modelliert. Im Rahmen einer Diplomarbeit wurde wei-
terhin versucht, COAST an die DCOM-basierte O.P.E.N.-Plattform der Firma Nemetschek
anzukoppeln (siehe Kapitel 6.5.3). Völlig unabhängig von STEP ist hingegen Harmony, ein an
der ETH Zürich erstellter Prototyp eines CORBA Query Service (siehe Kapitel 6.5.4). Diese
Arbeit halten wir im Zusammenhang mit den Ergebnissen unseres QS Data Module für sehr
interessant.

1. Hier muß allerdings erwähnt werden, daß wir die Messungen in einem relativ unbelasteten 10 Mbit LAN durchgeführt ha-
ben. Bei einer weltweiten Verarbeitung über das Internet darf man die Netzkommunikation natürlich nicht vernachlässigen!

199

6.5.1 Das NIIIP-Projekt

Das amerikanische NIIIP-Projekt (National Industrial Information Infrastructure Protocols)
wurde gestartet, um eine effiziente Infrastruktur zur Bildung von Virtual Enterprises zu finden.
Ziel ist es, daß Unternehmen zur Produktion gemeinsamer Waren kurzfristig ihre IT-Systeme
über das Internet zusammenschließen können. Erste Ansätze hierfür sind in [HSRM96]
beschrieben. Die Arbeit beruht im wesentlichen auf Optimierungen der CORBA-Anbindung
des SDAI von STEP [ISO98c]. Analog zu unseren Ergebnissen wurde auch hier die Erfahrung
gemacht, daß das zugrundeliegende Operation Shipping keine ausreichende Effizienz aufweist
und ergänzende Mechanismen zum Prefetching und Caching nötig sind (was im Endeffekt zu
Data Shipping führt). Eine Idee ist dabei die Übertragung serialisierter SDAI Models über den
CORBA Externalization Service (vgl. Kapitel 5.4.5). Weitere Konzepte sind in [HSRM96]
beschrieben.

Im Rahmen der JavaSDAI-Standardisierung und dem damit verbundenen Entwurf der Socket
Bar (siehe Kapitel 6.1) haben wir zusammen mit STEP Tools, Inc. (STI, einem Partner im
NIIIP-Projekt) einen gemeinsamen Prototypen entworfen. Dabei wurde von STI ein auf Java
Remote Method Invocation (RMI) und Object Serialization (OS) basierendes Data Module auf
ihrem WWW-Server in New York zur Verfügung gestellt. Auf der anderen Seite haben wir unser
CO-Modul auf dem WWW-Server der TU München installiert. Beide Partner haben nun ihr
eigenes (lokales) Session Module benutzt, um jeweils auf die Repositories beider Data Modules
mit der in Kapitel 6.3.1 beschriebenen Applikation zuzugreifen. Dabei wurde also immer eine
lokale und eine entfernte Datenquelle angesprochen. Die Ergebnisse spiegeln beim transatlan-
tischen Zugriff zwar die zu schmale Kommunikationsbandbreite des Internets wider, insgesamt
können die gemessenen Zugriffszeiten aber als vielversprechend gewertet werden.

Tabelle 6.7: Ergebnisse des transatlantischen Testlaufes (in ms)

In Tabelle 6.7 sind die Ergebnisse unseres transatlantischen Testlaufes dargestellt (in ms). Es
wurde jeweils ein binärer Baum mit 1000 Knoten durchlaufen. In München stand eine SUN
Ultra 1 (167 MHz, 128 MByte Speicher) zur Verfügung, während in New York eine SUN Sparc
Station 20 (60 MHz, 64 MByte Speicher) verwendet wurde. Insofern lassen sich die gemesse-
nen Zeiten nicht direkt vergleichen. So müßte z.B. beim CO-Modul im Hot Run jeweils die glei-

Operation

Testlauf an der TU München Testlauf in New York

Cold Run Hot Run Cold Run Hot Run

RMI
Modul

-
remote

CO
Modul

-
local

RMI
Modul

-
remote

CO
Modul

-
local

RMI
Modul

-
local

CO
Modul

-
remote

RMI
Modul

-
local

CO
Modul

-
remote

Scan all, navigation 12778 12376 162 16 5640 256526 52 37

Scan all, fetch extent 13307 6225 186 17 6639 34086 61 49

Search, navigation 15781 185 151 1 5311 2542 38 12

Search, fetch extent 13327 6147 156 1 5315 34519 47 6

200

che Zeit gemessen werden. Klar zu erkennen sind hingegen die unterschiedlichen Datenversor-
gungsstrategien: Das RMI-Modul lädt zu Beginn immer das gesamte SDAI Model (also den
gesamten Baum). Das CO-Modul reagiert auf die Zugriffsart der Applikation: Bei der reinen
Navigation werden lediglich single object faults ausgelöst, d.h. jedes Objekt wird einzeln vom
Server angefordert. Beim initialen Zugriff auf die Entity Extents werden hingegen alle Objekte
auf einmal übertragen. Dementsprechend unterscheiden sich die Zeiten für die Cold Runs deut-
lich. Vorteile bietet diese Flexibilität vor allem bei der Suchoperation. Hier werden nur wenige
Objekte benötigt und Prefetching wirkt sich in diesem Fall negativ aus. Grundsätzlich sollte
man noch beachten, daß beide Data Modules auf Data Shipping basieren. Eine detailliertere
Diskussion dieses Aspektes als auch weiterer Ergebnisse befinden sich z.B. in [SK97].

Das NIIIP-Projekt umfaßt noch eine Menge weiterer Teilprojekte, auf die wir an dieser Stelle
nicht näher eingehen wollen. Umfangreiche Dokumentation kann über die WWW-Seiten des
Projektes bezogen werden: www.niiip.org.

6.5.2 Das ESPRIT-Projekt VEGA und seine COAST-Architektur

Im Laufe dieser Arbeit haben wir erkannt, daß die offizielle Anbindung des SDAI an CORBA
(das sog. IDL Binding, siehe [ISO98c]) zu Operation Shipping führt und deshalb nicht effizient
zu realisieren ist. Ähnliche Erfahrungen wurden natürlich auch in anderen Projekten gemacht.
Aus diesem Grund hat sich die EU entschieden das ESPRIT-Projekt VEGA zu starten, bei dem
verschiedene Partner aus Wissenschaft und Industrie eine alternative Architektur für die
CORBA-Anbindung STEP-basierter Systeme entwickeln sollen. Diese trägt den Namen
COAST (CORBA Access to STEP). Unter maßgeblicher Beteiligung der Digital Equipment
Corporation (DEC) und dem Centre Scientifique et Technique du Batiment (CSTB) wurde ein
System entwickelt, das zwar verschiedene Common Object Services verwendet, gleichzeitig
aber einen generischen Ansatz zum Data Shipping realisiert. Streng genommen ist der Name
COAST allerdings etwas irreführend, da dem Client kein CORBA-Stub zur Verfügung gestellt
wird, sondern eine spezifische C-Bibliothek. Insofern geht hier leider die Sprach- und Platt-
formunabhängigkeit verloren. Das vollständige Design und die Architektur des Systems sind
ausführlich in [Kö98] beschrieben, so daß wir an dieser Stelle keine Details besprechen wollen.
Praktische Erfahrungen mit dem System (d.h. Messungen) sind uns bisher leider nicht bekannt.

6.5.3 Die O.P.E.N.-Plattform

Ein Partner im VEGA-Projekt, die Firma Nemetschek, hat parallel zu COAST eine weitere
Architektur als Basis für ihre CAD- und PDM-Systeme entwickelt. Sie trägt den Namen
O.P.E.N. (Object Oriented Product Data Engineering Network, siehe [Nem98]) und ermöglicht
den Zugriff auf verschiedene Datenmodelle (nicht nur STEP-basierte). Dafür benutzt sie aller-
dings nicht CORBA, sondern Microsofts DCOM. Im Rahmen einer von uns betreuten Diplom-
arbeit sollte nun untersucht werden, inwieweit die O.P.E.N.-Plattform mit COAST gekoppelt
werden kann [Be98]. Nachdem COAST dem Client aber lediglich eine C-Schnittstelle anbietet,
kann man hier nicht von einer allgemeinen Kopplung von CORBA und DCOM sprechen. Viel-

201

mehr wurde die Anbindung einer proprietären C-Bibliothek an DCOM realisiert. Diese erwies
sich allerdings als vielversprechend, auch wenn sie aufgrund verschiedener Verzögerungen im
VEGA-Projekt nicht umfassend evaluiert werden konnte.

Ergänzend zu den praktischen Arbeiten ist in [Be98] noch eine theoretische Diskussion der
Unterschiede und Gemeinsamkeiten von DCOM und CORBA enthalten, die eine gute Grund-
lage für die Kopplung beider Szenarien bilden kann.

6.5.4 Harmony: Prototyp eines CORBA Query Service

Parallel zu unseren Arbeiten wurde von Uwe Böhm und Klemens Röhm an der ETH Zürich ein
weiterer Prototyp eines CORBA Query Service erstellt [RB99]. Dieser hat zwar überhaupt
nichts mehr mit einer Datenversorgung über STEP zu tun, im Zusammenhang mit unserem QS
Data Module halten wir die Ergebnisse aber dennoch für sehr interessant. Harmony basiert
ebenfalls auf Data Shipping und wurde in [RB99] mit zwei weiteren Ansätzen zur Datenversor-
gung verglichen: Dem Zugriff über anwendungsspezifische CORBA-Objekte und einer direk-
ten Verwendung von Embedded SQL (ohne den Einsatz von CORBA). Die Daten wurden in
allen drei Fällen aus der selben relationalen Datenbank gelesen. Während der Ansatz über
Embedded SQL -wie erwartet- am schnellsten war (man benutzt hier die optimierte Schnittstelle
eines DBVS-Produktes), so war Harmony in den meisten Fällen (Context Data Access und Bulk
Data Access) immerhin deutlich schneller als der Ansatz über anwendungsspezifische CORBA-
Objekte. Lediglich beim Zugriff auf einzelne Datensätze (Point Data Access) lag Harmony auf
dem letzten Platz. Diese Ergebnisse gewinnen noch mehr an Bedeutung, wenn man folgenden
Aspekt berücksichtigt: Die gewählte Lösung zum Zugriff über anwendungsspezifische
CORBA-Objekte führt in [RB99] nicht zu Operation Shipping, sondern zu Data Shipping: Die
Anfrageergebnisse werden bereits im Server zu einer sequence mit Strings aufbereitet. Insofern
ist es nachzuvollziehen, daß die einzelnen Lösungen nicht so große Laufzeitunterschiede auf-
weisen wie z.B. unsere Messungen in Kapitel 6.4.2. Harmony vergleicht also verschiedene
Ansätze zum Data Shipping und unterstreicht damit die Tatsache, daß CORBA-Komponenten
mit standardisierten Schnittstellen durchaus effizient zu realisieren sind.

6.6 Wo liegt der Flaschenhals?
Wir haben in den letzten Kapiteln einige Ergebnisse im Bereich datenintensiver Umgebungen
diskutiert, die wir nun zu einer generellen Aussage zusammenfassen wollen. In eigenen Arbei-
ten haben wir zunächst mehrfach belegt, daß Operation Shipping beim Einsatz von CORBA zu
inakzeptablen Laufzeiten führt (vgl. Kapitel 6.4.1 und 6.4.2). Der Engpaß liegt hier in erster
Linie beim Server, allerdings darf die entstehende Kommunikation auch nicht vernachlässigt
werden. Die erzielten Werte beim Data Shipping sind hingegen vielversprechend.

202

Bei der Betrachtung verwandter Arbeiten hat sich weiterhin gezeigt, daß bei Projekten im
Bereich datenintensiver Umgebungen eigentlich immer auf Data Shipping basierende Konzepte
eingesetzt werden. Dies gilt sowohl beim Einsatz von CORBA (vgl. MIND in Kapitel 5.4.9.1,
NIIIP in Kapitel 6.5.1, COAST in Kapitel 6.5.2 und Harmony in Kapitel 6.5.4) als auch bei der
Verwendung alternativer Technologien (z.B. SHORE in Kapitel 5.4.9.2, der transatlantische
Prototyp in Kapitel 6.5.1 und O.P.E.N. in Kapitel 6.5.3). Wir schließen daraus, daß Operation
Shipping immer zu einem unüberwindbaren Flaschenhals führt und somit in datenintensiven
Umgebungen generell zu vermeiden ist. Unsere Aussage über die Vorteile des Data Shipping
spiegelt also auch die Ergebnisse internationaler Forschung wider.

Nun stellt sich die Frage, welche Faktoren denn beim Data Shipping ausschlaggebend sind und
welche Strategien, Konzepte und Techniken effizient sind. Bei unserem JavaSDAI-Prototypen
lag der Flaschenhals klar beim Client (und damit bei Java), und es hat sich gezeigt, daß alle drei
Datenversorgungsstrategien ähnlich gut sind. Daraus sollte man nun aber nicht die Folgerung
ziehen, daß mehrfache Aufrufe von CORBA-Methoden und eine damit verbundene Verlagerung
von Funktionalität zum Server eine Leistungssteigerung bewirken. Ganz im Gegenteil: Die Ver-
arbeitung im ORB des Clients beansprucht einen wesentlichen Teil der Laufzeit und sollte damit
eher reduziert werden. Dies hat sich bei der Gegenüberstellung der Ergebnisse mit und ohne
Prefetching klar gezeigt (siehe Abschnitt 6.4.3.2). Es ist also klar, daß Operation Shipping in
diesem Fall noch katastrophalere Ergebnisse liefern würde als bei unseren in C++ implemen-
tierten Prototypen. Bei der Verwendung von Java Clients muß also (neben der immer erforder-
lichen Reduktion von Kommunikation) auf eine sehr effiziente Anforderung, Aufbereitung und
Pufferung von Daten geachtet werden. Die Sprache Java bietet zwar das Konzept der Java
Object Serialization (OS) an, dieses harmoniert aber nur bedingt mit der von uns geforderten
abstrakten Modellierung von Daten und Funktionalität. Weiterhin wird bei Java OS immer die
gesamte Menge aller über Referenzen verbundener (serialisierbarer) Objekte auf einmal zum
Client übertragen. Bei dem in Kapitel 6.5.1 beschriebenen transatlantischen Prototypen hat sich
aber gezeigt, daß z.T. eine Konfiguration des Kommunikationsgranulates wünschenswert ist.
Insofern sind eigene Techniken nötig, die leider einen höheren Aufwand im Client erfordern.

6.7 Erfahrungen und Probleme mit CORBA-Implementierungen
In den letzten Jahren haben wir mit einigen CORBA-Produkten gearbeitet und dabei eine Reihe
von Erfahrungen gesammelt. Diese waren leider nicht immer positiv. Zwar ist CORBA noch
eine relativ neue Technologie, die Hartnäckigkeit einiger Probleme hat uns aber dennoch über-
rascht. Der wichtigste Punkt betrifft sicherlich die Registrierung und Verwaltung von CORBA-
Objekten durch den ORB. Es ist in datenintensiven Umgebungen einfach nicht akzeptabel, daß
diese Aktion bei 25.000 Objekten bereits eine halbe Stunde umfaßt (siehe Kapitel 6.4.2). In
[Sel96] konnte man diesen Zustand noch damit begründen, daß es sich um erste Prototypen von
CORBA-Systemen handelte. Mittlerweile sind aber drei Jahre vergangen und wir hätten an die-
ser Stelle deutliche Verbesserungen erwartet. Leider konnte durch diesen Umstand gar nicht
beurteilt werden, inwiefern die eigentliche Kommunikation und die physische Verteilung von

203

Objekten einen Einfluß auf die Leistung eines Systems haben: Erzielte Ergebnisse für die Kon-
figurationen local und remote waren fast identisch (vgl. Abbildung 6.10 auf Seite 187). Neben
diesem Aspekt gab es noch einige andere Probleme, die wir aber nur kurz skizzieren wollen:

• Signaturen von Skeleton Classes

Der IDL-Compiler erzeugt aus IDL-Definitionen sog. Skeleton Classes als Basis für die
Implementierung des Servers. Leider sind deren Signaturen aber nur teilweise standardi-
siert. So kann der Name dieser Klassen frei gewählt werden, und es sind auch ergänzende
Parameter für die in IDL modellierten Methoden zulässig (z.B. zur Übertragung von Kon-
texten). Beim Wechsel eines CORBA-Systems muß der selbst erstellte Code für den Server
also immer an die konkrete Signatur der Skeleton Classes angepaßt werden, obwohl sich
die IDL-Definitionen gar nicht geändert haben.

• Initialisierung von CORBA-Prozessen (Client und Server)

Wie schon beim zuvor genannten Punkt fehlt auch hier eine detaillierte Standardisierung.
Beim Wechsel des CORBA-Systems werden also wiederum umfangreiche Anpassungen
nötig. Mit der Einführung des Portable Object Adapter (POA) in CORBA 2.2 hat sich die
Situation allerdings wesentlich gebessert (nur gibt es noch kein zu CORBA 2.2 kompati-
bles Produkt).

• System Exceptions

Das Auslösen sowie die Verarbeitung der vordefinierten System Exceptions ist leider nur
unzureichend beschrieben. Somit wird es von vielen Produkten unterschiedlich realisiert.

• Einfügen von Daten in Instanzen des IDL-Typs any

IDL umfaßt einen sehr generischen Typ any, der zur Laufzeit beliebige Daten enthalten
kann. Er wird z.B. als Ergebnistyp beim CORBA Query Service verwendet. Unser korre-
spondierendes JavaSDAI Data Module (siehe Kapitel 6.2.2) gibt nun z.T. sehr umfangrei-
che Strukturen als Ergebnis einer Anfrage zurück. Diese müssen im Server in eine Instanz
des Typs any eingefügt werden und anschließend im Client wieder daraus extrahiert wer-
den. Leider ergab sich dabei häufig das Problem, daß alle Daten beim Einfügen in eine
Instanz des Typs any kopiert wurden. In unserem Fall ist dies aber völlig überflüssig, man
könnte die Zeit (und den Speicherplatz) sparen. CORBA 2.2 sieht deshalb auch zwei Ein-
fügeoperatoren für any-Typen vor (direkt bzw. als Kopie). Diese sind bisher aber in fast
keinem CORBA-Produkt zu finden.

• Handbücher

Die Handbücher der einzelnen Systeme sowie die beigefügten Beispiele illustrieren nur
unzureichend die Erstellung von standardkonformen Programmen. Meist werden
proprietäre Erweiterungen benutzt und geschildert, ohne daß eine Differenzierung nach
eigener und standardisierter Funktionalität erfolgt. Dementsprechend lassen sich (zwi-
schen CORBA-Systemen portable) Programme nur mit einer detaillierten Kenntnis des
Standards erstellen.

204

• Unnamed Types

Für Basistypen wie Strukturen oder unions lassen sich leider keine Forward Declarations
erstellen. Will man nun rekursive Strukturen definieren (z.B. eine Struktur, die eine
sequence ihres eigenen Typs enthält, siehe Beispiel 6.15), so entstehen sog. Unnamed
Types (nämlich genau diese Liste). Benutzt man diesen Unnamed Type nochmal in einer
weiteren Typdefinition, so kann die Gleichheit der Typen nicht garantiert werden. Streng
genommen öffnet jede Typdefinition nämlich intern einen neuen Namensraum, so daß
beide Unnamed Types unterschiedliche Gültigkeitsbereiche haben.

Beispiel 6.15: Namensräume für IDL Unnamed Types

• Namespaces und Inner Classes (C++)

In IDL definierte Module müssen bei der Übersetzung nach C++ in geeignete Namens-
räume abgebildet werden. Einige Systeme (wie z.B. Orbix) benutzen hierfür Inner Classes.
Legt man die Definitionen aus Beispiel 6.15 zugrunde, so erhält man z.B. die Klasse
TreeMgmt::Tree. Diese Lösung hat den Nachteil, daß sich die Definition der Klasse
TreeMgmt in einer Datei befinden muß. IDL ermöglicht aber prinzipiell das erneute Öffnen
von Modulen in anderen Dateien. Aus diesem Grund bildet z.B. ORBacus die IDL-Module
lediglich auf Präfixe ab (TreeMgmt_Tree). Beide Lösungen sind natürlich nicht kompati-
bel, d.h. beim Wechsel des CORBA-Systems sind erneut Änderungen nötig. Weiterhin
erfüllen beide Lösungen eigentlich nicht die in IDL modellierte Semantik: Inner Classes
können nur an einer Stelle definiert werden, Präfixe bilden streng genommen keine hierar-
chischen Namensräume.

// in IDL:

module TreeMgmt {
struct Tree {

sequence<Tree> sons;
// ...

};
struct Admin {

sequence<Tree> mgdTrees;
// ...

};
};

// corresponding namespace hierarchy:

...
TreeMgmt::Tree::sequence<Tree> sons;

...

...
TreeMgmt::Admin::sequence<Tree> mgdTrees;

...

205

Kapitel 7
777

Zusammenfassung und
Ausblick

So gut wie jede moderne Datenverarbeitung basiert auf dem Einsatz von Informationsystemen.
Deren zugrundeliegende Datenversorgung ist somit essentiell für die Leistungsfähigkeit der
Systeme und damit auch für die unterstützten Arbeitsschritte. In der Einleitung haben wir nun
erkannt, daß sich Informationssysteme im Bezug auf die Datenversorgung in mehrere Katego-
rien mit unterschiedlicher Komplexität einstufen lassen: Von der rein lesenden Variante bis hin
zu Systemen, die größere Mengen von Daten lesen und schreiben. Zur Entwicklung allgemeiner
Strategien zur Datenversorgung ist es natürlich sinnvoll, die in diesem Sinne anspruchvollsten
Systeme zu betrachten. Die gefundenen Konzepte lassen sich dann recht einfach auf andere
Kategorien übertragen.

Ein Vertreter von Informationssystemen, die eine besonders komplexe und gleichzeitig effizi-
ente Datenversorgung benötigen, sind Entwurfsumgebungen. Die Entwicklung moderner Pro-
dukte ist ohne die Verwendung derartiger Werkzeuge undenkbar geworden. Die umfangreichen
Operationen zur Visualisierung, Bearbeitung, Ablage, Weitergabe und Wiederverwendung von
Produktdaten beschleunigen die einzelnen Verarbeitungsschritte und ermöglichen gleichzeitig
eine Qualitätskontrolle vor der eigentlichen Produktion. Leider sind die zugrundeliegenden
Systeme aber meist auf einzelne Verarbeitungsschritte innerhalb der Prozeßkette zugeschnitten.
So kann es z.B. vorkommen, daß in verschiedenen Schritten auch andere Datenmodelle verwen-
det werden. Dementsprechend sind entlang der Prozeßkette jeweils aufwendige Konvertierun-
gen nötig, die mit einem Informationsverlust verbunden sein können. Teilweise sind sogar
manuelle Eingriffe durch den Benutzer nötig, die extrem fehleranfällig sind. Wünschenswert ist
also eine übergeordnete Integration aller Systeme. Dafür benötigen wir ein globales Datenmo-
dell, die Anbindung aller Datenquellen, ein Modell zur Beschreibung der Schnittstellen und
Semantik von Systemen (ein sog. Komponentenmodell) sowie eine geeignete Infrastruktur für
deren Kopplung (Middleware). In dieser Arbeit haben wir uns gezielt mit der Datenversorgung
in derartigen Szenarien beschäftigt. Dieses Thema kann natürlich nicht isoliert betrachtet wer-
den, sondern es sind auch immer die durch andere Aspekte bedingten Anforderungen sowie
Auswirkungen auf diese zu berücksichtigen. Wir haben deshalb mit einer Begriffsklärung
begonnen (Kapitel 2) und anschließend ausgewählte Beispiele für globale Datenmodellierung

206

(STEP, Kapitel 3), Komponentenmodelle und Middleware (in beiden Fällen CORBA,
Kapitel 4) diskutiert. Anschließend konnten wir uns in Kapitel 5 und 6 dem zentralen Aspekt
der Datenversorgung widmen:

• Welche Arten von Datenquellen gibt es? Wie sind sie modelliert?

• Welche Zugriffsschnittstellen bieten sie und wie lassen sie sich in eine globale Datenver-
sorgung integrieren?

• Welche Komponentenmodelle und Middleware-Ansätze bieten die beste Unterstützung?

Neben einer theoretischen Diskussion haben wir unseren JavaSDAI-Prototypen zur Evaluierung
verschiedener Strategien benutzt. Im folgenden wollen wir nun kurz die einzelnen Ergebnisse
zusammenfassen und einen Ausblick auf weiterführende Arbeiten geben, anhand derer noch
offen gebliebene Fragen und Probleme beantwortet bzw. gelöst werden können.

Komponentenmodelle

Bei der Diskussion von Komponentenmodellen mußten wir feststellen, daß es für diesen Begriff
viele unterschiedliche Definitionen gibt. Der abgedeckte Bereich spannt sich von modular auf-
gebauter Dokumentenverwaltung bis hin zu der (von uns angestrebten) Strukturierung von
Systemen. In fast allen Fällen beziehen sich diese Modelle aber eher auf technische Aspekte und
die Beschreibung der Syntax von Schnittstellen. Wir erwarten von einem Komponentenmodell
hingegen deutlich mehr. So sollte insbesondere auch die Modellierung von Semantik möglich
sein. Letztendlich erhalten wir dann ein formales Modell, das eine abstrakte Beschreibung der
einzelnen Komponenten (Syntax und Semantik der Schnittstellen) ermöglicht – und zwar unab-
hängig von deren Realisierung (Rechnerarchitektur, Betriebssystem, Programmiersprache
usw). Dieses formale Modell sollte standardisiert sein und zugleich Abbildungen auf konkrete
Laufzeitumgebungen enthalten. Damit wird eine Kapselung von Komponenten erreicht, die
zugleich die Wiederverwendung existierender Teile und den Austausch veralteter Module
ermöglichen.

Betrachtet man die Vielfalt existierender Konzepte und Techniken, so gibt es eigentlich nur vier
Kandidaten, die unserer Definition von Komponentenmodellen nahe kommen: CORBA,
DCOM, DSOM und (Enterprise) Java Beans. DCOM und DSOM sind leider auf einzelne
Rechnerplattformen zugeschnitten, während Java Beans fest mit der Sprache Java verbunden
sind. Ihre Abstraktion ist somit unzureichend. CORBA hat als einziges Modell eine formale
Spezifikationssprache (IDL), die vollkommen unabhängig von Programmiersprachen und
Rechnerplattformen ist. Jedoch erlaubt auch sie keine Definition von Semantik. CORBA CDL
war ein erster Ansatz in diese Richtung, deren Entwicklung von der OMG aber leider wieder
eingestellt wurde. CORBA Components stellen hingegen ein eher technisches Modell zur Ver-
breitung und Installation von Softwaremodulen dar. Letztendlich gibt es also gar kein Modell,
das unserer Definition entspricht. An dieser Stelle besteht somit großer Bedarf an weiteren
Arbeiten.

207

Datenquellen und ihre Schnittstellen

Im Laufe dieser Arbeit haben wir gesehen, daß Daten nicht zwangsweise in DBVS gespeichert
sind. Sie können z.B. auch in mehr oder weniger (un)strukturierten Dateien oder Excel Sheets
abgelegt sein. Weiterhin besteht in einigen Fällen kein direkter Zugriff auf die Datenquelle
selbst, sondern es gibt nur ein API des darüberliegenden Anwendungsprogrammes (z.B. SAP).
Dementsprechend ergibt sich eine Vielfalt von Modellierungs- und Speicherungstechniken mit
den korrespondierenden Zugriffsverfahren. Zur Realisierung einer globalen, integrierten Daten-
versorgung läßt sich keine spezielle Technik finden, die alleine eine Anbindung aller Arten von
Datenquellen ermöglicht. Vielmehr ist eine Kombination mehrerer Ansätze nötig. Abhängig
vom globalen Datenmodell sind für jede Datenquelle unterschiedliche Mapper oder Wrapper
nötig. So müssen unter Umständen aus relationalen Tupeln Objekte erzeugt oder einzelne Attri-
bute mehrerer Objekte zu einem Objekt zusammengefaßt werden. Andererseits ist unter
Umständen für die Auswertung von Anfragen ein Prozessor zur Bearbeitung unstrukturierter
Textdateien nötig. Neben diesen Modellierungsaspekten werden wir in allen Fällen natürlich
auch andere Zugriffsschnittstellen erhalten, die über unterschiedlichste Techniken zu integrie-
ren sind. Dabei ist es von großer Bedeutung, sich vorher auf ein globales (und möglichst stan-
dardisiertes) Datenmodell und eine globale (und wiederum standardisierte) Schnittstelle zu eini-
gen. Dies hat zur Folge, daß bei n Datenquellen lediglich n Wrapper bzw. Mapper nötig sind
und eine vollständige Kapselung der Datenquellen erreicht wird. Verzichtet man hingegen auf
ein globales Modell und erstellt statt dessen Punkt-zu-Punkt-Verbindungen von jeder der n
Datenquellen zu jeder der m vorhandenen Anwendungen, so sind nämlich n*m Wrapper bzw.
Mapper nötig! Dies bedeutet dann insbesondere auch, daß die Kapselung verloren geht und bei
der Integration neuer oder der Änderung existierender Anwendungen auch die Anbindung der
Datenquellen zu ändern ist.

Datenversorgung

Eng verzahnt mit dem gerade diskutierten Aspekt der Integration von Datenquellen ist die
Datenversorgung. Hier geht es vor allem um die Frage, wie, wann und in welchem Format Daten
von der Quelle (also vom persistenten Speicher) zu der jeweiligen Anwendung kommen. Wir
haben erkannt, daß Data Shipping in datenintensiven Umgebungen (wie etwa CAD oder PDM)
unverzichtbar ist. Nachdem wir eigentlich immer über Client/Server-Systeme reden, müssen
also alle Verfahren Caching auf dem Client unterstützen. Bei unseren Untersuchungen hat sich
ergeben, daß CORBA zwar am besten unsere Definition eines Komponentenmodelles erfüllt,
die Fähigkeiten zum Data Shipping aber stark eingeschränkt sind. Insbesondere ist es in
CORBA-Umgebungen nicht sinnvoll, das jeweilige Datenmodell in IDL zu definieren oder
CORBA Services als Grundlage der Verarbeitung zu wählen. Die Integrität der Daten und
Caches ist auf jeden Fall durch zusätzliche Maßnahmen zu überprüfen.

Zur Definition eines einheitlichen Datenmodells haben wir den STEP-Standard verwendet, der
einerseits formale Spezifikationsverfahren und standardisierte Schnittstellen definiert und ande-
rerseits sogar eine globale Schnittstelle enthält (das SDAI). Im Bereich der Produktdatenverwal-
tung (PDM, CAD) lassen sich keine Alternativen erkennen.

208

Anhand unseres JavaSDAI-Prototypen haben wir drei verschiedene Datenversorgungsstrategien
verglichen: Proprietäres Data Shipping mit CORBA, die Übertragung generischer Strukturen
über den CORBA Query Service und den Zugriff auf RDBVS über JDBC. Alle Verfahren wur-
den jeweils als eigenständiges Data Module in eine JavaSDAI-Schnittstelle mit einem
EXPRESS-Datenmodell integriert. Beide CORBA-Lösungen zeigen ein ähnliches Laufzeitver-
halten, so daß der CORBA Query Service (in der verwendeten Art und Weise) auch für Data
Shipping geeignet erscheint. Die JDBC-Lösung war sogar etwas langsamer, was wir allerdings
auf die schlechte Realisierung des Treibers zurückführen: Die verwendete Dreischichtenarchi-
tektur führt zu einer unnötigen Verzögerung, die mit Sicherheit vom Hersteller optimiert werden
kann (beispielsweise durch den direkten Zugriff des Java-Clients auf das DBVS - hierfür müßte
aber die interne Schnittstelle des DBVS um ein geeignetes Protokoll erweitert werden). Bei
allen drei Verfahren konnte beim Zugriff auf große Datenmengen eine deutliche Beschleuni-
gung durch Prefetching erreicht werden.

Ursprünglich sollte der Prototyp auch für einen Vergleich von Data Shipping und Operation
Shipping in CORBA-Umgebungen dienen. Aus projektinternen Gründen konnten diese Arbei-
ten aber leider nicht beendet werden. Daher haben wir beide Paradigmen auf einer tieferen
Ebene (ohne SDAI) verglichen. Es stellte sich heraus, daß CORBA-Systeme bei der Erzeugung
und Registrierung größerer Mengen von Objekten nach wie vor erhebliche Defizite aufweisen
(ähnliche Ergebnisse hatten wir bereits in früheren Arbeiten erzielt). Die resultierenden
Zugriffszeiten sind letztendlich inakzeptabel. Leider ist es schwer zu beurteilen, inwieweit hier
die konzeptuellen Schwächen des Operation Shipping ausschlaggebend waren und wo sich
lediglich eine ineffiziente Implementierung ausgewirkt hat. An dieser Stelle sind weitergehende
Untersuchungen in Kooperation mit dem Hersteller eines CORBA-Systems wünschenswert.

Parallel zur Erstellung unseres Prototypen wurden weltweit Projekte mit einer ähnlichen Ziel-
setzung durchgeführt. Hervorzuheben sind hier das amerikanische NIIIP-Projekt sowie das
Esprit-Projekt VEGA mit seiner COAST-Architektur. In beiden Fällen wurde der Einsatz von
CORBA evaluiert und man kam zu dem Schluß, daß Operation Shipping ungenügend ist (auch
wenn man diesen Begriff nicht verwendet hat) und Mechanismen zum Caching, Prefetching und
Bulk Transfer benötigt werden. In eher administrativen Umgebungen, die nur der Bearbeitung
kleinerer Datenmengen dienen (z.B. das TeleMed-Projekt), kann CORBA-basiertes Operation
Shipping hingegen ausreichend sein.

Java-basierte Integration von Datenquellen über das Intra-/Internet

In Verbindung mit der Entwicklung und Diskussion verschiedener Datenversorgungsstrategien
haben wir gleichzeitig deren Eignung für einen Einsatz über das Intra- und Internet untersucht.
Hierfür bot sich die Verwendung der Sprache Java an, so daß wir uns bereits frühzeitig an der
Entwicklung des JavaSDAI-Standards beteiligten. Diesen haben wir nicht einfach als eine wei-
tere Sprachanbindung des abstrakt definierten SDAI angesehen, sondern vielmehr als Basis für
eine flexible Integration heterogener Datenquellen. Dafür haben wir die JavaSDAI Socket Bar
definiert, welche das jeweilige EXPRESS-Schema als globales Datenmodell benutzt und zur
Laufzeit die Anbindung weiterer Datenquellen über sog. Data Modules unterstützt. Die Imple-
mentierung dieser Module kann von einem beliebigen WWW-Server geladen werden und baut
dann selbstständig die Verbindung zur Datenquelle auf, die wiederum auf einem beliebigen

209

Rechner liegen kann. Verwendet die Datenquelle eine andere Modellierung(sart) als das globale
EXPRESS-Schema, so läßt sich die notwendige Mapping-Funktionalität in das Data Module
integrieren. Nachdem die Client/Server-Kommunikation ein interner (gekapselter) Bestandteil
des Data Module ist, kann dieses natürlich auch einen wesentlichen Teil der Verarbeitung auf
einen eigenen Server verlagern (z.B. das Mapping). Als unbedingt notwendig hat sich jedoch
ein Puffer im Client (Caching) sowie die Fähigkeit zum Prefetching und Bulk Transfer heraus-
gestellt.

Streng genommen widersprechen wir mit unserem JavaSDAI-Ansatz eigentlich der zuvor
geführten Diskussion: Wir haben eine Integrationsplattform definiert, die (zumindest auf dem
Client) auf eine einzige Programmiersprache zugeschnitten ist. Bei Komponentenmodellen
(welche der Integration dienen sollen) fordern wir hingegen Sprachunabhängigkeit. Insofern
haben wir unser eigenes Ziel nicht erreicht - und das gestehen wir auch ein. Jedoch gab es gute
Gründe für dieses Vorgehen. Zunächst galt es das primäre Ziel dieser Arbeit zu erreichen: Die
Evaluierung verschiedener Datenversorgungsstrategien. Eine reine CORBA-Lösung reichte
also nicht. Weiterhin sollte ein globales Datenmodell zum Einsatz kommen, das in EXPRESS
modelliert ist (es gibt bisher keine Alternative zu STEP). Und schließlich wollten wir eine Test-
plattform erstellen, die eine einheitliche Schnittstelle zum Testen aller Datenversorgungsstrate-
gien bietet und zusätzlich einen Einsatz im Intra-/Internet unterstützt. Hierfür bot sich nur Java
an. Unter diesen Rahmenbedingungen haben wir unserer Ansicht nach die beste, mögliche
Lösung erzielt. Selbstverständlich betrachten wir diese aber nicht als endgültig. Deshalb wollen
wir auch an mehreren Stellen weiterführende Arbeiten durchführen. So sollen beispielsweise
die Erfahrungen aus der Standardisierung von JavaSDAI langfristig auch Auswirkungen auf
künftige Revisionen der abstrakten SDAI-Spezifikation haben. Diese ist architektur- und
sprachunabhängig. Weiterhin stellt sich die Frage, ob Änderungen oder Erweiterungen im
CORBA-Standard nicht einen ähnlichen Ansatz wie die Socket Bar ermöglichen. Wir halten
dies durchaus für möglich und werden hier nach weiteren Lösungen suchen. Immerhin stellt
unser Query Service bereits eine standardkonforme Methode zum Zugriff auf EXPRESS-
basierte Daten dar, mit der auch eine Anbindung beliebiger Datenquellen möglich ist. Nur ist
dieses Verfahren bisher auf eine einzige Datenversorgungsstrategie beschränkt.

Letztendlich bleibt zu sagen, daß wir in dieser Arbeit keine vollständige Lösung für die von uns
skizzierten Anforderungen finden konnten. Dies war auch nicht zu erwarten, denn unsere
Anforderungen waren (und sind) sehr hoch. Wir konnten allerdings den aktuellen Stand der
Technik darstellen und damit erste Lösungsansätze diskutieren (und teilweise auch realisieren).
Insbesondere CORBA hat unsere Hoffnungen bei weitem nicht erfüllt, aber auch hier ist die
Entwicklung und Standardisierung noch lange nicht abgeschlossen. Die OMG arbeitet stärker
an Verbesserungen als je zuvor. Insofern hoffen wir, daß zumindest ein Teil unserer Ergebnisse
in die zukünftige Entwicklung des Standards einfließen wird. Im Bereich SDAI und JavaSDAI
haben wir die Standardisierung bereits wesentlich beeinflußt und sind mit den erzielten Ergeb-
nissen im großen und ganzen zufrieden. Im Bereich der Komponentenmodelle (entsprechend
unserer Definition) sehen wir leider die größten Probleme. Hier wird meist der Aspekt der
Semantik vernachlässigt und häufig nur nach technischen Lösungen gesucht. Die CDL von
CORBA war ein wichtiger Schritt, der leider nicht weiter verfolgt wurde. Allerdings haben wir

210

nach der Übernahme der UML-Standardisierung durch die OMG die Hoffnung, daß an dieser
Stelle mehr Wert auf Semantik gelegt wird und dann implizit ein Einfluß auf CORBA entsteht.
Im Bereich von DCOM, DSOM und Java Beans sehen wir weniger Perspektiven, da hier klar
die Interessen einzelner Hersteller im Vordergrund stehen und die Bindungen an Plattformen
bzw. Programmiersprache sicher nicht beseitigt werden. Zwar setzt sich die Windows-Plattform
in Büros immer mehr durch, im Bereich PDM und CAD wird es unserer Ansicht nach aber auch
in der Zukunft eine Datenverarbeitung auf Mainframes und Host-Rechnern geben - und diese
ist in geeigneter Weise in das jeweilige Gesamtsystem zu integrieren. Der Einsatz von Kompo-
nentenmodellen, die auf einzelne Plattformen oder Sprachen zugeschnitten sind, wird deshalb
nie zu einer umfassenden Lösung führen.

211

Anhang A

Literatur

AG98 K. Arnold, J. Gosling: The Java Programming Language, 2nd Edition, Addison-Wesley,
1998.

At+89 M. Atkinson, et al. (D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, S. Zdonik): The
Object-Oriented Database System Manifesto, in: Proc. of the 1st Intl. Conference on
Deductive and Object-Oriented Databases, 1989, pp. 40–58.

Be98 O. Beider: Entwurf und Implementierung einer Brücke zwischen O.P.E.N. und COAST,
Diplomarbeit, Nemetschek AG & Technische Universität München, Fakultät für Informa-
tik (III), Datenbanksysteme und Wissensbasen, 1998.

Bla97 J.A. Blakeley: Universal Data Access with OLE DB, in: Proc. of the IEEE Conference
COMPCON ’97, 1997, pp. 2–7.

Blo92 J. Bloomer: Power Programming with RPC—UNIX Network Programming, A Nutshell
Handbook, O’Reilly & Associates, 1992.

BN84 A.D. Birell, B.J. Nelson: Implementing Remote Procdure Calls, in: ACM Transactions on
Computer Systems, Vol. 2, No. 2, 1984, pp. 39–59.

BS95 U.M. Borghoff, J.H. Schlichter: Rechnergestützte Gruppenarbeit—Eine Einführung in
Verteilte Anwendungen, Springer Lehrbuch, Springer Verlag, 1995.

Bu98 W. Buchert: Entwurf und Implementierung eines modifizierten OO7-Benchmarks zum
Test der JavaSDAI-Laufzeitumgebung, Halbjähriges Systementwicklungsprojekt, Techni-
sche Universität München, Fakultät für Informatik (III), Datenbanksysteme und Wissens-
basen, 1998.

Ca+94 M. J. Carey et al.: Shoring Up Persistent Applications, in: Proc. of the ACM SIGMOD
Conference on the Management of Data, Minneapolis, MN, 1994.

CB97 R. Cattell, D. Barry, et al.: The Object Database Standard: ODMG 2.0, Morgan Kauf-
mann Publishers, 1997.

CDN93 M.H. Carey, D.J. DeWitt, J.F. Naughton: The oo7 Benchmark, in: ACM SIGMOD 22(2),
1993, pp.12–21.

CGI University of Illinois: The Common Gateway Interface, University of Illinois at Urbana-
Champaign, http://hoohoo.ncsa.uiuc.edu/cgi/.

CHY+97 P.E. Chung, Y. Huang, S. Yajnik, D. Liang, J.C. Shih, C.Y. Wang, and Y.M. Wang:
DCOM and CORBA Side by Side, Step By Step, and Layer by Layer, to appear in C++
Report Magazine, http://akpublic.research.att.com/~ymwang/papers/C++R97CR.htm,
1997.

Da94 C.J. Date: An Introduction to Database Systems, 6th Edition, Addison-Wesley, 1994.

Da+98 R. Darnell et al.: HTML 4 Unleashed, Professional Reference Edition, Sams Net, 1998.

DC99 DaimlerChrysler AG: Distributed Object Strategy (DOS): Part IV—Evaluation of IBM’s
ComponentBroker, Internal Evaluation Report for Release 1.3 (in Cooperation with
IBM), Department IO/TM (Lead), 1999.

212

DD97 C.J. Date, H. Darwen: A Guide to the SQL Standard, 4th Edition, Addison-Wesley, 1997.

DDÖ98 A. Dogac, C. Dengi, M.T. Öszu: Distributed Object Computing Platforms, in: Communi-
cations of the ACM, Vol. 41, No. 9, 1998, pp. 95–103.

Dew93 D.T. Dewire: Client/Server Computing, McGraw-Hill, 1993.

Di87 K.R. Dittrich: Object-Oriented Database Systems—A Workshop Report, in: Proc. of the
Intl. Conference on the Entity-Relationship Approach, 1987, pp. 51–66.

Do+96 A. Dogac et al.: A Multidatabase System Implementation on CORBA, in: Proc. of the 6th

Intl. Workshop on Research Issues in Data Engineering (RIDE), New Orleans, 1996.

Dr95 I. Drews: Leistungsmessung von STEP/SDAI auf der Basis eines OODBS, Diplomarbeit,
Fachbereich Informatik, Universität Kaiserslautern, 1997.

DS96 M. Dierker, M. Sander: Lotus Notes 4.x—Arbeiten im Team, Addison-Wesley, 1996.

DZ83 J.D. Day, H. Zimmermann: The OSI Reference Model, in: Proc. of the IEEE, Vol. 71,
December 1983, pp. 1334–1340.

EG89 C.A. Ellis, S.J. Gibbs: Concurrency Control in Groupware Systems, in: Proc. of the ACM
SIGMOD Conference on the Management of Data, 1989.

EN94 R. Elmasri, S.B. Navathe: Fundamentals of Database Systems, Addison-Wesley, 2nd Edi-
tion, 1994.

ES98 P. Eeles, O. Sims: Building Business Objects, John Wiley & Sons, 1998.

FM97 G. Flach, H. Meyer: Das DICE-Projekt: Datenbankunterstützung für kooperative Anwen-
dungen, Universität Rostock, Rostocker Informatik-Berichte, Band 20, 1997.

Fr99 J. Friebe: Eine GeoServer-Architektur zur Nutzung von GIS-Funktionalität über Internet-
Technologie, in A. P. Buchmann: Tagungsband der 8. GI-Fachtagung ’Datenbanksysteme
in Büro, Technik und Wissenschaft’ BTW ’99, Springer Verlag, 1999, S. 164–184.

Ge95 K. Geihs: Client/Server-Systeme, Grundlagen und Architekturen, Thomson’s Aktuelle
Tutorien (TAT), Band 6, Intl. Thomson Publishing GmbH, 1995.

GJS96 J. Gosling, B. Joy, G. Steele: The Java Language Specification, Addison-Wesley, 1996.

GN94 P. Gaumond, P.A. Nelson: GNU dbm—A Database Manager, Edition 1.4.1 of the GNU
dbm Manual for gdbm version 1.7.3, Free Software Foundation, Cambridge, MA, USA,
1994, ftp://phi.sinica.edu.tw/pub/aspac/gnu/ps/.

GR93 J.N. Gray, A. Reuter: Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann Publishers, 1993.

GV92 G. Gardarin, P. Valduriez: ESQL: An Object-Oriented SQL with F-Logic Semantics, in:
Proc. of the 8th IEEE Intl. Conference on Data Engineering (ICDE), 1992.

Hi97 M. Higgs: Universal Data Access: Foundation for the Enterprise, White Paper, I-Kine-
tics, Inc., 1997, http://www.i-kinetics.com/.

HLS98 K. Hergula, G. Lorenz, G. Sauter: Mapping EXPRESS to SQL3, Technical Report FT3/E-
98-004, DaimlerChrysler AG, Research & Technology, 1998.

HMNR95 T. Härder, B. Mitschang, U. Nink, N. Ritter: Workstation/Server-Architekturen für daten-
bankbasierte Ingenieuranwendungen, in: Informatik—Forschung und Entwicklung, Band
10, Heft 2, Springer Verlag, 1995, S. 55–72.

HP90 J.L. Hennessy, D.A. Patterson: Computer Architecture—A Quantitative Approach, Mor-
gan Kaufmann Publishers, 1990.

HNSB90 D. Harrison, R. Newton, R. Spickelmier, T. Barnes: Electronic CAD Frameworks, in:
Proc. of the IEEE, Vol. 78, No. 2, 1990, pp. 393–417.

HR83 T. Härder, A. Reuter: Principles of Transaction-Oriented Database Recovery, in: ACM
Computing Surveys, Vol. 15, No. 4, 1983, pp. 287–317.

213

HR93 T. Härder, K. Rothermel: Concurrency Control Issues in Nested Transactions, in: VLDB
Journal, Vol. 2, No. 1, 1993, pp. 39–74.

HR99 T. Härder, E. Rahm: Datenbanksysteme—Konzepte und Techniken der Implementierung,
Springer Verlag, 1999.

HSRM96 M. Hardwick, D. Spooner, T. Rando, K.C. Morris: Sharing Manufacturing Information in
Virtual Enterprises, in: Communications of the ACM, February 1996.

HSRM97 M. Hardwick, D. Spooner, T. Rando, K.C. Morris: Data Protocols for the Industrial Vir-
tual Enterprise, in: IEEE Journal for Internet Computing, Vol. 1, No. 1, http://computer.
org/internet/ic1997/w1toc.htm, 1997.

Hu96 K. Hughes: ORACLE Transport Gateway - Installation and User’s Guide for IBM DRDA
for RS/6000, Release 4.0, ORACLE Co., 1996.

IB97 Information Builders Inc.: EDA/SQL Manuals, Information Builders Inc., 1997.

IBM97 IBM Co.: DB2 Data Joiner: Administrator Guide and Application Programming, Version
2, Release 1, IBM Co., San Jose, 1997.

IBM98a IBM Co.: IBM Component Broker Connector Overview, IBM Redbook, Third Edition
(applies to Release 1.2), 1998.

IBM98b IBM Co.: IBM Component Broker Quick Beginnings 1.3, Fourth Edition (applies to
Release 1.3), 1998.

IBM98c IBM Co.: IBM Component Broker Programming Guide 1.3, Fourth Edition (applies to
Release 1.3), 1998.

IBM98d IBM Co.: IBM Component Broker Advanced Programming Guide 1.3, Third Edition
(applies to Release 1.3), 1998.

IBM98e IBM Co.: IBM Component Broker Oracle Application Adapter Quick Beginnings 1.3,
First Edition (applies to Release 1.3), 1998.

IK99 I-Kinetics, Inc.: DataBroker Version 6 Overview, White Paper, I-Kinetics, Inc., 1999,
http://www.i-kinetics.com/.

IONA97 IONA Technologies: Orbix Database Adapter Framework (ODAF), Version 1.0, 1997.

IONA98a IONA Technologies: Orbix IIOP Engine, White Paper, 1998

IONA98b IONA Technologies: Orbix Programming & Reference Guide, Version 2.3, 1998.

IONA98c IONA Technologies: OrbixWeb Programming & Reference Guide, Version 3.1, 1998.

ISG99 International Software Group, Ltd.: ISG Products: ISG Navigator—Universal Data
Access, http://www.isg.co.uk/products/Navigator/, 1999.

ISO94a ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 1: Overview and fundamental principles, Intl. Standard, 1994.

ISO94b ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 11: Description methods: The EXPRESS language reference manual,
Intl. Standard, 1994.

ISO94c ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 21: Implementation methods: Clear text encoding of the exchange
structure, Intl. Standard, 1994.

ISO96 ISO CD 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 24: Implementation methods: C language binding to the standard
data access interface, Committee Draft, ISO TC184/SC4/WG11 N014, 1996.

ISO98a ISO FDIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 22: Implementation methods: Standard data access interface
specification, Final Draft Intl. Standard, 1998.

214

ISO98b ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 23: Implementation methods: C++ language binding to the
standard data access interface specification, Draft Intl. Standard, 1998.

ISO98c ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 26: Implementation methods: Interface definition language bin-
ding to the standard data access interface, Draft Intl. Standard, 1998.

ISO99a ISO CD 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 27: Implementation methods: Java programming language binding
to the standard data access interface with Internet/Intranet extensions, Committee Draft,
ISO TC184/SC4/WG11 N060, 1999.

ISO99b ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 214: Application protocol: Core data for automotive mechanical
design processes, Draft Intl. Standard, ISO TC184/SC4/WG3 N765, 1999.

iX98 iX-Magazin: ORBs—Von Big Blue bis GPL: Object Request Broker, in: iX-Magazin für
professionelle Informationstechnik, Band 10, 1998.

Ja98 D. Jackson: Business Objects Companion, Prentice Hall, 1998.

Java Sun Microsystems: The Source for Java Technology, http://www.javasoft.com/.

JBS97 St. Jablonski, M. Böhm, W. Schulze (Hrsg.): Workflow-Management—Entwicklung von
Anwendungen und Systemen, Facetten einer neuen Technologie, dpunkt-Verlag, 1997.

KA95 S. Khoshafian, R. Abnous: Object Orientation: Concepts, Analysis & Design, Languages,
Databases, Graphical User Interfaces, Standards, 2nd Edition, John Wiley & Sons, 1995.

Kö98 M. Köthe: COAST Architecture—The CORBA Access to STEP Information Storage
Architecture and Specification, Deliverable D301 of ESPRIT Project 20408 ’VEGA’,
Rev. 1.8.5, Digital Equipment Corporation, European Applied Research Center, 1998.

KK93 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in Object Bases, in:
Proc. of the IEEE Intl. Conference on Data Engineering (ICDE), 1993, pp. 155–162.

La95 C. Lau: Object-Oriented Programming Using SOM and DSOM, Wiley & Sons, 1995.

Loe98 H. Loeser: Techniken für Web-basierte Datenbankanwendungen—Anforderungen,
Ansätze, Trends, in: Informatik—Forschung und Entwicklung, Band 13, Heft 4, Springer-
Verlag, 1998.

Lof98 D. Loffredo: Efficient Database Implementation of EXPRESS Information Models, PhD
Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1998.

LS87 P.C. Lockemann, J.W. Schmidt (Hrsg.): Datenbank-Handbuch, Springer-Verlag, 1987

Ma97 A. Maurer: Implementierung einer SDAI-Schnittstelle in Java, Halbjähriges Systement-
wicklungsprojekt, Technische Universität München, Fakultät für Informatik (III), Daten-
banksysteme und Wissensbasen, 1998.

Ma98 A. Maurer: Entwurf und Implementierung eines JavaSDAI Data-Modules auf Basis eines
CORBA Query-Service, Diplomarbeit, Technische Universität München, Fakultät für
Informatik (III), Datenbanksysteme und Wissensbasen, 1998.

MB99 Mercedes-Benz Consultancy System: Configurator MBKS Online, Internet-System zur
Produktkonfiguration, http://mbks.mercedes-benz.com/vas/gb/default.htm, 1999.

Me90 J. Melton (Ed.): Database Language SQL 2, American National Standards Institute
(ANSI), Washington, D.C., 1990.

Mi95 Microsoft Corporation: Microsoft Open Database Connectivity Software Development
Kit, Programmer’s Reference, Version 3.00, 1995.

MMM93 N.M. Mattos, K. Meyer-Wegener, B. Mitschang: A Grand Tour of Concepts for Object-
Orientation from a Database Point of View, Journal on Data & Knowledge Engineering
(DKE), Vol. 9, Elsevier Science, 1993, pp. 321–352.

MM97 T.J. Mowbray, R.C. Malveau: “CORBA Design Patterns”, John Wiley & Sons, 1997.

215

MPD99 N.M. Mattos, P. Pistor, S. Deßloch: SQL3, Object-Relational, and Java: Overview of the
SQL99 and SQLJ Standard, Tutorial auf der 8. GI-Fachtagung ’Datenbanksysteme in
Büro, Technik und Wissenschaft’ BTW ’99, 1999.

Nem98 Nemetschek AG: The O.P.E.N.® Development Platform, Technical White Paper, Nemet-
schek AG, 1998.

Neu97 E. Neuwirt: Konzeption und Implementierung einer ORB/DBMS-Schnittstelle in einer
CORBA-basierten CSCW-Umgebung, Diplomarbeit, Universität Rostock, Fachbereich
Infomatik, Lehrstuhl für Datenbank- und Informationssysteme, 1997.

NHR99 U. Nink, T. Härder, N. Ritter: Generating Call-Level Interfaces for Advanced Database
Application Programming, in: Prooceedings of the 25th Intl. Conference on Very Large
Databases (VLDB), Edinburgh, Scotland, UK, 1999.

OG95 The Open Group: Data Management: SQL Call Level Interface (CLI), X/Open CAE Spe-
cification C451, April 1995.

OHE94 R. Orfali, D. Harkey, J. Edwards: The Essential Client/Server Survival Guide, John Wiley
& Sons, 1996.

OHE96 R. Orfali, D. Harkey, J. Edwards: The Essential Distributed Objects Survival Guide, John
Wiley & Sons, 1996.

OMG96a Object Management Group: The Common Object Requst Broker Architecture: Architec-
ture and Specification, Version 1.2, OMG TC Document PTC/96-03-04, OMG, 1996.

OMG96b Object Management Group: Informationen der Business Object Domain Task Force,
OMG, http://www.dataaccess.com/Bodtf/boinfo.htm, 1996.

OMG97 Object Management Group: A Discussion the Object Management Architecture, OMG,
January 1997, Updated June 1997, http://www.omg.org/library/omaindx.html.

OMG98a Object Management Group: PDM Enabler Specification—Joint Revised Submission,
OMG TC Document mfg/98-01-01, mfg/98-02-01 (errata), OMG, 1998.

OMG98b Object Management Group: Business Object Component Architecture Proposal (BOCA),
Revision 1.1, OMG TC Document bom/98-01-07, 1998.

OMG98c Object Management Group: Notification Service—Joint Revised Submission with Errata,
OMG TC Document telecom/98-01-18, telecom/98-03-05 (errata), dtc/98-04-01 (errata),
1998.

OMG98d Object Management Group: Objects By Value—Joint Revised Submission with Errata,
OMG TC Document orbos/98-01-18, OMG, 1998.

OMG98e Object Management Group: CORBA Messaging—Joint Revised Submission, OMG TC
Document orbos/98-05-05, OMG, 1998.

OMG98f Object Management Group: The Common Object Requst Broker Architecture: Architec-
ture and Specification, Version 2.2, OMG TC Document formal/98-07-01, OMG, 1998,
http://www.omg.org/library/c2index.html.

OMG98g Object Management Group: CORBA Components—Joint Revised Submission, OMG TC
Document orbos/98-10-18, November 1998.

OMG98h Object Management Group: CORBAservices: Common Object Services Specification,
Revised Edition, OMG Document formal/98-12-09, OMG, 1998, http://www.omg.org/
library/csindex.html.

OMG99 Object Management Group: Persistent State Service 2.0, OMG Web Page, http://www.
omg.org/techprocess/meetings/schedule/Persistent_State_Service_2.0_RFP.html, 1999.

OOC98 Object-Oriented Concepts: ORBacus for C++ and Java, Manual for Release 3.1, 1998.

Or99 Oracle Corp.: Oracle8i Appliance Overview, General Product Information and Press
Release, http://www.oracle.com/html/8iapp_ovw.html, 1999.

Ow93 J. Owen: STEP—An Introduction, Information Geometers, 1993.

216

PMC94 Post Modern Computing: ORBeline User Guide, Version 1.0, September 1994.

Ra96 S. Rauch: Talk to Any Database the COM Way Using the OLE DB Interface, in: Microsoft
Systems Journal, Vol. 11, No. 7, July 1996, pp. 19–38

RB99 U. Röhm,K. Böhm: Working Together in Harmony—An Implementation of the CORBA
Object Query Service and its Evaluation, in: Proceedings of the 15th IEEE Intl. Confe-
rence on Data Engineering (ICDE), 1999, pp. 238–247.

RC98 M. Rosen, D. Curtis: Integrating CORBA and COM, John Wiley & Sons, 1998.

Red96 J.P. Redlich: CORBA 2.0: Praktische Einführung für C++ und Java, Addison-Wesley,
1996.

Rev96 F. Reverbel: Persistence in Distributed Object Systems: ORB/ODBMS Integration, Ph.D.
Dissertation, Computer Science Department, University of New Mexico, 1996.

Rez+98 F.F. Rezende et al.: The Database Access Interface in MEntAs: Architecture and Functio-
nality, Daimler-Benz AG, Forschung und Technologie, Prozeßkette Produktentwicklung
(FT3/EK), Technischer Bericht Nr. FT3/E-1998-003, 1998.

RH98 F.F. Rezende, K. Hergula: The Heterogeneity Problem and Middleware Technology:
Experiences with and Performance of Database Gateways, Proc. of the 24th Conference
on Very Large Databases (VLDB), New York, 1998.

Ri97 N. Ritter: DB-gestützte Kooperationsdienste für technische Entwurfsanwendungen.,
DISDBIS Vol. 33, Infix Verlag, St. Augustin, zugleich: Dissertation, Fachbereich Infor-
matik, Universität Kaiserslautern, 1997.

RLA+98 D. Raggett, J. Lam, I. Alexander et al.: HTML 4—Web-Publishing mit dem neuen HTML-
Standard, Addison-Wesley, 1998.

RLPG96 B. Reinwald, T. J. Lehmann, H. Pirahesh, V. Gottemukkala: Storing and using objects in
a relational database, in: IBM Systems Journal, Vol. 35, No. 2, 1996, pp.172–192.

RS92 F. J. Rammig, B. Steinmüller: Frameworks und Entwurfsumgebungen, in: Informatik
Spektrum 15, 1992, Seite 33–43.

Sa96 G. Sauter: The Mapping Language BRIITY—Reference Manual, Technical Report F3-96-
007, Daimler-Benz AG, Research & Technology, 1996.

Sa98 G. Sauter: Interoperabilität von Datenbanksystemen bei struktureller Heterogenität,
DISDBIS Vol. 47, Infix Verlag, St. Augustin, zugleich: Dissertation, Fachbereich Infor-
matik, Universität Kaiserslautern, 1998.

SAP SAP AG: Das SAP R/3 System, http://www.sap-ag.de/products/r3/.

SBM98 M. Stonebraker, P. Brown, D. Moore: Object-Relational DBMSs, Second Edition, Morgan
Kaufmann Publishers, 1998.

Sch92 A. Schill: Remote Procedure Call: Fortgeschrittene Konzepte und Systeme—Ein Über-
blick, in: Informatik-Spektrum, Band 15, 1992.
Teil 1: Grundlagen, Heft 2, Seite 79–87.
Teil 2: Erweiterte RPC-Ansätze, Heft 3, Seite 145–155.

SDRC SDRC Corp.: Metaphase, http://www.metaphasetech.com/.

Sel96 J. Sellentin: Einsatzmöglichkeiten von CORBA in STEP-basierten Entwurfsumgebungen,
Diplomarbeit, Universität Kaiserslautern, Fachbereich Informatik, 1996.

Ses96 R. Sessions: Object Persistence—Beyond Object-Oriented Databases, Prentice Hall, New
Jersey, 1996.

Ses98 R. Sessions: COM and DCOM, Wiley Computer Publishing, 1998.

SFM99 J. Sellentin, A. Frank, B. Mitschang: TOGA—A Customizable Service for Data-Centric
Collaboration, in: Proceedings of the 11th Intl. Conference on Advanced Information
Systems Engineering (CAiSE*99), LNCS 1626, Springer Verlag, 1999, pp. 301–316.

217

Sh+96 A. Sheth et al.: Report from the NSF Workshop on Workflow and Process Automation in
Information Systems, Computer Science Department Technical Report UGA-CS-TR-96-
003, University of Georgia, Athens, Georgia, 1996.

Si96 J. Siegel: CORBA: Fundamentals and Programming, Jon Wiley & Sons, 1996

SK97 J. Sellentin, R. Kramer: Joint Prototype Implementation of the SDAI in Java—First
Results, Technical Report, Technische Universität München und STEP Tools, Inc., 1997,
http://www.informatik.uni-stuttgart.de/ipvr/as/projekte/phrames/javasdai/v1/index.html.

SM97 J. Sellentin, B. Mitschang: Möglichkeiten und Grenzen des Einsatzes von CORBA in DB-
basierten Client/Server-Anwendungssystemen, in K.R. Dittrich, A. Geppert: Tagungsband
der 7. GI-Fachtagung ’Datenbanksysteme in Büro, Technik und Wissenschaft’ BTW ’97,
Springer Verlag, 1997, S. 312–321.

SM98 J. Sellentin, B. Mitschang: Data-Intensive Intra- & Internet Applications—Experiences
Using Java and CORBA in the Worl Wide Web, in: Proc. of the 14th IEEE Intl. Conference
on Data Engineering (ICDE), Orlando, Florida, 1998, pp. 302–311.

SM99a J. Sellentin, B. Mitschang: Design and Implementation of a CORBA Query Service
Accessing EXPRESS-based Data, in: Proc. of the 6th IEEE Intl. Conference on Database
Systems for Advanced Applications (DASfAA’99), Hsinchu, Taiwan, R.O.C., 1999.

SM99b J. Sellentin, B. Mitschang: Data-Intensive Intra- and Internet Applications Based on
Java, CORBA, and the World Wide Web, Invited Paper in: E. Bertino, and S. Urban:
’Object-Oriented Technology in Advanced Applications’, Special Issue of Theory and
Practice of Object Systems (TAPOS), Vol. 5, No. 3, John Wiley & Sons, 1999.

SRL93 L. Suardi, M. Rusinkiewicz, W. Litwin: Execution of Extended Multidatabase SQL, in:
Proc. of the 9th IEEE Intl. Conference on Data Engineering (ICDE), 1993.

SS97 J. Sellentin, G. Sauter: Binding Java to the SDAI—Using STEP for Intra- and Internet
Applications, Experience Report presented at the ISO TC184/SC4 Meeting, Chester, UK,
March 1997.

SS99 R.E. Shelton, C. Shanklin (Editor): Understanding Business Objects, Addison-Wesley,
1999.

SSSM99 S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Integrationskonzepte für heterogene
Anwendungssysteme bei DaimlerChrysler auf Basis internationaler Standards, in A. P.
Buchmann: Tagungsband der 8. GI-Fachtagung ’Datenbanksysteme in Büro, Technik und
Wissenschaft’ BTW ’99, Springer Verlag, 1999, S. 317–327.

Sun94 Sun Microsystems: RPC(3N): Network Functions, SunOS 5.6 (Solaris 2.6) Manual Page,
1994.

Sun97a Sun Microsystems: JDBC Guide: Getting Started, Documentation for JDK 1.1.4, 1997.

Sun97b Sun Microsystems: Java Remote Method Invocation Specification, Release 1.4 for JDK
1.1, February 1997.

Sun97c Sun Microsystems: Java Object Serialization Specification, Release 1.3 for JDK 1.1,
February 1997.

Sun97d Sun Microsystems: JavaBeans API Specification, Release 1.01, July 1997.

Sun98a Sun Microsystems: Enterprise JavaBeans Specification, Release 1.0, March 1998.

Sun98b Sun Microsystems: Enterprise JavaBeans to CORBA Mapping, Release 1.0, March 1998.

Sun98c Sun Microsystems: JavaStation—An Overview, White Paper, http://www.sun.com/nc/
whitepapers/javastation/javast_ch1.html, 1998.

Su98 J. Sutherland: OOPSLA Business Object Workshop Home Page, updated periodically,
http://jeffsutherland.org/oopsla98/index.html, 1998.

SV96 J. Stark, S. Vajna: Business Process Reengineering vor der Einführung eines EDM-
Systems, aus der OCÉ Buchreihe ’Von der analogen zur digitalen Reprograpfie’, OCÉ,
Mülheim an der Ruhr, 1996.

218

SW94 D.A. Schenk, P. Wilson: Information Modelling: The EXPRESS Way, Oxford University
Press, 1994.

SZ98 H.P. Steiert, J. Zimmermann: JPMQ—An Advanced Persistent Message Queuing Service,
in: Proc. of the 16th British National Conference on Databases (BNCOD), Cardiff, 1998.

Ta92 A.S. Tanenbaum: Modern Operating Systems, Prentice-Hall Intl., 1992.

TeleMed Los Alamos National Laboratory: Welcome to TeleMed, Project Home Page, Operated by
the University of California, http://www.acl.lanl.gov/TeleMed/.

Vo98 A. Vogel: Efficient Data Transfer with CORBA, Java-Report Online (JRO), June 1998,
http://www.sigs.com/jro/features/9806/jro06.corbatalk.(vogel).html.

W3C W3C - World Wide Web Consortium: About the World Wide Web, General Information
and History, http://www.w3.org/pub/WWW/WWW/.

WC95 J. Widom, S. Ceri (Editor): Active Database Systems: Triggers and Rules for Advanced
Database Processing, Academic Press / Morgan Kaufmann Publishers, 1995.

Wo94 P. van der Wolf: CAD-Frameworks—Principles and Architecture, Kluwer Academic
Publishers, 1994.

YMG96 N. J. Yeager, R. E. McGrath: Web Server Technology—A Guide for the World Wide Web
Information Providers, Morgan Kaufmann Publishers, 1996.

