Konzepte und Techniken der
Datenversorgung fiir komponentenbasierte
Informationssysteme

Von der Fakultit Informatik der Universitit Stuttgart
zur Erlangung der Wiirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von Jiirgen Sellentin aus Bremerhaven

Hauptberichter: Prof. Dr.-Ing. habil. B. Mitschang
Mitberichter: Prof. Dr. rer. nat. T. Ertl
Tag der miindlichen Priifung: 9.11.1999

Institut fiir Parallele und Verteilte Hochstleistungsrechner (IPVR)
der Universitit Stuttgart

1999

Yorwort

Die vorliegende Arbeit entstand wihrend meiner Tétigkeit als Doktorand in der Forschungs-
abteilung ,,ProzeBkette Produktentwicklung® (FT3/EK) der DaimlerChrysler AG und als
Promotionsstudent in der Arbeitsgruppe von Prof. Dr. Bernhard Mitschang an der TU Miinchen
und spéter an der Universitdt Stuttgart. Zum Gelingen dieser Arbeit haben eine Vielzahl von
Personen beigetragen, denen ich an dieser Stelle noch einmal ausdriicklich danken mdchte.

Mein Dank gilt in erster Linie meinem akademischen Lehrer Prof. Dr. Bernhard Mitschang fiir
die Bereitschaft, meine Arbeit zu betreuen und fiir seine Mitgestaltung an meinem Promotions-
thema. Ohne seine Uberzeugungsarbeit hitte ich vermutlich auch nie eine Promotion begonnen.
Ich méchte mich ferner bei ihm fiir seine Diskussionsbereitschaft und seine fortlaufende Unter-
stiitzung bedanken. Herrn Prof. Dr. Thomas Ertl danke ich, dal} er sich trotz der nicht unerheb-
lichen zeitlichen Belastung bereit erklirt hat, die zweite Berichterstattung zu iibernehmen.

Mein besonderer Dank gilt meinem friiheren Kollegen Dr. Wolfgang Kifer fiir die Anregung,
mich mit dem Thema ,,STEP und CORBA* zu befassen. Seine Einfiihrung in das Thema STEP
war von unschétzbaren Wert fiir mich und hat mit Sicherheit viele Stunden Literaturrecherche
erspart. Thm und meinem derzeitigen Kollegen Dr. Giinter Sauter mochte ich sowohl fiir die
Betreuung meiner Arbeit von Seiten der DaimlerChrysler AG, als auch fiir ihre Unterstiitzung
und Diskussionsbereitschaft meinen Dank aussprechen. In diesem Sinne bin ich auch meinen
ehemaligen und derzeitigen Vorgesetzten Dr. Dieter Haban, Peter Schneider und Robert Win-
terstein fiir die Gewihrung des notigen wissenschaftlichen Freiraums und ihr Vertrauen in
meine Arbeit zu Dank verpflichtet.

Den Studenten Ralf Mayr, Werner Buchert und Toni Maurer danke ich fiir ihre Unterstiitzung
im Projekt PHRAMES und ihr Engagement im Rahmen von Systementwicklungsprojekten,
Diplomarbeiten und Hiwi-Jobs. Insbesondere Toni Maurer hat eine nicht mehr zu iiberbietende
Motivation und Freude an der Arbeit entwickelt und selbst nach dem Abschluf3 seiner Diplom-
arbeit noch so manche Nacht mit weiteren Messungen verbracht. Den friiheren und derzeitigen
Kolleg(inn)en Aiko Frank, Klaudia Hergula, Michael Jaedicke, Henrik Loeser, Gregor Lorenz,
Roland Nagel, Dr. Norbert Ritter, Stefan Sarstedt, Kerstin Schneider, Ulrich Schifer, Hans-
Peter Steiert und Jiirgen Zimmermann mdchte ich fiir die fruchtbaren Diskussionen danken, die
mir so manchen DenkanstoB3 fiir meine Arbeit geliefert haben. Weiterhin bedanke ich mich bei
Aiko Frank, Michael Jaedicke und Jochen Riitschlin fiir das Korrekturlesen der Arbeit und die
hilfreichen Anregungen.

Meiner Mutter und meinen Paten bin ich sehr dankbar dafiir, da} sie mir und meinem Bruder
nach dem frithen Tod unseres Vaters eine umfangreiche Ausbildung erméglicht haben und wir
uns immer auf ihre Hilfe verlassen konnten. AbschlieBend mochte ich mich noch bei meiner
Freundin Birgit fiir ihre Unterstiitzung und ihr Verstdndnis fiir meine hdufige Abwesenheit
bedanken.

Stuttgart, im August 1999

Jiirgen Sellentin

Inhaltsverzeichnis

Vorwort

Inhaltsverzeichnis

Zusammenfassung

1. Einleitung

1.1 Anwendungsszenario: Entwurfsumgebungencccccccevevvevviiinnieeniieeniie e

1.2
1.3

Rahmenbedingungenccccueeeneee.
Anforderungen und Ziele

1.4 Vorgehensweise und Aufbau der Arbeitccceeveiiiiiiiiniiieiiiieee e,

2. Grundlagen

2.1 Komponenten und Komponentenmodellec.ccceeviuiiiriiiiiniieniieiniieeiee e,
2.1.1 Vorteile einer komponentenbasierten Architekturcccccooiiiiiiiiniiinniiiiiiie,
2.1.2 Nachteile einer komponentenbasierten Architekturccceeeieeiieinieeniieeiieenieens
2.1.3 Voraussetzung fiir den Einsatz von Komponentenccccccovvernieinieeniiienieenneens

2.2
2.3

24

2.5

2.6

2.1.4 Komponentenmodelle
Business Objectsocevueeeveeeeueeennne.
Strukturierung von Systemen

2.3.1 Mehrebenenarchitektur (Multi Tier) und Schichtenmodellecccccooveeinirienennn.

2.3.2 Client/Server-Grenzen
2.3.3 Beispiel ..oocooveiiieiieeeeeeeen
Middleware
2.4.1 Remote Procedure Call (RPC)

2.4.2 Message Oriented Middleware (MOM)ccocuiiiiiiiiiiiiiiiieite et

2.4.3 Objektorientierte Middleware

2.4.4 Datenbankverwaltungssysteme (DBVS) und Middlewareccvevevevcivecenennnnns

2.4.4.1 Zugriff auf einzelne DBVS

2.4.4.2 Homogener Zugriff auf heterogene DBVS ...
Grundbegriffe einer allgemeinen Datenversorgungcoccceeeeveecveencieeeriieesnveennnes

2.5.1 Modellierungc.cccceeceerivernueene

2.5.2 Datenintensive und auftragsbezogene Verarbeitung:
Data Shipping versus Operation SRIPPINGcccveeeceeeieeeeeeeiieeireeeieeesiee e snaeesnees

2.5.3 Effizienz der Datenversorgung
Entwurfsumgebungencc..........
2.6.1 Frameworkscccceevceenvennnnen.
2.6.2 Isolation und Kooperation

2.6.3 Workflow, Groupware und CSCW

.. 43

11

13

14
15
17
19

23

24
25
26
27
27
28

28
29
30
31
32
33
34
34
35
35
37
38
38

39
40
41
42

44

2.7 WWW, Internet Und INTFANETcooeeeiiieieieee ettt eeeteeeeee e e e eeeeeeeeaeeeaeeseeeeees 44

2.7.1 Das Common Gateway Interface (CGI) und JavaScriptcccccccovieiiviennieinieeninen, 45
272 JAVA ettt ettt sh e st b e st na et ent 46
2.7.3 Wartm JAVAT ..ooeioiiieieetee ettt st et sttt eas 46
2.7.4 Intranet und Internet: Mehr als ein Prisentationsmedium?cccccocveeviieiniienneenns 49
2.7.5 Ist Pure Java die ultimative LOSUNZ?c.ccciieriieiiieeieeeieeeiieeiteeieeeae e e sneesree e 49

2.8 ZUSAMMENTASSUNGZeveieiiieeiiieeiiieeite et e e sieeeeteeeeteeesebeeetbeeebaeessateesaseesnsneesnsaeesnnes 50
. Der Internationale Standard STEP 51
3.1 Die Modellierungssprache EXPRESScccooiiiiiiiiiieeeeeee e 53
30101 SCHEMIALA ...oiiiiiiiiiiiie ettt ettt et et e s s 53
T o< s USSR 54

T B I 0 o) 15 (el 02777772 OO 55
3.1.3.1 Beziehungen zwischen Objektencccccooiiiiiiiniiiiniiiiiiinieneeeeieeseee 56

3.1.3.2 Beziehungen zwischen Objekten unterschiedlicher Schemata 56

3.1.4 Algorithmen und ReZeINc.coviiiiiiiiiiiiiii e 57
315 BEISPICL oo e st e 59

3.2 Die Zugriffsschnittstelle SDATc.coooiiiiiiiieiee e 61
3.2.1 Strukturierung der Datenccocccoriiiiiiiinieiieeeee e 63
3.2.2 Manipulation VON Datenc.cccceeeiiriiiiierieeeiieeieeeitesieeeree et e sereesee e e e s nre e e 64
3.2.3 Sessions und TranSaktiONenccoccceeviiiriiiniiiinieeiiieree ettt ettt 65
3.2.3.1 Synchronisation und Mehrbenutzerbetriebccccoooviiiiiiiniiinniinniinnnen. 65

3.2.3.2 Zustandsmodell fiir Transaktionsebene 3ccccoceeviiviinieinieenienieneennne. 66

3.2.4 Auswertung von ReEINccooiiiiiiiiiiiiiiie e e 67
3.2.5 Early und Late Bindingccocceiiiiiiiiiiiiiiieieeeec ettt e 68
3.2.6 SprachanbindUnZENccceeeciieriiieiiie ettt ettt st e et e e nte e nee e 68
3.2.7 ImplementierungsKIaSSEnc..ccccevvieriiiiinieiiiniceeeee ettt 69

3.3 Standardisierte SChemataccoocueiiiiiiiiiiiii e 69
3.4 ZUSAMMENTASSUNGZ ...ooevviiieiiieeiiieeiieeeriteeeriteeeiteesteeesateeessseeessbeessseessseesssesssseesnseens 70
. Der CORBA-Standard 71
4.1 Das Objektmodell und die Modellierungssprache IDLcccccceevviiiniiiiniieenieeens 73
4.1.1 Das ObJEKIMOAEILccociiiiiiiiiieiiieie ettt ettt ettt este e teeeseeenreenneeesnseas 74
4.1.2 BasiS-TyPen (BaSIC TYPES) cceeeeeeeeieeetieeeieeeeieesieeeeieeseeesstesseeesseeeseeesseeesnseesssessnsens 74
4.1.3 Zusammengesetzte Typen (Constructed Types) und Namensriumecccoceeee. 75
4.1.4 Objekte und ObJeKtreferenzZencccvevcvieeciiieriieeiiieeiee et 75

4.2 Die Kern-Architektur von CORBAcoccoiiiiiiiiiieeeeeeeee e 78
4.2.1 Sprachanbindung, Stubs und SKeletonsccccccvevveereiieciieeiieeeeecee e 79
4.2.2 Verarbeitungsszenario: Bruchrechnungcccccoiviiiiiiiiiiiiieeeee e, 81
4.2.3 ObJEKI-AAPIET ..eeeiiiiieiieeiee ettt ettt ettt ettt e e st et e b 83
4.2.3.1 Basic Object Adapter (BOA)ooocveeieieieeeieeeiee ettt iee e seee e eseaeeeeeees 84

4.2.3.2 Library und Object Oriented Database Adapter (LOA, OODA) 84

4.2.3.3 Portable Object Adapter (POA)ooovoiiiieiieeiectee ettt 85

4.2.4 Kommunikation und Interoperabilititccooceeiieeniiiiniiiniiieneeeeceee e 85

4.3 SEIVICES uvtiiuiieeiiieieeit ettt ettt ettt et e s bt e et e s a e et e e s bt e e bt e sab e et e e shb e ebb e et e e eateeneenaee 86
4.3.1 Der CORBA EVENE SEFVICE ...oovuueiaiiiiiiiiiiieiteeiee ettt ettt 88
4.3.1.1 Allgemeine Spezifikationenc.ccccoeceeriiiiriieeriieeieeeie e eiee e 89

4.3.1.2 EVENE CHANNECL ...ttt ettt aaaeeaes 90

4.3.2 Die CORBA Persistent Object und Persistent State Servicescocuvveeeevereveennnnn 93

4.3.3 Der CORBA Lifecycle Serviceooouiiiiiiiiiiiiiiiiiiiiieeeieeeiteeiee et 94
4.3.4 Der CORBA Transaction SETVICEccccouuuemiiieioiiiieeiiieenite et eiteeiteesiie e e e s 96
4.3.5 Der CORBA QUETY SETVICE ...cccueeeeieeeiieeiieeseeeeee et eeee st sveesetee st e esaessnaesnnsee e s 98

4.4 Entwurf und Programmierung in CORBA-Umgebungenc.cccocceeeeeniinieennnenne 100
4.5 Modellierung von Daten-Objekten, Migration und Leistungsaspekte 102
4.6 Verwendete CORBA-SYSIEMEcc..ooouiiiiiiiiiiiiiieeeceeeeeeeee e 104
4.0.1 OTDIX coeiiiiieitee ettt st bttt sttt sbe e e 104
4.6.2 ORBACUS ...ueiiiiiiiitieeet ettt ettt et bbbt ettt s bt b e 105
4.6.3 Component BrOKETcccccooiiiiiiiiiiiiieierteeerc ettt 106

4.7 Komponenten in CORBA ..o 107
4.7.1 Die Business Object Component Architecture (BOCA)cccoovvvevvverieeiieeecie e 107
4.7.2 CORBA COMPONEALS ..ottt ettt sttt sttt et e 108

4.8 Abgrenzung zu anderen Middleware-LOSUNZENc.cccooeeeiieneenieeiiienienieeieeen 108
4.8.1 DCE ..ottt ettt bttt b e et 109
4.8.2 (D)COM, OLE UNd ACHVEX ..coueiiiriiieeiietenieeiieitestesit ettt sttt e 109
4.8.3 (D)SOM .ttt et ettt st ettt s e 111

4.9 ZusammENTaSSUNEccceerviriiiirieriienie et ettt e et e s et e sieeseeereesiee e s e saneenee e 111
. Datenquellen und Datenzugriff 113
5.1 Charakterisierung von Datenquellenccoccceevviieiiiieniiieiniieniie e 114
S5.101 DALBIEIN ettt ettt et st sttt sb e she e st naees 114
5.1.2 Relationale DBVS ...ttt ettt 115
5.1.3 Objektorientierte DBVS ..ot 116
5.1.4 Objektrelationale DBVS ..ot 117
5.1.5 Durch Anwendungsprogramme gekapselte Datenquellenc.cccooveeviieeniennnnen. 118
5.1.6 ZusammenTaSSUINZccccceriuiiiiiieiiiiiiieenieeeite et e et e et e esabee sttt e sbeesabeeebeesbeeebaeenarean 118

5.2 Integration und Zugriff tiber DB-Middlewarecccouevvevviniiiinciinniieeeieenne, 120
5.3 Abbildung objektorientierter Datenmodelle auf RDBVS ... 121
5.4 Datenquellen und Data Shipping in CORBA-Umgebungenccccceevvveernnennne. 125
5.4.1 Anforderungen und Modelliertungcccceceeerieiriieiieeeieeiee e et e e 125
5.4.2 Einsatz des CORBA Persistent Object bzw. des Persistent State Services 126
5.4.3 Datenzugriff iiber den CORBA Query Serviceccocevvervirvinieeniineeneenecneenen 126
5.4.4 Migration von Objekten iiber den CORBA Lifecycle Serviceccccoevveevveceneannen. 127
5.4.5 Datenaustausch iiber den CORBA Externalization Servicecccccoceevvvueenueannnen. 128
5.4.6 Proprietire Kopplung zu OODBVS ... 129
5.4.7 Proprietares Data Shipping ohne Einsatz von Common Object Services 131
5.4.8 Proprietire Erweiterungen von CORBA-Systemen am Beispiel Orbix 133
5.4.9 Forschungsprototypen zur Integration von CORBA und DBVS ... 134
5.4.9.1 MIND oottt ettt ettt e 134

5.4.9.2 SHORE ..ottt e 135

5.4.9.3 TEIEME ...coiiiiiieiiienieete sttt sttt et 135

5.4.9.4 TEETGIS ..ottt et 136

5.4.9.5 DICE ..ottt 136
5.4.10Kommerzielle Produkte zur DB-Anbindungcccccooviiiiiiiniiiniiienicenienieee, 137
5.4.10.1DB-Anbindung iiber interne Adapter von CORBA-Produkten 137
5.4.10.2DB-Anbindung tiber CORBA-konforme Datenversorgungsmodule 138
5.4.11708aMMENTASSUINZeeiiiiiiiiiiiieiiteeite ettt et ettt e et e e bt e e st e sabeesbeesabeeenbaeenaeean 138

5.5 Data Shipping im INtra-/INtEINELcoevuveeriiieeriieeiieeeiee e sre e e s 140
5.5.1 HTML-Seiten mit JavaScript und CGI-Skripte im Servercccccovcevveeerneennnnen. 141
5.5.2 HTML-Seiten mit Java-APPIELSccccveeriieriieeiieeieeeeeeite et sre e e eneeesene e 141

5.5.2.1 Java-Applets mit einer Datenversorgung iiber CORBAc.ccceveeennen. 141

5.5.2.2 Java-Applets mit einer Datenversorgung iiber JDBCcccccceeiiiiniennnen. 142

5.5.2.3 Java-Applets mit einer Datenversorgung iiber Java RMI/OS 142

5.5.3 ZUSaMMENTASSUNGZocecviiiiiieiieeiiieeieeetteeieeeeteesteesteeensaeenseeesaseessseesnseesnseeeseennnees 142

6. Entwurf und Implementierung einer modularen Datenversorgung 145

6.1 Die JavaSDAI Socket Bar-

Eine modulare Zugriffsschnittstelle auf Basis des SDAIcocceeviiniiiiiincnen. 146
6.1.1 Konzeptuelle Probleme wihrend der Design-Phasecccccovoiiniiiiniiniinnnnne. 147
6.1.1.1 Anzahl und Umfang von KIassenccccccceeeviriieniieeriiiniieenie e e 148
6.1.1.2 Erzeugung und Freigabe von InStanzenccccceeeceeeciieiieenciiencieeenee e, 148
6.1.1.3 AufZAhIUNGSTYPENooriiiiiiiiiieieee e 149
6.1.1.4 Multiple VErerbungccccccceeviieiieeeieeeiie et eiee ettt svee e e seeeeseeeesnnes 150
6.1.1.5 Verteilung und Transaktionencccceeceeeeriieeriieeeiieeenieerieesieeseeeeeee e 157
6.1.2 Die resultierende GesamtarchiteKtUrccocceeerieiiiiiniiiiniieeniee et 158

6.2 Entwurf und Implementierung der Data Modulesc.ccccovvuvevirneennennnnnnne. 161
6.2.1 Proprietires Data Shipping liber CORBAcocciiiiiiiiiiiiiieeeeee e 162
6.2.2 Data Shipping iiber den CORBA Query Serviceccceevveeveeenieeiiieeeeeeieeeeeennnns 166

6.2.2.1 Anfragesprache und DatensStrukturencccoecveveveeeeciveeiieenieesiee e 167
6.2.2.2 Implementierung der SEIVETccceervieriiiieniieenieeeieeeiteeiteesie et neee e 170
6.2.2.3 Implementierung des CLENtSccocceeriiiiiiiiiniiiiiniie et 172
6.2.3 Data Shipping Gber IDBCcoooiiiiieiee ettt 175
6.2.4 Operation Shipping gemil ISO 10303-20coceiiiiiiiiiiiiieiieceeeee e 176
6.2.5 Gegeniiberstellung und ZusammenfassSungc.cccoevceeenieenieeniieniieeneeniee e 178

6.3 Verwendete APPHKAtIONENcccuieiiiiiiiiiiieiiieeniee et eee e eiee e e e e svee e 180
6.3.1 BiINAre BAUMEcceooiiiiiiiiiiiiiiieeeetee ettt sttt s 180
6.3.2 Der 007-Benchmarkccccoociiiiiiiiiiiiiiiceeeeeec e 181
6.3.3 Direkte Gegeniiberstellung von Operation Shipping und Data Shipping 182

6.4 MESSUNZEM ...ooveiiiiiiiiiieiie ettt ettt ettt et e sene e bt s saneeneeeane 183
6.4.1 Vergleich von Operation Shipping und Data Shipping tiber SDAILccccce... 184
6.4.2 Direkte Gegeniiberstellung von Operation Shipping und Data Shipping 186
6.4.3 Bewertung verschiedener Ansétze zum Data Shipping iiber JavaSDAI 189

6.4.3.1 Allgemeiner Vergleich aller Data Modulesccccocccoceircincuencuinecnnen. 190
6.4.3.2 Leistungssteigerungen durch Prefetchingc.cccoeceevievieiiinienseenecnnen. 191
6.4.3.3 Pufferverwaltung mit Verdringung von Objektencccecvvvcivveneeennnnen. 193
6.4.3.4 Lohnt sich der Einsatz von JavaStations?cc..ccocceeveevinneeniinecnsieeieenen. 194
6.4.3.5 Entwicklung von JDK-Versionen, JIT-Compilern und JavaSDAI 195
6.4.3.6 ZUSaMMENTASSUNZ ...cecvvieiiieiieeiiieiieeeteeeteeesteeseeeeseeesaseessseessseesnseessseesnnes 197

6.5 Verwandte Arbeiten im Bereich STEP/SDAI und CORBAccccooiiiiiiinenne 198
6.5.1 Das NIIIP-ProjEKEcccceeeiiiiiiiiiieeiieeciieeeiee et siee et e eteeeteesaeesteesneesnneesnneesnnes 199
6.5.2 Das ESPRIT-Projekt VEGA und seine COAST-Architekturccccccveveivverceeennen. 200
6.5.3 Die O.P.EN.-PIAOrM ..oc.eiiiiiiiiiiiiieeee et 200
6.5.4 Harmony: Prototyp eines CORBA Query Servicecccooevvveeciieeceeeieeecieeeieeenes 201

6.6 Wo liegt der FlaschenhalS?ccoooiiiiiiiiiiiiiieiieeeeeeee et e 201

6.7 Erfahrungen und Probleme mit CORBA-Implementierungenc.ccccceeeveennennee. 202

7. Zusammenfassung und Ausblick 205

Anhang: Literatur 211

10

Zusammenfassung

Rechnergestiitzte Informationssysteme stellen heutzutage fiir viele Branchen ein unverzichtba-
res Hilfsmittel dar. Ohne sie wire die Komplexitdt von Abldufen und die damit verbundene
Menge von Daten kaum noch zu bewiltigen. Dieser Sachverhalt trifft insbesondere fiir die Ent-
wicklung neuer Produkte zu, bei der zunéchst extrem viele Daten aus vorangegangenen Arbei-
ten und zugrundeliegenden Richtlinien zu beriicksichtigen sind. Gleichzeitig entsteht wihrend
der Entwicklung eine Menge neuer Daten, die spiter als Grundlage der Produktion dienen. Wir
betrachten deshalb rechnergestiitzte Entwurfsumgebungen als reprisentatives Beispiel fiir
datenintensive Informationssysteme, bei denen sowohl grole Mengen von Daten gelesen als
auch erzeugt bzw. geschrieben werden. Anhand dieses Szenarios werden wir deshalb die ein-
zelnen Aspekte und Probleme diskutieren und verdeutlichen.

Wirft man nun einen genaueren Blick auf Entwurfsumgebungen und die darin enthaltenen Ent-
wurfswerkzeuge, so ist es sicherlich unbestritten, dal diese die Entwicklung neuer Produkte
beschleunigen und zugleich eine Steigerung der Qualitit bewirken. Weiterhin ermdoglichen sie
eine verstiarkte Wiederverwendung vorhandenen ,,Wissens*, das in Form gespeicherter Daten
vorliegt. Die einzelnen Werkzeuge sind meist sehr weit entwickelt und weisen dementsprechend
nur wenig Potential fiir weitere Optimierungen auf. Entlang der gesamten Prozefkette werden
aber eine Reihe verschiedener Werkzeuge und Programme bendtigt, die meist nur eine unzurei-
chende Interoperabilitit bieten. Insbesondere der Datenaustausch zwischen den Werkzeugen ist
hiufig mit einem Informationsverlust durch inkompatible Datenmodelle verbunden. Es ist also
eine umfassende Integration aller Programme nétig, die eine einheitliche Verarbeitung entlang
der ProzeBkette garantiert. Hierfiir bieten sich sog. Komponentenmodelle an, mit denen alle
Werkzeuge als gekapselte Komponenten zu einem Gesamtsystem integriert werden. Das Kom-
ponentenmodell sollte dabei von der heterogenen Realisierung einzelner Bausteine (Program-
miersprache, Betriebssystem, Rechner usw.) abstrahieren und eine offene Architektur des
Gesamtsystems ermdglichen, die sich bei Bedarf um zusétzliche Werkzeuge erweitern 143t. Die
Basis fiir die Interoperabilitiit der einzelnen Komponenten bildet dabei ein globales Datenmo-
dell. Weiterhin sollten Daten nicht unkontrolliert zwischen den Werkzeugen kopiert werden
(Data Exchange), sondern es ist eine gemeinsame Nutzung aller Datenquellen anzustreben
(Data Sharing). Dabei ist natiirlich o.g. Heterogenitit entsprechend zu iiberbriicken. Im Rah-
men dieser Arbeit wollen wir deshalb geeignete Strategien fiir eine globale Datenversorgung
finden, bei denen alle diese Aspekte beriicksichtigt werden. Obwohl unsere Rahmenbedingun-
gen speziell durch Entwurfsumgebungen geprigt werden, so sind die entwickelten Konzepte
und Ideen im allgemeinen aber auch auf andere Informationssysteme iibertragbar.

11

Bei der Datenversorgung gilt es vor allem zwei Schwerpunkte zu betrachten: Zuerst einmal
benodtigen wir eine formale Sprache zur Beschreibung des globalen Datenmodells. Beides
(Sprache und Modell) sollte moglichst standardisiert (und somit weit verbreitet) sein. Andern-
falls erhilt man ein proprietdres System, das kaum erweiterbar ist. Im Bereich der Entwicklung
und Produktion von Waren sehen wir z.B. den STEP-Standard (ISO 10303, Standard for the
Exchange of Product Data) als den geeigneten Kandidaten. Er enthilt sowohl eine eigene
Datenmodellierungssprache als auch standardisierte Schemata fiir ausgewihlte Anwendungs-
bereiche.

In einem zweiten Schritt ist eine ausreichende Schnittstelle zum Datenzugriff zu gewéhrleisten.
Diese muf} das ausgewihlte (globale) Datenmodell unterstiitzen und die Heterogenitét aller
beteiligten Komponenten angemessen iiberbriicken. In diesem Sinne muB sie natiirlich auch mit
dem zugrundeliegenden Komponentenmodell harmonieren (wiederum moglichst standardi-
siert). Es ergibt sich also eine enge Verzahnung zwischen Datenquelle(n), technischer Infra-
struktur zur Uberwindung von Rechnergrenzen und Heterogenitit (sog. Middleware) und Kom-
ponentenmodell. Nach einer Begriffskldrung wollen wir deshalb einen genaueren Blick auf den
CORBA-Standard (Common Object Request Broker Architecture) werfen, der sowohl ein Kom-
ponentenmodell als auch eine Middleware-Losung verspricht. Wir werden erkennen, daf}
CORBA zwar michtige Konzepte fiir eine auftragsorientierte Verarbeitung hat, gleichzeitig
aber deutliche Mingel im Bereich datenintensiver Anwendungen aufweist. Nach einer Klassi-
fikation von Datenquellen und ihren typischen Schnittstellen werden wir deshalb untersuchen,
wie sich diese in eine CORBA-Umgebung integrieren lassen.

Neben der reinen Diskussion von Datenversorgungsstrategien wollen wir weiterhin ausgewéhlte
Methoden anhand eines Prototypen evaluieren. Als Basis dient uns dabei die neu entwickelte
Anbindung des SDAI (Standard Data Access Interface) von STEP an die Sprache Java (ISO
10303-27). Diese wurde im Rahmen der vorliegenden Arbeit wesentlich mitgestaltet und
ermOglicht den simultanen Zugriff auf unterschiedliche Datenquellen iiber unterschiedliche
Datenversorgungsstrategien. Wir werden mit unseren Prototypen zwei verschiedene CORBA-
basierte Losungen einem JDBC-basierten Ansatz gegeniiberstellen. Die Datenquellen und ihre
Zugriffsschnittstellen sind dabei als sog. Data Modules in die SDAI-Schnittstelle integriert. Es
zeigt sich, dal CORBA unter gewissen Umstinden zur Realisierung einer effizienten Datenver-
sorgung benutzt werden kann, das zugrundeliegende Modell aber nicht dem eigentlichen
Grundgedanken von CORBA entspricht. Insbesondere lassen sich nur wenige der standardisier-
ten CORBA-Komponenten (sog. Services und Facilities) benutzen.

Ergénzend zum Aspekt der Datenversorgung werden wir erkennen, dal weder CORBA noch
konkurrierende Ansitze wie DSOM, DCOM oder Java Beans ein vollstandiges Komponenten-
modell (entsprechend unseren Anforderungen) realisieren.

Abgerundet wird diese Arbeit durch eine Abgrenzung zu verwandten Projekten im Bereich
STEP und CORBA. In einigen Fillen haben wir sogar in Zusammenarbeit mit den beteiligten
Gruppen gemeinsame Prototypen entwickelt, um die jeweiligen Konzepte besser vergleichen zu
konnen.

12

Kapitel 1
Einleitung

In vielen Bereichen kann heutzutage nicht mehr auf rechnergestiitzte Informationssysteme ver-
zichtet werden. Dies betrifft nicht nur die industrielle Verarbeitung und Fertigung, sondern héu-
fig auch private Haushalte. Sei es nun die WWW-Seite mit dem Kinoprogramm, Home Ban-
king, die Buchung einer Reise iiber das Internet oder die Konstruktion eines neuen Motors im
CAD-Labor - alle Informationssysteme haben eines gemeinsam: Sie verarbeiten Daten. Ohne
die Moglichkeit zum Extrahieren und Speichern von Daten wiren sie vollkommen nutzlos. Wir
bendtigen also entsprechende Techniken zur Datenversorgung. Diese muf3 im allgemeinen zwei
Arten des Zugriffs unterstiitzen: lesen und schreiben. Manche Informationssysteme basieren
lediglich auf rein lesenden Operationen. Ein Beispiel hierfiir sind Systeme zum Information
Retrieval (die leider hidufig schon Informationssystemen im allgemeinen gleichgesetzt werden).
Sie stellen unserer Ansicht nach aber nur die einfachere Variante dar. Schwieriger wird es, wenn
auch der schreibende Zugriff unterstiitzt werden muB3. Beispiele hierfiir sind Buchungs- oder
Reservierungssysteme (oder Home Banking). Aber auch diese benotigen im allgemeinen fiir
jeden Verarbeitungsschritt nur eine relativ kleine Menge von Daten als Ein- und Ausgabe. Wirk-
lich komplex wird es erst, wenn fiir jede Operation grolere Mengen von Daten benotigt werden.
Ein reprisentativer Vertreter dieser Kategorie sind z.B. Informationssysteme, die der Entwick-
lung neuer Produkte dienen (wie etwa Entwurfswerkzeuge). Hier sind zunéchst extrem viele
Daten aus vorangegangenen Arbeiten und zugrundeliegenden Richtlinien zu beriicksichtigen.
Gleichzeitig entstehen aber wihrend der Entwicklung eine Menge neuer Daten, die spiter als
Grundlage der Produktion dienen. Dieses Szenario stellt somit das anspruchsvollste Einsatzge-
biet fiir Informationssysteme dar. Nachdem es die méchtigsten Strategien zur Datenversorgung
benotigt, wollen wir es als zugrundeliegendes Anwendungsgebiet dieser Arbeit wéhlen. Mit
dieser Entscheidung erreichen wir, daf} die erzielten Ergebnisse und die entwickelten Konzepte
recht einfach auf andere Typen von Informationssystemen zu iibertragen sind. Letztendlich stel-
len sie somit einen allgemeinen Ansatz zur Datenversorgung dar. Im folgenden wollen wir uns
daher verstiarkt der Problematik sog. Entwurfsanwendungen zuwenden. In den néchsten
Abschnitten beginnen wir dafiir mit einer Einleitung in die Charakteristika derartiger Systeme
und einer Vorstellung der konkreten Rahmenbedingungen dieser Arbeit.

13

1.1 Anwendungsszenario: Entwurfsumgebungen

Bei der Entwicklung neuer Produkte kann heutzutage nicht mehr auf den Einsatz rechnerge-
stiitzter Entwurfswerkzeuge, wie z.B. CAD-Programme, verzichtet werden. Dies liegt einerseits
an der Komplexitit moderner Produkte, deren Beschreibung mit konventionellen Methoden
nicht mehr handhabbar ist, andererseits an der Anforderung, in immer kiirzeren Abstinden neue
Modelle auf den Markt zu bringen. Diese Waren konnen aber nur dann erfolgreich sein, wenn
sie neue, innovative Ideen realisieren, was wiederum hohere Anforderungen an den Entwurfs-
prozeB stellt. Letztendlich stellen Dauer und Kosten der Entwurfsphase ein entscheidendes Kri-
terium dar, das ein hohes Potential fiir Optimierungen bietet. Aus diesem Grunde muf} die in
diesem Bereich verwendete Software hochgradig an die Bediirfnisse des jeweiligen Entwickler-
Teams angepalit sein. Sie sollte sowohl alle benotigten Werkzeuge umfassen, als auch alle Daten
bestehender Produkte langfristig speichern, so da} diese fiir zukiinftige Entwicklungen nutzbar
sind. Man spricht in diesem Fall von Entwurfsumgebungen.

In den letzten Jahren haben sich nun einige solcher Software-Systeme am Markt etabliert, die
aber nicht immer eine ausreichende Unterstiitzung bieten. Oftmals sind die einzelnen Werk-
zeuge selbst zwar hochgradig optimiert, es fehlt aber eine angemessene Unterstiitzung fiir die
Interaktion. So gibt es hdufig keine umfassende Kopplung zwischen Stiicklistenverwaltung und
CAD-Programm: Wird die 3D-Zeichnung um weitere Teile ergédnzt, so mufl die Stiickliste
anschlieBend manuell aktualisiert werden. Anhand dieses Beispieles wird deutlich, dal vielfach
eine hohere Integration der einzelnen Werkzeuge wiinschenswert wire. Dies ist aber nicht so
einfach moglich. Entweder ist die gesamte Entwurfsumgebung von einem einzigen Software-
Hersteller entwickelt worden, so da3 man auf dessen Mitwirkung angewiesen ist (die Schnitt-
stellen zwischen den einzelnen Werkzeugen sind meist nicht von aullen sichtbar), oder die ein-
zelnen Werkzeuge sind zwar von unterschiedlichen Herstellern, ihre Schnittstellen sind aber
nicht offen bzw. michtig genug, um die gewiinschte Interoperabilitiit zu erreichen. Ein weiterer,
sehr wesentlicher Punkt, der von praktisch keiner kommerziell verfiigbaren Systemldsung
unterstiitzt wird, ist die Integration von existierenden Altsystemen (sog. Legacy-Systemen).
Hiufig gibt es Programme mit korrespondierenden Datenbestéinden, die sich seit Jahren oder
gar Jahrzehnten etabliert haben und deren Ablosung weder wiinschenswert noch sinnvoll wiire.
Hier sprechen alleine die Kosten fiir die Software und die Umschulung der Mitarbeiter dagegen.
Zusitzlich bergen neue Systeme auch immer neue Fehlerquellen.

Letztendlich wire es also wiinschenswert, da3 ohne groBBen Aufwand fiir jeden Entwickler eine
individuelle Losung erstellt werden kann, die genau auf dessen Bediirfnisse abgestimmt ist.
Dabei sollten die einzelnen Entwurfswerkzeuge quasi als Bausteine zu einer integrierten Umge-
bung zusammengestellt werden konnen. Insbesondere sollte es auch moglich sein, existierende
Altsysteme als einen dieser Bausteine zu verwenden. Dabei ist es natiirlich entscheidend, daf3
nicht fiir jeden Entwickler alles neu implementiert werden muf3. Vielmehr sollte es einen Satz
von grundlegenden Werkzeugen bzw. Bausteinen geben, die sich dann individuell gruppieren
und konfigurieren lassen. In der Literatur werden diese Basis-Bausteine im allgemeinen als
Komponenten bezeichnet, mit denen dann die gewiinschte Umgebung erstellt wird.

14

Damit die resultierenden Systeme nicht wiederum proprietédr und abhiingig von der Produktpa-
lette einzelner Software-Hersteller sind, sollten alle Komponenten wohldefinierte Schnittstellen
haben und auf einem allgemein anerkannten Modell zur Interaktion basieren. Zu empfehlen ist
in beiden Punkten die Verwendung internationaler Standards. Nur so 148t es sich erreichen, daf}
einmal erworbene und eingesetzte Bausteine auch zukiinftig weiterverwendet werden konnen.

Im folgenden wollen wir nun untersuchen, wie sich internationale Standards zur Modellierung
von Komponenten und den daraus resultierenden Entwurfsumgebungen einsetzen lassen. Die in
diesen Systemen zu verarbeitenden Daten beschreiben sowohl Produkte oder Dienstleistungen
als auch ProzeBabldufe und sog. Business Rules. Die Menge aller Daten stellt somit einen erheb-
lichen Teil des (technischen) Wissens eines Unternehmens dar. IThre Verfiigbarkeit ist daher ent-
scheidend fiir die Entwicklung neuer Produkte, so da3 wir einen besonderen Schwerpunkt auf
die Realisierung einer effizienten Datenversorgung legen werden. Natiirlich wiirde eine Diskus-
sion dieses Themas in aller Allgemeinheit den Rahmen dieser Arbeit bei weitem sprengen. Wir
werden deshalb von konkreten Rahmenbedingungen ausgehen, die im folgenden erdrtert wer-
den. Anhand dieser stellen wir anschlieBend die resultierenden Anforderungen und Ziele vor,
die uns als Basis fiir das weitere Vorgehen dienen.

1.2 Rahmenbedingungen

Das in der vorliegenden Arbeit beschriebene und zugrundegelegte Szenario wird im wesentli-
chen durch die Projekte innerhalb der Abteilung “ProzeBkette Produktentwicklung - FT3/EK”
des DaimlerChrysler Forschungszentrums Ulm bestimmt. Diese beschéftigt sich bereits seit
einigen Jahren mit der Entwicklung integrierter Entwurfsumgebungen, um die einzelnen
Geschiftsfelder des Konzerns in geeigneter Weise zu unterstiitzten. Dabei gilt es, eine Menge
verschiedener Produkte und Produktklassen zu beriicksichtigen: Personenkraftwagen und Nutz-
fahrzeuge von Mercedes-Benz, Flugzeuge, Helikopter und Raumfahrttechnik der DASA, Schie-
nenverkehrsmittel von Adtranz und vieles mehr. Aufgrund der Vielfiltigkeit dieser Palette
sowie der Komplexitit der einzelnen Waren gibt es letztendlich eine Unmenge verschiedener
Entwurfswerkzeuge, die nur selten eine geeignete Schnittstelle zur Interaktion bieten. Resultie-
rend zerfillt die Entwicklung immer noch in viele Abschnitte (sog. Insellosungen), zwischen
denen die erzielten Ergebnisse sowie die gewonnenen Daten mit erheblichen Aufwand konver-
tiert oder aufbereitet werden miissen. Ziel ist es nun, eine durchgehende ProzeBkette zu errei-
chen, bei der alle zur Entwicklung eines Produktes benotigten Software-Systeme und Werk-
zeuge interagieren und der gesamte Prozefl moglichst automatisch, z.B. mit einem Workflow-
System, kontrolliert werden kann. Weiterhin sollte es moglich sein, gezielt in der Vergangenheit
erworbene Erkenntnisse zu nutzen, um z.B. die Zahl der konkret zu produzierenden Prototypen
und durchzufiihrenden Testldufe zu reduzieren. Diese Art der Entwicklung wird auch als Digital
Mockup bezeichnet.

Natiirlich 146t sich dieses Ziel nicht von heute auf morgen erreichen. Vielmehr muf} zuerst unter-
sucht werden, welche Probleme einer Integration im Wege stehen, um anschlieBend erste Pro-
totypen in ausgewihlten Bereichen zu testen. Dabei gilt es eine Reihe weiterer Faktoren zu

15

beriicksichtigen. So ist z.B. bei den meisten Produkten davon auszugehen, daf3 nicht alles selbst
gefertigt, sondern einige Bestandteile von Zulieferern bezogen werden. Sind diese Teile bereits
auf dem Markt erhéltlich, so muf3 ihre Beschreibung, dessen Format im wesentlichen durch den
Zulieferer gegeben ist, in geeigneter Weise in das eigene System eingespeist werden. Anders
herum kann es natiirlich auch vorkommen, daf Teile zwar intern spezifiziert worden sind, man
ihre Herstellung aber delegieren will. In diesem Fall miissen die Daten dem Zulieferer geeignet
tibermittelt werden. Im Prinzip kann es sogar vorkommen, daf} bei der Spezifikation bereits auf
die spezielle Umgebung des Herstellers einzugehen ist - sowohl im Bezug auf die eingesetzte
Software als auch auf vorhandene Produktionsanlagen. Im Idealfall wiren wiederum alle
Systeme integriert und man spriache von sog. Virtual Enterprises.

Das gerade geschilderte Szenario deutet bereits auf einen weiteren Aspekt hin: die Modularitit
von Produkten. Heutzutage ist es durchaus iiblich, dafl einzelne Teile gleichzeitig fiir mehrere
Produkte entwickelt werden, die nicht unbedingt dem gleichen Geschiftsfeld zugeordnet sind.
Warum sollte man z.B. nicht den Motor eines PKW auch fiir kleinere Nutzfahrzeuge verwen-
den? Die ProzeBketten und Systeme dieser Bereiche konnen also nicht isoliert betrachtet wer-
den, sondern es miissen von vornherein geeignete Schnittstellen zur Interaktion bereitgestellt
werden. Im Rahmen einer Ubergangslésung kann dies durch Datenaustausch in abgesprochenen
Formaten geschehen. Langfristig ist aber auch hier eine Integration aller Systeme anzustreben.

Ein weiterer Aspekt ist schlieBlich die Archivierung von Daten. Fiir einige Produkte muf3 auch
nach Jahrzehnten noch eine kompetente Wartung garantiert werden, fiir die unter Umstinden
der Zugriff auf die wihrend der Entwicklung angefallenen Daten notig ist. Wurden diese nur im
meist proprietdren Format der Entwicklungswerkzeuge abgespeichert, so konnen sie dann mog-
licherweise nicht mehr gelesen werden, da die entsprechenden Systeme inzwischen abgelost
wurden. Die Nachfolger-Systeme sind oftmals nicht mehr in der Lage, die Daten korrekt zu
interpretieren. Insbesondere fiir dieses Problem, wie aber auch fiir die beiden zuvor angespro-
chenen Punkte (die Einbindung von Zulieferern und die geschiftsfeldiibergreifende Entwick-
lung), ist die Verwendung eines einheitlichen, langfristig und global verfiigbaren und interpre-
tierbaren Datenformates bzw. -modelles von entscheidender Bedeutung. Die DaimlerChrysler
AG (bzw. die urspriingliche Daimler-Benz AG) hat sich deshalb bereits vor Jahren entschieden,
an der Entwicklung eines international akzeptierten Standards fiir die Verarbeitung von Pro-
duktdaten mitzuwirken und diesen auch einzusetzen. Die Wahl ist dabei auf den ISO-Standard
10303 (STEP - Standard for the Exchange of Product Data) gefallen, der u.a. das Application
Protocol 214 (kurz AP 214) definiert, welches ein speziell fiir die Automobilindustrie abge-
stimmtes Schema beschreibt. Neben der Archivierung soll dieses Format auch zunehmend als
Basis fiir den Datenaustausch (sowohl intern als auch mit Zulieferern) benutzt werden sowie
langfristig die Grundlage fiir ein globales Datenmodell integrierter Systeme bilden.

In einem ersten Schritt wurde nun in den letzten Jahren damit begonnen, die Vielzahl existie-
render Werkzeuge dahingehend zu erweitern, dal STEP-basierte Daten sowohl importiert als
auch exportiert werden konnen. Auf diese Weise hat man erreicht, da3 die in den einzelnen
Schritten der ProzeBkette verwendeten Systeme entkoppelt wurden und nicht mehr von den im
vorausgehenden oder nachfolgenden Schritt verwendeten Systemen und deren oftmals herstel-
lerspezifischen Formaten abhingen. Somit ist es auch nicht mehr nétig, umfangreiche Konver-
tierungsprogramme, sog. Prozessoren, von einem proprietiren Format in ein anderes zu schrei-

16

ben. Es ist jetzt ausreichend, fiir jedes Format einen Import- sowie einen Export-Filter zum
STEP AP 214 zur Verfiigung zu haben. Natiirlich bleiben so die existierenden Insellosungen
erhalten, und es kann noch keine integrierte Entwurfsumgebung realisiert werden. Jedoch ist es
ein erster Schritt zur Kapselung einzelner Programme und Werkzeuge, die spéter als eigenstin-
dige Komponenten in ein Gesamtsystem einzubetten sind. Vor diesem Schritt bleibt aber zu kl&-
ren, welches Modell zur Interaktion und Integration verwendet werden kann. Ganz wichtig ist
dabei, dall moglichst viele normierte oder standardisierte Schnittstellen verwendet werden und
keine neuen Abhingigkeiten gegeniiber einzelnen Herstellern entstehen. Diese sind vielmehr
weitestgehend zu reduzieren, so dafl einzelne Komponenten auch durch Programme anderer
Software-Hersteller zu ersetzen wiren. Weiterhin ist es wiinschenswert, da moglichst viele
Komponenten durch existierende oder auf dem Markt verfiigbare Massen-Software (sog. Com-
mon of the Shelf Software - COTYS) realisiert werden konnen. Insbesondere sollen nur wenig
eigene Ergiinzungen notig sein, so daf} keine teuren Spezial-Losungen entstehen. Innerhalb des
Konzerns wird derzeit zunehmend der von der OMG (Object Management Group) entwickelte
CORBA-Standard (Common Object Request Broker Architecture) als die globale Integrations-
und Kommunikationsplattform in Betracht gezogen. Ein besonderer Vorteil dieses Standards ist
die Unabhéngigkeit von Programmiersprachen und Betriebssystemen, so da3 z.B. auch in Java
geschriebene, Intra-/Internet-fahige Client-Komponenten integriert werden konnten. Gerade im
Hinblick auf weltweite Unternehmenszusammenschliisse, Virtual Enterprises sowie einzelne
Kooperationen bei der Produktion von Waren ist dies besonders wichtig.

1.3 Anforderungen und Ziele

Wenn wir die gerade erwihnten Rahmenbedingungen betrachten, so gilt es vor dem Entwurf
integrierter Entwurfsumgebungen, zuerst einmal folgende Aufgabe zu 16sen: Wir benétigen ein
geeignetes Komponentenmodell mit den dazugehorigen Schnittstellen und Datenformaten. So
einfach das auch klingt, die Frage, was denn nun iiberhaupt geeignet bedeutet, ist schon kom-
plex genug. Wir wollen daher kurz einige Anforderungen aus dem letzten Abschnitt extrahieren:

® Unterstiitzung einer durchgehenden Prozef3kette

® Realisierung einer iibergreifenden Ablaufkontrolle (Workflow)

® Geschiftsfeld- sowie unternehmensiibergreifende Verarbeitung

® Unabhingigkeit von einzelnen Software-Herstellern

® Verwendung von Standards und standardisierten Schnittstellen

® Integration existierender Werkzeuge, keine Re-Implementierung

¢ Kapselung von Komponenten (Austauschbarkeit), Einsatz von COTS zur Kostensenkung
® STEP als einheitliches Datenmodell

® Anbindung an das Intra-/Internet, Bildung sog. Virtual Enterprises

® Unterstiitzung heterogener Umgebungen (Hardware und Software).

17

Anhand dieser Punkte wird bereits deutlich, daB3 die Suche nach einem reinen Kommunikations-
mechanismus alleine nicht ausreicht. Vielmehr bendtigen wir ein umfassendes Modell, das
Konzepte und Techniken von Netzwerk-Protokollen bis hin zu Schnittstellen auf der Werkzeug-
ebene festlegt. Gleichzeitig darf es aber nicht die Palette der Programmiersprachen, Betriebssy-
steme und Rechnerumgebungen einschrinken oder auf ein Software-Hersteller fixiert sein
(sonst konnten nicht alle Altsysteme integriert werden). Wenn wir uns dieser Tatsache bewuf3t
werden, so ist die Verwendung des bereits zitierten CORBA-Standards eigentlich nur allzu
offensichtlich. Auf den ersten Blick gibt es keinen anderen Standard, der so umfassend ist und
mit diesen oder dhnlichen Punkten wirbt. Wir konnten nun die Hénde in den Schof} legen und
verkiinden, daf} die Losung gefunden ist - das wire aber allzu naiv: Nur weil es (derzeit) keinen
anderen Standard gibt, heif3t das nicht, da3 CORBA nun die ultimative Losung ist. Im Gegenteil,
wir sollten genau iiberpriifen, inwieweit CORBA die oben genannten Punkte erfiillt, und, was
noch viel wichtiger ist, wir miissen untersuchen, ob eine Reihe impliziter Anforderungen erfiillt
werden, die gar nicht mehr aufgefiihrt sind, da sie fiir heutige Systeme bereits selbstverstandlich
sind. Stellvertretend sind im Rahmen dieser Arbeit die folgenden zu nennen:

® Effizienz

Wie sieht das Laufzeitverhalten von CORBA-Komponenten aus? Konnen sie dhnlich effi-
zient realisiert werden wie bestehende Programme oder fiihrt das zugrundeliegende Modell
zu inakzeptablen Leistungseinbuflen? Wo liegen die Grenzen?

® Lokalitit und Pufferung von Daten

In der Informatik ist es unbestritten, da3 die meisten Berechnungsschritte eine relativ hohe
Lokalitit aufweisen, d.h., daB} in der Regel zu einem Zeitpunkt nur ein relativ kleiner Pro-
grammabschnitt auf einem kleinen Satz von Daten arbeitet. Beides sollte somit moglichst
lokal verfiigbar sein. Wird dies, insbesondere die Pufferung von Daten (sog. Caching),
geeignet durch CORBA unterstiitzt?

® Integration und Zugriff auf Datenquellen bzw. Archive

Lassen sich Datenquellen, die ja quasi das Wissen eines Unternehmens darstellen, in ange-
messener Weise in eine CORBA-Umgebung integrieren? Kann weiterhin die Effizienz und
Michtigkeit der in den letzten 20 Jahren entwickelten Datenbankverwaltungssysteme
(DBVS) genutzt werden?

Ziel und Kern dieser Arbeit ist es also, kritisch hinter die Kulissen von CORBA zu schauen und
zu untersuchen, ob die genannten Kriterien erfiillt werden konnen. Neben einer Betrachtung der
aus den Rahmenbedingungen entstandenen Anforderungen soll der Schwerpunkt aber mehr auf
der Beantwortung der Frage liegen, ob und in welcher Art und Weise eine effiziente Datenver-
sorgung fiir Komponenten einer CORBA- und STEP-basierten, integrierten Entwurfsumgebung
zu realisieren ist. Selbstverstiandlich werden wir dabei auch ein wenig tiber den Tellerrand
schauen und uns zu verwandten Konzepten abgrenzen.

Auf der anderen Seite soll in dieser Arbeit gerade nicht ein weiteres Konzept zu Schema-Inte-
gration heterogener Datenquellen entwickelt werden. Hierzu gibt es geniligend andere Arbeiten,
z.B. [Sa98], so dal wir den STEP-Standard zur Definition eines globalen Schemas benutzen,
ohne dabei niher auf notwendige Abbildungen zu lokalen Schemata einzugehen. Weiterhin
untersuchen wir hier auch nicht die Probleme bei der Abbildung von standardisierten Schnitt-

18

stellen auf die jeweiligen Altsysteme. Dazu sei z.B. auf [SSSM99] verwiesen. Wir wollen im
Rahmen unserer Untersuchungen lediglich sicherstellen, dal die zugrundeliegenden System-
konzepte den Einsatz sog. Wrapper prinzipiell ermoglichen.

1.4 Vorgehensweise und Aufbau der Arbeit

In den letzten Abschnitten ist deutlich geworden, daf} die gestellten Anforderungen nur durch
die Verwendung einer modularen und aus Bausteinen bzw. Komponenten gebildeten Architek-
tur erfiillt werden konnen. Wir haben aber noch nicht definiert, was wir genau unter diesen
Begriffen verstehen. Aus diesem Grund wollen wir in Kapitel 2 kldren, was sich hinter den
Schlagwortern Komponente, Business Object, Middleware, Multi Tier, Entwurfsumgebung und
Framework verbirgt und wie sie im Kontext dieser Arbeit verwendet werden. Ergiinzend dazu
diskutieren wir einige allgemeine Grundbegriffe der Datenversorgung sowie Charakteristika
einer moglichen Anbindung an das Intra-/Internet. Wir werden erkennen, daf3 in den meisten
Fillen eine datenintensive Verarbeitung vorliegt, fiir die eine lokale Pufferung der aktuell beno-
tigten Daten sinnvoll oder gar erforderlich ist, so dal das Konzept des Data Shipping von zen-
traler Bedeutung fiir die anzustrebende Datenversorgung ist. Im Gegensatz dazu kann es aber
auch vereinzelte Komponenten geben, die eher auftragsbasiert sind und keine Pufferung beno-
tigen. Man spricht in diesem Fall von Operation Shipping. Dieses Konzept sollte ebenfalls
unterstiitzt werden.

In Kapitel 3 geben wir anschlieend eine Einfiihrung in den STEP-Standard, der ja bereits als
das Mittel zur Modellierung eines globalen Datenmodells vorgegeben wurde. Ausgehend von
einem allgemeinen Uberblick stellen wir die zugrundeliegende Datenmodellierungssprache
EXPRESS (EXPRESSive Power), die Zugriffsschnittstelle SDAI (STEP Data Access Interface)
sowie die enthaltenen Schemata, die sog. Application Protocols, vor.

In Kapitel 4 werfen wir schlielich einen genaueren Blick auf den CORBA-Standard und kom-
men damit dem Kern der Arbeit erheblich niher. Beginnen werden wir mit Einfiihrungen in die
zugrundeliegende Object Management Architecture (OMA), die Interface Definition Language
(IDL), die eigentliche Kern-Architektur von CORBA und die darauf aufsetzenden Common
Object Services und Facilities. Diese Konzepte werden anhand eines relativ einfachen Beispie-
les verdeutlicht, das dann genutzt wird, um kurz auf die Moglichkeiten bei der Modellierung
von Daten sowie die dadurch resultierenden Leistungsaspekte einzugehen. Anschlieend stellen
wir die von uns verwendeten CORBA-Systeme (Orbix, ORBacus und Component Broker) vor.
Beendet wird das Kapitel mit einer Abgrenzung zu verwandten Konzepten wie OSF-DCE,
Microsofts (D)COM, ActiveX und OLE sowie IBMs DSOM.

Aufbauend auf einer einleitenden Diskussion typischer Datenquellen wollen wir uns in
Kapitel 5 letztendlich mit dem Thema einer effizienten Datenversorgung von Komponenten
auseinandersetzen. Der Fokus liegt hier klar auf dem Konzept des Data Shipping, dessen Bedeu-
tung wir zuvor in Kapitel 2 unterstrichen haben. Beginnen werden wir mit einer Diskussion der
Einsatzgebiete sogenannter DB-Middleware, einer modernen Technik zur Integration heteroge-
ner Datenquellen. Obwohl die darauf basierenden Systeme als Grundlage dienen konnen, so

19

werden wir zeigen, dal} sie aber nicht ausreichend fiir unsere Anforderungen sind. Anschliefend
folgt dann eine Betrachtung verschiedener Moglichkeiten zur Realisierung von Data Shipping
in CORBA-Umgebungen. Diese bezieht sich zunédchst einmal auf grundlegende Modellierungs-
aspekte und damit im Zusammenhang stehende Common Object Services, wie z.B. den Query,
Persistent Object oder Lifecycle Service. Weitere Diskussion betreffen kommerzielle Produkte
zur Datenbankintegration (z.B. den Orbix & ObjectStore Adapter) und verwandte Forschungs-
arbeiten, die meist eigene Prototypen von CORBA- und Datenbanksystemen integrieren (z.B.
MIND, SHORE). Erginzend dazu untersuchen wir, inwieweit schon Konzepte zum Data Ship-
ping in einzelnen Programmiersprachen enthalten sind und welche Moglichkeiten es fiir Data
Shipping im Bereich des Intra-/Internet gibt.

Ausgehend von diesen theoretischen Ergebnissen wurde nun ein Prototyp entwickelt, mit dem
einige der hier vorgestellten Konzepte evaluiert wurden (siehe Kapitel 6). Beim Design war ins-
besondere auf den Praxisbezug und die Verwendung standardisierter Schnittstellen zu achten,
damit die erzielten Ergebnisse moglichst direkt fiir den Einsatz innerhalb der DaimlerChrysler
AG genutzt werden konnen. Wir haben uns deshalb entschieden, mehrere Datenversorgungs-
komponenten zu realisieren, auf die jeweils tiber die im STEP-Standard enthaltene Zugriffs-
schnittstelle SDAI zugegriffen werden kann. Dabei bot es sich an, aktiv an einer Java-Anbin-
dung der SDAI-Schnittstelle mitzuwirken, deren Entwicklung von der ISO im Jahre 1996 initi-
iert wurde. Auf diese Weise konnte gleichzeitig eine Anbindung an das Internet getestet werden.
Es stellte sich nun auch heraus, daf Java ebenfalls eine geeignete Plattform zur Integration hete-
rogener Datenversorgungstechniken ist, die uns zur Entwicklung der JavaSDAI Socket Bar ver-
anlafte. Diese wurde in die internationale Standardisierung eingebracht und ist mittlerweile
Bestandteil von ISO 10303-27. Uber die Socket Bar kann eine Abstraktion von den verwendeten
Kommunikationsmechanismen und Komponentenmodellen erreicht werden, so da3 darauf auf-
setzende Applikationen liber eine homogene Schnittstelle auf weltweit verteilte Datenbestdnde
zugreifen konnen. Dies fiihrte insbesondere zu dem Vorteil, dafl alle Datenversorgungskompo-
nenten simultan mit einer einzigen Applikation getestet und ausgemessen werden konnten.

Natiirlich sind wir bei unserer Implementierung auf einige Probleme gestof3en, die iiberwiegend
darauf zuriickzufiihren sind, dafl Java und CORBA relativ neue Technologien sind. Neben den
bereits in Kapitel 5 préasentierten konzeptionellen Schwichen gibt es weitere Probleme bzgl. der
verwendeten Systeme (siehe Kapitel 6.7). Im Rahmen des hohen Konkurrenzdrucks muflten
diese schnell auf den Markt gebracht werden und bergen dementsprechend noch eine Reihe von
Schwichen.

Nach der Diskussion der mit dem Prototyp gewonnenen Ergebnisse wollen wir schlielich noch
verwandte Arbeiten und ihre Ergebnisse im Bereich von STEP und SDAI betrachten. Hier sind
insbesondere das amerikanische NIIIP-Projekt (National Industrial Information Infrastructure
Protocols) sowie das europdische ESPRIT-Projekt VEGA mit seiner COAST-Architektur
(CORBA Access to STEP Information Storage) zu nennen. Beide beschiftigen sich ebenfalls mit
dem STEP-basierten Datenzugriff innerhalb von komponentenbasierten Architekturen (siehe
Kapitel 6.5).

20

Den Abschlufl der vorliegenden Arbeit bildet die Zusammenfassung der erzielten Ergebnisse
sowie ein Ausblick auf zukiinftige Themen und Entwicklungen. Wir werden sehen, dal} der hier
eingeschlagene Weg in die richtige Richtung fiihrt, wir aber noch lange nicht am Ziel sind.
Einerseits sind z.B. ergiinzende Forschungsaktivititen im Bereich der Abbildung globaler APIs
auf die Schnittstellen der lokalen Systeme notig. Andererseits sollten aber gerade die verwen-
deten CORBA-Systeme ein hoheres Maf an Stabilitdt und Effizienz bieten sowie eine groBere
Palette der Common Object Services realisieren.

21

22

Kapitel 2
Grundlagen

Die Einleitung hat bereits verdeutlicht, daf fiir die Entwicklung moderner Software-Systeme
eine modulare bzw. komponentenbasierte Architektur notig ist. Wir wollen nun die dafiir erfor-
derlichen Grundlagen diskutieren sowie einige Begriffe definieren. Als Basis dient uns die in
Kapitel 2.1 enthaltene Beschreibung von Komponenten und Komponentenmodellen. Welche
Vor- und Nachteile entstehen und was sind die Voraussetzungen fiir ihren Einsatz? Im Anschluf3
folgt in Kapitel 2.2 die Vorstellung einer dhnlichen, speziell auf verteilte, objektorientierte
Systeme abgestimmten Technologie: die sog. Business Objects. An dieser Stelle haben wir aber
erst eine Moglichkeit zur Strukturierung von Systemen behandelt. Kapitel 2.3 widmet sich des-
halb der Thematik von Schichtenmodellen und Client/Server-Grenzen, die zwei weitere Techni-
ken zur Gliederung von Architekturen darstellen. Letztere fiihrt in der Implementierungsphase
zu getrennten Programmen, die durch geeignete Kommunikationsmechanismen zu koppeln
sind. Dafiir bietet sich der Einsatz von Middleware an, deren verschiedene Varianten in
Kapitel 2.4 vorgestellt werden. Uber die Diskussion sog. DB-Middleware kommen wir schlieB-
lich zum Thema Datenversorgung, dem sich Kapitel 2.5 widmet. Wichtige Aspekte sind hier die
notige Modellierung von Daten sowie eine allgemeine Charakterisierung von Programmen. Die
Partitionierung in auftragsbezogene und datenintensive Anwendungen sowie die korrespondie-
renden Konzepte des Operation Shipping und Data Shipping sind von zentraler Bedeutung fiir
die gesamte Arbeit. Nach der Diskussion grundlegender Begriffe und Techniken wenden wir
uns in Kapitel 2.6 wieder unserem eigentlichen Anwendungsszenario zu: den Entwurfsumge-
bungen. In welchem Zusammenhang stehen sie zu Frameworks, Workflow, Groupware und
CSCW? Welche Techniken sind zur Unterstiitzung der Kooperation zwischen Teams oder ein-
zelnen Designern erforderlich? In Kapitel 2.7 betrachten wir dann abschlieBend moderne
Schlagworte wie Internet, WWW und Intranet: Welche Bedeutung haben sie fiir uns? Wo liegen
die Stirken und Schwichen dieser Technologie? Einige Konzepte werden wir fiir unser weiteres
Vorgehen iibernehmen.

23

2.1 Komponenten und Komponentenmodelle

In den letzten Abschnitten haben wir immer wieder den Bedarf fiir modulare, aus einzelnen
Bausteinen bestehende Systeme betont. Diese Anforderung ist nicht vollig neu und hat in der
Informatik bereits vor einigen Jahren zur Entwicklung von Komponenten gefiihrt. Natiirlich gibt
es in der Literatur viele verschiedene Definitionen, die aber alle mehr oder weniger den gleichen
Inhalt haben. In dieser Arbeit wollen wir uns an ein Zitat von Jed Harris, Prisident der CI Labs,
halten [OHE96]:

A component is a piece of software small enough to create and maintain, big enough
to deploy and support, and with standard interfaces for interoperability.

Diese Aussage pait genau zu den von uns gestellten Anforderungen. Gleichzeitig unterstreicht
sie den Bedarf fiir modulare Implementierungen aus Sicht der Software-Industrie. Die monoli-
thischen Systeme der siebziger Jahre waren letztendlich zu komplex und undurchschaubar
geworden, um sie sinnvoll warten zu konnen. Dies lag nicht nur daran, daf} sich neue Angestellte
in den Code einarbeiten mufiten. Auch die urspriinglichen Entwickler selbst verloren irgend-
wann den Uberblick. Aus diesem Grund galt es nun, Teilaufgaben mit einem angemessenen
Umfang zu definieren. Dabei sollten die Schnittstellen sowie das Verhalten der zu realisierenden
Komponenten méglichst abstrakt und allgemein spezifiziert werden. Technische Details, die nur
fiir die Implementierung einer Komponente, aber nicht fiir deren Benutzung von Interesse
waren, durften nicht an der Schnittstelle sichtbar sein. Diese Anforderungen werden durch ein
weiteres Zitat aus [OHE96] prizisiert:

The Component Declaration of Independence:

We, the components, declare our freedom from the tyranny of languages, tools, oper-
ating systems, address spaces, vendors, networks, compilers and applications.

Erreicht wird diese Unabhéingigkeit und Abstraktion durch eine klare Trennung von Schnittstel-
len und Implementierungen. Die Schnittstellen sind im allgemeinen in einer geeigneten Spezi-
fikationssprache definiert. Sie umfassen die Signaturen sowie eine deklarative Beschreibung der
enthaltenen Operationen. Deklarativ bedeutet in diesem Kontext, dafl nur das Ergebnis oder der
Folgezustand einer Operation spezifiziert werden, nicht aber der konkrete Algorithmus oder der
interne Aufbau einer Komponente. Letzteres ist einzig und alleine der Implementierung vorbe-
halten. Man bezeichnet diese Vorgehensweise auch als Kapselung.

Im Prinzip entstehen hier sehr viele Parallelen zur objektorientierten Technologie, deren Kon-
zepte seit den achtziger Jahren wesentlichen Einflu3 auf die Informatik genommen haben
[KA95]. Auch dort ist die Kapselung ein zentraler Punkt. Es gilt jedoch der Grundsatz: Alles ist
ein Objekt. Objekte konnen von beliebiger Granularitit sein (etwa eine Schraube oder gar eine
ganze Fabrik) und sich wiederum aus anderen Objekten zusammensetzen (ein Auto enthilt
Motor, Karosserie, Getriebe usw). Somit sind komplexe Netzwerke von Objekten moglich.
Komponenten sind hingegen ein Baustein zur Losung einer speziellen Aufgabe. Ihre Granular-
itdt ist ganz und gar nicht beliebig. Weiterhin spricht man bei Komponenten nicht davon, daf3
sie aus anderen Komponenten zusammengesetzt sind. Sie benutzen sich vielmehr gegenseitig.

24

Dadurch wird die Bildung von Hierarchien vermieden und es kann eine Komponente ersetzt
werden, ohne daf} andere davon betroffen sind. Ersetzt man hingegen ein Objekt, z.B. ein Auto,
so sind in der Regel auch die enthaltenen Objekte wie Motor und Karosserie zu beriicksichtigen.
Letztendlich bedingt der Einsatz objektorientierter Technologie auch nicht das Maf} an Abstrak-
tion von technischen Details, wie es von Komponenten gefordert wird.

Generell konnte man sagen, dal} sich beide Techniken erginzen und die objektorientierte Tech-
nologie sowohl bei der Modellierung der Schnittstellen von Komponenten, als auch bei deren
Implementierung genutzt werden kann. Weiterhin kann es mehrere Implementierungen zu einer
Schnittstelle geben, bei der eine prozedural, die andere objektorientiert und die dritte funktional
programmiert wurde. Unterliegen die Schnittstellen und Implementierungen einem objektorien-
tierten Modell, das zur Laufzeit die Verteilung einzelner Komponenten auf mehrere Rechner
unterstiitzen soll, so spricht man auch von Distributed Objects [OHE96].

2.1.1 Vorteile einer komponentenbasierten Architektur

Grundsitzlich ergeben sich durch die Kapselung von Komponenten eine Menge Vorteile. Ent-
scheidend fiir unsere Arbeit ist natiirlich die dadurch geschaffene Moglichkeit zur Integration
existierender Altsysteme. Daneben gibt es eine Reihe weiterer Aspekte, die wir aus zwei ver-
schiedenen Blickwinkeln betrachten wollen.

Fiir Software-Hersteller ist es nun erheblich einfacher den Entwurf neuer Produkte auf einzelne
Teams aufzuteilen. Bei klar definierten Schnittstellen kann es hinterher kein Gerangel um
Zustindigkeiten mehr geben. Fehler konnen entweder klar einem Team zugewiesen werden
oder sie basieren auf einer mangelhaften Spezifikation. Weiterhin kann die Funktionalitit ein-
zelner Komponenten so gewéhlt werden, daf3 sie Bestandteil mehrerer Produkte wird. Dadurch
lassen sich einmal erprobte und optimierte Bausteine wiederverwenden. Anders herum kénnen
aber auch fehleranfiéllige oder auf veralteter Technologie basierende Komponenten durch neue
ersetzt werden. Hier sei z.B. an die Ablosung relationaler Datenbankverwaltungssysteme
(RDBVS) durch objekt-relationale (ORDBVS) gedacht. Somit reduziert sich der benétigte Ent-
wicklungsaufwand, so daB3 neue Produkte schneller auf den Markt kommen. AuBlerdem ist zu
erwarten, daf sich standardisierte Komponenten in einer hoheren Stiickzahl und einem dement-
sprechend niedrigeren Preis verkaufen lassen.

Neben dem zuletzt genannten Aspekt gibt es nun auch aus Sicht des Anwenders noch eine Reihe
weiterer Vorteile. Zuerst einmal kann er sich mit den verfiigbaren Komponenten ein individuel-
les System zusammenstellen, das genau die benotigte Funktionalitit umfalit. Dabei bleibt das
resultierende System aber offen und erweiterbar genug, um auch spéter noch neue Anforderun-
gen durch das Hinzufiigen weiterer Komponenten erfiillen zu kénnen. Durch standardisierte
Schnittstellen werden Abhéngigkeiten gegeniiber einzelnen Herstellern vermieden und einzelne
Bausteine lassen sich wiederum beliebig austauschen, sei es nun aus Leistungsaspekten oder zur
Einfiihrung neuer Technologien. Weiterhin ist zu erwarten, dafl es am Markt mehrere alternative
Implementierungen fiir eine Komponente gibt. Dadurch entsteht ein gesunder Wettbewerb, der
neben der bereits angesprochenen Preissenkung hoffentlich auch zu einer htheren Qualitit der
jeweiligen Software fiihrt.

25

Grundsitzlich vereinfacht ein komponentenbasierter Entwurf auch die Integration einer Last-
verteilung. So konnen bei Bedarf Replikate einer Komponente auf anderen Rechnern gestartet
werden. Weiterhin wird auch die Realisierung einer Zugriffskontrolle erleichtert. Jeder Baustein
kann bei Bedarf seine eigene Autorisierung und Authentifizierung durchfiihren oder diese Auf-
gabe an eine iibergeordnete Komponente delegieren. Ahnliches gilt auch fiir eine Konsistenz-
kontrolle mit Hilfe von Transaktionen. Diesem Thema widmen wir uns aber genauer in
Kapitel 5. Alle drei Aspekte sind besonders niitzlich bei Systemen, die sowohl fiir den internen
Gebrauch, als auch fiir den Zugriff liber das Internet gedacht sind.

2.1.2 Nachteile einer komponentenbasierten Architektur

Gegeniiber der relativ langen Liste von Vorteilen lassen sich eigentlich nur zwei Nachteile fin-
den. Einerseits fiihrt die Einfiihrung von Komponenten zu einer verstirkten Kommunikation
(zwischen genau diesen). Ist die Granularitit der Bausteine nun zu fein gewdhlt, so sinkt die Lei-
stung des Gesamtsystems in inakzeptabler Weise. Dieser Aspekt ist somit kritisch fiir das
Design und sollte wohliiberlegt geschehen. Wir werden in den folgenden Kapiteln sehen, dal}
selbst internationale Standards in diesem Punkt erhebliche Schwiéchen aufweisen. Im Prinzip
146t sich dies aber auch gar nicht vermeiden. Es gibt keine allgemein giiltigen oder korrekten
Kriterien fiir die Granularitdt von Komponenten. Vielmehr muf3 diese fiir jedes System und
jedes neue Verarbeitungsszenario jeweils individuell bestimmt werden. Insofern sollten Stan-
dards in diesem Punkt eine gewisse Flexibilitdt aufweisen. Optimal werden sie im konkreten
Fall aber nur selten sein (sie haben dafiir andere Vorteile).

Der zweite Nachteil betrifft die Integration einer komponentenbasierten Architektur in eine
bestehende Systemumgebung. Im Idealfall wiirden sich alle bestehenden Programme als eine
Komponente in die neue Architektur einfiigen. Dafiir miiiten diese Altsysteme aber geeignete
Schnittstellen haben, die leider hidufig fehlen. Oftmals sind nur grafische Benutzeroberfldachen
oder Terminal-Masken vorhanden. Eine komponentenbasierte Architektur trennt aber im allge-
meinen diese Ein-/Ausgabe-Routinen von der eigentlichen Funktionalitét, so dal unter Umstin-
den doch die Ablosung einiger Altsysteme notig ist. Ergdnzend dazu wird haufig die Ansicht
vertreten, daf} fiir die Einfilhrung einer komponentenbasierten Architektur automatisch die
Restrukturierung betrieblicher Abldufe notig ist. Man spricht dabei auch von Business Process
Reengineering [SV96]. Dies ist jedoch haufig eine falsche Argumentationsweise. Gerade im
Bereich der Produktdatenverwaltung (Product Data Management, PDM) liegt der eigentliche
Grund oftmals im geplanten Einsatz von kommerziellen PDM-Komponenten, deren Ablaufmo-
delle vielfach noch zu starr und dementsprechend nicht an bestehende Modelle anzupassen sind.
Unbestritten ist, daB eine Strukturierung der betrieblichen Abldufe nétig ist. Diese erhoht viel-
fach auch die Produktivitit eines Unternehmens. Die Einfithrung eines PDM-Systems (oder
einer komponentenbasierten Architektur im allgemeinen) sollte aber im Falle einer bereits exi-
stierenden Strukturierung der Abldufe keinesfalls eine Restrukturierung erfordern.

26

2.1.3 Voraussetzung fiir den Einsatz von Komponenten

Fiir die Einfiihrung einer komponentenbasierten Architektur gibt es im Prinzip drei Vorausset-
zungen. Zuerst einmal benotigt man eine geeignete Modellierungssprache, mit der die Schnitt-
stellen der Komponenten beschrieben werden. Diese Sprache sollte moglichst genormt sein, um
MiBverstandnisse beziiglich Syntax oder Semantik von vornherein auszuschlieBen. Fiir die
Kommunikation zwischen den einzelnen Bausteinen ist weiterhin ein geeignetes Modell zur
Interaktion erforderlich. Dieses ist abhidngig von der jeweiligen Modellierungssprache. Es
regelt z.B. wie die Implementierung einer Komponente (unter Benutzung der mit der Modellie-
rungssprache spezifizierten Schnittstellen) auf eine andere Komponente zugreift. Dafiir ist es
notig, daB es standardisierte Abbildungen von dieser abstrakten Sprache auf korrespondierende
Konstrukte in verwendeten Programmiersprachen gibt. Die Integration von Legacy-Systemen
setzt schlieBlich noch voraus, dafl Schnittstellen oder APIs von Altsystemen eine ausreichende
Funktionalitét bieten, um sie als eigenstindige Komponente in ein Gesamtsystem einzubetten.

2.1.4 Komponentenmodelle

Unter einem Komponentenmodell verstehen wir die Kombination einer Modellierungssprache
mit dem dazugehorigen Modell zur Interaktion. Beispiele hierfiir sind z.B. der internationale
CORBA-Standard (siehe Kapitel 4), IBMs DSOM (Distributed System Object Model, siehe
[La95]) oder Microsofts DCOM (Distributed Component Object Model, siehe [Ses98]). Alle
drei Modelle fiihren zu einem objektorientierten Entwurf und beriicksichtigen bereits eine mog-
liche Verarbeitung iiber Rechnergrenzen hinweg. Ein kurzer Vergleich ihrer Konzepte und der
daraus resultierenden Einschrinkungen gegeniiber dem gerade definierten Begriff von Kompo-
nenten ist in Kapitel 4.8 enthalten.

Erste Versionen von Komponentenmodellen waren urspriinglich nur fiir die (lokale) Bearbei-
tung von zusammengesetzten Dokumenten, sog. Compound Documents, definiert worden. Sie
sollten eine Infrastruktur anbieten, um einzelne Teile eines Dokumentes weiterhin mit den
gewohnten Programmen zur Textverarbeitung, Tabellenkalkulation usw. bearbeiten zu konnen,
gleichzeitig aber eine einheitliche Oberfldche realisieren. Beispiele hierfiir sind z.B. das von CI
Labs (Components Integration Laboratories) spezifizierte OpenDoc oder Teile von Microsofts
OLE (Object Linking and Embedding). Fiir eine Einfiilhrung und den Vergleich der zugrunde-
liegenden Konzepte sei auf Kapitel 23 von [OHE94] verwiesen. Inzwischen wurden beide
Modelle erweitert, so daf sich mit ihnen nun allgemeine Komponenten realisieren lassen. Open-
Doc benutzt dafiir wahlweise IBMs DSOM oder ein CORBA-System, OLE ist mittlerweile
Bestandteil der DCOM-Architektur. Prinzipiell mii3te man an dieser Stelle auch die von SUN
spezifizierten Java Beans und Enterprise Java Beans [Sun97d, Sun98a] als Beispiel fiir Kom-
ponentenmodelle nennen. Allerdings sind diese Konzepte einzig und alleine auf die Sprache
Java zugeschnitten. Diese ist zwar unabhédngig vom verwendeten Betriebssystem und es konnen
auch in anderen Programmiersprachen geschriebene Komponenten integriert werden, das
zugrundeliegende Modell ist aber nicht so abstrakt gehalten wie in den letzten Abschnitten
gefordert. Trotz einer Anbindung an CORBA [Sun98b] fehlt gerade die Verwendung einer
Modellierungssprache: Alle Schnittstellen werden direkt in Java spezifiziert.

27

2.2 Business Objects

Im Rahmen der immer gréeren Verbreitung objektorientierter Technologie und dem gleichzei-
tigen Bedarf an komponentenbasierten Architekturen hat sich in den letzten Jahren eine Tech-
nologie etabliert, die mit dem Schlagwort Business Objects bezeichnet wird. Im Prinzip ist aber
kein neues Konzept entstanden. Business Objects sind grundsitzlich nichts anderes als eine
objektorientiert modellierte Komponente. In [OHE96] werden sie daher auch als “The Ultimate
Components” bezeichnet. In den letzten Jahren haben allerdings unter diesem Begriff eine
Reihe Forschungsaktivitdten begonnen. Sie haben iiberwiegend das Ziel, die Entwicklung und
Standardisierung von Komponenten noch stirker an die Bediirfnisse von Geschiftsprozessen
anzulehnen. So hat z.B. die Object Management Group (OMG) im Rahmen ihrer CORBA-Stan-
dardisierung festgestellt, da es nicht ausreicht, nur grundlegende Basis-Funktionalitét zu nor-
mieren. Vielmehr muf} es auch ein abstrakteres Modell zur Realisierung von Komponenten fiir
einzelne Geschiftsprozesse geben. Aus diesem Grund wurde innerhalb der OMG die Business
Object Domain Task Force gegriindet, die sich auf folgende Aussage einigte [OMG96b]:

A business object is defined as a representation of a thing active in the business
domain, including at least its business name and definition, attributes, behaviors, rela-
tionships, rules, policies, and constraints.

In der Literatur finden sich weitere Definitionen, die aber alle dhnliche Inhalte haben [ES9S,
Ja98, KA95, MM97, OHE96, SS99]. Haufig wird auch die mogliche Integration von Legacy-
Systemen betont. Es sind sogar neue Konferenzen zu diesem Thema ins Leben gerufen worden,
wie z.B. ein jihrlicher Workshop im Rahmen der Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA, siehe [Su98]). Im Rahmen dieser
Arbeit wollen wir nun gar nicht genauer auf die einzelnen Aspekte von Business Objects einge-
hen, sondern sie lediglich als eine Art von Komponenten betrachten.

2.3 Strukturierung von Systemen

Bereits in der Einleitung haben wir den Bedarf fiir modulare und damit auch strukturierte
Systeme unterstrichen. Anschlieend haben wir den Begriff der Komponente eingefiihrt, um
diese Anforderung zu erfiillen. Im wesentlichen ist dadurch eine Architektur entstanden, die das
System in Bausteine aufteilt, die jeweils einen abgeschlossenen Teil der gesamten Funktionali-
tat realisieren. Diese Art der Strukturierung ist primdr fiir das Design von Systemen bestimmt
und nimmt keinerlei Bezug auf die spitere Implementierungsphase oder eine Verteilung auf
mehrere Rechner. Natiirlich bietet es sich an, in einer verteilten Umgebung einzelne Komponen-
ten auf die verfiigbaren Rechner aufzuteilen, aber dies ist nicht Teil der Spezifikation.

Neben der Strukturierung durch einen komponentenbasierten Entwurf gibt es nun zwei weitere
Moglichkeiten zur Gliederung von Systemen: Die Definition horizontaler Schichten
(Kapitel 2.3.1) und die Charakterisierung entsprechend der geplanten Client/Server-Grenzen
(Kapitel 2.3.2). Alle drei Konzepte sind prinzipiell orthogonal zueinander. So kann sich eine

28

Komponente iiber mehrere Schichten erstrecken und dabei beliebige Client/Server-Grenzen
tiberbriicken. Dieser Sachverhalt wird in Kapitel 2.3.3 am Beispiel eines fiktiven Reservie-
rungssystems fiir Reisebiiros verdeutlicht.

2.3.1 Mehrebenenarchitektur (Multi Tier) und Schichtenmodelle

In Anlehnung an das ISO/OSI-Referenzmodell (Open Systems Interconnection Reference
Model, sieche [DZ83, Ta92]), das eine allgemeine Schichtenbildung fiir die Kommunikation zwi-
schen Rechnern definiert, hat sich in den letzten Jahren auch im Bereich des Systementwurfs
eine horizontale Schichtenbildung durchgesetzt. In beiden Fillen soll durch jede weitere
Schicht ein hoherer Grad an Abstraktion erreicht werden. Resultierend sind auf jeder Ebene nur
die wirklich benétigen Details der darunterliegenden Schichten sichtbar, so dal keine unnotigen
Abhiingigkeiten entstehen. Anderungen in einer Schicht sollten méglichst keine Anpassungen
auf hoherer Ebene erfordern. Im ISO/OSI-Modell wurden dafiir genau sieben Schichten mit
ihren Schnittstellen und der zu realisierenden Funktionalitit definiert. Leider hat sich bei der
Strukturierung von Systemen noch kein Modell durchgesetzt. Weder bei der Anzahl der Schich-
ten, der sog. Tier, noch bei deren Schnittstellen herrscht Einigkeit. In der Literatur finden sich
deshalb viele verschiedene Ansitze. Das verbreitetste Modell ist dabei die in [Ge95, Dew93]
beschriebene Aufteilung in die drei Ebenen Prdsentation, Ausfiihrung und Datenhaltung (siehe
Abb. 2.1a). Daneben gibt es noch eine Reihe weiterer Konzepte, die teilweise bis zu fiinf
Schichten definieren. Als Beispiel dafiir sei die in Abb. 2.1b illustrierte Strukturierung gemif
[MMO97] erwihnt. Man spricht verallgemeinernd auch von Multi Tier-Architekturen.

Five Tier

Four Tier

Applikationen
Applikationen || Business Model
Applikationen || Business Logic || Business Logic
Applikationen Datenzugriff Datenzugriff Datenzugriff
Datenbanken Datenbanken Datenbanken Datenbanken

Prasentation Three Tier
Ausfihrung Two Tier
Datenhaltung

(a) Dreischichtenmodell

gemaB [Ge95, Dew93] (b) Schichtenmodelle gem&B [MM97]

Abb. 2.1: Klassifikation von Mehrebenenarchitekturen

Ein Grund fiir die fehlende Genauigkeit der einzelnen Definitionen konnte in der groen Ahn-
lichkeit zur Strukturierung durch Komponenten liegen. Beide Konzepte verfolgen dhnliche
Ziele, insbesondere im Bereich der Abstraktion. Komponenten konnen jedoch horizontal und
vertikal gegliedert sein und sich iiber mehrere Schichten erstrecken. Sie sind damit flexibler.
Weiterhin realisieren sie mehr oder weniger abgeschlossene Funktionalitit, die sich auch eigen-
standig vermarkten 146t. Im Gegensatz dazu macht es keinen Sinn, ein Produkt zu verkaufen,
das die komplette Schicht n in einer Mehrebenenarchitektur implementiert. Es miifite extrem
umfangreich und offen gegeniiber moglichen Erweiterungen sein, so daf keine ausreichende
Leistung zu erwarten wire. Im Zeitalter des Intra- und Internet und der Informationsverbreitung
tiber das WWW (World Wide Web) wird hiufig ein Dreischichtenmodell benutzt. Die Prisenta-

29

tion erfolgt dabei iiber HTML-Seiten oder Java Applets im WWW-Browser des Anwenders
(siehe auch Kapitel 2.7). Die mittlere Ebene entspricht einem WW W-Server, der Zugriff auf die
in der unteren Schicht enthaltenen Datenbanken und die darin gespeicherten Informationen hat.

Betrachtet man die Architektur integrierter, komponentenbasierter Systeme, so kann vielfach
gar nicht die genaue Anzahl von Schichten bestimmt werden. Dies liegt zum einen daran, daf3
einige Komponenten bereits ihre eigene Prédsentation realisieren und man gar nicht weil}, wie
sie intern aufgebaut sind. Weiterhin ist es moglich, daf} einige Abldufe die direkte Visualisie-
rung der gespeicherten Daten erfordern, wihrend andere mehrstufige Verarbeitungsschritte zur
Grundlage haben. Daher ist es unter Umstinden sinnvoller, bei komponentenbasierten Archi-
tekturen nur die Schichtenbildung innerhalb der einzelnen Bausteine zu beriicksichtigen.

2.3.2 Client/Server-Grenzen

In den letzten Abschnitten haben wir im wesentlichen nur die rein logische Strukturierung von
Systemen betrachtet. Ergéinzend dazu ist es aber angebracht, mogliche Verteilungen der gesam-
ten Funktionalitit auf mehrere Rechner, Prozessoren oder dhnliches zu beriicksichtigen. Man
spricht in diesem Fall von der Client/Server-Grenze. Wichtig ist dabei, daf} diese zur Laufzeit
keine konkrete physische Rechnergrenze zur Folge haben muf3. Vielmehr erméglicht sie ledig-
lich eine spitere Verteilung auf verschiedene Rechner, Prozessoren, Prozesse oder Threads. Die
Client/Server-Grenze ist also eine logische Strukturierung zur Unterstiitzung der physischen
Verteilung in einer konkreten Systemumgebung. Deshalb sollten die einzelnen Funktionsblocke
moglichst abgeschlossen sein und nur wenig Interaktion untereinander erfordern. Andernfalls
entsteht zur Laufzeit (im Falle einer physischen Verteilung) ein unnétiges Kommunikationsauf-
kommen zwischen den beteiligten Rechnern, das die Leistung des gesamten Systems reduziert.
Gleichzeitig sind natiirlich die individuellen Voraussetzungen zu beriicksichtigen. Oftmals exi-
stieren schon bewihrte Programme oder Datenbanken auf ausgezeichneten Rechnern, deren
Ablosung aber nicht ratsam erscheint. Sind diese Rechner bereits ausgelastet, so ist hier eine
implizite Client/Server-Grenze vorgegeben.

\wm Prasentation | Client | Prasentation Prasentation Prasentation
Prasentation Ausfiihrung Ausflihrung Ausfliihrung
Ausfiihrung Ausflhrung Ausfihrung Datenhaltung
Datenhaltung Datenhaltung | Server | Datenhaltung Datenhaltung mm

Abb. 2.2: Mogliche Client/Server-Grenzen einer Dreischichtenarchitektur

Grundsitzlich ist zu betonen, daf3 die Rolle von Client oder Server natiirlich nicht eindeutig ist.
So kann ein Server fiir Reservierungssysteme gleichzeitig die Rolle eines Clients von Daten-
banksystemen iibernehmen. Weiterhin kann es mehrere Client/Server-Grenzen innerhalb eines
Systems, einer Komponente oder einer der im letzten Abschnitt definierten Schichten geben. In

30

den meisten Fillen wird allerdings durch die Schnittstelle einer Komponente auch gleichzeitig
eine Client/Server-Grenze gebildet. Dies vereinfacht die Kapselung und Austauschbarkeit von
Komponenten erheblich (sie konnen dann z.B. in eigenen Prozessen ablaufen). Oftmals ist die
Client/Server-Grenze also eine Verfeinerung der Strukturierung durch Komponenten. Das muf3
allerdings nicht immer so sein (siche Kapitel 2.3.3). Betrachtet man hingegen Schichten und
mogliche Client/Server-Grenzen, so 146t sich keine klare Verbindung oder Abhingigkeit finden.
Anhand der in Abb. 2.2 dargestellten Moglichkeiten zur Aufteilung einer Dreischichtenarchi-
tektur auf zwei Rechner ist klar zu erkennen, da3 die Grenze einer Ebene nicht zwangsweise
einer Client/Server-Grenze entsprechen muf3.

2.3.3 Beispiel

In diesem Abschnitt wollen wir ein kurzes Beispiel prisentieren, das die drei Strukturierungs-
moglichkeiten noch einmal verdeutlicht. Gegeben sei dafiir ein Reservierungssystem fiir Reise-
biiros, mit dem Hotels, Fliige und Bahnfahrten gebucht und reserviert werden konnen. Fiir jede
dieser Aufgaben gibt es jeweils eine eigenstindige Komponente, die bereits eine grafische
Oberfldche in Form von Java Beans besitzt (sieche Abbildung 2.3a).

. Client/Server-
Komponenten Schichten Grenzen
Préasentation Java Beans GUI PG
Globale Benutzerschnittstelle TRS-Client Reisabiiro
& Cache & Lokale Operationen
Kontextverwaltung Ausf[]hrung ..
Z TRIS-\§ervler Zentralrechner
HRS FRS TRS entrale Verwaltung Pl
DBVS-Client Deutschen
Hotel Flight Train SQL-CLI, ODBC oder JDBC
Reservation | Reservation | Reservation Datenhaltung [F5 5SS I
System System System
MVS-Host
(a) Gesamtsystem (b) TRS-Komponente

Abb. 2.3: Strukturierung iiber Komponenten, Schichten und Client/Server-Grenzen

Oberhalb dieser drei Bausteine gibt es eine weitere Komponente zur globalen Kontextverwal-
tung und zur Realisierung einer einheitlichen Oberflidche. Sie ist ndtig, um auch zusammenhén-
gende Buchungen von Hotel und Flug innerhalb eines Geschéftvorganges zu ermdglichen. Wir
erkennen an dieser Stelle, daf alle vier Komponenten Funktionen zur Prdsentation umfassen.
Gleichzeitig enthilt die oberste Schicht noch die Kontextverwaltung, die der Ausfiihrung zuzu-
ordnen ist. Somit ist es nicht moglich, eine Schichtenbildung fiir das Gesamtsystem in
Abbildung 2.3a zu integrieren. Wir wollen deshalb einen detaillierten Blick auf die TRS-Kom-

31

ponente werfen (siehe Abbildung 2.3b). Innerhalb dieser konnen die einzelnen Ebenen der von
uns verwendeten Dreischichtenarchitektur (Prisentation, Ausfiihrung und Datenhaltung) nun
sehr genau bestimmt werden. Wir sehen also, daf} es hiufig sinnvoller ist, nur die Schichtenbil-
dung innerhalb von Komponenten zu betrachten. Daneben ist weiterhin zu erkennen, daf die
Grenzen dieser Schichten orthogonal zu den Client/Server-Grenzen liegen. Letztere lassen sich
nun wiederum auch im Bezug auf das Gesamtsystem betrachten: Die oberste Komponente wird
sicherlich auch auf dem PC im Reisebiiro installiert sein. Somit befindet sich zwischen ihr und
den HRS-, FRS- und TRS-Komponenten keine Client/Server-Grenze. Wir sehen, daf} eine
Strukturierung durch Komponenten nicht unbedingt korrespondierende Client/Server-Grenzen
definiert (auch wenn es hiufig der Fall ist). Letztendlich sollte uns klar werden, dal} alle drei
Strukturierungsmoglichkeiten prinzipiell orthogonal zueinander sind. Je nach verwendeter
Technologie konnen im konkreten Fall natiirlich Abhéngigkeiten entstehen.

2.4 Middleware

Nachdem wir uns in den letzten Kapiteln iiberwiegend mit der Modellierung und Gliederung
von Systemen beschiftigt haben, wollen wir nun Techniken fiir die physische Verteilung von
Funktionalitit auf mehrere Rechner betrachten. Es ist unbestritten, daf die Verwendung mehre-
rer Rechner fiir die Skalierbarkeit eines Systems unverzichtbar ist. Weiterhin vereinfacht es die
Integration bestehender Programme sowie die Bildung von Virtual Enterprises (siehe
Kapitel 1). Auch im Hinblick auf einen Einsatz im Intra-/Internet gibt es gar keine andere Wahl.
Wie wir in Kapitel 2.3.2 gesehen haben, wird die mogliche Verteilung eines Systems nun im
wesentlichen durch die verfiigbaren Client/Server-Grenzen bestimmt. Rechneriibergreifende
Kommunikation ist nur an diesen Stellen moglich. Anders herum ist sie aber nicht zwingend
vorgeschrieben: Eine Client/Server-Grenze kann auch Kommunikation zwischen zwei Prozes-
sen auf dem gleichen Rechner zur Folge haben oder gar auf interne Prozeduraufrufe innerhalb
eines einzigen Prozesses abgebildet werden. Nun wire es natiirlich fatal, wenn man bei der Pro-
grammierung eines Clients oder Servers alle diese Fille beriicksichtigen miifite. Aus diesem
Grund hat sich sog. Middleware etabliert, die vom eigentlichen Kommunikationsmechanismus
abstrahiert. Sie realisiert eine einheitliche Schnittstelle, die fiir Client und Server quasi das Aus-
sehen eines lokalen Prozedur- oder Methodenaufrufes hat. In [Ge95] wird Middleware auch als
Softwareinfrastruktur zur Uberbriickung der Verteilung bezeichnet. Frei nach [OHE94] kinnte
man auch sagen:

Middleware is the slash (/) between client and server. It is the glue that lets a client
obtain a service from a server.

Sie umfaflt sowohl geeignete Schnittstellen auf dem Client (hdufig auch als Stub oder Proxy
bezeichnet), die eigentliche Kommunikation, als auch Mechanismen zum Aufruf der gewiinsch-
ten Funktion auf dem Server (sog. Skeletons). Primir wird dadurch eine Abstraktion von der
konkreten Client/Server-Grenze (z.B. Rechner- oder ProzeBwechsel) sowie der verwendeten
Hardware erreicht. Einige Middleware-LLosungen realisieren weiterhin eine vollstindige

32

Abstraktion von eingesetzten Betriebssystemen und Programmiersprachen. An dieser Stelle
wollen wir auch gleich einen leider immer noch weit verbreiteten Irrtum beseitigen: Manche
Aufsitze oder Biicher erwecken den Eindruck, daB3 Middleware die mittlere Ebene einer Drei-
schichtenarchitektur ist. Dies ist falsch! Middleware ist (in ihrer urspriinglichen Form) lediglich
eine Implementierungshilfe bei der Strukturierung durch Client/Server-Grenzen. In Kapitel 2.3
haben wir gesehen, daf} diese Grenze unabhingig von einer moglichen Schichtenbildung ist.

In den nichsten Abschnitten gehen wir nun kurz auf die Entwicklung von Middleware ein. Die
dlteste Variante ist der sog. Remote Procedure Call (RPC, siche Kapitel 2.4.1). Das Konzept rea-
lisiert quasi einen synchronen Prozeduraufruf und wurde Anfang der achtziger Jahre entwickelt.
Es ist somit dlter als der Begriff Middleware selbst. Daneben behandeln wir in Kapitel 2.4.2
noch eine asynchrone Verarbeitung iiber sog. Message Oriented Middleware (MOM). Beide
Verfahren bilden die Grundlage fiir modernere Mechanismen, die auch dem Trend der objekt-
orientierten Technologie gerecht werden (siehe Kapitel 2.4.3). Diese realisieren gleichzeitig ein
Komponentenmodell und werden uns daher im weiteren Verlauf der vorliegenden Arbeit noch
ofter beschiftigen.

Neben dieser (relativ allgemeinen) Middleware sind in den letzten Jahren auch spezielle Losun-
gen fir den Zugriff auf Datenbankverwaltungssysteme (DBVS) entwickelt worden
(Kapitel 2.4.4). Wir unterscheiden dabei, ob sie den Zugriff auf genau eine Datenbank unterstiit-
zen, oder ob sie gar eine homogene Schnittstelle fiir die simultane Anfrageverarbeitung iiber
mehrere heterogene DBVS bieten. Im letzten Fall hat sich zunehmend das Schlagwort DB-Mid-
dleware durchgesetzt.

2.4.1 Remote Procedure Call (RPC)

Die einfachste Form von Middleware wird im Prinzip durch den Remote Procedure Call (RPC)
realisiert. Unter diesem Begriff versteht man die Fahigkeit, eine rechneriibergreifende Verarbei-
tung wie einen lokalen Prozeduraufruf behandeln zu konnen. Der konkrete Ablauf eines RPC
sowie mogliche Schnittstellen sind nicht standardisiert. Es gibt lediglich eine Beschreibung des
abstrakten Konzeptes [Blo92, BN84, Sch92, Ta92] sowie eine Menge von (Betriebs-)Systemen,
die RPC-Unterstiitzung bieten. Als Beispiel sei z.B. der Sun-RPC genannt, der in die SunOS-
und Solaris-Plattform integriert ist [Sun94]. Wie die meisten anderen Produkte benutzt auch
dieser die Programmiersprache C zur Definition der Schnittstellen, aus denen anschlieend mit
dem zugehorigen RPC-Compiler Stubs fiir den Client, Skeletons fiir den Server und Datenkon-
vertierungsroutinen fiir die Kommunikation erzeugt werden (siehe Abb. 2.4). Letztere sind
notig, um Unterschiede zwischen verwendeter Hardware und Betriebssystemen auszugleichen,
beispielweise die Konvertierung der Bitreihenfolge von Little Endian auf Big Endian [HP90,
Ta92]. Man spricht dabei auch von Parameter Marshalling, fiir das hdufig das XDR-Format
benutzt wird (External Data Representation, siche auch [Blo92]). Ein Nachteil vieler RPC-
Losungen ist jedoch, da} sie nur unzureichend von der tatsdchlichen Client/Server-Grenze
abstrahieren. Oft muf} die genaue Adresse des Servers (Rechner und Port) zur Laufzeit spezifi-
ziert werden [Sun94]. Aus diesem Grund wird teilweise bestritten, dafl es sich beim RPC bereits
um Middleware handelt.

33

Server-Skeletons

RPC
Schnittstellen-
Beschreibung |7

Datenkonvertierungs-
routinen

RPC-Compiler

Client-Stubs

Abb. 2.4: Der RPC-Compiler

2.4.2 Message Oriented Middleware (MOM)

Neben dem synchronen RPC gibt es ein weiteres Middleware-Konzept, das aber asynchrone
Kommunikation zugrundelegt: MOM - Message Oriented Middleware [OHE94]. Man konnte
sagen, dall der RPC einem Telefonat entspricht, wahrend MOM &hnlich zum Verschicken von
Briefen ist. Wir benotigen dafiir eine Vermittlungsstelle (sog. Queues) zwischen Client und Ser-
ver, welche die eingehenden Nachrichten puffert, bis sie vom jeweiligen Empfinger abgeholt
werden. Fiir die Bearbeitung eines Auftrages sind unter Umstinden zwei Queues erforderlich:
Eine fiir Nachrichten bzw. die eigentlichen Auftrige vom Client zum Server, die zweite fiir die
Antworten vom Server zum Client. Eine detaillierte Beschreibung der Konzepte und Techniken
eines prototypischen MOM-Systems ist z.B. in [SZ98] enthalten.

Streng genommen abstrahiert MOM eigentlich auch nur unvollstindig von der Client/Server-
Grenze. Im Gegensatz zum RPC miissen hier zwar keine physischen Parameter angegeben wer-
den, der Client muf} sich aber der Tatsache bewuB}t sein, daf} die Bearbeitung seines Auftrages
asynchron erfolgt und er keine direkte Antwort bekommt.

2.4.3 Objektorientierte Middleware

In Anlehnung an den RPC bieten die meisten der bereits in Kapitel 2.1 erwihnten Komponen-
tenmodelle auch einen Mechanismus zur Uberbriickung der Client/Server-Grenze an. Hier sind
insbesondere (D)COM/OLE bzw. ActiveX von Microsoft, DSOM von IBM und das von der
OMBG standardisierte CORBA zu nennen [Ses98, La95, OMG96a]. Sie benutzen im wesentli-
chen die in der zugehorigen Schnittstellenbeschreibungssprache spezifizierten Definitionen von
Komponenten, um auch erforderliche Stubs, Skeletons und Konvertierungsroutinen zu erzeu-
gen. Im Zusammenhang mit der detaillierten Diskussion des CORBA-Standards werden wir in
Kapitel 4.8 noch einen genaueren Blick auf die zugrundeliegenden Konzepte legen.

Abschlieend sei noch erwihnt, da3 objektorientierte Middleware hiufig synchrone (RPC-dhn-
liche) und asynchrone (MOM-basierte) Verarbeitung unterstiitzt. Dazu gibt es in CORBA z.B.
einen Event Service zur Pufferung und Verwaltung von Nachrichten (siehe Kapitel 4.3).

34

2.4.4 Datenbankverwaltungssysteme (DBVS) und Middleware

Neben der Diskussion allgemeiner Konzepte zur Verteilung von Software ist es auch sinnvoll,
speziell auf die Bediirfnisse von Datenbankverwaltungssystemen (DBVS) einzugehen. Bereits
in der Einleitung haben wir erkannt, dal Daten in gewisser Weise das ,,Wissen* eines Unterneh-
mens reprasentieren und ihre Verwaltung somit besonderer Aufmerksamkeit bedarf. Auf die
michtigen Konzepte moderner DBVS [Da94, EN94, L.S87] sowie die zugehorige Konsistenz-
sicherung durch das ACID-Prinzip [HR83, GR93] kann heutzutage nicht mehr verzichtet wer-
den. Fiir eine effiziente Verarbeitung sowie kurze Antwortzeiten ist es weiterhin notig, dafl die
DBVS auf getrennten Rechnern installiert sind oder gar verteilte DBVS eingesetzt werden.
Gleichzeitig muf} aber die entstehende Client/Server-Grenze zwischen dem DBVS und der dar-
auf zugreifenden Client-Komponente in geeigneter Weise tiberbriickt werden. Insbesondere ist
darauf zu achten, daf} die durch das DBVS angebotene Anfrageverarbeitung dem Client im
gewohnten Umfang zur Verfiigung steht. Wir benotigen also eine spezielle Art von Middleware,
die diese Anforderungen erfiillt.

2.4.4.1 Zugriff auf einzelne DBVS

Im einfachsten Fall gilt es, die Liicke zwischen Client und einem einzigen DBVS zu schliefen.
Dabei sollte eine geeignete Schnittstelle zur Verfiigung stehen, die von den Eigenschaften des
konkreten DBVS abstrahiert. Andernfalls hitte der mogliche Austausch des DBVS durch ein
anderes Produkt unnotige Anderungen im Client-Code zur Folge. Gewisse Abhiingigkeiten ent-
stehen allerdings durch die Wahl eines relationalen oder objektorientierten DBVS. Die Unter-
schiede dieser Paradigmen sind zu grof3, um eine allgemeine Schnittstelle fiir beide zu definie-
ren. Dies betrifft insbesondere die zu unterstiitzende Anfragesprache: Fiir relationale DBVS
(RDBVS) wird im allgemeinen der ISO-Standard SQL (Structured Query Language, siehe
[DD97, Me90]) verwendet, fiir objektorientierte (OODBVS) die von der Object Database
Management Group (ODMG) definierte Object Query Language (OQL, sieche [CB97]). Es
besteht allerdings die Hoffnung, da3 die objektrelationale Technologie [SBM98] und die in die-
sem Zusammenhang laufende Standardisierung von SQL3 [MPD99] letztendlich ein einheitli-
ches und umfassendes Modell zur Verfiigung stellen. Wir wollen deshalb in diesem Kapitel den
Fokus auf RDBVS und OODBVS legen.

Beginnen wir dabei mit der dlteren Technologie: den relationalen DBVS. Fiir sie gibt es eine
Reihe SQL-basierter Schnittstellen zur Anfrageverarbeitung. Eine der ersten war das von der
Open Group (X/Open) verabschiedete SQL Call Level Interface (CLI, siehe [OG95]). Es
beinhaltet eine abstrakte Beschreibung der Funktionalitit sowie Abbildungen auf Konstrukte in
den Sprachen COBOL und C. Es ist damit im wesentlichen auf in diesen Sprachen geschriebene
Clients beschrénkt. Fiir Microsoft-Plattformen gibt es weiterhin das auf dem CLI basierende
ODBC (Open Database Connectivity, sieche [Mi95]). Dessen Spezifikation beschrénkt sich zwar
auch auf die Sprache C, jedoch gibt es im Rahmen der Microsoft-Entwicklungsumgebungen
wie z.B Visual Basic oder Visual C++ quasi-standardisierte Abbildungen auf weitere Sprachen.
Neben dem CLI und ODBC, die mittlerweile von jedem groBeren RDBVS unterstiitzt werden,
ist noch die von der Firma Sun entwickelte Java Database Connectivity zu nennen (JDBC, siehe
[Sun97a]). JDBC basiert auf dem CLI, enthilt aber auch eine Abbildung auf ODBC. Wir haben
damit drei dhnliche Moglichkeiten zum SQL-basierten Zugriff auf relationale Systeme, die pri-

35

mir die Sprachen COBOL, C (und damit auch C++) sowie Java abdecken. Alle drei abstrahieren
von den Eigenschaften konkreter DBVS. Sie benutzen standardisierte SQL-Syntax fiir Anfra-
gen, das sog. SQL-92 oder kurz SQL2, und definieren generische Datenstrukturen fiir die
Ergebnismenge. Das CLI-, ODBC- oder JDBC-API fiir den Client besteht im allgemeinen aus
einer voriibersetzten Bibliothek, die mit dem jeweiligen RDBVS ausgeliefert und zum Client-
Prozel hinzugebunden wird (JDBC-Treiber liegen in Form eines oder mehrerer Java-Packages
vor). Die Verarbeitung zur Laufzeit ist dann recht einfach: Der Client iibergibt dem API die
Anfrage in Form eines Strings und erhilt eine Referenz auf eine generische Datenstruktur mit
dem Ergebnis zuriick. Beim CLI muf3 vorher noch ein ausreichend groBer Pufferbereich zur
Aufnahme des Ergebnisses allokiert werden.

Eine andere Form der Programmierung und Verarbeitung wird durch das sog. Embedded SQL
[Da94, DD97] spezifiziert. Es stellt im Prinzip die Erweiterung einer Programmiersprache (die
sog. Wirtssprache) um einige DB-spezifische Befehle dar. Man unterscheidet dabei zwischen
der Einbettung in eine Sprache und einer vollstandigen Integration [NHR99]: Die Einbettung
fiihrt zu einer zweiphasigen Verarbeitung: Zuerst wird das Client-Programm mit einem sog.
Precompiler iibersetzt, der mit dem RDBVS ausgeliefert wird und die Befehle der Spracherwei-
terung durch DBVS-spezifische Routinen in der jeweiligen Wirtssprache ersetzt. Anschlielend
kann der gesamte Client mit einem gewohnlichen Compiler iibersetzt und gebunden werden.
Bei der vollstdndigen Integration wird der Umfang der Wirtssprache hingegen um die DB-
Befehle erweitert und ein neuer Compiler erstellt. Dementsprechend ergibt sich eine einphasige
Verarbeitung. In der Praxis wird aber meist die Einbettung verwendet, um bestehende Compiler
fiir Wirtssprachen nutzen zu konnen.

Wenn wir nun unsere Aufmerksamkeit von den RDBVS auf die OODBVS verlagern, so gibt es
auf dem Wege dorthin ein nicht klar einzuordnendes Konzept: Das von Microsoft entwickelte
OLE-DB [Ra96]. Es benutzt die beiden Modelle OLE (Object Linking and Embedding) und
COM (Component Object Model), um einen allgemeinen Zugriff auf Daten zu realisieren. Diese
miissen aber nicht zwangsweise das Resultat einer Anfrage an eine DBVS sein, sie kénnen auch
das Ergebnis eines Methodenaufrufes repridsentieren. Weiterhin sind beliebige Datenquellen
zuldssig, wie z.B. relationale und objektorientierte DBVS, aber auch einfache Textdateien. Lei-
der steht OLE-DB im Prinzip nur auf Microsoft-Plattformen zur Verfiigung, so daf} dieses Kon-
zept fiir integrierte Systeme oberhalb heterogener Plattformen kaum von Interesse ist. Zwar gibt
es zum Teil schon Produkte wie den ISG Navigator [ISG99], die selbst unter UNIX oder MVS
eine sog. OLE DB Engine zur Verfiigung stellen. Diese Produkte sind aber proprietér und bergen
damit langfristig erhebliche Risiken.

Damit sind wir dann auch schon bei der Diskussion von Middleware-Losungen fiir den Zugriff
auf objektorientierte DBVS. Hier ist zu beriicksichtigen, da3 OODBVS (im Anfangsstadium
ithrer Technologie) hédufig nur ein Hilfsmittel zur persistenten Speicherung der innerhalb eines
Programmes benutzten Objekte waren. Somit ist ein Teil der Zugriffsschnittstelle bereits durch
die Programmiersprache selbst gegeben. Weiterhin sind eigentlich alle OODBVS bereits Client/
Server-basiert, d.h. sie stellen sowohl ein Client-API als auch die Kommunikationsroutinen zum
Server bereit. Aspekte wie Transaktions- und Anfrageverarbeitung waren aber urspriinglich
proprietér und hatten bei jedem System eine andere Schnittstelle. Aus diesem Grund wurde die
Object Database Management Group (ODMG) gegriindet, der alle bedeutenden Hersteller von

36

OODBYVS angehoren. Sie hat inzwischen den ODMG-Standard in der Version 2.0 verabschie-
det [CB97], der eine einheitliche Object Query Language (OQL) sowie Abbildungen auf die
Sprachen C++, Smalltalk und Java umfalit. Aufgrund dieser standardisierten Schnittstelle sowie
der impliziten Client/Server-Unterstiitzung gibt es im Bereich der OODBVS eigentlich keinen
Bedarf fiir weitere Middleware.

2.4.4.2 Homogener Zugriff auf heterogene DBVS

Vielfach sind die von einem Programm bendtigten Daten nicht mehr in einem einzigen DBVS
gespeichert, sondern auf mehrere Datenbanken verteilt. Dabei konnen sowohl die Systeme, als
auch die zugrundeliegenden Schemata heterogen sein. Es wiire nun sehr unpraktisch, wenn eine
Applikation iiber n Schnittstellen auf m verschiedene Schemata zugreifen miifite. Statt dessen
sollte es eine einzige Schnittstelle geben, die ein foderiertes Schema anbietet. Die tatsdchliche
Verteilung der Daten sowie die notige (verteilte) Verarbeitung sind dabei fiir den Client trans-
parent. Nun wollen wir uns an dieser Stelle aber nicht vertieft mit der Problematik der Schema-
Integration und Foderierten Datenbankverwaltungssystemen auseinandersetzen. Dafiir sei z.B.
auf [Sa98] verwiesen. Vielmehr gilt es die Frage zu beantworten, welche Mechanismen fiir den
globalen Zugriff zur Verfiigung stehen. In den letzten Jahren haben sich dafiir eine Reihe Pro-
dukte auf dem Markt etabliert, die hdufig unter dem Stichwort DB-Middleware eingeordnet
werden. Hier sind z.B. das ORACLE Transport Gateway [Hu96], Information Builders EDA/
SQL [IB97] sowie der IBM DB2 DataJoiner [IBM97] zu nennen. Diese Systeme realisieren
einen homogenen Zugriff auf heterogene DBVS, teilweise sogar auf beliebige Datenquellen wie
Text- oder HTML-Dateien. Eine von DaimlerChrysler FT3/EK durchgefiihrte Analyse von drei
Produkten hat gezeigt, dal Umfang und Michtigkeit dieser Technologie durchaus vielverspre-
chend sind [RH98]. Aus diesem Grund wurde der IBM DB2 DataJoiner bereits zur Integration
heterogener Datenquellen im Projekt MEntAs (MotorEntwicklungsAssistent) eingesetzt
[Rez+98]. Ein Nachteil, der im Rahmen dieses Projektes nicht von Bedeutung ist, bleibt aller-
dings zu erwihnen: Das globale Schema ist immer relational. Unterstiitzung fiir objektorien-
tierte Strukturen ist erst mit der endgiiltigen Einfithrung von SQL3 zu erwarten.

Zufriedenstellend ist die Lage hingegen bzgl. Schnittstellen und APIs. Zwar gibt es (bisher)
keine konkrete Standardisierung im Bereich von DB-Middleware, die verfligbaren Losungen
fiir den Zugriff auf einzelne DBVS lassen sich aber im allgemeinen auch fiir den globalen
Zugriff benutzen. Dementsprechend bieten mehr oder weniger alle Produkte standardisierte
APIs fiir den globalen Zugriff an (wie z.B. das CLI, JDBC oder Embedded SQL). Fiir den Client
ist die Verarbeitungsweise damit hdufig dquivalent zum Zugriff auf ein einzelnes (R)DBVS: Die
Middleware erlaubt die Definition eines globalen Schemas (und abstrahiert damit von der kon-
kreten Verteilung der Daten) und kapselt weiterhin die verteilte Transaktionsverarbeitung (diese
lauft intern in der Middleware ab). So waren z.B. erste Erfahrungen in [RH98] und [Rez+98]
sehr positiv. Dort wurde der globale Zugriff iiber Embedded SQL und JDBC getestet.

Ein anderer Ansatz zur Integration 148t sich tiber Microsofts OLE-DB realisieren [Bla97]. Mit
Hilfe dieses Konzeptes konnen prinzipiell auch objektorientierte Strukturen beriicksichtigt wer-
den, jedoch ist es (wie bereits oben erwihnt) spezifisch fiir Microsoft-Plattformen. Wir werden
diesen Ansatz deshalb im folgenden nicht weiter betrachten.

37

2.5 Grundbegriffe einer allgemeinen Datenversorgung

Im letzten Abschnitt haben wir Mechanismen zur Uberbriickung der Client/Server-Grenze fiir
eine Datenversorgung iiber Datenbankverwaltungssysteme diskutiert. Nun sind aber nicht alle
von einem Programm oder einer Komponente benétigten Daten in einem oder gar mehreren
DBVS gespeichert. Viele Informationen sind in eher unstrukturierten Datenquellen (wie z.B.
Dateien) enthalten oder reprisentieren gar das Ergebnis eines Funktionsaufrufes. Wir benotigen
also allgemeinere Techniken zur Datenversorgung. In den nédchsten Abschnitten werden wir
deshalb einige Grundlagen betrachten, die als Basis fiir das weitere Vorgehen innerhalb dieser
Arbeit dienen. Hier sind insbesondere die Definition eines einheitlichen Datenmodells
(Kapitel 2.5.1), die Unterscheidung zwischen datenintensiver und auftragsbezogener Verarbei-
tung (Kapitel 2.5.2) sowie die Beurteilung der Effizienz zu nennen (Kapitel 2.5.3).

2.5.1 Modellierung

Bereits in der Einleitung haben wir die Verwendung integrierter, aus Bausteinen aufgebauter
Architekturen motiviert. Innerhalb dieser macht die Bearbeitung von Daten durch mehrere
Werkzeuge aber nur dann Sinn, wenn die Daten von allen beteiligten Komponenten gleich inter-
pretiert werden, d.h., daB} in allen Fillen die gleiche Semantik zugrundeliegen muB3. Es wire z.B.
fatal, wenn eine Linie von einem Werkzeug als Kabelbaum, vom néchsten aber nur als Begren-
zung aufgefal3t wiirde. Natiirlich wird es sich nie vermeiden lassen, da} unterschiedliche Kom-
ponenten intern auch unterschiedliche Datenformate verwenden. Dies gilt insbesondere im
Bereich von CAD-Programmen. Erginzend dazu kann man aber fiir jede Entwurfsumgebung
ein globales Datenmodell definieren, in dem alle Daten ausgetauscht und archiviert werden.
Jede Komponente, die intern ein anderes Format benutzt, muf3 dann einen Import/Export-Filter
fiir die notige Konvertierung zur Verfiigung stellen. Dadurch entsteht zwar ein etwas hoherer
Aufwand, es gibt aber keine bessere Moglichkeit zur Realisierung eines globalen Datenmodells
mit einheitlicher Semantik. Wiirden z.B. alle Werkzeuge ihre Daten im eigenen (proprietdren)
Format weitergeben, so miifite jede Komponente Import-Filter fiir alle vorhandenen Formate

enthalten. Bei n Werkzeugen gibe es dementsprechend ca. n’

verschiedene Filter. Im Gegensatz
dazu sind bei der Verwendung eines globalen Datenmodells lediglich 2*n Filter notig. AuBer-
dem gestaltet sich im letzten Fall die Integration neuer Werkzeuge deutlich einfacher: Es miis-
sen nicht die bestehenden Komponenten um neue Filter erweitert werden, sondern nur die neue.
Bei Anderungen des Schemas einer Komponenten entsteht in beiden Fillen ein dhnlich hoher
Aufwand: Ohne globales Schema miiite man n Import-Filter iiberarbeiten, mit globalem
Schema miite genau dieses aktualisiert und anschlieend alle Import/Export-Filter angepal3t

werden (2*n).

Gerade im Hinblick auf die bereits erwidhnten Virtual Enterprises ist es nun aber nicht sinnvoll,
daB fiir jede Entwurfsumgebung ein eigenes Datenmodell benutzt wird. Es bietet sich vielmehr
die Verwendung international standardisierter Schemata an, z.B. ISO 10303 (STEP) im Bereich
der Produktdatenverwaltung (siehe Kapitel 3). Diese Datenformate dienen dann primér dem
Datenaustausch zwischen den einzelnen Komponenten eines integrierten Systems. Man kann
sie natiirlich auch als lokales Schema der beteiligten DBVS verwenden (dadurch wiirden eine

38

Menge Konvertierungen eingespart), dieser Schritt ist aber nicht zwingend erforderlich. Bezug-
nehmend auf die Integration vorhandener Datenbestdnde ist es sogar notig, dall innerhalb der
DBVS andere Formate verwendet werden konnen. An dieser Stelle tritt auch gleich ein gewisser
Nachteil des STEP-Standards zu Tage: Alle Schemata sind objektorientiert modelliert. Dadurch
realisieren sie zwar eine sehr prizise Abbildung der realen Welt, sie lassen sich damit aber nicht
als logisches Schema der (immer noch bevorzugt) eingesetzten RDBVS benutzen. Auch hier
besteht allerdings grofle Hoffnung, dal} dieses Problem mit der Einfiihrung von SQL3 entfillt.
Vorhandene Datenbestinde konnten dann z.B. iiber DB-Middleware (siehe Kapitel 2.4.4.2)
integriert werden, so daf} es aus Sicht der Werkzeuge nur noch ein globales DBVS giibe.

2.5.2 Datenintensive und auftragsbezogene Verarbeitung:
Data Shipping versus Operation Shipping

Vor der Definition eines globalen Schemas stellt sich die Frage, inwieweit tiberhaupt Bedarf fiir
einen Datenaustausch zwischen den einzelnen Komponenten (oder noch allgemeiner zwischen
Client und Server) besteht. Dafiir wollen wir zunichst Client/Server-basierte Anwendungen in
zwei Kategorien aufteilen. Dabei ist es unerheblich, ob die Client/Server-Grenze nur durch die
Software oder auch durch die Hardware vorgegeben ist (vgl. Kapitel 2.3.2). Die erste Gruppe
fassen wir unter dem Begriff auftragsbezogene Anwendungen zusammen. Die Clients senden
hier einen Auftrag sowie bendtige Parameter an den Server und erhalten spéter das Ergebnis
zuriick, ohne da3 weitere Kommunikation zwischen ihnen nétig ist. Die eigentliche Verarbei-
tung erfolgt typischerweise vollstindig im Server. Beispiele hierfiir sind Buchungs- oder Reser-
vierungssysteme. Die resultierende Verarbeitungsweise bezeichnen wir als Operation Shipping
(siehe linke Hilfte von Abb. 2.5).

Applikation
| Applikation | Client
A) Daten- _ Daten-
Auftrag Ergebnis Anforderung Ubertragung
Auftrags-Service Server Daten-Service
T >
DB
- auftragsbezogen - - datenintensiv -
(Operation Shipping) (Data Shipping)

Abb. 2.5: Auftragsbezogene und datenintensive Client/Server-Architekturen

Die zweite Sparte sind datenintensive Anwendungen. Server dienen hier {iberwiegend als
Datenhaltungskomponente und versorgen die Clients, welche die eigentliche Verarbeitung lokal
durchfiihren, mit den benétigten Daten. Traditionell setzt man in diesen Umgebungen Client/

39

Server-basierte DBVS ein, die im wesentlichen fiir den Transport der Daten zum Client sorgen
(und diese dort puffernl) sowie ein umfassendes Schutzkonzept (z.B. ACID-Transaktionen,
siehe [HR83]) realisieren. Wichtige Kriterien sind weiterhin die Minimierung der Kommunika-
tion sowie das Verhalten im Fehlerfall. Eine Spezialisierung datenintensiver DB-Anwendungen
sind kooperative Anwendungen, bei denen mehrere Clients gleichzeitig auf den selben Daten
arbeiten wollen. Erginzend zur exklusiven Synchronisation des ACID-Konzeptes sind hier
kooperative und notifizierende Protokolle notig (z.B. Replikation iiber Transaktionsgrenzen
hinweg), die Anderungen in geeigneter Weise (etwa iiber sog. Events) an alle existierenden
Kopien propagieren. Beispielsweise sollte wihrend des Entwurfs eines Produktes die Anderung
eines Sub-Moduls bei allen beteiligten Partnern unverziiglich sichtbar sein. Sowohl bei daten-
intensiven, als auch bei kooperativen Anwendungen bezeichnen wir das zugrundeliegende Kon-
zept als Data Shipping (siehe rechte Hilfte von Abb. 2.5).

Abschlielend stellt sich die Frage, welches der beiden Konzepte (Operation Shipping oder Data
Shipping) denn héaufiger benotigt wird bzw. wo noch die groiten Probleme liegen. Generell 143t
sich erkennen, dal} die objektorientierte Technologie eine gute Grundlage fiir auftragsbezogene
Architekturen bildet: Jede Methode eines Objektes bearbeitet quasi einen speziellen Auftrag.
Dementsprechend bieten objektorientierte Komponentenmodelle auch eine gute Basis zum Ent-
wurf derartiger Systeme. In [SM97] haben wir diese Aussage exemplarisch am Beispiel
CORBA diskutiert. Im Gegensatz dazu wird Data Shipping eigentlich nur durch Client/Server-
basierte DBVS in geeignetem Umfang unterstiitzt. In den letzten Kapiteln ist aber deutlich
geworden, daf} diese Systeme fiir eine allgemeine Datenversorgung alleine nicht ausreichend
sind. Wir bendtigen vielmehr eine Unterstiitzung der datenintensiven Verarbeitung durch die
verwendeten Komponentenmodelle und eingesetzte Middleware. Hier ergeben sich eine Reihe
offener Fragen.

Bei einer genaueren Betrachtung von Entwurfsumgebungen 146t sich nun klar erkennen, daf3
iiberwiegend eine datenintensive Verarbeitung vorliegt. Dies trifft insbesondere auf den Bereich
der CAD-Modellierung zu, die ohne lokale Pufferung der Daten undenkbar wire. Aus diesem
Grund, aber auch unter Beriicksichtigung der Tatsache, dal im Bereich Operation Shipping
bereits gute Konzepte und Losungen existieren, liegt der Fokus der vorliegenden Arbeit somit
ganz klar auf der Untersuchung geeigneter Konzepte fiir das Data Shipping.

2.5.3 Effizienz der Datenversorgung

Will man die Qualitét einer Datenversorgung, und damit insbesondere auch deren Effizienz,
beurteilen, so gilt es zunidchst geeignete Bewertungskriterien zu finden. Der wichtigste Aspekt
wird im allgemeinen die Zeitspanne sein, die benotigt wird, um einer Anwendung die angefor-
derten Daten im gewlinschten Format zur Verfiigung zu stellen. Man spricht an dieser Stelle von
Antwortzeit oder Zugriffszeit. Bei der Durchfiihrung von Messungen ist es sehr wichtig, dal
auch die fiir evtl. erforderliche Konvertierungen benétigte Zeit beriicksichtigt wird. Andernfalls
wiirde man quasi Apfel mit Bananen vergleichen. Keine Komponente kann etwas mit Daten
anfangen, deren Format sie nicht interpretieren kann.

1. ganze Seiten bei objektorientierten (navigierenden) DBVS, Teilergebnisse von Anfragen bei relationalen DBVS

40

Neben der Antwortzeit, die nur die Bediirfnisse einer einzigen Anwendung beriicksichtigt, ist
hiufig der Durchsatz der Datenversorgung von Interesse. Er ist ein Maf} dafiir, wie viele Daten
innerhalb einer Zeitspanne allen Anwendungen (insgesamt) zur Verfiigung gestellt wurden.
Wihrend aus der Sicht eines Anwenders natiirlich primér die Antwortzeit zu optimieren ist, so
sollte gerade in Systemen mit mehreren Benutzern auf einen ausreichenden Durchsatz geachtet
werden. Leider sind beide Aspekte aber nicht unabhingig voneinander. Wird z.B. einigen sehr
umfangreichen Anforderungen eine hohere Prioritit eingerdumt, um ihre Antwortzeiten zu
reduzieren, so verschlechtert sich der Durchsatz, wenn dadurch viele kleine (und damit
urspriinglich schneller zu bearbeitende) Anforderungen zuriickgestellt werden. Verkiirzt man
hingegen die Antwortzeit aller Anforderungen, so steigt natiirlich auch der Durchsatz. Mogli-
che Mechanismen hierfiir sind z.B. die Pufferung von Daten, der Einsatz schneller Festplatten
(und sonstiger Speichermedien) sowie die Verwendung effizienter Kommunikationsprotokolle.
Letztere beziehen sich sowohl auf die physische Ubertragungszeit, als auch auf den Einsatz
geeigneter Multicast-Algorithmen [Ta92]. Ein weiteres Konzept ist das sog. Prefetching, bei
dem man Daten abhidngig vom aktuellen Verarbeitungskontext im voraus zur Verfiigung stellt:
Beispielsweise kann sich der Benutzer in Ruhe die erhaltenen Daten eines Motors ansehen,
wihrend im Hintergrund bereits die Daten des Getriebes libermittelt werden. Insgesamt erken-
nen wir also eine Reihe von Kriterien, welche die Effizienz der Datenversorgung bestimmen.

Ungliicklicherweise wird in einigen Verdffentlichungen der Aspekt der Effizienz aber nur sehr
ungenau betrachtet oder definiert. In [Vo98] wird z.B. vorgeschlagen die Effizienz der Daten-
versorgung dadurch zu steigern, da3 man eigenstdndige Threads [Ta92] fiir die Programmie-
rung der grafischen Benutzeroberflache verwendet. Dadurch stehe das System dem Benutzer
wieder schneller zur Verfiigung. Dies ist natiirlich korrekt. Allerdings wird dabei nur die Ant-
wortzeit der Oberfliche, und eben nicht die der Datenversorgung, optimiert. Im Rahmen dieser
Arbeit gehen wir daher im wesentlichen auf eine mogliche Optimierung der tatséichlichen Ant-
wortzeit der Datenversorgung ein. Dabei betrachten wir zusitzlich die Auslastung einzelner
Komponenten und Programme, um friihzeitig mogliche Engpésse zu erkennen, die spiter den
Durchsatz des gesamten Systems reduzieren konnten.

2.6 Entwurfsumgebungen

Nachdem wir in den letzten Kapiteln grundlegende Begriffe und Techniken diskutiert haben,
wollen wir uns nun dem Szenario widmen, das den Rahmen fiir die durchgefiihrten Untersu-
chungen bildet: Entwurfsumgebungen. Sie sind aus dem Grund entstanden, daf der Industrie fiir
die Entwicklung neuer Produkte immer weniger Zeit zur Verfiigung steht. Neben dem Entwurf
neuer Bausteine erhilt die Wiederverwendung und Anpassung bestehender Teile eine immer
groflere Bedeutung. Die riesigen Datenmengen fiir die Beschreibung einzelner Versionen kon-
nen jedoch nur mit einer effizienten Oberfldche bearbeitet werden. Diese mufl dem jeweiligen
Ingenieur sowohl eine breite Palette von Werkzeugen fiir die Manipulation als auch fiir die Spei-
cherung der einzelnen Objekte anbieten. Weiterhin sollte es eine méchtige Anfragesprache bzw.
-oberflidche geben, die einen schnellen Zugriff auf gewiinschte Einheiten bietet. Auch die par-

41

allele Bearbeitung der Daten durch mehrere Arbeitsgruppen muf} hinreichend unterstiitzt wer-
den, ohne daf} einzelne Teams lidngere Zeit blockiert sind. Je nach Einsatzgebiet konnen die
gerade genannten Anforderungen jedoch stark differieren, so da3 eine komponentenbasierte
Architektur des Systems wiinschenswert ist. Entsprechend der konkreten Umgebung konnte
jedes einzelne Programmpaket quasi wie aus einem Baukasten zusammengestellt werden.

Unabhingig von jeglicher Spezifikation werden wir immer gewisse Basisdienste bendtigen.
Hierzu zdhlen Kommunikationsverfahren, Konvertierung der Daten in heterogenen Netzen,
Datenhaltung, grundlegende Betriebsoberflichen (z.B. Fenstersysteme) sowie Entwicklungs-
und Integrationsdienste. Die Kombination dieser Bausteine bezeichnen wir im folgenden als
Rumpfumgebung oder auch Framework. Die eigentlichen Werkzeuge werden dann auf diese
aufgesetzt und sollten somit portabel sein. Das von der Anwendungsdomine abhingige
Gesamtsystem wird schlieBlich als Entwurfsumgebung bezeichnet [RS92].

(o))
C
N
Schicht 4 Anwendungen (Werkzeuge) g
x
s /3
= €
Schicht 3 Integrationsdienste >“E’ 2
Entwicklungsdienste E S
Schicht 2 Allg. Datenhaltungs-, Betriebsoberflachen-, J J
Kommunikations- und Portabilitdtsdienste
Schicht 1 Betriebssystem
Hardware

Abb. 2.6: Schichtenbasierte Architektur von Entwurfsumgebungen [RS92]

Abbildung 2.6 veranschaulicht eine mogliche Schichtenbildung. Innerhalb dieser ist Schicht 2
von besonderem Interesse fiir uns, da sie die Datenversorgung beinhaltet. Ahnliche Modelle
werden auch in [HNSB90] und [Wo094] beschrieben. Dabei sollten wir immer beriicksichtigen,
daf} die Schichtenbildung nicht zwangsweise einer Aufteilung in Komponenten entsprechen
mulf (siehe Kapitel 2.3.1).

2.6.1 Frameworks

Bezugnehmend auf Abb. 2.6 sollten wir erwihnen, dall der Begriff Framework in der Literatur
nicht immer mit der gleichen Bedeutung verwendet wird. Im allgemeinen bezeichnet er aber die
Bereitstellung von Infrastruktur und Regeln fiir eine Interaktion von Objekten, prozeduralen
bzw. funktionalen Bausteinen oder gar Komponenten. Die zugrundeliegende Modellierung ist

42

in den meisten Fillen auf einen speziellen Anwendungsbereich zugeschnitten. Trotz der unter-
schiedlichen Verwendungen des Begriffes Framework haben Ralph Johnson und Vincent Russo
folgende allgemeine Definition aufgestellt [OHE96]:

An abstract class is a design for a single object. A framework is the design of a set of
objects that collaborate to carry out a set of responsibilities. Thus frameworks are
larger scale designs than abstract classes. Frameworks are a way to reuse high-level
design.

Diese Begriffsbildung stimmt im wesentlichen mit der bisher von uns verwendeten Semantik
tiberein. Vielfach sind Frameworks auch aus sog. Design Patterns aufgebaut, die weit verbrei-
tete und akzeptierte Entwurfskonzepte beschreiben [MM97]. Wir werden allerdings im folgen-
den nicht genauer auf diese Begriffe eingehen, sondern auf Kapitel 12 von [OHE96] verweisen.

2.6.2 Isolation und Kooperation

Entwurfsumgebungen zeichnen sich im allgemeinen dadurch aus, daB sie die verteilte Entwick-
lung von Produkten oder Bauteilen durch mehrere Ingenieure unterstiitzen. Dementsprechend
miissen Datensitze unter Umstinden mehreren Benutzern gleichzeitig zur Verfiigung stehen.
Das aus der DBVS-Technologie bekannte ACID-Konzept [HR83, GR93] kann somit nicht
direkt zur Realisierung einer konsistenten Datenverarbeitung iibernommen werden. Es wiirde
die Isolation aller Beteiligten zur Folge haben und damit jede Form von Kooperation verhindern
(insbesondere im Bezug auf lang andauernde Entwurfsprozesse). Aus diesem Grund sind in den
letzten Jahren einige erweiterte Transaktionsmodelle bzw. verwandte Konzepte entstanden
[BS95, EG89, Ri97]. Die Form der Verarbeitung und Konsistenzkontrolle variiert dabei stark.
Ein Extrem ist die mehr oder weniger unkontrollierte Replikation von Daten, wie sie beispiels-
weise in Lotus Notes realisiert ist [DS96, BS95]. Lediglich am Ende der Verarbeitungsschritte
wird der Benutzer benachrichtigt, falls eine konkurrierende Kopie der gleichen Daten existiert.
Es gibt jedoch keinen Mechanismus zum Auflosen dieser Konflikte. Auf der anderen Seite sind
Systeme mit einer umfangreichen, teilweise mehrstufigen, Konsistenzkontrolle zu nennen. Bei
ihnen wird oft ein sog. Check-In/Check-Out-Mechanismus verwendet [Ri97, Sh+96]. Sollen
Daten lokal bearbeitet werden, so ist vorher ein Check-Out notig. Anschliefend sind diese
Daten fiir andere Benutzer nicht zur Modifikation verfiigbar. Vielfach konnen sie allerdings
gelesen werden. Im Unterschied zur Isolation beim ACID-Konzept konnen alle Anwender klar
erkennen, wer nun welche Daten bearbeitet. Man spricht dabei auch von Group Awareness. Am
Ende eines Verarbeitungsschrittes miissen die lokal modifizierten Daten iiber ein Check-In in
den globalen Datenbestand integriert werden. Wihrend dieses Vorganges wird kontrolliert, ob
alle spezifizierten Design-Anforderungen weiterhin erfiillt sind. Ist dies nicht der Fall, so wird
das Check-In zuriickgewiesen.

Eine andere Form der kooperativen Datenverarbeitung wird in TOGA realisiert [SFM99]. Hier
wird innerhalb einer Gruppe iiber jeden Verarbeitungsschritt abgestimmt. Eine Aktion muf}
zuriickgesetzt werden, sobald ein Mitglied nicht zugestimmt hat. Die Abstimmungssphase wird
dabei durch ein 2-Phasen-Commit-Protokoll [GR93] iiberwacht.

43

2.6.3 Workflow, Groupware und CSCW

Mit der im letzten Abschnitt gefiihrten Diskussion haben wir im Prinzip schon den Bedarf fiir
eine Kontrolle kooperativer Abldufe motiviert. Nun ist es aber nicht ausreichend, nur die Inte-
gritit der Daten zu betrachten. Es sollte insbesondere eine geeignete (automatische) Steuerung
der einzelnen Schritte des Entwurfsprozesses geben. Lassen sich alle Phasen durch ein vorher
definiertes Ablaufschema beschreiben, so spricht man von einem Workflow [JBS97]. Das
Schema wird dann als Eingabe fiir ein Workflow Management System (WFMS) benutzt, welches
die gesamte Verarbeitung koordiniert. Es sorgt fiir die korrekte Weiterleitung von Zwischener-
gebnissen sowie die Initiierung der folgenden Verarbeitungsphase. Ist der Entwurfsprozef hin-
gegen hochgradig dynamisch, d.h. er 1468t sich nicht im voraus durch ein Ablaufschema
beschreiben, so braucht man flexiblere Konzepte. Man spricht in diesem Bereich von Computer
Supported Cooperative Work (CSCW, auf der konzeptuellen Ebene) und Groupware (bei der
Realisierung von konkreten Systemen). Dabei werden WEMS und Groupware meist als eine
Kategorie von CSCW angesehen [BS95]. Es gibt jedoch auch einige Modelle, die sich in keine
dieser Kategorien einordnen lassen. Ein Beispiel hierfiir ist das CONCORD-System [Ri97].
Das zugrundeliegende Konzept wird als Designflow bezeichnet und ist besonders gut auf CAD-
basierte Entwurfsprozesse abgestimmt.

Im Rahmen dieser Arbeit wollen wir das Thema Kooperation und Koordination aber gar nicht
weiter vertiefen. Fiir uns ist es entscheidend, daf} eigentlich alle Komponenten und Werkzeuge
eine effiziente Datenversorgung bendtigen. Bereits in Kapitel 2.5.2 haben wir erkannt, daf3
kooperative Abldufe (im Bezug auf die Datenversorgung) nur ein Spezialfall datenintensiver
Verarbeitungsweisen darstellen. Die erzielten Ergebnisse gelten also in beiden Bereichen. Sollte
einmal an einer Stelle eine unterschiedliche Behandlung noétig sein, so werden wir das Thema
dann explizit diskutieren. Ansonsten gelten alle Aussagen implizit als Grundlage fiir beide
Kategorien.

2.7 WWW, Internet und Intranet

In den letzten Jahren ist die Prisenz im Internet und WWW (World Wide Web, siche [W3C])
fiir die meisten Firmen immer bedeutender geworden. Diese Medien bieten die Moglichkeit zur
schnellen Verbreitung von Information und stellen damit eine ideale Voraussetzung zur Ver-
marktung von Produkten dar. Urspriinglich konnten dafiir nur statische, in HTML (Hypertext
Markup Language, siehe [RLA+98, Da+98]) geschriebene Seiten benutzt werden. Aufgrund
der Dynamik von Produktdaten muf3ten diese aber laufend angepal3t werden. Dafiir stand jedoch
keine geeignete maschinelle Unterstiitzung zur Verfiigung, so dal im Endeffekt viele Seiten ver-
altet oder inkonsistent waren. Auflerdem bietet pures HTML keine Moglichkeit, um Feedback
vom Leser einer Seite zum Server zu propagieren. Dies wire sehr niitzlich.

Aufgrund der gerade erwihnten Probleme wurden in den letzten Jahren mehrere Techniken ent-
wickelt, die den dynamischen Aufbau von Informationsseiten und die bidirektionale Interaktion
zwischen Leser und WWW-Server ermoglichen. Dabei soll es insbesondere méoglich sein, in
DBVS gespeicherte Daten direkt zu verwenden. Eine Variante ist die Verwendung einer Kom-

44

bination aus JavaScript und CGI-Komponenten, die in Kapitel 2.7.1 beschrieben wird. Sie fiihrt
allerdings zu Problemen bei der Verwaltung von Zustinden und Transaktionen, so da3 wir die
in Kapitel 2.7.2 prisentierte Java-Losung bevorzugen. Ein Beispiel zur Begriindung fiir diese
Entscheidung ist in Kapitel 2.7.3 enthalten. AbschlieBend gehen wir auf die Unterschiede zwi-
schen Intranet und Internet ein und diskutieren die Frage, ob beide weitere Moglichkeiten als
die reine Préasentation von Informationen bieten. Eine gute Zusammenfassung aktueller WW W-
Technologien ist auch in [Loe98] enthalten.

2.7.1 Das Common Gateway Interface (CGI) und JavaScript

Ausgehend von einem steigenden Bedarf an dynamisch erzeugten Informationsseiten im
WWW wurde 1994 das sog. Common Gateway Interface [CGI] entwickelt. Mit diesem Konzept
kann ein WWW-Server um Komponenten ergidnzt werden, die z.B. auf verfiigbare DBVS
zugreifen und mit den daraus gewonnenen Daten aktuelle HTML-Seiten erstellen. Die Pro-
gramme liegen dabei in einem speziellen Unterverzeichnis des WWW-Servers und lassen sich
(wie normale HTML-Seiten) iiber URLs (Uniform Resource Locator) adressieren. Weiterhin ist
es moglich Parameter zu iibergeben, beispielsweise indem man diese an das Ende der URL
anhédngt (weitere Varianten sind in [YMG96] beschrieben). Damit ist auf dem WWW-Server
alles notige vorhanden. Es muB allerdings noch eine Technik gefunden werden, welche die Ein-
gabe von Daten in HTML-basierte Formulare auf dem Client (also im WWW-Browser) ermog-
licht. An dieser Stelle hat sich die HTML-Erweiterung JavaScript etabliert, die aber keineswegs
mit der Programmiersprache Java verwechselt werden sollte. Wir werden im néchsten Abschnitt
sehen, daf} beide nichts miteinander zu tun haben. JavaScript wird inzwischen von den meisten
Browsern unterstiitzt und bietet damit eine gute Moglichkeit, um einfache Eingabemasken zu
erstellen. Dementsprechend ist die Kombination aus CGI und JavaScript (bzw. korrespondie-
render Technologien, siehe [Loe98]) heutzutage auch weit verbreitet.

Leider ergeben sich aber immer noch gravierende Nachteile. Zuerst einmal sind die Skripte bzw.
Programme héufig recht komplex und unstrukturiert, so da3 eine Wartung dieser Komponenten
sehr umstédndlich und fehleranfillig ist. Natiirlich ist dieser Zustand iiberwiegend den jeweiligen
Programmierern anzulasten, aber beide Konzepte erzwingen eben keine strukturierte Vorge-
hensweise. Das grofere Problem betrifft jedoch die Realisierung einer transaktionsorientierten
Verarbeitung. Gerade im Bereich von Systemen zur Online-Bestellung von Waren und Dienst-
leistungen ist diese unverzichtbar. Die Ursache liegt im zugrundeliegenden Hypertext Transfer
Protocol (HTTP, siehe [W3C]), das zu einer zustandslosen Kommunikation fiihrt. Vielfach ver-
gibt man deshalb spezielle Kontext-IDs, die eine Referenz auf die zugeordnete Transaktion im
WWW-Server darstellen und jeder Ubertragung angehiingt werden. Aber auch dieser Trick
fiihrt nicht zu einer zustandsorientierten Verbindung gemidf dem ISO/OSI-Schichtenmodell
[DZ83]. Wir halten diese Losung deshalb (langfristig gesehen) fiir unbefriedigend.

45

2.7.2 Java

Will man im Internet nicht auf gewohnte Charakteristika und Grundlagen, wie etwa eine trans-
aktionsorientierte Datenverarbeitung, verzichten, so bietet sich die Verwendung altbewéhrter
Konzepte entsprechend der neuen Rahmenbedingungen an. Bei der Entwicklung von HTTP,
HTML, CGI und JavaScript (siehe letzter Abschnitt) hat man dies leider nur teilweise bertiick-
sichtigt. Anders sieht es bei der objektorientierten Programmiersprache Java [AG98, GJS96,
Java] aus, die von der Firma Sun entwickelt wurde. Sie stellt unter anderem ein méchtiges Werk-
zeug zur Entwicklung WWW-basierter Anwendungen dar. Der Erfolg von Java beruht im
wesentlichen auf zwei Aspekten: Portabilitit und Sicherheit. Syntax und Semantik der Sprache
sind klar definiert, so da Java-Programme ohne Anderungen auf allen Plattformen (die Java
unterstiitzen) laufen. Weiterhin kdnnen sie als sog. Applets iiber WWW-Server verbreitet und
anschlieBend im Browser des Clients ausgefiihrt werden. Hier gilt es natiirlich trojanische
Pferde zu vermeiden, so da3 von Sun einige Sicherheitsvorschriften definiert wurden: Jedes
Java-Applet lauft z.B. in einer abgeschotteten Umgebung ab und hat insbesondere keinen
Zugrift auf lokale Verzeichnisse usw. Diese Einschriankungen konnen allerdings selektiv vom
Anwender (und eben nicht vom Programmierer!) aufgehoben werden. Daneben werden Java-
Programme nicht als Quellcode, sondern in einer Zwischenstufe, dem sog. Byte Code, iibertra-
gen. Dieser kann vom Client auf Konsistenz und unzulidssige Modifikationen iiberpriift werden.

Neben diesen allgemeinen Konzepten bietet Java standardmifig einige Mechanismen zur
zustandsorientierten Kommunikation und Datenversorgung an. So sind z.B. TCP/IP-Sockets
und die darauf aufbauende Java Database Connectivity (JDBC, siehe auch Kapitel 2.4.4.1 und
6.2.3) bereits Bestandteil der Sprache selbst. Entsprechend dem zugrundeliegenden objektori-
entierten Design wurden sie als eigenstidndige Module, sog. Java-Packages, realisiert.

Natiirlich ergeben sich durch die Verwendung von Java auch einige Nachteile. Diese betreffen
insbesondere Aspekte wie multiple Vererbung, das Erzeugen, Puffern und Loschen von Objek-
ten sowie die Leistung (der Java Byte Code mul} interpretiert bzw. vom Client bei Bedarf {iber-
setzt werden). Eine detaillierte Diskussion dieser Themen ist Bestandteil von Kapitel 6.1.1 bzw.
[SMO98, SM99b]. Trotz aller Probleme halten wir Java fiir ein geeignetes Mittel zum Erstellen
portabler Clients fiir WWW-basierte Anwendungen. Wir wollen diese Ansicht anhand des fol-
genden Beispieles begriinden:

2.7.3 Warum Java?

Fast alle Unternehmen bieten heutzutage detaillierte Information zu ihren Produkten und
Dienstleistungen iiber eigene WWW-Server an. Dabei wird hiufig eine Kombination aus
HTTP/HTML, CGI und JavaScript verwendet (siche Kapitel 2.7.1). Informationen liegen ent-
weder in Form statischer HTML-Seiten vor oder sie werden von CGI-Programmen, die in spe-
ziellen Unterverzeichnissen des WWW-Servers liegen, dynamisch erstellt. Diese Programme
haben meist Zugriff auf lokale DBVS (sog. WWW-DBVS), die replizierte Daten in einem
unternehmensspezifischen Format enthalten. Durch die Replikation erhofft man sich eine bes-
sere Lastverteilung sowie eine hohere Verfiigbarkeit der operativen DBVS mit den Original-
Daten. Ein Beispiel fiir derartige Systeme ist der Mercedes-Benz Configurator MBKS Online

46

[MB99]. Kunden konnen hier interaktiv die Ausstattungsmerkmale ihres neuen Fahrzeuges
wihlen und anzeigen lassen. Jeder Wunsch wird zum Server iibertragen, der daraus das neue
Bild berechnet und automatisch die Baubarkeit des Automobils priift. Dieses Szenario ist in der
linken Hélfte von Abbildung 2.7 dargestellt.

Java Applet:
startet/ p-| Produkt-
enthalt Konfiguration
3D Viewer
! z.B. IIOP
HTTP
(Intra-/Internet)
V 2B. JDBC Middleware
Enterprise (z.B. CORBA)
WWW i
Server 2.B. SQL-CLI
CGl
.'/ — s
File STEP-DBS, - | STEP-DBS,
System
(a) Aktuell verwendete Architektur [MB99] (b) Ziel-Architektur

Abb. 2.7: ' WWW-basierte Produktkonfiguration

Bei der zugrundeliegenden Verarbeitung lassen sich jedoch folgende Nachteile erkennen:

® Eingeschrinkte Funktionalitdt von JavaScript

JavaScript ist keine vollstdndige Programmiersprache wie C, C++, Smalltalk oder Java. Es
ist deshalb schwierig oder gar unméglich komplexe Operationen, wie z.B. die Transforma-
tion von Vektordaten in Rasterdaten oder eine 3D-Rotation, auf dem Client auszufiihren.

¢ Konsistenz und Aktualitit der replizierten Daten

Aufgrund inkompatibler Datenformate innerhalb eines Unternehmens, fehlender oder zu
langsamer Netzverbindungen sowie Mechanismen fiir Lastverteilung und Zugriffsschutz
greifen die meisten CGI-Programme (wie bereits erwédhnt) auf DBVS mit replizierten
Daten zu. Um die Aktualitiit dieser Daten zu garantieren, miissen Anderungen in den ope-
rativen DBVS in konsistenter Weise in die WWW-DBVS eingebracht werden. Die Zusam-
menfiihrung von Daten aus mehreren DBVS ist jedoch ein grof3es Problem, das nur selten
zufriedenstellend unterstiitzt wird. Dementsprechend wird dieser Schritt hidufig manuell
durchgefiihrt, so daf} eine neue, nicht zu unterschitzende Fehlerquelle entsteht.

® Verschiedene Datenmodelle und Schemata

Betrachtet man Informationssysteme wie [MB99] im Bezug auf Virtual Enterprises, so
wire es wiinschenswert, Systeme und Datenquellen anderer Firmen einbeziehen zu konnen
(beispielsweise fiir Teile, die nicht selbst hergestellt, sondern von Zulieferern bezogen wer-

47

den). Andernfalls mii3ten sogar externe Daten in das WWW-DBVS eingebracht werden.
Hier konnte man ohne komplexe Absprachen mit Sicherheit keine Aktualitidt und Konsi-
stenz der replizierten Daten garantieren.

® Zustandslose Kommunikation (siehe Kapitel 2.7.1)
Letztendlich bendtigen wir also ein System, welches

® die Leistung von Client-Maschinen fiir die Pufferung von Daten oder lokale Berechnungen,
z.B. 3D-Operationen und Datenkonversionen, nutzt, um unndtige Kommunikation iiber das
Netz zu reduzieren.

® eine zustandsorientierte Kommunikation zur Interaktion mit beliebigen Komponenten rea-
lisiert und damit eine abgesicherte, verteilte, transaktionsbasierte Verarbeitung erméglicht.

® einen Mechanismus zur konsistenten, unternehmensiibergreifenden Integration operativer
Datenbestinde umfaflt. Diese sollte nicht auf manueller Replikation basieren.

® geeignete DB-Middleware (siehe Kapitel 2.4.4.2) oder dhnliche Mechanismen zur Lastbal-
ancierung benutzt, um die operativen DBVS sowohl intern als auch fiir WWW-Anwendun-
gen effizient nutzen zu konnen.

Eine Losung fiir diese Anforderungen ist der Einsatz von Java Applets, die in HTML-Seiten ein-
gebettet sind. Sie ermdglichen die Interaktion mit beliebigen Komponenten oder Datenquellen
tiber zustandsorientierte Kommunikationsprotokolle (z.B. TCP/IP Sockets, JDBC, usw). Wei-
terhin konnen so komplexe Berechnungen lokal auf dem Client ausgefiihrt werden. Zwischen-
ergebnisse und andere Daten lassen sich aulerdem im Hinblick auf weitere Aktionen puffern
(sog. Caching). Beispielsweise konnte man die ein Fahrzeug beschreibenden Vektordaten in
komprimierter Weise zum Client {ibertragen, sie dort in Rasterdaten konvertieren und anschlie-
Bend visualisieren. Eine Anderung der Konfiguration durch den Anwender muf3 nun nicht mehr
zum Server iibertragen werden, sondern sie 146t sich durch lokale Operationen behandeln.

In einem weiteren Schritt ersetzen wir die WWW-DBVS durch standardisierte Zugriffsmetho-
den auf die operativen DBVS. Sind diese (bzw. die Daten der dariiberliegenden Middleware)
durch standardisierte, innerhalb der Branche akzeptierte Schemata modelliert, so kdnnen die
Daten ohne Replikation fiir unternehmensiibergreifende Informationssysteme genutzt werden.
Im Bereich des Produktdatenmanagements ist hier erneut ISO 10303 (STEP) zu nennen (siche
Kapitel 3). Im Prinzip lassen sich sogar komplette Komponenten gemeinsam benutzen. Die
resultierende Architektur ist in der rechten Hélfte von Abb. 2.7 veranschaulicht. Die HTML-
Seiten sowie der Byte Code der Applets werden dabei wie bisher iiber den WWW-Server zur
Verfiigung gestellt.

Anhand dieses Beispiels konnte nun leicht der Eindruck entstehen, dall wir generell die Verla-
gerung von Funktionalitdt vom Server auf den WWW-Client bevorzugen (sog. Fat Clients).
Dies ist ganz und gar nicht der Fall. Mit den zugrundeliegenden Konzepten und Modellen einer
Architektur sollte es aber moglich sein, auf die speziellen Eigenschaften jeder einzelnen
Anwendung einzugehen. Dementsprechend kann es in einem System sowohl Thin als auch Fat
Clients geben, die unter Umstidnden sogar interagieren.

48

2.7.4 Intranet und Internet: Mehr als ein Priasentationsmedium?

Bisher haben wir nur die Nutzung des Internets im Sinne von WW W-basierten Informationssy-
stemen betrachtet. Es stellt sich nun die Frage, ob das Internet fiir weitere Aufgaben genutzt
werden kann. Anhand von Abb. 2.7 und der im letzten Abschnitt gefiihrten Diskussion 143t sich
bereits erahnen, daf dies der Fall ist. Ein Applet kann ndmlich beliebige Funktionalitét imple-
mentieren und beispielsweise auch ein Design-Werkzeug fiir Entwurfsumgebungen realisieren.
In den letzten Jahren hat sich daher ein Trend abgezeichnet, bei dem komplette Anwendungs-
systeme (wie z.B. das Corel Office-Paket) in Java entwickelt, zentral installiert und dann auf
beliebigen Clients in einem Browser gestartet werden. Auf den Client-Rechnern muf3 dann
keine Software mehr installiert sein, so dafl der Aufwand fiir die Wartung erheblich sinkt. Wird
sogar das Betriebssystem von einem zentralen Server gebootet, so spricht man vom sog. Net
Computer. Ein Beispiel dafiir ist Suns JavaStation [Sun98c], die wir in Kapitel 6 fiir verglei-
chende Messungen herangezogen haben. Aufgrund von Leistungsproblemen hat sich diese
Technik aber bisher nicht durchsetzen konnen.

Im Sinne dieser Verarbeitungsweise konnte man das Internet eigentlich als eine auf hohem
Niveau modellierte Netzwerkschicht betrachten (quasi als Ergidnzung zum ISO/OSI-Schichten-
modell [DZ83, Ta92]). Es 146t sich so auch sehr gut mit dem Intranet vergleichen: Im Rahmen
dieser Arbeit wollen wir das Internet als weltumspannendes, allgemein zugéingliches Netzwerk
ansehen, wihrend das Intranet die lokale Netzstruktur innerhalb eines Unternehmens darstellt.
Mit beiden kann die gleiche Funktionalitiit realisiert werden, jedoch gibt es zwei wesentliche
Unterschiede. Der erste betrifft die Bandbreite der Netzverbindungen. Nachdem das Intranet
intern verwaltet wird, erwarten wir, daf} sich die Leistung (gemif den technischen Moglichkei-
ten) beliebig verbessern 146t. Im Internet sollte man dagegen prinzipiell von einer sehr geringen
Ubertragungsrate ausgehen. Der zweite Unterschied betrifft die Sicherheit. Innerhalb des
Intranet gelten alle Clients und Server als vertrauenswiirdig. Im Gegensatz dazu sollte man alle
Rechner und Verbindungen im Internet prinzipiell als nicht vertrauenswiirdig ansehen. Hier sind
also ergidnzende MalBBnahmen zur Autorisierung, Authentifizierung und Verschliisselung notig.
An der Schnittstelle zwischen Intranet und Internet werden dafiir im allgemeinen sog. Firewalls
eingesetzt [YMGI6].

Abschlielend sei noch erwéhnt, da3 mit dem Begriff Intranet oftmals nur das lokale, schnelle
und unternehmensinterne Informationssystem bezeichnet wird, wiahrend man die eher langsame
weltweite Informationsverbreitung iiber das WWW mit dem Internet gleichsetzt. Diese Sicht-
weise halten wir fiir zu restriktiv und unangemessen: Bei groen Konzernen kann selbst das
Intranet weltweite Verbreitung erfordern. Dementsprechend charakterisieren beide Begriffe
lediglich die gewiinschte Verbreitung (unternehmensintern oder offentlich), nicht aber die
zugrundeliegende Verteilung oder Kommunikationsbandbreite.

2.7.5 Ist Pure Java die ultimative Losung?

Aufgrund der hohen Portabilitit von Java-Programmen bietet es sich an, Java als Grundlage fiir
neue Implementierungen zu nutzen. Insbesondere bei komponentenbasieren Architekturen wird
so ein Hochstmal} an Flexibilitdt und Wiederverwertbarkeit gewonnen. Java bietet weiterhin

49

bereits ein internes Komponentenmodell (Java Beans und Enterprise Java Beans, siehe
Kapitel 2.1 bzw. [Sun97d, Sun98a]) und Middleware-Mechanismen wie Remote Method Invo-
cation und Object Serialization an (RMI bzw. OS, siehe [Sun97b, Sun97c]). Aus diesem Grund
wird vielfach die Ansicht vertreten, daf} Java fiir alle Bestandteile eines Systems verwendet wer-
den (und eben nichts anderes zum Einsatz kommen) sollte. Wir halten diese Sichtweise fiir sehr
gefihrlich und falsch. Natiirlich bietet sich Java fiir die Implementierung portabler Clients an.
Wir haben aber bereits in Kapitel 2.1 den Bedarf fiir die abstrakte Modellierung von Kompo-
nenten und die strikte Trennung von Schnittstelle und Implementierung erkannt. Dies ist bei
einer puren Verwendung von Java nicht der Fall, so daB3 wir den Einsatz von Komponentenmo-
dellen wie CORBA befiirworten (siehe Kapitel 4). In vielen Fillen, beispielsweise bei der Inte-
gration von Legacy-Systemen, ist es ndmlich notig von der benutzten Programmiersprache zu
abstrahieren. Weiterhin favorisieren wir auf dem Server nach wie vor C++ oder @hnliche Spra-
chen. Auch wenn die Leistung von Java sich der von C++ annihern wird, so gibt es immer noch
einige Konzepte (wie z.B. multiple Vererbung oder eine effiziente Pufferverwaltung, siche
Kapitel 6.1.1), die in Java nur schwer zu realisieren sind. Letztendlich stellt sich auch noch die
Frage, welche Programmiersprache denn in zehn Jahren aktuell ist. Wer hat 1990 schon an Java
gedacht? Will man immer wieder alle Systeme neu implementieren? Ein Austausch einzelner
(Client-)Komponenten ist mit Sicherheit wirtschaftlicher und schneller zu realisieren.

2.8 Zusammenfassung

In diesem Kapitel haben wir einige Grundlagen diskutiert, die wesentlich fiir das weitere Ver-
standnis der vorliegenden Arbeit sind. Zunichst einmal haben wir den Begriff von Komponen-
ten und Komponentenmodellen definiert. Von besonderer Bedeutung ist hier die strikte Tren-
nung von Schnittstellenbeschreibung und Implementierung, die im allgemeinen durch eine for-
male Beschreibungsmethode erreicht wird und die Austauschbarkeit und Wiederverwend-
barkeit einzelner Bausteine ermdglicht. Neben der Bildung von Komponenten lassen sich Soft-
ware-Architekturen dann noch mittels zwei weiterer Methoden strukturieren: Durch die Bil-
dung von Schichten entsteht eine horizontale, logische Partitionierung von Systemen, wihrend
Client/Server-Grenzen eine implementierungsnahe Moglichkeit zur Aufteilung von Software
auf mehrere Rechner darstellen. Fiir die Kommunikation zwischen diesen Rechnern benotigt
man sog. Middleware. Neben den rudimentidren Varianten RPC und MoM sind hier objektori-
entierte Erweiterungen (wie z.B. CORBA oder DCOM) sowie Spezialldsungen fiir DBVS von
Bedeutung. Alle Varianten werden wir noch ausfiihrlich im Rahmen dieser Arbeit betrachten.
Dabei gilt es zwei verschiedene Szenarien zu unterscheiden: Auftragsbezogene (Operation
Shipping) und datenintensive Systeme (Data Shipping), deren Leistung jeweils durch unter-
schiedliche Aspekte beeinflulit wird. Eine angemessene Modellierung ist deshalb unabdingbar.
Aufbauend auf diese allgemeinen Grundlagen haben wir uns dann den speziellen Rahmenbe-
dingungen dieser Arbeit gewidmet: den Entwurfsumgebungen. Hier sind wir kurz auf die
Begriffe Workflow, CSCW, Groupware sowie Isolation und Kooperation eingegangen.
Abschlieend haben wir dann eine mogliche Anbindung an das Intra-/Internet betrachtet und
dabei den Einsatz von Java zur Erstellung méchtiger Anwendungen motiviert.

50

Kapitel 3
Der Internationale Standard
STEP

Wir haben bereits in den letzten Kapiteln die Verwendung standardisierter Datenmodelle und
zugehoriger Zugriffsschnittstellen motiviert. Mit dieser Mallnahme wird garantiert, da der von
uns bendtige Austausch und die Archivierung von Produktdaten auch iiber Komponenten-,
Rechner- und Unternehmensgrenzen hinweg erfolgen kann. Er sollte insbesondere unabhéngig
von verwendeten Rechnerarchitekturen, Betriebssystemen, Programmiersprachen sowie Daten-
bankverwaltungssystemen (DBVS) und internen Datenmodellen bzw. Schemata sein. Wichtig
ist letztendlich, daB sich der gesamte Entwicklungsprozef} eines Produktes einheitlich archivie-
ren und dokumentieren 146t. Im Bereich des Produktdatenmanagements bietet sich dafiir der
Einsatz des ISO-Standards 10303 an. Dieser hat den Titel Industrial Automation Systems and
Integration - Product Data Representation and Exchange, wird aber hdufig unter dem Akronym
STEP (Standard for the Exchange of Product Data) referenziert.

STEP [ISO94a, Ow93] wurde von der International Organization for Standardization (ISO)
verabschiedet, die ein ZusammenschluB3 von nationalen Standardisierungsgremien ist. Die
eigentliche Arbeit wird von sog. Technical Committees erledigt. In diesen sitzen Vertreter aller
beteiligten Organisationen. Fiir die Verabschiedung eines Standards miissen mindestens 75%
der Mitglieder stimmen. Zusténdig fiir STEP ist das Technical Committee ISO/TC 184, Indu-
strial Automation Systems and Integration, Subcommittee SC4, Industrial Data (kurz ISO
TC184/SC4). Bei den dreimal pro Jahr stattfindenden Treffen dieses Ausschusses sind durch-
schnittlich 200 bis 300 Delegierte anwesend. Ein GroBteil davon sind direkt von der Industrie
entsandte Vertreter. Man kann also davon ausgehen, dal STEP nicht einfach nur ein weiterer
Standard auf dem Papier ist. Im Gegenteil, die enthaltenen Modelle und Ideen stofen auf ein
breites Interesse und hohe Akzeptanz, insbesondere innerhalb der Automobilindustrie.

Zur Strukturierung der umfangreichen Konzepte und Schemata wurde STEP in verschiedene
Serien (Parts) unterteilt. Die Serien 1-10 beschreiben die Grundlagen und den allgemeinen Auf-
bau von STEP. In den Serien 11-20 werden Beschreibungs- und Spezifikationsmethoden behan-
delt, darunter auch die in Kapitel 3.1 vorgestellte Datenmodellierungssprache EXPRESS
[ISO94b, SW94]. Die Serien 21-30 beinhalten Implementierungsmethoden, z.B. das Format
zum Produktdatenaustausch iiber ASCII-Dateien, die sog. STEP Physical Files [ISO94c], oder
die Zugriffsschnittstelle SDAI [ISO98a], deren Eigenschaften wir in Kapitel 3.2 noch genauer

51

betrachten werden. In den Serien 31-40 sind Methoden und Kriterien fiir Konformititstests
beschrieben. Grundlegende Datenstrukturen, sog. Integrated Resources, werden durch die
Serien 41-50 definiert. Sie dienen als Grundlage fiir die in den Serien 201-300 beschriebenen
Application Protocols, die normierte Schemata fiir spezielle Anwendungsbereiche definieren.
Fiir Entwurfsumgebungen und andere Systeme bei DaimlerChrysler ist insbesondere das auf
den Produktlebenszyklus in der Automobilindustrie abgestimmte AP 214 von Bedeutung.

Jedes einzelne Dokument unterlduft wihrend der Standardisierung verschiedene Phasen. Neue
Projekte beginnen in der Regel als New Work Item (NW1), das eine Anforderungsanalyse sowie
die Definition der Zielsetzung umfait. AnschlieBend folgt die Erstellung sog. Working Drafts
(WD), anhand derer erste Ideen und Losungen fixiert werden. Ist ein technisch stabiler Zustand
erreicht, so folgt die Verabschiedung eines Committee Drafts (CD). Uber diesen wird nun zum
ersten mal international abgestimmt. Entsprechend der von den Léndervertretern eingeschick-
ten Kommentare sind in diesem Stadium noch grundlegende technische Anderungen moglich.
Waurde ein CD akzeptiert, so folgen die Phasen Draft International Standard (DIS), Final Draft
International Standard (FDIS) und schlieBlich International Standard (IS). Innerhalb dieser
sind keine technischen Anderungen mehr erlaubt.

Klasse Serie Kurzbeschreibung Status
Umfang und Architektur (1-10) 1 Uberblick und fundamentale Prinzipien [ISO94a] IS
Beschreibungsmethoden 11 Definition der Sprache EXPRESS [ISO94b] IS
(11-20)
Implementierungsmethoden 21 Format von Austauschdateien (STEP Physical File) IS
(21-30) [1SO94c]
22 Definition der Schnittstelle SDAI [ISO98a] FDIS
23 SDAI Language Binding fiir C++ [1ISO98b] DIS
26 SDAI Language Binding fiir IDL [ISO98c] DIS
27 SDAI Language Binding fiir Java [ISO99a] CD
Testmethodik (31-40) 31 Generelle Konzepte zur Konformitéatsprifung IS
Integrated Resources 41 Generelle Informationen zur Produktbeschreibung IS
(41-50) -
42 Darstellung von Geometrie IS
Application Protocols 203 Darstellung konfigurierbarer Geometrie IS
(201-299)
212 Elektrotechnische Informationen DIS
214 Produktlebenszyklus in der Automobilindustrie [ISO99b] DIS

Tabelle 3.1: Dokument-Klassen und Serien innerhalb von ISO 10303 (STEP)

Eine Auflistung einiger Dokumente und ihrer Stati ist in Tabelle 3.1 enthalten’. In der ersten
Spalte sind die Klassen des STEP-Standards mit den dazugehodrenden Bereichen fiir die Num-
mern der Serien aufgefiihrt. In der zweiten, dritten und vierten Spalte werden ausgewihlte

1. Diese Tabelle wurde aus [Sa98] iibernommen und entsprechend der fortgeschrittenen Standardisierung aktualisiert.

52

Dokumente mit Nummer, einer kurzen Beschreibung sowie ihrem Status benannt. Einige Serien
(insbesondere die Implementierungsmethoden) werden wir in den folgenden Abschnitten noch
genauer betrachten, andere (wie z.B. die Testmethodik) sind hingegen ohne Bedeutung fiir die
hier gefiihrte Diskussion.

Neben dem Einsatz im Szenario des Produktdatenmanagements werden einige Dokumente der
10’er- und 20’er-Serien inzwischen auch in anderen Bereichen verwendet. Beispielsweise wird
EXPRESS auf europédischer Ebene zur Modellierung von Geodaten und GIS (Geographic Infor-
mation Systems) benutzt. Damit ergibt sich ein deutlich breiteres Einsatzgebiet fiir eine
EXPRESS-basierte Datenversorgung. Im Rahmen der vorliegenden Arbeit werden wir deshalb
nicht speziell auf die in den Application Prototcols definierten Modelle eingehen, sondern eine
allgemeine Datenversorgung fiir beliebige EXPRESS-Schemata betrachten. Als Grundlage
dient uns dabei die Vorstellung der Konzepte und Techniken der Datenmodellierungssprache
EXPRESS und der Zugriffsschnittstelle SDAI in den Kapiteln 3.1 und 3.2. Der Vollstdndigkeit
halber geben wir in Kapitel 3.3 noch einen Uberblick iiber den allgemeinen Aufbau von Appli-
cation Protocols und deren Beziehung zu Integrated Resources. Kapitel 3.4 fal3it abschlieBend
die gewonnenen Erkenntnisse zusammen.

3.1 Die Modellierungssprache EXPRESS

EXPRESS (Expressive Power) ist eine strukturell objektorientierte Datendefinitionssprache
[Di87], die eine sowohl fiir den Menschen als auch eine Maschine verstindliche Spezifikation
von Daten ermoglichen soll. Sie ist in Serie 11 von ISO 10303 definiert [ISO94b]. Im folgenden
werden die einzelnen Bestandteile der Sprache kurz vorgestellt und durch abstrakte Beispiele
oder Ausziige der in Kapitel 3.1.5 enthaltenen Beispielanwendung veranschaulicht. Fiir eine
weitergehende Diskussion von EXPRESS sei z.B. auf [SW94] verwiesen.

3.1.1 Schemata

“A schema defines a universe of discourse in which the objects declared have a mean-
ing and purpose. It is the basis for partitioning and intercommunication [ISO94b].”

Wie in relationalen Systemen werden die Daten auch in EXPRESS nicht nur durch ein Schema,
sondern unter Umstinden mit Hilfe mehrerer Schemata modelliert. Dadurch lassen sich Meta-
daten bereits anwendungsspezifisch partitionieren. Ein Schema stellt einen eigenen Namens-
raum fiir alle enthaltenen Komponenten dar, wobeli allerdings auch Verweise zwischen Objekten
unterschiedlicher Schemata moglich sind (siehe Kapitel 3.1.3.2). Die Spezifikation eines Sche-
mas wird durch das Schliisselwort schema eingeleitet. Anschlieend folgt die Deklaration von
Typen (Kapitel 3.1.2), Objekten (sog. Entities, siche Kapitel 3.1.3), Regeln und Algorithmen
(Kapitel 3.1.4). Die Reihenfolge ist dabei beliebig und unbedeutend. Kapitel 3.1.5 veranschau-
licht die Spezifikation eines Schemas anhand eines kurzen Beispieles.

53

3.1.2 Typen

Fiir die Definition eines EXPRESS-Schemas stehen folgende Typen und Typkonstruktoren zur
Verfiigung. Ihre Verwendung wird in Beispiel 3.1 und Kapitel 3.1.5 illustriert.

® Basistypen (Simple Types)

EXPRESS bietet bereits eine Reihe von Basistypen an: REAL, INTEGER, NUMBER (Supertyp
von REAL und INTEGER), Boolean (mit den Werten TRUE oder FALSE), LOGICAL (TRUE,
FALSE oder UNKNOWN), STRING und BINARY (eine Liste von Bits). Uber die Genauigkeit und
Linge von REAL- oder INTEGER-Werten wird im Standard leider keine Aussage gemacht.

Aggregate (Aggregation Data Types)

Fiir die Definition von Aggregaten gibt es die Konstruktoren ArRrAY (feste Lidnge, feste Rei-
henfolge), LIsT (variabel lang, feste Reihenfolge), BaG (variabel lang, keine Ordnung auf
den Elementen, Duplikate erlaubt) und SeT (BaG ohne Duplikate). Aggregate lassen sich
iber beliebige Typen bilden. Dabei konnen Kardinalititsrestriktionen in Form unterer und
oberer Schranken spezifiziert werden.

Allgemeine Supertypen (Select Data Type)

Zur Realisierung einer Typ-Hierarchie kann mit dem serLecT-Konstrukt ein Supertyp
deklariert werden. Der Wertebereich ist die Vereinigung der Wertebereiche aller zugrunde-
liegenden Typen. So gilt z.B. NUMBER = SELECT (INTEGER, REAL).Ein SELECT-Typ ist
aber nicht mit der Definition einer Superklasse im objektorientierten Sinne zu verwech-
seln! Eine Instanz dieses Typs kann zur Laufzeit immer nur die Rolle einer Instanz eines
Basistyps annehmen, niemals die von zweien. Weiterhin ist eine Instanz eines Basistyps
keine Instanz des SELECT-Typs.

Aufzihlungstypen (Enumeration Data Type)

Aufzihlungstypen konnen in gewohnter Weise deklariert werden. Dabei konnen die glei-
chen Namen fiir Elemente in unterschiedlichen Typen auftreten.

-- Kommentare werden durch “--" eingeleitet

-- Defined / Aggregation / Simple Data Type:
TYPE vector = ARRAY [1..3] OF INTEGER;
END TYPE;

-- Defined / Enumeration Data Type:
TYPE figure = ENUMERATION OF (circle, box);
END TYPE;

-- Defined / Simple Data Type with Where-Clause:
TYPE positive = INTEGER;
WHERE
notnegative : SELF >= 0;
END TYPE;

-- Defined / Select / Simple Data Type:
TYPE own number = SELECT (NUMBER, positive);
END_ TYPE;

Beispiel 3.1: Typdeklarationen in EXPRESS

54

® Objekte (Entity Data Type)
Eine ENTITY-Definition beschreibt den Aufbau eines Daten-Objektes (siehe auch
Kapitel 3.1.3). Diese Objekte konnen in Typ-Deklarationen und Parameterlisten wie nor-
male Typen verwendet werden (siehe Beispiel 3.3 auf Seite 58).

® Benutzerdefinierte Typen (Defined Data Type)
Mit dem TypE-Konstrukt kdnnen unter Benutzung der bisher erwéhnten Typen und Typ-
konstruktoren neue Typen definiert und benannt werden. Weiterhin lassen sich durch sog.
wHERE-Klauseln Regeln formulieren, die z.B. den verwendeten Wertebereich einschrinken
(siehe auch Kapitel 3.1.4).

3.1.3 Objekte (Entities)

“The language focuses on the definition of entities, which are the things of interest.
The definition of entities is in terms of data and behaviour [1ISO94b].”

Die Objekte eines Schemas werden in EXPRESS durch sog. Entities beschrieben. Diese konnen
im Prinzip mit Klassen in allgemeinen objektorientierten Modellen verglichen werden [CB97].
Sie entsprechen weiterhin dem in [At+89] definierten Objektbegriff. Mit Hilfe von Entities kann
man ganze Hierarchien von Typklassen definieren, wobei auch multiple Vererbung erlaubt ist
(d.h. ein Entity kann unter Umstidnden von mehreren Superklassen erben).

Die Deklaration eines Entities beginnt mit dem Schliisselwort ENTITY. Anschliefend folgt der
Name des (neuen) Typs, die Angabe der Vererbungsbeziehung zu Super- und Subtypen, eine
Liste mit Attributen sowie die Definition von lokalen Regeln (siehe Kapitel 3.1.4). Die Reihen-
folge innerhalb der Deklaration von Attributen und Regeln ist unbedeutend.

Wird das Konzept der Vererbung benutzt, so enthilt die Subklasse alle Bestandteile ihrer Super-
klasse(n). Eine Redefinition von Regeln ist nicht moglich, die Regelmenge kann nur durch wei-
tere ergédnzt werden. Fiir Attribute gibt es jedoch folgende Moglichkeiten:

® Ein Supertyp (Select Data Type) wird durch einen seiner Basistypen eingeschrinkt (ein
Attribut vom Typ NUMBER 148t sich beispielsweise auf den Typ INTEGER reduzieren).

® FEin optionales Attribut wird verpflichtend vorgeschrieben (ein Auto hat immer eine Farbe,
ein beliebiges Produkt evtl. nicht, siehe ENTITY Auto in Bsp. 3.4 auf Seite 60).

® Ein explizites Attribut wird durch eine Ableitungsregel (DERIVE) spezifiziert (eine Frau
mul} weiblichen Geschlechts sein, siehe ENTITY Frau in Bsp. 3.5 auf Seite 61).

Der Namensraum von Entities setzt sich aus dem eigenen und denen aller Superklassen zusam-
men. Wichtig bei der Redeklaration von Attributen ist die Verwendung des Schliisselwortes
SELF (siehe Bsp. 3.4 auf Seite 60 oder Bsp. 3.5 auf Seite 61). Wiirde dieses ausgelassen, so
wiren prinzipiell beide Attribute (das gerade definierte und das der Basisklasse) sichtbar,
obwohl sie den gleichen Namen tragen!

55

Eine weitere Besonderheit von EXPRESS ist die Unterstiitzung verschiedener Vererbungsfor-
men. Wird beispielsweise der Typ person als Supertyp von Frau und Mann deklariert, so gibt
es dafiir drei verschiedene Moglichkeiten. Die erste Variante ergibt sich durch die Verwendung
der Klausel SUPERTYPE OF ONEOF (Frau, Mann) (vgl. Entity Person in Bsp. 3.5 auf
Seite 61). Sie entspricht der iiblichen und erwarteten Semantik: Eine Person ist entweder eine
Frau oder ein Mann. Wird hingegen mehrfache Typzugehorigkeit gewiinscht, so konnen die
Schliisselworter ANDOR (eine Person ist eine Frau, ein Mann, oder beides) oder gar AND (eine Per-
son ist immer Frau und Mann) verwendet werden (siehe auch Kapitel 9.3.3.5 in [ISO94b]). Wird
keines der drei Schliisselworter benutzt, so gilt automatisch ANDOR-Vererbung.

3.1.3.1 Beziehungen zwischen Objekten

Wird innerhalb einer Entity-Deklaration ein Attribut vom Typ eines Entities spezifiziert, so stellt
dieses Attribut eine Referenz zwischen beiden Entity-Typen her. Diese kann sowohl innerhalb
eines Typs (Waren bestehen aus anderen Waren) als auch zwischen verschiedenen Typen defi-
niert sein (z.B. zwischen Frau und Mann). In dem in Kapitel 3.1.5 vorgestellten Szenario werden
Varianten aller moglichen Beziehungstypen (1:1, 1:n, n:m) illustriert: Eine Frau ist mit maximal
einem Mann verheiratet (und umgekehrt, 1:1), ein Hersteller produziert mehrere Produkte, die
genau einen Hersteller haben (n:1), ein komplexes Produkt besteht aus mehreren Produkten, die
Bestandteil mehrerer komplexer Produkte sein konnen (n:m) usw.

Im Sinne der Konsistenzerhaltung sowie einer einfacheren Navigation konnen zu jeder Referenz
auch Gegenreferenzen in Form von inversen Attributen deklariert werden (Schliisselwort
INVERSE). Dabei ist zu beachten, daf} in der 1nvERSE-Klausel aufgefiihrte Attribute nicht mate-
rialisiert werden miissen, sondern lediglich einen Mechanismus fiir die Uberwachung der refer-
entiellen Integritit bieten. Im Prinzip stellen sie nur eine Form von lokalen Regeln dar (siehe
auch Kapitel 3.1.4). Die Verwendung des Schliisselwortes OPTIONAL ist hier nicht erlaubt,
Kardinalitétsrestriktionen lassen sich aber iiber die Konstrukte ,,SET [0:1]* (maximal eine),
»OET [0:n]* (maximal n) bzw. ,,SET [0:?]* (beliebig viele Gegenreferenzen) nachbilden.

Gerade bei der Modellierung von 1:1-Beziehungen ergeben sich verschiedene Moglichkeiten,
die durch Beispiel 3.3 auf Seite 58 illustriert werden (siehe auch Kapitel 3.1.4).

3.1.3.2 Beziehungen zwischen Objekten unterschiedlicher Schemata

Beziehungen zwischen Objekten aus verschiedenen Schemata lassen sich im Prinzip genauso
wie lokale Referenzen modellieren. Dafiir werden die jeweils fremden Entity-Typen in den
Namensraum des lokalen Schemas eingeblendet (durch die Verwendung der Schliisselworte
Usk oder REFERENCE). Beim Einsatz der usg-Klausel lassen sich die importierten Entities wie
lokal deklarierte Typen verwenden. Sie kdnnen insbesondere auch von einem dritten Schema
mit einer der beiden Klauseln importiert werden: SCHEMA ¢ in Bsp. 3.2 kann ENTITY a2 aus
scHEMA B referenzieren, obwohl es eigentlich in sSCcHEMA A definiert wurde. Im Gegensatz dazu
konnen alle iiber die REFERENCE-Klausel importierten Typen nur fiir die Modellierung von
Beziehungen innerhalb des jeweiligen Schemas benutzt werden. Sie sind nach auen nicht mehr
sichtbar: scHEMA c konnte nicht ENTITY al aus SCHEMA B importieren (weder iiber USE, noch
mittels REFERENCE). Sinnvoll ist dies, wenn sCHEMA ¢ nichts von der Existenz von SCHEMA A
wissen soll bzw. darf.

56

SCHEMA A; SCHEMA B; SCHEMA C:

ENTITY al; REFERENCE FROM A(al) ; REFERENCE FROM B (a2) ;
R USE FROM A (a2) ; REFERENCE FROM B (Db) ;
END_ENTITY; RN
ENTITY a2; ENTITY b; END_ SCHEMA;
END ENTITY; END ENTITY;
END_SCHEMA; END SCHEMA;

Beispiel 3.2: Vergleich der use- und REFERENCE-Klauseln

Aufzihlungs- und benutzerdefinierte Typen, Konstanten, Funktionen, Prozeduren usw. konnen
nur wie externe Werte behandelt werden, d.h., da3 man sie nur iiber die REFERENCE-Klausel
importieren darf. Rekursiv bendtigte Strukturen sind implizit deklariert, konnen aber nicht
explizit (z.B. fiir weitere Definitionen) verwendet werden.

3.1.4 Algorithmen und Regeln

Wir haben bereits in Kapitel 3.1.3 erwihnt, da3 Attributwerte automatisch berechnet werden
konnen. EXPRESS bietet dafiir die Moglichkeit zur Definition von Algorithmen, die wahlweise
Prozeduren oder Funktionen sind. In Anlehnung an Programmiersprachen stehen Konstrukte
zur Bildung von Schleifen und Verzweigungen sowie einige vordefinierte Basis-Funktionen zur
Verfiigung (z.B. LOINDEX, HI INDEX, LOBOUND, HIBOUND, INSERT und REMOVE zur Verarbeitung
von Aggregaten). Parameter konnen den Algorithmen entweder mit call-by-reference- (VAR-
Klausel) oder call-by-value-Semantik (Standard) iibergeben werden. Fiir Generalisierungen
gibt es weiterhin die Schliisselworte AGGREGATE (es wird einer der vier moglichen Aggregat-
Typen erwartet) und GENERIC (es wird ein beliebiger Typ zugelassen). Lokale Variablen konnen
ebenfalls deklariert werden. Die in Beispiel 3.4 auf Seite 60 definierte Funktion
Berechne Gewicht illustriert exemplarisch die Benutzung einiger Konstrukte. Interessant ist
der Aspekt, daB3 der Zugriff auf das Attribut Gewicht der beteiligten Instanzen aufgrund der
DERIVE-Klausel automatisch einen rekursiven Aufruf dieser Funktion bewirkt, sofern es sich
dabei um ein komplexes Produkt handelt.

Neben der automatischen Berechnung von Attributwerten lassen sich Algorithmen auch zur
Spezifikation von Regeln verwenden. Diese lassen sich in drei Kategorien unterteilen:

® Lokale Regeln, die innerhalb einer Entity-Deklaration spezifiziert und auf einer einzelnen
Instanz ausgewertet werden konnen, z.B. Beschriankungen des Wertebereiches, Anzahl von
Listenelementen, Sortierreihenfolge in dynamischen Strukturen usw.

® Lokale Regeln, die innerhalb einer Entity-Deklaration spezifiziert, aber auf der Menge
aller existierenden Instanzen dieses Typs ausgewertet werden miissen, z.B. Kardinalitéts-
restriktionen ([low:high] fiir Aggregate), Eindeutigkeit (UNIQUE), referentielle Integritit
(INVERSE) USW.

® Globale Regeln, die zwar innerhalb eines Schemas, aber auflerhalb von Entity-Deklaratio-
nen spezifiziert und auf der Menge aller Instanzen ausgewertet werden.

57

-- Fall 1: Verwendung der INVERSE-Klausel

ENTITY Frau SUBTYPE OF Person;
Ehefrau von : OPTIONAL Mann;

END ENTITY;
ENTITY Mann SUBTYPE OF Person;
INVERSE
Ehemann von : SET [0:1] OF Frau FOR Ehefrau_von;
END ENTITY;

-- Fall 2: optionale Attribute und lokale Regeln

ENTITY Frau SUBTYPE OF Person;
Ehefrau von : OPTIONAL Mann;

WHERE
rf : (NOT EXISTS (SELF.Ehefrau von)) OR
(SELF.Ehefrau von.Ehemann von :=: SELF);
END ENTITY;

ENTITY Mann SUBTYPE OF Person;
Ehemann von : OPTIONAL Frau;

WHERE
rm : (NOT EXISTS (SELF.Ehemann von)) OR
(SELF.Ehemann von.Ehefrau von :=: SELF);
END ENTITY;

-- Fall 3: optionale Attribute und eine globale Regel

ENTITY Frau SUBTYPE OF Person;
Ehefrau von : OPTIONAL Mann;
END ENTITY;

ENTITY Mann SUBTYPE OF Person;
Ehemann von : OPTIONAL Frau;
END ENTITY;

RULE verheiratet FOR (Frau, Mann) ;
WHERE
rl : SIZEOF (
QUERY (tf <* Frau | EXISTS (tf.Ehefrau von) AND
(tf.Ehefrau von.Ehemann von :<>: tf))
) = 0;
r2 : SIZEOF (
QUERY (tm <* Mann | EXISTS (tm.Ehemann von) AND
(tm.Ehemann_von.Ehefrau von :<>: tm))

END RULE;

Beispiel 3.3: Modellierung von 1:1-Beziehungen

Alle drei Varianten sind in Beispiel 3.3 anhand alternativer Moglichkeiten zur Modellierung der
1:1-Beziehung verheiratet illustriert. Obwohl alle Fille das gleiche Ergebnis auf der Schema-

Ebene haben, so ergeben sich zur Laufzeit doch gravierende Unterschiede: Im ersten Fall muf}

zur Auswertung der Bedingung (bzgl. einer Person) nur auf zwei Instanzen zugegriffen werden
(sofern inverse Attribute materialisiert und nicht erst zu berechnen sind). Im dritten Fall werden

immer alle Instanzen gelesen. Andererseits ist hier die Integritédtspriifung des gesamten Daten-

58

bestandes einfacher: Man mul} nur die Auswertung einer Regel anstof3en. In Fall 1 ist hingegen
fiir jede Instanz des Typs Mann die entsprechende Methode aufzurufen. Eine allgemeine Bewer-
tung einzelner Varianten ist somit nicht moglich.

Im Hinblick auf eine mengenorientierte und regelbasierte Datenverarbeitung bietet sich nun
noch die Betrachtung der Standard-Funktion QUERY an. Diese erhilt ein Aggregat und eine logi-
sche Bedingung (Ergebnistyp Logical) als Eingabe. Die Ausgabe besteht dann aus einem
Aggregat, das alle Elemente der Eingabe enthilt, welche die iibergebene Bedingung erfiillen.
So wird z.B. in der globalen Regel verheiratet in Beispiel 3.3 auf Seite 58 der Variablen tr
die Menge aller Frauen zugewiesen, die anschlieBend mit dem QuERY-Konstrukt auf diejenigen
beschriankt wird, die mit einem Mann verheiratet sind, der mit einer anderen Frau verheiratet ist.
Diese Menge sollte sinnvollerweise leer sein.

3.1.5 Beispiel

Zum besseren Verstindnis der in den letzten Abschnitten vorgestellten Konzepte von EXPRESS
wollen wir abschlie3end ein fiktives Beispiel aus der Automobilindustrie spezifizieren, anhand
dessen die meisten Konstrukte veranschaulicht werden. Die Modellierung der Daten ist in
Abb. 3.1 dargestellt. Sie basiert auf den EXPRESS-Definitionen in Bsp. 3.4 und Bsp. 3.5.

1 .
L Produzent et Ort
—————______—————— h 7 (\-“\
einfaches komplexes
Produkt Produkt Peim
Auto Frau il Mann
KW [SDAI-Schema

Vererbung | Beziehung

Abb. 3.1: Schema der Beispielanwendung

Ergénzend zu den bereits in der Einleitung zu Kapitel 3.1.3 erwédhnten Formen der Vererbung
(oNEOF, ANDOR und AND) moOchten wir noch auf das Schliisselwort ABSTRACT hinweisen (siche
ENTITY Produkt in Beispiel 3.4). Es verhindert, daf es zur Laufzeit Instanzen dieses Typs gibt.
Innerhalb der Entity-Deklaration wird weiterhin die Klausel UNIQUE Gewicht, Farbe benutzt.
Sie besagt, da} die Kombination aus diesen beiden Attributen eindeutig sein muf} (nicht jedes
Attribut fiir sich). Der Zugriff auf das Gewicht fiihrt aber unter Umstidnden zum Aufruf der Pro-
zedur Berechne Gewicht, die dann rekursive Aufrufe verursacht usw. Weiterhin ist Farbe
optional, d.h., dal} kein Wert spezifiziert sein muf3. Was heifit aber in diesem Fall eindeutig? Der
Standard macht dartiber keine Aussage.

59

SCHEMA Produkt;
REFERENCE FROM Produzent (Produzent) ;

TYPE Art = ENUMERATION OF (komplex,einfach);
END TYPE;

TYPE Farbton = ENUMERATION OF (rot, blau, gelb, grin, weif);
END TYPE;

TYPE Produkte = SET [2:?] OF Produkt;

END TYPE;
FUNCTION Berechne Gewicht (in : Produkte) : REAL;
LOCAL
result : REAL:=0;
END_ LOCAL;

REPEAT 1i:=LOINDEX (in) TO HIINDEX (in) ;
result:=result + in[i] .Gewicht;
END REPEAT;
RETURN (result) ;
END FUNCTION;

ENTITY Produkt ABSTRACT SUPERTYPE OF

Produkt_Typ : Art;
Gewicht : REAL;
Farbe : OPTIONAL Farbton;
INVERSE
hergestellt von : Produzent FOR produziert;

UNIQUE
Gewicht, Farbe;
END ENTITY;

ENTITY Einfaches Produkt SUBTYPE OF (Produkt) ;
DERIVE

SELF\Produkt Typ : Art := einfach;
END ENTITY;

ENTITY Komplexes Produkt SUBTYPE OF (Produkt) ;
besteht aus : Produkte;

DERIVE

SELF\Produkt Typ : Art := komplex;

SELF\Gewicht : REAL := Berechne Gewicht (besteht aus);
END ENTITY;

ENTITY Auto SUBTYPE OF (Komplexes Produkt) ;
SELF\Farbe : Farbton; -- jetzt vorgeschriebenes Attribut
END ENTITY;

ENTITY PKW SUBTYPE OF (Auto) ;
WHERE
Gewichts Regel : (Gewicht < 2,8 t);

END ENTITY;

END_SCHEMA;

ONEOF (Einfaches Produkt, Komplexes Produkt) ;

bendétigt fOr : SET [0:?] OF Komplexes Produkt FOR besteht aus;

Beispiel 3.4: EXPRESS-Definitionen des Schemas produkt

60

SCHEMA Produzent;
REFERENCE FROM Produkt (Produkt) ;

TYPE Geschlecht = (weiblich, m&nnlich, unbekannt) ;
END TYPE;

ENTITY Produzent;
Name : String;
produziert : SET [1:?] OF Produkt;
Zweigwerke in : SET [1:?] OF Ort;
Mitarbeiter : SET [1:?] OF Person;
UNIQUE
Name ;
END ENTITY;

ENTITY Person SUPERTYPE OF ONEOF (Frau, Mann) ;

Name, Vorname : STRING;

Geburtsjahr : INTEGER;

Geschlecht : Geschlecht;

Hauptwohnsitz : Ort;
INVERSE

arbeitet bei : SET [0:1] OF Produzent FOR Mitarbeiter;
END ENTITY;

ENTITY Frau SUBTYPE OF Person;

Ehefrau von : OPTIONAL Mann;
DERIVE

SELF\Geschlecht : Geschlecht := weiblich;
END ENTITY;

ENTITY Mann SUBTYPE OF Person;
DERIVE

SELF\Geschlecht : Geschlecht := m&nnlich;
INVERSE

Ehemann von : SET [0:1] OF Frau FOR Ehefrau von;
END ENTITY;

ENTITY Ort;
Name : STRING;

INVERSE
ansdssige Firmen : SET [0:?] OF Produzent FOR Zweigwerke in;
Einwohner : SET [1:?] OF Person FOR Hauptwohnsitz;

END ENTITY;

END_SCHEMA;

Beispiel 3.5: EXPRESS-Definitionen des Schemas produzent

3.2 Die Zugriffsschnittstelle SDAI

Wihrend wir bisher nur die Modellierung der Daten betrachtet haben, so werden wir uns nun
dem zur Laufzeit stattfindenden Zugriff auf Instanzen widmen. Der STEP-Standard enthilt
dafiir das STEP Data Access Interface, kurz SDAI [ISO98a]. Es stellt eine einheitliche Schnitt-
stelle zur Verarbeitung EXPRESS-basierter Daten dar, die vollstindig von der tatsdchlichen
Datenspeicherung und moglicherweise verwendeten DBVS (und der damit verbundenen physi-

61

schen Verteilung) abstrahiert. Das SDAI kann somit als abstrakte Beschreibung der Schnittstelle
einer Datenhaltungskomponente betrachtet werden, deren Verwendung ein wichtiger Schritt fiir
die Realisierung einer komponentenbasierten, modularen und offenen Architektur ist (wie wir
sie in Kapitel 2.1 skizziert und gefordert haben). Die erzielte Kapselung wird durch Abb. 3.2
illustriert: Die Implementierung von Applikationen basiert nur auf der SDAI-Spezifikation. Ein
Austausch der konkreten Datenhaltung bleibt fiir die Anwendungsprogramme transparent.

Applikation Applikation Applikation
2

#

SDAI-Schnittstelle

—_
w

..|||I||||...._.“|||I||v.
..|||I||||...._.“|||I||v.

¢

SDAI Session Data ‘

Repository 1

Repository 2

SDAI Dictionary||Application SDAI Dictionary||Application
‘ Data y“ ppData ‘ Bata yH lDFIJ:)ata

Abb. 3.2: Kapselung von Komponenten durch den Einsatz der SDAI-Schnittstelle

Innerhalb des SDAI werden alle anfallenden Informationen in drei Sparten aufgeteilt: Die
eigentlichen Daten (Application Data), Metadaten (SDAI Dictionary Data) sowie Kontextinfor-
mationen zum aktuellen Zustand der Verarbeitung, laufenden Transaktionen usw. (SDAI Session
Data). Letztere konnen im allgemeinen transient im Hauptspeicher gehalten werden. Daten und
Metadaten sind hingegen in sog. Repositories abgelegt. Diese realisieren quasi virtuelle Daten-
banken, deren Inhalt persistent zu speichern ist (wie und in welchem Format auch immer).

Der Zugriff auf die Daten bzw. Objekte erfolgt nun einheitlich iiber das SDAI Programming
Interface. Die einzelnen Funktionen und Typen der Schnittstelle werden in Serie 22 von ISO
10303 [ISO98a] spezifiziert, wobei alle benotigten Typen in EXPRESS modelliert sind. Die
Signatur und Semantik von Methoden wird hingegen in einer Pseudo-Sprache beschrieben. Fiir
die Einbettung in eine konkrete Programmiersprache gibt es jeweils ein eigenes Dokument
(siehe auch Kapitel 3.2.6). Aufgrund der Tatsache, dafl die Formate von Daten und Metadaten
mit Hilfe von EXPRESS modelliert werden, kann der Zugriff auf beide iiber die gleichen Funk-
tionen erfolgen. Dabei ist zu beachten, dall Metadaten nicht geschrieben werden kdnnen, son-
dern nur (automatisch) als Nebenwirkung von Operationen aktualisiert werden.

Ein Problem ergibt sich leider aus der Tatsache, dal das SDAI per Definition nur fiir den Ein-
benutzerbetrieb gedacht ist. Das enthaltene Transaktionsmodell kann aber zusammen mit den
spezifizierten Fehlercodes und Zustandsiibergiingen zur Implementierung eines Mehrbenutzer-
betriebes benutzt werden (siehe Kapitel 3.2.3 und Kapitel 6.1.1). Aus der Sicht der Anwendung
oder eines Benutzers dndert sich dabei nichts.

62

In den folgenden Abschnitten wollen wir noch auf einige Details des SDAI eingehen. In Kapitel
3.2.1 werden dafiir die verschiedenen Moglichkeiten zur Strukturierung und Partitionierung von
Daten anhand eines Beispieles erortert. Im Anschluf3 daran betrachten wir in Kapitel 3.2.2 die
Manipulation von Daten. Verarbeitungszustinde, mogliche Ubergiinge, Transaktionen und Ses-
sions sind hingegen das Thema von Kapitel 3.2.3. Die weitere Diskussion betrifft dann die Aus-
wertung von Regeln (Kapitel 3.2.4), die Abhidngigkeit von Implementierungen gegeniiber den
verwendeten EXPRESS-Schemata (Early und Late Binding, Kapitel 3.2.5), Anbindungen an
konkrete Programmiersprachen (Kapitel 3.2.6) sowie Implementierungsklassen (Kapitel 3.2.7).
Neben diesen Aspekten ist fiir das SDAI noch ein Konstrukt zur Bildung geschachtelter
Namensrdume (sog. Scopes) spezifiziert, das fiir den Rest der Arbeit aber nicht von Interesse ist.

3.2.1 Strukturierung der Daten

Wie wir bereits in Kapitel 3.1.1 gelernt haben, werden die Metadaten in einzelne Schemata par-
titioniert, die damit implizit mehrere Mengen von Entity-Instanzen bilden, denen jeweils ein
eigenes Schema zugrunde liegt. Diese Einteilung ist aber noch recht grob. Eine feinere Auftei-
lung der auf einem Schema basierenden Entities ergibt sich durch das Model-Konstrukt: Jedes
Entity muf} in genau einem Model enthalten sein, dem genau ein Schema zugrunde liegt. Somit
erhalten wir eine strikte Partitionierung der Daten.

Probleme bereitet nun die Verkniipfung der Daten mehrerer Models oder Schemata mittels
Referenzen. Wie soll man z.B. einen effizienten Mechanismus zur Uberpriifung der referentiel-
len Integritit bereitstellen, wenn dieser den gesamten Datenbestand untersuchen miilite? Aus
diesem Grund wurden sog. Schema Instances eingefiihrt, die auf genau einem Schema basieren
und einen Kontext fiir die Auswertung von Regeln bilden. Sie realisieren keinen Datencontainer
wie z.B. Models, sondern lediglich eine logische Schutzhiille. Weiterhin kann es mehrere
Schema Instances fiir ein Schema geben. Models, und somit implizit die enthaltenen Entities,
konnen ebenfalls in mehreren Schema Instances enthalten sein. Wird nun ein Model in eine
Schema Instance eingefiigt, so miissen entweder beide vom gleichen Schema abgeleitet, oder
die beiden Schemata im SDAI Data Dictionary als interoperabel deklariert sein. Letzteres
erfolgt bereits automatisch durch die Verwendung der usk- bzw. REFERENCE-Klausel in den
zugrundeliegenden EXPRESS-Definitionen. Unbedingt beachten sollten wir die Tatsache, daf3
beim Einsatz des SDAI alle Regeln im Kontext einer Schema Instance evaluiert werden, so
bezieht sich z.B. die un1QUE-Klausel nicht mehr auf alle Instanzen eines Entity-Typs!

Schema Instances, Models und deren Entity-Instanzen sind genau einem Repository zugeordnet.
Schema Instances konnen allerdings mit Models in anderen Repositories assoziiert sein (s.0.).
Die Zuordnung von Schemata zu Repositories ist hingegen nicht spezifiziert. Referenzen zwi-
schen zwei Entity-Instanzen sind nur dann erlaubt, wenn beide im gleichen Model enthalten
sind, oder es eine Schema Instance gibt, in der die beiden unterschiedlichen Models (und damit
auch die beiden Entity-Instanzen) enthalten sind. An dieser Stelle liegt die Folgerung nahe, daf3
damit nur Referenzen innerhalb eines Repositories moglich sind. Dies ist aber nicht der Fall, da
sich Schema Instances liber mehrere Repositories erstrecken konnen, obwohl sie (administrativ
gesehen) nur einem zugeordnet sind.

63

f i

Daimler)
—
Mercedes 190 D

‘Motor 1| ‘ Reifensatz 1 | ‘ Karosserie 1 |

\

Audi 80 i

‘ Motor 2 | ‘ Karosserie 2 | Ingoldstadt
Kuno Meier | I Karin Meier |
\ Schema Instance ,Produkt”

| Egon Miller —| Erika Miller |

.

Schema Instance ,,Produzent“)

Schema Instance Referenz

\:I Entity Instance |:| Model

Abb. 3.3: Mbogliche Auspridgung fiir die Beispielanwendung in Kapitel 3.1.5

Eine mogliche Ausprigung fiir das in Kapitel 3.1.5 definierte Beispiel wird durch Abb. 3.3 ver-
anschaulicht. Die Objekte der linken Seite basieren auf dem Schema produkt, die der rechten
auf dem Schema produzent. Die beiden Schema Instances beziehen sich jeweils auf das
Schema mit dem gleichen Namen. Obwohl alle Models in beide Schema Instances eingehdngt
werden miissen (sonst wiren die Referenzen zwischen den Models nicht erlaubt), so sind z.B.
die Entity-Instanzen Ulm, Egon Miller, Erika Miiller, Ingoldstadt, Kuno Meier und Karin
Meier nicht in der Schema Instance produkt enthalten, da ihre Typen in der EXPRESS-Defi-
nition nicht mit der use- bzw. REFERENCE-Klausel verkniipft sind. Dieser Fakt vereinfacht die
Auswertung von Regeln zur referentiellen Integritit. Wir sollten uns aber dariiber im klaren
sein, daf} die Zugehorigkeit von Entity-Instanzen zu Schema Instances nicht an der Schnittstelle
sichtbar ist, sondern nur eine logische Sichtweise darstellt. Abschlieend sei bemerkt, daf3 die
Daten dieser Beispielanwendung in maximal vier Repositories abgespeichert werden konnen
(jedes Model in ein eigenes).

3.2.2 Manipulation von Daten

Fiir die Bearbeitung einzelner Objekte wird ein ausreichender Satz von Prozeduren definiert. So
kann beispielsweise ein Attribut mit den Operationen Get bzw. Put Attribute gelesen oder
verdndert, oder ein Entity mittels Copy bzw. Delete Application Instance kopiert oder
geloscht werden. Auch Funktionen fiir die Abfrage der zugrundeliegenden Schemata, Typen,
Models oder Schema Instances werden zur Verfligung gestellt. Eine von relationalen DBVS
gewohnte mengenorientierte Verarbeitung ist hingegen nur eingeschrinkt iiber das SDAI
Query-Konstrukt [ISO98a] mdglich. Dieses unterstiitzt relativ einfache Selektionsbedingungen
auf Attributwerten und 1dBt sich auf eine der folgenden vier Quellen anwenden: Aggregate,

64

Model, Schema Instances oder Repositories. Dabei gibt es allerdings einige Einschrinkungen,
so daf} sich die Michtigkeit z.B. nur schwer mit der von SQL vergleichen 148t. Auf jeden Fall
sollte das SDAI query-Konstrukt nicht mit der in EXPRESS enthaltenen Standard-Funktion
QUERY [ISO94b, Kapitel 3.1.4] verwechselt werden!

3.2.3 Sessions und Transaktionen

Mit Hilfe von Sessions wird ein globaler Kontext fiir Applikationen modelliert, ohne den keine
Operationen moglich sind. In ihm werden alle verfiigbaren Repositories und Schema Instances
vermerkt sowie der Zustand von Models, Transaktionen und Repositories gespeichert. Zu einem
Zeitpunkt kann allerdings immer nur eine Session je Applikation gedffnet sein. Innerhalb dieser
146t sich dann maximal eine Transaktion starten. Dabei ist jedoch zu erwihnen, daf die SDAI-
Spezifikation drei Ebenen fiir die Unterstiitzung von Transaktionen definiert. Fiir jede Imple-
mentierung mufl dann angegeben werden, welche dieser Ebenen realisiert wird (siehe auch
Kapitel 3.2.7). Im einfachsten Fall gibt es iiberhaupt keine Unterstiitzung einer transaktionsori-
entierten Verarbeitung (Ebene 1). Einfache Save- und Undo-Operationen bietet Ebene 2. Diese
Befehle beziehen sich immer auf alle in einem Model enthaltenen Daten. Erst in Ebene 3 wird
der eigentliche Begriff von Transaktionen eingefiihrt. Leider erfiillt aber selbst dieser nicht die
Anforderungen des ACID-Konzeptes [HR83, GR93]. Lediglich die Atomizitit (A) und Dauer-
haftigkeit (D) von Aktionen kann garantiert werden. Die Isolation (I) wird hier nicht durch die
Verwendung eines Synchronisationskonzeptes innerhalb von Transaktionen erreicht, sondern
durch den Einbenutzerbetrieb per Definition. Weiterhin wird die Konsistenz der Daten (C) nicht
automatisch durch das System, sondern nur auf explizite Anforderung der Applikation iiber-
priift (siehe auch Kapitel 3.2.4). Die Auswertung aller definierten Regeln kann dabei (je nach
Anzahl der Schema Instances und Regeln) zu einer langen Befehlsfolge fiihren.

Nachdem wir den Einsatz von Transaktionen in verteilten Umgebungen fiir unverzichtbar hal-
ten, wollen wir uns in der vorliegenden Arbeit auf die Verwendung von Transaktionsebene 3
beschrinken (auch wenn man selbst bei dieser kaum von eigentlichen Transaktionen geméif
[HR83, GRI3] sprechen kann). In Kapitel 3.2.3.1 diskutieren wir diesbeziiglich einige Pro-
bleme, die bei einer moglichen Erweiterung zum Mehrbenutzerbetrieb entstehen.
Kapitel 3.2.3.2 prisentiert schlieBlich das fiir Transaktionsebene 3 spezifizierte Zustandsmo-
dell, das anhand eines kurzen Beispieles erldutert wird.

3.2.3.1 Synchronisation und Mehrbenutzerbetrieb

Obwohl das SDAI nur fiir den Einbenutzerbetrieb definiert ist, so wollen wir doch auf zu erwar-
tende Probleme in verteilten Umgebungen mit mehreren Anwendern eingehen. Zwar erlaubt das
SDAI (in Transaktionsebene 3) den Zugriff auf Daten erst nach dem expliziten Offnen von Ses-
sions, Transaktionen und Models, es kann aber nicht von einer Sperrverwaltung im herkémm-
lichen Sinne gesprochen werden. Das explizite SchlieBen einzelner Models und Repositories
wiirde quasi die Freigabe von Sperren zu beliebigen Zeitpunkten ermoglichen. Dieser Umstand
fiihrt aber im Mehrbenutzerbetrieb zu nicht mehr kontrollierbaren Anomalien. Nicht nur Phan-
tome, sondern auch lost-update und dirty-read wiren die Folge [HR99]. Wiinschenswert wiire

65

ein zweiphasiges Sperr- und Commit-Protokoll, mit dem auch verteilte Anwendungen realisiert
werden konnten. Eine SDAI-Implementierung fiir den Mehrbenutzerbetrieb sollte daher die
Freigabe von Sperren durch das Schlie3en von Models und Repositories implizit bis zum Ende
einer Transaktion verzégern.

Ein groBeres Problem stellt die Behandlung von Deadlocks dar. Es gibt zwar eine Reihe von
Fehlermeldungen, diese besitzen aber bereits eine andere Semantik. Die Operation Start Read
Only Access (fiir ein Model) kann z.B. die Meldung TR _NEXS (Transaction does not exist),
TR_NAVL (Transaction not available), TR _EAB (Transaction ended abnormally) oder MX_ NVLD
(SDAI Model access invalid) verursachen. Letztere zeigt aber eine Verletzung von Zugriffsrech-
ten an, wihrend die erste auf das fehlende Offnen einer Transaktion hinweist. TR_NavVL kann
auch nicht benutzt werden, da sie einen temporiren Fehler anzeigt, Deadlocks aber endgiiltig
sind. Auch TR_EAB stellt nur eine bedingt brauchbare Alternative dar, da unter Umstinden nicht
die ganze Transaktion zuriickgesetzt werden muf3. Hiufig wird daher der allgemeine Fehlercode
sy_ERR (Underlying System Error) benutzt. Er zeigt der Applikation an, daf die letzte Opera-
tion aufgrund eines allgemeinen Systemfehlers nicht erfolgreich ausgefiihrt werden konnte.

3.2.3.2 Zustandsmodell fiir Transaktionsebene 3

Die SDAI-Spezifikation definiert fiir Transaktionsebene 3 ein Zustandsmodell, das durch
Abbildung 3.4 illustriert wird. In Beispiel 3.6 ist weiterhin eine mogliche Befehlsfolge inner-
halb einer SDAI-Session dargestellt. Dabei ist zu beachten, daf} die Syntax einer Pseudo-Spra-
che entspricht und nicht im Standard spezifiziert ist. Fiir eine Erklarung von Transaktionsebene
2 sei auf die SDAI-Spezifikation selbst [ISO98a] oder [Sel96] verwiesen.

1: Open Session 5: End Transaction RW And Abort/Commit 9: Open Repository 13: Start RO
2: Close Session 6: Start Transaction RW Access 10: Close Repository 14: End RO
3: Start Transaction RO Access 7: Open Repository 11: Start RO 15: End RW
4: End Transaction RO And Abort/Commit 8: Close Repository 12: End RO 16: Start RW

Abb. 3.4: Zustandsiiberginge in der SDAI-Schnittstelle (Transaktionsebene 3)

66

Allgemein gilt, daB in Transaktionsebene 3 nach dem Offnen einer Session auch eine neue
Transaktion zu starten ist. Abhiingig von deren Modus (read-only oder read-write) kann dann
der Zugriff auf einzelne Repositories und Models erlaubt oder beendet werden. Im read-write-
Modus durchgefiihrte Anderungen konnen wir mittels Commit bzw. Abort persistent machen
oder zuriicksetzen. Ein Ende der Transaktion wird erst mit End Transaction Access And Commit
bzw. Abort eingeleitet. Vorher sollten wir aber alle geéffneten Repositories mittels Close Repos-
itory explizit schlieen. Diese Operation scheitert, wenn noch Schreibzugriffe auf Models
erlaubt sind, diese also noch nicht explizit geschlossen wurden. Der Aufruf von Close Session
kann hingegen jederzeit erfolgen und verursacht das Riicksetzen aller Anderungen sowie das
SchlieBen aller Models, Repositories und der aktuellen Transaktion.

current session = Open Session () ;
current _ta = Start Transaction RW Access (current_ session) ;

Open Repository (current session, repository 1);
Start RW (model 1);
// Manipulation von Instanzen in model 1
// model 1 befindet sich in repository 1
End RW (model 1) ;

Commit (current ta);
// Die Anderung von model 1 wird persistent gemacht,
// aber: Die Transaktion current ta lauft weiter !!!

Start RW (model 2);
// Manipulation von Instanzen in model 2
// model 2 befindet sich ebenfalls in repository 1
Close Repository (repository 1);
// Die Operation scheitert, da noch Zugriffe auf model 2
// erlaubt sind. Es wird ein Fehlercode zurlckgegeben.
End RW (model 2);
Close Repository (repository 1);

End Transaction Access And Abort (current ta);

// Die Anderung von model 2 wird ignoriert,

// und die Transaktion current ta wird beendet.

// Beachte: Die Anderungen in model 1 bleiben persistent !!!

Close Session (current session);

Beispiel 3.6: Mogliche Befehlsfolge innerhalb einer SDAI-Session (Transaktionsebene 3)

3.2.4 Auswertung von Regeln

Leider gilt fiir das SDAI, daB3 Regeln nur auf expliziten Wunsch der Applikation ausgewertet
werden. Der Standard definiert dafiir Prozeduren fiir die Auswertung von globalen Regeln, ref-
erentieller Integritit und Eindeutigkeit (jeweils im Kontext einer Schema Instance, siehe auch
Kapitel 3.2.1) sowie Auswertung von INVERSE- und WHERE-KIlauseln, Kardinalitétsrestrik-
tionen usw. (jeweils bzgl. einer einzigen Entity-Instanz). Lediglich der Typ von Objekten und
Daten wird (abhédngig von der verwendeten Programmiersprache) bei der Zuweisung eines
Attributes tliberpriift.

67

3.2.5 Early und Late Binding

Die in der SDAI-Spezifikation benutzten Begriffe Early und Late Binding sind leider etwas irre-
fiihrend. Sie haben nidmlich nichts mit dem Bindezeitpunkt von Programmen (im Sinne eines
Programmiersprachen-Compiler) zu tun. Sie beziehen sich vielmehr auf die Abhéngigkeit eines
Programmes vom jeweiligen EXPRESS-Schema. Beim Early Binding wird das EXPRESS-
Schema direkt in die Struktur der Applikation eingebracht. Die Modellierung der Daten muf3
also beim Erstellen des Programms bekannt sein und darf sich dann auch nicht mehr @ndern.
Somit sind in dieser Applikation auch keine Zugriffe auf die Metadaten (SDAI Dictionary Data)
notig. Im Gegensatz dazu werden Anwendungsprogramme mit Late Binding in einer vom
EXPRESS-Schema unabhiéngigen Form geschrieben. Sie greifen erst wihrend der Laufzeit auf
die Metadaten zu, konnen diese allerdings nicht verdndern. Die Manipulation von Daten erfolgt
in diesem Fall iiber generische Funktionen, denen neben dem eigentlichen Wert auch dessen
Typ tlibergeben werden muB.

3.2.6 Sprachanbindungen

Wir haben in der Einleitung zu diesem Kapitel bereits erwéhnt, dal Serie 22 von ISO 10303
[ISO98a] eine abstrakte Definition der Funktionalitdt des SDAI enthilt. Daneben gibt es weitere
Dokumente mit Abbildungen auf die gebrduchlichsten Programmiersprachen (siehe auch
Tabelle 3.1 auf Seite 52). Hier sind Serie 23 [ISO98b] fiir C++ , Serie 24 [ISO96] fiir C, Serie
26 [ISO98c] fiir die Interface Definition Language (IDL) von CORBA [OMG96a] sowie Serie
27 [ISO99a] fiir Java zu nennen. Innerhalb dieser Dokumente werden alle in Serie 22 (abstrakt)
spezifizierten Operationen und Datenstrukturen sowie die in Serie 11 enthaltenen EXPRESS-
Datentypen auf Konstrukte der jeweiligen Programmiersprache abgebildet. Fiir den von uns ent-
wickelten Prototypen (siehe Kapitel 6) sind insbesondere die Dokumente fiir Java und IDL von
Interesse. Wir werden in den folgenden Kapiteln erkennen, daf} die Abbildung auf IDL zu sog.
Operation Shipping (Kapitel 2.5.2) fiihrt. Diese Form der Verarbeitung ist aber hdufig nicht
erwiinscht, so daf} alternative Konzepte zu entwickeln sind (siehe Kapitel 5.4). Die Entwicklung
von Serie 27 (Java) wurde hingegen im Rahmen dieser Arbeit aktiv mitgestaltet. Die zugrunde-
liegenden Konzepte entsprechen somit im wesentlichen unseren Anforderungen und Ergebnis-
sen. Eine detaillierte Diskussion von JavaSDAI befindet sich in Kapitel 6.

Implementierungsklasse 1 2 3 4 5
Ebene flur Transaktionen 1 2 3 3 3
Ebene flir Regeln und abgeleitete Attribute 1 2 2 3 4
Ebene flr Fehlermeldungen 1 2 2 2 2
Ebene fir Namensrdume 1 1 1 1 2
Ebene flr Interoperabilitat 1 1 2 2 2

Tabelle 3.2: Mogliche Implementierungsklassen einer SDAI-Implementierung

68

3.2.7 Implementierungsklassen

Obwohl SDAI eine genormte Standard-Schnittstelle darstellt, so kann es fiir einige Implemen-
tierungen sinnvoll sein, nur einen Teil der beschriebenen Funktionalitit zu benutzen bzw. anzu-
bieten. Aus diesem Grund werden in Kapitel 13 von [ISO98a] mehrere Implementierungsklas-
sen beschrieben, die jeweils eine Untermenge des Standards darstellen (siehe Tabelle 3.2). Sie
werden durch verschiedene Ebenen der Unterstiitzung von Transaktionen, Regeln, Sessions,
Scopes und Interoperabilitit definiert, die in Tabelle 3.3 aufgefiihrt sind.

Kategorie Ebene Beschreibung
Transaktionen 1 keine Transaktionen
2 Save und Undo fir Models
3 volle Unterstltzung von Transaktionen, kein Save und Undo fiir Models

Auswertung von 1 jede Auswertung einer Regel hat das Ergebnis UNKNOWN
Regeln und abge-
leiteten Attributen

2 Unterstiitzung einfacher Regeln, keine Auswertung von globalen Regeln und
WHERE-Klauseln

3 wie 2, zusétzlich globale Regeln und WHERE-Klauseln ohne Unteranfragen und
selbst definierte Funktionen

4 komplette Unterstitzung aller Regeln
Archivierung von 1 keine Archivierung
Fehlermeldungen - - -
2 Fehlermeldungen innerhalb von Sessions werden gespeichert
Namensrdume 1 keine Unterstltzung
(Scopes) " "
2 Namensrdume werden unterstitzt
Interoperabilitét 1 keine Unterstltzung
2 Unterstltzung von Interoperabilitdt zwischen Entity-Instanzen, die auf

unterschiedlichen Schemata basieren

Tabelle 3.3: Ebenen der Unterstiitzung fiir SDAI-Implementierungen

3.3 Standardisierte Schemata

Bereits in der Einleitung zu diesem Kapitel haben wir gesehen, dafl der STEP-Standard auch
Datenmodelle fiir mehrere Einsatzbereiche des Produktdatenmanagements definiert. Dafiir
werden einige Schemata spezifiziert, die sich in zwei Kategorien unterteilen lassen: anwen-
dungsunabhingige Schemata, die sog. Integrated Resources (IR), und anwendungsabhingige
Schemata, die sog. Application Protocols (AP). Mit Hilfe dieser Aufteilung soll erreicht wer-
den, daB} allgemein bendtigte Strukturen zur Beschreibung von Geometrie, Versionierung,
Zusammenbauten usw. nur in einem IR-Dokument enthalten sind und eben nicht mehrfach stan-
dardisiert werden. Die Modellierung der eigentlichen Anwendungsgebiete erfolgt dann durch

69

jeweils ein AP-Dokument, das die Schemata der IR-Dokumente quasi als Bausteine benutzt.
Als Beispiel sei hier das AP 214 [ISO99b] genannt, mit dem sich der Produktlebenszyklus in
der Automobilindustrie dokumentieren la6t.

An der Erstellung eines Application Protocols sind in der Regel zahlreiche Anwender beteiligt,
die wesentlich zur Vollstindigkeit und spiteren Akzeptanz der Dokumente beitragen. In der
endgiiltigen Fassung eines AP sind schlieBlich alle definierten Objekte (Entities) in dreifacher
Austiihrung spezifiziert: als EXPRESS-G-Diagramm (einer grafischen Repréisentation des
EXPRESS-Schemas), als textuelle EXPRESS-Definition (da sich nicht alle EXPRESS-Kon-
strukte, wie z.B. Regeln, durch EXPRESS-G visualisieren lassen) und als umgangssprachliche
Beschreibung (um die Semantik und Bedeutung einzelner Attribute und Beziehungen néiher zu
erldutern).

Wie schon zuvor erwihnt, werden wir uns in den folgenden Kapiteln mit einer generischen
Datenversorgung fiir beliebige EXPRESS-basierte Daten beschiftigen. Dementsprechend sind
die IR- und AP-Dokumente nur von geringem Interesse fiir die vorliegende Arbeit.

3.4 Zusammenfassung

In diesem Kapitel haben wir eine Einfiihrung in den ISO-Standard 10303 (STEP) gegeben, des-
sen primires Einsatzgebiet im Bereich des Austausches von Produktdaten zu sehen ist. Dafiir
gibt es eine Reihe anwendungsspezifischer Schemata (Application Protocols und Integrated
Resources), die mit der ebenfalls im Standard enthaltenen, strukturell objektorientierten Daten-
modellierungssprache EXPRESS definiert wurden. Fiir den einheitlichen Zugriff auf die Daten
steht auBerdem das STEP Data Access Interface (SDAI) zur Verfiigung. Wir haben weiterhin
erkannt, dal EXPRESS eine sehr méchtige Sprache ist, die z.B. weit iiber die Modellierungs-
konzepte einer objektorientierten Programmiersprache wie C++ hinaus geht (so gibt es z.B. drei
verschiedene Formen von Vererbung, abgeleitete Attribute, Regeln usw). Es bietet sich daher
an, EXPRESS auch zur Modellierung auBerhalb des Produktdatenmanagements zu benutzen. In
Verbindung mit dem SDAI steht also ein standardisierter Mechanismus fiir eine allgemeine
Datenversorgung zur Verfiigung. Leider realisiert das SDAI aber nur einen navigierenden
Zugrift sowie ein rudimentires Transaktionsmodell, das nicht dem ACID-Konzept entspricht.
Eine Uberpriifung der Praxistauglichkeit ist somit nétig. So werden wir in Kapitel 5 erkennen,
daf die standardisierte Abbildung des SDAI auf die IDL von CORBA im allgemeinen zu reinem
Operation Shipping (Kapitel 2.5.2) und einer unzureichenden Leistung fiihrt. In Kapitel 6 stel-
len wir deshalb einen Prototypen vor, mit dem verschiedene Techniken der Datenversorgung
iiber ein in Java implementiertes SDAI integriert und bewertet werden. Die gewonnenen Ergeb-
nisse sind bereits in den Standardisierungsprozel3 eingeflossen und damit auch Bestandteil der
Abbildung des SDAI auf die Programmiersprache Java [ISO99a].

70

Kapitel 4
Der CORBA-Standard

Bereits in der Einleitung sowie bei der Diskussion einiger Grundlagen in Kapitel 2 haben wir
die Verwendung von Komponenten motiviert. Wir haben gleichzeitig erkannt, da} wir dafiir
sowohl ein geeignetes Komponentenmodell (Kapitel 2.1) als auch eine passende Infrastruktur
(sog. Middleware, Kapitel 2.4) benotigen. Dabei erschien uns CORBA (Common Object
Request Broker Architecture) aus einer oberfldchlichen Betrachtung der realisierten Konzepte
bereits als am besten geeignet. An dieser Stelle wollen wir nun einen genaueren Blick auf den
Standard werfen und seine Stirken, aber auch seine Schwéichen diskutieren.

Zustindig fiir die Standardisierung von CORBA ist die Object Management Group (OMG), ein
Zusammenschluf fiihrender Software-Firmen. Sie begann 1989 ihre Arbeit mit dem Ziel, die
Komplexitit und die damit verbundenen Kosten fiir die Entwicklung und Wartung von Software
zu reduzieren. Der Einsatz objektorientierter Konzepte erschien den Mitgliedern dabei von
Anfang an am geeignetsten. Dementsprechend wurde die Object Management Architecture
(OMA) definiert, eine Architektur fiir verteilte Objekte in heterogenen Umgebungen. Durch den
Einsatz wohldefinierter Schnittstellen sollte die Entwicklung modularer, gekapselter und damit
interoperabler, portabler und wiederverwendbarer Software ermdglicht werden. Obwohl die
OMG den Begriff von Komponenten nicht explizit verwendet, so lassen sich doch viele der von
uns fiir Komponentenmodelle geforderten Eigenschaften in der Zielsetzung der OMA wieder-
finden. Eine sehr gute Beschreibung der OMA und des zugrundeliegenden Objektmodells
befindet sich in [OMGY97]. Im folgenden wollen wir kurz auf die wesentlichen Bestandteile ein-
gehen.

Zur Definition der Schnittstellen von Objekten wurde zuerst einmal eine eigene Interface Defi-
nition Language (IDL) entwickelt. Der Umfang dieser Sprache wird im wesentlichen durch das
der OMA zugrundeliegende Objektmodell bestimmt: Objekte sind identifizierbar und geka-
pselt. Sie bieten Dienstleistungen bzw. Operationen fiir andere Objekte an. Sowohl dieses
Objektmodell als auch IDL selbst werden wir noch genauer in Kapitel 4.1 betrachten.

Aufbauend auf dem Objektmodell wurde von der OMG das OMA-Referenzmodell definiert
(siehe Abb. 4.1). Das Herzstiick dieser Architektur bildet der Object Request Broker (ORB). Er
realisiert die Infrastruktur (hdufig auch Objekt-Bus genannt) fiir eine fehlertolerante und orts-
transparente Verarbeitung. Dabei abstrahiert er vollstdndig von der von den einzelnen Objekten
konkret verwendeten Hardware, Betriebssystemen oder Programmiersprachen. Neben dieser
generischen Komponente gibt es noch standardisierte Abbildungen von IDL auf die Program-

71

miersprachen C, C++, Java, Smalltalk, Ada und Cobol. Anhand dieser werden von einem IDL-
Compiler applikationsspezifische Ergiinzungen fiir das Laufzeitsystem des ORB generiert (wie
etwa Stub-Objekte fiir den Client oder Routinen zur Parameterkonvertierung zwischen unter-
schiedlichen Plattformen). Die Spezifikation des ORB bildet zusammen mit den einzelnen
Sprachanbindungen die eigentliche Kern-Architektur von CORBA. Die derzeit aktuelle Version
ist CORBA 2.2 [OMG98(f]. Sie wird in Kapitel 4.2 beschrieben.

Applikationsspezifische Schnittstellen fir bestimmte Anwendungstibergreifende
Schnittstellen (nicht standardisiert) Anwendungsbereiche Schnittstellen
Application Interfaces Domain Interfaces Common Facilities

O OO O O

< Object Request Broker >

Object Services

Schnittstellen fur grundlegende Basisfunktionalitat

Abb. 4.1: Der Aufbau des OMA-Referenzmodelles

Zur Bildung eines hoherwertigen Komponentenmodelles, das gleichzeitig die mehrfache Imple-
mentierung von Funktionalitit vermeiden soll, gibt es noch eine Reihe weiterer Bausteine.
Zuerst sind hier die Object Services zu nennen (siehe auch Kapitel 4.3). Sie realisieren grund-
legende Dienstleistungen, die mehr oder weniger von jeder Anwendung benétigt werden. Dem-
entsprechend sollten sie eigentlich von jedem CORBA-System zur Verfiigung gestellt werden.
Beispiele sind der Naming und Trader Service (analog zum Telefonbuch und den “Gelben Sei-
ten”), der Event Service (asynchrone Kommunikation und/oder Message Queues) sowie der
Transaction, Synchronization und Query Service.

Ergénzend zu den Object Services gibt es die Common Facilities. Sie bieten wiederum grund-
legende Dienstleistungen an, diesmal aber speziell fiir einen bestimmten Anwendungsbereich.
Beispiele sind der PDM Enabler, der rudimentére Funktionen fiir das Produktdatenmanagement
(PDM) bereitstellt, oder die Workflow Management Facility zur Modellierung prozeBorientier-
ter Ablédufe.

Object Services und Common Facilities werden schlieflich zur Definition sog. Domain Inter-
faces genutzt, die Schnittstellen zu branchenspezifischer Software auf einem relativ hohen
Niveau bereitstellen. Die angebotene Funktionalitit soll direkt von den Anwendungssystemen
genutzt werden konnen. In einer Mehrebenenarchitektur (Kap. 2.3.1) lassen sich die Domain
Interfaces dann iiber die Application Interfaces der Priasentationsschicht zur Verfiigung stellen.

Mit Ausnahme der Application Interfaces werden die Schnittstellen aller Bestandteile der OMA
bzw. CORBA von der OMG standardisiert. Auf diese Weise soll die Interoperabilitdat und Aus-
tauschbarkeit von Komponenten erreicht werden. Aufgrund der Modularitdt der gesamten

72

Architektur stellt dieser Ansatz gleichzeitig einen Investitionsschutz fiir Unternehmen dar: Es
mul} nie das gesamte System, sondern lediglich ein einzelnes (z.B. fehleranfilliges oder lei-
stungsschwaches) Modul ausgetauscht werden. Konnte man bei einer Diskussion des ORB
noch auf die Idee kommen, daB CORBA lediglich einen objektorientierten RPC (siehe
Kapitel 2.4.1), also ein reines Middleware-System, realisiert, so muf3 man spétestens an dieser
Stelle erkennen, daBl die OMG gleichzeitig ein weitreichendes Komponentenmodell definiert
hat. Leider ist die Standardisierung aber bei weitem noch nicht abgeschlossen. Wihrend sich
die Kern-Architektur und die Object Services als liberwiegend stabil bezeichnen lassen (natiir-
lich gibt es ab und zu sinnvolle Erweiterungen), so sind im Bereich der Common Facilities und
Domain Interfaces iiberhaupt noch keine standardisierten Losungen verabschiedet. Zwar wer-
den z.B. bereits erste Entwiirfe der PDM Enabler Facility praktisch evaluiert, eine endgiiltige
Losung scheint aber noch nicht in Sicht zu sein. Im Bereich der Domain Interfaces sind noch
gar keine Vorschlige verfiigbar. Wir werden uns in dieser Arbeit daher auf eine Diskussion der
Kern-Architektur sowie ausgewdhlter Object Services beschrinken. Anhand dieser lassen sich
bereits die Stiarken und Schwichen von CORBA in datenintensiven Umgebungen erkennen.

Ausgehend von Einfiihrungen in IDL (Kap. 4.1), die Kern-Architektur von CORBA (Kap. 4.2)
und einige Object Services (Kap. 4.3) prisentieren wir in Kapitel 4.4 ein Beispiel zur Illustra-
tion der Modellierung und Programmierung in CORBA-Umgebungen. Im Anschluf} daran leitet
Kapitel 4.5 zum eigentlichen Thema dieser Arbeit iiber: Wie lassen sich Daten in IDL model-
lieren, so daB} auch in datenintensiven Anwendungen eine ausreichende Leistung erzielt wird?
Leider miissen wir erkennen, daf} an dieser Stelle eine Reihe Probleme entstehen, fiir die wir im
Rahmen der verbleibenden Arbeit Losungen erarbeiten wollen. In Kapitel 4.6 stellen wir
anschlieend kurz die von uns eingesetzten CORBA-Systeme vor. Nachdem wir immer wieder
von Komponenten und komponentenbasierter Architekturen sprechen, wollen wir in Kapitel 4.7
noch einen Blick auf die derzeit in der Entwicklung befindliche Business Object Component
Architecture (BOCA) und die CORBA Components werfen. Letztere definieren allerdings
weniger ein Komponentenmodell, sondern eher implementierungnahe Details zur Konfigura-
tion von Software-Paketen und ihrer Installation. In Kapitel 4.8 vergleichen wir dann CORBA
mit anderen Middleware-Standards und Produkten wie DCE, (D)COM, OLE und (D)SOM.
Abschlielend fassen wir die erzielten Ergebnisse kurz zusammen (Kapitel 4.9).

Fiir eine weitergehende Beschreibung der Kern-Architektur von CORBA, der Objects Services
und der Common Facilities sei auf [Si196] oder [OHE96] verwiesen. Eine gute Einfiihrung in die
Programmierung mit dem CORBA-System Orbix von IONA befindet sich z.B. in [Red96].

4.1 Das Objektmodell und die Modellierungssprache IDL

Grundlage der OMA ist das bereits erwdhnte Objektmodell der OMG. Es ist eng verzahnt mit
der ebenfalls von der OMG standardisierten Interface Definition Language (IDL). Diese stellt
eine Reihe von Basistypen und Templates zur Verfiigung, mit denen sich komplexe Typen wie
Strukturen oder Aggregate definieren lassen. Sowohl benutzerdefinierte als auch Basistypen
konnen schlieBlich zur Modellierung der Schnittstellen von Objekten benutzt werden.

73

4.1.1 Das Objektmodell

Objekte sind identifizierbar und gekapselt. Sie bieten Dienstleistungen bzw. Operationen fiir
andere Objekte an. Ein Objekt (Client) kann eine Dienstleistung in Anspruch nehmen, indem es
eine Nachricht (Request) an das anbietende Objekt (Server) schickt. Dabei konnen Parameter
und ein optionaler Kontext iibergeben werden. Nach Abarbeitung des Auftrages wird im allge-
meinen ein Ergebnis zuriickgegeben. In diesem Fall erfolgt die Verarbeitung synchron, d.h. der
Client ist bis zum Erhalt des Ergebnisses blockiert. Tritt wihrend der Bearbeitung ein Fehler
auf, so wird eine Exception an das aufrufende Objekt zuriickgegeben. Das Ergebnis der Opera-
tion ist in diesem Fall undefiniert.

Waurde fiir eine Operation kein Ergebnistyp definiert, so wird der Client nicht blockiert. Aller-
dings erhilt er auch keine Benachrichtigung iiber den Ausgang oder Erfolg einer Operation. Es
konnen in diesem Fall auch keine Exceptions spezifiziert oder ausgeldst werden. Man kann an
dieser Stelle also nicht von asynchroner Kommunikation sprechen. Dementsprechend erkennen
wir auch keine sinnvollen Einsatzgebiete dieser Variante.

CORBA-Objekte werden mit Hilfe der interface-Klausel von IDL modelliert (siehe
Kapitel 4.1.4). Ihr Zustand (bzw. ein Teil davon) 146t sich an der Schnittstelle in Form von Attri-
buten zur Verfiigung stellen. Dienstleistungen bzw. Operationen werden in Form von Methoden
deklariert. Jede Verwendung des Schliisselwortes interface fiihrt zur Definition eines neuen
(Objekt-) Typs, der zur Deklaration von Parametern oder Riickgabewerten von Methoden
benutzt werden kann (sowohl innerhalb der eigenen Definition als auch fiir andere Schnittstel-
len).

4.1.2 Basis-Typen (Basic Types)

IDL enthilt analog zu den meisten Programmiersprachen einen umfangreichen Satz an Basis-
typen. So gibt es zur Darstellung von Zahlen und Zeichen(ketten) Typen fiir 16-Bit und 32-Bit
Kardinalzahlen mit oder ohne Vorzeichen in 2’er-Komplement-Darstellung (short, long,
ushort, ulong), 32-Bit und 64-Bit IEEE-FlieBkommazahlen (float, double), durch 8 Bit
kodierte Zeichen (char) und daraus aufgebaute Zeichenketten mit fester oder variabler Linge
(string). Daneben gibt es den Typ boolean mit den Werten TRUE und FALSE, sowie einen opa-
quen 8-Bit Typ octet, der auch bei der Ubertragung zwischen heterogenen Architekturen
garantiert keiner Konvertierung unterliegt. Benutzerdefinierte Aufzihlungstypen lassen sich
tiber das Schliisselwort enum definieren (dabei wird die Ordnung der Elemente iibernommen).

Eine Besonderheit von IDL ist der Typ any, der zur Laufzeit den Wert eines beliebigen Typs
annehmen kann. Er besteht aus einem Diskriminator sowie dem eigentlichen Wert. Dies unter-
scheidet ihn z.B. vom Typ void der Programmiersprache C++, der lediglich den Wert selbst ent-
hilt (aber eben keinerlei Typinformation).

Mit der Version 2.1 des CORBA-Standards wurde weiterhin der Typ wchar (Wide Character)
in die Sprache aufgenommen. Er ist fiir Zeichensitze gedacht, deren Repréasentation mehr als 8
Bit je Zeichen in Anspruch nimmt. Zur Bildung von Zeichenketten steht dariiber hinaus der Typ
wstring zur Verfiigung.

74

4.1.3 Zusammengesetzte Typen (Constructed Types) und Namensriume

Mit Hilfe der gerade vorgestellten Basis-Typen lassen sich eine Reihe zusammengesetzter
Typen definieren. Als Typkonstruktoren stehen dafiir Strukturen bzw. Records (struct), sog.
variante Records (union) sowie Kollektionstypen (sequence und array) zur Verfiigung. Thre
Definition kann mit der module-Klausel in eigene, unter Umstinden geschachtelte Namens-
rdume eingebettet werden. Die Verwendung der Schliisselworte ist in Beispiel 4.1 veranschau-
licht. Kommentare werden in IDL mittels ,,//* eingeleitet.

module TRS
// TRS == Train Reservation System
enum Category { Compartment, union SeatProp switch (Category) ({
Open_plan}; case Compartment: short cpt_no;
case Open plan: boolean table;
struct ResData { }i
short day, month, year;
short dept station, struct Seat
dest station; // coded short coach no, seat no;
Category cat_wish; SeatProp properties;
boolean smoker; any additional info;
bi bi
typedef sequence<ResData> ResDataSeq; // etc ...
typedef ResData[l10] ResDataArray;
}: // end of module

Beispiel 4.1: Definition zusammengesetzter Typen in IDL

Strukturen (struct) sind eine Menge von Attributen, auf die alle einzeln zugegriffen werden
kann. Eine union kann hingegen immer nur zwei Werte enthalten: Den Diskriminator sowie den
korrespondierenden Attributwert. Eine Instanz des Typs seatProp aus Beispiel 4.1 enthilt ent-
weder einen Wert fiir das Attribut cpt _no (wenn der Diskriminator den Wert Compartment hat)
oder einen Wert fiir das Attribut table (wenn der Diskriminator den Wert open_plan hat).

Ein array ist eine ein- oder mehrdimensionale, geordnete Liste mit fester Linge in jeder
Dimension. Eine sequence ist eine eindimensionale, geordnete Liste mit variabler Linge.
Allerdings 146t sich die maximale Léinge in der Typdefinition angeben (z.B.
sequence<short, 10> fiir eine sequence mit maximal 10 Eintrdgen vom Typ short).

4.1.4 Objekte und Objektreferenzen

Neben den Basistypen und zusammengesetzten Typen enthilt die OMA eine weitere Kategorie:
Objekttypen bzw. Objektreferenzen. Neue Objekttypen werden durch das Schliisselwort
interface definiert (genau genommen diirfte man eigentlich nur von einer Deklaration spre-
chen, da lediglich die Schnittstelle und eben nicht die Implementierung von Objekten beschrie-
ben wird). Verwendet man diesen Typ innerhalb der gleichen oder einer anderen Typdefinition,
so spricht man an dieser Stelle von einer Objektreferenz. Nachdem wir in Kapitel 4.1.1 bereits
auf die Semantik des Objektmodells eingegangen sind, wollen wir hier einen genaueren Blick

75

auf die Definition von Objekttypen werfen. Im Prinzip lassen sich drei Blocke charakterisieren:
Der Kopf mit Angabe von Vererbungsbeziehungen, die Auflistung der sichtbaren Attribute
sowie die Deklaration der Methoden. Im folgenden veranschaulichen wir die einzelnen Aspekte
anhand von Beispiel 4.2. Grundlage bilden dabei die Datentypen aus Beispiel 4.1.

module TRS
// TRS == Train Reservation System
// Beachte: IDL-Module lassen sich erneut &ffnen (z.B. in anderen IDL-Dateien) .

exception NoSeatAvailable {CosEventChannelAdmin: :ProxyPushSupplier waitList;};
exception TrainNotAvailable {string explanation;};

interface Reservation Service : CosEventComm::PushSupplier,
CosTransaction: :TransactionalObject,
CosTransaction: :Resource {
// attribute declaration:
readonly attribute short status flag; // kodiert

// method declaration:
Seat ReserveTrain (in long train no, in ResData data)
raises (NoSeatAvailable, TrainNotAvailable) ;

}i

}: // end of module

Beispiel 4.2: Definition von Schnittstellen in IDL (basiert auf Beispiel 4.1)

Der Kopf eines Objekttyps besteht aus dem Namen (Reservation Service) sowie einer Liste
von Objekttypen, von denen alle Attribute und Methoden geerbt werden sollen (IDL unterstiitzt
mehrfache Vererbung). Im Beispiel haben wir drei Vererbungsbeziehungen verwendet, die
angeben, dal der neue Typ einen Push Supplier des CORBA Event Service (sieche Kap. 4.3.1)
sowie eine Transactional Resource des CORBA Transaction Service (eine Kombination aus
CosTransaction::TransactionalObject und CosTransaction::Resource, siehe
Kapitel 4.3.4) darstellt. An dieser Stelle ist zu betonen, daf lediglich die Signatur (also die
Schnittstelle) von Methoden und Attributen geerbt wird, nicht die Implementierung. Insbeson-
dere stellen Implementierungen der CORBA Services (COSS) im allgemeinen keine Implemen-
tierung der o.g. Schnittstellen bereit. Diese sollen vielmehr von Objekten wie dem hier spezifi-
zierten Reservation Service implementiert werden (siehe auch Kapitel 4.3).

Die Angabe von Attributen eines Objekttyps erfolgt mit dem Schliisselwort attribute. Ihm
folgen der zugrundeliegende Typ (short) sowie der Name (status_flag). Soll ein Attribut wie
in unserem Fall lediglich gelesen, aber nicht geschrieben werden konnen, so bietet sich die Ver-
wendung des Schliisselwortes readonly an.

Die Spezifikation der Signatur von Methoden ist komplexer und 146t sich wie folgt beschreiben:

[oneway] <op_ type spec> <identifier> (<param 1>, ..., <param L>)
[raises (<exception 1>, .., <exception M>)]
[context (<name 1>, ..., <name N>)];

Jede Deklaration besteht mindestens aus der Angabe des Namens der Methode (identifier),
dem Ergebnistyp (op_type spec) sowie einer Liste von Parametern (param_Xx). Fiir jeden Para-
meter wird die Art bzw. der Datenfluf (in, out oder inout), der Typ und der Name festgelegt.

76

In Beispiel 4.2 haben wir eine Methode mit dem Namen ReserveTrain, dem Ergebnistyp seat
und zwei Parametern train no vom Typ long und data vom Typ ResData deklariert. Beide
Parameter sind reine Eingabeparameter, d.h. sie werden lediglich vom Client zum Server iiber-
tragen (aber nicht mehr zuriick). Hitten wir das Schliisselwort inout verwendet, so wiirden
mogliche Anderungen dieser Daten (durch den Server) nach Abarbeitung der Methode zusam-
men mit dem Ergebnis zuriick zum Client iibertragen. Mit Hilfe von out-Parametern lassen sich
quasi mehrere Ergebnisse einer Methode spezifizieren. Sie werden nur vom Server zum Client,
aber eben nicht initial vom Client zum Server iibertragen.

Optional 148t sich in IDL noch eine Liste von benutzerdefinierten Exceptions spezifizieren, tiber
die der Client auf bestimmte Fehlersituationen bei der Abarbeitung der Methode reagieren
kann. CORBA definiert bereits eine Reihe von System Exceptions, jedoch sollte man fiir vorher-
sehbare Fehlerfille immer eigene Exceptions definieren. Diese konnen dann auch Daten zur
Beschreibung der Ausnahmesituation enthalten (z.B. TrainNotAvailable mit dem Attribut
explanation). Exceptions werden aulerhalb des Objekttyps spezifiziert und sind damit fiir
mehrere Typen verwendbar. Bei jeder Methode mufl man aber angeben, welche Exceptions
potentiell auftreten kdnnen.

Neben Exceptions kann man bei der Deklaration von Methoden noch Kontexte definieren. Uber
diese wird beim Aufruf einer Methode der aktuelle Zustand der Client-Umgebung zum Server
tibertragen. Diese Moglichkeit ist fiir die weitere Arbeit aber nicht von Interesse, so dafl wir sie
hier nicht weiter behandeln wollen. Der interessierte Leser sei dafiir auf [OMG98f] verwiesen.

Von grofler Bedeutung ist hingegen die resultierende Art sowie die Qualitdt der Kommunikation
beim Aufruf einer Methode. Die vorliegende Deklaration von ReserveTrain fiihrt zu einer syn-
chronen Kommunikation: Der Client ist (analog zu einem lokalen Prozeduraufruf) wéhrend der
Abarbeitung der Methode blockiert. Das CORBA-System garantiert dabei, da3 die Methode
entweder genau einmal erfolgreich ausgefiihrt oder eine Exception ausgelost wird. Benutzt man
hingegen das optionale Schliisselwort oneway, so wird lediglich der Aufruf der jeweiligen
Methode initiiert. Der Client blockiert nicht, er erhilt aber auch keine weitere Nachricht iiber
den Ausgang des Aufrufes. Dementsprechend lassen sich in diesem Fall auch keine out- oder
inout-Parameter, ein Ergebnis oder Exceptions spezifizieren (der Ergebnistyp muf} void sein).
Man kann hier also nicht von asynchroner Kommunikation sprechen! Allerdings befindet sich
derzeit das sog. CORBA Messaging in der Entwicklung, das in zukiinftigen Versionen des
CORBA-Standards auch asynchrone Kommunikationsmodi unterstiitzen soll [OMG98e].

Abschlieend wollen wir noch einen generellen Blick auf die Semantik von Parametern und
Ergebnissen werfen. Bei Objekttypen werden bei jedem notigen Kommunikationsschritt ledig-
lich Referenzen auf das eigentliche Objekt kopiert (also der Client Stub). Sender und Empfianger
arbeiten somit immer auf dem identischen Objekt. Die Werte von Basistypen und zusammen-
gesetzten Typen werden hingegen immer kopiert, d.h. sowohl der Sender als auch der Empfin-
ger haben nach der Kommunikation eine eigene Kopie, die sie unabhédngig voneinander modi-
fizieren konnen. Nun ist aber noch zu beachten, daB} z.B. inout-Parameter nur bei synchroner
Kommunikation méglich sind. Dementsprechend ist der Client wéahrend des Methodenaufrufes
blockiert und kann in dieser Zeitspanne seine Kopie der Parameter nicht modifizieren. Letztend-
lich ergeben sich die in Tabelle 4.1 dargestellten Moglichkeiten. Fiir Objekttypen gilt dabei fol-

77

gendes: Wird ein Objekttyp als in- oder out-Parameter einer Methode benutzt, so wird zur
Laufzeit jeweils eine Kopie der Objektreferenz iibertragen. Beide Referenzen zeigen aber auf
das selbe Objekt, d.h. wir erhalten eine Call-By-Reference-Semantik im Bezug auf das Objekt
(Client und Server referenzieren das selbe Objekt). Bei inout-Parametern wird zwar auch eine
Kopie der Objektreferenz iibertragen, zum Ende der Methode wird deren Inhalt aber wieder
zuriick kopiert. Somit erhalten wir eine Call-By-Reference-Semantik im Bezug auf die Objekt-
referenz (Client und Server benutzen die selbe Objektreferenz). Im Gegensatz zum ersten Fall
konnte die Referenz nach dem Methodenaufruf z.B. auf ein ganz anderes Objekt zeigen.

Kategorie des Parametertyps Art Resultierende Semantik
Objekityp bzw. Objektreferenz in, out Call-By-Reference (bezogen auf das eigentliche Objekt)
Objekityp bzw. Objektreferenz inout Call-By-Reference (bezogen auf die Objektreferenz)
Basistyp oder Zusammengesetzter Typ in Call-By-Value (Client to Server)
Basistyp oder Zusammengesetzter Typ out Call-By-Value (Server to Client)
Basistyp oder Zusammengesetzter Typ inout Call-By-Reference
(sofern der Server seine Kopie nach der Abarbeitung der
Methode I6scht)

Tabelle 4.1: Semantik von Parametern in IDL

Derzeit arbeitet die OMG weiterhin an dem neuem IDL-Schliisselwort value [OMG98d]. Mit
thm soll sich eine zweite Kategorie von Objekttypen definieren lassen, die dann der Call-By-
Value-Semantik unterliegen. Dieser Vorschlag ist noch nicht in der aktuellen CORBA-Version
enthalten, wir werden ihn aber in unsere Diskussion iiber Modellierung (Kap. 4.5) einbeziehen.

4.2 Die Kern-Architektur von CORBA

Hiufig wird CORBA bzw. der zugrundeliegende ORB als Steckleiste bezeichnet, in die man die
Server (sog. Services) und Clients beliebig einklinken kann. Diese Sichtweise betont die orts-
transparente Verarbeitung des Systems, dessen Architektur in Abbildung 4.2 veranschaulicht
ist. Neben den dort dargestellten Komponenten gibt es noch einen IDL-Compiler, der die IDL-
Definitionen in Konstrukte der jeweils gewiinschten Programmiersprache iibersetzt.

Die Basis-Komponente von CORBA ist der Kern des ORB (ORB Core), der fiir die Kommuni-
kation, die Konvertierung von Daten (z.B. Little Endian in Big Endian) sowie die Registrierung
und Lokalisierung von Objekten zustindig ist. Er kann dafiir sowohl auf ein Interface Reposi-
tory, in dem alle Schnittstellen abgelegt sind, als auch auf ein Implementation Repository, das
Informationen iiber verfiigbare Objekte bzw. Implementierungen enthilt, zugreifen. Ein Teil
seiner Funktionalitidt wird iiber das ORB Interface allen Komponenten zur Verfiigung gestellt.
Beispielsweise lassen sich Objektreferenzen in Strings konvertieren (und umgekehrt). Durch
Austauschen der Strings kann man initiale Verbindungen iiber ORB-Grenzen hinweg aufbauen.

78

Clients konnen zum Absenden ihrer Auftrige an den Server wahlweise die vom IDL-Compiler
erzeugten Stub-Prozeduren (IDL Stubs) benutzen oder iiber Funktionen des Dynamic Invoca-
tion Interface Schnittstellenbeschreibungen aus dem Interface Repository extrahieren und damit
zur Laufzeit einen Auftrag erzeugen. Dies wird hiufig auch als Early bzw. Late Binding
bezeichnet. Zu jeder interface-Definition wird vom IDL-Compiler ein Skeleton erzeugt, das
die vom Kern iibertragenen Daten entsprechend aufbereitet (z.B. Parameter-Instanzen erzeugt
und korrekt initialisiert). Alle Skeletons sind eingebettet in einen Objekt-Adapter, der die Kopp-
lung zum Kern bildet. Neben dieser Aufgabe sowie der Realisierung von Funktionen zur
Zugriftskontrolle ist der Adapter fiir die Aktivierung1 von Objekten zustdndig.

Client Objekt-Implementierung
. IDL .
Dynamic IDL ORB Skeleton | 4 Objekt-
Invocation| | Stubs Interface Adapter
Interface Implementation
Repository ORB Core Repository
1 gleiche Schnittstelle fiir alle ORB-Implementierungen XYY es kann mehrere Objekt-Adapter geben
[es gibt Stubs und Skeletons fir jeden Objekt-Typ HE on der ORB-Implementierung abhéngig

Abb. 4.2: Die Kern-Architektur von CORBA

Im folgenden wollen wir noch einen genaueren Blick auf einzelne Aspekte werfen. In
Kapitel 4.2.1 betrachten wir zunéchst die standardisierten Sprachanbindungen. Sie bilden die
Grundlage fiir den vom IDL-Compiler generierten Code (Stubs fiir den Client und Skeletons fiir
den Server). AnschlieBend illustrieren wir in Kapitel 4.2.2 die Verarbeitungsweise innerhalb des
ORB anhand eines kurzen Beispieles aus der Bruchrechnung. In Kapitel 4.2.3 widmen wir uns
dann den Objekt-Adaptern, die wesentlich die Leistung des Gesamtsystems beeinflussen. Wir
werden in den folgenden Kapiteln noch ofter auf sie Bezug nehmen. Kapitel 4.2.4 bezieht sich
schlieBlich auf die standardisierte Kommunikation von ORB zu ORB und die dadurch erreichte
Interoperabilitit zwischen CORBA-Systemen unterschiedlicher Hersteller. Auf die Details des
ORB und Dynamic Invocation Interface sowie die Implementation und Interface Repositories
gehen wir nicht niher ein, da sie fiir uns unbedeutend sind (siehe statt dessen z.B. [OMG98f]).

4.2.1 Sprachanbindung, Stubs und Skeletons

Prinzipiell kann man sich eine Anbindung von CORBA an jede Sprache vorstellen, die iiber eine
ausreichende Unterstiitzung fiir die IDL-Datentypen, Namensrdaume und Kommunikationsme-
thoden verfiigt. In CORBA 2.2 [OMG98{] ist die Abbildung auf die Programmiersprachen C,
C++, Java, Smalltalk, Ada und Cobol spezifiziert. Weitere Anbindungen sind denkbar, aber
gemdil den Informationen der OMG nicht geplant.

1. Ruftein Client die Methode eines Servers (Objektes) auf, von dem gerade keine Instanz verfiigbar ist, so kann das CORBA-
System unter Umsténden einen neuen Server erzeugen und den aktuellen Auftrag an ihn weiterleiten.

79

Gleichzeitig ist aber zu betonen, daB3 nicht jede Sprachanbindung unbedingt sinnvoll und prak-
tikabel ist. So stellt sich z.B. bereits bei der Kopplung zur Sprache C die Frage, ob die objekt-
orientierten Konzepte von IDL angemessen abgebildet werden. C enthilt keine Klassen und
unterstiitzt damit nicht das Konzept der Vererbung. Dieses muf also durch redundante Defini-
tion von Attributen und Methoden nachgebildet werden (sieche Abb. 4.3).

IDL to C Compiler

// IDL:

interface examplel {
void opl () ;

}i

interface example2:examplel {
void op2 () ;
Vi

// C:
typedef CORBA Object examplel;
extern void examplel opl ();

typedef CORBA Object example2;
extern void example2 opl() ;
extern void example2 op2() ;

Abb. 4.3: Transformation von IDL-Definitionen in die Sprache C

Passender erscheint die objektorientierte Programmiersprache C++. Die zugrundeliegenden
Konzepte stimmen im wesentlichen mit denen der IDL iiberein. So werden in IDL definierte
struct- und interface-Konstrukte jeweils auf eine eigene Klasse abgebildet (sieche Abb. 4.4).
Dabei wird insbesondere der Vererbungsmechanismus dieser Programmiersprache ausgenutzt.

IDL to C++ Compiler

// IDL:

interface examplel {
void opl () ;

}i

interface example2:examplel {
void op2 () ;
Vi

// C4++:
class examplel ({

void opl ();
}i
class example2:examplel ({
void op2() ;

}i

Abb. 4.4: Transformation von IDL-Definitionen in die Sprache C++

Ahnliches gilt fiir die derzeit sehr populire Sprache Java. Aufgrund der sehr strikten Definition
von Java ist die Abbildung von IDL-interfaces allerdings etwas komplizierter. Java unter-
scheidet bei Objekten (im Unterschied zu C++) zwischen Schnittstellen (interfaces) und
Implementierung bzw. Klassen (class). Fiir Schnittstellen wird multiple Vererbung unterstiitzt,
fiir Klassen nur einfache. Nachdem CORBA nur Schnittstellen definiert, bietet sich natiirlich die
Abbildung von IDL-interfaces auf Java-interfaces an. Dieses wurde auch standardisiert.
Probleme entstehen nun aber bei der Spezifikation von statischen (static) Methoden der Client
Stubs, wie sie z.B. fiir CORBA-spezifische Cast-Operationen oder das Einfiigen von Objekten
in eine Instanz des any-Typs benotigt werden. Schnittstellen konnen keine statischen Methoden
enthalten, so da3 man gezwungen war sog. Helper Classes einzufiihren. Weiterhin unterstiitzt
Java bei der Ubergabe von Parametern nur Call-By-Value-Semantik (wiederum im Gegensatz

80

zu C++). Fiir Parameter, die in IDL als inout deklariert wurden, kann also nicht einfach der kor-
respondierende Java-Typ zur Erstellung des Java-interface verwendet werden. Aus diesem
Grunde wurde sog. Holder Classes eingefiihrt. Sie werden bei inout-Parametern als Basistyp
verwendet und konnen genau eine Instanz oder einen Wert aufnehmen bzw. kapseln. Letztend-
lich werden also bereits fiir den Java-Client fiir jedes IDL-interface zwei Java-Klassen und
eine Java-Schnittstelle generiert. Hingegen lassen sich IDL-Strukturen (struct) direkt auf
Java-Klassen und IDL-Aggregate auf Java-arrays abbilden.

Trotzdem ist die Einfiihrung der Abbildung auf Java sehr zu begriilen. Aufgrund der Plattform-
unabhiéngigkeit der Sprache entsteht eine weitere Flexibilitit bei der Entwicklung von Kompo-
nenten, die insbesondere in WW W- bzw. Inter/Intranet-basierten Umgebungen sehr hilfreich ist.
Wir werden diesen Aspekt im weiteren Verlauf dieser Arbeit noch hiufiger betrachten. Im all-
gemeinen werden wir dabei Server, die sehr leistungsfihig und eher weniger portabel sein miis-
sen, in C++ und Clients, fiir die Portabilitit und Internet-Tauglichkeit von Bedeutung ist, in Java
entwickeln.

4.2.2 Verarbeitungsszenario: Bruchrechnung

In diesem Abschnitt wollen wir nun die Kommunikationstihigkeiten von CORBA mit einem
kurzen Beispiel aus der Mathematik veranschaulichen. Es gibt einen Server, der die Grundre-
chenarten fiir die Bruchrechnung realisiert, und Clients, die Auftrige an diesen schicken.
Beispiel 4.3 enthilt die dafiir erforderlichen Definitionen.

struct Bruch { | interface Bruchrechnung {
long Zaehler; Bruch add (in Bruch bruchl, in Bruch bruch2) ;
long Nenner; Bruch sub (in Bruch bruchl, in Bruch bruch2) ;

(
}; Bruch mul (in Bruch bruchl, in Bruch bruch2) ;
Bruch div (in Bruch bruchl, in Bruch bruch2) ;

Vi

Beispiel 4.3: IDL-Definitionen fiir die Grundrechenarten der Bruchrechnung

Mit dem zum CORBA-System gehdrenden Compiler werden die IDL-Konstrukte z.B. in Klas-
sen der Programmiersprache C++ libersetzt. Fiir jedes IDL interface (hier: Bruchrechnung)
gibt es in C++ jeweils zwei korrespondierende Klassen: Den Client Stub (die Instanzen sind
Objektreferenzen) sowie das Skeleton fiir die Implementierung des Server-Objektes. Strukturen
(hier: Bruch) werden hingegen nur auf eine einzige Klasse in C++ abgebildet. Diese wird
sowohl im Client als auch im Server verwendet.

Ausziige einer moglichen Realisierung des Clients sind in Bsp. 4.4 wiedergegeben. Wir benut-
zen dabei die vom IDL-Compiler erzeugten Stub-Prozeduren. Der Stub enthilt eine statische
Methode _bindl, die zur Laufzeit eine giiltige Objektreferenz auf ein Server-Objekt des Typs
Bruchrechnung zuriickgibt. Existieren mehrere laufende Implementierungen des gewiinschten

1. Diese Methode ist nicht im CORBA-Standard spezifiziert, sie entspricht der Realisierung in Orbix. Es bleibt jeder CORBA-
Implementierung iiberlassen, welche Funktionen sie zum Binden bzw. Lokalisieren von Objekten anbietet.
Beachte: Mit dem ,,Binden von Objekten* ist an dieser Stelle die Lokalisierung der Objekte und nicht das Binden von Pro-
zessen gemeint!

81

Services, so wihlt das System den gl‘instigstenl. Gibt es hingegen keine, so kann unter Umstén-
den ein neuer Server vom zustdndigen Objekt-Adapter gestartet werden. Aus Sicht des Clients
entspricht nun der Aufruf von Funktionen dem von Methoden lokaler Objekte.

main {
Bruchrechnung *obj ref = Bruchrechnung:: bind();
Bruch bruch 1 = Bruch (1,2);
Bruch bruch 2 = Bruch (2,4);
Bruch bruch 3;

® © 00

bruch_3 = obj_ref->mul (bruch 1, bruch_2);

}

Beispiel 4.4: Ausziige aus dem Client-Programm

Wir wollen an dieser Stelle aber einen Blick auf die Ablidufe innerhalb des ORB werfen. Dabei
beziehen wir uns auf die Markierungen in Beispiel 4.4 und Abb. 4.5. Als Resultat des _bind-
Befehles (®) wird im Client eine Objektreferenz (Client Stub) auf das Server-Objekt erzeugt
(@). AnschlieBend erzeugt der Client zwei lokale Instanzen bruch 1 und bruch 2 des Typs
Bruch (@), deklariert eine weitere Variable bruch_3 (@), die spiter das Ergebnis aufnehmen
soll, und ruft letztendlich die Methode mul des Stubs auf (®, @). Aufgrund dieses Aufrufes wer-
den vom CORBA-System Kopien von bruch_1 und bruch_2 an das Server-Objekt weitergelei-
tet und dessen Methode mul aufgerufen (&, @). Das Server-Objekt berechnet das Ergebnis
res_bruch und gibt eine Kopie davon an den Client zuriick (8, ®). Dieser instantiiert die Kopie
in der Variablen bruch_3 (@, ®).

Client ‘ Objekt-Implementierung

bruch 2’ res_bruch
bruch 1-

Bruchrechnun
o

res_bruch’
¥

IDL
Skeleton Objekt-
S Adapter
bruch_2-

Abb. 4.5: Aufruf einer Methode des CORBA-Objektes Bruchrechnung

Stiirzt der Server-Prozel3 bzw. dessen Rechner zur Laufzeit ab, so versucht das CORBA-System
beim Aufruf einer Bruchrechnungsfunktion einen weiteren Server zu lokalisieren (oder einen
neuen zu starten). Ist dies nicht moglich, so wird im Client eine System Exception ausgelOst
(siehe Kapitel 4.1.4).

1. Auch dieser Algorithmus ist nicht genormt. Liegt ein Server-Objekt auf dem gleichen Rechner wie der Client, so sollte die-
ses bevorzugt werden. Unter Umstinden kann man dabei die gesamte Kommunikation durch den ORB umgehen.

82

4.2.3 Objekt-Adapter

Wie man aus Abbildung 4.2 auf Seite 79 entnehmen kann, wird die Anbindung von Server-
Objekten an den ORB-Kern iiber Objekt-Adapter (OA) und Skeletons realisiert. Sie abstrahieren
von der konkreten Implementierung des ORB (sind also abhiingig von dieser) und garantieren
eine rudimentére Portabilitéit der dariiber liegenden Komponenten.

(Objekt-Implementierung
I

(1)) * ® o 5)
I
Objekt-Adapter (OA)

Skeleton

| ORB-Kern |

Abb. 4.6: Kommunikation zwischen dem Objekt-Adapter und dem Server-Objekt

Der mogliche Ablauf einer Methoden-Aktivierung im Server-Objekt wird in Abbildung 4.6
beschrieben: Erhilt der zustindige OA eine Referenz auf ein Objekt, zu dem es noch keine
aktive Implementierung gibt, d.h., daB kein Proze3, Programm usw. liuft, das den verlangten
Dienst anbietet, dann wird eine Implementierung gestartet (@). Die dafiir benotigten Informa-
tionen konnen aus dem Implementation Repository extrahiert werden. Nachdem die Initialisie-
rung abgeschlossen ist, meldet die Implementierung dem OA, daf} sie zum Empfang von Nach-
richten bereit ist (@). Je nach Aktivierungsmodus [OMG98f] gibt es zu diesem Zeitpunkt evtl.
noch keine Instanzen der eigentlichen Server-Objekte. Das Erzeugen geschieht dann erst mit
einer expliziten Aktivierung einzelner Auspriagungen (®). AnschlieSend konnen die gewiinsch-
ten Methoden iiber das zugehorige Skeleton aufgerufen werden (@). Bei deren Abarbeitung
kann es zu weiteren Auftrigen an den OA kommen (®).

Im allgemeinen wird zu jedem IDL Interface eine eigene Skeleton-Klasse generiert, die fiir
die Aktivierung der einzelnen Methoden zustdndig ist. Im Gegensatz dazu sollte es nur wenige
OA-Klassen geben, die auf die wesentlichen Unterschiede der Objekte eingehen und sie damit
implizit gruppieren. So konnte man sich zum Beispiel eigene Adapter fiir Datenbanksysteme,
Entwurfswerkzeuge, Administrationskomponenten usw. vorstellen. Sollen vom CORBA-
System Funktionen fiir die Zugriffskontrolle und Sicherheit der Daten angeboten werden, so
miissen diese explizit in den Objekt-Adapter (OA) integriert werden. Der ORB-Kern bietet
dafiir tiber das ORB Interface Methoden an, mit denen der OA den Initiator des gerade zu bear-
beitenden Auftrags abfragen kann.

Bis zur Version 2.1 enthielt der CORBA-Standard mehrere vordefinierte OA (die Basic, Library
und Object Oriented Database Adapter - BOA, LOA, OODA), die entweder direkt oder als
Basis fiir eigene Erweiterungen benutzt werden konnten. Wir diskutieren diese Adapter in den
Abschnitten 4.2.3.1 und 4.2.3.2. Dabei werden wir erkennen, daf3 sie sich z.T. nicht sinnvoll rea-
lisieren lassen bzw. ergdnzender Spezifikationen bediirfen. Die OMG hat deshalb in der Version
2.2 von CORBA nur noch den Portable Object Adapter (POA) definiert, der als Basis fiir
systemspezifische OA zu benutzen ist (sieche Abschnitt 4.2.3.3).

83

Aufgrund der vielféltigen Aufgaben eines OA hat dessen Auswahl bzw. Spezifikation einen
erheblichen EinfluB} auf die Leistungstihigkeit des resultierenden Gesamtsystems. Insbeson-
dere in datenintensiven Umgebungen entstehen hier einige Probleme, die wir noch genauer in
Kapitel 4.5 betrachten werden. Ungliicklicherweise hingen OA von der internen Schnittstelle
des ORB ab, so dafl neue OA nur vom Entwickler des CORBA-Systems selbst implementiert
werden konnen. In den meisten Fillen ist man damit auf die Verwendung des BOA bzw. POA
angewiesen, da aktuelle CORBA-Implementierungen kaum andere OA zur Verfiigung stellen.

4.2.3.1 Basic Object Adapter (BOA)

Der CORBA-Standard definierte bis zur Version 2.1 einen Basic Object Adapter (BOA) als
Grundlage fiir alle OA eines Systems. Der BOA stellt rudimentédre Funktionalitit zur Verfii-
gung, die von jedem System bendtigt wird. Sie umfassen beispielweise die Erzeugung und
Interpretation von Objekt-Referenzen, Authentifizierung von Clients, Aktivierung und Deak-
tivierung von Objekten und Implementierungen (Prozel3, Programm o0.4.) sowie den Aufruf von
Server-Objekt-Methoden durch das jeweilige Skeleton. Bei der Verwendung des BOA bleiben
alle auf einem IDL interface basierenden Objekte permanent auf dem Rechner, auf dem sie
erzeugt bzw. registriert wurden. Alle anderen Objekte werden (wie in Kapitel 4.2.2 geschildert)
bei der Verwendung als Parameter oder Ergebnis einer Methode kopiert.

4.2.3.2 Library und Object Oriented Database Adapter (LOA, OODA)

Zur besseren Erkldarung weiterer OA wollen wir zunéchst auf eine Schwiche des BOA einge-
hen. Betrachten wir dazu Server-Objekte, die hiufig benutzte Operationen an ihrer Schnittstelle
anbieten (z.B. eine Funktionsbibliothek zur Berechnung komplexer Zahlen). Weiterhin gibt es
einen Client, der auf einem anderen Rechner als das Server-Objekt liegt, aber hiufig dessen
Methoden aufruft. Wird das Server-Objekt nun iiber den BOA verwaltet, so fiihrt jeder Aufruf
einer Methode durch den Client zu Rechner-Rechner-Kommunikation iiber den ORB. Diese Art
der Berechnung ist natiirlich sehr ineffizient. Urspriingliche Versionen des CORBA-Standards
enthielten deshalb den Library Object Adapter (LOA). Dessen Definition besagt, dall beim Ein-
satz des LOA die Implementierung des CORBA-Objektes im Adreraum des Clients verfiigbar
ist. Obwohl der Standard sich kurz fa3t und die Migration von Objekten nicht explizit erwéhnt,
so ist diese Fahigkeit unserer Ansicht nach impliziter Bestandteil des LOA. Gerade bei der Ver-
arbeitung von Datenobjekten stort aber noch der Aspekt, daf3 alle Objekte einzeln und erst beim
Zugriff transportiert werden. Abhilfe schuf der Object Oriented Database Adapter (OODA),
der gemif Definition eine Anbindung an objektorientierte Datenbanksysteme (OODBS) reali-
siert. Wie schon beim LOA ist der Standard auch hier recht knapp. Wir sind aber der Ansicht,
daf eine sinnvolle Anbindung an OODBS automatisch den Transport ganzer Seiten von Objek-
ten zum Client umfaf3t. Dieser Aspekt ist allerdings umstritten.

Ein generelles (und ungeldstes) Problem bei der Migration von CORBA-Objekten ist der fol-
gende Punkt: Migriert ein Objekt im Rahmen der LOA- oder OODA-Funktionalitét auf einen
anderen Rechner, so muf3 die Implementierung entweder bereits auf der Client-Seite verfiigbar
sein oder mit dem Zustand des Objektes libertragen werden. Letzteres wire aber weder standar-
disiert noch allgemein moglich: Wie soll z.B. die in C++ geschriebene Implementierung eines
Server-Objektes von einem Java-Client sinnvoll genutzt werden? Lediglich bei der homogenen

84

Verwendung von Java fiir den Client und den Server wire die Ubertragung der Implementierung
in Form von Java Byte Code moglich. Dariiber hinaus entsteht noch ein Problem: Referenziert
ein CORBA-Objekt externe Ressourcen wie z.B. Dateien, so sind diese u.U. nicht auf dem
Rechner des Clients verfiigbar. In diesem Fall miif3te das migrierte Objekt (auf dem Client) also
weiterhin Zugriff auf einige Bestandteile des urspriinglichen Objektes auf dem Server haben.

Die gerade geschilderten Probleme sowie Unstimmigkeiten iiber die Definition des LOA und
OODA haben die OMG dazu bewegt, die sowieso recht knapp gehaltenen Definitionen dieser
beiden OA mit der Version 2.2 aus dem CORBA-Standard zu entfernen.

4.2.3.3 Portable Object Adapter (POA)

Mit der Version 2.2 des CORBA-Standards wurden alle bisherigen OA durch den Portable
Object Adapter (POA) ersetzt. Portabel bezieht sich in diesem Sinne nicht auf Laufzeitaspekte
oder Rechnerarchitekturen, sondern auf die Portabilitit von Source Code zum Entwicklungs-
zeitpunkt: Die Implementierung von Server-Objekten soll ohne Probleme zwischen CORBA-
Systemen unterschiedlicher Hersteller ausgetauscht werden konnen. Ansonsten hat der POA
mehr oder weniger die selben Aufgaben wie der BOA. Allerdings muf3ten die Schnittstellen nun
sehr viel genauer definiert werden. Die Spezifikation nimmt inzwischen ein eigenes Kapitel
statt weniger Absitze ein (sieche Kapitel 9 von [OMG98(]). Besonderer Wert wird dabei auf die
standardisierte Initialisierung von Server-Prozessen sowie Schnittstellen fiir die Unterstiitzung
unterschiedlicher Arten von Objekten gelegt: Transiente und persistente Objekte, Objekte mit
und ohne ID, IDs die wahlweise vom Benutzer oder vom System erzeugt werden, usw. Anhand
der Spezifikation des POA wird nun auch klar deutlich, dal die Migration von Objekten zur
Laufzeit keine Aufgabe des OA ist. Der POA enthilt lediglich umfangreiche Moglichkeiten zur
Einbettung von Objekten, deren persistenter Zustand in einem Datenbankverwaltungssystem
(DBVS) gespeichert sein kann (siehe auch Kapitel 4.5 und 5.4).

4.2.4 Kommunikation und Interoperabilitiit

Im Rahmen einer standardisierten Middleware sollte es natiirlich moglich sein, dal CORBA-
Systeme unterschiedlicher Hersteller miteinander interagieren konnen. Dafiir ist es notig, die
Kommunikation (also das Protokoll) zwischen den beteiligten ORBs zu standardisieren. Diese
Spezifikation sollte natiirlich die Vielfalt der verfiigbaren Netzwerkprotokolle beriicksichtigen.
Die OMG hat daher zwei abstrakte Protokollklassen fiir die Kommunikation zwischen ORBs
definiert: Das General Inter-ORB Protocol (GIOP) fiir allgemeine, verbindungsorientierte
Netzwerke sowie das Environment-Specific Inter-ORB Protocol (ESIOP), dal} spezielle Opti-
mierungen auf die aktuell verwendete Umgebung zuld3t [OMG98(].

Eine Ausprigung des GIOP fiir TCP/IP-basierte Netzwerke ist das Internet Inter-ORB Protocol
(ITOP). Es muB als einziges Protokoll von allen CORBA-konformen Systemen angeboten wer-
den und ist mittlerweile auch die Kommunikationsbasis fast aller angebotenen ORBs. Dement-
sprechend 148t sich die Interoperabilitit zwischen CORBA-Systemen auf dieser Ebene als
gelost betrachten (abgesehen von kleineren Problemen mit IIOP-Versionen: manche Systeme
benutzen IIOP 1.0 aus CORBA 2.0, andere aber bereits [IOP 1.1 aus CORBA 2.1).

85

4.3 Services

Aufbauend auf der Kern-Architektur von CORBA, die ja im Prinzip nur eine umfangreiche
Infrastruktur zur Kommunikation definiert, hat die OMG einige sog. Common Object Services
spezifiziert. Diese realisieren gekapselte Komponenten mit grundlegender Funktionalitit, die
sowieso von den meisten Systemen benotigt wird. Auf diese Weise wird die mehrfache Imple-
mentierung dhnlicher Module vermieden. Gleichzeitig kann so natiirlich bei der Entwicklung
von Systemen auf diese Services zuriickgegriffen werden, um den Implementierungsaufwand
zu reduzieren (siehe auch Abb. 4.1 auf Seite 72). Durch die klar definierten Schnittstellen lassen
sich einzelne Services austauschen, ohne dal darauf zugreifende Komponenten zu édndern sind.

Jeder Service basiert auf einer Reihe von IDL-Definitionen, deren interfaces sich in zwei
Kategorien unterteilen lassen: Die erste Sparte beschreibt Schnittstellen von Objekten, die vom
jeweiligen Service selbst implementiert werden. Die zweite Kategorie beschreibt Schnittstellen,
die Clients erfiillen miissen, um die Dienste des Services in Anspruch nehmen zu koénnen. So
enthélt der in Kapitel 4.3.1 beschriebene Event Service z.B. ein interface EventChannel.
Dieses wird vom Service selbst implementiert und regelt die Weiterleitung von Ereignissen. Im
Gegensatz dazu gibt es ein interface PushConsumer, das von den Clients eines Event Channel
implementiert werden muf3, sofern sie unmittelbar iiber Ereignisse informiert werden wollen.
Dementsprechend ist der Client eines Object Services in den meisten Fillen kein reiner Client
im Sinne der Kernarchitektur: So ist z.B. die Implementierung des PushConsumer ein CORBA-
Objekt, das iiber einen Objekt-Adapter und ein Skeleton an den ORB angebunden wird. Damit
ist es aus Sicht des ORB ebenfalls ein Server-Objekt, dessen Methoden von anderen Objekten
aufgerufen werden konnen. Insbesondere in WW W-basierten Umgebungen ist dieser Umstand
zu beachten. Viele CORBA-Implementierungen bieten sog. Client-ORBs mit reduzierter Funk-
tionalitdt an, um z.B. die Ladezeiten fiir Applets zu verkiirzen. Diese Client-ORBs enthalten
aber keine Objekt-Adapter oder Skeletons und erlauben nur die Weiterleitung von Methoden-
aufrufen des Applets zum Server. Somit kann das Applet nicht Client eines EventChannel sein,
da es keine Moglichkeit gibt, Implementierungen fiir PushConsumer zur Verfiigung zu stellen.

Die Definition eines Services umfalit neben den gerade erwédhnten IDL-Definitionen noch die
umgangssprachliche Beschreibung der zugrundeliegenden Semantik. Alle Services sind in
einem Dokument spezifiziert [OMG98h], der sog. Common Object Services Specification
(COSS). Eine Aufstellung aller bisher standardisierten Services sowie eine kurze Beschreibung
ihrer Aufgabe ist in Tabelle 4.2 enthalten.

Durch die strikte objektorientierte Modellierung jeglicher Funktionalitét ergeben sich bei der
Verwendung aller Services letztendlich sehr viele feingranulare Objekte, die iiber die definierten
Schnittstellen miteinander interagieren. Wir bezeichnen dies als die ,,Philosophie von
CORBA*: Der Lifecycle Service definiert die separate Erzeugung sog. Factory-Objekte fiir
jeden verfiigbaren Objekttyp (also ein weiteres Objekt je Objekt-Typ). Mit ihm werden Instan-
zen dieses Typs erzeugt. Der Relationship Service beschreibt weitere Objekte zur Modellierung
von Beziehungen zwischen zwei oder mehr Objekten (ein Objekt je Beziehung). Der Property
Service enthilt Objekte zur Beschreibung der Eigenschaften von Objekten (mindestens ein
Objekt je Objekt mit Eigenschaften). Gerade in verteilten Umgebungen fiihrt die grof3e Zahl von
Objekten aber zu einem iiberméfBig hohen Kommunikationsvolumen - und damit zu Leistungs-

86

einbuBlen. Dieser Aspekt wurde bereits hdufig beméingelt, spiegelt sich aber selbst noch in der
aktuellen Entwicklung von CORBA Facilities wider (die auf die Object Services aufsetzen,
sieche Abb. 4.1 auf Seite 72). Beispielsweise enthalten erste Vorschlédge fiir den PDM Enabler
(der geplanten Facility fiir das Produktdatenmanagement) eine extrem feingranulare Modellie-
rung [OMG98a]. Dementsprechend gewinnt die Migration und lokale Verarbeitung von Objek-
ten, wie wir sie bereits in Kapitel 4.2.3 eingefiihrt haben, eine noch groBere Bedeutung. Wir
werden diesen Aspekt aber erst im Zusammenhang mit der allgemeinen Modellierung von

Daten(objekten) in Kapitel 4.5 betrachten.

Name Standardisiert Beschreibung
seit
Naming Dezember 1993 | Quasi das Telefonbuch der Objekte - Objekte konnen eine Referenz auf
sich unter einem bestimmten Namen registrieren lassen, missen es aber
nicht. Geschachtelte Namensraume sowie die Einbettung externer
Hierarchien Uber Links werden analog zum UNIX-Dateisystem unterstutzt.
Event Dezember 1993 | Siehe Diskussion in Kapitel 4.3.1.

Persistent Obj.

April 1994

Siehe Diskussion in Kapitel 4.3.2 (Abldsung geplant)

Lifecycle

Dezember 1993

Siehe Diskussion in Kapitel 4.3.3

Concurrency

Dezember 1994

Regelt den konkurrierenden Zugriff auf Objekte. Analog zu Datenbankver-
waltungssystemen werden die Sperrmodi IR, R, U, IW und W untersttzt.
Die Benutzung ist i.a. eng verzahnt mit dem Transaction Service.

Externalization

Dezember 1994

Definiert Schnittstellen, um den Zustand von Objekten in einen Stream zu
schreiben bzw. ihn daraus wiederherzustellen.

Relationships

Dezember 1994

Enthalt umfangreiche Schnittstellen zur Modellierung von Beziehungen
zwischen Objekten sowie deren Rollen und Identitat. Zur Unterstltzung
von m:n-Relationen werden Beziehungen immer lber eigenstandige
CORBA-Objekte (und eben nicht als Objektreferenz) dargestellt.

Transaction Juni 1997 (v 1.1) | Siehe Diskussion in Kapitel 4.3.4

Query Méarz 1995 Siehe Diskussion in Kapitel 4.3.5

Licensing November 1995 | Dient der rudimentéren Kontrolle lber lizenzierte Software, bendtigt aber
sichere Kommunikation, Authentifizierung und Autorisierung und ist damit
nur in Kooperation mit dem Security Service sinnvoll.

Property November 1995 | Dient zur Angabe von Eigenschaften einzelner Objekte, die Uber feste
Schnittstellen abgefragt und modifiziert werden kdnnen.

Time Marz 1996 Definiert Datenstrukturen zur Représentation von Zeit(intervallen) sowie
Schnittstellen zur Verarbeitung von Zeitstempeln und einen Timer.

Security November 1996 | Definiert sichere Kommunikation, Authentifizierung, Autorisierung usw.

Trading Oktober 1996 | Quasi die “Gelben Seiten” der Objekte (ergdnzend zum Naming Service),
definiert umfangreiche Schnittstellen zur mengenorientierten Anfrage.

Collection Oktober 1996 Umfangreiche Definition verschiedener Aggregattypen und lteratoren

Persistent State

in Arbeit

Ablésung des Persistent Object Services, siehe Diskussion in Kapitel 4.3.2

Tabelle 4.2:

Bisher definierte Common Object Services

87

An dieser Stelle sei aber noch auf einen weiteren Aspekt im Zusammenhang mit komponenten-
basierten Architekturen (siehe Kapitel 2.1) hingewiesen: Obwohl man jeden Service aufgrund
der wohldefinierten Schnittstellen prinzipiell als eine eigenstidndige, gekapselte Komponente
ansehen konnte, so ergeben sich leider doch eine Reihe von Abhingigkeiten gegeniiber dem
ORB. Zuerst einmal definieren fast alle Object Services ein Kontext-Objekt (current), das liber
Methoden des ORB Interface (sieche Abb. 4.2 auf Seite 79) abgefragt werden kann. Es ist aber
weder standardisiert, wie der ORB initiale Verbindungen zum Service aufbauen, noch wie er die
Referenz auf diesen Kontext erhalten kann. Insbesondere beim Transaction Service ergeben
sich weitere Probleme: Wurde eine Transaktion gedtfnet, so mufl der jeweilige Transaktions-
kontext (vom ORB des Clients) bei jedem Aufruf einer Methode implizit (an den ORB des Ser-
vers) iibergeben werden. Hier ist also eine enge Verzahnung mit dem ORB nétig. Ahnliches gilt
fiir den Security Service: Eine sichere Kommunikation oder Verschliisselung 148t sich nur in
Interaktion mit dem ORB erreichen. Dementsprechend wird sich ein Object Service des Her-
stellers A nur selten direkt an den ORB des Herstellers B ankoppeln lassen [DC99]. Eine wei-
tergehende Standardisierung der Schnittstellen zwischen ORB und Object Services ist somit
mehr als wiinschenswert. In der Zwischenzeit ist man leider darauf angewiesen, den ORB
zusammen mit allen bendtigten Services von einem einzigen Hersteller zu beziehen. Leider wird
die Auswahl dadurch aber erheblich eingeschrinkt, denn die meisten CORBA-Systeme umfas-
sen bisher nur wenige Object Services.

Im folgenden wollen wir nun néher auf einige ausgewdhlte Common Object Services eingehen,
die fiir den Rest der Arbeit von groBerer Bedeutung sind. Dies sind der Event (Kapitel 4.3.1),
Lifecycle (Kapitel 4.3.3), Persistent Object/State (Kapitel 4.3.2), Transaction (Kapitel 4.3.4)
und Query Service (Kapitel 4.3.5). Dabei werden wir den Event Service etwas ausfiihrlicher
behandeln, um die generelle Benutzung von Object Services zu demonstrieren. Die Diskussion
der anderen Services beschrinkt sich dann auf die grundlegende Funktionalitdt bzw. daraus ent-
stehende Probleme. Fiir eine weitergehende Einfiihrung in die Common Object Services sei z.B.
auf [OHE96] verwiesen.

4.3.1 Der CORBA Event Service

Die bisher beschriebene Verarbeitung in CORBA erlaubt lediglich die synchrone Kommunika-
tion mit bereits bekannten Objekten, d.h. es muf} explizit die jeweilige Methode eines Objektes
(bzw. dessen Client Stub) aufgerufen werden. Oftmals ist es aber erwiinscht, dafl ein Objekt auf
Zustandsdanderungen reagiert, die ihm nicht direkt von einem Client mitgeteilt werden (unter
Umstéinden gibt es iiberhaupt keinen expliziten Client dieses Objektes). Man stelle sich z.B.
einen System-Monitor vor, der auf unterschiedliche Ereignisse - wie etwa eine volle Festplatte -
reagieren soll. Bisher wire es notig, da3 das Betriebssystem eine spezielle Methode dieses
Monitor-Objektes aufruft. Diese Form der Verarbeitung ist aber nicht sinnvoll, da der Monitor
nicht immer verfiigbar sein muf}. Vielmehr bietet es sich an, einen sog. Event Channel fiir diesen
Fall zu definieren, der alle Ereignisse puffert und zu gegebener Zeit an daran interessierte
Objekte weiterleitet (s. Abb. 4.7). Das Event-Channel-Objekt wird beim Systemstart erzeugt,
der Prozel3 zur Festplattenverwaltung baut anschlieBend eine Verbindung zu diesem auf. An
Events interessierte Objekte kommunizieren dann lediglich mit dem Event Channel-Objekt.

88

System
Monitor

¢ [Event Channel
’Platte voll’

1/0
Administration

create event

Resource
Manager

<— Kommunikation

Abb. 4.7: Beispiel fiir die Verarbeitung in einem Event Channel

4.3.1.1 Allgemeine Spezifikationen

Der Event Service ist einer der wenigen Services, der prinzipiell unabhingig vom jeweiligen
ORB ist. Er definiert einige Schnittstellen, deren Implementierungen reine Server-Objekte im
Sinne der Kernarchitektur sind. Events werden dabei nicht durch eigene Objekte, sondern durch
den Aufruf spezieller Methoden modelliert. Sie konnen entweder generisch (Typ any) oder von
einem speziellen Typ (d.h. klassifiziert) sein. Klassifizierte Events verwenden die Schnittstellen
fiir generische Events als Templates fiir die Erzeugung spezifischer Schnittstellen. Wir werden
daher im folgenden nur den generischen Ansatz betrachten.

Der Event Service definiert zwei verschiedene Kommunikationsarten: push style, bei der ein
Erzeuger das Event ausldst und die Ubertragung der notigen Daten initiiert, und pull style, bei
der ein Konsument ein Event anfordert (blockierend oder per Polling). Dementsprechend sieht
der Standard die vier Schnittstellen PushSupplier, PushConsumer, PullSupplier und pull-
Consumer vor (siehe Beispiel 4.5).

module CosEventCom {
interface PullSupplier

exception Disconnected() ; any pull() raises(Disconnected) ;
any try pull (out boolean has_event)
interface PushConsumer { raises (Disconnected) ;
void push (in any data) void disconnect pull supplier();
raises (Disconnected) ; };
void disconnect push consumer () ;
}i interface PullConsumer
void disconnect pull consumer () ;
interface PushSupplier }i
void disconnect push supplier();
}i }: // end module

Beispiel 4.5: Definition der Kommunikations-Schnittstellen (generischer Ansatz)

Die gerade beschriebenen Schnittstellen alleine reichen aber nicht aus, um die Erzeugung und
Verarbeitung von Events von den einzelnen Objekten zu entkoppeln (hier haben die Objekte
weiterhin gegenseitig Kenntnis voneinander, siche Abb. 4.8).

89

push, disconnect

.—»

Producer Objektreferenz

disconnect

Abb. 4.8: Push style-Verarbeitung ohne Event Channel

4.3.1.2 Event Channel

Zur Losung des Problems wurde von der OMG ein sog. Event Channel definiert, der quasi die
Verwaltung aller an einem Ereignis interessierten Objekte iibernimmt. Diese konnen sich wahl-
weise als Erzeuger oder Konsument beim Event Channel anmelden, wobei sowohl push style-
als auch pull style-Kommunikation moglich ist (auch gemischt, siche Abb. 4.9). Ein von einem
Erzeuger initiiertes Event wird an alle registrierten Konsumenten verteilt. Der Supplier muf}
dafiir nicht wissen, wieviel und welche Consumer es gibt!

Browser
1
'00// v
Event Channel
S \’aktualisiere’
e
Browser %’
2
Browser
3

Obijektreferenz vom / zum Konsumenten

h Objektreferenz vom Erzeuger

Abb. 4.9: Verarbeitung mit Event Channel (push style gemischt mit pull style)

In Abb. 4.9 wird ein mogliches Szenario dargestellt, bei dem mehrere Objekte an Anderungen
eines Text-Dokumentes interessiert sind. Die beiden Browser 1 und 2 zeigen immer die aktuelle
Version. Sie blockieren so lange im pul1-Aufruf, bis eine Anderung vorliegt und sie die neuen
Daten laden miissen. Browser 3 hat die push-style-Kommunikation gewihlt und kann in der
Zwischenzeit (bis seine push-Methode vom Event Channel aufgerufen wird) andere Aktionen
ausfiihren.

90

Die gewihlte Konfiguration der drei Produzenten kann hier einige Probleme mit unterschiedli-
chen (und falschen) Verarbeitungszustianden verursachen: Editor 2 und 3 erzeugen Events ohne
die Events der anderen beiden Supplier jemals zu erhalten. Editor 1 ist hingegen Erzeuger und
Konsument und sieht somit alle Events. Alle Erzeuger verwenden hier die push-style-Kommu-
nikation, es wire aber auch pull style moglich (wenn auch nicht unbedingt sinnvoll).

Leider werden vom Standard aber weder Atomizitit noch Reihenfolgeerhaltung garantiert. Ein
Supplier kann sich also nicht sicher sein, dal wirklich alle Consumer sein Event erhalten haben
(denkbar wire, daf} eine Netzverbindung zusammenbricht und ein neues Routing durchgefiihrt
wird, die in der Zwischenzeit ausgelosten Events aber verloren gehen). Weiterhin stellt insbe-
sondere die mogliche Anderung der Reihenfolge fiir 0.g. Anwendung ein Problem dar: Wird ein
Event in der Form ,,Losche Zeichen 12 bis 18 kodiert, so sind diese Ereignisse natiirlich kon-
textsensitiv und somit reihenfolgeabhingig. Auch die konkrete Angabe der zu I6schenden Zei-
chen kann zu Problemen fiihren, wenn das vorherige Event, mit dem ein Teil dieser Zeichen
gerade erst eingefiigt wurde, noch nicht eingetroffen ist. Wir sehen also, dafl unter Umsténden
ergianzende Mallnahmen nétig sind. Die OMG arbeitet aus diesem Grund an einer Erweiterung
des Event Service, dem sog. Notification Service [OMG98c]. Er soll insbesondere umfangreiche
Filtermechanismen sowie die persistente Pufferung und die Einhaltung der Reihenfolge von
Nachrichten garantieren konnen (konfigurierbarer Quality of Service).

Wir werden uns im Rahmen der vorliegenden Arbeit aber auf den urspriinglichen Event Service
beschrinken. Zur Verwaltung von Event Channels gibt es insgesamt sieben Schnittstellen, die
in Beispiel 4.6 aufgefiihrt sind. Ihre Verwendung wird durch Abbildung 4.10 illustriert:

;
Event ghan ne Cocation
(logisch) AObJect

ProxyPush
Supplier

Physisches Objekt

O Logisches Objekt
-

Objektreferenz

Abb. 4.10: Verbindungsaufbau zum Event Channel

Uber das eigentliche Objekt fiir den Event Channel konnen lediglich Referenzen auf die
Objekte zur Verwaltung der Supplier und Consumer erhalten werden. Mit dieser MaBBnahme
wird ein rudimentidrer Zugriffsschutz eingefiihrt: Soll ein Objekt einer Applikation z.B. nur
Events empfangen konnen, so darf es nur eine Referenz auf den Consumeradmin erhalten (durch
den Aufruf der Methode for consumers des EventChannel, sieche Abb. 4.10 - (1)). Will sich
dieses Objekt nun als push-style-Consumer beim Event Channel anmelden, so erwirbt es zuerst
durch den Aufruf der Methode obtain push supplier (2) des ConsumerAdmin eine Referenz
auf einen ProxyPushSupplier, der jetzt aus Sicht dieses Objektes der Erzeuger aller Events ist.
AnschlieBend mufl noch durch den Aufruf der Methode connect push consumer des Proxy-

91

pushSuppliers die Verbindung hergestellt werden (3). Dabei wird eine Referenz auf das aktu-
elle Objekt iibergeben. Der Event Channel leitet nun alle Events durch Aufruf der Methode push
des ApplicationObject (welche das interface PushConsumer implementieren muf}) weiter
(4). Der Aufbau der anderen Kommunikationsarten erfolgt analog dazu. Selbst fiir klassifizierte
Events ist kein neues Verfahren notig. Es miissen lediglich fiir jeden Evens-Typ neue Klassen
fiir Push/Pull Supplier bzw. Push/Pull Consumer definiert werden [OMG98h].

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface EventChannel {
ConsumerAdmin for consumers() ;
SupplierAdmin for suppliers();
void destroy () ;

}i

interface ConsumerAdmin
ProxyPushSupplier obtain push supplier() ;
ProxyPullSupplier obtain pull supplier()

1

}i

interface SupplierAdmin {
ProxyPushConsumer obtain push consumer () ;
ProxyPullConsumer obtain pull consumer ()

1

interface ProxyPushConsumer : CosEventComm::PushConsumer
void connect push supplier
(in CosEventComm: :Push Supplier push supplier)
raises (Already connected) ;

}i

interface ProxyPullSupplier : CosEventComm::PullSupplier (
void connect pull consumer
(in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

}i

interface ProxyPullConsumer : CosEventComm::PullConsumer
void connect pull supplier
(in CosEventComm: :PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

}i

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect push consumer
(in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, Type Error);

}i

}; // end module

Beispiel 4.6: Standardisierte Schnittstellen fiir Event Channels

92

4.3.2 Die CORBA Persistent Object und Persistent State Services

Die OMG hatte bereits relativ friith mit der Arbeit am Persistent Object Service (POS) begonnen.
Mit ihm sollte eine allgemeine Anbindung an persistente Speichermedien geschaffen werden,
d.h. der Zustand von Objekten sollte z.B. wahlweise in Dateien, relationalen oder objektorien-
tierten Datenbankverwaltungssystemen (RDBVS bzw. OODBYVS) gespeichert werden konnen.
An der Schnittstelle der CORBA-Objekte sollte die Wahl des Speichermediums nicht sichtbar
sein. Gerade der letzte Aspekt hat aber dazu gefiihrt, daf} die Spezifikation des Services nur ein
mehr oder weniger fraglicher Kompromilf ist. Urspriinglich gab es zwei Vorschlédge: Ein auf den
Einsatz von OODBVS optimierter aus dem Lager der ODMG, sowie ein weiterer von IBM, der
speziell auf die Eigenschaften von RDBVS einging. Auf Druck der OMG wurden beide Doku-
mente Anfang 1994 zum POS verschmolzen [Ses96]. Die resultierende Strukturierung des Ser-
vices ist in Abbildung 4.11 dargestellt. Aus der Sicht des Clients gibt es jeweils ein Objekt mit
persistentem Zustand (PO) sowie eine zugehorige persistente ID (PID), mit der ein Objekt loka-
lisiert werden kann. Jedes PO kommuniziert mit einem Persistent Object Manager (POM), der
eine einheitliche Schnittstelle zur Verarbeitung des Zustandes bietet. Nur der POM kennt dann
das konkrete Speichermedium sowie den zugehorigen Persistent Data Service (PDS). Weiterhin
initiiert er die Ubertragung des jeweiligen Zustandes iiber das zum PDS gehérende Protokoll.
Der PDS kommuniziert schlieflich mit dem eigentlichen Speichermedium. Der Standard ent-
hilt dafiir bereits eine Reihe weiter spezialisierter PDS-Schnittstellen fiir DBVS u.4., auf die wir
hier aber nicht weiter eingehen wollen.

Persistent Object [PID | Persistent Identifier

Protokoll — /POM/ Persistent Object Manager

Persistent Data Service
———= Assoziation
—P» Objektrefrenz

Datenquelle)
................... e Dateniibertragungsprotokoll

Abb. 4.11: Die Struktur des Persistent Object Services (POS)

Anhand von Abbildung 4.11 146t sich leicht erkennen, dal der POS eine recht komplexe
Schnittstelle besitzt. So umfalit bereits das Laden und Speichern von Objektzustinden mehrere
Operationen und Kommunikationsschritte. Dabei muf jeder Zustand einzeln verarbeitet wer-
den, eine mengenorientierte Ubertragung ist nicht moglich. Weiterhin wird die Anzahl der
Objekte durch das assoziierte PID-Objekt schlicht verdoppelt. Diese Umsténde sind in verteil-
ten Umgebungen aber inakzeptabel und dementsprechend ist uns bisher auch keine Implemen-
tierung des POS bekannt. Vielmehr vertreten die meisten Hersteller von CORBA-Produkten wie
wir die Ansicht, daB eine effektive und effiziente Umsetzung der POS-Spezifikation nicht mog-
lich ist. Die OMG bezeichnet den POS deshalb teilweise auch schon als deprecated (abgelost).

93

Als Ersatz fiir den POS wird derzeit an der Entwicklung des Persistent State Service (PSS) gear-
beitet. Er soll die Nachteile des POS vermeiden und gleichzeitig eine sinnvolle Integration mit
dem Transaction und Query Service bilden. Bis Dezember 1998 wurden drei vielversprechende
sog. Joint Revised Submissions bei der OMG eingereicht, die alle auf neuesten Entwicklungen
wie dem Portable Object Adapter (POA, sieche Abschnitt 4.2.3.3) und dem IDL value-Typ
(Kapitel 4.1.4) basieren. Letzterer ermdglicht insbesondere den Transfer von Objektzustinden
vom Server zum Client. Diese Féahigkeit ist in datenintensiven Umgebungen besonders wichtig
(siehe Kapitel 4.5). Eine endgiiltige Entscheidung der OMG sowie erste Implementierungen
werden fiir 1999 erwartet. Ndhere Informationen konnen der zugehorigen WW W-Seite entnom-
men werden [OMG99].

4.3.3 Der CORBA Lifecycle Service

Der Lifecycle Service definiert Funktionalitit zum Erzeugen, Kopieren, Migrieren und Loschen
von Objekten. Er spiegelt damit einen wesentlichen Aspekt der Philosophie von CORBA sowie
verteilter Umgebungen allgemein wider.

module CosLifeCycle {

typedef Naming::Name Key;

typedef Object Factory;

typedef sequence<Factory> Factories;

struct NameValuePair {Naming::IString name; any value;};
typedef sequence<NameValuePair> Criteria;

. // definition of several exceptions

interface FactoryFinder ({
Factories find factories (in Key factory key) raises (NoFactory) ;

interface LifeCycleObject
LifecycleObject copy (in FactoryFinder there, in Criteria the criteria)
raises (NoFactory, NotCopyable, InvalidCriteria, ...);
void move (in FactoryFinder there, in Criteria the criteria)
raises (NoFactory, NotMovable, InvalidCriteria, ...);
void remove () raises (NotRemovable) ;

}i

}; // end module

Beispiel 4.7: Ausziige aus der Spezifikation des Lifecycle Service

Betrachten wir zunéchst einmal die Erzeugung von Objekten. Hier reicht die bei lokaler Verar-
beitung bewéhrte Verwendung von Konstruktoren nicht aus. Erstens sind Konstruktoren immer
statische Methoden einer Implementierungsklasse, die sich nicht mit einer Schnittstellenbe-
schreibungssprache wie IDL definieren lassen, und zweitens operieren Konstruktoren eben
immer lokal, d.h. mit ihnen kénnen keine Objekte auf anderen Rechnern erzeugt werden.
Gemail der Spezifikation des Lifecycle Service sollte es daher auf jedem Rechner fiir jeden dort

94

implementierten Objekttyp eine eigene sog. Factory geben. Diese enthilt eine Methode zum
Erzeugen und Initialisieren eines Objektes, das im selben Adreraum wie die Factory angelegt
wird. Die Signatur dieser Methode ist allerdings nicht standardisiert. Das erzeugte Objekt
implementiert dann das interface LifeCycleObject, welches die Methoden copy, move und
remove definiert (sieche IDL-Definitionen in Beispiel 4.7). Dieses interface wird also nicht
vom Service, sondern von den einzelnen CORBA-Objekten selbst implementiert.

Zur Unterstiitzung der Operationen copy und move, deren Semantik eigentlich der ortstranspa-
renten Verarbeitung von CORBA widerspricht, wurden sog. FactoryFinder eingefiihrt. Sie
repriasentieren quasi den Adrefraum, in den die Objekte kopiert oder migriert werden sollen.
Referenzen auf FactoryFinder kann man beispielsweise iiber den Naming Service erhalten.
Der prinzipielle Ablauf der Operation copy wird durch die linke Hélfte von Abbildung 4.12 ver-
anschaulicht. Ziel ist es, das Objekt X von Server 1 auf Server 2 zu kopieren. Beide Server basie-
ren auf der gleichen Implementierung und dem selben ORB. Die Implementierung der copy-
Methode des Objektes X lokalisiert zuerst einen FactoryFinder auf dem Server 2 (z.B. iiber
den Naming Service) und ruft dessen Methode find factories auf (@), die anhand der tiber-
gebenen Kriterien eine entsprechende Factory sucht (@) und eine Referenz darauf an die aufru-
fende copy-Methode zuriick gibt. Diese ruft die nicht standardisierte create-Methode der Fac-
tory auf und iibergibt dabei den Zustand des zu kopierenden Objektes in einem internen Format
(®). Die Factory erzeugt anschlieend die eigentliche Kopie des Objektes (X’, @) und gibt eine
neue Objektreferenz an die copy-Methode des urspriinglichen Objektes zuriick. Im Fall der
move-Operation miiite auBerdem die alte Objektreferenz giiltig bleiben, d.h. die ID eines
Objektes ist dann ebenfalls zu transferieren (anschlieBend muf3 natiirlich das alte Objekt
geloscht werden).

Server 1 Server 3
| interface A | /
o @ FactFind3

— H\ """"""""""""""""""""""""""""""
® j """ Py
: Y A 227 Kriterium bekannt ?2?
Kompalible/‘.{
\@® Server 2 Protokqlle ™ *,

A

- o

Internes’_—

Protokoll":,'

create

Erzeuge und initialisiere Kopie von X

Object X’

- J

ORB 1 ORB 2

Abb. 4.12: Tllustration der Operation copy des Lifecycle Service

95

Problematisch ist nun die Anwendung der Operationen des Lifecycle Service beim Einsatz ver-
schiedener Server-Implementierungen oder gar mehrerer CORBA-Systeme. Wie bereits
erwihnt ist das interface LifeCycleObject von jedem einzelnen CORBA-Objekt selbst zu
implementieren. Dies ist sinnvoll, da nur sie bzw. die korrespondierenden Factories Kenntnis
tiber den internen Zustand und notwendige Initialisierungen haben. Gleichzeitig kann ein ande-
rer Server die gleichen IDL-Schnittstellen natiirlich vollkommen anders implementieren und
auch andere Factories definieren. Wie soll nun aber z.B. die Implementierung der copy-Opera-
tion von Objekt X eine Kopie auf Server 3, der auf einer anderen Implementierung und einem
anderen ORB basiert, anlegen? Eine Referenz auf einen FactoryFinder von Server 3 kann
sicherlich erworben werden (®), aber kann dieser die iibergebenen Kriterien nutzen, um eine
entsprechende Factory zu finden (®)? Selbst wenn diese Operation erfolgreich ist, so wird spa-
testens ein Aufruf der create-Methode der Factory scheitern (®), da hierfiir ein internes Pro-
tokoll der jeweiligen Implementierung verwendet wird. Was passiert weiterhin, wenn Objekt X
Referenzen auf offene Dateien hilt, auf die Server 3 keinen Zugriff hat? Diese Fragen sind bis-
her ungeldst und haben dazu gefiihrt, daf3 fast kein CORBA-System einen Lifecycle Service ent-
hilt. Uns ist lediglich eine Implementierung im Rahmen des IBM Component Broker [IBM98a]
bekannt, der copy und move aber nur intern zur Verfiigung stellt. Letztendlich muf3 die Praxis-
tauglichkeit des aktuell spezifizierten LifeCycle Service mehr als bezweifelt werden. Nachdem
die meisten Operationen sowie implementierungsabhingig sind, kann man sie auch durch
interne Funktionen in den einzelnen CORBA-Servern realisieren.

4.3.4 Der CORBA Transaction Service

Mit dem Transaction Service soll eine transaktionsorientierte, konsistente und durch das System
kontrollierbare Verarbeitung von Daten ermoglicht werden, wie sie sich bereits seit Jahrzehnten
im Bereich von Datenbankverwaltungssystemen etabliert hat. Grundlage bildet in beiden Féllen
das ACID-Konzept [HR83], das hier aber an die Eigenschaften verteilter Objekte anzupassen
ist. Hierfiir wurden mehrere Kategorien von Objekten und Servern definiert, deren Interaktion
mit dem Transaction Service in Abbildung 4.13 illustriert ist.

Transactional Server Recoverable Server

Recoverable
Transactional Object
[

Transactional Client

Transactional

Operation
Register,
BOT / EOT Rollback Rollback EOT

Transaction

Context Transaction Service

Abb. 4.13: Kategorien von Objekten bei Verwendung des CORBA Transaction Service

Jeder Client, der eine transaktionsbasierte Verarbeitung einleitet, ist automatisch ein Transac-
tional Client. Er muf} dazu keine speziellen Schnittstellen implementieren. Zum Starten einer
neuen Transaktion (TA) erwirbt der Client {iber das ORB Interface (sieche Abbildung 4.2 auf

96

Seite 79) eine Referenz auf das sog. current-Objekt des Transaction Service und ruft dessen
Methode begin auf (Begin of Transaction - BOT). Das current-Objekt reprisentiert dann den
Transaction Context, der bei jedem Aufruf einer transaktionsbasierten Methode an den Server
tibergeben wird. Die Server-Objekte selber lassen sich in zwei Kategorien gliedern. Transactio-
nal Objects umfassen Methoden, die zwar innerhalb einer TA ausgefiihrt werden miissen, aber
nicht an der Commit-Phase beteiligt sind (die Objekte rufen nur weitere Methoden auf, enthalten
aber keinen persistent zu speichernden Zustand). Allerdings konnen sie eine TA bei Bedarf
zuriicksetzen (Rollback). Recoverable Objects enthalten oder benutzen hingegen persistente
Daten, die im Rahmen einer TA veridndert werden konnen. Sie miissen somit an der Commit-
Phase oder einem Rollback (den sie u.U. selbst initiiert haben) beteiligt werden. Héufig sind sie
mit einem oder mehreren Resource Objects assoziiert, die sie beim Transaction Service regi-
strieren lassen. Die Resource Objects kapseln allgemeine Ressourcen wie z.B. Datenquellen
(oder lediglich einzelne persistente Objekte). Sie sind ebenfalls an der Commit-Phase oder
einem Rollback beteiligt, konnen aber beides nicht initiieren. Transactional Clients konnen
jederzeit liber das current-Object ein Commit oder Rollback einleiten und damit die TA been-
den (End of Transaction - EOT).

Die Spezifikation des Transaction Service definiert u.a. zwei Schnittstellen, die von den jewei-
ligen Server-Objekten zu implementieren sind und sie charakterisieren: Transactional Objects
implementieren das interface TransactionalObject, dessen IDL-Definition allerdings
einen leeren Rumpf hat. Es dient lediglich der Kennzeichnung der transaktionsbasierten Verar-
beitung auf der Ebene der IDL-Definitionen eines Servers. Resource Objects implementieren
das interface Resource mit den Methoden rollback, commit one phase, prepare und
commit. Sie unterstiitzen damit wahlweise ein ein- oder zweiphasiges Commit-Protokoll
[GRI93]. Recoverable Objects implementieren einfach beide Schnittstellen.

Ergénzend zu der gerade diskutierten Kategorisierung von Objekten wurden zwei verschiedene
Transaktionsmodi spezifiziert: Beim impliziten Modus wird eine Referenz auf den Transaction
Context bei jedem Aufruf einer Methode automatisch vom ORB des Clients an den ORB des
Servers libetragen. Im expliziten Modus muf3 der Transaction Kontext explizit als Parameter
einer Methode in IDL spezifiziert und zur Laufzeit {ibergeben werden. In beiden Fillen gilt:
Wurde vom Client bisher keine TA gestartet, so 16st der Server entweder eine Exception aus,
oder er fiihrt die jeweilige Methode in einer neuen TA aus, die er auch gleich wieder beendet
(das Ergebnis der Methode 148t sich in diesem Fall also nicht mehr per Rollback zuriicksetzen).

Die einzelnen Operationen und Protokolle des Transaction Service wurden so gewéhlt, daf3 eine
Integration von Systemen mit Transaktions- bzw. Resource-Managern gemif3 den folgenden
Normen moglich ist [GR93]:

® X/Open TX Schnittstelle (X/Open Distributed Transaction Protocol)

® X/Open XA Schnittstelle (X/Open DTP compliant Resource Manager)
® OSI TP Protokoll (transactional protocol defined by ISO)

® SNA LU 6.2 Protokoll (transactional protocol defined by IBM)

® ODMG Standard [CB97]

97

Insgesamt kann man den Transaction Service als eine sehr sinnvolle und nétige Komponente zur
Integration von Transaktionen in eine CORBA-basierte Umgebung bezeichnen. Seine Spezifi-
kation ist aufgrund der Komplexitit des Themas zwar sehr umfangreich, beschréinkt sich aber
auf eine effektive Modellierung unbedingt notwendiger Aspekte. Optional werden sogar Nested
Transactions unterstiitzt [GR93, HR93]. Probleme entstehen lediglich durch die bereits ange-
sprochene Art der Modellierung von Objekten in CORBA: Es gibt einfach zu viele feingranu-
lare Objekte. Stellen diese alle ein Resource oder Recoverable Object dar, so steigt die benotigte
Kommunikation je Commit unangemessen und der Transaction Service wird schnell zum Fla-
schenhals. Modelliert man hingegen nur wenige dieser Objekte (z.B. als Database Wrapper),
so kann man prinzipiell eine sehr effiziente Verarbeitung erreichen.

4.3.5 Der CORBA Query Service

Einen ersten Schritt in Richtung mengenorientierter Verarbeitung von Daten und Objekten
wurde mit der Spezifikation des CORBA Query Service (QS) erreicht. Nachdem wir diese Form
der Verarbeitung schon mehrfach gefordert haben, wird der QS von wesentlicher Bedeutung fiir
die weitere Arbeit sein. Er definiert eine generische Schnittstelle, um Anfragen an beliebige
Datenquellen (also nicht nur DBVS) zu stellen. Daneben enthilt die Spezifikation einige grund-
legende Aggregattypen (sog. Collections), die aber mittlerweile durch den Object Collection
Service (siehe Tabelle 4.2 auf Seite 87) abgelost wurden. Das zugrundeliegende Verarbeitungs-
konzept des QS wird durch Abbildung 4.14-a illustriert: Clients senden Anfragen als string an
den QS, welcher das Ergebnis in einer Instanz des generischen IDL-Typs any zuriickgibt.

[Generierter Code
Applikation [] Code des DBVS Applikation

(Object Request Broker (ORB) [0
CLI Wrapper DJ Wrapper OQL Wrapper
X/Open CLI Data Joiner OQL Interface
Ty Oracle Ty
Datenquelle
(a) Allgemeine Architektur (b) Beispiel: Zugriff auf DBVS

Abb. 4.14: Architektur des CORBA Query Service

In Bezug auf die Anbindung an relationale Datenbankverwaltungssysteme (RDBVS) Id6t sich
die Schnittstelle des QS sehr gut mit dem X/Open Call Level Interface (CLI, siehe [OG95])),
Microsofts Open Database Connectivity (ODBC, siehe [Mi95]) oder der Java Database Con-
nectivity (JDBC, siehe [Sun97a]) vergleichen. Dementsprechend kann man RDBVS auch recht
einfach iiber sog. Wrapper in eine CORBA-Umgebung integrieren (siehe Abbildung 4.14-b):
So konnte z.B. die SQL-Anfrage eines Clients vom Wrapper iiber das CLI an DB/2 weiterge-

98

leitet werden. AnschlieBend konvertiert der Wrapper das Ergebnis (eine Menge relationaler
Tupel) in eine sequence von IDL-Basistypen und sendet diese an den Client zuriick (gekapselt
in einer Instanz vom Typ any). Will man sogar mehrere (R)DBVS auf einmal anbinden, so bietet
sich der Einsatz von DB-Middleware wie z.B. der IBM DataJoiner [IBM97] an (siche auch
Kapitel 2.4.4.2). Auf derartige Systeme kann meist auch iiber das CLI, ODBC oder JDBC zuge-
griffen werden, so daf3 sie aus der Sicht des Wrappers wie ein einziges (R)DBVS wirken. Selbst
die Integration von ODMG-konformen OODBYVS ist dhnlich. Nur werden in diesem Fall Anfra-
gen in OQL statt SQL formuliert. AuBerdem sind natiirlich komplexere Ergebnistypen denkbar.

Die Hierarchie der IDL-Schnittstellen des Query Service ist in Abbildung 4.15-a dargestellt.
Das interface QueryEvaluator beschreibt Methoden fiir ad-hoc-Anfragen und die Abfrage
der unterstiitzten Anfragesprachen (Query Language Types). Der QueryManager deklariert eine
ergianzende Methode zur Erzeugung sog. Query-Objekte fiir mehrfach benotigte Anfragen. Die
konkrete Anfrage muf3 dieser Methode als Parameter iibergeben werden und 148t sich spiter
nicht mehr dndern (allerdings sind Parameter moglich). Das query-Objekt selbst bietet dann
Methoden zum Voriibersetzen und Ausfiihren der Anfrage, zur Abfrage des Ergebnisses sowie
ein Status-Flag. Das interface Collection beschreibt einfache Aggregate, ist aber mittler-
weile durch den Collection Service abgeldst worden. Das interface QueryableCollection
enthilt keine weiteren Methoden.

Der QS beschreibt zwei verschiedene Ebenen der Anfrageverarbeitung. Die erste bietet ledig-
lich die Moglichkeit fiir ad-hoc-Anfragen. Sie umfaBt die Schnittstellen QueryEvaluator und
QueryableCollection. Der Aufruf der execute-Methode des QueryEvaluator bewirkt
implizit das Ubersetzen, Optimieren und Ausfiihren einer Anfrage, auch wenn die selbe
Anfrage mehrfach gestellt wird. Die zweite Ebene benutzt zusétzlich spezielle guery-Objekte.
Durch das Voriibersetzen hédufig benutzter Anfragen lassen sich hier erhebliche Leistungsstei-
gerungen erzielen. Wir werden diese Ebene fiir eigene Implementierungen des QS benutzen
(siehe Kapitel 5.4.3 und 6.2.2). In beiden Ebenen wird (wie bereits erwihnt) das Ergebnis einer
Anfrage in Form einer Instanz des Typs any zuriickgegeben. In dieser Instanz lassen sich belie-
bige Daten iibertragen, deren Format in IDL definiert werden kann.

QueryLanguageType
QueryEvaluator Collection SQLQuery oaL
OQL_Basi
QueryLanguageType QL_Basic
QueryableCollection SQL_92Query 0oQL_93

QueryManager
OQL_93Basic

Query —P» Vererbung
- P> Assoziation

(a) Hierarchie der IDL-Schnittstellen (b) Hierarchie der Query Language Types

Abb. 4.15: Hierarchie der IDL-Schnittstellen des CORBA Query Service

Das interface QueryLanguageType beschreibt die Wurzel einer weiteren Hierarchie von
IDL-Schnittstellen, die allerdings leere Riimpfe haben (siche Abbildung 4.15-b). Anhand dieser
Typen lassen sich die von einer QS-Implementierung unterstiitzten Anfragesprachen, also Syn-

99

tax und Semantik des Anfrage-Strings, bestimmen. Derzeit muf ein QS entweder SQL_92Query,
0QL_93, OQL 93Basic oder eine Kombination dieser Sprachen unterstiitzen. Die Definition
einer neuen Anfragesprache setzt die Spezifikation einer weiteren IDL-Schnittstelle voraus, die
von mindestens einer der vordefinierten Schnittstellen erbt (angedeutet durch die jeweils drei
Punkte in Abbildung 4.15-b). Fiir weitergehende Informationen sei auf die Spezifikation des QS
verwiesen (Kapitel 11 von [OMG98h])).

Grofle Erwartungen werden derzeit in die Harmonisierung von SQL und OQL gesetzt. Sollten
diese Sprachen einmal eine ausreichende Uberschneidung haben, so soll diese laut Angaben der
OMG als einzig zuldssige Anfragesprache fiir den QS benutzt werden.

Eine Implementierung des QS kann selbstverstindlich mit anderen Object Services kooperieren.
Zur Kopplung mit dem Transaction Service bietet es sich z.B. an, da} die Implementierung
eines QueryManagers gleichzeitig auch ein Resource oder Recoverable Object darstellt (siehe
Kapitel 4.3.4). Weiterhin bietet sich bei der Modellierung von Aggregaten und korrespondieren-
den Iteratoren natiirlich die Verwendung des Collection Services an.

4.4 Entwurf und Programmierung in CORBA-Umgebungen

Nachdem wir bisher die Grundlagen von CORBA sowie ausgewihlte Object Services diskutiert
haben, wollen wir nun den gesamten Entwicklungsproze in einer CORBA-Umgebung illu-
strieren. Dazu benutzen wir das bereits in Abbildung 2.3 auf Seite 31 eingefiihrte Beispiel eines
Reservierungssystems. Wir wollen an dieser Stelle die Ausfiihrungsschicht der TRS-Kompo-
nente implementieren. CORBA dient hier in diesem Sinne also nur zur Uberbriickung der Cli-
ent/Server-Grenze. Andererseits konnte man den TRS-Server aber auch als eine eigenstiandige
Komponente betrachten. Man beachte aber bitte, dal3 der Begriff CORBA Components von der
OMG in einem anderen Sinne verwendet wird (sieche Kapitel 4.7).

TRS Server

— EventChannel
fur ICE 982
@
Reservation
N

Service

Reservierungssystem
im Reisebiiro

Transaction
Service

Abb. 4.16: Verarbeitungsszenario innerhalb der TRS-Komponente

Der TRS-Server soll im wesentlichen nur eine Methode zur Reservierung von Ziigen anbieten.
Ist im gewiinschten Zug kein Platz mehr frei, so soll eine Exception ausgelost und die Moglich-
keit geboten werden, sich auf einer Warteliste einzutragen. Die Warteliste entspricht dabei
einem EventChannel des Event Service (Kapitel 4.3.1). Weiterhin soll die ganze Verarbeitung
durch den Einsatz des Transaction Service abgesichert werden. Hierfiir ist der TRS-Server als

100

Recoverable Object zu modellieren (siehe Kapitel 4.3.4). Dementsprechend benétigte IDL-
Schnittstellen sind in Beispiel 4.2 auf Seite 76 enthalten (wir haben sie bereits zur Illustration
der FEigenschaften von IDL benutzt). Das resultierende Verarbeitungsszenario ist in
Abbildung 4.16 dargestellt. Die linke Hilfte beschreibt die Rechnerumgebung im Reisebiiro,
die rechte représentiert das Rechenzentrum der Deutschen Bahn AG.

Wir wollen nun kurz die einzelnen Schritte zur Durchfiihrung einer Reservierung betrachten.
Zuerst einmal muf3 vom Reservierungssystem im Reisebiiro eine neue Transaktion gestartet
werden (BOT). Nachdem wir auch die Buchung von Fliigen, Hotels und Bahnfahrten innerhalb
einer einzigen TA unterstiitzen wollen, wird dieser Schritt i.a. von der globalen Komponente des
Reservierungssystems (und eben nicht vom TRS-Client) durchgefiihrt. Anschlieend ruft der
TRS-Client die Methode ReserveTrain des Reservation Service auf (@). Dabei iibergibt
der ORB automatisch den jeweiligen TA-Kontext. Der Reservation Service registriert sich
darauthin beim Transaction Service als Resource der laufenden TA (), um spiter an der Com-
mit- oder Rollback-Phase beteiligt zu werden. Ist ein Platz im gewiinschten Zug (ICE 982) ver-
fiigbar, so wird die Reservierung ausgefiihrt und das Ergebnis an den TRS-Client zuriickgege-
ben. Ist der Zug bereits ausgebucht, so erstellt der Reservation Service eine Warteliste fiir
diesen (sofern noch keine existiert). Dazu benutzt er den Event Service, der ihm eine Referenz
auf den neuen EventChannel zuriickgibt (@, @). AnschlieBend stellt er eine Verbindung zu die-
sem her (®) und beendet die Abarbeitung der Methode ReserveTrain mit dem Auslosen der
Exception NoSeatAvailable. Als Attribut der Exception tibergibt er dem Client gleichzeitig
eine Referenz auf den Eventchannel. Will dieser tiber frei werdende Plétze informiert werden,
so kann er sich beim EventChannel als PushConsumer registrieren lassen (®). Wird nun zu
einem spiteren Zeitpunkt ein Platz im ICE 982 frei, so kann der TRS-Server eine Nachricht an
den EventChannel weiterleiten (®), der daraufhin alle TRS-Clients auf der Warteliste infor-
miert (@). Unabhéngig vom Ausgang der Buchung kann das Reservierungssystem im Reise-
biiro die laufende TA zu jedem Zeitpunkt beenden. Im Fall eines Rollback muf} eine erfolgte
Buchung natiirlich kostenlos storniert werden (was z.B. der Ausloser dafiir sein konnte, daf§ ein
Platz in einem ausgebuchten Zug frei wird und die Abarbeitung der Warteliste beginnt).

Neben dieser funktionalen Betrachtung der Laufzeitaspekte wollen wir nun aber noch den
eigentlichen Entwicklungs- und Programmierprozel} untersuchen. Zunichst werden die IDL-
Definitionen aus Beispiel 4.2 auf Seite 76 als Eingabe fiir den IDL-Compiler benutzt, um die
Stubs und Skeletons in der jeweiligen Programmiersprache zu erzeugen. Genau genommen wird
eigentlich nur ein einziges Skeleton fiir das interface Reservation Service generiert, das
nun zu implementieren ist. Neben der explizit enthaltenen Methode ReserveTrain und dem
Attribut status_flag miissen wir zusitzlich Code fiir die geerbten Schnittstellen des Event und
Transaction Service zur Verfiigung stellen: connect push consumer aus dem interface
CosEventComm: : PushSupplier sowie prepare, rollback, commit und commit one phase
aus dem interface CosTransactions::Resource (der Rumpf von CosTransactions::
TransactionalObject ist leer). Die Implementierungen dieser Methoden kénnen natiirlich auf
weitere Object Services zugreifen. Neben der Programmierung des Objektes
Reservation Service muf} natiirlich noch ein Hauptprogramm fiir den TRS-Server geschrie-

101

ben werden, das aber im wesentlichen nur fiir die Initialisierung des Objektes sowie dessen
implizite Registrierung beim Objekt-Adapter sorgt (evtl. bietet sich noch ein Eintrag beim
Naming Service an). Damit ist der Server dann fiir externe Clients verfiigbar.

Fiir die Realisierung des TRS-Clients reicht nun aber nicht alleine die Verwendung der gene-
rierten Client Stubs aus. Vielmehr ist auch hier ein neues CORBA-Objekt zu realisieren. Es muf}
das interface CosEventComm: : PushConsumer mit den Methoden push und
disconnect push consumer implementieren, damit der TRS-Client dem EventChannel
gegeniiber als Push Consumer auftreten kann. AnschlieBend ist der TRS-Client in das globale
Reservierungssystem des Reisebiiros einzubetten.

Fiir eine detailliertere Einfiihrung in die Programmierung in CORBA-Umgebungen sei auf
[Red96] verwiesen. Dieses Buch behandelt die Implementierung von Software in den Program-
miersprachen C++ und Java. Es basiert auf den CORBA-Systemen Orbix bzw. OrbixWeb von
IONA (siehe Kapitel 4.6.1).

4.5 Modellierung von Daten-Objekten, Migration und
Leistungsaspekte

Die Modellierung von Datenobjekten kann in CORBA 2.2 auf zwei Arten erfolgen. Die erste ist
die Spezifikation von IDL-Datenstrukturen mit dem Schliisselwort struct (z.B. ResData und
Seat in Beispiel 4.1 auf Seite 75). Diese werden in objektorientierten Programmiersprachen auf
jeweils eine Klasse abgebildet. Gegeniiber dem aus C++ bekannten struct-Konstrukt gibt es
in IDL aber zwei Einschrinkungen: Es ist weder die Definition von Methoden noch die Angabe
einer Vererbungshierarchie moglich. Abhilfe schafft die andere Variante, ndmlich die Benut-
zung des interface-Konstruktes von IDL. Dieses ist zwar primir fiir die Deklaration neuer
Services gedacht (z.B. der Reservation Service in Beispiel 4.2 auf Seite 76), kann aber auch
zur Spezifikation von Objekten mit Daten (Attributen) und Funktionen (Methoden) verwendet
werden. Dabei wird unter anderem das von C++ bekannte Konzept der multiplen Vererbung
unterstiitzt. Fiir die Modellierung ganzer Hierarchien von Datenobjekten mit Methoden bleibt
also nur die letzte Moglichkeit. Leider filhren beide Varianten aber zu unterschiedlichen Verar-
beitungsmodellen im ORB:

Strukturen (wie auch alle Werte von Basistypen) werden vom ORB bei Bedarf (z.B. bei der
Parameteriibergabe) kopiert und weitergeleitet. Sie unterliegen keiner Registrierung durch den
ORB und werden auch nicht von einem Objekt-Adapter verwaltet. Dementsprechend gibt es
keine Kontrolle iiber angelegte Kopien, und es mufl mit erheblichen Kohirenz-Problemen
gerechnet werden. Das CORBA-System bietet lediglich einige Klassen (sog. Handle-Klassen)
an, die das Speichermanagement fiir dynamisch allokierte Daten im jeweiligen Prozef3 verein-
fachen. Bei der Ubertragung dieser Instanzen werden vom ORB alle durch die Rechnerarchi-
tektur bedingten Konvertierungen vorgenommen (z.B. Little Endian in Big Endian usw).

102

Im Gegensatz dazu werden alle auf einem interface-Konstrukt basierenden Objekte beim
ORB registriert und in Kooperation mit einem Objekt-Adapter verwaltet. Sie werden grundsitz-
lich nicht kopiert und sind identifizierbar und strikt gekapselt: Clients erhalten nur Objektrefe-
renzen, niemals das Objekt selbst. Nachdem die derzeit verfiigbaren Objekt-Adapter keine
Migration von Objekten unterstiitzen (siehe Kapitel 4.2.3), bleiben diese Objekte leider dauer-
haft im AdreBraum des Server-Prozesses, in dem sie angelegt wurden. Gleichzeitig stellt die
Modellierung iiber die interface-Klausel aber die einzige Moglichkeit dar, um Objekte mit
den Common Object Services (sieche Kapitel 4.3) interagieren zu lassen. Prinzipiell ergibt sich
dadurch natiirlich die Moglichkeit, Objekte mit der move-Operation des Lifecycle Service zu
migrieren. Fiir einzelne Objekte mag dies u.U. moglich sein, jedoch ist das zugrundeliegende
Protokoll fiir das temporire Caching groerer Objektmengen ungeeignet (siehe Kapitel 4.3.3).

Bedingt durch die zunehmende Kritik an den Mdoglichkeiten zur Modellierung von Objekten in
CORBA hat sich die OMG zur Erweiterung von IDL um einen sog. value-Typ entschieden. Die
Spezifikation ist mehr oder weniger abgeschlossen, jedoch wird diese Klausel frithestens mit
der Publikation von CORBA 2.3 standardisiert. Trotzdem wollen wir die zugrundeliegenden
Konzepte bereits an dieser Stelle diskutieren. value-Objekte sind quasi eine Mischung aus
struct und interface. Sie unterstiitzen die Deklaration von Methoden und einfachen Verer-
bungsbeziehungen (allerdings keine multiple Vererbung), sind aber keine CORBA-Objekte im
eigentlichen Sinne: Wie Strukturen sind sie weder beim ORB registriert, noch werden sie durch
einen Objekt-Adapter verwaltet. Weiterhin unterliegen sie bei der Parameteriibergabe der Call-
By-Value-Semantik (im Gegensatz zu Call-By-Reference bei interface-Objekten). Bei in-
Parametern wiirde der Zustand eines Objektes also vom Client zum Server kopiert und dort zur
Instantiierung eines Objektes mit genau diesem Zustand benutzt. Dafiir muf3 der Server natiir-
lich eine Implementierung dieses Objektes zur Verfiigung stellen. Das neu erzeugte Objekt steht
dann in keinerlei Beziehung zum urspriinglichen Objekt mehr (beide Objekte existieren unab-
hingig voneinander). Bei der Parameteriibergabe wird allerdings garantiert, da} jede value-
Instanz nur einmal iibertragen und auf dem Server instanziiert wird. Benutzt man z.B. das glei-
che value-Objekt fiir zwei verschiedene Parameter einer Methode, so werden beide Parameter
auf dem Server durch das gleiche Objekt reprisentiert. In diesem Sinne wird also schon die
Identitdt von Objekten beriicksichtigt (bei der Verwendung von Strukturen als Parameter wiir-
den zwei Strukturen mit gleichem Inhalt tibertragen und auf dem Server angelegt werden).

value-Typen konnen von einem oder mehreren interface-Typen erben. Man spricht dabei
allerdings von unterstiitzen (Schliisselwort support). Anders herum konnen interfaces aber
nicht von value-Typen erben. Durch die Verwendung von interfaces als Supertyp von value-
Typen wird erreicht, daf} auch Instanzen von value-Typen beim ORB registriert werden (da sie
letztendlich Instanz eines interface-Typs sind). Allerdings 146t sich diese Technik nicht zur
Migration benutzen: Bei der Parameteriibergabe wird immer noch der Zustand iibergeben, um
anschliefend eine neue Instanz mit dem gleichen Zustand anzulegen. Diese Instanz ist dann als
weiteres CORBA-Objekt registriert. Somit bleibt die Identitit nicht gewahrt.

Eine abschlieBende Gegeniiberstellung der wichtigsten Eigenschaften von Datenobjekten in
Abhingigkeit der jeweiligen Modellierung iiber die IDL-Klauseln struct, interface und
value ist in Tabelle 4.3 enthalten.

103

Eigenschaft struct- interface-Objekte value-Objekte
Objekte
Attribute ja ja ja
Methoden nein ja ja
Vererbung nein ja ja
(mehrfach) (einfach von value-Typen,
mehrfach von interfaces)
Registrierung/Verwaltung nein ja bedingt
durch ORB/Objekt-Adapter (nur bei interface-Supertypen)
Interaktion mit nein ja bedingt
Common Object Services (nur bei interface-Supertypen)
Migration nein bedingt nein
(Kopien) (Uber den LifeCycle Service) (Kopien)
Duplikate ja nein ja
Verfugbarkeit ja ja nein (CORBA 2.3)

Tabelle 4.3: Eigenschaften von Daten-Objekten in CORBA

4.6 Verwendete CORBA-Systeme

An dieser Stelle wollen wir kurz auf die einzelnen Implementierungen von CORBA-Systemen
eingehen, mit denen wir in den letzten Jahren praktische Erfahrungen gesammelt haben. Neben
den hier vorgestellten Produkten gibt es natiirlich noch eine Reihe weiterer Systeme auf dem
Markt. Unsere Auswahl bezog sich immer auf projektspezifische Kriterien und 1a6t sich somit
nicht als allgemeines Testurteil verstehen. Ein Ubersicht mit weiteren Produkten befindet sich
z.B. in [1X98]. Aufgrund der rasanten Entwicklung dieser Technologie diirfte aber selbst diese
in kiirzester Zeit iiberholt sein. Vor der Auswahl eines Systems sollte immer die erneute
Betrachtung des Marktes stehen.

4.6.1 Orbix

Orbix bzw. OrbixWeb wird von IONA Technologies in Irland entwickelt und ist ein zu CORBA
2.0 kompatibler ORB. Es steht jeweils eine Entwicklungsumgebung fiir C++ (Orbix) und Java
(OrbixWeb) zur Verfiigung. Die verwendeten Versionen sind Orbix 2.3 MT [IONA98b] und
OrbixWeb 3.1 [IONA98c] auf der Plattform SUN Solaris. Orbix ist aber fiir fast alle gingigen
Plattformen verfiigbar, u.a. auch MVS und OS/390. Kopplungen zu Windows-Plattformen und
DCOM sind iiber OrbixCOMet moglich. Die Entwicklungsumgebung fiir OrbixWeb wird hin-
gegen nur fiir Solaris, HP-UX und Windows angeboten. Aufgrund der Portabilitéit von Java lduft
der entwickelte Code aber auf allen Rechnern mit einer Java Virtual Machine.

104

Sowohl Orbix als auch OrbixWeb kommunizieren immer iiber das standardisierte IIOP (siche
Kapitel 4.2.4) und lassen sich damit sowohl untereinander als auch mit anderen CORBA-Syste-
men koppeln. Sollte ein kompletter ORB in einer spezifischen Umgebung zu viele Ressourcen
bendtigen (Speicher, CPU usw), so steht auch eine sog. IIOP Engine in Form einer C-Bibliothek
zur Verfiigung. Mit ihr kann eine rudimentdre Kommunikation auf Basis des GIOP/IIOP
erreicht werden, die aber keine weitere Funktionalitit von CORBA bietet.

Ergénzend zum ORB (Orbix bzw. OrbixWeb) werden von IONA einige Services und Adapter
angeboten. Diese stellen aber eigene Produkte dar und sind dementsprechend extra zu erwerben.
Verfiigbar sind ein Naming Service (OrbixNames), ein Event Service (OrbixEvents bzw.
OrbixTalk und Orbix+MQSeries), ein Trading Service (OrbixTrader), ein Transaction Service
(OrbixOTS) sowie ein Security Service (OrbixSecurity). Letzterer basiert auf OrbixSSL, wel-
ches die Kommunikation iiber IIOP durch eine mittels SSL abgesicherte Variante des IIOP
ersetzt. Die Kombination aus Orbix und allen Object Services kann komplett als OrbixOTM
(Orbix Transaction Monitor) bezogen werden. Neben diesen Produkten gibt es noch spezifische
Adapter zum Zugriff auf die objektorientierten DBVS Versant und ObjectStore sowie ein gener-
isches Object Database Adapter Framework (ODAF), mit dem sich weitere Adapter erstellen
lassen [IONA97]. Ohne diese Adapter verwendet Orbix immer den Basic Object Adapter
(BOA) zur Einbettung von Objekten. Der Portable Object Adapter (POA) aus CORBA 2.2 wird
noch nicht unterstiitzt.

Streng nach Spezifikation lassen sich mit dem ODAF erstellte Adapter als Object Oriented
Database Adapter (OODA) von CORBA 2.0 bezeichnen, sie unterstiitzen allerdings nicht die
von uns geforderte Migration von Objekten bzw. Objektmengen (siehe auch Abschnitt 4.2.3.2).
Wir werden das ODAF trotzdem noch genauer in Kapitel 5.4.10 (Modellierung) sowie
Kapitel 6.2.4 (Prototyp) diskutieren. An dieser Stelle betrachten wir dann auch einige Erweite-
rungen von Orbix gegeniiber dem CORBA-Standard: So lassen sich Objekte mit einem Marker
versehen, welcher die benutzerdefinierte Identifikation von Instanzen ermoglicht. Auflerdem
kann die effiziente Registrierung und Erzeugung von Objekten iiber sog. Loader kontrolliert
werden. Einfaches Caching einzelner Attribute auf dem Client 148t sich schlieBlich tiber Smart
Proxies erreichen, die quasi modifizierte Client Stubs darstellen.

Weitere Informationen und White Paper zur Produktfamilie von Orbix lassen sich auf der
WWW-Seite von IONA finden (www. iona.com).

4.6.2 ORBacus

Das zweite von uns verwendete CORBA-System ist ORBacus (ehemals OmniBroker) von
Object Oriented Concepts (OOC). Das System unterliegt der Royalty-Free Public License und
ist damit fiir die nicht kommerzielle Nutzung kostenlos verfiigbar. Es kann inklusive dem
Source Code aus dem Internet heruntergeladen werden (www . ooc . com). Die enthaltenen Make-
files gestatten eine komfortable Installation auf fast allen Pattformen. Fiir uns war insbesondere
die Verfiigbarkeit unter Linux entscheidend. ORBacus gibt es fiir C++ und Java [OOC98]. Die
aktuelle Version ist 3.1.1, unter Linux haben wir aufgrund von Problemen mit dem Compiler
z.T. aber noch Version 3.0.1 benutzt. ORBacus basiert generell auf der Kommunikation iiber das

105

IIOP. Die Basis-Installation umfal3t bereits Naming, Event und Property Services. Auflerdem
gibt es ein Plug In zur sicheren Kommunikation iiber SSL. (ORBacusSSL), das aber keinen
Security Service realisiert. Weiterhin kann ein separater Trading Service erworben werden. Die-
ser ist allerdings generell kostenpflichtig. Durch den freien Source Code lassen sich im Prinzip
eigene Ergdnzungen des ORB sowie weitere Object Services entwickeln. Dieses wird von OOC
auch ausdriicklich unterstiitzt.

Besonders positiv féllt beim ORBacus das Handbuch auf: Es ist gegeniiber Orbix zwar relativ
knapp gehalten (und eher fiir den erfahrenen CORBA-Programmierer gedacht), enthilt aber
genaue Hinweise darauf, welche Methoden denn nun konform zum Standard sind und welche
proprietdre Ergiinzungen realisieren.

Weitere Informationen, Handbiicher sowie ORBacus selbst konnen wiederum vom WW W-Ser-
ver bezogen werden (www . ooc . com bzw. www . ooc . de).

4.6.3 Component Broker

Der Component Broker (CB) von IBM enthilt neben dem ORB und fast allen Object Services
eine michtige Entwicklungs- und Laufzeitumgebung [IBM98a]. Der Entwickler kann sein
Business Model z.B. in UML grafisch spezifizieren und es direkt in den ObjectBuilder (OB) von
CB importieren. Mit dem OB konnen dann alle erforderlichen Objekte sowie die Anbindung an
persistente Speichermedien (z.B. DBVS) generiert werden [IBM98b, IBM98c]. Der Entwickler
braucht sich dabei nicht mehr um die Programmierung fiir die recht komplexe Interaktion mit
den Object Services zu kiimmern, kann dies bei Bedarf aber tun [IBM98d]. Zwar benutzt der
CB intern die von der OMG standardisierten Schnittstellen, letztendlich kann man den CB und
seine Vielzahl von Erweiterungen aber nicht mehr als CORBA-System im eigentlichen Sinne,
sondern nur als eine Middleware-Losung auf einer hoheren Ebene ansehen. Dieser Aspekt wird
von IBM auch betont. Neben der Konformitit zu CORBA ist IBM weiterhin bestrebt, eine Har-
monisierung mit Enterprise Java Beans (EJB, siehe [Sun98a]) zu ermdglichen. Genau genom-
men bildet der CB bereits ein auf EJB basierendes, aber deutlich allgemeineres Komponenten-
modell an.

Die Beta-Version 1.3 des CB wurde im November und Dezember 1998 im Rahmen einer kon-
zernweiten Evaluierung bei DaimlerChrysler getestet [DC99]. Wir waren dabei fiir das Arbeits-
paket ,,Architektur und Standardkonformitét* verantwortlich. Zu diesem Zeitpunkt war nur eine
Implementierung fiir Windows NT verfiigbar. Zum Betrieb von CB sind ein leistungsfahiger
Rechner (Pentium II mit 400 MHz, 256 MByte Hauptspeicher und 10 GByte Festplatte) sowie
weitere Software-Pakete notig: Das DBVS DB/2, Visual Age fiir C++ und Java, JDK 1.1.6,
Rational Rose (fiir die Modellierung in UML) und DCE (siehe auch Kapitel 4.8.1) als Basis fiir
den Naming und Security Service. Neben einigen Bugs fiel uns beim CB insbesondere die unno-
tig hohe Kommunikation beim Zugriff auf Attribute auf: Entsprechend der Philosophie von
CORBA werden Datenobjekte vom OB mittels der interface-Klausel von IDL auf viele fein-
granulare Objekte abgebildet (siehe auch Kapitel 4.5). Bei der Kopplung zu DBVS erhoht sich
die Anzahl der Objekte noch durch ein oder mehrere Abstraktionsstufen: Es gibt jeweils ein
vom Speichermedium unabhidngiges Data Object (DO) sowie ein oder mehrere Persistent

106

Objects (PO). Letztere sind fiir den DB-Zugriff und evtl. benédtigte Abbildungen der Datenmo-
delle (z.B. relational auf objektorientiert) zustandig. Obwohl eine Kapselung und Schichtenbil-
dung grundsitzlich zu begriilen ist, so befiirchten wir an dieser Stelle doch erhebliche Lei-
stungseinbuBen. Eine kleinere Testimplementierung auf Basis der Beta-Version zeigte jeden-
falls kein akzeptables Laufzeitverhalten. Konkrete Messungen, Leistungsbeurteilungen und
allgemeine Bewertungen sollten aber erst anhand der ersten kommerziell verfiigbaren Version
2.0 erstellt werden. Diese wird noch Jahre 1999 erwartet. Von IBM wird in diesem Zusammen-
hang auch betont, dal Windows NT mehr als Entwicklungsplattform gedacht ist, wihrend OS/
390 die eigentliche Plattform fiir leistungsfahige Laufzeitumgebungen darstellt.

Neben der bereits angesprochenen Untersuchung haben wir den Component Broker fiir keine
weitere Implementierung im Rahmen der vorliegenden Arbeit genutzt. Bedingt durch den Beta-
Status von CB wiiren hier keine sinnvollen Ergebnisse zu erwarten gewesen.

4.7 Komponenten in CORBA

Betrachtet man den Umfang und die Michtigkeit von IDL, so fillt schnell die fehlende Mog-
lichkeit zur Spezifikation der Semantik von Methoden auf. Zur Modellierung von Komponenten
entsprechend unserer Definition aus Kapitel 2.1 wire dies aber notig. Eine reine Beschreibung
der Syntax von Schnittstellen erscheint wenig hilfreich. Die OMG hat diesen Punkt auch
erkannt und die Spezifikation der Business Object Component Architecture (BOCA) sowie der
zugehorigen Component Description Language (CDL) eingeleitet. Daneben gibt es noch die
CORBA Components, die aber eher implementierungsnahe Details sowie die Installation von
Software betreffen. Im folgenden wollen wir beide Entwicklungen kurz vorstellen.

4.7.1 Die Business Object Component Architecture (BOCA)

Mit Hilfe der Business Object Component Architecture [OMG98b] soll eine grundlegende
Architektur sowie eine Schnittstellenbeschreibungssprache fiir Komponenten geschaffen wer-
den. Nachdem IDL hierfiir nicht ausreichend ist, wurde die Component Description Language
(CDL) entwickelt. Mit ihrer Hilfe 146t sich die Semantik von Komponenten beschreiben (z.B.
tiber Vor- und Nachbedingungen von Methoden oder globale Regeln). Mit Hilfe des CDL to IDL
Mapping konnen dann IDL-Definitionen als Basis fiir die Implementierung generiert werden.
Ein Beispiel fiir die mogliche Anwendung der BOCA und CDL zur Definition eines foderierten
API zur Integration verschiedener Anwendungssysteme ist in [SSSM99] enthalten. Die Details
sind im Rahmen dieser Arbeit nicht weiter von Interesse.

Leider wurden von der OMG die Arbeiten an der CDL mittlerweile wieder eingestellt. Statt des-
sen soll eine textuelle Beschreibung der UML entwickelt werden. Weiterhin ist auch die BOCA
selbst innerhalb der OMG umstritten, so daf3 ihr Status allgemein unklar ist. Aus diesem Grunde
wollen wir das Thema an dieser Stelle nicht weiter vertiefen und verweisen lieber auf aktuelle
Informationen der OMG (siehe www.omg. org).

107

4.7.2 CORBA Components

Orthogonal zur BOCA wird seit einiger Zeit an der Entwicklung der CORBA Components gear-
beitet, deren Spezifikation bisher noch nicht von der OMG verabschiedet wurde. Gleichzeitig
ist der Name etwas irrefiihrend. Es handelt sich hier nicht um ein Komponentenmodell entspre-
chend unserer Definition in Kapitel 2.1, sondern um eine implementierungsnahe Modularisie-
rung von Software: Eine CORBA Component soll eine gekapselte Implementierung von Funk-
tionalitdt sein, deren Installation und Laufzeitverhalten klar spezifiziert sind. Sie sollen die
Portabilitdt von Software sowie die Erstellung von Applikationen vereinfachen [OMG98g]:

“CORBA components extend the CORBA core object model and introduce a deploy-
ment model into the OMA. They also provide a higher level of abstraction of CORBA
and object services, greatly simplifying CORBA application development.”

CORBA Components sind angelehnt an das Komponentenmodell der Enterprise Java Beans
(EJB, siehe [Sun98a]) und basieren auf neuesten Entwicklungen der OMG: Dem IDL value
type (Kapitel 4.5), dem Portable Object Adapter (POA, Kapitel 4.2.3.3), dem Persistent State
Service (PSS, Kapitel 4.3.2) sowie dem Notification Service (Kapitel 4.3.1 und [OMG98c]).
Ergénzend dazu definieren die CORBA Components den neuen und fiir sie zentralen IDL-Typ
component. Analog zu EJB und DCOM (siehe Kapitel 4.8.2) bietet jede CORBA Component
genau ein standardisiertes Component Interface sowie eine Menge weiterer Schnittstellen an.
Letztere beschreiben die eigentliche Funktionalitit der CORBA Component. Uber das Compo-
nent Interface kann die Menge der angebotenen Schnittstellen abgefragt sowie eine Referenz
auf Objekte erworben werden, welche die jeweilige Funktionalitit implementieren. Alle
Schnittstellen von Objekten und Methoden werden wie gewohnt als IDL interface modelliert,
so daB keine Spezifikation der Semantik von Methoden moglich ist. Dies ist auch der Grund
dafiir, da wir die CORBA Components nicht als vollstindiges Komponentenmodell ansehen.

Zur Verbreitung und Installation von CORBA Components enthilt die Spezifikation einen
XML-basierten Component Descriptor. Dieser beschreibt die Eigenschaften der jeweiligen
Implementierung (Sprache, Version, Autor, Abhingigkeiten, bevorzugter ORB, Lizenzen usw).

Eine umfangreiche Beschreibung des Laufzeitverhaltens von CORBA Components (z.B. die
Interaktion mit dem Transaction Service) sowie ein eigenes Component Meta-Model ist eben-
falls Bestandteil der Spezifikation.

4.8 Abgrenzung zu anderen Middleware-Losungen

Neben dem CORBA-Standard gibt es natiirlich weitere Middleware-Produkte und Standards,
deren Aufzidhlung alleine den Rahmen dieser Arbeit sprengen wiirde. Wir wollen uns deshalb
auf die Losungen beschrinken, die weit verbreitet sind und eine ernsthafte Alternative zu
CORBA darstellen. Dies sind im wesentlichen das Distributed Computing Environment (DCE)
der Open Systems Foundation (OSF, siehe Kapitel 4.8.1), Microsofts (D)COM/OLE
(Kapitel 4.8.2) und IBMs Distributed System Object Model (DSOM, Kapitel 4.8.3). Ergénzend

108

dazu konnte man noch die bereits hdaufiger erwihnten Enterprise Java Beans (EJB) betrachten
[Sun98a]. Nachdem sich diese aber auf eine einzige Sprache beschrinken und eine Harmonisie-
rung mit CORBA im Rahmen der CORBA Components (Kapitel 4.7.2) bereits in der Entwick-
lung ist, wollen wir sie an dieser Stelle nicht weiter betrachten.

4.8.1 DCE

Das Distributed Computing Environment (DCE) wurde von der Open Systems Foundation
(OSF) mit einer dhnlichen Zielsetzung entwickelt wie CORBA [OHE94, OHE96]. Es regelt die
Interaktion in verteilten Umgebungen und umfal3t ebenfalls eine Interface Definiton Language
(IDL). Fiir die Kommunikation zwischen Objekten wurde der DCE-RPC (Remote Procedure
Call) definiert. Im Gegensatz zu CORBA gibt es aber nur zwei Services: Den Security und den
Cell Directory Service (CDS). Der Security Service ist direkt mit dem DCE-RPC verkniipft und
ermOglicht dementsprechend eine sichere Kommunikation. Der CDS entspricht quasi dem
Naming Service von CORBA.

In der Literatur wird hédufig darum gestritten, ob DCE und CORBA nun konkurrierende oder
erginzende Technologien sind [OHE96]. Wir vertreten die Ansicht, da} letzteres der Fall ist:
DCE hat quasi das gleiche Objektmodell und bildet eine méchtige Grundlage fiir eine sichere
und effiziente Kommunikation zwischen mehreren ORBs. Im CORBA-Standard ist das DCE/
ESIOP bereits als ein Beispiel fiir sog. Environment Specific Inter-ORB Protocols (siehe Kapitel
4.2.4) beschrieben. Es basiert auf dem DCE-RPC und ist aufgrund der hoheren Sicherheit eine
gute Alternative zum IIOP. Ergénzend dazu wurde von IBM der Beweis fiir eine mogliche und
sinnvolle Integration der zugrundeliegenden Services erbracht: Der Component Broker benutzt
DCE bzw. CDS als Basis fiir den CORBA Security und Naming Service.

4.8.2 (D)COM, OLE und ActiveX

Parallel zu CORBA wurde von Microsoft das speziell auf die Windows-Plattform abgestimmte
Component Object Model (COM) und das darauf aufbauende Distributed Component Object
Model (DCOM) entwickelt [Ses98]. Mit dieser Technologie soll ebenfalls die Interaktion von
Komponenten in einer verteilten (Windows-)Umgebung ermoglicht werden. DCOM besitzt
ebenfalls eine Interface Definition Language (MS-IDL) und ist angelehnt an OSF DCE (aber
nicht kompatibel). (D)COM-Objekte werden meist entsprechend der Notation in
Abbildung 4.17 grafisch beschrieben. Jedes Objekt implementiert mindestens die Schnittstelle
IUnknown, die Methoden zur Steuerung der Lebensdauer von Instanzen sowie eine Moglichkeit
zur Abfrage aller unterstiitzten Schnittstellen eines Objektes bietet. Daneben kann jedes Objekt
weitere Schnittstellen implementieren, die aber von T1Unknown erben miissen. Die Definition des
(D)COM-Objektes selbst besteht schlieBlich nur noch aus einer Aufzihlung der unterstiitzten
Schnittstellen. Fiir jeden Objekt-Typ (Klasse) und jede Schnittstelle wird eine global eindeutige
ID erzeugt, die in der sog. Windows Registry gespeichert ist. Anhand dieser Klassen-ID kann
ein Client die Erzeugung eines neuen (D)COM-Objektes initiieren. Im Unterschied zu CORBA
gibt es in DCOM keine Object Services, sondern nur eine auf der Windows Registry basierende

109

Laufzeitumgebung. In dieser werden u.a. alle verfiigbaren Implementierungen zu einer Klassen-
ID gespeichert. Zur Erzeugung eines Objektes sucht die (D)COM-Laufzeitumgebung nach
einer Implementierung der gewiinschten Klasse und leitet die Instantiierung im Adreraum des
zugehorigen Server-Prozesses ein. Clients erhalten grundsétzlich keine Referenz auf das eigent-
liche Objekt, sondern nur eine Referenz auf eine ausgewihlte Schnittstelle des Objektes. Nach
der Erzeugung eines neuen Objektes wire dies z.B. ein Zeiger auf die immer vorhandene
Schnittstelle Tunknown (@). Uber diese kann der Client nun eine Referenz auf eine andere
Schnittstelle erwerben (IUserDefIntf 1, @) und eine beliebige Methode von
IUserDefIntf 1 aufrufen ().

IUnknown

IUserDefIntf_1

Client (D)COM-Objekt

IUserDefIntf n O——]

Abb. 4.17: Beschreibung und Benutzung der Schnittstellen von (D)COM-Objekten

Im Gegensatz zu CORBA unterstiitzt (D)COM nur einfache (statt multipler) Vererbung auf der
Ebene von Schnittstellen. Weiterhin ist in (D)COM iiberhaupt keine Vererbung auf der Ebene
der Implementierungen moglich. Im wesentlichen liegt dies an der komplexen Interaktion zwi-
schen der Laufzeitumgebung und der Windows Registry. CORBA 148t diesen Punkt hingegen
offen, da nur Schnittstellen (und eben keine Implementierungen) beschrieben werden. Detail-
liertere Informationen zu diesem Thema befinden sich in [Be98, Ses98].

Trotz aller Unterschiede kann man die Objektmodelle beider Technologien als dhnlich bezeich-
nen. Aus diesem Grund hat die OMG auch das Interworking Object Model definiert [RC9S,
OMGI8f]. Ausgehend von einer Charakterisierung der Unterschiede zwischen (D)COM und
CORBA definiert dieses Modell eine Integration beider Welten auf Basis einer bidirektionalen
Briicke, d.h. es konnen sowohl CORBA-Clients auf DCOM-Server als auch DCOM-Clients auf
CORBA-Server zugreifen. Eine ausgezeichnete Beschreibung der dabei zu 16senden Probleme
sowie eine Dokumentation der gravierendsten Unterschiede wurde im Rahmen einer Diplomar-
beit zur Integration zweier DCOM- und CORBA-basierter PDM-Systeme erarbeitet [Be98], auf
die an dieser Stelle verwiesen sei. Der Beweis fiir die Realisierbarkeit der spezifizierten Briicke
wurde u.a. durch das Produkt OrbixCOMet von IONA erbracht (siehe Kapitel 4.6.1), welches
die Interaktion des CORBA-Systems Orbix mit DCOM-Komponenten erméglicht. Ein Ver-
gleich zwischen DCOM und CORBA auf Basis von Code-Fragmenten und zugrundeliegender
Kommunikationsmechanismen ist weiterhin in [CHY+97] enthalten.

Abschlielend wollen wir noch kurz auf die ebenfalls von Microsoft definierten Konzepte Object
Linking and Embedding (OLE) und ActiveX eingehen. OLE wurde urspriinglich zur Bearbei-
tung sog. Verbunddokumente spezifiziert. Damit konnen einzelne Teile eines Dokumentes mit
unterschiedlichen Anwendungsprogrammen erstellt werden, ohne dafl der Benutzer explizit
zwischen den einzelnen Programmen wechseln muf} (die verfiigbaren Funktionen werden auto-

110

matisch an den aktuellen Kontext angepal3t). ActiveX definiert hingegen niitzliche Steuerele-
mente, die von allen Programmen genutzt werden konnen. Sie ermdglichen z.B. den Zugriff auf
spezielle Hardware (wie etwa eine Soundkarte). Mittlerweile lassen sich beide Technologien
aber als eine ergdnzende Schicht oberhalb von DCOM ansehen. Es sind quasi DCOM-Kompo-
nenten mit spezifischen Schnittstellen. Deshalb ist weder fiir OLE, noch fiir ActiveX eine wei-
tere Harmonisierung mit CORBA nétig. Die o.g. Briicke zwischen DCOM und CORBA ist
bereits vollkommen ausreichend [Be98, Ses98].

4.8.3 (D)SOM

Ahnlich wie Microsoft hatte auch IBM urspriinglich ein eigenes Komponentenmodell mit dem
Namen System Object Model (SOM) entwickelt. Es ist speziell auf die OS/2-Plattform zuge-
schnitten und wurde mit der Netzwerkfdhigkeit von OS/2 Warp Connect zum Distributed
System Object Model (DSOM) erweitert. Im Gegensatz zu Microsoft hat IBM aber von Anfang
an Wert auf die Kompatibilitdt zum CORBA-Standard gelegt und diesen schon in frithen Phasen
aktiv durch eigene Erfahrungen und Arbeiten bereichert. Insofern wird (D)SOM héufig auch als
ein zum Standard konformes CORBA-Produkt mit optionalen Erweiterungen angesehen
[Ses96]. Das Objektmodell stimmt iiberein und die IDL von (D)SOM basiert auf der OMG-IDL.
Dementsprechend ist auch keine Briicke zwischen beiden Modellen nétig - es ist einfach die
selbe Technologie. Belegt wird dies wiederum durch den Component Broker (siehe Kapitel
4.6.3): Die Version fiir Windows NT basiert z.T. auf der bewéhrten SOM-Technologie.

4.9 Zusammenfassung

In diesem Kapitel haben wir eine rudimentire Einleitung in die Konzepte und Techniken des
CORBA-Standards gegeben sowie bereits auf einige Stiarken und Schwichen hingewiesen.
Ausgehend von unseren Anforderungen aus Kapitel 1 haben wir CORBA dabei in zwei Rollen
betrachtet: Als Middleware und als Komponentenmodell. Fiir die erste Rolle bietet der Standard
eine umfangreiche Funktionalitit, die lediglich im Bereich datenintensiver Anwendungen auf-
grund der feingranularen Modellierung und fehlender Konzepte zur Migration von Objektmen-
gen grofle Probleme bereitet. Wir werden diesen Aspekt in den nichsten Kapiteln noch genauer
beleuchten und mogliche Losungen hierfiir erarbeiten. Im Gegensatz dazu ist die Kernarchitek-
tur von CORBA in der Rolle eines Komponentenmodelles generell nicht ausreichend. Mit Hilfe
von IDL 146t sich nur die Syntax, aber eben nicht die Semantik von Schnittstellen beschreiben.
Mit der Definition der BOCA und einem Nachfolger der CDL (siehe Kapitel 4.7.1) versucht die
OMG nun dieses Defizit zu beseitigen. Nachdem die Standardisierung hier noch lange nicht
abgeschlossen bzw. unklar ist, wollen wir hier keine abschlieBende Bewertung zu diesem
Aspekt abgeben. Es sieht jedoch vielversprechend aus.

In Kapitel 4.8 haben wir schlielich noch erkannt, daB CORBA im Prinzip gar nicht mit anderen
Middleware-Losungen wie (D)COM, DCE oder (D)SOM in Konkurrenz steht. Im Gegenteil,
die Objektmodelle aller Technologien sind &dhnlich und eine Integration aller Systeme mit

111

CORBA ist bereits erfolgt. Somit gibt es auch keine Gewinner oder Verlierer. Alle Systeme wer-
den vermutlich in der Zukunft weiterhin nebeneinander existieren und kooperieren. Allerdings
ergibt sich dieses Resultat nur bei einem Vergleich in der Rolle von Middleware. Betrachtet man
die jeweiligen Ansitze eines Komponentenmodelles, so ergeben sich doch weitere Unter-
schiede. Vielfach kann eigentlich gar nicht mehr von einem Komponentenmodell (entsprechend
unserer Definition in Kapitel 2.1) gesprochen werden: DCE definiert im Prinzip nur eine Infra-
struktur zur Kommunikation und DCOM ist sehr eng auf die Windows-Plattform zugeschnitten.
Hier ergeben sich also starke Abhingigkeiten zur jeweiligen Implementierung, wie wir sie
eigentlich vermeiden wollen.

Letztendlich sollte aber noch einmal betont werden, daf3 sich insbesondere CORBA noch in der
Entwicklung befindet und positive wie auch negative Forschungsergebnisse immer noch Ein-
fluf auf die weitere Standardisierung nehmen konnen.

112

Kapitel 5
Datenquellen und Datenzugrift

Nach einer Diskussion der spezifischen Standards STEP und CORBA wollen wir uns nun wie-
der einem breiteren Thema widmen: der Datenversorgung von Systemen. Hier sind im Prinzip
zwei wesentliche Aspekte zu betrachten. Zunéchst einmal stellt sich die Frage, wie und in wel-
chem Format Daten denn iiberhaupt gespeichert werden. Letztendlich entspricht dies einer Cha-
rakterisierung von Datenquellen, die aber ein weitaus groferes Spektrum umfassen als nur reine
Datenbankverwaltungssysteme (DBVS). Darauf aufbauend ist dann zu klidren, welche Schnitt-
stellen fiir den Zugriff auf Datenquellen zur Verfiigung stehen bzw. welche Formen des Zugriffs
aus Sicht einer Anwendung niitzlich wiren. Hierbei ist insbesondere die Kategorie der Anwen-
dung zu beriicksichtigen: Handelt es sich um eine auftragsbezogene oder eine datenintensive
Verarbeitung? Ist dementsprechend reines Operation Shipping ausreichend oder muf3 man
umfangreiche Mechanismen zum Data Shipping (vgl. Kapitel 2.5) realisieren? Neben diesem
Aspekt ist hiufig ein Bruch der Datenmodelle zu iiberbriicken: Beispielsweise sind moderne
Anwendungen meist objektorientiert modelliert, wihrend langfristig gewachsene Datenbe-
stinde hiufig in relationalen DBVS gespeichert sind. Vielfach bietet es sich daher an, eine
Schicht oder Komponente zur Konvertierung der Datenmodelle einzufiihren.

Bedingt durch unser Anwendungsszenario, dem Produktdatenmanagement (PDM), liegt der
Schwerpunkt dieses Kapitels klar auf Konzepten zur Unterstiitzung datenintensiver Umgebun-
gen mit einem objektorientierten Datenmodell innerhalb der Applikation. Auf dieser Ebene ist
insbesondere die Modellierung mit EXPRESS bzw. der Zugriff iiber SDAI zu ermoglichen
(siehe Kapitel 3). Gleichzeitig sollen aber alle Arten von Datenquellen unterstiitzt werden (also
nicht nur relationale oder objektorientierte DBVS). Unterhalb der Datenversorgungsschnitt-
stelle fiir die Applikation (beispielsweise SDAI) ist somit eine allgemeine Schicht zur Daten-
versorgung und Konvertierung unterschiedlicher Modelle notig. Diese greift letztendlich auf die
eigentlichen Datenhaltungssysteme mit ihren jeweiligen Schnittstellen zu. Bei der Datenversor-
gung wird unser Fokus insbesondere auf Data Shipping in CORBA-basierten Systemen liegen.
Die so gewonnenen Ergebnisse dienen schlieBlich als Grundlage zur Definition der JavaSDAI-
Schnittstelle sowie dem Entwurf des zugehorigen Prototypen in Kapitel 6.

Im folgenden werden wir zunichst mit der Charakterisierung méglicher Datenquellen und ihren
typischen Zugriffsschnittstellen beginnen (Kapitel 5.1). Darauf aufbauend betrachten wir in
Kapitel 5.2 die Integration mehrerer Datenquellen iiber sog. DB-Middleware. Vielfach ist diese
aber noch auf relationale Verarbeitungskonzepte beschrinkt, so da wir in Kapitel 5.3 eine
ergdnzende Abbildung von objektorientierten Datenmodellen auf relationale Schemata untersu-

113

chen. Kapitel 5.4 ist dann der Diskussion allgemeiner Datenversorgungsstrategien unter Ver-
wendung von CORBA gewidmet. Hierbei gehen wir sowohl auf die Modellierung mit IDL, den
moglichen Einsatz der Common Object Services, konzeptuelle Stirken und Schwichen des
Standards, verwandte Forschungsarbeiten und kommerzielle Produkte zur DB-Integration, als
auch auf proprietire Erweiterungen ein. In Kapitel 5.5 betrachten wir abschlieBend noch Daten-
versorgungsstrategien und Techniken im Bereich des Intra-/Internet. Einen Schwerpunkt bildet
dabei die Sprache Java.

5.1 Charakterisierung von Datenquellen

Die wiederholte Verarbeitung groferer Mengen von Daten ist nur dann sinnvoll, wenn diese
auch persistent gespeichert werden konnen und nicht fiir jeden Verarbeitungsschritt erneut ein-
zugeben sind. Gleichzeitig ist es natiirlich notwendig, daB sich einmal gespeicherte Daten auch
moglichst schnell wiederfinden lassen (effizienter Zugriff) bzw. Anderungsoperationen unter-
stiitzt werden. In den letzten Jahren hat sich in diesem Bereich der Einsatz der mittlerweile
hochgradig optimierten und effizienten Datenbankverwaltungssysteme (DBVS) etabliert. In
einigen Fillen (wie etwa digitalisierten Filmen oder groen Multimedia-Objekten) bietet sich
aber nach wie vor die Ablage in einfachen Dateien an. Daneben kann noch der Fall auftreten,
daf} die eigentliche Datenquelle bereits durch ein spezielles Anwendungsprogramm gekapselt
wird. Dieses bietet dann nur ein meist proprietires APl (Application Programming Interface)
an, das von der konkreten Speicherung abstrahiert. Oftmals sind die Daten dabei nur das Ergeb-
nis komplexer Funktionsaufrufe, d.h. ein direkter Zugriff auf einzelne Daten ist evtl. gar nicht
moglich. Im folgenden wollen wir deshalb kurz auf einige Varianten von Datenquellen einge-
hen, ndmlich die Datenspeicherung in Dateien (Kapitel 5.1.1), relationalen DBVS
(Kapitel 5.1.2), objektorientierten DBVS (Kapitel 5.1.3) sowie den neueren objektrelationalen
DBVS (Kapitel 5.1.4). Fiir eine Einfiihrung in weitere Arten von DBVS (etwa auf dem Netz-
werkmodell basierende hierarchische Datenbanken) sei auf [Da94] verwiesen. In Kapitel 5.1.5
betrachten wir dann alternative Speicherungsformen und Schnittstellen, wie den gerade erwihn-
ten Datenzugriff iiber APIs ausgezeichneter Anwendungssysteme. Die Eigenschaften aller
betrachten Varianten von Datenquellen fassen wir abschlieend in Kapitel 5.1.6 zusammen.

5.1.1 Dateien

Die Ablage von Daten in Dateien ist im Prinzip die dlteste Form der persistenten Speicherung:
Jede Datei ist eine sequentielle Folge von Bytes, die man mit sehr einfachen Lese- und Schreib-
operationen bearbeiten kann. Frither war nur ein sequentielles Lesen und Schreiben vom
Anfang bis zum Ende einer Datei moglich, heutzutage wird meist auch die wahlfreie Positionie-
rung innerhalb einer Datei unterstiitzt. Schreibende Zugriffe, bei denen nachfolgende Daten-
sdtze bei Bedarf automatisch verschoben werden, oder eine durch Transaktionen abgesicherte
Verarbeitung gibt es hingegen nicht. Die Zugriffsfunktionen stehen einem Programmierer im
allgemeinen als Bibliothek der verwendeten Programmiersprache zur Verfiigung.

114

Aufgrund einer fehlenden Formatvorschrift sind Dateien sehr flexibel, bergen gleichzeitig aber
auch ein hohes Risiko: Wie stellt man sicher, da3 der Inhalt einer Datei von jedem Programm
gleich interpretiert wird? Friither wurde das Format der Daten zur Einsparung von Speicherplatz
direkt in die Lese- und Schreibroutinen der Anwendungsprogramme eincodiert. In den Dateien
selber waren keine derartigen Metadaten enthalten. Dieser Zustand ist akzeptabel solange
immer nur die gleichen Anwendungen, deren Konsistenz von einem einzigen Administrator
tiberwacht wird, auf diese Dateien zugreifen. Mit der zunehmenden Vernetzung und dem Aus-
tausch von Daten ist dieser Ansatz aber zum Scheitern verurteilt. Es haben sich daher mehrere
standardisierte Dateiformate etabliert, deren Typ héufig iiber die Endung des Dateinamens
sowie einen Kopf mit Metadaten bestimmt wird. Beispiele hierfiir sind die Multimedia-Formate
GIF, JPEG oder MPEG, die Strukturierung und Verkniipfung von Text-Dateien mit HTML
[RLA+98, Da+98] oder ASCII-basierte STEP Physical Files (siehe Kapitel 3) als Austausch-
format fiir das Produktdatenmanagement.

5.1.2 Relationale DBVS

Mit der Verwendung relationaler DBVS (RDBVS) steht ein méchtiges Werkzeug zur Verarbei-
tung grofler Datenmengen zur Verfiigung, dessen zugrundeliegende Technologie in den letzten
20 Jahren kontinuierlich verbessert wurde [Da94]. Das Schema einer relationalen Datenbank
besteht aus einer Menge von Tabellen, die jeweils eine Reihe von Attributen umfassen. Der Typ
von Attributen ist auf Basistypen fiir Zahlen, Zeichen, Zeichenketten sowie Zeitstempel und
Intervalle beschrinkt. Ein Datensatz entspricht dann einer Zeile in einer Tabelle und wird als
Tupel bezeichnet. Die Identitéit von Tupeln wird in RDBVS nicht iiber eine ID, sondern iiber die
Daten selbst bestimmt. Dafiir wird je Tabelle ein Attribut (bzw. eine Kombination mehrerer
Attribute) als Primérschliissel definiert. Einfache Beziehungen (1:1 und n:1) werden ebenfalls
tiber den Wert der Daten modelliert, indem der Primérschliissel des referenzierten Tupels in den
jeweiligen Datensatz aufgenommen wird. Kollektionstypen werden vom relationalen Modell
hingegen nicht unterstiitzt. Dies fiihrt auch dazu, dal mehrwertige Beziehungen (n:m) nur iiber
eigenstidndige Tabellen zu realisieren sind, welche lediglich die beiden Primérschliissel der
beteiligten Relationen umfassen. Vererbungskonzepte (Klassifikation und Generalisierung,
sieche [MMM93]) sind ebenfalls nicht enthalten. Regeln zur Zusicherung der Integritit des
Datenbestandes konnen hingegen bei den meisten RDBVS spezifiziert werden. Diese Funktio-
nalitiit ist aber weniger Bestandteil des relationalen Modells, sondern vielmehr eine proprietére
Erweiterung der einzelnen RDBVS.

Zum Lesen und Schreiben von Tupeln steht die von der ISO standardisierte Structured Query
Language (SQL 2, siche [DD97]) zur Verfiigung. Sie ermoglicht eine mengenorientierte Anfra-
geverarbeitung. Jede Anfrage kann dabei von einem sog. Query Optimizer umgeschrieben und
damit (z.T. erheblich) beschleunigt werden. Jegliche Verarbeitung ist weiterhin durch ACID-
Transaktionen [HR83] abgesichert. Ist ein RDBVS als Client/Server-System ausgelegt, so fin-
det die gesamte Verarbeitung trotzdem auf dem Server statt. Der Client realisiert lediglich die
Schnittstelle zur Applikation, d.h. er leitet die Anfrage sowie evtl. ndtige Parameter an den Ser-
ver weiter und gibt anschlieBend das Ergebnis (eine Multimenge relationaler Tupel) an die
Applikation zuriick. Eine Pufferung von Daten im Client findet im allgemeinen nicht statt.

115

Beispiele fiir Schnittstellen zu RDBVS sind Embedded SQL [Da94], Remote Database Access
(RDA, siehe [DD97]), das X/Open SQL Call Level Interface (CLI, sieche [OG95]), Microsofts
Open Database Connectivity (ODBC, siehe [Mi95]) sowie die Java Database Connectivity
(JDBC, siehe [Sun97a]) von SUN. Alle diese Schnittstellen lassen sich sowohl fiir eine lokale,
wie auch fiir die gerade beschriebene Client/Server-basierte Verarbeitung benutzen.

5.1.3 Objektorientierte DBVS

Mit dem Einzug der objektorientierten Technologie in den achtziger Jahren stellte sich die
Frage, wie man denn Objekte am besten persistent speichern konnte. Als einfachste Losung
erschien es, Persistenz als eine Eigenschaft von Objekten zu betrachten. Dementsprechend
brauchte man keine neue Modellierungssprache, sondern eine Moglichkeit diese Eigenschaft zu
beschreiben. Es entwickelten sich die objektorientierten DBVS (OODBVS). Sie stellen im
wesentlichen eine Erweiterung der jeweiligen Programmiersprache (meist C++) um persistente
Objekte dar. Dementsprechend gibt es in den urspriinglichen Systemen auch keine Anfragespra-
che oder eine mengenorientierte Verarbeitung, sondern lediglich eine Navigation iiber die in der
Programmiersprache definierten Referenzen zwischen einzelnen Objekten. Ein zum OODBVS
gehorender Precompiler erkennt die Deklarationen zur Persistenz und erzeugt daraus notige
Befehle fiir die Laufzeitumgebung des OODBVS. Abgesehen vom explizit notwendigen Starten
und Beenden von Transaktionen ist die gesamte Verarbeitung (bzgl. Datenspeicherung) trans-
parent fiir die Applikation.

Durch die urspriinglich fehlende Standardisierung von OODBVS bzw. das Fehlen eines allge-
mein anerkannten Modelles (wie etwa dem relationalen Modell bei RDBVS) und die enge
Kopplung zu jeweils einer Programmiersprache entstanden viele Produkte mit sehr unterschied-
lichen Schnittstellen und Konzepten. Dementsprechend konnten Programme auch nur sehr
schwer auf mehrere OODBVS zugreifen oder gar von einem OODBVS auf ein anderes portiert
werden. Dieser Sachverhalt bewegte die Hersteller objektorientierter DBVS zur Griindung der
ODMG (Object Database Management Group) und zur Definition des ODMG-Standards
[CB97]. Dieser definiert ein abstraktes Objektmodell, eine Object Definition Language (ODL)
zur Modellierung von Persistenz, Aggregaten und Beziehungen sowie eine Object Query Lan-
guage (OQL) fiir eine rudimentédre, mengenorientierte Anfrageverarbeitung in objektorientier-
ten Umgebungen. Fiir konkrete Implementierungen gibt es dann sog. Language Bindings fiir die
gebriduchlichsten objektorientierten Programmiersprachen (C++, Smalltalk, Java). Die Kon-
zepte des ODMG-Standards, insbesondere ODL, sind sehr stark angelehnt an den CORBA-
Standard und dessen IDL (vgl. Kapitel 4). Dementsprechend gibt es auch schon einige Produkte
zur Kopplung von CORBA-Systemen und OODBVS, die héufig als OODA (vgl. Kapitel 4.2.3)
bezeichnet werden. Dabei auftretende Probleme werden wir noch genauer in Kapitel 5.4.10
betrachten.

So gut wie alle OODBVS sind als Client/Server-System realisiert. Im Gegensatz zu RDBVS
kann man hier allerdings drei verschiedene Architekturen unterscheiden, die jeweils ein anderes
Granulat zur Kommunikation zwischen Client- und Server-Komponenten des OODBVS benut-
zen [HMNROS5]: Object Server, Page Server und Query Server. Beim Object und Page Server

116

ist der Server quasi nur fiir die Speicherung von Objekten bzw. Seiten und die Verwaltung von
Sperren zustdndig. Die eigentliche Verarbeitung von Objekten geschieht vollstindig auf dem
Client. Bei sehr komplexen Anfragen muf3 u.U. sogar die gesamte Datenbank zum Client trans-
feriert werden, obwohl das Ergebnis vielleicht nur wenige Objekte umfa3t. Beim Query Server
konnen hingegen Anfragen auf dem Server ausgewertet werden, der Client erhélt jeweils nur
das Ergebnis.

Einen interessanten Aspekt bet OODBVS stellt weiterhin die Identitdt von Objekten und die
damit verbundene Realisierung von Referenzen dar. Jedes Objekt besitzt i.a. eine systemspezi-
fische ID, die unabhiingig von den enthaltenen Daten ist und sich wéhrend der Lebensdauer
eines Objektes nicht veridndert. Anhand dieser ID (oft auch als OID bezeichnet) kann jedes
Objekt in der Datenbank lokalisiert werden. Oftmals ist dies zugleich die einzige Moglichkeit
zur Identifikation, so daf3 Referenzen auf Objekte nur unter Benutzung dieser OID moglich sind.
Gleichzeitig soll zur Laufzeit aber eine Navigation zwischen Objekten analog zum Traversieren
von Zeigern im Hauptspeicher moglich sein (DB-Objekte sind aus Sicht der Applikation nur
ausgezeichnete Objekte im Adrefraum der Anwendung). Dementsprechend muf3 beim Einla-
gern von Objekten in den Puffer des OODBVS-Clients eine Konvertierung der Referenzen vom
ID-basierten Format auf dem Externspeicher zum Zeiger-basierten Format im Hauptspeicher
stattfinden. Man spricht an dieser Stelle von Pointer Swizzling [KK93].

5.1.4 Objektrelationale DBVS

Nachdem RDBVS keine ausreichende bzw. komfortable Unterstiitzung fiir objektorientierte
Anwendungen bieten und existierende OODBYVS bisher nicht die erwartete und von RDBVS
bekannte Leistung erbrachten, wurde Mitte der achtziger Jahre die Entwicklung der sog. objekt-
relationalen DBVS (ORDBYVS) eingeleitet. Sie stellen im Prinzip eine Einbettung objektorien-
tierter Technologie in das relationale Verarbeitungskonzept dar: Der Typ von Attributen einer
Tabelle ist nun nicht mehr auf die in Kapitel 5.1.2 beschriebenen Basistypen beschrinkt, son-
dern es konnen dafiir benutzerdefinierte Objekttypen spezifiziert werden. Diese Sichtweise ist
natiirlich stark vereinfacht, im Rahmen der vorliegenden Arbeit aber ausreichend. Fiir eine ver-
tiefte Einfiihrung in die Konzepte von ORDBVS sei z.B. auf [SBM98] verwiesen.

Zur Modellierung benutzerdefinierter Typen sowie zur Formulierung von Anfragen wird der
SQL-Standard derzeit von der ISO erweitert: SQL 3 soll die Basis fiir ORDBYVS bilden, wih-
rend die dltere Version SQL 2 weiterhin fiir RDBVS zur Verfiigung steht. Aufgrund der noch
nicht ganz abgeschlossenen Standardisierung von SQL 3 haben wir diese Technologie aber noch
nicht zur Implementierung unseres Prototypen benutzt. Gleichzeitig ist allerdings zu betonen,
daf} die Schnittstelle des CORBA Query Service (sieche Kapitel 4.3.5) bereits ausreichend fiir
den Einsatz von ORDBVS wiire (bei Verwendung von SQL 3 als Anfragesprache). Dementspre-
chend konnte unser in Kapitel 6.2.2 beschriebenes Data Module nach Abschlufl der Standardi-
sierung ohne groflere Probleme auf ORDBVS portiert werden. Dadurch wiirde die Implemen-
tierung sogar erheblich vereinfacht.

117

5.1.5 Durch Anwendungsprogramme gekapselte Datenquellen

Gerade bei der Integration existierender Systeme ist es hiufig nicht moglich, direkten Zugriff
auf eine Datenquelle zu erhalten. Statt dessen miissen meist proprietire API-Funktionen des zu
integrierenden Systems aufgerufen werden. Dies kann einerseits an dem monolithischen Cha-
rakter der zugrundeliegenden Software-Architektur liegen (es sind einfach keine Schnittstellen
fiir den direkten Datenzugriff vorgesehen), andererseits aber auch auf einer gewissen Form von
Zugriffsschutz und Integritéitserhaltung basieren. Beispiele fiir derartige Architekturen sind
PDM-Systeme wie Metaphase [SDRC] oder SAP R/3 [SAP]. Sie stellen beide nur stark einge-
schriankte Schnittstellen fiir den externen Datenzugriff zur Verfiigung. Bei SAP hiitte eine
direkte Modifikation der Daten in den benutzten DBVS sogar fatale Folgen: Die Konsistenz von
Daten wird hier nicht durch Regeln innerhalb des DBVS iiberpriift, sondern im dariiberliegen-
den SAP-System. Ein direkter Zugriff auf die DBVS, der nicht mit der SAP-Laufzeitumgebung
abgestimmt ist, konnte also die Integritét des gesamten Datenbestandes gefdhrden.

Will man o.g. Systeme als Datenquelle in eine Umgebung mit datenintensiver Verarbeitung
(Data Shipping) einbinden, so liegt das grofite Problem in den Unterschieden der einzelnen
APIs und Datenformate: Vielfach haben die angebotenen Operationen zu viele Seiteneffekte
(d.h. Anderungen) im Anwendungssystem zur Folge, es ist auf bestimmte Informationen gar
kein Zugriff moglich oder der Schutz durch Transaktionen fehlt. Je nach Anforderungen sollte
dann eher auf Operation Shipping ausgewichen werden, bei dem direkt die Operationen des zu
integrierenden Systems angesprochen werden. Aufgrund der Komplexitit des Themas konnen
wir diesen Aspekt im Rahmen der vorliegenden Arbeit aber nicht weiter vertiefen. Erste
Ansitze zur Integration heterogener APIs konnen z.B. [SSSM99] enthommen werden.

5.1.6 Zusammenfassung

In diesem Kapitel haben wir ausgewéhlte Formen von Datenquellen besprochen. Dateien stellen
die einfachste Form der Datenhaltung dar. Sie sind ausreichend fiir gro3ere Objekte, die entwe-
der ganz oder gar nicht gelesen und nur selten modifiziert werden (z.B. Bilder im GIF- oder
JPEG-Format). DBVS bieten ein méchtiges Modell und eine durch Transaktionen abgesicherte
Verarbeitung an. Je nach Anforderung stehen relationale, objektorientierte oder objektrelatio-
nale DBVS zur Verfiigung. Schwer zu charakterisieren sind hingegen Datenquellen, deren
Zugriff durch Anwendungsprogramme (AP) gekapselt ist. Hier muf3 unter Umsténden eine API-
Integration und der Wechsel auf Operation Shipping erfolgen. Eine Gegeniiberstellung der
wichtigsten Eigenschaften von Datenquellen ist in Tabelle 5.1 enthalten.

Betrachtet man jeweils das Zugriffsverhalten, so fillt bei Dateien ein Aspekt besonders auf:
Hier wirkt sich namlich die Einfiigereihenfolge auf den spéteren Datenzugriff aus. Ohne den
Einsatz einer zusitzlichen Indexstruktur (und der Fahigkeit zur direkten Positionierung inner-
halb einer Datei) miissen bei der Suche nach einem Datum immer alle zuvor eingefiigten Daten
gelesen werden. Bei RDBVS wird hingegen durch die mengenorientierte Verarbeitung von der
konkreten Einfiigereihenfolge abstrahiert (sie ist fiir die Anwendung nicht mehr zu erkennen).
Ahnliches gilt fiir O(R)DBVS. Hier wird lediglich die Anordnung der Elemente innerhalb von
geordneten Kollektionen (Array und Liste) beibehalten - dies ist aber notig und erwiinscht.

118

Eigenschaft Dateien RDBVS OODBVS ORDBVS AP
Datenmodell keines relational objektorientiert | relational mit OO- | proprietér
Erweiterungen
Modellierungssprache SQL 2 - DDL keine bzw. SQL 3 - DDL
ODMG-ODL (geplant)
Vererbung nein ja ja
Aggregate nein ja ja
Identifikation Uber Werte der Uber eine OID tber durch AP
von Daten) Daten Werte & OID bestimmt
Darstellung Uber Werte als gemischt
von Referenzen (Primér- und HSP-Zeiger
Fremdschllssel) | bzw. Gber OID
Integritats- ja als Verhalten ja
bedingungen von Objekten
Typische Schnittstellen Read, Embedded SQL, proprietér bisher wie proprietéar
Write, RDA, bzw. RDBVS
Seek X/Open CLI, ODMG (proprietare
ODBC, JDBC Erweiterungen)
Anfragesprache - SQL 2 - DML keine bzw. SQL 3 - DML
ODMG - OQL (geplant)
Zugriffsart sequentiell | mengenorientiert navigierend mengenorientiert
bzw. index- und navigierend
sequentiell durch AP
bestimmt
Transaktionen nein ja (ACID) ja (ACID) ja (ACID)
Zugriffsverhalten nein ja bedingt bedingt
unabhéngig von der (gilt z.B. nicht (s. OODVS)
Einfligereihenfolge? fur Aggregate)
Client/Server-basierte bedingt moglich fast immer moglich
Verarbeitung (z.B. NFS:
Network
File
System)
Anfrage- im Server im Client im Server g::&i‘;
verarbeitung (Object und
Page Server)
- im Server
(Query Server)
Cache im Client nein ja nein

Tabelle 5.1: Gegeniiberstellung unterschiedlicher Formen von Datenquellen

119

5.2 Integration und Zugriff iiber DB-Middleware

Im Zeitalter zunehmender Unternehmensfusionen und der damit verbundenen Integration von
Systemen und Datenbestéinden kann hdufig nicht mehr davon ausgegangen werden, daf} alle von
einer Anwendung bendtigten Daten in einer Datenquelle gespeichert sind bzw. durch ein einzi-
ges DBVS verwaltet werden. Gleichzeitig ist es aber wiinschenswert, dall es aus Sicht der
Applikation jeweils nur eine einzige logische Datenquelle gibt. Dafiir sind im wesentlichen
zwei Aspekte zu beriicksichtigen. Zunidchst muf} auf der konzeptuellen Ebene eine einheitliche
Modellierung der Daten gefunden werden, d.h. die zugrundeliegenden Schemata der beteiligten
Datenquellen sind zu einem foderierten Schema zu integrieren [Sa98]. Anschliefend gilt es
dann, die eher technische Problematik einer globalen Zugriffsschnittstelle zu 16sen.

In Kapitel 2.4.4.2 haben wir bereits einen moglichen Ansatz zur Integration betrachtet: die Ver-
wendung kommerzieller DB-Middleware. Diese Systeme ermoglichen den homogenen Zugriff
auf heterogene Datenbestinde, die durch mehrere DBVS verwaltet werden. Allerdings gibt es
dabei eine Reihe von Einschrinkungen. So stehen auf der globalen Ebene meist nur relationale
bzw. an die Entwicklung von SQL3 angelehnte objektrelationale Konzepte zur Verfiigung. Die
Modellierung des foderierten Schemas erfolgt dementsprechend iiber SQL-Sichten. Hier tritt
aber in vielen Fillen das Problem auf, daB die Propagierung von Anderungen an die zugrunde-
liegenden DBVS nicht entscheidbar ist und somit nur ein lesender Zugriff unterstiitzt werden
kann [Sa98]. Weiterhin gibt es bereits einige standardisierte globale Schemata (wie etwa die
Application Protocols des STEP-Standards, siche Kapitel 3), die man an dieser Stelle gerne
benutzen wiirde. Teilweise gibt es sogar schon Konzepte zur Abbildung dieser globalen Sche-
mata auf heterogene Datenquellen, die auch einen schreibenden Zugriff unterstiitzen sollen. Als
Beispiele seien hier die sog. Mapping-Sprachen BRIITY [Sa96] und EXPRESS-X (STEP)
genannt.

Ein anderes Problem betrifft die zur Verfiigung stehenden Schnittstellen. Aus Sicht der in
Kapitel 2.4.4.2 diskutierten Integration heterogener (O)RDBVS sind Embedded SQL, RDA, das
X/Open CLI, ODBC oder JDBC natiirlich vollig ausreichend. Betrachtet man hingegen in
EXPRESS modellierte Datenmodelle (wie etwa die STEP APs), so wiren Schnittstellen wie das
SDAI (Kapitel 3.2) angemessener. Ahnliches gilt allgemein fiir objektorientierte Schemata (es
gibt keine auf ODMG/OQL basierende DB-Middleware). Zwar konnte mit der Standardisie-
rung von SQL 3 evtl. eine Abbildung von EXPRESS auf das objektrelationale Modell erfolgen
[HLS98], dies hédngt aber sehr stark von einer Unterstiitzung fiir multiple Vererbung ab. Und es
sieht derzeit so aus, da3 SQL 3 keine multiple Vererbung unterstiitzten wird (die entstehenden
technischen Probleme sind bisher nur unzureichend gelost).

Letztendlich stellt sich noch die Frage, auf welche Art denn Datenquellen wie Dateien oder
durch Anwendungsprogramme gekapselte Datenbestiinde zu integrieren sind. Diese bieten
keine Form von Anfrageverarbeitung an und konnen deshalb nur bedingt mit DB-Middleware
interagieren, die hdufig auf SQL- oder OQL-basierte Schnittstellen der lokalen Datenquellen
angewiesen ist (sie ist primér auf die Anbindung lokaler DBVS ausgerichtet).

Wir erkennen also, dal DB-Middleware zur Bildung allgemeiner, integrierter Datenquellen
alleine nicht ausreichend ist. In den folgenden Kapiteln werden wir deshalb alternative bzw.
ergdnzende Techniken diskutieren.

120

5.3 Abbildung objektorientierter Datenmodelle auf RDBVS

Soll eine objektorientiert modellierte Anwendung ihre Daten persistent in einem RDBVS spei-
chern, so sind die Attribute aller Klassen auf relationale Tabellen abzubilden. Dabei sollte einer-
seits die Semantik des zugrundeliegenden Datenmodells (wie z.B. Vererbungsbeziehungen)
erhalten bleiben, andererseits aber auch ein effizienter Zugriff iiber SQL-Anfragen ermoglicht
werden. Diesen z.T. widerspriichlichen Zielen werden wir uns im folgenden widmen. Die
Abbildung des Verhaltens von Objekten (d.h. den Methoden) ist hingegen nicht mdglich.
Moderne RDBVS unterstiitzen zwar dynamische Aspekte wie Integrititsbedingungen oder sog.
ECA-Regeln [WC95], diese reichen meist aber nicht zur Abbildung allgemeiner Methoden der
Anwendungsprogramme aus. Aulerdem wiirde dieser Schritt nur zu unerwiinschter Replikation
von Code fiihren (auch OODBVS speichern keine Methoden oder Programme - sie benutzen
direkt das Anwendungsprogramm).

Bei der Abbildung einer Klassenhierarchie (und darin enthaltenen Attributen) auf relationale
Tabellen entstehen nun im wesentlichen die folgenden vier Probleme:

® Wie kann die Identitdt von Objekten modelliert und garantiert werden?
Objekte werden im allgemeinen iiber einen sog. Object Identifier (OID) identifiziert. Die-
ser ist in geeigneter Weise auf die Primirschliissel der resultierenden Tabellen abzubilden.
Dabei muB} beachtet werden, daf3 eine OID eindeutig bzgl. aller Sub- und Superklassen zu
sein hat.

® Wie werden Aggregate abgebildet?

Das relationale Modell unterstiitzt keine Modellierung von Aggregaten. Aus diesem Grund
miissen ergdnzende Tabellen fiir jeden Typ von Aggregaten definiert werden. Beispiels-
weise konnte man eine Tabelle mit den drei Spalten AggrID, Index und Value definieren
[HLS98]. Ein Eintrag in einem Aggregat entspricht dann einem Tupel der Tabelle, welches
tiber AggrID (ID des Aggregates) und Index (Position innerhalb des Aggregates) identifi-
ziert wird. In Value ist der eigentliche Wert enthalten.

® Wie lassen sich Beziehungen zwischen Objekten darstellen?

In Kapitel 5.1.2 haben wir bereits erkannt, dal mehrwertige Beziehungen (1:n und m:n) auf
eigene Tabellen mit den Primérschliisseln der beteiligten Tupel abgebildet werden. Diese
Losung 148t sich hier iibernehmen. Allerdings muf3 man darauf achten, dal} sich Beziehun-
gen auch iiber Instanzen der Subklassen erstrecken konnen (und die Primérschliissel eines
an der Beziehung beteiligten Typs u.U. auf mehrere Tabellen aufgeteilt sind, siehe folgen-
der Punkt).

® Inwieweit kann Vererbung durch relationale Tabellen nachgebildet werden?

Der schwierigste Punkt bei der Abbildung auf Tabellen ist die Wahl eines geeigneten Ver-
fahrens zur Darstellung der Vererbungshierarchie zwischen den gegebenen Klassen
[IBM98c, Lof98, Ma97, HLS98]. Man kann die Instanzen einer Typhierarchie entweder
entsprechend ihres Basistyps auf mehrere Tabellen partitionieren oder alle Instanzen der
gesamten Typhierarchie in einer einzigen Tabelle speichern. Beide Verfahren wollen wir im
folgenden anhand des in Abbildung 5.1 dargestellten Klassendiagramms veranschauli-
chen. Dabei gehen wir auch auf Auswirkungen auf die zuvor betrachteten drei Punkte ein.

121

Produkt

ID
Name
Preis

Hersteller

L

Objektorientiertes Klassendiagramm (UML)

[

I

Horizontale
Partitionierung

Tabelle fiir Produkt

PKW LKW
AnzT(Nutzlast _
Sﬁipfgﬁg vieias ID Name Preis Hersteller
1 A-Klasse 35 000 Mercedes-Benz
2 SLK 60 000 Mercedes-Benz
3 Transporter 100 000 Mercedes-Benz
4 Monster Truck | 500 000 Mercedes-Benz
5 Elch 70 Rhon Pllschtiere
Tabelle fiir Produkt
Vertikale
Partitionierung
ID | AnzTiren | Sitzpldtze ID Nutzlast
1 5 5 3 10t
2 2 2+2 4 30t
Tabelle fiir PKW Tabelle fiir LKW
ID | Name | Preis Hersteller
5 Elch 70 Rhén Pllschtiere

Name Preis Hersteller AnzTiiren | Sitzplatze
A-Klasse 35000 | Mercedes-Benz 5 5
SLK 60 000 | Mercedes-Benz 2 2+2
Tabelle fiir PKW
ID Name Preis Hersteller Nutzlast
eindeutig? - | 3 Transporter | 100 000 | Mercedes-Benz 10t
4 | Monster Truck | 500 000 | Mercedes-Benz 30t

Tabelle fiir LKW

Abb. 5.1

Abbildung von Klassenhierarchien auf partitionierte Tabellen

122

ID| Typ Name Preis Hersteller Anz- | Sitz- | Nutz-
Tiiren | platze | last

1 PKW A-Klasse 35000 | Mercedes-Benz 5 5

2 PKW SLK 60 000 | Mercedes-Benz 5 2+2

3 LKW Transporter 100 000 | Mercedes-Benz 10t

4 LKW Monster Truck | 500 000 | Mercedes-Benz 30t

5 | Produkt Elch 70 Rhén Pluschtiere

Tabelle fiir Produkt und alle Subklassen (explizite Attribute)

ID Typ Wert
Abbildung ohne 1 PKW | A-Klasse / 35 000 / Mercedes-Benz/5/5
_ Partitionierung 2 | PKW | SLK/60000/Mercedes-Benz/5/2 + 2
(typisiert oder generisch)
3 LKW Transporter / 100 000 / Mercedes-Benz / 10 t
4 LKW Monster Truck / 500 000 / Mercedes-Benz /30t
5 Produkt | Elch /70 /Rhén Plischtiere

Tabelle fiir Produkt und alle Subklassen (generisch)

Abb. 5.2: Abbildung von Klassenhierarchien auf eine einzige Tabelle

Die Aufteilung einer Typhierarchie auf mehrere Tabellen kann auf zwei verschiedene Arten
erfolgen (vgl. Abbildung 5.1): Bei der Vertikalen Partitionierung werden jeweils alle in einer
Klasse neu definierten Attribute sowie die OID in einer eigenen Tabelle gespeichert. Dieses Ver-
fahren hat zwei Vorteile: Zuerst einmal kann die Menge aller Instanzen einer Klasse (die auch
die Instanzen der Subklassen umfaf3t) mit einer einzigen Anfrage auf die korrespondierende
Tabelle bestimmt werden. Dementsprechend 146t sich die Eindeutigkeit der OIDs einer Typhier-
archie auch mit einer simplen Integrititsbedingung auf der Tabelle fiir die allgemeinste Super-
klasse kontrollieren. Auf der anderen Seite ist die Abfrage aller Attribute einer Instanz aber nur
mittels einem SQL-Join tliber das OID-Attribut aller Tabellen der Typhierarchie moglich. Diese
Anfrage kann unter Umsténden sehr teuer sein.

Entgegengesetzt ist es bei der Horizontalen Partitionierung: Hier werden jeweils alle Attribute
einer Klasse (also auch geerbte) in einer eigenen Tabelle gespeichert. Die Abfrage aller Attri-
bute einer spezifischen Instanz ist somit einfach (sofern der genaue Typ bekannt ist), die Bestim-
mung aller Instanzen einer Klasse ist hingegen komplizierter. Hierfiir ist der Zugriff auf alle
Tabellen der jeweiligen Typhierarchie notig. Ein dhnlich hoher Aufwand entsteht im Prinzip
auch bei der Uberpriifung der Eindeutigkeit von OIDs. Dieser 148t sich allerdings vermeiden,
wenn man den Typ der Instanz in die OID einkodiert (z.B. die letzten drei Ziffern hierfiir
benutzt). Dadurch enthilt das ID-Attribut allerdings eine zusitzliche semantische Bedeutung,
die gut dokumentiert werden sollte (und vor allem mit der Verarbeitung und Erzeugung von
OIDs harmonieren muf).

123

Unabhingig von der jeweiligen Partitionierung ist die Modellierung von Aggregaten und Bezie-
hungen. Sie kann tiiber eigenstindige Tabellen erfolgen (siehe oben und Kapitel 5.1.2). Ein
genereller Vorteil der Partitionierung ist weiterhin die kompakte Speicherung aller Attribute: In
jeder Tabelle werden alle Spalten von jedem Tupel sinnvoll mit Daten belegt.

Eine vollkommen andere Methode ist die Abbildung einer vollstindigen Typhierarchie auf eine
einzige Tabelle (siche Abbildung 5.2). Neben der OID muf} hier im allgemeinen noch eine
Spalte mit dem genauen Typ eines Tupels (bzw. des korrespondierenden Objektes) definiert
werden. Unter Umsténden 148t sich diese Information jedoch auch in der OID kodieren.

Wie bei der Partitionierung, so sind auch hier zwei verschiedene Arten der Abbildung zu unter-
scheiden: Bei der typisierten Methode werden alle Attribute aller Klassen auf jeweils eine
Spalte der relationalen Tabelle abgebildet. Fiir jede Instanz werden dann nur die Spalten fiir die
jeweils giiltigen Attribute mit Werten belegt. Alle anderen Spalten enthalten sog. Nullwerte. Bei
umfangreichen Typhierarchien kann es dementsprechend zu sehr viel ungenutztem Speicher-
platz (sog. Sparsity) kommen. Andererseits lassen sich alle Nachteile der verschiedenen Parti-
tionierungsarten vermeiden.

Partitionierung Abbildung auf eine Tabelle
vertikal horizontal typisiert generisch

Zugriff auf alle Instanzen einer Klasse einfach teuer einfach einfach
(inkl. der Instanzen aller Subklassen)
Zugriff auf alle Attribute eines Objektes teuer einfach einfach einfach
Kontrolle der Eindeutigkeit von OIDs einfach teuer einfach einfach
Sparsity nein nein ja nein
Wertbezogener Zugriff und ja ja ja nein
Anfrageverarbeitung (nur OID / Typ)

Tabelle 5.2: Vergleich der Abbildungsverfahren von Klassenhierarchien auf Tabellen

Eine etwas ungewohnliche und weniger verbreitete Form ist die generische Abbildung auf eine
Tabelle mit den drei Spalten ID, Type und Wert [Ma97]. LBt sich die Typzugehorigkeit bereits
aus der ID extrahieren, so kann die Spalte Typ sogar eingespart werden. Die Spalte Wert ist vom
Typ VARCHAR oder CLOB (Character Large Object) und enthilt einen String mit den konka-
tenierten Werten aller Attribute (getrennt durch ein spezielles Delimiter-Zeichen). Bei dieser
Variante ist aber keine wertbezogene Anfrageverarbeitung mehr moglich, sie kann lediglich fiir
den Zugriff auf Objekte liber die OID bzw. den Typ dienen. Gleichzeitig werden allerdings alle
dargestellten Nachteile der bisherigen Verfahren vermieden. Wir werden dieses Verfahren des-
halb als Grundlage fiir ein JavaSDAI Data Module unseres Prototypen verwenden (siehe
Kapitel 6.2.3). Eine Gegeniiberstellung aller vier Varianten ist in Tabelle 5.2 enthalten. Fiir eine
weiterfiihrende Diskussion und eine beispielhafte Implementierung einer objektorientierten
Klassenbibliothek oberhalb eines RDBVS sei z.B. auf [RLPG96] verwiesen.

124

5.4 Datenquellen und Data Shipping in CORBA-Umgebungen

Nachdem wir in den letzten Kapiteln die verschiedenen Formen von Datenquellen diskutiert
sowie die Integration mehrerer DBVS tiber DB-Middleware und eine Abbildung objektorien-
tierter Strukturen auf relationale Tabellen betrachtet haben, so wollen wir uns in diesem Kapitel
nun der zentralen Frage der vorliegenden Arbeit widmen: Wie kann man Datenquellen (und
zwar nicht nur DBVS, sondern auch Dateien usw.) in CORBA-Umgebungen integrieren, so daf3
auch datenintensive Anwendungen geeignet unterstiitzt werden? Oder anders ausgedriickt: Wie
1aBt sich Data Shipping in CORBA-Umgebungen realisieren? Im folgenden werden wir kurz die
dabei entstechenden Anforderungen skizzieren (Kapitel 5.4.1), verschiedene Losungsansitze
diskutieren (Kapitel 5.4.2 bis 5.4.8) sowie verwandte Forschungsarbeiten (Kapitel 5.4.9) und
ausgewihlte kommerzielle Produkte zur DB-Anbindung betrachten (Kapitel 5.4.10). Eine
abschliefende Zusammenfassung der wichtigsten Ergebnisse ist in Kapitel 5.4.11 enthalten.

5.4.1 Anforderungen und Modellierung

Bevor wir auf konkrete Ansidtze zum Data Shipping eingehen, wollen wir nochmal kurz die
Anforderungen an eine Datenversorgung fiir datenintensive Anwendungen skizzieren. Im
Gegensatz zum Operation Shipping (siehe Kapitel 2.5.2) ist hier insbesondere die lokale Ver-
fiigbarkeit von Daten im Client (d.h. in der Applikation) entscheidend. Allerdings sollte dies
nicht durch das Anlegen von Kopien, sondern durch eine vom System kontrollierte Migration
oder Pufferung (Caching) der benotigten Daten bzw. Objekte erfolgen. Dafiir ist die gesamte
Verarbeitung durch Transaktionen abzusichern. Weiterhin wire die Unterstiitzung einer men-
genorientierten Anfrageverarbeitung wiinschenswert, die zur Beschleunigung der Kommunika-
tion auch die kompakte Ubertragung groBerer Datenmengen zuliBt (Bulk Transfer). In diesem
Kapitel gehen wir auBerdem davon aus, da3 allen Anwendungen ein objektorientiertes Daten-
modell zugrunde liegt. Gleichzeitig wollen wir aber alle Arten von Datenquellen anbinden kon-
nen, d.h. es ist unter Umstédnden eine Konvertierung oder Aufbereitung der Daten notig. Dieser
Verarbeitungsschritt kann nun wahlweise im Server oder im Client erfolgen. Dementsprechend
ist fiir die Modellierung des Datentransportes durch CORBA entweder das Datenmodell der
Applikation oder das Format der jeweiligen Datenquelle zu benutzen.

Die Grundlage fiir jeden der hier vorgestellten Anséitze bildet erst einmal die Definition von
geeigneten Schnittstellen mittels der IDL von CORBA (Kapitel 4.1). Wir gehen an dieser Stelle
davon aus, daB der noch in der Entwicklung befindliche value-Typ ohne groBere Anderungen
in die nichste Version des CORBA-Standards iibernommen wird. Somit stehen uns fiir die
Modellierung von Objekten die struct, interface und value-Klauseln zur Verfiigung. Die
Vor- und Nachteile aller drei Varianten haben wir bereits in Kapitel 4.5 erortert (siehe insbeson-
dere Tabelle 4.3 auf Seite 104). Relationale Daten lassen sich hingegen sehr einfach und ange-
messen liber sequences und unions von IDL-Basistypen darstellen. Diese Form der Modellie-
rung ist auch fiir die generische Ubertragung serialisierter Objektmengen geeignet (siche
Kapitel 5.4.7, 6.2.1 und 6.2.2). Einige der folgenden Ansitze setzen allerdings eine spezifische
Modellierung voraus.

125

5.4.2 Einsatz des CORBA Persistent Object bzw. des Persistent State Services

In Kapitel 4.3.2 haben wir bereits den Persistent Object Service (POS) des CORBA-Standards
betrachtet. Nach einem Blick auf dessen Zielsetzung (die persistente Speicherung von Objekt-
zustdanden in beliebigen Speichermedien) wiirde man ihn vermutlich als die intuitive Losung zur
Anbindung von Datenquellen an CORBA erachten. Sein Einsatz ist aber eher problematisch. So
kann der POS nur fiir Objekte verwendet werden, welche auf der interface-Klausel basieren.
Dementsprechend bleiben diese Objekte aber im Server des POS, und es ist keine lokale Verar-
beitung im Client moglich (siehe Kapitel 4.5). Zusitzlich wird durch die feingranulare Struktur
des POS und seine relativ komplexen Schnittstellen eine effiziente Verarbeitung verhindert
(siehe Kapitel 4.3.2).

Eine bessere Losung konnte der noch in der Standardisierung befindliche Persistent State Ser-
vice (PSS) sein [OMG99]. Dieser hat prinzipiell die gleiche Zielsetzung wie der POS, soll aber
dessen Probleme bzgl. Schnittstellen, Komplexitdt und zu erwartender Effizienz vermeiden.
Bisher gibt es drei konkurrierende Vorschlége (sog. Joint Revised Submissions), so daf die end-
giiltige Form des PSS noch nicht abzusehen ist. Alle Vorschlidge basieren aber mehr oder weni-
ger auf der Modellierung persistenter Objekte iliber die value-Klausel. Sollte dieser Vorschlag
letztendlich von der OMG verabschiedet werden, so wiirde ein Client des PSS automatisch eine
lokale Kopie des jeweiligen Objektes sowie aller referenzierten value-Objekte erhalten. Der
Anspruch einer lokalen Verarbeitung und der kompakten Ubertragung von Daten wiire also
erfiillt. Auf der anderen Seite fiihrt das Anlegen von Kopien auf dem Client natiirlich nicht zu
der ebenfalls gewlinschten Migration oder einem kontrolliertem Caching von Daten. Gemal
dem aktuellen Entwurf fiir den value-Typ fiihrt dessen Einsatz zu kopierten Objekten auf dem
Client, die eine andere Identitét haben als die Server-Objekte. Dementsprechend lieBBe sich der
PSS nicht sinnvoll mit dem Synchronization oder Transaction Service kombinieren (eine Sperre
auf einem Objekt wiirde nicht den Zugriff auf die Kopie verhindern). Wir erwarten allerdings
eine generelle Uberarbeitung aller Object Services nach der Verabschiedung des value-Typs.

Sowohl der POS als auch der PSS setzen eine objektorientierte Modellierung aller Daten inner-
halb der gesamten CORBA-Umgebung voraus. Die Abbildung oder Konvertierung auf relatio-
nale oder sonstige Speicherungsverfahren kann lediglich im POS oder PSS selbst erfolgen.

Zusammenfassend 148t sich also sagen, daf ein durch CORBA unterstiitztes Data Shipping rela-
tionaler Daten oder serialisierter Objektmengen iiber den POS bzw. PSS nicht moglich ist.

5.4.3 Datenzugriff iiber den CORBA Query Service

Mit dem Query Service (QS, siehe Kapitel 4.3.5) stellt die OMG einen weiteren Service zum
Zugriff auf Daten zur Verfiigung. Die Zielsetzung ist jedoch orthogonal zum POS/PSS: Der
POS/PSS ist verantwortlich fiir die persistente Speicherung der Zustidnde von Objekten, wih-
rend der QS allgemeine Schnittstellen zur Anfrageverarbeitung realisiert. Insofern konnte man
denken, da3 neben dem QS noch weitere Mechanismen zum Zugriff auf Datenquellen erforder-
lich sind. Dies ist aber nicht notwendigerweise der Fall. Wir wollen kurz die Griinde skizzieren:
Entsprechend ihrem Objektmodell (siehe Kapitel 4.1.1) und dessen Ahnlichkeit zum ODMG-
Modell fiir OODBVS mochte die OMG Persistenz als eine Eigenschaft von Objekten ansehen,

126

die transparent fiir Clients und deren Verarbeitung ist. In diesem Sinne kann der QS nicht alleine
zum Zugriff auf Datenquellen genutzt werden (es ist die Kooperation des POS/PSS erforder-
lich). Auf der anderen Seite wollen wir aber eine Moglichkeit zum Data Shipping in CORBA-
Umgebungen realisieren. In diesem Fall kann es sogar wiinschenswert sein, daf3 die persistente
Speicherung von Daten explizit durch den CORBA-Client gesteuert wird (z.B. per SQL
Updates). Dieses Szenario fiihrt dann zu dem bereits in Kapitel 4.3.5 diskutierten Vergleich mit
dem X/Open CLI, ODBC oder JDBC. Die Anfrageverarbeitung ist hier aber keinesfalls nur auf
relationale Daten beschrinkt. Nachdem das Ergebnis in einer Instanz des any-Typs zuriickge-
geben wird, lassen sich hier auch ganze Netze von value-Objekten oder auch Objektreferenzen
ibertragen. Je nach unterstiitzter Anfragesprache (siehe Kapitel 4.3.5) und den korrespondie-
renden Datentypen reicht das Spektrum also vom Data Shipping relationaler Tupel bis hin zum
Operation Shipping liber den Austausch von Objektreferenzen.

Analog zum PSS besteht auch beim QS die Gefahr, dal Data Shipping zur unkontrollierten
Erzeugung von Kopien im Client fiihrt. Im Bezug auf den value-Typ 4Bt sich dies auch nicht
vermeiden (die Semantik ist durch CORBA bzw. die OMG vorgegeben). Bei der Anbindung
von RDBVS kann allerdings ein Zugriffsschutz iiber den Einsatz des Transaction Service (TAS)
erreicht werden. Dafiir wird die Transaktion des RDBVS in die vom CORBA-Client gestartete
Transaktion des TAS eingebettet. Nun hat der Client zwar Kopien der Daten des RDBVS,
bedingt durch die Sperrverwaltung des RDBVS kann aber kein anderer CORBA-Client (im
Rahmen einer anderen TAS-Transaktion) auf diese Daten (im RDBVS) zugreifen. Probleme
konnen lediglich entstehen, wenn andere (vom Client benutzte) CORBA Server selber als Client
des RDBVS agieren und im Rahmen der selben TAS-Transaktion auf das RDBVS zugreifen.
Hier konnte es dann mehrere Puffer innerhalb der selben Transaktion geben, die manuell zu syn-
chronisieren wiren.

Insgesamt gesehen kann der QS aber als eine sehr flexible Moglichkeit zum Zugriff auf Daten-
quellen in CORBA-Umgebungen bezeichnet werden. Wir werden dieses Verfahren deshalb
auch fiir eines der JavaSDAI Data Modules unseres Prototypen verwenden (siche
Kapitel 6.2.2).

5.4.4 Migration von Objekten iiber den CORBA Lifecycle Service

Bisher haben wir mehrfach auf die fehlenden Moglichkeiten zur Migration von Objekten hin-
gewiesen, die mit der interface-Klausel modelliert wurden. Es stellt sich nun die Frage,
warum nicht die move-Operation des Lifecycle Service (siehe Kapitel 4.3.3) dafiir benutzt wer-
den kann und ob diese Mafinahme nicht doch einen sinnvollen Einsatz des POS (siche
Kapitel 5.4.2) ermdglichen wiirde? Wir konnen diese Frage klar mit nein beantworten. Zunichst
einmal haben wir bereits in Kapitel 4.3.3 gesehen, dafl die Implementierung der move-Operation
auf proprietiren Protokollen zur Ubertragung des Objektzustandes basiert. Somit wird diese
Methode nur innerhalb eines CORBA-Systems, aber eben nicht in offenen Systemverbunden
zur Verfiigung stehen. Weiterhin miifite die move-Operation fiir jedes Objekt einzeln angestofen
werden. Dies steht aber im Widerspruch zu dem von uns gewiinschten Bulk Transfer.

127

5.4.5 Datenaustausch iiber den CORBA Externalization Service

Mit dem CORBA Externalization Service (ES, siehe Kapitel 8 von [OMG98h]) wird eine Mog-
lichkeit geboten, um den Zustand von Objekten in einen sog. Stream zu schreiben bzw. ihn dar-
aus zu lesen. Die zu serialisierenden Objekte miissen dafiir mit der interface-Klausel model-
liert sein und das interface Streamable mit den Methoden externalize to stream und
internalize from streamimplementieren. Der ES selbst stellt dann das eigentliche stream-
Objekt sowie ein stream10-Objekt mit Zugriffsmethoden auf den stream (read<type> bzw.
write<type>) zur Verfiigung. Es lassen sich allerdings nur CORBA-Basistypen oder weitere
Streamable-Objekte lesen bzw. schreiben. Das Lesen aus einem Stream und die damit verbun-

dene Erzeugung von Objekten ist eng verzahnt mit den Factories des Lifecycle Service (siehe
Kapitel 4.3.3).

Fiir uns stellt sich nun die Frage, ob der ES zur kompakten und effizienten Ubertragung groBerer
Datenmengen (im Rahmen einer Migration von Objekten) genutzt werden kann? Dafiir wollen
wir einen genaueren Blick auf den Stream selber sowie auf den Vorgang der (De-)Serialisierung
werfen: Jeder Stream basiert auf dem interface Stream und ist damit ein registriertes
CORBA-Objekt, das prinzipiell keine Migration unterstiitzt (vgl. Kapitel 4.5). Weiterhin wird
beim Serialisieren von Objekten jedes Attribut einzeln liber Zugriffsmethoden des sStreamIo-
Objektes in den Stream geschrieben. Das Deserialisieren verliduft analog dazu, jedoch wird
jedes Objekt noch iiber eine Factory erzeugt. Die Verarbeitung ist also recht aufwendig und
extrem feingranular: Der Stream verbleibt im Adrefraum des Servers, so dal zumindest beim
Deserialisieren fiir jedes einzelne Attribut eine erneute Client/Server-Kommunikation notig ist.
Besser verhilt es sich, wenn der Inhalt des Stream per Bulk Transfer zum Client transferiert wer-
den konnte. Zwar stellt der CORBA-Standard keine entsprechenden Mechanismen zur Verfii-
gung, es lassen sich aber ergiinzende Mallnahmen modellieren. Beispielsweise konnte man alle
Daten per sequence<Octets libertragen oder den Stream in eine Datei schreiben lassen, die
dann mit Methoden des Dateisystems zum Rechner des Clients iibertragen wird. Liegen Client
und Server auf einem Rechner, so kime auch Kommunikation iiber Shared Memory in Frage.
Mit wenigen Erginzungen (die allerdings zum Teil auBerhalb der CORBA-Funktionalitit lie-
gen) lieBe sich der ES also zum Bulk Transfer von Daten einsetzen. Wir wollen an dieser Stelle
aber nicht von echtem Data Shipping entsprechend unseren Anforderungen sprechen, denn es
werden wiederum nur Kopien der Objekte auf dem Client angelegt. Eine Migration oder kon-
trollierte Pufferung von Objekten 148t sich mit dem ES leider nicht erreichen. Weiterhin ist er
nur zur Verarbeitung von Objekten geeignet, die mit der interface-Klausel modelliert wurden.
Im Prinzip 148t sich das Verarbeitungskonzept des ES mit allgemeinen Serialisierungskonzepten
wie z.B. Java Object Serialization vergleichen (siehe Kapitel 5.5.2.3).

Neben der Ubertragung von Daten ist aber noch zu kliren, ob der ES auch zum Zugriff auf
Datenquellen geeignet ist. Aufgrund seiner Schnittstelle und Verarbeitungssemantik bietet sich
natiirlich die bereits oben angesprochene Assoziation von Streams mit Dateien an. Erfolgt der
Datenaustausch zwischen einzelnen Verarbeitungsschritten ohnehin iiber Dateien (dhnlich zu
STEP Physical Files, siche Kapitel 3), so bietet der ES eine gute Moglichkeit zum CORBA-
basierten Zugriff auf diese. Eine Kopplung zu DBVS wird vom ES hingegen nicht addquat

128

unterstiitzt: Einerseits macht die explizite Serialisierung keinen Sinn, andererseits fehlt eine
Schnittstelle zur Anfrageverarbeitung. Auch der Einsatz des ES zur Anbindung von Datenquel-
len, die durch Anwendungsprogramme gekapselt sind, erscheint wenig sinnvoll.

5.4.6 Proprietire Kopplung zu OODBVS

Angelehnt an die Verarbeitungsweise des POS (vgl. Kapitel 5.4.2) konnte man den Zustand von
interface-Objekten natiirlich auch iiber selbst definierte Mechanismen in einem OODBVS
ablegen. Zwar fiihrt dieser Schritt weiterhin nur zu Operation Shipping (und eben nicht zum
gewiinschten Data Shipping), man wiirde aber die Implementierung der komplizierten Schnitt-
stellen des POS vermeiden und vermutlich eine hohere Effizienz erreichen. Die resultierende
Losung ist dann quasi ein Kompromif3 zwischen dem POS, dessen Schnittstellen uns ungeeignet
erscheinen, und einem Object Oriented Database Adapter (OODA, siehe Kapitel 4.2.3.2), der
nur vom Hersteller des CORBA-Systems selbst erstellt werden kann. Steht weiterhin noch eine
Implementierung des Lifecycle Service (siehe Kapitel 4.3.3 und 5.4.4) zur Verfiigung, so laft
sich iiber dessen move-Operation sogar ein rudimentédres Data Shipping erreichen. Eine men-
genorientierte Anfrageverarbeitung ist hingegen auf diesem Wege generell unmoglich (fiir jedes
Objekt miifite die move-Operation einzeln aufgerufen werden).

Bei der Konzeption einer Kopplung sind nun einige Aspekte zu beriicksichtigen, auf die wir im
folgenden kurz eingehen wollen. Grundsétzlich mufl man davon ausgehen, daf3 es zur Laufzeit
zu jedem (benétigten) persistenten Objekt im OODBVS ein korrespondierendes transientes
CORBA-Objekt (Tie) gibt. Diese Mafinahme basiert auf der Tatsache, da3 interface-Objekte
einige Attribute mit Verwaltungsinformationen des ORB enthalten. Die persistente Speicherung
dieser Attribute ist jedoch iiberfliissig, sie erfordert selbst bei lesenden Zugriffen des Clients
Transaktionen mit schreibendem Zugriff (fiir die Attribute des ORB) und sie kann nach einem
erneuten Start des Server-Prozesses sogar zu Fehlern fiihren (wenn alte Zustandsinformation im
neuen Kontext benutzt wird). Will ein CORBA-Client also auf ein persistentes Objekt zugrei-
fen, so mufl das zum OODBVS-Objekt korrespondierende CORBA-Objekt erzeugt werden.
Man spricht an dieser Stelle von Aktivierung. Greift ein Client aber auf sehr viele Objekte zu,
so konnen unter Umstidnden nicht mehr alle 7ie-Objekte im Hauptspeicher gehalten werden. Es
ist also ebenfalls eine Verdriangung von CORBA-Objekten vorzusehen (die sog. Deaktivierung).
Hierbei ist darauf zu achten, dafl Clients noch Referenzen auf verdriangte Objekte haben konnen
(in Form von Client Stubs). Die Benutzung dieser Stubs sollte natiirlich weiterhin moglich sein,
d.h. beim Zugriff sollte das korrespondierende Tie-Objekt automatisch reaktiviert und mit dem
korrekten Zustand aus dem OODBVS initialisiert werden. Anhand der vom Client Stub iibertra-
genen Interoperable Object Reference (IOR) kann der Server-ORB zwar automatisch eine
Instanz der korrekten Klasse erzeugen, diese Information ermdglicht so aber noch nicht den
Zugriff auf das korrekte OODBVS-Objekt. Zwar konnte man die IOR der Tie-Objekte in einem
Attribut der OODBVS-Attribute speichern und es anschlieBend dazu benutzen, um den Zustand
fiir das reaktivierte Objekt abzufragen. Dieses Vorgehen ist aber zum Scheitern verurteilt: Einer-
seits wiirde dann wieder Zustandsinformation des ORB in der DB liegen (und eine schreibende
TA erfordern), andererseits kann sich die IOR bei jeder Aktivierung dndern. Bei mehreren Cli-
ents konnte es dann zu Problemen kommen: Angenommen der erste Client reaktiviert das

129

Objekt, fiir dieses wird eine neue IOR erzeugt, das Objekt wird spiter deaktiviert und die neue
IOR im OODBYVS gespeichert. Nun will der zweite Client das selbe Objekt mit der alten IOR
reaktivieren. Es kommt dementsprechend zu einem Verarbeitungsfehler, da die urspriingliche
IOR nicht mehr im OODBVS zu finden ist.

Mit einem kleinen Trick 1dBt sich das Problem jedoch recht einfach 16sen: Die IORs werden
zwar automatisch vom CORBA-System erzeugt (und sind auch eindeutig im Sinne des ORB),
sie enthalten jedoch ein Feld fiir benutzerdefinierte Ergiinzungen. In dieses schreiben wir nun
eine geeignet modellierte OID des OODBVS-Objektes. Bei der Reaktivierung extrahiert der
Konstruktor des 7ie-Objektes dann die OID aus der IOR und greift dariiber auf das korrespon-
dierende OODBVS-Objekt zu. Die OID konnte beispielsweise aus den IDs der Datenbank, des
Segmentes innerhalb der DB, des Typs und einer laufenden Nummer je Typ bestehen. Dieses
Vorgehen ist vergleichbar mit dem Marker-Konzept des CORBA-Systems Orbix (siehe
Kapitel 5.4.8). Clients konnten nun auch die in einen String konvertierte IOR eines 7Tie-Objektes
persistent speichern (z.B. in einer Datei) und diese selbst nach einem mehrfachen Neustart des
Server-Prozesses zum Reaktivieren des 7ie-Objektes benutzen.

Aufgrund der Modellierung benutzerdefinierter OIDs konnen wir nun leider nicht mehr die von
manchen CORBA-Systemen (z.B. Orbix) angebotene automatische Generierung von Tie-
Objekten benutzen. Diese hitte aber ohnehin den Nachteil, daf} die Signatur aller Attribute und
Methoden der Tie-Objekte genau denen der OODBVS-Objekte entsprechen miifite. Fiir die
Implementierung unserer 7ie-Objekte schreiben wir deshalb eigene Klassen, die von den gene-
rierten Skeleton-Klassen erben. Diese konnen dann im Gegensatz zu generierten 7ie-Objekten
auch eigene Methoden (wie etwa den o.g. Konstruktor) implementieren.

Aufgrund der moglicherweise sehr hohen Anzahl von 7ie-Objekten sollte deren Registrierung
und Lokalisierung durch den ORB mdoglichst effizient erfolgen (z.B. durch Hash-Tabellen iiber
die OID). Manche CORBA-Systeme bieten hierfiir (allerdings proprietiare) Mechanismen an.

Letztendlich 148t sich die gerade beschriebene Losung zwar ohne Eingriffe in das CORBA-
System 10sen, sie simuliert aber nur einen auf Operation Shipping basierenden Object Oriented
Database Adapter (OODA). Steht bereits ein ausreichender Adapter fiir die verwendete Kom-
bination aus CORBA-System und OODBVS zur Verfiigung, so bietet sich statt der Implemen-
tierung eigener Software natiirlich dessen Verwendung an. Ein Beispiel wire der Orbix &
ObjectStore Adapter. Beim Einsatz von Orbix lassen sich mit dem Object Database Adapter
Framework (ODAF) sogar eigene Adapter zu weiteren DBVS erzeugen. Das ODAF stellt aller-
dings einen Eingriff in die internen Komponenten eines CORBA-Systems dar (siche
Abschnitt 5.4.10.1).

Ein Beispiel fiir eine proprietire Kopplung des zu CORBA 1.2 kompatiblen Systems ORBeline
(Version 1.2) mit dem OODBVS ObjectStore (Version 3.x) haben wir in [Sel96] beschrieben.
Als Testanwendung diente der auf einer SDAI-Schnittstelle (siehe Kapitel 3.2) aufsetzende 0o7-
Benchmark [CDNO93]. Die erzielten Ergebnisse belegen bereits klar die Mingel des Operation
Shipping gegeniiber dem Data Shipping sowie die Notwendigkeit einer effizienten Registrie-
rung von Objekten. Selbst die Portierung des Prototypen auf ein moderneres CORBA-System
brachte (unter Beibehaltung der Konzepte) keine nennenswerte Verbesserung. Dieses Verhalten
basiert allerdings auf der extrem datenintensiven Verarbeitungsweise. Bessere (und durchaus

130

zufriedenstellende) Ergebnisse sind hingegen in eher interaktiven Umgebungen zu erwarten, die
fiir jeden Bearbeitungsschritt jeweils nur einen relativ kleinen Satz von Daten bendtigen. Ein
Beispiel hierfiir ist das in Abschnitt 5.4.9.3 beschriebene TeleMed-System.

5.4.7 Proprietires Data Shipping ohne Einsatz von Common Object Services

Neben der Verwendung standardisierter Common Object Services kommt natiirlich noch die
Modellierung proprietdrer Schnittstellen zum Data Shipping oder gar eine Erweiterung der
CORBA-Funktionalitit in Betracht. Hier sind prinzipiell zwei Kategorien zu unterscheiden.
Einerseits gibt es Programme oder Komponenten mit proprietdren IDL-Schnittstellen, deren
Implementierung aber nur standardisierte CORBA-Funktionalitit benutzt. Sie lassen sich auch
in Umgebungen mit beliebigen CORBA-Systemen einsetzen. Auf der anderen Seite gibt es
proprietiare Erweiterungen der CORBA-Systeme selbst. Sie unterbinden die Portabilitit von
Implementierungen und widersprechen streng genommen der CORBA-Philosophie. Trotzdem
werden wir ausgewdhlte Beispiele in Kapitel 5.4.8 betrachten. Im folgenden wollen wir uns
aber einem Ansatz fiir die Modellierung einer proprietiren Datenzugriffskomponente widmen,
die ohne Erweiterungen der zugrundeliegenden CORBA-Systeme auskommt. Sie bildet die
Grundlage fiir das in Kapitel 6.2.1 beschriebene JavaSDAI Data Module unseres Prototypen.

struct objectHandle ({
short repoID, modelID, objectTypelD;
long objectID;
}i
typedef sequence<objectHandle> segObjectHandle;
typedef sequence<seqgObjectHandle> seqgSeqgObjectHandle;

enum attributeUnionSwitch {

typelong, typeFloat, typeString, typeObjectHandle,
. // enumeration of all possible attribute base types
}i

union attrUnion switch (attributeUnionSwitch) {

case typelong: long longVval;
case typeFloat: float floatval;
case typeString: string stringVal;

case typeObjectHandle: objectHandle objectHandleVal;
... // case labels for all possible attribute base types
}i

typedef sequence<attrUnion> segAttrUnion;

struct objectData {
objectHandle OID;
segAttrUnion objectAttrs;

typedef sequence<objectData> segObjectData;

Beispiel 5.1: Modellierung serialisierter Objekte in IDL (Auszug)

Stellen wir uns also die Aufgabe, eine IDL-Schnittstelle fiir die Ubertragung und den Zugriff
auf Daten zu definieren, die mit der Sprache EXPRESS des STEP-Standards (siehe Kapitel 3.1)
modelliert wurden. In Kapitel 4.5 haben wir erkannt, da Data Shipping in CORBA-Umgebun-
gen nur bei Verwendung der struct- oder value-Klauseln moglich ist. Dementsprechend

131

scheidet die interface-Klausel zur Modellierung von Daten aus, und es ist keine direkte
Abbildung der EXPRESS-Definitionen auf IDL mehr moglich (weder die struct- noch die
value-Klausel unterstiitzen die in EXPRESS verfiigbare multiple Vererbung). Zur Ubertragung
der Daten haben wir deshalb eine generische Struktur definiert, die Objekte als eine Kombina-
tion aus der OID (objectHandle) und einer Liste von Attributen (segAttrUnion) reprisentiert
(siehe Beispiel 5.1). Dieses Verfahren entspricht damit im Prinzip der in Abb. 5.2 auf Seite 123
dargestellten generischen Abbildung auf RDBVS. Wir sprechen an dieser Stelle allerdings von
serialisierten Objekten. Die OID wurde bereits so modelliert, dafl eine Speicherung in einem
(R)DBVS oder der Zugriff iiber das SDAI von STEP (siehe Kapitel 3.2) moglich ist. Sie enthélt
dafiir einen Verweis auf die Datenbank bzw. das SDAI Repository (repo1D), das Segment inner-
halb der DB bzw. das SDAI Model (mode11D) und die Typ-ID des Objektes (objectTypeID).

exception DataServerException {
string reason;
Vi

interface dataServer ({
objectData GetObject (in objectHandle handle)
raises (DataServerException) ;

seqgObjectData GetAggregate (in objectHandle handle)
raises (DataServerException) ;

void PropagateCommit (in segObjectData updatedObjectData,
in segObjectHandle objectsToDelete
. // some metadata
)

raises (DataServerException) ;

. // weitere Methoden zum Zugriff auf Metadaten usw.

. .
Beispiel 5.2: Modellierung einer Zugriffsschnittstelle auf serialisierte Objekte (Auszug)

Fiir den eigentlichen Datenzugriff haben wir genau ein IDL interface definiert (dataServer,
siche Beispiel 5.2). Es enthélt zwei Methoden zum Datenzugriff und eine Methode zur kompak-
ten Propagierung von Anderungen. Mit Getobject kann die Ubertragung genau eines Objektes
angestoflen werden. Dafiir mufl die OID des gewiinschten Objektes iibergeben werden. Nach-
dem wir Aggregate ebenfalls als Objekte mit einer eigenen OID auffassen, lassen sich diese
(inkl. aller enthaltenen Daten) mittels GetAggregate anfordern. Enthilt das Aggregat Objekte,
so werden diese ebenfalls iibertragen (aus diesem Grund wurde seqobjectData als Ergebnistyp
gewihlt). Mit PropagateCommit werden schlieBlich alle Anderungen zum Server iibertragen.

Die so erhaltenen Daten eignen sich natiirlich nicht fiir die weitere Verarbeitung im CORBA-
Client. Vielmehr sollte man diese Strukturen zur Erzeugung lokaler Objekte im Client nutzen.
Dafiir ist keine Modellierung in IDL nétig, sondern es kann direkt die jeweilige Programmier-
sprache verwendet werden. In unserem Prototyp haben wir beispielsweise Instanzen der
EXPRESS-Objekte entsprechend dem entwickelten Java Language Binding fiir das SDAI
erzeugt. Es sind aber beliebige Typen moglich.

132

Nachteilhaft erweist sich auch bei unserer Losung, dafl der Client wiederum nur (unkontrol-
lierte) Kopien der Daten erhilt. Weiterhin lassen sich die lokal im Client verfiigbaren Objekte
nun gar nicht mehr in IDL modellieren oder durch das CORBA-System kontrollieren. Analog
zum Query Service ist also eine Zugriffskontrolle im Server notig. Auch hier ist beispielsweise
eine Registrierung des dataserver beim Transaction Service denkbar. Die Implementierung
des dataserver konnte die Daten dann in einer beliebigen Datenquelle ablegen. Zwar erzwingt
die Methode propagateCommit bereits eine quasi atomare Propagierung von Anderungen, fiir
eine transaktionsorientierte Verarbeitung ist aber die Verwendung eines DBVS anzustreben.

Neben serialisierten Objekten lassen sich mit dem gerade beschriebenen Ansatz auch relatio-
nale oder anderweitig modellierte Daten iibertragen. Dafiir miissen im wesentlichen die Daten-
strukturen in Beispiel 5.1 an die neuen Bediirfnisse angepal3t werden. Bei einer rein relationalen
Kopplung zu RDBVS sollte allerdings gekldrt werden, ob der Query Service mit seiner
generischen Anfrageschnittstelle nicht eine bereits ausreichende (und vor allem standardisierte)
Losung darstellt.

5.4.8 Proprietire Erweiterungen von CORBA-Systemen am Beispiel Orbix

Die von uns dargelegten Probleme beim Einsatz von CORBA in datenintensiven Umgebungen
haben teilweise dazu gefiihrt, dafl die Hersteller von CORBA-Systemen eine Reihe proprietirer
Erweiterungen in ihre Produkte integriert haben. Diese betreffen vor allem die Verarbeitung von
Objekten, welche iiber die interface-Klausel modelliert wurden, und sollen die benotigte
Kommunikation zwischen Client und Server reduzieren sowie eine effiziente Anbindung des
Servers an persistente Speichermedien ermdglichen. Wir konnen an dieser Stelle natiirlich nicht
alle Produkte und ihre speziellen Mechanismen vorstellen. Deshalb wollen wir uns auf die Dis-
kussion einiger Aspekte des von uns verwendeten CORBA-Systems Orbix (C++) bzw. Orbix-
Web (Java) von IONA beschrinken [IONA98b, IONA98c].

Zunichst einmal ermoglicht das System die Erstellung benutzerdefinierter Client Stubs (sog.
Smart Proxies). In diese kann z.B. eine Pufferung bereits gelesener Attributwerte oder gar ein
Mechanismus zum Prefetching aller Attribute eines Objektes integriert werden. Dabei ist natiir-
lich auf die Konsistenz und Aktualitidt der Daten zu achten. Insbesondere kann hier nur sehr ein-
geschrinkt auf evtl. vorhandene Common Object Services zuriickgegriffen werden, da Client
Stubs keine registrierten CORBA-Objekte sind.

Einen weiteren interessanten Punkt stellen die von Orbix angebotenen Marker in Kombination
mit speziellen Loader-Objekten und save-Methoden dar. Die Marker selbst realisieren noch
einen zum Standard konformen Weg zur Spezifikation benutzerdefinierter IDs oder Namen fiir
Objekte. Sie werden in die zugehorige Objektreferenz, die sog. Interoperable Object Reference
(IOR), eingebettet und werden auch bei der Konvertierung von IORs in einen String berticksich-
tigt (vgl. Kapitel 5.4.6). Proprietir ist hingegen die Verwendung dieser Marker zum automati-
schen Laden von Objekten liber spezielle Loader: Wird eine IOR dereferenziert, ohne da3 das
korrespondierende Objekt im System verfiigbar ist, so libergibt das System den in der IOR ent-
haltenen Marker an einen Loader und stoflt damit die Instantiierung des referenzierten Objektes
an. Der Loader analysiert den Marker und kann entsprechend der enthaltenen Information unter

133

Umstinden den Zustand des Objektes wiederherstellen. Beispielsweise konnte der Name einer
Datenbank sowie die ID des Objektes im Marker kodiert sein. Damit kann der Loader den
Zustand aus der DB lesen und das neu instantiierte CORBA-Objekt korrekt initialisieren.
Anders herum wird von Orbix beim Beenden eines Prozesses die save-Methode aller registrier-
ten CORBA-Objekte aufgerufen. Mit dieser konnte nun jedes Objekt seinen Zustand persistent
speichern. Dieser Mechanismus macht den Einsatz des POS (zu dem es bisher sowieso keine
Implementierung gibt) prinzipiell iiberfliissig, ist aber nicht durch Transaktionen abgesichert
oder kompatibel mit dem Transaction Service (TAS): Nach der Terminierung eines Prozesses,
die nicht notwendigerweise einem Commit entsprechen muf}, kann natiirlich keine weitere Ver-
arbeitung durch den TAS angestoflen werden. Ein ergiinzender Vergleich mit dem PSS ist an
dieser Stelle sinnlos, da Orbix bisher keine value-Objekte unterstiitzt.

Abschlieflend sollte noch einmal betont werden, daf3 eine Verwendung proprietiarer Mechanis-
men in fast allen Féllen zu einer Beschrinkung auf Umgebungen mit einem einzigen CORBA-
System fiithren. Dies widerspricht der CORBA-Philosophie und verhindert auch die
Interoperabilitit zwischen heterogenen Systemen. Gleichzeitig lassen sich proprietire Erweite-
rungen aber nicht generell verurteilen, denn Erfahrungen mit diesen bildeten z.T. schon die
Basis fiir sinnvolle Uberarbeitungen des CORBA-Standards.

5.4.9 Forschungsprototypen zur Integration von CORBA und DBVS

In den letzten Jahren wurden mehrere Forschungsprojekte begonnen, die CORBA (oder @hnli-
che Konzepte) zum Zugriff auf DBVS oder zur Implementierung verteilter DBVS benutzen.
Wir wollen deshalb einen kurzen Blick auf einige Beispiele werfen und dabei analysieren, wie
diese Prototypen den Zugriff auf Daten sowie deren Ubertragung realisieren.

5.4.9.1 MIND

An der Middle East Technical University (METU) wurde in den letzten Jahren ein foderiertes
DBVS mit dem Namen MIND (METU Interoperable DBMS) entwickelt, dessen interne Struk-
tur auf CORBA basiert [Do+96, DDO98]. Das System besteht aus einem Global Database
Agent (GDA), einem Schema Integration Service (SI), einem oder mehreren Query Processors
(QP) sowie einem Local Database Agent (LDA) je angebundenem DBVS. Jede dieser Kompo-
nenten besteht aus einem einzigen registrierten CORBA-Objekt. Die LDA besitzen eine generi-
sche Schnittstelle, die unabhédngig von einem spezifischen DBVS ist. Sie greifen iiber das X/
Open CLI (siehe Kapitel 5.1.2) auf das ihnen zugeordnete DBVS zu. Dementsprechend werden
Anfragen in MIND in einer an SQL angelehnten Syntax gestellt [GV92, SRL93]. Das globale
Schema wird hingegen in MIND ODL (Object Definition Language), einer Obermenge der
CORBA IDL, definiert und iiber spezielle Mapping-Klauseln auf SQL-Anfragen an die lokalen
DBVS abgebildet [DDO98]. Derzeit werden Kopplungen zu Oracle7, Sybase, Adabas D und
MOOD (METU OO Database System) angeboten. Unklar bleibt allerdings, wie sich MOOD
und OODBYVS allgemein an die CLI/SQL-basierten LDAs anbinden lassen.

134

MIND wurde mit dem DEC ObjectBroker realisiert, einem CORBA-System mit Unterstiitzung
fiir die Sprache C. Dementsprechend werden die in ODL spezifizierten Datenobjekte nicht vom
IDL-Compiler in C-Datenstrukturen iibersetzt, sondern vom (zusitzlich vorhandenen) ODL-
Compiler zur Erzeugung objektorientierter Klassen (C++) fiir den Client verwendet. Durch den
ORB werden lediglich serialisierte Strukturen iibertragen. Folglich verwendet MIND die von
uns geforderte (generische) Form von Data Shipping mit sehr wenig registrierten CORBA-
Objekten. Der genaue Mechanismus dafiir wurde jedoch nicht publiziert. Vermutlich sind die
LDAs aber dhnlich zu einem SQL-basierten CORBA Query Service unter Verwendung gener-
ischer Datenstrukturen (wie etwa unser in Kapitel 6.2.2 beschriebenes JavaSDAI Data Module).

Zu Beginn des MIND-Projektes waren keine CORBA Common Object Services (COSS) ver-
fiigbar, so da3 MIND z.B. proprietire Mechanismen zur Transaktionsverwaltung benutzt.
Gemif3 [DDO98] ist eine Kopplung mit den COSS aber ohne groBere Probleme moglich.

5.4.9.2 SHORE

SHORE (Scalable Heterogeneous Object REpository) ist ein foderiertes und paralleles
OODBYVS, das an der Universitidt von Wisconsin-Madison entwickelt wurde [Ca+94]. Obwohl
SHORE eigentlich iiberhaupt nichts mit CORBA zu tun hat, so realisiert das System doch ein
Verarbeitungsszenario, wie wir es uns fiir CORBA-Umgebungen wiinschen wiirden: Daten sind
in der an CORBA-IDL und ODMG-ODL angelehnten SDL (SHORE Data Language) zu
modellieren und angeforderte Objekte werden in einem vom System kontrollierten Cache auf
dem Client eingelagert. Weiterhin ist das System offen zur Integration weiterer Datenquellen
(OODBVS oder Dateien). Analog zu CORBA benutzt SHORE intern einen RPC-basierten
Kommunikationsmechanismus (siehe Kapitel 2.4.1). Im Gegensatz zu CORBA unterstiitzt die-
ser aber die Migration von Objekten bzw. ein (kontrolliertes) Caching im Client. Damit hat sich
gezeigt, daB3 eine auf Data Shipping basierende Middleware-Losung realisierbar ist. SHORE ist
allerdings zu stark auf eine reine Datenversorgung zugeschnitten, so daf letztendlich eine Kom-
bination aus SHORE und CORBA wiinschenswert wire.

5.4.9.3 TeleMed

Am Los Alamos National Laboratory wurde in den letzten Jahren ein verteiltes medizinisches
Informationssystem mit dem Namen TeleMed entwickelt [TeleMed]. Es dient der Verwaltung
von Daten iiber Patienten und enthilt neben textuellen Datensédtzen auch Multimedia-Objekte
wie Rontgenbilder oder dreidimensionale CT-Diagramme. Die Architektur des Systems basiert
auf dem CORBA-Standard sowie einem OODBVS als Datenquelle. Die Kopplung zwischen
dem verwendeten CORBA-System Orbix und dem OODBYVS ObjectStore wurde von Francisco
Reverbel im Rahmen seiner Dissertation entwickelt [Rev96]. Sie basiert auf einer Modellierung
von Objekten mit der interface-Klausel und fiihrt somit zu Operation Shipping.

Analog zu Kapitel 5.4.6 diskutiert die Arbeit im wesentlichen drei Ansétze zur Abbildung von
transienten CORBA-Objekten auf persistente OODBVS-Objekte: Pseudopersistence, Smart
Pointer-Based Persistence sowie Virtual Persistence. Alle drei Konzepte simulieren quasi einen
Object Oriented Database Adapter (OODA, siehe Kapitel 4.2.3.2), der Zustinde von CORBA-
Objekten in OODBVS speichert und keine Migration oder Pufferung von Objekten unterstiitzt.
Sie unterscheiden sich dabei in der Modellierung von OIDs und Referenzen, der Aktivierung

135

von Objekten bei der Kopplung zu Skeletons (generierte oder benutzerdefinierte Tie-Objekte)
sowie bei der Anbindung zum OODBVS (Ausnutzung proprietdrer Eigenschaften von Object-
Store). Unklar bleibt in der verfiigbaren Dokumentation aber leider die verwendete Modellie-
rung von Multimedia-Objekten wie etwa Rontgenbildern. Vermutlich erfolgt der Zugriff auf
diese nicht iiber das CORBA-System, sondern direkt auf die jeweiligen Dateien.

Der gewihlte Ansatz des Operation Shipping wurde in [Rev96] generell positiv bewertet. Im
Gegensatz zu dem von uns behandelten Szenario des Produktdatenmanagements ist das Tele-
Med-System aber mehr interaktiv als datenintensiv (unter der Annahme, da Multimedia-
Objekte auBerhalb der CORBA-Umgebung verwaltet werden). In diesem Fall scheint Operation
Shipping also ausreichend zu sein.

5.4.9.4 InterGIS

In der Abteilung Informationssysteme der Universitit Oldenburg wird derzeit eine Architektur
fiir einen verteilten, komponentenbasierten GeoServer entwickelt [Fr99]. Dieser soll sowohl
verschiedene Kommunikationsprotokolle und Middleware-Technologien unterstiitzen als auch
den Zugriff auf heterogene Datenquellen ermdglichen (OODBVS, RDBVS und spezielle GIS-
Produkte). Die Kommunikationsschicht selbst ist durch eine abstrakte Schnittstelle gekapselt
und kann wahlweise auf TCP/IP-Sockets, Named Pipes, Shared Memory oder CORBA basieren.
Im letzten Fall werden Daten iiber die interface-Klausel modelliert. Aufgrund des resultieren-
den Operation Shipping erwarten die Entwickler eine deutlich schlechtere Leistung im Ver-
gleich zu den anderen Varianten. Allerdings unterstiitzt der aktuelle Prototyp noch keine
CORBA-basierte Kommunikation, so daf} an dieser Stelle noch keine konkrete Bewertung oder
Abgrenzung zu unseren Konzepten moglich ist.

5.4.9.5 DICE

Im Projekt DICE (Databases in Cooperative Environments) am Fachbereich Informatik der
Universitidt Rostock werden CSCW-Techniken und existierende CSCW-Komponenten auf ihre
Anforderungen an die zugrundeliegenden DBVS untersucht [FM97]. Eine exemplarische
Kopplung zu ODMG-konformen OODBVS wurde von Eduard Neuwirt im Rahmen seiner
Diplomarbeit entwickelt [Neu97]. Entsprechend der CORBA-Philosophie wurde bewuf}t eine
Modellierung von Daten iiber die interface-Klausel gewihlt, um damit Operation Shipping
auf gekapselte Objekte zu realisieren. Die Arbeit ist daher sehr dhnlich zum TeleMed-Projekt
(Abschnitt 5.4.9.3) oder dem in Kapitel 5.4.6 diskutierten Ansatz.

interface paragraph { | interface text {
readonly attribute string name; short put (in string p name) ;
attribute string inhalt; paragraph get (in string P-Name) ;
Vi paragraphs all paragraphs () ;
typedef sequence<paragraph> paragraphs; }i

Beispiel 5.3: Modellierung eines Laufzeittests im Projekt DICE [Neu97]

Die prisentierte Beispielanwendung stellt unserer Ansicht nach aber eher eine Mischform zwi-
schen Operation und Data Shipping dar (vgl. Beispiel 5.3): Der Inhalt eines Absatzes ist als ein
einziger String modelliert, der beim Zugriff auf den Client kopiert und dann lokal bearbeitet

136

wird. Dementsprechend wurden bei den durchgefiihrten Laufzeittests auch zufriedenstellende
Ergebnisse erzielt. Eine direkte Ubertragung der gewonnenen Resultate auf die Bearbeitung von
komplexen CAD-Objekten oder feingranularen Produktdaten (wie etwa hierarchischen Stiick-
listen) erscheint uns aber eher fragwiirdig. Hier wiren deutlich mehr Attributzugriffe notig, die
zu einer ORB-basierten Kommunikation (also reinem Operation Shipping) fiihren.

5.4.10 Kommerzielle Produkte zur DB-Anbindung

In diesem Kapitel wollen wir nun kurz betrachten welche der zuvor diskutierten Konzepte und
Ideen in kommerziellen Produkten zum Einsatz kommen. Hier ist klar zu betonen, daf3 kein der-
artiges System eine Datenversorgung iiber standardisierte Common Object Services ermoglicht.
Bisher werden lediglich zwei Ansitze unterstiitzt: Die persistente Speicherung der Zustinde
von interface-Objekten iiber systemspezifische Adapter (Abschnitt 5.4.10.1) oder ein gener-
isches Data Shipping iiber proprietire Schnittstellen (Abschnitt 5.4.10.2).

5.4.10.1 DB-Anbindung iiber interne Adapter von CORBA-Produkten

Neben den in Kapitel 5.4.8 angesprochenen proprietiren Erweiterungen bieten die Hersteller
einiger CORBA-Systeme inzwischen auch spezielle Kopplungen zu DBVS an. Diese basieren
jedoch alle auf einer Modellierung iiber die interface-Klausel und fiihren somit zu Operation
Shipping. Sie realisieren damit einen OODA ohne Unterstiitzung fiir die Pufferung oder Migra-
tion von Objekten zum CORBA-Client (vgl. Kapitel 4.2.3.2). Im Gegensatz zu dem in
Kapitel 5.4.6 vorgestellten Verfahren ist hier aber eine hohere Leistung zu erwarten, da die
Adapter von den Herstellern der CORBA-Systeme selbst entwickelt und damit auf interne
Ablédufe im ORB optimiert wurden. Die konzeptuellen Schwiéchen des Operation Shipping
tiberwinden sie dadurch aber nicht.

Ein Beispiel fiir derartige Produkte ist das Orbix Database Adapter Framework (ODAF) zur
Erstellung eigener OODA [IONA97]. Dieses Werkzeug ermoglicht die Integration neuer
Loader-Klassen (siehe Kapitel 5.4.8), die Definition spezifischer OIDs und Marker, die Kopp-
lung zum Orbix Transaction Service (OTS) sowie die Implementierung eigener Verwaltungs-
routinen im ORB (z.B. fiir eine effiziente Registrierung und Verdridngung von Objekten). Der
so erstellte Adapter enthilt dann eine Erweiterung fiir den IDL-Compiler, mit dem sich die
Klassen fiir benotigte Tie-Objekte anhand der IDL-Definitionen generieren lassen. Dieser Punkt
ist ein wesentlicher Vorteil gegeniiber dem Vorgehen in Kapitel 5.4.6, bei dem alle Tie-Klassen
selbst implementiert werden muf3ten. Mit dem ODAF wurden beispielsweise auch die vorgefer-
tigten Orbix & ObjectStore und Orbix & Versant Adapter erstellt (siehe www. iona.com).

Ein weiteres Beispiel sind die DB2 und Oracle Application Adapter des ComponentBroker
[IBM98e]. Diese enthalten zusitzlich noch eine Abbildung der objektorientiert modellierten
Daten auf relationale Schemata. Dabei werden wahlweise die horizontale oder vertikale Parti-
tionierung oder die typisierte Abbildung auf eine Tabelle unterstiitzt (vgl. Kapitel 5.3).

137

5.4.10.2 DB-Anbindung iiber CORBA-konforme Datenversorgungsmodule

Neben der gerade beschriebenen Integration der Datenversorgung in den ORB gibt es noch die
bereits in Kapitel 5.4.7 beschriebene Moglichkeit zur Modellierung von Datenversorgungsmo-
dulen, deren Schnittstellen wie ganz normale Applikationen in IDL deklariert werden. Diese
Idee wurde z.B. von der Firma I-Kinetics zur Erstellung ihres Produktes DataBroker genutzt
[Hi97, IK99]. Dieser definiert unter anderem eine an JDBC angelehnte IDL-Schnittstelle zum
Data Shipping. Der Server kann dann simultan eine Datenversorgung iiber CORBA, JDBC oder
ODBC unterstiitzen. Eine weitergehende Verwendung dieser Daten in anderen CORBA-Kom-
ponenten (insbesondere standardisierten Common Object Services) ist damit natiirlich weitge-
hend ausgeschlossen (das zugrundeliegende Schema ist nicht in IDL modelliert).

5.4.11 Zusammenfassung

In den letzten Abschnitten haben wir verschiedene Ansitze zur Datenversorgung in CORBA-
Umgebungen diskutiert sowie ihre Realisierung in Prototypen und Produkten betrachtet. An
dieser Stelle wollen wir noch einmal die wichtigsten Eigenschaften und Unterschiede zusam-
menfassen (vgl. Tabelle 5.3). Zunichst lassen sich die vorgestellten Konzepte in zwei Katego-
rien einteilen. Die erste umfaflit Ansidtze unter Verwendung standardisierter Common Object
Services. Aufgrund der beschriebenen Probleme gibt es hier aber so gut wie keine Prototypen
oder gar kommerzielle Produkte. Eine groere Zahl von Implementierungen gibt es hingegen
bei Datenversorgungskomponenten mit proprietdren Schnittstellen oder Mechanismen, welche
die zweite Sparte bilden. Dieser Zustand unterstreicht die eingeschrinkte Eignung von CORBA
und den bisher standardisierten Services im Bereich datenintensiver Anwendungen.

Beginnen wir trotzdem mit einem Blick auf die erste Kategorie. Der Einsatz des Persistent
Object Service (POS) fiihrt generell zu interface-Objekten und Operation Shipping. Weiter-
hin ist seine Spezifikation nicht mit anderen Services (wie dem Transaction oder Query Service)
abgestimmt, d.h. eine Kooperation zwischen diesen Komponenten ist immer proprietir. Im
Gegensatz dazu erzwingt der Persistent State Service (PSS) die Modellierung von Daten {iber
die value-Klausel und ermoglicht damit Data Shipping (die Verwendung von interface-
Objekten ist erlaubt, allerdings muf3 deren Zustand iiber die value-Klausel definiert sein). Die
Serialisierung eines Objektes sowie aller referenzierten Objekte wird dabei automatisch vom
ORB durchgefiihrt. Allerdings erhilt der Client nur Kopien.

Sehr flexibel ist man bei der Verwendung des Query Service. Aufgrund der generischen Schnitt-
stelle kann hier jede Form der Modellierung von Daten benutzt werden. Diese bestimmt aber
wesentlich das Verhalten der Implementierung: interface-Objekte fithren zu Operation Ship-
ping wihrend Daten, welche iiber die value- oder st ruct-Klausel definiert sind, als Kopie zum
Client iibertragen werden. Unser Prototyp (siehe Kapitel 6.2.2) verwendet ausschlieB3lich Struk-
turen und ermdglicht damit auch Bulk Transfer von Daten.

Die einzige Moglichkeit zur kontrollierten Migration von registrierten interface-Objekten
bietet die Verwendung der move-Operation des Lifecycle Service. In Kombination mit dem POS
kann so das Data Shipping einzelner Objekte angestoBen werden. Die dafiir benotigte Seriali-
sierung des Zustandes erfolgt zwar automatisch durch den Lifecycle Service, das Format ist aber

138

proprietdr und somit nicht portabel {iber die Grenzen eines ORB-Produktes hinweg. Weiterhin
ist auch hier (bedingt durch die Spezifikation des POS) nur eine eingeschrinkte Kooperation mit
anderen Services moglich.

POS | PSS | QS | POS ES Proprietére | Proprietdres
+ + Kopplung Data
LS | Dateien | zu OODBVS Shipping
Konzept beschrieben in Kapitel | 54.2 | 542 | 543 | 54.4 545 5.4.6 5.4.7
Implementierung beschrieben 6.2.2 6.2.4 6.2.1
in Kapitel
Eingesetzt im Projekt - - - - - TeleMed -
DICE
Grundlage fur das Produkt - - - - - Orbix ODAF, DataBroker
Component-
Broker
Modellierung tuber
interface L)| v v/ v/ v/ -
value - v v - (=) - -
struct - - v - - - /
Objektorientierte Modellierung v v C4) v v v nur
von Daten im Server serialisiert
Ubertragung relationaler Daten - - C4) - (-) - v
oder serialisierter Objekte
Operation Shipping (OS) oder oS DS 0Ss/ | (DS) DS oS DS
Data Shipping (DS)? DS
Migration - - - v - - -
Kopien - |) - v - v
Bulk Transfer - /) - v/ - v/
Kooperation mit Object Services
Transaction Service / / / / 4) /)
Query Service V4 v/ v/) v -
Portabel iber CORBA-Systeme | / / -) - /
hinweg

Tabelle 5.3: Vergleich von Ansidtzen zum CORBA-basierten Zugriff auf Datenquellen

Einen Spezialfall, der neben dem ORB noch die Moglichkeit zum Austausch von Dateien erfor-
dert, stellt die Verwendung des Externalization Service zur Erzeugung von Dateien mit serial-
isierten Objekten dar. Dieses Verfahren fiihrt wiederum zum Data Shipping und der Erzeugung
von Kopien auf dem Client. Alle Daten sind hierfiir als interface-Objekte zu modellieren.
(eine Abstimmung der neuen value-Klausel mit dem Externalization Service steht noch aus).

139

Bei Bedarf konnen die Dateien auch gleich zur persistenten Speicherung der Objekte dienen
(allerdings ist hier eine geeignete Verwaltung und Konsistenzsicherung notig). Problematisch
ist grundsitzlich die Kooperation mit dem Transaction Service, da die erzeugten Dateien nicht
unter der Kontrolle des ORB stehen. Eine Kopplung mit dem Query Service ist hingegen sinn-
voll (z.B. zum Ubertragen der aus interface-Objekten bestehenden Ergebnismenge einer
Anfrage). Aufgrund des proprietidren Dateiformats ist dieser Ansatz aber unter Umstdnden nicht
portabel zwischen den Externalization Services unterschiedlicher ORBs.

Werfen wir nun aber noch einen Blick auf Ansitze der zweiten Kategorie, die keine Common
Object Services verwenden. Hier ist zunéchst die proprietire Kopplung zu OODBVS (oder auch
Datenquellen allgemein) zu nennen. Sie realisiert quasi einen Object Oriented Database Adap-
ter ohne eine Unterstiitzung der Migration von Objekten (siche Kapitel 4.2.3.2) und fiihrt dem-
entsprechend zu Operation Shipping. Diese Losung ermoglicht zwar die Kopplung zu anderen
Services, ist aber nicht konform zum CORBA-Standard. Damit ist sie ebenfalls nicht portabel
zwischen verschiedenen ORB-Produkten.

Quasi entgegengesetzte Eigenschaften erhilt man bei der Verwendung proprietirer IDL-
Schnittstellen zur Realisierung von Data Shipping. Aufgrund der Modellierung der Austausch-
strukturen in IDL ist dieser Ansatz portabel zwischen unterschiedlichen CORBA-Systemen.
Auf der anderen Seite ermoglicht er aber nur eine eingeschréankte Integration mit Services. Zwar
konnte man den implementierten Datenversorgungsserver beim Transaction Service registrie-
ren, eine Kopplung zum Query Service ist aber beispielsweise unmoglich (die proprietidren
Schnittstellen iibernehmen bereits dessen Funktionalitit).

Gemeinsam ist allen in Tabelle 5.3 aufgefiihrten Ansétzen, daB3 sie im Prinzip beliebige Formen
von Datenquellen unterstiitzen (sieche Kapitel 5.1). Zwar ist beispielsweise die in Kapitel 5.4.6
beschriebene proprietire Kopplung zu OODBVS primér auf eine Integration von OODBVS
zugeschnitten, sie kann aber auch fiir RDBVS (vgl. Abschnitt 5.4.10.1) oder Dateien verwendet
werden. In diesem Fall ist natiirlich ein hoherer Aufwand zur Konvertierung der Datenmodelle
notig. Mit den anderen Ansitzen verhilt es sich dhnlich. Problematisch kann hingegen die Inte-
gration von Datenquellen sein, die iiber spezielle APIs gekapselt sind. Insbesondere schreibende
Zugriffe miissen hier auf Operationen des API abgebildet werden, die hédufig Seiteneffekte (d.h.
implizite Anderungen weiterer Daten) zur Folge haben. Diese sind in geeigneter Weise auf den
korrespondierenden CORBA-Objekten nachzuziehen. Eine Unterstiitzung von Anfragen
(Query Service) ist nur sinnvoll falls das zur Verfiigung stehende API diese Funktionalitét anbie-
tet. Die Simulation einer Query Engine oberhalb eines API fiir den eher navigierenden Zugriff
erscheint uns zu ineffizient (dies mag z.B. beim Zugriff auf Dateien sinnvoll sein).

5.5 Data Shipping im Intra-/Internet

Nach einer Diskussion der Datenversorgung in CORBA-Umgebungen gehen wir nun noch auf
spezielle Anforderungen und Techniken im Bereich des Intra-/Internet ein. In Kapitel 2.7 wurde
bereits das zugrundeliegende Szenario geschildert sowie der Einsatz der Programmiersprache

140

Java motiviert. Darauf aufbauend wollen wir hier die verschiedenen Verarbeitungsvarianten
hinsichtlich ihrer Eignung fiir datenintensive Anwendungen und das zugrundeliegende Data
Shipping untersuchen.

5.5.1 HTML-Seiten mit JavaScript und CGI-Skripte im Server

Die in Kapitel 2.7.1 beschriebene Kombination aus HTML-Seiten mit eingebettetem JavaScript
auf dem Client und CGI-Skripten auf dem Server ist heutzutage eine weit verbreitete Losung
zur Bereitstellung von dynamischen Informationen im WWW. Sie ist gut geeignet zur Prisen-
tation von Textdokumenten mit eingebetteten Grafiken, bei denen der Anwender Eingaben iiber
vordefinierte Felder oder Pulldown-Meniis machen kann. Ausgehend von einer statischen Ein-
stiegsseite berechnet der Server (das CGI-Skript) die Folgeseite jeweils individuell fiir jeden
Benutzer anhand dessen Eingaben. Das Dokument wird dann in einem Kommunikationsschritt
zum Client iibertragen und dort angezeigt. Eingebettete Grafiken werden vom HTML-Parser
des Browser in einem getrennten Kommunikationsschritt angefordert. Fast alle Browser ermog-
lichen weiterhin die Pufferung von Dokumenten und Grafiken in einem Client-Cache. Die Iden-
tifikation erfolgt dabei tiber die URL. Zur Erstellung oder Berechnung von HTML-Seiten kann
das CGI-Skript auf beliebige Datenquellen, insbesondere auch DBVS, zugreifen. Einige
moderne DBVS (z.B. Oracle8i) bieten sogar schon eigene Module zur Prisentation von gespei-
cherten Daten im WWW an [Or99].

Die Verarbeitung iiber CGI-Skripte stellt generell eine Mischform aus Operation und Data
Shipping dar. Einerseits fillt sie in die Kategorie Operation Shipping, da alle Berechnungen im
Server ausgefiihrt werden (der Client erméglicht nur die Eingabe von Daten). Andererseits wer-
den aber alle Dokumente und Grafiken zum Client iibertragen und dort evtl. auch gepuffert, was
eine typische Eigenschaft von Data Shipping ist. Wir wollen diese Losung nun aber nicht weiter
charakterisieren, sondern sie als eine angemessene Technik zur Browser-basierten Pridsentation
von Informationen betrachten, die keine weitergehende Verarbeitung im Client ermoglicht.

5.5.2 HTML-Seiten mit Java-Applets

Mit der Einbettung von Java-Applets in HTML-Seiten steht dem WW W-Client die volle Mich-
tigkeit einer Programmiersprache zur Verfiigung. Somit lassen sich nun komplexe Berechnun-
gen lokal ausfiihren (vgl. Kapitel 2.7.3). Weiterhin ist die Java-Laufzeitumgebung mittlerweile
auch Bestandteil der meisten Browser, so daf} (neben diesem) keine weitere Software auf dem
Client-Rechner zu installieren ist. Es stellt sich allerdings die Frage nach einer geeigneten
Datenversorgung, fiir die wir im folgenden drei mogliche Varianten vorstellen wollen.

5.5.2.1 Java-Applets mit einer Datenversorgung iiber CORBA

Bei einer Datenversorgung iiber CORBA kommen prinzipiell alle in Kapitel 5.4 bzw.
Tabelle 5.3 auf Seite 139 betrachteten Ansitze in Frage. Neben der Festlegung auf die Sprache
Java im Client sowie einer moglicherweise eingeschriankten Kommunikationsbandbreite gibt es
keine Einschrinkungen gegeniiber einer allgemeinen CORBA-Umgebung. Wir wollen deshalb

141

nicht erneut auf die Vor- und Nachteile der einzelnen Varianten eingehen. Allerdings sollte noch
betont werden, dal3 nicht jede in einem Browser enthaltene Java-Laufzeitumgebung automatisch
einen ORB umfaft. Unter Umstidnden miissen hier initial noch ORB-Klassen im Umfang von
ca. 100 bis 500 KByte vom Server geladen werden. In allen Féllen sind weiterhin die vom IDL-
Compiler erzeugten Client-Stubs zu iibertragen.

5.5.2.2 Java-Applets mit einer Datenversorgung iiber JDBC

Beim Einsatz von RDBVS bietet sich unter anderem eine Datenversorgung iiber die bereits in
der Java-Laufzeitumgebung enthaltene Java Database Connectivity (JDBC) an (vgl.
Kapitel 2.4.4 und 5.1.2). Uber SQL-Anfragen lassen sich so relationale Tupel zum Client iiber-
tragen. Bei einem objektorientierten Datenmodell innerhalb der Applikation konnen diese auch
innerhalb des Clients gemif den in Kapitel 5.3 dargestellten Verfahren in Java-Objekte konver-
tiert werden.

5.5.2.3 Java-Applets mit einer Datenversorgung iiber Java RMI/OS

Soll ein Java-Applet nicht direkt auf ein RDBVS, sondern auf eine allgemeine, objektorientiert
modellierte Server-Komponente zugreifen, so bietet sich der Einsatz von Java Remote Method
Invocation (RMI) und Object Serialization (OS) an [Sun97b, Sun97c]. Man konnte diesen
Mechanismus als eine auf Java beschriinkte Variante von CORBA bezeichnen: Uber RMI ist ein
RPC-dhnlicher Zugriff (siehe Kapitel 2.4.1) auf die Methoden eines in Java implementierten
Servers moglich, dessen Schnittstellen als ein spezielles Java-Interface definiert werden. Ein
Compiler erzeugt daraus (analog zu CORBA) bendtigte Stubs und Skeletons. Im Gegensatz zu
CORBA gibt es in Java aber nur eine Klausel zur Modellierung von Schnittstellen und Daten:
Java-Interfaces. Diese unterstiitzen sowohl Attribute und Methoden als auch Vererbung. Je nach
Vererbungshierarchie ergibt sich allerdings eine unterschiedliche Verarbeitungssemantik: Erbt
eine Schnittstelle von java.rmi.Remote, so steht deren Implementierung als Server fiir RMI-
Methoden zur Verfiigung. Benutzt man eine von java.io.Serializable abgeleitete Schnitt-
stelle als Parametertyp einer RMI-Methode, so wird eine Instanz zur Laufzeit automatisch zwi-
schen Client und Server lbertragen (serialisiert). Referenzierte Objekte, die ebenfalls die
Schnittstelle java.io.Serializable implementieren, werden im gleichen Kommunikations-
schritt mit {ibertragen (man konnte also von Bulk Data Transfer sprechen).

5.5.3 Zusammenfassung

In diesem Kapitel sind wir auf Ansdtze zur Datenversorgung im Intra-/Internet eingegangen.
Eine weit verbreitete Moglichkeit ist die Verbreitung von dynamisch erstellten Dokumenten und
Grafiken iiber HTML-Seiten und CGI-Skripten. Diese Variante erlaubt aber keine Verarbei-
tungsschritte im Client, die erst mit dem Einsatz von Java-Applets moglich werden. Fiir diese
kann zwischen einer Datenversorgung iiber CORBA (mit all den bereits beschriebenen Vor- und
Nachteilen) und den direkt zur Sprache gehérenden Losungen (wie etwa JDBC oder RMI/OS)
gewihlt werden. Eine Gegeniiberstellung der Eigenschaften aller Varianten ist in Tabelle 5.4
enthalten.

142

HTML, Java- Java- Java-
JavaScript Applets Applets Applets
& & & &
CGl-Skripte CORBA JDBC RMI/OS
Client
Kann in einem Browser ausgefiihrt werden? v v v v
Ergénzende Software nétig?
- ORB - -
(neben dem Browser)
Komplexe Berechnungen lokal im Client - v v v
Puffer enthalt Dokumente Daten Daten Daten
Grafiken
Kommunikation und Datenzugriff
Bulk Data Transfer) Ve v
- - L je
Unterstitzung fir mengenorientierte J
Anfragen né_Ch v
gewahlter
Textdokumente Variante . .
W . objektori-
Datenmodell mit eingebetteten aus relational entiert
Grafiken Tabelle 5.3
- auf
Unterstltzte Datenquellen alle Seite 139 (O)RDBVS alle
Kapselung der Datenquelle durch den Server Ve - v
Server
Programmiersprache bzw SaL-
gramrmiersp ' CGI-Skripte beliebig | Anfragen Java
Verarbeitungsmodell
+ Java
Datenversorgungs-Server kann auf anderem
gung . v v v

Rechner liegen als der WWW-Server?

Tabelle 5.4: Ansitze zur Datenversorgung im Intra-/Internet

143

144

Kapitel 6
Entwurf und Implementierung
einer modularen Datenver-
sorgung

In den letzten Kapiteln haben wir die konzeptuellen Grundlagen einer effizienten Datenversor-
gung diskutiert. Nun wollen wir uns einer beispielhaften Implementierung zuwenden, anhand
derer die verschiedenen Ansitze zu evaluieren sind. Als Anwendungsszenario dient uns dabei
die Produktdatenverwaltung iiber den STEP-Standard (siehe Kapitel 3). Es bietet sich also an,
die gesamte Datenversorgung mit Hilfe der SDAI-Schnittstelle zu kapseln. Nun wollen wir aber
nicht jede Datenquelle iiber eine separate SDAI-Schicht kapseln, sondern einen homogenen
Zugriff auf alle zu bearbeitenden Datenquellen anbieten. In diese Zugriffsschicht konnen dann
bei Bedarf Adapter zu den einzelnen Datenquellen eingeklinkt werden. Diese Adapter sollen
eine verteilte Verarbeitung iiber das Intra- bzw. Internet ermoglichen (vgl. Abbildung 6.1).

Abstrakte Datenversorgungsschnittstelle

Adapter flr Adapter flr Adapter flr Adapter flr
Datenquelle Datenquelle Datenquelle Datenquelle
1 2 3 4
() Intra- / Internet)
Protokoll 1/ Prototkoll 2 X Protokoll x Protokoll 4
— i — —
Datenquelle 1 Datenquelle 2 Datenquelle 3 Datenquelle 4

Abb. 6.1: Allgemeine Architektur einer modularen Datenversorgung

Die von der ISO eingeleitete Entwicklung einer Abbildung der abstrakten SDAI-Schnittstelle
auf die Programmiersprache Java bot uns die Chance, einen eigenen Vorschlag zur Standardi-
sierung zu machen. Dieser sollte natiirlich nicht nur auf die urspriingliche Verarbeitungsweise

145

des SDAI beschrinkt sein, sondern insbesondere die gerade skizzierte Funktionalitit anbieten.
Gerade die Sprache Java bietet im Bezug auf eine Verarbeitung iiber das Intra-/Internet eine sehr
gute Unterstiitzung. Allerdings ergaben sich aufgrund der in anderen Bereichen eher einge-
schriankten Funktionalitét von Java auch einige Probleme. In Kapitel 6.1 diskutieren wir deshalb
die Entwicklung unserer JavaSDAI Socket Bar, die eine modulare Datenversorgungsschnitt-
stelle gemil3 Abbildung 6.1 darstellt. Sie wurde mittlerweile als Conformance Level 1 in den
korrespondierenden ISO-Standard aufgenommen [ISO99a]. Aufgrund der offenen und modula-
ren Architektur lassen sich verschiedene Datenquellen gleichzeitig iiber unterschiedlichste
Kommunikationsprotokolle anbinden. Dafiir werden sie jeweils als ein gekapseltes Data
Module in das Gesamtsystem integriert. Nachdem der Einsatz von STEP typischerweise zu
einer datenintensiven Verarbeitung fiihrt, stellt die Socket Bar somit ein ideales Werkzeug zur
Evaluierung der Konzepte fiir das Data Shipping dar. In Kapitel 6.2 entwickeln wir deshalb
einige Data Modules, die jeweils einen spezifischen Ansatz zum Data Shipping implemen-
tieren. Fiir die Beurteilung ihrer Leistungsfahigkeit benutzen wir zwei Benchmark-Applikatio-
nen, die in Kapitel 6.3 beschrieben sind. Ausgewihlte Ergebnisse einiger Messungen diskutie-
ren wir anschlieBend in Kapitel 6.4. Zusétzlich betrachten wir in Kapitel 6.5 noch verwandte
Arbeiten im Bereich datenintensiver Systeme auf Basis von STEP und CORBA. Alle Ergeb-
nisse zusammen bilden schlieBlich die Grundlage fiir einige allgemeine SchluB3folgerungen in
Kapitel 6.6.

Wihrend der Implementierungsphase und den zugehorigen Analysen haben sich (erginzend zu
den bereits in Kapitel 4 angesprochenen Aspekten) weitere Probleme beim Einsatz von CORBA
herausgestellt. Sie sind das Thema von Kapitel 6.7 und beziehen sich sowohl allgemein auf den
Standard als auch auf einzelne CORBA-Produkte.

6.1 Die JavaSDAI Socket Bar:
Eine modulare Zugriffsschnittstelle auf Basis des SDAI

Im Oktober 1996 hat die ISO aufgrund der steigenden Popularitit von Java die Entwicklung
einer korrespondierenden Sprachanbindung fiir die Zugriffsschnittstelle SDAI gestartet. Nach-
dem die Abteilung FT3/EK des DaimlerChrysler Forschungszentrums Ulm bereits seit Jahren
an der STEP-Standardisierung beteiligt war, haben wir diese Chance genutzt und uns von
Anfang an in der zustidndigen Arbeitsgruppe des ISO TC184/SC4/WG11 engagiert. Unser Ziel
war und ist die Definition eines flexiblen Language Bindings, welches neben der bekannten
SDAI-Funktionalitdt auch den mittlerweile entstandenen Anforderungen im Bereich des Intra/
Internet gerecht wird. Insbesondere wollen wir auch die Erstellung von Java Applets ermogli-
chen, die iiber WWW-Server verbreitet und in einem beliebigen Browser ausgefiihrt werden
konnen. Zur Entwicklung einzelner Implementierungen sollen dabei moglichst viele Konzepte
und Techniken zur Verfiigung stehen, so dal eine standardisierte SDAI-Schnittstelle abstrakt
und unabhingig von jeglicher Form der Datenhaltung oder Datenversorgung sein muf.

146

Im Rahmen des weltweit ersten JavaSDAI-Prototypen haben wir einen Vorschlag fiir eine
Sprachanbindung entwickelt und im Miérz 1997 auf dem ISO-Meeting in Chester présentiert
[SS97, SM98]. Bedingt durch die recht hohe Ahnlichkeit von Java und C++ war dieser sehr
stark an die Abbildung der SDAI-Schnittstelle auf C++ angelehnt [ISO98b]. Obwohl die ersten
Ergebnisse unserer Arbeit sehr vielversprechend waren, so fiel letztendlich doch die mangelnde
Interoperabilitit zwischen unserem Prototypen und moglichen anderen SDAI-basierten Daten-
versorgungskomponenten auf. Gemil unserem Konzept liel sich zwar jede Implementierung
individuell und sehr flexibel erstellen, gleichzeitig war sie aber auf eine einzige Form der Daten-
versorgung fixiert. Dementsprechend haben wir unseren Vorschlag iiberarbeitet und das Kon-
zept der JavaSDAI Socket Bar eingefiihrt. Diese standardisiert quasi die Schnittstelle einer
abstrakten Steckleiste, in die sich auch mehrere Datenversorgungsmodule bei Bedarf einklinken
lassen. Im folgenden wollen wir nun die zugrundeliegende Architektur vorstellen und auf ein-
zelne Aspekte detailliert eingehen. Beginnen werden wir in Kapitel 6.1.1 mit der Diskussion
von konzeptuellen Problemen, die wihrend der Entwurfsphase aufgetreten sind. Sie basieren im
wesentlichen auf den Eigenschaften der Sprache Java sowie der SDAI-Schnittstelle selbst.
Anschlielend stellen wir in Kapitel 6.1.2 unseren Vorschlag fiir ein Language Binding sowie
die Architektur und die Konzepte der JavaSDAI Socket Bar vor.

6.1.1 Konzeptuelle Probleme wihrend der Design-Phase

Die Konzepte der Programmiersprache Java sind zwar zum groften Teil besser durchdacht als
z.B. diejenigen von C++ (und auch priziser definiert), gleichzeitig schrianken sie aber auch die
aus C++ gewohnte Flexibilitdt ein. Dies betrifft insbesondere die Definition von Klassen mit
mehreren Superklassen (sog. multiple Vererbung). Weiterhin sollte man bereits beim Entwurf
von Programmen einen spiteren Einsatz als Applet und die damit verbundene Verteilung
beriicksichtigen. Generell gilt auch, dal die Erzeugung und Freigabe von Instanzen zur Laufzeit
recht teuer ist. Bei einer Abbildung der SDAI-Schnittstelle tritt nun auBerdem das Problem auf,
daf} die Spezifikation prinzipiell mehrere Ebenen der Transaktionsverarbeitung vorsieht. Diese
sind aber nicht alle fiir einen Einsatz im Bereich des Intra-/Internet geeignet, so da3 auch hier
Einschrinkungen nétig sind. Im folgenden wollen wir nun detailliert auf die einzelnen Aspekte
eingehen und die von uns gewihlte Losung beschreiben.

Ein weiteres Problem ist die allgemein zu schlechte Leistung von Java. Bedingt ist dies durch
die Tatsache, daf} Java nicht vollstindig in Maschinensprache iibersetzt wird, sondern in eine
Zwischenstufe, den sog. Bytecode. Dieser muf3 dann noch von der Java Virtual Machine (JVM)
interpretiert werden. Zusétzlich ermdéglicht Java prinzipiell keine Pufferverwaltung, bei der ein-
zelne Objekte bei Bedarf verdringt werden konnen. Diese Fihigkeit wire bei datenintensiver
Verarbeitung von groem Nutzen. Beide Probleme betreffen jedoch nicht primir das Design der
SDAI-Schnittstelle, sondern die spétere Implementierungsphase. Wir werden sie deshalb in
Kapitel 6.2 und Kapitel 6.4 betrachten.

147

6.1.1.1 Anzahl und Umfang von Klassen

Benutzt man ein Java-Applet im Intra-/Internet, so miissen alle benotigten Klassen vom WW W-
Server geladen werden. Beim Einsatz des JDK 1.0.x waren hierfiir sogar einzelne HTTP-
Requests je Klasse notig, die selbst bei einem lokalen Zugriff (der WWW-Server lauft auf dem
gleichen Rechner wie der Browser) jeweils mehrere Sekunden beanspruchen kénnen. Mit dem
JDK 1.1 wurden zum Gliick komprimierte Java Archives (JAR) eingefiihrt, mit denen sich der
benotigte Code in einem Kommunikationsschritt herunterladen 148t. Je nach Anzahl und
Umfang von Klassen ist das Archiv unter Umstinden aber trotzdem noch bis zu mehreren
Megabytes grof3. Selbst ein einzelner Kommunikationsschritt stellt somit eine storende Verzo-
gerung dar. Dies trifft insbesondere bei einem Einsatz im Internet (das fast immer hoffnungslos
tiberlastet ist) oder der Kommunikation iiber Modem-Verbindungen zu.

Ergénzend zum Laden ist auch die Verwaltung von Klassen zu betrachten: Je mehr Klassen es
gibt, desto groBer ist auch die korrespondierende Hilfsstruktur der JVM (vermutlich eine Hash-
tabelle). Folglich steigt auch die Zeit zum Einlagern und Suchen von Class Files. Letzteres ist
z.B. bei jeder Erzeugung von Instanzen notig.

Letztendlich sollte man sich also beim Entwurf auf eine unbedingt bendtigte Anzahl von Klas-
sen beschrinken sowie auf die Wiederverwendung von Code achten: Héufig lassen sich mehrere
Methoden zu einer generischen Methode mit leicht gednderter Signatur zusammenfassen. Bei
der Abbildung der SDAI-Schnittstelle haben wir deshalb voneinander abhingige SDAI-Klassen
aus dem C++ Mapping (z.B. Repository und Repository contents) zu einer JavaSDAI-
Klasse (Repository) zusammengefal3t. Damit reduziert sich die Zahl der Klassen, und es ent-
fallen einige Methoden zur Navigation zwischen Objekten (z.B. die von Repository auf
Repository contents). Weiterhin werden Aggregate direkt auf Java Arrays abgebildet statt
auf eigene Aggregatklassen je SDAI Entity.

6.1.1.2 Erzeugung und Freigabe von Instanzen

Neben der Anzahl von Klassen ist auch die Anzahl von Instanzen sowie deren Erzeugung und
Freigabe ein entscheidender Faktor fiir die Leistung zur Laufzeit. Java ist eine interpretierte
Sprache und dementsprechend sind eigentlich alle Operationen relativ langsam. Gerade die
Erzeugung von Instanzen ist aber extrem teuer. Zunédchst einmal muf3 von der JVM das jeweilige
Class File gesucht werden. Anschliefend ist ein ausreichend grofer (und freier) Bereich im
Hauptspeicher zu finden und korrekt zu initialisieren (durch Aufruf des Konstruktors). Die dafiir
benotigte Freispeicherverwaltung scheint in Java aber recht ineffizient gelost zu sein. Weiterhin
kennt Java nur einen Befehl new zur Erzeugung von Instanzen, aber keinen delete-Operator fiir
deren explizite Freigabe: Das System 16scht nicht mehr referenzierte Objekte automatisch iiber
einen sog. Garbage Collector. Zum Freigeben von Instanzen muf} man also alle Referenzen auf
diese 10schen und auf den Garbage Collector hoffen (dessen Ausfiihrung angestof3en, aber nicht
erzwungen werden kann). Dieser Schritt ist natiirlich deutlich teurer als der Aufruf einer
delete-Operation: Hier miissen alle Objekte im Heap auf Referenzen iiberpriift werden, und
nicht nur das eigentlich zu 16schende! Vielfach kann auch gar nicht garantiert werden, da$3 alle
Referenzen auf ein Objekt geloscht wurden: Selbst wenn z.B. eine SDAI-Implementierung
intern alle Verweise auf ein Objekt 16scht, so kann die Applikation immer noch Referenzen dar-
auf haben (oder umgekehrt). Aufgrund der fehlenden Kontrolle iiber die Freispeicherverwal-

148

tung besteht in datenintensiven Umgebungen mit vielen temporidren Objekten weiterhin eine
erhohte Gefahr der Fragmentierung (es konnen im Gegensatz zu C++ keine speziellen Puffer
zur Aufnahme von Objekten mit bestimmter Groe definiert werden).

Eine Abbildung der SDAI-Schnittstelle sollte also zusammengehdrende Klassen zu einer
Klasse (und damit einer Instanz) zusammenfassen und moglichst keine Erzeugung von tempo-
rdren Objekten erzwingen. Der erste Punkt beschleunigt damit gleichzeitig die im letzten
Abschnitt angesprochene Ubertragung der Class Files.

6.1.1.3 Aufzihlungstypen

In Java fehlt das von anderen Programmiersprachen bzw. aus IDL und EXPRESS bekannte
Konzept der Aufzihlungstypen (den sog. Enumeration Types). Diese lassen sich in Java aber
relativ einfach durch Klassen mit Konstanten simulieren. Unser Vorschlag fiir eine Abbildung
von EXPRESS Enumeration Types auf Java-Klassen ist in Beispiel 6.1 illustriert:

// in EXPRESS:

TYPE Geschlecht = (weiblich, mannlich, unbekannt) ;
END TYPE;

// in Java:

public final class CGeschlecht ({

public static final int unset = java.lang.Integer.MIN VALUE;

Ya,, public static final int WEIBLICH = 0;

QSD public static final int MANNLICH = 1;

a4 public static final int UNBEKANNT = 2;
public static final int dim = 3; // Anzahl der Enumeratoren

// (Dimension)
public static final String values|[] =
{“WEIBLICH”, “MANNLICH” , “UNBEKANNT”};

public static String toString (int v) {
if (v == unset) return “unset”;
return values[v];
public static int toInt (String v) {
for (int i=0; i<=dim; i++) {
if (values|[i] .equalsIgnoreCase(v)) return i;
return unset;
public static boolean isSet (int wv) {
return (v>=0 && v<dim) ;

}i
Beispiel 6.1: Abbildung von EXPRESS Enumeration Types auf Java-Klassen mit Konstanten

Bei der Definition dieser Abbildungsvorschrift haben wir darauf Wert gelegt, dal Werte von
Aufzihlungstypen zur Laufzeit wie Basistypen reprédsentiert werden und keine unndotigen
Instanzen zu erzeugen sind. Aus diesem Grund enthalten die Klassen fiir Enumeration Types nur
statische Konstanten und Methoden. Es werden niemals Instanzen von ihnen angelegt. Besitzt
ein EXPRESS Entity ein Attribut vom Typ eines EXPRESS FEnumeration Type (z.B.
Geschlecht), so wird dieses in der korrespondierenden Java-Klasse auf ein Attribut vom Typ

149

int abgebildet. Die zuldssigen Werte fiir dieses Attribut werden dabei durch die Konstanten in
der Java-Klasse des Enumeration Type (CGeschlecht) beschrieben. Vergleiche und Zuweisun-
gen erfolgen immer auf der Basis von int-Werten (siehe Beispiel 6.2).

// in EXPRESS: // in Java (geklrzt) :
ENTITY Person; public interface EPerson ({
Name : STRING; public void setName (String val) ;
Geschl : Geschlecht; public String getName () ;
END_ENTITY; public void setGesch val) ;

public@ getGeschl () ;

)i
JavaSDA‘ // Beispiel fur Vergleich/Zuweisung in einer Methode:

EPerson persl =
persl.setGeschl (CGeschlecht .WEIBLICH) ;

int tmp = persl.getGeschl () ;
if CGeschlecht.isSet (tmp) { ...};

Beispiel 6.2: EXPRESS Entities mit Attributen vom Typ eines EXPRESS Enumeration Type

Unser Ansatz unterscheidet sich damit deutlich vom Mapping der CORBA-IDL auf Java
[OMGO8({]. Zwar bildet die OMG Aufzihlungstypen auch auf korrespondierende Java-Klassen
ab, von dieser werden aber (im Gegensatz zu unserer Losung) zur Laufzeit Instanzen erzeugt.
Einerseits reduziert dieser Schritt natiirlich die zu erwartende Leistung des Systems (siehe
Kapitel 6.1.1.2), andererseits ermoglicht er aber eine stirkere Typbindung von Attributen: Die
Java-Klasse fiir einen Enumeration Type kann nun direkt als Ergebnis- bzw. Parametertyp von
Zugriffsmethoden verwendet werden. Wiirde man z.B. das ENTITY Person aus Beispiel 6.2 als
IDL interface definieren, so hitte die korrespondierende Java-Zugriffsmethode die Signatur
public Geschlecht getGeschl () (statt public int getGeschl () in JavaSDAI). Wir halten
die durch das Erzeugen von Objekten bedingte Leistungseinbufle aber fiir zu hoch und bevorzu-
gen deshalb unseren o.g. Ansatz mit einer schwécheren Typbindung. Mit den in Beispiel 6.1
illustrierten Hilfsmethoden steht dabei eine ausreichende Unterstiitzung fiir eine typbezogene
Verarbeitung zur Verfiigung.

6.1.1.4 Multiple Vererbung

Im Gegensatz zu den meisten Programmiersprachen unterscheidet Java zwischen der Beschrei-
bung von Schnittstellen (Schliisselwort interface) und Klassen (Schliisselwort class).
Schnittstellen konnen dabei nur Konstanten und die Signatur von Methoden (also nur deren
Deklaration) umfassen. Die Definition von Attributen und Methoden (also deren Implementie-
rung) ist hingegen Bestandteil von Klassen. Auf der Ebene von Schnittstellen wird mehrfache
Vererbung unterstiitzt, fiir Klassen nur einfache. Mit dieser MaBBnahme werden mogliche Kon-
flikte zur Laufzeit vermieden. Wir wollen diesen Aspekt kurz erldutern. Betrachten wir dazu
Beispiel 6.3: Es gibt zwei Schnittstellen 2 und B, die jeweils die Signatur einer Methode doso-
mething deklarieren. Weiterhin erbt die Schnittstelle 2B von den Schnittstellen A und B. Obwohl
sie damit im Prinzip zweimal die Signatur von doSomething erbt, so tritt an dieser Stelle kein
Konflikt auf. Letztendlich bedeutet es nur, dafl eine Implementierung von 2, B oder AB (z.B. die

150

Klasse ¢) eine Methode mit entsprechender Signatur implementieren (also definieren) muf.
Gleiches gilt wenn es keine Schnittstelle AB gibt und die Klasse ¢ direkt von den Schnittstellen
A und B erbt.

interface A { interface B {
int doSomething () ; int doSomething () ;

bi & bi Ky

interface AB extends A, B {

// erbt alle Methoden von A und B class C implements AB {
}; int doSomething () {

@ // ... mache etwas
Vi

}i
Beispiel 6.3: Mehrfache Vererbung bei Schnittstellen (konfliktfrei)

Anders sieht es hingegen aus, wenn man mehrfache Vererbung auf der Ebene von Klassen zulas-
sen wiirde (siche Beispiel 6.4). Gehen wir einmal von zwei Klassen 2 und B aus, die jeweils eine
Methode doSsomething implementieren (also definieren). Erbt nun eine Klasse ¢ von A und B,
so erbt sie damit auch beide Implementierungen dieser Methode. Welche von den beiden sollte
von einer Instanz der Klasse ¢ aber zur Laufzeit ausgefiihrt werden? Hier liegt klar ein Konflikt
vor. Gleiches gilt fiir das Attribut description, das ebenfalls von beiden Basisklassen definiert
wird (es wird also vom jeweiligen Konstruktor Speicherplatz allokiert). Eine Instanz von ¢
konnte nicht entscheiden, auf welches Attribut (also auf welchem korrespondierenden Speicher-
bereich) ein Zugriff erfolgen soll. Aus diesen Griinden wird mehrfache Vererbung auf der Ebene
von Klassen durch Java nicht unterstiitzt.

class A { class B {
int doSomething () { int doSomething () {
// ... mache etwas // ... mache etwas
// anderes als Klasse B // anderes als Klasse A
}i }i
String description; String description;

}i Vi

& class C extends A, B { [ﬁ

// alle Methodenimplementierungen

// und Attribute geerbt, aber:

// Konflikt bei “doSomething”

// => 2 verschiedene Implementierungen! A
// und bei “description”

// => Attribut zweimal vorhanden!

Vi

Beispiel 6.4: Konfliktszenario fiir den Fall mehrfacher Vererbung bei Klassen

Bei einer Abbildung der SDAI-Schnittstelle auf Java miissen wir uns nun entscheiden, wie wir
in STEP modellierte Vererbungsbeziehungen in Java nachbilden. EXPRESS unterstiitzt generell
mehrfache Vererbung auf der Ebene von Entities (siehe Kapitel 3.1). Will man also alle dort
deklarierten Hierarchien in Java erhalten, so bleibt nur die Reprisentation von Entities durch
Java-Schnittstellen (d.h. die Abbildung von EXPRESS Entities auf Java-Schnittstellen wird

151

durch JavaSDAI standardisiert). Dieses Vorgehen hat gleichzeitig den Vorteil, dal Entwickler
bei der Auswahl von Technologien und Konzepten nicht unnétig eingeschrinkt werden: Jede
Schnittstelle (interface) ist standardisiert, deren Implementierung (c1lass) kann aber beliebig
aussehen. Auf der anderen Seite gibt es natiirlich auch Nachteile: Zunichst einmal gibt es nun
zu jedem Entity-Typ eine Schnittstelle und eine Implementierungsklasse. Fiir beide erzeugt der
Java Compiler jeweils ein Class File, das zur Laufzeit geladen werden mul} (vgl.
Abschnitt 6.1.1.1). Weiterhin unterstiitzt Java das Konzept der mehrfachen Vererbung eben nur
fiir Schnittstellen - zur Definition der korrespondierenden Klassen steht es nicht zur Verfiigung.
Hier muf3 mit der Replikation von Code gearbeitet werden, die im Prinzip zu unnétig groflen
Klassen und einem hoheren Wartungsaufwand fiihrt. Wir schlagen vor, dall Klassen jeweils von
der Superklasse mit den meisten Attributen (bzgl. des EXPRESS-Schemas) erben und den Code
fiir Attribute der anderen Superklassen replizieren.

Selbst bei der Verwendung von Schnittstellen fiir die Modellierung von Entities gibt es aber
noch Probleme bei der korrekten Abbildung der Semantik von EXPRESS. Dieser Aspekt
betrifft die Deklaration von Attributen mit gleichem Namen in verschiedenen Superklassen. In
Beispiel 6.5 gibt es zwel Entities A und B, die jeweils zwei Attribute mit dem Namen a und b
haben. Attribut a ist immer vom gleichen Typ, Attribut b basiert auf unterschiedlichen Typen.
Gemil der Semantik von EXPRESS besitzt das Entity ¢ nun sechs (!) Attribute, auf die zuge-
griffen werden kann. Die Java-Schnittstelle fiir c muf} also z.B. nach A.a und B.. a unterscheiden.

ENTITY A ENTITY B
a : INTEGER; a : INTEGER;
b : INTEGER; b : REAL; \ . .
e : REAL: £ . REAL-\ gleicher Name und gleicher Typ
END ENTITY; END ENTITY; gleicher Name, aber anderer Typ
ENTITY C
SUBTYPE OF (A,B)
END ENTITY;

Beispiel 6.5: Mehrfache Vererbung in EXPRESS: Attribute mit gleichem Namen

Auf den Sitzungen der ISO gab es in den letzten Jahren nun lebhafte Diskussionen, wie man
diesen Fall auf Java abbilden soll. Nachdem sich die Semantik von EXPRESS und Java hier
deutlich unterscheidet, lieB sich keine offensichtliche Losung finden. Bei der Entwicklung
neuer Konzepte galt es nun vor allem folgende Anforderungen zu beriicksichtigen:

® Erhaltung der Vererbungshierarchie

Die in EXPRESS deklarierte Vererbungshierarchie ist vollstandig auf Java-Schnittstellen
zu libertragen. Insbesondere sollte es moglich sein, da} Instanzen eines Sub-Entity (z.B. C)
in einem Aggregat vom Typ des Super-Entity (z.B a oder B) enthalten sind und Applikatio-
nen iiber dieses Aggregat iterieren konnen. Eine Instanz von ¢ muf3 dabei das gleiche Ver-
halten wie eine Instanz von A oder B zeigen.

® Zugriff auf geerbte Attribute mit gleichem Namen

Eine Instanz des Sub-Entity (z.B. c) muf den Fall unterstiitzen, dal Attribute mit gleichem
Namen von mehreren Super-Entities geerbt werden (z.B. a und b von A und B). Dies gilt

152

unabhingig davon, ob der Typ der Attribute {ibereinstimmt oder nicht. Die korrespondie-
rende Java-Schnittstelle fiir ¢ mufl Zugriffsmethoden fiir jedes einzelne Attribut enthalten
(also z.B. auf irgendeine Art nach A.a und B. a unterscheiden).

® Wiederverwendung von existierendem Code

In der Praxis tritt hiufig der Fall auf, daB existierende Klassenbibliotheken als Basis fiir
eigene Klassen bzw. Entities benutzt werden. Nehmen wir z.B. an, daf} es bereits Imple-
mentierungen fiir A und B gibt und wir ¢ neu definieren. In diesem Fall mochten wir natiir-
lich die Implementierung von A und B unveridndert tibernehmen und nur die neue Imple-
mentierung fiir ¢ selber entwickeln.

® Namenskonventionen unabhiingig von Vererbung
Der Name von Zugriffsmethoden sollte unabhingig davon sein, ob ein Attribut an ein Sub-
Entity vererbt oder von einem Super-Entity geerbt wird. Dieser Aspekt steht in direktem
Zusammenhang mit der Wiederverwendung von Code, da EXPRESS Schemata (z.B. stan-
dardisierte Integrated Resources - IR, siehe Kapitel 3) vielfach als Basis fiir komplexere
Schemata verwendet werden (z.B. standardisierte Application Protocols - AP).

® Keine verwirrenden Parameter

Zugriffsmethoden fiir Attribute sollten keine Parameter besitzen, deren Bedeutung nicht
offensichtlich ist oder bei denen der zu iibergebende Wert von der aktuellen Vererbungs-
hierarchie abhéngt. Dieses Verfahren wird in Ansatz C und H (siehe Beispiel 6.6) zur Auf-
16sung von Konflikten bei geerbten Attributen mit gleichem Namen benutzt.

® Moglichst kurze Namen fiir Zugriffsmethoden

Der Name von Zugriffsmethoden fiir Attribute sollte moglichst kurz sein. Alle Namen von
Methoden sind im Klartext in den vom Java-Compiler erzeugten Class Files enthalten und
haben damit direkten EinfluB auf die GroBe des Codes. Dies betrifft sowohl die Definition
der Methode als auch jeden Aufruf. Beeinflult wird sowohl die Zeit zum Laden von
Applets als auch der zur Laufzeit benotigte Platz im Hauptspeicher.

® Harmonisierung mit anderen SDAI-Sprachanbindungen

Eine Losung sollte moglichst konform zu anderen SDAI-Sprachanbindungen sein.
Urspriinglich wurde vor allem eine Harmonisierung mit ISO 10303-26 angestrebt (der
Abbildung der SDAI-Schnittstelle auf die IDL. von CORBA), um auch auf dieser Serie
basierende CORBA-Implementierungen mit Java-Clients zu unterstiitzen. Die Anwendung
des von der OMG standardisierten IDL-Java-Mappings auf Serie 26 miif3te dafiir das glei-
che Resultat wie JavaSDAI erzeugen. Mittlerweile wird dieser Punkt aber vernachlissigt,
da sich Serie 26 ohnehin als ineffizient herausgestellt hat (die resultierende Verarbeitung
fiihrt zu Operation Shipping statt Data Shipping, siehe [Sel96] und Kapitel 6.2.4).

Entsprechend der Gewichtung dieser Anforderungen durch die jeweiligen Delegierten (bzw.
thre Firmen) wurden auf den ISO-Sitzungen nun insgesamt acht Ansédtze A bis H vorgestellt.
Sie sind in Beispiel 6.6 unter Verwendung des EXPRESS-Schemas aus Beispiel 6.5 illustriert.

153

interface A {
int getA A();
void setA A(int wval);
int getA B();
void setA B(int val);
double getA E();
void setA E(double val);

}i

interface B {
int getB A();
void setB _A(int val);
double getB B() ;
void setB_B(double val) ;
double getB F() ;
void setB F(double val) ;

bi

interface C extends A, B {};

C. Qualify Name in the Subtype
(With Dummy Argument)

interface A {
int getA(int dummy) ;
void setA(int wval) ;
int getB(int dummy) ;
void setB(int wval) ;
double getE (double dummy) ;
void setE (double val) ;

}i

interface B {
int getA(int dummy) ;
void setA(int wval) ;
double getB (double dummy) ;
void setB(double val) ;
double getF (double dummy) ;
void setF (double val) ;

bi

interface C extends A, B {
int getA A(int dummy) ;
void setA A(int wval);
int getA B(int dummy) ;
void setA B(int wval);
int getB A(int dummy) ;
void setB _A(int val);
double getB B(double dummy) ;
void setB B(double val) ;
// the implementation class shall
// throw an exception on a call to
// getA, setA, getB and setB

A. Fully Qualify Names in the Supertype

B. Qualify Names in the Supertype
Only When Clash Occurs

interface A
int getA A();
void setA A(int wval);
int getA B();
void setA B(int wval);
double getE() ;
void setE (double val) ;

}i

interface B {
int getB A();
void setB_A(int wval);
double getB B() ;
void setB B(double val) ;
double getF () ;
void setF (double val) ;

bi

interface C extends A, B {};

D. Qualify Name in the Subtype
(Without Dummy Argument)

interface A {
int getA();
void setA(int wval);
int getB();
void setB(int wval) ;
double getE() ;
void setE (double val) ;

}i

interface B
int getA();
void setA(int wval) ;
int getB() ;
void setB(int wval) ;
// attribute b of same name, but
// different type not supported;
// retyping necessary!
double getF () ;
void setF (double val) ;

bi

interface C extends A, B {
int getA A();
void setA A(int wval);
int getA B();
void setA B(int val);
int getB A();
void setB_A(int wval);
double getB _B() ;
void setB B(double val) ;
// the implementation class shall
// throw an exception on a call to
// getA, setA, getB and setB

}i

Beispiel 6.6: Ansitze zur Auflésung von Konflikten bei multipler Vererbung

154

E. Fully Qualify Names by Type F. Combine Approach B and D

interface A { interface A {
int getIntA(Class cl); int getA();
void setIntA(int val, Class cl); void setA(int val) ;
int getIntB(Class cl); // no change for attribute with same
void setIntB(int wval, Class cl); // name and type
double getRealE(Class cl); int getA B();
void setRealE (double val, Class cl); void setA B(int val);
}i // qualification in case of attribute
// with same name, but different type
interface B { double getE() ;
int getIntA(Class cl); void setE (double wval) ;
void setIntA(int val, Class cl); }i
double getRealB(Class cl);
void setRealB(double val, Class cl); interface B {
double getRealF (Class cl); int getA();
void setRealF (double val, Class cl); void setA(int val);
}; double getB B() ;
void setB B(double val);
interface C extends A, B { double getF () ;
// use class file for interface A void setF (double val) ;
// as a parameter to getIntA }i
// to access attribute a of Entity A;
// cl might be null if no clash occurs, interface C extends A, B {
// e.g. call “getRealE (null)” int getA A();
}i void setA A(int val);

int getB A();

void setB_A(int wval);

// the implementation class shall
// throw an exception on a call to
// getA and setA

bi

G. Cut Inheritance Hierarchy in Case of H. Qualification by Dummy Parameter
Attr. With Same Name / Different Type
(Otherwise use D) interface A {
int getA (A dummy) ;
interface A { void setA(int val, A dummy) ;
ce int getB (A dummy) ;
// no qualification, see approach D void setB(int val, A dummy) ;
}i double getE (A dummy) ;
void setE(double val, A dummy) ;
interface B { }i
// no gqualification, see approach D, interface B
// but no retyping for attribute b: int getA (B dummy) ;
double getB() ; void setA(int wval, B dummy) ;
void setB(double val) ; double getB (B dummy) ;
}i void setB(double val, B dummy) ;
double getF (B dummy) ;
interface C { // no inheritance void setF (double val, B dummy) ;
// qualification if clash occurs, }i
// see Approach D
}i interface C extends A, B {

// use a casted null for qualif.:
// e.g. “setA(4, (A) null)”
// use null if no clash occurs:
// e.g. “setE(47.11, null)”

}i

Beispiel 6.6: Ansitze zur Auflosung von Konflikten bei multipler Vererbung (Fortsetzung)

155

Anhand von Tabelle 6.1 kann man schlielich ablesen, inwieweit einzelne Losungen die
genannten Anforderungen erfiillen.! Dabei ist klar zu erkennen, daB in keinem Fall alle Aspekte
abgedeckt werden. Der michtigste Vorschlag im Sinne der unterstiitzten Funktionalitit ist
sicherlich Ansatz A.

Ansatz
Anforderung

Unterstltzung fir Attribute mit gleichem Namen

... und gleichem Typ VAR A I A IV A VA I A RV A 4

... und unterschiedlichen Typen VA AN I A B VA BV BV AN R 4
Vererbungshierarchie bleibt bestehen

Bl P PP

... in allen Fallen VA AN I A N VA BV B R 4

Iteration Uber Aggregat eines Supertyps mit Instanzen des Subtyps
unter Verwendung der Zugriffsmethoden des Supertyps mdglich

... fur Attribute mit eindeutigen Namen VAR A A VA IV A IV A RV 4
... fur Attribute mit gleichem Namen und Typ | /- - V)] - - |)
... fir Attribute mit gleichem Namen, v/ v/)) W) i i W)

aber unterschiedlichen Typen

Schnittstelle und Implementierung der Supertypen kénnen Gbernommen werden
(keine Anderungen existierenden Codes nétig)

e PR P M P
.. in allen Fallen 4 I I N BV N A 4
Gleichg'Na-menskonvention far allg Entitigs J i i i v i i v/
(unabhé&ngig von der Vererbungshierarchie)
Keine neuen Parameter erforderlich VAR 2N A I VA BV A
Méglichst kurze Signaturen fiir Zugriffsmethoden S VA A A N A VA I
Ansatz bereits verwendet in Serie 26 - - - - - - -

Tabelle 6.1: Bewertung von Ansitzen zur multiplen Vererbung in JavaSDAI

Innerhalb der ISO-Arbeitsgruppe hat man sich allerdings auf Ansatz D geeinigt. Wir wollen die
Griinde fiir diese Entscheidung kurz erldutern: Zunéchst einmal standen bei der Abbildung auf
Java Leistungsaspekte im Vordergrund. Die Sprache wird ohnehin von vielen als zu langsam
bezeichnet und man wollte die Ausfiihrung von Programmen sowie das Laden von Applets nicht

1. Beiden Ansitzen E und H kann zwar wihrend der Iteration iiber ein Aggregat des Supertyps mit dessen Methoden auf die
Instanzen des Subtyps zugegriffen werden, es muf} aber in diesem Fall ein Wert bzw. Typ fiir den dummy-Parameter iiber-
geben werden (bei Instanzen des Supertyps ist dies nicht erforderlich). Deshalb verwenden wir hier die Notation “(v')*.

156

unnotig verzogern. Dementsprechend waren moglichst kurze Signaturen bzw. Namen fiir
Methoden erforderlich. Ihre Linge beeinfluBt sowohl die Ubertragungszeit als auch den beleg-
ten Platz im Hauptspeicher. Ergédnzend galt es, die Deklaration neuer Parameter zu vermeiden.
Diese wiirden einerseits die Signatur von Methoden verldngern und andererseits beim Aufruf
auch Platz auf dem Stack belegen. AuBBerdem sollte existierender Code fiir Supertypen iiber-
nommen werden konnen, um die Entwicklungskosten fiir Software nicht unnotig zu erhdhen.
Somit blieben nur die Ansétze D, F und G iibrig. Bei diesen fillt aber auf, dal geerbte Attribute
mit gleichem Namen und unterschiedlichen Typen nur unzureichend unterstiitzt werden: Ansatz
D und F erzwingen in diesem Fall Anderungen in den Supertypen (verhindern also die Wieder-
verwendung von Code), Ansatz G zerstort die Vererbungshierarchie. Folglich einigte man sich,
daf} JavaSDAI bei mehrfacher Vererbung keine Attribute mit gleichem Namen aber unterschied-
lichen Typen unterstiitzt. Unter Beriicksichtigung dieser Entscheidung sind die drei Ansitze D,
F und G aber dquivalent, so dal} letztendlich Ansatz D gewihlt wurde (er basiert auf einer mini-
malen Anzahl von Regeln und ist damit am einfachsten zu handhaben).

6.1.1.5 Verteilung und Transaktionen

Die in den letzten Abschnitten betrachteten Probleme bei der Abbildung der SDAI-Schnittstelle
betrafen Leistungsaspekte oder Einschriankungen aufgrund der Verwendung von Java. Im
Bezug auf Transaktionen, Mehrbenutzerbetrieb und Verteilung ist es genau anders herum. Java
bietet einige Konzepte, die SDAI-Schnittstelle ist gemédll [[SO98a] aber nur fiir den lokalen
Zugriff eines Benutzers definiert. Zwar kann man gleichzeitig auf mehrere SDAI Repositories
zugreifen, diese wirken aber eher wie lokale Datenbanken und ihre Existenz sowie das zugrun-
deliegende EXPRESS-Schema miissen auch fest in eine SDAI-Implementierung einkodiert sein
(diese Informationen lassen sich nicht zur Laufzeit konfigurieren). Weiterhin stehen selbst in
Transaktionsebene 3 keine vollstandigen ACID-Transaktionen nach [HR83] zur Verfiigung
(siehe Kapitel 3.2.3).

Bei der Entwicklung von JavaSDAI wollten wir natiirlich die Vorteile von Java nutzen und damit
insbesondere einen Einsatz im Intra- und Internet ermoglichen. Dieser sollte den Zugriff auf
physisch verteilte Datenquellen einschlieBen. Wir fassen JavaSDAI daher als eine Komponente
im Client auf, welche einen homogenen Zugriff auf heterogene Datenquellen zuldBt. Aus Sicht
der Applikation sollte die Verarbeitung iiber JavaSDAI wie ein lokaler Zugriff im isolierten Ein-
benutzerbetrieb wirken. Innerhalb der JavaSDAI-Schicht lassen sich dann unterschiedlichste
Protokolle fiir eine transaktionsbasierte Interaktion mit heterogenen, verteilten Datenquellen
realisieren. Dafiir ist intern die Verwendung von ACID-Transaktionen und einem zweiphasigen
Commit-Protokoll erforderlich. Fiir die JavaSDAI-Schnittstelle selbst benutzen wir dann SDAI-
Transaktionsebene 3. Sie ist in diesem Fall ausreichend, da wir uns fiir eine schlanke SDAI-
Abbildung ohne Unterstiitzung fiir Regeln entschieden haben (bedingt durch ihre Semantik
garantieren diese sowieso keine Konsistenz der Daten, siehe Kapitel 3.2.4 und 6.1.2).

157

6.1.2 Die resultierende Gesamtarchitektur

Bei der Abbildung der SDAI-Schnittstelle auf Java haben wir uns (unter Beriicksichtigung der
im letzten Kapitel diskutierten Aspekte) fiir eine schlanke, aber sehr flexible Architektur mit
moglichst wenig Klassen bzw. Schnittstellen entschieden. Sie soll dabei nur den Teil der SDAI-
Funktionalitit umfassen, der auch bei einer verteilten Verarbeitung iiber das Intra- bzw. Internet
benotigt wird. Dementsprechend unterstiitzt JavaSDAI keine in EXPRESS deklarierten Regeln1
oder Scopes und basiert damit auf SDAI-Implementierungsklasse 1 (siehe auch Kapitel 3.2.7)
Es gibt allerdings folgende Ausnahmen:

® JavaSDAI erfordert Transaktionsebene 3,

® JavaSDAI ermdglicht Ausnahmebehandlungen iiber Java-Exceptions,
aber kein Event Recording, und die

® Unterstiitzung fiir abgeleitete (derived) und inverse Attribute ist optional.

Weiterhin enthélt unsere Spezifikation nur eine typisierte Schnittstelle fiir EXPRESS Entities:
Jede Entity-Definition wird auf eine Java-Schnittstelle abgebildet (Early Binding). Generische
Zugriffe und das zugehorige SDAI Data Dictionary (Late Binding) stehen nicht zur Verfiigung.
Sie wiirden die Menge der erforderlichen Klassen und Schnittstellen unnétig vergroflern.

Neben der Abbildung der SDAI-Funktionalitidt waren fiir JavaSDAI nun noch Erweiterungen
notig, um auch den simultanen Zugriff auf unterschiedliche Datenquellen sowie deren Anbin-
dung und Konfiguration zur Laufzeit zu ermdglichen. Wir haben deshalb eine modulare und
erweiterbare Architektur definiert (sieche Abbildung 6.2). Sie besteht quasi aus einer Steckleiste
(der sog. Socket Bar), in die verschiedene Bausteine (sog. Session oder Data Modules) bei
Bedarf eingesteckt werden.

| Applikation |
Standardisierte JavaSDAI Socket Bar

1 1 1 1
Session Data Data Data Data
Module Module Module Module Module

[\
(Intra- / Internet ()
v %BC z Socket \CORBA
STEP STEP
Physical RDBMS Physical OODBMS
File File

Abb. 6.2: Die Architektur der JavaSDAI Socket Bar

Ein Session Module verwaltet den lokalen Verarbeitungskontext einer SDAI-Implementierung.
Zur Laufzeit muf genau ein solches Modul benutzt werden. Jedes Data Module kapselt hinge-
gen eine Datenquelle, die als ein SDAI Repository in den aktuellen Verarbeitungskontext inte-

1. Den definierten Mechanismus zur Auswertung von Regeln halten wir generell fiir unbrauchbar, da er keine automatische
Kontrolle fiir die Konsistenz der Daten bietet.

158

griert wird. Zur Laufzeit kann dann auf beliebig viele Data Modules zugegriffen werden. Jedes
Modul kann auf unterschiedlichen Technologien zur Datenversorgung beruhen - wie etwa Java
RMI/OS, JDBC, rudimentiren Socket-Verbindungen oder CORBA-basierten Verfahren. Uber
das gewihlte Protokoll lassen sich dann beliebige Datenquellen ansprechen. Neben DBVS sind
hier insbesondere ASCII-basierte STEP Physical Files zu nennen (siehe Kapitel 3). Um diese
Flexibilitit zu erreichen, miissen die Schnittstellen einzelner Module sowie deren Interaktion
klar geregelt sein. Weiterhin darf man nicht die Java-Klassen standardisieren, sondern nur die
korrespondierenden Java-Schnittstellen. Andernfalls wiirde die Menge der uns zur Verfiigung
stehenden Technologien unnétig eingeschrinkt. So erfordern manche Ansitze z.B. spezielle
Vererbungshierarchien auf der Ebene von Klassen.

Bei der Definition der Schnittstellen konnten wir bereits einen grofen Teil durch existierende
SDAI-Funktionalitit abdecken. Nur wenige Erweiterungen waren notig. Fiir die Schnittstelle
des Session Module haben wir die existierenden Deklarationen fiir Session und Transaction
verwendet. Lediglich session mu3te um eine Methode openInterOpRepo erginzt werden, um
weitere Data Modules bzw. Repositories zur Laufzeit hinzubinden zu konnen (siehe
Beispiel 6.7). Dabei wird die URL und der Name der Repository-Klasse als Parameter iiberge-
ben (urlstr und className). Die Implementierung des gesamten Data Module wird dann wie
ein Applet geladen und zur laufenden Umgebung hinzugebunden.

public interface Session extends Session instance {
. // andere SDAI-Methoden
public Repository OpenInterOpRepo (String urlStr, String className,
Properties propForLoad,
Properties propForInit)
throws SdaiException, InvalidPropertyException;

}i

Beispiel 6.7: Signatur der Methode Session.OpenInterOpRepo

In einer verteilten Umgebung ist nun weiterhin die Unterstiitzung fiir eine Autorisierung bzw.
Authentifikation von Anwendern bzw. eine verschliisselte Kommunikation von Bedeutung. Aus
diesem Grund besitzt die Methode openInterOpRepo zwei ergdnzende Parameter propForLoad
und propForinit. Mittels dieser konnen verschiedene Keyword/Value-Paare in einer Instanz von
java.util.Properties libergeben werden. Denkbare Werte sind z.B. Login und Password
oder Public Keys. Der Parameter proprorLoad wird fiir das Laden der Implementierung ausge-
wertet wihrend proprorinit direkt an die Methode InterOpRepository. InitRepo propagiert
wird (siehe Beispiel 6.8). Die Menge der bendtigten Properties ist implementierungsabhédngig
und dementsprechend nicht standardisiert. Sollte ein Wert fehlen oder ungiiltig sein, so wird die
ebenfalls neu eingefiihrte 1nvalidpropertyException ausgelost.

In Bezug auf Data Modules haben wir die Schnittstellen fiir Repository, Model,
Model contents, Session instance und App inst libernommen sowie Regeln fiir die
Abbildung benutzerdefinierter EXPRESS-Entities und anderer Datentypen erstellt (siehe auch
Kapitel 6.1.1.4). Ergidnzend dazu mufiten wir eine neue Java-Schnittstelle InterOpRepository
einfiihren, die von Repository erbt und die Interaktion mit dem Session Module ermoglicht
(siehe Beispiel 6.8). Sie wird nur intern von Session und Transaction benutzt und ist fiir die
Applikation nicht sichtbar.

159

public interface InterOpRepository extends Repository
public CImplementation getImplementation();
// returns description of implementation;
// SDAI method defined on Session, but also used here
public String[] getNeededProperties() ;
// returns list of properties needed for InitRepo
public void InitRepo(Session session, Properties propForInit)
throws SdaiException, InvalidPropertyException;
// Initializes Repository and data shipping protocols; will be
// called by Session.OpenInterOpRepo before calling this.OpenRepo

public void OpenRepo() throws SdaiException; // open repository
public void CloseRepo() throws SdaiException; // close repository
public Model[] getActive models() throws SdaiException;

// needed by Session.getActive models to obtain open models

public void StartTransaction (int mode) throws SdaiException;
public boolean PrepareCommit () throws SdaiException;
// phase 1 of 2PC; returns true to vote commit, false otherwise
public void Abort (boolean endXaction) throws SdaiException;
// phase 2 of 2PC in case of abort
public void Commit (boolean endXaction) throws SdaiException;

// phase 2 of 2PC in case of commit

}i

Beispiel 6.8: Deklaration der internen Java-Schnittstelle InterOpRepository

Neben diesen Java-Schnittstellen gibt es noch wenige Java-Klassen und Exceptions, die sowohl
vom Session als auch von den Data Modules benutzt werden. Sie repridsentieren u.a. Konstanten
sowie standardisierte Aufzdhlungstypen entsprechend unserem Ansatz aus Kapitel 6.1.1.3. Wir
wollen sie an dieser Stelle aber nicht weiter betrachten. Die resultierende Hierarchie aller durch
JavaSDAI spezifizierter Schnittstellen, Klassen und Exceptions ist in Abbildung 6.3 dargestellt.
Alle Deklarationen bzw. Definitionen sind im package SDAI.lang enthalten.

Java Interfaces: Java Classes:
Session instance BOOLEAN
Session LOGICAL
Transaction NUMBER
Repository — @ InterOpRepository t:: INTEGER
Model REAL
Model contents Access_type
App inst Commit mode
Select Implementation

SdaiSecurityManager
Java Exceptions:
SdaiException
SdaiRuntimeException Vererbung
InvalidPropertyException Neu in JavaSDAI (nicht Teil des allg. SDAI)

Abb. 6.3: Hierarchie der standardisierten JavaSDAI-Schnittstellen, Klassen und Exceptions

Neben den von jedem Schema unabhéngigen Spezifikationen im package SDAI.lang sind nun
noch Schnittstellen und Klassen fiir das jeweilige EXPRESS-Schema nétig. Diese werden
anhand der bereits oben genannten Regeln erzeugt: Entities und Select-Typen werden auf Java-

160

Schnittstellen abgebildet, Aggregate entsprechen Java Arrays und Aufzihlungstypen fiihren zur
Definition korrespondierender Java-Klassen (siehe auch Kapitel 6.1.1). Die so erzeugten
Schnittstellen und Klassen sind dann im package SDAI.S<schemaName> enthalten. Die Menge
aller Java Packages fiir verwendete EXPRESS-Schemata sowie das package SDAI.lang bilden
schlieBlich die eigentliche JavaSDAI Socket Bar. Das Session Module sowie die einzelnen Data
Modules enthalten lediglich die Implementierung fiir die standardisierten Schnittstellen. Das
Design und die Konzepte ausgewihlter Implementierungen von Data Modules stellen wir in
Kapitel 6.2 vor. Dabei behandeln wir auch die Frage, wie sich Referenzen zwischen Entities rea-
lisieren lassen, die in unterschiedlichen Data Modules bzw. Repositories gespeichert sind.

AbschlieBend wollen wir uns aber noch der Frage widmen, was eigentlich neu an unserem
Ansatz ist bzw. was erst durch die Verfiigbarkeit von Java moglich wurde. Ein zentraler Aspekt
unserer Architektur ist sicherlich die Tatsache, dall Data Modules dynamisch (also zur Laufzeit)
hinzugebunden werden konnen. Thre Existenz muf3 dabei in keinem anderen Code-Fragment
beriicksichtigt werden (auch nicht in der Applikation). Es reicht vollig, wenn der Benutzer zur
Laufzeit die URL der Repository-Klasse eingibt. Voraussetzung ist natiirlich, dal Applikation
und Data Module auf den selben EXPRESS-Schemata basieren und dementsprechend auch die
selben Schnittstellen benutzen. Ermoglicht wird dieses Vorgehen dadurch, da3 Java zwischen
Schnittstelle (interface) und Implementierung (class) unterscheidet und auch Class Files
dynamisch nachladen kann.

Der erste Punkt ist sicherlich nicht neu: So erméglicht z.B. C bzw. C++ die Deklaration von
Datenstrukturen und Klassen in sog. Header Files. Mit ihnen lassen sich ebenfalls Anwendun-
gen von Klassen schreiben, deren Implementierung zur Entwicklungszeit nicht vorliegt.

Auch das Nachladen von Klassenbibliotheken wurde nicht erst von Java eingefiihrt: Microsoft
verwendet unter Windows bereits seit Jahren sog. DLLs (Dynamic Link Libraries), die sich zur
Laufzeit installieren und konfigurieren lassen (allerdings nur lokal und nicht iiber das WWW).

Letztendlich gibt es eigentlich kaum einen wirklich neuen Aspekt in Java. Es ist vielmehr die
Kombination aller Punkte, die den Reiz der Sprache ausmacht und uns zur Definition eines
neuen Ansatzes bewegt hat. Aufgrund der Plattformunabhingigkeit ergibt sich alleine eine viel
hohere Flexibilitét fiir eine verteilte Verarbeitung. In Kombination mit der direkten Einbettung
von Konzepten fiir eine verteilte Verarbeitung tiber das World Wide Web stellt Java derzeit sogar
eine einzigartige Losung dar. Gegeniiber der urspriinglichen Definition der SDAI-Schnittstelle
in Serie 22 [ISO98a] bietet unser Ansatz sicherlich deutlich mehr Flexibilitit und vor allem
Interoperabilitit. Im Zeitalter des Intra- und Internet halten wir dies fiir unverzichtbar.

6.2 Entwurf und Implementierung der Data Modules

Nachdem wir uns im letzten Kapitel dem Design der standardisierten JavaSDAI-Schnittstelle
gewidmet haben, wollen wir uns nun der Implementierung ausgewéhlter Data Modules zuwen-
den. Diese werden in Kapitel 6.4 zur Bewertung unterschiedlicher Datenversorgungsstrategien
dienen. In Kapitel 6.2.1 beginnen wir mit der Présentation eines Moduls zum proprietdren Data

161

Shipping tiiber CORBA. Der Server speichert dabei alle Daten {iber den Gnu Database Manager
(GDBM). Mehr oder weniger der gleiche Server wird auch fiir das in Kapitel 6.2.2 vorgestellte
Data Module verwendet. Es basiert allerdings auf einer standardisierten Kommunikation iiber
die Schnittstellen des CORBA Query Service. Neben diesen beiden auf CORBA basierenden
Ansitzen betrachten wir in Kapitel 6.2.3 eine dritte Losung zum Data Shipping, die aber auf
JDBC und einer persistenten Speicherung in RDBVS beruht. In Kapitel 6.2.4 stellen wir dann
ein Modul zum Operation Shipping vor, das seine Daten in einem OODBVS ablegt. Eine
Gegeniiberstellung und Zusammenfassung der Eigenschaften aller vier Module ist abschlie3end
das Thema von Kapitel 6.2.5.

6.2.1 Proprietires Data Shipping iiber CORBA

Unser erstes Data Module basiert auf proprietirem Data Shipping iiber die IDL st ruct-Klausel
(sieche Kapitel 5.4.6). Es wurde urspriinglich als eigenstindiger SDAI-Prototyp entworfen
[SM98], dessen Ergebnisse erst zur Definition der JavaSDAI Socket Bar fiihrten [SM99b]. Wir
werden deshalb mit einer Vorstellung der Konzepte des eigenstindigen Prototypen beginnen
und dann abschlieBend kurz auf dessen Konvertierung in ein Data Module eingehen. Dabei kann
man gut erkennen, wie leicht sich eine monolithische Implementierung unter Verwendung der
von uns vorgestellten JavaSDAI-Schnittstellen strukturieren laBt.

Die Architektur unserer urspriinglichen Prototypen ist in Abbildung 6.4 illustriert. Sie basiert
auf einem Java-Client und einem in C++ geschriebenem Server. Der Client umfafit dabei die
IDL Stubs, einen dariiberliegenden Objektpuffer mit SDAI-Schnittstelle sowie die Applikation.
Der Server besteht aus den IDL Skelefons und einer Schicht zur Speicherung von Objekten iiber
den Gnu Database Manager (GDBM, siehe [GN94]).

Applikation

| _ _ _Java-SDAllayer __ __ | >_ Java Client
(Applet oder Application)

Model A[] Objektpuffer [Model B[]

CORBA Client Stub

L]

(Object Request Broker 0O

IDL Skeleton
Data Server

>— C++ Server
GDBM
Model B|J [Model
-/

Abb. 6.4: Architektur des ersten JavaSDAI-Prototypen

Die Kommunikation zwischen Client und Server basiert auf den IDL-Datenstrukturen aus
Beispiel 5.1 auf Seite 131. Sie fiihren zur Ubertragung serialisierter Objekte. Ein Objekt kann
entweder ein EXPRESS Entity oder ein Aggregat sein. Wir fassen Aggregate bewuf3t nicht als
einen Teil von Entities auf (was sie gemifl den EXPRESS-Definitionen eigentlich wéren), um

162

sie (erst bei Bedarf) getrennt von den Daten des Entity iibertragen zu konnen. Jedes Objekt (vom
Typ objectData) besteht dabei aus einer OID (objectHandle) sowie einer Liste von Attributen
(seqattrUnion). Eine OID besteht aus den IDs fiir das Repository, das Model und den
EXPRESS-Typ sowie einer laufenden Nummer relativ zu diesen Werten. Ein Attribut wird
durch die IDL union attrUnion reprisentiert, die eine variante Struktur zur Aufnahme von
Basistypen oder OIDs darstellt. Die eigentliche Schnittstelle des CORBA-Servers ist schlie3lich
in Beispiel 6.9 dargestellt. Sie enthilt im wesentlichen zwei Methoden zur Anforderung von
Objekten (Getobject und GetAggregate) sowie eine Methode zur kompakten Propagierung
von Anderungen im Rahmen der Commit-Behandlung (PropagateCommirt).

interface dataServer
. // some methods to obtain metadata
objectData GetObject (in objHandle handle)
raises (DataServerException) ;
segObjectData GetAggregate (in objHandle handle)
raises (DataServerException) ;
void PropagateCommit (... // propagate metadata
in segObjectData newObjectData,
in segObjHandle objectsToDelete,
in segSegObjHandle insertInAggr,
in segSegObjHandle removeFromAggr)
raises (DataServerException) ;

}i
Beispiel 6.9: IDL-Schnittstelle des CORBA-Servers (Auszug)

Mit Getobject lassen sich einzelne Objekte iiber ihre OID anfordern. Im Gegensatz dazu fiihrt
ein Aufruf von Getaggregate zur Ubertragung eines Aggregates inkl. aller darin enthaltenen
Objekte. Der Parameter muf} dabei auf die OID eines Aggregates verweisen (andernfalls wird
eine DataServerException ausgelost). Anderungen werden grundsitzlich lokal im Client
gepuffert und erst zum Commit-Zeitpunkt an den Server propagiert (mittels PropagateCommit).
Nachdem der Prototyp ohnehin auf den Einbenutzerbetrieb eingeschrénkt ist, ersparen wir uns
damit die Implementierung einer weitergehenden Transaktions- und Sperrverwaltung im Server
(GDBM bietet leider keine Transaktionen). Neben zwei Listen mit gednderten Objekten und
den OIDs von geloschten Objekten gibt es zwei weitere Listen von Listen zur Optimierung der
Kommunikation bei Aggregaten von Entities (diese bestehen genau genommen aus einem
Aggregat von OIDs). Haufig gibt es sehr grole Aggregate, in die jeweils nur wenige Entities
eingefiigt oder aus denen nur einzelne Entities geloscht werden. In diesem Fall muf3 nun nicht
das gesamte Aggregat zum Server zuriick iibertragen werden, sondern nur eine Liste mit einzu-
fligenden (insert InAggr) bzw. zu lI6schenden OIDs (removeFromaggr). Die erste OID in einer
Liste referenziert dabei das Aggregat selbst. Insgesamt ergibt sich in beiden Fillen jeweils eine
Liste von Listen von OIDs (segseqgobjHandle), da natiirlich mehrere Aggregate geidndert worden
sein konnen.

Vor einer genaueren Betrachtung des eigentlichen Laufzeitverhaltens wollen wir nun aber
zunichst einen Blick auf den Start und die Initialisierung des gesamten Prototypen werfen.
Diese Phase ist in Abbildung 6.5 in Bezug auf eine Applet-basierte Verwendung des urspriing-
lichen Prototypen veranschaulicht. Alles beginnt damit, da8 der Anwender die HTML-Seite mit
dem eingebetteten Java-Applet vom WW W-Server anfordert (1). Der WWW-Server lokalisiert

163

nun die gewiinschte Seite in seinem Dateisystem (2) und schickt sie als Antwort an den Browser
des Clients (3). Der Browser stellt die Seite dar, erkennt den Verweis auf das enthaltene Applet
und fordert dessen Code vom WWW-Server an (4). Dieser sucht erneut in seinem Dateisystem
(5) und schickt den Code als Antwort zuriick (6). AnschlieBend wird das Applet von der Java
Virtual Machine (JVM) im Browser gestartet. Das Applet kontaktiert nun initial den Orbix
Daemon, um eine Verbindung zum Data Server aufzubauen (7). Der Orbix Daemon bedient
sich dafiir der im Implementation Repository (IR) gespeicherten Informationen (8). Gibt es noch
keine laufende Implementierung des gewiinschten Servers, so startet der Daemon eine neue (9).
Anschlielend gibt er eine Objektreferenz auf den Server an das Applet zuriick (10). Das Applet
benutzt diese Referenz im folgenden fiir jede weitere Kommunikation mit dem Data Server
(11). Bei einer Verwendung als Java-Applikation entfallen die Schritte 1 bis 6, da der Code
bereits lokal installiert ist.

Browser

HMTL Text

——P» HTTP-Kommunikation
— P Kommunikation Gber Orbix

(Intra- / Internet @)

/3,6 Y o A

WwWw Orbix 9 Data
Server Daemon P! Server
(httpd) (orbixd)

1
v 2,5 8
File System “ m

Abb. 6.5: Initialisierungsphase des ersten Prototypen

Nach dieser Initialisierung startet die eigentliche Verarbeitung iliber die SDAI-Schnittstelle.
Diese beginnt typischerweise mit dem Offnen von Session, Transaction, Repository und Model
sowie dem Laden eines Model Contents oder Entity Extents. Hierfiir muf} natiirlich der Name
von Repository und Model bekannt sein (bei Entity Extents zusitzlich der Name des Entity-
Typs). Sowohl Model Contents als auch Entity Extents sind intern als Aggregate mit eigener
OID modelliert. Anhand der Metadaten kann die SDAI-Implementierung aus den Namen von
Repository, Model (und Typ) die OID des jeweiligen Aggregates bestimmen und dessen Inhalt
mittels GetAggregate vom Data Server anfordern. Der Server schickt die Ergebnismenge im
Rahmen der Antwort (also in einem einzigen Kommunikationsschritt) an den Client. Dort wird
jedes einzelne Objekt deserialisiert und in den Objektpuffer eingelagert. Attribute vom Typ
eines Aggregates oder solche zur Darstellung von Referenzen zwischen Entities bleiben vorerst
in der serialisierten Form, d.h. sie sind weiterhin durch die OID des referenzierten Objektes
reprasentiert. Erst bei einem Zugriff auf das Attribut wird iiberpriift, ob das referenzierte Objekt
bereits im Puffer liegt. Ist dies der Fall, so wird die OID direkt durch eine Hauptspeicherreferenz
auf das gepufferte Objekt ersetzt. Andernfalls wird vorher das Objekt vom Server angefordert
und in den Puffer eingelagert. Gemil [KK93] 148t sich diese Strategie als lazy, direct und in-
place Pointer Swizzling bezeichnen.

164

Aufgrund der Diskussion in Kapitel 6.1.1.1 basiert der erste Prototyp auf Konzepten ohne
Unterstiitzung fiir mehrfache Vererbung. Diese Entscheidung vereinfacht auch die Serialisie-
rung von Entities deutlich: Es gibt nur maximal einen Supertyp. Dementsprechend bietet es sich
an, bei der Serialisierung mit den Attributen des Supertyps zu beginnen. Die Attribute eines
Typs in der Vererbungshierarchie stehen dann immer an der gleichen, fest definierten Stelle
innerhalb der Attributliste. Bei multipler Vererbung konnte dies nicht garantiert werden (siehe
Kapitel 6.2.2).

Mittlerweile wurde der erste Prototyp in ein Data Module fiir die Socket Bar konvertiert. Dabei
blieben mehr oder weniger alle Design-Entscheidungen bestehen. Insbesondere unterstiitzt die
Implementierung nach wie vor keine mehrfache Vererbung, obwohl die Schnittstellen dies
zulassen wiirden.

Die Konvertierung selbst war einfacher als wir urspriinglich erwartet hatten. Zunéchst einmal
mufte die Klasse Repository um die Methoden aus dem interface InterOpRepository
erweitert werden. Hierfiir wurden einige Methoden aus den alten Klassen Transaction und
Session wiederverwendet:

® Die Transaktionsverarbeitung wurde groftenteils aus Transaction libernommen.
® Der globale Puffer in session wurde zu einem lokalen Puffer je InterOpRepository.

® Der Code fiir das Auflosen von OIDs und Nachladen von Objekten konnte mit leichten
Anderungen wiederverwendet werden. Leichte Modifikationen ergaben sich lediglich bei
der Modellierung von OIDs. Sie betreffen Referenzen auf Entities in anderen Repositories.
Bei der Speicherung miissen diese in eine OID konvertiert werden. Aufgrund der strikten
Kapselung von Data Modules kann hierfiir aber nicht auf den internen Mechanismus des
anderen Repositories zugegriffen werden. Vielmehr mufl die OID iiber Methoden der
JavaSDAI-Schnittstelle konstruiert werden. Wir benutzen dafiir die standardisierte
Methode GetpPersistentIdentifier, die einen String mit der persistenten ID (PID) eines
Entity zuriickgibt. Die PID ist eindeutig im Bezug auf das jeweilige Repository. In Kombi-
nation mit dem Namen des Repository (der laut SDAI-Spezifikation immer eindeutig ist)
stellt der resultierende Typ interOpHandle damit eine gute Moglichkeit zur Modellierung
von Referenzen auf Entities in anderen Repositories dar (sieche Beispiel 6.13). Zur Repri-
sentation interner Referenzen bietet sich dieses Verfahren hingegen nicht an: Die Verarbei-
tung von Strings ist zu teuer und benotigt auch unnétig viel Speicherplatz. Wir benutzen
deshalb den urspriinglichen OID-Typ zur Darstellung lokaler Referenzen (neuer Name:
localObjectHandle). Im Prinzip hitte man noch das Attribut repoID streichen kdnnen.
Wir haben uns jedoch dagegen entschieden, um auch mehrere Repositories von einem ein-
zigen Data Server verwalten lassen zu konnen.

Bis auf ein paar Kleinigkeiten war damit im Prinzip schon alles getan. Wir haben die Gelegen-
heit allerdings genutzt, um gleichzeitig ein paar kleinere Optimierungen vorzunehmen. Sie
betreffen insbesondere die Verwaltung der Aggregate fiir Entity Extents und Model Contents
sowie deren Ubertragung. Bisher wurden auch diese Aggregate beim Commit zum Data Server
tibertragen und von diesem gespeichert. Der Server entsprach damit eigentlich einer per-
sistenten Hashtabelle, bei der die OID von Objekten als Schliissel verwendet wurde. Nun haben
wir eine Verwaltung fiir Model Contents und Entity Extents in den Data Server integriert. Beim

165

Commit miissen die jeweiligen Aggregate nicht mehr iibertragen werden, sondern sie werden
vom Server entsprechend der erhaltenen Daten (neue bzw. zu 16schende OIDs) gewartet. Die
OID eines Entity wird dabei in den Extent des aktuellen Typs sowie in die Extents aller Super-
typen eingefiigt. Dadurch sind diese Aggregate immer vollstindig und konnen bei Bedarf direkt
zum Client libertragen werden.

6.2.2 Data Shipping iiber den CORBA Query Service

Zur Vermeidung proprietdrer Schnittstellen zwischen Client und Server haben wir ein zweites
Data Module entwickelt, das auf den Schnittstellen des CORBA Query Service basiert. Die
Architektur ist dabei stark an unser erstes Modul aus Kapitel 6.2.1 angelehnt (siche
Abbildung 6.6). Allerdings haben wir diesmal zwei verschiedene Server vorgesehen: Eine
GDBM-basierte Version (quasi eine Aktualisierung des Servers aus Kapitel 6.2.1) sowie einen
Query Service zur Verarbeitung von STEP Physical Files.

Applikation \
JavaSDAI Socket Bar J
| Query Service ava
y (Client)
Data Module
Objektpuffer
OrbixWeb / ORBacus
Client Stub y;
(either or)
Orbix / ORBacus Orbix / ORBacus
Server Skeleton Server Skeleton C++
Query Service Query Service (Server)
(STEP Physical Files) (GDBM)
I
STEP S—
Physical GDBM
File Repository

Abb. 6.6: Architektur des auf einem CORBA Query Service basierendem Data Module

Zur Laufzeit wird jeweils alternativ einer der beiden Server verwendet. Die Initialisierung voll-
zieht sich dabei dhnlich zu der unseres ersten Moduls (siehe Abbildung 6.5). Allerdings wird
die Referenz auf den CORBA Server nicht mehr iiber den Orbix Daemon erworben (dieser steht
bei Verwendung anderer CORBA-Systeme wie z.B. ORBacus sowieso nicht zur Verfiigung),
sondern iiber eine Datei auf dem WWW-Server. Diese Datei enthilt einen String mit der IOR
(Interoperable Object Reference) des Server-Objektes fiir die Initialisierung (siehe detaillierte
Beschreibung des Servers in Kapitel 6.2.2.2). Beide Data Server werden automatisch beim
Hochfahren des Server-Rechners gestartet und laufen dann dauerhaft.

Werfen wir nun aber noch einen Blick auf die Kommunikation zwischen Client und Server. Bei
der Diskussion des CORBA Query Service in Kapitel 4.3.5 haben wir bereits erkannt, daf} seine
Spezifikation nur die Schnittstellen der Server-Objekte standardisiert. Offen bleiben hingegen
die Anfragesprache sowie die Definition von Datenstrukturen zur Ubertragung der Ergebnisse.

166

Aus diesem Grund entwickeln wir in Kapitel 6.2.2.1 zunéchst zu verwendende IDL-Strukturen
fiir EXPRESS-basierte Daten sowie einige rudimentéire Anfragen (die nach der Verabschiedung
des SQL3-Standards entsprechend ersetzt werden sollen). In Kapitel 6.2.2.2 folgt dann eine
Beschreibung der Implementierungen beider Server. AnschlieBend diskutieren wir in
Kapitel 6.2.2.3 die Realisierung des Java-Clients. Dieser umfafit gegeniiber dem alten Data
Module aus Kapitel 6.2.1 deutlich mehr Funktionalitidt. Genauere Details zum Entwurf und
erste Erfahrungen mit diesem Data Module sind in [SM99a] enthalten.

6.2.2.1 Anfragesprache und Datenstrukturen

Vor der Implementierung des Query Service miissen wir zuerst die unterstiitzte Anfragesprache
sowie Datenstrukturen fiir die Ubertragung der Ergebnismenge festlegen. Entsprechend der
Spezifikation des CORBA Query Service miissen wir dabei SQL 92, OQL 93, OQL 93 Basic
oder eine beliebige Untermenge bzw. Kombination dieser Sprachen unterstiitzen (siehe
Kapitel 4.3.5). Jede dieser drei Sprachen bietet fiir sich leider keine angemessene Unterstiitzung
zur Verarbeitung EXPRESS-basierter Daten. Wir haben uns deshalb zur Definition einer neuen
Sprache EXPRESS_SQL entschlossen, die mehr oder weniger eine Untermenge von SQL 92
darstellt - allerdings verwendet sie andere Datentypen als SQL. Die zur Deklaration der Sprache
erforderliche IDL-Schnittstelle ist in Beispiel 6.10 auf Seite 169 enthalten.

Kategorie Unterstiitzte Anfragen

Data Retrieval (1) SELECT * FROM Repository

(2) SELECT * FROM Repository WHERE typelD=#1

(3) SELECT * FROM Repository WHERE typelD=#1 OR SUBTYPE

(4) SELECT * FROM Repository WHERE oid=#1

(5) SELECT * FROM Repository WHERE modID=#1

(6) SELECT * FROM Repository WHERE modID=#1 AND typelD=#2

(7) SELECT * FROM Repository WHERE modID=#1 AND (typelD=#2 OR SUBTYPE)

Metadata Retrieval (8) SELECT * FROM MetaData

Data Modification (9) INSERT #1 INTO Repository

(10) UPDATE #1 IN Repository

(11) DELETE FROM Repository WHERE oid=#1

(12) DELETE Model FROM Repository WHERE modellD=#1

Metadata Modification (13) CREATE Model #1
(14) RENAME Model TO #1 WHERE modellD=#2

Tabelle 6.2: Durch den Query Service unterstiitzte Anfragen

EXPRESS_SQL unterstiitzt nur eine kleine Menge unbedingt erforderlicher Anfragen, die in
Tabelle 6.2 aufgelistet sind. Sie sind ausreichend fiir die Verarbeitung EXPRESS-basierter
Daten iiber eine SDAI-Schnittstelle. Nach Abschluf3 der Standardisierung von SQL3 wollen wir
dann aber die vollstindige Michtigkeit von SQL3 nutzen. Dafiir arbeiten wir derzeit an einer
Abbildung von EXPRESS auf SQL. In diesem Zusammenhang hoffen wir auch darauf, daf}

167

kiinftige ORDBVS-Produkte dann einen CORBA Query Service umfassen (und wir diesen
direkt verwenden konnen). Zur Unterstiitzung der in dieser Arbeit durchgefiihrten Messungen
hat sich der derzeitige Ansatz aber als vollkommen ausreichend erwiesen.

Nun wollen wir uns aber den zu verwendenden Datenstrukturen zuwenden. Nachdem wir einen
auf Data Shipping basierenden Ansatz anstreben, bleibt fiir die Modellierung von Objekten (bis
zur Verfiigbarkeit des IDL-Typs value) nur die Verwendung der struct-Klausel (vgl.
Kapitel 4.5). Die hierfiir entwickelten IDL-Definitionen sind in Beispiel 6.10 auf Seite 169 dar-
gestellt. Sie ermdglichen die generische Ubertragung beliebiger EXPRESS-basierter Daten,
d.h. sie sind unabhingig vom jeweiligen EXPRESS-Schema. Fiir jeden EXPRESS-Typ wird
deshalb eine Typ-ID (TypeID) erzeugt, die mit jeder serialisierten Instanz iibertragen wird (siehe
Feld type in ObjectOraggr). Die Zuordnung zwischen Typnamen und ID ist in den Metadaten
enthalten (Felder typeIDs und typeNames von MetaData). Analog zum ersten Data Module
stellen wir Entities und Aggregate als Objekte mit eigener OID dar. Alle anderen Werte sind
Attribute von Entities und werden direkt mit diesen libertragen. Neu ist allerdings, dall wir alle
moglichen EXPRESS-Typen unterstiitzen (bisher waren z.B. keine Select-Typen oder
geschachtelte Aggregate erlaubt).

Die Menge der unterschiedlich zu repridsentierenden EXPRESS-Basistypen beschreiben wir
durch den Aufzidhlungstyp ExpressType. Der EXPRESS-Typ NUMBER wird dabei durch
REAL reprasentiert (gleicher Wertebereich). EXPRESS-Enumerations bilden wir aut INTEGER
ab (analog zur JavaSDAI-Definition in Kapitel 6.1.1.3) und fiir benutzerdefinierte Typen
(EXPRESS TYPE) verwenden wir jeweils direkt den zugrundeliegenden Typ. Identifizierbare
Objekte mit eigener OID (also Entities und Aggregate) werden als EObjoraggr beschrieben.
Bei Aggregaten unterscheiden wir allerdings nach der Schachtelungstiefe: Das duflere Aggregat
besitzt eine OID und ist somit iiber EObjoraggr charakterisiert. Innere (geschachtelte) Aggre-
gate werden hingegen immer zusammen mit dem umfassenden Aggregat ilibertragen und besit-
zen deshalb keine eigene OID. Wir beschreiben sie deshalb als ENestedArry, ENestedBag,
ENestedList oder ENestedSet. Die Felder Eunset und EUunknown dienen der Kennzeichnung
von undefinierten oder temporir (aus technischen Griinden) nicht verfiigbaren Attributen.

Auf Basis dieser Liste von moglichen Typen wurde nun die variante Struktur union ExpvValue
zur Darstellung beliebiger EXPRESS-Werte definiert. In den meisten Féllen benutzten wir
dabei IDL-Basistypen. Lediglich fiir SELECT-Typen muften wir eine weitere Struktur Select-
Type einfiihren. Sie enthilt eine Liste von Typ-IDs sowie den endgiiltigen Wert (auch SELECT-
Typen konnen geschachtelt sein - in diesem Fall reicht aber die Auflistung der auf der jeweiligen
Stufe gewidhlten Typ-ID). Zur Darstellung des Wertes war leider eine weitere variante Struktur
union FinalSelectValue erforderlich, um zyklische Abhéingigkeiten zwischen selectType
und Expvalue zu vermeiden (diese sind in IDL nicht erlaubt). Innerhalb dieser brauchten wir
nun deutlich weniger Fille zu unterscheiden: Geschachtelte SELECT-Typen konnen nicht mehr
auftreten (sie sind in der ID-Liste kodiert), im Fall undefinierter oder nicht verfiigbarer Attribute
gibe es gar keinen SELECT-Wert und geschachtelte Aggregate kdnnen nur innerhalb eines
durch Eobjoraggr klassifizierten Objektes auftreten.

168

module ExpressQuery {
interface Express SQL Query : CosQuery::SQL92Query {};

typedef short TypelD;
typedef sequence<TypelD> seqTypelD;

struct OID (
long 1s1;
short msl, modID;
char flag;
}i
enum ExpressType {
EInteger, EReal, EBoolean, ELogical, EString, EBinary, EObjOrAggr, ESelect,
ENestedArray, ENestedBag, ENestedList, ENestedSet, EUnset, EUnknown

Vi

union FinalSelectValue switch (ExpressType) {

case EInteger: long intVval;
case EReal: double realval;
case EBoolean: char boolval;
case ELogical: char logval;
case EString: string stringVal;
case EObjOrAggr: OID oidval;

}i

struct SelectType {
seqTypelD type;
FinalSelectValue value;

Vi

union ExpValue switch (ExpressType) {

case EUnset: char unsetval;
case EUnknown: char unknownVal ;
case EInteger: long intval;
case EReal: double realval;
case EBoolean: char boolval;
case ELogical: char logVval;
case EString: string stringVal;
case EBinary sequence<octets> binval;
case EObjOrAggr: 0OID oidval;
case ESelect: SelectType selval;
case ENestedArray: sequence<ExpValue> nestArrayVal;

// same for nested bag, list, set
}i

struct ObjectOrAggr {

01D oid;
TypeID type;
sequence<ExpValue> values;

bi

typedef sequence<ObjectOrAggr> seqgObjectOrAggr;

struct MetaData {

short msl;

long 1sl;
sequence<short> modIDs;
sequence<strings modNames ;
sequence<typeID> typelDs;
sequence<strings> typeNames;

Vi
Vi

Beispiel 6.10: IDL-Datenstrukturen fiir EXPRESS-basierte Daten

169

Die Struktur objectoraggr dient schlieBlich der Ubertragung von Entities und (duBeren)
Aggregaten. Sie besteht aus der OID, der Typ-ID und einer Liste von EXPRESS-Werten. Im
Fall eines Aggregats wird oid.flag mit einem “A”, “B”, “L” oder “S” (fiir Array, Bag, List,
Set) belegt. Die Liste values enthilt dann das Aggregat und type beschreibt in diesem Fall den
Basistyp des Aggregates (bei geschachtelten Aggregaten den letztendlichen Basistyp). Bei
geordneten Aggregaten entspricht die Reihenfolge der Liste der Sortierung des Aggregates. Fiir
Entities wird das Feld oid.flag mit einem “E” belegt. Die ID des Entity-Typs ist in type
codiert. Die Liste values enthilt in diesem Fall die Werte der Attribute. Die Reihenfolge ergibt
sich dabei wie folgt: Attribute von Supertypen treten immer zuerst auf (rekursiv). Bei mehreren
Supertypen wird die Reihenfolge innerhalb der SUBTYPE OF-Klausel iibernommen. Attribute
von Supertypen, die liber mehrere Pfade geerbt wurden, diirfen natiirlich nur bei ihrem ersten
Auftreten beriicksichtigt werden. Innerhalb eines Typs treten alle Attribute wiederum in der
Reihenfolge ihrer Deklaration auf. Optional unterstiitzte inverse Attribute stehen nach allen
anderen Attributen. Innerhalb ihrer Auflistung gilt dann wieder die gleiche Reihenfolge wie fiir
normale Attribute.

Anhand der Datenstruktur fiir die OID 148t sich erkennen, da3 unser Ansatz keine Referenzen
zwischen Entities in verschiedenen Repositories erlaubt: Die OID enthilt lediglich die ID fiir
das Model. Wir haben uns zu dieser Einschrankung entschlossen, da wir den Query Service auch
fiir den direkten Zugriff (und eben nicht nur fiir SDAI-Implementierungen) nutzen wollen. In
diesem Fall kann aber nicht garantiert werden, da3 das andere Repository (bzw. die andere
Datenquelle) auch einen CORBA Query Service zum Zugriff anbietet. Models stellen hingegen
eine interne Segmentierung dar, die auch ohne die Verwendung einer SDAI-Schicht Sinn macht.
Die Kombination aus ms1/1s1 reprisentiert eine logische Nummer, deren Konkatenation mit der
modID eindeutig im Bezug auf die gesamte Datenquelle sein muf3. Die Aufteilung in ms1 und
1s1 ermoglicht die lokale Erzeugung neuer OIDs im Client: Jeder Client bekommt iiber die
Metadaten eine eindeutige ms1 zugewiesen, die er fiir alle neuen OIDs verwendet. Dabei benutzt
er die ebenfalls erhaltene 1s1, die er fiir jedes neue Objekt um eins inkrementiert. IDs fiir neue
Models miissen hingegen vom Server angefordert werden (siehe Liste der Anfragen in
Tabelle 6.2 auf Seite 167). Die Zuordnung zwischen IDs und Namen von Models 148t sich den
Metadaten entnehmen.

6.2.2.2 Implementierung der Server

Wie bereits zuvor erwihnt, haben wir fiir dieses Data Module zwei verschiedene Server erstellt,
die alternativ benutzt werden konnen. Der Einsatz existierender Produkte kam leider nicht in
Frage. Einerseits ist uns keine kommerziell verfiigbare Implementierung eines Query Service
bekannt (der IBM ComponentBroker lag nur in einer instabilen Beta-Version fiir Windows NT
vor) und andererseits hitten wir diese aufgrund der mangelnden Eignung von SQL 92 bzw.
OQL 93 auch gar nicht nutzen kdnnen. Wir hoffen an dieser Stelle jedoch auf SQL3 und darauf
basierende ORDBVS.

Bei der Implementierung unserer Server wollten wir es natiirlich vermeiden, eine vollstindige
Query Engine implementieren zu miissen. Aus diesem Grund gibt es fiir jede Anfrage aus
Tabelle 6.2 jeweils ein korrespondierendes CORBA-Objekt, das auf der standardisierten Query-
Schnittstelle basiert (sieche Abbildung 4.15 auf Seite 99). Der Code zur Ausfiihrung der Anfrage

170

ist dabei fest in die Implementierung der Methode execute einkodiert. Alle 14 Query-Objekte
werden durch einen ebenfalls standardisierten QueryManager verwaltet. Uber diesen lassen sich
auch Referenzen auf die einzelnen guery-Objekte erwerben.

module ExpressQuery {
// re-open IDL module already containing data structures

enum DB TAMode {RO, RW}; // RO == read only, RW == read write

interface DB QueryTAManager {

void BOT (in DB_TAMode theMode); // some server side implementations may
// ignore theMode, it's just a hint ...

void Abort () ;

boolean PrepareCommit () ; // return TRUE -> vote Commit
// return FALSE -> vote Abort

void Commit () ;

CosQuery: :QueryManager GetQueryManager () ;

void DeleteQuery (in CosQuery: :Query theQuery) ;

}i

interface DB QueryTAManagerFactory {
DB QueryTAManager create (in string DBname) ;

Beispiel 6.11: Erginzende IDL-Schnittstellen zur Transaktionsverarbeitung

Nachdem uns keine Implementierung eines CORBA Transaction Service zur Verfiigung stand,
haben wir ergiinzend zu den Datenstrukturen aus Beispiel 6.10 zwei weitere Schnittstellen zur
Transaktionsverwaltung definiert (siehe Beispiel 6.11). Diese dienen gleichzeitig als Einstiegs-
punkt fiir die gesamte Verarbeitung: Jeder Client erhilt initial eine Referenz (IOR) auf die
DB_QueryTAManagerFactory im Server. Uber deren create-Methode erwirbt der dann eine
Referenz auf einen DB QueryTAManager, der nur fiir ihn zustindig ist (der Server erzeugt eine
Instanz je Client). Als Parameter mufl dabei der Name der Datenbank bzw. des Repositories
angegeben werden (der Server kann also im Prinzip mehrere Datenbanken verwalten). Mit den
Methoden des DB QueryTAManager kann der Client Transaktionen starten und beenden bzw.
zum korrespondierenden QueryManager navigieren (es gibt wiederum einen QueryManager je
Client bzw. je DB QueryTAManager).

Die Implementierung des GDBM-basierten Servers ist dhnlich zur alten Version aus
Kapitel 6.2.1: Die serialisierten Objekte werden iiber ihre OID in GDBM-Dateien gespeichert.
Fiir jede Datenbank bzw. fiir jedes Repository gibt es ein Unterverzeichnis im Dateisystem, das
eine Datei je Model enthilt. Neben den Objekten werden jeweils noch Listen mit den OIDs aller
Instanzen eines Models (Model Contents) bzw. aller Instanzen eines Typs je Model (Entity
Extent) verwaltet und gespeichert. Im Gegensatz zum alten Data Module fragt der Client diese
Aggregate aber nicht iiber spezielle OIDs ab, sondern mittels der Anfragen aus Tabelle 6.2. Die
Listen dienen also nur der beschleunigten Verarbeitung im Server. Neben dieser Mafnahme
wurden keine weiteren Optimierungen vorgesehen. Insbesondere gibt es im Server (neben dem
ohnehin vorhandenen GDBM-Cache) keinen Objekt-Puffer.

171

Die zweite Implementierung fiir STEP Physical Files realisiert hingegen eine vollkommen
andere Verarbeitungsweise. Alle Daten eines Repositories stehen (gemif3 der Spezifikation) in
einer einzigen Datei. Diese wird beim Start des Servers vollstindig gelesen, um Instanzen fiir
alle enthaltenen Objekte zu erzeugen. Das Lesen einzelner Objekte bei Bedarf bietet sich auf-
grund der Struktur von STEP Physical Files nicht an. Neben dem Puffer mit Instanzen von
Objekten gibt es auch hier Hilfsstrukturen zur Verwaltung von Model Contents und Entity
Extents. Der resultierende Server wurde zwar nicht fiir Messungen im Rahmen dieser Arbeit
benutzt, er hat sich aber schon mehrfach bei Projekten innerhalb von DaimlerChrysler FT3/EK
bewihrt.

6.2.2.3 Implementierung des Clients

Die Funktionalitidt des Clients wurde gegeniiber dem ersten Data Module aus Kapitel 6.2.1
erheblich erweitert. Zunéchst einmal wird nun auch multiple Vererbung unterstiitzt. Dafiir
waren umfassende Anderungen in der Struktur der Java-Klassen sowie bei der Serialisierung
und der Verwaltung von Entity Extents notig. Erginzend dazu wurde eine neue Pufferverwal-
tung entworfen, die bei der Verarbeitung groBBerer Datenmengen (die nicht mehr komplett in den
Hauptspeicher des Clients passen) einzelne Objekte temporir verdringen kann. Dieser Vorgang
ist natiirlich transparent fiir die Applikation. AbschlieBend wurde noch die Transaktionsverwal-
tung iiberarbeitet, so dal nun auch der Mehrbenutzerbetrieb effizient unterstiitzt wird. Alle Kon-
zepte und Entscheidungen sind ausfiihrlich in [Ma98] dokumentiert. An dieser Stelle wollen wir
nur kurz auf die wesentlichen Punkte eingehen:

Multiple Vererbung

In Abschnitt 6.1.1.4 haben wir bereits entstehende Probleme bei der Abbildung von mehrfacher
Vererbung in EXPRESS auf Java betrachtet. Zur Auflosung der angesprochenen Konflikte auf
der Ebene von Schnittstellen (Java Interfaces) haben wir Ansatz D iibernommen (siche
Tabelle 6.1 auf Seite 156 und Beispiel 6.6 auf Seite 154). Ergdnzend dazu mufite auf der Ebene
von Klassen ein Teil der geerbten Funktionalitit re-implementiert werden (Java erlaubt nur
maximal eine Superklasse). Wir benutzen dafiir die Reihenfolge der Supertypen innerhalb der
EXPRESS-Definitionen, um von der Klasse fiir den ersten Supertypen zu erben und den Code
der anderen Klassen zu duplizieren. Dieser Schritt stellt quasi die einfachste Losung dar und
vereinfacht dementsprechend die Implementierung des Code-Generators. Nachdem dessen
Komplexitit aber nicht das Laufzeitverhalten der SDAI-Implementierung beeinflufit, entsteht
an dieser Stelle ein weiteres Optimierungspotential, das in zukiinftigen Versionen genutzt wer-
den soll: Eine Minimierung von dupliziertem Code 148t sich erreichen, indem nicht einfach von
der ersten Superklasse geerbt wird, sondern von derjenigen mit den meisten Attributen und
Methoden. Die resultierende Reduktion des Codes fiihrt zum schnelleren Laden von Applets
und einem geringeren Speicherbedarf im Hauptspeicher des Clients. Letzteres gilt sowohl fiir
den eigentlichen Code (die gepufferten Class Files), als auch fiir die Instanzen von Entities (sie
besitzen jetzt u.U. weniger Attribute).

172

Serialisierung und Deserialisierung

Im Rahmen der Unterstiitzung fiir mehrfache Vererbung ist nun weiterhin eine Uberarbeitung
der Methoden zur (De-)Serialisierung notig. Dieser Aspekt betrifft insbesondere die Reihen-
folge der Attribute. Bisher reichte die Definition, da3 zuerst die Attribute der EXPRESS-Super-
typen kommen und dann die eigenen (entsprechend der Reihenfolge innerhalb der EXPRESS-
Definition). Dieses Verfahren 146t sich prinzipiell beibehalten, allerdings miissen die Attribute
aller Supertypen gemeinsam betrachtet werden. Eine isolierte Betrachtung einzelner Superty-
pen scheidet aus. Wir wollen diesen Sachverhalt kurz illustrieren. Betrachten wir dafiir die Typ-
Hierarchie in Beispiel 6.12: Entity D erbt das Attribut a von Entity A durch beide Supertypen
(Entity B und C). Wiirde man beide Supertypen getrennt betrachten, so wiirde a zweimal seria-
lisiert. Dies wiire natiirlich falsch.

ENTITY A ENTITY C
A a : INTEGER; SUBTYPE OF (A)
END ENTITY; ¢ : REAL;
/ \ END_ENTITY;
B Cc
ENTITY B ENTITY D
\/ SUBTYPE OF (A) SUBTYPE OF (B, C)
D b : REAL; d : NUMBER;
END ENTITY; END ENTITY;
(a) Typ-Hierarchie (b) EXPRESS-Definitionen

Beispiel 6.12: Mehrfache Vererbung mit gemeinsamem Supertyp

Aus diesem Grund muf} eine eindeutige Reihenfolge festgelegt werden, in der jeder Supertyp
genau einmal vorkommt. Wir haben uns fiir eine Art Tiefensuche auf Basis der EXPRESS-Defi-
nition entschieden: Die Attribute von Supertypen kommen vor den eigenen, die Supertypen
werden entsprechend der Reihenfolge in der Subtype-Klausel bearbeitet und vor der Serialisie-
rung eines Typs wird iiberpriift, ob dieser nicht bereits bearbeitet wurde. Fiir eine Instanz des
Typs D aus Beispiel 6.12 ergébe sich damit folgende Reihenfolge fiir die Serialisierung der
Attribute: A.a-B.b-C.c-D.d.

Ein Nachteil dieses Verfahrens liegt in der Dynamik, die wéihrend der Serialisierung (also zur
Laufzeit) die Verwaltung einer Liste mit bereits serialisierten Typen erfordert. Mit einem klei-
nen Trick 1aBt sich dieser Aspekt aber vermeiden: Fiir die Implementierung der zu einem Entity-
Typ korrespondierenden Klasse miissen wir bei multipler Vererbung ohnehin den Code fiir
einige Attribute duplizieren. Entsprechend unserer o.g. Entscheidung wiirden wir z.B. von der
Klasse fiir Entity B erben und die Attribute von C duplizieren. Dabei tritt bereits das gleiche Pro-
blem auf: Attribut a von Entity A darf nicht dupliziert werden, da es bereits von der Klasse fiir
Entity B geerbt wird. Dementsprechend wird nur C.c dupliziert. Betrachtet man nun die dupli-
zierten Attribute als “eigene” Attribute der Klasse fiir Entity D, so a3t sich der Serialisierungs-
algorithmus aus dem alten Data Module beibehalten: Zuerst werden die Attribute der (einzigen)
Superklasse serialisiert, dann die eigenen (und zwar erst die duplizierten, dann die des korre-
spondierenden Entity-Typs).

173

Verwaltung von Entity Extents

Entity Extents stellen ein Aggregat mit allen Instanzen eines Entity-Typs dar (inkl. Subtypen).
Somit ist also jede Instanz im Extent des korrespondierenden Entity-Typs sowie in allen Extents
der Supertypen enthalten. Bei der Implementierung des Clients stellt sich nun die Frage, ob man
die Aggregate fiir Extents jeweils vollstindig materialisiert (d.h. eine Instanz entsprechend der
Typ-Hierarchie in mehreren Aggregaten enthalten ist, siche Abb. 6.7a) oder die Aggregate
jeweils nur die Instanzen des exakt korrespondierenden Typs enthalten und gleichzeitig auf die
Aggregate der Subtypen verweisen (siche Abb. 6.7b).

A‘a1,a2, b1,C1=d1‘ A

Instanz i

B c ey, dy] B b,] Xi vom Typ X

Entity Extent
o[d,] o ld,) XL_] farentty x

(a) materialisiert, unverknupft (b) verkniipft

Abb. 6.7: Strategien zur Verwaltung von Entity Extents (basierend auf Beispiel 6.12)

Wir haben uns fiir Variante (b) entschieden, da diese deutlich schneller beim Erzeugen und
Loschen von Objekten ist. Im Gegensatz dazu hat sich der Mehraufwand fiir die Verkniipfung
der Extents als relativ gering herausgestellt. Im Prinzip ist hier nur eine statische Liste mit Refe-
renzen auf die Aggregate aller Subtypen erforderlich, die nur einmal wihrend der Initialisie-
rungsphase erzeugt wird. Jede Liste muf} allerdings vollstdndig sein (d.h. auch alle transitiven
Subtypen referenzieren). Andernfalls wiirden im Fall multipler Vererbung einige Instanzen dop-
pelt aufgezihlt werden: In Abb. 6.7b wird das Aggregat fiir Extent D sowohl von B als auch von
C referenziert. Wiirde A nicht direkt auf D verweisen, so wiirde D beim iterieren iiber A zwei-
mal berticksichtigt: einmal als Subtyp von B und einmal als Subtyp von C. Die Kombination der
Verweise ist somit nicht als Hierarchie aufzufassen!

Pufferverwaltung: Verdringung von Objekten

Die Verarbeitung groBerer Datenmengen (die den Umfang des Hauptspeichers im Client {iber-
steigen) erfordert es, da} temporér unbendtigte Objekte zwischenzeitlich ausgelagert oder ver-
dringt werden. Dieser Vorgang sollte transparent fiir die Applikation sein. Insbesondere sollten
Referenzen auf verdringte Objekte giiltig bleiben. Derartige Mechanismen haben sich bereits
im Bereich datenintensiver Systeme etabliert, lassen sich aber leider nicht direkt auf Java-
Umgebungen iibertragen. Speicherbereiche oder Puffer werden hier nur vom System verwaltet
und konnen nicht durch Programme gesteuert werden. Insbesondere das Loschen von Objekten
ist nicht direkt moglich. Es kann nur iiber den sog. Garbage Collector erfolgen, der alle Objekte
aus dem Speicher entfernt, auf die keine Referenzen mehr existieren. Zum Ldschen eines
Objektes miissen also zunédchst einmal alle Referenzen auf dieses geldscht und dann der Gar-
bage Collector angestoen werden. Nun kann eine SDAI-Implementierung aber nicht Einfluf3

174

auf lokale Variablen der Applikation nehmen, die vielleicht noch Referenzen auf zu verdrén-
gende Objekte enthalten. Aus diesem Grund muf} die Pufferverwaltung eine Indirektion enthal-
ten: Fiir jede Entity-Instanz gibt es einen sog. Wrapper, der im Prinzip nur eine Referenz auf das
eigentliche Objekt enthilt und alle Methodenaufrufe an dieses weiterleitet. Diese Technik ist
mit dem Indirect Pointer Swizzling aus [KK93] vergleichbar (nur werden dort AdreBlisten an
Stelle der Wrapper benutzt). Der Wrapper ist sehr klein und kann permanent im Hauptspeicher
bleiben. Referenzen auf eine Entity-Instanz werden grundsitzlich als Referenz auf den korre-
spondierenden Wrapper modelliert und bleiben damit dauerhaft giiltig. Das eigentliche Objekt
kann bei Bedarf verdridngt werden, indem die auf das Objekt zeigende Referenz im Wrapper
geloscht (diese ist garantiert die einzige) und der Garbage Collector angestolen wird. Vorher
mul natiirlich der evtl. geidnderte Zustand des Objektes gesichert werden. Ein erneuter Zugriff
auf den Wrapper (aus Sicht der Applikation stellt dieser ja das Objekt dar) fiihrt dann zur erneu-
ten Einlagerung des Objektes. Damit der Mechanismus funktioniert miissen natiirlich auch
interne Referenzen im Puffer iiber die Wrapper modelliert werden. Die Laufzeiteinbuflen durch
die zusitzliche Dereferenzierung haben sich dabei als gering herausgestellt (siehe Kapitel 6.4).

Transaktionsverwaltung und Mehrbenutzerbetrieb

Der groB3te Teil der Transaktionsverarbeitung (insbesondere die Sperrverwaltung) ist im Server
realisiert. Die Synchronisation mehrerer Clients erfolgt auf Basis der iibermittelten Anfragen
(analog zu SQL und RDBVS). Andert die Applikation ein Objekt (oder erzeugt sie ein neues),
so wird diese Operation beim ersten mal direkt per Update Query an den Server propagiert, um
eine entsprechende Schreibsperre zu erwerben. AnschlieBende Modifikationen werden lokal im
Client bearbeitet und erst beim Commit an den Server propagiert. Auf diesem Wege wird die
notige Kommunikation auf ein Mindestmal} reduziert.

6.2.3 Data Shipping iiber JDBC

Das dritte Data Module basiert auf einer Datenspeicherung in RDBVS und einem Zugriff iiber
die Java Database Connectivity (JDBC, siehe Abschnitt 5.5.2.2). Es kommt damit ohne den
Einsatz von CORBA aus und dient der Gegeniiberstellung und Evaluierung beider Technolo-
gien. Die Architektur des Data Module ist in Abb. 6.8 illustriert. Fiir jedes SDAI Repository
werden 2 relationale Datenbanken angelegt: Eine fiir die eigentlichen Daten (Entity-Instanzen)
und eine weitere fiir Metadaten (Beschreibung der verfiigbaren SDAI Models und bereits ver-
gebener OIDs). Diese Aufteilung war nétig, um einen effizienten Mehrbenutzerbetrieb zu unter-
stiitzen: Jede SDAI-Transaktion wird auf eine Transaktion auf der DB mit den Daten abgebildet,
d.h. die Transaktions- und Sperrverwaltung erfolgt im wesentlichen direkt durch das RDBVS.
Im Gegensatz dazu wird auf der Metadaten-DB nur mit kurzen Transaktionen gearbeitet, die nur
eine einzige Anfrage umfassen. Dadurch wird eine unnétige Blockade zwischen mehreren
SDAI-Clients vermieden. Legt z.B. eine Applikation eine Entity-Instanz an, so liest und inkre-
mentiert der SDAI-Client in der Metadaten-DB die hochste bereits vergebene OID und erzeugt
damit ein neues Objekt (lokal im Client). Die TA auf der Metadaten-DB ist damit beendet, die
SDAI-TA kann hingegen noch ldanger laufen. Will nun ein zweiter SDAI-Client ebenfalls eine
neue Entity-Instanz des gleichen Typs erzeugen, so kann er ebenfalls auf die Metadaten-DB

175

zugreifen und die gleiche Operation ausfiihren. Bei einer gemeinsamen Speicherung von Daten
und Metadaten wire dies nicht moglich gewesen: Der erste SDAI-Client wiirde eine Schreib-
sperre auf die Metadaten-Tabelle bis zum Ende der SDAI-TA halten, so dall die Anfrage des
zweiten SDAI-Clients (zur Bestimmung der hochsten vergebenen OID) bis zum Ende der
SDAI-TA des ersten SDAI-Clients verzogert wiirde. Diese Verzogerung wire aber unnotig und
inakzeptabel.

Applikation

JavaSDAI Socket Bar

JDBC > Java (Client)

Data Module
Objektpuffer
/ JDBC Client Driver

—

| JDBC Server Daemon |

C++ (Server)

Kommerzielles RDBMS < I
| Call Level Interface (CLI) |

\ RDB: Metadata RDB: Data

Abb. 6.8: Architektur des JDBC Data Module

Innerhalb der DB mit den eigentlichen Daten wird fiir jedes SDAI Model eine eigene Tabelle
angelegt, in der die einzelnen Instanzen als serialisierte Objekte gespeichert werden. Die resul-
tierende Tabelle hat die drei Spalten OID (VARCHAR), Typ (VARCHAR) und Wert (CLOB)
und entspricht damit der zweiten Variante in Abb. 5.2 auf Seite 123. Referenzen zwischen Enti-
ties werden durch die Konkatenation aus Model ID, Typ und OID dargestellt (Referenzen in
externe Repositories werden nicht unterstiitzt).

Die meisten Verarbeitungsschritte im Client sind dhnlich zum Query Service Data Module
(Abschnitt 6.2.2.3) realisiert. Wir wollen sie deshalb an dieser Stelle nicht noch einmal betrach-
ten. Eine weitergehende Dokumentation der Implementierung wird durch [Ma97] gegeben.

6.2.4 Operation Shipping gemif} 1ISO 10303-26

Die drei bisher vorgestellten Data Modules basieren allesamt auf Data Shipping. Zur Gegen-
tiberstellung und Evaluierung der verschiedenen Technologien wollen wir nun auch noch die
Architektur eines Data Modules vorstellen, das auf Operation Shipping basiert. Dabei bietet
sich die Benutzung der in ISO 10303-26 standardisierten IDL-Schnittstellen fiir das SDAI an
[ISO98c]. Bereits in [Sel96] hatten wir einen Prototypen vorgestellt, der diese Schnittstellen auf
Basis des damals verfiigbharen CORBA-Systems ORBeline [PMC94] implementierte. Die
gewonnenen Erfahrungen wiesen auf eine Reihe konzeptueller Probleme hin, die im wesentli-

176

chen auf CORBA und das verwendete Operation Shipping zuriickzufiihren waren. Daneben gab
es aber auch einige durch das Design von ORBeline hervorgerufene Aspekte. Aus diesem
Grund haben wir uns zur Entwicklung eines neuen Data Modules entschlossen, das intern eben-
falls die Schnittstellen aus ISO 10303-26 verwendet, gleichzeitig aber die Vorteile moderner
CORBA-Systeme nutzt. Die resultierende Architektur ist in Abbildung 6.9 dargestellt. Der Cli-
ent besteht lediglich aus den Client Stubs fiir die standardisierten IDL-Schnittstellen sowie einer
Implementierung fiir das interface InterOpRepository (siehe Kapitel 6.1.2). Letztere ist
insbesondere fiir die Initialisierung des Data Module zustindig. Beim Einsatz des CORBA-
Systems Orbix benutzen wir dafiir den sog. Orbix Daemon, der anhand seines Implementation
Repository den gewiinschten SDAI Server lokalisiert bzw. startet und eine Referenz darauf an
den Client zuriickgibt. Prinzipiell kann die Initialisierung aber auch iiber einen Naming Service
oder den Austausch der in einen String konvertierten IOR (Interoperable Object Reference)
erfolgen (beide Verfahren sind durch die OMG standardisiert).

Applikation
| ISO 10303-27 (Java)
|

Java (Client) JavaSDAI Socket Bar

Init | User-Defined Smart
| Proxies (OrbixWeb)

ISO 10303-26 (IDL)

/ Orbix Server Skeleton

. ISO 10303-26 SDAI Server
Orbix SE LR

Daemon

’ Orbix Object Buffer ’

\ Orbix Impl. Rep. OODBVS

Abb. 6.9: Architektur des auf ISO 10303-26 basierendem Data Module

C++ (Server) <

Anstatt der vom IDL-Compiler generierten Client Stubs benutzen wir eine (allerdings
proprietire) Erweiterung des von uns verwendeten CORBA-Systems OrbixWeb: User-Defined
Smart Proxies. Sie stellen quasi eine benutzerdefinierte Subklasse der generierten Client Stubs
dar. Uber sie lassen sich insbesondere Attributwerte fiir den erneuten Zugriff im Client puffern.
Weiterhin benutzen wir diese Technik, um die leicht abweichende Signatur von JavaSDAI (ISO
10303-27) und der Abbildung der standardisierten IDL-Schnittstellen (ISO 10303-26) auf Java
auszugleichen. Smart Proxies sind eine lokale Erweiterung im Client und konnen deshalb mit
jedem CORBA-Server kommunizieren, der auf den selben IDL-Schnittstellen basiert. Im Client
wird jeweils lediglich eine Instanz der Smart Proxies anstatt einer Instanz der generierten Client
Stubs erzeugt.

Im Server verwenden wir die generierten IDL Skeletons als Basis fiir die Implementierung der
einzelnen CORBA-Objekte. Nach den Erfahrungen aus [Sel96] haben wir uns aber auch hier
einiger (proprietirer) Erweiterungen bedient. So benutzen wir zur Verwaltung der registrierten

177

CORBA-Objekte eine optimierte Hashtabelle (ORBeline hatte hierfiir eine lineare Liste
erzeugt, die bei jedem Zugriff linear durchsucht wurde). Orbix ermoglicht an dieser Stelle zum
Gliick Eingriffe in die Interna des ORB. Neben der Hashtabelle wurde weiterhin eine komplette
Pufferverwaltung fiir CORBA-Objekte realisiert, die auch die temporire Verdringung von
Objekten zuldBt. Dafiir benutzen wir die von Orbix angebotenen Marker und Loader. Die
zugrundeliegenden Konzepte haben wir bereits in Kapitel 5.4.6 betrachtet, so da3 wir an dieser
Stelle nicht weiter darauf eingehen wollen. Nachdem wir zur Datenspeicherung das OODBVS
ObjectStore benutzen, hitte man fiir Teile der Arbeit statt eigener Implementierungen auch
direkt den Orbix & ObjectStore Adapter von IONA benutzen konnen (siehe Abschnitt 5.4.10.1).
Aus Kostengriinden haben wir uns jedoch dagegen entschieden.

Auch fiir den Server gilt (wie fiir den Client), da3 er intern zwar proprietiare Erweiterungen
benutzt, gleichzeitig aber eine standardisierte Schnittstelle hat. Damit konnen alle Clients, die
auf den selben IDL-Schnittstellen basieren, auf unseren Server zugreifen.

6.2.5 Gegeniiberstellung und Zusammenfassung

Nach der Vorstellung der einzelnen Data Modules wollen wir nun noch kurz die wichtigsten
Eigenschaften und Unterschiede gegeniiberstellen (siehe Tabelle 6.3). Nachdem der Schwer-
punkt dieser Arbeit auf einer Unterstiitzung fiir datenintensive Umgebungen liegt, basieren
dementsprechend drei der vier Module auf Data Shipping: Das proprietiren CORBA-Modul
(CO, siehe Kapitel 6.2.1), das Query Service Modul (QS, siehe Kapitel 6.2.2) und das JDBC-
Modul (JD, siehe Kapitel 6.2.3). Die CO- und QS-Module kommunizieren weiterhin {iber
CORBA, um die Einsatzmoglichkeiten dieses Standards in datenintensiven Bereichen zu evalu-
ieren. Sie lassen sich direkt mit dem JD- Modul vergleichen, das JDBC als Middleware benutzt.

Das vierte Modul (OS, siehe Kapitel 6.2.4) realisiert Operation Shipping iiber CORBA und ent-
spricht damit der typischen Verarbeitungsweise in CORBA-Umgebungen. Es ist sogar zu zwei
Language Bindings des SDAI konform, ndmlich zu denen auf Java (Serie 27, Conformance
Level 1) und IDL (Serie 26). Aufgrund der in den letzten Kapiteln diskutierten konzeptuellen
Probleme des Operation Shipping wird es aber nicht die gleiche Leistung wie die anderen
Module erreichen konnen. Es dient daher im wesentlichen nur zur Gegeniiberstellung der Tech-
nologien und unterstreicht nochmal die Notwendigkeit des Data Shipping.

Die Implementierung einiger Data Modules unterstiitzt z.T. nicht die gesamte Funktionalitit der
SDAI-Schnittstelle, wie sie in ISO 10303-27, Conformance Level 1 gefordert wird (z.B.
geschachtelte Aggregate oder SELECT-Typen). Die Schnittstellen sind jedoch vorhanden und
die fehlende Realisierung hat im Prinzip keine Auswirkung auf die in dieser Arbeit erzielten
Ergebnisse.

Leistungsunterschiede beim Erzeugen von Objekten ergeben sich vor allem durch eine unter-
schiedliche Verwaltung der Entity Extents. Das CO Data Module besitzt keine aktive Extent-
Verwaltung im Server, d.h. nach der Erzeugung eines Objektes miissen sowohl das Objekt als
auch die Aggregate fiir die betroffenen Entity Extents zum Server propagiert werden. Beim QS
Data Module braucht hingegen nur das neue Objekt iibertragen zu werden. Der Server fiigt es
dann selbst in die Aggregate der betroffenen Entity Extents ein.

178

Beim JD Data Module ist sogar iiberhaupt keine Extent-Verwaltung in der DB nétig. Hier wer-

den die Extents direkt iiber mengenorientierte SELECT-Anfragen geladen.

Data Module
Cco Qs JD (03]
Design beschrieben in Kapitel 6.2.1 6.2.2 6.2.3 6.2.4
Schnittstelle konform zu ISO 10303 Serie 27 (CL 1) 27 (CL 1) 27 (CL 1) 27 (.CL ")
26 (intern)
Unterstltzte SDAI-Funktionalitat
Multiple Vererbung - Ve - v
Referenzlen .zwischen . / / i i
unterschiedlichen SDAI Repositories
Aggregate einfach / flach | geschachtelt | einfach/flach | geschachtelt
Inverse Attribute (Gegenreferenzen) - Ve - v
SELECT-Typen - v - -
Zugrundeliegende Technologie
... beschrieben in Kapitel 5.4.7 543 5.5.2.2 5.4.6
Data Shipping / Operation Shipping DS DS DS oS
Verwendete Middleware CORBA CORBA JDBC CORBA
Datenquelle GDBM GDBM (I:I\?IBDVBS2) (O?)j?;?tz\t/osre)
Puffer im Client (Object Cache) v v v -
Verdrangung von Objekten mdglich - v - -
e ey | | [e |
Kommunikation
IDL struct
Datenformat IDL struct (proprietar, Uber JDBC IDL interface
(proprietar) Standardis. (proprietar) (stand.)
beabsichtigt)
Q?Srr:(g?gzlgls eigene Objekte mit v v v/ (0L s6q)
Puffer im Server (Object Cache) in GDBM in GDBM - v
... mit Verdrédngung von Objekten durch GDBM | durch GDBM - v
Entity Extents im Server materialisiert v v - v
Aktive Extent-Verwaltung im Server - v nicht nétig v

Tabelle 6.3:

Eigenschaften und Unterschiede der realisierten Data Modules

179

Die unterschiedlichen Pufferungsstrategien beeinflussen hingegen nicht das Erzeugen von
Objekten. Neue Objekte werden in allen Fillen lokal erzeugt (allerdings mufl das JD Data
Module die neue OID vom Server anfordern). Nur bei Anderungsoperationen auf existierenden
Objekten machen sich die unterschiedlichen Verfahren bemerkbar: Das CO Data Module kann
alle Anderungen lokal durchfiihren und Kommunikation mit dem Server bis zum Commit ver-
zogern (write back), die QS und JD Data Modules miissen hingegen die erste Anderung eines
Objektes direkt zum Server propagieren, um die notige Sperre zu erwerben (write through). Erst
danach konnen folgende Anderungen auf dem selben Objekt bis zum Commit verzogert werden
(write back).

6.3 Verwendete Applikationen

Zum Bewerten der unterschiedlichen Implementierungen und Konzepte haben wir mehrere
Applikationen entwickelt bzw. benutzt, die auf der zuvor beschriebenen JavaSDAI-Schnittstelle
aufsetzen. Sie dienen insbesondere dem Vergleich der Leistungsfahigkeit beim Datenzugriff.
Erste Tests wurden mit einer Anwendung zum Erzeugen und Lesen von bindren Baumen durch-
gefiihrt (Kapitel 6.3.1). Diese ist sehr einfach und gut skalierbar. Im Anschlufl daran haben wir
den komplexeren oo7-Benchmark auszugsweise auf JavaSDAI portiert (Kapitel 6.3.2). Zur
direkten Gegeniiberstellung von Data Shipping und Operation Shipping iiber CORBA haben
wir weiterhin ein rudimentéres Testprogramm entwickelt, das direkt auf Daten-Objekten arbei-
tet und keine SDAI-Schnittstelle verwendet (Kapitel 6.3.3). Es tibertragt wahlweise alle Daten
zum Client und bearbeitet sie dort lokal (Data Shipping) oder es wickelt die Verarbeitung auf-
tragsorientiert im Server ab (Operation Shipping).

6.3.1 Binire Baume

Die einfachste Anwendung erzeugt und liest bindre Bdume. Das Szenario ist vergleichbar mit
dem Zugriff auf Produktdaten (z.B. hierarchische Stiicklisten) und sehr gut skalierbar iiber die
Anzahl der Knoten eines Baumes. Weiterhin 148t sich mit diesem Vorgehen bereits ein groBer
Teil der Funktionalitit der SDAI-Schnittstelle testen und bewerten. So umfallt das zugrundelie-
gende und in Beispiel 6.13 dargestellte EXPRESS-Schema bereits Aggregate und Vererbung.

Die Knoten eines Baumes werden durch Instanzen der Klasse Node (bzw. deren Subklassen)
gebildet: Die Wurzel wird grundsitzlich durch einen string Node reprisentiert, alle folgenden
Knoten durch einen Integer Node. Zu jedem Baum gibt es zusitzlich einen Administrator,
der ein Aggregat mit Verweisen auf alle Knoten und ein weiteres Test-Attribut fiir den
EXPRESS-Typ BooLEAN enthilt. Jeder Knoten (Node) enthilt auBerdem eine Gegenreferenz auf
den zugehorigen Administrator. Nachdem die Implementierung einiger Data Modules keine
inversen Attribute unterstiitzt, haben wir diese Gegenreferenz allerdings als normales Attribut
modelliert, das von der Applikation selbst gewartet werden muf} (im Gegensatz zu inversen
Attributen, die von der SDAI-Implementierung gewartet werden). Alle Bdume werden grund-

180

satzlich balanciert erzeugt. Alle Integer Nodes sind in LWR-Ordnung (Links-Wurzel-Rechts)
aufsteigend numeriert. Anhand dieser Ordnung wird gleichzeitig die Korrektheit der Pro-
gramme iiberpriift.

SCHEMA BINTREE;

ENTITY Node
ABSTRACT SUPERTYPE OF (ONEOF (Integer Node, String Node)) ;
Admin : Administrator;
Left_Son : Node;

Right Son : Node; ENTITY String Node
Father : Node; SUBTYPE OF (Node) ;
END ENTITY; strVals : BAG [0:?] OF STRING;

END ENTITY;
ENTITY Integer Node

SUBTYPE OF (Node) ; ENTITY Administrator;
intval : INTEGER; Nodes : SET [0:?] OF Node;
END ENTITY; checked : BOOLEAN;
END ENTITY;

END_ SCHEMA;

Beispiel 6.13: EXPRESS-Definitionen fiir die Applikation mit bindren Bdumen

Fiir Messungen werden zwei Operationen angeboten: Das Lesen aller Knoten oder die Suche
nach dem Knoten mit der Nummer “1”. Letzterer ist immer der Knoten links unten im Baum,
d.h. die Zahl der gelesenen Knoten entspricht der Hohe des Baumes. Weiterhin 146t sich fiir jede
Operation auswihlen, ob bei leerem Puffer alle Objekte einzeln vom Server angefordert (Single
Object Fault) oder ob alle Objekte zu Beginn auf einmal iibertragen werden (Prefetching & Bulk
Transfer of Entity Extents). Dementsprechend ergeben sich je BaumgroBe und Data Module
also vier verschiedene Konfigurationen, fiir die es jeweils einen eigenen Baum in einem sepa-
raten SDAI Model gibt. Fiir jede Konfiguration wird nun noch nach Cold Run (leerer Puffer im
Client, d.h. es miissen noch alle Objekte geladen werden) und Hot Run unterschieden (alle
Objekte befinden sich im Puffer des Clients, d.h. es ist keine Client/Server-Kommunikation
mehr nétig). Beim Hot Run ist die Konfiguration fiir das Prefetching allerdings ohne Bedeutung,
so daf} sich insgesamt 6 MeBwerte je Baumgrofle und Data Module ergeben.

Neben diesen konzeptuellen Unterschieden gibt es natiirlich noch weitere Parameter fiir die
Messungen. Dies sind etwa die verwendete Rechnerarchitektur (Intel, SUN Sparc usw), das
Betriebssystem (Solaris, Linux usw.) oder die Java-Version (JDK 1.1.x, JIT Compiler). Diese
Details werden wir bei den jeweiligen Messungen in Kapitel 6.4 diskutieren.

6.3.2 Der oo7-Benchmark

Der oo7-Benchmark wurde urspriinglich an der Universitit von Wisconsin-Madison entwickelt,
um die Leistungsfihigkeit von OODBVS zu bewerten [CDN93]. Er definiert dazu einige fiir
Ingenieursanwendungen typische Datenstrukturen und Operationen (Traversals, Updates und
Queries), die insbesondere auch den Datenbank-Cache sowie die Vorteile einer Cluster-Bildung
bei der Speicherung komplexer Objekte betrachten. Unsere JavaSDAI-Implementierung ist
zwar kein OODBVS, sie dient aber der Datenversorgung in dhnlichen Szenarien. Auflerdem ent-

181

halten einige Data Modules ebenfalls einen Puffer im Client und bieten auch die Moglichkeit
zur Cluster-Bildung liber SDAI Models. Aus diesem Grunde erscheint die Verwendung einer
leicht modifizierten Version des 0o7-Benchmarks als geeignet [Bu98]. Ahnliche Ansitze wur-
den bereits in [Dr95] und [Sel96] verfolgt.

Die Ergebnisse von Messungen mit dem oo7-Benchmark werden in Kapitel 6.4.1 lediglich zur
prinzipiellen Gegeniiberstellung von Operation Shipping und Data Shipping verwendet, so daf}
wir an dieser Stelle auf eine detaillierte Beschreibung der Datenstrukturen und Operationen ver-
zichten wollen. Dafiir sei auf [CDN93, Dr95, Sel96] verwiesen. Wie bei der Applikation mit
bindren Baumen gilt aber auch hier, dall zwischen Cold Run (leerer Puffer bzw. Cache) und Hot
Run (gefiillter Puffer bzw. Cache) unterschieden wird.

6.3.3 Direkte Gegeniiberstellung von Operation Shipping und Data Shipping

Neben dem oo7-Benchmark haben wir eine weitere Testapplikation mit bindren Biumen ent-
wickelt, um nun direkt auf die Unterschiede zwischen Operation Shipping und Data Shipping
in CORBA-Umgebungen eingehen zu konnen. Dafiir haben wir rudimentére IDL-Definitionen
entworfen, die in Beispiel 6.14 dargestellt sind und als Basis fiir unsere in C++ geschriebene
Implementierung dienen. Alle Tests arbeiten weiterhin auf reinen Hauptspeicherstrukturen, um
die MeBwerte nicht durch Zugriffszeiten auf Externspeicher zu verfilschen.

// IDL definitions for // IDL definitions for Data Shipping:
// Operation Shipping:
struct nodeData

interface node ({ long val;
node leftSon () ; long OID;
node rightSon () ; long leftOID; // OID 0 == NULL reference
long val (); long rightOID; // OID 0 == NULL reference

typedef sequence<nodeData> nodeDataSeq;
interface admin

node getRootNode () ; interface admin
long getNoOfNodes () ; nodeDataSeq getAllNodes () ;
}i nodeData getNode (in long OID) ;
long getNoOfNodes () ;

Vi

Beispiel 6.14: IDL-Definitionen der zweiten Testapplikation mit bindren Biumen

Im Fall von Operation Shipping werden die zwei auf der linken Seite aufgefiihrten Schnittstel-
len benutzt. Der Server erzeugt wihrend der Initialisierung ein Objekt vom Typ admin, schreibt
dessen Objektreferenz (IOR) in eine Datei (welche der Client spiter liest, um die Verbindung
aufzubauen) und erzeugt anschlieend die als Parameter iibergebene Anzahl von Objekten (Typ
node). Nun wird der Client gestartet, der iiber die IOR die Verbindung zum admin-Objekt auf-
baut, iiber dessen Methode getRootNode eine Referenz auf die Wurzel des Baumes erwirbt und
diesen anschlieBend in LWR-Ordnung (Links-Wurzel-Rechts) durchlduft. Bei manchen
CORBA-Systemen erfolgt erst beim ersten Durchlauf eine Registrierung der CORBA-Objekte
im Server, so daf} wir die Zeiten fiir den ersten Durchlauf ignorieren und den Client noch einmal
starten. Dies geschieht wahlweise auf dem gleichen Rechner, auf dem auch der Server lduft,

182

oder auf einer anderen Maschine. Dementsprechend erhalten wir je Baumgro3e zwei Melwerte:
Local und Remote. Bei der Konfiguration Remote wurde grundsitzlich auf ein unbelastetes
Netzwerk geachtet.

Im Gegensatz dazu benutzen wir zur Realisierung von Data Shipping die IDL-Typen aus der
rechten Hilfte von Beispiel 6.14. Der Server enthilt wiederum ein admin-Objekt, das diesmal
aber eine sequence von Strukturen (struct nodeData) verwaltet. Auf die Daten fiir einen
Knoten kann dabei direkt iiber die OID zugegriffen werden: Der Index in der sequence ergibt
sich aus OID - 1. Die Initialisierung des Servers erfolgt dann analog zum Operation Shipping.

Der Client liest wiederum die IOR des Servers und baut die Verbindung zu diesem auf.
Anschliefend ermittelt er {iber getNoOfNodes () die Anzahl der vorhandenen Knoten und
berechnet daraus die OID der Wurzel. Wurde Prefetching konfiguriert, so folgt nun die Ubertra-
gung aller Daten mit getAllNodes () und deren Einlagerung in den Puffer des Clients (ein
array mit der OID als Index). Dabei werden die Daten zur Erzeugung gekapselter Objekte
genutzt, die eine dhnliche Schnittstelle wie der Typ node aus Beispiel 6.14 aufweisen (diesmal
aber in C++). Anschliefend wird der Baum wieder in LWR-Ordnung durchlaufen. Im Puffer
nicht vorhandene Knoten werden dabei einzeln vom Server angefordert (iiber getNode), in
Objekte konvertiert und eingelagert. In diesem ersten Durchlauf wird die Zeit fiir den sog. Cold
Run gemessen. AnschlieBend folgen fiinf weitere Durchldufe, die auf dem inzwischen gefiillten
Puffer navigieren. Die gemessenen Zeiten werden gemittelt und bilden das Ergebnis fiir den sog.
Hot Run. Somit erhalten wir drei Zeiten (Cold Run ohne Prefetching, Cold Run mit Prefetching
und Hot Run), die jeweils in den Konfigurationen Local und Remote vorkommen. Insgesamt
ergeben sich damit beim Data Shipping sechs Me3werte je Baumgrofe.

6.4 Messungen

In diesem Kapitel wollen wir nun die bisher aufgestellten Theorien anhand von Messungen
belegen sowie die diskutierten Technologien und Konzepte gegeniiberstellen und bewerten. Als
MeBwerkzeug dienen dabei die im letzten Abschnitt beschriebenen Applikationen. Beginnen
wollen wir in Kapitel 6.4.1 mit einem konzeptuellem Vergleich von Operation Shipping und
Data Shipping anhand des oo7-Benchmarks. Aufgrund verschiedener Probleme sind diese
Ergebnisse aber noch nicht zufriedenstellend, so da} in Kapitel 6.4.2 ein weiterer Vergleich der
Paradigmen auf Basis einer rudimentédren Testapplikation fiir bindre Baume erfolgt. An dieser
Stelle verzichten wir vollstindig auf eine SDAI-Schnittstelle oder Externspeicherzugriffe.
Betrachtet man die erzielten Ergebnisse, so ist klar die konzeptuelle Uberlegenheit des Data
Shipping zu erkennen. In Kapitel 6.4.3 benutzen wir deshalb die von uns entwickelte JavaSDAI-
Schnittstelle zur Gegeniiberstellung und Bewertung verschiedener Strategien zur Realisierung
von Data Shipping.

183

6.4.1 Vergleich von Operation Shipping und Data Shipping iiber SDAI

Urspriinglich sollte die Gegeniiberstellung von Operation Shipping und Data Shipping anhand
eines detaillierten Vergleiches der vier in Kapitel 6.2 vorgestellten Data Modules erfolgen.
Ungliicklicherweise konnte aber das auf Operation Shipping basierende Data Module
(Kapitel 6.2.4) aufgrund verschiedener Probleme im Projekt sowie einiger Fehler in der einge-
setzten Software nicht zum Einsatz gebracht werden. Wir benutzen deshalb die Ergebnisse aus
frilheren Arbeiten, um sie mit dem auf Data Shipping basierendem CO Data Module
(Kapitel 6.2.1) zu vergleichen. Als Grundlage dienen uns dabei ausgewihlte Operationen des
oo7-Benchmarks (Kapitel 6.3.2).

Cold Run (leerer Puffer) Hot Run (gefillter Puffer)
Operat. Shipping Data Shipping Operat. Shipping Data Shipping
Benchmark- System aus
Operation
[Sel96] | [Sel96] | [Bu98] | [Bu98] | [Sel96] | [Sel96] | [Bu98] | [Bu98]
portiert Typ 1 Typ 2 portiert Typ 1 Typ 2
auf Orbix auf Orbix
T 189.900 | 108.300 2.717 3.667 | 148.600 78.300 36 38
T2 A 196.000 | 105.800 3.660 3.602 | 161.200 77.000 533 495
T2B 244.300 | 116.400 3.315 4.365| 214.600 88.300 547 495
T2C 450.900 | 158.300 3.355 4.489 | 415.600 130.600 557 521
T6 27.900 14.100 1.252 1.258 13.600 8.500 3 5
T8 6.000 3.900 1.206 1.350 430 200 294 306
T9 5.600 3.800 662 738 390 210 3 4
Q1 15.500 20.100 159 241 5.100 15.300 6 10
Q2 12.200 6.300 140 205 810 1.900 3 4
Q4 150.700 75.000 989 1.293 | 138.500 69.800 6 9
Q5 19.600 9.500 740 821 5.900 4.500 4 5
Q7 15.600 6.300 193 215 1.140 1.900 42 50
Q8 17.900 13.900 389 456 2.800 8.900 7 12
Tabelle 6.4: MeBergebnisse des oo7-Benchmarks fiir verschiedene SDAI-Prototypen (in ms)

Bereits in [Sel96] hatten wir einen SDAI-Prototypen entwickelt, der konform zu ISO 10303-26
ist und auf Operation Shipping basiert. Die damals erzielten Ergebnisse waren katastrophal
schlecht. Neben den zu erkennenden konzeptuellen Problemen des Operation Shipping lag dies
aber vor allem an der ineffizienten Implementierung des verwendeten CORBA-Systems
ORBeline [PMC94]. Aus diesem Grunde haben wir den Prototypen 1997 auf das CORBA-
System Orbix (siehe Kapitel 4.6.1) portiert. Die Ergebnisse waren besser, aber immer noch viel
zu schlecht. Ein erheblicher Teil der gemessenen Zeiten wurden nach wie vor durch den
CORBA-Server (CPU-Zeit gemily UNIX top-Kommando) benotigt. Deshalb hatten wir uns zur

184

Entwicklung eines neuen Data Module entschlossen, das effizientere Mechanismen zur Verwal-
tung der CORBA-Objekte realisiert (und damit erst sinnvolle Messungen zum Vergleich von
Operation Shipping und Data Shipping ermdoglicht). Wie bereits gesagt, konnte dieses Modul
aber leider nicht fertig gestellt werden. Dementsprechend haben wir in Tabelle 6.4 nun doch die
alten Ergebnisse (aus [Sel96] und die des portierten Prototypen) direkt mit zwei Varianten des
CO Data Module gegeniibergestellt ([Bu98] Typ 1 und 2).

In gewisser Weise entspricht dies aber leider einem ,,Vergleich von Apfeln mit Birnen®, da alle
Messungen auf unterschiedlichen Rechnern durchgefiihrt wurden und die oo7-Applikation
inzwischen in einer leicht gednderten Variante vorliegt [Bu98]. Weiterhin ist die Anwendung in
[Bu98] ein Java-Client, wihrend der Prototyp in [Sel96] vollstindig in C++ geschrieben wurde.
Trotzdem halten wir alleine die Groenordnung der Unterschiede fiir sehr interessant.

Cold Run (leerer Puffer) Hot Run (gefiillter Puffer)

Operat. Shipping Data Shipping Operat. Shipping Data Shipping

Benchmark- System aus
Operation
[Sel96] | [Sel96] | [Bu98] | [Bu98] | [Sel96] | [Sel96] | [Bu98] | [Bu98]
portiert Typ 1 Typ 2 portiert Typ 1 Typ 2
auf Orbix auf Orbix

T 14,56 4,98 1 1,35 859,95 271,88 1 1,06
T2 A 11,16 3,61 1 0,99 63,01 18,06 1 0,93
T2B 15,35 4,39 1 1,32 81,73 20,18 1 0,90
T2C 28,00 5,90 1 1,34 155,45 29,31 1 0,94
T6 4,64 1,41 1 1,01 944,44 354,17 1 1,67
T8 1,04 0,40 1 1,12 0,30 0,09 1 1,04
T9 1,76 0,72 1 1,11 27,08 8,75 1 1,33
Q1 20,31 15,80 1 1,52 177,08 318,75 1 1,67
Q2 18,15 5,63 1 1,46 56,25 79,17 1 1,33
Q4 31,75 9,48 1 1,31 4809,03 145417 1 1,50
Q5 5,52 1,60 1 1,11 307,29 140,63 1 1,25
Q7 16,84 4,08 1 1,11 5,65 5,65 1 1,19
Q8 9,59 4,47 1 1,17 83,33 158,93 1 1,71

Tabelle 6.5: Relative Unterschiede der oo7-MeBergebnisse (architekturbereinigte Faktoren)

Die Messungen in [Sel96] beziehen sich auf eine SUN SparcStation 20 (1 Prozessor mit 60
MHz, 112 MB Speicher, 1 MB 2™ [ovel Cache) unter SUN-OS 4.1.4. Der auf Orbix portierte
Prototyp wurde auf einer SUN Sparc Classic (1 Prozessor mit 50 MHz, 48 MB Speicher) unter
Solaris 2.5 getestet. Verglichen mit der ersten Messung ist dieser Rechner um ca. 40% langsa-
mer. Die Ergebnisse aus [Bu98] basieren auf einer SUN Ultra 1 (1 Prozessor mit 167 MHz, 196
MB Speicher) unter Solaris 2.5.1. Dieser Rechner ist ca. 8 mal schneller als die verwendete

185

Sparc Classic. Fiir einen besseren Vergleich haben wir deshalb in Tabelle 6.5 die relativen
Unterschiede der Laufzeiten gegeniibergestellt: Die Zeiten aus [Bu98] wurden mit 100% gewer-
tet, die anderen Spalten stellen die Faktoren zwischen den Laufzeiten dar. So bendtigte der Pro-
totyp aus [Sel96] fiir die Operation T1 im Cold Run 14,56 mal linger als der Prototyp aus
[Bu98]. Dabei wurden die gerade genannten Unterschiede bei der Leistungsfahigkeit der Rech-
ner einberechnet. Unberiicksichtigt bleiben hingegen die verschiedenen Programmiersprachen.
Sie machen sich besonders bei T8 und T9 bemerkbar, die auf sehr wenige (aber grof3e) Textat-
tribute zugreifen und diese modifizieren. Derartige Operationen sind in Java erheblich teurer.
Zusitzlich ist zu berticksichtigen, dal T8 und T9 in allen Féllen zu Data Shipping und einer ver-
gleichbaren Verarbeitung fiihren: In IDL modellierte Textattribute werden ebenfalls zum Client
kopiert und dort lokal bearbeitet.

Insgesamt ist die Aussagekraft der dargestellten Ergebnisse natiirlich nicht sehr hoch. Das vierte
Data Module wire also dringend erforderlich. Nachdem wir es aber nicht realisieren konnten,
haben wir uns zur Implementierung eines rudimentéiren Prototypen entschieden, der ohne eine
SDAI-Schnittstelle auskommt und die Unterschiede zwischen Data Shipping und Operation
Shipping auf sehr einfache Weise dokumentiert (siehe Kapitel 6.3.3). Die damit erzielten Ergeb-
nisse sind im folgenden beschrieben.

6.4.2 Direkte Gegeniiberstellung von Operation Shipping und Data Shipping

Aufgrund der unzureichenden Qualitéit der MeBdaten des letzten Kapitels sowie dem Scheitern
der Implementierung des vierten, auf Operation Shipping basierendem Data Module sind noch
weitere Messungen fiir eine fundierte Bewertung der Unterschiede zwischen Data Shipping und
Operation Shipping nétig. Diese haben wir mit dem in Kapitel 6.3.3 beschriebenen Prototypen
erzielt. Bei allen Messungen lief der Server auf einem COMPAQ LTE 5300 mit einem Pentium-
133 und 48 MByte Hauptspeicher. Das verwendete Betriebssystem war S.u.S.E. Linux 5.3 mit
dem gcc 2.7.2. Als CORBA-System diente ORBacus 3.0 von OOC (siehe Kapitel 4.6.2). Bei
der Konfiguration Remote wurde zusitzlich ein Pentium-100 mit 32 MByte Hauptspeicher (und
gleicher Software) fiir den Client benutzt. Beide Rechner waren iiber ein 10 MBit-LAN
(10BaseT) lokal vernetzt (Direktverbindung ohne storende Einfliisse). Bei allen Grafiken gilt
weiterhin, dal die Eintrige in der Legende die gleiche Reihenfolge haben wie die einzelnen
MeBkurven.

Alle Werte fiir Operation Shipping sowie die Ergebnisse fiir Cold Runs beim Data Shipping sind
in Abbildung 6.10 gegeniibergestellt. Die rechte Grafik enthilt alle Werte, wihrend die linke
Hilfte eine detailliertere Sicht auf die Ergebnisse fiir Biume mit maximal 2.500 Knoten bietet.
In beiden Fillen verschmelzen die Kurven fiir Data Shipping mit Prefetching mit der X-Achse.
Wir werden die einzelnen Messungen fiir Data Shipping deshalb spiter noch genauer betrach-
ten. Zuerst wollen wir uns aber auf die Unterschiede zwischen Operation Shipping und dem
schlechtesten Fall beim Data Shipping (Cold Run ohne Prefetching) konzentrieren. Es féllt auf,
daB die Kurven beim Data Shipping (generell) linear skalieren, wihrend die Ergebnisse fiir
Operation Shipping ein eher polynomiales Wachstum aufweisen. Wir haben deshalb die Mef3-
werte fiir den Server beim Operation Shipping genauer untersucht. Zuerst fiel auf, dal ca. 95%

186

der gesamten Laufzeit der CPU-Zeit des Servers entspricht (gemidf UNIX top-Kommando).
Fiir einen Baum mit 10.000 Knoten benétigte dieser 0,2 Sekunden zum Erzeugen der CORBA-
Objekte (mittels new-Operator), 470 Sekunden fiir den ersten Durchlauf und 343 Sekunden fiir
den zweiten (der dann in die MeBkurve einging). Wir schlieBen aus diesem Ergebnis, dal}
ORBacus die CORBA-Objekte erst wihrend des ersten Durchlaufes registriert (beim Erzeugen
korrespondierender Objektreferenzen fiir Clients in anderen Prozessen). Dafiir wurden ca. 125
Sekunden bendtigt (Unterschied zwischen erstem und zweitem Durchlauf).

T T T 2000 T T T T
Operation Shipping, remote <— g Operation Shipping, remote ~—
30 Operation Shipping, local -+- . Operation Shipping, local —+--
Data Shipping, remote, no prefetching -5-- - Data Shipping, remote, no prefetching -8--
Data Shipping, local, no prefetching -x . Data Shipping, local, no prefetching - y
g 25 | Data Shipping, remote, prefetching - R g 1500 | Data Shipping, remote, prefetching -&-- / 4
5 Data Shipping, local, prefetching - - ~ g Data Shipping, local, prefetching -*--
o o /
& 20 i K
£ < /
2 2 1000 - 4 B
£ £
£ 15F R £ /
el o
I3 o}
g 2
5 10 E 8
w w 500 -
5F ---4
0 Lo s | & I I 0 e B I - B B R M .
0 500 1000 1500 2000 2500 0 5000 10000 15000 20000 25000
Nodes per Tree Nodes per Tree

Abb. 6.10: Vergleich der Messungen fiir Operation Shipping und Data Shipping (Cold Run)

Viel mehr Zeit wurde aber zum Auflosen von Objektreferenzen, d.h. zum Lokalisieren der
Objekte benotigt. Hierfiir mufl die gesamte Laufzeit im zweiten Durchlauf gewertet werden
(immerhin 343 Sekunden), da der Server in diesem Fall keine andere Operation ausfiihrt. Das
polynomiale Wachstum deutet darauf hin, dal ORBacus alle Objekte in einer linearen Liste ver-
waltet, die jeweils auch linear durchsucht wird. Dadurch ergébe sich ein Algorithmus mit qua-
dratischer Komplexitit.

Selbst wenn man die Registrierung der Objekte optimieren wiirde, so gibt doch folgender Punkt
zu denken: Operation Shipping ist bei unseren Messungen immer langsamer als Data Shipping.
Auch bei wenigen Objekten! Und entsprechend der Ergebnisse fiir die Konfigurationen Remote
und Local ist der Overhead fiir die Kommunikation zwischen Rechnern nur sehr gering - in der
rechten Grafik von Abbildung 6.10 sind die beiden Kurven quasi identisch.

50 T T T 1000 T T T
Data Shipping, remote, no prefetching <— ioni ;
45 |- " Bata Sppng. ool o brefocnng 1 900 |- Dt Shippig, amete o preitonng - :
Data Shipping, remote, prefetching -&-- Data Shipping, remote, prefetching - --

40 Data Shipping, local, prefetching - E 800 Data Shipping, local, prefetching - !
17} - » s s
g ot Sk B :
g - g
0 30 | o R %) R
=3 A =3
= - =
] 20 - " B > ,
[} - [}
» A »
g 15 ’ 7 & 1
w ¥ w

10 ¢ E E

A
5L , ,
0 i 5= . [~ el 5 B i E; 7 R v, P | i
0 5000 10000 15000 20000 25000 0 100000 200000 300000 400000 500000
Nodes per Tree Nodes per Tree

Abb. 6.11: Vergleich verschiedener Strategien beim Data Shipping (Cold Run)

187

Nun wollen wir aber noch einen Blick auf die einzelnen Ergebnisse beim Data Shipping werfen.
Abbildung 6.11 stellt dafiir die Kurven fiir Cold Runs mit und ohne Prefetching gegeniiber (die
linke Grafik bezieht sich wiederum auf Baume mit weniger Knoten). Das Wachstum ist in allen
Fiéllen annihernd linear, es 148t sich aber (wie erwartet) klar der Vorteil durch das Prefetching
erkennen. Bei der Kommunikation zwischen ORBs ist die einmalige Ubertragung einer grofe-
ren Menge von Daten also deutlich effizienter als die mehrfache Anforderung kleinerer Pakete.

Bei der Gegeniiberstellung der Zeiten fiir Cold Runs mit Prefetching und Hot Runs 148t sich
schlieBlich die benétigte Zeit fiir die einmalige Ubertragung aller Daten ablesen (siche
Abbildung 6.12). Dabei ist der Unterschied zwischen lokaler und entfernter Verarbeitung (Kon-
figuration Local gegeniiber Remote) deutlich groBer, d.h. hier stoen wir langsam an die physi-
kalischen Grenzen (bedingt durch die Netzkommunikation). Bei der Konfiguration Local wird
natiirlich ein erheblicher Anteil der Laufzeit durch die ProzeBwechsel zwischen Client und Ser-
ver benotigt. Noch deutlichere Ergebnisse wiren deshalb mit einem Mehrprozessorrechner zu
erzielen, der uns aber leider nicht in der benotigten Konfiguration zur Verfiigung stand.

0.8

T T T T T T
Data Shipping, remote, prefetching —o— 10 - Data Shipping, remote, prefetching ~— A
07 | DataShipping, local, prefetching -+ 4 Data Shipping, local, prefetching -+- -
: Data Shipping, remote, Hot Run -8-- Data Shipping, Hot Run, Pentium-100 -&--
Data Shipping, local, Hot Run -x Data Shipping, Hot Run, Pentium-133 -x
9 06 1 2 8F T
© ©
= =
8 8
g os5p 7] ol i
£ ~ <
g 04 {/,x' B g
= L =
® 03¢} e g B 4r b
» - »
Q A Q
© ©
u 02} T 4 i
e 2 R
0.1 | e E
g0 S 7 20U USSR e
0 Ko) o ffence e =, A o A o - B RS i ‘
0 5000 10000 15000 0000 25000 0 100000 200000 300000 400000 500000
Nodes per Tree Nodes per Tree

Abb. 6.12: Data Shipping: Cold Runs mit Prefetching im Vergleich zu Hot Runs

Im Bezug auf die rechte Grafik in Abbildung 6.12 sollten noch zwei Aspekte erwédhnt werden:
Zunichst hort die Kurve fiir den Cold Run mit Prefetching in der Konfiguration Remote (oberste
Kurve) leider schon bei 100.000 Knoten auf. Bei der Messung mit 500.000 Knoten stand auf
dem Rechner des Clients nicht geniigend Hauptspeicher zur Verfiigung, um alle (per Bulk
Transfer) erhaltenen Daten in Objekte konvertieren zu konnen. Das resultierende Swapping
machte die Ergebnisse deshalb unbrauchbar. Der zweite Punkt bezieht sich auf die beiden Kur-
ven fiir Hot Runs, die eigentlich identisch sein miiiten. Sie weichen jedoch leicht voneinander
ab, da unterschiedliche Rechner eingesetzt wurden (siehe Legende).

Fassen wir die Ergebnisse aller Messungen zusammen, so kann es eigentlich nur eine Aussage
geben: Operation Shipping ist fiir datenintensive Anwendungen in CORBA-Umgebungen nicht
akzeptabel. Zur Verdeutlichung haben wir in Tabelle 6.6 noch einmal die Ergebnisse fiir das
Durchlaufen eines Baumes mit 25.000 Knoten gegeniibergestellt. Im Extremfall liegt hier ein
Faktor von fast 80.000 zwischen den gemessenen Zeiten (Operation Shipping gegen den Hot
Run beim Data Shipping)! Und selbst bei der ungiinstigsten Konfiguration ist Data Shipping
immer noch 40 mal schneller.

188

Typ Lauf Prefetching Konfiguration | bendtigte Zeit in ms
- Remote 1.980.000
Operation Shipping
- Local 1.960.000
Cold Run nein Remote 49.000
Cold Run nein Local 39.000
Data Shipping Cold Run ja Remote 720
Cold Run ja Local 430
Hot Run - - 25

Tabelle 6.6: MeBwerte fiir das Durchlaufen eines bindren Baumes mit 25.000 Knoten

Natiirlich lassen diese Mefwerte einige Aspekte auller Betracht. So erfordert Data Shipping in
einer Mehrbenutzerumgebung z.B. einen ergidnzenden Mechanismus zur Vermeidung von
Kohirenzen zwischen verschiedenen Puffern in den Clients. Angesichts der dramatischen Lauf-
zeitunterschiede diirfte hier aber geniigend Spielraum fiir derartige Algorithmen sein. Schade
bleibt aber vor allem, daf die vom CORBA-Standard angebotenen Services in datenintensiven
Umgebungen wohl nicht entsprechend ihrer Philosophie genutzt werden konnen.

6.4.3 Bewertung verschiedener Ansitze zum Data Shipping iiber JavaSDAI

Nachdem im letzten Kapitel die klare Uberlegenheit von Data Shipping deutlich wurde, wollen
wir nun verschiedene Ansdtze zum Data Shipping vergleichen und bewerten. Dazu benutzen
wir die in Kapitel 6.2 entwickelten Data Modules unseres JavaSDAI-Prototypen. Als Anwen-
dung dient grundsitzlich die in Kapitel 6.3.1 beschriebene Applikation zum Lesen von bindren
Bédumen. Fiir alle Grafiken gilt auch hier, da3 die Reihenfolge der einzelnen Kurven immer mit
der Reihenfolge innerhalb der Legende iibereinstimmt. Weiterhin standen uns vier verschiedene
Rechnertypen zur Verfiigung:

® eine SUN Ultra 1 mit einem 167 MHz Sparc Prozessor und 196 MByte Hauptspeicher
unter Solaris 2.5.1,

® eine SUN Ultra 10 Creator 3D mit einem 333 MHz Sparc Prozessor und 128 MByte Haupt-
speicher unter Solaris 2.6,

¢ ein PC mit einem Pentium 133 und 64 MByte Hauptspeicher unter S.u.S.E. Linux 6.0 und

® eine SUN JavaStation 1 (sparc) mit 32 MByte Hauptspeicher, die wahlweise unter JavaOS
1.0 (JDK 1.0.2) oder JavaOS 1.1 mit HotJava Views 1.1.1 (JDK 1.1.4) betrieben wurde.

In Kapitel 6.4.3.1 wollen wir zunéchst allgemein die MeBergebnisse fiir alle Data Modules
gegeniiberstellen. In den weiteren Abschnitten folgt dann eine Diskussion einzelner Aspekte,
welche die Leistung des Systems z.T. erheblich beeinflussen (z.B. Prefetching). In
Kapitel 6.4.3.6 fassen wir die Ergebnisse schlieflich zusammen und beantworten damit die
Frage, was denn eigentlich die kritischen Leistungsfaktoren zur Laufzeit sind.

189

6.4.3.1 Allgemeiner Vergleich aller Data Modules

Beginnen wollen wir die Diskussion mit einer Gegeniiberstellung aller auf Data Shipping basie-
render Data Modules: Dem proprietairen CORBA-Modul (CO, siehe Kapitel 6.2.1), dem Query
Service Modul (QS, siehe Kapitel 6.2.2) und dem JDBC-Modul (JD, siehe Kapitel 6.2.3).

Zunichst haben wir Testldufe mit allen drei Modulen auf einer SUN Ultra 10 durchgefiihrt
(siehe Abbildung 6.13). Dabei benutzten wir die Scan-Operation, um auf alle Knoten des jewei-
ligen Baumes zuzugreifen. In der linken Grafik sind die Ergebnisse fiir den Cold Run darge-
stellt. Sie wurden mit dem JDK 1.1.6 unter Verwendung eines JIT-Compilers erzielt. Es fillt auf,
dafl das JD-Modul erheblich langsamer ist als die beiden anderen (insbesondere ohne Prefet-
ching). Wir fiihren diesen Umstand auf die Architektur des JDBC-Treibers von IBM zuriick.
Dieser arbeitet wie folgt: Der Treiber im Client leitet die Anfrage an einen sog. JDBC Daemon
(einen eigenstdndigen Prozef3) auf dem Server weiter. Dieser kontaktiert dann iiber die CLI-
Schnittstelle von DB2 das eigentliche DBVS. Bei der Verarbeitung des Ergebnisses wird dieses
dann im DBVS, im Daemon und schlieflich nochmal im Client aufbereitet. An dieser Stelle
scheint sehr viel Zeit verloren zu gehen. Demgegeniiber sind die Unterschiede zwischen den
CO- und QS-Modulen deutlich geringer. Allerdings bendétigt das QS-Modul aufgrund der
umfangreicheren IDL-Schnittstellen des Servers sowie der komplexeren Pufferverwaltung fast
doppelt soviel Zeit zum Anfordern und Einlagern der Objekte. Wihrend Prefetching beim JD-
Modul noch fast eine Beschleunigung um den Faktor 18 bewirkt, so liegt dieser beim QS-Modul
nur noch bei ca. 4 und beim CO-Modul bei ca. 2. Bei Testlaufen mit Prefetching sind die Ergeb-
nisse fiir die CO- und QS-Module quasi identisch. Die einzelnen Auswirkungen von Prefetching
werden wir in Kapitel 6.4.3.2 noch detaillierter betrachten.

180000 T T T T 40 : : :
JD Module, no prefetching, JIT <— JD Module, no JIT -—
160000 | QS Module, no prefetching, JIT —+- i 35 | QS Module, no JIT —+--
CO Module, no prefetching, JIT -5-- CO Module, no JIT -8--
140000 | JD Module, prefetching, JIT - | JD Module, JIT -x
QS Module, prefetching, JIT -2~ 30 F QS Module, JIT -2~]
CO Module, prefetching, JIT -~ » CO Module, JIT -x--
£120000 4 g
c 25 - Rl E
2100000 [E o
£ £
[[= 20 g
S 80000 E b
(%] (%]
s g 15 —
oy 60000 [- E o
10 - 4
40000 |- b T%-
20000 |- e 5 7 - e E
I W - P A
0 "’Vﬁ/fftiﬁ' """" EV‘“”"”':‘V"Q‘ it 4'“"?’ '''''' 0 R 1 1 1 1 I
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.13: Data Shipping: Gegeniiberstellung aller Data Modules (SUN Ultra 10)

Die rechte Grafik in Abbildung 6.13 illustriert die Ergebnisse fiir den Hot Run. Diese basieren
wiederum auf dem JDK 1.1.6, allerdings einmal mit und einmal ohne JIT-Compiler. Im Prinzip
differieren die Zeiten fiir alle Module nur unwesentlich. Dies war auch zu erwarten, da sich die
Module vor allem durch unterschiedliche Datenversorgungsstrategien unterscheiden. Sind die
Daten erst einmal im Client vorhanden, so muf3 nur noch der Puffer ausgelesen werden. Hier
erkennt man auch deutlich die Leistungssteigerung durch Caching: Die Hot Runs sind um einen
Faktor von 1000 bis 18000 schneller als die Cold Runs! Demgegeniiber 148t sich durch den Ein-
satz von JIT-Compilern nur eine Beschleunigung um den Faktor 3 erreichen.

190

T T T T T T T
140000 | JD Module, no prefetching, JIT <— _ 80 |- JD Module, no JIT —— 4
QS Module, no prefetching, JIT —+- QS Module, no JIT —+--
JD Module, prefetching, JIT -&-- CO Module, no JIT -&-- e
120000 | CO Module, no prefetching, JIT - i 70 - 77 Qs Module, JIT s 1
CO Module, prefetching, JIT -4~ JD Module, JIT -&--
@ QS Module, prefetching, JIT - - ®» 60 CO Module, JIT -~ o 4
£100000 - g g e
c c %
° ° 50 = -
£ 80000 - - £ S
[= o 4
7 7 40 + g o
2 60000 A 2 /,g’) . e 477
k] © 30 . e 4
w w B B e &
40000 - T q AT -
e 20 cy X * 7
20000 |- T VIS] 10 h i i
/__/;;iigr»t'"”x_ /£>77»>§/;::ﬁ?1 - ,;’./vig; -
0 —"ff’/w";::—‘%:/’:i* ke | 0 St | | | | |
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.14: Data Shipping: Gegeniiberstellung aller Data Modules (Pentium 133)

Abbildung 6.14 illustriert schlieBlich die Ergebnisse der selben Testldufe auf einem PC (Pen-
tium 133). Im grofBen und ganzen sind hier keine wesentlichen Unterschiede festzustellen. Die
Kurven fiir die Hot Runs (rechte Grafik) weisen mehr oder weniger die gleiche Charakteristik
auf, der PC ist lediglich um den Faktor 2 langsamer. Weiterhin ist die Beschleunigung durch JIT-
Compiler geringer (ca. Faktor 2 statt Faktor 3 auf der Ultra 10). Beim Cold Run (linke Grafik
von Abbildung 6.14) 148t sich vor allem ein etwas anderes Verhalten des JD-Moduls beobach-
ten: Die Abweichung des JD-Moduls gegeniiber den CO- und QS-Modulen ist hier sowohl mit
als auch ohne Prefetching anndhernd gleich. Unter Linux ist also nicht die Anzahl der JDBC-
Zugriffe entscheidend, sondern das Datenvolumen insgesamt (das durch Prefetching natiirlich
nicht beeinflu3t wird). Wir vermuten weiterhin, da3 die Implementierung des Typs Resultset
(eine Klasse des JDBC-Treibers) hier nicht sonderlich effizient realisiert wurde.

6.4.3.2 Leistungssteigerungen durch Prefetching

Nach einer allgemeinen Gegeniiberstellung aller Module im letzten Abschnitt wollen wir nun
gezielt auf die Auswirkungen von Prefetching eingehen. Dafiir betrachten wir die Ergebnisse
der Cold Runs fiir die Operationen Scan 100%, Scan 25% und Search (greift auf log,n Knoten
zu). Nachdem Prefetching die einzelnen Datenversorgungsstrategien unterschiedlich stark
beeinfluflt, wollen wir die Messungen mit den einzelnen Data Modules getrennt betrachten.
Weiterhin wurden alle in diesem Abschnitt dargestellten Ergebnisse mit dem JDK 1.1.6 unter
Verwendung eines JIT-Compilers erzielt (Auswirkungen von JIT-Compilern auf Cold Runs dis-
kutieren wir in Kapitel 6.4.3.5). Die linke Hilfte aller Grafiken reprédsentiert jeweils die Werte
fiir die SUN Ultra 10, wihrend sich die rechte Hilfte auf den PC (Pentium 133) bezieht.

Abbildung 6.15 stellt die Ergebnisse fiir das CO-Modul gegeniiber. Bei beiden Rechnerarchi-
tekturen ist klar zu erkennen, dal3 Prefetching bei allen drei Operationen zu anndhernd gleichen
Laufzeiten fiihrt. Dieser Umstand ist auch zu erwarten, da Cold Runs wesentlich durch die Zeit
zum Laden der Objekte beeinfluBt werden (und in diesem Fall immer gleich viele -ndmlich alle-
Objekte eingelagert werden). Gleichzeitig wird deutlich, da3 Prefetching beim CO-Modul zwar
eine Beschleunigung der Operation Scan 100% um einen Faktor von ca. 2 bewirkt, die Opera-
tion Scan 25% aber ohne Prefetching schneller ist. Die Grenze (ab der sich Prefetching lohnt)
liegt fiir das CO-Modul bei ca. 40-50%.

191

T T T T 25000 T T T T
12000 | scan 100%, no prefetching —— scan 100%, no prefetching ——
scan 100%, prefetching —+-- scan 100%, prefetching —+--
scan 25%, prefetching -8-- scan 25%, prefetching -5--
10000 F search, prefetching - | 20000 - seoarch, prefetching - g
scan 25%, no prefetching -&- scan 25%, no prefetching —&---
g search, no prefetching -x-- @ search, no prefetching -*--
£ 8000 - 1 £ 15000 | |
2 ©
£ € e
% 6000 |- B % R
+ e n
2 @ 10000 |- R -
w4000 - - w 5 s
= L Pt a7
L 5000 - . 7
2000 |- 8 & e
- 7//‘ e -
T i A
0 el % * * * & 0 == ¥ « Rt Mkt
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.15: CO-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Die Laufzeiten fiir die Search-Operation ohne Prefetching liegen bei allen drei Modultypen
(CO, QS und JD) und bei beiden Rechnerarchitekturen (Ultra 10 und PC) an der Grenze der
MeBgenauigkeit. Sie fallen somit mit der X-Achse zusammen und illustrieren damit sehr deut-
lich, daB3 Prefetching unter Umstdnden auch zu dramatisch schlechteren Resultaten fiihren kann.

Wenden wir uns nun aber den Ergebnissen fiir das QS-Modul zu (siehe Abbildung 6.16). Sie
sind sehr dhnlich zu denen des CO-Moduls, nur ist die Laufzeit fiir die einzelnen Durchlidufe
ohne Prefetching beim QS-Modul ca. doppelt so hoch. Dementsprechend lohnt sich Prefetching
hier auch schon ab dem Zugriff auf mindestens 25% der Daten. Begriindet wird dieser Aspekt
durch die komplexeren IDL-Schnittstellen des Servers sowie den hoheren Aufwand fiir die Puf-
ferverwaltung (das QS-Modul unterstiitzt die tempordre Verdringung von Objekten).

T T T T T T
25000 |- scan 100%, no prefetching —~+— 45000 }scan 100%, no prefetching —<—
scan 25%, no prefetching -+~ scan 25%, no prefetching -+~
scan 100%, prefetching -&-- 40000 | scan 100%, prefetching -8-- h
scan 25%, prefetching - scan 25"/;, pre;etcnlng *
L search, prefetching -4~ i search, prefetching -4
* 20000 search, no prefetching -* - » 32000 - search, no prefetching - b
£ £
= c 30000 .
2 15000 [2
£ £ 25000 E
[[
° o
% % 20000 B
£ 10000 - g
w w 15000 =
5000 10000 - ‘,:,X";‘:;‘:q
5000 B
0 0 === == P SR S
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.16: QS-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Im Gegensatz zu den CO- und QS-Modulen unterscheiden sich beim JD-Modul die Ergebnisse
fiir die beiden Rechnerarchitekturen deutlich (siehe Abbildung 6.17, wie bisher links Ultra 10
und rechts PC). Auf der SUN sind alle Kurven fiir Operationen mit Prefetching wirklich iden-
tisch und Prefetching lohnt sich hier schon ab einem Zugriff auf ca. 5% der Daten. Demgegen-
iiber ist Prefetching auf dem PC erst ab einem Zugriff auf ca. 20-25% der Daten sinnvoll.

Diese massiven Differenzen lassen sich nur durch konzeptuelle Unterschiede der zugrundelie-
genden JDBC-Treiber erkldren: In den Messungen mit den CO- und QS-Modulen hat sich
bereits gezeigt, daf} die JDK-Umgebungen auf beiden Rechnerarchitekturen vergleichbar sind.

192

Weiterhin ist der Code fiir das JD-Modul ebenfalls in beiden Fillen identisch. Zwar verwenden
wir immer das gleiche DBVS (IBM DB2), der JDBC-Treiber bzw. der zugrundeliegende
Daemon auf dem Server scheint fiir beide Betriebssysteme aber anders realisiert zu sein. Auf-
grund dieses Aspektes 148t sich aus den Messungen fiir das JD-Modul auch nicht mehr die Fol-
gerung ableiten, da3 die Ultra 10 ungefahr doppelt so schnell ist wie der PC.

180000 T T T T T T T T
scan 100%, no prefetching —<— 140000 |-scan 100%, no prefetching <— -
160000 | scan 25%, no prefetching -+~ scan 25%, no prefetching -+~
scan 100%, prefetching -&-- scan 25%, prefetching -&8--
140000 | scan 25%, prefetching i 120000 search, prefetching -x B
search, prefetching -+ scan 100%, prefetching -4---
@ search, no prefetching -x - » search, no prefetching -*--
£120000 [B £100000 [B
£ £
(o] L . (o]
'§100000 £ 80000 7]
[[
Z 80000 1 3
% % 60000 |- i
oy 60000 [- ,] PR
40000 |- o
40000] e R
e L O IS = SRt .
20000 |- e i 20000 R
I I e
0 e g @B & . 0 & * * e e o
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.17: JD-Modul: Beschleunigung durch Prefetching (SUN Ultra 10 und Pentium 133)

Fassen wir die Ergebnisse der Messungen mit allen drei Modulen zusammen, so lassen sich im
Prinzip zwei SchluB3folgerungen ziehen: Erstens kann keine generelle Grenze bestimmt werden,
ab der sich Prefetching grundsitzlich lohnt. In datenintensiven Umgebungen werden wir zwar
hiufig einen GrofBteil der Daten bendtigen, so daB3 Prefetching im allgemeinen zu signifikanten
Verbesserungen fiihren wird. Jedes Modul hat aber andere Charakteristika. Dies bedeutet insbe-
sondere auch, dal} Prefetching im ungiinstigsten Fall eine deutliche Verschlechterung der Lauf-
zeit bewirken kann. In einem zweiten Schritt haben wir erkannt, daf} selbst beim Einsatz eines
einzigen Moduls die Rechnerplattform beriicksichtigt werden sollte: Das JD-Modul hat auf dem
PC ein vollig anderes Verhalten gezeigt als auf der SUN.

6.4.3.3 Pufferverwaltung mit Verdringung von Objekten

In datenintensiven Umgebungen konnen hdufig nicht alle fiir eine lang andauernde Verarbeitung
benotigten Daten im Puffer des Clients gehalten werden. Aus diesem Grund haben wir in das
QS-Modul einen Mechanismus zur tempordren Verdridngung von Objekten eingebaut, der fiir
die Anwendung nicht sichtbar ist (siehe Kapitel 6.2.2). Die Anwendung kann also bestehende
Referenzen auf Objekte weiterhin so verwenden, als ob die Objekte noch im Hauptspeicher
wiren. Dafiir ist eine weitere Indirektion bei der Verarbeitung notig, d.h. es wird ein Proxy-
Objekt zwischen Anwendung und Daten-Objekt geschaltet. Dieses ist extrem klein (es enthilt
nur eine Referenz auf das eigentliche Daten-Objekt) und bleibt immer im Puffer. Referenzen der
Applikation auf das Proxy-Objekt bleiben also dauerhaft giiltig. Lediglich das Daten-Objekt
wird bei Bedarf verdringt und spéter wieder eingelagert. Diese Indirektion verursacht natiirlich
(insbesondere bei der reinen Navigation zwischen Objekten) hohere Kosten, die wir an dieser
Stelle beurteilen wollen. Dafiir haben wir die Ergebnisse der Hot Runs fiir die CO- und QS-
Module auf beiden Rechnerarchitekturen in Abbildung 6.18 gegeniibergestellt. Alle Ergebnisse
wurden mit dem JDK 1.1.6 unter Verwendung eines JIT-Compilers erzielt.

193

T T T 45 T T T
scan 100%, QS Module —<— scan 100%, QS Module —<—

10 I scan 100%, CO Module —+-- 7 40 - scan 100%, CO Module -+-- R
scan 25%, QS Module -&-- scan 25%, QS Module -&-- .
scan 25%, CO Module -x e 35 | scan 25%, CO Module -x]

s | search, QS Module -2~ ~ search, QS Module -2~
» search, CO Module -*-- 4 » search, CO Module -*-- A
S g 30 7
£ < -
g 6f - . g &1 T
= . = g
3 - 3 201 1
g2 4 P g ’
© B T ©
i m Br g 7
10 BT
2 //,% E!oz - ///* DQ X
T mes B o x 5 7 QQ X 7
0 e o " 4 4 4 0 Es/'/‘/"xg"" & 73 3 % %
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.18: Gegeniiberstellung der Hot Runs fiir die CO und QS-Module (Ultra 10 und PC)

Bei fast allen Operationen 148t sich erkennen, daf3 die zusétzliche Indirektion beim QS-Modul
nur eine unwesentliche Verschlechterung der Laufzeit bewirkt (ca. 10-15%). Auf der Ultra 10
liegen die Ergebnisse sogar an der Grenze der Mefgenauigkeit (1 ms), so daf} hier eigentlich
keine genauen Zahlen sinnvoll sind. Bezogen auf den enormen Vorteil der erweiterten Puffer-
verwaltung erscheint die leichte Verschlechterung mehr als akzeptabel. Betrachtet man weiter-
hin die etwas anders realisierte Pufferverwaltung des JD-Moduls (das keine Verdringung unter-
stiitzt), so ist diese in manchen Fillen sogar langsamer als die des QS-Modul (vgl. rechte Grafik
von Abb. 6.13 und 6.14).

6.4.3.4 Lohnt sich der Einsatz von JavaStations?

Nachdem SUN in den letzten Jahren mehrfach den Einsatz von JavaStations als ultimative
Losung angepriesen hat, wollen wir an dieser Stelle kurz betrachten, ob sich die Verwendung
derartiger Systeme wirklich anbietet. Leider ist der Vergleich nicht ganz fair, da die vorhandene
JavaStation! mittlerweile drei Jahre alt ist, wihrend die Ultra 10 gerade mal vor 6 Monaten
geliefert wurde.

Abbildung 6.19 stellt die mit dem CO-Modul erzielten Ergebnisse fiir die Operation Scan 100%
gegeniiber. Im Gegensatz zu allen anderen Messungen war der Client diesmal ein Java Applet
(die JavaStation unterstiitzt keine reinen Java Applications). Insgesamt wurden drei Konfigura-
tionen getestet, bei denen der Client jeweils auf anderen Rechnern gestartet wurde. Die Server
(WWW-Server und CORBA-Server) liefen immer auf der selben Ultra 10. Client und Server
waren in allen Fillen iiber das selbe 10 MBit LAN miteinander verbunden. Die Ergebnisse fiir
Cold Runs sind in der linken Grafik dargestellt. Die Charakteristik der Kurven ist in allen Fallen
gleich: Prefetching bewirkt immer eine Beschleunigung um den Faktor 2. Die JavaStation ist
hingegen ca. zehnmal langsamer als die Ultra 10, wihrend die Verlagerung des Clients auf eine
zweite Ultra 10 (Konfiguration remote) zu kaum mefB3baren Verschlechterungen fiihrt. Im Hot
Run (hier stellt die Konfiguration remote natiirlich keinen Unterschied dar) liegt die Differenz
zwischen der JavaStation und der Ultra 10 nur noch bei einem Faktor von ca. 4,5.

1. Unser Dank geht an dieser Stelle an die Firma debis T&M (mittlerweile DaimlerChrysler TSS), die uns freundlicherweise
eine JavaStation zur Verfiigung gestellt hat.

194

50 T T T

JavaStation, JDK 1.1.4 —<—
45 Ultra 10, JDK 1.1.6 -+

T T T T
180000 |- JavaSt. remote, JDK 1.1.4, no pref. <-—
JavaSt. remote, JDK 1.1.4, pref. —+--
8
%
-
*

-

160000 | Ultra 10 remote, JDK 1.1.6, no pref. -8--
Ultra 10 local, JDK 1.1.6, no pref.
Ultra 10 remote, JDK 1.1.6, pref. -

Ultra 10 local, JDK 1.1.6, pref. -x--

120000 [b

140000

100000 | B

80000 |- e

Elapsed Time in ms
Elapsed Time in ms

60000 |- .

40000 | L -

20000 |- T 7 r

T I

0 Il Il Il
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

0

Abb. 6.19: CO-Modul: JavaStation gegeniiber SUN Ultra 10 (Applet)

Betrachtet man letztendlich noch das Alter der JavaStation, so wiirden die Abweichungen beim
Einsatz moderner Hardware vermutlich nur noch unwesentlich sein. Insofern spricht im Bezug
auf die zu erwartende Leistung nichts gegen die Einfiihrung dieser Rechnerarchitektur. Anders
sieht es hingegen bel der Flexibilitit des Betriebssystems JavaOS aus: Die mangelnde Unter-
stiitzung fiir Java Applications und einfache Copy& Paste-Operationen zwischen verschiedenen
Applets halten wir fiir inakzeptabel.

6.4.3.5 Entwicklung von JDK-Versionen, JIT-Compilern und JavaSDAI

Héaufig wurde (und wird) Java als eine zu langsame Technologie bezeichnet, die keine Erstel-
lung effizienter Anwendungen ermdglicht. Dieser Aussage haben wir uns vor wenigen Jahren
noch angeschlossen [SM98]. Mittlerweile gab es aber eine deutliche Leistungssteigerung und
wir erwarten weitere fiir die Zukunft. Insofern sollten derartige Aussagen immer auf einen Zeit-
punkt und konkrete Anforderungen bezogen werden (was wir damals schon getan haben). Um
einen besseren Eindruck iiber diesen Aspekt zu erhalten, wollen wir im folgenden kurz die Ent-
wicklung von Java und JavaSDALI innerhalb der letzten zwei Jahre skizzieren.

Abbildung 6.20 illustriert Optimierungen durch neue JDK- und JavaSDAI-Versionen. Die dar-
gestellten Ergebnisse wurden alle mit dem CO-Modul und der Operation Scan 100% auf einer
SUN Ultra 1 erzielt. Dabei ist zu beachten, dafl das CO-Modul des alten Prototypen generell
kein Prefetching unterstiitzt.

Betrachten wir zunichst die Ergebnisse fiir den Cold Run (linke Grafik): Wihrend der Wechsel
von JDK 1.0.2 auf 1.1.1 nur eine relativ geringe Verbesserung bewirkt, so ist der Sprung zum
neuen Prototypen und JDK 1.1.6 doch erheblich. Dies hat zwei Griinde, die wir leider nicht pro-
zentual aufteilen konnen: Zunéchst ist die Laufzeitumgebung des JDK 1.1.6 wirklich erheblich
schneller (als die des JDK 1.1.1). Zugleich haben wir unsere Implementierung aber auch erheb-
lich optimiert. Stellte der erste Prototyp noch eine mehr oder weniger direkte Umsetzung von
altbewidhrten Konzepten in C++ nach Java dar, so geht das neue CO-Modul nun direkt auf die
Stirken und Schwichen von Java ein. Dies betrifft insbesondere die Granularitit von Objekten
und die Modellierung von Aggregaten. Weiterhin wurde versucht, die Erzeugung temporirer
Objekte zu vermeiden.

195

180000 F T T T T 450 T T T
JDK 1.0.2 (old prototype) —— JDK 1.0.2 (old prototype) —<—
160000 | JDK 1.1.1 (old prototype) -+-- = 400 |- JDK 1.1.1 (old prototype) -+~ B
JDK 1.1.6, no prefetching, no JIT -8-- L JDK 1.1.6, no JIT -8--
| JDK 1.1.6, no prefetching, JIT - i L JDK 1.1.6, JIT -x i
140000 JDK 1.1.6, prefetching, no JIT - e 350
JDK 1.1.6, prefetching, JIT -* -

€120000 |- P ¢ . € 300 4
£ c 7
2100000 |- E g 250 P
= =
3 80000 |- - T 200 R
(7] (7] e
g 5 <
) 60000 | e S 150 | E

40000 | E 100 | T E

4—“*7
20000 |- F 50 - me g
- e g BB
o P - o B~ P I PRS- M s —r
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.20: CO-Modul: Optimierung durch neue JDK- und JavaSDAI-Versionen (Ultra 1)

Optimierungen im Hot Run (siehe rechte Grafik von Abb. 6.20) basieren im wesentlichen auf
JDK-Versionen. Im CO-Modul selbst finden hier fast nur Traversierungen iiber Hauptspeicher-
referenzen statt, die kaum Potential fiir Verbesserungen bieten.

Ergénzend zu den Testldufen auf der Ultra 1 haben wir vergleichende Messungen auf der Java-
Station durchgefiihrt (siehe Abbildung 6.21). Hier konnten wir wahlweise den alten Prototypen
unter JavaOS 1.0 mit JDK 1.0.2 (jeweils die oberste Kurve) oder das neue CO-Modul unter
JavaOS 1.1 mit JDK 1.1.4 (alle anderen Kurven) benutzen.

T T T T T T T
JDK 1.0.2, scan 100%, no pref. <— 900 [scan 100%, JDK 1.0.2 <— —
300000 - JDK 1.1.4, scan 100%, no pref. -+-- scan 100%, JDK 1.1.4 —+-
JDK 1.1.4, scan 100%, pref. -8-- 800 [scan25%,JDK1.1.4 -=-- 4
JDK 1.1.4, scan 25%, pref. -x search, JDK 1.1.4 -x
250000 | JDK 1.1.4, search, pref. -4 - 700 F i
@ JDK 1.1.4, scan 25%, no pref. --- @
IS JDK 1.1.4, search, no pref. -o-- € 600
£ 200000 |- E £ i b
[0} (o]
£ . £ 500 [.
5 150000 [, ;
-“.;i A+ S 400 B
Q Q.
< <
i 100000 4 w300 - b
- - L i
- BT 200
50000 [B %
) Sk 100 e
0 & & 0 & g T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.21: CO-Modul: Optimierung durch neue JDK- und JavaSDAI-Versionen (JavaStation)

Beim Cold Run (linke Grafik) lassen sich auf der JavaStation keine so deutlichen Spriinge wie
auf der Ultra 1 feststellen. Allerdings steht uns hier auch nicht das JDK 1.1.6, sondern nur das
JDK 1.1.4 zur Verfiigung. Verwunderlich ist allerdings die Tatsache, dal sich beim Hot Run
(rechte Grafik) eine Beschleunigung um den Faktor 20 ergibt. Dieser widerspricht im Prinzip
den Erfahrungen auf der Ultra 1, bei der im Hot Run (im Vergleich zum Cold Run) deutlich
geringere Unterschiede gemessen wurden. Nachdem die verwendete Software in beiden Féllen
identisch ist, fithren wir diesen Umstand auf Unterschiede in der Java Virtual Machine zuriick.
Hier waren bei der JavaStation scheinbar erhebliche Optimierungen der Hauptspeicherverwal-
tung moglich. Ergidnzend dazu konnen wir im Bezug auf die Diskussion in Kapitel 6.4.3.2 noch
sagen, daB} sich Prefetching beim CO-Modul auch auf der JavaStation erst ab einem Zugriff auf
etwa 50% der Daten lohnt.

196

Abschlieend wollen wir noch einen gezielten Blick auf die lediglich durch JDK-Versionen
oder JIT-Compiler bedingten Verbesserungen werfen. Dafiir betrachten wir die Unterschiede
zwischen dem JDK 1.1.5 und 1.1.6 sowie dem JDK 1.1.6 mit und ohne JIT-Compiler. Die in
Abbildung 6.22 illustrierten Ergebnisse basieren diesmal allerdings auf dem QS-Modul. Im
Cold Run (linke Grafik) haben wir auf die Darstellung der Ergebnisse fiir das JDK 1.1.5 ver-
zichtet, um die Lesbarkeit der Kurven zu garantieren.

90
JDK 1.1.6, scan 100%, no pref. —— Sean 100%, JOK 1.1.5, no JIT ——
60000 - JDK 1.1.6 JIT, scan 100%, no pref. -+ 80 |- Scan 100%, JDK 1.1.6, no JIT —+- i
JDK 1.1.6, scan 25%, pref. -8-- Scan 100%, JDK 1.1.6, JIT -8--
JDK 1.1.6 JIT, scan 25%, pref. -x Search, JDK 1.1.5, no JIT < Pt
50000 F JDK 1.1.6, search, no pref. -&-- | 70 Search, JDK 1.1.6, no JIT - - A g
” JDK 1.1.6 JIT, search, no pref. - - J ” Search, JDK 1.1.6, JIT - L
1S £ 60 e -
< 40000 |- + E = 5
£ = - L .
P F e
T 30000 [e g 40} oA
2 2 o
5 s © s g
< L « 30 | - n
I 20000 |- o R u e e
g 20 + R b
10000 | mT X 3
§%od ; 10 | /,/* B .
a7
0 e = g oL — -
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Nodes per Tree Nodes per Tree

Abb. 6.22: QS-Modul: Optimierung durch neue JDK-Versionen und JIT-Compiler (PC)

Bei den Werten fiir den Cold Run 146t sich erkennen, dal JIT-Compiler eine Beschleunigung um
den Faktor 1,4 bewirken (und zwar unabhingig davon, ob Prefetching benutzt wird oder nicht).
Die Kurven fiir die Search-Operation fallen allerdings wie zuvor mit der X-Achse zusammen.
Im Hot Run (siehe rechte Grafik von Abb. 6.22) 148t sich eine durch JIT-Compiler bedingte
Beschleunigung um den Faktor 1,8 ablesen. Ahnliche Ergebnisse hatten wir bereits in Abb. 6.13
und 6.14 erzielt (Faktor 2 auf dem PC und Faktor 3 auf der Ultra 10). Die Unterschiede zwi-
schen dem JDK 1.1.5 und 1.1.6 sind hingegen deutlich geringer. Sie liegen nur bei ca. 10-20%.

6.4.3.6 Zusammenfassung

Nach der Diskussion aller mit dem JavaSDAI-Prototypen durchgefiihrten Messungen wollen
wir nun die wichtigsten Ergebnisse zusammenfassen und damit die Frage beantworten, durch
welchen Teil des Systems denn nun die Leistung begrenzt wird. Ist es der Server, der Client, das
Netzwerk, CORBA, die Java Virtual Machine (JVM) oder etwas ganz anderes?

Zunichst einmal fillt der groBBe Unterschied zwischen Cold Runs und Hot Runs auf. Letztere
sind immerhin um einen Faktor 1000-2000 schneller. Die Datenversorgung ist also teuer und
Caching wird zu einem unverzichtbaren Bestandteil datenintensiver Umgebungen.

Nun stellen sich zwei weitere Fragen: Erstens, warum ist die Datenversorgung so teuer, und
zweitens, wie kann man sie beschleunigen? Die letzte Frage haben wir bereits beantwortet:
durch Prefetching (zumindest beim Zugriff auf grofe Datenmengen). Die erste Frage ist nicht
so einfach zu beantworten. Am Server liegt es garantiert nicht. Diese haben selbst beim gleich-
zeitigen Starten mehrerer Clients stets das gleiche Antwortzeitverhalten gezeigt. Am Netzwerk
kann es auch nicht liegen: Die Unterschiede zwischen den Konfigurationen local und remote in
Abbildung 6.19 kénnen vernachlissigt werden'. Es muB also irgendwie am Client liegen. Nach-
dem Prefetching eine Verbesserung bewirkt, hat aber anscheinend auch die Anzahl der Kommu-

197

nikationsschritte eine erhebliche Auswirkung. Folglich wird ein wesentlicher Teil der Laufzeit
durch den ORB bzw. den JDBC-Treiber im Client verbraucht (die Aufbereitung der Daten und
deren Einlagerung in den Puffer des Clients ist mit und ohne Prefetching gleich aufwendig - hier
kommt es nur auf das Datenvolumen insgesamt an). Dieses Ergebnis wird auch durch die Erfah-
rungen mit den CO- und QS-Modulen bestitigt: Das QS-Modul benétigt aufgrund der komple-
xeren IDL-Schnittstellen ohne Prefetching fast doppelt soviel Zeit wie das CO-Modul.

Nun konnen wir aber nicht alle Schuld dem ORB oder dem JDBC-Treiber zuschieben. Die
JavaSDAI-Schicht selbst birgt natiirlich auch Optimierungspotential. Wihrend der letzten Jahre
konnten wir insbesondere feststellen, daf} die Erzeugung von Objekten eine sehr teure Operation
ist. Noch aufwendiger ist allerdings das Loschen: Hierfiir muf3 der komplexe Algorithmus des
Garbage Collector durchlaufen werden. Folglich ist die Erzeugung temporérer Objekte auf
jeden Fall zu vermeiden. Mit diesem Wissen konnen wir uns auch gleich ein genaueres Bild von
dem zuvor behandelten Aspekt machen: Sowohl der ORB als auch der JDBC-Treiber erzeugen
eine Menge tempordrer Objekte.

Letztendlich liegt der entscheidende Faktor also beim Client, dessen Rechner im allgemeinen
zu 90 bis 100% durch die JVM ausgelastet ist. Eine Beschleunigung des JDK bzw. dessen JVM
hat somit erhebliche Auswirkungen auf die Laufzeit des Systems. Zur Bildung einer allgemei-
nen SchluBfolgerung (siehe Kapitel 6.6) wollen wir aber noch die Ergebnisse anderer Projekte
betrachten.

6.5 Verwandte Arbeiten im Bereich STEP/SDAI und CORBA

Nach der Vorstellung unseres Prototypen und einer Diskussion der erzielten Ergebnisse werfen
wir nun kurz einen Blick auf verwandte Arbeiten im Bereich des Datenzugriffs iiber STEP/
SDAI und CORBA. Viele Parallelen zu unseren Ansdtzen weist das amerikanische Projekt
NIIIP auf (National Industrial Information Infrastructure Protocols, siehe Kapitel 6.5.1). Aus
diesem Grund haben wir mit einigen Projektpartnern auch einen gemeinsamen Prototypen
erstellt, der sich in einem transatlantischen Experiment bewihrt hat. Einen etwas anderen
Ansatz verfolgt hingegen das europdische ESPRIT-Projekt VEGA mit seiner COAST-Architek-
tur (CORBA Access to STEP, siehe Kapitel 6.5.2). Hier wurde eine alternative Schnittstelle zum
Datenzugriff tiber CORBA entwickelt, die nichts mehr mit dem SDAI zu tun hat. Lediglich die
Daten werden weiterhin in EXPRESS modelliert. Im Rahmen einer Diplomarbeit wurde wei-
terhin versucht, COAST an die DCOM-basierte O.P.E.N.-Plattform der Firma Nemetschek
anzukoppeln (siehe Kapitel 6.5.3). Vollig unabhingig von STEP ist hingegen Harmony, ein an
der ETH Ziirich erstellter Prototyp eines CORBA Query Service (siehe Kapitel 6.5.4). Diese
Arbeit halten wir im Zusammenhang mit den Ergebnissen unseres QS Data Module fiir sehr
interessant.

1. Hier muB allerdings erwéhnt werden, daf3 wir die Messungen in einem relativ unbelasteten 10 Mbit LAN durchgefiihrt ha-
ben. Bei einer weltweiten Verarbeitung iiber das Internet darf man die Netzkommunikation natiirlich nicht vernachlissigen!

198

6.5.1 Das NIIIP-Projekt

Das amerikanische NIIIP-Projekt (National Industrial Information Infrastructure Protocols)
wurde gestartet, um eine effiziente Infrastruktur zur Bildung von Virtual Enterprises zu finden.
Ziel ist es, da} Unternehmen zur Produktion gemeinsamer Waren kurzfristig ihre IT-Systeme
iiber das Internet zusammenschlieBen koénnen. Erste Ansitze hierfiir sind in [HSRM96]
beschrieben. Die Arbeit beruht im wesentlichen auf Optimierungen der CORBA-Anbindung
des SDAI von STEP [ISO98c]. Analog zu unseren Ergebnissen wurde auch hier die Erfahrung
gemacht, da3 das zugrundeliegende Operation Shipping keine ausreichende Effizienz aufweist
und ergidnzende Mechanismen zum Prefetching und Caching notig sind (was im Endeffekt zu
Data Shipping fiihrt). Eine Idee ist dabei die Ubertragung serialisierter SDAI Models iiber den
CORBA Externalization Service (vgl. Kapitel 5.4.5). Weitere Konzepte sind in [HSRMO96]
beschrieben.

Im Rahmen der JavaSDAI-Standardisierung und dem damit verbundenen Entwurf der Socket
Bar (siehe Kapitel 6.1) haben wir zusammen mit STEP Tools, Inc. (STI, einem Partner im
NIITP-Projekt) einen gemeinsamen Prototypen entworfen. Dabei wurde von STI ein auf Java
Remote Method Invocation (RMI) und Object Serialization (OS) basierendes Data Module auf
threm WWW-Server in New York zur Verfiigung gestellt. Auf der anderen Seite haben wir unser
CO-Modul auf dem WWW-Server der TU Miinchen installiert. Beide Partner haben nun ihr
eigenes (lokales) Session Module benutzt, um jeweils auf die Repositories beider Data Modules
mit der in Kapitel 6.3.1 beschriebenen Applikation zuzugreifen. Dabei wurde also immer eine
lokale und eine entfernte Datenquelle angesprochen. Die Ergebnisse spiegeln beim transatlan-
tischen Zugriff zwar die zu schmale Kommunikationsbandbreite des Internets wider, insgesamt
konnen die gemessenen Zugriffszeiten aber als vielversprechend gewertet werden.

Testlauf an der TU Miinchen Testlauf in New York
Cold Run Hot Run Cold Run Hot Run
Operation RMI Cco RMI co RMI co RMI co
Modul | Modul | Modul | Modul | Modul | Modul | Modul | Modul
remote | local | remote | local local | remote | local | remote
Scan all, navigation 12778 12376 162 16 5640 | 256526 52 37
Scan all, fetch extent 13307 6225 186 17 6639 34086 61 49
Search, navigation 15781 185 151 1 5311 2542 38 12
Search, fetch extent 13327 6147 156 1 5315 34519 47 6

Tabelle 6.7: Ergebnisse des transatlantischen Testlaufes (in ms)

In Tabelle 6.7 sind die Ergebnisse unseres transatlantischen Testlaufes dargestellt (in ms). Es
wurde jeweils ein bindrer Baum mit 1000 Knoten durchlaufen. In Miinchen stand eine SUN
Ultra 1 (167 MHz, 128 MByte Speicher) zur Verfiigung, wihrend in New York eine SUN Sparc
Station 20 (60 MHz, 64 MByte Speicher) verwendet wurde. Insofern lassen sich die gemesse-
nen Zeiten nicht direkt vergleichen. So miifite z.B. beim CO-Modul im Hot Run jeweils die glei-

199

che Zeit gemessen werden. Klar zu erkennen sind hingegen die unterschiedlichen Datenversor-
gungsstrategien: Das RMI-Modul 1ddt zu Beginn immer das gesamte SDAI Model (also den
gesamten Baum). Das CO-Modul reagiert auf die Zugriffsart der Applikation: Bei der reinen
Navigation werden lediglich single object faults ausgelost, d.h. jedes Objekt wird einzeln vom
Server angefordert. Beim initialen Zugriff auf die Entity Extents werden hingegen alle Objekte
auf einmal iibertragen. Dementsprechend unterscheiden sich die Zeiten fiir die Cold Runs deut-
lich. Vorteile bietet diese Flexibilitit vor allem bei der Suchoperation. Hier werden nur wenige
Objekte benotigt und Prefetching wirkt sich in diesem Fall negativ aus. Grundsitzlich sollte
man noch beachten, daf} beide Data Modules auf Data Shipping basieren. Eine detailliertere
Diskussion dieses Aspektes als auch weiterer Ergebnisse befinden sich z.B. in [SK97].

Das NIIIP-Projekt umfaflt noch eine Menge weiterer Teilprojekte, auf die wir an dieser Stelle
nicht ndher eingehen wollen. Umfangreiche Dokumentation kann iiber die WWW-Seiten des
Projektes bezogen werden: www.niiip.org.

6.5.2 Das ESPRIT-Projekt VEGA und seine COAST-Architektur

Im Laufe dieser Arbeit haben wir erkannt, daB3 die offizielle Anbindung des SDAI an CORBA
(das sog. IDL Binding, siehe [ISO98c]) zu Operation Shipping fiihrt und deshalb nicht effizient
zu realisieren ist. Ahnliche Erfahrungen wurden natiirlich auch in anderen Projekten gemacht.
Aus diesem Grund hat sich die EU entschieden das ESPRIT-Projekt VEGA zu starten, bei dem
verschiedene Partner aus Wissenschaft und Industrie eine alternative Architektur fiir die
CORBA-Anbindung STEP-basierter Systeme entwickeln sollen. Diese trigt den Namen
COAST (CORBA Access to STEP). Unter maligeblicher Beteiligung der Digital Equipment
Corporation (DEC) und dem Centre Scientifique et Technique du Batiment (CSTB) wurde ein
System entwickelt, das zwar verschiedene Common Object Services verwendet, gleichzeitig
aber einen generischen Ansatz zum Data Shipping realisiert. Streng genommen ist der Name
COAST allerdings etwas irrefiihrend, da dem Client kein CORBA-Stub zur Verfiigung gestellt
wird, sondern eine spezifische C-Bibliothek. Insofern geht hier leider die Sprach- und Platt-
formunabhingigkeit verloren. Das vollstindige Design und die Architektur des Systems sind
ausfiihrlich in [K698] beschrieben, so dafl wir an dieser Stelle keine Details besprechen wollen.
Praktische Erfahrungen mit dem System (d.h. Messungen) sind uns bisher leider nicht bekannt.

6.5.3 Die O.P.E.N.-Plattform

Ein Partner im VEGA-Projekt, die Firma Nemetschek, hat parallel zu COAST eine weitere
Architektur als Basis fiir ihre CAD- und PDM-Systeme entwickelt. Sie trigt den Namen
O.PE.N. (Object Oriented Product Data Engineering Network, siche [Nem98]) und ermoglicht
den Zugriff auf verschiedene Datenmodelle (nicht nur STEP-basierte). Dafiir benutzt sie aller-
dings nicht CORBA, sondern Microsofts DCOM. Im Rahmen einer von uns betreuten Diplom-
arbeit sollte nun untersucht werden, inwieweit die O.P.E.N.-Plattform mit COAST gekoppelt
werden kann [Be98]. Nachdem COAST dem Client aber lediglich eine C-Schnittstelle anbietet,
kann man hier nicht von einer allgemeinen Kopplung von CORBA und DCOM sprechen. Viel-

200

mehr wurde die Anbindung einer proprietiren C-Bibliothek an DCOM realisiert. Diese erwies
sich allerdings als vielversprechend, auch wenn sie aufgrund verschiedener Verzégerungen im
VEGA-Projekt nicht umfassend evaluiert werden konnte.

Ergénzend zu den praktischen Arbeiten ist in [Be98] noch eine theoretische Diskussion der
Unterschiede und Gemeinsamkeiten von DCOM und CORBA enthalten, die eine gute Grund-
lage fiir die Kopplung beider Szenarien bilden kann.

6.5.4 Harmony: Prototyp eines CORBA Query Service

Parallel zu unseren Arbeiten wurde von Uwe Bohm und Klemens R6hm an der ETH Ziirich ein
weiterer Prototyp eines CORBA Query Service erstellt [RB99]. Dieser hat zwar tiberhaupt
nichts mehr mit einer Datenversorgung tiber STEP zu tun, im Zusammenhang mit unserem QS
Data Module halten wir die Ergebnisse aber dennoch fiir sehr interessant. Harmony basiert
ebenfalls auf Data Shipping und wurde in [RB99] mit zwei weiteren Ansitzen zur Datenversor-
gung verglichen: Dem Zugriff iiber anwendungsspezifische CORBA-Objekte und einer direk-
ten Verwendung von Embedded SQL (ohne den Einsatz von CORBA). Die Daten wurden in
allen drei Fillen aus der selben relationalen Datenbank gelesen. Wéhrend der Ansatz iiber
Embedded SQL -wie erwartet- am schnellsten war (man benutzt hier die optimierte Schnittstelle
eines DBVS-Produktes), so war Harmony in den meisten Féllen (Context Data Access und Bulk
Data Access) immerhin deutlich schneller als der Ansatz iiber anwendungsspezifische CORBA-
Objekte. Lediglich beim Zugriff auf einzelne Datensétze (Point Data Access) lag Harmony auf
dem letzten Platz. Diese Ergebnisse gewinnen noch mehr an Bedeutung, wenn man folgenden
Aspekt beriicksichtigt: Die gewdhlte Losung zum Zugriff iiber anwendungsspezifische
CORBA-Objekte fiihrt in [RB99] nicht zu Operation Shipping, sondern zu Data Shipping: Die
Anfrageergebnisse werden bereits im Server zu einer sequence mit Strings aufbereitet. Insofern
ist es nachzuvollziehen, daf} die einzelnen Losungen nicht so grofle Laufzeitunterschiede auf-
weisen wie z.B. unsere Messungen in Kapitel 6.4.2. Harmony vergleicht also verschiedene
Ansitze zum Data Shipping und unterstreicht damit die Tatsache, dal CORBA-Komponenten
mit standardisierten Schnittstellen durchaus effizient zu realisieren sind.

6.6 Wo liegt der Flaschenhals?

Wir haben in den letzten Kapiteln einige Ergebnisse im Bereich datenintensiver Umgebungen
diskutiert, die wir nun zu einer generellen Aussage zusammenfassen wollen. In eigenen Arbei-
ten haben wir zunédchst mehrfach belegt, dall Operation Shipping beim Einsatz von CORBA zu
inakzeptablen Laufzeiten fiihrt (vgl. Kapitel 6.4.1 und 6.4.2). Der Engpal} liegt hier in erster
Linie beim Server, allerdings darf die entstethende Kommunikation auch nicht vernachlissigt
werden. Die erzielten Werte beim Data Shipping sind hingegen vielversprechend.

201

Bei der Betrachtung verwandter Arbeiten hat sich weiterhin gezeigt, da3 bei Projekten im
Bereich datenintensiver Umgebungen eigentlich immer auf Data Shipping basierende Konzepte
eingesetzt werden. Dies gilt sowohl beim Einsatz von CORBA (vgl. MIND in Kapitel 5.4.9.1,
NIIIP in Kapitel 6.5.1, COAST in Kapitel 6.5.2 und Harmony in Kapitel 6.5.4) als auch bei der
Verwendung alternativer Technologien (z.B. SHORE in Kapitel 5.4.9.2, der transatlantische
Prototyp in Kapitel 6.5.1 und O.P.E.N. in Kapitel 6.5.3). Wir schlieen daraus, dal Operation
Shipping immer zu einem uniiberwindbaren Flaschenhals fiihrt und somit in datenintensiven
Umgebungen generell zu vermeiden ist. Unsere Aussage iiber die Vorteile des Data Shipping
spiegelt also auch die Ergebnisse internationaler Forschung wider.

Nun stellt sich die Frage, welche Faktoren denn beim Data Shipping ausschlaggebend sind und
welche Strategien, Konzepte und Techniken effizient sind. Bei unserem JavaSDAI-Prototypen
lag der Flaschenhals klar beim Client (und damit bei Java), und es hat sich gezeigt, daf} alle drei
Datenversorgungsstrategien dhnlich gut sind. Daraus sollte man nun aber nicht die Folgerung
ziehen, dafl mehrfache Aufrufe von CORBA-Methoden und eine damit verbundene Verlagerung
von Funktionalitdt zum Server eine Leistungssteigerung bewirken. Ganz im Gegenteil: Die Ver-
arbeitung im ORB des Clients beansprucht einen wesentlichen Teil der Laufzeit und sollte damit
eher reduziert werden. Dies hat sich bei der Gegeniiberstellung der Ergebnisse mit und ohne
Prefetching klar gezeigt (sieche Abschnitt 6.4.3.2). Es ist also klar, da3 Operation Shipping in
diesem Fall noch katastrophalere Ergebnisse liefern wiirde als bei unseren in C++ implemen-
tierten Prototypen. Bei der Verwendung von Java Clients muf also (neben der immer erforder-
lichen Reduktion von Kommunikation) auf eine sehr effiziente Anforderung, Aufbereitung und
Pufferung von Daten geachtet werden. Die Sprache Java bietet zwar das Konzept der Java
Object Serialization (OS) an, dieses harmoniert aber nur bedingt mit der von uns geforderten
abstrakten Modellierung von Daten und Funktionalitdt. Weiterhin wird bei Java OS immer die
gesamte Menge aller iiber Referenzen verbundener (serialisierbarer) Objekte auf einmal zum
Client iibertragen. Bei dem in Kapitel 6.5.1 beschriebenen transatlantischen Prototypen hat sich
aber gezeigt, da z.T. eine Konfiguration des Kommunikationsgranulates wiinschenswert ist.
Insofern sind eigene Techniken nétig, die leider einen hoheren Aufwand im Client erfordern.

6.7 Erfahrungen und Probleme mit CORBA-Implementierungen

In den letzten Jahren haben wir mit einigen CORBA-Produkten gearbeitet und dabei eine Reihe
von Erfahrungen gesammelt. Diese waren leider nicht immer positiv. Zwar ist CORBA noch
eine relativ neue Technologie, die Hartnickigkeit einiger Probleme hat uns aber dennoch {iiber-
rascht. Der wichtigste Punkt betrifft sicherlich die Registrierung und Verwaltung von CORBA-
Objekten durch den ORB. Es ist in datenintensiven Umgebungen einfach nicht akzeptabel, dafl
diese Aktion bei 25.000 Objekten bereits eine halbe Stunde umfalit (siehe Kapitel 6.4.2). In
[Sel96] konnte man diesen Zustand noch damit begriinden, da3 es sich um erste Prototypen von
CORBA-Systemen handelte. Mittlerweile sind aber drei Jahre vergangen und wir hitten an die-
ser Stelle deutliche Verbesserungen erwartet. Leider konnte durch diesen Umstand gar nicht
beurteilt werden, inwiefern die eigentliche Kommunikation und die physische Verteilung von

202

Objekten einen Einfluf} auf die Leistung eines Systems haben: Erzielte Ergebnisse fiir die Kon-
figurationen /ocal und remote waren fast identisch (vgl. Abbildung 6.10 auf Seite 187). Neben
diesem Aspekt gab es noch einige andere Probleme, die wir aber nur kurz skizzieren wollen:

® Signaturen von Skeleton Classes

Der IDL-Compiler erzeugt aus IDL-Definitionen sog. Skeleton Classes als Basis fiir die
Implementierung des Servers. Leider sind deren Signaturen aber nur teilweise standardi-
siert. So kann der Name dieser Klassen frei gewihlt werden, und es sind auch ergénzende
Parameter fiir die in IDL modellierten Methoden zulissig (z.B. zur Ubertragung von Kon-
texten). Beim Wechsel eines CORBA-Systems muf3 der selbst erstellte Code fiir den Server
also immer an die konkrete Signatur der Skeleton Classes angepalit werden, obwohl sich
die IDL-Definitionen gar nicht gedndert haben.

® Initialisierung von CORBA-Prozessen (Client und Server)

Wie schon beim zuvor genannten Punkt fehlt auch hier eine detaillierte Standardisierung.
Beim Wechsel des CORBA-Systems werden also wiederum umfangreiche Anpassungen
notig. Mit der Einfithrung des Portable Object Adapter (POA) in CORBA 2.2 hat sich die
Situation allerdings wesentlich gebessert (nur gibt es noch kein zu CORBA 2.2 kompati-
bles Produkt).

® System Exceptions

Das Auslosen sowie die Verarbeitung der vordefinierten System Exceptions ist leider nur
unzureichend beschrieben. Somit wird es von vielen Produkten unterschiedlich realisiert.

® Einfiigen von Daten in Instanzen des IDL-Typs any

IDL umfaB3t einen sehr generischen Typ any, der zur Laufzeit beliebige Daten enthalten
kann. Er wird z.B. als Ergebnistyp beim CORBA Query Service verwendet. Unser korre-
spondierendes JavaSDAI Data Module (siehe Kapitel 6.2.2) gibt nun z.T. sehr umfangrei-
che Strukturen als Ergebnis einer Anfrage zuriick. Diese miissen im Server in eine Instanz
des Typs any eingefiigt werden und anschliefend im Client wieder daraus extrahiert wer-
den. Leider ergab sich dabei hédufig das Problem, daf} alle Daten beim Einfiigen in eine
Instanz des Typs any kopiert wurden. In unserem Fall ist dies aber vollig iiberfliissig, man
konnte die Zeit (und den Speicherplatz) sparen. CORBA 2.2 sieht deshalb auch zwei Ein-
fligeoperatoren fiir any-Typen vor (direkt bzw. als Kopie). Diese sind bisher aber in fast
keinem CORBA-Produkt zu finden.

® Handbiicher

Die Handbiicher der einzelnen Systeme sowie die beigefiigten Beispiele illustrieren nur
unzureichend die Erstellung von standardkonformen Programmen. Meist werden
proprietire Erweiterungen benutzt und geschildert, ohne daf} eine Differenzierung nach
eigener und standardisierter Funktionalitit erfolgt. Dementsprechend lassen sich (zwi-
schen CORBA-Systemen portable) Programme nur mit einer detaillierten Kenntnis des
Standards erstellen.

203

Unnamed Types

Fiir Basistypen wie Strukturen oder unions lassen sich leider keine Forward Declarations
erstellen. Will man nun rekursive Strukturen definieren (z.B. eine Struktur, die eine
sequence ihres eigenen Typs enthilt, sieche Beispiel 6.15), so entstehen sog. Unnamed
Types (namlich genau diese Liste). Benutzt man diesen Unnamed Type nochmal in einer
weiteren Typdefinition, so kann die Gleichheit der Typen nicht garantiert werden. Streng
genommen Offnet jede Typdefinition ndmlich intern einen neuen Namensraum, so daf3
beide Unnamed Types unterschiedliche Giiltigkeitsbereiche haben.

}i

// in IDL: // corresponding namespace hierarchy:

module TreeMgmt {

struct Tree ({

sequence<Tree> sons; @ TreeMgmt: : Tree: : sequence<Tree> sons;

struct Admin { ...
sequence<Tree> mngrees;@ TreeMgmt : : Admin: : sequence<Tree> mgdTrees;
/... e

Beispiel 6.15: Namensrdume fiir IDL Unnamed Types

204

Namespaces und Inner Classes (C++)

In IDL definierte Module miissen bei der Ubersetzung nach C++ in geeignete Namens-
rdume abgebildet werden. Einige Systeme (wie z.B. Orbix) benutzen hierfiir Inner Classes.
Legt man die Definitionen aus Beispiel 6.15 zugrunde, so erhilt man z.B. die Klasse
TreeMgmt : : Tree. Diese Losung hat den Nachteil, dal sich die Definition der Klasse
TreeMgnt in einer Datei befinden muB. IDL ermdglicht aber prinzipiell das erneute Offnen
von Modulen in anderen Dateien. Aus diesem Grund bildet z.B. ORBacus die IDL-Module
lediglich auf Prifixe ab (TreeMgmt Tree). Beide Losungen sind natiirlich nicht kompati-
bel, d.h. beim Wechsel des CORBA-Systems sind erneut Anderungen notig. Weiterhin
erfiillen beide Losungen eigentlich nicht die in IDL modellierte Semantik: Inner Classes
konnen nur an einer Stelle definiert werden, Préfixe bilden streng genommen keine hierar-
chischen Namensrdaume.

Kapitel 7
Zusammenfassung und
Ausblick

So gut wie jede moderne Datenverarbeitung basiert auf dem Einsatz von Informationsystemen.
Deren zugrundeliegende Datenversorgung ist somit essentiell fiir die Leistungsfihigkeit der
Systeme und damit auch fiir die unterstiitzten Arbeitsschritte. In der Einleitung haben wir nun
erkannt, da} sich Informationssysteme im Bezug auf die Datenversorgung in mehrere Katego-
rien mit unterschiedlicher Komplexitit einstufen lassen: Von der rein lesenden Variante bis hin
zu Systemen, die groflere Mengen von Daten lesen und schreiben. Zur Entwicklung allgemeiner
Strategien zur Datenversorgung ist es natiirlich sinnvoll, die in diesem Sinne anspruchvollsten
Systeme zu betrachten. Die gefundenen Konzepte lassen sich dann recht einfach auf andere
Kategorien iibertragen.

Ein Vertreter von Informationssystemen, die eine besonders komplexe und gleichzeitig effizi-
ente Datenversorgung bendtigen, sind Entwurfsumgebungen. Die Entwicklung moderner Pro-
dukte ist ohne die Verwendung derartiger Werkzeuge undenkbar geworden. Die umfangreichen
Operationen zur Visualisierung, Bearbeitung, Ablage, Weitergabe und Wiederverwendung von
Produktdaten beschleunigen die einzelnen Verarbeitungsschritte und ermdglichen gleichzeitig
eine Qualititskontrolle vor der eigentlichen Produktion. Leider sind die zugrundeliegenden
Systeme aber meist auf einzelne Verarbeitungsschritte innerhalb der ProzeBkette zugeschnitten.
So kann es z.B. vorkommen, daf} in verschiedenen Schritten auch andere Datenmodelle verwen-
det werden. Dementsprechend sind entlang der ProzeBkette jeweils aufwendige Konvertierun-
gen notig, die mit einem Informationsverlust verbunden sein konnen. Teilweise sind sogar
manuelle Eingriffe durch den Benutzer nétig, die extrem fehleranfillig sind. Wiinschenswert ist
also eine libergeordnete Integration aller Systeme. Dafiir bendtigen wir ein globales Datenmo-
dell, die Anbindung aller Datenquellen, ein Modell zur Beschreibung der Schnittstellen und
Semantik von Systemen (ein sog. Komponentenmodell) sowie eine geeignete Infrastruktur fiir
deren Kopplung (Middleware). In dieser Arbeit haben wir uns gezielt mit der Datenversorgung
in derartigen Szenarien beschiftigt. Dieses Thema kann natiirlich nicht isoliert betrachtet wer-
den, sondern es sind auch immer die durch andere Aspekte bedingten Anforderungen sowie
Auswirkungen auf diese zu beriicksichtigen. Wir haben deshalb mit einer Begriffskldarung
begonnen (Kapitel 2) und anschlieBend ausgewihlte Beispiele fiir globale Datenmodellierung

205

(STEP, Kapitel 3), Komponentenmodelle und Middleware (in beiden Féllen CORBA,
Kapitel 4) diskutiert. AnschlieBend konnten wir uns in Kapitel 5 und 6 dem zentralen Aspekt
der Datenversorgung widmen:

® Welche Arten von Datenquellen gibt es? Wie sind sie modelliert?

® Welche Zugriffsschnittstellen bieten sie und wie lassen sie sich in eine globale Datenver-
sorgung integrieren?

® Welche Komponentenmodelle und Middleware-Ansitze bieten die beste Unterstiitzung?

Neben einer theoretischen Diskussion haben wir unseren JavaSDAI-Prototypen zur Evaluierung
verschiedener Strategien benutzt. Im folgenden wollen wir nun kurz die einzelnen Ergebnisse
zusammenfassen und einen Ausblick auf weiterfiihrende Arbeiten geben, anhand derer noch
offen gebliebene Fragen und Probleme beantwortet bzw. gelost werden konnen.

Komponentenmodelle

Bei der Diskussion von Komponentenmodellen muB3ten wir feststellen, daf3 es fiir diesen Begriff
viele unterschiedliche Definitionen gibt. Der abgedeckte Bereich spannt sich von modular auf-
gebauter Dokumentenverwaltung bis hin zu der (von uns angestrebten) Strukturierung von
Systemen. In fast allen Fiéllen beziehen sich diese Modelle aber eher auf technische Aspekte und
die Beschreibung der Syntax von Schnittstellen. Wir erwarten von einem Komponentenmodell
hingegen deutlich mehr. So sollte insbesondere auch die Modellierung von Semantik moglich
sein. Letztendlich erhalten wir dann ein formales Modell, das eine abstrakte Beschreibung der
einzelnen Komponenten (Syntax und Semantik der Schnittstellen) ermdglicht — und zwar unab-
hingig von deren Realisierung (Rechnerarchitektur, Betriebssystem, Programmiersprache
usw). Dieses formale Modell sollte standardisiert sein und zugleich Abbildungen auf konkrete
Laufzeitumgebungen enthalten. Damit wird eine Kapselung von Komponenten erreicht, die
zugleich die Wiederverwendung existierender Teile und den Austausch veralteter Module
ermdglichen.

Betrachtet man die Vielfalt existierender Konzepte und Techniken, so gibt es eigentlich nur vier
Kandidaten, die unserer Definition von Komponentenmodellen nahe kommen: CORBA,
DCOM, DSOM und (Enterprise) Java Beans. DCOM und DSOM sind leider auf einzelne
Rechnerplattformen zugeschnitten, wihrend Java Beans fest mit der Sprache Java verbunden
sind. Thre Abstraktion ist somit unzureichend. CORBA hat als einziges Modell eine formale
Spezifikationssprache (IDL), die vollkommen unabhingig von Programmiersprachen und
Rechnerplattformen ist. Jedoch erlaubt auch sie keine Definition von Semantik. CORBA CDL
war ein erster Ansatz in diese Richtung, deren Entwicklung von der OMG aber leider wieder
eingestellt wurde. CORBA Components stellen hingegen ein eher technisches Modell zur Ver-
breitung und Installation von Softwaremodulen dar. Letztendlich gibt es also gar kein Modell,
das unserer Definition entspricht. An dieser Stelle besteht somit groBer Bedarf an weiteren
Arbeiten.

206

Datenquellen und ihre Schnittstellen

Im Laufe dieser Arbeit haben wir gesehen, dall Daten nicht zwangsweise in DBVS gespeichert
sind. Sie konnen z.B. auch in mehr oder weniger (un)strukturierten Dateien oder Excel Sheets
abgelegt sein. Weiterhin besteht in einigen Fillen kein direkter Zugriff auf die Datenquelle
selbst, sondern es gibt nur ein API des dariiberliegenden Anwendungsprogrammes (z.B. SAP).
Dementsprechend ergibt sich eine Vielfalt von Modellierungs- und Speicherungstechniken mit
den korrespondierenden Zugriffsverfahren. Zur Realisierung einer globalen, integrierten Daten-
versorgung lat sich keine spezielle Technik finden, die alleine eine Anbindung aller Arten von
Datenquellen ermoglicht. Vielmehr ist eine Kombination mehrerer Ansitze notig. Abhingig
vom globalen Datenmodell sind fiir jede Datenquelle unterschiedliche Mapper oder Wrapper
notig. So miissen unter Umstdnden aus relationalen Tupeln Objekte erzeugt oder einzelne Attri-
bute mehrerer Objekte zu einem Objekt zusammengefalt werden. Andererseits ist unter
Umsténden fiir die Auswertung von Anfragen ein Prozessor zur Bearbeitung unstrukturierter
Textdateien notig. Neben diesen Modellierungsaspekten werden wir in allen Fillen natiirlich
auch andere Zugriffsschnittstellen erhalten, die iiber unterschiedlichste Techniken zu integrie-
ren sind. Dabei ist es von groBBer Bedeutung, sich vorher auf ein globales (und moglichst stan-
dardisiertes) Datenmodell und eine globale (und wiederum standardisierte) Schnittstelle zu eini-
gen. Dies hat zur Folge, daf bei n Datenquellen lediglich n Wrapper bzw. Mapper notig sind
und eine vollstindige Kapselung der Datenquellen erreicht wird. Verzichtet man hingegen auf
ein globales Modell und erstellt statt dessen Punkt-zu-Punkt-Verbindungen von jeder der n
Datenquellen zu jeder der m vorhandenen Anwendungen, so sind ndmlich n*m Wrapper bzw.
Mapper notig! Dies bedeutet dann insbesondere auch, daBl die Kapselung verloren geht und bei
der Integration neuer oder der Anderung existierender Anwendungen auch die Anbindung der
Datenquellen zu dndern ist.

Datenversorgung

Eng verzahnt mit dem gerade diskutierten Aspekt der Integration von Datenquellen ist die
Datenversorgung. Hier geht es vor allem um die Frage, wie, wann und in welchem Format Daten
von der Quelle (also vom persistenten Speicher) zu der jeweiligen Anwendung kommen. Wir
haben erkannt, dal Data Shipping in datenintensiven Umgebungen (wie etwa CAD oder PDM)
unverzichtbar ist. Nachdem wir eigentlich immer iiber Client/Server-Systeme reden, miissen
also alle Verfahren Caching auf dem Client unterstiitzen. Bei unseren Untersuchungen hat sich
ergeben, dal CORBA zwar am besten unsere Definition eines Komponentenmodelles erfiillt,
die Fihigkeiten zum Data Shipping aber stark eingeschrinkt sind. Insbesondere ist es in
CORBA-Umgebungen nicht sinnvoll, das jeweilige Datenmodell in IDL zu definieren oder
CORBA Services als Grundlage der Verarbeitung zu wihlen. Die Integritdt der Daten und
Caches ist auf jeden Fall durch zusitzliche MaBBnahmen zu iiberpriifen.

Zur Definition eines einheitlichen Datenmodells haben wir den STEP-Standard verwendet, der
einerseits formale Spezifikationsverfahren und standardisierte Schnittstellen definiert und ande-
rerseits sogar eine globale Schnittstelle enthélt (das SDAI). Im Bereich der Produktdatenverwal-
tung (PDM, CAD) lassen sich keine Alternativen erkennen.

207

Anhand unseres JavaSDAI-Prototypen haben wir drei verschiedene Datenversorgungsstrategien
verglichen: Proprietires Data Shipping mit CORBA, die Ubertragung generischer Strukturen
tiber den CORBA Query Service und den Zugriff auf RDBVS iiber JDBC. Alle Verfahren wur-
den jeweils als eigenstindiges Data Module in eine JavaSDAI-Schnittstelle mit einem
EXPRESS-Datenmodell integriert. Beide CORBA-Losungen zeigen ein dhnliches Laufzeitver-
halten, so da3 der CORBA Query Service (in der verwendeten Art und Weise) auch fiir Data
Shipping geeignet erscheint. Die JDBC-Losung war sogar etwas langsamer, was wir allerdings
auf die schlechte Realisierung des Treibers zuriickfiihren: Die verwendete Dreischichtenarchi-
tektur fiihrt zu einer unnoétigen Verzogerung, die mit Sicherheit vom Hersteller optimiert werden
kann (beispielsweise durch den direkten Zugriff des Java-Clients auf das DBVS - hierfiir miif3te
aber die interne Schnittstelle des DBVS um ein geeignetes Protokoll erweitert werden). Bei
allen drei Verfahren konnte beim Zugriff auf grole Datenmengen eine deutliche Beschleuni-
gung durch Prefetching erreicht werden.

Urspriinglich sollte der Prototyp auch fiir einen Vergleich von Data Shipping und Operation
Shipping in CORBA-Umgebungen dienen. Aus projektinternen Griinden konnten diese Arbei-
ten aber leider nicht beendet werden. Daher haben wir beide Paradigmen auf einer tieferen
Ebene (ohne SDAI) verglichen. Es stellte sich heraus, dal CORBA-Systeme bei der Erzeugung
und Registrierung groerer Mengen von Objekten nach wie vor erhebliche Defizite aufweisen
(dhnliche Ergebnisse hatten wir bereits in frilheren Arbeiten erzielt). Die resultierenden
Zugriffszeiten sind letztendlich inakzeptabel. Leider ist es schwer zu beurteilen, inwieweit hier
die konzeptuellen Schwichen des Operation Shipping ausschlaggebend waren und wo sich
lediglich eine ineffiziente Implementierung ausgewirkt hat. An dieser Stelle sind weitergehende
Untersuchungen in Kooperation mit dem Hersteller eines CORBA-Systems wiinschenswert.

Parallel zur Erstellung unseres Prototypen wurden weltweit Projekte mit einer dhnlichen Ziel-
setzung durchgefiihrt. Hervorzuheben sind hier das amerikanische NIIIP-Projekt sowie das
Esprit-Projekt VEGA mit seiner COAST-Architektur. In beiden Fillen wurde der Einsatz von
CORBA evaluiert und man kam zu dem SchluB}, da3 Operation Shipping ungeniigend ist (auch
wenn man diesen Begriff nicht verwendet hat) und Mechanismen zum Caching, Prefetching und
Bulk Transfer benotigt werden. In eher administrativen Umgebungen, die nur der Bearbeitung
kleinerer Datenmengen dienen (z.B. das TeleMed-Projekt), kann CORBA-basiertes Operation
Shipping hingegen ausreichend sein.

Java-basierte Integration von Datenquellen iiber das Intra-/Internet

In Verbindung mit der Entwicklung und Diskussion verschiedener Datenversorgungsstrategien
haben wir gleichzeitig deren Eignung fiir einen Einsatz iiber das Intra- und Internet untersucht.
Hierfiir bot sich die Verwendung der Sprache Java an, so dall wir uns bereits friihzeitig an der
Entwicklung des JavaSDAI-Standards beteiligten. Diesen haben wir nicht einfach als eine wei-
tere Sprachanbindung des abstrakt definierten SDAI angesehen, sondern vielmehr als Basis fiir
eine flexible Integration heterogener Datenquellen. Dafiir haben wir die JavaSDAI Socket Bar
definiert, welche das jeweilige EXPRESS-Schema als globales Datenmodell benutzt und zur
Laufzeit die Anbindung weiterer Datenquellen iiber sog. Data Modules unterstiitzt. Die Imple-
mentierung dieser Module kann von einem beliebigen WWW-Server geladen werden und baut
dann selbststindig die Verbindung zur Datenquelle auf, die wiederum auf einem beliebigen

208

Rechner liegen kann. Verwendet die Datenquelle eine andere Modellierung(sart) als das globale
EXPRESS-Schema, so 148t sich die notwendige Mapping-Funktionalitit in das Data Module
integrieren. Nachdem die Client/Server-Kommunikation ein interner (gekapselter) Bestandteil
des Data Module ist, kann dieses natiirlich auch einen wesentlichen Teil der Verarbeitung auf
einen eigenen Server verlagern (z.B. das Mapping). Als unbedingt notwendig hat sich jedoch
ein Puffer im Client (Caching) sowie die Fahigkeit zum Prefetching und Bulk Transfer heraus-
gestellt.

Streng genommen widersprechen wir mit unserem JavaSDAI-Ansatz eigentlich der zuvor
gefiihrten Diskussion: Wir haben eine Integrationsplattform definiert, die (zumindest auf dem
Client) auf eine einzige Programmiersprache zugeschnitten ist. Bet Komponentenmodellen
(welche der Integration dienen sollen) fordern wir hingegen Sprachunabhingigkeit. Insofern
haben wir unser eigenes Ziel nicht erreicht - und das gestehen wir auch ein. Jedoch gab es gute
Griinde fiir dieses Vorgehen. Zunichst galt es das primére Ziel dieser Arbeit zu erreichen: Die
Evaluierung verschiedener Datenversorgungsstrategien. Eine reine CORBA-LOsung reichte
also nicht. Weiterhin sollte ein globales Datenmodell zum Einsatz kommen, das in EXPRESS
modelliert ist (es gibt bisher keine Alternative zu STEP). Und schlieBlich wollten wir eine Test-
plattform erstellen, die eine einheitliche Schnittstelle zum Testen aller Datenversorgungsstrate-
gien bietet und zusitzlich einen Einsatz im Intra-/Internet unterstiitzt. Hierfiir bot sich nur Java
an. Unter diesen Rahmenbedingungen haben wir unserer Ansicht nach die beste, mogliche
Losung erzielt. Selbstverstiandlich betrachten wir diese aber nicht als endgiiltig. Deshalb wollen
wir auch an mehreren Stellen weiterfiihrende Arbeiten durchfiihren. So sollen beispielsweise
die Erfahrungen aus der Standardisierung von JavaSDALI langfristig auch Auswirkungen auf
kiinftige Revisionen der abstrakten SDAI-Spezifikation haben. Diese ist architektur- und
sprachunabhiingig. Weiterhin stellt sich die Frage, ob Anderungen oder Erweiterungen im
CORBA-Standard nicht einen dhnlichen Ansatz wie die Socket Bar ermdglichen. Wir halten
dies durchaus fiir moglich und werden hier nach weiteren Losungen suchen. Immerhin stellt
unser Query Service bereits eine standardkonforme Methode zum Zugriff auf EXPRESS-
basierte Daten dar, mit der auch eine Anbindung beliebiger Datenquellen moglich ist. Nur ist
dieses Verfahren bisher auf eine einzige Datenversorgungsstrategie beschrinkt.

Letztendlich bleibt zu sagen, da3 wir in dieser Arbeit keine vollstindige Losung fiir die von uns
skizzierten Anforderungen finden konnten. Dies war auch nicht zu erwarten, denn unsere
Anforderungen waren (und sind) sehr hoch. Wir konnten allerdings den aktuellen Stand der
Technik darstellen und damit erste Losungsansitze diskutieren (und teilweise auch realisieren).
Insbesondere CORBA hat unsere Hoffnungen bei weitem nicht erfiillt, aber auch hier ist die
Entwicklung und Standardisierung noch lange nicht abgeschlossen. Die OMG arbeitet stirker
an Verbesserungen als je zuvor. Insofern hoffen wir, da3 zumindest ein Teil unserer Ergebnisse
in die zukiinftige Entwicklung des Standards einflieBen wird. Im Bereich SDAI und JavaSDAI
haben wir die Standardisierung bereits wesentlich beeinfluf3t und sind mit den erzielten Ergeb-
nissen im groBen und ganzen zufrieden. Im Bereich der Komponentenmodelle (entsprechend
unserer Definition) sehen wir leider die groften Probleme. Hier wird meist der Aspekt der
Semantik vernachldssigt und hédufig nur nach technischen Losungen gesucht. Die CDL von
CORBA war ein wichtiger Schritt, der leider nicht weiter verfolgt wurde. Allerdings haben wir

209

nach der Ubernahme der UML-Standardisierung durch die OMG die Hoffnung, da3 an dieser
Stelle mehr Wert auf Semantik gelegt wird und dann implizit ein EinfluB auf CORBA entsteht.
Im Bereich von DCOM, DSOM und Java Beans sehen wir weniger Perspektiven, da hier klar
die Interessen einzelner Hersteller im Vordergrund stehen und die Bindungen an Plattformen
bzw. Programmiersprache sicher nicht beseitigt werden. Zwar setzt sich die Windows-Plattform
in Biiros immer mehr durch, im Bereich PDM und CAD wird es unserer Ansicht nach aber auch
in der Zukunft eine Datenverarbeitung auf Mainframes und Host-Rechnern geben - und diese
ist in geeigneter Weise in das jeweilige Gesamtsystem zu integrieren. Der Einsatz von Kompo-
nentenmodellen, die auf einzelne Plattformen oder Sprachen zugeschnitten sind, wird deshalb
nie zu einer umfassenden Losung fiihren.

210

Anhang A
Literatur

AG98

Att89

Be98

Bla97

Blo92

BN&g4

BS95

Bu98

Ca*94

CB97

CDNO93

CGl

CHY"97

Da%4
Da*98
DC99

K. Arnold, J. Gosling: The Java Programming Language, 2" Edition, Addison-Wesley,
1998.

M. Atkinson, et al. (D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, S. Zdonik): The
Object-Oriented Database System Manifesto, in: Proc. of the 1% Intl. Conference on
Deductive and Object-Oriented Databases, 1989, pp. 40-58.

O. Beider: Entwurf und Implementierung einer Briicke zwischen O.P.E.N. und COAST,
Diplomarbeit, Nemetschek AG & Technische Universitidt Miinchen, Fakultét fiir Informa-
tik (IIT), Datenbanksysteme und Wissensbasen, 1998.

J.A. Blakeley: Universal Data Access with OLE DB, in: Proc. of the IEEE Conference
COMPCON 97, 1997, pp. 2-7.

J. Bloomer: Power Programming with RPC—UNIX Network Programming, A Nutshell
Handbook, O’Reilly & Associates, 1992.

A.D. Birell, B.J. Nelson: Implementing Remote Procdure Calls, in: ACM Transactions on
Computer Systems, Vol. 2, No. 2, 1984, pp. 39-59.

U.M. Borghoff, J.H. Schlichter: Rechnergestiitzte Gruppenarbeit—FEine Einfiihrung in
Verteilte Anwendungen, Springer Lehrbuch, Springer Verlag, 1995.

W. Buchert: Entwurf und Implementierung eines modifizierten OO7-Benchmarks zum
Test der JavaSDAI-Laufzeitumgebung, Halbjahriges Systementwicklungsprojekt, Techni-
sche Universitidt Miinchen, Fakultit fiir Informatik (III), Datenbanksysteme und Wissens-
basen, 1998.

M. J. Carey et al.: Shoring Up Persistent Applications, in: Proc. of the ACM SIGMOD
Conference on the Management of Data, Minneapolis, MN, 1994,

R. Cattell, D. Barry, et al.: The Object Database Standard: ODMG 2.0, Morgan Kauf-
mann Publishers, 1997.

M.H. Carey, D.J. DeWitt, J.F. Naughton: The 007 Benchmark, in. ACM SIGMOD 22(2),
1993, pp.12-21.

University of Illinois: The Common Gateway Interface, University of Illinois at Urbana-
Champaign, http://hoohoo.ncsa.uiuc.edu/cgi/.

PE. Chung, Y. Huang, S. Yajnik, D. Liang, J.C. Shih, C.Y. Wang, and Y.M. Wang:
DCOM and CORBA Side by Side, Step By Step, and Layer by Layer, to appear in C++
Report Magazine, http://akpublic.research.att.com/~ymwang/papers/C++R97CR.htm,
1997.

C.J. Date: An Introduction to Database Systems, 6th Edition, Addison-Wesley, 1994.
R. Darnell et al.: HTML 4 Unleashed, Professional Reference Edition, Sams Net, 1998.

DaimlerChrysler AG: Distributed Object Strategy (DOS): Part IV—Evaluation of IBM’s
ComponentBroker, Internal Evaluation Report for Release 1.3 (in Cooperation with
IBM), Department IO/TM (Lead), 1999.

211

DD97
DDO98

Dew93
Di87

Do196

Dr95

DS96
DZ83

EG89

EN94

ES98
FM97

Fro9

Ge95

GJS96

GN9%4

GR93

GV92

Hi97

HLS98

HMNRO95

HP90

HNSB90

HR83

212

C.J. Date, H. Darwen: A Guide to the SQL Standard, 4th Edition, Addison-Wesley, 1997.

A. Dogac, C. Dengi, M.T. Oszu: Distributed Object Computing Platforms, in: Communi-
cations of the ACM, Vol. 41, No. 9, 1998, pp. 95-103.

D.T. Dewire: Client/Server Computing, McGraw-Hill, 1993.

K.R. Dittrich: Object-Oriented Database Systems—A Workshop Report, in: Proc. of the
Intl. Conference on the Entity-Relationship Approach, 1987, pp. 51-66.

A. Dogac et al.: A Multidatabase System Implementation on CORBA, in: Proc. of the 6"
Intl. Workshop on Research Issues in Data Engineering (RIDE), New Orleans, 1996.

I. Drews: Leistungsmessung von STEP/SDAI auf der Basis eines OODBS, Diplomarbeit,
Fachbereich Informatik, Universitit Kaiserslautern, 1997.

M. Dierker, M. Sander: Lotus Notes 4.x—Arbeiten im Team, Addison-Wesley, 1996.

J.D. Day, H. Zimmermann: The OSI Reference Model, in: Proc. of the IEEE, Vol. 71,
December 1983, pp. 1334-1340.

C.A. Ellis, S.J. Gibbs: Concurrency Control in Groupware Systems, in: Proc. of the ACM
SIGMOD Conference on the Management of Data, 1989.

R. Elmasri, S.B. Navathe: Fundamentals of Database Systems, Addison-Wesley, 2nd g
tion, 1994.

P. Eeles, O. Sims: Building Business Objects, John Wiley & Sons, 1998.

G. Flach, H. Meyer: Das DICE-Projekt: Datenbankunterstiitzung fiir kooperative Anwen-
dungen, Universitit Rostock, Rostocker Informatik-Berichte, Band 20, 1997.

J. Friebe: Eine GeoServer-Architektur zur Nutzung von GIS-Funktionalitdt iiber Internet-
Technologie, in A. P. Buchmann: Tagungsband der 8. GI-Fachtagung ’Datenbanksysteme
in Biiro, Technik und Wissenschaft’ BTW *99, Springer Verlag, 1999, S. 164—-184.

K. Geihs: Client/Server-Systeme, Grundlagen und Architekturen, Thomson’s Aktuelle
Tutorien (TAT), Band 6, Intl. Thomson Publishing GmbH, 1995.

J. Gosling, B. Joy, G. Steele: The Java Language Specification, Addison-Wesley, 1996.

P. Gaumond, P.A. Nelson: GNU dbm—A Database Manager, Edition 1.4.1 of the GNU
dbm Manual for gdbm version 1.7.3, Free Software Foundation, Cambridge, MA, USA,
1994, ftp://phi.sinica.edu.tw/pub/aspac/gnu/ps/.

J.N. Gray, A. Reuter: Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann Publishers, 1993.

G. Gardarin, P. Valduriez: ESQL: An Object-Oriented SQL with F-Logic Semantics, in:
Proc. of the 8 IEEE Intl. Conference on Data Engineering (ICDE), 1992.

M. Higgs: Universal Data Access: Foundation for the Enterprise, White Paper, I-Kine-
tics, Inc., 1997, http://www.i-kinetics.com/.

K. Hergula, G. Lorenz, G. Sauter: Mapping EXPRESS to SQL3, Technical Report FT3/E-
98-004, DaimlerChrysler AG, Research & Technology, 1998.

T. Hérder, B. Mitschang, U. Nink, N. Ritter: Workstation/Server-Architekturen fiir daten-
bankbasierte Ingenieuranwendungen, in: Informatik—Forschung und Entwicklung, Band
10, Heft 2, Springer Verlag, 1995, S. 55-72.

J.L. Hennessy, D.A. Patterson: Computer Architecture—A Quantitative Approach, Mor-
gan Kaufmann Publishers, 1990.

D. Harrison, R. Newton, R. Spickelmier, T. Barnes: Electronic CAD Frameworks, in:
Proc. of the IEEE, Vol. 78, No. 2, 1990, pp. 393-417.

T. Hirder, A. Reuter: Principles of Transaction-Oriented Database Recovery, in: ACM
Computing Surveys, Vol. 15, No. 4, 1983, pp. 287-317.

HR93

HR99

HSRM96

HSRM97

Hu96

IB97
IBM97

IBM98a

IBM98b

IBM98c

IBM98d

IBM98e

1K99

IONA97
IONA98a
IONA98b
IONA98c
ISG99

ISO%4a

ISO94b

ISO%4c

ISO9%6

ISO98a

T. Hérder, K. Rothermel: Concurrency Control Issues in Nested Transactions, in: VLDB
Journal, Vol. 2, No. 1, 1993, pp. 39-74.

T. Hérder, E. Rahm: Datenbanksysteme—Konzepte und Techniken der Implementierung,
Springer Verlag, 1999.

M. Hardwick, D. Spooner, T. Rando, K.C. Morris: Sharing Manufacturing Information in
Virtual Enterprises, in: Communications of the ACM, February 1996.

M. Hardwick, D. Spooner, T. Rando, K.C. Morris: Data Protocols for the Industrial Vir-
tual Enterprise, in: IEEE Journal for Internet Computing, Vol. 1, No. 1, http://computer.
org/internet/ic1997/wltoc.htm, 1997.

K. Hughes: ORACLE Transport Gateway - Installation and User’s Guide for IBM DRDA
for RS/6000, Release 4.0, ORACLE Co., 1996.

Information Builders Inc.: EDA/SQL Manuals, Information Builders Inc., 1997.

IBM Co.: DB2 Data Joiner: Administrator Guide and Application Programming, Version
2, Release 1, IBM Co., San Jose, 1997.

IBM Co.: IBM Component Broker Connector Overview, IBM Redbook, Third Edition
(applies to Release 1.2), 1998.

IBM Co.: IBM Component Broker Quick Beginnings 1.3, Fourth Edition (applies to
Release 1.3), 1998.

IBM Co.: IBM Component Broker Programming Guide 1.3, Fourth Edition (applies to
Release 1.3), 1998.

IBM Co.: IBM Component Broker Advanced Programming Guide 1.3, Third Edition
(applies to Release 1.3), 1998.

IBM Co.: IBM Component Broker Oracle Application Adapter Quick Beginnings 1.3,
First Edition (applies to Release 1.3), 1998.

I-Kinetics, Inc.: DataBroker Version 6 Overview, White Paper, I-Kinetics, Inc., 1999,
http://www.i-kinetics.com/.

IONA Technologies: Orbix Database Adapter Framework (ODAF), Version 1.0, 1997.
IONA Technologies: Orbix IIOP Engine, White Paper, 1998

IONA Technologies: Orbix Programming & Reference Guide, Version 2.3, 1998.
IONA Technologies: OrbixWeb Programming & Reference Guide, Version 3.1, 1998.

International Software Group, Ltd.: ISG Products: ISG Navigator—Universal Data
Access, http://www.isg.co.uk/products/Navigator/, 1999.

ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 1: Overview and fundamental principles, Intl. Standard, 1994.

ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 11: Description methods: The EXPRESS language reference manual,
Intl. Standard, 1994.

ISO IS 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 21: Implementation methods: Clear text encoding of the exchange
structure, Intl. Standard, 1994.

ISO CD 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 24: Implementation methods: C language binding to the standard
data access interface, Committee Draft, ISO TC184/SC4/WG11 NO14, 1996.

ISO FDIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 22: Implementation methods: Standard data access interface
specification, Final Draft Intl. Standard, 1998.

213

ISO98b

ISO98c

ISO99a

ISO99b

iX98

Ja98
Java
JBS97

KA95

K898

KK93

La95

Loe98

Lof98

LS87

Ma97

Ma98

MB99

Me90

Mi95

MMMO93

MMO97

214

ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 23: Implementation methods: C++ language binding to the
standard data access interface specification, Draft Intl. Standard, 1998.

ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 26: Implementation methods: Interface definition language bin-
ding to the standard data access interface, Draft Intl. Standard, 1998.

ISO CD 10303 Industrial automation systems and integration: Product data representation
and exchange—Part 27: Implementation methods: Java programming language binding
to the standard data access interface with Internet/Intranet extensions, Committee Draft,
ISO TC184/SC4/WG11 N060, 1999.

ISO DIS 10303 Industrial automation systems and integration: Product data representa-
tion and exchange—Part 214: Application protocol: Core data for automotive mechanical
design processes, Draft Intl. Standard, ISO TC184/SC4/WG3 N765, 1999.

iX-Magazin: ORBs—Von Big Blue bis GPL: Object Request Broker, in: iX-Magazin fiir
professionelle Informationstechnik, Band 10, 1998.

D. Jackson: Business Objects Companion, Prentice Hall, 1998.
Sun Microsystems: The Source for Java Technology, http://www.javasoft.com/.

St. Jablonski, M. Bohm, W. Schulze (Hrsg.): Workflow-Management—Entwicklung von
Anwendungen und Systemen, Facetten einer neuen Technologie, dpunkt-Verlag, 1997.

S. Khoshafian, R. Abnous: Object Orientation: Concepts, Analysis & Design, Languages,
Databases, Graphical User Interfaces, Standards, 2" Edition, John Wiley & Sons, 1995.

M. Kothe: COAST Architecture—The CORBA Access to STEP Information Storage
Architecture and Specification, Deliverable D301 of ESPRIT Project 20408 *VEGA’,
Rev. 1.8.5, Digital Equipment Corporation, European Applied Research Center, 1998.

A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in Object Bases, in:
Proc. of the IEEE Intl. Conference on Data Engineering ICDE), 1993, pp. 155-162.

C. Lau: Object-Oriented Programming Using SOM and DSOM, Wiley & Sons, 1995.

H. Loeser: Techniken fiir Web-basierte Datenbankanwendungen—Anforderungen,
Ansdtze, Trends, in: Informatik—Forschung und Entwicklung, Band 13, Heft 4, Springer-
Verlag, 1998.

D. Loffredo: Efficient Database Implementation of EXPRESS Information Models, PhD
Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1998.

P.C. Lockemann, J.W. Schmidt (Hrsg.): Datenbank-Handbuch, Springer-Verlag, 1987

A. Maurer: Implementierung einer SDAI-Schnittstelle in Java, Halbjdhriges Systement-
wicklungsprojekt, Technische Universitit Miinchen, Fakultit fiir Informatik (IIT), Daten-
banksysteme und Wissensbasen, 1998.

A. Maurer: Entwurf und Implementierung eines JavaSDAI Data-Modules auf Basis eines
CORBA Query-Service, Diplomarbeit, Technische Universitit Miinchen, Fakultét fiir
Informatik (III), Datenbanksysteme und Wissensbasen, 1998.

Mercedes-Benz Consultancy System: Configurator MBKS Online, Internet-System zur
Produktkonfiguration, http://mbks.mercedes-benz.com/vas/gb/default.htm, 1999.

J. Melton (Ed.): Database Language SQL 2, American National Standards Institute
(ANSI), Washington, D.C., 1990.

Microsoft Corporation: Microsoft Open Database Connectivity Software Development
Kit, Programmer’s Reference, Version 3.00, 1995.

N.M. Mattos, K. Meyer-Wegener, B. Mitschang: A Grand Tour of Concepts for Object-
Orientation from a Database Point of View, Journal on Data & Knowledge Engineering
(DKE), Vol. 9, Elsevier Science, 1993, pp. 321-352.

T.J. Mowbray, R.C. Malveau: “CORBA Design Patterns”, John Wiley & Sons, 1997.

MPD99

Nem98

Neu97

NHR99

0G95
OHE%
OHE96
OMG96a
OMG96b
OMGY97
OMG98a
OMG98b

OMG98c

OMG98d
OMG98e

OMGI8f

OMG98g

OMG98h

OMG99

00C98
0r99

Ow93

N.M. Mattos, P. Pistor, S. DeBBloch: SQL3, Object-Relational, and Java: Overview of the
SQOL99 and SQLJ Standard, Tutorial auf der 8. GI-Fachtagung ’Datenbanksysteme in
Biiro, Technik und Wissenschaft” BTW ’99, 1999.

Nemetschek AG: The O.P.E.N.® Development Platform, Technical White Paper, Nemet-
schek AG, 1998.

E. Neuwirt: Konzeption und Implementierung einer ORB/DBMS-Schnittstelle in einer
CORBA-basierten CSCW-Umgebung, Diplomarbeit, Universitit Rostock, Fachbereich
Infomatik, Lehrstuhl fiir Datenbank- und Informationssysteme, 1997.

U. Nink, T. Hirder, N. Ritter: Generating Call-Level Interfaces for Advanced Database
Application Programming, in: Prooceedings of the 25™ Intl. Conference on Very Large
Databases (VLDB), Edinburgh, Scotland, UK, 1999.

The Open Group: Data Management: SQL Call Level Interface (CLI), X/Open CAE Spe-
cification C451, April 1995.

R. Orfali, D. Harkey, J. Edwards: The Essential Client/Server Survival Guide, John Wiley
& Sons, 1996.

R. Orfali, D. Harkey, J. Edwards: The Essential Distributed Objects Survival Guide, John
Wiley & Sons, 1996.

Object Management Group: The Common Object Requst Broker Architecture: Architec-
ture and Specification, Version 1.2, OMG TC Document PTC/96-03-04, OMG, 1996.

Object Management Group: Informationen der Business Object Domain Task Force,
OMG, http://www.dataaccess.com/Bodtf/boinfo.htm, 1996.

Object Management Group: A Discussion the Object Management Architecture, OMG,
January 1997, Updated June 1997, http://www.omg.org/library/omaindx.html.

Object Management Group: PDM Enabler Specification—Joint Revised Submission,
OMG TC Document mfg/98-01-01, mfg/98-02-01 (errata), OMG, 1998.

Object Management Group: Business Object Component Architecture Proposal (BOCA),
Revision 1.1, OMG TC Document bom/98-01-07, 1998.

Object Management Group: Notification Service—Joint Revised Submission with Errata,
OMG TC Document telecom/98-01-18, telecom/98-03-05 (errata), dtc/98-04-01 (errata),
1998.

Object Management Group: Objects By Value—Joint Revised Submission with Errata,
OMG TC Document orbos/98-01-18, OMG, 1998.

Object Management Group: CORBA Messaging—Joint Revised Submission, OMG TC
Document orbos/98-05-05, OMG, 1998.

Object Management Group: The Common Object Requst Broker Architecture: Architec-
ture and Specification, Version 2.2, OMG TC Document formal/98-07-01, OMG, 1998,
http://www.omg.org/library/c2index.html.

Object Management Group: CORBA Components—Joint Revised Submission, OMG TC
Document orbos/98-10-18, November 1998.

Object Management Group: CORBAservices: Common Object Services Specification,
Revised Edition, OMG Document formal/98-12-09, OMG, 1998, http://www.omg.org/
library/csindex.html.

Object Management Group: Persistent State Service 2.0, OMG Web Page, http://www.
omg.org/techprocess/meetings/schedule/Persistent_State_Service_2.0_RFP.html, 1999.

Object-Oriented Concepts: ORBacus for C++ and Java, Manual for Release 3.1, 1998.

Oracle Corp.: Oracle8i Appliance Overview, General Product Information and Press
Release, http://www.oracle.com/html/8iapp_ovw.html, 1999.

J. Owen: STEP—An Introduction, Information Geometers, 1993.

215

PMC9%4
Ra%6

RB99

RC98

Red96

Rev96

Rez™98

RH98

Ri97

RLAY98

RLPG96

RS92

Sa%6

Sag98

SAP

SBM98

Sch92

SDRC
Sel96

Ses96

Ses98
SFM99

216

Post Modern Computing: ORBeline User Guide, Version 1.0, September 1994.

S. Rauch: Talk to Any Database the COM Way Using the OLE DB Interface, in: Microsoft
Systems Journal, Vol. 11, No. 7, July 1996, pp. 19-38

U. Rohm,K. Bohm: Working Together in Harmony—An Implementation of the CORBA
Object Query Service and its Evaluation, in: Proceedings of the 15" IEEE Intl. Confe-
rence on Data Engineering (ICDE), 1999, pp. 238-247.

M. Rosen, D. Curtis: Integrating CORBA and COM, John Wiley & Sons, 1998.

J.P. Redlich: CORBA 2.0: Praktische Einfiihrung fiir C++ und Java, Addison-Wesley,
1996.

F. Reverbel: Persistence in Distributed Object Systems: ORB/ODBMS Integration, Ph.D.
Dissertation, Computer Science Department, University of New Mexico, 1996.

F.F. Rezende et al.: The Database Access Interface in MEntAs: Architecture and Functio-
nality, Daimler-Benz AG, Forschung und Technologie, ProzeBkette Produktentwicklung
(FT3/EK), Technischer Bericht Nr. FT3/E-1998-003, 1998.

FF. Rezende, K. Hergula: The Heterogeneity Problem and Middleware Technology:
Experiences with and Performance of Database Gateways, Proc. of the 24™ Conference
on Very Large Databases (VLDB), New York, 1998.

N. Ritter: DB-gestiitzte Kooperationsdienste fiir technische Entwurfsanwendungen.,
DISDBIS Vol. 33, Infix Verlag, St. Augustin, zugleich: Dissertation, Fachbereich Infor-
matik, Universitiat Kaiserslautern, 1997.

D. Raggett, J. Lam, 1. Alexander et al.: HTML 4—Web-Publishing mit dem neuen HTML-
Standard, Addison-Wesley, 1998.

B. Reinwald, T. J. Lehmann, H. Pirahesh, V. Gottemukkala: Storing and using objects in
a relational database, in: IBM Systems Journal, Vol. 35, No. 2, 1996, pp.172-192.

F. J. Rammig, B. Steinmiiller: Frameworks und Entwurfsumgebungen, in: Informatik
Spektrum 15, 1992, Seite 33—43.

G. Sauter: The Mapping Language BRIITY—Reference Manual, Technical Report F3-96-
007, Daimler-Benz AG, Research & Technology, 1996.

G. Sauter: Interoperabilitit von Datenbanksystemen bei struktureller Heterogenitdit,
DISDBIS Vol. 47, Infix Verlag, St. Augustin, zugleich: Dissertation, Fachbereich Infor-
matik, Universitit Kaiserslautern, 1998.

SAP AG: Das SAP R/3 System, http://www.sap-ag.de/products/r3/.

M. Stonebraker, P. Brown, D. Moore: Object-Relational DBMSs, Second Edition, Morgan
Kaufmann Publishers, 1998.

A. Schill: Remote Procedure Call: Fortgeschrittene Konzepte und Systeme—Ein Uber-
blick, in: Informatik-Spektrum, Band 15, 1992.

Teil 1: Grundlagen, Heft 2, Seite 79-87.

Teil 2: Erweiterte RPC-Ansitze, Heft 3, Seite 145-155.

SDRC Corp.: Metaphase, http://www.metaphasetech.com/.

J. Sellentin: Einsatzmoglichkeiten von CORBA in STEP-basierten Entwurfsumgebungen,
Diplomarbeit, Universitit Kaiserslautern, Fachbereich Informatik, 1996.

R. Sessions: Object Persistence—Beyond Object-Oriented Databases, Prentice Hall, New
Jersey, 1996.

R. Sessions: COM and DCOM, Wiley Computer Publishing, 1998.

J. Sellentin, A. Frank, B. Mitschang: TOGA—A Customizable Service for Data-Centric
Collaboration, in: Proceedings of the 11th Intl. Conference on Advanced Information
Systems Engineering (CAiSE 99), LNCS 1626, Springer Verlag, 1999, pp. 301-316.

Sh*96

Si96
SK97

SM97

SM98

SM99a

SM99b

SRL93

SS97

SS99

SSSM99

Sun94

Sun97a
Sun97b

Sun97c

Sun97d
Sun98a
Sun98b
Sun98c

Su98

SV96

A. Sheth et al.: Report from the NSF Workshop on Workflow and Process Automation in
Information Systems, Computer Science Department Technical Report UGA-CS-TR-96-
003, University of Georgia, Athens, Georgia, 1996.

J. Siegel: CORBA: Fundamentals and Programming, Jon Wiley & Sons, 1996

J. Sellentin, R. Kramer: Joint Prototype Implementation of the SDAI in Java—First
Results, Technical Report, Technische Universitidt Miinchen und STEP Tools, Inc., 1997,
http://www.informatik.uni-stuttgart.de/ipvr/as/projekte/phrames/javasdai/v1/index.html.

J. Sellentin, B. Mitschang: Méglichkeiten und Grenzen des Einsatzes von CORBA in DB-
basierten Client/Server-Anwendungssystemen, in K.R. Dittrich, A. Geppert: Tagungsband
der 7. GI-Fachtagung 'Datenbanksysteme in Biiro, Technik und Wissenschaft” BTW 97,
Springer Verlag, 1997, S. 312-321.

J. Sellentin, B. Mitschang: Data-Intensive Intra- & Internet Applications—Experiences
Using Java and CORBA in the Worl Wide Web, in: Proc. of the 14" IEEE Intl. Conference
on Data Engineering (ICDE), Orlando, Florida, 1998, pp. 302-311.

J. Sellentin, B. Mitschang: Design and Implementation of a CORBA Query Service
Accessing EXPRESS-based Data, in: Proc. of the 6" IEEE Intl. Conference on Database
Systems for Advanced Applications (DASfAA’99), Hsinchu, Taiwan, R.O.C., 1999.

J. Sellentin, B. Mitschang: Data-Intensive Intra- and Internet Applications Based on
Java, CORBA, and the World Wide Web, Invited Paper in: E. Bertino, and S. Urban:
’Object-Oriented Technology in Advanced Applications’, Special Issue of Theory and
Practice of Object Systems (TAPOS), Vol. 5, No. 3, John Wiley & Sons, 1999.

L. Suardi, M. Rusinkiewicz, W. Litwin: Execution of Extended Multidatabase SQL, in:
Proc. of the 9 IEEE Intl. Conference on Data Engineering (ICDE), 1993.

J. Sellentin, G. Sauter: Binding Java to the SDAI—Using STEP for Intra- and Internet
Applications, Experience Report presented at the ISO TC184/SC4 Meeting, Chester, UK,
March 1997.

R.E. Shelton, C. Shanklin (Editor): Understanding Business Objects, Addison-Wesley,
1999.

S. Sarstedt, G. Sauter, J. Sellentin, B. Mitschang: Integrationskonzepte fiir heterogene
Anwendungssysteme bei DaimlerChrysler auf Basis internationaler Standards, in A. P.
Buchmann: Tagungsband der 8. GI-Fachtagung ’Datenbanksysteme in Biiro, Technik und
Wissenschaft” BTW °99, Springer Verlag, 1999, S. 317-327.

Sun Microsystems: RPC(3N): Network Functions, SunOS 5.6 (Solaris 2.6) Manual Page,
1994,

Sun Microsystems: JDBC Guide: Getting Started, Documentation for JDK 1.1.4, 1997.

Sun Microsystems: Java Remote Method Invocation Specification, Release 1.4 for JDK
1.1, February 1997.

Sun Microsystems: Java Object Serialization Specification, Release 1.3 for JDK 1.1,
February 1997.

Sun Microsystems: JavaBeans API Specification, Release 1.01, July 1997.
Sun Microsystems: Enterprise JavaBeans Specification, Release 1.0, March 1998.
Sun Microsystems: Enterprise JavaBeans to CORBA Mapping, Release 1.0, March 1998.

Sun Microsystems: JavaStation—An Overview, White Paper, http://www.sun.com/nc/
whitepapers/javastation/javast_ch1.html, 1998.

J. Sutherland: OOPSLA Business Object Workshop Home Page, updated periodically,
http://jeffsutherland.org/oopsla98/index.html, 1998.

J. Stark, S. Vajna: Business Process Reengineering vor der Einfiihrung eines EDM-
Systems, aus der OCE Buchreihe ’Von der analogen zur digitalen Reprograpfie’, OCE,
Miilheim an der Ruhr, 1996.

217

SWo4

SZ98

Ta92
TeleMed

Vo938

W3C

WC95

Wo94

YMG96

218

D.A. Schenk, P. Wilson: Information Modelling: The EXPRESS Way, Oxford University
Press, 1994.

H.P. Steiert, J. Zimmermann: JPMQ—An Advanced Persistent Message Queuing Service,
in: Proc. of the 16™ British National Conference on Databases (BNCOD), Cardiff, 1998.

A.S. Tanenbaum: Modern Operating Systems, Prentice-Hall Intl., 1992.

Los Alamos National Laboratory: Welcome to TeleMed, Project Home Page, Operated by
the University of California, http://www.acl.lanl.gov/TeleMed/.

A. Vogel: Efficient Data Transfer with CORBA, Java-Report Online (JRO), June 1998,
http://www.sigs.com/jro/features/9806/jro06.corbatalk.(vogel).html.

W3C - World Wide Web Consortium: About the World Wide Web, General Information
and History, http://www.w3.org/pub/WWW/WWW/.

J. Widom, S. Ceri (Editor): Active Database Systems: Triggers and Rules for Advanced
Database Processing, Academic Press / Morgan Kaufmann Publishers, 1995.

P. van der Wolf: CAD-Frameworks—Principles and Architecture, Kluwer Academic
Publishers, 1994.

N. J. Yeager, R. E. McGrath: Web Server Technology—A Guide for the World Wide Web
Information Providers, Morgan Kaufmann Publishers, 1996.

