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Abstract

The literature is rich of fully automatic and semi-automatic techniques for com-
ponent recovery and their number is still growing. The abundance of published
methods calls for frameworks to unify, classify, and compare them in order to
make informed decisions. This thesis introduces a classification of component
recovery techniques based on a unification of 23 techniques. Focussing on struc-
tural techniques, 16 fully automatic techniques are classified into connection-,
metric-, graph-, and concept-based subcategories and the commonalities and vari-
abilities of these techniques are discussed in depth. Beyond the qualitative com-
parison, 12 structural techniques are evaluated quantitatively (concept-based
techniques were excluded). To that end, an evaluation scheme is introduced that
allows to measure recall and precision of component recovery techniques with
respect to a set of reference components ascertained by software engineers.
Among the evaluated techniques is our new metric-based technique named Simi-
larity Clustering. The evaluation scheme based on a set of expected components
manually compiled by 5 software engineers for four C systems with altogether
136 KLOC shows that Similarity Clustering is among the best techniques for all
systems, but it also has more false positives than other techniques. The overall
result of this comparison is that none of the fully automatic techniques has a suf-
ficient detection quality. 

In order to overcome this problem, a semi-automatic method is presented in this
thesis in which computer and maintainer collaborate to detect components. The
method is supported by a framework that integrates the existing fully automatic
techniques. In this framework, the automatic techniques can be run successively
and their results be validated by the user. For this purpose, all the techniques are
enhanced to work incrementally. The unification of the automatic techniques
makes it possible to implement incremental variants for whole classes of tech-
niques. The results of the techniques can be combined by high-level operators
modeled on intersection, union, and difference for fuzzy sets. An alternative way
of integration is offered by a voting approach that summarizes the individual
agreement of automatic techniques. 
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Despite of the new ways of combining the automatic techniques, the semi-auto-
matic method inherits weaknesses of the integrated techniques. Future research
should investigate whether these weaknesses may be overcome with additional,
more precise information gained from dataflow analyses and more domain-ori-
ented information. However, all methods will always have to cope with vagueness
and subjectivity of the grouping criteria for components.
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Zusammenfassung

In der Literatur findet sich eine große Anzahl voll- und halbautomatischer Tech-
niken zur Komponentenerkennung und ihre Zahl wächst stetig. Die Fülle der
publizierten Techniken macht eine Klassifikation und Bewertung notwendig, um
begründete Entscheidungen bei der Auswahl einer geeigneten Technik zu ermög-
lichen. In dieser Arbeit wird eine Klassifikation basierend auf einer Vereinheitli-
chung von 23 Techniken zur Komponentenerkennung eingeführt. Eine engere
Betrachtung von 16 strukturellen Techniken liefert eine Subkategorisierung in
verbindungs-, metrik-, graph- oder begriffsbasierte Techniken, deren Gemein-
samkeiten und Unterschiede eingehend vorgestellt werden. Über den rein qualita-
tiven Vergleich hinaus werden 12 strukturelle Techniken quantitativ beurteilt
(begriffsbasierte Techniken werden nicht näher ausgewertet). Zu diesem Zweck
wird ein Auswerteschema für Komponentenerkennungstechniken vorgestellt, mit
dessen Hilfe die Erkennungsqualität hinsichtlich einer Menge von Referenzkom-
ponenten, die durch Software-Ingenieure manuell ermittelt werden, genau
bestimmt werden kann. Unter den bewerteten Techniken befindet sich unsere
neue metrikbasierte Technik Similarity Clustering. Bei der Auswertung anhand
des eingeführten Bewertungsschemas und der von Software-Ingenieuren erkann-
ten Referenzkomponenten für vier C-Systeme mit zusammen ca. 136 KLOC
befindet sich Similarity Clustering bezüglich seiner Wiederfindungsrate stets
unter den besten Techniken; allerdings ist auch eine höhere Anzahl unzuordenba-
rer Komponenten als bei anderen Techniken zu verzeichnen. Als Resultat ergibt
sich insgesamt, dass keine der automatischen Techniken eine ausreichende
Erkennungsqualität aufweisen kann. 

Um diesen Mangel auszugleichen, wird eine halbautomatische Methode einge-
führt, in der Computer und Mensch bei der Erkennung zusammenwirken. Die
Methode wird unterstützt durch eine Integration der vollautomatischen Techni-
ken, bei der die Analysen sukzessive mit anschließender Validierung durch den
Benutzer ausgeführt werden können. Hierzu werden die Techniken zu inkrement-
ellen Techniken erweitert. Die Vereinheitlichung der Techniken erlaubt die ein-
heitliche Implementierung inkrementeller Varianten für ganze Klassen von
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Techniken. Die Resultate der Techniken können mittels Operatoren kombiniert
werden, denen die Mengenoperationen Schnitt, Vereinigung und Differenz für
unscharfe Mengen zugrunde liegen. Eine alternative Art der Integration ist der
sogenannte Abstimmungsansatz, bei dem die individuellen Zustimmungen der
Techniken zusammengefasst werden.

Trotz der neuen, mächtigen Möglichkeiten, die automatischen Techniken zu kom-
binieren, wird die halbautomatische Methode durch Schwächen der einbezogenen
automatischen Techniken beeinträchtigt. Zukünftige Forschung sollte untersu-
chen, ob die Schwächen der Techniken mit präziseren Informationen, die durch
Datenflussanalysen hergeleitet werden können oder sich durch Vorwissen über
das Anwendungsgebiet ergeben, beseitigt werden können. Nichtsdestotrotz wer-
den auch zukünftige Verbesserungen stets mit der Vagheit und teilweisen Subjek-
tivität der Gruppierungskriterien für Komponenten konfrontiert sein.
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Chapter 1 Introduction

In 1985, Lehman and Belady stated the so-called Lehman’s laws. Out of the orig-
inal five the two “laws” (hypotheses, really) most relevant to the context of this
thesis are repeated here:

(1) The law of continuing change: A program that is used in a real-world
environment necessarily must change or become progressively less useful
in that environment.

(2) The law of increasing complexity: As an evolving program changes,
its structure tends to become more complex. Extra resources must be
devoted to preserving and simplifying the structure.

The work presented in this thesis aims at methods and tools to preserve and sim-
plify the structure of a system in order to support program evolution. With pro-
gram evolution, any modification of a software product is meant that takes place
after delivery to correct faults, to improve performance or other attributes, to
adapt the product to a changed environment, or to add functionality.

1.1    State of the Practice

Software is an increasingly important factor for the expenses and returns of mar-
keted products not only within the traditionally software-dominated domains,
such as telecommunication and information systems, but also in other technol-



Introduction

20

ogy-oriented lines, such as mechanical engineering, aviation, astronautics, or
entertainment industry, whose share of software in production costs is estimated
to 30-50 percent. The average fortune-100 company has 35 millions lines of code
in operation with a growth of 10 percent per year (Buss et al., 1994).

It is known from diverse case studies that 60-80% of the costs of a software prod-
uct arise for program evolution (Nosek and Palvia, 1990). Interestingly enough,
industry and research have made surprisingly little effort to cope with the prob-
lems of program evolution in comparison to the attention experienced by develop-
ment of new systems. The “year 2000 problem” has put program evolution in the
limelight. However, even this example of a mass change has not changed the situ-
ation very much (McCabe, 1998).

More than 50% of the time needed for program evolution is spent in understand-
ing the program before the actual change can be designed and realized, as several
case studies have shown (Fjeldstadt and Hamlen, 1984). This is because the nec-
essary information for the task at hand is often not completely and correctly doc-
umented and therefore has to be derived from the source code. The maintainers,
being badly informed and pressed for time, tend to fix the problem only locally,
mostly in those subsystems they are familiar with. These local code fixes often
disregard the original design and – since they are no real solutions but treat the
problem only phenotypically – provoke errors at other sites of the system and
complicate future understanding. This is a vicious circle that ends in a non-main-
tainable system unless preventive measures are taken. 

1.2    The Importance of Software Architecture

Large systems are divided into subsystems. These subsystems, also known as
components, and the dependencies that exist among the components form the
software architecture of a system. The software architecture is a key asset affect-
ing most attributes of a system. An inappropriate or deteriorated architecture can
have a disastrous effect on maintainability. Garlan and Perry describe the major
impacts of a software architecture on the following aspects of a system with a
focus on development of new systems rather than maintenance (1995). I will
describe these aspects more from the maintainer’s point of view.
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The Importance of Software Architecture

Understandability. The software architecture provides an overview of a system
at a higher level of abstraction. This overview exposes the high-level constraints
on system design that a maintainer has to observe and allows a more focused
search oriented at architectural information. Many original design decisions and
the consequences of their disregard become only clear at this level.

Reuse. In the architecture, the maintainer can not only identify the reusable com-
ponents but also the existing dependencies to other parts of the system that need
to be handled before the components can be reused. Current work on reuse gener-
ally focuses on component libraries. Architectural design supports, in addition,
both reuse of large components and also frameworks into which components can
be integrated. Architecture recovery is also an enabling technology for the prod-
uct line approach in which common parts of architectures of a family of systems
are united and generalized into a generic architectural framework for a particular
domain; the architectures of the actual systems in this domain can then be real-
ized as instantiations of the general framework (Bayer et al. 1999). 

Evolution. The software architecture can be viewed as the skeleton of the system.
Having a description of this skeleton enables the maintainer to identify load-bear-
ing and potentially weak parts that need to be carefully addressed when a system
is to be evolved. Furthermore, having a clear picture of a component’s dependen-
cies allows one to modify the component itself without affecting other parts of the
system or to change the dependencies in order to handle evolving concerns about
performance, interoperability, and reuse. Errors no longer have to be fixed where
they appear but where they were caused by identifying the responsible compo-
nents or the undocumented dependencies and constraints.

Analysis. If the recovered architecture is specified by a separate architectural
description, new opportunities for analyses are provided, including high-level
forms of system consistency, conformance to an architectural style, conformance
to quality attributes, and domain-specific analyses for architectures that conform
to a specific style. Furthermore, the architectural description can be used to check
whether changes to the system conform to the design principles of the architec-
ture.
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Management. Maintenance assignments can be made on the basis of subsystems.
Moreover, the software architecture provides a base for a more rigorous estima-
tion of the costs and risks of a change. The quality of a system can be assessed by
judging the load-bearing capacity of its architecture. Weak parts can be identified
and measures to overcome these weaknesses can be better examined and aimed.
For particularly problematic components, it can be decided whether they should
be reengineered or newly developed. Reengineering of large systems is only fea-
sible if it is done subsystem by subsystem. For this incremental migration, the
dependencies have to be known and the wrapping of the not yet reengineered
parts has to be planned.

Since all these factors are essential for a system’s capability to evolve, a descrip-
tion of the software architecture must be recovered when it is lost. Ideally, the
documentation should be kept up-to-date with future changes once it was recov-
ered and the need for recovery should never arise again. However, even then it
might be necessary to inspect the architecture as built in order to recognize and
analyze differences from the documented architecture. Furthermore, the main-
tainer may need to explore the architecture as built when the higher-level descrip-
tion abstracted from certain details. 

Recovering the software architecture and exploring the architecture as built is
costly and the only available tool support in practice is far too often a symbolic
debugger to trace the system at a very low level. 

1.3    Research in Architecture Recovery

Architecture recovery comprises detection of components (the computational
parts) and connectors (the means and points of communication) of systems. It is
aimed at supporting the process of program understanding for software mainte-
nance and evolution. 

Component recovery. One major research topic in component recovery is detec-
tion of subsystems (Schwanke, 1991), another one is recovery of objects and
abstract data types. Though abstract data type and object detection is commonly
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Research in Architecture Recovery

driven by reuse or object-oriented system migration, it does support architecture
recovery at a lower level of components.

Abstract data types and objects consist solely of subprograms, types, and global
variables. They are only two examples of architectural concepts we can form with
these kinds of base elements. Other examples are sets of related subprograms or
hybrid components. We will refer to such low-level components solely built from
types, variables, and subprograms as atomic components.

Connector recovery. Connectors for concurrent and distributed systems have
been the primary target of connector recovery (Harris et al., 1995; Fiutem et al.,
1996). However, most systems, especially legacy systems, are sequential and
monolithic. Function call is the most primitive and dominating type of connector
of such systems. Another common way of communication is via shared global
variables. At the next higher level of connectors, we find atomic components. For
example, two architectural components may communicate by means of a pipe
where the pipe is implemented as an abstract data type. That is, atomic compo-
nents can be connectors at a higher level of architecture. Detecting them can
therefore also aid in understanding of how larger components communicate.

The goal of our research is to find techniques and methods for atomic component
detection in the general framework of architecture recovery. In a case study, we
have evaluated several published approaches to detect abstract data types and
objects (Girard, Koschke, Schied, 1997c). The overall result was that none of the
techniques has the needed precision. There are several alternative approaches to
overcome this: The techniques can be combined, other sources of information can
be considered (for example, dataflow information or domain knowledge), or the
user can be integrated into the search. This thesis proposes a semi-automatic
method in which computer and maintainer work hand in hand to detect atomic
components. Within this interactive framework, the techniques can be combined
by simple operations triggered by the user. Due to the complexity, vagueness, and
to some degree subjectivity, it is questionable whether we can ever find precise
techniques that fit all cases. Therefore, atomic component recovery is a problem
that has to be tackled in concert with a maintainer anyway. Hence, how this can
be effectively achieved should be investigated first before we search for other
sources of information.
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1.4    Scientific Questions Addressed in this Dissertation

In more detail, the following questions are going to be addressed in this disserta-
tion (the respective chapters devoted to these questions are given in brackets):

1. What published structural techniques exist and how can they be unified and
classified (Chapter 5)?

2. What is the recall rate and precision in atomic component detection of pub-
lished techniques (Chapter 6)?

3. How can these techniques be improved individually (Chapter 5 and Chapter 7)?

4. How can these techniques be combined (Chapter 8)? 

5. How can the user be integrated in atomic component detection (Chapter 9)?

6. Do automatic techniques support a maintainer in atomic component detection
(Section 10.3)?

7. Are the techniques and methods for atomic component detection discussed in
this work also helpful for other typical maintenance tasks (Section 10.4)?

This thesis focuses on techniques for atomic component detection that leverage
only structural information and investigates how far we can get with such meth-
ods. Other potential sources of information are the results of control and data flow
analyses and domain knowledge. This thesis does not deal with control and data
flow analyses, but in the course of the thesis, I will point out where information
derived from these analyses could support the structure-oriented methods.
Domain knowledge comes into play by the maintainer within the interactive sce-
nario, but automatic ways to leverage domain knowledge are not explored. Still, I
give at least one hint on how one of the approaches could profit by the vocabulary
of a domain (Section 7.3.5).

1.5    Project Context

The work described in this thesis is embedded in the Bauhaus project. Bauhaus is
a research collaboration between the Institute for Computer Science of the Uni-
versity of Stuttgart (ICS) and the Fraunhofer Institute for Experimental Software
Engineering in Kaiserslautern (IESE). The goal of Bauhaus is to find methods
and techniques for architecture recovery, to explore languages to describe recov-
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ered architectures, and to investigate analyses to compare architectures as built to
the specified architectures.

The first step toward the general goal of Bauhaus was to investigate methods and
techniques to recover the architecture based on structural information. The first
researchers of this project were Jean-François Girard (IESE), Georg Schied
(ICS), and I (ICS). Until mid of 1998, the three of us worked in close co-opera-
tion in the field of atomic component detection. All the work of this period was
jointly published. When Georg Schied left the Bauhaus project in March 1998,
our teamwork was reorganized. Jean-François Girard has concentrated on detec-
tion of subsystems since then. This is the reason why my work does not deal with
subsystem detection. However, the combinations of the basic techniques that I
propose in Chapter 8 are designed so that they are going to work in the presence
of recovered subsystems.

My work has continued the detection of atomic components by exploring possi-
ble combinations of the basic techniques, evaluating and inventing new tech-
niques, providing incremental variants of the basic techniques, and delving into
ways to integrate the user in the process of atomic component detection. To give a
complete picture of atomic component detection based on structural information,
this thesis does not only report on new improvements since March 1998 but also
on previous joint work with Jean-François Girard and Georg Schied that I will
explicitly point out in the following.

1.6    Overview of the Following Chapters

This thesis consists of two main parts. The first part deals with automatic tech-
niques and the second part with a semi-automatic method for atomic component
detection. Before we get to these two main parts, the terminology and concepts
used in this thesis are introduced in Chapter 2 and Chapter 3 and the issues
related to the target language are discussed in Chapter 4.

The first main part begins with Chapter 5 that describes published techniques for
atomic component detection and suggests individual improvements to these tech-
niques. These techniques are evaluated in Chapter 6. We, namely, Jean-François
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Girard, Georg Schied, and I, extended one of the basic techniques described in
Chapter 5 in so many ways that it is presented as a technique of its own in Chapter
7. 

The second main part proposes ways to combine the basic techniques and shows
how the techniques can be modified to work incrementally (Chapter 8). Then it
presents a method in which the maintainer uses the incremental versions of the
basic techniques to detect atomic components (Chapter 9) and describes a con-
trolled experiment and a case study conducted to evaluate the method (Chapter
10).

The last part discusses related research (Chapter 11) and summarizes the conclu-
sions of this thesis (Chapter 12).
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Chapter 2 Terminology 

This chapter introduces the terminology used throughout this thesis.

2.1    Reengineering and Software Maintenance Terminology

The following three sections contain standard terminology in reengineering. The
definitions for reverse engineering, restructuring, and reengineering were pro-
posed by Cross and Chikofsky (1990). Figure 2-1 sketches the relationships
between these terms graphically.  

2.1.1    Forward Engineering
Software engineering was primarily thought of as aiming at the development of
new systems though it covers reverse engineering and reengineering as well. To

Figure 2-1. Relationships between terms.

forward 
engineering

reverse 
engineering

reengineering

restructuring
or change

Requirements Design Code

architecture 
recovery

forward 
engineering

reverse 
engineering



Terminology

28

avoid the connotations of the term software engineering, the term forward engi-
neering is introduced. Forward engineering is the process of moving from high-
level abstractions and logical, implementation-independent designs to the physi-
cal implementation of a system.

2.1.2    Reverse Engineering
Reverse engineering has the reversed objective of forward engineering. Reverse
engineering is the process of analyzing a subject system to

• identify the system‘s components and their interrelationships and

• create representations of the system in another form or at a higher level of
abstraction.

It is important to note that reverse engineering in and of itself does not involve
changing the subject system or creating a new system based on the reverse-engi-
neered subject system. It is a process of examination, not a process of change or
replication.

2.1.3    Restructuring
Restructuring is the transformation from one representation form to another at the
same relative abstraction level, while preserving the subject system’s external
behavior (functionality and semantics). Restructuring is often used as a form of
preventive maintenance to improve the physical state of the subject system with
respect to some preferred standard.

2.1.4    Reengineering
Reengineering, also known as renovation and reclamation, is the examination and
alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form. Reengineering generally includes some form of
reverse engineering (to achieve a more abstract description) followed by some
form of forward engineering or restructuring.
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2.1.5    Program Evolution and Software Maintenance
Reengineering is often seen as part of software maintenance. However, the ANSI/
IEEE standard 729-1983 defines software maintenance as the “modification of a
software product after delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment” whereas the goal of
reengineering is often to add new functionality to the system, which is not cov-
ered by the definition of software maintenance if one interprets its definition nar-
rowly. One may argue that “adapting the product to a changed environment”
includes adding new functionality, but as Turski (1981) pointed out it would be a
gross abuse of the term maintenance: The addition of a new wing to a building
would never be described as maintaining that building. That is why I consider
adding new functionality as program evolution but not as maintenance. Reengi-
neering is therefore a part of program evolution.

As opposed to reengineering, reverse engineering may in fact be viewed as an
activity within software maintenance since its purpose is to recover information
that can be used for software maintenance tasks and it does not imply any change.

2.2    Terminology in Software Architecture

There are still debates about the definition of software architecture, but most
agree that it should include at least components and connectors and their hierar-
chical decomposition. Components are the computational parts and connectors
describe the interactions between these components (Garlan and Shaw, 1993;
Perry and Wolf, 1992). General examples for components are abstract data types,
producer and consumer tasks, or a compiler front end; examples for connectors
are procedure calls, shared global variables, pipes, or Unix sockets.

2.3    Architecture Recovery

Architecture recovery is a discipline of reverse engineering that is aimed at recov-
ering the software architecture of a system. It has to be demarcated from design
recovery. The term design recovery has been introduced by Ted Biggerstaff
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(1989) and is the process of recreating design abstractions from a combination of
code, existing design documentation, personal experience, and general knowl-
edge about problem and application domains. Biggerstaff argues that design
recovery in the broad sense is so inherently unstructured and unpredictable that
formal deduction alone is not sufficient and, therefore, fuzzy reasoning should be
used as additional way of deriving information. The derived information is used
to populate a domain model that is used to understand the software.

Design recovery is distinguished by the sources and span of information it should
handle. As Biggerstaff says:

“The domain model differentiates design recovery research from such
superficially similar efforts as reverse engineering, which automatically
abstracts code to a specification level such that the specifications can be
modified and revised code can be automatically regenerated. (Biggerstaff,
1989)”

It is unclear what definition of reverse engineering Biggerstaff had in mind when
he wrote this. The definition of reverse engineering by Chikofsky and Cross (Sec-
tion 2.1.2) would cover design recovery as well, but it came after Biggerstaff’s
definition of design recovery. Furthermore, the term design recovery only sug-
gests that the design is to be recovered in the true sense of the word, whereas Big-
gerstaff’s definition explicitly requires a domain model, which narrows the term
unnecessarily. That is why I prefer the more neutral term architecture recovery.

2.4    Embedding this Work into Architecture Recovery

This section will present a general framework of architecture recovery proposed
by Kazman et al. to accommodate analytical and transformational processes in
architecture recovery. Kazman et al.’s model is going to be refined towards a more
conceptual framework that is used to show where the work described in this thesis
fits in. 
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2.4.1    The Horseshoe Model of Architecture Recovery
Kazman et al. present a framework that can accommodate analysis and transfor-
mation processes in architecture recovery (1998). This framework is called the
horseshoe model and consists of four different levels:

• source level: source code in textual representation

• code structure level: the source code in an intermediate representation that
enables syntax-aware analyses

• function level: relationships among functions, data, and modules, providing a
global system overview

• architectural level: architectural elements, i.e., connectors and components

Architecture recovery usually starts at the source level. The source code is parsed,
syntactically and semantically analyzed, and then represented in some intermedi-
ate representation at the code structure level (often by abstract syntax trees). This
intermediate representation is further processed by control and data flow analy-
ses. The result is basic information that can be used for deriving the software
architecture. However, the represented elements at this level, i.e., the declarations,
statements, and expressions of a system and their relationships do not appear in
the architectural description (except for global declarations) since this description
should give a more abstract overview of the system. Yet, a complete architectural
description provides a mapping between the architectural concepts and the imple-
menting statements and expressions. 

From the architectural perspective, source and code structure level can be merged
into a single code level. We can omit a discussion of the code level for the pur-
pose of this thesis. More about suitable intermediate representations for reverse
engineering can be found in a separate paper by us (Koschke, Girard, Würthner,
1998).

An architectural description typically suppresses statements, expressions, and
local declarations present at code level, but at least global declarations of con-
stants, variables, functions, and user-defined types turn up in such a description
since they are architecturally relevant. Constants are used to specify specific
aspects permanently while global variables represent state that can change over
time by modifying the value of the variables. Global variables can also act as con-
nectors. Global functions are primitive components and user-defined types corre-
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spond to higher concepts either of the programming domain (stacks, lists, etc.) or
application domain (deposit, person, etc.). 

We will refer to these four kinds of entities (global constants, variables, functions,
and user-defined types) as architectural quarks because they are the building
blocks of architectural elements. Conceptually, they belong to both the code level
and the architectural level. They form the seam between these two levels, so-to-
speak. This seam is exalted in the horseshoe model as the function level. 

According to Kazman et al., the function level also shows how the architectural
quarks are grouped into modules. Actually, Kazman et al. used in their paper the
term file instead, but we may assume that they had module in mind and were
thinking of older languages in which files are used as a substitute for modules. 

Above the function level is the architectural level that consists of the components
and connectors of the software architecture.

2.4.2    A Revised Conceptual Model of Architecture Recovery
The horseshoe model is meant as a framework for analytical and transformational
processes in architecture recovery and architecture-based development. In this
context, it makes sense to distinguish between source and code structure level. At
the source level, textual pattern matching based on regular expressions is the only
kind of possible analysis whereas at the code structure level syntactic, semantic as
well as control and dataflow analyses can be applied. However, there is conceptu-
ally no difference between the source and code structure level since the latter is
more or less an exact representation of the source code. In a conceptual model, we
do not distinguish these two levels.

Any kind of grouping of architectural elements, including that of architectural
quarks, is an architecture property. Module organization is one kind of grouping
and, therefore, belongs to the architecture domain rather than to the function level
as in the horseshoe model. If we exclude module organization from the function
level in the horseshoe model, only architectural quarks remain. These, however,
also belong to the code level. The function level is therefore rather the seam
between the code level and the architectural level than a level of its own. In the
revised model, the function level is omitted.
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Because of the problems of the horseshoe model just described, I propose a
revised conceptual model that consists of the following levels:

• lower code level; expressions and statements in function bodies as well as
nested functions

• global code level; architectural quarks: global constants, global variables, glo-
bal functions, and user-defined types as well as the relationships among them

• lower architectural level; groupings of architectural quarks

• higher architectural levels; subsystems and connectors

Above the lower architectural level, there can be several higher levels represent-
ing the architecture at different levels of abstraction; the connections among these
levels display the hierarchical decomposition of the architectural elements. Both
components and connectors can be hierarchical and what is viewed as a compo-
nent at one level may be a connector at the next higher level.

This thesis is about recovery of smaller groupings at the lower level of architec-
ture that consist solely of architectural quarks, i.e., elements at the global code
level. Such groupings will be called atomic architectural components, or sim-
ply atomic components in the following. They are atomic in the sense that they
do not consist of further groupings but only and directly of architectural quarks.
Atomic components are therefore the smallest components at the architectural
level (besides functions which can also - under some circumstances - be consid-
ered components). This merely structural definition will be refined in the follow-
ing section.

Atomic components may be building blocks for larger architectural components
at the next higher architectural level. For example, in a case study, we have used
dominance analysis to detect subsystems based on atomic components (Girard
and Koschke, 1997a). Furthermore, some of the atomic components may even
play the role of connectors at a higher level of abstraction, e.g., an abstract data
type Queue can be used as a pipe between two components. This way, atomic
components can be the starting point for detection of connectors and larger com-
ponents.
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2.5    Components

Large systems are decomposed into subsystems that can be managed individually.
These subsystems can be again decomposed into smaller subsystems. The small-
est decomposition is a module that may consist solely of functions, subprograms,
and type declarations whereas a subsystem is a grouping of modules or lower-
level subsystems. Subsystems and modules are static architectural components
that differ in the degree of granularity. Dynamic architectural components are
instances of computational units that are created at runtime; e.g., concurrent tasks
(with an own thread of control) or queues (without own thread of control). This
thesis is about static components only. However, recognizing static components is
often a prerequisite for finding dynamic components since the latter are often just
instances of the former, such as a queue X created on the heap at runtime that is an
instance of an abstract data type Queue implemented by a static component.

Good design results in a decomposition in which modules, as well as subsystems,
have high cohesion and low coupling. The cohesion of a module is the extent to
which its individual components are needed to perform the same task (Fenton and
Pfleeger, 1997). Coupling is the degree of interdependence between modules
(Yourdon and Constantin, 1979).

There is no standard definition of a module. Yourdon and Constantin (1979), for
example, propose the following definition:

A module is a contiguous sequence of program statements, bounded by
boundary elements, having an aggregate identifier.

This definition, stated in the late seventies when structured design was the pro-
posed design method, sounds nowadays very much like the definition of a func-
tion. Today, we have programming languages that support the concept of module.
An example is Modula-2 that does not only have the word module as keyword in
its syntax but also in its name (Wirth, 1985). A module in modern programming
languages is a syntactic unit that supports encapsulation. It consists of an inter-
face of the exported parts and an optional hidden implementation. The exported
elements are global constants, variables, subprograms, user-defined types, and
sometimes nested modules.
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In its first design, a system’s decomposition may be indeed so that modules reveal
low coupling and high cohesion (see Parnas, 1972, on the criteria of modulariza-
tion, and Parnas et al., 1985, on the modular structure of complex systems), but
during continuous maintenance the original decomposition may deteriorate. For
example, a function F that actually would have belonged to module A was put
into module B. This results in lower cohesion of module B and in higher coupling
between A and B, since F will need details of the implementation of A. Further-
more, the underlying concept of A is delocalized because it is also partly realized
by B. High coupling and low cohesion make changes more difficult. Reengineer-
ing has to restructure the system such that the underlying concept of A is imple-
mented by module A and only by A to simplify future maintenance. 

The discussion reveals that a real module does not always match its underlying
concept, i.e., there is a divergence between the syntactic unit and the logical unit.
To distinguish these two kinds of units, we will call the latter atomic component.
With module, we solely mean the syntactic unit further on and follow the typical
programming language terminology in doing so.

A module is a syntactic unit that is used to group entities. It consists of an
interface and an optional implementation. Entities in its interface are acces-
sible by other modules; the implementation is the module’s secret.

A component is a group of related elements with a unifying common goal
or concept relevant at the architectural level. An atomic component is a
non-hierarchical component that consists of related global constants, vari-
ables, subprograms, and/or user-defined types. As opposed to an atomic
component, a subsystem is a hierarchical component consisting of related
atomic components and/or lower-level subsystems. 

The goal of (re-)structuring a system is to realize an atomic component by one
module and one module implements only one atomic component for the sake of
maximal cohesion and minimal coupling. In practice, the degree of cohesion of a
module can vary. The next section discusses this in more detail.
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2.5.1    Cohesion of Modules
Yourdon and Constantin (1979) list the following degrees of cohesion:

• Functional: the module performs a single well-defined function.

• Sequential: the module performs more than one function, but they occur in an
order prescribed by the specification.

• Communicational: the module performs multiple functions, but all on the
same body of data (which is not organized as a single type or structure).

• Procedural: the module performs more than one function, and they are related
only to a general procedure affected by the software.

• Temporal: the module performs more than one function, and they are related
only by the fact that they must occur within the same time span.

• Logical: the module performs more than one function, and they are related
only logically.

• Coincidental: the module performs more than one function, and they are unre-
lated. 

These categories of cohesion are listed from most desirable (functional) to least
desirable. This classification was established in the late seventies when the func-
tional paradigm was dominating and structural design was the common design
method. The more recent trend towards the object-oriented paradigm - and hence
to languages and methods that support data abstraction by modules - at first sight
appears to contradict the traditional ideas. A module based on data abstraction
may perform several different functions; but all are related in the sense that they
characterize the abstract data type, or more generally: the atomic component.

Modules based on data abstraction form a special category, and Macro and Bux-
ton (1987) have extended the cohesion classification to include it. They say, a
module has abstract cohesion precisely when it is an abstract data type. We can
generalize this to: “A module has abstract cohesion precisely when it is an atomic
component.” Good design and restructuring should aim at abstractly cohesive
modules.
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2.5.2    Recovered Atomic Components
This section answers the questions raised by the new definition of abstract cohe-
sion: What exactly is an abstract data type and what are the other kinds of atomic
components recovered by the approaches described in this thesis?

2.5.2.1   Abstract Data Types
Liskov and Zilles define an abstract data type (ADT) as an abstraction of a type
which encapsulates all the type’s valid operations and hides the details of the
implementation of those operations by providing access to instances of such a
type exclusively through a well defined set of operations (1974). 

Abstract data types may be constrained by global constants. For example, the
maximal length of a list may be determined by a constant specific to this type.
Such constants are an integral part of the ADT. Furthermore, the implementation
of two or more types is sometimes so much interleaved that the types cannot
really be separated into distinct ADTs, e.g., a hash table and a hash table entry
type. That is to say, an ADT does not necessarily consist of one type only. To sum
it up, ADTs consist of a set of types (usually, only one type) and their accessor
functions; global constants may also belong to the ADT if they specify aspects of
the ADT.

In a modern programming language supporting encapsulation, the data structure
of an ADT can be hidden such that only the subprograms that belong to the ADT
may access it. All other subprograms may only declare objects of the ADT and
call the accessor routines.

An example ADT in a modern programming language. Figure 2-2 shows the
interface of an ADT stack of integers in the programming language Ada (ANSI/
ISO/IEC-8652:1995). The internal parts of the ADT are explicitly declared pri-
vate (the full type declaration is given in the private section of the package for the
purpose of efficient separate compilation). 

Only subprograms declared in this package may access these internal parts (actu-
ally, in Ada 95, subprograms declared in child units of this package have also vis-
ibility to the private part, but this is not important to the discussion here). The
interested reader may learn more about support for data abstraction by modern
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programming languages in Robert Sebesta’s book on concepts of programming
languages (1998). 

Abstract data types are related to classes in object-oriented programming lan-
guages but whether there is a direct correspondence between the two of them
depends on the terminology. We will follow the more proper notion of a class as a
set of types, whereas many object-oriented programming languages use class syn-
onymously to type, e.g., SmallTalk and C++. In the proper sense, an abstract data
type may be an element of a class but no class as such. I want to point out here
that the relationships among the abstract data types, i.e., whether they are mem-
bers of the same class and how they are derived from each other, are beyond the
scope of this thesis.

2.5.2.2   Abstract Data Objects
An abstract data object (ADO) is a group of global variables and constants
together with the routines which access them. These clusters are also called
abstract objects (Ghezzi et al. 1991) or object instances (Yeh et al. 1995).

ADOs are used to capture state. The state can be manipulated and queried by the
accessor routines of the ADO. No other routine may access the variables since the
ADO is considered abstract.

Figure 2-2. An example ADT stack of integer in Ada.

package Stacks is 
type Stack is private; -- The ADT stack of Integer
-- accessor routines
function Top (S : Stack) return Integer;
procedure Push (S : in out Stack; Item : Integer);
procedure Pop (S : in out Stack);

private
type Stack_Contents is array (1..1000) of Integer;
type Stack is record  -- the hidden data structure

Contents : Stack_Contents;
Stack_Pointer : Natural := 0;

end record;
end Stacks;
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An example of an ADO. Figure 2-3 contains an Ada package that implements an
abstract data object stack of integer. The package interface lists the accessor rou-
tines that can be called by a client. The global variables are hidden from clients in
the package body.

This example illustrates the difference of an ADO and an ADT: An ADT is built
around a type. This type can be used to create as many instances of the ADT as
needed (either by declaring variables of this type or by using dynamic allocation)
whereas there is always one instance of an ADO since a client has no instantiation
handle for ADOs and there is only one package Stack. (In Ada, one could make
the package Stack generic and then instantiate it many times to get several ADOs
Stack; however, we do not have generics in older programming languages.)

An ADO could be generalized to an ADT by simple transformation rules:

• a new record type is introduced that contains a component for each global vari-
able of the ADO

• the new record type is added to the parameter list of each ADO accessor rou-
tine

• in the body of an ADO accessor routine, accesses to the global variables are
replaced by accesses to the components of the new record type; variables of the
new record type are passed as actual parameter to the routine

• at the client site, variables of the new record type must be declared that are then
passed as actual parameters in calls to the accessor routines

Figure 2-3. An example ADO stack of integer in Ada.

package Stack is 
-- accessor subprograms
function  Top return Integer;
procedure Push (Item : Integer);
procedure Pop;

end Stack;
package body Stack is
-- global variables
Stack_Pointer : Natural := 0;
Contents      : array (1..1000) of Integer;
...

end Stack;
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Because of the simple shift from an ADO to an ADT, an ADO is often considered
an ADT. Nevertheless, we will distinguish these two kinds of atomic components
since there is a conceptual difference and also because the recovery strategies for
these two are different. However, the transformation rules mentioned make clear
that ADOs are at the same cohesion level as ADTs.

2.5.2.3   Hybrids: State-based ADTs or ADOs with Subordinated Types
In real programs, we often find mixtures of ADTs and ADOs, i.e., atomic compo-
nents that contain both types as well as variables. There are two different catego-
ries of such mixtures. A state-based ADT is an ADT having state information by
way of global variables. An example is an ADT that counts in a global variable
how many instances are created at runtime. An ADO with subordinated types is
an ADO that contains types that are an integral part of it. An example is an ADO
hash table that contains two type declarations, one for hash items and one for lists
of hash items (to resolve external collisions). Both types might be so special to the
hash table that they cannot be reused in other contexts and are therefore no ADTs
of their own.

Whether we deal with a state-based ADT or an ADO with subordinated types is
often hard to judge. If the distinction is not important, we will refer to both kinds
as hybrid atomic components, or short hybrid components. A hybrid atomic
component has abstract cohesion because it can be considered an ADT or ADO.

2.5.2.4   Strongly Connected Components
Strongly connected components are sets of subprograms that call each other
recursively. These subprograms form a component because none of them can be
omitted without losing a piece of information for the understanding of the other
subprograms in the component. They arise from the call graph; that is why pro-
gramming languages do not need means to specify strongly connected compo-
nents explicitly.

Strongly connected components do not have abstract cohesion in the sense of
Macro and Buxton’s definition since they consist solely of subprograms and are
therefore no abstract data types. What kind of cohesion they actually have
depends on the logical function they perform, but we can use structural informa-
tion at least as a clue: It may be that there is only one entry E of the cycle from



                                               41

Components

outside and thus all other parts of the strongly connected components are subordi-
nated to E. This is a strong hint that the strongly connected component performs a
single function and has therefore functional cohesion. When there is more than
one entry, the strongly connected component has at least logical cohesion since
the functions within the component depend on each other: one cannot change or
remove a single subprogram without affecting the others in the strongly con-
nected component.

2.5.2.5   Other Kinds of Atomic Components
Another relevant type of atomic component are sets of logically related subpro-
grams (short related subprograms), as, for example, functions of a mathemati-
cal library. A construct that could be used as a point of crystallization, as user-
defined types for ADTs and variables for ADOs, does not necessarily exist for
logically related subprograms and they are therefore harder to detect, especially
when they are not even directly connected to each other, i.e., when they do not
call each other. 

2.5.2.6   Primary Target Atomic Components 
Related subprograms can only be found by some of the techniques (e.g., Similar-
ity Clustering, Type-based Cohesion), though this is not their primary goal. The
main targets of the techniques described in this thesis are abstract data types and
abstract data objects. They represent a clear concept and are often used in practice
(see Section 6.1.1). Less frequently used but still representing a clear concept are
hybrid components. Strongly connected components are also useful for program
understanding, but whether they also correspond to a specific concept has to be
decided for each single component. For example, it could be that parts of the
strongly connected component belong to different, yet related atomic compo-
nents, or it could be that the strongly connected component is a complete part of
an atomic component.

As to strongly connected components, some techniques may also be able to detect
clusters that belong to different atomic components, for example, communicating
parts of related atomic components, – or even form an atomic component which
we have no name for yet – and nevertheless contribute to program understanding.
This should be borne in mind when the techniques are judged.
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2.5.2.7   Abstractness of Atomic Components
The definitions of abstract data types, abstract data objects, and hybrid compo-
nents provided above describe the ideal situation in which programmers would
always be aware and respect the encapsulation of these atomic components. In
practice, in languages like C, there is only limited support to hide the implementa-
tion details of atomic components and even in modern programming languages in
which means to hide implementation details exist, software developers do not
always use these means. As a result, the encapsulation of atomic components is
often violated by direct accesses which bypass the accessor functions of the
atomic components. 

In general, we use the adjective pure in front of an atomic component to denote
that all accesses to its internal parts proceed through its interface and the adjective
permissive in front of atomic components which suffer from encapsulation viola-
tion. We use the convention that, when no adjective is in front of an atomic com-
ponent, it is a permissive atomic component. This convention was selected
because permissive components are much more frequent than pure components
among the atomic components identified by a group of software engineers that
analyzed several systems manually for our evaluation. Actually, their task
involved deciding which function accessing internal elements of a potential
atomic component were part of the abstraction and which were not. 

The presence of these encapsulation violations should be taken into consideration
by reverse engineering techniques which attempt to identify atomic components
in an automatic or semi-automatic fashion. In other words, the techniques and
methods described in this thesis are aimed at identifying permissive components.
These permissive components can then be encapsulated by further automatic pro-
gram transformations if necessary. Such program transformations are, for exam-
ple, described by Fanta and Rajlich (1999) but are not further discussed in this
thesis.
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Chapter 3 Basic Structural Information

As stated in the introduction, the techniques described in this thesis are mainly
based on structural information that is directly derivable from source code. This
chapter presents the exploited structural information in a programming-language
independent manner. This chapter also introduces the means to describe the tech-
niques in a detailed way. The next chapter shows how the abstract model intro-
duced in this chapter can be instantiated for the programming language C.

3.1     Base Entities and Relationships

The leveraged basic information can be described by an entity relationship model
whose entities are the smallest significant elements at the architectural level,
namely, the architectural quarks: user-defined types, global subprograms, vari-
ables and constants. This section describes the relationships among architectural
quarks used to detect atomic components. These relationships can be found in
most procedural programming languages. How these relationships are derived
from C code is described in Chapter 4 and how they are actually used by heuris-
tics for atomic component detection is described in Chapters 5 and 7.

The entity-relationship model used to describe the information leveraged for
component recovery makes use of inheritance for both entities and relationships.
The model will be extended successively in the following sections both in terms
of additional entities and relationships as well as refinement of existing entities
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and relationship by means of inheritance. A summary of the final model can be
found in Appendix A.

3.1.1    Architectural Quarks and their Relationships
The architectural quarks are summarized by Figure 3-1. Variables and constants
are subsumed by an abstract class object. (An abstract class is a class of which
no instances exist and is used to express common properties of its derived classes.
Abstract classes will be printed in italic in the following inheritance hierarchies.)
An object should not be confused with an abstract data object. An abstract data
object is an atomic component that contains objects (variables and constants).
Neither should it be confused with an “object” in the sense of object-oriented pro-
gramming.

Figure 3-2 shows the relationships among architectural quarks leveraged by the
techniques for atomic components detection as an entity-relationship model. The
relationships and the respective roles of the involved entities are listed in Table 3-
1. This entity-relationship model is going to be refined in Section 3.1.2. 

Two of the relationships of Figure 3-2 can be refined: The signature-type of a sub-
program is a type that occurs in its signature either as return or parameter type
and an object can be referenced by using its value or taking its address; a variable
can additionally be set. Altogether, we have the relationships summarized by Fig-
ure 3-3. 

We will define the relationships in Figure 3-3 in the context of the language our
analyses are aiming at in Chapter 4; a brief explanation can be found in Table 3-1.
Most relationships in Table 3-1 should be fairly self-explanatory, except for the
part type relationship, which will be explained here.

Figure 3-1. Architectural quarks type hierarchy.
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A type T1 can be used in the declaration of another type T2. In this case, we con-
sider T1 a part-type of T2 (Ogando et al. 1994). T2 is the composite type of T1.
For example, in the following C type declarations, Item is a part type of Node.

Figure 3-2. Entity relationship model for architectural quarks.

Figure 3-3. Relationship type hierarchy.
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typedef ... Item;
struct Node {Item i; struct Node *next;};

The part-type relationship is transitive, i.e. if T is a part-type of S and S is a part-
type of U, then T is also a part-type of U.

3.1.2    Record Components
The entity-relationship model in Figure 3-2 contains only the principal constitu-
ents that are to be grouped to atomic components by the techniques and the prin-
cipal relationships between these constituents that are considered for this. Some
of the techniques presented in the course of this thesis go beyond these entities
and relationships by also considering references to record components of formal
parameters, and local and global objects. That is why we enhance the entity-rela-
tionship model in Figure 3-2 by explicitly modeling record components.

Table 3-1. Relationships among architectural quarks.

Relationship Source S Target T Meaning
call subprogram subprogram S calls T

set subprogram global variable S sets the value of T

use subprogram object S uses the value of T

take-address-of subprogram object S takes the address of T

parameter-of subprogram user-defined 
type

S has a formal parameter 
of T

return subprogram user-defined 
type

S returns a value of T

local-obj-of-type subprogram user-defined 
type

S has a local object of 
type T

actual-parameter-
of

object subprogram S is an actual parameter 
in a call to T

of-type object user-defined 
type

S is of type T

same-expression object object S and T occur in the 
same expression

part-type type type S is a part type of T
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Record Types. The syntax for record type declarations may vary for diverse pro-
gramming languages but their essence is to specify the record components of a
user-defined record type and their respective types. For example, the following C
record declarations:

struct Complex 
{float re, im;}; 

struct List
{ struct List *next; 

 struct Complex c1;
 struct Complex c2;
}; 

define two record types Complex and List. Complex has the record components re
and im of type float. List is a list of pairs of Complex and has, therefore, a List
pointer to the next element in the list, and two record components c1 and c2 for
the two complex numbers. 

Record Objects. Variables and constants of record types are called record vari-
ables and record constants, respectively; both are referred to as record objects. As
instances of a record type, they comprise all record components of the type they
are declared of plus transitively of all types of the record components. This way
accesses to record components across multiple levels of record objects are possi-
ble. For example, given the following declaration of a record variable in C (corre-
sponding to the declarations of List and Complex above):

struct List mylist;

the following record component access is across two levels:

mylist.c1.im

Modeling Record Components. Each record object has its own separate set of
record components (possibly of multiple levels) as specified by the record com-
ponents of the record type and its part types. That is, we actually have two kinds
of record components: 

1. Record component specifier: A record component within a type declaration,
which defines a part of the structure of all instances of this type. 
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2. Record component instance: An actual record component of a record object
that is associated with a memory location. 

These two kinds of record components are explicitly modeled by extending the
entity type hierarchy in Figure 3-1 as shown in Figure 3-4. Record components
are separated from architectural quarks in the extended entity type hierarchy
because only the latter may be grouped to atomic components  record compo-
nents, then, always belong to their enclosing type or object, respectively.

3.1.2.1   Enclosing Relationship for Record Components
In order to capture where a record component actually belongs to, a new enclos-
ing relationship is introduced. If R is a record component specifier and T is the
type in which R is declared, T is the enclosing of R. Furthermore, if an object V is
declared of this type T, a new record component instance R’ is added for R whose
enclosing is V. If R itself is of a record type T’, a record component instance R” is
added for each record component of T’ and R’ is the enclosing of each R”. Table
3-2 summarizes the enclosing relationship. Note that it is defined for two different
domains. 

Furnishing each object with its own set of record components allows to distin-
guish accesses to the same logical record component of different objects and also
to make a distinction between an access to a logical record component of a global

Figure 3-4. Base entity type hierarchy.

Table 3-2. Relationships among base entities.
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component specifier
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object on one hand and to the same logical record component of a local object or
parameter on the other hand. 

Example. The variable gl1 in Figure 3-5 has the tree of record components as
shown on the right hand side of the figure. Note that it inherits the record compo-
nents re and im twice because it has two record components of type Complex,
namely, c1 and c2. Transitively, mylist has 7 (partly composite) record compo-
nents, i.e., there are 7 ways to access the internal components of mylist. The type
struct list, on the other hand, has only three record components reachable by
reverse enclosing edges. 

With this model, we can distinguish three different record component accesses in
the following code as shown in Figure 3-6:

struct List gl1, gl2;
foo (struct List pl) { gl1.c1 = gl2.c1 = pl.c1; }

Figure 3-5. Enclosings of a composite variable.

Figure 3-6. Record component references.
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Note that we do not explicitly model references to local objects and parameters
(see Section 3.1.2.3). Note also that Figure 3-6 does not capture the induced refer-
ences to the global variables gl1 and gl2 since we are primarily interested in refer-
ences to record components in this section. The next two sections describe how
references to objects and record components are distinguished.

3.1.2.2   Refining the Reference Relationship for Record Components
There is a substantial difference in an access to a record object as a whole and an
access to the record components of such an object: According to the information
hiding principle, only accessor routines of the atomic component are allowed to
access record components since this requires knowledge of the underlying data
structure. In the following example:

struct List mylist1, mylist2;
mylist2 = rest (mylist1); /* statement 1 */
mylist2 = mylist1.next; /* statement 2 */

statement 1 may occur within accessor routines of List as well as in all other func-
tions whereas statement 2 may only be used within accessor routines according to
the information hiding principles.

In order to distinguish references to record components from references to objects
as a whole, we refine the set, use, and take-address-of relationships that were
introduced as parts of the entity relationship model in Section 3.1.1. The refined
model is shown in Figure 3-7. References to an object as a whole are either obj-
address-of, obj-set, or obj-use; references to record components are comp-address-of,
comp-set, or comp-use. A relationship comp-set (f, c) has to be understood as “func-
tion f sets record component c”. This always implies that f also partially sets the
enclosing object of c, which is explicitly modeled by a corresponding obj-set rela-
tionship.

In compiler terminology, comp-set compares to a partial set. I use another term
because, first, the object of a partial set relationship is the composite object and
not the record component in compiler terminology and, second, the reference
relationship covers only references to record components whereas dereferences of
pointers and array subscripts are also considered partial references in compiler
terminology.
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Table 3-3 lists the domains and meanings of the new reference relationships.
Since it is irrelevant in the context of this thesis to further distinguish references
to variables from references to constants, no additional subclasses of object refer-
ences are introduced in order to simplify the presentation in the following. For
reasons of conformity, obj-set is used when a global variable is set instead of a
more appropriate var-set.  

3.1.2.3   Modeling References
There are basically the following objects that can be referenced by functions: glo-
bal and local variables, formal parameters, global and local constants (must not
be set), and dynamic data structures. Dynamic data structures are anonymous and
can therefore not be grouped. However, dynamic data structures are accessible via
pointers and these pointers are visible in the source and may be brought in for
grouping.

Figure 3-7. Reference relationships hierarchy.

Table 3-3. Reference relationships.

Relationship Source S Target T Meaning
obj-set subprogram global variable S sets the value of T.

obj-use subprogram object S uses the value of T.

obj-address-of subprogram object S takes the address of T.

comp-set subprogram record component S sets the value of T.

comp-use subprogram record component S uses the value of T.

comp-address-of subprogram record component S takes the address of T.
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Global variables and constants are explicitly captured by the entity-relationship
model proposed in this chapter. References to these can be directly represented by
the reference relationships introduced in the previous section, i.e., if a record
component of a variable is set, a comp-set of the record component instance and an
obj-set of the variable is added. If the variable is set as a whole, only an obj-set of
the variable is appended.

Local variables and formal parameters are not captured by the entity-relationship
model. They are only used to induce local-obj-of-type and signature-type relation-
ships. Therefore, references to record components of local variables and formal
parameters are re-directed to the respective record component specifier of their
type. This may first appear irritating since a record component specifier cannot be
referenced  only its instances. However, references to specifiers should be
viewed as information how the type is used. This view saves us from representing
formal parameters and local variables in the entity-relationship model. Further-
more, if formal parameters and local variables were represented and a function
has several parameters of the same type, the information about the usage of the
type by the function would be spread over the distinct parameters, though it is not
of interest how each single parameter is referenced but only how the type is used
altogether.

References to local objects and formal parameters as a whole are not represented
as references to their type since the local-obj-of-type and signature-type relationships
are already in place.

Example. Figure 3-8 illustrates the newly introduced concepts. Note that there is
no obj-use for the parameter s because parameters are not explicitly represented. 

Figure 3-8. Example representation of record component accesses.

struct S1 {int a, b; };
struct S2 {struct S1 c,d;} v;
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3.1.3    Entity-Relationship Model for Base Entities
Due to modeling record components, a new entity type and its relationships have
been introduced in the previous section. The updated entity-relationship model is
given in Figure 3-9. 

It is important to note that record components and the relationships associated
with them are only used as additional information for grouping, but that record
components themselves are not to be grouped because they always belong to their
enclosing object or type, respectively. Nevertheless, in a second analysis once the
atomic components have been identified, the constituents of atomic components
could themselves be clustered in order to identify cohesive subparts that represent
separate interfaces or services of the atomic component. However, this is beyond
the scope of this thesis and will not be pursued further.

Figure 3-9. Final base entity-relationship model for component detection.
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3.2    Components

As stated in Section 2.5, there are basically two kinds of static components that
are to be detected by architecture recovery: Subsystems and atomic components.
The two of them differ in their level of granularity: Subsystems may comprise
architectural quarks, atomic components, and lower-level subsystems whereas
atomic components consist of related global constants, variables, subprograms,
and/or user-defined types only. This section discusses how the base entity-rela-
tionship model introduced in the last section can be extended to incorporate com-
ponents.

3.2.1    Atomic Components
An atomic component can be seen as a named set of architectural quarks. In our
relational model introduced in the previous section, we can capture this as fol-
lows:

• atomic components are represented by a new entity type

• the fact that an entity E belongs to an atomic component AC is expressed by a
part-of relationship: E is a part of AC.

Of course, the part-of relationship is equivalent to set membership when an
atomic component is regarded as set of architectural quarks. We will use both
views in the following depending upon which one is more comprehensible in the
given context.

Notation. Graphically, we will picture the two equivalent views as shown in Fig-
ure 3-10. The one on the left hand side is the relational view, the other the set
view.

Figure 3-10. Two equivalent graphical notations for atomic components.
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In the following, identifiers AC and ACi will be used to denote atomic compo-

nents.

3.2.2    Subsystems
Subsystems are a means to represent hierarchical sets of related elements (archi-
tectural quarks, atomic components, and other subsystems) whereas atomic com-
ponents can be thought of as flat sets of related architectural quarks. Subsystems
must contain at least one atomic component  a component with architectural
quarks only is considered an atomic component.

We make a clear distinction between a subsystem and its structure. A subsystem
as such is an entity in the relational model; the subsystem structure is a descrip-
tion of the hierarchical composition of the subsystem. The part-of relationship is
the spanning relationship for this hierarchy. While an atomic component can only
have direct parts, a subsystem may also have indirect parts that are transitively
derivable by the part-of relationship. Using the part-of relationship, one can think
of a subsystem structure as a graph whose nodes are the parts of a subsystem and
whose edges denote the part-of relationship. The root of the graph is a subsystem
entity. The graph has the following properties:

• A subsystem structure is not necessarily a tree: The part-of relationship
expresses that an element completely belongs to another element of which it is
a part. For a component C that is part of another component C’, this means that
all parts of C are also part of C’. However, an element can be part of several
components, i.e., we allow these hierarchies to overlap since it may not always
be definitely clear where an element belongs to. 

• A subsystem structure is acyclic: Since a subsystem structure should be a real
hierarchy, there must not be any cycle in the spanning part-of relationship. 

• A subsystem structure does not contain redundant part-of edges in order to be
a concise description: An edge E from A to B is redundant if it is transitively
derivable from other edges, in other words, if there is a path from A to B that
does not contain E.

The incremental techniques described in Chapter 8 generate subsystems when an
entity could be added to more than one existing atomic component (see Section
8.3.1.7). Then, the entity and the atomic components are subsumed under a com-
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mon subsystem. Furthermore, the user is allowed to add subsystems. Other than
that, this thesis discusses no techniques aimed at detecting subsystems since it is
concentrating on the lower level of architecture (as discussed in Section 1.5,
detection of subsystems is subject of another thesis within the Bauhaus project).
However, taking subsystems into account in the detection of atomic components
allows for a future integration with techniques targeted at detecting subsystems.

Notation. The graphical notation introduced for atomic components can be natu-
rally extended to subsystems as exemplified by Figure 3-11.  The node C of the

example in Figure 3-11 is a subsystem. Its subsystem structure is the graph
spanned by the part-of relationship and rooted by C including the nodes V1, V2,

V3, V4, V5, V6, AC1, AC2, and C. 

In the following, identifiers C and Ci will be used to denote subsystems.

3.2.3    Entity-Relationship Model for Components
Components are not covered by the base entity-relationship model of Figure 3-9
on page 53. The base entity-relationship model, representing the relationships
among base entities, is therefore extended in this section. For the purpose of this
thesis, it is sufficient to model components and their part-of relationship.

Base entities (architectural quarks, more precisely) are the constituents of compo-
nents. They do not contain other architectural quarks, that is why they are sepa-
rated from components in the entity type hierarchy of Figure 3-12. Atomic
components and subsystems are both architectural components.  

Figure 3-11. Two equivalent graphical notations for subsystems.
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The part-of relationship among components and architectural quarks is specified
in Figure 3-13. Note that the part-of relationship is an n:m relationship, i.e, the

same entity can be part of different components. This is due to the concession to
overlapping components.

3.3    Module Decomposition

Components are used to describe cohesive parts, hence, provide a logical view on
the system. These components may differ from the actual or physical decomposi-
tion of the system into files. In order to describe the physical decomposition,
means similar to those used for components can be used. In order to describe
modules a new module entity is introduced that is derived from entity. Analogous to
components, the part-of relationship will be used to identify the entities of a mod-
ule. More precisely, part-of (E, M) holds for an entity, E, and a module, M, if and
only if E is declared in M.

Figure 3-12. Entity type hierarchy.

Figure 3-13. Part-of relationship among architectural quarks and components.
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3.4     Resource Usage Graph

An instance of the entity relationship model introduced in the previous section to
capture the basic structural information leveraged for atomic component detection
can be represented by a graph. This graph is referred to as resource usage graph
and is going to be used to describe the techniques for atomic component detection
in more detail. 

In the reverse engineering literature, the resource usage graph is also often
referred to as resource flow graph (Müller and Uhl, 1990). However, it may be
argued that the term resource flow graph is inappropriate since there is no real
flow of resources in the information represented by this graph. The graph contains
only very crude control and data flow information as (unordered) calls among
subprograms and (directly visible) references of objects by subprograms. Addi-
tionally, it describes other aspects like the parameter types a subprogram has or
the decomposition of types into other types or record components. Hence, we pre-
fer the term resource usage graph in the following.

More formally, a resource usage graph is an attributed typed multi-graph G = (N,
E) whose set of nodes, N, consists of architecture-relevant elements and whose
edges, E, are relationships among these elements. Edges can be either directed or
undirected. The resource usage graph is typed in the sense that we distinguish dif-
ferent types of nodes (entities) and different kinds of edges (relationships). Nodes
and edges are refined by means of subtyping and may be annotated with addi-
tional information (e.g., a signature edge of a function, F, to a composite type, T,
is annotated if F accesses internal components of a parameter of type T).

3.4.1    Nodes
The nodes of the resource usage graph are all entities introduced in the course of
this thesis, the edges are the relationships. A summary of all entities and relation-
ships can be found in Appendix A. 

3.4.2    Edges
Non-symmetric relationships are represented as directed edges. For directed
edges among two nodes, the two involved nodes can be referred to as follows:
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Let e be a directed edge, then source(e) is the node at which e starts and
target(e) is the node at which e ends.

Symmetric relationships, such as same-expression, will be represented by undi-
rected edges for which source and target are undefined. For undirected edges, we
will use the term nodes to refer to the involved nodes:

Let e be an undirected edge between the nodes n1 and n2, then 

nodes(e) = {n1, n2}. 

The definition of nodes can be extended to directed edges as follows (let e be a
directed edge): nodes (e) = {target(e), source(e)}. Note that nodes(e) is {n} when
e is connecting the node n with itself.

Example. What kind of entities and relationships we actually have depends on
the programming language that is to be modeled. Though the exact way of deriv-
ing the resource usage graph from C code will only be described in Chapter 4, a
simple anticipating example will illustrate the concept. The resource usage graph
for the C program in Figure 3-14(a) is shown in Figure 3-14(b).

Figure 3-14. Example resource usage graph.
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3.4.3    Attributes
Nodes and edges of the resource usage graph may be annotated: x.a denotes an
attribute a of node or edge x. In the course of this thesis, only boolean attributes
are needed. If a boolean attribute is used in an expression as in 

e = signature (S, T) ∧ e.non-abstract 

it is to be read as “it is the case that e is non-abstract”.

3.4.4    Notational Conventions
We will use an italic serifeless font for nodes and edges of the resource usage graph
to make explicit that we mean a concept of the resource usage graph in a given
context as opposed to a programming language concept:

Type is a concept of the resource usage graph, whereas “type” is a concept
of programming languages. 

This increases the readability as in “There is only one call among two subprograms
though there may actually be many calls between these subprograms” instead of
“There is only one call edge among the two subprogram nodes that are used to
model the two given subprograms in the C code though there may actually be
many calls between the subprograms in the C code.”

3.5    Predicates and Functions for Nodes and Edges

The resource usage graph will be used to describe the techniques to detect atomic
components. The descriptions of the techniques contain primitive predicates and
functions for nodes and edges that will be introduced in this section.

3.5.1    General Predicates
The information represented by a resource usage graph can be written out using a
predicate notation; each relationship is represented by a clause, referred to as
edge type predicate in the following. The arguments of a clause are entities. For
example, the fact that subprogram, get, uses variable, var, can textually be repre-
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sented as obj-use (get, var). The first argument of a clause is the subject, the sec-
ond the object of the relationship, or in terms of the resource usage graph: the first
is the source of the edge that represents the relationship and the second is the tar-
get of this edge. We will use predicate notation within text; in figures, however,
we will prefer edges.

Unary clauses will be used for node and edge type predicates. For example, to
express that x is a subprogram, we can write subprogram (x) as a node type predi-
cate. This notation can also be used to specify the type of an edge or relationship,
respectively. For example, set (e) says that the relationship e is a set relationship.
Given the relationship type hierarchy we introduced before, the predicate refer-
ence(e) is true whenever set (e) holds. Before we can define this more formally,
the notation to express the is-a relationship among types of entities and types of
relationships is introduced.

Let T1 and T2 be types of either entities or relationships. Then T1 is-a T2
expresses that T1 is a T2, i.e., whatever is true for T2 is also true for T1 (but
not necessarily vice versa). The is-a relation is transitive, i.e., if T1 is-a T2
and T2 is-a T3, then T1 is-a T3.

Using the is-a relationship, we can define node and edge type predicates:

T(x) holds when x is of type T or of a type T’ where T’ is-a T.

In some contexts, we want to abstract from a specific subclass of a base entity or
relationship, yet, without treating all kinds of base entities or relationships alike.
For example, we may treat two edges of kinds parameter-of and return equally
because they are both signature-type edges and the distinction does not matter in
the given context. But we do not want to consider parameter-of equivalent to of-type
because the semantic gap is too wide. Based on the is-a relationship, we consider
two relationships, A and B, equivalent – denoted by A ~ B – if there is a relation
type, T, where T(A) and T(B) and T is-a base relation where T ≠ base relation. Like-
wise, we consider two entities, A and B, equivalent if there is an entity type, T,
where T(A) and T(B) and T is-a base entity where T ≠ base entity.
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3.5.2    General Neighbor Functions
The successors and predecessors of a node in a resource usage graph R=(N,E) can
be defined as follows:

In the case of successors and predecessors, the direction of the edges is relevant;
that is why they are only defined for directed edges. If undirected edges are
involved, we can use the concept of neighbors. The set of neighbors of a node N is
the union of its successors and predecessors plus all nodes that are directly con-
nected to N by undirected edges. This can be expressed as follows:

Note that for the above definition of neighbors, n is its own neighbor exactly
when: 

The definitions for successors, predecessors, and neighbors do not take into
account by what kind of edges the nodes are connected, which is generally rele-
vant to the techniques to detect atomic components. Furthermore, for some of the
techniques, only edges for which a certain boolean edge attribute holds are rele-
vant. Therefore, we will extend the definitions of the neighbor functions above.
Let ST be a set of type predicates for edges and a be a boolean edge attribute:

successors n( ) x e E∈( ) source e( ) n= target e( ) x=∧( )∃{ }=

predecessors n( ) x e E∈( ) source e( ) x= target e( ) n=∧( )∃{ }=

neighbors n( ) n' nodes e( ) n n',{ }={ }
e E∈
∪=

n neighbors n( )∈ e E∈( )nodes e( ) n' n,{ }= n n'=∧∃⇔
e E∈( )nodes e( ) n{ }=∃⇔
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In order to leave out the restricting boolean edge attribute in cases in which it is
not needed, the following abbreviations are defined (let true be an attribute that is
always true):

These neighbor functions can be naturally extended to sets of nodes. Let N be a
set of nodes:

Example. For the example resource usage graph in Figure 3-14 on page 59, the
neighbors would be as follows:

successors (put) = {var, T}
predecessors (put) = {main}
neighbors (put) = {var, T, main}
successors (put, {obj-set}) = {var}

successors n ST a, ,( )
x e E∈( ) source e( ) n= target e( ) x T ST∈( )T e( ) e.a∧∃∧=∧( )∃{ }=

predecessors n ST a, ,( )
x e E∈( ) source e( ) x= target e( ) n T ST∈( )T e( ) e.a∧∃∧=∧( )∃{ }=

neighbors n ST a, ,( ) n' nodes e( ) n n',{ }={ }
e E T ST∈( )T e( ) e.a∧∃∧∈

∪=

successors n ST,( ) successors n ST true, ,( )=

predecessors n ST,( ) predecessors n ST true, ,( )=

neighbors n ST,( ) neighbors n ST true, ,( )=

succcessors N ST,( ) successors n ST,( )
n N∈
∪=

predecessors N ST,( ) predecessors n ST,( )
n N∈
∪=

neighbors N ST,( ) neighbors n ST,( )
n N∈
∪=
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predecessors (main, {call}) = ∅
neighbors (put, {obj-set, call}) = {var, main}
successors ({put, get}, {reference}) = {var}

It is also useful to define the transitive closure for the neighbor functions. First,
we introduce the n-th application of a neighbor function NF (successors, prede-
cessors, neighbors):

NF1 (n, ST) := NF (n, ST)

NFn (n, ST) := NF (NFn-1 (n, ST), ST) where n > 1

The transitive closure of a neighbor function NF is then:

transitive_closure (NF (n, ST)) := NF∞ (n, ST)

The definition of the n-th application and transitive closure of a neighbor function
whose first argument is a set of nodes is analogous.

3.5.3    Neighbor Functions for Base Entities

Specific variants of the neighbor functions will frequently be used in the descrip-
tion of the techniques for atomic component detection and are therefore defined
here in Table 3-4 in terms of the neighbor functions defined above or as a rela-

tional inverse (denoted by f -1) to another frequently used neighbor function. If

f(x) is defined as f(x)=predecessors(x, S, a), then the relational inverse f -1 is
defined as:

f -1(x)=successors(x, S, a).

If f(x) is defined as f(x)=successors(x, S, a), then the relational inverse f -1 is
defined as:

f -1(x)=predecessors(x, S, a).  
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3.5.4    Elements of Components
In the course of this thesis, we often need to refer to the elements of a component,
i.e., all its parts. Since atomic components may only consist of architectural
quarks, the definition of their elements is straightforward. Because subsystems
may contain further lower-level components, elements of a subsystem can be
defined with respect to the level of granularity. This section defines the elements
of the diverse kinds of components.

3.5.4.1   Direct Elements of a Component
The direct elements of a component are all entities that are directly part of this
component, in other words, there is a part-of edge from the entity to the compo-
nent:

direct-elements (C) = {e | part-of (e, C)}

Table 3-4. Frequently used neighbor functions for (sets of) nodes.

name domain range definition
caller(s) subpro-

grams
subpro-
grams

predecessors (s, {call})

callee subpro-
grams

subpro-
grams

caller-1

referencing-
subprograms(v)

objects subpro-
grams

predecessors (v, 
{reference})

referenced-objects subpro-
grams

objects referencing-subprograms-1

signature-types(s) subpro-
grams

types successors (s, 
{signature-type})

signature-subprograms types subpro-
grams

signature-types-1

referred-entities(s) subpro-
grams

objects 
types

successors (s, {reference, 
signature-type})

referred-by(s) objects 
types

subpro-
grams

referred-entities-1
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In many contexts, we are interested in particular subsets of the direct elements of
a component, namely, in its subprograms, objects, and types:

subprograms (C) = {S | subprogram (S) ∧ S ∈ direct-elements (C)}

objects (C) = {O | object (O) ∧ O ∈ direct-elements (C)}

types (C) = {T | type (T) and ∧ T ∈ direct-elements (C)}

Analogously, the enclosing components of an entity, E, are the components of
which E is a part (there can be more than one):

enclosing-components (E) = {c | part-of (E, c)}

If C is an atomic component, direct-elements (C) denotes all its base entities.
However, if C is a subsystem, direct-elements (C) yields only the direct descen-
dants of C and not all elements in a subsystem structure with multiple levels. The
definitions in the following section will refine the notion of elements for sub-
systems.

3.5.4.2   Indirect Elements of a Component
Because subsystem structures can have several levels, we can distinguish different
kinds of elements depending on how far away they are from the root of the sub-
system structure in terms of part-of edges (let C be a component):

Note that  if C is an atomic component.

All elements of a component are the base entities and lower-level components in
the transitive closure of the definition above:

elements
1

C( ) direct-elements C( )=

elements
n

C( ) elements
n 1–

e( )
part-of e C,( )

∪=

n 1≥( )elements
n

C( ) elements C( )=∀

elements C( ) elements
n

C( )
n 1≥
∪=



                                               67

Views of the Resource Usage Graph

If C is an atomic component, .

Example. The elements1 of subsystem C in Figure 3-11 on page 56 are the

atomic components AC1 and AC2 and the base entity V6 whereas elements2(C) =

{V1,V2,V3,V4,V5}. All its elements are {V1, V2, V3, V4, V5, V6, AC1, AC2}.

3.5.4.3   Partial Subset Relationship
At several places in this thesis, we have to compare two components with each
other to ascertain their degree of congruence. This can be done in terms of their
elements. Since the elements of components are basically sets of entities, one
important information is whether the elements of one component are a subset of
the other’s elements. However, this is sometimes too strict. A less strict way of
comparison is the following partial subset relationship ⊆p:

A ⊆p B if and only if  where 0.5 ≤ p ≤ 1.0.

The tolerance parameter p in this relationship can be specified by the maintainer.
If set to 1.0, A must be completely contained in B.

This definition still considers a component with elements {a, b, c, d} at least a
partial subset of a component with elements {a, b, d, e, f} when p ≥ 0.75 though c
is not present in the latter set of elements.

Note that the partial subset relationship is not transitive for p ≠ 1. For example, {a,
b, c} ⊆0.6 {a, b, d} ⊆0.6 {b, d, e}, but {a, b, c} ⊄0.6 {b, d, e}.

3.6    Views of the Resource Usage Graph

A resource usage graph represents the facts of a system that are leveraged by the
atomic component detection techniques presented in this thesis. These facts are
either derived from the system directly or by means of further analyses. Often, we
need not all information but a specific excerpt. Views are parts of a resource
usage graph representing special aspects. In the terminology of graphs, they are

elements C( ) direct-elements C( )=

A B∩
A

----------------- p≥
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subgraphs of a resource usage graph, i.e., all nodes and edges of the view are also
in the resource usage graph and, for all edges in the view, both ends are in the
view as well. Examples for important views are the call view (or call graph in
compiler terminology), which renders the call relationship among subprograms,
or the type view, which indicates how types are related.

Views will be used in the description of resource usage graph-based analyses to
point out the parts of the resource usage graph that are relevant to the analyses.
They will also be used to describe the output of analyses.

Table 3-5 lists some important elementary views that are directly derived from
source code and which form the basis for atomic component detection. It also
mentions components views that are used to represent the decomposition of com-
ponents as a result of atomic component detection techniques. Components views
are further described in Section 8.2. Whereas the components view describes the
logical structure of the system, i.e., identifies the cohesive parts, the module view
describes the actual structure of the system as a collection of modules and their
declarations as it can be directly derived from the source code. The module view
is also called the physical file or module structure.    

Table 3-5. Common views.

View Name Nodes Edges Explanation
call view subprograms call call graph

type composi-
tion view

types, record 
components

part-type, 
enclosing

makes apparent how types 
are built

signature view subprograms,
types

signature-type specifies the parameter 
interface of subprograms

type usage 
view

subpro-
grams, types, 
objects

signature-type, 
of-type, 
local-obj-of-type

cross-reference for the 
usage of types

object reference 
view

subpro-
grams, 
objects

reference indicates which objects are 
set or used or whose address 
is taken by subprograms

same expres-
sion view

objects same-expression identifies objects that occur 
in the same expression
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Example. The object reference view and the call view of the resource usage graph in
Figure 3-14 on page 59, for example, can be found in Figure 3-15.

3.7    Identity, Affinity, and Correspondence of Components

At different places in this thesis, we have to compare components to each other. A
comparison for atomic components can basically be based on two aspects of a
component: Its identity as an entity and its set of elements. In the case of a sub-
system, the subsystem structure is a third aspect.

actual 
parameter
view

subpro-
grams, 
objects

actual-
parameter-of

describes which object is an 
actual parameter of a sub-
program

base view base entities base relationship this is the union of the call, 
type composition, signature, 
type usage, object refer-
ence, same-expression, and 
actual parameter views

components 
view

architectural 
quarks, com-
ponents

part-of describes the decomposition 
of one or more components 
(their part-of relationships)

module view base entities, 
modules

part-of describes the module 
decomposition; an entity is 
part-of a module if the 
entity is declared in the 
module

Figure 3-15. Example views.

Table 3-5. Common views.

View Name Nodes Edges Explanation

getput

var
obj-set obj-use

getput

maincall call

object reference view call view
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Since components are entities, they have their own identity. In terms of the
resource usage graph, two components, or more generally, two entities, A and B,
are identical if they are represented by the same node, denoted by A=B. 

If components are not identical, we can still consider them comparable if they
share a vast majority of their elements. Such components are said to be affine. An
exact definition of affinity for atomic components and subsystems follows below.

Two components are said to correspond to each other when they are either affine
or identical:

(3.1)

If two components do not correspond to each other, they are considered dissimi-
lar. The definition of affinity follows in the next two sections.

Since base entities do not have further elements, they can only correspond to each
other when they are identical.

3.7.1    Affinity for Atomic Components
Atomic components can be compared in terms of their elements using ordinary
set relationships: We could require that the two atomic components have to have
the same elements in order to be comparable. However, this is often too strict. A
less strict comparison based on the set of elements can be made when only a cer-
tain degree of overlap is required. Hence, two atomic components A and B are
considered affine when their degree of overlapping is above or equal to a user-
determined affinity tolerance parameter Θ (if a maintainer insists on the
requirement that the sets of elements must be equal, she can simply set Θ=1.0):

 (3.2)

Where correspondings of two atomic components are the elements shared:

(3.3)

correspond A B,( ) affine A B,( ) A B=( )∨=

affine A B,( ) correspondings A B,( )
correspondings A B,( ) dissimilars A B,( )+
------------------------------------------------------------------------------------------------------- Θ≥⇔

correspondings A B,( ) elements A( ) elements B( )∩=
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Dissimilars denotes the elements that are either in A or B:

(3.4)

Inequation (3.2) is equivalent to:

(3.5)

The reason why we prefer (3.2) to (3.5) is that affinity for subsystems will be
defined with the same structure as (3.2).

It is obvious that affinity according to (3.2) is symmetric.

3.7.2    Affinity for Subsystems
Affinity for subsystems is more complicated since it cannot just be based on the
set of elements. It must also take the structure into account. As an example, con-
sider the two subsystems C1 and C3 in Figure 3-16 where elements (C1) = {A, B,

C, D, E, F, AC1, C2} and elements (C3) = {A, B, C, D, E, F, AC2, AC3}. The fol-

lowing observations can be made for this example:

1.  with respect to (3.2)

2. C1 and C3 differ in structure

3. AC1 and AC2 are affine but they enter the comparison based on elements

according to (3.2) as if they were dissimilar

Figure 3-16. Dissimilar subsystems.

dissimilars A B,( ) elements A( )\elements B( ) elements B( )\elements A( )∪=

elements A( ) elements B( )∩
elements A( ) elements B( )∪
-------------------------------------------------------------------- Θ≥

elements C1( ) elements C3( )∩

elements C1( ) elements C3( )∪
-------------------------------------------------------------------------- 3

5
---= Θ≥ Θ 3

5
---≤∀

C1

C2

AC1

A B C D

C3

AC3AC2

A B C DE E FF



Basic Structural Information

72

Because of observation (1), these two subsystems would be considered affine (for
Θ≤0.6) if the definition of affinity were only based on the set of elements for sub-
systems according to (3.2). However, since the two of them differ in structure, we
do not want to consider them affine. Moreover, the fact that AC1 and AC2 are

affine should also be taken into account by a definition of affinity for subsystems. 

One alternative to accommodate these requirements is to consider two subsystems
affine when their subsystem structures are graph-isomorphic. A graph G1 = (N1,

E1) is isomorphic to a graph G2 = (N2, E2) if there is a bijective mapping f from

N1 to N2 where:

An additional requirement is that the bijective function must be the identity for
nodes that are in both structures. Otherwise, the bijective mapping could arbi-
trarily be chosen and therefore C1 and C4 in Figure 3-17 would be considered

affine though the base entities (i.e., the leaves of the subsystem structure) are not
at corresponding positions in C1 and C4.

However, graph-isomorphism is too strict because, first, both subsystems must
have the same number of nodes and, second, the subsystem structures must be
structurally identical. Instead, we want to tolerate small divergences in elements
and structure. This can be achieved by a recursive definition based on (3.2) that
allows discrepancies by requiring that the direct elements of two subsystems have
to be affine only to a large extent (more precisely, not to be affine but to corre-
spond in order to capture identical elements as well). Since the definition is recur-

Figure 3-17. Isomorphic subsystem structures.

n1 n2, N1∈( ) n1 n2,( ) E1∈ f n1( ) f n2( ),( ) E2∈⇔∀

C1

C2

AC1

A B C D

C4

C5

AC4

D C B A
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sive for the direct elements of a subsystem, a partial correspondence of the entire
subsystem structures can be ensured.

The definition of affinity for subsystems is analogous to the one for atomic com-
ponents. The following definition is therefore a unifying definition for both
atomic components and subsystems. It differs from (3.2) only by the replacement
of the term atomic component by component that comprises both atomic compo-
nents and subsystems: Two components A and B are affine if their degree of over-
lapping is above or equal to a user-determined affinity tolerance parameter Θ:

 (3.6)

However, the definitions of correspondings and dissimilars for subsystems differ
from the ones for atomic components. The definition of these two sets for atomic
components were based on the elements of the atomic components, while we
restrict correspondings and dissimilars of subsystems to the direct elements of the
subsystems (correspond is defined by (3.1) on page 70):

(3.7)

(3.8)

The definitions of correspondings and dissimilars were made in such a way that
(3.6) is equivalent to (3.2) if A and B are both atomic components. In order to
show this, let A and B be two atomic components. Because of direct-elements (A)
= elements (A) for an atomic component, any a ∈ direct-elements (A) is a base
entity. Furthermore, two base entities a and b can only correspond to each other if
they are identical, i.e., . Hence:

affine A B,( ) correspondings A B,( )
correspondings A B,( ) dissimilars A B,( )+
------------------------------------------------------------------------------------------------------- Θ≥⇔

correspondings A B,( )

a b,( ) a direct-elements A( )∈ b direct-elements B( )∈ correspond a b,( )∧ ∧{ }=

dissimilars A B,( )

a a direct-elements A( )∈ b direct-elements B( )∈( )∃ correspond a b,( )¬∧{ }=

b b direct-elements B( )∈ a direct-elements A( )∈( )∃ correspond b a,( )¬∧{ }∪

correspond a b,( ) a b=⇔
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Hence, the nominator of (3.6) is equal to the nominator of (3.2). Likewise, the
denominators of (3.2) and (3.6) are equivalent when a = b:

Thus, (3.6) is equivalent to (3.2) for atomic components.     

The equivalence allows us to use (3.6) as the general definition for affine compo-
nents. Using the general definition, we can compare subsystems to atomic com-
ponents with respect to their affinity. For example, the atomic component AC and
the subsystem C1 in Figure 3-18 are affine for Θ ≤ 4/7. 

The example in Figure 3-18 shows another consequence of basing the definition
of affinity for subsystems on direct elements only: Affinity as defined by (3.6) is
robust against the size and structure of non-affine subcomponents, such as AC1.

Figure 3-18. Affine components.

a b,( ) a direct-elements A( )∈ b direct-elements B( )∈ correspond a b,( )∧ ∧{ }

a b,( ) a direct-elements A( )∈ b direct-elements B( )∈ a∧ b=∧{ }=

a a,( ) a direct-elements A( )∈ a direct-elements B( )∈∧{ }=

direct-elements A( ) direct-elements B( )∩=

elements A( ) elements B( )∩=

a a direct-elements A( )∈ b direct-elements B( )∈( )∃ correspond a b,( )¬∧{ }

b b direct-elements B( )∈ a direct-elements A( )∈( )∃ correspond b a,( )¬∧{ }∪

a a direct-elements A( )∈ a direct-elements B( )∉∧{ }=

b b direct-elements B( )∈ b direct-elements A( )∉∧{ }∪

elements A( )\elements B( ) elements B( )\elements A( )∪=

AC

A B D

C1

AC1

X Y CC DE F E F
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As already said in the beginning of this section, two components correspond if
they are identical or affine. Since correspondence of direct elements is required in
the definition for affinity of subsystems, correspondence of subsystems is defined
recursively. The recursion in the definition of correspondence ends at the leaves
of a subsystem structure, which are generally base entities. Since leaves have no
further elements, they correspond if and only if they are identical. That is, corre-
spondence of subsystems is well-defined.

The definition of affine subsystems according to (3.6) is more general than the
previously discussed alternative definition based on graph-isomorphism. Two
subsystems whose structure is graph-isomorphic (and where the bijective func-
tion is the identity for nodes that are in both structures) are obviously affine.
However, the opposite direction is not necessarily true. This can be shown with
the example in Figure 3-19. C1 and C2 are affine subsystems, but their structures

are not isomorphic since there does not exist any bijective function between them. 

3.7.3    Properties of the Correspondence Relationship
Correspondence as defined in the previous sections has the following properties:

• reflexive: ∀(A,Θ) correspond (A,A)

• symmetric: ∀(A,Β,Θ) correspond (A,B) ⇒ correspond (B,A)

• not transitive: 
¬∀(A,B,C,Θ)correspond(A,B)∧correspond(B,C) ⇒ correspond(A,C)

• ambiguous: ¬∀(A,B,C,Θ) correspond(A,B)∧correspond(A,C) ⇒ B=C

Note that ¬∀(A,B,C,Θ) correspond(A,B)∧correspond(A,C) ⇒ correspond(B,C)
can immediately be derived from symmetry and non-transitivity (see below).

Figure 3-19. Non-isomorphic, yet affine subsystems.

C1

AC1

X Y A B

C2

AC2

X Y A
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The correspondence relationship is formally defined as:

Correspond (A, A) holds because the two arguments are identical and identity is a
reflexive relationship. Thus, correspond is reflexive. 

Since identity is obviously symmetric, it remains to be shown that affinity is also
symmetric. The symmetry of correspond can be shown by induction. The induc-
tion begins with the smallest components, i.e., atomic components. It cannot
begin with base entities since for these, affinity is not defined.

Begin of induction. We have already shown that (3.6) is equivalent to (3.2) for
atomic components. Equation (3.2) is obviously symmetric. Thus, affinity for
components at height 1 is symmetric.

Inductive step. We assume that the affinity for the direct elements of two sub-
systems A and B is symmetric. Then, we have to show that:

which is equivalent to

Because dissimilars (A, B) = dissimilars (B, A) is obviously true, it remains to be
shown that the nominators of the fractions above are equal. Because symmetric
correspondence of the direct elements of A and B was assumed, the following
holds:

correspond A B,( ) A B=( ) affine A B,( )∨=

affine A B,( ) affine B A,( )⇔

correspondings A B,( )
correspondings A B,( ) dissimilars A B,( )+

------------------------------------------------------------------------------------------------------- Θ≥

correspondings B A,( )
correspondings B A,( ) dissimilars B A,( )+
------------------------------------------------------------------------------------------------------- Θ≥⇔

a A∈ b B∈,( )correspond a b,( ) correspond b a,( )⇔∀
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Therefore:

The counter-example in Figure 3-20 shows that affinity is generally not transitive.
For Θ = 0.6, AC1 is affine to AC2 and AC2 is affine to AC3 but AC1 is not affine to

AC3. However, for Θ = 1.0 it is indeed transitive because there must not be any

dissimilar elements then (without proof).    

The property ¬∀(A,B,C,Θ)correspond(A,B)∧correspond(A,C)⇒correspond(B,C) can
be derived from symmetry and non-transitivity by contradiction. Let us assume
that ∀(A,B,C,Θ)correspond(A,B)∧correspond(A,C) ⇒ correspondence(B,C), then:

Hence, correspond would be transitive, which was shown to be wrong. 

The ambiguity of correspond is also obvious: Let B≠C and direct-elements (B) =
direct-elements (C), then, if there is an A for which correspond (A, B) holds, cor-
respond (A,C) holds, too, i.e., ∃(A,B,C,Θ) correspond(A,B) ∧ correspond(A,C) ∧
B≠C. 

Hence, there may be more than one correspondent to each component.

Figure 3-20. Non-transitively affine components.

correspondings A B,( )

a b,( ) a direct-elements A( )∈ b direct-elements B( )∈ correspond a b,( )∧ ∧{ }=

a b,( ) a direct-elements A( )∈ b direct-elements B( )∈ correspond b a,( )∧ ∧{ }=
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3.7.4    Correspondence Relationship and Views
Chapter 8 introduces incremental techniques that take a components view as input
and produce a components view as output. The techniques may add elements to
existing components, that is to say, the output components view may contain
components of the input components view (Figure 3-21). When two incremental
techniques, T1 and T2, are applied to the same input view, Vinput, the two output

components views T1(Vinput) and T2(Vinput) may both contain identical compo-

nents. Hence, the same component can be in the input view as well as in both out-
put views. As a consequence of the application of two different techniques, the
same component may have different elements in the two output views. This is so
because the two techniques propose to add different elements to the same compo-
nent. That is why identical components in different components views need not
be affine, e.g., the component AC has different elements in T1(Vinput) and T2(Vin-

put) in Figure 3-21. However, identical components can only have different ele-

ments with respect to different views. 

Example. The atomic components AC1 and AC2 in view (a) and (b) in Figure 3-

22 are affine (for Θ = 0.5) but not identical. The atomic component AC1 in view

(a) in Figure 3-22 is obviously identical to AC1 in view (c), but the component has

different elements in (a) and (c) and the two structures are, hence, not affine with
respect to these two views. The atomic components AC2 and AC1 in view (b) and

view (c) of Figure 3-22 are neither identical nor affine.

Figure 3-21. Identical, yet non-affine components in different views.
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Figure 3-22. Example atomic components.
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Chapter 4 Components in the Programming 
Language C

As a proof of concept, the approach proposed in this thesis has been implemented
for programs in the programming language C. The decision to use C as a target
language has practical reasons and reasons that lie in the language as such. Many
legacy systems are written in C and many large C systems are available in the
public domain. Furthermore, C is widely used as target language in the reverse
engineering community, which allows comparable results. C supports abstraction
by allowing the user to define his own types and by offering means to hide details
of the implementation (see Section 4.3). Yet, the support for information hiding is
quite limited and commonly unused such that reverse engineering can make a real
contribution to program comprehension of C programs. Despite of the dissemina-
tion of the advantages of information hiding, C is still one of the most popular
programming languages. Programmers that are acquainted with the ideas of
information hiding are trying to simulate the lacking means of expression. How-
ever, many programmers do not know these principles or simply ignore them. All
that makes C an interesting language from the reverse engineering researcher’s
point of view: There is abstraction in the language, yet not enough; programs are
designed with the ideas of information hiding in mind, yet these ideas are often
ignored. Last but not least, C is anything else than a toy language: It has many
idiosyncrasies, such as pointer arithmetic, an unsafe type system, or gotos that
make analyses of C programs difficult. If an approach works for C, it is likely that
it also works for languages that are at a higher level of abstraction than C.
Whether this is also true for more primitive languages like Fortran77 is discussed
in Section 4.4.
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This chapter describes how C is mapped onto the resource usage graph that is
henceforth used as a basis to the methods that are going to be proposed in the
course of this thesis. An overview of the technical steps of the mapping will be
described first. Then, a brief overview of the relevant features of C follows that
also shows how these features are mapped to the resource usage graph. Section
4.3 describes the way information hiding could be achieved in C and Section 4.4
discusses the role of the programming language and other factors for atomic com-
ponent detection in general.

4.1    Analyzing C Code

Before we describe the mapping of features in C to the resource usage graph, we
will give a short overview of the technical intermediate steps of this mapping.
This is helpful to understand some properties of the mapping. 

Figure 4-1 presents an overview of the intermediate steps. First, the C code is pre-
processed by a standard C preprocessor (CPP). As a consequence, macros are
replaced before the actual analysis takes place; the discussion of macros is picked
up by Section 4.2.1. Only the preprocessed C code is analyzed by our C front end
(CF) which generates an intermediate representation (IML) for each analyzed C
program unit (Koschke et al, 1998). The individual intermediate representations
generated for the individual program units are then linked by an IML linker to a
global description of the system. Global external references are resolved at this

Figure 4-1. Mapping C code to a resource usage graph.
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stage. Finally, the actual resource usage analysis (RUA) takes place for the global
system and maps the C program to the resource usage graph (RUG). All subpro-
grams that do not have a body within the intermediate representation of the global
system are assumed to belong to libraries; the same holds for external variables
that do not have a definition. Since the preprocessor handles include files and
there is no distinction between type declarations and definitions, it is not directly
known to the resource usage analysis whether type declarations belong to the sys-
tem. This information is provided by a command line argument to the resource
usage analysis that specifies the library paths. Any declaration of a file that is in
one of the given library paths is considered a library unit. Details of the resource
usage analysis are described in the next section.

4.2    The Programming Language C

In Chapter 3, we introduced an abstract entity relationship model that is mostly
language-independent (we will find these entities and relationships in virtually all
procedural programming languages). In this section, we will refine the model for
the programming language C by describing the C entities and their possible rela-
tionships that we model. The mapping of the information derived from C source
to entities and relationships of the resource usage graph will be called resource
usage analysis (RUA).

4.2.1    Modules and Macros
There is no concept module in C. In order to decompose a system into individu-
ally manageable parts, the programmer has to use ordinary files. Programmers
often simulate the lacking concept by using one file that contains the code, thus
simulating the body of the module, and one file that contains the exported decla-
rations of the module - its specification. The latter is a so-called header file. A
convention is to give the two files the same name except for the file suffix; the
header file has the suffix “.h” whereas the “body” file has the suffix “.c”. How-
ever, this is only a convention that helps a human reader to find the corresponding
header file to a given body file. Header files have no meaning for a C compiler.
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In order to import declarations of a header file, a preprocessor directive include is
used by the importing file. A preprocessor replaces these includes by the actual file
and feeds its contents into the C compiler. The C compiler itself is not aware of
these files and is therefore not able to cross-check declarations within the system. 

Since a preprocessor is needed within a C development environment at any rate,
programmers often make use of further preprocessor directives. Macros can be
defined whose occurrences are textually replaced by the preprocessor. Condi-
tional directives can be used to ignore or insert text depending upon macro values. 

Macros convey important information. For example, they are often used to define
constants. When macros are expanded, only meaningless numbers remain where
symbolic names were used. In the early days of C, macros were the only way to
define constants. Today, the new ANSI standard for C has means to specify con-
stants. However, this is too late for legacy systems and even nowadays, program-
mers often stick to macros to define constants (they even have to in many cases
due to an ANSI rule that excludes constants in static expressions; see Section
4.2.5). Unfortunately, macros are very hard to handle since their usage is virtually
unrestricted. The source code could be written in a way that it only obeys the syn-
tax rules of C after the contained macro calls are replaced. This makes analyzing
source code with arbitrary macros nearly impossible and is the reason why most
reverse engineering tools ignore them, i.e., they analyze the code exactly how it is
presented to the C compiler when all macros are replaced. This is also true for the
C front end we are using (see Section 4.1). A better and pragmatic solution would
be to treat at least simple macros as if they were expressions. On the other hand,
syntactic analysis is more difficult to implement when syntax errors can be caused
by omitted macro replacements.

4.2.2    Name Spaces
C has three different name spaces: one for enumeration, struct, and union types,
one for goto labels, and one for all other kinds of identifier. Within a name space,
an identifier can occur only once at the same nesting level. However, the same
name can occur in all name spaces. For example, the following is legal C code
(note the semantic error in the call to malloc which is likely to occur due to over-
laps in name spaces: the argument List of the operator sizeof binds to the formal
parameter and therefore sizeof yields the number of bytes needed to encode a
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pointer where the space required for struct List was actually meant; the compiler
cannot detect such errors):

struct List {struct List* next; int value;};
void f (struct List *List) {
if (List->next == null) 
goto List;

List->value = 1;
List: List->next = (struct List *)malloc (sizeof (List));

} 

Name binding for non-external names is done by the front end and external names
are resolved by the linker. However, the different name spaces for enumeration,
struct, and union types on one hand and ordinary identifiers on the other hand
have to be reflected in the resource usage graph as well (goto labels are not repre-
sented in the resource usage graph), e.g., a struct Queue and a type Queue are repre-
sented by two separate nodes in the resource usage graph.

4.2.3    Types
In C, the programmer is able to write user-defined types. This way, more abstract
programs can be written. However, the type system has many idiosyncrasies that
make the resource usage analysis more difficult. 

C has numeric (discrete and floating-point) and character base types - where the
latter is actually a subtype of int. Boolean types have to be simulated by discrete
types. Base types of the programming language C will be ignored by the resource
usage analysis since they provide little information useful for architecture recov-
ery.

User-defined types can be built on top of these base types using the common type
constructors pointer, array, struct, and union. Structs and unions compare to records
and will be discussed in Section 4.2.3.3. In the terminology of C, the type con-
structors array and pointer (denoted by [] and *) are declarators and only structs,
unions, enums, and all base types are considered “real types”. This differs from the
terminology used for most other programming languages; we will therefore stay
with the common terminology and consider a declaration such as

typedef int *My_Integer_Pointers[10];
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as a declaration of a type My_Integer_Pointers that is an array with range 0..9 of
pointers to int.

4.2.3.1   Typedefs
In other procedural programming languages, there is an explicit construct to
introduce a new type. Such type declarations have a name for the new type and
describe its data structure. Typedefs in C are similar to type declarations in other
languages:

typedef struct Node List;

This typedef introduces a name List that can be used to declare objects whose data
structure is actually struct Node. However, the semantics of a typedef in C is only to
introduce a synonym or abbreviation for another type. Whether one declares an
object of type struct Node or List for the example above does not make a differ-
ence. 

According to the definition in Section 3.1.1, struct Node is a part-type of List.
However, there is a subtle semantic difference to the kind of part-type relationship
introduced in Section 3.1.1. For example, in a record declaration like:

struct Node {Item value; Key key; struct Node *next;};

Item, Key, and struct Node are part-types of struct Node, i.e., a type can have several
part-types (it can even be a part-type of itself), in other words, each part-type
describes only a part of struct Node. On the other hand, in the case of a typedef, the
data structure of the new type is completely determined by the existing type
within the typedef declaration. In order to distinguish a typedef from a type declara-
tion that induces several part-types, a delineate relationship is added to the entity
relationship model of Section 3.1.1. Since the delineate relationship is a special
kind of the part-type relationship, delineate is derived from the part-type relation-
ship (delineate is-a part-type):

delineate(A,B) expresses that B is defined in terms of A as a synonym or as
a new type, in other words, A delineates the structure of B.

The definition of delineate covers two kinds of situations in which typedefs are used
in C: 
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1. to introduce a synonym or abbreviation as in:
typedef struct list List;

where a programmer can use List where struct list is meant and save the effort
for putting struct in front of list

2. to implement a new type by an existing type as in:
typedef List Queue;

where Queue and List have the same data structure and a programmer is able to
call the accessor functions of List with a variable of type Queue, but Queue is
meant to be a new type.

The semantics of typedef in C is really to introduce a synonym, hence, variables of
type List could also be actual parameters of new accessor functions of Queue;
they could even be assigned to variables of type Queue and vice versa. However,
pragmatically, programmers often use a typedef as a type constructor introducing a
new type. Whether a typedef is meant as a declaration of a synonym or a new type
cannot be decided for C in general. A case like

typedef struct list List;

is likely a synonym but not necessarily. Even less obvious are declarations like:

typedef List list;

Due to these ambiguities, the definition of delineate does not distinguish between
typedefs for synonyms and new types in C. In a language that has means to specify
the distinction explicitly, one would derive two subtypes of delineate for the two
usages. For example, in Ada there are two explicit concepts to distinguish delin-
eate:

• In order to introduce a synonym to an existing type, a subtype declaration can
be used:
subtype Queue is List;

Queue and List are equivalent.

• In order to introduce a new type based on an existing type, a new type can be
derived by the keyword new:
type Queue is new List;
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In this case, Queue inherits all primitive operations of List. However, variables
of Queue cannot be assigned to variables of type List, nor can variables of type
List be assigned to variables of type Queue; the two types are really distinct.

4.2.3.2   Enums
Enumerations of a finite set of discrete values can be expressed by enums in C.
The following declaration introduces a new enum type E whose range consists of
a, b, and c:

enum E {a, b, c};

In C, the values of an enum type are treated as constants of type int, i.e., assign-
ments between enum and int variables are allowed.

Enums provide little abstraction and atomic component detection techniques often
ignore them. However, they are frequently part of a more abstract composite
structure and there are indeed examples where they constitute an atomic compo-
nent, e.g.:

typedef enum {true, false} Boolean;
Boolean and (Boolean left, Boolean right);
Boolean or (Boolean left, Boolean right);
Boolean not (Boolean operand);

Therefore, we explicitly capture enums in the resource usage graph. 

4.2.3.3   Structs and Unions
Another way to build a new type is available by declaring struct and union types as
in: 

struct Complex {float re, im;};

This declares a new record Complex with the components re and im of type float.
As opposed to all other types, the types of struct and union variables must be name
equivalent if the variables are to be assigned to each other.

If such a type declaration is to be used, the keyword struct has to be added when
the struct name is used to identify the name space. For example, in order to
declare a function with Complex as parameter, one has to write:
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void f (struct Complex c);

A typedef can be used to introduce an abbreviation:

typedef struct Complex Complex;
void f (Complex c);

As mentioned in Section 4.2.2, it is legal to use the identifier Complex twice in
this context due to the different name spaces. However, f could also be specified
with the explicit struct Complex in its parameter list and it would not make a dis-
tinction from the point of view of the language, but as noted in Section 4.2.3.1,
we do make a distinction between the struct Complex and the typedef Complex. They
are different types in the resource usage graph. Otherwise, all the following func-
tions would be considered similar, whereas we optimistically assume that there is
a reason why the programmer introduced three different types:

void f (struct Complex c;)
void g (Complex c);
typedef struct Complex Polar;
void h (Polar c);

A union is a type that stores values of different types at the same storage location.
One can think of it as a struct whose components have an offset of 0. Thus, assign-
ing a value to component a of an instance of the following union U will override
the value of component b. 

union U {int a; float b;};

Unions are used for type conversions or for storage optimizations, when only one
of the components of an object is valid at any given time. As opposed to structs,
they cannot be used to implement a heterogeneous composite concept, i.e., a con-
cept with several distinct components, because they can only store one compo-
nent at a time and therefore generally provide little abstraction. That is why most
reverse engineering techniques ignore unions. However, we consider both structs
and unions. Unions are, for example, useful to recognize the similarity of two
functions when they both are related to a union.

The components of structs and unions are also captured by the resource usage anal-
ysis. Each component is modeled by a record component no matter whether it is
part of a struct or a union. The relationship enclosing identifies the struct or union to
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which the record component belongs. The types of the record components are con-
sidered part-types of the struct or union. More about record components follows in
Section 4.2.6.

4.2.3.4   Anonymous Types
One does not need a named type in C in order to declare objects or to specify
parameters. The following declarations are legal:

int *a[10];
char *f (int b[]);
typedef struct {int a;} T;

Types without name will be called anonymous. In the last example, the struct has
no name. Since it has no name, it cannot be used anywhere else than in this very
type declaration of T. Therefore, one could treat this declaration as if T were the
record type. However, anonymous structs can also occur in object declarations.
Under such circumstances, a type is needed for the object. That is why we intro-
duce a type for each struct without name no matter whether the context is an object
or type declaration. The latter is done for reasons of uniformity. An artificial and
unique name is assigned to the anonymous type. Anonymous unions and enums are
treated analogously.

A type that has a name (even if it is artificial as for anonymous structs, unions, and
enums) will be called a named type; it is either an intrinsic type (int, char, float,
double and their respective signed/unsigned and long/short variants) or a struct,
union, enum, or typedef. 

Declarators and hence anonymous types can appear wherever a type is allowed;
thus, anonymous types are quite frequent in C programs, though using a telling
name would convey more information. There is one specific context in which
anonymous types are really appropriate. Parameters are always passed by value in
C and changes to the parameters therefore do not have any effect on the actual
argument since the parameter is a copy of the passed object. If the value of the
passed object is to be changed, call-by-reference must be simulated. Consider the
following C code:
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T t;
void f (T pt) {
pt = ...;

}
f (t);

The assignment to pt in the body of f does not change the value of t. If it is to be
changed, the parameter type of pt must be changed to a pointer to T and the
address of t must be passed at the call site. Furthermore, all occurrences of pt in
the body of f must be replaced by dereferences of pt. Thus, we have to rewrite the
code as follows:

T t;
void f (T *pt) {
*pt = ...;

}
f (&t);

Now, the type of parameter pt has become an anonymous type. Note that the pro-
grammer could also introduce a new pointer type for the formal parameter, such
as:

typedef T *PT;

and use PT instead of *T for pt in the signature. However, the new pointer type in
the signature may be misleading since it suggests f to be a function for PT as
opposed to be a function with a reference parameter for T. 

Anonymous pointer types are adequate for reference parameters and therefore
frequently used in C. This scheme often involves arrays, too, since they are more
or less equivalent to pointers in C. On the other hand, it is sometimes not quite
clear whether an anonymous pointer type is in fact a reference parameter. For
example, given the following type declarations:

typedef int Item;
#define MAX 100
typedef Item stack[MAX];

We would expect signatures for accessor functions of stack as follows:

void push (stack s, Item i);  /* example 1 */
Item pop (stack s);
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However, the programmer could have mistakenly used a type descriptor “Item *”
instead of the type stack in the parameter list of a function pop:

void push (stack s, Item i); /* example 2 */
Item pop (Item *s);

Then, s in pop looks like a reference parameter and not like an accessor function
of stack. Programmers could even write the program without the type stack as fol-
lows: 

void push (Item []s, Item i); /* example 3 */
Item pop (Item []s);

or even with anonymous types only

void push (int *s, int i); /* example 4 */
int pop (int *s);

All these alternative declarations are equivalent in C. However, in the latter two
alternatives, the connection of push and pop as accessor functions of stack is no
longer visible. In example 3, we could at least assume that push and pop are
related to Item. But if only one the two functions mentions stack in its signature as
in example 2, there is no easy way to find out that “Item *” actually means stack;
s could also be a reference parameter of type Item. In example 4, it is not even
clear that push and pop deal with objects of type Item, and one cannot even know
whether the two anonymous types “int *” denote the same concept or whether
they are two distinct types with the same structure.

If we knew that push and pop are accessor functions of the same atomic compo-
nent, we would be able to conclude that the two anonymous types “int *” in
example 4 are in fact equal. However, because atomic components and their
accessor functions are still to be detected, it is not known whether two anonymous
types denote the same concept when the resource usage analysis takes place. Fur-
thermore, because there are so many anonymous types in typical C programs that
all need to be represented for each occurrence when nothing is known about their
meaning, the resource usage graph would contain a huge number of anonymous
types - of which most are probably only reference parameters - and, consequently,
be of little help to the maintainer. For these reasons, the resource usage analysis
ignores all anonymous types and reduces them to their named base types, i.e., we
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will treat a parameter declaration as in f (T *t) as if it were the signature f (T t). This
makes sense because t is probably a reference parameter of type T. We will handle
a declaration f (T t[]) analogously since it is equivalent to f (T *t) in C. More debat-
able is the fact that we also reduce more complex anonymous types to their
named base type, thus f(T **t) is also treated as signature f(T t) by the resource usage
analysis. However, since anonymous types are involved, there is no other type this
could be attached to. Hence, we rely on the abstraction that programmers add by
using named types.

In order to specify more precisely how we handle anonymous types, we define a
few terms needed. The base type of an anonymous type is the type of object a
pointer can point to or the type of elements of an array, respectively. The named
base type of an anonymous type can then be defined recursively. Let A be an
anonymous type expression, then:

• if the base type of A is a named type T, then the named base type of A is T

• if the base type of A is an anonymous type A’, then the named base type of A is
the named base type of A’

Example. Let us make an example to illustrate these definitions. Given the fol-
lowing anonymous type:

T *a[]

The anonymous type of a is an array of pointers to T, its base type is a pointer to
T; this one’s base type is T, and the named base type of a is T. 

Only user-defined named base types occur in the resource usage graph and the
resource usage analysis reduces any occurrence of an anonymous type to its user-
defined named base type if there is any, i.e., in declarations as in 

int *a[];

the type of a is ignored.

4.2.4    Global Variables
Only global variables are represented in the resource usage graph since local vari-
ables are not relevant at the architectural level; nevertheless, local variables are



Components in the Programming Language C

94

not completely disregarded as Section 4.2.7 will show. Henceforth, if nothing else
is said, variable always means global variable.

The type of the variable in the resource usage graph is its user-defined named
base type, if there is any, referred to by an of-type edge. If the variable has no user-
defined named base type, no of-type edge is introduced.

If two variables (or constants), A and B, occur in the same expression on the left
and right hand side of assignments, in conditions of control statements, or in an
actual parameter list of a function call, then same-expression (A,B) holds. It is suffi-
cient for them to be once in the same expression, how often they actually occur is
not regarded, and they also may occur at different nesting levels of the expression.
This definition will be extended in Section 5.5 when the motivation for this rela-
tionship becomes clearer.

4.2.5    Constants
In C, there are basically two ways to declare constants: By means of a macro and
by means of the keyword const. Using macros is a historical relict from Kernighan
and Richie C (1978) where the keyword const did not exist. The only way to intro-
duce symbolic names for constants was to use simple macros such as:

#define Max 0

In ANSI-C (1989), the same could be expressed as:

const int Max = 0;

Such constants may be initialized at their declaration and thereafter not be
changed anymore. Nevertheless, many programmers are still using macros to
define constants partly because constants must not occur in constant expressions
(Arnold and Peyton, 1992). C is unlike C++ in this regard. 

As said in Section 4.2.1, macros are already expanded for our front end by a pre-
processor. That is to say, only constants annotated with const are recognized and
represented in the resource usage graph. 
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There are also objects declared as regular variables that are in fact used as con-
stants, i.e., they are initialized in their declaration but never set elsewhere yet not
annotated with const. This may be just for that particular system under investiga-
tion in which the subsystem that contains the variable is used or because the pro-
grammer forgot to declare the variable explicitly as constant. It is safe to say that
a variable is actually a “constant” if it is set only once and its address is never
taken. The opposite conclusion is not necessarily true: A variable whose address
is taken could still be a constant when no dereference changes the variable’s
value. A better approximation could therefore be ascertained by data flow analy-
ses. However, since the automatic techniques for atomic component detection
treat constants like variables, we do not need data flow analyses.

4.2.6    Record Components
Record components are used to model the components of structs and unions types.
For each record component R of a type T, a record component specifier for R is
introduced whose enclosing is T. For each global object V of type T, V inherits all
transitive record component instances of T as described in Section 3.1.2. 

4.2.7    Functions
In C terminology, subprograms are called functions no matter whether they return
a result or not. A function has a definition that specifies the signature of the func-
tion and its body and it has an optional declaration that only specifies its signa-
ture. The latter is used when the program is decomposed into several files and the
function is to be exported. However, this is not a must. If functions are neither
declared nor have a definition, their designated default return type is int and their
parameter list is assumed to be variable and unspecified, i.e., any number and
type of actual parameters can be passed. From the standpoint of program under-
standing, little is to learn about such functions. Even worse are contradicting
function declarations. A function can be declared in one file as 

void f(int i);

and in another file as

int *f(float f; char *s);
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Since the compiler analyzes always one file (more precisely, the file and its
include files; see Section 4.2.1) per compilation, these contradicting declarations
will not be detected. The compiler will generate code for the current declaration
of f. This can lead to run-time errors that are hard to track down. Our linker per-
forms a global analysis and finds such contradicting function declarations (see
Section 4.1). 

Functions can only be declared at file level and are either extern or static. Extern
functions are globally visible, i.e., they can be called from other files. Static func-
tions are local to a file. If nothing is said, functions are extern per default. Both
kinds of subprograms are represented in the resource usage graph in the same way.

Not all functions need to have a definition. The code of functions can be linked
into the program from libraries. When the resource usage graph is generated by a
global analysis (see Section 4.1), functions without definition can be identified.
They are considered library units.

In C, there are basically two ways of calling a function: either calling it directly
by its name or via a function pointer. Generally in the case of function pointers,
several different functions could be called via a given function pointer at a spe-
cific location in the source depending on the function pointer’s value at run-time.
Static data flow analysis can yield an estimation which functions may be called.
The set of possibly called functions is usually based on conservative assumptions.
At least compilers have to make conservative assumptions to avoid generation of
erroneous code. To which degree reverse engineering analyses have to be conser-
vative depends on the task at hand and is still an open question in general.
Because we do without data flow information, we have to ignore calls via func-
tion pointers. This does not cause any harm, for the contribution of calls to atomic
component detection is generally rather limited and calls via function pointers are
even less relevant, at least for the main representatives abstract data type and
abstract data object. The only approaches that consider calls are Arch (Section 5.9)
and Similarity Clustering (Chapter 7) and even for these, a statistical analysis
revealed that calls have not much weight (Section 7.6.1). However, function point-
ers can be a problem when subsystems are to be detected as one of our case stud-
ies indicates (Girard, Koschke, 1997a).
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Actually, there are more than these two kinds of calls. It is also possible to switch
between the contexts of functions whose activation record is currently on the
runtime stack by means of setjmp and longjmp under Unix. This is often used to
implement exception handlers. However, since this is not part of the language and
depends completely on the runtime system, we will ignore such calls.

Functions make use of types by mentioning them in their signature or using them
to declare local variables. For the former, we introduce signature edges and for the
latter, local-obj-of-type edges to the named base types of the parameters and func-
tion result, or local variables, respectively (see Section 4.2.3).

Types can even occur as type of an expression at any level though they are not
explicitly mentioned in the body of the subprogram. For example, in

typedef struct S {int a; } T;
T f ();
void g () {

  int i;
  i = f().a;
}

function g accesses a component of type T though it has neither parameters nor
local variables of type T. Such a type relationship will be reflected as local-obj-of-
type since it is analogous to declaring a temporary local variable that receives the
intermediate result.

4.2.8    References
References to local variables, formal parameters, and global variables are repre-
sented as described in Section 3.1.2.2. The references captured by the resource
usage analysis are only an approximations of the actual references. This section
describes the approximation and discusses the divergent points of view of the
fields of compiler construction and reverse engineering on references.

4.2.8.1   Reference Information Approximation
The captured references are relationships between subprograms and declared
entities that can be explicitly found in the code. They represent only an approxi-
mation of the real sets/uses/takes-address-of relationships. First, it could be that a
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reference occurs in a path of the control flow that will never be taken (our approx-
imation is an overestimation then) and, second, an object could be referenced via
an alias (an object is aliased if it has more than one access path by means of static
name binding or dereferenced pointers; in the following, no distinction is made
between access paths via different static names or dereferenced pointers). In the
case of hidden references via aliases, our approximation is an underestimation
since hidden references are not detected by the resource usage analysis. Extensive
control and data flow analyses would be needed to detect potential hidden refer-
ences. However, these analyses can only yield an estimation since possible con-
trol flow as well as aliasing are statically undecidable in general because they
may depend on values that can only be established at run-time.

Fortunately, it is not a problem for the purpose of atomic component detection
when a reference occurs in an unfeasible path. Any reference, no matter whether
it is actually executed, creates a relevant static dependency and therefore must not
be ignored. Furthermore, hidden references by way of aliasing to an object are
generally not relevant to atomic component detection. Remember that relevant
objects to the resource usage analysis are either global objects or types. The rela-
tionships for the latter are caused by parameters if it is a signature relationship or
by local objects if it is a local-obj-of-type relationship. Therefore, the following
combinations of aliasing that could be relevant are possible:

1. aliasing between a global object and a parameter

2. aliasing between a global object and a local object

3. aliasing between global objects

4. aliasing between parameters

5. aliasing between local objects 

6. aliasing between parameters and local objects

Ad (1): If a global object is aliased by a formal reference parameter but the sub-
program references the global object only by means of the formal reference
parameter, then it is quite likely that the subprogram does not have anything to do
with the global object. The subprogram is more general and handles different
objects, otherwise the programmer would have hardly introduced a parameter. If
the subprogram references the global object also directly, then ignoring aliasing
may result in undetected additional references to the global object by means of
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the formal parameter. However, at least the directly visible accesses are taken into
account.

Ad (2): An alias between a global object and a local object can arise if one’s
address is taken and assigned to the other one. Assigning the address of a local
object to a global object will cause run-time errors when the local object’s mem-
ory location is accessed by way of the global object after the function ended. It
could be used to transfer the local object to another function that is transitively
called by the current function. Then the activation record of the function would
still exist and hence, the local object be defined. Still, there should be a strong
argument why the local object was not passed as parameter (maybe because the
call went through a library whose functions have a standard signature), otherwise
this could not be justified to the maintainer. Therefore, I do not believe this has
any significance. 

Assigning the address of a global object to a local object is often used by C pro-
grammers for looping over global arrays or for shorthanded accesses to compo-
nents as in:

char g1[10];
void f1 () { /* loop over array */

  char *p;
  for (p = g1; *p != ’\0’; p++) *p = ’a’;
}
struct {int c;} g2;
void f2 () { /* shorthanded access */
  int *i = &g2.c;

  *i = 1; /* use *i instead of g2.c */
}

These schemes in fact lead to a wrong mapping to the resource usage graph
because the modification of g2.c by f2 via the dereferenced local variable i will be
re-directed to an internal access to the type of i since local variables are not repre-
sented in the resource usage graph. However, at least the fact that the addresses of
the variable g2 and the record component g2.c are taken is captured. Likewise, the
fact that f1 modifies g1 is not detected; only that f1 takes the address of g1 is cap-
tured. 
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Ad (3): Ignoring aliasing between global objects causes a miss of the interrelation
between subprograms that access apparently different, yet aliased global objects.
However, only if the aliasing is permanent, the miss is really problematic; other-
wise these subprograms may indeed be viewed as only weakly coherent. Fortu-
nately, aliasing among global objects is a very rare phenomenon.

Ad (4): Aliasing between parameters would occur if both parameters were refer-
ence parameters and the same actual argument is passed to both of them. But
again this is not the typical way of using the function, otherwise the function
would have only a single parameter instead of two aliased parameters, and there-
fore the function should be treated in its general case in which the two parameters
are not aliased.

Ad (5) and (6): Aliasing between local objects can only take place if the address
of a local object is taken and assigned to another local object because subpro-
grams cannot be nested in C. This will not let the references with respect to the
type go unnoticed. Remember that the local-obj-of-type is a relationship between a
function and a type induced by any local object of this type. If such a relationship
exists, any reference to a record component of this type will be considered (except
for the references to record components of parameters); it does not matter which
actual local object it is and whether the type of the actually referenced local object
is the one of the local-obj-of-type relationship. Similarly, if a local object and a
parameter are aliases, the access to the record component of the type will be
recorded in all cases either by way of the local-obj-of-type or the signature relation-
ship.

4.2.8.2   References and Dereferences
From a compiler’s point of view, all occurrences of b but the first one in the fol-
lowing statements are uses of the variable b:

struct {int a; } *b;/* 1 */ b = 0;
/* 2 */ ...= *b;
/* 3 */ *b = ...;
/* 4 */ b->a = ...;

In the expressions of 2-4, the value of b is used to address the designated object of
b; that is why a compiler considers case 3 and 4 as usages of b. However, from a
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program understanding point of view, the designated object of b is primarily rele-
vant and a programmer will abstract from the difference of b and its designated
object when reading this code. Consequently, from the point of view of a reverse
engineer, cases 3 and 4 can pragmatically be considered settings of b. The distin-
guishing factor between cases 3 and 4 and the usage of b in 2 is that b occurs on
the left hand side of the assignments in 3 and 4. 

The resource usage analysis used to produce the results described in this thesis
follows the compiler’s point of view, hence, captures the actual semantics of
dereferenced variables. Future extensions should investigate whether following
the reverse engineer’s point of view is more appropriate.

4.3    Information Hiding in C

In previous sections, C was criticized as a language that provides only limited
support for information hiding. Nevertheless, information hiding can be realized
by using the rudimentary means offered by C. Unfortunately, these means are
often not used by programmers. This is probably not because the language does
not support information hiding in a more direct way, but because programmers
ignore these means, which suggests the conclusion that they would neither follow
these principles in a more abstract language. This section shows how they could
apply the principles of information hiding by the existing means C provides.

The lack of modules in the language must be compensated by header files for the
interface and files with the actual code; let us call these body files. The header file
lists all extern declarations, i.e., exported declarations, and nothing else. Local
function and object declarations can be hidden in the body by the keyword static.
Thus, we can easily realize an abstract data object in C by putting the global
objects (declared as static) into the body file. Unfortunately, this is not so easy for
abstract data types. 

Header files are ordinary files without semantics. There is no private section, as in
Ada, where we could hide private type declarations. On the other hand, for rea-
sons of efficient separate compilation, the type information has to be imported by
any other body file that uses the type; this is needed to ascertain the needed stor-
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age for objects of this type. For these reasons, we cannot use arbitrary data struc-
tures for abstract data types in C. However, the opaque types of Modula-2 can be
simulated by exporting a struct name and a pointer to this struct name which repre-
sents the abstract data type. The full declaration of the struct follows in the body
file and is therefore hidden for all clients. This is illustrated in Figure 4-2. 

Actually, the type is not really abstract because it is explicitly declared as a
pointer with the consequence that assignment and comparison of such abstract
data types have always reference semantics. However, clients of this module are
not able to access the internal fields of this abstract data type. 

If these programming styles are observed and if any simulated module contains
only one concept, the concepts and its accessor routines can immediately be
found. Unfortunately, these means are rarely used. Current practice is to export
global variables and the full type structure, to distribute accessor routines among
different modules, and to put several distinct concepts into the same module.

4.4    The Language and Other Factors

It is a trivial realization that the programming language has to provide means to
express what we want to detect. However, these means can be very rudimentary.
Talented programmers are thoroughly able to simulate higher concepts with only
little support by the language. Nevertheless, the degree of support by the pro-
gramming language does determine the chances of an automatic technique. There
are two extremes. At one end, there are assembly languages. None of the tech-
niques that we will get to know in Chapter 5 works for such primitive languages.
There should be at least subprograms, objects, and types in the language. How-

Figure 4-2. Example abstract data type List in C.

struct list;
typedef struct list *List;
extern void insert 
(List l, Item i);

struct list {List next; 
Item i; };

void insert (List l, Item i) 
{ … }

List.h List.c
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ever, even assembly languages have macros, symbolic addresses, and data specifi-
cations that could be used as a starting point to find substitutes for subprograms,
types, and objects. At the other extreme, there are modern programming lan-
guages, such as Ada, Modula-2, and C++, that provide the means for data abstrac-
tion and information hiding in general. However, there is no guarantee that these
means are properly used by programmers, i.e., even for these languages the tech-
niques presented in this thesis could be helpful.

There are two main atomic components we are searching for: abstract data
objects and abstract data types. If we want to detect abstract data objects, there
should be ways to express state in the language. Pure functional languages, for
example, do not support the concept of state. However, in all procedural lan-
guages, we have global variables whose values can be manipulated, and these are
the languages that are used in practice. The language need not have a way to spec-
ify the relatedness of the global objects; such means are important to abstract data
types where the constituents must be explicitly united in a type. Our experiences
with the systems we studied indicate quite the opposite. An abstract data object
mostly consists of a set of objects that have primitive types. Programmers avoid
the effort of introducing a new record type whose components are the constituents
of the abstract data object, though this would make their connection obvious.

If an abstract data type is to be detected, there obviously has to be a type in the
first place and the user should be able to define new types using type constructors.
Among common type constructors, records are the most important ones because
they allow to realize heterogeneous concepts. Records have been part of all the
most popular programming languages since the early 1960s when they were
introduced by COBOL. Notable exceptions are past versions of Fortran. For
Fortran77, one has to find the connections of single base types that together form
a heterogeneous abstract concept before the heuristics described in Chapter 5 can
be brought into play.

The phenomenon of apparently distinct elements together forming an abstract
concept is called tupling (Koschke et al., 1997). My experiences with the large
Fortran77 library Spicelib of the Jet Propulsion Laboratory are that programmers
use such tuples as if they were records with a fixed order of contiguous compo-
nents, i.e., if they occur in a parameter list, the components of the tuples are
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mostly in the same order and there is no constituent of another tuple within the
sequence of components. Other indicators derived from control and data flow
analysis could be used to detect tuples, e.g., accesses to some components of the
tuple may always be control-dependent on other components of the tuple. Fur-
thermore, domain knowledge is probably a key factor for detecting tuples.
Records and likewise simulated records, i.e., tuples, are the most relevant instru-
ments to model concepts from an application domain since most such concepts
are heterogeneous. Knowing the domain is often crucial for deciding whether cer-
tain constituents together form a unity when this unity corresponds to a concept of
the application domain. Tupling is its own field of research and it was only stated
as a problem but no solutions have been proposed so far. I will not discuss tupling
in this thesis, yet, essential observations of this field are also relevant to atomic
component detection and will be summed up here:

• the target of the search is a concept that could convey important information to
the maintainer

• the concept is not properly specified because the programming language does
not provide the means to model this concept or a programmer has ignored these
means

• if the language does not provide adequate means of expression, programmers
find ways to simulate these means in part

• there are different sources of information that can be leveraged to find the con-
cept:

- the typical ways how programmers simulate the lacking means of expression

- control and data flow analysis

- domain knowledge

Most techniques described in this thesis mainly follow the first path and try to
find atomic components by the way the programmer could have organized them
in C. To some degree, they are based on assumptions that could be derived by
control and data flow analyses, but these assumptions are only rough approxima-
tions and are not validated by the techniques. Two techniques indeed perform
control flow analyses on the call graph, namely, dominance analysis and strongly
connected component analysis. However, other control flow analyses are not
being used. Data flow analyses in particular are not exploited at all. Neither is
domain knowledge, other than using the conventions of programmers to convey
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the information with the rudimentary means of the language, leveraged by any of
the automatic approaches. The method that is proposed in Chapter 9 integrates
the user in the detection process and is heading toward leveraging domain know-
ledge. However, a completely automatic approach incorporating domain know-
ledge is not yet in sight (see Section 11.2).
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Techniques





109

Chapter 5 Basic Techniques and Metrics of 
Component Detection

Many (semi-)automatic techniques for atomic component detections have been
proposed in the literature. However, no attempt has been made so far to compare
and evaluate these methods. This chapter describes published techniques and
some extensions we made. It also unifies and classifies these techniques. An eval-
uation of the techniques will follow in Chapter 6.

5.1    What All Techniques Have in Common

At a higher level of abstraction, an abstract data type consists of a domain of val-
ues for the type and some allowed operations on that type. In an implementation
of an abstract data type, the domain of values is implemented by a data structure
which is read and set by routines - its operations. The user of an abstract data type
can declare objects of that type and pass them as actual parameters to the opera-
tions. Consequently, it is a necessary prerequisite for operations of an abstract
data type to mention the data type in their signature, i.e., their parameter list or
their return type in the case of functions. That is, all routines with a data type T in
their signature are candidates for an operation of the abstract data type T. How-
ever, this prerequisite is necessary but not sufficient. Some routines simply pass a
value of T to other routines and are not true operations of T. Many routines have
more than one parameter type so that it is necessary to decide which one they
belong to. For all kinds of routines which convert one type into another type this
can be hard to judge. Sometimes - especially in programming languages that do
not provide record types such as Fortran77 - one even has to look at several base
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types of the underlying programming language in a parameter list to form one
abstract data type. For example, one can have a stack implementation that passes
two parameters, one for the stack contents realized by an array and one for the
stack pointer implemented by an integer type.

Similarly, an abstract data object represents an abstraction of a state and the oper-
ations that manipulate the state. The state is implemented by a set of global
objects. These objects are set and used by the operations of the abstract data
object. Most of the time, programmers do not make the effort to group the global
objects of an ADO together as components of a record structure to make the con-
nection of the objects obvious. In many old programming languages they even
would not have a chance to do so because user-defined data types are not sup-
ported. Even in programs written in modern programming languages, one often
finds accesses to these global objects by routines that do no belong to the ADO
because of efficiency considerations. All that makes it difficult to find the objects
that together make up the abstract state and the routines that really represent the
ADO’s operations.

Considering these facts, it is obvious that the naïve approach of grouping types
together with all routines whose signature refers to them and of aggregating
objects with all routines that set or use them leads to erroneously large candidate
components. This strategy is discussed in the next subsection for global object
references. In the rest of this section, we present heuristics proposed to avoid
erroneously large ADT and ADO candidates by going beyond the simple refer-
ence criterion. Some of them can detect ADTs as well as ADOs, some of them are
specialized in one type of atomic component. Those that can detect both types of
atomic components merge the results of ADO and ADT detection into a hybrid
candidate if there is a routine that belongs to both an ADT and an ADO.

5.1.1    Working Example
The C code example in Figure 5-1 will be used to illustrate the various heuristics
in the following. It consists of an abstract data type List of Item with the accessor
routines empty, first, rest, and prepend and an abstract data object stack of Item
with the accessor routines init, push, pop, and size whose implementation is based
on the abstract data type List. Type Item is declared in a file of its own, whereas
the List and stack concept are declared in the same file though it would probably
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have been better to separate these distinct concepts into two files. Note also the
violation of the information hiding principle in the accessor function size of stack.
Because there was no function length available for List that a programmer could
have used, the programmer implemented size by a direct access to the component
length of type List. Hence, function size, which actually belongs to the abstract
data object stack, breaks the encapsulation of List.

An excerpt of the resource usage graph for this example containing all nodes and
most edges is shown in Figure 5-2 (actual-parameter-of, of-type, component references
are not shown). The example in Figure 5-2 also demonstrates that resource usage

graphs can become quite complicated even for short programs. As a matter of
fact, resource usage graphs even for medium size programs at the 30KLoc level
cannot reasonably be visualized anymore.

Figure 5-1. Example C program.

/*--- file list.c ---*/
typedef struct {

int len;
 Item cont[100];} List;

List empty () {
  List result;
  result.len = 0;
  return result;
}
Item first (List l) {
return l.cont[l.len-1];
}
List rest (List l) {  
  l.len--;
  return l;
}
prepend (List *l, Item t) {
  l->cont[l->len] = t;
  l->len++;
}

/*--- file list.c ---*/
static List stack;
void init () {
  stack = empty ();
}
void push (Item i) {  
  prepend (&stack, i);
}
Item pop () {
 Item result = first 
(stack);
 stack = rest (stack);
 return result;
}

int size () {
 return stack.length;
}

/*--- file item.h ---*/

typedef ... Item;
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5.1.2    Characteristics of the Techniques
From a mathematical point of view, all the techniques are basically clustering
methods that differ in the underlying cluster criterion, the clustering domain and
range, and whether the clusters are disjoint. A cluster is basically a set of entities
that meet the underlying clustering criterion of the method (the terms cluster,
group, and candidate are interchangeable). 

Clustering criterion. The clustering criterion is a heuristic approximation of
“real” criteria for atomic component composition. Because each technique has its
own criterion, this is the most distinguishing characteristic. Other properties of
the clustering methods may be shared.

Domain and range. The domain of a clustering method specifies what kind of
entities and relationships are considered for clustering. The range, on the other
hand, specifies what type of entities can be grouped together at all and hence what
kind of atomic components can be detected.

Disjoint clusters. Most methods produce disjoint clusters, but there are excep-
tions.

In the following description of the clustering methods, we will state the domain,
range, clustering criterion, and whether the methods produce disjoint clusters. In
doing so, the domain will be specified in terms of the views listed in Table 3-5 on

Figure 5-2. Resource usage graph for the example in Figure 5-1.
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page 68. The range will be stated as the kind of atomic components the method
can detect:

• Abstract data types (ADT) consist of user-defined types and subprograms.

• Abstract data objects (ADO) consist of global objects and subprograms.

• Hybrid components (HC) consist of global objects, user-defined types, and
subprograms.

• Related subprograms (RS) consist of subprograms only.

Furthermore, we will give the reference to the originators and specify the exten-
sions or modifications we made. Since the extensions and modifications are part
of joint work within the Bauhaus project, they are mainly common ideas of Jean-
François Girard, Georg Schied, and me.

5.2    Global Object Reference Heuristic

Clustering criterion. Global objects and all the routines that reference these
objects, regardless of where they are declared, are grouped together. 

In the case of a global error variable used in many parts of the system, this
approach will collapse a large part of the system into one atomic component. Yeh
et al. propose to exclude frequently used objects from the analysis to avoid this
unwanted effect.

Example. Applied to the example of Figure 5-1, Global Object Reference would
find the ADO {stack, init, push, pop, size}.

Name Global Object Reference
Reference Yeh et al. 1995

Domain Object Reference View

Range ADO

Disjoint Clusters Yes
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Algorithm. For Global Object Reference, we can use the generic algorithm 5-1,
which will also be used for other methods that produce disjoint clusters. The algo-
rithm iterates over the subprograms and groups them with their relevant con-
nected entities. What a relevant connected entity is depends upon the respective
technique; in terms of the algorithm, this is decided by a generic parameter that
yields for each subprogram all entities that have to be part of the same atomic
component as the subprogram. This function could also exclude frequently used
objects as proposed by Yeh et al. for the Global Object Reference heuristic.

Algorithm 5-1 uses the union-find implementation for disjoint sets (Hopcraft and
Ullman, 1983) where:

Algorithm 5-1. Generic algorithm to detect disjoint atomic components.

Generic parameter:
• function connected_entities: Entity → set of Entities

Input: 
• input view V

Output:
• disjoint clusters

Algorithm:

1. put each base entity in V into a set of its own:
for each entity E in V loop

new_set (E);
end loop;

2. clustering:
for each entity E in V where subprogram (E) loop

for each entity E’ in connected_entities (E) loop
union (find (E), find (E’));

end loop;
end loop;

3. results:
each remaining disjoint set is a cluster
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• new_set (e) defines a new set {e}

• union (s1, s2) unites the two sets s1 and s2; after the call, the two set identifiers
denote the same set, i.e., s1∪s2.

• find (e) yields the set that contains e; since all entities will be initially put into a
set and since the sets are disjoint, there is exactly one such set

To instantiate the generic algorithm for Global Object Reference, the function
referenced_objects as defined in Table 3-4 on page 65 serves as the actual param-
eter for connected_entities, which returns all global objects referenced by a given
subprogram:

(5.1)

5.3    Same Module Heuristic

In the ideal situation, i.e., when the system is properly decomposed, each module
contains one single atomic component. When we count on good design, we can
group all declarations of a module together to an atomic component which repre-
sents the abstract functionality of the module. This is the underlying clustering
criterion of the Same Module heuristic.

Clustering criterion. All related subprograms, user-defined data types, and glo-
bal objects that are declared in the same module are grouped together. A subpro-
gram is related to a data type when the data type occurs in the signature of the
subprogram. Likewise, a subprogram is related to an object when the subprogram
references the object. 

Name Same Module
Reference Girard, Koschke, 1997

Domain Object Reference View + Signature 
View

Range ADO, ADT, HC

Disjoint Clusters Yes

connected_entities S( ) referenced-objects S( )=
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This heuristic was first published in a case study by Girard and Koschke (1997).
However, the initial idea for this heuristic stems from Erhard Plödereder (1997).

In the case of Ada, a package body and its specification would form a module. In
C, modules do not exist, but programmers simulate the lacking concept by a
header file f.h for the specification and a C file f.c for the body. Same Module
assumes that programmers are disciplined and follow this convention. 

The Same Module heuristic will fail when parts of the abstract functionality of a
module are implemented elsewhere. However, it will still find individual atomic
components in very large modules that have many different logical functions
unless they are implemented by overlapping sets of subprograms, types, and
objects.

Example. For the example of Figure 5-1, Same Module would propose one ADT
{List, empty, prepend, first, last} and one ADO {stack, init, push, pop, size}
despite of the fact that these declarations are in one common file: The only con-
nections between parts of the stack and parts of the List are call relationships,
which are not considered by the Same Module heuristic (see Figure 5-2 on
page 112). However, if Item were declared in the same file, Same Module heuris-
tic would have assumed one big hybrid component consisting of the union of the
two sets above (including type Item) because the stack ADO’s accessor routines
also mention type Item in their signature.

Algorithm. Same Module can be implemented by instantiating the generic algo-
rithm 5-1 for disjoint clusters where referred-entities (defined in Table 3-4 on
page 65) is used for connected_entities; referred-entities returns the signature
types and the referenced objects of a subprogram; the module in which an entity,
X, is declared, is denoted by module(X):

(5.2)connected_entities S( ) referred-entities S( ) X module X( ) module S( )={ }∩=
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5.4    Part Type Heuristic

Often, we find abstract data types that represent some sort of container of other
abstract data types. For example, queues as containers of processes, or an account
containing data about its owner and the deposited money. For such abstract data
types there usually exists an operation that takes an element and puts it into the
container. For a process queue, for example, there will be an insert routine with
two arguments: the process to be inserted and the queue itself. Even though both
types are mentioned in its signature, we would not consider insert to be an opera-
tion for processes but for queues. The Part Type heuristic reflects this perception.
It is based on the part-type relationship which was already defined in Section
3.5.4.3.

Clustering criterion. Part Type groups a routine with those types in its signature
that are not a part type of another type in the same signature.

The basic assumption is that a part type is actually used to be put into its con-
tainer or to be retrieved from it. It does not check this assumption. Data flow anal-
ysis could validate this assumption.

Example. This can be illustrated with the following declarations:

typedef ... Item;
typedef struct {int len; Item contents [100];} List;
void prepend (List *l, T t);

Here, Item is a part type of List. That is why prepend would be an operation of
List according to Part Type and not of Item though both types are mentioned in
the signature of prepend. The detected ADT consists of {List, empty, prepend,
first, last}.

Name Part Type
Reference Liu and Wilde, 1990

Domain Signature View + Type Composition View

Range ADT

Disjoint Clusters Yes
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Algorithm. Again, the generic algorithm for disjoint clusters can be used to
implement the Part Type heuristic. The connected_entities of a subprogram are all
signature types excluding part types:

(5.3)

5.5    Same Expression Heuristic 

Often, the state of an abstract data object is implemented by a set of separate glo-
bal objects instead of a single record object. For example, an ADO stack could be
based on the following variable declarations:

Item contents [100];
int stackpointer;

However, the fact that the apparently separate constituents of an abstract data
object contribute to a common purpose often becomes visible when they occur in
the same expression, especially when one of the constituents is a composite data
structure and the other constituent is used as some kind of selector for the com-
posite data structure. In the above example, we can expect to find an expression
such as:

contents [stackpointer]

The level at which the selector appears does not matter. The stack example could
also be as follows:

Item **contents;
int stackpointer;

Name Same Expression
Reference Unpublished; Rainer Koschke

Domain Object Reference View + Same Expression View

Range ADO

Disjoint Clusters No

connected_entities S( )
T T signature-types S( )∈ T̃ signature-types S( )∈( )part-type T T̃,( )∃¬∧{ }

=
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...(*contents)[stackpointer]...

Likewise, common occurrence in a mathematical expression can be a hint for
relatedness:

printf (“area = %d\n”, length * width); 

We will also consider objects jointly occurring in the actual parameter list of the
same call as being in the same expression, extending the definition of same
expression given in Section 4.2.4. This extension has turned out be useful in the
evaluation of the Same Expression heuristic reported in Chapter 6. That is, the
three variables in the following code will also be considered to be in the same
expression:

set_coordinates (window, length, width);

As it was already discussed in Section 4.4, the phenomenon of apparently distinct
actual parameters together forming an abstract concept is called tupling (Koschke
et al., 1997). Tupling primarily occurs in older languages, like Fortran77, that do
not have record types. However, as our experiences with the systems investigated
indicate, examples for tupling can also be found in languages with record types,
like C.

Because the Same Expression heuristic is aimed at detecting composite abstract
data objects consisting of several objects, it ignores clusters with only one object,
in which no same expression relationship can occur.

Before we can specify the clustering criterion, a definition is needed. A con-
nected graph component is a subgraph whose nodes are all (transitively) con-
nected; in other words, each node is reachable from all other nodes within the
subgraph where the direction of edges is ignored.

Clustering criterion. All objects that are in the same connected graph compo-
nent in the same-expression view (see Table 3-5 on page 68) are grouped together 
with all the subprograms that reference at least one of these objects in the object 
reference view. Subprograms may belong to distinct clusters. Clusters with only 
one object are ignored. 
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Algorithm. Algorithm 5-2 computes non-disjoint clusters based on the same
expression relationship among global objects.    

Example. In the working example introduced in Section 5.1.1, there is only one
global object and, therefore, the Same Expression heuristic is not applicable. Let
us consider the example in Figure 5-3 instead that contains two abstract data
objects; the first one is shaped by a solid line, the second by a dashed line. Object
c is neither part of the first nor the second abstract data object though it is
accessed by accessor routines that belong to these abstract data objects. The
example illustrates also that overlapping candidates can result. 

Algorithm 5-2. Same Expression heuristic algorithm.

Input: 
• input view V

Output:
• a set of non-disjoint clusters

Algorithm:

1. extract all objects:
Vars:= {var | object (var) ∧ var ∈V};
Clusters := ∅;

2. clustering:
while Vars ≠ ∅ loop

Var := arbitrary_element (Vars); -- choose an arbitrary element
C := transitive_closure (neighbors (Var, {same_expression}));
Vars := Vars \ C;
if | C | > 1 then

Clusters := Clusters ∪ {C ∪ referencing_subprograms (C)};
end if;

end loop;

3. results:
Clusters is the result
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5.6    Internal Access / Non-Abstract Usage Heuristic

The purpose of an abstract data type is to hide implementation details of the inter-
nal data structure by providing access to it exclusively through a well-defined set
of operations. The idealized encapsulation principle entails that all routines that
access internal components of the abstract data type are considered to be the data
type’s operations which is exactly the attitude of the Internal Access heuristic. An
internal access for a record type is any record component selection.

Extensions. Yeh et al. proposed to consider internal access to record types only,
but the same principle can be applied to arrays and pointers as well:

• if T is an array then any index subscript is an internal access;

• if T is a pointer then any dereference is an internal access.

Originally, the subprograms are associated with those types in their signature
whose corresponding formal parameter is internally accessed in the body of the
subprogram. However, if we check only whether parameters are internally
accessed, a frequent pattern in the presence of pointers that simulate call-by refer-
ence in C will be missed: The value of a simulated call-by reference parameter is

Figure 5-3. Example of groupings by Same Expression heuristic.

Name Internal Access / Non-Abstract Usage
Reference Yeh et al., 1995 (extensions: Girard, Koschke, 1997)

Domain Signature View (extensions: Object Reference View) where 
edges are annotated with internal access information

Range ADT (extensions: ADO, HC)

Disjoint Clusters Yes

a
b

c d e

f1 f2

f3

reference
same_expression
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assigned to a local variable which is then used within the rest of the body. Before
the function ends, the value of the local variable is assigned to the designated
object of the pointer. This way, the programmer does not have to use the derefer-
ence operator for each occurrence of the reference parameter:

typedef struct {int a;} T;
void f (T *pt) {
T t = *pt;
t.a = ...; /* internal access to local variable */
*pt = t;

}

This pattern disguises the fact that the designated object of the parameter is inter-
nally accessed. Data flow analysis would reveal the internal access. As an approx-
imation without need for data flow analysis, we count as internal access any
access to the internal parts of a local variable of the same type as the parameter.
We have found that, for C, our approximation matches reality in most cases.

Though originally only proposed for finding abstract data types, the Internal
Access heuristic can also be extended to find abstract data objects in cases in
which state is implemented by record, array, or pointer variables, i.e., we can also
take internal accesses to composite global objects into consideration.

Furthermore, what an internal access basically represents is a non-abstract usage
of a type. The data structure, which should have been hidden according to the
information hiding principle, is no longer transparent. The same takes place when
a predefined operator is applied to an object. In this case, the programmer also
exploits the knowledge about the object’s data structure. As a conclusion, we can
widen the definition of internal access to include applications of standard opera-
tors to local and global objects as well as parameters. In doing so, the term inter-
nal access is no longer appropriate; that is why we will use non-abstract usage
instead. To sum it up, non-abstract usage includes:

• internal access for composite data structures as defined above

• application of predefined operators to global objects as well as parameters and
local objects of a user-defined type

Clustering criterion. The Internal Access/Non-Abstract Usage heuristic associ-
ates subprograms with all its non-abstractly used objects and signature types (a
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type T is non-abstractly used when there is a non-abstract usage of any expression
– excluding global objects – that has type T; this includes references to parameters,
local variables, or intermediate expressions).

Note that the clustering criterion does not consider every non-abstract usage of
local variables but only of those local variables whose type also appears in the
signature of the subprogram. The reason for this restriction is derived from the
necessary criterion for accessor functions of an ADT to mention the type in the
signature: A subprogram with a local variable of type T that does not mention T in
its signature is a client of the abstract data type T but not an accessor function.
Relaxing this restriction would lead to erroneously large candidates for systems
with limited or no information hiding.

Algorithm. Internal Access can be implemented by using the generic algorithm
5-1. For the generic parameter Connected_Entities, the instantiation uses function
internally-accessed (S) that yields all internally accessed objects and types of a
subprogram, S, in the union of object reference and signature view (where we
assume that reference and signature-type edges have an attribute non-abstract
that is true if there is a non-abstract usage by the subprogram S; see also Section
3.4.3 for a description of attributes and Section 3.5.2 for neighbor functions
restricted by attributes):

(5.4)

(5.5)

Example. In the example of Figure 5-1, empty, prepend, first, and last would be
added by Internal Access to the type List because of their internal access to it.
Internal Access would only detect a part of the ADO {stack, init, push, pop, size}
because the routines init, push, pop do not access the internal record components
of stack. Interestingly enough, the part {stack, size} is detected because the pro-
grammer breaks the information hiding principle while init, push, and pop are not
considered part of the ADO because information hiding is obeyed. 

The two atomic components of Figure 5-1 are an example for layered atomic
components, i.e., a component is built on top of another component. Layering is
not only used among atomic components but also often within large components.

connected_entities S( ) internally_accessed S( )=

internally_accessed S( ) successors S reference signature-type,{ } non-abstract, ,( )=
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Frequently within large components, there are a few core functions accessing the
internal data structure and several higher-level functions whose services are
implemented using the core accessor functions. Internal Access/Non-Abstract
Usage can only identify the core functions within layered components and only
the lower-level components when components are built on top of each other.

5.7    Delta-IC

High cohesion in the case of an abstract data object S implies that each of the sub-
programs in S references many objects of S; low coupling implies that each of the
subprograms of S references only very few objects that do not belong to S and that
only few subprograms from outside of S reference objects of S. The approach pro-
posed by Canfora et al. is heading in this direction. It basically consists of two
parts. At first, objects and subprograms are clustered to ADOs according to a spe-
cific usage pattern. Then all resulting clusters are rejected whose internal connec-
tivity is below a given threshold. The internal connectivity metric proposed by
Canfora et al. is described below.

The clustering pattern and the evaluation metric is defined on the object reference
view that describes the usage of global objects by subprograms. They can be
explained more easily in terms of the following definitions, given a subprogram S
and a global object V (we are using the concepts introduced in Section 3.1; Can-
fora et al. describe their approach in a slightly different, yet equivalent way):

subprograms related to S are all subprograms which set or use referenced
objects of S:

Name Delta-IC
Reference Canfora et al., 1993, 1996

Domain Object Reference View (extensions by Rainer Koschke: Sig-
nature View where edges are annotated with internal access 
information)

Range ADO (extensions: ADT, HC)

Disjoint Clusters No
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(5.6)

where refer-to (e) = referencing-subprograms (e) and referred-by = refer-

to-1, hence, referred-by (S) = referenced-objects (S). 

The reason why refer-to/referred-by are introduced here — instead of using refer-
encing-subprograms/referenced-objects directly — is that Delta-IC is extended to

types by re-defining refer-to below (referred-by is always defined as refer-to-1).

closely-related subprograms of S are all subprograms which set or use
only referenced objects of S:

(5.7)

Example. Given the object reference view of Figure 5-4 and F as the subprogram
under consideration, then the objects referred by F are {v1, v2}, the subprograms

related to F are {F, f1, f2, f3}, and the closely related subprograms are {F, f1, f2}. 

The candidate that is proposed as an abstract data object consists of all closely
related subprograms of the given subprogram S plus the objects referred by S, i.e.,
all objects set or used by S:

(5.8)

Figure 5-4. Example objects reference graph.

subprograms-related-to (S) F F refer-to(e)∈{ }
e referred-by (S)∈

∪=

closely-related-subprograms S( ) =

{F F refer-to e( )∈ referred-by F( ) referred-by S( )}⊆∧
e referred-by S( )∈

∪

v1

v2

v3

f1

f2

f3

F

candidate-cluster (S) closely-related-subprograms (S) referred-by (S)∪=
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Example. In the example of Figure 5-4, the candidate cluster is {v1, v2, F, f1, f2}

for the given subprogram F. Note that the proposed clusters depend upon the
given subprogram. Suppose F also referenced object v3, then the cluster for F

would be {v1, v2, v3, F, f1, f2, f3}; from the perspective of f3 we would get the

cluster {v2, v3, f2, f3}. Thus, clusters can overlap.

The candidate cluster is ranked by the internal connectivity metric and only pro-
posed if this metric yields a value greater than a user-determined threshold. The
internal connectivity measure (IC) and the improvement in internal connec-
tivity (∆IC) are defined as:

(5.9)

(5.10)

IC(S) is the portion of references to individual variables of the cluster from sub-
programs also inside the cluster (closely related subprograms) with respect to the
number of all references. If there is no reference from outside the cluster, IC(S) is
1. In the example of Figure 5-4, IC(F) is as follows: (2 + 3) / (2 + 4) = 0.83. The
subtrahend in the definition of ∆IC reflects the portion of subprograms that refer-
ence only a single variable of the cluster with respect to the number of all refer-
ences to that variable. In the example of Figure 5-4, the subtrahend of ∆IC is 1/4:
f2 is the only subprogram that accesses a single variable only, namely, v2, which is

referenced by 4 subprograms. Consequently, ∆IC(F) = 0.83 - 0.25 = 0.58.

The underlying intuition of the definition of ∆IC is to have only few references of
objects from outside the cluster (this motivates the internal connectivity measure
IC) and only few routines in the cluster that reference only one object of the clus-
ter (the second term in the formula for ∆IC). The latter is aimed at clusters whose
parts are more tightly coupled. We will discuss this below in more detail. 

IC(S)

{F F refer-to e( )∈ referred-by F( ) referred-by S( )}⊆∧
e referred-by (S)∈

∑

{F F refer-to e( )∈ }
e referred-by (S)∈

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

∆IC(S) IC(S) 
F referred-by (F) e{ }={ }

refer-to (e )
---------------------------------------------------------------------

e referred-by (S)∈
∑–=
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Clustering criterion. A candidate for a given subprogram S is candidate-clus-
ter(S) where ∆IC (S) ≥ Θ.

Algorithm. The original approach uses the following clustering algorithm (Can-
fora et al. 1996): 

It may be a sign of loose relatedness when a candidate’s internal connectivity is
below the threshold. The reason may be that the subprograms implement distinct
logical functions and therefore reference unrelated objects. The code of such sub-
programs could be separated into distinct parts that correspond to the distinct log-
ical functions by means of program slicing (Weiser, 1984). This is what Canfora
et al. proposed. However, for a pure reverse engineering process, which must not
change the system, slicing subprograms is out of the question. Furthermore, if
applied only fully automatically and non-iteratively, the nodes referred-by(S) will
not be collapsed. Omitting the slicing and validation steps reduces the outer loop
in algorithm 5-3 to one iteration (since the object reference view does not change)
and overlapping candidates may result. The subsection on extensions discusses
how overlapping candidates can be handled.

The most distinguishing characteristic of this approach is that it first generates
clusters and then uses a metric to assess the generated clusters whereas the other
techniques simply cluster without rating their candidates. We will take up this
idea again in Chapter 9 where we will use several metrics to assess the atomic
component candidates within the interactive framework. 

Algorithm 5-3. Original Delta-IC approach.

 repeat
build object reference view
for each subprogram S loop

if  ∆IC(S) ≥ Θ then
let the user validate candidate-cluster (S)
if accepted, collapse referred-by (S) into a single representative variable

else
slice S using different objects of candidate-cluster (S)

end if;
end loop;

until graph contains only isolated subgraphs consisting of an object grouping with one 
or more functions
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Moreover, the threshold used to filter out candidates in this approach offers the
user a way to influence the search for atomic components. All other techniques
generate always the same candidates; whereas in an interactive environment, the
user can play with different thresholds for Delta-IC and, hence, get different
results. Though the threshold makes the approach more flexible, it also compels
the user to search for a reasonable setting. Canfora et al. propose to establish the
threshold statistically by a smaller sample of the system. However, it is not yet
clear how big the sample has to be in order to allow a usable prediction.

Revisiting the ∆IC definition. The definition of ∆IC consists of two parts. The
second part, i.e., the subtrahend of ∆IC, covers substructures of the candidates
that consist of only one object and those subprograms that access solely this
object. It is motivated by the fact that the clustered variables are collapsed in
Algorithm 5-3. Yet, in the first iteration, there are no clustered variables, i.e., each
variable stands for itself. In that case, the subtrahend actually represents the inter-
nal connectivity of clusters around a single variable that consist of subprograms
that only access this variable and no other variable, i.e., if Cv is a cluster that con-

sists of a single variable V and all subprograms that only refer to this and no other
variable, then the following equation holds (which was neither shown nor men-
tioned by the original authors):

This will now be shown. The set subprograms-related-to is the same for all sub-
programs in CV. Let S be a subprogram of Cv, then referred-by(S) = {V} and

therefore:

where refer-to(V) depends only upon V. Furthermore, it is also true that:

S CV:  ∈∀ IC S( ) F referred-by (F) e{ }={ }
refer-to (e )

---------------------------------------------------------------------
e referred-by S( )∈

∑=

subprograms-related-to (S) F F refer-to(e)∈{ }
e referred-by (S)∈

∪=

F F refer-to V( )∈{ }=

refer-to= V( )
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Thus, we can conclude that:

when we have a cluster Cv with one object V and all subprograms that only access

V. 

Such substructures around a single variable might be considered a candidate on
their own and therefore it could make sense to subtract their internal connectivity
from the overall internal connectivity of the composite structure. Yet, this is intu-
itively not appropriate for the following reasons:

• The decision to consider only subclusters of single variables is arbitrary. Why
not considering subclusters with two or more variables?

• Furthermore, one should think that a subprogram that references one variable
only and this variable is in the cluster, the subprogram should definitely also be
in the same cluster. An example is an abstract data object stack based on two
global variables stack_content (array for the stack content) and stack_pointer

closely-related-subprograms (S)

F F refer-to(e)∈ referred-by(F) referred-by (S)⊆∧{ }
e referred-by (S)∈

∪=

F F refer-to(V)∈ referred-by(F) referred-by (S)⊆∧{ }=

F F refer-to(V)∈ referred-by(F) V{ }⊆∧{ }=

F referred-by (F)={V}{ } F F Cv∈{ }==

IC(S)

{F F refer-to e( )∈ referred-by F( ) referred-by S( )}⊆∧
e referred-by (S)∈

∑

{F F refer-to e( )∈ }
e referred-by (S)∈

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

{F F refer-to V( )∈ referred-by F( ) referred-by S( )}⊆∧
{F F refer-to V( )∈ }

--------------------------------------------------------------------------------------------------------------------------------------=

 closely-related-subprograms (S) 
 subprograms-related-to (S) 

-----------------------------------------------------------------------------------=

F referred-by (F) V{ }={ }
refer-to (V )

----------------------------------------------------------------------=
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(index into stack_content) having an accessor function size to return the num-
ber of elements on the stack; size would need to reference stack_pointer only
and still does belong to the cluster.

Moreover, the metric considers only coupling but not cohesion of the candidate
clusters though one would expect that both coupling and cohesion should be
taken into account. A minor point of critique is that the term internal connectivity
is misleading. What the formula for the internal connectivity measures is the frac-
tion closely-related-subprograms versus related-subprograms with respect to
individual variables of the cluster, which is a relationship between the cluster and
its environment as opposed to an internal property.

Extensions. The original Delta-IC method as proposed by Canfora et al. involves
slicing of subprograms that are part of more than one cluster. This, however,
means that the system is changed. In the context of Canfora et al.’s work this
makes sense since their work is aimed at finding reusable components. Subpro-
grams involved in more than one atomic component fulfill different logical func-
tions for different atomic components. Reusing one atomic component then
would imply the need to import other atomic components as well, since the multi-
function subprogram shares code with many atomic components. 

Our goal is to recover information for program understanding. The system must
not be changed during this reverse engineering phase (it may be changed after-
wards), i.e., slicing is out of the question. Leaving out slicing may result in over-
lapping candidates. Merging these overlapping candidates regardless of the
degree of overlap is not satisfactory. This approach was taken in an earlier evalua-
tion of the techniques (Girard and Koschke, 1997) in order to get a fair evaluation
since the other methods always produce distinct candidates. For the application of
the Delta-IC method, we can do better: We can merge two candidates when they
share a large amount, otherwise they remain distinct and overlapping. In particu-
lar, this is the right approach when the user can be consulted. Merging similar
candidates frees the user from an overwhelming number of similar candidates:
She or he has to judge only critical cases.

The modified Delta-IC algorithm 5-4 merges candidates only when they have
many elements in common (Step 3). We treat one component S as a match of
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another component T when S ⊆p T according to the partial subset relationship

introduced in Section 3.5.4.3, which allows for inexact matches. Step 3 merges
the overlapping candidates.

Algorithm 5-4. Extended Delta-IC analysis.

Input: 
• object reference view V
• ∆IC threshold Θ

Output:
• set of atomic component candidates C

Algorithm:

1. generate candidates:
for each subprogram S in V loop

clusters (S) := candidate-cluster (S, V);
end loop;

2. filter candidates whose ∆IC is less than Θ:
for each subprogram S in V loop

if ∆IC (clusters (S)) < Θ then
clusters (S) := ∅;

end if;
end loop;

3. merge overlapping candidates:
while ∃ a pair of subprograms {S1, S2} in clusters 

where clusters (S1) ⊆p clusters (S2) ∨ clusters (S2) ⊆p clusters (S1) 

loop
   clusters (S1) := clusters (S1) ∪ clusters (S2);
   clusters (S2) := ∅;
end loop;

4. return results:
for S in clusters’Range where | clusters (S) | > 1 loop

C := C ∪ {clusters (S)}
end loop;
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Generalization for types. The internal connectivity metric was originally pro-
posed only for abstract data objects. However, we can extend the domain of con-
nectivity to types as well. Before we actually generalize the metric, we state some
observations.

There are two different kinds of entities of an abstract data object: variables and
constants that we do not want to be accessed from outside of the abstract data
object and subprograms that act as public accessor routines. According to these
two classes, there are the following different kinds of relationships that we
implicitly distinguished above:

1. non-abstract usage: an object is directly referenced by a subprogram. There
are two categories of non-abstract usage:

a. the object is non-abstractly used by a subprogram within the cluster

b. the object is non-abstractly used by a subprogram outside of the cluster

2. abstract usage: an object is not used directly by a subprogram S outside of the
cluster but by an accessor routine of the atomic component called by S, in other
words: S is accessing the object only by means of the accessor routine associ-
ated with the object.

Cases 1.a and 2 conform to the information hiding principle, case 1.b does not.
Hence, metrics for cohesion and coupling should penalize 1.b. The metrics for
objects in this section are defined with this in mind.

As opposed to objects, we do not want to hide types - they would not be of any
use then. Instead, we want to hide the underlying data structure of a type. This
corresponds to the idea of the Internal Access heuristic. Types should be used
abstractly by subprograms outside of the abstract data type. A non-abstract usage
of a type is an internal access according to the definition in Section 5.6.

Now that we have a unifying concept non-abstract usage for both types and
objects, we can generalize the specification of refer-to and referred-by accord-
ingly. The formulas (5.6) - (5.10) need not be changed. So far, refer-to(v) has been
defined as referencing-subprograms(v) which is defined as predecessors(v, {refer-
ence}) (see Section 3.5.3). Hence, the definition of refer-to can be extended as
follows in order to include the restricted signature-types relationships (only those
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signature types are considered that are annotated by an internal access; see Sec-
tion 5.6):

(5.11)

Since referred-by is the relational inverse of refer-to:

(5.12)

Only signature types are considered by the definition above; local-obj-of-type edges
annotated as non-abstract are ignored for the same reason as for the Internal
Access heuristic stated in Section 5.6.

By re-definition of refer-to, equation (5.10) is now also applicable to types. How-
ever, what was found fault for the original definition of Delta-IC for abstract data
objects, namely, that the definition is aimed at avoiding subclusters consisting of
a single object and those subprograms that only access this object, is even more
problematic for types. Let us assume information hiding is applied for a compo-
nent, C, consisting of a type T and its accessor functions S1,…,Sn (n≥1). Then the

proposed cluster does not depend upon the chosen subprogram and is always {T,
S1,…,Sn}. The internal connectivity IC for this cluster is exactly 1 since only the

accessor functions S1,…,Sn are referring to the type according to (5.11). However,

the subtrahend in the definition of ∆IC in (5.10) is 1, too (let S ∈ {S1,…,Sn}):

Hence, ∆IC(S) = 1 - 1 = 0 for every subprogram S referring to T. Interestingly
enough, ∆IC is also 0 for the following scenario:

• there is a set of subprograms, S ={S1,…,Sn}, and a type, T, where T ∈ referred-

by (Si) ∀Si ∈ S

• only a subset S’ ⊂ S refers to T only; all other subprograms of S non-abstractly
use other types as well

refer-to(e) =

predecessors e reference{ },( ) predecessors e signature-type{ } non-abstract, ,( )∪

referred-by(s) refer-to
1–

s( )=

successors s reference{ },( ) successors s signature-type{ } non-abstract, ,( )∪=

F referred-by (F) e{ }={ }
refer-to (e )

---------------------------------------------------------------------
e referred-by (S)∈

∑
F referred-by (F) T{ }={ }

refer-to (T )
---------------------------------------------------------------------- 1= =
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Then, for any subprogram, s ∈S’ (hence, referred-by (s) = {T}) the following
holds:

and 

Hence:

That is to say, the candidate-cluster for this scenario, in which subprograms out-
side of the candidate non-abstractly use the type, has the same ∆IC value as a can-
didate-cluster that represents a pure abstract data type.

Of course, the equation holds also for abstract data objects that contain only one
object. However, abstract data types with only one type are much more frequent
than abstract data objects with only one object. To sum it up, Delta-IC is not
really appropriate for atomic components containing only one object or type.

In order to see whether Delta-IC is better suited for components with more than
one object or type, let us revisit its definition (5.10). The upper bound of ∆IC is 1
and is reached for a cluster that contains at least two types or objects and whose
subprograms are referring to more than one type or object in the cluster (hence,
the subtrahend of (5.10) is 0) and to no object or type outside of the cluster (IC is
1). This makes sense  though it is not clear why highly cohesive clusters with
more than one type or object should have a higher ∆IC than highly cohesive clus-

 closely-related-subprograms (s) F referred-by (F) T{ }={ } S' S⊂= =

 subprograms-related-to (s) refer-to (T) S= =

IC(S)

{F F refer-to e( )∈ referred-by F( ) referred-by S( )}⊆∧
e referred-by (S)∈

∑

{F F refer-to e( )∈ }
e referred-by (S)∈

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

{F F refer-to T( )∈ referred-by F( ) referred-by S( )}⊆∧
{F F refer-to T( )∈ }

--------------------------------------------------------------------------------------------------------------------------------------=

F referred-by (F) T{ }={ }
refer-to (T )

----------------------------------------------------------------------=

F referred-by (F) e=
refer-to (e )

--------------------------------------------------------
e referred-by S( )∈

∑ ∆IC S( )==
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ters with only one object or type. The lower bound of ∆IC depends upon the num-
ber of objects in the cluster. Given a subprogram, S, that refers to objects V1,…,Vn

where each object Vi in V1,…,Vn is accessed by m other subprograms Si,1,…,Si,m

and referred-by(Si,j) = {Vi} for 1 ≤ j ≤ m (see Figure 5-5). Then, IC(S) = 1 because

of closely-related-subprograms (S) = related-subprograms (S). However, the sub-
trahend of ∆IC is as follows:

 

where  approaches 1 for large m. 

Hence,  and, therefore, clusters based on Si,j are preferred due to

 which is what one would expect since S appears like a badly

designed initialization function that incorporates initialization code for different
components.  

Another problematic property of ∆IC is that coupling and cohesion are unbal-
anced: While the value of IC, which approximates coupling, can only be between
0 and 1, the subtrahend of ∆IC, which approximates lack of cohesion, can be
between 0 and n (where n is the number of objects and types in a cluster). It
would be useful to adjust the balance between coupling and cohesion with respect
to specific system characteristics.

The extensions to Delta-IC presented in this section are adaptations of the
approach to a pure recovery process that does not allow for changes in the system.
The ideas of the original authors are preserved. The critique of the metrics used

Figure 5-5. Cluster with low ∆IC.

F referred-by (F) e{ }={ }
refer-to (e )

---------------------------------------------------------------------
e referred-by S( )∈

∑ n m 1–
m

-------------×=

m 1–
m

-------------

IC S( )∆ 1 n–≈

IC Si j,( )∆ 0=

S

S1,1,…,S1,

V1 V2 Vn

S2,1,…,S2, Sn,1,…,Sn,

…
referred-by
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for Delta-IC leads to a more substantial change of the approach that will be
described in the next section.

5.8    Internal and External Connectivity

The general aim of the definition of ∆IC is to minimize external connectivity and
to maximize internal connectivity. However, what is called internal connectivity
(IC) in the Delta-IC approach is rather a measurement between the cluster and its
environment and, therefore, no internal property. 

Moreover, IC depends upon the considered subprogram. If one wants to use the
metric to rate an arbitrary cluster (that need not to be a cluster in the sense of
Delta-IC), one has to select one of the subprograms of this cluster to be able to
compute the metric and it is generally not clear which one to choose. The metrics
defined in this section will only depend on the cluster as a whole. Furthermore,
the new metrics allow balancing coupling and cohesion and do not put clusters
with only one object or type at a disadvantage.

Internal and external connectivity as defined in this section are primarily pro-
posed in this thesis for assessing candidates (see Section 8.4 and Section 9.3).
However, they can also be used as the underlying metric of the Delta-IC algo-
rithm 5-4. Moreover, they can also be used to establish a partition of the union of
object reference and signature view (including non-abstract usage information)
that minimizes external connectivity and maximizes internal connectivity. In
order to establish such a partition, genetic algorithms could be used similar to the
approach of Mancoridis et al. (1999). Moreover, if the atomic components are

Name Internal-External-Connectivity
Reference Rainer Koschke, unpublished

Domain Object Reference View and Signature 
View (where edges are annotated with 
internal access information)

Range ADO, ADT, and HC

Disjoint Clusters No
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known, one could also use these metrics to assess the degree of information hid-
ing of the system.

First of all, we make a clear distinction between internal and external connectiv-
ity, in other words: between cohesion and coupling. The internal connectivity
(IntC) is only based upon relationships within the atomic component, the external
connectivity (ExtC) is a measurement between an atomic component and its envi-
ronment. 

The internal connectivity of a cluster is defined as the degree to which the objects
and types of the cluster are referred by subprograms within this cluster (subpro-
grams was already defined in Section 3.5.4.1 and refer-to is defined by (5.11) on
page 133):

(5.13)

where OT(C) = objects (C) ∪ types (C) is the set of objects and types in C
(see Section 3.5.4.1 for the definition of objects and types).

The motivation of this formula is that subprograms should refer to many objects
and types of the cluster to be part of it; thus, we are aiming at a high cohesion.
The IntC(C) value is always in the range of 0 and 1. Good design should aim at a
high IntC(C) value.

Analogously, we can define external connectivity as the degree to which objects
and types of a cluster are referred by subprograms outside of the cluster (in rela-
tion to their total usage):

(5.14)

External connectivity corresponds to coupling, i.e., we are striving for atomic
components with low external connectivity. The ExtC(C) value is always in the
range of 0 and 1. Good design should aim at ExtC(C) = 0. 

IntC C( ) 1
OT C( )
-------------------- refer-to(e) subprograms C( )∩

subprograms C( )
---------------------------------------------------------------------------

e OT C( )∈
∑×=

ExtC C( ) 1
OT C( )
-------------------- refer-to e( ) / subprograms C( )

refer-to e( )
--------------------------------------------------------------------------

e OT C( )∈
∑×=
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Altogether, in order to minimize external connectivity and maximize internal con-
nectivity, only clusters for which the degree of connectivity

(5.15)

is above the threshold should be accepted. Factor a is used to balance between
internal and external connectivity. For normalization, constant 1 is added to the
nominator and the term is divided by a+1. Because both IntC(C) and -ExtC(C)+1
yield values between 0 and 1, connectivity(C) is always between 0 and 1.

5.9    Schwanke´s Arch Approach

The techniques described above compare pairs of entities by their direct relation-
ships in order to decide whether they belong to the same atomic component.
However, a complementary source of information is the environment of the com-
pared entities as stated by Schwanke (1991):

“If two procedures use several of the same unit-names, they are likely to be
sharing significant design information, and are good candidates for placing
in the same module.”

And not only what kind of entities (unit-names) they commonly use increases
their relatedness but also by which common entities they are used. For example,
the implementations of a sine and a cosine function will both have a float parame-
ter and result type, but they also will likely be used in the same context, i.e., have
common callers. Schwanke’s approach takes this into account. 

Name Schwanke’s Arch Approach
Reference Schwanke, 1991; Schwanke and Hanson, 1994

Domain Base View

Range RS

Disjoint Clusters Yes

connectivity C( ) a IntC C( )× ExtC C( ) 1+–
a 1+

---------------------------------------------------------------=
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Schwanke’s work is aimed at module detection. Subprograms are clustered into
modules based on a similarity metric (clustering algorithm 5-5).

Clustering criterion. In each iteration, the most similar groups are combined
using the similarity metric described below. 

Similarity between subprograms. The group similarity used to combine groups
in algorithm 5-5 is based on a similarity between subprograms. Given two sub-
programs A and B, the similarity metric used during clustering is defined as fol-
lows:

(5.16)

wherein Common (A,B) reflects the common features of A and B and Distinct
(A,B) reflects the distinct features. Linked (A, B) is 1 if A calls B or B calls A, oth-
erwise it is 0. The two parameters k ≥ 0 and d ≥ 0 are weights given to Linked and
Distinct in Sim. They have to be ascertained by experiments on a sample of the
subject system. The parameter n ≥ 0 is used for normalization purposes; it will be
considered 0 in the following.

Features of a subprogram A are all non-local names that A uses including the
names of procedures, macros, typedefs, objects, and even the individual record
component names of structured types and objects. Record component names of
structured types and objects are treated as if they were unique, i.e., if two record
types or objects accidentally have record components of the same name, then
these names are considered distinct. But not only what A uses is a feature of A,
the fact that A is used by another subprogram (i.e., the other subprogram calls A)
is also considered a feature of A. Technically, a feature binding can be expressed

Algorithm 5-5. Similarity Clustering algorithm.

place each routine in a group by itself
repeat

identify the two most similar groups
combine them

until the existing groups are satisfactory

Sim A B,( ) Common A B,( ) k Linked A B,( )×+
n Common A B,( ) d Distinct A B,( )×+ +
-----------------------------------------------------------------------------------------------------=
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by a pair (A, B) where A uses the non-local name B, or, in other words, A has fea-

ture B. The fact that A is called by B is expressed by (A, B*). The notation B*

denotes a synthetic name derived from B. This represents the difference between
a name used in a unit and the name of a place where the unit is used. The distinc-

tion is made so that (A, B) and (A, B*) are distinct pairs.

Common and Distinct are computed as weighted sums (features (A) denotes the
features of A):

It obviously makes a difference whether two subprograms have a rare or frequent
feature in common. For example, an error object which is used everywhere in the
system is less distinctive than an object that is only used by a small portion of the
system. Using the Shannon information content to ascertain the individual feature
weights takes this into account (Shannon, 1972). It gives frequent features less
weight and vice versa:

where Probability(x) is the fraction of all entities that have x in common. The
hypothesis is that rarely used entities are more significant than frequently used
entities. 

Group similarity. Based on the similarity between subprograms, the similarity
for groups is defined as the maximum similarity between any pair of group mem-
bers (one from each):

(5.17)

Common A B,( ) W features A( ) features B( )∩( )=

Distinct A B,( ) W features A( ) features B( )⁄( ) W features B( ) features A( )⁄( )+=

W X( ) wx
x X∈
∑= where wx is the weight of feature x

wx ld Probability x( )( )–=

GSim A B,( ) max Sim a b,( ) a A∈ b B∈∧( )=
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Extensions. An extension to this approach was proposed by Schwanke himself in
joint work with Hanson in 1994. In the extension, they use a nearest neighbor
approach to classify components. 

The nearest neighbor approach works as follows. The basic similarity measure
between individual entities must be monotonic and matching, as described by
Tversky (1977). This makes it reasonable to use the similarity measure to com-
pare one entity, S, to each of the other entities, Ti, and rank them by their similar-

ity to S. This ranking identifies which of the Ti are the nearest neighbors of S. An

entity, S, in an existing software system can then be classified by identifying the
existing group G that contains a plurality of the near neighbors of S. Schwanke
and Hanson use an arbitrary cutoff by defining “near neighbors” to be the five
nearest neighbors (in the following the number of nearest neighbors considered is
denoted by k). For tie-breaking, points according to nearness are assigned. Then S
belongs in the group G for which the neighbors of S that belong to G represent the
most points. The point values are arbitrary, but observe the following characteris-
tics (let Ni be the i'th nearest neighbor): N1 is worth k points, N2 is worth k-1, and

so forth; i.e., Ni is worth k-i+1 points where i is in the range of 1…k.

Example. Consider the following example scenarios:

1. Each near neighbor is in a different group: nearest neighbor wins.

2. Group G1 has N1, G2 has N2 and one of N3, N4, or N5: any two near neighbors

are worth at least as much as the single nearest neighbor.

3. G1 has N1 and N2, G2 has N3, N4, and N5: the two nearest neighbors beat the

next three. 

Looking at these kinds of scenarios could help decide what point assignments
should be used. The “point” is, the weights are chosen to make ordinal compari-
sons do the right thing.

For this k-nearest neighbor approach, a group similarity measure is not needed
and that is why Schwanke and Hanson’s paper do not investigate group similarity
measures, yet Schwanke suggested in a personal communication a possible group
similarity measure based on the same principle (1998):
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(5.18)

where pS(T) is the number of points assigned to T for being a near neighbor of S.

That is, this similarity varies directly with the number of near neighbors of mem-
bers of B that belong to A, and the number of near neighbors of members of A that
belong to B. Dividing by the number of relationships in pairs in (A∪B) prevents
large groups from getting larger just because more neighbor relationships are
involved. Qualitatively, the similarity is the average reduction in member loneli-
ness that merging the groups would produce. (Member loneliness is the extent to
which the near neighbors of a member belong to other groups.) 

The effect of this group similarity measure on clustering can be exemplified as
follows. First, the clustering algorithm would pair up all the {S,T} that were
mutually nearest neighbors (10 points/2 = 5). Next it would pair up all the remain-
ing {U,V} for which U was nearest neighbor of V, and V was second-nearest for
U. (9 points/2 = 4.5).

Schwanke proposes the following exercise to understand the contribution of the
group similarity for clustering: compute p({A,B,C}) for all possible neighbor
rankings among A, B, and C, and find the cases where the algorithm would prefer
forming a triplet from a pair and a singleton rather than forming a new pair out of
two singletons. For example,

{a,b,c} := {a,b} + {c} vs.{d,e} := {d} + {e}

The maximum possible value p({a,b,c}) is (5+4+5+4+5+4) = 27. The minimum
possible value of p({a,b}), given the values in the previous line, is (5+5)=10,
because the algorithm would have formed that cluster first. So, Sim ({a,b},{c}) in
this case is (27-10)/6 = 2.84 and this triplet {a,b,c} would not be formed until
most units were in pairs. Only pairs worth (5+0)/2, (4+1)/2, (3+2)/2, etc., would
be formed later. So, almost any unit whose nearest neighbor is not already in a
group would be paired with that neighbor before any triplets were formed.

The problem of learning the appropriate weights is addressed by using a feedfor-
ward neural network and backpropagating errors (Schwanke and Hanson, 1994).

GSim A B,( ) p A B∪( ) p A( ) p B( )––
A B∪ A B∪ 1–( )×

----------------------------------------------------------= where p X( ) pS T( )
S T X∈,

∑=



                                               143

Type-based Cohesion

The network is designed to mirror the model of similarity judgment according to
(5.16). 

In order to distinguish the original approach from 1991 from the extension of
1994, the former approach is called the Arch approach and the latter the iArch
approach following the terminology Schwanke used in his papers.

The original Arch approach was extended to detect atomic components by Jean-
François Girard, Georg Schied, and me in many ways. The enhancements are so
manifold that the extension can be considered a new approach. It will be dis-
cussed in Chapter 7.

5.10     Type-based Cohesion

Patel et al. propose an approach similar to Schwanke’s similarity clustering,
grouping subprograms that share a large amount of types. The main difference to
Schwanke’s approach is that Schwanke considers any shared non-local features
and not just types. We will discuss further differences after the introduction of
Patel et al.’s approach.

Patel et al. take into account every type of an expression occurring in the body of
a subprogram (both left hand side as well as right hand side expressions) and all
types that are used in declarations of the subprogram (declarations of local
objects, parameters, and record components as well as type declarations). Each
occurrence of a type or record component in any expression or declaration within
function f is counted as follows:

• If a reference is made to object (or parameter) V and V has type T, then each
reference to V increments the counter associated with type T.

Name Type-Based Cohesion
Reference Patel, Chu, and Baxter, 1991

Domain Type Composition View + Specific Usage

Range RS

Disjoint Clusters Yes



Basic Techniques and Metrics of Component Detection

144

• Moreover, if T is a part-type of some other type T’, then the counters of all
types and components in the path from T to the root of the structured type are
increased by one.

• If object V is a local object of function f with type T, then the counter of T is
increased by one.

Example. The approach is based on the type composition view. It will be exem-
plified by the C code in Figure 5-6 (the example is a translation of Patel’s example
into C). 

Function f is related to the following types: int (local variable i), float (parameters
rp and ip, components real_part and imag_part), Complex (local variable X), and
Position_Vector (local variable A). Furthermore, it references the components,
real_part and imag_part, of record Complex. The relations of the types are as in
the type composition view in Figure 5-7. 

For example, the counter of int is 6 because

• int occurs in the declaration for i

• i occurs in the initializing expression of the loop

• i occurs in the termination condition of the loop

• i occurs as loop increment

Figure 5-6. Example C code for Type-based Cohesion.

typedef struct {float real_part; float imag_part;} Complex;
typedef Complex Position_Vector [100];
void f (float rp, float ip) {
Position_Vector A;
Complex X;
int i;

X.real_part = rp;
X.imag_part = ip;
for (i=0; i<100; i++) {
A[i].real_part = X.real_part;
A[i].imag_part = X.imag_part;

}
}
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• i occurs twice as index to A

The counter for Complex is 7 because

• a variable X is declared of type Complex

• there are two assignments to variable X

• there are two uses of variable X

• there are two assignments to A[i] which is of type Complex

The counter for float is 10 because

• there are two parameters, rp and ip, of type float

• parameter rp is used once

• parameter ip is used once

• X.imag_part (of type float) is used once and set once

• X.real_part (of type float) is used once and set once

• A[i].real_part (of type float) is set once

• A[i].imag_part (of type float) is set once

And finally, the counter of Complex.real_part is 3 (likewise for Com-
plex.imag_part) because

• X.real_part is set once

• X.real_part is used once

• A[i].real_part is set once

Figure 5-7. Type composition view for types related to function f in Figure 5-6.
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Similarity between subprograms. The relatedness of a function f to a sequence
S of n types [T1, T2,... Tn] (including record components) can then be represented

as an n-dimensional vector RS(f) = (c1, c2,..., cn) where ci is the counter associated

with Ti computed as described above. Two functions f1 and f2 are compared based

on RS(f1) and RS(f2) using the cosine of the angular separation between binary

vectors (inspired by work on information retrieval principles; Salton, 1968):

(5.19)

Similarity between groups. The similarity for two groups of subprograms, A and
B, where A = {a1, a2,..., ap} and B = {b1, b2,..., bq} can be defined in terms of the

similarity between all subprograms in the union of A and B. Let S = A ∪ B = {s1,

s2,..., sn}:

(5.20)

Patel et al. propose this as a cohesion metric for subprograms in a module, but it
can also be used to cluster similar groups within algorithm 5-5 to find groups of
related subprograms.

Differences to Schwanke’s approach. Schwanke’s and Patel’s approaches are
similar, but there are substantial differences:

• Patel et al.’s similarity between groups is based on the angular separation of
vectors whereas Schwanke proposes to use the maximum of the similarities
between two groups or to use the k-nearest neighbor approach. 

• The name of an entity counts only once at most in the approach of Schwanke.
In the approach of Patel et al., it counts as often as it occurs. 

Sim X Y,( )

xi yi⋅
i 1=

n

∑

xi
2

i 1=

n

∑ yi
2

i 1=

n

∑×

-----------------------------------------------=

GSim S( )

Sim si sj,( )
N
∑
n n 1–( )⋅ 2⁄
--------------------------------= where N i j,( ) i j, 1 … n, ,{ } i j>∧∈{ }=
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• Direct relations between subprograms (i.e., the two subprograms call each
other) are regarded by Schwanke; Patel et al. do not regard direct relations
between subprograms.

• Schwanke also considers the fact that two subprograms are called by the same
subprogram or both call the same subprogram, i.e., indirect relations of subpro-
grams other than relations to types.

• All types and names of record components count equally in Patel et al.’s
approach; Schwanke weighs them.

• Patel et al.’s similarity is basically a relation between subprograms and types,
though this relation may be derived through used objects, whereas Schwanke’s
similarity is a relation between subprograms and non-local names. This can
lead to very different results. An example will make this difference clear. Con-
sider the following C code:
T a, b;
f () { a = b; }
g () {T i,j; }

Patel et al.’s metric considers f and g similar because both a, b, i, and j are all of
type T whereas the similarity between f and g is 0 by Schwanke’s metric.

Patel et al.’s approach can - to some extent - be considered a special case of
Schwanke’s approach. The major advantage of Schwanke’s approach is that simi-
larity is a relation based not only on related types but based on all non-local
names. Whether it makes sense to count each occurrence of a type (or record
component), as proposed by Patel et al., has to be validated in practice.
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5.11    Strongly Connected Components

Mutually recursive subprograms form an atomic component because none of
them can be omitted without loosing a piece of information for the understanding
of the other subprogram in the component. Mutually recursive subprograms form
a cycle in the call graph which corresponds to the notion of strongly connected
components in graph theory. For example, in the call graph in Figure 5-8, we find
two strongly connected components {4, 8} and {6, 10, 11}. They can be detected
using the linear-time algorithm of Tarjan (1974).

Clustering criterion. All strongly connected components in the call graph form
an atomic component.

Name Strongly Connected Components
Reference Cimitile, A. and Visaggio, G. (1995)

Domain Call View

Range RS

Disjoint Clusters Yes

Figure 5-8.  Example of strongly connected components.
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5.12    Dominance Analysis

Atomic components often have local subprograms that offer basic services to the
accessor routines that constitute the interface of the atomic components. These
subprograms do not necessarily mention the type of the ADT in their signature or
reference the global objects of the ADO, respectively, and they may remain unde-
tected by all approaches described above. Because these basic service subpro-
grams are local to the atomic components, they are an essential part of them and
an atomic component cannot be understood without them. Local in this context
means that they are only used by routines in the atomic component. It does not
mean that they are local in the sense of nested scopes; quite the opposite: Because
they may be used by several other routines in the atomic components, they must
be visible to all of them, not to mention that C does not allow nested subpro-
grams. These kinds of local routines can be detected by means of dominance
analysis. Locality in the mentioned sense can be viewed as a dominance relation
in graph theory. Before we show how, we define the dominance relation:

A node, N, is said to dominate another node, M, in a directed graph, G, if
each path from the root of G to M contains N. If N is a dominator of M and
every other dominator N’ of M is also a dominator of N, then N is called an
immediate or direct dominator of M. The dominance relationship can be
represented as a dominance tree where a node’s parent is its immediate
dominator. 

Cimitile and Visaggio (1995) propose to apply dominance analysis to call graphs
to identify candidates for reusable modules. In their approach, cycles (i.e.,
strongly connected components) are collapsed before dominance analysis is
applied. This approach is applied here to detect additional entities local to the
components already found. The main differences are that not only cycles are col-

Name Dominance Analysis
Reference Cimitile, A. and Visaggio, G. (1995)

Domain Call View, Object Reference View, Type 
Usage View, and Components View

Range Yields additional local subprograms/objects.

Disjoint Clusters Yes
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lapsed, but also any atomic component and, furthermore, dominance analysis will
here be applied not only to the call view, but to the union of the call, type usage,
and object reference view (see Table 3-5 on page 68). This way, objects and types
local to components can be detected. The algorithm involves the following basic
steps:

1. All members of an atomic component are collapsed to a single node and all
edges to and from members are redirected to and from the substituting node
(this step is denoted by Collapse).

2. Dominance analysis is applied to the collapsed graph resulting from the previ-
ous step.

3. In the dominance tree, each component C absorbs its (transitively) dominated
subprograms that are not dominated by any other component dominated by C.

Any (transitive) descendant of node A in the dominance tree is local to A. That is,
we can add all descendants of a component C in the dominance tree (i.e., the tran-
sitive closure of C with respect to dominate edges) to C. However, as the example
dominance tree in Figure 5-9 illustrates, there may be another component C’
(transitively) dominated by C. Then, the descendants of C’ in the dominance tree
should rather be considered part of C’ instead of C since they are primarily local
to C’; C’ can then be considered a part of C. For the example in Figure 5-9, S1 and

C’ are part of C whereas S2 and S3 are part of C’.

Clustering criterion. A base entity N is considered part of the first component on
the path from N to the root in the dominance tree. More formally, the entity is
added to its primarily dominating atomic component. An atomic component AC is
said to primarily dominate an entity N if and only if AC dominates N and there is
no other atomic component dominating N that is also dominated by AC.

Figure 5-9. Example dominance tree.
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The clustering criterion adds only base entities to components, thus completing
existing components. However, the same technique can also be used to detect
subsystems by subsuming components under other components according to the
dominance relationship. Detecting subsystems by means of dominance analysis
was subject of a case study of us (1997a) and is further explored in the thesis of
Jean-François Girard.

Algorithm 5-6 adds all local entities to atomic components according to the clus-
tering criterion. The function is started at the root of the dominance tree and
recursively traverses the dominance tree in depth-first order. 

Example. The single steps of the approach can be explained with the example of
Figure 5-10. Part (a) shows the input graph that contains two atomic components
AC1 = {4,8} and AC2 = {6,10,11} detected by previous analyses; they are col-

lapsed in step (1). The result is shown in part (b). The result of applying domi-
nance analysis to part (b) is presented in part (c) of Figure 5-10. Function DFS of
Figure 5-6 applied to the dominance tree in Figure 5-10(c) adds the two subpro-
grams 12 and 13 and object Z to atomic component AC2 as well as object X to

atomic component AC1.  

Algorithm 5-6. Detecting parts of components in the dominance tree.

function DFS (Root : Node) return Node_Set is
Descendants : Node_Set;

begin
for each D in dominatees (Root) loop
Descendants := Descendants ∪ DFS (D);

end loop;
if Is_Atomic_Component (Root) then
Add Descendants to Root;
return ∅;

else
return Descendants;

end if;
end DFS;
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5.13    Preliminary Taxonomy of Basic Structural Techniques

The techniques described in this section are based on structural information only.
They neither leverage data flow information nor domain knowledge. They can
roughly be classified as follows (this classification will be extended in Section
12.1):

• Connection-based approaches cluster entities based on a specific set of direct
relationships (and their quality) between entities to be grouped. For example, a
routine must have a type in its signature (i.e., the two of them must be directly
connected) and the corresponding parameter of this type must be internally
accessed by the routine (quality of the relationship) in order to be grouped
together. Global Object Reference, Same Module, Part Type, Internal Access,
and Same Expression belong to this category.

• Metric-based approaches cluster entities based on a metric using an iterative
clustering approach. Schwanke’s Similarity Clustering and Type-based Cohe-
sion fall in this category. The metric-based approaches are based on connec-
tions, too, but they differ from connection-based approaches by the degree of
freedom that is offered by the metric parameters and the threshold that can be
varied to find atomic components with varying confidence.
Delta-IC is a hybrid within this classification. It is based on a metric but is not
really iterative unless one may view it as clustering with only one iteration.

Figure 5-10.  Example of dominance analysis.
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Furthermore, it actually consists not only of the metric but also of a clustering
heuristic in the first place: to group closely related subprograms and the refer-
enced objects to a given subprogram. The metric is only used to filter out non-
relevant clusters. Nevertheless, I will consider it a metric-based approach
because the metric is the predominant factor of this approach and because all
connection-based approaches can be viewed as metric-based by expressing
their underlying heuristic as a metric (this will be shown in Section 8.4). The
opposite direction, i.e., viewing all metric-based approaches as connection-
based, does not hold because connection-based approaches always yield the
same fixed pattern and there are no parameters to influence clustering.

• Graph-based approaches derive clusters from a graph by means of graph-the-
oretic analyses. The difference to connection-based approaches is that the
whole graph has to be considered whereas connection-based approaches regard
only direct relationships between entities in order to decide whether they
should be grouped. Strongly-Connected Components Analysis and Dominance
Analysis belong to this category.

In this thesis, only the listed connection-based, metric-based, and graph-based
techniques are explored. Other techniques are described in Chapter 11.
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Chapter 6 Evaluation of the Basic Techniques

In the last chapter, proposed basic techniques for atomic component detection
were presented. All but Same-Expression have been published and do not origi-
nate from us (though we proposed some improvements in the last chapter). How-
ever, the original authors rarely described any comparable quantifying evaluation
of their techniques. In 1997, we conducted an evaluation of most of these basic
techniques (Girard, Koschke, Schied, 1997b) by comparing the atomic compo-
nents recovered by the approaches presented to those identified by software engi-
neers. The results have already been published (Girard, Koschke, and Schied,
1999; Girard and Koschke, 2000). These results are repeated here. However, this
chapter also includes new techniques and systems to achieve a more complete
comparison and provides more detail about the method of comparison.

6.1    Reference Corpus

In order to establish a comparison point for the detection quality of the automatic
recovery techniques, software engineers manually compiled a list of reference
atomic components (short reference components or references) for diverse C
systems. These reference atomic components are used for statistical analyses, for
calibrating parameters of diverse metrics, and to evaluate the automatic tech-
niques. For the evaluation, we compared the components proposed by automatic
techniques, called candidate atomic components (short candidate components
or candidates), to the reference components. The sets of references for this com-
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parison are called the reference sets or reference corpora. This section summa-
rizes how the reference sets were obtained and validated. 

6.1.1    Systems Studied
The reference components were obtained for several medium size C programs
(see Table 6-1 for their characteristics). Aero is an X-window-based simulator for
rigid body systems (Keller, 1995), Bash is a Unix shell (Ramey, 1994), CVS is a
tool for controlling concurrent software development (Berliner, 1990), and
Mosaic is a world-wide web browser (NCSA, 1997).

All figures about program length in terms of lines of codes throughout this thesis
are ascertained with the Unix tool wc, hence include comments and blank lines.
Most systems have additional libraries that often encapsulate platform dependen-
cies. These libraries were not investigated. Table 6-1 lists only the size of the core
systems that were analyzed by the software engineers.

6.1.2    Obtaining the Reference Atomic Components
The reference components of Aero, Bash, and CVS were compiled by human ana-
lysts in 1997. The reference components for Mosaic are the result of the experi-
ment described in Chapter 10. The actual numbers of all major forms of atomic
components (abstract data types, abstract data objects, hybrid atomic compo-
nents) that were identified for each studied system are listed in Table 6-2. The rest
of this section gives more detail about how the reference components were estab-
lished for the respective systems and why they provide a reasonable basis for
comparison. 

Table 6-1. Suite of analyzed C systems.

System 
Name Version

Lines of 
Code

# User 
Types

# Global 
Objects

# 
Routines

Aero 1.7 31 Kloc 57 480 488

Bash 1.14.4 38 Kloc 60 487 1002

CVS 1.8 30 Kloc 41 386 575

Mosaic 2.6 (without GUI) 37 Kloc 79 269 564



                                               155

Reference Corpus

6.1.2.1   Reference Components for Aero, Bash, and CVS

We asked five software engineers to identify atomic components in Aero, Bash,
and CVS. Table 6-3 summarizes their experience and how the task was divided
among them. 

There was no overlap of their work. They needed between 20 and 35 hours for
each system to gather the atomic components of the respective systems. The soft-
ware engineers were provided with the source code of each system, a summary of
connections between global variables, types, and functions, and the guidelines
given in Figure 6-1.

Because the analysis of Bash was distributed among three software engineers,
they performed a review of each other’s work and came to a consensus on the
final reference components. 

The guidelines did not exclude overlap between atomic components, i.e., sharing
elements among components. There was a small degree of overlap of the refer-
ence components of Aero and Bash and no overlap for CVS.

Table 6-2. Number of atomic components in analyzed systems.

System #ADT #ADO #Hybrid #Total
Aero 9 16 1 26

Bash 18 16 5 39

CVS 13 35 6 54

Mosaic 12 28 13 53

Table 6-3. Human analysts.

Software Engineer Programming Experience System Analyzed

se1 2 years research Bash

se2 2 years research Bash

se3 5 years research Bash

se4 5 years research CVS

se5 > 5 years industry Aero
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The fact that our reference components used as comparison point were produced
by people raises the question whether other software engineers would identify the
same atomic components. In order to answer this question, Jean-François Girard
performed an experiment on a subset of CVS containing 2.8 KLOC and com-
posed of the following key files: history.c, lock.c, cvs.h. These source files were
distributed along with a cross-reference table indicating the relations among
types, global variables, and functions. Four software engineers had the task to
identify the atomic components present. He collected a description of the proce-
dure they followed along with their results, then looked for cases where they
seemed to have broken their own rules and asked them to refine either their proce-
dure or their results. He also revisited with them those atomic components for

Figure 6-1. Guidelines for human analysts.

Identify the existing atomic components present in this system. These are
abstract data objects (ADO), and abstract data types (ADT), or a combina-
tion of both. 

•Here we specified abstract data types, abstract data objects, and hybrid
components by the definitions already presented in Chapter 3.

• The key difference of ADT and ADO is that an ADT is built around a
type and an ADO around a set of simple global variables. This can be
decided automatically, so do not waste time writing it down. Just iden-
tify the functions, variables, and types which belong together
because they are cohesive and correspond to the idea of ADO and/or
ADT.

• In practice, programmers sometimes break the encapsulation principle,
therefore we widen the definition of abstract data objects and abstract
data types to clusters of types or variables, respectively, with their
accessor routines. The internal representation of ADTs and ADOs can
be public.

•Nota bene: not all functions, variables, or types have to be put into
ADO, ADT, and hybrid components.

• In general, your experience and understanding has more value than
rules, you are the last judge of what constitutes an ADO/ADT.
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which a comment indicated that they were unsure or something was unclear and
corrected their results according to their conclusions.

The four software engineers agreed on the basic principles that characterize an
atomic component and proposed very similar components. There were some
divergences on the details; for example, one of them added functions to an
abstract data type which did not have the type T of the abstract data type in their
signature, but applied a cast of type T to one of their parameters. These diver-
gences occurred rarely. 

Jean-François Girard performed a second experiment on a subset of Bash con-
taining 5.9 KLOC and composed of the following key files: copy_cmd.c,
dispose_cmd.c, execute_cmd.c, make_cmd.c, print_cmd.c, and command.h. He
followed the same procedure but distributed the subsystem to two software engi-
neers who did not know the system to avoid learning effects.

Finally, in order to assess if these experiment results from a system subset can be
generalized to a complete system, one software engineer identified atomic com-
ponents in the whole Bash system. The atomic components he identified were
compared to those of the reference components used in this thesis (those obtained
by consensus).

A quantitative evaluation of the degree of agreement among the software engi-
neers showed first, that the software engineers agreed to a very high degree on the
atomic components of these systems and second, that the agreement gained on a
smaller subset can indeed be generalized to the rest of the system. Therefore, we
may conclude that the reference components for Aero, Bash, and CVS are a suit-
able oracle. The procedure used for the quantitative evaluation and its exact
results are explained by Girard, Koschke, and Schied (1999). 

6.1.2.2   Reference Components for Mosaic
The reference components for Mosaic were obtained by the experiment described
in Chapter 10 in which human analysts had to detect atomic components either
manually or with tool support. The task of the experimental subjects was to
recover as many atomic components for Mosaic as possible within 6 hours. In
order to obtain comparable results, we reduced the possible search space for
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atomic components to a size that could be handled within the given time frame,
i.e., all experimental subjects should be able to look at all source files within the
available time. Therefore, we excluded the files that are mainly devoted to the
graphical user interface, namely, all files whose names begin with the prefix gui.
The 8 excluded files comprise 15 KLOC, i.e., 40 files consisting of 37 KLOC
were to be analyzed. To obtain a common basis of comparison, the atomic com-
ponents separately detected by each individual were merged and then validated by
at least two participants. Only those atomic components were accepted for which
a consensus could be reached.

6.2    Comparison of Candidate and Reference Components

Candidate components and reference components are compared using an approx-
imate matching to accommodate the fact that the distribution of functions, global
variables, and types into atomic components is sometimes subjective and, prag-
matically, we have to cope with matches of candidates and references that are
incomplete, yet “good enough” to be useful. “Good enough” means that candidate
and reference overlap to a large extent and only few elements are missing. More
precisely, we treat one component S as a match of another component T if S is a
partial subset of T (denoted by S ⊆p T) according to the definition of partial sub-

set in Section 3.5.4.3. For the results reported in this chapter, p = 0.7 is assumed,
i.e., at least 70 percent of the elements of S must also be in T. This number is arbi-
trary, but motivated by the fact that at least three elements of a four-element
atomic component must also be in the other atomic component to be an accept-
able match.

6.2.1    Classification of Matches
Based on the approximative matching criterion, the generated candidates are clas-
sified into three categories according to their usefulness to a software engineer
looking for atomic components:

• Good when the match between a candidate C and a reference R is close (i.e., C
⊆p R and R ⊆p C). This case is denoted 1~1.
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Matches of this type require a quick verification in order to identify the few
elements which should be removed or added to the candidate component.

• Ok when the ⊆p relationship holds only in one direction for a candidate C and

a reference R:

- C ⊆p R, but not R ⊆p C. The candidate is too detailed. This case is denoted as

n~1.

- R ⊆p C, but not C ⊆p R. The candidate is too large. This case is denoted as

1~n.

Partial matches of this type require more attention to combine or refine a com-
ponent. The denotation n~1 and 1~n reflects the fact that multiple Ok matches
may exist for a given R or C.

Altogether, we have three classes of matches: 1~1, 1~n, and n~1 where the latter
two are both considered Ok.

Example. Consider the example in Figure 6-2. C1 and R1 are a good match.

Because only partial matches are required, there can be another reference R4

(with R4 ∩ R1 = ∅) that is a partial subset of C1 (of C1 \ R1, more precisely). C2 is

an Ok match with R2, and so is C3. C2, C3, and R2 constitute an n~1 match. That

is, the technique has produced finer-grained candidates than what was expected.
Note that we cannot necessarily conclude that C2 ∪ÿ C3 and R2 are a good match

because R2 could be much bigger than C2 ∪ÿ C3. R3 and C4 constitute a 1~n

match, where no other reference than R3 can be matched with C4. C5 and R5 do

not match at all. 

As the example indicates, it is not enough just to count the matches in order to
judge the detection quality of a technique. For example, R3 is a partial subset of

C4 and, therefore, considered at least an Ok match. However, C4 could be huge

and the match just be coincidence. The next section proposes a measurement for
detection quality based on multiple aspects that considers this imprecision.
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6.2.2    Detection Quality
There are several aspects in a comparison of a set of candidates with a set of refer-
ences to consider when the matches have been established as described in the last
section:

• Number of false positives: The number of candidates that neither match a ref-
erence nor are matched by any reference, i.e., candidates that cannot be associ-
ated with any reference. Technically speaking, these are candidates that are
neither involved in a 1~1, 1~n, nor n~1 match. This number should be 0.

• Number of true negatives: The number of references that neither match a can-
didate nor are matched by any candidate, i.e., references that are not even par-
tially detected. Technically speaking, these are references that are neither
involved in a 1~1, 1~n, nor n~1 match. This number should be 0.

• Granularity of matches: Are the candidates at the right level of granularity?
Technically speaking, there should only be good matches and no Ok matches.

• Precision of matches: The degree of correspondence between candidates and
reference matches. This is discussed in the following in more detail. The preci-
sion should approach 1.0.

Since the partial subset relationship is used to establish a match, the matching
candidates and references need not be equal. That is, there may be elements of the
candidate not in the reference and vice versa: C\R ≠ ∅ and R\C ≠ ∅. In other
words, there may be a flaw in a good match; even more so for Ok matches
because of (let R be a reference and Ci be candidates for which Ci ⊆p R holds):

Figure 6-2. Example correspondences of candidates and references.
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Accuracy for two matching components. In order to indicate the quality of
imperfect matches of candidate and reference components, an accuracy factor is
associated with each match. The similarity between two components, and thus the
accuracy of a candidate vis-a-vis a reference component, is computed using the
following formula:

(6.1)

In 1~n and n~1 matches  and sometimes even in 1~1 matches  several com-
ponents may match with one other component. The accuracy as defined above,
however, involves only two single components. Therefore, the definition is
extended for sets of components as follows.

Accuracy for two sets of components. The overlap for two matching compo-
nents can be used to ascertain the accuracy of sets of components:

(6.2)

Accuracy for classes of matches. The accuracy for two sets of components is
used to establish the accuracy for a whole class of matches where the two sets
{A1,…,Aa} and {B1,…,Bb} are corresponding components in a match within a

given class of matches.

More precisely, let the matching components of a candidate or reference, X, be
defined as follows:

(6.3)

Ci
i

∪ p R⊆ ⇒⁄ R p Ci
i

∪⊆

accuracy A B,( ) overlap elements A( ) elements B( ),( )=

where overlap X Y,( ) X Y∩
X Y∪
-----------------=

accuracy A1 … Aa, ,{ } B1 … Bb, ,{ },( )

overlap elements Ai( )
i 1…a=

∪ elements Bi( )
i 1…b=

∪,( )=

matchings X( ) Y Y p X⊆{ }=
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Using the matching components, we can specify the degree of agreement for the
diverse classes of matches:

• 1~1 match: 

• n~1 match: 

• 1~n match: 

To put it in words: The accuracy is ascertained based on the united matching com-
ponents. The way of handling 1~1 matches may first be astonishing, but is moti-
vated by the fact that a 1~1 match does not necessarily mean that there is no other
component that is a partial subset of one of the components in the 1~1 match.
This was already touched in the example of Figure 6-2 on page 160 where C1 and

R1 are a 1~1 match and R4 is still a partial subset of C1. If there is no such addi-

tional 1~n or n~1 match, then:

That is, we subsume an additional 1~n or n~1 match in a 1~1 match. This is justi-
fied because there is a clear 1~1 relationship in the first place and the additional
1~n or n~1 match can only be comparatively small.

Such overlapping matches can also exist for pure 1~n and n~1 matches as the
example in Figure 6-3 illustrates. However, the overlap of 1~n and n~1 matches is
ignored since there is no dominating correspondence as in the case of overlaps
with 1~1 matches. That is, the two overlapping matches in Figure 6-3 are handled
as two distinct matches. 

Now that we have the means to establish the accuracy of a single match with
respect to its class (1~1, 1~n, n~1), we can extend the accuracy to the whole class
of matches. The classes of matches are defined as follows:

Figure 6-3. Overlapping 1~n and n~1 matches.

accuracy matchings C( ) matchings R( ),( )

accuracy matchings R( ) R{ },( )

accuracy C{ } matchings C( ),( )

accuracy matchings C( ) matchings R( ),( ) accuracy R C,( )=

a
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Then, the accuracy for a whole class of matches is defined as the average in accu-
racy of the members of the class (let M be a class of 1~1, 1~n, or n~1 matches):

(6.4)

Overall recall rate. In the following, the detection quality of a technique is
described by a vector of the number of false positives and true negatives and the
average accuracies of 1~1, 1~n, and n~1 matches according to (6.4) along with
their respective absolute number to indicate the level of granularity. These figures
provide a detailed picture for the comparison of the techniques. However, an
additional summarizing value is useful for a quick comparison. The following
equation characterizes the overall recall rate (GOOD and OK are defined above):

(6.5)

To illustrate the definition of the recall rate, consider the example in Figure 6-4, in
which the matching components of each candidate and reference component of
Figure 6-2 have been merged for the comparison. There are two OK matches and
one good match. R5 is not matched at all and, therefore, considered a true nega-

tive; likewise, C5 is a false positive because it does not correspond to any refer-

ence. The example also illustrates that the denominator of (6.5) cannot simply be
the number of the original references because not only candidates but also refer-
ences can be united for the comparison, which reduces the number of references
actually used for the comparison.

GOOD 1 1∼ matchings c( ) matchings r( ),( ) c rp⊆ r cp⊆∧{ }= =

1 n∼ c{ } matchings c( ),( ) matchings c( ) ∅≠ r( )r cp⊆ c rp⊆¬⇒∀∧{ }=

n 1∼ matchings r( ) r{ },( ) matchings r( ) ∅≠ c( )c rp⊆ r cp⊆¬⇒∀∧{ }=

OK 1 n∼ n 1∼∪=

accuracy M( )

accuracy a b,( )
a b,( ) M∈

∑
M

---------------------------------------------------------=

Recall

accuracy a b,( )
a b,( ) GOOD∈

∑ accuracy a b,( )
a b,( ) OK∈

∑+

GOOD OK true negatives+ +
---------------------------------------------------------------------------------------------------------------------------------------=
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The recall rate (6.5) abstracts from the level of granularity  since good and OK
matches are treated equally by this definition  and ignores false positives. The
number of false positive is a different aspect and is not captured by this definition
because  depending on the task at hand  a higher number of false positives in
favor of a higher recall rate may be acceptable.

6.3    Benchmark Results for the Basic Techniques

We applied the techniques listed in Table 6-4 to the reference corpus described in
Section 6.1. Note that some of the techniques are only designed for detecting one
type of atomic component, some are basically able to detect both ADTs and
ADOs; therefore, Table 6-4 summarizes once again what kind of atomic compo-
nents occurring in the reference corpus are detected by the respective technique (a
⊥ means that the technique cannot detect atomic components of this kind, a
✓ÿsays that the type of atomic component can be detected). Results for hybrid
components are not directly reported because there were not enough of them in
the reference corpus for a valid evaluation (Mosaic would have been the only
exception). Instead, since hybrid components can be viewed as extended ADTs or
ADOs, hybrid components are part of the reference set to which the candidates
are compared. A technique suitable for ADT or ADO detection can at least par-
tially detect a hybrid component. Hence, the reference set for a technique suitable
to detect ADTs contains all reference ADTs and hybrid components, while the
reference set for a technique detecting ADOs consists of abstract data objects and
hybrid components of the reference corpus. Note that the original Delta-IC
method was proposed as an iterative approach involving human validation and

Figure 6-4. Example merged correspondences of candidates and references.
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Table 6-4. Evaluated combinations of atomic component detection techniques.

Method ADT ADO
Global Object Reference ⊥ ✓

Same Module ✓ÿ ✓ÿ

Internal Access ✓ ✓

Part Type ✓ ⊥

Same Expression ⊥ ✓

Delta-ICa ⊥ ✓

Arch (Schwanke) ✓ ✓

Type-based Cohesion (✓) ⊥

a. Previously published evaluations of Delta 
IC (Girard, Koschke, and Schied, 1997b, 
1997c, 1999; Girard, Koschke, 2000) are 
based on a definition of IC that differs from 
the original one; in the evaluation presented 
in this chapter, the original definition is 
used.

Table 6-5. Detected ADTs and ADOs.

Method System

ADT ADO

Good

OK

Good

OK

too large
too 

detailed
too large

too 
detailed

# acc. # acc # acc # acc. # acc # acc

Global
Object
Refer-

ence

Aero - --- - --- - --- 3 0.91 0 0.00 0 0.00

Bash - --- - --- - --- 5 0.92 0 0.00 0 0.00

CVS - --- - --- - --- 8 0.92 1 0.61 6 0.41

Mosaic - --- - --- - --- 12 0.89 5 0.49 4 0.29

Same
Module

Aero 3 0.81 0 0 1 0.34 7 0.88 3 0.10 1 0.27

Bash 4 0.81 0 0.00 0 0.00 5 0.88 4 0.33 1 0.64

CVS 6 0.80 1 0.23 3 0.29 25 0.90 4 0.68 10 0.51

Mosaic 5 0.94 0 0.00 6 0.33 13 0.90 5 0.46 4 0.30

Internal
Access

Aero 2 0.87 0 0.00 1 0.60 0 0.00 4 0.28 1 0.11

Bash 10 0.97 3 0.44 1 0.59 3 0.89 1 0.26 1 0.43

CVS 4 0.93 1 0.26 4 0.35 6 0.87 0 0.00 15 0.35

Mosaic 5 0.90 3 0.37 6 0.42 2 0.88 1 0.67 11 0.48
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slicing of functions. Since we are comparing the technique to non-interactive
techniques, we leave out the validation and slicing steps for this evaluation.

Note that Type-based Cohesion can only find groups of related routines; it groups
neither types nor variables. However, the job of the software engineers was only
to find ADTs, ADOs, and hybrid components and, therefore, the reference corpus
does not contain sets of related subprograms. Nevertheless, because Type-based
Cohesion is based on the types the subprograms share, one can attempt to find at

Part Type Aero 2 0.90 0 0.00 1 0.60 - --- - --- - ---

Bash 9 0.93 1 0.56 0 0.00 - --- - --- - ---

CVS 4 0.95 4 0.37 5 0.26 - --- - --- - ---

Mosaic 6 0.95 2 0.68 5 0.33 - --- - --- - ---

Same
Expres-

sion

Aero - --- - --- - --- 2 0.94 1 0.19 0 0.00

Bash - --- - --- - --- 4 0.88 0 0.00 2 0.50

CVS - --- - --- - --- 5 0.79 2 0.18 13 0.50

Mosaic - --- - --- - --- 1 0.73 0 0.00 5 0.50

Delta-IC Aero - --- - --- - --- 4 0.81 2 0.25 0 0.00

Bash - --- - --- - --- 4 0.82 1 0.47 2 0.26

CVS - --- - --- - --- 9 0.85 0 0.00 15 0.45

Mosaic - --- - --- - --- 18 0.86 5 0.52 10 0.44

Arch Aero 1 0.80 0 0.00 5 0.28 3 0.79 6 0.28 1 0.47

Bash 0 0.00 4 0.39 6 0.41 4 0.70 5 0.28 1 0.21

CVS 2 0.86 5 0.46 3 0.37 4 0.76 10 0.46 18 0.48

Mosaic 6 0.79 3 0.49 4 0.36 7 0.72 4 0.47 13 0.47

Type
Based

Cohesion

Aero 0 0.00 1 0.20 4 0.32 - --- - --- - ---

Bash 2 0.69a 0 0.00 7 0.32 - --- - --- - ---

CVS 0 0.00 1 0.14 5 0.34 - --- - --- - ---

Mosaic 0 0.00 0 0.00 8 0.41 - --- - --- - ---

a. Note that the accuracy of good matches can also be below the threshold of the partial subset 
relationship. For example, if R and C both have 10 elements and 7 elements of R are in C and 
7 elements of C are in R, then R ⊆0.7 C ∧ C ⊆0.7 R holds and, hence, R and C are a good 
match. However, the overlap of R and C is only 7/13 = 0.54 < p = 0.7.

Table 6-5. Detected ADTs and ADOs.

Method System

ADT ADO

Good

OK

Good

OK

too large
too 

detailed
too large

too 
detailed
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least the accessor functions of an ADT with it. On the other hand, in the evalua-
tion, one should be aware that the type itself is not in the candidate  which
decreases the recall rate slightly  and groups of related subprograms are not in
the reference corpus  which may increase the number of false positives.

The techniques often produce candidates with less than three elements. Since
components of this size are very rare (Aero has one, Bash has none, CVS has five,
and Mosaic has three reference components with only two elements), candidates
with less than three elements are filtered out. This way, less false positives were
produced. The numbers given in the following were established after the filter for
small components has been applied. Furthermore, since the largest reference
components for the subject systems have less than 50 elements, another filter was
applied that ignores candidates with more than 75 elements; i.e., the size of the
candidates was not allowed to exceed 50% of the largest reference component.
This restriction mainly affected Global Object Reference and Part Type (in partic-
ular, 1~n matches), which both tend to produce very large candidates. Candidates
of that size would require too much effort for validation and are therefore of little
help to a maintainer.

The detailed information on the number of detected components is shown in
Table 6-5, and the number of false positives and true negatives are listed in Table
6-6.  

Figure 6-5 and Figure 6-6 summarize the recall rates for ADT and ADO detec-
tion, respectively, according to equation (6.5). To be fair, we must also mention
that the reference components were used to calibrate Delta-IC and Type-based
Cohesion that both require parameter adjustment. In practice, one does not have
the reference components in advance and has to estimate parameters based on a
manually extracted list of reference components of a representative sample of the
system. That is, in practice the results can be worse for Delta-IC and Type-based
Cohesion.

ADT recall. According to these summaries, the effectiveness of a technique
strongly depends upon the system. In the case of the ADTs of Aero, all tech-
niques are similarly effective; Same Module is only slightly ahead. Moreover,
Type-based Cohesion is among the techniques with the least recall rate for all sys-
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Table 6-6. Number of false positives and true negatives.

Technique Aero Bash CVS Mosaic

false 
positives

true
negatives

false 
positives

true
negatives

false 
positives

true
negatives

false 
positives

true
negatives

Global
Reference

ADT --- --- --- --- --- --- --- ---

ADO 7 14 17 16 4 27 3 13

Same
 Module

ADT 4 6 8 19 4 8 2 14

ADO 17 5 24 8 8 1 1 14

 Internal
Access

ADT 2 7 5 7 9 11 3 10

ADO 12 10 12 16 5 20 1 27

Same
Expres-

sion

ADT --- --- --- --- --- --- --- ---

ADO 9 13 11 15 9 22 1 35

Part Type ADT 3 7 11 13 8 5 2 11

ADO --- --- --- --- --- --- --- ---

Delta-IC ADT --- --- --- --- --- --- --- ---

ADO 18 11 18 14 10 19 3 9

Arch ADT 13 4 29 13 36 9 11 10

ADO 38 6 46 11 42 17 11 15

Type-
based

Cohesion

ADT 24 5 12 14 17 13 18 17

ADO --- --- --- --- --- --- --- ---

Figure 6-5. Recall rate for ADTs.
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tems and has also many false positives. In the case of Bash, Internal Access is far
better than all other techniques. Internal Access is also among the best techniques
for the other systems. Likewise, Part Type has a constantly high recall rate for all
systems while Same Module fails for Bash. Arch is one of the less effective tech-
niques and has most false positives.

ADO recall. Same Module identifies more abstract data objects than any other
approach (except for Mosaic where Delta-IC finds most ADOs). Arch has also
one of the higher recall rates for all systems but also most false positives. Global
Object Reference is among the best techniques only for Mosaic. Internal Access
for ADOs is far less effective than it is for ADTs. The recall rates of Same
Expression are comparatively low, but Same Expression has the fewest false posi-
tives (except for CVS where it is on average). Delta-IC has comparatively high
recall rates for all systems  in the case of Mosaic, it is even clearly the best. The
number of false positives of Delta-IC is average.

The overall result of this evaluation is that the recall rate of all automatic tech-
niques does not compare to the human recall rate, neither for ADTs nor for
ADOs. The best recall rate of Same Module for CVS is a rare exception. In most
cases, the best recall rates are between 20 and 40 percent. 

Figure 6-6. Recall rates for ADOs.
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Furthermore, the number of false positives and true negatives is high for many
automatic techniques. False positives deserve special attention and, hence, we
devote Section 6.4 to their analysis.

6.4    Analysis of False Positives

The techniques proposed some atomic components for which no corresponding
reference components existed and, therefore, were classified as false positives.
We investigated these false positives to learn more about the weaknesses of the
techniques. It turned out that a few false positives are indeed correct positives;
many of these were too small to be considered by the software engineers as
atomic components, others were simply overlooked by the analysts.

The analysis of false positives was only done for Aero, Bash, and CVS and for the
techniques Same Module, Part Type, Internal Access, Global Object Reference,
and Delta-IC. The false positives of Type-Based Cohesion and Arch were not
investigated since the primary goal was to see whether these apparent false posi-
tives are really false positives or simply overlooked and to find common patterns
of these false positives rather than to detect the specific weaknesses of each tech-
nique.

6.4.1    Average Size of False Positives Before Manual Validation
The average size of false positives is an important factor to consider when evalu-
ating approaches, because the time a user of the approach needs to discard a false
positive is related to the size of the candidate. For this reason, Table 6-7 reports
also the average size of false positives identified by the various techniques on
each system (measured in terms of the number of functions, variables, and types
of the false positive candidates). 

6.4.2    Overlooked Atomic Components
Jean-François Girard, Hiltrud Betz who was one of the original analysts, and I
browsed the lists of false positives for the techniques and classified each candi-
date either as overlooked positive when it actually could be regarded as reason-



                                               171

Analysis of False Positives

able atomic component or else as real false positive. Figure 6-7 shows the number
of real false positives and overlooked positives. The figure reveals that 42% of the
ADO candidates and 41% of the ADT candidates originally classified as false
positives are indeed overlooked positives. 

The presence of such overlooked positives is understandable since browsing a 30
KLOC program manually is a tedious process and even larger components can
easily be overlooked. This is interesting because it stresses the importance of
automatic support and it shows that an automatic technique does not have to be
perfect in order to be useful. Moreover, some of the false positives could be justi-
fied from a different point of view (see “Different views” in the following sec-
tion), i.e., the automatic techniques may provide the maintainer with another
perspective.

6.4.3    Common Patterns of False Positives
The analysis of false positives revealed certain common patterns that could be
used to filter out false positives in a post analysis after the candidates were pro-
posed by the chosen technique. These patterns were generally found in the set of
false positives of any of the examined techniques.

Static local variables. Some global variables are only referenced by one routine;
thus, they act as static local variables of this routine but the programmer did not
take advantage of the ability in C to express this explicitly. A routine with such

Table 6-7.  Average size of false positives before filtering overlooked references

Technique Aero Bash CVS
ADT Same Module 3.0 7.3 8.5

Part Type 5.7 6.2 14.5

Internal Access 3.0 4,6 8.9

ADO Same Module 15.0 9.9 6.8

Global Object Reference 20.0 5.9 5.5

Internal Access 11.1 4.2 7.0

Delta-IC 14.7 6.6 7.2

Same Expression 18.8 8.1 13.2
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static local variables alone can hardly be considered an ADO in a narrower sense
 even though the local variables indeed clearly belong to the subprogram.

Nested routines. Some candidates consist of a few routines among which only
one is called from outside and all other routines are only called from routines
within the candidate; thus, the latter are local to the routine. Hence, if the vari-
ables in the candidate are also only accessed by routines of this candidate, the
candidate is rather one routine with nested subroutines (which cannot be
expressed in C) and some static local variables. Usually, an atomic component has
several interface routines and we would therefore not consider this kind of candi-

Figure 6-7.  Reviewed number of false positives
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date a valid atomic component. Such clusters do provide useful information and
should be presented to the user  but not as an abstract data object.

Parameter passing. A more complex pattern that we also found in all systems
consists of variables used for parameter passing in the presence of call backs. A
call back is a call of a function F in a component A where F’s address has been
transmitted from another component B to A as a function pointer. Aero, as an X-
window-based application, uses this schema in its user interface code. CVS has a
general recursion handler that traverses directories and has a call back for each
file it finds during traversal. The client of this recursion handler does not have to
care about the traversal; he only has to code the function that should be applied to
each file and to convey it to the recursion handler as a call back function pointer.
These functions, designated by function pointers, have to have the same signa-
ture. To convey additional parameters from B to the call back function, a global
variable is used. The variable is set before the call back is done and the call back
function then reads the global variable. Figure 6-8 illustrates this kind of parame-
ter passing in the presence of call backs. Variables only used for parameter pass-
ing are conceptually different from variables of an abstract data object that model
state. Both kinds of variables are needed by the abstract data object, yet  proba-
bly due to the conceptual difference  the software engineers did not group
“parameter variables” with the abstract data object. It would be helpful to a main-
tainer to provide additional analyses that characterize the variables of a candidate
component as “parameter variables”, state variables, or other kinds of usages of a
variable. However, in order to detect variables used for parameter passing, control
and data flow analyses are needed. 

Figure 6-8.  Additional parameter passing in the presence of call backs.

float B_parameter;
void B_f () {
B_parameter = 1.0;
A_install_call_back(B_g);
...
}
void B_g (int i) {
... B_parameter...
}

typedef (*Function) (int i);
void A_install_call_back (call_back)
 Function call_back; 
{
...
  call_back (5);
...
}

call

call back

parameter 
passing
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System parameters. Variables used at many places in the system often represent
global system parameters, e.g., variables that indicate whether a certain command
line switch was set when the program was invoked. Often, it is recommended to
exclude frequently used variables (Yeh et al., 1995). However, simply excluding
frequently used variables may also affect variables of an abstract data object that
the programmer made public. A more reliable method is to exclude variables that
are directly data dependent on the parameter argv of the main routine that con-
tains the command line arguments of the invoked program in batch-oriented sys-
tems. Other frequently used variables are so-called mode variables that indicate
the general state of the system as a whole as opposed to the state of an individual
abstract data object. A mode variable, for example, may indicate that an error
occurred and the system is in recovery mode. It is still not clear how to distinguish
these from frequently used public variables of an abstract data object.

Function pointer and enumeration types. Furthermore, the analysis of false
positives revealed that function pointer types and enumeration types are generally
not helpful for the detection of abstract data types. Function pointer types are
often just declared for the purpose of call backs and enumeration types are either
used for control variables or are part of more complex abstract data types. Never-
theless, since they are represented in the resource usage graph, they are clustered
as any other user-defined type. That is to say, if there is an enumeration or func-
tion pointer type, T, all subprograms for which T is the only user-defined type in
the signature may be grouped together by a technique based on signatures (depen-
dent upon the underlying restrictions of the technique) even if the subprograms
are otherwise unrelated. In particular, Part Type will propose such candidates
because the part-type filter for signatures with only one user-defined type cannot
have any effect. But also Internal Access (if the function pointer parameter is
dereferenced or a standard operator is applied to the enumeration parameter,
which is legal in C because enumeration values are actually integer values) as
well as Same Module (if the type is declared in the same module as the subpro-
grams) and the metric-based approaches Type-based Cohesion and Schwanke’s
Arch approach (since the subprograms share at least an enumeration or function
pointer type) may group these subprograms together.

Different views. Sometimes there were different possible views and one was cho-
sen by the software engineer and the alternative view was chosen by the tech-
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nique. Yet, both views could be justified. For example, in Bash, there is a file
print_cmd.c that provides print commands for different data types. The software
engineer decided to group these print routines with the data types, taking an
object-oriented view. However, these print routines share global variables that
define the current indentation and the increment of indentation. Some techniques
grouped the print commands with the global variables taking a more functional
view. Interestingly enough, the original programmer of Bash obviously had the
functional view in mind, too, since he grouped these routines with the global vari-
ables in the same file.

6.5    Qualitative Comparison

After the quantitative comparison described in the last sections, we analyzed
divergences between candidate and reference components for the respective tech-
niques. 

Global Object Reference. If programmers followed the information hiding prin-
ciple, Global Object Reference would detect all abstract data objects without any
false positive. However, this is only the case for a few ADOs. When there is a
subprogram that accesses variables of different ADOs, Global Object References
unites the elements of these ADOs to one single candidate. This could be
observed for many ADOs of all systems. Because very large candidates were fil-
tered, Global Object Reference achieved a better recall only for Mosaic. Appar-
ently, Mosaic has a better decomposition; probably because of the shorter
maintenance history it has, which is also indicated by the good performance of
Same Module for Mosaic.

Part Type. As opposed to Same Module, Part Type does not rely on the program-
mer’s distribution of routines into modules. However, it assumes that the parame-
ter of a part type is actually used to be put into its container or to be retrieved
from it. Since it does not analyze the actual usage any further, it is going to fail if
this assumption is false. Moreover, in most signatures, there is no part type and,
therefore, the Part Type heuristic equals Global Object References for ADOs with
its problem of erroneously large candidates.
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Same Module. The postulate of Same Module is that the programmer structures
files according to atomic components. If a programmer puts each routine in a sep-
arate file, Same Module cannot yield any result. Moreover, for modules with sev-
eral distinct abstract data types containing conversion routines between each
other, this heuristic groups all those routines and data types together in one large
component.

Detection of abstract data types with this heuristic did not work well for Bash.
Bash has a header file with system-wide type declarations. The routines, however,
are implemented in several other C files that include the type declarations. Detec-
tion of abstract data objects succeeded better since global variables are never
declared in header files (they can only be declared there as external). Moreover,
the programmers of the subject systems often take advantage of the means of the
programming language C for information hiding of global variables: These vari-
ables are often declared static. The limited means for information hiding of ADTs,
on the other hand, are rarely used.

Large files can be a problem for Same Module. In CVS, for example, we found a
type RCS node which encapsulates dependencies on the underlying revision con-
trol system (RCS) of CVS. This node type is declared in one huge file where
many routines use it as a parameter. Consequently, Same Module created a very
large atomic component candidate. The group of software engineers has refined
this candidate into different aspects of the RCS subsystem.

Same Expression. Evaluation of the false positives revealed that there is in fact a
strong semantic relationship among variables that occur in the same expression in
most cases. Sometimes these false positives were simply overlooked by the soft-
ware engineers or were too small to be selected. However, there were a few inter-
esting exceptions. If there are global state or mode variables that occur in the
same condition, very large candidates can be proposed. For example, the global
variable interactive_shell in Bash indicates whether the shell is interactive; only
then, certain services are available. In the source code conditions like

if ((interactive_shell == 0)&&(def_buffered_input == fd))…

are frequent. Often used mode variables lead to a union of otherwise separate
ADO candidates of Same Expression. 
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Internal Access. Internal Access groups user-defined data types and global vari-
ables with the routines that access their internal parts. 

For ADT detection, Internal Access really checks how the parameter type is used,
as opposed to Part Type. However, in real programs one often finds the encapsula-
tion principle violated. This frequently happens for reasons of efficiency or con-
venience in the case of data types of which the programmer is convinced that their
representation will never change. If there are many violations of the information
hiding principle, Internal Access yields very large candidates analogously to Glo-
bal Object Reference or Part Type.

This heuristic did badly in ADO detection for at least two reasons. First, if there is
a global table, such as an array of error messages, all readers of this table are con-
sidered operators of this abstract data object which yields an erroneously large
component. Second, it misses all accessor routines that only set or use the vari-
ables of the ADO as a whole. In order to group a subprogram with a variable by
Internal Access, the subprogram must use the variable non-abstractly, i.e., either
internally access the variable or apply a standard operator to it. If the variable is
of a primitive type and the subprogram only sets or uses the variable, however, the
subprogram will not be grouped with the variable. Unfortunately, it is a common
phenomenon for abstract data objects to have separate global variables that
together form an object. For example, stacks are often declared as two distinct
variables, one for the contents and one for the stack pointer. The latter is declared
as integer and used as an index to the array implementation for the contents. Then
a function returning the size of the stack by returning the value of the stack
pointer will not be recognized as part of the abstract data objects, since there is no
non-abstract usage. If programmers put the distinct variables together in a record
type, the connection among the variable would be obvious and each access to the
variables as record components would be a non-abstract usage. However, because
abstract data objects have only one instance, programmers do not make the effort.

Delta-IC. A problem of Delta-IC is to establish the right threshold. It depends on
the specificity of the system studied and cannot necessarily be directly reused.
For the systems in this evaluation, these values were as listed by Table 6-8. One
practical solution is to take a sample of the system and perform manual recovery
by applying the approach on the sample and adjusting the threshold accordingly.
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It is necessary to compromise between the effort required to analyze a sample
manually and the quality of the results. 

Moreover, the definition of ∆ÿIC is aimed at filtering out candidates that have
many accessor functions that only access one single variable of the ADO. As a
consequence, any ADO that actually has only one single variable cannot be
detected. Furthermore, we often find accessor routines that do access only one
single variable. For example, in the stack consisting of two variables for the con-
tents and the stack pointer, a function size returning the number of elements on
the stack needs only access one variable, the stack pointer. As a matter of fact, the
recall rate of Delta-IC increases and the number of false positives decreases for
Aero, Bash, and CVS when filtering is only based on the internal connectivity as
defined by (5.9) on page 126 as opposed to ∆ÿIC as proposed by (5.10) as Table 6-
9 shows. In the case of Mosaic, the detection quality is more or less the same.

Arch. One problem of the Arch approach is to find the right parameters. This is
true for all metric-based approaches. However, Arch has more parameters than
Delta-IC and Type-based Cohesion. Schwanke and Hanson propose to use neural
networks to learn the appropriate parameters (1994), whereas the parameters for
Arch as evaluated in this thesis were calibrated on the reference components by
systematic hand-tuning. In both cases, a set of references is needed to calibrate

Table 6-8. Selected thresholds of Delta-IC.

System Threshold
Aero 0.25

Bash 0.38

CVS 0.25

Mosaic - 0.3

Table 6-9. Results of Delta IC based on IC only.

System Recall False Positives Threshold
Aero 0.31 11 0.55

Bash 0.30 21 0.72

CVS 0.39 8 0.53

Mosaic 0.51 3 -0.1
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the approach. In practice, one does not have these references in advance and,
hence, has to compile the components for a sample of the system and calibrate the
parameters on this sample. Whether the parameters established on the sample are
also appropriate for the rest of the system has to be shown. Furthermore, it is not
clear in advance how big the sample should be to find a suitable parameter set-
ting. 

The Arch metric was originally defined to group related subprograms, i.e., only
subprograms had to be compared. However, in our application, the entities to be
grouped are heterogeneous since we group also types and objects. Since the met-
ric does not make a distinction among different types of entities, the weight of an
entity depends upon its frequency as a neighbor only. There is no way to assign
certain types of entities more weight. For example, if we are searching for
abstract data objects, variables are the crystallization points, whereas types are
secondary. Likewise, because we are searching for specific kinds of atomic com-
ponents, primarily for abstract data types and abstract data objects, certain rela-
tionships are more important than others. Arch does not make a distinction
whether the neighbor is a type used to declare a local variable or a type in a signa-
ture, though it is intuitively clear that signature relationship is more important than
the local-obj-of-type relationship when searching for abstract data types (which will
actually be confirmed by a statistical analysis in Section 7.6.1). Another draw-
back of the approach is that it is not directly recognizable for the maintainer why
two entities are in the same candidate since different aspects are considered,
namely, common, distinct, and direct relations, which makes validation more dif-
ficult, whereas all other techniques have only one simple criterion. On the other
hand, considering different aspects is also an advantage. The connection-based
approaches, for example, rely on direct relations only and cannot detect groups of
related subprograms that may only be detectable when called by the same subpro-
grams.

Type-based Cohesion. Type-based Cohesion is very similar to Arch (see the
comparison in Section 5.10). Its advantage over Arch is that it has only one
parameter: the threshold that determines whether two subprograms are similar
enough to be in the same component. On the other hand, it can only group sub-
programs based on the portion of types they share. The types themselves, how-
ever, are not clustered. Hence, if abstract data types are to be detected, these types
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must be added by the maintainer once Type-based Cohesion has proposed its can-
didates. Moreover, Type-based Cohesion considers also intrinsic types of the pro-
gramming language, like float and int. This may be an additional clue, however, it
is rather questionable whether two subprograms are actually related if they share
only intrinsic type. Furthermore, the metric of Type-based Cohesion does not
make a distinction between user-defined types and intrinsic types, nor what the
type is used for. Hence, a function, F1, having a local integer variable has the

same similarity to a function, F2, having a local integer variable and a signature

type, T, as a function, F3, that has signature type T as well but no integer variable.

One would expect that F3 and F2 are more similar than F1 and F2. 

6.6    Distinctive Contribution of Individual Techniques

Before deciding to select one approach or a combination of approaches, one has
to consider the additional information provided by the other techniques. As a first
estimate of the contribution of each approach, we considered the good candidates
from each technique. The first section of Table 6-10 (grey zone in the table) con-
tains the distinctive contribution of each technique as the number of reference
components identified by only one approach (good match).

Table 6-10. Number of reference components identified.

Aero Bash CVS Mosaic
Global Object Reference 3 1

Same Module 4 3 15

Internal Access 2 1

Part Type 2 1

Same Expression

Delta-IC 2 1 1 5

Arch 5

Type-Based Cohesion

Found by more than one approach 7 13 16 20

Found by no approach 13 15 19 23

Identified by software engineers 26 39 54 53
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These data suggest that by combining approaches instead of using a single
approach, one would significantly improve the discovery of the reference compo-
nents. Yet, between 35 and 50 percent of the components could not be matched by
a good candidate. (However, they may be matched partially; Table 6-10 contains
only good matches.)

6.7    Analysis of True Negatives

In Section 6.5, only the weaknesses of individual techniques have been discussed,
which gives insight into why a single technique did not detect certain compo-
nents. However, as the last section showed, there are even many references that
were not detected as a 1~1 match by any of the techniques. To go further into the
question why reference components were true negatives for all techniques, I ana-
lyzed the references of Aero, Bash, and CVS not detected as a 1~1 match with a
candidate component of all techniques. The inspection revealed several reasons:

• Two-element reference components: In a few cases, the reference compo-
nents contained only two elements. Because a filter was used to ignore candi-
dates with less than three elements, these reference components could not be
detected by a 1~1 match. If the smallest possible candidate matching a two-ele-
ment reference contains three elements, the overlap of the candidate and the
reference cannot be higher than 2/3. However, 2/3 is below the threshold 0.7
used as tolerance parameter for the partial subset relationship. Hence, such a
match is classified as a 1~n match. 
The filter was effective in reducing the number of false positives and is there-
fore recommended. Reference components with less than three elements are
rare. Aero has one, Bash has two, and CVS has five overlooked references with
only two elements. 

• Interleaving: As a consequence of interleaved functions  i.e., functions con-
taining multiple, interwoven strands of computation, each responsible for
accomplishing a distinct goal (Rugaber et al. 1995)  clusters are merged that
would have been otherwise proposed as separate candidates. An interleaved
function, for example, may access variables of two different abstract data
objects or internally access two different abstract data types. As a consequence,
the interleaved function, F, introduces a link between the two clusters built
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around the global variables and the composite data structure related to F, result-
ing in a merge of the clusters. On the other hand, considering semantic argu-
ments (that are not captured by purely structure-oriented techniques), the
engineer has recognized the distinction among the two concepts and the inter-
leaving of F and identified two separate components. Merging two intrinsically
different candidates may result in two references detected by a 1~n match
instead of two 1~1 matches depending upon the size of the candidates.

• Lack of abstraction: A phenomenon, similar to interleaving, leading to 1~n
matches is lack of abstraction. All techniques assume at least a minimum of
abstraction. If all components are permissive, accessed from many different
places, and all constituents of components are arbitrarily assigned to modules,
large clusters arise and the chances to detect components as a 1~1 match by the
proposed techniques are small. They may even not be detected as a 1~n match
if the size of the clusters is above the upper threshold for acceptable candidates.
Note that interleaving is not the same as lack of abstraction. In the case of lack
of abstraction, a function, F, may access internal elements of a component, C,
though F does not belong to C. On the other hand, in the case of interleaving,
the function, F, accesses internal elements of more than one component and F
actually belongs to these components. For example, in the case of two related
abstract data types matrix and vector, the multiplication of a matrix with a vec-
tor may be implemented by accessing the internal data structures of both types
due to efficiency considerations, and F actually belongs to both of these types.

• Layering: Interestingly enough, the use of information hiding was also a rea-
son why some references were only partially detected. Some components are
structured as layers and only the lowest layer accesses the variables or record
components of the atomic component, whereas upper layers deal with user
interface issues or implement services on top of the lowest layer. The engineers
have sometimes grouped all layers together because there was no finer-grained
structuring possible. Hence, Internal Access and all other techniques that are
based on direct variable accesses can only identify the lowest layer. If these
layers are additionally implemented by different modules, which is a reason-
able decomposition for large components because each layers constitutes a dif-
ferent kind of service, Same Module is neither be able to detect the other layers.
Part Type may still be able to detect at least abstract data types among layered
component (but not abstract data objects). However, because Part Type tends to
produce very large clusters that are filtered out if they exceed the acceptable
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size for candidates, the layered component may happen to be among the fil-
tered clusters. Then, the corresponding reference component is not detected at
all.

• Debatable references: There are also a few debatable components among the
references. Some are incomplete, i.e., there are base entities that could be
added to the component; some contain spurious elements, e.g., a function that
accesses many variables of another component and that may rather be consid-
ered a part of that component. Sometimes it was difficult to make a clear cut
between complex clusters of interwoven base entities and a different way of
decomposing the cluster could be justified as well.

6.8    Summary

The comparison of automatic techniques with respect to findings of software
engineers described in this chapter revealed the following points:

• The effectiveness of a technique depends upon system characteristics, like
degree of information hiding, proper module decomposition, and layering.

• None of the investigated techniques has a sufficient recall rate; The best recall
rate we obtained was 75% of the abstract data objects (in CVS, as detected by
Same Module). In the worst case, namely, the abstract data types of Aero, the
best technique reached only a recall rate of 28%. 

• Many candidates the techniques provide correspond only roughly to the refer-
ence components; i.e., elements of these atomic components were superfluous
or lacking.

• Combining the automatic approaches instead of using a single approach, one
would significantly improve the discovery of the reference components. 

• Yet, between 35 and 50 percent of the components still could not be completely
and directly found by any of the techniques. However, the components may at
least partially be matched.

• In evaluating these automatic techniques, one also has to state what we
observed by reviewing the false positives: It turned out that 42% of the ADO
candidates and 41% of the ADT candidates classified as false positives could
indeed be considered correct positives; they were either too small to be consid-
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ered, simply overlooked in the manual process, or represented alternative
views. 

• We found common patterns of false positives in all systems that could be used
to filter out false positives from the set of candidates.

• Moreover, whereas the groups of software engineers needed about 20 - 35
hours to compile the list of atomic components for each of our subject systems,
each atomic component produced by the techniques can be checked by soft-
ware engineers within minutes. To browse the whole list of false positives of all
automatic techniques, we needed less than 6 hours per system. The time
needed for validation can even be reduced by merging similar candidates of
different techniques based on the partial subset relationship because there were
many similar false positives among the candidates.

In order to find more components with fewer false positives, we chose the most
flexible technique, namely, Schwanke’s Arch approach, and tried to improve it.
The next chapter describes the approach and its evaluation. Furthermore, due to
the degree of vagueness of reasonable decompositions and the complex semantic
issues involved, the user should be integrated into atomic component detection.
For this reason, the second part of this thesis is devoted to effective ways of user
integration.
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Chapter 7 Similarity Clustering 

The overall result of the evaluation of the basic techniques described in the last
chapter is that none of the techniques reaches human detection quality. In order to
achieve better results, we chose the most flexible approach, namely, Schwanke’s
Arch approach (1991), and improved it. This chapter describes the approach and
its evaluation.

Schwanke’s work is aimed at detecting subsystems using a similarity metric
between routines (see Section 5.9). The similarity clustering approach described
in this chapter applies the idea of Schwanke’s work to atomic component identifi-
cation by generalizing the similarity metric, adding informal information, edge-
dependent weights, and adapting many of its parameters. The two approaches
will be contrasted in more detail in Section 7.8.

The enhancements of this technique were joint work with Jean-François Girard
and Georg Schied. My improvements to the technique after it has been jointly
published in 1997 are explicitly listed in Section 7.8.

Name Similarity Clustering
Reference Girard, Koschke, Schied, 1997

Domain Base View

Range RS, ADT, ADO, HC

Disjoint Clusters Yes
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Cluster analyses are used in many areas and scientific disciplines in which large
amounts of data need to be reduced to few units of meaning that are easy to grasp.
Cluster analyses have already emerged in the beginning of the seventies. Stein-
hausen and Langer, for example, have summarized existing cluster analyses and
techniques as early as 1977. The general approach of clustering is therefore well-
understood. The challenge in applying cluster analysis to a particular problem is
to define an appropriate similarity metric. 

7.1    Overview of the Approach

The similarity clustering approach, short Similarity Clustering, groups base enti-
ties (subprograms, user-defined types, and global variables) according to the pro-
portion of features (entities they access, their name, the file where they are
defined, etc.) they have in common. The intuition is that if these features reflect
the correct direct and indirect relationships between these entities, then entities
which have the most similar relationships should belong to the same atomic com-
ponent.

Functions, variables, and types are grouped according to the algorithm already
outlined in Section 5.9 and repeated in Figure 7-1 for ease of reading. In each iter-
ation of this algorithm, a similarity metric measures the proportion of shared fea-
tures. The algorithm terminates when “existing groups are satisfactory”; i.e.,
when the similarity of the most similar groups is below a certain user-determined
threshold. 

The final result of the clustering algorithm outlined in Figure 7-1 are “flat” sets of
similar entities, but the information about the similarity among the set elements is

Algorithm 7-1. Flat similarity clustering algorithm.

place each entity in a group by itself
repeat

identify the two most similar groups
combine them

until the existing groups are satisfactory
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lost. However, this information is of great interest to the maintainer. Instead of
presenting only the final clusters to the maintainer, one should keep a log of the
order of combination as an additional information. Since the two most similar
groups are combined per iteration, the order of combination can be represented
by a binary tree in which the leaves are the initial groups and in which the inner
nodes are combinations of groups. The farther a combination is away from the
root of the tree, the higher is its degree of similarity. This procedure is called
hierarchical clustering (Steinhausen and Langer, 1977). Figure 7-2 outlines a
hierarchical clustering algorithm. 

If this tree is presented to the maintainer, one can also repeat hierarchical similar-
ity clustering until everything is combined into one single group instead of stop-
ping when a certain minimal similarity is reached. The maintainer can then
“climb up the tree” starting at the leaves and stop at inner nodes for which the
combination is doubtful. 

The similarity metric used in this algorithm to identify the two most similar
groups is constructed of three layers:

• The similarity between two groups of entities which is defined in terms of
similarity between entities across groups.

• The similarity between two entities which is a weighted sum of various
aspects of similarity.

• Each specific aspect of similarity between two entities.

These layers will be discussed in the following sections.

Algorithm 7-2. Hierarchical similarity clustering algorithm.

place each entity in a group by itself
repeat

identify the most similar groups Si and Sj

combine Si and Sj

add a subtree with children Si and Sj to the clustering tree

until the existing groups are satisfactory or only one group is left



Similarity Clustering

188

7.2    Similarity Between Groups of Entities

There are several alternatives to define similarity between two groups of entities.
The one originally proposed by Schwanke in 1991 is to use the maximal individ-
ual similarity of elements in the two groups:

 (7.1)

We experienced that this has the effect of creating very large groups which is not
very helpful. The same observation was made in other applications of clustering
(Steinhausen and Langer, 1977). If we had to group circular structures, i.e., when
the cluster is a cycle of pairwise similar elements whose similarity to other ele-
ments is otherwise low, basing similarity on the maxima of individual elements
would be the right choice. However, this is generally not the case for atomic com-
ponents; we expect all their elements to be related to each other. To achieve this
goal, we decided to define the group similarity as the average of the similarities of
all pairs of entities in the two groups (1997):

(7.2)

Using the average group similarity for groups demands of the elements of a
group to be considerably similar to many other elements of the group and, hence,
aims at cohesive components. As described in Section 5.9, a newer variant of
Schwanke’s Similarity Clustering uses a k-nearest neighbor approach (Schwanke
and Hanson, 1998). The motivation for the k-nearest neighbor approach accord-
ing to Schwanke and Hanson is that the various factors affecting the weights of
features and other terms in the similarity measure prevent it from being validly
used to compute ratios or even averages. On the other hand, the nearest neighbor
approach may lead to components in which not all parts are strongly related to
each other.

GSim A B,( ) max Sim a b,( )( )= a A b B∈,∈∀

GSim A B,( )

Sim a b,( )
a A b B∈,∈( )

∑
A B×

-------------------------------------------------------=
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7.3    Similarity Between Entities

The similarity between two entities is the weighted sum of various aspects of
similarity which fall into the following categories:

• direct relations

• indirect relations

• informal information

Direct relations are relations between the two entities compared. Indirect rela-
tions are relations with common third entities. Informal information is the infor-
mation in the program source code which is not captured by the semantics of
programming languages, but is used by programmers to communicate the intent
of a program (e.g., comments, identifier names, file organization, etc.). Informal
information can be used as a complementary source of information as suggested
by Biggerstaff (1999).

The various aspects of similarity can be united as follows (the factors xi are used

to adjust the influence of the diverse specific similarities):

(7.3)

7.3.1    Features
The following individual aspects of similarity, namely, Simindirect and Simdirect,

are going to be defined in terms of features. A single feature describes a specific
relationship of an entity to another entity in its environment. A feature has basi-
cally three facets: 

• the partner in this relationship

• the modality of this relationship

• the role of the entity in this relationship

For example, for a subprogram, it is of interest what global variables it accesses
and by what other subprograms it is used (partner). Furthermore, it is relevant
whether the accessed variables are set or used and whether the subprogram is

Sim A B,( )
x1 Simindirect A B,( )⋅ x2 Simdirect A B,( )⋅ x3 Siminformal A B,( )⋅+ +=



Similarity Clustering

190

used by directly calling it or just by taking its address (modality). And last but not
least, it makes a difference whether a subprogram is the caller or callee in a call
relationship (role). The role information is, of course, only relevant to non-sym-
metric relationships. 

We will use the term feature as a tuple of these three facets. In terms of the
resource usage graph, a feature is thus a triple (n, e, r) where n is a node, e is an
edge type, and r is the role. The node n is the partner in a relationship, e expresses
the modality, and r is either agent when the entity is the agent in a relationship
(technically, the source of the edge), patient when it is the patient in this relation-
ship (the target of the edge), or simply partner when the relationship is symmet-
ric. 

Notation. For a feature (n,e,r) of a node m, we will use the notation if m

is an agent,  if m is a patient, and if the relation is symmetric.

The predicate is true if and only if n is related to m by relationship e in

which m is an agent. Similar predicates are used for the two other kinds of fea-
tures. In some equations, we will use a place holder for relations: means

that there is a relationship e between m and n where the role of m is unspecified.

When this place holder is used in a functor or predicate such as , then the place

holder ∝ implicitly iterates over {→,←,↔}. For example:

is equivalent to

Example. If subprogram A calls subprogram B, then:

•  is a feature of A 

• is a feature of B

m e n→

m e n← m e n↔

m e n→( )?

m e n∝

∝
∪

n a b,( ) a b∝ a b∝( )?{ }
∝
∪=

n a b,( ) a b→ a b→( )?{ } a b← a b←( )?{ } a b↔ a b↔( )?{ }∪ ∪=

A call B→

B call A←



                                               191

Similarity Between Entities

Moreover, is true, whereas  is false if B does not call

A.

7.3.2    Indirect Relations
Two entities can be considered similar if they use the same entities and if they are
used by the same entities, even more so when they use them or are used by them
in the same way. Though each individual common relationship to their environ-
ment is probably not sufficient to call them similar, the confidence of being simi-
lar increases by each one.

Judging two entities by their relationship to the environment is a phenotypic kind
of comparison. A genotypic point of view would rather compare the degree of
complexity, the number of statements, and so forth. However, these “inner” val-
ues are generally of very limited use for the decision whether entities should be
grouped together. There is no point in putting subprograms of the same complex-
ity or with the same number of statements in a common module. 

Taking only common features into account may distort the result. Two subpro-
grams, for example, may be called by the same subprogram and may set the same
variable; but when they are called by many other distinct subprograms and set
many distinct variables, we would not consider them similar anymore. Therefore,
distinct features must also be borne in mind.

The definition of similarity with respect to indirect relations captures the propor-
tion of features (as introduced in Section 7.3.1) two entities share. 

(7.4)

where Common (A,B) reflects common features of A and B, Distinct (A,B) reflects
distinct features and d ≥ 0 is a parameter which regulates the importance given to
distinct features, and W(X) is the weighted sum as described below. 

Common and Distinct can roughly be described as follows (we will later refine
this definition):

A call B→( )? B call A→( )?

Simindirect A B,( ) W Common A B,( )( )
W Common A B,( )( ) d W Distinct A B,( )( )⋅+
--------------------------------------------------------------------------------------------------------------=
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(7.5)

(7.6)

The term features(X) refers to the set of features of X (see Section 7.3.1). The
operator denotes the symmetric difference for sets. W(X) is the weighted sum of
these features:

  (7.7)

where  is a weighting factor which allows assigning certain fea-
tures more influence on the global value of the metric. Weights will be discussed
in Section 7.3.3.

The common and distinct neighbors are relevant to the similarity of two entities
for obvious reasons. The other facets of features offer additional ways to specify
and use Common and Distinct. These alternatives will be discussed in the follow-
ing. 

Modality. There are several alternative ways of distinguishing the modality of a
usage − technically speaking, of considering the edge type. We discuss them by
means of the scenarios in Figure 7-1.  

In Figure 7-1(a), for example, there are two functions related to a type T: One by
having a local variable of type T and one by having a return type T. The modality
of using T is very different for the two functions. It is plausible that the two func-
tions would be more similar when their usage of the type would have the same
modality as in Figure 7-1(b). That is the point of view reflected by the first alter-

Figure 7-1. Scenarios for typical relations.

Common A B,( ) features A( ) features B( )∩=

Distinct A B,( ) features A( ) features B( )⊕=

⊕

W X( ) weight x( )
x X∈
∑=

weight x( ) 0≥

F1 F2

T
return return

F1 F2

T
local-obj-
of-type

return

F1 F2

T
parameter-of return

(a) (b) (c) (d)

F1 F2

T
parameter-of return

local-obj-
of-type
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native (it is even stricter since it does not consider the functions in Figure 7-1(a)
to be similar at all):

Alternative 1: All nodes that are reachable by the same kind of edge are
common features. 

The first alternative obviously goes wrong for scenario Figure 7-1(c) where one
function returns a type and the other has a parameter of this type. These two func-
tions could be accessor routines of an abstract data type T. The distinguishing fac-
tor of this example is that the two edge types are two special cases of the same
abstract kind of edge. The second alternative refines alternative 1 by taking sub-
typing of edges into account (see Section 3.5.1 for the definition of equivalent
edges):

Alternative 2: All nodes that are reachable by equivalent edges are com-
mon features.

Alternative 2 would not consider the two functions in Figure 7-1(a) similar at all.
However, the fact that the two of them share at least type T, even if they use T dif-
ferently, is an important information. It can also be a complementary piece of
information as in Figure 7-1(d) where we have an additional relationship to T by
means of a local variable. Frequently, constructors of abstract data types are
implemented by using a local variable of this type that is initialized and eventu-
ally returned. We should therefore not ignore any kind of edge that leads to a
common neighbor. This results in the third alternative:

Alternative 3: All nodes that are reachable by any kind of edge are common
features.

Yet, we do like to make a difference between scenarios Figure 7-1(a) and (b). One
attempt could be to assign different weights to different edge types. For example,
return edges have a higher weight than local-obj-of-type and therefore a subprogram
pair as in Figure 7-1(b) would be preferred to Figure 7-1(a). Still, that does not
work because it is rather questionable why two subprograms having both a local
variable of type T should be more similar than two functions having both return
type T. The solution is to separate common features into such regarded by alterna-
tive 2 and such covered by alternative 3.
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Alternative 4: Make a distinction between nodes that are reached via
equivalent and non-equivalent edges.

A more formal description of alternative 4 will follow below as soon as we have
discussed the influence of roles.

Role. Not only the modality of a relationship to a common neighbor is important;
we also have to distinguish whether the roles are identical or not. For example, it
makes a difference whether two subprograms both call the same subprogram, S,
or whether one subprogram calls S and the other one is called by S.

For these reasons, I propose the following strategy that also takes alternative 4
from above into consideration. We will distinguish two cases:

• Commoneq(A,B) is the set of equivalent features of A and B, i.e., the common

neighbors of A and B reachable by equivalent edges and with the same role.

• Commonne(A,B) is the set of non-equivalent features of A and B, i.e., the

common neighbors of A and B that are reachable by non-equivalent edges only
or with different roles.

In the case of common features, there are nodes reachable by both entities either
via different or same edge types. However, in the case of distinct features, a node
is either reached from one node or from the other one such that we need not dis-
tinguish features as in Commoneq and Commonne. Therefore, Distinct (A,B)

denotes all features of A and B that are not shared (as originally proposed by
equation (7.6)), and thus, equation (7.4) can be refined to:

(7.8)

Parameter Ieq in this equation is used to determine the influence of equivalent fea-

tures. Its value should be greater than one because the same modality of a rela-

Simindirect A B,( )

Ieq W× Commoneq A B,( )( ) W Commonne A B,( )( )+

Ieq W× Commoneq A B,( )( ) W Commonne A B,( )( ) d W Distinct A B,( )( )⋅+ +
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

=
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tionship to a common neighbor is more significant than just a common neighbor
that is related in different ways.

So far, we have used Common and Distinct in a vague way. Now that we have
seen what role they play and how they are used, they can be defined in detail: 

(7.9)

where e1 ~ e2 holds when the two edges are equivalent as defined in Section 3.5.

(7.10)

Neighbors yields all neighbors of a node as defined in Section 3.5.

(7.11)

Note that we explicitly exclude direct relations among two entities to compare.
Such direct relations will be considered in Section 7.3.4.

Commoneq A B,( )

A e1
C∝ B e2

C∝, A e1
C∝( )? B e2

C∝( )? e1 e2∼ C A≠ B,∧ ∧ ∧{ }
∝
∪

=

Commonne A B,( )

X eC∝ X e C∝( )? X A B,{ }∈ C N A B,( ) A B,{ }⁄∈∧ ∧{ }
∝
∪
Commoneq A B,( )–

=

where N A B,( ) Neighbors A( ) Neighbors B( )∩=

Distinct A B,( )

X eC∝ X eC∝( )? X A B,{ }∈ C D A B,( ) A B,{ }⁄∈∧ ∧{ }
∝
∪

=

where D A B,( ) Neighbors A( ) Neighbors B( )⊕=



Similarity Clustering

196

Example. Given the resource usage graph in Figure 7-2, the following common
and distinct features of F1 and F2 can be found (using the abbreviations actual =

actual-parameter-of, param = parameter-of, set = obj-set, and use = obj-use):

The sets of common and distinct features enter equation (7.8) as a weighted sum
. How features are weighted is discussed in the fol-

lowing section.

7.3.3    Feature Weights
The weight factors are introduced to give more influence to certain features.
There are several alternatives for their definition based on the facets of the rela-
tionship the feature represents. Remember that a feature consists of three parts (n,
e, r) where

• n is the partner entity of the relationship,

• e is the modality of the relationship,

Figure 7-2. Example for common and distinct features.

Commoneq F1 F2,( ) = F1 callF5→ F2 callF5→ F1 paramT→ F2 return T→, , ,

F1 set V2→ F2 use
V2→,

Commonne F1 F2,( ) = F1 actualV1← F2 setV1→ F1 call F4← F2 callF4→, , ,

Distinct F1 F2,( ) = F1 callF3← F2 callF6→,

F1 F2

T

call F4 F5

F3 F6

V1 V2

actual-parameter-of

obj-setobj-set

return

obj-use

parameter-of

W X( ) weight x( )
x X∈∑=
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• and r is the role the partner plays in the relationship, i.e., whether it is the
agent. patient, or partner.

Role. The role information can only make a difference in situations in which an
entity can be both agent and patient, i.e., if we deal with non-symmetric relation-
ships whose arguments are of the same domain, in other words, if they connect
equivalent entities. In the entity-relationship model presented in Figure 3-2 on
page 45, the relationships part-type, same-expression, and call are such cases. In
Figure 7-3(a), for example, the question is raised whether it is more important
that T2 is a part-type of T1 than that T1 is a part-type of T3 if we compare T1 to

both F1 and F2. An argument could be that an abstract data type consisting of T3

and F2 needs T1 whereas an abstract data type consisting of T2 and F1 does not

need T1. On the other hand, the abstract data type that includes T1 is based upon

T2 and therefore {F1, T2} is closer to T1. None of the two arguments outdoes the

other one. In general, considering the role an influence factor is rather question-
able. At any rate, assigning different weights depending upon whether an entity is
an agent or patient adds more complexity to this approach and complicates its cal-
ibration. Therefore, we do without the distinction.

Note that this is no argument against the roles as such. This information is rele-
vant when we compare relationships of the same class. For example, in Figure 7-
3(b) it is plausible that F4 is more similar to F2 than to F1 because both F2 and F4

call the same subprogram. The definition (7.9) for Commoneq takes this already in

account. That is why we have introduced roles in the first place.

Figure 7-3. Example for agent/patient difference.

F1

F2

return

return
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T3
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Partner. Another facet of a feature is the related entity. This is the only facet
Schwanke considered in his approach. He proposed to use Shannon information
content from information theory as weighting factor weight(x) (see Section 5.9):

 (7.12)

Probability (x) is the number of how often the entity x occurs in any relationship
divided by the number, N, of all entities of the system:

(7.13)

The quality of the Shannon information content is that it decreases by the fre-
quency of an entity, hence lessening the relevance of frequently used entities. Just
to get an impression what the actual weight proposed by the Shannon information
content is, let us compare the weight for an entity, x, that occurs only once and an
entity, y, whose probability is 0.125. We would consider the latter entity occurring
unusually often. The weight ratio of the two of them is as follows:

Table 7-1 shows how this ratio evolves when N increases. For example, in a sys-
tem with 65,536 entities, the weight ratio of an entity that occurs only once and an
entity that occurs 8,192 times more often is only 16/3. In a system with 1,024
entities, the factor is 10/3 though the other entity occurs only 128 times more
often. The reason for this is that the negative gradient of the logarithm rapidly
decreases the farther it is from 0. For obvious reasons, we cannot reduce the num-
ber of entities in the system, but we may be able to reduce the basis on which the
occurrence of an entity is established. We will come back to this below.   

Table 7-1. Example Shannon information content weights.
N 27 = 128 210= 1,024 213 = 8,192 216 = 65,536
occ (x) 1 1 1 1
occ (y) 24 27 210 213

7/3 10/3 13/3 16/3

weight x( ) ld probability x( )( )–=

probability x( ) occ x( )
N

----------------= where occ x( ) y x y∝ y x∝∨{ }=

weight x( )
weight y( )
------------------------ ldN

1–
–

ld2
3–

–
----------------- ldN

3
---------= =

1 3⁄ ldN⋅
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Establishing the weights with Shannon information content over all nodes is fine
when we do not care for the kinds of relationships that actually occur. In
Schwanke’s approach, only subprograms are grouped and any usage of a non-
local name counts no matter what it means. In our approach, the way of using the
non-local entity is relevant. That is why we have to refine the determination of the
weights by Shannon information content. For example, the subprogram F3 in Fig-

ure 7-4 may be called by thousands of other subprograms and thus, gets a low
weight according to equation (7.12) while F1 and F2 have a high weight since

each is called only once. All these subprograms may set only one single global
variable and therefore one should assume they are all equally similar with respect
to this variable reference. Nevertheless, F1 and F2 are considered more similar

than F1 and F3 because of the lower weight of F3.

Obviously, the way we have introduced to compute the weights is misleading
when we take the kind of relationships into consideration (as it was the case in the
variant of Similarity Clustering published with Girard and Schied in 1997). Equa-
tions (7.12) and (7.13) should therefore be refined as follows where we distin-
guish between different classes of equivalent relationships, e, and the roles, r, an
entity plays in a relationship:

(7.14)

where E is a representative for all edge types equivalent to e.

Figure 7-4. Example for Shannon information content weights.

F1 F2

V

obj-set
obj-set

F3

obj-set

...call call many calls

weight n e r, ,( ) ld probability n E r, ,( )( )–=
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(7.15)

NE is the number of relationships of type E and all its equivalent relationships in

the system (in the case of symmetric relationships, NE is twice the number of

actual relationships), i.e., probability (n,call,agent), for example, tells us the rela-
tive frequency of n as a caller.

In equation (7.13), the basis on which we established the probability is the set of
all nodes. In equation (7.15), on the other hand, the set of a specific kind of edge
is used. This may increase or decrease the basis, depending upon the kind of edge.
For part-type, for example, Npart-type < N (where N is the number of nodes) is quite

likely; for call, however, Ncall > N can be expected. As it was discussed above,

decreasing the basis makes Shannon information content more sensitive.

Shannon information content is a problem-independent way to establish weights
that does not take advantage of the kind and quality of the relationships among
entities. However, depending upon what kind of atomic components one searches
for, different kinds of relationships are of different significance. For example,
when looking for an abstract data type, edges connected to user-defined types are
more important than call edges, hence should be given more weight. An alterna-
tive to Shannon information content is therefore to assign fixed edge weights we

to the kind of edges between entities. This strategy will be referred to as rela-
tional weights. 

(7.16)

Both ways to establish weights, namely, Shannon information content and rela-
tional weights, are orthogonal. Their respective strength can be combined by mul-
tiplying the two values. This strategy allows tuning clustering for specific patterns

probability n E r, ,( ) occ n E r, ,( )
NE

----------------------------=

where occ n E r, ,( )

y n ye→( )? e E∼∧( ){ } if r agent=

y n ye←( )? e E∼∧( ){ } if r patient=

y n ye↔( )? e E∼∧( ){ } if r partner=





=

weight n e r, ,( ) we=
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and makes frequently occurring entities less important. This strategy will be
referred to as combined weight strategy. The results reported in this thesis are
based on the combined weight strategy:

(7.17)

7.3.4    Direct Relations
Direct relations represent immediate connections between two entities. Such rela-
tionships were explicitly excluded in the definition of common and distinct fea-
tures in order to rate direct relations among two entities differently from relations
to common and distinct neighbors. If two entities are directly related, they can
generally be considered more dependent than if they were only related by a com-
mon third entity. 

The contribution of direct relations to the similarity is computed as
. In terms of the resource usage graph, this is defined as the

weighted sum of edges between A and B:

(7.18)

where Link (A, B) denotes the actual links between A and B. Link can be defined
in terms of features as follows:

(7.19)

This definition has two interesting properties. First, we count each relationship
twice since and . This is necessary because
the weight of a feature depends on the related entity of the feature and it could be
that  due to a different Shannon information
content of A and B. Second, the value of equation (7.18) is not normalized as
opposed to a previous definition that we proposed in 1997 which divided

by all theoretically possible links between A and B. The normal-
ized version promoted relationships that are the only possible ones between cer-

weight n e r, ,( ) ld probability n e r, ,( )( )– we×=

Simdirect A B,( )

Simdirect A B,( ) W Link A B,( )( )=

Link A B,( ) A B∝ A B∝( )?{ }
∝∪ B A∝ B A∝( )?{ }

∝∪∪=

A B→ B A←⇔ A B↔ B A↔⇔

weight A B→( ) weight B A←( )≠

W link A B,( )( )



Similarity Clustering

202

tain kinds of entities (such as the of-type relationship between variables and
types) in an unjustified manner.

7.3.5    Informal Information
Programmers capture part of the meaning of programs in comments and in the
names of functions, variables, and types. This helps them and other programmers
to find their way around in a program. Another guide in a program is the file orga-
nization: related functions, variables, and types are often put together in one file
(as already expressed by the Same Module heuristic). Both of these means of
communication among programmers are examples of informal information. Usu-
ally, informal information is ignored by reverse engineering techniques (a notable
exception is Biggerstaff, 1989) which focus on the information derived by a com-
piler. This section discusses how the information contained in the names of pro-
gram identifiers and file organization can be relevant to the identification of
atomic components.

Names of Identifiers. The naming of functions, variables, and types is an impor-
tant source of information about a program given to a human reader. It has been
observed (Biggerstaff, 1989) that even the author of a program has difficulties in
recognizing the purpose of an excerpt from his code once significant identifier
names have been replaced by insignificant ones (e.g., f1 instead of top_stack).
The naming of identifiers also convey information relevant to the identification of
atomic components. For example, in one of the systems investigated, routines that
belong to an abstract data type list had similar names: list_insert, list_remove, and
list_create. 

Two naming conventions are widely used for long identifiers built from many
words: Separate words with underscore (’_’) or start each new word with a capital
letter (e.g., InsertWord). The following metric based on the number of common
words between two identifiers exploits these conventions:

(7.20)

where words (X) denotes the set of words of X, i.e., all substrings of X separated
by underscores or capital letters as delimiters.

Simwords X Y,( ) words X( ) words Y( )∩
words X( ) words Y( )∪
---------------------------------------------------------=
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An interesting feature of this definition is that it abstracts from the word lengths.
Considering the length of the common words is generally not justified. For exam-
ple, the similarity among the identifier pairs (list_insert, new_list) and
(list_insert, setInsert) is equal according to equation (7.20) because of:

If the word length counted, list_insert and setInsert would be more similar. Actu-
ally, as a human, one would expect list_insert and new_list to be more similar,
because list is a noun which probably stands for an abstract data type. An alterna-
tive, more functional point of view could be to consider setInsert and list_insert
more related, depending upon whether a functional design was preferred to an
object-oriented design. Without knowledge of the meaning of words, we cannot
make such decisions. An interesting avenue not explored in this thesis is to inves-
tigate to which extent the meaning of words could be captured. Because we gen-
erally have a very restricted domain of discourse within programs and typical
adjectives and verbs, such as new and insert, are very frequent, taking the vocabu-
lary of a domain into account could be a promising and complementary approach.
The purpose of this thesis, however, is to explore to which degree structural
aspects can be leveraged.

When such word conventions are not used, identifiers are frequently constructed
using a common prefix or postfix. For such cases, the following metric is used:

(7.21)

where prefix and postfix are the lengths of the common pre- and postfix of their
two arguments if the length is longer than three characters; otherwise they are
zero.

Simwords list_insert new_list,( ) list insert,{ } new list,{ }∩
list insert,{ } new list,{ }∪

------------------------------------------------------------------- 1
3
---= =

Simwords list_insert setInsert,( ) list insert,{ } set insert,{ }∩
list insert,{ } set insert,{ }∪

---------------------------------------------------------------------- 1
3
---= =

Simsuffix X Y,( )
1 X Y=

prefix X Y,( ) postfix X Y,( )+
1 prefix X Y,( ) postfix X Y,( )+ +
----------------------------------------------------------------------------- X Y≠







=
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Organization of Files. The division of a program into files also conveys some
information about the meaning of a program. Related functions and variables are
often put in the same file or in files with a common substring in their name (e.g.,
client-db and client-service). The previous metric for identifier name similarity
based on pre- and postfixes is used to compare the names of the files without
extensions (i.e., only file in file.c or file.h) in which the entity, X, is declared,
denoted by filename(X):

 

Informal knowledge should be seen as a complementary source of information. In
an interactive approach, one should always use two modes: One that considers
informal information and one that does not. Informal information can be helpful,
but may also be misleading. 

7.4    Clustering Result

The result of the hierarchical clustering described by Algorithm 7-2 is a dendro-
gram, i.e., a binary tree (or a forest of binary trees if clustering ends before all
entities are grouped because all remaining entities are not similar enough) whose
leaves are clustered entities and whose inner nodes represent unions of two sub-
clusters or entities (see Figure 7-5). Each inner node is associated with the simi-
larity value of its two subtrees. The farther the nodes are from the root node, the
more similar they are in terms of the similarity metric because the dendrogram is
generated bottom-up and the most similar subtrees are combined first.  

Figure 7-5. Example dendrogram.

Simfilename X Y,( ) Simsuffix filename X( ) filename Y( ),( )=
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A dendrogram is a useful information to the user because it shows the order in
which entities are clustered and the respective most similar entities. Hence, the
result of Similarity Clustering should be presented as a dendrogram to the user.
The user can then manually select components from the dendrogram. However, in
order to retrieve components automatically and also to further process the results
of Similarity Clustering by other techniques that expect the results as sets of enti-
ties (as it will be described in Chapter 8), subtrees of a dendrogram can also be
flattened using a user-determined similarity threshold. The threshold determines
the minimal acceptable similarity of a subtree to be flattened where the similarity
of a subtree is the similarity value associated with its root. As already mentioned,
the similarity value of all dendrogram nodes below this root is greater or equal to
the similarity value of the root node. In order to retrieve candidates from a den-
drogram, Algorithm 7-3 is used. 

Consider the example dendrogram in Figure 7-5. If 0.5 is used as a threshold, the
algorithm starts at leaf a and climbs up until it reaches the node with a parent
whose similarity value is below the threshold, namely, the node associated with
0.5. The leaves of the subtree rooted by this node, namely, a, b, and c, are clus-
tered to a candidate {a, b, c} and added to the list of candidates. Because b and c
have been marked visited, the next bottom-up traversal starts at d. This time, only
one step up is taken and the proposed candidate is {d, e}. The leaf f is not clus-
tered because its parent is associated with a similarity value below the threshold.

7.5    Integration of Other Approaches

The basic connection-based techniques introduced in Chapter 5 can partly be
integrated with the general approach of Similarity Clustering without major
changes. Some of the heuristics are even already a constituent of Similarity Clus-
tering, though they are used to yield additional clues among other leveraged
aspects rather than in the definite manner of the other approaches. For example,
the assumption of Same Module that entities declared in the same module are
more related than entities in different modules is covered by Similarity Clustering
as informal similarity aspect Simfilename. Moreover, the similarity of objects

occurring in the same expression can be increased by assigning more weight to
the same-expression relationship, hence, the Same Expression heuristic is incorpo-
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rated as well. Likewise, Global Object Reference can be simulated by assigning
high weights to object reference relationships and setting all other weights as well
as informal information parameters to 0.

Part Type. The integration of the Part Type heuristic needs more work. The claim
of Part Type is that a subprogram does not belong to a type of its parameter list
that is a part-type of another type in this list. Given the resource usage graph on
the left hand side in Figure 7-6, from the point of view of the Part Type heuristic,
the parameter-of from F1 to T1 should be eliminated. This could be simulated in

Similarity Clustering by setting the weight of the relationship for this parameter-
of edge to 0. However, this means that the weight of a relationship does not only
depend upon its type, the related node, and its role but also on the context of a
specific instance of this relationship. Similarity Clustering can be extended in this

Algorithm 7-3. Retrieving candidates from a dendrogram.

Input:
• dendrogram D
• threshold Θ

Output:
• list of flat candidates C

Algorithm:

1. initialization:

for each leaf L in D loop visited (L) := false; end loop;
C := empty_list;

2. retrieval:

for each leaf L where not visited (L) loop
N := L;
while parent (N) ≠ ⊥ and then Sim (parent (N)) ≥ Θ loop

N := parent (N);
end loop;   
if Sim (N) ≥ Θ then add {l | l is a leaf of N} to C end if;
mark all leaves of N as visited

end loop;
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respect. When the similarity metric is computed for the base entities during ini-
tialization, the specific contexts can be checked and the weights for such signa-
ture edges be lowered or even set to 0. The advantage of Similarity Clustering is
that is does not necessarily have to set this value to 0; it could also be decided
only to reduce the weight. In particular, the weight could be reduced only if there
is also an internal access to the container type in this context, because only then
the part type could be really put into the container type (or retrieved from it). 

Note that even if the weight is set to 0 for Similarity Clustering, the approaches
need not necessarily yield the same result. Part Type iterates over the subpro-
grams and classes them with the related types producing the candidates {F1, T2}

and {F2, T1} whereas Similarity Clustering could first cluster T1 and T2 due to the

part-type relationship (ignored by Part Type) and then add the other two functions.
However, this is only possible if the part-type relationship has a higher weight than
the return relationship.

Internal Access. The Internal Access heuristic groups all subprograms that
access a record component of the same type or record variable (see Section 5.6).
This may be correct from the information hiding point of view. However, in real-
ity for reasons of efficiency, some of the record components of a type may be
accessed from subprograms that do not belong to the type or variable. These are
often components of a simple type telling something about the general state of the
type or variable. For example, a list data structure has a component length of type
int that counts the number of elements of the list. Instead of providing a function
that returns the value of this component, the programmer may allow access to this
component from outside. There may be other components that are not intended to

Figure 7-6. Part Type captured in similarity metric.
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be used from outside because they are associated with a more complicated control
logic. Thus, there can be two kinds of record components: public and private
record components. The Internal Access heuristic does not distinguish between
them and therefore produces too large components if there are public compo-
nents.

Since there is no means in the language C to distinguish public from private
record components, they cannot easily be distinguished. However, it is likely that
a record component is meant to be public when it is frequently accessed. Another
indicator is that public record components are generally only read by subpro-
grams that do not belong to the type; writing these components is mostly done by
explicit accessor routines of the type because there may be complex consistency
constraints to maintain among the record components of this type. Similarity
Clustering as proposed so far is capable to address these two attributes. Fre-
quently referenced record components have less weight according to the Shannon
information content used to ascertain the weights of features in Section 7.3.3. In
order to distinguish references to record components from references to variables,
we have already refined the set, use, and take-address-of relationships in Section
4.2.7 where we distinguish references to record components from references to
the object as a whole. Furthermore, we have specified in Section 4.2.6 that each
composite variable has its own tree of statically accessible record components
according to the type of the variable.

Using these information, Internal Access is integrated as follows:

• frequently used public record components have less weights by way of the
Shannon information content

• accesses to record components have higher weights than ordinary accesses by
assigning higher edge weights to comp-set, comp-use, and comp-address-of
than to obj-set, obj-use, and obj-address-of 

• internal sets have higher weights than internal uses by assigning higher weights
to comp-set than to comp-use
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7.6    Establishing the Similarity Metric Parameters

A problem of Similarity Clustering in practice is that it has many parameters that
have to be adjusted. Research in cluster analyses has produced statistical analyses
to improve clustering (Steinhausen and Langer, 1977). However, they cannot be
applied to our problem because of the way we had to define our similarity metric.

A similarity metric is normally defined with respect to specific features that are
absolute to all entities to be grouped. For example, in order to cluster cells in
micro biology, we can measure their size, coloring, protein content, and so forth.
Each of these features constitutes an absolute scale on which each cell can be
measured and hence, we can represent a cell as a vector of such absolute mea-
surements. Similarity among two cells can then be expressed by alternative dis-
tance metrics, typically the euclidean metric (see Steinhausen and Langer, 1977,
for other metrics). Our similarity metric is defined as a relation directly between
two entities rather than to a third absolute point of comparison. That is why we
cannot use the statistical methods suggested for traditional similarity metrics.

There are basically three layers at which parameters have to be adjusted:

• edge weights (7.16)

• parameters in individual aspects of similarity, namely, d and Ieq in Simindirect

(7.8)

• influence factors xi of the aspects of similarity on the similarity among two

entities (7.3)

The similarity for groups of entities does not have parameters. In the following,
we are going to discuss how the parameters at the respective layers can be estab-
lished.

7.6.1    Statistical Analysis of Edge Distribution
As a completion of Schwanke’s suggestion to use Shannon information content to
establish weights of features, we have proposed to assign weights to the kind of
relationships, or technically speaking, to the edge types. In order to answer the
questions of whether the edge types count at all and how one can find appropriate
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edge weights, we investigated the distribution of edge types in the reference com-
ponents described in Section 6.1. 

7.6.1.1   Scope for the Data
What edges we consider for the statistical analysis described below depends on
the nodes regarded in the first place. The nodes will be described first before we
go into details on how the statistical analysis is performed.

Nodes considered. Because only a portion of all entities in the subject systems
really belongs to an atomic component (according to our analysts), considering a
global analysis of edge distribution does not make sense. Instead, we regard only
entities within atomic component contexts. An atomic component context con-
tains any node within an atomic component and any node that is a neighbor of an
atomic component element. 

Example. There is one atomic component {f3, f5, f6, v1, v2} in Figure 7-7. Solid
and dashed edges represent calls and references, respectively. f1, f2, f4, and f8 are
neighbors of at least one atomic component element. Therefore, {f3, f5, f6, v1,
v2} ∪{f1, f2, f4, f8} is the atomic component context. f5, f6, and f7 do not belong
to this context because none of their neighbors belongs to the atomic component. 

Edges considered. In the following, we will regard only edges that are relevant to
the similarity among nodes in atomic component contexts. These are all edges
that occur in Link, Common, or Distinct of nodes within an atomic component
context (where we consider only one atomic component context at a time). If a
and b are within the same atomic component context, Common(a,b) and Dis-
tinct(a,b) can only contain edges with at least one end within the atomic compo-
nent context according to the definition of Common and Distinct; however, the
other end of the edge could be a node outside of the atomic component context,

Figure 7-7. Example for atomic component contexts.
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like the target of the call from f4 to f5 in Figure 7-7. For edges in Link(a,b), even
both ends must be in the atomic component context because Link contains only
edges between a and b which are both in the atomic component context. 

Concentrating on atomic component contexts helps us to gather information why
some nodes are jointly inside an atomic component and others are not. Therefore,
we will count the edge types that occur in Link, Common, or Distinct, respec-
tively, in a comparison of nodes that are both inside the same atomic component
and nodes of different atomic components. Nodes that do not belong to any
atomic component at all will be considered an atomic component of their own.
The distinction of the edge distribution in same and different atomic components
gives us insights what the contribution of an edge type is for two elements being
in the same or in different atomic components. If an edge type occurs more often
among nodes in the same atomic component than among nodes in different com-
ponents, it should get more weight and vice versa.

The same edge can occur several times in the statistics because it can occur in
Link, Common, or Distinct of different pairs of nodes. Distinguishing among
Link, Common, and Distinct can give us additional hints on the weighting of these
individual aspects of similarity.

Finally, we have to distinguish among different kinds of atomic components
because it is clear from their definition that certain edge types can never occur
within specific atomic components. For example, we cannot find a use edge
within an abstract data type. Otherwise there would have to be a variable within
the atomic component and thus, it would no longer be an abstract data type but a
hybrid component.

To sum it up, the comparison has the following dimensions:

• edge types

• Link / Commoneq / Commonne / Distinct

• same / different atomic component

• kinds of atomic component
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7.6.1.2   Used Data
The data in the following statistical analysis will be ascertained for one atomic
component at a time. For reasons of readability, we will not explicitly use indices
for individual atomic components in the following presentation of the way the
information is computed. For the same reason, we will also do without any index
for the kind of atomic component. The following equations should be understood
as being applied to individual atomic components of the same kind. 

Recall that the edge type weight is multiplied by the Shannon information content
to obtain the resulting feature weight as proposed by equation (7.17). If we simply
counted the occurrence of each edge type, the statistics would not be adequate
when Shannon information content is used to balance frequently used entities.
Therefore, the statistics has to be based on equation (7.17). That is why the
accounting of edge types is by means of

 

with

  

in the following where we= 1 is assumed for all edge types. If Shannon informa-

tion content is not considered, one has to compute the following formulas with
weight (n,e,r) = 1 to get an edge distribution based on pure edge occurrences.

We are going to compute the following figures for each edge type, e, for the con-
text of a given atomic component, A (assuming we = 1 for the computation of

W(X); furthermore, it is assumed that the nodes are enumerated):

(7.22)

(7.23)

W X( ) weight x( )
x X∈∑=

weight n e r, ,( ) ld probability n e r, ,( )( )– we×=

Link
s
e A( ) W Φe Link ai aj,( )( )( )

ai aj, A∈ i j<∧
∑=

Link
d
e A( ) W Φe Link a b,( )( )( )

a A∈ b context A( ) A⁄∈∧
∑=
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where is a filter that sorts out all features not

of type e.  considers only elements that are both in the same atomic

component A, whereas  comprises features of entities where only one
node is part of A.

Given these definitions, we can compute for each edge type and similarity aspect
the ratio of edges for nodes in the same atomic component, A, and edges between
nodes within A and nodes outside of A: 

(7.24)

The average of this ratio over all atomic components is the probability for an edge
of kind e to link nodes in the same atomic component, in other words, it describes
the “natural” portion of edges of type e within an atomic component (let A be the
set of reference components used for calibration):

(7.25)

Only if LinkRatioe is greater than 0.5, the edge type e is significant. Hence, the

edge weight can be set in correlation to this ratio. We can even use this ratio itself
as weight for e. If the ratio is greater than 0 but less than 0.5, the weight should
not be 0 (or even negative), because at least some edges of type e are within
detected atomic components. Analogously, the weight for e should not be 1 (or
greater than 1) if the ratio is greater than 0.5 but less than 1 because then at least
some edges of type e are between entities not in the same atomic component.
Hence, LinkRatio represents an appropriate weight.

Definitions analogous to equations (7.22), (7.23), (7.24), and (7.25) can be made
for Commonne, and Commoneq. Because Distinct is used to discriminate entities

as opposed to the other similarities, we use the following formula to measure the

Φe X( ) m e n∝ m e n∝( ) X∈{ }=
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Distinct ratio where a high value indicates that the edge type is an important
grouping factor:

(7.26)

where

•  is defined analogously to (7.22)

•  is defined analogously to (7.23)

7.6.1.3   Data for Aero, Bash, CVS, and Mosaic
This section describes the edge ratios for Link, Commonne, Commoneq, and Dis-

tinct as defined in the previous section for the systems Aero, Bash, CVS, and
Mosaic. For readability reasons, the bars for Distinct actually present 1-Distinc-
tRatio as defined by (7.26) and the edge type names are abbreviated as listed in
Table 7-2. 

Ratios for abstract data types. For ADTs the Link ratio of obj-address-of, obj-
set, obj-use, same-expression, and actual-parameter-of must be 0 because other-
wise a variable would be contained in the component and, therefore, the compo-
nent be categorized as hybrid. The edge ratios are shown in Figures 7-8, 7-9, 7-
10, and 7-11 for the respective system.           

Table 7-2.  Abbreviations for edge types.

actual-parameter-of AP comp-set CS obj-address-of OA

call CL comp-use CU obj-set OS

same-expression SE parameter-of PA obj-use OU

local-obj-of-type LT return RE part-type PT

comp-address-of CA of-type OT delineate DE

DistinctRatioe A( ) 1
Distinct

s
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s
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--------------------------------------------------------------------–=
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• Link: It is not surprising that delineate has such a high significance for Link;
programmers introduce a synonym for a type and adhere to it. Similarly, the
expected higher Link ratios for signature and component references can be

Figure 7-8. Ratios for ADTs in Aero.

Figure 7-9. Ratios for ADTs in Bash.
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found in the charts; only in the case of Aero, return are less significant among
direct links. 

• Commoneq: The ratios for Commoneq is in most cases close to the Link ratios

for the diverse edge types. The peak of comp-address-of in CVS can be
explained by the very small number of cases in which the addresses of record

Figure 7-10. Ratios for ADTs in CVS.

Figure 7-11. Ratios for ADTs in Mosaic.
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components are taken and which all happened to be by subprograms of the
same atomic component. Neither is the peak for of-type within Mosaic repre-
sentative. In comparison to other systems, the value for Commoneq is surpris-

ingly high for Mosaic. This means that a variable that is an actual parameter to
one accessor function is also an actual parameter to most other accessor func-
tions of the same component.

• Commonne: The charts for Commonne suggest that non-equivalent features are

less significant. The difference between the ratios of Commoneq and Com-

monne supports the distinction of shared features in equivalently and non-

equivalently related ones that I proposed as an improvement to the original
approach.

• Distinct: The data for all systems suggest no significant difference among edge
types within Distinct. Note that the bars for Distinct actually present 1-
DistinctRatio, i.e., the actual DistinctRatio as defined by (7.26) is virtually 1
for all edge types.

ADO ratios. In ADOs, parameter-of, return, and part-type cannot appear other-
wise we would deal with a hybrid (Figures 7-12, 7-13, 7-14, and 7-15). For
ADOs, the remaining reference relationships take-address-of, set and use — in
particular, those for global objects — are dominating as expected. Furthermore,
same-expression is also an important factor which justifies the Same Expression
heuristic (the peak of same-expression in Mosaic is not representative because
there is only one such edge). Neither surprising is the fact that obj-set is more
important than obj-use in most cases. The data support our hypothesis that setting
objects is often a more critical operation because it may involve checking certain
consistency constraints or performing non-trivial algorithms on a complex struc-
ture and for this reason, clients of a component avoid changing the state of a com-
ponent directly. The reason why comp-set is less significant than comp-use,
which apparently contradicts our hypothesis in the case of ADTs, is the way
dereferences are handled by the resource usage analysis. As it was discussed in
Section 4.2.8.2, an assignment to a record component by means of a dereferenced
pointer, like c->a = 1, is actually considered a usage of the record component.
Because most types of ADTs are dynamic data structures and, hence, accessed by
means of dereferenced pointers, many references to record components that
would be classified as assignments by a reverse engineer are actually considered
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comp-uses by the resource usage analysis that follows the compiler’s point of
view.

It is also interesting to see how the ratios for all kinds of references change from
system to system indicating that Aero and Bash are more permissive than CVS
and Mosaic with respect to references to global variables and constants of abstract
data objects. The high ratios for Commoneq in Bash for return edges and in Mosaic

for comp-address-of edges are due to the very rare number of edges that happened
all to be in the same atomic component. These figures are not representative.             

The overall conclusion drawn from these data is that the actual influence of the
edge types in the respective similarity aspects depends on the system. As a conse-
quence, the weights gained for one system cannot necessarily used for a different
system. However, in this thesis, we considered very different kinds of systems
from different authors. For a family of systems of a common application domain
and for programmer teams with established programming conventions, there
could be less divergence of edge ratios.

On the other hand, the data clearly reveal differences among the edge types and
these differences are similar for all systems — supporting our approach to assign

Figure 7-12. Ratios for ADOs in Aero.
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different weights to different edge types. Furthermore, the different aspects of
similarity, namely, Link, Commoneq, Commonne, and Distinct, actually have dif-

ferent influence; Link and Commoneq are most important.

Figure 7-13. Ratios for ADOs in Bash.

Figure 7-14. Ratios for ADOs in CVS.
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The figures of Link for record component and object references also allow insight
into the degree of information hiding of the respective systems. There is generally
only little information hiding for ADTs for all systems; in the case of CVS, there
is even virtually no encapsulation of ADTs at all. On the other hand, information
hiding for ADOs ranges from little (Aero) over medium (Bash) to good (CVS and
Mosaic). These data indicate that the means for information hiding are more often
used for ADOs than for ADTs. However, even for ADOs, there are still many data
references that bypass the accessor functions.

7.6.2    How to Find the Parameters
As the statistics in Section 7.6 show, the parameters of Similarity Clustering have
to be adjusted before it can be applied in practice. This can be done by compiling
the atomic components of a sample of the system either manually or by using one
of the other techniques. The sample is then used to calibrate the diverse parame-
ters, namely, the edge weights and the individual influence factors of the similar-
ity aspects. With these parameters, Similarity Clustering is applied to the whole
system. Browsing and selecting the proposed candidates, one adds reference com-
ponents, which are appended to the previous sample and which can be used for
calibration in the next cycle. Of course, not all candidates have to be validated. In

Figure 7-15. Ratios for ADOs in Mosaic.
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the simplest case, only one candidate component could be treated per iteration.
This calibration process is repeated until a parameter setting is found that works
well for a good part of the system or until the parameters seem not to change any-
more. Fortunately, all steps of this process apart from the validation can be auto-
mated. How the detection quality can be judged was already discussed in Section
6.2.2. 

Two alternative classes of calibration approaches to find appropriate parameters
for a given sample are explored in this thesis. The first one consists of two steps:
(1) ascertaining the “typical” edge occurrences in atomic component contexts and
(2) finding adequate influence factors with established optimization strategies.
The second approach is based on a multi-dimensional contingency table —

derived from the sample — that describes the probability for two entities having a
certain vector of Link, Commoneq, Commonne, and Distinct values to be in the

same atomic component. Both approaches are presented and evaluated in this sec-
tion. 

7.6.2.1   Traditional Optimization Strategies
Similarity Clustering has a large number of parameters mainly due to the diverse
edge types. In order to reduce the problem space of Similarity Clustering, we
firstly try to find appropriate weights for the edge types and secondly adjust the
other parameters. 

Edge weights. The edge weights contribute to the direct and indirect similarities
between two entities. A high value has the effect of attracting two entities during
clustering. Therefore, the likelihood for them to be in the same atomic component
increases. 

The model described by (7.3) on page 189 assumes equal weights for the same
edge type no matter to which similarity aspect the edge type contributes, i.e.,
whether it appears in Link, Common, or Direct. The influence parameters of the
similarity aspects are used to make the difference. That is, for establishing the
edge type weights, we do not care about whether there is a different edge type
distribution among Link, Commoneq, Commonne, and Direct; we can simply use

the relative frequency of edge types in the context of atomic components as fol-
lows:
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(7.27)

where insideE is the number of edges of type E in an atomic component and

acrossE is the number of edges across the border of atomic components. 

It makes good sense to use the edge type ratios as edge weights because they tell
something about the “natural” consistence of an atomic component. Using a high
edge ratio for set edge weights draws many set edges into the atomic component
while a low edge ratio for actual-parameter-of has only little attraction. The edge
ratio can then be combined with the Shannon information content as discussed in
Section 7.3.3. Note that Shannon information content is based on the frequency of
nodes and does not interfere with the edge type frequency.

For the automation of the search for good parameter values, there are several
alternatives that will be presented in the following paragraphs. There are many
other approaches that are not investigated here. It would go beyond the scope of
this thesis to try all of them. The selected ones can be viewed as typical.

Grid Search. Given an interval that defines the search space for each influence
factor and a step by which the search progresses, we can search all over a grid of
the four-dimensional space spanned by Link, Commoneq, Commonne, and Dis-

tinct. The visited space coordinates of the grid depend on the chosen step. On one
hand, the step should not be too wide, otherwise maxima could be skipped; on the
other hand, a short step will dramatically increase the time needed for the search.
Due to its very large number of iterations, grid search is only feasible for small
samples.

Gauß-Seidel Strategy. The Gauß-Seidel strategy follows the strategy of hill
climbing by varying a single parameter at a time and analyzing the effect on the
detection quality. It first checks for the direction in which the parameter is going
to be changed. If the detection quality increases when the parameter is increased,
the parameter will be further increased. If the detection quality decreases instead,
the parameter will be further decreased. Then the parameter will be changed in

EdgeRatioE

insideE

insideE acrossE+
------------------------------------------=
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the chosen direction until no improvement can be achieved anymore. The param-
eter is frozen and the next parameter is adjusted.

Simulated Annealing. Simulated annealing is a widely used algorithm for com-
binatorial optimization problems. It is based on the following analogy between a
combinatorial optimization problem and a physical system (Aarts and Korst,
1990):

• Solutions in a combinatorial optimization problems are equivalent to states of a
physical system.

• The cost of a solution is equivalent to the energy of a state.

In condensed matter physics, annealing is known as a thermal process for obtain-
ing low energy states of a solid in a heat bath. The process contains the following
two steps:

1. Increase the temperature of the heat bath up to a maximum value at which the
solid melts.

2. Decrease carefully the temperature of the heat bath until the particles arrange
themselves in the ground state of the solid.

In the liquid phase, all particles of the solid arrange themselves randomly. In the
ground state, the particles are arranged in a highly structured lattice and the
energy of the system is minimal. The physical annealing process can be modeled
successfully by using computer simulation methods from condensed matter phys-
ics. The general algorithm is well-known and therefore not presented here (the
reader is referred to Aarts and Korst, 1990). Simulated annealing was introduced
above as a search for the minimum. Since the maximal detection quality is
searched in the sample of reference components, the simulated annealing algo-
rithm is adjusted to find a state of maximal energy. Furthermore, the process ends
when the number of maximal iterations (set to 15) is reached or the improvement
with respect to the best solution found is less than five percent after at least half of
the maximal iterations have been completed. 

Evolution Strategies. Another family of optimization techniques that have
recently attracted attention are evolution strategies. In order to adopt evolution
strategies to find reasonable parameters, one could view parameter settings as
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individuals exposed to evolution. However, evolution strategies require a large
number of individuals per generation — typically at least 50 — and several itera-
tions. Since each clustering process with Similarity Clustering can take several
minutes on a Sun Sparc Ultra-60, the time needed with evolution strategies were
simply too long. Doval et al. have explored evolution strategies for clustering in
more detail (1999).

7.6.2.2   Sample Partitioning
Unfortunately, the optimization approaches described above need several itera-
tions for calibration. The calibration itself involves clustering of the sample and is
therefore a rather expensive operation. It would be favorable to have a more direct
way to find the parameters.

The optimization approaches above were used to calibrate the individual influ-
ence factors of the similarity aspects within equation (7.3) on page 189. The
model described so far assumes equal weights for edge types no matter to which
similarity aspect they contribute. This need not necessarily be the case but was
done to limit the degrees of freedom of Similarity Clustering. Adding individual
influence factors of the similarity aspects depending on the edge types adds more
parameters. However, if there is a sample of reasonable size, these parameters can
automatically be ascertained.

In experimental designs, so-called contingency tables are used to test main effects
and interactions of factors (Winer et al., 1991). A contingency table is an n-
dimensional table where each dimension i∈1…n represents an independent vari-
able Vi with  levels; a cell  of the contingency table is the fre-

quency for observed values of the dependent variable at the level v1 of variable

V1, v2 of variable V2, and so forth. For example, if one is interested in whether sex

and body height have any effect on the choice of Ada as the favorite programming
language, one could take a sample of programmers, divide them into male and
female and into short, medium, and tall (where intervals of the exact body height

1…mvi
pv1…vn
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would have to be specified in order to define these categories). The contingency
table would be as follows (the data are fictive): 

For this contingency table, statistical tests can be used to validate hypotheses, like
“the sex of a programmer does not influence her/his choice of Ada as the favorite
programming language” or “tall males prefer other languages”. The idea of the
contingency table can be adopted to the problem of establishing parameters of
Similarity Clustering. The independent variables of this adoption are the dis-
cretizised similarity aspects. For the dependent variable, we count how often two
elements with a certain combination of discretizised values of the dependent vari-
ables are in the same atomic component versus those in different atomic compo-
nents. The percentage is the probability that two elements with a certain
combination of similarity aspects belong to the same component and can be used
for clustering, as in the example above in which the probability that two male and
tall programmers both prefer Ada is 30/(30+20)=0.6.

Before the use of the contingency table is explained in detail, a few principal
remarks follow. Given the atomic components for a sample of the system, we
could look for the patterns involving two entities in the same component (positive
examples) or in different components (negative examples). These patterns could
be very detailed, like “if the two subprograms have five calls to common neigh-
bors, share two types in their signature, but access no variable, then they belong
to the same component”. If the same pattern occurs more than once but does not
always apply to entities in the same component, its validity can be determined as
the number of positive examples divided by the number of occurrences. Hence,
one can derive the patterns and their degree of confidence from the sample and
use this information to try to find the other components in the rest of the whole
system. However, if these patterns are too detailed, then similar, yet different

characteristics Ada others percentage

male

short 20 50 0.29

medium 40 30 0.57

tall 30 20 0.60

female

short 10 15 0.40

medium 30 40 0.43

tall 10 10 0.50
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occurrences will be missed. Therefore, there should be some sort of abstraction,
in other words, formation of equivalence classes. The similarity metric for two
entities is such an abstraction; it abstracts from the exact numbers and kinds of
relationships between two entities. However, the abstraction might go too far for
at least two reasons:

• Since the similarity metric is the weighted sum over individual aspects of simi-
larity, all similarity aspects should be sufficiently high when two entities are to
be grouped. However, it could well be the case that two entities belong together
only when one similarity aspect is high while another is low. 

• At a lower level, as stated above, the similarity metric assumes that the influ-
ence of the edge types does not depend upon which aspect they occur in. 

Both of these assumptions need not be valid. Clustering based on single, very
detailed patterns as described above does not make these assumptions. However,
it requires all needed possible patterns of the whole system to be in the sample. A
first abstraction of the very detailed patterns, also without the assumptions of the
similarity metric, could be to categorize the LinkRatio, CommonRatioeq, Com-

monRatione, and DistinctRatio for all patterns as introduced in Section 7.6.1.2.

Recall that these ratios state the probability to find a certain edge type within a
similarity aspect (Link, Commoneq, Commonne, and Distinct) between entities in

the same component. A pattern for two entities A and B can then be characterized
by a vector:

(Linke1 (A,B), Commoneq
e1 (A,B), Commonne

e1 (A,B), Distincte1 (A,B), 

Linke2 (A,B), Commoneq
e2 (A,B), Commonne

e2 (A,B), Distincte2 (A,B),

…

LinkeN (A,B), Commoneq
eN (A,B), Commonne

eN (A,B), DistincteN (A,B))

where e1, e2, …, eN are edge types. Then the likelihood for two entities to be in
the same component, given a certain vector, can be ascertained as the relative fre-
quency of positive examples for a vector of this kind. Since the similarity aspect
ratios are floating numbers, near-misses should be avoided by forming equiva-
lence intervals on the ranges of possible values. That is to say, a floating number
is mapped onto a discreet range and all values in this range are handled alike. In
other words, a multi-dimensional contingency table is established whose indices
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are the discretizised ranges of the similarity aspect ratios and whose entries are as
follows:

(7.28)

where  is a discretizised vector of similarity aspects across all edge types. When
the contingency table has been populated with the data drawn from the sample, it
can be used to estimate the likelihood that two arbitrary entities of the rest of the
system belong to the same component: Only the similarity aspects for the two
entities are computed and then the likelihood is looked up in the table.

However, the order of this table is:

 

where N is the number of edge types and range (X) is the number of intervals for
the disretization of X (it is assumed for all edge types that a similarity aspect is
discretisized into the same number of subintervals). The fact that a contingency
table is very large is not the problem because it is also very sparse which allows
an efficient table implementation; the problem is that the number of undefined
entries, i.e., entries that neither have positive nor negative examples, increases by
the order of the table. In such cases, the contingency table information is not
available and it is unclear how to classify the two entities at hand.

A compromise between abstraction and subcategorization is to consider only the
top-level similarity aspects, i.e., to classify according to the following kind of
vector that does not differentiate among edge types:

(Link (A,B), Commoneq (A,B), Commonne (A,B), Distinct (A,B))

The edge type ratios are relevant in so far that they are used to establish the
weight of the edge type as in the more detailed model. But then, the edge types
are summarized by the top-level similarity aspects and are not used for the index
range of the contingency table.

ct v( ) positive_examples v( )
positive_examples v( ) negative_examples v( )+
--------------------------------------------------------------------------------------------------------------------=

v

range Direct( ) range Commoneq( )× range Commonne( )× range Distinct( )×( )N
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7.6.2.3    Evaluation of the Training Methods
There are two factors by which an optimization approach will be judged: 

• the number of iterations to calibrate the parameters on the sample

• the size of the sample needed to find reasonable parameters

On average, Gauß-Seidel optimization took nine iterations and simulated anneal-
ing eleven, whereas the approach based on a contingency table needs always one
iteration.

Training. For the evaluation, increasingly large subsets of the reference compo-
nents were used to calibrate the parameters of Similarity Clustering with the
methods described above. The components used for training are called training
components. The set of training components is called the training set. The set of
all references, of which the training set is a subset, is called the reference set.

Sizes of the training sets in the range of 0.1 to 1.0 (step = 0.1) were use for cali-
bration where the size of the training set is defined as the sum of the base entities
that are part of training components divided by the total number of base entities
that are part of the reference set. 

The training components were randomly chosen from the reference set and were
always complete in order to avoid false information. If a training component were
not complete, its atomic component context used for the training may contain
relationships erroneously classified as between two entities of different compo-
nents just because one of the two partners of the relationship that are actually in
the same original component does not belong to the training component. As a
consequence, the following data are only valid for a usage model in which a
maintainer identifies single components as complete as possible rather than
beginning with several subsets of components in parallel. Furthermore, because
the reference components were completely used, the exact share of the training
subset may differ from the rated values i × 0.1 (i ∈{1, …,10}). 

Because we are interested in the question how big a training set should be to find
appropriate parameters, each training for a new subset begins with the same
default parameters rather than using the results of the previous training. In a real
usage, one would use the parameters of the previous training and try to improve
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these. Moreover, in order to get comparable results for the different sizes of sub-
sets, the training components were always selected in the same order from the
reference set and the random generator used by simulated annealing was reset for
each training. Hence, all methods use the same training sets and each training
with simulated annealing iterates over the same random values.

Threshold. Similarity Clustering  as a hierarchical clustering technique 
returns a dendrogram of similar elements rather than a fixed set of candidates. In
order to compare the results of Similarity Clustering with those of techniques that
yield only sets of “flat” clusters, the dendrograms were flattened as described in
Section 7.4. The retrieval of clusters from a dendrogram depends upon a thresh-
old that specifies the minimal acceptable similarity for the flattened clusters. In
order to investigate the influence of this threshold, four different thresholds were
used. 

A high threshold has the effect of retrieving smaller clusters. Whether it also
decreases the number of clusters depends. For example, a subtree is split into two
clusters when the similarity associated with the root of the subtree is below the
threshold but the similarities associated with the children of the root are above the
threshold. Then, two clusters are proposed while using a lower threshold would
unite these two clusters. On the other hand, a very high threshold generally
decreases the number of clusters because only few clusters will be similar
enough.

A lower threshold yields larger clusters. Like for higher thresholds, we cannot
predict whether a lower threshold also increases the number of clusters: More
clusters with lower similarities may be accepted but also the size of acceptable
subtrees of the dendrogram increases, hence, more clusters are united. 

There is an obvious connection between the number of candidates and the num-
ber of false positives: Since the reference set has a fixed size, the more candidates
are proposed the more false positives will be created and vice versa. However, as
discussed, there is not necessarily a direct correlation between the threshold and
the number of candidates and, thus, the number of false positives. Moreover, there
is also no simple connection due to the filter used to exclude clusters with less
than 3 and more than 75 elements (as it was done in the comparison in Chapter 6).
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A low threshold may produce very large clusters that are then filtered out, and a
high threshold may produce clusters too small to be proposed as candidates. Nev-
ertheless, as the following figures for the thresholds between 0.1 and 0.4 show,
the lower a threshold is, the lower is the number of false positives in general 
despite of the fact that the curves in the following charts intersect in some cases.
This correlation can be explained by the circumstance that a lower threshold will
generally produce larger and, hence, fewer candidates. 

In order to see whether the number of false positives increases linearly with the
increase of the recall rate as the threshold decreases, a linear regression analysis
was performed. The statistical analysis showed that in 7 out of 16 cases the num-
ber of false positives linearly increases with the recall rate at a significance level
above 0.8. In the other cases, a linear connection could not be shown.

An interesting case of the influence of the threshold is the recall rate for Mosaic
using Gauß-Seidel optimization shown in Figure 7-18. The thresholds 0.1 and 0.2
yield good results, but then, when the threshold is further increased, the number
of candidates above the threshold immediately drops to 0. Fortunately, this phe-
nomenon seems to be rare.

Results. The calibration results for the respective methods and kinds of atomic
component are shown in Figures 7-16, 7-17, 7-18, 7-19, 7-20 and 7-21. The charts
present the recall rate as defined by (6.5) on page 163 and the number of false
positives with respect to the size of the subset used to calibrate the parameters.
Each chart contains data for four different thresholds used to retrieve candidates
from the tree produced by Similarity Clustering. For the Contingency Table
approach, a different set of thresholds was used to do the charts because the
threshold 0.4 did not yield any candidates.   

In most cases, there is not a substantial difference between calibration according
to Gauß-Seidel and Simulated Annealing. In few cases, the Gauß-Seidel tech-
nique yielded worse parameters (ADO detection for Bash; ADT detection for
Bash and CVS with threshold 0.1). The Contingency Table approach is clearly
worse than the other two approaches. Only for Mosaic, fewer false positives were
generated at the same recall rate (ADO detection) or a recall rate slightly worse
than the other approaches (ADT detection). An overall result of this evaluation is
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Figure 7-16. ADO detection with Simulated Annealing.
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that the size of the subset does not have any discernible influence on the recall
rate and the number of false positives: Sometimes they increase, sometimes they

Figure 7-17. ADT detection with Simulated Annealing.
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decrease. Furthermore, even when the parameters are calibrated on all reference
components of the system, the recall rate is far from 1.0. This may partly be due

Figure 7-18. ADO detection with Gauß-Seidel.
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to the few iterations of calibration conducted, but is certainly also because the
Similarity Clustering metric is an abstraction of the actual patterns that is in many

Figure 7-19. ADT detection with Gauß-Seidel.
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cases too coarse. Moreover, for the evaluation, the candidates are derived from
the dendrogram using a threshold that is decisive for all subtrees of the dendro-

Figure 7-20. ADO detection with Contingency Table.
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Figure 7-21. ADT detection with Contingency Table.
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gram. Hence, it is assumed that the average similarity among elements of compo-
nents is comparable, which need not be the case; e.g., for one atomic component,
a naming convention may be established such that informal information can be
leveraged by Similiarity Clustering, while for other components, the names of
their elements are not similar at all, and consequently, have a lower average simi-
larity. 

On the other hand, a positive result of this evaluation is that a subset size of about
20% seems to be sufficient to find suitable parameters.

7.6.2.4   Comparison to Other Techniques
Figure 7-22 and Figure 7-23 contain the recall rate of Similarity Clustering in
comparison to the other approaches using simulated annealing as the training
method and picking suitable thresholds that balance recall rate and number of
false positives. Table 7-3 on page 238 contains the accuracies for the 1~1, 1~n,
and n~1 matches, where the columns with heading “th.” contain the minimal sim-
ilarity thresholds used to retrieve components from the dendrogram. These
thresholds were chosen to balance the recall rate and the number of false posi-
tives. Table 7-4 on page 238 lists the number of false positives for Similarity
Clustering and Schwanke’s Arch approach. The table demonstrates that the num-
ber of false positives for Similarity Clustering could actually be reduced with
respect to its predecessor Arch.          

Figure 7-22. ADT recall rates.
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Figure 7-23. ADO recall rates.

Table 7-3. Detected ADTs and ADOs for Similarity Clustering.

System

ADT ADO

Good

OK

Good

OK

too large
too 

detailed
too large

too 
detailed

th. # acc. # acc # acc th. # acc. # acc # acc

Aero 0.20 3 0.84 2 0.44 0 0.00 0.20 5 0.81 4 0.47 0 0.00

Bash 0.20 4 0.79 8 0.51 0 0.00 0.13 1 1,00 0 0.00 12 0.41

CVS 0.10 5 0.85 3 0.32 4 0.30 0.20 22 0.82 13 0.41 6 0.51

Mosaic 0.40 1 0.86 8 0.53 5 0.41 0.40 13 0.86 12 0.49 4 0.39

Table 7-4. Number of false positives and true negatives.
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As Figure 7-22 and Figure 7-23 show, Similarity Clustering is always among the
techniques with the highest recall rates. However, as Table 7-4 indicates, it has
also a higher number of false positives than most approaches. On the other hand,
in comparison to its ancestor, the Arch approach, the number of false positives
was substantially reduced.

Similarity Clustering also needs more computational effort than any of the other
approaches. This was the reason why only few training iterations could be done.
The next section discusses how time and space complexity can be reduced.

7.7    Implementation Hints

The basic outline of the clustering algorithm was already given in Figure 7-2 on
page 187. Because the algorithm suggests to compare each entity with any other

entity,  the space complexity is O(n2) where n is the number of entities and the

time complexity to compute Simdirect and Siminformal is O(n2). In the case of

Simindirect, the time complexity even seems to be O (n3) because for each pair all

neighbors need to be ascertained and the number of neighbors can be n in the
worst case. However, analyzing the similarity metric in more detail shows that at
least the computation of Simdirect and Simindirect, which requires the most time, is

linear. Computing Siminformal is comparatively cheap. Furthermore, the storage

needed for saving the similarity between entities, which is useful because the
similarity is computationally expensive and needed more than once, can also be
reduced leveraging the fact that most similarities are 0.

In this section, we will refine the algorithm and give some hints on possible opti-
mizations. First, some data structures needed to implement the approach effi-
ciently are described. Then it is shown how Simdirect and Simindirect can be

computed in linear time to initialize the matrix used to store the similarities
among individual entities. Finally, the algorithm will be refined and possible opti-
mization to reduce the space needed for the matrix will be discussed.
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7.7.1    Used Data Structures
Let N be the set of nodes {n1, n2, …, nm} to be clustered. We assume that the

nodes in N are enumerated and can be identified by a unique number.

To represent the disjoint clusters (or groups) of base entities, we can use the

union-find data structure and algorithms for a partition1 S = s1,…,sm of N by

Hopcraft and Ullman (1983) that was already introduced in Section 5.2.

In each step of the clustering algorithm, the pair of clusters with maximal similar-
ity has to be found. Instead of iterating over the whole matrix each time to find
this maximum, we will use a priority queue to record the pairs with descending
similarity. For the priority queue, the following subprograms are assumed (let p
be a pair of set identifiers):

• procedure insert (p, s) inserts a pair p of set identifiers into the priority queue
with similarity s; if this pair is already present in the queue, the present pair is
removed and the new pair is added; only those pairs will actually be added to
the queue whose similarity is above the minimal threshold Θ

• function empty_queue is true if the priority queue is empty

• function head returns the pair of set identifiers with the highest similarity

• procedure remove_head removes the pair of set identifiers with the highest
similarity

7.7.2    Initialization
Initially, each node of N is put in a set of its own using new_set, hence we start
with a partition S=s1,…,sm where set identifier si = {i} for all i in 1…m. Because

the similarity relation is computationally expensive and needed more than once, it
is computed only once and stored in a matrix simN with range 1..m where

simN(i,j) denotes the similarity between i and j according to equation (7.3). In the

1. A partition S of a set N = {n1, n2, …, nm} is a set of sets si where i = 1…k and 

 and N si
i 1…k=

∪= i j 1…k{ } i j≠,∈,( ) si sj∩∀ ∅=
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following, the capitalized Sim denotes the similarity metric, whereas sim denotes
a similarity matrix.

For the group similarity described in Section 7.2, we can use another matrix simS

with range s1,…,sm where simS (si, sj) denotes the similarity between si and sj.

This matrix is initialized with:

simS (find (i), find (j)) = simN(i, j) 

Since si initially consists only of i, simS equals simN in the beginning. However,

during clustering the values in simS change with the following invariant: 

simS (si, sj) denotes the average similarity between all nodes in si and sj

according to equation (7.2) if si ≠ sj, and is 0 if si = sj. 

The values in simN will not be changed. 

Because the similarity metric is symmetric, the similarity relation can be stored in
a triangular matrix. Therefore, the two similarity matrices simS and simN can be

stored in one single physical matrix, one in the upper, one in the lower part. Nev-

ertheless, the space complexity for the similarity relations is still O(m2) where m
is the number of nodes to be clustered because we compare any node with any

other node. The time complexity for computing the cells of this matrix is O(m2 ×
k) where k is the maximal number of neighboring nodes (in Simindirect all neigh-

bors of a node pair need to be ascertained). Consequently, the time complexity is

O (m3) in the worst case. However, statistical analyses on the number of neigh-
bors per nodes showed that k is a very low constant much smaller than m and nei-
ther increases with the system size.

By a closer look at the way similarity between entities is defined, one can see that
Simdirect(ni, nj)=0 (equation (7.18)) for nodes that are not directly connected, and

Simindirect(ni, nj)=0  (equation (7.4)) for nodes that do not have a common neigh-

bor. Let nodes that are direct neighbors of a node n be the first-degree neighbors
of n and let the nodes that are not directly reachable, but only one node away from
n be the second-degree neighbors of n, then Simdirect (n, nj) has only to be com-
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puted for nj ∈ first-degree neighbors (n) and Simindirect (n, nj) has only to be com-

puted for nj ∈ first-degree neighbors (n) ∪ second-degree neighbors (n). Since

there is only a small number of first and second-degree neighbors for each node in
practice, Simdirect and Simindirect is basically computed linearly to the number of

nodes, i.e., has time complexity O(m). Because these are the computationally
most expensive parts of the similarity between nodes, one can reduce the time
needed to compute the similarity matrix immensely. However, computing Simdi-

rect and Simindirect is only one part of the matrix initialization. In the case of infor-

mal information, each entity is compared to each other entity no matter whether
the entities are neighbors or not. Therefore, the overall time complexity remains

O(m2) unless one does not consider informal information.

Below, we will also discuss optimizations to reduce the space needed to store the
similarity relation leveraging that the similarity relation is usually greater than 0
for only a few pairs of nodes, i.e., the matrix is very sparse.

7.7.3    A Refined Clustering Algorithm
The outline of the clustering algorithm in Figure 7-2 on page 187 can be refined
to the one in Figure 7-4. In this refined algorithm, it is still open how the pair with
the maximal similarity can be found efficiently.

Instead of iterating over the matrix simS each time it has changed and thus ending

up with a cubic algorithm, one can use the priority queue introduced in Section
7.7.1 to keep track of the order of similarity. Using the priority queue, one can
rewrite the algorithm in Figure 7-4 as in Figure 7-5. Initially, the queue is filled
with all pairs in the similarity matrix. 

The procedure recompute in this algorithm recomputes the similarities of the
newly united clusters to all other clusters. During this recomputation, all recom-
puted pairs will be added to the priority queue; all obsolete similarity values for
the recomputed pairs are removed thereby.

Equation (7.2) reduces the similarity of two clusters to the average similarity
between their members. Its computation becomes increasingly expensive as the



                                               243

Implementation Hints

involved clusters grow. An equivalent, but less costly approach is to compute the
new similarity for the union by the similarity of the two clusters to be united
using the following equation:

(7.29)

The equivalence of (7.29) and (7.2) can be proven by induction.

Algorithm 7-4. Refined clustering algorithm.

Algorithm 7-5. Optimized refined clustering algorithm.

Input:
• a partition S
• similarity matrix simS for the elements in the partition S

• a minimal threshold Θ for the union of clusters

Output:
• a new partition for S
• a tree that describes the hierarchical clustering for S

while ∃(si, sj): simS (si, sj) > Θ loop
let p = (si, sj) where simS (si, sj) > Θ is maximal;
union (si, sj);

add a subtree with children si and sj to the clustering tree

recompute (si, sj);

end loop;

while ¬ empty_queue loop
let (si, sj) = head;
remove_head;
union (si, sj);

add a subtree with children si and sj to the clustering tree

recompute (si, sj);

end loop;

Sim A B C,∪( ) A Sim A C,( )⋅ B Sim B C,( )⋅+
A B+

-------------------------------------------------------------------------------=
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Begin of induction. The equivalence of (7.29) and (7.2) on page 188 is obviously
true when A, B, and C are all disjoint sets with only one element:

Assumption of induction. To see that this equivalence holds even for disjoint
sets with more than one element, let us assume that:

(7.30)

(7.31)

Step of induction. Inserting equations (7.30) and (7.31) into (7.29) leads to (note
that A and B are always disjoint):

Algorithm 7-6. Algorithm recompute.

Input:
• a pair of set identifiers (si, sj) whose similarities to all other clusters

have to be recomputed

Algorithm:
for all sk in S where k≠i ∧ k≠j loop 

simS (find (si), sk):= Sim (si, sk) using equation (7.2) on page 188;

-- find (si) denotes the union of si and sj

insert ((si, sj), simS (si, sj));

end loop;

GSim A B∪ C,( ) GSim a b,{ } c{ },( )=

Sim a c,( ) Sim b c,( )+
a b,{ } c{ }×

-----------------------------------------------------=

a{ } Sim a c,( )⋅ b{ } Sim b c,( )⋅+
a{ } b{ }+

---------------------------------------------------------------------------------------=

Sim A B∪ C,( )=

Sim A C,( ) GSim A C,( )

Sim a c,( )
a A c C∈,∈

∑
A C⋅

--------------------------------------------------= =

Sim B C,( ) GSim B C,( )

Sim b c,( )
b B c C∈,∈

∑
B C⋅

--------------------------------------------------= =
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Conclusion of induction. Hence, equation (7.29) indeed computes (7.2) when
(7.30) and (7.31) hold. By induction, we conclude that (7.29) computes (7.2).

The advantage of using (7.29) instead of (7.2) is not only that it is easier to com-
pute, but also that there is no need to keep the original values for the similarities
of entities simN that were necessary to compute (7.2). Thus, we can save the space

for similarity matrix simN.

7.7.4    Matrix Representation
Because the similarity between nodes as defined by equation (7.3) is greater than
0 only for a few pairs of nodes (actually, as already discussed, if informal infor-
mation is not considered, it is definitely 0 for all nodes that do not have a common
neighbor and are not directly linked), the matrix to store the similarity relation is
very sparse. Instead of allocating a quadratic matrix, it is more reasonable to rep-
resent the matrix as linked nodes as outlined in Figure 7-24. Each cell of the
matrix whose value is greater than zero is part of two lists: one list for its row and
one for its column. A node in this data structure has the following components:

• a real number for the value of this cell

• a column pointer to the next cell in this column

• a row pointer to the next cell in this row

Sim A B C,∪( )
A

Sim a c,( )
a A c C∈,∈

∑
A C⋅

--------------------------------------------------⋅ B

Sim b c,( )
b B c C∈,∈

∑
B C⋅

--------------------------------------------------⋅+

A B+
---------------------------------------------------------------------------------------------------------------------------------=

Sim a c,( )
a A c C∈,∈

∑ Sim b c,( )
b B c C∈,∈

∑+

A B+( ) C⋅
-----------------------------------------------------------------------------------------------------------=

Sim u c,( )
u U c C∈,∈

∑
U C⋅

--------------------------------------------------= where U A B A B ∅=∩∧∪=

GSim A B∪ C,( )=
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• a column and a row index of this cell in the original matrix; this is necessary to
identify the cell during row or column traversal

The matrix as a whole is then represented by a column and a row vector whose
fields point to the first node in the column or row, respectively. 

One could argue that the costs of accessing cell values is a high price that we have
to pay for this sparse representation. This were true if we randomly accessed the
matrix. Fortunately, this is not the case. Only when we merge two clusters, cells
have to be accessed to recompute the similarity for the union of these clusters to
all the remaining clusters. The last section proposed to use (7.29) on page 243 to
recompute the similarity relation for Sim(A ∪ B, Ci), which requires to recompute

the shaded parts in the matrix in Figure 7-25(a) by reading the values in sim(A, Ci)

and sim(B, Ci) for all Ci ≠ Α, Β. After the merge of A and B, one of them ceases to

exist while the other represents the union of A and B from now on. Let us assume
that the columns and rows of A are used to store the values of Sim(A ∪ B, Ci). Fig-

ure 7-25(a) graphically pictures three recomputations of the similarity of A ∪ B to
C1, C3, and C4 where a complete matrix is assumed. The recomputation is along

the columns for A and B and combines the two values at the corresponding row
index for the respective Ci. If a complete matrix is assumed, we would also have

to re-compute the rows of A and B accordingly. However, since it is de facto a tri-
angular matrix without the diagonal, the recomputation actually advances as illus-
trated in Figure 7-25(b): When the cell for sim (X,Y) does not exist, the value of
sim (Y,X) is used instead. 

Figure 7-24. Sparse matrix representation.

n1

n2

n3

n4

n5

n6

n1 n2 n3 n4 n5 n6 column vector
row vector
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Thus, there is a regular access pattern to the cell contents of a triangular similarity
matrix by iterating simultaneously over the rows and columns of A and B as
shown in Figure 7-26(a) that allows an implementation of the rows and columns
as linked lists.

We can arbitrarily choose one of A and B to store the new similarity values for the
union of A and B; rows and columns of the other cluster of the union can be

Figure 7-25. Access pattern for triangular similarity matrix.

Figure 7-26. Similarity matrix before and after recomputation due to union.
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released. In the example of Figure 7-26(b), we have chosen A as the new repre-
sentative for the union and rows and columns of B are removed. This will speed
up future traversals.

In the data structure we have chosen for the matrix, each cell node is member in
two lists: one for the column, one for the row. Since these lists are only linked in
one direction, the nodes cannot be easily removed from the list. We reject doubly
linked lists due to the space overhead. The easiest solution to this problem is just
to the set the cell value to 0.0 and to remove cells with a 0.0 content during future
traversals on the fly.

7.7.5    Implementing the Priority Queue
The priority queue can be implemented as an integral part of the similarity matrix
by a list of nodes in the matrix as illustrated by Figure 7-27. The head of the list
represents the cell with the highest value. 

When two clusters are united, one can sort the newly computed nodes and then
traverse the priority queue replacing the changed nodes by their newly computed
values from the sorted list of nodes. The traversal of the priority list stops when
all newly computed nodes are at their appropriate place. This way only one (par-
tial) traversal of the priority queue is necessary.

Figure 7-27. Sparse matrix representation combined with priority queue.
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7.8    Differences from Previous Approaches

Similarity Clustering differs from the other base techniques described in Chapter
5 in that it generates candidates using a metric which provides a more refined
view on the relations between program entities. The previous approaches com-
pute connected components or other fixed patterns in a graph. In contrast,
whether these patterns are present or not, Similarity Clustering deals with contin-
uous values which reflect the degrees of similarity.

Schwanke defines a similarity metric used to group functions into modules (1991,
1994). Our new similarity clustering approach exploits these nuances, but extends
the metric in the directions summarized in Table 7-5. Further refinements that
took place after Jean-François Girard, Georg Schied, and I jointly developed and
published these extensions in 1997 are described in column “My Additions”.

7.9    Summary

Similarity Clustering is the most general approach described in this thesis. It can
detect abstract data types, abstract data objects, hybrid components, as well as
groups of related routines. All connection-based techniques described in Chapter
5 can be subsumed under Similarity Clustering. Similarity Clustering goes
beyond other approaches in that it also considers relations to common third enti-
ties and informal aspects. 

Similarity Clustering can be used in two different modes: Search for specific
user-defined patterns and search for similar patterns of already found atomic
components. Whereas connection-based techniques always yield the same candi-
dates, Similarity Clustering can be adjusted by the maintainer to different search
patterns by changing its edge weights. The adjustable parameters of Similarity
Clustering offer more flexibility. On the other hand, when the maintainer wants to
search for atomic components similar to those already found, these parameters
can be automatically calibrated by the set of known components using traditional
optimization techniques, such as simulated annealing or Gauß-Seidel optimiza-
tion. The sample used to calibrate Similarity Clustering can be ascertained with
other techniques or with Similarity Clustering after specific user-defined adjust-
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Table 7-5. Differences from previous approaches.

Schwanke’s 
Approach Our Approach 1997 My Additions

clustering 
method

hierarchical cluster-
ing algorithm

non-hierarchical clus-
tering algorithm

hierarchical clustering 
algorithm

domain routines routines, user-defined 
types, global variables

weights Shannon info. for 
non-local names

Shannon info. for part-
ners (globally estab-
lished)

edge weights reflecting 
the modality 

refined Shannon info. 
(established consider-
ing modality and part-
ner)

features usage of non-local 
names including 
macros

type relationships

reference relationships

call relationships

no macros

roles

references to record 
components

same-expression

indirect links common and dis-
tinct 

common and distinct common separated into 
Commoneq and Com-
monne

direct links values = 0 or 1 continuous values 
between 0 and 1

continuous values ≥ 0

informal

information

not used tokens in identifiers

pre- and postfix in iden-
tifiers

organization of files

similarity

between 
groups

maximum similarity 
between elements 
(1991)

k-nearest neighbors 
(1994)

average similarity 
between elements

establish-
ment of fea-
ture weights

neural networks systematic hand tuning 
(grid search)

contingency table

Gauß-Seidel approach

simulated annealing
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ments have been applied. Experiments with calibration methods for the subject
systems used in this thesis indicate that a sample of 20-30% of the groupable base
entities of a system grouped to atomic components is a sufficient training set (a
base entity is said to be groupable if it actually belongs to an atomic component;
recall that not all base entities were grouped to components by the software engi-
neers for our subject systems). However, the data have not shown that one could
improve the recall rate of Similarity Clustering by using larger samples. This is
probably because of the diversity of characteristics among atomic components.
For example, some atomic components may be properly encapsulated such that
high weights for record components and variables references will yield good
results. Some others may be permissive atomic components for which higher
weights for record components and variables references will also add many non-
accessor functions that break the information hiding principle. 

Similarity Clustering is one of the most effective techniques as far as the recall
rate is concerned. On the other hand, it has also more false positives than other
approaches (except for Arch which has more false positives). In earlier variants,
the number of false positives was even worse (Girard et al. 1997c). My additions
described in Table 7-5 in the last section resulted in a substantial reduction of the
false positives in comparison to results previously published.

Another advantage of Similarity Clustering, as a hierarchical clustering method,
is that it yields a dendrogram of clustered entities instead of a set of flat candi-
dates. This is in particular useful for validation. In the quantitative evaluation of
Similarity Clustering, branches of the dendrogram were cut and converted into
candidates using the same similarity threshold. However, this assumes that the
same threshold is suitable for all components. Using a single threshold was nec-
essary in a fair comparison to other automatic techniques; in an interactive
approach, one does not need a threshold at all. Hence, less false positives can be
expected for a hierarchical view.

There are also some drawbacks of Similarity Clustering. For all techniques other
than Similarity Clustering, there is one single criterion used for clustering. Hence,
the reason why a technique has grouped entities together is obvious. This is less
obvious for Similarity Clustering when the similarity metric considers several
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aspects at the same time. This complicates validation of candidates proposed by
Similarity Clustering.

When Similarity Clustering considers informal information, it may happen that
entities are clustered that are not even transitively connected to each other just
because they have similar names. This may be useful when groups of related sub-
programs are to be detected. However, for ADT and ADO detection, the entities
are always at least transitively connected via call, type, or reference relationships.
Fortunately, unconnected entities can be easily filtered from candidates if this is
necessary. In the quantitative comparison reported in this chapter, a filter for can-
didates with unconnected entities was not used. Using such a filter will probably
lead to less false positives. Furthermore, future extensions of Similarity Cluster-
ing should try to use informal information only for nodes that are either first or
second-degree neighbors. Then, informal information would only be an addi-
tional hint but not a sufficient criterion for two nodes to be in the same compo-
nent. This would also reduce the time complexity for computing the similarity
matrix as discussed next.

The computational effort needed for Similarity Clustering is higher than for all
other techniques. This is mainly due to establishing the similarities among the
entities while clustering as such is comparatively fast. Section 7.7 gave hints on
how the complexity can be reduced. It turned out that time and space complexity
for Similarity Clustering is basically linear to the number of entities, n, when
informal information is excluded (assuming an upper constant limit of neighbors
an entity can have). However, when informal information is used, each entity has

to be compared to any other entity resulting in a time complexity of O(n2). If the
proposal above to use informal information only for first and second-degree
neighbors is put into action, however, the complexity can be reduced to O(n).
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Part III The Semi-
Automatic Method
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Chapter 8 Combined and Incremental 
Techniques

In the previous chapters, the basic techniques and their evaluation were described.
The evaluation has shown that none of the basic techniques has the detection
quality that compares to human judgement. Therefore, further improvements are
necessary. Advances can be expected by combinations of the basic techniques.
Another avenue to progress in atomic component detection is to integrate the
maintainer in the detection process. Furthermore, new techniques could be
invented or existing techniques be refined by means of control and data flow anal-
yses, for example. However, before new techniques are tackled, possible
improvements by combinations of existing techniques should be explored first.
Moreover, the maintainer has to validate the candidates proposed by automatic
techniques at any rate because we can rarely expect perfect recall of any auto-
matic technique due to the vague criteria and sometimes subjectivity of the rules
for constituting atomic components. That is, integrating the maintainer is needed
in any case. 

For these reasons, this thesis presents only generic ways of combining existing
techniques and leaves new techniques to further research. The combinations are
designed with applicability to a semi-automatic detection process with human
intervention in mind. Chapter 9 proposes a possible semi-automatic method that
uses the extensions discussed in this chapter.
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8.1    Ways of Combinations

There are basically two ways of combining the heuristics described in Chapter 5:
They can either technically be integrated such that the underlying heuristics of
several basic techniques are implemented by one combining analysis  or the
results of the techniques and not the techniques as such are combined. The latter
strategy has the advantage of more flexibility in both practical operation and
implementation: The user can decide on his own on the selected heuristics as well
as the order of their application and the developer of new analyses can write the
analyses independently; otherwise, adding a new analysis to an existing suite of N
analyses would require to develop N combinations of the new analysis with the
existing ones if pairs of combinations are considered. If more than two techniques
are to be combined, the implementation effort is even worse. 

That is why I propose to combine the results of the techniques instead of the tech-
niques themselves. Manifold combinations are possible by means of a few com-
bining operators such as union, intersection, and difference operators for
components views. Chapter 9 describes a semi-automatic method in which the
maintainer uses these operators to combine and tailor the basic methods for his
own use. The operators are simple enough that the maintainer can compose them
by simple mouse clicks. 

One of the operators, namely, the composition operator, applies two techniques
successively. The output of the first technique is fed into the second technique. As
a consequence, the second technique has as input a description of the system that
does not only contain the base entities and their relationships but also a set of
atomic components already detected by the first technique. The second technique
must be prepared for this, i.e, we need incremental versions of the basic tech-
niques. 

Incremental analyses are not only useful for intermediate steps in combinations of
techniques but also for the interactive method described in Chapter 9. The main-
tainer validates the candidates proposed by the diverse techniques and in doing so
produces a partial description of the systems’s atomic components. The tech-
niques then find new atomic components based on this partial description. Chap-
ter 9 will elaborate more on that. In this chapter, however, we discuss how the
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information provided by the user can be captured and used by the incremen-
tal analyses.

This chapter will also describe a voting approach as a complement to the
combining operators, in which the agreement of each technique with a given
component, i.e., its underlying heuristic, is expressed as a metric. An atomic
component candidate can then be assessed by summing up the agreements
of the individual techniques to it.

8.2    User Information

Validating the candidates, the user has several choices: He or she can com-
plete, accept, and reject partially and entirely. All this information has to be
kept for the next iteration of an iterative detection process because con-
firmed information should not be presented for validation once more. For
the purpose of representing components accepted by the user we can adopt
the means introduced in Section 3.2.1 and Section 3.2.2 to represent atomic
components and subsystems proposed by techniques. In this section, we
will also introduce a few extensions to capture other aspects of user infor-
mation.

8.2.1    User Information and Components Views
To distinguish candidates from reference components, we can make use of
the resource usage graph views introduced in Section 3.6. To capture the
point of view of the user, we use one dedicated view (per user), called the
user view in the interactive method described in Chapter 9. The user view
contains all information added by the user, inclusive acceptance of results of
automatic analyses. Therefore, in order to ascertain whether something has
already been established or rejected, we can simply consult this view.

A view that shows the decomposition of components is called components
view (see Section 3.6). The user view is one example; all the results of the
basic techniques can likewise be represented by components views. There
are basically two kinds of information contained in a components view
(possibly added by the user): positive and negative information. Positive
information is any decision of the user that certain elements belong
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together; it is considered negative information when the user decides that certain
elements do not belong together. 

We can use components views and the formalism introduced in Section 3.2.1 and
Section 3.2.2 to represent positive information: The fact that the elements belong
together is simply added to the user view in a relational fashion. However, we
have not introduced means to express negative information yet. We will represent
this fact by a new symmetric mutually exclusive relationship:

mutually-exclusive (a, b) expresses that entity a and entity b must not be
direct elements of the same component, nor may one be a direct part of the
other one.

Note that a and b may also be components, i.e., atomic components or sub-
systems, in the definition above. Note also that the definition above does not
exclude the example in Figure 8-1 in which a and b are both transitive parts of C
(a is even a direct element of C) though a and b are mutually exclusive. The defi-
nition above specifies only that a and b must not be part of the same component;
otherwise, mutually-exclusive edges could not be used to separate elements within
the same subsystem. The user could, for example, decompose the whole system
into subsystems with one single root; in this case, no mutually-exclusive edges
could be used at all. 

A components view will be used as additional input parameter to the combining
operators and incremental analyses in order to describe the currently established
component decomposition. Likewise, the result of operators and analyses is also a
components view. Since the operators and analyses do not have to care whether
the input components view stems from the user or was generated by previous
analyses, we can define the operators and analyses in the following in a uniform
way, i.e., we need not care whether they are applied to the user view or in a com-

Figure 8-1. Example for mutually-exclusive.

C
A

ba mutually-exclusive
part-of
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position of techniques. Since all analyses produce components views, we can eas-
ily combine the results by operators described below.

The next section describes the assumptions we are going to make about compo-
nents views that have to be maintained by the operators and incremental analyses.

8.2.2    Constraints for Components Views
Components views were already introduced in Section 3.6 (Table 3-5 on
page 68). Here, we extend components views to incorporate mutually exclusive
edges. Therefore, the following additional assumptions will be made about com-
ponents views:

• Nodes: A components view may contain subsystems, atomic components, and
base entities.

• Edges: A components view may contain part-of and mutually exclusive edges
among base entities, atomic components, and subsystems.

• Constraints: 

- A base entity is only in the components view if it is part of a component in
the view or if it is an end of a mutually exclusive edge.

- The constraints for subsystem structures as stated in Section 3.2.2 (may over-
lap, is acyclic, and has no redundant part-of edge) hold.

8.2.3    User Actions
Altogether, the user can manipulate a components view in the following ways:

• creation: create a new component

• assignment: add an entity to a component

• rejection: remove a bound entity from its component (which does not imply
that the entity and its component are mutually exclusive from now on)

• exclusion: mark two entities as mutually exclusive (which implies rejection if
one is part of the other one)

• confirmation: confirmed information is added to the user view

Note that the user is offered two ways of removing an entity from a component. If
the entity is only rejected, the entity may be re-added to the component by subse-
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quent analyses that take the current components views as input, which is useful
when the user is unsure and wants to see whether another technique would also
add the entity to the component. If the user is sure that the two entities do not
belong together, he can mark the entities as mutually exclusive.

All user actions, excluding confirmation, affect only the components views
manipulated by the user. Only on confirmation, information is transmitted to the
user view and may affect newly started analyses. 

8.3    Combining Operators

The heuristics we have described in Chapter 5 use diverse strategies to find
atomic components. Some of them may be particularly powerful for certain kinds
of atomic components, but rather weak for others. Some of them are not even able
to detect certain kinds of atomic components at all; for example, the Part Type
heuristic is not able to detect ADOs. It makes sense to combine these techniques
in order to leverage individual strengths of the techniques and to compensate their
weaknesses.

The base techniques are basically functions that take a view as input and produce
a components view containing the atomic components detected, denoted as:

T: V → V (where T is a technique for atomic component detection and V  is
the set of views) and the application of a technique is denoted by T(V) (this
will be refined in Section 8.3.1). 

Therefore, we can use functional composition to combine the techniques: The
result view of one technique is the input view of another technique. Since the
results are basically sets of atomic components, we can use the union and inter-
section as another way of combining them. Thus, the following operators can be
used for the combination of the results of the basic techniques (let V, V1, and V2 be

components views and T1 and T2 be techniques): 

• union (V1, V2) = V1 ∪ V2

• intersection (V1, V2) = V1 ∩ V2
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• composition (V, T1, T2) = T2 (T1 (V))

These are the core operators. In the following sections, we will discuss them in
more detail. Here we give only a brief overview. The union operator is useful for
techniques that produce very different kinds of atomic components and is, there-
fore, especially suited to combine techniques that are restricted to one class of
atomic component. For example, Delta IC can only detect ADOs and Part Type
only ADTs. Applying the union operator to these two heuristics allows the detec-
tion of both kinds of atomic components.

The intersection is used to reveal the agreement of two techniques: Only atomic
components detected by both techniques will be present in the resulting view.
This gives us a higher confidence about the resulting components. A good exam-
ple is the intersection of Part Type with Internal Access. Remember that Part Type
assumes that the parameter of the part type in the signature is put into or retrieved
from the parameter of the container type. This can only be the case when the
parameter of the container type is internally accessed.

The composition of techniques is the consecutive application of two techniques.
The application of the second technique tries to group base entities that were not
grouped by the first technique. The second technique can create new atomic com-
ponents or add not yet bound entities to atomic components detected by the first
technique.

The exact definitions of these combining operators will follow. At this point, we
only point out that applying the set operators union and intersection is more than
just composing, uniting, and intersecting the sets of atomic components repre-
sented by views in the sense of set theory. For the intersection, for example, we
can hardly expect that we find two exactly equal atomic components by both
techniques. A simple definition of intersection according to set theory would
therefore yield empty result views in most cases.

Composition, intersection, and union are the core operators to combine the tech-
niques, but there are other useful operators. Because some techniques consider
variables and types, it may be desirable for their combination with other tech-
niques to restrict them to one kind of base entity. For example, one might want to
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apply Internal Access to detect ADTs only and to apply Delta IC to detect ADOs.
Therefore, we add the following unary operator:

• restriction (V, k) = Vk where Vk is the view V restricted to entities of kind k

Since it generally does not make sense to exclude subprograms for the combina-
tion of techniques, k denotes either variables or types; the resulting view will
always contain all the subprograms of the non-restricted view. Internal_Access
(restriction (V, Type)), for example, will apply Internal Access to the View VType

that contains all the subprograms and types of V but not the variables of V. In
order to apply Delta IC to detect ADOs and Internal Access to detect ADTs in
view V, for example, one can compute:

• union (Delta-IC (restriction (V, Variable)),  
Internal-Access (restriction (V, Type)))

Finally, a difference operator may also be useful in an interactive approach. It
allows the maintainer, for example, to inspect the difference between his own
point of view, i.e., the set of atomic components he has specified, and the set of
candidates generated by an analysis:

• difference (V1, V2) = V1\V2 ∪ V2\V1

These operators allow powerful yet simple combinations of base techniques. Yet,
not all possible combinations may be sensible; in particular, one has to be aware
that multiple intersections may result in empty sets of atomic components and
multiple unions may produce many overlapping atomic components. In the fol-
lowing sections, we will discuss the combining operators in more detail.

8.3.1    Composition
The composition operator applies two techniques consecutively. The output of the
first technique is the input of the second technique. The second technique may
add left free entities to the existing component (and create new components as
well). Hence, the composition operator presumes incremental techniques. The
base techniques as introduced in Chapter 5 have only one input parameter,
namely, the base view. Recall that the base view consists of all base entities and
their relationships that can directly be derived from source code (see Table 3-5 on
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page 68). The incremental versions of these techniques have an additional param-
eter: the components view that describes the atomic components that have already
been found. The result is a components view meeting the constraints listed in Sec-
tion 8.2.2. Hence, the application of an incremental technique, T, can be described
by a function:

T: V × V → V × V (where V  is the set of views) and the application of a
technique is denoted by T(V1, V2) where V1 is the specific input view for

the technique that describes the base entities and relationships considered
by T and V2 is a components view. Note that T(V1, V2) = (V1, V2’) holds,

i.e., the first input view is not changed.

We will call base entities bound if they are already part of a component in the
input components view. All other entities are considered free. 

8.3.1.1   Restrictions Imposed by the Interactive Employment
The composition operator is used to support the semi-automatic method that is
going to be described in Chapter 9. The interactive employment of the operator
imposes further restrictions on the allowable operations on components views:

(R1): Only free entities may be grouped.

(R2): If a free entity, E, is to be clustered with a bound entity, F, entity E is
to be added to the enclosing components of F.

The restrictions will be motivated in the following.

Ad (R1). There are basically two kinds of scenarios for the application of the
composition operator:

1. the operator is applied to the user view

2. the operator is applied to an intermediate view (a view that results from analy-
ses or combining operators)

When applied to the user view, the operator must preserve all information con-
tained in the user view; in other words, the operator must not remove bound enti-
ties or reorganize existing components because the user has previously approved
the elements of the user view. In principal, it would also be useful for a more gen-
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eral usage within maintenance to allow the analyses to restructure existing com-
ponents; the analyses would then propose alternative decompositions of existing
components. However, the focus of this thesis is on recovery rather than restruc-
turing. Nevertheless, the thesis provides building blocks to support restructuring.
A simple way to support restructuring would be to allow clustering of all entities
of the user view; then, the difference operator can be applied to the user view and
the resulting view in order to investigate discrepancies. Another way to analyze
an existing decomposition is to let the analyses rate the components as described
in Section 8.4. 

Because the user has previously approved the elements of the user view and
because the focus of the operators described in this thesis is on recovery, an incre-
mental technique may only create new components comprising free entities and
add free entities to existing components, i.e., a bound entity must not be removed
from its components nor may it be added to another component (because this
would be another kind of restructuring).

The arguments against allowing an incremental technique to regroup or remove
bound entities hold also for the second scenario in which the operator is applied
to intermediate views. The operator is only applied by the user and if she selects a
components view to be refined by the composition operator, we may assume that
she agrees to the decomposition within the intermediate view, otherwise she
would have modified the intermediate view by hand or rejected the intermediate
view as a whole.

Ad (R2). Furthermore, during clustering, an analysis may decide to group a free
entity, E, with another entity, F. If F is also a free entity, the two of them may be
used to create a new atomic component when all free entities are clustered. How-
ever, if the input view of the composition operator is not empty, F may already be
bound. Because bound entities cannot be removed from their enclosing compo-
nents (as it was discussed above), there are basically two options on how to deal
with a free entity, E, and a bound entity, F, that the analysis wants to be grouped
together:

1. E and F are used to create a new component (but F remains still also a part of
its enclosing component)

2. E is added to the enclosing component of F
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The first option is not possible due to restriction (R1) which implies that a bound
entity must not be added to another component. However, the second option is not
only preferred because the first option is excluded by (R1). First, if restriction
(R1) were not in place and E and F were added to a new component, the new
component would overlap with the enclosing components of F, which would
force the user to the check the addition of F to the new component though she has
already decided on F.

Second, during the course of clustering, an incremental technique whose input
components view is empty (i.e., all entities are free) puts E and F into the same
new cluster if they are related. The same would be expected of an incremental
technique whose input component view is not empty. For example, if the base
entities a, b, and c in Figure 8-2(a) are related in the sense of the heuristic under-
lying a technique, T, that is to be applied, T will create a new atomic component,
AC, that consists of a, b, and c as sketched in Figure 8-2(b). If the user decides to
reject b in the result of technique T (Figure 8-2 (c)), AC will no longer contain b
(Figure 8-2 (d)). However, because b was only rejected temporarily and not
excluded (see Section 8.2.3), one would expect that T will add b again to AC
when applied to Figure 8-2 (d). This effect is only achieved by the second alterna-
tive that adds b to the enclosing component of a and c.   

The second alternative is also appropriate if two different techniques are applied
successively. Consider the example in Figure 8-3 in which a composition of two
techniques S and T is computed based on the second alternative. Only a and c are
related with respect to technique S and therefore grouped by S into AC. When T is
applied to the intermediate result in Figure 8-3(b) and b is related to c according
to the clustering criterion of T, c is already bound to AC. Following the second

Figure 8-2. Successive application of the same technique.
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alternative, T groups b to AC as well. The second alternative allows to succes-
sively completing an atomic component using different criteria, i.e., different
techniques can complement each other, while the first alternative would always
generate a new component and assumes that one criterion is sufficient for entities
to be in the same component. For these reasons, the second alternative is pre-
ferred.    

8.3.1.2   Algorithm for the Composition Operator
The composition can be organized in the following steps (the term cluster is used
here to make clear that the individual techniques generate sets of related elements
that only become components in the last stage of the composition): 

1. Iterate over the free entities and cluster them. The result are clusters with
related-to information (see below).

2. Split all clusters so that there are no mutually exclusive entities in the same
subcluster where each subcluster contains only entities that are (transitively)
related to each other.

3. Transform clusters into components.

The first step depends on the analysis. It is described as composition in the fol-
lowing sections. The second and third steps are identical to all analyses and are
explained in Section 8.3.1.6 and Section 8.3.1.7. An advantage of organizing the
composition this way instead of letting the analyses be in charge of mutually
exclusive entities is that the analyses do not have to take care of negative informa-
tion. Other consequences of this decision will be discussed in Section 8.3.1.6.

We will discuss the diverse classes of approaches, namely, connection-based,
metric-based, and graph-based techniques (as described in Section 5.13) sepa-
rately. The clusters generated by all techniques are sets of related entities which

Figure 8-3. Successive application of different techniques.
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are to be grouped together. More precisely, a cluster is represented as a connected
graph, so-called related-to graph, whose nodes are the entities to be grouped
together and whose edges represent the symmetric related-to relationship that
specifies which entities are related to each other in the sense of the underlying
heuristic of the technique (the related-to relationship is a virtual relationship
defined by each technique in its own specific way in the following and, therefore,
not represented in the resource usage graph; one can think of the related-to graph
as a separate data structure distinct from the resource usage graph). All elements
of a cluster are at least transitively related to each other; otherwise, the techniques
would not have grouped the elements together in the first place. However, the
related-to annotation is needed when the cluster is split into subclusters due to
mutually exclusive entities. Then, a subcluster may only contain related entities
and no mutually exclusive entities. The related-to information also plays a role
when clusters are transformed into components by step 3 as it will be explained in
Section 8.3.1.7.

8.3.1.3   Composition for Connection-based Techniques
Connection-based approaches cluster entities based on a specific set of direct
relationships in between entities to be grouped. They differ only in the types and
characteristics of the relationships they consider. These relationships are present
in the base view (or in a subview of the base view, respectively). The techniques
iterate over the free entities in the base view and collect the connected entities that
could be grouped. These connected entities themselves may be either bound or
free. Free connected entities will belong to the same cluster of the entity that is
under consideration. Bound connected entities cannot be grouped again because
they already belong to an atomic component. Instead, the entity under consider-
ation should belong to the same atomic component the connected bound entity
belongs to (or the set of atomic components if the connected entity is bound to
more than one). This will technically be solved in algorithm 8-1 by adding the
enclosing atomic component(s) in lieu of the connected entity. 

Initially, each entity is put into a set of its own using the disjoint sets algorithm
already introduced in Section 5.2. For simplification, we assume that all entities
(bound or free) and atomic components are enumerated from 1 to Last_Entity.
The generic parameter Connected_Entities of this algorithm is specific to each
connection-based approach and yields all the base entities that could be grouped
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Algorithm 8-1. Generic incremental connection-based clustering.

Generic Parameter:
• Connected_Entities : Entity → Set of Entities

Input:
• base view B
• components view A

Output:
• set of disjoint clusters with related-to information

Algorithm

1. Put each free entity and component in a set of its own:

for E in 1..Last_Entity where not Is_Bound (E, A) or Component (E) loop
New_Set (E);

end loop;

2. Iterate over free entities and cluster connected entities:

for E in 1..Last_Entity where not Is_Bound (E, A) and not Component (E)
loop

for C in Connected_Entities (E) loop
if not Is_Bound (C, A) then

Union (Find (E), Find (C)); add related-to (E, C);

else
for AC in Enclosing_Components (C, A) loop

Union (Find (E), Find (AC)); add related-to (E, AC);

end loop;

end if;
end loop;

end loop;

3. Result:

Each disjoint set represents a cluster that constitutes a candidate.
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according to the underlying heuristic of the approach. The function
Enclosing_Components returns a set of atomic components and subsystems to
which the given entity belongs. When two entities A and B are grouped together
by Union, the related-to information is added.

The result of this algorithm is a set of disjoint clusters with related-to informa-
tion. A cluster can consist of base entities and components. How the result is
interpreted and converted into components is described in Section 8.3.1.7.

Algorithm 8-1 enhances all connection-based techniques to work incrementally.
The techniques themselves need not be changed, i.e., the specification for
Connected_Entities remains unaffected.

8.3.1.4   Composition for Metric-based Techniques

Delta-IC. As previously said, Delta-IC is a hybrid of metric-based and connec-
tion-based approaches. The actual clustering is connection-based while the metric
is only used to remove bad candidates. Hence, an incremental extension of Delta
IC can be organized analogously to connection-based approaches. A single step
in the incremental connection-based techniques basically consists of two sub-
steps: (1) select a cluster and (2) replace bound entities within these clusters by
their enclosing components. This scheme can be adopted for Delta-IC as follows.
At first, the clusters are identified according to the procedure explained in Section
5.7 and then bound entities are replaced within these clusters as described by
algorithm 8-2 (only step 4 and 5 are new, all other steps were already explained in
algorithm 5-4 on page 131). The reasons for replacing bound entities by their
enclosing components were given in Section 8.3.1.1. 

If a cluster is split into subclusters due to mutually exclusive entities, a subpro-
gram, S, should be in a subcluster that contains an object, O, referenced by the
subprogram. That is why a related-to(S, O) annotation is added to the cluster in
step 4 of algorithm 8-2. If an entity, E, is related to an entity, E’, that is already
bound, the induced related-to information with respect to the enclosing compo-
nents of E’ is added as part of step 5 of algorithm 8-2.
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Algorithm 8-2. Extended incremental Delta IC.

Input: 
• object reference view V
• components view A
• ∆IC threshold Θ

Output:
• non-disjoint clusters with related-to information

Algorithm:

1. - 3. 
-- See algorithm 5-4 on page 131.

-- clusters is an array of clusters where ∆IC (clusters (C)) ≥ Θ 

4. add related-to information:

for each C in clusters’Range loop
for each subprogram S in clusters (C) loop

for each object O in referenced-objects (S) in V loop
add related-to (S, O); 

end loop;
end loop;

5. handle bound entities:
for C in clusters’Range loop

for each element E in clusters (C) loop
if Is_Bound (E, A) then

clusters(C):=(clusters(C)\{E})∪Enclosing_Components(E,A);
-- clusters (C) is a set of entities, i.e., a single cluster
for each E’ in clusters (C) where related-to (E, E’) loop

for each AC in Enclosing_Components (E, A) loop
add related-to (E’, AC); -- induced related-to information

end loop;
end loop;

end loop;
end loop;

C∀
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Other metric-based techniques. Both Type-based Cohesion and Similarity
Clustering use the same hierarchical clustering algorithm that was proposed
in Chapter 7; they only differ in the underlying metric. In an incremental
approach, atomic components have already been detected and yet unbound
entities have to be clustered. This compares to a snapshot of the clustering
algorithm after a few runs when there are already some clusters and yet
more iterations ahead. Considering this, the clustering algorithm can easily
be modified to work incrementally. Only a pre- and a post-processing phase
is necessary. In the pre-processing phase, the similarity relation is computed
among all atomic components and all unbound entities using the group sim-
ilarity (equation (7.2) on page 188). The clustering algorithm then clusters
all atomic components and free entities based on the similarity relation just
computed. The result of the clustering algorithm is a dendrogram whose
subtrees are flattened into clusters using a user-determined threshold for the
acceptable similarity among the elements of the subtrees as described in
Section 7.4. If atomic components have been added in lieu of their elements
in the pre-processing phase, the dendrogram may contain both components
and base entities and, hence, the retrieved clusters contain components
besides entities, too. 

Note that it need not necessarily be the case that the similarity among all
elements of a cluster retrieved from a dendrogram is above the threshold.
Because the average as defined by (7.2) on page 188 is used as group simi-
larity, a less similar entity may be balanced by strongly similar entities.
Consider the example similarity matrix in Figure 8-4 that contains two base
entities a and b and two atomic components A1 and A2. According to Figure

8-4(a), {a} and {b} are the most similar groups and are therefore united.
The similarity of the union of {a} and {b} to all other elements is re-com-
puted using the group average. The resulting similarity matrix is Figure 8-
4(b) in which {a,b} and {A1} are the two most similar groups. The final

dendrogram for the similarity matrix Figure 8-4(a) is shown in Figure 8-
4(c). In this example, a and A2 are in the same cluster if a threshold Θÿ ≥
0.35 is used to retrieve clusters from the dendrogram in Figure 8-4(c) even
though the similarity among a and A2 is only 0.1 according to Figure 8-4(a).
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In this example, the high similarity among b and A2 has lead to the inclusion of A2

into the group. 

To sum it up, the group similarity is used by hierarchical clustering to generate a
dendrogram and the threshold is used to derive flat clusters from the dendrogram.
The threshold is determined by the user and expresses his degree of tolerance
about when two elements are similar enough to be in the same cluster. Using the
average group similarity, an entity is added to a group that contains very similar
entities even though there may also be a few entities for which the similarity is
less than the threshold. The less similar entities are outweighed by the very simi-
lar entities. If the clusters are split into subclusters due to mutually exclusive enti-
ties, the resulting subclusters should contain those entities that are similar enough
according to the user, i.e., whose individual similarity is above the threshold.
Hence, the cluster is annotated with related-to (a, b) for all elements a and b of
the cluster for which Sim (a, b) ≥ Θ according to equation (7.3) on page 189
holds. The clusters derived from the dendrogram are then treated in a post-pro-
cessing phase as described in Section 8.3.1.7.

8.3.1.5   Composition for Graph-based Techniques
Dominance Analysis was already presented as an incremental analysis: Domi-
nance Analysis is applied to the collapsed base view and a base entity is added to

Figure 8-4.  Example dendrograms.
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its primarily dominating component. The collapsed view for a view, V, results
from the following transformations:

1. A bound subprogram, variable, and type in V is replaced by its enclosing
atomic component.

2. Edges between unbound entities are kept whereas edges to a bound entity are
replaced by edges to its atomic component and analogously, edges from a
bound entity are replaced by edges from the atomic component.

Recall that base entities can directly be part of a subsystem. The fact that these
base entities are part of a subsystem expresses only that they are in some way
related but not related enough that they could be grouped into an atomic compo-
nent. That is why we collapse only base entities that are part of an atomic compo-
nent. 

There are basically four kinds of possible combinations to consider when edges
are to be added to the collapsed view (see Figure 8-5):

1. The edge is among entities that are not part of an atomic component; in this
case, both entities will be added to the collapsed view including the edges
among them.

2. The source of the edge is a free entity, S, and the target is a bound entity that is
part of an atomic component, A, then S and A and only the induced edge from S
to A will be added to the collapsed view.

3. The target of the edge is a free entity, S, and the source is a bound entity that is
part of an atomic component, A, then S and A and only the induced edge from A
to S will be added to the collapsed view.

4. The edge is among entities that are parts of atomic components A1 and A2,

respectively; then A1 and A2 and an induced edge between A1 and A2 (only if

A1≠ A2) are added to the collapsed view.

There are two consequences for the collapsed view one should be aware of. First,
collapsing may result in dependencies that were not present before, and second,
collapsing overlapping atomic components is problematic.

The examples in Figure 8-6 illustrate the first property. In example (a), a cycle
results because x and y are collapsed into one node though there was previously
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no such cycle. In example (b), collapsing x and y has as result that b is reachable
from a though it was not reachable from a before. (The discussion of the effect of
collapsing nodes will be continued in the discussion of Strongly Connected Com-
ponents Analysis below.)   

The problem with collapsing overlapping atomic components is that all involved
atomic components inherit the dependencies of the overlapping parts. This is
illustrated by the example in Figure 8-7 where AC1 and AC2 overlap in y and x.

Both AC1 and AC2 are assumed to call a and to be called by b in the collapsed

view. Furthermore, because AC1 contains x which calls y that is also contained in

AC2, AC1 is assumed to call AC2 and vice versa. Hence, the ambiguity that was

present in the overlapping atomic components continues in the resulting collapsed
view and the user is, therefore, urged to limit overlapping in the atomic compo-
nents. 

Figure 8-5. Induced relationships.

Figure 8-6. Examples for changed dependencies in the collapsed view.

Figure 8-7. Examples for collapsing overlapping atomic components.
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In the dominance tree for the collapsed view, the clusters proposed by the Domi-
nance Analysis heuristic consist of an atomic component and all its primarily
dominated entities. If such a cluster is to be split due to mutually exclusive enti-
ties, an entity should be added to those subclusters that contain its dominator, its
dominatees, or its siblings in the dominance tree since these are the entities most
related according to the dominance relation. As an example, consider the domi-
nance tree in Figure 8-8. The clusters proposed by Dominance Analysis for the
dominance tree Figure 8-8(a) are shown in Figure 8-8(b) including the related-to
information. The related-to information for the atomic component is omitted for
readability reasons. 

Strongly Connected Components Analysis detects cycles in the call view, or in
other words, mutually recursive subprograms. There are basically two avenues for
an incremental Strongly Connected Components Analysis:

• Strongly Connected Collapsed Component Analysis: One can apply
strongly connected components analysis to the collapsed view as it was already
described for dominance analysis, i.e., atomic components are collapsed first
and only then, the analysis searches for cycles.

• Strongly Connected Base Component Analysis: One can apply strongly con-
nected components analysis first to the call view and then try to add the cycles
to existing atomic components.

The first approach may yield artificial cycles due to the collapsing of nodes as
illustrated by the examples in Figure 8-6 and Figure 8-7. In Figure 8-6(a), the

Figure 8-8. Dominance example.
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cycle is introduced because x and y are treated as one node. Recall that strongly
connected components are considered a relevant kind of atomic component
because all the parts in the cycle are necessary to understand the component. This
is not only so for mutually recursive subprograms. This also applies to artificial
cycles as in Figure 8-6(a): Because x and y are part of the same atomic compo-
nent, their respective comprehension is very much related. 

But what about the cycle in Figure 8-7 that causes the two overlapping compo-
nents to be considered a strongly connected component? Because of the ambigu-
ity in the overlapping part, the two atomic components are obviously very much
related and the Strongly Connected Component Analysis does not reveal more
than what was already present. If the user does not want this effect, a better way
of modeling the relatedness of two overlapping components and the unclear clas-
sification of the ambiguous part is offered by means of the subsystems introduced
in Section 3.2.2. A better representation for Figure 8-7 is given in Figure 8-9
where AC1 and AC2 as well as the overlapping part x and y are all distinct parts of

a subsystem. This avoids the artificial cycle in the collapsed view. 

The second approach that applies Strongly Connected Component Analysis to the
call view yields only real cycles. On the other hand, it is therefore not able to
detect atomic components that are mutually dependent, though this is an impor-
tant information to the maintainer: One cannot reuse one of these atomic compo-
nents in another context without taking on all of them. Both approaches have their
advantages and disadvantages, so it is only pragmatic to offer both to the user. 

The two approaches can technically be reduced to the incremental solution for
connection-based approaches where the elements of the strongly connected com-
ponent act as connected entities, i.e., in order to instantiate algorithm 8-1 on page
268, the following definition of Connected_Entities can be used:

Figure 8-9. Better representation for overlapping atomic components.
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(8.1)

where .

In the case of Strongly Connected Base Component Analysis, Connected_Entities
is established on the call view, whereas Strongly Connected Collapsed Compo-
nent Analysis ascertains Connected_Entities on the collapsed call view.

When cycles are split due to mutually exclusive entities, an entity should be in the
subcluster that also contains its direct neighbors in the cycle since these are the
elements of the cycle most needed to understand the entity. Hence, the proposed
clusters are annotated by related-to (a, b) for all elements a and b of the cluster
that are direct neighbors in the cycle. 

8.3.1.6   Partitioning Clusters with Mutually Exclusive Elements
The previous sections explained how the individual techniques can be adapted to
work incrementally. They all yield clusters of related entities that are to be trans-
formed into actual components. The clusters may contain mutually exclusive
entities since the techniques as described above do not take negative information
into consideration. Clusters with mutually exclusive entities must be split into
subclusters without conflicting entities, which is uniformly handled by a separate
step after clustering. This section explains how. 

The input to the partitioning stage are the clusters that were formed by the previ-
ous step and are annotated with mutually-exclusive and related-to information,
i.e., these clusters are associated with an interference graph that describes the
entities that mutually exclude each other and the related-to graph that describes
which entities are related. 

Generally, not all entities in a cluster are mutually exclusive and, therefore, the
cluster is not completely senseless. Instead of throwing away the whole cluster,
the cluster should be partitioned into subclusters without mutually exclusive enti-
ties. A second requirement for a reasonable splitting is that the subclusters should
be as large as possible. Subclusters with only one element obviously do not have
any conflict, but they are not very helpful either. Unfortunately, we are facing the

Connected_Entities S( ) s s called S( )∈ S called s( )∈∧{ } S{ }⁄=

called s( ) transitive_closure successors s call{ },( )( )=
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NP-complete graph coloring problem here, i.e., for an optimal solution, we may
need exponential time. 

The graph coloring problem is to assign a minimal number of colors to nodes in a
graph where no two neighboring nodes may have the same color. This is equiva-
lent to partitioning a graph’s nodes into sets of nodes where no two neighboring
nodes are in the same set. This problem can be tackled heuristically as follows: 

1. Remove nodes from the interference graph in the order of least to most con-
flicts and put them onto a stack. When all nodes are on the stack, the nodes
with most conflicts are at the top of the stack. 

2. Then, the stack’s nodes are popped and assigned to a partition such that no
neighboring nodes are in the same partition. 

Algorithm 8-3 implements this strategy. Function Choose_Node selects a node
with minimal conflicts and function Partition_Number yields the minimal parti-
tion number that can be assigned to a given node N where the corresponding par-
tition does not contain a node that is in conflict with N.

Using the algorithm in the described way yields subclusters that do not contain
mutually exclusive entities. The number of generated subclusters is a local opti-
mum, that is to say, there may be better solutions with less, hence, larger subclus-
ters, but the found solution is generally a good approximation. Finding the
optimal solution would require exponential time in the worst case.

However, the algorithm used in the described way can yield subclusters of unre-
lated entities. For example, given the cluster in Figure 8-10, this algorithm may
yield two subclusters {T2} and {T1, F1, F2, F3} though F1 and F3 are not related

to T1.

In order to avoid unrelated subclusters, function Partition_Number needs to be
provided with a preference rule: The entity is preferably added to a cluster that
has most related entities (and no mutually exclusive one). Because the answer
depends on the heuristic that produced this cluster in the first place, the detection
techniques annotated the generated clusters with related-to information. 
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However, modifying Partition_Number solves the problem of unrelated entities
only partly because the algorithm 8-3 treats all elements equally when putting
them onto the stack. For example, F1 and F3 could be above T2 in the stack (Fig-

ure 8-10) when F1 and F3 have conflicts, too. Then the top element, say F1, would

be assigned to a subcluster first. When F3 is to be added, there is no connection to

F1 and, hence, F3 could be added to a separate subcluster. Only then T2 is to be

Algorithm 8-3. Partitioning clusters with mutually exclusive elements.

Input: 
• Cluster C

Output:
• A set of clusters C1, C2,..., Cn where:

Algorithm:

1. Initialization:
C’ := C;

2. Build stack; top most element has most, bottom element has least 
conflicts:
while not Is_Empty (C’) loop

            Node := Choose_Node (C’);
            Remove_Node (C’, Node);
            Push (Node_Stack, Node);
     end loop;

3. Partitioning (graph coloring):
 while not Is_Empty (Node_Stack) loop

            Node := Pop (Node_Stack);
            Assign (Node, Partition_Number (Node, C));
      end loop;

C Ci
i 1…n=

∪= i j 1…n{ }∈,( )i j Ci Cj∩ ∅=⇒≠∀( )

i 1…n{ }∈( ) a b Ci∈,( )mutually_exclusive(a,b)∃¬∀
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handled and may either be added to the subcluster of F1 or F3 resulting in one of

F1 and F3 becoming orphaned.

In general, types as well as variables constitute a crystallization point for cluster-
ing and, therefore, should be distributed to subclusters before subprograms. Algo-
rithm 8-3 can be adjusted to this strategy by first putting all subprograms onto the
stack and only then the remaining types and variables. This way, types and vari-
ables are above all subprograms in the stack and, therefore, get partitioned first.
The only necessary modification is to adapt Choose_Node accordingly.

The resulting subclusters can then be transformed into components as described
by the following section.

8.3.1.7   Transforming Clusters into Components
The (sub-)clusters generated by the previous step as described in the last section
contain related entities that are not mutually exclusive. These clusters are basi-
cally sets of entities and are now to be transformed into actual components. 

In general, clusters with only one element are not useful and are, therefore,
rejected. Likewise, huge clusters may also be rejected. In an interactive approach,
the user is able to specify lower and upper bounds for reasonable components (the
upper bound should only be set when the user does not plan to refine the candi-
date components by a second analysis).

Principally, the clusters generated by the incremental techniques fall into one of
the following categories:

Figure 8-10. Cluster with mutually exclusive entities.
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1. The cluster contains only base entities. Such clusters represent completely new
atomic components.

2. The cluster contains a single atomic component, all other elements are base
entities. This is the case when an incremental technique wants the base entities
of the cluster to be added to an existing atomic component. Remember that the
enclosing atomic component is added to a cluster in lieu of a bound entity.

3. The cluster contains more than one atomic component. This happens when at
least one base entity can be added to more than one existing atomic component.

For the first type of cluster, we can create a new atomic component that contains all
the elements of the cluster (Figure 8-11(a)). In the second case, we add all ele-
ments to the atomic component contained in the cluster (Figure 8-11(b)). 

If clusters contain more than one atomic component, it is not clear to which
atomic components the base entities of the cluster should belong. Therefore, such
clusters have to be presented to the user as a whole and he or she has to decide. To
achieve this, a new subsystem is introduced and all atomic components of the clus-
ter are considered part of the subsystem. The related-to annotation determines the
possible elements of the atomic components. These elements can be derived as
follows: 

1. The related-to graph is ascertained whose nodes are entities and whose edges
represent the related-to relationship (Figure 8-12(a)).

2. The restricted related-to graph is derived from the related-to graph by omit-
ting components, i.e., the restricted related-to graph contains base entities only
(Figure 8-12(b)).

Figure 8-11. Transforming clusters into components.
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3. The direct elements of an atomic component, A, are all members of connected
subgraphs (in a connected graph, each node can be reached from each other
node) of the restricted related-to graph that contain at least one node, N, for
which related-to (N, A) holds in the original related-to graph (Figure 8-12(c)).
Furthermore, all atomic components are part of a new subsystem node. 

Restricting the related-to graph before identifying the related entities is necessary
in order to add only those entities to a component that are (transitively) related to
the component itself. Otherwise, entities would be added to components that actu-
ally belong to other components, e.g., T2 is primarily related to AC2 and not to

AC1. The fact that basically all elements are related in the cluster is expressed by

subsuming them under the same subsystem. 

As the example in Figure 8-12 illustrates, overlapping components may be pro-
posed using this strategy. However, the overlap arises from the actual related-to
information. It is the user’s decision how the overlap is to be resolved. Moreover,
if the deep intersection operator is applied to the resulting components view, the
overlap may also be resolved by the judgement of another technique. 

An alternative strategy to assign base entities to atomic components in clusters
with more than one component would be to use dominance analysis applied to the
related-to graph assuming a subsystem node as root to which all atomic compo-
nents of the cluster are related. Then, entities would be added to their dominating
component. However, if an entity is (transitively) related to more than one compo-
nent, the entity would be dominated by the root node and not by one of the atomic

Figure 8-12. Handling clusters with more than one component.
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components, i.e., the information about the overlap would be lost. For this reason,
the first strategy is preferred.

8.3.2    Set Operators for Combining Components Views 
The former section explained one of the core operators to combine components
views, namely, the composition. This section describes further operators that are
modeled on set operations.

Components views are basically sets of components and, hence, can be combined
by set operations. In order to perform the set union, intersection, and difference
for components views, we have to identify matching components of the two
views to be combined; e.g., the intersection operator yields only those compo-
nents that are in both views. This raises the question how do we determine
whether two components match? Remember that in our relational perspective of
components, a component has two faces: A component is characterized by a com-
ponent entity and a set of its parts. Thus, a component is actually a named set. As
a consequence, we can compare two components by name as well as by their ele-
ments. A comparison by name would consider the two atomic components AC1

and AC2 equal when they are identical, i.e., AC1 = AC2, in other words, when they

are represented by the same entity; a comparison by elements, on the other hand,
would consider AC1 and AC2 equal when their elements are the same, i.e., ele-

ments (AC1) = elements (AC2). The comparison by name makes sense when two

components views are the result of different incremental techniques applied to the
same input view. Then, the same component may occur in both views if it is
present in the input view. On the other hand, when two incremental techniques are
applied to disjoint views, identical components cannot occur. Then, we want to
compare components in terms of their contents rather than name. For example,
because AC1 and AC2 in Figure 8-13 have the same elements, they can be consid-

ered equal from the set perspective though AC1 and AC2 may be different entities

in the relational perspective.

However, using set operations for combining views by elements is still too sim-
plistic to be useful for two reasons. First, small differences of the elements lead to
duplication or removal of similar components for union and intersection, respec-
tively, and second, the comparison based on elements does not come up to the
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hierarchical structure of subsystems. In the following, these problems will be dis-
cussed in detail.

The purpose of a union operator is to combine two techniques that detect more or
less distinct entities, i.e., their results are mainly disjoint sets of disjoint candi-
dates such that the union operator can be interpreted as a union of sets. However,
there is no guarantee that the results really do not overlap, and if they do overlap,
using the simple union for sets based on elements may lead to almost duplicated
candidates. For example, in Figure 8-14, the simple union, so-called shallow
union, of the sets of candidates Result 1 and Result 2 treats any component as an
atomic set member and produces five candidates where four of them are very sim-
ilar. If this is presented to the maintainer, she has to check almost equal compo-
nents twice. 

The outcome for intersecting the two components views in Figure 8-14 is even
worse since the resulting view is empty. For set intersection, a component of one
view is only in the resulting view when it has an exact match in the other view.

Beside the problem of similar, yet not equal components, the common set opera-
tors do not come up to the hierarchical structure of subsystems. In the case of
atomic components, we can consider their elements in order to find out whether a
comparable atomic component exists in the other view; but considering only the

Figure 8-13. Two equal components AC1 and AC2 from different perspectives.

Figure 8-14. Shallow union and intersection based on elements.
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elements is not appropriate for subsystems since subsystems with the same set of
elements may still differ in structure.

In the following, ways of combining two views that are modeled on set union,
intersection, and difference are described that overcome the deficiencies of the
shallow set operator semantics. In particular, the proposed operators

• are based on both comparison by name and by elements,

• tolerate divergences of the elements of the components,

• consider the structure of subsystems,

• and also combine the parts of subsystems at all levels.

In order to support comparison by name and by elements as well as to tolerate
divergences, the matching criterion of the new combining operators for two com-
ponents is the correspondence as defined in Section 3.7: We consider two compo-
nents corresponding when they are identical or affine where affinity is associated
with a tolerance parameter that allows inexact matches. The correspondence of
components is defined at all levels such that a component in one view may be
matched with a component in the other view that is a subcomponent of a larger
subsystem. For example, C1 and C2 of the components views VL and VR in Figure

8-15 are a match where C2 is a part of C3; C4 and C5  that are transitive parts of

C1 and C2, respectively  are a match, too. The corresponding components are

then combined by uniting, intersecting, or building the difference of their direct
elements depending on the respective operator. Only the direct elements of corre-
sponding components are combined since only these were the basis on which cor-
respondence was established. Moreover, if there are corresponding transitive
parts of two subsystems, they will likewise be combined at their respective level.
The combination of C1 and C2 of Figure 8-15, for example, combines the direct

elements of C1 and C2 as sketched on the right hand side of Figure 8-15 by apply-

ing the underlying set operator to their direct elements α1 and α2. Furthermore,

the corresponding parts of C1 and C2, namely, C4 and C5 will also be combined

analogously. Whether C is also in the result view despite of the fact that there is
no correspondent, depends upon the operator (see below). 
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Because not only components views as such are united or intersected but also cor-
responding components contained in these views, these operators are called deep
union, deep intersection, and deep difference. Beside corresponding compo-
nents, the deep set operators also determine how nodes that do not have a corre-
sponding node, so-called singles, have to be treated. In the case of the intersection
operator, for example, they have to be ignored; in the case of the union operator,
they have to be added to the result view.

The deep set operators basically consist of the following three steps and differ
only in the actual set operation ⊗ that is to be applied:

1. Find the corresponding components in the two components views.

2. Handle correspondents: Apply the set operation ⊗ to the direct elements of all

corresponding components.

3. Handle singles.

How these steps can be implemented in a general manner for all deep set opera-
tors is explained in this section (see algorithm 8-4). The following sections
describe the specific parts of the concrete deep set operators. 

Handling correspondents and singles. The generic algorithm 8-4 has three
generic parameters. Handle_correspondents combines two corresponding com-
ponents. The other two generic parameters are used to handle singles. There are
two generic parameters for singles because the symmetric difference operator
treats singles in the two argument views differently. The view that is given as first

Figure 8-15. Deep set operator outline.
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Algorithm 8-4. Generic algorithm for deep set operators.

Generic
• handle_correspondents: View × View × Entity × Entity  × View
• handle_left_single: View  × Entity  × View
• handle_right_single: View  × Entity  × View

Input
• components views VL, VR

Output
• components view V that contains the result of the deep set operator

Algorithm
-- Identify corresponding components

for each L in reverse-topological-order (VL) loop
if ∃ (R ∈ VR) identical (L, R) then 

add R to correspondents (L); add L to correspondents (R);
end if;
for each R in Potentially_Affine (L) loop

if affine (L, R) then
add R to correspondents (L); add L to correspondents (R); 

end if;
end loop;

end loop;
-- Handle correspondents and singles

for each L in reverse-topological-order (VL) loop
if correspondents (L) = ∅ then 

handle_left_single (VL, L, V);

else
for each R in correspondents (L) loop

handle_correspondents (VL, VR, L, R, V);

end loop;
end if;

end loop;
for each R in reverse-topological-order (VR) where correspondents (R) = ∅
loop

handle_right_single (VR, R, V);

end loop;
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argument to the operator is called left argument view, the one given as second
argument is called right argument view. 

Finding correspondents. Before the set operation can be applied, the corre-
sponding components have to be identified. Correspondence of base entities can
immediately be established by identity; identity is their only way of correspon-
dence since they do not have further elements. Correspondence of atomic compo-
nents can also be quickly established based on their direct elements. Ascertaining
corresponding subsystems is more difficult since subsystems can have several lev-
els and the correspondence at one level depends on the correspondence at the
deeper levels, i.e., the correspondents of the parts of a component have to be
established before one can determine its own correspondents. Since a subsystem
structure is an acyclic directed graph, the subsystem structure in one components
view can be traversed in reverse topological order (inverting the part-of edges)
where the visited nodes are compared to nodes in the subsystem structures of the
other components view. Traversal of acyclic graphs in reverse topological order
ensures that a node is only visited when all its parts have been visited. As a conse-
quence, we can assume that the corresponding nodes of its parts have already
been established. 

When a node is visited, its corresponding nodes in the other components view can
be determined by identity or affinity. Whether there is an identical node in the
other components view can be decided immediately. In order to identify affine
nodes, however, there has to be a component in the other view whose direct ele-
ments correspond to the direct elements of the currently visited node. Fortunately,
we do not have to compare all possible pairs of components in the two compo-
nents views in order to find affine components. According to the definition of
affinity given in Section 3.7.2, a node A can only be affine to a node B if 

That is, the principal components that could be affine to A are as follows:

a direct-elements A( )∈( ) b direct-elements B( )∈( )correspond a b,( )∃∃

Potentially_Affine A( ) =

B a direct-elements A( )∈ correspond a b,( ) b direct-elements B( )∈∧ ∧{ }=

B part-of a A,( ) correspond a b,( ) part-of b B,( )∧ ∧{ }=
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Since all constituting conditions for membership of this set (i.e., part-of and cor-
respond when it is saved once computed) can be checked in constant time and the
number of parts can be assumed to be below a constant limit, this set can be com-
puted in constant time. This set allows only to identify the potentially affine com-
ponents; by iterating over its elements and checking each element for affinity
with A as defined in Section 3.7.2, the actual affine components can be identified.
Note that each component may have more than one correspondent as it was
shown in Section 3.7.3. That is why correspondents (A) in Figure 8-4 denotes a
set of entities.

One could argue that traversing only the left argument view is not sufficient
because the correspondence information of nodes in the right argument view is
not yet available. But this is not the case. Let us consider the scenarios in Figure
8-16. When a node A of the left argument view is visited, this node can either be a
leaf or an inner node in a subsystem structure. Because leaves do not have further
elements, the only possible way of correspondence with a node B in the other
view is by identity (Figure 8-16(a) and (b)). Hence, the direct elements of B are
irrelevant to the correspondence with A.

Now, let us assume A is an inner node, i.e., it has direct elements in the compo-
nents view. Again, B can either be a leaf or an inner node. If B is a leaf, the only
possible way of correspondence is the one by identity again (Figure 8-16(c)).
Thus, the only situation in which correspondence can be by affinity is when both
A and B are inner nodes (Figure 8-16(d)). However, if A is an inner node, its parts
have already been visited and their correspondents are all known. Hence, all
needed information to find out whether A and B correspond is available.

Algorithm 8-4 traverses the left argument view twice. This is needed because the
following descriptions of the actual procedures to handle correspondents and sin-
gles assume that the correspondence information has been established for all

Figure 8-16. Constellations of correspondence.
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direct elements of its argument entities. To illustrate that actually two traversals
are needed, consider Figure 8-17. Let us assume that the nodes 1, 2, 3, and 4 have
already been visited and AC1 is the currently visited node during the first traversal

in reverse topological order. At this point, it is known that AC1 and AC3 corre-

spond to each other. Moreover, the singles and nodes with correspondent among
the direct elements of AC1 are known as well. However, it is not necessarily

known for the direct elements of AC3 that do not have a correspondent among the

direct elements of AC1 whether they do not have a correspondent at all. For exam-

ple, the direct element 5 of AC3 actually has a correspondent, but its correspon-

dent in VL has not yet been visited and is therefore not yet known. If

handle_correspondent (AC1, AC3) were called during the first traversal,

handle_correspondent would consider node 5 a single though it actually has a
correspondent. 

The generic algorithm 8-4 implements the steps to combine two views. The deep
union, intersection, and difference are instantiation of this general scheme by put-
ting the generic parameters into concrete terms. The generic parameters represent
the underlying shallow set operation that is to be applied to the direct elements of
corresponding components. For example, the deep union operator unites all direct
elements of corresponding components using the regular set union (by providing
an adequate implementation for handle_correspondents). Since the correspond-
ing components do not depend on the deep set operation and, therefore, the regu-
lar set operation is applied to the same pairs of entities independent from the
actual deep set operation, the following equation holds: 

Figure 8-17. Example traversal of subsystem structures.
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on the analogy of set theory: 

We do not prove this equation since it becomes plausible by the working example
that is used to explain the deep set operators in the following.

Working example.  Figure 8-18 contains two subsystems C1 and C2 that are to

be compared. The figure already connects the corresponding components, assum-
ing as tolerance parameter Θ = 3/5. Corresponding base entities are not explicitly
highlighted for ease of readability. Since base entities correspond by identity, the
pairs of corresponding base entities are obvious. Here, we will explain the generic
algorithm 8-4 by describing a traversal and listing the generic subprogram param-
eters that are called during this traversal. The following sections, in which the
concrete subprograms to instantiate the generic algorithm for the actual deep set
operators are described, will only present the result for the respective instantia-
tion.

One possible reverse topological order of C1 (among others) is to visit the nodes

in the order of 0, AC0, 1, 2, 3, 4, AC1, 5, 6, 7, 8, AC2, 10, C1. Base entity 0 has no

identical node in the other view and, therefore, handle_left_single(VL, 0, V) is

called. Likewise, AC0 has no identical node, nor has its direct element 0 has a cor-

respondent and, therefore, AC0 has no correspondent. That is why

handle_left_single (VL, AC0, V) is called. 1 has no correspondent

(handle_left_single (VL, 1, V) is called), but 2, 3, and 4 have identical nodes in the

other view, which results in calls handle_correspondents (VL, VR, 2, 2, V),

handle_correspondents (VL, VR, 3, 3, V), and handle_correspondents (VL, VR, 4,

4, V). AC1 has no identical node but its direct elements 2, 3, and 4 have corre-

sponding entities whose enclosing component is AC3. Therefore,

Potentially_Affine (AC1) is {AC3}. AC1 and AC3 are in fact affine for every toler-

ance factor Θ ≤ 3/5 and, hence, handle_correspondents (VL, VR, AC1, AC3, V) is

called. Then, handle_correspondents is called for the pairs of identical nodes
(5,5), (6,6), (7,7), and (8,8). AC2 has an identical component in the other sub-

system structure; thus, handle_correspondents (VL, VR, AC2, AC2, V) is called.

union A B,( ) intersection A B,( ) symmetric-difference A B,( )∪=
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Note that the two identical components are not affine for Θ = 3/5 because their
degree of overlap according to condition (3.2) on page 70 is only 2/5. 10 does not
have a correspondent, which leads to a call to handle_left_single (VL, 10, V).

Eventually, C1 is visited. Its direct elements are AC0, AC1, AC2, and 10. AC1 and

AC2 have corresponding components in the other view whose enclosing compo-

nent is C2. Hence, Potentially_Affine (C1) is {C2}. The corresponding direct ele-

ments of C1 and C2 are (AC1, AC3) and (AC2, AC2). Distinct elements of C1 and

C2 are AC0, 10, 6, AC4. The degree of overlap for C1 and C2 is, therefore, 2/(2+4)

< Θ = 3/5. Thus, C1 and C2 are distinct and handle_left_single (VL, C1, V) is

called. 

After the second reverse topological traversal of VL, handle_right_single is called

for each remaining single of the components view given as second argument of
the deep set operator. To sum it up, the generic operations are executed in the
order given in Table 8-1.

Notation. The nodes that represent the combination of two corresponding nodes
L and R are represented in the result of the combination as a pair (L, R) if L ≠ R.
If L=R, only the single node L is added to the output view in order to preserve its
identity for future combinations. A single entity L is equivalent to a pair (L, L).

8.3.2.1   Deep Union
The deep union operator unites corresponding components of its argument com-
ponents views in order to avoid duplicated similar components. All entities that
do not have a correspondent are added to the output components view, too, since
this is the expected semantics of a union. That is, handle_correspondents will

Figure 8-18. Working example of partly corresponding components.
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unite its two arguments and handle_left_single / handle_right_single simply add
their argument to the output view by taking on their parts.

Handling correspondents. In more detail, for any pair of corresponding entities
<L, R> of the two views, a new entity (L, R) is added to the output view that rep-
resents the union of the two corresponding entities L and R (algorithm 8-5). The
direct elements of (L, R) are the pairs of correspondents among the direct ele-
ments of L and R plus all direct elements of L and R, respectively, that do not have
a correspondent. Consider the example in Figure 8-19. The two components L
and R are to be united at an intermediate stage. Their direct elements have already
been visited, hence, pairs (l, r) have been added to the output view when l is a
direct element of L and r is a direct element of R and l and r correspond. If they
do not have a correspondent, they have been added as non-combined nodes. In the

Table 8-1. Executed generic subprogram parameters.

handle_left_single (VL, 0, V)

handle_left_single (VL, AC0, V)

handle_left_single (VL, 1, V)

handle_correspondents (VL, VR, 2, 2, V)

handle_correspondents (VL, VR, 3, 3, V)

handle_correspondents (VL, VR, 4, 4, V)

handle_correspondents (VL, VR, AC1, AC3, V)

handle_correspondents (VL, VR, 5, 5, V)

handle_correspondents (VL, VR, 6, 6, V)

handle_correspondents (VL, VR, 7, 7, V)

handle_correspondents (VL, VR, 8, 8, V)

handle_correspondents (VL, VR, AC2, AC2, V)

handle_left_single (VR, 10, V)

handle_left_single (VR, C1, V)

handle_right_single (VR, 9, V)

handle_right_single (VR, 11, V)

handle_right_single (VR, 12, V)

handle_right_single (VR, AC4, V)

handle_right_single (VR, C2, V)
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example, b1 corresponds to b2 and c1 corresponds to c2 and c3 while a and d do

not have any correspondent. Thus, the nodes a, (b1, b2), (c1, c2), (c1, c3), and d

have been added. These and only these nodes are the direct elements of the new
node (L, R) that represents the union of L and R. Algorithm 8-5 implements this
step and is used as handle_correspondents in the instantiation of the generic algo-
rithm 8-4.   

Handling singles. The entities that do not have a correspondent have to be added
to the output view in the case of the union operator. When a single is added to the
result view, all its direct elements in the original view become its direct elements
in the result view, too. Due to the traversal in reverse topological order, all ele-
ments of a single have already been added to the output view. Thus, all what has
to be done is to enrol the direct elements of the component in the input view as its
direct elements in the output view.

When direct elements are added, direct elements with and without correspondent
have to be distinguished. For the former, pairs of correspondents have been added,
for the latter, only plain nodes. The example in Figure 8-20 illustrates this.    

Algorithm 8-6 implements the union for singles and is used as parameter
handle_left_single to instantiate the generic algorithm 8-4. The implementation
of handle_right_single differs from handle_left_single only by the order of ele-
ments of corresponding pairs (e, e‘): The first element of such a pair is assumed to
be contained in the left argument view and the second element of the pair is
assumed to be contained in the right argument view; i.e., within the body of
handle_right_single, we would replace (e, e‘) by (e‘, e). 

Figure 8-19. Union for corresponding entities.
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The result of the deep union operator applied to the working example in Figure 8-
18 on page 292 is shown in Figure 8-21.

Algorithm 8-5. Handle_correspondents for deep union.

Figure 8-20. Union for singles.

Input
• Components views VL, VR

• Entity L in VL

• Entity R in VR

• Output components view V

Algorithm
add (L, R) to output view V;

for each l ∈ direct-elements (L in VL) loop
if correspondents (l) ≠ ∅ then 

for each r ∈ correspondents (l) ∩ direct-elements (R in VR) loop
add part-of ((l,r), (L,R)) to output view V;

end loop;
else

add part-of (l, (L,R)) to output view V;
end if;

end loop;

for each r ∈ direct-elements (R in VR) where correspondents (r) = ∅
loop

add part-of (r, (L,R)) to output view V;
end loop;
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8.3.2.2   Deep Intersection
In the case of the union operator, correspondents and singles have to be added to
the result view whereas singles have to be ignored by the intersection operator
since only entities to which both techniques agree  in other words, entities with
correspondent  may be in the output view of the intersection. 

Handling correspondents. The parameter handle_correspondents for the instan-
tiation of the generic algorithm 8-4 is a simplified version of

Algorithm 8-6. Handle_left_single for deep union.

Figure 8-21. Result of deep union.

Input
• Components view VE

• Entity E in VE

• Output components view V

Algorithm
add E to output view V;

for each e ∈ direct-elements (E in VE) loop
if correspondents (e) ≠ ∅ then 

for each e‘ ∈ correspondents (e) loop
add part-of ((e,e‘), E) to output view V;

end loop;
else

add part-of (e, E) to output view V;
end if;

end loop;
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handle_correspondents for the union operator, in which the part that handles
direct elements without correspondent is omitted (see algorithm 8-7).

Handling singles. The specifications of handle_left_single and handle_right-
single is trivial: A node without correspondent must not be in the output view.
Thus, these two subprograms do nothing.

The result of the deep intersection operator for the working example in Figure 8-
18 on page 292 is shown in Figure 8-22. As one can observe, the result of the
deep intersection operator is a subset of the result of the union operator as one
would expect of the common union and intersection operations. 

Algorithm 8-7. Handle_correspondents for deep intersection operator.

Figure 8-22. Result of deep intersection.

Input
• Components views VL, VR

• Entity L in VL

• Entity R in VR

• Output components view V

Algorithm
add (L, R) to output view V;

for each l ∈ direct-elements (L in VL) loop
for each r ∈ correspondents (l) ∩ direct-elements (R in VR) loop

add part-of ((l,r), (L,R)) to output view V;
end loop;

end loop;
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8.3.2.3   Deep Symmetric Difference
The deep symmetric difference operator, or simply difference operator, is used to
investigate the discrepancy between two views. There are basically two scenarios
for its usage (let VL be the left argument view and VR be the right argument view):

1. One wants to see what has been added to a view after an analysis has been
applied to it. Then, the simple difference VR\VL of the original components

view VL to the components view VR resulting from applying a technique to VL

is of interest. Because the incremental techniques as presented so far can only
add entities to a components view and do not remove entities, VL is a subset of

VR. In an interactive environment, the simple difference operator will be most

often applied with respect to the user view. 

2. One wants to compare components views generated by different techniques. In
this case, differences can be additions as well as removals. Given a components
view VL to be compared to a components view VR, VR\VL denotes the additions

and VL\VR denotes the removals. Since we are interested in both VR\VL and

VL\VR, we are actually interested in the symmetric difference of VL and VR

denoted by VL ⊕ VR = VR\VL ∪ VL\VR. 

In this section, the symmetric difference for components views instead of the sim-
ple difference is introduced since the former is more general and also appropriate
for the first scenario: If VR results from an incremental technique applied to VL,

then VL ⊆ VR holds and, hence, VL ⊕ VR = VR\VL ∪ ∅ = VR\VL, which is exactly

what is of interest in the first scenario.

Handling correspondents. As opposed to a shallow symmetric difference, the
deep symmetric operator also yields the symmetric difference of the correspond-
ing components. If L and R are corresponding components, the differences
between L and R can be (let L be in the left and R in the right argument view):

1. a direct element of L has no correspondent in R

2. a direct element of R has no correspondent in L

Because the first argument of the difference operator is the view to which the
other view is to be compared, case 1 is considered a removal and case 2 an addi-
tion. The resulting view has to contain these differences tagged accordingly. The
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entities that are in both L and R  more precisely, direct elements of L with a cor-
respondent in R  will be ignored since they do not represent a difference. Algo-
rithm 8-8 computes the symmetric difference for two corresponding components
with respect to their direct elements. Because L and R are both present in the
input views, (L, R) is actually no difference between the input views. However,
adding (L, R) to the output view is needed since the entities in direct-ele-
ments(L)\direct-elements(R) and direct-elements(R)\direct-elements(L) have to be
attached to it  it is the part-of edge that makes the difference and an edge needs
both source and target. In order to make explicit that (L, R) is no real difference, it
is added non-tagged.  

Handling singles. Above, differences between the direct elements of correspon-
dents were classified as removals or additions. Likewise, singles contained of the
left argument view of the difference operator are considered removed and singles
contained in the right argument view are considered added. In both cases, the sin-
gles and their direct elements have to be enrolled in the output view. In doing so,
we again have to make a distinction between direct elements with and without
correspondent since the former were added as pairs and the latter as single enti-

Algorithm 8-8. Handle_correspondents for the deep symmetric difference.

Input
• Components views VL, VR

• Entity L in VL

• Entity R in VR

• Components view V

Algorithm
add (L,R) to V non-tagged;
add each element in 
  

 to ((L,R)) in V with tag added;

add each element in
   

to ((L,R)) in V with tag removed;

r part-of r R,( ) VR∈ l( )∃¬ part-of l L,( ) VL∈ correspond l r,( )∧∧{ }

l part-of l L,( ) VL∈ r( )∃¬ part-of r R,( ) VR∈ correspond l r,( )∧∧{ }
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ties. The distinction was already explained for the deep union operator. Algorithm
8-9 implements handle_left_single for the deep symmetric difference. The algo-
rithm for handle_right_single is analogous where nodes and edges are tagged
added instead.

The result of the deep symmetric difference operator applied to the working
example in Figure 8-18 on page 292 is shown in Figure 8-23. Note that both
nodes and edges need to be tagged (nodes that are present in both input views
and, therefore, do not represent a difference are shown in italic font).

Algorithm 8-9. Handle_left_single for deep symmetric difference.

Figure 8-23. Result of the deep symmetric difference.

Input
• Components view VL

• Entity L
• Output components view V

Algorithm
add L to output view V tagged as removed;

for each l ∈ direct-elements (L in VL) loop
if correspondents (l) ≠ ∅ then 

for each r ∈ correspondents (l) loop
add part-of ((l,r), L) to output view V tagged as removed;

end loop;
else

add part-of (l, L) to output view V tagged as removed;
end if;

end loop;

5 61

AC1,AC3 AC2

C1

AC0

0 109 11 12

AC4

C2 removed entity

added entity

removed part-of
added part-of
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8.4    Voting Approach

In the previous sections, we have discussed combinations of techniques based on
operators modeled on set operations. This section presents an alternative
approach for combining the techniques.

When a yet free entity it to be bound during clustering, the question arises to
which atomic component this entity should be added. So far, this has been
answered by running one of the base techniques separately. However, what if we
do not want to rely on a single heuristic? Then, we could run several analyses,
compare the results, and add the entity to the atomic component to which most
techniques agree. Agreement among techniques can be established by means of
the intersection operator. The intersection operator is defined for two arguments
but could easily be extended to an arbitrary number of components views. How-
ever, the likelihood that the resulting components view is empty increases by the
number of techniques that have to agree because all techniques have to subscribe.
A more practical approach when several techniques are considered at the same
time is to accept atomic components when a certain number of techniques agree
but not necessarily all. Furthermore, the agreement of a technique is only binary
for the intersection operator though the actual degree of certainty of the technique
may lay somewhere in between 0 and 1. 

8.4.1    Summarized Agreement
Dropping total agreement and allowing continuous degrees of agreements
between 0 and 1 lead us to the so-called voting approach: Given a base entity E
that is to be added to one of the atomic components in SAC = {AC1, …, ACn} and

a set of techniques ST = {T1, …, Tm}, E is added to the atomic component ACj ∈
SAC for  which the agreement among techniques of ST is maximal, i.e., quantita-
tively, 

(8.2)

has to be maximal, where xT is the weight of technique T used to give more

trusted techniques more influence and agreementT (E, AC) is the individual agree-

ment of technique T that E should be added to AC. 

total-agreement E ACj,( ) xTi
agreementTi

E ACj,( )×
i 1=
m∑( ) xTii 1=

m∑⁄=
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The allowable range of values for the individual agreement is between -1 and 1,
where values in the range of -1 and 0 express varying degrees of disagreement
and values greater than 0 are considered agreements. However, as it will be dis-
cussed in the following sections, the actual range of agreement of most techniques
is between 0 and 1. This is the case when the underlying clustering criterion is
inherently positive, i.e., when the clustering criterion does not specify attributes to
exclude entities.

Because the individual agreements are normalized to yield a value between -1 and
1, total-agreement is also normalized. Normalization simplifies the application of
the voting approach for the user. Adjusting the weights xT, i.e., the influence of

individual techniques, is easier when the range of agreement of a technique is
known to be between -1 and 1. Furthermore, the total-agreement is easier to inter-
pret because it is a relative value between -1 and 1, whereas the left and right lim-
its of total-agreement would be unspecified if total-agreement were not
normalized.

The individual agreement is specific to each technique. Before the individual
agreement is defined for each technique, different applications of the voting
approach are discussed. The agreement of some techniques is not applicable to all
possible usage scenarios of the voting approach. The following sections will point
out techniques not applicable to a certain kind of application.

8.4.2    Ways of Using the Voting Approach
Before we go into detail of defining the level of agreement for each technique, we
discuss some usages of the voting approach. There are basically four kinds of sce-
narios in which the voting approach is helpful:

• single entity assignment: one entity it to be added to existing atomic compo-
nents

• multiple entities assignment: several entities are to be added to existing
atomic components

• clustering: free entities are to be grouped to new or existing atomic compo-
nents

• assessment: existing atomic components are to be assessed
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These scenarios will be discussed in the following.

Single entity assignment. The voting approach was already motivated as an
alternative to the intersection operator for determining the corresponding atomic
component of a single free entity when several techniques are to be consulted.
The entity is added to the atomic components for which the total-agreement of all
techniques is maximal. This kind of usage of the voting procedure is useful dur-
ing clustering, but a similar situation arises when the maintainer implements a
new function of the system after the atomic components have been detected: The
voting techniques could then be used to determine to which atomic component 
or module, respectively  the function should be assigned (this is known as the
orphan problem; Tzerpos and Holt, 1997). N.B.: Same Module cannot be polled
because the new function has no module yet.

Multiple entities assignment. Assignment of several entities to existing atomic
components is a straightforward extension of the latter scenario. However, one
has to be aware that the assignment depends on the order in which the entities are
handled, i.e., the addition of an entity to an atomic component, AC, can influence
the agreement for another entity with respect to AC  the agreement can increase
or decrease. That is why the entities should be assigned in the order of the current
agreement as described by algorithm 8-10. This way, the voting procedure can be
used in a clean-up phase when the atomic components have been detected to a
large extent and the remaining free entities are to be added to the found atomic
components. 

Clustering. In the previous two scenarios, entities were to be added to existing
atomic components. When new atomic components are to be created, we can use
the voting procedure as a regular clustering method by using total-agreement as
defined by equation (8.2) as a similarity metric for the clustering algorithm
described for Similarity Clustering. 

Total-agreement was defined above with respect to an entity and an atomic com-
ponent. However, in the beginning, when no atomic components are present, one
can treat each entity as an atomic component of its own.
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Assessment. Techniques may yield a large number of candidate components. In
an interactive approach, it is useful to rank these candidates when presenting them
to the user. The user can then validate the most promising candidates first. The
voting procedure can be used to rate these components. It makes sense to include
the vote of the technique that has produced the candidates, too, since the tech-
nique need not necessarily be entirely convinced, hence, its agreement may be
below 1. 

Furthermore, the voting procedure can also be used to assess an existing decom-
position of a system into files. It can be applied under the assumption that each
file constitutes an atomic component. This way, those modules may be identified
that need to be restructured and atomic component detection can be applied more
goal-oriented. The assessment of the voting procedure can then also be used to
detect the mavericks that cause low cohesion of some modules. N.B.: It is clear
that Same Module cannot be used for an assessment of existing modules.

In order to identify mavericks of a module, we can use equation (8.2) directly by
iterating over the elements of an atomic component and computing the total-
agreement to the chosen entity, E, with respect to its atomic component, AC,
(excluding the element) and to all other atomic components. The element E is a
maverick when the entity should actually be in a different atomic component,
i.e., if there is an atomic component AC’ for which

Algorithm 8-10. Multiple entities assignment.

Input: 
• set S of free entities 
• set SAC of atomic components

Algorithm
while S ≠ ∅ loop

ascertain E ∈ S, AC ∈ SAC where 

 ∀E’∈S,AC’∈SAC: total-agreement(E’, AC’) ≤ total-agreement(E, AC) 

add E to AC

S := S \ {E}

end loop;
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total-agreement (E, AC’) > total-agreement (E, AC-{E}) 

In order to rate an atomic component as a whole, one can look at the absolute and
relative number of mavericks (with respect to the number of elements in the
atomic component) as well as compute the average on total-agreement over all
elements in the atomic component AC:

Modules with a high absolute and relative number of mavericks or a low average-
agreement may represent candidates for restructuring in preventive maintenance.
On the other hand, atomic component candidates with a low absolute and relative
number of mavericks or a high average-agreement should be validated first in an
interactive atomic component detection process.

8.4.3    Agreement of Individual Techniques
The definition of total-agreement according to equation (8.2) is based on the indi-
vidual agreement of the basic techniques. In this section, this agreement will be
defined for the connection-based, metric-based, and graph-based techniques
listed in Chapter 5.

The agreement has to be defined as a function of an entity and an atomic compo-
nent. It has to express the degree of certainty of the technique that the entity
belongs to this atomic component. That is, the agreement is high if and only if the
technique would add the entity to the atomic component during clustering. There-
fore, the following definitions of agreement are modeled on the actual action of
the techniques when they would have to cluster this element. In other words, the
definitions reflect one single clustering step. 

In order to obey the information that has been contributed by the user, there is an
overriding rule for the definitions following in the next sections: If the agreement
for an entity, E, and an atomic component, AC, is to be computed, the agreement
is -1 if there is an entity, E’, in AC where E and E’ are mutually exclusive.

average-agreement AC( ) total-agreement E AC E{ }–,( )
E AC∈

∑ 
  AC⁄=
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8.4.3.1   Agreement of Connection-based Techniques
The principal procedure of clustering is the same for all connection-based tech-
niques and can be described by the generic algorithm 8-1 on page 268. These
techniques differ only in the actual specification of the generic function parameter
Connected_Entities of the algorithm that yields all the connected entities to which
a given entity is to be grouped. That is, the definition of agreement for all connec-
tion-based techniques can be uniformly made based on the abstract function
Connected_Entities.

Among the elements yielded by Connected_Entities to be grouped with the entity
may be bound and free entities. We are going to ignore free entities in the follow-
ing definition of agreement because the question for the voting approach is to
which existing atomic component a given entity belongs. However, if free entities
must not be ignored, e.g., for general clustering, we can consider each free entity
as an atomic component of its own. The following function is a filter for free enti-
ties:

Applying this filter to the result of Connected_Entities leaves the bound entities.
As described by algorithm 8-1 on page 268, the incremental connection-based
approaches add the entity to the enclosing atomic component of the bound enti-
ties. That is, it is sufficient for an atomic component to have one single entity that
is related to the entity under consideration (in the sense of the heuristic) to be a
candidate for receiving this free entity. This rule is adequate for the incremental
techniques since their results are intended to be presented to and validated by the
user. The user is then the final judge sifting all possible alternatives. However, in
this section, we have to define a finer gradation of the agreements of the tech-
niques than just yes or no. The definition of agreement will, therefore, be based
on the number of entities of an atomic component that are a reason for the given
entity to be added to the atomic component. It is the fraction of entities of the
atomic component connected to the entity under consideration, relative to all con-
nected entities. More precisely, 

(8.3)

δ S( ) s s S∈ Is_Bound s( )∧{ }=

agreement E AC,( )
x x δ Connected_Entities E( )( ) direct-elements AC( )∩∈{ }

δ Connected_Entities E( )( )
----------------------------------------------------------------------------------------------------------------------------------------------=



                                               307

Voting Approach

where δ(Connected_Entities (E)) are all bound entities to which E can be
grouped.

So far, the actual functions used as Connected_Entities for the specific techniques
have been defined for subprograms only. However, the entity could also be a vari-
able or type. In these cases, we simply use the relational inverse of the original
function for Connected_Entities.

Example. Consider the example in Figure 8-24. Connected_Entities (E) = {x1,

x2, x4, x5, x6} where x1 and x2 are both free, hence, δ(Connected_Entities (E)) =

{x4, x5, x6}. Because AC1 has two elements to which E is connected, the agree-

ment (E, AC1) is 2/3, while AC2 has only one connected entity and whose agree-

ment (E, AC2) is, therefore, only 1/3.  

Note that the definition of agreement is only relative to the number of connected
entities and does not depend on the size of the involved atomic components.
However, the more elements an atomic component has, the likelier it is that an
atomic component contains many connected entities. In other words, since a com-
ponent with N elements cannot have more than N connected entities, smaller
components are at a disadvantage. This is undesirable for clustering because it
leads to few large components. The definition of agreement above was made from
the perspective of the entity: It expresses the connection of the entity to the
atomic component relative to all other components to which the entity could
belong. For clustering, we can flip over the perspectives and define the agreement
as the extent to which the entity fits into the atomic component. This can be

Figure 8-24. Connected entities example.

E
x1

x2

x3

x7

x6

x5

x4

AC1

AC2

connected



Combined and Incremental Techniques

308

achieved by defining it relatively to the number of elements of the atomic compo-
nent as follows: 

(8.4)

For clustering and assessment, we will prefer equation (8.4), for entity assign-
ment, however, we will prefer (8.3).

8.4.3.2   Agreement of Metric-based Techniques
For the definition of agreement for metric-based approaches, we can use their
metrics. However, Delta IC is an exception. As it was already discussed in Sec-
tion 5.13, Delta IC is a hybrid of strictly connection-based and metric-based
approaches.

Delta IC. Delta IC consists of two steps: cluster formation and cluster filtering.
The metric is only used for filtering. Moreover, the metric is defined for subpro-
grams only and has other disadvantages (see Section 5.7). Two other metrics,
namely, Internal and External Connectivity, have been proposed to overcome the
restrictions of the Delta IC metric. (The definition of agreement for Internal and
External Connectivity follows below.) Due to the restrictions of Delta IC and the
fact that Internal and External Connectivity are too similar to the Delta IC metric
 and hence, similar characteristics would enter total-agreement twice  the
agreement of Delta IC will be based on its primary criterion for cluster formation.

The actual cluster comprises the closely related subprograms and the referred
entities of a subprogram (see equation (5.8) on page 125):

Therefore, given a subprogram, S, we can define the agreement of Delta IC anal-
ogously to agreement of connection-based techniques as the fraction of entities of
the atomic component that are also in the cluster:

agreement E AC,( )
x x AC∈ x δ Connected_Entities E( )( )∈∧{ }

elements AC( )
--------------------------------------------------------------------------------------------------------------=

candidate-cluster (S) closely-related-subprograms (S) referred-by (S)∪=

agreement S AC,( )
x x AC∈ x δ cluster S( )( )∈∧{ }

δ cluster S( )( )
-------------------------------------------------------------------------------=
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However, what if the entity is not a subprogram but a type or object? For the con-
nection-based approaches, we used the relational inverse of Connected_Entities.
A similar approach can be used for Delta IC. The relational inverse of referred-by
is refer-to. Closely-related-subprograms, on the other hand, was defined as fol-
lows:

An inverse analogon for types and objects is:

A cluster for a type or an object, E, can then be defined as:

Hence, we can use candidate-cluster as Connected_Entities in (8.3) and (8.4),
respectively, to specify the agreement of Delta-IC. 

Internal and external connectivity. Internal and external connectivity are two
different aspects; this is why agreement is defined for each one separately in this
section rather than defining a combined agreement in terms of connectivity as
defined by (5.15) on page 137.

Internal and external connectivity are defined for a given atomic component
whereas the agreement is based on an atomic component and an entity. However,
we can use them for the definition of agreement for internal and external connec-
tivity, respectively, by assuming the given entity were part of the atomic compo-
nent and measure the difference of connectivity with and without the entity as
follows: 

(8.5)

closely-related-subprograms S( ) =

{F F refer-to e( )∈ referred-by F( ) referred-by S( )}⊆∧
e referred-by S( )∈

∪

closely-related-entities E( ) =

{e e referred-by s( )∈ refer-to e( ) refer-to E( )}⊆∧
s refer-to E( )∈

∪

candidate-cluster E( ) closely-related-entities E( ) refer-to E( )∪=

agreement E A,( ) ∆= IntC E A,( ) IntC A E{ }∪( ) IntC A( )–=
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(8.6)

Equation (8.5) is used for the agreement based on internal connectivity and equa-
tion (8.6) is used for the agreement based on external connectivity. Note the two
different orders in the differences (8.5) and (8.6). The definition of ∆IntC is aimed
at rewarding an increase in internal connectivity, whereas the definition of ∆ExtC
promotes a decrease of external connectivity. Furthermore, the value of internal
and external connectivity as defined by (5.13) and (5.14) on page 137, respec-
tively, is between 0 and 1. Hence, the differences (8.5) and (8.6) are in the range
of -1 and 1. 

Type-Based Cohesion, Schwanke’s Arch Approach, and Similarity Cluster-
ing. The agreement of the similarity-based techniques Type-based Cohesion,
Schwanke’s Arch approach, and Similarity Clustering can be based on the under-
lying metric of these techniques. In the case of Schwanke’s Arch approach, and
Similarity Clustering, the group similarities as defined by (5.18) on page 141 and
(7.2) on page 188, respectively, can be used treating the entity to be compared to
the component as a group of its own. This compares to a real clustering step when
the elements of A have been grouped together and the similarity of A and the
group that contains the single entity is to be re-computed. More precisely, given a
component, A, and an entity, E, the agreement can be defined as follows:

The group similarity for Type-based Cohesion as defined by (5.20) on page 146
cannot be used to define the agreement of Type-based Cohesion because the
group similarity unites the two groups to be compared and computes the average
similarity over all pairs of the union. Hence, the similarity among the elements
that were already in component A to which the entity E is to be compared would
also contribute to the agreement. As a consequence, if this group similarity were
used and the component A as such has already a high agreement by Type-based
Cohesion, the resulting agreement of Type-based Cohesion for A ∪ {E} would
also still be high even if E has nothing to do with A. That is to say, the agreement
should measure the similarity of E to all other elements in A but not the similarity
among elements of A. In the course of this thesis, two alternative group similari-
ties have been introduced. Schwanke proposed to use the maximal similarity
between the two groups whereas Similarity Clustering uses the average similarity

agreement E A,( ) ∆= ExtC E A,( ) ExtC A( ) ExtC A E{ }∪( )–=

agreement E A,( ) GSim direct-elements A( ) E{ },( )=
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between elements of different groups. Both of these group similarities can also be
used for the agreement of Type-based Cohesion. However, because the group
similarity based on the maximal individual similarities was less effective in prac-
tice, the average group similarity is used instead. Hence, the following definition
of agreement for Type-based Cohesion is used (the formula is simplified leverag-
ing that {E} contains only one element):

 

Sim is the similarity between two base entities specific to Type-based Cohesion
and is defined by (5.19) on page 146.

8.4.3.3   Agreement of Graph-Based Techniques
Cycles in the call view are rare and most constituents of an atomic component are
not dominated by the atomic component. Moreover, the atomic component must
be known to a large extent before Dominance Analysis can be applied in the first
place. Therefore, Strongly Connected Component Analysis is commonly used
only in the beginning of the detection process whereas Dominance Analysis is
preferably used at the end of the process. That is, these two graph-based tech-
niques play a minor role in the actual clustering process (other than in a prepara-
tion and a clean-up phase) in which the voting approach has its place.
Nevertheless, their agreement may be an additional piece of information and is,
therefore, defined here.

As discussed in Section 8.3.1.5, Strongly Connected Components Analysis clus-
ters all entities of a cycle. Technically, this is achieved by using the generic algo-
rithm 8-1 on page 268 for connection-based approaches where the entities in a
cycle are returned by the actual parameter for Connected_Entities. Likewise, we
can reduce the definition of the agreement of Strongly Connected Components
Analysis to the agreement for connection-based approaches as defined by equa-
tion (8.3) on page 306 for entity assignment or equation (8.4) when assessment or
clustering is required. Function Connected_Entities therein is the set of entities
within a cycle as defined by (8.1) on page 277. Consider Figure 8-25 as an exam-
ple. Given the entity, E, for which the agreement is to be ascertained, the cycle
containing E consists of a, b, c, and E. According to the definition (8.1) of

agreement E A,( ) 1
elements A( )
--------------------------------- Sim E e,( )

e elements A( )∈
∑×=
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Connected_Entities, the connected entities of E are a, b, and c. Entity a is part of
A1 and the other two entities b and c are part of A2. Thus, agreement (E, A1) = 1/3

and agreement (E, A2) = 2/3 according to (8.3). 

Dominance Analysis adds an entity to its primarily dominating atomic component
(see Section 5.12). If the primarily dominating atomic component exists, it is
always unique. Hence, as opposed to the other approaches, there is maximally one
atomic component to which the entity is added. Therefore, the agreement of Dom-
inance Analysis is binary, either 1 if the given atomic component is the primarily
dominating atomic component or 0 otherwise.

8.5    Summary

In this section, high-level operators were introduced that allow manifold combi-
nations of the basic techniques in a flexible way. These operators are preferred to
a technical integration of the diverse heuristics since integration of new tech-
niques in the operator framework is straightforward. These operators are espe-
cially suited for combinations triggered by a user and are, therefore, used in the
semi-automatic method presented in the next chapter. In order to support compo-
sitions of techniques, the basic techniques have been extended to work incremen-
tally.

This section also proposed a voting approach that allows to combine the heuris-
tics on the basis of their agreement overcoming the shortcomings of the intersec-
tion operator. Though the intersection operator could principally also be used to
establish agreement among techniques, it is too strict when more than two heuris-

Figure 8-25. Example for Strongly Connected Components.
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tics are to be combined. The voting approach can be used for entity assignment,
clustering, and assessment. When a new technique is added to the atomic compo-
nent detection framework, its heuristic must be cast into a metric that reflects the
agreement of the technique that a given entity belongs to a certain atomic compo-
nent. This agreement is a value between -1 and 1.

The basic techniques introduced in Chapter 5 and Chapter 7 were evaluated in
Chapter 6 and Section 7.6.2.3, respectively. The combinations of the basic tech-
niques as described in this chapter are not evaluated with respect to the evaluation
framework of Chapter 6 because first, there is an infinite number of possible com-
binations and, second, these ways of combinations are primarily thought as being
used interactively in order to support the semi-automatic method described in the
next chapter. Chapter 10 describes experiments conducted to evaluate the semi-
automatic method that will also partly allow conclusions for the combined tech-
niques. 
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Chapter 9 A Semi-Automatic Method to 
Detect Components

The techniques introduced in Chapter 5 are all fully automatic which is desirable
especially for large systems. However, their evaluation revealed that none of them
has the detection quality that compares to human detection. There are basically
two ways to improve the detection quality process. We can search for more
sophisticated techniques or include the user in the detection process. The purpose
of this thesis was to see to which extent structural information can be leveraged.
Future research toward using data flow information and domain knowledge may
produce more powerful techniques. However, even then, the user will remain the
final judge. Due to the complexity, vagueness, and to some degree subjectivity, it
is questionable whether we can ever find precise techniques that fit all cases.
Therefore, atomic component recovery is a problem that has to be tackled in con-
cert with a maintainer at any rate.

This chapter describes a method in which human and computer interact to detect
atomic components. It depicts how the process can be split into tasks assigned to
either the computer or the maintainer. The outcome of each task carried out by
one of the two partners, human or computer, is used for the other partner’s next
task.
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9.1    Method Overview

This section presents an overview of the method with the main tasks of both com-
puter and human and the way and order of their interaction. A detailed description
of the individual parts will follow after this overview. 

Figure 9-1 contains the main steps of the method. The inner cycle, consisting of
analysis application, metric ranking, presentation, and bookkeeping of detected
atomic components, is the core of the detection process. The user controls the
detection process by selecting analyses and metrics and by validating the candi-
dates proposed by the automatic techniques. The task of the computer comprises
the automatic analyses, computation of the metrics for the proposed candidates,
presentation of the results, and bookkeeping of the user decisions. 

The base view contains the base entities and their relationships needed for com-
ponent detection and is automatically derived from source code. The so-called
user view logs the information contributed by the user. It records the atomic com-
ponents that have been detected and confirmed so far. In the beginning, when no
atomic component is known, the user view is empty. The user selects an analysis
that is to be applied. The analysis takes into consideration the components that
were confirmed by the user (in the first iteration there are none). Thus, the analy-
ses are applied incrementally. Chapter 8 already discussed how the analyses intro-
duced in Chapter 5 can be modified to work incrementally by clustering only
those base entities that have not been clustered before and by forming new atomic

Figure 9-1. Semi-automatic method for atomic component detection.
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components or adding free base entities to existing atomic components. Gener-
ally, the techniques propose many candidates. The user should not be swamped
with all of them. Instead, the candidates should be presented in their presumed
quality. Metric ranking is supported by letting the user select and adjust certain
metrics. After the candidates have been ranked by user-selected metrics, the can-
didates are presented to the user for acceptance. The presentation is a crucial and
non-trivial task. It must be in such a way that the user’s validation can be as quick
as possible. Additional information the user may need has to be provided on
demand. For example, the maintainer will probably also want to inspect the
source code. The user validates the candidates and those atomic components he or
she accepts enter the atomic component memory, i.e., the user view.

In each iteration, the user selects and combines different analyses to find compo-
nents that could not be found by previous analyses. The process ends when the
found components are sufficient for the task at hand or no further component can
be found anymore. The user does not have to select, apply, and validate only one
analysis at a time. Instead, several analyses can be selected and applied in paral-
lel. Then, the intersection, union, and differences of these analyses can automati-
cally be ascertained and the user can investigate and validate these. Particular
large candidates of some techniques can be refined by applying other techniques
to these individually.

Because the typical maintenance task usually does not require to find all atomic
components of a system but only a few relevant ones in a specific part of the sys-
tem, the domain of search can be restricted to certain modules.

We are using Rigi for presentation and interaction with the user (Müller, 1994).
Rigi is a customizable graph editor developed to support reverse engineering and
offers many useful capabilities such as:

• support for annotateable nodes and edges of different types

• hierarchical nodes and views

• direct linkage to the correspondent source code by clicking on nodes

• automatic layout and context-preserving browsing capabilities

• filter and selection mechanisms

• Rigi command language for customizations
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Rigi was extended in many directions to adapt it to our needs. The adaptations
were opportunistic; not everything what might have been useful could be worked
into Rigi, e.g., an undo mechanism would have been helpful. But all of our major
requirements were more or less easy to fulfill with Rigi.

The following sections go into more detail of the individual steps of the method.

9.2    Analysis Selection and Application

Currently, all connection-based, metric-based, and graph-based techniques listed
in Chapter 5 and Chapter 7 are supported. The user selects a subset of the basic
analyses and specifies the order in which they should be applied. This is neces-
sary since for many basic analyses, the order of composition is relevant. 

The analysis takes into account the atomic components that have been detected so
far, i.e., that have been confirmed by the user. Chapter 8 anticipated what kind of
information the user can add: Positive information expresses that a base entity
(variable, type, or subprogram) belongs to a given atomic component. Negative
information conveys that two entities do not belong together. Every analysis
must preserve all positive information, that is to say, an analysis may only add to
the components a user has confirmed and never remove any of their elements, and
likewise, an analysis must not cluster entities that were not supposed to be
grouped together.

The metric-based approaches use a metric to measure the similarity of entities
that are to be grouped together. These metrics can be used for both the assessment
and clustering of candidates. That is why the analysis application in Figure 9-1 is
not only controlled by the selected analysis but also by the used metrics and their
actual parameter settings.

The analyses can be selected, combined, and started from within Rigi by means of
list boxes and menus. It was important to us that the selection and combination is
easy to do with simple mouse clicks such that the user need not learn a complex
language. The result of an analysis is represented by a single hierarchical analysis
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node that is the root of the actual candidates. This makes it possible to further
process the results of an analysis by direct manipulation. For example, the differ-
ence to the currently accepted atomic components can be shown, it can be inter-
sected or united with the results of other analyses (deep intersection, deep union),
or the next kind of analysis can be applied to it (composition). For the interactive
approach, a variant of the composition operator is useful that can be applied to
individual components. The so-called individual composition is a form of com-
position in which only the elements of a single component may be clustered.

9.3    Metric Selection, Adjustment, and Ranking

Metrics are used to assess and rank the candidates that have been proposed by the
analysis. There is a catalog of metrics that the user can choose of. The catalog
comprises the metrics of the metric-based approaches and metrics that express the
underlying heuristics of the other non-metric-based techniques as described in
Section 8.4 for the voting approach. Established intra-modular and inter-modular
metrics, such as number of lines of code, McCabe or Shepperd complexity (Fen-
ton and Pfleeger, 1997), could also be integrated to measure additional aspects of
the candidates but were not implemented for the current prototype. The metric
used for ranking is a composite metric that is the normalized weighted sum over
the individual metrics of the techniques. 

The composite metric is used to guide the user through the large set of candidates.
The metric is computed once and then a threshold is used to control the presenta-
tion. All candidates above the threshold come to the fore. The next section will
discuss how this can actually be done. Independent of the way of presentation, we
would start with a high threshold that is decreased step by step. In each step, the
candidates above the chosen threshold are validated by the maintainer. Once the
elements of a candidate have been accepted, they are not clustered again since the
user has already decided where they belong to.

Some metrics have parameters that need to be adjusted. Altogether, there are,
hence, three dimensions of variability:

• the influence factors for the basic metrics within the composite metric,
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• the inherent parameters of the basic metrics,

• and the filtering threshold.

These parameters can be adjusted by the user and the presentation updated
accordingly. Several distinct metric settings can be tried without need to rerun the
automatic clustering; only the metrics have to be re-computed.

9.4    Presentation, Validation, and Acceptance

For the presentation of the results of automatic techniques, we are using the
means offered by Rigi, mainly flat and hierarchical perspectives of the component
decomposition. Base entities and components are expressed as nodes, their rela-
tionships as edges. We are using a special node type, so-called analysis node, to
represent the results of an analysis. Introducing an analysis node gives the user a
handle for direct manipulation of analysis results. For example, the user can select
two analysis nodes and apply the intersection operator to them.

The analysis node can be unfolded. Then, the actual subsystem and atomic com-
ponent candidates are shown. The user can browse these candidates by clicking
on the nodes or viewing the node hierarchy as a whole. The node hierarchy is
especially interesting when the results of Similarity Clustering or Type-Based
Cohesion are viewed. These two clustering approaches return a tree that indicates
the order in which elements were grouped together and, therefore, immediately
show what is more similar and what is less. The maintainer can then “climb up
the tree” starting at the leaves and stop at any inner node for which the combina-
tion is doubtful. Direct validation is possible in any view. 

The composite metric mentioned in the last section can be used for the purpose of
presentation of the candidates either to filter candidates below a threshold or to
emphasized candidates above the threshold. An alternative way of presentation
would be to color the nodes or to set the size of the nodes according to their met-
ric value. This way, the user could see all candidates at once and yet immediately
find the most promising candidates. Unfortunately, this would have been more
difficult to achieve with Rigi.
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The returned candidates can be accepted or rejected individually or as a whole by
direct manipulation. The atomic components can be renamed by the user to give
them a meaningful name. Single base entities within candidates can be accepted
or rejected. Cut and paste capabilities are available to move single or whole sets
of base entities as a group at once from one atomic component to the other. Any
base entity can be added to a candidate. The maintainer is also able to create her
own atomic components.

Everything confirmed by the user is moved in the user view. The user view, basi-
cally, is represented by the same means as any other analysis view such that most
commands available for analysis results are also available for the user view in a
uniform manner. Only those that make no sense for the user view were excluded,
such as accepting nodes or viewing the difference to the user view.

9.5    Detection Strategy

The framework described in the previous sections has many degrees of freedom.
Therefore, some guidelines should be given on how to use it successfully. The
recommended strategy for component recovery consists of two main parts: Detec-
tion of atomic components and then identifying the relationships among the
atomic components.

Component detection. Detection of atomic components can be done in the fol-
lowing phases (each phase may consist of several iterations):

1. Apply all connection-based analyses and Strongly Connected Base Component
Analysis in parallel. Use deep union, deep intersection, and composition to
combine the techniques (for reasonable combinations see below). If you want
to poll the agreement of more than two techniques, use the voting approach
instead of the intersection (the result may be empty otherwise). Add negative
information during validation when you find entities that should not be
grouped together.
Rationale: One gets only few promising candidates in the beginning which can
form points of crystallization for the subsequent analyses. The added mutually
exclusive information will break up larger candidates in the subsequent runs of
the analyses.
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2. Apply connection-based approaches once again but one at a time. This time,
they will leverage the information the user has contributed and return different
clusters (containing no entities that have already been grouped and no mutually
exclusive entities). Validate the non-intersected results (thus, using less strict
criteria). If particular large candidates occur, refine them with other techniques
by means of intersection or individual composition. If the results of one tech-
nique have been validated, run the next analysis.
Rationale: The crystallization points of the first step are extended and new
atomic components are built that were dropped out by the intersection in the
first step. Applying the techniques successively guarantees that all validation
information is respected by the analyses.

3. The metric-based approaches are associated with parameters whose values may
not be known in advance. Fortunately, the previous two steps lead to a set of
components that can be used to calibrate the metric-based approaches. Varying
this calibration reveals further clusters. In the case of Similarity Clustering, the
parameters should be set specific to one kind of atomic component. For exam-
ple, if abstract data types are to be detected, one gives signature and local-obj-
of-type relationships more and variable reference relationships less weight. If a
hierarchical clustering is used, one starts the validation of the results at the
leaves and then climbs up the tree toward the root until a metric value is
reached that does not indicate sufficient confidence in the candidate anymore.
Rationale: The connection-based techniques are based on fixed patterns and,
therefore, will always yield the same candidates. The metric-based techniques
allow more variability by changing their parameters. 

4. Finally, Dominance Analysis can be applied to find local utility functions of
atomic components.
Rationale: The dominance analysis for atomic components can only be applied
when the atomic components exist in the first place. Hence, it can only be used
late in the detection process. Dominance Analysis will detect the local entities
that might not be detectable by other approaches. For example, a subprogram
that provides a special service for one abstract data type only need not have any
recognizable relation to the type (signature relation or a local variable of this
type) other than being called by the functions of this abstract data type. There-
fore, none of the connection-based techniques will cluster it to the abstract data
type since they all ignore calls. Likewise, the chances that Similarity Clustering
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finds it are low since the calling relationship alone is usually not very signifi-
cant.

Combining components views. In the first phase of the method above, the
diverse techniques are combined by means of the combining operators described
in Section 8.3, namely, restriction, composition, deep intersection, and deep
union.

It is often helpful to restrict the search to one kind of atomic component at a time
because the search criteria are mostly different. For this reason, it is possible to
restrict all the analyses to a particular set of entity types. For example, if one
searches for abstract data types, global variables can be ignored.

If a technique was restricted to certain entity types, entities of other types may be
left. Then, another technique can be applied in a composition to the result of the
previous technique in order to cluster free entities. Composition can also be used
to refine the results of possibly too large components of one technique by another
technique. 

When the intersection is applied to components views generated by techniques
that propose very distinct atomic components, the resulting components view is
likely to be empty. This is, in particular, the case when techniques are combined
that consider different kinds of entities. By a look at Table 9-1, which summarizes
what kind of base entities are considered by the respective base technique, one
can quickly decide which intersections do make sense. A ✓ in Table 9-1 means
that a certain kind of base entity is considered, ⊥ means that it is not considered.
A sensible intersection can be expected of those techniques that consider a com-
mon set of base entity kinds. 

Interestingly enough, even if the results of techniques that are not compatible in
the sense of Table 9-1 are intersected, the results need not necessarily be empty.
All techniques that have been introduced so far consider at least subprograms. So,
even when Delta IC, which considers variables and subprograms, is intersected
with Part Type, which considers types and subprograms, a few groups of subpro-
grams may remain. The result may, however, not be very useful because the rea-
son why the subprograms were brought together is not clear anymore.
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The deep union operator is useful to join together the results of two different tech-
niques for further processing by a third analysis. The union operator may produce
overlapping components (the intersection and composition do not yield overlap-
ping atomic components other than those already produced by the applied tech-
niques). Overlapping candidates are a problem when presented to a maintainer for
validation because all overlapping candidates have to be investigated to decide
where a given entity (in the overlapping part) belongs to. In the case of non-over-
lapping components, the maintainer can simply accept or reject the entity at hand.
However, this is only a problem when the final result contains overlapping com-
ponents. For intermediate results during combination, overlapping components
are useful. This way, several alternative candidates can be investigated in parallel
until a decision is made in the course of combination. 

Detection of relations among components. Once the atomic components have
been detected, their relationships can be analyzed by applying Strongly Con-
nected Component Analysis and Dominance Analysis to the base view in which
the atomic components are collapsed (see Section 8.3.1.5). Strongly Connected
Component Analysis yields sets of atomic components that mutually depend on
each other and Dominance Analysis reveals whether atomic components are local
to each other.

Table 9-1. Domains of the basic techniques.

Technique Subprograms Variables Types
Global Variable Reference ✓ ✓ ⊥
Same Module ✓ ✓ ✓

Part Type ✓ ⊥ ✓

Same Expression ✓ ✓ ⊥
Internal Access ✓ ✓ ✓

Delta IC ✓ ✓ ⊥
Similarity Clustering ✓ ✓ ✓

Type-Based Cohesion ✓ ⊥ ⊥
Strongly Connected Components ✓ ⊥ ⊥
Dominance Analysis ✓ ✓ ⊥
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The recovered components are documented by the maintainer and saved for
future maintenance. They can be used to explain the system at a higher level of
abstraction above the code level and are candidates for reuse. Ideally, the module
decomposition of the system will be restructured to conform to the atomic com-
ponent structure, i.e., a module contains exactly one atomic component. If this is
not immediately possible, the programmer should regard the system at the atomic
components views rather than at the module view (see Table 3-5 on page 68). The
source location of each base entity can be used as a mapping from the compo-
nents view to the module view.

If the system is changed during further maintenance, the captured decomposition
of the system into components has to be adapted. If entities are removed from a
component, the voting approach can be used to analyze whether the system
should be restructured. If an entity is added, the voting approach can be used to
give hints to which atomic component or module, respectively, the entity should
be assigned (see Section 8.4).

9.6    Extensibility of the Framework

The framework supporting the semi-automatic method can be extended in many
ways:

• The way how combination of techniques is organized allows for quick addition
of new analyses.

• Further metrics can be brought in to rank the candidates, in particular, tradi-
tional intra-modular software engineering metrics, such as lines of codes, com-
plexity and information flow metrics.

• The way how results are presented to the user can be changed independently
from the analyses. Coloring the candidates according to their metric ranking is
just one example.

• Multiple user views could be enabled instead of the view of one single main-
tainer in order to collect the components for large systems by the joint work of
many maintainers. From the point of view of one maintainer, the user view of
other maintainers is like any other analysis. The combining operators can then
be used to reach a consensus among the maintainers or to analyze divergences.
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Or the different views may indeed be used as different perspectives on the sys-
tems for different programmer groups.

The method could also be applied with no automatic analyses at all. One could,
for example, start with the actual module decomposition and restructure the mod-
ules by hand without any proposal by automatic techniques. The framework
would then only be used to keep track of the manual findings and as a convenient
cross-reference tool. Whether the automatic analyses are helpful at all is yet an
open question. The next chapter reports on an experiment conducted to look into
this.
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Chapter 10 Experiments to Evaluate the Semi-
Automatic Method

This chapter describes an experiment conducted to empirically evaluate the
impact of the automatic techniques for atomic component detection within the
semi-automatic method and a case study to see whether our tools for atomic com-
ponent detection may also help maintainers in other typical maintenance activi-
ties.

10.1    Goals of the Experiments

In Chapter 6, the detection quality for atomic component recovery of diverse
techniques was evaluated. The results indicate that none of these techniques
reaches the human recall rate. However, the techniques did find many relevant
atomic components very quickly and, therefore, can support the maintainer.
Chapter 9 proposed a method in which maintainer and computer work hand in
hand to find atomic components. The automatic techniques are to support the user
in the detection process. However, it is not per se clear that a maintainer using the
automatic techniques is faster than one without the analyses. For this reason, I
conducted an experiment to examine the aid of automatic techniques.

The framework described in the last chapter is primarily aimed at atomic compo-
nent detection. Finding atomic components is a prerequisite for migration of a
legacy procedural system to an object-oriented system, it supports identification
of reusable components, and may help in program understanding by providing a
more abstract view of the system above the code level. Beyond component recov-
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ery, the prototype provides the maintainer also with many other base facilities that
may support more typical maintenance tasks. Among these are cross-referencing,
search mechanisms, automatic derivation of exact interfaces, and so forth. In
order to gather experiences on how useful they actually are and what extensions
would be necessary for a broader support of maintenance, we performed a case
study in which students were asked to perform typical maintenance tasks with or
without the prototype.

There were several constraints for the experiments that I want to point out before
the experiments are described in the following sections. Only very few companies
exist that are willing to spend time and money in an experiment whose outcome is
unclear. Since this was our first experiment, we could not approach industry by
showing previous success stories. Therefore, I decided to conduct the experiment
with students. Unfortunately, it was very difficult to find even students for this
task. Only few students volunteered. Due to their limited available time, the
experiments including training and discussion could not exceed 20 hours. For this
reason, it was not affordable to do more than one system per experiment since
systems of a realistic size were to be used and the experimental subjects should
have enough time to do more than a superficial analysis. 

Since the experimental subjects were students and since their number was low
and also because only one system per experiment was analyzed, we refrain from
generalizing the results too far. The general objective of these experiments was
not to yield a definite empirical proof for the usefulness of the semi-automatic
method for all kinds of systems and settings but to learn about the strengths and
weaknesses of the method and to investigate where further research should be
directed. Furthermore, the detailed description of the experimental layout of this
pilot study and its statistical analysis in the following sections can be used to
repeat the experiment in an industrial setting and with a larger number of experi-
mental subjects for other systems.

10.2    Experimental Subjects

Nine students volunteered for the experiment. Since we chose a two-block design,
we asked the system administrator of our department to participate in order to get
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equal group sizes. The system administrator was not involved in programming for
our project. 

At the time of the experiment, the students were studying computer science at the
University of Stuttgart (six at the graduate level, three at the undergraduate level).
All of them had at least two years of programming experience and were familiar
with the programming language C. See Table 10-1 for their individual profile.

10.3    Experiment to Evaluate the Semi-Automatic Method

The experiment described in this section addresses the impact of the automatic
techniques within the interactive and incremental method.

10.3.1    Hypotheses
The general hypothesis is that the semi-automatic method as described in Chapter
9 yields more atomic components than a pure manual process. By manual search,
we mean that only the cross-reference capabilities of our atomic component
detection framework as well as common textual pattern matching tools, such as

Table 10-1. Profile of the experimental subjects.

experimental subject # semester programming experience
S1 11 good

S2 9 good

S3 9 good

S4 3 good

S5 5 average

S6 9 good

S7 3 good

S8 3 average

S9 9 good

S10 professional good
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grep, are used, whereas for the semi-automatic method, all automatic analyses are
available.

The independent variable is therefore:

• semi-automatic method versus manual search

The dependent variable is: 

• the recall of atomic components

The null hypothesis and the two-sided and single-sided alternative hypotheses are
as follows:

Null hypothesis H0: There is no difference in the recall rate for the semi-

automatic and manual method.

Alternative hypothesis H1: The recall rates for the semi-automatic method

and the manual search differ (for two-sided tests).

Alternative hypothesis H2: The recall rate for the semi-automatic method

is greater than the one for manual search (for single-sided tests).

10.3.2    Experimental Materials
The task of the experimental subjects was to recover the atomic components for
Mosaic (see Table 6-1 on page 154). In order to obtain comparable results, we
reduced the possible search space for atomic components to a size that could be
handled within the given time frame, i.e., all experimental subjects should be able
to look at all source files within the available time. Therefore, we excluded the
files that are mainly devoted to the graphical user interface, namely, all files
whose names begin with the prefix gui. The 8 excluded files comprise 15 KLOC,
i.e., 40 files consisting of 37 KLOC were to be analyzed. None of the experimen-
tal subjects was familiar with the implementation of the system.

Mosaic was selected for several reasons. First, the students were all acquainted to
the application domain of web browsers. Second, its implementation involved
several programmers such that different programming styles could be expected.
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Third, Mosaic is used in many other reverse engineering studies which allows
results more comparable to other approaches.

10.3.3    Tool Support
The tools used for the experiment were as follows:

• standard tools: the editors emacs and vi, the Gnu C compiler gcc, and grep
(the Gnu tool for pattern matching based on regular expressions); these tools
are widely used on Unix platforms and can be considered standard tools for
maintainers (all participants were familiar with these tools before the experi-
ment)

• plain Rigi: the graph editor Rigi without the analyses that was used as a graph-
ical cross-reference tool and to capture the results of the search; plain Rigi can
be considered a representant of source code browsing tools; even though there
are similar tools of this type available on the market (mostly for object-oriented
systems primarily to browse the inheritance hierarchy and often only text-
based), these tools are rarely available to the typical maintainer

• extended Rigi: the graph editor Rigi with an integration of the analyses
described in Chapters 5, 8, and 9

Limitations of extended Rigi. At the time of the experiment, the extended Rigi
had some limitations. Some of the ideas presented in previous chapters were only
inspired by the experiment. The restrictions were as follows:

• Among the combining set operators, only deep intersection was available.
Composition was implemented in the form of incremental analyses but not as
an operator that could be applied to individual components. 

• Neither was the voting approach implemented. 

• Similarity Clustering could not be run in parallel and, therefore, one had to
wait up-to ten minutes for the results (for this reason, it was rarely used by the
experimental subjects during the experiment that was limited to six hours). 

• Moreover, it was not possible to accept components in the hierarchical view
returned by Similarity Clustering. The hierarchical view had to be flattened
before components could be accepted. Hence, an advantage of Similarity Clus-
tering could not be leveraged. 
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• There were also problems with Rigi’s (both plain and extended Rigi) update
strategy for visualized components views: Whenever a component was
accepted, the layout of all windows was lost and people had to re-order their
components views. 

• Furthermore, hierarchical subsystems were not supported. Interestingly
enough, people in both groups complained that there was no higher grouping
mechanism on top of atomic components which would have allowed them to
group related atomic components. This shortage motivated the generalization
of the combining operators for atomic components to subsystems as described
in Chapter 8.

10.3.4    Experimental Design
The experimental subjects were randomly assigned to two groups that differed in
the tools available to the search for atomic components:

• Group SAM (semi-automatic method): extended Rigi

• Group MS (manual search): standard tools and plain Rigi 

Table 10-2 shows how the experimental subjects were randomly assigned to the
two groups. The size of each group was five persons.

In order to avoid too much variance in the set of experimental subjects, all experi-
mental subjects were jointly trained as follows:

1. The diverse kinds of atomic components that were to be detected were
explained and exemplified. (30 minutes)

2. The available tools (emacs, vi, grep, and plain and extended Rigi) were intro-
duced. The available analyses in the extended Rigi were even introduced to
members of group MS though they would not use the extended Rigi. This was
done to avoid a margin of the SAM group since introducing the analyses
(which was necessary to use them at all) means teaching the heuristics that are

Table 10-2. Experimental groups.

group experimental subjects
SAM S1, S3, S5, S6, S8

MS S2, S4, S7, S9, S10
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associated with the analyses. 
(1 hour)

3. The experimental subjects were trained with an example system (the unix
spread sheet calculator sc with about 10 KLOC). The subjects had to detect as
many atomic components as possible within a fixed period of time. The avail-
able tools for this task were emacs, vi, grep, and plain Rigi for all trainees.
Members of group MS could also use the extended Rigi. (3 hours)

4. The result of the training was jointly discussed in order to achieve an agree-
ment on the notion of atomic components among the subjects. This discussion
revealed a consensus about the general notion of atomic components among
the experimental subjects. (1 hour)

In the actual experiment after the training, every subject had to analyze Mosaic
for 6 hours. The system was already preprocessed, i.e., the resource usage graph
for the analyzed system was available for the experimental subjects.

10.3.5    Measurement of the Dependent Variable
Since the number of atomic components for Mosaic was not known in advance, a
termination criterion for the search for atomic components did not exist. That is
why we stopped the search after 6 hours. Limiting the available time makes the
experiment even more realistic since in an industrial setting, one can generally
not afford to spend unrestricted time on a problem.

Two distinct ways of measuring the dependent variable were chosen:

1. using the absolute number of clustered elements for each subject (individual
absolute recall, short IAR)

2. comparing the components of each individual to the joint set of components of
all individuals (reference corpus recall, short RCR)

The first alternative does not require agreement among the experimental subjects,
hence measures only how many elements were clustered in a given time by each
individual. 

For the second alternative, the individual results were joined and the result of
each individual was judged with respect to the joined result. The joined list of
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components was individually reviewed by the experimental subjects. The review
work was distributed among the subjects so that each atomic component was at
least reviewed by two persons. In order to reduce the effort for the experimental
subjects to review the reference corpus, each subject had only to review a part of
the reference corpus. The reviewing subjects could accept components as a whole
or in parts as well as add elements to the components. Overlapping atomic com-
ponents were allowed. The set of accepted atomic components formed the refer-
ence corpus to which the proposed atomic components of each subject were
compared. The comparison followed the method described in Section 6.2. The
dependent variable was measured as the recall rate defined in Section 6.2.2 with
respect to the reference corpus.

Because not each individual reviewed the whole reference corpus, it may have
happened that people would not agree to certain parts. That is why both reference
corpus recall as well as individual absolute recall will be evaluated in the follow-
ing.

10.3.6    Experimental Results
The recall rate of each experimental subject with respect to the reference corpus
and the individual absolute recall are listed in Table 10-3. The numbers are listed
in descending order; this order does not correspond to the order in which the
experimental subjects are listed in Table 10-1 for reasons of anonymity.

Both the reference corpus and individual absolute recall are approximately the
same for both groups.

Table 10-3. Results for Mosaic.

x*1 x*2 x*3 x*4 x*5 ∑ x*i

RCR SAM 0.42 0.28 0.28 0.20 0.16 1.34 0.27

MS 0.48 0.35 0.27 0.24 0.12 1.46 0.29

IAR SAM 433 400 290 204 248 1575 315

MS 498 275 275 326 150 1524 305

x*i x*i∑( ) 5⁄=
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10.3.7    Statistical Analysis
The common way to evaluate statistical data of controlled experiments is to apply
analysis of variance (ANOVA). The F statistic, for example, may be used to test
the hypothesis that the population means for the two groups are equal (Winer et
al., 1991). However, the F statistics and other statistical tests of ANOVA assume
a certain distribution of the population or themselves approach a normal distribu-
tion only for large samples. However, normal distribution cannot be assumed for
our experiment. There have not been any large-scale experiments on the recall
rate of programmers in finding atomic components yet and, hence, the actual dis-
tribution is unknown. Furthermore, the size of our sample is too small to evaluate
it with the F statistics. There are other statistics, so-called non-parameterized sta-
tistics, that do not assume any distribution and are applicable to small samples.
The power of these tests is generally better than the power of parameterized tests.
According to Lienert, there are basically two kinds of statistics appropriate for the
design chosen for this experiment (1973): The exact U-test by Mann and Whitney
(1947) and the exact Fisher-Pitman randomization test for two independent sam-
ples (Pitman, 1939). These two methods differ in the leveraged scaling informa-
tion of the data. The exact U-test assumes data at an ordinal scale, i.e., the data
can only be compared in terms of a greater/lesser relationship, whereas the exact
Fisher-Pitman test is based on interval information. Since the recall rate is actu-
ally at an interval scale, Fisher-Pitman test seems to be the appropriate test. How-
ever, it assumes that the samples are an exact image of the whole population
which cannot really be justified since we dealt almost only with students. There-
fore, both tests are used for the evaluation.

10.3.7.1   Exact U-Test
The exact U-Test consists of the following steps (Mann and Whitney, 1947; Lien-
ert, 1973):

1. The data of both groups are united and ordered.

2. Each value of SAM is compared to all other values of MS. Let Gi be the num-

ber of elements of MS that are smaller than element i and Li be the number of

elements of MS that are greater than i.
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3. Summarize the numbers:  and . The smaller

figure is the observed U value.

4. The expected value of U under the null hypothesis is µU = (NSAM+NMS)/2

where NSAM is the size of group SAM and NMS is the size of group MS. In our

experiment, NSAM = NMS = 5. The more U differs from µU the less likely does

the null hypothesis hold.

5. The likelihood to get the observed U value or a value smaller than the observed
U value is determined by the number ZU of those combinations out of the 

 

possible permutations of SAM and MS recall rates that yield a U value not
greater than the observed U value (for a single-sided test):

 

and for a two-sided test: 

6. Reject the null hypothesis if P is less than a certain threshold.

The united and ordered data of Table 10-3 are listed in Table 10-4 and Table 10-5.
For the reference corpus recall, L=12 and G=13, hence U=L=12; and for the indi-
vidual absolute recall, L=13 and G=12, hence U=G=12.   

For the probability P, one could either lookup P in the table provided by Owen
(1962, Table 11.3) or write a small program that computes ZU by evaluating all

Table 10-4. Ordered reference corpus recall rates for SAM and MS.

rank 1 2 3 4 5 6 7 8 9 10

recall 0.12 0.16 0.2 0.24 0.27 0.28 0.28 0.35 0.42 0.48

group MS SAM SAM MS MS SAM SAM MS SAM MS

Gi 4 4 2 2 1

Li 1 1 3 3 4

G Gi
i SAM∈

∑= L Li
i SAM∈

∑=

NSAM NMS+

NSAM 
 

NSAM NMS+

NMS 
 =

P ZU

NSAM NMS+

NSAM 
 ⁄=

P ZU ZU 1–+( )
NSAM NMS+

NSAM 
 ⁄=
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permutations of MS and SAM members. For U = 12, this program will compute
ZU=126 and ZU-1=106, hence:

 for a two-sided test. 

Since we chose U=L=12 for the reference corpus recall and U=G=12 for the indi-
vidual absolute recall, the null hypothesis holds for both measurements with a
probability of 0.92. In other words, a positive effect of the automatic analyses for
atomic component detection could not be shown.

10.3.7.2   Exact Fisher-Pitman Test
As opposed to the exact U-test, the exact Fisher-Pitman test leverages the interval
information of the recall rate data (Pitman, 1939; Lienert, 1973). However, its
assumption is that the sample is an exact image of the whole population. The
exact Fisher-Pitman test is based on the following observations: The whole sam-
ple (i.e., the union of SAM and MS) of the NSAM + NMS = N values may be split

into two single samples with NSAM and NMS values in

different ways. Each of them is equally likely with respect to the null hypothesis.
If we use the difference of the locations (means or medians), i.e., difference

, as the value against we test, then we can compute the D val-

ues for all  two-sample combinations and determine whether the

observed test value D is among the Z + z highest D values (Z is the number of

Table 10-5. Ordered individual absolute recall for SAM and MS.

rank 1 2 3 4 5 6 7 8 9 10

recall 150 204 248 275 275 290 326 400 433 498

group MS SAM SAM MS MS SAM MS SAM SAM MS

Gi 4 4 2 1 1

Li 1 1 3 4 4

P 126 106+( ) 5 5+
5 

 ⁄ 0.92= =

N
NSAM 

  N
NMS 

 =

D xSAM xMS–=

N
NSAM 

 
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two-sample combinations whose value is the observed D value and z is the num-
ber of two-sample combinations whose value is less than the observed D value).
If so, we reject the null hypothesis. An equivalent but simpler evaluation strategy
is as follows:

1. The sum S of the recall rates of the smaller probe is the value against which we
test (in our case, both samples are at the same size):

Let SMS be the sum of the recall rate for MS, i.e., SSAM + SMS = T, then:

Since T/NMS and NSAMNMS/(NSAM + NMS) are both constants, the test distribu-

tion of SSAM is functionally connected to the test distribution of D. Therefore,

we can use the more easily computable distribution of SSAM instead of D.

2. The test whether an observed S value is sufficient to reject the null hypothesis
is as follows. First, we compute all two-sample combinations whose S value is
either smaller than or equal to the observed S value; let the former be denoted
by z and the latter by Z. Then, for a single-sided alternative hypothesis, the
probability of the null hypothesis is as follows:

Since the distribution of S depends upon the samples and, therefore, differs from
test to test, it cannot be tabulated. One may write a program that computes Z and z
over the possible two-sample combinations of the values of SSAM and SMS. 

For the data given in Table 10-4, Z=154 and z=2 and therefore:

S SSAM xSAMi
i 1=

NSAM

∑= =

D
SSAM

NSAM
--------------

SMS

NMS
-----------– SSAM

1
NSAM
-------------- 1

NMS
-----------– 

 ⋅ T
NMS
-----------–= =

S⇔ SSAM D T
NMS
-----------+ 

  NSAM NMS⋅

NSAM NMS+
--------------------------------⋅= =

P Z z+( )
N

NSAM 
 ⁄=
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In other words, the likelihood that the alternative hypothesis H2 holds is 38 per-

cent. 

For the data in Table 10-5, Z=110 and z=2 and, hence, P = (110 + 2) / 252 = 0.44.
Therefore, the likelihood of the alternative hypothesis H2 is 0.56. 

In comparison to the exact U-test, the likelihood of the alternative hypothesis has
increased both for the reference corpus recall and the individual absolute recall.
Yet, these results are still at a low significance level and, therefore, are not suffi-
cient to reject the null hypothesis.

10.3.8    Summary
A positive effect of the automatic analyses could not be shown by the experiment
on the evaluation of the semi-automatic method. However, the conclusions should
not be generalized too far for the following reasons:

• The subject system used for the experiment, Mosaic, is well-structured. The
experimental subjects were allowed to use the module view that consists of the
modules of the system and their respective contents. The module view corre-
sponds to the Same Module heuristic without the restriction of Same Module
that the elements of a component have to be (transitively) connected to each
other. Since Same Module - and hence, the module view if the modules are not
too large - is one of the most effective techniques for well-structured systems,
the advantage of people with automatic support was only marginal. 

• Beside the fact that the subject system was in a better shape than many legacy
systems, the experimental subjects may also not be considered typical average
programmers. All participants were computer science students with grades bet-
ter than the average. A future experiment should investigate whether less tal-
ented programmers would profit more from automatic analyses.

• Furthermore, even members of group MS could use automatic support to some
degree. They could use plain Rigi as a cross-reference and browsing tool and to

P 154 2+( )
10

5 
 ⁄ 156

252
--------- 0.62= = =
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log their findings. Mostly, programmers can only use very simple search tools,
like grep, in practice.

• One must also note that at the time of the experiment, the framework did not
offer all the functionality described in Chapter 8 and Chapter 9. Section 10.3.3
describes the limitations of the extended Rigi used for the experiment.

However, even for worse decomposed systems and less talented programmers, for
which automatic analyses may be more helpful, we should be aware that the sup-
port of the automatic analyses is limited to gathering candidates. This part, even
done by hand, is comparatively small to the time needed for validation by the
maintainer who will always have to look at the source code. As long as there are
no absolutely precise techniques whose candidates can be accepted without
checking, there will be a constant human factor in the process of component
detection that cannot be eliminated. The goal for automatic analyses must be to be
as reliable, flexible, and quick as possible for an interactive application. Here, the
framework inherited in parts the weaknesses from the used automatic techniques.
As the evaluation in Chapter 6 has shown, the techniques may produce bad candi-
dates and do not find all components either. Future research should be aimed at
finding more precise techniques considering other sources of information, like
data flow information or domain knowledge. The techniques described in this the-
sis leveraged only structural information.

The experiment described in this chapter could not show any positive effect of the
analyses (nor a negative effect). On the other hand, experiences with the over-
looked false positives described in Section 6.4 indicate that automatic analyses
may be useful when larger parts of a system are to be analyzed. In the experiment
with Mosaic, the search was limited by time (6 hours). On the other hand, in gath-
ering the references in Aero, Bash, and CVS used to evaluate the automatic tech-
niques, which took between 20 and 35 hours per system, 42% of the ADO
candidates and 41% of the ADT candidates proposed by the automatic techniques
and formerly categorized as false positives were indeed overlooked or alternative
components.
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10.4    Case Study for Maintenance Support

In order to find out whether the framework could also be used to support mainte-
nance tasks other than atomic component detection, a case study with the students
of the previous experiment was performed. The goal of this case study was also to
learn what other types of analyses would be useful for maintainers.

All but one of the experimental subjects of the last experiment participated in this
case study. The participants were in the same groups as in the previous experi-
ment. The size of group SAM was four and the size of group MS was five. Mem-
bers of group SAM could use the extended Rigi, while members of group MS
were only allowed to use the standard tools grep, vi, emacs, and a C compiler, i.e.,
they could not use plain Rigi.

The system used for the case study was XCoral (version 3.2), an X-window-based
editor consisting of 73 KLOC of C code. The editor also contains a large sub-
system SMAC that implements an interpreter for a subset of the programming
language C. The structure of the system is highly deteriorated, information hiding
is disregarded, and many function clones (duplicated and slightly modified func-
tions) exist.

The assignments for the participants involved typical maintenance problems like
change of data structures, lifetime analysis of variables, interface identification,
concept recognition, and clone detection. The tasks were as follows (the com-
ments in italic font were not mentioned to the participants):

1. All clients of the ADT List directly access the record components next and pre-
vious of List. These components should now be hidden, i.e., no function 
except for the accessor functions of List  may access internal components of
List. Instead, an iterator for List should be provided and used at the client site.
What changes are necessary?
This task was aimed at impact analysis of changes to a data structure. How-
ever, the primary question was whether the participants would find the already
existing iterator for ADT List that was implemented in another file and then
avoid the re-implementation of the found iterator.

2. The subsystem SMAC has a memory leak at its hash table because the destruc-
tor HashTable_Empty is never called. Insert this function call at the sites where
the lifetime of the hash table ends. If the lifetime of the hash table lasts till the
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end of the program, it does not need to be explicitly released; in this case, it
will be implicitly released with the program termination.
This task was aimed at lifetime analysis of variables. SMAC has 8 global hash
tables, one of them not even used at all, and no local hash tables (except for
one in the constructor for hash tables). The lifetime of all global variables ends
with the program. As a matter of fact, in the narrower sense, there was no mem-
ory leak of the table itself. But there was one call to HashTable_Empty freeing
the entries of the hash table that was removed from the source. Hence, the
memory allocated for the entries was not released, which in turn would lead to
an error in the application because the table needed to be empty at some
points.

3. What is the exact interface between SMAC and XCoral, i.e., what parts of
SMAC are used within XCoral and what parts of XCoral are used within
SMAC?
As a matter of fact, there is one file smacXCoral that is supposed to be the
interface between XCoral and SMAC. However, there are a few other declara-
tions of SMAC used in XCoral not listed in smacXCoral. Interestingly enough,
there are also declarations of XCoral used within SMAC.

4. File file_dict.c implements an ADT FileRec as a list of filenames. Moreover,
this file contains a global variable file_dict. What is the concept behind these
declarations? How could this concept be reused? And where (within the sys-
tem)?
On the surface, this task was aimed at concept recognition. The actual purpose
was to detect existing clones of this concept.

The total time available for all these tasks together was six hours. The tasks were
to be handled in the given sequence. Participants were allowed to skip a task
when they could not find a solution. Actually, there was another task aiming at the
understanding of a central data structure Text that consists of many “inlined” sub-
concepts whose accessor functions are implemented in different files. However,
only three participants arrived at this task within the given time. The individual
times needed for these assignments are shown in Table 10-6. The figures in brack-
ets are the time spent on a task before a participant gave up (these numbers are not
considered for the average and median).
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Table 10-6 shows a high variance among the participants for most tasks in both
groups. Members of group SAM needed less time than members of MS for task 1,
similar time for task 3, and more time for tasks 2 and 4.

10.4.1    Task 1 - Change of Data Structure
The variance of the time needed for task 1 can partly be explained by the varying
degree of detail in the answers of the participants. Participant MS1, for example,

identified only the files that are affected by the proposed change, while partici-
pant MS2 even listed all source positions that would have to be changed and

described how these sites should be changed.

Members of group MS used grep to identify the places where a previous and next
occur. This strategy would have been more difficult if there had been another data
structure with components named alike. One of the members of group MS even
noted that certain sites where previous and next occurred would not have to be

Table 10-6. Needed time in minutes for task 1-4.

Task 1 Task 2 Task 3 Task 4

SAM SAM1 85 115 60 70

SAM2 90 75 (40) 95

SAM3 60 90 75 65

SAM4 60 30 120 60

Average SAM 74 78 85 73

Median SAM 73 83 75 68

MS MS1 35 80 130 40

MS2 125 60 75 30

MS3 110 50 (45) 120

MS4 80 80 37 40

MS5 74 56 92 54

Average MS 85 65 84 57

Median MS 80 60 84 40
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changed because they belong to a global variable Memo. However, the participant
overlooked that Memo is of type List. 

The extended Rigi was able to support task 1, but only in two steps. For this task,
the Internal Access heuristic could be used to gather all functions that access the
internal components of global variables and parameters of type List. However,
internal accesses to local variables are not reported by this analysis. Subprograms
having local variables of type List could be identified by the cross-reference facil-
ity and then, their source code could be inspected. This explains why members of
group MS still needed so much time. Internal Access could be enhanced toward
fully automatic support of maintenance jobs like task 1. An enhanced Internal
Access analysis would then report reliable results within a minute where primitive
tools, like grep, yield only a very rough approximation that has to be validated by
the maintainer.

In both groups, there were three people that did not realize the existence of an
iterator for List in the source. The assumption was that members of group SAM
would overlook the iterator more often because they would rely on the results of
Internal Access and, therefore, not look at the source code. However, members of
MS who were far more attached to the source code overlooked the iterator equally
often.

10.4.2    Task 2 - Lifetime Analysis
The support for lifetime analysis by the extended Rigi is very limited. Finding the
hash tables in the system could be done by the cross-reference facilities. But the
available control and dataflow information in the resource usage graph is very
rough. The call view abstracts from the exact order of function calls and contains
only directly visible calls; limited data flow information is only available as the
set and use relationships for global variables. Likewise, people solely using grep
could identify the global hash tables. Most people in both groups concluded from
the scope of the global variables that the lifetime of the variables would end with
the program, others were unsure. None realized the missing call to the function
that empties the hash table. One participant of group MS proposed to check for a
defined hash table in certain initialization routines and then to release the hash
table when already defined before calling the constructor. However, firstly, this
would not be a remedy since the initialization routines are only called once in the
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beginning and, secondly, this could even result in an error when the hash table
were aliased and the initialization functions were called more than once.

10.4.3    Task 3 - Exact Interface Identification
Members of the MS group looked at the include statements in order to identify
the exact interface. Those files were closely investigated that included a file from
the other subsystem. Since all files of SMAC are in a subdirectory of the XCoral
source directory, the files of XCoral used in SMAC could be identified by include
statements like “../file.h”. This strategy did not work for files of SMAC used by
XCoral since there was no include statement like “Smac/file.h”. Instead, explicit
extern declarations for SMAC elements were used within XCoral. Looking only at
files that are explicitly included may also result in overlooking usages of routines
for which not even an extern declaration within the using file exists since routines
are implicitly declared in C when no declaration can be found.

In Rigi, there is a built-in function that allows the extraction of exact interfaces of
composite nodes. The most simple solution would have been to collapse all files
of SMAC into one node (identified by their path) and all other files into a second
node. Then the exact interface could have been ascertained for both nodes. This
would have been work of few minutes. However, members of SAM did not see
this ability. They rather used the cross-reference capabilities. 

Of both groups, one participant gave up at this task. 

10.4.4    Task 4 - Concept Recognition and Clone Detection
There are approaches that try to automatically assign concepts to pieces of code
using typical coding patterns for data structures and algorithms (Wills, 1992; Qui-
lici, 1997). The extended Rigi does not offer such capabilities. The only support it
provides for this kind of task is to find groups of related elements without assign-
ing any meaning to these groups, and offering a higher level of abstraction by
visualizing global declarations and their relationships only. The actual goal of this
task, however, was to see whether a more abstract view would help or hinder in
realizing function clones. On one hand, providing a more abstract view may sup-
press important details because the source code is not immediately visible and the
abstracted information may not be sufficient to recognize function clones. On the
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other hand, merely looking at the source code may lead to get lost in details. This
case study did not provide evidence for either hypothesis. In both groups, there
was one member that did not see the function clones. Both members recom-
mended to use another more general data structure in the subsystem SMAC
instead. 

10.4.5    Summary
The case study described in this section was headed at the ability of the extended
Rigi to support maintenance tasks other than those it was originally designed for,
namely, atomic component detection. The goal of this case study was also to learn
what other types of automatic analyses would be useful for maintainers.

The average time needed for the diverse maintenance tasks performed in this case
study was at least 1 hour. Cases in which participants needed 2 hours were not
rare. However, at least three of these tasks could easily be automated (to some
degree).

Tasks 1 and 3 fall into the same category of static name binding for a given set of
declarations at the atomic component and subsystem level which can reliably be
done with a global semantic analysis as far as visible declarations are concerned.
In the case of interfaces, there may also be hidden dependencies that are harder to
track down. For example, there could be an external file which one part of the sys-
tem writes into and the other part reads from. Such hidden dependencies may be
partly derived by control and data flow analyses, e.g., by means of constant prop-
agation. However, it need not necessarily be recognizable or decidable that the
same external file is meant at two different sites of the system.

Problems of the kind of task 2 deal with lifetime and protocols of components (a
protocol is a specification on the allowed order of actions associated with a com-
ponent). How long a component exists is often undecidable statically; for exam-
ple, when the component is allocated on the heap, one would have to find out
whether there is no pointer to the component left in order to ascertain the end of
the lifetime of the component. The protocol of the hash tables in the above assign-
ments would require to call HashTable_Empty at the end of the lifetime of each
hash table. Since the end of the lifetime is often undecidable, this protocol speci-
fication cannot always be checked statically. On the other hand, if points-to analy-
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ses or user assertions exclude aliasing of the hash table, the lifetime of the hash
table may in fact be derived and it can be checked whether HashTable_Empty is
properly called.

In order to support clone detection, as requested in task 4, several automatic
approaches have been proposed. Baker uses pattern matching techniques (1995),
Mayrand et al. compare values of certain metrics in order to identify pieces of
code that perform similar functions (1995), and Baxter et al. match abstract syn-
tax trees (1998).
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Chapter 11 Related Research

This chapter summarizes research in architecture recovery related to atomic com-
ponent detection.

11.1    Other Automatic Component Detection Techniques

Most automatic techniques for component detection have already been presented
in Chapter 5. Others not considered in this thesis follow in this section.

11.1.1    Metric-based Approaches
There have been several clustering techniques for module and subsystem detec-
tion proposed that are based on a similarity metric. Schwanke’s work (1992) and
the work of Patel, Chu, and Baxter (1991) have already been discussed in Section
5.9 and Section 5.10, respectively.

11.1.1.1   Belady and Evangelisti
Belady and Evangelisti’s approach groups related subprograms using a similarity
metric based on data bindings (1982). A data binding is a potential data exchange
via a global variable. Several kinds of data binding can be distinguished accord-
ing to the following levels of accuracy: A potential data binding is defined as an
ordered triple <p,x,q> where p and q are procedures and x is a variable within the
static scope of both p and q. A used data binding is a potential data binding where
p and q either set or use x. An actual data binding is defined as a used data bind-
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ing where p assigns a value to x and q uses x. A control flow data binding is
defined as an actual data binding where there is a “possibility” of control passing
to q after p has had control. A possibility is said to exist whenever either (1) there
exists a chain of calls from p to q or vice versa, or (2) there exists a procedure r
such that there are chains of calls from r to p and from r to q and there exists a
path in the directed control flow graph connecting the call chain to p with the call
chain to q. The similarity metric is based on the percentage of the bindings that
connect to either of the two components and are shared by the components. Vary-
ing reliability can be achieved by selecting different degrees of data bindings. 

11.1.1.2   Hutchens and Basili
Hutchens and Basili extend Belady and Evangelisti’s work by using a hierarchical
clustering technique to identify related subprograms and subsystems (1985).

11.1.1.3   Girard and Würthner
Girard and Würthner’s work is aimed at identification of functionally cohesive
components and subsystems (Eisenbarth et al. 1999). Functionally cohesive com-
ponents are groups of routines that together implement a certain functionality.
Candidates of functionally cohesive components may be identified as subtrees of
the dominance tree for the call view. The root of the subtree is the interface func-
tion, all other functions of the subtree are local service functions to the interface
function. In order to retrieve functionally cohesive components from the domi-
nance tree, two heuristics were proposed. The first heuristic is based on the size of
the subtree. During bottom-up traversal of the dominance tree, a subtree is
selected whose size (in terms of number of nodes) is not larger than a user-deter-
mined threshold. However, selecting subtrees by size does not necessarily say
anything about the cohesion of a component and, therefore, another heuristic
based on shared variables is proposed. The underlying assumption of the second
heuristic is that a subcomponent, S, that has a different functionality than a com-
ponent, C, dominating S may be distinguished by its references to global data. If S
implements a functionality that is only needed in the context of C, it is quite likely
that S references the same data as C\S (the set of subprograms in C without those
in S). If S implements a functionality that differs from the one of C, S probably
needs further data. Hence, a dissimilarity can be defined as:
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where V(X) is the set of variables referenced by subprograms in X. That is, the
dissimilarity measures the ratio of the variables additionally used by S. An incre-
mental algorithm can be used to cut the dominance tree so that dissimilarity
among components is maximized. Once the functionally cohesive components
have been identified, they can be grouped to subsystems based on the variables
they share. Likewise, variables can be clustered based on the functionally cohe-
sive components that reference these variables. This approach is particularly
suited for a language like Fortran in which global variables are very frequent.

11.1.1.4   Mancoridis et al.
Mancoridis et al. propose measurements very similar to internal and external con-
nectivity as defined in Section 5.8 for clustering modules to subsystems (1999).
They propose a genetic algorithm based on these metrics for finding a partition of
the module view that minimizes external connectivity and maximizes internal
connectivity. The approach was applied to modules only, hence, very few nodes
 compared to the number of base entities in a system  are to be clustered.
Whether the use of genetic algorithms scales to a finer granularity has to be
shown. Furthermore, external connectivity as defined by Mancoridis et al. ignores
the actual number of dependencies existing among modules, i.e., modules with
only one dependency have the same connectivity as modules with hundreds of
dependencies.

11.1.2    Concept Analysis
Concept analysis is also based on structural information; yet  as it will be
shown in this section  it is a class of approaches quite different from those pre-
sented in Chapter 5 and represents its own field of research. For this reason, it has
not been explored further in this thesis. This section acquaints with the basic
ideas of concept analysis and summarizes existing applications of concept analy-
sis to atomic component detection. Because concept analysis is also based on
structural information, yet not investigated in this thesis, the diverse approaches
based on concept analysis are presented in more detail than other techniques
within related research.

dissim S C,( ) V S( ) \ V C \ S( )
V C( )

-----------------------------------------=
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Concept analysis provides a way to identify groupings of entities that have com-
mon attributes. Its mathematical foundation was laid by G. Birkhoff in 1940. Gre-
gor Snelting introduced concept analysis to software engineering in 1998. Since
then it has been used to evaluate class hierarchies (Snelting and Tip, 1998),
explore configuration structures of preprocessor statements (Krone and Snelting,
1994; Snelting, 1996), and to perform atomic component detection (Lindig and
Snelting, 1997; Siff and Reps, 1997; Sahraoui et al., 1997; Graudejus, 1998; Can-
fora et al., 1999).

11.1.2.1   Mathematical Background
Concept analysis is based on a relation R between a set of objects O and a set of
attributes A, hence R ⊆ O × A. An object in the sense of concept analysis can be
anything, not only objects as defined by Section 3.1.1. Within this section on con-
cept analysis, the term object will be used in the sense of concept analysis.

The triple C = (O, A, R) is called a formal context. For any set of objects O ⊆ O,
the set of common attributes is defined as

Similarly, for any set of attributes A ⊆ A, their set of common objects is

As an example, let us consider the fictitious binary relation described by Table 11-
1. An object Oi has attribute Aj when there is a ✕ in row i and column j in Table

11-1. In this table, for example, the following two equations hold:

       

The two functions σ and τ form a Galois connection, i.e., a pair of two antimono-
tone functions:

 and 

σ O( ) a A∈ o O∈( ) o a,( ) R∈∀{ }=

τ A( ) o O∈ a A∈( ) o a,( ) R∈∀{ }=

σ O1{ }( ) A1 A2,{ }= τ A7 A8,{ }( ) O3 O4,{ }=

O1 O2⊆ σ O2( ) σ O1( )⊆⇒ A1 A2⊆ τ A2( ) τ A1( )⊆⇒
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and both σ ° τ and τ ° σ are closure operators: e.g.,  determines the big-
gest set of objects that have the same attributes as O.

A pair (O, A) is called a concept, if , i.e., all objects share
all attributes. For a concept c = (O, A), O is the extent of c, denoted by extent(c),
and A is the intent of c, denoted by intent(c). 

Informally, a concept corresponds to a maximal rectangle of filled table cells
modulo row and column permutations. For example, Table 11-2 contains the con-
cepts for the relation in Table 11-1. 

The set of all concepts of a given relation forms a partial order via

 or, equivalently

.

Table 11-1. Example relation.

A1 A2 A3 A4 A5 A6 A7 A8

O1 ✕ ✕

O2 ✕ ✕ ✕

O3 ✕ ✕ ✕ ✕ ✕

O4 ✕ ✕ ✕ ✕ ✕ ✕

Table 11-2. Concepts for Table 11-1.

C1 {O1, O2, O3, O4}, ∅

C2 {O2, O3, O4}, {A3, A4}

C3 {O1}, {A1, A2}

C4 {O2, O4}, {A3, A4, A5}

C5 {O3, O4}, {A3, A4, A6, A7, A8}

C6 {O4}, {A3, A4, A5, A6, A7, A8}

C7 ∅, {A1, A2, A3, A4, A5, A6, A7, A8}

σ°τ O( )

A σ O( )= O∧ τ A( )=

O1 A1,( ) O2 A2,( )≤ O1 O2⊆⇔

O1 A1,( ) O2 A2,( )≤ A1 A2⊇⇔
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If c1 ≤ c2, then c1 is said to be a subconcept of c2 and c2 is a superconcept of c1.

For example, ({O2, O4}, {A3, A4, A5}) ≤ ({O2, O3, O4}, {A3, A4}) in Table 11-1.

The sets of concepts and the partial order form a complete lattice, called concept
lattice:

In this lattice, the infimum (or join) of two concepts is computed by intersecting
their extents:

Note that , as has at least common attributes

. Thus, an infimum describes the set of attributes common to two sets of

objects. 

Similarly, the supremum (or meet) is computed by intersecting the intents:

Again, . Thus, a supremum describes a set of common

objects which fit to two sets of attributes.

Graphically, the concept lattice for the example relation in Table 11-1 can be rep-
resented as a graph whose nodes are the concepts in Table 11-2 and whose edges
denote the < relationship as shown in Figure 11-1 (a).

The graph for a concept lattice would be difficult to read when each node showed
its complete concepts, i.e., if the nodes Ci were replaced by their contents accord-

ing to Table 11-2. Fortunately, there is a better strategy for labelling nodes. A
graph node in Figure 11-1(b) is labelled with attribute a ∈ A if it is the largest
concept having a in its intent; it is labelled with an object o ∈O if it is the smallest
concept having o in its extent. The (unique) lattice element labelled with a is thus:

L C( ) O A,( ) 2
O

2
A×∈ A σ O( )= O τ A( )=∧{ }=

O1 A1,( ) O2 A2,( )∧ O1 O2∩ σ O1 O2∩( ),( )=

A1 A2∪ σ O1 O2∩( )⊆ O1 O2∩

A1 A2∪

O1 A1,( ) O2 A2,( )∨ τ A1 A2∩( ) A1 A2∩,( )=

O1 O2∪ τ A1 A2∩( )⊆
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The element labelled with o is

The equivalent graph for Figure 11-1(a) using this labelling strategy is shown in
Figure 11-1(b). A concept represented by a node N in this graph consists of all
objects at and below N and of all attributes at and above N. For example, the con-
cept labelled with O2 and A5 in Figure 11-1(b) is ({O2, O4}, {A3, A4, A5}). 

The concept lattice and the table, T, originally used to represent the relation are
two equivalent ways to represent the relation, i.e., they can be reconstructed from
each other, formally stated as:

However, the concept lattice is a much more comprehensible representation
allowing direct insight into the structure of the original relation. For example, we
can immediately derive from Figure 11-1 that there are two disjoint sets of
objects: O1 that has attributes A1 and A2 and objects O2, O3, and O4 share the

other attributes. Furthermore, among O2, O3, and O4, O4 has all attributes of O2

and O3 but not vice versa. A3 and A4 is common to all objects O2, O3, and O4.

This information can, of course, also be derived from the table, but for larger
tables, this is more difficult.

Figure 11-1. Example lattice.

O3O2

O4

O1

A1, A2 A5 A6, A7, A8

A3, A4C2

C1

C4 C5C3

C7

C6

(a) (b)< <

µ a( ) c L C( )∈ a intent c( )∈{ }∨=

γ o( ) c L C( )∈ o extent c( )∈{ }∧=

o a,( ) T∈ γ o( ) µ a( )≤⇔



Related Research

358

In the following sections, it is discussed how concept analysis can be applied to
detect atomic components. The approaches differ by the kinds of objects and
attributes considered, the way interferences are handled, and how the concept lat-
tice is interpreted.

11.1.2.2   Lindig and Snelting’s Approach

A formal context for concept analysis in the approach of Lindig and Snelting
(1997) consists of subprograms as objects and global variables as attributes. The
underlying relation is the variable reference, i.e., a subprogram S has attribute V if
and only if S references variable V. An atomic component candidate is a concept,
i.e., shows up as a maximal rectangle in the table of the variable reference rela-
tion. For example, if Table 11-1 represents a variable reference relation, then
({O1}, {A1, A2}) forms a candidate. The maximal rectangles in the table, how-

ever, need not be completely filled  not every subprogram in a component uses
all variables, and not all variables are used by all procedures  as long as it corre-
sponds to a independent sublattice in the concept lattice. An independent sublat-
tice is connected to other sublattices only via the top and bottom elements; it has
a single entry (from the bottom element) and a single exit (to the top element), so
to speak. The concepts associated with the nodes <O4>, <O2, A5>, <O3, A6, A7,

A8>, and <A3, A4> in Figure 11-1, for example, form an independent sublattice.

<O1, A1, A2> forms another independent sublattice. Given an independent sublat-

tice, the constituents of the proposed candidate are all objects (subprograms) and
attributes (variables) of the concepts in the sublattice. Hence, {O2, O3, O4, A3, A4,

A5, A6, A7, A8} and {O1, A1, A2} are two candidates detected by concept analysis.

Ideally, the variable reference relation is horizontally decomposable, i.e., the cor-
responding lattice consists of independent sublattices only. However, in reality,
there are often subprograms in one component that directly access variables of

Name Concept Analysis by Lindig and Snelting
Reference Lindig and Snelting (1997)

Domain Object Reference View

Range ADO

Disjoint Clusters Yes
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other components, which results in interferences in the concept lattice that pre-
vent us from identifying components as independent sublattices. The subpro-
grams S in Figure 11-2, for example, accesses two variables V1 and V2 that belong

to different sublattices. As a consequence, the concept labelled with S causes an
interference among two sublattices. Snelting also notes that such interferences
can automatically be detected and then  in principle ÿÿbe removed by program
transformations. For example, the access to V1 by S could be replaced by a call to

an appropriate accessor function of the atomic component containing V1. Snelt-

ing notes that even in the case of many interferences the system can be modular-
ized by means of so-called block relations (also called weak congruencies) that
correspond to rectangle shapes in the table and induce a factor lattice (see Lindig
and Snelting, 1997, for details). However, even though interferences are automat-
ically detectable, the user has to be called on or further heuristics have to be used
to decide how the interferences should actually be handled.   

Lindig and Snelting report on a case study in which concept analysis was applied
to a 20-year old aerodynamics system used for airplane development after several
manual restructuring efforts had failed (1997). The program was written in For-
tran and consisted of about 100 KLOC, 317 subroutines, and 492 global variables
in 49 COMMON blocks. The concept lattice for this program contains 2249 ele-
ments and is full of interferences such that it could not be horizontally decom-
posed. Several attempts to restructure at least some parts of the system and to use
block relations and other approaches failed, too. It was decided to cancel the
reengineering project and to develop a new system from scratch.

Figure 11-2. A horizontal decomposition and an interference.

✕✕S

V1 V2

S

V2V1
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11.1.2.3   Siff and Reps’s Approach

Siff and Reps use concept analysis to detect abstract data types. The objects are
subprograms as in the approach of Lindig and Snelting while the attributes are
signature relationships and accesses to record components as opposed to variable
references. A subprogram, S, has attribute param T if and only if signature-type
(S, T) holds. S has attribute access T if and only if:

 

Siff and Reps also consider disjunctions of attributes and negative attributes. Dis-
junctive attributes allow the user to specify properties of the form “A or B”, like
“internally accesses type stack or type queue”. This may be useful when the user
is aware of the similarity of two types. Negative attributes are a means to leverage
the absence of an attribute in order to eliminate interferences. Consider the exam-
ple in Figure 11-3, which describes in table (a) that subprograms S1 and S2 have

parameter type T2 and both internally access an instance of type T2; likewise, sub-

program S3 has parameter types T1 and T2 and internally accesses an instance of

type T1. Table (a) is decomposable in three concepts ({S1, S2}, {param T2, access

T2}), ({S3}, {param T1, access T1, param T2}) and ({S1, S2, S3}, {param T2}) as

shown by the shaped rectangles. Suppose the programmer breaks the information
hiding principle and subprogram S3 also internally accesses an instance of type

T2. Then, a concept ({S1, S2, S3}, {param T2, access T2}) replaces the concepts

({S1, S2}, {param T2, access T2}) and ({S1, S2, S3}, {param T2}) and the concept

({S3}, {param T1, access T1, param T2, access T2}) replaces ({S3}, {param T1,

access T1, param T2}). The replacing concepts overlap such that the two abstract

data types that originally corresponded to distinct concepts can no longer be eas-
ily detected from the concept lattice. The introduction of a negative attribute ¬
access T1 reveals the original atomic component consisting of S1, S2, and T2 again

Name Concept Analysis by Siff and Reps
Reference Siff and Reps (1997)

Domain Signature View and non-abstract usage information

Range ADT

Disjoint Clusters No

S predecessors T local-obj-of-type signature-type,{ } non-abstract, ,( )∈
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as shown in table (c): Because S1 and S2 do not internally access an instance of

type T1, a new maximal rectangle shows up in the table corresponding to the con-

cept ({S1, S2}, {param T2, access T1, ¬ access T2}). However, adding negative

attributes can only lead to new concepts in the lattice but never to removal of con-
cepts. Hence, concept ({S1, S2, S3}, {param T2, access T2}) is still present.

Not every negative attribute does help to reveal relevant concepts. For example,
adding a negative attribute ¬ access T2 fails to detect the component consisting of

S1, S2, and T2 in the example above since S1, S2, as well as S3 internally access T2.

Furthermore, negative attributes can lead to many additional concepts, i.e., to
many new potential candidates. Siff has, therefore, refined the first idea of adding
negative attributes for all attributes (fully complemented context), published in
1997, by adding them only when they can be used to make a difference between
two overlapping concepts and when there is a negative attribute that can be used
to distinguish a concept from all other concepts (Siff, 1998); the latter is called
the uniquely complemented context. 

Whereas Lindig and Snelting consider only independent sublattices as candi-
dates, Siff and Reps treat each concept as a potential candidate. The number of
concepts, however, can be huge and not all possible combinations of concepts
actually make sense. Overlapping atomic components are rather rare according to

Figure 11-3. Example for negative attributes.
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our experience with components compiled by software engineers for several sys-
tems described in Section 6.1.1. For this reason, Siff and Reps propose to parti-
tion the concept lattice into non-overlapping concepts; in other words, each
subprogram is assigned to exactly one candidate. Formally, given a formal context
(O, A, R), a concept partition is a set of concepts whose extents form a partition
of O. That is, P = {(O1, A1), (O2, A2), …, (Ok, Ak)} is a concept partition if and

only if

 

Each concept partition is a possible system decomposition and can be validated
by a maintainer. In the simple example of Figure 11-1 on page 357, there is only
one possible concept partition ({O1}, {A1, A2}), ({O2, O3, O4}, {A3, A4}) since the two
concepts labelled with O2 and O3 both contain O4. But generally, there can be a

large number of possible partitions.

The extent of each concept in a partition identifies the subprograms that belong to
an atomic component candidate. However, what are the types that belong to the
candidate? Though not explicitly said in their paper, we may assume by the exam-
ples Siff and Reps are using that they add those types to the candidate that are
associated with the attributes in the intent of a concept. Recall that the attributes
Siff and Reps consider are not types directly but the kinds of type usages, such as
accesses record components of T, has return type T, and has parameter T. That is,
the candidate formed for a concept ({S1, S2, S3}, {access T1, return T2}), for

example, is {S1, S2, S3, T1, T2}.

Selecting candidates from concept partitions as proposed by Siff and Reps has the
following disadvantages: 

1. A type may be assigned to more than one candidate within a given partition.

2. Not all types are assigned to candidates.

3. There are many possible partitions.

4. The 1:1 relationship between a concept and a candidate is often too strict.

O Oi
1 i k≤ ≤

∪= i j≠( ) Oi Oj∩∀∧ ∅=
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Ad (1): Because Siff and Reps partition the objects, i.e., the subprograms, rather
than the attributes, i.e., the types, candidates may result that overlap in their sets
of types. For example, if the two concepts in the lattice of Figure 11-4 labeled by
T2 and T3 are selected, the resulting candidates overlap in type T1. As a matter of

fact, it is even worse because Siff and Reps do not only consider types as such as
attributes but the way a type is related. That is to say, because the two distinct
attributes param T and access T can be in different concepts, the type is added to
different components. In the systems we have investigated, types do always
belong to one component at most. Overlap in subprograms is more frequent 
yet rare.

Ad (2): Consider the example lattice in Figure 11-4. The concept labelled by T1

can be selected for a partition. Then, its (transitive) subconcepts cannot be
selected for the partition because their extents are subsets of the concept labelled
by T1. As a consequence, the types T2 and T3 that are associated with subconcepts

will not be assigned. They may only be assigned in a different partition, i.e, one
that selects these subconcepts. Hence, it is not sufficient to look at a single parti-
tion in order to assign all types. 

Ad (3): Siff and Reps report for the fully complemented context of a smaller pro-
gram consisting of 372 subprograms and 8 user-defined types altogether 34 con-
cepts and 63 possible partitions of the lattice. For another program with 26
subprograms and 3 user-defined types, 28 concepts were detected and 153 possi-
ble partitions of the fully complemented lattice were proposed. The high number
is mainly due to the introduction of negative attributes in a fully complemented
context. However, even for a uniquely attributed context according to the refine-

Figure 11-4. Lattice interpretation.

T2

T1

T3
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ments discussed above, the approach was not usable for systems at the 30KLOC
level because of the huge number of identified partitions (Siff, 1998). For this rea-
son, Siff and Reps propose to select the partitions interactively. An improvement
was proposed by Graudejus (1998). He suggests to select only the concepts
located directly below the top element of the concept lattice and achieved better
results. Concepts directly under the top element in the lattice comprise all subpro-
grams of their transitive subconcepts and consist of only a few types (the higher a
concept the more objects and the less attributes it has). 

Ad (4): Forming a candidate by a single concept is very strict because then all
subprograms must be related to all types in the concepts (positively or negatively)
otherwise it would not be a concept. This constraint is acceptable for abstract data
types because an abstract data type usually consists of one single type only and in
fact all accessor functions of an abstract data type should be related to this type.
For abstract data objects, however, this is too rigid. Not necessarily all subpro-
grams of an abstract data object reference all of its variables.

11.1.2.4   Sahraoui et al.’s Approach

Sahraoui et al. apply concept analysis to the object reference view in order to
detect abstract data objects. Their approach differs from Lindig and Snelting’s
approach by distinguishing different kinds of variable references and by the inter-
pretation of the concept lattice.

Variable references are distinguished into setting and using a variable. The way a
variable is referenced can help in two cases:

1. A global variable that is never modified can be considered a constant and be
removed from the variable reference view. Sahraoui et al. note that this decision
is not easy to make when pointer arithmetic is used. However, why pointer
arithmetic for global variables should be a problem is unclear. What they prob-

Name Concept Analysis by Sahraoui et al.
Reference Sahraoui et al. (1997)

Domain Object Reference View

Range ADO

Disjoint Clusters No
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ably meant was that the variable could be modified when passed as a (simu-
lated) reference parameter to a function that modifies the dereferenced
parameter. A conservative decision without need for data flow analysis is to
exclude global variables that are never modified directly and whose address is
never taken.

2. The specific kind of reference can also be used for method identification (see
below).

Sets and uses of variables could also be used as two different attributes for con-
cept analysis, i.e., one could make a distinction between subprograms that only
use a variable and subprograms that set a variable. Though not explicitly said but
suggested by the example they give, Sahraoui et al. do apparently not distinguish
sets and uses for concept analysis as such but have only one attribute for referenc-
ing a variable. 

The identification of atomic components in the concept lattice is divided into
three steps:

1. Identification of sets of variables.

2. Merging of overlapping sets of variables.

3. Identification of subprograms.

Identification of sets of variables. The first step is based on the concept lattice
for the variable reference relation. In the paper of Sahraoui, the concept lattice is
computed for the inverse variable reference relation. This does not have any influ-
ence on the outcome since attributes and objects are interchangeable for concept
analysis (the concept lattice is flipped upside down then). However, we prefer to
follow the conventional way of treating the subprograms as objects and the vari-
ables as attributes. 

In order to identify sets of variables from the concept lattice, a set, NS, that con-
tains the not-yet-selected variables is used. In the initial state, NS contains all
variables. The iterative identification process starts at the top element of the lat-
tice and stops when NS is the empty set, hence, when all variables have been
assigned to a candidate. In the case of equal cardinality of subprogram sets, con-
cepts with fewer variables are preferred in order to avoid large objects. If these
two criteria are still not sufficient to decide what concept should be selected, a
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priority is given to the cluster C that has the higher cardinality of the set intent (C)
∩ NS. Each time a group is selected, the variables it contains are removed from
NS. Groups with intent (C) ∩ NS = ∅ and groups consisting of only one variable
of a basic type are ignored.

Merging overlapping sets of variables. The previous step can lead to overlap-
ping sets of variables. These overlapping sets may be merged. In order to detect
overlapping sets of variables, concept analysis is applied to the formal context (O,
A, R) where O consists of the sets of variables, A consists of the global variables,
and (o, a) ∈ R if o contains a. Two sets of variables overlap when they have a
common superconcept other than the top element. Sahraoui et al. merge two sets
of variables only if they have at least two common variables. As a consequence,
two candidates may overlap in one variable.

Method identification. Once the sets of variables for the candidates have been
established, the subprograms are identified. Interestingly enough, Sahraoui et al.
do not consider the concept lattice in order to assign subprograms to candidates.
Instead, they propose three rules based on the following definitions:

Let V be the set of global variables, SV ⊆ V be the set of variables identified by the
previous step, and F the set of functions. For each function f ∈ F, two sets refer-
enced-by(f) and set-by(f) are defined as follows:

 where  
(referenced-objects is defined in Table 3-4 on page 65 and obj_set is
defined in Table 3-3 on page 51)

Note that set-by(f) is a subset of referenced-by(f). Based on possible categories for
values of referenced-by(f) and set-by(f) relevant to assign a function to a candi-
date, three rules can be stated:

• If | referenced-by(f) | = 1, then f is assigned to the unique set of variables in ref-
erenced-by(f).

• If | referenced-by(f) | > 1 ∧ | set-by(f) | = 1, then f is assigned to the set of vari-
ables identified by the previous two steps within the concept lattice that con-

referenced-by f( ) referenced-objects f( ) SV∩=

set-by f( ) set-objects f( ) SV∩= set-objects f( ) v obj-set f v,( ){ }=
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tains the single variable in set-by(f) since a modification suggests a higher
coupling than just reading the value of a variable.

• If | referenced-by(f) | > 1 ∧ | set-by(f) | > 1, then f cannot be clearly assigned to
one set of variables. Sahraoui et al. propose to slice this function since their
approach is aimed at migrating to an object-oriented language.

Note that these rules do not guarantee that no function is assigned to more than
one candidate because the sets of variables merged by the previous step may still
overlap in one variable and if the function happens to set only one variable that is
in more than one set of variables, the function will be added to all these candi-
dates. Moreover, in a pure reverse engineering approach, it is unclear what to do
with functions in the third category. An attempt not explored by the authors could
be to assign the function to the set of variables with the maximal number of vari-
ables referenced by the function. This strategy could also be used in the second
category. It is questionable whether a single modification of a variable in one set
of variables outweighs many uses of variables in another set of variables.

Sahraoui et al. motivate the top-down traversal of the concept lattice for compo-
nent detection by the fact that the higher a group is in the lattice the higher is the
cardinality of its subprogram set (the extent) and their hypothesis is that a set of
variables can be considered forming an abstract data object if these variables are
simultaneously accessed by a larger number of subprograms. However, counter-
examples against this hypothesis are frequently used system state or mode vari-
ables, such as an error variable. Another consequence of the top-down traversal is
that smaller sets of variables are preferred. The argument of the authors is that
they want to avoid atomic components with a large number of variables. How-
ever, this is counter-intuitive in the context of concept analysis. The definition of
a concept requires of all subprograms to reference all variables and since vari-
ables are rarely referenced by the same set of subprograms in reality, concepts
with a huge number of variables do virtually not exist. Thus, the concepts we can
expect to find do not comprise a very large number of variables and concepts with
many variables represent higher cohesion among the subprograms in the concept
than concepts with a lower number of variables.
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11.1.2.5   Canfora et al.’s Approach

In a case study, Canfora et al. used concept analysis to detect persistent objects,
consisting of data files and their accessor routines, in a COBOL system for dis-
tributed system migration (1999a). The objects are COBOL programs and the
attributes files. The relationship is defined as (o, a) ∈ R if program o accesses file
a. 

Data files and file accesses have not been captured by the resource usage graph
used so far. The extensions, however, are straightforward:

• adding new entity types data file and program

• adding a new relationship type file access

• adding a new view file usage view that describes which programs access data
files

The authors used concept analysis in this case study only as the main driving
method; they also used ideas underlying other techniques to reduce the number of
interferences in the concept lattice, which distinguishes their approach from the
approaches discussed in previous sections. Some of the interferences could be
eliminated by

1. grouping synonymous files, where synonymity was detected manually (Can-
fora, 1999b),

2. considering only files corresponding to application domain objects,

3. excluding programs accessing only one file, and

4. excluding programs with many file accesses after a manual inspection of the
lattice and the source code.

The persistent objects were detected in the concept lattice as independent sublat-
tices, i.e., sublattices only connected to the bottom and top element in the lattice.

Name Concept Analysis by Canfora et al.
Reference Canfora et al. (1999a)

Domain File Usage View (see below)

Range Persistent Objects

Disjoint Clusters Yes
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The resulting concept lattice was simple enough to be inspected manually and to
find further persistent objects. 

Though a first step toward a combination of existing techniques, this approach is
still limited. Firstly, two of the ideas, namely, 1 and 3, are rather trivial. Secondly,
observing the second idea leaves many programming domain objects undetected.
Furthermore, the approach relies heavily on manual inspection of the lattice. This
may be possible at the level of programs and files. However, at the level of global
declarations, at which atomic components are detected, the lattices are much big-
ger. 

11.1.2.6   Summary of Concept Analysis
Godin et al. (1995) showed that the worst case space complexity of the concept

lattice is O(2k×|O|) for the finite upper bound k on the number of attributes for an
object in the formal context. Thus, the space complexity is basically linear. Our
own experiences with the resource usage graphs for the systems we investigated
indicate that k is small when we equate objects with entities and attributes with
relationships. But this is not so when negative attributes are considered. Negative
attributes are the complement of a relationship and since the plain relationship is
sparse, its complement has many members. This effect became already visible in
the discussion of the approach of Siff and Reps.

On the computational side, concept analysis has an exponential time complexity
in the worst case. Experiences for atomic component detection indicate that it
takes cubic time on average (Snelting, 1999).

Concept analysis has a sound mathematical background and the insight into the
relationships among system components that it can offer makes it an interesting
technique for atomic component detection. On the other hand, its demanding time
complexity jeopardize scalability of concept analysis for larger systems. Further-
more, it is still not clear whether the computational costs for concept analysis
really pay. Horizontally decomposable sublattices can also be identified by the
simple Global Reference heuristic at much lesser effort using a union-find algo-
rithm. The problem of concept analysis are the interferences in the concept lattice
 as for any other of the basic structural techniques. Moreover, Delta IC is very
similar to concept analysis. The set of closely related subprograms corresponds
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either to a single concept or  if not all subprograms in the set access all vari-
ables  to a set of concepts that are in a subconcept relationship. Delta IC toler-
ates interferences by means of the quotient of the numbers of closely-related-
subprograms and related-subprograms (see Section 5.7).

The overview and analysis of the diverse approaches using concept analysis in
this section has revealed that detecting atomic components by means of concept
analysis is a field of its own that still requires a lot of research. This field is too
wide to be explored in this thesis in concert with the other techniques. For this
reason, concept analysis was not investigated in this thesis further.

11.1.3    Dataflow-based and Domain-based Approaches
Only few techniques exist that leverage data flow information and there is only
one approach  to my knowledge  that is based on information about the
application domain. 

11.1.3.1   Valasareddi and Carver
Valasareddi and Carver identify objects in a variant of the program dependency
graph that describes control and data dependencies (1998). A node in the program
dependency graph represents a statement, an edge represents either a control or
data dependency. The dependency graph is restructured by merging nodes with
high cohesion. Within the resulting dependency graph, each node represents a
potential accessor function and the variables referenced by the node constitute an
object. 

The advantage of this approach is that it may identify components below the glo-
bal code level, i.e., at the level of statements within functions. However, because
no evaluation of this approach is given, one cannot judge whether meaningful
components can be identified at this lower level. Moreover, the authors do not
specify how they deal with nodes whose sets of referenced variables overlap. If
these sets overlap, overlapping candidates are proposed. 

11.1.3.2   Gall and Klösch
Gall and Klösch’s approach is based on data flow information as well as on
domain information. The approach starts at dataflow diagrams (domain informa-
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tion) and then follows part-type relationships among data store entities of the
dataflow diagrams and user-defined records and pursue data dependencies among
record components to identify objects with application semantics (1995). Any
found data store (file) is considered because information that is stored in a file
seems to be essential for the program; a user-defined record that (transitively)
depends upon data stores is considered because it is related to something already
considered application-related. The accessor functions of atomic components are
identified as subprograms that reference files and record variables selected. 

This approach is primarily aimed at abstract data objects that have application
semantics in order to recover an application-oriented object model. It falls short
of identifying components that rather belong to the programming domain, like
stacks and queues. Though these kinds of components are at a lower level, they
are necessary to understand the system as a whole and are often better suited for
reuse than application-related components. Moreover, it is not clear what the cov-
erage of this approach is: Are all and only application-related objects found? In
analogy to program slicing where slices often cover about 80% of the program, it
may be the case that more or less all record types are considered application-
related. Hence, the question arises whether the approach excludes programming-
domain components effectively. 

11.2    Semi-Automatic Methods

This section describes further semi-automatic approaches that integrate the user
in the detection process.

11.2.1    Müller et al. (Rigi)
Müller et al. point out that architecture recovery cannot be fully automated
(1993); thus, the role of the human software engineer constitutes a central and
integral part of architecture recovery and, consequently, tools for architecture
recovery should integrate the user. On the other hand, as much as possible should
be automated. Therefore, the tool supporting their approach, namely, Rigi allows
human intervention and offers automatic operations for subsystem detection, too.
The available operations for subsystem detection are removal of omnipresent
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entities as well as composing by interconnection strength, common client/suppli-
ers, centricity, and name. Furthermore, metrics can be used to assess the structure
of the subsystem decomposition and exact interfaces of subsystems can automati-
cally be derived. Moreover, because many analyses for architecture recovery are
system-dependent, Rigi offers a scripting language that allows a maintainer to
write his or her own clustering techniques.

Because the semi-automatic method proposed in this thesis uses Rigi for visual-
ization and user interaction, Müller’s and my approach have a great deal in com-
mon. However, my work focuses on atomic component recovery and, therefore,
offers a wider selection of atomic component recovery techniques, while Müller’s
work is also aimed at hierarchical subsystems. Moreover, the only way of com-
bining different techniques in the original Rigi is to apply the techniques succes-
sively, whereas the new Rigi supporting my semi-automatic method, namely,
extended Rigi, handles alternative results in parallel and offers deep set operators
and composition to combine these results.

11.2.2    Kazman and Carrière (Dali)
Another extension of Rigi is Dali, developed by Kazman and Carrière (1997).
Dali uses an SQL database to store information about systems to be reverse engi-
neered. As a consequence, SQL can be used to specify clustering patterns.
Kazman and Carrière distinguish two different levels of patterns: application-
independent patterns and application patterns. Application-independent patterns
are used to aggregate declarations according to the language semantics, like local
variables with their enclosing function or data and function members with their
class (another type of low-level application-independent patterns filters noise
introduced by insufficient tools for parsing and semantic analysis; these patterns
are not needed when a capable C++ frontend is available). The purpose of appli-
cation patterns is to group functions and classes to subsystems. These patterns
leverage naming conventions or are enumerations of related elements. 

The advantage of Dali is its support for SQL queries to specify clustering pat-
terns; patterns can be written in a declarative manner and in a language that is
widely used. The patterns can be viewed as a specification of the system structure
and be used to re-generate the visualization of the system when the system has
changed (in which case, the patterns have to be updated accordingly). Moreover,
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the patterns can be employed to group elements quickly instead of grouping them
manually. In the case of patterns that are mere enumerations, however, this advan-
tage is only limited. On the other hand, there is no analytic capability in Dali.
Hence, the patterns have to be written by someone already familiar with the sys-
tem and cannot be reused for other systems in many cases. Refinement of the
results of a pattern is difficult because the user cannot interact with the system by
direct manipulation since the refinement has to be done in the pattern. For the
same reason, combinations of results are difficult. In principle, combining opera-
tors like deep union and intersection could be written in SQL as well using tem-
porary tables and logical or and and operators, but the result (probably refined
during validation) would have to be expressed as an SQL query afterward to
obtain the advantages of a separate specification of the system structure as SQL
patterns.

11.2.3    Yeh et al. (ManSART)
The extended Rigi has also much in common with ManSART, a tool developed at
MITRE that supports architecture recovery (Yeh et al. 1997). ManSART visual-
izes different views of the system that are directly derived from source code, such
as task-spawning views, dataflow between procedures and data files, and abstract
data type views. In order to combine different views for presentation purposes,
several operators are offered to the user. The purpose of the operators is to con-
nect distinct views at different levels of abstractions (e.g., a task-spawning view
with the abstract data type view), whereas the extended Rigi offers operators to
find agreements and differences of component views or to unite two views where
all views are at the same level of abstraction. In order to establish correspondence
among concepts in different views when views are combined, a containment rela-
tion is used by ManSART that is based on source positions of statements imple-
menting the concepts. When the extended Rigi combines two views, it can
consider the base entities contained in components because the corresponding
components are at the same level of abstraction. 

11.2.4    Gall, Klösch, and Weidl
All approaches that have been presented in this section so far, including the one
underlying extended Rigi, are primarily bottom-up approaches. The search starts
at the level of declarations extracted from source code, which are then grouped
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together by automatic techniques and human judgement. Gall, Klösch, and Weidl
complement bottom-up clustering by a top-down approach (1998). They also use
bottom-up clustering heuristics as described in Section 11.1.3. However, they go
beyond a pure bottom-up process by using a domain model built by a human engi-
neer (e.g., using the unified model language UML). The domain model describes
the application concepts and their relationships. Part of the recovery process is to
bind the domain concepts to the components found by the bottom-up phase. In
order to establish this mapping, a similarity metric is used based on similarity of
names of domain concepts and source code identifiers and on similarity of types
(Weidl and Gall, 1998). Because it is not always possible to establish the mapping
using the similarity metric only, the user is integrated in the binding process.

The domain model may be used to make the recovery process more goal-directed
and may increase the chance to find components with application semantics. On
the other hand, other programming concepts may be missed that are also neces-
sary to understand the system or could be reused in another context. Moreover,
the explicit domain model and a mapping from domain concepts to components
in the source implementing these domain concepts is a valuable documentation.
The bottom-up approaches discussed above also use a domain model  but it
exists only in the head of the maintainer. However, building a domain model
needs additional effort and the necessary degree of detail of a useful domain
model is not known in advance.

11.2.5    Murphy, Notkin, and Sullivan (Software Reflexion Model)
Another top-down approach is the Software Reflexion Model by Murphy, Notkin,
and Sullivan (1995). The Software Reflexion Model is to capture and exploit the
differences that exist between the source code organization and the designer’s
mental model of the high-level system organization. An engineer defines a high-
level model of the structure of the system and specifies how the model maps to
the source. A tool then computes a software reflexion model that shows where the
engineer’s high-level model agrees with and where it differs from a model of the
source. The primary purpose of this technique is to streamline the amount of time
it takes for someone unfamiliar with the system to understand its source code
structure.
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11.3    Plan Recognition Techniques

A research area that would directly profit from atomic component detection is
plan recognition. A plan is a stereotypical coding pattern for algorithms or data
structures used to implement frequently used concepts, comparable to design pat-
terns at the design level. For example, a stack is often implemented by a stack
pointer and an array; push adds its argument to the array and increases the stack
pointer. Such known coding patterns can be used to identify the pieces of codes
that implement the concept. For example, van Deursen, Woods, and Quilici used
plans for leap year calculations in order to find code pieces that would incorrectly
handle the leap year 2000 (1997). There are many approaches to plan recognition
that can be distinguished by the intermediate form they work on (source code,
abstract syntax tree, lambda expression, control flow graph, or data flow graph),
the underlying recognition technique (textual pattern matching, tree matching,
graph parsing), and the classes of plans (control concepts, data structure con-
cepts)   (Wills, 1992; Harandi and Ning, 1990; Hartman, 1991; Quilici et al.
1997). A detailed classification of existing plan recognition techniques was com-
piled by Wills (1992).

The difference to atomic component detection is that plan recognition does not
only identify the pieces of a concept (functions, variables, types) but is also able
to assign a concept to these pieces. However, automatic plan recognition is com-
putationally demanding. Atomic component detection techniques can be used as
pre-analyses that identify the cohesive elements; then, plan recognition tech-
niques could investigate each single atomic component individually, which would
reduce the search space by an order of magnitude.

11.4    Connector Detection Techniques

Research for techniques to detect architectural connectors has mostly concen-
trated on connectors for parallel and distributed systems, such as spawning pro-
cesses, remote procedure calls, socket calls, and so forth. These kinds of
connectors can often be identified as a set of function calls of libraries imple-
menting synchronization and communication means for parallel and distributed
systems. Plan recognition techniques can be used to find these patterns. Harris et
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al. identify such function calls within the abstract syntax tree using tree pattern
matching (1995). Fiutem et al. additionally exploit data flow information in order
to establish communication channels between different parts of a system and pro-
pose a language to specify plans for connector detection (1996).

However, most systems are sequential and even parallel systems have a large
sequential part and would also profit from connector detection. Simple connec-
tors, like procedure calls, are trivially detected. Calls via function pointers need
points-to analyses. Actual data bindings via shared variables would also require
control and data flow analyses. Moreover, atomic components can often be con-
sidered connectors between different parts of the system; e.g., one parts fills a
queue and the other reads from the queue. I have no knowledge of any approach
that investigates the role of atomic components as connectors.
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Chapter 12 Conclusions

This chapter summarizes the contributions and conclusions of this thesis and pro-
poses further research directions.

12.1    Conclusions

Section 1.4 has stated the scientific questions addressed in this work. This section
briefly summarizes the answers to these questions given in previous chapters.

What published structural techniques exist and how can they be unified and 
classified? 

Chapter 5 described a taxonomy for structural techniques for atomic component
detection. The class of concept-based approaches was added to this taxonomy in
Section 11.1.2. The class of structural techniques comprises:

• Connection-based approaches cluster entities based on a specific set of direct
relationships (and their quality) between entities to be grouped.

All the connection-based approaches can be unified by using the same generic
algorithm for clustering based on a function Connected_Entities that yields the
elements that are to be grouped with an entity. The approaches differ only in
the exact specification of this function.

• Metric-based approaches cluster entities based on a metric using an iterative
clustering approach. The metric-based approaches are based on connections,
too, but they differ from connection-based approaches by the degree of free-
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dom that is offered by the metric parameters and the threshold that can be var-
ied to find atomic components with varying confidence.

• Graph-based approaches derive clusters from a graph by means of graph-the-
oretic analyses. The difference to connection-based approaches is that the
whole graph has to be considered whereas connection-based approaches regard
only direct relationships between entities in order to decide whether they
should be grouped.

• Concept-based approaches use concept analysis to compute a lattice of con-
cepts. They use heuristics to detect atomic components within this lattice. The
approaches differ in the objects and attributes considered and the way the con-
cept lattice is interpreted to retrieve components.

Beyond structure-based techniques, there are other automatic techniques based on
data flow information and domain information (Section 11.1.3). Semi-automatic
techniques integrate the user in the detection process. Most of the semi-automatic
techniques are bottom-up approaches that start at the global code level (Chapter 9,
Sections 11.2.1 and 11.2.2). Top-down approaches start at a high-level model of
the system and try to map the concepts in the high-level model to the source (Sec-
tions 11.2.4 and 11.2.5). Combined semi-automatic techniques tackle the problem
of component recovery from both sides. An overview of the taxonomy and the
respective techniques for atomic component detection is shown in Figure 12-1.
Techniques that are in more than one class of the taxonomy are marked by ➩.

What is the recall rate and precision in atomic component detection of pub-
lished techniques? 

In Chapter 6, an evaluation of the basic techniques was described in which the
results of the automatic techniques were compared to components found by soft-
ware engineers. The evaluation has revealed the following points:

• The effectiveness of a technique depends upon system characteristics, like
degree of information hiding, proper module decomposition, and layering.

• None of the investigated techniques has a sufficient recall rate. The best recall
rate we obtained was 75% of the abstract data objects. In the worst case, the
best technique reached only a recall rate of 34% (Similarity Clustering for
ADTs of Aero; Figure 7-22 on page 237).
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Figure 12-1. Taxonomy for atomic component detection techniques.

fully automatic

semi-automatic

dataflow-based

domain-based

bottom-up

combined (top-down/bottom-up)

concept-based

structural
connection-based

metric-based

graph-based

Same Module ✍ Girard, Koschke (1997a) ☞ Section 5.3
Global Object Reference ✍ Yeh et al. (1995) ☞ Section 5.2

Internal Access ✍ Yeh et al. (1995) ☞ Section 5.6

Part Type ✍ Liu, Wilde (1990) ☞ Section 5.4
Same Expression ✍ Koschke (unpublished) ☞ Section 5.5

Delta-IC ✍ Canfora et al. (1993, 1996) ☞ Section 5.7
Internal/External Connectivity ✍ Koschke (unpublished) ☞ Section 5.8

Type-based Cohesion ✍ Patel et al. (1991) ☞ Section 5.10

Dominance Analysis ✍ Cimitile, Visaggio (1995) ☞ Section 5.12

Arch ✍ Schwanke (1991) ☞ Section 5.9

Strongly Connected Components ✍ Cimitile, Visaggio (1995) ☞ Section 5.11

✍ Lindig, Snelting (1997) ☞ Section 11.1.2.2
✍ Siff, Reps (1997) ☞ Section 11.1.2.3
✍ Sahraoui et al. (1997) ☞ Section 11.1.2.4
✍ Canfora et al. (1999a) ☞ Section 11.1.2.5

✍ Müller et al. (1993) ☞ Section 11.2.1

Functional Cohesion ✍ Girard, Würthner (Eisenbarth, 1999) ☞Section 11.1.1.3

Data Bindings ✍ Belady, Evangelisti (1984) ☞ Section 11.1.2.2
Data Bindings ✍ Hutchens, Basili (1984) ☞ Section 11.1.2.2
➪ graph-based: Functional Cohesion ✍ Girard, Würthner

➪ metric-based: Delta-IC ✍ Canfora et al.

✍ Gall, Klösch (1995) ☞ Section 11.1.3.2

➩ dataflow-based: Gall, Klösch (1995)

✍ Valasareddi, Carver (1998) ☞ Section 11.1.3.1

✍ Kazman, Carrière (1997) ☞ Section 11.2.2

✍ Gall, Klösch, and Weidl (1998) ☞ Section 11.2.4

✍ authors
☞ described in
➩ see technique
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• Many candidates the techniques provide correspond only roughly to the refer-
ence components; i.e., elements of these atomic components were superfluous
or lacking.

• Combining the automatic approaches instead of using a single approach, one
would significantly improve the discovery of the reference components. 

• Yet, between 35 and 50 percent of the components still could not be completely
found even by uniting the results of the techniques. However, the components
may at least partially be matched.

• It turned out that 42% of the ADO candidates and 41% of the ADT candidates
classified as false positives in the evaluation could indeed be considered correct
positives after an analysis of the false positives for Aero, Bash, and CVS and a
selection of automatic techniques; they were either too small to be considered,
simply overlooked in the manual process, or represented alternative views. 

• We found common patterns of false positives in all systems that could be used
to filter out false positives from the set of candidates.

• Whereas the groups of software engineers needed about 20 - 35 hours to com-
pile the list of atomic components for each of our subject systems (except for
Mosaic, which was used in the experiment), each atomic component produced
by the techniques can be checked by software engineers within minutes. To
browse the whole list of false positives of all automatic techniques, we needed
less than 6 hours per system. The time needed for validation can even be
reduced by merging similar candidates of different techniques based on the par-
tial subset relationship because there were many similar false positives among
the candidates.

How can these techniques be improved individually? 

Chapter 5 proposed several smaller improvements for published techniques. One
of these techniques, namely, Schwanke’s Arch approach, was enhanced in so
many ways that it can be considered a new technique. The extended technique,
Similarity Clustering, is described in Chapter 7 in detail. The properties of Simi-
larity Clustering are summarized here:

• Similarity Clustering is the most general approach described in this thesis. All
connection-based techniques can be subsumed under it. It can detect all kinds
of atomic components. It goes beyond other approaches in that it also considers
relationships to common third entities and informal aspects.
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• Similarity Clustering can be used both to search for specific user-defined pat-
terns and search for similar patterns of already found atomic components. 

• The adjustable parameters of Similarity Clustering offer more flexibility. If
atomic components similar to those already found are to be searched for, the
parameters can automatically be calibrated on the known components using
traditional optimization techniques, such as Simulated Annealing or Gauß-
Seidel optimization. 

• Similarity Clustering is one of the most effective techniques as far as the recall
rate is concerned. On the other hand, it had also more false positives than other
approaches in the evaluation (except for Aero, which has more). However, this
is partly because the same threshold was used for all atomic components when
the candidates were retrieved from the tree of clustered entities generated by
Similarity Clustering. In an interactive application, the maintainer would begin
the validation at the leaves and move up the tree toward the root until a node is
reached for which the component membership is doubtful; i.e., thresholds indi-
vidual to components would be used.

• For all techniques other than Similarity Clustering, there is one single criterion
used for clustering. Hence, the reason why a technique has grouped entities
together is obvious. This is less obvious for Similarity Clustering when the
similarity metric considers several aspects at the same type, which may com-
plicate validation of candidates proposed by Similarity Clustering.

• Time and space complexity for Similarity Clustering is basically linear to the
number of entities considered when informal information is excluded (assum-
ing an upper constant limit of neighbors an entity can have). However, when
informal information is used, each entity has to be compared to any other entity

resulting in a time complexity of O(n2).

How can the techniques be combined?  

Chapter 8 described high-level operators like deep intersection, union, and com-
position offered to a maintainer in order to combine the results of the techniques
instead of combining the methods technically. This way, new techniques can be
added with very little effort and the maintainer has all flexibility to combine the
analyses. The specification of the combining operators was extended to hierarchi-
cal subsystems as a consequence to the wish of many participants of the experi-
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ment described in Chapter 10 to have a grouping mechanism beyond atomic
components in order to group related atomic components.

Another way of combining the techniques was presented as the voting approach
in which the agreement of each technique is polled, weighted, and summarized to
a total agreement whether a given cluster is a promising candidate. In order to add
a new technique to the voting approach, its underlying heuristic has only to be
expressed as a metric.

How can the user be integrated in atomic component detection? 

In Chapter 9, an incremental semi-automatic method was described that integrates
the user into atomic component detection. The analyses, selected by the user, are
used to propose candidates that are then validated by the user. The information
added by the maintainer is used by the techniques in the next iteration. In order to
realize this iterative process, the techniques had to be enhanced to work incre-
mentally. Chapter 9 gives also some advice in which order the analyses should be
applied.

Do automatic techniques support a maintainer in atomic component detec-
tion? 

Section 10.3 has presented a controlled experiment in order to find out whether
the automatic techniques are helpful within the semi-automatic method. The eval-
uation of the experiment could neither show a positive nor a negative effect on
atomic component detection. However, the following restrictions of the experi-
ment restrain us from generalizing the results too far:

• The system used for this experiment was well structured such that the experi-
mental subjects using automatic techniques had only little advantage.

• The extended Rigi used within the experiment did not offer all the functionality
proposed in this thesis. Many improvements were only inspired by the experi-
ment.

• The experimental subjects were all well trained students of computer science
and had grades above the average. Less talented programmers might profit
more from automatic analyses.
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Despite of these considerations, there are two fundamental realizations one has to
be conscious of: Firstly, the semi-automatic method can only be as good as the
underlying analyses and secondly, the effort of validating candidates is a constant
factor that cannot be eliminated. Consequently, a way to improve atomic compo-
nent detection with the semi-automatic method is to use more reliable and cover-
ing analyses. More reliable techniques are needed to reduce the number of
candidates to be validated; more coverage is needed to find as many components
as possible in order to avoid manual search. The prototype supporting the semi-
automatic method used structure-based techniques only and inherited their weak-
nesses that are described in Chapter 6 and Chapter 7. However, even with more
sophisticated automatic support, the effort for component recovery can only be
reduced to the constant factor of validation. Validation will always be necessary
because I doubt that we can ever find absolutely reliable techniques since the cri-
teria for cohesive components are vague to some degree and legacy systems
rarely employ information hiding.

However, if more reliable techniques are available, the semi-automatic method
and its realization in the extended Rigi is flexible enough to integrate these new
techniques quickly. The method as such and the way how user interaction is sup-
ported would not have to be changed.

Are the techniques and methods for atomic component detection discussed 
in this work also helpful for other typical maintenance tasks? 

In Section 10.4, a case study was described that was performed to investigate the
ability of the extended Rigi to support maintenance tasks other than those it was
originally designed for, namely, atomic component detection. The goal of this
case study was also to learn what other types of automatic analyses would be use-
ful for maintainers. At least two of the four tasks assigned to the participants in
this case study and dealing with global name binding are supported by the
extended Rigi or could easily be solved by simple enhancements. These analyses
could return the results within a minute where participants needed up-to two
hours. For the other tasks, at least Rigi’s cross-reference and browsing capabili-
ties were helpful. In order to find function clones or answer lifetime and protocol
questions, more rigorous analyses are needed.
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12.2    Future Research

This sections proposes future research directions based on the results of this the-
sis.

12.2.1    Data Flow Information
The evaluation of the automatic structural techniques has shown that their recall
rate does not compare to human detection and in the experiment for the semi-
automatic method, a positive effect of the structure-based techniques could not be
shown. This is partly due to system characteristics; if programmers obeyed to the
rules of information hiding, there are structural techniques, like Internal Access
for ADTs and Global Object Reference for ADOs, that would reliably identify all
atomic components. However, because programmers do break information hiding
principles very often in practice, distinct concepts in the source code are merged
to single candidates by the techniques. This is because structural techniques lever-
age only coarse information about the relationships among types, variables, and
subprograms. Control and data flow information might be an avenue to come to
finer-grained analyses with more reliability.

It was already mentioned that the assumption of Part Type that the part type is put
into or retrieved from the container type could be checked by data flow analysis.
Same Expression could be extended to group variables that are in the same pro-
gram slice (a program slice comprises all statements that contribute to the value
of a variable). Slicing techniques could also be used to check whether there are
independent slices in a subprogram with respect to different global variables; if
so, the subprogram likely performs multiple functions and should be excluded
from clustering and be presented to the user instead. Excluding subprograms with
multiple purposes avoids merging of candidates. Control flow analysis could
reveal control dependencies among variables, which could be used as another
grouping criterion.

On the other hand, data flow analysis is expensive both in terms of computational
costs and the costs to build an infrastructure for data flow analyses. The advan-
tage of structural approaches is that they are comparatively simple and fast.
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12.2.2    Domain Knowledge
Programmers understand programs not only in terms of programming semantics;
they also base their understanding on their knowledge about the domain. Actu-
ally, understanding a program involves to establish a mapping between the con-
cepts in the domain and the concepts found in the code. In the semi-automatic
method, domain knowledge comes into play by the user who selects appropriate
analyses and validates their results. The structural techniques, however, do not
use domain knowledge. On one hand, the analyses can therefore be used in differ-
ent contexts. On the other hand, domain knowledge may improve automatic com-
ponent recovery. A first approach by Gall et al. (1998) toward using domain
knowledge for component recovery was already discussed in Section 11.2. In
order to establish a mapping between domain model and recovered candidates,
Gall et al. propose a similarity metric based on name similarity and type similar-
ity. This approach still needs human intervention. Earlier approaches, like the one
of DeBaud and Rugaber, were purely manual (1995). More research is necessary
to explore further ways to establish the mapping. Meanwhile, at least some ele-
ments of a (partial) domain model would be helpful. For example, a domain
model defines the used vocabulary. A vocabulary would be useful in order to let
Similarity Clustering (which uses naming conventions) know that
Create_Account is more similar to Release_Account than to Create_List. More-
over, if the implementation characteristics for certain domain concepts are
known, plan recognition techniques could be used to find the concepts as imple-
mented in the source code. Hence, atomic component detection and plan recogni-
tion could complement each other.

Furthermore, only in rare cases, a domain model exists, for example, created as
part of a process toward a product line. If a domain model is only created for
atomic component detection, it is not per se clear whether the additional effort for
setting up the domain model really pays off. One may argue that domain models
have additional benefits beyond component recovery, like documentation or sup-
port for reuse. However, at least for documentation purposes, a domain model
may be too general since it describes a whole domain and not just the system at
hand. Further research should be devoted to evaluate the costs and benefits of
domain models, where the costs and benefits should not only be measured with
respect to component recovery but also to other aspects like the value added to
documentation and reuse.
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12.2.3    Research Directions Concerning the Method
The semi-automatic method could be further improved by allowing more interac-
tion. For example, the user should be able to annotate variables and record com-
ponents as public once the constituents of the atomic component have been
found; the automatic analyses would then exclude public entities from consider-
ation. Another example for more interaction is that, in the case of abstract data
type detection, the user should be able to pick a single data type for which the
accessor functions are to be detected, i.e., only one candidate is created at a time.
Currently, many candidates are created and consequently, distinct components are
merged to a single candidate when there is a subprogram that apparently belongs
to both components. Clustering only one abstract data type at a time would hence
avoid erroneously large components. However, this would not solve the problem
of merged components in abstract data object detection because ADOs mostly
comprise several variables and not just one type as it is the case for most abstract
data types. Alternatively, one could allow overlapping candidates instead of merg-
ing them (subprograms in more than one candidate should be highlighted then).

The experiment to evaluate the semi-automatic method should be repeated. The
experimental design and the statistical analysis described in Section 10.3 can be
reused. However, future experiments should take the structure of the system into
account. That is to say, instead of a single independent variable, one would use
two independent variables: tool-support and the shape of the system. Further-
more, more experimental subjects and preferably common programmers should
be involved.

12.2.4    Role Identification
The future research directions proposed above are aiming at atomic component
detection as such. Other research paths should take atomic component detection
as a starting point. These paths should aim at the semantics of atomic compo-
nents. While techniques for atomic component detection group related entities,
more knowledge is necessary to understand the purpose, or role, of the compo-
nents. Two levels of roles are associated with atomic components whose identifi-
cation would help in program understanding: 

• intra-component roles: roles of base entities within the atomic component

• inter-component roles: roles of atomic components within the system
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12.2.4.1   Intra-Component Roles
The constituting base entities of a component can be distinguished into public and
private elements. Public elements can be used by clients of the component,
whereas private elements are hidden within the component. The decision of
whether an entity should be considered private or public has to be made by the
maintainer. Automatic analyses may only identify the current state.

Accessor functions of an atomic component can further be classified as follows:

• constructor: creates a new (instance of the) component (hints: call to memory
allocation routines like malloc, setting record components with literals)

• destructor: releases an existing (instance of the) component (hints: call to
memory deallocation routines like free)

• selector: returns information about an existing (instance of the) component
without changing it (hints: the data of the component are not changed)

• modifier: changes the state of an existing (instance of the) component (hints:
the data of the component are changed)

This is no strict classification because in real-world programs there are often rou-
tines that fall into more than one category, for example, due to efficiency consid-
erations, a routine may act as modifier and selector. The categorization of a
routine into the above classes describes a part of the impact of a routine call (only
a part because a routine could also have side-effects) and is a useful information
to a maintainer. 

Further analyses using plan recognition techniques could reveal more detailed
characteristics of individual accessor functions. For example, Hartman has devel-
oped a technique to recognize so-called control concepts like “do-loop”, “read-
process loop”, “succeed-fail loop”, and “bounded linear search” (1991). Restrict-
ing recognition to control concepts allows for efficient detection. The characteris-
tics of accessor functions in terms of their underlying (control) concepts could be
used as indices in a framework that supports reuse. These characteristics can be
used to retrieve the accessor functions from the base of reusable components.
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12.2.4.2   Inter-Component Roles
Inter-component roles of atomic components describe their association to other
components and their purpose within the system. 

One major motivation for atomic component detection is migration of procedural
programs to object-oriented programs (Fanta, 1999). In order to leverage the
expressiveness of object-oriented languages and to simplify the system structure
by removing redundant code, inheritance relationships should be identified for
this kind of migration. Most legacy systems, however, are not designed based on
the object-oriented paradigm and, therefore, inheritance cannot be recognized. On
the other hand, in three of the five systems we have used to evaluate the automatic
techniques and the semi-automatic method, namely, Aero, Bash, and XCoral, we
have found atomic components that are actually so similar to each other that they
could be implemented as types of the same class. Inheritance relationships may
be identified via variant records (in C, as unions of structs), record types with
record components of similar names and/or types and similar accessor functions.
Here, several different reverse engineering techniques could be integrated: atomic
component detection to identify cohesive components, concept analysis for iden-
tifying similar types (where record component names and/or types would act as
attributes), and clone detection techniques to identify similar functions. 

Another kind of relationship useful for documentation of data models and explic-
itly represented in object-oriented modeling languages is aggregation. Actually,
aggregation is already present in the resource usage graph as the part-type rela-
tionship. Other associations may be identified as calls to accessor routines or ref-
erences to data of other components. These associations may be a starting point
for gathering more specific information about the role of associated components,
like:

• one component C1 is a wrapper to another component C2 if all accesses to C2

are via C1

• one component C is a data store if C contains some kind of buffer and there are
read and write accesses to C, but C does not access other components unless
they are themselves data stores
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• one component C is a connector between two components C1 and C2 if C is a

data store and C1 writes into C and C2 reads from C (in Belady and Evange-

listi’s terminology, <C1, C, C2> is a data binding via C)

The examples above represent simple design patterns (Gamma et al. 1994).
Future research could investigate to which degree more complicated design pat-
terns can be recognized. This would not only be useful for program understand-
ing but also for validation whether a design pattern has actually been
implemented correctly.

Recognition of most design patterns require control and data flow analyses, in
particular, when non-global objects as instances of abstract data types are investi-
gated that may pass through chains of function calls as actual parameters.

12.2.5    Protocols
The exact interface of an atomic component, C, can be identified as the declara-
tions of C used outside of C and the declarations C uses from its context (Müller,
1993). The former constitutes the actual syntactic interface. Though deriving the
actual syntactic interface provides interesting information, it falls short of a cli-
ent’s need for information on how to use the component. The interface of a com-
ponent is conjoined with a protocol that specifies the allowable order of actions
associated with the component. An action associated with a component is a call
of one of its accessor functions or a reference to its data. For example, a client has
to know whether it is necessary to call a constructor or a destructor and under
which circumstances a call to a modifier or selector is allowed.

Assuming the protocol of a component is observed, hints on its form can be
derived from the actual usage of the component within a given program. For
example, one attempt toward protocol recovery can be made by extracting the
actions associated with a component as regular path expressions from the pro-
gram (Tarjan, 1981) and presenting them as finite state machines to the user. The
user can then use the extracted order of actions in order to specify the protocol.
Extracting protocol information as actions visible outside of the component con-
siders the component a black-box. A complementary glass-box approach would
look inside of the component in order to identify pre- and post-conditions of indi-
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vidual accessor functions to get hints on the admissible order of actions. Both
black-box and glass-box approaches are necessary: Black-box approaches sup-
port protocol recovery only for actual, given usages of the component and there
may be more allowable usages. On the other hand, in many cases, the assumption
that a certain subprogram of the component has been called is (undocumented)
part of a precondition. Hence, the actual order of actions established by black-box
approaches would be of benefit to glass-box approaches.

12.2.6    Subsystem Detection
Related atomic components themselves may be grouped to lower-level sub-
systems and lower-level subsystems can be grouped to higher-level subsystems in
order to derive a hierarchical decomposition of the system as-built. In particular
for large systems, subsystems are an important grouping mechanism for under-
standing, maintenance, and management purposes. 

Atomic component detection is a starting point for subsystem detection. Tech-
niques similar to atomic components detection can be used to detect subsystems.
For, example Same Module could be extended to Same Directory, Similarity Clus-
tering could be used with a similarity metric based on atomic components instead
of base entities, Dominance Analysis can be used as described in Section 11.1; if
atomic components to be hidden are known, Internal Access could be extended,
and so forth. The main difference to atomic component detection is that a hierar-
chy of components is to be detected instead of a list of flat components.

Techniques for subsystem detection could easily be integrated into the extended
Rigi since the combining operators have already been defined for hierarchical
clusters.

12.2.7    Architectural Conformance
Recovering architectural information from source code is not only necessary for
system understanding. It is also necessary to validate architectural specifications
unless the code is automatically generated from the specification and the genera-
tion itself is reliable. A software architect may specify aspects like the structure of
the system (atomic components, subsystems, hidden parts etc.), protocols of com-
ponents, or configurations, e.g., as design patterns. In order to validate these spec-
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ifications, it is necessary to recover the architecture as-built and compare it to the
specification. Hence, three major aspects need to be addressed by research in
architectural conformance:

• Specification: 

- What is to be specified in software architecture?

- What are suitable methods, notations, and tools for specifying software archi-
tecture?

- What kind of analyses are supported by these methods and notations?

• Recovery:

- How can we retrieve architectural information that needs to be validated?

• Validation:

- How can the architecture as-built be checked for conformance to the specifi-
cation?

12.3    Final Remarks

This thesis has contributed to architecture recovery by evaluating, improving, and
combining automatic techniques for component recovery and integrating these
techniques in a general framework supporting an interactive and incremental pro-
cess. The information gathered by the methods and techniques described in this
thesis are helpful for program understanding, other reverse engineering and
reengineering techniques, as well as software validation. This thesis is a stepping
stone toward automatic support for architecture recovery. The need for automatic
support will increase as the size and complexity of systems as well as projects
increase. However, the summit is not yet reached. As this chapter has discussed,
there is still a lot of work to do in component recovery and architecture recovery
in general.

Pour soulever un poids si lourd,
Sisyphe, il faudrait ton courage!
Bien qu'on ait du coeur à l'ouvrage,
L'Art est long et le temps est court.

 Charles Baudelaire: Les fleurs du mal.
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Appendix A Entity-Relationship Model for 
Basic Structural Information

This chapter summarizes all entities and relationships introduced in the course of
this thesis. The entity type hierarchy is shown in Figure 1-1 (abstract types are
printed in italics); non-abstract entity types are explained in Table 1-1. The rela-
tionship type hierarchy is presented in Figure 1-2; the non-abstract relationships
are explicated in Table 1-2. Figure 1-3 is the entity-relationship model consisting
of the entities in Table 1-1 and their relationships in Table 1-2.            

Figure 1-1. Entity type hierarchy.

user-defined type

subprogram
variablearchitectural

quark constant
object

record component
record component specifier

record component instance
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subsystem

atomic component
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Table 1-1. Alphabetic list of non-abstract entity types.

Entity Meaning Section
atomic component named flat set of cohesive base entities 3.2.1

constant a global object whose value cannot be 
changed 

3.1.1

module a syntactic unit that is used to group base 
entities

3.3

record component 
instance

an actual record component of a record 
object that is associated with a memory 
location.

3.1.2

record component 
specifier

a record component within a type decla-
ration, which defines a part of the mem-
ory layout of all instances of this type.

3.1.2

subprogram a function or procedure of a program 3.1.1

subsystem hierarchical sets of related elements 
(architectural quarks, atomic compo-
nents, and other subsystems) 

3.2.2

user-defined type a type introduced by a programmer 3.1.1

variable a global object whose value can be 
changed

3.1.1
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Figure 1-2. Relationship type hierarchy.
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Table 1-2. Alphabetic list of non-abstract relationships.

Relationship Source S Target T Meaning Section
actual-parameter-
of

object subprogram S is an actual parameter in 
a call to T

3.1.1

call subprogram subprogram S calls T 3.1.1

comp-address-of subprogram record 
component

S takes the address of T. 3.1.2.2

comp-set subprogram record 
component

S sets the value of T. 3.1.2.2

comp-use subprogram record 
component

S uses the value of T. 3.1.2.2

delineate type type T is defined in terms of S 
as a synonym or as a new 
type

4.2.3.1

enclosing record 
component 
specifier

type S is enclosed by T 3.1.2.1

enclosing record 
component 
instance

object 

record compo-
nent instance

S is enclosed by T 3.1.2.1

local-obj-of-type subprogram user-defined 
type

S has a local variable of 
type T

3.1.1

mutually-
exclusive

arch. quark
component

arch. quark
component

S and T must not be in the 
same component and one 
must not be a part of the 
other one

8.2.1

obj-address-of subprogram object S takes the address of T. 3.1.2.2

obj-set subprogram global variable S sets the value of T. 3.1.2.2

obj-use subprogram object S uses the value of T. 3.1.2.2

of-type object user-defined 
type

S is of type T 3.1.1

parameter-of subprogram user-defined 
type

S has a formal parameter 
of T

3.1.1
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part-of arch. quark.

component

component S is part of T 3.2.1

part-type type type S is a part type of T 3.1.1

return subprogram user-defined 
type

S returns a value of T 3.1.1

same-expression object object S and T occur in the same 
expression

3.1.1

Figure 1-3. The entities and their relationships.

Table 1-2. Alphabetic list of non-abstract relationships.

Relationship Source S Target T Meaning Section

subprogram

user-defined 
type

object*

call
signature-type*

actual-parameter-of

reference

local-obj-of-type

of-type

part-type

same-expression

entity

cardinality
≤ 1 ≥  0

* abstract

global
variable

constant

record 
component*

rec. comp.
specifier

rec. comp.
instance

reference*

enclosing enclosing

is-a

is-a

*

architectural 
quark*

component*

atomic 
component

subsystem

is-amutually-exclusive

part-of

part-of
mutually-exclusive mutually-exclusive

module
part-of

is-a
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