
Korrektheit und deren Durchsetzung 
im Umfeld langdauernder Abläufe

Von der Fakultät für Informatik der Universität Stuttgart
zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von
Dipl.-Inform. Friedemann Schwenkreis

aus Stuttgart

Hauptberichter: Prof. Dr.- Ing. habil. Bernhard Mitschang
Mitberichter: Prof. Dr.- rer.nat. Frank Leymann
Betreuung Prof. Dr.- Ing. Andreas Reuter

Tag der mündlichen Prüfung: 18. Juni 2001

Institut für Parallele und Verteilte Höchstleistungsrechner
der Universität Stuttgart



Vorwort und Danksagung
Vorwort und Danksagung

Vorwort

Diese Arbeit ist während meiner fünf-jährigen Tätigkeit am Institut für Parallele
und Verteilte Höchstleistungsrechner (IPVR) der Universität Stuttgart entstanden.
Ein Kerngebiet mit dem sich diese Arbeit beschäftigt - dem Workflow-Manage-
ment - befand sich dabei noch in der Entstehungsphase. Trotzdem war bereits in
dieser Zeit die Relevanz der Workflowthematik allgemein anerkannt und vielfäl-
tige Aktivitäten sowohl im Forschungs- als auch im Produktbereich zu verzeich-
nen.
Obwohl sich mein Spezialgebiet nur mit einem kleinen Ausschnitt des Gebietes
beschäftigt, hatte ich die Möglichkeit mir einen weiteren Überblick zu verschaf-
fen, was teilweise auch in dieser Arbeit zum Ausdruck kommen soll. So hat sich
z.B. durch die aktive Teilnahme an Treffen der Workflow Management Coalition
(WfMC) und der Leitung des Projektes PoliFlow herausgestellt, daß es noch sehr
viele Probleme zu lösen gilt bevor durch Workflow-Management-Systeme die an-
gestrebten Verbesserungen tatsächlich zum Tragen kommen können.

Danksagung

Natürlich wäre diese Arbeit nicht ohne die Unterstützung einer Vielzahl von Per-
sonen zustande gekommen. Mein Dank gilt allen von ihnen, auch wenn ich an die-
ser Stelle nicht alle gesondert erwähnen kann.
Zunächst möchte ich meiner Lebensgefährtin besonderen Dank für ihre Geduld
und ihr Verständnis aussprechen, da sie direkt unter dem Aufwand für diese Ar-
beit zu leiden hatte. Ebenso wichtig ist es mir, meinen Eltern zu danken, welche
die Voraussetzung für diese Arbeit geschaffen haben.
Außerdem ist es mir ein besonderes Anliegen meinem “Doktorvater”, Herrn Pro-
fessor Andreas Reuter zu danken. Durch seine Beziehungen zu Wissenschaftlern
in aller Welt, war es mir möglich selbst Kontakte zu knüpfen, die diese Arbeit be-
fruchteten.
Desweiteren möchte ich allen meinen Kollegen am IPVR der Universität für die
angenehme Arbeitsumgebung und die vielen fachlichen Diskussionen danken.
Insbesondere sei hier Herr Dipl.-Inform. Kutschera erwähnt, der als mein Zim-
merkollege hiervon die Hauptlast zu tragen hatte.
Nicht zuletzt gilt mein Dank meinen Kollegen bei der IBM Deutschland Entwick-
lung GmbH. Ohne die angenehme Arbeitsatmosphäre, die maßgeblich durch
ii



Vorwort und Danksagung
Herrn Dr. Arning und Herrn Dr. Bollinger geschaffen wurde, wäre diese Arbeit
nicht zu einem Abschluß gekommen. 
Darüber hinaus richte ich meinen Dank in herzlichster Weise auch an die Berichter
dieser Dissertation, an Herrn Professor Mitschang und an Herrn Professor Ley-
mann. Ohne deren intensive Mithilfe hätte diese Arbeit nicht zum angestrebten Ab-
schluß kommen können.
iii



Inhaltsverzeichnis
Inhaltsverzeichnis

Inhaltsverzeichnis  iv

Abbildungsverzeichnis  viii

Tabellenverzeichnis  ix

Symbolverzeichnis  x

1 Einleitung  1
1.1 Motivation...................................................................................................... 1
1.2 Umfeld der Arbeit.......................................................................................... 2
1.3 Einordnung der Arbeit.................................................................................. 3
1.4 Überblick über die Arbeit ............................................................................. 3

2 Ein einleitendes Anwendungsbeispiel  5
2.1 Motivation...................................................................................................... 5
2.2 Der universitäre Urlaubsantrag ................................................................... 6

2.2.1 Überblick ................................................................................................6
2.2.2 Separation der Einzelaspekte ................................................................6

3 Transaktionale Ausführungsmodelle  12
3.1 Klassische DB-Transaktionen ................................................................... 12

3.1.1 Grundprobleme von DB-Transaktionen ...............................................13
3.1.2 Die ACID Eigenschaften ......................................................................13
3.1.3 Einsatzgebiete ......................................................................................14

3.2 Transaktionen und Verkettung.................................................................. 15
3.2.1 Mini-Batch und Warteschlangen ..........................................................16
3.2.2 Transaktionsketten ...............................................................................16

3.3 Geschachtelte Transaktionen.................................................................... 16
3.3.1 Geschlossen geschachtelte Transaktionen .........................................17
3.3.2 Einsatzgebiete geschlossen geschachtelter TA ...................................17
3.3.3 Offen geschachtelte Transaktionen .....................................................18

3.4 Mehrschicht-Transaktionen....................................................................... 19
3.5 Sagas ........................................................................................................... 19
3.6 ConTracts .................................................................................................... 21

3.6.1 Das Skript .............................................................................................21
3.6.2 Eigenschaften von ConTracts ..............................................................22

4 Formale Modelle konkurrierender Abläufe  25
4.1 Das read/write Modell................................................................................. 25

4.1.1 Operationen .........................................................................................26
iv



Inhaltsverzeichnis
4.1.2 Ausführungen und ihre Semantik ........................................................27
4.1.3 Persistente Zustände ...........................................................................28
4.1.4 Erweiterungen für geschachtelte Transaktionen .................................29

4.2 Mehrschicht-Transaktionen ......................................................................  31
4.2.1 Operationen .........................................................................................31
4.2.2 Ausführungen und ihre Semantik ........................................................32
4.2.3 Persistente Zustände ...........................................................................33

4.3 Abläufe nach Korth et. al. ..........................................................................  34
4.3.1 Operationen .........................................................................................34
4.3.2 Ausführungen und ihre Semantik ........................................................34

4.4 Abläufe in ConTracts .................................................................................  35
4.4.1 Grundelemente von ConTracts ............................................................36
4.4.2 Strukturelle Beschränkungen ...............................................................41
4.4.3 Interpretation einer ConTract-Instanz ..................................................44
4.4.4 Ausführungen und ihre Semantik ........................................................46
4.4.5 Ein Anwendungsbeispiel ......................................................................47

4.5 Weitere Notationen.....................................................................................  51
4.5.1 ECA-Regeln .........................................................................................51
4.5.2 ACTA ...................................................................................................52
4.5.3 Abhängigkeitsregeln nach Klein ..........................................................52

5 Korrektheit  54
5.1 Grundlagen .................................................................................................  54

5.1.1 Historien ...............................................................................................54
5.1.2 Kommutativität und Konflikte ...............................................................55
5.1.3 Isolation und Atomarität .......................................................................56
5.1.4 Anwendbarkeit .....................................................................................57

5.2 Klassische Korrektheitskriterien ..............................................................  57
5.2.1 Grundprobleme der ACID-Transaktionen ............................................58
5.2.2 Klassische Serialisierbarkeit ................................................................59
5.2.3 Recoverability und Spezialisierungen ..................................................62
5.2.4 Kombinierte Ansätze ............................................................................64
5.2.5 Kriterien für geschlossen geschachtelte Transaktionen ......................69

5.3 Korrektheit bei Mehrschichttransaktionen ..............................................  70
5.3.1 Historien von Mehrschichttransaktionen ..............................................70
5.3.2 Konfliktbegriff der Mehrschichttransaktionen .......................................71
5.3.3 Mehrschicht-Serialisierbarkeit ..............................................................71
5.3.4 Recovery bei Mehrschichttransaktionen ..............................................72

5.4 Korrektheit nach Korth et. al. ....................................................................  73
5.4.1 Historien nach Korth et. al. ..................................................................73
5.4.2 Prädikatabhängige Konflikte ................................................................73
5.4.3 Prädikatbezogene-Serialisierbarkeit ....................................................74
5.4.4 Recovery-Aspekte ...............................................................................76

5.5 Korrektheit in ConTracts ...........................................................................  76
5.5.1 Semantische Ununterbrechbarkeit von ConTracts ..............................77
5.5.2 Historien in ConTracts .........................................................................78
5.5.3 Konfliktbegriff von ConTracts ...............................................................81
5.5.4 Invariantenorientierte Serialisierbarkeit ...............................................84
5.5.5 Kaskadierende Kompensation .............................................................85
v



Inhaltsverzeichnis
5.6 Diskussion................................................................................................... 86

6 Kontrolle von Abläufen  90
6.1 Grundprobleme........................................................................................... 90

6.1.1 Statische versus dynamische Ansätze .................................................90
6.1.2 Durchsatz und Verklemmung ...............................................................91
6.1.3 Wartbarkeit ...........................................................................................93

6.2 Klassische Ansätze .................................................................................... 94
6.2.1 Pessimistische Verfahren .....................................................................94
6.2.2 Optimistische Verfahren .......................................................................96

6.3 Semantikbasierte Ansätze ......................................................................... 97
6.3.1 Frühzeitige Sperrfreigabe .....................................................................98
6.3.2 Wertunabhängige, prädikatbasierte Ansätze .......................................99
6.3.3 Field Calls ..........................................................................................100
6.3.4 Escrow Sperren ..................................................................................101
6.3.5 Prüfe und Revalidiere .........................................................................103

6.4 Der Ansatz in ConTracts .......................................................................... 103
6.4.1 Typen von Invariantenprädikaten .......................................................104
6.4.2 Umsetzung auf Objektebene ..............................................................105
6.4.3 Verwaltung der Invarianten ................................................................107
6.4.4 Konfliktbehandlung .............................................................................109
6.4.5 Gültigkeitsdauer von Invarianten ........................................................111

6.5 Vergleich der Mechanismen .................................................................... 112

7 Integrationsaspekte  114
7.1 Auswirkungen auf das Programmiermodell .......................................... 114

7.1.1 Grundprobleme ..................................................................................115
7.1.2 Step-Programmierung ........................................................................116
7.1.3 ConTract-Template-Programmierung ................................................118

7.2 Architekturaspekte ................................................................................... 119
7.2.1 Bisherige Architektur ..........................................................................119
7.2.2 Autonomie ..........................................................................................121
7.2.3 Fehlertoleranz ....................................................................................122
7.2.4 Verteilungsaspekte .............................................................................123

7.3 Erweiterbarkeit.......................................................................................... 126
7.3.1 Flexible Kompensation .......................................................................126
7.3.2 Dynamische Abläufe ..........................................................................127
7.3.3 Nicht-transaktionale Steps .................................................................128

8 Diskussion und Ausblick  130
8.1 Korrektheit und langlebige Abläufe ........................................................ 130

8.1.1 Korrektheit - warum? ..........................................................................130
8.1.2 Aufwand versus Nutzen .....................................................................131
8.1.3 Flexibilität versus einfache Verwendung ............................................132

8.2 Offene Probleme....................................................................................... 132
8.2.1 Modifikationen zur Laufzeit ................................................................132
8.2.2 Unterstützung der Programmierung ...................................................133
8.2.3 Der Kompensationsbegriff ..................................................................133
vi



Inhaltsverzeichnis
9 Literatur  134

Index  141
vii



viii

Abbildungsverzeichnis

Abbildungsverzeichnis

 Abbildung 2-1:Ein Kontrollfluß-Beispiel .................................................................................8
 Abbildung 2-2:Schnittstellendefinition für den Datenfluß .......................................................9
 Abbildung 3-1:Prinzip der SAGAs .........................................................................................20
 Abbildung 4-1:Zustandsdiagramm für Datenobjekte bei ACID-TA ......................................29
 Abbildung 4-2:Grafische Darstellung des Beispielausschnitts ...............................................50
 Abbildung 5-1:Teilmengenbeziehung der Kriterien ...............................................................65
 Abbildung 7-1:Architektur eines ConTract-verarbeitenden Systems ...................................121



Tabellenverzeichnis

ix

Tabellenverzeichnis

Tabelle 2-1: Aktivitäten und ihre Gegenaktivitäten ............................................................. 11
Tabelle 4-1: Operation im read/write Modell ...................................................................... 26
Tabelle 4-2: Erweiterte Operation im read/write Modell ..................................................... 29
Tabelle 4-3: Operationen von Multi-Level-Transaktionen .................................................. 32
Tabelle 4-4: Operationen nach dem Modell von Korth et al. .............................................. 34
Tabelle 4-5: Operationen für das ConTract Modell ............................................................. 45
Tabelle 4-6: Steps der ConTract-Instanz für das Beispiel ................................................... 47
Tabelle 4-7: Ereignisse der ConTract-Instanz für das Beispiel ........................................... 48
Tabelle 4-8: Transitionen der ConTract-Instanz für das Beispiel ........................................ 49
Tabelle 4-9: Operationen einer Interpretation ...................................................................... 51
Tabelle 5-1: Klassifikation von Korrektheitskriterien ......................................................... 87



Symbolverzeichnis
Symbolverzeichnis

at,a(t): Abort-Operation einer Transaktion t.
αs: Abort-Operation einer Sub-transaktion s.
ã: Step-Instanz eines Steps a.
bt: Begin-Operation einer Transaktion t.
βs: Begin-Operation einer Sub-Transaktion s.
C(o): ConTract-Bezeichner einer Operation o.
ct, c(t): Commit-Operation der Transaktion t.
χs: Commit-operation einer Sub-Transaktion s.
ςC: Kontext (Menge der Kontextvariablen) eines ConTract C.
EC: Menge der Ereignisse einnes ConTract C.
Ei: Menge der internen Ereignisse.
Ee: Menge der externen Ereignisse.
ε(t,p): Establish-Operation eines Prädikates p innerhalb der Transaktion t.
fC: End-Of-ConTract-Operation eines ConTract C.
γ(t,p): Check-Operation für ein Prädikat p innerhalb der Transaktion t.
H: Historie.
I(t): Interpretation einer Transaktion t.
IC: Menge der Eingangsinvarianten eines ConTract C.
kC: Kompensationsanforderung für einen ConTract C.
KC: Menge der Kompensationsblöcke eines ConTract C.
OC: Menge der Ausgangsinvarianten eines ConTrcat C.
PC: Menge der Ablaufprädikate eines ConTract C.
Π(s): Menge von Parametern eines Steps s.
R(s): Menge der Resultate eines Steps s.
SC: Menge der Steps eines ConTract C.
Sa: Menge der Anwendungsorientierten Steps.
Sv: Menge der verwaltungsorientierten Steps.
Σ: Menge von Operationen einer Historie.
x



Symbolverzeichnis
T(o): Top-level Transaktionsbezeichner einer Operation o.
t(o): Transaktionsbezeichner einer Operation o.
TC: Menge der Transitionen eines ConTract C.
τ: Transaktionaler Block.
xi



Einleitung
Motivation1
1 Einleitung

1.1 Motivation

Die Automatisierung von Geschäftsprozessen, die einen Teilbereich der langlebi-
gen Vorgänge darstellen, stellt in den letzten Jahren ein wichtiges Teilgebiet der
Informationstechnik dar. Inzwischen werden dabei alle Aspekte, die bei der auto-
matischen Abwicklung der Vorgänge zu berücksichtigen sind unter dem Begriff
des Workflow Management zusammengefaßt.
Es sind vielfältige Anstrengungen sowohl in der Forschung als auch in der Pro-
duktentwicklung zu verzeichnen, die sich mit dem Workflow Management be-
schäftigen. Kennzeichnend für die Klasse von Abläufen, die als Workflow be-
zeichnet werden, ist die relativ lange Verweildauer im System (im Vergleich zu
klassischen Datenbanktransaktionen) und die im allgemeinen verteilte Ausfüh-
rung. Vergleichbar ist die Problemstellung mit einem Gebiet des Software-Engi-
neering. Es beschäftigt sich mit den Unterschieden der Programmierung großer im
Vergleich zu der Programmierung relativ kleiner Softwareprojekten: pro-
gramming in the large versus programming in the small. Analog wird die Unter-
scheidung zwischen kurzen, einfachen Ausführungseinheiten und längeren, kom-
plexen Abläufen häufig auf einen Begriff gebracht: programming in the short
versus programming in the long.
In der Informatik-Forschung werden sowohl im Bereich des Software-Enginee-
ring als auch im Bereich der Transaktionsverarbeitung Anstrengungen unternom-
men, Lösungen für die Probleme des Workflow-Management zu entwickeln. Da-
bei waren die Ausgangspunkte völlig unterschiedlich und die Arbeiten fast
unabhängig voneinander. Der Grund hierfür bestand darin, daß die Ansätze aus
dem Bereich des Software-Engineering sich darauf konzentrierten Beschrei-
bungsmechanismen für die Abläufe zu entwickeln, um dadurch die Ablaufstruktur
großer Softwareprojekte beschreiben und automatisieren zu können. Im Gegen-
satz dazu, konzentrierten sich die Anstrengungen aus dem Bereich der Transakti-
onsverarbeitung darauf, die transaktionalen Garantien der Datenbanktransaktio-
nen, auf langdauernde Abläufe zu übertragen.
Während sich die Forschungsarbeiten im Bereich der Transaktionsverarbeitung
hauptsächlich darauf fokusieren, das transaktionale Fehlerverhalten auf Work-
flows zu übertragen, konzentriert sich diese Arbeit auf die Probleme, die durch die
parallele Verarbeitung von Workflows entstehen. Bedenklicher als die wenigen
Arbeiten auf diesem Gebiet ist die Diskussion, die über Notwendigkeit der Bear-
beitung der Thematik geführt wird. Ausgelöst wurde die Diskussion durch die Un-
1



Einleitung
Umfeld der Arbeit 1
tersuchung realer (existierender) Vorgänge, an denen sich eindeutig zeigte, daß
z.B. konkurrierende Zugriffe im Realfall gar nicht vorkommen und die Untersu-
chung der Thematik somit rein akademischer Natur ist. Außer acht gelassen wurde
dabei jedoch die Tatsache, daß heutige Abläufe von der menschlichen Arbeitswei-
se geprägt sind, bzw. für diese entworfen wurden. Ein wichtiger Aspekt dabei ist,
daß die gleichzeitige Bearbeitung eines Objekts von mehreren Menschen nur dann
nicht chaotisch endet, wenn äußerst strenge Regularien eingeführt werden. Dabei
erzwingen die Regularien meistens die serielle Ausführung der Arbeiten. Dies hat
sich nicht nur in den tagtäglichen Vorgängen niedergeschlagen, sondern reicht so-
gar bis in die Gesetzgebung. So unterliegen z.B. Eintragungen in einem Grundbuch
zeitlichen Restriktionen, die eine überlappende Änderung bezüglich des gleichen
Objektes ausschließen.
Erstaunlicherweise werden diese Maßnahmen nicht als Synchronisationsmecha-
nismen erkannt sondern als ablaufinherent eingestuft. Mit der Einführung einer
elektronischen Unterstützung (z.B. durch elektronische Dokumente statt Papier)
zeigt sich allerdings sehr schnell, daß dies nicht der Fall ist. Sieht man etwas in die
Zukunft, ist leicht zu erkennen, daß die Beschränkungen nicht nur weitgehend un-
nötig sondern sogar nachteilig sind, da sie eine Parallelisierung der Vorgänge ver-
hindern und somit einer (zeitlichen) Optimierung im Wege stehen. Dies stellt bei-
spielsweise ein Problem dar, wenn ein sogenanntes Business Process
Reengineering (BPR) durchgeführt werden soll, welches feststellen soll, wie ein
Ablauf aufgebaut ist und gleichzeitig eine Optimierung desselben vornehmen soll.
Isoliert man dagegen die synchronistationsbezogenen Teile von den Teilen des Ab-
laufs, die zur Zielerreichung notwendig sind und beschränkt die Synchronisation
auf das Notwendigste (was von den eingesetzten Technologien und den Korrekt-
heitskriterien abhängt), so ist man in der Lage das volle Optimierungspotential aus-
zuschöpfen und die Vorgangsbearbeitung je nach Technologieentwicklung anzu-
passen, ohne die eigentlichen Abläufe ändern zu müssen.

1.2 Umfeld der Arbeit

Die Untersuchung der Probleme im Bereich der zuverlässigen Abwicklung langle-
biger Vorgänge ist bereits seit Ende der 80er Jahre ein Themenschwerpunkt der
Abteilung Anwendersoftware des Instituts für Parallele und Verteilte Höchstlei-
stungsrechner (IPVR) der Universität Stuttgart. In diesem Zusammenhang wurde
das sogenannte ConTract-Modell entwickelt, welches die robuste Abwicklung von
Abläufen unter transaktionalen Garantien zum Gegenstand hat. Ansatzweise ent-
hält das Modell bereits Synchronistationsmechanismen, die es gestatten, eine ab-
laufübergreifende Kontrolle von konkurrierenden Zugriffen durchzuführen. 
Die vorliegendende Arbeit konzentriert sich auf die Verfeinerung und Erweiterung
2



Einleitung
Einordnung der Arbeit1
dieses Ansatzes, wobei die Konzepte jedoch auch auf andere vorgangsunterstüt-
zende Systeme übertragbar sind. Da während der Entstehung dieser Arbeit die
Prototypentwicklung für ein ConTract-verarbeitendes System (APRICOTS) wei-
ter voran getrieben wurde, konnte anhand von (gleichwohl akademischen) Bei-
spielen gezeigt werden, welche Vorteile eine korrektheitserhaltende Synchronisa-
tion für eine Anwendung hat.

1.3 Einordnung der Arbeit

Die Grundlage für den hier verfolgten Ansatz bilden die aus dem Bereich der
Transaktionsverarbeitung stammenden Ansätze und Verfahren zur sogenannten
Concurrency Control. Da der deutsche Begriff der Synchronisation vielfach auch
die zeitliche Abstimmung unabhängiger Abläufe bezeichnet, wird im folgenden
der englische Begriff der Concurrency Control verwendet, wenn es gilt, den hier
präsentierten Ansatz einzuordnen.
Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung eines Korrektheitsmo-
dells und der Entwicklung von Verfahren zur Sicherstellung der Korrektheit im
Umfeld langlebiger Abläufe. Darüber hinaus wird eine Architektur vorgestellt
werden, die es erlaubt, die vorgestellten Mechanismen in eine Systemplattform zu
integrieren, die eine zuverlässige Abwicklung entsprechender Anwendungen un-
terstützt.
Obwohl Leistungsmaße wie Durchsatz und Antwortzeit bei jedem klassischen
Verfahren zur Concurrency Control in Datenbanken zur Beurteilung herangezo-
gen werden, wird in dieser Arbeit auf dieses Kriterium verzichtet. Der Grund hier-
für ist das bereits erwähnte Problem, daß die gelichzeitige Bearbeitung von Ob-
jekten durch mehrere Abläufe bisher in den betrachteten Anwendungen nahzu
fehlt, bzw. auf Grund fehlender Systemunterstützung nicht möglich ist und somit
keine hinreichende Vergleichsbasis zur Verfügung steht. Selbst ein Vergleich mit
dem rein seriellen Vorgehen würde nur einen unbefriedigenden Teil bewerten, da
manche Arbeitsformen erst durch die hier vorgestellten Mechanismen möglich
werden.

1.4 Überblick über die Arbeit

In Kapitel 2 wird ein Beispiel eingeführt, an dem im weiteren Verlauf dieser Ar-
beit die Kernprobleme des Workflow und die Anwendung der hier vorgestellten
Mechanismen veranschaulicht werden. Zum einen soll dabei die systematische
Erfassung von Abläufen durch Methoden des Workflow-Management gezeigt
werden, und zum anderen wird deutlich gemacht, wie die Trennung von ablauf-
und anwendungsbezogener Information erfolgen kann.
3



Einleitung
Überblick über die Arbeit 1
Kapitel 3 liefert einen Überblick über Ablaufmodelle im transaktionalen Umfeld.
Es wird gezeigt, welche Zusicherungen bezüglich der Semantik von Abläufen
durch die Verwendung dieser Modelle gegeben werden und für welche Anwendun-
gen sie sich eignen. 
Auf der Basis der eingeführten Modelle werden in Kapitel 4 formale Notationen
für dynamische Abläufe eingeführt, da diese die Basis für die Definition von Kor-
rektheitskriterien bilden. Insbesondere wird eine formale Notation zur Definition
von Abläufen des ConTract-Modells detailliert vorgestellt werden. 
Mit dem Thema “Korrektheit” stellt Kapitel 5 mit den Kern dieser Arbeit dar. Nach
der Einführung klassischer Korrektheitskriterien und der Diskussion von Ansätzen,
die über das klassische Transaktionsmodell hinaus gehen, wird ein Korrektheitskri-
terium für das ConTract-Modell entwickelt. Anschließend werden die Unterschie-
de zwischen den verschiedenen Ansätzen herausgearbeitet.
Kapitel 6 diskutiert Methoden, welche dazu entworfen wurden, um in Laufzeitsy-
stemen die Verletzung von Korrektheitskriterien zu verhindern. Hierbei werden zu-
nächst die Grundprobleme bei der Umsetzung von Korrektheitskriterien vorge-
stellt, bevor konkrete Ansätze im Bereich der sogenannten
Synchronisierungsmethoden (engl. Concurrency Control) betrachtet werden. Wie
in Kapitel 5 wird der Ansatz des ConTract-Modells eingehend besprochen und in
einem abschließenden Abschnitt mit den anderen Ansätzen verglichen.
Kapitel 7 beschreibt die Umsetzung der in der Arbeit entwickelten Ansätze im Hin-
blick auf die Einbettung in das bestehende ConTract-Modell, als auch bezüglich
der Realisierung in einer prototypischen Implementierung. Insbesondere wird
deutlich werden, welche Erweiterungen an der Architektur der prototypischen Im-
plementierung vorgenommen werden müssen und welche Auswirkungen durch die
Einführung eines Korrektheitskriteriums und entsprechender Durchsetzungsme-
chanismen entstehen.
Abgeschlossen wird die Arbeit mit Kapitel 8, welches zunächst eine Zusammen-
fassung der Arbeit und eine kurze Diskussion der vorgestellten Mechanismen vor-
nimmt. Dabei soll aus heutiger Sicht dargestellt werden, welche Probleme noch of-
fen bzw. Gegenstand laufender Forschungsarbeiten sind.
4



Ein einleitendes Anwendungsbeispiel
Motivation2
2 Ein einleitendes Anwendungsbeispiel

2.1 Motivation

Trotz der vielfältigen Einsatzgebiete von Workflowsystemen finden sich in der
(wissenschaftlichen) Literatur fast nur Trivialbeispiele, die kaum dazu geeignet
erscheinen, die komplexen Anforderungen der Anwendungsbereiche zu repräsen-
tieren. Aus diesem Grund soll in diesem Kapitel zunächst ein detailliertes Beispiel
eingeführt werden, um so zum einen den Bedarf für die hier vorgestellten Verfah-
ren zu motivieren und andererseits die Anwendbarkeit der Ansätze demonstrieren
zu können.
Das für diese Arbeit gewählte Beispiel des universitären Urlaubsantrages ist eben-
falls nicht sonderlich komplex, wenn man es mit anderen Vorgängen wie zum
Beispiel einem Kreditantrag vergleicht. Trotzdem erfüllt es aus Sicht dieser Arbeit
alle notwendigen Kriterien, um zum einen die Probleme zu verdeutlichen, als auch
die Anwendbarkeit der in dieser Arbeit entwickelten Verfahren zu demonstrieren.
Zunächst ist hier die genaue Kenntnis über den Vorgang selbst ein wichtiges Aus-
wahlkriterium1. Erst durch die Kenntnis der Details eines Vorgangs ist die Erfas-
sung desselben mit Methoden des Workflow Managements möglich. Darüber hin-
aus sind die Abwicklung von Urlaubsanträgen und Reisekostenabrechnungen
durchaus übliche Anwendungen für die Einführung von Workflowsystemen.
An dem Beispiel wird außerdem deutlich, daß die parallele Abwicklung von Vor-
gängen ein Problem der Realwelt darstellt, da mehrere Mitarbeiter und Mitarbei-
terinnen völlig unabhängig voneinander und gleichzeitig Urlaubsanträge stellen
können. Zusätzlich ist es möglich, daß ein Mitarbeiter mehrere Anträge gleichzei-
tig stellt, was ebenso in den Bereich der Parallelverarbeitung fällt.
Da die Umsetzung der hier vorgestellten Verfahren in einer prototypischen Imple-
mentierung mit als Ziel verfolgt wurde, war sowohl die Implementierbarkeit des
Beispielablaufs als auch seine konkrete Unterstützung durch das prototypische
System ein weiteres wichtiges Auswahlkriterium.
Nicht zuletzt erfolgte die Auswahl des Beispiels auf Grund der relativ einfachen
Darstellbarkeit und Verständlichkeit des Vorgangs. Erst hierdurch kann das Bei-
spiel zur Erläuterung der Verfahren herangezogen werden.

1. Der Verfasser glaubt, diese Kenntnis zu besitzen.
5



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag 2
2.2 Der universitäre Urlaubsantrag

2.2.1 Überblick
Oberflächlich betrachtet stellt ein Urlaubsantrag einen nahezu trivialen Vorgang
dar, der mit ein paar Sätzen beschrieben werden kann:

1. Ein Mitarbeiter oder eine Mitarbeiterin füllt einen Urlaubsantrag aus.

2. Ein Stellvertreter unterschreibt (optional).

3. Der Abteilungsleiter genehmigt den Antrag per Unterschrift oder lehnt ihn
ab.

4. Der Geschäftsführende Direktor zeichnet den Antrag ab.

5. Die Geschäftsleitung vermerkt die Anzahl der genommenen Urlaubstage in
der Urlaubskartei.

Wird allerdings versucht, diesen Vorgang rechnergestützt abzuwickeln, stellt sich
heraus, daß in dieser Beschreibung einige implizite Annahmen enthalten sind. Bei-
spielsweise nimmt ein Abteilungsleiter an, daß ein Mitarbeiter nur dann Urlaub be-
antragt, wenn derjenige noch Urlaubstage zur Verfügung hat. Eine Verletzung die-
ser Annahme wird erst dann entdeckt, wenn die Geschäftsleitung versucht, die
Urlaubskartei auf den neuesten Stand zu bringen.
Ein weiteres Problem der dargestellten Verfahrensweise stellt die Nichtbeachtung
von Ausnahmefällen dar. Beispielsweise wird nicht beschrieben was passieren soll,
wenn sich der Abteilungsleiter im Urlaub befindet. Außerdem endet die Beschrei-
bung des Vorgangs bereits mit der Übernahme der Daten in die Urlaubskartei unter
der Annahme, daß der Urlaub angetreten und vollständig durchgeführt wird. Tritt
allerdings der Ausnahmefall auf, daß der Urlaub z.B. wegen Krankheit nicht ange-
treten oder nur teilweise durchgeführt werden kann, spiegeln die Daten des ur-
sprünglichen Urlaubsantrages die tatsächlichen Gegebenheiten nicht wider. Somit
sind weitere Aktionen notwendig, um die Daten entsprechend zu korrigieren. Diese
Korrektur muß allerdings nicht Teil desselben Vorgangs sein.

2.2.2 Separation der Einzelaspekte
Wie bereits aus Abschnitt 2.2.1 deutlich wird, kann eine textuelle Beschreibung ei-
nes Vorgänge im Sinne eines Ablaufs sehr unübersichtlich werden. Dies rührt teil-
weise daher, daß sich Vorgänge durch eine textuelle Repräsentation nicht sehr
kompakt darstellen lassen. Andererseits liegt ein Grund dafür in der zusammenfas-
senden Beschreibung aller Aspekte eines Vorganges. 
6



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag2
Wie in [Jab95] dargestellt, läßt sich die Beschreibung eines Vorganges in ver-
schiedene orthogonale Aspekte aufteilen. Neben der mehr anschaulichen Darstel-
lung eines Vorgangs hat diese Aufteilung den weiteren Vorteil, daß man sich bei
der Beschreibung auf einen bestimmten Aspekt konzentrieren kann und somit we-
niger die Gefahr eingeht Informationen nicht zu erfassen.
Da die Einführung des Beispiels nur für die Motivation und Erläuterung der in die-
ser Arbeit vorgestellten Verfahren dienen soll, werden nicht alle Aspekte detail-
liert dargestellt werden, die von Jablonski beschrieben wurden.

2.2.2.1 Funktionaler Aspekt
Unter den funktionalen Aspekten eines Vorgangs versteht man die Zerlegung des
Gesamtvorganges in Teile, die für die gewünschte Funktionalität notwendig sind.
In unserem Beispiel kann der Vorgang “Urlaubsantrag” in folgende funktionalen
Teile zerlegt werden (es werden bereits alle Teile erfaßt, die für eine Automatisie-
rung notwendig sind):

1. Dokumentenbereitstellung

2. Antragstellung

3. Vertretungszusage

4. Genehmigung

5. Überprüfung der Zulässigkeit

6. Änderung der Urlaubskartei

7. Rückmeldung durch Beantragenden

8. Änderungserfassung

9. Benachrichtigung

In dieser Zerlegung werden weder die Reihenfolge der Ausführung noch die Aus-
führungsinstanz festgelegt. 

2.2.2.2 Verhaltensbezogener Aspekt
Die verhaltensbezogenen Aspekte berücksichtigen die Ablaufstruktur eines Vor-
ganges (Kontrollfluß). Damit sind im allgemeinen Vorgänger/Nachfolger-Bezie-
hungen sowie Verzweigungen gemeint. Üblicherweise wird der Kontrollfluß ent-
weder in einer textuellen Notation mit Hilfe einer Programmiersprache oder in
einer graphischen Form festgelegt. An dieser Stelle soll diese Festlegung mit Hilfe
einer Programmiersprache erfolgen. Allerdings ergeben sich daraus auch Proble-
7



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag 2
me. So wird z.B. durch die zeilenorientierte Schreibweise automatisch impliziert,
daß die einzelnen Zeilen sequentiell abzuarbeiten sind. Ist es dagegen möglich,
Teile parallel auszuführen, muß dies explizit angegeben werden (z.B. durch das
Schlüsselwort parallel). Umgekehrt muß in einem parallel ausführbaren Teil die se-
quentielle Bearbeitung ausdrücklich festgelegt werden (z.B. durch ein Schlüssel-
wort sequentiell). Da an dieser Stelle nur das Verständnis des Beispiels im Vorder-
grund steht, wird hier keine Sprachdefinition eingeführt. Hierfür sei auf die
Definitionen in [ZiCh91], [Wäch96] und [Jab95] verwiesen.

Wie aus dem Code-Stück in Abbildung 2-1 ersichtlich ist, kann ein Kontrollfluß
mit bedingten Verzweigungen nicht ohne zusätzliches Wissen über einen anderen
Bereich definiert werden, nämlich den informations- oder datenbezogenen Aspekt
(s. Abschnitt 2.2.2.3). Da bedingte Verzweigungen im allgemeinen auf Prädikaten
basieren, die wiederum über Variablen definiert werden, ist der Bezug auf Daten,
die während der Ausführung erzeugt bzw. bekannt werden, notwendig.

2.2.2.3 Informationsbezogener Aspekt
Als informationsbezogenen Aspekt oder Datenfluß bezeichnet man diejenigen Tei-
le einer Workflow-Definition, die festlegen, wie Daten in den Vorgang einfließen
bzw. von einer Aktivität zur nächsten weitergeleitet werden. Grundsätzlich lassen
sich dabei workflow-relevante und workflow-fremde Daten [WFM94] unterschei-
den. Der Begriff workflow-relevant bezeichnet Daten, die einen direkten Einfluß

Beginn
Dokumentenbereitstellung
Antragstellung
Überprüfung der Zulässigkeit
Wenn nicht zulässig

Benachrichtigung über Unzulässigkeit
sonst

Vertretungszusage einholen
Genehmigung einholen
Wenn nicht genehmigt

Benachrichtigung über Ablehnung
sonst

Genehmigung einholen
Wenn nicht genehmigt

Benachrichtigung über Ablehnung
sonst

Änderung der Urlaubskartei
Benachrichtigung über Genehmigung

Ende

 Abbildung 2-1: Ein Kontrollfluß-Beispiel
8



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag2
auf den Kontrollfluß haben. Workflow-fremde Daten haben im Gegensatz dazu
keinen direkten Einfluß auf den Kontrollfluß.
Ein Beispiel für ein workflow-relevantes Datum, ist eine Änderungsanzeige wel-
che in einem Verzweigungs-Prädikat auftritt. In diesem Fall haben Daten einer
Aktivität direkten Einfluß auf den Kontrollfluß und sind somit relevant für den
Ablauf. Daten, welche nur von einer Aktivität zu einer anderen weiter geleitet
werden sind demgegenüber workflow-fremd (wie z.B. der Antrag in unserem Bei-
spiel).
Wie sich im weiteren Verlauf dieser Arbeit noch herausstellen wird, ist es notwen-
dig, workflow-fremde Daten noch weiter zu unterscheiden. Das Unterscheidungs-
kriterium ist dabei, ob das Workflowsystem die vollständige Kontrolle über die
Daten besitzt (lokale Daten) oder nicht (globale Daten). In unserem Beispiel sind
die Daten in der Urlaubskartei nicht unter vollständiger Kontrolle des Ablaufs,
während der Urlaubsantrag dieser Bedingung genügt.
Da die eigentliche Spezifikation des Datenflusses hier nicht weiter von Interesse
ist, wird nur ein kurzes Beispiel gegeben, wie dieser festgelegt werden könnte. Die
Notation lehnt sich an die in [Wäch96] gebrauchte an.

Abbildung 2-2 zeigt, wie Daten, die von einer Aktivität bereit gestellt werden, ei-
ner anderen Aktivität als Eingabeparameter zugeordnet werden. Hierbei wird eine
Stufe der Indirektion eingeführt, um von den Schnittstellenparametern der einzel-
nen Aktivitäten zu abstrahieren:

➪ Die Aktivität Dokumentenbereitstellung hat einen Ausgabepara-
meter vom Typ File. Dieser ist mit Neuer_Antrag bezeichnet und wird
einer abstrakten Variablen Antragsdokument des Vorgangs zugeordnet.

➪ Die Aktivität Antragstellung hat einen Ein-/Ausgabe-Parameter der
ebenfalls vom Typ File ist. Ihm wird ebenfalls die abstrakte Variable An-

Aktivität: Dokumentenbereitstellung(
Parameterart: OUT 
Parametertyp: File
Parameter: Neuer_Antrag:
Abstrakte Variable: Antragsdokument)

Aktivität: Antragsstellung(
Parameterart: INOUT
Parametertyp: File
Parameter: Antrag: 
Abstrakte Variable: Antragsdokument)

 Abbildung 2-2: Schnittstellendefinition für den Datenfluß
9



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag 2
tragsdokument zugeordnet, um so die Daten der ersten Aktivität zu die-
ser Aktivität übertragen zu können.

2.2.2.4 Der transaktionale Aspekt
Die transaktionale Aspekte eines Ablaufs lassen sich in drei Bereiche unterteilen:

1. Beschreibung der Isolationsbedürfnisse

2. Beschreibung des Verhaltens im Fehlerfall1

3. Beschreibung des Rücksetzverhaltens

Die Beschreibung der Isolationsbedürfnisse legt fest, wann und wie Datenobjekte,
die von dem Ablauf geändert oder gelesen wurden, für andere Abläufe verfügbar
sind. Im Falle einer Datenbanktransaktion ist beispielsweise ein geändertes Daten-
objekt erst nach Abschluß einer Transaktion für andere Transaktionen zugänglich.
Das Verhalten im Fehlerfall wird im allgemeinen durch zwei Mechanismen be-
schrieben. Zum einen wird festgelegt, welche Zustände des Ablaufs (im Sinne des
Fortschritts im Kontrollfluß) als konsistent angesehen werden. Zum anderen wer-
den Erweiterungen des Kontrollflusses zur Behandlung von Fehlern vorgenom-
men. Somit muß im Fehlerfall zunächst auf den zuletzt erreichten konsistenten Zu-
stand zurückgesetzt und danach die Fehlerbehandlung eingeleitet werden. Dies
entspricht dem Verhalten von Datenbanksystemen nach einem System-Crash, wo-
bei in einer Redo-Phase zunächst ein konsistenter Zustand hergestellt wird und an-
schließend in einer Undo-Phase nicht abgeschlossene Transaktionen zurückgesetzt
werden.
Die Beschreibung des Rücksetzverhaltens legt fest, wie im Kontrollfluß auf einen
früheren Zustand “zurückgesetzt” werden kann. Dabei ist der Begriff des Zurück-
setzens sehr allgemein zu verstehen. Er soll nur bedeuten, daß aus Sicht des Kon-
trollflusses auf einen Punkt zurück gegangen wird, der vor dem aktuell erreichten
liegt (im Sinne der Partialordnung der Einzelschritte des Kontrollflusses). Bei ei-
nem linearen Kontrollfluß bedeutet dies, daß auf einen vormalig erreichten Punkt
bzw. Verarbeitungszustand zurückgesetzt wird. Liegt allerdings ein verzweigter
Kontrollfluß vor, muß dies nicht unbedingt der Fall sein.
Üblicherweise werden zwei Mechanismen für das Zurücksetzen verwendet. Ein
Mechanismus ist das atomare Zurücksetzen oder “Undo”. Das atomare Zurückset-
zen eliminiert alle relevanten Effekte einer Ausführung und kommt bei Daten-
banktransaktionen zum Einsatz.

1. Unter dem Begriff Fehlerfall ist hier das Fehlschlagen eines Schrittes im Kontrollfluß zu verstehen.
10



Ein einleitendes Anwendungsbeispiel
Der universitäre Urlaubsantrag2
Die Verallgemeinerung des atomaren Zurücksetzens ist die sogenannte Kompen-
sation. Bei der Kompensation wird festgelegt, welche Aktionen auszuführen sind,
um auf einen früheren Zustand im Kontrollfluß zurückzusetzen. Dies stellt im all-
gemeinen die Definition eines (Teil-)Kontrollflusses dar, der sich nur dadurch
vom “normalen” Kontrollfluß unterscheidet, daß er als Kompensation deklariert
wird.
Betrachtet man nun die transaktionalen Aspekte bezüglich des eingeführten Bei-
spiels, könnte man fordern, daß die einzelnen Schritte als Datenbanktransaktionen
auszuführen sind. Ist allerdings eine Aktion bereits erfolgreich abgeschlossen, so
soll eine Gegenaktion (Kompensation) ausgeführt werden, wenn auf einen frühe-
ren Zustand zurückgesetzt werden soll (beispielsweise bei einer Stornierung). Ta-
belle 2-1 gibt einen Überblick über entsprechende Gegenaktionen.

Aktivität Gegenaktivität

Dokumente bereitstellen leer

Antragstellung leer

Überprüfung der Zulässigkeit leer

Vertretungszusage einholen Benachrichtigung über Stornierung

Genehmigung einholen Benachrichtigung über Stornierung

Benachrichtigung (positiv) Benachrichtigung über Stornierung

Änderung der Urlaubskartei Änderung der Urlaubskartei

Tabelle 2-1: Aktivitäten und ihre Gegenaktivitäten
11



Transaktionale Ausführungsmodelle
Klassische DB-Transaktionen 3
3 Transaktionale Ausführungsmodelle

Da im Rahmen dieser Arbeit Abläufe im transaktionalen Umfeld betrachtet werden
sollen, ist es notwendig die grundsätzlichen Unterschiede der Ausführungsmodelle
für langlebige Abläufe im Vergleich zu klassischen Datenbank-Transaktionen
(DB-Transaktionen) herauszuarbeiten. Hierzu soll zunächst auf die Eigenschaften
der sogenannten ACID-Transaktionen [HäRe83] eingegangen werden. Daran an-
schließend werden Ausführungsmodelle vorgestellt, die entworfen wurden, um
Nachteile der ACID-Transaktionen im Falle langlebiger Abläufe zu vermeiden. Da
das ConTract Modell [WäRe92] die Grundlage dieser Arbeit bildet, wird diesem
ein eigener Abschnitt gewidmet werden.
Einige Ausführungsmodelle werden hier nicht vorgestellt, da sie bezüglich den
vorgestellten Ansätzen keine neuen Aspekte beinhalten. Gute Übersichten und aus-
führlichere Darstellungen sind in [Elm92] und [Günt96] zu finden.

3.1 Klassische DB-Transaktionen

Mit der Einführung elektronischer Datenverarbeitung auf der Basis von Daten-
banksystemen wurde der Begriff der DB-Transaktion geprägt. Dabei ist mit dem
Begriff Transaktion1 die Zusammenfassung von Operationen auf einem Daten-
banksystem (und Nachrichten) zur Durchführung einer bestimmten Aktion ge-
meint. Das klassische Beispiel hierfür ist die Abwicklung einer (elektronischen)
Überweisung, die einen Kontostand A erniedrigt und danach einen anderen Konto-
stand B um den entsprechenden Betrag erhöht. Wie einfach nachzuvollziehen ist,
sind dabei vier Datenbankzugriffe zu einer Transaktion - der Überweisung - zu-
sammengefaßt:

1. Lies Kontostand A

2. Erniedrige / Schreibe A

3. Lies B

4. Erhöhe / Schreibe B

Wie bereits an dem einfachen Beispiel abzulesen ist, gibt es nur zwei Basisopera-
tionen, die unterschieden werden: das Lesen bzw. das Schreiben von Datenelemen-
ten. Eine Transaktion kann somit als eine einfache Sequenz von Lese- und Schrei-

1. Im Folgenden wird in diesem Abschnitt statt DB-Transaktion immer die verkürzte Schreibweise “Trans-
aktion” bzw. “TA” benutzt.
12



Transaktionale Ausführungsmodelle
Klassische DB-Transaktionen3
boperationen angesehen werden [EGL76]. Diese Auffassung von Transaktionen
wurde auch unter dem Begriff des Lese-/Schreibmodells (read/write model) be-
kannt [Papa86] [BHG87].

3.1.1 Grundprobleme von DB-Transaktionen
Ist mit der obigen Einführung von Transaktionen keine zusätzliche Semantik ver-
bunden stellt eine Transaktion einzig und allein die syntaktische Gruppierung von
Basisoperationen dar. Obwohl es Transaktionen ohne zusätzliche Semantik nie
gegeben hat, läßt sich bereits an der rein syntaktischen Gruppierung von Opera-
tionen der Bedarf für weitere Forderungen motivieren:

1. Kommt es während der Ausführung einer Transaktion zu Systemausfällen,
müssen geeignete Maßnahmen getroffen werden, um eine einmal begon-
nene Transaktion zu Ende führen zu können (erfolgreich oder nicht). Ein
Zwischenzustand ist, wie am Beispiel der Überweisung ersichtlich, in den
meisten Fällen ein inkonsistenter Zustand der Datenbank bezüglich aktiver
Transaktionen [BHG87].

2. Die parallele Ausführung von Transaktionen führt zu Problemen, wenn auf
gleiche Daten zugegriffen wird. So kann die Ausführung von für sich ge-
nommen korrekten Transaktionen im Parallelbetrieb zu inkonsistenten Da-
tenbeständen führen [EGL76]. Formalisiert man die zu Grunde liegende
Problematik auf der Basis des Lese-Schreibmodells, gelangt man zu drei
grundsätzlichen Abhängigkeiten (“the three bad dependencies” [GrRe93]
[BHG87]), die die Ursache von Inkonsistenzen bilden.

3.1.2 Die ACID Eigenschaften
Wie aus der Beschreibung in Abschnitt 3.1.1 hervorgeht sind einige Probleme bei
der Programmierung von Transaktionen grundsätzlich gegeben und müssen prin-
zipiell bei jeder Anwendung berücksichtigt werden, die Transaktionen verwendet.
Deshalb bietet es sich an, die notwendigen Maßnahmen zur Vermeidung eben die-
ser Probleme nicht immer wieder im jeweiligen Anwendungsprogramm zu reali-
sieren, sondern diese in einem Laufzeitsystem zu verankern und durch simple Pro-
grammierprimitive für die Anwendung zugänglich zu machen. Dies hat die
Vorteile, daß zum einen Anwendungsprogrammierer entlastet werden und zum
anderen Spezialisten auf diese Problematik angesetzt werden können, um so eine
effiziente Realisierung zu gewährleisten.
Dieser Ansatz wurde durch die Einführung der sogenannten ACID-Eigenschaften
[HäRe83] für Transaktionen realisiert. Neben den oben genannten Problemen
wurden dabei gleich zwei weitere Aspekte mit berücksichtigt.
13



Transaktionale Ausführungsmodelle
Klassische DB-Transaktionen 3
3.1.2.1 Atomarität oder Ununterbrechbarkeit (A)
Um zu vermeiden, daß Transaktionen bei Systemausfällen oder sonstigen Unter-
brechungen, wie z.B. einem Zusammenbruch einer Kommunikationsverbindung,
teilweise Effekte im (Datenbank-) System hinterlassen, wurde die Ununterbrech-
barkeit eingeführt. Ein transaktionsverarbeitendes System garantiert, daß eine ein-
mal gestartete Transaktion entweder vollständig abgearbeitet wird, oder daß ihre
Effekte rückgängig gemacht werden (backward recovery).

3.1.2.2 Konsistenzerhaltung (C)
Die Eigenschaft der Konsistenzerhaltung (engl. Consistency) läßt sich nicht direkt
aus den Problemen von Abschnitt 3.1.1 ableiten und wird auch nicht ausschließlich
von einem Laufzeitsystem realisiert. Vielmehr besagt diese Eigenschaft, daß eine
Transaktion, wenn sie auf einem konsistenten Zustand (der Datenwelt) gestartet
wird, wiederum einen konsistenten Zustand hinterläßt. Somit ergibt sich zum einen
die Anforderung an einen Transaktionsprogrammierer, eine Transaktion so zu pro-
grammieren, daß sie dieser Anforderung genügen kann. Zum anderen hat das Lauf-
zeitsystem zu überwachen, ob Transaktionen definierte Konsistenzbedingungen
(engl. constraints) verletzen. Ist dies der Fall, müssen die Transanktionen, die eine
Konsistenzbedingung verletzen zurückgesetzt werden. 

3.1.2.3 Isolation (I)
Durch die parallele Ausführung von Transaktionen können Daten-Inkonsistenzen
entstehen. Deshalb wird für DB-Transaktionen die Isolationseigenschaft gefordert.
Das Laufzeitsystem garantiert hierbei, daß jede Transaktion in einer “virtuellen
Ein-Benutzer-Umgebung” ausgeführt wird. Somit sind ungewünschte Seiteneffek-
te der Parallelverarbeitung von Transaktionen ausgeschlossen.

3.1.2.4 Dauerhaftigkeit (D)
Für erfolgreich abgeschlossene Transaktionen wird garantiert, daß deren Ergebnis-
se nicht verloren gehen. Dies bedeutet konkret, daß die Verantwortung für die Wie-
derherstellung des durch abgeschlossene Transaktionen erzeugten Zustandes nach
einem Systemausfall, Gerätefehler o.ä. beim Transaktionssystem und nicht bei der
Anwendung liegt.

3.1.3 Einsatzgebiete
ACID-Transaktionen haben sich auf dem Gebiet der Datenbanken als Program-
mierkonstrukt durchgesetzt. Durch eine einfache Klammerung von Datenbankope-
rationen mittels “Begin-Of-Transaction” (BOT) und “End-Of-Transaction” (EOT)
erhält man weitreichende Zusicherungen, die durch das Laufzeitsystem realisiert
14



Transaktionale Ausführungsmodelle
Transaktionen und Verkettung3
werden. In einigen Datenbanksystemen entfällt sogar die “öffnende” Klammer
BOT, da implizit eine Transaktion begonnen wird, wenn der erste Datenbankzu-
griff erfolgt (chained / unchained paradigm [OSI92]).
Allerdings hat es sich bereits sehr früh gezeigt, daß sich ACID-Transaktionen nur
für den Einsatz bei relativ kurzen Operations-Sequenzen eignen, die außerdem nur
relativ wenige Datenelemente bearbeiten [Gra81a]. Der Grund hierfür ist die Iso-
lationseigenschaft. Um die Isolation einer Transaktion zu garantieren, muß der
Zugriff auf Datenelemente, die von der Transaktion verwendet werden, für andere
Transaktionen weitgehend eingeschränkt werden. Dies resultiert in der Nichtver-
fügbarkeit von Datenelementen und somit in einer Blockierung anderer Transak-
tionen.
Es läßt sich einerseits keine allgemeine Schranke ermitteln, die bestimmen würde,
wann sich eine ACID-Transaktion für den Einsatz eignet und wann nicht. Ande-
rerseits zeigen theoretische Untersuchungen, daß selbst mit den leistungsfähigsten
Implementierungen der ACID-Eigenschaften, die Wahrscheinlichkeit für eine
Verklemmung bzw. für den Abbruch einer Transaktion überproportional zur Ver-
weilzeit (quadratisch) bzw. zur Anzahl der angefaßten Datenobjekte (proportional
zur dritten Potenz) steigt [Gra81b] [Reut96]. 
Diese nachteiligen Effekte der ACID-Eigenschaften lassen sich ebenfalls beob-
achten, wenn relativ viele Transaktionen auf das gleiche Datenelement (ändernd)
zugreifen und somit ein Datenelement zu einem sogenannten “Hot Spot” wird
[Reut82] [PRS88]. Darüber hinaus ermöglichen DB-Produkte die Einschränkung
der Isolationseigenschaft, so daß eine Erhöhung des Durchsatzes erreicht werden
kann [GrRe93]. Allerdings setzt die Anwendung dieser Maßnahme eine genaue
Kenntnis der Zugriffsoperationen voraus.

3.2 Transaktionen und Verkettung

Transaktionen, die durch Verkettung von Teiltransaktionen aufgebaut sind, stel-
len keine Ausführungsmodelle im eigentlichen Sinne dar. Vielmehr sind sie Pro-
grammiertechniken, um transaktionale Mechanismen im Sinne der ACID-Eigen-
schaften auch im langlebigen Fall ohne größere Nachteile nutzen zu können. Ziel
der verketteten Transaktionen ist grundsätzlich eine Folge von ACID-Transaktio-
nen auszuführen ohne der Atomaritätseigenschaft zu unterliegen - sprich, im Feh-
lerfalle nicht auf den Beginn der Transaktion zurücksetzen zu müssen sondern nur
auf den Beginn einer Teiltransaktion. Somit wird der Verlust im Fehlerfalle mini-
miert.
15



Transaktionale Ausführungsmodelle
Geschachtelte Transaktionen 3
3.2.1 Mini-Batch und Warteschlangen
Ein Mini-Batch [GrRe93] stellt im Prinzip eine Programmiertechnik dar, die be-
rücksichtigt, daß ein langlebiger Ablauf in kleinere Einheiten (ACID-Transaktio-
nen) zerlegt werden kann. Durch diese Zerlegung wird erreicht, daß für den gesam-
ten Vorgang die Atomaritätsbedingung entfällt. Prinzipiell wird also ein größerer
Auftrag (welcher früher immer als Batch-Job ausgeführt wurde) in kleinere Pakete
(Mini-Batch) mit ACID-Eigenschaften zerlegt. Eine Anwendung übernimmt dann
die Verantwortung für die vollständige Ausführung. D.h. es müssen Daten über den
Verarbeitungszustand auf einen ausfallsicheren (stabilen) Speicher geschrieben
werden, so daß diese nach einem Systemfehler wieder gelesen werden können und
die Verarbeitung fortgesetzt werden kann. 
Eng verwandt mit dem Prinzip des Mini-Batch sind die sogenannten stabilen oder
wiederherstellbaren Warteschlangen (engl. recoverable queues). Das Prinzip ist
dabei, daß Aufträge nicht direkt an einen Server gerichtet werden, sondern in eine
stabile (transaktionale) Warteschlange gestellt werden. Darüber hinaus wird in je-
dem Auftrag hinterlegt was als nächstes zu tun ist, so daß dieser als letzte Aktion
wieder einen Auftrag in einer Warteschlange hinterlegt.
Sowohl der Mini-Batch als auch die stabilen Warteschlangen geben frühzeitig die
Ergebnisse von Teilausführungen preis, so daß neben der Atomarität auch die Iso-
lation verloren geht.

3.2.2 Transaktionsketten
Transaktionsketten (engl. chained transactions)1 verfolgen das Prinzip des soge-
nannten persistenten savepoint. ACID-Transaktionen werden dadurch zu Transak-
tionsketten, daß anstatt einem üblichen COMMIT WORK ein spezieller Befehl zum
Transaktionsabschluß benutzt wird: CHAIN WORK. Durch diesen Abschluß wird
die aktuelle Transaktion beendet und eine neue begonnen. Obwohl die Änderungen
der ersten Transaktion stabil gemacht werden, sind die (Teil-)Ergebnisse derselben
nur in der unmittelbar folgenden Transaktion sichtbar. 
Somit wird die Isolationseigenschaft gewährleistet, während die Atomarität teil-
weise aufgegeben wird. Aufgegeben deshalb, weil ein Systemausfall nur ein Rück-
setzen aktiver Transaktionen bewirkt. Änderungen von Transaktionen, die mit
CHAIN WORK abgeschlossen wurden sind dagegen dauerhaft.

3.3 Geschachtelte Transaktionen

Grundsätzlich lassen sich geschachtelte Transaktionen in zwei Kategorien eintei-

1. Es besteht die Gefahr, chained transactions mit dem chained paradigm zu verwechseln (siehe 3.1.3).
16



Transaktionale Ausführungsmodelle
Geschachtelte Transaktionen3
len. Zum einen in sogenannte geschlossen geschachtelte und zum anderen in offen
geschachtelte Transaktionen. Während geschlossen geschachtelte Transaktionen
exakt definiert sind, handelt es sich bei den offen geschachtelten eher um ein ge-
nerisches Konzept. Deshalb wird das Prinzip der offen geschachtelten Transaktio-
nen nur sehr kurz erläutert werden. Wie sich darüber hinaus herausstellen wird,
stellen die im weiteren Verlauf vorgestellten Ablaufmodelle Spezialfälle der offen
geschachtelten Transaktionen dar.

3.3.1 Geschlossen geschachtelte Transaktionen
Geschlossen geschachtelte (engl. closed nested) Transaktionen [Tra83] [Moss85]
wurden entworfen, um das Granulat bei einem Zurücksetzen zu verfeinern. Um
das Zurücksetzen einer Transaktion auf einen Teil beschränken zu können, unter-
teilt man ein Transaktion in weitere sogenannte Sub-Transaktionen (dies kann re-
kursiv fortgeführt werden). Die äußere Transaktion wird dann als Top-Level
Transaktion bezeichnet. 
Während für eine Top-Level Transaktion immer noch die ACID-Eigenschaften
gefordert werden, wird die Dauerhaftigkeit für Sub-Transaktionen (oder Kind-
Transaktionen) aufgegeben. D.h. beim Ende einer Sub-Transaktion werden die
Kontrollstrukturen an die Elterntransaktion vererbt und erst wenn die Top-Level
Transaktion erfolgreich beendet wird, werden die Ergebnisse dauerhaft. Bezüg-
lich des Rücksetzens ergibt sich der Vorteil, daß das Zurücksetzen einer Sub-
Transaktion sich nicht auf die Eltern-Transaktion auswirken muß. Allerdings sind
beim Zurücksetzen der Eltern-Transaktion alle zugehörigen Sub-Transaktionen
betroffen.
Bezüglich der Isolationseigenschaft sind zwei Aspekte erwähnenswert. Die Top-
Level Transaktion ist isoliert bezüglich aller anderen Transaktionen, die keine
“Nachkommen” von ihr sind. Direkte Sub-Transaktionen haben Zugriff auf die
Datenobjekte der Elterntransaktion (Vererbung) und Elterntransaktionen erhalten
den Zugriff auf alle Datenobjekte, die von erfolgreich abgeschlossenen Sub-
Transaktionen angefaßt wurden. “Geschwister”, d.h. Sub-Transaktionen der glei-
chen Elterntransaktion, laufen isoliert von einander ab.
Bezüglich der Ablaufstruktur erweitern geschlossen geschachtelte Transaktionen
die Möglichkeiten des klassischen Ansatzes. Neben der einfachen Sequenz ist es
hier prinzipiell zulässig Sub-Transaktionen parallel ablaufen zu lassen.

3.3.2 Einsatzgebiete geschlossen geschachtelter TA
Geschlossen geschachtelte Transaktionen eignen sich gut für den Einsatz im Cli-
ent/Server-Umfeld. Auf Grund der separaten Rücksetzbarkeit von Sub-Transak-
tionen ist es möglich, z.B. bei Ausfall eines Rechnerknotens oder einer Kommu-
17



Transaktionale Ausführungsmodelle
Geschachtelte Transaktionen 3
nikationsverbindung, Teile einer Transaktion zurückzusetzen ohne daß die
Transaktion als Ganzes davon betroffen ist. Besteht darüber hinaus die Möglichkeit
die Sub-Transaktion auf einem alternativen Knoten (Replikat-Server) fortzusetzen,
kann die Top-Level Transaktion trotz des Ausfalls erfolgreich zu Ende geführt
werden.
Trotzdem sind geschlossen geschachtelte Transaktionen bisher kaum im kommer-
ziellen Bereich anzutreffen. Dies liegt zum einen an dem nicht zu vernachlässigen
Aufwand für die Implementierung der Isolations- bzw. Vererbungseigenschaften
dieses Transaktionstyps. Zum anderen war das Verarbeitungsmodell bisher nicht in
Standards zur Transaktionsverarbeitung berücksichtigt [XOP93] [OSI92]. 
Mit der Verabschiedung des Object Transaction Services (OTS) der Object Mana-
gement Group (OMG) ist eine erste Bemühung zu verzeichnen, geschlossen ge-
schachtelte Transaktionen zu standardisieren [OMG96]. Da die Spezifikation ge-
schlossen geschachtelte Transaktionen nur als optionale Erweiterung vorsieht,
bleibt jedoch abzuwarten, ob und wann entsprechende Implementierungen verfüg-
bar sein werden.

3.3.3 Offen geschachtelte Transaktionen
Offen geschachtelte Transaktionen [Gra81a][Tra83] wurden zunächst nur als Kon-
zept festgelegt. Ausführungsmodelle im eigentlichen Sinne entstanden erst später
auf der Basis dieses Konzepts. Grundsätzlich unterscheiden sich die offen ge-
schachtelten Transaktionen von den geschlossen geschachtelten dadurch, daß es
Sub-Transaktionen möglich ist, die von ihnen vorgenommenen Änderungen vor
dem Ende der Eltern-Transaktion freizugeben.
Somit entfällt die Isolations- und Atomaritätseigenschaft für Top-Level Transak-
tionen und dadurch die einfache Rücksetzbarkeit im Fehlerfall. Deshalb wurde be-
reits in [Gra81a] das Prinzip der Kompensation eingeführt: Anstatt eines Rückset-
zens im Fehlerfall werden logische “Gegenaktionen” ausgeführt, wodurch in
gewisser Weise eine semantische Atomarität gewährleistet wird.
Eine grundsätzliche Idee der offen geschachtelten Transaktionen ist die Trennung
der verschiedenen Aspekte der ACID-Eigenschaften. Während z.B. die Atomarität
der ACID-Transaktionen stark von der Isolationseigenschaft abhängt, ist die Kom-
pensation der offen geschachtelten Transaktionen zunächst unabhängig von dieser
Eigenschaft1. Diese Sichtweise der prinzipiellen Unabhängigkeit sogenannter
Kontrollsphären (engl. spheres of control) geht auf [Dav78] zurück.
In den folgenden Abschnitten wird eingehend auf spezielle Ausprägungen der of-
fen geschachtelten Transaktionen eingegangen. Deshalb wird an dieser Stelle auf

1. Inwiefern sich diese Aussage verallgemeinern läßt, wird im weiteren Verlauf diskutiert.
18



Transaktionale Ausführungsmodelle
Mehrschicht-Transaktionen3
die genauere Betrachtung der Eigenschaften und der Einsatzgebiete des Konzep-
tes verzichtet.

3.4 Mehrschicht-Transaktionen

Mehrschicht-Transaktionen [Weik89],[WeSc92] (engl. multi-level transactions)
stellen eine enge Verknüpfung des ACID-Prinzips und der offen geschachtelten
Transaktionen dar. Einerseits werden durch die Verwendung offen geschachtelter
Transaktionen die Atomarität und die Isolation aufgegeben, andererseits wird
durch die Einführung einer strikten Aufrufhierarchie sichergestellt, daß auf der je-
weiligen Hierarchiestufe entsprechende Garantien gegeben werden können.
Genauer gesagt: Eine Mehrschicht-Transaktion einer Ebene wird dadurch reali-
siert, daß sie Operationen der direkt darunter liegenden Ebene aufruft. Zugriffsbe-
schränkungen auf der tieferen Ebene werden nach dem Ende einer Operation auf
dieser Ebene entfernt (entsprechend dem Verhalten offen geschachtelter Transak-
tionen). Allerdings müssen auf der Ebene der aufrufenden Transaktion Zugriffs-
beschränkungen etabliert werden, um so Konflikte mit parallel laufenden Trans-
aktionen (der selben Ebene) zu vermeiden.
Ununterbrechbarkeit gewährleisten Mehrschicht-Transaktionen gemäß dem Kon-
zept der offen geschachtelten Transaktionen auf der Basis von Kompensationsak-
tionen, d.h. zu jeder Operation auf jeder Ebene muß eine entsprechende Kompen-
sationsoperation zur Verfügung stehen.
Somit stellen Mehrschicht Transaktionen strenge Anforderungen an den Aufbau
eines Systems, da es nicht zulässig ist, Operationen einer anderen Ebene als der
direkt darunter liegenden aufzurufen. Die Vorteile dieser Verwendung offen ge-
schachtelter Transaktionen ergeben sich insbesondere in Anwendungsbereichen,
in denen das Zugriffsgranulat mit absteigender Hierarchiestufe zunimmt. 
Ein Beispiel hierfür sind z.B. relationale Datenbanksysteme. Auf der Ebene des
tupelorientierten Zugriffs besteht das Granulat der hier definierten Operationen
aus Tupeln. Die darunter liegende Ebene bildet die Tupel auf Seiten eines stabilen
Speichers ab. Geht man nun davon aus, daß mehrere Tupel in einer Seite gespei-
chert werden können, liegt der Vorteil der Mehrschicht-Transaktionen klar auf der
Hand. Während Sperren auf der Tupelebene Inkonsistenzen bezüglich der Tupel
verhindern, werden trotzdem parallele Zugriffe auf ein und diesselbe Seite zuge-
lassen, da die Operationen auf der Seitenebene nach ihrer Ausführung keine Be-
schränkungen des Zugriffs fordern.

3.5 Sagas

Sagas [GaSa87] stellen eine spezielle Ausprägung offen geschachtelter Transak-
19



Transaktionale Ausführungsmodelle
Sagas 3
tionen dar. Das Modell der Sagas war eines der ersten, welches eine Trennung der
Ablauflogik von den ausführenden Teilen vornahm. So wird eine Ausführung da-
durch definiert, daß ein Kontrollfluß explizit zwischen sogenannten Steps definiert
wird. Dabei war zunächst nur eine einfache sequentielle Verkettung zulässig, die
später jedoch um weitere Konstrukte erweitert wurde (Schleifen, bedingte Ver-
zweigung usw.).
Wie bei allen Vertretern der offen geschachtelten Transaktionen müssen Kompen-
sationsaktionen definiert werden, die im Fehlerfall automatisch in inverser Ord-
nung zu den Originalsteps ausgeführt werden.
Wichtig zu erwähnen ist hierbei, daß durch die Einführung eines expliziten Kon-
trollflusses in Verbindung mit einer den Steps zugeordneten Kompensation die
Notwendigkeit besteht, Daten bezüglich des Kontrollflusses persistent zu spei-
chern. Beispielsweise muß die Information über erfolgreich ausgeführte Steps dau-
erhaft gespeichert werden, um im Fehlerfall die notwendigen Kompensationsaktio-
nen ermitteln zu können.
Auf Fehlerfälle wird in Sagas durch Rücksetzen der gerade aktiven Transakti-
on(en) und der anschließenden Ausführung der Kompensationsaktionen der Vor-
gänger in umgekehrter zeitlicher Reihenfolge reagiert. Man kann somit von einer
semantischen Ununterbrechbarkeit analog zu den offen geschachtelten Transaktio-
nen reden. 

Steps stellen ACID-Transaktionen bzw. geschlossen geschachtelte Transaktionen
dar, so daß auf dieser Ebene auch die Isolation gewährleistet ist. Auf der Ebene der
Sagas selbst besteht jedoch kein Isolationsschutz. Deshalb sind Sagas nicht für An-
wendungen geeignet in denen es zu Konflikten auf Grund von Parallelverarbeitung
kommen kann (s. Abschnitt 3.1.1).
Weiterentwicklungen der Sagas [GGK90] [GGK91a] [GGK91b] veränderten die
Semantik dieses Ausführungsmodells zum Teil radikal. So wurde mit der Einfüh-

 Abbildung 3-1: Prinzip der SAGAs

S1

C1

S2 Sn

C2 Cn-1

Sn-1

abort

compensate

execute failure
20



Transaktionale Ausführungsmodelle
ConTracts3
rung des Schachtelungsprinzips eine Unterscheidung in notwendige (engl. vital),
nicht-notwendige (engl. non-vital) und unabhängige (engl. independent) Sagas
vorgenommen, die die Fehlersemantik stark beeinflussen.
Es ergeben sich folgende Unterschiede zu der bekannten Eltern/Kind-Abhängig-
keit im Falle der geschlossen geschachtelten Transaktion:

➪ Der Abbruch einer als notwendig deklarierten Sub-Saga bewirkt den Ab-
bruch der entsprechenden Eltern-Saga und umgekehrt. 

➪ Eine als unabhängig deklarierte Sub-Saga bleibt vom Abbruch der Eltern-
Saga unbeeinflußt.

Ein weiterer Aspekt, der erst mit den Erweiterungen der Sagas eingeführt wurde,
ist die Fortsetzbarkeit einer Saga nach einem Fehlerfall. Da dieser Aspekt dem
Ansatz in ConTracts entspricht, sei an dieser Stelle auf Abschnitt 3.6.2.1 verwie-
sen.
Mit der Einführung der unabhängigen (Sub-) Sagas wurde die semantische Ato-
marität der Sagas aufgegeben. Somit sind Sagas in ihrer neueren Form nicht mehr
vollständig in der Klasse der offen geschachtelten Transaktionen enthalten. Dar-
über hinaus sind mit den Erweiterungen erste Abhängigkeitsbeziehungen zwi-
schen Kompensationsaktionen eingeführt worden, welche in neueren Arbeiten
wieder aufgegriffen wurden [Leym95][RSS97].

3.6 ConTracts

ConTracts [Reut89]1 [WäRe92] sind eine Weiterentwicklung der Sagas und ge-
hören ebenso zur Klasse der offen geschachtelten Transaktionen. Im Gegensatz zu
Sagas gehen die Garantien des ConTract Modells sehr viel weiter und versuchen
gemäß des Ansatzes von Davies [Dav78] weitgehend unabhängige Kontrollsphä-
ren anzubieten.

3.6.1 Das Skript
Wie bei Sagas muß in ConTracts ein expliziter Kontrollfluß zwischen den Einzel-
aktivitäten, den sogenannten Steps, definiert werden. Dabei sind nahezu beliebige
Kontrollflußbeziehungen zulässig (Schleifen, bedingte Verzweigungen, resultats-
abhängige Sprünge, Parallelverarbeitung usw.). Die für diese Arbeit relevanten
Elemente des Skriptes werden hier kurz eingeführt. Für detailliertere Darstellun-
gen sei auf [RSW92], [Schw93b] und [Wäch96] verwiesen.

1. Anmerkung des Autors: ConTracts wurden nach dem ursprünglichen Saga-Modell eingeführt; jedoch 
vor deren Erweiterungen.
21



Transaktionale Ausführungsmodelle
ConTracts 3
3.6.1.1 Kontext
Da das ConTract-Modell die explizite Definition eines Datenflusses vorsieht, wer-
den Daten, die von einem Step zu einem anderen weiter gereicht werden, in soge-
nannten Kontextvariablen abgelegt. Diese bilden zusammen den sogenannten Kon-
text, der neben diesen Variablen auch die ablaufrelevanten Variablen wie z.B.
Schleifenzähler enthält. 
Wichtige Eigenschaften des Kontext sind die Persistenz und die änderungslose
Verwaltung der Variablen. Genauer, das Speichern einer geänderten Variablen
überschreibt nicht den Originalwert sondern erzeugt eine neue Version.

3.6.1.2 Kompensation
Als Vertreter der offen geschachtelten Transaktionen benutzt auch das ConTract
Modell das Prinzip der Kompensation, um ein logisches Zurücknehmen von Steps
zu ermöglichen. Der ursprüngliche Ansatz, hierfür jedem Step einen Kompensati-
onsstep zuzuordnen, wurde inzwischen erweitert, so daß es möglich ist einem Teil-
skript des Originalablaufs wiederum ein Teilskript als Kompensation zuzuordnen
[RSS97].

3.6.1.3 Transaktionen
Das ConTract Modell basiert auf geschlossen geschachtelten Transaktionen als
Ausführungsmodell für die Steps. Auf dieser Basis ist es möglich, Steps zu (ge-
schlossen geschachtelten) Transaktionen zu Gruppieren, um so eine ACID Seman-
tik für diese Gruppe zu definieren.

3.6.1.4 Invarianten
Da Änderungen auf Datenelementen am Ende einer der Transaktionen, die eine
Gruppe von Steps umgeben, sichtbar werden, kann es zu Problemen durch parallel
laufende ConTracts kommen (siehe Abschnitt 3.1.1). Anstatt, wie bei Sagas, Con-
tracts als ungeeignet für diese Anwendungsfälle zu deklarieren, wurde das soge-
nannte Invariantenkonzept eingeführt [ReSw95]. Wie im Verlauf dieser Arbeit
noch eingehend diskutiert wird, ist es mit den Invarianten möglich, Prädikate auf
gemeinsam genutzten Datenelementen zu etablieren, um so Zugriffe anderer Con-
Tracts einzuschränken.

3.6.2 Eigenschaften von ConTracts
In diesem Abschnitt werden die grundsätzlichen Eigenschaften von ConTracts er-
läutert. Diese bilden die Basis für die spätere Einführung eines Korrektheitskriteri-
ums.
22



Transaktionale Ausführungsmodelle
ConTracts3
3.6.2.1 Fortsetzbarkeit
Im Gegensatz zur Atomarität der ACID-Transaktionen und dem Ansatz von Sagas
garantieren ConTracts die Fortsetzbarkeit (engl. forward recoverability) eines
einmal begonnenen Ablaufs. Bei einem Fehlerfall bezüglich der Ausführung wird
somit zunächst der aktuelle Zustand des Ablaufs wieder hergestellt. Aktive Trans-
aktionen werden dann zurück gesetzt (engl. backward recovery), und anschlie-
ßend wird mit der Bearbeitung fortgefahren. 
Das Fehlschlagen einer Stepausführung hat zunächst keine direkten Auswirkun-
gen auf die Ausführung des ConTracts. Hier wird garantiert, daß eine begrenzte
Anzahl von Wiederholungen versucht wird, bzw. ein alternativer Zweig des
Skriptes ausgeführt werden kann.
Trotzdem kann auch bei diesem Mechanismus ein Zustand auftreten, in dem eine
weitere automatische Maßnahme des Ausführungssystems keinen weiteren Erfolg
verspricht. In diesem Fall wird die Ausführung angehalten (siehe auch Abschnitt
3.6.2.2) und die Benutzerin informiert. Diese kann dann entweder dem System
mitteilen, daß eine weitere Fortsetzung sinnvoll ist, oder die Kompensation (siehe
Abschnitt 3.6.2.4) der bisherigen Ausführung einleiten.

3.6.2.2 Dauerhaftigkeit
Die Eigenschaft der Dauerhaftigkeit erstreckt sich bei dem ConTract-Modell nicht
nur auf Daten, sondern auf den Ablauf als Ganzes. D.h. sowohl der Zustand des
Ablaufs (an welcher Stelle befindet sich der Kontrollfluß und welche Steps wur-
den bisher ausgeführt) als auch alle ablaufrelevanten Variablen (Kontext) sind
persistent.
Somit ist jeder Verarbeitungszustand (nach einer abgeschlossenen ACID Trans-
aktion) persistent. Diese Eigenschaft wird einerseits für die Fortsetzbarkeit nach
einem Fehlerfall benutzt, kann jedoch auch für den “Normalablauf” sinnvoll ein-
gesetzt werden, z.B. um eine Bearbeitung zeitweise unterbrechen zu können
(engl. suspend), die Historie eines Ablaufs zu ermitteln oder einen ConTract mi-
grieren zu können.

3.6.2.3 Durchlässigkeit
Wie bereits in Abschnitt 3.3.3 erwähnt, wird die Isolations-Eigenschaft im Falle
offen geschachtelter Transaktionen aufgegeben. Um diesem Umstand auch be-
grifflich Rechnung zu tragen wird im weiteren nicht über die Isolation von Con-
Tracts sondern von ihrer Durchlässigkeit (engl. permeability) gesprochen.
Grundsätzlich sind nach dem Abschluß einer ACID-Transaktion die Ergebnisse
sichtbar für alle Aktivitäten (auch außerhalb des aktuellen ConTracts). D.h. es gibt
23



Transaktionale Ausführungsmodelle
ConTracts 3
keinen Systemmechanismus der irgendwelche Schutzmaßnahmen, wie z.B. die
Etablierung von Sperren, trifft. Sind allerdings Invarianten definiert schränken die-
se den Zugriff entsprechend ein.
Somit ist für einen ConTract garantiert, daß die von ihm etablierten Invarianten
nicht verletzt werden. Damit ist eine anwendungsabhängige Regulierung der Frei-
gabe von geänderten Daten möglich.

3.6.2.4 Kompensierbarkeit
Für einen ConTract ist garantiert, daß zu jedem beliebigen Zeitpunkt der Ausfüh-
rung, die Kompensation eingeleitet werden kann. Für einen aktuellen Ablauf be-
deutet dies, daß aktive Transaktionen abgebrochen und anschließend Kompensati-
onsaktionen für erfolgreich abgeschlossene Step ausgeführt werden.
Ursprünglich war die Reihenfolge der Abarbeitung von Kompensationsaktionen
nicht festgelegt, so daß sogar die Möglichkeit der gleichzeitigen Ausführung aller
Kompensationen erwogen wurde. Wie sich im Verlauf dieser Arbeit noch heraus-
stellen wird, kann diese Flexibilität im allgemeinen nicht unterstützt werden.

3.6.2.5 Konsistenz
Obwohl die Eigenschaft der Konsistenz bzw. der Konsistenzerhaltung allen hier
betrachteten Ausführungsmodellen gemeinsam sind, soll sie an dieser Stelle noch
einmal gesondert erwähnt werden.
Ein ConTract gewährleistet, daß wenn er auf einem konsistenten Zustand von Da-
tenobjekten gestartet wird, diese wieder in einem konsistenten Zustand hinterläßt.
Dabei kann in einen erfolgreichen und einen kompensierten Endzustand unter-
scheiden werden.
24



Formale Modelle konkurrierender Abläufe
Das read/write Modell4
4 Formale Modelle konkurrierender Abläufe

Die formale Darstellung von Abläufen ist eine Voraussetzung für die Definition
entsprechender (ebenso formaler) Korrektheitskriterien. Dieses Kapitel führt in
entsprechende Formalismen ein und stellt insbesondere die für das ConTract-Mo-
dell gewählte Darstellung vor.
Ein wichtiger Aspekt hierbei ist, daß Formalismen zur Beschreibung einer Aus-
führung nicht unbedingt auch bei der Programmierung von Abläufen zum Einsatz
kommen. Der Grund hierfür sind die unterschiedlichen Anforderungen an die No-
tationen. Während zur Programmierung Darstellungen herangezogen werden, die
für einen menschlichen Benutzer möglichst einfach erlernbar sind, orientieren
sich Notationen, die für Laufzeitsysteme gedacht sind, an der effizienten Ausführ-
barkeit und Problemunabhängigkeit.
Da es sich bei den formalen Sprachen zur Beschreibung von Abläufen im Allge-
meinen um einfache aber sehr flexible Sprachen handelt, existiert üblicherweise
keine isomorphe, sondern nur eine homomorphe Abbildung der auf der Program-
mierebene genutzten Notation auf die formale Darstellung. Es gehen also Infor-
mationen, die auf der Programmierebene zur Verfügung standen “verloren” und
sind somit aus der Laufzeitnotation nicht mehr wieder zu gewinnen. Dies stellt ei-
nen eigenen Problembereich dar, wenn Änderungen von Abläufen zur Ausfüh-
rungszeit unterstützt werden soll.
Im weiteren soll folgende Konvention bezüglich der verwendeten Termini gelten:

1. Die formale Notation, die aus einer von einem Programmierer erstellten De-
finition eines Ablaufs erzeugt wurde (oder werden kann), wird im weiteren
als Schablone oder Template bezeichnet.

2. Eine spezielle Ausprägung eines Template, die zur Ausführung eingesetzt
wird, wird als Instanz oder Ausführungsinstanz bezeichnet. Ein Template
kann mehrfach instanziiert werden.

4.1 Das read/write Modell

Da ACID-Transaktionen nicht als eigentliches Ausführungsmodell, sondern nur
zur deklarativen Zuordnung einer gewissen Ausführungssemantik eingeführt
wurden, gibt es keine Laufzeitumgebung im Sinne einer virtuellen Maschine für
Abläufe mit ACID-Eigenschaften. Trotzdem ist es aus abstrakter Sicht möglich
eine Maschine zu definieren, die die Abarbeitungssemantik von ACID-Transak-
25



Formale Modelle konkurrierender Abläufe
Das read/write Modell 4
tionen hinreichend beschreibt. Diese Maschine basiert auf dem sogenannten Lese/
Schreib-Modell (engl. read-write model) [Papa86][BHG87][GrRe93].

4.1.1 Operationen
Eine abstrakte Maschine zur Verarbeitung von ACID-Transaktionen kennt vier
elementare Operationen1.

Wie einfach zu erkennen ist, verwaltet die abstrakte Maschine eine Menge von Da-
tenobjekten, die mit der Operation “write” manipuliert werden können. Es mag er-
staunen, daß es weder eine Operation “create” noch eine Operation “delete” gibt,
die ein Datenobjekt erzeugen bzw. löschen. Diese ungewöhnliche Eigenschaft hat
jedoch historische Gründe, da zu Beginn der Nutzung von Datenbanksystemen auf
der Basis von Speicherseiten gearbeitet wurde. Nun läßt sich natürlich die Erzeu-
gung von Datenobjekten (und der Löschung) auf einen Schreibzugriff auf eine
Speicherseite abbilden, so daß keine zusätzlichen Operationen notwendig sind.
Eine weitere Operation, die den Beginn einer Transaktion anzeigt (fordert) wurde
auf der Ebene der abstrakten Maschine ebenfalls nicht eingeführt. Auch dies läßt
sich wiederum aus der Entstehungsgeschichte erklären. Ursprünglich wurde eine
Transaktion über die Identifikation des ausführenden Prozesses2 eindeutig gekenn-
zeichnet, weshalb mit der ersten Operation des Prozesses implizit eine Transaktion
begonnen wurde (siehe auch voriges Kapitel). Mit der Einführung verteilter Trans-
aktionen und der gleichzeitigen Nutzung mehrerer Datenbankverbindungen in ei-
nem Prozeß stellt dieses Vorgehen ein Problem dar. Da in der weiteren Verwen-
dung der eingeführten Notation diese Problematik nicht zum Tragen kommt, wird
an dieser Stelle auf eine Erweiterung der Menge der Operationen verzichtet.

Operation Semantik

r: read(t, a) Liefert den Wert eines Datenobjektes a an eine Transaktion t.

w: write(t,a) (Über-) Schreibt den Wert eines Datenobjektes a im Auftrag 
einer Transaktion t.

c: commit(t) Macht die Änderungen von t dauerhaft und beendet t.

a: abort(t) Setzt die Änderungen von t zurück und beendet t.

Tabelle 4-1: Operation im read/write Modell

1. Im verteilten Fall kommt eine fünfte Operation “prepare” hinzu, die allerdings nicht auf Anwendungs-
ebene zur Verfügung steht.

2. Hier ist ein Betriebssystemprozeß gemeint.
26



Formale Modelle konkurrierender Abläufe
Das read/write Modell4
4.1.2 Ausführungen und ihre Semantik
Eine ACID-Transaktion kann nun mit Hilfe der Operationen der abstrakten Ma-
schine dargestellt werden (es wird eine abkürzende Schreibweise für die Bezeich-
nung der Operationen benutzt). Da die eigentliche Definition der Transaktion
nicht bekannt ist, wird diese Darstellung als formale Interpretation bezeichnet.
Definition 4-1 (ACID-TA): Eine Interpretation I(t) einer ACID-Transaktion t

ist ein Tupel (A, <), wobei A eine geordnete Menge von Operationen bezüglich
der partiellen Ordnung “<“ darstellt:

Eine formale Interpretation einer ACID-Transaktion besteht somit aus einer Men-
ge von Lese- und Schreiboperationen, deren Abarbeitungsreihenfolge festgelegt
ist. Ebenso gehören zu der Transaktion commit- bzw. abort-Operationen, denen
jedoch keine weiteren Operationen folgen dürfen.
Im folgenden wird durch die Verwendung der Schreibweise oi < oj ausgedrückt
werden, daß oj ein unmittelbarer Nachfolger von oi ist. Mit oi <+ oj soll eine aus-
schließlich mittelbare Reihenfolgebeziehung bezeichnet werden. Die Bezeich-
nung oi <* oj subsummiert die unmittelbare und die mittelbare Reihenfolgebezie-
hung. 
Die kurz angedeutete Semantik der Operationen soll hier nun etwas vertieft wer-
den. Eventuell notwendige Seiteneffekte der Operationen zur Realisierung der
Isolationseigenschaft werden im folgenden Kapitel behandelt.

1. Leseoperationen greifen auf ein Datenobjekt zu und liefern den jeweiligen
Wert des Objektes an die Transaktion zurück. 

2. Schreiboperationen erzeugen, löschen oder ändern ein Datenobjekt. Gleich-
zeitig wird dabei die Information hinterlegt, wie die Schreiboperation rück-
gängig gemacht werden kann. In den meisten Fällen geschieht dies
automatisch durch die ausführende Maschine z.B. durch die Speicherung
des sogenannten before image.

3. Die commit Operation hat ausschließlich die Aufgabe alle Änderungen ei-
ner Transaktion dauerhaft zu machen und die Transaktion abzuschließen.

A oi{ }= oi r w c, a,{ , }∈,

oi vor oj in t oi oj<⇒

 
oi ok, A∈ oi c= ok a=∧ ∧( )

∃ oj om<
om A∈

∃¬
oj A∈ oj c a{ , }∈,( )

∀∧
27



Formale Modelle konkurrierender Abläufe
Das read/write Modell 4
4. Eine abort Operation führt alle gespeicherten Gegenaktionen (inverse Schrei-
boperationen) in der umgekehrten Reihenfolge der Ausführung der Original-
schreibzugriffe aus, macht die Änderungen dauerhaft (soweit notwendig)
und schließt eine Transaktion ab. Die Aktionen zur dauerhaften Speicherung
der Änderungen und der Abschluß der Transaktion kann auch als eine com-
mit Operation nach der Ausführung aller Gegenaktionen angesehen werden.

Durch die Atomaritätseigenschaft werden abort Operationen automatisch nach ei-
nem Fehlerfall ausgelöst. Dies bedingt die Verwaltung von persistenter Zustands-
information, die im folgenden Abschnitt beschrieben wird.
Die Maschine als ganzes arbeitet nach dem folgenden Prinzip:

➪ Zunächst werden alle Operationen gesucht, die keinen Vorgänger bezüglich
der Partialordnung besitzen. Diese werden zur Ausführung gebracht.

➪ Ist die Ausführung nicht erfolgreich, wird eine abort-Operation ausgeführt.
Ist die Ausführung erfolgreich, werden die direkten Nachfolger gesucht und
zur Ausführung gebracht.

➪ Das Ende ist erreicht, wenn alle Operationen beendet sind und keine Nach-
folger gefunden werden können.

4.1.3 Persistente Zustände
Die abstrakte Maschine verwaltet zur Implementierung der ACID-Semantik Zu-
stände der Transaktionen und der Datenobjekte. Zu diesem Zweck muß stabiler,
persistenter Speicher zur Verfügung stehen, um auch nach einem Systemausfall die
Atomarität und die Dauerhaftigkeit gewährleisten zu können.
Insgesamt nehmen ACID-Transaktionen in der abstrakten Maschine nur zwei Zu-
stände ein:

1. Aktiv (nach der ersten Lese- oder Schreiboperation)

2. Abgeschlossen (nach einer commit oder abort Operation)

Auf Grund der ACID-Eigenschaft ist hiefür nur der Zustand “aktiv” stabil zu spei-
chern, um ein eventuelles Rücksetzen nach einem Fehlerfall auslösen zu können.
Bezüglich der verwalteten Datenobjekte gestaltet sich die Zustandsverwaltung et-
was komplexer, da deren Zustände von dem Zustand der manipulierenden Trans-
aktion abhängig sind. Grundsätzlich können drei Zustände bei Datenobjekten un-
terschieden werden:
28



Formale Modelle konkurrierender Abläufe
Das read/write Modell4
1. clean: alle bisherigen Zugriffe erfolgten von abgeschlossenen Transaktio-
nen.

2. touched: es erfolgte ein lesender Zugriff einer aktiven Transaktion.

3. dirty: es erfolgte ein Schreibzugriff einer aktiven Transaktion.

Die Atomaritätseigenschaft impliziert nun, daß für alle Datenobjekte, die im Zu-
stand “dirty” sind, Informationen darüber gespeichert werden müssen, wie diese
Objekte wieder in einen “clean” Zustand überführt werden können. Dabei ist zu
beachten, daß diese Information ebenso Dauerhaft sein muß, wie das geänderte
Objekt selbst. Ist z.B. das geänderte Objekt nur im Hauptspeicher, genügt es die
“Undo-Information” ebenfalls nur im Hauptspeicher abzulegen.
Auf Grund der Dauerhaftigkeit, muß ein Objekt, welches auf Grund einer commit-
Operation vom Zustand dirty in den Zustand clean übergeht stabil gespeichert
werden, bzw. es muß zumindest die Information stabil gespeichert werden, die
ausreicht, um den Zustand auch nach einem Systemausfall wieder herzustellen.

4.1.4 Erweiterungen für geschachtelte Transaktionen
Das bisher beschriebene read/write Modell kann einfach erweitert werden, um
auch die Semantik geschlossen geschachtelter Transaktionen zu beschreiben. Zu-
nächst muß hierfür die Menge der Operationen erweitert werden:

 Abbildung 4-1: Zustandsdiagramm für Datenobjekte bei ACID-TA

Operation Semantik

β: begin_SubTA(t) Erzeugt eine Sub-Transaktion bezüglich der angege-
benen (Eltern-)Transaktion t.

Tabelle 4-2: Erweiterte Operation im read/write Modell

clean touched

dirty

stabil flüchtig

bedingt stabil
29



Formale Modelle konkurrierender Abläufe
Das read/write Modell 4
Mit der Erweiterung der Menge der Operationen, ist natürlich auch eine entspre-
chende Erweiterung von Definition 4-1 notwendig. 
Definition 4-2 (Geschlossen geschachtelte TA): Eine Interpretation I(t) einer

geschlossen geschachtelten Transaktion t ist ein Tupel (A, <), wobei A eine ge-
ordnete Menge von Operationen bezüglich der partiellen Ordnung “<“ aus De-
finition 4-1 darstellt. Die Bedingung, daß weder einer abort- noch einer commit-
Operation von t eine weitere Operation folgen darf gilt analog. Wird mit βs bzw.
βr der Beginn und mit εs bzw. εr das Ende (χ bzw. α) zweier bestimmter Sub-
Transaktionen s und r bezeichnet, gelten folgende Zusatzbedingungen:

Eine Subtransaktion, die durch die Operation β und eine der Operationen α oder χ
begrenzt wird, bildet eine geschlossene Einheit. Deshalb ist es nicht zulässig, in-
nerhalb einer Subtransaktion eine weitere zu beginnen, deren Ende nicht ebenfalls
in der Subtransaktion enthalten ist. Ebenso ist es notwendig, daß für alle Beginn-
Operationen von Sub-Transaktionen entsprechende Ende-Operationen vorhanden
sind.
Mit dem Begriff Top-Level-Transaktion werden diejenigen Transaktionen bezeich-
net, die keine Sub-Transaktionen von anderen Transaktionen sind. Somit werden
Top-Level-Transaktionen auch nicht mit einer β-Operation begonnen. Die Opera-
tionen α bzw. χ erzeugen im Gegensatz zu den abort- und commit-Operationen von
Top-Level-Transaktionen keine persistenten Zustände. Statt dessen werden beim
Abschluß einer Sub-Transaktion alle die Transaktion betreffenden Verwaltungsda-
ten an die Eltern-Transaktion weiter gereicht. Handelt es sich bei der Eltern-Trans-
aktion um eine Top-Level-Transaktion ist diese für die Persistenzeigenschaft ver-
antwortlich.

χ: commit_SubTA(t) Beendet die Sub-Transaktion t

α: abort_SubTA(t) Setzt die Änderungen der Sub-Transaktion t zurück 
und beendet die Sub-Transaktion

Operation Semantik

Tabelle 4-2: Erweiterte Operation im read/write Modell

A oi{ }= oi r w c, a β, χ, α,,{ , }∈,

βr βs<* εr εs<*( )¬∧
βs A∈( )

∃¬
βr A∈( )

∀

εr A∈∃
βr A∈( )

∀

30



Formale Modelle konkurrierender Abläufe
Mehrschicht-Transaktionen4
Da sich somit durch die Einführung von geschlossen geschachtelten Transaktio-
nen keine weiteren persistenten Zustände ergeben, erscheint die Erweiterung der
abstrakten Maschine zunächst trivial. Allerdings ergeben sich nicht zu vernachläs-
sigende Schwierigkeiten bei der Umsetzung der speziellen Isolationseigenschaf-
ten und der Übernahme der Verwaltungsdaten durch eine Elterntransaktion.
Bezeichnenderweise sind momentan kaum Datenbanksysteme zu finden, die ge-
schlossen geschachtelte Transaktionen implementieren. Der Grund hierfür ist
wieder historischer Art. Da bei klassischen Transaktionen keine “Weitergabe” ir-
gendwelcher Informationen notwendig ist, sind die entsprechenden Algorithmen
zur Realisierung auch hierauf optimiert. Betrachtet man speziell die Implementie-
rung von Log-Systemen, können Log-Sätze durch einen simplen Bezeichner in ei-
nem Log-Satz einer Transaktion zugeordnet werden. Da eine Sub-Transaktion
aber ihre Log-Sätze an ihre Eltern-Transaktion weitergibt, ist solch eine simple
Zuordnung nicht mehr möglich.
Ein weiterer nicht-trivialer Aspekt ergibt sich aus der Atomaritätseigenschaft der
Transaktionen. Diese besagt, daß eine geschlossen geschachtelte Transaktion je-
derzeit abgebrochen und somit ihre Änderungen rückgängig gemacht werden kön-
nen. Somit ergibt sich eine sogenannte abort-Abhängigkeit [ChRa90][Günt96]
zwischen Eltern- und Kind-Transaktionen, die besagt, daß im Falle eines Ab-
bruchs der Eltern-Transaktion auch alle Kind-Transaktionen zurückgesetzt wer-
den müssen.

4.2 Mehrschicht-Transaktionen

Wie bereits im vorigen Kapitel eingeführt, basieren Mehrschicht-Transaktionen
auf einer strikten Aufteilung eines Systems in mehrere Abstraktionsebenen. Ver-
sucht man nun eine abstrakte Maschine zur Abwicklung von Mehrschicht-Trans-
aktionen zu definieren, kann dies zunächst nur auf einer Ebene erfolgen. Dabei
wird die darunter liegende Maschine mit benutzt und man erhält somit eine rekur-
sive Definition. Im Datenbankbereich wird diese Rekursion durch die Abstrakti-
onsebene begrenzt, die die Abbildung auf physische Speicherseiten vornimmt
(mit Hilfe sogenannter Mini-Transaktionen) [GrRe93][Günt96]. Da diese jedoch
im Prinzip keine neuen Aspekte im Vergleich zu dem bereits diskutierten read/
write Modell aufwerfen, wird an dieser Stelle nur auf die entsprechende Literatur
verwiesen. Im folgenden soll diese Ebene mit L0 bezeichnet werden.

4.2.1 Operationen
Aus abstrakter Sicht kennt eine Maschine einer Stufe i die transaktionalen Opera-
tionen, sowie die Operationen, die auf dieser Stufe angesiedelt sind. Wichtig zu
erwähnen ist, daß die anwendungsorientierten Operationen wiederum Operatio-
31



Formale Modelle konkurrierender Abläufe
Mehrschicht-Transaktionen 4
nen auf der nächst niedrigeren Stufe nutzen.

Grundsätzlich lassen sich in den Operationen von Mehr-Schicht-Transaktionen die
manipulierten Datenobjekte nicht mehr identifizieren. Somit ist auch die automati-
sche Generierung von inversen Aktionen im Allgemeinen nicht mehr möglich.
Deshalb müssen die Kompensationsaktionen explizit angegeben werden. Da, wie
bereits erwähnt, die isolationsbezogene Problematik im folgenden Kapitel bespro-
chen wird, sind auch diesbezügliche Ergänzungsmöglichkeiten hier nicht berück-
sichtigt.

4.2.2 Ausführungen und ihre Semantik
Auf der Basis der Operationen kann nun eine Mehrschicht-Transaktion definiert
werden. Diese Definition erfolgt wie bereits erwähnt rekursiv:
Definition 4-3 (Mehrschicht-TA): Oi (i > 0) sei die Menge der Operationen der

Stufe i ohne die transaktionalen Operationen a und c. Eine Interpretation I(ti)
einer Mehrschicht-Transaktion der Stufe i ist ein Tupel (A,<), wobei A eine ge-
ordnete Menge von Operationen bezüglich der Ordnungsrelation “<“ (siehe
Definition 4-1) darstellt:

Interpretationen von Mehrschicht-Transaktionen bestehen aus einer Menge von
Operationen, deren Ausführungsreihenfolge mit Hilfe einer partiellen Ordnung
(siehe Abschnitt 4.1.2) festgelegt ist. Die eigentlich ausführenden Operationen (e)
sind dabei eine Anforderung an die abstrakte Maschine, eine Transaktion auf der
nächst tiefer liegenden Stufe ausführen zu lassen. Für die Operationen commit und
abort gilt wie beim read/write Modell die Einschränkung, daß diesen Operationen
keine weitere Operation folgen darf. Analog zum read/write-Modell erfolgt die In-
terpretation der Ordnungsrelation.

Operation Semantik

e: execute(t, ok, ok) Führt die Operation ok innerhalb der Transaktion t aus 
und gibt die zugehörige Kompensationsoperation ok an.

c: commit(t) Macht die Änderungen von t dauerhaft und beendet t.

a: abort(t) Führt Kompensationsoperationen aus und beendet t.

Tabelle 4-3: Operationen von Multi-Level-Transaktionen

A xj{ }= xj e a c,{ , } e execute ti ok, ok,( )= ok ok, Oi 1–∈,,∈,

xj xm<
x m A∈( )

∃¬
xj A∈ xj c a{ , }∈,( )

∀

32



Formale Modelle konkurrierender Abläufe
Mehrschicht-Transaktionen4
Bezüglich der Semantik der Operationen ergeben sich grundsätzliche Unterschie-
de zum read/write-Modell:

1. Eine Operation e stellt den Aufruf einer Transaktion der nächst tiefer liegen-
den Ebene dar. Da es sich bei Mehrschicht-Transaktionen um eine Ausprä-
gung der offen geschachtelten Transaktionen handelt, werden die
Änderungen bei einem erfolgreichen Abschluß bereits dauerhaft. Ebenso
dauerhaft muß dann die Information über die Kompensationsaktion gespei-
chert werden.

2. Die commit-Operation der Mehrschicht-Transaktionen entspricht der com-
mit-Operation des read/write-Modells mit der zusätzlichen Aufgabe, Infor-
mationen über eine eventuelle Kompensationstransaktion persistent zu
speichern.

3. Eine abort-Operation kann gegenüber dem read/write Modell weit aus auf-
wendiger sein, da die Änderungen erfolgreicher Sub-Transaktionen bereits
dauerhaft sind. Deshalb müssen Kompensations- oder Gegentransaktionen
ausgeführt werden, die einen persistenten Zustand erzeugen, der äquivalent
zu dem Ausgangszustand der Transaktion ist. Die Ausführung der Kompen-
sationstransaktionen geschieht dabei in umgekehrter zeitlicher Reihenfolge
zur Ausführung der Originaloperationen.

Da Mehrschicht-Transaktionen eine semantische Atomarität garantieren, werden
nach einem Systemausfall automatisch abort-Operationen für aktive Transaktio-
nen eingeleitet. Diese abort-Operationen müssen in einer Reihenfolge ausgeführt
werden, die den Abstraktionsebenen entspricht. Somit erfolgt zunächst der Ab-
bruch der aktiven Transaktionen auf Stufe 0, dann auf Stufe 1 usw.

4.2.3 Persistente Zustände
Eine Zuordnung zwischen persistenten Zuständen und aktuellem Verarbeitungs-
zustand einer Mehrschicht-Transaktion ist einfach möglich. Da, wie bereits be-
schrieben wurde, beim Abschluß jeder Operation deren Ergebnisse dauerhaft ge-
speichert sind, muß diese Tatsache ebenso in der aufrufenden Transaktion
persistent vermerkt sein (um die Atomarität gewährleisten zu können). Somit ist
jeder Zwischenzustand, nach dem erfolgreichen Abschluß einer Operation bzw.
Transaktion der nächst tieferen Ebene, persistent in dem Sinne, daß er einen Sy-
stemausfall überdauert.
33



Formale Modelle konkurrierender Abläufe
Abläufe nach Korth et. al. 4
4.3 Abläufe nach Korth et. al.

Einer der ersten Ansätze, erweiterte Transaktionsmodelle formal zu erfassen, um
Aussagen über deren Korrektheit treffen zu können stammt von Korth et. al.
[KoSp88] [KLS90]. Bemerkenswert an dem Ansatz ist dabei, daß zwei Erweiterun-
gen im Vergleich zum read/write-Modell und den Mehrschicht-Transaktionen vor-
genommen werden:

1. Konsistenzbedingungen werden explizit modelliert.

2. Die Semantik von Kompensationsaktionen wird formal erfaßt.

Grundsätzlich basiert das Modell auf geschachtelten Transaktionen allgemeiner
Art und eignet sich auch für den Bereich der versionierten Datenhaltung. Aller-
dings soll an dieser Stelle nicht näher auf den Versionierungsaspekt eingegangen
werden.

4.3.1 Operationen
Die Operationen der Ausführungsnotation nach Korth et. al. orientieren sich an den
Operationen der offen geschachtelten Transkationen. Die Erweiterungen beziehen
sich auf die Überprüfung von Konsistenzbedingungen:

4.3.2 Ausführungen und ihre Semantik
Da bei dem Ansatz von Korth et. al. Konsistenzbedingungen explizit modelliert

Operation Semantik

e: execute(t, xk, xk) Führt die Subtransaktion xk innerhalb der Transaktion t 
aus und gibt die zugehörige Kompensationsoperation 
xk an.

γ: check(t, ik) Überprüft das Prädikat ik welches eine notwendige Be-
dingung zur Ausführung von xk darstellt.

ε: establish(t, ok) Überprüft das Prädikat ok und beauftragt die Ausfüh-
rungsmaschine mit der Sicherstellung. Dabei be-
schreibt ok den korrekten Endzustand von xk.

c: commit(t) Macht die Änderungen von t dauerhaft und beendet t.

a: abort(t) Führt Kompensationsoperationen aus und beendet t.

Tabelle 4-4: Operationen nach dem Modell von Korth et al.
34



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
werden, müssen die entsprechenden Operationen bei der Ablaufdefinition ange-
geben werden. Ebenso wird gefordert, daß Kompensationsaktionen zum Definiti-
onszeitpunkt bekannt sein müssen.
Definition 4-4 (TA nach Korth): Eine Interpretation I(t) einer Transaktion t

nach Korth et. al. ist ein Tupel (A, <), wobei A eine geordnete Menge von Ope-
rationen bezüglich einer partiellen Ordnung “<“ (siehe Definition 4-1) dar-
stellt:

Eine Transaktion nach Korth et. al. fordert die Definition sowohl von Eingangs-
als auch Ausgangsprädikaten für Sub-Transaktionen. Grundsätzlich wird ange-
nommen, daß es sich bei den Sub-Transaktionen um offen geschachtelte Transak-
tionen handelt, die die Dauerhaftigkeits-Eigenschaft besitzen.
Bezüglich der Standardoperationen e, a und c ergeben sich somit keine Neuerun-
gen gegenüber dem vorherigen Abschnitt. Die Operationen γ und ε verändern da-
gegen die Semantik. Evaluiert ein Prädikat, welches mit einer γ Operation geprüft
wird, zu “Falsch”, bedeutet dies, daß die zugehörige Subtransaktion nicht ausge-
führt und somit die aktuelle Transaktion nicht fortgeführt werden kann. Der ent-
sprechende Fall tritt ein, wenn die Prüfung eines Prädikates auf Grund einer ε
Operation fehlschlägt. Dieser Fall ist jedoch ein zusätzlicher Indikator für die Tat-
sache, daß ein Konflikt mit einer parallel laufenden Transaktion eingetreten ist
(siehe auch Abschnitt 3.1.1).
Da die persistenten Zustände denen des vorherigen Abschnitts gleichen, werden
sie hier nicht weiter diskutiert.

4.4 Abläufe in ConTracts

Wie in der weiteren Darstellung deutlich wird, vereinigt das ConTract-Modell die
Konzepte mehrerer anderer Ansätze. Ein Indikator für diese Tatsache ist die Men-
ge an Grundoperationen, die zur Verfügung stehen.
Da in den bisher vorgestellten Notationen kein Programmiermodell definiert wur-
de, konnte auch keine Aussage über die möglichen Kontrollflußkonstrukte getrof-
fen werden, so daß die Definition der Interpretationen direkt vorgenommen wer-
den mußte. Im Falle der ConTracts gestaltet sich dies etwas komplexer, da mit

A xj{ }= xj e a c γ, ε,,{ , }∈,

xj xi<
xj A∈ xj γ=,( )

∃ xi xk<
xk A∈ xk ε=,( )

∃∧ 
 

xi A∈ xi e=,( )
∀

xj xm<
x m A∈( )

∃¬
xj A∈ xj c a{ , }∈,( )

∀

35



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
ConTracts ein Programmiermodell untrennbar verbunden ist und es somit notwen-
dig ist die Ableitung einer Interpretation von einer Definition genauer zu betrach-
ten.
Aus diesem Grund werden zunächst die Basiselemente und die Struktur eines Con-
Tracts eingeführt, um auf dieser Basis die Operationen und die Semantik einer ent-
sprechenden Maschine definieren zu können. Eine gesonderte Einführung der
Grundelemente wird auch dadurch notwendig, daß ConTracts eine Trennung zwi-
schen ausführenden Teilen (Steps) und Transaktionen vornehmen.
Grundsätzlich kann eine Schablone oder Template eines ConTracts mit einem be-
liebigen Hilfsmittel erstellt werden. In [WäRe92] und [Wäch96] wird hierfür bei-
spielsweise eine Modula-ähnliche Sprache verwendet, während in [Schw95] eine
graphische Notation eingeführt wird. Beiden Ansätzen gemeinsam ist jedoch die
Tatsache, daß die Notationen in eine abstrakte Darstellung übersetzt wird, sobald
eine Instanz eines ConTracts erzeugt wird. Deshalb beschäftigt sich dieser Ab-
schnitt nur mit der formalen Notation von ConTract-Instanzen.

4.4.1 Grundelemente von ConTracts
Wie bereits in [Schw93b],[Schw94],[Seif96] und [RSS97] eingeführt wurde, wird
die Beschreibung einer ConTract-Instanz auf der Basis eines Prädikat-Transitions-
Netzes (PTN) [Brau87] vorgenommen. Wie der Name impliziert, sind PTNs Er-
weiterungen von Petri-Netzen. Diese Erweiterung erfolgt dahin gehend, daß Ver-
bindungen zwischen Stellen und Transitionen mit Prädikaten annotiert sind. Somit
ergibt sich die Semantik. daß ein Token nur dann von einer Stelle zu einer Transi-
tion weiter geleitet werden kann, wenn das entsprechende Prädikat erfüllt ist.
Die weiteren Unterabschnitte erläutern nun die Anwendung des PTN-Prinzips im
Falle von ConTracts.

4.4.1.1 Steps
Steps stellen die aus Sicht der ConTract-Instanz atomaren Operationen dar. Sie
werden mit den Stellen eines PTN assoziiert. Steps modifizieren die privaten Da-
tenobjekte eines ConTracts (Kontext [ReSw95]) und liefern ein Resultat (z.B. er-
folgreich, nicht erfolgreich, Fehler usw.)
Definition 4-5 (Kontext): Der Kontext ςC einer ConTract-Instanz C ist eine

Menge von Kontextvariablen k, mit:

Eine Kontextvariable ist ein Tupel (n,v,w,W), wobei n den Namen, v die Version,
w den aktuellen Wert und W den Typ (oder Wertebereich) der Kontextvariablen re-
präsentiert.

k n v w W,,,( )=
36



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
Auf der Ebene der ConTract-Instanz wird in anwendungsorientierte und verwal-
tungsorientierte Steps unterschieden. Steps der anwendungsorientierten Klasse
haben dabei die Möglichkeit Datenobjekte außerhalb der ConTract-Instanz mit-
tels sogenannter Resource Manager zu manipulieren. Verwaltungsorientierte
Steps operieren im Gegensatz dazu nur auf dem Kontext, wie z.B. ein Step zur In-
krementierung eines Schleifenzählers und haben deshalb auch keine zugeordnete
Kompensationssteps.
Eine wichtige Unterklasse der verwaltungsorientierten Steps sind die transakti-
onsbegrenzenden Steps: BOT, EOT, ABORT. Diese zeigen die Gruppierung von
Steps zu Transaktionen an und haben spezifische Resultate. Beispielsweise hat ein
Step vom Typ EOT zwei mögliche Resultate: erfolgreich und nicht erfolgreich,
während ein Step vom Typ ABORT nur ein Resultat hat1: erfolgreich.
Definition 4-6 (Steps): eine Stepmenge SC einer ConTract-Instanz C ist die Ver-

einigungsmenge der anwendungsorientierten Steps Sa und der verwaltungsori-
entierten Steps Sv. Ein anwendungsorientierter Step sa hat eine zugeordnete
Menge von Resultaten R(sa), sowie eine Menge von Parametern Π(sa). Verwal-
tungsorientierte Steps sv haben ebenfalls eine zugeordnete Menge Parametern
und eine zugeordnete Menge von Resultaten die jedoch beschränkt ist:

Verwaltungssteps stellen interne Verarbeitungssteps für eine ConTract-Instanz
dar. Neben den transaktionalen Verwaltungssteps existiert für jede ConTract-In-
stanz noch mindestens ein spezieller Step der das Ende des ConTracts anzeigt
EOC. Darüber hinaus gibt es weitere Verwaltungssteps, die die Evaluierung,
EVAL, bzw. Etablierung von Invarianten (s. Abschnitt 4.4.1.4) übernehmen,
ESTABLISH.
Wie später noch deutlich werden wird (s. Abschnitt 4.4.3), können Steps auf
Grund von Schleifen in der Definition einer ConTract-Instanz mehrfach ausge-
führt werden. Trotzdem ist es notwendig, die mehrfachen Ausführungen des glei-
chen Steps unterscheiden zu können:
Definition 4-7 (Step-Instanz): Eine Step-Instanz ã eines Steps a einer Con-

Tract-Instanz C ist eine eindeutig identifizierbare Version des Steps a und hat
dieselben Effekte. Auf der Menge der Step-Instanzen {ãi} eines Steps sei eine
Totalordnung “<“ definiert:

1. Diese Vereinbarung entspricht dem presumed abort Protokoll [MoLi83] ohne heuristische Ausgänge

R sv( ) success nosuccess{ , }⊆

Sv BOT EOT ABORT, EOC EVAL ESTABLISH,,,{ , }⊇

ãi ãj< ãi wurde vor ãj erzeugt⇒
37



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
4.4.1.2 Ereignisse
Für eine ConTract-Instanz existieren interne und externe Ereignisse. Interne Ereig-
nisse repräsentieren dabei das Resultat eines Steps während externe Ereignisse frei
definiert werden können. 
Definition 4-8 (Ereignis): Eine Ereignismenge EC einer ConTract-Instanz C ist

die Vereinigungsmenge der internen Ereignisse Ei sowie der externen Ereignis-
se Ee. Ein internes Ereignis ei ist ein Tupel (s, r), wobei s ein Step aus SC und r
aus der Menge der Resultate des Steps R(s) ist. 
Ein externes Ereignis ee ist ein Tupel (◊, b), wobei ◊ einen abstrakten Step au-
ßerhalb der ConTract-Instanz repräsentiert und b ein Bezeichner des Ereignis-
ses ist. Ein Ereignis e repräsentiert einen Wahrheitswert der angibt ob das Er-
eignis eingetreten ist oder nicht und ist somit ein Prädikat.

Für jede ConTract-Instanz muß mindestens das externe Ereignis “start” definiert
sein. Dies wird im weiteren mit dem Tupel (◊, start) bezeichnet.

4.4.1.3 Ablaufprädikate
Zustände einer ConTract-Instanz können mit Hilfe von Prädikaten beschrieben
werden. Dabei ist ein Prädikat eine Konjunktion von Prädikaten, von denen min-
destens eines ein Ereignis repräsentiert. Ebenso zulässig sind Prädikate, die als lo-
gische Ausdrücke über Variablen des Kontext definiert sind. Beispielsweise wird
das Verzweigungsprädikat einer If-Anweisung in der Definition eines ConTract-
Templates mit Hilfe eines solchen Kontext-Wert-abhängigen Prädikates imple-
mentiert.
Definition 4-9 (Ablaufprädikat): Ein Ablaufprädikat p der Menge von Ablauf-

prädikaten PC einer ConTract-Instanz C ist eine Konjunktion von Prädikaten pi,
die eine Disjunktion von Prädikaten dj darstellen.

Prädikate einer ConTract-Instanz stellen eine Konjunktion von Disjunktionen dar
(konjunktive Normalform). Es gilt die Einschränkung, daß zu mindest ein Prädikat
der konjunktiven Verknüpfung ein Ereignis ist. Somit können Prädikate nur nach
dem Eintritt eines speziellen Ereignisses erfüllt sein. 

p p1 p2 … pn∧ ∧ ∧=( ) pi d1 d2 … dm∨ ∨ ∨=( )∧

dj EC∈ dj∨
dj
∀ xkθ xl xk xl, ζC oder konstant θ Vergleichsoperator,∈,=

pi p∈ p p1 p2 … pk … pn∧ ∧ ∧ ∧ ∧=( ) pi pk=( )∧
pk
∃⇔

pipi p∈
∃ d1 d1 EC∈∧=
38



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
Die Elementrelation ∈ aus Definition 4-9, die für konjunktiv verknüpfte Prädikate
eingeführt wurde, soll analog auch für Disjunktionen gelten.

4.4.1.4 Invarianten
Invarianten dienen in ConTracts zur Definition von Isolationsanforderungen und
sind den anwendungsorientierten Steps zugeordnet. D.h., wenn für einen Ablauf
die Notwendigkeit besteht, einen Zustand, der von einem Step “gesehen” wurde,
für einen später auszuführenden Step wieder vorzufinden, kann dies mit Hilfe der
Invarianten dem Ausführungssystem mitgeteilt werden.
Definition 4-10 (Ausgangsinvariante): Eine Ausgangsinvariante ok der Menge

von Ausgangsinvarianten OC einer ConTract-Instanz C ist eine Konjunktion
von Invariantenprädikaten pi:

Da die Details von Invarianten in Kapitel 6 noch näher besprochen werden, wird
an dieser Stelle nicht näher auf die Prädikate pi eingegangen.
Da sich, wie oben schon angedeutet, Invarianten auf einander beziehen, es ist er-
forderlich zunächst ein Hilfskonstrukt einzuführen.
Definition 4-11 (Prädikat-Referenz): Eine Prädikat-Referenz r(ok,pi) mit

pi ∈ ok ist ein Prädikat mit folgender Eigenschaft:

Eine Prädikat-Referenz nimmt genau die Wahrheitswerte an, die das Prädikat der
Ausgangsinvariante annimmt, welches referenziert wird. Mit diesem Hilfskon-
strukt kann nun eine Eingangsinvariante definiert werden.
Definition 4-12 (Eingangsinvariante): Eine Eingangsinvariante ik der Menge

von Eingangsinvarianten IC einer ConTract-Instanz C ist eine Konjunktion von
Prädikaten der folgenden Form:

Eingangsinvarianten sind somit eine Konjunktion von Prädikatreferenzen, die
sich auf Prädikate beziehen, die Teil einer Ausgangsinvarianten sind. Einschrän-
kungen bezüglich der Ausgangsinvarianten, die referenziert werden dürfen, erge-
ben sich aus den Beschränkungen die für Ausführungen gelten (siehe Abschnitt
4.4.4).

ok p1 p2 … pn n 1≥,∧ ∧ ∧=

r ok pi( , ) pi⇔

ik r1 r2 … rn n 1≥,∧ ∧ ∧=

rj r ol pm( , )=
rj ik∈

∀

39



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
4.4.1.5 Transitionen
Eine Transition t ist eine Zuordnung eines Ablaufprädikates zu einem Step der Art,
daß, wenn das Prädikat erfüllt ist, der entsprechende Step ausgeführt werden kann.
Definition 4-13 (Transition): Eine Transition t der Menge von Transitionen TC

einer ConTract-Instanz C ist ein Tupel (p,s), mit:

Transitionen der Notation für ConTract-Instanzen entsprechen somit nahezu Tran-
sitionen aus den PTN bzw. den Petri-Netzen. Unterschiede ergeben sich im Hin-
blick auf das fork-Konstrukt. Während bei den ursprünglichen PTN, das fork-Kon-
strukt durch eine Transition mit mehreren Ausgängen dargestellt werden kann, ist
in der Notation für ConTract-Instanzen die Verwendung mehrerer Transitionen mit
dem gleichen Prädikat notwendig.

4.4.1.6 Pfade
Der Begriff des Pfades wird als ein Hilfskonstrukt eingeführt, da Schleifenkon-
strukte, wie später noch deutlich werden wird, mit Hilfe einer einfachen Partialord-
nung (siehe Definition 4-1) nur schwer formal zu beschreiben sind.
Definition 4-14 (Pfad): Ein Pfad ist eine zweistellige Relation 〈a,b〉 über Steps.

Mit einem Pfad wird somit die Tatsache beschrieben, daß der Abschluß eines Steps
a und somit ein “Resultatsereignis” (e=(a,r)) dieses Steps eine notwendige Bedin-
gung für die Ausführung eines Steps b ist.
Definition 4-15 (Anfangsstep): Ein Step a ist ein Anfangsstep 〈*,a〉 einer Con-

Tract-Instanz wenn gilt:

Analog wird ein Pfad 〈*,b〉* als Anfangsstück einer ConTract-Instanz bezeich-
net, wenn gilt

Ein Anfangsstück einer ConTract-Instanz ist ein Pfad, für den gilt, daß die Ausfüh-
rung des ersten Steps des Pfades direkt vom Startereignis der ConTract-Instanz ab-

p PC∈ s SC∈∧

a b,〈 〉 a b, SC∈∧ ti p b( , )=
ti TC∈

∃ pj e Ei∈=( ) e a r( , )=∧
pj p∈

∃∋⇒

a b,〈 〉 b c,〈 〉∧ a c,〈  〉+⇒ a b,〈  〉+ b c,〈 〉∧ a c,〈  〉+⇒ a b,〈 〉 a b,〈  〉+∨ a b,〈 〉∗⇒
b c,〈  〉* a d,〈  〉*∈ a b,〈  〉*∃ b c,〈  〉*∃ c d,〈  〉*∃ Elementfunktion∧ ∧⇒

ti p a( , )= pj e Ee∈=( ) e ◊ start( , )=∧
pj p∈

∃∧
ti TC∈

∃

* a,〈 〉∃ a b,〈  〉*∃∧
40



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
hängt.

4.4.2 Strukturelle Beschränkungen
Die beliebige Kombination der bisher eingeführten Grundelemente kann wegen
semantischer Mehrdeutigkeiten nicht zugelassen werden. Da beispielsweise die
transaktionalen Operationen in ihrer Reihenfolge den Strukturbeschränkungen
geschlossen geschachtelter Transaktionen unterliegen, sind entsprechende Ein-
schränkungen notwendig.

4.4.2.1 Beschränkungen für Invarianten
Invarianten sind notwendigerweise anwendungsorientierten Steps zugeordnet.
D.h. ein Step kann maximal eine Ausgangsinvariante und eine Eingangsinvariante
besitzen. Da außerdem Eingangsinvarianten nur über Referenzen auf Ausgangs-
invarianten aufgebaut werden können, darf die Evaluierung einer Eingangsinvari-
ante erst erfolgen wenn alle referenzierten Ausgangsinvarianten etabliert wurden.
Bedingung 4-1: Für alle Invarianten einer ConTract-Instanz C müssen folgen-

de Bedingungen erfüllt sein1:

Anmerkung: Der zweite Teil der Bedingung drückt aus, daß alle referenzierten
Ausgangsinvarianten vor der referenzierenden Invarianten etabliert sein müssen.
Das verwendete Kriterium scheint etwas komplex zu sein, ist jedoch notwendig,
da die Pfadrelation keine Schleifen berücksichtigt.

4.4.2.2 Transaktionale Blöcke
Obwohl nicht-transaktionale Ausführungsteile in der ursprünglichen Fassung des
ConTract-Modells angedacht waren und auch in neuesten Erweiterungen wieder
aufgegriffen wurden [Seif96] [RSS97], können diese im Rahmen dieser Arbeit
nicht berücksichtigt werden. Entsprechend restriktiv sind die hier vorgestellten
Strukturbeschränkungen.
Definition 4-16 (Transaktionaler Block): Ein transaktionaler Block τ einer

1. Anstatt der Schreibweise EVAL(i) und ESTABLISH(o) wird hier nur kurz i bzw. o verwendet.

ik s,〈 〉∃ s SC Sa∩( )∈∧
ik IC∈( )

∀ s ok,〈 〉∃ s SC Sa∩( )∈∧
ok OC∈( )

∀∧

ik ol,〈  〉* * ol,〈  〉*∉
ol ik,〈  〉*( )

∃
ri ik IC∈ ∈ ri ol pj( , )=,( )

∀

41



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
ConTract-Instanz C ist ein Tupel (sa, Sτ, Tτ, Nτ) mit folgenden Eigenschaften:

sa heißt Anfangsstep des Blockes und jedes Element aus Nτ heißt Endstep des
Blockes.

Ein transaktionaler Block ist somit eine Menge von Steps und Transitionen mit der
Eigenschaft, daß es genau einen Step gibt (BOT) mit dem der Block beginnt, und
von dem aus alle anderen Steps des Blockes erreicht werden können. Zusätzlich
wird gefordert, daß es nur einen Step gibt, der den transaktionalen Block erfolg-
reich abschließen kann (EOT), und ebenso existiert nur eine Step der die Transak-
tion abbricht (ABORT). Die Einschränkung der Vorbedingung zur Ausführung der
Steps in den zugeordneten Transitionen schließt aus, daß zwei Endsteps gleichzei-
tig ausgeführt werden können. Ein Verlassen des primitiven transaktionalen
Blocks ist nur über Endsteps möglich (notwendige Bedingung für die entsprechen-
den Transitionen). Steps, die weder Anfangs- noch Endsteps sind, können transak-
tionalen Verwaltungssteps sein, wenn sie wiederum Anfangs- oder Endstep eines
transaktionalen Blockes sind, der vollständig in dem anderen enthalten ist.
Somit repräsentiert ein transaktionaler Block eine Zusammenfassung von Steps zu
einer geschlossen geschachtelten Transaktion.

4.4.2.3 Kompensationsblock
Wie bereits in Abschnitt 3.6.2 eingeführt wurde, muß zu jedem anwendungsorien-
tierten Step ein sogenannter Kompensationsstep definiert sein. Da diese Kompen-
sationssteps im Bedarfsfall ebenso unter dem Schutz einer ACID-Transaktion ab-

Sτ SC\ EOC{ }⊆ Tτ TC⊆ Nτ Sτ⊆ sa Sτ∈ sa BOT τ( )=∧ ∧ ∧ ∧

sa sj,〈  〉*
sj Sτ∈ \ sa{ }( )

∀ skti TC\Tb∈ ti p s, k( )= sk Sτ∈∧,( )
∀∧ sa=

Nτ sc sa{ , }= sc EOT τ( )= sa ABORT τ( )=∧ ∧

pi sj r( , )= sj Nτ∈∧
pi p∈( )

∃
tk Tτ∈ tk p s, m( )= sm Sτ∉∧,( )

∀

si sk≠ pk pi∩ ∅=⇒
ti tk, Tτ∈ tk pk s, k( )= ti pi s, i( )= si sk, Nτ∈∧ ∧,( )

∀

mit
τ' ta S' T' N',,( , )=( )

∃
si Sτ\ Nτ sa{ }∪( ) si BOT EOT ABORT,{ , }∈∧∈( )

∀

S' Sτ⊂ T' Tτ⊂ N' Sτ\Nτ⊆ si tat= si N'∈∨( )∧ ∧ ∧
42



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
laufen, gibt es für ihre Repräsentation in einer ConTract-Instanz entsprechende
Anforderungen.
Definition 4-17 (Kompensationsblock): Ein Kompensationsblock k der Menge

der Kompensationsblöcke KC einer ConTract-Instanz C ist ein transaktionaler
Block τ =(sa, Sτ, Tτ, Nτ) mit:

Die Vereinigung aller Steps einer ConTract-Instanz, die in Kompensations-
blöcken enthalten sind, wird mit SC bezeichnet:

Somit enthält ein Kompensationsblock nur einen anwendungsorientierten Step,
der den eigentlichen Kompensationsstep darstellt.
Die Zuordnung von Kompensationsblöcken zu Steps erfolgt nicht über die Defi-
nition eines Pfades sondern rein deklarativ.
Definition 4-18 (Kompensationszuordnung): Eine zweistellige Relation

comp(s, k) ist die Zuordnung eines Kompensationsblockes k zu einem Step s.

4.4.2.4 Struktur einer ConTract-Instanz
Mit den eingeführten Definitionen und Bedingungen lassen sich nun die notwen-
digen strukturellen Einschränkungen einer ConTract-Instanz formulieren.
Definition 4-19 (ConTract-Instanz): Eine ConTract-Instanz C ist ein 8-Tupel

(SC, TC, KC, EC, PC, IC, OC, ςC), wobei SC eine Menge von Steps, TC eine Men-
ge von Transitionen, KC eine Menge von Kompensationsblöcken, EC eine Men-
ge von Ereignissen, PC eine Menge von Ablaufprädikaten, IC eine Menge von
Eingangsinvarianten, OC eine Menge von Ausgangsinvarianten und ςC der
Kontext ist.

Um die Einschränkungen bezüglich der Struktur einer ConTract-Instanz zusam-
menzufassen wird ein sogenanntes Wohlgeformtheitskriterium (engl. well-for-
medness) eingeführt. Folgende Beschränkungen beschreiben dabei die notwendi-
gen Kriterien für die Wohlgeformtheit:
Bedingung 4-2: Alle anwendungsorientierten Steps sind in einem transaktio-

nalen Block enthalten:

s Sa∈
s Sτ∈

∃ si Sa∉
si Sτ\ s{ }∈

∀∧

SC si Sk∈
k KC∈ k sa Sk Tk Nk,,( , )=,( )

∃
si( )
∪=

si Sτ∈
τ sa Sτ Tτ Nτ,,( , )=( )

∃
si SC Sa∩∈( )

∀

43



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
Bedingung 4-3: Für jeden anwendungsorientierten Step, der nicht in einem
Kompensationsblock enthalten ist, gibt es einen zugeordneten Kompensations-
block:

Bedingung 4-4: Es gibt mindestens eine Transition, die das Startereignis als
Triggerbedingung enthält:

Bedingung 4-5: Alle Steps, die nicht in einem Kompensationsblock enthalten
sind, sind von dem Startereignis erreichbar und es existiert ein Endstep der Con-
Tract-Instanz, der von diesen Steps erreichbar ist:

Definition 4-20 (Wohlgeformtheit): Eine ConTract-Instanz ist wohlgeformt,
wenn sie die Bedingungen 4-1 bis 4-5 erfüllt.

4.4.3 Interpretation einer ConTract-Instanz
Im Gegensatz zu den bisher eingeführten formalen Ablaufnotationen ist es durch
die exakte Definition einer ConTract-Instanz möglich, die zugehörige Definition
einer Interpretation ebenfalls sehr exakt zu fassen.
Hierzu soll zunächst der Vorgang der Interpretation durch ein Regelwerk erläutert
werden:
Regel 4-1 (Ereignisregel): Tritt ein Ereignis e aus der Menge der Ereignisse EC

einer ConTract-Instanz C ein, werden alle Transitionen aus TC ermittelt, die das
Ereignis in ihrem Prädikatteil enthalten. Für jede dieser Transitionen wird das
Ereignis durch den Wahrheitswert “TRUE” ersetzt.

Regel 4-2 (Transitionsregel): Ist das Prädikat p einer Transition t=(p,a) aus
der Menge der Transitionen TC einer ConTract-Instanz C erfüllt, wird eine Step-
Instanz ã für den Step a erzeugt und zur Ausführung gebracht. In allen Transi-
tionen die in ihrem Prädikatteil ein Resultatsereignis des Steps enthalten
e=(a,r), wird der Stepteil in dem Ereignis durch die Stepinstanz ersetzt e=(ã,r).
Das Prädikat p wird durch seine ursprüngliche Definition ersetzt.

Regel 4-3 (Stepausführung): Soll eine Step-Instanz ausgeführt werden (Regel

comp si kj( , )
kj KC∈( )

∃
si SC\SC( ) Sa∩∈( )

∀

t p s( , )= e
e p∈

∃∧
t TC∈( )

∃ ◊ start( , )=

* si,〈  〉*
si SC\SC∈( )

∀

si se,〈  〉*
si SC\ SC se{ }∪( )∈( )

∀
se SC\SC∈ se EOC C( )=,( )

∃

∧

44



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
4-2) so wird nach dem Typ der Step-Instanz unterschieden. 
Handelt es sich um einen anwendungsorientierten Step wird ein Auftrag an ei-
nen Step-Server veranlaßt (execute). 
Ist es eine transaktionale verwaltungsorientierte Step-Instanz wird die entspre-
chende transaktionale Operation ausgelöst (BOT, EOT, ABORT).
Bei einer verwaltungsorientierten Step-Instanz bezüglich Invarianten wird eine
entsprechende Operation zur Etablierung bzw. Evaluierung ausgelöst.

Regel 4-4 (Kompensationsregel): Tritt das externe Ereignis e=(◊,compensa-
te) ein, werden alle aktiven Transaktionen abgebrochen und die Kompensati-
onsblöcke in umgekehrter Reihenfolge zu den Step-Instanzen ausgeführt, denen
sie zugeordnet sind.

Somit ergeben sich folgende Basisoperationen einer abstrakten Maschine zur
Ausführung von ConTract-Instanzen.

Operation Semantik

e: execute(C,t, ãj, k) Führt die Step-Instanz ãj einer ConTract-Instanz C in-
nerhalb der Transaktion t aus und gibt den zugehörigen 
Kompensationsblock k an.

γ: check(C, t,ij,ãj) Überprüft die Invariante ij, welche eine notwendige 
Bedingung zur Ausführung eines Step-Instanz ãj dar-
stellt.

ε: establish(C, t,oj,ãj) Überprüft die Ausgangsinvariante oj und beauftragt 
die Ausführungsmaschine mit der Sicherstellung. Da-
bei beschreibt oj einen Zustand nach der Ausführung 
von ãj.

b: BOT(C,t) Beginnt eine Transaktion bezüglich einer Elterntrans-
aktion. Wenn t einen Null-Wert annimmt handelt es 
sich um eine Top-Level-Transaktion

c: EOT(C,t) Beendet t und macht die Änderungen von t dauerhaft, 
wenn es sich bei t um eine Top-Level-Transaktion han-
delt. 

a: abort(C,t) Macht die Änderungen von t rückgängig.

k: compensate(C) Leitet die Kompensation einer ConTract-Instanz ein.

Tabelle 4-5: Operationen für das ConTract Modell
45



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
Wie Tabelle 4-5 zu entnehmen ist, bestehen die Operationen einer abstrakten Ma-
schine zur ConTract-Bearbeitung aus einer Kombination der Operationen nach
Korth et. al. (siehe Abschnitt 4.4.3) und den Operationen zur Abwicklung ge-
schlossen geschachtelter Transaktionen. Neu hinzugekommen sind lediglich eine
explizite Operation zur Kompensation sowie eine Operation zur Beendigung der
Bearbeitung einer ConTract-Instanz.
Erwähnenswert ist dabei die Besonderheit, daß die Operationen zur Etablierung
bzw. Evaluierung von Invarianten unter der gleichen ACID-Transaktion ablaufen
wie die Ausführung der Step-Instanz, der sie zugeordnet sind (siehe Bedingung 4-1
und 4-3).

4.4.4 Ausführungen und ihre Semantik
Eine formale Darstellung der Ausführung einer Contract-Instanz bzw. der Interpre-
tation derselben, abstrahiert noch weiter von dem ursprünglich definierten Templa-
te. So ist aus dieser Interpretation nicht mehr nachvollziehbar, wie die Reihenfolge
der Abarbeitung zustande kam.
Definition 4-21 (ConTract-Interpretation): Eine Interpretation I(C) einer

wohlgeformten ConTract-Instanz C ist ein Tupel (A,<), welches durch die Re-
geln 4-1 bis 4-4 erzeugt wurde. Die Menge A={e,γ,ε,b,c,a,k,f} stellt eine geord-
nete Menge von Operationen o bezüglich der Partialordnung “<“ mit folgender
Eigenschaft dar:

Existiert ein Pfad zwischen zwei Operationen oi und ok in einem ConTract-Tem-
plate, so gilt die Partialordnung für alle Instanzen dieser Operationen.
Da die Interpretation zwingend nach den eingeführten Regeln aus einer Instanz
hervor ging, sind in dieser Definition keine zusätzlichen Einschränkungen notwen-
dig. Da auch die Semantik der Operationen bereits mit in den Regeln besprochen
wurde, soll auch hier keine weitere Ergänzung gemacht werden.
Anders verhält sich dies bezüglich der Semantik des Ablaufes als Ganzes. Für Con-
Tracts wird die Fortsetzbarkeit garantiert, was bedeutet, daß nach einem System-
ausfall alle offenen Transaktionen zurückgesetzt werden und die Verarbeitung
dann nach Vorne fortgesetzt wird, d.h. der Ablauf wird damit fortgesetzt, daß die

f: EOC(C) Beendet die Ausführung einer ConTract-Instanz C und 
löscht Invarianten.

Operation Semantik

Tabelle 4-5: Operationen für das ConTract Modell

oi ok,〈 〉 in C õi õk<⇒
46



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
BOT Operationen der abgebrochenen Top-level-Transaktionen erneut ausgeführt
werden.
Auch die Reaktion auf das Kompensationsereignis soll noch etwas eingehender
besprochen werden. Wie bereits gesagt, hält die compensate Operation einen ak-
tiven Ablauf an, bricht alle aktiven Transaktionen ab und setzt den Ablauf mit der
Abarbeitung der Kompensationsblöcke fort. Dies kann als eine Erweiterung der
Menge A sowie der Partialordnung aufgefaßt werden und somit als eine Modifi-
kation des Ablaufs selbst. Diese spielt insbesondere deswegen eine Rolle, da im
Fehlerfalle der Vorgang auch während der Kompensation wieder fortsetzbar und
somit wieder herstellbar sein muß. Somit erzeugt die Ausführung der compensate-
Operation einen persistenten Zustand, aus dem sich die Kompensationsoperatio-
nen und ihre Abarbeitungsreihenfolge ableiten lassen.

4.4.5 Ein Anwendungsbeispiel
Anhand des eingeführten Beispiels aus Kapitel 2 kann ein Eindruck davon gege-
ben werden, wie die Umsetzung von der Definition der Schablone bis hin zu der
Interpretation erfolgt. Da die vollständige Präsentation der verschiedenen Stufen
der Abstraktion an dieser Stelle zu umfangreich werden würde, beschränkt sich
die Diskussion auf die Umgebung eines spezifischen Steps: “Antragstellung” (sie-
he Abbildung 2-1 auf Seite 8).
Der Step “Antragsstellung” soll nach dem dargestellten Kontrollfluß nach dem
Step “Dokumentenbereitstellung” und vor dem Step “Überprüfung der Zulässig-
keit” ausgeführt werden. Wie in Tabelle 2-1 auf Seite 11 zusätzlich erläutert wird
ist die zugeordnete Kompensation der leere Step. Da keine weiteren Aussagen
über Transaktionsgrenzen und Invarianten getroffen werden, wird implizit sowohl
angenommen, daß der Step unter einer Top-Level-Transaktion ausgeführt wird,
als auch daß die Invarianten dem Prädikat “TRUE” entsprechen und somit einen
konstanten Wahrheitswert annehmen.

4.4.5.1 Darstellung als Instanz
Umgesetzt in die Notation für ConTract-Instanzen ergibt dies für die betrachtete
Teilmenge der Steps:.

Step Bedeutung

a1: EOT(t1) Beendet vorhergehende Transaktion

a2: BOT(t2) Beginnt neue Transaktion

Tabelle 4-6: Steps der ConTract-Instanz für das Beispiel
47



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
Diesen Steps sind natürlich entsprechende Resultatsereignisse zugeordnet. Um die
Darstellung nicht unnötig komplex zu gestalten, werden nicht alle Fälle aufgeführt.
So haben beispielsweise die Steps für die Kompensation entsprechende Ereignisse
wie die “normalen” Steps und allen Steps außer den ABORT-Steps ist normaler-
weise auch ein “nicht erfolgreich” Ereignis zugeordnet.

a3: EVAL(i=TRUE) Evaluiert Eingangsinvariante von “Antrags-
stellung”

a4: “Antragsstellung” Eigentlicher Step

a5: ESTABLISH(o=TRUE) Etabliert Ausgangsinvariante

a6: EOT(t2) Beendet die Transaktion um “Antragsstel-
lung”

a7: ABORT(t2) Setzt Transaktion zurück

a8: BOT(t3) Beginnt Transaktion für Kompensations-
step

a9: NullStep Kompensationsstep

a10: EOT(t3) beendet Transaktion für Kompensationsstep

a11: ABORT(t3) Setzt Transaktion für Kompensationsstep 
zurück

Ereignis Bedeutung

e1: (a1, SUCCESS) Vorhergehende Transaktion erfolgreich

e2: (a2, SUCCESS) Beginn neuer Transaktion erfolgreich

e3: (a3, SUCCESS) Evaluierung der Eingangsinvarianten erfolgreich

e4: (a4, SUCCESS) Eigentlicher Step war erfolgreich

e5: (a4, NOSUCCESS) Step “Antragsstellung” war nicht erfolgreich

e6: (a5, SUCCESS) Etablierung der Ausgangsinvariante war erfolgreich

Tabelle 4-7: Ereignisse der ConTract-Instanz für das Beispiel

Step Bedeutung

Tabelle 4-6: Steps der ConTract-Instanz für das Beispiel
48



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts4
Mit Hilfe der Ereignisse und der Steps können nun die Transitionen definiert wer-
den. Auch hier wird wiederum auf die explizite Darstellung der Transitionen für
den Kompensationsblock verzichtet, da die entsprechenden Transitionen analog
festgelegt sind.

e7: (a6, SUCCESS) Transaktion um “Antragsstellung” erfolgreich abge-
schlossen

e8: (a6, NOSUCCESS) Abschluß der Transaktion nicht erfolgreich.

e9: (a7, SUCCESS) Transaktion zurückgesetzt

Transition Bedeutung

t1: (e1,s2) Erfolgreicher Abschluß der vorigen Transaktion 
startet die Transaktion für “Antragsstellung”

t2: (e2, s3) Wenn Transaktion begonnen wurde, evaluiere Inva-
riante

t3: (e3, s4) Wenn Evaluierung erfolgreich, starte “Antragsstel-
lung”.

t4: (e4, s5) Wenn “Antragstellung” erfolgreich leite Etablierung 
der Ausgangsinvarianten ein.

t5: (e5, s7) Wenn “Antragstellung” nicht erfolgreich setze 
Transaktion zurück

t6: (e6, s6) Wenn Etablierung der Ausgangsinvariante erfolg-
reich, schließe Transaktion ab

t7: (e7, Nextstep) Wenn Transaktion um “Antragsstellung” erfolgreich 
abgeschlossen, starte Nextstep

t8: (e8, s2) Transaktionsabschluß nicht erfolgreich, somit 
Transaktion zurückgesetzt. Starte Transaktion er-
neut.

t9: (e9, s2) Transaktion zurückgesetzt; Neustart

Tabelle 4-8: Transitionen der ConTract-Instanz für das Beispiel

Ereignis Bedeutung

Tabelle 4-7: Ereignisse der ConTract-Instanz für das Beispiel
49



Formale Modelle konkurrierender Abläufe
Abläufe in ConTracts 4
4.4.5.2 Grafische Darstellung
Da die Zusammenhänge der mengenorientierten Darstellung nur schwer nachvoll-
ziehbar sind, wird in Abbildung 4-2 eine grafische Repräsentation des Ausschnitts
der ConTract-Instanz gegeben.

4.4.5.3 Interpretation
Das Problem der Interpretation einer ConTract-Instanz ist bereits an dem relativ
simplen Ausschnitt zu erklären. Betrachtet man die Transitionen t8 und t9 so stellt
man fest, daß durch diese Transitionen ein Zyklus in der Instanz entsteht, d.h. die
Steps a2 bis a7 können mehrfach durchlaufen werden. Ebenso wird durch die Defi-
nition mehrerer Transitionen, die auf unterschiedlichen Ereignissen eines Steps de-
finiert sind eine bedingte Verzweigung modelliert, so daß auf Grund der vorliegen-
den Spezifikation des Ausschnittes der Instanz nicht festgelegt ist, wie die
Interpretation, die durch eine tatsächlichen Ausführung entsteht, aussehen wird.
Trotzdem soll für eine fiktive Ausführung eine Darstellung einer Instanz gegeben
werden.
Für die fiktive Ausführung soll angenommen werden, daß die Steps a1 bis a3 zu-
nächst erfolgreich durchlaufen werden und dann die Ausführung von Step a4 fehl-
schlägt. Anschließend soll Step a7 erfolgreich durchlaufen werden und die nachfol-
genden Steps a2 bis a6 ebenfalls erfolgreich abgeschlossen werden.
Folgende Tabelle gibt somit Aufschluß über die Menge A der ausgeführten Opera-

 Abbildung 4-2: Grafische Darstellung des Beispielausschnitts

a1 a2 a3 a4 a5 a6

a7

e1 e2 e3 e4

e5

e6 e7

e8
e9

t1 t2 t3 t4

t5

t6 t7

t8

t9

transaktionaler Block

a1

transaktionaler
Step

a3

Invarianten
Step

a4

Anwendungs-
Step
50



Formale Modelle konkurrierender Abläufe
Weitere Notationen4
tionen:.

Die geltende Partialordnung ist in diesem Fall intuitiv durch die Indizierung der
Operationen klar. Bei dem betrachteten Ausschnitt ist dies auch trivial, da keine
Steps parallel ausgeführt wurden und somit die Partialordnung einer Totalordnung
entspricht.

4.5 Weitere Notationen

Neben den vorgestellten Notationen gibt es noch weitere, die jedoch entweder kei-
nen weiteren Beitrag zu dem eigentlichen Thema dieser Arbeit leisten oder aber
nur zur Beurteilung anderer Modelle entwickelt wurden. Trotzdem werden sie an
dieser Stelle berücksichtigt, um einen tieferen Einblick in die Tätigkeiten auf die-
sem Gebiet zu geben.

4.5.1 ECA-Regeln
Äußerst flexibel ist der Ansatz von Dayal et. al. [DHL90][DHL91]. Durch die
Einführung der sogenannten ECA-Regeln (Event-Condition-Action) erhält man
potentiell die gleiche Ausdrucksmächtigkeit wie durch die hier verwendeten PTN
zur Beschreibung einer ConTract-Instanz. Allerdings wird keine Aussage über

Step-
Instanz

von 
Step Operation

ã1,1 a1 o1=c=EOT(C,t1)

ã2,1 a2 o2=b=BOT(C,t2)

ã3,1 a3 ο3=γ=check(C,t2,i)

ã4,1 a4 o4=e=execute(C,t2,ã4,1,k)

ã7,1 a7 o5=a=abort(C,t2)

ã2,2 a2 o6=b=BOT(C,t2)

ã3,2 a3 ο7=γ=check(C,t2,i)

ã4,2 a4 o8=e=execute(C,t2,ã4,2,k)

ã5,1 a5 o9=ε=establish(C,t2,o)

ã6,1 a6 o10=c=EOT(C,t2)

Tabelle 4-9: Operationen einer Interpretation
51



Formale Modelle konkurrierender Abläufe
Weitere Notationen 4
Einschränkungen gemacht und auch kein Kriterium für die Wohlgeformtheit defi-
niert, so daß als Folge davon auch keine Korrektheitsaussagen möglich sind.
Eine weitere Eigenschaft der ECA-Regeln verschärft dieses Problem weiter. Durch
die Einführung sogenannter Kopplungsmodi (engl. coupling modes), die es ermög-
lichen, die Auswertung einer Regel zu verzögern oder sogar von einer aktuell lau-
fenden Transaktion abzuspalten, läßt sich keine Aussage mehr über die (transaktio-
nale) Semantik eines Ablaufs treffen.
Trotz der Tatsache, daß es auf der Basis der ECA-Regeln nicht möglich ist, Aussa-
gen die Korrektheit eines Ablaufs zu treffen, sind diese mit als Einzigste der hier
vorgestellten Notationen (außer den ACID-Transaktionen) zumindest teilweise im-
plementiert - sogenannte aktive Datenbanksysteme [Daya88] bieten meist eine
Teilmenge der Möglichkeiten der ECA-Regeln an.

4.5.2 ACTA
Der sogenannte ACTA-Formalismus [ChRa90][ChRa92] wurde entwickelt, um
den Vergleich von transaktionalen Ablaufmodellen zu ermöglichen. Da der Forma-
lismus im Kontext der “erweiterten Transaktionsmodelle” (engl. extended transac-
tion models) entstand, basiert der Ansatz auf der axiomatischen Erfassung der Mo-
delle und der prädikatenlogischen Beschreibung der Abhängigkeiten der
transaktionalen Operationen. Somit werden die Modelle nicht als Ganzes von dem
Formalismus beschrieben, sondern nur ihre transaktionalen Eigenschaften (siehe
Abschnitt 2.2.2.4).
Eine Besonderheit von ACTA ist die Möglichkeit, auch Datenkonflikte formal er-
fassen zu können, was durch das Invariantenkonzept der ConTracts abgedeckt
wird. ACTA verfolgt in diesem Bereich aber einen sehr flexiblen Ansatz, wodurch
die Modellierung verschiedenster Konfliktrelationen (siehe Kapitel 5) möglich
wird.
Neuere Arbeiten versuchen, den Ansatz für die Synthese von Transaktionsmodel-
len zu erschließen [ChRa94], um so aus einer formalen Spezifikation der Anforde-
rungen ein Transaktionsmodell generieren zu können.

4.5.3 Abhängigkeitsregeln nach Klein
Eng verwandt mit dem ACTA-Modell ist der Ansatz von Klein [Klei91]. Der An-
satz von Klein hat zum Ziel, die transaktionale Semantik verteilter Abläufe formal
zu beschreiben. Die dazu verwendete Notation basiert ebenfalls auf der Definition
von Abhängigkeiten transaktionaler Ereignisse, wie z.B. create, commit und abort.
Unterschiede zu dem in ACTA gewählten Ansatz ergeben sich bei der Mächtigkeit
der gewählten Notation. Während ACTA auf Prädikatenlogik basiert, verwendet
Klein Ausdrücke der Aussagenlogik zur Beschreibung der Abhängigkeiten.
52



Formale Modelle konkurrierender Abläufe
Weitere Notationen4
Erwähnenswert ist jedoch, daß die Arbeiten von Klein in eine Architektur eines
Laufzeitsystems umgesetzt wurden [Günt96], während das ACTA Modell bisher
nur zu theoretischen Beurteilungen oder zu Spezifikationen eingesetzt wird. 
53



Korrektheit
Grundlagen 5
5 Korrektheit

Die im vorigen Kapitel eingeführten Modelle dienen dazu Vorgänge formal zu er-
fassen. Darüber hinaus stellen sie aber auch eine Notation zur Verfügung, die eine
Automatisierung ermöglicht. Im Folgenden soll die Definition eines Vorganges,
die mittels einer der formalen Notationen erstellt wurde, als Ablauf bezeichnet wer-
den. Die automatisierte Abwicklung eines solchen Ablaufs wird als Ausführung
bezeichnet.
Die Besonderheit transaktionaler Ablaufmodelle besteht darin, daß diese zumin-
dest teilweise die Semantik von Abläufen festlegen. Damit für eine Ausführung be-
urteilt werden kann, ob die semantischen Vorgaben erfüllt wurden, wird üblicher-
weise ein formales Korrektheitskriterium eingeführt. In diesem Kapitel werden
verschiedene solcher Korrektheitskriterien vorgestellt und ein neues Kriterium für
das ConTract-Modell entwickelt.
Wie sich im Verlauf dieses Kapitels noch zeigen wird, können zwei Arten von Kri-
terien unterschieden werden:

1. Kriterien, die es erlauben, die Korrektheit abgeschlossener Ausführungen zu
beurteilen.

2. Kriterien, die es zu jedem Zeitpunkt einer Ausführung erlauben, die Korrekt-
heit zu beurteilen.

Da das Ziel transaktionaler Ausführungsmodelle die Bereitstellung eines Laufzeit-
systems zur Garantie der semantischen Vorgaben ist, liegt klar auf der Hand, daß
Kriterien der ersten Kategorie schlecht für die reale Umsetzung geeignet sind. Al-
lerdings lassen sich mit diesen Kriterien die Menge von zulässigen Abläufen relativ
einfach definieren weshalb sie als Referenz herangezogen werden.

5.1 Grundlagen

Trotz der Unterschiede im Detail beruhen alle Korrektheitskriterien auf ähnlichen
Grundbegriffen und formalen Konstruktionen. Dieser Abschnitt stellt diese ge-
meinsamen Grundbegriffe vor. 

5.1.1 Historien
Wie eingangs dieses Kapitels erwähnt, beschäftigen sich Korrektheitskriterien mit
der Beurteilung von Ausführungen. Zu diesem Zweck ist es zunächst notwendig,
54



Korrektheit
Grundlagen5
eine Ausführung selbst formal beschreiben zu können. Ein Ansatz hierfür ist die
Definition sogenannter Historien [BHG87], die ursprünglich zur Entwicklung von
Korrektheitskriterien für ACID-Transaktionen entwickelt wurden. Verallgemei-
nert man aber das Konzept der Historien auf der Basis der im Kapitel 4 eingeführ-
ten abstrakten Maschinen, lassen sich damit sehr viele transaktionale Ablaufmo-
dellen beschreiben.
Definition 5-1 (Historie): Eine Historie H eines Systems zur Ausführung von

Abläufen, die mit einer bestimmten abstrakten Maschine ausgeführt werden
können, ist ein Partialordnung (Σ, <H), wobei Σ die Menge der von der abstrak-
ten Maschine ausgeführten Operationen und “<H“ eine binäre, nicht reflexive
und transitive Relation ist. Die Partialordnung bestimmt die Reihenfolge, in der
die Operationen ausgeführt wurden, sofern diese Reihenfolge bedeutsam ist.

Eine wichtige Grundannahme bei Historien ist, daß Operationen der abstrakten
Maschine atomar sind und somit nur dann in der Historie erscheinen, wenn sie
vollständig ausgeführt wurden. Da die parallele Bearbeitung von Operationen zu-
gelassen wird, handelt es sich bei der Relation “<H“ nicht um eine Totalordnung.
Definition 5-2 (Präfix): Ein Präfix H’ einer Historie H ist eine Partialordnung

(Σ’, <’) mit:

Ein Präfix einer Historie ist eine Einschränkung der Menge der Operationen der-
art, daß für jede Operation in der reduzierten Menge auch alle Vorgängeroperatio-
nen bezüglich der Ordnungsrelation <H in der reduzierten Menge enthalten sind.

5.1.2 Kommutativität und Konflikte
Als Basis aller hier besprochenen Korrektheitskriterien dienen Historien, deren
Korrektheit trivialerweise erfüllt ist. Eine konkret gegebene Historie gilt dann als
korrekt, wenn sie durch eine endliche Anzahl von Umordnungen der Operationen
in eine als korrekt definierte Historie überführt werden kann.
Hierzu muß zunächst geklärt werden, welche Umordnungen zulässig sind und
welche nicht. Ein weit verbreitetes Kriterium ist dabei die Kommutativität
[Papa86] von Operationen:
Definition 5-3 (Kommutativität): Zwei Operationen a und b einer Historie H

sind kommutativ, wenn gilt, daß das Ergebnis der Ausführungsfolge “ab” mit
dem Ergebnis der Ausführungsfolge “ba” identisch ist.

Umgangssprachlich formuliert bedeutet die Kommutativität zweier Operationen,
daß es keine Rolle spielt ob zuerst die eine und dann die andere Operation ausge-
führt wird oder ob dies umgekehrt geschieht. Aus formaler Sicht liegt die eigent-

Σ' Σ⊆ a b<H a b<’⇔
a b, Σ'∈

∀ 
  b a<H b Σ'∈⇒

b Σ∈
∀

a Σ'∈
∀ 

 ∧ ∧
55



Korrektheit
Grundlagen 5
liche Problematik in der Definition der Identität. Obwohl intuitiv angenommen
wird, daß hierbei die Identität der Werteausprägungen aller berührten Datenobjekte
gemeint ist, muß dies nicht unbedingt der Fall sein. Beispielsweise können die zwei
Ausführungsfolgen aus einer Anwendungssicht identisch in dem Sinne sein, daß
nur eine bestimmte Bedingung erfüllt sein muß (z.B. Kontostand größer 1000). So-
mit wird der Begriff der Identität irreführend und es bietet sich an, ein alternatives
Kriterium zu benutzen.
Eine weit verbreitete Alternative zur Verwendung der Kommutativität als Basis ei-
nes Korrektheitskriteriums ist die Einführung einer sogenannten Konfliktrelation.
Statt zu definieren welche Operationen vertauscht werden können, wird festgelegt,
welche Operationen nicht vertauscht werden dürfen.
Definition 5-4 (Konfliktordnung): Stehen zwei Operationen a und b einer Hi-

storie H in einem Konflikt bezüglich einer Konfliktrelation conflict(a,b), so muß
entweder a <H b oder b <H a gelten und a und b dürfen in H nicht vertauscht
werden.

Kriterien, die auf Konfliktrelationen basieren, definieren eine Historie dann als
korrekt, wenn sie durch endlich viele Vertauschungen von nicht in Konflikt stehen-
den Operationen in eine als korrekt definierte Historie umgeformt werden kann.
Da an dieser Stelle nur das Prinzip der Konfliktrelation deutlich gemacht werden
soll, wird auf die Einführung der Relation selbst verzichtet. Wie im weiteren Ver-
lauf dieses Kapitels aber deutlich werden wird, unterscheiden sich die verschiede-
nen Korrektheitsdefinitionen im wesentlichen bezüglich der verwendeten Konflik-
trelation.

5.1.3 Isolation und Atomarität
Wie bereits in Kapitel 3 erläutert wurde, führen alle transaktionalen Ablaufmodelle
mehr oder minder stark ausgeprägte semantische Einschränkungen bezüglich der
Isoliertheit und der Atomarität von Abläufen ein. Da diese zwei Eigenschaften zu-
nächst unabhängig voneinander sind, wurden die entsprechenden Korrektheitskri-
terien auch getrennt voneinander entwickelt [BHG87]. Wie sich im weiteren Ver-
lauf dieses Kapitels herauskristallisieren wird, ist dies jedoch kein sinnvoller
Ansatz, da die Eigenschaft der Atomarität einige Voraussetzungen bezüglich der
Isolationseigenschaft fordert.
Insbesondere spielt dieser Zusammenhang dann eine Rolle, wenn eine Atomari-
tätseigenschaft im Zusammenhang mit der Wiederherstellung (engl. Recovery) ei-
nes konsistenten Zustandes nach einem Systemausfall betrachtet wird. Da im Falle
von ConTracts der Aspekt der Zuverlässigkeit eine maßgebliche Aufgabe darstellt,
wird deshalb auf eine getrennte Betrachtung von Korrektheitskriterien bezüglich
der Permeabilität bzw. Atomarität verzichtet werden.
56



Korrektheit
Klassische Korrektheitskriterien5
5.1.4 Anwendbarkeit
Korrektheitskriterien im transaktionalen Umfeld sind prinzipiell nur dann von
praktischer Relevanz, wenn sie auch in einem Laufzeitsystem implementiert wer-
den können. Wie eingangs dieses Kapitels bereits erwähnt wird dies nicht von al-
len Kriterien gewährleistet, da mit einigen Kriterien nur vollständig ausgeführte
(abgeschlossene) Abläufe beurteilt werden können.
Formalisiert man diese Aussage auf der Basis des oben eingeführten Begriffs der
Historie läßt sich die Anwendbarkeit eines Kriteriums schnell beurteilen.
Definition 5-5 (Präfix-abgeschlossen): Ein Korrektheitskriterium, welches die

Korrektheit einer Historie beurteilt heißt Präfix-abgeschlossen wenn gilt, daß
aus der Korrektheit einer Historie auch die Korrektheit für jeden beliebigen
Präfix der Historie folgt.

Ist nun eine Historie gemäß eines Präfix-abgeschlossenen Korrektheitskriteriums
korrekt, müssen auch alle Präfixe korrekt sein. Daraus läßt sich ableiten, daß eine
Ausführung eines Ablaufs nur dann korrekt sein kann, wenn bereits alle (Teil-)Hi-
storien, die während der Ausführung auftreten auch korrekt sind. Ist, im Gegen-
satz dazu, ein Korrektheitskriterium nicht Präfix-abgeschlossen, ist es während
der Ausführung eines Ablaufs zulässig, daß nicht korrekte Teilhistorien auftreten.
Somit wird für praktisch anwendbare Korrektheitskriterien gefordert, daß sie Prä-
fix-abgeschlossen sind. Umgesetzt werden die Präfix-abgeschlossenen Kriterien
in einem sogenannten Scheduler. Diesem werden die Operationen der abstrakten
Maschine übergeben, damit über die Zulässigkeit der Ausführung der Operatio-
nen entschieden werden kann. Dies bedeutet, daß der Scheduler überprüft, ob die
Ausführung einer Operation eine nicht korrekte Historie erzeugen würde und so-
mit die Operation zurückweist. Die Verfahren die dabei verwendet werden und
die Informationen, die einem Scheduler zur Verfügung stehen müssen, um diese
Entscheidung treffen zu können, werden im folgenden Kapitel vorgestellt werden.

5.2 Klassische Korrektheitskriterien

Klassische Korrektheitskriterien der hier betrachteten Art wurden zunächst für
ACID-Transaktionen entwickelt; sie waren zur automatischen Kontrolle des
gleichzeitigen Zugriffs auf gemeinsame Datenbestände notwendig. Im Gegensatz
dazu war bei der zeitlich vorher liegenden Verwendung von Datenbanksystemen
keine solchen Einschränkungen notwendig, da Zugriffe nacheinander in einem so-
genannten Batch-Betrieb erfolgten.
Wie sich im weiteren Verlauf dieses Abschnitts noch herausstellen wird reichen
diese Ansätze weiter, so daß gewisse Grundprinzipien der Korrektheitskriterien
für ACID-Transaktionen auch in weit komplexeren Ablaufmodellen wiederzufin-
57



Korrektheit
Klassische Korrektheitskriterien 5
den sind. Das liegt daran, daß eine Eigenschaft von ACID-Transaktionen auch von
allen anderen transaktionalen Ablaufmodellen übernommen wurde: die Konsisten-
zerhaltung. An dieser Stelle soll deshalb nochmals kurz wiederholt werden, was
diese Eigenschaft bedeutet. 
Die Eigenschaft der Konsistenzerhaltung besagt, daß wenn ein Ablauf, der diese
Eigenschaft besitzt, auf einem konsistenten Datenbestand ausgeführt wird, der Da-
tenbestand am Ende der Ausführung wiederum in einem konsistenten Zustand ist.
Dies gilt natürlich nur unter der Annahme, daß die Ausführung nicht durch andere
Ausführungen gestört wird.

5.2.1 Grundprobleme der ACID-Transaktionen
Wie bereits in Abschnitt 3.1.1 kurz erwähnt wurde, kommt es bei der parallelen
Ausführung mehrerer ACID-Transaktionen zu Problemen bezüglich der Gewähr-
leistung der ACID-Semantik. Da die Darstellung in Kapitel 3 nur zur Motivation
diente, wurden diese Probleme nur informell beschrieben. Dieser Abschnitt dient
nun dazu das Problem formal zu erfassen, um auf dieser Basis ein entsprechendes
Korrektheitskriterium definieren zu können.
Betrachtet man die Historie (Σ, <) einer abstrakten Maschine zur Abarbeitung von
ACID-Transaktionen nach dem read/write-Modell (siehe Kapitel 4 Abschnitt 4.1),
so enthält die Menge Σ nur die Operationen read, write, abort und commit verschie-
dener Transaktionen. Trotzdem lassen sich alle Konflikte, die zu einer Verletzung
der ACID-Eigenschaften führen können, hinreichend mit dieser Menge von Ope-
rationen beschreiben [GrRe93].

5.2.1.1 Der read/write Konflikt
Findet man in einer Historie eine Lese-Operation read(t, a), die ein Objekt a inner-
halb einer Transaktion t liest und eine nachfolgende Schreib-Operation write(s, a),
die das selbe Objekt a schreibt, ohne daß die Transaktion t abgeschlossen wurde
(mittels commit oder abort) liegt ein potentieller Konflikt der Transaktionen t und
s vor. Das Lesen des Objektes a ist nicht unbedingt wiederholbar, d.h. es würde
wahrscheinlich ein anderes Resultat liefern (engl. unrepeatable read). Da jedoch
durch die Isolationseigenschaft dieses wiederholbare Lesen garantiert wird (solan-
ge die Transaktion den Wert nicht selbst ändert), wäre somit eine zugesicherte se-
mantische Eigenschaft verletzt und die Ausführung nicht mehr korrekt.

5.2.1.2 Der write/read Konflikt
Der write/read Konflikt bildet das genaue Gegenstück zum read/write Fall. Eine
Transaktion t führt also eine Schreiboperation auf ein Objekt a aus, während die
Transaktion s das Objekt a liest. Auch diese Konstellation stellt wieder einen po-
58



Korrektheit
Klassische Korrektheitskriterien5
tentiellen Konflikt dar, da die Transaktion s einen Wert liest der nicht unbedingt
am Ende einer Transaktion für das Objekt a gilt (engl. dirty read). Dies kann da-
durch verursacht werden, daß Transaktion t das Objekt a ein zweites mal schreibt
und a somit einen anderen Wert erhält. 

5.2.1.3 Der write/write Konflikt
Im Falle des write/write Konflikts greifen zwei Transaktionen schreibend auf das
gleiche Objekt zu. Wie in den vorigen Fällen soll Transaktion t vor der Transak-
tion s eine Schreiboperation auf a ausgeführt haben. Wiederum liegt ein potenti-
eller Konflikt vor, da eine folgende Leseoperation von t den Wert liefern würde
den s geschrieben hat und somit eine Änderung von t verloren gegangen wäre
(engl. lost update). Somit wäre die Isolationseigenschaft von t verletzt. 
Ein anderer Aspekt bei dem write/write Konflikt ist das Verhalten durch die Ato-
maritätseigenschaft. Da es für ACID-Transaktionen garantiert sein muß, daß im
Falle eines Zurücksetzens der Zustand vor ihrer Ausführung wieder hergestellt
wird, wirkt sich der Konflikt im Falle eines Zurücksetzens von t oder t und s fatal
aus. Wird beispielsweise t zurückgesetzt, werden die Änderungen von s ebenso
unwirksam. Werden beide Transaktionen zurückgesetzt, hängt das Ergebnis von
der Reihenfolge des Zurücksetzens ab. Wird t vor s zurückgesetzt, so stellt das Zu-
rücksetzen von s den Zustand nach der Schreiboperation von t wieder her.
Wie an dem letzten Beispiel sichtbar wird, muß ein abstraktes transaktionsver-
abeitendes System mit ACID-Semantik vor jedem Schreibzugriff einen Lesezu-
griff ausführen, um den Zustand vor Ausführung der Transaktion wieder herstel-
len zu können. Deshalb wird in einigen Korrektheitsbetrachtungen implizit
vorausgesetzt, daß vor jedem Schreibzugriff ein Lesezugriff erfolgt ist (siehe Ab-
schnitt 5.2.3).

5.2.2 Klassische Serialisierbarkeit
Separiert man zunächst die Atomarität und die Dauerhaftigkeit von den Eigen-
schaften der Konsistenzerhaltung und Isoliertheit und betrachtet nur die zwei zu-
letzt genannten Eigenschaften, so ist intuitiv klar, daß alle seriellen Ausführungen
von Transaktionen korrekt sein müssen. Dies folgt daraus, daß bei der seriellen
Ausführung von Transaktionen (also dem klassischen Batch-Betrieb) keine ge-
genseitige Beeinflussung von aktiven Transaktionen vorkommen kann und somit
auf Grund der Konsistenzerhaltung jeder einzelnen Transaktion die entstehende
serielle Historie korrekt sein muß.
Genau diese Beobachtung bildet die Basis des Korrektheitskriteriums von ACID-
Transaktionen. Ausgehend von der Menge der seriellen Ausführungen von Trans-
aktionen kann für eine beliebige Ausführung abgeschlossener Transaktionen ent-
59



Korrektheit
Klassische Korrektheitskriterien 5
schieden werden, ob diese ebenfalls korrekt ist. Das Kriterium hierfür ist einfach
die Äquivalenz der Reihenfolge der Operationen in der zu beurteilenden Ausfüh-
rung mit der Reihenfolge einer (beliebigen) seriellen Ausführung. Dieses Kriteri-
um soll nun formal dargestellt werden.
Definition 5-6 (Vollständigkeit): Eine Historie H = (Σ,<) heißt vollständig,

wenn sie nur Operationen abgeschlossener Transaktionen enthält:

Definition 5-7 (Serielle Historien): Eine vollständige Historie H heißt seriell,
wenn für alle vorkommenden Transaktionen sämtliche Operationen unmittelbar
aufeinanderfolgen, ohne daß Operationen anderer Transaktionen dazwischen
liegen. 

Damit nun eine beliebige Historie mit einer seriellen vergleichbar wird, ist es zu-
nächst notwendig die Projektion der beliebigen Historie auf eine vollständige Hi-
storie vorzunehmen.
Definition 5-8 (Commit-Projektion): Die Commit-Projektion C(H) einer Histo-

rie H = (Σ,<) entsteht durch die Eliminierung aller Operationen von nicht ab-
geschlossenen Transaktionen (Transaktionen bei denen weder commit noch ab-
ort in Σ ist) aus Σ. 

Durch die Commit-Projektion erhält man somit eine vollständige Historie, die mit
seriellen Historien vergleichbar ist.
Definition 5-9 (Historien-Äquivalenz): Zwei Historien H1 = (Σ1, <1) und H2 =

(Σ2, <2) sind äquivalent, wenn Σ1=Σ2 ist und alle Paare von Operationen die in
einem Konflikt stehen (siehe Abschnitt 5.2.1) in der gleichen Ordnungsrelation
bezüglich <1 bzw. <2 stehen. 

Die eigentliche Definition der Serialisierbarkeit ergibt sich nun relativ offensicht-
lich aus den Definitionen 5-7 bis 5-9. 
Definition 5-10 (Serialisierbarkeit): Eine Historie H ist serialisierbar, wenn

ihre Commit-Projektion C(H) äquivalent zu einer seriellen Historie Hs ist. 
Die Menge aller serialisierbaren Historien wird mit SR bezeichnet. 

Unglücklicherweise ist die Serialisierbarkeit nur für abgeschlossenen Historien de-
finiert, so daß für nicht abgeschlossene Historien auch nicht entschieden werden
kann, ob sie korrekt sind oder nicht. Dies hat zur Folge, daß auf der Basis dieses
Kriteriums erst am Ende einer Transaktion entschieden werden kann, ob ihre Aus-
führung serialisierbar war oder nicht.
Um bereits während der Ausführung von Transaktionen entscheiden zu können ob
die Historie serialisierbar sein kann oder nicht, wurde nach einem alternativen Kri-

commit t( ) Σ∈∃ abort t( ) Σ∈∃∨
read t o,( ) write t o,( ), Σ∈( )

∀

60



Korrektheit
Klassische Korrektheitskriterien5
terium gesucht. Dieses beruht auf der Beobachtung, daß die in Abschnitt 5.2.1 ein-
geführten Konflikte für sich allein genommen keine der semantischen Garantien
verletzen. Erst wenn ein (bestimmter) zweiter Konflikt hinzukommt, wird auch
tatsächlich eine der Garantien verletzt.
Die eigentliche Ursache hierfür liegt in der Auswirkung der eingeführten Konflik-
te auf das Verhältnis der Transaktionen als ganzes. Besteht ein Konflikt zwischen
zwei Operationen unterschiedlicher Transaktionen, so impliziert die Reihenfolge
der Ausführung der Operationen eine Ordnung zwischen den Transaktionen. 
Definition 5-11 (Transaktions-Konflikt Reihenfolge): Eine Transaktion t2 ist

in einer Konflikt-Reihenfolgebeziehung mit einer Transaktion t1, wenn es min-
destens zwei in Konflikt stehende Operationen o1 (von t1) und o2 (von t2) gibt
und o1 vor o2 ausgeführt wurde. Diese Beziehung zweier Transaktionen t1 und
t2 wird im weiteren mit der Notation t1 → t2 bezeichnet werden. 

Die Konflikt-Reihenfolgebeziehung zweier Transaktionen ist somit eine nicht-
transitive und asymmetrische Relation, die auf der Reihenfolge der Ausführung
von in Konflikt stehenden Operationen basiert. 
Betrachtet man nun eine Historie, so läßt sich nach obiger Definition aus den Kon-
flikten der Operationen in der Historie eine Reihenfolgebeziehung der zugehöri-
gen Transaktionen konstruieren.
Definition 5-12 (Serialisierungsgraph): Ein Serialisierungsgraph SG(H) einer

Historie H ist ein gerichteter Graph, dessen Knoten die Transaktionen der in H
enthaltenen Operationen sind. Zwei Knoten in SG(H) sind mit einer gerichteten
Kante verbunden, wenn die zugehörigen Transaktionen in einer Konflikt-Rei-
henfolge-Beziehung stehen. 

Intuitiv ist einsichtig, daß eine Historie dann korrekt sein muß, wenn der Seriali-
sierungsgraph, der aus ihrer Commit-Projektion entsteht keine Zyklen enthält und
somit keine Transaktion mit sich selbst in einem (indirektem) Konflikt steht. Die-
se Aussage kann noch dahin gehend erweitert werden, daß eine Historie nur dann
serialisierbar sein kann, wenn der Serialisierungsgraph azyklisch ist. 
Auf den Beweis der obigen Aussage soll an dieser Stelle verzichtet werden, wes-
halb für eine detailliertere Darstellung auf [BHG87] verwiesen wird.
Der Vorteil des Kriteriums nach Definition 5-12 gegenüber dem klassischen Kri-
terium in Definition 5-10 liegt darin, daß ein Serialisierungsgraph auch für nicht
vollständige Historien generiert werden kann. Darüber hinaus wird während der
Fortführung der Historie eine einmal vorhandene Kante in dem zugeordneten Se-
rialisierungsgraphen nicht wieder entfernt und somit ist das Kriterium Präfix-ab-
geschlossen. D.h. sobald eine Operation ausgeführt werden soll, die einen Zyklus
in dem Serialisierungsgraph verursachen würde, müssen geeignete Maßnahmen
61



Korrektheit
Klassische Korrektheitskriterien 5
ergriffen werden, um diesen Zyklus zu vermeiden.

5.2.3 Recoverability und Spezialisierungen
Die in Abschnitt 5.2.2 eingeführten Kriterien beschränken sich (weitgehend) auf
die Sicherstellung der Isolationseigenschaft von Transaktionen. Durch die Atoma-
ritätseigenschaft der ACID-Transaktionen werden aber noch weitere Anforderun-
gen notwendig. Da die Atomarität sich im Falle des benutzerinitiierten Abbruchs
einer Transaktion genauso auswirkt wie im Falle eines Systemausfalls (und an-
schließenden Neustarts), werden die notwendigen Mechanismen und Kriterien
meist unter dem Stichwort Wiederherstellbarkeit diskutiert.
Die notwendigen Erweiterungen des Serilisierbarkeitskriteriums resultieren aus
der Anforderung, daß für jede erfolgreich ausgeführte Schreiboperation einer
ACID-Transaktion T1 zu garantieren ist, daß die entsprechende inverse Schrei-
boperation ebenfalls ausgeführt werden kann (solange die Transaktion nicht abge-
schlossen wurde). Wird jedoch durch eine Operation einer anderen Transaktion T2,
die der Schreiboperation der ursprünglichen Transaktion nachfolgt eine Abhängig-
keit impliziert, führt die Ausführung der inversen Schreiboperation notwendiger-
weise zu einem Zyklus im Serialisierungsgraphen und wäre damit nicht zulässig.
Definition 5-13 (Lesebeziehung): Eine Transaktion Ti liest von einer Transakti-

on Tj, wenn eine Operation oj von Tj mit einer Operation oi von Ti in einem
Schreib/Lese-Konflikt steht. 

Die Probleme, die durch diesen formalen Konflikt auftreten, lassen sich weiter dif-
ferenzieren. Liest die Transaktion T2 nur Daten von T1, kann nur dann ein Problem
auftreten, wenn Transaktion T1 abbricht und T2 erfolgreich beendet wird, da dann
die von T2 gelesenen Werte und somit die erzeugten Resultate eventuell nicht kor-
rekt sind. 
Definition 5-14 (Recoverability): Eine Historie H heißt recoverable wenn gilt,

daß im Falle, daß eine Transaktion Ti von einer Transaktion Tj liest und die com-
mit-Operation ci von Ti in H enthalten ist, die commit-Operation von Tj ebenfalls
in H enthalten ist und cj < ci. 
Die Menge aller Historien, die recoverable sind, wird mit RC bezeichnet. 

Durch das Recoverability-Kriterium wird somit gefordert, daß eine Transaktion
erst dann eine commit-Operation durchführen darf, wenn alle Transaktionen von
denen sie gelesen hat, bereits ihre commit-Operation durchgeführt haben.
Kehrt man dieses Kriterium um, bedeutet dies, daß der Abbruch einer Transaktion
T1 automatisch den Abbruch aller Transaktionen fordert, welche von T1 gelesen
haben. Diesen Effekt bezeichnet man mit kaskadierendem Zurücksetzen (engl. cas-
cading aborts).
62



Korrektheit
Klassische Korrektheitskriterien5
Rücksetzkaskaden, die durch eine Verletzung des Kriteriums in Definition 5-14
verursacht werden, haben zunächst nur den Nachteil, daß die Aktionen einer
Transaktion (in diesem Falle die Operation abort) den Abbruch mehrerer anderer
Transaktionen nach sich ziehen kann. Allerdings verletzt dies auch die Isolations-
eigenschaft im weiteren Sinne.
Definition 5-15 (Vermeidung des kaskadierenden Zurücksetzens): Eine Hi-

storie vermeidet kaskadierendes Zurücksetzen wenn gilt, daß wenn eine Trans-
aktion Ti von Tj liest, die commit-Operation von Tj in H enthalten sein muß und
vor dem Lesen ausgeführt wurde.
Die Menge der Historien, die dieses Kriterium erfüllen, wird mit ACA bezeich-
net. 

Wenn also für eine Historie gilt, daß sie kaskadierendes Zurücksetzen vermeidet,
können Transaktionen nur von bereits abgeschlossenen Transaktionen lesen (im
Sinne von Definition 5-13).
Es erscheint zunächst verwunderlich, daß die Definitionen der Mengen RC und
ACA nur auf der Basis von Leseoperationen definiert wurden. Wie allerdings be-
reits erwähnt wurde, ist dies auf die Entstehungsgeschichte der theoretischen Ar-
beiten auf dem Gebiet der Transaktionsverarbeitung zurückzuführen. Bei diesen
frühen Arbeiten wurde davon ausgegangen, daß vor jeder Schreiboperation auf je-
den Fall eine Leseoperation auf das selbe Datenelement ausgeführt wurde.
Geht man nicht von dieser Annahme aus, reichen die eingeführten Kriterien noch
nicht aus, um die Probleme bei der Garantie der Atomaritätseigenschaft zu ver-
meiden. Beispielsweise ist es möglich, daß eine Transaktion T1 ein Datenelement
schreibt und danach eine andere Transaktion T2 ebenfalls eine Schreiboperation
auf dieses Element durchführt. Folgende Fälle können hierbei unterschieden wer-
den

1. Werden beide Transaktionen entweder erfolgreich beendet oder in der um-
gekehrten Reihenfolge ihrer Ausführung zurückgesetzt entsteht kein Pro-
blem. 

2. Führt T1 eine commit-Operation aus, der eine abort-Operation von T2 folgt,
entsteht kein Problem.

3. Führt T2 eine commit-Operation aus, der eine abort-Operation von T1 folgt,
wird durch T1 der Zustand vor der Ausführung von T1 wieder hergestellt.
Somit gehen die Änderungen von T2 verloren (trotz commit!).

4. Bricht zunächst T1 ab und danach T2, dann stellt der Abbruch von T2 den
Zustand nach der Schreiboperation von T1 her.
63



Korrektheit
Klassische Korrektheitskriterien 5
Wiederum ist einfach zu erkennen, daß ein Abbruch von T1 den Abbruch von T2
verlangt (als Voraussetzung für die Durchführung des Zurücksetzens). Somit erhält
man wieder den Effekt des kaskadierenden Zurücksetzens. In diesem Falle aller-
dings in einer verschärften Form, da im Fall 3 Transaktion T2 bereits abgeschlossen
und somit eigentlich aus dem System entfernt wurde.
Um auch dieses Problem zu vermeiden, wird ein weiteres Kriterium eingeführt:
Definition 5-16 (Striktheit): Eine Historie heißt strikt, wenn keine Operation ei-

ner Transaktion auf ein Datenelement zugreift, welches von einer Operation ei-
ner anderen, nicht abgeschlossenen Transaktion verändert wurde.
Die Menge aller strikten Historien wird mit ST bezeichnet. 

Bei strikten Historien ist es somit erforderlich, daß Transaktionen, die schreibend
auf ein Datenelement zugegriffen haben, zunächst mittels Commit oder Abort ab-
geschlossen werden müssen, bevor andere Transaktionen auf die geänderten Daten
zugreifen können.
Der Hauptunterschied der Kriterien zur Sicherstellung der Isolation und der Krite-
rien zur Sicherstellung der Wiederherstellbarkeit liegt in der Menge der betrachte-
ten Operationen und der Art des ersten Zugriffs. Während das Serialisierbarkeits-
kriterium alle Arten von Konflikten auf der Ebene der Operationen betrachtet,
setzen die Kriterien für ST, ACA und RC eine Schreib-Operation als ersten Zugriff
voraus. Andererseits erlaubt das Serialisierungskriterium Konflikte, sofern sie nur
durch zwei Operationen verursacht werden, während dies im Falle der Striktheit
bereits ausgeschlossen wird, wenn nicht abgeschlossene Transaktionen betrachtet
werden.
Es läßt sich zeigen, daß es eine echte Teilmengenbeziehung zwischen ST, ACA
und RC gibt (ST ⊂ ACA ⊂ RC) [BHG87]. Auf Grund der unterschiedlichen Vor-
aussetzungen läßt sich jedoch keine solche Teilmengenbeziehung bezüglich der se-
rialisierbaren Historien finden.
Abbildung 5-1 zeigt eine grafische Darstellung der qualitativen Beziehungen der
Mengen der Historien, welche die eingeführten Kriterien erfüllen. Im weiteren sol-
len Historien, die sowohl eines der Kriterien ST, ACA oder RC als auch das Seria-
lisierbarkeitskriterium erfüllen mit ST-SR, ACA-SR, bzw. RC-SR bezeichnet wer-
den.

5.2.4 Kombinierte Ansätze
Da keine der Mengen ST, ACA und RC in SR enthalten sind und auch SR nicht in
ST, ACA oder RC enthalten ist, müssen zur Sicherstellung der Serialisierbarkeit
und der Wiederherstellbarkeit immer zwei Kriterien überprüft werden. Betrachtet
man entsprechende Umsetzungen in Laufzeitsysteme, stellt dies ebenfalls ein Pro-
64



Korrektheit
Klassische Korrektheitskriterien5
blem dar, da entweder für beide Kriterien getrennte Verfahren implementiert wer-
den müssen oder weitere Einschränkung der möglichen Historien vorgenommen
werden muß, bis eine Teilmenge gefunden wird, die mittels einem Kriterium ge-
prüft werden kann.
Aus diesem Grund beschäftigten sich zwei Gruppen von Wissenschaftlern mit der
Entwicklung eines kombinierten Kriteriums, welches sowohl die Atomarität als
auch die Isolation berücksichtigt [AAE93][SWY93]. Erstaunlicherweise kamen
beide Gruppen nahezu gleichzeitig zu einem fast identischen Resultat. Deshalb
führten die zwei Gruppen ihre Ergebnisse in einem gemeinsamen Papier zusam-
men [AVA94a].
Die grundlegende Idee des Ansatzes ist es, im Gegensatz zu den Serialisierbar-
keitsansätzen nicht die Commit-Projektion einer Historie zu betrachten. Statt des-
sen wird eine vorliegende Historie so weit ergänzt, daß nur abgeschlossene Trans-
aktionen enthalten sind. Die Ergänzung einer Historie wird dabei für alle aktiven
Transaktionen derart vorgenommen, daß zunächst alle aktiven Transaktionen als
abgebrochen angesehen werden. Zu diesem Zweck wird die Menge der Operatio-
nen um eine sogenannte Gruppen-Abbruch-Operation erweitert.
Definition 5-17 (Group Abort): Eine Gruppen-Abbruch-Operation a(T1, T2, ...

, Tk) zeigt an, daß für jede Transaktion Tj aus T1 bis Tk die Gegenoperationen
zu den Operationen auszuführen sind, die eine Transaktion Tj bisher ausgeführt
hat. 

Somit wird eine Historie zunächst um die Operationen erweitert, die notwendig
sind, um alle aktiven Transaktionen zurückzusetzen. Allerdings ist damit noch

 Abbildung 5-1: Teilmengenbeziehung der Kriterien

Menge aller Historien

RC

ACA

ST
serielle

SR
65



Korrektheit
Klassische Korrektheitskriterien 5
nicht festgelegt, in welcher Reihenfolge diese Operationen auszuführen sind. 
Um explizite Aussagen über diese Reihenfolge machen zu können, ist eine weitere
Annahme notwendig. Anstatt eine abort-Operation wie bisher als eine atomare Ein-
heit anzusehen, wird sie durch die notwendigen inversen (Schreib-)Operationen
und eine abschließende Commit-Operation ersetzt. Da Leseoperationen keine Ope-
rationen bei einem Transaktionsabbruch bedingen, werden diese bei der Expandie-
rung der abort-Operationen nicht betrachtet. Berücksichtigt man dann die Reihen-
folge der Operationen in Abhängigkeit von den Konflikten, die während der
“Vorwärtsverarbeitung” aufgetreten sind, kommt man zu folgender erweiterter Hi-
storie:
Definition 5-18 (Erweiterte Historie): Sei H=(Σ,<) eine Historie. Ihre erwei-

terte Historie He ist ein Tupel (Σe, <e), das durch folgende Regeln aus H ent-
steht:
Σe entsteht aus Σ durch:
1. (o ∈ Σ ∧ o ≠ a) ⇒ o ∈ Σe 
2. Eine Gruppen-Abbruch-Operation am Ende von H enthält alle aktiven Trans-

aktionen.
3. Für alle Schreiboperationen w abgebrochener Transaktionen in Σ müssen die

inversen Schreiboperationen w-1 in Σe enthalten sein: 
wt ∈ Σ ∧ at ∈ Σ ⇒ wt

-1 ∈ Σe

4. Alle abort-Operationen in Σ werden durch commit-Operation in Σe ersetzt.

<e entsteht durch folgende Regeln:
1. Für alle Paare von Operationen oi und oj: oi < oj ⇒ oi <e oj

2. Sei W die Menge aller Operationen, die in Transaktionen enthalten sind, de-
ren Abort-Operation in einer Gruppen-Abbruch-Operation in Σ ist.
Gilt für je zwei Operationen wi und wk aus W wi < wk, dann muß wk

-1 <e wi
-1

für die inversen Operationen gelten.
3. Alle inversen Operationen der Transaktionen, die in H keine commit-Opera-

tion ausgeführt haben, folgen bezüglich <e den Originaloperationen und sind
bezüglich <e vor der commit-Operation der Transaktion für die sie die inverse
Operation darstellen.

4. Für alle Operationen o vor einer Gruppen-Abbruch-Operation bezüglich <,
die in Konflikt mit einer inversen Operation w-1 der Gruppen-Abbruch-Ope-
ration stehen, gilt o <e w-1. Umgekehrt gilt w-1 <e o für alle Operationen o,
die bezüglich < einer Gruppen-Abbruch-Operation folgen und mit einer Ope-
ration w-1 der Gruppen-Abbruch-Operation in Konflikt stehen.
66



Korrektheit
Klassische Korrektheitskriterien5
5. Gilt für zwei Gruppen-Abbruch-Operationen eine Reihenfolge in H, dann
muß die Reihenfolge bezüglich <e für alle in Konflikt stehenden inversen
Operationen, die aus diesen Gruppen-Abbruch-Operationen entstehen, der
Reihenfolge der Gruppen-Abbruch-Operationen bezüglich < entsprechen. 

Auf der Basis dieser erweiterten Historie läßt sich nun das kombinierte Kriterium
zur Überprüfung einer Historie im Hinblick auf Atomarität und Isolation formu-
lieren:
Definition 5-19 (RED): Eine Historie H ist reduzierbar, wenn ihre erweiterte

Historie He durch Anwendung der folgenden Regeln in eine serielle Historie
transformiert werden kann:
1. Kommutativitätsregel: 

Wenn zwei Operation oi und oj nicht in einem Konflikt stehen und kein om
existiert mit oi <e om <e oj, kann die Ordnung oi <e oj ersetzt werden durch
oj < oi.

2. Undo Regel: 
Sind eine Operation o und ihre inverse Operation o-1 in He und gilt o <e o-1

ohne daß eine Operation om existiert mit o <e om <e o-1, dann können o und
o-1 aus der Historie entfernt werden.

3. Regel der leeren Aktion:
Leseoperationen von abgebrochenen oder aktiven Transaktionen in H dürfen
aus He entfernt werden.

Die Menge aller reduzierbaren Historien wird mit RED bezeichnet. 
Wie aus dem RED-Kriterium abgelesen werden kann, basiert das eigentliche Kri-
terium wiederum auf der Überführbarkeit einer Historie auf eine serielle Historie.
Dabei wird nicht die Commit-Projektion beurteilt, sondern die erweiterte Historie.
Ein Nachteil der Definition ist, daß sie nicht Präfix-abgeschlossen ist. Eine einfa-
che Erweiterung des Kriteriums berücksichtigt diesen Nachteil.
Definition 5-20 (PRED): Eine Historie heißt Präfix-reduzierbar, wenn jeder

Präfix der Historie reduzierbar ist.
Die Menge alle Präfix-reduzierbaren Historien wird mit PRED bezeichnet. 

Abgesehen von der Tatsache, daß diese simple Erweiterung der Definition 5-19
keine Verbesserung im Hinblick auf eine entsprechende Implementierung liefert,
ermöglicht sie doch den Vergleich mit den bisher eingeführten Kriterien. So läßt
sich beispielsweise zeigen, daß SR-ST ⊂ PRED ⊂ SR-RC [SWY93].
Analog zum Fall der Serialisierbarkeit wurde auch im Falle der Präfix-Reduzier-
barkeit nach einem Kriterium gesucht, welches die Umsetzung in ein Laufzeitsy-
stem unterstützt. Im Falle von PRED bedeutet dies, ein Kriterium zu finden, wel-
67



Korrektheit
Klassische Korrektheitskriterien 5
ches während der Ausführung von Transaktionen nicht verletzt wird.
Ausgangspunkt für dieses Kriterium war die Untersuchung bestehender Implemen-
tierungen von Transaktionssystemen, die die ACID-Eigenschaften garantieren.
Grundlage dieser Implementierungen ist ein sogenanntes Log [GrRe93], welches
Informationen über die ausgeführten Operationen und die entsprechenden inversen
Operationen aufbewahrt. Es ist ein rein sequentiell beschreibbarer, stabiler Spei-
cher, bei dem nur am Ende Daten eingefügt werden können.
Untersucht man nun existierende Implementierungen der Wiederherstellbarkeit auf
der Basis eines Logs, so stellt man Bedingungen fest, die von einem Ablaufsystem
für ACID-Transaktionen eingehalten werden müssen, um die Atomarität gewähr-
leisten zu können. Genau diese Bedingungen werden in einem weiteren Kriterium
zusammengefaßt, um eine entsprechende Anwendbarkeit für eine Implementie-
rung des PRED-Kriteriums zu ermöglichen.
Definition 5-21 (SOT): Eine Historie H heißt serialisierbar mit geordneter Ter-

minierung, wenn sie wiederherstellbar (RC) und serialisierbar (SR) ist, und
wenn für jedes Paar von in Konflikt stehenden Operationen wi und wj mit wi <
wj gilt:
1. Tj führt eine commit-Operation nur nach der commit-Operation von Ti aus.
2. Ti führt eine abort-Operation nur nach der abort-Operation von Tj aus, oder

es existiert eine Gruppen-Abbruch-Operation in H die sowohl Ti als auch Tj
enthält.

Die Menge aller Historien die dieser Bedingung genügen wird mit SOT bezeich-
net. 

Zu betonen ist, daß das Kriterium auf der Commit-Projektion der Historie bezüg-
lich der Serialisierbarkeit basiert. Die Zusatzbedingungen beziehen sich aber auf
Operationen nicht terminierter Transaktionen, so daß beliebige Historien beurteilt
werden können. Da das SOT Kriterium darüber hinaus nur relativ leichte Ein-
schränkungen der bereits bekannten Kriterien vornimmt, zu denen auch Implemen-
tierungen existieren, eignet es sich sehr gut für den praktischen Einsatz.
Ein besonders wichtiger Aspekt ist außerdem, daß bewiesen werden kann, daß die
Menge SOT äquivalent zur Menge PRED ist [AVA94b] und die maximale Menge
von Historien darstellt, die sowohl im Hinblick auf die Isolationseigenschaft als
auch im Hinblick auf die Wiederherstellbarkeit korrekt sind (SR-RC).
Allerdings haben die SOT-Historien noch die ungünstige Eigenschaft, daß kaska-
dierende Abbrüche auftreten können bzw. zulässig sind. Durch einen erweiterten
Serialisierungsgraphen [AVA94b] kann diese ungünstige Eigenschaft darauf be-
schränkt werden, daß eine abort-Operation einer Transaktion sich nur auf bereits
abgebrochene Transaktionen fortpflanzt, was keinen realen Einfluß mehr hat. An
68



Korrektheit
Klassische Korrektheitskriterien5
dieser Stelle soll aber auf diese Spezialisierung nicht näher eingegangen werden.

5.2.5 Kriterien für geschlossen geschachtelte Transaktionen
Wie bereits in Abschnitt 3.1.1 eingeführt, verhalten sich geschlossen geschachtel-
te Transaktionen nach außen hin wie die klassischen ACID-Transaktionen. Das
heißt, daß aus dieser Perspektive die bereits vorgestellten Kriterien analog zur An-
wendung kommen. Betrachtet man allerdings die interne Struktur und die vorge-
gebenen Eigenschaften, ergeben sich weitere Aspekte. 
Es wird ein kurzer Rückblick auf die Semantik der geschlossen geschachtelten
Transaktionen vorgenommen, um das Verständnis zu erleichtern:

1. Eine Transaktion ohne Elterntransaktion heißt Top-Level-Transaktion und
hat die ACID-Eigenschaften bezüglich aller Transaktionen, die nicht Nach-
kommen von ihr sind.

2. Eine Kind- (oder Sub-)Transaktion hat die ACI-Eigenschaften bezüglich al-
ler Geschwister (Kinder der selben Elterntransaktion).

3. Eine Sub-Transaktion hat Zugriff auf alle Datenelemente, auf welche die El-
terntransaktion Zugriff hat und vererbt an ihrem Ende alle Datenelemente
an die Elterntransaktion.

Solange innerhalb geschlossen geschachtelter Transaktionen keine Parallelität zu-
gelassen wird, entstehen prinzipiell keine neuen Probleme im Vergleich zu den
nicht geschachtelten (flachen) Transaktionen. Erlaubt man jedoch die parallele
Ausführung von Geschwistertransaktionen (ohne gleichzeitige Weiterführung der
Elterntransaktion) resultiert dies in einer Konkurrenz der Geschwistertransaktio-
nen um Datenelemente, da für sie die Isolationseigenschaft gegeben ist. 
Prinzipiell ist es nun möglich, die bekannten Korrektheitskriterien einzusetzen.
Allerdings resultiert dies je nach Implementierung (siehe Kapitel 6) in Konflikten
zwischen Subtransaktionen einer Top-Level-Transaktion (Intra-Transaktionskon-
flikt) und kann bis zum Abbruch der Top-Level-Transaktion führen, wenn nicht
jede beteiligte Komponente des Laufzeitsystems auf die Verarbeitung geschach-
telter Transaktionen ausgelegt ist. 
Darüber hinaus kann es bei der parallelen Verarbeitung von Geschwistertransak-
tionen zu Verklemmungen bezüglich ererbter Datenelemente kommen. Im Ge-
gensatz zum Verklemmungsfall bei flachen Transaktionen (Inter-Transaktions-
konflikt), kann eine solche Verklemmung nicht mit Hilfe von einfachen
Abhängigkeitsgraphen erkannt werden, da die Sperren der Datenobjekte von der-
selben Transaktion angefordert wurden. Bei der Verwendung von zeitschranken-
69



Korrektheit
Korrektheit bei Mehrschichttransaktionen 5
basierten Mechanismen stellt zwar die Erkennung von Verklemmungen kein Pro-
blem dar, doch kann auch hier nicht erkannt werden, welche Subtransaktion
abgebrochen werden muß, um die Verklemmung zu beheben. Es wird also immer
die Top-Level-Transaktion abgebrochen, was einen erheblichen Vorteil von ge-
schachtelten Transaktionen, die feinere Rücksetzgranularität, völlig außer Acht
läßt.
Vor diesem Hintergrund betrachtet, ergeben sich bezüglich der Korrektheitskrite-
rien keine neuen Aspekte. Allerdings ist es nicht möglich die bekannten Ansätze
zur Sicherstellung der Korrektheit direkt auf den Fall der geschachtelten Transak-
tionen zu übertragen.

5.3 Korrektheit bei Mehrschichttransaktionen

Da die Mehrschichttransaktionen aus der Klasse der offen geschachtelten Transak-
tionen stammen, liegt die Vermutung nahe, daß sich die Korrektheitskriterien von
ACID-Transaktionen und dieser Art der Transaktionen grundlegend unterschei-
den. Wie sich im Verlauf dieses Abschnitts herausstellen wird, ist dies nicht der
Fall. 

5.3.1 Historien von Mehrschichttransaktionen
Die in Abschnitt 4.2 eingeführte abstrakte Maschine ist auf eine Ebene (oder
Schicht) der Mehrschichttransaktionen beschränkt. Historien, die sich nur auf eine
solche Maschine beziehen, können somit analog zu den bisher betrachteten Histo-
rien definiert werden. Betrachtet man jedoch eine Mehrschichttransaktion als Gan-
zes, so muß zur Beurteilung ihrer Korrektheit auf die Historien aller Ebenen zu-
rückgegriffen werden.
Definition 5-22 (Mehrschicht-Historie): Eine Historie H einer Mehrschicht-

transaktion ist die Menge aller Historien Hi der Schichten der Mehrschicht-
transaktion.

Eine strikte Hierarchie der Operationen der Mehrschichttransaktionen hilft bei dem
Vergleich des Korrektheitskriteriums mit dem Korrektheitsbegriff des read/write-
Modells. Auf unterster Ebene werden alle Operationen durch eine Menge von Le-
se- oder Schreiboperationen implementiert. Beurteilt man also die Historie der un-
tersten Ebene muß dies auf der Basis der selben Kriterien wie beim Lese-/Schreib-
Modell geschehen.

H Σi <i,( ){ }=
70



Korrektheit
Korrektheit bei Mehrschichttransaktionen5
5.3.2 Konfliktbegriff der Mehrschichttransaktionen
Die Einführung mehrerer Abstraktionsebenen oberhalb des Lese-/Schreibmodells
erfordert eine erweiterte Sicht der bereits eingeführten Begriffe der Kommutativi-
tät bzw. des Konflikts von Operationen. Da grundsätzlich davon ausgegangen
wird, daß unterschiedliche Schichten bezüglich ihres Konfliktbegriffs unabhängig
sind, wird wiederum eine schichtabhängige Definition von Konflikten eingeführt.
Definition 5-23 (Konflikt): Für jede Schicht i ∈ {0,1,2,…} existiert eine binäre

Konfliktrelation CONi, welche über der Menge der Operationen Oi einer
Schicht definiert ist.

Die Konfliktrelation einer Schicht gibt somit an, ob zwei Operationen parallel
ausgeführt werden dürfen, oder ob sie in irgendeiner Ordnung nacheinander aus-
zuführen sind. Ein Problem wird bereits an dieser Definition deutlich: Für jedes
Paar von Operationen einer Stufe muß die Konfliktrelation definiert sein. Erwei-
tert man beispielsweise eine Stufe um eine neue Operation muß die Konfliktrela-
tion ebenfalls erweitert werden.

5.3.3 Mehrschicht-Serialisierbarkeit
Die Einführung von schichtspezifischen Konfliktrelationen hat zunächst keine
Auswirkungen auf andere Schichten. Dies ändert sich allerdings, wenn man die
Implikationen eines Konflikts auf einer Ebene i auf die nächst höhere Ebene i+1
betrachtet. Analog zu den Auswirkungen der Konflikte im read/write-Modell, wo
durch einen Konflikt und die Ordnung von Operationen eine Ordnung der Trans-
aktionen impliziert wird, kann man die Auswirkungen des Konflikts von Opera-
tionen im Mehrschicht-Transaktionsmodell definieren.
Definition 5-24 (Ordnungsrelation): Für jede Schicht i des Mehrschicht-

Transaktionsmodells existiert eine binäre Ordnungsrelation <i
~ bezüglich ei-

ner Ausführungshistorie. Für Stufe 0 gilt, daß die Ordnungsrelation <0
~ gleich

der Ordnungsrelation der Ausführungshistorie aller in Konflikt bezüglich
CON0 stehender Operationen ist. Für jede andere Stufe i > 0 gilt, daß zwei
Operationen der Stufe i dann in Relation <i

~ stehen, wenn sie jeweils eine Ope-
ration auf der nächst niedrigeren Stufe i-1 beinhalten, die bezüglich CONi-1 in
Konflikt sind und in Relation <~

i-1 stehen. 

Vergleicht man die Ordnungsrelation <1
~ mit der Konfliktrelation von Transak-

tionen bei der Konstruktion eines Serialisierbarkeitsgraphen (siehe Abschnitt
5.2.2), erkennt man, daß es sich um identische Relationen handelt. Dies läßt sich
verallgemeinern, so daß für jede Stufe ein Serialisierbarkeitsgraph konstruiert
werden kann.

CONi a b,( ) a b< b a<( )¬∧( ) b a< a b<( )¬∧( )∨⇒
71



Korrektheit
Korrektheit bei Mehrschichttransaktionen 5
Definition 5-25 (Mehrschicht-Serialisierbarkeit): Eine Historie H einer Mehr-
schichttransaktion heißt mehrschicht-serialisierbar, wenn für jede Schicht i gilt,
daß alle in Konflikt stehenden Operationen der Schicht in einer Ordnung bezüg-
lich der Historie Hi stehen und der Graph, der aus der Ordnungsrelation <i

~

konstruiert werden kann, azyklisch ist.
Die Menge aller mehrschicht-serialisierbaren Historien wird mit ML-SR be-
zeichnet. 

Somit wird das Kriterium zur Sicherstellung der Isolationseigenschaft auf die
Überprüfung der Azyklizität der Serialisierungsgraphen abgebildet. Folglich kann
das klassische read/write-Modell als ein Spezialfall der Mehrschichttransaktionen
angesehen werden, bei dem es nur zwei Schichten gibt.

5.3.4 Recovery bei Mehrschichttransaktionen
Da Mehrschichttransaktionen Vertreter der Klasse der offen geschachtelten Trans-
aktionen sind, werden üblicherweise die Resultate am Ende einer Teil-Transaktion
auch für Transaktionen sichtbar, die keine Vorfahren mit der beendeten Transakti-
on gemein haben. Deshalb ist der Ansatz, einen Zustand dadurch wieder herzustel-
len, daß der Wert eines geänderten Objektes, der vor der Ausführung der Transak-
tion vorgefunden wurde, einfach wieder etabliert wird, nicht anwendbar.
Grundsätzlich erfordert die Verwendung von Mehrschichttransaktionen die Defi-
nition von Gegen- oder Kompensationstransaktionen, die die inversen Operationen
zu den durch die Transaktion auszuführenden Operationen ausführen. Die Idee bei
der Implementierung eines Zurücksetzens ist dann, die Gegentransaktionen in um-
gekehrter Reihenfolge zu den ursprünglichen Teil-Transaktionen auszuführen.
Dies entspricht der Ausführung der inversen Schreiboperationen bei dem Lese-/
Schreibmodell. Allerdings nehmen die inversen Schreiboperationen keine Rück-
sicht auf eventuelle Änderungen durch andere Transaktionen, was im Falle der
Mehrschicht-Transaktionen erfolgen muß.
Obwohl für das Modell der Mehrschichttransaktionen die Idee eines Kriteriums zur
Sicherstellung der Wiederherstellbarkeit formuliert [WeSc92] und auch konkrete
Ansätze zur Implementierung veröffentlicht wurden [Lom92], ist kein formales
Kriterium im direkten Zusammenhang mit den Mehrschichttransaktionen definiert
worden. Die Idee stimmt jedoch mit dem Ansatz des PRED-Kriteriums überein,
wodurch sich dieses Kriterium relativ leicht auf die Mehrschichttransaktionen
übertragen läßt. Somit kann das PRED-Kriterium als formales Korrektheitskriteri-
um für Mehrschichttransaktionen herangezogen werden.
72



Korrektheit
Korrektheit nach Korth et. al.5
5.4 Korrektheit nach Korth et. al.

Abläufe nach Korth et. al. zeichnen sich dadurch aus, daß bei ihnen explizite In-
dikatoren verwendet werden, welche anzeigen, ob eine Operation (eine Subtrans-
aktion) ausgeführt werden kann bzw. ob die Ausführung einer Operation erfolg-
reich war. Die Indikatoren basieren darauf, daß es für jede Operation explizit
definierte Konsistenzbedingungen gibt, die anwendungsabhängig definieren, wel-
cher Zustand (der Datenobjekte) für die Ausführung einer Operation notwendig
ist bzw. welcher Zustand nach der Ausführung einer Operation als konsistent ak-
zeptiert wird.

5.4.1 Historien nach Korth et. al.
Eine Historie eines Ablaufs nach Korth et. al. unterscheidet sich nun von den bis-
her betrachteten Historien dadurch, daß die Überprüfung der Konsistenz explizit
durch die in Abschnitt 4.3.1 eingeführten Operationen γ und ε in einer Historie
enthalten sind. Darüber hinaus ist durch die strukturellen Einschränkungen der
Abläufe sichergestellt, daß einer Operation einer Transaktion immer eine γ-Ope-
ration vorausgeht und eine ε-Operation nachfolgt. 
Um den Abschluß eines Ablaufs (oder Transaktion) in einer Historie erkennen zu
können, wird formal die letzte Operation einer Transaktion vor ihrem commit als
xf bezeichnet. Der Operation xf folgen dann noch die Konsistenzprüfungs-Opera-
tion ε sowie die commit-Operation der Transaktion.
Diese Unterschiede gegenüber der klassischen Definition von Historien sind nur
geringfügig, so daß an dieser Stelle keine ausführliche Erläuterung notwendig ist.

5.4.2 Prädikatabhängige Konflikte
Der Konfliktbegriff, der dem Modell von Korth. et. al. zu Grunde liegt, scheint in-
tuitiv durch die explizite Einführung von Konsistenzkriterien klar auf der Hand zu
liegen. Man kann vermuten, daß eine ausführende Operation a dann in einem Kon-
flikt mit einer anderen ausführenden Operation b steht, wenn entweder a ein Ob-
jekt ändert, welches in dem zugeordneten Eingangsprädikat von b auftaucht, oder
umgekehrt b ein Objekt ändert welches in dem Eingangsprädikat von a referen-
ziert wird.
Prinzipiell trifft diese Vermutung auch zu. Allerdings sind im Falle des Modells
von Korth et. al. die Prädikate von Ablauf zu Ablauf verschieden, so daß es durch-
aus möglich ist, daß eine Operation a mit einer Operation b bei einem Ablauf in
Konflikt steht und bei einem anderen Ablauf kein Konflikt von a und b vorliegt.
Deshalb wird ein Konflikt im Modell von Korth et. al. anders als in den bisher ein-
geführten Modellen aufgefaßt. Der Grundgedanke bei dem Modell ist, daß es in
73



Korrektheit
Korrektheit nach Korth et. al. 5
einem System eine Menge von Prädikaten gibt, wobei sowohl von Operationen de-
finierte Prädikate berücksichtigt werden als auch die Bedingungen, die auf den Da-
tenelementen definiert sein können (beispielsweise Wertebereichsbedingungen).
Um die Prädikate leichter handhabbar zu machen, wird davon ausgegangen, daß
diese in konjunktiver Normalform vorliegen. 
Definition 5-26 (Prädikat): Ein Prädikat P nach Korth et. al. ist die konjunktive

Verknüpfung von Prädikaten pi, welche disjunktive Verknüpfungen von Atomen
sind.
Ein Prädikat pi wird im weiteren als Term einer Konjunktion bezeichnet.
Ein Datenelement d heißt Element eines Terms einer Konjunktion, wenn es in ei-
nem Atom des Terms verwendet wird. 

Definition 5-27 (Konflikt): Eine Operation a ist in Konflikt mit einer Operation
b bezüglich eines Terms einer Konjunktion, wenn a und b auf das gleiche Ele-
ment eines Terms zugreifen und mindestens eine Operation dieses Element än-
dert. 

Definition 5-27 beschreibt somit eine Konfliktrelation, welche auf einem Term ei-
ner Konjunktion basiert. Grundsätzlich läßt sich damit entscheiden, ob zwei Ope-
rationen in einem Konflikt bezüglich der Bedingungen auf einem Datenelement
stehen. Unter der Annahme, daß für jedes Datenelement ein solches Prädikat exi-
stiert und zunächst keine ablaufbezogenen Prädikate definiert sind, erhält man eine
Konfliktrelation, welche äquivalent ist zu der Konfliktrelation der ACID-Transak-
tionen aus Abschnitt 5.2.1.

5.4.3 Prädikatbezogene-Serialisierbarkeit
Die Basis des Korrektheitsbegriffes nach Korth et. al. ist zunächst eine einfache
Folgerung aus den eingeführten Konsistenzprädikaten.
Definition 5-28 (Korrektheit): Eine vollständige Ausführung einer Transaktion

ist dann korrekt, wenn alle Eingangsprädikate der Operationen erfüllt sind und
das Ausgangsprädikat der Operation erfüllt ist. 

Es verwundert zunächst, daß nur das Ausgangsprädikat der letzten Operation er-
füllt sein muß. Geht man allerdings davon aus, daß die Ausgangsprädikate der vor-
hergehenden Operationen nur dazu dienen, einen Zustand sicherzustellen, der das
Eingangsprädikat der folgenden Operationen erfüllt, wird klar, daß das Kriterium
hinreichend ist.
Wie in einigen der bisher vorgestellten Kriterien ergibt sich auch bei dem Kriteri-
um in Definition 5-28 das Problem, daß nur für Historien mit abgeschlossenen
Transaktionen entschieden werden kann, ob sie korrekt sind oder nicht. Da dieses
für die praktischen Anwendung ungeeignet ist, wurden mehrere abgewandelte Kri-
74



Korrektheit
Korrektheit nach Korth et. al.5
terien entwickelt, die eine Umsetzung in einen Scheduler erlauben. In dieser Ar-
beit wird allerdings nur auf eines dieser Kriterien eingegangen werden: die prädi-
katbezogene Serialisierbarkeit.
Die Grundidee für die Entwicklung der prädikatbezogenen Serialisierbarkeit ist
es, statt der abstrakten Aussage über die Korrektheit eines Ablaufs als Ganzes die
Korrektheit mittels des eingeführten Konfliktbegriffs festzulegen. Da der Kon-
fliktbegriff es zuläßt, daß zwei Operationen in einem Ablauf in Konflikt stehen
können und in einem anderen nicht, ist die einfache Übertragung des Konflikts
zweier Operationen auf den Konflikt von ganzen Transaktionen, wie im Falle der
ACID-Transaktionen, kein geeignetes Mittel, um zu einem globalen Korrektheits-
begriff zu gelangen. Um trotzdem den Konflikt von ganzen Transaktionen auf den
Konflikt von Operationen zurückführen zu können, wird gefordert, daß die Über-
prüfung eines Eingangsprädikates einer Operation gleichzeitig garantieren soll,
daß das Prädikat bis zum Ende der Transaktion erfüllt ist, wenn es zum Zeitpunkt
der Überprüfung erfüllt war.
Zur Definition des eigentlichen Kriteriums wird zunächst eine Hilfsdefinition be-
nötigt.
Definition 5-29 (Reduzierte Historie): Sei d eine Menge von Datenelementen.

Eine bezüglich der Menge d reduzierte Historie Hd=(Σd,<d) entsteht aus der
Historie H=(Σ,<), indem alle Operationen aus Σ entfernt werden, die nicht auf
ein Datenelement aus d zugreifen. Für je zwei Operationen a und b aus Σd soll
gelten, daß, wenn a < b gilt, muß auch a <d b gelten. 

Mit Hilfe der Definition 5-29 kann ein Kriterium definiert werden, welches nur
Historien betrachtet, die Zugriffe auf bestimmte Mengen von Datenelementen
enthalten. Der Äquivalenzbegriff, der in der folgenden Definition zur Anwendung
kommt, entspricht dem aus Definition 5-9.
Definition 5-30 (Prädikat-Serialisierbarkeit): Gegeben sei ein Prädikat P

welches eine konjunktive Verknüpfung von Termen pi ist. Die Menge von Da-
tenelementen, welche in einem Term pi verwendet werden sei mit di bezeichnet.
Eine Historie H heißt serialisierbar bezüglich eines Prädikates P, wenn für jede
bezüglich der Mengen di reduzierte Historie gilt, daß sie äquivalent zu einer se-
riellen Historie ist.
Die Menge aller prädikat-serialisierbaren Historien wird mit P-SR bezeich-
net.

Korth et. al. verwenden somit nur die Tatsache, daß ein Datenelement in einem
Prädikat verwendet wird und nicht die Erfüllung bzw. Nicht-Erfüllung des Prädi-
kates. Dieser Ansatz ist ähnlich zu den Prädikatsperren, die in [EGL76] eingeführt
wurden.
75



Korrektheit
Korrektheit in ConTracts 5
5.4.4 Recovery-Aspekte
Obwohl in [KLS90] detailliert auf die Anforderung an die Semantik von Aktionen
zur Kompensation eingegangen wird, gibt es keine Spezialisierung des Korrekt-
heitskriteriums im Hinblick auf diese. Dies läßt nur den Schluß zu, daß die Prädi-
kate der “normalen” Operationen, die Anforderungen an eine eventuelle Kompen-
sation mit abdecken müssen, um so zumindest die semantische Atomarität der
Transaktionen gewährleisten zu können. Allerdings wird hierzu keine Aussage ge-
macht.
Eine wichtige Eigenschaft der Kompensationsaktionen ist jedoch erwähnenswert:
Kompensationsaktionen sind atomar und haben somit die ACID-Eigenschaften.
Wie jedoch gewährleistet wird, daß diese Aktionen auch ausgeführt werden kön-
nen, wird nicht diskutiert.
Insgesamt wird das Verhalten der Transaktionen im Fehlerfall recht dürftig model-
liert. Dies zeigt sich beispielsweise im Falle eines Systemausfalls. Zunächst ma-
chen Korth et. al. keine konkrete Aussage über die Semantik nach einem System-
ausfall. Geht man davon aus, daß für eine nicht vollständige Ausführung die
Kompensation eingeleitet wird, stellen sich einige Fragen nach den Details. Ein
konkretes Problem tritt dann auf, wenn direkt nach der Ausführung einer wirklich
ausführenden Operation ein Systemausfall auftritt. Da die zugehörige ε-Operation
nicht ausgeführt werden konnte, ist es nicht entscheidbar, ob die Operation tatsäch-
lich erfolgreich war oder nicht. Selbst wenn nach dem Systemausfall versucht wird
das Prädikat zu evaluieren ist nicht gewährleistet, daß dies das gleiche Resultat wie
vor dem Systemausfall liefert.

5.5 Korrektheit in ConTracts

ConTracts unterscheiden sich von den bisher betrachteten Modellen prinzipiell nur
in dem Punkt, daß in ihnen Transaktionsgrenzen explizit definiert werden können.
Zum einen werden dadurch die bereits bei dem Modell von Korth et. al. erwähnten
Probleme vermieden, und zum anderen wird die flexible Eingrenzung des Wir-
kungsbereiches von fehlgeschlagenen Operationen möglich.
Mit der Einführung der zusätzlichen Flexibilität ist es natürlich notwendig, auch
den Korrektheitsbegriff neu zu überdenken bzw. festzulegen. Da im Gegensatz zu
den bisher vorgestellten Modellen die Fortführbarkeit eines ConTracts eine der
grundlegenden Eigenschaften darstellt, ist es darüber hinaus unumgänglich, den
Recovery-Aspekt in die Definition eines Korrektheitskriteriums mit einzubezie-
hen. Wie sich herausstellen wird, basiert der in diesem Abschnitt vorgestellte An-
satz auf einer Kombination des PRED-Kriteriums (siehe Definition 5-20) und der
prädikatbezogenen Serialisierbarkeit (siehe Definition 5-30).
76



Korrektheit
Korrektheit in ConTracts5
5.5.1 Semantische Ununterbrechbarkeit von ConTracts
Der Begriff der Ununterbrechbarkeit oder Atomarität der ACID-Transaktionen
fordert, daß Transaktionen entweder vollständig ausgeführt werden oder keinen
sichtbaren Effekt haben. Formal kann dies folgendermaßen definiert werden:
Definition 5-31 (Ununterbrechbarkeit): Gegeben sei eine Menge von Daten-

objekten sowie jeweils eine Menge von Änderungs- und Beobachtungsoperatio-
nen. Eine Transaktion stellt eine Folge von Änderungs- bzw. Beobachtungsope-
rationen dar. Eine Transaktion heißt ununterbrechbar, wenn sie entweder
erfolgreich ausgeführt wurde oder wenn nach ihrem Zurücksetzen alle Beob-
achtungsoperationen anderer Transaktionen die gleichen Resultate wie vor
dem Start der fehlgeschlagenen Transaktion liefern.

Diese Definition der Ununterbrechbarkeit ist für kleine Ausführungseinheiten ge-
eignet und unterstützt Anwendungsentwickler mit einer wohldefinierten Fehlerse-
mantik. Wie sich jedoch gezeigt hat, gibt es allerdings viele Anwendungen, für die
diese Definition der Ununterbrechbarkeit keinen Sinn macht. Speziell bei langlau-
fenden Anwendungen zeigt es sich, daß einmal gestartete Abläufe Auswirkungen
haben, die nicht zurückgesetzt werden können oder sogar gewollt im System ver-
bleiben sollen.
Deshalb wird die sogenannte semantische Ununterbrechbarkeit von ConTracts
zweistufig definiert. Zum einen bieten ConTracts die Möglichkeit flexibel Trans-
aktionsgrenzen festzulegen. Für die dadurch definierten Transaktionen wird die
Ununterbrechbarkeit im klassischen Sinne zugesichert. Betrachtet man ConTracts
als Ganzes, so wird bei einem Abbruch (der sogenannten Kompensation) garan-
tiert, daß für alle Steps, die innerhalb erfolgreich abgeschlossener Transaktionen
ausgeführt wurden sogenannte Kompensationssteps ausgeführt werden. Diese
Kompensationssteps stellen nun allerdings keinen Zustand her, der bezüglich den
Beobachtungsoperationen äquivalent zum Ausgangszustand des ConTracts ist.
Vielmehr wird nur gefordert, daß nach der Ausführung eines Kompensationssteps
der zugehörige Originalstep wieder ausgeführt werden kann [RSS97].
Für die Kompensationssteps selbst wird die Ununterbrechbarkeit gemäß Definiti-
on 5-31 gefordert. Somit laufen Kompensationssteps wie alle anderen Steps unter
dem Schutz von ACID-Transaktionen ab. Ein wichtiger Unterschied zu nicht-
kompensierenden Steps ist allerdings, daß Kompensationssteps unbedingt erfolg-
reich ausgeführt werden müssen, wenn die Kompensation eines ConTracts ausge-
löst wurde. Sollte also während einer Kompensation die Ausführung eines Kom-
pensationssteps fehlschlagen, ist zunächst zu versuchen die zugehörige
Transaktion zurückzusetzen und die Ausführung erneut zu starten. Schlägt der
(möglicherweise mehrfach) wiederholte Versuch der Ausführung fehl, befindet
sich das System in einem inkonsistenten Zustand, der einen manuellen Eingriff er-
77



Korrektheit
Korrektheit in ConTracts 5
fordert.
Da ConTracts die Fortsetzbarkeit garantieren ergibt sich ein weiterer Unterschied
zu den ACID-Transaktionen. Anstatt zur Recovery nach einem Systemausfall alle
aktiven Transaktionen zurückzusetzen und dann die Kompensation einzuleiten,
werden alle zurückgesetzten Transaktionen erneut gestartet und die Ausführung
des ConTracts fortgesetzt.

5.5.2 Historien in ConTracts
Prinzipiell läßt sich die bereits bekannte Definition von Historien auch auf das
ConTract-Modell übertragen. Für die weitere Diskussion des Korrektheitskriteri-
ums von ConTracts ist es jedoch sinnvoll, die Besonderheiten explizit herauszuar-
beiten.
Die Operationen der abstrakten Maschine zur Abarbeitung von ConTracts kennt
insgesamt 8 Operationen, die bereits in Abschnitt 4.4.3 eingeführt wurden:

1. Die execute-Operation: e

2. Die check-Operation: γ

3. Die establish-Operation: ε

4. Die BOT-Operation: b

5. Die EOT-Operation: c

6. Die Abort-Operation: a

7. Die compensate-Operation: k

8. Die EOC-Operation: f

Somit ergibt sich die Menge der zulässigen Operationen O zu {e,γ,ε,b,c,a,k,f}.
Definition 5-32 (Historie eines ConTract-Systems): Eine Historie H eines

ConTract-verarbeitenden Systems ist eine Partialordnung (Σ, <) mit Σ = {oi}
und oi ∈ O. Eine Historie HC=(ΣC, <C) heißt Projektion einer Historie H auf
eine ConTract-Instanz C, wenn ΣC eine Teilmenge von Σ ist, nur Operationen
von C enthält und für jedes Paar von Operationen a und b aus ΣC gilt, daß aus
a < b in H, a <C b in HC folgt.
Eine ConTract-Instanz ist in einer Historie enthalten, wenn die Projektion der
Historie auf die ConTract-Instanz nicht leer ist.

Die allgemeine Form der Historie ist natürlich unabhängig von dem Verarbeitungs-
zustand einer ConTract-Instanz. Da dieser andererseits anhand der Historie durch-
78



Korrektheit
Korrektheit in ConTracts5
aus bestimmt werden kann, bietet es sich an, auch eingeschränkte Formen formal
zu definieren.
Definition 5-33 (Vollständigkeit): Eine Historie H heißt vollständig, wenn für

alle in ihr enthaltenen ConTract-Instanzen Ci gilt, daß fi = EOC(Ci) in H ent-
halten ist. 

Vollständige Historien sind somit Historien, die nur abgeschlossene ConTract-In-
stanzen beinhalten. Eine weitere Spezialisierung der allgemeinen Historien, sind
solche, die zwar noch nicht abgeschlossene ConTract-Instanzen enthalten, bei de-
nen jedoch keine Operationen enthalten sind, die zu aktiven Transaktionen gehö-
ren. Um diese Historien ebenfalls formal erfassen zu können, sind zunächst zwei
Hilfskonstrukte notwendig.
Definition 5-34 (Transaktionsbezeichner): Für jede Operation o der Menge

der Anwendungsoperationen A={e,γ,ε}, die in einer Historie H enthalten sind,
existiert eine Abbildung t(o), welche einer Anwendungsoperation o einen
Transaktionsbezeichner zuordnet. t(o) identifiziert die Transaktion, unter deren
Schutz o in H ausgeführt wurde. Mit T(o) wird die Abbildung bezeichnet, die o
bezüglich H den Transaktionsbezeichner der Top-Level-Transaktion zuordnet
unter der o ausgeführt wurde. 

Die Abbildung t dient dazu, in einer Historie die Transaktion zu ermitteln, unter
der eine Anwendungsoperation abgelaufen ist.
Definition 5-35 (ConTract-Bezeichner): Für jede Operation o, die in einer Hi-

storie enthalten ist, existiert eine Abbildung C(o), welche o einen ConTract-In-
stanz-Bezeichner zuordnet. C(o) identifiziert die ConTract-Instanz, für die o
ausgeführt wurde. 

Die Abbildung C(o) ermittelt in einer Historie die ConTract-Instanz, für die eine
Operation o ausgeführt wurde.
Definition 5-36 (Transaktionskonsistenz): Eine Historie H eines ConTract-

verarbeitenden Systems heißt transaktionskonsistent wenn für alle Operatio-
nen, welche Anwendungsoperationen sind, gilt:

Eine transaktionskonsistente Historie enthält nur Operationen, deren zugehörige
Transaktion entweder erfolgreich abgeschlossen oder zurückgesetzt wurde. Die
Forderung nach der Fortführbarkeit von ConTracts nach einem Systemausfall be-
dingt nun, daß das Resultat der Recovery nach einem Systemstart ein System ist,
dessen Historie transaktionskonsistent ist.
Definition 5-37 (Recovery-Erweiterung): Eine Recovery-Erweiterung HR ei-

ner Historie H ist eine transaktionskonsistente Historie, welche aus H durch

a t o( )( ) Σ∈ c t o( )( ) Σ∈∨
o Σ A∩( )∈( )

∀

79



Korrektheit
Korrektheit in ConTracts 5
Anwendung der folgenden Regeln entsteht:
1. Alle Operationen von H sind auch in HR enthalten.
2. Gilt oi < oj in H, dann gilt auch oi < oj in HR.
3. Für alle Transaktionen t für die weder a(t) noch c(t) in H enthalten ist, wird

a(t) der Historie HR hinzugefügt. Es gilt oj < a(t) in HR wenn entweder t(oj) =
t(a(t)) oder wenn es eine Operation oi in H gibt mit oj < oi , t(oj) ≠ t(oi) und
t(oi) = t(a(t)). 

4. Für alle abort-Operationen die in HR aber nicht in H enthalten sind gilt:
a(ti) < a(tj), ti ≠ tj in HR, wenn es zwei Operationen oj , oi gibt mit t(oj ) = tj 
und t(oi) = ti und weiterhin gilt daß oj < oi in H. 

Die Recovery-Erweiterung einer Historie erweitert eine gegebene Historie um jene
Operationen, welche für die Beschreibung des Abbruches der aktiven Transaktio-
nen notwendig sind. Dies entspricht dem Ansatz, der bei der Definition des PRED-
Kriteriums zum Einsatz kam. Da der Detaillierungsgrad der Historien eines Con-
Tract-verarbeitenden Systems relativ grob-granular ist und darüber hinaus die Aus-
führung der Anwendungsoperationen auf Ebene eines Contracts atomar erscheint,
soll im weiteren angenommen werden, daß die Recovery-Erweiterung Historien
nur um die notwendigen Abbruchoperationen der abstrakten Maschine zur Bear-
beitung von ConTracts erweitert.
Da, entsprechend dem Ansatz der Präfix-Reduzierbarkeit, ein Korrektheitskriteri-
um für ein ConTract-verarbeitendes System sowohl die Durchlässigkeit als auch
die semantische Atomarität berücksichtigen soll, ist es notwendig, die Korrektheit
von Historien im Hinblick auf eine eventuelle Kompensation beurteilen zu können.
Im Gegensatz zu den bisher betrachteten Modellen ist es dazu allerdings notwen-
dig, den Mechanismus zur Kompensation nochmals genauer zu betrachten.
Wie bereits in Abschnitt 4.4.2 eingeführt, werden Steps nicht einfach Kompensati-
onssteps sondern sogenannte Kompensationsblöcke zugeordnet. In der Historie ei-
nes ConTract-verarbeitenden Systems werden deshalb Kompensationsaktionen
nicht als einfache execute-Operationen widergespiegelt. Statt dessen ist die Kom-
pensation einer einzelnen execute-Operation eine Folge von Operationen, die zu ei-
ner Transaktion zusammen gefaßt werden.
Definition 5-38 (Kompensationsfolge): Eine Kompensationsfolge I(k) ist eine

Interpretation eines Kompensationsblockes k nach Definition 4-21. Es existiert
eine zweistellige Relation comp(e, I(k)), mit folgender Eigenschaft:
comp(e,I(k)) gilt, wenn die execute-Operation e aus einer Step-Instanz hervor-
geht, welche wiederum aus einem Step s einer ConTract-Instanz erzeugt wurde
und comp(s, k) gilt. 

s̃

80



Korrektheit
Korrektheit in ConTracts5
Gilt comp(e, I(k)), wird für I(k) die Schreibweise I(e-1) verwendet. 
Die Definition der Kompensationsfolge dient zur verkürzten Schreibweise bei der
Definition von Historien. Sie abstrahiert von der Tatsache, daß bei ConTracts im
allgemeinen mehrere Operationen zur Kompensation einer Operation notwendig
sind.
Definition 5-39 (Kompensations-Erweiterung): Eine Kompensations-Erwei-

terung  einer Recovery-Erweiterung HR einer Historie H entsteht
aus HR durch folgende Regeln:

 ist eine Menge von Operationen, die aus ΣR in der folgenden Weise entsteht:
1. Für alle Operationen o gilt:
2. Für alle e-Operationen in ΣR gilt:

Die Ordnungsrelation  ist folgendermaßen festgelegt:
1. Für jeweils zwei Operationen oi und oj gilt: 
2. Alle nicht-kompensierenden Operationen einer ConTract-Instanz erscheinen

vor den Interpretationen ihrer Kompensationsblöcke in der Historie.
3. Für alle Paare von Kompensationsfolgen  und  gilt:

wobei die Relation  dann für zwei Kompensationsfolgen gelten soll, wenn
sie für die letzte Operation der ersten Folge und die erste Operation der
zweiten Folge gilt. 

Die Kompensations-Erweiterung stellt die Analogie zu den erweiterten Historien
(siehe Definition 5-18) dar. Die Idee dabei ist, Historien um die Kompensations-
folgen zu erweitern, welche zur Kompensation nicht abgeschlossener ConTract-
Instanzen notwendig sind. Notwendig sind dabei Kompensationsfolgen für execu-
te-Operationen erfolgreich abgeschlossener Top-Level-Transaktionen. Die Rei-
henfolge, in der die Kompensationsfolgen auszuführen sind, entspricht dabei der
umgekehrten Reihenfolge der Originaloperationen (sofern eine solche vorhanden
ist). Implizit wird davon ausgegangen, daß innerhalb der Kompensationsfolgen
die Partialordnung zu einer Totalordnung verschärft wird.

5.5.3 Konfliktbegriff von ConTracts
Ähnlich dem Modell von Korth et al. stellen die Invarianten Prädikate dar, die Be-
dingungen für die Ausführbarkeit von execute-Operationen festlegen. Allerdings
sind die sogenannten Eingangsinvarianten nicht wie die Eingangsprädikate bei
Korth beliebig definierbar. Statt dessen beziehen sie sich auf (Teil-)Prädikate,
welche bereits von früheren Operationen als Ausgangsinvarianten etabliert wur-

Ĥ Σ̂ ➛̂,( )=

Σ̂
o ΣR∈ o Σ̂∈⇒

e k C e( )( )<R k C e( )( ) Σ̂∉∨( ) c T e( )( ) Σ∈ f C e( )( ) ΣR∉∧ ∧ I e 1–( ) Σ̂∈⇒

➛̂

oi oj<R oi oj➛̂⇒

I e1
1–( ) I e2

1–( )
e1 e2<R I e2

1–( ) I e1
1–( )➛̂⇒

➛̂

81



Korrektheit
Korrektheit in ConTracts 5
den. Trotz dieses Unterschiedes ließe sich nun der Konfliktbegriff von ConTracts
analog definieren. Bei genauerer Betrachtung aus dem Blickwinkel lang laufender
Ausführungen erkennt man jedoch, daß diese Auffassung des Konfliktbegriffs weit
restriktiver als eigentlich notwendig ist.
Die Ursache der unnötig weitgehenden Beschränkung liegt in der von der Auswer-
tung des Prädikates unabhängigen Definition eines Konfliktes. D.h. es kann ein
Konflikt zweier Operationen bezüglich eines Prädikates vorliegen, obwohl das
Prädikat selbst nicht verletzt wird. Darüber hinaus wird bei Korth gefordert, daß ein
Eingangsprädikat bis zum Ende der Ausführung nicht verletzt wird, obwohl aus
Sicht der Operationen kein Bedarf für diese Anforderung besteht.
Das Ziel bei der Entwicklung des Konfliktbegriffs für ConTracts ist es, die Nach-
teile des Ansatzes von Korth et. al. zu vermeiden und somit einen höheren Grad an
Parallelverarbeitung zuzulassen. Da die Eingangsinvarianten nur Referenzen auf
bereits etablierte Ausgangsinvarianten sind, bilden die Invarianten eine Art Klam-
mer, welche einen Isolationsbedarf repräsentiert. Somit ist ein Konflikt bezüglich
einer Invariante (bzw. eines Teils einer Invariante) nur innerhalb dieser Klammer
von Relevanz1.
Definition 5-40 (Geschlossene Invariantenklammer): Zwei Operationen ε und

γ einer ConTract-Instanz bilden eine geschlossene Invariantenklammer [ε,γ],
wenn gilt, daß sowohl ε als auch γ in einer Historie enthalten sind und die Ein-
gangsinvariante der γ-Operation eine Prädikat-Referenz (Definition 4-11) auf
die Ausgangsinvariante enthält, die von der ε-Operation etabliert wird. 
Eine Operation o liegt innerhalb einer geschlossenen Invariantenklammer [ε,γ]
bezüglich einer Historie (o ∈ [ε,γ]), wenn o nach der ε-Operation und vor der
γ-Operation ausgeführt wurde. 

Eine geschlossene Invariantenklammer ist sozusagen ein Gültigkeitsbereich eines
Teils einer Ausgangsinvariante. Innerhalb dieses Bereiches muß der Teil der Aus-
gangsinvariante gelten, der von der Eingangsinvarianten referenziert wird.
Problematisch bei der Betrachtung der geschlossenen Invariantenklammer ist aller-
dings die Tatsache, daß es nicht immer entscheidbar ist, ob jemals eine geschlosse-
ne Invariantenklammer vorliegen wird, wenn eine ε-Operation ausgeführt wurde.
Dies ist zum einen darauf zurückzuführen, daß es innerhalb einer ConTract-Instanz
bedingte Verzweigungen gibt. Zum anderen ist gewährleistet, daß zu jeder Zeit
eine Kompensation eingeleitet werden kann, wodurch ebenfalls die Menge der Pfa-
de verändert wird, die ausgeführt werden können.
Als Konsequenz aus dieser Beobachtung ist es notwendig, die eingeführte Notation
der Invariantenklammer zu verfeinern, um so ein Kriterium zu erhalten, welches

1. Diese Aussage trifft nur für Abläufe zu, deren Struktur sich nicht zur Laufzeit ändert.
82



Korrektheit
Korrektheit in ConTracts5
sich bei beliebigen Historien beurteilen läßt.
Definition 5-41 (Offene Invariantenklammern): Eine ε-Operation, die in ei-

ner Historie H enthalten ist, heißt rechts offene Invariantenklammer: [ε,-). Eine
Operation o ist Teil einer rechts offenen Invariantenklammer o ∈ [ε,-), wenn o
in H enthalten ist und nach der ε-Operation ausgeführt wurde.
Eine γ-Operation, die in einer Historie H enthalten ist heißt links offene Inva-
riantenklammer: (-,γ]. Eine Operation ist Teil einer links offenen Invarianten-
klammer o ∈ (-,γ], wenn o in H enthalten ist und vor der γ-Operation ausgeführt
wurde. 

Offene Invariantenklammern teilen eine Historie H grundsätzlich in Operationen,
die vor bzw. nach einer Invariantenoperation ausgeführt wurden. Die Konstrukti-
on der geschlossenen Invariantenklammer aus offenen Invariantenklammern ist
trivial, so daß hier nicht näher darauf eingegangen wird.
Auf der Basis der Invariantenklammern kann nun die Konfliktrelation definiert
werden:
Definition 5-42 (Invariantenbasierte Konflikte): Gegeben sei eine Historie

H. Eine execute-Operation e1 einer ConTract-Instanz C1 und eine execute-
Operation e2 einer ConTract-Instanz C2, C1 ≠ C2, sind in Konflikt bezüglich
einer Ausgangsinvarianten auf Grund eines Prädikates pk: confε(e1,e2,pk),
wenn gilt:
1. pk ist Teil der Ausgangsinvarianten, die in einer ε-Operation für e1 etabliert

wird: ε = establish(C1, t, o, e1).
2. e2 ∈ [ε,-)
3. pk ist nach der Ausführung von e2 nicht erfüllt.
confε(e1,e2,pk) ⇒ ε < e2 in H.
Eine execute-Operation e1 einer ConTract-Instanz C1 und eine execute-Opera-
tion e2 einer ConTract-Instanz C2, C1 ≠ C2, sind in Konflikt bezüglich einer
Eingangsinvarianten auf Grund einer Prädikat-Referenz rk: confγ(e1,e2,rk),
wenn gilt:
1. rk ist Teil der Eingangsinvarianten, die in einer γ-Operation für e1 geprüft

wird: γ = check(C1, t, i, e1).
2. e2 ∈ (-,γ]
3. rk ist nach der Ausführung von e2 nicht erfüllt.
confγ(e1,e2,rk) ⇒ γ < e2 in H. 

Konflikte nach Definition 5-42 basieren im Gegensatz zum allgemeinen Konflikt-
begriff (siehe Definition 5-4) auf einer bestimmten Ordnung der Operationen. Al-
83



Korrektheit
Korrektheit in ConTracts 5
lerdings ist bei den eingeführten Definitionen noch nicht berücksichtigt, ob über-
haupt eine überlappende Ausführung von ConTract-Instanzen vorliegt oder nicht.

5.5.4 Invariantenorientierte Serialisierbarkeit
Um die Korrektheit von Historien beurteilen zu können, ist die Auswirkung der
Konflikte auf die umgebenden ConTract-Instanzen zu untersuchen. Ein Aspekt da-
bei ist, daß eine ConTract-Instanz nur dann von einem Konflikt auf der Ebene der
Operationen beeinflußt werden kann, solange sie aktiv ist. Diese Tatsache hat zwei
grundsätzliche Implikationen:

1. Operationen vor dem Startereignis einer ConTract-Instanz können nicht in
einem Eingangsinvarianten-Konflikt mit einer Operation der ConTract-In-
stanz stehen.

2. Operationen nach der Ende-Operation einer ConTract-Instanz können nicht
in einem Ausgangsinvarianten-Konflikt mit einer Operation der ConTract-
Instanz stehen.

Berücksichtigt man diese Beobachtungen und propagiert die Ordnungsrelationen
der in Konflikt stehenden Operationen auf die Ebene der ConTract-Instanzen, ge-
langt man zu folgendem Ordnungsbegriff:
Definition 5-43 (Invariantenbasierte Ordnung): Zwei ConTract-Instanzen CA

und CB stehen in einer Ordnungsrelation <p bezüglich eines Prädikates p:
CA<pCB, wenn es eine Historie H = (Σ,<) gibt, in der gilt:
1. Es gibt zwei e-Operationen eA und eB der ConTract-Instanzen in H.
2. eB wurde vor EOC(CA) ausgeführt und confε(eA,eB,p)

oder
Start(CB) wurde vor eA ausgeführt und confγ(eB,eA,r), wobei r=(o,p)

Die Ordnungsrelation <p ist transitiv. Die transitive Hülle wird mit <p* bezeich-
net. 

Die Ordnung, die ein Konflikt zweier Operationen unterschiedlicher ConTract-In-
stanzen impliziert, entspricht der Ordnung der in Konflikt stehenden Operationen.
Somit ist wiederum die Basis geschaffen, ein Kriterium zu formulieren, welches
der klassischen Serialisierbarkeit ähnelt.
Definition 5-44 (Invariantenbasierte Serialisierbarkeit): Eine Historie H ist

korrekt wenn:
1. Alle in ihr enthaltenen Projektionen von ConTract-Instanzen eine Interpreta-

tion einer wohlgeformten Contract-Instanz sind.
84



Korrektheit
Korrektheit in ConTracts5
2. Für alle ConTract-Instanzen Ci in der Kompensations-Erweiterung  gilt,
daß es kein Prädikat p gibt, so daß:

Die Menge aller invariantenbasierten-serialisierbaren Historien wird mit I-SR
bezeichnet. 

Auf Grund des eingeführten Konfliktbegriffs ist einfach zu zeigen, daß das Krite-
rium in Definition 5-44 Präfix-abgeschlossen ist und sich somit auch für den Ent-
wurf eines Schedulers eignet. Da das Kriterium - abgesehen von der Sicherstel-
lung der strukturellen Korrektheit - auf der Kompensations-Erweiterung einer
Historie basiert, können die Invarianten grundsätzlich in zwei Kategorien unter-
schieden werden:

1. Invarianten, die bezüglich einer Kompensationsaktion eine Invarianten-
klammer bilden.

2. Invarianten, die bezüglich einer “normalen” Operation eine Invarianten-
klammer bilden.

Diese Kategorien werden unterschieden, da eine Verletzung einer Invariante der
ersten Kategorie durch das Korrektheitskriterium ausgeschlossen ist, während
dies im zweiten Fall zugelassen wird. Diese Eigenschaft kann bei der Entwicklung
von Verfahren zur Sicherstellung der Korrektheit benutzt werden, was im folgen-
den Kapitel noch deutlich werden wird.

5.5.5 Kaskadierende Kompensation
Ein Problem der Atomarität, das bei dem Lese-/Schreib-Modell bereits bespro-
chen wurde, das kaskadierende Zurücksetzen, hat ein Pendant im Falle der seman-
tischen Ununterbrechbarkeit: die kaskadierende Kompensation. Unter kaskadie-
render Kompensation versteht man die Notwendigkeit, bei der Kompensation
einer ConTract-Instanz, die Kompensation einer anderen ConTract-Instanz auslö-
sen zu müssen.
Wie beim Lese-/Schreibmodell kann diese Fortsetzung dann notwendig werden,
wenn eine ConTract-Instanz A Daten gelesen hat, die von einer zweiten Con-
Tract-Instanz B verändert wurden und die Instanz B die Kompensation einleitet.
Grundsätzlich stellt sich dann die Frage, ob die Daten, welche Instanz A gelesen
hatte, trotz der Kompensation von B gültig sind. Die Antwort auf diese Frage ist
anwendungsabhängig und kann allgemein nicht beantwortet werden.
Im Gegensatz zum Ansatz der klassischen Transaktionen wird deshalb in Con-
Tracts davon ausgegangen, daß keine kaskadierende Kompensation notwendig

Ĥ

Ci Cp i<*
85



Korrektheit
Diskussion 5
ist. Vielmehr obliegt es dem Anwendungsprogrammierer, das Konzept der Invari-
anten so zu nutzen, daß ein inkorrektes Verhalten einer ConTract-Instanz auf
Grund der Kompensation einer anderen Instanz von vornherein ausgeschlossen ist.
Man kann diese sehr weit reichende Annahme durch Beobachtungen von langlebi-
gen Abläufen aus realen Anwendungen rechtfertigen. Ein wichtiger Unterschied
zur transaktionalen Welt ist die Tatsache, daß Resultate, die einmal sichtbar waren,
nicht dadurch “ungültig” werden, daß ein Vorgang storniert wird. Zumindest für
eine bestimmte Zeit war ein Resultat gültig, so daß dieser Umstand unter Berück-
sichtigung des Zeitaspekts auch nicht mehr “ungeschehen” gemacht werden kann.
Ein Beispiel aus dem Bankwesen soll diese Beobachtung verdeutlichen. Wird eine
Reisebuchung durchgeführt, wird normalerweise eine Anzahlung geleistet. Unter
der Annahme, daß diese Zahlung von einem Konto abgebucht wird, wird die Akti-
on dieses Reisebuchungsablaufes für einen anderen Ablauf zur Zinsberechnung
sichtbar. Wird die Reisebuchung storniert, bleiben die von der Zinsberechnung
ausgeführten Aktionen bestehen (wenn auch zum Leidwesen des oder der Buchen-
den). Eine kaskadierende Kompensation kommt in diesem Beispiel nicht in Frage,
da die Tatsache, daß für eine bestimmte Zeit weniger Geld auf dem Konto war,
nicht ungeschehen gemacht werden kann. Selbst wenn der entstehende Zinsverlust
von dritter Seite ausgeglichen wird, ist zwar der Effekt quasi kompensiert worden,
jedoch ohne Beeinflussung des Ablaufes zur Zinsberechnung.
Andererseits ist unverkennbar, daß sich parallele Abläufe beeinflussen. Dieser Ef-
fekt ist teilweise sogar gewünscht, wodurch der Bedarf nach Ablauf-übergreifen-
dem Informationsaustausch entsteht. Diese Art des Zusammenspiels von Abläufen
ist jedoch nicht Gegenstand dieser Arbeit und wird deshalb nicht weiter diskutiert.
Trotzdem kann man sich vorstellen, daß der hier präsentierte Begriff der Korrekt-
heit bei weitem nicht ausreicht, um für ein solch komplexes Szenario zu genügen.

5.6 Diskussion

Die in diesem Kapitel vorgestellten Korrektheitsbegriffe stellen nur einen Aus-
schnitt aus der Vielfalt entwickelter Kriterien dar. Gerade im Zusammenhang mit
dem klassischen Serialisierbarkeitsbegriff im Umfeld des Lese/Schreib-Modells
wurden einige Verfeinerungen entwickelt, um eine theoretische Grundlage für die
im nachfolgenden Kapitel diskutierten Verfahren einzuführen. Grundsätzlich wer-
den durch diese Verfahren jedoch kaum neue Aspekte aufgeworfen, so daß auf eine
tiefergehende Einführung dieser Verfahren verzichtet werden kann.
Bei genauerer Betrachtung der vorgestellten Verfahren lassen sich zwei orthogo-
nale Klassifikationskriterien für Korrektheitsbegriffe identifizieren:
86



Korrektheit
Diskussion5
1. Art der Konfliktbestimmung

2. Art der Isolationsbedarfsfestlegung.

Die Art der Konfliktbestimmung entscheidet darüber, ob das Kriterium auf einem
Konfliktbegriff basiert, welcher nur durch die Betrachtung der Signatur der Ope-
rationen festgelegt ist. Ist dies der Fall, so spricht man von einem syntaktischen
Verfahren. Muß dagegen die Bedeutung der Operationen selbst betrachtet werden,
um über einen Konflikt entscheiden zu können, nennt man das Verfahren seman-
tisch.
Die Art der Isolationsbedarfsfestlegung dient dazu, aus Sicht einer Anwendung zu
beurteilen, wie der Isolationsbedarf geäußert werden kann. Muß in der Anwen-
dung selbst hierzu keinerlei Maßnahme getroffen werden spricht man von einem
impliziten Verfahren, anderenfalls von einem expliziten Verfahren. Diese Unter-
scheidung sagt natürlich nichts darüber aus, ob auf der Stufe des Ausführungssy-
stems explizit festgelegt wurde, ob zwei Operationen in einem Konflikt stehen
(z.B. durch sogenannte Kompatibilitätstabellen), oder ob diese Konflikterken-
nung implizit im Programmcode versteckt ist.
Tabelle 5-1 gibt einen Überblick über die Klassifikation der vier wichtigsten Kri-
terien, die in diesem Kapitel vorgestellt wurden. Anhand der Tabelle wird deut-
lich, daß die vier vorgestellten Modelle alle Kombinationen der zwei Klassifika-
tionskriterien repräsentieren und somit hinreichend repräsentativ sind.
Auffällig ist, daß der Korrektheitsbegriff nach Korth et. al. die explizite Festle-
gung des Isolationsbedarfs unterstützt und gleichzeitig eine syntaktische Konflikt-
bestimmung verfolgt. Dies resultiert aus der Tatsache, daß das Korrektheitskrite-
rium nach Korth zwar Prädikate verwendet, die auf Anwendungsebene definiert
werden, andererseits aber ein Konflikt nicht darauf beruht, daß ein Prädikat ver-
letzt wird. Ein Konflikt beruht nur auf der Tatsache, daß ein Objekt “syntaktisch”
in einem Prädikat verwendet wird und eine ändernde Operation auf dieses Objekt
zugreift. Die Art des Zugriffs beeinflußt die Entscheidung über einen Konflikt
nicht.

Kriterium Modell Konfliktbestimmung Isolationsbedarf

PRED read/write-Modell syntaktisch implizit

ML-SR Multilevel semantisch implizit

P-SR Korth et. al. syntaktisch explizit

I-SR ConTracts semantisch explizit

Tabelle 5-1: Klassifikation von Korrektheitskriterien
87



Korrektheit
Diskussion 5
Ein wichtiges Vergleichskriterium für Korrektheitsbegriffe ist die Betrachtung der
möglichen korrekten Historien. Grundsätzlich gilt dabei, daß bei einer größeren
Menge an möglichen Transaktionen auch der mögliche Parallelitätsgrad zunimmt
und somit ein höherer Durchsatz (im Hinblick auf Transaktionen pro Zeiteinheit)
erzielt werden kann. Wie bereits in Abschnitt 5.2 im Fall des Lese/Schreib-Modells
eingeführt wurde, wird ein entsprechender Vergleich durch eine Teilmengenbezie-
hung der Mengen möglicher Historien ausgedrückt. 
Eine Vorgehensweise zu einer Aussage über Teilmengenbeziehungen zu kommen
ist die Untersuchung eines Verfahrens auf die Möglichkeit der Simulation eines an-
deren Verfahrens. Einfach kann dies am Beispiel des Modells nach Korth und dem
ConTract-Modell vorgenommen werden. Schränkt man bei den ConTracts die Prä-
dikate so ein, daß eine Verletzung des Prädikats bei einem beliebigen ändernden
Zugriff eines enthaltenen Datenelements auftritt und definiert die Eingangsinvari-
ante des letzten Steps als Konjunktion aller vorigen Eingangsinvarianten, so erhält
man das gleiche Verhalten wie bei dem Ansatz von Korth. Auch das PRED-Krite-
rium ist mit dem Ansatz von ConTracts entsprechend zu simulieren. Eine Aussage
über die Teilmengenbeziehung mit den Mehrschichttransaktionen ist allerdings
nicht möglich, da bei diesen zum einen eine strenge Hierarchie gefordert wird und
zum anderen nicht festgelegt ist, welches Verfahren auf einer bestimmten Ebene
zur Anwendung kommt. 
Darüber hinaus kann für alle Verfahren, die eine Kompatibilitätstabelle für eine be-
liebige (erweiterbare) Menge von Operationen verwenden, keine Aussage über
eine Teilmengenbeziehung gemacht werden, da der Konfliktbegriff zwar definiert
aber veränderlich bezüglich der Zeit bei konstantem Zustand der Daten ist.
Der Zeitaspekt wird momentan von keinem Korrektheitsbegriff berücksichtigt, ob-
wohl dieser im Umfeld langdauernder Abläufe eine nicht zu vernachlässigende
Rolle spielt. Ein Beispiel soll dies verdeutlichen. Ein Ablauf zur Abwicklung eines
Hauskaufs möge einen Step enthalten, der dazu dient festzustellen, ob für die spä-
tere Zahlung des Kaufpreises genügend Geld zur Verfügung steht. Aus Sicht der
Anwendung muß ab dem Zeitpunkt der Überprüfung nur sichergestellt werden, daß
zum Zeitpunkt der Zahlung ein entsprechender Betrag zur Verfügung steht. Somit
könnte unter dieser Voraussetzung jeglicher Zugriff auf das Budget erlaubt wer-
den.
Bei genauerer Betrachtung erkennt man, daß das Beispielsszenario zwei Aspekte
enthält, die heutige Korrektheitskriterien nicht berücksichtigen (können). Der eine
Aspekt ist die bereits erwähnte temporale Beschränkung von Isolationskriterien.
Der zweite Aspekte, der auch den eigentlich kritischen Bereich darstellt, ist die Be-
rücksichtigung einer Garantie über eine zukünftige Aktion bzw. einen zukünftigen
Zustand der Daten. Obwohl es in der Realität Usus ist, Garantien über zukünftige
88



Korrektheit
Diskussion5
Ereignisse abzugeben, kann dies bei Korrektheitsmodellen kaum berücksichtigt
werden, da solche Garantien nur begrenzt eingehalten werden können und bei ei-
ner Verletzung ein nicht korrekter bzw. inkonsistenter Zustand entstehen kann.
Trotzdem ist es speziell im Umfeld langlebiger Abläufe notwendig, weitgehend
die Flexibilität der Realität nachbilden und somit auch inkonsistente Zustände be-
rücksichtigen zu können. Eine zukünftige Aufgabe der Entwicklung von Korrekt-
heitskriterien wird es somit sein, Inkonsistenzen nicht grundsätzlich zu verhin-
dern, sondern kontrolliert mit ihnen umzugehen.
89



Kontrolle von Abläufen
Grundprobleme 6
6 Kontrolle von Abläufen

Die Einführung von Korrektheitskriterien im transaktionalen Umfeld ist die Vor-
aussetzung, um Mechanismen zur Vermeidung von Anomalien bei der parallelen
Ausführung von Abläufen in ein Laufzeitsystem zu integrieren und somit Anwen-
dungsprogrammierer und -programmiererinnen von diesem Aufwand zu entlasten.
Neben dem Vorteil, daß insgesamt der Code-Umfang der Anwendungen dadurch
geringer wird, können die Mechanismen des Laufzeitsystems von Spezialisten ent-
wickelt und optimiert werden. Somit wird das Fehlerrisiko minimiert und gleich-
zeitig ein optimales Leistungsverhalten garantiert. Dieses Kapitel beschäftigt sich
mit den unterschiedlichen Ansätzen zur Umsetzung der im vorigen Kapitel einge-
führten Korrektheitskriterien in eben solche Laufzeitsysteme, so daß sich der Be-
griff der “Kontrolle von Abläufen” nur auf die Sicherstellung der transaktionalen
Korrektheit bezieht (engl. concurrency control) und nicht auf andere Bereiche wie
z.B. den Datenschutz. 
Wie sich herausstellen wird, gibt es eine Vielzahl von Möglichkeiten die vorge-
stellten Kriterien in ein Laufzeitsystem umzusetzen. Neben der eigentlichen Auf-
gabe, der Sicherstellung der Korrektheit selbst, werden dabei noch weitere Aspekte
eine Rolle spielen, wobei der Leistungsaspekt im Hinblick auf das Durchsatzver-
halten des Gesamtsystems, das überwiegend wichtigste Beurteilungskriterium zur
Bewertung der Verfahren sein wird. 

6.1 Grundprobleme

Wie im Falle der Korrektheitskriterien können auch bei deren Umsetzung grund-
sätzliche Probleme identifiziert werden, die es zu lösen gilt. Die drei nachfolgen-
den Unterabschnitte sollen einen Einblick in diese Probleme geben und eine Moti-
vation für die Vielzahl an Ansätzen liefern.

6.1.1 Statische versus dynamische Ansätze
Wie bereits erwähnt, ist das Ziel der Umsetzung von Korrektheitskriterien die Ent-
wicklung eines Laufzeitsystems. Die Hauptkomponente eines solchen Systems ist
dabei die Komponente, die über die Ausführbarkeit bzw. die Zulassung einer
Transaktion zur Ausführung entscheidet: der sogenannte Scheduler. Aus Sicht die-
ses Schedulers wird dessen Aufgabe um so einfacher, je mehr Information über die
Operationen und die benötigten Datenobjekte der Transaktionen vor deren Ablauf
zur Verfügung stehen.
Ein Ansatz zur Sicherstellung von korrekten und (Durchsatz-)optimalen Historien
90



Kontrolle von Abläufen
Grundprobleme6
basiert auf dieser Beobachtung. Bei diesem Ansatz wird gefordert, daß eine Trans-
aktion bereits vor ihrem eigentlichen Ablauf alle benötigten Datenelemente “re-
serviert” (engl. pre-claiming). Wird außerdem noch die Art des Zugriffs spezifi-
ziert (wie z.B. ändernder Zugriff oder nicht-ändernder Zugriff), ist es einem
Scheduler prinzipiell möglich, die verschachtelte Ausführung von Transaktionen
einfach festzulegen und (nahezu) jede Konfliktsituation vorherzusehen. Da sich
die Information, die zur Erkennung von Konflikten benötigt wird, zur Laufzeit ei-
ner Transaktion nicht ändert, wird diese Art von Ansätzen zur Sicherstellung1 der
Korrektheit als statisch (im engl. conservative [BHG87]) bezeichnet.
Voraussetzung für den Einsatz von statischen CC-Verfahren ist jedoch, daß die
Menge der berührten Objekte einer Transaktion vorab bekannt ist und daß Trans-
aktionen möglichst keine bedingten Verzweigungen enthalten. Letzteres ist zwar
vom Standpunkt der Korrektheit nicht unbedingt notwendig, da jedoch ganze
Zweige einer Transaktion möglicherweise nicht durchlaufen werden, sind alle
Maßnahmen zur Konfliktvermeidung für Objekte, die nur in diesen Zweigen be-
rührt werden unnötig und resultieren in einer Verschlechterung des Leistungsver-
haltens.
Durch diese notwendigen Voraussetzungen eignen sich die statischen Verfahren
nur für eine sehr beschränkte Klasse von Anwendungen, weshalb in anwendungs-
unabhängigen Produkten wie z.B. Datenbanksystemen eine andere Klasse von
Verfahren zur Anwendung kommt: die dynamischen Verfahren.
Dynamische CC-Verfahren erfordern keine Reservierung der in einer Transaktion
benötigten Datenelemente vor der Ausführung einer Transaktion. Statt dessen
wird bei der Ausführung einer Operation ermittelt, welche Datenelemente berührt
werden und welche Konflikte mit bereits ausgeführten Operationen anderer
Transaktionen hierdurch entstehen. Anhand dieser Information entscheidet der
Scheduler ob die Operation ausgeführt werden darf, bzw. welche Maßnahmen ge-
troffen werden müssen, um die Korrektheit des Systems zu gewährleisten.
Obwohl durch den dynamischen Ansatz jede einzelne Operation einer Transakti-
on verzögert wird, rechtfertigt sich der Einsatz einer solchen Methodik durch den
hohen Flexibilitätsgrad und der Unabhängigkeit von der Menge der von Transak-
tionen berührten Datenelemente.

6.1.2 Durchsatz und Verklemmung
Im Bereich der ACID-Transaktionen ist neben der Korrektheit selbst der Durch-
satz bzw. eine Durchsatzsteigerung bezüglich der seriellen Ausführung das
Hauptbeurteilungskriterium für ein CC-Verfahren. Der Grund hierfür ist die Ent-
stehungsgeschichte der in diesem Kapitel vorgestellten Verfahren. Da Transaktio-

1. Im weiteren wird die abkürzende Bezeichnung CC-Verfahren verwendet.
91



Kontrolle von Abläufen
Grundprobleme 6
nen zunächst in der Batch-Verarbeitung eingesetzt wurden, gab es keine Probleme
durch den parallelen Zugriff - Transaktionen wurden rein sequentiell ausgeführt.
Erst durch die Einführung des OLTP-Betriebes stellte sich das durch CC-Verfahren
adressierte Problem. Die einfachste Lösung wäre, die sequentielle Verarbeitung zu
erzwingen und somit nur eine aktive Transaktion im System zuzulassen. Führt man
stattdessen Verfahren zur Durchsetzung der Korrektheit bei gleichzeitiger Parallel-
verarbeitung ein, muß sichergestellt sein, daß der Durchsatz des Systems zumin-
dest höher ist als im rein sequentiellen Fall.
Obwohl der Durchsatz als Beurteilungskriterium im Falle der ACID-Transaktio-
nen durchaus seine Berechtigung hat (auf Grund der Isolationseigenschaft), kann
dies nicht ohne weiteres auf andere “erweiterte” Modelle übertragen werden. Der
Grund hierfür ist die Tatsache, daß das ACID-Modell keine kooperativen Tätigkei-
ten zuläßt. Das sind Verarbeitungsformen, bei denen der parallele bzw. verschach-
telte Zugriff auf diesselben(!) Datenelemente gewollt und notwendig ist. Deshalb
ist auch die rein sequentielle Verarbeitung der Transaktionen von vornherein aus-
geschlossen und das Beurteilungskriterium nicht anwendbar. Trotzdem ist es auch
für Verfahren, die Kooperation unterstützen wünschenswert, daß neben ihrer An-
wendbarkeit im ACID-Fall auch das Durchsatzkriterium entsprechend angewandt
werden kann. 
Bei dynamischen CC-Verfahren entsteht ein weiteres Problem, welches Auswir-
kungen auf das Gesamtsystem haben kann: die Verklemmung (engl. deadlock). Da
die meisten Verfahren darauf basieren, daß bei einem Konflikt zweier Transaktio-
nen eine davon blockiert wird (die TA, deren Operation nicht zur Ausführung zu-
gelassen wird), kann es vorkommen, daß eine zirkuläre Wartesituation auf Grund
unterschiedlichen Ressourcenbedarfs vorliegt. 
Ein Beispiel soll dies verdeutlichen: 

1. Transaktion 1 hat eine Ressource A bereits bearbeitet und dafür exklusiv re-
serviert;
Dasselbe gilt für Transaktion 2 bezüglich einer anderen Ressource B.

2. Möchte Transaktion 1 nun Ressource B bearbeiten, verweigert der Scheduler
die Ausführung der Operation, da Transaktion 2 noch nicht abgeschlossen
ist.

3. Möchte Transaktion 2 Ressource A bearbeiten wird Transaktion 2 ebenfalls
blockiert, da Transaktion 1 noch nicht abgeschlossen ist.

Nach Schritt 3 sind somit Transaktion 1 als auch Transaktion 2 blockiert, und es
gibt keine Möglichkeit diese Blockierung aufzulösen, ohne daß eine der Transak-
tionen abgebrochen wird (die Atomaritätseigenschaft wird vorausgesetzt).
92



Kontrolle von Abläufen
Grundprobleme6
Es gibt unterschiedliche Ansätze, Verklemmungen zu erkennen und dann durch
Zurücksetzen einer der beteiligten Transaktionen aufzulösen. Die zwei Hauptan-
sätze basieren dabei auf der Verwendung von Abhängigkeitsgraphen (ähnlich
dem Serialisierbarkeitsgraphen) bzw. auf einem Zeitschrankenmechanismus
(engl. timeout). Letzterer Ansatz hat den Nachteil, sehr anwendungsabhängig zu
sein, da die maximale Dauer einer Transaktion vorab festgelegt werden muß. An-
dererseits ist er sehr viel einfacher zu implementieren und weniger zeitaufwendig,
weshalb er in den gängigen Datenbanksystemen eingesetzt wird.
Verklemmungen bei ACID-Transaktionen sind somit vergleichsweise harmlos,
wenn man den Performancegesichtspunkt unbeachtet läßt. Anders gestaltet sich
dies jedoch bei geschachtelten Transaktionen. Bei diesen ist es durchaus möglich,
daß zwei Sub-Transaktionen der gleichen Top-Level-Transaktion in eine Ver-
klemmung geraten, bzw. sogar eine Sub-Transaktion mit einer Eltern-Transakti-
on. Einerseits kann auch dieser Konflikt durch Zurücksetzen der niedrigsten Sub-
Transaktion aufgelöst werden, doch erfordert dies zunächst Information über die
Transaktionsbeziehungen. Darüber hinaus ist der Effekt des Sub-Transaktions-
Abbruchs auf den weiteren Verlauf der Eltern-Transaktion dem System unbe-
kannt, wodurch der Abbruch der Top-Level-Transaktion ausgelöst werden kann.
Dieser Effekt bei geschachtelten Transaktionen ist bisher noch wenig untersucht.
Allerdings stellt sich auch die Frage, ob eine Verklemmung innerhalb einer ge-
schachtelten Transaktion nicht eigentlich ein Indikator für einen Programmierfeh-
ler darstellt.
Im weiteren Verlauf dieser Arbeit wird sowohl der Durchsatz-Aspekt als auch das
Thema der Verklemmung im Kontext des ConTract-bezogenen Ansatzes nicht
weiter diskutiert werden. Der Durchsatz-Aspekt wird nicht weiter betrachtet, da
es sich im Falle des ConTract-Modells durchaus um einen kooperationsunterstüt-
zenden Ansatz handelt. Die genauere Untersuchung der Verklemmungsproblema-
tik im Falle von ConTracts ist durchaus relevant, würde aber den Rahmen dieser
Arbeit sprengen und stellt ein eigenständiges Forschungsthema dar.

6.1.3 Wartbarkeit
Unter dem Begriff der Wartbarkeit versteht man ein Maß für die Möglichkeit, ein
Verfahren an neue Gegebenheiten anzupassen bzw. für den Aufwand, der hierzu
notwendig ist. Im Falle von Transaktionsmodellen tritt dies auf, wenn zu der Men-
ge der möglichen Operationen eines Modells neue Operationen hinzukommen.
Bei ACID-Transaktionen spielt dies keine Rolle, da die Menge der Operationen
per Definition auf die Lese- und Schreiboperation beschränkt ist und somit keine
neuen Operationen hinzukommen können. Bei allen Modellen, die mehrstufig
aufgebaut sind oder anwendungsdefinierte Operationen zulassen (wie z.B. bei den
93



Kontrolle von Abläufen
Klassische Ansätze 6
Multi-Level-TAs oder den ConTracts) können im Gegensatz dazu jederzeit neue
Operationen in das System eingebracht werden. Dabei stellt sich natürlich die Fra-
ge, inwieweit dies Auswirkungen auf das Laufzeitsystem zur Sicherstellung der
Korrektheit hat.
Wie bereits bei den Mehrschichttransaktionen erwähnt, ist ein relativ hoher Auf-
wand notwendig, wenn die zum Einsatz kommenden Verfahren auf einem explizit
zu definierendem Konfliktschema basieren, wenn also explizit (z.B. im Scheduler)
festgelegt werden muß, ob eine Operation A mit einer Operation B in einem Kon-
flikt steht, wenn beide Operationen auf das gleiche Datenelement zugreifen.
Ein solcher Aufwand ist natürlich in einem System mit vielen Operationen nicht
vertretbar, weshalb auch in der Entwicklung eines CC-Verfahrens für ConTracts
entsprechende Ansätze nicht berücksichtigt wurden. Statt dessen wird darauf ge-
achtet werden, daß bei der Einbringung neuer Operationen keine Änderung des
Laufzeitsystems zu erfolgen hat.

6.2 Klassische Ansätze

Unter den klassischen Ansätzen versteht man diejenigen Verfahren, die zur Ab-
wicklung von ACID-Transaktionen im OLTP-Bereich entwickelt wurden. Die re-
lativ lange Entwicklungsgeschichte dieser Verfahren hat dazu geführt, daß es eine
Vielzahl von veröffentlichten Methoden gibt, die sich größtenteils nur in wenigen
speziellen Punkten unterscheiden. Deshalb sollen in diesem Abschnitt nur die
grundsätzlichen Prinzipien vorgestellt und entsprechende Hinweise auf die Litera-
tur gegeben werden.

6.2.1 Pessimistische Verfahren
Die sogenannten pessimistischen Verfahren beruhen auf der Idee, Konflikte noch
vor der Ausführung einer Operation zu erkennen und daraufhin geeignete Maßnah-
men zu ergreifen. 

6.2.1.1 Zwei-Phasen Sperrverfahren
Populärster Vertreter der pessimistischen Verfahren ist das sogenannte Zwei-Pha-
sen-Sperrverfahren (engl. two phase locking oder 2PL) [BHG87]. Das Prinzip des
2PL beruht darauf, daß jede Lese- und Schreiboperation einer ACID-Transaktion
vor ihrer Ausführung eine Sperre für das Objekt anfordert, auf das während der
Operation zugegriffen werden soll. Der Begriff der Zweiphasigkeit rührt von dem
Prinzip her, daß eine Sperre erst dann wieder frei gegeben wird, wenn keine weitere
Sperre mehr benötigt wird. Somit erhält man eine “Wachstumsphase” (engl. gro-
wing phase), während der die Anzahl an gehaltenen Sperren zunimmt und eine
94



Kontrolle von Abläufen
Klassische Ansätze6
“Freigabephase” (engl. shrinking phase) während der die Anzahl wieder ab-
nimmt.
Es läßt sich zeigen, daß ein Scheduler auf der Basis des 2PL ausschließlich seria-
lisierbare Historien erzeugt [BHG87]. Allerdings bleibt die Problematik der Wie-
derherstellbarkeit und die des kaskadierenden Zurücksetzens unberücksichtigt.
Ein Beispiel soll dies verdeutlichen:

1. Eine Transaktion 1 liest ein Objekt A und schreibt ein Objekt B.

2. Anschließend gibt Transaktion 1 die Sperre für Objekt B frei.

3. Eine Transaktion 2 liest Objekt B und ändert wertabhängig von B Objekt C

4. Transaktion 1 bricht ab.1

5. Transaktion 2 wird erfolgreich beendet.

Nach diesem Ablauf ist der Wert von Objekt C möglicherweise falsch, da dieser
auf der Basis des geänderten Wertes von B berechnet wurde. Da Transaktion 1 je-
doch zurückgesetzt wurde, ist der Wert von B inzwischen auf dem alten Stand:
man hat die klassische “dirty read” Situation (wie bereits in Abschnitt 5.2.3 ange-
sprochen könnte dies durch kaskadierendes Zurücksetzen vermieden werden).
Eigentlicher Grund für dieses Problem ist die Freigabe einer Sperre auf einem ge-
änderten Objekt ohne zu wissen, ob die Transaktion erfolgreich abschließt oder
nicht. Deshalb wurde eine leichte Abwandlung des 2PL eingeführt: das strikte
2PL. Bei diesem Verfahren wird außer den Anforderungen des 2PL noch zusätz-
lich verlangt, daß Sperren ändernder Operation erst beim commit bzw. beim abort
der Transaktion freigegeben werden. Für das strikte 2PL läßt sich zeigen, daß
Scheduler, die das strikte 2PL einsetzen nur strikte Historien (siehe Abschnitt
5.2.3) erzeugen [BHG87].
Da bei Sperrverfahren üblicherweise eine Transaktion blockiert wird, wenn eine
Sperre für ein Objekt angefordert wird auf dem bereits eine in Konflikt stehende
Sperre besteht, wird das 2PL und auch das strikte 2PL üblicherweise als “verklem-
mungsanfällig” bezeichnet. Somit sind zusätzliche Mechanismen notwendig (sie-
he Abschnitt 6.1.2), um Verklemmungen erkennen und auflösen zu können.

6.2.1.2 Graphbasierte Verfahren
Mann kann für die Zwecke der CC auch die Information in Abhängigkeitsgraphen
verwenden (siehe beispielsweise [Günt96]). Wie bereits beim Serialisierbarkeits-
graphen (Abschnitt 5.2.2) eingeführt, führt der Konflikt zweier Operationen zu ei-

1. Bei [BHG87] wird davon ausgegangen, daß bei commit oder abort keine Sperren angefordert werden.
95



Kontrolle von Abläufen
Klassische Ansätze 6
ner Abhängigkeitsrelation der Transaktionen, die diese Operationen ausführen.
Diese Relation läßt sich auch als gerichteter Graph auffassen, der azyklisch sein
muß, um die Serialisierbarkeit zu gewährleisten. Die Grundversion der Konflikt-
graphen eignet sich allerdings nicht dazu, auch die Recoverability zu gewährlei-
sten. Hierzu sind einige Erweiterungen notwendig, die jedoch relativ einfach sind
und deshalb hier nicht weiter erläutert werden.
Das grundsätzliche Kriterium zur Beurteilung, ob ein Graph eine korrekte Historie
widerspiegelt oder nicht, bleibt auch bei den erweiterten Graphen die Azyklizität.
Wenn also eine Operation einer Transaktion einen Zyklus in dem Graphen erzeu-
gen würde, ist sie nicht zulässig, und es müssen entsprechende Maßnahmen ergrif-
fen werden. Darüber hinaus ist selbst bei einer blockierenden Strategie einfach fest-
zustellen, ob eine Verklemmung eintreten würde oder nicht. Da durch eine
verklemmungsverursachende Operation auf jeden Fall auch ein Zyklus in dem Gra-
phen entstehen würde, ist bei der Blockierung einer solchen Operation zu untersu-
chen, ob alle an dem Zyklus beteiligten Transaktionen ebenfalls blockiert sind. Ist
dies der Fall, so liegt eine Verklemmung vor, und eine der beteiligten Transaktio-
nen muß zurückgesetzt werden.

6.2.2 Optimistische Verfahren
Optimistische Verfahren unterscheiden sich von den pessimistischen Verfahren
dadurch, daß nicht grundsätzlich versucht wird, Operationen zu verhindern, die das
Korrektheitskriterium verletzen würden. Statt dessen wird hier der Ansatz verfolgt,
Transaktionen bis zur prepare-Phase auszuführen und erst dann zu überprüfen, ob
ein Konflikt während der Ausführung vorlag, der das Korrektheitskriterium verlet-
zen würde. Ist dies der Fall, muß eine Transaktion zurückgesetzt werden oder das
commit einer Transaktion solange verzögert werden, bis alle anderen in Konflikt
stehenden Transaktionen ebenfalls ihr commit ausführen wollen.
Obwohl diese Verfahren offensichtlich verklemmungsfrei sind, hat der Realeinsatz
gezeigt, daß sie im Hinblick auf den Durchsatz den pessimistischen Verfahren un-
terlegen sind. Deshalb wird nicht weiter auf die Details dieser Verfahren eingegan-
gen werden. Eine kurze Diskussion der Ursache für dieses Verhalten ist jedoch an-
gebracht.
Optimistische Verfahren führen grundsätzlich alle Operationen von Transaktionen
so aus, als ob sie auf privaten Kopien der Daten ausgeführt werden würden. Bei der
Überprüfungsphase muß nun (für alle Operationen) festgestellt werden, ob eventu-
ell ein Konflikt aufgetreten ist, der die Korrektheit verletzt. Dies ist ein nicht zu
vernachlässigender Aufwand, der z.B. durch ein graphbasiertes Verfahren reali-
siert wird. Im Falle eines Konfliktes müssen nun die Gegenoperationen für alle än-
dernden Operationen ausgeführt werden, was einen größeren Aufwand als für die
96



Kontrolle von Abläufen
Semantikbasierte Ansätze6
eigentliche Transaktion erfordert, da zunächst die Gegenaktionen ermittelt und
dann angewendet werden müssen. Abgesehen von der Tatsache, daß die Gegen-
aktionen zumeist vom Log gelesen werden müssen und damit einen Zugriff auf
eine Festplatte bedeuten können (je nach dem ob dieser Teil des Log bereits stabil
geschrieben wurde), bedeutet dies auch, daß während dieser Zeit der Zugriff auf
das Log von anderen Transaktionen nicht unerheblich beeinflußt wird.
Eine weitere nachteilige Folge ergibt sich aus der gleichzeitigen Ausführung der
Gegenoperationen und dem Fortschreiten anderer Transaktionen. Da die im Vor-
wärtsablauf befindlichen Transaktionen nicht blockiert werden, wenn ein Konflikt
auftritt, kann es während der Ausführung von Gegenoperationen einer Transakti-
on wieder zu Konflikten mit Operationen des “Normalablaufs” kommen, was zu
einem Zurücksetzen führt. Gerade im Falle von sogenannten Hot-Spots (Datenob-
jekte auf die sehr häufig zugegriffen wird) stellt dies einen gewichtigen Nachteil
der optimistischen Verfahren dar, da im Grenzfall keine der Transaktionen erfolg-
reich zu Ende geführt werden kann.
Weiterhin ist zu erwähnen, daß optimistische Verfahren anfällig für sogenannte
live-locks sind. Im Gegensatz zu den dead-locks (den Verklemmungen) wird mit
live-locks ein Zustand beschrieben, bei dem Transaktionen zwar aktiv sind und
versuchen Operationen ausführen, jedoch keine der Transaktionen zu Ende
kommt. Die Voraussetzung für das Eintreten einer live-lock Situation entspricht
der des dead-lock Szenarios. Da jedoch bei optimistischen Verfahren keine Trans-
aktion blockiert wird, entsteht ein Zyklus aus Objektzugriffen und dem Zurück-
setzen der Transaktionen. Live-locks sind allerdings noch weit unangenehmer als
dead-locks, da sie zum einen schwer zu entdecken sind und zum anderen sich auch
noch negativ auf den Systemdurchsatz auswirken.

6.3 Semantikbasierte Ansätze

Die klassischen Ansätze wurden, wie bereits erwähnt, für die ACID-Transaktio-
nen bzw. für das Lese-/Schreibmodell entwickelt. Sie basieren daher ausschließ-
lich auf der Interpretation der Signatur der Operationen und nicht auf ihrer Bedeu-
tung. Dementsprechend werden diese Ansätze auch als syntaxbasiert bezeichnet,
da es möglich ist, durch eine rein syntaktische Analyse einer Historie zu entschei-
den ob sie korrekt ist oder nicht.
Aus der Sicht der Anwendung werden Transaktionen aber nicht mittels Lese- und
Schreiboperationen entworfen, sondern mit mächtigeren Operationen. Ein Bei-
spiel hierfür sind die Inkrement- und die Dekrementoperation, die im Bankwesen
die Zubuchung bzw. die Abbuchung auf Konten implementieren. Nun greifen
zwar beide Operationen ändernd auf Datenobjekte zu und könnten somit wie
Schreiboperationen aufgefaßt werden, andererseits haben sie zusätzliche Eigen-
97



Kontrolle von Abläufen
Semantikbasierte Ansätze 6
schaften die bei der rein syntaktischen Betrachtungsweise unberücksichtigt blei-
ben.
Die wichtigste Eigenschaft ist die Art des Zugriffs. Im Gegensatz zu den Lese-/
Schreiboperationen ist der absolute Wert eines Datenobjektes (mit Einschränkun-
gen) relativ uninteressant für die Inkrement-/Dekrementoperation. Es werden nur
Werte addiert bzw. subtrahiert. Da die Addition einfach mittels einer Subtraktion
rückgängig gemacht werden kann und dies auch umgekehrt zutrifft, ohne daß der
gerade aktuelle Wert des Datenobjektes berücksichtigt werden muß, können die für
die Wiederherstellbarkeit gemachten Forderungen gelockert werden, was den
möglichen Parallelitätsgrad erhöht. Diese semantischen Eigenschaften der Opera-
tionen werden in den sogenannten semantikbasierten Ansätzen genutzt. Auf Grund
des Wissens über die Operationen kann der mögliche Parallelitätsgrad erhöht und
somit insgesamt ein höherer Durchsatz des Systems erzielt werden.
Das Hauptproblem bei den semantikbasierten Ansätzen liegt in der Schwierigkeit,
die Semantik der Operationen in einer Weise zu beschreiben, daß sie von einem
Laufzeitsystem genutzt werden kann. Die folgenden Abschnitte stellen die prinzi-
piellen Methoden vor und führen einen neuen Ansatz ein, der gerade für langlau-
fende Transaktionen, wie im Falle der ConTracts, Vorteile gegenüber den bisheri-
gen Verfahren zeigt. 
Außer im Falle des Verfahrens, welches für die Anwendung in ConTracts entwik-
kelt wurde, wird auf die Darstellung der Details der anderen Verfahren verzichtet,
da diese den Rahmen dieser Arbeit sprengen würde. Statt dessen wird auf die ent-
sprechende Literatur verwiesen.

6.3.1 Frühzeitige Sperrfreigabe
Den klassischen Sperrverfahren am nächsten kommen Verfahren, bei denen Trans-
aktionen explizit Sperren freigeben können, die nicht mehr benötigt werden. Diese
Verfahren werden auch als uneigennützige Sperrverfahren (engl. altruistic locking)
bezeichnet [SGS94]. 
Das Grundprinzip bei den uneigennützigen Sperren beruht darauf, daß eine Trans-
aktion “weiß”, wann auf ein Datenobjekt zukünftig nicht mehr zugegriffen wird
und somit der Zugriff anderer Transaktionen zugelassen werden kann. Aus Sicht
der Transaktion kann die Sperre auf dem Datenobjekt dann freigegeben werden,
womit sich die Transaktion gegenüber anderen Transaktionen “uneigennützig”
verhält.
Aus Sicht der anderen Transaktionen können sich allerdings Probleme ergeben,
wenn durch die Transaktion, welche die Sperre freigegeben hat, ein ändernder Zu-
griff erfolgte und der Abbruch der Transaktion erforderlich ist (s. Abschnitt
6.2.1.1). Da das Korrektheitskriterium der uneigennützigen Verfahren dem im
98



Kontrolle von Abläufen
Semantikbasierte Ansätze6
klassischen Fall entspricht, müßte für diesen Fall gewährleistet werden, daß sich
der Abbruch der Transaktion auf alle abhängigen Transaktionen (Transaktionen
die das Datenobjekt gelesen haben) fortpflanzt, was beispielsweise durch die Ver-
waltung eines Abhängigkeitsgraphen erreicht werden kann. Dieser Abhängig-
keitsgraph kann dazu benutzt werden, das Commit von Transaktionen, die auf
vorzeitig freigegebene Objekte zugegriffen haben zu verzögern. Damit wird ge-
währleistet, daß keine Transaktion ihre Änderungen persistent machen kann, so-
lange eine Transaktion von der sie gelesen hat noch nicht beendet wurde.
Das altruistic locking ist somit ein Verfahren, welches dem Laufzeitsystem Infor-
mationen über die Semantik von Transaktionen dadurch zugänglich macht, daß
Sperren explizit freigegeben werden. Einerseits wird dadurch der Parallelitätsgrad
erhöht, andererseits entsteht im Falle von ändernden Zugriffen ein Zusatzaufwand
für die Verwaltung von Abhängigkeiten. Außerdem muß die explizite Sperrfrei-
gabe in den Transaktionen selbst vorgenommen werden, was im allgemeinen Fall
durch den Transaktionsprogrammierer zum Programmierzeitpunkt vorgesehen
werden muß. Dadurch entsteht eine Fehlerquelle, die durch den klassischen An-
satz vermieden wird.

6.3.2 Wertunabhängige, prädikatbasierte Ansätze
Der Begriff der wertunabhängigen, prädikatbasierten Ansätze bezeichnet Ansät-
ze, die den Isolationsbedarf von Transaktionen mit Hilfe eines Prädikates be-
schreiben. Dabei wird allerdings nicht vorausgesetzt, daß die Werte der Datenob-
jekte während des Ablaufs von Transaktionen Beschränkungen unterliegen.
Entsprechende Verfahren übergeben dem Laufzeitsystem ein Prädikat, welches
Informationen darüber enthält, welche Datenobjekte von der Transaktion benötigt
werden, d.h. welche von dem Laufzeitsystem vor dem Zugriff anderer Transaktio-
nen zu schützen sind.
Zwei Arten der Informationsübergabe können bei diesen Verfahren unterschieden
werden:

1. syntaxbasiert

2. prädikatwert-abhängig

Bei der syntaxbasierten Vorgehensweise, wie beispielsweise bei Korth [KLS90],
wird ein Datenobjekt dann geschützt, wenn es syntaktisch in einem Prädikat ent-
halten ist. Somit ist die Evaluierung des Prädikates nicht notwendig. 
Im Gegensatz dazu ermittelt der prädikatwert-abhängige Ansatz die Menge der zu
schützenden Datenobjekte dadurch, daß er alle Objekte sucht, für die das Prädikat
zutrifft. Dieser Ansatz ist unter dem Begriff der Prädikatsperren (engl. predicate
99



Kontrolle von Abläufen
Semantikbasierte Ansätze 6
locking) bekannt geworden [EGL76].
Der Ansatz der Prädikatsperren wurde als Erweiterung für das klassische ACID-
Modell entworfen und eignet er sich dadurch auch für langlebige Transaktionen
wie im Falle von Korth et al. Der Unterschied der beiden Verfahren liegt prinzipiell
nur in der Art und Weise wie die Menge der benötigten Objekte spezifiziert wird.
Das zugrunde liegende Korrektheitskriterium, die Serialisierbarkeit, ist beiden An-
sätzen gemein. Allerdings ermöglicht der Ansatz der Prädikatsperren Objekte zu
schützen, die zum Programmierzeitpunkt nicht vorhanden sind, da die Prädikate
zur Laufzeit ausgewertet werden. Somit kann dadurch auch das sogenante Phan-
tomproblem (s. [GrRe93]) einfach vermieden werden.
Beide Verfahren übergeben nur einen kleinen Teil der semantischen Information
dem Laufzeitsystem. Nämlich nur die Menge der benötigten Objekte. Wird aller-
dings die zusätzliche Forderung erhoben, daß für jede Operation diese Menge an-
zugeben ist, kann ermittelt werden, welche Objekte nicht mehr benötigt werden.
Mit dieser zusätzlichen Forderung eignen sich wertunabhängige, prädikatbasierte
Ansätze auch für uneigennützige Sperrverfahren.

6.3.3 Field Calls
Mit dem englischen Begriff field calls wird ein Verfahren bezeichnet, das als Vor-
läufer der nachfolgend beschriebenen Escrow-Sperren und des Prüfe/Revalidiere-
Verfahrens angesehen werden kann. Obwohl “field calls” eines der wenigen se-
mantischen Verfahren ist, welches in einem Produkt implementiert wurde
[GaKi85], hat sich kein deutscher Begriff für diese Methode durchgesetzt.
Motivation für dieses Verfahren waren die sogenannten Hot-Spots, also Datenele-
mente die fast von jeder Transaktion berührt und verändert werden. Da somit fast
jede Transaktion ändernd auf ein solches Datenobjekt zugreift, führen Sperrverfah-
ren dazu, daß alle Transaktionen durch dieses Datenobjekt gezwungen werden hin-
tereinander abzulaufen. Neben der Tatsache, daß hierdurch eine fast serielle Histo-
rie erzeugt wird, entsteht durch den notwendigen Verwaltungsaufwand für die
wartenden Transaktionen ein solcher Aufwand, daß der Durchsatz des Gesamtsy-
stems sogar schlechter wird als im seriellen Fall.
Der Lösungsansatz der field calls versucht nun, die Sperrdauer auf den Hot-Spots
zu minimieren. Der Mechanismus hierzu beruht darauf, daß Operationen auf Da-
tenelemente zweigeteilt werden. Eine Operation besteht dann aus folgenden Tei-
len:

1. einem Prädikat,

2. einer Transformation
100



Kontrolle von Abläufen
Semantikbasierte Ansätze6
Anstatt nun während der Laufzeit einer Transaktion die Operation vollständig
auszuführen, wird nur das Prädikat geprüft. Hierfür wird nur eine kurze Lesesper-
re benötigt, die nach der Evaluierung freigegeben wird. Ist das Prädikat erfüllt,
wird die Operation sozusagen für die spätere Ausführung hinterlegt (beispielswei-
se im Log). Ist das Prädikat nicht erfüllt, muß die Transaktion zurückgesetzt wer-
den.
Zum Commit-Zeitpunkt der Transaktion werden alle hinterlegten Operationen tat-
sächlich ausgeführt. Dies bedeutet, daß die Prädikate erneut ausgewertet werden.
Ist die Evaluierung des Prädikates wiederum erfolgreich, werden exklusive Sper-
ren auf den zu ändernden Objekten erworben und die Transformation (die eigent-
liche Operation) ausgeführt. Im Falle, daß die Evaluierung fehlschlägt, muß die
Transaktion zurückgesetzt werden.
Das Ziel des Verfahrens, die Sperrzeit auf einem Hot-Spot zu minimieren, wird
mit Hilfe eines Prädikates und sehr verkürzter Dauer von exklusiven Sperren er-
reicht. Gerade bei den bereits erwähnten Operationen aus dem Bankwesen (Zubu-
chung bzw. Abbuchung) zeigt dieses Verfahren große Vorteile gegenüber den ein-
fachen Sperrmethoden. Da die Vorbedingung einer Zubuchung nur die Existenz
des Kontos ist, ist die Wahrscheinlichkeit für das Fehlschlagen der Prädikatevalu-
ierung sehr gering. Auch bei der Abbuchung muß nur sichergestellt werden, daß
das Konto nicht überzogen wird, was für die meisten Transaktionen ebenfalls zu-
treffen dürfte. Wie einfach einsichtlich ist, sind die Prädikate recht simpel und da-
durch mit wenig Aufwand zu evaluieren, so daß der Gewinn durch verkürzte Dau-
er von exklusiven Sperren überwiegt. Für den allgemeinen Fall ist jedoch zu
klären, ob die zweimalige Evaluierung des Prädikates nicht mehr Aufwand verur-
sacht als die eigentliche Operation.
Das Verfahren der “field calls” basiert somit darauf, dem Laufzeitsystem seman-
tische Informationen in dem Sinne zukommen zu lassen, daß dem System mitge-
teilt wird, welcher Zustand der Datenelemente für eine auszuführende Operation
akzeptabel ist. Ein Zustand ist dabei durch die Existenz der Datenelemente und ih-
rer aktuellen Wertebelegung gekennzeichnet.

6.3.4 Escrow Sperren
Das Verfahren der “field calls” hat den Nachteil, daß das Prädikat einer Operation
zum Commit-Zeitpunkt einer Transaktion nochmals geprüft werden muß. Neben
der Tatsache, daß dies einen doppelten Aufwand bedeutet, hat dies auch den Ef-
fekt, daß langlaufende Transaktionen “benachteiligt” sind. Benachteiligt deswe-
gen, da die Wahrscheinlichkeit der Verletzung des Prädikates mit der Anzahl der
Zugriffe auf die Datenelemente des Prädikates und somit mit zunehmender Dauer
der Transaktion wächst.
101



Kontrolle von Abläufen
Semantikbasierte Ansätze 6
In [Reut82] wurde die Idee veröffentlicht, nach der ersten Evaluierung des Prädi-
kates durch das Laufzeitsystem sicherzustellen, daß das Prädikat bis zum Commit-
Zeitpunkt nicht mehr verletzt werden kann. In [ONei86] wurde diese Idee aufge-
griffen und mit dem Begriff Escrow-Sperren (engl. escrow locking) bezeichnet.
Das Prinzip des Verfahrens beruht nun darauf, die Evaluierung bzw. Sicherstellung
des Zutreffens von Prädikaten, auf Operationen auf die Datenobjekte abzubilden.
Das heißt, daß ein Datenobjekt mit mehreren Bereichen für die Wertebelegung ver-
sehen wird:

1. einem Frei-Bereich,

2. einem oder mehreren Reservierungs-Bereichen (engl. escrows).

Die Evaluierung eines Prädikates wird nun darauf abgebildet, daß entsprechend
dem Prädikat ein Teil des Wertes von dem Freibereich in einen Reservierungsbe-
reich übertragen wird. Durch die Vorabprüfung des Prädikates wird dabei sicher-
gestellt, daß die Wertebeschränkungen des Datenobjektes auf dem Freibereich
nicht verletzt werden. Allerdings ist für jede Zugriffsart ein Reservierungsbereich
notwendig.
Ein einfaches Beispiel soll die Vorgehensweise verdeutlichen. Wird von einem
Konto ein Betrag abgebucht, lautet die Vorbedingung, daß ein bestimmter Betrag
auf dem Konto vorhanden sein muß. Dieses Prädikat wird auf dem Freibereich ge-
prüft und anschließend der Abbuchungsbetrag von dem Freibereich in den Reser-
vierungsbereich für Abbuchungen übertragen. Der Betrag der Abbuchung wird da-
bei von dem Betrag im Freibereich abgezogen und zu dem Wert im
Reservierungsbereich addiert. Entsprechend geschieht dies bei Zubuchungen, mit
dem Unterschied, daß der Zubuchungsbetrag zu dem Wert im Zubuchungs-Reser-
vierungsbereich addiert wird, ohne daß der Freibereich verändert wird. Erst zum
Commit-Zeitpunkt wird der jeweilige Betrag aus dem Reservierungsbereich ent-
fernt und im Falle der Zubuchung zu dem Wert des Freibereiches addiert (ein
Transaktionsabbruch erfolgt analog).
Das Verfahren zeigt somit nur dann Vorteile, wenn das Zugriffsgranulat kleiner ist
als das Objekt selbst. Genauer gesagt dürfen die Zugriffe nur einen Teil des Wertes
des Objektes benötigen (wie im Falle der Inkrement-/Dekrementoperationen) und
nicht auf den Absolutwert zugreifen. Dies ist im Falle von numerischen Datentypen
auch relativ einfach implementierbar. Bei allgemeinen Datentypen stößt man je-
doch schnell auf komplexe Probleme.
Die Information über die Semantik von Operationen wird bei den Escrow-Mecha-
nismen mittels der Information über das Granulat des Zugriffes an das Laufzeitsy-
stem übergeben. Mit dieser Information wird auch garantiert, daß die auszuführen-
102



Kontrolle von Abläufen
Der Ansatz in ConTracts6
den Operationen relativ zu dem aktuellen Wert ausgeführt werden können und
auch beispielsweise im Recoveryfall die Gegenaktionen relativ zum aktuellen
Wert ausgeführt werden.

6.3.5 Prüfe und Revalidiere
Eine weitere Abwandlung der field calls ist das Verfahren des Prüfens und Reva-
lidierens (engl. check/revalidate) [PRS88]. Das Verfahren adressiert einen Nach-
teil der field calls, der darin besteht, daß der Wert eines Datenobjektes zum Pro-
grammierzeitpunkt einer Transaktion unbekannt ist und manche Transaktionen
nur die Einschränkung besitzen, daß ein einmal von einer Operation “gesehener”
Wert eines Datenobjektes bei einer späteren Operation wieder vorgefunden wer-
den muß. Welcher Wert dabei vorliegt, spielt keine Rolle.
Die Idee des Verfahrens ist, daß bei jeder Operation dem Laufzeitsystem ein so-
genannter Prüfausdruck (engl. check expression) übergeben werden kann, der ei-
nen eindeutigen Namen besitzt. Das Laufzeitsystem ermittelt für alle in dem Prüf-
ausdruck enthaltenen Datenobjekte die Wertebelegung und speichert diese. Eine
spätere Operation kann nun mittels des Prüfausdrucknamens den eigentlichen
Prüfausdruck referenzieren. Dies veranlaßt das Laufzeitsystem, die Datenobjekte
erneut zu prüfen und die Wertebelegung mit der Wertebelegung bei der ersten
Überprüfung zu vergleichen (revalidate). Stimmen alle Wertebelegungen überein,
ist dies das Kriterium, um die Operation auszuführen. Andernfalls muß die Trans-
aktion zurückgesetzt werden.
Somit ist die Übergabe des Prüfausdruckes an das Laufzeitsystem eine semanti-
sche Information bezüglich des Isolationsbedarfs der Transaktion. Außerdem
dient der Prüfausdruck als Indikator für die Art des Zugriffs der Transaktion.

6.4 Der Ansatz in ConTracts

Die Sicherstellung der Korrektheit in einem ConTract-verarbeitenden System un-
terscheidet sich in wichtigen Bereichen von den bisher vorgestellten Ansätzen.
Allein die Tatsache, daß das ConTract-Modell noch weiter entwickelt wird, um
Anforderungen moderner Workflowsystemen gerecht zu werden, erfordert einen
äußerst flexiblen Ansatz1. Ein weiteres Unterscheidungsmerkmal ist die Menge
an Anwendungen, die von ConTracts adressiert wird. Anstatt klassische Transak-
tionsanwendungen unterstützen zu wollen, oder die Problematik von Hot-Spots zu
adressieren, wurde das ConTract-Modell speziell für langlaufende Abläufe ent-
wickelt. Abläufe also, für die von vornherein ein klassischer Sperrmechanismus
ungeeignet ist [Gra81a].

1. Momentan werden die dynamische Änderung zur Laufzeit und Kooperationsmechanismen entwickelt.
103



Kontrolle von Abläufen
Der Ansatz in ConTracts 6
6.4.1 Typen von Invariantenprädikaten
Wie bereits in Kapitel 5 eingeführt wurde, unterscheidet sich das Korrektheitskri-
terium von ConTracts von der klassischen Serialisierbarkeit. Die Grundlage des
Kriteriums sind die Invarianten, die jedoch nur konzeptionell festgelegt sind. Für
eine entsprechende Umsetzung in ein Laufzeitsystem ist es deshalb dringend not-
wendig, die Invarianten zu konkretisieren und eine entsprechende Verwaltungs-
strategie festzulegen.
Obwohl das Korrektheitskriterium für sich genommen nur eine Unterscheidung in
Eingangs- und Ausgangsinvarianten vornimmt, wird bei genauerer Betrachtung
des Kriteriums klar, daß eine weitere Differenzierung angebracht ist. Diese Er-
kenntnis beruht auf der Beobachtung, daß Eingangsinvarianten nur Referenzen auf
Prädikate von Ausgangsinvarianten sind und das Korrektheitskriterium auf der
Kompensations-Erweiterung der Historien definiert wird.
Betrachtet man die Notation der Invariantenklammern (siehe Abschnitt 5.5.3) im
Zusammenhang mit einer Kompensations-Erweiterung einer Historie, ist einfach
zu erkennen, daß alle Eingangsinvarianten, die zu einer Kompensationsfolge gehö-
ren, eine geschlossene Invariantenklammer mit den Ausgangsinvarianten bilden,
die referenzierte Prädikate enthalten. Somit würde jede Operation einer ConTract-
Instanz, die ein Prädikat verletzt, welches von der Eingangsinvarianten einer Kom-
pensationsfolge einer anderen ConTract-Instanz referenziert wird, eine Verletzung
des Korrektheitskriteriums verursachen, wenn sie vor der Kompensationsoperation
ausgeführt werden sollte. Entsprechend muß sichergestellt werden, daß ein Prädi-
kat, welches von einer Ausgangsinvariante etabliert wurde und von der Eingangs-
invarianten einer Kompensationsfolge referenziert wird, nie verletzt wird bis die
Ausführung der ConTract-Instanz beendet wurde oder die Kompensationsfolge zur
Ausführung kam.
Im Gegensatz dazu können Prädikate, die nicht von einer Eingangsinvarianten ei-
ner Kompensationsfolge referenziert werden, durchaus von Operationen anderer
ConTract-Instanzen verletzt werden, ohne das Korrektheitskriterium zu verletzen.
Erst wenn eine der referenzierenden Eingangsinvarianten überprüft wird (die Inva-
riantenklammer geschlossen werden soll), müssen geeignete Maßnahmen ergriffen
werden.
Bei der Umsetzung des Korrektheitskriteriums in ein Laufzeitsystem können diese
unterschiedlichen Eigenschaften dazu benutzt werden, um jeweils optimierte Ver-
waltungsstrategien zu entwerfen. Hierzu werden zunächst zwei Kategorien von
Prädikaten unterschieden:

1. obligatorische Prädikate,
104



Kontrolle von Abläufen
Der Ansatz in ConTracts6
2. nicht-obligatorische Prädikate.

Ob ein Prädikat ein obligatorisches oder ein nicht-obligatorisches Prädikat ist,
kann automatisch aus der Definition einer ConTract-Instanz ermittelt und dem
Laufzeitsystem mitgeteilt werden. Das Laufzeitsystem ist dann dafür verantwort-
lich, entsprechende Strategien zur Sicherstellung der Korrektheit anzuwenden. Im
Falle der obligatorischen Prädikate kann dies beispielsweise durch einen escrow-
ähnlichen Mechanismus erfolgen, während im nicht-obligatorischen Fall eine
Strategie zur Anwendung kommen kann, die dem check/revalidate-Mechanismus
entspricht.
Der ursprüngliche Ansatz, mit der Definition von Invarianten eine Verwaltungs-
strategie (engl. policy) durch den Programmierer festlegen zu lassen (s.
[WäRe92]), hatte eine ähnliche Zielrichtung ohne jedoch einen Korrektheitsbe-
griff festzulegen. Darüber hinaus wurde die Verwaltungsstrategie nur für kom-
plette Invarianten durch die Programmierer vorgegeben, wodurch die Gefahr be-
steht, daß durch Programmierfehler unzureichende Isolationseigenschaften vom
Laufzeitsystem gefordert bzw. zu restriktive Zugriffsbeschränkungen etabliert
werden.

6.4.2 Umsetzung auf Objektebene
In der bisherigen Einführung der Invarianten wurde keine nähere Beschreibung
der Invariantenprädikate vorgenommen. Für die Sicherstellung des Korrektheits-
kriteriums ist es aber unumgänglich, näher auf diese Prädikate einzugehen. Ein
Ziel soll dabei sein, die Grundlage für ein Verfahren zu schaffen, welches die Si-
cherstellung der Korrektheit ermöglicht, ohne eine zentrale Verwaltungsinstanz
zu benötigen.

6.4.2.1 Zustand eines Objektes
Wie bei den Transaktionsabhängigkeiten im Falle des ACTA-Modells [ChRa90]
wird bei den Invariantenprädikaten davon ausgegangen, daß es sich um prädika-
tenlogische Ausdrücke handelt. Im Falle der Invariantenprädikate werden diese
Ausdrücke über dem Zustand von persistenten Datenobjekten definiert. Aller-
dings, ist der Begriff des Zustandes eines Objektes im Falle des hier vorliegenden
Ansatzes nicht nur auf die Erfassung der aktuellen Wertausprägung beschränkt,
sondern besteht aus folgenden Teilen:

1. dem (eindeutigen) Namen des Objektes,

2. dem aktuellen Wert des Objektes,

3. den Zugriffsbeschränkungen des Objektes.
105



Kontrolle von Abläufen
Der Ansatz in ConTracts 6
Diese Auffassung des Zustandes eines Objektes unterscheidet sich von der übli-
chen Auffassung dadurch, daß die Zugriffsbeschränkungen mit Teil des Objektzu-
standes sind. Zugriffsbeschränkungen sollen dabei aus einer Menge von Paaren be-
stehen, wobei ein Paar ein Prädikat sowie eine Identifikation des Einbringers des
Prädikates sein soll. Somit können die Zugriffsbeschränkungen, wie die anderen
Teile des Objektzustandes, unter Transaktionsschutz modifiziert werden und unter-
liegen der Persistenzeigenschaft.
Somit wird deutlich warum für die Invariantenoperationen establish und check ge-
fordert wird, daß sie unter Transaktionsschutz ausgeführt werden. Die establish-
Operation einer Invarianten resultiert zunächst in einer Prüfung der in ihr enthalte-
nen Prädikate (lesen der Datenobjekte). Daran anschließend erfolgt die Einbrin-
gung neuer Zugriffsbeschränkungen (schreibender Zugriff), welche durch die Prä-
dikate definiert sind. Da die Zugriffsbeschränkungen die Persistenzeigenschaft
haben, sind Zugriffe auf sie ebenso transaktional zu schützen wie Zugriffe auf Da-
tenobjekte.
Grundsätzlich ist diese Sichtweise von Zugriffsbeschränkungen nicht neu, da bei-
spielsweise in Datenbanksystemen Wertebeschränkungen (die auch als Zugriffsbe-
schränkungen aufgefaßt werden können) in ähnlicher Weise gehandhabt werden.
Der neue Aspekt liegt darin, daß Zugriffsbeschränkungen auch Sperren umfassen,
die in bisherigen Ansätzen getrennt von den zugeordneten Objekten betrachtet
wurden und auch nicht mittels Transaktionen manipulierbar waren.

6.4.2.2 Isolation auf Objektebene
Mit der eingeführten Auffassung eines Objektzustandes konkretisieren sich auch
die im Ansatz von ConTracts möglichen Invariantenprädikate:

1. Prädikate, die über dem Namen eines Objekts definiert sind:
Zugriffsbeschränkungen unabhängig von der Semantik des Objektes.

2. Prädikate, die über den Werten von Objekten definiert sind:
Wertebereichsbeschränkungen des Objektes.

Darüber hinaus sind noch weitere Prädikate denkbar, die über den Zugriffsbe-
schränkungen definiert werden können. Diese spielen jedoch im Zusammenhang
mit dem in dieser Arbeit vorgestellten Korrektheitsbegriff keine Rolle.
Prädikate der ersten Kategorie sind äquivalent zu den klassischen Sperren, die
ebenso als Prädikate aufgefaßt werden können. So kann beispielsweise eine
Schreibsperre als ein einstelliges Prädikat über dem Namen des betroffenen Objek-
tes formuliert werden, welches zutrifft wenn der Wert des Objektes mit dem spezi-
fizierten Namen nach der Etablierung des Prädikates nicht geändert wurde (der ei-
106



Kontrolle von Abläufen
Der Ansatz in ConTracts6
gentliche Wert ist dabei irrelevant).
Im Gegensatz dazu ist der Wert eines Objektes bei Prädikaten der zweiten Kate-
gorie durchaus von Bedeutung. In diese Kategorie fallen beispielsweise Prädikate,
der Art: Wert(Objekt) > 0. Ebenso unterscheiden sich die Prädikate der zweiten
Kategorie von denen der ersten Kategorie dadurch, daß die funktionelle Kombi-
nation von Objektwerten möglich ist (z.B. Wert(Objekt1) + Wert(Objekt2) > 0)
und diese kein Äquivalent zu einer boolschen Verknüpfung von Prädikaten ohne
funktionelle Kombination hat.

6.4.2.3 Replizierte virtuelle Objekte
Durch die funktionale Verknüpfung von Objektwerten innerhalb von Prädikaten
entsteht das Problem, daß die Auswertung eines Prädikates nicht mehr ausschließ-
lich lokal bei einem Objekt vorgenommen werden kann. Es ist somit notwendig,
Informationen über den Zustand anderer Objekte einzuholen, um die Auswertung
vornehmen zu können. Da im Falle von ConTracts davon ausgegangen wird, daß
Objekte beliebig in einem Netz verteilt sein können, kann dies ohne zusätzliche
Maßnahmen ein sehr zeitraubender Vorgang werden.
Dieses Problem wird durch das Konzept der virtuellen Objekte gelöst [ScRe96].
Dabei wird aus einer funktionalen Verknüpfungen von Objektwerten ein virtuel-
les Objekt generiert, dessen Wertfunktion der funktionalen Verknüpfung ent-
spricht. Das virtuelle Objekt existiert, solange eine Zugriffsbeschränkung mit der
entsprechenden funktionalen Verknüpfung existiert und wird bei jedem Objekt
generiert (repliziert), dessen Wert in der Zugriffsbeschränkung referenziert wird.
Die eigentliche Zugriffsbeschränkung wird ebenfalls bei dem virtuellen Objekt
hinterlegt.
Durch die virtuellen Objekte wird es möglich, die Auswertung der Prädikate von
der Überprüfung der aktuellen Wertebelegung zu entkoppeln, so daß für die Ak-
tualisierung im Falle einer Werteänderung eines der Originalobjekte, flexible
Strategien zum Einsatz kommen können. Da die virtuellen Objekte in diesem Sin-
ne einen Cache der Originalobjektwerte darstellen, gibt es hierzu wohl bekannte
und optimierte Protokolle [Sten90].

6.4.3 Verwaltung der Invarianten
Die Verwaltung von Invarianten stellt die zentrale Aufgabe innerhalb eines Me-
chanismus zur Sicherstellung der Korrektheit dar. Durch eben diese Invarianten-
verwaltung als Teil des Schedulers muß garantiert werden, daß keine Verletzung
des Korrektheitskriteriums zugelassen wird und entsprechende Maßnahmen im
Konfliktfall ergriffen werden.
Da die Invarianten eine Konjunktion von Prädikaten darstellt, läßt sich das Ver-
107



Kontrolle von Abläufen
Der Ansatz in ConTracts 6
waltungsproblem einfach auf die Verwaltung der Prädikate selbst abbilden. Durch
die konjunktive Verknüpfung ist sichergestellt, daß wenn alle Prädikate einer Inva-
rianten nicht verletzt werden, auch die Invariante nicht verletzt wird, bzw. wenn ein
Prädikat verletzt wird, auch die Invariante verletzt ist.

6.4.3.1 Etablierung von Ausgangsinvarianten
Das Problem der Verwaltung von Ausgangsinvarianten gliedert sich in zwei Teile.
Einerseits ist zu betrachten, wie und wann ein Prädikat etabliert werden kann. An-
dererseits sind die Seiteneffekte einer solchen Etablierung zu berücksichtigen. Un-
ter der Etablierung eines Prädikates ist dabei folgender Vorgang zu verstehen:

➪ Überprüfung der Verträglichkeit mit bereits bestehenden Prädikaten.

➪ Überprüfung, ob das Prädikat zutrifft.

➪ Sicherstellung des künftigen Zutreffens.

Die Überprüfung der Verträglichkeit mit bereits bestehenden Prädikaten ist im all-
gemeinen ein NP-hartes Problem und sollte deshalb möglichst vermieden werden.
Im Ansatz für ConTracts wird dies durch eine Grundannahme über die Arbeitswei-
se der Steps ermöglicht: Jeder Step hinterläßt die von ihm modifizierten Datenele-
mente in einem Zustand, der die bereits etablierten Invarianten nicht verletzt und
der eigenen Ausgangsinvariante genügt.
Bezüglich der Berücksichtigung von bereits etablierten Invarianten entspricht die-
ses Verhalten dem Verhalten klassischer Transaktionen (Konsistenzeigenschaft).
Die Forderung, Objekte nur so zu verändern, daß die eigene Ausgangsinvariante
zutrifft, kann auf den gleichen Mechanismus abgebildet werden, obwohl die Aus-
gangsinvariante erst nach der Ausführung des Steps etabliert wird. Da die Etablie-
rung der Ausgangsinvarianten unter dem Schutz der gleichen Transaktion wie die
Ausführung des Steps geschieht (siehe Abschnitt 4.4.2), ist die Ausführung des
Steps mit der nachfolgenden Etablierung der Ausgangsinvarianten ebenfalls ato-
mar im transaktionalen Sinne.
Die allgemeine Verträglichkeitsprüfung der Ausgangsinvarianten mit bereits eta-
blierten Prädikaten wird somit ersetzt durch die Überprüfung, ob der aktuelle Zu-
stand der von einer Step-Instanz geänderten Datenobjekte zum Commit-Zeitpunkt
der umgebenden Transaktion die etablierten Prädikate erfüllt. Die Etablierung der
Ausgangsinvarianten kann sich dann darauf beschränken, die Sicherstellung der in
ihr enthaltenen Prädikate zu veranlassen. Sollte sich bei der Überprüfung der Prä-
dikate zum Commit-Zeitpunkt ergeben, daß eine Verletzung vorliegt, muß ein Zu-
rücksetzen der entsprechenden Transaktion ausgelöst werden, was sich auch auf
die innerhalb der Transaktion etablierten Prädikate auswirkt.
108



Kontrolle von Abläufen
Der Ansatz in ConTracts6
6.4.3.2 Behandlung von Eingangsinvarianten
Da Eingangsinvarianten nur Referenzen auf bereits etablierte Prädikate enthalten
können, ist die Behandlung von Eingangsinvarianten weniger komplex als die der
Ausgangsinvarianten. Ursprünglich waren Eingangsinvarianten in allen Fällen
dazu vorgesehen, Konflikte vor der Ausführung eines Steps zu erkennen. Mit der
Unterscheidung der zwei Arten von Invarianten (obligatorische und nicht-obliga-
torische) dienen Eingangsinvarianten von Kompensationsblöcken nun zur Erken-
nung von Verletzungen notwendiger Isolationsbedürfnisse, da das Korrektheits-
kriterium fordert, daß die referenzierten Prädikate von Ausgangsinvarianten nach
ihrer Etablierung nicht verletzt werden dürfen (siehe auch Abschnitt 6.4.4). Somit
besteht keine Notwendigkeit irgendwelche Aktionen bei Eingangsinvarianten von
Kompensationsblöcken auszulösen1. 
Anders gestaltet sich dies bei der Behandlung von Eingangsinvarianten von an-
wendungsorientierten Steps. Hier muß eine Evaluierung aller referenzierten Prä-
dikate erfolgen, da hier durchaus die Eingangsinvariante verletzt sein kann und
dies ein Indikator für eine Verletzung der geforderten Isolationseigenschaften ist.
Wird eine Verletzung der Eingangsinvarianten festgestellt, darf nicht weiter mit
der Ausführung fortgefahren werden. Dies würde eine Verletzung des Korrekt-
heitskriteriums darstellen. Somit muß die umgebende (Sub-)Transaktion abgebro-
chen werden. Anders als bei den klassischen transaktionsverarbeitenden Syste-
men ist es bei ConTracts jedoch vorgesehen, daß das Ausführungssystem nicht
nur den Transaktionsabbruch mitgeteilt bekommt. Vielmehr wird dem Ausfüh-
rungssystem zusätzlich mitgeteilt, daß die Evaluierung einer (nicht-obligatori-
schen) Eingangsinvariante fehlgeschlagen ist. Auf Grund dieser Information ist
dann eine anwendungsorientierte Behebung des Konfliktes möglich (engl. conflict
resolution) [WäRe92].
Obwohl Eingangsinvarianten auch zur Überprüfung genereller Ausführungsbe-
dingungen von Steps herangezogen werden können, beschränkt sich diese Arbeit
auf die Nutzung von Invarianten zur Definition von Isolationsbedürfnissen. Des-
halb ist es auch nicht möglich, Eingangsinvarianten zu Beginn eines ConTracts
festzulegen. Da Eingangsinvarianten über Prädikatreferenzen definiert werden
und zu Beginn eines ConTracts noch keine Ausgangsinvarianten referenziert wer-
den können, ist eine entsprechende Festlegung von Eingangsinvarianten nicht zu-
lässig (siehe Bedingung 4-1).

6.4.4 Konfliktbehandlung
Neben der Verwaltung der Invarianten stellt die Erkennung und Behandlung von
Konflikten durch die Modifikation von Objektzuständen einen Hauptaspekt eines

1. Als Konsistenzprüfung kann trotzdem eine Evaluierung erfolgen.
109



Kontrolle von Abläufen
Der Ansatz in ConTracts 6
Mechanismus zur Sicherstellung der Korrektheit dar. Ein Konflikt ist dabei die
Verletzung einer der Zugriffsbeschränkungen (Prädikate). Wie bereits im Ab-
schnitt 6.4.3 besprochen, erfolgt die Erkennung zum Commit-Zeitpunkt der die
Steps umgebenden Transaktionen, bzw. während der prepare-Phase, da im Falle
von ConTracts ein Zwei-Phasen-Commit-Protokoll (kurz 2PC) [GrRe93] zur An-
wendung kommt.
Innerhalb des 2PC wird allen beteiligten Objekten bzw. den Ressourcen-Verwal-
tern (siehe Kapitel 7), die diese Objekte verwalten, ein prepare-Aufruf übermittelt.
Dies veranlaßt eine Überprüfung der Prädikate bezüglich der aktuellen Wertebele-
gung des Objektes, sowie die Überprüfung weiterer Konsistenzbedingungen, die
auf den Datenobjekten definiert wurden. Alle beteiligten Ressourcen-Verwalter
geben auf Grund der Überprüfung ein Votum ab, welches signalisiert, ob sie bereit
zum Commit der Transaktion sind oder nicht. Votieren alle Ressource-Verwalter
positiv, ergeht der eigentliche Commit-Aufruf an alle beteiligten RM. Votiert ein
RM gegen das Commit, ergeht eine Abort-Nachricht an alle RM und die Transak-
tion wird abgebrochen.
Grundsätzlich sind mehrere Fälle bei der Erkennung eines Konfliktes zu behan-
deln. Zum einen muß die Verletzung von obligatorischen und nicht-obligatori-
schen Prädikaten unterschieden werden. Zum anderen ist zu berücksichtigen, daß
ein Konflikt auch mit Prädikaten der eigenen ConTract-Instanz auftreten kann.

6.4.4.1 Konflikte mit obligatorischen Prädikaten
Die Einführung der sogenannten obligatorischen Prädikate berücksichtigt die Tat-
sache, daß das Korrektheitskriterium über der Kompensations-erweiterten Historie
definiert ist. Das heißt, daß Prädikate die von einer Invarianten eines Kompensati-
onsblockes referenziert werden nicht verletzt werden dürfen. Wird also ein obliga-
torisches Prädikat bezüglich der aktuellen Wertebelegung verletzt, muß die umge-
bende Transaktion zurückgesetzt werden, um eine Verletzung des
Korrektheitskriteriums zu verhindern.

6.4.4.2 Konflikte mit nicht-obligatorischen Prädikaten
Wird ein Konflikt mit einem nicht-obligatorischen Prädikat entdeckt, stellt dies
keine Verletzung des Korrektheitskriteriums dar. Die umgebende Transaktion
kann somit erfolgreich abgeschlossen werden. Allerdings bedeutet dies, daß die
Ausführung der ConTract-Instanz, deren Prädikat verletzt wurde, möglicherweise
nicht mehr erfolgreich zu Ende geführt werden kann.

6.4.4.3 Intra-ConTract-Konflikte
Konflikte bezüglich von Prädikaten der ConTract-Instanz, welche die konfliktver-
110



Kontrolle von Abläufen
Der Ansatz in ConTracts6
ursachende Zustandsänderung durchgeführt hat, deuten auf einen Programmier-
fehler hin. Ist in diesem Fall ein obligatorisches Prädikat betroffen, bedeutet dies,
daß die weitere Ausführung der ConTract-Instanz eine notwendige Vorausset-
zung für die eigene Kompensation verletzen würde. Somit ist keine weitere Fort-
führung, sondern nur die Kompensation möglich. Dies wird jedoch nicht automa-
tisch durch das Laufzeitsystem veranlaßt.
Im Falle der Verletzung eines nicht-obligatorischen Prädikates ist die weitere
Ausführung durchaus möglich, obwohl eine hohe Wahrscheinlichkeit für das
Fehlschlagen einer späteren Eingangsinvarianten-Evaluierung gegeben ist. Auf
Grund des Konfliktauflösungsmechanismus ist jedoch eine gesonderte Behand-
lung bei der Feststellung des Konfliktes nicht notwendig.

6.4.5 Gültigkeitsdauer von Invarianten
Wie in Abschnitt 6.4.2 dargestellt, werden Prädikate von Invarianten innerhalb
von Transaktionen etabliert und haben somit die Persistenzeigenschaft. Somit ist
es notwendig, in einem ConTract-Laufzeitsystem Transaktionen auszulösen, die
diese Prädikate wieder entfernen sobald sie nicht mehr benötigt werden. Anson-
sten würden immer mehr Zugriffsbeschränkungen in das System eingebracht, die
schließlich die Ausführung von ConTract-Instanzen verhindern würden.
Wie aus dem Korrektheitskriterium für ConTracts ersichtlich (siehe Abschnitt
5.5.4), werden Invarianten einer ConTract-Instanz nur solange benötigt, wie die
Instanz aktiv ist. Das heißt, daß alle Invarianten (und somit deren Prädikate) einer
ConTract-Instanz spätestens dann gelöscht werden dürfen, wenn eine “End-Of-
ConTract”-Operation von dieser ConTract-Instanz ausgeführt wird. Es stellt sich
allerdings die Frage, ob dies der früheste Zeitpunkt ist, um Invarianten wieder zu
entfernen.
Der eingeführte Begriff der Invariantenklammer deutet an, daß Invarianten nicht
außerhalb einer solchen Klammer benötigt werden. Wäre also sichergestellt, daß
zu einem Zeitpunkt keine weitere geschlossene Invariantenklammern zu der aktu-
ellen kompensations-erweiterten Historie einer ConTract-Instanz hinzukommen
kann, könnte die Invariante aus dem System entfernt werden.
Im Falle von statischen ConTract-Instanzen ist die Erkennung solcher Zeitpunkte
möglich und die Entfernung von Invarianten automatisch durch das Laufzeitsy-
stem realisierbar. “Statisch” heißt in diesem Zusammenhang, daß eine ConTract-
Instanz aus einem Template erzeugt wurde und danach nicht mehr veränderbar ist
(außer durch die Auslösung des Kompensationsereignisses). Ein Ansatz hierzu
wäre, die Menge der Operationen von ConTracts um eine weitere Invariantenope-
ration delete() zu ergänzen. Diese delete-Operation ist allerdings nicht für Pro-
grammierer eines ConTract verfügbar. Stattdessen wird sie bei der Instanziierung
111



Kontrolle von Abläufen
Vergleich der Mechanismen 6
eines ConTracts automatisch durch das Laufzeitsystem an den Stellen eingefügt,
bei denen erkannt wird, daß bezüglich einer Invariante keine weitere geschlossene
Invariantenklammer auftreten kann.
Erlaubt man die Modifikation einer ConTract-Instanz zur Laufzeit, beispielsweise
zur Realisierung einer flexiblen Ausnahmebehandlung, ist diese einfache Strategie
nicht mehr möglich. Verhindert wird dies durch die Möglichkeit, neue Steps zu der
ConTract-Instanz hinzuzufügen, die in ihren Eingangsinvarianten Prädikate von
Ausgangsinvarianten der bestehenden ConTract-Instanz referenzieren und somit
eine neue geschlossene Invariantenklammer bilden können. Somit ist jede Aus-
gangsinvariante potentieller Teil einer Invariantenklammer, selbst wenn dies nicht
in einem ConTract-Template festgelegt wurde.
Berücksichtigt man also die Modifikation einer ConTract-Instanz zur Laufzeit, be-
steht keine Möglichkeit, Invarianten vor dem Ende der Abarbeitung der ConTract-
Instanz freizugeben, ohne daß Erweiterungen der Definition eines ConTract-Tem-
plates vorgenommen werden. Denkbar wäre hierbei die Einführung von Klassifi-
katoren, die Invarianten explizit als frühzeitig entfernbar deklarieren (ähnlich dem
altruistic locking [SGS94]) und gleichzeitig das Laufzeitsystem anweisen, eine Re-
ferenzierung durch später eingefügte Teile zu verhindern.

6.5 Vergleich der Mechanismen

Der für ConTracts gewählte Ansatz stellt eine Vereinigung einiger der vorgestell-
ten Ansätze dar. So sind beispielsweise Sperrverfahren einfach auf die wertunab-
hängigen Prädikate des ConTract-Ansatzes abbildbar. Direkt übernommen wurden
das Escrow-Verfahren bzw. der check/reavalidate-Machanismus im Falle der wert-
abhängigen Prädikate. Nicht direkt vergleichbar ist das Prinzip des altruistic lok-
king, da in ConTracts kein Abhängigkeitsgraph verwaltet wird. Berücksichtigt man
jedoch die dynamische Erweiterung einer ConTract-Instanz, müßte ein entspre-
chender Mechanismus zum Einsatz kommen.
Somit stellt der hier vorgestellte Mechanismus einen äußerst flexiblen Ansatz dar,
der versucht die Vorteile unterschiedlicher Ansätze in sich zu vereinigen. Darüber
hinaus unterstützt das ConTract-Modell die anwendungsorientierte Auflösung von
Konflikten. Das heißt, daß bei einem Konflikt bezüglich des Korrektheitskriteri-
ums das Laufzeitsystem zwar die aktuelle Transaktion abbricht, die ConTract-In-
stanz jedoch über den Grund des Abbruchs informiert wird. Abhängig von der De-
finition im ConTract-Template können dann geeignete Maßnahmen zur
Konfliktbehebung ergriffen werden. Somit kann es bei ConTracts auch nicht zu
Verklemmungen durch Konflikte bezüglich Invarianten kommen, da keine Warte-
situation durch das Laufzeitsystem erzwungen wird.
112



Kontrolle von Abläufen
Vergleich der Mechanismen6
Mit der Flexibilität des Verfahrens entsteht allerdings gleichzeitig ein erhöhter In-
formationsbedarf des Laufzeitsystems. Wie bereits dargestellt, ist es notwendig,
Informationen über die Semantik der Steps in Form der Invarianten zur Verfügung
zu stellen. Dadurch wird der Programmierer bzw. die Programmiererin vor eine
nicht einfache Aufgabe gestellt, was in gewisser Weise dem Grundsatz des Trans-
aktionsprinzips widerspricht: Transaktionen sind deshalb so weit verbreitet, weil
sie es ermöglichen, Anwendungen zu programmieren, ohne Rücksicht auf Mehr-
benutzeranomalien bzw. Parallelverarbeitung nehmen zu müssen. Andererseits
sieht man bei den klassischen Sperrverfahren, daß sie nur für eine sehr einge-
schränkte Menge von Anwendungen geeignet sind und muß somit zwischen Pro-
grammierkomfort und Flexibilität bzw. Durchsatzpotential abwägen.
Ein weiterer Unterschied zwischen dem Ansatz in ConTracts und Ansätzen zur
Abwicklung von ACID-Transaktionen steckt in dem Aufwand für die Sicherstel-
lung der Korrektheit. Während beispielsweise Sperrverfahren relativ einfach und
schnell zu implementieren sind, ist das Verfahren der ConTracts weit aus aufwen-
diger. Allerdings unterscheiden sich auch die Anwendungsgebiete sehr stark.
Während die klassischen Ansätze für relativ kurze Transaktionen entwickelt wur-
den (Laufzeit < 1 Sekunde), adressieren ConTracts Anwendungen deren Laufzeit
mehr als 1 Jahr betragen können. Bei dieser Laufzeit spielt der Aufwand zur Si-
cherstellung der Korrektheit eine untergeordnete Rolle, so daß die Vorteile, die
durch die Flexibilität des Verfahrens und den hohen Grad an möglicher Parallel-
verarbeitung gegeben sind, überwiegen.
Gerade bei langlaufenden Anwendungen spielt darüber hinaus die Kooperations-
fähigkeit eine große Rolle. Bei einer Anwendung, die sich über mehrere Monate
erstreckt, wäre es undenkbar, daß ein Datenelement, welches einmal während des
Ablaufs verändert wurde, bis zum Ende der Anwendung gesperrt bleibt. Statt des-
sen ist es notwendig, die Einschränkungen so gering wie möglich halten zu kön-
nen, um so eine kooperative Bearbeitung (mehrer ConTract-Instanzen) zu ermög-
lichen. Durch die Einführung bzw. spezielle Verwaltung der nicht-obligatorischen
Prädikate ist bei dem Verfahren von ConTracts außerdem die Voraussetzung für
die vorübergehende Verletzung von Zugriffsbeschränkungen geschaffen. Dies er-
höht den möglichen Kooperationsgrad noch weiter.
Ein weiteres Unterscheidungsmerkmal ist die Erweiterung des Objektzustandes
um die Zugriffsbeschränkungen. Die Atomarität bei Änderungen von Zugriffsbe-
schränkungen ist gewährleistet, da sie mittels ACID-Transaktionen erfolgt. Aus
dem selben Grund sind die Änderungen an Zugriffsbeschränkungen auch dauer-
haft. Somit wird auch die Persistenz des Zustandes einer ConTract-Instanz durch
das Verfahren unterstützt.
113



Integrationsaspekte
Auswirkungen auf das Programmiermodell 7
7 Integrationsaspekte

Mit der Definition eines Korrektheitsbegriffs und der Einführung eines Mechanis-
mus zur Sicherstellung desselben ergeben sich Seiteneffekte auf andere Teile des
ConTract-Modells. Besonders zu erwähnen ist dabei das Programmiermodell von
ConTracts. Da in dem Programmiermodell die Vorgehensweise zur Entwicklung
von ConTract-Templates konzeptionell festgelegt ist, muß eine Ergänzung vorge-
nommen werden, die auch die Definition von Invarianten in das Programmiermo-
dell integriert.
Ein weiterer Integrationsaspekt ergibt sich aus der Tatsache, daß neben der rein
konzeptionellen Entwicklung des ConTract-Modells auch eine Architektur entwik-
kelt wurde, die die Umsetzung der Ansätze in ein Laufzeitsystem ermöglicht.
Gleichzeitig wurde eine prototypische Implementierung dieser Architektur vorge-
nommen, um die Umsetzbarkeit der Architektur zu verifizieren [RSW92]1. Wie die
vorgestellten Konzepte in die Architektur bzw. die prototypische Implementierung
integriert werden können, soll in den folgenden Abschnitten diskutiert werden.
Wie bereits erwähnt, unterliegt das ConTract-Modell einer ständigen Weiterent-
wicklung. Parallel zu dieser Arbeit wurde bereits an Erweiterungen gearbeitet, die
demnächst Teil des ConTract-Modells und der Architektur werden sollen. Wie sich
die Ergebnisse dieser Arbeit mit den Neuerungen vertragen, ist ebenfalls ein
Aspekt der bei einer Integrationsdiskussion berücksichtigt werden muß und wird in
Abschnitt 7.3 angesprochen.

7.1 Auswirkungen auf das Programmiermodell

ConTracts unterscheiden sich von anderen erweiterten Transaktionsmodellen, die
sich für langlebige Abläufe eignen, unter anderem dadurch, daß die Vorgehenswei-
se zur Definition eines ConTracts in dem Modell selbst festgelegt ist: Durch das so-
genannte Programmiermodell. Ein Aspekt dieses Programmiermodells ist die
Trennung der Programmierung von Steps von der Programmierung der ConTract-
Templates (zweistufiges Programmiermodell). Das heißt, daß ein Programmierer
eines Steps nichts über den ConTract wissen muß, in dem der Step später verwen-
det werden soll. Umgekehrt weiß die Programmiererin eines ConTract-Templates
nichts über die Implementierungsdetails eines Steps und kennt nur dessen Schnitt-
stelle.
In den folgenden Unterabschnitten wird vorgestellt werden, wie die Definition von

1. APRICOTS: “A Prototype Implementation of a ConTract System”
114



Integrationsaspekte
Auswirkungen auf das Programmiermodell7
Invarianten in das Programmiermodell integriert werden kann. Dabei wird davon
ausgegangen, daß dieses erweiterte Programmiermodell in eine spezielle Ent-
wicklungsumgebung für die Definition von ConTract-Templates umgesetzt wird,
um so die optimale Unterstützung bei der Programmierung zu gewährleisten.

7.1.1 Grundprobleme
Aus der strikten Trennung der Programmierung von Steps und ConTract-Templa-
tes ergeben sich Probleme im Hinblick auf die Definition von Invarianten. Invari-
anten werden grundsätzlich in einem ConTract-Template spezifiziert. Allerdings
legen sie fest, welche Voraussetzung erfüllt sein müssen, damit ein Step ausge-
führt werden kann (Eingangs-Invariante), bzw. welcher Zustand von Objekten
nach der Ausführung eines Steps von Relevanz für “später” auszuführende Steps
ist (Ausgangs-Invariante).
Zunächst stellt sich dabei das Problem, daß eine ConTract-Programmiererin die
Objekte zu identifizieren hat, deren Zustandsraum beschränkt werden muß, um
die Ausführbarkeit des Steps zu garantieren. Als nächstes müssen die Zustands-
raumbeschränkungen als Prädikate formuliert und in Invarianten zusammenge-
faßt werden. Bereits die Identifikation der Objekte ist mit dem bisherigen Pro-
grammiermodell nicht möglich, da die Programmiererin des ConTract-Template
keine Informationen über die interne Arbeitsweise von Steps hat. Somit muß zu-
nächst eine Erweiterung dahingehend erfolgen, daß weitere Informationen über
Steps bei der Programmierung von ConTract-Templates verfügbar sind.
Darüber hinaus wurde in ConTracts ursprünglich davon ausgegangen, daß die Da-
tenobjekte nicht direkt von Steps modifizierbar sind, sondern gemäß dem verteil-
ten Transaktionsmodell der X/Open Organisation [XOP93] in sogenannten Res-
sourcen-Verwaltern (engl. Resource Manager oder kurz RM) zusammengefaßt
und nur über diese ansprechbar sind. Mit der Verfügbarkeit neuerer Umgebungen
für die verteilte Ausführung von Anwendungen, wie beispielsweise CORBA,
DCOM und JavaBeans, ergeben sich teilweise Unterschiede zum X/Open Modell.
Da die CORBA-Spezifikation einerseits die notwendigen Mechanismen zur ver-
teilten Verarbeitung geschachtelter Transaktionen bereitstellt und andererseits auf
Ansätze wie DCOM oder JavaBeans abbildbar ist, geht der hier beschriebene An-
satz davon aus, daß Objekte über den in CORBA spezifizierten Mechanismus
adressiert werden. Für die globale Adressierbarkeit eines Datenobjektes bedeutet
dies, daß zunächst der zugehörige Ressourcen-Verwalter (ein transaktionales
CORBA-Objekt) adressiert werden muß, um bei diesem den Zugriff auf das ent-
sprechende Datenobjekt veranlassen zu können.
Ein weiteres Problem ergibt sich aus der Tatsache, daß Datenobjekte in unter-
schiedlichen Arten von Ressourcen-Verwaltern zusammengefaßt sind. Hierdurch
115



Integrationsaspekte
Auswirkungen auf das Programmiermodell 7
unterscheidet sich die Adressierung von Datenobjekten innerhalb der RM. Bei-
spielsweise werden Tupel oder Attribute einer relationalen Datenbank im allgemei-
nen assoziativ adressiert (z.B. mittels SQL über einen Primärschlüssel). Im Gegen-
satz dazu werden Dateiobjekte in einem Dateisystemen direkt mittels eines Pfades
und eines Namens adressiert.
Zusammengefaßt ergeben sich also drei grundsätzliche Aufgaben bei der Einfüh-
rung des invariantenbasierten Korrektheitsbegriffes:

1. Bereitstellung von Information über die Ausführungsvoraussetzungen von
Steps.

2. Globale Adressierbarkeit von RM.

3. Flexible Adressierbarkeit von Objekten innerhalb von RM.

Während Punkt eins eine Aufgabe darstellt, die durch das Programmiermodell an-
gegangen werden kann, hängen die Punkte zwei und drei stark von der konkreten
Umsetzung der Konzepte in eine Definitionssprache für ConTract-Templates bzw.
der gewählten Ausführungsumgebung ab. Da im Rahmen dieser Arbeit davon aus-
gegangen wird, daß Punkt zwei durch die CORBA-Spezifikation festgelegt ist und
darüber hinaus nur die grundsätzlichen Konzepte und die Auswirkungen auf die
Architektur besprochen werden sollen, wird deshalb im weiteren nur auf Punkt eins
näher eingegangen.

7.1.2 Step-Programmierung
Der bisherige Ansatz von ConTracts sieht vor, für Steps eine Signatur zu definie-
ren, die bei der Definition eines ConTract-Templates verwendet werden kann. Da-
bei wird unter der Signatur eines Steps folgende Information verstanden:

1. Name des Steps 

2. Schnittstellendefinition des Steps.

Wie bei einem verteilten objekt-orientierten System nach CORBA [Sieg96] dient
die Signatur eines Steps dazu, einem Laufzeitsystem genügend Information zur
Verfügung zu stellen, um einen Aufruf einer Methode zu generieren. Im Unter-
schied zur Adressierung bei CORBA identifiziert der Name eines Steps dabei die
gewünschte Semantik der Methode anstatt eine Methode in einem Objekt zu iden-
tifizieren1. Somit stellt der Name eines Steps eine logische Adresse einer Methode

1. Neuere Erweiterungen von CORBA beinhalten einen sogenannten “broker service” mit ähnlicher 
Semantik.
116



Integrationsaspekte
Auswirkungen auf das Programmiermodell7
dar, die durch das Laufzeitsystem aufgelöst werden muß. Die Schnittstellendefi-
nition stellt wie bei CORBA die korrekte Übergabe von Parametern sicher und
hilft darüber hinaus bei der Identifikation der gewünschten Methode. 
Da die Signatur eines Steps die einzige Information ist, die von einem Step-Pro-
grammierer über den Step zur Verfügung gestellt wird, ist es mit der Einführung
der invariantenbasierten Korrektheit notwendig, diese Signatur zu erweitern. Ge-
nauer gesagt muß ein Step Programmierer in der Signatur mögliche Ein- bzw.
Ausgangs-Invarianten definieren, die von einer Programmiererin von ConTract-
Templates benutzt werden kann.
Hierfür werden sogenannte Invarianten-Templates oder Invarianten-Schablonen
eingeführt. Dies sind Prädikate, die mittels Referenzen auf Datenobjekte und so-
genannten Platzhaltern definiert werden. Die Referenzen auf Datenobjekte er-
möglichen es, die notwendige Adressierungsinformation für den Zugriff auf Da-
tenobjekte dem Laufzeitsystem zur Verfügung zu stellen. Die Platzhalter stellen
wie bei einer Schnittstellendefinition typisierte Variablen dar, die auf der Ebene
des ConTract-Templates entweder mit Kontextvariablen assoziiert oder durch
konstante Werte ersetzt werden können.
An dem Anwendungsbeispiel aus Kapitel 2 kann das Konzept verdeutlicht wer-
den. Der universitäre Urlaubsantrag enthält in seinem zweiten Schritt die Über-
prüfung der Zulässigkeit des Antrages, was normalerweise bedeutet, daß über-
prüft wird, ob der Antragstellende noch genügend Urlaubstage zur Verfügung hat.
Ein mögliches Ausgangsinvarianten-Template dieses Steps könnte somit formu-
liert werden als: 

Ref:AnzahlFreieUrlaubstage(%Antragsteller%)  %beantragteAnzahl%. 
Hierbei steht “Ref:AnzahlFreieUrlaubstage(Antragsteller)” für eine Referenz auf
ein Datenobjekt, während “%Antragssteller%” als auch %beantragteAnzahl%
Platzhalter sind, die erst zur Laufzeit durch Werte ersetzt werden (siehe 7.1.3).
Der Operator  ist ebenfalls erläuterungsbedürftig. Bei dem referenzierten Daten-
objekt handelt es sich um ein sogenanntes kumulatives Objekt. Das heißt, daß der
absolute Wert des Objektes nicht von Interesse ist. Statt dessen soll nur gewähr-
leistet werden, daß die untere Schranke des Objektes nicht verletzt wird, wenn die
Anzahl beantragter Urlaubstage abgezogen wird. Anstatt also eine absolute Wer-
tebeschränkung zu fordern spezifiziert der Operator nur den notwendigen Anteil
der benötigt wird. Beispielsweise könnte der Antragsteller vier Urlaubstage bean-
tragen. Dies würde in der folgenden Invariante ausgedrückt:

Ref:AnzahlFreieUrlaubstage(%Antragsteller%)  4 
Bei der Umsetzung in eine Wertbeschränkung auf Datenobjektebene wird nun der
rechte Teil der Bedingung auf die bestehende Wertebeschränkung “AnzahlFreie-

>̃

>̃

>̃

>̃

117



Integrationsaspekte
Auswirkungen auf das Programmiermodell 7
Urlaubstage > 0” addiert und somit die konjunktive Verknüpfung der bestehenden
Wertbeschränkung und der Invariante auf eine funktionale Verknüpfung mit der
rechten Seite der bestehenden Wertebeschränkung abgebildet. Als Resultat ent-
steht eine neue Wertebeschränkung “AnzahlFreieUrlaubstage > 4”.
Wenn mehrere solcher Prädikate bei dem Objekt etabliert werden, bedeutet dies,
daß die konjunktive Verknüpfung dieser Prädikate einem einzigen Prädikat ent-
spricht. Dieses kumulative Prädikat würde dann fordern, daß der Wert des Daten-
objektes größer oder gleich der Summe der geforderten Werte in den Einzelprädi-
katen plus der unteren Schranke sein muß. 
Im Schritt 5 des Anwendungsbeispiels findet die Änderung der Urlaubskartei statt.
Dies bedeutet, daß die Anzahl der noch zur Verfügung stehenden Urlaubstage um
die Anzahl der beantragten Tage reduziert wird. Dies setzt jedoch voraus, daß über-
haupt genügend Urlaubstage zur Verfügung stehen. Ein Eingangsinvarianten-Tem-
plate, welches dies sicherstellt, entspricht dem Ausgangsinvarianten-Template für
Step 2.

7.1.3 ConTract-Template-Programmierung
Bei der Programmierung eines ConTract-Templates stellt sich nun die Aufgabe,
die mit der Signatur der Steps bereitgestellten Invarianten-Templates in konkrete
Ein- und Ausgangsinvarianten umzusetzen. Dies erfordert zunächst, daß die Platz-
halter der Invarianten-Templates, mit Kontextvariablen verknüpft werden.
In dem angeführten Beispiel für das Ausgangsinvarianten-Template von Step 2
heißt dies, daß die Platzhalter %Antragsteller%” und %beantragteAnzahl% durch
Kontextvariablen des gleichen Typs ersetzt werden. Dies entspricht dem Vorgang
bei der Verknüpfung von Kontextvariablen mit Schnittstellenparametern von
Steps. Darüber hinaus werden Referenzen von Datenobjekten ebenfalls dem Kon-
text hinzugefügt. Somit können Datenobjektreferenzen wie gewöhnliche Variablen
des Kontext behandelt werden.
In einem weiteren Schritt muß jedes Prädikat der Eingangsinvarianten-Templates
durch Referenzen auf Ausgangsinvarianten ersetzt werden. In dem Beispiel aus
Abschnitt 7.1.2 ist dies einfach, da das Eingangsinvarianten-Template keine kon-
junktive Verknüpfung mehrerer Prädikate darstellt und außerdem dem Ausgangs-
invarianten-Template eines Vorgängersteps entspricht. Im allgemeinen Fall stellt
sich die Aufgabe, alle Prädikate der Eingansinvariante in Ausgangsinvariante be-
reits eingefügter Steps zu finden und zu diesen Referenzen zu generieren. Dabei
können folgende Fälle auftreten:

1. Genau ein Prädikat einer Ausgangsinvarianten entspricht einem Prädikat der
Eingangsinvarianten.
118



Integrationsaspekte
Architekturaspekte7
2. Zu einem Prädikat einer Eingangsinvariante existiert kein passendes Prädi-
kat einer Ausgangsinvariante.

3. Es existieren mehrere Prädikat von Ausgangsinvarianten, die einem Prädi-
kat einer Eingansginvariante entsprechen.

Während Fall 1 die Voraussetzung für die automatische Generierung von Prädi-
katreferenzen erfüllt, ist die automatische Generierung im Fall zwei und drei nicht
möglich. Bei mehreren passenden Prädikaten ist durch den Programmierer festzu-
legen auf welches Prädikat referenziert werden soll. Im Falle, daß kein Prädikat
einer Ausgangsinvarianten zu einem Prädikat einer Eingangsinvarianten paßt,
kann nicht zugelassen werden, daß der Step eingefügt wird, da dies das Wohlge-
formtheitskriterium aus Definition 4-20 verletzen würde. Der Programmierer muß
daher aufgefordert werden, einen weiteren Step so einzufügen, daß dessen Aus-
gangsinvariante von der Eingangsinvariante des gerade abgewiesenen Steps refe-
renziert werden kann und damit Fall 1 eintritt.
Sowohl die Überprüfung der Typkompatibilität bei der Zuweisung von Kontext-
variablen zu Platzhaltern als auch die Prüfung der Übereinstimmung von Prädika-
ten kann durch eine Programmierumgebung weitgehend automatisiert werden.
Somit können zum einen Programmierfehler vermieden und zum anderen eine
große Zeitersparnis erzielt werden.

7.2 Architekturaspekte

Das ConTract-Modell wurde entworfen, um die Basis für ein Laufzeitsystem zur
Abwicklung langlebiger Abläufe bereitzustellen. Deshalb begleitet die Entwick-
lung des Modells auch stets die Entwicklung einer Architektur einer entsprechen-
den Laufzeitumgebung. Dieser Abschnitt beschäftigt sich mit den Auswirkungen,
die die Einführung des Korrektheitsbegriffes bzw. seine Sicherstellung mit sich
bringen.
Unter einer Architektur eines Laufzeitsystems für ConTracts soll eine logische
Aufteilung der notwendigen Funktionalitäten in sogenannte Komponenten ver-
standen werden. Dabei werden für eine Komponente sowohl die Funktionalität
selbst als auch die notwendigen Schnittstellen festgelegt. Wie nun in einem realen
Laufzeitsystem die Komponenten in (Betriebssystem-)Prozessen realisiert wer-
den, oder wie die Kommunikation zwischen Komponenten erfolgt, ist nicht Teil
der Architektur und wird im folgenden auch nicht diskutiert.

7.2.1 Bisherige Architektur
Bereits in [RSW92] wurde eine Architektur für ein ConTract-verarbeitendes Sy-
119



Integrationsaspekte
Architekturaspekte 7
stem vorgestellt. Prinzipiell wurden in dieser Architektur fünf funktionale Kompo-
nenten unterschieden:

1. ConTract Manager (CM)

2. ConTract Processing Monitor (CPM)

3. Step Computation Server (SCS)

4. Resource Manager (RM)

5. Transaction Manager (TM)

Der ConTract Manager koordiniert die Ausführung einer ConTract-Instanz. Er hat
somit eine Schnittstelle zu dem Anwender, der über diese Schnittstelle die Ausfüh-
rung beeinflussen kann (start, stop, usw.). Außerdem verwaltet der CM die Konsi-
stenz- bzw. Isolationsinformation und ist aus Sicht des Transaktionsverwalters
Auftraggeber für transaktionale Dienste (begin transaction, end transaction, usw.).
Der ConTract Processing Monitor war dafür vorgesehen, die prozeßorientierte
Verwaltung eines ConTract-Systems abzuwickeln. Das heißt, daß Komponenten
mittels des CPM in das System eingebracht, entfernt und überwacht werden kön-
nen. Mit der Verfügbarkeit von CORBA kann diese Aufgabe jedoch von Standard-
komponenten übernommen werden, so daß ein Dienst wie der CPM inzwischen
nicht mehr als funktionale Komponente eines ConTract-Systems angesehen wird,
sondern eher als ein Bestandteil der Basisdienste.
Die Step Computation Server kapseln die Funktionalität von Steps. Ursprünglich
war für sie eine standardisierte Schnittstelle ähnlich einem RPC zur Kommunika-
tion mit dem CM vorgesehen. Wiederum hat die Verfügbarkeit von CORBA diesen
Schritt überflüssig gemacht, so daß nur noch gefordert wird, daß neben den Schnitt-
stellen für Steps transaktionale Schnittstellen (commit, prepare, abort) verfügbar
sind. 
Eine weitere Schnittstelle ergibt sich aus der Tatsache, daß Steps zur Implementie-
rung ihrer Funktionalität mit Resource Managern kommunizieren müssen. Wie be-
reits erwähnt, verwalten die RM persistente Datenobjekte. Sie entsprachen ur-
sprünglich der DTP-Spezifikation der X/Open [XOP93]. Inzwischen wird auch für
die RM gefordert, daß sie transaktionale Objekte im Sinne von CORBA sind, da
die X/Open-Spezifikation keine geschachtelten Transaktionen berücksichtigt.
Grundsätzlich nicht ConTract-spezifisch, jedoch unbedingt notwendig für ein Con-
Tract-verarbeitendes System ist ein Transaction Manager, der die Abwicklung
transaktionaler Protokolle übernimmt. Der TM soll der OTS-Spezifikation (Object
Transaction Service) von CORBA entsprechen.
120



Integrationsaspekte
Architekturaspekte7
Abbildung 7-1 gibt einen Überblick über die Komponenten und ihr Zusammen-
spiel:.

7.2.2 Autonomie
Der vorgestellte Mechanismus zur Sicherstellung der Korrektheit erfordert die
Verwaltung von Invarianten sowie die Realisierung der Zugriffsbeschränkungen,
die durch die Invarianten gefordert werden. Diese Funktionalität kann prinzipiell
auf drei verschiedene Arten in einer Architektur berücksichtigt werden:

1. Durch Einführung einer zentralen Instanz zur Verwaltung der Invarianten,
bzw. der in Invarianten enthaltenen Prädikate.

2. Durch Verteilung der Verwaltungsfunktionalität auf mehrere Komponenten,
die im Verbund die notwendigen Aufgaben erledigen.

3. Durch einen hybriden Ansatz, der mittels einer zentralen Komponente ar-
beitet, jedoch einen Teil auf mehrere Komponenten verteilt.

 Abbildung 7-1: Architektur eines ConTract-verarbeitenden Systems

ConTract
Manager

User
Agent

TA
Manager

Step
Server

Resource
Manager

CORBA
start, stop, ...

execute

BOT, EOT, ...

pr
ep

ar
e,

 c
om

m
it,

 ..
.

RM specific
121



Integrationsaspekte
Architekturaspekte 7
Da die Datenobjekte in den RM verwaltet werden, stellt jeder Zugriff auf ein Da-
tenobjekt auch einen Zugriff auf einen RM dar. Bezüglich der drei oben eingeführ-
ten Ansätze ist somit zu beurteilen, wie die Funktionalität der RM verändert oder
erweitert werden muß, damit der entsprechende Ansatz realisiert werden kann.
Im allgemeinen kann davon ausgegangen werden, daß die RM nicht neu entwickelt
werden, sondern daß existierende Komponenten (wie z.B. ein Datenbanksystem)
in ein ConTract-System integriert werden. Dabei stellt sich das sogenannte Auto-
nomieproblem, welches am Beispiel von Datenbanksystemen erläutert werden soll.
Datenbanksysteme enthalten bereits Mechanismen zur Verwaltung und Sicherstel-
lung von Zugriffsbeschränkungen. Diese sind üblicherweise nicht erweiterbar und
nur über eine relativ restriktive Schnittstelle zugänglich1. Betrachtet man nun be-
reits existierende Anwendungen dieser Datenbanksysteme, wäre es völlig inakzep-
tabel, diese Anwendungen ändern zu müssen, weil das Datenbanksystem in einem
ConTract-verarbeitenden System integriert wird. Somit sind das Datenbanksystem
selbst und auch die darauf basierenden Anwendungen als autonom anzusehen, und
diese Autonomie ist beim Entwurf einer Architektur zu berücksichtigen.
Alle Ansätze, die nur die Etablierung einer zentralen Instanz vorsehen, verlangen
massive Eingriffe in den Zugriff von existierenden Anwendungen auf Datenobjek-
te. Da Zugriffsbeschränkungen, die durch Invarianten gefordert werden, auch für
Zugriffe gelten, welche von Anwendungen ausgelöst werden, die nicht zu einem
ConTract-verarbeitenden System gehören, müssen diese Zugriffe an die zentrale
Instanz umgeleitet werden. Dort wird zunächst geprüft, ob der Zugriff zulässig ist
und erst dann kann der Zugriff an den RM weitergeleitet werden. Dies ist bei vielen
Anwendungen nicht ohne weiteres möglich, da die Zugriffe direkt im Anwen-
dungscode selbst verankert sind.
Aufgrund der Autonomieprobleme ist somit die Einführung einer zentralen Instanz
zur Verwaltung der Invarianten nicht sinnvoll bzw. nicht realisierbar.

7.2.3 Fehlertoleranz
Fehlertoleranz ist eine der wichtigsten Eigenschaften eines ConTract-verarbeiten-
den Systems. Zum einen wird garantiert, daß eine einmal gestartete ConTract-In-
stanz in endlicher Zeit abgearbeitet wird (sofern sie überhaupt terminieren kann).
Zum anderen soll auch gewährleistet sein, daß Einkomponentenfehler eine weitere
Bearbeitung von ConTract-Instanzen nicht ausschließt. Unter Einkomponenten-
fehler ist dabei der Ausfall einer der logischen Komponenten gemeint.
Natürlich verhindert der Ausfall einer Komponente, die nur einmal im System vor-
handen ist, die weitere Bearbeitung der ConTract-Instanzen, die diese Komponente

1. Zum Schutz der Anwendungen ist dies auch unbedingt notwendig.
122



Integrationsaspekte
Architekturaspekte7
aktuell benutzen. Betrachtet man nun den hybriden Architekturansatz (siehe Ab-
schnitt 7.2.2), so enthält dieser eine solche Komponente. Beim Ausfall dieser
Komponente ist eine weitere Bearbeitung von ConTract-Instanzen nicht möglich,
da keine Invarianten mehr in das System eingebracht, bzw. überprüft werden kön-
nen.
Grundsätzlich kann dieses Problem durch zusätzliche Hard- und Softwareredun-
danz gelöst werden. Beispielsweise kann die zentrale Komponente auf einem
hoch zuverlässigen System angesiedelt werden, so daß ein Ausfall äußerst un-
wahrscheinlich wird. Allerdings sind die Kosten für eine solche Lösung erheblich
und erfordern eine spezielle Hardwarekonfiguration. 
Aus diesem Grund sind zentrale Komponenten in einer Architektur für ein Con-
Tract-verarbeitendes System zu vermeiden. Darüber hinaus ist darauf zu achten,
daß beim Ausfall einer Komponente nur die ConTract-Instanzen betroffen sind,
die diese Komponente gerade benötigen. Alle anderen Instanzen sollten von dem
Ausfall unbeeinflußt bleiben. Somit ist auch die mehrfache Einbringung von
Komponenten der gleichen Funktionalität sinnvoll. Arbeiten beispielsweise meh-
rere ConTract-Manager in einem System, sollte der Ausfall eines der CM die an-
deren CM nicht beeinflussen.

7.2.4 Verteilungsaspekte
Durch die diskutierten Nachteile der Ansätze mit zentralen Komponenten ver-
bleibt als einzig sinnvolle Alternative ein Architekturansatz, der eine verteilte
Verwaltung von Invarianten bzw. Prädikaten vorsieht. Allerdings ist zu entschei-
den, in welchen Komponenten die Verwaltung angesiedelt wird. 
Wie bereits in Abschnitt 7.2.2 diskutiert, ist es auf Grund der Autonomie der RM
sinnvoll, die Verwaltung von Zugriffsbeschränkungen direkt bei den RM anzusie-
deln. Die Zugriffsbeschränkungen resultieren dabei aus den Prädikaten, die in In-
varianten konjunktiv verknüpft sind.
Darüber hinaus ist noch die Verwaltung der Invarianten als Ganzes zu berücksich-
tigen. So ist die Etablierung, die Entfernung sowie die Überprüfung von Invarian-
ten als Funktionalität in einer Komponente zu realisieren. Dabei kommen drei
Komponenten zur Auswahl:

1. ConTract-Manager,

2. Step-Server,

3. eine neu zu definierende Komponente.

Der Ansatz, die Invarianten im ConTract-Manager selbst zu verwalten, hat den
123



Integrationsaspekte
Architekturaspekte 7
Vorteil, daß der stabile Speicher, der in einem ConTract-Manager vorhanden sein
muß, auch zur persistenten Speicherung der Invarianten-Verwaltungsinformation
genutzt werden kann. Da der Ausfall eines CM durchaus die Ausführung der gera-
de aktiven ConTract-Instanzen beeinflussen darf, stellt dieser Ansatz auch aus
Sicht der Fehlertoleranz kein Problem dar. Allerdings würde bei diesem Ansatz
dem ConTract-Manager die Aufgabe übertragen, die Prädikate bei den zuständigen
RM zu etablieren. Somit müßten die CM die Referenzen in Invarianten interpretie-
ren, um die Prädikate entsprechend weiterleiten zu können.
Die Alternative, die Invariantenverwaltung bei den Step-Servern anzusiedeln, hat
zunächst den Vorteil, daß diese Zuordnung mit dem Programmiermodell überein-
stimmt. Da Invarianten-Templates von Step-Programmierinnen für die Steps defi-
niert werden, ist hier die notwendige Information für den Zugriff auf die RM vor-
handen, die in Invarianten referenziert Objekte verwalten. Somit wäre es nicht
notwendig, daß Referenzen auch von ConTract-Mangern interpretiert werden
müßten und könnten als “opak”1 angesehen werden. Darüber hinaus ist auch bei
den Step-Servern persistenter Speicher für die Abwicklung des transaktionalen
Protokolls vorhanden, der auch für die Speicherung der Invarianteninformation ge-
nutzt werden kann.
Eine neu zu definierende Komponente, die ausschließlich die Verwaltung von In-
varianten zur Aufgabe hat, erscheint wenig sinnvoll. Zum einen wäre das Problem,
daß Referenzen aufgelöst werden müssen, ebenso gegeben wie bei einer Ansied-
lung der Funktionalität in den CM. Zum anderen ist der Aufwand zur Realisierung
eines persistenten und transaktionalen Speichers nicht unerheblich, so daß sich die-
ser Aufwand für die relativ geringe Funktionalität kaum lohnt.
Die Abwägung der Vor- und Nachteile der vorgestellten Ansätze läßt nur den
Schluß zu, die Invariantenverwaltung bei den Step-Servern anzusiedeln. Somit
wird die bisher vorliegende Architektur nicht um weitere Komponenten, sondern
nur um zusätzliche Funktionalität bzw. Schnittstellen erweitert. Die Funktionalität
der Step-Server wird um die Invariantenverwaltung erweitert. Damit ergibt sich
eine Erweiterung der Schnittstelle zwischen Step-Server und ConTract-Manager
für den Aufruf folgender Funktionalitäten:

1. Etabliere Invariante.

2. Überprüfe Invariante.

3. Entferne Invariante.

4. End of ConTract (Entfernen aller Invarianten einer ConTract-Instanz).

1. Unter einem opaken Datentyp versteht man einen Typ dessen Struktur unbekannt ist.
124



Integrationsaspekte
Architekturaspekte7
Die RM implementieren die Funktionalität zur Verwaltung und Sicherstellung der
Zugriffsbeschränkungen. Dies resultiert ebenfalls in einer Erweiterung der
Schnittstelle zwischen Step-Server und Ressourcen-Verwalter um den Aufruf der
folgenden Funktionalitäten:

1. Etabliere Prädikat.

2. Überprüfe Prädikat.

3. Entferne Prädikat.

4. Lege virtuelles Objekt an.

5. Entferne virtuelles Objekt.

Die neu eingeführten Schnittstellen für RM hängen eng mit den Schnittstellen der
Step-Server zusammen. Wird die Etablierung einer Invarianten bei einem Step-
Server angefordert (Step-Server Funktion zur Etablierung einer Invarianten), re-
sultiert dies in einer Zerlegung der Invarianten in Einzelprädikate. Für diese Prä-
dikate wird zunächst geprüft, ob sie funktionale Kombinationen enthalten. Ist dies
der Fall, legt der Step-Server bei allen betroffenen RM die notwendigen virtuellen
Objekte an, die die funktionale Kombination kapseln (RM Funktion zum Anlegen
eines virtuellen Objektes). Existieren bei einem RM bereits diese virtuellen Ob-
jekte, muß nur ein Referenzzähler inkrementiert werden. Als letzter Schritt wer-
den durch den Step-Server alle Prädikate bei den RM etabliert (RM Funktion zum
Etablieren eiines Prädikates).
Wird eine Invariante entfernt (Step-Server Funktion zum Entfernen von Invarian-
ten bzw. End of Contract), entfernt der Step-Server alle Prädikate bei den RM, die
er für die Invariante etabliert hat (RM Funktion zum Entfernen eines Prädikates).
Anschließend werden auch die virtuellen Objekte entfernt, bzw. der Referenzzäh-
ler dekrementiert (RM Funktion zum Entfernen eines virtuellen Objektes). Die
Überprüfung einer Invariante (Step-Server Funktion zum Überprüfen einer Inva-
riante) resultiert in der Überprüfung der Prädikate die für die Invariante bei den
RM etabliert wurden (RM Funktion zum Überprüfen eines Prädikates). Eine
Überprüfung einer Invariante ohne vorherige Etablierung kann nicht auftreten.
Dies wird durch die Wohlgeformtheitsbedingung (Definition 4-20) und die Grun-
dannahme aus Abschnitt 6.4.3.1 gewährleistet.
Die Erweiterungen der Architektur führen neue ConTract-spezifische Schnittstel-
len ein, die von Step-Servern bzw. RM implementiert werden müssen, um die kor-
rekte Abwicklung einer ConTract-Instanz zugewährleisten. Darüber hinaus ba-
siert der Ansatz darauf, daß sich die Funktionalität zur Verwaltung und
Sicherstellung der Zugriffsbeschränkungen in RM so realisieren lassen, daß auch
125



Integrationsaspekte
Erweiterbarkeit 7
bestehende Anwendungen die Korrektheit nicht korrumpieren können. Beispiels-
weise bedeutet dies für ein relationales DB-System, daß die Beschränkungen für
Prädikate sich in sogenannten “Constraints” auf der DB-Ebene ausdrücken.

7.3 Erweiterbarkeit

Wie bereits erwähnt, befindet sich das ConTract-Modell in einer laufenden Ent-
wicklung. Da das Modell inzwischen speziell auf den Workflowbereich ausgerich-
tet wurde, sind die Anforderungen aus diesem Gebiet die Motivation für ständige
Erweiterungen. Momentan sind es drei Bereiche, welche Gegenstand laufender Ar-
beiten sind. Inwieweit der hier eingeführte Korrektheitsbegriff und das CC-Verfah-
ren auf diese Neuerungen übertragbar und welche Anpassungen notwendig sind,
soll in den folgen drei Unterabschnitten kurz diskutiert werden.

7.3.1 Flexible Kompensation
Der in dieser Arbeit verwendete Kompensationsbegriff beruht auf dem Prinzip, daß
zu jedem Step ein vordefinierter Kompensationsstep (hierunter fallen auch leere
Kompensationssteps) zur Verfügung steht. Verallgemeinert man diese Auffassung
dahingehend, daß ein Step nicht nur durch einen Kompensationsstep kompensiert
werden kann, sondern durch einen transaktionalen Block beliebiger Art, ist die bis-
herige Definition der kompensationserweiterten Historie nicht ausreichend.
Da im Falle einer solchen erweiterten Kompensation mehrere Anwendungssteps
zur Ausführung kommen können, muß für alle diese Steps die Ausführbarkeit ga-
rantiert sein, um die Kompensierbarkeit einer ConTract-Instanz zu gewährleisten.
Hierfür reicht die Forderung nach dem Zutreffen der Eingangsinvariante eines
Steps nicht mehr aus. Es müssen alle Eingangsinvarianten der Steps in dem Kom-
pensationsblock erfüllt sein, um diese Bedingung zu gewährleisten.
Die naive Erweiterung des Korrektheitskriteriums würde somit die kompensations-
erweiterte Historie so definieren, daß alle Steps in einem Kompensationsblock
auch in der erweiterten Historie definiert sind. Dies würde jedoch dem statischen
CC-Ansatz für diesen Kompensationsblock entsprechen. Wie bereits diskutiert, ist
dieser Ansatz aber nur für eine sehr eingeschränkte Menge von Anwendungen ge-
eignet, so daß die Untersuchung von Alternativen notwendig ist.
Eine Alternative stellt eine Zusatzforderung bezüglich der Struktur einer ConTract-
Instanz dar. Das Korrektheitskriterium kann einfach dahingehend erweitert wer-
den, daß gefordert wird, daß die Eingangsinvarianten der ersten Steps eines Kom-
pensationsblockes erfüllt sein müssen und zusätzlich garantiert sein muß, daß die
Steps eines Kompensationsblockes das Zutreffen der Eingangsinvarianten von
Nachfolgesteps garantieren. 
126



Integrationsaspekte
Erweiterbarkeit7
Ist beispielsweise für einen Step S ein Kompensationsblock als Sequenz zweier
Steps A und B definiert, so müßte gefordert werden, daß die Ausgangsinvariante
von S die Verletzung der Eingangsinvariante von A ausschließt. Ebenso gilt dies
für die Ausgangsinvariante von A bezüglich der Eingangsinvariante von B. Mit
diesen Bedingungen wäre gewährleistet, daß sowohl A als auch B (im Anschluß
an A) ausgeführt werden können.
Die Definition eines Kompensationsblockes (Definition 4-17) könnte einfach da-
hingehend erweitert werden, ohne das darauf aufbauende Korrektheitskriterium
ändern zu müssen. Grundsätzlich ist somit eine Anpassung des hier vorgestellten
Korrektheitskriteriums im Hinblick auf einen erweiterten Kompensationsmecha-
nismus relativ einfach möglich. Da die Arbeiten auf diesem Gebiet jedoch längst
nicht abgeschlossen sind, kann eine tiefergehende Diskussion hier nicht erfolgen.

7.3.2 Dynamische Abläufe
Kurz angerissen wurde bereits das Gebiet der dynamischen Abläufe. Trotzdem
soll an dieser Stelle noch einmal erläutert werden, was darunter zu verstehen ist.
Der bisherige Ansatz in ConTracts sieht vor, daß ConTract-Instanzen aus einem
ConTract-Template erzeugt werden und zur Laufzeit weder Teile (beispielsweise
neue Steps oder Pfade) hinzu- noch wegkommen können. Im Workflowbereich
hat es sich jedoch gezeigt, daß beispielsweise für Ausnahmebehandlungen die Er-
weiterung einer Ablaufdefinition zur Laufzeit unbedingt notwendig ist.
Grundsätzlich stellt die Erweiterbarkeit für das hier vorgestellte Korrektheitskri-
terium kein Problem dar, solange bereits ausgeführte Teile nicht entfernt werden
und die Kompensationsblöcke nicht verändert werden können. Allerdings ergeben
sich für das CC-Verfahren andere Voraussetzungen. Beim bisherigen Modell ist
automatisch zu erkennen, wann kein Step mehr durchlaufen werden kann, der eine
Referenz auf eine bestimmte Ausgangsinvariante in seiner Eingangsinvariante be-
sitzt. Ist kein weiterer Step vorhanden, dessen Eingangsinvariante eine bestimmte
Ausgangsinvariante referenziert, dürfte diese Ausgangsinvariante aus dem Sy-
stem entfernt werden. Ist es allerdings möglich, daß Steps zur Laufzeit eingefügt
werden können, ist diese Entfernung nicht mehr unbedingt zulässig.
Enthält die Eingangsinvariante des neu eingefügten Steps eine Referenz auf eine
Ausgangsinvariante, die bereits aus dem System entfernt wurde, ist diese Refe-
renz ungültig. Drei Ansätze können verfolgt werden, um dieses Problem zu ver-
meiden:

1. Erneute Etablierung aller referenzierten Ausgangsinvarianten zum Zeit-
punkt der Erweiterung.

2. Grundsätzliche Verhinderung der Entfernung von Invarianten.
127



Integrationsaspekte
Erweiterbarkeit 7
3. Explizite Unterscheidung in löschbare Invarianten und solche, die auch von
Erweiterungen referenziert werden dürfen.

Sieht man von den eingangs erwähnten Beschränkungen für die Dynamik von Con-
Tract-Instanzen ab, haben die Änderungen zur Laufzeit keinen Einfluß auf das
Korrektheitskriterium, da die kompensationserweiterte Historie nicht verändert
wird. Allerdings gilt es zu untersuchen, welche der erwähnten Strategien für die
Freigabe von Invarianten die meisten Vorteile hat.
Sollen auch Kompensationsblöcke Gegenstand von Änderungen zur Laufzeit sein,
können sich schwerwiegende Probleme mit dem hier eingeführten Korrektheitskri-
terium ergeben, da der eingeführte Begriff der Invariantenklammern nicht mehr
ausreicht die Ausführbarkeit der Kompensationssteps zu garantieren. In wieweit
hierfür Zusätze oder Änderungen erforderlich sind, ist Gegenstand zukünftiger
Forschungsarbeiten. 

7.3.3 Nicht-transaktionale Steps
Nicht-transaktionale Steps stellen seit der ersten Einführung des ConTract-Modells
ein Thema dar, welches allerdings nur in Teilbereichen angegangen wurde
[Schm93]. Unter nicht-transaktionalen Steps sind solche Steps zu verstehen, die
nicht die ACI(D)-Eigenschaften erfüllen. Gerade die Atomaritätseigenschaft be-
einflußt das Korrektheitskriterium sehr stark, da Steps entweder als erfolgreich ab-
gearbeitet oder als zurückgesetzt in der Historie erscheinen. Teilweise abgearbei-
tete Steps sind hierbei nur sehr schwer zu berücksichtigen.
In einigen Ansätzen wird versucht, das Zurücksetzen eines nicht-atomaren Steps
durch eine Ergänzung des Ablaufs um weitere Steps zu implementieren. Die Er-
weiterung dient dann quasi dazu, die Überbleibsel eines nicht-transaktionalen
Steps zu beseitigen und dadurch, ähnlich dem Kompensationsmechanismus, eine
semantische Atomarität zu gewährleisten.
Welcher formale Zustand in welchen Fällen von einer solchen semantischen Ato-
marität hergestellt werden kann, ist bisher immer noch Gegenstand von For-
schungsarbeiten. Darüber hinaus ist noch ungeklärt, ob die Zusatzaktivitäten selbst
wieder Gegenstand einer eventuellen Kompensation sein müssen oder nicht.
Zusammengefaßt läßt sich zu den nicht-transaktionalen Steps sagen, daß es äußerst
schwierig ist, diese in ein Korrektheitskriterium einzubeziehen. Bevor eine formale
Beschreibung der Fehlersemantik solcher nicht-transaktionalen Steps gefunden ist,
wird auch kaum ein entsprechendes Korrektheitskriterium festgelegt werden kön-
nen. Denkbar wäre hierbei wiederum ein prädikativer Ansatz, welcher dazu dient
den Zustand nach dem “Zurücksetzen” formal zu beschreiben. 
Obwohl momentan noch keine konkret anwendbaren Lösungen zur Verfügung ste-
128



Integrationsaspekte
Erweiterbarkeit7
hen, stellen nicht-transaktionale Aktivitäten insbesondere im Workflowbereich
einen äußerst wichtigen Bereich dar, der unbedingt untersucht werden muß.
129



Diskussion und Ausblick
Korrektheit und langlebige Abläufe 8
8 Diskussion und Ausblick

8.1 Korrektheit und langlebige Abläufe

Der aus dem Datenbankbereich bekannt gewordenen Begriff der (ACID-)Transak-
tion stellt ein Programmierprimitiv dar, welches Anwendungsprogrammierer stark
entlastet. Sowohl durch das definierte Verhalten im Fehlerfall, dem Schutz vor An-
omalien im parallelen Mehrbenutzerbetrieb, als auch durch die einfache Handha-
bung haben sich Transaktionen im Bereich der Datenbanksysteme durchgesetzt.
Allerdings sind die Eigenschaften der ACID-Transaktionen nicht auf alle Anwen-
dungen übertragbar. Insbesondere bei langdauernden Abläufen, wie sie beispiels-
weise bei Workflow-Anwendungen die Regel sind, ist festzustellen, daß einige Ei-
genschaften von Nachteil sind.
Der Grundgedanke der Transaktionen, Aufgaben wie die Fehlerbehandlung und
die Isolation von anderen Abläufen, von den Anwendungen in ein Laufzeitsystem
zu verlagern, ist jedoch auch auf langlebige Ausführungen übertragbar. Das Ziel
dabei ist, die Konsistenz der an den Anwendungen beteiligten Systeme zu garan-
tieren, ohne daß in jeder Anwendung entsprechende Mechanismen programmiert
werden müssen.
Vor diesem Hintergrund wurde das ConTract-Modell entworfen. Dabei wurde be-
sonders darauf geachtet, daß für Anwendungen als Ganzes durch die Implementie-
rung als ConTract automatisch ein definiertes Fehlerverhalten garantiert werden
kann. Obwohl auch die Problematik der Parallelverarbeitung von ConTracts zu-
mindest teilweise berücksichtigt wurde, geschah dies bisher auf rein informelle Art
und Weise. Diese Lücke wurde in dieser Arbeit angegangen.

8.1.1 Korrektheit - warum?
Ein Hauptgrund für den Erfolg des klassischen Transaktionsmodells ist der defi-
nierte Korrektheits- bzw. Konsistenzbegriff. Durch die formale Festlegung der Ei-
genschaften einer Transaktion ist es zum einen möglich, Mechanismen zu entwik-
keln, die die Implementierung dieser Eigenschaften in einem Laufzeitsystem
ermöglichen, und zum anderen wird erst dadurch beurteilbar, ob ein Ablauf korrekt
ist oder nicht.
Somit stellt die Entwicklung des Korrektheitsbegriffes für ConTracts einen not-
wendigen Schritt dar, um für Anwendungen als Ganzes bestimmte Eigenschaften
zusichern zu können. Erst durch den Korrektheitsbegriff wird festgelegt, welcher
Zustand der Daten zulässig ist, und welche Zustände nicht erreicht werden dürfen.
Auf dieser Basis können dann Mechanismen entwickelt werden, welche die Errei-
130



Diskussion und Ausblick
Korrektheit und langlebige Abläufe8
chung unzulässiger Zustände verhindern. Da dies vollständig unabhängig von ei-
ner Anwendung ist, ergibt sich somit auch die Möglichkeit, diese Mechanismen
in einem Laufzeitsystem zur Verfügung zu stellen.
Der in dieser Arbeit vorgestellte Ansatz zur Sicherstellung der Korrektheit in ei-
nem ConTract-verarbeitenden System stellt einen solchen anwendungsunabhän-
gigen Mechanismus dar. Bei der Entwicklung wurde streng darauf geachtet, daß
sich der Ansatz einfach in ein Laufzeitsystem integrieren läßt. Allerdings wurde
auf die Vorstellung einer konkreten Implementierung, wie z.B. die Festlegung
konkreter Sprachkonstrukte, verzichtet. Zum einen würde dies den Rahmen dieser
Arbeit sprengen, und zum anderen sind die vorgestellten Mechanismen auch zur
Integration in bereits bestehende Systeme geeignet, so daß die konkrete Umset-
zung stark von dem jeweiligen Umfeld abhängt.

8.1.2 Aufwand versus Nutzen
Wie bereits erwähnt, ist ein maßgebliches Beurteilungskriterium im Bereich der
CC-Verfahren der Durchsatz eines Systems. Dabei liegt klar auf der Hand, daß die
Reduktion des Aufwandes für die Sicherstellung der Korrektheit eine Erhöhung
des Durchsatzes nach sich zieht. Das hier vorgestellte Verfahren ist deutlich auf-
wendiger als der klassische transaktionale Ansatz und erscheint somit wenig ge-
eignet. Bei diesem Vergleich würde man allerdings außer acht lassen, daß die An-
wendungsgebiete der beiden Ansätze grundsätzlich verschieden sind.
Während klassische Transaktionen für kurze Aktionen entworfen wurden, stellen
ConTracts ein Modell für langlebige Abläufe dar. Vergleicht man dabei die Lauf-
zeiten typischer Anwendungen, erhält man eine Relation, die sich in einem Be-
reich von mehr als drei Zehnerpotenzen bewegt. Gerade bei Workflowanwendun-
gen, die darauf ausgerichtet sind, langlaufende Anwendungen mit elektronischen
Mitteln zu unterstützen, ist der eigentliche Aufwand für Berechnungen üblicher-
weise verschwindend klein. Ebenso verhält es sich bezüglich des Aufwandes für
das hier vorgestellte Verfahren.
Somit ist festzuhalten, daß es bei langlebigen Anwendungen weniger darauf an-
kommt, möglichst wenig Rechenzeit neben der eigentlichen Berechnung zu ver-
brauchen. Vielmehr ist es wichtig, einen hohen Grad an Fehlertoleranz zu errei-
chen und auf keinen Fall inkonsistente Datenbestände zu erzeugen1. Obwohl die
in dieser Arbeit vorgestellten Ansätze in einem prototypisches Laufzeitsystem im-
plementiert wurden, ist auf die konkrete Messung des Durchsatzes verzichtet wor-
den. Dies ist gerechtfertigt, da konkrete oder standardisierte Anwendungen als
Vergleichsbasis fehlen.

1. Dies ist von besonderer Bedeutung bei den typischen Anwender von Workflow-Systemen wie Banken 
und Versicherungen.
131



Diskussion und Ausblick
Offene Probleme 8
8.1.3 Flexibilität versus einfache Verwendung
Im Gegensatz zum klassischen Transaktionsansatz versucht das ConTract-Modell,
Anwendungen als Ganzes mit den bereits erwähnten Eigenschaften auszustatten.
Hierbei wird von der Art der Anwendung abstrahiert, so daß eine generelle Be-
schränkung der Semantik nicht vorgenommen werden soll. Beispielsweise ist bei
klassischen Transaktionen grundsätzlich vorausgesetzt, daß keine Kooperation
zwischen Transaktionen bestehen kann. Ebenso wurde ursprünglich gefordert, daß
Transaktionen im Fehlerfall zurückgesetzt werden. Im Falle allgemeiner Anwen-
dungen ist dies jedoch nicht möglich bzw. nicht gewünscht.
Werden einerseits weniger Eigenschaften durch das Laufzeitsystem vorgegeben,
ergibt sich andererseits die Notwendigkeit, die Information über die gewünschten
Eigenschaften von der Programmiererin zu erfragen. Dies ist notwendig, um dem
Laufzeitsystem genügend Information übergeben zu können, damit die Maßnamen
zur Sicherstellung der Korrektheit des Gesamtsystems nicht zu restriktiv bzw. un-
genügend sind. Somit wird durch das ConTract-Modell weit mehr vom Program-
mierer gefordert als beim klassischen Transaktions-Modell. Man erkauft sich sozu-
sagen die Flexibilität mit einem erhöhten Programmieraufwand. 

8.2 Offene Probleme

Obwohl das ConTract-Modell selbst wie auch die in dieser Arbeit vorgestellten an-
deren Ansätze darauf ausgerichtet sind, für eine Vielzahl von Anwendungen an-
wendbar zu sein, gibt es noch einige Eigenschaften von Anwendungen, die bisher
nicht adressiert werden. Nachfolgend werden einige dieser Punkte kurz erwähnt
werden. Allerdings steht die Untersuchung der Eigenschaften von Anwendungen,
wie zum Beispiel im Workflowbereich, noch an ihrem Anfangspunkt, so daß kein
Anspruch auf Vollständigkeit erhoben wird.

8.2.1 Modifikationen zur Laufzeit
Die Modifikation von Anwendungen zur Laufzeit wurde bereits bei der Vorstel-
lung des Mechanismus zur Sicherstellung der Korrektheit diskutiert. Dabei be-
schränkte sich die Untersuchung auf die Betrachtung der Auswirkungen auf die
vorgestellten Ansätze.
Erweitert man diese Sichtweise, stellt sich die Frage, welchem Korrektheitsbegriff
eigentlich eine solche Modifikation unterliegt. Der eingeführte Begriff der Wohl-
geformtheit kann hier nicht mehr angewandt werden, da dessen Voraussetzungen
nicht mehr erfüllt sind. Somit ist es notwendig, einen Korrektheitsbegriff für die
Modifikation selbst zu entwickeln, so daß wiederum ein Laufzeitsystem entwickelt
werden kann, welches diese Korrektheit sicherstellt.
132



Diskussion und Ausblick
Offene Probleme8
Es sind momentan Untersuchungen im Gange, die zunächst prüfen, welche Arten
der Modifikationen überhaupt möglich sind. Erst dann wird der nächste Schritt er-
folgen können, Korrektheitskriterien zu entwerfen, die auch Modifikationen be-
rücksichtigen.

8.2.2 Unterstützung der Programmierung
Der Aufwand für die Programmierung im Hinblick auf das vorgestellte Invarian-
tenkonzept ist erheblich. Außerdem stellen die Invarianten ein relativ hohes Risi-
ko im Hinblick auf Programmierfehler dar1. Deshalb ist zu überlegen, ob diese
Programmiertätigkeit nicht zusätzlich durch weitere Mechanismen unterstützt
werden kann.
Ein Ansatz, den es zu untersuchen gilt, ist die automatische Generierung von In-
varianten. Dabei kann diese Generierung entweder statisch zum Programmierzeit-
punkt von Steps als auch dynamisch zu deren Laufzeit erfolgen. Die dynamische
Variante ist sicherlich die flexiblere und umfassendere, erfordert allerdings auch
mehr Aufwand. Die in dieser Arbeit verwendete Methodik der direkten Referen-
zierung von Ausgangsinvarianten bei der Definition von Eingangsinvarianten ist
dann sicherlich zu überarbeiten.

8.2.3 Der Kompensationsbegriff
Der Begriff der Kompensation ist seit seiner Einführung äußerst unterschiedlich
interpretiert worden. Auch in der Literatur findet man vielfältige Definitionen, die
sicherlich nicht zu einer Klärung beitragen. Die im ConTract-Modell verwendete
Auffassung orientiert sich weitgehend an der anwendungsorientierten Auslegung
des Begriffes, wodurch sich eine immer komplexer werdende Semantik ergibt.
Bisher ist diese Semantik entweder nur informell beschrieben oder auf ein einfa-
ches formales Modell “kondensiert” worden. Aktuelle Arbeiten beschäftigen sich
mit der Formulierung eines umfassenderen formalen Modells der Kompensation.
Dies hat sicherlich auch Auswirkungen auf den Korrektheitsbegriff. Inwieweit
dies eine Änderung der vorgestellten Ansätze erfordert, läßt sich aber aus heutiger
Sicht noch nicht abschätzen.

1. Dies ist allerdings weit aus geringer als das Risiko bei der Implementierung der Konsistenzsicherung in 
den Anwendungen.
133



Literatur 9

9 Literatur

[AVA94a] A Unified Approach to Concurrency Control and Transaction Recovery
G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H. Schek, 
G. Weikum
erschienen in 
Proc. of the 4th Intern. Conf. on Extending Database Technology (EDBT), 1994.

[AVA94b] Unifying Concurrency Control and Recovery of Transactions
G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H. Schek, 
G. Weikum
Information Systems, 1994.

[AAE93] A Unified Implementation of Concurrency Control and Recovery
G. Alonso, D. Agrawal, A. El Abbadi
Technischer Bericht des Dept. of Computer Science, Universitity of California at 
Santa Barbara, TRCS93-19, 1993.

[BHG87] Concurrency Control and Recovery in Database Systems
P.A. Bernstein, V. Hadzilacos, N. Goodman
Addison Wesley Pub., 1987.

[BHL92] Objektbanken für Experten
R. Bayer, T. Härder, P. Lockemann (Hrsg.)
Springer-Verlag, 1992.

[Brau87] Petri nets: central models and their properties; advances in Petri nets
W. Brauer
Springer Verlag, 1987

[ChRa90] ACTA: A Framework for Specifying and Reasoning about Transaction Structure and 
Behavior   
P. K. Chrysanthis, K. Ramamritham
erschienen in 
Proc. of the ACM SIGMOD International Conference on Management of Data, 
1990 .

[ChRa92] ACTA: The Saga continues
P. K. Chrysanthis, K. Ramamritham
Kapitel 10 in 
Database Transaction Model for Advanced Applications,
A.K. Elmagarnid,
Morgan Kaufmann Publishers, 1992.
134



Literatur9

[ChRa94] Synthesis of Extended Transaction Models using ACTA

P. K. Chrysanthis, K. Ramamritham
erschienen in
ACM Transactions on Data Base Systems (TODS), 1994.

[DHL90] Organizing Long-Running Activities with Triggers and Transactions
U. Dayal, M. Hsu, R. Ladin
erschienen in 
Proc. ACM SIGMOD Intern. Conf. on Management of Data, 1990. 

[DHL91] A Transaction Model for Long-Running Activities
U. Dayal, M. Hsu, R. Ladin
erschienen in 
Proc. 17. Conference on Very Large Data Bases (VLDB), S. 113-122, 1991.

[Dav78] Data processing spheres of control 
C. T. Davies Jr.    
erschienen in: 
IBM Systems Journal, Vol. 17 No. 2 S. 179-198, 1978.

[Daya88] Active Database Management Systems
U. Dayal
erschienen in 
Proc. 3. Int’l Conference on Data and Knowledge Bases, S. 150-169, 1988.

[EGL76] The Notions of Consistency and Predicate Locks in a Database System   
K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger 
erschienen in 
Communications of the ACM, Vol. 19 No.11, S. 624-633, 1976.

[Elm92] Database Transaction Models for Advanced Applications
A.K. Elmargarmid (Hrsg.)
Morgan Kaufmann Publishers, 1992.

[GGK90] Coordinating Multi-Transaction Activities 
H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem  
Technischer Bericht: Princeton University, Department of Computer Science 
CS-TR-247-90, 1990.

[GGK91a] Coordinating Activities Through Extended Sagas: A Summary
H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem
erschienen in 
Proc. 36. IEEE Computer Society Intern. Conf. (CompCon), S. 568-573, 1991.

[GGK91b] Modelling Long-Running Activities as Nested Sagas
H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem
erschienen in 
IEEE Bulletin of the Technical Committee on Data Engineering, Vol. 14, No. 1, 
S. 14-18, 1991.
135



Literatur 9

[GaKi85] Varieties of Concurrency Control in IMS/VS FastPath

D. Gawlick, D. Kinkade
erschienen in 
IEEE Database Engineering, Vol. 8, No. 2, S. 3-10, 1985.

[GrRe93] Transaction Processing: Concepts and Techniques
J. Gray, A. Reuter
Morgan Kaufmann Publishers, 1993.

[GaSa87] SAGAS
Hector Garcia-Molina, Kenneth Salem
erschienen in 
Proc. ACM SIGMOD Intern. Conf. on Management of Data, S. 249-259 1987 

[Gra81a] The Transaction Concept: Virtues and Limitations  
J.N. Gray  
erschienen in 
Proc. 7th Int . Conf. on VLDB, S. 144-154 1981 

[Gra81b] A Straw man Analysis of Probability of Waiting and Deadlock
J.N. Gray
IBM Research Report No. RJ 3066, 1981

[Günt96] Ein Basisdienst für die zuverlässige Abwicklung langdauernder Aktivitäten
R. Günthör
Dissertation an der Fakultät Informatik der Universität Stuttgart, 1996.

[HäRe83] Principles of Transaction-Oriented Database Recovery
T. Härder, A. Reuter
erschienen in 
ACM Computing Surveys, Vol. 13 No.2, S. 155-166, 1983

[Jab95] Workflow-Management-Systeme
S. Jablonski
Thomson Publishing, 1995

[KLS90] A Formal Approach to Recovery by Compensating Transactions  
H. F. Korth, E. Levy, A. Silberschatz
erschienen in 
Proc. 16th Intern. Conf. on Very Large Databases, S. 95-106 1990 

[Klei91] Advance Rule Driven Transaction Management
J. Klein
erschienen in 
Proc. of IEEE Computer Society Int’l Conference (CompCon) Spring 1991, Digest 
of Papers, S. 562-567, 1991.
136



Literatur9

[KoSp88] Formal Model of Correctness without Serializability    

H. F. Korth, G. D. Speegle 
erschienen in 
Proc. ACM SIGMOD Intern. Conf. on Management of Data, 1988.

[Kuma96] Performance of Concurrency ConTrol Mechanisms in Centralized Database 
Systems
V. Kumar (Hrsg.)
Prentice Hall, 1996

[Leym95] Supporting Business Transactions Via Partial Backward Recovery in Workflow 
Management Systems
F. Leymann
erschienen in 
Tagungsband Datenbanksysteme in Büro, Technik und Wissenschaft, GI 
Fachtagung Dresden, 1995

[Lom92] MLR: A Recovery Method for Multi-level Systems    
D. B. Lomet 
erschienen in 
Proc. ACM SIGMOD Intern. Conf. on Management of Data, S. 185-194, 1992.

[MoLi83] Efficient Commit Protocols for the Tree of Processes Model of Distributed 
Transactions
C. Mohan , Lindsay, B. 
erschienen in
Proc. ACM/SIGOPS Symposium on Principles of Distributed Computing, 1983.

[Moss85] Nested Transactions: An Approach to Reliable Distributed Computing
J. E. B. Moss
MIT Press, 1985.

[OMG96] CORBAservices
Object Management Group
1996.

[OSI92] OSI TP Model; OSI TP Service
Open Systems Interconnection - Distributed Transaction Processing
ISO/IEC JTC 1/SC 21 N, 1992.

[ONei86] The Escrow Transactional Method    
P. E. O’Neil   
erschienen in 
ACM Transactions on Database Systems, Vol. 11 No.4,S. 405-430 1986. 

[PRS88] High Contention in a Stock Trading Database: A Case Study   
P. Peinl, A. Reuter, H. Sammer   
erschienen in 
Proc. ACM SIGMOD Intern. Conf. on Management of Data S. 260-268, 1988. 
137



Literatur 9

[Papa86] The Theory of Database Concurrency Control

C. Papadimitriou
Computer Science Press, 1986.

[RSS97] ConTracts Revisited
A. Reuter, K. Schneider, F. Schwenkreis
erschienen in 
Advanced Transaction Models and Architectures, 
S. Jajodia (Hrsg.),
Kluwer Pub. 1997.

[RSW92] Zuverlässige Abwicklung großer verteilter Anwendungen mit ConTracts - 
Architektur einer Prototypimplementierung
A. Reuter, F. Schwenkreis, H. Wächter
erschienen in 
Objektbanken für Experten
R. Bayer, T. Härder, P. Lockemann
Springer-Verlag 1992.

[ReSw95] ConTracts - A Low-Level Mechanism for Building General-Purpose Workflow 
Management Systems
A. Reuter, F. Schwenkreis
erschienen in 
Bulletin of the Technical Committee on Data Engineering (IEEE Computer 
Society), Vol. 18, No. 1, 1995

[Reut82] Concurrency on High-Traffic Data Elements
A. Reuter 
erschienen in: 
Proc. ACM Symposium on Principles of Database Systems (PODS), 1982.

[Reut89] ConTracts: A Means for Extending Control Beyond Transaction Boundaries
A. Reuter
erschienen in 
Proc. 3. International Workshop on High Performance Transaction Systems (HPTS), 
1989

[Reut96] An Analytic Model of Transaction Interference
A. Reuter
erschienen in 
Performance of Concurrency Control Mechanisms in Centralized Database Systems
V. Kumar
Prentice Hall, 1996.

[SGS94] Altruistic Locking  
K. Salem, H. Garcia-Molina, J. Shands    
erschienen in
ACM Transactions on Database Systems Vol.19 No.1  1994 
138



Literatur9

[SWY93] Towards a Unified Theory of Concurrency Control and Recovery

H.J. Schek, G. Weikum, H. Ye
erschienen in
Proc. ACM Sysmposium ob Principles of Database Systems (PODS), 1993.

[ScRe96] Synchronizing Long-Lived Computations
F. Schwenkreis, A. Reuter
erschienen in 
Performance of Concurrency Control Mechanisms in Centralized Database 
Systems
V. Kumar
Prentice Hall, 1996.

[Schm93] Transaktionen in der Fertigung
U. Schmidt
erschienen in 
Tagungsband GI-Fachtagung Datenbanken in Büro Technik und Wissenschaft, 
1993.

[Schw93b] APRICOTS - A Prototype Implementation of a ConTract System: Management of 
the ConTrol Flow and the Communication System
F. Schwenkreis
erschienen in
Proc. of the 12th Symposium on Reliable Distributed Systems (SRDS), IEEE 
Computer Society Press, 1993.

[Schw94] A Formal Approach to Synchronize Long-lived Computations
F. Schwenkreis
erschienen in
Proc. of the 5th Australasian Conference on Information Systems, 1994.

[Schw95] APRICOTS - a workflow programming environment
F. Schwenkreis
erschienen in
Proc. 6th High Performance Transaction Workshop (HPTS), 1995.

[Seif96] Zuverlässige Workflowbearbeitung auf der Basis von OTS
J. Seifert
Fakultät Informatik der Universität Stuttgart, Diplomarbeit Nr. 1404, 1996.

[Sieg96] CORBA Fundamentals and Programming
J. Siegel
John Wiley & Sons, Inc., 1996

[Sten90] A Survey of Cache Coherence Schemes for Multiprocessors
P. Stenström
erschienen in
IEEE Computer, No. 23,Vol. 6, 1990.
139



Literatur 9

[Tra83] Trends in System Aspects of Database Management

I. L. Traiger   
erschienen in 
Proc. of the 2nd Intern. Conf. on Databases, 1983.

[WFM94] Glossary
Workflow Management Coalition
Doc. No. TC00-0011, 1994.

[WäRe92] The ConTract Model
H. Wächter, A. Reuter
Kapitel 7 in 
Database Transaction Models for Advanced Applications
A. K. Elmagarmid
Morgan Kaufmann Publishers, 1992.

[Wäch96] Eine Architektur für die zuverlässige Abwicklung verteilter Anwendungen auf 
gemeinsamen Ressourcen
Helmut Wächter
Dissertation an der Fakultät Informatik der Universität Stuttgart, 1996.

[WeSc92] Concepts and Applications of Multilevel Transactions and Open Nested 
Transactions
G. Weikum, H.-J. Schek
Kapitel 13 in 
Database Transaction Models for Advanced Applications
A. K. Elmagarmid
Morgan Kaufmann Publishers, 1992.

[Weik89] Principles and Realization Strategies of Multilevel Transaction Management
G. Weikum 
erschienen in
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 2, 
S. 249-283, 1989.

[Weik91] Principles and Realization Strategies of Multilevel Transaction Management
G. Weikum
erschienen in 
ACM Transations on Database Systems, Vol. 16, No. 1, 1991.

[XOP93] Distributed Transaction Processing: Reference Model - Version 2
X/Open Guide
X/Open Company Limited, 1993.

[ZiCh91] Supercompilers for Parallel and Vector Computers
H. Zima, B. Chapman
ACM and Addison Wesley Pub., 1991.
140



Index
Index

A
Abhängigkeitsgraphen .............................................................................................................95
Abhängigkeitsregeln ................................................................................................................52
Ablaufmodifikation ................................................................................................................132
Ablaufprädikat .........................................................................................................................38
Abort-Abhängigkeit .................................................................................................................31
ACTA .......................................................................................................................................52
Altruistic locking .....................................................................................................................98
Atomarität ................................................................................................................................14
Ausgangsinvariante ..................................................................................................................39
Autonomieproblem ................................................................................................................122

C
Chained paradigm ....................................................................................................................15
Chained transactions ................................................................................................................16
Check/Revalidate ...................................................................................................................103
ConTract-Instanz ......................................................................................................................43
ConTract-Interpretation ...........................................................................................................46
ConTract-Template ..................................................................................................36, 114, 118

D
Datenfluß ....................................................................................................................................8
Dauerhaftigkeit ........................................................................................................................14
Dirty read .................................................................................................................................59
Durchlässigkeit ........................................................................................................................23
Dynamische CC-Verfahren ......................................................................................................91

E
ECA-Regeln .............................................................................................................................51
Eingangsinvariante ...................................................................................................................39
Elterntransaktion ......................................................................................................................17
Ereignis ....................................................................................................................................38
Escrow Sperren ......................................................................................................................101

F
Fehlertoleranz ........................................................................................................................122
Field calls ...............................................................................................................................100
Fortsetzbarkeit ..........................................................................................................................23

G
Geschlossen geschachtelt .........................................................................................................17

H
Historie .....................................................................................................................................55
Hot-Spots .................................................................................................................................97
141



Index
I
Interpretation ........................................................................................................................... 27
Invarianten ............................................................................................................................... 22
Invariantenbasierte Serialisierbarkeit ...................................................................................... 84
Invariantenklammer ................................................................................................................ 82
Invarianten-Template ............................................................................................................ 117
Isolationsbedarf ....................................................................................................................... 87
Isolationsbedürfnisse ............................................................................................................... 10
Isolationseigenschaft ............................................................................................................... 14

K
Kaskadierendes Zurücksetzen ................................................................................................. 63
Kind-Transaktion .................................................................................................................... 17
Kommutativität ....................................................................................................................... 55
Kompensation ......................................................................................................................... 22
Kompensationsaktionen .......................................................................................................... 20
Kompensationsblock ............................................................................................................... 43
Kompensations-Erweiterung ................................................................................................... 81
Kompensationsfolge ................................................................................................................ 80
Kompensierbarkeit .................................................................................................................. 24
Konfliktbehandlung ............................................................................................................... 109
Konfliktbestimmung ............................................................................................................... 87
Konfliktordnung ...................................................................................................................... 56
Konfliktrelation ....................................................................................................................... 74
Konsistenzerhaltung ................................................................................................................ 14
Kontext .............................................................................................................................. 22, 36
Kontrollfluß ............................................................................................................................... 7

L
Lese/Schreib-Modell ............................................................................................................... 26
Live-locks ................................................................................................................................ 97
Lost update .............................................................................................................................. 59

M
Mehrschicht-Transaktionen ............................................................................................... 19, 31
Mini-Batch .............................................................................................................................. 16
Mini-Transaktionen ................................................................................................................. 31

O
Obligatorische Prädikate ....................................................................................................... 104
Offen geschachtelt ................................................................................................................... 18
Optimistische Verfahren ......................................................................................................... 96

P
Pessimistische Verfahren ........................................................................................................ 94
Prädikat-Serialisierbarkeit ....................................................................................................... 75
Prädikatsperren ........................................................................................................................ 75
Prädikat-Transitions-Netz ....................................................................................................... 36
Pre-claiming ............................................................................................................................ 91
142



Index
Predicate locking ......................................................................................................................99
Programmiermodell ...............................................................................................................114

R
Recoverable queues .................................................................................................................16
Reduzierbar ..............................................................................................................................67
Ressourcen-Verwalter ............................................................................................................115
Revalidieren ...........................................................................................................................103

S
Sagas ........................................................................................................................................19
Scheduler ..................................................................................................................................90
Semantikbasiert ........................................................................................................................98
Semantische Atomarität ...........................................................................................................18
Semantische Ununterbrechbarkeit ...........................................................................................77
Serialisierbarkeit ......................................................................................................................60
Serialisierungsgraph .................................................................................................................61
Skript ........................................................................................................................................21
SOT ..........................................................................................................................................68
Statische CC-Verfahren ...........................................................................................................91
Step-Instanz ..............................................................................................................................37
Steps ...................................................................................................................................21, 37
Striktheit ...................................................................................................................................64

T
Top-Level Transaktion .............................................................................................................17
Top-Level-Transaktion ............................................................................................................30
Transaktionsketten ...................................................................................................................16
Transaktionszustände ...............................................................................................................28
Transition .................................................................................................................................40

U
Unrepeatable read ....................................................................................................................58
Ununterbrechbarkeit ................................................................................................................14

V
Verklemmungen .......................................................................................................................97
Virtuelle Objekte ....................................................................................................................107

W
Wiederherstellbarkeit ...............................................................................................................62
Wohlgeformtheit ......................................................................................................................44

Z
Zugriffsbeschränkungen ........................................................................................................106
Zwei-Phasen-Sperrverfahren ...................................................................................................94
143


	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Symbolverzeichnis
	1 Einleitung
	1.1 Motivation
	1.2 Umfeld der Arbeit
	1.3 Einordnung der Arbeit
	1.4 Überblick über die Arbeit

	2 Ein einleitendes Anwendungsbeispiel
	2.1 Motivation
	2.2 Der universitäre Urlaubsantrag
	2.2.1 Überblick
	2.2.2 Separation der Einzelaspekte


	3 Transaktionale Ausführungsmodelle
	3.1 Klassische DB-Transaktionen
	3.1.1 Grundprobleme von DB-Transaktionen
	3.1.2 Die ACID Eigenschaften
	3.1.3 Einsatzgebiete

	3.2 Transaktionen und Verkettung
	3.2.1 Mini-Batch und Warteschlangen
	3.2.2 Transaktionsketten

	3.3 Geschachtelte Transaktionen
	3.3.1 Geschlossen geschachtelte Transaktionen
	3.3.2 Einsatzgebiete geschlossen geschachtelter TA
	3.3.3 Offen geschachtelte Transaktionen

	3.4 Mehrschicht-Transaktionen
	3.5 Sagas
	3.6 ConTracts
	3.6.1 Das Skript
	3.6.2 Eigenschaften von ConTracts


	4 Formale Modelle konkurrierender Abläufe
	4.1 Das read/write Modell
	4.1.1 Operationen
	4.1.2 Ausführungen und ihre Semantik
	4.1.3 Persistente Zustände
	4.1.4 Erweiterungen für geschachtelte Transaktionen

	4.2 Mehrschicht-Transaktionen
	4.2.1 Operationen
	4.2.2 Ausführungen und ihre Semantik
	4.2.3 Persistente Zustände

	4.3 Abläufe nach Korth�et.�al.
	4.3.1 Operationen
	4.3.2 Ausführungen und ihre Semantik

	4.4 Abläufe in ConTracts
	4.4.1 Grundelemente von ConTracts
	4.4.2 Strukturelle Beschränkungen
	4.4.3 Interpretation einer ConTract-Instanz
	4.4.4 Ausführungen und ihre Semantik
	4.4.5 Ein Anwendungsbeispiel

	4.5 Weitere Notationen
	4.5.1 ECA-Regeln
	4.5.2 ACTA
	4.5.3 Abhängigkeitsregeln nach Klein


	5 Korrektheit
	5.1 Grundlagen
	5.1.1 Historien
	5.1.2 Kommutativität und Konflikte
	5.1.3 Isolation und Atomarität
	5.1.4 Anwendbarkeit

	5.2 Klassische Korrektheitskriterien
	5.2.1 Grundprobleme der ACID-Transaktionen
	5.2.2 Klassische Serialisierbarkeit
	5.2.3 Recoverability und Spezialisierungen
	5.2.4 Kombinierte Ansätze
	5.2.5 Kriterien für geschlossen geschachtelte Transaktionen

	5.3 Korrektheit bei Mehrschichttransaktionen
	5.3.1 Historien von Mehrschichttransaktionen
	5.3.2 Konfliktbegriff der Mehrschichttransaktionen
	5.3.3 Mehrschicht-Serialisierbarkeit
	5.3.4 Recovery bei Mehrschichttransaktionen

	5.4 Korrektheit nach Korth et. al.
	5.4.1 Historien nach Korth et. al.
	5.4.2 Prädikatabhängige Konflikte
	5.4.3 Prädikatbezogene-Serialisierbarkeit
	5.4.4 Recovery-Aspekte

	5.5 Korrektheit in ConTracts
	5.5.1 Semantische Ununterbrechbarkeit von ConTracts
	5.5.2 Historien in ConTracts
	5.5.3 Konfliktbegriff von ConTracts
	5.5.4 Invariantenorientierte Serialisierbarkeit
	5.5.5 Kaskadierende Kompensation

	5.6 Diskussion

	6 Kontrolle von Abläufen
	6.1 Grundprobleme
	6.1.1 Statische versus dynamische Ansätze
	6.1.2 Durchsatz und Verklemmung
	6.1.3 Wartbarkeit

	6.2 Klassische Ansätze
	6.2.1 Pessimistische Verfahren
	6.2.2 Optimistische Verfahren

	6.3 Semantikbasierte Ansätze
	6.3.1 Frühzeitige Sperrfreigabe
	6.3.2 Wertunabhängige, prädikatbasierte Ansätze
	6.3.3 Field Calls
	6.3.4 Escrow Sperren
	6.3.5 Prüfe und Revalidiere

	6.4 Der Ansatz in ConTracts
	6.4.1 Typen von Invariantenprädikaten
	6.4.2 Umsetzung auf Objektebene
	6.4.3 Verwaltung der Invarianten
	6.4.4 Konfliktbehandlung
	6.4.5 Gültigkeitsdauer von Invarianten

	6.5 Vergleich der Mechanismen

	7 Integrationsaspekte
	7.1 Auswirkungen auf das Programmiermodell
	7.1.1 Grundprobleme
	7.1.2 Step-Programmierung
	7.1.3 ConTract-Template-Programmierung

	7.2 Architekturaspekte
	7.2.1 Bisherige Architektur
	7.2.2 Autonomie
	7.2.3 Fehlertoleranz
	7.2.4 Verteilungsaspekte

	7.3 Erweiterbarkeit
	7.3.1 Flexible Kompensation
	7.3.2 Dynamische Abläufe
	7.3.3 Nicht-transaktionale Steps


	8 Diskussion und Ausblick
	8.1 Korrektheit und langlebige Abläufe
	8.1.1 Korrektheit - warum?
	8.1.2 Aufwand versus Nutzen
	8.1.3 Flexibilität versus einfache Verwendung

	8.2 Offene Probleme
	8.2.1 Modifikationen zur Laufzeit
	8.2.2 Unterstützung der Programmierung
	8.2.3 Der Kompensationsbegriff


	9 Literatur
	Index

		fschwenk@web.de
	2001-12-10T09:33:03+0100
	Leinfelden-Echterdingen
	Friedemann Schwenkreis
	I am the author of this document




