Korrektheit und deren Durchsetzung
im Umfeld langdauernder Ablaufe

Von der Fakultit fiir Informatik der Universitdt Stuttgart
zur Erlangung der Wiirde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von
Dipl.-Inform. Friedemann Schwenkreis
aus Stuttgart

Hauptberichter: Prof. Dr.- Ing. habil. Bernhard Mitschang
Mitberichter: Prof. Dr.- rer.nat. Frank Leymann
Betreuung Prof. Dr.- Ing. Andreas Reuter

Tag der miindlichen Priifung: 18. Juni 2001

Institut fiir Parallele und Verteilte Hochstleistungsrechner
der Universitdt Stuttgart

Vorwort und Danksagung

Vorwort und Danksagung

Vorwort

Diese Arbeit ist wiahrend meiner fiinf-jdhrigen Tétigkeit am Institut fiir Parallele
und Verteilte Hochstleistungsrechner (IPVR) der Universitit Stuttgart entstanden.
Ein Kerngebiet mit dem sich diese Arbeit beschiftigt - dem Workflow-Manage-
ment - befand sich dabei noch in der Entstehungsphase. Trotzdem war bereits in
dieser Zeit die Relevanz der Workflowthematik allgemein anerkannt und vielfal-
tige Aktivititen sowohl im Forschungs- als auch im Produktbereich zu verzeich-
nen.

Obwohl sich mein Spezialgebiet nur mit einem kleinen Ausschnitt des Gebietes
beschiftigt, hatte ich die Mdglichkeit mir einen weiteren Uberblick zu verschaf-
fen, was teilweise auch in dieser Arbeit zum Ausdruck kommen soll. So hat sich
z.B. durch die aktive Teilnahme an Treffen der Workflow Management Coalition
(WIMC) und der Leitung des Projektes PoliFlow herausgestellt, daf3 es noch sehr
viele Probleme zu l6sen gilt bevor durch Workflow-Management-Systeme die an-
gestrebten Verbesserungen tatsdchlich zum Tragen kommen kdnnen.

Danksagung

Natiirlich wire diese Arbeit nicht ohne die Unterstiitzung einer Vielzahl von Per-
sonen zustande gekommen. Mein Dank gilt allen von ihnen, auch wenn ich an die-
ser Stelle nicht alle gesondert erwéhnen kann.

Zunéchst mochte ich meiner Lebensgefihrtin besonderen Dank fiir ihre Geduld
und ihr Verstidndnis aussprechen, da sie direkt unter dem Aufwand fiir diese Ar-
beit zu leiden hatte. Ebenso wichtig ist es mir, meinen Eltern zu danken, welche
die Voraussetzung fiir diese Arbeit geschaffen haben.

Auflerdem ist es mir ein besonderes Anliegen meinem “Doktorvater”, Herrn Pro-
fessor Andreas Reuter zu danken. Durch seine Beziehungen zu Wissenschaftlern
in aller Welt, war es mir moglich selbst Kontakte zu kniipfen, die diese Arbeit be-
fruchteten.

Desweiteren mochte ich allen meinen Kollegen am IPVR der Universitét fiir die
angenehme Arbeitsumgebung und die vielen fachlichen Diskussionen danken.
Insbesondere sei hier Herr Dipl.-Inform. Kutschera erwihnt, der als mein Zim-
merkollege hiervon die Hauptlast zu tragen hatte.

Nicht zuletzt gilt mein Dank meinen Kollegen bei der IBM Deutschland Entwick-
lung GmbH. Ohne die angenehme Arbeitsatmosphédre, die mafigeblich durch

Vorwort und Danksagung

Herrn Dr. Arning und Herrn Dr. Bollinger geschaffen wurde, wire diese Arbeit
nicht zu einem Abschluf3 gekommen.

Dartiber hinaus richte ich meinen Dank in herzlichster Weise auch an die Berichter
dieser Dissertation, an Herrn Professor Mitschang und an Herrn Professor Ley-
mann. Ohne deren intensive Mithilfe hitte diese Arbeit nicht zum angestrebten Ab-
schlu kommen konnen.

Inhaltsverzeichnis

Inhaltsverzeichnis

Inhaltsverzeichnis iv
Abbildungsverzeichnis viii
Tabellenverzeichnis ix
Symbolverzeichnis X

1 Einleitung 1
1.1 Motivation........cccc s ————— 1
1.2 Umfeld der Arbeit........oooiie s 2
1.3 Einordnung der Arbeit.........ccccoviiiiiiiiiiii s 3
1.4 Uberblick (iber die Arbeit...........ccccerereererrerserrerseraeserseeessessessssesessessessssesseens 3

2 Ein einleitendes Anwendungsbeispiel 5
2.1 MoOtIVatioN......ceeerr e 5
2.2 Der universitare Urlaubsantrag...........ccoooommmmmmmmmmnnisnnnnns 6
2 B U1 oY= o) [TR 6
2.2.2 Separation der Einzelaspekiecoooiiiiiiiiiiiiii e 6

3 Transaktionale Ausfihrungsmodelle 12
3.1 Klassische DB-Transaktionen..........cccccccmmiiiiiiiiinnnnnnssssssssesssnss e 12
3.1.1 Grundprobleme von DB-Transaktionencccccooiiiiiiiiiieneeeeeee. 13
3.1.2 Die ACID Eigenschaften ... 13
3.1.3 Einsatzgebiete ... 14

3.2 Transaktionen und Verkettung.........cccccommmiiiiiiiiiiiniccinnsnnnnssseeseesseeeeee 15
3.2.1 Mini-Batch und Warteschlangencccccuiiiiiiiiiie 16
3.2.2 TransaKtionsKetten ... 16

3.3 Geschachtelte Transaktionen...........ooeecciiiii s 16
3.3.1 Geschlossen geschachtelte Transaktionenccccccceeiiiiiiininnnnnnn. 17
3.3.2 Einsatzgebiete geschlossen geschachtelter TAccoooeiiiiiiiiieen. 17
3.3.3 Offen geschachtelte Transaktionen ... 18

3.4 Mehrschicht-Transaktionen............cooveciiiiiiicccr e 19

B T T T - TR 19

B T 0 o I N - Ve 21
3.6.1 Das SKIPL .oeeeeii i e e 21
3.6.2 Eigenschaften von ConTractsccccceeeeiiiiiiiiiiiiiiicece e 22

4 Formale Modelle konkurrierender Ablaufe 25
4.1 Das read/Write Modell..........ooeeiiieeiiieiiriiireirrirss s s rssssensssenssrenssns 25
S I I @ oY= = 1 o] o =T o P SURURRRR 26

iv

Inhaltsverzeichnis

4.1.2 Ausfuhrungen und ihre Semantikcccooiiiiiiis 27
4.1.3 Persistente ZUSIANAEooovmmiiiiiiiiiii 28
4.1.4 Erweiterungen flr geschachtelte Transaktionen ... 29
4.2 Mehrschicht-Transaktionenocouiiiiiiccii e 31
o B O 1o =T = 11T0] =T o PSSR 31
4.2.2 Ausfuhrungen und ihre Semantikcccccoiiiiiiiiicccce e 32
4.2.3 Persistente Zustande ... 33
4.3 Ablaufe nach Korth et. al. ... 34
4.3.1 OPEratioNENcccoiiiii et 34
4.3.2 Ausfuhrungen und ihre Semantikccccoiiiiiiis 34
4.4 ADblaufe in CoNTracts ... 35
4.4.1 Grundelemente von CONTractScceeeiieeiiiiiiiiieeeeeeece e 36
4.4.2 Strukturelle BeSChrankungencoooiiiiiiiiiiiiiiiiiieeeeeee e 41
4.4.3 Interpretation einer ConTract-Instanzccoceeiiiiiiiiiiiieeceee, 44
4.4.4 Ausfuhrungen und ihre Semantikcccccooiiiiiiiiccecceeee e 46
4.45 Ein AnwendungSbeispieloooiiiiiiiiiiiii s 47
4.5 Weitere Notationen............ccoooiiiiiiiiiiiieccecs e 51
451 ECA-REQEIN ...ooeii e 51
4.5.2 ACT A e 52
4.5.3 Abhangigkeitsregeln nach Klein ... 52

5 Korrektheit 54
£ 00 S €1 4 U1 e | F- T = o 54
511 HISIOMEN .o 54
5.1.2 Kommutativitat und Konflikteccccooiiiiiiii e, 55
5.1.3 Isolation und Atomaritatoovmiiiiii 56
514 Anwendbarkeit ..o 57
5.2 Klassische Korrektheitskriterienccccccoooriieeciiiiiicccerrer e, 57
5.2.1 Grundprobleme der ACID-Transaktionencccccceeeeerrieiinceeeeeeeennnnn. 58
5.2.2 Klassische Serialisierbarkeitcccoooiiiiiiiiiiiieee e, 59
5.2.3 Recoverability und Spezialisierungenccccccceviiiiiiiiiiiiiiis 62
5.2.4 Kombinierte ANSAIZEoooiiiiiiiice 64
5.2.5 Kriterien fur geschlossen geschachtelte Transaktionen 69
5.3 Korrektheit bei Mehrschichttransaktionencoooeeeiiiiicccie e, 70
5.3.1 Historien von Mehrschichttransaktionenccccoiiiiiieie e, 70
5.3.2 Konfliktbegriff der Mehrschichttransaktionencccccciiiiis 71
5.3.3 Mehrschicht-Serialisierbarkeitccoooiiiiii e, 71
5.3.4 Recovery bei Mehrschichttransaktionenccccocoeiiiiiiiiinn. 72
5.4 Korrektheit nach Korth et. al. ... 73
5.4.1 Historien nach Korth et. al. ..., 73
5.4.2 Pradikatabhangige Konflikteccccooeiiiiiiiiiiii e 73
5.4.3 Pradikatbezogene-Serialisierbarkeitccooooiis 74
5.4.4 ReCOVEry-ASPEKIEoooiiiiiiiiiiiiii 76
5.5 Korrektheit in ConTractscccciiiiiiiieecceccccccs e 76
5.5.1 Semantische Ununterbrechbarkeit von ConTractsccc.ccccoooeeennn. 77
5.5.2 Historien in ConTractsouoiiiiiiiiiiii e, 78
5.5.3 Konfliktbegriff von ConTractscccceeiiiiiiiiiiiiiiceee e, 81
5.5.4 Invariantenorientierte Serialisierbarkeitcccooooiiiiiiiiiiin, 84
5.5.5 Kaskadierende Kompensationccccooeeiiiiiiiiiiiiiicieiiiceee e 85

Inhaltsverzeichnis

5.6 DiSKUSSION.....ciiiiiieeeeiecrii i 86
6 Kontrolle von Ablaufen 90
6.1 Grundprobleme.........iiiircr e e 90
6.1.1 Statische versus dynamische AnSatzeccccceeiiiiiiis 90
6.1.2 Durchsatz und Verklemmung ... 91
6.1.3 Wartbarkeitooeeiiiiiii e 93
6.2 Klassische ANSAtZe ... 94
6.2.1 Pessimistische Verfahren ..o 94
6.2.2 Optimistische Verfahrencooooeiiiiiiii e 96
6.3 Semantikbasierte Ansatze...........cccccmmmiimiiii———— 97
6.3.1 FrUhzeitige Sperrfreigabe ... 98
6.3.2 Wertunabhangige, pradikatbasierte Ansatzeccccccceeeeiiiiiiinnnnnnn. 99
6.3.3 Field CallSueeeiiiiiiiiieeieiee e 100
6.3.4 ESCrOW SPEITEN ..o e e e e e e e e 101
6.3.5 Prufe und Revalidiere ... 103
6.4 Der Ansatz in ConTracts.........cccciimmmmmmmnieeme s s 103
6.4.1 Typen von Invariantenpradikatencccccorriiiiiiiiiiiiie e 104
6.4.2 Umsetzung auf Objektebeneccccoooviiiiiiiiiiiiice e, 105
6.4.3 Verwaltung der Invarianten ... 107
6.4.4 Konfliktbehandlung ... 109
6.4.5 Gulltigkeitsdauer von Invariantencccccooviiiiiiiiiiie e 111
6.5 Vergleich der MechanisSmencccccmmmmmmmininiae. 112
7 Integrationsaspekte 114
7.1 Auswirkungen auf das Programmiermodellcccooiiiiinnnnnnnnnnnnnnn. 114
711 Grundprobleme ... 115
7.1.2 Step-Programmi€rungeueuuiiiiiiiiieeeeeeeeeeeeeee e 116
7.1.3 ConTract-Template-Programmierungcccccoeeeeeeiiiiiiiiiinnnninnnnnn, 118
7.2 Architekturaspekte ... 119
7.2.1 Bisherige ArchiteKtur ..o 119
473 YU (o] g oo 1 121
7.2.3 Fehlertoleranzcooo i 122
7.2.4 Verteilungsaspekie ... 123
7.3 Erweiterbarkeit..........eeeeeiiiiii s 126
7.3.1 Flexible KOmpensationciiiiiiiiiieeiieeceeeeee e 126
7.3.2 Dynamische ADIAUfEeooommmimiiiiee e 127
7.3.3 Nicht-transaktionale StepSecciiiiiiii i 128

8 Diskussion und Ausblick 130
8.1 Korrektheit und langlebige Ablaufe.............ccooriiiiiiiiiiiniiiiies 130
8.1.1 Korrektheit - Warum? ... 130
8.1.2 Aufwand versus NUIZEN ... 131
8.1.3 Flexibilitat versus einfache Verwendungcccccceiviiiiiiiinnnnnnnnn, 132
8.2 Offene Probleme.......... i 132
8.2.1 Modifikationen zur Laufzeit ..o 132
8.2.2 Unterstutzung der Programmierungcccueeeeeeeeeiiiiiiienieeaeeeennnnans 133
8.2.3 Der Kompensationsbegriff ... 133

Vi

Inhaltsverzeichnis

9

Literatur

Index

134

141

vii

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 2-1:Ein KontrollfluB-Beispielcccoioiiiiiieiiiiiiiiieeiieiecieeeeeee e 8
Abbildung 2-2:Schnittstellendefinition fiir den Datenflulcccooviieiiiieiiiiniieee e 9
Abbildung 3-1:Prinzip der SAGAScooiiiirieiieiee ettt 20
Abbildung 4-1:Zustandsdiagramm fiir Datenobjekte bei ACID-TAccccooeviiienieniniienens 29
Abbildung 4-2:Grafische Darstellung des Beispielausschnittscccoccveevciiieniieinieeeenen, 50
Abbildung 5-1:Teilmengenbeziehung der Kriterienccocceevieiiieiieniiienienieeieeeeeeee. 65
Abbildung 7-1:Architektur eines ConTract-verarbeitenden Systemsccccceevvieiiiennnnnn. 121

viii

Tabellenverzeichnis

Tabelle 2-1:
Tabelle 4-1:
Tabelle 4-2:
Tabelle 4-3:
Tabelle 4-4:
Tabelle 4-5:
Tabelle 4-6:
Tabelle 4-7:
Tabelle 4-8:
Tabelle 4-9:
Tabelle 5-1:

Tabellenverzeichnis

Aktivititen und ihre Gegenaktivitatencocceverieriniinienenieneccneereee 11
Operation im read/write Modellccooiiiiiiiiiiiiiiieee e 26
Erweiterte Operation im read/write Modellcccoeviierieniiiiniieeiieieeenee, 29
Operationen von Multi-Level-Transaktionenccccocceeveeveriieneencnicnennnns 32
Operationen nach dem Modell von Korth etal.cccccooiiiiiiiiiiiiinie, 34
Operationen fiir das ConTract Modellccoooieriiiiiiiiniiiiieiececeeee e 45
Steps der ConTract-Instanz fiir das Beispielc..ccccoveniiiiniininiinicicnne 47
Ereignisse der ConTract-Instanz fiir das Beispielccccocevveeveniincnicninnne 48
Transitionen der ConTract-Instanz flir das Beispielccccevveeciienieniennnnn. 49
Operationen einer INterpretationc.ceecveveerieriieneenenieneeeeeesieeeeseese e 51
Klassifikation von Korrektheitskriteriencccooevieevenieninieniencniencee 87

Symbolverzeichnis

al,a(t):

921

bt:

B
C(o):
c!, c(t):

Symbolverzeichnis

Abort-Operation einer Transaktion t.

Abort-Operation einer Sub-transaktion s.

Step-Instanz eines Steps a.

Begin-Operation einer Transaktion t.

Begin-Operation einer Sub-Transaktion s.
ConTract-Bezeichner einer Operation o.
Commit-Operation der Transaktion t.

Commit-operation einer Sub-Transaktion s.

Kontext (Menge der Kontextvariablen) eines ConTract C.
Menge der Ereignisse einnes ConTract C.

Menge der internen Ereignisse.

Menge der externen Ereignisse.

Establish-Operation eines Pradikates p innerhalb der Transaktion t.
End-Of-ConTract-Operation eines ConTract C.
Check-Operation fiir ein Pradikat p innerhalb der Transaktion t.
Historie.

Interpretation einer Transaktion t.

Menge der Eingangsinvarianten eines ConTract C.
Kompensationsanforderung fiir einen ConTract C.
Menge der Kompensationsblocke eines ConTract C.
Menge der Ausgangsinvarianten eines ConTrcat C.
Menge der Ablaufpradikate eines ConTract C.

Menge von Parametern eines Steps s.

Menge der Resultate eines Steps s.

Menge der Steps eines ConTract C.

Menge der Anwendungsorientierten Steps.

Menge der verwaltungsorientierten Steps.

Menge von Operationen einer Historie.

Symbolverzeichnis

T(0):

t(0):
TC:

Top-level Transaktionsbezeichner einer Operation o.
Transaktionsbezeichner einer Operation o.
Menge der Transitionen eines ConTract C.

Transaktionaler Block.

Xi

1 Einleitung
Motivation

1 Einleitung

1.1 Motivation

Die Automatisierung von Geschéftsprozessen, die einen Teilbereich der langlebi-
gen Vorgéinge darstellen, stellt in den letzten Jahren ein wichtiges Teilgebiet der
Informationstechnik dar. Inzwischen werden dabei alle Aspekte, die bei der auto-
matischen Abwicklung der Vorgédnge zu berticksichtigen sind unter dem Begriff
des Workflow Management zusammengefal3t.

Es sind vielfaltige Anstrengungen sowohl in der Forschung als auch in der Pro-
duktentwicklung zu verzeichnen, die sich mit dem Workflow Management be-
schiftigen. Kennzeichnend fiir die Klasse von Ablaufen, die als Workflow be-
zeichnet werden, ist die relativ lange Verweildauer im System (im Vergleich zu
klassischen Datenbanktransaktionen) und die im allgemeinen verteilte Ausfiih-
rung. Vergleichbar ist die Problemstellung mit einem Gebiet des Software-Engi-
neering. Es beschéftigt sich mit den Unterschieden der Programmierung grof3er im
Vergleich zu der Programmierung relativ kleiner Softwareprojekten: pro-
gramming in the large versus programming in the small. Analog wird die Unter-
scheidung zwischen kurzen, einfachen Ausfithrungseinheiten und ldngeren, kom-
plexen Abldufen hiufig auf einen Begriff gebracht: programming in the short
versus programming in the long.

In der Informatik-Forschung werden sowohl im Bereich des Software-Enginee-
ring als auch im Bereich der Transaktionsverarbeitung Anstrengungen unternom-
men, Losungen fiir die Probleme des Workflow-Management zu entwickeln. Da-
bei waren die Ausgangspunkte vollig unterschiedlich und die Arbeiten fast
unabhingig voneinander. Der Grund hierfiir bestand darin, dafl die Ansitze aus
dem Bereich des Software-Engineering sich darauf konzentrierten Beschrei-
bungsmechanismen fiir die Abldufe zu entwickeln, um dadurch die Ablaufstruktur
grofler Softwareprojekte beschreiben und automatisieren zu konnen. Im Gegen-
satz dazu, konzentrierten sich die Anstrengungen aus dem Bereich der Transakti-
onsverarbeitung darauf, die transaktionalen Garantien der Datenbanktransaktio-
nen, auf langdauernde Abldufe zu iibertragen.

Wihrend sich die Forschungsarbeiten im Bereich der Transaktionsverarbeitung
hauptsédchlich darauf fokusieren, das transaktionale Fehlerverhalten auf Work-
flows zu tlibertragen, konzentriert sich diese Arbeit auf die Probleme, die durch die
parallele Verarbeitung von Workflows entstehen. Bedenklicher als die wenigen
Arbeiten auf diesem Gebiet ist die Diskussion, die iiber Notwendigkeit der Bear-
beitung der Thematik gefiihrt wird. Ausgelost wurde die Diskussion durch die Un-

Einleitung
Umfeld der Arbeit

tersuchung realer (existierender) Vorgidnge, an denen sich eindeutig zeigte, daB3
z.B. konkurrierende Zugriffe im Realfall gar nicht vorkommen und die Untersu-
chung der Thematik somit rein akademischer Natur ist. Auller acht gelassen wurde
dabei jedoch die Tatsache, da3 heutige Ablaufe von der menschlichen Arbeitswei-
se gepragt sind, bzw. fiir diese entworfen wurden. Ein wichtiger Aspekt dabei ist,
daB die gleichzeitige Bearbeitung eines Objekts von mehreren Menschen nur dann
nicht chaotisch endet, wenn duBerst strenge Regularien eingefiihrt werden. Dabei
erzwingen die Regularien meistens die serielle Ausfithrung der Arbeiten. Dies hat
sich nicht nur in den tagtdglichen Vorgingen niedergeschlagen, sondern reicht so-
gar bis in die Gesetzgebung. So unterliegen z.B. Eintragungen in einem Grundbuch
zeitlichen Restriktionen, die eine iiberlappende Anderung beziiglich des gleichen
Objektes ausschliefBen.

Erstaunlicherweise werden diese Maflnahmen nicht als Synchronisationsmecha-
nismen erkannt sondern als ablaufinherent eingestuft. Mit der Einfiihrung einer
elektronischen Unterstiitzung (z.B. durch elektronische Dokumente statt Papier)
zeigt sich allerdings sehr schnell, daf3 dies nicht der Fall ist. Sieht man etwas in die
Zukuntt, ist leicht zu erkennen, daf3 die Beschrankungen nicht nur weitgehend un-
notig sondern sogar nachteilig sind, da sie eine Parallelisierung der Vorgédnge ver-
hindern und somit einer (zeitlichen) Optimierung im Wege stehen. Dies stellt bei-
spielsweise ein Problem dar, wenn ein sogenanntes Business Process
Reengineering (BPR) durchgefiihrt werden soll, welches feststellen soll, wie ein
Ablauf aufgebaut ist und gleichzeitig eine Optimierung desselben vornehmen soll.
Isoliert man dagegen die synchronistationsbezogenen Teile von den Teilen des Ab-
laufs, die zur Zielerreichung notwendig sind und beschrinkt die Synchronisation
auf das Notwendigste (was von den eingesetzten Technologien und den Korrekt-
heitskriterien abhéngt), so ist man in der Lage das volle Optimierungspotential aus-
zuschopfen und die Vorgangsbearbeitung je nach Technologieentwicklung anzu-
passen, ohne die eigentlichen Abldufe dndern zu miissen.

1.2 Umfeld der Arbeit

Die Untersuchung der Probleme im Bereich der zuverlassigen Abwicklung langle-
biger Vorgénge ist bereits seit Ende der 80er Jahre ein Themenschwerpunkt der
Abteilung Anwendersoftware des Instituts fiir Parallele und Verteilte Hochstlei-
stungsrechner (IPVR) der Universitit Stuttgart. In diesem Zusammenhang wurde
das sogenannte ConTract-Modell entwickelt, welches die robuste Abwicklung von
Ablaufen unter transaktionalen Garantien zum Gegenstand hat. Ansatzweise ent-
hilt das Modell bereits Synchronistationsmechanismen, die es gestatten, eine ab-
laufiibergreifende Kontrolle von konkurrierenden Zugriffen durchzufiihren.

Die vorliegendende Arbeit konzentriert sich auf die Verfeinerung und Erweiterung

1 Einleitung
Einordnung der Arbeit

dieses Ansatzes, wobei die Konzepte jedoch auch auf andere vorgangsunterstiit-
zende Systeme iibertragbar sind. Da wihrend der Entstehung dieser Arbeit die
Prototypentwicklung fiir ein ConTract-verarbeitendes System (APRICOTS) wei-
ter voran getrieben wurde, konnte anhand von (gleichwohl akademischen) Bei-
spielen gezeigt werden, welche Vorteile eine korrektheitserhaltende Synchronisa-
tion fiir eine Anwendung hat.

1.3 Einordnung der Arbeit

Die Grundlage fiir den hier verfolgten Ansatz bilden die aus dem Bereich der
Transaktionsverarbeitung stammenden Ansdtze und Verfahren zur sogenannten
Concurrency Control. Da der deutsche Begriff der Synchronisation vielfach auch
die zeitliche Abstimmung unabhingiger Abldufe bezeichnet, wird im folgenden
der englische Begriff der Concurrency Control verwendet, wenn es gilt, den hier
priasentierten Ansatz einzuordnen.

Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung eines Korrektheitsmo-
dells und der Entwicklung von Verfahren zur Sicherstellung der Korrektheit im
Umfeld langlebiger Abldufe. Dariiber hinaus wird eine Architektur vorgestellt
werden, die es erlaubt, die vorgestellten Mechanismen in eine Systemplattform zu
integrieren, die eine zuverldssige Abwicklung entsprechender Anwendungen un-
terstutzt.

Obwohl LeistungsmalBle wie Durchsatz und Antwortzeit bei jedem klassischen
Verfahren zur Concurrency Control in Datenbanken zur Beurteilung herangezo-
gen werden, wird in dieser Arbeit auf dieses Kriterium verzichtet. Der Grund hier-
fiir ist das bereits erwidhnte Problem, dal3 die gelichzeitige Bearbeitung von Ob-
jekten durch mehrere Abldufe bisher in den betrachteten Anwendungen nahzu
fehlt, bzw. auf Grund fehlender Systemunterstiitzung nicht moglich ist und somit
keine hinreichende Vergleichsbasis zur Verfiigung steht. Selbst ein Vergleich mit
dem rein seriellen Vorgehen wiirde nur einen unbefriedigenden Teil bewerten, da
manche Arbeitsformen erst durch die hier vorgestellten Mechanismen méoglich
werden.

1.4 Uberblick iiber die Arbeit

In Kapitel 2 wird ein Beispiel eingefiihrt, an dem im weiteren Verlauf dieser Ar-
beit die Kernprobleme des Workflow und die Anwendung der hier vorgestellten
Mechanismen veranschaulicht werden. Zum einen soll dabei die systematische
Erfassung von Abldufen durch Methoden des Workflow-Management gezeigt
werden, und zum anderen wird deutlich gemacht, wie die Trennung von ablauf-
und anwendungsbezogener Information erfolgen kann.

Einleitung
Uberblick iiber die Arbeit

Kapitel 3 liefert einen Uberblick iiber Ablaufmodelle im transaktionalen Umfeld.
Es wird gezeigt, welche Zusicherungen beziiglich der Semantik von Abldufen
durch die Verwendung dieser Modelle gegeben werden und fiir welche Anwendun-
gen sie sich eignen.

Auf der Basis der eingefiihrten Modelle werden in Kapitel 4 formale Notationen
fiir dynamische Ablédufe eingefiihrt, da diese die Basis fiir die Definition von Kor-
rektheitskriterien bilden. Insbesondere wird eine formale Notation zur Definition
von Abldufen des ConTract-Modells detailliert vorgestellt werden.

Mit dem Thema “Korrektheit” stellt Kapitel 5 mit den Kern dieser Arbeit dar. Nach
der Einfiihrung klassischer Korrektheitskriterien und der Diskussion von Ansédtzen,
die liber das klassische Transaktionsmodell hinaus gehen, wird ein Korrektheitskri-
terium fiir das ConTract-Modell entwickelt. AnschlieBend werden die Unterschie-
de zwischen den verschiedenen Ansétzen herausgearbeitet.

Kapitel 6 diskutiert Methoden, welche dazu entworfen wurden, um in Laufzeitsy-
stemen die Verletzung von Korrektheitskriterien zu verhindern. Hierbei werden zu-
nichst die Grundprobleme bei der Umsetzung von Korrektheitskriterien vorge-
stellt, bevor konkrete Ansdtze 1m Bereich der sogenannten
Synchronisierungsmethoden (engl. Concurrency Control) betrachtet werden. Wie
in Kapitel 5 wird der Ansatz des ConTract-Modells eingehend besprochen und in
einem abschlieenden Abschnitt mit den anderen Ansétzen verglichen.

Kapitel 7 beschreibt die Umsetzung der in der Arbeit entwickelten Ansédtze im Hin-
blick auf die Einbettung in das bestehende ConTract-Modell, als auch beziiglich
der Realisierung in einer prototypischen Implementierung. Insbesondere wird
deutlich werden, welche Erweiterungen an der Architektur der prototypischen Im-
plementierung vorgenommen werden miissen und welche Auswirkungen durch die
Einfiihrung eines Korrektheitskriteriums und entsprechender Durchsetzungsme-
chanismen entstehen.

Abgeschlossen wird die Arbeit mit Kapitel 8, welches zunédchst eine Zusammen-
fassung der Arbeit und eine kurze Diskussion der vorgestellten Mechanismen vor-
nimmt. Dabei soll aus heutiger Sicht dargestellt werden, welche Probleme noch of-
fen bzw. Gegenstand laufender Forschungsarbeiten sind.

2 Ein einleitendes Anwendungsbeispiel
Motivation

2 Ein einleitendes Anwendungsbeispiel

2.1 Motivation

Trotz der vielfiltigen Einsatzgebiete von Workflowsystemen finden sich in der
(wissenschaftlichen) Literatur fast nur Trivialbeispiele, die kaum dazu geeignet
erscheinen, die komplexen Anforderungen der Anwendungsbereiche zu reprasen-
tieren. Aus diesem Grund soll in diesem Kapitel zunéchst ein detailliertes Beispiel
eingefiihrt werden, um so zum einen den Bedarf fiir die hier vorgestellten Verfah-
ren zu motivieren und andererseits die Anwendbarkeit der Ansédtze demonstrieren
zu konnen.

Das fiir diese Arbeit gewéahlte Beispiel des universitdren Urlaubsantrages ist eben-
falls nicht sonderlich komplex, wenn man es mit anderen Vorgingen wie zum
Beispiel einem Kreditantrag vergleicht. Trotzdem erfiillt es aus Sicht dieser Arbeit
alle notwendigen Kriterien, um zum einen die Probleme zu verdeutlichen, als auch
die Anwendbarkeit der in dieser Arbeit entwickelten Verfahren zu demonstrieren.

Zunichst ist hier die genaue Kenntnis iiber den Vorgang selbst ein wichtiges Aus-
wahlkriterium!. Erst durch die Kenntnis der Details eines Vorgangs ist die Erfas-
sung desselben mit Methoden des Workflow Managements moglich. Dariiber hin-
aus sind die Abwicklung von Urlaubsantragen und Reisekostenabrechnungen
durchaus iibliche Anwendungen fiir die Einfiihrung von Workflowsystemen.

An dem Beispiel wird auBBerdem deutlich, daB3 die parallele Abwicklung von Vor-
gingen ein Problem der Realwelt darstellt, da mehrere Mitarbeiter und Mitarbei-
terinnen vollig unabhingig voneinander und gleichzeitig Urlaubsantrige stellen
konnen. Zusétzlich ist es moglich, da3 ein Mitarbeiter mehrere Antrége gleichzei-
tig stellt, was ebenso in den Bereich der Parallelverarbeitung fillt.

Da die Umsetzung der hier vorgestellten Verfahren in einer prototypischen Imple-
mentierung mit als Ziel verfolgt wurde, war sowohl die Implementierbarkeit des
Beispielablaufs als auch seine konkrete Unterstiitzung durch das prototypische
System ein weiteres wichtiges Auswahlkriterium.

Nicht zuletzt erfolgte die Auswahl des Beispiels auf Grund der relativ einfachen
Darstellbarkeit und Verstindlichkeit des Vorgangs. Erst hierdurch kann das Bei-
spiel zur Erlduterung der Verfahren herangezogen werden.

1. Der Verfasser glaubt, diese Kenntnis zu besitzen.

Ein einleitendes Anwendungsbeispiel 2
Der universitire Urlaubsantrag

2.2 Der universitare Urlaubsantrag

2.2.1 Uberblick

Oberfliachlich betrachtet stellt ein Urlaubsantrag einen nahezu trivialen Vorgang
dar, der mit ein paar Sitzen beschrieben werden kann:

1. Ein Mitarbeiter oder eine Mitarbeiterin fiillt einen Urlaubsantrag aus.
2. Ein Stellvertreter unterschreibt (optional).

3. Der Abteilungsleiter genehmigt den Antrag per Unterschrift oder lehnt ithn
ab.

4. Der Geschiftsfiihrende Direktor zeichnet den Antrag ab.

5. Die Geschiéftsleitung vermerkt die Anzahl der genommenen Urlaubstage in
der Urlaubskartei.

Wird allerdings versucht, diesen Vorgang rechnergestiitzt abzuwickeln, stellt sich
heraus, daB in dieser Beschreibung einige implizite Annahmen enthalten sind. Bei-
spielsweise nimmt ein Abteilungsleiter an, da3 ein Mitarbeiter nur dann Urlaub be-
antragt, wenn derjenige noch Urlaubstage zur Verfiigung hat. Eine Verletzung die-
ser Annahme wird erst dann entdeckt, wenn die Geschiftsleitung versucht, die
Urlaubskartei auf den neuesten Stand zu bringen.

Ein weiteres Problem der dargestellten Verfahrensweise stellt die Nichtbeachtung
von Ausnahmefillen dar. Beispielsweise wird nicht beschrieben was passieren soll,
wenn sich der Abteilungsleiter im Urlaub befindet. AuBBerdem endet die Beschrei-
bung des Vorgangs bereits mit der Ubernahme der Daten in die Urlaubskartei unter
der Annahme, dal3 der Urlaub angetreten und vollstindig durchgefiihrt wird. Tritt
allerdings der Ausnahmefall auf, da} der Urlaub z.B. wegen Krankheit nicht ange-
treten oder nur teilweise durchgefiihrt werden kann, spiegeln die Daten des ur-
spriinglichen Urlaubsantrages die tatsdchlichen Gegebenheiten nicht wider. Somit
sind weitere Aktionen notwendig, um die Daten entsprechend zu korrigieren. Diese
Korrektur muf3 allerdings nicht Teil desselben Vorgangs sein.

2.2.2 Separation der Einzelaspekte

Wie bereits aus Abschnitt 2.2.1 deutlich wird, kann eine textuelle Beschreibung ei-
nes Vorginge im Sinne eines Ablaufs sehr uniibersichtlich werden. Dies riihrt teil-
weise daher, daB3 sich Vorginge durch eine textuelle Repridsentation nicht sehr
kompakt darstellen lassen. Andererseits liegt ein Grund dafiir in der zusammenfas-
senden Beschreibung aller Aspekte eines Vorganges.

2 Ein einleitendes Anwendungsbeispiel
Der universitire Urlaubsantrag

Wie in [Jab95] dargestellt, 148t sich die Beschreibung eines Vorganges in ver-
schiedene orthogonale Aspekte aufteilen. Neben der mehr anschaulichen Darstel-
lung eines Vorgangs hat diese Aufteilung den weiteren Vorteil, da3 man sich bei
der Beschreibung auf einen bestimmten Aspekt konzentrieren kann und somit we-
niger die Gefahr eingeht Informationen nicht zu erfassen.

Da die Einfiihrung des Beispiels nur fiir die Motivation und Erlduterung der in die-
ser Arbeit vorgestellten Verfahren dienen soll, werden nicht alle Aspekte detail-
liert dargestellt werden, die von Jablonski beschrieben wurden.

2.2.2.1 Funktionaler Aspekt

Unter den funktionalen Aspekten eines Vorgangs versteht man die Zerlegung des
Gesamtvorganges in Teile, die fiir die gewiinschte Funktionalitit notwendig sind.
In unserem Beispiel kann der Vorgang “Urlaubsantrag” in folgende funktionalen
Teile zerlegt werden (es werden bereits alle Teile erfaflt, die fiir eine Automatisie-
rung notwendig sind):

[E—

. Dokumentenbereitstellung

. Antragstellung

. Vertretungszusage

. Genehmigung

. Uberpriifung der Zulissigkeit

. Anderung der Urlaubskartei

. Riickmeldung durch Beantragenden

. Anderungserfassung

O o0 3 O »n B~ W

. Benachrichtigung

In dieser Zerlegung werden weder die Reithenfolge der Ausfithrung noch die Aus-
fiihrungsinstanz festgelegt.

2.2.2.2 Verhaltensbezogener Aspekt

Die verhaltensbezogenen Aspekte beriicksichtigen die Ablaufstruktur eines Vor-
ganges (Kontrollfluf3). Damit sind im allgemeinen Vorginger/Nachfolger-Bezie-
hungen sowie Verzweigungen gemeint. Ublicherweise wird der KontrollfluB} ent-
weder in einer textuellen Notation mit Hilfe einer Programmiersprache oder in
einer graphischen Form festgelegt. An dieser Stelle soll diese Festlegung mit Hilfe
einer Programmiersprache erfolgen. Allerdings ergeben sich daraus auch Proble-

Ein einleitendes Anwendungsbeispiel 2
Der universitire Urlaubsantrag

me. So wird z.B. durch die zeilenorientierte Schreibweise automatisch impliziert,
daB die einzelnen Zeilen sequentiell abzuarbeiten sind. Ist es dagegen moglich,
Teile parallel auszufithren, muf} dies explizit angegeben werden (z.B. durch das
Schliisselwort parallel). Umgekehrt muf3 in einem parallel ausfiihrbaren Teil die se-
quentielle Bearbeitung ausdriicklich festgelegt werden (z.B. durch ein Schliissel-
wort sequentiell). Da an dieser Stelle nur das Verstdndnis des Beispiels im Vorder-
grund steht, wird hier keine Sprachdefinition eingefiihrt. Hierfiir sei auf die
Definitionen in [ZiCh91], [Wach96] und [Jab95] verwiesen.

Beginn
Dokumentenbereitstellung
Antragstellung
Uberprifung der Zuldssigkeit
Wenn nicht zuléssig
Benachrichtigung lUber Unzuladssigkeit
sonst
Vertretungszusage einholen
Genehmigung einholen
Wenn nicht genehmigt
Benachrichtigung tUber Ablehnung
sonst
Genehmigung einholen
Wenn nicht genehmigt
Benachrichtigung Uber Ablehnung
sonst
Anderung der Urlaubskartei

Benachrichtigung tUber Genehmigung
Ende

Abbildung 2-1: Ein KontrollfluB-Beispiel

Wie aus dem Code-Stiick in Abbildung 2-1 ersichtlich ist, kann ein Kontrollfluf3
mit bedingten Verzweigungen nicht ohne zusétzliches Wissen iliber einen anderen
Bereich definiert werden, ndmlich den informations- oder datenbezogenen Aspekt
(s. Abschnitt 2.2.2.3). Da bedingte Verzweigungen im allgemeinen auf Priadikaten
basieren, die wiederum iiber Variablen definiert werden, ist der Bezug auf Daten,
die wiahrend der Ausfiihrung erzeugt bzw. bekannt werden, notwendig.

2.2.2.3 Informationsbezogener Aspekt

Als informationsbezogenen Aspekt oder Datenfluf3 bezeichnet man diejenigen Tei-
le einer Workflow-Definition, die festlegen, wie Daten in den Vorgang einflieen
bzw. von einer Aktivitdt zur ndchsten weitergeleitet werden. Grundsitzlich lassen
sich dabei workflow-relevante und workflow-fremde Daten [WFM94] unterschei-
den. Der Begriff workflow-relevant bezeichnet Daten, die einen direkten Einflufl

2 Ein einleitendes Anwendungsbeispiel
Der universitire Urlaubsantrag

auf den Kontrollflu haben. Workflow-fremde Daten haben im Gegensatz dazu
keinen direkten Einfluf auf den KontrollfluB.

Ein Beispiel fiir ein workflow-relevantes Datum, ist eine Anderungsanzeige wel-
che in einem Verzweigungs-Priadikat auftritt. In diesem Fall haben Daten einer
Aktivitdt direkten Einfluf3 auf den KontrollfluB und sind somit relevant fiir den
Ablauf. Daten, welche nur von einer Aktivitit zu einer anderen weiter geleitet
werden sind demgegeniiber workflow-fremd (wie z.B. der Antrag in unserem Bei-
spiel).

Wie sich im weiteren Verlauf dieser Arbeit noch herausstellen wird, ist es notwen-
dig, workflow-fremde Daten noch weiter zu unterscheiden. Das Unterscheidungs-
kriterium ist dabei, ob das Workflowsystem die vollstandige Kontrolle tiber die
Daten besitzt (lokale Daten) oder nicht (globale Daten). In unserem Beispiel sind
die Daten in der Urlaubskartei nicht unter vollstdndiger Kontrolle des Ablaufs,
wihrend der Urlaubsantrag dieser Bedingung geniigt.

Da die eigentliche Spezifikation des Datenflusses hier nicht weiter von Interesse
ist, wird nur ein kurzes Beispiel gegeben, wie dieser festgelegt werden konnte. Die
Notation lehnt sich an die in [Wach96] gebrauchte an.

Aktivitat: Dokumentenbereitstellung(
Parameterart: ouT

Parametertyp: File

Parameter: Neuer Antrag:

Abstrakte Variable: Antragsdokument)

Aktivitat: Antragsstellung (
Parameterart: INOUT
Parametertyp: File

Parameter: Antrag:

Abstrakte Variable: Antragsdokument)
Abbildung 2-2: Schnittstellendefinition fiir den Datenfluf3

Abbildung 2-2 zeigt, wie Daten, die von einer Aktivitit bereit gestellt werden, ei-
ner anderen Aktivitit als Eingabeparameter zugeordnet werden. Hierbei wird eine
Stufe der Indirektion eingefiihrt, um von den Schnittstellenparametern der einzel-
nen Aktivitdten zu abstrahieren:

= Die Aktivitit Dokumentenbereitstellung hat einen Ausgabepara-
meter vom Typ File. Dieser ist mit Neuer Antrag bezeichnet und wird
einer abstrakten Variablen Ant ragsdokument des Vorgangs zugeordnet.

= Die Aktivitit Antragstellung hat einen Ein-/Ausgabe-Parameter der
ebenfalls vom Typ File ist.]hm wird ebenfalls die abstrakte Variable An-

Ein einleitendes Anwendungsbeispiel 2
Der universitire Urlaubsantrag

tragsdokument zugeordnet, um so die Daten der ersten Aktivitdt zu die-
ser Aktivitét iibertragen zu konnen.

2.2.2.4 Der transaktionale Aspekt

Die transaktionale Aspekte eines Ablaufs lassen sich in drei Bereiche unterteilen:

1. Beschreibung der Isolationsbediirfnisse

2. Beschreibung des Verhaltens im Fehlerfall!

3. Beschreibung des Riicksetzverhaltens

Die Beschreibung der Isolationsbediirfnisse legt fest, wann und wie Datenobjekte,
die von dem Ablauf gedndert oder gelesen wurden, fiir andere Ablaufe verfiigbar
sind. Im Falle einer Datenbanktransaktion ist beispielsweise ein gedndertes Daten-
objekt erst nach AbschluB einer Transaktion fiir andere Transaktionen zugédnglich.

Das Verhalten im Fehlerfall wird im allgemeinen durch zwei Mechanismen be-
schrieben. Zum einen wird festgelegt, welche Zustinde des Ablaufs (im Sinne des
Fortschritts im KontrollfluB) als konsistent angesehen werden. Zum anderen wer-
den Erweiterungen des Kontrollflusses zur Behandlung von Fehlern vorgenom-
men. Somit muf} im Fehlerfall zunichst auf den zuletzt erreichten konsistenten Zu-
stand zuriickgesetzt und danach die Fehlerbehandlung eingeleitet werden. Dies
entspricht dem Verhalten von Datenbanksystemen nach einem System-Crash, wo-
bei in einer Redo-Phase zunichst ein konsistenter Zustand hergestellt wird und an-
schliefend in einer Undo-Phase nicht abgeschlossene Transaktionen zuriickgesetzt
werden.

Die Beschreibung des Riicksetzverhaltens legt fest, wie im Kontrollflul auf einen
fritheren Zustand “zuriickgesetzt” werden kann. Dabei ist der Begriff des Zurtick-
setzens sehr allgemein zu verstehen. Er soll nur bedeuten, da3 aus Sicht des Kon-
trollflusses auf einen Punkt zuriick gegangen wird, der vor dem aktuell erreichten
liegt (im Sinne der Partialordnung der Einzelschritte des Kontrollflusses). Bei ei-
nem linearen Kontrollflul bedeutet dies, dall auf einen vormalig erreichten Punkt
bzw. Verarbeitungszustand zuriickgesetzt wird. Liegt allerdings ein verzweigter
KontrollfluB vor, muf3 dies nicht unbedingt der Fall sein.

Ublicherweise werden zwei Mechanismen fiir das Zuriicksetzen verwendet. Ein
Mechanismus ist das atomare Zuriicksetzen oder “Undo”. Das atomare Zuriickset-
zen eliminiert alle relevanten Effekte einer Ausfiihrung und kommt bei Daten-
banktransaktionen zum Einsatz.

1. Unter dem Begriff Fehlerfall ist hier das Fehlschlagen eines Schrittes im KontrollfluB3 zu verstehen.

10

2 Ein einleitendes Anwendungsbeispiel
Der universitire Urlaubsantrag

Die Verallgemeinerung des atomaren Zuriicksetzens ist die sogenannte Kompen-
sation. Bei der Kompensation wird festgelegt, welche Aktionen auszufiihren sind,
um auf einen fritheren Zustand im KontrollfluB3 zuriickzusetzen. Dies stellt im all-
gemeinen die Definition eines (Teil-)Kontrollflusses dar, der sich nur dadurch
vom “normalen” KontrollfluB unterscheidet, daf3 er als Kompensation deklariert
wird.

Betrachtet man nun die transaktionalen Aspekte beziiglich des eingefiihrten Bei-
spiels, konnte man fordern, dal die einzelnen Schritte als Datenbanktransaktionen
auszufiihren sind. Ist allerdings eine Aktion bereits erfolgreich abgeschlossen, so
soll eine Gegenaktion (Kompensation) ausgefiihrt werden, wenn auf einen friihe-
ren Zustand zuriickgesetzt werden soll (beispielsweise bei einer Stornierung). Ta-
belle 2-1 gibt einen Uberblick iiber entsprechende Gegenaktionen.

Aktivitat Gegenaktivitdt
Dokumente bereitstellen leer
Antragstellung leer

Uberpriifung der Zulissigkeit | leer

Vertretungszusage einholen Benachrichtigung tliber Stornierung
Genehmigung einholen Benachrichtigung iiber Stornierung
Benachrichtigung (positiv) Benachrichtigung tiber Stornierung

Anderung der Urlaubskartei Anderung der Urlaubskartei

Tabelle 2-1: Aktivitdten und ihre Gegenaktivititen

11

Transaktionale Ausfuhrungsmodelle 3
Klassische DB-Transaktionen

3 Transaktionale Ausfuhrungsmodelle

Da im Rahmen dieser Arbeit Abldufe im transaktionalen Umfeld betrachtet werden
sollen, ist es notwendig die grundsitzlichen Unterschiede der Ausfithrungsmodelle
fiir langlebige Abldufe im Vergleich zu klassischen Datenbank-Transaktionen
(DB-Transaktionen) herauszuarbeiten. Hierzu soll zunichst auf die Eigenschaften
der sogenannten ACID-Transaktionen [HdRe83] eingegangen werden. Daran an-
schlieBend werden Ausfithrungsmodelle vorgestellt, die entworfen wurden, um
Nachteile der ACID-Transaktionen im Falle langlebiger Abldufe zu vermeiden. Da
das ConTract Modell [WdRe92] die Grundlage dieser Arbeit bildet, wird diesem
ein eigener Abschnitt gewidmet werden.

Einige Ausfiihrungsmodelle werden hier nicht vorgestellt, da sie beziiglich den
vorgestellten Ansitzen keine neuen Aspekte beinhalten. Gute Ubersichten und aus-
fiihrlichere Darstellungen sind in [Elm92] und [Giint96] zu finden.

3.1 Klassische DB-Transaktionen

Mit der Einfiihrung elektronischer Datenverarbeitung auf der Basis von Daten-
banksystemen wurde der Begriff der DB-Transaktion geprigt. Dabei ist mit dem
Begriff T ransaktion' die Zusammenfassung von Operationen auf einem Daten-
banksystem (und Nachrichten) zur Durchfiihrung einer bestimmten Aktion ge-
meint. Das klassische Beispiel hierfiir ist die Abwicklung einer (elektronischen)
Uberweisung, die einen Kontostand A erniedrigt und danach einen anderen Konto-
stand B um den entsprechenden Betrag erhoht. Wie einfach nachzuvollziehen ist,
sind dabei vier Datenbankzugriffe zu einer Transaktion - der Uberweisung - zu-
sammengefalit:

1. Lies Kontostand A
2. Erniedrige / Schreibe A
3. Lies B
4. Erhohe / Schreibe B
Wie bereits an dem einfachen Beispiel abzulesen ist, gibt es nur zwei Basisopera-

tionen, die unterschieden werden: das Lesen bzw. das Schreiben von Datenelemen-
ten. Eine Transaktion kann somit als eine einfache Sequenz von Lese- und Schrei-

1. Im Folgenden wird in diesem Abschnitt statt DB-Transaktion immer die verkiirzte Schreibweise “Trans-
aktion” bzw. “TA” benutzt.

12

3 Transaktionale Ausfilhrungsmodelle
Klassische DB-Transaktionen

boperationen angesehen werden [EGL76]. Diese Auffassung von Transaktionen
wurde auch unter dem Begriff des Lese-/Schreibmodells (read/write model) be-
kannt [Papa86] [BHGS87].

3.1.1 Grundprobleme von DB-Transaktionen

Ist mit der obigen Einfiihrung von Transaktionen keine zusétzliche Semantik ver-
bunden stellt eine Transaktion einzig und allein die syntaktische Gruppierung von
Basisoperationen dar. Obwohl es Transaktionen ohne zusétzliche Semantik nie
gegeben hat, 146t sich bereits an der rein syntaktischen Gruppierung von Opera-
tionen der Bedarf fiir weitere Forderungen motivieren:

1. Kommt es wihrend der Ausfiihrung einer Transaktion zu Systemausfillen,
miissen geeignete Mallnahmen getroffen werden, um eine einmal begon-
nene Transaktion zu Ende fithren zu konnen (erfolgreich oder nicht). Ein
Zwischenzustand ist, wie am Beispiel der Uberweisung ersichtlich, in den
meisten Fallen ein inkonsistenter Zustand der Datenbank beziiglich aktiver
Transaktionen [BHG87].

2. Die parallele Ausfiihrung von Transaktionen fiihrt zu Problemen, wenn auf
gleiche Daten zugegriffen wird. So kann die Ausfithrung von fiir sich ge-
nommen korrekten Transaktionen im Parallelbetrieb zu inkonsistenten Da-
tenbestdnden fiihren [EGL76]. Formalisiert man die zu Grunde liegende
Problematik auf der Basis des Lese-Schreibmodells, gelangt man zu drei
grundsétzlichen Abhéngigkeiten (“the three bad dependencies” [GrRe93]
[BHG87]), die die Ursache von Inkonsistenzen bilden.

3.1.2 Die ACID Eigenschaften

Wie aus der Beschreibung in Abschnitt 3.1.1 hervorgeht sind einige Probleme bei
der Programmierung von Transaktionen grundsitzlich gegeben und miissen prin-
zipiell bei jeder Anwendung beriicksichtigt werden, die Transaktionen verwendet.
Deshalb bietet es sich an, die notwendigen Mallnahmen zur Vermeidung eben die-
ser Probleme nicht immer wieder im jeweiligen Anwendungsprogramm zu reali-
sieren, sondern diese in einem Laufzeitsystem zu verankern und durch simple Pro-
grammierprimitive fiir die Anwendung zuginglich zu machen. Dies hat die
Vorteile, dal zum einen Anwendungsprogrammierer entlastet werden und zum
anderen Spezialisten auf diese Problematik angesetzt werden konnen, um so eine
effiziente Realisierung zu gewahrleisten.

Dieser Ansatz wurde durch die Einfithrung der sogenannten ACID-Eigenschaften
[HaRe83] fiir Transaktionen realisiert. Neben den oben genannten Problemen
wurden dabei gleich zwei weitere Aspekte mit beriicksichtigt.

13

Transaktionale Ausfuhrungsmodelle 3
Klassische DB-Transaktionen

3.1.2.1 Atomaritat oder Ununterbrechbarkeit (A)

Um zu vermeiden, dall Transaktionen bei Systemausféllen oder sonstigen Unter-
brechungen, wie z.B. einem Zusammenbruch einer Kommunikationsverbindung,
teilweise Effekte im (Datenbank-) System hinterlassen, wurde die Ununterbrech-
barkeit eingefiihrt. Ein transaktionsverarbeitendes System garantiert, daf} eine ein-
mal gestartete Transaktion entweder vollstindig abgearbeitet wird, oder da3 ihre
Effekte riickgingig gemacht werden (backward recovery).

3.1.2.2 Konsistenzerhaltung (C)

Die Eigenschaft der Konsistenzerhaltung (engl. Consistency) 148t sich nicht direkt
aus den Problemen von Abschnitt 3.1.1 ableiten und wird auch nicht ausschlieBlich
von einem Laufzeitsystem realisiert. Vielmehr besagt diese Eigenschaft, da3 eine
Transaktion, wenn sie auf einem konsistenten Zustand (der Datenwelt) gestartet
wird, wiederum einen konsistenten Zustand hinterlaf3t. Somit ergibt sich zum einen
die Anforderung an einen Transaktionsprogrammierer, eine Transaktion so zu pro-
grammieren, daf} sie dieser Anforderung geniigen kann. Zum anderen hat das Lauf-
zeitsystem zu iiberwachen, ob Transaktionen definierte Konsistenzbedingungen
(engl. constraints) verletzen. Ist dies der Fall, miissen die Transanktionen, die eine
Konsistenzbedingung verletzen zuriickgesetzt werden.

3.1.2.3 lIsolation (1)

Durch die parallele Ausfiihrung von Transaktionen konnen Daten-Inkonsistenzen
entstehen. Deshalb wird fiir DB-Transaktionen die Isolationseigenschaft gefordert.
Das Laufzeitsystem garantiert hierbei, da3 jede Transaktion in einer “virtuellen
Ein-Benutzer-Umgebung” ausgefiihrt wird. Somit sind ungewiinschte Seiteneffek-
te der Parallelverarbeitung von Transaktionen ausgeschlossen.

3.1.2.4 Dauerhaftigkeit (D)

Fiir erfolgreich abgeschlossene Transaktionen wird garantiert, daf3 deren Ergebnis-
se nicht verloren gehen. Dies bedeutet konkret, da3 die Verantwortung fiir die Wie-
derherstellung des durch abgeschlossene Transaktionen erzeugten Zustandes nach
einem Systemausfall, Gerdtefehler 0.4. beim Transaktionssystem und nicht bei der
Anwendung liegt.

3.1.3 Einsatzgebiete

ACID-Transaktionen haben sich auf dem Gebiet der Datenbanken als Program-
mierkonstrukt durchgesetzt. Durch eine einfache Klammerung von Datenbankope-
rationen mittels “Begin-Of-Transaction” (BOT) und “End-Of-Transaction” (EOT)
erhélt man weitreichende Zusicherungen, die durch das Laufzeitsystem realisiert

14

3 Transaktionale Ausfilhrungsmodelle
Transaktionen und Verkettung

werden. In einigen Datenbanksystemen entfillt sogar die “6ffnende” Klammer
BOT, da implizit eine Transaktion begonnen wird, wenn der erste Datenbankzu-
griff erfolgt (chained / unchained paradigm [OS192]).

Allerdings hat es sich bereits sehr friith gezeigt, dal sich ACID-Transaktionen nur
fiir den Einsatz bei relativ kurzen Operations-Sequenzen eignen, die auBBerdem nur
relativ wenige Datenelemente bearbeiten [Gra81a]. Der Grund hierfiir ist die Iso-
lationseigenschaft. Um die Isolation einer Transaktion zu garantieren, mufl der
Zugriff auf Datenelemente, die von der Transaktion verwendet werden, filir andere
Transaktionen weitgehend eingeschrinkt werden. Dies resultiert in der Nichtver-
fligbarkeit von Datenelementen und somit in einer Blockierung anderer Transak-
tionen.

Es 14Bt sich einerseits keine allgemeine Schranke ermitteln, die bestimmen wiirde,
wann sich eine ACID-Transaktion fiir den Einsatz eignet und wann nicht. Ande-
rerseits zeigen theoretische Untersuchungen, daf3 selbst mit den leistungsfahigsten
Implementierungen der ACID-Eigenschaften, die Wahrscheinlichkeit fiir eine
Verklemmung bzw. fiir den Abbruch einer Transaktion liberproportional zur Ver-
weilzeit (quadratisch) bzw. zur Anzahl der angefallten Datenobjekte (proportional
zur dritten Potenz) steigt [Gra81b] [Reut96].

Diese nachteiligen Effekte der ACID-Eigenschaften lassen sich ebenfalls beob-
achten, wenn relativ viele Transaktionen auf das gleiche Datenelement (dndernd)
zugreifen und somit ein Datenelement zu einem sogenannten “Hot Spot” wird
[Reut82] [PRS88]. Dariiber hinaus ermoglichen DB-Produkte die Einschrankung
der Isolationseigenschaft, so da3 eine Erhohung des Durchsatzes erreicht werden
kann [GrRe93]. Allerdings setzt die Anwendung dieser Mallnahme eine genaue
Kenntnis der Zugriffsoperationen voraus.

3.2 Transaktionen und Verkettung

Transaktionen, die durch Verkettung von Teiltransaktionen aufgebaut sind, stel-
len keine Ausfiihrungsmodelle im eigentlichen Sinne dar. Vielmehr sind sie Pro-
grammiertechniken, um transaktionale Mechanismen im Sinne der ACID-Eigen-
schaften auch im langlebigen Fall ohne groere Nachteile nutzen zu konnen. Ziel
der verketteten Transaktionen ist grundsétzlich eine Folge von ACID-Transaktio-
nen auszufiithren ohne der Atomarititseigenschaft zu unterliegen - sprich, im Feh-
lerfalle nicht auf den Beginn der Transaktion zuriicksetzen zu miissen sondern nur
auf den Beginn einer Teiltransaktion. Somit wird der Verlust im Fehlerfalle mini-
miert.

15

Transaktionale Ausfuhrungsmodelle 3
Geschachtelte Transaktionen

3.2.1 Mini-Batch und Warteschlangen

Ein Mini-Batch [GrRe93] stellt im Prinzip eine Programmiertechnik dar, die be-
riicksichtigt, dal3 ein langlebiger Ablauf in kleinere Einheiten (ACID-Transaktio-
nen) zerlegt werden kann. Durch diese Zerlegung wird erreicht, daf fiir den gesam-
ten Vorgang die Atomarititsbedingung entfallt. Prinzipiell wird also ein groBerer
Auftrag (welcher frither immer als Batch-Job ausgefiihrt wurde) in kleinere Pakete
(Mini-Batch) mit ACID-Eigenschaften zerlegt. Eine Anwendung ibernimmt dann
die Verantwortung fiir die vollstindige Ausfiihrung. D.h. es miissen Daten iiber den
Verarbeitungszustand auf einen ausfallsicheren (stabilen) Speicher geschrieben
werden, so dal} diese nach einem Systemfehler wieder gelesen werden kdnnen und
die Verarbeitung fortgesetzt werden kann.

Eng verwandt mit dem Prinzip des Mini-Batch sind die sogenannten stabilen oder
wiederherstellbaren Warteschlangen (engl. recoverable queues). Das Prinzip ist
dabei, daB3 Auftrage nicht direkt an einen Server gerichtet werden, sondern in eine
stabile (transaktionale) Warteschlange gestellt werden. Dariiber hinaus wird in je-
dem Auftrag hinterlegt was als nidchstes zu tun ist, so da3 dieser als letzte Aktion
wieder einen Auftrag in einer Warteschlange hinterlegt.

Sowohl der Mini-Batch als auch die stabilen Warteschlangen geben friihzeitig die
Ergebnisse von Teilausfiihrungen preis, so da3 neben der Atomaritét auch die Iso-
lation verloren geht.

3.2.2 Transaktionsketten

Transaktionsketten (engl. chained transactions)1 verfolgen das Prinzip des soge-
nannten persistenten savepoint. ACID-Transaktionen werden dadurch zu Transak-
tionsketten, daf anstatt einem tiblichen COMMIT WORK ein spezieller Befehl zum
Transaktionsabschlu3 benutzt wird: CHAIN WORK. Durch diesen Abschlufl wird
die aktuelle Transaktion beendet und eine neue begonnen. Obwohl die Anderungen
der ersten Transaktion stabil gemacht werden, sind die (Teil-)Ergebnisse derselben
nur in der unmittelbar folgenden Transaktion sichtbar.

Somit wird die Isolationseigenschaft gewéhrleistet, wihrend die Atomaritét teil-
weise aufgegeben wird. Aufgegeben deshalb, weil ein Systemausfall nur ein Riick-
setzen aktiver Transaktionen bewirkt. Anderungen von Transaktionen, die mit
CHAIN WORK abgeschlossen wurden sind dagegen dauerhatft.

3.3 Geschachtelte Transaktionen

Grundsitzlich lassen sich geschachtelte Transaktionen in zwei Kategorien eintei-

1. Es besteht die Gefahr, chained transactions mit dem chained paradigm zu verwechseln (siehe 3.1.3).

16

3 Transaktionale Ausfilhrungsmodelle
Geschachtelte Transaktionen

len. Zum einen in sogenannte geschlossen geschachtelte und zum anderen in offen
geschachtelte Transaktionen. Wahrend geschlossen geschachtelte Transaktionen
exakt definiert sind, handelt es sich bei den offen geschachtelten eher um ein ge-
nerisches Konzept. Deshalb wird das Prinzip der offen geschachtelten Transaktio-
nen nur sehr kurz erlautert werden. Wie sich dariiber hinaus herausstellen wird,
stellen die im weiteren Verlauf vorgestellten Ablaufmodelle Spezialfélle der offen
geschachtelten Transaktionen dar.

3.3.1 Geschlossen geschachtelte Transaktionen

Geschlossen geschachtelte (engl. closed nested) Transaktionen [Tra83] [Moss85]
wurden entworfen, um das Granulat bei einem Zuriicksetzen zu verfeinern. Um
das Zuriicksetzen einer Transaktion auf einen Teil beschrianken zu kénnen, unter-
teilt man ein Transaktion in weitere sogenannte Sub-Transaktionen (dies kann re-
kursiv fortgefiihrt werden). Die dullere Transaktion wird dann als Top-Level
Transaktion bezeichnet.

Wihrend fiir eine Top-Level Transaktion immer noch die ACID-Eigenschaften
gefordert werden, wird die Dauerhaftigkeit fiir Sub-Transaktionen (oder Kind-
Transaktionen) aufgegeben. D.h. beim Ende einer Sub-Transaktion werden die
Kontrollstrukturen an die Elterntransaktion vererbt und erst wenn die Top-Level
Transaktion erfolgreich beendet wird, werden die Ergebnisse dauerhaft. Beziig-
lich des Riicksetzens ergibt sich der Vorteil, da3 das Zurilicksetzen einer Sub-
Transaktion sich nicht auf die Eltern-Transaktion auswirken muf. Allerdings sind
beim Zuriicksetzen der Eltern-Transaktion alle zugehorigen Sub-Transaktionen
betroffen.

Beziiglich der Isolationseigenschaft sind zwei Aspekte erwdhnenswert. Die Top-
Level Transaktion ist isoliert beziiglich aller anderen Transaktionen, die keine
“Nachkommen” von ihr sind. Direkte Sub-Transaktionen haben Zugriff auf die
Datenobjekte der Elterntransaktion (Vererbung) und Elterntransaktionen erhalten
den Zugriff auf alle Datenobjekte, die von erfolgreich abgeschlossenen Sub-
Transaktionen angefalit wurden. “Geschwister”, d.h. Sub-Transaktionen der glei-
chen Elterntransaktion, laufen isoliert von einander ab.

Beziiglich der Ablaufstruktur erweitern geschlossen geschachtelte Transaktionen
die Moglichkeiten des klassischen Ansatzes. Neben der einfachen Sequenz ist es
hier prinzipiell zuldssig Sub-Transaktionen parallel ablaufen zu lassen.

3.3.2 Einsatzgebiete geschlossen geschachtelter TA

Geschlossen geschachtelte Transaktionen eignen sich gut fiir den Einsatz im Cli-
ent/Server-Umfeld. Auf Grund der separaten Riicksetzbarkeit von Sub-Transak-
tionen 1ist es moglich, z.B. bei Ausfall eines Rechnerknotens oder einer Kommu-

17

Transaktionale Ausfuhrungsmodelle 3
Geschachtelte Transaktionen

nikationsverbindung, Teile einer Transaktion zuriickzusetzen ohne daBl die
Transaktion als Ganzes davon betroffen ist. Besteht dariiber hinaus die Moglichkeit
die Sub-Transaktion auf einem alternativen Knoten (Replikat-Server) fortzusetzen,
kann die Top-Level Transaktion trotz des Ausfalls erfolgreich zu Ende gefiihrt
werden.

Trotzdem sind geschlossen geschachtelte Transaktionen bisher kaum im kommer-
ziellen Bereich anzutreffen. Dies liegt zum einen an dem nicht zu vernachlissigen
Aufwand fiir die Implementierung der Isolations- bzw. Vererbungseigenschaften
dieses Transaktionstyps. Zum anderen war das Verarbeitungsmodell bisher nicht in
Standards zur Transaktionsverarbeitung beriicksichtigt [XOP93] [OSI92].

Mit der Verabschiedung des Object Transaction Services (OTS) der Object Mana-
gement Group (OMGQ) ist eine erste Bemiithung zu verzeichnen, geschlossen ge-
schachtelte Transaktionen zu standardisieren [OMG96]. Da die Spezifikation ge-
schlossen geschachtelte Transaktionen nur als optionale Erweiterung vorsieht,
bleibt jedoch abzuwarten, ob und wann entsprechende Implementierungen verfiig-
bar sein werden.

3.3.3 Offen geschachtelte Transaktionen

Offen geschachtelte Transaktionen [Gra81a][Tra83] wurden zundchst nur als Kon-
zept festgelegt. Ausfithrungsmodelle im eigentlichen Sinne entstanden erst spiter
auf der Basis dieses Konzepts. Grundséitzlich unterscheiden sich die offen ge-
schachtelten Transaktionen von den geschlossen geschachtelten dadurch, dal3 es
Sub-Transaktionen méglich ist, die von ihnen vorgenommenen Anderungen vor
dem Ende der Eltern-Transaktion freizugeben.

Somit entféllt die Isolations- und Atomarititseigenschaft fiir Top-Level Transak-
tionen und dadurch die einfache Riicksetzbarkeit im Fehlerfall. Deshalb wurde be-
reits in [Gra81a] das Prinzip der Kompensation eingefiihrt: Anstatt eines Riickset-
zens im Fehlerfall werden logische “Gegenaktionen” ausgefiihrt, wodurch in
gewisser Weise eine semantische Atomaritdit gewahrleistet wird.

Eine grundsitzliche Idee der offen geschachtelten Transaktionen ist die Trennung
der verschiedenen Aspekte der ACID-Eigenschaften. Wahrend z.B. die Atomaritat
der ACID-Transaktionen stark von der Isolationseigenschaft abhingt, ist die Kom-
pensation der offen geschachtelten Transaktionen zundchst unabhédngig von dieser
Eigenschaftl. Diese Sichtweise der prinzipiellen Unabhédngigkeit sogenannter
Kontrollsphiren (engl. spheres of control) geht auf [Dav78] zurlick.

In den folgenden Abschnitten wird eingehend auf spezielle Auspridgungen der of-
fen geschachtelten Transaktionen eingegangen. Deshalb wird an dieser Stelle auf

1. Inwiefern sich diese Aussage verallgemeinern 148t, wird im weiteren Verlauf diskutiert.

18

3 Transaktionale Ausfilhrungsmodelle
Mehrschicht-Transaktionen

die genauere Betrachtung der Eigenschaften und der Einsatzgebiete des Konzep-
tes verzichtet.

3.4 Mehrschicht-Transaktionen

Mehrschicht-Transaktionen [Weik89],[WeSc92] (engl. multi-level transactions)
stellen eine enge Verkniipfung des ACID-Prinzips und der offen geschachtelten
Transaktionen dar. Einerseits werden durch die Verwendung offen geschachtelter
Transaktionen die Atomaritit und die Isolation aufgegeben, andererseits wird
durch die Einfiihrung einer strikten Aufruthierarchie sichergestellt, da3 auf der je-
weiligen Hierarchiestufe entsprechende Garantien gegeben werden konnen.

Genauer gesagt: Eine Mehrschicht-Transaktion einer Ebene wird dadurch reali-
siert, daf3 sie Operationen der direkt darunter liegenden Ebene aufruft. Zugriffsbe-
schrankungen auf der tieferen Ebene werden nach dem Ende einer Operation auf
dieser Ebene entfernt (entsprechend dem Verhalten offen geschachtelter Transak-
tionen). Allerdings miissen auf der Ebene der aufrufenden Transaktion Zugriffs-
beschrankungen etabliert werden, um so Konflikte mit parallel laufenden Trans-
aktionen (der selben Ebene) zu vermeiden.

Ununterbrechbarkeit gewihrleisten Mehrschicht-Transaktionen gemif3 dem Kon-
zept der offen geschachtelten Transaktionen auf der Basis von Kompensationsak-
tionen, d.h. zu jeder Operation auf jeder Ebene muf} eine entsprechende Kompen-
sationsoperation zur Verfiigung stehen.

Somit stellen Mehrschicht Transaktionen strenge Anforderungen an den Aufbau
eines Systems, da es nicht zuldssig ist, Operationen einer anderen Ebene als der
direkt darunter liegenden aufzurufen. Die Vorteile dieser Verwendung offen ge-
schachtelter Transaktionen ergeben sich insbesondere in Anwendungsbereichen,
in denen das Zugriffsgranulat mit absteigender Hierarchiestufe zunimmt.

Ein Beispiel hierfiir sind z.B. relationale Datenbanksysteme. Auf der Ebene des
tupelorientierten Zugriffs besteht das Granulat der hier definierten Operationen
aus Tupeln. Die darunter liegende Ebene bildet die Tupel auf Seiten eines stabilen
Speichers ab. Geht man nun davon aus, dall mehrere Tupel in einer Seite gespei-
chert werden konnen, liegt der Vorteil der Mehrschicht-Transaktionen klar auf der
Hand. Wihrend Sperren auf der Tupelebene Inkonsistenzen beziiglich der Tupel
verhindern, werden trotzdem parallele Zugriffe auf ein und diesselbe Seite zuge-
lassen, da die Operationen auf der Seitenebene nach ihrer Ausfiithrung keine Be-
schrinkungen des Zugriffs fordern.

3.5 Sagas

Sagas [GaSa87] stellen eine spezielle Auspriagung offen geschachtelter Transak-

19

Transaktionale Ausfuhrungsmodelle 3
Sagas

tionen dar. Das Modell der Sagas war eines der ersten, welches eine Trennung der
Ablauflogik von den ausfiihrenden Teilen vornahm. So wird eine Ausfiihrung da-
durch definiert, da3 ein KontrollfluB explizit zwischen sogenannten Steps definiert
wird. Dabei war zunéchst nur eine einfache sequentielle Verkettung zuldssig, die
spater jedoch um weitere Konstrukte erweitert wurde (Schleifen, bedingte Ver-
zweligung usw.).

Wie bei allen Vertretern der offen geschachtelten Transaktionen miissen Kompen-
sationsaktionen definiert werden, die im Fehlerfall automatisch in inverser Ord-
nung zu den Originalsteps ausgefiihrt werden.

Wichtig zu erwéhnen ist hierbei, da3 durch die Einfiihrung eines expliziten Kon-
trollflusses in Verbindung mit einer den Steps zugeordneten Kompensation die
Notwendigkeit besteht, Daten beziiglich des Kontrollflusses persistent zu spei-
chern. Beispielsweise muf3 die Information iiber erfolgreich ausgefiihrte Steps dau-
erhaft gespeichert werden, um im Fehlerfall die notwendigen Kompensationsaktio-
nen ermitteln zu konnen.

Auf Fehlerfille wird in Sagas durch Riicksetzen der gerade aktiven Transakti-
on(en) und der anschlieBenden Ausfithrung der Kompensationsaktionen der Vor-
gianger in umgekehrter zeitlicher Reihenfolge reagiert. Man kann somit von einer
semantischen Ununterbrechbarkeit analog zu den offen geschachtelten Transaktio-
nen reden.

execute fai}ure
S1 ™ S22 [~ ™ Spi4 ™ S
C, = C, < Cot abort
compensate

Abbildung 3-1: Prinzip der SAGAs

Steps stellen ACID-Transaktionen bzw. geschlossen geschachtelte Transaktionen
dar, so daB auf dieser Ebene auch die Isolation gewéhrleistet ist. Auf der Ebene der
Sagas selbst besteht jedoch kein Isolationsschutz. Deshalb sind Sagas nicht fiir An-
wendungen geeignet in denen es zu Konflikten auf Grund von Parallelverarbeitung
kommen kann (s. Abschnitt 3.1.1).

Weiterentwicklungen der Sagas [GGK90] [GGK91a] [GGK91b] verdnderten die
Semantik dieses Ausfithrungsmodells zum Teil radikal. So wurde mit der Einfiih-

20

3 Transaktionale Ausfilhrungsmodelle
ConTracts

rung des Schachtelungsprinzips eine Unterscheidung in notwendige (engl. vital),
nicht-notwendige (engl. non-vital) und unabhéngige (engl. independent) Sagas
vorgenommen, die die Fehlersemantik stark beeinflussen.

Es ergeben sich folgende Unterschiede zu der bekannten Eltern/Kind-Abhéingig-
keit im Falle der geschlossen geschachtelten Transaktion:

= Der Abbruch einer als notwendig deklarierten Sub-Saga bewirkt den Ab-
bruch der entsprechenden Eltern-Saga und umgekehrt.

= Eine als unabhingig deklarierte Sub-Saga bleibt vom Abbruch der Eltern-
Saga unbeeinfluft.

Ein weiterer Aspekt, der erst mit den Erweiterungen der Sagas eingefiihrt wurde,
ist die Fortsetzbarkeit einer Saga nach einem Fehlerfall. Da dieser Aspekt dem
Ansatz in ConTracts entspricht, sei an dieser Stelle auf Abschnitt 3.6.2.1 verwie-
sen.

Mit der Einfiihrung der unabhéngigen (Sub-) Sagas wurde die semantische Ato-
maritdt der Sagas aufgegeben. Somit sind Sagas in ihrer neueren Form nicht mehr
vollstdndig in der Klasse der offen geschachtelten Transaktionen enthalten. Dar-
tiber hinaus sind mit den Erweiterungen erste Abhangigkeitsbeziehungen zwi-
schen Kompensationsaktionen eingefiihrt worden, welche in neueren Arbeiten
wieder aufgegriffen wurden [Leym95][RSS97].

3.6 ConTracts

ConTracts [Reut89]' [WiRe92] sind eine Weiterentwicklung der Sagas und ge-
horen ebenso zur Klasse der offen geschachtelten Transaktionen. Im Gegensatz zu
Sagas gehen die Garantien des ConTract Modells sehr viel weiter und versuchen
gemil des Ansatzes von Davies [Dav78] weitgehend unabhéngige Kontrollspha-
ren anzubieten.

3.6.1 Das Skript

Wie bei Sagas mull in ConTracts ein expliziter Kontrollflul zwischen den Einzel-
aktivitdten, den sogenannten Steps, definiert werden. Dabei sind nahezu beliebige
KontrollfluBbeziehungen zuldssig (Schleifen, bedingte Verzweigungen, resultats-
abhdngige Spriinge, Parallelverarbeitung usw.). Die fiir diese Arbeit relevanten
Elemente des Skriptes werden hier kurz eingefiihrt. Fiir detailliertere Darstellun-
gen sei auf [RSW92], [Schw93b] und [Wiach96] verwiesen.

1. Anmerkung des Autors: ConTracts wurden nach dem urspriinglichen Saga-Modell eingefiihrt; jedoch
vor deren Erweiterungen.

21

Transaktionale Ausfuhrungsmodelle 3
ConTracts

3.6.1.1 Kontext

Da das ConTract-Modell die explizite Definition eines Datenflusses vorsieht, wer-
den Daten, die von einem Step zu einem anderen weiter gereicht werden, in soge-
nannten Kontextvariablen abgelegt. Diese bilden zusammen den sogenannten Kon-
text, der neben diesen Variablen auch die ablaufrelevanten Variablen wie z.B.
Schleifenzdhler enthilt.

Wichtige Eigenschaften des Kontext sind die Persistenz und die dnderungslose
Verwaltung der Variablen. Genauer, das Speichern einer gednderten Variablen
iberschreibt nicht den Originalwert sondern erzeugt eine neue Version.

3.6.1.2 Kompensation

Als Vertreter der offen geschachtelten Transaktionen benutzt auch das ConTract
Modell das Prinzip der Kompensation, um ein logisches Zuriicknehmen von Steps
zu ermdglichen. Der urspriingliche Ansatz, hierfiir jedem Step einen Kompensati-
onsstep zuzuordnen, wurde inzwischen erweitert, so dafl es moglich ist einem Teil-
skript des Originalablaufs wiederum ein Teilskript als Kompensation zuzuordnen
[RSS97].

3.6.1.3 Transaktionen

Das ConTract Modell basiert auf geschlossen geschachtelten Transaktionen als
Ausfiihrungsmodell fiir die Steps. Auf dieser Basis ist es mdglich, Steps zu (ge-
schlossen geschachtelten) Transaktionen zu Gruppieren, um so eine ACID Seman-
tik fiir diese Gruppe zu definieren.

3.6.1.4 Invarianten

Da Anderungen auf Datenelementen am Ende einer der Transaktionen, die eine
Gruppe von Steps umgeben, sichtbar werden, kann es zu Problemen durch parallel
laufende ConTracts kommen (siehe Abschnitt 3.1.1). Anstatt, wie bei Sagas, Con-
tracts als ungeeignet fiir diese Anwendungsfélle zu deklarieren, wurde das soge-
nannte Invariantenkonzept eingefiihrt [ReSw95]. Wie im Verlauf dieser Arbeit
noch eingehend diskutiert wird, ist es mit den Invarianten moglich, Pradikate auf
gemeinsam genutzten Datenelementen zu etablieren, um so Zugriffe anderer Con-
Tracts einzuschrdnken.

3.6.2 Eigenschaften von ConTracts

In diesem Abschnitt werden die grundsitzlichen Eigenschaften von ConTracts er-
lautert. Diese bilden die Basis fiir die spétere Einfiihrung eines Korrektheitskriteri-
ums.

22

3 Transaktionale Ausfilhrungsmodelle
ConTracts

3.6.2.1 Fortsetzbarkeit

Im Gegensatz zur Atomaritdt der ACID-Transaktionen und dem Ansatz von Sagas
garantieren ConTracts die Fortsetzbarkeit (engl. forward recoverability) eines
einmal begonnenen Ablaufs. Bei einem Fehlerfall beziiglich der Ausfiihrung wird
somit zundchst der aktuelle Zustand des Ablaufs wieder hergestellt. Aktive Trans-
aktionen werden dann zuriick gesetzt (engl. backward recovery), und anschlie-
Bend wird mit der Bearbeitung fortgefahren.

Das Fehlschlagen einer Stepausfiihrung hat zunéchst keine direkten Auswirkun-
gen auf die Ausfiihrung des ConTracts. Hier wird garantiert, da} eine begrenzte
Anzahl von Wiederholungen versucht wird, bzw. ein alternativer Zweig des
Skriptes ausgefiihrt werden kann.

Trotzdem kann auch bei diesem Mechanismus ein Zustand auftreten, in dem eine
weitere automatische Maflnahme des Ausfiihrungssystems keinen weiteren Erfolg
verspricht. In diesem Fall wird die Ausfiihrung angehalten (siche auch Abschnitt
3.6.2.2) und die Benutzerin informiert. Diese kann dann entweder dem System
mitteilen, dal3 eine weitere Fortsetzung sinnvoll ist, oder die Kompensation (siche
Abschnitt 3.6.2.4) der bisherigen Ausfiihrung einleiten.

3.6.2.2 Dauerhaftigkeit

Die Eigenschaft der Dauerhaftigkeit erstreckt sich bei dem ConTract-Modell nicht
nur auf Daten, sondern auf den Ablauf als Ganzes. D.h. sowohl der Zustand des
Ablaufs (an welcher Stelle befindet sich der KontrollfluB und welche Steps wur-
den bisher ausgefiihrt) als auch alle ablaufrelevanten Variablen (Kontext) sind
persistent.

Somit ist jeder Verarbeitungszustand (nach einer abgeschlossenen ACID Trans-
aktion) persistent. Diese Eigenschaft wird einerseits fiir die Fortsetzbarkeit nach
einem Fehlerfall benutzt, kann jedoch auch fiir den “Normalablauf” sinnvoll ein-
gesetzt werden, z.B. um eine Bearbeitung zeitweise unterbrechen zu konnen
(engl. suspend), die Historie eines Ablaufs zu ermitteln oder einen ConTract mi-
grieren zu konnen.

3.6.2.3 Durchlassigkeit

Wie bereits in Abschnitt 3.3.3 erwéhnt, wird die Isolations-Eigenschaft im Falle
offen geschachtelter Transaktionen aufgegeben. Um diesem Umstand auch be-
grifflich Rechnung zu tragen wird im weiteren nicht iiber die Isolation von Con-
Tracts sondern von ihrer Durchldssigkeit (engl. permeability) gesprochen.

Grundsitzlich sind nach dem Abschlufl einer ACID-Transaktion die Ergebnisse
sichtbar flir alle Aktivitdten (auch auBlerhalb des aktuellen ConTracts). D.h. es gibt

23

Transaktionale Ausfuhrungsmodelle 3
ConTracts

keinen Systemmechanismus der irgendwelche SchutzmaBnahmen, wie z.B. die
Etablierung von Sperren, trifft. Sind allerdings Invarianten definiert schranken die-
se den Zugriff entsprechend ein.

Somit ist fiir einen ConTract garantiert, dal die von ihm etablierten Invarianten
nicht verletzt werden. Damit ist eine anwendungsabhingige Regulierung der Frei-
gabe von gednderten Daten moglich.

3.6.2.4 Kompensierbarkeit

Fiir einen ConTract ist garantiert, dafl zu jedem beliebigen Zeitpunkt der Ausfiih-
rung, die Kompensation eingeleitet werden kann. Fiir einen aktuellen Ablauf be-
deutet dies, daB} aktive Transaktionen abgebrochen und anschlieBend Kompensati-
onsaktionen flir erfolgreich abgeschlossene Step ausgefiihrt werden.

Urspriinglich war die Reihenfolge der Abarbeitung von Kompensationsaktionen
nicht festgelegt, so dafl sogar die Moglichkeit der gleichzeitigen Ausfithrung aller
Kompensationen erwogen wurde. Wie sich im Verlauf dieser Arbeit noch heraus-
stellen wird, kann diese Flexibilitdt im allgemeinen nicht unterstiitzt werden.

3.6.2.5 Konsistenz

Obwohl die Eigenschaft der Konsistenz bzw. der Konsistenzerhaltung allen hier
betrachteten Ausfithrungsmodellen gemeinsam sind, soll sie an dieser Stelle noch
einmal gesondert erwidhnt werden.

Ein ConTract gewéhrleistet, dal3 wenn er auf einem konsistenten Zustand von Da-
tenobjekten gestartet wird, diese wieder in einem konsistenten Zustand hinterlaf3t.
Dabei kann in einen erfolgreichen und einen kompensierten Endzustand unter-
scheiden werden.

24

4 Formale Modelle konkurrierender Ablaufe
Das read/write Modell

4 Formale Modelle konkurrierender Ablaufe

Die formale Darstellung von Abldufen ist eine Voraussetzung fiir die Definition
entsprechender (ebenso formaler) Korrektheitskriterien. Dieses Kapitel flihrt in
entsprechende Formalismen ein und stellt insbesondere die fiir das ConTract-Mo-
dell gewihlte Darstellung vor.

Ein wichtiger Aspekt hierbei ist, daB Formalismen zur Beschreibung einer Aus-
fiihrung nicht unbedingt auch bei der Programmierung von Abldufen zum Einsatz
kommen. Der Grund hierfiir sind die unterschiedlichen Anforderungen an die No-
tationen. Wahrend zur Programmierung Darstellungen herangezogen werden, die
fiir einen menschlichen Benutzer moglichst einfach erlernbar sind, orientieren
sich Notationen, die fiir Laufzeitsysteme gedacht sind, an der effizienten Ausfiihr-
barkeit und Problemunabhingigkeit.

Da es sich bei den formalen Sprachen zur Beschreibung von Abldufen im Allge-
meinen um einfache aber sehr flexible Sprachen handelt, existiert tiblicherweise
keine isomorphe, sondern nur eine homomorphe Abbildung der auf der Program-
mierebene genutzten Notation auf die formale Darstellung. Es gehen also Infor-
mationen, die auf der Programmierebene zur Verfiigung standen “verloren” und
sind somit aus der Laufzeitnotation nicht mehr wieder zu gewinnen. Dies stellt ei-
nen eigenen Problembereich dar, wenn Anderungen von Ablidufen zur Ausfiih-
rungszeit unterstiitzt werden soll.

Im weiteren soll folgende Konvention beziiglich der verwendeten Termini gelten:

1. Die formale Notation, die aus einer von einem Programmierer erstellten De-
finition eines Ablaufs erzeugt wurde (oder werden kann), wird im weiteren
als Schablone oder Template bezeichnet.

2. Eine spezielle Auspriagung eines Template, die zur Ausfiihrung eingesetzt
wird, wird als Instanz oder Ausfiihrungsinstanz bezeichnet. Ein Template
kann mehrfach instanziiert werden.

4.1 Das read/write Modell

Da ACID-Transaktionen nicht als eigentliches Ausfithrungsmodell, sondern nur
zur deklarativen Zuordnung einer gewissen Ausfithrungssemantik eingefiihrt
wurden, gibt es keine Laufzeitumgebung im Sinne einer virtuellen Maschine fiir
Abldufe mit ACID-Eigenschaften. Trotzdem ist es aus abstrakter Sicht mdglich
eine Maschine zu definieren, die die Abarbeitungssemantik von ACID-Transak-

25

Formale Modelle konkurrierender Ablaufe
Das read/write Modell

tionen hinreichend beschreibt. Diese Maschine basiert auf dem sogenannten Lese/
Schreib-Modell (engl. read-write model) [Papa86][BHG87][GrRe93].

4.1.1 Operationen

Eine abstrakte Maschine zur Verarbeitung von ACID-Transaktionen kennt vier

elementare Operationenl.

Operation Semantik

r: read(t, a) | Liefert den Wert eines Datenobjektes a an eine Transaktion t.

w: write(t,a) | (Uber-) Schreibt den Wert eines Datenobjektes a im Auftrag
einer Transaktion t.

c: commit(t) | Macht die Anderungen von t dauerhaft und beendet t.

a: abort(t) Setzt die Anderungen von t zuriick und beendet t.

Tabelle 4-1: Operation im read/write Modell

Wie einfach zu erkennen ist, verwaltet die abstrakte Maschine eine Menge von Da-
tenobjekten, die mit der Operation “write” manipuliert werden konnen. Es mag er-
staunen, daf es weder eine Operation “create” noch eine Operation “delete” gibt,
die ein Datenobjekt erzeugen bzw. 16schen. Diese ungewohnliche Eigenschaft hat
jedoch historische Griinde, da zu Beginn der Nutzung von Datenbanksystemen auf
der Basis von Speicherseiten gearbeitet wurde. Nun 148t sich natiirlich die Erzeu-
gung von Datenobjekten (und der Loschung) auf einen Schreibzugrift auf eine
Speicherseite abbilden, so daB3 keine zusétzlichen Operationen notwendig sind.

Eine weitere Operation, die den Beginn einer Transaktion anzeigt (fordert) wurde
auf der Ebene der abstrakten Maschine ebenfalls nicht eingefiihrt. Auch dies 143t
sich wiederum aus der Entstehungsgeschichte erkldren. Urspriinglich wurde eine
Transaktion iiber die Identifikation des ausfiihrenden Prozesses? eindeutig gekenn-
zeichnet, weshalb mit der ersten Operation des Prozesses implizit eine Transaktion
begonnen wurde (siehe auch voriges Kapitel). Mit der Einflihrung verteilter Trans-
aktionen und der gleichzeitigen Nutzung mehrerer Datenbankverbindungen in ei-
nem ProzeB stellt dieses Vorgehen ein Problem dar. Da in der weiteren Verwen-
dung der eingefiihrten Notation diese Problematik nicht zum Tragen kommt, wird
an dieser Stelle auf eine Erweiterung der Menge der Operationen verzichtet.

1. Im verteilten Fall kommt eine fiinfte Operation “prepare” hinzu, die allerdings nicht auf Anwendungs-
ebene zur Verfiigung steht.
2. Hier ist ein Betriebssystemproze3 gemeint.

26

4 Formale Modelle konkurrierender Ablaufe
Das read/write Modell

4.1.2 Ausfuhrungen und ihre Semantik

Eine ACID-Transaktion kann nun mit Hilfe der Operationen der abstrakten Ma-
schine dargestellt werden (es wird eine abkiirzende Schreibweise fiir die Bezeich-
nung der Operationen benutzt). Da die eigentliche Definition der Transaktion
nicht bekannt ist, wird diese Darstellung als formale Interpretation bezeichnet.

Definition 4-1 (ACID-TA): Eine Interpretation 1(t) einer ACID-Transaktion t
ist ein Tupel (4, <), wobei A eine geordnete Menge von Operationen beziiglich
der partiellen Ordnung “<* darstellt:

A= {Ol-}, 0;€ {rnw,c.a;

ol.voroj 1nt:>0i<0j

Om

= A — Oj <
(0,,0,€ ANo;=cAno,=a) (Oje A,oje {C;a}) OmeA -
Eine formale Interpretation einer ACID-Transaktion besteht somit aus einer Men-
ge von Lese- und Schreiboperationen, deren Abarbeitungsreihenfolge festgelegt
ist. Ebenso gehoren zu der Transaktion commit- bzw. abort-Operationen, denen
jedoch keine weiteren Operationen folgen diirfen.

Im folgenden wird durch die Verwendung der Schreibweise o; < o; ausgedriickt
werden, daf o; ein unmittelbarer Nachfolger von o; ist. Mit o; < 0; soll eine aus-
schlieBlich mittelbare Reihenfolgebeziehung bezeichnet werden. Die Bezeich-
nung o; <" o; subsummiert die unmittelbare und die mittelbare Reihenfolgebezie-

hung.

Die kurz angedeutete Semantik der Operationen soll hier nun etwas vertieft wer-
den. Eventuell notwendige Seiteneffekte der Operationen zur Realisierung der
Isolationseigenschaft werden im folgenden Kapitel behandelt.

1. Leseoperationen greifen auf ein Datenobjekt zu und liefern den jeweiligen
Wert des Objektes an die Transaktion zurtick.

2. Schreiboperationen erzeugen, 16schen oder dndern ein Datenobjekt. Gleich-
zeitig wird dabei die Information hinterlegt, wie die Schreiboperation riick-
gingig gemacht werden kann. In den meisten Féllen geschieht dies
automatisch durch die ausfiihrende Maschine z.B. durch die Speicherung
des sogenannten before image.

3. Die commit Operation hat ausschlieBlich die Aufgabe alle Anderungen ei-
ner Transaktion dauerhaft zu machen und die Transaktion abzuschlief3en.

27

Formale Modelle konkurrierender Ablaufe
Das read/write Modell

4. Eine abort Operation fiihrt alle gespeicherten Gegenaktionen (inverse Schrei-
boperationen) in der umgekehrten Reihenfolge der Ausfiihrung der Original-
schreibzugriffe aus, macht die Anderungen dauerhaft (soweit notwendig)
und schlieBt eine Transaktion ab. Die Aktionen zur dauerhaften Speicherung
der Anderungen und der AbschluB der Transaktion kann auch als eine com-
mit Operation nach der Ausfiihrung aller Gegenaktionen angesehen werden.

Durch die Atomaritédtseigenschaft werden abort Operationen automatisch nach ei-
nem Fehlerfall ausgelost. Dies bedingt die Verwaltung von persistenter Zustands-
information, die im folgenden Abschnitt beschrieben wird.

Die Maschine als ganzes arbeitet nach dem folgenden Prinzip:

= Zundchst werden alle Operationen gesucht, die keinen Vorgidnger beziiglich
der Partialordnung besitzen. Diese werden zur Ausfiihrung gebracht.

= Ist die Ausfiihrung nicht erfolgreich, wird eine abort-Operation ausgefiihrt.
Ist die Ausfiihrung erfolgreich, werden die direkten Nachfolger gesucht und
zur Ausflihrung gebracht.

= Das Ende ist erreicht, wenn alle Operationen beendet sind und keine Nach-
folger gefunden werden konnen.

4.1.3 Persistente Zustande

Die abstrakte Maschine verwaltet zur Implementierung der ACID-Semantik Zu-
stinde der Transaktionen und der Datenobjekte. Zu diesem Zweck mul} stabiler,
persistenter Speicher zur Verfiigung stehen, um auch nach einem Systemausfall die
Atomaritit und die Dauerhaftigkeit gewihrleisten zu konnen.

Insgesamt nehmen ACID-Transaktionen in der abstrakten Maschine nur zwei Zu-
stinde ein:

1. Aktiv (nach der ersten Lese- oder Schreiboperation)

2. Abgeschlossen (nach einer commit oder abort Operation)

Auf Grund der ACID-Eigenschatft ist hiefiir nur der Zustand “aktiv” stabil zu spei-
chern, um ein eventuelles Riicksetzen nach einem Fehlerfall auslosen zu konnen.

Beziiglich der verwalteten Datenobjekte gestaltet sich die Zustandsverwaltung et-
was komplexer, da deren Zustinde von dem Zustand der manipulierenden Trans-
aktion abhingig sind. Grundsitzlich konnen drei Zustinde bei Datenobjekten un-
terschieden werden:

28

4 Formale Modelle konkurrierender Ablaufe
Das read/write Modell

1. clean: alle bisherigen Zugriffe erfolgten von abgeschlossenen Transaktio-
nen.

2. touched: es erfolgte ein lesender Zugriff einer aktiven Transaktion.

3. dirty: es erfolgte ein Schreibzugriff einer aktiven Transaktion.

Die Atomaritdtseigenschaft impliziert nun, daB3 fiir alle Datenobjekte, die im Zu-
stand “dirty” sind, Informationen dariiber gespeichert werden miissen, wie diese
Objekte wieder in einen “clean” Zustand iiberfiihrt werden kénnen. Dabei ist zu
beachten, daf} diese Information ebenso Dauerhaft sein muf3, wie das gednderte
Objekt selbst. Ist z.B. das gednderte Objekt nur im Hauptspeicher, gentigt es die
“Undo-Information” ebenfalls nur im Hauptspeicher abzulegen.

Auf Grund der Dauerhaftigkeit, muB3 ein Objekt, welches auf Grund einer commit-
Operation vom Zustand dirty in den Zustand clean iibergeht stabil gespeichert
werden, bzw. es mull zumindest die Information stabil gespeichert werden, die
ausreicht, um den Zustand auch nach einem Systemausfall wieder herzustellen.

-
clean » | touched

stabilx / flichtig

bedingt stabil

Abbildung 4-1: Zustandsdiagramm fiir Datenobjekte bei ACID-TA

4.1.4 Erweiterungen fiir geschachtelte Transaktionen

Das bisher beschriebene read/write Modell kann einfach erweitert werden, um
auch die Semantik geschlossen geschachtelter Transaktionen zu beschreiben. Zu-
nichst muB hierfiir die Menge der Operationen erweitert werden:

Operation Semantik

B: begin_SubTA(t) Erzeugt eine Sub-Transaktion beziiglich der angege-
benen (Eltern-)Transaktion t.

Tabelle 4-2: Erweiterte Operation im read/write Modell

29

Formale Modelle konkurrierender Ablaufe
Das read/write Modell

Operation Semantik

y: commit_SubTA(t) | Beendet die Sub-Transaktion t

o abort SubTA(t) Setzt die Anderungen der Sub-Transaktion t zuriick
und beendet die Sub-Transaktion

Tabelle 4-2: Erweiterte Operation im read/write Modell

Mit der Erweiterung der Menge der Operationen, ist natiirlich auch eine entspre-
chende Erweiterung von Definition 4-1 notwendig.

Definition 4-2 (Geschlossen geschachtelte TA): Eine Interpretation 1(t) einer
geschlossen geschachtelten Transaktion t ist ein Tupel (A, <), wobei A eine ge-
ordnete Menge von Operationen beziiglich der partiellen Ordnung “<*“ aus De-
finition 4-1 darstellt. Die Bedingung, daf3 weder einer abort- noch einer commit-
Operation von t eine weitere Operation folgen darf gilt analog. Wird mit 3° bzw.
B" der Beginn und mit €' bzw. €" das Ende (Y bzw. o) zweier bestimmter Sub-
Transaktionen s und r bezeichnet, gelten folgende Zusatzbedingungen:

4 ={0;},0;€ {rw,,a,B,x,04

A — = Br <* BS/\—|(8r <* SS)
B e4) (B'e 4)

vV 3 eu
(B e 4)

Eine Subtransaktion, die durch die Operation 3 und eine der Operationen o oder
begrenzt wird, bildet eine geschlossene Einheit. Deshalb ist es nicht zuldssig, in-
nerhalb einer Subtransaktion eine weitere zu beginnen, deren Ende nicht ebenfalls
in der Subtransaktion enthalten ist. Ebenso ist es notwendig, daf} fiir alle Beginn-
Operationen von Sub-Transaktionen entsprechende Ende-Operationen vorhanden
sind.

Mit dem Begriff Top-Level-Transaktion werden diejenigen Transaktionen bezeich-
net, die keine Sub-Transaktionen von anderen Transaktionen sind. Somit werden
Top-Level-Transaktionen auch nicht mit einer 3-Operation begonnen. Die Opera-
tionen o bzw. % erzeugen im Gegensatz zu den abort- und commit-Operationen von
Top-Level-Transaktionen keine persistenten Zustinde. Statt dessen werden beim
AbschluB einer Sub-Transaktion alle die Transaktion betreffenden Verwaltungsda-
ten an die Eltern-Transaktion weiter gereicht. Handelt es sich bei der Eltern-Trans-
aktion um eine Top-Level-Transaktion ist diese fiir die Persistenzeigenschaft ver-
antwortlich.

30

4 Formale Modelle konkurrierender Ablaufe
Mehrschicht-Transaktionen

Da sich somit durch die Einfiihrung von geschlossen geschachtelten Transaktio-
nen keine weiteren persistenten Zustidnde ergeben, erscheint die Erweiterung der
abstrakten Maschine zunéchst trivial. Allerdings ergeben sich nicht zu vernachlés-
sigende Schwierigkeiten bei der Umsetzung der speziellen Isolationseigenschaf-
ten und der Ubernahme der Verwaltungsdaten durch eine Elterntransaktion.

Bezeichnenderweise sind momentan kaum Datenbanksysteme zu finden, die ge-
schlossen geschachtelte Transaktionen implementieren. Der Grund hierfiir ist
wieder historischer Art. Da bei klassischen Transaktionen keine “Weitergabe” ir-
gendwelcher Informationen notwendig ist, sind die entsprechenden Algorithmen
zur Realisierung auch hierauf optimiert. Betrachtet man speziell die Implementie-
rung von Log-Systemen, konnen Log-Sitze durch einen simplen Bezeichner in ei-
nem Log-Satz einer Transaktion zugeordnet werden. Da eine Sub-Transaktion
aber ihre Log-Sétze an ihre Eltern-Transaktion weitergibt, ist solch eine simple
Zuordnung nicht mehr moglich.

Ein weiterer nicht-trivialer Aspekt ergibt sich aus der Atomarititseigenschaft der
Transaktionen. Diese besagt, dal eine geschlossen geschachtelte Transaktion je-
derzeit abgebrochen und somit ihre Anderungen riickgiingig gemacht werden kon-
nen. Somit ergibt sich eine sogenannte abort-Abhdngigkeit [ChRa90][Giint96]
zwischen Eltern- und Kind-Transaktionen, die besagt, dal im Falle eines Ab-
bruchs der Eltern-Transaktion auch alle Kind-Transaktionen zuriickgesetzt wer-
den miissen.

4.2 Mehrschicht-Transaktionen

Wie bereits im vorigen Kapitel eingefiihrt, basieren Mehrschicht-Transaktionen
auf einer strikten Aufteilung eines Systems in mehrere Abstraktionsebenen. Ver-
sucht man nun eine abstrakte Maschine zur Abwicklung von Mehrschicht-Trans-
aktionen zu definieren, kann dies zunichst nur auf einer Ebene erfolgen. Dabei
wird die darunter liegende Maschine mit benutzt und man erhélt somit eine rekur-
sive Definition. Im Datenbankbereich wird diese Rekursion durch die Abstrakti-
onsebene begrenzt, die die Abbildung auf physische Speicherseiten vornimmt
(mit Hilfe sogenannter Mini-Transaktionen) [GrRe93][Giint96]. Da diese jedoch
im Prinzip keine neuen Aspekte im Vergleich zu dem bereits diskutierten read/
write Modell aufwerfen, wird an dieser Stelle nur auf die entsprechende Literatur
verwiesen. Im folgenden soll diese Ebene mit L bezeichnet werden.

4.2.1 Operationen

Aus abstrakter Sicht kennt eine Maschine einer Stufe 1 die transaktionalen Opera-
tionen, sowie die Operationen, die auf dieser Stufe angesiedelt sind. Wichtig zu
erwihnen ist, dal die anwendungsorientierten Operationen wiederum Operatio-

31

Formale Modelle konkurrierender Ablaufe
Mehrschicht-Transaktionen

nen auf der ndchst niedrigeren Stufe nutzen.

Operation Semantik

e: execute(t, oy, 0}) | Fiihrt die Operation oy innerhalb der Transaktion t aus
und gibt die zugehdrige Kompensationsoperation oy an.

c: commit(t) Macht die Anderungen von t dauerhaft und beendet t.

a: abort(t) Fiihrt Kompensationsoperationen aus und beendet t.

Tabelle 4-3: Operationen von Multi-Level-Transaktionen

Grundsétzlich lassen sich in den Operationen von Mehr-Schicht-Transaktionen die
manipulierten Datenobjekte nicht mehr identifizieren. Somit ist auch die automati-
sche Generierung von inversen Aktionen im Allgemeinen nicht mehr moglich.
Deshalb miissen die Kompensationsaktionen explizit angegeben werden. Da, wie
bereits erwahnt, die isolationsbezogene Problematik im folgenden Kapitel bespro-
chen wird, sind auch diesbeziigliche Ergénzungsmoglichkeiten hier nicht beriick-
sichtigt.

4.2.2 Ausfuhrungen und ihre Semantik

Auf der Basis der Operationen kann nun eine Mehrschicht-Transaktion definiert
werden. Diese Definition erfolgt wie bereits erwédhnt rekursiv:

Definition 4-3 (Mehrschicht-TA): O’ (i > 0) sei die Menge der Operationen der
Stufe i ohne die transaktionalen Operationen a und c. Eine Interpretation I(f)
einer Mehrschicht-Transaktion der Stufe i ist ein Tupel (4,<), wobei A eine ge-
ordnete Menge von Operationen beziiglich der Ordnungsrelation “<*“ (siche

Definition 4-1) darstellt:

-) 1
A= {xj}, X; € {ea,c,e= execute(tl,ok,ok), 04,0, € o'

m

—/ xX.<
(xje A,xje {ca) (meA)j [|

Interpretationen von Mehrschicht-Transaktionen bestehen aus einer Menge von
Operationen, deren Ausfiihrungsreihenfolge mit Hilfe einer partiellen Ordnung
(siche Abschnitt 4.1.2) festgelegt ist. Die eigentlich ausfiihrenden Operationen (e)
sind dabei eine Anforderung an die abstrakte Maschine, eine Transaktion auf der
néchst tiefer liegenden Stufe ausfithren zu lassen. Fiir die Operationen commit und
abort gilt wie beim read/write Modell die Einschrinkung, da3 diesen Operationen
keine weitere Operation folgen darf. Analog zum read/write-Modell erfolgt die In-
terpretation der Ordnungsrelation.

32

4 Formale Modelle konkurrierender Ablaufe
Mehrschicht-Transaktionen

Beziiglich der Semantik der Operationen ergeben sich grundsitzliche Unterschie-
de zum read/write-Modell:

1. Eine Operation e stellt den Aufruf einer Transaktion der nichst tiefer liegen-
den Ebene dar. Da es sich bei Mehrschicht-Transaktionen um eine Auspra-
gung der offen geschachtelten Transaktionen handelt, werden die
Anderungen bei einem erfolgreichen AbschluB} bereits dauerhaft. Ebenso
dauerhaft mufl dann die Information iiber die Kompensationsaktion gespei-
chert werden.

2. Die commit-Operation der Mehrschicht-Transaktionen entspricht der com-
mit-Operation des read/write-Modells mit der zusétzlichen Aufgabe, Infor-
mationen iliber eine eventuelle Kompensationstransaktion persistent zu
speichern.

3. Eine abort-Operation kann gegeniiber dem read/write Modell weit aus auf-
wendiger sein, da die Anderungen erfolgreicher Sub-Transaktionen bereits
dauerhaft sind. Deshalb miissen Kompensations- oder Gegentransaktionen
ausgefiihrt werden, die einen persistenten Zustand erzeugen, der dquivalent
zu dem Ausgangszustand der Transaktion ist. Die Ausfithrung der Kompen-
sationstransaktionen geschieht dabei in umgekehrter zeitlicher Reihenfolge
zur Ausfithrung der Originaloperationen.

Da Mehrschicht-Transaktionen eine semantische Atomaritdt garantieren, werden
nach einem Systemausfall automatisch abort-Operationen fiir aktive Transaktio-
nen eingeleitet. Diese abort-Operationen miissen in einer Reihenfolge ausgefiihrt
werden, die den Abstraktionsebenen entspricht. Somit erfolgt zunédchst der Ab-
bruch der aktiven Transaktionen auf Stufe 0, dann auf Stufe 1 usw.

4.2.3 Persistente Zustande

Eine Zuordnung zwischen persistenten Zustanden und aktuellem Verarbeitungs-
zustand einer Mehrschicht-Transaktion ist einfach moglich. Da, wie bereits be-
schrieben wurde, beim Abschluf jeder Operation deren Ergebnisse dauerhaft ge-
speichert sind, mu3 diese Tatsache ebenso in der aufrufenden Transaktion
persistent vermerkt sein (um die Atomaritdt gewiahrleisten zu konnen). Somit ist
jeder Zwischenzustand, nach dem erfolgreichen Abschlufl einer Operation bzw.
Transaktion der néchst tieferen Ebene, persistent in dem Sinne, daf3 er einen Sy-
stemausfall iberdauert.

33

Formale Modelle konkurrierender Ablaufe
Ablaufe nach Korth et. al.

4.3 Ablaufe nach Korth et. al.

Einer der ersten Ansitze, erweiterte Transaktionsmodelle formal zu erfassen, um
Aussagen lber deren Korrektheit treffen zu koénnen stammt von Korth et. al.
[KoSp88] [KLS90]. Bemerkenswert an dem Ansatz ist dabei, dafl zwei Erweiterun-
gen im Vergleich zum read/write-Modell und den Mehrschicht-Transaktionen vor-
genommen werden:

1. Konsistenzbedingungen werden explizit modelliert.

2. Die Semantik von Kompensationsaktionen wird formal erfaf3t.

Grundsitzlich basiert das Modell auf geschachtelten Transaktionen allgemeiner
Art und eignet sich auch fiir den Bereich der versionierten Datenhaltung. Aller-
dings soll an dieser Stelle nicht ndher auf den Versionierungsaspekt eingegangen
werden.

4.3.1 Operationen

Die Operationen der Ausfiihrungsnotation nach Korth et. al. orientieren sich an den
Operationen der offen geschachtelten Transkationen. Die Erweiterungen beziehen
sich auf die Uberpriifung von Konsistenzbedingungen:

Operation Semantik

e: execute(t, Xy, X,) | Fiihrt die Subtransaktion x, innerhalb der Transaktion t

aus und gibt die zugehdrige Kompensationsoperation
X} an.

v: check(t, 1;) Uberpriift das Pridikat i, welches eine notwendige Be-
dingung zur Ausfiihrung von x; darstellt.

€: establish(t, o) Uberpriift das Pridikat o, und beauftragt die Ausfiih-

rungsmaschine mit der Sicherstellung. Dabei be-
schreibt oy den korrekten Endzustand von x.

c: commit(t) Macht die Anderungen von t dauerhaft und beendet t.

a: abort(t) Fiihrt Kompensationsoperationen aus und beendet t.

Tabelle 4-4: Operationen nach dem Modell von Korth et al.

4.3.2 Ausfuhrungen und ihre Semantik

Da bei dem Ansatz von Korth et. al. Konsistenzbedingungen explizit modelliert

34

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

werden, miissen die entsprechenden Operationen bei der Ablaufdefinition ange-
geben werden. Ebenso wird gefordert, dal Kompensationsaktionen zum Definiti-
onszeitpunkt bekannt sein miissen.

Definition 4-4 (TA nach Korth): Eine Interpretation 1(t) einer Transaktion t
nach Korth et. al. ist ein Tupel (A, <), wobei A eine geordnete Menge von Ope-
rationen beziiglich einer partiellen Ordnung “<*“ (siehe Definition 4-1) dar-
stellt:

A= {xj}, X; € {ea,c,Y,&

(3 X;<X;A = xi<xk)
(xl.e A4, x= e (xj € A,xj=) / (xke A,x,= e
xj<xm

A —
(xje A,xje {ca) (xme A) u
Eine Transaktion nach Korth et. al. fordert die Definition sowohl von Eingangs-
als auch Ausgangspréadikaten fiir Sub-Transaktionen. Grundsitzlich wird ange-
nommen, daf es sich bei den Sub-Transaktionen um offen geschachtelte Transak-
tionen handelt, die die Dauerhaftigkeits-Eigenschaft besitzen.

Beziiglich der Standardoperationen e, a und c ergeben sich somit keine Neuerun-
gen gegeniiber dem vorherigen Abschnitt. Die Operationen y und € verdndern da-
gegen die Semantik. Evaluiert ein Pradikat, welches mit einer y Operation gepriift
wird, zu “Falsch”, bedeutet dies, da3 die zugehorige Subtransaktion nicht ausge-
fiihrt und somit die aktuelle Transaktion nicht fortgefiihrt werden kann. Der ent-
sprechende Fall tritt ein, wenn die Priifung eines Pridikates auf Grund einer €
Operation fehlschldgt. Dieser Fall ist jedoch ein zusitzlicher Indikator fiir die Tat-
sache, daB3 ein Konflikt mit einer parallel laufenden Transaktion eingetreten ist
(siehe auch Abschnitt 3.1.1).

Da die persistenten Zustinde denen des vorherigen Abschnitts gleichen, werden
sie hier nicht weiter diskutiert.

4.4 Ablaufe in ConTracts

Wie in der weiteren Darstellung deutlich wird, vereinigt das ConTract-Modell die
Konzepte mehrerer anderer Ansétze. Ein Indikator flir diese Tatsache ist die Men-
ge an Grundoperationen, die zur Verfligung stehen.

Da in den bisher vorgestellten Notationen kein Programmiermodell definiert wur-
de, konnte auch keine Aussage iiber die moglichen KontrollfluBkonstrukte getrof-
fen werden, so dal3 die Definition der Interpretationen direkt vorgenommen wer-
den mufite. Im Falle der ConTracts gestaltet sich dies etwas komplexer, da mit

35

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

ConTracts ein Programmiermodell untrennbar verbunden ist und es somit notwen-
dig ist die Ableitung einer Interpretation von einer Definition genauer zu betrach-
ten.

Aus diesem Grund werden zundchst die Basiselemente und die Struktur eines Con-
Tracts eingefiihrt, um auf dieser Basis die Operationen und die Semantik einer ent-
sprechenden Maschine definieren zu koénnen. Eine gesonderte Einfithrung der
Grundelemente wird auch dadurch notwendig, dall ConTracts eine Trennung zwi-
schen ausfiihrenden Teilen (Steps) und Transaktionen vornehmen.

Grundsitzlich kann eine Schablone oder Template eines ConTracts mit einem be-
liebigen Hilfsmittel erstellt werden. In [WdRe92] und [Wach96] wird hierfiir bei-
spielsweise eine Modula-dhnliche Sprache verwendet, wahrend in [Schw95] eine
graphische Notation eingefiihrt wird. Beiden Ansidtzen gemeinsam ist jedoch die
Tatsache, da3 die Notationen in eine abstrakte Darstellung iibersetzt wird, sobald
eine Instanz eines ConTracts erzeugt wird. Deshalb beschéftigt sich dieser Ab-
schnitt nur mit der formalen Notation von ConTract-Instanzen.

4.4.1 Grundelemente von ConTracts

Wie bereits in [Schw93b],[Schw94],[Seif96] und [RSS97] eingefiihrt wurde, wird
die Beschreibung einer ConTract-Instanz auf der Basis eines Pradikat-Transitions-
Netzes (PTN) [Brau87] vorgenommen. Wie der Name impliziert, sind PTNs Er-
weiterungen von Petri-Netzen. Diese Erweiterung erfolgt dahin gehend, daB3 Ver-
bindungen zwischen Stellen und Transitionen mit Prddikaten annotiert sind. Somit
ergibt sich die Semantik. dal3 ein Token nur dann von einer Stelle zu einer Transi-
tion weiter geleitet werden kann, wenn das entsprechende Pradikat erfiillt ist.

Die weiteren Unterabschnitte erliutern nun die Anwendung des PTN-Prinzips im
Falle von ConTracts.

4.4.1.1 Steps

Steps stellen die aus Sicht der ConTract-Instanz atomaren Operationen dar. Sie
werden mit den Stellen eines PTN assoziiert. Steps modifizieren die privaten Da-
tenobjekte eines ConTracts (Kontext [ReSw95]) und liefern ein Resultat (z.B. er-
folgreich, nicht erfolgreich, Fehler usw.)

Definition 4-5 (Kontext): Der Kontext G- einer ConTract-Instanz C ist eine
Menge von Kontextvariablen k, mit:

k= (n,v,w, W)

Eine Kontextvariable ist ein Tupel (n,v,w,W), wobei n den Namen, v die Version,
w den aktuellen Wert und W den Typ (oder Wertebereich) der Kontextvariablen re-
prasentiert.m

36

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

Auf der Ebene der ConTract-Instanz wird in anwendungsorientierte und verwal-
tungsorientierte Steps unterschieden. Steps der anwendungsorientierten Klasse
haben dabei die Moglichkeit Datenobjekte aullerhalb der ConTract-Instanz mit-
tels sogenannter Resource Manager zu manipulieren. Verwaltungsorientierte
Steps operieren im Gegensatz dazu nur auf dem Kontext, wie z.B. ein Step zur In-
krementierung eines Schleifenzéihlers und haben deshalb auch keine zugeordnete
Kompensationssteps.

Eine wichtige Unterklasse der verwaltungsorientierten Steps sind die transakti-
onsbegrenzenden Steps: BOT, EOT, ABORT. Diese zeigen die Gruppierung von
Steps zu Transaktionen an und haben spezifische Resultate. Beispielsweise hat ein
Step vom Typ EOT zwei mogliche Resultate: erfolgreich und nicht erfolgreich,
wéhrend ein Step vom Typ ABORT nur ein Resultat hat': erfolgreich.

Definition 4-6 (Steps): eine Stepmenge S einer ConTract-Instanz C ist die Ver-
einigungsmenge der anwendungsorientierten Steps S und der verwaltungsori-
entierten Steps S'. Ein anwendungsorientierter Step s* hat eine zugeordnete
Menge von Resultaten R(s?), sowie eine Menge von Parametern I1(s%). Verwal-
tungsorientierte Steps s¥ haben ebenfalls eine zugeordnete Menge Parametern
und eine zugeordnete Menge von Resultaten die jedoch beschrinkt ist:

R(Sv) C {Success,nosuccess}
s'o {BOLEOT,ABORT,EOC,EVAL,ESTABLISH; g

Verwaltungssteps stellen interne Verarbeitungssteps fiir eine ConTract-Instanz
dar. Neben den transaktionalen Verwaltungssteps existiert fiir jede ConTract-In-
stanz noch mindestens ein spezieller Step der das Ende des ConTracts anzeigt
EOC. Dariiber hinaus gibt es weitere Verwaltungssteps, die die Evaluierung,
EVAL, bzw. Etablierung von Invarianten (s. Abschnitt 4.4.1.4) iibernechmen,
ESTABLISH.

Wie spéter noch deutlich werden wird (s. Abschnitt 4.4.3), konnen Steps auf
Grund von Schleifen in der Definition einer ConTract-Instanz mehrfach ausge-
fiihrt werden. Trotzdem ist es notwendig, die mehrfachen Ausfiihrungen des glei-
chen Steps unterscheiden zu konnen:

Definition 4-7 (Step-Instanz): Eine Step-Instanz a eines Steps a einer Con-
Tract-Instanz C ist eine eindeutig identifizierbare Version des Steps a und hat
dieselben Effekte. Auf der Menge der Step-Instanzen {d;} eines Steps sei eine
Totalordnung “<* definiert:

a;<a;=a wurde vor a ; erzeugt o

1. Diese Vereinbarung entspricht dem presumed abort Protokoll [MoLi83] ohne heuristische Ausgénge

37

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

4.4.1.2 Ereignisse

Fiir eine ConTract-Instanz existieren interne und externe Ereignisse. Interne Ereig-
nisse reprasentieren dabei das Resultat eines Steps wéahrend externe Ereignisse frei
definiert werden konnen.

Definition 4-8 (Ereignis): Eine Ereignismenge E einer ConTract-Instanz C ist

die Vereinigungsmenge der internen Ereignisse E' sowie der externen Ereignis-
se E°. Ein internes Ereignis €' ist ein Tupel (s, r), wobei s ein Step aus Scundr
aus der Menge der Resultate des Steps R(s) ist.
Ein externes Ereignis e° ist ein Tupel (0, b), wobei O einen abstrakten Step au-
ferhalb der ConTract-Instanz reprdsentiert und b ein Bezeichner des Ereignis-
ses ist. Ein Ereignis e reprdsentiert einen Wahrheitswert der angibt ob das Er-
eignis eingetreten ist oder nicht und ist somit ein Prddikat.

Fiir jede ConTract-Instanz muf3 mindestens das externe Ereignis “start” definiert
sein. Dies wird im weiteren mit dem Tupel (0, start) bezeichnet.

4.4.1.3 Ablaufpradikate

Zustinde einer ConTract-Instanz konnen mit Hilfe von Prddikaten beschrieben
werden. Dabei ist ein Pridikat eine Konjunktion von Priadikaten, von denen min-
destens eines ein Ereignis reprasentiert. Ebenso zuléssig sind Prédikate, die als lo-
gische Ausdriicke tiber Variablen des Kontext definiert sind. Beispielsweise wird
das Verzweigungspridikat einer If-Anweisung in der Definition eines ConTract-
Templates mit Hilfe eines solchen Kontext-Wert-abhingigen Pradikates imple-
mentiert.

Definition 4-9 (Ablaufpridikat): Ein Ablaufprddikat p der Menge von Ablauf-
prddikaten P einer ConTract-Instanz C ist eine Konjunktion von Prddikaten p,,
die eine Disjunktion von Prddikaten d; darstellen.

=P APy~ APIAp;=d Vvdyv...vd,)

Z’/. dj € E-v d = x kex J» XpoX] € ¢ C oder konstant 6 Vergleichsoperator
J

pl.ep<:>p5|(p=p1 APy A e ADEA o AP AP = Dy)
k
3 p.=d Ad eFE

p,€Ep i 1 1 C
Pradikate einer ConTract-Instanz stellen eine Konjunktion von Disjunktionen dar
(konjunktive Normalform). Es gilt die Einschrdnkung, daB3 zu mindest ein Pradikat
der konjunktiven Verkniipfung ein Ereignis ist. Somit konnen Pridikate nur nach
dem Eintritt eines speziellen Ereignisses erfiillt sein.

38

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

Die Elementrelation € aus Definition 4-9, die fiir konjunktiv verkniipfte Pradikate
eingefiihrt wurde, soll analog auch fiir Disjunktionen gelten.

4.4.1.4 Invarianten

Invarianten dienen in ConTracts zur Definition von Isolationsanforderungen und
sind den anwendungsorientierten Steps zugeordnet. D.h., wenn fiir einen Ablauf
die Notwendigkeit besteht, einen Zustand, der von einem Step “gesehen” wurde,
fiir einen spéter auszufithrenden Step wieder vorzufinden, kann dies mit Hilfe der
Invarianten dem Ausfiihrungssystem mitgeteilt werden.

Definition 4-10 (Ausgangsinvariante): Eine Ausgangsinvariante o der Menge
von Ausgangsinvarianten O einer ConTract-Instanz C ist eine Konjunktion
von Invariantenprddikaten p;:

Op =PI APy A ...Ap,, n21 .
Da die Details von Invarianten in Kapitel 6 noch néher besprochen werden, wird
an dieser Stelle nicht ndher auf die Pradikate p; eingegangen.

Da sich, wie oben schon angedeutet, Invarianten auf einander beziehen, es ist er-
forderlich zundchst ein Hilfskonstrukt einzufiihren.

Definition 4-11 (Pridikat-Referenz): Eine Prddikat-Referenz r(oy,p;) mit
D; € oy ist ein Prddikat mit folgender Eigenschaft:

I’(Ok,pl-) <P m

Eine Pradikat-Referenz nimmt genau die Wahrheitswerte an, die das Pradikat der
Ausgangsinvariante annimmt, welches referenziert wird. Mit diesem Hilfskon-
strukt kann nun eine Eingangsinvariante definiert werden.

Definition 4-12 (Eingangsinvariante): Eine Eingangsinvariante iy der Menge
von Eingangsinvarianten I einer ConTract-Instanz C ist eine Konjunktion von
Prddikaten der folgenden Form:

I = T ATyA AT, n=>1

vV r.=r(o
J
Eingangsinvarianten sind somit eine Konjunktion von Préddikatreferenzen, die
sich auf Pradikate beziehen, die Teil einer Ausgangsinvarianten sind. Einschran-
kungen beziiglich der Ausgangsinvarianten, die referenziert werden diirfen, erge-

ben sich aus den Beschrinkungen die fiir Ausfiihrungen gelten (siche Abschnitt
4.4.4).

39

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

4.4.1.5 Transitionen

Eine Transition t ist eine Zuordnung eines Ablaufpridikates zu einem Step der Art,
daB3, wenn das Pridikat erfiillt ist, der entsprechende Step ausgefiihrt werden kann.

Definition 4-13 (Transition): Eine Transition t der Menge von Transitionen T
einer ConTract-Instanz C ist ein Tupel (p,s), mit:

pPEP-rnse S -

Transitionen der Notation fiir ConTract-Instanzen entsprechen somit nahezu Tran-
sitionen aus den PTN bzw. den Petri-Netzen. Unterschiede ergeben sich im Hin-
blick auf das fork-Konstrukt. Wéhrend bei den urspriinglichen PTN, das fork-Kon-
strukt durch eine Transition mit mehreren Ausgédngen dargestellt werden kann, ist
in der Notation fiir ConTract-Instanzen die Verwendung mehrerer Transitionen mit
dem gleichen Pradikat notwendig.

4.4.1.6 Pfade

Der Begriff des Pfades wird als ein Hilfskonstrukt eingefiihrt, da Schleifenkon-
strukte, wie spater noch deutlich werden wird, mit Hilfe einer einfachen Partialord-
nung (siche Definition 4-1) nur schwer formal zu beschreiben sind.

Definition 4-14 (Pfad): Ein Pfad ist eine zweistellige Relation {a,b) iiber Steps.

(a,b) nabe S-= ‘ eElTCti = (p,b) apjﬂe p(pj =ee E)are=1(a,r)
(a,b) A {(b,c) = (a,c)Jr (a,b)Jr A {(b,c) = (a,c)Jr (a,b) v (a,b)+ = (a,b)*

(be) e (ad) = Iab) Adb.c) AJcd)" Elementfunktion

Mit einem Pfad wird somit die Tatsache beschrieben, dall der Abschluf eines Steps
a und somit ein “Resultatsereignis” (e=(a,r)) dieses Steps eine notwendige Bedin-
gung flir die Ausfithrung eines Steps b ist.

Definition 4-15 (Anfangsstep): Ein Step a ist ein Anfangsstep {* a) einer Con-
Tract-Instanz wenn gilt:

3 t=@aAr 3 (p.=eeEe)/\e=(<>,Start)
t.e Te p;ep J

Analog wird ein Pfad (*, b>* als Anfangsstiick einer ConTract-Instanz bezeich-
net, wenn gilt

A(*a) AHadh) wm

Ein Anfangsstiick einer ConTract-Instanz ist ein Pfad, fiir den gilt, da3 die Ausfiih-
rung des ersten Steps des Pfades direkt vom Startereignis der ConTract-Instanz ab-

40

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

hingt.

4.4.2 Strukturelle Beschrankungen

Die beliebige Kombination der bisher eingefiihrten Grundelemente kann wegen
semantischer Mehrdeutigkeiten nicht zugelassen werden. Da beispielsweise die
transaktionalen Operationen in ihrer Reihenfolge den Strukturbeschrinkungen
geschlossen geschachtelter Transaktionen unterliegen, sind entsprechende Ein-
schrinkungen notwendig.

4.4.2.1 Beschrankungen fur Invarianten

Invarianten sind notwendigerweise anwendungsorientierten Steps zugeordnet.
D.h. ein Step kann maximal eine Ausgangsinvariante und eine Eingangsinvariante
besitzen. Da aulerdem Eingangsinvarianten nur {iber Referenzen auf Ausgangs-
invarianten aufgebaut werden konnen, darf die Evaluierung einer Eingangsinvari-
ante erst erfolgen wenn alle referenzierten Ausgangsinvarianten etabliert wurden.

Bedingung 4-1: Fiir alle Invarianten einer ConTract-Instanz C miissen folgen-
de Bedingungen erfiillt sein':

. a a
(ik‘ev’]C)EKlk,s)/\se (ScNS)A(okgOC)E|<S’Ok>ASE (ScNS)

I 3 (o) e (%0,
(Vl-G I, € IC’ri = (Ol,pj)) (<Ol,lk>) kel ! [

Anmerkung: Der zweite Teil der Bedingung driickt aus, dal} alle referenzierten
Ausgangsinvarianten vor der referenzierenden Invarianten etabliert sein miissen.
Das verwendete Kriterium scheint etwas komplex zu sein, ist jedoch notwendig,
da die Pfadrelation keine Schleifen beriicksichtigt.

4.4.2.2 Transaktionale Blocke

Obwohl nicht-transaktionale Ausfithrungsteile in der urspriinglichen Fassung des
ConTract-Modells angedacht waren und auch in neuesten Erweiterungen wieder
aufgegriffen wurden [Seif96] [RSS97], konnen diese im Rahmen dieser Arbeit
nicht berticksichtigt werden. Entsprechend restriktiv sind die hier vorgestellten
Strukturbeschrankungen.

Definition 4-16 (Transaktionaler Block): Ein transaktionaler Block T einer

1. Anstatt der Schreibweise EVAL(i) und ESTABLISH(0) wird hier nur kurz i bzw. o verwendet.

41

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

ConTract-Instanz C ist ein Tupel (s%, S;, T,, N;) mit folgenden Eigenschafien:

S, SSMEOCYAT, cToAN, =S As" € S as" = BOT(1)

a
A)

\Y <Sa,Sj>*/\
(s € SMs“H

N, ={s,s ns.=EOT(t)As,=ABORT(1)

A Sp =
(t;€ To\Tpt; = (pysp) ASLESY)

A i3 p.=@G.r)As. €N
(€ Totp = (Brs,) AS, € S (pep) ' 7070t

v s.#ES, =>p,Np, =
(1t € Tty = P s)N ;= (pps) Aspse Ny ! K70k

\v4 3 mit
(s;€ S\N, U {s“}) As, € {BOLEOT,ABORT,)(t' = (¢*,S,T.N)

S'CST/\TCTT/\N'QST\NT/\(Si=l‘al‘\/Sl-E N)

s¢ heifsit Anfangsstep des Blockes und jedes Element aus Ny heifit Endstep des
Blockes.m

Ein transaktionaler Block ist somit eine Menge von Steps und Transitionen mit der
Eigenschatft, daB3 es genau einen Step gibt (BOT) mit dem der Block beginnt, und
von dem aus alle anderen Steps des Blockes erreicht werden konnen. Zusétzlich
wird gefordert, da3 es nur einen Step gibt, der den transaktionalen Block erfolg-
reich abschlieBen kann (EOT), und ebenso existiert nur eine Step der die Transak-
tion abbricht (ABORT). Die Einschrankung der Vorbedingung zur Ausfiihrung der
Steps in den zugeordneten Transitionen schlief3t aus, da zwei Endsteps gleichzei-
tig ausgefiihrt werden konnen. Ein Verlassen des primitiven transaktionalen
Blocks ist nur iiber Endsteps moglich (notwendige Bedingung fiir die entsprechen-
den Transitionen). Steps, die weder Anfangs- noch Endsteps sind, konnen transak-
tionalen Verwaltungssteps sein, wenn sie wiederum Anfangs- oder Endstep eines
transaktionalen Blockes sind, der vollstindig in dem anderen enthalten ist.

Somit reprasentiert ein transaktionaler Block eine Zusammenfassung von Steps zu
einer geschlossen geschachtelten Transaktion.

4.4.2.3 Kompensationsblock

Wie bereits in Abschnitt 3.6.2 eingefiihrt wurde, mufl zu jedem anwendungsorien-
tierten Step ein sogenannter Kompensationsstep definiert sein. Da diese Kompen-
sationssteps im Bedarfsfall ebenso unter dem Schutz einer ACID-Transaktion ab-

42

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

laufen, gibt es fiir ihre Représentation in einer ConTract-Instanz entsprechende
Anforderungen.

Definition 4-17 (Kompensationsblock): Ein Kompensationsblock k der Menge
der Kompensationsblocke K - einer ConTract-Instanz C ist ein transaktionaler
Block v =(s%, S, Ty, Ny) mit:

a

3 seS'A Y sl.eES

s€ S, s; € S \s}

Die Vereinigung aller Steps einer ConTract-Instanz, die in Kompensations-
blocken enthalten sind, wird mit S bezeichnet:
Sc = UJ 3 S; €Sy

1

(s (ke Kok =("S,.TNp) .

Somit enthilt ein Kompensationsblock nur einen anwendungsorientierten Step,
der den eigentlichen Kompensationsstep darstellt.

Die Zuordnung von Kompensationsblocken zu Steps erfolgt nicht {iber die Defi-
nition eines Pfades sondern rein deklarativ.

Definition 4-18 (Kompensationszuordnung): Eine zweistellige Relation
comp(s, k) ist die Zuordnung eines Kompensationsblockes k zu einem Step s.

4.4.2.4 Struktur einer ConTract-Instanz

Mit den eingefiihrten Definitionen und Bedingungen lassen sich nun die notwen-
digen strukturellen Einschrankungen einer ConTract-Instanz formulieren.

Definition 4-19 (ConTract-Instanz): Eine ConTract-Instanz C ist ein 8-Tupel
(Sc. T, Ko Ec, Pe, Io, O¢, G¢), wobei S eine Menge von Steps, T eine Men-
ge von Transitionen, K - eine Menge von Kompensationsblocken, E - eine Men-
ge von Ereignissen, P eine Menge von Ablaufprddikaten, I~ eine Menge von
Eingangsinvarianten, O eine Menge von Ausgangsinvarianten und Cc der
Kontext ist.®

Um die Einschriankungen beziiglich der Struktur einer ConTract-Instanz zusam-
menzufassen wird ein sogenanntes Wohlgeformtheitskriterium (engl. well-for-
medness) eingefiihrt. Folgende Beschrinkungen beschreiben dabei die notwendi-
gen Kriterien fiir die Wohlgeformtheit:

Bedingung 4-2: Alle anwendungsorientierten Steps sind in einem transaktio-
nalen Block enthalten:

\v 3 s; € ST
a a
(s;€ SCmS)(T= (s ,ST,TT,NT)) u

43

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

Bedingung 4-3: Fiir jeden anwendungsorientierten Step, der nicht in einem
Kompensationsblock enthalten ist, gibt es einen zugeordneten Kompensations-

block:

\v = comp(s.k.)
(s,€ (S\S¢) nsHhi € Ke) S

Bedingung 4-4: Es gibt mindestens eine Transition, die das Startereignis als
Triggerbedingung enthiilt:

3 t=@s)A I e = (Ostart)
(te Tp) eep u

Bedingung 4-5: Alle Steps, die nicht in einem Kompensationsblock enthalten
sind, sind von dem Startereignis erreichbar und es existiert ein Endstep der Con-
Tract-Instanz, der von diesen Steps erreichbar ist:

Vo (R A
(s;€ S-\S¢)
B v (5,5,)"
(s,€ SA\S¢e.s, = EOC(C)) (s;€ SMScu {s, 1) u

Definition 4-20 (Wohlgeformtheit): Fine ConTract-Instanz ist wohlgeformt,
wenn sie die Bedingungen 4-1 bis 4-5 erfiillt.m

4.4.3 Interpretation einer ConTract-Instanz

Im Gegensatz zu den bisher eingefiihrten formalen Ablaufnotationen ist es durch
die exakte Definition einer ConTract-Instanz moglich, die zugehorige Definition
einer Interpretation ebenfalls sehr exakt zu fassen.

Hierzu soll zunichst der Vorgang der Interpretation durch ein Regelwerk erlautert
werden:

Regel 4-1 (Ereignisregel): Tritt ein Ereignis e aus der Menge der Ereignisse E
einer ConTract-Instanz C ein, werden alle Transitionen aus T ermittelt, die das
Ereignis in ihrem Prddikatteil enthalten. Fiir jede dieser Transitionen wird das
Ereignis durch den Wahrheitswert “TRUE” ersetzt.

Regel 4-2 (Transitionsregel): Ist das Prdidikat p einer Transition t=(p,a) aus
der Menge der Transitionen T einer ConTract-Instanz C erfiillt, wird eine Step-
Instanz a fiir den Step a erzeugt und zur Ausfiihrung gebracht. In allen Transi-
tionen die in ihrem Prddikatteil ein Resultatsereignis des Steps enthalten
e=(a,r), wird der Stepteil in dem Ereignis durch die Stepinstanz ersetzt e=(a,r).
Das Prddikat p wird durch seine urspriingliche Definition ersetzt.

Regel 4-3 (Stepausfiihrung): Soll eine Step-Instanz ausgefiihrt werden (Regel

44

4 Formale Modelle konkurrierender Ablaufe

Ablaufe in ConTracts

4-2) so wird nach dem Typ der Step-Instanz unterschieden.

Handelt es sich um einen anwendungsorientierten Step wird ein Auftrag an ei-
nen Step-Server veranlafit (execute).

Ist es eine transaktionale verwaltungsorientierte Step-Instanz wird die entspre-
chende transaktionale Operation ausgelost (BOT, EOT, ABORT).

Bei einer verwaltungsorientierten Step-Instanz beziiglich Invarianten wird eine
entsprechende Operation zur Etablierung bzw. Evaluierung ausgelost.

Regel 4-4 (Kompensationsregel): Tritt das externe Ereignis e=(0,compensa-
te) ein, werden alle aktiven Transaktionen abgebrochen und die Kompensati-
onsblocke in umgekehrter Reihenfolge zu den Step-Instanzen ausgefiihrt, denen

sie zugeordnet sind.

Somit ergeben sich folgende Basisoperationen einer abstrakten Maschine zur
Ausfiihrung von ConTract-Instanzen.

Operation

Semantik

e: execute(C.t, éj, k)

Fiihrt die Step-Instanz g einer ConTract-Instanz C in-

nerhalb der Transaktion t aus und gibt den zugehdrigen
Kompensationsblock k an.

v: check(C, t,ij,éj)

Uberpriift die Invariante ij, welche eine notwendige
Bedingung zur Ausfiihrung eines Step-Instanz &; dar-
stellt.

€: establish(C, t,oj,ﬁj)

Uberpriift die Ausgangsinvariante o; und beauftragt

die Ausfiithrungsmaschine mit der Sicherstellung. Da-
bei beschreibt o; einen Zustand nach der Ausfiihrung

von ﬁj.

b: BOT(C,t)

Beginnt eine Transaktion beziiglich einer Elterntrans-
aktion. Wenn t einen Null-Wert annimmt handelt es
sich um eine Top-Level-Transaktion

c: EOT(C,t)

Beendet t und macht die Anderungen von t dauerhaft,
wenn es sich bei t um eine Top-Level-Transaktion han-
delt.

a: abort(C,t)

Macht die Anderungen von t riickgingig.

k: compensate(C)

Leitet die Kompensation einer ConTract-Instanz ein.

Tabelle 4-5: Operationen fiir das ConTract Modell

45

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

Operation Semantik

f: EOC(C) Beendet die Ausfiihrung einer ConTract-Instanz C und
16scht Invarianten.

Tabelle 4-5: Operationen fiir das ConTract Modell

Wie Tabelle 4-5 zu entnehmen ist, bestehen die Operationen einer abstrakten Ma-
schine zur ConTract-Bearbeitung aus einer Kombination der Operationen nach
Korth et. al. (siche Abschnitt 4.4.3) und den Operationen zur Abwicklung ge-
schlossen geschachtelter Transaktionen. Neu hinzugekommen sind lediglich eine
explizite Operation zur Kompensation sowie eine Operation zur Beendigung der
Bearbeitung einer ConTract-Instanz.

Erwdhnenswert ist dabei die Besonderheit, da3 die Operationen zur Etablierung
bzw. Evaluierung von Invarianten unter der gleichen ACID-Transaktion ablaufen
wie die Ausfiihrung der Step-Instanz, der sie zugeordnet sind (siche Bedingung 4-1
und 4-3).

4.4.4 Ausfuhrungen und ihre Semantik

Eine formale Darstellung der Ausfiihrung einer Contract-Instanz bzw. der Interpre-
tation derselben, abstrahiert noch weiter von dem urspriinglich definierten Templa-
te. So ist aus dieser Interpretation nicht mehr nachvollziehbar, wie die Reihenfolge
der Abarbeitung zustande kam.

Definition 4-21 (ConTract-Interpretation): Eine Interpretation 1(C) einer
wohlgeformten ConTract-Instanz C ist ein Tupel (4,<), welches durch die Re-
geln 4-1 bis 4-4 erzeugt wurde. Die Menge A={eY,€,b,c,a,k,f} stellt eine geord-
nete Menge von Operationen o beziiglich der Partialordnung “<“ mit folgender
Eigenschaft dar:

<0i’0k> inC= 5i<5k [

Existiert ein Pfad zwischen zwei Operationen o; und oy in einem ConTract-Tem-
plate, so gilt die Partialordnung fiir alle Instanzen dieser Operationen.

Da die Interpretation zwingend nach den eingefiihrten Regeln aus einer Instanz
hervor ging, sind in dieser Definition keine zusétzlichen Einschrankungen notwen-
dig. Da auch die Semantik der Operationen bereits mit in den Regeln besprochen
wurde, soll auch hier keine weitere Ergdnzung gemacht werden.

Anders verhilt sich dies bezliglich der Semantik des Ablaufes als Ganzes. Fiir Con-
Tracts wird die Fortsetzbarkeit garantiert, was bedeutet, dal nach einem System-
ausfall alle offenen Transaktionen zuriickgesetzt werden und die Verarbeitung
dann nach Vorne fortgesetzt wird, d.h. der Ablauf wird damit fortgesetzt, da3 die

46

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

BOT Operationen der abgebrochenen Top-level-Transaktionen erneut ausgefiihrt
werden.

Auch die Reaktion auf das Kompensationsereignis soll noch etwas eingehender
besprochen werden. Wie bereits gesagt, hilt die compensate Operation einen ak-
tiven Ablauf an, bricht alle aktiven Transaktionen ab und setzt den Ablauf mit der
Abarbeitung der Kompensationsblocke fort. Dies kann als eine Erweiterung der
Menge A sowie der Partialordnung aufgefal3t werden und somit als eine Modifi-
kation des Ablaufs selbst. Diese spielt insbesondere deswegen eine Rolle, da im
Fehlerfalle der Vorgang auch wihrend der Kompensation wieder fortsetzbar und
somit wieder herstellbar sein muf3. Somit erzeugt die Ausfiihrung der compensate-
Operation einen persistenten Zustand, aus dem sich die Kompensationsoperatio-
nen und ihre Abarbeitungsreihenfolge ableiten lassen.

4.4.5 Ein Anwendungsbeispiel

Anhand des eingefiihrten Beispiels aus Kapitel 2 kann ein Eindruck davon gege-
ben werden, wie die Umsetzung von der Definition der Schablone bis hin zu der
Interpretation erfolgt. Da die vollstindige Préasentation der verschiedenen Stufen
der Abstraktion an dieser Stelle zu umfangreich werden wiirde, beschrinkt sich
die Diskussion auf die Umgebung eines spezifischen Steps: “Antragstellung” (sie-
he Abbildung 2-1 auf Seite 8).

Der Step “Antragsstellung” soll nach dem dargestellten KontrollfluB nach dem
Step “Dokumentenbereitstellung” und vor dem Step “Uberpriifung der Zulissig-
keit” ausgefithrt werden. Wie in Tabelle 2-1 auf Seite 11 zusitzlich erlautert wird
ist die zugeordnete Kompensation der leere Step. Da keine weiteren Aussagen
iber Transaktionsgrenzen und Invarianten getroffen werden, wird implizit sowohl
angenommen, dal3 der Step unter einer Top-Level-Transaktion ausgefiihrt wird,
als auch daB die Invarianten dem Priadikat “TRUE” entsprechen und somit einen
konstanten Wahrheitswert annehmen.

4.4.5.1 Darstellung als Instanz

Umgesetzt in die Notation fiir ConTract-Instanzen ergibt dies fiir die betrachtete
Teilmenge der Steps:.

Step Bedeutung
a;: EOT(ty) Beendet vorhergehende Transaktion
a,: BOT(t,) Beginnt neue Transaktion

Tabelle 4-6: Steps der ConTract-Instanz fiir das Beispiel

47

Formale Modelle konkurrierender Ablaufe

Abldufe in ConTracts
Step Bedeutung
az: EVAL(1=TRUE) Evaluiert Eingangsinvariante von “Antrags-
stellung”
ay: “Antragsstellung” Eigentlicher Step

as: ESTABLISH(0o=TRUE) Etabliert Ausgangsinvariante

ag: EOT(ty) Beendet die Transaktion um “Antragsstel-
lung”

a;: ABORT(ty) Setzt Transaktion zuriick

ag: BOT(t3) Beginnt Transaktion fiir Kompensations-
step

ag: NullStep Kompensationsstep

ajo: EOT(t3) beendet Transaktion fiir Kompensationsstep

a1 ABORT(t5) Setzt Transaktion fiir Kompensationsstep
zuriick

Tabelle 4-6: Steps der ConTract-Instanz fiir das Beispiel

Diesen Steps sind natlirlich entsprechende Resultatsereignisse zugeordnet. Um die
Darstellung nicht unnétig komplex zu gestalten, werden nicht alle Fille aufgefiihrt.
So haben beispielsweise die Steps fiir die Kompensation entsprechende Ereignisse
wie die “normalen” Steps und allen Steps auBBer den ABORT-Steps ist normaler-
weise auch ein “nicht erfolgreich” Ereignis zugeordnet.

Ereignis Bedeutung

e;: (a;, SUCCESS) Vorhergehende Transaktion erfolgreich

e5: (ay, SUCCESS) Beginn neuer Transaktion erfolgreich

e3: (a3, SUCCESS) Evaluierung der Eingangsinvarianten erfolgreich

ey4: (a4, SUCCESS) Eigentlicher Step war erfolgreich

es5: (a4, NOSUCCESS) | Step “Antragsstellung” war nicht erfolgreich

€6 (a5, SUCCESS) Etablierung der Ausgangsinvariante war erfolgreich

Tabelle 4-7: Ereignisse der ConTract-Instanz fiir das Beispiel

48

4 Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

Ereignis Bedeutung

e7: (ag, SUCCESS) Transaktion um “Antragsstellung” erfolgreich abge-
schlossen

eg: (ag, NOSUCCESS) | Abschluf} der Transaktion nicht erfolgreich.

€9: (a7, SUCCESS) Transaktion zuriickgesetzt

Tabelle 4-7: Ereignisse der ConTract-Instanz fiir das Beispiel

Mit Hilfe der Ereignisse und der Steps konnen nun die Transitionen definiert wer-
den. Auch hier wird wiederum auf die explizite Darstellung der Transitionen fiir
den Kompensationsblock verzichtet, da die entsprechenden Transitionen analog
festgelegt sind.

Transition Bedeutung

t1: (€1,87) Erfolgreicher Abschlufl der vorigen Transaktion
startet die Transaktion fiir “Antragsstellung”

ty: (€5, S3) Wenn Transaktion begonnen wurde, evaluiere Inva-
riante

t3: (€3, S4) Wenn Evaluierung erfolgreich, starte “Antragsstel-
lung”.

t4: (€4, S5) Wenn “Antragstellung” erfolgreich leite Etablierung
der Ausgangsinvarianten ein.

ts: (€5, S7) Wenn “Antragstellung” nicht erfolgreich setze
Transaktion zuriick

tg: (€6, Sg) Wenn Etablierung der Ausgangsinvariante erfolg-
reich, schlie3e Transaktion ab

t+: (e, Nextstep) Wenn Transaktion um “Antragsstellung” erfolgreich
abgeschlossen, starte Nextstep

tg: (eg, Sp) Transaktionsabschluf3 nicht erfolgreich, somit
Transaktion zurlickgesetzt. Starte Transaktion er-
neut.

to: (€9, S9) Transaktion zurlickgesetzt; Neustart

Tabelle 4-8: Transitionen der ConTract-Instanz fiir das Beispiel

49

Formale Modelle konkurrierender Ablaufe
Ablaufe in ConTracts

4.4.5.2 Grafische Darstellung

Da die Zusammenhinge der mengenorientierten Darstellung nur schwer nachvoll-
ziehbar sind, wird in Abbildung 4-2 eine grafische Reprisentation des Ausschnitts
der ConTract-Instanz gegeben.

transaktionaler Invarianten Anwendungs-
Step Step Step

@ @

Abbildung 4-2: Grafische Darstellung des Beispielausschnitts

4.4.5.3 Interpretation

Das Problem der Interpretation einer ConTract-Instanz ist bereits an dem relativ
simplen Ausschnitt zu erkldren. Betrachtet man die Transitionen tg und tq so stellt
man fest, dal durch diese Transitionen ein Zyklus in der Instanz entsteht, d.h. die
Steps a, bis a; konnen mehrfach durchlaufen werden. Ebenso wird durch die Defi-
nition mehrerer Transitionen, die auf unterschiedlichen Ereignissen eines Steps de-
finiert sind eine bedingte Verzweigung modelliert, so dal auf Grund der vorliegen-
den Spezifikation des Ausschnittes der Instanz nicht festgelegt ist, wie die
Interpretation, die durch eine tatsdchlichen Ausfiihrung entsteht, aussehen wird.
Trotzdem soll fiir eine fiktive Ausfiihrung eine Darstellung einer Instanz gegeben
werden.

Fir die fiktive Ausfiihrung soll angenommen werden, daf3 die Steps a; bis a5 zu-
néchst erfolgreich durchlaufen werden und dann die Ausfithrung von Step a4 fehl-
schldgt. Anschlieend soll Step a5 erfolgreich durchlaufen werden und die nachfol-
genden Steps a, bis ag ebenfalls erfolgreich abgeschlossen werden.

Folgende Tabelle gibt somit Aufschluf} iiber die Menge A der ausgefiihrten Opera-

50

4 Formale Modelle konkurrierender Ablaufe
Weitere Notationen

tionen:.
tep- von .
Ir?sffnz St(;:p Operation
aj a 0,;=c=EOT(C,ty)
a1 ar 0,=b=BOT(C.t,)
a3 1 as 03=y=check(C,t,,1)
841 ay og=e=execute(C,ty,a4 1,k)
a7 a; os=a=abort(C,t,)
89 a 0=b=BOT(C.t,)
a3 as 07=y=check(C,t,,1)
849 ay og=e=execute(C,ty,84 »,k)
as | as og=¢=establish(C,t,,0)
86,1 ag 010=c=EOT(C,t,)

Tabelle 4-9: Operationen einer Interpretation

Die geltende Partialordnung ist in diesem Fall intuitiv durch die Indizierung der
Operationen klar. Bei dem betrachteten Ausschnitt ist dies auch trivial, da keine
Steps parallel ausgefiihrt wurden und somit die Partialordnung einer Totalordnung
entspricht.

4.5 Weitere Notationen

Neben den vorgestellten Notationen gibt es noch weitere, die jedoch entweder kei-
nen weiteren Beitrag zu dem eigentlichen Thema dieser Arbeit leisten oder aber
nur zur Beurteilung anderer Modelle entwickelt wurden. Trotzdem werden sie an
dieser Stelle beriicksichtigt, um einen tieferen Einblick in die Téatigkeiten auf die-
sem Gebiet zu geben.

4.5.1 ECA-Regeln

AuBerst flexibel ist der Ansatz von Dayal et. al. [DHL90][DHL91]. Durch die
Einfilhrung der sogenannten ECA-Regeln (Event-Condition-Action) erhidlt man
potentiell die gleiche Ausdrucksméchtigkeit wie durch die hier verwendeten PTN
zur Beschreibung einer ConTract-Instanz. Allerdings wird keine Aussage iiber

51

Formale Modelle konkurrierender Ablaufe
Weitere Notationen

Einschrinkungen gemacht und auch kein Kriterium fiir die Wohlgeformtheit defi-
niert, so dal3 als Folge davon auch keine Korrektheitsaussagen moglich sind.

Eine weitere Eigenschaft der ECA-Regeln verschirft dieses Problem weiter. Durch
die Einfiihrung sogenannter Kopplungsmodi (engl. coupling modes), die es ermog-
lichen, die Auswertung einer Regel zu verzogern oder sogar von einer aktuell lau-
fenden Transaktion abzuspalten, 148t sich keine Aussage mehr iiber die (transaktio-
nale) Semantik eines Ablaufs treffen.

Trotz der Tatsache, daB es auf der Basis der ECA-Regeln nicht moglich ist, Aussa-
gen die Korrektheit eines Ablaufs zu treffen, sind diese mit als Einzigste der hier
vorgestellten Notationen (auler den ACID-Transaktionen) zumindest teilweise im-
plementiert - sogenannte aktive Datenbanksysteme [Daya88] bieten meist eine
Teilmenge der Moglichkeiten der ECA-Regeln an.

4.5.2 ACTA

Der sogenannte ACTA-Formalismus [ChRa90][ChRa92] wurde entwickelt, um
den Vergleich von transaktionalen Ablaufmodellen zu ermdglichen. Da der Forma-
lismus im Kontext der “erweiterten Transaktionsmodelle” (engl. extended transac-
tion models) entstand, basiert der Ansatz auf der axiomatischen Erfassung der Mo-
delle und der priadikatenlogischen Beschreibung der Abhédngigkeiten der
transaktionalen Operationen. Somit werden die Modelle nicht als Ganzes von dem

Formalismus beschrieben, sondern nur ihre transaktionalen Eigenschaften (siche
Abschnitt 2.2.2.4).

Eine Besonderheit von ACTA ist die Méglichkeit, auch Datenkonflikte formal er-
fassen zu konnen, was durch das Invariantenkonzept der ConTracts abgedeckt
wird. ACTA verfolgt in diesem Bereich aber einen sehr flexiblen Ansatz, wodurch
die Modellierung verschiedenster Konfliktrelationen (siehe Kapitel 5) moglich
wird.

Neuere Arbeiten versuchen, den Ansatz fiir die Synthese von Transaktionsmodel-
len zu erschlieBen [ChRa94], um so aus einer formalen Spezifikation der Anforde-
rungen ein Transaktionsmodell generieren zu konnen.

4.5.3 Abhangigkeitsregeln nach Klein

Eng verwandt mit dem ACTA-Modell ist der Ansatz von Klein [Klei91]. Der An-
satz von Klein hat zum Ziel, die transaktionale Semantik verteilter Ablaufe formal
zu beschreiben. Die dazu verwendete Notation basiert ebenfalls auf der Definition
von Abhéngigkeiten transaktionaler Ereignisse, wie z.B. create, commit und abort.
Unterschiede zu dem in ACTA gewéhlten Ansatz ergeben sich bei der Miachtigkeit
der gewihlten Notation. Wahrend ACTA auf Pridikatenlogik basiert, verwendet
Klein Ausdriicke der Aussagenlogik zur Beschreibung der Abhédngigkeiten.

52

4 Formale Modelle konkurrierender Ablaufe
Weitere Notationen

Erwihnenswert ist jedoch, da3 die Arbeiten von Klein in eine Architektur eines
Laufzeitsystems umgesetzt wurden [Giint96], wihrend das ACTA Modell bisher
nur zu theoretischen Beurteilungen oder zu Spezifikationen eingesetzt wird.

53

Korrektheit 5
Grundlagen

5 Korrektheit

Die im vorigen Kapitel eingefithrten Modelle dienen dazu Vorgéinge formal zu er-
fassen. Dariiber hinaus stellen sie aber auch eine Notation zur Verfiigung, die eine
Automatisierung ermoglicht. Im Folgenden soll die Definition eines Vorganges,
die mittels einer der formalen Notationen erstellt wurde, als Ablauf bezeichnet wer-
den. Die automatisierte Abwicklung eines solchen Ablaufs wird als Ausfiihrung
bezeichnet.

Die Besonderheit transaktionaler Ablaufmodelle besteht darin, dafl diese zumin-
dest teilweise die Semantik von Ablaufen festlegen. Damit fiir eine Ausfiihrung be-
urteilt werden kann, ob die semantischen Vorgaben erfiillt wurden, wird tiblicher-
weise ein formales Korrektheitskriterium eingefiihrt. In diesem Kapitel werden
verschiedene solcher Korrektheitskriterien vorgestellt und ein neues Kriterium fiir
das ConTract-Modell entwickelt.

Wie sich im Verlauf dieses Kapitels noch zeigen wird, kénnen zwei Arten von Kri-
terien unterschieden werden:

1. Kriterien, die es erlauben, die Korrektheit abgeschlossener Ausfiihrungen zu
beurteilen.

2. Kriterien, die es zu jedem Zeitpunkt einer Ausfiihrung erlauben, die Korrekt-
heit zu beurteilen.

Da das Ziel transaktionaler Ausfithrungsmodelle die Bereitstellung eines Laufzeit-
systems zur Garantie der semantischen Vorgaben ist, liegt klar auf der Hand, daf3
Kriterien der ersten Kategorie schlecht fiir die reale Umsetzung geeignet sind. Al-
lerdings lassen sich mit diesen Kriterien die Menge von zulédssigen Abldufen relativ
einfach definieren weshalb sie als Referenz herangezogen werden.

5.1 Grundlagen

Trotz der Unterschiede im Detail beruhen alle Korrektheitskriterien auf @éhnlichen
Grundbegriffen und formalen Konstruktionen. Dieser Abschnitt stellt diese ge-
meinsamen Grundbegriffe vor.

5.1.1 Historien

Wie eingangs dieses Kapitels erwidhnt, beschéftigen sich Korrektheitskriterien mit
der Beurteilung von Ausfiithrungen. Zu diesem Zweck ist es zundchst notwendig,

54

5 Korrektheit
Grundlagen

eine Ausfiihrung selbst formal beschreiben zu konnen. Ein Ansatz hierfiir ist die
Definition sogenannter Historien [BHG87], die urspriinglich zur Entwicklung von
Korrektheitskriterien fiir ACID-Transaktionen entwickelt wurden. Verallgemei-
nert man aber das Konzept der Historien auf der Basis der im Kapitel 4 eingefiihr-
ten abstrakten Maschinen, lassen sich damit sehr viele transaktionale Ablaufmo-
dellen beschreiben.

Definition 5-1 (Historie): Eine Historie H eines Systems zur Ausfiihrung von
Abldufen, die mit einer bestimmten abstrakten Maschine ausgefiihrt werden
konnen, ist ein Partialordnung (X, <p), wobei X die Menge der von der abstrak-
ten Maschine ausgefiihrten Operationen und “<y*“ eine bindre, nicht reflexive
und transitive Relation ist. Die Partialordnung bestimmt die Reihenfolge, in der
die Operationen ausgefiihrt wurden, sofern diese Reihenfolge bedeutsam ist.®

Eine wichtige Grundannahme bei Historien ist, dal Operationen der abstrakten
Maschine atomar sind und somit nur dann in der Historie erscheinen, wenn sie
vollstindig ausgefiihrt wurden. Da die parallele Bearbeitung von Operationen zu-
gelassen wird, handelt es sich bei der Relation “<y;* nicht um eine Totalordnung.

Definition 5-2 (Prifix): Ein Prdfix H’ einer Historie H ist eine Partialordnung
(X', <’) mit:

Z’gZ/\(A a<Hb<:>a<’b)/\(\ v b<Ha:>beZ)
abe X aex be .

Ein Préfix einer Historie ist eine Einschrinkung der Menge der Operationen der-
art, daB3 fiir jede Operation in der reduzierten Menge auch alle Vorgingeroperatio-
nen beziiglich der Ordnungsrelation < in der reduzierten Menge enthalten sind.

5.1.2 Kommutativitat und Konflikte

Als Basis aller hier besprochenen Korrektheitskriterien dienen Historien, deren
Korrektheit trivialerweise erfiillt ist. Eine konkret gegebene Historie gilt dann als
korrekt, wenn sie durch eine endliche Anzahl von Umordnungen der Operationen
in eine als korrekt definierte Historie liberfiihrt werden kann.

Hierzu muf} zunichst gekliart werden, welche Umordnungen zuldssig sind und
welche nicht. Ein weit verbreitetes Kriterium ist dabei die Kommutativitit
[Papa86] von Operationen:

Definition 5-3 (Kommutativitit): Zwei Operationen a und b einer Historie H
sind kommutativ, wenn gilt, daf3 das Ergebnis der Ausfiihrungsfolge “ab’ mit
dem Ergebnis der Ausfiihrungsfolge “ba’ identisch ist.®

Umgangssprachlich formuliert bedeutet die Kommutativitiat zweier Operationen,
daB es keine Rolle spielt ob zuerst die eine und dann die andere Operation ausge-
fithrt wird oder ob dies umgekehrt geschieht. Aus formaler Sicht liegt die eigent-

55

Korrektheit 5
Grundlagen

liche Problematik in der Definition der Identitdt. Obwohl intuitiv angenommen
wird, dal3 hierbei die Identitdt der Werteauspragungen aller beriihrten Datenobjekte
gemeint ist, muf} dies nicht unbedingt der Fall sein. Beispielsweise konnen die zwei
Ausfiihrungsfolgen aus einer Anwendungssicht identisch in dem Sinne sein, daf3
nur eine bestimmte Bedingung erfiillt sein muf (z.B. Kontostand groBer 1000). So-
mit wird der Begriff der Identitét irrefiihrend und es bietet sich an, ein alternatives
Kriterium zu benutzen.

Eine weit verbreitete Alternative zur Verwendung der Kommutativitét als Basis ei-
nes Korrektheitskriteriums ist die Einfiihrung einer sogenannten Konfliktrelation.
Statt zu definieren welche Operationen vertauscht werden konnen, wird festgelegt,
welche Operationen nicht vertauscht werden diirfen.

Definition 5-4 (Konfliktordnung): Stehen zwei Operationen a und b einer Hi-
storie H in einem Konflikt beziiglich einer Konfliktrelation conflict(a,b), so muf3
entweder a <y b oder b <y a gelten und a und b diirfen in H nicht vertauscht
werden.®

Kriterien, die auf Konfliktrelationen basieren, definieren eine Historie dann als
korrekt, wenn sie durch endlich viele Vertauschungen von nicht in Konflikt stehen-
den Operationen in eine als korrekt definierte Historie umgeformt werden kann.

Da an dieser Stelle nur das Prinzip der Konfliktrelation deutlich gemacht werden
soll, wird auf die Einfiihrung der Relation selbst verzichtet. Wie im weiteren Ver-
lauf dieses Kapitels aber deutlich werden wird, unterscheiden sich die verschiede-
nen Korrektheitsdefinitionen im wesentlichen beziiglich der verwendeten Konflik-
trelation.

5.1.3 Isolation und Atomaritat

Wie bereits in Kapitel 3 erldutert wurde, fiihren alle transaktionalen Ablaufmodelle
mehr oder minder stark ausgepragte semantische Einschrankungen beziiglich der
Isoliertheit und der Atomaritdt von Abldufen ein. Da diese zwei Eigenschaften zu-
nichst unabhéngig voneinander sind, wurden die entsprechenden Korrektheitskri-
terien auch getrennt voneinander entwickelt [BHG87]. Wie sich im weiteren Ver-
lauf dieses Kapitels herauskristallisieren wird, ist dies jedoch kein sinnvoller
Ansatz, da die Eigenschaft der Atomaritit einige Voraussetzungen beziiglich der
Isolationseigenschaft fordert.

Insbesondere spielt dieser Zusammenhang dann eine Rolle, wenn eine Atomari-
tatseigenschaft im Zusammenhang mit der Wiederherstellung (engl. Recovery) ei-
nes konsistenten Zustandes nach einem Systemausfall betrachtet wird. Da im Falle
von ConTracts der Aspekt der Zuverlissigkeit eine maBBgebliche Aufgabe darstellt,
wird deshalb auf eine getrennte Betrachtung von Korrektheitskriterien beziiglich
der Permeabilitdt bzw. Atomaritét verzichtet werden.

56

5 Korrektheit
Klassische Korrektheitskriterien

5.1.4 Anwendbarkeit

Korrektheitskriterien im transaktionalen Umfeld sind prinzipiell nur dann von
praktischer Relevanz, wenn sie auch in einem Laufzeitsystem implementiert wer-
den konnen. Wie eingangs dieses Kapitels bereits erwéahnt wird dies nicht von al-
len Kriterien gewéhrleistet, da mit einigen Kriterien nur vollstandig ausgefiihrte
(abgeschlossene) Ablaufe beurteilt werden kénnen.

Formalisiert man diese Aussage auf der Basis des oben eingefiihrten Begriffs der
Historie 148t sich die Anwendbarkeit eines Kriteriums schnell beurteilen.

Definition 5-5 (Prifix-abgeschlossen): Ein Korrektheitskriterium, welches die
Korrektheit einer Historie beurteilt heifit Prdfix-abgeschlossen wenn gilt, dafs
aus der Korrektheit einer Historie auch die Korrektheit fiir jeden beliebigen
Prdfix der Historie folgt.m

Ist nun eine Historie gemal eines Préifix-abgeschlossenen Korrektheitskriteriums
korrekt, miissen auch alle Prifixe korrekt sein. Daraus 143t sich ableiten, dal eine
Ausfiihrung eines Ablaufs nur dann korrekt sein kann, wenn bereits alle (Teil-)Hi-
storien, die wihrend der Ausfiihrung auftreten auch korrekt sind. Ist, im Gegen-
satz dazu, ein Korrektheitskriterium nicht Priafix-abgeschlossen, ist es wihrend
der Ausfiihrung eines Ablaufs zuldssig, da3 nicht korrekte Teilhistorien auftreten.

Somit wird fiir praktisch anwendbare Korrektheitskriterien gefordert, daf sie Pré-
fix-abgeschlossen sind. Umgesetzt werden die Prifix-abgeschlossenen Kriterien
in einem sogenannten Scheduler. Diesem werden die Operationen der abstrakten
Maschine iibergeben, damit liber die Zuléssigkeit der Ausfiihrung der Operatio-
nen entschieden werden kann. Dies bedeutet, da3 der Scheduler tiberpriift, ob die
Ausfiihrung einer Operation eine nicht korrekte Historie erzeugen wiirde und so-
mit die Operation zuriickweist. Die Verfahren die dabei verwendet werden und
die Informationen, die einem Scheduler zur Verfiigung stehen miissen, um diese
Entscheidung treffen zu konnen, werden im folgenden Kapitel vorgestellt werden.

5.2 Klassische Korrektheitskriterien

Klassische Korrektheitskriterien der hier betrachteten Art wurden zunichst fiir
ACID-Transaktionen entwickelt; sie waren zur automatischen Kontrolle des
gleichzeitigen Zugriffs auf gemeinsame Datenbestéinde notwendig. Im Gegensatz
dazu war bei der zeitlich vorher liegenden Verwendung von Datenbanksystemen
keine solchen Einschriankungen notwendig, da Zugriffe nacheinander in einem so-
genannten Batch-Betrieb erfolgten.

Wie sich im weiteren Verlauf dieses Abschnitts noch herausstellen wird reichen
diese Ansitze weiter, so da3 gewisse Grundprinzipien der Korrektheitskriterien
fiir ACID-Transaktionen auch in weit komplexeren Ablaufmodellen wiederzufin-

57

Korrektheit 5
Klassische Korrektheitskriterien

den sind. Das liegt daran, daB3 eine Eigenschaft von ACID-Transaktionen auch von
allen anderen transaktionalen Ablaufmodellen iibernommen wurde: die Konsisten-
zerhaltung. An dieser Stelle soll deshalb nochmals kurz wiederholt werden, was
diese Eigenschaft bedeutet.

Die Eigenschaft der Konsistenzerhaltung besagt, dal wenn ein Ablauf, der diese
Eigenschaft besitzt, auf einem konsistenten Datenbestand ausgefiihrt wird, der Da-
tenbestand am Ende der Ausfiihrung wiederum in einem konsistenten Zustand ist.
Dies gilt natiirlich nur unter der Annahme, daf} die Ausfiihrung nicht durch andere
Ausfiihrungen gestort wird.

5.2.1 Grundprobleme der ACID-Transaktionen

Wie bereits in Abschnitt 3.1.1 kurz erwdhnt wurde, kommt es bei der parallelen
Ausfiihrung mehrerer ACID-Transaktionen zu Problemen beziiglich der Gewahr-
leistung der ACID-Semantik. Da die Darstellung in Kapitel 3 nur zur Motivation
diente, wurden diese Probleme nur informell beschrieben. Dieser Abschnitt dient
nun dazu das Problem formal zu erfassen, um auf dieser Basis ein entsprechendes
Korrektheitskriterium definieren zu konnen.

Betrachtet man die Historie (X, <) einer abstrakten Maschine zur Abarbeitung von
ACID-Transaktionen nach dem read/write-Modell (siche Kapitel 4 Abschnitt 4.1),
so enthélt die Menge X nur die Operationen read, write, abort und commit verschie-
dener Transaktionen. Trotzdem lassen sich alle Konflikte, die zu einer Verletzung
der ACID-Eigenschaften fiihren konnen, hinreichend mit dieser Menge von Ope-
rationen beschreiben [GrRe93].

5.2.1.1 Der read/write Konflikt

Findet man in einer Historie eine Lese-Operation read(t, a), die ein Objekt a inner-
halb einer Transaktion t liest und eine nachfolgende Schreib-Operation write(s, a),
die das selbe Objekt a schreibt, ohne daf3 die Transaktion t abgeschlossen wurde
(mittels commit oder abort) liegt ein potentieller Konflikt der Transaktionen t und
s vor. Das Lesen des Objektes a ist nicht unbedingt wiederholbar, d.h. es wiirde
wahrscheinlich ein anderes Resultat liefern (engl. unrepeatable read). Da jedoch
durch die Isolationseigenschaft dieses wiederholbare Lesen garantiert wird (solan-
ge die Transaktion den Wert nicht selbst dndert), wére somit eine zugesicherte se-
mantische Eigenschaft verletzt und die Ausfiihrung nicht mehr korrekt.

5.2.1.2 Der write/read Konflikt

Der write/read Konflikt bildet das genaue Gegenstlick zum read/write Fall. Eine
Transaktion t fiihrt also eine Schreiboperation auf ein Objekt a aus, wéahrend die
Transaktion s das Objekt a liest. Auch diese Konstellation stellt wieder einen po-

58

5 Korrektheit
Klassische Korrektheitskriterien

tentiellen Konflikt dar, da die Transaktion s einen Wert liest der nicht unbedingt
am Ende einer Transaktion fiir das Objekt a gilt (engl. dirty read). Dies kann da-
durch verursacht werden, dafl Transaktion t das Objekt a ein zweites mal schreibt
und a somit einen anderen Wert erhilt.

5.2.1.3 Der write/write Konflikt

Im Falle des write/write Konflikts greifen zwei Transaktionen schreibend auf das
gleiche Objekt zu. Wie in den vorigen Fillen soll Transaktion t vor der Transak-
tion s eine Schreiboperation auf a ausgefiihrt haben. Wiederum liegt ein potenti-
eller Konflikt vor, da eine folgende Leseoperation von t den Wert liefern wiirde
den s geschrieben hat und somit eine Anderung von t verloren gegangen wiire
(engl. lost update). Somit wire die Isolationseigenschaft von t verletzt.

Ein anderer Aspekt bei dem write/write Konflikt ist das Verhalten durch die Ato-
marititseigenschaft. Da es fiir ACID-Transaktionen garantiert sein muf3, da3 im
Falle eines Zuriicksetzens der Zustand vor ithrer Ausfithrung wieder hergestellt
wird, wirkt sich der Konflikt im Falle eines Zuriicksetzens von t oder t und s fatal
aus. Wird beispielsweise t zuriickgesetzt, werden die Anderungen von s ebenso
unwirksam. Werden beide Transaktionen zuriickgesetzt, hingt das Ergebnis von
der Reihenfolge des Zuriicksetzens ab. Wird t vor s zurlickgesetzt, so stellt das Zu-
rliicksetzen von s den Zustand nach der Schreiboperation von t wieder her.

Wie an dem letzten Beispiel sichtbar wird, muB} ein abstraktes transaktionsver-
abeitendes System mit ACID-Semantik vor jedem Schreibzugriff einen Lesezu-
griff ausfiihren, um den Zustand vor Ausfiihrung der Transaktion wieder herstel-
len zu konnen. Deshalb wird in einigen Korrektheitsbetrachtungen implizit
vorausgesetzt, da3 vor jedem Schreibzugriff ein Lesezugriff erfolgt ist (siche Ab-
schnitt 5.2.3).

5.2.2 Klassische Serialisierbarkeit

Separiert man zunichst die Atomaritit und die Dauerhaftigkeit von den Eigen-
schaften der Konsistenzerhaltung und Isoliertheit und betrachtet nur die zwei zu-
letzt genannten Eigenschaften, so ist intuitiv klar, daB3 alle seriellen Ausfiihrungen
von Transaktionen korrekt sein miissen. Dies folgt daraus, da3 bei der seriellen
Ausfiihrung von Transaktionen (also dem klassischen Batch-Betrieb) keine ge-
genseitige Beeinflussung von aktiven Transaktionen vorkommen kann und somit
auf Grund der Konsistenzerhaltung jeder einzelnen Transaktion die entstehende
serielle Historie korrekt sein mul3.

Genau diese Beobachtung bildet die Basis des Korrektheitskriteriums von ACID-
Transaktionen. Ausgehend von der Menge der seriellen Ausfithrungen von Trans-
aktionen kann fiir eine beliebige Ausfithrung abgeschlossener Transaktionen ent-

59

Korrektheit 5
Klassische Korrektheitskriterien

schieden werden, ob diese ebenfalls korrekt ist. Das Kriterium hierfiir ist einfach
die Aquivalenz der Reihenfolge der Operationen in der zu beurteilenden Ausfiih-
rung mit der Reihenfolge einer (beliebigen) seriellen Ausfiihrung. Dieses Kriteri-
um soll nun formal dargestellt werden.

Definition 5-6 (Vollstindigkeit): Eine Historie H = (X,<) heifsit vollstindig,
wenn sie nur Operationen abgeschlossener Transaktionen enthidlt:
V. dcommit(t) € v dabori(t) e £ g
(read(t, o),write(t,0) € X)
Definition 5-7 (Serielle Historien): Eine vollstindige Historie H heifst seriell,
wenn fiir alle vorkommenden Transaktionen sdamtliche Operationen unmittelbar

aufeinanderfolgen, ohne dafs Operationen anderer Transaktionen dazwischen
liegen. m

Damit nun eine beliebige Historie mit einer seriellen vergleichbar wird, ist es zu-
nichst notwendig die Projektion der beliebigen Historie auf eine vollstdndige Hi-
storie vorzunehmen.

Definition 5-8 (Commit-Projektion): Die Commit-Projektion C(H) einer Histo-
rie H = (X,<) entsteht durch die Eliminierung aller Operationen von nicht ab-
geschlossenen Transaktionen (Transaktionen bei denen weder commit noch ab-
ortin X ist) aus X. &

Durch die Commit-Projektion erhédlt man somit eine vollstindige Historie, die mit
seriellen Historien vergleichbar ist.

Definition 5-9 (Historien-Aquivalenz): Zwei Historien H; = (X}, <;) und H, =
(X,, <,) sind dquivalent, wenn X ;=X ist und alle Paare von Operationen die in
einem Konflikt stehen (siehe Abschnitt 5.2.1) in der gleichen Ordnungsrelation
beziiglich <; bzw. <, stehen. ®

Die eigentliche Definition der Serialisierbarkeit ergibt sich nun relativ offensicht-
lich aus den Definitionen 5-7 bis 5-9. ®

Definition 5-10 (Serialisierbarkeit): Eine Historie H ist serialisierbar, wenn
ihre Commit-Projektion C(H) dquivalent zu einer seriellen Historie H, ist.

Die Menge aller serialisierbaren Historien wird mit SR bezeichnet. ®

Ungliicklicherweise ist die Serialisierbarkeit nur fiir abgeschlossenen Historien de-
finiert, so dal3 fiir nicht abgeschlossene Historien auch nicht entschieden werden
kann, ob sie korrekt sind oder nicht. Dies hat zur Folge, dal3 auf der Basis dieses
Kritertums erst am Ende einer Transaktion entschieden werden kann, ob ithre Aus-
fiihrung serialisierbar war oder nicht.

Um bereits wihrend der Ausfiihrung von Transaktionen entscheiden zu kénnen ob
die Historie serialisierbar sein kann oder nicht, wurde nach einem alternativen Kri-

60

5 Korrektheit
Klassische Korrektheitskriterien

terium gesucht. Dieses beruht auf der Beobachtung, da3 die in Abschnitt 5.2.1 ein-
geflihrten Konflikte fiir sich allein genommen keine der semantischen Garantien
verletzen. Erst wenn ein (bestimmter) zweiter Konflikt hinzukommt, wird auch
tatsidchlich eine der Garantien verletzt.

Die eigentliche Ursache hierfiir liegt in der Auswirkung der eingefiihrten Konflik-
te auf das Verhiltnis der Transaktionen als ganzes. Besteht ein Konflikt zwischen
zwei Operationen unterschiedlicher Transaktionen, so impliziert die Reihenfolge
der Ausfiihrung der Operationen eine Ordnung zwischen den Transaktionen.

Definition 5-11 (Transaktions-Konflikt Reihenfolge): Eine Transaktion t, ist
in einer Konflikt-Reihenfolgebeziehung mit einer Transaktion t;, wenn es min-
destens zwei in Konflikt stehende Operationen o; (von t;) und o, (von t,) gibt
und o vor 0, ausgefiihrt wurde. Diese Beziehung zweier Transaktionen t; und
t, wird im weiteren mit der Notation t; — t, bezeichnet werden. ®

Die Konflikt-Reihenfolgebeziehung zweier Transaktionen ist somit eine nicht-
transitive und asymmetrische Relation, die auf der Reithenfolge der Ausfiihrung
von in Konflikt stehenden Operationen basiert.

Betrachtet man nun eine Historie, so 1463t sich nach obiger Definition aus den Kon-
flikten der Operationen in der Historie eine Reihenfolgebeziehung der zugehori-
gen Transaktionen konstruieren.

Definition 5-12 (Serialisierungsgraph): Ein Serialisierungsgraph SG(H) einer
Historie H ist ein gerichteter Graph, dessen Knoten die Transaktionen der in H
enthaltenen Operationen sind. Zwei Knoten in SG(H) sind mit einer gerichteten
Kante verbunden, wenn die zugehérigen Transaktionen in einer Konflikt-Rei-
henfolge-Beziehung stehen. ®

Intuitiv ist einsichtig, dal eine Historie dann korrekt sein muf3, wenn der Seriali-
sierungsgraph, der aus ihrer Commit-Projektion entsteht keine Zyklen enthilt und
somit keine Transaktion mit sich selbst in einem (indirektem) Konflikt steht. Die-
se Aussage kann noch dahin gehend erweitert werden, dal eine Historie nur dann
serialisierbar sein kann, wenn der Serialisierungsgraph azyklisch ist.

Auf den Beweis der obigen Aussage soll an dieser Stelle verzichtet werden, wes-
halb fiir eine detailliertere Darstellung auf [BHGS87] verwiesen wird.

Der Vorteil des Kriteriums nach Definition 5-12 gegeniiber dem klassischen Kri-
terium in Definition 5-10 liegt darin, dal3 ein Serialisierungsgraph auch fiir nicht
vollstdndige Historien generiert werden kann. Dariiber hinaus wird wihrend der
Fortfiihrung der Historie eine einmal vorhandene Kante in dem zugeordneten Se-
rialisierungsgraphen nicht wieder entfernt und somit ist das Kriterium Prafix-ab-
geschlossen. D.h. sobald eine Operation ausgefiihrt werden soll, die einen Zyklus
in dem Serialisierungsgraph verursachen wiirde, miissen geeignete Mallnahmen

61

Korrektheit 5
Klassische Korrektheitskriterien

ergriffen werden, um diesen Zyklus zu vermeiden.

5.2.3 Recoverability und Spezialisierungen

Die in Abschnitt 5.2.2 eingefiihrten Kriterien beschrianken sich (weitgehend) auf
die Sicherstellung der Isolationseigenschaft von Transaktionen. Durch die Atoma-
ritdtseigenschaft der ACID-Transaktionen werden aber noch weitere Anforderun-
gen notwendig. Da die Atomaritdt sich im Falle des benutzerinitiierten Abbruchs
einer Transaktion genauso auswirkt wie im Falle eines Systemausfalls (und an-
schlieBenden Neustarts), werden die notwendigen Mechanismen und Kriterien
meist unter dem Stichwort Wiederherstellbarkeit diskutiert.

Die notwendigen Erweiterungen des Serilisierbarkeitskriteriums resultieren aus
der Anforderung, daB3 fiir jede erfolgreich ausgefiihrte Schreiboperation einer
ACID-Transaktion T zu garantieren ist, daB3 die entsprechende inverse Schrei-
boperation ebenfalls ausgefiihrt werden kann (solange die Transaktion nicht abge-
schlossen wurde). Wird jedoch durch eine Operation einer anderen Transaktion T»,
die der Schreiboperation der urspriinglichen Transaktion nachfolgt eine Abhingig-
keit impliziert, fithrt die Ausfiihrung der inversen Schreiboperation notwendiger-
weise zu einem Zyklus im Serialisierungsgraphen und wire damit nicht zuléssig.

Definition 5-13 (Lesebeziehung): Eine Transaktion T; liest von einer Transakti-
on T, wenn eine Operation o; von T; mit einer Operation o; von T; in einem
Schreib/Lese-Konflikt steht. ®

Die Probleme, die durch diesen formalen Konflikt auftreten, lassen sich weiter dif-
ferenzieren. Liest die Transaktion T, nur Daten von T, kann nur dann ein Problem
auftreten, wenn Transaktion T abbricht und T, erfolgreich beendet wird, da dann
die von T, gelesenen Werte und somit die erzeugten Resultate eventuell nicht kor-
rekt sind.

Definition 5-14 (Recoverability): Eine Historie H heifit recoverable wenn gilt,
dafs im Falle, dafs eine Transaktion T; von einer Transaktion T} liest und die com-
mit-Operation c;von T;in H enthalten ist, die commit-Operation von T; ebenfalls
in H enthalten ist und c¢; < c;.

Die Menge aller Historien, die recoverable sind, wird mit RC bezeichnet. ®

Durch das Recoverability-Kriterium wird somit gefordert, da3 eine Transaktion
erst dann eine commit-Operation durchfiihren darf, wenn alle Transaktionen von
denen sie gelesen hat, bereits ihre commit-Operation durchgefiihrt haben.

Kehrt man dieses Kriterium um, bedeutet dies, dafl der Abbruch einer Transaktion
T, automatisch den Abbruch aller Transaktionen fordert, welche von T, gelesen
haben. Diesen Effekt bezeichnet man mit kaskadierendem Zuriicksetzen (engl. cas-
cading aborts).

62

5 Korrektheit
Klassische Korrektheitskriterien

Riicksetzkaskaden, die durch eine Verletzung des Kriteriums in Definition 5-14
verursacht werden, haben zunidchst nur den Nachteil, dal} die Aktionen einer
Transaktion (in diesem Falle die Operation abort) den Abbruch mehrerer anderer
Transaktionen nach sich ziehen kann. Allerdings verletzt dies auch die Isolations-
eigenschaft im weiteren Sinne.

Definition 5-15 (Vermeidung des kaskadierenden Zuriicksetzens): Eine Hi-
storie vermeidet kaskadierendes Zuriicksetzen wenn gilt, dafs wenn eine Trans-
aktion T; von T} liest, die commit-Operation von T in H enthalten sein mufs und
vor dem Lesen ausgefiihrt wurde.

Die Menge der Historien, die dieses Kriterium erfiillen, wird mit ACA bezeich-
net. m

Wenn also fiir eine Historie gilt, daB sie kaskadierendes Zurilicksetzen vermeidet,
konnen Transaktionen nur von bereits abgeschlossenen Transaktionen lesen (im
Sinne von Definition 5-13).

Es erscheint zunédchst verwunderlich, da3 die Definitionen der Mengen RC und
ACA nur auf der Basis von Leseoperationen definiert wurden. Wie allerdings be-
reits erwdhnt wurde, ist dies auf die Entstehungsgeschichte der theoretischen Ar-
beiten auf dem Gebiet der Transaktionsverarbeitung zuriickzufiihren. Bei diesen
frithen Arbeiten wurde davon ausgegangen, dal3 vor jeder Schreiboperation auf je-
den Fall eine Leseoperation auf das selbe Datenelement ausgefiihrt wurde.

Geht man nicht von dieser Annahme aus, reichen die eingefiihrten Kriterien noch
nicht aus, um die Probleme bei der Garantie der Atomarititseigenschaft zu ver-
meiden. Beispielsweise ist es moglich, daf3 eine Transaktion Ty ein Datenelement
schreibt und danach eine andere Transaktion T, ebenfalls eine Schreiboperation
auf dieses Element durchfiihrt. Folgende Félle konnen hierbei unterschieden wer-
den

1. Werden beide Transaktionen entweder erfolgreich beendet oder in der um-
gekehrten Reihenfolge ihrer Ausfiihrung zuriickgesetzt entsteht kein Pro-
blem.

2. Fiihrt T eine commit-Operation aus, der eine abort-Operation von T, folgt,
entsteht kein Problem.

3. Fiihrt T, eine commit-Operation aus, der eine abort-Operation von T, folgt,
wird durch T; der Zustand vor der Ausfiihrung von T; wieder hergestellt.
Somit gehen die Anderungen von T, verloren (trotz commit!).

4. Bricht zundchst T ab und danach T,, dann stellt der Abbruch von T, den
Zustand nach der Schreiboperation von T her.

63

Korrektheit 5
Klassische Korrektheitskriterien

Wiederum ist einfach zu erkennen, da3 ein Abbruch von T den Abbruch von T,
verlangt (als Voraussetzung fiir die Durchfiihrung des Zuriicksetzens). Somit erhalt
man wieder den Effekt des kaskadierenden Zuriicksetzens. In diesem Falle aller-
dings in einer verscharften Form, da im Fall 3 Transaktion T, bereits abgeschlossen
und somit eigentlich aus dem System entfernt wurde.

Um auch dieses Problem zu vermeiden, wird ein weiteres Kriterium eingefiihrt:

Definition 5-16 (Striktheit): Eine Historie heifsit strikt, wenn keine Operation ei-
ner Transaktion auf ein Datenelement zugreift, welches von einer Operation ei-
ner anderen, nicht abgeschlossenen Transaktion verdndert wurde.

Die Menge aller strikten Historien wird mit ST bezeichnet. ®

Bei strikten Historien ist es somit erforderlich, dafl Transaktionen, die schreibend
auf ein Datenelement zugegriffen haben, zunichst mittels Commit oder Abort ab-
geschlossen werden miissen, bevor andere Transaktionen auf die gednderten Daten
zugreifen konnen.

Der Hauptunterschied der Kriterien zur Sicherstellung der Isolation und der Krite-
rien zur Sicherstellung der Wiederherstellbarkeit liegt in der Menge der betrachte-
ten Operationen und der Art des ersten Zugriffs. Wahrend das Serialisierbarkeits-
kriterium alle Arten von Konflikten auf der Ebene der Operationen betrachtet,
setzen die Kriterien fiir ST, ACA und RC eine Schreib-Operation als ersten Zugriff
voraus. Andererseits erlaubt das Serialisierungskriterium Konflikte, sofern sie nur
durch zwei Operationen verursacht werden, wihrend dies im Falle der Striktheit
bereits ausgeschlossen wird, wenn nicht abgeschlossene Transaktionen betrachtet
werden.

Es 148t sich zeigen, daB3 es eine echte Teilmengenbeziehung zwischen ST, ACA
und RC gibt (ST < ACA < RC) [BHGS87]. Auf Grund der unterschiedlichen Vor-
aussetzungen l4Bt sich jedoch keine solche Teilmengenbeziehung beziiglich der se-
rialisierbaren Historien finden.

Abbildung 5-1 zeigt eine grafische Darstellung der qualitativen Beziehungen der
Mengen der Historien, welche die eingefiihrten Kriterien erfiillen. Im weiteren sol-
len Historien, die sowohl eines der Kriterien ST, ACA oder RC als auch das Seria-
lisierbarkeitskriterium erfiillen mit ST-SR, ACA-SR, bzw. RC-SR bezeichnet wer-
den.

5.2.4 Kombinierte Ansatze

Da keine der Mengen ST, ACA und RC in SR enthalten sind und auch SR nicht in
ST, ACA oder RC enthalten ist, miissen zur Sicherstellung der Serialisierbarkeit
und der Wiederherstellbarkeit immer zwei Kriterien iiberpriift werden. Betrachtet
man entsprechende Umsetzungen in Laufzeitsysteme, stellt dies ebenfalls ein Pro-

64

5 Korrektheit
Klassische Korrektheitskriterien

8 Menge aller Historien /—\
SR

T Ceriette

o /
\ J

Abbildung 5-1: Teilmengenbezichung der Kriterien

blem dar, da entweder fiir beide Kriterien getrennte Verfahren implementiert wer-
den miissen oder weitere Einschrinkung der moglichen Historien vorgenommen
werden muB, bis eine Teilmenge gefunden wird, die mittels einem Kriterium ge-
priift werden kann.

Aus diesem Grund beschiftigten sich zwei Gruppen von Wissenschaftlern mit der
Entwicklung eines kombinierten Kriteriums, welches sowohl die Atomaritit als
auch die Isolation beriicksichtigt [AAE93][SWY93]. Erstaunlicherweise kamen
beide Gruppen nahezu gleichzeitig zu einem fast identischen Resultat. Deshalb

fiihrten die zwei Gruppen ihre Ergebnisse in einem gemeinsamen Papier zusam-
men [AVA94a].

Die grundlegende Idee des Ansatzes ist es, im Gegensatz zu den Serialisierbar-
keitsansédtzen nicht die Commit-Projektion einer Historie zu betrachten. Statt des-
sen wird eine vorliegende Historie so weit ergdnzt, da3 nur abgeschlossene Trans-
aktionen enthalten sind. Die Ergénzung einer Historie wird dabei fiir alle aktiven
Transaktionen derart vorgenommen, da3 zunéchst alle aktiven Transaktionen als
abgebrochen angesehen werden. Zu diesem Zweck wird die Menge der Operatio-
nen um eine sogenannte Gruppen-Abbruch-Operation erweitert.

Definition 5-17 (Group Abort): Eine Gruppen-Abbruch-Operation a(T;, T», ...
, T}) zeigt an, dap3 fiir jede Transaktion T; aus T bis T) die Gegenoperationen
zu den Operationen auszufiihren sind, die eine Transaktion T; bisher ausgefiihrt
hat. m

Somit wird eine Historie zunichst um die Operationen erweitert, die notwendig
sind, um alle aktiven Transaktionen zurlickzusetzen. Allerdings ist damit noch

65

Korrektheit 5
Klassische Korrektheitskriterien

nicht festgelegt, in welcher Reihenfolge diese Operationen auszufiihren sind.

Um explizite Aussagen iiber diese Reihenfolge machen zu konnen, ist eine weitere
Annahme notwendig. Anstatt eine abort-Operation wie bisher als eine atomare Ein-
heit anzusehen, wird sie durch die notwendigen inversen (Schreib-)Operationen
und eine abschlieBende Commit-Operation ersetzt. Da Leseoperationen keine Ope-
rationen bei einem Transaktionsabbruch bedingen, werden diese bei der Expandie-
rung der abort-Operationen nicht betrachtet. Bertlicksichtigt man dann die Reihen-
folge der Operationen in Abhidngigkeit von den Konflikten, die wihrend der
“Vorwirtsverarbeitung” aufgetreten sind, kommt man zu folgender erweiterter Hi-
storie:

Definition 5-18 (Erweiterte Historie): Sei H=(X,<) eine Historie. Ihre erwei-
terte Historie H® ist ein Tupel (X°, <°), das durch folgende Regeln aus H ent-
steht:

X¢ entsteht aus X durch:

1.

(oe Tho#a)=> o€ X°

2. Eine Gruppen-Abbruch-Operation am Ende von H enthdlt alle aktiven Trans-

3.

aktionen.

Fiir alle Schreiboperationen w abgebrochener Transaktionen in X miissen die
inversen Schreiboperationen wlin € enthalten sein:
weXragel= wlexe

4. Alle abort-Operationen in X werden durch commit-Operation in X° ersetzt.

<

€ entsteht durch folgende Regeln:

1. Fiir alle Paare von Operationen o; und o;: 0; < 0; = 0; < 0;

3.

J

. Sei W die Menge aller Operationen, die in Transaktionen enthalten sind, de-

ren Abort-Operation in einer Gruppen-Abbruch-Operation in X ist.
Gilt fiir je zwei Operationen w; und wy, aus Ww; < wy, dann mufs wy
fiir die inversen Operationen gelten.

1 <€ WZ_—]

Alle inversen Operationen der Transaktionen, die in H keine commit-Opera-
tion ausgefiihrt haben, folgen beziiglich <¢ den Originaloperationen und sind
beziiglich <° vor der commit-Operation der Transaktion fiir die sie die inverse
Operation darstellen.

. Fiir alle Operationen o vor einer Gruppen-Abbruch-Operation beziiglich <,

die in Konflikt mit einer inversen Operation wl der Gruppen-Abbruch-Ope-
ration stehen, gilt o <¢ wl. Umgekehrt gilt w! <€ o fiir alle Operationen o,
die beziiglich < einer Gruppen-Abbruch-Operation folgen und mit einer Ope-
ration w! der Gruppen-Abbruch-Operation in Konflikt stehen.

66

5 Korrektheit
Klassische Korrektheitskriterien

5. Gilt fiir zwei Gruppen-Abbruch-Operationen eine Reihenfolge in H, dann
muf3 die Reihenfolge beziiglich <° fiir alle in Konflikt stehenden inversen
Operationen, die aus diesen Gruppen-Abbruch-Operationen entstehen, der
Reihenfolge der Gruppen-Abbruch-Operationen beziiglich < entsprechen. ®

Auf der Basis dieser erweiterten Historie 1a63t sich nun das kombinierte Kriterium
zur Uberpriifung einer Historie im Hinblick auf Atomaritit und Isolation formu-
lieren:

Definition 5-19 (RED): Eine Historie H ist reduzierbar, wenn ihre erweiterte
Historie H® durch Anwendung der folgenden Regeln in eine serielle Historie
transformiert werden kann:

1. Kommutativitdtsregel.:
Wenn zwei Operation o; und o; nicht in einem Konflikt stehen und kein o,,
existiert mit o; <¢ 0,, <° 0;, kann die Ordnung o; <® o; ersetzt werden durch

J
Oj < Ol"

2. Undo Regel:
Sind eine Operation o und ihre inverse Operation o in H® und gilto <®o
ohne dafi eine Operation o,, existiert mit 0 <€ 0,, <¢ 0™, dann kénnen o und
o aus der Historie entfernt werden.

1

3. Regel der leeren Aktion:
Leseoperationen von abgebrochenen oder aktiven Transaktionen in H diirfen
aus H® entfernt werden.

Die Menge aller reduzierbaren Historien wird mit RED bezeichnet. B

Wie aus dem RED-Kriterium abgelesen werden kann, basiert das eigentliche Kri-
terium wiederum auf der Uberfiihrbarkeit einer Historie auf eine serielle Historie.
Dabei wird nicht die Commit-Projektion beurteilt, sondern die erweiterte Historie.

Ein Nachteil der Definition ist, daB3 sie nicht Prafix-abgeschlossen ist. Eine einfa-
che Erweiterung des Kriteriums beriicksichtigt diesen Nachteil.

Definition 5-20 (PRED): Eine Historie heifst Prifix-reduzierbar, wenn jeder
Prdfix der Historie reduzierbar ist.

Die Menge alle Prdfix-reduzierbaren Historien wird mit PRED bezeichnet. B

Abgesehen von der Tatsache, daf3 diese simple Erweiterung der Definition 5-19
keine Verbesserung im Hinblick auf eine entsprechende Implementierung liefert,
ermoglicht sie doch den Vergleich mit den bisher eingefiihrten Kriterien. So 1483t
sich beispielsweise zeigen, dal SR-ST < PRED < SR-RC [SWY93].

Analog zum Fall der Serialisierbarkeit wurde auch im Falle der Prafix-Reduzier-
barkeit nach einem Kriterium gesucht, welches die Umsetzung in ein Laufzeitsy-
stem unterstiitzt. Im Falle von PRED bedeutet dies, ein Kriterium zu finden, wel-

67

Korrektheit 5
Klassische Korrektheitskriterien

ches wihrend der Ausfiihrung von Transaktionen nicht verletzt wird.
Ausgangspunkt fiir dieses Kriterium war die Untersuchung bestehender Implemen-
tierungen von Transaktionssystemen, die die ACID-Eigenschaften garantieren.
Grundlage dieser Implementierungen ist ein sogenanntes Log [GrRe93], welches
Informationen {iber die ausgefiihrten Operationen und die entsprechenden inversen
Operationen aufbewahrt. Es ist ein rein sequentiell beschreibbarer, stabiler Spei-
cher, bei dem nur am Ende Daten eingefiigt werden kénnen.

Untersucht man nun existierende Implementierungen der Wiederherstellbarkeit auf
der Basis eines Logs, so stellt man Bedingungen fest, die von einem Ablaufsystem
fiir ACID-Transaktionen eingehalten werden miissen, um die Atomaritit gewéhr-
leisten zu kdnnen. Genau diese Bedingungen werden in einem weiteren Kriterium
zusammengefalit, um eine entsprechende Anwendbarkeit fiir eine Implementie-
rung des PRED-Kriteriums zu erméglichen.

Definition 5-21 (SOT): Eine Historie H heif3t serialisierbar mit geordneter Ter-
minierung, wenn sie wiederherstellbar (RC) und serialisierbar (SR) ist, und
wenn fiir jedes Paar von in Konflikt stehenden Operationen w; und w; mit w; <
w; gilt:

1. T fiihrt eine commit-Operation nur nach der commit-Operation von T; aus.

2. T, fuihrt eine abort-Operation nur nach der abort-Operation von T; aus, oder
es existiert eine Gruppen-Abbruch-Operation in H die sowohl T; als auch T;
enthdlt.

Die Menge aller Historien die dieser Bedingung gentigen wird mit SOT bezeich-
net.

Zu betonen ist, daB3 das Kriterium auf der Commit-Projektion der Historie beziig-
lich der Serialisierbarkeit basiert. Die Zusatzbedingungen beziehen sich aber auf
Operationen nicht terminierter Transaktionen, so daf3 beliebige Historien beurteilt
werden konnen. Da das SOT Kriterium dariiber hinaus nur relativ leichte Ein-
schrinkungen der bereits bekannten Kriterien vornimmt, zu denen auch Implemen-
tierungen existieren, eignet es sich sehr gut fiir den praktischen Einsatz.

Ein besonders wichtiger Aspekt ist auBerdem, daB3 bewiesen werden kann, dal3 die
Menge SOT dquivalent zur Menge PRED ist [AVA94b] und die maximale Menge
von Historien darstellt, die sowohl im Hinblick auf die Isolationseigenschaft als
auch im Hinblick auf die Wiederherstellbarkeit korrekt sind (SR-RC).

Allerdings haben die SOT-Historien noch die ungiinstige Eigenschaft, daf} kaska-
dierende Abbriiche auftreten konnen bzw. zuldssig sind. Durch einen erweiterten
Serialisierungsgraphen [AVA94b] kann diese unglinstige Eigenschaft darauf be-
schrinkt werden, daf} eine abort-Operation einer Transaktion sich nur auf bereits
abgebrochene Transaktionen fortpflanzt, was keinen realen Einflul mehr hat. An

68

5 Korrektheit
Klassische Korrektheitskriterien

dieser Stelle soll aber auf diese Spezialisierung nicht ndher eingegangen werden.

5.2.5 Kriterien fiir geschlossen geschachtelte Transaktionen

Wie bereits in Abschnitt 3.1.1 eingefiihrt, verhalten sich geschlossen geschachtel-
te Transaktionen nach auBlen hin wie die klassischen ACID-Transaktionen. Das
heif}t, daB3 aus dieser Perspektive die bereits vorgestellten Kriterien analog zur An-
wendung kommen. Betrachtet man allerdings die interne Struktur und die vorge-
gebenen Eigenschaften, ergeben sich weitere Aspekte.

Es wird ein kurzer Riickblick auf die Semantik der geschlossen geschachtelten
Transaktionen vorgenommen, um das Verstindnis zu erleichtern:

1. Eine Transaktion ohne Elterntransaktion heift Top-Level-Transaktion und
hat die ACID-Eigenschaften beziiglich aller Transaktionen, die nicht Nach-
kommen von ihr sind.

2. Eine Kind- (oder Sub-)Transaktion hat die ACI-Eigenschaften beziiglich al-
ler Geschwister (Kinder der selben Elterntransaktion).

3. Eine Sub-Transaktion hat Zugriff auf alle Datenelemente, auf welche die El-
terntransaktion Zugriff hat und vererbt an ihrem Ende alle Datenelemente
an die Elterntransaktion.

Solange innerhalb geschlossen geschachtelter Transaktionen keine Parallelitéit zu-
gelassen wird, entstehen prinzipiell keine neuen Probleme im Vergleich zu den
nicht geschachtelten (flachen) Transaktionen. Erlaubt man jedoch die parallele
Ausfiihrung von Geschwistertransaktionen (ohne gleichzeitige Weiterfithrung der
Elterntransaktion) resultiert dies in einer Konkurrenz der Geschwistertransaktio-
nen um Datenelemente, da fiir sie die Isolationseigenschaft gegeben ist.

Prinzipiell ist es nun moglich, die bekannten Korrektheitskriterien einzusetzen.
Allerdings resultiert dies je nach Implementierung (siche Kapitel 6) in Konflikten
zwischen Subtransaktionen einer Top-Level-Transaktion (Intra-Transaktionskon-
flikt) und kann bis zum Abbruch der Top-Level-Transaktion fiihren, wenn nicht
jede beteiligte Komponente des Laufzeitsystems auf die Verarbeitung geschach-
telter Transaktionen ausgelegt ist.

Dartiber hinaus kann es bei der parallelen Verarbeitung von Geschwistertransak-
tionen zu Verklemmungen beziiglich ererbter Datenelemente kommen. Im Ge-
gensatz zum Verklemmungsfall bei flachen Transaktionen (Inter-Transaktions-
konflikt), kann eine solche Verklemmung nicht mit Hilfe von einfachen
Abhéngigkeitsgraphen erkannt werden, da die Sperren der Datenobjekte von der-
selben Transaktion angefordert wurden. Bei der Verwendung von zeitschranken-

69

Korrektheit 5
Korrektheit bei Mehrschichttransaktionen

basierten Mechanismen stellt zwar die Erkennung von Verklemmungen kein Pro-
blem dar, doch kann auch hier nicht erkannt werden, welche Subtransaktion
abgebrochen werden muf3, um die Verklemmung zu beheben. Es wird also immer
die Top-Level-Transaktion abgebrochen, was einen erheblichen Vorteil von ge-
schachtelten Transaktionen, die feinere Riicksetzgranularitit, vollig auBler Acht
1at.

Vor diesem Hintergrund betrachtet, ergeben sich beziiglich der Korrektheitskrite-
rien keine neuen Aspekte. Allerdings ist es nicht mdglich die bekannten Ansédtze
zur Sicherstellung der Korrektheit direkt auf den Fall der geschachtelten Transak-
tionen zu libertragen.

5.3 Korrektheit bei Mehrschichttransaktionen

Da die Mehrschichttransaktionen aus der Klasse der offen geschachtelten Transak-
tionen stammen, liegt die Vermutung nahe, daB} sich die Korrektheitskriterien von
ACID-Transaktionen und dieser Art der Transaktionen grundlegend unterschei-

den. Wie sich im Verlauf dieses Abschnitts herausstellen wird, ist dies nicht der
Fall.

5.3.1 Historien von Mehrschichttransaktionen

Die in Abschnitt 4.2 eingefiihrte abstrakte Maschine ist auf eine Ebene (oder
Schicht) der Mehrschichttransaktionen beschriankt. Historien, die sich nur auf eine
solche Maschine beziehen, konnen somit analog zu den bisher betrachteten Histo-
rien definiert werden. Betrachtet man jedoch eine Mehrschichttransaktion als Gan-
zes, so mul} zur Beurteilung ihrer Korrektheit auf die Historien aller Ebenen zu-
riickgegriffen werden.

Definition 5-22 (Mehrschicht-Historie): Eine Historie H einer Mehrschicht-
transaktion ist die Menge aller Historien H; der Schichten der Mehrschicht-
transaktion.

H = {(Zi, <i)}]

Eine strikte Hierarchie der Operationen der Mehrschichttransaktionen hilft bei dem
Vergleich des Korrektheitskriteriums mit dem Korrektheitsbegriff des read/write-
Modells. Auf unterster Ebene werden alle Operationen durch eine Menge von Le-
se- oder Schreiboperationen implementiert. Beurteilt man also die Historie der un-
tersten Ebene muf3 dies auf der Basis der selben Kriterien wie beim Lese-/Schreib-
Modell geschehen.

70

5 Korrektheit
Korrektheit bei Mehrschichttransaktionen

5.3.2 Konfliktbegriff der Mehrschichttransaktionen

Die Einfiihrung mehrerer Abstraktionsebenen oberhalb des Lese-/Schreibmodells
erfordert eine erweiterte Sicht der bereits eingefiihrten Begriffe der Kommutativi-
tdt bzw. des Konflikts von Operationen. Da grundsitzlich davon ausgegangen
wird, da3 unterschiedliche Schichten beziiglich ihres Konfliktbegriffs unabhingig
sind, wird wiederum eine schichtabhéngige Definition von Konflikten eingefiihrt.

Definition 5-23 (Konflikt): Fiir jede Schichti € {0,1,2, ...} existiert eine bindire
Konfliktrelation CON,, welche iiber der Menge der Operationen O; einer
Schicht definiert ist.

CON,(a,b) = (a<bAr—(b<a))v(b<an—(a<b)) ®

Die Konfliktrelation einer Schicht gibt somit an, ob zwei Operationen parallel
ausgefiihrt werden diirfen, oder ob sie in irgendeiner Ordnung nacheinander aus-
zufiihren sind. Ein Problem wird bereits an dieser Definition deutlich: Fiir jedes
Paar von Operationen einer Stufe muf} die Konfliktrelation definiert sein. Erwei-
tert man beispielsweise eine Stufe um eine neue Operation muf} die Konfliktrela-
tion ebenfalls erweitert werden.

5.3.3 Mehrschicht-Serialisierbarkeit

Die Einfithrung von schichtspezifischen Konfliktrelationen hat zunédchst keine
Auswirkungen auf andere Schichten. Dies dndert sich allerdings, wenn man die
Implikationen eines Konflikts auf einer Ebene i auf die ndchst hohere Ebene i+1
betrachtet. Analog zu den Auswirkungen der Konflikte im read/write-Modell, wo
durch einen Konflikt und die Ordnung von Operationen eine Ordnung der Trans-
aktionen impliziert wird, kann man die Auswirkungen des Konflikts von Opera-
tionen im Mehrschicht-Transaktionsmodell definieren.

Definition 5-24 (Ordnungsrelation): Fiir jede Schicht i des Mehrschicht-
Transaktionsmodells existiert eine bindre Ordnungsrelation <;~ beziiglich ei-
ner Ausfiihrungshistorie. Fiir Stufe 0 gilt, daf3 die Ordnungsrelation <,~ gleich
der Ordnungsrelation der Ausfiihrungshistorie aller in Konflikt beziiglich
CON, stehender Operationen ist. Fiir jede andere Stufe i > 0 gilt, daf3 zwei
Operationen der Stufe i dann in Relation <;~ stehen, wenn sie jeweils eine Ope-
ration auf der ndchst niedrigeren Stufe i-1 beinhalten, die beziiglich CON;_; in

Konflikt sind und in Relation <~;_; yionen. ®

Vergleicht man die Ordnungsrelation <;~ mit der Konfliktrelation von Transak-
tionen bei der Konstruktion eines Serialisierbarkeitsgraphen (siehe Abschnitt
5.2.2), erkennt man, dal} es sich um identische Relationen handelt. Dies 148t sich
verallgemeinern, so daB fiir jede Stufe ein Serialisierbarkeitsgraph konstruiert
werden kann.

7

Korrektheit 5
Korrektheit bei Mehrschichttransaktionen

Definition 5-25 (Mehrschicht-Serialisierbarkeit): Eine Historie H einer Mehr-
schichttransaktion heifit mehrschicht-serialisierbar, wenn fiir jede Schicht i gilt,
daf alle in Konflikt stehenden Operationen der Schicht in einer Ordnung beziig-
lich der Historie H; stehen und der Graph, der aus der Ordnungsrelation <;~
konstruiert werden kann, azyklisch ist.

Die Menge aller mehrschicht-serialisierbaren Historien wird mit ML-SR be-
zeichnet. ®

Somit wird das Kriterium zur Sicherstellung der Isolationseigenschaft auf die
Uberpriifung der Azyklizitit der Serialisierungsgraphen abgebildet. Folglich kann
das klassische read/write-Modell als ein Spezialfall der Mehrschichttransaktionen
angesehen werden, bei dem es nur zwei Schichten gibt.

5.3.4 Recovery bei Mehrschichttransaktionen

Da Mehrschichttransaktionen Vertreter der Klasse der offen geschachtelten Trans-
aktionen sind, werden iiblicherweise die Resultate am Ende einer Teil-Transaktion
auch fiir Transaktionen sichtbar, die keine Vorfahren mit der beendeten Transakti-
on gemein haben. Deshalb ist der Ansatz, einen Zustand dadurch wieder herzustel-
len, daf3 der Wert eines gednderten Objektes, der vor der Ausfiihrung der Transak-
tion vorgefunden wurde, einfach wieder etabliert wird, nicht anwendbar.

Grundsétzlich erfordert die Verwendung von Mehrschichttransaktionen die Defi-
nition von Gegen- oder Kompensationstransaktionen, die die inversen Operationen
zu den durch die Transaktion auszufithrenden Operationen ausfiihren. Die Idee bei
der Implementierung eines Zuriicksetzens ist dann, die Gegentransaktionen in um-
gekehrter Reihenfolge zu den urspriinglichen Teil-Transaktionen auszufiihren.
Dies entspricht der Ausfithrung der inversen Schreiboperationen bei dem Lese-/
Schreibmodell. Allerdings nehmen die inversen Schreiboperationen keine Riick-
sicht auf eventuelle Anderungen durch andere Transaktionen, was im Falle der
Mehrschicht-Transaktionen erfolgen mub.

Obwohl fiir das Modell der Mehrschichttransaktionen die Idee eines Kriteriums zur
Sicherstellung der Wiederherstellbarkeit formuliert [WeSc92] und auch konkrete
Ansitze zur Implementierung veroffentlicht wurden [Lom92], ist kein formales
Kriterium im direkten Zusammenhang mit den Mehrschichttransaktionen definiert
worden. Die Idee stimmt jedoch mit dem Ansatz des PRED-Kriteriums iiberein,
wodurch sich dieses Kriterium relativ leicht auf die Mehrschichttransaktionen
iibertragen laBt. Somit kann das PRED-Kriterium als formales Korrektheitskriteri-
um fiir Mehrschichttransaktionen herangezogen werden.

72

5 Korrektheit
Korrektheit nach Korth et. al.

5.4 Korrektheit nach Korth et. al.

Abldufe nach Korth et. al. zeichnen sich dadurch aus, daf3 bei ihnen explizite In-
dikatoren verwendet werden, welche anzeigen, ob eine Operation (eine Subtrans-
aktion) ausgefiihrt werden kann bzw. ob die Ausfiihrung einer Operation erfolg-
reich war. Die Indikatoren basieren darauf, daf} es fiir jede Operation explizit
definierte Konsistenzbedingungen gibt, die anwendungsabhingig definieren, wel-
cher Zustand (der Datenobjekte) fiir die Ausfiihrung einer Operation notwendig
ist bzw. welcher Zustand nach der Ausfiihrung einer Operation als konsistent ak-
zeptiert wird.

5.4.1 Historien nach Korth et. al.

Eine Historie eines Ablaufs nach Korth et. al. unterscheidet sich nun von den bis-
her betrachteten Historien dadurch, daB die Uberpriifung der Konsistenz explizit
durch die in Abschnitt 4.3.1 eingefiihrten Operationen y und € in einer Historie
enthalten sind. Dariiber hinaus ist durch die strukturellen Einschrankungen der
Ablaufe sichergestellt, daB3 einer Operation einer Transaktion immer eine y-Ope-
ration vorausgeht und eine €-Operation nachfolgt.

Um den AbschluB3 eines Ablaufs (oder Transaktion) in einer Historie erkennen zu
konnen, wird formal die letzte Operation einer Transaktion vor threm commit als
x¢bezeichnet. Der Operation x¢ folgen dann noch die Konsistenzpriifungs-Opera-
tion € sowie die commit-Operation der Transaktion.

Diese Unterschiede gegeniiber der klassischen Definition von Historien sind nur
geringfiigig, so daf an dieser Stelle keine ausfiihrliche Erlauterung notwendig ist.

5.4.2 Pradikatabhangige Konflikte

Der Konfliktbegriff, der dem Modell von Korth. et. al. zu Grunde liegt, scheint in-
tuitiv durch die explizite Einfithrung von Konsistenzkriterien klar auf der Hand zu
liegen. Man kann vermuten, daf3 eine ausfiihrende Operation a dann in einem Kon-
flikt mit einer anderen ausfithrenden Operation b steht, wenn entweder a ein Ob-
jekt dndert, welches in dem zugeordneten Eingangspréidikat von b auftaucht, oder
umgekehrt b ein Objekt dndert welches in dem Eingangspréadikat von a referen-
ziert wird.

Prinzipiell trifft diese Vermutung auch zu. Allerdings sind im Falle des Modells
von Korth et. al. die Pradikate von Ablauf zu Ablauf verschieden, so daf} es durch-
aus moglich ist, daB3 eine Operation a mit einer Operation b bei einem Ablauf in
Konflikt steht und bei einem anderen Ablauf kein Konflikt von a und b vorliegt.
Deshalb wird ein Konflikt im Modell von Korth et. al. anders als in den bisher ein-
gefiihrten Modellen aufgefalit. Der Grundgedanke bei dem Modell ist, daB3 es in

73

Korrektheit 5
Korrektheit nach Korth et. al.

einem System eine Menge von Pridikaten gibt, wobei sowohl von Operationen de-
finierte Pradikate beriicksichtigt werden als auch die Bedingungen, die auf den Da-
tenelementen definiert sein konnen (beispielsweise Wertebereichsbedingungen).

Um die Priadikate leichter handhabbar zu machen, wird davon ausgegangen, daf3
diese in konjunktiver Normalform vorliegen.

Definition 5-26 (Pridikat): Ein Prddikat P nach Korth et. al. ist die konjunktive
Verkniipfung von Prddikaten p; welche disjunktive Verkniipfungen von Atomen
sind.

Ein Prddikat p; wird im weiteren als Term einer Konjunktion bezeichnet.
Ein Datenelement d heifst Element eines Terms einer Konjunktion, wenn es in ei-
nem Atom des Terms verwendet wird. ®

Definition 5-27 (Konflikt): Eine Operation a ist in Konflikt mit einer Operation
b beziiglich eines Terms einer Konjunktion, wenn a und b auf das gleiche Ele-
ment eines Terms zugreifen und mindestens eine Operation dieses Element dn-
dert. ®

Definition 5-27 beschreibt somit eine Konfliktrelation, welche auf einem Term ei-
ner Konjunktion basiert. Grundsétzlich 146t sich damit entscheiden, ob zwei Ope-
rationen in einem Konflikt beziiglich der Bedingungen auf einem Datenelement
stehen. Unter der Annahme, daB} fiir jedes Datenelement ein solches Priadikat exi-
stiert und zunéchst keine ablaufbezogenen Pradikate definiert sind, erhélt man eine
Konfliktrelation, welche dquivalent ist zu der Konfliktrelation der ACID-Transak-
tionen aus Abschnitt 5.2.1.

5.4.3 Pradikatbezogene-Serialisierbarkeit

Die Basis des Korrektheitsbegriffes nach Korth et. al. ist zunéchst eine einfache
Folgerung aus den eingefiihrten Konsistenzpradikaten.

Definition 5-28 (Korrektheit): Eine vollstindige Ausfiihrung einer Transaktion
ist dann korrekt, wenn alle Eingangsprddikate der Operationen erfiillt sind und
das Ausgangsprddikat der Operation erfiillt ist. ®

Es verwundert zundchst, dal nur das Ausgangspridikat der letzten Operation er-
fiillt sein mufB3. Geht man allerdings davon aus, da3 die Ausgangspridikate der vor-
hergehenden Operationen nur dazu dienen, einen Zustand sicherzustellen, der das
Eingangspridikat der folgenden Operationen erfiillt, wird klar, daf3 das Kriterium
hinreichend ist.

Wie in einigen der bisher vorgestellten Kriterien ergibt sich auch bei dem Kriteri-
um in Definition 5-28 das Problem, dal3 nur fiir Historien mit abgeschlossenen
Transaktionen entschieden werden kann, ob sie korrekt sind oder nicht. Da dieses
fiir die praktischen Anwendung ungeeignet ist, wurden mehrere abgewandelte Kri-

74

5 Korrektheit
Korrektheit nach Korth et. al.

terien entwickelt, die eine Umsetzung in einen Scheduler erlauben. In dieser Ar-
beit wird allerdings nur auf eines dieser Kriterien eingegangen werden: die pradi-
katbezogene Serialisierbarkeit.

Die Grundidee fiir die Entwicklung der pradikatbezogenen Serialisierbarkeit ist
es, statt der abstrakten Aussage iiber die Korrektheit eines Ablaufs als Ganzes die
Korrektheit mittels des eingefiihrten Konfliktbegriffs festzulegen. Da der Kon-
fliktbegriff es zuldfBt, daB zwei Operationen in einem Ablauf in Konflikt stehen
konnen und in einem anderen nicht, ist die einfache Ubertragung des Konflikts
zweier Operationen auf den Konflikt von ganzen Transaktionen, wie im Falle der
ACID-Transaktionen, kein geeignetes Mittel, um zu einem globalen Korrektheits-
begriff zu gelangen. Um trotzdem den Konflikt von ganzen Transaktionen auf den
Konflikt von Operationen zuriickfiihren zu kénnen, wird gefordert, daB die Uber-
priifung eines Eingangspradikates einer Operation gleichzeitig garantieren soll,
daf} das Préidikat bis zum Ende der Transaktion erfiillt ist, wenn es zum Zeitpunkt
der Uberpriifung erfiillt war.

Zur Definition des eigentlichen Kriteriums wird zunichst eine Hilfsdefinition be-
notigt.

Definition 5-29 (Reduzierte Historie): Sei d eine Menge von Datenelementen.
FEine beziiglich der Menge d reduzierte Historie H;=(X;<,) entsteht aus der
Historie H=(X,<), indem alle Operationen aus X entfernt werden, die nicht auf
ein Datenelement aus d zugreifen. Fiir je zwei Operationen a und b aus 2 ; soll
gelten, dafs, wenn a < b gilt, muf} auch a <; b gelten.

Mit Hilfe der Definition 5-29 kann ein Kriterium definiert werden, welches nur
Historien betrachtet, die Zugriffe auf bestimmte Mengen von Datenelementen
enthalten. Der Aquivalenzbegriff, der in der folgenden Definition zur Anwendung
kommt, entspricht dem aus Definition 5-9.

Definition 5-30 (Pridikat-Serialisierbarkeit): Gegeben sei ein Prddikat P
welches eine konjunktive Verkniipfung von Termen p; ist. Die Menge von Da-
tenelementen, welche in einem Term p; verwendet werden sei mit d; bezeichnet.
Eine Historie H heif3t serialisierbar beziiglich eines Prddikates P, wenn fiir jede
beziiglich der Mengen d; reduzierte Historie gilt, dafs sie dquivalent zu einer se-
riellen Historie ist.

Die Menge aller pradikat-serialisierbaren Historien wird mit P-SR bezeich-
net.m

Korth et. al. verwenden somit nur die Tatsache, dal} ein Datenelement in einem
Pradikat verwendet wird und nicht die Erfiillung bzw. Nicht-Erfiillung des Pradi-
kates. Dieser Ansatz ist dhnlich zu den Priadikatsperren, die in [EGL76] eingefiihrt
wurden.

75

Korrektheit 5
Korrektheit in ConTracts

5.4.4 Recovery-Aspekte

Obwohl in [KLS90] detailliert auf die Anforderung an die Semantik von Aktionen
zur Kompensation eingegangen wird, gibt es keine Spezialisierung des Korrekt-
heitskriteriums im Hinblick auf diese. Dies 1483t nur den Schlu} zu, daf} die Pradi-
kate der “normalen” Operationen, die Anforderungen an eine eventuelle Kompen-
sation mit abdecken miissen, um so zumindest die semantische Atomaritit der
Transaktionen gewéhrleisten zu konnen. Allerdings wird hierzu keine Aussage ge-
macht.

Eine wichtige Eigenschaft der Kompensationsaktionen ist jedoch erwdhnenswert:
Kompensationsaktionen sind atomar und haben somit die ACID-Eigenschaften.
Wie jedoch gewihrleistet wird, dafl diese Aktionen auch ausgefiihrt werden kon-
nen, wird nicht diskutiert.

Insgesamt wird das Verhalten der Transaktionen im Fehlerfall recht diirftig model-
liert. Dies zeigt sich beispielsweise im Falle eines Systemausfalls. Zundchst ma-
chen Korth et. al. keine konkrete Aussage iiber die Semantik nach einem System-
ausfall. Geht man davon aus, daB fiir eine nicht vollstindige Ausfiihrung die
Kompensation eingeleitet wird, stellen sich einige Fragen nach den Details. Ein
konkretes Problem tritt dann auf, wenn direkt nach der Ausfiihrung einer wirklich
ausfiihrenden Operation ein Systemausfall auftritt. Da die zugehorige e-Operation
nicht ausgefiihrt werden konnte, ist es nicht entscheidbar, ob die Operation tatsdch-
lich erfolgreich war oder nicht. Selbst wenn nach dem Systemaustfall versucht wird
das Préadikat zu evaluieren ist nicht gewéhrleistet, da3 dies das gleiche Resultat wie
vor dem Systemausfall liefert.

5.5 Korrektheit in ConTracts

ConTracts unterscheiden sich von den bisher betrachteten Modellen prinzipiell nur
in dem Punkt, daf in ihnen Transaktionsgrenzen explizit definiert werden konnen.
Zum einen werden dadurch die bereits bei dem Modell von Korth et. al. erwidhnten
Probleme vermieden, und zum anderen wird die flexible Eingrenzung des Wir-
kungsbereiches von fehlgeschlagenen Operationen moglich.

Mit der Einfilhrung der zusétzlichen Flexibilitdt ist es natiirlich notwendig, auch
den Korrektheitsbegriff neu zu iiberdenken bzw. festzulegen. Da im Gegensatz zu
den bisher vorgestellten Modellen die Fortfiihrbarkeit eines ConTracts eine der
grundlegenden Eigenschaften darstellt, ist es dariiber hinaus unumgénglich, den
Recovery-Aspekt in die Definition eines Korrektheitskriteriums mit einzubezie-
hen. Wie sich herausstellen wird, basiert der in diesem Abschnitt vorgestellte An-
satz auf einer Kombination des PRED-Kriteriums (sieche Definition 5-20) und der
pradikatbezogenen Serialisierbarkeit (sieche Definition 5-30).

76

5 Korrektheit
Korrektheit in ConTracts

5.5.1 Semantische Ununterbrechbarkeit von ConTracts

Der Begriff der Ununterbrechbarkeit oder Atomaritit der ACID-Transaktionen
fordert, dal Transaktionen entweder vollstindig ausgefiihrt werden oder keinen
sichtbaren Effekt haben. Formal kann dies folgendermal3en definiert werden:

Definition 5-31 (Ununterbrechbarkeit): Gegeben sei eine Menge von Daten-
objekten sowie jeweils eine Menge von Anderungs- und Beobachtungsoperatio-
nen. Eine Transaktion stellt eine Folge von Anderungs- bzw. Beobachtungsope-
rationen dar. Eine Transaktion heifst ununterbrechbar, wenn sie entweder
erfolgreich ausgefiihrt wurde oder wenn nach ihrem Zuriicksetzen alle Beob-
achtungsoperationen anderer Transaktionen die gleichen Resultate wie vor
dem Start der fehlgeschlagenen Transaktion liefern.®

Diese Definition der Ununterbrechbarkeit ist fiir kleine Ausfiihrungseinheiten ge-
eignet und unterstiitzt Anwendungsentwickler mit einer wohldefinierten Fehlerse-
mantik. Wie sich jedoch gezeigt hat, gibt es allerdings viele Anwendungen, flr die
diese Definition der Ununterbrechbarkeit keinen Sinn macht. Speziell bei langlau-
fenden Anwendungen zeigt es sich, dal einmal gestartete Abldufe Auswirkungen
haben, die nicht zuriickgesetzt werden kdnnen oder sogar gewollt im System ver-
bleiben sollen.

Deshalb wird die sogenannte semantische Ununterbrechbarkeit von ConTracts
zweistufig definiert. Zum einen bieten ConTracts die Moglichkeit flexibel Trans-
aktionsgrenzen festzulegen. Fiir die dadurch definierten Transaktionen wird die
Ununterbrechbarkeit im klassischen Sinne zugesichert. Betrachtet man ConTracts
als Ganzes, so wird bei einem Abbruch (der sogenannten Kompensation) garan-
tiert, daB fiir alle Steps, die innerhalb erfolgreich abgeschlossener Transaktionen
ausgefiihrt wurden sogenannte Kompensationssteps ausgefiihrt werden. Diese
Kompensationssteps stellen nun allerdings keinen Zustand her, der beziiglich den
Beobachtungsoperationen dquivalent zum Ausgangszustand des ConTracts ist.
Vielmehr wird nur gefordert, da3 nach der Ausfiihrung eines Kompensationssteps
der zugehorige Originalstep wieder ausgetfiihrt werden kann [RSS97].

Fiir die Kompensationssteps selbst wird die Ununterbrechbarkeit gemif3 Definiti-
on 5-31 gefordert. Somit laufen Kompensationssteps wie alle anderen Steps unter
dem Schutz von ACID-Transaktionen ab. Ein wichtiger Unterschied zu nicht-
kompensierenden Steps ist allerdings, dal Kompensationssteps unbedingt erfolg-
reich ausgefiihrt werden miissen, wenn die Kompensation eines ConTracts ausge-
16st wurde. Sollte also wihrend einer Kompensation die Ausfiihrung eines Kom-
pensationssteps fehlschlagen, ist zundchst zu versuchen die zugehorige
Transaktion zuriickzusetzen und die Ausfiihrung erneut zu starten. Schldgt der
(moglicherweise mehrfach) wiederholte Versuch der Ausfithrung fehl, befindet
sich das System in einem inkonsistenten Zustand, der einen manuellen Eingriff er-

77

Korrektheit 5
Korrektheit in ConTracts

fordert.

Da ConTracts die Fortsetzbarkeit garantieren ergibt sich ein weiterer Unterschied
zu den ACID-Transaktionen. Anstatt zur Recovery nach einem Systemausfall alle
aktiven Transaktionen zuriickzusetzen und dann die Kompensation einzuleiten,
werden alle zuriickgesetzten Transaktionen erneut gestartet und die Ausfithrung
des ConTracts fortgesetzt.

5.5.2 Historien in ConTracts

Prinzipiell 148t sich die bereits bekannte Definition von Historien auch auf das
ConTract-Modell iibertragen. Fiir die weitere Diskussion des Korrektheitskriteri-
ums von ConTracts ist es jedoch sinnvoll, die Besonderheiten explizit herauszuar-
beiten.

Die Operationen der abstrakten Maschine zur Abarbeitung von ConTracts kennt
insgesamt 8 Operationen, die bereits in Abschnitt 4.4.3 eingefiihrt wurden:

1. Die execute-Operation: e
2. Die check-Operation: Y
3. Die establish-Operation: €
4. Die BOT-Operation: b
5. Die EOT-Operation: c
6. Die Abort-Operation: a
7. Die compensate-Operation: k
8. Die EOC-Operation: f

Somit ergibt sich die Menge der zuldssigen Operationen O zu {e,Y,€,b,c,a,k,f}.

Definition 5-32 (Historie eines ConTract-Systems): Eine Historie H eines
ConTract-verarbeitenden Systems ist eine Partialordnung (X, <) mit £ = {o0;}
und o; € O. Eine Historie Ho=(X¢, <) heifst Projektion einer Historie H auf
eine ConTract-Instanz C, wenn X eine Teilmenge von X ist, nur Operationen
von C enthdlt und fiir jedes Paar von Operationen a und b aus X gilt, daf3 aus
a<binH a<¢binH¢folgt.

Eine ConTract-Instanz ist in einer Historie enthalten, wenn die Projektion der
Historie auf die ConTract-Instanz nicht leer ist.®

Die allgemeine Form der Historie ist natiirlich unabhingig von dem Verarbeitungs-
zustand einer ConTract-Instanz. Da dieser andererseits anhand der Historie durch-

78

5 Korrektheit
Korrektheit in ConTracts

aus bestimmt werden kann, bietet es sich an, auch eingeschrinkte Formen formal
zu definieren.

Definition 5-33 (Vollstindigkeit): Eine Historie H heift vollstindig, wenn fiir
alle in ihr enthaltenen ConTract-Instanzen C; gilt, daf3 f; = EOC(C,) in H ent-
halten ist. m

Vollstandige Historien sind somit Historien, die nur abgeschlossene ConTract-In-
stanzen beinhalten. Eine weitere Spezialisierung der allgemeinen Historien, sind
solche, die zwar noch nicht abgeschlossene ConTract-Instanzen enthalten, bei de-
nen jedoch keine Operationen enthalten sind, die zu aktiven Transaktionen geho-
ren. Um diese Historien ebenfalls formal erfassen zu konnen, sind zunichst zwei
Hilfskonstrukte notwendig.

Definition 5-34 (Transaktionsbezeichner): Fiir jede Operation o der Menge
der Anwendungsoperationen A={e,Y, e}, die in einer Historie H enthalten sind,
existiert eine Abbildung t(o), welche einer Anwendungsoperation o einen
Transaktionsbezeichner zuordnet. t(o) identifiziert die Transaktion, unter deren
Schutz o in H ausgefiihrt wurde. Mit T(o) wird die Abbildung bezeichnet, die o
beziiglich H den Transaktionsbezeichner der Top-Level-Transaktion zuordnet
unter der o ausgefiihrt wurde. ®

Die Abbildung t dient dazu, in einer Historie die Transaktion zu ermitteln, unter
der eine Anwendungsoperation abgelaufen ist.

Definition 5-35 (ConTract-Bezeichner): Fiir jede Operation o, die in einer Hi-
storie enthalten ist, existiert eine Abbildung C(o), welche o einen ConTract-In-
stanz-Bezeichner zuordnet. C(o) identifiziert die ConTract-Instanz, fiir die o
ausgefiihrt wurde.

Die Abbildung C(0) ermittelt in einer Historie die ConTract-Instanz, fiir die eine
Operation o ausgefiihrt wurde.

Definition 5-36 (Transaktionskonsistenz): Eine Historie H eines ConTract-
verarbeitenden Systems heifst transaktionskonsistent wenn fiir alle Operatio-
nen, welche Anwendungsoperationen sind, gilt:

\"4 a(t(o))e Xvce(t(o))e X 1
(oe(ZmA))(()) (¢(0))

Eine transaktionskonsistente Historie enthdlt nur Operationen, deren zugehdrige

Transaktion entweder erfolgreich abgeschlossen oder zurlickgesetzt wurde. Die

Forderung nach der Fortfiihrbarkeit von ConTracts nach einem Systemaustfall be-

dingt nun, dal} das Resultat der Recovery nach einem Systemstart ein System ist,

dessen Historie transaktionskonsistent ist.

Definition 5-37 (Recovery-Erweiterung): Eine Recovery-Erweiterung Hp ei-
ner Historie H ist eine transaktionskonsistente Historie, welche aus H durch

79

Korrektheit 5
Korrektheit in ConTracts

Anwendung der folgenden Regeln entsteht:
1. Alle Operationen von H sind auch in Hyp enthalten.
2. Gilt o; < o;in H, dann gilt auch o; < o; in Hp.

3. Fiir alle Transaktionen t fiir die weder a(t) noch c(t) in H enthalten ist, wird
a(t) der Historie Hp, hinzugefiigt. Es gilt o; < a(t) in Hg wenn entweder t(0;) =
1(a(t)) oder wenn es eine Operation o; in H gibt mit 0; < o;, t(0)) # t(0;) und
i(0;) = t(a(V).

4. Fiir alle abort-Operationen die in Hp aber nicht in H enthalten sind gilt:
a(t) < a(ty, t;# t; in Hp, wenn es zwei Operationen o;, 0; gibt mit t(0;) = t;
und t(0;) = t; und weiterhin gilt dafy 0; < o;in H. ™

Die Recovery-Erweiterung einer Historie erweitert eine gegebene Historie um jene
Operationen, welche fiir die Beschreibung des Abbruches der aktiven Transaktio-
nen notwendig sind. Dies entspricht dem Ansatz, der bei der Definition des PRED-
Kriteriums zum Einsatz kam. Da der Detaillierungsgrad der Historien eines Con-
Tract-verarbeitenden Systems relativ grob-granular ist und dariiber hinaus die Aus-
fiihrung der Anwendungsoperationen auf Ebene eines Contracts atomar erscheint,
soll im weiteren angenommen werden, dafl die Recovery-Erweiterung Historien
nur um die notwendigen Abbruchoperationen der abstrakten Maschine zur Bear-
beitung von ConTracts erweitert.

Da, entsprechend dem Ansatz der Prifix-Reduzierbarkeit, ein Korrektheitskriteri-
um fiir ein ConTract-verarbeitendes System sowohl die Durchlissigkeit als auch
die semantische Atomaritét beriicksichtigen soll, ist es notwendig, die Korrektheit
von Historien im Hinblick auf eine eventuelle Kompensation beurteilen zu konnen.
Im Gegensatz zu den bisher betrachteten Modellen ist es dazu allerdings notwen-
dig, den Mechanismus zur Kompensation nochmals genauer zu betrachten.

Wie bereits in Abschnitt 4.4.2 eingefiihrt, werden Steps nicht einfach Kompensati-
onssteps sondern sogenannte Kompensationsblocke zugeordnet. In der Historie ei-
nes ConTract-verarbeitenden Systems werden deshalb Kompensationsaktionen
nicht als einfache execute-Operationen widergespiegelt. Statt dessen ist die Kom-
pensation einer einzelnen execute-Operation eine Folge von Operationen, die zu ei-
ner Transaktion zusammen gefal3t werden.

Definition 5-38 (Kompensationsfolge): Eine Kompensationsfolge I(k) ist eine
Interpretation eines Kompensationsblockes k nach Definition 4-21. Es existiert
eine zweistellige Relation comp(e, 1(k)), mit folgender Eigenschaft:

comp(e,I(k)) gilt, wenn die execute-Operation e aus einer Step-Instanz s hervor-
geht, welche wiederum aus einem Step s einer ConTract-Instanz erzeugt wurde
und comp(s, k) gilt.

80

5 Korrektheit
Korrektheit in ConTracts

Gilt comp(e, I(k)), wird fiir I(k) die Schreibweise I(e']) verwendet. ®

Die Definition der Kompensationsfolge dient zur verkiirzten Schreibweise bei der
Definition von Historien. Sie abstrahiert von der Tatsache, dal} bei ConTracts im
allgemeinen mehrere Operationen zur Kompensation einer Operation notwendig
sind.

Definition 5-39 (Kompensatlons-Erwelterung) Eine Kompensations-Erwei-
terung H = (Z —>) einer Recovery-Erweiterung Hp einer Historie H entsteht
aus Hp durch folgende Regeln:

Y ist eine Menge von Operationen, die aus Xy in der folgenden Weise entsteht:
1. Fiir alle Operationen o gilt:0 € Lp = 0 € X

2. Fiir alle e-Operationen in Xy gilt: . A
(e <R k(C(e)) Vk(C(e)) & X)Ac(T(e))e ZAf(C(e)) & Zp= Ile)eX

Die Ordnungsrelation > ist folgendermafien festgelegt:

.o A
1. Fiir jeweils zwei Operationen o; und o; gilt: 0, <g 0;=>0;>0;

2. Alle nicht-kompensierenden Operationen einer ConTract-Instanz erscheinen
vor den Interpretationen ihrer Kompensationsbl&cke in der Historie

3. Fiir alle Paare von Kompenslatzonsfolgen I(e1) und I(62) gilt:
e;<Rey;=>1(e,)+I(e)
wobei die Relation > dann fiir zwei Kompensationsfolgen gelten soll, wenn
sie fiir die letzte Operation der ersten Folge und die erste Operation der
zweiten Folge gilt. m

Die Kompensations-Erweiterung stellt die Analogie zu den erweiterten Historien
(siehe Definition 5-18) dar. Die Idee dabei ist, Historien um die Kompensations-
folgen zu erweitern, welche zur Kompensation nicht abgeschlossener ConTract-
Instanzen notwendig sind. Notwendig sind dabei Kompensationsfolgen fiir execu-
te-Operationen erfolgreich abgeschlossener Top-Level-Transaktionen. Die Rei-
henfolge, in der die Kompensationsfolgen auszufiihren sind, entspricht dabei der
umgekehrten Reihenfolge der Originaloperationen (sofern eine solche vorhanden
ist). Implizit wird davon ausgegangen, dal} innerhalb der Kompensationsfolgen
die Partialordnung zu einer Totalordnung verschirft wird.

5.5.3 Konfliktbegriff von ConTracts

Ahnlich dem Modell von Korth et al. stellen die Invarianten Priadikate dar, die Be-
dingungen fiir die Ausfiihrbarkeit von execute-Operationen festlegen. Allerdings
sind die sogenannten Eingangsinvarianten nicht wie die Eingangspridikate bei
Korth beliebig definierbar. Statt dessen beziehen sie sich auf (Teil-)Priadikate,
welche bereits von fritheren Operationen als Ausgangsinvarianten etabliert wur-

81

Korrektheit 5
Korrektheit in ConTracts

den. Trotz dieses Unterschiedes lieBe sich nun der Konfliktbegriff von ConTracts
analog definieren. Bei genauerer Betrachtung aus dem Blickwinkel lang laufender
Ausfiihrungen erkennt man jedoch, dal3 diese Auffassung des Konfliktbegriffs weit
restriktiver als eigentlich notwendig ist.

Die Ursache der unnétig weitgehenden Beschriankung liegt in der von der Auswer-
tung des Pradikates unabhingigen Definition eines Konfliktes. D.h. es kann ein
Konflikt zweier Operationen beziiglich eines Pridikates vorliegen, obwohl das
Préadikat selbst nicht verletzt wird. Dariiber hinaus wird bei Korth gefordert, daf3 ein
Eingangspridikat bis zum Ende der Ausfithrung nicht verletzt wird, obwohl aus
Sicht der Operationen kein Bedarf fiir diese Anforderung besteht.

Das Ziel bei der Entwicklung des Konfliktbegriffs fiir ConTracts ist es, die Nach-
teile des Ansatzes von Korth et. al. zu vermeiden und somit einen hoheren Grad an
Parallelverarbeitung zuzulassen. Da die Eingangsinvarianten nur Referenzen auf
bereits etablierte Ausgangsinvarianten sind, bilden die Invarianten eine Art Klam-
mer, welche einen Isolationsbedarf repréasentiert. Somit ist ein Konflikt beziiglich
einer Invariante (bzw. eines Teils einer Invariante) nur innerhalb dieser Klammer

von Relevanz!.

Definition 5-40 (Geschlossene Invariantenklammer): Zwei Operationen € und
Y einer ConTract-Instanz bilden eine geschlossene Invariantenklammer [€,Y],
wenn gilt, daf3 sowohl € als auch vy in einer Historie enthalten sind und die Ein-
gangsinvariante der y-Operation eine Prddikat-Referenz (Definition 4-11) auf
die Ausgangsinvariante enthdlt, die von der e-Operation etabliert wird.

Eine Operation o liegt innerhalb einer geschlossenen Invariantenklammer [€,Y]
beziiglich einer Historie (o € [€,Y]), wenn o nach der e-Operation und vor der
Y-Operation ausgefiihrt wurde. ®

Eine geschlossene Invariantenklammer ist sozusagen ein Gtiltigkeitsbereich eines
Teils einer Ausgangsinvariante. Innerhalb dieses Bereiches muf3 der Teil der Aus-
gangsinvariante gelten, der von der Eingangsinvarianten referenziert wird.

Problematisch bei der Betrachtung der geschlossenen Invariantenklammer ist aller-
dings die Tatsache, daf} es nicht immer entscheidbar ist, ob jemals eine geschlosse-
ne Invariantenklammer vorliegen wird, wenn eine e-Operation ausgefiihrt wurde.
Dies ist zum einen darauf zuriickzufiihren, daf3 es innerhalb einer ConTract-Instanz
bedingte Verzweigungen gibt. Zum anderen ist gewéhrleistet, dal zu jeder Zeit
eine Kompensation eingeleitet werden kann, wodurch ebenfalls die Menge der Pfa-
de verdndert wird, die ausgefiihrt werden konnen.

Als Konsequenz aus dieser Beobachtung ist es notwendig, die eingefiihrte Notation
der Invariantenklammer zu verfeinern, um so ein Kriterium zu erhalten, welches

1. Diese Aussage trifft nur fiir Abldufe zu, deren Struktur sich nicht zur Laufzeit andert.

82

5 Korrektheit
Korrektheit in ConTracts

sich bei beliebigen Historien beurteilen 146t.

Definition 5-41 (Offene Invariantenklammern): Eine e-Operation, die in ei-
ner Historie H enthalten ist, heif3t rechts offene Invariantenklammer: [€,-). Eine
Operation o ist Teil einer rechts offenen Invariantenklammer o € [g,-), wenn o
in H enthalten ist und nach der e-Operation ausgefiihrt wurde.

Eine y-Operation, die in einer Historie H enthalten ist heifst links offene Inva-
riantenklammer: (-,y]. Eine Operation ist Teil einer links offenen Invarianten-
klammer o € (-,y], wenn o in H enthalten ist und vor der y-Operation ausgefiihrt
wurde. ®

Offene Invariantenklammern teilen eine Historie H grundsétzlich in Operationen,
die vor bzw. nach einer Invariantenoperation ausgefiihrt wurden. Die Konstrukti-
on der geschlossenen Invariantenklammer aus offenen Invariantenklammern ist
trivial, so daB hier nicht ndher darauf eingegangen wird.

Auf der Basis der Invariantenklammern kann nun die Konfliktrelation definiert
werden:

Definition 5-42 (Invariantenbasierte Konflikte): Gegeben sei eine Historie
H. Eine execute-Operation e; einer ConTract-Instanz C; und eine execute-
Operation e, einer ConTract-Instanz C,, C1 # C2, sind in Konflikt beziiglich
einer Ausgangsinvarianten auf Grund eines Prddikates p,: confe(e;e,py),
wenn gilt:

1. py ist Teil der Ausgangsinvarianten, die in einer e-Operation fiir e; etabliert
wird: € = establish(C,, t, o, e).

2. €€ [8,-)

3. py ist nach der Ausfiihrung von e, nicht erfiillt.

confe(e;,erp;) = € <eyin H.

Eine execute-Operation e; einer ConTract-Instanz C; und eine execute-Opera-

tion e, einer ConTract-Instanz C,, Cl # C2, sind in Konflikt beziiglich einer

Eingangsinvarianten auf Grund einer Pridikat-Referenz ry. conf,(e; ey ry),

wenn gilt:

1. vy, ist Teil der Eingangsinvarianten, die in einer y-Operation fiir e; gepriift
wird: Y = check(Cy, t, 1, e}).

2.e5e (-]

3. ry ist nach der Ausfiihrung von e, nicht erfiillt.

confylererry) =>Y<eyinH ®

Konflikte nach Definition 5-42 basieren im Gegensatz zum allgemeinen Konflikt-
begriff (siche Definition 5-4) auf einer bestimmten Ordnung der Operationen. Al-

83

Korrektheit 5
Korrektheit in ConTracts

lerdings ist bei den eingefiihrten Definitionen noch nicht beriicksichtigt, ob iiber-
haupt eine iiberlappende Ausfiihrung von ConTract-Instanzen vorliegt oder nicht.

5.5.4 Invariantenorientierte Serialisierbarkeit

Um die Korrektheit von Historien beurteilen zu konnen, ist die Auswirkung der
Konflikte auf die umgebenden ConTract-Instanzen zu untersuchen. Ein Aspekt da-
bei ist, dall eine ConTract-Instanz nur dann von einem Konflikt auf der Ebene der
Operationen beeinfluB3t werden kann, solange sie aktiv ist. Diese Tatsache hat zwei
grundsitzliche Implikationen:

1. Operationen vor dem Startereignis einer ConTract-Instanz kdnnen nicht in
einem Eingangsinvarianten-Konflikt mit einer Operation der ConTract-In-
stanz stehen.

2. Operationen nach der Ende-Operation einer ConTract-Instanz kénnen nicht
in einem Ausgangsinvarianten-Konflikt mit einer Operation der ConTract-
Instanz stehen.

Beriicksichtigt man diese Beobachtungen und propagiert die Ordnungsrelationen
der in Konflikt stehenden Operationen auf die Ebene der ConTract-Instanzen, ge-
langt man zu folgendem Ordnungsbegrift:

Definition 5-43 (Invariantenbasierte Ordnung): Zwei ConTract-Instanzen Cy
und Cp stehen in einer Ordnungsrelation <, beziiglich eines Prddikates p:
C4<,Cp, wenn es eine Historie H = (X,<) gibt, in der gilt:

1. Es gibt zwei e-Operationen e und eg der ConTract-Instanzen in H.

2. eg wurde vor EOC(C) ausgefiihrt und confg(e,epp)
oder
Start(Cp) wurde vor e, ausgefiihrt und conf.(ep,e4,r), wobei r=(o,p)

Die Ordnungsrelation <, ist transitiv. Die transitive Hiille wird mit <p* bezeich-
net. &

Die Ordnung, die ein Konflikt zweier Operationen unterschiedlicher ConTract-In-
stanzen impliziert, entspricht der Ordnung der in Konflikt stehenden Operationen.
Somit ist wiederum die Basis geschaffen, ein Kriterium zu formulieren, welches
der klassischen Serialisierbarkeit dhnelt.

Definition 5-44 (Invariantenbasierte Serialisierbarkeit): Eine Historie H ist
korrekt wenn:

1. Alle in ihr enthaltenen Projektionen von ConTract-Instanzen eine Interpreta-
tion einer wohlgeformten Contract-Instanz sind.

84

5 Korrektheit
Korrektheit in ConTracts

2. Fuir alle ConTract-Instanzen C; in der Kompensations-Erweiterung H gilt,
daf es kein Prddikat p gibt, so dafs:

Ci<p C,

Die Menge aller invariantenbasierten-serialisierbaren Historien wird mit I-SR
bezeichnet. ®

Auf Grund des eingefiihrten Konfliktbegriffs ist einfach zu zeigen, dal das Krite-
rium in Definition 5-44 Préfix-abgeschlossen ist und sich somit auch fiir den Ent-
wurf eines Schedulers eignet. Da das Kriterium - abgesehen von der Sicherstel-
lung der strukturellen Korrektheit - auf der Kompensations-Erweiterung einer
Historie basiert, konnen die Invarianten grundsitzlich in zwei Kategorien unter-
schieden werden:

1. Invarianten, die beziiglich einer Kompensationsaktion eine Invarianten-
klammer bilden.

2. Invarianten, die beziiglich einer “normalen” Operation eine Invarianten-
klammer bilden.

Diese Kategorien werden unterschieden, da eine Verletzung einer Invariante der
ersten Kategorie durch das Korrektheitskriterium ausgeschlossen ist, wéahrend
dies im zweiten Fall zugelassen wird. Diese Eigenschaft kann bei der Entwicklung
von Verfahren zur Sicherstellung der Korrektheit benutzt werden, was im folgen-
den Kapitel noch deutlich werden wird.

5.5.5 Kaskadierende Kompensation

Ein Problem der Atomaritit, das bei dem Lese-/Schreib-Modell bereits bespro-
chen wurde, das kaskadierende Zuriicksetzen, hat ein Pendant im Falle der seman-
tischen Ununterbrechbarkeit: die kaskadierende Kompensation. Unter kaskadie-
render Kompensation versteht man die Notwendigkeit, bei der Kompensation
einer ConTract-Instanz, die Kompensation einer anderen ConTract-Instanz auslo-
sen zu mussen.

Wie beim Lese-/Schreibmodell kann diese Fortsetzung dann notwendig werden,
wenn eine ConTract-Instanz A Daten gelesen hat, die von einer zweiten Con-
Tract-Instanz B verdndert wurden und die Instanz B die Kompensation einleitet.
Grundsatzlich stellt sich dann die Frage, ob die Daten, welche Instanz A gelesen
hatte, trotz der Kompensation von B giiltig sind. Die Antwort auf diese Frage ist
anwendungsabhingig und kann allgemein nicht beantwortet werden.

Im Gegensatz zum Ansatz der klassischen Transaktionen wird deshalb in Con-
Tracts davon ausgegangen, dal} keine kaskadierende Kompensation notwendig

85

Korrektheit 5
Diskussion

ist. Vielmehr obliegt es dem Anwendungsprogrammierer, das Konzept der Invari-
anten so zu nutzen, dal} ein inkorrektes Verhalten einer ConTract-Instanz auf
Grund der Kompensation einer anderen Instanz von vornherein ausgeschlossen ist.

Man kann diese sehr weit reichende Annahme durch Beobachtungen von langlebi-
gen Ablédufen aus realen Anwendungen rechtfertigen. Ein wichtiger Unterschied
zur transaktionalen Welt ist die Tatsache, dafl Resultate, die einmal sichtbar waren,
nicht dadurch “ungiiltig” werden, daf} ein Vorgang storniert wird. Zumindest fiir
eine bestimmte Zeit war ein Resultat giiltig, so dal3 dieser Umstand unter Beriick-
sichtigung des Zeitaspekts auch nicht mehr “ungeschehen” gemacht werden kann.

Ein Beispiel aus dem Bankwesen soll diese Beobachtung verdeutlichen. Wird eine
Reisebuchung durchgefiihrt, wird normalerweise eine Anzahlung geleistet. Unter
der Annahme, dal} diese Zahlung von einem Konto abgebucht wird, wird die Akti-
on dieses Reisebuchungsablaufes fiir einen anderen Ablauf zur Zinsberechnung
sichtbar. Wird die Reisebuchung storniert, bleiben die von der Zinsberechnung
ausgefiihrten Aktionen bestehen (wenn auch zum Leidwesen des oder der Buchen-
den). Eine kaskadierende Kompensation kommt in diesem Beispiel nicht in Frage,
da die Tatsache, daB fiir eine bestimmte Zeit weniger Geld auf dem Konto war,
nicht ungeschehen gemacht werden kann. Selbst wenn der entstehende Zinsverlust
von dritter Seite ausgeglichen wird, ist zwar der Effekt quasi kompensiert worden,
jedoch ohne Beeinflussung des Ablaufes zur Zinsberechnung.

Andererseits ist unverkennbar, da3 sich parallele Ablaufe beeinflussen. Dieser Ef-
fekt ist teilweise sogar gewiinscht, wodurch der Bedarf nach Ablauf-iibergreifen-
dem Informationsaustausch entsteht. Diese Art des Zusammenspiels von Abldufen
ist jedoch nicht Gegenstand dieser Arbeit und wird deshalb nicht weiter diskutiert.
Trotzdem kann man sich vorstellen, dal der hier prisentierte Begriff der Korrekt-
heit bei weitem nicht ausreicht, um fiir ein solch komplexes Szenario zu geniigen.

5.6 Diskussion

Die in diesem Kapitel vorgestellten Korrektheitsbegriffe stellen nur einen Aus-
schnitt aus der Vielfalt entwickelter Kriterien dar. Gerade im Zusammenhang mit
dem klassischen Serialisierbarkeitsbegriff im Umfeld des Lese/Schreib-Modells
wurden einige Verfeinerungen entwickelt, um eine theoretische Grundlage fiir die
im nachfolgenden Kapitel diskutierten Verfahren einzufiihren. Grundsitzlich wer-
den durch diese Verfahren jedoch kaum neue Aspekte aufgeworfen, so dal auf eine
tiefergehende Einfiihrung dieser Verfahren verzichtet werden kann.

Bei genauerer Betrachtung der vorgestellten Verfahren lassen sich zwei orthogo-
nale Klassifikationskriterien fiir Korrektheitsbegriffe identifizieren:

86

5 Korrektheit
Diskussion

1. Art der Konfliktbestimmung

2. Art der Isolationsbedarfsfestlegung.

Die Art der Konfliktbestimmung entscheidet dariiber, ob das Kriterium auf einem
Konfliktbegriff basiert, welcher nur durch die Betrachtung der Signatur der Ope-
rationen festgelegt ist. Ist dies der Fall, so spricht man von einem syntaktischen
Verfahren. Mul3 dagegen die Bedeutung der Operationen selbst betrachtet werden,
um uber einen Konflikt entscheiden zu konnen, nennt man das Verfahren seman-
tisch.

Die Art der Isolationsbedarfsfestlegung dient dazu, aus Sicht einer Anwendung zu
beurteilen, wie der Isolationsbedarf geduBert werden kann. MuB3 in der Anwen-
dung selbst hierzu keinerlei Maflnahme getroffen werden spricht man von einem
impliziten Verfahren, anderenfalls von einem expliziten Verfahren. Diese Unter-
scheidung sagt natiirlich nichts dariiber aus, ob auf der Stufe des Ausfithrungssy-
stems explizit festgelegt wurde, ob zwei Operationen in einem Konflikt stehen
(z.B. durch sogenannte Kompatibilititstabellen), oder ob diese Konflikterken-
nung implizit im Programmcode versteckt ist.

Tabelle 5-1 gibt einen Uberblick iiber die Klassifikation der vier wichtigsten Kri-
terien, die in diesem Kapitel vorgestellt wurden. Anhand der Tabelle wird deut-
lich, daB3 die vier vorgestellten Modelle alle Kombinationen der zwei Klassifika-
tionskriterien reprisentieren und somit hinreichend reprisentativ sind.

Auffillig 1st, dal der Korrektheitsbegriff nach Korth et. al. die explizite Festle-
gung des Isolationsbedarfs unterstiitzt und gleichzeitig eine syntaktische Konflikt-
bestimmung verfolgt. Dies resultiert aus der Tatsache, dal3 das Korrektheitskrite-
rium nach Korth zwar Pridikate verwendet, die auf Anwendungsebene definiert
werden, andererseits aber ein Konflikt nicht darauf beruht, daf} ein Pradikat ver-
letzt wird. Ein Konflikt beruht nur auf der Tatsache, daB3 ein Objekt “syntaktisch”
in einem Préadikat verwendet wird und eine dndernde Operation auf dieses Objekt
zugreift. Die Art des Zugriffs beeinfluBBt die Entscheidung iiber einen Konflikt
nicht.

Kritertum Modell Konfliktbestimmung | Isolationsbedarf
PRED read/write-Modell | syntaktisch implizit
ML-SR Multilevel semantisch implizit
P-SR Korth et. al. syntaktisch explizit
I-SR ConTracts semantisch explizit

Tabelle 5-1: Klassifikation von Korrektheitskriterien

87

Korrektheit 5
Diskussion

Ein wichtiges Vergleichskriterium fiir Korrektheitsbegriffe ist die Betrachtung der
moglichen korrekten Historien. Grundsitzlich gilt dabei, daB3 bei einer grofleren
Menge an moglichen Transaktionen auch der mogliche Parallelititsgrad zunimmt
und somit ein hoherer Durchsatz (im Hinblick auf Transaktionen pro Zeiteinheit)
erzielt werden kann. Wie bereits in Abschnitt 5.2 im Fall des Lese/Schreib-Modells
eingefiihrt wurde, wird ein entsprechender Vergleich durch eine Teilmengenbezie-
hung der Mengen moglicher Historien ausgedriickt.

Eine Vorgehensweise zu einer Aussage iiber Teilmengenbeziehungen zu kommen
ist die Untersuchung eines Verfahrens auf die Moglichkeit der Simulation eines an-
deren Verfahrens. Einfach kann dies am Beispiel des Modells nach Korth und dem
ConTract-Modell vorgenommen werden. Schriankt man bei den ConTracts die Pré-
dikate so ein, dal eine Verletzung des Pridikats bei einem beliebigen dndernden
Zugriff eines enthaltenen Datenelements auftritt und definiert die Eingangsinvari-
ante des letzten Steps als Konjunktion aller vorigen Eingangsinvarianten, so erhalt
man das gleiche Verhalten wie bei dem Ansatz von Korth. Auch das PRED-Krite-
rium ist mit dem Ansatz von ConTracts entsprechend zu simulieren. Eine Aussage
iiber die Teilmengenbeziehung mit den Mehrschichttransaktionen ist allerdings
nicht moglich, da bei diesen zum einen eine strenge Hierarchie gefordert wird und
zum anderen nicht festgelegt ist, welches Verfahren auf einer bestimmten Ebene
zur Anwendung kommt.

Dartiber hinaus kann fiir alle Verfahren, die eine Kompatibilitétstabelle fiir eine be-
liebige (erweiterbare) Menge von Operationen verwenden, keine Aussage liber
eine Teilmengenbeziechung gemacht werden, da der Konfliktbegrift zwar definiert
aber verdnderlich beziiglich der Zeit bei konstantem Zustand der Daten ist.

Der Zeitaspekt wird momentan von keinem Korrektheitsbegriftf beriicksichtigt, ob-
wohl dieser im Umfeld langdauernder Abldufe eine nicht zu vernachldssigende
Rolle spielt. Ein Beispiel soll dies verdeutlichen. Ein Ablauf zur Abwicklung eines
Hauskaufs moge einen Step enthalten, der dazu dient festzustellen, ob fiir die spa-
tere Zahlung des Kaufpreises geniigend Geld zur Verfiigung steht. Aus Sicht der
Anwendung muB ab dem Zeitpunkt der Uberpriifung nur sichergestellt werden, daf
zum Zeitpunkt der Zahlung ein entsprechender Betrag zur Verfligung steht. Somit
konnte unter dieser Voraussetzung jeglicher Zugriff auf das Budget erlaubt wer-
den.

Bei genauerer Betrachtung erkennt man, daf3 das Beispielsszenario zwei Aspekte
enthilt, die heutige Korrektheitskriterien nicht beriicksichtigen (konnen). Der eine
Aspekt ist die bereits erwdhnte temporale Beschrinkung von Isolationskriterien.
Der zweite Aspekte, der auch den eigentlich kritischen Bereich darstellt, ist die Be-
riicksichtigung einer Garantie iiber eine zukiinftige Aktion bzw. einen zukiinftigen
Zustand der Daten. Obwohl es in der Realitdt Usus ist, Garantien liber zukiinftige

88

5 Korrektheit
Diskussion

Ereignisse abzugeben, kann dies bei Korrektheitsmodellen kaum berticksichtigt
werden, da solche Garantien nur begrenzt eingehalten werden konnen und bei ei-
ner Verletzung ein nicht korrekter bzw. inkonsistenter Zustand entstehen kann.

Trotzdem ist es speziell im Umfeld langlebiger Abldufe notwendig, weitgehend
die Flexibilitit der Realitat nachbilden und somit auch inkonsistente Zustéande be-
rlicksichtigen zu konnen. Eine zukiinftige Aufgabe der Entwicklung von Korrekt-
heitskriterien wird es somit sein, Inkonsistenzen nicht grundsétzlich zu verhin-
dern, sondern kontrolliert mit ihnen umzugehen.

89

Kontrolle von Ablaufen 6
Grundprobleme

6 Kontrolle von Ablaufen

Die Einfiihrung von Korrektheitskriterien im transaktionalen Umfeld ist die Vor-
aussetzung, um Mechanismen zur Vermeidung von Anomalien bei der parallelen
Ausfiihrung von Abldufen in ein Laufzeitsystem zu integrieren und somit Anwen-
dungsprogrammierer und -programmiererinnen von diesem Aufwand zu entlasten.
Neben dem Vorteil, dal insgesamt der Code-Umfang der Anwendungen dadurch
geringer wird, konnen die Mechanismen des Laufzeitsystems von Spezialisten ent-
wickelt und optimiert werden. Somit wird das Fehlerrisiko minimiert und gleich-
zeitig ein optimales Leistungsverhalten garantiert. Dieses Kapitel beschéftigt sich
mit den unterschiedlichen Ansdtzen zur Umsetzung der im vorigen Kapitel einge-
fiihrten Korrektheitskriterien in eben solche Laufzeitsysteme, so dal3 sich der Be-
griff der “Kontrolle von Abldufen” nur auf die Sicherstellung der transaktionalen
Korrektheit bezieht (engl. concurrency control) und nicht auf andere Bereiche wie
z.B. den Datenschutz.

Wie sich herausstellen wird, gibt es eine Vielzahl von Moglichkeiten die vorge-
stellten Kriterien in ein Laufzeitsystem umzusetzen. Neben der eigentlichen Auf-
gabe, der Sicherstellung der Korrektheit selbst, werden dabei noch weitere Aspekte
eine Rolle spielen, wobei der Leistungsaspekt im Hinblick auf das Durchsatzver-
halten des Gesamtsystems, das liberwiegend wichtigste Beurteilungskriterium zur
Bewertung der Verfahren sein wird.

6.1 Grundprobleme

Wie im Falle der Korrektheitskriterien konnen auch bei deren Umsetzung grund-
satzliche Probleme identifiziert werden, die es zu 16sen gilt. Die drei nachfolgen-
den Unterabschnitte sollen einen Einblick in diese Probleme geben und eine Moti-
vation fiir die Vielzahl an Ansétzen liefern.

6.1.1 Statische versus dynamische Ansatze

Wie bereits erwihnt, ist das Ziel der Umsetzung von Korrektheitskriterien die Ent-
wicklung eines Laufzeitsystems. Die Hauptkomponente eines solchen Systems ist
dabei die Komponente, die iiber die Ausfithrbarkeit bzw. die Zulassung einer
Transaktion zur Ausfiihrung entscheidet: der sogenannte Scheduler. Aus Sicht die-
ses Schedulers wird dessen Aufgabe um so einfacher, je mehr Information tiber die
Operationen und die benotigten Datenobjekte der Transaktionen vor deren Ablauf
zur Verfiigung stehen.

Ein Ansatz zur Sicherstellung von korrekten und (Durchsatz-)optimalen Historien

90

6 Kontrolle von Ablaufen
Grundprobleme

basiert auf dieser Beobachtung. Bei diesem Ansatz wird gefordert, da3 eine Trans-
aktion bereits vor ihrem eigentlichen Ablauf alle bendtigten Datenelemente “re-
serviert” (engl. pre-claiming). Wird aullerdem noch die Art des Zugriffs spezifi-
ziert (wie z.B. dndernder Zugriff oder nicht-indernder Zugriff), ist es einem
Scheduler prinzipiell moglich, die verschachtelte Ausfiithrung von Transaktionen
einfach festzulegen und (nahezu) jede Konfliktsituation vorherzusehen. Da sich
die Information, die zur Erkennung von Konflikten bendétigt wird, zur Laufzeit ei-
ner Transaktion nicht dndert, wird diese Art von Ansétzen zur Sicherstellung1 der
Korrektheit als statisch (im engl. conservative [BHG87]) bezeichnet.

Voraussetzung fiir den Einsatz von statischen CC-Verfahren ist jedoch, daB3 die
Menge der beriihrten Objekte einer Transaktion vorab bekannt ist und dal3 Trans-
aktionen moglichst keine bedingten Verzweigungen enthalten. Letzteres ist zwar
vom Standpunkt der Korrektheit nicht unbedingt notwendig, da jedoch ganze
Zweige einer Transaktion moglicherweise nicht durchlaufen werden, sind alle
MalBnahmen zur Konfliktvermeidung fiir Objekte, die nur in diesen Zweigen be-
rithrt werden unnétig und resultieren in einer Verschlechterung des Leistungsver-
haltens.

Durch diese notwendigen Voraussetzungen eignen sich die statischen Verfahren
nur fiir eine sehr beschrankte Klasse von Anwendungen, weshalb in anwendungs-
unabhingigen Produkten wie z.B. Datenbanksystemen eine andere Klasse von
Verfahren zur Anwendung kommt: die dynamischen Verfahren.

Dynamische CC-Verfahren erfordern keine Reservierung der in einer Transaktion
benétigten Datenelemente vor der Ausfithrung einer Transaktion. Statt dessen
wird bei der Ausfiithrung einer Operation ermittelt, welche Datenelemente beriihrt
werden und welche Konflikte mit bereits ausgefiihrten Operationen anderer
Transaktionen hierdurch entstehen. Anhand dieser Information entscheidet der
Scheduler ob die Operation ausgefiihrt werden darf, bzw. welche Mallnahmen ge-
troffen werden miissen, um die Korrektheit des Systems zu gewéhrleisten.

Obwohl durch den dynamischen Ansatz jede einzelne Operation einer Transakti-
on verzogert wird, rechtfertigt sich der Einsatz einer solchen Methodik durch den
hohen Flexibilititsgrad und der Unabhingigkeit von der Menge der von Transak-
tionen beriihrten Datenelemente.

6.1.2 Durchsatz und Verklemmung

Im Bereich der ACID-Transaktionen ist neben der Korrektheit selbst der Durch-
satz bzw. eine Durchsatzsteigerung beziiglich der seriellen Ausfithrung das
Hauptbeurteilungskriterium fiir ein CC-Verfahren. Der Grund hierfir ist die Ent-
stehungsgeschichte der in diesem Kapitel vorgestellten Verfahren. Da Transaktio-

1. Im weiteren wird die abkiirzende Bezeichnung CC-Verfahren verwendet.

91

Kontrolle von Ablaufen 6
Grundprobleme

nen zunéchst in der Batch-Verarbeitung eingesetzt wurden, gab es keine Probleme
durch den parallelen Zugriff - Transaktionen wurden rein sequentiell ausgefiihrt.
Erst durch die Einflihrung des OLTP-Betriebes stellte sich das durch CC-Verfahren
adressierte Problem. Die einfachste Losung wire, die sequentielle Verarbeitung zu
erzwingen und somit nur eine aktive Transaktion im System zuzulassen. Fiihrt man
stattdessen Verfahren zur Durchsetzung der Korrektheit bei gleichzeitiger Parallel-
verarbeitung ein, muf} sichergestellt sein, da3 der Durchsatz des Systems zumin-
dest hoher ist als im rein sequentiellen Fall.

Obwohl der Durchsatz als Beurteilungskriterium im Falle der ACID-Transaktio-
nen durchaus seine Berechtigung hat (auf Grund der Isolationseigenschaft), kann
dies nicht ohne weiteres auf andere “erweiterte” Modelle iibertragen werden. Der
Grund hierfiir ist die Tatsache, dall das ACID-Modell keine kooperativen Tatigkei-
ten zuldft. Das sind Verarbeitungsformen, bei denen der parallele bzw. verschach-
telte Zugriff auf diesselben(!) Datenelemente gewollt und notwendig ist. Deshalb
ist auch die rein sequentielle Verarbeitung der Transaktionen von vornherein aus-
geschlossen und das Beurteilungskriterium nicht anwendbar. Trotzdem ist es auch
fiir Verfahren, die Kooperation unterstiitzen wiinschenswert, dall neben ihrer An-
wendbarkeit im ACID-Fall auch das Durchsatzkriterium entsprechend angewandt
werden kann.

Bei dynamischen CC-Verfahren entsteht ein weiteres Problem, welches Auswir-
kungen auf das Gesamtsystem haben kann: die Verklemmung (engl. deadlock). Da
die meisten Verfahren darauf basieren, daf3 bei einem Konflikt zweier Transaktio-
nen eine davon blockiert wird (die TA, deren Operation nicht zur Ausfithrung zu-
gelassen wird), kann es vorkommen, dal3 eine zirkuldre Wartesituation auf Grund
unterschiedlichen Ressourcenbedarfs vorliegt.

Ein Beispiel soll dies verdeutlichen:

1. Transaktion 1 hat eine Ressource A bereits bearbeitet und dafiir exklusiv re-
serviert;
Dasselbe gilt fiir Transaktion 2 beziiglich einer anderen Ressource B.

2. Mochte Transaktion 1 nun Ressource B bearbeiten, verweigert der Scheduler
die Ausfiihrung der Operation, da Transaktion 2 noch nicht abgeschlossen
ist.

3. Mochte Transaktion 2 Ressource A bearbeiten wird Transaktion 2 ebenfalls
blockiert, da Transaktion 1 noch nicht abgeschlossen ist.

Nach Schritt 3 sind somit Transaktion 1 als auch Transaktion 2 blockiert, und es
gibt keine Moglichkeit diese Blockierung aufzulosen, ohne dal3 eine der Transak-
tionen abgebrochen wird (die Atomarititseigenschaft wird vorausgesetzt).

92

6 Kontrolle von Ablaufen
Grundprobleme

Es gibt unterschiedliche Ansétze, Verklemmungen zu erkennen und dann durch
Zuriicksetzen einer der beteiligten Transaktionen aufzuldsen. Die zwei Hauptan-
sdtze basieren dabei auf der Verwendung von Abhingigkeitsgraphen (édhnlich
dem Serialisierbarkeitsgraphen) bzw. auf einem Zeitschrankenmechanismus
(engl. timeout). Letzterer Ansatz hat den Nachteil, sehr anwendungsabhingig zu
sein, da die maximale Dauer einer Transaktion vorab festgelegt werden muf3. An-
dererseits ist er sehr viel einfacher zu implementieren und weniger zeitaufwendig,
weshalb er in den gingigen Datenbanksystemen eingesetzt wird.

Verklemmungen bei ACID-Transaktionen sind somit vergleichsweise harmlos,
wenn man den Performancegesichtspunkt unbeachtet 1463t. Anders gestaltet sich
dies jedoch bei geschachtelten Transaktionen. Bei diesen ist es durchaus moglich,
daB zwei Sub-Transaktionen der gleichen Top-Level-Transaktion in eine Ver-
klemmung geraten, bzw. sogar eine Sub-Transaktion mit einer Eltern-Transakti-
on. Einerseits kann auch dieser Konflikt durch Zuriicksetzen der niedrigsten Sub-
Transaktion aufgelost werden, doch erfordert dies zunédchst Information iiber die
Transaktionsbeziehungen. Dariiber hinaus ist der Effekt des Sub-Transaktions-
Abbruchs auf den weiteren Verlauf der Eltern-Transaktion dem System unbe-
kannt, wodurch der Abbruch der Top-Level-Transaktion ausgelost werden kann.

Dieser Effekt bei geschachtelten Transaktionen ist bisher noch wenig untersucht.
Allerdings stellt sich auch die Frage, ob eine Verklemmung innerhalb einer ge-
schachtelten Transaktion nicht eigentlich ein Indikator fiir einen Programmierfeh-
ler darstellt.

Im weiteren Verlauf dieser Arbeit wird sowohl der Durchsatz-Aspekt als auch das
Thema der Verklemmung im Kontext des ConTract-bezogenen Ansatzes nicht
weiter diskutiert werden. Der Durchsatz-Aspekt wird nicht weiter betrachtet, da
es sich im Falle des ConTract-Modells durchaus um einen kooperationsunterstiit-
zenden Ansatz handelt. Die genauere Untersuchung der Verklemmungsproblema-
tik im Falle von ConTracts ist durchaus relevant, wiirde aber den Rahmen dieser
Arbeit sprengen und stellt ein eigenstidndiges Forschungsthema dar.

6.1.3 Wartbarkeit

Unter dem Begriff der Wartbarkeit versteht man ein MaB fiir die Moglichkeit, ein
Verfahren an neue Gegebenheiten anzupassen bzw. fiir den Aufwand, der hierzu
notwendig ist. Im Falle von Transaktionsmodellen tritt dies auf, wenn zu der Men-
ge der moglichen Operationen eines Modells neue Operationen hinzukommen.
Bei ACID-Transaktionen spielt dies keine Rolle, da die Menge der Operationen
per Definition auf die Lese- und Schreiboperation beschréankt ist und somit keine
neuen Operationen hinzukommen koénnen. Bei allen Modellen, die mehrstufig
aufgebaut sind oder anwendungsdefinierte Operationen zulassen (wie z.B. bei den

93

Kontrolle von Ablaufen 6
Klassische Ansétze

Multi-Level-TAs oder den ConTracts) konnen im Gegensatz dazu jederzeit neue
Operationen in das System eingebracht werden. Dabei stellt sich natiirlich die Fra-
ge, inwieweit dies Auswirkungen auf das Laufzeitsystem zur Sicherstellung der
Korrektheit hat.

Wie bereits bei den Mehrschichttransaktionen erwéahnt, ist ein relativ hoher Auf-
wand notwendig, wenn die zum Einsatz kommenden Verfahren auf einem explizit
zu definierendem Konfliktschema basieren, wenn also explizit (z.B. im Scheduler)
festgelegt werden muB}, ob eine Operation A mit einer Operation B in einem Kon-
flikt steht, wenn beide Operationen auf das gleiche Datenelement zugreifen.

Ein solcher Aufwand ist natiirlich in einem System mit vielen Operationen nicht
vertretbar, weshalb auch in der Entwicklung eines CC-Verfahrens fiir ConTracts
entsprechende Ansétze nicht beriicksichtigt wurden. Statt dessen wird darauf ge-
achtet werden, daB bei der Einbringung neuer Operationen keine Anderung des
Laufzeitsystems zu erfolgen hat.

6.2 Klassische Ansatze

Unter den klassischen Ansétzen versteht man diejenigen Verfahren, die zur Ab-
wicklung von ACID-Transaktionen im OLTP-Bereich entwickelt wurden. Die re-
lativ lange Entwicklungsgeschichte dieser Verfahren hat dazu gefiihrt, daf3 es eine
Vielzahl von verdffentlichten Methoden gibt, die sich grof3tenteils nur in wenigen
speziellen Punkten unterscheiden. Deshalb sollen in diesem Abschnitt nur die
grundsétzlichen Prinzipien vorgestellt und entsprechende Hinweise auf die Litera-
tur gegeben werden.

6.2.1 Pessimistische Verfahren

Die sogenannten pessimistischen Verfahren beruhen auf der Idee, Konflikte noch
vor der Ausfiihrung einer Operation zu erkennen und daraufhin geeignete Maf3nah-
men zu ergreifen.

6.2.1.1 Zwei-Phasen Sperrverfahren

Populirster Vertreter der pessimistischen Verfahren ist das sogenannte Zwei-Pha-
sen-Sperrverfahren (engl. two phase locking oder 2PL) [BHGS87]. Das Prinzip des
2PL beruht darauf, daB3 jede Lese- und Schreiboperation einer ACID-Transaktion
vor threr Ausfiihrung eine Sperre fiir das Objekt anfordert, auf das wéhrend der
Operation zugegriffen werden soll. Der Begriff der Zweiphasigkeit riihrt von dem
Prinzip her, da3 eine Sperre erst dann wieder frei gegeben wird, wenn keine weitere
Sperre mehr benotigt wird. Somit erhélt man eine “Wachstumsphase” (engl. gro-
wing phase), wihrend der die Anzahl an gehaltenen Sperren zunimmt und eine

94

6 Kontrolle von Ablaufen
Klassische Ansitze

“Freigabephase” (engl. shrinking phase) wihrend der die Anzahl wieder ab-
nimmt.

Es 14Bt sich zeigen, dal3 ein Scheduler auf der Basis des 2PL ausschlieBlich seria-
lisierbare Historien erzeugt [BHGS87]. Allerdings bleibt die Problematik der Wie-
derherstellbarkeit und die des kaskadierenden Zurilicksetzens unberiicksichtigt.
Ein Beispiel soll dies verdeutlichen:

1. Eine Transaktion 1 liest ein Objekt A und schreibt ein Objekt B.
2. AnschlieBend gibt Transaktion 1 die Sperre fiir Objekt B frei.
3. Eine Transaktion 2 liest Objekt B und dndert wertabhéngig von B Objekt C

4. Transaktion 1 bricht ab.!

5. Transaktion 2 wird erfolgreich beendet.

Nach diesem Ablauf ist der Wert von Objekt C moglicherweise falsch, da dieser
auf der Basis des gednderten Wertes von B berechnet wurde. Da Transaktion 1 je-
doch zuriickgesetzt wurde, ist der Wert von B inzwischen auf dem alten Stand:
man hat die klassische “dirty read” Situation (wie bereits in Abschnitt 5.2.3 ange-
sprochen konnte dies durch kaskadierendes Zuriicksetzen vermieden werden).

Eigentlicher Grund fiir dieses Problem ist die Freigabe einer Sperre auf einem ge-
dnderten Objekt ohne zu wissen, ob die Transaktion erfolgreich abschlieBt oder
nicht. Deshalb wurde eine leichte Abwandlung des 2PL eingefiihrt: das strikte
2PL. Bei diesem Verfahren wird auBBer den Anforderungen des 2PL noch zusitz-
lich verlangt, daB3 Sperren d&ndernder Operation erst beim commit bzw. beim abort
der Transaktion freigegeben werden. Fiir das strikte 2PL 148t sich zeigen, dal3
Scheduler, die das strikte 2PL einsetzen nur strikte Historien (sieche Abschnitt
5.2.3) erzeugen [BHG87].

Da bei Sperrverfahren liblicherweise eine Transaktion blockiert wird, wenn eine
Sperre fiir ein Objekt angefordert wird auf dem bereits eine in Konflikt stehende
Sperre besteht, wird das 2PL und auch das strikte 2PL iiblicherweise als “verklem-
mungsanfallig” bezeichnet. Somit sind zusitzliche Mechanismen notwendig (sie-
he Abschnitt 6.1.2), um Verklemmungen erkennen und auflésen zu kénnen.

6.2.1.2 Graphbasierte Verfahren

Mann kann fiir die Zwecke der CC auch die Information in Abhéngigkeitsgraphen
verwenden (siche beispielsweise [Giint96]). Wie bereits beim Serialisierbarkeits-
graphen (Abschnitt 5.2.2) eingeflihrt, fiihrt der Konflikt zweier Operationen zu ei-

1. Bei [BHG87] wird davon ausgegangen, da3 bei commit oder abort keine Sperren angefordert werden.

95

Kontrolle von Ablaufen 6
Klassische Ansétze

ner Abhingigkeitsrelation der Transaktionen, die diese Operationen ausfiihren.
Diese Relation 148t sich auch als gerichteter Graph auffassen, der azyklisch sein
mul}, um die Serialisierbarkeit zu gewahrleisten. Die Grundversion der Konflikt-
graphen eignet sich allerdings nicht dazu, auch die Recoverability zu gewéhrlei-
sten. Hierzu sind einige Erweiterungen notwendig, die jedoch relativ einfach sind
und deshalb hier nicht weiter erldutert werden.

Das grundsitzliche Kriterium zur Beurteilung, ob ein Graph eine korrekte Historie
widerspiegelt oder nicht, bleibt auch bei den erweiterten Graphen die Azyklizitét.
Wenn also eine Operation einer Transaktion einen Zyklus in dem Graphen erzeu-
gen wiirde, ist sie nicht zuléssig, und es miissen entsprechende MaBBnahmen ergrif-
fen werden. Dartiber hinaus ist selbst bei einer blockierenden Strategie einfach fest-
zustellen, ob eine Verklemmung eintreten wiirde oder nicht. Da durch eine
verklemmungsverursachende Operation auf jeden Fall auch ein Zyklus in dem Gra-
phen entstehen wiirde, ist bei der Blockierung einer solchen Operation zu untersu-
chen, ob alle an dem Zyklus beteiligten Transaktionen ebenfalls blockiert sind. Ist
dies der Fall, so liegt eine Verklemmung vor, und eine der beteiligten Transaktio-
nen muf} zuriickgesetzt werden.

6.2.2 Optimistische Verfahren

Optimistische Verfahren unterscheiden sich von den pessimistischen Verfahren
dadurch, da3 nicht grundsétzlich versucht wird, Operationen zu verhindern, die das
Korrektheitskriterium verletzen wiirden. Statt dessen wird hier der Ansatz verfolgt,
Transaktionen bis zur prepare-Phase auszufiihren und erst dann zu iiberpriifen, ob
ein Konflikt wihrend der Ausfiihrung vorlag, der das Korrektheitskriterium verlet-
zen wiirde. Ist dies der Fall, muB3 eine Transaktion zuriickgesetzt werden oder das
commit einer Transaktion solange verzogert werden, bis alle anderen in Konflikt
stehenden Transaktionen ebenfalls ihr commit ausfiihren wollen.

Obwohl diese Verfahren offensichtlich verklemmungsfrei sind, hat der Realeinsatz
gezeigt, daf} sie im Hinblick auf den Durchsatz den pessimistischen Verfahren un-
terlegen sind. Deshalb wird nicht weiter auf die Details dieser Verfahren eingegan-
gen werden. Eine kurze Diskussion der Ursache fiir dieses Verhalten ist jedoch an-
gebracht.

Optimistische Verfahren fithren grundsétzlich alle Operationen von Transaktionen
so aus, als ob sie auf privaten Kopien der Daten ausgefiihrt werden wiirden. Bei der
Uberpriifungsphase muf nun (fiir alle Operationen) festgestellt werden, ob eventu-
ell ein Konflikt aufgetreten ist, der die Korrektheit verletzt. Dies ist ein nicht zu
vernachlidssigender Aufwand, der z.B. durch ein graphbasiertes Verfahren reali-
siert wird. Im Falle eines Konfliktes miissen nun die Gegenoperationen fiir alle dn-
dernden Operationen ausgefiihrt werden, was einen groferen Aufwand als fiir die

96

6 Kontrolle von Ablaufen
Semantikbasierte Ansétze

eigentliche Transaktion erfordert, da zunichst die Gegenaktionen ermittelt und
dann angewendet werden miissen. Abgesehen von der Tatsache, da3 die Gegen-
aktionen zumeist vom Log gelesen werden miissen und damit einen Zugriff auf
eine Festplatte bedeuten konnen (je nach dem ob dieser Teil des Log bereits stabil
geschrieben wurde), bedeutet dies auch, dall wahrend dieser Zeit der Zugriff auf
das Log von anderen Transaktionen nicht unerheblich beeinfluf3t wird.

Eine weitere nachteilige Folge ergibt sich aus der gleichzeitigen Ausfithrung der
Gegenoperationen und dem Fortschreiten anderer Transaktionen. Da die im Vor-
wartsablauf befindlichen Transaktionen nicht blockiert werden, wenn ein Konflikt
auftritt, kann es wihrend der Ausfiihrung von Gegenoperationen einer Transakti-
on wieder zu Konflikten mit Operationen des “Normalablaufs” kommen, was zu
einem Zuriicksetzen fiihrt. Gerade im Falle von sogenannten Hot-Spots (Datenob-
jekte auf die sehr hdufig zugegriffen wird) stellt dies einen gewichtigen Nachteil
der optimistischen Verfahren dar, da im Grenzfall keine der Transaktionen erfolg-
reich zu Ende gefiihrt werden kann.

Weiterhin ist zu erwidhnen, dal3 optimistische Verfahren anfillig fiir sogenannte
live-locks sind. Im Gegensatz zu den dead-locks (den Verklemmungen) wird mit
live-locks ein Zustand beschrieben, bei dem Transaktionen zwar aktiv sind und
versuchen Operationen ausfiihren, jedoch keine der Transaktionen zu Ende
kommt. Die Voraussetzung fiir das Eintreten einer live-lock Situation entspricht
der des dead-lock Szenarios. Da jedoch bei optimistischen Verfahren keine Trans-
aktion blockiert wird, entsteht ein Zyklus aus Objektzugriffen und dem Zuriick-
setzen der Transaktionen. Live-locks sind allerdings noch weit unangenehmer als
dead-locks, da sie zum einen schwer zu entdecken sind und zum anderen sich auch
noch negativ auf den Systemdurchsatz auswirken.

6.3 Semantikbasierte Ansatze

Die klassischen Ansitze wurden, wie bereits erwahnt, fiir die ACID-Transaktio-
nen bzw. fiir das Lese-/Schreibmodell entwickelt. Sie basieren daher ausschlieB3-
lich auf der Interpretation der Signatur der Operationen und nicht auf ihrer Bedeu-
tung. Dementsprechend werden diese Ansétze auch als syntaxbasiert bezeichnet,
da es moglich ist, durch eine rein syntaktische Analyse einer Historie zu entschei-
den ob sie korrekt ist oder nicht.

Aus der Sicht der Anwendung werden Transaktionen aber nicht mittels Lese- und
Schreiboperationen entworfen, sondern mit méichtigeren Operationen. Ein Bei-
spiel hierfiir sind die Inkrement- und die Dekrementoperation, die im Bankwesen
die Zubuchung bzw. die Abbuchung auf Konten implementieren. Nun greifen
zwar beide Operationen dndernd auf Datenobjekte zu und kdnnten somit wie
Schreiboperationen aufgefalit werden, andererseits haben sie zusétzliche Eigen-

97

Kontrolle von Ablaufen 6
Semantikbasierte Ansétze

schaften die bei der rein syntaktischen Betrachtungsweise unberiicksichtigt blei-
ben.

Die wichtigste Eigenschaft ist die Art des Zugriffs. Im Gegensatz zu den Lese-/
Schreiboperationen ist der absolute Wert eines Datenobjektes (mit Einschrinkun-
gen) relativ uninteressant flir die Inkrement-/Dekrementoperation. Es werden nur
Werte addiert bzw. subtrahiert. Da die Addition einfach mittels einer Subtraktion
rickgédngig gemacht werden kann und dies auch umgekehrt zutrifft, ohne daf3 der
gerade aktuelle Wert des Datenobjektes beriicksichtigt werden muf3, konnen die fiir
die Wiederherstellbarkeit gemachten Forderungen gelockert werden, was den
moglichen Parallelititsgrad erhoht. Diese semantischen Eigenschaften der Opera-
tionen werden in den sogenannten semantikbasierten Anséitzen genutzt. Auf Grund
des Wissens iiber die Operationen kann der mogliche Parallelitidtsgrad erhoht und
somit insgesamt ein hoherer Durchsatz des Systems erzielt werden.

Das Hauptproblem bei den semantikbasierten Ansétzen liegt in der Schwierigkeit,
die Semantik der Operationen in einer Weise zu beschreiben, dal} sie von einem
Laufzeitsystem genutzt werden kann. Die folgenden Abschnitte stellen die prinzi-
piellen Methoden vor und fiihren einen neuen Ansatz ein, der gerade fiir langlau-
fende Transaktionen, wie im Falle der ConTracts, Vorteile gegeniiber den bisheri-
gen Verfahren zeigt.

AuBer im Falle des Verfahrens, welches fiir die Anwendung in ConTracts entwik-
kelt wurde, wird auf die Darstellung der Details der anderen Verfahren verzichtet,
da diese den Rahmen dieser Arbeit sprengen wiirde. Statt dessen wird auf die ent-
sprechende Literatur verwiesen.

6.3.1 Fruhzeitige Sperrfreigabe

Den klassischen Sperrverfahren am nichsten kommen Verfahren, bei denen Trans-
aktionen explizit Sperren freigeben konnen, die nicht mehr bendtigt werden. Diese
Verfahren werden auch als uneigenniitzige Sperrverfahren (engl. altruistic locking)
bezeichnet [SGS94].

Das Grundprinzip bei den uneigenniitzigen Sperren beruht darauf, daf3 eine Trans-
aktion “weil3”, wann auf ein Datenobjekt zukiinftig nicht mehr zugegriffen wird
und somit der Zugriff anderer Transaktionen zugelassen werden kann. Aus Sicht
der Transaktion kann die Sperre auf dem Datenobjekt dann freigegeben werden,
womit sich die Transaktion gegeniiber anderen Transaktionen ‘“‘uneigenniitzig”
verhalt.

Aus Sicht der anderen Transaktionen konnen sich allerdings Probleme ergeben,
wenn durch die Transaktion, welche die Sperre freigegeben hat, ein &ndernder Zu-
griff erfolgte und der Abbruch der Transaktion erforderlich ist (s. Abschnitt
6.2.1.1). Da das Korrektheitskriterium der uneigenniitzigen Verfahren dem im

98

6 Kontrolle von Ablaufen
Semantikbasierte Ansétze

klassischen Fall entspricht, miifite fiir diesen Fall gewihrleistet werden, daB sich
der Abbruch der Transaktion auf alle abhidngigen Transaktionen (Transaktionen
die das Datenobjekt gelesen haben) fortpflanzt, was beispielsweise durch die Ver-
waltung eines Abhéngigkeitsgraphen erreicht werden kann. Dieser Abhingig-
keitsgraph kann dazu benutzt werden, das Commit von Transaktionen, die auf
vorzeitig freigegebene Objekte zugegriffen haben zu verzogern. Damit wird ge-
wihrleistet, da8 keine Transaktion ihre Anderungen persistent machen kann, so-
lange eine Transaktion von der sie gelesen hat noch nicht beendet wurde.

Das altruistic locking ist somit ein Verfahren, welches dem Laufzeitsystem Infor-
mationen iiber die Semantik von Transaktionen dadurch zuginglich macht, daf3
Sperren explizit freigegeben werden. Einerseits wird dadurch der Parallelitatsgrad
erhoht, andererseits entsteht im Falle von &ndernden Zugriffen ein Zusatzaufwand
fiir die Verwaltung von Abhéngigkeiten. Aullerdem muf} die explizite Sperrfrei-
gabe in den Transaktionen selbst vorgenommen werden, was im allgemeinen Fall
durch den Transaktionsprogrammierer zum Programmierzeitpunkt vorgesehen
werden muf3. Dadurch entsteht eine Fehlerquelle, die durch den klassischen An-
satz vermieden wird.

6.3.2 Wertunabhangige, pradikatbasierte Ansatze

Der Begriff der wertunabhéingigen, pridikatbasierten Anséitze bezeichnet Ansit-
ze, die den Isolationsbedarf von Transaktionen mit Hilfe eines Pradikates be-
schreiben. Dabei wird allerdings nicht vorausgesetzt, da3 die Werte der Datenob-
jekte wihrend des Ablaufs von Transaktionen Beschrankungen unterliegen.
Entsprechende Verfahren libergeben dem Laufzeitsystem ein Pradikat, welches
Informationen dariiber enthélt, welche Datenobjekte von der Transaktion benotigt
werden, d.h. welche von dem Laufzeitsystem vor dem Zugriff anderer Transaktio-
nen zu schiitzen sind.

Zwei Arten der Informationsiibergabe konnen bei diesen Verfahren unterschieden
werden:

1. syntaxbasiert

2. pradikatwert-abhéingig

Bei der syntaxbasierten Vorgehensweise, wie beispielsweise bei Korth [KLS90],
wird ein Datenobjekt dann geschiitzt, wenn es syntaktisch in einem Pridikat ent-
halten ist. Somit ist die Evaluierung des Pradikates nicht notwendig.

Im Gegensatz dazu ermittelt der pradikatwert-abhdngige Ansatz die Menge der zu
schiitzenden Datenobjekte dadurch, daf3 er alle Objekte sucht, fiir die das Priadikat
zutrifft. Dieser Ansatz ist unter dem Begriff der Pridikatsperren (engl. predicate

99

Kontrolle von Ablaufen 6
Semantikbasierte Ansétze

locking) bekannt geworden [EGL76].

Der Ansatz der Priadikatsperren wurde als Erweiterung fiir das klassische ACID-
Modell entworfen und eignet er sich dadurch auch fiir langlebige Transaktionen
wie im Falle von Korth et al. Der Unterschied der beiden Verfahren liegt prinzipiell
nur in der Art und Weise wie die Menge der benétigten Objekte spezifiziert wird.

Das zugrunde liegende Korrektheitskriterium, die Serialisierbarkeit, ist beiden An-
sdtzen gemein. Allerdings ermoglicht der Ansatz der Pradikatsperren Objekte zu
schiitzen, die zum Programmierzeitpunkt nicht vorhanden sind, da die Pridikate
zur Laufzeit ausgewertet werden. Somit kann dadurch auch das sogenante Phan-
tomproblem (s. [GrRe93]) einfach vermieden werden.

Beide Verfahren iibergeben nur einen kleinen Teil der semantischen Information
dem Laufzeitsystem. Ndmlich nur die Menge der bendtigten Objekte. Wird aller-
dings die zusdtzliche Forderung erhoben, daB fiir jede Operation diese Menge an-
zugeben ist, kann ermittelt werden, welche Objekte nicht mehr benétigt werden.
Mit dieser zusitzlichen Forderung eignen sich wertunabhingige, pradikatbasierte
Ansitze auch fiir uneigenniitzige Sperrverfahren.

6.3.3 Field Calls

Mit dem englischen Begriff field calls wird ein Verfahren bezeichnet, das als Vor-
ldufer der nachfolgend beschriebenen Escrow-Sperren und des Priife/Revalidiere-
Verfahrens angesehen werden kann. Obwohl “field calls” eines der wenigen se-
mantischen Verfahren ist, welches in einem Produkt implementiert wurde
[GaKi85], hat sich kein deutscher Begriff fiir diese Methode durchgesetzt.

Motivation fiir dieses Verfahren waren die sogenannten Hot-Spots, also Datenele-
mente die fast von jeder Transaktion beriihrt und veréndert werden. Da somit fast
jede Transaktion dndernd auf ein solches Datenobjekt zugreift, fithren Sperrverfah-
ren dazu, dal} alle Transaktionen durch dieses Datenobjekt gezwungen werden hin-
tereinander abzulaufen. Neben der Tatsache, dal3 hierdurch eine fast serielle Histo-
rie erzeugt wird, entsteht durch den notwendigen Verwaltungsaufwand fiir die
wartenden Transaktionen ein solcher Aufwand, daf3 der Durchsatz des Gesamtsy-
stems sogar schlechter wird als im seriellen Fall.

Der Losungsansatz der field calls versucht nun, die Sperrdauer auf den Hot-Spots
zu minimieren. Der Mechanismus hierzu beruht darauf, dal Operationen auf Da-
tenelemente zweigeteilt werden. Eine Operation besteht dann aus folgenden Tei-
len:

1. einem Pradikat,

2. einer Transformation

100

6 Kontrolle von Ablaufen
Semantikbasierte Ansétze

Anstatt nun wihrend der Laufzeit einer Transaktion die Operation vollstindig
auszufiihren, wird nur das Pridikat gepriift. Hierfiir wird nur eine kurze Lesesper-
re benoétigt, die nach der Evaluierung freigegeben wird. Ist das Pradikat erfiillt,
wird die Operation sozusagen fiir die spitere Ausfiihrung hinterlegt (beispielswei-
se im Log). Ist das Pradikat nicht erfiillt, mul3 die Transaktion zuriickgesetzt wer-
den.

Zum Commit-Zeitpunkt der Transaktion werden alle hinterlegten Operationen tat-
sdchlich ausgefiihrt. Dies bedeutet, dal die Pradikate erneut ausgewertet werden.
Ist die Evaluierung des Pridikates wiederum erfolgreich, werden exklusive Sper-
ren auf den zu dndernden Objekten erworben und die Transformation (die eigent-
liche Operation) ausgefiihrt. Im Falle, da3 die Evaluierung fehlschlagt, muf} die
Transaktion zuriickgesetzt werden.

Das Ziel des Verfahrens, die Sperrzeit auf einem Hot-Spot zu minimieren, wird
mit Hilfe eines Pridikates und sehr verkiirzter Dauer von exklusiven Sperren er-
reicht. Gerade bei den bereits erwidhnten Operationen aus dem Bankwesen (Zubu-
chung bzw. Abbuchung) zeigt dieses Verfahren grofle Vorteile gegeniiber den ein-
fachen Sperrmethoden. Da die Vorbedingung einer Zubuchung nur die Existenz
des Kontos ist, ist die Wahrscheinlichkeit fiir das Fehlschlagen der Pradikatevalu-
ierung sehr gering. Auch bei der Abbuchung muf} nur sichergestellt werden, daf3
das Konto nicht iiberzogen wird, was fiir die meisten Transaktionen ebenfalls zu-
treffen diirfte. Wie einfach einsichtlich ist, sind die Priadikate recht simpel und da-
durch mit wenig Aufwand zu evaluieren, so dafl der Gewinn durch verkiirzte Dau-
er von exklusiven Sperren iiberwiegt. Fiir den allgemeinen Fall ist jedoch zu
klaren, ob die zweimalige Evaluierung des Pridikates nicht mehr Aufwand verur-
sacht als die eigentliche Operation.

Das Verfahren der “field calls” basiert somit darauf, dem Laufzeitsystem seman-
tische Informationen in dem Sinne zukommen zu lassen, dal dem System mitge-
teilt wird, welcher Zustand der Datenelemente fiir eine auszufithrende Operation
akzeptabel ist. Ein Zustand ist dabei durch die Existenz der Datenelemente und 1h-
rer aktuellen Wertebelegung gekennzeichnet.

6.3.4 Escrow Sperren

Das Verfahren der “field calls™ hat den Nachteil, dal3 das Pradikat einer Operation
zum Commit-Zeitpunkt einer Transaktion nochmals gepriift werden mul3. Neben
der Tatsache, dal} dies einen doppelten Aufwand bedeutet, hat dies auch den Ef-
fekt, daf} langlaufende Transaktionen “benachteiligt” sind. Benachteiligt deswe-
gen, da die Wahrscheinlichkeit der Verletzung des Pradikates mit der Anzahl der
Zugriffe auf die Datenelemente des Pridikates und somit mit zunehmender Dauer
der Transaktion wichst.

101

Kontrolle von Ablaufen 6
Semantikbasierte Ansétze

In [Reut82] wurde die Idee verdffentlicht, nach der ersten Evaluierung des Pradi-
kates durch das Laufzeitsystem sicherzustellen, daf3 das Pradikat bis zum Commit-
Zeitpunkt nicht mehr verletzt werden kann. In [ONei86] wurde diese Idee aufge-
griffen und mit dem Begriff Escrow-Sperren (engl. escrow locking) bezeichnet.

Das Prinzip des Verfahrens beruht nun darauf, die Evaluierung bzw. Sicherstellung
des Zutreffens von Pradikaten, auf Operationen auf die Datenobjekte abzubilden.
Das heil3t, dal3 ein Datenobjekt mit mehreren Bereichen fiir die Wertebelegung ver-
sehen wird:

1. einem Frei-Bereich,

2. einem oder mehreren Reservierungs-Bereichen (engl. escrows).

Die Evaluierung eines Priadikates wird nun darauf abgebildet, dall entsprechend
dem Pradikat ein Teil des Wertes von dem Freibereich in einen Reservierungsbe-
reich tibertragen wird. Durch die Vorabpriifung des Pradikates wird dabei sicher-
gestellt, daBB die Wertebeschrinkungen des Datenobjektes auf dem Freibereich
nicht verletzt werden. Allerdings ist fiir jede Zugriffsart ein Reservierungsbereich
notwendig.

Ein einfaches Beispiel soll die Vorgehensweise verdeutlichen. Wird von einem
Konto ein Betrag abgebucht, lautet die Vorbedingung, dal} ein bestimmter Betrag
auf dem Konto vorhanden sein muf3. Dieses Priadikat wird auf dem Freibereich ge-
priift und anschlieBend der Abbuchungsbetrag von dem Freibereich in den Reser-
vierungsbereich fiir Abbuchungen iibertragen. Der Betrag der Abbuchung wird da-
bei von dem Betrag im Freibereich abgezogen und zu dem Wert im
Reservierungsbereich addiert. Entsprechend geschieht dies bei Zubuchungen, mit
dem Unterschied, da3 der Zubuchungsbetrag zu dem Wert im Zubuchungs-Reser-
vierungsbereich addiert wird, ohne daB3 der Freibereich verdndert wird. Erst zum
Commit-Zeitpunkt wird der jeweilige Betrag aus dem Reservierungsbereich ent-
fernt und im Falle der Zubuchung zu dem Wert des Freibereiches addiert (ein
Transaktionsabbruch erfolgt analog).

Das Verfahren zeigt somit nur dann Vorteile, wenn das Zugriffsgranulat kleiner ist
als das Objekt selbst. Genauer gesagt diirfen die Zugriffe nur einen Teil des Wertes
des Objektes bendtigen (wie im Falle der Inkrement-/Dekrementoperationen) und
nicht auf den Absolutwert zugreifen. Dies ist im Falle von numerischen Datentypen
auch relativ einfach implementierbar. Bei allgemeinen Datentypen stof3t man je-
doch schnell auf komplexe Probleme.

Die Information iiber die Semantik von Operationen wird bei den Escrow-Mecha-
nismen mittels der Information liber das Granulat des Zugriffes an das Laufzeitsy-
stem {ibergeben. Mit dieser Information wird auch garantiert, da3 die auszufiihren-

102

6 Kontrolle von Ablaufen
Der Ansatz in ConTracts

den Operationen relativ zu dem aktuellen Wert ausgefiihrt werden kénnen und
auch beispielsweise im Recoveryfall die Gegenaktionen relativ zum aktuellen
Wert ausgefiihrt werden.

6.3.5 Priufe und Revalidiere

Eine weitere Abwandlung der field calls ist das Verfahren des Priifens und Reva-
lidierens (engl. check/revalidate) [PRS88]. Das Verfahren adressiert einen Nach-
teil der field calls, der darin besteht, dall der Wert eines Datenobjektes zum Pro-
grammierzeitpunkt einer Transaktion unbekannt ist und manche Transaktionen
nur die Einschrinkung besitzen, daf3 ein einmal von einer Operation “gesehener”
Wert eines Datenobjektes bei einer spdteren Operation wieder vorgefunden wer-
den muB3. Welcher Wert dabei vorliegt, spielt keine Rolle.

Die Idee des Verfahrens ist, da3 bei jeder Operation dem Laufzeitsystem ein so-
genannter Priifausdruck (engl. check expression) libergeben werden kann, der ei-
nen eindeutigen Namen besitzt. Das Laufzeitsystem ermittelt fiir alle in dem Priif-
ausdruck enthaltenen Datenobjekte die Wertebelegung und speichert diese. Eine
spiatere Operation kann nun mittels des Priifausdrucknamens den eigentlichen
Priifausdruck referenzieren. Dies veranlafit das Laufzeitsystem, die Datenobjekte
erneut zu prifen und die Wertebelegung mit der Wertebelegung bei der ersten
Uberpriifung zu vergleichen (revalidate). Stimmen alle Wertebelegungen iiberein,
ist dies das Kriterium, um die Operation auszufiihren. Andernfalls muf3 die Trans-
aktion zurlickgesetzt werden.

Somit ist die Ubergabe des Priifausdruckes an das Laufzeitsystem eine semanti-
sche Information beziiglich des Isolationsbedarfs der Transaktion. AuBerdem
dient der Priifausdruck als Indikator fiir die Art des Zugriffs der Transaktion.

6.4 Der Ansatz in ConTracts

Die Sicherstellung der Korrektheit in einem ConTract-verarbeitenden System un-
terscheidet sich in wichtigen Bereichen von den bisher vorgestellten Ansétzen.
Allein die Tatsache, dall das ConTract-Modell noch weiter entwickelt wird, um
Anforderungen moderner Workflowsystemen gerecht zu werden, erfordert einen
auBerst flexiblen Ansatz'. Ein weiteres Unterscheidungsmerkmal ist die Menge
an Anwendungen, die von ConTracts adressiert wird. Anstatt klassische Transak-
tionsanwendungen unterstiitzen zu wollen, oder die Problematik von Hot-Spots zu
adressieren, wurde das ConTract-Modell speziell fiir langlaufende Abldufe ent-
wickelt. Abldufe also, fiir die von vornherein ein klassischer Sperrmechanismus
ungeeignet ist [Gra8la].

1. Momentan werden die dynamische Anderung zur Laufzeit und Kooperationsmechanismen entwickelt.

103

Kontrolle von Ablaufen 6
Der Ansatz in ConTracts

6.4.1 Typen von Invariantenpradikaten

Wie bereits in Kapitel 5 eingefiihrt wurde, unterscheidet sich das Korrektheitskri-
terium von ConTracts von der klassischen Serialisierbarkeit. Die Grundlage des
Kriteriums sind die Invarianten, die jedoch nur konzeptionell festgelegt sind. Fiir
eine entsprechende Umsetzung in ein Laufzeitsystem ist es deshalb dringend not-
wendig, die Invarianten zu konkretisieren und eine entsprechende Verwaltungs-
strategie festzulegen.

Obwohl das Korrektheitskriterium fiir sich genommen nur eine Unterscheidung in
Eingangs- und Ausgangsinvarianten vornimmt, wird bei genauerer Betrachtung
des Kriteriums klar, da3 eine weitere Differenzierung angebracht ist. Diese Er-
kenntnis beruht auf der Beobachtung, dall Eingangsinvarianten nur Referenzen auf
Pradikate von Ausgangsinvarianten sind und das Korrektheitskriterium auf der
Kompensations-Erweiterung der Historien definiert wird.

Betrachtet man die Notation der Invariantenklammern (sieche Abschnitt 5.5.3) im
Zusammenhang mit einer Kompensations-Erweiterung einer Historie, ist einfach
zu erkennen, daf alle Eingangsinvarianten, die zu einer Kompensationsfolge geho-
ren, eine geschlossene Invariantenklammer mit den Ausgangsinvarianten bilden,
die referenzierte Pradikate enthalten. Somit wiirde jede Operation einer ConTract-
Instanz, die ein Pradikat verletzt, welches von der Eingangsinvarianten einer Kom-
pensationsfolge einer anderen ConTract-Instanz referenziert wird, eine Verletzung
des Korrektheitskriteriums verursachen, wenn sie vor der Kompensationsoperation
ausgefiihrt werden sollte. Entsprechend muf} sichergestellt werden, dal ein Pradi-
kat, welches von einer Ausgangsinvariante etabliert wurde und von der Eingangs-
invarianten einer Kompensationsfolge referenziert wird, nie verletzt wird bis die
Ausfiihrung der ConTract-Instanz beendet wurde oder die Kompensationsfolge zur
Ausfiihrung kam.

Im Gegensatz dazu konnen Pradikate, die nicht von einer Eingangsinvarianten ei-
ner Kompensationsfolge referenziert werden, durchaus von Operationen anderer
ConTract-Instanzen verletzt werden, ohne das Korrektheitskriterium zu verletzen.
Erst wenn eine der referenzierenden Eingangsinvarianten iiberpriift wird (die Inva-
riantenklammer geschlossen werden soll), miissen geeignete Mallnahmen ergriffen
werden.

Bei der Umsetzung des Korrektheitskriteriums in ein Laufzeitsystem konnen diese
unterschiedlichen Eigenschaften dazu benutzt werden, um jeweils optimierte Ver-
waltungsstrategien zu entwerfen. Hierzu werden zunichst zwei Kategorien von
Préadikaten unterschieden:

1. obligatorische Pradikate,

104

6 Kontrolle von Ablaufen
Der Ansatz in ConTracts

2. nicht-obligatorische Pridikate.

Ob ein Pradikat ein obligatorisches oder ein nicht-obligatorisches Pradikat ist,
kann automatisch aus der Definition einer ConTract-Instanz ermittelt und dem
Laufzeitsystem mitgeteilt werden. Das Laufzeitsystem ist dann dafiir verantwort-
lich, entsprechende Strategien zur Sicherstellung der Korrektheit anzuwenden. Im
Falle der obligatorischen Pradikate kann dies beispielsweise durch einen escrow-
dhnlichen Mechanismus erfolgen, wihrend im nicht-obligatorischen Fall eine
Strategie zur Anwendung kommen kann, die dem check/revalidate-Mechanismus
entspricht.

Der urspriingliche Ansatz, mit der Definition von Invarianten eine Verwaltungs-
strategie (engl. policy) durch den Programmierer festlegen zu lassen (s.
[WidRe92]), hatte eine dhnliche Zielrichtung ohne jedoch einen Korrektheitsbe-
griff festzulegen. Dariiber hinaus wurde die Verwaltungsstrategie nur fiir kom-
plette Invarianten durch die Programmierer vorgegeben, wodurch die Gefahr be-
steht, daB3 durch Programmierfehler unzureichende Isolationseigenschaften vom
Laufzeitsystem gefordert bzw. zu restriktive Zugriffsbeschrinkungen etabliert
werden.

6.4.2 Umsetzung auf Objektebene

In der bisherigen Einflihrung der Invarianten wurde keine ndhere Beschreibung
der Invariantenpriadikate vorgenommen. Fiir die Sicherstellung des Korrektheits-
kriteriums ist es aber unumginglich, ndher auf diese Pradikate einzugehen. Ein
Ziel soll dabei sein, die Grundlage fiir ein Verfahren zu schaffen, welches die Si-
cherstellung der Korrektheit ermoglicht, ohne eine zentrale Verwaltungsinstanz
zu benotigen.

6.4.2.1 Zustand eines Objektes

Wie bei den Transaktionsabhéngigkeiten im Falle des ACTA-Modells [ChRa90]
wird bei den Invariantenpradikaten davon ausgegangen, dal3 es sich um pradika-
tenlogische Ausdriicke handelt. Im Falle der Invariantenprédikate werden diese
Ausdriicke iiber dem Zustand von persistenten Datenobjekten definiert. Aller-
dings, ist der Begriff des Zustandes eines Objektes im Falle des hier vorliegenden
Ansatzes nicht nur auf die Erfassung der aktuellen Wertauspragung beschrankt,
sondern besteht aus folgenden Teilen:

1. dem (eindeutigen) Namen des Objektes,
2. dem aktuellen Wert des Objektes,
3. den Zugriffsbeschrankungen des Objektes.

105

Kontrolle von Ablaufen 6
Der Ansatz in ConTracts

Diese Auffassung des Zustandes eines Objektes unterscheidet sich von der {ibli-
chen Auffassung dadurch, dal die Zugriffsbeschrinkungen mit Teil des Objektzu-
standes sind. Zugriffsbeschrinkungen sollen dabei aus einer Menge von Paaren be-
stehen, wobei ein Paar ein Pradikat sowie eine Identifikation des Einbringers des
Pradikates sein soll. Somit kénnen die Zugriffsbeschrinkungen, wie die anderen
Teile des Objektzustandes, unter Transaktionsschutz modifiziert werden und unter-
liegen der Persistenzeigenschatft.

Somit wird deutlich warum fiir die Invariantenoperationen establish und check ge-
fordert wird, daB3 sie unter Transaktionsschutz ausgefiihrt werden. Die establish-
Operation einer Invarianten resultiert zunéchst in einer Priifung der in ihr enthalte-
nen Préddikate (lesen der Datenobjekte). Daran anschlieend erfolgt die Einbrin-
gung neuer Zugriffsbeschrankungen (schreibender Zugriff), welche durch die Pra-
dikate definiert sind. Da die Zugriffsbeschrankungen die Persistenzeigenschaft
haben, sind Zugriffe auf sie ebenso transaktional zu schiitzen wie Zugriffe auf Da-
tenobjekte.

Grundsétzlich ist diese Sichtweise von Zugriffsbeschrinkungen nicht neu, da bei-
spielsweise in Datenbanksystemen Wertebeschrankungen (die auch als Zugriffsbe-
schrinkungen aufgefaf3t werden konnen) in dhnlicher Weise gehandhabt werden.
Der neue Aspekt liegt darin, daB3 Zugriffsbeschrankungen auch Sperren umfassen,
die in bisherigen Ansidtzen getrennt von den zugeordneten Objekten betrachtet
wurden und auch nicht mittels Transaktionen manipulierbar waren.

6.4.2.2 Isolation auf Objektebene

Mit der eingefiihrten Auffassung eines Objektzustandes konkretisieren sich auch
die im Ansatz von ConTracts moglichen Invariantenpréadikate:

1. Pradikate, die iiber dem Namen eines Objekts definiert sind:
Zugriftsbeschrinkungen unabhingig von der Semantik des Objektes.

2. Pradikate, die iiber den Werten von Objekten definiert sind:
Wertebereichsbeschrinkungen des Objektes.

Dartiber hinaus sind noch weitere Priadikate denkbar, die {iber den Zugriffsbe-
schrinkungen definiert werden konnen. Diese spielen jedoch im Zusammenhang
mit dem in dieser Arbeit vorgestellten Korrektheitsbegriff keine Rolle.

Pradikate der ersten Kategorie sind dquivalent zu den klassischen Sperren, die
ebenso als Priddikate aufgefallit werden konnen. So kann beispielsweise eine
Schreibsperre als ein einstelliges Priadikat tiber dem Namen des betroffenen Objek-
tes formuliert werden, welches zutrifft wenn der Wert des Objektes mit dem spezi-
fizierten Namen nach der Etablierung des Pradikates nicht gedndert wurde (der ei-

106

6 Kontrolle von Ablaufen
Der Ansatz in ConTracts

gentliche Wert ist dabei irrelevant).

Im Gegensatz dazu ist der Wert eines Objektes bei Pradikaten der zweiten Kate-
gorie durchaus von Bedeutung. In diese Kategorie fallen beispielsweise Pradikate,
der Art: Wert(Objekt) > 0. Ebenso unterscheiden sich die Pradikate der zweiten
Kategorie von denen der ersten Kategorie dadurch, dal die funktionelle Kombi-
nation von Objektwerten moglich ist (z.B. Wert(Objektl) + Wert(Objekt2) > 0)
und diese kein Aquivalent zu einer boolschen Verkniipfung von Priidikaten ohne
funktionelle Kombination hat.

6.4.2.3 Replizierte virtuelle Objekte

Durch die funktionale Verkniipfung von Objektwerten innerhalb von Pridikaten
entsteht das Problem, daf3 die Auswertung eines Pradikates nicht mehr ausschliel3-
lich lokal bei einem Objekt vorgenommen werden kann. Es ist somit notwendig,
Informationen iiber den Zustand anderer Objekte einzuholen, um die Auswertung
vornehmen zu koénnen. Da im Falle von ConTracts davon ausgegangen wird, daf3
Objekte beliebig in einem Netz verteilt sein konnen, kann dies ohne zusitzliche
MaBnahmen ein sehr zeitraubender Vorgang werden.

Dieses Problem wird durch das Konzept der virtuellen Objekte gelost [ScRe96].
Dabei wird aus einer funktionalen Verkniipfungen von Objektwerten ein virtuel-
les Objekt generiert, dessen Wertfunktion der funktionalen Verkniipfung ent-
spricht. Das virtuelle Objekt existiert, solange eine Zugriffsbeschrankung mit der
entsprechenden funktionalen Verknilipfung existiert und wird bei jedem Objekt
generiert (repliziert), dessen Wert in der Zugriffsbeschrankung referenziert wird.
Die eigentliche Zugriffsbeschrankung wird ebenfalls bei dem virtuellen Objekt
hinterlegt.

Durch die virtuellen Objekte wird es moglich, die Auswertung der Priadikate von
der Uberpriifung der aktuellen Wertebelegung zu entkoppeln, so daB fiir die Ak-
tualisierung im Falle einer Wertednderung eines der Originalobjekte, flexible
Strategien zum Einsatz kommen kdnnen. Da die virtuellen Objekte in diesem Sin-
ne einen Cache der Originalobjektwerte darstellen, gibt es hierzu wohl bekannte
und optimierte Protokolle [Sten90].

6.4.3 Verwaltung der Invarianten

Die Verwaltung von Invarianten stellt die zentrale Aufgabe innerhalb eines Me-
chanismus zur Sicherstellung der Korrektheit dar. Durch eben diese Invarianten-
verwaltung als Teil des Schedulers mul3 garantiert werden, daf3 keine Verletzung
des Korrektheitskriteriums zugelassen wird und entsprechende Mallnahmen im
Konfliktfall ergriffen werden.

Da die Invarianten eine Konjunktion von Pradikaten darstellt, 146t sich das Ver-

107

Kontrolle von Ablaufen 6
Der Ansatz in ConTracts

waltungsproblem einfach auf die Verwaltung der Pradikate selbst abbilden. Durch
die konjunktive Verkniipfung ist sichergestellt, dal3 wenn alle Pradikate einer Inva-
rianten nicht verletzt werden, auch die Invariante nicht verletzt wird, bzw. wenn ein
Pradikat verletzt wird, auch die Invariante verletzt ist.

6.4.3.1 Etablierung von Ausgangsinvarianten

Das Problem der Verwaltung von Ausgangsinvarianten gliedert sich in zwei Teile.
Einerseits ist zu betrachten, wie und wann ein Priadikat etabliert werden kann. An-
dererseits sind die Seiteneffekte einer solchen Etablierung zu berticksichtigen. Un-
ter der Etablierung eines Prédikates ist dabei folgender Vorgang zu verstehen:

= Uberpriifung der Vertriglichkeit mit bereits bestehenden Pridikaten.
= Uberpriifung, ob das Pridikat zutrifft.

= Sicherstellung des kiinftigen Zutreffens.

Die Uberpriifung der Vertriglichkeit mit bereits bestehenden Pridikaten ist im all-
gemeinen ein NP-hartes Problem und sollte deshalb moglichst vermieden werden.
Im Ansatz fiir ConTracts wird dies durch eine Grundannahme iiber die Arbeitswei-
se der Steps ermoglicht: Jeder Step hinterldft die von ihm modifizierten Datenele-
mente in einem Zustand, der die bereits etablierten Invarianten nicht verletzt und
der eigenen Ausgangsinvariante geniigt.

Beziiglich der Beriicksichtigung von bereits etablierten Invarianten entspricht die-
ses Verhalten dem Verhalten klassischer Transaktionen (Konsistenzeigenschaft).
Die Forderung, Objekte nur so zu verdndern, dal3 die eigene Ausgangsinvariante
zutrifft, kann auf den gleichen Mechanismus abgebildet werden, obwohl die Aus-
gangsinvariante erst nach der Ausfiihrung des Steps etabliert wird. Da die Etablie-
rung der Ausgangsinvarianten unter dem Schutz der gleichen Transaktion wie die
Ausfiihrung des Steps geschieht (sieche Abschnitt 4.4.2), ist die Ausfiithrung des
Steps mit der nachfolgenden Etablierung der Ausgangsinvarianten ebenfalls ato-
mar im transaktionalen Sinne.

Die allgemeine Vertraglichkeitspriifung der Ausgangsinvarianten mit bereits eta-
blierten Pridikaten wird somit ersetzt durch die Uberpriifung, ob der aktuelle Zu-
stand der von einer Step-Instanz geénderten Datenobjekte zum Commit-Zeitpunkt
der umgebenden Transaktion die etablierten Pridikate erfiillt. Die Etablierung der
Ausgangsinvarianten kann sich dann darauf beschrianken, die Sicherstellung der in
ihr enthaltenen Pridikate zu veranlassen. Sollte sich bei der Uberpriifung der Pri-
dikate zum Commit-Zeitpunkt ergeben, daf3 eine Verletzung vorliegt, mul3 ein Zu-
riicksetzen der entsprechenden Transaktion ausgelost werden, was sich auch auf
die innerhalb der Transaktion etablierten Pridikate auswirkt.

108

6 Kontrolle von Ablaufen
Der Ansatz in ConTracts

6.4.3.2 Behandlung von Eingangsinvarianten

Da Eingangsinvarianten nur Referenzen auf bereits etablierte Pradikate enthalten
konnen, ist die Behandlung von Eingangsinvarianten weniger komplex als die der
Ausgangsinvarianten. Urspriinglich waren Eingangsinvarianten in allen Fillen
dazu vorgesehen, Konflikte vor der Ausfiihrung eines Steps zu erkennen. Mit der
Unterscheidung der zwei Arten von Invarianten (obligatorische und nicht-obliga-
torische) dienen Eingangsinvarianten von Kompensationsblocken nun zur Erken-
nung von Verletzungen notwendiger Isolationsbediirfnisse, da das Korrektheits-
kriterium fordert, da3 die referenzierten Pradikate von Ausgangsinvarianten nach
ihrer Etablierung nicht verletzt werden diirfen (siehe auch Abschnitt 6.4.4). Somit
besteht keine Notwendigkeit irgendwelche Aktionen bei Eingangsinvarianten von
Kompensationsblocken auszuldsen'.

Anders gestaltet sich dies bei der Behandlung von Eingangsinvarianten von an-
wendungsorientierten Steps. Hier mull eine Evaluierung aller referenzierten Pra-
dikate erfolgen, da hier durchaus die Eingangsinvariante verletzt sein kann und
dies ein Indikator fiir eine Verletzung der geforderten Isolationseigenschaften ist.
Wird eine Verletzung der Eingangsinvarianten festgestellt, darf nicht weiter mit
der Ausfiihrung fortgefahren werden. Dies wiirde eine Verletzung des Korrekt-
heitskriteriums darstellen. Somit muf3 die umgebende (Sub-)Transaktion abgebro-
chen werden. Anders als bei den klassischen transaktionsverarbeitenden Syste-
men ist es bei ConTracts jedoch vorgesehen, dal das Ausfiithrungssystem nicht
nur den Transaktionsabbruch mitgeteilt bekommt. Vielmehr wird dem Ausfiih-
rungssystem zusitzlich mitgeteilt, dal die Evaluierung einer (nicht-obligatori-
schen) Eingangsinvariante fehlgeschlagen ist. Auf Grund dieser Information ist
dann eine anwendungsorientierte Behebung des Konfliktes moglich (engl. conflict
resolution) [WdRe92].

Obwohl Eingangsinvarianten auch zur Uberpriifung genereller Ausfiihrungsbe-
dingungen von Steps herangezogen werden konnen, beschrinkt sich diese Arbeit
auf die Nutzung von Invarianten zur Definition von Isolationsbediirfnissen. Des-
halb ist es auch nicht mdglich, Eingangsinvarianten zu Beginn eines ConTracts
festzulegen. Da Eingangsinvarianten iiber Pradikatreferenzen definiert werden
und zu Beginn eines ConTracts noch keine Ausgangsinvarianten referenziert wer-
den konnen, ist eine entsprechende Festlegung von Eingangsinvarianten nicht zu-
lassig (siehe Bedingung 4-1).

6.4.4 Konfliktbehandlung

Neben der Verwaltung der Invarianten stellt die Erkennung und Behandlung von
Konflikten durch die Modifikation von Objektzustinden einen Hauptaspekt eines

1. Als Konsistenzpriifung kann trotzdem eine Evaluierung erfolgen.

109

Kontrolle von Ablaufen 6
Der Ansatz in ConTracts

Mechanismus zur Sicherstellung der Korrektheit dar. Ein Konflikt ist dabei die
Verletzung einer der Zugriffsbeschrankungen (Pradikate). Wie bereits im Ab-
schnitt 6.4.3 besprochen, erfolgt die Erkennung zum Commit-Zeitpunkt der die
Steps umgebenden Transaktionen, bzw. wihrend der prepare-Phase, da im Falle
von ConTracts ein Zwei-Phasen-Commit-Protokoll (kurz 2PC) [GrRe93] zur An-
wendung kommt.

Innerhalb des 2PC wird allen beteiligten Objekten bzw. den Ressourcen-Verwal-
tern (siehe Kapitel 7), die diese Objekte verwalten, ein prepare-Aufruf tibermittelt.
Dies veranlafBit eine Uberpriifung der Pridikate beziiglich der aktuellen Wertebele-
gung des Objektes, sowie die Uberpriifung weiterer Konsistenzbedingungen, die
auf den Datenobjekten definiert wurden. Alle beteiligten Ressourcen-Verwalter
geben auf Grund der Uberpriifung ein Votum ab, welches signalisiert, ob sie bereit
zum Commit der Transaktion sind oder nicht. Votieren alle Ressource-Verwalter
positiv, ergeht der eigentliche Commit-Aufruf an alle beteiligten RM. Votiert ein
RM gegen das Commit, ergeht eine Abort-Nachricht an alle RM und die Transak-
tion wird abgebrochen.

Grundsétzlich sind mehrere Fille bei der Erkennung eines Konfliktes zu behan-
deln. Zum einen muf} die Verletzung von obligatorischen und nicht-obligatori-
schen Pradikaten unterschieden werden. Zum anderen ist zu beriicksichtigen, daf3
ein Konflikt auch mit Pridikaten der eigenen ConTract-Instanz auftreten kann.

6.4.4.1 Konflikte mit obligatorischen Pradikaten

Die Einfiihrung der sogenannten obligatorischen Pradikate beriicksichtigt die Tat-
sache, daf} das Korrektheitskriterium {iber der Kompensations-erweiterten Historie
definiert ist. Das heil3t, daf} Pradikate die von einer Invarianten eines Kompensati-
onsblockes referenziert werden nicht verletzt werden diirfen. Wird also ein obliga-
torisches Priadikat beziiglich der aktuellen Wertebelegung verletzt, muf3 die umge-
bende Transaktion zuriickgesetzt werden, um eine Verletzung des
Korrektheitskriteriums zu verhindern.

6.4.4.2 Konflikte mit nicht-obligatorischen Pradikaten

Wird ein Konflikt mit einem nicht-obligatorischen Pradikat entdeckt, stellt dies
keine Verletzung des Korrektheitskriteriums dar. Die umgebende Transaktion
kann somit erfolgreich abgeschlossen werden. Allerdings bedeutet dies, dal3 die
Ausfiihrung der ConTract-Instanz, deren Priadikat verletzt wurde, moglicherweise
nicht mehr erfolgreich zu Ende gefiihrt werden kann.

6.4.4.3 Intra-ConTract-Konflikte

Konflikte beziiglich von Priadikaten der ConTract-Instanz, welche die konfliktver-

110

6 Kontrolle von Ablaufen
Der Ansatz in ConTracts

ursachende Zustandsédnderung durchgefiihrt hat, deuten auf einen Programmier-
fehler hin. Ist in diesem Fall ein obligatorisches Prédikat betroffen, bedeutet dies,
daB die weitere Ausfithrung der ConTract-Instanz eine notwendige Vorausset-
zung fur die eigene Kompensation verletzen wiirde. Somit ist keine weitere Fort-
fiihrung, sondern nur die Kompensation moglich. Dies wird jedoch nicht automa-
tisch durch das Laufzeitsystem veranlaft.

Im Falle der Verletzung eines nicht-obligatorischen Pridikates ist die weitere
Ausfiihrung durchaus moglich, obwohl eine hohe Wahrscheinlichkeit fiir das
Fehlschlagen einer spiteren Eingangsinvarianten-Evaluierung gegeben ist. Auf
Grund des Konfliktauflosungsmechanismus ist jedoch eine gesonderte Behand-
lung bei der Feststellung des Konfliktes nicht notwendig.

6.4.5 Giultigkeitsdauer von Invarianten

Wie in Abschnitt 6.4.2 dargestellt, werden Priddikate von Invarianten innerhalb
von Transaktionen etabliert und haben somit die Persistenzeigenschaft. Somit ist
es notwendig, in einem ConTract-Laufzeitsystem Transaktionen auszuldsen, die
diese Pradikate wieder entfernen sobald sie nicht mehr benotigt werden. Anson-
sten wiirden immer mehr Zugriffsbeschrankungen in das System eingebracht, die
schlieBlich die Ausfiihrung von ConTract-Instanzen verhindern wiirden.

Wie aus dem Korrektheitskriterium fiir ConTracts ersichtlich (siehe Abschnitt
5.5.4), werden Invarianten einer ConTract-Instanz nur solange bendtigt, wie die
Instanz aktiv ist. Das heif3t, daB3 alle Invarianten (und somit deren Prédikate) einer
ConTract-Instanz spatestens dann geldscht werden diirfen, wenn eine “End-Of-
ConTract”-Operation von dieser ConTract-Instanz ausgefiihrt wird. Es stellt sich
allerdings die Frage, ob dies der fritheste Zeitpunkt ist, um Invarianten wieder zu
entfernen.

Der eingefiihrte Begriff der Invariantenklammer deutet an, da3 Invarianten nicht
auflerhalb einer solchen Klammer bendtigt werden. Wire also sichergestellt, daf3
zu einem Zeitpunkt keine weitere geschlossene Invariantenklammern zu der aktu-
ellen kompensations-erweiterten Historie einer ConTract-Instanz hinzukommen
kann, konnte die Invariante aus dem System entfernt werden.

Im Falle von statischen ConTract-Instanzen ist die Erkennung solcher Zeitpunkte
moglich und die Entfernung von Invarianten automatisch durch das Laufzeitsy-
stem realisierbar. “Statisch” heifit in diesem Zusammenhang, dal3 eine ConTract-
Instanz aus einem Template erzeugt wurde und danach nicht mehr verdnderbar ist
(auBer durch die Auslosung des Kompensationsereignisses). Ein Ansatz hierzu
wire, die Menge der Operationen von ConTracts um eine weitere Invariantenope-
ration delete() zu erginzen. Diese delete-Operation ist allerdings nicht fiir Pro-
grammierer eines ConTract verfligbar. Stattdessen wird sie bei der Instanziierung

111

Kontrolle von Ablaufen 6
Vergleich der Mechanismen

eines ConTracts automatisch durch das Laufzeitsystem an den Stellen eingefiigt,
bei denen erkannt wird, daB3 beziiglich einer Invariante keine weitere geschlossene
Invariantenklammer auftreten kann.

Erlaubt man die Modifikation einer ConTract-Instanz zur Laufzeit, beispielsweise
zur Realisierung einer flexiblen Ausnahmebehandlung, ist diese einfache Strategie
nicht mehr méglich. Verhindert wird dies durch die Méglichkeit, neue Steps zu der
ConTract-Instanz hinzuzufiigen, die in ihren Eingangsinvarianten Pradikate von
Ausgangsinvarianten der bestehenden ConTract-Instanz referenzieren und somit
eine neue geschlossene Invariantenklammer bilden konnen. Somit ist jede Aus-
gangsinvariante potentieller Teil einer Invariantenklammer, selbst wenn dies nicht
in einem ConTract-Template festgelegt wurde.

Berticksichtigt man also die Modifikation einer ConTract-Instanz zur Laufzeit, be-
steht keine Moglichkeit, Invarianten vor dem Ende der Abarbeitung der ConTract-
Instanz freizugeben, ohne dal Erweiterungen der Definition eines ConTract-Tem-
plates vorgenommen werden. Denkbar wire hierbei die Einfiihrung von Klassifi-
katoren, die Invarianten explizit als friihzeitig entfernbar deklarieren (dhnlich dem
altruistic locking [SGS94]) und gleichzeitig das Laufzeitsystem anweisen, eine Re-
ferenzierung durch spiter eingefiigte Teile zu verhindern.

6.5 Vergleich der Mechanismen

Der fiir ConTracts gewihlte Ansatz stellt eine Vereinigung einiger der vorgestell-
ten Ansitze dar. So sind beispielsweise Sperrverfahren einfach auf die wertunab-
hingigen Priadikate des ConTract-Ansatzes abbildbar. Direkt iibernommen wurden
das Escrow-Verfahren bzw. der check/reavalidate-Machanismus im Falle der wert-
abhingigen Pradikate. Nicht direkt vergleichbar ist das Prinzip des altruistic lok-
king, da in ConTracts kein Abhidngigkeitsgraph verwaltet wird. Beriicksichtigt man
jedoch die dynamische Erweiterung einer ConTract-Instanz, miifite ein entspre-
chender Mechanismus zum Einsatz kommen.

Somit stellt der hier vorgestellte Mechanismus einen duflerst flexiblen Ansatz dar,
der versucht die Vorteile unterschiedlicher Ansétze in sich zu vereinigen. Dariiber
hinaus unterstiitzt das ConTract-Modell die anwendungsorientierte Auflésung von
Konflikten. Das heif3t, da3 bei einem Konflikt beziiglich des Korrektheitskriteri-
ums das Laufzeitsystem zwar die aktuelle Transaktion abbricht, die ConTract-In-
stanz jedoch liber den Grund des Abbruchs informiert wird. Abhédngig von der De-
finition im ConTract-Template konnen dann geeignete MaBnahmen zur
Konfliktbehebung ergriffen werden. Somit kann es bei ConTracts auch nicht zu
Verklemmungen durch Konflikte beziiglich Invarianten kommen, da keine Warte-
situation durch das Laufzeitsystem erzwungen wird.

112

6 Kontrolle von Ablaufen
Vergleich der Mechanismen

Mit der Flexibilitit des Verfahrens entsteht allerdings gleichzeitig ein erhdhter In-
formationsbedarf des Laufzeitsystems. Wie bereits dargestellt, ist es notwendig,
Informationen iiber die Semantik der Steps in Form der Invarianten zur Verfiigung
zu stellen. Dadurch wird der Programmierer bzw. die Programmiererin vor eine
nicht einfache Aufgabe gestellt, was in gewisser Weise dem Grundsatz des Trans-
aktionsprinzips widerspricht: Transaktionen sind deshalb so weit verbreitet, weil
sie es ermoglichen, Anwendungen zu programmieren, ohne Riicksicht auf Mehr-
benutzeranomalien bzw. Parallelverarbeitung nehmen zu miissen. Andererseits
sicht man bei den klassischen Sperrverfahren, dal sie nur fiir eine sehr einge-
schrinkte Menge von Anwendungen geeignet sind und mufl somit zwischen Pro-
grammierkomfort und Flexibilitdt bzw. Durchsatzpotential abwagen.

Ein weiterer Unterschied zwischen dem Ansatz in ConTracts und Ansédtzen zur
Abwicklung von ACID-Transaktionen steckt in dem Aufwand fiir die Sicherstel-
lung der Korrektheit. Wéihrend beispielsweise Sperrverfahren relativ einfach und
schnell zu implementieren sind, ist das Verfahren der ConTracts weit aus aufwen-
diger. Allerdings unterscheiden sich auch die Anwendungsgebiete sehr stark.
Wihrend die klassischen Ansétze fiir relativ kurze Transaktionen entwickelt wur-
den (Laufzeit < 1 Sekunde), adressieren ConTracts Anwendungen deren Laufzeit
mehr als 1 Jahr betragen konnen. Bei dieser Laufzeit spielt der Aufwand zur Si-
cherstellung der Korrektheit eine untergeordnete Rolle, so daB3 die Vorteile, die
durch die Flexibilitit des Verfahrens und den hohen Grad an moglicher Parallel-
verarbeitung gegeben sind, iberwiegen.

Gerade bei langlaufenden Anwendungen spielt dariiber hinaus die Kooperations-
fahigkeit eine grofle Rolle. Bei einer Anwendung, die sich liber mehrere Monate
erstreckt, wire es undenkbar, dal3 ein Datenelement, welches einmal wihrend des
Ablaufs verdndert wurde, bis zum Ende der Anwendung gesperrt bleibt. Statt des-
sen ist es notwendig, die Einschrinkungen so gering wie moglich halten zu kon-
nen, um so eine kooperative Bearbeitung (mehrer ConTract-Instanzen) zu ermog-
lichen. Durch die Einfiihrung bzw. spezielle Verwaltung der nicht-obligatorischen
Pradikate ist be1 dem Verfahren von ConTracts aulerdem die Voraussetzung fiir
die voriibergehende Verletzung von Zugriffsbeschrankungen geschaffen. Dies er-
hoht den moglichen Kooperationsgrad noch weiter.

Ein weiteres Unterscheidungsmerkmal ist die Erweiterung des Objektzustandes
um die Zugriffsbeschrinkungen. Die Atomaritiit bei Anderungen von Zugriffsbe-
schrankungen ist gewahrleistet, da sie mittels ACID-Transaktionen erfolgt. Aus
dem selben Grund sind die Anderungen an Zugriffsbeschrinkungen auch dauer-
haft. Somit wird auch die Persistenz des Zustandes einer ConTract-Instanz durch
das Verfahren unterstiitzt.

113

Integrationsaspekte 7
Auswirkungen auf das Programmiermodell

7 Integrationsaspekte

Mit der Definition eines Korrektheitsbegriffs und der Einfiihrung eines Mechanis-
mus zur Sicherstellung desselben ergeben sich Seiteneffekte auf andere Teile des
ConTract-Modells. Besonders zu erwéhnen ist dabei das Programmiermodell von
ConTracts. Da in dem Programmiermodell die Vorgehensweise zur Entwicklung
von ConTract-Templates konzeptionell festgelegt ist, mul3 eine Ergénzung vorge-
nommen werden, die auch die Definition von Invarianten in das Programmiermo-
dell integriert.

Ein weiterer Integrationsaspekt ergibt sich aus der Tatsache, dall neben der rein
konzeptionellen Entwicklung des ConTract-Modells auch eine Architektur entwik-
kelt wurde, die die Umsetzung der Ansétze in ein Laufzeitsystem ermdoglicht.
Gleichzeitig wurde eine prototypische Implementierung dieser Architektur vorge-
nommen, um die Umsetzbarkeit der Architektur zu verifizieren [RSW92] I Wie die
vorgestellten Konzepte in die Architektur bzw. die prototypische Implementierung
integriert werden konnen, soll in den folgenden Abschnitten diskutiert werden.

Wie bereits erwihnt, unterliegt das ConTract-Modell einer stindigen Weiterent-
wicklung. Parallel zu dieser Arbeit wurde bereits an Erweiterungen gearbeitet, die
demnéchst Teil des ConTract-Modells und der Architektur werden sollen. Wie sich
die Ergebnisse dieser Arbeit mit den Neuerungen vertragen, ist ebenfalls ein
Aspekt der bei einer Integrationsdiskussion beriicksichtigt werden muf3 und wird in
Abschnitt 7.3 angesprochen.

7.1 Auswirkungen auf das Programmiermodell

ConTracts unterscheiden sich von anderen erweiterten Transaktionsmodellen, die
sich fiir langlebige Abldufe eignen, unter anderem dadurch, da3 die Vorgehenswei-
se zur Definition eines ConTracts in dem Modell selbst festgelegt ist: Durch das so-
genannte Programmiermodell. Ein Aspekt dieses Programmiermodells ist die
Trennung der Programmierung von Steps von der Programmierung der ConTract-
Templates (zweistufiges Programmiermodell). Das hei3t, da3 ein Programmierer
eines Steps nichts tiber den ConTract wissen mul3, in dem der Step spéter verwen-
det werden soll. Umgekehrt weill die Programmiererin eines ConTract-Templates
nichts iiber die Implementierungsdetails eines Steps und kennt nur dessen Schnitt-
stelle.

In den folgenden Unterabschnitten wird vorgestellt werden, wie die Definition von

1. APRICOTS: “A Prototype Implementation of a ConTract System”

114

7 Integrationsaspekte
Auswirkungen auf das Programmiermodell

Invarianten in das Programmiermodell integriert werden kann. Dabei wird davon
ausgegangen, dall dieses erweiterte Programmiermodell in eine spezielle Ent-
wicklungsumgebung fiir die Definition von ConTract-Templates umgesetzt wird,
um so die optimale Unterstiitzung bei der Programmierung zu gewéhrleisten.

7.1.1 Grundprobleme

Aus der strikten Trennung der Programmierung von Steps und ConTract-Templa-
tes ergeben sich Probleme im Hinblick auf die Definition von Invarianten. Invari-
anten werden grundsétzlich in einem ConTract-Template spezifiziert. Allerdings
legen sie fest, welche Voraussetzung erfiillt sein miissen, damit ein Step ausge-
fiihrt werden kann (Eingangs-Invariante), bzw. welcher Zustand von Objekten
nach der Ausfiihrung eines Steps von Relevanz fiir “spiter” auszufiihrende Steps
ist (Ausgangs-Invariante).

Zunéchst stellt sich dabei das Problem, da3 eine ConTract-Programmiererin die
Objekte zu identifizieren hat, deren Zustandsraum beschrinkt werden muf}, um
die Ausfiihrbarkeit des Steps zu garantieren. Als ndchstes miissen die Zustands-
raumbeschrankungen als Pradikate formuliert und in Invarianten zusammenge-
falt werden. Bereits die Identifikation der Objekte ist mit dem bisherigen Pro-
grammiermodell nicht moglich, da die Programmiererin des ConTract-Template
keine Informationen iiber die interne Arbeitsweise von Steps hat. Somit muf} zu-
nichst eine Erweiterung dahingehend erfolgen, dall weitere Informationen iiber
Steps bei der Programmierung von ConTract-Templates verfiigbar sind.

Dartiber hinaus wurde in ConTracts urspriinglich davon ausgegangen, daf3 die Da-
tenobjekte nicht direkt von Steps modifizierbar sind, sondern gemil3 dem verteil-
ten Transaktionsmodell der X/Open Organisation [XOP93] in sogenannten Res-
sourcen-Verwaltern (engl. Resource Manager oder kurz RM) zusammengefalit
und nur iiber diese ansprechbar sind. Mit der Verfiigbarkeit neuerer Umgebungen
fiir die verteilte Ausfilhrung von Anwendungen, wie beispielsweise CORBA,
DCOM und JavaBeans, ergeben sich teilweise Unterschiede zum X/Open Modell.
Da die CORBA-Spezifikation einerseits die notwendigen Mechanismen zur ver-
teilten Verarbeitung geschachtelter Transaktionen bereitstellt und andererseits auf
Ansitze wie DCOM oder JavaBeans abbildbar ist, geht der hier beschriebene An-
satz davon aus, daf} Objekte iiber den in CORBA spezifizierten Mechanismus
adressiert werden. Fiir die globale Adressierbarkeit eines Datenobjektes bedeutet
dies, daB3 zunidchst der zugehorige Ressourcen-Verwalter (ein transaktionales
CORBA-Objekt) adressiert werden muf3, um bei diesem den Zugriff auf das ent-
sprechende Datenobjekt veranlassen zu konnen.

Ein weiteres Problem ergibt sich aus der Tatsache, dal Datenobjekte in unter-
schiedlichen Arten von Ressourcen-Verwaltern zusammengefal3t sind. Hierdurch

115

Integrationsaspekte 7
Auswirkungen auf das Programmiermodell

unterscheidet sich die Adressierung von Datenobjekten innerhalb der RM. Bei-
spielsweise werden Tupel oder Attribute einer relationalen Datenbank im allgemei-
nen assoziativ adressiert (z.B. mittels SQL iiber einen Primérschliissel). Im Gegen-
satz dazu werden Dateiobjekte in einem Dateisystemen direkt mittels eines Pfades
und eines Namens adressiert.

ZusammengefalBlit ergeben sich also drei grundsitzliche Aufgaben bei der Einfiih-
rung des invariantenbasierten Korrektheitsbegriffes:

1. Bereitstellung von Information iiber die Ausfiihrungsvoraussetzungen von
Steps.

2. Globale Adressierbarkeit von RM.
3. Flexible Adressierbarkeit von Objekten innerhalb von RM.

Wiéhrend Punkt eins eine Aufgabe darstellt, die durch das Programmiermodell an-
gegangen werden kann, hiangen die Punkte zwei und drei stark von der konkreten
Umsetzung der Konzepte in eine Definitionssprache fiir ConTract-Templates bzw.
der gewédhlten Ausfiithrungsumgebung ab. Da im Rahmen dieser Arbeit davon aus-
gegangen wird, dall Punkt zwei durch die CORBA-Spezifikation festgelegt ist und
dariiber hinaus nur die grundsitzlichen Konzepte und die Auswirkungen auf die
Architektur besprochen werden sollen, wird deshalb im weiteren nur auf Punkt eins
ndher eingegangen.

7.1.2 Step-Programmierung

Der bisherige Ansatz von ConTracts sieht vor, fiir Steps eine Signatur zu definie-
ren, die bei der Definition eines ConTract-Templates verwendet werden kann. Da-
bei wird unter der Signatur eines Steps folgende Information verstanden:

1. Name des Steps
2. Schnittstellendefinition des Steps.

Wie bei einem verteilten objekt-orientierten System nach CORBA [Sieg96] dient
die Signatur eines Steps dazu, einem Laufzeitsystem geniigend Information zur
Verfiigung zu stellen, um einen Aufruf einer Methode zu generieren. Im Unter-
schied zur Adressierung bet CORBA identifiziert der Name eines Steps dabei die
gewiinschte Semantik der Methode anstatt eine Methode in einem Objekt zu iden-
tifizieren'. Somit stellt der Name eines Steps eine logische Adresse einer Methode

1. Neuere Erweiterungen von CORBA beinhalten einen sogenannten “broker service” mit dhnlicher
Semantik.

116

7 Integrationsaspekte
Auswirkungen auf das Programmiermodell

dar, die durch das Laufzeitsystem aufgeldst werden mufl. Die Schnittstellendefi-
nition stellt wie bei CORBA die korrekte Ubergabe von Parametern sicher und
hilft dariiber hinaus bei der Identifikation der gewiinschten Methode.

Da die Signatur eines Steps die einzige Information ist, die von einem Step-Pro-
grammierer iiber den Step zur Verfligung gestellt wird, ist es mit der Einfiihrung
der invariantenbasierten Korrektheit notwendig, diese Signatur zu erweitern. Ge-
nauer gesagt muf} ein Step Programmierer in der Signatur mdgliche Ein- bzw.
Ausgangs-Invarianten definieren, die von einer Programmiererin von ConTract-
Templates benutzt werden kann.

Hierfiir werden sogenannte /nvarianten-Templates oder Invarianten-Schablonen
eingefiihrt. Dies sind Pridikate, die mittels Referenzen auf Datenobjekte und so-
genannten Platzhaltern definiert werden. Die Referenzen auf Datenobjekte er-
moglichen es, die notwendige Adressierungsinformation fiir den Zugriff auf Da-
tenobjekte dem Laufzeitsystem zur Verfligung zu stellen. Die Platzhalter stellen
wie bei einer Schnittstellendefinition typisierte Variablen dar, die auf der Ebene
des ConTract-Templates entweder mit Kontextvariablen assoziiert oder durch
konstante Werte ersetzt werden konnen.

An dem Anwendungsbeispiel aus Kapitel 2 kann das Konzept verdeutlicht wer-
den. Der universitire Urlaubsantrag enthilt in seinem zweiten Schritt die Uber-
priifung der Zuléssigkeit des Antrages, was normalerweise bedeutet, daf3 iiber-
priift wird, ob der Antragstellende noch gentigend Urlaubstage zur Verfiigung hat.
Ein mogliches Ausgangsinvarianten-Template dieses Steps konnte somit formu-
liert werden als:

Ref:AnzahlFreieUrlaubstage(%Antragsteller%) > %beantragte Anzahl%.

Hierbei steht “Ref: AnzahlFreieUrlaubstage(Antragsteller)” fiir eine Referenz auf
ein Datenobjekt, wihrend “%Antragssteller%” als auch %beantragte Anzahl%
Platzhalter sind, die erst zur Laufzeit durch Werte ersetzt werden (siehe 7.1.3).
Der Operator > ist ebenfalls erlduterungsbediirftig. Bei dem referenzierten Daten-
objekt handelt es sich um ein sogenanntes kumulatives Objekt. Das heif3t, da3 der
absolute Wert des Objektes nicht von Interesse ist. Statt dessen soll nur gewéahr-
leistet werden, daB3 die untere Schranke des Objektes nicht verletzt wird, wenn die
Anzahl beantragter Urlaubstage abgezogen wird. Anstatt also eine absolute Wer-
tebeschrankung zu fordern spezifiziert der > Operator nur den notwendigen Anteil
der benoétigt wird. Beispielsweise konnte der Antragsteller vier Urlaubstage bean-
tragen. Dies wiirde in der folgenden Invariante ausgedriickt:

Ref:AnzahlFreieUrlaubstage(%Antragsteller%) > 4

Bei der Umsetzung in eine Wertbeschriankung auf Datenobjektebene wird nun der
rechte Teil der Bedingung auf die bestehende Wertebeschrankung “AnzahlFreie-

117

Integrationsaspekte 7
Auswirkungen auf das Programmiermodell

Urlaubstage > 0” addiert und somit die konjunktive Verkniipfung der bestehenden
Wertbeschrankung und der Invariante auf eine funktionale Verkniipfung mit der
rechten Seite der bestehenden Wertebeschrinkung abgebildet. Als Resultat ent-
steht eine neue Wertebeschrankung “AnzahlFreieUrlaubstage > 4”.

Wenn mehrere solcher Pradikate bei dem Objekt etabliert werden, bedeutet dies,
daB die konjunktive Verknilipfung dieser Priddikate einem einzigen Pradikat ent-
spricht. Dieses kumulative Pradikat wiirde dann fordern, dall der Wert des Daten-
objektes groBer oder gleich der Summe der geforderten Werte in den Einzelpradi-
katen plus der unteren Schranke sein muf3.

Im Schritt 5 des Anwendungsbeispiels findet die Anderung der Urlaubskartei statt.
Dies bedeutet, da3 die Anzahl der noch zur Verfligung stehenden Urlaubstage um
die Anzahl der beantragten Tage reduziert wird. Dies setzt jedoch voraus, daf3 iber-
haupt geniigend Urlaubstage zur Verfiigung stehen. Ein Eingangsinvarianten-Tem-
plate, welches dies sicherstellt, entspricht dem Ausgangsinvarianten-Template fiir
Step 2.

7.1.3 ConTract-Template-Programmierung

Bei der Programmierung eines ConTract-Templates stellt sich nun die Aufgabe,
die mit der Signatur der Steps bereitgestellten Invarianten-Templates in konkrete
Ein- und Ausgangsinvarianten umzusetzen. Dies erfordert zunédchst, dall die Platz-
halter der Invarianten-Templates, mit Kontextvariablen verkniipft werden.

In dem angefiihrten Beispiel fiir das Ausgangsinvarianten-Template von Step 2
heif3t dies, da3 die Platzhalter %Antragsteller%” und %beantragteAnzahl% durch
Kontextvariablen des gleichen Typs ersetzt werden. Dies entspricht dem Vorgang
bei der Verkniipfung von Kontextvariablen mit Schnittstellenparametern von
Steps. Dartiiber hinaus werden Referenzen von Datenobjekten ebenfalls dem Kon-
text hinzugefiigt. Somit konnen Datenobjektreferenzen wie gewohnliche Variablen
des Kontext behandelt werden.

In einem weiteren Schritt mul} jedes Pradikat der Eingangsinvarianten-Templates
durch Referenzen auf Ausgangsinvarianten ersetzt werden. In dem Beispiel aus
Abschnitt 7.1.2 1st dies einfach, da das Eingangsinvarianten-Template keine kon-
junktive Verkniipfung mehrerer Pradikate darstellt und auBerdem dem Ausgangs-
invarianten-Template eines Vorgéingersteps entspricht. Im allgemeinen Fall stellt
sich die Aufgabe, alle Priadikate der Eingansinvariante in Ausgangsinvariante be-
reits eingefligter Steps zu finden und zu diesen Referenzen zu generieren. Dabei
konnen folgende Fille auftreten:

1. Genau ein Pridikat einer Ausgangsinvarianten entspricht einem Pridikat der
Eingangsinvarianten.

118

7 Integrationsaspekte
Architekturaspekte

2. Zu einem Prédikat einer Eingangsinvariante existiert kein passendes Prédi-
kat einer Ausgangsinvariante.

3. Es existieren mehrere Pridikat von Ausgangsinvarianten, die einem Pradi-
kat einer Eingansginvariante entsprechen.

Wihrend Fall 1 die Voraussetzung fiir die automatische Generierung von Pradi-
katreferenzen erfiillt, ist die automatische Generierung im Fall zwei und drei nicht
moglich. Bei mehreren passenden Pradikaten ist durch den Programmierer festzu-
legen auf welches Priadikat referenziert werden soll. Im Falle, daB kein Prédikat
einer Ausgangsinvarianten zu einem Pridikat einer Eingangsinvarianten paft,
kann nicht zugelassen werden, dal3 der Step eingefiigt wird, da dies das Wohlge-
formtheitskriterium aus Definition 4-20 verletzen wiirde. Der Programmierer muf3
daher aufgefordert werden, einen weiteren Step so einzufiigen, dall dessen Aus-
gangsinvariante von der Eingangsinvariante des gerade abgewiesenen Steps refe-
renziert werden kann und damit Fall 1 eintritt.

Sowohl die Uberpriifung der Typkompatibilitit bei der Zuweisung von Kontext-
variablen zu Platzhaltern als auch die Priifung der Ubereinstimmung von Pridika-
ten kann durch eine Programmierumgebung weitgehend automatisiert werden.
Somit kdnnen zum einen Programmierfehler vermieden und zum anderen eine
grofle Zeitersparnis erzielt werden.

7.2 Architekturaspekte

Das ConTract-Modell wurde entworfen, um die Basis fiir ein Laufzeitsystem zur
Abwicklung langlebiger Abldufe bereitzustellen. Deshalb begleitet die Entwick-
lung des Modells auch stets die Entwicklung einer Architektur einer entsprechen-
den Laufzeitumgebung. Dieser Abschnitt beschiftigt sich mit den Auswirkungen,
die die Einfiihrung des Korrektheitsbegriffes bzw. seine Sicherstellung mit sich
bringen.

Unter einer Architektur eines Laufzeitsystems fiir ConTracts soll eine logische
Aufteilung der notwendigen Funktionalitidten in sogenannte Komponenten ver-
standen werden. Dabei werden fiir eine Komponente sowohl die Funktionalitét
selbst als auch die notwendigen Schnittstellen festgelegt. Wie nun in einem realen
Laufzeitsystem die Komponenten in (Betriebssystem-)Prozessen realisiert wer-
den, oder wie die Kommunikation zwischen Komponenten erfolgt, ist nicht Teil
der Architektur und wird im folgenden auch nicht diskutiert.

7.2.1 Bisherige Architektur
Bereits in [RSW92] wurde eine Architektur fiir ein ConTract-verarbeitendes Sy-

119

Integrationsaspekte
Architekturaspekte

stem vorgestellt. Prinzipiell wurden in dieser Architektur fiinf funktionale Kompo-
nenten unterschieden:

1. ConTract Manager (CM)

2. ConTract Processing Monitor (CPM)
3. Step Computation Server (SCS)

4. Resource Manager (RM)

5. Transaction Manager (TM)

Der ConTract Manager koordiniert die Ausfiithrung einer ConTract-Instanz. Er hat
somit eine Schnittstelle zu dem Anwender, der liber diese Schnittstelle die Ausfiih-
rung beeinflussen kann (start, stop, usw.). AuBBerdem verwaltet der CM die Konsi-
stenz- bzw. Isolationsinformation und ist aus Sicht des Transaktionsverwalters
Auftraggeber fiir transaktionale Dienste (begin transaction, end transaction, usw.).

Der ConTract Processing Monitor war dafiir vorgesehen, die prozeBorientierte
Verwaltung eines ConTract-Systems abzuwickeln. Das hei3t, dal Komponenten
mittels des CPM in das System eingebracht, entfernt und iiberwacht werden kon-
nen. Mit der Verfiigbarkeit von CORBA kann diese Aufgabe jedoch von Standard-
komponenten iibernommen werden, so dafl ein Dienst wie der CPM inzwischen
nicht mehr als funktionale Komponente eines ConTract-Systems angesehen wird,
sondern eher als ein Bestandteil der Basisdienste.

Die Step Computation Server kapseln die Funktionalitit von Steps. Urspriinglich
war flr sie eine standardisierte Schnittstelle &hnlich einem RPC zur Kommunika-
tion mit dem CM vorgesehen. Wiederum hat die Verfligbarkeit von CORBA diesen
Schritt tiberfliissig gemacht, so da3 nur noch gefordert wird, dal neben den Schnitt-
stellen fiir Steps transaktionale Schnittstellen (commit, prepare, abort) verfiigbar
sind.

Eine weitere Schnittstelle ergibt sich aus der Tatsache, dal3 Steps zur Implementie-
rung threr Funktionalitdt mit Resource Managern kommunizieren miissen. Wie be-
reits erwdhnt, verwalten die RM persistente Datenobjekte. Sie entsprachen ur-
spriinglich der DTP-Spezifikation der X/Open [XOP93]. Inzwischen wird auch fiir
die RM gefordert, dal} sie transaktionale Objekte im Sinne von CORBA sind, da
die X/Open-Spezifikation keine geschachtelten Transaktionen berticksichtigt.

Grundsatzlich nicht ConTract-spezifisch, jedoch unbedingt notwendig fiir ein Con-
Tract-verarbeitendes System ist ein Transaction Manager, der die Abwicklung
transaktionaler Protokolle tibernimmt. Der TM soll der OTS-Spezifikation (Object
Transaction Service) von CORBA entsprechen.

120

7 Integrationsaspekte
Architekturaspekte

Abbildung 7-1 gibt einen Uberblick iiber die Komponenten und ihr Zusammen-
spiel:.

User
Agent

CORBA

start, stop, ...

execute ' conTract

Manager

Step
Server

RM specific BOT, EOT, ...

TA
Manager

Resource
Manager

Abbildung 7-1: Architektur eines ConTract-verarbeitenden Systems

7.2.2 Autonomie

Der vorgestellte Mechanismus zur Sicherstellung der Korrektheit erfordert die
Verwaltung von Invarianten sowie die Realisierung der Zugriffsbeschrinkungen,
die durch die Invarianten gefordert werden. Diese Funktionalitdt kann prinzipiell
auf drei verschiedene Arten in einer Architektur beriicksichtigt werden:

1. Durch Einfiihrung einer zentralen Instanz zur Verwaltung der Invarianten,
bzw. der in Invarianten enthaltenen Pradikate.

2. Durch Verteilung der Verwaltungsfunktionalitit auf mehrere Komponenten,
die im Verbund die notwendigen Aufgaben erledigen.

3. Durch einen hybriden Ansatz, der mittels einer zentralen Komponente ar-
beitet, jedoch einen Teil auf mehrere Komponenten verteilt.

121

Integrationsaspekte
Architekturaspekte

Da die Datenobjekte in den RM verwaltet werden, stellt jeder Zugriff auf ein Da-
tenobjekt auch einen Zugriff auf einen RM dar. Beziiglich der drei oben eingefiihr-
ten Ansétze ist somit zu beurteilen, wie die Funktionalitdt der RM verdndert oder
erweitert werden muf3, damit der entsprechende Ansatz realisiert werden kann.

Im allgemeinen kann davon ausgegangen werden, dall die RM nicht neu entwickelt
werden, sondern daB} existierende Komponenten (wie z.B. ein Datenbanksystem)
in ein ConTract-System integriert werden. Dabei stellt sich das sogenannte Auto-
nomieproblem, welches am Beispiel von Datenbanksystemen erldutert werden soll.
Datenbanksysteme enthalten bereits Mechanismen zur Verwaltung und Sicherstel-
lung von Zugriffsbeschriankungen. Diese sind tliblicherweise nicht erweiterbar und
nur liber eine relativ restriktive Schnittstelle zugéinglichl. Betrachtet man nun be-
reits existierende Anwendungen dieser Datenbanksysteme, wire es vollig inakzep-
tabel, diese Anwendungen dndern zu miissen, weil das Datenbanksystem in einem
ConTract-verarbeitenden System integriert wird. Somit sind das Datenbanksystem
selbst und auch die darauf basierenden Anwendungen als autonom anzusehen, und
diese Autonomie ist beim Entwurf einer Architektur zu beriicksichtigen.

Alle Ansitze, die nur die Etablierung einer zentralen Instanz vorsehen, verlangen
massive Eingriffe in den Zugriff von existierenden Anwendungen auf Datenobjek-
te. Da Zugriffsbeschrankungen, die durch Invarianten gefordert werden, auch fiir
Zugriffe gelten, welche von Anwendungen ausgelost werden, die nicht zu einem
ConTract-verarbeitenden System gehoren, miissen diese Zugriffe an die zentrale
Instanz umgeleitet werden. Dort wird zunichst gepriift, ob der Zugriff zuléssig ist
und erst dann kann der Zugriff an den RM weitergeleitet werden. Dies ist bei vielen
Anwendungen nicht ohne weiteres moglich, da die Zugriffe direkt im Anwen-
dungscode selbst verankert sind.

Aufgrund der Autonomieprobleme ist somit die Einflihrung einer zentralen Instanz
zur Verwaltung der Invarianten nicht sinnvoll bzw. nicht realisierbar.

7.2.3 Fehlertoleranz

Fehlertoleranz ist eine der wichtigsten Eigenschaften eines ConTract-verarbeiten-
den Systems. Zum einen wird garantiert, da} eine einmal gestartete ConTract-In-
stanz in endlicher Zeit abgearbeitet wird (sofern sie {iberhaupt terminieren kann).
Zum anderen soll auch gewdhrleistet sein, da3 Einkomponentenfehler eine weitere
Bearbeitung von ConTract-Instanzen nicht ausschlie3t. Unter Einkomponenten-
fehler ist dabei der Ausfall einer der logischen Komponenten gemeint.

Natiirlich verhindert der Ausfall einer Komponente, die nur einmal im System vor-
handen ist, die weitere Bearbeitung der ConTract-Instanzen, die diese Komponente

1. Zum Schutz der Anwendungen ist dies auch unbedingt notwendig.

122

7 Integrationsaspekte
Architekturaspekte

aktuell benutzen. Betrachtet man nun den hybriden Architekturansatz (siche Ab-
schnitt 7.2.2), so enthilt dieser eine solche Komponente. Beim Ausfall dieser
Komponente ist eine weitere Bearbeitung von ConTract-Instanzen nicht moglich,
da keine Invarianten mehr in das System eingebracht, bzw. tiberpriift werden kon-
nen.

Grundsitzlich kann dieses Problem durch zusétzliche Hard- und Softwareredun-
danz gelost werden. Beispielsweise kann die zentrale Komponente auf einem
hoch zuverldssigen System angesiedelt werden, so dal3 ein Ausfall dulerst un-
wahrscheinlich wird. Allerdings sind die Kosten fiir eine solche Losung erheblich
und erfordern eine spezielle Hardwarekonfiguration.

Aus diesem Grund sind zentrale Komponenten in einer Architektur fiir ein Con-
Tract-verarbeitendes System zu vermeiden. Dariiber hinaus ist darauf zu achten,
daBl beim Ausfall einer Komponente nur die ConTract-Instanzen betroffen sind,
die diese Komponente gerade bendtigen. Alle anderen Instanzen sollten von dem
Ausfall unbeeinfluflit bleiben. Somit ist auch die mehrfache Einbringung von
Komponenten der gleichen Funktionalitit sinnvoll. Arbeiten beispielsweise meh-
rere ConTract-Manager in einem System, sollte der Ausfall eines der CM die an-
deren CM nicht beeinflussen.

7.2.4 Verteilungsaspekte

Durch die diskutierten Nachteile der Ansédtze mit zentralen Komponenten ver-
bleibt als einzig sinnvolle Alternative ein Architekturansatz, der eine verteilte
Verwaltung von Invarianten bzw. Priadikaten vorsieht. Allerdings ist zu entschei-
den, in welchen Komponenten die Verwaltung angesiedelt wird.

Wie bereits in Abschnitt 7.2.2 diskutiert, ist es auf Grund der Autonomie der RM
sinnvoll, die Verwaltung von Zugriffsbeschrinkungen direkt bei den RM anzusie-
deln. Die Zugriffsbeschrankungen resultieren dabei aus den Pradikaten, die in In-
varianten konjunktiv verkniipft sind.

Dartiber hinaus ist noch die Verwaltung der Invarianten als Ganzes zu beriicksich-
tigen. So ist die Etablierung, die Entfernung sowie die Uberpriifung von Invarian-
ten als Funktionalitit in einer Komponente zu realisieren. Dabei kommen drei
Komponenten zur Auswabhl:

1. ConTract-Manager,

2. Step-Server,

3. eine neu zu definierende Komponente.

Der Ansatz, die Invarianten im ConTract-Manager selbst zu verwalten, hat den

123

Integrationsaspekte
Architekturaspekte

Vorteil, da3 der stabile Speicher, der in einem ConTract-Manager vorhanden sein
mulB, auch zur persistenten Speicherung der Invarianten-Verwaltungsinformation
genutzt werden kann. Da der Ausfall eines CM durchaus die Ausfiihrung der gera-
de aktiven ConTract-Instanzen beeinflussen darf, stellt dieser Ansatz auch aus
Sicht der Fehlertoleranz kein Problem dar. Allerdings wiirde bei diesem Ansatz
dem ConTract-Manager die Aufgabe iibertragen, die Pradikate bei den zusténdigen
RM zu etablieren. Somit miifiten die CM die Referenzen in Invarianten interpretie-
ren, um die Pridikate entsprechend weiterleiten zu konnen.

Die Alternative, die Invariantenverwaltung bei den Step-Servern anzusiedeln, hat
zunichst den Vorteil, daBl diese Zuordnung mit dem Programmiermodell iiberein-
stimmt. Da Invarianten-Templates von Step-Programmierinnen fiir die Steps defi-
niert werden, ist hier die notwendige Information fiir den Zugriff auf die RM vor-
handen, die in Invarianten referenziert Objekte verwalten. Somit wire es nicht
notwendig, dall Referenzen auch von ConTract-Mangern interpretiert werden
miiBten und kénnten als “opak™! angesehen werden. Dariiber hinaus ist auch bei
den Step-Servern persistenter Speicher fiir die Abwicklung des transaktionalen
Protokolls vorhanden, der auch fiir die Speicherung der Invarianteninformation ge-
nutzt werden kann.

Eine neu zu definierende Komponente, die ausschlieBlich die Verwaltung von In-
varianten zur Aufgabe hat, erscheint wenig sinnvoll. Zum einen wére das Problem,
daB Referenzen aufgeldst werden miissen, ebenso gegeben wie bei einer Ansied-
lung der Funktionalitédt in den CM. Zum anderen ist der Aufwand zur Realisierung
eines persistenten und transaktionalen Speichers nicht unerheblich, so daB sich die-
ser Aufwand fiir die relativ geringe Funktionalitit kaum lohnt.

Die Abwigung der Vor- und Nachteile der vorgestellten Ansitze 146t nur den
SchluB3 zu, die Invariantenverwaltung bei den Step-Servern anzusiedeln. Somit
wird die bisher vorliegende Architektur nicht um weitere Komponenten, sondern
nur um zusdtzliche Funktionalitdt bzw. Schnittstellen erweitert. Die Funktionalitét
der Step-Server wird um die Invariantenverwaltung erweitert. Damit ergibt sich
eine Erweiterung der Schnittstelle zwischen Step-Server und ConTract-Manager
fiir den Aufruf folgender Funktionalititen:

1. Etabliere Invariante.
2. Uberpriife Invariante.

3. Entferne Invariante.

4. End of ConTract (Entfernen aller Invarianten einer ConTract-Instanz).

1. Unter einem opaken Datentyp versteht man einen Typ dessen Struktur unbekannt ist.

124

7 Integrationsaspekte
Architekturaspekte

Die RM implementieren die Funktionalitit zur Verwaltung und Sicherstellung der
Zugriffsbeschrinkungen. Dies resultiert ebenfalls in einer Erweiterung der
Schnittstelle zwischen Step-Server und Ressourcen-Verwalter um den Aufruf der
folgenden Funktionalititen:

1. Etabliere Pradikat.

2. Uberpriife Pradikat.

3. Entferne Pradikat.

4. Lege virtuelles Objekt an.
5. Entferne virtuelles Objekt.

Die neu eingefiihrten Schnittstellen fiir RM héngen eng mit den Schnittstellen der
Step-Server zusammen. Wird die Etablierung einer Invarianten bei einem Step-
Server angefordert (Step-Server Funktion zur Etablierung einer Invarianten), re-
sultiert dies in einer Zerlegung der Invarianten in Einzelpradikate. Fiir diese Pra-
dikate wird zunichst gepriift, ob sie funktionale Kombinationen enthalten. Ist dies
der Fall, legt der Step-Server bei allen betroffenen RM die notwendigen virtuellen
Objekte an, die die funktionale Kombination kapseln (RM Funktion zum Anlegen
eines virtuellen Objektes). Existieren bei einem RM bereits diese virtuellen Ob-
jekte, muB} nur ein Referenzzihler inkrementiert werden. Als letzter Schritt wer-
den durch den Step-Server alle Pradikate bei den RM etabliert (RM Funktion zum
Etablieren eiines Pradikates).

Wird eine Invariante entfernt (Step-Server Funktion zum Entfernen von Invarian-
ten bzw. End of Contract), entfernt der Step-Server alle Priadikate bei den RM, die
er fiir die Invariante etabliert hat (RM Funktion zum Entfernen eines Pridikates).
AnschlieBend werden auch die virtuellen Objekte entfernt, bzw. der Referenzzéh-
ler dekrementiert (RM Funktion zum Entfernen eines virtuellen Objektes). Die
Uberpriifung einer Invariante (Step-Server Funktion zum Uberpriifen einer Inva-
riante) resultiert in der Uberpriifung der Pridikate die fiir die Invariante bei den
RM etabliert wurden (RM Funktion zum Uberpriifen eines Pridikates). Eine
Uberpriifung einer Invariante ohne vorherige Etablierung kann nicht auftreten.
Dies wird durch die Wohlgeformtheitsbedingung (Definition 4-20) und die Grun-
dannahme aus Abschnitt 6.4.3.1 gewahrleistet.

Die Erweiterungen der Architektur fithren neue ConTract-spezifische Schnittstel-
len ein, die von Step-Servern bzw. RM implementiert werden miissen, um die kor-
rekte Abwicklung einer ConTract-Instanz zugewaihrleisten. Dariiber hinaus ba-
siert der Ansatz darauf, dal sich die Funktionalitit zur Verwaltung und
Sicherstellung der Zugriffsbeschrankungen in RM so realisieren lassen, daf3 auch

125

Integrationsaspekte
Erweiterbarkeit

bestehende Anwendungen die Korrektheit nicht korrumpieren konnen. Beispiels-
weise bedeutet dies fiir ein relationales DB-System, dall die Beschrankungen fiir
Préadikate sich in sogenannten “Constraints” auf der DB-Ebene ausdriicken.

7.3 Erweiterbarkeit

Wie bereits erwihnt, befindet sich das ConTract-Modell in einer laufenden Ent-
wicklung. Da das Modell inzwischen speziell auf den Workflowbereich ausgerich-
tet wurde, sind die Anforderungen aus diesem Gebiet die Motivation fiir stindige
Erweiterungen. Momentan sind es drei Bereiche, welche Gegenstand laufender Ar-
beiten sind. Inwieweit der hier eingefiihrte Korrektheitsbegriff und das CC-Verfah-
ren auf diese Neuerungen iibertragbar und welche Anpassungen notwendig sind,
soll in den folgen drei Unterabschnitten kurz diskutiert werden.

7.3.1 Flexible Kompensation

Der in dieser Arbeit verwendete Kompensationsbegriff beruht auf dem Prinzip, da3
zu jedem Step ein vordefinierter Kompensationsstep (hierunter fallen auch leere
Kompensationssteps) zur Verfiigung steht. Verallgemeinert man diese Auffassung
dahingehend, daf ein Step nicht nur durch einen Kompensationsstep kompensiert
werden kann, sondern durch einen transaktionalen Block beliebiger Art, ist die bis-
herige Definition der kompensationserweiterten Historie nicht ausreichend.

Da im Falle einer solchen erweiterten Kompensation mehrere Anwendungssteps
zur Ausfiihrung kommen kénnen, muB fiir alle diese Steps die Ausfiihrbarkeit ga-
rantiert sein, um die Kompensierbarkeit einer ConTract-Instanz zu gewihrleisten.
Hierfiir reicht die Forderung nach dem Zutreffen der Eingangsinvariante eines
Steps nicht mehr aus. Es miissen alle Eingangsinvarianten der Steps in dem Kom-
pensationsblock erfiillt sein, um diese Bedingung zu gewihrleisten.

Die naive Erweiterung des Korrektheitskriteriums wiirde somit die kompensations-
erweiterte Historie so definieren, daf alle Steps in einem Kompensationsblock
auch in der erweiterten Historie definiert sind. Dies wiirde jedoch dem statischen
CC-Ansatz fiir diesen Kompensationsblock entsprechen. Wie bereits diskutiert, ist
dieser Ansatz aber nur fiir eine sehr eingeschriankte Menge von Anwendungen ge-
eignet, so da3 die Untersuchung von Alternativen notwendig ist.

Eine Alternative stellt eine Zusatzforderung beziiglich der Struktur einer ConTract-
Instanz dar. Das Korrektheitskriterium kann einfach dahingehend erweitert wer-
den, dal3 gefordert wird, da3 die Eingangsinvarianten der ersten Steps eines Kom-
pensationsblockes erfiillt sein miissen und zusitzlich garantiert sein muf}, daf3 die
Steps eines Kompensationsblockes das Zutreffen der Eingangsinvarianten von
Nachfolgesteps garantieren.

126

7 Integrationsaspekte
Erweiterbarkeit

Ist beispielsweise fiir einen Step S ein Kompensationsblock als Sequenz zweier
Steps A und B definiert, so miiite gefordert werden, daB3 die Ausgangsinvariante
von S die Verletzung der Eingangsinvariante von A ausschliefft. Ebenso gilt dies
fiir die Ausgangsinvariante von A beziiglich der Eingangsinvariante von B. Mit
diesen Bedingungen wire gewéhrleistet, dal sowohl A als auch B (im Anschluf3
an A) ausgefiihrt werden konnen.

Die Definition eines Kompensationsblockes (Definition 4-17) konnte einfach da-
hingehend erweitert werden, ohne das darauf aufbauende Korrektheitskriterium
dndern zu miissen. Grundsitzlich ist somit eine Anpassung des hier vorgestellten
Korrektheitskriteriums im Hinblick auf einen erweiterten Kompensationsmecha-
nismus relativ einfach moglich. Da die Arbeiten auf diesem Gebiet jedoch langst
nicht abgeschlossen sind, kann eine tiefergehende Diskussion hier nicht erfolgen.

7.3.2 Dynamische Ablaufe

Kurz angerissen wurde bereits das Gebiet der dynamischen Ablaufe. Trotzdem
soll an dieser Stelle noch einmal erlautert werden, was darunter zu verstehen ist.
Der bisherige Ansatz in ConTracts sieht vor, dal ConTract-Instanzen aus einem
ConTract-Template erzeugt werden und zur Laufzeit weder Teile (beispielsweise
neue Steps oder Pfade) hinzu- noch wegkommen konnen. Im Workflowbereich
hat es sich jedoch gezeigt, dal3 beispielsweise fiir Ausnahmebehandlungen die Er-
weiterung einer Ablaufdefinition zur Laufzeit unbedingt notwendig ist.

Grundsatzlich stellt die Erweiterbarkeit fiir das hier vorgestellte Korrektheitskri-
tertum kein Problem dar, solange bereits ausgefiihrte Teile nicht entfernt werden
und die Kompensationsblocke nicht verdndert werden konnen. Allerdings ergeben
sich fiir das CC-Verfahren andere Voraussetzungen. Beim bisherigen Modell ist
automatisch zu erkennen, wann kein Step mehr durchlaufen werden kann, der eine
Referenz auf eine bestimmte Ausgangsinvariante in seiner Eingangsinvariante be-
sitzt. Ist kein weiterer Step vorhanden, dessen Eingangsinvariante eine bestimmte
Ausgangsinvariante referenziert, diirfte diese Ausgangsinvariante aus dem Sy-
stem entfernt werden. Ist es allerdings moglich, daB3 Steps zur Laufzeit eingefiigt
werden konnen, ist diese Entfernung nicht mehr unbedingt zulissig.

Enthilt die Eingangsinvariante des neu eingefiigten Steps eine Referenz auf eine
Ausgangsinvariante, die bereits aus dem System entfernt wurde, ist diese Refe-
renz ungiiltig. Drei Ansitze konnen verfolgt werden, um dieses Problem zu ver-
meiden:

1. Ermeute Etablierung aller referenzierten Ausgangsinvarianten zum Zeit-
punkt der Erweiterung.

2. Grundsitzliche Verhinderung der Entfernung von Invarianten.

127

Integrationsaspekte
Erweiterbarkeit

3. Explizite Unterscheidung in 16schbare Invarianten und solche, die auch von
Erweiterungen referenziert werden diirfen.

Sieht man von den eingangs erwédhnten Beschrankungen fiir die Dynamik von Con-
Tract-Instanzen ab, haben die Anderungen zur Laufzeit keinen EinfluB auf das
Korrektheitskriterium, da die kompensationserweiterte Historie nicht verdndert
wird. Allerdings gilt es zu untersuchen, welche der erwidhnten Strategien fiir die
Freigabe von Invarianten die meisten Vorteile hat.

Sollen auch Kompensationsblocke Gegenstand von Anderungen zur Laufzeit sein,
konnen sich schwerwiegende Probleme mit dem hier eingefiihrten Korrektheitskri-
terium ergeben, da der eingefiihrte Begriff der Invariantenklammern nicht mehr
ausreicht die Ausfiihrbarkeit der Kompensationssteps zu garantieren. In wieweit
hierfiir Zusitze oder Anderungen erforderlich sind, ist Gegenstand zukiinftiger
Forschungsarbeiten.

7.3.3 Nicht-transaktionale Steps

Nicht-transaktionale Steps stellen seit der ersten Einfiihrung des ConTract-Modells
ein Thema dar, welches allerdings nur in Teilbereichen angegangen wurde
[Schm93]. Unter nicht-transaktionalen Steps sind solche Steps zu verstehen, die
nicht die ACI(D)-Eigenschaften erfiillen. Gerade die Atomaritidtseigenschaft be-
einfluBBt das Korrektheitskriterium sehr stark, da Steps entweder als erfolgreich ab-
gearbeitet oder als zuriickgesetzt in der Historie erscheinen. Teilweise abgearbei-
tete Steps sind hierbei nur sehr schwer zu beriicksichtigen.

In einigen Ansétzen wird versucht, das Zuriicksetzen eines nicht-atomaren Steps
durch eine Ergidnzung des Ablaufs um weitere Steps zu implementieren. Die Er-
weiterung dient dann quasi dazu, die Uberbleibsel eines nicht-transaktionalen
Steps zu beseitigen und dadurch, dhnlich dem Kompensationsmechanismus, eine
semantische Atomaritéit zu gewéhrleisten.

Welcher formale Zustand in welchen Fillen von einer solchen semantischen Ato-
maritdt hergestellt werden kann, ist bisher immer noch Gegenstand von For-
schungsarbeiten. Dariiber hinaus ist noch ungeklart, ob die Zusatzaktivitaten selbst
wieder Gegenstand einer eventuellen Kompensation sein miissen oder nicht.

Zusammengefal3t 148t sich zu den nicht-transaktionalen Steps sagen, dal es dulerst
schwierig ist, diese in ein Korrektheitskriterium einzubeziehen. Bevor eine formale
Beschreibung der Fehlersemantik solcher nicht-transaktionalen Steps gefunden ist,
wird auch kaum ein entsprechendes Korrektheitskriterium festgelegt werden kon-
nen. Denkbar wire hierbei wiederum ein pradikativer Ansatz, welcher dazu dient
den Zustand nach dem “Zuriicksetzen” formal zu beschreiben.

Obwohl momentan noch keine konkret anwendbaren Losungen zur Verfiigung ste-

128

7 Integrationsaspekte
Erweiterbarkeit

hen, stellen nicht-transaktionale Aktivitdten insbesondere im Workflowbereich
einen dullerst wichtigen Bereich dar, der unbedingt untersucht werden muS8.

129

Diskussion und Ausblick
Korrektheit und langlebige Ablaufe

8 Diskussion und Ausblick

8.1 Korrektheit und langlebige Ablaufe

Der aus dem Datenbankbereich bekannt gewordenen Begriff der (ACID-)Transak-
tion stellt ein Programmierprimitiv dar, welches Anwendungsprogrammierer stark
entlastet. Sowohl durch das definierte Verhalten im Fehlerfall, dem Schutz vor An-
omalien im parallelen Mehrbenutzerbetrieb, als auch durch die einfache Handha-
bung haben sich Transaktionen im Bereich der Datenbanksysteme durchgesetzt.
Allerdings sind die Eigenschaften der ACID-Transaktionen nicht auf alle Anwen-
dungen {ibertragbar. Insbesondere bei langdauernden Ablidufen, wie sie beispiels-
weise bei Workflow-Anwendungen die Regel sind, ist festzustellen, daf3 einige Ei-
genschaften von Nachteil sind.

Der Grundgedanke der Transaktionen, Aufgaben wie die Fehlerbehandlung und
die Isolation von anderen Ablaufen, von den Anwendungen in ein Laufzeitsystem
zu verlagern, ist jedoch auch auf langlebige Ausfiihrungen iibertragbar. Das Ziel
dabei ist, die Konsistenz der an den Anwendungen beteiligten Systeme zu garan-
tieren, ohne daB} in jeder Anwendung entsprechende Mechanismen programmiert
werden miissen.

Vor diesem Hintergrund wurde das ConTract-Modell entworfen. Dabei wurde be-
sonders darauf geachtet, daB3 fiir Anwendungen als Ganzes durch die Implementie-
rung als ConTract automatisch ein definiertes Fehlerverhalten garantiert werden
kann. Obwohl auch die Problematik der Parallelverarbeitung von ConTracts zu-
mindest teilweise bertlicksichtigt wurde, geschah dies bisher auf rein informelle Art
und Weise. Diese Liicke wurde in dieser Arbeit angegangen.

8.1.1 Korrektheit - warum?

Ein Hauptgrund fiir den Erfolg des klassischen Transaktionsmodells ist der defi-
nierte Korrektheits- bzw. Konsistenzbegriff. Durch die formale Festlegung der Ei-
genschaften einer Transaktion ist es zum einen mdglich, Mechanismen zu entwik-
keln, die die Implementierung dieser Eigenschaften in einem Laufzeitsystem
ermoglichen, und zum anderen wird erst dadurch beurteilbar, ob ein Ablauf korrekt
ist oder nicht.

Somit stellt die Entwicklung des Korrektheitsbegriffes fiir ConTracts einen not-
wendigen Schritt dar, um fiir Anwendungen als Ganzes bestimmte Eigenschaften
zusichern zu konnen. Erst durch den Korrektheitsbegriff wird festgelegt, welcher
Zustand der Daten zuléssig ist, und welche Zustdnde nicht erreicht werden diirfen.
Auf dieser Basis konnen dann Mechanismen entwickelt werden, welche die Errei-

130

8 Diskussion und Ausblick
Korrektheit und langlebige Abldufe

chung unzuléssiger Zustinde verhindern. Da dies vollstdndig unabhédngig von ei-
ner Anwendung ist, ergibt sich somit auch die Mdéglichkeit, diese Mechanismen
in einem Laufzeitsystem zur Verfiigung zu stellen.

Der in dieser Arbeit vorgestellte Ansatz zur Sicherstellung der Korrektheit in ei-
nem ConTract-verarbeitenden System stellt einen solchen anwendungsunabhén-
gigen Mechanismus dar. Bei der Entwicklung wurde streng darauf geachtet, daf3
sich der Ansatz einfach in ein Laufzeitsystem integrieren laft. Allerdings wurde
auf die Vorstellung einer konkreten Implementierung, wie z.B. die Festlegung
konkreter Sprachkonstrukte, verzichtet. Zum einen wiirde dies den Rahmen dieser
Arbeit sprengen, und zum anderen sind die vorgestellten Mechanismen auch zur
Integration in bereits bestehende Systeme geeignet, so da} die konkrete Umset-
zung stark von dem jeweiligen Umfeld abhéngt.

8.1.2 Aufwand versus Nutzen

Wie bereits erwihnt, ist ein maB3gebliches Beurteilungskriterium im Bereich der
CC-Verfahren der Durchsatz eines Systems. Dabei liegt klar auf der Hand, daB3 die
Reduktion des Aufwandes fiir die Sicherstellung der Korrektheit eine Erhhung
des Durchsatzes nach sich zieht. Das hier vorgestellte Verfahren ist deutlich auf-
wendiger als der klassische transaktionale Ansatz und erscheint somit wenig ge-
eignet. Bei diesem Vergleich wiirde man allerdings aul3er acht lassen, daf die An-
wendungsgebiete der beiden Ansédtze grundsitzlich verschieden sind.

Wihrend klassische Transaktionen fiir kurze Aktionen entworfen wurden, stellen
ConTracts ein Modell fiir langlebige Ablaufe dar. Vergleicht man dabei die Lauf-
zeiten typischer Anwendungen, erhilt man eine Relation, die sich in einem Be-
reich von mehr als drei Zehnerpotenzen bewegt. Gerade bei Workflowanwendun-
gen, die darauf ausgerichtet sind, langlaufende Anwendungen mit elektronischen
Mitteln zu unterstiitzen, ist der eigentliche Aufwand fiir Berechnungen tiblicher-
weise verschwindend klein. Ebenso verhélt es sich beziiglich des Aufwandes fiir
das hier vorgestellte Verfahren.

Somit ist festzuhalten, dal es bei langlebigen Anwendungen weniger darauf an-
kommt, moglichst wenig Rechenzeit neben der eigentlichen Berechnung zu ver-
brauchen. Vielmehr ist es wichtig, einen hohen Grad an Fehlertoleranz zu errei-
chen und auf keinen Fall inkonsistente Datenbestinde zu erzeugenl. Obwohl die
in dieser Arbeit vorgestellten Ansétze in einem prototypisches Laufzeitsystem im-
plementiert wurden, ist auf die konkrete Messung des Durchsatzes verzichtet wor-
den. Dies ist gerechtfertigt, da konkrete oder standardisierte Anwendungen als
Vergleichsbasis fehlen.

1. Dies ist von besonderer Bedeutung bei den typischen Anwender von Workflow-Systemen wie Banken
und Versicherungen.

131

Diskussion und Ausblick
Offene Probleme

8.1.3 Flexibilitat versus einfache Verwendung

Im Gegensatz zum klassischen Transaktionsansatz versucht das ConTract-Modell,
Anwendungen als Ganzes mit den bereits erwdhnten Eigenschaften auszustatten.
Hierbei wird von der Art der Anwendung abstrahiert, so daB3 eine generelle Be-
schrankung der Semantik nicht vorgenommen werden soll. Beispielsweise ist bei
klassischen Transaktionen grundsétzlich vorausgesetzt, dal keine Kooperation
zwischen Transaktionen bestehen kann. Ebenso wurde urspriinglich gefordert, daf3
Transaktionen im Fehlerfall zuriickgesetzt werden. Im Falle allgemeiner Anwen-
dungen ist dies jedoch nicht moglich bzw. nicht gewlinscht.

Werden einerseits weniger Eigenschaften durch das Laufzeitsystem vorgegeben,
ergibt sich andererseits die Notwendigkeit, die Information iiber die gewlinschten
Eigenschaften von der Programmiererin zu erfragen. Dies ist notwendig, um dem
Laufzeitsystem geniigend Information libergeben zu konnen, damit die Mallnamen
zur Sicherstellung der Korrektheit des Gesamtsystems nicht zu restriktiv bzw. un-
geniigend sind. Somit wird durch das ConTract-Modell weit mehr vom Program-
mierer gefordert als beim klassischen Transaktions-Modell. Man erkauft sich sozu-
sagen die Flexibilitdt mit einem erhohten Programmieraufwand.

8.2 Offene Probleme

Obwohl das ConTract-Modell selbst wie auch die in dieser Arbeit vorgestellten an-
deren Ansétze darauf ausgerichtet sind, fiir eine Vielzahl von Anwendungen an-
wendbar zu sein, gibt es noch einige Eigenschaften von Anwendungen, die bisher
nicht adressiert werden. Nachfolgend werden einige dieser Punkte kurz erwihnt
werden. Allerdings steht die Untersuchung der Eigenschaften von Anwendungen,
wie zum Beispiel im Workflowbereich, noch an ihrem Anfangspunkt, so daf3 kein
Anspruch auf Vollstindigkeit erhoben wird.

8.2.1 Modifikationen zur Laufzeit

Die Modifikation von Anwendungen zur Laufzeit wurde bereits bei der Vorstel-
lung des Mechanismus zur Sicherstellung der Korrektheit diskutiert. Dabei be-
schriankte sich die Untersuchung auf die Betrachtung der Auswirkungen auf die
vorgestellten Ansétze.

Erweitert man diese Sichtweise, stellt sich die Frage, welchem Korrektheitsbegriff
eigentlich eine solche Modifikation unterliegt. Der eingefiihrte Begrift der Wohl-
geformtheit kann hier nicht mehr angewandt werden, da dessen Voraussetzungen
nicht mehr erfiillt sind. Somit ist es notwendig, einen Korrektheitsbegriff fiir die
Modifikation selbst zu entwickeln, so da3 wiederum ein Laufzeitsystem entwickelt
werden kann, welches diese Korrektheit sicherstellt.

132

8 Diskussion und Ausblick
Offene Probleme

Es sind momentan Untersuchungen im Gange, die zunichst priifen, welche Arten
der Modifikationen tiberhaupt moglich sind. Erst dann wird der néchste Schritt er-
folgen konnen, Korrektheitskriterien zu entwerfen, die auch Modifikationen be-
riicksichtigen.

8.2.2 Unterstutzung der Programmierung

Der Aufwand fiir die Programmierung im Hinblick auf das vorgestellte Invarian-
tenkonzept ist erheblich. Aulerdem stellen die Invarianten ein relativ hohes Risi-
ko im Hinblick auf Programmierfehler dar!. Deshalb ist zu iiberlegen, ob diese
Programmiertitigkeit nicht zusdtzlich durch weitere Mechanismen unterstiitzt
werden kann.

Ein Ansatz, den es zu untersuchen gilt, ist die automatische Generierung von In-
varianten. Dabei kann diese Generierung entweder statisch zum Programmierzeit-
punkt von Steps als auch dynamisch zu deren Laufzeit erfolgen. Die dynamische
Variante ist sicherlich die flexiblere und umfassendere, erfordert allerdings auch
mehr Aufwand. Die in dieser Arbeit verwendete Methodik der direkten Referen-
zierung von Ausgangsinvarianten bei der Definition von Eingangsinvarianten ist
dann sicherlich zu iiberarbeiten.

8.2.3 Der Kompensationsbegriff

Der Begriff der Kompensation ist seit seiner Einfiihrung duf3erst unterschiedlich
interpretiert worden. Auch in der Literatur findet man vielféltige Definitionen, die
sicherlich nicht zu einer Kliarung beitragen. Die im ConTract-Modell verwendete
Auffassung orientiert sich weitgehend an der anwendungsorientierten Auslegung
des Begriffes, wodurch sich eine immer komplexer werdende Semantik ergibt.

Bisher ist diese Semantik entweder nur informell beschrieben oder auf ein einfa-
ches formales Modell “kondensiert” worden. Aktuelle Arbeiten beschéftigen sich
mit der Formulierung eines umfassenderen formalen Modells der Kompensation.
Dies hat sicherlich auch Auswirkungen auf den Korrektheitsbegriff. Inwieweit
dies eine Anderung der vorgestellten Ansitze erfordert, 1Bt sich aber aus heutiger
Sicht noch nicht abschétzen.

1. Dies ist allerdings weit aus geringer als das Risiko bei der Implementierung der Konsistenzsicherung in
den Anwendungen.

133

Literatur 9

9

[AVA94a]

[AVA94b]

[AAE93]

[BHGS7]

[BHL92]

[Brau87]

[ChRa90]

[ChRa92]

Literatur

A Unified Approach to Concurrency Control and Transaction Recovery

G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H. Schek,

G. Weikum

erschienen in

Proc. of the 4th Intern. Conf. on Extending Database Technology (EDBT), 1994.

Unifying Concurrency Control and Recovery of Transactions

G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H. Schek,
G. Weikum

Information Systems, 1994.

A Unified Implementation of Concurrency Control and Recovery

G. Alonso, D. Agrawal, A. El Abbadi

Technischer Bericht des Dept. of Computer Science, Universitity of California at
Santa Barbara, TRCS93-19, 1993.

Concurrency Control and Recovery in Database Systems
P.A. Bernstein, V. Hadzilacos, N. Goodman
Addison Wesley Pub., 1987.

Objektbanken fiir Experten
R. Bayer, T. Hérder, P. Lockemann (Hrsg.)
Springer-Verlag, 1992.

Petri nets: central models and their properties, advances in Petri nets
W. Brauer
Springer Verlag, 1987

ACTA: A Framework for Specifying and Reasoning about Transaction Structure and
Behavior

P. K. Chrysanthis, K. Ramamritham

erschienen in

Proc. of the ACM SIGMOD International Conference on Management of Data,
1990 .

ACTA: The Saga continues

P. K. Chrysanthis, K. Ramamritham

Kapitel 10 in

Database Transaction Model for Advanced Applications,
A.K. Elmagarnid,

Morgan Kaufmann Publishers, 1992.

134

9 Literatur

[ChRa94]

[DHL90]

[DHL91]

[Dav78]

[Daya88]

[EGL76]

[Elm92]

[GGK90]

[GGK91a]

Synthesis of Extended Transaction Models using ACTA

P. K. Chrysanthis, K. Ramamritham

erschienen in

ACM Transactions on Data Base Systems (TODS), 1994.

Organizing Long-Running Activities with Triggers and Transactions
U. Dayal, M. Hsu, R. Ladin

erschienen in

Proc. ACM SIGMOD Intern. Conf. on Management of Data, 1990.

A Transaction Model for Long-Running Activities

U. Dayal, M. Hsu, R. Ladin

erschienen in

Proc. 17. Conference on Very Large Data Bases (VLDB), S. 113-122, 1991.

Data processing spheres of control

C. T. Davies Jr.

erschienen in:

IBM Systems Journal, Vol. 17 No. 2 S. 179-198, 1978.

Active Database Management Systems

U. Dayal

erschienen in

Proc. 3. Int’l Conference on Data and Knowledge Bases, S. 150-169, 1988.

The Notions of Consistency and Predicate Locks in a Database System
K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger

erschienen in

Communications of the ACM, Vol. 19 No.11, S. 624-633, 1976.

Database Transaction Models for Advanced Applications
A K. Elmargarmid (Hrsg.)
Morgan Kaufmann Publishers, 1992.

Coordinating Multi-Transaction Activities

H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem

Technischer Bericht: Princeton University, Department of Computer Science
CS-TR-247-90, 1990.

Coordinating Activities Through Extended Sagas: A Summary

H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem

erschienen in

Proc. 36. IEEE Computer Society Intern. Conf. (CompCon), S. 568-573, 1991.

[GGKO91b] Modelling Long-Running Activities as Nested Sagas

H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem

erschienen in

IEEE Bulletin of the Technical Committee on Data Engineering, Vol. 14, No. 1,
S. 14-18, 1991.

135

Literatur 9

[GaKi85]

[GrRe93]

[GaSa87]

[Gra8la]

[Gra81b]

[Giint96]

[HiRe83]

[Jab9s5]

[KLS90]

[Klei91]

Varieties of Concurrency Control in IMS/VS FastPath

D. Gawlick, D. Kinkade

erschienen in

IEEE Database Engineering, Vol. 8, No. 2, S. 3-10, 1985.

Transaction Processing: Concepts and Techniques
J. Gray, A. Reuter
Morgan Kaufmann Publishers, 1993.

SAGAS
Hector Garcia-Molina, Kenneth Salem
erschienen in

Proc. ACM SIGMOD Intern. Conf. on Management of Data, S. 249-259 1987

The Transaction Concept: Virtues and Limitations
J.N. Gray

erschienen in

Proc. 7th Int . Conf. on VLDB, S. 144-154 1981

A Straw man Analysis of Probability of Waiting and Deadlock
J.N. Gray
IBM Research Report No. RJ 3066, 1981

Ein Basisdienst fiir die zuverldissige Abwicklung langdauernder Aktivitditen
R. Giinthor
Dissertation an der Fakultdt Informatik der Universitdt Stuttgart, 1996.

Principles of Transaction-Oriented Database Recovery

T. Héarder, A. Reuter

erschienen in

ACM Computing Surveys, Vol. 13 No.2, S. 155-166, 1983

Workflow-Management-Systeme
S. Jablonski
Thomson Publishing, 1995

A Formal Approach to Recovery by Compensating Transactions
H. F. Korth, E. Levy, A. Silberschatz

erschienen in

Proc. 16th Intern. Conf. on Very Large Databases, S. 95-106 1990

Advance Rule Driven Transaction Management
J. Klein
erschienen in

Proc. of IEEE Computer Society Int’l Conference (CompCon) Spring 1991, Digest

of Papers, S. 562-567, 1991.

136

9 Literatur

[KoSp88]

[Kuma96]

[Leym95]

[Lom92]

[MoLi83]

[Moss85]

[OMGY6]

[0S192]

[ONei86]

[PRSS8]

Formal Model of Correctness without Serializability

H. F. Korth, G. D. Speegle

erschienen in

Proc. ACM SIGMOD Intern. Conf. on Management of Data, 1988.

Performance of Concurrency ConTrol Mechanisms in Centralized Database
Systems

V. Kumar (Hrsg.)

Prentice Hall, 1996

Supporting Business Transactions Via Partial Backward Recovery in Workflow
Management Systems

F. Leymann

erschienen in

Tagungsband Datenbanksysteme in Biiro, Technik und Wissenschaft, GI
Fachtagung Dresden, 1995

MLR: A Recovery Method for Multi-level Systems

D. B. Lomet

erschienen in

Proc. ACM SIGMOD Intern. Conf. on Management of Data, S. 185-194, 1992.

Efficient Commit Protocols for the Tree of Processes Model of Distributed
Transactions

C. Mohan , Lindsay, B.

erschienen in

Proc. ACM/SIGOPS Symposium on Principles of Distributed Computing, 1983.

Nested Transactions: An Approach to Reliable Distributed Computing
J. E. B. Moss
MIT Press, 1985.

CORBAservices
Object Management Group
1996.

OSI TP Model; OSI TP Service
Open Systems Interconnection - Distributed Transaction Processing
ISO/TEC JTC 1/SC 21 N, 1992.

The Escrow Transactional Method

P. E. O’Neil

erschienen in

ACM Transactions on Database Systems, Vol. 11 No.4,S. 405-430 1986.

High Contention in a Stock Trading Database: A Case Study

P. Peinl, A. Reuter, H. Sammer

erschienen in

Proc. ACM SIGMOD Intern. Conf. on Management of Data S. 260-268, 1988.

137

Literatur 9

[Papa86]

[RSS97]

[RSW92]

[ReSw95]

[Reut82]

[Reut89]

[Reut96]

[SGS94]

The Theory of Database Concurrency Control
C. Papadimitriou
Computer Science Press, 1986.

ConTracts Revisited

A. Reuter, K. Schneider, F. Schwenkreis
erschienen in

Advanced Transaction Models and Architectures,
S. Jajodia (Hrsg.),

Kluwer Pub. 1997.

Zuverldssige Abwicklung grofer verteilter Anwendungen mit ConTracts -
Architektur einer Prototypimplementierung

A. Reuter, F. Schwenkreis, H. Wichter

erschienen in

Objektbanken fiir Experten

R. Bayer, T. Hérder, P. Lockemann

Springer-Verlag 1992.

ConTracts - A Low-Level Mechanism for Building General-Purpose Workflow
Management Systems

A. Reuter, F. Schwenkreis

erschienen in

Bulletin of the Technical Committee on Data Engineering (IEEE Computer
Society), Vol. 18, No. 1, 1995

Concurrency on High-Traffic Data Elements

A. Reuter

erschienen in:

Proc. ACM Symposium on Principles of Database Systems (PODS), 1982.

ConTracts: A Means for Extending Control Beyond Transaction Boundaries

A. Reuter

erschienen in

Proc. 3. International Workshop on High Performance Transaction Systems (HPTS),
1989

An Analytic Model of Transaction Interference

A. Reuter

erschienen in

Performance of Concurrency Control Mechanisms in Centralized Database Systems
V. Kumar

Prentice Hall, 1996.

Altruistic Locking

K. Salem, H. Garcia-Molina, J. Shands

erschienen in

ACM Transactions on Database Systems Vol.19 No.l 1994

138

9 Literatur

[SWY93]

[ScRe96]

[Schm93]

Towards a Unified Theory of Concurrency Control and Recovery

H.J. Schek, G. Weikum, H. Ye

erschienen in

Proc. ACM Sysmposium ob Principles of Database Systems (PODS), 1993.

Synchronizing Long-Lived Computations

F. Schwenkreis, A. Reuter

erschienen in

Performance of Concurrency Control Mechanisms in Centralized Database
Systems

V. Kumar

Prentice Hall, 1996.

Transaktionen in der Fertigung

U. Schmidt

erschienen in

Tagungsband GI-Fachtagung Datenbanken in Biiro Technik und Wissenschaft,
1993.

[Schw93b] APRICOTS - A Prototype Implementation of a ConTract System: Management of

[Schw94]

[Schw95]

[Seif96]

[Sieg96]

[Sten90]

the ConTrol Flow and the Communication System

F. Schwenkreis

erschienen in

Proc. of the 12th Symposium on Reliable Distributed Systems (SRDS), IEEE
Computer Society Press, 1993.

A Formal Approach to Synchronize Long-lived Computations

F. Schwenkreis

erschienen in

Proc. of the 5th Australasian Conference on Information Systems, 1994.

APRICOTS - a workflow programming environment

F. Schwenkreis

erschienen in

Proc. 6th High Performance Transaction Workshop (HPTS), 1995.

Zuverldssige Workflowbearbeitung auf der Basis von OTS
J. Seifert
Fakultéit Informatik der Universitit Stuttgart, Diplomarbeit Nr. 1404, 1996.

CORBA Fundamentals and Programming
J. Siegel
John Wiley & Sons, Inc., 1996

A Survey of Cache Coherence Schemes for Multiprocessors
P. Stenstrom

erschienen in

IEEE Computer, No. 23,Vol. 6, 1990.

139

Literatur

9

[Tra83]

[WFMO94]

[WiRe92]

[Wich96]

[WeSc92]

[Weik89]

[Weik91]

[XOP93]

[ZiCh91]

Trends in System Aspects of Database Management
I. L. Traiger

erschienen in

Proc. of the 2nd Intern. Conf. on Databases, 1983.

Glossary
Workflow Management Coalition
Doc. No. TC00-0011, 1994.

The ConTract Model

H. Wichter, A. Reuter

Kapitel 7 in

Database Transaction Models for Advanced Applications
A. K. Elmagarmid

Morgan Kaufmann Publishers, 1992.

Eine Architektur fiir die zuverldissige Abwicklung verteilter Anwendungen auf
gemeinsamen Ressourcen

Helmut Wichter

Dissertation an der Fakultdt Informatik der Universitdt Stuttgart, 1996.

Concepts and Applications of Multilevel Transactions and Open Nested
Transactions

G. Weikum, H.-J. Schek

Kapitel 13 in

Database Transaction Models for Advanced Applications

A. K. Elmagarmid

Morgan Kaufmann Publishers, 1992.

Principles and Realization Strategies of Multilevel Transaction Management
G. Weikum

erschienen in

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 2,
S. 249-283, 1989.

Principles and Realization Strategies of Multilevel Transaction Management
G. Weikum

erschienen in

ACM Transations on Database Systems, Vol. 16, No. 1, 1991.

Distributed Transaction Processing: Reference Model - Version 2
X/Open Guide
X/Open Company Limited, 1993.

Supercompilers for Parallel and Vector Computers
H. Zima, B. Chapman
ACM and Addison Wesley Pub., 1991.

140

Index

Index

A

PN o) a b1 1 Feg o (S LYo 21 0] T 4 USSR 95
ADBhANGIGKEIESTEZEIN ..cueiiiiiiiiiie ettt ettt sttt e eneeas 52
ADbIAUTMOAITIKALION ..ottt e 132
F N o] F 0N o) 2T B < | PSR 38
AbBOTt-ADhANGIGKEIL ..ottt et st 31
ACTA ettt et h ettt h bt e a e e bttt et h e bt ettt et ae et eitens 52
AITUISTIC TOCKING .eeviiiiiiecie ettt et e e s e e e sbeeesaeeenaeeenseeennns 98
F N (0] 01 1 ¢ | PSR SRPPRRROPR 14
AUSZANZSINVATIANTEeeuvieiiieiieriieeitieeieeteeetteesteesteeebeessaeeseesseessseenseesnseesseessseenseessseeseesssesnses 39
AULONOMIEPTODIEIN ..oiiiiiiiiiiieiie ettt e et e e e e e e b e e eeaeeenseeensaeesnsaeennseeas 122
Cc

Chained Paradi@Imc.eeeciieeiiieeiie ettt et e et e e et e e eteeeebeeeesbeeessbeeensbeeeaaeeenreeenreeennnes 15
Chained traNSACTIONScccuvieeieiieeiiieeeiieeeieeeeteeeetteeestaeeeteeeereeesseeeessesessseeessseesnsseessseesnsseennnes 16
CheCk/REVALIAALEovuiiiiiiiiiiietieieeee ettt sttt e b seeens 103
CoNTTACT-INSEANZ ..ottt st 43
ConTract-INterPretationcccceeieriiiiiriiieeiere ettt ettt et sbe s 46
ConTract-TemMPIateccceeviieiiiiiieiie ettt ae e eneeas 36,114, 118
D

DatenfIUB ..ot sttt b et bt saeens 8
DauerhaftiGKEItooeouiiiiiiiiee e e et e e e e e e et e e e e e enbeeenns 14
DIILY TEAA .ottt ettt et e b e et e b e st e e bt e eat e e bt e s abe e beeeateeabeebeenaneens 59
DUFCRIASSIZKEIL ..vveiiieiiieiieeiieeiie ettt ettt et e et e et eseaeebe e st e ssbe e saeenbeeseesnseenseenseaans 23
Dynamische CC-Verfahrenccooociiiiiiiiiiiie et e 91
E

ECA-REZEIN oottt e e et e et e e s te e e s saeeesbeeensaeeensaeennseeennnes 51
EINGANGSINVATIANTEootiiiiiiiiiieiii ettt ettt ettt e st et esat e e bt e s eteeabeessteenbeenseesneeans 39
EIerntransaktioncocooiiiiiriiniieeeeeeee ettt ettt ettt et 17
EICIGNIS .eviioiiiieeiie ettt ettt e et e e et e e st e e e sbeeesbaeetaeeesaeeeasbeeennaeeenreeenreeennnes 38
ESCIOW SPEITEI ..ottt sttt et et e e ee 101
F

FERICTTOIEIANZeoeiiieiiieeee ettt et et e e e rae e e baeeeabaeesnseeeenneeas 122
FICIA CALLS .ottt sttt ettt sttt 100
FOTSELZDATKEIL ...ttt ettt et et sbe e et e b e sateens 23
G

Geschlossen geSChaChteltooouiiiiiiiiiie e e e 17
H

HISTOTIE .ttt b ettt e et e bt e s at e et e s et e et e e sbeeeabeebeesaneans 55
HOT-SPOTS .ottt ettt sttt san e e st e bt e b ereenane e 97

141

Index

|

L3155 /o) (17215 10) o AP 27
INVATIANTEI ..oiiiiiiiiciieecee ettt e et e et e e et e e e abeeesabee e abeeeaseeensaeeensseesnseeesseennnes 22
Invariantenbasierte SerialiSierbarkeitcccvevvieiiieriiiiiieiieeie ettt 84
InvariantenkIammerccoooviiiiiiiiiiie e e s 82
Invarianten-TemPIateccoooiiiiiiiiiiii ettt st 117
ISOIAtIONSDEAAITiiiiiiiiieeii et ettt s be et eesa e e beesabeebeeenbeenraens 87
[SO1atioNSDEAUITINISSE ...veeeiiieeiiieeiiieeiie ettt et e et e et e e et e e sabeeeenbeeeesaeeennseeensseeennes 10
[501ationseigenSCRALtoooiiiiiii e 14
K

Kaskadierendes ZUIrlCKSEIZENccccuiiieiiiiieiiieeiie ettt e e e e e enes 63
KiNd-TTanSaKtionc.ccccueeeiieriieiiieiieeieeeie et eette et esttesbeesteeesaeesseeesseesseessseeseesssaenseessseeseens 17
KOMMUEATIVITAL ...iiiiiiiiieciieccee ettt ettt e et e et e e et e e saneeeentaeesnsaeesnseeennseeennes 55
KOMPENSALION ...ttt ettt e b e st et e st e bt e s e e e beesabeenbeesnseenseans 22
KompensationSAKEIONENcccvieiuiiiiieiieiieeieeeie et esiteeteesteeeseesseeeseesseessseenseesssaesseassseesseens 20
KompensationShIOCKiiiiiiiiiiiciie ettt st e e 43
Kompensations-ErWeIteTUNEcccuiiiieiiieiiieiie ettt ettt ete et e ae et e sebeebeesaneenseens 81
KompensationSTOIZEcc.eeciiiiiieiiiiiiieiieee ettt et e staeenbeenneens 80
Q01 015 113 (S5 {0 S L A SRS 24
KonfliktbehandIungcccooiiiiiiiiiiiee e et 109
KON lIKEDESTIMMUNG.oocuviiiiiiiieiiciieeieeeie ettt ettt e e be et eesbe e seessbeeseessseensaens 87
KONTHKEOTANUNGvveiiiiieeieeee ettt ettt e st e e e tae e etae e snreeesnseeennes 56
KONTIKEI@IATION ...iiniiiiiiieiiieiiee ettt ettt ettt et e et e e teeeabeebeasnneenseens 74
KONSIStENZETNAITUNGccueiiiiiiieiiiciiecie ettt et ae b e s sbeereesabeesbeessneensaens 14
) Q8 111 AT TR 22,36
KONLTOITUB ..ottt ettt et e e e e ateenbeensaeenseenseenenas 7
L

Lese/SChreib-IMOdEllooiiiiiiiiieie ettt et saeeenbeessaeenraens 26
LAVE-LOCKS ..veineiieiiieiie ettt ettt ettt e et e et e e b e e st e esbeesaeesbeenseeensaesaessneensaens 97
LOSt UPAALE ..ottt ettt e e e e e e ta e e eaaeeeaaeennaeeennes 59
M

Mehrschicht-TranSaktionNenooovviiiiiiiiiii 19, 31
MINI-BALCR .ottt ettt et ettt e b e aeeebeens 16
MiINI-TTranSAKtIONENeeiuiieiieiieeieeciie et erte ettt ettt e et e e et e ebeesseeesbeesseessseenseessseesseessseenseens 31
o)

ODbligatorisChe PraAdiKateccccieviiiiiieiiieiieciece e ena s 104
Offen ESCRACKLCILeeieieiiiceie e e e e e et e e et e e enseeenneas 18
OptimistiSChe VErfahrencccoeiiiiiiiiiiiiii ettt 96
P

Pessimistische VErfahrencccooiiiiiiiiiiiiiceeee e 94
Pradikat-SerialiSIerbDarkeitccveviieiiieriieiieeieee ettt s eesbeeaeens 75
L Ta L 1 5] 011§ (<) 1 PSS 75
Pradikat-TransSitionNS-INEIZcceoiiiiiiiiieiieeit ettt ettt e be et e et e seessbeebeesnseeseens 36
Pre-ClalMINGcocviiiiieiieiie ettt ettt ettt e et e et e e b e esseeesbeesseeesbeeseeeaseesaessseensaens 91

Index

Predicate IOCKINGcoooviiiiiieciie ettt et e st e e ae e e taeestaeesnsaeessseeensseeennns 99
Programmiermodellocooiiiiiiiiiiiiiee e e 114
R

RECOVETADIE QUEUESviiiiieiiieiiiciiee ettt ettt ettt te e et e e ebe e aaeeebeebeesnbeenseeenseans 16
T L1 A 11 o | PR PRRPS 67
ReESSOUICEN-VEIWAILETccciiiiiiiieiiie et e et e e st e e eaae e enaee s 115
REVAIIAIETENiiiiiiiiicii ettt ettt e s eebeeeaaeenbeeseaeenseenseennne 103
S

SAGAS .ttt ettt e et e et e e e ht e e bt e e bt e e e bt e e e abteenabeeennbeesnbeeenabeeas 19
SCREAUIET ...ttt ettt et e e et e stbeebeesabeesbeeesbeenseessseenseesssesnseesseensns 90
SEMANTIKDASIETTeeiivieeiiie ettt e et e e et e e st eeessaaeessaeeessaaeessseesnsaeesnseeensseens 98
SemantiSChe ATOMATTEALccieriiieiiieriie ettt ete et ettt e sbe et eesaeeteesaaeenseessaeenseenneeenne 18
Semantische Ununterbrechbarkeitccocieiiieiiiiiiiiiiieie e 77
SerialISIETDATKEILcoviiiiiiiiiie ettt et e e s e e e taeestaeeesseeessseeennseeennseens 60
SerialiSIeruUNZSZIAPIccviiiiiiiiieiieeie ettt ettt e ettt e e nb et e enbe b eene 61
SKITPE 1enteetie ettt ettt ettt e bt e st e e te e st e esbeesteeesbaesseeasbeensaeesseesseeasseensaessseasseessensseennseenseensns 21
N 1 USRS 68
Statische CC-VErfahIencccoeciiiiiiiiiiiiiicie ettt st e e e saae b e e 91
SEEP-TNSTANZ ...ttt e et e et e e st e e st e et e e nnbeeeaaeeeaeeeenbeeas 37
7S] o1 SRR UPPRRRRPRSPN 21, 37
SEKEREIE ..ttt ettt e et esab e e bt e s taeeateesseeenbeenseesnseenneenene 64
T

Top-Level TranSaKtionccceevuieiiieriieiienie ettt ettt et et e eaee et e s eaeebeesseesabeensaeenseens 17
TOP-LeVel-TranSaKtioncccccierieriieiiieiieeiierie et eeite e eieesreesteessaeebeeeeaeeseesssessseenseesnseens 30
TransaktioNSKEIENc.eiiiiiiiiiiicie ettt e et e et e e st e e e e e enbaeenens 16
TransaktioNSZUSLANAEeevuieiuiieiieiieiie ettt ettt et eite et et e et e et esbe e teeenbeebeesnseenseesnseans 28
TTANSTEION ..vvieiiiiitieetieieeete et e et e et e e et e ebe e teeesbeeseessseesseessseanseensseessaesseessseenseessseenseessseenseensseans 40
U

UNrepeatable TEAAccviiiiiiii ettt ettt et stbeeabe e taeenbeenneas 58
UnunterbreChbarKEItcccueiiiiiiiiiieciee ettt e e e e e e e s b e e s beeesabeeeaaeees 14
\'}

VErkIEMMUNZENcc.eiiiiiiiiiiiee ettt et et et e ettt e et e ebeesnbeeseesateas 97
VIrtUCIIE ODBJEKLE ...coviiiiiiiiieiieie ettt ettt eae et e et e e abeesaeenseenseenees 107
W

WiederherStellDArKEItc.ceouiieiieiiiiiiieiieee ettt et ebe e eneees 62
WORIGETOTMINCILcvviiiiiiiiieiiecieeie ettt e s e et e s b e esbaesaseesseesssesnsaas 44
V4

Z0griffSbeSChIANKUNZENcccviiiiiiiiiiiiecie ettt et eebaesaaeennee e 106
Zwei-Phasen-Sperrverfahren ...t 94

143

	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Symbolverzeichnis
	1 Einleitung
	1.1 Motivation
	1.2 Umfeld der Arbeit
	1.3 Einordnung der Arbeit
	1.4 Überblick über die Arbeit

	2 Ein einleitendes Anwendungsbeispiel
	2.1 Motivation
	2.2 Der universitäre Urlaubsantrag
	2.2.1 Überblick
	2.2.2 Separation der Einzelaspekte

	3 Transaktionale Ausführungsmodelle
	3.1 Klassische DB-Transaktionen
	3.1.1 Grundprobleme von DB-Transaktionen
	3.1.2 Die ACID Eigenschaften
	3.1.3 Einsatzgebiete

	3.2 Transaktionen und Verkettung
	3.2.1 Mini-Batch und Warteschlangen
	3.2.2 Transaktionsketten

	3.3 Geschachtelte Transaktionen
	3.3.1 Geschlossen geschachtelte Transaktionen
	3.3.2 Einsatzgebiete geschlossen geschachtelter TA
	3.3.3 Offen geschachtelte Transaktionen

	3.4 Mehrschicht-Transaktionen
	3.5 Sagas
	3.6 ConTracts
	3.6.1 Das Skript
	3.6.2 Eigenschaften von ConTracts

	4 Formale Modelle konkurrierender Abläufe
	4.1 Das read/write Modell
	4.1.1 Operationen
	4.1.2 Ausführungen und ihre Semantik
	4.1.3 Persistente Zustände
	4.1.4 Erweiterungen für geschachtelte Transaktionen

	4.2 Mehrschicht-Transaktionen
	4.2.1 Operationen
	4.2.2 Ausführungen und ihre Semantik
	4.2.3 Persistente Zustände

	4.3 Abläufe nach Korth�et.�al.
	4.3.1 Operationen
	4.3.2 Ausführungen und ihre Semantik

	4.4 Abläufe in ConTracts
	4.4.1 Grundelemente von ConTracts
	4.4.2 Strukturelle Beschränkungen
	4.4.3 Interpretation einer ConTract-Instanz
	4.4.4 Ausführungen und ihre Semantik
	4.4.5 Ein Anwendungsbeispiel

	4.5 Weitere Notationen
	4.5.1 ECA-Regeln
	4.5.2 ACTA
	4.5.3 Abhängigkeitsregeln nach Klein

	5 Korrektheit
	5.1 Grundlagen
	5.1.1 Historien
	5.1.2 Kommutativität und Konflikte
	5.1.3 Isolation und Atomarität
	5.1.4 Anwendbarkeit

	5.2 Klassische Korrektheitskriterien
	5.2.1 Grundprobleme der ACID-Transaktionen
	5.2.2 Klassische Serialisierbarkeit
	5.2.3 Recoverability und Spezialisierungen
	5.2.4 Kombinierte Ansätze
	5.2.5 Kriterien für geschlossen geschachtelte Transaktionen

	5.3 Korrektheit bei Mehrschichttransaktionen
	5.3.1 Historien von Mehrschichttransaktionen
	5.3.2 Konfliktbegriff der Mehrschichttransaktionen
	5.3.3 Mehrschicht-Serialisierbarkeit
	5.3.4 Recovery bei Mehrschichttransaktionen

	5.4 Korrektheit nach Korth et. al.
	5.4.1 Historien nach Korth et. al.
	5.4.2 Prädikatabhängige Konflikte
	5.4.3 Prädikatbezogene-Serialisierbarkeit
	5.4.4 Recovery-Aspekte

	5.5 Korrektheit in ConTracts
	5.5.1 Semantische Ununterbrechbarkeit von ConTracts
	5.5.2 Historien in ConTracts
	5.5.3 Konfliktbegriff von ConTracts
	5.5.4 Invariantenorientierte Serialisierbarkeit
	5.5.5 Kaskadierende Kompensation

	5.6 Diskussion

	6 Kontrolle von Abläufen
	6.1 Grundprobleme
	6.1.1 Statische versus dynamische Ansätze
	6.1.2 Durchsatz und Verklemmung
	6.1.3 Wartbarkeit

	6.2 Klassische Ansätze
	6.2.1 Pessimistische Verfahren
	6.2.2 Optimistische Verfahren

	6.3 Semantikbasierte Ansätze
	6.3.1 Frühzeitige Sperrfreigabe
	6.3.2 Wertunabhängige, prädikatbasierte Ansätze
	6.3.3 Field Calls
	6.3.4 Escrow Sperren
	6.3.5 Prüfe und Revalidiere

	6.4 Der Ansatz in ConTracts
	6.4.1 Typen von Invariantenprädikaten
	6.4.2 Umsetzung auf Objektebene
	6.4.3 Verwaltung der Invarianten
	6.4.4 Konfliktbehandlung
	6.4.5 Gültigkeitsdauer von Invarianten

	6.5 Vergleich der Mechanismen

	7 Integrationsaspekte
	7.1 Auswirkungen auf das Programmiermodell
	7.1.1 Grundprobleme
	7.1.2 Step-Programmierung
	7.1.3 ConTract-Template-Programmierung

	7.2 Architekturaspekte
	7.2.1 Bisherige Architektur
	7.2.2 Autonomie
	7.2.3 Fehlertoleranz
	7.2.4 Verteilungsaspekte

	7.3 Erweiterbarkeit
	7.3.1 Flexible Kompensation
	7.3.2 Dynamische Abläufe
	7.3.3 Nicht-transaktionale Steps

	8 Diskussion und Ausblick
	8.1 Korrektheit und langlebige Abläufe
	8.1.1 Korrektheit - warum?
	8.1.2 Aufwand versus Nutzen
	8.1.3 Flexibilität versus einfache Verwendung

	8.2 Offene Probleme
	8.2.1 Modifikationen zur Laufzeit
	8.2.2 Unterstützung der Programmierung
	8.2.3 Der Kompensationsbegriff

	9 Literatur
	Index

		fschwenk@web.de
	2001-12-10T09:33:03+0100
	Leinfelden-Echterdingen
	Friedemann Schwenkreis
	I am the author of this document

