Interaktive Visualisierung von
Strukturmechaniksimulationen

Von der Fakultat Informatik, Elektrotechnik und
Informationstechnik der Universitat Stuttgart
zur Erlangung der Wiirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Ove Sommer

aus Kiel

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. G. Greiner

Tag der miindlichen Priifung: 15. September 2003

Institut fiir Visualisierung und Interaktive Systeme
der Universitit Stuttgart

2003

Abstract

This thesis presents visualization techniques and interaction concepts that have been de-
veloped for the pre- and post-processing of structural mechanics. This work was done in
cooperation with the crash simulation department of the BMW Group.

The automotive industry’s main goal is ensuring its share of a global market, which is
becoming ever more competitive and dynamic. On the one hand, product quality has to
be increased in relation to fuel consumption, weight, and passive safety. On the other hand
the development process needs to be streamlined in order to reduce development costs and
time to market. These objectives are hoped to be achieved by making extensive use of
virtual prototyping.

The vehicle development process has completely changed during the past two decades.
In the early eighties finite element analysis found its way into the simulation of structural
mechanics in the German automotive industry. Initially developed for military purposes,
in 1983 a group of engineers of several automotive companies started feasibility studies
based on finite element models containing less than 5000 beam elements. Seven years later
productive results of finite element analysis in structural mechanics started to influence
car body development. In the second half of the nineties important project decisions were
made during the early phase of the development process based on a deeper insight into
crash behavior provided by crash-worthiness simulation results.

Today, numerical simulation is an indispensable part of the computer aided product
development chain in the automotive industry. After the design of a new car model is
completed, a digital model is constructed by means of computer aided design (CAD). In a
meshing step the created parametric surfaces defined by spline curves are discretized. The
results describe the geometry of the car body by finite elements, for crash simulation mainly
three- or four-sided shells but also beams and volumetric elements. The finite element model
is completed, for example, with material properties, contact information, and boundary
conditions. This is done in a preprocessing step. Once the simulation input data is available,
the whole model is handed over to the simulation process which takes about one or two
days using massive parallel processing. The deformation is recorded in a large result file.
Commonly, the first 120 milliseconds of a crash are simulated and each two-thousandth time
step is stored. A time step of less than one microsecond leads to a result file containing more
than sixty snapshots. Typically, physical data such as acceleration, velocity, displacement,
and forces per nodes or thickness, stress, strain, and other energies per element are recorded.

During post-processing the information is analyzed in order to evaluate crash-worthiness.
The feedback provided for the construction department closes the loop when all goals set
for the car body structure have been attained.

The virtual car body development in the pre- and post-processing of crash simulation
divides into two main phases: (1) In the concept phase, new ideas are discussed and evalua-
ted in order to reach a priority objective like minimizing car body weight. Only few people
per car project are involved for a period of 12 to 18 months in this first stage. (2) After
the basic decisions have been made regarding new concepts, a second phase follows which
compromises all other fields to refine those concepts with respect to other objectives co-
ming from the area of stability, dynamic or NVH. This phase requires many engineers from
different departments for a period of more than 30 months to optimize the product. The
later undesirable properties are revealed the higher the cost will be for the then necessary
changes.

Until the late nineties transitions between adjacent car body parts were modeled as
two finite element meshes that share common nodes at the border. Each time a car body
part was replaced by an optimized variant in order to enhance the crash behavior either
the whole car model had to be re-meshed or border nodes had to be adapted manually.
Therefore, preparing such variant models was a very time consuming task. After simula-
tion codes like PAM-CRASH were able to simulate car body connections like for example
spotwelds, finite element models became more like their counterparts made of steel. Now,
a flange is constructed, along which adjacent car body parts can be connected without
sharing common nodes. This allows for an independent meshing of car body parts and
therefore for more variant computations. However, independent meshing lead to mesh pe-
netration or even perforation in flange areas when inhomogeneous meshes are assembled.
Thus, a new task arose for preprocessing where those mesh errors have to be removed in
order to avoid error-prone simulation results.

On the post-processing side, large time-dependent data sets require dedicated visuali-
zation methods that help the engineers to interpret the huge amount of data at interactive
frame rates. Therefore, finite element meshes need to be prepared for an optimized proces-
sing in the graphics pipeline. Typical types of data that have to be visualized are scalar
values, vectors, tensors or any combination thereof. In 1997, when most of the commercial
visualization tools provided by solver companies as add-on to the simulation software could
no longer provide state-of-the-art graphics, a demand arose for new visualization techni-
ques available for productive use. Besides, the growing throughput caused by an increasing
number of car body variants and the acceleration of computation hardware allowing more
optimization cycles, made it necessary to automate as much processing steps as possible.
The growing outsourcing of development tasks to suppliers and the number of merges in
the automotive industry, which entail cooperation of corresponding departments at dif-
ferent sites, require a client-server-solution for cooperative work. Finally, the simulation
community is concerned about the validity of their results compared to real crash-tests.
It is important to detect and minimize the sources of scattering in the results originated
by the simulation model or process. This is also a precondition for stochastic simulation,

which is used in order to optimize the crash behavior by varying input parameters.

The goal of this thesis is to provide solutions to some of the issues just stated. First
of all, the applicability of different scene graph APIs is evaluated for large time-dependent
data sets. APIs such as Performer or Cosmo3D / OpenGL Optimizer have been developed
to take advantage of multiprocessing. Those APIs can perform model optimization during
scene graph creation and benefit from multiprocessing using frustum culling and occlusion
culling while traversing the scene graph to increase frame and interaction rates. Because of
the large time-dependent databases and the limited memory of the workstations an efficient
scene graph design is very important in order to handle the complex data interdependencies
and to achieve high rendering speed. While five years ago the models consisted of about
250 000 finite elements with nearly the same number of nodes, today the size of the models
has almost quadrupled. Since the element topology does not change in crash simulation, the
connectivity of the finite elements needs to be stored just once. An index set representing
the topology is shared across the sub-graphs of all time steps. A Gouraud shaded surface
requires to do the edge detection on the state where geometry is deformed most, which is
in general the last one. In order to minimize memory consumption, the index set is used
for both coordinates and normals. Therefore, coordinates at vertices with multiple normals
need to be added once per normal. Other scene graph nodes, e.g. the one specifying the
appearance, can also be shared. Handling triangular elements as degenerate quadrilaterals
allows to represent a mesh of three- and four-sided shell elements in one scene graph
node. The prototype application named crashViewer, which was implemented to evaluate
the methods developed in this thesis, uses Cosmo3D / OpenGL Optimizer for historical
reasons: this bundle had been presented as predecessor of the 1997 announced Fahrenheit
project, which was aborted two years later. Nevertheless, the proposed scene graph design
allows to visualize 60 time steps of a model containing half a million elements and the
same number of nodes with a memory consumption of 360 MB (flat-shaded) or 970 MB
(Gouraud-shaded), provided that a crease angle of 20 degree leads to 40% more normals
than vertices.

One basic requirement for an interactive visualization application is that the frame rate
does not fall below an acceptable minimum threshold. What “acceptable” means depends
on data and experience with other tools. Generally speaking, visualization data should be
rendered as fast as possible. For this reason, one aim of this work is to point out methods
to optimize the finite element meshes’ rendering acceleration. Two approaches are exami-
ned: (1) concatenation of adjacent elements to reduce data redundancy during geometry
processing and (2) mesh simplification to remove information that does not significantly
influence the shape of a car body part. Although OpenGL Optimizer provides a tri-stripper
(opTriStripper) that is able to convert any polygonal mesh into strips of triangles, it is not
applicable in this field because the original mesh structure should still be visible in wirefra-
me mode. Hence, a quadrilateral stripper was developed, which analyses the mesh structure
and generates many parallel bands of maximum length. As a matter of fact, quad-strips are
not as versatile as tri-strips because each turn costs two extra vertices. However, compa-
red to opTriStripper’s reduction to 63.5% the proposed bandification algorithm reduces the

number of referenced vertices to 54% of an unstripped representation averaged over 3 274
car body parts. Depending on the availability of vertex arrays the bandification leads to a
rendering speed-up factor of about 4.5 without and 1.7 with vertex arrays in comparison
to the unstripped geometry.

In order to achieve even higher frame rates during camera interaction, a two-stage
level-of-detail concept is developed. In addition to a fine level displaying the original mesh
resolution, which is essential for the visualization in pre- and post-processing of structural
mechanics simulation, a second level with coarse triangles is used as intermediate model
for camera movement. Each time the user modifies the view, a previously simplified mesh
is rendered until the camera parameters are no longer changed. Then the finer level of
detail is displayed. An simplification algorithm was implemented which uses the one-sided
Hausdorff distance as an error measure and which is compared to the Successive Relaxation
Algorithm provided by OpenGL Optimizer as opSRASimplify. Aside from the interface
opSRASimplify, which turns out to be unsuitable for getting an optimal decimated mesh
with respect to a predetermined error tolerance, the resulting mesh quality is not as high as
with the new HECSimplify simplifier. Breaking the error criterion can be avoided by defining
an appropriate cost function for opSRASimplify, which causes less triangles to be removed
compared to HECSimplify. If the decimation target is specified to achieve the same level of
reduction, then the resulting triangle mesh contains gaps and the model appears distorted.
Different car body models are reduced to 9-18% of the original number of triangles applying
HECSimplify. This leads to a rendering speed-up factor of between 3.4 and 6.7. There is
a trade-off between rendering speed and memory consumption. HECSimplify only applies
half-edge collapses to the polygonal mesh. These operations just modify the topology, not
the vertex coordinates. Therefore, the original and the reduced mesh are able to refer to the
same set of coordinates. On the one hand, coordinate set sharing requires less memory, on
the other hand the speed-up factor of a model that could be reduced to 9% of the original
triangles is far away from 11.

Both modules, the quad-stripper and the simplifier, are embedded into the Cosmo3D /
OpenGL Optimizer framework by providing corresponding action objects and new scene
graph nodes. Furthermore, the scene graph API was extended by several other new objects
to overcome the restrictions with line picking or to provide new functionality. For example,
the csClipGroup node enables the user to control a freely movable clip-plane, which affects
only the underlying scene graph. This provides better insight into heavily deformed car
body structures.

Another form of clipping that is developed within this thesis uses one-dimensional
RGBa texture maps in order to hide geometry that should not be displayed under certain
conditions. This visualization method can be used, for example, to mask out those model
regions that do not correspond to a given critical value range. In combination with distance
values to adjacent car body parts the rendering can be restricted to potential flange regions
of the model. For that purpose, first of all the parameter has to be transformed into a tex-
ture coordinate with respect to the specified parameter range. Then, a color scale is defined
as a texture map. Using the GL_LDECAL environment the color coding can be limited to

regions of certain value ranges. Using the same mechanism in the GL_.MODULATE environ-
ment with the alpha-test enabled allows for clipping the geometry where the corresponding
values map into texture regions with an alpha component set to be fully transparent. This
technique facilitates the accentuation of critical structures, because the user is able to in-
teractively modify the texture map or the texture lookup table, if an index texture is used
to control the visualization.

As stated above, the most important change in finite element modeling for crash simu-
lation was the introduction of independently meshed car body parts. Since the assembly
of such inhomogeneous meshes may include perforations or penetrations, for example, cau-
sed by a shifted discretization along curved flanges, there was a growing demand for an
interactive method to detect and remove this kind of mesh errors. Perforating regions can
be detected by applying collision detection to the finite element model. Efficient collision
detection as proposed by Gottschalk et al. [31] requires hierarchical sub-structuring of the
car body model. Consequently, in this study, each car body part is subdivided by a boun-
ding volume tree (BVT). Different bounding volume types are tested: spheres, axis-aligned
(AABB), and object-oriented bounding boxes (OBB). For perforation detection, where
computation-intensive element-element-intersectiontests are necessary at the lowest BVT
level, OBBs turn out to be most efficient because they are very tight positioned around
the element structure. Hence, downward traversals in the BVT can be terminated early
because any one of 15 separating axes that defines a plane disjoining both volumes can be
found. In order to detect penetrating nodes the minimum node-element-distances need to
be computed. The BVT traversal algorithm is adapted appropriately. Children of a BVT
node are visited only if their distance falls below a specified maximum distance of interest.
Penetrating node-element-pairs are collected in a list for subsequent visualization. Using
an interface to the original PAM-CRASH algorithm for penetration removal it is possible
to provide the desired interactive mechanism that allows the engineers even to restrict
mesh modification to selected car body parts. This is a big advantage over starting the
simulation until initial forces move penetrating nodes apart from penetrated elements and
restoring the computed mesh modification in the input data deck. First, the interactive
method gives direct feedback and the engineers do not have to switch tools. Second, during
the optimization of the car body structure by replacing single car body parts by variants
this procedure enables the engineers to keep everything but the variant part fixed. Thus,
only the nodes of the incoming part are aligned to its neighborhood and the confined
modification makes it easier to compare the results of two simulations runs.

What is more, the bounding volume hierarchy provides beneficial effects on many other
tasks in pre- and post-processing of crash-worthiness simulation. It can be used to detect
and follow flanges automatically or to spot flange regions that have only been inadequately
connected. A basic task is the verification of connecting elements. For example, a spotweld
must not exceed a maximum distance to those parts it should connect. Otherwise, a pending
spotweld may suspend the simulation run delaying the development process and raising
costs.

In this study, several criteria for the validation of connecting elements are elaborated.

Erroneous spotweld elements are emphasized by different colors and/or geometry. The
engineers are successively guided to each problematic connection. Without this feature it
would not be possible to find these model errors in such a short time. Furthermore, a
method is developed that enables the computation engineers to effectively add missing
connection information by means of spotwelds to the input model. Thus, it becomes even
practicable to start with crash-worthiness simulations before detailed connection data is
available from CAD data.

One aim in virtual vehicle development is to combine the results of several areas in
numerical simulation. In order to map the real development chain closely onto the virtual
one, material properties influencing preliminary steps like forming have to be considered.
For example, a deep-drawn blank sheet has a lower thickness in areas of high curvature than
in other areas. As long as the material of a car body in crash simulation is assumed to be
constant the before mentioned manufacturing influences cannot be properly represented.
A hardware-based method is developed in this thesis for the efficient mapping of any
type of data between incompatible meshes that are geometrically congruent. It utilizes the
transformation and interpolation capability of the graphics subsystem. Element identifiers
of one mesh are color-coded. For each element of the other mesh the view matrix is set up
appropriately and the visible part of the first mesh is rendered. The colors that represent
the element IDs can be read back into main memory. After the correlation between elements
is finished in graphics hardware, the values are finally transfered in software.

The post-processing of crash-worthiness simulation results necessitates the handling of
large data sets. Since a binary result file may contain 2 GB of data but an engineer’s
workstation often is limited to 1 GB of main memory these boundary conditions need to
be considered while designing data structures and algorithms of visualization software for
this application area. On the other hand, interactivity and high rendering performance is a
precondition to obtain acceptance by the user. The required tool should provide interaction
mechanisms that assist the user in exploring and navigating through the data. Mainly, it
should help to interpret the data by making the invisible visible. Besides an effective scene
graph design, in this study, the internal data structures of the developed prototype app-
lication have been implemented with memory consumption in mind. Parameter transfer
in post-processing is done state by state very fast by pointer-based data structures. The
extensive use of texture mapping enhances the rendering performance. Visualization tech-
niques are proposed that use textures for the direct mapping of scalar values onto the car
body geometry, for the animated display of vector data, and for the visual discretization of
the finite element mesh in the form of a wireframe texture map. All these approaches spare
the transformation stage of the graphics pipeline additional processing of vertex-based da-
ta. For example, the traditional display method for shaded geometry with visible element
borders is two-pass rendering, which halves the frame rate. The application of a black-
bordered luminance texture, which is white inside, onto each geometric primitive balances
the load between geometry and texture unit. Also, the encoding of a vector’s direction by
applying an animated texture onto a line reduces geometry load and leaves the underlying
structure mostly visible in contrast to conventional vector visualization with arrows.

Force flux visualization, first presented by Kuschfeldt et al. [44] gives an overview over
which components of the car body model absorb or transfer forces. It is necessary to de-
tect and to understand the force progression within the car body structure. For example,
the longitudinal structures within the front part of a car body play an important role for
increasing the ability of the body to absorb forces in a frontal crash. Force flux visuali-
zation enables the engineers to design car components with an optimal crash behavior.
This technique was made available for interactive daily use in crash simulation analysis.
Providing a dedicated interaction mechanism, the prototype application allows to inter-
actively define a trace-line along which the force flux can be visualized. For each section
plane positioned in small intervals perpendicular along the trace-line the simulated node
forces are accumulated. The resampling is accelerated by utilization of the bounding volu-
me hierarchy. Each section force sum is then represented by color and radius of one ring of
a tube around the trace-line. The dynamic trace-line definition aligns the force tube to the
deforming structure of the analyzed car body part, for example, a longitudinal mounting.
The specified trace-lines can be stored in order to precompute force tubes off line. This can
be done by another prototype application in batch processing after simulation has finished.
During a visualization session the precomputed values can be directly converted into time
dependent force tube representations. The decoupling of time consuming computation and
the interactive visualization further accelerates the analysis of crash-worthiness simulation.

Starting multiple simulation runs with the same input data deck will produce different
results. The scattering in results has to be minimized in order to be able to evaluate the
influence of structure modifications. This work presents a method to detect and visualize
instabilities of the simulation. The above stated texture-based visualization points out
sources of instability and helps the engineers to determine if a branching is caused by
the model structure or if it was originated by the solver. The pros and cons of different
measurement functions are discussed.

Furthermore, a CORBA-based synchronization of multiple viewers displaying different
data sets is presented. This allows to analyze the simulation results of one run in direct
comparison to those of other runs. It is very useful to view the differences in crash behavior
of multiple car body models on one workstation. Moreover, this functionality can be used in
combination with a telephone call to supersede a meeting between a computation engineer
and his external supplier. The visualization is done locally on each client. Providing that
data and software is available at each participating client, the only data that have to be
transferred during a cooperative session are the events triggered at the steering master-
client and propagated to one or more slave-clients. A master token decides which participant
is able to send generated events to the other instances. This mechanism avoids conflicting
camera control when multiple users try to modify their view at the same time.

Another approach describes how an image-based client-server model can be used in this
context. After a frame has been rendered on the server, it is encoded to reduce the amount
of data. The encoded image stream is transferred to any client that is able to decode and
display. There are less requirements for the client but the connection needs to provide a
certain bandwidth. This scenario can also be used for remote visualization. The prototype

10

crashViewer can be connected to a Java applet running inside a web-browser.

Finally, a method for standardized analysis of crash-worthiness simulation is presented.
A batch-processing prototype application has been developed to generate digital movies
using a predetermined camera path. The contributions of this thesis aim at further accele-
ration of the virtual vehicle development process, for example, by introducing new inter-
action mechanisms, making extensive use of hierarchical data structures, using hardware-
accelerated visualization techniques, and providing solutions for process automation.

Danksagung

Die vorliegende Arbeit wurde in den Jahren 1997 bis 1999 am Lehrstuhl fiir Graphische Da-
tenverarbeitung der Friedrich-Alexander-Universitit Erlangen-Niirnberg und im Anschluss
daran bis 2001 in der Abteilung fiir Visualisierung und Interaktive Systeme des Instituts
fiir Informatik an der Universitiat Stuttgart durchgefiihrt. Ich méchte mich bei all denen
bedanken, die mir bei der Durchfithrung der Arbeit behilflich waren.

Mein besonderer Dank geht an meinen Doktorvater Prof. Dr. Thomas Ertl, der mir
dieses interessante Thema zur Verfiigung gestellt hat, den Fortlauf der Arbeit stets durch
fruchtbare Anregungen und Diskussionen forderte und mir auch den notwendigen Freiraum
zur Ausgestaltung der Arbeit einrdumte. Dariiber hinaus mochte ich ihm fiir seinen Beitrag
zu der angenehmen Atmosphére in seiner Arbeitsgruppe danken.

Fiir die Ubernahme des Zweitgutachtens bin ich Prof. Dr. Giinther Greiner dankbar.

Als entscheidendem Mitinitiator dieser Arbeit gilt mein Dank Dr. Michael Holzner, der
das Thema anfangs bei BMW betreute. In diesem Zusammenhang mochte ich mich bei
der Firma BMW fiir die Gewdhrung eines Doktorandenstipendiums bedanken. Viel Dank
gebiihrt auch allen Mitarbeitern der Karosserieentwicklung bei EK-21, die durch zahlreiche
Gespriache und wertvolles Feedback zum Gelingen dieser Arbeit wesentlich beigetragen
haben. Hier mochte ich insbesondere Dr. Sven Kuschfeldt, Dr. Christoph Liibbing und
Horst-Uwe Mader hervorheben, die nicht nur durch ihre Fachkenntnis, sondern auch durch
ihre unkomplizierte Art stets wertvolle und angenehme Gespréichspartner waren.

Fiir die aus den Ergebnissen ihrer Diplomarbeiten hervorgegangenen Beitrdge danke
ich Jan Kraheberger, Horst Hadler, Christian Ernst und Manfred Weiler.

Nicht versdumen will ich, mich bei den Mitarbeitern der beiden Arbeitsgrup-
pen in Erlangen und Stuttgart zu bedanken. Hier mochte ich Dr. Klaus Engel,
Prof. Dr. Leif ,P.“ Kobbelt und Prof. Dr. Riidiger Westermann fiir die Zusammenarbeit
bei verschiedenen Projekten danken. Fiir vielseitige Anregungen und das nette Raumklima
danke ich meinen langjidhrigen Biiroinsassen Dr. Peter Hastreiter und Dr. Martin Schulz.

Es freut mich, dass die Ergebnisse dieser Arbeit von weiteren Doktoranden aufgegriffen
wurden und den entstandenen Prototypen durch Resultate aus den jeweiligen Forschungs-
gebieten bereichert haben; diesbeziiglich danke ich Katrin Bidmon, Norbert Frisch und
Dirc Rose fiir ihre Geduld im Umgang mit dem entwickelten Sourcecode.

Den engagierten Mitarbeitern, die sich neben ihren Forschungsaufgaben auch der Auf-
rechterhaltung des Rechnerbetriebs verpflichtet sahen, um der gesamten Abteilung ein

12

reibungsloses Arbeiten zu ermoglichen, sei an dieser Stelle auch gedankt, fiir die Zeit in
Stuttgart waren das vor allem Matthias Hopf und Marcelo E. Magallon. Weitere Mitarbei-
ter, denen ich wegen ihrer Unterstiitzung in verschiedenen Bereichen danke, sind Sabine
Iserhardt-Bauer und Dr. Martin Kraus.

Als helfende Hinde bei organisatorischen Angelegenheiten mochte ich mich bei den
beiden Sekretdrinnen Maria Baroti und Ulrike Ritzmann fiir ihre Unterstiitzung bedanken.

Fiir die wertvolle Grundkonfiguration vom fiir mich unverzichtbaren Emacs und die
schnelle Hilfe bei Fragen im Zusammenhang mit der SGI-Plattform mé&chte ich mich bei
meinem Freund Alexander Dietz bedanken.

Dr. Susanne Schiile danke ich fiir die Korrektur von dem englischen Abstract.

Mein ganz besonders herzlicher Dank gilt meiner Frau Vera, die mich besonders in den
letzten beiden Jahren sehr untertiitzt hat, indem sie viele Wochenenden mit unseren drei
Sohnen weitestgehend ohne meine Mithilfe verbracht hat, um mir das Zusammenschreiben
zu ermoglichen.

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation und Problemstellung
1.2 Beitrdage dieser Arbeit oo Lo
1.3 Gliederung der Arbeit
1.4 Betreute Diplomarbeiten und Studienprojekte

2 Fahrzeugentwicklung und Strukturmechaniksimulation
2.1 Digitale Fahrzeugentwicklung oL,
2.2 Pre- und Postprocessing der Crash-Simulation

3 Visualisierung im CAE-Umfeld
3.1 Visualisierungs-Pipeline L o0,
3.2 Interaktive Computergraphiko,
3.2.1 Rendering-Pipeline 0 0oL,
3.2.2 Hierarchische Datenstrukturen zur rdumlichen Unterteilung
3.2.3 Einflussfaktoren bei der Bildsynthese
3.2.4 High-Level-3D-Graphikbibliotheken
3.2.5 Darstellung polygonaler Daten
3.3 Visualisierungsmethoden o000
3.4 Datenformate und -strukturen00 oL
3.4.1 Geometriestruktureno L0000
3.4.2 Ein-/Ausgabedaten Lo oL

4 Effizientes Szenengraph-Design fiir zeitabhiingige FE-Modelle
4.1 Szenengraph-Bibliothek Cosmo3D oo,
4.1.1 Grundlegende Szenengraphobjekte
4.1.2 Datenmanagemento

4.1.3 Traversierung des Szenengraphen

21
21
24
25
26

27
27
29

35
35
37
38
40
42
49
93
93
95
26
o7

14

INHALTSVERZEICHNIS

4.2 Szenengraphaufbau topologisch invarianter Netze 67
4.3 Erweiterungen unter Cosmo3D 69
4.3.1 Clip-Objekt 69
4.3.2 Traversierungsfunktioneno 71
Architektur des Prototypen 73
5.1 Objektorientiertes Design der Software 73
5.1.1 Interne Datenstrukturen 000, 74
5.1.2 Einlese-/Abspeicher-Module 76
5.1.3 Schnittstelle zur Szenengraphbibliothek 80
5.1.4 Parser fiir selbstdefinierte Dateiformate 80
5.1.5 Funktionsmodule oo 81
5.2 Bedienelementeo Lo Lo 82
5.2.1 Eingabemedien Lo 82
5.2.2 Hilfsmittel der Virtuellen Realitdt am Arbeitsplatz 84
5.2.3 Graphische Benutzerschnittstelle 85
5.3 Mechanismen zur Datenanalyse, 86
Verfahren zur Darstellungsbeschleunigung 89
6.1 Streifengenerierung benachbarter Primitive 89
6.1.1 Datenstrukturen und Algorithmus 91
6.1.2 Resultate 94
6.2 Simplifizierung Lo 95
6.2.1 Successive Relaxation-Algorithmus 97
6.2.2 Successive Relaxation versus Halbkantenreduktion 98
6.2.3 Resultate 100
6.3 Texturen statt Geometrie. Lo 101
6.3.1 Visualisierung Knoten-basierter Skalare 102
6.3.2 Visualisierung der Netzstruktur 104
Spezielle Pre-Processing Funktionalititen 107
7.1 Distanzvisualisierung L e 107
7.1.1 Bounding-Volume-Hierarchie auf FE-Netzen 108
7.1.2 Detektion und Beseitigung initialer Penetrationen 113
7.1.3 Visualisierung potenzieller Flansche 115
7.2 Interaktives Modifizieren von Schweiflpunktdaten 118
7.3 Parameteriibertragung zwischen inkompatiblen Gittern 120

INHALTSVERZEICHNIS

15

8 Spezielle Post-Processing Funktionalititen
8.1 Skalarwerte auf der Fahrzeuggeometrie
8.2 Animierte Darstellung vektorieller Daten
8.3 Kraftflussvisualisierung oL
8.3.1 Interaktive Definition von Tracelines
8.3.2 Kraftflussberechnung oo 0oL
8.3.3 Entkoppelte Vorberechnung
8.4 Visualisierung von Instabilitdteno
8.4.1 Mafle fiir Instabilitdat
8.4.2 Effiziente Berechnung der mittleren lokalen Deformation
8.4.3 Resultate L
8.5 Kooperatives Arbeiten L
8.5.1 Event-basierto
8.5.2 Bild-basiert
8.6 Batch-Programm oo

9 Ergebnisse
9.1 Neue Methoden im virtuellen Fahrzeugentwicklungsprozess
9.2 Prototypische Anwendungen
9.3 Weiterfithrende Arbeiteno oL

10 Zusammenfassung und Ausblick

Literatur

123
123
126
127
128
129
129
131
132
134
135
135
137
139
141

143
143
148
151

153

157

Abbildungsverzeichnis

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

Problemklassen der Finite-Element-Methode 28
Entwicklungszyklen in der Karosserieentwicklung 29
Inhomogene Vernetzung oL 31
Definition Penetration / Perforation 32
Visualisierungs-Pipelineo oo 0oL 36
Rendering-Pipeline L Lo 38
OpenGL-Pipeline 39
Hierarchische Baumstrukturen o000, 41
Beleuchtungsmodello oo 44
Schattierungsverfahreno oL 45
Definition benachbarter Primitive in Streifen 48
Definition Hausdorff-Abstand L. 50
Finite-Element-Typen L. 56
Bauteile eines Gesamtfahrzeugmodells o7
Topologieinderung wihrend der Tiefziehsimulation 57
Datenstruktur in PAM-CRASH-Eingabedatensdtzen 58
Datenstruktur in PAM-CRASH-Ergebnisdatensétzen 59
Szenengraphaufbau unter Open Inventor 66
Szenengraphaufbau unter Cosmo3D 66

Cosmo3D-Szenengraphaufbau zeitabhingiger, topologisch invarianter Netze 68

Nutzung einer gemeinsamen Indizierung von Punkten und Normalen. . . . 69
csClipGroup L 70
csClipGroup-Methoden 72
Software-Struktur von crashViewer 74

Datenfluss vom Einlesen bis zur Darstellung 76

18

ABBILDUNGSVERZEICHNIS

9.3
5.4
2.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Pseudocode zum parallelen Einlesen00 L. 79
Space Mouse — Eingabegerit mit 6 Freiheitsgraden 84
Stereo-Modus 85
Kantenrichtungswechsel in Streifen 90
Adjazenzliste fiir die Quadrilateralstreifengenerierung 91
Bandification-Algorithmus 91
Streifengenerierung im Vergleicho 0oL 92
Richtungswechsel im Quadrilateralstreifen 93
Erzielte Reduktion referenzierter Knoten 94
Operatoren zur Simplifizierung o Lo 95
Einseitiger Hausdorff-Abstand 96
Halbkantenreduktionsalgorithmus 97
Simplifizierungsalgorithmen im Vergleich 98
Simplifizierung von Fahrzeugmodellen 99
Ergebnisse der Dreiecksreduktion 0000, 100
Darstellungsbeschleunigung durch Simplifizierung 101
Parametervisualisierung durch Verwendung von Farben 103
Isolinien innerhalb eines Quadrilaterals 104
Aufbau des Wireframe-Texturbildes 105
Element-Diskretisierung Lo oL 105
Unterschied homogener <> inhomogener Vernetzung 108
Vergleich von Begrenzungsvolumenarten 109
Uberlappungstest fiir Hiillkrpertypen 110
Gegeniiberstellung der Hiillkérpertypen an einem Beispiel 111
Berechnung des minimalen Abstandes zweier Objekte 113
Visualisierung initialer Perforation/Penetration 114
Dialogfenster fiir die Modifikation von Farbtabellen 116
Flanschvisualisierung L Lo Lo 116
Werte-basierte Reduzierung des Fahrzeugmodells 117
Schweifipunktreprisentation 118
Visualisierung von Mehrfachverbindungen 120
Graphik-basierte Transformation Element-basierter Groflen 121

Parameteriibertragung inkompatibler Netze 122

ABBILDUNGSVERZEICHNIS

19

8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18

9.1

Visualisierung der Beulgeschwindigkeit 124
Hourglass-Deformationen Lo 124
Darstellung der Eindringtiefe beim Seitenaufprall 125
Vektorvisualisierung durch animierte Linien 126
Kraftflussvisualisierung durch Kraftflussréhren 128
Interaktive Selektion der Finite-Element-Strukturen fiir die Kraftflussbe-

rechnung L 129
Schnittkraftberechnung innerhalb einer Schnittebene 130
Definitionsdatei einer Traceline zur Kraftflussberechnung 130
Vorberechnung von Kraftflussréhren 131
Globale Verschiebungs- und Streufunktion 132
Visualisierung der Instabilitéit fiir ein Gesamtfahrzeug 132
Deformationsfunktion als lokales Mal 133
Beispiel mit Index-Paar-Tabelle 134
Vergleichende Visualisierung instabiler Simulationsresultate 136
Event-basiertes kooperatives Arbeiten L. 137
Multi-Threading fiir Bild-basiertes kooperatives Arbeiten 140
Bild-basiertes kooperatives Arbeiten L. 141
Automatische Bild-/Filmerstellung 142

Schnittebenensteuerung mit Hilfe eines Kontext-sensitiven Popup-Meniis . 146

Kapitel 1

Einleitung

1.1 Motivation und Problemstellung

Der Computer ist heute eines der wichtigsten Hilfsmittel beim Entwurf und der Entwick-
lung von Fahrzeugen. Zunéchst wurde er von Konstrukteuren fiir das Computer Aided De-
sign (CAD) von virtuellen Fahrzeugmodellen eingesetzt. Inzwischen ist er in vielen anderen
Bereichen der Fahrzeugentwicklung unentbehrlich geworden: der Entwicklungszyklus von
Automobilen ist durch die Computer-gestiitzte numerische Simulation substanziell verkiirzt
worden. An virtuellen Prototypen gewonnene Ergebnisse kénnen zunéchst optimiert und
anschlieffend am realen Prototypen validiert werden. Untersuchungen der Fahrdynamik, des
Crash-Verhaltens, der Innenraumakustik und der Auenhautumstrémung sind nur einige
Anwendungsfelder, in denen Computer-basierte Technologien zur Senkung der Entwick-
lungskosten beitragen.

Nach den Vorgaben aus dem Design wird ein Konstruktionsmodell erstellt; die erzeug-
ten CAD-Daten beschreiben die Fahrzeugkomponenten anhand parametrischer Flichen
und zusétzlicher Materialinformationen. Um die Daten in numerischen Simulationen ver-
wenden zu konnen, miissen die Flachenbeschreibungen zunéchst diskretisiert werden. Fiir
die Strukturmechaniksimulation wird das CAD-Modell daher in ein Finite-Element-Modell
umgewandelt, das dann zum grofiten Teil aus drei- und viereckigen Schalenelementen be-
steht. Das Finite-Element-Modell wird in einem Vorverarbeitungsschritt aufbereitet und
mit zusdtzlichen Daten erginzt, bevor es dem Simulationsprogramm als Eingabedaten
iibergeben wird. Nach der meist sehr zeitintensiven Simulation, die fiir Gesamtfahrzeug-
modelle mehrere Tage in Anspruch nehmen kann, liegen als Ergebnis grofle Datenmengen
vor. Diese konnen aufgrund ihres Umfangs und ihrer Komplexitdt nur mit ausgereiften
Visualisierungswerkzeugen ausgewertet werden. Die Erkenntnisse aus der Simulationsana-
lyse flielen an den Konstrukteur zuriick. So schliefit sich der Zyklus, der den virtuellen
Prototypen solange iterativ verbessert, bis alle Zielgréfen erreicht werden.

Bereits Anfang der achtziger Jahre wurden Strukturanalysen mit Hilfe numerischer Si-
mulation anhand einfacher Balkenmodelle durchgefiihrt. Die Modellkomplexitit geht mit
der Leistungssteigerung der Hardware und der Weiterentwicklung der Simulationssoftware
einher: die Modellgréfle hat sich seitdem alle drei Jahre mehr als verdoppelt. Der Notwen-

22

Einleitung

digkeit, dem Entwicklungsingenieur entsprechende Visualisierungswerkzeuge zur Verfiigung
zu stellen, wurde bisher von den Herstellern der Simulationssoftware mit eigenen Losungen
begegnet. Anfangs entstanden einfache Darstellungsanwendungen, die das Fahrzeug als
Gittermodell zeichneten, ohne einen rdumlichen Eindruck zu vermitteln; die Applikationen
wurden weiterentwickelt, entsprechen jedoch heute in der Regel nicht mehr dem, was im
Bereich der Softwareentwicklung und vor allem der Visualisierung Stand der Technik ist.

Der Fortschritt durch wissenschaftliche Forschung in der Computergraphik und die Wei-
terentwicklung der Hardware, insbesondere der Graphiksubsysteme, lésst die Liicke zwi-
schen dem, was in der Visualisierung mdoglich ist, und dem, was in kommerziellen Produkten
zur Datenanalyse angeboten wird, immer gréfer klaffen. Zudem ist die Wissenschaft im Be-
reich der angewandten Informatik stets bemiiht, Einsatzgebiete zu identifizieren, in denen
neu entwickelte Methoden evaluiert und verbessert werden konnen. Eine enge Zusammen-
arbeit zwischen Ingenieuren und Wissenschaftlern erscheint daher als sehr vielversprechend
und zwingend notwendig.

Die vorliegende Arbeit ist im Rahmen einer engen Kooperation mit der Berechnungs-
abteilung der BMW Group entstanden. Sie hat zum Ziel, den bestehenden Fahrzeugent-
wicklungsprozess im Umfeld der Strukturmechaniksimulation zu analysieren und durch
Adaption neuer Methoden der Computergraphik aus anderen Bereichen sowie durch Ent-
wicklung neuer Visualisierungstechniken und Interaktionsmechanismen zu beschleunigen.
Eine Evaluation der eingesetzten Konzepte soll anhand einer prototypischen Applikation
vorgenommen werden.

Bisher wurde in der Visualisierung im Bereich der Strukturmechaniksimulation auf
Basis von vierseitigen Schalenelementen nur wenig geforscht. Fiir die Analyse von Crash-
Simulationsergebnissen miissen grofle, zeitabhéngige Datensétze effizient verarbeitet wer-
den. Dabei soll die Netzstruktur des Finite-Element-Modells erhalten bleiben, ohne dass
dabei auf hohe Interaktionsraten verzichtet werden muss. Eine schnelle Datenaufbereitung
spielt dabei eine ebenso wichtige Rolle, wie die Navigation durch das virtuelle dreidimen-
sionale Fahrzeugmodell mit Hilfe der an einem Standardarbeitsplatz vorhandenen Einga-
begerite.

Die Weiterentwicklung der Simulationscodes hat es ermoglicht, Teilstrukturen mit
Randbedingungen zu versehen, so dass nun Berechnungen an Teilmodellen vorgenommen
werden konnen. In der Karosserieberechnung werden anstatt homogen vernetzter Gesamt-
modelle seitdem unabhéngig voneinander vernetzte Bauteile zu virtuellen Fahrzeugmodel-
len zusammengesetzt. Der Netzanschluss benachbarter Bauteile wird nun nicht mehr iiber
das aufwéndige Abgleichen und Nutzen gemeinsamer Randknoten hergestellt; stattdessen
iiberlappen die Bauteilnetze in Flanschbereichen, wo sie durch neu entwickelte Verbin-
dungselemente aneinander gebunden werden. Dies hat unter anderem den Vorteil, dass
einzelne Bauteile durch Varianten ausgetauscht werden kénnen, ohne dass die Umgebung
neu vernetzt werden muss.

Wichtige Entscheidungen miissen bereits in der friihen Phase eines Fahrzeugprojek-
tes aufgrund der durch numerische Simulation gewonnenen Erkenntnisse getroffen werden.
Das setzt voraus, dass die bis dahin verfiigbaren Konstruktionsdaten in rechenbare Si-

1.1 Motivation und Problemstellung

23

mulationsmodelle umgesetzt werden kénnen. Durch die unabhéngige Vernetzung einzelner
Bauteile und den unterschiedlichen Konstruktionsstand der verschiedenen Fahrzeugkompo-
nenten kommt es nach der Zusammenfiihrung héufig zu Beriihrungen und Durchdringungen
der Bauteilnetze im diskretisierten Finite-Element-Modell. Diese miissen zundchst detek-
tiert und beseitigt werden, da sie ansonsten die Simulationsergebnisse verfialschen wiirden.
Dariiber hinaus miissen die Bauteilnetze miteinander durch Verbindungselemente verbun-
den werden. Da die Konstruktionsdaten in der frithen Phase jedoch keine vollsténdigen
Verbindungsdaten beinhalten, muss der Berechnungsingenieur den Datensatz mit entspre-
chender Information aufbereiten. Die Vorverarbeitung von Eingabedaten fiir den Simulati-
onsprozess nimmt angesichts steigender Variantenrechnungen und einer halbwegs automa-
tisierten Standardauswertung der Simulationsergebnisse gegeniiber der Nachbearbeitung
einen immer hoheren Stellenwert ein.

Derartige Ergdnzungen der Simulationsmodelle mussten bisher mit Hilfe eines Text-
Editors direkt an den Eingabedateien vorgenommen werden. Netzfehler und fehlende An-
bindungen zwischen Bauteilen konnten lediglich durch Anrechnen des Modells entdeckt
werden. Dazu wurde der Simulationsprozess gestartet und nach einiger Zeit wieder abge-
brochen. Durch die Analyse der bis dahin berechneten Zwischenergebnisse werden derartige
Unzulédnglichkeiten des Eingabemodells sichtbar. Vorweggenommene Konsistenzpriifungen
machen zeitaufwindige Anrechnungen iiberfliissig.

Weiteres Prozessoptimierungspotenzial liegt in der Integration und Angleichung ver-
schiedener Werkzeuge. Eine enge Kopplung des Simulationsprozesses an die Vor- und Nach-
bearbeitung der Daten durch ein und dieselbe Applikation, die sowohl Ein- als auch Aus-
gabedaten verarbeiten kann, schafft die Grundlage fiir eine schnelle Iteration im Optimie-
rungsprozess und tragt zur angestrebten Reduzierung der vom Ingenieur zu bedienenden
Vielzahl von Applikationen bei.

In Zeiten fortschreitender Globalisierung und Fusionierung, aber auch durch zunehmen-
des Outsourcing der Teilmodellerstellung an darauf spezialisierte Dienstleistungsunterneh-
men steigt der Kommunikationsbedarf iiber rdumliche Grenzen hinweg zusammenarbeiten-
der Entwicklungsteams. Kostenintensive Besprechungen, zu denen sich alle Beteiligten an
einem Ort zusammenfinden miissen, kénnen nur durch Verbesserung der bereits vorhande-
nen Fernkommunikationsinfrastruktur reduziert werden. Da auf die gemeinsame Betrach-
tung der Modelldaten als Diskussionsgrundlage bei Besprechungen nicht verzichtet werden
kann, bietet sich eine netzwerkbasierte Kopplung entfernter Arbeitsplidtze an, um kleinere
Besprechungstermine durch Telefonate mit zeitgleicher kooperativer Visualisierungssitzung
am Arbeitsplatzrechner ersetzen zu konnen.

Ein weiterer Aspekt befasst sich mit der Absicherung der Zuverldssigkeit von Simula-
tionsergebnissen. Um eine Aussage dariiber machen zu kénnen, welche Modifikation der
Fahrzeugstruktur das simulierte Verhalten positiv beeinflusst hat, miissen zunéchst alle
Einflussfaktoren, die auf die Simulation wirken, analysiert werden. Dies geschieht in Stabi-
litdtsanalysen, in denen anhand gleicher Eingabedaten die Streuung der Simulationsergeb-
nisse gemessen und die Ursache dafiir erforscht wird. Durch konstruktive Mainahmen soll
in Ursprungsbereichen maximaler Streuung das Modell dahingehend modifiziert werden,

24

Einleitung

dass gleiche Eingabedaten zu annihernd gleichen Simulationsresultaten fiihren.

Ziel dieser Arbeit ist, das Pre- und Postprocessing von Strukturmechaniksimulation im
Fahrzeugentwicklungsprozess beziiglich neuer Funktionalitit und Leistungsfihigkeit durch
die Einbeziehung neuer Graphiktechnologien sowie durch die Entwicklung neuer Visuali-
sierungsalgorithmen signifikant voranzubringen.

1.2 Beitrige dieser Arbeit

Da die Arbeit in enger Zusammenarbeit mit der Karosserieberechnungsabteilung der BMW
Group entstand und die Forschungsergebnisse direkt von den Ingenieuren an alltéglichen
Problemstellungen eingesetzt werden sollten, mussten zunichst Voraussetzungen fiir eine
erhohte Akzeptanz bei den Anwendern geschaffen werden. Dazu gehéren vor allem kurze
Ladezeiten der Daten, eine intuitiv zu bedienende Benutzerschnittstelle sowie komfortable
Funktionalitét, die es ermdoglicht, die Aufgaben schneller zu 16sen als mit anderen Applika-
tionen. Die Analyse der zu verarbeitenden zeitabhidngigen Simulationsdaten und der zum
Einlesen zur Verfiigung gestellten Bibliothek fiihrte zu einer geeigneten internen Daten-
struktur, die eine effiziente Datenaufbereitung erlaubt und damit zu geringeren Start-up-
Zeiten fiihrt als bei vielen kommerziell verfiigbaren Visualisierungswerkzeugen. Ferner re-
sultiert aus der Evaluation verschiedener Szenengraphbibliotheken unter Beriicksichtigung
der Rechnerplattform im Anwenderumfeld die Entscheidung zu Cosmo3D / OpenGL
Optimizer. Durch die Datenstrukturen und Funktionalitdten der Bibliothek bleibt der Res-
sourcenbedarf im Zusammenspiel mit einem optimierten Szenengraph-Design im Rahmen
dessen, was auf einem Standard-Arbeitsplatzrechner zur Verfiigung steht.

Zur Beschleunigung der Bildsynthese werden bereits bekannte Verfahren zur Optimie-
rung polygonaler Modelle fiir die Weiterverarbeitung in der OpenGL Pipeline mit adap-
tierten Algorithmen verglichen, die unter Beriicksichtigung der zugrunde liegenden Daten
Quadrilateralstreifen maximaler Lénge bilden. Zusétzlich wird der Einsatz verschiedener
Detailstufen im CAE-Umfeld untersucht und eine Losung zur deutlichen Steigerung der
Bildwiederholrate wihrend der Navigation durch das Finite-Element-Modell présentiert.

Durch die Entwicklung und Evaluation Textur-basierter Visualisierungsverfahren wer-
den deren Vorziige anhand verschiedener Beispiele aus dem Berechnungsumfeld verdeut-
licht. Daraus ldsst sich die Notwendigkeit ableiten, Standard-Arbeitsplatzrechner in Zu-
kunft mit entsprechender Graphik-Hardware auszustatten, um von den Mdoglichkeiten mo-
derner Visualisierungsalgorithmen profitieren zu kénnen.

Im Rahmen der vorliegenden Arbeit wurde die Moglichkeit geschaffen, nach dem in-
teraktiven Zusammenfiihren der Modellkomponenten aus verschiedenen Datenquellen auf-
tretende Netzfehler zu visualisieren und selektiv zu beheben. Dazu kommen auf hierarchi-
schen Datenstrukturen basierende Algorithmen zum Einsatz. Verbunden mit Methoden zur
Darstellung und interaktiven Modifikation von Verbindungselementen sowie der Detektion
fehlerhafter Schweifipunktdaten wird die Grundlage geschaffen, um Finite-Element-Modelle
fiir die Crash-Simulation effizient aufzubereiten und die Modellerstellung fiir Variantenrech-

1.3 Gliederung der Arbeit

25

nungen stark zu vereinfachen. Speziell auf die Bediirfnisse der Berechnungsingenieure zuge-
schnittene Interaktions- und Navigationsmechanismen sowie frei bewegliche Clip-Objekte
erleichtern den Umgang mit den Modelldaten.

Durch die Entwicklung dreidimensionaler Selektionsobjekte und eine effiziente Schnitt-
kraftberechnung steht die Kraftflussvisualisierung mit Hilfe dynamischer Kraftflussr6hren
nun auch als interaktives Analysewerkzeug im Postprocessing zur Verfiigung. Die Berech-
nung der notwendigen Gréflen im Batch-Betrieb und die anschlieBende Zwischenspeiche-
rung in einem eigenen Dateiformat ermoglicht die Standardauswertung von festgelegten
Kraftflussverldufen im Anschluss an die Simulation. Dies trigt weiterhin zur Beschleu-
nigung und Automatisierung der Nachverarbeitung bei. Mit der Entwicklung eines Bild-
beziehungsweise Filmgenerators konnte mit Ergebnissen dieser Arbeit zur Entwicklung
eines Integrationswerkzeuges fiir die Ablaufsteuerung und das Datenmanagement in der
Karosserieberechnung beigetragen werden.

Es werden zwei Losungen fiir Szenarien einer kooperativen Sitzung mit mehreren Rech-
nern prasentiert. Die Ergebnisse zeigen auf, wie zeitaufwandige Treffen zwischen Ingenieu-
ren durch Telefonate mit gleichzeitiger kooperativer Visualisierungssitzung ersetzt werden
konnen. Das vorgestellte Verfahren zur Stabilitdtsanalyse von Simulationsprozessen hilft,
Urspriinge von Instabilitédten aufzudecken und die Aussagekraft der Simulationsergebnisse
verbesserter Modelle zu erhohen.

Durch diese Arbeit ist eine prototypische Visualisierungsplattform fiir die Vor- und
Nachbereitung von Strukturmechanikdaten entstanden. Das objektorientierte Softwarede-
sign des Prototypen erlaubt die Integration weiterer Datenformate sowie die Implementie-
rung neuer Algorithmen zu deren Evaluation im produktiven Einsatz in der Karosseriebe-
rechnung, aber auch in anderen CAE-Bereichen.

1.3 Gliederung der Arbeit

Im Folgenden wird ein Uberblick iiber den Aufbau dieser Arbeit gegeben, woraus der
Zusammenhang der Kapitel untereinander hervorgeht.

Kapitel 2 motiviert die Entwicklung einer in die Simulation integrierten Vor- und
Nachverarbeitungsapplikation. Zu Beginn fiihrt das Kapitel in das breite Feld der digitalen
Fahrzeugentwicklung ein. Das Umfeld der Crash-Simulation wird detaillierter betrachtet,
wodurch ein Fundament fiir ein besseres Versténdnis der darauffolgenden Kapitel geschaffen
wird.

Kapitel 3 gibt einen Uberblick zu den Grundlagen der interaktiven Computergra-
phik und der Visualisierung. Dariiber hinaus werden die der Crash-Simulation zugrunde
liegenden Daten beschrieben, indem zunéchst die Strukturen, aus denen sich ein Gesamt-
fahrzeugmodell im Allgemeinen zusammensetzt, erlautert werden und anschlieend auf die
Datenformate der Simulationseingaben beziehungsweise der Simulationsergebnisse einge-
gangen wird, um die breite Spanne der zu verarbeitenden Daten zu beleuchten.

26

Einleitung

Kapitel 4 prisentiert ein effizientes Szenengraph-Design fiir zeitabhéingige Finite-
Element-Modelle mit invarianter Topologie. Dazu werden die notwendigen Grundlagen der
verwendeten Graphikbibliotheken vermittelt und Erweiterungsmoglichkeiten diskutiert.

Kapitel 5 erldutert die Architektur des im Rahmen dieser Arbeit entstandenen Proto-
typen und gibt einen Uberblick {iber entwickelte Interaktionsmechanismen zur effizienten
Datenanalyse.

Kapitel 6 diskutiert verschiedene Verfahren zur Darstellungsbeschleunigung. Wahrend
sich die Quadrilateralstreifengenerierung und die Simplifizierung mit der Optimierung der
modellierten Geometrie fiir eine effiziente Verarbeitung in der Graphik-Hardware aus-
einandersetzt, zeigt der letzte Teil dieses Kapitels, wie durch den Einsatz von Texturen
zusidtzliche Geometrieverarbeitung iiberfliissig wird.

Kapitel 7 stellt spezielle Funktionalititen fiir die Vorverarbeitung von Eingabemodel-
len vor. Aufler der in verschiedenen Bereichen eingesetzten Distanzvisualisierung wird das
interaktive Modifizieren von Schweifipunktdaten und die Parameteriibertragung zwischen
inkompatiblen Gittern erldutert.

Kapitel 8 veranschaulicht Konzepte fiir die Nachverarbeitung von Simulationsergebnis-
sen. Es werden Techniken zur Visualisierung skalarer und vektorieller Gréfen présentiert.
Dariiber hinaus werden die interaktive Kraftflussvisualisierung und die Darstellung von In-
stabilitdten in Simulationsergebnissen betrachtet. Die CORBA-basierte Erweiterung zum
gemeinschaftlichen Arbeiten rdumlich getrennter Anwender, sowie die Batch-basierte Bild-
und Film-Generierung von Strukturmechanikdaten schliefen die Vorstellung der im Rah-
men dieser Arbeit neu entwickelten Methoden ab.

Kapitel 9 stellt die Ergebnisse dieser Arbeit in einen Kontext. An Beispielen aus dem
produktiven Entwicklungsprozess werden die erzielten Fortschritte verdeutlicht und die
Akzeptanz bei den Anwendern kritisch beleuchtet. AbschlieBend wird ein Uberblick iiber
weiterfiihrende Arbeiten gegeben, die auf den vorliegenden Ergebnissen basieren.

1.4 Betreute Diplomarbeiten und Studienprojekte

o Interaktive Aufbereitung von vorvernetzten Bauteilgeometrien fiir die Fahrzeugberech-
nung”, Jan Kraheberger, 1998 [40]

e Evaluierung und Implementierung verschiedener Optimierungsverfahren fiir die effizi-
ente Visualisierung komplexer Fahrzeugmodelle“, Horst Hadler, 1998 [32]

e Medizinische Visualisierung im WWW mittels 3D-Texturen“, Christian FErnst,
1999 [16]

e Evaluierung und Einsatz von OpenGL Volumizer zur Volumenvisualisierung auf struk-
turierten und unstrukturierten Gittern“, Manfred Weiler, 1999 [72]

e . OpenManip — Manipulatoren fiir Cosmo3D“, Michael Braitmaier, Michael Haiss,
Markus Knauf}, Siegfried Langauf, Stefan Opferkuch, Gunnar Stein, Philip Stolz,
Mai 2000 — April 2001 [8]

Kapitel 2

Fahrzeugentwicklung und
Strukturmechaniksimulation

Als Carl Benz 1886 in Mannheim der Offentlichkeit mit dem Patent-Motorwagen das erste
Automobil der Welt vorstellte, spielten Begriffe wie Design, Produktivitidt oder gar Pas-
sive Sicherheit noch keine Rolle. Inzwischen scheinen Kraftfahrzeuge ein unverzichtbarer
Bestandteil unseres alltéiglichen Lebens zu sein: wihrend 1957 schon eine Million Pkw in
Deutschland hergestellt wurden, waren es in den letzten drei Jahren stets iiber fiinf Millio-
nen jihrlich. Uber 43 Millionen Pkw waren im Jahr 2000 in Deutschland zugelassen. Aus
diesen Zahlen lisst sich ableiten, wie wichtig es fiir Automobilhersteller ist, die Bediirfnisse
des schnelllebigen expandierenden Marktes in immer kiirzeren Produktentwicklungszyklen
zu befriedigen. Grundvoraussetzung fiir eine derartig schnelle Weiterentwicklung ist der
massive Einsatz digitaler Hilfsmittel iiber alle Entwicklungsphasen.

Die nachfolgenden Abschnitte geben einen Uberblick iiber die digitale Fahrzeugent-
wicklung und fiihren in die Einsatzgebiete der Strukturmechaniksimulation, insbesondere
in das Umfeld der Crash-Berechnung ein.

2.1 Digitale Fahrzeugentwicklung

Der Begriff Digitale Fahrzeugentwicklung deckt die gesamte Produktentstehungskette vom
Computer Aided Design (CAD), iiber das Computer Aided Engineering (CAE) bis hin
zum Computer Aided Manufacturing (CAM) ab. Die Ideen der Designer werden von den
Konstrukteuren in Form von parametrischen Flichenbeschreibungen als CAD-Daten den
Berechnungsingenieuren zur Weiterverarbeitung zur Verfiigung gestellt. Letztere transfor-
mieren die mathematische Beschreibung des virtuellen Fahrzeugmodells in ein diskretisier-
tes Finite-Element-Modell und untersuchen die dynamischen und statischen Modelleigen-
schaften mit Mitteln der Finite-Element-Methode. Parallel dazu werden weitere Unter-
suchungen zum Beispiel zur Fahrdynamik, zur Fahrzeugauflenhautumstréomung oder zur
Ergonomie und Akustik in der Fahrgastzelle angestellt. Dariiber hinaus wird auch die

28

Fahrzeugentwicklung und Strukturmechaniksimulation

Produktion der Bauteile, zum Beispiel der Umformprozess im Rahmen von Tiefziehsimu-
lationen, und der Einbau von Fahrzeugkomponenten beim so genannten Digital Mockup
am Computer simuliert.

Heutzutage tragen die numerischen CAE-Verfahren in allen Bereichen der Fahrzeugent-
wicklung dazu bei, dass zwischen dem Designentwurf und dem Beginn der Serienproduktion
nur etwa viereinhalb Jahre vergehen. Dieser Zeitraum setzt sich aus der Konzeptentwick-
lung und der Serienentwicklung zusammen. Wéhrend in der Konzeptphase wenige Inge-
nieure involviert sind und dort fundamentale Entscheidungen beispielsweise in der Karosse-
rieberechnung iiber Trégerverldufe und Tiiren- oder Stirnwandauslegung treffen, befassen
sich in der Serienentwicklung simtliche Fachabteilungen damit, das Fahrzeugmodell zur
Serienreife zu entwickeln. Die in der Fahrzeugentwicklung zum Einsatz kommenden Finite-
Element-Methoden lassen sich in vier Problemklassen kategorisieren [19] (Abbildung 2.1).

‘ H Linear Nichtlinear ‘
e kleine Verschiebungen (Translationen, e grofie Verschiebungen (Translationen,
Rotationen) Rotationen)
e kleine Dehnungen e grofie Dehnungen
e linearer Spannungs-Dehnungszusammenhang e nichtlinearer Spannungs-Dehnungszusammenhang
= ¢ konstante Randbedingungen o verdnderliche Randbedingungen (Geometrie,
: - Topologi
4&; Beispiele: opologie)
i o
|| - Steifigkeit (Rohbau, Tiiren, Klappen, . ..) Beispiele:
- Festigkeit (Federbeinaufnahmen, - quasistatische Versuche mit grolen Verformungen
Wagenheberkonsolen, ...) - Beulen (zum Beispiel von Beplankungsteilen)
- Betriebsfestigkeit (Dauerfestigkeit stark - Kontaktproblematiken bei Tiirbelastungen
beanspruchter Bauteile) - Bewertung plastischer Verformungen bei
Missbrauchslastfillen
e kleine Verschiebungen (Translationen, e grofie Verschiebungen, Geschwindigkeiten
Rotationen) e grofle Dehnungen
e kleine Dehnungen e nichtlinearer Spannungs-Dehnungszusammenhang
e linearer Spannungs-Dehnungszusammenhang e Dehnratenabhingigkeit
= ¢ verdnderliche Randbedingungen e verinderliche Randbedingungen (zeitlich,
E (zeitabhingige Anregungen) geometrisch, topologisch)
g e Masseneinfluss o Masseneinfluss
> e Dampfungseinfluss e Dimpfungseinfluss
[Beispiele: Beispiele:
- Eigenschwingung des Fahrzeugs oder - Crash-Simulation (Front, Heck, Seite, Dach, ...)
einzelner Bauteile) - Schwingungsuntersuchungen mit nichtlinearen
- Antworten auf bestimmte Anregungen Teilstrukturen (Federn, Dampfer, Lager, ...)
(Akustik, Lenkradzittern)

Abbildung 2.1: Diese Tabelle charakterisiert vier Problemklassen der Finite-Element-
Methode und listet jeweils Beispiele von typischen Lastfillen auf.

Da es nicht nur schwieriger sondern auch wesentlich kostenintensiver ist, Anderungen in
einer spiteren Phase der Fahrzeugentwicklung vorzunehmen, gewinnt unter anderem die
Karosserieberechnung in der frithen Entwicklungsphase immer mehr an Bedeutung. Die
Strukturmechaniksimulation erlaubt, das Schwingungs- und Crash-Verhalten schon vor

2.2 Pre- und Postprocessing der Crash-Simulation

29

dem Bau des ersten Prototypen zu untersuchen, und hilft damit, Fehlentscheidungen auf-
zudecken und zu korrigieren, bevor weitere Folgekosten in der Serienentwicklung entstehen.
Um bereits in dieser frithen Phase zu rechenbaren Modellen zu kommen, werden lediglich
die Strukturen, auf die sich die Entwicklung zunéchst konzentriert, neu konstruiert, ver-
netzt und schliefilich durch Fahrzeugkomponenten schon existierender Modelle zu einem
Gesamtfahrzeugmodell vervollstindigt. Daraus ergeben sich bereits in der Konzeptphase
ModellgroéBen von 300000 Finite-Elementen und mehr.

Parallel zur rasant steigenden Rechenleistung der Simulationssysteme durch verbesser-
te Hardware und massive Ausnutzung von Parallelisierung werden die Simulationsmodelle
immer komplexer. Wahrend vor zwei Jahrzehnten noch Machbarkeitsstudien mit Balken-
modellen, bestehend aus 3000 Elementen, durchgefiihrt wurden, reicht die Modellkom-
plexitét fiir Crash-Simulationen nun an die Millionengrenze heran. Dadurch steigen in
gleichem Mafle die Anforderungen an die Software-Werkzeuge, mit denen die Modelle fiir
die Simulation aufbereitet werden, und an die Visualisierungssysteme, die zur Analyse der
Simulationsergebnisse benotigt werden.

2.2 Pre- und Postprocessing der Crash-Simulation

Einen Bereich in der Fahrzeugentwicklung stellt die Karosserieentwicklung dar, die sich
zum einen mit der Schwingungsanalyse, also der linearen Simulation, und zum anderen
mit der nicht-linearen Crash-Simulation auseinandersetzt. Da die vorliegende Arbeit in
enger Kooperation mit der Crash-Berechnungsabteilung der BMW Group entstanden ist,
stehen die weiteren Erlduterungen in engem Zusammenhang mit diesem Umfeld.

Design
|
FE-Modell Konstruktion
] » Protot
Preprocessing] _________ CAD J_________ . P
(’ Optimierung i Validierung \)
| e £ S . \
.Crash_— > Analyse |- Crashtest
Simulation
[

Abbildung 2.2: Die Strukturmechaniksimulation, hier am Beispiel der Crash-Simulation,
wird bereits in der frithen Entwicklungsphase als Bestandteil der virtuellen Fahrzeugent-
wicklung eingesetzt und dient der Konzeptionierung der Karosseriestrukturen sowie in
spiateren Phasen der Optimierung des Crash-Verhaltens. Dagegen wird der reale Crash-
Versuch wegen des zeit- und kostenintensiven Prototypenbau nur noch zur Absicherung
der Simulationsergebnisse eingesetzt.

30

Fahrzeugentwicklung und Strukturmechaniksimulation

Aus der Sicht eines Berechnungsingenieurs stellt sich der Produktentwicklungszyklus
wahrend der frithen Phase eines neuen Fahrzeugmodells wie in Abbildung 2.2, links dar.
Als Ausgangspunkt greift der Berechnungsingenieur auf die CAD-Daten der Konstrukti-
onsabteilung zu und wandelt diese mit Vernetzungswerkzeugen wie zum Beispiel ANSA [4],
CATIA [12], HyperMesh [2] oder MEDINA [67] in Finite-Element-Netze um. Dies geschieht
im Allgemeinen Bauteil-basiert in Abhéngigkeit der zugeordneten Materialbeschreibun-
gen, die vorgeben, ob eine Substruktur aus Balken-, Schalen- oder Volumenelementen (sie-
he auch Abschnitt 3.4.1) besteht. Umfangreiche Datenmanagementsysteme erlauben, die
Fahrzeugmodelle modular abzuspeichern, hierarchisch zu verwalten und die Substrukturen
erst zur Modellerstellung wieder zusammenzufiihren. Dieser Vorverarbeitungsschritt, in
dem ein Gesamtfahrzeugmodell aus einzelnen Komponenten zusammengesetzt wird, nennt
sich Assembly; dazu gehort auch das Vervollstindigen des Datensatzes durch die Definiti-
on von Kontakten, Verbindungselementen und Randbedingungen sowie die Positionierung
von Barrieren und Dummies.

Nachdem der Datensatz des Fahrzeugmodells vervollstindigt und auf Fehlmodellierung
hin untersucht wurde, wird er dem Simulationsprogramm, auch Solver genannt, als Ein-
gabedaten gegeben. Wiahrend bis 1999 ein Gesamtfahrzeugmodell bestehend aus 500 000
Elementen auf einer SMP!-Architektur mit 6 CPU’s in 5-6 Tagen berechnet worden wiire,
benotigt eine MPP2-Architektur auf 16 CPU’s nur noch 1-2 Tage fiir die gleiche Aufgabe.
Durch das Aufprégen von entsprechenden Randbedingungen kénnen Teilmodelle separat
berechnet werden, was den virtuellen Entwicklungszyklus weiter beschleunigt.

Die steigende Leistungsfihigkeit der Simulationshard- und -software fiihrt dazu, dass
die Modelle noch préziser ausmodelliert werden, um genauere Aussagen iiber das Struktur-
verhalten zu erlangen. Dadurch steigt die Modellkomplexitat stetig an. Aulerdem kénnen
im Vergleich zu vergangenen Jahren mehr Berechnungen durchgefiihrt werden. Damit sind
die Berechnungsingenieure in der Lage, die Strukturen an Schwachstellen im Fahrzeugmo-
dell zu optimieren, indem sie einzelne Bauteile gegen Varianten austauschen. Als Variante
werden Bauteile bezeichnet, an deren Konstruktion oder Vernetzung etwas geindert wurde
und die das urspriingliche Bauteil im Fahrzeugmodell ersetzen. Eine wichtige Vorausset-
zung fiir die effiziente Durchfiihrung von Variantenrechnungen ist der modulare Aufbau
des Gesamtfahrzeugmodells durch unabhéngig voneinander vernetzte Bauteile. Bis Ende
der neunziger Jahre waren aneinander grenzende Bauteilnetze in der Crash-Simulation da-
durch miteinander verbunden, dass sie sich gemeinsame Randknoten teilten (Abbildung 2.3,
oben). Wenn ein Bauteil durch eine Variante im Fahrzeugmodell ersetzt wurde, mussten die
Randknoten der Variante in einem aufwindigen Verfahren mit dem umgebenden Finite-
Element-Netz in Einklang gebracht oder das gesamte Modell neu vernetzt werden. Dieser
Vorverarbeitungsschritt entfillt inzwischen, da die Simulationsprogramme nun die Auswir-
kungen verschiedener netzunabhéingiger Verbindungselemente abbilden kénnen. Die Bau-
teilnetze besitzen Flansche oder iiberdecken sich in den Bereichen, in denen sie miteinander
verbunden werden sollen. Das bringt zum einen das Simulationsmodell der Realitéit naher

LSMP - shared memory processing
2MPP - massive parallel processing

2.2 Pre- und Postprocessing der Crash-Simulation

31

Homogene Vernetzung

Zusammenfihren Vernetzung des) v
der CAD-Flachen Gesamtfahrzeugmodells “ | Tl Z'Q‘

Inhomogene Vernetzung

FEM \
e | Assembly einzelner
I | Finite—Element-Modelle

Unabhangige
Bauteilvernetzung

Abbildung 2.3: Bisher wurden aneinandergrenzende Bauteile im Finite-Element-Modell
durch homogene Vernetzung, also korrespondierende Randknoten miteinander verbun-
den. Die Weiterentwicklung der Simulationscodes erlaubt inzwischen eine inhomogene Ver-
netzung, bei denen die unabhingig voneinander vernetzten Bauteile in Flanschbereichen
(schraffiert) durch punkt-, linien- oder flichenférmige Verbindungselemente aneinanderge-
koppelt werden.

und hat zum anderen den Vorteil, den Modellautbau zu beschleunigen und insbesondere
den Austausch von Bauteilen wesentlich zu vereinfachen.

Durch das Zusammenfiihren unabhéingig voneinander vernetzter Bauteile mit nicht-
korrespondierenden Netzknoten kommt es besonders in gekriimmten Flanschbereichen, in
denen die Bauteilnetze mit einem geringen Toleranzbereich sehr nahe aneinander liegen
miissen, zu Netzberiihrungen (Penetrationen) oder gar -durchdringungen (Perforationen).
Wie der Abbildung 2.4 zu entnehmen ist, miissen die Finite-Elemente im Flanschbereich
benachbarter Bauteile mindestens die Hélfte der aufsummierten Blechdicken auseinander-
liegen, um sich nicht zu beriihren, wenn das Schalenelement die Mittelebene des Bleches
darstellt. Ein weiterer, hiufig auftretender Grund fiir derartige Netzfehler sind unterschied-
liche Modellstdnde zusammengefiihrter Daten. Die Folge initialer Perforationen und Pene-
trationen im Eingabemodell der Crash-Simulation sind initial auftretende Krifte, die die
Simulationsergebnisse verfilschen. Daher gilt es, derartige Netzfehler zu detektieren und
zu beseitigen, bevor das Finite-Element-Modell der Simulation iibergeben wird.

Nachdem das Finite-Element-Netz bereinigt wurde, miissen bisher unverbundene Bau-
teile an angrenzenden Bauteilen des Gesamtfahrzeugmodells durch Verbindungselemente

32

Fahrzeugentwicklung und Strukturmechaniksimulation

CAD-Geometrie Bauteil A

Perforation
FE—Netz

Blechdicke des
Schalenelementes

Penetration Bauteil B

Abbildung 2.4: Das Bild links veranschaulicht, dass ein Schalenelement in der Simulation
als voluminoser Korper behandelt wird, da die Blechstirke zu beriicksichtigen ist. Bei
der Zusammenfiihrung unabhingig voneinander vernetzter Bauteile kann es daher, wie
rechts skizziert, in Flanschbereichen zur Penetration (Beriihrung) oder gar zur Perforation
(Durchdringung) kommen.

(zum Beispiel Schweifipunkte und -nihte, Klebeschichten, Nieten oder Schrauben) ange-
bunden werden. Besonders in der frithen Phase eines Fahrzeugprojektes wird dieser Ar-
beitsschritt vom Berechnungsingenieur getétigt, da das Konstruktionsmodell noch keine
Informationen zu Verbindungselementen enthélt. Das Definieren von Verbindungselemen-
ten war vor Beginn dieser Arbeit lediglich durch das Editieren des Eingabedatensatzes mit
dem Texteditor oder bei Schweiflpunkten durch Angabe der Koordinaten in einem Dialog-
fenster moglich. Eine effiziente Bearbeitung der Modelldaten im Vorverarbeitungsschritt
erforderte in diesem Bereich eine leicht zu handhabende, intuitive Mo6glichkeit, diese Daten
interaktiv zu definieren.

Als weiterer Arbeitsschritt gehort das Einbringen nicht ausmodellierter Bauteile durch
Verteilung ihrer Masse auf benachbarte Substrukturen des Fahrzeugmodells, der so genann-
te Massentrimm, zu den Vorverarbeitungsaufgaben in der Strukturmechaniksimulation.
Nicht zuletzt miissen die Bauteilnetze auch bestimmten Qualitdtsanspriichen geniigen, da-
her spielt die Modellvalidierung eine wichtige Rolle. Zum Beispiel miissen die Innenwinkel
der Finite-Elemente in einem gewissen Toleranzbereich liegen und eine mogliche Torsion
vierseitiger Schalenelemente sollte einen vorgegebenen Grenzwert nicht iiberschreiten. Des
Weiteren gilt es, fehlerhafte Verbindungselemente zu eliminieren, da diese unter Umstédnden
die Simulationsberechnung zum Abbruch bringen kénnen.

Abschlieflend wird direkt im Datensatz spezifiziert, wie viele Zeitschritte iiber welchen
Zeitraum simuliert und welche Parameter berechnet und in den Ergebnisdaten abgelegt
werden sollen. Zu den standardmiflig ausgewerteten Groéfien gehoéren

e Verschiebungsvektoren der Netzknoten, deren Geschwindigkeit und Beschleunigung
e minimale/maximale plastische Dehnung der Schalenelemente
e Dicke der Schalenelemente

Je nach Lastfall werden zusétzlich noch Knotenkrifte, Knotenmomente und Elementener-
gien ausgewertet.

2.2 Pre- und Postprocessing der Crash-Simulation

33

Die Berechnungsingenieure sind bemiiht, nachzuweisen, dass die Aussagekraft ihrer
Simulationsergebnisse der von realen Crashtests entspricht. Dazu wird untersucht, wie grof3
die Streuung der Ergebnisse bei den verwendeten Simulationsmodellen beziehungsweise
dem Simulationsprogramm ist, indem die Ergebnisse mehrerer Simulationsldufe mit den
gleichen Eingabedaten miteinander verglichen werden. Durch stochastische Simulation, in
denen bestimmte Parameter der Eingabedaten leicht modifiziert werden, wird iiberpriift,
ob die Ergebnisse innerhalb eines tolerierbaren Streubereichs bleiben. Gleichzeitig kénnen
die Erkenntnisse dazu verwendet werden, das Fahrzeugmodell zu optimieren. Dank einer
integrierten Vor- und Nachverarbeitung von Simulationsdaten durch direkte Anbindung
entsprechender Applikationen an den Solver wird es dem Berechnungsingenieur in der
Crash-Simulation voraussichtlich schon in naher Zukunft méglich sein, die Optimierung der
Fahrzeugstruktur zu steuern und somit den Entwicklungsprozess stark zu beschleunigen.

Kapitel 3

Visualisierung im CAE-Umfeld

Die wissenschaftliche Visualisierung grofler Datenmengen hat zum Ziel, aussagekriftige
Bilder zu generieren, die dem Betrachter eine Analyse der Daten ermdoglichen. Die dafiir
notwendigen Arbeitsschritte umfassen die Datenaufbereitung, die Wahl einer geeigneten
Datenreprisentation und eine effiziente Bildsynthese. Dieses Kapitel gibt einen Uberblick
zu den Basistechniken, die in der interaktiven Computergraphik und Visualisierung ins-
besondere im Umfeld der digitalen Fahrzeugentwicklung zum Einsatz kommen. Es schafft
die Grundlagen fiir die weiteren Kapitel, in denen die im Rahmen dieser Arbeit entwickel-
ten und eingesetzten Algorithmen erldutert werden. Der folgende Abschnitt gibt einen
Uberblick iiber die notwendigen Verarbeitungsschritte auf dem Weg von den Rohdaten bis
zur Darstellung eines Bildes.

3.1 Visualisierungs-Pipeline

Die erste Stufe der in Abbildung 3.1 dargestellten Visualisierungs-Pipeline reprisentiert die
Datenquellen, die die Rohdaten liefern. Die Rohdaten werden im Allgemeinen mit spezieller
Hardware (CT-/MR-Scanner, Teleskop, Mikroskop etc.) analog gemessen und anschlieflend
digitalisiert oder sie stammen von komplexen Modellbeschreibungen beziehungsweise aus
Ergebnissen einer Simulation. Die inhomogenen Rohdaten sind in der Regel mehrdimensio-
nal und konnen skalare Groflen, Vektoren, Matrizen und Tensoren enthalten. Den meisten
Werten ist eine Position und bei zeitabhéngigen Daten ebenfalls ein Zeitpunkt zugeordnet.
Die verschiedenen Arten eines Gitters, auf dem die Daten vorliegen, lassen sich nach unter-
schiedlichen Kriterien klassifizieren. Sofern das Gitter, auf dem die Daten vorliegen, nicht
fiir die Weiterverarbeitung geeignet erscheint, werden die Daten in einem Rekonstruk-
tionsschritt zum Beispiel durch ein geeignetes Interpolationsverfahren auf das gewihlte
Gitter transformiert. Der Rekonstruktionsschritt ist fester Bestandteil der Visualisierungs-
Pipeline fiir Messdaten und iiblicherweise in das Messgerit integriert; unter Umstinden
kann er aber auch auf Simulationsdaten angewendet werden, wenn der Gittertyp gewech-
selt werden muss, um spezielle Algorithmen ausnutzen zu kénnen. Durch Filterung werden

36

Visualisierung im CAE-Umfeld

die Rohdaten dann auf die fiir die Weiterverarbeitung wesentlichen Visualisierungsdaten
reduziert.

Visualisierungs—Pipeline

Interaktion
\ \
Acquisition / \ Filtering Mapping Rendering
Rohdaten Visualisierungs— Darstellbare Visualisierun
daten Repréasentation 9
. Geometie: Auibue, I
\S,l;i?;, Linien Farbe Bilder
| Tensor | ! Fldchen Textur i Video |
SR i Voxel Transparenz | R .

Abbildung 3.1: Die dargestellte Visualisierungs-Pipeline zeigt die verschiedenen Stufen der
Datenverarbeitung bei der Visualisierung von den Rohdaten bis hin zum erzeugten Bild.

Im néchsten Verarbeitungsschritt, dem Mapping, wird eine geometrische Re-
prisentation fiir die zugrundeliegenden Daten gewihlt. Dies kdnnen je nach Datentyp gra-
phische Primitive wie Linien, Flichen oder Volumenelemente sein. Zuséitzlich konnen die
Primitive noch mit Attributen wie Farbe, Textur oder Transparenz versehen werden, um
weitere Informationen in der Darstellung unterzubringen. Es kommen auch Glyphen zum
Einsatz: das sind Hilfsgeometrien, die je nach Komplexitét durch ihren geometrischen Auf-
bau und das Anwenden verschiedener Attribute fiir die Visualisierung mehrdimensionaler
Daten genutzt werden. Als Zwischenergebnis entsteht eine darstellbare Représentation der
Daten.

Der letzte Schritt in der Visualisierungs-Pipeline setzt sich mit der effizienten Bild-
synthese (engl.: Rendering') auseinander. Dazu werden aus der dreidimensionalen Sze-
nenbeschreibung unter Anwendung von 3D-Graphikbibliotheken zweidimensionale Bilder
generiert; dies geschieht, teilweise durch Ausnutzung spezieller Graphik-Hardware, stets
mit dem Ziel, hohe Bildwiederholraten zu erreichen, die es dem Betrachter erlauben, durch
interaktives Navigieren durch die Daten zusétzliche Informationen zu erhalten.

Fiir grofle Datenséitze, wie sie aus Stromungs- oder Strukturmechaniksimulationen in
der Fahrzeugentwicklung resultieren, miissen in allen Stufen der Visualisierungs-Pipeline
Optimierungsschritte vorgenommen werden, um fiir die stetig steigende Komplexitéit der
Daten hohe Interaktionsraten zu gewihrleisten. Dazu gehdren

e Wahl eines geeigneten Gitters: Regulédre kartesische Gitter ermoglichen zwar eine ein-
fache Zellfindung und Partikelverfolgung durch implizite Nachbarschaftsinformation,

! Rendering ist eine allgemeine Bezeichnung fiir den gesamten Verarbeitungsprozess von einem dreidi-
mensionalen Objekt zu einer schattierten zweidimensionalen Projektion auf einer Darstellungsfliche.

3.2 Interaktive Computergraphik

37

bringen jedoch hiufig einen groflen Anteil leerer Zellregionen mit sich, wihrend in un-
strukturierten Gittern lediglich die datentragenden Zellen enthalten sind.

e Hierarchische Unterteilung der Daten: Durch Strukturierung koénnen effiziente Algo-
rithmen zur Zellsuche zum Einsatz kommen. Die Verarbeitung von Volumendaten auf
fein aufgelosten kartesischen Gittern, die nur zu einem geringen Teil mit Daten besetzt
sind, ist durch hierarchische Verfeinerung maoglich, durch die leere Regionen ausgespart
werden.

e Vorverarbeitungsfilter: Die Anwendung von Filteroperationen kann zur Extraktion von
Merkmalen in komplexen Datensitzen herangezogen werden, um die gesuchten Struk-
turen hervorzuheben.

e Simplifizierung: Die Anzahl darzustellender Dreiecke pro Bild wird durch geeignete
Reduktionsalgorithmen auf ein Mafl beschrinkt, dass auch fiir urspriinglich grofle po-
lygonale Modelle hohe Interaktionsraten und damit eine exploratorische Datenanalyse
zulésst.

e Progressive Darstellung: Die Verwendung mehrerer Detailstufen (engl.: levels of de-
tail) oder die Reprisentation von Oberflichen durch progressive Netze, die sich in
Abhéngigkeit des Abstands zwischen Betrachter und Objekt entsprechend verfeinern,
beschleunigt ebenfalls den Darstellungsprozess.

e Szenengraphoptimierung: Die Beschreibung der Szene in Form eines gerichteten azy-
klischen Graphen entlastet die Graphik-Hardware durch Anwendung verschiedener
Culling-Verfahren, bei denen ganze Szenenobjekte vorab als ,nicht zum Bild bei-
tragend“ klassifiziert werden. Durch ein optimiertes Szenengraph-Design konnen der
Speicherbedarf sowie die Kosten fiir Anderungen an Einstellungen der Rendering-
Pipeline, also die Anzahl der state switches, minimiert werden.

e Textur-basierte Darstellungsverfahren: Durch das Ausschopfen verschiedener Funktio-
nalitdt konnen Berechnungen direkt auf dem Graphiksubsystem durchgefiihrt werden,
wodurch ,;in Hardware gegossene Berechnungsschritte“ ausgenutzt werden und der Bus
als Flaschenhals zur CPU umgangen wird.

Im Rahmen der vorliegenden Arbeit sind diesen Ansétzen entsprechende Algorithmen
neu entwickelt und angepasst worden, um die interaktive Visualisierung von Strukturme-
chanikdaten zu optimieren. Nachdem eine geeignete Datenreprédsentation in Form einer
darstellbaren Szenenbeschreibung gefunden wurde, setzen sich Methoden der interaktiven
Computergraphik damit auseinander, wie aus dem 3D-Modell in kiirzester Zeit ein Bild
generiert werden kann.

3.2 Interaktive Computergraphik

Interaktive Computergraphik hat das Ziel, durch die Verwendung effizienter Verfahren
aus bereits definierten, meist dreidimensionalen Modellbeschreibungen moglichst schnell
zweidimensionale Bilder zu erzeugen, um anschliefend wieder auf die néchsten Einga-

38

Visualisierung im CAE-Umfeld

ben des Benutzers reagieren zu kénnen. Dieser Vorgang entspricht der letzten Stufe der
Visualisierungs-Pipeline (Abbildung 3.1) und wird als Bildsynthese oder Rendering be-
zeichnet. Im Gegensatz zum fotorealistischen Rendering, bei dem das primére Ziel héchster
Bildqualitét mit globalen Beleuchtungsmodellen wie Raytracing oder Radiosity trotz ho-
hen Rechenaufwands verfolgt wird, kommen im Bereich interaktiver Graphikanwendungen
nur lokale Beleuchtungsmodelle zum Einsatz, da diese von der Graphik-Hardware direkt
unterstiitzt werden. Eine ,interaktive“ Visualisierungsapplikation bietet dem Anwender je-
derzeit die Moglichkeit, {iber Eingabegerdte Einfluss auf die Darstellung zu nehmen: die
Eingabe wird sofort verarbeitet und das Ergebnis wird dem Anwender unverziiglich in Form
eines neuen Bildes angezeigt. Der Begriff der ,,Echtzeitvisualisierung® stellt noch hohere
Anforderungen: die Bildwiederholrate betrigt mindestens 25 Bilder pro Sekunde, so dass
der Betrachter Verdnderungen der Darstellung als flielend empfindet.

3.2.1 Rendering-Pipeline

Der Begriff der Rendering-Pipeline umfasst alle Verarbeitungsschritte, die notwendig sind,
um von den Daten eines 3D-Modells zu einem 2D-Bild zu gelangen. In Abbildung 3.2
werden diese anhand der Koordinatensysteme skizziert, in die die Daten nacheinander
iiberfiihrt werden:

Modellkoordinaten Weltkoordinaten View-Koordinaten
Teilmodell 1
Teilmodell 2 Modell- Szenen- View— Beleuchtungs— Perspektivische
; Transformation beschreibung Transformation berechnung Transformation
Teilmodell N . . .
Rendering—Pipeline
Normalisierte Bildkoordinaten
Geréte-Koordinaten Rasterisierung
; ; Alpha-Test .
L Viewport-Abbildung — X .
Clipping > Scan-Konvertierung FngTim Stencil-Test Blending [Frpr:e:)”; r]
Schattierung ate Tiefentest amebutie
Texturierung

Abbildung 3.2: Ein grober Uberblick der Rendering-Pipeline verdeutlicht, welchen Trans-
formationen die 3D-Geometriedaten auf dem Weg zum 2D-Bild unterzogen werden.

e Modellkoordinatensystem: Jedes Objekt der Szene wird in lokalen Koordinaten be-
schrieben. Gegebenenfalls muss das Objekt zunéchst tesseliert werden, um ein Drei-
ecksnetz zu erhalten.

e Weltkoordinatensystem: Durch die Modelltransformation werden die einzelnen Ob-
jekte in der Szene zu einem 3D-Modell zusammengefiihrt. Aulerdem werden Position
und Ausrichtung des Betrachters sowie der Lichtquellen festgelegt.

e View-Koordinatensystem: Nach Anwendung der Viewing-Transformation kann die
Menge der weiterzuverarbeitenden Dreiecke durch View Frustum Culling gegen das
Pyramidenstumpf-férmige Sichtvolumen reduziert werden.

3.2 Interaktive Computergraphik

e Normalisiertes Gerdte-Koordinatensystem: Durch perspektivische Projektion, Clip-
ping in homogenen Koordinaten und anschlielender perspektivischer Division wird
der Inhalt des View-Frustums auf ein normalisiertes, Quader-férmiges Volumen ab-
gebildet. Im letzten Schritt, der Rasterisierung, werden die polygonalen Daten durch
Scan-Konvertierung in Pixeldaten umgewandelt; dies schliefit auch die Schattierungs-
berechnung und eine eventuelle Texturierung ein.

e Bildkoordinatensystem: Die Viewport-Abbildung beférdert die Pixel nach bestande-
nem Alpha-, Stencil- und Tiefentest schliefilich an die richtige Position im zweidi-
mensionalen Bild.

Vertex— > \ Evaluator Per—Vgrtex—
Daten \ Operationen
Dis.play_ Rasterisierung Per_Fragmem_ Framebuffer
Liste Operationen

T

A .

|

Pixel- > \ Pixel- Textur— 1

Daten €~ - == - - — - - - - - - —---—-~- ﬁ Operationen j-€ - Speicher :

Abbildung 3.3: Die OpenGL-Pipeline skizziert die Pfade der Daten zwischen den einzelnen
Verarbeitungsschritten wihrend der Bildsynthese.

Die folgende Auflistung gibt am Beispiel der OpenGL-Pipeline einen Uberblick zu den
einzelnen Phasen wihrend der Bildsynthese:

1. Auswertung des OpenGL-Befehls: OpenGL-Befehle kénnen einzeln nacheinander
oder zusammengefasst in so genannten Display-Listen der Pipeline zugefiihrt werden.
Display-Listen werden schneller verarbeitet und kénnen wiederverwendet werden.

2. Per-Vertex-Operationen: Fiir jeden Knoten miissen die oben angefiihrten Transfor-
mationen, die Beleuchtungsberechnung sowie das Clipping durchgefiihrt werden.

3. Rasterisierung: Hier werden aus den geometrischen Primitiven und Bild-basierten
Daten durch Scan-Konvertierung, Schattierungsberechnung und Texturierung Frag-
mente gebildet; diese bestehen aus Bildspeicheradressen und Informationen zu den
Pixel-Attributen, wie zum Beispiel Farbe und Transparenz.

4. Per-Fragment-Operationen: Bevor die Fragmentdaten im Bildspeicher abgelegt wer-
den, durchlaufen die einzelnen Pixel noch diverse Tests, dazu gehoren der Alpha-,
Stencil-, Tiefen- und Scissor-Test. Dariiber hinaus erfordern Attribute wie Transpa-
renz gegebenenfalls eine Modifikation der Fragmentdaten durch bereits bestehende
Bilddaten aus dem Bildspeicher.

40

Visualisierung im CAE-Umfeld

3.2.2 Hierarchische Datenstrukturen zur ridumlichen Untertei-
lung

Eine Basistechnik im Bereich der Graphischen Datenverarbeitung ist die hierarchische
Unterteilung des darzustellenden Modells. Durch eine derartige Aufbereitung der Daten
konnen nicht nur Teile der Bildsynthese (Culling-Verfahren), sondern auch Interaktio-
nen (Picking, Force-Feedback-Motion) oder die Losung anderer hiufig gestellter Aufga-
ben (,,Finde den néchsten Nachbarn®, [Welche Objekte liegen in diesem Bereich?“) stark
beschleunigt werden. Die meisten Unterteilungsverfahren lassen sich einer der beiden fol-
genden Kategorien zuordnen:

e Binary Space Partitioning (BSP-Tree)
Die grundlegenden Arbeiten zu den in der Graphik angewendeten BSP-Trees sind
der Point-Quadtree [18] (Abbildung 3.4 a) und der kd-Tree [3] von Bentley. Um eine
3D-Szene mit Hilfe eines kd-Trees zu unterteilen, wird folgendermafien vorgegangen:
In jedem Schritt wird der 3D-Raum durch eine Ebene in zwei Teile unterteilt. Jedes
Objekt wird darauthin einer der beiden Untermengen zugeordnet. Dieses Vorgehen
wird rekursiv fortgesetzt, bis eine vorher spezifizierte Anzahl maximal zuldssiger Pri-
mitive nicht mehr iiberschritten wird oder eine vorgegebene Baumtiefe erreicht ist.
In dem urspriinglichen Ansatz von Bentley et al. [3] verlaufen die Hauptachsen-
orthogonalen Ebenen jeweils durch einen Punkt der zu unterteilenden Punktmenge;
auflerdem wechselt die Ausrichtung der Unterteilungsebene in jedem Iterationsschritt.
Die Unterteilung wird so vorgenommen, dass sich auf beiden Seiten der Ebene gleich
viele Punkte befinden. Das fiihrt zu einer optimalen Balancierung und resultiert so-
mit fiir eine Suche in einer Laufzeitkomplexitidt von O(logn) (Abbildung 3.4 b).
Der ,optimierte kd-Tree“ [20] legt die Trennebene mittig zwischen die in beiden
Untermengen néchstliegenden Punkte. Dadurch werden die eigentlichen Punktdaten
nun nur noch durch die Blattknoten des Baumes repréisentiert und befinden sich in
so genannten Buckets, also Zellen, die durch verschiedene Ebenen definiert werden
(Abbildung 3.4 c). Spéter wird die Permutation der Ebenenrichtung aufgehoben.
Fuchs et al. [25] richten in dem Binary Space Partitioning Tree die Trennebenen
nach den zu unterteilenden Objekten aus. Sie passen sich dadurch der Szene besser
an, verbrauchen allerdings mehr Speicher, da sie die volle Ebenenbeschreibung in
jedem Hierarchie-Knoten halten miissen (Abbildung 3.4 d).

¢ Bounding Volume Hierarchy (BV-Tree)
Die Hiillvolumenhierarchie speichert Informationen iiber Objekte ab, die ihre ent-
haltene Geometrie komplett umgeben. Hiufig verwendete Hiillvolumen sind Kugeln
und achsenparallele (AABB) oder auch objektorientierte (OBB) Quader. Sie eignen
sich besonders zum Einsatz fiir Szenengraphen und zur Kollisionsdetektion. Um bei-
spielsweise eine AABB-Hierarchie aufzubauen, werden die beiden folgenden Schritte
fiir jede Hierarchiestufe nacheinander durchgefiihrt:

1. Minimalen Hiillquader finden, der das Objekt oder die Teilszene umgibt

3.2 Interaktive Computergraphik

P7
c9
c1 cio
P9
C2 Lps Cé c7
W NO
P10y T sw SO
) c7) P9 c3 P3
Ct C2 P8 C9 C4 P1 Ccs P2 P4 P6
c4 —=®
Cs|
c P2 C10P10 P5
3 P6
P1 C5)
+P5
P7
[e]]
ol c1o
I
°
4
P9 Py c3
oc2 Pe s
@ &
b P10 o7 Pi0 c7
) c4 c2 P2 Cc9
ce® / SN P
@cs P1 ci P9 c5 PS5 P8 Ce
c3@ \ N \
Py P2 p3 P& cto P4 c8 P7
A c5 L g
R —
P3 P6
P4+ P5
X2 X7 X4 P7@
coe
Y6
c1
° clo@ Y8
Y7 [] P
P9 .8 [J X1
oc2 Y5 ce /\
P10 |xg 0.7 i Y2
C) vo o~ A
vi s X3 X2 X5 X4
N $ PN N N N
[} \&] X P 1l Yo v7 8 Y4 3 ¥5 Y6
c® P2 NN N NN AN
° v & o3 ;s d3 CaXe C1P9 CloP2 C5X8 X9 &7 xrce 7
° s L] N YAWAN N\
ps | @V3 Pl0 C2 3 Y10P4 P5 P8 Co
e | P 2N
X3 X1 X5 X9 P C8

d)

E9 ES E15 E4
Pl G a3 P9 E7 E17 Ef3 El2
P10 G2 G4 G10
G5 P2P4 PS5 G7 GeP8 P7
G8 G9
P7@
(<X)
- c10
[]
L]
C2 P9 ° [
® !] P8 o6 W NO
sw SO
) P10 6.7
¢ A\ AN TN N
4 ci P9 C10 Ca Pt C3 c5 Cs Co Ce P7
* . - /\ NN
[)
° Y 6 P10C2 PG P8 C7
. e I /N
®
& Ps P2P3 P4 P5

Abbildung 3.4: Beispiele hierarchischer Baumstrukturen: (a) Point-Quadtree, (b) kd-Tree,
(c) Optimierter kd-Tree, (d) BSP-Tree und (e) Region-Quadtree.

42

Visualisierung im CAE-Umfeld

2. Hiillquader entlang der lingsten Achse unterteilen und die Objekte jeweils einem
der beiden untergeordneten AABBs zuordnen.

Diese Vorgehensweise wird als top-down bezeichnet und verwendet als Abbruchkri-
terien die gleichen wie BSP-Trees. Bei vielen der im Rahmen dieser Arbeit entwickel-
ten Berechnungs- und Visualisierungsmethoden ist die hierarchische Unterteilung der
Finite-Element-Struktur in eine Hiillvolumenhierarchie unverzichtbar. Eine detaillier-
te Diskussion iiber die Arbeitsweise der eingesetzten Algorithmen zur Berechnung mi-
nimaler Abstidnde sowie der Detektion von Perforationen und den zu bevorzugenden
Hiillvolumentyp findet sich in Abschnitt 7.1.1 ab Seite 108.

Der Raum im BSP-Tree wird nach dem Unterteilungsschritt in zwei disjunkte Volumen-
bereiche getrennt. Demgegeniiber konnen sich die Volumenbereiche zweier Kindknoten in
einem BV-Tree iiberlappen. Allerdings wird jedes Geometrieobjekt oder -primitiv nur ei-
nem der beiden Kindknoten zugeordnet.

Der Octtree, eine hiufig im Zusammenhang mit Volumendaten verwendete Hierarchie-
struktur, unterteilt den 3D-Raum auf die gleiche Weise wie der Region-Quadtree (Abbil-
dung 3.4 e) im Zweidimensionalen: Ausgehend von einem achsenparallelen Hiillquader, der
alles umschliefit, wird dieser Raum in der Mitte durch drei ebenfalls achsenparallele Ebe-
nen in acht kleinere Hiillquader zerlegt. Dieser Vorgang wird wiederum so lange wiederholt,
bis die in einem Hiillvolumen enthaltene Information homogen ist, oder eine vorgegebene
Unterteilungstiefe erreicht wird. Wihrend die Unterteilung im kd-Tree in jedem Iterati-
onsschritt jeweils nur durch eine Ebene vorgenommen wird und den Raum so unterteilt,
dass beiden Seiten gleich viele Objekte zugeordnet werden, ist die Lage und Gréfle der
Hiillquader beim Octtree durch regelméifiiges Teilen in der Mitte des zu unterteilenden
Quaders festgelegt. Die optimale Balancierung von kd-Trees fiihrt bei einer Suche zu ei-
ner geringen Laufzeitkomplexitit von O(logn), die im Allgemeinen weniger ausgewogene
Octtrees nicht gewihrleisten konnen. Auf der anderen Seite bieten Quad- und Octtrees
durch ihre regelméfiige Struktur die Moglichkeit, effizient aus einem Hiillvolumen in ein
angrenzendes zu wechseln — eine fundamental wichtige Eigenschaft fiir Aufgaben, auf die
zum Beispiel Strahl- oder Partikelverfolgung zuriickgreifen.

Dariiber hinaus gibt es noch eine Reihe weiterer Ansitze, die sich bestimmten Pro-
blemstellungen widmen beziehungsweise die Nachteile der oben genannten Strukturen zu
mindern versuchen. Einen guten Uberblick geben Samet [59] sowie Gaede und Giinther [26].

3.2.3 Einflussfaktoren bei der Bildsynthese

Das Nichterreichen der gewiinschten Bildwiederholrate kann auf verschiedene Ursachen
zuriickzufithren sein. Wieviel Aufwand fiir die Berechnung eines Bildes von der Graphik-
Hardware getrieben werden muss, hingt neben dem Haupteinflussfaktor, der Szenenkom-
plexitit, von weiteren Faktoren ab, die im Folgenden aufgelistet werden.

3.2 Interaktive Computergraphik

43

Engpisse der Rendering-Pipeline

Bei Verwendung von Texturen stellt hdufig eine hohe Bildauflésung bei beschrinkter Ra-
sterisierungsleistung einen Engpass fiir die Bildsynthese dar (,,rasterization bound*. Durch
Herabsetzen der Bildauflosung wihrend der Interaktion kann die Reaktionszeit der An-
wendung verkiirzt werden. Bei der Darstellung komplexer polygonaler Modelle handelt
es sich allerdings in der Regel um eine zu grofle Menge von Geometriedaten, die von
der Rendering-Pipeline verarbeitet werden miissen (,geometry bound“). In diesem Fall
ist es wichtig, die Weiterverarbeitung der Szene auf potenziell sichtbare 3D-Objekte zu
beschrinken und die Beschreibung der Geometriedaten fiir die Rendering-Pipeline zu op-
timieren. Schliefilich beeinflusst die Anzahl der Lichtquellen, die Verarbeitungsreihenfolge
von Objekten mit verschiedenen Attributen sowie die angewendeten Pixel-basierten Tests
die Bilderstellungszeit.

Beleuchtungsmodelle und Schattierungsverfahren

Neben Verdeckung und perspektivischer Projektion triagt auch die Beleuchtungsberechnung
ganz entscheidend zur richtigen Wahrnehmung eines Bildes einer dreidimensionalen Szene
bei. Das der Beleuchtungsberechnung am h#ufigsten zugrundeliegende Modell von Phong
[51] setzt sich aus einem ambienten, einem diffusen und einem spekularen Anteil zusammen:

!
I\ = I koOgx + Z fap; 11, <kd0d)\ (]\7 . Ez) + ksOsn (ﬁz : ‘7)”) (3.1)

=1

Fiir die resultierende Farbe lassen sich die Intensitdten I, der RGB-Komponenten einzeln
berechnen; A steht hier stellvertretend fiir die jeweils betrachtete Farbkomponente. Der am-
biente Term I, abstrahiert die Intensitit des umgebenden Lichts, das auf indirektem Wege
das Objekt erreicht, und das beeinflusst durch den ambienten Reflexionskoeffizienten k,
sowie die Objektfarbe Og4\ von dort wieder abgestrahlt wird. Dieser ambiente Anteil sorgt
unabhingig von der Ausrichtung des Lichts und des Objektes fiir eine Grundhelligkeit. Die
Zusatzinformation fiir die Wahrnehmung des dreidimensionalen Objektes wird durch den
diffusen und spekularen Anteil fiir jede der [Lichtquellen eingebracht. Die Intensitéit der
i-ten Lichtquelle I;, wird zunéchst durch einen Vorfaktor fip, gemindert, der die atmo-
sphérische Dampfung approximiert. Des Weiteren gehen der diffuse Reflexionskoeffizient &,
und die Objektfarbe Oy, beeinflusst durch den Winkel zwischen der Oberflichen-Normale
N und dem Richtungsvektor zur i-ten Lichtquelle EZ mit ein. Schliefllich sorgt der spekulare
Reflexionskoeffizient k£, zusammen mit der separat spezifizierbaren spekularen Objektfar-
be O, in Abhiéngigkeit vom Winkel zwischen dem optimal reflektierten Lichtstrahl R;
und der Richtung 17, aus der das Objekt betrachtet wird, fiir zusdtzliche Intensitdat durch
gespiegeltes Licht (siehe Abbildung 3.5).

OpenGL bietet fiir die Beleuchtung einer polygonalen Szene drei Arten von Lichtquel-
len: Directional, Point und Spot Lights. Am h&ufigsten kommen Directional Lights, also
gerichtete Lichtquellen zum Einsatz. Ausgehend vom Phong-Modell werden hier weitere

44

Visualisierung im CAE-Umfeld

Np4H : Lichtvektor

: Normalenvektor am Objekt
: Optimaler Reflexionsvektor

: Vektor zum Betrachter
: Halfway-Vektor zwischen Lund V

< B 2

Abbildung 3.5: Wihrend das Beleuchtungsmodell von Phong die spekulare Reflexion in
Abhéngigkeit des Winkels zwischen dem optimal reflektierten Lichtstrahl R und der Be-
trachterrichtung V' beriicksichtigt, wird in OpenGL und Direct3D stattdessen die Abwei-
L+V
|L+V|

chung des so genannten Halfway-Vektors H = von der Normalen N herangezogen

(Blinn-Phong-Modell [5]).

Vereinfachungen vorgenommen; anders als bei Point und Spot Lights, die in Abhéngigkeit
ihres Abstandes dy zum beleuchteten Objekt die atmosphirische Dimpfung durch den
Faktor

) 1
fAD_m1n<A+BdL+Cd%’1> (32)

approximativ beriicksichtigen, werden gerichtete Lichtquellen als im Unendlichen positio-
nierte Lichter angenommen und der Term f,p vernachlissigt. Des Weiteren wird der spe-
kulare Reflexionsterm nicht mit dem potenzierten Kosinus des Winkels zwischen R und
17, sondern mit dem zwischen H und N multipliziert; sofern der Betrachter ebenfalls im
Unendlichen angenommen wird, reduziert sich H zu einem konstanten Term.

Um die gesamte Szene basierend auf der oben erlduterten Beleuchtungsberechnung zu
schattieren, gibt es drei Verfahren, die diese Berechnung pro Primitiv, pro Vertex oder
pro Pixel durchfiihren und daher mit unterschiedlichem Rechenaufwand unterschiedliche
Ergebnisse erzeugen:

e Das Flat- oder Constant Shading ordnet jedem Primitiv nur eine Flichennormale zu.
Die Beleuchtungsberechnung wird nur einmal fiir das gesamte Primitiv durchgefiihrt;
dadurch erscheint jeder Pixel des Primitivs in der gleichen Farbe. Vom Betrachter wird
jedes Primitiv eines Polygonmodells als ,flach® wahrgenommen. Kanten zu benachbar-
ten Primitiven mit abweichenden Normalen werden deutlich sichtbar.

e Beim Gouraud- oder Smooth Shading wird die Beleuchtungsberechnung an den Eck-
punkten der Primitive vorgenommen. Die resultierenden Farbwerte an den Eckpunkten
werden wihrend der Rasterisierung fiir die anderen Pixel des Primitivs durch lineare
Interpolation bestimmt. Die Ubergiinge zu benachbarten Primitiven sind weich und
werden nicht als Kanten wahrgenommen, sofern gemeinsamen Knotenpunkten die glei-
chen Normalen zugeordnet werden.

e Beim Phong-Shading wird ausgehend von den Normalen in den Eckpunkten eines Pri-
mitivs durch Interpolation fiir jedes Pixel eine eigene Normale zur Beleuchtungsbe-
rechnung ermittelt. Lichtreflexionen werden dadurch sehr viel realistischer abgebildet

3.2 Interaktive Computergraphik

45

als beim Gouraud-Shading. Begrenzte spekulare Lichtreflexionen kdnnen somit auch
innerhalb eines flachen Primitivs dargestellt werden.

Fiir die Schattierung von polygonalen Modellen werden von der Graphik-Hardware nur
die beiden erstgenannten Verfahren direkt unterstiitzt (Abbildung 3.6). Phong-Shading-
Reflexionseffekte kénnen durch Verwendung von speziellen Texturen oder den Einsatz von
Pixel-Shadern auf aktueller PC-Grafik-Hardware realisiert werden.

Darstellungsattribute

Neben Farbe und Reflexionseigenschaften werden zunehmend auch Texturen als Dar-
stellungsattribut verwendet. Die im Vergleich zu den erstgenannten Attributen sehr
aufwindige Texturierung hat sich durch die enorm gesteigerte Leistungsfihigkeit der
Graphik-Hardware in den letzten Jahren zu einer Standard-Visualisierungstechnik ent-
wickelt. Dabei werden den Primitiven eines geometrischen Objekts explizit Punkte im

Abbildung 3.6: Wihrend bei dem linken Dummy durch Flat-Shading sich die Finite-
Elemente mit unterschiedlichen Normalen klar voneinander abgrenzen, verschwinden durch
Gouraud-Shading (rechts) die inneren Kanten im gleichen Modell. Die Darstellung in der
Mitte ist ebenfalls Gouraud-schattiert; allerdings wurden hier zuvor Elementkanten detek-
tiert, an denen die Elementnormalen mehr als 15° voneinander abweichen, und den Knoten
dieser Kanten mehr als eine Normale zugewiesen.

46

Visualisierung im CAE-Umfeld

Texturbild zugeordnet. Innerhalb eines Primitivs werden diese Informationen wéhrend der
Rasterisierung durch eine zuvor spezifizierte Interpolationsfunktion auf die Fragmente ab-
gebildet. Der aus der Beleuchtungsberechnung hervorgegangene Farbwert des Objektes
wird mit dem aus der zugehorigen Texturbildposition ermittelten Farbwert kombiniert
oder durch ihn ersetzt. Dies geschieht in Abhéngigkeit der gewihlten Texturierungsfunk-
tion (siehe auch Abschnitt 7.1.3). Schliefllich wird der aus der Texturierung resultierende
Farbwert in Abhéngigkeit der Transparenz-Komponente nach dem Passieren der Pixel-
basierten Tests mit der bereits bestehenden Pixelfarbe im Compositing-Schritt verrechnet.

Sofern die Texturierung nicht von der Graphik-Hardware unterstiitzt wird, kénnen
Szenen mit Texturen kaum mit Bildwiederholraten im interaktiven Bereich dargestellt
werden. Inzwischen sind allerdings PC-Graphik-Karten im unteren Preisbereich schon in
der Lage, mehr als 100 Millionen beleuchtete und texturierte Dreiecke pro Sekunde? dar-
zustellen. Als reines Darstellungsattribut eignen sich Texturen zur Imitation der Ober-
flichenbeschaffenheit (zum Beispiel Holzmaserung). Dariiber hinaus lassen sich durch Tech-
niken wie Bump Mapping [6, 50] mit Hilfe von Texturen auch ohne zusétzliche geometrische
Komplexitdt Unebenheiten simulieren. Abschnitt 6.3 zeigt, wie eindimensionale Texturen
zur Visualisierung von skalaren Groflen eingesetzt werden.

Culling-Techniken

Fiir Szenen mit hoher Komplexitit, aus denen in einer interaktiven Applikation mehrere
Bilder pro Sekunde erzeugt werden sollen, miissen Verfahren auf Modellebene dafiir sor-
gen, dass nur potenziell sichtbare Objekte von der Rendering-Pipeline verarbeitet werden.
Diese Vorverarbeitungsschritte auf Objekt-Ebene werden als Culling (englisch fiir ,, Aus-
sortierung) bezeichnet und sortieren alle Objekte aus, die nicht zum resultierenden Bild
beitragen kénnen.

e Das View Frustum Culling greift dem Clipping der Primitive an den Ebenen des
Sichtvolumen auf Basis ganzer Objekte vor: Falls das Hiillvolumen eines Objektes
nach der Transformation in das View-Koordinatensystem auflerhalb des Sichtvolu-
mens liegt, kann ausgeschlossen werden, dass Teile des Objektes sichtbar sind. Wie
stark das View Frustum Culling die Bildsynthese beschleunigt, hingt neben der Gra-
nularitdt der Szene vor allem von der Position und Orientierung der Kamera ab.
Der grofite Effekt wird erzielt, sobald der Betrachter in die Szene eintaucht. Fiir Po-
lygonnetze, die sich iiber die gesamte Szene erstrecken, ist eine im Zusammenhang
mit OpenGL Optimizer als Spatializing bekannte Unterteilung in mehrere Teilnetze
sinnvoll.

e Das Portal Culling findet vor allem in Spielen Anwendung, in denen sich der Spie-
ler durch ein System von aneinandergrenzenden Riumen bewegt. Zunéchst wird der
Raum gezeichnet, in dem sich der Betrachter befindet. Anschliefend wird fiir je-
des sichtbare Loch in der den Raum begrenzenden Wand (zum Beispiel Fenster

2Stand Ende 2002

3.2 Interaktive Computergraphik

47

oder Tiiren) das View Frustum Culling entsprechend eingeschrinkt. Mit Hilfe ei-
nes Graphen, der die Nachbarschaftsinformation der Szene speichert, wird dann der
néchstliegende Raum gezeichnet. Die Bilderstellung wird beendet, sobald keine wei-
teren Rdume mehr sichtbar sind oder die zur Verfiigung stehende Zeit fiir das aktuelle
Bild abgelaufen ist.

e Beim Occlusion Culling werden Objekte friithzeitig aussortiert, die durch ande-
re, ndher am Betrachter gelegene Objekte verdeckt werden. Occlusion Culling setzt
eine Betrachter-abhéingige Verarbeitungsreihenfolge der Objekte voraus, in der die
néchstgelegenen Objekte vor weiter entfernten dargestellt werden, und basiert auf
einer im Vergleich zum View Frustum Culling sehr aufwindigen Verdeckungsberech-
nung. Folglich profitiert das Rendering, wenn wenig grofiflichige Primitive viele Pri-
mitive anderer Objekte verdecken. Geridte-Modelle, deren Gehéduse ein komplexes
Innenleben verdeckt, oder Spiele, in denen das Sichtfeld durch Raumwéinde begrenzt
ist, sind Beispiele fiir Szenen, in denen Occlusion Culling zu einer starken Beschleu-
nigung fithren kann.

e Das Detail Culling unterschligt Objekte, die aufgrund ihrer Darstellungsgrofie
kaum Informationen zu dem resultierenden Bild beitragen. Dazu wird die Grofle
des Hiillvolumens eines Objektes in Relation zum Sichtvolumen beziehungsweise der
Entfernung zum Betrachter gesetzt. Sofern dieser Quotient unter dem vorgegebenen
Schwellwert liegt, wird das Objekt als ,,unwichtig® aussortiert.

Optimierung der Geometriedaten

Bei der Visualisierung grofler Modelle bestehend aus hunderttausenden von Dreiecken er-
geben sich zwei limitierende Faktoren: zum einen die Bandbreite des Datenbus und zum
anderen die Rechenkapazitit des Prozessors, der die Koordinatentransformationen fiir die
Netzknoten durchfiihrt. Deshalb spielt die optimale Aufbereitung der polygonalen Geo-
metriedaten in Ergénzung zu den bereits genannten Filtermethoden fiir die Weiterver-
arbeitung in der Rendering-Pipeline eine bedeutende Rolle. Durch das Zusammenfassen
benachbarter Primitive wird die Topologie eines Polygonnetzes in komprimierter Form be-
schrieben, so dass ein auf dem Graphik-Chip integrierter Zwischenspeicher auf die Resultate
bereits vorangegangener Transformationsberechnungen zuriickgreifen kann.

Die am héufigsten eingesetzte Technik beim Optimieren der Netzbeschreibung ist das
Bilden von Dreiecksstreifen. Eine Modellbeschreibung, die sich aus beliebigen Polygonen
zusammensetzt, muss dazu zunéchst trianguliert werden. Anschlieflend werden benachbar-
te Dreiecke in Streifen zusammengefasst. Ausgehend von zwei Punkten, die eine Kante des
Start-Dreiecks bilden, wird durch Hinzufiigen jedes weiteren Punktes P; das i-te Dreieck
P,_5P,_1 P; des Dreiecksstreifens definiert (Abbildung 3.7). Folglich werden fiir einen Strei-
fen bestehend aus n benachbarten Dreiecken statt 3n lediglich n+ 2 Vertizes benétigt. Fiir
ein Netz aus n Dreiecken, dass durch s Dreiecksstreifen représentiert werden kann, miissen
also lediglich n 4+ 2s Punkte in der Rendering-Pipeline verarbeitet werden.

48

Visualisierung im CAE-Umfeld

S vl

0123435678 oder

Dreiecksstreifen Dreiecksfacher Quadrilateralstreifen 012345 und 35678

Abbildung 3.7: Bei der Verwendung von Dreiecksstreifen, -fichern oder Quadrilateralstrei-
fen verringert sich die Anzahl der zu verarbeitenden Punktkoordinaten, da die hervorge-
hobenen Punkte fiir die Definition mehrerer Primitive herangezogen werden konnen. Das
rechte Bild zeigt, dass es giinstiger ist, einen Dreiecksstreifen durch einen Kantenrichtungs-
wechsel fortzusetzen als zwei separate Dreiecksstreifen zu generieren.

Bei der Konvertierung eines Dreiecksnetzes in ein Netz von Dreiecksstreifen wird das
Optimum erreicht, wenn die Anzahl der Referenzen von Netzknoten, die die Streifen defi-
nieren, minimiert werden kann. Ziel ist es also, moglichst wenige lange Streifen zu bilden.
Es wurden bereits mehrere Ansétze zur Pfadsuche in Dreiecksnetzen publiziert: Eine friihe
Implementierung [1] nutzte den swap-Befehl von IrisGL, einem Vorgénger von OpenGL
aus, um einen Pfad auch dann fortsetzen zu kdonnen, wenn die Netzstruktur einen Kanten-
richtungswechsel erforderte. Unter OpenGL wird die Unterbrechung eines Dreiecksstreifens
durch Wiederholen des vorletzten Netzknotens und damit durch Erzeugen von ,leeren®
Dreiecken umgangen (vergleiche Abbildung 3.7 rechts).

In [17] stellen die Autoren verschiedene Strategien zur Optimierung von Dreiecksstrei-
fen vor, die insbesondere fiir Polygonnetze mit vielen Quadrilateralen gute Ergebnisse
liefern. Die Vorteile, die sich aus einer zusétzlichen globalen Suche nach Streifen maxi-
maler Linge ergeben, werden in Kapitel 6.1 detaillierter diskutiert. Deering [13] schligt
vor, die gemeinsam verwendeten Punkte benachbarter Streifen durch Vergréflerung des
Vertex-Cache wiederverwenden zu konnen. Chow [11] zeigt, wie ein Dreiecksnetz parti-
tioniert werden muss, um den Vertex-Cache moglichst gut auszunutzen. Beide Ansétze
komprimieren die zu verarbeitenden Daten, wodurch das Datenvolumen auf é bis % redu-
ziert werden kann. Hoppe [35] schlégt ein Verfahren vor, das die Reihenfolge, in der die
Primitive gezeichnet werden, umordnet und auch ohne Datenkompression durch Optimie-
rung der Lokalitdt gegeniiber einem herkémmlichen Dreiecksstreifen zu einer Entlastung
des Bus um den Faktor 1.6 bis 1.9 kommt.

Simplifizierung polygonaler Modelle

Wihrend das Zusammenfassen benachbarter Primitive zu Streifen die Rendering-Pipeline
von Transformationslast befreit, indem die inneren Knoten eines Streifens nur einmal
verarbeitet werden miissen, besteht in der Simplifizierung der Geometrie eine weitere
Moéglichkeit, Netzknoten einzusparen. Dabei wird die Geometrie am Ende der Simplifizie-
rung durch weniger Polygone approximiert dargestellt, das heifit, dass die Simplifizierung

3.2 Interaktive Computergraphik

49

im Gegensatz zur Streifengenerierung in der Regel mit einem Qualitdtsverlust behaftet ist.

In den vergangenen zehn Jahren wurde eine Vielzahl von Verfahren im Bereich der
Polygonreduktion entwickelt. Beim Re-tiling von Turk [70] werden zunichst zusiitzliche
Punkte auf dem Polygonnetz bevorzugt in Regionen mit grofer Kriimmung platziert. An-
schlieBend wird das Netz durch Einbeziehung der neuen Netzknoten trianguliert, bevor
schliellich die urspriinglichen Netzknoten nacheinander entfernt werden. Beim Vertex Clu-
stering [58] wird ein im Verhéltnis zum Dreiecksnetz gréberes 3D-Gitter iiber das Netz
gelegt und alle Netzknoten innerhalb einer Zelle in einer Position zusammengefasst; an-
schlieflend werden degenerierte Primitive sowie doppelte Knoten entfernt. Dieses Vorgehen
ist zwar sehr schnell, erzeugt aber ebenfalls ein vollig neues Netz.

Ein anderer Ansatz wird von Schroeder et al. [60] gewihlt: Nach der Klassifizierung
eines Netzknotens durch seine topologischen und geometrischen Eigenschaften wird dieser
bei Einhaltung eines lokalen Distanzkriteriums geldscht. Durch Triangulierung der Nach-
barknoten wird das entstandene Loch wieder verschlossen. Somit reduziert sich die Anzahl
der Dreiecke fiir jeden Randknoten um eins und fiir innere Netzknoten um zwei. Basierend
auf diesem Ansatz hat es zahlreiche Weiterentwicklungen gegeben, in denen durch Zusam-
menfallenlassen von Kanten oder Dreiecken sukzessiv das Dreiecksnetz ausgediinnt wird.
Dabei werden mogliche Kandidaten fiir den néichsten Reduktionsschritt mit Hilfe einer Ko-
stenfunktion sortiert, so dass dadurch der Fehler fiir jede Iteration minimiert wird. Klein
et al. [39] verwendeten als globales Distanzkriterium den zweiseitigen Hausdorff-Abstand.
Campagna [10] beschrinkt sich auf die Berechnung des leichter zu berechnenden einsei-
tigen Hausdorff-Abstandes (Abbildung 3.8). In [27] werden in der Kostenfunktion fiir die
néchste auszufiihrende Kantenkontraktion zuséitzliche Attribute der Netzknoten, wie zum
Beispiel Farbwerte, Texturkoordinaten oder andere Randbedingungen beriicksichtigt.

3.2.4 High-Level-3D-Graphikbibliotheken

Eine 3D-Graphikbibliothek wird von der anwendungsspezifischen Software als Schnittstelle
zur Graphik-Hardware genutzt, um aus dreidimensionalen Szenenbeschreibungen ein zwei-
dimensionales Bild zu erzeugen. Sie abstrahiert und ergénzt gegebenenfalls die Fahigkeiten
der Hardware-seitig zur Verfiigung gestellten Funktionalitit. Die am meisten verwendeten
3D-Graphikbibliotheken sind unter Windows Microsofts Direct3D und ansonsten OpenGL,
das 1992 aus dem SGI-proprietdren IrisGL hervorging und inzwischen einen Plattform-
iibergreifenden Industriestandard fiir Graphik-Software darstellt. Bei beiden handelt es
sich um ,,Low-Level-Bibliotheken“, die dem Programmierer zwar alle Moglichkeiten bie-
ten, in die Verarbeitungsschritte der Rendering-Pipeline einzugreifen, auf der anderen Sei-
te jedoch keine Datenstrukturen zur Verfiigung stellen, die eine einfache Beschreibung der
Szene ermoglichen.

Im Gegensatz dazu wird die Erstellung einer Graphik-Anwendung von ,,High-Level-3D-
Graphikbibliotheken* durch komplexe Funktionalititen mit einer einfachen Programmier-
schnittstelle unterstiitzt. Der Vergleich von High- zu Low-Level-Graphikprogrammierung
dhnelt dem Vergleich von Hochsprachen- zu Assembler-Programmierung. Der Wandel von

50

Visualisierung im CAE-Umfeld

Sei P die Menge aller Netzknoten eines Polygonnetzes M und bezeichne

S die Menge aller Punkte auf der Oberfliche von M, also P C S. Ferner

ergebe d(p,S') den Abstand eines Punktes p € S zur Fliche &' mit
d(p,S') = min |

p'es’

p—7|2

wobei || - ||2 fiir die Euklidische Norm steht. Dann ergibt sich der (einsei-
tige) Hausdorff-Abstand d(S,S’) von der Fliche S zur Fliche &' als

d(S,S') = maxd(p,S').
pES
Zu beachten ist, dass d(S,8') # d(S',S) gilt und somit d(S,S’) nicht
symmetrisch ist; vielmehr identifiziert d(S,S’) einen Punkt p auf der
Fliche S, der von allen Punkten p’ der Fliche S’ am weitesten entfernt
ist. Der symmetrische oder auch zweiseitige Hausdorff-Abstand ds(S, S')
gibt durch seine Definition als

dy(8,8') = max [d(S, "), d(S, S)]

ein Ma#f fiir die maximale Abweichung zweier Polygonnetze an.

Abbildung 3.8: Definition des ein- und zweiseitigen Hausdorff-Abstandes

statischen zu dynamischen, eventuell animierten Szenen, in denen interaktiv navigiert wer-
den soll, machte die Entwicklung von High-Level-Graphikbibliotheken notwendig. Wichtige
Charakteristiken sind

Szenengraph: Datenstruktur, die einen gerichteten azyklischen Graphen reprisentiert
und es erlaubt, die 3D-Szene hierarchisch zu unterteilen.

Traversierung: Objekte oder Mechanismen stehen zur Verfiigung, die beim Durchlau-
fen des Szenengraphen Operationen auf den Datenstrukturen ausfiihren (zum Beispiel:
»zeichne dich“).

Sharing: Teile der Szenenbeschreibung kénnen an anderen Stellen des Szenengraphen
wiederverwendet werden; das minimiert den Speicherbedarf und sichert die Datenkon-
sistenz bei gleichartigen Szenenobjekten.

Bounding-Volume-Hierarchie: Durch an den Szenengraphknoten integrierte
Hiillvolumendaten kann die durch den Szenengraphaufbau vorgegebene Hierar-
chie dazu genutzt werden, Culling und Picking effizient durchzufiihren.

Dateiformate: Ein meist Bibliotheks-internes Dateiformat erlaubt es, die Szenenbe-
schreibung persistent abzuspeichern. Des Weiteren stellen viele Bibliotheken Hilfsfunk-
tionen zur Verfiigung, die das Einlesen weitverbreiteter Bilddatenformate zur Definition

3.2 Interaktive Computergraphik

von Bild-Texturen unterstiitzen.

Jede der im Folgenden vorgestellten ,,High-Level-Bibliotheken“ bietet zusétzlich zu den
oben genannten Eigenschaften Unterstiitzung fiir die Losung spezieller Probleme:

Open Inventor ist die wohl bekannteste Szenengraph-Bibliothek und bietet ein Dateifor-
mat, das inzwischen fiir inkompatible Szenenbeschreibungen héufig als Austausch-
format Verwendung findet. Der integrierte Satz an 3D-Manipulator-Objekten stellt
im Vergleich zu anderen Graphik-Programmierschnittstellen eine grofle Besonderheit
dar; mit den Manipulatoren lassen sich auf intuitive Weise Teile der Szene mit Hilfe
der 2D-Maus im Raum manipulieren. Open Inventor steht seit 2000 als Open Sour-
ce zur Verfiigung und bietet eine sauber strukturierte und erweiterbare Program-
mierschnittstelle. Allerdings eignet sich Open Inventor aufgrund der Szenengraph-
Semantik nicht fiir Parallelisierung und ist somit fiir komplexe Szenen nur beschrénkt
einsetzbar. [73, 74, 75]

OpenGL Performer wird von SGI entwickelt und ist aufler fiir Irix inzwischen auch fiir
Linux und Windows erhiltlich. Verglichen mit den anderen Bibliotheken liegt hier
der Schwerpunkt — wie der Name schon sagt — auf Performanz bei der Bildsynthe-
se. Volle Multiprocessing-Unterstiitzung, Lastausgleich, asynchrones Ein-/Auslagern
von Szenendaten sowie das Einhalten einer vorgegebenen Bildwiederholrate sind nur
einige Eigenschaften von OpenGL Performer. Damit eignet es sich vor allem fiir den
Einsatz in VR-Umgebungen (zum Beispiel CAVE, Powerwall, Workbench, HMD), in
denen diese Vorziige voll ausgeschopft werden kénnen. [37]

Java3D ist eine Szenengraphbibliothek, deren Entwicklung 1995 durch Sun, SGI, Ap-
ple und Intel begonnen wurde. Die erste Spezifikation wurde allerdings erst 1997
publiziert, nachdem sich SGI bereits wieder aus dem Entwicklungskonsortium
zuriickgezogen hatte. Java3D wurde urspriinglich zur Unterstiitzung Plattform-
iibergreifender Anwendungen entwickelt und ist derzeit aufler unter Solaris auch fiir
Irix, AIX, HP-UX, Linux und Windows verfiighar. Aus dieser Zielsetzung resultiert,
dass Hardware-spezifische Schnittstellen zur Performanzsteigerung von Java3D nicht
genutzt werden. Daher wird Java3D hauptséchlich fiir die Darstellung von Szenen
geringerer bis mittlerer Komplexitét eingesetzt. [66]

Cosmo3D / OpenGL Optimizer sollte urspriinglich nur eine Ubergangslosung fiir ei-
ne nachfolgende Plattform-iibergreifende Graphikbibliothek® sein (siehe 4.1) und
adressiert die Probleme von CAD/CAM-Anwendungen. Der integrierte Tesselierer
ermoglicht die Umwandlung von NURBS-Flachenbeschreibungen in Dreiecksnetze.
Dariiber hinaus werden durch Occlusion-Culling-, Simplifizierungs- und Streifenge-
nerierungsfunktionalitit die Probleme bei der Visualisierung sehr grofler polygonaler
Modelle adressiert. [36]

3Die Entwicklung von OpenGL++ als zukunftsweisende Szenengraphbibliothek ist {iber die Spezifika-
tionsphase nicht hinaus gekommen.

52 Visualisierung im CAE-Umfeld

Fahrenheit wurde infolge des gescheiterten OpenGL++ Ende 1997 von den Firmen Mi-
crosoft und SGI zusammen als zukiinftiger High-Level-Graphikbibliotheken-Standard
angepriesen, der die guten Eigenschaften vom intuitiven Open Inventor und dem
schnellen OpenGL Performer vereinen und Cosmo3D / OpenGL Optimizer ablosen
sollte. Die Zusammenarbeit an dem in drei Schichten geplanten Fahrenheit-Projekt
kiindigte SGI 1999 auf.

OpenSG wurde 1999 am Fraunhofer Institut fiir graphische Datenverarbeitung auch
mit Unterstiitzung deutscher Automobilhersteller aus der Taufe gehoben. Die
langjéhrigen Ankiindigungen verschiedener Firmen zu neuen Szenengraphbibliothe-
ken, deren Entwicklung teilweise schon vor einer ersten Implementierung wieder ein-
gestellt wurden, motivierten zehn deutsche Forschungsinstitute beziehungsweise Uni-
versititen, sich seit 2001 im Rahmen des BMBF*-Projektes ,,OpenSG PLUS*“ an der
Weiterentwicklung der bis dahin bestehenden Basisschnittstelle zu beteiligen. Vor-
rangige Ziele sind die Multi-Thread /Multi-Pipe-Unterstiitzung fiir VR-Umgebungen,
aber auch Portabilitdt auf verschiedene Plattformen, um eine grofie Verbreitung und
damit die Weiterentwicklung im Open-Source-Umfeld zu sichern. Ahnlich, wie fiir
Fahrenheit geplant, setzt sich diese Szenengraphbibliothek aus mehreren Modulen
zusammen, die hohe Flexibilitit und Erweiterbarkeit gewéhrleisten sollen.

Open Scenegraph wird, aus der gleichen Motivation wie OpenSG, als Open-Source-
Projekt allerdings mit einer nicht ganz so VR-lastigen Zielsetzung wie OpenSG eben-
falls im Hinblick auf hohe Performanz und Portabilitat entwickelt.

VRML stellt an sich keine Graphikbibliothek dar, sondern dient als Virtual Reality
Modeling Language lediglich der Beschreibung einer 3D-Szene. VRML 1 stellt im we-
sentlichen das Open Inventor Dateiformat 2.0 dar. VRML 2 bietet zusétzlich Anima-
tion, Sound, Keyframes und dergleichen mehr. Der 1997 erreichte ISO/IEC-Standard
wird als VRML97 bezeichnet und diente als Basis der XML-basierten Beschrei-
bungssprache ,X3D“5, die vom web3D-Konsortium entwickelt wird. Die Stéirken von
VRML liegen in der Portabilitit, die Schwichen in der durch die Inventor-dhnliche
Szenengraph-Semantik erreichbaren Performanz. Es kommt vor allem im Zusammen-
hang mit interaktiven 3D-Welten zum Einsatz, in denen mit Hilfe eines Web-Browsers
mit einem entsprechenden Plugin navigiert werden kann.

Die oben aufgefiihrten Szenengraphbibliotheken basieren alle auf OpenGL; lediglich
Java3dD fiir Windows basiert auf DirectX. Zusitzlich zu den genannten Szenengraphbi-
bliotheken gibt es noch viele hier nicht ndher beschriebene, die meist als kleineres Open-
Source-Projekt oder als Weiterentwicklung industriell begonnener Arbeiten existieren; dazu
gehoren auch Gizmo3D, Jupiter, Oops3D, OpenRM und Quesa.

“‘BMBF — Bundesministerium fiir Bildung und Forschung
5X3D — Extensible 3D

3.3 Visualisierungsmethoden

53

3.2.5 Darstellung polygonaler Daten

Bei der Darstellung des Fahrzeugmodells geht es darum, eine fiir das Einsatzfeld hin-
reichend genaue Reprisentation zu finden. In der Designphase kommt es zum Beispiel
darauf an, eine moglichst genaue und realistische Abbildung vom zukiinftigen Fahrzeug-
modell zu erzeugen; dies beinhaltet eine glinzende, glatte Aulenhaut, in der sich moglichst
noch Objekte aus der virtuellen Umgebung widerspiegeln, sowie deutlich sichtbare Details
(Kiihlergrill, Blenden, Firmenemblem). Hier kommen hochaufgeléste Texturen zum Ein-
satz, um ein hohes Maf} an Fotorealismus zu erreichen. Sofern die Fahrzeuggeometrie bereits
in einem CAD-Modell beschrieben ist, werden aus den CAD-Daten in einem Vernetzungs-
schritt meist sehr feine Dreiecksnetze generiert, die zwar noch mit den oben beschriebenen
Mitteln fiir die Weiterverarbeitung in der Rendering-Pipeline optimiert werden kann, je-
doch stets als einschrinkende Grenze die Néhe des Fahrzeugmodells zur Realitdt hat.

Demgegeniiber wird im Simulationsumfeld der Fahrzeugentwicklung Wert auf Genau-
igkeit und Performanz gelegt; das heifit, das dargestellte Modell muss stets den zugrunde-
liegenden Daten entsprechen und sollte schnell vom Graphiksubsystem verarbeitet werden
kénnen, um eine interaktive Visualisierung der Daten zu ermdoglichen. Bei der Wahl der
Beleuchtungsparameter steht im Vordergrund, dass die visualisierten Werte unverfilscht
widergegeben werden. Daher sollte zum Beispiel wihrend einer Skalarvisualisierung durch
Farben auf Lichtreflexion auf der Oberfliche zugunsten der Aussagekraft verzichtet werden.

Wihrend an virtuellen Designmodellen fiir das fotorealistische Rendering in der Regel
wochenlang herumgefeilt wird und einzelne Koordinaten teilweise ,,von Hand“ modifiziert
werden, um das Ergebnis zu optimieren und Entscheidungstriger zu iiberzeugen, ist der
entscheidende Faktor in der Datenvisualisierung die notwendige Aufbereitungszeit der zu-
grundeliegenden Daten. Daher kénnen hier lediglich automatische Optimierungsverfahren
zum Einsatz kommen, die keiner weiteren Interaktion bediirfen.

3.3 Visualisierungsmethoden

Die Visualisierung hat zum Ziel, die zugrundeliegenden Daten in visuelle Information so
umzusetzen, dass der Betrachter hinsichtlich seiner Fragestellung moglichst schnell zu einer
Aussage kommt. Um die richtige Visualisierungsmethode zu wihlen, miissen zuvor verschie-
dene Aspekte betrachtet werden. Eine grofle Rolle spielt die Auswahl der visualisierten
Daten. Bei einer statischen Visualisierung in Form eines Bildes mag es darauf ankom-
men, moglichst viele Aspekte der zugrundeliegenden Daten in einem Bild unterzubringen.
Werden jedoch zu viele Parameter eines multivariaten Datensatzes in einem Bild unterge-
bracht, ist es dem Betrachter nicht mehr méglich, die visuelle Information zu dekodieren,
um die gestellte Frage zu beantworten. Um die Interpretation der Daten zu erleichtern,
sollten lediglich die Gréflen visualisiert werden, die im Zusammenhang betrachtet werden
miissen, um zu einer Aussage zu kommen. Der Datentyp (Skalar, Vektor, Tensor) schrinkt
den Kreis der moglichen Reprisentanten (Farbe, Piktogramme, Glyphen) ein. Anders als
bei der statistischen Visualisierung multivariater Daten, in der die Position eines Glyphen

54

Visualisierung im CAE-Umfeld

durch die Lage und Einteilung der Diagrammachsen impliziert wird, geht es im Rahmen
dieser Arbeit ausschlieflich um die Visualisierung ortsgebundener Daten. Datentriger ist
stets ein Element des Finite-Element-Modells. Daher werden einzelne Skalare meist durch
Farbkodierung direkt auf der Fahrzeuggeometrie visualisiert. Fiir Vektorgroflen bietet sich
eine Darstellung in Form von Vektorpfeilen an, die jedoch bei hoher Datendichte mit dem
Nachteil der Verdeckung behaftet ist (siche Kapitel 8.2). Gegebenenfalls lassen sich die
vektoriellen Gréflen auf Skalare reduzieren, wenn zum Beispiel die Beschleunigung oder
Kraft in eine vorgegebene Richtung von Interesse ist. Komplexe Glyphen als zusétzliche
Geometrie dienen beispielsweise der Visualisierung von Trégheitstensoren oder anderen
héherdimensionaler Daten. Bei der Visualisierung von Simulationsergebnissen bekommen
die Daten durch ihre Zeitabhingigkeit eine weitere Dimension. Zeitabhingige Daten lassen
sich am besten durch Animation von Einzelbildern wiedergeben.

Ein weiterer wichtiger Aspekt ist das Ausgabemedium. Eine interaktive Visualisierungs-
applikation bietet den Vorteil, dass der Betrachter mit den Daten interagieren kann und
durch die dynamische Verinderung der Bilder mehr Informationen erhélt als durch eine
statische Darstellung. Insbesondere bei der Darstellung semitransparenter Volumina, aber
auch schon bei komplexen Polygonmodellen erhilt der Betrachter durch bewegte Bilder
mehr Tiefeninformation. Dariiber hinaus kann eine interaktive Applikation den Anwender
bei der Suche nach bestimmten Merkmalen in den Daten unterstiitzen; zum Beispiel bei der
Fragestellung: ,,In welchem Bereich iiberschreitet der visualisierte Parameter den vorgege-
benen Schwellwert?*“ Durch Visualisierung allein bleiben dem Betrachter diese kritischen
Regionen in komplexen Modellen gegebenenfalls verborgen.

Visualisierung im Bereich der Crash-Simulation

Derzeit kommen in den Entwicklungsabteilungen der Automobilhersteller sowie ihrer Zu-
lieferer eine ganze Reihe verschiedener Anwendungen zum Einsatz. Im Bereich der Crash-
Simulation sind das neben dem Solver nicht nur interaktive Visualisierungsapplikationen
fiir das Pre- und Postprocessing, sondern auch verschiedene Batch-Programme, die der
Datenaufbereitung oder -konvertierung dienen. Ende der neunziger Jahre kamen beson-
ders im Postprocessing Visualisierungsapplikationen zum Einsatz, die der Hersteller des
Simulationsprogramms anbot. Das lag unter anderem daran, dass das bindre Dateiformat,
in dem der Solver die Ergebnisdaten abspeichert, nicht dokumentiert war. Allerdings hatte
das zur Folge, dass die implementierten Algorithmen nicht mehr dem sich schnell ent-
wickelndem Stand der Technik in der Computergraphik und Visualisierung entsprachen.
Zudem setzten die historisch gewachsenen Programme hohe Hiirden fiir die Integration
neuer Techniken. Die stetig wachsenden Modellgréfien lielen sich schon bald nicht mehr
mit diesen Solver-nahen Visualisierungsapplikationen interaktiv darstellen, da dort weder
spezialisierte Szenengraph-Bibliotheken noch andere Optimierungstechniken zur Steige-
rung der Rendering-Performanz zum Einsatz kamen. Bei den verfiigbaren Preprozesso-
ren wurden die Entwicklungsschwerpunkte auf die Abdeckung der fiir die Vorverarbeitung
notwendigen Funktionalitdt gesetzt, weniger auf Darstellungsgeschwindigkeit und moderne

3.4 Datenformate und -strukturen

55

Interaktionskonzepte.

Die Forschung im Bereich der Computergraphik bot zu diesem Zeitpunkt bereits ei-
ne Vielzahl von Methoden zur Aufbereitung und Optimierung polygonaler Modelle an.
Neben den in Abschnitt 3.2.3 genannten Mdoglichkeiten, die Darstellungsgeschwindigkeit
zu erhGhen, wurden im akademischen Bereich bereits mit Szenengraph-Bibliotheken, die
vom Einsatz verschiedener Detailstufen (,Level of Detail“), dem View Frustum Culling
und beschleunigten Picking-Mechanismen profitierten, positive Erfahrungen gesammelt.
Dariiber hinaus brachte der Einsatz Hardware-unterstiitzter Texturierung im Hinblick
auf gesteigerte Darstellungsqualitit verbunden mit einer schnellen Bildsynthese vollig
neue Moglichkeiten mit sich. So konnten beispielsweise bei der Visualisierung Knoten-
basierter Skalare durch Farben mit Hilfe von Texturen die Interpolationsberechnung der
Farbiibergidnge auf die Graphik-Hardware ausgelagert werden.

Doch all diese Techniken kamen bis dahin in kommerziell verfiigharen Applikationen
nicht zum Einsatz. Auf der anderen Seite gab es in der wissenschaftlichen Forschung im
Bereich der Visualisierung nur wenige Vorarbeiten, die sich speziell mit den Bediirfnissen
im Umfeld der Computer-gestiitzten Entwicklung durch Strukturmechaniksimulation aus-
einandersetzte.

3.4 Datenformate und -strukturen

Im Umfeld der Strukturmechaniksimulation in der Fahrzeugentwicklung werden Daten in
vielen verschiedenen Formaten verarbeitet. Zum einen bringen das die unterschiedlich zu-
grunde liegenden Modelle mit sich, in denen das Fahrzeug iiber die verschiedenen Entwick-
lungsphasen représentiert wird. Zum anderen speichern die auf dem Markt verfiigharen
Produkte die Daten meist in einem proprietiren Format ab. Als Beispiele seien hier nur
einige genannt: Das Produkt CATIA der Firma Dassault Systemes ist das derzeit am
weitesten verbreitete Konstruktionsprogramm im Automobilsektor und speichert die Kon-
struktionsdaten, #hnlich wie Pro/ENGINEER [53|, I-DEAS, SolidEdge oder andere in
einem eigenen Format ab. Es hat viele Bestrebungen gegeben, ein produktunabhingiges
Format zu schaffen: IGES (Initial Graphics Exchange Specification [48]), STEP (Standard
for the Exchange of Product Model Data [38]), VDA-FS (Verband der Automobilindu-
strie Fliachen Schnittstelle [71]) und OpenDWG [49]. Dennoch nutzen Applikationen, die
CAD-Daten weiterverarbeiten, in der Regel diese Formate nur als Austauschformate und
bieten zusédtzlich Schnittstellen zu proprietdren Formaten an. Da sich nicht alle Details in
ein unabhéngiges Format iibertragen lassen, ist die Datenkonvertierung zumeist auch mit
geringem Informationsverlust behaftet.

Das CAD-Modell wird durch Vernetzung in ein Finite-Element-Modell umgewandelt.
Anwendungen wie ANSA, HyperMesh oder MEDINA erzeugen aus den mathematischen
Flachenbeschreibungen, zum Beispiel durch Splines, ein diskretisiertes Elemente-Netz. Die-
se Daten werden mit einer Reihe von Preprozessoren zu einem Simulationsmodell aufbe-
reitet und der Simulationssoftware, zum Beispiel ABAQUS, LS-DYNA, NASTRAN oder

56

Visualisierung im CAE-Umfeld

PAM-CRASH zur Berechnung iibergeben. Die Simulationsergebnisse werden schliefilich
mit einem Analyse-Werkzeug wie Animator oder PAM-View ausgewertet.

Dieses Kapitel beschreibt, welche Daten im Pre- und Postprocessing der Crash-
Simulation vorkommen. Wahrend Abschnitt 3.4.1 allgemein erldutert, aus welchen Struk-
turen sich ein Fahrzeugmodell zusammensetzt, beleuchtet der zweite Teil dieses Kapitels
die Datenformate, die dem Pre- und Postprocessing der Crash-Simulation zugrunde liegen.
Die Datenstrukturen, die im Rahmen dieser Arbeit entwickelt wurden, werden im Kapitel 5
ab Seite 73 vorgestellt.

3.4.1 Geometriestrukturen

Das gesamte Fahrzeugmodell setzt sich aus vielen einzelnen Bauteilen zusammen. Diese
wurden vor fiinf Jahren noch mit einem homogenen Netz iiberzogen, das heiflt, anein-
andergrenzende Bauteile wurden durch gemeinsame Netzknoten miteinander verbunden.
Inzwischen ist es moglich, das Verhalten von Verbindungselementen wie Schweifipunkte,
Schweifindhte oder Klebeschichten zu simulieren; dadurch kénnen Bauteile nun unabhéngig
voneinander vernetzt und die inkompatiblen Gitter im Preprocessing miteinander verbun-
den werden. Jedes dieser Bauteilnetze beziehungsweise der Bauteilverbindungen setzt sich
in der Regel aus mehreren Finite-Elementen des gleichen Typs zusammen. Die in Abbil-
dung 3.9 dargestellten Finite-Elemente stellen eine Auswahl der im Rahmen dieser Arbeit
wichtigsten Typen dar. Der grofite Teil eines Crash-Modells besteht aus vierseitigen Scha-
len. Balkenelemente dienen in erster Linie der Bauteilanbindung, sofern es noch keine
entsprechend spezialisierten Elementdefinitionen gibt, und Volumenelemente bilden zum
Beispiel schaumartige Bauteile ab.

Ein Gesamtfahrzeugmodell setzt sich aus hunderten von Bauteilen zusammen, die ih-
rerseits aus tausenden von Finite-Elementen eines Typs bestehen kénnen (Abbildung 3.10).
Wihrend sich im Verlauf der Crash-Simulation lediglich die Knotenkoordinaten &ndern, die
Netztopologie aber unverdndert bleibt, wird in anderen Bereichen der virtuellen Fahrzeug-
entwicklung, wie zum Beispiel der Tiefziehsimulation, mit adaptiven Modellen gearbeitet,
die sich zum Beispiel in Bereichen grofler Kriimmung lokal verfeinern (Abbildung 3.11).
Die konstante Netztopologie in Crash-Modellen wird beim Szenengraph-Design fiir die Mi-
nimierung des Speicherbedarfs ausgenutzt (siehe Kapitel 4).

/2/3\4ﬁ |
1 1 2 1 2 1=

2
[1[2[ofo[1lM] [M[1]2[3[o] M1]2[3]a] [M[1]2[3[3[4]4]a]4] [M[1]2[3[4]s]5]5]5] [M[1]2[3[4]5]5]6]6] M[1]2[3]4]5]6]7]8]

Abbildung 3.9: Jedes der Finite-Elemente ist durch zwei bis acht Referenzen auf Knoten-
punkte definiert.

3.4 Datenformate und -strukturen

57

Abbildung 3.10: Die Explosionsdarstellung zeigt das Modell eines BMW X5 in der friithen
Phase. Das Modell umfasst etwa 250 000 Elemente in 500 Bauteilen.

3.4.2 Ein-/Ausgabedaten

Es gibt viele verschiedene Datenformate, in denen Finite-Element-Modelle mit ihren Ei-
genschaften oder Ergebnissen gespeichert werden. In der Regel liegen Eingabedatensétze
in einem ASCII-Format vor, um sie lesbar und fiir Skripte leichter modifizierbar zu ma-
chen. Ergebnisdaten werden aufgrund der grolen Datenmengen bis auf wenige Ausnahmen
in einem bindren Datenformat gespeichert. Anhand der nachfolgend skizzierten Daten-
strukturen wird veranschaulicht, wie Finite-Element-Modelle im Allgemeinen gespeichert
werden.

Die Eintrige, aus denen sich ein PAM-CRASH-Eingabedatensatz zusammensetzt, wer-

den ,Karten“ genannt (Abbildung 3.12). Sie bestehen aus einem Schliisselwort gefolgt
von einem , Label“ in Form einer positiven Ganzzahl. Jeder Knoten und jedes Element

Abbildung 3.11: Topologieéinderung wihrend der Tiefziehsimulation

58

Visualisierung im CAE-Umfeld

Bauteilattribute: [MATER | M; [Typ, Dicke, Dichte, Titel, ...]
Knotenpunkt: ‘NODE ‘N,- ‘ T; ‘ Y; ‘ 2; ‘
Balkenelement: ‘BEAM ‘ B; ‘Mj ‘Na ‘Nb ‘
Schalenelement: [SHELL [S; [M; [No [Ny [N [Ng]
Volumenelement: ‘SOLID ‘ Vi ‘M,- ‘Na ‘ ‘Nh ‘
SchweiBpunkt: ‘SPOTW ‘Pi ‘G]- ‘ T; ‘ Yi ‘ Z; ‘

SchweiBpunkigruppe: [SLINT2 [G; [M; [M}, [Attribute |

Abbildung 3.12: Jede ,,Karte“ beginnt mit einem Schliisselwort gefolgt von einem eindeu-
tigen Label, einer positiven Ganzzahl. In der MATER-Karte werden die Attribute eines
Bauteils definiert. Wahrend in der NODE-Karte die Punktkoordinaten angegeben werden,
verweist in den Elementkarten ein MATER-Label auf die Attributkarte des Bauteils, zu
dem das Element gehort, und NODE-Labels spezifizieren die Element-Topologie. Schweif3-
punkte sind iiber ein SLINT2-Label einer Schweilpunktgruppe zugeordnet, die die zu ver-
bindenden Bauteile mit MATER-Labels identifiziert.

ist iiber sein Label eindeutig identifizierbar; allerdings kénnen sich die Label-Bereiche
bei Knoten und unterschiedlichen Elementtypen iiberdecken. Die Knoten-Labels in den
Element-Karten legen fest, welche Knotenpunkte die Geometrie eines Elementes definie-
ren. Die Materialeigenschaften eines Bauteils werden in einer MATER-Karte spezifiziert.
Bis zur PAM-CRASH-Version 2001 wird jede MATER-Karte ausschliefilich von Elementen
des gleichen Typs und des gleichen Bauteils referenziert.

Fiir andere Simulationscodes wie zum Beispiel DYNAS3D oder Nastran gibt es dhnliche
Schliisselwort-basierte Dateiformate fiir die Eingabedaten. Allerdings kommt gerade fiir
LS-DYNA auch noch das iltere sequenzielle Dateiformat zum Einsatz. Die Schwierigkeit
bei sequenziellen Dateiformaten besteht darin, dass das komplette Format bekannt sein
muss, um einen Datensatz korrekt zu interpretieren. Selbst fiir Daten, die von der An-
wendung ignoriert werden soll, muss deren Linge bekannt sein, damit nachfolgende Daten
weiter verarbeitet werden konnen. Die Reihenfolge, in der das Finite-Element-Modell be-
schrieben wird, ist fiir sequenzielle Datenformate fest vorgegeben. Die Komplexitit, die sich
aus dem sequenziellen Datenformat ergibt, hat zur Umstellung auf Schliisselwort-basierte
Formate gefiihrt. Hier spielt die Reihenfolge der Karten in der Eingabedatei durch die An-
gabe von Schliisselwortern keine Rolle. So kénnen die notwendigen Daten bauteilbezogen
zusammengefasst werden.

Die Daten einer PAM-CRASH-Ergebnisdatei sind blockbasiert nach Elementtypen ge-
trennt angeordnet. Die Bindrdatei gliedert sich in einen Kontrollblock, der zum Beispiel
iiber Formate der gespeicherten Daten und die Modellgroe Auskunft gibt. Darauf fol-
gen die initiale Knotendefinition sowie die Topologie-Beschreibung des Fahrzeugmodells.
Nach diesen Zeitschritt-unabhingigen Daten werden in den anschliefenden Blocken pro
Zeitschritt die Knotenkoordinaten und Ergebniswerte gespeichert.

Die Modellbeschreibung setzt sich aus Label- und Werte-Arrays zusammen. So werden
in je einem Array die Labels aller Knoten beziehungsweise Elemente fiir das gesamte Fahr-

3.4 Datenformate und -strukturen

59

zeugmodell zusammengefasst. Alle Knotenkoordinaten sind in einem separaten Feld gespei-
chert. Das Knoten-Label N; korrespondiert dabei mit den Koordinaten (z;, y;, z;). Dement-
sprechend verhélt es sich auch mit den Element-Label-Arrays und den zugehérigen Kon-
nektivititslisten: fiir jedes BEAM-, SHELL- beziehungsweise SOLID-Label existieren sechs,
fiinf, beziehungsweise neun Eintridge in den Konnektivititslisten. Ein Konnektivitatstupel
referenziert die Netzknoten und das Bauteil, zu dem das Element gehort. Wéhrend fiir
Balkenelemente der Elementtyp explizit angegeben wird, bestimmt das mehrfache Vor-
kommen von Knoten-Labels implizit, um welchen Schalen- oder Volumenelementtyp es
sich handelt (Abbildung 3.13). Zum Beispiel ist fiir dreieckige Schalenelemente Nj im
SHELL-Konnektivitatstupel entweder Null oder gleich Nj.

Knoten-Labels: [Ny N2 [N3[N4[N5] .. |
Kontrolldaten Knotenkoordinaten: Iacl ‘yl ‘zl Img ‘yg ‘zz Img ‘ |
Geometriedaten Element-Labels: (L1 |L2|Ls|La|Ls]... |
initiale Koordinaten
Konnektivitat BEAM-Konnektivitat: [N ININDPNITIMYNZ]... |
. . SHELL-Konnektivitat: M YNNI NI NPh2|N2] ...
Zeitschrittdaten PLINY N, [N N3P !
SOLID-Konnekiivitat: [MINTINI INIININPNPNINFZ] ..

Abbildung 3.13: Eine Ergebnisdatei lasst sich grob in die links dargestellten Blocke glie-
dern. Die Geometriedaten beinhalten die rechts abgebildeten Listen: Zu jedem Eintrag
in den verschiedenen Label-Listen gibt es in einer korrespondierenden Liste in gleicher
Reihenfolge ein Tupel mit Daten, die die Punktkoordinaten des Knotens angeben oder
die Element-Topologie und Bauteilzugehorigkeit spezifizieren. Die hervorgehobenen Stri-
che grenzen die Tupel gegeneinander ab. Nullen oder Label-Wiederholungen fiir die durch

* ¢

» ¢ gekennzeichneten Knoten-Labels implizieren den Elementtyp.

Skalare Ergebnisse einer Variablen sind in einem Werte-Array gespeichert; auch hier fin-
det die Zuordnung zu den Knoten beziehungsweise Elementen durch die gleiche Reihenfolge
zur entsprechenden Label-Liste statt.

Kapitel 4

Effizientes Szenengraph-Design fiir
zeitabhingige FE-Modelle

In den meisten Bereichen, in denen Computer-Simulation fiir die Fahrzeugentwicklung ein-
gesetzt wird, stellt die Leistungsfihigkeit der Rechner eine obere Grenze fiir den Umfang
der zu verarbeitenden Daten dar. Die Berechnungsdauer einer Crash-Simulation wird ne-
ben der Modellzusammensetzung, also der den verwendeten Finiten Elementen zugrunde
liegenden Algorithmen, vor allem von der Modellgréfle und der damit zusammenhéngenden
minimalen Elementkantenldnge vorgegeben, aus der sich wiederum der maximale Simulati-
onszeitschritt ergibt. Fiir die interaktive Visualisierung von Strukturmodellen spielt neben
einer geeigneten Reprisentation der Modelldaten die Eliminierung redundanter Informa-
tionen eine wesentliche Rolle. Die in ihrer Komplexitit stindig steigenden Strukturmodel-
le erfordern hierarchische Datenstrukturen, mit denen die Interaktionen durch effizientes
Picking und die Bildsynthese durch schnelle Culling-Methoden beschleunigt werden. Die
Unterteilung der Geometriedaten in zusammengehorende Einheiten bietet sich wegen der
zunehmenden Modularisierung der Fahrzeugmodelldaten an.

Szenengraphen beschreiben das darzustellende Modell in Form eines gerichteten azykli-
schen Graphen. Sie unterstiitzen sowohl High-Performance-Rendering als auch den Aufbau
einer hierarchischen Ordnung der Szene. Um die umfangreichen und zudem zeitabhéngigen
Daten auch auf Arbeitsplatzrechnern mit geringerer Hauptspeicherausstattung handhaben
zu konnen, ist es erforderlich, ein optimales Szenengraph-Design zu erarbeiten, das die
Speicheranforderung unter Beriicksichtigung der Kohérenzen minimiert.

Es wurden verschiedene Szenengraph-Bibliotheken hinsichtlich ihrer Leistungsfihigkeit
fiir die Visualisierung umfangreicher Strukturmodelle betrachtet. Schliefflich fiel die Ent-
scheidung auf die Graphikbibliotheken Cosmo3D und OpenGL Optimizer, da sie zu dem
Zeitpunkt im Bezug auf Ausrichtung, Weiterentwicklung und Portabilitét sehr vielverspre-
chend und zukunftsweisend erschienen.

Dieses Kapitel gibt einen Uberblick iiber die im Rahmen dieser Arbeit verwendeten
Graphikbibliotheken. Nachdem im Abschnitt 4.1 eine Einfiihrung in die genutzten Objekte
und Funktionalitdten gegeben wurde, beschreibt Abschnitt 4.2 ein effizientes Szenengraph-

62

Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

Design fiir zeitabhingige, topologisch invariante Finite-Element-Modelle. Abschlielend
werden anhand zweier Beispiele die Erweiterungsmdéglichkeiten von Cosmo3D erléutert.

4.1 Szenengraph-Bibliothek Cosmo3D

Bereits 1996 gab es Vorschlige im OpenGL Architecture Review Board (ARB), ei-
ne Szenengraph-Bibliothek zu standardisieren, die auf OpenGL basiert und weiter spe-
zialisierten Graphikbibliotheken Basistechnologien zur Verfiigung stellt. Die Firma SGI
stellte in dem Zusammenhang Cosmo3D, ihre derzeitige Bibliothek zur Szenengraph-
Manipulation, als moéglichen Ausgangspunkt vor. Die Stérken der bis dahin bereits auf
SGI-Plattformen verbreiteten Graphikbibliotheken Inventor und Performer sollten in die
zukiinftige Szenengraph-Bibliothek {ibernommen werden.

Anfang 1997 kiindigte SGI die Entwicklung von OpenGL Optimizer an, das ein offenes
API fiir Anwendungen aus dem CAD- und Analyse-Bereich werden sollte, welches auf
vielen Plattformen, unter anderem IRIX, WindowsNT und Windows95, einsetzbar sein
werde. Als Basis fiir OpenGL Optimizer sollte Cosmo3D dienen, bis es eine standardisierte
Szenengraph-Bibliothek geben wiirde. Da die Mitglieder im OpenGL ARB sich jedoch
nicht auf einen Standard fiir eine Szenengraph-Bibliothek einigen konnten, kiindigten die
Firmen Microsoft und SGI Ende 1997 das Fahrenheit-Projekt an, das aus drei Schichten
bestand: zunéchst sollte eine Szenengraph-Bibliothek entstehen, die auf SGI-Plattformen
Cosmo3D ersetzen wiirde. Daran anschliefend sollte OpenGL Optimizer auf diese neue
Szenengraph-Bibliothek portiert werden.

Da der Portierungsaufwand fiir Anwendungen, die auf Cosmo3D / OpenGL Optimizer
basieren wiirden, als sehr gering angekiindigt wurden, stellten sich diese beiden Gra-
phikbibliotheken als zukunftsweisend dar und wurden fiir den entstandenen Prototypen
crashViewer als Zwischenschicht zu der Low-Level-Graphikbibliothek OpenGL gewihlt.

4.1.1 Grundlegende Szenengraphobjekte

Dieser Abschnitt bietet einen Uberblick iiber die im Rahmen der vorliegenden Arbeit wich-
tigsten Cosmo3D-Klassen. Ein Grofiteil lisst sich wie folgt unterteilen:

e Basisklassen — Dazu gehdren nicht nur Datenklassen, wie beispielsweise csVec3f,
csMatrix4f oder csSeg, um grundlegende Datenstrukturen mit Methoden zur Ver-
fiigung zu stellen, sondern auch folgende abstrakte Szenengraph-Basisklassen:

— ¢sObject ist die Basisklasse der meisten Objekte in der Graphikbibliothek. Sie
unterstiitzt die damals in C++ noch nicht standardisierte Runtime Type Identi-
fication sowie einen Referenzzihler, der die Lebensdauer eines Objektes steuert
und damit die Voraussetzung fiir die Mehrfachreferenzierung von Szenengraph-
objekten ist (Abschnitt 4.1.2.1).

4.1 Szenengraph-Bibliothek Cosmo3D

63

— csContainer dient als Basisklasse fiir alle Szenenobjekte, die im Szenengraphen
reprasentiert werden. Sie kann einen Namen und eine Referenz auf applikations-
interne Daten in einem csData-Objekt speichern. Dariiber hinaus werden hier die
das Szenengraphobjekt beschreibenden Daten durch Verwendung von csField-
Objekten verwaltet und Methoden zur Handhabung dieser csField-Objekte im-
plementiert.

— csField ist die abstrakte Basisklasse von Datencontainer-Objekten, die ein oder
mehrere gleichartige Daten mit Zugriffsmethoden kapseln. Sie lassen sich mitein-
ander verbinden (siehe Abschnitt 4.1.2.1), um die Datenpropagierung zwischen
voneinander abhingigen Objekten zu automatisieren, und bieten zusétzlich
einen generellen Zugriffsmechanismus, der es erlaubt, auch die Daten neu krei-
erter Objekte zu verarbeiten.

— csNode ist die Basisklasse aller Objekte, die die Szenengraph-Hierarchie defi-
nieren. Objekte, die von einer csAction traversiert werden, miissen vom Typ
csNode sein. csNode speichert eine Bounding-Sphere!, die die repriisentierten
Szenenobjekte umgibt.

e Szenengraphklassen — Sie beschreiben den Aufbau des Szenengraphen:

— ¢sGroup ermdglicht die Gruppierung mehrerer csNode-Objekte.

— csSwitch ist von csGroup abgeleitet und erlaubt zusitzlich, die Traversierung
des Subgraphen zu steuern, indem die traversierende csAction an keinen, einen
bestimmten oder alle Kindknoten weitergeleitet wird.

— cs Transform ist ebenfalls eine Spezialisierung von csGroup, in der zusétzlich eine
4x4-Transformationsmatrix auf alle Kindknoten angewendet wird.

— csShape assoziiert Attribute des Aussehens (csAppearance) mit der darzustel-
lenden Geometrie (csGeometry) und stellt damit auch die Blattknoten (in Form
von Szenengraphklassen) des Szenengraphen dar.

e Attributklassen — Sie beeinflussen das Aussehen der Szenenobjekte:

— csContext spezifiziert die Grundeinstellungen des Graphik-States (siehe auch
Abschnitt 3.2.1, Seite 38), die fiir den gesamten Szenengraphen gelten.

— csAppearance iiberschreibt einige der durch csContext definierten Grundeinstel-
lungen, die das Aussehen der durch den im Szenengraphen dariiberliegenden
csShape-Knoten assoziierten Geometrie beeinflusst.

— csMaterial speichert neben den Farbreflexionskoeffizienten weitere Eigenschaften,
die fiir die Schattierung der Szenenobjekte von Bedeutung ist, wie zum Beispiel
Spekularitit, Emission und Transparenz.

!Bounding-Sphere (engl.): Hiillkugel

Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

— csTexture verwaltet Texturparameter und referenziert ein cslmage, in dem die
eigentliche Textur als zweidimensionales Bild abgelegt ist.

e Geometrieklassen — Sie reprisentieren die unter den aktuellen Einstellungen des
OpenGL-States darzustellende Geometrie:

— csGeometry speichert als die abstrakte Basisklasse aller Geometrieobjekte eine
achsenparallele Bounding-Box?, die das geometrische Objekt umgibt.

— csBox, csSphere, csCone und csCylinder sind Beispiele fiir einfache geometrische
Objekte, die entsprechend parametrisiert werden kénnen.

— csGeoSet verwaltet als Basisklasse von Objekten, wie zum Beispiel csPointSet,
csLineSet, csTriSet, csQuadSet, csPolySet oder csTriStripSet, die mehrere glei-
che Primitive reprisentieren, die benétigten Daten in je einem csCoordSet,
csNormalSet, csTexCoordSet und gegebenenfalls in je einem dazugehérenden
csIndexSet.

Zusétzlich zu den angesprochenen Objekten gibt es noch Klassen, die sich nicht unter
einer der oben aufgefiihrten Kategorien einordnen lassen, aber hier dennoch eingefiihrt
werden, um die Ausfiihrungen in den weiteren Abschnitten zu verdeutlichen.

e csAction ist die abstrakte Basisklasse aller Objekte, die zur Traversierung des Sze-
nengraphen eingesetzt werden (siche Abschnitt 4.1.3).

e csData kann als Container fiir applikationsinterne Daten verwendet werden, damit
Daten, die von der Applikation angelegt wurden, auch vom Szenengraphen aus ge-
nutzt werden kénnen, ohne eine Kopie der Daten anlegen zu miissen.

4.1.2 Datenmanagement
4.1.2.1 Datenredundanz in der Szene

Wie bereits in Kapitel 3.2.4 erwéhnt, ist ein wesentlicher Aspekt bei der Definition ei-
ner Szene unter Zuhilfenahme eines Szenengraphen die Wiederverwendbarkeit von Teil-
objekten in der Szene. Im Zusammenhang mit Szenengraph-Bibliotheken wird dabei vom
Node-Sharing gesprochen, das heifit, mehrere Objekte verwenden dieselbe Instanz eines
Szenengraphobjektes, um das darzustellende Szenenobjekt zu représentieren (siehe auch
Abbildung 4.2 auf Seite 66). Node-Sharing hat den Vorteil, dass die mehrfach genutzten
Daten nur einmal im Hauptspeicher vorhanden sind und lediglich mehrfach referenziert wer-
den. Zur Steuerung der Lebensdauer mehrfach referenzierter Instanzen gibt es an allen von
csObject abgeleiteten Objekten einen Referenzzihler, der iber Methoden in-/dekrementiert
werden kann. Wenn dieser Zahler auf Null dekrementiert wird, endet die Lebensdauer der
Instanz.

2Bounding-Box (engl.): Hiillquader

4.1 Szenengraph-Bibliothek Cosmo3D

65

Die Handhabung einer anderen Art von Datenredundanz wird durch den so genannten
Field-Connection-Mechanismus unterstiitzt. Hierbei wird kein Hauptspeicherplatz einge-
spart, sondern die Propagierung voneinander abhingender Daten automatisiert. Das heifit,
wenn der Wert, aus einer csField-Instanz iiber eine Zugriffsmethode ausgelesen wird, priift
diese zunichst, ob sie an eine andere csField-Instanz gebunden ist; sofern das der Fall ist,
wird der Wert von dort geholt, bevor er zuriickgeliefert wird.

Besonders wichtig ist der Field-Connection-Mechanismus im Zusammenhang mit csEn-
gine-Objekten, die Daten iiber diesen Mechanismus einlesen, weiterverarbeiten und schlief3-
lich iiber eine weitere Field-Connection wieder abspeichern. csEngine-Objekte sind also in
den Szenengraphen integrierte Rechenautomaten.

4.1.2.2 Datenredundanz zwischen Szenengraph und Applikation

Daten konnen in Abhéngigkeit ihres Umfangs aufgrund des begrenzten Hauptspeichers
nicht mehrfach gespeichert werden. Zum Beispiel konnen die Koordinaten und Normalen
aller Dreiecke bei detaillierten Szenen bestehend aus mehreren Millionen Polygonen in der
Regel nur einmal im Hauptspeicher gehalten werden. Sofern die Applikation Berechnun-
gen auf diesen Daten durchfiihren muss, behindern Datenstrukturen, wie sie durch die
Szenengraph-Bibliothek und den Aufbau des Szenengraphen vorgegeben sind, gegebenen-
falls eine effiziente Datenverarbeitung.

Cosmo3D bietet zu diesem Zweck das csData-Objekt an. Mit ihm ist es moglich, Da-
tenfelder, die von der Applikation intern verwendet werden, im Szenengraphen wiederzu-
verwenden, ohne eine zusétzliche Kopie der Daten zu erstellen.

4.1.3 Traversierung des Szenengraphen

Der Szenengraph wird fiir verschiedene Operationen von einer Action traversiert, das heifit,
beginnend mit dem Wurzelknoten des Szenengraphen ruft ein von csAction abgeleitetes
Objekt eine der Operation entsprechende Methode an dem Szenengraphknoten auf, bevor
es zum néchsten Szenengraphknoten weitergeleitet wird.

Zur Erstellung eines Bildes wird der Szenengraph von einer csDrawAction traversiert. An
jedem Szenengraphobjekt, an dem die Action angewendet wird, ruft sie eine Methode (in
diesem Fall drawVisit(...) auf, so dass das Objekt in dem Moment entsprechende Aktionen
ausfithren kann. Zunéchst wird das Viewfrustum-Culling durchgefiihrt, um sicherzustellen,
dass sich das reprisentierte Szenenobjekt nicht komplett auflerhalb der Sichtpyramide be-
findet. Anschlieflend hingt es vom Typ des Szenengraphobjektes ab, was die Action auslost:
wiahrend csGroup-Objekte die csDrawAction der Reihe nach an ihre Kindknoten weiterrei-
chen, werden fiir csShape-Objekte zuniichst die Einstellungen des OpenGL-States anhand
des angehingten csAppearance-Knotens beziehungsweise anhand der Grundeinstellungen
im csContext-Objekt vorgenommen, bevor an jedem der angehéingten csGeometry-Knoten
deren draw(...)-Methode aufgerufen wird, die schliefilich das Zeichnen der Geometrie iiber
OpenGL-Befehle durchfiihrt.

66

Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

Translate Cone

phere Black Wire

Abbildung 4.1: Unter Open Inventor wirken sich Transformationen und Darstellungsat-
tribute durch Separator-Knoten beschrénkt auf alle Szenengraphknoten rechts von ihnen
aus. Wahrend Groupl die Skalierung von Scale auf Sphere beschrinkt, beeinflussen die
Attribute Black und Wire nicht nur Cube, sondern auch Cone (Abbildung 4.2, rechts).

Root

Grey Sphere Black/Wire Cube Cone

Abbildung 4.2: Transformationen und Darstellungsattribute vererben sich bei Cosmo3D
nur nach unten und nach rechts im Szenengraphen. Der csAppearance-Knoten Black/Wire
wird von ShapeCube und von ShapeCone referenziert (Node-Sharing). Das rechts darge-
stellte Bild konnte sowohl durch diesen als auch durch den in Abbildung 4.1 skizzierten
Szenengraphen entstanden sein.

Die Traversierungsreihenfolge und der Einflussbereich von Szenengraphobjekten, die
den OpenGL-State modifizieren, spielen eine wichtige Rolle: Im Vergleich mit anderen
Szenengraph-Bibliotheken wie zum Beispiel Open Inventor (Abbildung 4.1) fillt auf, dass
im Cosmo3D-Szenengraphen die Einstellungen am OpenGL-State lediglich nach unten und

4.2 Szenengraphaufbau topologisch invarianter Netze

67

unterhalb der csShape-Knoten nach rechts vererbt werden. Diese Einschrinkung erlaubt
es, Teilszenengraphen losgelést von dem Rest des Szenengraphen bearbeiten zu kénnen.
Der in Abbildung 4.2 dargestellte Szenengraph liefle sich direkt unter dem Root-Knoten
in drei Teile zerlegen, die in beliebiger Reihenfolge von einer csDrawAction abgearbeitet
werden konnten, ohne dass sich das Bild dndern wiirde. Diese Eigenschaft wird von der
Graphikbibliothek OpenGL Optimizer zum Beispiel beim Multiprocessing oder fiir eine
Umsortierung des Szenengraphen zur Minimierung der Anderungen am OpenGL-State
genutzt, um die Darstellungsgeschwindigkeit zu optimieren.

4.2 Szenengraphaufbau topologisch invarianter Netze

In Abschnitt 3.4 wurden bereits die zu visualisierenden Daten vorgestellt. Bei dem rapi-
de wachsenden Datenumfang der Fahrzeugmodelle muss beim Design einer Szenengraph-
struktur besonders fiir zeitabhiingige Daten auf den Speicherbedarf geachtet werden. Eine
nicht-indizierte Dreiecksdarstellung benotigt fiir die Daten, die lediglich die Geometrie eines
Fahrzeugmodells, bestehend aus einer halben Million Finiten Schalenelementen und etwa
gleich vielen Knoten, iiber 60 Zeitschritte beschreiben, mehr als 2 Gigabyte: 60 Zeitschritte -
500000 Elemente - 2 Dreiecke - 3 Knoten - 3 Koordinaten - 4 Byte (pro Float) > 2 GB
ergeben sich allein aus der Geometrie ohne Normalen fiir eine korrekte Schattierung und
ohne den Speicherbedarf fiir die Szenengraphobjekte. Der Speicherbedarf fiir die Geometrie
lasst sich fiir die Darstellung von Crash-Modellen im Postprocessing jedoch durch folgende
Aspekte minimieren:

e Die Bauteile, die aus Schalenelementen modelliert werden, bestehen zu etwa 90 Pro-
zent aus 4-seitigen Elementen. Die Verwendung von Quadrilateralen bringt in diesem
Fall eine Speicherplatzersparnis von knapp 27 Prozent.

e Im allgemeinen gilt, iiber das gesamte Fahrzeugmodell betrachtet, innerhalb von
Bauteilnetzen: % < 8. Eine indizierte Speicherung der Geometrie benétigt
statt 12 Koordinaten pro 4-seitigen Schalenelement lediglich 4 Indizes pro Element

und zusétzlich 3 Koordinaten pro Knoten.

e Wihrend sich in der Tiefziehsimulation das Finite-Element-Netz in Bereichen grofier
Umformung zwischen zwei Zeitschritten adaptiv verfeinert, bleibt die Topologie des
Fahrzeugmodells in der Crash-Simulation iiber alle Zeitschritte erhalten. Diese Tatsa-
che kann beim Aufbau des Szenengraphen fiir das Postprocessing von Crash-Modellen
ausgenutzt werden, indem die Topologie lediglich einmal gespeichert und iiber alle
Zeitschritte mit Hilfe des Node-Sharing genutzt wird.

Aus dem oben angefiihrten Beispiel ergibt sich demzufolge ein Speicherbedarf von
(60 Zeitschritte - 500 000 Knoten - 3 Koordinaten + 500 000 Elemente - 4 Indizes) - 4 Byte ~
351 MB fiir die Geometrie. Abbildung 4.3 stellt das Szenengraph-Design unter Verwendung
von Cosmo3D fiir zeitabhingige Crash-Netze dar. Die Wurzel des Szenengraphen bildet

68

Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

stateSwitch

state4 staten

[
NV

e g .
coordSets indexSet;

Abbildung 4.3: Dieser Ausschnitt eines Cosmo3D-Szenengraphen représentiert
zeitabhingige, topologisch invariante Geometrie, in dem der csAppearance- und der
csIndexSet-Knoten iiber alle Zeitschritte genutzt werden, wihrend der csCoordSet-Knoten
von allen csShape-Knoten eines Zeitschrittes referenziert wird.

der csSwitch-Knoten stateSwitch, der die Aufgabe hat, zwischen den N verschiedenen Zeit-
schritten umzuschalten. Fiir einen Zeitschritt s wird das gesamte Fahrzeugmodell von dem
Subgraphen unterhalb des csGroup-Knotens stateg repréasentiert. Die M Bauteile, aus denen
sich das Gesamtmodell zusammensetzt, werden jeweils durch einen csShape-Knoten shape;
abgebildet, indem der die Geometrie verwaltende csGeoSet-Knoten mit dem das Aussehen
beeinflussende csAppearance-Knoten verkniipft wird. Dabei gibt es pro Bauteil nur einen
csAppearance-Knoten appearance;, der jedoch iiber alle N Zeitschritte von den jeweiligen
shape; s referenziert wird. Die Topologie eines Bauteilnetzes ist in den cslndexSet-Knoten
definiert und wird ebenfalls fiir jeweils ein Bauteil {iber alle Zeitschritte gemeinsam verwen-
det. Die Koordinaten aller Netzknoten des Fahrzeugmodells kénnen fiir einen Zeitschritt
s in einem csCoordSet-Knoten coordSet; gespeichert und von allen geoSet;s gemeinsam
referenziert werden.

Fiir eine korrekte Beleuchtungsberechnung miissen aufler den Geometrieinformationen
auch Normalenvektoren gespeichert werden. Wie bereits in Kapitel 3.2 beschrieben, un-
terstiitzt der OpenGL-Standard 1.2 zwei Schattierungsmodelle: Flat-Shading — eine Nor-
male pro Element — und Gouraud-Shading — eine oder mehrere Normalen pro Knoten.
Beim Flat-Shading werden fiir das oben angegebene Beispielmodell nur weitere 6 MB fiir
die Normalenvektoren benotigt. Das Gouraud-Shading bedarf mehrerer Normalenvektoren
fiir die Netzknoten, die auf einer Gouraud-Kante liegen und einer Indizierung der Nor-
malenvektoren. Ein eigenes csIndexSet fiir die Normalen sollte nur angelegt werden, sofern
folgende Bedingung erfiillt ist: 3- Zeitschrittanzahl- (Normalenanzahl — Knotenanzahl) -4 >

4.3 Erweiterungen unter Cosmo3D

69

-
9 10
s—— | csindexset | [0,3,2,1] | [1,264] | [2,11,86] | [3,13,11,2] | [57,1615] | .. |
- index: 01234 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20
S csCoordSet 0,1,2,3,4, 4,5, 5, 6, 6, 6, 7, 7, 8 8, 9, 10,11, 11, 12,13,...
B csNormalSet | 0,1,2,3, 49,4% 50 5b 6o 6b 6c, 7 70 82 80 9 10,11%,11%,12,13,...

Abbildung 4.4: Dieses Beispiel aus [63] zeigt, wie das csIndexSet sowohl von dem csCoordSet
als auch vom csNormalSet gemeinsam zur Indizierung genutzt werden kann. Die breiten
Elementkanten entsprechen Gouraud-Kanten, das heifit, dass an den Netzknoten 4, 5, 7,
8, und 11 jeweils zwei und am Netzknoten 6 sogar drei verschiedene Normalenvektoren
vorliegen. Daher miissen bei einem gemeinsam genutzten csindexSet fiir diese Punkte die
Koordinaten fiir jede zusitzliche Normale vervielfacht werden.

4 - Elementanzahl - 4 + sizeof(csIndexSet), wobei die Normalenanzahl hier alle Normalen
an allen Knoten umfasst. Andernfall ist der Speicherbedarf geringer, wenn fiir Knoten-
koordinaten und Normalenvektoren ein gemeinsamer Index fiir jeden Knoten verwendet
wird, wobei die Koordinaten von Knoten auf Gouraud-Kanten mehrfach gespeichert werden
miissen (Abbildung 4.4). Die Handhabung von OpenGL Vertex-Arrays wird seit Cosmo3D
/ OpenGL Optimizer Version 1.3.1 unterstiitzt, allerdings nur bei Verwendung eines ge-
meinsamen csIndexSet fiir Koordinaten und Normalen.

4.3 Erweiterungen unter Cosmo3D

Ein wichtiges Kriterium bei der Auswahl einer Szenengraphbibliothek ist die Erweiterbar-
keit ihrer Schnittstelle um zusétzliche Objekte. Dies ist erforderlich, sobald die Funktiona-
litdt der zur Verfiigung stehenden Klassen modifiziert werden soll oder die Bibliothek durch
neue komplexe Objekte erginzt wird. Da kaum Informationen zur Erweiterung dieser Sze-
nengraphbibliothek verfiigbar sind, beschreibt dieser Abschnitt an zwei unterschiedlichen
Beispielen, wie bei der Integration neuer Objekte in die Szenengraphbibliothek vorzugehen
ist.

Ahnlich wie Open Inventor lisst sich auch Cosmo3D durch weitere Szenengraphknoten
und Actions erweitern. Das csField/csFieldInfo-Konzept sieht vor, Attribute neu hinzu-
gefiigter Objekte nach auflen iiber eine generische Schnittstelle zugénglich zu machen. Der
Datentyp eines Attributs kann spezifiziert und ihm eine ID zugewiesen werden, iiber die
unter Verwendung vorgegebener Methoden auf die Daten zugegriffen wird.

4.3.1 Clip-Objekt

Ein vielfiltig einsetzbares Werkzeug zur Analyse der Fahrzeugmodellstruktur stellen frei
bewegliche Clip-Objekte dar. Mit ihrer Hilfe ist es moglich, verdeckende Teilstrukturen
interaktiv auszublenden, um freien Einblick auf dahinterliegende Bereiche zu erhalten.

70

Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

Ein einfaches und von OpenGL direkt unterstiitztes Clip-Objekt ist die iiber glClipPlane
steuerbare Clip-Ebene. Zusétzlich zu der Clip-Funktionalitdt muss der neue Cosmo3D-
Szenengraphknoten eine Geometrie darstellen, die die Position und Lage der Clip-Ebene
widerspiegelt und iiber die der Anwender mit dem Werkzeug interagieren kann. Der neue
Cosmo3dD-Szenengraphknoten ist ein csGroup-Knoten. Alle Objekte, die sich im Szenengra-
phen unter einem csClipGroup-Knoten befinden, kénnen von seiner Clip-Ebene geschnitten
werden. Durch entsprechende Positionierung im Szenengraphen ist es somit méglich, auch
bauteil- oder bauteilgruppenbezogen Teilstrukturen wegzuschneiden. Die Deklaration von
¢sClipGroup in Abbildung 4.5 zeigt exemplarisch, welche Methoden implementiert werden
miissen, um einen neuen Szenengraphknoten in das Cosmo3D-Konzept einzubetten. Die
am Ende des Kapitels in Abbildung 4.6 beschriebene Implementierung verdeutlicht am glei-
chen Beispiel, wie die Initialisierung von Cosmo3D-Szenengraphknoten vollzogen wird und
wie im speziellen Fall von csClipGroup durch Hinzufiigen einiger OpenGL-Anweisungen in
der Rendering-Methode dieses neue Szenengraphobjekt entstanden ist, das so auch in an-
deren Cosmo3D-basierten Applikationen zur interaktiven Exploration polygonaler Modelle
eingesetzt werden konnte (vergleiche SoClipKit in [61], Abschnitt 4.1.2).

class csClipGroup : public csGroup {

private:
static csType *_ClassType; // fir RTTI (Run Time Type Identification)
static void initClass(); // initialisiert _ClassType und Fields
csBool activePlane; // Flag, ob Clip-Ebene ein- oder ausgeschaltet
csBool negatePlane; // erméglicht Invertierung der Clip-Richtung
csBool showPlane; // erlaubt das Ausblenden der Ebenengeometrie
csTransform *planeXf; // Root-Knoten der Ebenengeometrie
GLdouble clipPlaneEq[4]; // Clip-Ebenengleichung fiir glClipPlane
static int maxNumPlanes; // maximale Anzahl aktiver OpenGL Clip-Ebenen
static int numCurActive; // Anzahl derzeit aktiver Clip-Ebenen
protected:
void init(); // von Konstruktoren verwendete Initialisierung
public:
enum { FIRST = csGroup::LAST-1,
ACTIVE, // iiber diesen Enumerator wird auf ’activePlane’ zugegriffen
NEGATE, // entsprechend fiir ’negatePlane’
SHOW, // und fiir ’showPlane’ (siehe auch initClass())
LAST }; // Verwendung von FIRST/LAST sichert liickenloses Inkrementieren

static csType *getClassType() {
if (!_ClassType) initClass(); return _ClassType; }
csClipGroup() : csGroup(getClassType()) {

init(Q); }
csClipGroup(csType *type) : csGroup(type) {

init(); } // Konstruktor fiir abgeleitete Objekte
virtual “csClipGroup(); // zerstére Clip-Ebenengeometrie

virtual csContainer *instantiate() { // z.B. bei Instanziierung durch Loader
return new csClipGroup(); 7}

virtual csTravDirective drawVisit(csDrawAction *); // zur Darstellung
virtual void isect(csIsectAction *); // fiir Picking bendtigt

};

Abbildung 4.5: Deklaration des neuen Cosmo3D-Szenengraphknoten csClipGroup.

4.3 Erweiterungen unter Cosmo3D

71

Zuséatzlich zu den hier aufgelisteten Methoden gibt es noch Funktionalitéit, um eine
csClipGroup-Instanz sowohl im Szenengraphen als auch in der Szene zu positionieren und die
Attribute zu modifizieren. Des Weiteren werden iiber den Field-Connection-Mechanismus
csClipGroup-Instanzen synchronisiert, die in verschiedenen Zeitschritt-Subgraphen die glei-
che Clip-Ebene reprisentieren.

Weitere Beispiele fiir die Erweiterung der Szenengraphbibliothek durch neue Knoten,
die in dieser Arbeit entwickelt wurden, sind

e csCallbackNode — universell einsetzbarer Knoten, um zum Beispiel die Traversierung
des Szenengraphen zu modifizieren oder bestimmte Aktionen auszulsen

e csFontNode — erlaubt die Einbettung von Annotationen in der Szene
e csQuadStripSet — ein Szenengraphknoten fiir Quadrilateralstreifen (siehe Abschnitt 6.1)

e csUnpickableLine — Linien, die nicht gepickt werden kénnen, vermeiden eine unbeab-
sichtigte Selektion hervorgerufen durch das Hiillvolumen-basierte Picking von Linien

4.3.2 Traversierungsfunktionen

Die von der Graphikbibliothek Cosmo3D / OpenGL Optimizer zur Verfiigung gestellten
csAction-Objekte traversieren den Szenengraphen und fiithren eine Operation aus, indem
entsprechende Methoden an dem Szenengraphknoten aufgerufen werden. Neue Operatio-
nen, die auf nur im Szenengraphen vorhandene Daten zuriickgreifen, kénnen als eine er-
weiterte Traversierungsfunktion implementiert werden. Eine derartige Erweiterung ist zum
Beispiel die IntersectionAction, die mit Hilfe einer Selektionsgeometrie Szenengraphobjek-
te selektiert beziehungsweise schneidet. Im Folgenden wird lediglich die Arbeitsweise von
Traversierungsfunktionen erldutert.

OpenGL Optimizer stellt mit der Basisklasse opDF TravAction den grundlegenden Tra-
versierungsmechanismus zur Verfiigung. Zur Implementierung einer eigenen Traversie-
rungsfunktion koénnen folgende Methoden iiberladen werden:

e begin wird vor Beginn der Traversierung aufgerufen und kann zur Initialisierung genutzt
werden.

e end schliefit die Szenengraphtraversierung ab.

e preNode wird jeweils mit dem als néichstes zu traversierenden Szenengraphknoten auf-
gerufen und bietet die Moglichkeit, Einfluss auf den Fortgang der Traversierung zu
nehmen.

e postNode beendet die Traversierung eines Szenengraphknoten.

Spezialisierte Traversierungsfunktionen konnen durch das Wissen iiber die applikati-
onsspezifische Szenengraphstruktur profitieren. Dariiber hinaus kénnen Unzulédnglichkeiten
der zur Verfiigung gestellten Traversierungsfunktionen, wie zum Beispiel die fehlende Un-
terscheidung der csDrawAction zwischen semitransparenten und opaken Objekten, durch
eigene Erweiterungen umgangen werden.

72 Effizientes Szenengraph-Design fiir zeitabhingige FE-Modelle

csType *csClipGroup::_ClassType = OL;

void
csClipGroup: :initClass() // === Klassen-Initialisierung ====
{

csContext: :getClassType(); // siehe Makro BEGIN_INIT_CSTYPE in csMacros.h

_ClassType = new csType(csGroup::getClassType(), "ClipGroup");

csSFBool: :addTypeField(

_ClassType, // fiige dieser Klasse ein neues Attribut hinzu

"active", // Bezeichner mit dem dieses Attribut spezifiziert wird
csClipGroup: :ACTIVE, // Enumerator iiber den auf das Attribut zugegriffen wird
csBool(true), // initialer Wert

(csBool csContainer::*) &csClipGroup::activePlane); // Speicher fiir Attribut

// entsprechend werden auch ’negatePlane’ und ’showPlane’ als Attribute angemeldet
numCurActive = 0;
// initialisiere ’maxNumPlanes’ iiber glGetIntegerv(GL_MAX_CLIP_PLANES)

}
void
csClipGroup: :init () // === Instanz-Initialisierung ====
{
getClassType(); // stellt sicher, dass _ClassType initialisiert ist
initFieldDefaults(_ClassType); // Attribute intialisieren
// Subgraphen fiir planeXf aufbauen, der Clip-Ebenengeometrie représentiert
}
csTravDirective
csClipGroup: :drawVisit(csDrawAction *da) // === Rendering-Methode ==========
{
// aktualisiere Clip-Ebenengleichung
// zeichne Ebenengeometrie sofern ’showPlane’ gesetzt
bool doClip = (activePlane && (csClipGroup::numCurActive < csClipGroup::maxNumPlanes));
GLenum planeldx = GL_CLIP_PLANEO + csClipGroup: :numCurActive;
if (doClip) { // aktiviere OpenGL Clip-Ebene temporir
glClipPlane(planeIdx, clipPlaneEq);
glEnable(planeldx);
++csClipGroup: :numCurActive;
}
csTravDirective travDisp = csGroup::drawVisit(da); // zeichne Subgraphen
if (doClip) { // schalte zugehérige OpenGL Clip-Ebene wieder ab
—--csClipGroup: :numCurActive;
glDisable(planeldx);
}
return travDisp; // Enum, ob SG-Traversierung fortgesetzt oder abgebrochen werden soll
}

Abbildung 4.6: Die Methode initClass zeigt, wie ein Attribut iiber das csFieldInfo-Konzept
anderen Objekten zur Verfiigung gestellt wird. drawVisit wird beim Rendering aufgeru-
fen und stellt sicher, dass sich die frei bewegliche Clip-Ebene lediglich auf den eigenen
Subgraphen auswirkt.

Kapitel 5

Architektur des Prototypen

Im Rahmen dieser Arbeit ist in enger Kooperation mit der Berechnungsabteilung EK-
21 der BMW Group ein produktiv eingesetztes Visualisierungswerkzeug entstanden. Die
Zielsetzung, die anfangs darin bestand, einen Postprocessor-Prototypen zu entwickeln, der
durch Ausnutzung neuer Techniken die Analyse von Simulationsergebnissen beschleunigt,
dnderte sich durch die Teilnahme an dem BMBF-Projekt Autobench [68]. Ziel des Teilpro-
jektes war die Entwicklung eines integrierten Prototypen fiir das Pre- und Postprocessing
unabhéngig voneinander vernetzter Bauteile. Hierzu wurden im Rahmen dieser Arbeit zahl-
reiche Beitrige geleistet, die in den nachfolgenden Kapiteln detailliert beschrieben werden.

In diesem Kapitel wird zunichst ein Uberblick iiber die Software-Struktur gegeben und
anschlieflend auf ausgew#hlte Module niher eingegangen. Dabei werden jeweils die ent-
wickelten Funktionalititen und die dazu notwendigen Datenstrukturen vorgestellt. Dariiber
hinaus wird das entwickelte Interaktionskonzept des entstandenen Prototypen crashViewer
beleuchtet.

5.1 Objektorientiertes Design der Software

Die Software, die inzwischen circa 150 000 Zeilen C++-Quelltext umfasst, ldsst sich grob
in folgende Teilbereiche untergliedern (vergleiche Abbildung 5.1):

Ein-/Ausgabe-Module: Hierzu gehoren aufier den in Abschnitt 5.1.2 vorgestellten
Reader-Modulen, die dem Einlesen verschiedener Dateiformate dienen, auch die in
Abschnitt 5.1.4 entwickelten Parser-Module fiir selbstdefinierte Dateiformate.

Interne Datenstrukturen: Die Objekte, die aus einer objektorientierten Analyse der zu
verarbeitenden Daten hervor gegangen sind, bilden den Kern der internen Daten-
strukturen und werden im nachfolgenden Abschnitt eingefiihrt.

Szenengraph-Module: Fiir die beiden Szenengraph-Bibliotheken Cosmo3D und Open
Inventor wurde jeweils eine auf GeoBase basierende Schnittstelle geschaffen, um die

74 Architektur des Prototypen

internen Datenstrukturen auf Szenengraphobjekte abzubilden, die fiir eine effiziente
Visualisierung genutzt werden. Wahrend ExtCsOp stellvertretend fiir die bereits in
Abschnitt 4.3 erlduterten Erweiterungen der Szenengraphbibliotheken steht, wird
GeoCosmo, die Schnittstelle zu Cosmo3D, im Abschnitt 5.1.3 vorgestellt.

Funktionsmodule: Die Module, in denen Funktionalititen zu den verschiedenen Anwen-
dungsbereichen implementiert ist, werden aufgrund ihres Umfangs in den Kapiteln 6
8 separat behandelt.

Graphische Benutzerschnittstelle: Das zentrale Modul des Prototypen crashViewer
stellt aus Sicht des Anwenders der in Abschnitt 5.2 beschriebene OpenGL Optimizer
basierte Viewer dar, von dem die im darauffolgenden Abschnitt beschriebenen Me-
chanismen zur Datenanalyse gesteuert werden.

= Interne Datenstrukturen Viewer
ReadPDS | o Base Dialogs
() /_ _\ ode
DL- Container FEBase :dd EXtCSOp
— ge
8 () i: Group ~ FEBeam BvTree g COSmO
Read PC 8 % Material - FEShell (@)
ol m L FETool Spotweld g)j
g | rEsoliq Tube @ Inventor
ReadDSY @ - FERedSol
&J U env
DistCalc Physics Simplify |[|2 =
ReadlDEAS Inipen Stabity GenStrip £ .Ignript
Resample Coop ||| [stf
ReadlLSDYNA SpotwFunc|| Volume | | CoDec | | [L-tld

Abbildung 5.1: Uberblick iiber die modulare Software-Struktur von crash Viewer.

5.1.1 Interne Datenstrukturen

In einer objektorientierten Analyse wurden zun#chst die grundlegenden Objekte identifi-
ziert, aus denen sich die zu verarbeitenden Datensitze zusammensetzen, und schliefllich
folgende Klassen abgeleitet:

e Node: Diese Klasse reprisentiert die Knoten der Finite-Elemente. Auf die Koordi-
naten wird iiber einen Pointer auf ein zusammenhéingendes Array von Koordinaten

5.1 Objektorientiertes Design der Software

75

verwiesen, welches beim Einlesen der Daten initialisiert wird. Dadurch werden beim
Einlesen mehrerer Zeitschritte zusétzliche Kopiervorginge vermieden. Das Objekt
hélt Verweise auf die angrenzenden FEBase-Elemente und speichert eine oder meh-
rere Normalen.

Base: Fast alle in den Daten vorkommenden Objekte besitzen als Identifikator ein
Label, das aus einer positiven Ganzzahl besteht und fiir den Objekttyp eindeutig ist.
Auflerdem sind die meisten Objekte einem anderen Objekt zugeordnet, zum Beispiel
ist ein Finite-Element stets einem Bauteil (Material) zugeordnet.

FEBase: Die Basisklasse der Finite-Elemente ist von Base abgeleitet und speichert
eine Node-Liste der Netzknoten, die das Element definieren. Sie hat folgende Spezia-
lisierungen:

— FEBeam: Hier wird die Klasse der eindimensionalen Finite-Elemente re-
prasentiert.

— FEShell: Die Klasse der zweidimensionalen Schalenelemente, die durch drei oder
vier Knoten definiert sind, speichert aufler einer Normalen auch skalare Para-
meter, wie zum Beispiel die Dicke oder die maximale plastische Dehnung.

— FESolid: Die dreidimensionalen Volumenelemente werden in dieser Klasse zusam-
mengefasst. Durch Einsatz von FERedSol ist es moglich, nur die duflere Hiille
eines aus Volumenelementen bestehenden Bauteils darzustellen.

Container: Zu dieser von Base abgeleiteten Klasse gehoren Objekte, die mehrere Ba-
se-Objekte zusammenfassen. IThnen kann ein Name, bestehend aus ASCII-Zeichen,
zugewiesen werden und sie kénnen mit einem Szenengraphobjekt verkniipft werden,
das sie reprisentiert.

Group: Eine Spezialisierung der Klasse Container, die der Modellstrukturierung dient.
Hier konnen mehrere Container-Objekte zu einer Bauteilgruppe zusammengefasst
werden.

Material: Diese Unterklasse von Container biindelt gleichartige FEBase-Objekte und
reprasentiert ein Bauteil. Jede Instanz referenziert eine Bounding-Volume-Hierarchie
(BvTree), die die Bauteilelemente hierarchisch in Gruppen zusammenfasst.

Spotweld: Die Schweiipunkte der Eingabedaten werden durch diese Klasse vertreten
und entsprechend der Angaben zugehoriger Gruppierungsdaten in SpotweldGroup-
Instanzen zusammengefasst.

Rigbo: Die Starrkérperverbindungen (engl. rigid body), die im Wesentlichen aus einer
Liste verschiedener untereinander nicht deformierbarer Netzknoten bestehen, werden
durch die Klasse abgebildet.

76

Architektur des Prototypen

YN
N A

.
Reader initialisieren

Interne Datenstruktur

f Datenaufbereitung]

Eingabe—
daten
D
Y
N A /
Ergebnis—

Kontrollblock auswerten
Filter anwenden
Daten einlesen

Node, Material,
Geometrie-Elemente,
Verbindungselemente

Gouraud-Kanten detektieren
Element- / Knoten-Normalen
Solid-Bauteile reduzieren

(" R N\
Szenengraph generieren

Optionale Schritte

daten
D t

Konsistente Topologie
Initiale Koordinaten

Verbindungsreprasentation
A\ J

Weitere Zeitschritte
Wireframe-Textur auftragen
Modell-Simplifizierung

eI EERE B

Abbildung 5.2: Dieses Diagramm skizziert den Datenfluss vom Einlesen der Eingabe- oder
Ergebnisdaten iiber die Initialisierung interner Datenstrukturen bis hin zur Darstellung
des generierten Szenengraphen.

Dariiber hinaus wurden zahlreiche Hilfsobjekte implementiert, wie zum Beispiel Edge,
das der Speicherung von Nachbarschaftsinformation zwischen Elementen dient und die
Gouraud-Kanten-Erkennung beschleunigt. Den Datenfluss vom Einlesen der Daten bis zur
Darstellung im Viewer wird von Abbildung 5.2 schematisch dargelegt.

5.1.2 Einlese-/Abspeicher-Module

Zum Einlesen der verschiedenen Datenformate sollten urspriinglich ausschlielich externe
Bibliotheken verwendet werden, die fiir kommerzielle Produkte (zum Beispiel PAM-View)
gepflegt werden, um den durch Anderungen der Datenformate verursachten Umstellungs-
aufwand zu minimieren und zugleich stets aktuelle Simulationsergebnisse durch Auswech-
seln der externen Bibliotheken einlesen zu kénnen. Zu diesem Zweck stellte die Firma ESI
im Rahmen des Autobench-Projekts stets die aktuellen Versionen ihrer PDS- und DAI-
SY-Bibliotheken zum Einlesen von Pre- und Postprocessing-Daten zur Verfiigung. Da die
Daten, wie in Kapitel 3.4.2 erldutert, unterschiedlich strukturiert sind, wurden fiir die-
se beiden externen Bibliotheken die in den Abschnitten 5.1.2.1 und 5.1.2.2 beschriebenen
Schnittstellen-Module implementiert. Dariiber hinaus wurden eigene Reader-Module zum
Einlesen von LSDYNA- und IDEAS-Datenformaten entwickelt, die im Anschluss vorge-
stellt werden.

Die Grundfunktionalitét aller Einlese-Module wird in der Klasse ReaderBase durch vir-
tuelle Methoden zur Verfiigung gestellt. Der Ablauf beim Einlesen einer Datei geht in
folgenden Schritten vor:

1. Kontrollblock auswerten: Bei der Instanziierung eines Reader-Moduls wird die
Datei geoffnet und Informationen iiber die Gréfle und Zusammensetzung das Daten-
satzes eingeholt.

5.1 Objektorientiertes Design der Software

7

2. Filter anwenden: Durch Angabe einer Bitmaske fiir einzulesende Finite-Element-
Typen, Verwendung einer Gruppierungsdatei (siehe auch Abschnitt 5.1.4) oder Spe-
zifikation verschiedener Label(-Bereiche) kann das Einlesen auf eine Untermenge der
Daten eingeschrinkt werden, um Lade- und Darstellungszeiten zu verkiirzen.

3. Interne Datenstruktur initialisieren: In der Initialisierungsphase werden die in-
ternen Datenobjekte klassenweise instanziiert. So werden die gesamten Koordinaten
eines Zeitschrittes in einen zusammenhéngenden Speicherbereich eingelesen, auf den
von den Node-Instanzen verwiesen wird. Fiir jede Klasse werden nach dem Label sor-
tierte Referenzlisten aufgebaut, die spéater unter Anwendung binédrer Suchalgorithmen
eine effiziente Generierung der Geometrie zulassen.

4. Modell-Hierarchie aufbauen: Der Aufbau einer Gruppenstruktur erfolgt nur bei
Verwendung einer Gruppierungsdatei und dient dem Zusammenfassen einzelner Bau-
teile zu Bauteilgruppen.

Nach Abschluss der Initialisierungsphase sind nur die benétigten Grunddaten (Topolo-
gie, Geometrie, Hierarchie) initialisiert. Das Reader-Modul bleibt bis zu seiner Zerstérung
in einem Zustand, in dem es zum Einlesen zusétzlich benétigter Daten (zum Beispiel von
Knotenkoordinaten aus weiteren Zeitschritten oder von Ergebniswerten) genutzt werden
kann.

5.1.2.1 Schnittstelle fiir PAM-Crash Eingabedateien

Zum Einlesen der PAM-Crash Eingabedateien, die im ASCII-Format vorliegen, startete die
Firma ESI 1997 die Entwicklung einer neuen objektorientierten Produktplattform, dem
PAM Open Environment (POE). In diesem Zusammenhang entstand die C++ basierte
Permanent Data Storage- oder kurz PDS-Bibliothek, die zukiinftig in der Lage sein sollte,
auch bindre Ein- und Ausgabedaten verschiedener Simulationscodes zu verarbeiten.

Die im Rahmen dieser Arbeit unabhingig entwickelte interne Datenstruktur entsprach
zwar iiberwiegend einer Untermenge der Objekte aus der PDS-Bibliothek, jedoch mussten
die Daten in dieser Schnittstelle trotzdem kopiert werden, um eine enge Kopplung zu ver-
meiden. Bei Verwendung der PDS-Bibliothek werden also zwei komplette Reprisentationen
des Fahrzeugmodells im Hauptspeicher gehalten. Der Speicherbedarf ist allerdings unkri-
tisch, da fiir Eingabedaten jeweils nur die initiale Geometrie, also nur ein Zeitschritt defi-
niert ist.

Bei der Klasse ReadPDS handelt es sich im Gegensatz zu den anderen Reader-Modulen
um eine bidirektionale Schnittstelle, da hier auch interne Daten zuriick in die PDS-
Datenstrukturen transformiert werden, um sie anschliefend mit den in der Bibliothek
angebotenen Funktionen abspeichern zu kénnen.

Sowohl die mangelnde Performanz der PDS-Bibliothek als auch der Umstand, dass neu
entwickelte Objekte erst mit mehreren Monaten Verzégerung von nachfolgenden Biblio-
theksversionen verarbeitet werden konnten, fiihrte zur Entwicklung eines eigenen Reader-

78

Architektur des Prototypen

Moduls (ReadPC), das keine externe Bibliothek verwendet und die internen Daten di-
rekt aus den ASCII-Daten initialisiert. Um die Verwendung beider Reader-Module zu
ermoglichen, wurde den beiden Klassen ReadPDS und ReadPC eine gemeinsame Oberklasse
ReadPrePAM iibergeordnet, die von ReaderBase abgeleitet ist.

Der Einsatz von crashViewer in der Berechnungsabteilung fiir Crash-Simulation der
BMW Group erforderte, dass auch Datenobjekte verarbeitet werden konnten, die aus der
Methodenentwicklung hervorgingen und noch nicht im Produktstandard enthalten waren.
Daher wurde ein eigenes erweitertes Reader-Modul entwickelt, das die interne Datenstruk-
tur direkt aus den Datenkarten in der Datei initialisiert. Durch die Einschréinkung auf die
wirklich bendtigten Daten und die direkte Verarbeitung konnte die Zeit fiir das Einlesen
von PAM-Crash Eingabedateien auf 15% der urspriinglichen benétigten Zeit beschrinkt
werden.

5.1.2.2 Schnittstelle fiir PAM-Crash Ergebnisdateien

Wihrend der Crash-Simulation PAM-CRASH werden die Zwischenergebnisse fiir jeden
zweitausendsten Berechnungsschritt in einem binéren Dateiformat abgespeichert. Zum Ein-
lesen der Ergebnisdaten wurde die in Fortran 77 implementierte DAISY-Bibliothek der
Firma ESI eingesetzt. Die Ergebnisdaten werden im Gegensatz zu den Eingabedaten nach
Objekttypen getrennt fiir das gesamte Fahrzeugmodell in einem Array abgelegt. Die Rei-
henfolge der Elemente entspricht der aus der Eingabedatei. Finite-Elemente eines Bauteils
kénnen iiber das gesamte Array des Elementtyps verstreut sein. Folglich kann das Ein-
lesen von Teilbereichen dieser langen Arrays nur dann sinnvoll eingesetzt werden, wenn
sichergestellt ist, dass die Daten bereits im Eingabemodell Bauteil-spezifisch gebiindelt
wurden.

Es folgen einige Beispiele von Bibliotheksfunktionen, die das Einlesen der Daten in den
Hauptspeicher iibernehmen:
e _dsyvar(...) holt die Anzahl der Netzknoten, Volumen-, Schalen- und Balkenelemente
sowie die Koordinatendimension.
e _dsysta(...) ermittelt die Anzahl der abgespeicherten Zeitschritte.
e _dsylno(...) iibertrégt das Array der Knotenlabels in den Hauptspeicher.
e _dsycoof...) iibermittelt die Koordinaten der Netzknoten im initialen Zeitschritt.

o _dsydef(...) liest die Koordinaten des deformierten Finite-Element-Netzes zu einem spe-
zifizierten Zeitschrittindex ein.

e _dsyvsh(...) kopiert die Werte fiir den angegebenen Schalenparameter (zum Beispiel die
maximale plastische Dehnung) fiir alle Schalen des angegebenen Zeitschrittindexes.

Die Hélfte der rund 60 Zugriffsfunktionen auf Ergebnisdateien, die in einem undoku-
mentierten bindren Dateiformat vorliegen, werden im Modul ReadDSY genutzt, um die
Datenarrays einzulesen. Die internen Datenobjekte werden aus diesen groflen Arrays in
Klassen-basierten Initialisierungsfunktionen generiert. Um das Einlesen mehrerer Zeit-

5.1 Objektorientiertes Design der Software

79

schritte moglichst effizient zu gestalten, werden die Knotenkoordinaten direkt in den
Speicherbereich gelesen, auf den die Koordinaten-Pointer der internen Node-Instanzen ver-
weisen. Dadurch wird zusétzliches Kopieren und Zerstiickeln der Daten umgangen.

Verzogerungen durch geringe Bandbreiten beim Einlesen grofler Datensétze von entfern-
ten Fileservern werden durch Parallelisierung minimiert. Dabei werden bereits die Daten
fiir den Zeitschrittindex n + 1 iiber das Netzwerk in einen zweiten Hauptspeicherbereich
geladen, wihrend die internen Datenstrukturen mit dem Zeitschrittindex n initialisiert
werden und ein entsprechender Szenengraph erzeugt wird (Abbildung 5.3).

Read-Thread-Loop: Init-Thread-Loop:

Koordinaten fiir nachsten Interne Datenstrukturen aus primédrem

Zeitschritt in sekunddren Speicherbereich initialisieren und

Speicherbereich einlesen Szenengraphen fiir aktuellen Zeitschritt
bauen

|Read—Init—Barriere|

Kopiere Daten vom sekundiren
in den primdren Speicherbereich

‘Copy—Barriere‘

Abbildung 5.3: Dieser Pseudocode zeigt, wie die beiden Threads beim parallelen Einlesen
ablaufen.

5.1.2.3 Einlese-Module fiir weitere Dateiformate

Da im Rahmen dieser Arbeit fiir Problemstellungen aus verschiedenen Bereichen nach
Losungen gesucht wurde, war die Unterstiitzung weiterer Datenformate notwendig. Fiir
folgende Dateiformate sind eigene Einlesemodule entwickelt und implementiert worden:

e LS-DYNA Ergebnisdateien
Mit dem Modul ReadLSDYNA ist es moglich, die interne Datenstruktur des Prototy-
pen aus Ergebnisdaten, die mit dem Simulationsprogramm LS-DYNA der Livermo-
re Software Technology Coorporation berechnet und in einem binéren Dateiformat
abgespeichert wurden, zu initialisieren. Das Format dhnelt dem der PAM-CRASH
Ergebnisdateien.

e IDEAS Universal Dateien
Um den Einsatz der Hardware-basierten Volumenvisualisierung im Umfeld der Struk-
turanalyse testen zu konnen, wurde fiir das Einlesen von Ergebnisdaten aus einer
PERMAS-basierten Bauteiloptimierung ReadIDEAS implementiert. Dieses Einlese-
modul kann aus den ASCII-basierten IDEAS Universal Dateien die Modellstruktur
sowie zeitabhingige Ergebnisdaten herausfiltern und iiber die interne Datenstruk-
tur der Visualisierung zufiihren. Dariiber hinaus dient ReadlDEAS dem Einlesen

80

Architektur des Prototypen

von Schwingungs- und Akustikdaten aus der linearen Simulation. Das Universal-
Dateiformat ist sehr umfangreich, da es den Anspruch hat, Daten aus véllig unter-
schiedlichen Einsatzgebieten der numerischen Simulation speichern zu kénnen.

5.1.3 Schnittstelle zur Szenengraphbibliothek

Durch eine klare Trennung zwischen der internen Datenstruktur und der Szenengraphbi-
bliothek wird die Moglichkeit gewéhrleistet, durch den Austausch der Schnittstelle weitere
Szenengraphbibliotheken zum Einsatz bringen zu kénnen. Zu diesem Zweck wurde die ab-
strakte Klasse GeoBase als Schnittstelle entwickelt. Von ihr leiten sich die Klassen Geolnven-
tor und GeoCosmo ab, in denen die internen Objekte in entsprechende Szenengraphknoten
umgewandelt werden. Fiir Cosmo3D-Szenengraphknoten bietet die Klasse csContainer die
Moéglichkeit, Benutzerdaten direkt am Szenengraphobjekt abzuspeichern. Dieser Mecha-
nismus wird in GeoCosmo zur direkten Riickreferenzierung auf die Instanz eines internen
Datenobjektes genutzt.

5.1.4 Parser fiir selbstdefinierte Dateiformate

Fiir verschiedene Zwecke wurden Dateiformate auf Basis von LALR(1)-Grammatiken de-
finiert und Parser-Module implementiert, die derartige Dateien wieder einlesen koénnen.
Alle Parser-Module leiten sich von der abstrakten Klasse ParserBase ab. Die spezifizier-
ten Grammatiken werden mit Hilfe des bison++-Compilers in einen C++-basierten Parser
umgewandelt. Folgende Module wurden entwickelt:

e EnvFileParser liest Einstellungen wie zum Beispiel Kamerapositionen oder Hinter-
grundfarbe ein, die im Laufe einer Sitzung vom crashViewer abgespeichert wurden.
Die verschiedenen Kamerapositionen stehen anschliefend im Viewer wieder mit den
Tastenkombinationen, fiir die sie abgespeichert wurden, zur Verfiigung.

o GrpFileParser wertet Gruppendateien aus. Diese Dateien werden in der Regel auch
vom Benutzer modifiziert und legen eine Hierarchie unter den Fahrzeugbauteilnet-
zen an, das heifit, mehrere Bauteile konnen so zu Bauteilgruppen zusammengefasst
werden. Die spezifizierte Hierarchie wird in die interne Datenstruktur und damit an-
schlieflend auch in den Szenengraphen iibernommen, wodurch die Handhabung (zum
Beispiel Transformationen) von Bauteilgruppen als Einheit méglich wird.

Dariiber hinaus wurde das Dateiformat dahingehend erweitert, dass in einer Grup-
pendatei auf Basis von Bauteil-, Element- oder Knoten-IDs angegeben werden kann,
welche Teile des Datensatzes visualisiert werden sollen und welche nicht.

o InitFileParser verarbeitet Konfigurationsdateien, die dazu dienen, die Parameterein-
stellungen im crashViewer nach den Wiinschen des Anwenders zu modifizieren. Zu
den konfigurierbaren Parametern gehoren unter anderem die Standardverzeichnis-
pfade fiir die diversen Dateitypen sowie Parameter zum Setzen von Schweilpunkten
oder zum Erstellen von Kraftflussrohren.

5.1 Objektorientiertes Design der Software

81

e PathListParser ermittelt relative und absolute Datei- beziehungsweise Verzeichnispfa-
de zur Verarbeitung mehrerer Ergebnisdateien bei der Detektion von Instabilitdten
(siehe Kapitel 8.4 ab Seite 131).

o SffFileParser wertet die Schnittkraftdaten einer abgespeicherten Kraftflussrohre in
einem Section-Force-File aus, wodurch die aufwéndige Berechnung der Schnittkréfte
direkt im Anschluss an die Simulation ohne Benutzerinteraktion geschehen kann und
die Ergebnisse zur Visualisierung sofort zur Verfiigung stehen.

e TIdFileParser liest die Definition eines statischen oder dynamischen Polygonzugs aus
einem Trace-Line-Definition-File ein, die den Verlauf einer Kraftflussr6hre angibt.
Diese Dateien werden entweder beim Abspeichern von Kraftflussr6hren erzeugt oder
kénnen auch direkt vom Anwender mit einem Editor angelegt werden. Die Kraft-
flussrohren werden im Kapitel 8.3 ab Seite 127 besprochen.

5.1.5 Funktionsmodule

Dieser Abschnitt gibt einen Uberblick iiber die Funktionalititen, die der Prototyp
crashViewer zur Verfiigung stellt und die aufgrund ihrer Umfinge in spéteren Kapiteln
néher beschrieben wird. Fiir jede der nachfolgend aufgelisteten Funktionalitdten wurde ein
Modul teilweise bestehend aus mehreren Klassen entwickelt.

e Fiir das kooperative Arbeiten auf mehreren Rechnern wurde in dem coop-Modul eine
CORBA-basierte Ubertragung von Events zwischen verschiedenen Viewer-Instanzen
entwickelt und eine Bildiibertragung via Sockets an Java-Clients integriert (Ab-
schnitt 8.5, Seite 135ff).

e Das genstrip-Modul implementiert die Zusammenfassung benachbarter Primitive
(Dreiecke oder Quadrilaterale) zu Streifen und wird ab Seite 89 erldutert.

e Die Reduzierung des Finite-Element-Netzes zu einer geringen Anzahl von Dreiecken
dient ebenfalls der Darstellungsbeschleunigung und wird im simplify-Modul (Ab-
schnitt 6.2) vollzogen.

e Das boundVol-Modul (ab Seite 108 beschrieben) stellt die Implementierung einer
Bounding-Volume-Hierarchie dar, die das Fahrzeugmodell ab der Bauteilnetzebene
weiter unterteilt und der effizienten Ermittlung von minimalen Abstinden bezie-
hungsweise der Detektion von Kollisionen dient.

e Im inipen-Modul wird iiber eine Schnittstelle eine Bibliothek der Firma ESI ange-
steuert, die anhand der berechneten initialen Krifte iterativ die Knotenkoordinaten
zu nahe aneinander liegender Bauteilnetze modifiziert (siehe Abschnitt 7.1.2).

e Die interaktive Definition und Modifikation von Schweilpunktdaten ist in dem spot-
wFunc-Modul realisiert worden und wird im Kapitel 7.2 ab Seite 118 vorgestellt.

82

Architektur des Prototypen

e Das Modul resample implementiert die Ubertragung von skalaren Parametern aus
der Tiefziehsimulation auf das Crash-Netz und erméglicht so zum Beispiel die
Beriicksichtigung unterschiedlicher Elementdicken innerhalb eines Bauteils in der
Crash-Simulation (Kapitel 7.3).

e Die Berechnung von Schnittkréften und die visuelle Aufbereitung in Form von Kraft-
flussrohren iibernimmt das forceTube-Modul, das in Kapitel 8.3 ab Seite 127 néher
beleuchtet wird.

e Die Abweichungen in Simulationsergebnissen gleicher Eingabedaten, die zur Visuali-
sierung von Instabilitdten genutzt wird, ermittelt das stability-Modul, das ab Seite 131
erldutert ist.

e Im Rahmen einer Diplomarbeit [72] wurde ein Volumizer-basierter Volumenknoten
fiir Cosmo3D entwickelt. Die dort beschriebene Funktionalitit wurde im volume-
Modul gekapselt vom Prototypen crashViewer zur Akustikvisualisierung und Geo-
metrieoptimierung genutzt.

5.2 Bedienelemente

Fiir die entwickelte Applikation crashViewer stand von Beginn an ein Arbeitsplatzrechner
mit moderner Graphik-Hardware als Zielplattform fest. Der Benutzer sollte in der Lage
sein, mdoglichst viele Funktionalitdten direkt im Darstellungsbereich durch Bedienung von
Maus und Tastatur anzusteuern. Zusétzlich sollte der Viewer durch die Entwicklung von
Interaktionsmechanismen mit Hilfsmitteln der Virtuellen Realitéit bereichert werden. Die
folgenden Abschnitte geben einen Uberblick iiber die implementierte Benutzerschnittstelle.

5.2.1 Eingabemedien

Als Eingabemedien stehen an jedem Arbeitsplatzrechner zunéchst eine Tastatur und eine
2D-Maus zur Verfiigung. Die Navigation wurde so realisiert, dass die zweidimensionalen
Bewegungen bei gedriickter Maustaste in dreidimensionale Transformationen umgesetzt
werden:

e linke Maustaste: Die Mausposition wird auf ein virtuelles Ellipsoid projiziert, dessen
Mittelpunkt auf der Sichtlinie liegt. Dadurch initialisieren Mausbewegungen eine Ro-
tation um den Mittelpunkt des Ellipsoids und erméglichen Rotationen um beliebige
Achsen im Raum.

e mittlere Maustaste: Die vertikale Mausbewegung wird in eine Translation entlang der
Sichtlinie umgewandelt und erlaubt somit bei Verwendung einer perspektivischen Ka-
mera das Zoomen. Bei Orthogonalprojektion wird der Bildausschnitt entsprechend ver-
groflert beziehungsweise verkleinert.

5.2 Bedienelemente

83

e rechte Maustaste: Die zweidimensionale Mausbewegung wird in eine Translation parallel
zur Projektionsebene umgesetzt.

Es hat sich gezeigt, dass dem Anwender die Navigation erheblich erleichtert wird, indem
weitere Hilfsmittel zur Verfiigung stehen, mit denen zum Beispiel der Mittelpunkt des
virtuellen Rotationsellipsoids festgelegt werden kann. Da die Untersuchung der Struktur-
modelle immer wieder eine genaue Inspektion erfordert, wurden Mechanismen integriert,
die es dem Ingenieur ermdoglichen, iiber einen Tastenklick die Kamera auf einen konfigu-
rierbaren Abstand an die Struktur heranzufahren oder ganze Bauteilnetze gréfitmoglich
im Darstellungsbereich anzuzeigen. Es wurden zahlreiche tastatur- und dialoggesteuerte
Interaktionsmechanismen entwickelt, um die Navigation mit der 2D-Maus zu optimieren.

Die Aktionen, die dem Anwender zur Verfiigung gestellt werden, lassen sich in objekt-
bezogene Aktionen, die sich nur auf ein selektiertes Objekt in der Szene auswirken sollen,
und globale Aktionen unterteilen. Um einen expliziten Selektionsschritt zu umgehen, wur-
den die meisten Aktionen iiber Tastaturkombinationen zuginglich gemacht, so dass mit
dem Mauszeiger das Objekt und mit der Tastatur die Aktion ausgewihlt werden kann.

Um eine Vielzahl an Aktionen iiber die Tastatur mit moglichst wenigen Tasten-
betétigungen ansteuern zu konnen und gleichzeitig den Funktionen noch intuitive Tasten-
kombinationen zuzuordnen, wurde ein Multi-Mode-System implementiert. Die Applikation
hat somit in jedem Modus wieder die volle Tastatur fiir die Belegung mit Aktionen zur
Verfiigung. Derzeit konnen iiber 250 verschiedene Aktionen mit weniger als einem Drittel
der Tasten ausgelost werden. Die Modi setzen sich aus Prifix- und permanenten Modi
zusammen. Die Prifix-Modi sind nur fiir den nichsten Tastendruck aktiv, die permanen-
ten miissen explizit wieder verlassen werden. Ein Uberblick iiber die wichtigsten Modi in
crashViewer:

e Main — Von hier aus konnen alle anderen permanenten Modi erreicht und Aktionen
ausgelost werden, die sowohl im Pre- als auch im Postprocessing Verwendung finden.

e Animation — Steuerung der Zeitschrittanimation bei zeitabhingigen Daten.

e Camera — Abspeichern und Wiederherstellen von Blickpunkt/-richtung-Einstellungen

e Dump — Informationsausgabe zu ausgewahlten Objekten

e FEdit — Modifizieren von Darstellungseigenschaften

e Select — Beschrinken der darzustellenden Szene durch Clip-Objekte

e Spotweld — Modifikation von Schweilpunktdaten

e Tube — Kraftflussvisualisierung mit Réhren

e View — Hilfsfunktionen zur Navigation in der Szene

Inzwischen sind durch weitere Forschungsaktivitidten anderer Doktoranden noch zusétzliche
Modi hinzugekommen. Durch die Verwendung mehrerer Modi kénnen gleichartige Arbeits-
schritte, wie zum Beispiel das Setzen oder Lioschen von Verbindungselementen mit gleichen
Tasten vollzogen werden. Das hilft dem Anwender, der zusétzlich noch viele andere An-
wendungen bedienen muss, sich die wesentlichen Tastenbelegungen einzuprigen.

84

Architektur des Prototypen

5.2.2 Hilfsmittel der Virtuellen Realitit am Arbeitsplatz

Obwohl inzwischen im Rahmen einer Studienarbeit [52] auch eine Portierung von
crashViewer fiir die immersive Visualisierung in einer Cave oder an einer Powerwall ent-
standen ist, lag der Schwerpunkt fiir die Entwicklung von Interaktionsmechanismen auf der
Bereicherung einer Bildschirm-basierten Version durch Hilfsmittel der Virtuellen Realitit.

Abbildung 5.4: Mit diesem Eingabegerit, einer Space Mouse, ist es méglich, Translationen
entlang beziehungsweise Rotationen um die drei Hauptachsen durchzufiihren.

AufBler den bereits beschriebenen Eingabemedien Tastatur und 2D-Maus werden eben-
falls die Daten einer Space Mouse (Abbildung 5.4) verarbeitet und in eine Transformati-
on mit sechs Freiheitsgraden umgesetzt. Hier wurden zwei verschiedene Modi implemen-
tiert:

e Im Model-Mode wird die errechnete Transformation auf das Fahrzeugmodell oder auf
ein aktuell selektiertes Bauteil angewendet. Das dargestellte Objekt verhilt sich so wie
der Griff der Space Mouse und lisst dadurch die Manipulation der Szene auf intuitive
Art und Weise zu.

e Im Fly-Mode hingegen steuert der Anwender die Kamera mit Hilfe der Space Mouse. In
diesem Modus ist es moglich, wie im virtuellen Flug in das Fahrzeugmodell einzutauchen
und sich durch die Struktur des Finite-Element-Netzes zu bewegen.

Um die rdumliche Wahrnehmung zu erleichtern, wurde ebenfalls ein Stereo-Modus im-
plementiert, in dem jedes Bild zunéchst fiir das linke und anschlie8end fiir das rechte Auge
dargestellt wird. In diesem Modus wird die Kamera den konfigurierbaren Parametern Au-
genabstand und Konvergenztiefe entsprechend, wie in Abbildung 5.5 dargestellt, von dem
eigentlichen Betrachterpunkt orthogonal abgeriickt und rotiert. Damit das menschliche Au-
ge beide Bilder wieder zu einem rédumlichen Bild zusammensetzen kann, darf jedes Auge
nur das Bild sehen, das fiir seine Position erzeugt wurde. Fiir die Stereo-Darstellung am
Bildschirm gibt es so genannte Shutter Glasses — das sind Brillen, deren Gléser abwechselnd
undurchsichtig gemacht werden. Die Synchronisation mit dem am Bildschirm dargestell-

5.2 Bedienelemente

85

Augabstand
\ Konvergenzdistanz

_\3

/ .. /Rotationswinkel

LR

T

Abbildung 5.5: Im Stereo-Modus wird jedes Bild fiir beide Augen einzeln dargestellt und
mit Hilfe einer aktiven oder passiven Stereo-Brille dem jeweiligen Auge zugefiihrt. Der
Augenabstand und die Konvergenzdistanz lassen sich einstellen, um einen optimalen 3D-
Eindruck zu gewéhrleisten.

ten Bild findet iiber einen zusétzlichen Infrarotsignalgeber statt. Dieses Verfahren wird
auch als aktive Stereoskopie bezeichnet. Demgegeniiber werden bei der passiven Stereo-
skopie die Bilder fiir das linke und rechte Auge zum Beispiel iiber zwei Projektoren durch
senkrecht zueinander ausgerichtete Polarisationsfilter auf eine Projektionsfliche projiziert.
Durch eine Brille mit Polarisationsgldsern werden die Strahlen der beiden Bilder wieder
voneinander getrennt und erreichen somit nur eines der beiden Augen. Diese Technik wird
eingesetzt, wenn der Einsatz von Shutter Glasses aus technischen Griinden oder aufgrund
der Zuschaueranzahl nicht moglich ist.

5.2.3 Graphische Benutzerschnittstelle

Die graphische Benutzerschnittstelle des Prototypen crashViewer ist X11/Motif-basiert.
Das Menii im Hauptfenster wird iiber einen Mechanismus generiert, der es erlaubt, neue
Meniieintrage unterschiedlicher Art durch Hinzufiigen einer Zeile zu erzeugen. Dies un-
terstiitzt die leichte Erweiterbarkeit der Oberfliche und tragt zusammen mit der modularen
Softwarestruktur dazu bei, dass der Prototyp als Rahmen fiir weitere Forschungsaktivitéiten
genutzt werden kann.

Viele der Interaktionen bestehen aus Operationen auf dargestellten Objekten. Um die
Vorteile einer Meniisteuerung gegeniiber der Tastaturbenutzung ausnutzen zu konnen,
gleichzeitig aber die Auswahl des Objektes zu erlauben, auf dem die Aktion ausgefiihrt
werden soll, wurde zusédtzlich zu der Hauptmeniileiste ein Kontext-sensitives Popup-Menii
implementiert. Es kann iiber dem Darstellungsbereich getffnet werden und bietet den Vor-
teil, dass die im Popup-Menii angewihlte Funktion auf dem Objekt ausgefiihrt werden
kann, iiber dem das Menii gedffnet wurde. Gleichzeitig werden dem Anwender iiber das
Popup-Menii nur die Funktionen angeboten, die auf dem selektierten Objekt und in dem
aktuellen Modus ausgefiihrt werden konnen.

Parametereingaben und umfangreichere Einstellungen, wie zum Beispiel die Modifika-
tion eines Farbverlaufs zu einem zu spezifizierenden Wertebereich oder die Anpassung von
Transferfunktionen fiir Parametertexturen wurden in separaten Dialogen realisiert.

Architektur des Prototypen

5.3 Mechanismen zur Datenanalyse

Um die interaktive Datenanalyse zu unterstiitzen, wurden verschiedene Funktionalitéiten
entwickelt und im crashViewer implementiert.

e Ausgabe von Informationen

Der Anwender kann mit dem Mauszeiger ein Bauteilnetz selektieren und sich In-
formationen dazu ausgeben lassen. Zusétzlich zum Bauteil wird auch das selektierte
Finite-Element und der néichstliegende Netzknoten ermittelt. Die intern abgespeicher-
ten Informationen beschréanken sich im Wesentlichen auf die Bauteilbezeichnung und
auf Labels in Form einer eindeutigen Ganzzahl fiir Bauteil, Element und Knoten. Wei-
tergehende Informationen konnen allerdings iiber eine Anbindung von crashViewer
an CAE-Bench direkt aus einem PDM-System eingeholt werden [21]. Zusétzlich kann
sich der Anwender zu einem spezifizierten Label auch das Bauteil, das Element oder
den Knoten anzeigen lassen. Die Kameraparameter werden so initialisiert, dass das
entsprechende Objekt bildfiillend angezeigt wird.

e Aus-/Einblenden von Bauteilen
Teile des Datensatzes konnen interaktiv aus- und wieder eingeblendet werden. Dabei
werden die korrespondierenden Szenengraphknoten aus dem Szenengraphen entfernt
und auf einem Stapel abgelegt. Die Datenverwaltung und Modifizierung des Szenen-
graphen ist in der Klasse ReplaceCluster implementiert.
Fiir zeitabhingige Daten muss die Modifikation konsistent auch fiir zugehdrige Sze-
nengraphknoten aus den Subszenengraphen der anderen Zeitschritte geschehen (ver-
gleiche Abbildung 4.3, Seite 68). Dazu wird der Pfad des selektierten Objektes in eine
Indexliste umgewandelt, die auf jeden Subszenengraphen zum Auffinden des entspre-
chenden Bauteils angewendet werden kann, da jeder Zeitschritt-Subszenengraph mit
gleicher Struktur aufgebaut ist.
Bauteilnetze konnen entweder mit der Maus oder anhand ihrer Labels selektiert wer-
den. Die dargestellten Bauteile kénnen durch die nicht dargestellten ausgetauscht
werden. Dariiber hinaus konnen zu einem ausgewéhlten Bauteil alle {iber eine Bau-
teilverbindung (zum Beispiel Schweilpunkte) angebundenen Bauteile, die derzeit aus-
geblendet sind, eingeblendet werden. Dieser Mechanismus dient der Validierung des
Eingabedatensatzes im Preprocessing und hilft dabei, nicht angebundene Bauteile zu
identifizieren.

e Kameraeinstellungen
Position und Ausrichtung der Kamera konnen wihrend einer Sitzung auf verschie-
denen Tasten abgespeichert und spiter wieder abgerufen werden. Diese Tasturbele-
gung mit den Kameraeinstellungen kann auch abgespeichert werden, um sie fiir eine
spitere Sitzung oder in einem zweiten crashViewer mit einem anderen Datensatz zu
verwenden.

5.3 Mechanismen zur Datenanalyse

e Bilder abspeichern
Das aktuell dargestellte Bild kann per Tastendruck abgespeichert werden, um zum
Beispiel einen Ausdruck zu erstellen. Fiir hochauflésende Bilder, deren Format der
Anwender frei wihlen kann, wird die Szene mehrmals mit Hilfe einer csFrustumCamera
gezeichnet, die es erlaubt, das eigentliche View-Frustum in beliebig viele asymmetri-
sche View-Frusta zu unterteilen. Die erzeugten Zwischenbilder werden schliellich zu
dem Ergebnisbild mit der spezifizierten Auflésung zusammengesetzt.

e Animation mehrerer Zeitschritte

Wird fiir das Postprocessing ein Szenengraph mit mehreren Zeitschritten aufge-
baut, so haben alle Subszenengraphen als gemeinsamen Vaterknoten einen csSwitch-
Knoten. Mit Hilfe dieses csSwitch kann zwischen der Darstellung der einzelnen
Zeitschritt-Subszenengraphen umgeschaltet werden. Eine Animation, bei der nach-
einander alle Zeitschritte dargestellt werden, kann vorwérts oder riickwérts in einer
Schleife laufen oder im Swing-Modus hin- und herpendeln.

Fiir die detaillierte Beobachtung von Teilstrukturen muss verhindert werden, dass sich
die beobachtete Teilstruktur durch die Zeitschrittanimation aus dem Darstellungsbe-
reich bewegt; dazu kann der Anwender die Kamera mit dem Locking-Mechanismus
an den Schwerpunkt eines Bauteils oder direkt an einen Netzknoten binden. Der
Differenzvektor des sich verindernden Bezugspunktes wird auf die Kameraposition
iibertragen, wodurch der Bezugspunkt stets auf den gleichen Bildpunkt abgebildet
wird.

e Filmgenerierung
Zur Erstellung eines digitalen Videos konnen im Record-Modus alle erzeugten Einzel-
bilder abgespeichert und in einem Nachverarbeitungsschritt in eine Movie-Datei um-
gewandelt werden. Die Filmgenerierung kann auch offline durch ein Batch-Programm
geschehen — siehe dazu Abschnitt 8.6.

e Clipping-Mechanismen
Zusitzlich zu der Moglichkeit, die Darstellung des Fahrzeugmodells gleich beim Laden
durch die Koordinaten-basierte Angabe eines Begrenzungsquaders einzuschrinken,
wurden eine interaktive, frei positionierbare Schnittebene, zwei semi-interaktive Se-
lektionsobjekte und eine Textur-basierte Clipping-Technik entwickelt. Letztere wird
im Zusammenhang mit der Distanzvisualisierung in Kapitel 7.1.3 detailliert erlautert.
Die Schnittebene wurde in Form eines neuen universal verwendbaren Cosmo3D-
Szenengraphknoten csClipGroup implementiert (Abschnitt 4.3.1). Bei den Selektions-
objekten handelt es sich um einen hauptachsenparallelen Quader und eine Kugel,
deren Position und Grofle interaktiv verdndert werden kann. Hat der Anwender die
Positionierung abgeschlossen, wird fiir alle Netzknoten bestimmt, ob sie sich inner-
oder auflerhalb des Selektionsobjektes befinden. Geometrien, die keinen Netzknoten
innerhalb des Selektionsobjektes beinhalten, werden ausgeblendet. Fiir die Geometri-
en, die vom Selektionsobjekt geschnitten werden, wird ein neuer Szenengraphknoten

88

Architektur des Prototypen

angelegt, der zwar das gleiche csCoordSet referenziert, fiir den jedoch nur die Elemen-
te ins csIndexSet aufgenommen werden, die mindestens einen Netzknoten innerhalb
des Selektionsobjektes haben. Schliefflich ist es dem Anwender moglich, eine 2D-Box
aufzuziehen, die durch Einbeziehung der Viewing-Transformation ein 3D-Volumen in
Form eines Pyramidenstumpfes beschreibt. Mit Hilfes dieses leicht zu positionieren-
den Clip-Volumens kénnen komplexe Modellstrukturen schnell auf den Bereich des
momentanen Interesses eingeschrénkt werden.

In diesem Kapitel wurde die grundlegende Softwarestruktur dargelegt und auf allgemei-
ne Funktionalititen hingewiesen, die fiir den entwicklungsbegleitenden Einsatz des Proto-
typen in der Kooperation mit den BMW-Ingenieuren unverzichtbar waren. Die nachfol-
genden Kapitel gehen auf spezielle Ansétze zur Beschleunigung der Bildsynthese sowie auf
Interaktions- und Visualisierungsmethoden fiir die Vor- und Nachbearbeitung von Struk-
turmechanikdaten ein.

Kapitel 6

Verfahren zur
Darstellungsbeschleunigung

Die fortschreitende Entwicklung immer schnellerer Rechner und die wachsenden Anspriiche
an Simulationsergebnisse ziehen bei der Erstellung des Fahrzeugmodells immer feinere
Auflésungen des Finite-Element-Netzes nach sich. In den letzten zehn Jahren ist die Mo-
dellgroBe von 50 000 Elementen im Jahre 1992 auf inzwischen iiber 800 000 Elemente stetig
gewachsen. Diese Modellgréflen erfordern die Anwendung verschiedener Optimierungsver-
fahren zur Beschleunigung der Bildsynthese bereits in einem Vorverarbeitungsschritt, da-
mit die darzustellende Geometrie durch moglichst wenig Daten beschrieben und damit das
Graphiksubsystem entlastet werden kann. Dazu werden drei Ansitze verfolgt, die durch
Reorganisation der Primitive, durch Ausdiinnung entbehrlicher Geometrieinformation und
durch Einbeziehung anderer Graphikkomponenten die Transformationslast des Geometrie-
Subsystems verringern.

6.1 Streifengenerierung benachbarter Primitive

Die Vorteile der Geometriedaten-Optimierung wurden bereits in Kapitel 3.2.3, Seite 47 f
erldutert. Evans et al. stellen in [17] verschiedene Strategien zur Optimierung von Dreiecks-
streifen vor. Da sie insbesondere fiir Polygonnetze mit vielen Quadrilateralen gute Ergeb-
nisse liefern, wurden diese Verfahren hinsichtlich ihrer Eignung fiir Strukturmechanikdaten
nidher untersucht. Die Autoren diskutieren verschiedene Ansétze, um die Streifengenerie-
rung zu optimieren:

e Triangulierung von Polygonen bestehend aus mehr als drei Eckpunkten:
Es wird zwischen der statischen und der dynamischen Triangulierung unterschieden.
Bei statischer Triangulierung wird das gesamte Polygonnetz vor Beginn der Pfadsuche
in Dreiecke zerlegt. Die dynamische Triangulierung bietet wahrend der Pfadsuche mehr
Flexibilitéit bei der Richtungswahl, um einen Streifen fortsetzen zu konnen.

90

Verfahren zur Darstellungsbeschleunigung

e Strategien beim Fortschreiten an Verzweigungsstellen:
Hier wird zwischen fiinf verschiedenen Vorgehensweisen differenziert, die fiir das Poly-
gon, in das der Pfad aktuell miindet, in Abhéngigkeit des Nachbarschaftsgrades ent-
scheiden, iiber welche Kante der Pfad das Polygon wieder verldsst.

e Sonderbehandlung rechteckiger Regionen von Quadrilateralen — Patchification:
Bevor die oben aufgefiihrten lokalen Strategien angewendet werden, wird das Netz
zunichst unter Vorgabe einer Mindestliange in zwei Richtungen global nach aufeinander-
folgenden Quadrilateralen abgesucht, welche anschlieffend in einem Full-patch-Streifen
oder in mehreren parallelen Zeilen- beziehungsweise Spalten-Streifen zusammengefasst
werden.

Basierend auf diesen Ansétzen wurde im Rahmen einer Diplomarbeit [32] ein Strei-
fengenerierungsmodul entwickelt, das aus den Bauteilnetzen der Fahrzeugmodelle unter
Beriicksichtigung des Schattierungsmodells optimale Streifen generiert. Sofern die Geo-
metrie Gouraud-schattiert dargestellt werden soll, darf fiir jeden Knoten innerhalb eines
Streifens nur eine Normale definiert werden; deshalb ist es nicht moglich, Streifen {iber
Gouraud-Kanten hinweg fortzusetzen, da die Knoten an solchen Kanten mehrere Norma-
len besitzen.

Die Umwandlung der Finite-Element-Netze von Fahrzeugmodellen fiir die Crash-
Simulation in Dreiecksstreifen hat zur Folge, dass es anschlieBend unméglich ist, in einer
Gitterliniendarstellung die Netzstruktur des Modells zu erkennen, die sich {iberwiegend aus
vierseitigen Elementen zusammensetzt, da diese in jeweils zwei Dreiecke unterteilt wurden.
Nur unter Verwendung einer Wireframe-Textur (Abschnitt 6.3.2) kann auch noch auf den
Dreiecksstreifen die urspriingliche Netzstruktur visualisiert werden.

Damit die Strukturinformation auch in einer Drahtgitterdarstellung nicht verloren geht,
wurde das Streifengenerierungsmodul dahingehend erweitert, dass es auch Quadrilateral-
streifen erzeugen kann. Da eine Richtungsédnderung jedoch im Quadrilateralstreifen im Ge-
gensatz zum Dreiecksstreifen aufwindiger ist, als einen neuen Streifen zu beginnen (siehe
Abbildung 6.1), schied die Verwendung von Full-Patch-Streifen aus. Die Tatsache, dass

0 2 4 0 2 4 6 0 2 4 6
5 7
“ A7 —7
| |
% 3 8 1 3 5 ‘ 1 3 5 ‘
0123435678 oder 01234565789 oder v 012345677598 oder ‘,
012345 und 35678 01234567 und 5789g 9 01234567 und 7598 g 9

Abbildung 6.1: Das linke Bild zeigt, dass es giinstiger ist, ein Dreiecksstreifen durch einen
Kantenrichtungswechsel fortzusetzen als zwei separate Dreiecksstreifen zu generieren. Die
beiden rechten Bilder vergleichen die ,,Wendigkeit“ von Dreiecks- und Quadrilateralstrei-
fen: Um die Streifenrichtung durch Referenzierung maglichst weniger Knoten zu &ndern,
kénnen auch zwei separate Quadrilateralstreifen erzeugt werden. Das ,, Abbiegen® bendétigt
im Dreiecksstreifen nur einen, im Quadrilateralstreifen jedoch zwei zusétzliche Knoten.

6.1 Streifengenerierung benachbarter Primitive 91

Adjazenzliste
:{ B(0,1) }
:{A(0,1) 5 C(2,3) }
{ B(2,3) ; D(4,5) ; E(2,4) }
{ C(4,5) ; F(4,6) ; H(5,7) }
1 { C(2:4) ; F(4,8) }
{ D(4,6) ; E(4,8) ; G(6,9) }

>
w
@)
)
HQEETQER

13 12

Abbildung 6.2: Die Adjazenzliste hilt fiir jedes Polygon die Nachbarschaftsinformation,
bestehend aus Verweisen auf Nachbarpolygone und die gemeinsam genutzte Kante.

die Bauteilnetze der Fahrzeugmodelle iiberwiegend eine regelmiflige Netzstruktur auf-
weisen, fiihrte zur Entwicklung des im folgenden Abschnitt vorgestellten Bandification-
Algorithmus.

6.1.1 Datenstrukturen und Algorithmus

Eine effiziente Pfadsuche wird durch temporir aufgebaute Nachbarschaftsinformationen
auf Polygonen ermoglicht. Eine tragende Rolle spielt dabei die Adjazenzliste eines jeden
Polygons; in ihr werden Verweise auf Nachbarpolygone und die gemeinsam genutzte Kante
gespeichert (Abbildung 6.2).

Der Bandification-Algorithmus (Abbildung 6.3) sucht ausgehend von einem Startqua-
drilateral in beiden Dimensionen nach Streifen maximaler Lénge, die eine vorgegebene

Markiere alle Quadrilaterale als ’aktiv’
while (Quadrilateralstreifen mit L&nge >= minLénge gefunden) {
Markiere alle ’aktiven’ Quadrilaterale als ’verfiigbar’
Leere maxStreifenListe
for (alle Quadrilaterale i, die als ’aktiv’ UND ’verfiigbar’ markiert sind) {
aktMaxStreifen := léngster Streifen ausgehend vom Quadrilateral i
if (aktMaxStreifen.ldnge() >= minLidnge) {
Markiere alle Quadrilaterale in aktMaxStreifen als ’nicht verfiigbar’
Fiige aktMaxStreifen in die sortierte maxStreifenlListe ein
}
else
Markiere Quadrilateral i als ’nicht aktiv’
}
while (maxStreifenListe enthdlt noch Streifen) {
aktMaxStreifen := léngster Streifen der maxStreifenListe
if (aktMaxStreifen.ladnge() ist noch unverindert)
Markiere alle Quadrilaterale von aktMaxStreifen als ’nicht aktiv’
else
break
}
}

Abbildung 6.3: Pseudocode fiir die Vorgehensweise im Bandification-Algorithmus.

92

Verfahren zur Darstellungsbeschleunigung

Mindestléinge nicht unterschreiten diirfen, und fiigt sie in die Liste potenzieller Quadri-
lateralstreifen ein. Bei der Pfadsuche werden Streifenrichtungswechsel ausgeschlossen, das
aktuelle Quadrilateral wird also stets iiber die gegeniiberliegende Kante zum benachbarten
Quadrilateral verlassen. Da es fiir die traversierten Quadrilaterale keinen lingeren Strei-

Originalnetz: 21255 / 4 / 100%

— — = - - -

Patchification: 1481 / 31.9 / 55.7% Bandification: 696 / 63.1 / 51.7%

Abbildung 6.4: Die oben links dargestellte Bodenplatte wurde jeweils mit dem opTriStrip-
per, dem Patchification- beziehungsweise dem Bandification-Algorithmus bearbeitet. Die
Zahlen geben die Anzahl der Primitive, die durchschnittliche Strip-Liange sowie den Anteil
der Knoten gegeniiber einer Darstellung mit separaten Quadrilateralen an. Um die Unter-
schiede der Partitionierung zu verdeutlichen, wurde fiir die Gouraud-Kanten-Detektion ein
Grenzwinkel von 60° gewihlt und die Beleuchtung fiir die Streifendarstellung abgeschaltet.

6.1 Streifengenerierung benachbarter Primitive

93

fen in dieser Ausdehnungsrichtung gibt, werden sie aus der Liste der Startquadrilaterale
fiir die entsprechende Dimension entfernt. Schliefllich werden absteigender Lénge nach die
potenziellen Quadrilateralstreifen erzeugt, solange sie noch ihre urspriingliche Lénge ha-
ben, also noch nicht durch vorher erzeugte Streifen gekreuzt wurden. Wird der Algorithmus
zuséitzlich noch mit absteigender Mindestléinge durchlaufen, so enthélt die Liste potenzieller
Béander, hervorgerufen durch die regelméflige Netzstruktur, iiberwiegend parallele Bénder.
Abbildung 6.4 veranschaulicht die Arbeitsweise des Bandification-Algorithmus anhand ei-
ner Gegeniiberstellung zur Patchification und zu den Ergebnissen von opTriStripper aus
OpenGL Optimizer.

| | | |
+—— 1 | 1 |
T | [T

L |
|

- — Doppelknoten

| |
l T | | 5
T+~ i T i
1 i T 1] T
1 | 1 1 | 1
I l 1 I | 1
| i |
| L
|

L
|
|
|
|
T
|
|
|
T

-l Lo O\

Abbildung 6.5: Eine dynamische Zuweisung, welcher der drei Eckpunkte in dreiseitigen Ele-
menten dupliziert werden soll, ermoglicht einen topologischen Richtungswechsel, durch den
die Streifenlinge maximiert werden kann. Im Beispiel rechts werden die ,,Doppelknoten®
stets so gewihlt, dass maximal lange Streifen entstehen.

Da die Finite-Element-Struktur eines Bauteils neben Quadrilateralen auch Dreiecke ent-
halten kénnen, das hybride Netz jedoch durch nur einen csGeometry-Knoten représentiert
werden soll, werden dreiseitige Schalenelemente durch degenerierte Quadrilaterale darge-
stellt; das heifit, einer der drei Netzknoten wird zweimal referenziert. Der ,,Doppelknoten®
ist in den Finite-Element-Daten willkiirlich festgelegt. Bei der Quadrilateralstreifenverfol-
gung fiihrt ein Doppelknoten hiufig zum ,,Abbiegen® des Streifens (Abbildung 6.5, links),
wodurch der Streifen gegebenenfalls nicht fortgesetzt werden kann, da benachbarte Elemen-
te bereits einem anderen Streifen zugeordnet wurden. Wird der andere Knoten der Ein-
trittskante, iiber die das dreiseitige Element erreicht wurde, als Doppelknoten verwendet,
kann der Quadrilateralstreifen, wie skizziert, fortgesetzt werden. Dieses Vorgehen entspricht
einem Swap bei der Dreiecksstreifengenerierung. Die dynamische Topologieinderung der
dreiseitigen Elemente ermdglicht also, den Streifen auch dann weiterzuverfolgen, wenn die
der Eintrittskante gegeniiberliegende Kante kollabiert ist oder das darauffolgende Quadri-
lateral bereits von einem anderen Streifen verbraucht wurde.

Wihrend Quadrilaterale sowohl als einzelnes Primitiv als auch als Quadrilateralstrei-
fen unter OpenGL unterstiitzt werden, enthélt die Cosmo3D-Szenengraphbibliothek nur
ein csQuadSet-Objekt, das mehrere einzelne Quadrilaterale reprisentiert. Fiir die Re-
prisentation von Quadrilateralstreifen wurde csQuadStripSet als neuer Szenengraphknoten
implementiert. Er bietet die gleiche Schnittstelle wie sein Pendant csTriStripSet.

94

Verfahren zur Darstellungsbeschleunigung

6.1.2 Resultate

Im Hinblick auf die besonderen Anforderungen bei der Visualisierung von Finite-Element-
Netzen wurde ein Quadrilateralstreifengenerierer entwickelt, durch den die Bildwiederhol-
rate deutlich gesteigert werden kann, ohne dass dabei Modelldetails verloren gehen. Eine
Elementzerlegung in Dreiecke konnte dadurch umgangen werden.

Die Resultate der Streifengenerierung zeigen, dass sich die Anzahl der zu transformie-
renden Knoten fiir N Quadrilaterale durch Reorganisation der Primitive bereits erheblich
N+l o 1

reduzieren lisst. Das Optimum von S~ > 5 wird zwar kaum erreicht, da die Elemente

jeder Teilstruktur im Allgemeinen von mehr als einem Streifen zusammengefasst werden.
Um einen Anhaltspunkt fiir die Bewertung der Streifenpartitionierung und die dadurch
verminderte Referenzierung von Netzkonten zu haben, werden die Ergebnisse des neu ent-
wickelten Quadrilateralstreifengenerierers QuadStripper denen des in OpenGL Optimizer
enthaltenen Dreiecksstreifengenerierers op TriStripper gegeniibergestellt (Abbildung 6.6).

der { von

(opTriStripper) i der i von (Q il)

100 0 50 100 150 200 250 300 350 400 450 500 100 0 50 100 150 200 250 300 350 400 450 500
T T T T T T T

T T T T T T T T
vt Reduktionsgrad eines Bauteils ~ + Reduktionsgrad eines Bauteils +

Reduktion (in Prozent)

95 |

90

85

80

75

70

65

60 [

56

+

Verteilung

Reduktion (in Prozent)

13

90

85

80 -

75

70 -

65 -

60 -

55 |-

o+

+ o+

bR

e

+
4 e

S
T

+
ot e

+ 5 A
++¢+:’:ﬁ + *’{* Uﬁ

Verteilung

4
.

L, T
i

o+

50

L hatt L 50 L 5k
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

Anzahl Netzknoten-Referenzen Anzahl Netzknoten-Referenzen

Abbildung 6.6: Die Graphik zeigt anhand von 3 247 Bauteilen unterschiedlicher Grofle und
Komplexitét, auf wieviel Prozent (y-Achse) der urspriinglich notwendigen Knotenreferen-
zen (x-Achse, unten) das Bauteilnetz durch Quadrilateralstreifengenerierung reduziert wer-
den konnte. Die Kurve veranschaulicht, wie hiufig welcher Reduktionsgrad® erreicht wurde.
Im Durchschnitt wurde eine Reduktion auf 63.5% (opTriStripper) beziehungsweise auf 54 %
(QuadStripper) erreicht.

Im Vergleich der Ergebnisse fillt sofort auf, dass die erzeugten Dreiecksstreifen im
Allgemeinen kiirzer sind, obwohl durch Hinzufiigen von Swap-Knoten Dreiecksstreifen ei-
ne grofere Wendigkeit vorbehalten ist. Ausgehend von den gleichen Testdaten erreicht
opTriStripper eine Reduktionsrate! von knapp 37%, wihrend der QuadStripper trotz Hin-
zunahme leerer Dreiecke fiir die dreiseitigen Elemente eine Reduktion um 46% erreicht.

! Begriffsdefinition: Der Reduktionsgrad bezeichnet hier den Anteil, der nach der Reduktion bestehen
bleibt. Die Reduktionsrate benennt demgegeniiber den Anteil, um den reduziert wurde.
Reduktionsgrad = 100% — Reduktionsrate

6.2 Simplifizierung

95

Da von Cosmo3D / OpenGL Optimizer Version 1.2 die Vertex Arrays von OpenGL 1.1
nicht genutzt wurden, machte sich die Streifengenerierung mit einem Beschleunigungsfak-
tor von 4-5 fiir die Darstellung von Gesamtfahrzeugmodellen sehr stark bemerkbar. Seit der
Version 1.3 werden fiir indizierte Geometrien Vertex Arrays verwendet, sofern fiir Norma-
len, Farben und Texturkoordinaten keine oder die gleichen Indexfelder benutzt werden wie
fiir die Punktkoordinaten. Dadurch werden die Geometriedaten nur einmal transformiert
und kommen anschliefend durch die Indizierung mehrfach zur Anwendung. Dennoch lief§
sich die Bildwiederholrate fiir ein Modell mit mehr als einer halben Million Dreiecken um
den Faktor 1.7 erhhen.

Um fiir eine weitergehende Darstellungsbeschleunigung noch héhere Reduktionsraten
zu erreichen, muss ein anderes Verfahren angewendet werden: die Geometriesimplifizierung.

6.2 Simplifizierung

Fiir die Simplifizierung von Polygonnetzen gibt es, wie in Abschnitt 3.2.3, Seite 48 beschrie-
ben, eine Vielzahl von Ansétzen. Eine Klasse der dort aufgefithrten Reduktionsalgorith-
men geht bei der Simplifizierung iterativ vor, das heifit, Schritt fiir Schritt werden einzelne
Knoten aus dem Originalnetz entfernt. Bei der Netzmodifikation kommen topologische und
geometrische Operatoren zum Einsatz; Topologische Operatoren verindern die Netztopo-
logie ohne die Knotenkoordinaten zu modifizieren. Geometrische Operatoren verschieben
Netzknoten und modifizieren dadurch die umliegenden Flichenprimitive, ohne jedoch die
Topologie zu verdndern. Letztere werden bei der Simplifizierung nur im Zusammenspiel
mit topologischen Operatoren eingesetzt. Ein detaillierter Uberblick wird in [10] gegeben.
Beispiele fiir Operatoren, die bei der iterativen Dreiecksreduktion eingesetzt werden, sind:

| |
Knoten entfernen Halbkantenreduktion Kante entfernen

Abbildung 6.7: Drei Beispiele fiir Operatoren, die bei der iterativen Netzsimplifizierung
zum Einsatz kommen. Der Operator ,Kante entfernen® (rechts) beinhaltet neben einem
topologischen auch einen geometrischen Operator.

96

Verfahren zur Darstellungsbeschleunigung

e Knoten entfernen: Durch Entfernen eines Netzknotens entsteht ein Polygon, das
durch die Nachbarknoten definiert wird, die zuvor mit dem entfernten Knoten iiber
eine Kante verbunden waren. Das entstandene Polygon wird unter Verwendung der
Nachbarknoten neu trianguliert.

e Halbkantenreduktion: Hierbei wird der zu eliminierende Netzknoten entlang einer
seiner Kanten in einen seiner Nachbarknoten verschoben. Durch die Verschmelzung
werden die an diese Kante angrenzenden Dreiecke entfernt.

e Kante entfernen: Beim Entfernen einer Kante werden zunéchst die Kantenendpunkte
miteinander verschmolzen; anschlielend wird der zusammengefallene Punkt jedoch
durch Verdnderung seiner Koordinaten so verschoben, dass die Teilfliche, die vor
dem Reduktionsschritt bestand, moglichst gut approximiert wird.

Wiéhrend die beiden erstgenannten Operatoren nur die Topologie modifizieren, setzt sich
der Operator Kante entfernen aus einem topologischen und einem geometrischen Opera-
tor zusammen. Die schrittweise Dreiecksdezimierung wird solange durchgefiihrt, bis ein
vorgegebenes Abbruchkriterium erfiillt ist.

Der Einsatz in der Visualisierung grofler, zeitabhéingiger Finite-Element-Netze beim
Pre- und Postprocessing von Strukturmechaniksimulation bringt zwei Einschrénkungen
mit sich:

e Das Originalnetz muss weiterhin verfiigbar bleiben.
Da die Berechnungsingenieure insbesondere an der Netzstruktur der visualisierten
Fahrzeugmodelle interessiert sind, darf die Originalgeometrie nur temporéir durch
eine grobe, angeniherte Geometrie ersetzt werden. Das hat zur Folge, dass sowohl
die Daten fiir die Originalgeometrie als auch die fiir das reduzierte Modell im Speicher
gehalten werden miissen.

e Minimaler Speicheraufwand kann nur unter Anwendung topologischer Operatoren
erreicht werden.

Abbildung 6.8: Durch die Halbkantenreduktion 0—1 fallen die Dreiecke A012 und A061
weg. Der Reduktionsschritt ist allerdings nur erlaubt, sofern der einseitige Hausdorff-
Abstand (vergleiche Abbildung 3.8, Seite 50) d = HO, 0’ H des entfernten Knotens 0 zu dessen
Projektionspunkt 0’ im Dreieck A145 den vorgegebenen Toleranzwert nicht iiberschreitet.

6.2 Simplifizierung

97

Geometrische Operatoren erfordern das Speichern neuer Koordinaten. Da das Ori-
ginalnetz aus oben genanntem Grund sowieso im Speicher gehalten werden muss,
erlaubt die ausschlielliche Anwendung topologischer Operatoren das Wiederverwer-
ten der Koordinatendaten, indem lediglich die neue Topologie gespeichert und {iber
zusédtzliche Indizes auf die urspriinglichen Koordinatendaten zugegriffen wird.

Zur Optimierung der Bildwiederholrate wihrend der Benutzerinteraktion wurde im Pro-
totypen crashViewer ein Reduktionsalgorithmus implementiert. Er wendet den Operator
Halbkantenreduktion solange iterativ an, bis kein Netzknoten mehr entfernt werden kann,
ohne dass dadurch die Fehlertoleranz iiberschritten wiirde. Als Fehlermafl wird der einsei-
tige Hausdorff-Abstand d, gemessen von einem entfernten Netzknoten 0 zur entstandenen
reduzierten Fliche, herangezogen (Abbildung 6.8). Der Toleranzwert kann in crashViewer
entweder absolut oder relativ zur Bounding-Box-Diagonale des zu simplifizierenden Bau-
teilnetzes als maximaler Hausdorff-Abstand angegeben werden. Randknoten kénnen nur
entlang des Randes verschoben werden, sofern das Abstandskriterium auch zur neu entste-
henden Randkante eingehalten wird.

Der Algorithmus (Pseudocode siehe Abbildung 6.9) wurde in Anlehnung der in [10] vor-
gestellten Ergebnisse auf die Bediirfnisse der zugrunde liegenden Strukturmechanikdaten
angepasst und in dem Modul HECSimplify implementiert. Eine detaillierte Beschreibung
findet sich in Kapitel 5 oben genannter Arbeit. Im folgenden wird er dem von OpenGL
Optimizer bereitgestellten Successive Relaxation-Algorithmus gegeniibergestellt.

D := maximal zuldssiger einseitiger Hausdorff-Abstand (Toleranzwert)
Q := Prioritdtswarteschlange der als nichstes zu reduzierenden Knoten (leer)

wandle Quadrilateral- in Dreiecksnetz um
for (alle Knoten v des Dreiecksnetzes)
d := bewerte beste potenzielle Halbkantenkontraktion [v,w] fir v
if (Kontraktion méglich UND d <= D)
fiige (d,[v,w]) an entsprechender Stelle in Q ein

while (Warteschlange Q nicht leer)
hole néchsten und gleichzeitig besten Vorschlag [v,w] aus Q
fiihre Halbkantenkontraktion [v,w] durch
for (alle Knoten v’ im 1-Ring von v)
d := bewerte beste potenzielle Halbkantenkontraktion [v’,w’] fiir v’ neu
aktualisiere Q durch (d,[v’,w’])

Abbildung 6.9: Pseudocode der auf Halbkantenreduktion basierenden Simplifizierung.

6.2.1 Successive Relaxation-Algorithmus

Die Graphikbibliothek OpenGL Optimizer bietet zwei Verfahren zur Generierung groberer
Level-of-Detail-Geometrien an. Der Spatial Lattice Simplifier basiert auf dem Vertex Clu-
stering-Ansatz von Rossignac [58], ist zwar schnell, aber aus den in Abschnitt 3.2.3
genannten Griinden fiir die Generierung eines Interaktionsmodells ungeeignet. Der in
opSRASimplify implementierte Successive Relaxation-Algorithmus liefert demgegeniiber
wesentlich bessere Ergebnisse und ermdoglicht die Weiterverwendung der Koordinaten des

98

Verfahren zur Darstellungsbeschleunigung

Originalnetzes. Anhand der Kostenfunktion f(v) = wg-d(v)+w;-IN1(v) +ws -0 No(v) wird
entschieden, welcher Knoten v als nichstes aus dem Netz entfernt wird. Dabei entsprechen
wo, wy und wy Gewichtungsfaktoren fiir die Fehlermafle, d(v) dem einseitigen Hausdorff-
Abstand, §NV;(v) der gemittelten Abweichung der Dreiecksnormalen im 1-Ring von v und
dNs(v) der maximalen Abweichung zu den Knotennormalen auf dem 1-Ring von v. Als
Reduktionsoperator wird Knoten entfernen verwendet.

Da die Simplifizierungsmodule von OpenGL Optimizer fiir Erzeugung von Level-of-
Detail-Geometrien ausgelegt sind, erwarten sie als Eingabeparameter die Anzahl oder den
Anteil der zu reduzierenden Knoten. Es ist nicht ohne Weiteres moglich, eine Fehlerto-
leranz vorzugeben, die bei der Generierung eines maximal reduzierten Dreiecksnetzes als
Abbruchkriterium dient.

6.2.2 Successive Relaxation versus Halbkantenreduktion

Ein Vergleich mit dem von OpenGL Optimizer zur Verfiigung gestellten opSRASimplify
lasst sich nur unter Einbezug der resultierenden Netzqualitit vornehmen. In [32] wer-
den die Kontrollparameter fiir die Simplifizierung mit opSRASimplify durch eine so ge-
nannte Orakel-Funktion vorgegeben, die verhindern soll, dass ein vorgegebenes Fehlermafl
iiberschritten wird. Allerdings kann kein Einfluss auf die Reduktionsreihenfolge genom-
men werden. Das Seitenverhiltnis der aus Successive Relaxation resultierenden Dreiecke
ist grofitenteils ungiinstig: es entstehen lange, schmale Dreiecke, die zu auffélligen Schattie-
rungseffekten fiihren (Abbildung 6.10, links). Der im Prototypen implementierte Halbkan-
tenreduzierer HECSimplify erreicht bei noch héheren Reduktionsraten eine bessere Netz-
qualitét.

HA: 842, #he: 1450 #F: 2608, #e: 10432

Abbildung 6.10: Die Gegeniiberstellung der erzielten Ergebnisse mit dem opSRASimplify
(links) und der Halbkantenreduktion (rechts) zu der Originalgeometrie (Mitte) zeigt, dass
eine bessere Qualitdt der Dreiecke durch das implementierte Modul HECSimplify erzielt
werden konnte; zudem wurde hier noch zusitzlich eine um ~9,5% hohere Reduktionsrate
erreicht.

6.2 Simplifizierung

99

Abbildung 6.11: Dieses aus nur etwa 55000 Finite-Elementen bestehende Pickup-Modell
(oben) wurde sowohl mit opSRASimplify (Mitte) als auch mit HECSimplify (unten) auf
24% der urspriinglichen Dreiecke reduziert. Besonders in Bereichen, in denen benachbarte
Bauteile nahe aneinander liegen (siehe Motorhaube), erzeugt HECSimplify weniger optisch
storende Durchdringungen als opSRASimplify. Im oberen Bereich der Ladebordwand sowie
am Radkasten werden die Qualitdtsunterschiede besonders deutlich.

100

Verfahren zur Darstellungsbeschleunigung

In Abbildung 6.11 werden die FErgebnisse fiir ein Gesamtfahrzeugmodell ge-
geniibergestellt. Dazu wurde das Originalmodell zunéichst mit dem auf Halbkantenreduk-
tion basierenden Modul HECSimplify vergrobert, bis keine weiteren Iterationen méglich
waren, ohne dass das Fehlerkriterium (0.5% der Bounding-Box-Diagonale) iiberschritten
worden wire. Somit lag beim Vergleich mit dem opSRASimplify fiir jede Teilgeometrie eine
prozentuale Zielgréfle vor, auf die das Originalmodell erneut durch Successive Relaxation
reduziert wurde.

6.2.3 Resultate

Der Halbkantenkontraktionsalgorithmus wurde an Bauteilnetzen verschiedener Komple-
xitéit getestet. Ahnlich wie bei der Streifengenerierung fithren auch hier Netze mit vielen
Primitiven zu héheren Reduktionsraten; das liegt darin begriindet, dass in Fahrzeugmo-
dellen Bauteile mit vielen Finite-Elementen meistens eine Flidchenstruktur mit wenigen,
geraden Kanten besitzen, und sich daher fiir die Simplifizierung gut eignen.

Netzsimplifizierung in Bauteilnetzen

100 0 20 40 60 80 100 120 140 160 180 200
T) J‘r++ s i ' héduktionégrad ein'e‘s B'aLIJteils‘ ' +
Verteilung

90

80 -

70

60 -

50

40 | T

Dreiecksreduktion (in Prozent)

30

20

10

Anzahl Dreiecke im Originalnetz

Abbildung 6.12: Aus der Anwendung des Halbkantenreduzierers HECSimplify auf iiber 3 200
verschiedene Bauteilnetze ergibt sich eine durchschnittliche Reduktion auf 15.3%. Wihrend
der Reduktionsgrad jedes Bauteils durch ein Kreuz reprisentiert wird, gibt die Kurve
dariiber Auskunft, wie hiufig welcher Reduktionsgrad erreicht werden konnte.

Die mit HECSimplify erzielte durchschnittliche Reduktion auf 15.3% der urspriinglichen
Dreiecke fiihrt je nach Modellgréfle zu den in Abbildung 6.13 dargestellten Beschleuni-
gungsfaktoren. Die Zeiten wurden auf einem Linux-PC mit einer GeForce2 MX Graphik,
einer AMD XP2400 CPU und 1 GB Hauptspeicher ermittelt.

6.3 Texturen statt Geometrie

101

Originalnetz Simplifiziertes Netz
Anzahl A | Bildrate | Reduktionsgrad | Anzahl A | Bildrate | Faktor

530440 6.93 16.59 % 87988 26.69 | 3.85
479627 7.75 11.92 % 57183 42.02 | 5.42
349961 10.81 14.10 % 49 360 46.44 | 4.30
250373 13.32 17.19 % 43032 44.71 | 3.36
196 307 19.08 8.96 % 17596 | 12854 | 6.74
128 056 28.41 13.80 % 17677 | 130.44 | 4.59

98 765 37.04 14.25 % 14072 | 163.04 | 4.40

Abbildung 6.13: Anhand verschiedener Testdatensidtze wird hier der Einfluss der Reduk-
tion durch Simplifizierung auf die Darstellungsbeschleunigung gezeigt. Aufgelistet werden
jeweils die Dreiecksanzahl und die Bildwiederholrate vor und nach der Simplifizierung in-
klusive des Reduktionsgrades sowie der sich ergebende Beschleunigungsfaktor.

Der Einsatz der Simplifizierung von Gesamtfahrzeugmodellen im Prototypen
crashViewer hat gezeigt, dass ein wahrend der Kamerainteraktion verwendetes reduzier-
tes Dreiecksmodell vom Anwender sehr positiv angenommen wird. Es bietet wesentlich
hoéhere Interaktionsraten und vermittelt eine bessere Orientierung im Modell als alternati-
ve Losungen in kommerziellen Produkten, bei denen temporér nur Feature- und Randlinien
dargestellt werden. Allerdings benétigt die Simplifizierung des Gesamtmodells in der Regel
zu viel Zeit, um im alltéglichen Betrieb nach dem Einlesen des Originalmodells bei der
Datenaufbereitung vom Anwender akzeptiert zu werden. Dieser Aspekt kommt besonders
dann zum Tragen, wenn die Zeit, in der die Anwendung genutzt wird, relativ kurz ist. Eine
mogliche Losung ist, reduzierte Modelle vorab im Batch-Betrieb zu generieren und den
Szenengraphen in einer Bindrdatei zusédtzlich zu den Originaldaten zur Verfiigung zu stel-
len. Die Erzeugung und Abspeicherung solcher simplifizierten Interaktionsmodelle wurde
durch das Batch-Programm buildGraph (Abschnitt 8.6, Seite 141) realisiert.

6.3 Texturen statt Geometrie

Bei der Visualisierung im Umfeld der Strukturmechaniksimulation wird die Bildwiederhol-
rate durch die grole Polygonanzahl beziehungsweise die Anzahl der von der Rendering-
Pipeline zu verarbeitenden Netzknoten limitiert. Wéhrend sich die vorhergehenden Ab-
schnitte mit der Minimierung zu transformierender Knoten fiir die Geometriedarstellung
auseinandersetzten, werden im Folgenden Verfahren vorgestellt, die weitere Informationen
visualisieren, ohne den Geometriepfad der Rendering-Pipeline zusétzlich zu belasten. Aus
der Lastverteilung auf andere Graphiksubsysteme resultieren bei vergleichbaren visuellen
Effekten héhere Bildwiederholraten.

102

Verfahren zur Darstellungsbeschleunigung

Die beiden folgenden Abschnitte beschreiben im Prototypen implementierte Verfahren,
die Texturen statt zusétzlicher Geometrie einsetzen und dadurch Last von der Geometrie-
auf die Rasterisierungseinheit verlagern.

6.3.1 Visualisierung Knoten-basierter Skalare

Im Pre-, insbesondere aber im Postprocessing miissen skalare Daten (zum Beispiel Ab-
standsinformation, Beulgeschwindigkeit, plastische Dehnung) visuell aufbereitet werden,
so dass aus der Visualisierung hervorgeht, welche Werte in welchen Regionen der Finite-
Element-Struktur vorkommen. Diese skalaren Werte werden iiber eine Farbtabelle in einen
Farbton umgewandelt und die Geometrie in dem Bereich entsprechend eingefirbt. Der
Ursprungsort der skalaren Parameter — also ob die Werte an Netzknoten oder in Finite-
Elementen auftreten — entscheidet, wie beim Einférben der Geometrie vorgegangen werden
kann:

e Parametervisualisierung an Elementen:
Im Flat-Shading-Modus wird den Primitiven, die das Element représentieren, eine Far-
be zugewiesen, mit der die entsprechenden Polygone uniform koloriert werden.

e Parametervisualisierung an Netzknoten:
Da an den Eckpunkten eines Elementes im Allgemeinen unterschiedliche Werte vorlie-
gen, muss innerhalb des Elementes eine Farbinderung dargestellt werden, der den als
linear angenommenen Werteverlauf im Element approximiert.

Die Abbildung 6.14 zeigt, dass Smooth-Shading (c) fiir die Visualisierung Knoten-
basierter Werte kein korrektes Bild liefert, da die Farbabbildung bereits vor der Interpola-
tion durchgefiihrt wird. Um die diskrete Farbskala den Wertebereichen entsprechend, wie
ganz rechts dargestellt, auf die Geometrie iibertragen zu kénnen, gibt es die Moglichkeit,
die Elemente an den Stellen, an denen der Grenzwert zwischen zwei Wertebereichen, die
jeweils durch ein Farbband repréisentiert werden, das Element geometrisch zu unterteilen
und durch mehrere Polygone mit Flat-Shading zu reprisentieren. Allerdings wiirde durch
die zusétzlichen Netzknoten die Geometrie-Einheit noch mehr belastet werden.

Eine wesentlich effizientere Moglichkeit ist die Verwendung einer eindimensionalen Farb-
textur. Zunéchst wird eine Textur entsprechend der Farbtabelle (a) definiert. Anschlieend
wird fiir jeden Netzknoten der skalare Parameter in eine Texturkoordinate € [0, 1] umge-
wandelt, die auf die zugehorige Farbe in der Textur verweist. Die Texturierung iibernimmt
die Rasterisierungseinheit in der Rendering-Pipeline. Dabei sind zwei Verfahren, das Pre-
und das Post-Shading voneinander zu unterscheiden. Beim Pre-Shading wird die Textur-
koordinate im Eckpunkt eines Primitivs ausgewertet, bevor die resultierende Farbe mit
denen der anderen Vertizes liber das Primitiv interpoliert wird; das Ergebnis entspricht
dem der Smooth-Shading-Darstellung. Bei dem in (d) abgebildeten Post-Shading findet
die Auswertung der Texturkoordinate (Texture Lookup) erst statt, nachdem die Textur-
koordinaten als Reprisentanten der skalaren Parameter zwischen den Vertizes interpoliert
wurden.

6.3 Texturen statt Geometrie

103

-125

-75

-25

25

75

125
(a) (b) (¢) (d)

Abbildung 6.14: Unterschiedliche Anséitze, um skalare Parameter, die entweder an Ele-
menten oder Knoten vorliegen, durch Einfdrbung der Geometrie zu visualisieren. Eine vom
Anwender definierte diskrete Farbtabelle (a) ordnet jedem Skalar eine entsprechende Far-
be zu. Fiir die Element-basierte Parametervisualisierung wird durch Flat-Shading (b) die
Farbe fiir das gesamte Primitiv gesetzt. Bei der Visualisierung Knoten-basierter Werte
kann mit Hilfe von Smooth-Shading (c) kein diskreter Farbverlauf innerhalb eines Primi-
tivs erreicht werden. Wie beim Pre-Shading wird der skalare Wert am Knoten zunichst auf
eine Farbe abgebildet und anschliefend werden die Primitive durch lineare Interpolation
der Farben koloriert. Die rechte Darstellung (d) visualisiert einen linearen Werteverlauf
zwischen den Eckpunkten (Post-Shading).

In der Cosmo3D-Szenengraphbibliothek werden eindimensionale Texturen nicht un-
terstiitzt. Stattdessen kann eine zweidimensionale Textur verwendet werden, die in der
einen Dimension nur ein Texel breit ist. Die Texturkoordinaten miissen also iiber ein
csTexCoordSet2f in zwei Dimensionen (¢,,1,) angegeben werden, wobei die zweite Kompo-
nente ignoriert wird. In crashViewer wird dieser Speicher dazu genutzt, den visualisierten
Skalarwert abzuspeichern. Diese Werte konnen zum einen dazu verwendet werden, dem An-
wender den dargestellten Wert auszugeben, und zum anderen kann mit einer modifizierten
Wertezuordnung zur Farbtabelle ein effizientes Remapping des Skalars erfolgen, ohne dass
dazu auf interne Daten zuriickgegriffen werden muss:

Y 1 Min (1 1 ty — minVal
v = VAX 2 - Texelbreite ’ m 2 - Texelbreite '~ maxVal — minVal

Der genaue Werteverlauf innerhalb der in der Crash-Simulation verwendeten linearen
Finite-Elemente kann durch die Textur-basierte Visualisierung nur fiir dreiseitige Elemente
exakt wiedergegeben werden; bei vierseitigen Schalenelementen hingt es von der durch das
Graphiksubsystem vorgenommenen Triangulierung des Quadrilaterals ab, wie die Isolinie
innerhalb des Primitivs verlduft (Abbildung 6.15). In der Praxis hat diese Abweichung
innerhalb der Elemente allerdings nur geringe Relevanz und der Fehler wird durch die
zunehmend feinere Auflésung der Finite-Element-Modelle entsprechend geringerer.

104

Verfahren zur Darstellungsbeschleunigung

0 1.0 1 0 0 0 =0 0 0
. ! i / ireal
1 0 1 0 1 2 1 2 1 2
Abbildung 6.15: Die beiden skizzierten Beispiele zeigen, dass die Unterteilung (gestrichel-
te Linie) eines Quadrilaterals entscheidet, wie der Ubergang von einem in ein anderes
Farbband, also eine Isolinie, innerhalb des Quadrilaterals verlduft, wenn die Werte an den
Eckpunkten gegeben sind. Links kommt es bei stark voneinander abweichenden Farben in

den Eckpunkten zu grofien Unterschieden. Rechts wird der Verlauf der Isolinie fiir einen
Isowert von 0.5 dem realen Werteverlauf im Element gegeniibergestellt.

Wie die Textur-basierte Visualisierungsmethode zur selektiven Geometriedarstellung in
Abhéngigkeit der zugeordneten Werte genutzt werden kann, wird anhand der Darstellung
potenzieller Flansche in Kapitel 7.1.3.1, Seite 115 vorgestellt.

6.3.2 Visualisierung der Netzstruktur

Die Struktur des Finite-Element-Netzes ist neben den Materialeigenschaften ein wesent-
licher Einflussfaktor fiir das Verformungsverhalten des Fahrzeugbauteils in der Crash-
Simulation. Daher ist die Visualisierung der Netzstruktur von grofler Bedeutung. Da
die reine Darstellung eines Gitterdrahtmodells keine Tiefeninformationen enthilt, ist eine
kombinierte Darstellung der schattierten Oberfliche zusammen mit den Elementgrenzen
wiinschenswert.

Das konventionelle Verfahren, um diese Darstellung zu erzielen, ist ein Zwei-Schritt-
Verfahren: zuerst wird die Geometrie durch schattierte Dreiecke gezeichnet und in einem
zweiten Durchlauf werden die gleichen Daten dazu verwendet, um im Linien-Modus die
Elementgrenzen anzuzeigen. Der Aufwand verdoppelt beziehungsweise die Bildwiederhol-
rate halbiert sich dadurch. Zudem ist die Darstellung mit ,,z-Buffer-Fighting®“ behaftet, das
heiflt, ohne Ausnutzung spezieller Erweiterungen von OpenGL (glPolygonOffset) werden die
Linien-Fragmente wihrend des Tiefentests teilweise als hinter der Fliche liegend eingestuft
und erscheinen daher unregelméBig gestrichelt oder gar nicht (siehe auch Abbildung 6.17).

Dieses Zwei-Schritt-Verfahren kann umgangen werden, indem jedes Element mit einer
Luminanz-Textur belegt wird, die pro Texel nur ein Bit benétigt. Dieses Bit gibt an, ob
das Pixel nach den aktivierten Berechnungsvorschriften schattiert oder schwarz dargestellt
werden soll. Bei der Texturierung ergibt sich die Farbe bei GL_LMODULATE als Textur-
Funktion aus: C,, = L; - Cy. Dabei entspricht Cy der schattierten Fragmentfarbe und L,
dem Texelwert (L; = 0 am Elementrand und L; = 1 im Elementinneren). Das Texturbild
ist in Abbildung 6.16, links zu sehen. Um nach Anwendung der Textur trotzdem noch
Dreiecks- oder Quadrilateralstreifen generieren zu kénnen, miissen die Informationen, also
auch die Texturkoordinaten, an den inneren Knoten der Streifen iibereinstimmen; daher

6.3 Texturen statt Geometrie

105

Abbildung 6.16: Das Wireframe-Texturbild (links) wurde im Vergleich zu [43] um die um-
liegenden Dreiecke erweitert. Degenerierte Quadrilaterale, die zur Darstellung dreieckiger
Schalenelemente verwendet werden, bekommen die Texturkoordinaten der Dreiecke zuge-
wiesen. Die Spiegelung der Textur (Mitte) an benachbarten Elementen erlaubt weiterhin die
Generierung von Dreiecks- oder Quadrilateralstreifen. Das rechte Bild zeigt ein Gouraud-
schattiertes Bauteilnetz mit der Wireframe-Textur auf jedem Element.

wird die Textur an inneren Kanten gespiegelt.

Abbildung 6.17: Die konventionelle Darstellung der Elementgrenzen auf einer schattierten
Oberfliche benétigt zweimaliges Zeichnen der Szene. Das ,,z-Buffer-Fighting® (links) kann
zwar durch Verwendung von glPolygonOffset unterbunden werden (Mitte); jedoch kénnen
dann in Flanschbereichen eng benachbarter Bauteile die Elementgrenzen der hintenlie-
genden Bauteile unerwiinschterweise hervortreten. Die Anwendung der Wireframe-Textur
(rechts) resultiert in einer hoheren Bildwiederholrate und einer besseren Darstellungsqua-
litét.

Da bisher weder Cosmo3D / OpenGL Optimizer noch die SGI-Graphik-Hardware
Multi-Texturing, also die Anwendung mehrerer Texturen auf eine Geometrie unterstiitzt,
schlieft die Verwendung der Wireframe-Textur das gleichzeitige Visualisieren von Parame-

106

Verfahren zur Darstellungsbeschleunigung

tern mit Texturen, wie im vorhergehenden Abschnitt beschrieben, aus. Im Zusammenhang
mit der Textur-basierten Parametervisualisierung muss auf das konventionelle Zwei-Schritt-
Verfahren zur Netzstruktur-Darstellung zuriickgegriffen werden. Diese wirkt sich allerdings
fiir groe Fahrzeugmodelle hinsichtlich der Bildwiederholrate sehr negativ aus. Fiir ein
Modell bestehend aus etwa 530 000 Dreiecken, die schattiert mit 6.9 Bildern pro Sekunde
dargestellt werden, fillt die Bildwiederholrate bei Hinzunahme des Wireframe-Schrittes
auf 1.16 ab. Demgegeniiber werden unter Einsatz der Wireframe-Textur immer noch 5.5
Bilder pro Sekunde erzeugt.

Kapitel 7

Spezielle Pre-Processing
Funktionalititen

Bis vor wenigen Jahren wurden die virtuellen Fahrzeugmodelle noch homogen vernetzt,
das heifit, die Finite-Element-Netze aneinandergrenzender Bauteile mussten so miteinan-
der abgeglichen werden, dass sie in den Randbereichen gemeinsame Knoten verwendeten.
Dadurch brachte der Austausch eines Bauteils durch eine andere Variante stets groflen
Vernetzungsaufwand mit sich. Inzwischen kénnen immer mehr Bauteilverbindungen, wie
zum Beispiel Schweilpunkte, Schweifindhte oder Klebeverbindungen im Simulationsprozess
abgebildet werden. Somit spielt die Assemblierung unabhéngig voneinander vernetzter Bau-
teile eine wichtige Rolle im Vorverarbeitungsschritt der Crash-Simulation (Abbildung 7.1).

Dieses Kapitel widmet sich der Distanzvisualisierung und insbesondere der Lokalisie-
rung und Beseitigung initialer Penetrationen zwischen unabhéngig voneinander vernetzten
Bauteilen. Dariiber hinaus werden die Moglichkeiten zur interaktiven Modifikation von
Schweifipunktdaten erldutert, bevor abschlielend ein Graphik-Hardware-basiertes Verfah-
ren beschrieben wird, welches erlaubt, skalare Parameter von einem Gitter auf ein anderes
zu iibertragen.

7.1 Distanzvisualisierung

Die Vernetzung von CAD-Daten durch die Diskretisierung der Bauteilflichen bringt Ap-
proximationsfehler mit sich. Zum einen kommt es durch die Datenkonvertierung iiber ver-
schiedene Datenformate, in denen die CAD-Fldchenbeschreibung teilweise als Mittel- teil-
weise aber auch als Randfliche interpretiert wird, zum anderen durch die unabhiingige
Vernetzung zu unterschiedlichen Abstinden der diskretisierten Bauteilflichen. Da das
Finite-Element-Netz fiir die Crash-Simulation die Mittelfliche des Bauteils darstellt, ist
zu beiden Flichenseiten die halbe Bauteildicke (Blechstiirke) zu beriicksichtigen. Dadurch
kommt es in einem assemblierten Fahrzeugmodell in Flanschbereichen oder zwischen be-
nachbarten Bauteilen gegebenenfalls zu initialen Penetrationen oder gar zu Perforationen,

108

Spezielle Pre-Processing Funktionalitédten

Abbildung 7.1: Wéhrend in homogenen Netzen aneinandergrenzende Bauteile durch ge-
meinsam genutzte Knoten implizit miteinander verbunden sind (links oben), werden un-
abhiingig voneinander vernetzte Bauteile in inhomogen Flanschbereichen (rechts oben)
explizit durch Verbindungselemente aneinandergebunden. Die unabhéngige Vernetzung
einzelner Bauteile kann allerdings zu Netzdurchdringungen, so genannten Perforationen,
fithren (unten).

die beim Start der Simulation initiale Krifte verursachen und damit die Simulationsergeb-
nisse verfilschen (vergleiche Abbildung 2.4, Seite 32).

Dem Berechnungsingenieur fehlten bisher Werkzeuge, um derartige Bereiche zu detek-
tieren, zu visualisieren und schlielich selektiv zu beseitigen. Abschnitt 7.1.1 beschreibt
die Grundlagen der eingesetzten Bounding-Volume-Hierarchie, die eine effiziente Berech-
nung minimaler Abstinde erlaubt. Abschnitt 7.1.2 setzt sich mit der Anwendung dieser
Bounding-Volume-Hierarchie zur Detektion initialer Penetrationen auseinander und im Un-
terkapitel 7.1.3 werden schliefilich zwei Varianten zur Visualisierung potenzieller Flansche
vorgestellt.

7.1.1 Bounding-Volume-Hierarchie auf FE-Netzen

Es gibt eine Vielzahl von Arbeiten, die sich mit der Unterteilung komplexer polygonaler
Modelle auseinandersetzen (siehe Abschnitt 3.2.2, Seite 40). Fiir eine hierarchische Unter-
teilung der Finite-Element-Netze wurde der Ansatz der objektorientierten Bounding-Boxen
zur Kollisionsdetektion von Gottschalk et al. [31] im Rahmen einer Diplomarbeit [40] un-
tersucht und an das Einsatzgebiet in der Strukturmechaniksimulation angepasst. In [31]

7.1 Distanzvisualisierung

109

vergleichen die Autoren den FEinsatz von Begrenzungskugeln beziehungsweise von haupt-
achsenparallelen Begrenzungsquadern (AABB) mit dem von Begrenzungsquadern, deren
Orientierung an den eingehiillten Strukturen ausgerichtet ist (OBB). Dabei unterscheiden
sich die drei Begrenzungsvolumenarten im Allgemeinen nicht nur durch ihre rdumliche
Ausdehnung, sondern auch durch Umfang der zu speichernden Daten und den Berech-
nungsaufwand bei der Erstellung der BV-Hierarchie sowie bei der Abstandsberechnung
(Abbildung 7.2). Wihrend sich Lage und Gréfle der Bounding-Boxen durch die Suche
nach den Extrempunkten der eingehiillten Geometrie beziiglich der Box-Achsen festlegen
lassen, kann fiir die Bestimmung einer annihernd optimalen Begrenzungskugel das von
Ritter[54] vorgestellte Verfahren angewendet werden. Eine aufwendigere Optimierung der
Begrenzungskugeln durch Methoden wie sie in [28] prisentiert werden, kommen im Proto-
typen nicht zur Anwendung, da der Aufbau der BV-Hierarchie nicht ausreichend effizient
vollzogen werden konnte.

(a) Sphere (b) AABB (c) OBB

Abbildung 7.2: Die drei Begrenzungsvolumenarten unterscheiden sich in ihrer rdumlichen
Ausdehnung, den zu speichernden Daten pro Instanz und beim Berechnungsaufwand fiir
den Abstandstest. M bezeichnet den Mittelpunkt des Hiillvolumens, H, und H, entsprechen
den halben Seitenldngen der Bounding-Boxen.

Bei der Verwendung orientierter Bounding-Boxen (OBB) wird zum Aufbau der BV-
Hierarchie rekursiv in folgenden Schritten vorgegangen:

1. Ermittlung der Kovarianzmatrix eingehiillter Geometrieprimitive
Die normalisierten Eigenvektoren der symmetrischen Kovarianzmatrix bilden die Or-
thonormalbasis fiir die Achsen des ausgerichteten Begrenzungsquaders.

2. Festlegung der Ausdehnung der orientierten Bounding-Box
Die extremen Punkte werden durch die Projektion aller eingehiillten Knotenpunkte
auf die drei Achsen ermittelt und bestimmen damit die Kantenlinge des Begren-
zungsquaders. Sofern die Anzahl maximal zuldssiger Geometrieprimitive pro Blatt-
knoten der Bounding-Volume-Hierarchie nicht iiberschritten ist, kann die Rekursion
fiir diesen Zweig hier abgebrochen werden.

110

Spezielle Pre-Processing Funktionalititen

3. Aufteilung der umhiillten Geometrieprimitive in zwei Untermengen
Die Schwerpunkte der Geometrieprimitive werden auf den urspriinglich ldngsten Ei-
genvektor projiziert, der parallel zur gréfiten Ausdehnung des orientierten Begren-
zungsquaders verlduft. Die Partitionierungsebene verlduft orthogonal zum l&ngsten
Eigenvektor (Projektionsachse) durch den gemittelten Schwerpunkt aller umbhiillten
Primitive. Die Lage des auf die Projektionsachse abgebildeten Primitivschwerpunktes
entscheidet, welchem der beiden Untermengen das Primitiv zugeordnet wird.

y
B ' B
M
2Hy A ot
° ' |
2H, M, : :
Uberlappung 4 X |
: L : -
2H 2H X
Sphere A~ AABB "*

Eine von 15

separierenden |
Achsen L,

Abbildung 7.3: Uberlappungstest fiir die Hiillkérpertypen Sphere, AABB und OBB

Fiir den Kollisionstest zwischen (Geometrieprimitiven beziehungsweise die Ermitt-
lung minimaler Abstéinde werden die Berechnungen zunichst jeweils zwischen zwei
Hiillvolumen der Hierarchiestufe ¢ durchgefiihrt. Sofern das Abbruchkriterium — fehlende
Uberlappung der Hiillvolumen beziehungsweise Uberschreitung eines vorher festgelegten
Hochstabstandes — nicht erfiillt ist, wird mit den Begrenzungsquadern der Hierarchiestu-
fe 1 + 1 fortgefahren. Wenn in beiden Hierarchien Blattknoten erreicht wurden, die keine
weiteren Hiillvolumen enthalten, werden die enthaltenen Primitive des einen Hiillvolumens
gegen die des anderen getestet.

Der Uberlappungstest ergibt sich je nach Hiillvolumentyp aus folgenden Formeln, bei
denen M; jeweils die Hiillkbrpermittelpunkte bezeichnen (vergleiche Abbildung 7.3):

7.1 Distanzvisualisierung 111

N e AN
N A,

i
I
iy

0y 7
T)
NN

AY
/

Sphere AABB OBB

Abbildung 7.4: Gegeniiberstellung der Hiillkorpertypen Sphere, AABB und OBB am Bei-
spiel der Bounding-Volume-Hierarchie-Ebenen 0, 1, 2, 5 und 8 eines Bauteils

112 Spezielle Pre-Processing Funktionalititen

Sphere: |My— Mp|—(ra+rB) <0 ri: Kugelradien
AABB . M M HeLH 0 H;: halbe Seitenldngen
: j€{z,y,2}: (|Ma— Mp|— (Ha+ B))j < j: Komponente z, y, z

OBB: Vk: (|Le-(Ms— M I..D I..D 0 D;: halbe Raumdiagonale
: : <| k- (Ma— B)|_(| k- Dal|l+ |Lg - B|)) < Ly separicrende Achse

In [31] wird vorgestellt, wie der Uberlappungstest fiir objektorientierte Hiillquader
(OBB) durch die Projektion des Verbindungsvektors T zwischen beiden Mittelpunkten
M, und Mp und den Halbdiagonalen jeder Box auf eine von 15 separierenden Achsen
Ly durchgefiihrt wird. Zwei konvexe Polyeder iiberlappen sich ndmlich genau dann nicht,
wenn es eine Ebene gibt, die parallel zu einer der Polyederflichen ist und beide Objekte
voneinander trennt, ohne diese zu schneiden. Darauf aufbauend sind die Volumina zweier
Polyeder disjunkt, wenn es orthogonal zu einer Polyederfliche oder orthogonal zu einem
Kantenpaar beider Polyeder eine Achse Ly gibt, die beide Polyeder voneinander trennt.
Da es fiir jede Box drei unterschiedliche Ausdehnungsrichtungen fiir Flachen und Kanten
gibt, resultiert daraus: 2 -3 Flichen + 3 - 3 Kantenpaare = 15 separierende Achsen.

Sofern eine Uberlappung der umhiillten Geometrie festgestellt wird, kann die weite-
re Traversierung fiir eine reine Kollisionserkennung abgebrochen werden. Wenn es jedoch
darum geht, sich durchdringende Finite-Elemente zu detektieren, werden gefundene Ele-
mentpaarungen in einer Liste gesammelt und die gesamte Hiillvolumenhierarchie bis zum
Ende durchlaufen.

Fiir die Ermittlung des minimalen Abstands zweier sich nicht durchdringender poly-
gonaler Netze wurde der Algorithmus von Cameron [9] verwendet. Dabei handelt es sich
um eine beschleunigte Variante des bereits neun Jahre vorher publizierten Verfahrens von
Gilbert et al. [29], bei dem der minimale Abstand zum Ursprung im durch die Minkowski-
Differenz zweier konvexer Polyeder definierten TC-Raum berechnet wird. Die Minkowski-
Differenz im IR? ist definiert als

A-B={a-b : a€A beB} mitABCR

Auf dessen konvexen Hiille, als Translational C-Space Obstacle bezeichnet, wird in einer
iterativen Vorgehensweise das Minimierungsproblem gel6st (Abbildung 7.5).

Die Bounding-Volume-Hierarchie erlaubt die effiziente Kollisionsdetektion zwischen
polygonalen Netzen, zum Beispiel zur Lokalisierung von Perforationen, wird jedoch
hauptséchlich zur Abstandsberechnung zwischen einem gegebenen Punkt und dem hier-
archisch unterteilten Netz eingesetzt. AuBer fiir die Detektion initialer Penetrationen und
die Visualisierung potenzieller Flansche wird im Prototypen die Abstandsberechnung auch
bei der interaktiven Modifikation von Schweifipunktdaten und der automatischen Pfadsu-
che bei flichigen Bauteilverbindungen verwendet [23]. Die effiziente Berechnung minimaler

7.1 Distanzvisualisierung

113

Ursprung TC—Raum
o e !

Hilfscbene frger RiEenPUKS

Zeugenpunkte

Hilfsebene 1

Hilfsebene 2

Abbildung 7.5: Der TC-Raum entspricht der Minkowski-Differenz der beiden links dar-
gestellten Polyeder P und Q. Der minimale Abstand zwischen P und Q entspricht im
TC-Raum dem kiirzesten Abstand zwischen Ursprung und konvexer Hiille der Minkowski-
Differenz, also dem rechts skizzierten Translational C-Space Obstacle (TCSO). Die Punkte
des TC-Raumes, die nicht auf der konvexen Hiille liegen, wurden der Ubersichtlichkeit hal-
ber nicht eingezeichnet.

Absténde bildet die Grundlage fiir viele weitergehende Funktionen, zum Beispiel fiir die
abschliefflende Validierung von Bauteilverbindungen, bei der potenzielle Flanschbereiche
gesucht werden, in denen die Bauteile nicht durch Verbindungselemente angebunden sind.
Entscheidend fiir hohe Performanz der Abstandsberechnung ist die Vorgabe eines moglichst
geringen Wertes fiir die maximal zu betrachtende Distanz um einen Knoten. Sofern dieser
initiale Wert bei der Abstandsberechnung zwischen Punkt und Hiillvolumen nicht unter-
schritten wird, brauchen die Kinder des Hiillvolumens nicht betrachtet zu werden. Nach-
folgend werden zwei Einsatzgebiete dieser Algorithmen niher erliutert.

7.1.2 Detektion und Beseitigung initialer Penetrationen

Das Auftreten initialer Krifte, hervorgerufen durch initiale Penetrationen benachbar-
ter Bauteile, muss vermieden werden, um Verfilschungen der Simulationsergebnisse aus-
zuschliefen. Um Regionen, in denen initiale Penetrationen vorkommen, lokalisieren zu
konnen, werden zunichst die minimalen Absténde aller Netzknoten zu einem anderen Bau-
teil berechnet. Dies geschieht unter Zuhilfenahme der im letzten Abschnitt angesprochenen
Algorithmen. Die Zeit, die fiir die Ermittlung der minimalen Knoten-Element-Abstidnde
benétigt wird, hingt entscheidend von der maximalen Distanz ab, bis zu der die genauen
Absténde berechnet werden sollen. Liegt diese Distanz nur geringfiigig iiber der Kontakt-
dicke zweier Bauteile, so kann der initiale Abstandswert fiir jeden Netzknoten, der bei der
Traversierung der BV-Hierarchie als Abbruchkriterium dient, entsprechend klein gew#hlt

114

Spezielle Pre-Processing Funktionalititen

werden. Das hat zur Folge, dass nur wenige BV-BV- beziehungsweise Knoten-BV-Distanzen
berechnet werden miissen, bevor der minimale Abstand zwischen dem Knoten und einer
geringen Anzahl von Elementen berechnet werden kann.

In der Datenstruktur PenetrationCluster werden Verweise auf den penetrierenden Kno-
ten und das betroffene Element gespeichert. Die Detektion liefert zusétzlich zu den minima-
len Knoten-Element-Abstinden eine Liste solcher PenetrationCluster, aus der hervorgeht,
welche Bauteile ineinander eindringen. Dariiber hinaus kann durch den Anwender die Aus-
wahl der modifizierbaren Bauteilnetze eingeschrinkt werden, was fiir die Anpassung von
Bauteilvarianten an ein bereits bereinigtes Fahrzeugmodell eine entscheidende Rolle spielt,
da alle anderen Bauteilnetze wihrend der Beseitigung initialer Penetrationen konserviert
werden sollen. Das Ergebnis der Detektion wird in Form von Listen, die Knotenkoordina-
ten sowie Knoten- und Element-Labels enthalten, an die Inipen-Bibliothek! iibergeben. Die
Schnittstelle entspricht der der DAISY-Bibliothek. Durch ein zusétzliches Bit-Array wird
die Modifizierbarkeit der Netzknoten festgelegt. Die Bibliothek iibernimmt das iterative
Verfahren, in dem zwischen den Bauteilen zunichst Krifte berechnet und die Netzkno-
ten in Bereichen initialer Penetration auseinandergetrieben werden, bis keine Eindringung
mehr vorliegt. Nach diesem Vorgang werden die verschobenen Knotenkoordinaten zunéchst
in die interne und schliellich auch in die Szenengraph-Datenstruktur iibernommen, so dass
das Ergebnis der Penetrationsbeseitigung vom Anwender begutachtet werden kann.

Abbildung 7.6: Durch Einfarbung sich perforierender (links) beziehungsweise penetrieren-
der Elemente (rechts) werden fehlerhafte Netzregion hervorgehoben.

Durch die selektive Bereinigung penetrierender Netze wird dem Berechnungsingenieur
erstmals die Moglichkeit gegeben, die Modifikation auf bestimmte Bauteile einzuschrinken
und anschlieBend das modifizierte Netz gegebenfalls noch zu iiberarbeiten, bevor der Si-
mulationslauf gestartet wird. Derzeit konnen sowohl Perforationen als auch Penetrationen
detektiert und visualisiert werden; letztere konnen auch beseitigt werden. Es wire denkbar,
auch Perforationen durch ein Zwei-Schritt-Verfahren zu beseitigen, indem im ersten Schritt
perforierende Knoten hinter das zugehérige Element aus dem PenetrationCluster projiziert
werden und anschliefend die dann vorliegende Penetration, wie oben beschrieben, besei-

!Die Inipen-Bibliothek wurde freundlicherweise von der Firma ESI zur Verfiigung gestellt.

7.1 Distanzvisualisierung

115

tigt wird. Mit der Beseitigung von Perforationen und einer anschlielenden Gitterrelaxation
setzt sich [42] auseinander.

7.1.3 Visualisierung potenzieller Flansche

Bei der Assemblierung einzelner Bauteile beziehungsweise Bauteilgruppen zu einem kom-
pletten Fahrzeugmodell fiir die Crash-Simulation spielt die korrekte Definition der Ne-
benbedingungen von Bauteilen untereinander eine grofie Rolle. Zu diesen Nebenbedin-
gungen gehoren unter anderem Kontaktspezifikationen und Bauteilverbindungen, die in
Bereichen, in denen zwei oder mehr Bauteilflichen einander sehr nahe kommen, definiert
werden konnen. Aufgrund der Komplexitit der Simulationsmodelle ist es fiir den Berech-
nungsingenieur hilfreich, die Visualisierung des Finite-Element-Netzes auf die Bereiche zu
beschrinken, in denen Bauteile einen geringen Abstand zu benachbarten Bauteilen haben.
In der Regel handelt es sich hierbei um die Flanschbereiche, in denen Bauteilverbindungen
definiert werden miissen.

In dem entstandenen Prototypen crashViewer wurden fiir diese Anforderung zwei unter-
schiedliche Losungen entwickelt und implementiert. Wahrend das eine Verfahren es erlaubt,
unter Ausnutzung der Graphik-Hardware die Fahrzeuggeometrie anhand der fiir die Di-
stanzvisualisierung berechneten Minimalabsténde interaktiv auszublenden, ohne die Geo-
metriedaten modifizieren zu miissen, reduziert das andere Verfahren das Finite-Element-
Netz auf einen kleinen Bruchteil und sorgt somit fiir eine wesentlich bessere Performanz
bei der Handhabung des Modells. Beide Verfahren werden im Folgenden vorgestellt.

7.1.3.1 Graphik-basiertes Ausblenden der Fahrzeuggeometrie

Nachdem der Anwender zunéchst einen Abstandsbereich spezifiziert hat und die Mini-
malabstinde der Netzknoten zu benachbarten Bauteilen, wie oben beschrieben, ermittelt
wurden, werden die Distanzwerte analog zur Parametervisualisierung (Abschnitt 6.3.1,
Seite 102) auf Texturkoordinaten abgebildet. Als Textur wird eine eindimensionale RGBa-
Textur verwendet, deren Farbverlauf iiber den in Abbildung 7.7 dargestellten Dialog in-
teraktiv verdndert werden kann. Der zusétzliche a-Kanal in der Textur ermoglicht in
Abhéngigkeit der verwendeten OpenGL-Texturierungsfunktion folgendes:

e Sofern GL_DECAL als Funktion gewdhlt wird, bleibt der Opazitédtswert texturierter
Fragmente unveréndert. Der a-Wert beeinflusst lediglich, inwieweit der Farbwert C
durch die Texelfarbe C; modifiziert wird; so ergibt sich die resultierende Farbe aus
(1 — ou)Cf + o4 Cy. Das heifit, dass in Bereichen, in denen der a-Kanal fiir die Tex-
tur auf vollkommen transparent gesetzt ist, eine Wertevisualisierung unterbleibt und
stattdessen die urspriinglich schattierte Fahrzeuggeometrie sichtbar ist.

e Falls GL_LMODULATE wéhrend der Texturierung verwendet wird, werden sowohl die
Farb- als auch die Opazitidtswerte des Fragmentes und der Textur miteinander mul-

116

Spezielle Pre-Processing Funktionalititen

[RedfLum, :

[d Green !

[0 Blue

[Alpha ;

[AutelUpdate MMove [a]
(=

> Scale]

Arrow Loop 1

Abbildung 7.7: Das Dialogfenster unterstiitzt den Anwender bei der Definition von Farb-
verldufen {iber den spezifizierten Wertebereich.

tipliziert. Dies hat zur Folge, dass in Bereichen, auf die transparente Texturelemen-
te abgebildet werden, die Fahrzeuggeometrie nur unsichtbar dargestellt wird. Wenn
wéhrend der Bildsynthese zwischen opaken und transparenten Polygonen nicht un-
terschieden wird — dies ist unter OpenGL Optimizer / Cosmo3D der Fall —, hat das
zur Folge, dass der z-Puffer durch transparente, nahe am Betrachter liegende Frag-
mente ,, verschmutzt“ wird. Dadurch scheitern weiter entfernte, opake Fragmente, die
spéater verarbeitet werden, am z-Test und bleiben somit unsichtbar. Abhilfe schafft
die zusétzliche Aktivierung des a-Tests: Fragmente, deren a-Komponente unterhalb
des Referenzwertes fiir den a-Test liegen, werden somit schon vor einem eventuellen
Passieren des z-Tests abgefangen (vergleiche Abbildung 3.3).

Abbildung 7.8: Wihrend links mit der GL_DECAL-Funktion nur die Visualisierung der
Werte durch Farben auf bestimmte Wertebereiche eingeschrénkt wird, kann durch Modifi-
zierung des a-Kanals wihrend der Texturierung mit GL_.MODULATE interaktiv die Fahr-
zeuggeometrie ausgeblendet werden.

7.1 Distanzvisualisierung

117

Dieses Verfahren eignet sich besonders gut, um einen Datensatz interaktiv zu analysie-
ren. So kann der Anwender sich wiahrend einer Postprocessing-Sitzung mit der Graphik-
basierten Technik auch in komplexen Fahrzeugmodellen sofort einen Uberblick verschaffen,
wo Netzknoten beziehungsweise -elemente kritische Werte aufweisen, indem uninteressante
Wertebereiche ausgeblendet werden. Doch auch, wenn nur noch ein Bruchteil des Gesamt-
modells sichtbar ist, miissen fiir jedes Bild die gesamten Szenendaten verarbeitet werden;
daher resultieren aus dieser Vorgehensweise keine hoheren Bildwiederholraten.

7.1.3.2 Werte-basierte Reduzierung des Fahrzeugmodells

Nach der Assemblierung unabhéingig voneinander vernetzter Bauteile spielen hohe Bild-
wiederholraten wihrend der Definition von Bauteilverbindungen eine grofie Rolle. Dariiber
hinaus unterscheiden die verwendeten Picking-Algorithmen nicht zwischen opaken und
transparenten Polygonen. Um also das Setzen von Schweilpunkten moglichst Benutzer-
freundlich zu gestalten, wurde zusétzlich zu dem graphischen Verfahren ein Reduktionsal-
gorithmus implementiert, der das Modell auf die potenziellen Flanschbereiche einschriankt.
Zunichst werden dazu die minimalen Knoten-Element-Abstinde ermittelt. Anschlieend
traversiert die ParamCutAction, eine opDF TravAction (Abschnitt 4.1.3, Seite 65), den Sze-
nengraphen und geht fiir jedes Bauteilnetz nach dem Algorithmus in Abbildung 7.9 vor.
Nachdem der gesamte Szenengraph traversiert wurde, bleiben nur die Teile des Fahrzeug-
modells sichtbar, deren Werte in vorgegebenen Bereich liegen. Da nun wesentlich weniger
Dreiecke verarbeitet werden miissen, konnen auch fiir urspriinglich sehr grofie Modelle ho-
he Bildwiederholraten erreicht werden, so dass der Anwender in Echtzeit im reduzierten
Fahrzeugmodell navigieren kann.

Klassifizierung der Knoten
J Alle Knotenwerte innerhalb Wertebereich?
Ersatzgeometrie := LEER
J\ Alle Knotenwerte auBerhalb Wertebereich?
Initialisiere Ersatzgeometrie mit Primitiven,
deren Knoten im Wertebereich liegen.
Tausche Bauteil- durch Ersatzgeometrie aus
Verwalte ausgetauschte Geometrie in Liste
Fahre mit nachster Bauteilgeometrie fort

Abbildung 7.9: Die links dargestellten Schritte werden auf jedes Bauteil angewendet, das
im Szenengraphen von der ParamCutAction traversiert wird. Als Ergebnis bleiben nur die
Finite-Elemente sichtbar, deren Daten im spezifizierten Wertebereich liegen.

118

Spezielle Pre-Processing Funktionalititen

7.2 Interaktives Modifizieren von Schweiflpunktdaten

Eine der wesentlichen Aufgaben, die mit dem im Rahmen dieser Arbeit entstandenen Pro-
gramm crash Viewer gehandhabt werden, ist das interaktive Setzen, Verdndern und Loschen
von Schweifipunkten. Die endgiiltigen Schweilpunkte werden von dem Konstruktionsinge-
nieur in den CAD-Daten definiert. Da diese Daten in der frithen Phase eines neuen Fahr-
zeugprojektes jedoch nicht vorliegen, grundlegende Konstruktionsentscheidungen aber auf
der Basis erster Simulationsergebnisse getroffen werden sollen, miissen unabhéngig vonein-
ander vernetzte Bauteilmodelle vom Berechnungsingenieur miteinander verbunden werden.
Zunéchst war die Positionierung von Schweilpunkten nur iiber die Eingabe ihrer Koordina-
ten moglich. Daher wurde eine Lésung gesucht, die es dem Berechnungsingenieur erlaubt,
interaktiv per Mausklick Schweilpunkte zu definieren beziehungsweise bereits existierende
Schweifipunkte zu verschieben oder zu l6schen.

Die erste Représentation der Schweiflpunkte besteht im Simulationseingabedatensatz
aus zwei Teilen, der SPOTW-Karte, die aufler einem Bezeichner und der Position auch
die Zugehorigkeit zu einer Schweifipunktgruppe spezifiziert, und der SLINT2-Karte, in der
die Attribute aller Schweiipunkte einer Schweilpunktgruppe angegeben sind. Dementspre-
chend wurden zwei Klassen Spotweld und SpotweldGroup implementiert, um Schweifipunkte
im internen Datenmodell zu reprisentieren (Abbildung 7.10). Die PLINK-Karte als neuere
Schweifipunktreprésentation enthilt in ihrem urspriinglichen Format alle der oben genann-
ten Informationen und umgeht damit die Indirektion von Schweifipunkten zu verbundenen
Bauteilen.

[SPOTW, | [SPOTW, | -+ [SPOTW, |

SLINT2, =~

POTWA+1 """ ’SPOTWB ‘
STz, | (SPOTW | - [SPOTH]
VS —
IR
(BT, |[BT, | - [BTy]

Abbildung 7.10: Links wird der Zusammenhang der Karten illustriert, die Schweifipunkt-
verbindungen représentieren. Rechts sind zwei Schweifipunktgeometrien abgebildet. In
Abhéngigkeit vom Fehlerstatus eines Schweifipunktes wird die Farbe variiert.

Im Szenengraphen entspricht jede Schweilpunkt-Instanz einem Transformationsknoten,
der die Position und Lage des Schweiipunktes widerspiegelt. Alle diese cs Transform-Knoten
verweisen auf jeweils einen von sechzehn csShape-Knoten, die die eigentliche Schweiflpunkt-
geometrie mit den seinem Status entsprechenden Darstellungsattributen beinhalten.

Beim Setzen eines Schweiflpunktes wird zunéchst eines der beiden zu verbindenden
Bauteile selektiert, das daraufhin temporér als Drahtgittermodell dargestellt wird, um

7.2 Interaktives Modifizieren von Schweiflpunktdaten

119

darunter liegende Bauteile sichtbar werden zu lassen; mit dem zweiten Mausklick legt der
Anwender das andere zu verbindende Bauteil und gleichzeitig die Koordinaten eines Such-
strahls fest. Von diesem Punkt aus wird ein senkrecht zur Ebene des Finite-Elementes
stehendes Strahlensegment verwendet, um den Schnittpunkt mit dem anderen Bauteil-
netz zu ermitteln. Wird in einem maximal zuléssigen Abstand ein Element des gewihlten
Bauteilnetzes gefunden und werden auch alle anderen Kriterien erfiillt, kann der neue
Schweiflpunkt im Mittelpunkt des Schnittstrahls definiert werden. Aufler dem Elementab-
stand wird iiberpriift, ob der Mindestabstand zu benachbarten Schweifipunkten sowie eine
maximale Winkelabweichung zwischen den Normalen der verbundenen Elemente eingehal-
ten wurde, und ob Elemente dritter Bauteile zwischen den zu verbindenden Elementen
liegen. Nach wie vor lassen sich einzelne Schweiipunkte auch iiber Koordinatenangabe set-
zen; falls die zu verbindenden Bauteile zuvor nicht selektiert wurden, werden die beiden
nichstgelegenen Bauteile verschweifit. Auch hier kommt wieder die Distanzberechnung mit
Hilfe der BV-Hierarchie zum Einsatz. Mehrere Schweiflpunkte kénnen entlang eines auf das
Bauteil projizierten Liniensegments definiert werden, indem der Start- und Endpunkt des
Segments durch Mausklick vorgegeben wird. Eine detaillierte Beschreibung der notwendi-
gen Berechnungsschritte wird in [40], Kapitel 4.1 gegeben.

Schweiflpunkte, die bereits in dem Eingabedatensatz definiert waren, werden in der
Initialisierungsphase ebenfalls auf die oben genannten Kriterien iiberpriift und entspre-
chend klassifiziert. Der Anwender kann fehlerfreie von fehlerhaften Schweifipunkten durch
unterschiedliche Farben und gegebenfalls eine andere geometrische Représentation unter-
scheiden. Um ein sukzessives Korrigieren fehlerhafter Schweifipunkte zu erméglichen, wurde
zudem eine Suchfunktionalitit implementiert, die die Viewing-Matrix so einstellt, dass der
néchste Schweifipunkt aus der Fehlerliste den Darstellungsbereich fiillend visualisiert wird.

Schweilpunktverbindungen iiber mehr als zwei Bauteile werden derzeit durch Definition
mehrerer Zweifachverbindungen mit gleichen Koordinaten und unterschiedlichen Schweif}-
punktgruppen abgebildet. Da jeder dieser Schweiflpunkte mit unterschiedlichen Bauteil-
paarungen durch einen Quader représentiert wird, der lediglich durch seinen Mittelpunkt
und seine langste Achse spezifiziert ist, konnen sie sich gegenseitig verdecken. Um Mehr-
fachschweifipunkte von einfachen zu unterscheiden, werden die Quader um ihre lingste
Achse auseinander rotiert (Abbildung 7.11).

Schliellich werden in crashViewer noch Mechanismen zur Verfiigung gestellt, die es
dem Anwender erlauben, Schweifipunktverbindungen zu priifen. Wird ein Schweiflpunkt
selektiert, so werden die durch diesen Schweilpunkt verbundenen Bauteilnetze temporir
als Drahtgitter dargestellt. Umgekehrt kann auch ein Bauteil ausgewihlt werden, worauf-
hin sich alle Schweiflpunkte an diesem Bauteil verfarben. Durch eine zweite Bauteilauswahl
werden von diesen Schweifipunkten diejenigen hervorgehoben, die beide Bauteile verbin-
den. Auflerdem gibt es noch die Mdoglichkeit, ausgehend von einem allein dargestellten
Bauteilnetz sich schrittweise alle bis dahin ausgeblendeten Bauteile anzeigen zu lassen, die
mit einem dargestellten Bauteil verbunden sind. So kann am Ende einer Assemblierungs-
sitzung noch einmal getestet werden, ob alle notwendigen Bauteilanbindungen definiert
wurden oder ob Bauteile noch unangebunden im Modell ,schweben®.

120

Spezielle Pre-Processing Funktionalititen

Abbildung 7.11: Schweifipunkte, die mehr als zwei Bauteile verbinden, werden mit der
SPOTW-Karte durch mehrere Zweifachverbindungen im gleichen Punkt mit unterschied-
lichen Bauteilpaarungen modelliert. Eine zusétzliche Rotation der geometrischen Re-
prasentation macht derartige Mehrfachverbindungen von den normalen Zweifachverbin-
dungen fiir den Betrachter unterscheidbar.

7.3 Parameteriibertragung zwischen inkompatiblen
Gittern

Im virtuellen Fahrzeugentwicklungsprozess bekommt die Verzahnung der Berechnungser-
gebnisse aus den unterschiedlichen Bereichen, in denen die numerische Simulation einge-
setzt wird, einen wachsenden Stellenwert. Die derzeit in der Crash-Simulation eingesetzten
Berechnungsmodelle verwenden Werkstoffkenngréfien, die zuvor an Halbzeugen? ermittelt
wurden. Dadurch bleiben bisher weitere Fertigungseinfliisse, die bei der Umformung von
Halbzeugen zu fertigen Bauteilen durch Abstreck- und Stauchvorginge auftreten, in der
Crash-Simulation unberiicksichtigt [34]. Zum Beispiel wird beim Tiefziehen in Bereichen
grofler Kriimmung die Dicke des Bauteilbleches vermindert. Statt in der Crash-Simulation
von einer gleichbleibenden Blechdicke iiber alle Elemente des Bauteils auszugehen, sollen
die Ergebnisse einer Tiefziehsimulation in der Crash-Berechnung weiterverwendet werden.

In einer Tiefziehsimulation werden Faltenbildung und Materialversagen des Umform-
teils untersucht und Werkzeuge wie Matrize, Niederhalter oder Stempel optimiert. Um
aussagekréftige Ergebnisse zu erhalten, werden in Tiefziehsimulationen wesentlich feine-
re Finite-Element-Netze eingesetzt als in Crash-Simulationen. Zudem verfeinert sich die
Netzstruktur in Bereichen grofler Kriimmung. Um nun die aus der Fertigung resultieren-
den Elementdicken des feinen Tiefziehnetzes auf das grobere Crash-Netz iibertragen zu
konnen, miissen fiir jedes Element des Crash-Netzes die Elemente des Tiefziehnetzes er-
mittelt werden, die dann zum Beispiel nach Threr Fliche gewichtet auf die zu berechnende

2Halbzeug — Stahlkorper, die bereits eine Formgebung im Stahlwerk erhalten haben und aus denen
im Allgemeinen durch weitere Umformung Fertigerzeugnisse hergestellt werden

7.3 Parameteriibertragung zwischen inkompatiblen Gittern 121

Elementdicke Einfluss nehmen. Nachfolgend wird hier das zusammen mit Kobbelt und We-
stermann entwickelte Verfahren beschrieben, das in den Prototypen crashViewer integriert
und zum Einsatz gebracht wurde.

1 Kodiere Indizes der Elemente Ef des feinen Netzes als RGB-Farbe

2 Initialisiere Raumpartitionierung und Display-Listen mit enthaltenen Ef
3 Setze allgemeine Darstellungsparameter fiir OpenGL-State

4 for (alle Elemente Eg des groben Netzes)

5 Berechne fiir Eg Mittelpunkt M, Normale N und Look-up-Vektor LuV

6 Positioniere Kamera in M mit Orientierung (N, LuV)

7 Initialisiere orthographische Projektion anhand laéngster Kante von Eg
8 P := Partitionen die von Bounding—Box(Eg) geschnitten werden

9 Wahle Viewport-Aufldsung grofl genug und beschridnke Scissor-Bereich
10 Initialisiere Stencil-Buffer mit Fl&dche von Eg

11 Zeichne alle Ef aus P innerhalb des Stencil-Bereichs

12 Lese Scissor-Bereich aus dem Framebuffer in den Hauptspeicher

13 Dekodiere aus den Pixelfarben die Indizes der beitragenden Ef

14 und wende gewdhlte Abbildungsfunktion an

15 Weise ermittelte GréBe(n) Eg zu

Abbildung 7.12: Pseudocode der Transformation von Element-basierten Gréfien zwischen
Netzen unterschiedlicher Auflésung

Als Eingangsdaten fiir den in Abbildung 7.12 dargestellten Pseudocode fiir die
Hardware-basierte Transformation Element-basierter Groflen liegen zunéchst die beiden
Netze unterschiedlicher Auflosung aber gleicher geometrischer Form, Position und Orien-
tierung vor. Der Algorithmus nutzt die Graphik-Hardware, um zu ermitteln, welche Ele-
mente E; des feinen Netzes ein Element E; des groben Netzes {iberdecken. Dazu ist es
notwendig, die Elemente E¢ durch einen Identifikator — in diesem Fall einen aufsteigenden
Index — eindeutig zu markieren. Um die Information im Graphiksubsystem verarbeiten zu
konnen, wird jeder Index nach folgendem Schema binér in eine Farbe kodiert (1):

C:Rr—l---ROGg—l---GOBb—l---BO:I'—l---IO+1

Dabei entsprechen r, g und b den Bittiefen des Bildspeichers fiir den Rot-, Griin- und
Blaukanal. Sie werden jeweils in den Bereich [0, 1] verschoben. Sollte die Elementanzahl
des feinen Netzes die Bildspeichertiefe iiberschreiten, also I > 2! — 1 > 279%b gelten,
dann kommt ein Mehrschrittverfahren zum Einsatz, in dem jedem Element E; mehrere
Farben fiir die verschiedenen Bitbereiche zugeordnet werden. Die Farbe Schwarz bleibt fiir
uninitialisierte Bereiche reserviert, daher die '+1’.

Um die Graphik zu entlasten und fiir jedes E, nur potenziell beitragende E: zu
beriicksichtigen, wird das feine Netz durch eine Raumpartitionierung unterteilt und je-
der Zelle eine Display-Liste zugeordnet, die die in ihr enthaltenen E¢ in ihren jeweiligen
Farben zeichnet (2).

Da die in den Farben kodierten Indizes nicht verfilscht werden diirfen, wird Antialiasing,

Beleuchtungsberechnung und Blending aus- und Flat-Shading eingeschaltet (3). Die nach-
folgend beschriebenen Schritte werden fiir jedes Element E; des groben Netzes durchgefiihrt

122

Spezielle Pre-Processing Funktionalititen

(4). Die Kamera wird in der Mitte von E, positioniert und blickt entlang der Elementnor-
malen (546). Die lingste Kante von Eg gibt die Hohe und Breite des Sichtvolumens vor,
dessen Tiefe durch einen einstellbaren Toleranzwert, dem maximal zuléssigen Abstand zwi-
schen beiden Netzgeometrien, spezifiziert wird (7). Nachdem die Zellen der Raumpartitio-
nierung ermittelt wurden, die das Sichtvolumen schneiden (8), wird der Viewport-Bereich,
in dem die graphischen Operationen durchgefiihrt werden, so grofy gewihlt, das selbst das
kleinste aktuell ausgewéhlte Element E; auf mindestens einem Pixel dargestellt wird (9).
Mit glScissor werden alle Pixeloperationen auf diesen Bereich beschrankt. Mit Hilfe des
Stencil-Buffers wird sichergestellt, dass nur Pixel beschrieben werden, die auch von Eg
tiberdeckt werden (10). Nachdem alle das Sichtvolumen schneidenden Elemente E; mit ih-
ren jeweiligen ,Index-Farben® gezeichnet wurden (11), wird das resultierende Bild in den
Hauptspeicher geholt (12) und die Farbe jedes Pixels in den Index des beitragenden Ele-
mentes E¢ zuriicktransformiert(13). Schwarz gebliebene Pixel weisen darauf hin, dass an der
Stelle kein zugehoriges E; gefunden wurde. Welche der zu transformierenden Grofien von
den Elementen E; auf E; zu iibertragen sind, hingt von der gewéhlten Abbildungsfunktion
ab (14). POINT bestimmt E; iiber das Pixel in der Mitte des Viewport-Bereichs, wihrend
AREA die jeweilige Grofe iiber alle Ef mittelt. Dariiber hinaus kénnen mit MIN und MAX
auch minimale oder maximale Werte iibertragen werden. Die transformierten Werte stehen
anschliefend fiir jedes Eg zur Verfiigung (15) und koénnen somit fiir Berechnungen mit dem
groben Netz weiterverwendet werden. Abbildung 7.13 zeigt die Ubertragung der Element-
basierten Blechdicke von einem lokal verfeinerten Tiefzieh- auf ein Crash-Netz mit groberer
Auflésung.

Abbildung 7.13: Links liegen die beiden Finite-Element-Netze unterschiedlicher Auflésung
in gleicher Position und Lage iibereinander — das Crash-Netz schwarz und das Tiefziehnetz
mit der visualisierten Blechdicke. Rechts werden die iibertragenen Werte als Ergebnis der
Hardware-basierten Transformation auf dem Crash-Netz dargestellt.

Kapitel 8

Spezielle Post-Processing
Funktionalititen

Die grofien Datenmengen, die als Ergebnisse aus einem Crash-Simulationsprozess hervorge-
hen, miissen fiir die Analyse aufbereitet und visualisiert werden. In diesem Kapitel wird der
Einsatz von Mapping-Verfahren zur Visualisierung skalarer Groflen auf der Finite-Element-
Struktur an verschiedenen Beispielen diskutiert. Dariiber hinaus zeigt die Verwendung
animierter Vektorpfeile und farbiger Kraftflussrohren, wie auch mehrdimensionale Daten
durch Einbringen zusétzlicher Geometrie veranschaulicht werden kénnen. Abschlieend
wird das Kommandozeilen-gesteuerte Batch-Programm buildGraph und dessen Einsatzge-
biete beschrieben.

8.1 Skalarwerte auf der Fahrzeuggeometrie

Um einen moglichst engen Bezug zwischen Daten und dem Ort, an dem die Daten vorliegen,
herzustellen, bietet sich die Visualisierung skalarer Gréflen durch entsprechende Einfarbung
der Geometrie an. In Kapitel 6.3.1, Seite 102 wurde bereits die Nutzung eindimensiona-
ler RGBa-Texturen zur Visualisierung Knoten-basierter Skalare erlautert. Anhand einiger
Beispiele werden hier Bilder gezeigt, in denen die Daten Textur-basiert visualisiert wurden.
Neben den bereits in der Simulation berechneten Skalaren, wie zum Beispiel die minimale /
maximale plastische Dehnung der Elemente, die direkt auf Farbwerte abgebildet werden
kénnen, dienen die abgespeicherten Groflen in den nachfolgenden Beispielen als Eingangs-
groflen fiir die Berechnung der zu visualisierenden Werte.

Beulgeschwindigkeit

Die Darstellung der Beulgeschwindigkeit soll Regionen auf Langsstrukturen hervorheben,
in denen Elemente seitlich ausbeulen. Zur Berechnung eines skalaren Wertes, der anschlie-
Bend farbkodiert dargestellt werden kann, wird die Knotengeschwindigkeit in Richtung

124

Spezielle Post-Processing Funktionalititen

Abbildung 8.1: Die Visualisierung der Beulgeschwindigkeit hebt insbesondere auf Struktu-
ren, deren Ebenen in Richtung der Starrkérperbewegung verlaufen, ausbeulende Bereiche
hervor, wie hier am Lingstriger sichtbar.

des Normalenvektors ermittelt. Durch diese Vorgehensweise kann allerdings lediglich iiber
Strukturen, deren Normale annihernd senkrecht zur Starrkorperbewegung des Fahrzeugs
orientiert ist, eine Aussage der Beulgeschwindigkeit gemacht werden, da andernfalls die
Ausbeulung von der Starrkérperbewegung iiberlagert wird.

Hourglassing

Durch die auf einen Punkt reduzierte Integration kénnen in vierseitigen Schalenelementen
Null-Energie-Moden, so genannte Hourglass-Effekte auftreten. Dabei handelt es sich um
eine oszillierende zick-zack-artige Verformung benachbarter Schalenelemente (siehe Ab-
bildung 8.2) in der Elementebene, die die Simulationsergebnisse unbrauchbar machen.
Derartige Hourglass-Deformationen lassen sich durch eine uniforme Vernetzung und Aus-
schluss zu grofler punktformiger Lasten einschrinken. Dariiber hinaus kénnen signifikante
Hourglass-Deformationen durch Entgegenwirken der Hourglass-Energien wihrend der Si-
mulation kontrolliert werden. Um sicherzustellen, dass ein zulédssiges Mafl an Hourglass-
Energie nicht iiberschritten wurde, beziehungsweise die Elemente mit verstirkt auftreten-
dem Hourglassing zu identifizieren, wird das Verhiltnis zwischen der Hourglass- und der
internen Energie eines Schalenelementes als Quotient Element-basiert visualisiert.

Abbildung 8.2: Signifikante Hourglass-Effekte verfilschen die Simulationsergebnisse. Daher
ist eine Uberpriifung aufgetretener Hourglass-Energien unverzichtbar.

8.1 Skalarwerte auf der Fahrzeuggeometrie 125

Intrusion

Die Eindringtiefe in die Fahrgastzelle ist eine kritische Grofie bei der Beurteilung der passi-
ven Sicherheit wihrend eines Front- beziehungsweise Seitenaufpralls. Um die Eindringtiefe
zu visualisieren, wird eine Referenzebene definiert, zu der der jeweilige Netzknotenabstand
zunéchst gemessen und dann in Relation zu seinem urspriinglichen Abstand gesetzt wird.
Da sich das Fahrzeug wihrend eines Seitenaufpralls verschiebt, kann die Referenzebene
dynamisch durch Selektion dreier Netzknoten auf der anderen Fahrzeugseite definiert
werden. Der Algorithmus geht wie folgt vor:

Initialisiere Normale Ng der Referenzebene und ihren Abstand dg zum Ursprung
Fiir jeden Knoten i
Berechne den initialen Abstand fiir Punkt P; zur Referenzebene: d? =P -]_7;9 - dg
Fir jeden Zeitschritt {
Aktualisiere Referenzebene (]_fp und dp) anhand der Referenzknotenpositionen
Fiir jeden Knoten i {
Berechne den aktuellen Abstand fiir Punkt P, zur Referenzebene: d; = P; -N;, —d,
Stelle Eindringtiefe t; als Farbe dar, t; =d; —d?

Abbildung 8.3: Darstellung der Eindringtiefe beim Seitenaufprall

126

Spezielle Post-Processing Funktionalititen

8.2 Animierte Darstellung vektorieller Daten

Als Simulationsergebnisse werden nicht nur skalare Werte ausgegeben; auch vektorielle
Groflen, wie zum Beispiel die Knotengeschwindigkeit oder -beschleunigung, gilt es, zu vi-
sualisieren. Hiaufig werden Vektoren als Pfeile dargestellt: eine Linie reprisentiert die Lage
des Vektors und mit zwei weiteren Linien (Pfeilspitze) wird die Richtung angegeben. Die
Verwendung solcher Pfeile hat bei einer hohen Dichte den Nachteil, dass darunterliegende
Strukturen verdeckt werden.

Abbildung 8.4: Das obere Bild zeigt die Knotenbeschleunigung an dem Finite-Element-
Modell einer vorderen Stofistange in der herkdmmlichen Darstellungsweise durch Vektor-
pfeile. Die Struktur der Stoflstange bleibt weitestgehend unter den dichten Vektorpfei-
len verborgen. Im Bild unten werden die Vektoren durch Linien mit animierter Opa-
zitédt visualisiert, wodurch eine bessere Sicht auf die darunterliegende Stofstangenstruktur
gewihrleistet ist. Unten links sind die verwendeten 1D-a-Texturen skizziert.

8.3 Kraftflussvisualisierung

127

Die Abbildung 8.4, oben zeigt, wie durch die traditionelle Darstellung von Vektoren
die Sicht auf das darunterliegende Finite-Element-Modell verdeckt wird. Um Vektordaten
zu visualisieren, ohne die datentragenden Strukturen zu verdecken, wurde eine Idee von
Yamrom [76] aufgegriffen, in der Strémungsdaten durch animierte Texturen auf Linien
reprisentiert werden, und an die Darstellung vektorieller Gr6f8en im Bereich der nicht-
linearen Strukturmechaniksimulation angepasst [46].

Im Gegensatz zur herkémmlichen Darstellungsweise werden keine Pfeilspitzen verwen-
det; stattdessen wird die Richtung durch die Bewegung der opaken Liniensegmente codiert.
Die scheinbare Bewegung wird durch sechs 1D-a-Texturen hervorgerufen, die permutierend
auf die Linien angewendet werden. Jede dieser Texturen besteht aus 16 Texeln, die in ver-
schobener Reihenfolge opak oder transparent sind. Aufler einer geringeren Verdeckung hat
diese Visualisierungstechnik auch den Vorteil, dass nur ein Drittel der Linien gezeichnet
werden muss. Fiir statische Abbildungen, zum Beispiel einen Ausdruck der Auswertung,
muss gegebenenfalls auf eine Pfeildarstellung zuriickgegriffen werden, sofern die Vektor-
richtung nicht schon wie in Abbildung 8.4 aus der Anordnung der Linie hervorgeht.

8.3 Kraftflussvisualisierung

Wenn ein Fahrzeug im Crash-Test auf eine Barriere trifft, wird ein Grofiteil der Bewe-
gungsenergie durch die Verformung der Fahrzeugstruktur absorbiert. Bei der Auswertung
sind die Ingenieure daran interessiert, wieviel Kraft durch welche Fahrzeugbauteile wei-
tergeleitet beziehungsweise durch Verformungen absorbiert wird. Um den Kraftfluss durch
Teile der Fahrzeugstruktur darzustellen, wurde eine von Kuschfeldt et al. [44] vorgestellte
und patentierte [45] Visualisierungstechnik weiterentwickelt und damit dem produktiven
Einsatz in der Simulationsergebnisanalyse zur Verfiigung gestellt.

Hierbei wird zunéchst ein Linienzug, im Folgenden als Traceline bezeichnet, im Modell
spezifiziert, entlang dessen der Kraftfluss durch umliegende Strukturen untersucht werden
soll. Anschliefend werden in geringen Abstdnden Schnittebenen entlang dieser Traceline
definiert, die jeweils orthogonal zu dem zugehérigen Liniensegment liegen. Schliefilich wird
die Schnittkraft durch das Modell ermittelt und in Form eines Ringes in der Schnittebene
dargestellt. Die zu einer Rohre verbundenen Ringe veranschaulichen den Kraftfluss durch
Durchmesser, Form und Farbe (Abbildung 8.5).

Um den Ansatz der Kraftflussvisualisierung in der prototypischen Anwendung
crashViewer fiir Berechnungsingenieure produktiv einsetzbar zu machen, mussten folgende
Anforderungen erfiillt werden:

e Interaktionsmechanismus zur interaktiven Spezifikation der Traceline

o Effiziente Berechnung der Kraftflussr6hren

e Entkoppelte Vorberechnung von Kraftflussrohren mit der Moglichkeit, diese Daten
wihrend einer Visualisierungssitzung einzulesen

Die folgenden Abschnitte erldutern, wie diesen Anforderungen Rechnung getragen wurde.

128

Spezielle Post-Processing Funktionalititen

Abbildung 8.5: Die Kraftflussvisualisierung durch Kraftflussréhren veranschaulicht in je-
dem Zeitschritt, wie grofl die Schnittkrifte sind, die in den jeweils ausgewahlten Struktu-
ren auftreten. Die Moglichkeit, den Kraftfluss in verschiedenen Fahrzeugstrukturen direkt
miteinander vergleichen zu konnen, fiihrt zu einer verbesserten Wahrnehmung gegeniiber
herkémmlicher 2D-Schnittkraftdiagramme.

8.3.1 Interaktive Definition von Tracelines

Eine Traceline wird entweder durch statische oder dynamische Stiitzpunkte definiert. Bei
einer statischen Traceline sind die Stiitzpunkte durch feste Raumpunkte fixiert und bleiben
fiir die Berechnung der Kraftflussréhre iiber alle Zeitschritte unveréindert. In einer dyna-
mischen Traceline werden die Stiitzpunkte mit Netzknoten der Fahrzeugstruktur iden-
tifiziert; dadurch passt sich die Traceline im zeitlichen Verlauf der sich deformierenden
Fahrzeugstruktur an. Die Stiitzpunkte der Traceline kénnen vom Anwender interaktiv per
Mausklick an der Fahrzeugstruktur festgelegt werden.

Die Berechnung des Kraftflusses innerhalb von Teilstrukturen eines Gesamtfahrzeugmo-
dells setzt voraus, dass die zu beriicksichtigenden Fahrzeugteile vom Anwender zuvor selek-
tiert werden konnen. Dariiber hinaus ist es erforderlich, innerhalb eines Fahrzeugteils die
Auswahl auf einen Teil der Finite-Elemente beschrinken zu kénnen: Abbildung 8.6 zeigt,
wie mit Hilfe eines halbtransparenten Selektionsschlauches um den oberen Bereich des Sei-
tenrahmens eine engere Auswahl der fiir die Kraftflussberechnung zu beriicksichtigenden
Finite-Elemente getroffen werden kann. Andernfalls wére es nicht moglich, den Kraft-
fluss innerhalb des Seitenrahmens zwischen Dach- und Schwellerbereich (vergleiche Ab-
bildung 8.5) zu unterscheiden. Nachdem der Radius des Selektionsschlauches, in dessen
Mitte sich die Traceline befindet, und gegebenenfalls ein Verschiebungsvektor festgelegt

8.3 Kraftflussvisualisierung

129

Abbildung 8.6: Der semitransparent dargestellte, interaktiv modifizierbare Selektions-
schlauch schrinkt fiir die Kraftflussberechnung die Auswahl der zu beriicksichtigenden
Finite-Elemente im Seitenrahmen auf den oberen Bereich ein.

wurde, werden die Elemente der ausgewédhlten Fahrzeugteile ermittelt, von denen minde-
stens ein Netzknoten innerhalb des Selektionsschlauches liegt. Dies ergibt die Menge der
beitragenden Elemente fiir die im folgenden Abschnitt beschriebene Kraftflussberechnung.

8.3.2 Kraftflussberechnung

Die Ermittlung der von einer Ebene geschnittenen Elemente wurde durch den Einsatz
der Bounding-Volume-Hierarchie (Kapitel 7.1.1, Seite 108) stark beschleunigt, so dass die-
se Visualisierungsmethode nun auch interaktiv einsetzbar ist. Dabei wird die Menge der
durch die Bauteilauswahl und den Selektionsschlauch eingegrenzten Finite-Elemente in
einer Bounding-Volume-Hierarchie unterteilt. Als Volumenprimitiv wird hierbei die Ku-
gel gewihlt, da sich somit der Test, ob die aktuelle Schnittebene die umhiillten Elemente
schneiden konnte, auf

Kugelradius < || (Kugelmitte — Ebenenpunkt) - Ebenennormale ||

beschrinkt. Fiir die wenigen Elemente, die nach diesem Test noch als geschnitten in Frage
kommen, wird die Lage ihrer Knoten beziiglich der Ebene getestet. Sofern Elementknoten
auf beiden Seiten der Ebene liegen, wird das Element in die Liste der beitragenden Elemen-
te aufgenommen. Schliefllich wird mit dem in Abbildung 8.7 beschriebenen Algorithmus
die Schnittkraftsumme fiir die aktuelle Schnittebene berechnet. Das Resultat wird als Aus-
gangswert fiir den skalierten Radius eines Ringes genommen, der in der Schnittebene liegt
und um die Traceline verlduft.

8.3.3 Entkoppelte Vorberechnung

Die Vorberechnung des Kraftflusses entlang spezifizierter Tracelines aus den Simulations-
ergebnissen beschleunigt die Analyse. Fiir ein Fahrzeugmodell kénnen die interaktiv defi-

130

Spezielle Post-Processing Funktionalititen

Fir alle geschnittenen Elemente
Ermittle lokales Koordinatensystem
Fiir alle Knoten des aktuellen Elementes
Wenn Knoten auf beitragender Seite der Ebene liegt,
summiere aus den Simulationsdaten eingelesene Knotenkraft auf
Transformiere lokal aufsummierte Knotenkrafte ins Schnittebenensystem
Summiere den Schnittkraftbeitrag fiir die Schnittebene auf

Abbildung 8.7: Pseudocode fiir die Aufsummierung der Schnittkrifte beitragender Elemen-
te fiir eine Schnittebene.

nierten Tracelines separat abgespeichert werden (Abbildung 8.8). Uber eine weitere Datei,
in der die Definitionsdateien der vorzuberechnenden Kraftflussr6hren aufgelistet sind, wird
das Batch-Programm buildGraph gesteuert. Die Vorgehensweise beschreibt der Pseudocode
in Abbildung 8.9. Die errechneten Schnittkraftsummen werden ebenfalls im ASCII-Format
abgespeichert, um das direkte Lesen mit einem Editor und die Weiterverarbeitung mit
anderen Werkzeugen zur Diagrammerstellung zu ermoglichen. Aufler je einer Schnittkraft-
summe fiir jede Schnittebene und jeden Zeitschritt enthéilt die Datei einen Verweis auf
die Traceline-Definitionsdatei. Der Prototyp crashViewer kann die Ergebnisdatei interak-
tiv einlesen und den vorberechneten Kraftfluss entlang der Traceline, wie in Abbildung 8.5
dargestellt, visualisieren, ohne dass der Anwender auf weitere Berechnungen warten muss.

SelectionTube: 100.0 0 0 O
StartSelectedMaterialLabels
15011 15021 15031 15051 15151 15221
15251 16021 16031 17021 17041 20000
EndSelectedMaterialLabels

Type: DYNAMIC
TorusSegs: 12
PlaneDist: 8.0

ScaleFactor: 0.002

StartTracelLineDefinition

Point: 799.940 -733.350 715.260
Point: 1078.750 -658.640 885.520
Point: 1347.420 -585.570 1008.320
Point: 1845.730 -555.165 1054.910
Point: 2351.240 -557.580 1037.340
Point: 2628.320 -609.430 952.260
Point: 2826.870 -668.180 833.970

EndTracelLineDefinition

Abbildung 8.8: Dieses Beispiel einer Traceline-Definitionsdatei erzeugt eine Kraftflussréhre,
die aus sechs Segmenten besteht. Entlang des Polygonzugs werden die Schnitte durch die
zwolf selektierten Modellstrukturen im angegebenen Abstand gelegt. Die Auswahl der zu
beriicksichtigenden Elemente wird zusétzlich durch einen Selektionsschlauch mit einem
Radius von 100 mm eingegrenzt.

8.4 Visualisierung von Instabilitéiten

131

Ermittle alle bendtigten Bauteilstrukturen
Einlesen eines minimalen Modells
Erstelle Liste zu beriicksichtigender Elemente pro Kraftflussrdhre
Fiir alle Zeitschritte der Simulationsergebnisse

Fiir alle Traceline-Definitionen

Berechne die Schnittkraftsumme pro Schnittebene

Fiir alle Traceline-Definitionen

Speichere die Daten in Schnittkraftdateien

Abbildung 8.9: Pseudocode fiir das Vorgehen bei der Vorberechnung von Kraftflussr6hren
im Batch-Programm buildGraph.

8.4 Visualisierung von Instabilititen

Die Ergebnisse der Crash-Simulation unterliegen einer grofien Streuung, deren Ursachen
sich wie folgt gliedern lassen:

e Auflere Randbedingungen, wie zum Beispiel Steifigkeit der Barriere oder Auftreffge-
schwindigkeit und -winkel, beeinflussen die Simulationsergebnisse massiv.

e Wechselnde Materialeigenschaften der verwendeten Bauteile verindern das Crash-
Verhalten eines Fahrzeugs.

e Form der Bauteile und die Art ihrer Verbindung untereinander haben ebenfalls maf3-
geblichen Einfluss.

e Natiirliche Streuung in Form von Zufallsentscheidungen tritt an Verzweigungsstellen
auf, an denen zum Beispiel eine schalenférmige Bauteilfliche senkrecht auf einen Wi-
derstand trifft und darauthin entweder zur einen oder anderen Seite abgleiten kann.

e Numerische Rundungsfehler fiihren besonders dann zu grofien Abweichungen, wenn sie
an Verzweigungsstellen zu einem anderen Verlauf der Verformung fiihren.

Durch Variation der Einflussfaktoren, die unter die ersten drei Punkte fallen, soll im
Rahmen stochastischer Simulationsverfahren eine allgemeinere Aussage iiber das Crash-
Verhalten eines Fahrzeugmodells gemacht werden konnen. Dariiber hinaus sind die Fahr-
zeugentwickler daran interessiert, durch Verdnderung der Materialeigenschaften und der
Bauteilformen neben dem Crash-Verhalten, auch weitere Zielgréfien wie beispielsweise das
Fahrzeuggewicht zu optimieren. Die beiden letztgenannten Kategorien von Ursachen, die
fiir Streuung in den Simulationsergebnissen verantwortlich sein konnen, sorgen sogar bei
gleichbleibenden Eingabedaten (Randbedingungen, Fahrzeugmodell etc.) fiir abweichende
Ergebnisse und werden als Instabilitit des Simulationsverfahrens bezeichnet.

Die Voraussetzung fiir eine gesteigerte Aussagekraft der Simulationsergebnisse und die
Moéglichkeit einer effektiven Optimierung des Fahrzeugmodells durch Variation des Mo-
dellaufbaus ist die Identifizierung und Beseitigung solcher Instabilitdten. In [64] werden
erstmals die folgenden Methoden zur Lokalisierung vorgestellt und deren Implementierung
beschrieben.

132

Spezielle Post-Processing Funktionalititen

8.4.1 Malfle fiir Instabilitit

Um Abweichungen bei Simulationsergebnissen, die aus den gleichen Eingabedaten hervor-
gegangen sind, zu erkennen, kénnen verschiedene Mafle eingesetzt werden. Die Mafle lassen
sich danach unterscheiden, ob sie ein globales oder ein lokales Kriterium reprisentieren und
ob die Daten ein- oder mehrdimensional betrachtet werden.

Abbildung 8.10: Die Skizze zeigt den Netzknoten p(t1)

p im initialen Zeitschritt und nach t Zeitschrit- Vp.1) 'SC(p.t,1)

ten fiir drei verschiedene Simulationsldufe. Die "\ a(p.)
durchgezogenen Linien markieren die Verschie- PA=0) ;’“"Op(w)
bungsfunktion V(p, t,r), die gestrichelten Linien $000))

die Streufunktion SC(p,t,r).

Die beiden in Abbildung 8.10 skizzierten Funktionen stellen Beispiele fiir globale Mafle
der Instabilitdt dar und sind wie folgt definiert:

e Die Funktion V(p,t,r) = p(t,r) —p(0, r) misst die Verschiebung eines Netzknotens p im
Zeitschritt ¢ von seiner urspriinglichen Position im initialen Zeitschritt fiir den Simula-
tionslauf r. Diese kann komponentenweise oder euklidisch gemessen werden. Die Lénge
des Verschiebungsvektors wird iiber alle Simulationsldufe R miteinander verglichen.

e Die Funktion SC(p, t,r) ermittelt die Distanz eines Netzknotens p im Zeitschritt ¢ von
dessen geometrischen Schwerpunkt g.(p,t) = %Zil p(t,r), wobei R die Anzahl der
Simulationsléufe ist.

Abbildung 8.11: Die Farbe stellt die Lénge der Differenzvektoren korrespondierender Netz-
knoten dar. Nach 80 Millisekunden ist die Abweichung im rot eingeférbten linken vorderen
Bereich am grofiten und im hinteren Fahrzeugbereich geringer.

8.4 Visualisierung von Instabilitéiten

133

Der Nachteil bei Verwendung globaler Mafle ist, dass sich die Verzweigungsstellen nicht
hervorheben lassen. Wenn beispielsweise bei einem Front-Crash im vorderen Bereich ei-
ne Verzweigung auftritt, wird diese weitreichende Auswirkungen auf die Umgebung haben
und im weiteren Verlauf auch Koordinatenabweichungen der Netzknoten im hinteren Fahr-
zeugbereich verursachen (Abbildung 8.11).

Um Verzweigungsstellen zu lokalisieren, muss ein Mafl benutzt werden, das globale Ein-
fliisse, die durch vorhergehende Verzweigungen verursacht wurden, weitestgehend ignoriert
und eine Bewertung der Abweichung beziiglich der direkten Nachbarschaft vornimmt. Ei-
ne Funktion, die diesem Anspruch gerecht wird, wurde im Institut fiir Algorithmen und
Wissenschaftliches Rechnen (SCAI) am Forschungszentrum Informationstechnik GmbH
(GMD) im Rahmen des Autobench-Projekts entwickelt. Die Funktion DNM(p,t,r) be-
rechnet die Verschiebung eines Netzknotens p in einem Zeitschritt ¢ eines Simulationslaufs
r beziiglich seiner Nachbarknoten hinsichtlich seiner Ausgangslage im initialen Zeitschritt.
Das Funktionsergebnis stellt ein lokales Maf fiir die Verformung der benachbarten Elemen-
te dar (Abbildung 8.12).

i=3

Qi=2
.

iNum(p) =8

Abbildung 8.12: d(p,i,t,r) berechnet sich aus dem Euklidischen Abstand (Gleichung 8.1)
des Netzknotens p zu seinem Nachbarknoten ¢ im Zeitschritt ¢ des r-ten Simulationslaufs.

Die Deformation DNM(p, ¢,7) um einen Knoten p mit iNum(p) Nachbarknoten berech-
net sich dabei aus der durchschnittlichen Summe der Abweichungen aller Knotendistanzen
d(p,i,t,r) gegeniiber ihren urspriinglichen Absténden d(p, 1,0, 7).

Z; Tp . el
t : Zeitschrittindex
d(p,i,t,7) = | - , 8.1
(v) ‘ Y Y r : Simulationslaufindex (8:1)
Zi Zp iy
N
1 .))
DNM(p,t,7r) = == ¥ |d(p,i t,r) —d(p,i,0,)] , N:=iNum(p) (8.2)
i=1

Die Funktion DNM(p, ¢,r) wird fiir jeden Netzknoten p in jedem Zeitschritt ¢ und fiir alle
Simulationsldufe r berechnet. Der Ergebniswert wird, im Gegensatz zu den oben vorgestell-
ten globalen Funktionen, lediglich durch seine lokale Umgebung beeinflusst. Schliefllich wird

134

Spezielle Post-Processing Funktionalititen

der Erwartungswert der Deformation

DNMAV (p, t) M(p, t,r) , R : # Simulationsliufe (8.3)

an

aller R Simulationsldufe ermittelt und dessen Standardabweichung o(p,t) als lokales Ma8
fiir Instabilitit um den Knoten p verwendet.

o(p,t) = % S (DNM(p, £, 7) — DNMAV (p, 1))’ (8.4)

r=1

8.4.2 [Effiziente Berechnung der mittleren lokalen Deformation

Um eine effiziente Berechnung der mittleren lokalen Deformation zu ermdéglichen, wird
zunichst die in Abbildung 8.13 dargestellte Index-Paar-Liste fiir jeden Knoten aufgebaut.
Jedes Paar besteht aus einem Verweis auf den Knoten, der mit dem zur Liste gehérenden
Knoten benachbart ist, und einem Index fiir den schnellen Zugriff in zwei Arrays mit den
Distanzwerten d(p,i,t,r) des initialen und des aktuellen Zeitschrittes. Die Reihenfolge in
den Index-Paar-Listen stellt sicher, dass der Abstand jeder Knotenpaarung nur einmal
berechnet wird.

Knoten (Nachbarknoten/Distanz)-Index-Paare
(2,0) (4,1) (5,2) (7,3)

(1,0) (3,4) (7,5) (9,6) (10,7)

(2,4) (9,8) (10,9)

(1,1) (5,10)(7,11)

(1,2) (4,10) (6,12)(7,13) (8,14)
(5,12)(7,15)(8,16)

(1,3) (2,5) (4,11) (5,13) (6,15) (8,17)(9,18)
(5,14) (6,16) (7,17) (9,19)

(2,6) (3,8) (7,18) (8,19) (10,20)

(2,7) (3,9) (9,20)

© 00 N O Ut W N

—
(=]

Abbildung 8.13: Dieses Beispiel zeigt die Struktur der Tabelle, die fiir jeden Knoten aus
einer Liste (Reihe) besteht, welche einen Verweis auf den benachbarten Knoten und auf
den Distanzwert in einem separaten Array enthilt.

Aus der internen Datenstruktur werden zunichst die Index-Paare initialisiert und an-
schliefflend die Distanzwerte fiir den initialen Zeitschritt ermittelt und in einem der beiden
Distanzwerte-Arrays abgespeichert, das im weiteren fiir alle Simulationsldufe unveréndert
bleibt. Beginnend mit dem ersten Simulationslauf werden zunéchst die Differenzen zwi-
schen den Knotenabstinden des aktuellen und des initialen Zeitschrittes berechnet und in
dem zweiten Array gespeichert. Dazu wird die dargestellte Tabelle reihenweise traversiert
und Knotenabstinde nur dann neu berechnet, wenn der Knotenindex des Nachbarknotens

8.5 Kooperatives Arbeiten

135

grofler ist als der des zur aktuellen Reihe gehorenden Knotens (fettgedruckte Paare in Ab-
bildung 8.13); diese Vorgehensweise stellt sicher, dass Knotenabstéinde lediglich einmal be-
rechnet werden. Die mittlere Deformation DNM(p, ¢, r) ergibt sich aus den aufsummierten,
in einer Tabellenreihe referenzierten Werten im zweiten Array geteilt durch die Anzahl der
Eintrige in dieser Reihe. In einem weiteren Array werden die DNM(p, ¢,) aufsummiert, um
nach Auswertung aller Simulationslidufe den Erwartungswert DNMAV (p, t) berechnen zu
konnen. Aufgrund der groflen Datenmengen kénnen die bendtigten Daten nicht komplett
im Hauptspeicher gehalten werden; deshalb werden die DNM(p, ¢, r) fiir jeden Simulati-
onslauf nach Abarbeitung aller Zeitschritte in eine binére Datei ausgelagert, die spiter zur
Ermittlung der Standardabweichung o(p,t) nochmal eingelesen wird.

Der Algorithmus entkoppelt den Speicherbedarf von der Anzahl der Simulationsliufe,
indem die Zwischenergebnisse fiir einen Simulationslauf auf die Festplatte ausgelagert wer-
den. Zusitzlich zu der internen Datenstruktur fallen somit lediglich 24 Byte pro Kno-
tenpaar, 32 Byte pro Knoten und weitere 4 Byte pro Knoten pro Zeitschritt an. Durch
geringfiigige Modifikation kann der Speicherbedarf weiter verringert werden, indem die
Zwischenergebnisse zusétzlich fiir jeden Zeitschritt ausgelagert werden.

8.4.3 Resultate

In der Praxis hat sich gezeigt, dass sich das Deformationsfunktional zur Lokalisierung
von Instabilitdten eignet, da sich in der direkten Umgebung von Knoten mit hohen Stan-
dardabweichungen der mittleren lokalen Deformation Verzweigungen finden lassen. Da das
Deformationsfunktional allerdings keine Auskunft iiber die absolute Streuung in den Si-
mulationsergebnissen geben kann und nur Stauchung beziehungsweise Streckung in der
Elementebene, jedoch keine Biegungen beriicksichtigt, hat sich die zusétzliche Visualisie-
rung der maximalen Streuung mit dem Scatter-Funktional als hilfreich erwiesen.

8.5 Kooperatives Arbeiten

Die Anforderung der Automobilhersteller, méglichst schnell auf die Nachfrage des Marktes
reagieren zu konnen, fiihrt in den Entwicklungsabteilungen zu Arbeitslastspitzen, die von
der fest angestellten Belegschaft nicht abgedeckt werden konnen. Daher entwickelt sich
in den letzten Jahren der Trend, mehr und mehr Entwicklungsleistungen bei externen
Ingenieurbiiros in Auftrag zu geben. Dariiber hinaus entsteht auch durch Firmenfusionen
und den daraufhin angestrebten Wissensaustausch in korrespondierenden Fachabteilungen
ein erh6hter Kommunikationsbedarf zwischen kooperierenden aber rdumlich getrennten
Entwicklern.

Im Folgenden werden zwei Verfahren erldutert, die das kooperative Arbeiten mit dem
Prototypen crashViewer ermoglichen. Sie verfolgen einen unterschiedlichen Ansatz: Die
Event-basierte Methode tauscht lediglich Ereignisse und Zustandsinformationen zwischen
den synchronisierten Applikationsinstanzen aus, fiihrt jedoch die eigentliche Visualisierung

136

Spezielle Post-Processing Funktionalititen

der Daten jeweils lokal aus. Im Gegensatz dazu werden bei dem Bild-basierten Verfahren
auf einem Rechner anhand der dort vorliegenden Daten Bilder generiert und an angeschlos-
sene Clients verschickt. Das gemeinsame Ziel ist, den teilnehmenden Anwendern jederzeit
die gleiche Sicht auf die Daten zu bieten und eine wechselseitige Interaktion mit dem
dargestellten Modell zu erméglichen, um eine parallel stattfindende Kommunikation, zum
Beispiel via Telefon, zu unterstiitzen.

1 Crash-Uiewer

fle fdit Viewing Cligping Jools QOptions

Abbildung 8.14: Der crashViewer wurde hier viermal gestartet und zeigt abweichende Simu-
lationsergebnisse des gleichen Eingabedatensatzes. Die Kamera wird, wie in Kapitel 8.5.1
beschrieben, iiber eine CORBA-Verbindung synchronisiert. Der 3D-Pfeil markiert den glei-
chen Raumpunkt, wihrend der schwarze Kreis den gleichen Netzknoten kennzeichnet. Die
visualisierte Standardabweichung in dem crashViewer oben links hebt die Regionen mit
stark abweichendem Deformationsverhalten hervor.

8.5 Kooperatives Arbeiten 137

8.5.1 Event-basiert

s . logOn()
J— >[W<‘ ~ - logOff()

/ » \ askForToken()
f \
I \

\
|
I \
! \
Y ﬁ\ Y
J

|
= transferEvent() /
transferMarker() Y

Abbildung 8.15: Der Session-Server verwaltet die kooperative Sitzung mehrerer
crashViewer-Instanzen und vergibt das Master-Token. Die Instanz, der das Master-Token
zugeteilt ist (hier Viewer 1), sendet ihre Events direkt an die anderen teilnehmenden
crashViewer-Instanzen.

Die Event-basierte Variante des kooperativen Arbeitens im Prototypen crashViewer
nutzt CORBA! fiir die Kommunikation zwischen den an der kooperativen Sitzung betei-
ligten Rechnern. Abbildung 8.15 stellt eine kooperative Sitzung mit mehreren Teilneh-
mern schematisch dar. Der die Sitzung initialisierende Anwender startet zunéchst einen
Session-Server; dieser verwaltet die kooperative Sitzung und trigt Sorge dafiir, dass An-
und Abmeldungen von crashViewer-Instanzen beim Session-Server an alle teilnehmenden
crashViewer-Instanzen propagiert werden. Auflerdem teilt der Session-Server das Master-
Token zu, das stets nur eine crashViewer-Instanzen der Sitzung als diejenige auszeichnet,
die ihre Events an die anderen Instanzen weitergibt und damit die Sitzung steuert.

'CORBA — Common Object Request Broker Architecture

138

Spezielle Post-Processing Funktionalititen

Nachdem der Session-Server gestartet wurde, wird eine CORBA-Referenz in Form einer
langen Zeichenkette in einer Datei abgelegt. Diese Zeichenkette, in der Informationen iiber
die IP-Adresse, die Portnummer etc. kodiert enthalten sind, muss den Anwendern, die an
der Sitzung teilnehmen méchten, zugénglich gemacht werden. Uber die CORBA-Referenz
des Session-Server konnen sich nun crashViewer-Instanzen an den Session-Server wenden,
um ihre eigene CORBA-Referenz unter den bereits teilnehmenden crashViewer-Instanzen
zu propagieren und selbst auch eine Liste von CORBA-Referenzen zu erhalten. Die sich
zuerst anmeldende crashViewer-Instanz erhilt automatisch das Master-Token.

Eine neu hinzukommende crashViewer-Instanz wird vom Session-Server bei den bereits
teilnehmenden crashViewer-Instanzen angemeldet und erhilt abschlieend die Liste der
Teilnehmer als CORBA-Referenzen. Das Abmelden wird ebenfalls iiber den Session-Server
abgewickelt.

Sofern der crashViewer im Besitz des Master-Token ist, propagiert er aufgetretene
Events (zum Beispiel Kamerabewegungen oder Zeitschrittanimation) direkt an die ihm
bekannten crashViewer-Instanzen; der Session-Server ist hier nicht involviert. Jeder Teil-
nehmer kann das Master-Token beim Session-Server beantragen, die Anfrage wird darauf-
hin an den Master-crashViewer weitergeleitet und die CORBA-Referenz der beantragen-
den crashViewer-Instanz in eine FIFO-Warteschlange aufgenommen. Das Master-Token
wird, sobald keine weiteren Interaktionen durchgefiihrt werden, vom crashViewer an den
Session-Server zurilickgegeben. Jetzt reicht der Session-Server das Master-Token an die
erste. CORBA-Referenz in der Warteschlange weiter, wodurch die Sitzung nun von der
dazugehorigen crashViewer-Instanz gesteuert wird.

Der implementierte Mechanismus ldsst sich mit einer moderierten Diskussion verglei-
chen: dabei steuert der Session-Server als Moderator die Diskussion und teilt mit dem
Master-Token einem Teilnehmer eine Rede-Berechtigung zu, wéhrend alle anderen in die-
ser Zeit nur zuhoren diirfen.

Es wurde vorausgesetzt, dass dem Anwender ein Telefon oder d&hnliche Konferenzwerk-
zeuge zur Verfiigung stehen, um mit den anderen Teilnehmern verbal zu kommunizieren.
Zur Unterstiitzung wurde eine Marker-Funktionalitit implementiert, die es dem Anwender
erlaubt, Strukturen durch 3D-Pfeile zu markieren; diese werden ebenfalls, wie die Kame-
rabewegungen, an alle teilnehmenden crashViewer-Instanzen iibertragen und dienen der
besseren Verstidndigung zwischen den Teilnehmern.

Die zu visualisierenden Daten kénnen entweder von jeder crashViewer-Instanz selbst
eingelesen werden, sofern sie jeweils lokal vorliegen, oder auch in Form des erstellten Sze-
nengraphen via CORBA vom Master- zum Slave-crashViewer transferiert werden. Das hat
den Nachteil, dass auf interne Daten, die nicht im Szenengraphen abgespeichert sind, nicht
zuriickgegriffen werden kann. Eine Zuordnung geometrischer Daten auf Modellbestandteile
wire dann nur iiber die Instanz méglich, die den Szenengraphen generiert und verteilt hat.
Als Vorteil kann allerdings gesehen werden, dass nur die fiir die Visualisierung notwendigen
Daten iibertragen werden und sich damit oftmals der Datenumfang auf einen Bruchteil der
Originaldaten beschrankt.

8.5 Kooperatives Arbeiten

139

Dieses Verfahren des Event-basierten kooperativen Arbeitens ldsst sich ebenfalls sehr
gut zum direkten visuellen Vergleich von Varianten einsetzen, indem an einem Rechner
mehrere crashViewer mit variierenden Fahrzeugmodellen gestartet werden. Marker, die an
gleichen Raumpunkten gesetzt werden, geben zusétzlich zu den identischen Kameraposi-
tionen Anhaltspunkte, um Abweichungen im Verlauf der Zeitschrittanimation sowie Netz-
modifikationen bei der Beseitigung initialer Penetrationen (Kapitel 7.1.2) zu verdeutlichen.
Insbesondere fiir die detaillierte Analyse von Instabilitdtsuntersuchungen bietet dieser An-
satz effektive Unterstiitzung (Abbildung 8.14, Seite 136).

Wihrend die Event-basierte Variante einerseits den Vorteil eines schnellen Abgleichs
zwischen den kooperierenden crashViewer-Instanzen durch geringen Datenaustausch hat
und die Mdglichkeit der Interaktion fiir jeden Teilnehmer bietet, setzt sie andererseits vor-
aus, dass jeder Teilnehmer die notwendige Hard- und Software hat, um crashViewer star-
ten zu konnen, und dass die Daten bei jedem Teilnehmer vorliegen oder der Szenengraph
dorthin iibertragen wurde. Da diese Voraussetzungen nicht immer erfiillt werden kénnen,
wurde ein weiteres Verfahren zum kooperativen Arbeiten in crashViewer integriert, das im
Anschluss an die Bildsynthese den Bildspeicherinhalt iibertrigt.

8.5.2 Bild-basiert

Im Alltag des Berechnungsingenieurs kommt es regelmiflig vor, dass Simulationsergebnisse
oder Konstruktionsdetails mit Kollegen, die gegebenenfalls auch in anderen Abteilungen
arbeiten, diskutiert werden miissen. Wenn zum Beispiel ein Berechnungsingenieur einen
Konstrukteur fragen mochte, ob kleine Anderungen an einem Fahrzeugbauteil maglich sind,
ist dafiir in der Regel ein Treffen der beiden notwendig, damit der Berechnungsingenieur
seine Vorstellungen am Bild des Finite-Element-Modells erldutern kann.

Um derartige Riickfragen zu beschleunigen und gleichzeitig die Visualisierung auf
Low-End-Hardware bis hin zum PDA? zu erméglichen, wurde zusitzlich zum Event-
basierten Verfahren ein Bild-basierter Client-Server-Ansatz zum kooperativen Arbeiten in
crashViewer integriert. Dabei wird lediglich eine crashViewer-Instanz als Visualisierungs-
server gestartet. Ein erzeugtes Bild wird codiert, iiber eine Socket-Verbindung zum Client
iibertragen, dort decodiert und als Bild wieder dargestellt.

Sowohl fiir den Verbindungsaufbau als auch fiir das Codieren und anschlieBende Ver-
senden der Bilder wird jeweils ein zusétzlicher Thread gestartet. Abbildung 8.16 stellt
schematisch das Zusammenwirken zwischen dem Render- und dem Send-Thread dar. Die
Verwendung von Doublebuffering reduziert die Zeit, die beide Threads in einem kritischen
Abschnitt — in dem auf gemeinsam genutzte Daten zugegriffen wird — zubringen, auf
ein Minimum. Die Threads synchronisieren sich durch die Verwendung von Semaphoren
und schlieflen somit aus, dass der Send-Thread nach dem Transfer des letzten Bildes einen
Pufferwechsel macht, wihrend der Render-Thread gleichzeitig noch Bilddaten kopiert.

2Der Personal Digital Assistant, aufgrund seiner geringen Gréfle auch als Handheld bekannt, ist ein
elektronischer Organizer, der entweder iiber Touchpad — per Stift — oder Tastatur gesteuert wird.

140

Spezielle Post-Processing Funktionalititen

Render-Thread-Loop: Send-Thread-Loop:
Benutzereingaben auswerten Bild im Send-Puffer kodieren
Rendering der Szene Kodierte Daten versenden

Warte gegebenenfalls auf neue Daten

‘Semaphore fir Pufferwechsel belegen‘

Kopiere Bild in Render-Puffer Render-Send-Puffer austauschen

‘Semaphore wieder freigeben‘

Signalisiere: neue Daten vorhanden

Abbildung 8.16: Der gleichzeitige modifizierende Zugriff auf den Puffer, der die Bilddaten
speichert, wird durch die Verwendung von Semaphoren ausgeschlossen. Um die Zeit, die
die Threads in kritischen Abschnitten verbringen, zu minimieren, wurden zwei Bildspeicher
verwendet: einer, in den die aktuellen Bilddaten vom Render-Thread kopiert werden, und
ein anderer, auf dem die Codierung stattfindet und der anschliefend dem Transfer als
Puffer dient.

Als Codierungsverfahren wurden die folgenden drei getestet:

e RAW: Die Bilddaten werden unkomprimiert transferiert. Der Transfer der Original-
daten kann lediglich in Netzwerken mit hoher Bandbreite ohne grofie Verzogerungen
gewihrleistet werden.

e RLE: Das verlustfreie Run-length Encoding ist zwar nicht sehr rechenintensiv, erreicht
in der Regel aber auch nur geringe Kompressionsraten und ist daher fiir Netzwerke mit
mittleren Bandbreiten geeignet.

e ZLIB: Hohere Kompressionsraten wurden mit dem verlustfreien Kompressionsverfah-
ren der ZLIB-Bibliothek[55] erzielt. Damit eignet sich dieses Verfahren fiir Verbindun-
gen mit geringer Bandbreite. Aulerdem wird die Dekompression, im Gegensatz zum
RLE-Verfahren, vom schnelleren Native-Code durchgefiihrt, da ZLIB-Kompression in-
zwischen ein Standard-Feature von Java ist.

Auf der Client-Seite werden die codierten Bilddaten von einem Java-Applet decodiert und
schlieBlich als Bild dargestellt (Abbildung 8.17).

Dieses Szenario kann noch dahingehend erweitert werden, dass Benutzereingaben wieder
von der Client-Anwendung zum crash Viewer als Visualisierungsserver iibermittelt und dort
interpretiert werden. Dadurch wire zusammen mit einem Offscreen-Rendering die Reali-
sierung eines Visualisierungsservers méoglich, der ausschliellich von Client-Applikationen
gesteuert wird, die geringe Hardwareanforderungen haben und dennoch iiber den Bild-
basierten Mechanismus auf Kapazititen gréflerer Rechner zugreifen kénnen. Ein solches
Client-Server-System zur interaktiven Visualisierung von medizinischen Daten wird in [15]
beschrieben.

8.6 Batch-Programm

141

Ble [dit Viewing Jools Options Crash-Viewer

Komprimierte

| —

Bilder

LL(c) Ove Sommer|

Abbildung 8.17: Die durch crashViewer visualisierten Daten werden als komprimierte 2D-
Bilder an ein Java-Applet iibertragen, das hier in einem Netscape-Browser gestartet wurde.
Auf der Client-Seite miissen die Bilder lediglich entpackt und angezeigt werden.

8.6 Batch-Programm

Zusétzlich zu der Visualisierungsapplikation crashViewer ist das Batch-Programm
buildGraph entwickelt worden. Es nutzt die gleichen Module wie crashViewer, lduft aber
im Batch-Betrieb und kann somit einerseits fiir zeitintensive Vorberechnungen, auf die der
Benutzer wéihrend einer crashViewer-Sitzung nicht warten mdéchte, genutzt werden. An-
dererseits konnen mit buildGraph Verarbeitungsschritte, die keiner Benutzerinteraktion
bediirfen, automatisiert werden, indem sie in den Berechnungsablauf im Anschluss an die
Simulation eingebunden werden. Zu den Einsatzgebieten von buildGraph gehéren die

e Szenengraphgenerierung fiir eine anschliefende Bild- oder Filmerstellung (siehe unten),

e Simplifizierung von Finite-Element-Modellen und Speicherung des reduzierten Modells
als Szenengraphen im Cosmo3D oder Open Inventor Dateiformat,

e Kraftflussberechnung durch die Finite-Element-Struktur entlang vordefinierter Bahnen
(Abschnitt 8.3, Seite 127),

e Ermittlung von Instabilitdten beim Vergleich mehrerer Simulationsldufe gleicher Ein-
gabedaten (Abschnitt 8.4, Seite 131).

Szenengraphgenerierung fiir die Bild-/Filmerstellung

Das Batch-Programm buildGraph wird beim Aufruf iiber Kommandozeilenparameter ge-
steuert und kann die eingelesenen Daten sowohl als Cosmo3D- als auch als Open Inventor
Szenengraphen abspeichern, welcher dann zur Weiterverarbeitung durch andere Anwendun-
gen zur Verfiigung steht. Dies wurde im Zusammenhang mit der Entwicklung einer HTML-

142

Spezielle Post-Processing Funktionalititen

|
[
2
c.2
= C
© o
5 O
£ S
7]

buildGraph

Abbildung 8.18: Datenfluss bei der Batch-basierten Generierung digitaler Filme aus ani-
mierten Simulationsergebnissen mit Hilfe von buildGraph und movieGen.

basierten Benutzerschnittstelle zu einer Datenbank, in der sdmtliche Finite-Element-Netz-
Varianten der Fahrzeugbauteile verwaltet werden, fiir die Erstellung von Bauteilabbildun-
gen genutzt. Der abgespeicherte Open Inventor Szenengraph wird von einem weiteren
Batch-Programm wieder eingelesen, das aus vorher spezifizierten Blickrichtungen Bilder
der Bauteilnetze offscreen — ohne dass dafiir ein Fenster gedffnet werden muss — erstellt
und abspeichert.

In einem weiteren Projekt, das automatisiert Filme generiert, die dem Berechnungsin-
genieur beim Postprocessing einen ersten Uberblick iiber das Crash-Verhalten des Fahr-
zeugmodells geben, wurde ebenfalls buildGraph zur Szenengrapherstellung eingesetzt. Ab-
bildung 8.18 skizziert den Datenfluss von den Simulationsergebnissen bis zum digitalen
Film. Der generierte Open Inventor Szenengraph enthélt alle berechneten Zeitschritte der
sich verformenden Fahrzeugstruktur unter einem Switch-Knoten. movieGen, ein weiteres
Batch-Programm liest den Szenengraphen wieder ein, erstellt mit Hilfe des SoOffscreen-
Renderer Einzelbilder von der animierten Szene. Dabei kann sich die Kamera auf einer
vorgegebenen Flugbahn um das Modell herum bewegen, oder sich relativ zu einem spezi-
fizierten Knoten mit der sich verformenden Struktur mitbewegen. Die Einzelbilder werden
schlielich zu einem digitalen Video zusammengesetzt. Diese Videos konnen darauthin zu-
sammen mit den berechneten Daten in einer Datenbank abgelegt werden und spiter als
eine Art visuelle Kurzfassung zur Identifikation der Simulationsergebnisse vom Anwender
herangezogen werden, ohne dass dafiir ein Postprocessor gestartet und die Ergebnisdaten
geladen werden miissen.

Kapitel 9

Ergebnisse

Im Rahmen der vorliegenden Arbeit wurden Methoden entwickelt, die zuvor analysierte
Probleme im virtuellen Fahrzeugentwicklungsprozess l6sen und dariiber hinaus Wege auf-
zeigen, wie moderne Visualisierungs- und Interaktionstechniken genutzt werden konnen,
um den Arbeitsablaufim Pre- und Postprocessing von Strukturmechanikdaten zu beschleu-
nigen. Die Resultate im Bereich des kooperativen Arbeitens bieten Lésungsansitze fiir eine
Zusammenarbeit iiber rdumliche Grenzen hinweg. Die Integration von Pre- und Postpro-
cessing in dem entstandenen Prototypen crashViewer hat den Weg fiir eine enge Kopplung
an die Berechnung geebnet. Durch den modularen Aufbau der Prototypen-Software konnte
schlieflich eine Basis fiir weiterfiihrende Arbeiten geschaffen werden. Der praktische Einsatz
von crashViewer im Preprocessing zeigt, dass die Analyse herkdmmlicher Arbeitsschritte
und die Entwicklung und Umsetzung moderner Interaktions- und Visualisierungskonzep-
te in enger Zusammenarbeit mit den Anwendern zu einer signifikanten Verkiirzung der
Entwicklungszeiten fiihren kann.

9.1 Neue Methoden im virtuellen Fahrzeugentwick-
lungsprozess

Diese Arbeit wurde in enger Kooperation mit der Berechnungsabteilung fiir nicht-lineare
Strukturdynamik der BMW Group erstellt. Die Analyse des Arbeitsablaufs bei der Vor-
und Nachverarbeitung der Fahrzeugmodelle hat durch neue Methoden in der virtuellen
Fahrzeugentwicklung sowie durch stetig anwachsende Modellgrélen bedingte Probleme
aufgezeigt, die von den bis dahin zur Verfiigung stehenden Software-Werkzeugen nicht
oder nur unzureichend adressiert wurden. Daher beschéftigte sich ein Teil der Arbeit mit
der Entwicklung neuer Techniken sowie der Adaption bereits bestehender Methoden spezi-
ell an die Bediirfnisse und Rahmenbedingungen der Strukturmechaniksimulation. Um die
gewidhlten Methoden im Einsatz bewerten und optimieren zu kénnen, wurden prototypi-
sche Anwendungen implementiert.

144

Ergebnisse

Konzepte zur Minimierung bendétigter Ressourcen

Die stetig steigende Komplexitit der Simulationsmodelle in der Strukturdynamik fiihrt
bei der Bearbeitung von Gesamtfahrzeugmodellen zu immer ldngeren Ladezeiten, die den
Arbeitsablauf des Berechnungsingenieurs verzégern. Die bendtigte Zeit fiir das Einlesen
zeitabhéngiger Daten zur Auswertung von Simulationsergebnissen konnte zum einen durch
Parallelisierung, zum anderen durch speziell angepasste interne Datenstrukturen minimiert
werden. Der Speicherbedarf fiir den Szenengraphen konnte ebenfalls durch ein auf die Ei-
genschaften der zeitabhéngigen aber topologisch invarianten Finite-Element-Netze ausge-
richtetes Szenengraph-Design auf ein Minimum reduziert werden. Die hierarchische Unter-
teilung der Bauteilnetze mit Hilfe von Hiillvolumen ermdéglicht nicht nur die interaktive
Distanzvisualisierung zur Detektion von Netzperforationen und -penetrationen; dariiber
hinaus bildet die iiber die Szenengraphstruktur hinaus gehende feinere Zerlegung des Finite-
Element-Modells eine Grundlage fiir alle zeitintensiven Distanz-basierten Algorithmen,
zum Beispiel der Flanschdetektion und der interaktiven Berechnung von Kraftflussr6hren.

Visualisierungstechniken

Diese Arbeit hat neue Visualisierungstechniken im CAE-Umfeld zum Einsatz gebracht. Die
Verwendung der Wireframe-Textur wurde weiterentwickelt und im Prototypen fiir Quadri-
lateralnetze anwendbar gemacht. Dadurch konnte die Bildwiederholrate fiir die Darstel-
lung der Finite-Element-Diskretisierung auf der schattierten Geometrie im Vergleich zum
konventionellen Zwei-Schritt-Verfahren mehr als verdoppelt werden. Des Weiteren wur-
de ein Verfahren zur Quadrilateralstreifengenerierung entwickelt und auf die Bauteilnetze
angewendet, um die Geometriereprisentation fiir die Weiterverarbeitung in der Rendering-
Pipeline zu optimieren.

Nachdem die Methodenentwicklung der Strukturmechaniksimulation netzunabhingige
Schweifipunkte hervorgebracht hatte, um unabhéngig voneinander vernetzte Bauteile ohne
Neuvernetzung fiir die Simulation vorbereiten zu kénnen, stellten sich die in kommerziellen
Werkzeugen zur Verfiigung stehenden Visualisierungsverfahren fiir die Schweifipunktdar-
stellung als unzureichend heraus. Die Aussagekraft der Bilder im Pre- und Postprocessing
konnte durch Verwendung zusitzlicher Geometrie deutlich gesteigert werden. Anhand der
Darstellungseigenschaften eines Schweifipunktes in Form und Farbe ist der Berechnungs-
ingenieur nun sofort in der Lage, eine fehlerhafte Schweilpunktverbindung zu klassifizie-
ren. Zusammen mit den Interaktionsmoglichkeiten des entstandenen Prototypen triagt die
Schweifipunktvisualisierung entscheidend zur Beschleunigung der Modellvalidierung bei.
Inzwischen haben diese Ergebnisse auch Einfluss auf die Weiterentwicklung in kommer-
ziellen Produkten genommen. So wurde beispielsweise die graphische Représentation der
Schweiflpunkte aus dem Prototypen crashViewer in den Postprocessor PAM-VIEW der
Firma ESI iibernommen.

Die Textur-basierte Visualisierung von knotengebundenen skalaren Gréflen konnte so-
wohl fiir das Pre- als auch das Postprocessing iiber die reine Farbdarstellung hinausgehend

9.1 Neue Methoden im virtuellen Fahrzeugentwicklungsprozess

145

zur Datenexploration genutzt werden. Es wurde gezeigt, wie die Graphik-Hardware dazu
dienen kann, Geometrie Werte-bezogen auszublenden, um ausschliefllich Strukturen dar-
zustellen, deren visualisierter Parameter in einem interaktiv spezifizierbaren Wertebereich
liegt. Da die Anderung des Wertebereichs allein durch Modifikation der Texturtabelle um-
gesetzt wird, eignet sich diese Visualisierungstechnik besonders, um sich bei der Daten-
auswertung schnell einen Uberblick iiber die Simulationsergebnisse zu verschaffen. Ebenso
lassen sich in der Vorverarbeitung sehr schnell potenzielle Flanschbereiche sowie Regionen
initialer Penetration und Perforation entdecken.

Interaktionstechniken

Ein Bestandteil dieser Arbeit war die Entwicklung neuer Interaktionskonzepte, die den
Arbeitsablauf im Pre- und Postprocessing von Strukturdynamikdaten beschleunigen soll-
ten. Dazu wurde ein Ansatz gewéhlt, der es dem Benutzer mit moglichst wenigen Einga-
ben ermoglicht, die gewiinschten Funktionen auszufiihren. Die Kombination der Modus-
abhéngigen Tastaturbelegung in Kombination mit der Maus hat sich bei Anwendern, die
regelmiflig mit dem Prototypen arbeiteten, bewihrt. Nachdem allerdings immer neue
Funktionen mit neuen Tastenbelegungen hinzugekommen waren, hat sich gezeigt, dass das
Tastatur-basierte Bedienkonzept fiir Neueinsteiger ein Hindernis darstellt und zusétzlich
eine Graphische Benutzerschnittstelle bendtigt wird, iiber die dann jede Funktionalitit
angesteuert werden kann. Erfahrenere Anwender sprachen sich fiir die Beibehaltung der
schnellen Funktionsansteuerung iiber die Tastatur aus. Fiir die Navigation mit 2D- und 3D-
Maus im virtuellen Fahrzeugmodell wurden zahlreiche Hilfsfunktionen implementiert, die
den Arbeitsablauf vereinfachen und beschleunigen und somit die Akzeptanz beim Anwen-
der steigerten. Dieser Aspekt spielte bei der Implementierung des Prototypen crashViewer
stets eine Rolle, da die entwickelten Konzepte nur anhand der prototypischen Anwendung
im alltédglichen Einsatz beim Berechnungsingenieur bewertet und optimiert werden konn-
ten.

Der Prototyp wurde bereits in seiner frithen Entwicklungsphase trotz des im Vergleich
zu kommerziellen Vorverarbeitungswerkzeugen recht beschrinkten Funktionsumfangs von
verschiedenen Anwendern produktiv eingesetzt, weil damit interaktiv und effizient Schweif}-
punktdaten generiert und validiert werden konnten. Gegeniiber den bis dahin verfiigharen
Werkzeugen konnte eine grofie Beschleunigung in der Modellaufbereitung fiir die friihe
Produktentwicklungsphase erlangt werden. Die automatische Navigation zu fehlerhaften
Verbindungselementen und Netzfehlern trug dazu bei, dass allein die Validierung fiir ein
Gesamtfahrzeugmodell um 40 Arbeitsstunden auf ein Drittel reduziert werden konnte.

Fiir die Auswertung der Kraftflussverteilung in der Analyse von Crash-
Simulationsergebnissen war es notwendig, den Verlauf der zu visualisierenden Kraft-
flussrohren interaktiv festlegen zu konnen. Durch Selektion der zu beriicksichtigenden
Bauteile, Festlegung der Kraftflussrohrenstiitzpunkte und Beschrinkung auf eine Unter-
menge von Finite-Elementen mit Hilfe eines Selektionsschlauches wurde ein Interaktions-
mechanismus entwickelt, der fiir die Definition einer auszuwertenden Kraftflussrohre nur

146

Ergebnisse

wenige Sekunden in Anspruch nimmt. Durch die Zuordnung der Stiitzpunkte zu Netz-
knoten wurde zudem eine dynamische Anpassung des Kraftflussrohrenverlaufs an die sich
verformende Fahrzeugstruktur erreicht. Die persistente Speicherung erlaubt die Wiederver-
wendung einmal definierter Kraftflussr6hrenverldufe in Varianten-Simulationen sowie die
Batch-Auswertung zur Vorberechnung der Kraftflussr6hren im direkten Anschluss an die
Simulation.

Die Exploration der Strukturverformung, die zu Intrusionen in die Fahrgastzelle fiihren,
spielt in der Analyse eine grofle Rolle. Ein Hilfsmittel stellt dabei die Visualisierung der
Eindringtiefe mit Hilfe einer an die Fahrzeugstruktur gebundenen Referenzebene dar. Diese
Ebene kann im Prototypen interaktiv definiert werden. Ein weiteres wichtiges Werkzeug
ist die frei bewegliche Schnittebene. Sie hilft bei den immer komplexer werdenden Mo-
dellen auch in stark verformten uniibersichtlichen Regionen einen Einblick zu bekommen
(Abbildung 9.1). Mehrere solcher Schnittebenen lassen sich nicht nur auf das Gesamtfahr-
zeugmodell, sondern auch auf Teilstrukturen anwenden, wodurch dieses Analysewerkzeug
noch flexibler zum Einsatz gebracht werden kann. In diesem Zusammenhang wurde auch

; erashiliewer

File Edit Viewing Clipping Joels Qptiens

. ot

| Ciip plene P i off
Camera < | Dump Path Hidle fcon
Mode 7 [Negate

Select
Gpwards
Remove

Change color

I 56:0.1100

Abbildung 9.1: Die frei beweglichen Schnittebenen koénnen unter anderem iiber das
Kontext-sensitive Popup-Menii kontrolliert werden. Mit ihrer Hilfe kann der Berechnungs-
ingenieur innere Finite-Element-Strukturen betrachten. Ohne dieses Werkzeug wire eine
Analyse gerade in Bereichen starker Verformung kaum moglich.

9.1 Neue Methoden im virtuellen Fahrzeugentwicklungsprozess

147

die Verwendung Kontext-sensitiver Popup-Meniis untersucht. Die Beschrankung des Funk-
tionsumfangs anhand des selektierten Objekts macht das Menii iibersichtlich und seine Ein-
trége schnell erreichbar. Durch diesen Mechanismus werden Objekt- und Funktionsauswahl
in einer Interaktion miteinander verschmolzen.

Die fliissige Navigation durch grofie Modelle wurde mit Hilfe einer simplifizierten Mo-
delldarstellung erreicht. Fiir die Netzreduktion wurde ein auf die Anforderungen ausgerich-
teter Dezimierungsalgorithmus implementiert. Eine vergréberte Darstellung sorgt wihrend
der Navigation fiir deutlich hohere Bildwiederholraten, und nach Abschluss der Kamera-
bewegung werden dem Ingenieur wieder alle Details des Fahrzeugmodells visualisiert. Dies
geschieht auf Basis gemeinsam genutzter Koordinaten fiir beide Detailstufen, da wihrend
der Simplifizierung ausschliefllich topologische Operatoren zum Einsatz kommen.

Integration von Pre- und Postprocessing

Ein grofles Ziel in der virtuellen Fahrzeugentwicklung ist die Verschmelzung von Kon-
struktion und Berechnung, um die derzeit notwendigen Synchronisationspunkte zwischen
beiden Arbeitsbereichen zu beseitigen und damit den Entwicklungsprozess weiter zu be-
schleunigen. Anhand des entstandenen Prototypen wurde gezeigt, dass sich Pre- und
Postprocessing-Funktionalitdt sehr wohl in einem Programm vereinigen lassen. Ein Vor-
teil fiir den Anwender, wenn eine Applikation mehrere Arbeitsschritte abdeckt, ist die
Reduktion der Anwendungen, die bedient werden miissen. Dariiber hinaus kénnen Zusatz-
information, die wihrend der Berechnung verloren gehen wiirden, aus der Vorverarbeitung
in die Analyse der Simulationsergebnisse iibertragen werden.

Um sowohl Eingabe- als auch Ergebnisdaten verarbeiten zu konnen, wurden flexible
Datenstrukturen konzipiert, die den Zielgroflen beider Einsatzgebiete — interaktive Modi-
fikation von Eingabedaten und minimaler Speicherbedarf fiir zeitabhéngige Ergebnisdaten
— gerecht werden. Damit konnte der Grundstein fiir die direkte Anbindung an den Simu-
lationsprozess gelegt werden, die es dem Ingenieur erlaubt, einen Einblick in den aktuellen
Stand der Berechnung zu erhalten [21].

Kooperatives Arbeiten

Der Kommunikationsbedarf rdumlich getrennter kooperierender Entwicklungsingenieure
ist in den vergangenen Jahren stark angestiegen. Das liegt sowohl am Wachstum fusio-
nierender Firmen, deren Berechnungsabteilungen aus Synergiegriinden moglichst eng zu-
sammenarbeiten sollen, als auch an der zunehmenden Auslagerung von Entwicklungsauf-
gaben an externe Dienstleistungunternehmen. Eine Zusammenarbeit ohne eine gemeinsa-
me Sicht auf das zu entwickelnde Fahrzeugmodell ist unmdoglich. Projekttreffen mit allen
Beteiligten sind vor allem bei grofleren Entfernungen zeit- und kostenintensiv. Um einen
Losungsansatz fiir diese Probleme zu bieten, wurde im Rahmen dieser Arbeit eine Methode
entwickelt, die Prototyp-Instanzen mehrerer Sitzungsteilnehmer an ihren Arbeitsplatzrech-
nern iiber eine zentrale Server-Applikation synchronisiert. Markierungsobjekte stellen einen

148

Ergebnisse

virtuellen Zeigestock dar und vermeiden bei einer parallel stattfindenden Telefonkonferenz
Missverstédndnisse unter den Teilnehmern. Aufler den Interaktions-Events konnen in einer
bestehenden Sitzung iiber den CORBA-basierten Kommunikationskanal auch die fiir die
3D-Visualisierung benotigten Modelldaten zu Teilnehmern {ibertragen werden, die auf den
aktuellen Datenstand keinen Zugriff haben. Ein Vorteil der erarbeiteten Event-basierten
Losung besteht darin, dass nur geringe Datenmengen an die anderen Rechner iibertragen
werden miissen und die lokale Visualisierung fiir dhnlich hohe Bildwiederholraten sorgt,
wie im nicht-kooperativen Einsatz.

Der Einschrinkung dieses Event-basierten Ansatzes, der auf jedem Client den
Plattform-abhéngigen Prototypen voraussetzt, wurde mit einem weiteren Bild-basierten
Client-Server-Modell begegnet: dabei fungiert der Prototyp als Rendering-Server und ver-
schickt die erzeugten Bilder als komprimierten Datenstrom an Clients, die lediglich in der
Lage sein miissen, Bilddaten darzustellen. Als Ergebnis einer Diplomarbeit aus dem Um-
feld der medizinischen Datenvisualisierung [16] und Forschungsergebnissen zur Remote-
Visualisierung [14] wurde ein Java-Applet entwickelt, das es ermoglicht, der Visualisie-
rungssitzung mit Hilfe eines Web-Browsers zu folgen. Dieser Ansatz bietet dariiber hinaus
die Moglichkeit, durch Riickiibertragung der Interaktions-Events an den Prototypen die
Server-Applikation zu steuern und stellt damit vor allem fiir Sitzungen iiber Breitbandver-
bindungen eine Alternative zum Synchronisationsansatz dar.

Die Synchronisierung mehrerer Visualisierungsinstanzen bietet allerdings auch noch
einen Losungsansatz fiir ein weiteres Problemfeld: die vergleichende Visualisierung. Neben
der Moglichkeit, die Unterschiede zwischen zwei oder mehreren Datensétzen farblich auf
einem der Modelle abzubilden, konnen mit Hilfe der Synchronisationsmethode Modellva-
rianten sowie unterschiedliche Crash-Verldufe in mehreren Instanzen des Prototypen, die
lokal auf einem Rechner gestartet wurden, direkt visuell verglichen werden. In der Vorver-
arbeitung lassen sich durch Ausblenden identischer Fahrzeugstrukturen die Unterschiede
der Modellvarianten schneller erfassen, wihrend in der Analyse synchronisiert visualisierter
Berechnungsergebnisse die Ursache verschiedener Strukturverformungen leichter nachvoll-
zogen werden kann.

9.2 Prototypische Anwendungen

Die im Rahmen dieser Arbeit entwickelten Interaktions- und Visualisierungskonzepte konn-
ten nur anhand der implementierten prototypischen Anwendungen evaluiert und optimiert
werden. Wéhrend es fiir spezielle Problemlésungen ausreichte, sich eng an die Rahmenbe-
dingungen zu halten, bestand bei der Entwicklung und Implementierung der Kerndaten-
strukturen der Anspruch, auch fiir weiterfiihrende wissenschaftliche Arbeiten im Umfeld
der virtuellen Fahrzeugentwicklung eine Plattform zu schaffen, in die schnell neue Algorith-
men integriert werden kénnen. Dieser Abschnitt fasst nochmal die wichtigsten Prototypen
zusammen.

9.2 Prototypische Anwendungen

149

Bild- und Filmgenerierung zur Standardauswertung

Die Berechnungsabteilung der BMW Group hat Ende der neunziger Jahre in Zusammen-
arbeit mit SGI die Entwicklung eines Web-basierten Systems zum gesteuerten transpa-
renten Datenmanagement namens CAE-Bench [33] initiiert. Das System soll allen am
Entwicklungsprozess beteiligten Ingenieuren die aktuellen Daten und Ergebnisse bereits
durchgefiihrter Berechnungen zugéinglich machen und eine einheitliche Dokumentation
der Auswertungen fordern. Urspriinglich sollte der Berechnungsingenieur bei dem Modell-
Assembly die unabhéngig voneinander vernetzten und separat abgespeicherten Bauteile
iiber die Web-Oberfliche zusammenfiihren. Kleine, das Bauteilnetz darstellende Pikto-
gramme dienten zur Visualisierung des Datenbankbestandes. Dariiber hinaus sollten im
Anschluss an Simulationsrechnungen automatische Standardauswertungen vorgenommen
werden.

Erste Ergebnisse dieser Arbeit konnten dazu verwendet werden, aus Modelldaten im
Batch-Betrieb mit Hilfe eines Open Inventor basierten Offscreen-Renderers Bilder zu erzeu-
gen. Wiahrend die Bilder der Einzelbauteile zu Piktogrammen verkleinert werden, kénnen
Ergebnisdaten unter Verwendung der Engine-Objekte in Open Inventor animiert werden.
Zuséatzlich werden Flugbahnen festgelegt, von denen aus die Kamera die sich verformende
Struktur aufnimmt. Schliellich werden die hochaufgelésten Einzelbilder zu einem digita-
len Video konvertiert, das zusammen mit den Ergebnisdaten in der Datenbank abgelegt
wird und spéter zur Ergebnisanalyse dem Berechnungsingenieur zu einer ersten Ansicht
zur Verfiigung steht.

Der Postprocessing-Schritt wird durch derartige Standardauswertungen, die durch 2D-
Diagramme und 3D-Visualisierungen der wichtigsten Parameter vervollstindigt werden,
stark beschleunigt. Das System wird inzwischen von der Firma MSC unter dem Namen
Virtual Insight vertrieben und verwendet ein internes Visualisierungsmodul.

Kraftflussr6hrenberechnung

Die von Kuschfeldt et al. [44] vorgestellte Kraftflussvisualisierung durch schlauchférmige
Glyphen konnten weiterentwickelt und zur interaktiven Anwendung gebracht werden. Es
wurden Dateiformate fiir Definitionen der Kraftflussrohrenverlaufe sowie fiir die vorbe-
rechneten Kraftflussrohren entwickelt. Dadurch wurde es moglich, die vorab interaktiv
festgelegten Hauptlastpfade im Anschluss an die Simulationsrechnung auszuwerten. Die im
Batch-Betrieb berechneten Kraftflussrohren lassen sich wihrend der Analyse in den Proto-
typen einlesen und werden sofort in eine entsprechende Schlauchreprisentation umgewan-
delt. Die Kraftflussrohre kann dann zusammen mit der sich verformenden Fahrzeugstruktur
animiert werden.

150

Ergebnisse

Ermittlung von Instabilititen

Die Ermittlung von Instabilititen in Simulationsergebnissen, die aus gleichen Eingabeda-
ten hervorgegangen sind, spielt fiir die Bewertung des Modellaufbaus und der Simulati-
onssoftware eine wichtige Rolle. Es wurde aufgezeigt, wie eine im Prinzip beliebige Anzahl
solcher Simulationsldufe auf ihre Stabilitdt hin untersucht werden konnen. Dabei haben
sich lokale Mafle bewéhrt, um schnell den jeweiligen Ursprung einer Instabilitét entdecken
zu konnen. Das Textur-basierte Geometrie-Clipping konnte auch in diesem Zusammen-
hang Gewinn bringend eingesetzt werden, um Ort und Zeitpunkt einer Verzweigung in
den verschiedenen Simulationsldufen auszumachen. Analog zur Kraftflussberechnung wur-
de eine Zweiteilung der Problemlésung gewéhlt: Die Anwendung eines der implementier-
ten Instabilitdtsfunktionale findet im Batch-Betrieb statt und liefert als Resultat einen zu
visualisierenden Skalarwert pro Netzknoten, der die Ergebnisabweichung an diesem Ort
repréisentiert.

Die skalaren Groflen quantifizieren zwar die Abweichungen, lassen jedoch keinen di-
rekten Riickschluss auf das Spektrum der unterschiedlichen Strukturverformungen zu. Mit
Hilfe der Event-basierten vergleichenden Visualisierung der am meisten voneinander abwei-
chenden Simulationsldufe konnen diese Differenzen veranschaulicht und direkt miteinander
verglichen werden. Eine Klassifizierung der Instabilitdt wird erleichtert und der Anwen-
der wird bei der Auswahl eventuell vorzunehmender konstruktiver Mafinahmen durch den
Uberblick iiber die Verformungsméoglichkeiten unterstiitzt.

Pre- und Postprocessing mit crashViewer

Das angestrebte Fernziel im Bereich der Strukturmechaniksimulation ist die enge Kopp-
lung von Pre- und Postprocessing. Die bendtigte Rechenzeit fiir einen Simulationslauf soll
durch massive Parallelisierung der Simulationsverfahren und Ausnutzung leistungsfdhiger
Simulationscluster sowie durch Weiterentwicklung der Solver in Richtung Wiederverwend-
barkeit von Teilergebnissen drastisch gesenkt werden. Mit der Entwicklung interner Da-
tenstrukturen und Algorithmen, die in der Lage sind, sowohl Simulationseingabedaten als
auch Simulationsresultate effizient zu verarbeiten, konnte bereits jetzt gezeigt werden, dass
Pre- und Postprocessing-Funktionalitdt in eine Visualisierungsapplikation integriert wer-
den konnen, ohne Performanzeinbuflen in Kauf nehmen zu miissen. Im Rahmen des Auto-
bench-Projektes konnte von einem anderen Doktoranden basierend auf den crashViewer-
Datenstrukturen gezeigt werden, wie ein Fahrzeugmodell zunédchst mit dem Prototypen
vorverarbeitet und anschliefend wihrend der laufenden Simulation mit Hilfe einer weite-
ren CORBA-Schnittstelle das Crash-Verhalten vom Berechnungsingenieur iiberwacht wer-
den kann (siehe auch Abschnitt 9.3). Dariiber hinaus erleichtert die Fusion von Pre- und
Postprocessing-Funktionalitéit in einem Software-Werkzeug die Steuerung und Handhabung
durch den Anwender, da dieser sich nicht auf eine Vielzahl von Benutzerschnittstellen ein-
arbeiten muss.

9.3 Weiterfithrende Arbeiten

151

9.3 Weiterfiithrende Arbeiten

Im Folgenden wird noch auf Projekte und Arbeiten anderer Doktoranden verwiesen, die
auf den im Rahmen dieser Arbeit geschaffenen Grundlagen basieren und den entstandenen
Prototypen um weitere Probleml6sungsansétze bereichern. Zunichst sei hier auf das vom
Bundesministerium fiir Bildung und Forschung finanzierte Autobench-Projekt verwiesen,
in dessen Rahmen crashViewer unter Mitwirkung der beiden Doktoranden Norbert Frisch
und Dirc Rose weiterentwickelt wurde. So wurde zum Beispiel ein Flanschverfolgungsalgo-
rithmus entwickelt, der es ermdglicht, zwei interaktiv spezifizierte Bauteile iiber den kom-
pletten Flanschbereich durch Bauteilverbindungen aneinander zu koppeln [24]. Dariiber
hinaus wurden Schweifindhte und Klebeschichten als weitere Bauteilverbindungsarten in
den Prototypen integriert [57] und eine Anbindung an einen Léser-unabhéingigen Daten-
server iiber eine weitere CORBA-Schnittstelle realisiert [21]. In [56] wird ein in crashViewer
implementierter, auf Normalen-Texturen basierender Ansatz zur Steigerung der Darstel-
lungsqualitdt bei der Visualisierung von Strukturmodellen unter Nutzung simplifizierter
Polygonnetze vorgestellt. Derzeit wird in einem Nachfolgeprojekt namens Auto-Opt dar-
an gearbeitet, das Netz des Finite-Element-Modells mit Hilfe intelligenter Manipulator-
Objekte interaktiv modifizieren zu kénnen [22].

Der aus diesen Arbeiten entstandene Prototyp crashViewer wurde bereits relativ friih
von den Berechnungsingenieuren der BMW Group und deren Zulieferern eingesetzt, da da-
durch das Preprocessing in der Crash-Berechnung signifikant beschleunigt werden konnte.
Auf Dréngen der Anwender ist der Prototyp inzwischen kommerzialisiert worden. Das ent-
standene Produkt scFEMod [65] wird bei der Firma science + computing weiterentwickelt
und ist derzeit bei zwei Automobilherstellern und mehreren Dienstleistungunternehmen
produktiv im Einsatz.

Kapitel 10

Zusammenfassung und Ausblick

Die Automobilhersteller miissen in immer kiirzer werdenden Absténden neue Produkte auf
den Markt bringen, um im zunehmenden Konkurrenzkampf bestehen und auf sich #ndernde
Kundenwiinsche reagieren zu konnen. Gleichzeitig nimmt bei vielen Herstellern die An-
zahl der entwickelten Fahrzeuglinien (Limousine, Coupé, Cabriolet, Mini-Van, Gelidnde-
oder Kleinwagen) und deren Variationen zu, um einen Grofiteil der Marktsegmente ab-
decken zu konnen. Das setzt eine Zeit- und Kostenersparnis voraus, die nur erreicht wer-
den kann, wenn der gesamte Entwicklungsprozess vom Design bis zur Produktion immer
wieder iiberpriift und optimiert wird. Ein wichtiges Glied in der Produktentstehungkette
ist die numerische Simulation, die es schon in der frithen Planungsphase ermoglicht, Kon-
zeptentwiirfe auf ihre Machbarkeit zu iiberpriifen. Berechnungsergebnisse sind wesentlich
giinstiger und schneller zu erhalten als Resultate aus Versuchen mit realen Fahrzeugproto-
typen und sie fithren im weiteren Verlauf zu detaillierteren Aussagen, die der Steigerung
der Produktqualitéit dienen.

Ziel der vorliegenden Dissertation war es, die Arbeitsablaufe in einem Teilbereich der
virtuellen Fahrzeugentwicklung, im Pre- und Postprocessing der Strukturmechaniksimula-
tion zu analysieren, und den Prozess durch die Entwicklung neuer Visualisierungstechni-
ken und Interaktionsmechanismen zu beschleunigen. Durch die enge Kooperation mit der
Crash-Berechnungsabteilung der BMW Group war es méglich, einen detaillierten Einblick
in den simulationsbasierten Entwicklungsprozess zu bekommen. In der Diskussion mit den
Berechnungsingenieuren konnten Probleme im damaligen Entwicklungsprozess identifiziert
werden, die zum einen durch die Umstellung der Berechnungsmethode auf inhomogen ver-
netzte Bauteile begriindet waren und sich zum anderen daraus ergaben, dass die Aufgaben
mit den eingesetzten Visualisierungswerkzeugen nicht oder nur unbefriedigend gelost wer-
den konnten. Zudem sollte der durch die zunehmende Modellkomplexitit abnehmenden
Effizienz in der Strukturmechanikvisualisierung durch Methoden entgegengewirkt werden,
die speziell auf das Einsatzgebiet zugeschnitten sind. Die Losungsvorschlige wurden im
Dialog mit den Anwendern erarbeitet, um aus einer Reihe moglicher Ansétze jeweils den-
jenigen auszuwéhlen, der einerseits technisch umsetzbar ist und andererseits den Entwick-
lungsprozess durch die erzeugten Ergebnisse signifikant verbessern und beschleunigen kann.

154

Zusammenfassung und Ausblick

Durch die Entwicklung eines effizienten Szenengraph-Designs ist es gelungen, den
Speicherbedarf fiir die Représentation zeitabhingiger, topologisch invarianter Finite-
Element-Modelle, wie sie aus der Strukturmechaniksimulation resultieren, deutlich zu sen-
ken. Zusammen mit internen Datenstrukturen, die auf den Aufbau der Simulationsergebnis-
dateien ausgerichtet sind, und einem parallelisierten Initialisierungsprozess wurde das Ein-
lesen und Verarbeiten der Ergebnisse einer Gesamtfahrzeugsimulation iiber 60 Zeitschritte
auf einem Arbeitsplatzrechner erméglicht. Insbesondere die erzielten kurzen Ladezeiten fiir
Pre- und Postprocessing-Daten schufen die Grundlage dafiir, dass sich die stdndig unter
Projektdruck stehenden Berechnungsingenieure hin und wieder die Zeit nahmen, die pro-
totypisch implementierten Forschungsergebnisse anzuwenden und wertvolles Feedback zu
geben. Gespriche mit den Anwendern iiber die entwickelten Interaktionsmechanismen ha-
ben ergeben, dass die komfortable Kamerasteuerung, die den Berechnungsingenieur bei der
Suche nach Fehlern im Modell aktiv unterstiitzt, sehr positiv angenommen worden ist. Auf
die Implementierung einer umfangreichen graphischen Benutzerschnittstelle, iiber die alle
Funktionalititen angesteuert werden konnen, wurde im Prototypen verzichtet; allerdings
hétte dies Neueinsteigern sicherlich die Einarbeitung erleichtert.

Mit der speziell fiir dieses Anwendungsfeld entwickelten Quadrilateralstreifengenerie-
rung konnte ein Weg aufgezeigt werden, bei dem ohne Detailverlust die Darstellungsge-
schwindigkeit der Finite-Element-Struktur deutlich erhéht wird. Das implementierte Sim-
plifizierungsverfahren nutzt das Szenengraph-Design und ermdglicht auch fiir grole Mo-
delle bei minimalem Speichermehrbedarf eine Beschleunigung der Interaktionsraten um
den Faktor 4-6. Dariiber hinaus konnten durch Anwendung Textur-basierter Methoden
skalare und vektorielle Groflen visualisiert werden. Es wurde ein Lastausgleich auf der
Graphik-Hardware durch Entlastung der Geometrie-Einheit und Ausnutzung freier Kapa-
zitdten des Rasterisierungssubsystems geschaffen. Diese Entwicklungen tragen im Vergleich
zu den konventionellen Alternativen ebenfalls zu einer weiteren Steigerung der Bildwieder-
holrate bei und erlauben gleichzeitig das Ausblenden von Teilstrukturen in Abhéngigkeit
der zugehdrigen Skalarwerte.

Die zusétzlich zum Szenengraphen verwendete hierarchische Datenstruktur bildet zu-
sammen mit den adaptierten Algorithmen zur Kollisionsdetektion und Abstandsberech-
nung die Grundlage fiir viele Funktionalititen im Bereich der Netzmodifikation und der Mo-
dellvalidierung. Im Rahmen der vorliegenden Arbeit fand die Bounding-Volume-Hierarchie
in erster Linie fiir die Detektion initialer Penetrationen sowie fiir die effiziente Uberpriifung
von Schweiflpunktdaten Verwendung. Bisher konnten Penetrationen im Modell lediglich
durch Anrechnen ,unkontrollierbar“ behoben werden. Ein Resultat dieser Arbeit ist die
interaktive und vor allem kontrollierte Beseitigung der Penetrationen, die erstmals das An-
passen einer Bauteilvariante an ihre Umgebung effizient ermoglicht. Durch die Markierung
fehlerhafter Schweiflpunkte und die Moglichkeit, diese Fehler mit wenigen Interaktionen zu
beheben, konnte der Berechnungsprozess, der zuvor aufgrund fehlerhafter Verbindungsele-
mente hin und wieder abstiirzte, stabilisiert und damit Zeit und Kosten eingespart werden.

Es wurde ein Interaktionskonzept erarbeitet, durch das die patentierte Kraftflussvisua-
lisierung in der Analyse von Crash-Simulationsergebnissen erstmals interaktiv zum Einsatz

155

gebracht werden konnte. Dariiber hinaus wurde eine Methode zur Visualisierung von In-
stabilitédten in der Crash-Simulation entwickelt. Insbesondere die Moglichkeit, mehrere In-
stanzen des entstanden Prototypen crashViewer iiber eine CORBA-Verbindung zu synchro-
nisieren, erleichtert den Berechnungsingenieuren die Erforschung der Urspriinge und der
Weiterentwicklung derartiger Verzweigungen im Crash-Verhalten. Mit der Batch-basierten
Vorabberechnung der Instabilitdten und der Kraftflussréhren, sowie mit den off-screen ge-
nerierten digitalen Filmen konnte mit dieser Arbeit ein Beitrag zur Automatisierung und
Beschleunigung des Prozesses in der digitalen Karosserieentwicklung geleistet werden.

In Zukunft wird der Anteil der Volumenelemente durch den Einsatz neuer Materialien
im Fahrzeugbau, zum Beispiel Hartschdume, aber auch durch eine genauere Abbildung der
Verbindungstechnik fiir die Versagensanalyse stark zunehmen. Um das Verformungsver-
halten innerhalb von Volumenbauteilen besser analysieren zu kénnen, wird das Hardware-
basierte Volume-Rendering als neue Technik in der Strukturmechanikvisualisierung Einzug
halten. Es wurden bereits erste Untersuchungen im Zusammenhang mit der Strukturop-
timierung von Last aufnehmenden Bauteilen und der Akustikvisualisierung in der Fahr-
gastzelle unternommen. Dazu wurde basierend auf einem Szenengraph-basierten Konzept
zur interaktiven Visualisierung medizinischer Daten [62] ein Volume-Rendering-Knoten fiir
Cosmo3D / OpenGL Optimizer im Rahmen einer Diplomarbeit [72] entwickelt und in den
Prototypen crashViewer integriert.

Aber auch die Forschung in dem als Commodity-Sektor bezeichneten PC-Bereich wird
in Zukunft zu neuen Losungen im Berechnungsumfeld beitragen. Schon seit geraumer
Zeit weichen in den groflen Berechnungsabteilungen teure Supercomputer den giinstigeren
Compute-Clustern, bestehend aus mehreren hundert Knoten, um die Rechenzeit durch die
sich schnell weiter entwickelnden CPUs zu verkiirzen. Dariiber hinaus werden immer neue
Wege gesucht, um die Komponenten moderner Graphik-Hardware ,zweckentfremdet® zur
Beschleunigung von Berechnungsaufgaben einzusetzten. Die Hardware-basierte Parame-
teriibertragung zwischen inkompatiblen Finite-Element-Netzen hat bereits im Rahmen die-
ser Arbeit gezeigt, wie durch Ausnutzung der Rechenkapazitit des Graphiksubsystems be-
stimmte Berechnungen wesentlich schneller durchgefiihrt werden kénnen als auf der CPU.
Durch die rasante Weiterentwicklung der Graphik-Hardware im PC-Bereich und den Um-
stieg von einer vor wenigen Jahren noch fest verdrahteten (fixed function pipeline) zu einer
in Teilen frei programmierbaren Graphik-Pipeline kann aus der GPU! grofler Nutzen fiir
Berechnungen gezogen werden, die bisher nur mit Hilfe der CPU gel6st wurden. Lindholm
et al. [47] stellen die Programmierung der GeForce3-Vertex-Engine vor und zeigen verschie-
dene Effekte mit Hilfe von Vertex-Programmen, wie zum Beispiel Morphing, anisotrope
Beleuchtung oder Bump- und Environment-Mapping. Thompson et al. [69] présentieren
ein Framework, das die GPU fiir Berechnungen allgemeiner Art nutzt. Eine Analyse er-
gibt, dass die GPU grofle Matrizen mit vielen hundert Spalten und Zeilen um ein Vielfa-
ches schneller verarbeiten kann, als die CPU. Aktuelle Arbeiten [7, 30, 41] zeigen auf, wie
die Kapazitdt der GPU zum Losen diinnbesetzter Matrizen mit Hilfe der Konjugierten-

!GPU — Graphics Processing Unit

156

Zusammenfassung und Ausblick

Gradienten-Methode oder dem Multigrid-Verfahren genutzt werden kann. Somit wird der-
zeit vielleicht der Grundstein dafiir gelegt, dass in naher Zukunft das Graphiksubsystem
nicht nur zur Visualisierung, sondern auch zur Berechnung von Simulationsergebnissen
eingesetzt wird.

Damit die Visualisierung in den Berechnungsabteilungen der Automobilhersteller und
der ihnen zuliefernden Dienstleistungsunternehmen von den Entwicklungen im Graphik-
Bereich profitieren kann, muss dem Berechnungsingenieur zunéichst einmal die entsprechen-
de Hardware am Arbeitsplatz zur Verfiigung gestellt werden. Dieser Umstellungsprozess
wird langfristig geplant, da alle Software-Werkzeuge, die unverzichtbarer Bestandteil des
Fahrzeugentwicklungsprozesses sind, auf die neue Hardware portiert werden miissen. So-
bald dieser Schritt vollzogen sein wird, werden Hardware-basierte Algorithmen vo6llig neue
Moéglichkeiten der Visualisierung im digitalen Entwicklungsprozess anbieten, denn bis da-
hin wird sich die Leistung der PC-Graphik-Karten, getrieben von der Spiele-Industrie,
wieder mehrfach verdoppelt haben.

Literaturverzeichnis

1]

2]
3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Kurt Akeley, Peter Haeberli, and David Burns. tomesh.c. C Program on SGI Devel-
oper’s Toolbox CD, 1990.

Altair Engineering. HyperMesh. http://www.altair.com.

Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Sear-
ching. Communications of the ACM, 18(9):509-517, September 1975.

BETA CAE Systems. ANSA — Automatic Net-generation for Structural Analysis.
http://www.ansa-usa.com.

J.F. Blinn. Models of light reflection for computer synthesized pictures. Computer
Graphics (SIGGRAPH 17 Proceedings), pages 192-198, July 1977.

J.F. Blinn. Simulation of Wrinkled Surfaces. In SIGGRAPH 78 Conference Procee-
dings, pages 286-292. ACM SIGGRAPH, 1978.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schréder. Sparse Matrix Solvers on
the GPU: Conjugate Gradients and Multigrid. In Proc. of ACM SIGGRAPH 2005.
ACM SIGGRAPH, 2003.

M. Braitmaier, M. Haiss, M. Knauf}, S. Langauf, S. Opferkuch, G. Stein, and P. Stolz.
OpenManip — Manipulatoren fiir Cosmo3D. Abschlussbericht zum Studienprojekt,
Abt. f. Visualisierung und Interaktive Systeme, IFI, Universitéit Stuttgart, 2000/2001.

Stephen Cameron. A Comparison of Two Fast Algorithms for Computing the Di-
stance Between Convex Polyhedra. IEEE Transactions on Robotics and Automation,
13(6):915-920, December 1997.

Swen Campagna. Polygonreduktion zur effizienten Speicherung, Ubertragung und Dar-
stellung komplexer polygonaler Modelle. Dissertation, Friedrich-Alexander-Universitéit
Erlangen-Niirnberg, 1998. ISBN 3-89675-480-7.

M. M. Chow. Optimized Geometry Compression for Real-Time Rendering. In Proc.
IEEE Visualization °97, pages pages 346-354. IEEE Computer Society Press, Novem-
ber 1997.

158

LITERATURVERZEICHNIS

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

Dassault Systemes. CATIA. http://www.catia.com.

M. Deering. Geometry Compression. In Computer Graphics (SIGGRAPH ’95 Pro-
ceedings), pages 13-20, 1995.

Klaus Engel, Ove Sommer, Christian Ernst, and Thomas Ertl. Remote 3D Visuali-
zation using Image-Streaming Techniques. In Advances in Intelligent Computing and
Multimedia Systems (ISIMADE ’99), pages 91-96, 1999.

Klaus Engel, Ove Sommer, and Thomas Ertl. A Framework for Interactive Hardware
Accelerated Remote 3D-Visualization. In Proc. of EG/IEEE TCVG Symposium on
Visualization VisSym 2000, pages 167-177,291. Springer Wien/New York, May 2000.

Christian Ernst. Medizinische Visualisierung im WWW mittels 3D-Texturen. Di-
plomarbeit, Lehrstuhl fiir Graphische Datenverarbeitung (IMMD IX) der Friedrich-
Alexander-Universitdt Erlangen-Niirnberg, Mai 1999.

Francine Evans, Steven Skiena, and Amitabh Varshney. Optimizing Triangle Strips
for Fast Rendering. In Yagel and Nielson, editors, Proc. IEEE Visualization ’96, pages
319-326, 1996.

Raphael A. Finkel and Bentley Jon L. Quad Trees: A data structure for retrieval on
composite keys. In Acta Informatica, volume 4, pages 1-9. Springer, 1974.

Thomas Frank. Crashsimulation — Stand der Technik — Moglichkeiten — Herausfor-
derungen. Vortrag gehalten bei science + computing ag, Tiibingen, Dezember 2002.

Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. An Algorithm for
Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathe-
matical Software, 3(3):209-226, September 1977.

Norbert, Frisch and Thomas Ertl. Embedding Visualization Software into a Simula-
tion Environment. In Proceedings of the Spring Conference on Computer Graphics,
Bratislava, pages 105-113, April 2000.

Norbert Frisch and Thomas Ertl. Deformation Of Finite Element Meshes Using Direct-

ly Manipulated Free-Form Deformation. In Proceedings of Seventh ACM Symposium
on Solid Modeling and Applications 2002, pages 249-256, 2002.

Norbert Frisch, Dirc Rose, Ove Sommer, and Thomas Ertl. Pre-processing of Car
Geometry Data for Crash Simulation and Visualization. In Vaclav Skala, editor,
WSCG 2001 - The Ninth International Conference in Central FEurope on Computer
Graphics and Visualization, pages 25-32, February 2001.

Norbert Frisch, Dirc Rose, Ove Sommer, and Thomas Ertl. Visualization and Pre-
processing of Independent Finite Element Meshes for Car Crash Simulations. The
Visual Computer, 18(4):236-249, 2002.

LITERATURVERZEICHNIS

159

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On Visible Surface Generation
by a Priori Tree Structures. In SIGGRAPH ’80 Conference Proceedings, volume 14,
pages 124-133, July 1980.

Volker Gaede and Oliver Giinther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

Michael Garland and Paul S. Heckbert. Simplifying Surfaces with Color and Texture
using Quadric Error Metrics. In David Ebert, Hans Hagen, and Holly Rushmeier,
editors, IEEE Visualization 98, pages 263-270, 1998.

Bernd Gértner. Fast and Robust Smallest Enclosing Balls. In Proc. 7th Annual
European Symposium on Algorithms (ESA), pages 325-338. Springer Verlag, 1999.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the
distance between complex objects in three dimensional space. IEEE Transactions on
Robotics and Automation, 4:193-203, April 1988.

Nolan Goodnight, Gregory Lewin, David Luebke, and Kevin Skadron. A Multigrid
Solver for Boundary-Value Problems Using Programmable Graphics Hardware. In
Proc. of Eurographics/SIGGRAPH Workshop on Graphics Hardware 2003, 2003.

Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree: A Hierarchical Struc-
ture for Rapid Interference Detection. In Holly Rushmeier, editor, SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 171-180. ACM SIGGRAPH,
Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

Horst Hadler. Evaluierung und Implementierung verschiedener Optimierungsverfahren
fiir die effiziente Visualisierung komplexer Fahrzeugmodelle. Diplomarbeit, Lehrstuhl
fiir Graphische Datenverarbeitung (IMMD IX) der Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Dezember 1998.

J. Hégele, U. Hénle, A. Kropp, M. Streit, C. Kerner, and M. Schlenkrich. The CAE-
Bench Project — A Web-based System for Data, Documentation and Information to
Improve Simulation Processes. In Proceedings of 2nd MSC Worldwide Automotive
Conference, 2000.

Michael Holzner, Touraj Gholami, and Horst-Uwe Mader. Virtuelles Crashlabor: Ziel-
setzung, Anforderungen und Entwicklungsstand. In VDI Berichte 1411: Berechnungen
im Automobilbau, Tagung Wiirzburg. VDI Gesellschaft Fahrzeug und Verkehrstechnik
Diisseldorf, September 1998.

Hugues Hoppe. Optimization of Mesh Locality for Transparent Vertex Caching. In
ACM Computer Graphics, Proc. SIGGRAPH 99, pages 269-276. ACM SIGGRAPH,
August 19909.

160

LITERATURVERZEICHNIS

[36] Silicon Graphics Inc. OpenGL Optimizer™ Programmer’s Guide: An Open API
for Large-Model Visualization. Silicon Graphics Inc., IRIS Insight Library, 1998.
http://techpubs.sgi.com/.

[37] Silicon Graphics Inc. OpenGL Performer Programer’s Guide. Silicon Graphics Inc.,
IRIS Insight Library, 2002. http://techpubs.sgi.com/.

[38] ISO — International Organization for Standardization. STEP — Standard for the
Exchange of Product Model Data. http://pdesinc.aticorp.org/.

[39] Reinhard Klein, Gunther Liebich, and Wolfgang Straler. Mesh Reduction with Error
Control. In Proceedings IEEE Visualization ’96, pages 311-318, October 1996. ISBN
0-89791-864-9.

[40] Jan Kraheberger. Interaktive Aufbereitung von vorvernetzten Bauteilgeometrien fiir
die Fahrzeugberechnung. Diplomarbeit, Lehrstuhl fiir Graphische Datenverarbeitung
(IMMD IX) der Friedrich-Alexander-Universitit Erlangen-Niirnberg, Oktober 1998.

[41] Jens Kriiger and Riidiger Westermann. Linear algebra operators for gpu implementa-
tion of numerical algorithms. In Proc. of ACM SIGGRAPH 2003. ACM SIGGRAPH,
2003.

[42] Jens Kuenzl. Visualisierung und Beseitigung initialer Durchdringungen bei Finite
Elemente Gittern. Studienarbeit, Abt. f. Visualisierung und Interaktive Systeme, IF1T,
Universitit Stuttgart, 2001.

[43] Sven Kuschfeldt. Effiziente Visualisierungsverfahren zur besseren Erfassung von
Crash-Simulationen im Fahrzeugbau. Dissertation, Friedrich-Alexander-Universitit
Erlangen-Niirnberg, 1998.

[44] Sven Kuschfeldt, Thomas Ertl, and Michael Holzner. Efficient visualization of phy-
sical and structural properties in crash-worthiness simulations. In Yagel and Hagen,
editors, Proc. IEEE Visualization 97, pages 487-490,583. IEEE Computer Society
Press, October 1997. ISBN 1-58113-011-2.

[45] Sven Kuschfeldt and Michael Holzner. Visualisierung von Kraftfluss- und Momenten-
verldufen in einer Struktur oder in Elementen aus dieser Struktur. Deutsches Patent-
und Markenamt, Oktober 1999. Offenlegungsschrift DE19818582A1.

[46] Sven Kuschfeldt, Ove Sommer, and Thomas Ertl. Efficient Visualization of Crash-
Worthiness Simulations. IEEE Computer Graphics and Applications, 18(4):60-65,
July/August 1998.

[47] E. Lindholm, M. J. Kligard, and H. Moreton. A User-Programmable Vertex Engine.
In Proc. of ACM SIGGRAPH 2001, pages 149-158. ACM SIGGRAPH, July 2001.

[48] NTIS — National Technical Information Service. IGES. http://www.nist.gov/iges/.

LITERATURVERZEICHNIS 161

[49] OpenDWG Alliance. OpenDWG. http://www.opendwg.org.

[50] M. Peercy, J. Airy, and B. Cabral. Efficient Bump Mapping Hardware. Computer
Graphics, Proc. SIGGRAPH ’97, pages 303-307, July 1997.

[51] B.-T. Phong. Illumination of Computer Generated Pictures. Communications of the
ACM, 18(6):311-317, June 1975.

[52] Thomas Piekarski. Anpassung des crashViewer fiir immersive Visualisierung. Studi-
enarbeit, Abt. f. Visualisierung und Interaktive Systeme, IFI, Universitit Stuttgart,
Januar 2001.

53] PTC — Parametric Technologies Corporation. Pro/ENGINEER.
http://www.ptc.com.

[54] Jack Ritter. An efficient bounding sphere. In Andrew Glassner, editor, Graphic Gems,
pages 301-303. Academic Press, 1990.

[55] Greg Roelofs. ZLIB. http://www.gzip.org/zlib/.

[56] Dirc Rose and Thomas Ertl. Rendering Details on Simplified Meshes by Texture Based
Shading. In Workshop on Vision, Modelling, and Visualization VMV 00, pages 239—
245, 2000.

[57] Dirc Rose, Norbert Frisch, Thomas Ruehr, and Thomas Ertl. Interaktive Visualisie-
rung neuer Elemente im virtuellen Automobil-Crashversuch. In Tagungsband SimVis
02, Magdeburg, 2002.

[58] J. Rossignac and Borrel P. Multi-resolution 3D approximations for rendering complex
scenes. In B. Falcidieno and T.L. Kunii, editors, Geometric Modeling in Computer
Graphics, pages 455-465. Springer Verlag, 1993.

[59] Hanan Samet. The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys, 16(2):187-260, June 1984.

[60] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of
triangle meshes. In Edwin E. Catmull, editor, ACM Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 65-70, July 1992.

[61] Ove Sommer. Hardware-unterstiitzte Beleuchtungsberechnung in der Volumenvisua-
lisierung. Diplomarbeit, Lehrstuhl fiir Graphische Datenverarbeitung (IMMD IX) der
Friedrich-Alexander-Universitdt Erlangen-Niirnberg, Juni 1997.

[62] Ove Sommer, Alexander Dietz, Riidiger Westermann, and Thomas Ertl. An Interactive
Visualization and Navigation Tool for Medical Volume Data. Computers & Graphics,
2:233-244, 1999.

162

LITERATURVERZEICHNIS

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Ove Sommer and Thomas Ertl. Geometry and Rendering Optimizations for the Inter-
active Visualization of Crash-Worthiness Simultations. In Proceedings of IT&T/SPIE
Electronic Imaging, Visual Data Exploration and Analysis VII, volume 3960, pages
124-134, January 2000.

Ove Sommer and Thomas Ertl. Comparative Visualization of Instibilities in Crash-
Worthiness Simulations. In Procceedings of EG/IEEE TCVG Symposium on Visuali-
zation VisSym ’01, pages 319-328,364. Springer, May 2001.

Ove Sommer, Norbert Frisch, Dirc Rose, and Thomas Ertl. scFEMod — The New
Preprocessor for Efficient Assembly and Model Validation. In Procceedings of 4th
European LS-DYNA User’s Conference, pages F-1-21-32. DYNAmore GmbH, May
2003. ISBN 3-00-011175-1.

Henry A. Sowizral, David R. Nadeau, Michael J. Bailey, and Michael F. Deering.
Introduction to programming with javadd. ACM SIGGRAPH ’98 Course Notes, July
1998.

T-Systems — Digital Engineering Solutions. MEDINA.
http://www.c3pdm.com/des/products/medina/.

Clemens-August Thole, editor. AUTOBENCH: Integrierte Entwicklungsumgebung fiir
virtuelle Automobil-Prototypen. Number 145 in GMD-Report. GMD — Forschungszen-
trum Informationstechnik GmbH, Juli 2001. ISSN 1435-2702.

Chris J. Thompson, Sahngyun Hahn, and Mark Oskin. Using Modern Graphics Archi-
tectures for General-Purpose Computing: A Framework and Analysis. In Procceedings
of 35th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
35), November 2002.

Greg Turk. Re-tiling polygonal surfaces. ACM Computer Graphics (SIGGRAPH ’92
Proceedings), 26(2):55-64, July 1992.

Verband der Automobilindustrie. VDA-FS — Verband der Automobilindustrie
Fléchen Schnittstelle. http://www.vda.de/.

Manfred Weiler. Evaluierung und Einsatz von OpenGL Volumizer zur Volumenvisua-
lisierung auf strukturierten und unstrukturierten Gittern. Diplomarbeit, Lehrstuhl
fiir Graphische Datenverarbeitung (IMMD IX) der Friedrich-Alexander-Universitit
Erlangen-Niirnberg, November 1999.

J. Wernecke. Open Inventor C++ Reference Manual. Addision-Wesley, 1994.

J. Wernecke. The Inventor Mentor, Programming Object-Oriented 8D Graphics with
Openlnventor. Addision-Wesley, 1994.

LITERATURVERZEICHNIS 163

[75] J. Wernecke. The Inventor Toolmaker, Extending Openlnventor. Addision-Wesley,
1994.

[76] B. Yamrom and K. Martin. Vector Field Animation with Texture Maps. IEEE Com-
puter Graphics and Applications, 15(2):22-24, March 1995.

Lebenslauf

Ove Sommer

geboren am 30. Juli 1967 in Kiel
verheiratet, drei S6hne

Schulausbildung:
1974 — 1978 Grundschule, Schafflund
1978 — 1982 Auguste-Viktoria-Gymnasium, Flensburg
1982 — 1984 Realschule, Schaflund
05/1984 Abschluss: Mittlere Reife
1984 — 1988 Fachgymnasium — technischer Zweig, Flensburg
05/1988 Abschluss: Algemeine Hochschulreife
Wehrdienst:
1988 — 1990 Soldat auf Zeit fiir zwei Jahre
Hochschulausbildung:
1990 - 1997 Studium der Informatik an der Friedrich-Alexander-

07/1997 — 06/1999

08/1997 — 07/2000
07/1999 — 06/2001

Berufstitigkeit:

seit 07/2001

Universitdt Erlangen-Niirnberg

Wissenschaftlicher Mitarbeiter an dem Lehrstuhl
fiir Graphische Datenverarbeitung (IMMD IX) der
Friedrich-Alexander-Universitit Erlangen-Niirnberg
Promotionsstipendium der BMW Group, Miinchen
Wissenschaftlicher Mitarbeiter in der Abteilung fiir
Visualisierung und Interaktive Systeme des Instituts
fiir Informatik der Universitdt Stuttgart

Produktmanager des Visualisierungssystems scFEMod
bei der science + computing ag, Tiibingen

