Scalable Deterministic Logic
Built-In Self-Test

Von der Fakultét Informatik der Universitét Stuttgart
zur Erlangung der Wirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) vorgelegte Abhandlung

Vorgelegt von
Valentin Gherman

Hauptberichter: Prof. Dr. rer. nat. H.-J. Wunderlich
Mitberichter: Prof. Dr.rer. nat. W. Anheler

Tag der mundlichen Prifung: 19. Mai 2006

Institut fur Technische Informatik der Universitét Stuttgart

2005

Abstract

The core-based design style of integrated circuits (ICs) helps to manage the devel op-
ment challenges brought by the ever increasing complexity of integrated systems and
the ever tighter time-to-market. Nevertheless, test-related problems are still far away
from having a unitary and satisfactory solution, especially in the system on a chip
(SOC) context.

For the test of ICs two reference approaches are available: external testing and built-in
self-test (BIST), out of which a variety of hybrid test strategies are obtained by test
resource partitioning (TRP). The final goal is to provide advantageous tradeoffs of the
test evaluation indicators like: test development and application cost, hardware over-
head, fault coverage, etc.

BIST offers support for in-field, on-line, burn-in and at-speed test that is
indispensable for delay fault testing. Moreover, tradeoffs between fault coverage,
hardware overhead and test length are possible. Externa testing is characterized by
flexibility, reduced hardware overhead and high fault coverage for a given test length.

Deterministic logic BIST (DLBIST) is an attractive test strategy, since it combines the
advantages of deterministic external testing and pseudo-random logic BIST (LBIST).
Unfortunately, previously proposed DLBIST methods are unsuited for large ICs, since
computation time and memory consumption of the DLBIST synthesis algorithms in-
crease exponentialy, or at least cubicaly, with the circuit size.

In this work, a novel procedure for the development of the so-called bit-flipping
DLBIST scheme is proposed, which has nearly linear complexity in terms of both
computation time and memory consumption. This new method is based on the use of
Binary Decision Diagrams (BDDs). The efficiency of the employed algorithms is
demonstrated for industrial designs containing up to 2M gates.

The embedded test sequences obtained by mapping deterministic cubes to pseudo-
random sequences are aso evaluated with respect to the coverage of non-target
defects, which are modeled with the help of resistive bridging faults. The experimen-
tal results prove that both deterministic cubes and pseudo-random sequences are
useful for detecting non-target defects. Moreover, possible tradeoffs between test
length, hardware overhead, fault coverage and non-target defect coverage are
analyzed.

This work additionally presents the results of extending the bit-flipping DLBIST
scheme such that it also supports the transition fault testing besides the stuck-at fault
testing. Transition faults model defects which are responsible for the incorrect
operation of the core under test (CUT) at the desired speed. The importance of these
defects is continuously enhanced by the ever increasing clock rates and integration
density of today’'s circuits. Experimental results obtained for large industrial
benchmark designs are reported. No pure DLBIST approach for the test of delay
faultsin circuits with standard scan design has been published so far.

iv Abstract

In order to decrease the logic overhead of DLBIST, an innovative way of constructing
efficient implementations for the involved Boolean functions (e.g. bit-flipping
functions) is presented. A key feature of these functions is their incomplete specifica-
tion which is based on large don't care sets (sets of input assignments for which it
does not matter whether they are mapped to ‘0’ or ‘1’). Reduced ordered Binary Deci-
sion Diagrams (ROBDD) are used for representing and manipulating the involved
functions and multi-level implementations are obtained based on the use of free BDDs
(FBDD). Experimental results show that for all the considered functions, implementa-
tions are found with a significant reduction of the gate count as compared to a state-
of-the-art multi-level synthesystool (SIS [Sen92]) or to methods offered by a state-of -
the-art BDD package. This performance is due to a reduction of the node count in the
corresponding FBDDs and a decrease in the average number of gates needed to
implement the FBDD nodes.

The experimental results obtained for large industrial benchmark designs show that
DLBIST may be well suited for use in special segments of 1C development, like the
ones dealing with security chips or hard cores.

Acknowledgments

First of al, I would like to thank Professor Hans-Joachim Wunderlich who gave me
the chance to express myself working towards the accomplishment of this work and
who supervised my activity.

| am very grateful to Professor Walter Anheier” for his survey of this work.

| wish to express my gratitude to Harald Vranken? and Friedich Hapke® for their assis-
tance during the completion of my work.

| would also like to mention the precious technical support of Michael Garbers®,
Michael Wittke®, Andreas Glowatz®, Riidiger Solbach® and Ralf Reche®.

| am aso very grateful to al my current and former-colleagues for our discussions
and exchange of knowledge, in particular to Arnould Virazel, Abdul-Wahid Hakmi,
Gundolf Kiefer, Rainer Dorsch and Yuyi Tang. Thanks go to Nicoleta Pricopi and
Karin Angele for their support and comradeship.

| would like to thank Carmen Constantinescu and David Rio Mascarenas for their help
and assistance in writing down the manuscript. | am also very thankful to my
colleagues Wolfgang Moser, Tobias Bergmann, Alexandra Wiedmann, Hairuo Qiu
and Andreas Heinchen for correcting and refining the style of the section written in
German.

Finally, I would like to dedicate this work to my family, especially to my mother. | am
very grateful to my uncle, Niculae Balan, who proved so much talent and patience in
revealing me, since | was a child, the existence and the dynamic of a fascinating
Universe.

! University of Bremen.
2 Philips Research, in Eindhoven.
% Philips Semiconductors GmbH, in Hamburg.

Zusammenfassung

System on a Chip (SOC) sind komplexe Systeme mit Millionen von Transistoren auf
einer einzelnen integrierten Schaltung (engl. integrated circuit (IC)). Solche ICs
enthalten in der Regel verschiedene Komponenten und Technologien, wie
beispielsweise Speicher, Prozessoren, anwendungsspezifische Logik, Hochfrequenz-
und Analogmodule. Um die Kosten der Entwicklung zu reduzieren, werden immer
haufiger vorentworfene Funktionsbl 6cke verwendet (engl. core-based design). Dieser
Entwurfsstil stellt eine grof3e Herausforderung an die Testverfahren dar.

Das Hauptziel eines jeden Testverfahrens ist es, einen Kompromiss zwischen den
Testkosten und der Testqualitat (Produktqualitét) zu finden. Wichtige Kriterien fur
den Test von ICs sind: Testentwicklungskosten, Testapplikationskosten, zusétzlicher
Bedarf an Schaltungsfl&che, Fehlererfassung, etc.

Zu den Anforderungen, die an die heutigen IC Testverfahren gestellt werden, gehdren
spezifische Anforderungen, die auf die verschiedenen Typen von Modulen
abgestimmt sind. Zudem besteht zunehmender Bedarf an Verzégerungstests, in-field
und on-line Tests.

In den traditionellen Testverfahren werden die 1Cs normalerweise extern mit speziel-
len Testautomaten (engl. automated test equipment (ATE)) getestet. Die externen
Testverfahren zeichnen sich durch hohe Fexibilitét, relativ geringen zusétzlichen
Bedarf an Schaltungsflache und hohe Fehlererfassung fur eine bestimmte Testlénge
aus.

Die zunehmende Komplexitdt und der wachsende Umfang der Testdaten machen die
Durchfihrung externer Tests immer schwierig. Die Qualitét der Fehlererfassung wird
durch die Unzuganglichkeit der internen BlGcke verringert. Aul3erdem ist es sehr
teuer, mit ATEs die maximal mogliche Taktfrequenz moderner ICs zu messen. Diese
Probleme werden durch die hohe Komponentendichte sowie die Anwendung
verschiedener Technologien in der SOC-Fertigung vergrofiert, so dass Messmethoden
mit externen Testautomaten ungenau, und das ATE selbst sehr teuer wird.

Selbsttestverfahren (engl. built-in self-test (BIST)) sind dem oben genannten
Verfahren in Bezug auf die erwdhnten Problemen Uberlegen. Mit BIST konnen on-
ling, in-field, burn-in und at-speed Tests redlisiert werden. In-field Tests werden fir
periodische Wartungen verwendet, burn-in Tests sind wichtig fur die Steigerung der
Produktqualitdt und Zuverldssigkeit und at-speed Tests sind notwendig um die
Verzogerungsfehler zu finden. Auf3erdem sind Kompromisse zwischen der erreichten
Fehlererfassung, dem zusétzlichen Bedarf an Schaltungsflache und der Testlange
maoglich.

Vi Zusammenfassung

Neben den externen und den Selbsttestverfahren gibt es noch verschiedene Arten von
Testverfahren, die auf test resource partitioning (TRP) basieren.

Deterministic logic BIST (DLBIST) ist eine sehr attraktive Teststrategie, weil sie die
Vorteile von deterministischen externen Testverfahren und pseudozufélligen logic
BIST kombiniert. Die bisher vorgeschlagenen DLBIST Verfahren konnen nur bei
kleineren Entwiirfen angewendet werden, da die Laufzeit und der Speicherbedarf der
Hardwaresynthese exponentiell oder wenigstens kubisch mit der Schaltungsgrofe
steigen.

Es gibt zwei grundlegende DLBIST Verfahren: store and generate Verfahren und test
set embedding Verfahren. Bel dem store and generate Verfahren werden die
Testmuster in einer komprimierten Form auf dem Chip gespeichert und darauf ein
Dekompressionsalgorithmus angewendet. Bekanntere Beispiele dieser DLBIST
Methode basieren auf Kodierung durch riickgekoppelte Schieberegister (engl. LFSR)
[Koe91], Multipolynom Reinitialisierung [Hel92] [Hel95] und Faltender Zéhler (engl.
folding counter) [Lia02].

Bel Test set embedding Verfahren werden pseudozufallsgenerierte Muster durch
deterministische Muster erganzt. Bekannte test set embedding Verfahren sind die bit-
flipping [Kie00][Wun96][Kie97][Kie98] und bit-fixing [Tou96] Verfahren.

Bel diesen beiden DLBIST Verfahren werden Testmustergeneratoren eingesetzt, die
eine gute Fehlererfassung erméglichen. Die Besonderheit dieser Testmustergenerato-
ren ist ein Logikmodul, das eine bit-flipping Funktion (BFF), beziehungsweise bit-
fixing Funktion (BFX), durchfihrt. Die Implementierung dieser Testmustergenerato-
ren umfasst zwei Schritte: (1) die Abbildung einer Reihe deterministischer Testmuster
zu einer Folge von Pseudozufalltestmustern und (2) die Synthese des Logikmoduls,
welches die Abbildung durchfhrt.

In dieser Arbeit wird ein neues Verfahren fur den Aufbau der bit-flipping DLBIST
Hardware vorgeschlagen. Die BFF beschreibt das Einbetten von deterministischen
Testmustern zu einer pseudozufalligen Testfolge, die durch einen LFSR und eventuel|
einen Phasenschieber (engl. phase shifter) erzeugt wird. Die Suche nach einem
effizienten deterministischen Testmuster-Einbettungsverfanren mit geringem
zusétzlichem Bedarf an Schaltungsflache ist eine schwierige Aufgabe.

Ein Beitrag dieser Arbeit ist eine skalierbare Lésung, sowohl fir die Abbildung von
deterministischen Testmustern (d.h. die Generation von BFF), as auch fur die
Logiksynthese der resultierenden BFF [Ghe04]. Ein ATPG Werkzeug wird
verwendet, um deterministische Testmuster fir alle Fehler zu erzeugen, die nicht
durch die pseudozufdllige Testfolge entdeckt werden. Diese deterministischen
Testmuster enthalten eine grof3e Zahl nicht spezifizierter Bits (engl. don't care (DC)
bits)). Ein Pseudozufallstestmuster wird jedem dieser deterministischen Testmuster
zugeteilt, so dass die Grofse der resultierenden BFF minimiert wird. In Anbetracht
eines deterministischen Testmusters werden nur digenigen Pseudozufallstestmuster
untersucht, die eine minimale Zahl von unpassenden (engl. conflicting) Bits enthalten.
Um weliter die Abbildung von Testmustern zu optimieren, wird eine Kombination von
folgenden Mal3nahmen verwendet:

Zusammenfassung iX

* Minimierung der Taktzyklen, die sowohl zusammenpassende (engl. matching)
als auch unpassende Bits enthalten. Dadurch wird versucht den Logikanteil,
der bei der BFF Implementierungen fur unterschiedliche Prifpfade gemeinsam
benutzt wird, zu maximieren.

* Minimierung der Zahl von Prifpfaden, die sowohl zusammenpassende als
auch unpassende Bits pro eingebettetem Testmuster enthalten. Dies erhoht die
Optimierungsmoglichkeiten fur die BFF Implementierung jedes Prifpfades.

Das neue Verfahren stiitzt sich auf die Effizienz und die Kompaktheit der BDD-
basierten Funktionsdarstellung und hat eine beinahe lineare Komplexitét in Bezug auf
Laufzeit und Speicherbedarf.

Die Effizienz des neuen Verfahrens wird fur industrielle Schaltungen bis zu einer
Grole von 2 Millionen Gattern nachgewiesen. Mit der neuen Einbettungsmethode
sind Verbesserungen mehrerer Groélenordnungen, verglichen mit den vorherigen
Verfahren [Wun96] sowohl in Bezug auf den Laufzeitbedarf, as auch in Bezug auf
den Speicherbedarf, erreichbar. Die neue DLBIST Hardware-Synthese hat jetzt
denselben Laufzeit- und Speicherverbrauch wie die anderen benttigten
Verfahrensschritte, ATPG und Fehlersimulation. Die Laufzeitverbesserungen kdnnen
auch dazu verwendet werden, um noch bessere Losungen in Bezug auf den
zusétzlichen Bedarf an Schaltungsflache und Fehlererfassung zu erhalten.

Ein anderer Beitrag dieser Arbeit ist eine Studie zur Wirksamkeit des bit-flipping
DLBIST im Test von nicht modellierten Defekten [Eng05]. Die widerstandsbehafte-
ten Brickenfehler (engl. resistive bridging faults) wurden verwendet, um nicht
modellierte Defekte zu simulieren. Experimentelle Ergebnisse zeigen, dass sowohl
deterministische als auch pseudozuféllige Testmuster nitzlich sind, um nicht
modellierte Defekte zu testen. Aul3erdem werden mogliche Kompromisse zwischen
der Testlange, zusédtzlichem Bedarf an Schaltungsfléche, Fehlererfassung und
Erfassung der nicht modellierten Defekte analysiert. Es zeigt sich, dass durch die
Erhohung der Anzahl von Testmustern die Defekterfassung erhoht und der zusétzliche
Bedarf an Schaltungsfl&che bedeutend reduziert wird. Das vergrof3ert die Attraktivitét
der vorgeschlagenen DLBIST Architektur und reduziert den Bedarf an teuren ATESs.

Diese Arbeit enthdt auch eine Erweiterung der entwickelten bit-flipping DLBIST
Architektur, so dass neben Haftfehlern auch Ubergangsfehler testbar werden [Ghe05].
Die Ubergangsfehler (engl. transition faults) sind eine Art von Verzégerungsfehler
und modellieren Defekte, die fur eine nicht funktioniernde Schaltung bel der
verwendeten Taktfrequenz verantwortlich sind. Die Bedeutung dieser Defekte wird
durch die jeweils zunehmende Taktrate und Integrationsdichte heutiger Schaltungen
standig erhoht.

Es ist bis jetzt kein DLBIST Verfahren fir die Prifung der Ubergangsfehler
veroffentlicht worden. Die Besonderheit der Tests von Ubergangs- und allgemeinen
Verzogerungsfehlern besteht in der Notwendigkeit, Paare von Testmustern und nicht
einzelne Testmuster, wie im Falle von Haftfehlern, anzuwenden. Es wird in diesem
Verfahren das erste Testmuster jedes Paares genau wie im Fall von Haftfehler-Test
erzeugt, und die Schaltungsantwort auf das erste Testmuster wird als zweites Test-
muster verwendet (engl. functional justification).

X Zusammenfassung

Dabei diesem Test Testmusterpaare verlangt werden, ist die zufallige Fehlererfassung
bedeutend kleiner als fur Haftfehler. Um das Einbetten von Testmustern effizienter zu
machen, wird ein spezielles Modul, correction logic (CRL) genannt, eingefihrt. Das
CRL-Modul wird genau wie das BFF-Modul synthetisiert. Die Ausgangssignale des
CRL-Moduls mussen wahrend der scan-Taktzyklen, entsprechend jedem Testmuster,
unverandert bleiben. Da sich einige der Eingangssignale wahrend der scan-Taktzyk-
len andern, werden die Ausgangssignde des CRL-Moduls in einem Flipflop
gespeichert. Dieses Flipflop kann nur dann beschrieben werden, wenn ein neues
Testmuster in den Prifpfad gescannt wird. Das Flipflop wird durch das scan enable-
Signal gesteuert, das benutzt wird, um die scan-Flipflops zwischen scan mode und
functional mode zu schalten.

Um die GroRe des CRL und BFF zu beschranken, werden die deterministischen
Testmuster am Ende der pseudozuféligen Testfolge eingebettet. Die Lange der
pseudozufélligen Testfolge, die modifiziert werden kann, ist ein Bruchteil der ganzen
Testlange. Um die Bits in der pseudozufdligen Testfolge davor zu bewahren, gekippt
(engl. flipped) zu werden, werden die Ausgangssignale des BFF mit der Hilfe eines
UND-Gatters pro Prufpfad auf Null gesetzt.

Die geringere pseudozufélige Testbarkeit von Ubergangsfehlern relativ zu den
Haftfehlern verlangt bedeutend langere Testmusterfolgen. Diese eignen sich sowohl
zum Begrenzen des zusétzlichen Bedarfs an Schatungsflache as auch fur eine
verbesserte Erfassung von modellierten und nicht modellierten Defekten. Experimen-
telle Ergebnisse fur grofe Industrieschaltungen zeigen mogliche Kompromisse
zwischen der Testlange, zusétzlichem Bedarf an Schaltungsflache und Fehler-
erfassung auf.

Ein weiterer Beitrag dieser Arbeit ist ein Logikoptimierungswerkzeug, das verwendet
wird, um die Implementierung des BFF zu verbessern. Dieses Logikoptimierung-
swerkzeug ist besonders zur Implementierung von unregel maliigen und unvollstandig
spezifizierten Booleschen Funktionen geeignet. In diesem Fall bedeutet die
Unregelméaldigkeit einer Booleschen Funktion, dass ihre Eingaben, deren Abbild ‘1’
ist, zufdlig Uber dem Definitionsraum verteilt sind. Unvollstandige Spezifizierung
beruht auf Inputs, fir die es gleichglltig ist, ob sieauf ‘0’ oder ‘1’ abgebildet werden.
Beispiele fir diese Art von Funktionen sind: BFF, BFX [Tou96] und die so genannte
X-Maskierungsfunktion (XMF) [Tan04]. Alle diese Beispiel-funktionen werden in
verschiedenen test set embedding Verfahren verwendet.

Fur solche Funktionen werden effiziente mehrstufige Logikimplementierungen
erzeugt. Diese Logikimplementierungen koénnen sehr gut mit Hilfe ungeordneter
BDDs (FBDDs) modelliert werden. Das Problem wird auf die Synthese eines
minimalen FBDD reduziert. Dies wird durch den Ansatz zweier verschiedener
Methoden erreicht: (a) auf DC-basierte Knotenzahlreduzierung und (b) Verteilung des
Definitionsraumes der Zielfunktion in eine reduzierte Zahl von Subrdumen, die
entweder zu ‘O oder zu ‘1 abgebildet werden konnen. Heuristiken werden
verwendet, um fast optimale Teilungen des Definitionsraums in solchen Subraumen
zu finden und folglich die Anzahl der Knoten und Pfade der resultierenden FBDD-
artigen Implementierungen zu minimieren. Aul3erdem ist diese Naherung auch im
Stande, unter Anwendung des DC-Raumes, die Gatteranzahl zu reduzieren, die in der
Implementierung jeder Knotenfunktion erscheint.

Verglichen mit den im CUDD-Paket [Cudd] enthaltenen Methoden (restrict-Operator
und Umstellung von BDD Variablen), liefert das FBDD-basierte Verfahren

Zusammenfassung Xi

Logikimplementierungen, deren Schaltungsbeschreibungen ungefdéhr 70% weniger
Logikoperatoren benétigen. Diese Schaltungsbeschreibungen, erzeugt mit beiden
Verfahren, wurden mit dem Synopsys Design Compiler synthetisiert. Infolgedessen
konnte man erkennen, dass das FBDD-basierte Verfahren den zusétzlichen Bedarf an
Schaltungsflache um einen Faktor zwischen zwei bis drei verbessert und die Laufzeit
bedeutend reduziert wird. Des Weiteren kann beobachtet werden, dass das
vorgeschlagene Verfahren besser skaliert und einen grof3eren Nutzen aus der DC-
Menge zieht als das bekannteste mehrstufige Synthesewerkzeug SIS [Sen92].

Insgesamt zeigen die experimentellen Ergebnisse fur grof3e industrielle Schaltungen,
dass das bit-flipping DLBIST Verfahren fur verschiedene Segmente der IC Tests
verwendet werden kann, z.B. fir die jenigen die sich mit Sicherheitschips (z.B. Smart-
Cards) oder mit Hardcor es befassen.

Am Ende dieser Arbeit werden einige Ideen vorgeschlagen, um die hier prasentierte
Forschung fortzusetzen.

Table of Contents

a1 d oo [1 Tox 1 Lo o OSSR 1
1.1 Motivation and Goal of the WOIK...........ceceririiiiiine e 1
D2 @ U1 = USRS 4

BasiC FaUlt MOEIS. ... s 7
2.1 SHUCK-GL FAUITS.....ceiiiiieieeeee e 8
2.2 ReSistive Bridging FaultsS........cooeoiiiinieeeeeee e e e 9
2.3 DEAY FAUITS.....c.eecee et 12

2.3.1 Path-Delay FaUITS.......c.ooeiiieeeeseeee e 12
2.3.2TranSitioN FAUITSoveieee e 13

Basic Concepts of Built-In Self-Test........ccovverviiieceeee 15
3.1 TeSt-Per-scan SCNEIMES........c.coiiiiiiieee et e 16
3.2 Test-per-CloCK SCNEMES.........coceieceee e 18
3.3 Test Pattern GENEratioN.........cccveiueiierieeiesie e e 19

3.3.1 Pseudo-Random Pattern GeNneration...........cooeeererereriesieesieseesiesieseesieseens 19
3.3.2 Weighted-Random Pattern TESHING........cccerererrernieneeneeie e 23
3.3.3 Exhaustive and Pseudo-Exhaustive TeStINGccccveceereeriesieeseeneseeseeene 24
3.3.4 DeterMinNiStC TESHING......coieeierierieeieeee et sre e 24
3.3.5 MiXEOd-MOAE TESING ...ecvveveeieieeesieeie et ete et e e ae e re e e es 25
3.4 Test ReSpoNSe EVAlUALION.cocuiiieieeiiseesieee et 25

Representation, Manipulation and I mplementation of Boolean

FUNCLIONS. ... 29
4.1 Two-level (Cube-based) Representations of Boolean Functions.................... 30
4.2 Multi-level | mplementations of Boolean FUNCLioNS...........ccoooeeciveevencienennne. 31
4.3 BDD-based Representations of Boolean FUNCLIONS.........ccccocveceeveeriesceesieenne. 33

4.3.1 Types of Binary DeciSion Diagrams.........ccccceeeereerenensieeniesieeseeseessee e 34
4.3.2 ROBDD-based Manipulation of Boolean FUNCLIONS...........cccccvceevveieeneenne 35
4.3.3 BDD-based Implementation of Boolean Functions............cccccccevveeieeinnnns 37

Scalable Pattern Mapping for Deter ministic Logic BIST 41

5.1 Bit-Flipping DLBIST ArchiteCture.......cocveieeeeceeseee e 41

5.2 The Pattern Mapping Problem ... 43

Xiv Table of Contents

5.3 Cube-based Pattern Mappingc.ccoveeereenerie e 44
5.3.1 Mapping COSt-FUNCLIONcccceeiiesieceesie et 45
5.3.2The AIQOITAM...c..eoieee e e 46
5.3.3 ANEXAMPIE ..o 48

5.4 BDD-based Pattern Mappingccccevereneenenie e 51

5.5 Experimental Evaluation of the BDD-based Approach vs. the Cube-based

Y 0] o 0 T o RS 54

5.6 Non-Target Defect Coverage and Overhead Dependence on Sequence Length

.. 55

5.7 CONCIUSION ...ttt b e bbbt e e sbesaenrenre s 57

Deterministic Logic BIST for Transition Fault Testing........c.ccce....... 59

6.1 Random Testability of Transition and Stuck-at Faults..............ccccccvevveennne. 60

6.2 Bit-flipping Deterministic Logic BIST for Transition Fault Testing............. 62

6.3 EXperimental RESUILS.........ooeiiieeeeee s 66

(G @0 o[11 Lo o FO USSR 67

Scalable Synthesis of Irregular Combinational Functionswith Large
DON'T CAr@ SELS.....oiiiieeie et 69

7.1 Examples of Irregular I ncompletely Specified Boolean Functions................ 70

7.2 Proposed FBDD-based LOgiC SYNthesis.........ccccvveeveeieceesece e 71

7.3 EXperimental RESUILS.........ooiiiieee s 76

4 ©Co o[11 Lo o FO USRS 78

CONCIUSIONSo 79

8.1 SUMMIBIY..... ettt ettt e e ae e e b e e s me e e b e e sae e emneesseesareennneenns 79

8.2 CoNtribULIONS OVENVIEWWcueiieiiiiie e 81

BB FULUNEWOIK ...ttt st 82

REFEI BNCES ...t 85
T = RS 93
Appendix 1 —Tableswith Experimental ResultsS.........cccoccveeeeieennne. 95
Appendix 2 — I mplementation of the Proposed Methods................. 111
Appendix 3—Related Papers........cocvveeeieeneeniesee e 115

Appendix 4 — Short Presentation of the Author ..., 117

List of Figures

Figure 1.1: () Bit-flipping and (b) bit-fixing BIST SChemMES.........ccccvveereriniierenenne 3
Figure 2.1: Example of astuck-at fault............cccveoeiieienciesiese e 8
Figure 2.2: Example of aresistive bridging fault [ENgO3].cccovoeriinenenienieieens 9
Figure 2.3: Ry-V —diagram [ENGO03]. ..cveoveeieieee e 10
Figure 3.1: Built-in self-test (BIST) (adapted from [HUa03]).cocveverivneniininenne 15
Figure 3.2: Test-per-scan scheme (adapted from [Wun98))..........cccevveveeeevieccincnene 16
Figure 3.3: STUMPS architecture for parallel-serial mixed scheme (adapted from
N7 10 224) 16
Figure 3.4: Storage cellsfor scan design (adapted from [WunO02])..........ccceeeviernne 17
Figure 3.5: Control signalsof aBILBO (adapted from [Wun98]).ccceevevvrruenne. 18
Figure 3.6: Test-per-clock scheme (adapted from [Wun02]).ccoverienenneninnnenne 18
Figure 3.7: Standard linear feedback shift register (adapted from [Wun98))............ 20
Figure 3.8: State transition matrix of an SLFSR (adapted from [Wun98]). 20
Figure 3.9: Example of maximum length SLFSR (adapted from [Wun02))............. 21
Figure 3.10: LFSR-based testing (adapted from [Wun98)).........cccoceveriineeneniinnene 22
Figure 3.11: Modular linear feedback shift register (adapted from [Wun98§)). 22
Figure 3.12: Equivalence between the transition matrices of MLFSRs and SLFSRs
(adapted from [HUE03]). ...coeeieeeeeee e 23
Figure 3.13: LFSR-based time compressors (adapted from [Wun98]).cccceeee.e. 26
Figure 3.14: LFSR performing division (adapted from [Hua03]).ccceevervveierrnnnne 27
Figure 3.15: Parallel signature analysis (adapted from [Wun02]).........cccccevvrienrnenne 27
Figure4.1: BDD representation of the parity function with three input variables
(adapted from [Bry86]).cceeereereeieee e 33
Figure 4.2: Procedure constrain without hash table (adapted from [Cou90]). 36
Figure4.3: Procedurefit without hash table. ..o 37
Figure 4.4: Procedure restrict without hash table (adapted from [Cou90])............... 37
Figure4.5: (a) BDD for the function f = =al{-b[{~cl[+d) + b[+d) + a{c + —~d).
(b) MUX-based implementation of the function f.cccocevirrnne 38
Figure4.6: Non-redundant implementation of the circuit from Figure 4.5 (b). 38

XVi List of Figures
Figure5.1: Bit-flipping DLBIST architeCture.cccevveieneeie e 42
Figure5.2: Cube-based pattern mapping by means of bit-flipping.cccccvevvvnene. 47
Figure5.3: LFSR used in the example (adapted from [WuN96]).cceeeererenrnenne 48
Figure5.4: New pattern generator including bit-flipping logic (adapted from
[WUNOB]). ..ottt st sttt s snenne s 50
Figure5.5: BDD-based pattern mapping by means of bit-flipping. A description of
the program implementing this agorithm is given in Appendix 2. 53
Figure5.6: Evaluation of the effect of embedding deterministic test cubesinto a
pseudo-random sequence on non-target defect coverage.ccuo...... 56
Figure6.1: Specified bits for testing stuck-at and transition faults.cccceueee. 61
Figure6.2: Cumulative stuck-at and transition fault coverage of a pseudo-random
sequence applied to an industrial benchmark design that contains 5116
flip-flops arranged into 11 scan chains. The transition fault testing was
based on functional justifiCation.ccocevirinenie e 62
Figure 6.3: Architecture of the bit-flipping DLBIST.ccoeeveieceesece e 63
Figure 6.4: Implementation flow of the bit-flipping DLBIST for transition fault
testing based on functional justification. A description of the program
implementing this agorithmis givenin Appendix 2........cccccevvevieenenne 64
Figure6.5: Bit-flipping function (BFF) and correction logic (CRL).ccccceeueneee 65
Figure 7.1: Embedded test architecture with MISR and X-masking function (XMF).
... 70
Figure 7.2: Example of the proposed decomposition of the definition space............ 74

List of Tables

Table 4.1: Time-complexity of basic logic operations performed with ROBDD-based

repreSentatioNS [Bry86]........cccucveeiiereerieeieseesiesie s sie e ee e ee e 35
Tableb5.1: States of the LFSR (adapted from [WUN96]).........ccoecvreeieniennenieieeneene, 48
Table5.2: Pseudo-random patterns and corresponding LFSR states (adapted from

[VWUNDB])....cvieiieeieieie ettt sttt snennennens 49
Table5.3: Finding a pattern for mapping t = 00X 00 (adapted from [Wun96])........... 49
Table5.4: Old and new set of patterns (adapted from [WUN96]).ccoeceevvrerniennee. 50

Table5.5: Benchmark designs characteristics with respect to stuck-at fault testing..95

Table5.6: Run-time for different tasks of the cube-based and BDD-based al gorithms,
For the design p2074k a machine equipped with 2 GB of memory and an
Intel Pentium 4 CPU running at 2.4 GHz hasbeen used.cccccoeneee. 96

Table5.7: Run-time and memory consumption of the cube-based and BDD-based
algorithms. For the design p2074k a machine equipped with 2 GB of
memory and an Intel Pentium 4 CPU running at 2.4 GHz has been used. 96

Table5.8: Fault efficiency and logic overhead of the cube-based and BDD-based
= 1010 11101 SRR 97

Table5.9: Results obtained with the BDD-based approach targeting the fault
efficiency allowed by the ATPG tool. For the designs p278k and p2074k a
machine equipped with 2 GB of memory and an Intel Pentium 4 CPU

running at 2.4 GHz hasbeen used. ... 97
Table5.10: Characteristics of the ISCAS (85 and 89) benchmark designs................ 98
Table5.11: Comparison of the two approaches on some ISCAS (85 and 89) designs.

.. 99
Table5.12: Stuck-at coverage of pseudo-random sequences before deterministic

CUDE EMBDEATING. ...veeeerieeiieeiee e 99
Table5.13: Resistive bridging fault coverage (FCg) of the pseudo-random and
embedded test sequences and DLBIST overhead (LSIZE). 100
Table 6.1: CRL impact on the overhead of the bit-flipping DLBIST architecture...101
Table 6.2: Benchmark characteristics with respect to transition fault testing. 102
Table 6.3: DLBIST applied to stuck-at and transition fault testing (10K test patterns).
.. 102

xviii List of Tables
Table 6.5: Possible trade-offs between the fault efficiency and the hardware
corresponding to the maximum test length which can fit in one second of
test time at the frequency of 100 MHZ..........cccooi i 105
Table 7.1: Multi-output incompletely specified benchmark functions...................... 105
Table 7.2: Comparison between the FBDD-based optimization approach and the
approach based on the restrict Operator.cocevveeeveeseece e 106
Table 7.3: Optimization potential of the FBDD-based and the OBDD-based (restrict
+ variable reordering) approaches.ccccccveveeveecevee s 108
Table 7.4: Synthesis results obtained using the FBDD-based and the OBDD-based
(restrict + variable reordering) approaches..........cccveeeveeceeseesieeceeseenen, 109
Table 7.5: Comparison between SIS and the FBD D-based approach combined with
S RSOSSN 110
Table 8.1: Contributions of the work mapped to the structure of the manuscript.82
Table 9.1: The functions that implement the flow presented in Figure 6.4. 111
Table 9.2: The most important methods of the class CbflBdd.cccocveeieennne 112
Table 9.3: Thresholds and flags used to configure the DFT flow in Figure 6.4.113

List of Symbolsand Abbreviations

o 0O 8

G|
ull
I:(fon, foff)

ADI
AND
ATE
ATPG
BCU
BDD
BFF
BFX

Infinite

Empty set

Ohm — measurement unit of the electrical resistance
L ogic negation operator

Logic conjunction operator or, depending on the context, multiplica
tion operator

Logic digunction operator or, depending on the context, addition
operator

EXOR operator

Set union operator

Set intersection operator

Concatenation operator

Constrain operator

Restrict operator

Existential quantification with respect to the variable x
Cofactor of the Boolean function f with respect to the literal |
Absolute value of an algebraic expression h

Size (number of nodes) of the graph G

Number of input assignments mapped by the Boolean function f to 1

Representation of an incompletely specified function F defined by its
ON-set, represented by fon, and OFF-set, represented by f.

Anaogue detectability interval
Boolean conjunction operator
Automated test equipment
Automatic test pattern generator
BIST control unit

Binary Decision Diagram
Bit-flipping function

Bit-fixing function

XX

List of Symbols and Abbreviations

BILBO
BIST
CAD
ADl¢
ADlg
Cov(F)
CRL
CuUDD
CUT
DC
DC-set

DC-space
DLBIST
ESPRESSO

EXOR
EXPAND

FBDD
FC
FDD
FE

FF
FI X -set
IC

ID
IDDQ

ISCAS
LBIST
LFSR
LHCA
MISR
MLFSR
MUX

Built-in logic block observer

Built-in self-test

Computer-Aided Design

Covered ADI

Global ADI

Cover of the incompletely specified function F
Correction logic

CU (Colorado University) decision diagram package
Core (or circuit) under test

Don’t care

Set of input assignments of a Boolean function that can be mapped
eithertolorto0

Similar to DC-set
Deterministic LBIST

Heuristic approach used for optimizing two-level representations of
Boolean functions

Boolean exclusive-OR operator

Operator used by ESPRESSO (transforms a cover into a prime and
irredundant cover)

Free (also called unordered) BDD
Fault coverage

Functional Decision Diagram
Fault efficiency

Flip-flop

On-set O Off-set

Integrated circuit

Identity matrix

Power supply current (IDD) in a CMOS circuit when al nodes are
quiescent (static)

International Symposium on Circuits and Systems
Logic BIST

Linear feedback shift register

Linear hybrid cellular automata

Multiple input shift register

Modular LFSR

Multiplexer

List of Symbols and Abbreviations XXi

NAND
NOR
OBDD
OFF-set
OFF-BDD
ON-set
ON-BDD
OR

PC

PLA
PRPG

PS
REDUCE

ROBDD
ROM
RPR
RTL

SC

SE

SG
SLFSR
SOC
STUMPS
Th

TPG
TRE
TRP

VHDL

VDD

XMF
ZBDD

Boolean negation and conjunction operator

Boolean negation and disjunction operator

Ordered BDD

Set of input assignments mapped to 0 by a Boolean function
ROBDD-based representation of the OFF-set

Set of input assignments mapped tol by a Boolean function
ROBDD-based representation of the ON-set

Boolean digjunction operator

Pattern counter

Programmable logic array

Pseudo-random pattern generator

Phase shifter

Operator used by ESPRESSO (transforms a prime and irredundant
cover into anew irredundant but usually not prime cover)

Reduced OBDD

Read only memory

Random pattern resistant

Register transfer level

Shift (also called bit) counter

Scan enable signal

Already synthesized sub-graph

Standard LFSR

System on achip

Self-test using MISR and parallel shift register sequence generator
Threshold voltage of a gate input

Test pattern generator

Test response eval uator

Test resource partitioning

Volt — measurement unit of the voltage

VHSIC (very high speed integrated circuit) hardware description lan-
guage

Positive supply voltage for field effect transistors (FET)
Unspecified or unknown bit value

X-masking function

Zero-suppressed BDD

Chapter 1

I ntroduction

1.1 Motivation and Goal of the Work

The sustained improvement of deep-submicron technologies has led to an explosionin
the number of transistors that may be integrated on a chip and further to the possibility
of putting a whole system on a chip (SOC). Core-based design is one paradigm of the
new trends used to reduce complexity and costs of chip development. Nevertheless,
test-related costs are problems still far away from having a unitary and satisfactory
solution.

The external testing of integrated circuits (ICs) is a traditional approach in which
automated test equipment (ATE) provides al the necessary test data. This may set
high requirements on the storage capacity and speed of the ATE. Furthermore, the
ever increasing transistor count per I/O pin and the low accessibility of internal blocks
are affecting the tradeoff between the final fault coverage and the test application
time. All of these, combined with the necessity of specially tuned testers for different
types of cores and the growing need for periodic in-field maintenance and on-line
testing capabilities make the external testing difficult, costly and insufficient.

All the above mentioned problems demand built-in self-test (BIST) solutions. In this
context, BIST for random logic (LBIST) is becoming an attractive aternative in 1C
testing.

The standard BIST architecture [Bar82][Eic83] uses an LFSR that feeds pseudo-ran-
dom patterns into the scan paths. It is easy to implement and minimizes both hardware
overhead and impact on the system performance. However, due to random-pattern-
resistant (RPR) faults, pseudo-random patterns cannot always achieve sufficient fault
coverage within an acceptable test time.

The fault coverage can be increased by biasing the pseudo-random test sequence to-
wards the RPR faults [Brg89][Wun88]. Conflicting input values required by different
RPR faults may need different weighting sets. Unfortunately, the control logic and the
storage requirements for the weighting sets can increase unacceptably.

Pseudo-exhaustive testing [Mcc81] achieves the benefits of exhausting testing while
usually requiring less test patterns. This reduction is obtained by splitting the circuit
into various segments that are tested exhaustively. The efficiency of the method is
limited by the size of the largest segment that has to be tested.

2 1 Introduction

An alternative approach for increasing the fault coverage is the insertion of test points,
which has been proposed for both LBIST and externa testing [GeuOO][Hay74]
[Sei91][Vra02]. While the area increase due to test point insertion may be tolerable,
they can introduce additional signal delays, which could require a complete re-
synthesis and a new timing verification [Vra04].

Deterministic LBIST (DLBIST) guarantees higher or complete fault coverage by
embedding deterministic test cubes (test patterns with unspecified bits) into the
pseudo-random sequence. There is a wide range of deterministic logic BIST methods
that apply deterministic test patterns and hence improve the low fault coverage often
obtained by pseudo-random patterns. In an initial deterministic BIST scheme,
additional external patterns were applied on top of the pseudo-random test [Het99].
Unfortunately, the very last percentages of fault coverage require the largest amount
of deterministic patterns. For instance, it has been reported in [Bas89] that detecting
the last 10% of undetected faults typically requires 70% or more of the test patternsin
an automatic test pattern generated set. Consequently, the benefits of deterministic
BIST are severely reduced by this approach.

Compression and decompression methods in which a small amount of external test
data is continuously fed into the circuit [Koe91][Koe01][Ra02] are more efficient.
However, this approach is no longer a BIST method; it may still require a relatively
expensive ATE and lose some benefits of BIST like in-field testing.

In contrast to the above mentioned BIST methods, pure DLBIST schemes try to avoid
both the modification of the core under test (CUT) and the application of additional
external test data. These methods can be classified into store and generate schemes
and test set embedding schemes.

Sore and generate schemes consist of hardware structures which store the test pat-
terns on-chip in a compressed form and implement a decompression agorithm.
Widely known representatives of this method are LFSR-reseeding [Koe91], multi-
polynomial reseeding [Hel92][Hel95] and folding counter based-LBIST [Lia02].

Test set embedding schemes rely on a pseudo-random test pattern generator plus some
additional circuitry that modifies the pseudo-random sequence in such a way that a set
of deterministic cubes is embedded. Widely known test set embedding techniques are
bit-flipping [Kie00][Wun96][Kie97][Kie98] and bit-fixing [Tou96].

In the bit-flipping approach, the output sequence of an LFSR is inverted at a few bit
positions in order to increase the fault coverage (Figure 1.1.a), while in the bit-fixing
approach constant values are applied (Figure 1.1.b). The test generation process is
controlled by a bit-flipping function (BFF) or abit-fixing function (BFX), respectively.

The term pattern mapping will be used for referring to the assignment of a pseudo-
random pattern to a given deterministic cube. The synthesis procedure of a DLBIST
scheme consists of pattern mapping and generation of the hardware structure used to
implement the mapping, e.g. by means of a BFF or BFX. The synthesis procedure for
generating the BFX as published in [Tou96] is based on rectangle covering, while the
synthesis procedure for generating the BFF as published in [Wun96][Kie97][Kie98] is
based on manipulating sets of test cubes. In both cases, the procedures use heuristics
that generally require at least cubical, but often exponential, effort in terms of memory
consumption and computation time.

1.1 Motivation and Goal of the Work 3

D
\%
A\ 4
o

BFF

(@ (b)
Figure 1.1: (a) Bit-flipping and (b) bit-fixing BIST schemes.

In this work, a novel pattern mapping approach is proposed that has nearly linear
complexity in terms of both computation time and memory consumption. The used
algorithms are based on Binary Decision Diagrams (BDDs). The efficiency of the new
algorithms is demonstrated by experimental results obtained with ISCAS benchmarks
and industrial designs containing up to 2M gates.

The embedded test sequences obtained by mapping deterministic cubes to pseudo-
random sequences are also evaluated with respect to their coverage of non-target
defects. Moreover, possible tradeoffs between the test length, hardware overhead,
fault coverage and non-target defect coverage are analyzed.

All the methods discussed so far mainly refer to the test of stuck-at faults. Unfortu-
nately, the steady increase of the clock rate and the integration density in today’s IC
designs enhance the significance of the timing accuracy defects [Cha96], which are
difficult to be covered by the classical stuck-at fault model. Consequently, delay fault
models and, implicitly, delay fault testing become more and more important.

Here, an extension of the bit-flipping DLBIST approach to the test of transition faults
is also presented. The scheme is based on functional justification and on an efficient
pattern embedding. A specia module, the correction logic (CRL), is introduced to
further improve the pattern embedding. Due to the rather low random-pattern
testability of transition faults, the saturation of their random fault coverage requires
significantly longer test sequences, which in turn is beneficial for both limiting the
hardware overhead and improving the coverage of modeled and non-modeled defects
[Tan04].

A major concern of the test set embedding schemes is their hardware overhead.
Reducing the hardware overhead of the DLBIST scheme considered here is equivalent
to optimizing the logic synthesis of the BFF. Two properties of this function are
relevant for its logic implementation: the irregularity, defined by the random
distribution over the definition space of the input assignments mapped to ‘1’ and the
incomplete specification, defined by the existence of input assignments for which it
does not matter whether they are mapped to ‘O’ or ‘1. Other examples of such
functions are the BFX [Tou96], the function implemented by the CRL and the so-
called X-masking function (XMF) [Tan04].

This work proposes an efficient and innovative way to implement irregular Boolean
functions with large don’t care sets. Reduced ordered BDDs (ROBDD) are used for
representing and manipulating the involved functions. Multi-level representations are

4 1 Introduction

obtained based on free BDDs (FBDD). The problem is reduced to the construction of
an efficient BDD-based representation by using the don’t care space to perform node
reduction and to partition the definition space of the considered function into a
minimum number of sub-spaces which may be mapped either ‘0’ or *1’. Heuristics are
used to find near-optimal partitions of the definition space into such sub-spaces and,
consequently, to minimize the path and node count of the resulting FBDD.
Furthermore, this approach is also able to use the don’t care set to reduce the average
gate count per node. Experimental results show that for al the considered functions,
implementations are found with a significant reduction of the gate count compared to
the well known multi-level synthesis tool, SIS [Sen92], or to methods offered by a
state-of-the-art BDD package. This performance is due to a reduction of the node
count in the corresponding FBDDs and a decrease in the average number of gates
needed to implement the FBDD nodes.

1.2 Outline

Chapter 2 briefly describes the three logical fault models which will be used in this
work. Section 2.1 introduces the stuck-at fault model. In Section 2.2, the resistive
bridging fault model is described. Section 2.3 presents two delay fault models: the
transition and the path delay fault models. Only the transition fault model will be used
later in the work. The path delay fault model is briefly mentioned in order to better
understand specific aspects of the delay fault testing.

Basic BIST concepts are reviewed in Chapter 3. Test-per-scan and test-per-clock
BIST schemes are described in Section 3.1 and Section 3.2, respectively. State-of-the-
art methods for test pattern generation and test response evauation are analyzed in
Section 3.3 and Section 3.4, respectively.

Chapter 4 compares two of the basic approaches that are used for the representation
and the manipulation of Boolean functions. Section 4.1 introduces the cube-based,
also called digunctive two-level representation. The generalization of this representa-
tion to the multi-level representation and implementation is described in Section 4.2.
Section 4.3 presents the representation, manipulation and logic synthesis of Boolean
functions based on Binary Decision Diagrams (BDDs).

Chapter 5 presents a new algorithm for mapping deterministic test cubes to a pseudo-
random test sequence. The agorithm is based on BDDs and outperforms the
previously published cube-based approach [Wun96] by several orders of magnitude. It
has been applied to the bit-flipping Deterministic Logic LBIST (DLBIST) architec-
ture which is presented in Section 5.1. The pattern mapping problem is formally
defined in Section 5.2. Sections 5.2 and 5.3 provide a detailed description of a prior
cube-based and of the new BDD-based mapping a gorithms, respectively. Section 5.5
reports the experimental results obtained with a set of industrial designs containing up
to 2M gates, ISCAS-85 and combinational parts of ISCAS-89 benchmark designs.
These results prove that significant improvements can be achieved with the help of the
BDD-based mapping approach. In Section 5.6, the embedded test sequences generated
for single stuck-at faults are evaluated with respect to the coverage of non-target
defects. Resistive bridging faults are used as a surrogate of non-target defects
[Eng05]. This is the first time when the results of such a study are presented. This

1.2 QOutline 5

investigation especially adresses the impact of the test sequence length on the non-
target defect coverage and on the hardware overhead. The chapter is concluded in
Section 5.7.

Chapter 6 extends the approach introduced in Chapter 5 to make it also available for
the test of transition faults. Due to the fact that pairs of test patterns are required,
transition faults are more difficult to test than stuck-at faults. In Section 6.1, a qualita-
tive comparison of stuck-at and transition faults is made with respect to their pseudo-
random testability. The extension of the bit-flipping DLBIST scheme for transition
fault testing is described in Section 6.2. Relevant experimental results for large
industrial benchmark designs are reported in Section 6.3. The chapter is summarized
in Section 6.4.

In Chapter 7, an innovative BDD-based logic synthesis method is described that
improves the implementation of the BFF. This approach is especially suited for the
logic implementations of irregular functions that have large don’t care sets. Some
examples of such functions are: the BFF, the BFX [Tou96] and the function XMF
introduced in [Tan04], etc. Two of these examples are anayzed in Section 7.1.
Section 7.2 presents a new heuristic method to find efficient logic implementations for
such functions. In Section 7.3, experimental results are used to compare the new
approach with SIS [Sen92] and methods available in the CUDD-package (like restrict
[Cou90]). Furthermore, the outcome of the proposed method is evaluated as input to
Synopsys Design Compiler. The chapter is concluded in Section 7.4.

Chapter 8 summarizes the work and suggests some related research directions that
look promising and may be investigated in a future work.

Chapter 2

Basic Fault M odels

This chapter describes the three logical fault models used in this work. Logical faults
represent the effect of physical defects on the logic behavior of the modeled system.
Restricting the analysis of physical defects to the level of the logic behavior has
several advantages. The complexity is reduced by transforming a physical problem
into alogical problem. The space of physical defectsislarger than the space of logical
faults, such that a fault model can cover severa physica defect types. Moreover, tests
derived for certain logical faults may cover physical defects for which no accurate
fault model is known. Most of the logical fault models are technol ogy-independent
and hence testing and diagnosis methods developed for such fault models are applica-
ble to many technologies [Abro0].

A distinction is made between faults that affect the logic correctness of a circuit and
delay faults that affect the operating speed of the system. Depending upon the type of
modeling used for the system, the former faults may be divided in structural and
functional faults. Structura fault models are usually defined at the gate level net-list
and assume that components are fault-free and only their interconnections are af-
fected. Functional faults are usually defined at RTL or higher levels (like behavioral
or system level) and they affect the proper execution of the operations used at these
levels.

Shorts and opens are two examples of structural faults. A short is formed by connect-
ing points not intended to be connected while an open results by breaking a connec-
tion.

In this work only structural, permanent and single faults of combinational logic are
considered. Intermittent, transient, or multiple-faults are not taken into account. The
analog and the memory elements that may be present in the circuit under test are not
considered.

Under the single-fault assumption one assumes that in a system at most one logical
fault is present. This assumption is justified by the fact that in most of the cases a
multiple fault can be detected by the tests designed for the individual single faults that
compose the multiple-fault [AbroQ].

Section 2.1 introduces the stuck-at fault model. In Section 2.2, the resistive bridging
fault model is briefly described. Section 2.3 introduces two representative delay fault
models: the transition and the path delay fault model. Only the transition fault model
will be used later in this work. The path delay fault model is mentioned in order to
better understand specific aspects of the delay fault testing.

8 2 Basic Fault Models

2.1 Stuck-at Faults

Thelogical fault corresponding to asignal line being stuck at a fixed logic value (0/1)
isreferred to as a single stuck-at 0/1 fault (Figure 2.1). Physical defects which can be
modeled with the help of a stuck-at 0/1 fault on the signal line i include an open on
the fan-out lines driven by the line i, a short to power/ground or an interna error in
the component driving thelinei.

stuck-at 0 C —

= |-

Figure 2.1: Example of a stuck-at fault.

Despite the fact that the single stuck-at fault model does not cover all the physical
defects that can appear in a digital circuit, it is very useful due to the following
properties:

* Itisvery simple. As compared to other fault models, the number of single stuck-
at faults in a circuit grows linearly with its size. Moreover, the number of these
faults that have to be explicitly considered can be reduced by fault collapsing.
Techniques like structural-based and dominance-based fault collapsing can re-
duce the number of faults to be explicitly analyzed by 50% and 40%, respec-
tively [AbroqQ].

* It models many different physical defects [Tim83]. Test sets generated for single
stuck-at faults may detect many faults belonging to other fault models.

* Itistechnology independent.

* The single stuck-at fault model and its analysis can be used to construct and
analyze other types of fault models, like the transition fault model (Section
2.3.3).

A combinational circuit that contains an undetectable stuck-at fault is said to be
redundant, since such acircuit can always be ssimplified by removing at least one gate
or input. The test generation problem for stuck-at faults belongs to the class of NP-
complete problems (worst-case behavior) [Iba75]. Undetectable (redundant) faults are
usually the ones that cause test generation algorithms to exhibit their worst-case
behavior [AbroQ].

A straightforward extension of the single stuck-at fault model is the multiple stuck-at
fault model. This fault model is more difficult to handle. The list of faults for a circuit
having N possible sites for single stuck-at faults can contain up to 2N single and 3"-1
multiple stuck-at faults [Abr90]. Fortunately, the importance of the multiple stuck-at
fault model is reduced due to the fact that tests with complete detection of the single
stuck-at faults would usually also detect most of the multiple stuck-at faults [Hug84].

2.2 Resistive Bridging Faults 9

For al fault models introduced in this chapter, whose description does not depend on
a continuous parameter, the following metrics are used to characterize the quality of a
test set.

Definition 2.1: The fault coverage (FC) is the percentage of detected faults with
respect to the total number of faults.

Definition 2.2: The fault efficiency (FE) is the percentage of detected faults with
respect to the total number of testable faults.

2.2 Resistive Bridging Faults

A logica fault representing an electrical connection between a pair of signal lines
(nets) isreferred to as a bridging fault. The non-resistive bridging fault model consid-
ers a short between the two nets. The logic value of the shorted nets may be modeled
as 1-dominated (OR bridge), 0-dominated (AND bridge) or intermediate, depending
upon the implementation technology [BusO0][Mal92].

More genera and redlistic is the resistive bridging fault model, in which the connec-
tion between the two nets is characterized by an arbitrary electrical resistance
[Ren95]. The resistive bridging fault model will be used in the following chapters to
account for non-target defects.

The main difficulty when dealing with resistive bridging faults is that, unlike the non-
resistive case, there is an unknown value to be taken into account — the bridging resis-
tance. This is due to the fact that the cause which generated of the bridging fault
cannot be known in advance. Topological and physical parameters like shape, size,
electrical conductivity, exact location on the die, evaporation behavior, electron-
migration and environmental temperature can influence the resistance of the short
defect [Eng03].

A test pattern may detect a bridging defect for one resistance value and not for another
resistance value. This fundamentally changes the meaning of standard testing con-
cepts, like testability, redundancy, fault coverage, etc [Ren95].

In order to illustrate this, consider the example sketched in Figure 2.2 [Eng03]. The
nets a and b in this example are bridged by a short defect with the resistance Rg.. The
voltage V, on a and the voltage Vi, on b both depend not only on the input pattern, but

also on the bridge resistance Ry,
- ﬁ c

8(1)—9D - | _[:]

resistive bridging fault |Rs

—D e

Figure 2.2: Example of aresistive bridging fault [Eng03].

10 2 Basic Fault Models

Consider the input assignment 0011. Here, it is considered that logic values ‘1’ and
‘0" are encoded by a high-, respectively alow-voltage. A possible voltage dependence
on the Rg, values is depicted by the solid curves in Figure 2.3. For Ry, = 0Q, there is
an intermediate voltage identical for both lines. With increasing Rg,, Va and Vy
diverge with V, approaching VDD and V), approaching 0. The transistors succeeding
the bridge will interpret these voltages as logic-0 or logic-1, depending on their input
threshold voltages Th. In Figure 2.3, the threshold voltages for transistors C, D and E
are shown as horizontal lines labeled by The, Thp and Thg, respectively. Hence, the
resistive bridging fault may be observed at the drain of the transistors C or E and
eventually at the output of the gates containing these transistors iff Ry, U [0, R¢],
respectively Rq, [[0, Rg]. For transistor D, the threshold voltage Thp is below the
curve, implying that transistor D will recognize the voltage on a as alogic-1 for any
Rsh. Consequently, the fault effect isvisible at one of the outputsiff Ry, 0 [0, R¢] O [
] [O, RE] = [O, RE]

Next, consider the input pattern 0111 that sets a high-voltage on the second input of
the NAND gate. In this case, only one p-transistor will pull up the voltage on the net a
to the power supply. Thus, the net ais till driven with logic-1, but with less strength,
while the logic-0 on the net b has the same strength as before. One possible voltage
characteristic for V, and Vy, is described in Figure 2.3 by the dashed curves situated
underneath the solid ones. Hence, the fault effect is visible a one of the transitor
drains and eventually at the outputs of the corresponding gates iff Rg, (I [0, Rc’'] O [0,
Ro'] O [0, RE'] = [0, Rc']. Consequently, a resistive bridging fault with Rs, [[R¢’,
Re] may be detected by the pattern 0011, but not by the pattern 0111, although the
logic values on all internal lines of the fault-free circuit are identical for these two
patterns.

In order to handle this ambiguity, the concept of analogue detectability interval (ADI)
and probabilistic fault coverage are introduced [Ren95][Ren99].

Definition 2.3: The interval [R1, R] (0 £ R; £ R; <) in which aresistive bridging
fault fr is detected by a pattern P at one output (at least) is called the
analogue detectability interval (ADI) of the pattern P with respect to
fr [Ren99].

WV

The

[-|]|:|

['hy

R, R:R:R: Ry R,

Figure 2.3: Ry-V —diagram [Eng03].

2.2 Resitive Bridging Faults 11

The ADI of the patterns 0011 and 0111 with respect to the bridging fault between the
netsa and b are given by theintervals [0, Rg] and [0, Rc’] (T [0, Rg]), respectively.

The fault simulation for classical fault models determines whether a fault can be
detected or not. In contrast to this, resistive bridging fault simulation determines the
ADI for a given fault and test pattern, i.e. the values of the bridging resistance for
which the considered fault can be detected by the specified pattern.

Given the resistive bridging fault fr and a set of test patterns S, the following defini-
tions can be given [Ren99]:

Definition 2.4: The ADI¢ (C stands for covered) of the test set S with respect to fr is
defined as the union of the ADIs of each individual test pattern in S
corresponding to fr.

Definition 2.5: ADIg (G means global) with respect to fr is the maximum ADI¢
corresponding to fy.

ADI¢ characterizes the testability of a resistive bridging fault with respect to the
patternsin a given test set S. ADIg measures the testability of aresistive bridging fault
independently of the test set — it corresponds to an exhaustive test set. A bridging fault
with an empty ADIg (ADIg =) is untestable (at least if effects on delay and IDDQ
testing or on reliability are not considered).

Definition 2.6: The global fault coverage (FCs) [Ren99][Eng03] of atest set S with
respect to aresistive bridging fault fr is defined as:

[| ,o(R)dR]

ADI ¢

(| p(R)dR] |

ADI g

FCs(fr) =

where o(R) is the probability density function of the short resistance
R obtained from manufacturing data. p(R) is chosen such that the
second integral isequal to 1.

If for any considered bridging fault fr, for which the ADI¢ is different from the empty
set, ADIg is set equal to ADIc, then the non-probabilistic case associated to the non-
resistive bridging modelsis obtained (FCg (fr) = 1).

Definition 2.7: For N bridging faultsfi, 1 <i < N, the average resistive bridging fault
coverage [Eng03] is defined as:

Up to now there is no known method to determine the ADIg, and implicitly the FCg,
without simulating all 2" test patterns, where n is the number of inputs. Approxima-
tion methods for computing ADIg and FCg are given in [Eng03].

12 2 Basic Fault Models

2.3 Delay Faults

Delay fault testing is used to prove and estimate the performance of the core under
test (CUT) and has become a standard option in today’s technology. Path-delay,
segment-delay and gate-delay fault models have been proposed so far [Her96][Sha00]
[Smi85][Krs98][1ye90]. These models have different complexity in both test genera-
tion and test application. A specia case of the gate-delay fault model is the transition
fault model [Krs98][Lev86][Wai87], adso called gross-delay fault model, in which the
gate-delay fault is assumed to be of the same order of magnitude as the clock period.

In order to test delay faults, two patterns are required, an initialization pattern V; that
sets the circuit to a predefined state, and an activation pattern V, that launches the
appropriate transition and propagates the fault effect to a (pseudo-)primary output.

2.3.1 Path-Delay Faults

Path-delay faults are used to model defects that are correlated along a path from a
(pseudo-)primary input to a (pseudo-)primary output of the CUT. Both the switching
delays of devices and the transport delays of the interconnects may preturbate the
propagation of asignal transition along the considered path.

Path-delay faults may be robustly and non-robustly tested. A test that guarantees to
detect a path-delay fault, only if no other path-delay faults are present, is called a non-
robust test [Lin87][Bus00]. Besides the application of the right input transition, the
other requirement for the non-robust test of a path isthat al its off-path input signals
assume non-controlling in the steady state following the application of the activation
pattern V.

A robust path-delay test guarantees to detect a path-delay fault, irrespective of the
delay distribution in the circuit [Lin87][Bus00]. In addition to the requirements of the
non-robust test, the robust test of a path requires that all the off-path inputs must have
a steady non-controlling value in both V; and V, when the on-path event is a
transition from non-controlling value to controlling value.

Unfortunately, in the worst case the number of path-delay faults may increase
exponentially with the number of the signal lines in the CUT. Consequently, for large
industrial designs ssmpler delay fault models like the gate-delay and the transition
fault models are usually considered.

2.3 Delay Faults 13

2.3.2 Trangition Faults

The transition fault model is used to cover delay effects which are generated by
localized (spot) defects and whose sizes are in the order of magnitude of the clock
cycle or of the test pattern period. A slow-to-rise and slow-to-fall transition fault may
be associated to each signa line in the CUT. Consequently, the number of transition
faults increases linearly with the number of the signal lines in the CUT. The upper
bound of the number of transition faults is twice the number of signal lines in the
CUT. Moreover, the similarity to the test of stuck-at faults implies that (1) tests for
transition faults can be easily generated by modifying a stuck-at test generator
[Krs98][Lev86] and (2) circuits with high stuck-at fault coverage usually aso have
large transition fault coverage [BusO0][Wai87].

Due to its limited complexity, the transition fault model is most widespread. For an
efficient delay testing, it is recommended to augment transition fault testing by path
delay testing performed for a sub-set containing at least the critical paths [Bus00].

Chapter 3

Basic Concepts of Built-In Self-Test

Built-in self-test (BIST) is a technique in which additional circuitry is added to a core
under test (CUT) in order to make it able to test itself with minimum externa help.
Figure 3.1 sketches the genera structure of a self-testable circuit composed of a test
pattern generator (TPG), a test response evaluator (TRE) and a BIST control unit
(BCU).

This technique is especially preferable when it is difficult to access the CUT exter-
nally. It also helps to protect intellectual property (IP) and to reduce cost of the
external test equipment (ATE) by minimizing the amount of test data that has to be
stored off-chip. Its implementation can result in an improvement in the test quality
due to its better support for at-speed testing, which is essential for detecting delay
faults. BIST supports in-field and on-line testing [Kar98], which helps to reduce the
cost of system maintenance. It aso offers the opportunity to improve reliability by
means of burn-in testing.

BIST approaches can be divided into test-per-scan and test-per-clock schemes
[Wun98], which are described in Section 3.1 and Section 3.2, respectively. State-of-
the-art methods for test pattern generation and test response evaluation are analyzed in
Section 3.3 and Section 3.4, respectively.

\ 4

Test Pattern Generator (TPG)

Test start
— .
BIST Control Unit N Core Under Test
Test end BCU > (CUT)
‘ ()

\ 4

Test Response Evaluation (TRE)

Figure 3.1: Built-in self-test (BIST) (adapted from [Hua03]).

16 3 Basic Concepts of Built-In Self-Test

3.1 Test-per-scan Schemes

Test-per-scan BIST schemes require scan-based design. In the case of sequential
circuits, this means that al the storage cells can be configured as one or several scan
paths (chains), which are used as seria shift registersin test mode (Figure 3.2). In this
way, each storage device of the CUT becomes easily controllable and observable. The
test stimuli/responses are shifted into/out of the scan paths [Abr90][Eic83][Tri80].
Scan-based design helps to reduce the problem of testing sequentia circuits to the
simpler problem of testing combinational circuits.

The BCU in Figure 3.2 must contain at least a shift counter and a pattern counter. The
shift counter controls the bit stream which is generated and shifted into the scan path
by a TPG. The pattern counter controls the length of the test sequence. A system clock
cycle (also caled capture or functional clock cycle) is applied to load the CUT
response to the current test pattern into the scan path. During the so-called shift mode
(also called scan or test mode) a new test pattern is shifted into the scan path, while
the CUT response to the previous pattern is shifted out and compressed by a TRE.

A very common and effective parallel-serial mixed scheme is obtained by partitioning
afull scan path into multiple scan chains (Figure 3.3).

Test start —»
Pattern CUT
Counter
A A
Shift vy
Counter TPG — Scan Path » TRE
Testend <«— 7'y
BCU
Shift/Capture

Figure 3.2: Test-per-scan scheme (adapted from [Wun98]).

FE Multiple Scan Chains
) 4
== g L B ey V'
- sninter T T
(PS) S
»| 1 .
=1 o0 Y By e
i CuT i
4
PRPG TRE

Figure 3.3: STUMPS architecture for parallel-serial mixed scheme (adapted
from [Wun02)).

3.1 Test-per-scan Schemes 17

In Figure 3.3, the test patterns are generated by a pseudo-random pattern generator
(PRPG) and the responses are compacted by a multiple input shift register (MISR).
Both the PRPG and the MISR are typicaly implemented as linear feedback shift
registers (LFSRs) (Section 3.3.1). Such a scheme is caled Salf-Test Using MISR and
Parallel Shift register sequence generator (STUMPS) [Bar82].

The basic design with multiple scan chains suffers from highly correlated patterns
(Section 3.3.1). To solve this problem, XOR-trees (phase shifters (PS)) may be
inserted between the LFSR and the scan chains inputs (Figure 3.3) [Bar90][Rg98].
This logic transforms the LFSR outputs into several uncorrelated signals. In order to
reduce test time, power consumption and storage requirement, other scan structures
like scan forest [Xia03] or Illinois scan [Hsu01] may be used.

There are severa approaches to transform the storage elements of the CUT into scan
elements. For example, edge-triggered D-type flip-flops can be transformed into so-
caled scan flip-flops by adding a multiplexer (Figure 3.4 (a)) in front of them. A
scan-enable signal is used to switch between shift and capture modes and the same
clock signal can be used for both modes [Abr9Q].

An example of level-triggered storage element transformed into scan element is
shown in Figure 3.4 (b). Here, the switching between shift and capture modes is made
with the help of two clock signals that control the first of the two latches.

Test-per-scan schemes have several advantages: (a) high fault/defect coverage; (b)
reduced test data size (compared to sequentia test patterns); (c) relatively low test
generation time; (d) reduced test costs (no specia requirement for costly ATEs for
functiona testing); (e) low impact on the system behavior, as only scan paths are
included into the mission logic and (f) separation of the pattern generator from the
CUT, so that it can be synthesized at alater step of the design flow.

(2) Edge— Triggered Scan Element (Scan Flip-Flop)

Data-Out /
Scanin. —>1 1 M AR QT g out
U -
Datarin —» 0 X > CLK
A
Scan-Enable Clock

(b) Level Sensitive Scan Element (Shift Register Latch)

Data-in >
System Clock > L > Data-Out
Scan-in » Latch

i > > L2 » Scan-Out
Shift Clock A > Leh
Shift Clock B >

Figure 3.4: Storage cells for scan design (adapted from [Wun02)).

18 3 Basic Concepts of Built-In Self-Test

The drawbacks of test-per-scan schemes are: (i) long test application time required by
the scan mode; (ii) functionally untestable faults can be activated®; (iii) reduced
testability for faults whose detection necessitates pairs of test patterns and (iv) re-
duced system performance if scan elements are introduced into the critical paths. If
partial scan paths [Jou95][Tri80] are used, such problems can be reduced and more
test patterns may be applied within the same test time.

3.2 Test-per-clock Schemes

In atest-per-clock scheme [Koe79][Kra89][Stro4][Wan86], a test pattern is applied to
the CUT every clock cycle. This scheme is best suited for register-based design. This
kind of scheme employs a specific BIST architecture using the built-in logic block ob-
server (BILBO) [Koe79], which is a more sophisticated register that can function as a
normal state register, scan register, PRPG or MISR All functionality of the BILBO
depends on the mode input signals By and B;. Signal By controls all the registers to
switch between the global and local modes (Figure 3.5). The global mode covers the
functional and scan modes. In the local mode the registers may act as pattern genera-
tors or response evaluators. In order to select each of these sub-modes associated with
the globa or local mode, the signal B; is used. In contrast to signal By, which is
unique for all registers, the signal B, depends upon the addressed register.

In Figure 3.6, it can be seen how to facilitate testing by changing the functionality of
the BILBO registers. Initially, the registers R; and R, are initialized in scan mode.
Then register R; is set to a PRPG mode for the combinational logic C; and the test re-
sponses are observed by register R, that functions in response evauation mode as
MISR. The combinational logic C, is tested after the test outcome contained in R; is
shifted out and the functionalities of R; and R, are interchanged. In the end, the new
test outcome contained in R; has to be shifted out.

inputs { n
SDO
L » BoB1 Mode
SDI 00 Shift
BILB B
—> © D 01 System globd
A B1 fe— 1 0 | Patterngeneration |
1 1 |Responseevauation
outputs n

Figure 3.5: Control signals of aBILBO (adapted from [Wun98]).

SDI i SDO T

C2 R1 Ci R2

|)

Figure 3.6: Test-per-clock scheme (adapted from [Wun02]).

* The test of faults (paths) that cannot be functionally activated may result in ayield loss.

3.3 Test Pattern Generation 19

Compared to test-per-scan schemes, the test-per-clock schemes have both advantages
and disadvantages. The advantages of test-per-clock schemes are: (@) shorter test
times and better support for two-pattern testing [Coc98], as a new pattern can be
applied in each clock cycle; and (b) better support for at-speed testing, as no pattern
shifting is required, which generaly is done at alower speed.

The disadvantages of the test-per-clock schemes may be the following: (i) larger
hardware overhead and (ii) stronger impact on the system behaviour and design flow.
The overhead can also be affected by the increased complexity in the test-per-clock
schedule that requires the synthesis of a rather complex BCU. One reason for these
disadvantages is that additional test registers have to be included, due to the fact that
normal BILBO registers cannot work as TPG and TRE simultaneoudly. In [Wan86], a
specia type of BILBO register, aso called concurrent BILBO, has been introduced,
which is able to perform signature analysis and pattern generation concurrently.

3.3 Test Pattern Generation

Test pattern generation for both test-per-scan and test-per-clock BIST schemes can be
classified into the following groups: pseudo-random, weighted, exhaustive, pseudo-
exhaustive, deterministic and mixed-mode schemes.

3.3.1 Pseaudo-Random Patter n Generation

Pseudo-random pattern testing is an attractive approach for BIST. Possible choices for
pseudo-random pattern generators (PRPGSs) are one-dimensional linear hybrid cellular
automata (LHCAS), linear feedback shift registers (LFSRs) or different accumulator
based structures [Gup96][Wu98]. As processor kernels or programmable units are
integrated into SOCs, they can aso be used for pattern generation [Hel 96].

An LHCA [Cat96][Kha87] is a collection of memory cells X1, Xa,..., Xj-1, Xj, Xj+1, ...
connected in such away that each cell isrestricted to local neighborhood interactions.
The next state of each cell is determined based on the states of the cells with each the
considered cell interacts. For example, if cell j can communicate only with the
neighbor cells, j-1 and j+1, one of the following two rules can be employed: x;(t+1) =
Xj1(t) O Xj+a(t) or x(t+1) = x;.2(t) O x(t) O X;+1(t), where x;(t) represents the state of
cell j at timet.

An LFSR is a Moore finite state machine that consists of interconnected memory
elements, also referred to as stages or cells, and linear logic elements such as
exclusive-OR (XOR) or exclusive-NOR (XNOR) gates. Several LFSR configurations
are used in a variety of design for testability (DFT) schemes. In this sub-section, the
basic theory and the operation of two basic LFSR types will be briefly discussed.

The canonical form of an LFSR, also called standard LFSR (SLFSR), is sketched in
Figure 3.7. Here, h; is a binary constant. hj=1 implies that a connection exists, while
hi=0 implies that no connection exists. In the latter case the corresponding XOR gate
can be replaced by a direct connection between the gate input and its output.

20 3 Basic Concepts of Built-In Self-Test

a, .. &

A

Xo |&—— ...

A

1 Xk-2 Xk-1

A
P E—

1
L/

Figure 3.7: Standard linear feedback shift register (adapted from [Wun98]).

o @

The behavior of an SLFSR is completely determined by the feedback coefficients hy,
k-1
s N, which define a polynomial h(x)=x*+> h x' caled the characteristic or

j=0
feedback polynomial. The output sequence a, of the SLFSR has to satisfy the follow-
ing recurrence equation:
k-1

forv=0, .., k-1. a=x,andforvzk: a,=» a,.;h,
i=0

The state transition matrix H of the SLFSR is shown in Figure 3.8. Given the state
transition matrix H, the characteristic polynomial h(x) is equa to det(H+xID). If the
initial state is an all-0 state, the subsequent states can only be all-0 states. Conse-
guently, the all-0 state will lock up the SLFSR in a degenerated sequence. If the initial
state of an SLFSR is different from the all-0 state, the SLFSR will produce a non-
degenerated sequence of states/outputs, which is periodic and its period cannot be
greater than 2%-1 (k is the length of the SLFSR).

The period of the non-degenerated output sequence (a,)v=o produced by an SLFSR of
length k is the smallest integer p (< 2“-1) such that the polynomial (1-xP) is divided by

k .
the reciprocal of the characteristic polynomial [Gol82]: x Elh(lj =1+ Z he;x'.
X =

For any length k of an SLFSR, feedback pola/nomials exist which can generate
state/output sequences of maximum length (2°-1). The characteristic polynomial
corresponding to such an SLFSR is referred to as primitive polynomial. A primitive
polynomial is irreducible [Gol82], which means that it cannot be factored out. Figure
3.9 illustrates an example of a maximum length SLFSR.

Xt +1 X\t 010..0 O X\t
X (t+1 X, (t 001..0 O x, (t
=H = il
Xo(t+1)] | %e()| [000.0 1| x ()
X1 (t +1) X1 (t) hO hl h2 "'hk-2 hk—l X1 (t)

Figure 3.8: State transition matrix of an SLFSR (adapted from [Wun98]).

3.3 Test Pattern Generation 21

X
[S)

X
i

X
S

\ 4
o
v

— 1 I 0

@

|
A

Ll peyoy
RlOOrRORRLRPR
olororrEroO
olrorRrErOO

S/ =

Figure 3.9: Example of maximum length SLFSR (adapted from [Wun02]).

The output sequence (a,)v=0 generated by an SLFSR with a primitive polynomial has
severa random properties [Gol82] and it is called a pseudo-random sequence. Test
patterns that are pseudo-randomly generated are used in many BIST schemes. The
main limitation of this test pattern generation approach is that, in most of the cases,
insufficient fault coverage is achieved due to linear dependencies. This happens when
theinitial state of an LFSR, that has to generate a particular output sequence (a,)v=o, IS
defined by the solution of an unsolvable systems of equations.

In the example of Figure 3.10, each specified bit g in the test sequence corresponds to
a linear equation in the variables describing the initial state of the LFSR: X, X1, Xo.
The detection of the stuck-at O fault at the output O, requires & [J a4 [& = 1, for
which no solution exits.

If sisthe number of specified bits in the output sequence of a k-bit SLFSR, then the
probability P that the system of equations determined by the s entries is linearly
dependent is given by the following expression [Che38]:

s-1 2k _ 2i

P=1-
| 1ok —j-1

For example, the selection of 20 entries from the output sequence produced by a 32-
bit SLFSR leads to a probability P = 0.000244 that these 20 bits are dependent and
cannot be set randomly.

The linear dependency problem is enhanced in the case of designs with multiple scan
chains. As already mentioned in Section 3.1, this problem can be solved by inserting
XOR-trees (phase shifters) [Bar90][Raj98] between the LFSR and the scan chains
inputs (Figure 3.3). Besides reordering the memory elements in the scan paths,
another way to improve the encoding efficiency of an LFSR or of any other linear test
pattern generator or decompressor isto insert inversion logic (invertors or XOR-gates)
between the scan elements [Bal04][Lai04].

22 3 Basic Concepts of Built-In Self-Test

I
o, — t A X1
& X2
o B e XoD Xo
2 - —
- ||
stuck-at O] & Xo X1 O X2
a5 Xo X
0, — & 0 1
O; —|
+ a Xo

X1 XoT

Figure 3.10: LFSR-based testing (adapted from [Wun98)).

S mk

A

An dternative way to implement an LFSR is the so-called modular linear feedback
shift register (MLFSR) as illustrated in Figure 3.11. The XOR-gates are connected
between the stages of the MLFSR. MLFSRs are faster than SLFSRs as the maximum
delay is one XOR gate. Moreover, the difference between successive internal statesis
enhanced in the case of an MLFSR, which is especially useful for BIST applications.

It can be easily proven that for each MLFSR (SLFSR), an SLFSR (MLFSR) with an
equivalent state transition matrix can be found which is expressed by the relations:
Hs or = T[E-IMLSFREI"l and Huisr = T-1|:B'|S|_S|:R|:||- (Figure 312) Hence, al results
derived for SLFSRs aso hold for MLFSRs.

0, ..o & .
“ X1 [“ Xo

»
|

Figure 3.11: Modular linear feedback shift register (adapted from [Wun98]).

3.3 Test Pattern Generation 23

010.. 0 O

.. ...0 O
Hore = TH e 0T Where: Hg o =

00...0 1

hohh, b, My

000..0 h, hh h, h .. h,h,1

10...0 h, h, h h.. h, 10
P RN h. ; .

s s s owss o . k-1 . . .

00...0h_, h, 1 0 0 00

00...1h_ 1 0 ... 0 00

Figure 3.12: Equivalence between the transition matrices of MLFSRs and
SLFSRs (adapted from [Hua03]).

3.3.2 Weighted-Random Pattern Testing

Although LFSRs, LHCASs or other linear TPGs can generate a large set of pseudo-
random test patterns with very simple hardware, this seldom provides sufficient fault
coverage for aCUT. A way to address this problem is to use weighted-random pattern
testing techniques.

The TPG used in weighted-random pattern testing is composed of an LFSR and
additional combinational logic to modify the probability of ones and zeros in the
output sequence. This weighting circuitry is used to bias the pseudo-random patterns
towards those that detect random pattern resistant faults, such that the fault coverage
isincreased and the test length can be reduced.

Severa techniques have been proposed for computing weight sets [Wun85][Bar87].
In [Wun90] it has been shown that for most circuits, multiple weight sets are required
to achieve sufficient fault coverage. For this reason, the weight sets have to be stored
on-chip and additional control logic is needed to switch between them during the test
time. Thisincreases the BIST overhead alot.

Extensions of the weighted-random pattern testing are presented in [Tsa00][Lai04],
among others.

24 3 Basic Concepts of Built-In Self-Test

3.3.3 Exhaustive and Pseudo-Exhaustive Testing

Exhaustive testing applies al possible 2" test patterns to an n-input combinational
circuit [Mcc81], so that a high quality test can be obtained and no particular fault
model is used. The test pattern generator can be a binary counter or an LFSR with a
primitive feedback polynomial, in which the all-zero pattern may be generated by a
reset signal. As the number of test patterns increases exponentially with the number of
the circuit inputs, this approach is usually not feasible for circuits with alarge number
of inputs (n>30).

Pseudo-exhaustive testing relies on the partition of the CUT into output cones which
are tested exhaustively [Mcc81][Hel90][Abr90]. As compared to exhaustive testing,
far fewer test patterns are required. Nevertheless, the feasibility of pseudo-exhaustive
testing depends on the size of the largest output cone.

3.3.4 Deterministic Testing

Deterministic testing applies a pre-computed set of test cubes (test patterns with
unspecified bits) to the CUT. Thus, any coverage of the testable faults can be
achieved. The patterns may be stored on-chip, e.g. using a ROM, or off-chip in which
case they have to be loaded from an ATE. In both approaches the data volume to be
stored tends to be extremely large.

In the case of the ATE-based approach this may aso have a strong impact on the
required bandwidth. In order to reduce the storage and bandwidth requirements,
specia algorithms for generating compact test sets can be used [Cha0l1][Gon02]
[Ka95][Red92][Tro91][Wue04]. Similar approaches can adso be used with (ROM-
based) BIST schemes to reduce the storage requirements. Such methods are often
called store and generate [Agr81].

An intensively investigated store and generate technique uses LFSR-reseeding. It is
based on storing pre-computed LFSR seeds that can be used to generate deterministic
test cubes [Koe9l]. Reseeding-based encoding provides a higher compression ratio
than any other entropy-based compression method [Tou04]. As seeds are smaller than
the test patterns themselves, they require less ROM storage. A small LFSR with a
single feedback polynomia may not always have a seed that will generate all the
required deterministic test cubes. Multiple-polynomia LFSR schemes [Hel92][Hel95]
can fix this problem. The LFSR can operate corresponding to a limited number of
different feedback polynomials and produce al the deterministic cubes. Both
polynomial and seed identifiers need to be stored.

A different class of reseeding techniques is based on special counters that generate a
deterministic set of test cubes. Twisted-ring counter [Cha00] and folding counter
[Lia02] are approaches which embed deterministic cubes into counter sequences.
They can efficiently reduce test data storage with full fault coverage, but the ap-
proaches are not compatible with standard scan design.

More efficient compression and decompression methods are those in which a small
amount of external test data is continuously fed into the chip [Koe91][Rg02]
[Wue04]. As long as these methods are based on the use of an external ATE and not

3.4 Test Response Evaluation 25

on an internal memory, they are no longer BIST methods and lose some specific
benefits of BIST like in-field and on-line testing.

3.3.5Mixed-Mode Testing

Mixed-mode approaches can achieve more efficient test data compression and hard-
ware implementation than pure deterministic test schemes. Mixed-mode testing
combines pseudo-random testing with various deterministic testing schemes so that
the test storage requirements can be significantly reduced and high levels of fault
coverage can be obtained within a reasonabl e test application time.

Usually in mixed-mode approaches, the pseudo-random patterns produced by LFSRs
are used to test easy-to-detect faults. To increase the number of detected faults, test
points can be inserted into the CUT [GeuO0][Hay74][Sei91][Vra02]. While the area
increase due to the test points may be tolerable, they may also introduce additional
delays, which could require a complete resynthesis and a new timing verification
[VraD4]. For the remaining faults, deterministic test patterns can be generated by an
automatic test pattern generator (ATPG) and stored in a ROM.

In other mixed-mode approaches, often called test set embedding schemes, determinis-
tic test patterns are embedded in pseudo-random sequences with the help of some
additional combinational logic [Tou96][Wun96][Ghe04]. In the bit-flipping approach,
the output sequence of an LFSR is inverted at a few bit positions in order to increase
fault coverage [Wun96][Ghe04], while the bit-fixing approach applies constant values
[Tou96].

The so-called Sar Test approach introduced in [Tsa97][Tsa00] uses deterministic test
patterns which are surrounded at a limited Hamming distance by clusters of child
patterns. Based on the use of parent patterns, the Star Test approach can be considered
a deterministic method. Due to the way in which the clusters of child patterns are
produced, this scheme can aso be classified as a generalized weighted-random pattern
testing.

Processor kernels or programmable units integrated into the system containing the
CUT may also be used to emulate deterministic or mixed-mode schemes [Hel96].

3.4 Test Response Evaluation

Besides test pattern generation, BIST architectures should also be able to com-
press/evaluate test responses. As the number of test patterns applied to the CUT is
usualy very large, it isinfeasible to store al the expected values on-chip and compare
them with the response values. It is much cheaper in terms of storage requirement and
compacting circuitry to compress the test responses to short sequences, called signa-
tures, which are delivered for analysis at the end of the test session [Abr90].

A signature is obtained as the final state of a finite state machine whose inputs are fed
with test responses. This type of compression which addresses the length of the test
response sequence is also known as time compression. Examples of time compressors
are accumulator, LFSR- and counter-based compactors [Abr90][Rg93].

26 3 Basic Concepts of Built-In Self-Test

The other type of test response compaction, caled space compression, is used to
transform n test outputs into m<n signals, which may be connected to the primary
outputs of the chip or, eventualy, to the inputs of a time compressor. Linear space
compactors are built with XOR or XNOR gates [Mit04]. Consequently, they may
mask out bits carrying the information about the CUT errors. For example, any
combination of an odd number of errors on the inputs of a XOR tree propagates to its
output, but a combination of an even number of errors remains undetected.

A reduced number of test outputs helps to reduce the ATE storage and bandwidth
requirement. In the case of a BIST scheme, the space compression can be also used to
reduce the size of the time compressor by limiting the number of its parale inputs.
Limitations of space compression may be the loss of information and fault coverage,
if the CUT output includes joint cones [Mit04].

This sub-section considers the LFSR-based time compression and the related signa-
ture analysis. An LFSR has the property that it divides the input data (in this case, the
test responses) by the characteristic polynomial. The signature is obtained as final
remainder of such successive divisions. Instead of comparing a large set of test out-
puts, only the signature defined as the final state of the LFSR obtained at the end of
the testing needs to be compared.

MLFSR and SLFSR-based time compressors are shown in Figure 3.13. Thelr input
signals come from the outputs of the scan paths. The output stream is not observed,
and only the final state of the LFSR is used.

Q Scan Path Out
< Sr1 @ Sr2 H-——- S1 D So O,
E
D (@ O
(@ MLFSR

A

(b) SLFSR Scan Path Out

Figure 3.13: LFSR-based time compressors (adapted from [Wun98]).

3.4 Test Response Evaluation 27

Figure 3.14 shows an example of the polynomial division performed by an MLFSR-
based time compressor. The operation of the time compressor is defined by its
feedback polynomial g(x) = g X" + gy X' + ... + go = x* + x? + x + 1, the input
sequence e(X) = e, X" + ey X" + ... + g = X' + x>+ x* + x = 10001110, the output
sequence q(X) = gn X" + Gt X+ ... + 0o = X3+ x* + 1 and the remainder polynomial
S(X) = 51 X + ... + 5 =X+ x* + x* + 1. Among these polynomials the following
relation exists:

e(x) s(x)

— = qX)+——=
) 9(x)

The signature S = 1111 can be derived from the expression of the remainder polyno-

mia s(x).

The LFSR-based time compressor discussed above had only one single input. It is
straightforward to extend the number of inputs of an LFSR-based time compressor
and to obtain a so-caled multi-input shift register (MISR), which can be used for
parallel signature analysis (Figure 3.15).

g=1011 s=1111 e =10001110

A
&
7y

S S1 So

0=1 o1=1 Oo=1

Figure 3.14: LFSR performing division (adapted from [Hua03]).

dl d2 dr—2 dr—l CIr
S-1 [¢ * S2 (D ——— s +O— % «O
e @ ®» @ @
(@) MLFSR
d> dy

(b) SLFSR
Figure 3.15: Paralel signature analysis (adapted from [Wun02]).

28 3 Basic Concepts of Built-In Self-Test

An ideal compaction agorithm has the following features: (@) it should be easy to
implement it as a part of the on-chip DFT circuitry; (b) it should not be a limiting
factor with respect to test time; (c) it should provide alogarithmic compression of the
test data; and (d) it should not lose information concerning the tested faults. However,
there is no known compaction algorithm that satisfies all the above criteria In
particular, it is difficult to ensure that the compressed output obtained from a faulty
circuit is not the same as the output of the fault-free circuit. This phenomenon is often
referred to as error masking or aliasing and is measured in terms of the likelihood of
Its occurrence.

Aliasing occurs because many compaction operations have an inherent filtering effect.
Methods to design test response compactors with minimum aliasing probability are
available in [Dac90][Dam89][Stro0][Zor90], among others. They use primitive feed-
back polynomials and assume that errors occur randomly.

The probability of aiasing for MISR-based compression has been theoretically
proven to be 2% where k is the signature length. We can note that the result is
independent of the size and complexity of the CUT and a long signature can provide
low aliasing.

The use of accumulator based structures for test response compaction leads to aliasing
probabilities comparable to the MISR-based methodology [Rg93]. In the counter-
based time compression approach the number of ones or the number of 0-1 and 1-0
transitions in the test response sequences are counted. Depending upon the situation,
either ones counting, transition counting or M1SR-based time compression is a better
solution [Abr90Q].

Due to its low aliasing, high speed, small hardware overhead and better scalability
(for improving the aliasing probability only the characteristic polynomial or the length
of the register needs to be changed), the MISR-based solution is chosen for BIST.

Chapter 4

Representation, Manipulation and I mplementation of
Boolean Functions

This chapter discusses two basic approaches that are used for the representation and
manipulation of Boolean functions. These two approaches rely on the cube- and
Binary Decision Diagram (BDD)-based representations, respectively. Logic im-
plementation styles using the two representations are also analyzed.

Here, a distinction has to be made between completely and incompletely specified
Boolean functions. In the sequel, lowercase letters will be used to indicate completely
specified functions (e.g. f, g), while uppercase letters will be used to denote
incompletely specified functions (e.g. F, G).

Definition 4.1: Given an incompletely specified function F:{0,1}" - {0,1,X} (the
symbol ‘X’ indicates a don’t care), its definition space is partitioned
into 3 sets: ON-set, OFF-set and DC-set containing all the input
assignments mapped to ‘1, ‘0’ and ‘X’, respectively. Depending
whether the DC-set is empty or not, the functions are classified into
completely specified (DC-set = 1) and incompletely specified (DC-
set).

In order to define an incompletely specified function, at least 2 of the 3 sets above in
their true or negated form should be specified. All over this work, the ON-set and the
OFF-set are chosen to represent incompletely specified functions. Consequently, an
incompletely specified function F:{0,1}" —{0,1,X} will be represented by 2 com-
pletely specified functions fo, and fo that have the following properties:

o fn{0,1}"-{0,1} defines the input assignments mapped by F to ‘1’: f,(ON-
%t) = 1, fon(OFF'Set) = fon(DC'%t) = O.

o f:{0,1}"-{0,1} defines the input assignments mapped by F to ‘0’: f(OFF-
Set) = 1, foff(ON-Set) = foff(DC-Set) =0.

In the sequel, F(fon, for) Will denote an incompletely specified function F:{0,1}"
~.{0,1,X}, represented by the functions fon, and fo:{ 0,1}~ - {0,1} .

Definition 4.2: A completely specified function Cov(F) is called a cover of F(fon, forf)
iff the following holds: fon/ICoV(F) = fon and for Cov(F) = 0. Here,
Cov(F) will be assimilated to a possible implementation of F(fon, forr).

Section 4.1 introduces the cube-based, aso called digunctive two-level, representa-

30 4 Representation, Manipulation and | mplementation of Boolean Functions

tion. The generalization of this representation to the multi-level representation and
implementation is described in Section 4.2. Section 4.3 presents the representation,
manipulation and logic synthesis of Boolean functions based on BDDs.

4.1 Two-level (Cube-based) Representations of Boolean
Functions

The definitions below are given for a better understanding of the following discussion.

Definition 4.3: A litera isavariablein itstrue or negated form.
Examples of literdsare: a, —a, b, =b, ¢, =c

Definition 4.4: The cofactor of a Boolean function f by a literal |1L{x, =X} is a
Boolean function, f|;, which is equal to f evaluated at x, if | = x, or at
=X, if ==X

Definition 4.5: A product-term, aso called cube, is a set of literals and it is used to
represent the function obtained by the product of the literas in the
set. Examples of cubes are: a/bb/Ac, -b/é/Ad/é

Using the cube-based representation, a function can be expressed in the sum-of-prod-
ucts form, also called disjunctive form. Examples of cube-based representations are:

fi=ab/Ac+ -ble/FAd/ e
fo=-aHc+ cd+ -b/fe+ afd

Besides the digunctive form, the two-level representation also has a conjunctive form,
in which the considered function is represented as a product-of-sums. Examples of
conjunctive forms are:

fs=(@+ b+ -c)(-b+c+-d+ e
fs=(-a+ b+ -c)(c+ d)(-b+ -¢ga+ ~d)

Definition 4.6: Each cube in a sum-of-products (also called cube)-based representa
tion of the function f is aso called product-term or implicant.

Definition 4.7: Given a Boolean function f:{0,1}"-{0,1}, an implicant of it that
contains n literas is caled minterm. A minterm corresponds to a
completely specified input assignment mapped by fto ‘1.

Two-level representations are especiadly suitable for a design style based on
programmable logic arrays (PLAS). This is due to the fact that each product/sum of
the two-level representation isimplemented as a row/column of the PLA.

All the following considerations can be applied to both the digunctive and the
conjunctive two-level representations, assuming a few modifications. For the sake of
simplicity, only the digunctive two-level (also called cube)-based representations will
be considered from now on.

4.2 Multi-level Implementations of Boolean Functions 31

Definition 4.8: An implicant (or cube) c of a sum-of-products expression f is prime if
none of the c’s literals can be removed such that the function repre-
sented by f remains unchanged. A sum-of-productsis primeif it con-
tains only prime implicants.

Definition 4.9: A sum-of-products expression f is irredundant if the remova of any
implicant (or cube) cl1f produces a non-equivalent expression.

The goal of the cube-based implementation is to find digunctive two-level representa-
tions with a (near-)minima number of product terms and literals. Consequently, for
an efficient manipulation and implementation, the used sum-of-products has to be
prime and irredundant. Exact minimization techniques for the cube-based logic
implementation involve two steps [Brad7]:

» generation of all primeimplicants
» extraction of aminimum prime and irredundant cover

Two well known methods for the generation of al prime implicants are based on the
covering of Karnaugh-Veitch maps or on the Quine-McCluskey algorithm [Mcc65].
Unfortunately, the number of all prime implicants of a Boolean function can be very
high. It can be shown that this number can be as large as 3"/n for a function with n
inputs [Brad7].

Exact extraction of a minimum prime cover involves the solution of a minimum
covering problem that is known to belong to the class of NP-complete problems
[Brag7].

Most known heuristics to deal with the minimization of the two-level covers are
included in the program ESPRESSO [Bra97], which is especially suitable for the
implementation of incompletely specified functions. Unfortunately, many of the em-
ployed algorithms have an exponential worst-case complexity [Bra97]. Consequently,
only relatively small problems can be efficiently handled with ESPRESSO.

The poor scalability of ESPRESSO is also a consequence of the poor scalability of the
cube-based implementation of the Boolean operators. A way to circumvent this
problem was given by Minato in [Min97] where a new representation, called Zero-
Suppressed Binary Decision Diagram (ZBDD), had been introduced.

4.2 M ulti-level I mplementations of Boolean Functions

A generdlization of the two-level representation is the multi-level representation,
which is used to obtain more compact implementations of Boolean functions. As an
example, consider the implementation of the Boolean function f below, which is given
initsminimal cube-based representation:

f=a/b/¢+ab/Fe+alb/g+c/d+dFe+dh 4.2
By using an intermediate variable p, the function f can be rewritten as follows:

f=ple+plre+ab/g+dh, p=ab+d

32 4 Representation, Manipulation and | mplementation of Boolean Functions

By using another two intermediate variables g and r, the function f can be rewritten as
follows:

f=plg+rig+dHh, p=r+d, q=c+-e r=ab (4.2)

Multi-level implementations are especialy useful for standard cell design. In such a
case the implementation of the expression (4.1) requires 14 2-input logic gates, while
the implementation of the expression (4.2) needs only 8 2-input logic gates.

The operation used to simplify the expression (4.1) to (4.2) is called factorization.
Factorized forms can be achieved by performing one of the two types of division
[Bra37]: the algebraic-division, also called weak-division, or the Boolean-division.
The algebraic-division is relatively easier to implement, but the Boolean-division
provides better results.

For multi-level logic synthesis based on factorization, the quality of the results greatly
depends on the choice of the divisors. Divisor extraction methods for both algebraic-
divison and Boolean-divison are described and successfully used in [Bra87]. A
simple and fast divisor extraction method together with a fast algebraic-division
approach is presented in [Min97].

A way to represent multi-level formsis to use Boolean networks:

Definition 4.10: A Boolean network is a net-list of connected components, where
each individual component may implement an arbitrary Boolean
function.

Relevant examples of multi-level synthesis tools which are able to handle don’'t cares
are MIS [Bra87], SIS [Sen92] and Minato’s multi-level logic synthesizer [Min97]. In
MIS and SIS, the DC-based optimization relies on ESPRESSO or simpler variants of
it, which can act only on the two-level representation of the functions implemented by
each node of the target Boolean network. This DC-based optimization does not
necessarily guarantee a reduction of the size of the Boolean network [Bra87].

In Minato’s multi-level logic synthesizer, the algorithm of Minato and Morreae is
used to generate a prime-irredundant cube cover of the target incompletely specified
function [Min97]. The cube cover is transformed into a multi-level circuit with the
help of a heuristic for fast algebraic-division.

In both multi-level synthesis approaches, the DC-set is only used for optimizations of
two-level representations.

4.3 BDD-based Representations of Boolean Functions 33

4.3 BDD-based Representations of Boolean Functions

Reduced ordered BDDs (ROBDDs) [Akr78][Lee59] offer an efficient way for
manipulating and representing a large variety of Boolean functions [Bec95][Bry86].
Moreover, the internal structure of BDDs provides the basis for logic synthesis
solutions that can be considered as a compromise between two- and multi-level logic
implementations (Section 4.3.3).

Definition 4.11 A BDD is arooted, directed, acyclic graph {V, E} with an edge set E
and a vertex (node) set V containing two types of vertices. A non-
terminal vertex v has two attributes: an argument index index(v) [
{1,..., n}, which indexes an input variable, and two children (sib-
lings) low(V), high(v) O V. A terminal (leaf) vertex v has as attribute
a value value(v) [{0,1}. Each non-terminal node v is connected to
its high(v), low(V) children by a then-edge, else-edge [1 E, respec-
tively.

Figure 4.1 shows the BDD-based representation of the parity function parity(a,b,c)
that operates on the input variables a, b, and c. The function result is 0 if there is an
even number of input variables that have the value 1, while the function result is 1 if
there is an odd number of input variables that have the value 1. For instance,
parity(011) = 0 and parity(010) = 1. The labels at the edges correspond to the variable
value of the parent vertex. The BDD-based representation of the parity function with
n input variables contains 2n+1 vertices, while a cube-based representation of the
same function would require 2™ cubes. When evaluating the compaction of the cube-
and BDD-based representations, one should look not only at the numbers of cubes and
nodes, but one should also notice that the cube size may grow linearly with the
number of input variables, while the size of a BDD node stays constant.

This example illustrates that a BDD may be a very compact representation for certain
logic functions. A second advantage of BDDs is that the complexity of many logic
operations performed by using BDD-based representations scales linearly with the
number of input variables [Bry86].

A few special BDD types and their properties are presented in the following.

Figure4.1: BDD representation of the parity function with three input variables
(adapted from [Bry86]).

34 4 Representation, Manipulation and | mplementation of Boolean Functions

4.3.1 Types of Binary Decision Diagrams

BDDs can be compacted (reduced) with the help of two rules: merging and deletion
(elimination). Merging unifies pairs of BDD nodes with the same index and identical
low- and high-children. Such a pair of nodesis called isomorphic. Deletion removes a
node whose children represent the same function and replaces it by one of its children
[Bry86]. If each node in a BDD represents a different function, then this BDD is said
to be a reduced BDD (RBDD). For example, the BDD presented in Figure 4.1 is
reduced.

ZBDDs have a different deletion rule according to which only those non-terminal
nodes are eliminated whose then-edge points to atermina node with the value 0.

Each non-terminal node v of a BDD implements a Shannon decomposition (expan-
sion) of the Boolean function f(v) represented by the sub-graph rooted at v:

f(v) = xA(high(v)) + = xd(low(V))

where x is the input variable indexed by index(v). The functions implemented by the
children of v are the f(v) cofactors by the input variable x: f(high(v)) = f(v)|x=1 and
f(low(v)) = f(V) h=o-

If, instead of the Shannon decomposition, each non-terminal node implements the
Reed-Muller (Davio) expansion, a new type of decision diagram is obtained: the
functional Decision Diagram (FDD) [Kebh92][Keb93]. Each non-terminal node v of a
FDD may implement a positive or a negative Davio decomposition of the Boolean
function f(v) represented by the sub-graph rooted at v:

f(v) = f(high(v)) O x(low(Vv)) (positive Davio)
f(v) = f(high(v)) O -x/#(low(v)) (negative Davio)

where f(low(v)) = f(V)x=0 O f(V)|x=1, f(high(Vv)) = f(V)|x=0 (positive Davio) or f(high(v)) =
f(v) [x=1(negative Davio).

In order to improve the BDD-based manipulation of Boolean functions, arestriction is
introduced that the input variable (node index) order is fixed on all the paths starting
from the root node and ending a a termina node [Bry86]. With respect to this
restriction the following types of BDDs can be defined.

Definition 4.12 A free BDD (FBDD) is a BDD in which: (a) each node index can
appear at most once on a given path from root to aterminal node (for
reasons explained in Section 7.2, this restriction will be disabled
here) and (b) different paths can have different orderings of the node
indices. An ordered BDD (OBDD) [Bry86] is afree BDD where the
node indices can appear at most once and only in the same order on
al the paths from root to a leaf node. For example, the BDD
presented in Figure 4.1 isareduced OBDD (ROBDD).

For agiven variable order, ROBDDs provide only one canonical representation of the
Boolean functions. ROFDDs may provide 2" different canonical representations for a
given variable order, where n is the number of input variables. The number 2" is due

4.3 BDD-based Representations of Boolean Functions 35

to the fact that for each variable, either the positive or the negative Davio decomposi-
tion can be used.

In order to improve performance, these BDD types can be combined to obtain hybrid
structures with better properties (e.g. better compaction) [Ger96][Dr98].

4.3.2 ROBDD-based M anipulation of Boolean Functions

One of the benefits of the ROBDD-based representation is the efficient manipulation
of Boolean functions. The time complexities of the ROBDD-based implementations
of the basic logic operations [Bry86][Sie93] are provided in Table 4.1, using the
notations given below:

* nisthe number of input variables of the considered Boolean functions.

* G denotes the graph of the ROBDD-based representation of the considered
Boolean function for a given variable order. Only the reduce operator, which
transforms an OBDD into a ROBDD, receives an unreduced G as input. |G|
represents the node count of the graph G.

e & denotes the satisfying set of the Boolean function f, which is set of
completely specified input assignments mapped to * 1’ by the function f.

* |if|| represents the cardinality of .

Procedure Result Time Complexity
Equivaence check fi==forf, 1=1, Constant
Negation -f Constant
Reduce G reduced to canonical form o(IG))
Apply F1 <operator> f, O(|G1|1=2])
Compose fal=12 O(IG1f1G2))
Cofactor computation flx=b o(IG))
Satisfy-one Some element of & O(n)
Satisfy-all S O(nd¥Ip
Satisfy-count [IF1] o(IG))

Table 4.1: Time-complexity of basic logic operations performed with ROBDD-
based representations [Bry86].

Due to the fact that for a given variable order the ROBDD-based representation is
canonical, the ROBDD-based implementations of equivalence (f; = f,), tautology
(f = 1) and satisfiability (f = 0)) have constant complexity in BDD-packages where al
the nodes are stored in a so-called unique table®. The use of complemented edges
[Cudd] enables to implement the BDD-based negation with constant complexity. The
ROBDD-based implementation of the apply operator (e.g. logic OR or AND
operators) can be made very efficient by the use of hash-tableg Cudd], as long as the

® A hash table in which each BDD-node represents a different function.

36 4 Representation, Manipulation and | mplementation of Boolean Functions

size of the ROBDD-based representation does not explode due to the dependence of
the apply operator on |G|.

The complexity of the cube-based apply operator has a lower bound given by the
product of the cardinalities of the cube-based representations of the involved
operands. The cube-based implementations of the equivalence check, tautology check,
negation and compose operators are very expensive. The cube-based implementation
of these operators can require exponential space and time in terms of the number of
input variables more often than in the case of the other operators.

The last four operators in Table 4.1 are specific to the ROBDD-based representation.
Two other operators also specific to the ROBDD-based representation are constrain
[Cou89] and restrict [Cou90]. One of these operators (restrict) will be used here as a
reference for the experimental evaluations.

Definition 4.13 For the functions f and g (with n primary inputs), the function f
constrained by g, written f | g, isdefined by:

_(f(r) if gor)=1
(f g)(r)_{f(s) if g(r):O

where sisthe input assignment such that:

g(s) =1land ZN:|ri ~s|2"" isminimum,
i=1

The pseudo-code for constrain is given in Figure 4.2.

constrain(f, g

if (g=1or fisconstant) return f;

if (f=g)return1;

if f=-gor g=0)return0;

let v be the top variable of {f, g};

if (gl =0) return constrain(f|-y, g|-v);

if (g|-v=0) return constrain(f, gl\);

return v Cconstrain(fly, gl) + (- V) Ceonstrain(f|-v, g|-v);
}

Figure 4.2: Procedure constrain without hash table (adapted from [Cou90]).

In general the ROBDD-based representation of f | g (constrain (f, g)) has fewer nodes
than the ROBDD-based representation of f. In most cases of incompletely specified
functions F(fon, forf), the ROBDD-based representation of the cover Cov(F) =
fon L (fon + for) has fewer nodes than the cover Cov(F) = fon. Sometimes the reverse
may occur: the ROBDD for f | g can have more nodes than the ROBDD for f. This
frequently occurs when the ROBDD for g depends on many variables that f does not
depend on. These variables may be introduced inf | g, causing an undesirable growth
of the corresponding ROBDD. Sometimes, this inconvenience can be avoided if the
procedure returns f | (O}, g)°, when the top variable x of g has a lower index than the
top variable of f. The resulting algorithm implements the so-called restrict operator

® The operator [},g = gl + g|.xis called the existential quantification with respect to the variable x.

4.3 BDD-based Representations of Boolean Functions 37

[Cou90] (Definition 4.14). Normally, the ROBDD for restrict(f, g) is more compact
than the ROBDD for constrain(f, g), because restrict does not increase the support of
the result with respect to the support of f.

Definition 4.14 For the functions f and g (with n primary inputs), the function f
restrict by g, written f U g, is defined by:

_[f() if g(r)=1
(FUa)={ 1 i oo
where g = fit(f, g) (Figure 4.3) and sis the input assignment such that:

N
g(9)=1and > |r, -s|2"" isminimum.
i=1

fit (f, g){
if f=-gorg=0orf=gor g=1or fisconstant) return g;
let v be the top variable of {f, g};
if (gly'=0and g|-,!=0and visnot the top variable of f)
return fit (f, 0,Q); // return fit (f, gy + g|-v);
return v tfit (fl, gly) + (=v) it (fl-v, 9]-v);
}

Figure 4.3: Procedure fit without hash table.
The pseudo-code for restrict isgiven in Figure 4.4.

restrict(f, gy

if (g=1or fisconstant) return f;

if (f=g)return1;

if f=-gor g=0)return0;

let v be the top variable of {f, g};

if (gl =0) return restrict(f|-v, 9]-v);

if (g|-v=0) return restrict(fl, gl);

if (visnot the top variable of f)

return restrict(f, (i, g); // return restrict(f, gl + g|-v);

return v Crestrict(fly, gl) + (—V) Crestrict(fl-v, 9]-v);

}

Figure 4.4: Procedure restrict without hash table (adapted from [Cou90]).

4.3.3 BDD-based | mplementation of Boolean Functions

The internal structure of a BDD offers the basis for logic synthesis solutions that can
be considered as a compromise between two- and multi-level logic implementations.
If each non-terminal node of a BDD is substituted by a multiplexer (MUX), a multi-
level circuit can easily be generated [Bec92] (Figures 4.5 and 4.6). This also happens
iIf each node of a FDD is implemented with the help of a 2-input AND gate and a 2-
input XOR gate [Keb92].

38 4 Representation, Manipulation and | mplementation of Boolean Functions

\
/

(a) (b)

Figure 4.5: (a) BDD for the function f = = a{-b[{~cl+d) + b(=d) + a{c + —d).
(b) MUX-based implementation of the function f.

il

OR

—T T

AND AND

i SN
==
ol —— bl 47

OR OR

C| d| C|d

Figure 4.6: Non-redundant implementation of the circuit from Figure 4.5 (b).

4.3 BDD-based Representations of Boolean Functions 39

A minima BDD/FDD can offer an efficient implementation or at least a good starting
point for a multi-level logic synthesis tool. The limitation of the resulting multi-level
representations is that they contain factorized forms in which a most one of the
factorsisnot aliteral (Figure 4.6).

The size of aROBDD depends on the used order of variables. Due to the direct corre-
spondence of aBDD to a combinational logic circuit, saving nodesin aBDD by using
good variable orders aready pays off. Dynamic reordering heuristics which try to im-
prove a given order of variables can be found in [Fel93][Ish91][Pan94][Rud93],
among others.

The situation is more complex if don't cares (DC) are involved. In the case of
Minato’'s approach [Min97], the OBDD-based representation of the target circuit and
of its DC-set are transformed with the help of Minato-Morreale’'s algorithm into a
prime-irredundant cube cover implicitly represented by a ZBDD. However, mapping
BDDs to cubes and applying known agorithms based on two-level representations
(e.g. ESPRESSO) may destroy all the benefits of the BDD-based representation.

The problem of minimizing the size of an OBDD-based implementation using the
DC-set has been proven to be NP-hard [Sau96]. In [OIli98], an exact OBDD
minimization algorithm based on the DC-set is presented. Nevertheless, due to the
NP-hardness of the problem, this approach has a limited applicability.

Some of the first heuristics that take advantage of the DC-set for the minimization of
the OBDD-based implementations have been introduced by Coudert and Madre based
on the operators constrain and restrict (Section 4.3.2) [Cou89][Cou90]. A cover for
an incompletely specified function F(fon, forf), Can be calculated using the operators
constrain and restrict as shown below:

Cov(F) = constrain(fon , font fof) (4.3)
CoVv(F) = = constrain(fes , font forr) (4.9)
Cov(F) =restrict(fon , font forf) (4.5)
Cov(F) = = restrict(fof , font forr) (4.6)

where ‘+' represents the logic disjunction operator.

The ROBDD-based representation of the covers obtained by applying the operators
constrain and restrict, according to the expressions 4.3 — 4.6, is normally more
compact than the ROBDD-based representations of fo, or fo, as long as the same
order of variables is considered. This is due to the fact that fo, or for are expanded
towards the DC-set, described by foc = =(font for), Such that new opportunities are
created for the application of the deletion rule presented in Section 4.3.1. In this way
the ROBDD-based representation of the expanded fo, or fo becomes usually more
compact.

The ROBDD minimization methods developed in [Cha94][Shi94] exploit the DC-set
for sibling matching or, more generaly, for matching BDD nodes below cut lines
through the BDD, which enables a more aggressive reduction of the BDD size. None
of these methods is safe, which would require that the resulting BDD is aways
smaller than the original one. The compaction agorithm of [Hon97][Hon0O] avoids
this problem by using a preprocessing step to identify the nodes that can make the
minimization unsafe. Compared to restrict or constrain this compaction agorithm

40 4 Representation, Manipulation and | mplementation of Boolean Functions

gives better results on the average, but it is considerably slower. Moreover, none of
the heuristics analyzed in [Shi94] succeeds to outperform restrict by more than a few
percents.

All the ROBDD-based minimization methods discussed above consider only
ROBDDs with a fixed variable order. In [Sch99], the concept of variable reordering
based on symmetries has been extended to incompletely specified functions such that
a ROBDD can be minimized by means of don't care assignments combined with
variable reordering. This method cannot handle large problem instances.

The additional degree of freedom of the FBDD-based representations (Definition
4.12) alows them to have a larger compaction potential than the OBDD-based rep-
resentations. The same holds in the case of free FDD-based representations [Bec95].
There are functions, like the hidden weighted bit function, which require OBDDs and
OFDDs of exponentia size [Bec95][Bry91], independent of the variable order, while
FBDD-based representations of polynomial size are known [Si€95].

In the case of completely specified functions, an exact algorithm for the minimization
of FBDD-based representations is described in [Gue99]. Unfortunately, despite
sophisticated pruning techniques, such an approach is inherently bound to very small
problems (with a maximum of 8 input variables). Heuristics for the minimization of
FBDDs have been proposed in [Gue00][Gue99], among others. A complexity analysis
of the FBDD minimzation is given in [Sie99].

The first FBDD-based logic synthesis method for incompletely specified functions
will be presented in Chapter 7. The new method improves considerably all the synthe-
sis parameters of the Boolean functions which will be introduced in the next chapters,
as compared to other synthesis approaches, like SIS or OBDD-based methods.

Chapter 5

Scalable Pattern Mapping for Deterministic Logic
BIST

In this chapter, a new algorithm is introduced for mapping deterministic test cubes to
a pseudo-random test sequence. The approach is based on BDDs and outperforms the
previously published cube-based algorithm [Wun96] by several orders of magnitude.
It has been applied to the bit-flipping Deterministic Logic LBIST (DLBIST)
architecture which is presented in Section 5.1. In Section 5.2, the pattern mapping
problem is formally defined. Sections 5.2 and 5.3 provide a detailed description of a
prior cube-based and of the new BDD-based mapping approaches, respectively.
Section 5.5 reports the experimental results obtained with a set of industrial, ISCAS-
85 and combinational parts of ISCAS-89 benchmark designs. These results prove that
significant improvements can be achieved with the help of the BDD-based mapping
method. In Section 5.6, the embedded test sequences generated for single stuck-at
faults are evaluated with respect to the coverage of non-target defects. Resistive
bridging faults are used as a surrogate of non-target defects [Eng05]. This s the first
time when the results of such a study are presented. This investigation especialy
adresses the impact of the test sequence length on the non-target defect coverage and
on the hardware overhead. The chapter is concluded in Section 5.7.

5.1 Bit-Flipping DLBIST Architecture

The bit-flipping DLBIST scheme is a mixed-mode technique (Section 3.3.5) in which
an LFSR and, eventually, a phase shifter (PS) are used to generate the pseudo-random
test sequence. If the achieved pseudo-random fault efficiency (Definition 2.2) is not
enough, deterministic test patterns are embedded into the pseudo-random sequence
with the help of a XOR gate inserted in front of each output of the pseudo-random
pattern generator (LFSR + PS). The XOR gates are controlled by a combinational
module that implements a so-called bit-flipping function (BFF) to selectively flip bits
of the pseudo-random test sequence. The pseudo-random pattern generator together
with the BFF module and the XOR gates form the pattern generator of this BIST
architecture.

From now on, in order to keep the presentation simple, the core under test (CUT) will
be assumed to fullfill the following design for test (DFT) constraints, even though
these requirements are not mandatory for the implementation of the proposed scheme.

42 5 Scaable Pattern Mapping for Deterministic Logic BIST

» Test shell around: aflip-flop is associated to each primary input and output.

* Full scan design: al flip-flops (CUT + test shell around) are transformed into
scan flip-flop and connected together in one or several (balanced) scan chains.

» BIST readiness: the test responses do not contain unknown bits (Xs).
A scan enable signal is used to switch the scan flip-flops between two modes:

* Inshift mode (also caled scan or test mode), the scan flip-flops can store only
the signal coming from the previous flip-flop in the scan chain. The first scan
flip-flop in each scan chain stores the signal coming from the test pattern
generator.

* In functional mode (also called capture or system mode), the scan flip-flops
can store only signals coming from the CUT. The scan flip-flops in the test
shell associated to the primary inputs will store the signals coming from the
corresponding primary inputs.

The test application process is managed with the help of afinite state machine, the so-
called BIST control unit, which must contain at least a shift counter (SC) and a pattern
counter (PC). The SC controls the bit stream corresponding to each test pattern. The
PC is used to control the length of the test sequence. In functional mode, the CUT
response to the current test pattern isloaded into the scan paths. During the shift mode
a new test pattern is shifted into the scan paths, while the CUT response to the
previous pattern is shifted out and compressed by a multi-input shift register (MISR).
At the end of the test, the MISR contains a signature with the information about the
correctness of the CUT.

As shown in Figure 5.1, the state bits of the LFSR, the PC and the SC are connected
to the BFF inputs, while the BFF outputs are connected to the XOR-gates at the scan
inputs. The operation of the BFF module is controlled by the state bits of the LFSR,
the PC and the SC. In the case where a phase shifter (PS) is introduced, it is highly
recomandable to use also the output of the PS to control the bit-flipping.

T \ A A T
v
:; ’_| Scan Chain 1 | M
S —@_’—| Scan Chain 2 I é
R Core Logic =
- |
P xor_——] Scan Chain m [>
S A
A
4+ 14 Shift Counter |
1| BFF)
4 Pattern Counter |
Control Unit
I I L

Figure5.1: Bit-flipping DLBIST architecture.

5.2 The Pattern Mapping Problem 43

The LFSR and the SC are updated in every clock cycle, while the PC is updated after
applying a new test pattern. In the current implementation, both the SC and the PC are
decremented. The al-zero state of the SC indicates that a new test pattern has been
shifted in. The new test pattern is applied to the CUT with the help of one clock cycle
in functional mode. In order to shift in a new test pattern, the SC is reloaded from a
shadow register with a state which corresponds to the length of the longest scan chain
of the CUT. The dl-zero state of the PC indicates that all the patterns of the test
session have been applied and the signature stored in the MISR can be shifted out.

5.2 The Pattern M apping Problem

Most of the pseudo-random test patterns used in a mixed-mode BIST scheme do not
contribute to the fault coverage, since they can only detect faults that are aready
detected by the previous pseudo-random test patterns. Such useless pseudo-random
test patterns may therefore be skipped or modified in any arbitrary way. The key idea
of the bit-flipping DLBIST scheme is to modify some usel ess pseudo-random patterns
into useful deterministic test patterns to improve the fault coverage. In order to do so,
an ATPG tool determines test cubes that target those faults not detected by the
pseudo-random test sequence. In such a deterministic test cube, only a few bits are
actually specified, while most of the bits are don’t care and hence can be arbitrarily
setto‘0O or ‘1.

In the bit-flipping DLBIST approach, the modification of the pseudo-random patterns
is realized by inverting (flipping) some of the LFSR outputs, such that deterministic
test stimuli are obtained [Wun96]. In the bit-fixing approach, the modification of the
pseudo-random patterns is realized by fixing some of the LFSR outputsto either ‘1’ or
‘0", such that deterministic test patterns are produced [Tou96]. In [Wun96], it has
been shown that the expected number of bits to be flipped in order to embed a
precomputed test cube is significantly smaller than the number of specified bits.

From now on, only pattern modification by means of bit-flipping will be considered.
Nevertheless, the considerations presented here can be applied to both the bit-flipping
and the bit-fixing approaches, assuming afew modifications.

The bit-flipping is realized by combinational logic implementing a so-called bit-flip-
ping function (BFF). The BFF realizes the mapping of a set of deterministic test cubes
to a (larger) set of pseudo-random patterns. Every specified bit (i.e. care bit) in a
deterministic test cube either matches the corresponding bit in the associated pseudo-
random pattern, in which case bit-flipping should not be performed, or the bit does not
match, in which case bit-flipping is required. For al unspecified bits (i.e. don’'t care
bits) in a deterministic test cube, the corresponding bits in the associated pseudo-ran-
dom pattern may be flipped or not. The BFF must provide that (1) all conflicting bits
are flipped, (2) all matching bits are not flipped, while (3) the don’t care bits may be
flipped or not. The BFF can be kept quite small by carefully selecting the candidates
for each deterministic test cube in the large set of useless pseudo-random patterns.

Without any loss of generality, consider a CUT with asingle scan chain. Let S denote
the set of al possible combinations of the states of the LFSR, the PC, the SC and the
PS output (if any). The ON-set is the sub-set of Sthat corresponds to the clock cycles
in which the LFSR (or PS) output must be flipped. Similarly, the OFF-set is the sub-

44 5 Scaable Pattern Mapping for Deterministic Logic BIST

set of Sthat corresponds to the clock cycles in which the LFSR (or PS) output must
not be flipped. Obviously, the ON-set and OFF-set are digoint (ON-set n OFF-set =
(). The don't care set (DC-set) contains those states of S that corresponds to the
clock cycles in which the LFSR (or PS) output may be flipped or not, i.e. the states
that are neither in the ON-set nor in the OFF-set (DC-set = S - { ON-set [1 OFF-set}).
The DC-set may be exploited to minimize the logic implementation of the BFF.

The ON-set, OFF-set, and DC-set specify an incompletely specified function
BFF:{0,1}" - {0,1,X}, where the symbol ‘X’ indicates a don’'t care and n corre-
sponds to the total number of state bits of the LFSR, the PC, the SC and output bits of
the PS (if any). For instance, consider the simple example of a DLBIST scheme with a
2-bit LFSR, a 2-bit PC, a 2- bit SC and no PS (n = 6). Considering that the symbol *_’
stands for the concatenation of the LFSR, the PC and the SC states. Then
BFF(0O1_10 _01) = 1 indicates that the pseudo-random bit must be flipped when the
LFSR state is 01, the PC state is 10, and the SC state is 01. The state 01_10 01 is
therefore part of the ON-set. BFF(01_10 11) = O indicates that the pseudo-random bit
must not be flipped when the LFSR state is 01, the PC state is 10, and the SC state is
11. The state 01 _10 11 is therefore part of the OFF-set. BFF(10 01 01) = ‘X’ indi-
cates that the pseudo-random bit may be flipped or not when the LFSR state is 10, the
PC state is 01, and the SC state is 01. The state 10_01_01 is therefore part of the DC-
Set.

In a CUT with m scan chains, each scan chaini (1 <i < m) hasits own ON-set;, OFF-
set; and DC-set;. In this case, the BFF is a multi-output function consisting of m
single-input functions BFF;, one for each scan chain. The size of the BFF implementa
tion can be minimized by sharing logic between the implementations of the BFF,
corresponding to the individual scan chains.

Any pattern mapping approach should take into account the following two constraints:

* Generate a BFF that can be efficiently implemented into logic.

* Require limited run-time and memory resources.

Two fundamentally different pattern mapping approaches are presented in Section 5.3
and Section 5.4. The first approach has been previoudy introduced in [Wun96], while
the second approach is an original contribution of this work. These two pattern
mapping solutions are compared on the basis of experimental resultsin Section 5.5.

5.3 Cube-based Pattern Mapping

The original pattern mapping agorithm presented in [Wun96] and further improved in
[Kie97][Kie98] uses the cube-based representation and manipulation of the BFF. The
output of this initial approach is a two-level cover of the BFF, optimized using
ESPRESSO-like algorithms [Bra97].

Besides the underlying cube-based representation, the other characteristics of the
original pattern mapping approach are as follows:

5.3 Cube-based Pattern Mapping 45

» The mapping process is incremental and coupled with the optimization of the
two-level (cube-based) implementation of the resulting BFF.

* The whole pseudo-random test sequence is used to embed deterministic test
cubes. Useful pseudo-random test patterns that detect faults not detected by
previous pseudo-random patterns are not protected from being corrupted by
the bit-flipping logic. They could be protected only by explicitly considering
them during the logic optimisation of the BFF, which might be very
expensive.

The cube-based mapping approach is explained in the following subsections.

5.3.1 Mapping Cost-Function

Assume V is the set of test patterns generated by the LFSR and the partly generated
BFF. Let T be a set of deterministic test cubes to be mapped. For each cubet I T, a
test pattern po O V has to be selected such that t can be efficiently mapped to po
[Wun96]. Deterministic test cubes with only a few specified bits correspond to faults
that are relatively easy to test and might be detected by patterns modified in some
later iteration of the algorithm. So, initialy those cubes t [0 T are selected for
mapping, whose number of specified bitsislarge.

Let the DLBIST hardware states be the concatenated states of the LFSR, the PC, the
SC and the output of the PS (if any). Given a deterministic test cubet [0 T and a test
pattern p O V, let on(t, p)/off(t, p) be the set of DLBIST hardware states which
correspond’ to those bits of p that are conflicting/identical to the corresponding
specified bits of t.

Let FIX-set denote the set of DLBIST hardware states that correspond to those bits of
the modified test sequence that are not allowed to be changed anymore due to
previous assignments. In the beginning, the pseudo-random test sequence is not
modified yet and FIX-set = [J. The cube t can only be mapped to the pattern p if the
relation on(t, p) n FIX-set = 0 holds.

The cost for assigning the cube t to the pattern p is estimated by the increase in the
number of product terms required by a 2-level implementation of the BFF. An
element c of on(t, p) can be efficiently expanded and therefore does not cause any new
product term, if thereis a cube ¢, in the On-set of BFF (Definition 4.1) such that:

(FIX-set O off(t, p)) n (EXPAND(c, co) —{¢c, co}) = 0O,

where the term EXPAND(c, ¢) denotes the smallest Boolean sub-space covering both
¢ and ¢y as used in ESPRESSO [Bra97][Wun96].

The cost of an assignment, cost(t, p), is defined as the number of minterms that cannot
be efficiently expanded:

cost(t, p) = cardinality of {c [on(t, p) / ¢ cannot be efficiently expanded}

" A state of the DLBIST hardware is said to correspond to abit of the test sequence, if the DLBIST
hardware isin this state when the considered bit of the test sequence is scanned in.

46 5 Scaable Pattern Mapping for Deterministic Logic BIST

That test pattern po [J V, which minimizes the cost function cost(t, po), is assigned to
the deterministic test cubet.

5.3.2 TheAlgorithm

The cube-based algorithm used to map deterministic test patterns to a pseudo-random
sequence is outlined in Figure 5.2. This mapping is modeled by a BFF which is
generated incrementally. The construction process begins with BFF° = 0 and ends
with BFF® which provides the required fault coverage. In each iterationr, 1< r <R,
BFF is enhanced to BFF', such that new deterministic test cubes are embedded into
the test sequence produced by the LFSR and the BFF™, while certain useful test
patterns are protected from being corrupted. The individual steps are detailed below:

1. Identify the set F of al the non-redundant faults of the CUT.

The following steps are repeated until the required fault coverage is achieved.
Here, r represents the index of the current iteration and V is the set of test pat-
terns generated by the LFSR and the implementation of BFF™, which will be
represented by Cov(BFF™) (Definition 4.2).

Initializer = 1, ON-set = 0, OFF-set = O (Definition 4.1) and Cov(BFF°) = 0.

2. Determine the set F'iarg Of non-redundant faults not detected by the current test
sequence.

Compute the set of faults F,, = : Frard-

Given Fit, al the patterns p [0 V of the current test sequence are ssmulated in
severa permutated orders, until a small sub-set P = {py, ..., px} of essential pat-
ternsis found which still detects all faultsin F;. In order to guarantee complete
fault detection, not all the bits of p;, 0 < i < k, need to be specified. Don't cares
are inserted into each essential pattern as long as the fault coverage is preserved.
In thisway, P istransformed intoaset P ={p¢’, ..., pK'} of patterns that contain
as many don't cares as possible and can still detect all faultsin Feit.

Let FIX(p’) be the set of DLBIST hardware states corresponding to the speci-
fied bits (also called, essential bits) in the patternp;” L P’

Let FIX-set = | J*, FIX(p,").
3. An ESPRESSO-like REDUCE operator [Bra97] is applied to Cov(BFF™):
ON-set = REDUCE gix.st (Cov(BFF™)), OFF-set = FIX-set - ON-set

REDUCE transforms the prime and irredundant cover Cov(BFF™) into a new
cover ON-set, which is irredundant but usually not prime. This is done by re-
placing each cube in Cov(BFF™) by a new and, in general, smaller cube that
covers the same number of minterms in FIX-set. After the replacement of each
cube, al minterms in FIX-set covered by the replaced cube are removed from
FIX-set. Consequently, the result of REDUCE depends on the order in which the
cubes in Cov(BFF™) are replaced.

5.3 Cube-based Pattern Mapping 47

Fault simulation of the pseudo-random
L FSR sequence

v <

Computethe essential patternsand their
essential bits

v
ESPRESSO-like REDUCE

v
ATPG

v

Pattern assignment

v
ESPRESSO-like EXPAND

v

Fault simulation of the pseudo-random
L FSR sequence with bit-flipping by BFF

v

Enough fault efficiency?

Figure 5.2: Cube-based pattern mapping by means of bit-flipping.

REDUCE allows the cube-based algorithm to move away from locally optimal
solutions towards a better one

4. Find aset of deterministic test cubes T with as many don’t cares as possible that
detect as many faults from Fparq @S possible.

5. For each deterministic cube t [T find an appropriate pattern po [V that mini-
mi zes cost(t, po) (Section 5.3.1) and compute:

ON-set = ON-set [on(t, po), OFF-set = OFF-set [off(t, po)
6. An ESPRESSO-like EXPAND operator [Brad7] is applied to ON-set:

Cov(BFF) = EXPAND orr.s (ON-set)

48 5 Scaable Pattern Mapping for Deterministic Logic BIST

EXPAND transforms the cover ON-set of BFF' into a prime and irredundant
cover Cov(BFF). The goal of EXPAND is to remove as many cubes as possible
from ON-set and to remove as many literals as possible from the remaining
cubes. The result of EXPAND depends on the order in which the cubes in ON-
set are expanded.

7. Simulate the test sequence generated by the LFSR and Cov(BFF').

8. Return to step 2 if the required fault coverage has not been achieved, else the
iterative mapping process is stopped.

There is a trade-off between the computation time which is smaller for a few loop
iterations and the quality of the result which is better if there are only a few
assignments per iteration. Usualy, the number of assignments per iteration is
increased progressively with the iteration number.

Using the DC-set for the optimisation of the bit-flipping logic, modeled by
Cov(BFF"), makes the number of modified pseudo-random patterns larger than the
number of embedded deterministic cubes. While this increases the chance of detecting
additional previously undetected faults not targeted by the ATPG tool in the previous
iterations [Wun96], useful pseudo-random patterns can also be corrupted. Due to this
fact, the number of iterations cannot be controlled and the run-time may explode.

5.3.3 An Example

Consider a scan path containing 5 memory elements (flip-flops), which is fed by the
output of the LFSR sketched in Figure 5.3. Table 5.1 shows the state sequence of the
LFSR. The resulting pseudo-random patterns and the corresponding DLBIST hard-
ware states are listed in Table 5.2. In this particular case, only the LFSR states are
considered.

/R
\VV

\ 4

\ 4

1]0]1 p[5] | p[4] | p[3] | P[2] | P[1]

Figure5.3: LFSR used in the example (adapted from [Wun96]).

101
010
001
100
110
111
011
101

HLYLY LY

\({)
|
&

Tableb.1: States of the LFSR (adapted from [Wun96]).

5.3 Cube-based Pattern Mapping

49

Patterns States
p[1] ... p[S]

1 10100 Sos S 2, S8,

2 11101 S, 56 S0, SL S

3 00111 % S S S0

4 01001 S, %8S

5 11010 S5, S0, S1, &, B

Table 5.2: Pseudo-random patterns and corresponding LFSR states (adapted
from [Wun96g)).

First, the following initializations are performed:
r =1, ON-set = 00, OFF-set = O and Cov(BFF®) = [J

Consider that al the faults included in Fgi; can be detected by the patterns 11XXX
and OXX1X. The procedure for extracting the essential patterns p; (I P returns the
patterns 2 and 3 in Table 5.2. Consequently, one obtains. P = {p1, p2} = {11101,
00111}. Consider that the analysis of essential bits transforms P to P = {p,’, p2'} =
{11XXX, 0XX1X}. Table 5.2 can be used to look up for sets: FIX (p;’) and FIX (p2').

FIX-set = FIX (py') O FIX (p2') ={ss, s} U {5, S} ={ss, s, s} ={100, 111, 011}
Dueto the fact that Cov(BFF°) is equal to I, it cannot be reduced anymore:
ON-set = REDUCE gix.s (Cov(BFFY)) = O
OFF-set = FIX-set - ON-set = FIX-set

Let us assume that the deterministic test cube t = 00X00 has been generated and hasto
be mapped to one of the five pseudo-random patterns. Using the information in Table
5.2, one can derive the sets on(t, p) and off(t, p) of states in which the bit-flipping
logic must be on or off. For every pattern, the condition on(t, p) n FIX-set = 0 is
verified and cost(t, p) is computed. Table 5.3 shows the resullts.

p[1]...p[5] on(t, p) off(t, p) cost(t, p)
1 10100 S S, S8, 4 1
2 11101 S5, S, S2 St 0
3 00111 S6: S0 Sz, S4 0
4 01001 'S S, &4 o
5 11010 S, S0, &2 S 0

Table5.3: Finding a pattern for mapping t = 00X 00 (adapted from [Wun96]).

All patterns except the first one cannot be selected for mapping without violating the
condition: on(t, p) n FIX-set = [J. The only way of mapping t is to modify the first
pattern. So, the BFF should be accordingly extended:

50 5 Scaable Pattern Mapping for Deterministic Logic BIST

ON-set = ON-set [on(t, po) = {so} = {so} ={101}
OFF-set = OFF-set O off(t, po) = {s1, S3, S, S5, Se} = {010, 100, 110, 111, 011}

Finally, the bit-flipping function is expanded in such a way that none of the termsin
OFF-set is covered:

Cov(BFFY) = EXPANDorr.s (ON-set) = { X01}

Figure 5.4 shows the corresponding pattern generator including the bit-flipping logic
(Cov(BFFY). The set of patterns produced by the new test pattern generator differs
considerably from the original one (Table 5.4). Nevertheless, patterns 2 and 3 are still
compatible with the fixed patterns 11XXX and OXX1X, and pattern 1 is now
compatible with the deterministic test cube t = 00X 00.

In genera, the ON- and OFF-sets are very irregular and their cardinalities increase
with the total number of specified bits in the embedded test cubes.

Unfortunately, the experimental results (Section 5.5) prove that the cube-based bit-
flipping mapping approach scales poorly with the CUT size, more precisely, with the
size of the ON- and OFF-sets. Thisis due to the very high (exponential) complexity of
the cube-based methods used for the generation and the implementation of the BFF.

N
1/
1|01 »D——{pi51 | pl41 | pl3] | 121 |pl1]

l=p

Figure 5.4: New pattern generator including bit-flipping logic (adapted from

[Wun96]).
Old New
1 10100 00000
2 11101 11000
3 00111 00110
4 01001 00001
5 11010 10000

Table5.4: Old and new set of patterns (adapted from [Wun96]).

5.4 BDD-based Pattern Mapping 51

5.4 BDD-based Pattern M apping

A scalable pattern mapping approach based on bit-flipping can be implemented only
if a more efficient way to represent and manipulate the BFF is found. Such away is
described in this section. It is based on the use of ROBDDs (Section 4.3) for the
represention and the manipulation of the characteristic functions® of the involved sets.
For example, an ON-BDD and an OFF-BDD are employed to represent the ON-set
and the OFF-set of the BFF. The ON-BDD will output the value ‘1" if the input is
taken from the ON-set, otherwise the output is ‘O’. Similarly, the OFF-BDD will
output ‘1, only if the input is selected from the OFF-set. In the sequel, the acronym
BDD will be used in the sense of ROBDD.

As explained in Section 4.3.2, the BDD-based representation offers a more efficient
way to manipulate Boolean functions than the cube-based representation. The
complexity of the logic operations used here is at-maximum linear in the size of the
BDD operands. In contrast to this, the cube-based |ogic manipulations can have up to
an exponential complexity in the size of the operands, which may grow linearly with
the number of embedded deterministic patterns and the CUT size.

In the worst case, the size of BDDs may grow exponentially with the number of input
variables. Nevertheless, in practice the size of the BDD-based representation of the
BFF has always been within practical limits to be handled by state-of-the-art com-
puters and BDD software packages (e.g. [Cudd)]).

Besides the underlying BDD-based representation, the other characteristics of the new
pattern mapping approach are as follows:

* The pattern mapping is performed in a one-pass process and it is decoupled
from the logic optimization of the resulting BFF.

* Only asub-sequence of the whole pseudo-random test sequence is used to map
deterministic test cubes. All useful pseudo-random test patterns not included in
this sub-sequence are protected from being corrupted by the bit-flipping logic.

In the new approach, the test sequence is partitioned into two regions. The first part of
the test sequence is used only for pseudo-random fault detection, and no deterministic
stimuli are embedded into this part. In general, most of the faults of the CUT can be
quickly detected by the first few hundred or thousand pseudo-random test patterns.
The DLBIST hardware states associated to thisfirst part are included into the DC-set,
since increasing the DC-set gives more room for optimizing the bit-flipping logic.
Consequently, the implemented BFF can arbitrarily flip bits of the essential pseudo-
random patterns from this region, and some previously detected faults might no longer
be detected. In order to prevent this, the outputs of the BFF are disabled during the
first part of the test sequence. Disabling the BFF outputs is achieved with the help of
only one single AND gate per scan chain controlled by a combination of the most
significant bits of the PC.

8 The characteristic function of an arbitrary set S is a completely specified Boolean function, whose
ON-setisequal to S.

52 5 Scaable Pattern Mapping for Deterministic Logic BIST

The second part of the test sequence is used only for the mapping of deterministic test
cubes. The outputs of the BFF are enabled to modify only this last region of the test
sequence, whose length is usually set to one fourth of the total test length.

The splitting of the test sequence into a pseudo-random and an embedded part to-
gether with the more efficient BDD-based representation and manipulation of the in-
volved Boolean functions enable a decoupling of the pattern mapping from the
synthesis of the resulting BFF. This is not the case with the cube-based approach that
requires an iterative algorithm in order to take into account the potential corruption of
essential pseudo-random patterns (Section 5.3.2) and to limit the overhead of the
resulting bit-flipping logic. Consequently, with the BDD-based approach it is possible
to use a one-pass algorithm that needs significantly lower run-time and memory
requirements, while the overhead of the bit-flipping logic becomes much smaller
(Section 5.5). The BDD-based a gorithm for the generation and the implementation of
the BFF is outlined in Figure 5.5.

Theindividual steps of the BDD-based flow are decribed below:

1. The sequence of pseudo-random test patterns generated by an LFSR and,
optionally, a phase shifter (PS) is ssmulated to determine which non-redundent
stuck-at faults of the CUT remain undetected.

2. An ATPG tool is used to generate alimited number of deterministic test cubes
for a sub-set of the non-redundant stuck-at faults that remained undetected by
the pseudo-random patterns. The deterministic cubes contain a large number
of don’t care bits. The number of new faults tested by these cubes depends on
the size of the CUT, the pseudo-random fault efficiency, the required fault
efficiency and the maximum number of deterministic cubes allowed for
embedding.

3. A pseudo-random test pattern is assigned to each deterministic test cube. Each
assigned pseudo-random test pattern is modified by bit-flipping to become
compatible with the corresponding deterministic test cube. The mapping of the
deterministic test cubes is done with the goal that the subsequent implementa-
tion of the BFF can be efficiently optimized. For each deterministic cube only
alimited number of pseudo-random patterns are checked starting with the ones
at the minimum Hamming distance. For these mapping candidates a combina-
tion of the following two objectivesis used:

* Minimize the number of clock cycles in which both matching and con-
flicting bits appear. This tries to make the outputs of the BFF’s
corresponding to different scan chains switch in phase. In this way, the
logic sharing among the logic implementations of the corresponding
BFF’ s can be maximized.

e Minimize the number of scan chains which contain both matching and
conflicting bits. This attempts to make some combination of the variables
corresponding to the state bits of the PC to appear only in the satisfying set
of either the ON-BDD or the OFF-BDD of a certain scan chain. This in-
creases the degrees of freedom for optimizing the implementation of the
corresponding BFF's.

5.4 BDD-based Pattern Mapping 53

Fault simulation of the pseudo-
random L FSR sequence

v
ATPG

v

Pattern mapping

v

BDD-based optimization and
logic synthesis of BFF

v

Fault smulation of the pseudo-
random L FSR sequence with bit-
flipping by BFF

Figure 5.5: BDD-based pattern mapping by means of bit-flipping. A description
of the program implementing this algorithm is given in Appendix 2.

For example, consider the simplified case where the PC counter has 4 state
bits (Xo, X1, X2, and X3) and only 3 deterministic test cubes have to be
mapped. Assume that these cubes are mapped to the pseudo-random
patterns which are generated when the PC state XoX1X2X3 is equal to 1001,
1100 and 0100, respectively. Consider also that with respect to the i scan
chain the first pseudo-random pattern has only conflicting bits, the second
pseudo-random pattern has both conflicting and matching bits and the third
pseudo-random pattern has only matching bits as compared to the specified
bits of the corresponding test cubes. If one neglects the other state bits of
the DLBIST hardware (e.g. LFSR, SC, PS), the combination XoXiXoX3 =
1001 appears only in the satisfying set of ON-BDD; while the combination
XoX1X2X3 = 0100 is included only in the satisfying set of OFF-BDD;. The
combination XgxiX2x3 = 1100 appears in the satisfying sets of both BDDs.
Consequently, the variables xo, X1 and X3 can help in the implementation of
BFF;. One can choose Cov(BFF) = X3+ XoBffi(X4,..., Xn-1), Where Xa,..., X
1 are the variables corresponding to the other state bits of the DLBIST
hardware and the function bffi(Xa,..., Xn.1) is used to implement the bit-
flipping necessary for embedding the second test cube.

If al the assigned pseudo-random patterns had both matching and conflict-
ing bits with respect to their corresponding test cubes, then the variables
Xo, X1, X2, and X3 could not be used for the optimization of Cov(BFF). In
such a case, the resulting Cov(BFF;) might be more complicated.

54 5 Scaable Pattern Mapping for Deterministic Logic BIST

4. The BDD-based representation of the BFF is optimized by efficiently exploit-
ing its DC-set and transformed into a RTL VHDL circuit description (Chapter
7). The circuit description can be synthesized using commercia logic
synthesistools, e.g. Synopsys Design Compiler.

5. Intheend, asimulation of the embedded test sequence generated by the LFSR,
the PS (if any) and the bit-flipping logic determines the final stuck-at fault
coverage.

5.5 Experimental Evaluation of the BDD-based Approach vs.
the Cube-based Approach

Experiments have been performed to evaluate the new BDD-based pattern mapping
approach with respect to the original cube-based approach [Wun96]. The experimen-
tal setup and results are described in Appendix 1 (Table 5.5-5.9).

In the case when industrial benchmark designs are considered, the use of the BDD-
based approach instead of the cube-based approach reduces the pattern mapping time
from severa days down to afew minutes. The run-times of the two other tasks, ATPG
and fault ssimulation, are considerably improved aswell. Thisis due to the fact that the
BDD-based approach uses a single pass algorithm which involves ATPG and fault
simulation less often than the original cube-based approach which uses an iterative
algorithm, where ATPG, pattern mapping and fault ssmulation aternate [Wun96]. The
BDD-based approach reduces the total run-time from more than a week down to
several hours, while also the memory requirements scale quite well with the circuit
size.

These amazing improvements are not achieved at the cost of fault efficiency and
hardware overhead. The BDD-based approach outperforms the cube-based approach
also with respect to these parameters.

In the experiments discussed so far, the fault efficiency of the BDD-based approach
has been limited to the maximum reachable with the cube-based approach. It is shown
that al relevant parameters of the BDD-based mapping approach, total run-time,
memory consumption and cell area overhead scale very well aso when the target fault
efficiency isincreased to the highest levels allowed by the ATPG tool. The logic over-
head decreases significantly for the larger designs.

The experimental results reported till now prove the capability of the new mapping
approach in achieving the scalability goal for which it has been devised. Nevertheless,
it is still interesting to investigate how the BDD-based approach performs on smaller,
but still difficult to test designs for which the cube-based approach is still efficient.
ISCAS designs have been choosen for this purpose and the experimenta results of
thisinvestigation are presented in Appendix 1 (Table 5.10 — Table 5.11).

For all the designs, it has been possible to reach higher final fault efficiencies with the
BDD-based approach. With few exceptions, the total run-time, the memory
consumption and the cell area overhead of the BDD-based approach are much lower.

5.6 Non-Target Defect Coverage and Overhead Dependence on Sequence Length 55

Sometimes, the total run-time is reduced by even one order of magnitude. For the
larger ISCAS designs the difference between the two approaches is more obvious.
This proves the better scalability of the BDD-based algorithm, just like the
experimental results for the large industrial designs.

5.6 Non-Target Defect Coverage and Overhead Dependence
on Sequence L ength

This section presents a study of the non-target defect coverage of the embedded test
sequences obtained with the bit-flipping DLBIST scheme. This is the first time when
such a study has been carried out. Resistive bridging faults are used as a surrogate of
non-target defects [Eng05]. They accurately represent pattern dependency, Byzantine
behaviour and other complex phenomena that are not considered by the stuck-at fault
model. Due to the fact that the embedded deterministic test cubes target only the
stuck-at faults, resistive bridging faults are a valid non-target defect surrogate. This
investigation especially adresses the impact of the test sequence length on the non-
target defect coverage and on the hardware overhead.

The algorithm used for these evaluations is outlined in Figure 5.6. Given the CUT, an
LFSR is used to generate a pseudo-random test sequence. This sequence is simulated
to determine its stuck-at and resistive bridging fault coverage. Subsequently,
deterministic test cubes are produced for al non-reduntant stuck-at faults remained
undetected. These cubes are mapped to the pseudo-random sequence and a BFF is
generated. Next, the BDD-based representation of the BFF is optimized and trans-
formed into a RTL VHDL circuit description. Finally, the test sequence generated by
the LFSR and the bit-flipping logic is simulated for resistive bridging faults. Note that
this embedded test sequence detects all non-redundant stuck-at faults not aborted by
the ATPG tool.

The experimenta data reported in Appendix 1 (Table 5.12 — 5.13) illustrates the
impact of embedding deterministic test cubes for stuck-at faults and of the test
sequence length on the coverage of resistive bridging faults and on the logic overhead
of the bit-flipping logic.

The simulation results show that the resistive bridging fault coverage of the pseudo-
random test sequences is consistently higher than their stuck-at fault coverage. On the
other hand, the validity of stuck-at fault coverage in identifying circuits with many
random pattern resistant resistive bridging faults appears to be limited. Circuits with
many random pattern resistant resistive bridging faults may have a relatively reduced
number of random pattern resistant stuck-at faults.

These results clearly demonstrate the importance of the embedded deterministic
cubes, as the resistive bridging fault coverage increases significantly due to
embedding. However, the pseudo-random patterns also seem to contribute to the
detection of non-target defects. Thisisimplied by the fact that applying more pseudo-
random patterns results in appreciably higher resistive bridging fault coverage.

56 5 Scaable Pattern Mapping for Deterministic Logic BIST

Stuck-at and resistive bridging fault
simulation of the pseudo-random LFSR

v

ATPG for 100% stuck-at fault efficiency

v

Pattern mapping

v
BDD-based optimization and
logic synthesis of BFF

v

Resistive bridging fault smulation of the
pseudo-random L FSR sequence with bit-
flipping by BFF

v

Figure 5.6: Evaluation of the effect of embedding deterministic test cubesinto a
pseudo-random sequence on non-target defect coverage.

Finally, the longer sequences require less logic overhead. This is due to two facts.
First, the pattern embedding process has more degrees of freedom that can be
exploited. Second, more stuck-at faults are covered by the pseudo-random sequence
before pattern mapping. These faults do not have to be considered by the ATPG.
Ovedl, there is a three-dimensional trade-off. Longer DLBIST sequences mean a
larger test application time, but also less area cost and an enhanced coverage of both
target and non-target defects.

5.7 Conclusion 57

5.7 Conclusion

In this chapter, a new pattern mapping algorithm has been proposed for bit-flipping
and more generally for test set embedding DLBIST schemes. The new mapping
method exploits the maneuverability and the compactness of the BDD-based function
representation. Evaluations performed in the case of stuck-at fault testing have
revealed that both run-time and memory requirements are improved by several orders
of magnitude as compared to the original cube-based approach. Moreover, the
proposed generation and implementation of the BFF does not require more run-time
and memory resources than the ATPG or the fault ssmulation steps. This efficiency
gain can be used to obtain even better solutions in terms of logic overhead and fault
coverage.

For the first time, the effectiveness of the embedded test sequences obtained by map-
ping deterministic test cubes to pseudo-random test sequences has been evaluated
with respect to the coverage of non-target defects. The resistive bridging fault model
has been used to model non-target defects. The experimental results reveal that both
deterministic test cubes and pseudo-random test sequences are useful for detecting
non-target defects. Furthermore, it has been shown that increasing the length of the
test sequences enhances their non-target defect coverage and significantly reduces the
logic overhead. This increases the competitivity of the proposed DLBIST scheme and
reduces the need for expensive automated test equipment (ATE).

Chapter 6

Deterministic Logic BIST for Transition Fault
Testing

This chapter presents an extension of the bit-flipping DLBIST scheme described in
Chapter 5 to make it aso available for the test of transition faults. Some specific as-
pects of delay fault testing are considered below.

In order to test delay faults, two patterns are required, an initialization pattern that
sets the circuit to a predefined state, and an activation pattern that launches the
appropriate transition and propagates the fault effect to a (pseudo-)primary output.
There are two approaches for the application of pattern pairs to a standard scan design
[Sav92][Sav94][Wai87]: functional justification, also called broadside, and scan shift-
ing, also caled skewed-load. In the functiona justification approach, the circuit
response to the first pattern is used as the second pattern. In order to apply pattern
pairs, the circuit is operated two consecutive clock cycles in functional mode after the
initialization pattern has been scanned in. In the scan shifting approach, the second
pattern is generated by operating the scan path for one additional scan clock cycle
after the first pattern has been applied. Since scan shifting may require additional
efforts for a consistent clocking scheme beyond the BIST hardware, only the
functional justification approach will be considered. Another advantage of this
approach is the expected limitation of the scan-induced overtesting, as long as the
activation pattern is computed by the CUT itself and not scanned in, like in the scan
shifting approach. So, the impact on the yield should be less than in the case of the
scan shifting approach.

Here, the bit-flipping DLBIST scheme used for the test of stuck-at faults will be
adapted to transition fault testing based on functional justification. LBIST approaches
for the test of delay faults (especially for path delay faults) have been presented in
[Che96][Duf97][Fur91][Gir97][Kei99][Li03][Muk98][Wur95], among others. Never-
theless, thisis the first time when a DLBIST scheme is used to test delay faultsin cir-
cuits with scan design.

The extension of the bit-flipping DLBIST scheme for transition fault testing requires
the modification of the test control unit such that the scan enable signal alows two
consecutive functiona clock cycles and not only one as in the case of stuck-at fault
testing.

Since pairs of test patterns are required, transition faults are more difficult to test than
stuck-at faults. Consequently, the pseudo-random transition fault coverage is
significantly lower than the pseudo-random stuck-at fault coverage. The final effect is
an increase of the mapping effort and the logic overhead.

60 6 Deterministic Logic BIST for Transition Fault Testing

As a solution, thiswork proposes a trade-off between these costs and the test applica-
tion time. Slightly larger test application times reduce logic overhead and enhance test
quality in terms of both transition fault and non-target defect coverage (Chapter 5).

A quantitative estimation of the random testability of the stuck-at and transition faults
iIs made in Section 6.1. The extension of the bit-flipping DLBIST scheme for
transition fault testing is described in Section 6.2. Relevant experimental results for
large industrial benchmarks, containing up to 2M gates, are reported in Section 6.3.
The chapter is summarized in Section 6.4.

6.1 Random Testability of Transition and Stuck-at Faults

The probability that a stuck-at i fault (iCJ{0,1}) on the signal line J is tested by a
random pattern is equal to the probability P(J sai) that the line J can be controlled to
thelogic value —i and observed at a (pseudo-)primary output [Brg84][Sav84]:

P(Jsai) =P(Jiscontrollableto —i and J is observable)

The probability that a transition fault from i to =i on the signal line J is tested by a
pair of independent random patterns is equal to the probability P(J slow from i to =)
that the first pattern controls the line J to the logic value i multiplied by the
probability that the second pattern controls the line J to the logic value —i and can
make the signal line J visible at a (pseudo-)primary outpult:

P(J slow fromi to =i) = P(Jis controllableto i) * P(J sai) (6.2)

From the relation (6.1), it results that if the stuck-at i fault on asignal lineis random
pattern resistant, then the transition fault from i to =i on the same line is random
pattern resistant as well. Consequently, a digital circuit contains at least as many
random pattern resistant transition faults as random pattern resistant stuck-at faults.

The following expression gives the number N; of random patterns required to test a
fault f having the detection probability P (<<1) with the test confidence® C [Wun85].

N = - In(1-C) /| P
Conseguently, for two faults f and g with Pr = P*Py (Pr <<1, P<1) we have:
Nt = Ng/ P (6.2)

From the relations (6.1) and (6.2), one can observe that in the case when
controllability to i of asignal lineis close to 0, a slow transition fault from i to =i on
the same line may require a much larger number of random test patterns than the
corresponding stuck-at fault, if the same test confidence is the objective.

° Probability that the considered fault is tested by at least one pattern of the test sequence.

6.1 Random Testability of Transition and Stuck-at Faults 61

As an example, consider the circuit sketched in Figure 6.1. The inputs of this circuit
are driven by four scan flip-flops. A scan enable signal (SE) is used to switch the scan
flip-flops between scan and functional modes. The possible patterns to test the stuck-
a ‘0 and ‘1" faults on the net J are ABCD [{ IXXX, X11X} and {00XX, 0X0X},
respectively. Based on functional justification, the initialization pattern ABCD = 0011
will generate an activation pattern 0111 such that a slow-to-rise fault on the net J can
be tested. The slow-to-fall transition fault on the net J cannot be tested.

Note that there is only 1 initialization pattern for the slow-to-rise fault on the net J
which has 4 specified bits, while each of the 2 corresponding stuck-at faults has 2 test
patterns with 1 or 2 specified bits. The probabilities to randomly detect the slow-to-
rise, the stuck-at ‘0’ and the stuck-at ‘1’ faults on the net J are 1/16, 5/8 and 3/8,
respectively. (1/16 < (3/8)* < (5/8)%). The reduced testability of the transition fault is
due to the fact that the initialization pattern must not only set the required initial logic
value on the target line, but it must also generate appropriate logic values at the CUT
outputs in order to define an useful activation pattern.

Figure 6.2 presents a comparison between the cumulative stuck-at and transition fault
coverage of a pseudo-random sequence applied to an industrial benchmark design
with 5116 flip-flops arranged into 11 scan chains and 127K nodes in the net list. The
lower level and the slower saturation of the transition fault coverage is due to the
larger number of random pattern resistant transition faults and to the larger number of
pseudo-random patterns required by these faults to achieve the same test confidence
asin the case of the random resistant stuck-at faults.

This slow saturation is expected for any type of delay fault testing and may be
enhanced in the case of robust delay fault testing. It increases the necessity of having
long test sequences when DLBIST is used. Moreover, anew DLBIST architecture is
necessary that is able to use the whole test sequence for pseudo-random fault
detection and not only one fraction of it as in the case of the architecture presented in
Chapter 5.

SE Patterns which can test the

9 stuck-at 0, stuck-at 1 and

*j’ FF| A slow-to-rise faults on the

>1 HYJ wire J:
L E I L K

*} FF,| B >1 & Y |21 A B C D

;}FFS c & sucka-0 1 X X X

,—‘ L G— - LI sucka-l 0 0 X X
+j, FF, D &

dow-to-rise 0 0 1 1
o)

1

slow-to-fal is untestable

Figure 6.1 Specified bits for testing stuck-at and transition faults.

62 6 Deterministic Logic BIST for Transition Fault Testing

100
90 o
80 /’/.‘-f

70

[
60

|

I

|

|

I

|

9—0— 90909090 9090 0%

—e— Stuck-at
Testing

50
40
30
20
10

Delay
Testing

Fault Coverage [%]

QO © O <O QO N O 0 O O O
\r’b%’\@»’\'&é}g\@

Pseudo-random Patterns [K]

Figure6.2: Cumulative stuck-at and transition fault coverage of a pseudo-random
sequence applied to an industrial benchmark design that contains
5116 flip-flops arranged into 11 scan chains. The transition fault
testing was based on functional justification.

6.2 Bit-flipping Deterministic Logic BIST for Transition
Fault Testing

Applying a DLBIST scheme to transition fault testing is a challenge due to the lower
random testability of the transition faults. This requires more deterministic cubes with
more specified bits to be embedded into the pseudo-random sequence as compared to
the case of stuck-at fault testing.

In the case of transition fault testing based on functional justification, only the
initialization pattern of each pair of test patterns should be generated by the DLBIST
hardware. The activation pattern is generated by the CUT as a response to the first
pattern and only single test cubes have to be embedded into the pseudo-random
sequence. Consequently, the DLBIST synthesis flow for transition fault testing based
on functiona justification may be derived by adapting the flow used for stuck-at fault
testing, provided that the ATPG and the fault simulation are correspondingly
modified. Thisisaso true in the case of transition fault testing based on scan shifting,
with the observation that in this case the test control unit should generate one
additional shift clock cycle instead of the first clock cycle of each pair of functional
clock cycles. For this reason, the approach presented here can also be applied to scan
shifting approaches.

Here, each pattern of a test sequence that can detect faults not detected by any of its
precedent patternsis referred to as an essential pattern (Section 5.3.2). The embedding
of deterministic test cubes into a pseudo-random test sequence may corrupt the
essential pseudo-random patterns even if they are not assigned to deterministic cubes.
This is due to the fact that the logic synthesis and optimization of the BFF are
intensively using its DC-space (Chapter 7). Consequently, the resulting bit-flipping

6.2 Bit-flipping Deterministic Logic BIST for Transition Fault Testing 63

T A T
L xor |—— Scan Chain 1 |
F M
S xor ——{ Scan Chain2 | |
R Core Logic S
+
P xor —— Scan Chainm | R
S A
' A
CBL 7 él Pattern Counter |
1A i Test Control Unit
BFF 414 Shift Counter |
L L 4

Figure 6.3: Architecture of the bit-flipping DLBIST.

logic flips more bits than necessary for the embedding of the target deterministic test
cubes and the consequence is that essential pseudo-random test patterns may be
corrupted .

In order to limit the number of corrupted pseudo-random patterns in the case of the
architecture presented in Chapter 5, the set of deterministic cubes is embedded only at
the end of the pseudo-random test sequence. The length of the pseudo-random
sequence that can be modified is a fraction given by a negative power of 2 of the total
test length. The first part of the test sequence is used only for pseudo-random fault
detection and it is protected from being flipped by disabling the outputs of the BFF
with the help of an AND gate per scan chain, which is controlled by a combination of
the most significant bits of the pattern counter. Nevertheless, the essential pseudo-
random patterns of the embedded test sequence are not protected.

Due to the slower saturation of the random transition fault coverage discussed in
Section 6.1, the application of longer test sequences and the protection of all the
essential pseudo-random patterns become critical. A way to prevent the corruption of
the essential pseudo-random patterns without increasing the complexity of the BFF
implementation is to utilize an additional combinational module, here referred to as
correction logic (CRL), to enable/disable the outputs of the bit-flipping logic (Figure
6.3). The partition of the test sequence into pure pseudo-random and embedded se-
guences is preserved to limit the CRL size.

The agorithm used for the generation of the bit-flipping DLBIST for transition fault
testing based on functional justification is outlined in Figure 6.4. The individua steps
of the flow are described below:

1. Initial fault smulation is used to detect the transition faults that cannot be tested
by the pseudo-random test sequence produced by an LFSR and, optionaly, a
phase shifter (PS). During this step alist L; is generated containing the indices of
all the essential pseudo-random patterns of the test sequence part where
deterministic test cubes will be embedded.

2. An ATPG toal is used to generate a limited number of deterministic initialization
test cubes for all or a sub-set of the transition faults that remained undetected by
pseudo-random test patterns.

6 Deterministic Logic BIST for Transition Fault Testing

Fault simulation
of the pseudo-random LFSR sequence

v
ATPG

v
Pattern mapping

v

BDD-based optimization and
logic synthesis of BFF

v

Fault simulation of the pseudo-random LFSR
sequence with bit-flipping by BFF
v
BDD-based optimization and

logic synthesis of CRL
v

Fault simulation of the pseudo-random LFSR
sequence with bit-flipping by BFF and CRL

v

Figure 6.4: Implementation flow of the bit-flipping DLBIST for transition fault
testing based on functional justification. A description of the
program implementing this algorithm is given in Appendix 2.

The number of new faults tested by the deterministic cubes depends on the size of
the CUT, the pseudo-random fault efficiency, the required fault efficiency and the
maximum number of deterministic test cubes alowed for embedding.

. A pseudo-random test pattern is assigned to each deterministic initialization test
cube. The same mapping costs are utilized as in the flow used for stuck-at fault
testing. Nevertheless, this time the essential pseudo-random test patterns are not
allowed to be assigned. Each assigned pseudo-random test pattern is modified by
bit-flipping to become compatible with the corresponding deterministic test cube.

During this step, a BDD-based representation is generated for the resulting BFF.
The BFF isonly partly specified and has alarge DC-set.

. The BDD-based representation of the BFF is optimized and transformed into a
RTL VHDL circuit description (Chapter 7). The logic optimization procedure
exploits the DC-set left by the incomplete specification of the BFF. Consequently,
the optimized bit-flipping logic flips additiona bits besides the conflicting bits in
the assigned pseudo-random test patterns, so that the essential pseudo-random test
patterns (with the index included in L) may be corrupted.

6.2 Bit-flipping Deterministic Logic BIST for Transition Fault Testing 65

S.

In order to determine which of the patterns with the index in L; must be protected
from being corrupted, the embedded test sequence produced by the LFSR, PS (if
any) and the bit-flipping logic, which is not allowed to act on the test patterns with
the index in L1, is simulated to generate a second list L, of indices corresponding
to the essential patterns in the embedded test sequence. The test patterns whose
indices are included in L1 n L, need to be protected from being corrupted by the
bit-flipping logic. On the other hand, the test patterns whose indices are included
in L, - L1 should remain modified by the bit-flipping logic.

A combinational logic called correction logic (CRL) is built (Figure 6.3). The
CRL prevents the bit-flipping logic from flipping the patterns with the index in L,
n L, and allows it to modify the patterns with theindex in L, - L1. In thisway, the
essential pseudo-random test patterns (referenced in Ly n Ly) will not be cor-
rupted, while the useless test pseudo-random patterns that become useful by
means of bit-flipping can still be generated. The CRL implements an incompletely
specified function whose ON-set and OFF-set contain the states of the pattern
counter, LFSR and the output of the PS (if any) corresponding to the first scan
clock cycle of the test patterns with theindex in L, - Ly and L1 n Lo, respectively.
The DC-set of the CRL function is used to optimize its implementation, exactly as
in the case of the BFF implementation (Chapter 7).

The output of the CRL has to be kept constant during the scan clock cycles corre-
sponding to each test pattern. Due to the fact that some of the input signals to the
CRL (the state bits of the LFSR and the output bits of the PS (if any)) change
during the scan clock cycles, alatch is used to store the output of the CRL (Figure
6.5). The operation of the latch is controlled with the help of the SE signal, so that
its state can be changed only before a new test pattern is scanned in.

Without the CRL, all the inputs of the BFF corresponding to the essential pseudo-
random patterns should be included into the OFF-set of the BFF. Consequently,
the use of the CRL leaves more DC-space to optimize the logic implementation of
the BFF. On the other hand, storing the output of the CRL into a memory el ement
that cannot be written during the shift cycles increases significantly the degrees of
freedom for the optimization of the CRL.

While a BFF function has to be implemented for each scan chain, the CRL is
common for all the scan chains. The circuit description of the BFF and CRL can
be synthesized using commercia logic synthesis tools (e.g. Synopsys Design
Compiler).

Test Control Unit |:|_ ESR + PS| ’G?B—’ Scan Path >

Shift Counter | | Pattern Counter ¥

// // ; I
l » crRL FP|Latch
A4

=

Figure 6.5: Bit-flipping function (BFF) and correction logic (CRL).

BFF

66 6 Deterministic Logic BIST for Transition Fault Testing

7. In the end, the embedded test sequence generated by the LFSR, the PS (if any),
the bit-flipping and the CRL is simulated to determine the fina transition fault
coverage.

The use of the CRL can be benefical even in the case of stuck-at fault testing. Thisis
illustrated in Table 6.1 (Appendix 1).

6.3 Experimental Results

Experiments have been performed to evaluate the bit-flipping DLBIST approach with
respect to transition fault testing. The experimenta setup and results are described in
Appendix 1 (Table 6.2 —6.4).

It can be observed that, indeed, the pseudo-random transition fault efficiency is much
lower than the pseudo-random stuck-at fault efficiency. In general, increasing the test
sequence length has a stronger impact on the transition fault detection than on the
stuck-at fault detection.

Comparing the results obtained using the bit-flipping DLBIST approach for the stuck-
at and transition fault testing, one can observe that, with only one exception, the
deterministic test cubes embedded for transition fault testing have larger ratios of
specified bits. This is due to the lower transition fault testability. In al the cases, the
final stuck-at fault efficiency is much larger than the final transition fault efficiency.
Moreover, this has been achieved along with a lower cell area overhead. The reason
for this difference is again the lower random testability of the transition faults with the
consequence that more patterns have to be embedded and more bits have to be flipped
or preserved in the pseudo-random sequence. For a given test length, the DLBIST
hardware overhead depends on the random testability of the CUT and on the amount
with which the fault efficiency has to be increased.

The hardware overhead of the designs for which the number of embedded patterns has
not been limited is significantly reduced by the increase of the test sequence length.
Extending the test length from 10K to 64K reduces the overhead by more than 10% of
the CUT size. In one case, increasing the test length by two orders of magnitude has
reduced the overhead to half of the level from the previous entry that corresponds to a
test sequence containing 64K patterns, at the price of alarge increase in the run-time
and memory requirements.

As long as the same number of deterministic test cubes is embedded, it is difficult to
predict the dependence of the hardware overhead on the length of the test sequence. In
this case, the overhead primarily depends on the average number of specified bits per
embedded test cube, which is determined by the number and the difficulty of the
target faults. Longer pseudo-random test sequences leave undetected faults which are
more difficult to test. This tends to increase the number of specified bits necessary to
detect the remaining fault. On the other hand, this may also decrease the number of
newly detected faults per embedded test cube. That is why it is difficult to predict the
evolution of the average number of specified bits per embedded test cube when the
length of the test sequence is augmented. Increasing the length of the test sequence
also improves the pattern embedding opportunities.

6.4 Conclusion 67

In the case of one design for which the number of embedded deterministic test cubes
has been limited, increasing the length of the test sequence does not significantly
change the hardware overhead, but it improves the final fault efficiency by more than
11%. In the other two such cases, extending the test sequence has a twofold beneficia
impact. Incresing the number of the test patterns from 10K to the maximum that pass
in a test application time of one second at the frequency of 100 MHz reduces the
overhead by 11% and 7%. In parallel, the final fault efficiency is improved by more
than 8% and 3%. It should be mentioned that the increase of the test sequence length
improves the coverage of the non-modeled defects as well (Section 5.6).

In the case of the three largest designs, increasing the length of the test sequence has
no significant impact on the run-time and memory requirements.

Investigating the trade-offs between the hardware overhead and the fault efficiency,
which were obtained using test sequences that contain the maximum number of
patterns which can fit in one second of test time at the frequency of 100 MHz, the
following observations can be made. In the case of two large benchmark designs, 10
deterministic test patterns are aready enough to obtain alarger fault efficiency thanin
the case when 800 deterministic test patterns are embedded into a 10K long test se-
guence. In this way, the hardware overhead can be reduced to 1% from 43% and 62%,
respectively. In the case of the other large benchmark design used during the experi-
ments, a similar fault efficiency can be achieved by embedding 100 deterministic
patterns, at the cost of 5.5%, instead of 22%, hardware overhead.

6.4 Conclusion

In this chapter, an extension of the bit-flipping DLBIST approach for transition fault
testing has been presented. This is the first time when a DLBIST scheme is used to
test delay faults in circuits with standard scan design. The investigated delay testing
approach is based on functional justification, but the scheme can also be applied with
a minimum modification to an approach based on scan shifting. A special combina-
tional module, the correction logic (CRL), has been introduced to further improve the
test pattern embedding. Due to the rather low random-pattern testability of the
transition faults, the saturation of their random fault coverage requires significantly
longer test sequences, which in turn is beneficial for both limiting the hardware
overhead and improving the coverage of the target and non-target defects.

Chapter 7

Scalable Synthesis of Irregular Combinational
Functionswith Large Don’t Care Sets

This chapter presents an innovative BDD-based logic synthesis method which is
especially suitable for the logic implementations of irregular functions that have large
don't care sets. Here, a Boolean function is caled irregular if its input assignments
mapped to ‘1" are randomly spread over the definition space. Examples of such
functions are the BFF, the function implemented by the CRL, the BFX [Tou96] and
the XMF [Tan04].

This is the first technique that exploits the DC-set together with the compactness of
FBDDs (Definition 4.12) to improve the efficiency of the BDD-based logic synthesis.
The presented experimental results show that for al the considered functions,
implementations are found with a significant reduction of the gate count compared to
SIS [Sen92] or the methods offered by a state-of-the-art BDD-package [Cudd]. This
performance is due to both a reduction of the node counts in the resulting FBDDs and
to a reduced number of gates needed to implement the FBDD nodes. The proposed
method scal es better and succeeds to get a better advantage of the DC-set.

Two examples of irregular Boolean functions with large DC-sets are analysed in
Section 7.1. Section 7.2 presents a new heuristic method to improve the cover
synthesis for such functions. In Section 7.3, experimental results are used to compare
the proposed approach with SIS [Sen92] and methods available in the CUDD-package
(e.g. restrict [Cou90]). Furthermore, the outcome of the new method is evaluated as
input to Synopsys Design Compiler. The chapter is summarized in Section 7.4.

70 7 Scalable Synthesis of Irregular Combinational Functions with Large Don’'t Care Sets

7.1 Examplesof Irregular Incompletely Specified Boolean
Functions

The bit-flipping function (BFF) and the bit-fixing function (BFX) [Tou96] are exam-
ples of irregular and incompletely specified functions with large DC-sets. Besides
these functions, another such example will be described in this section. Like the BFF
function, also this example comes from the field of coding and testing.

In most embedded test approaches [Ghe04][K0e01][Ra02][Tou96], the test responses
are compressed by a multi-input shift register (MISR) (Figure 7.1), which delivers a
signature containing the information about the correctness of the CUT. The test
responses may contain unknown bits (Xs), which can appear due to the existence of
multiple clock domains, floating buses or uninitialized memory elements. In order to
obtain an uncorrupted signature at the end of the test, these Xs have to be masked to
either logic ‘O’ or logic ‘1" before they propagate into the MISR. This may be
performed by combinational logic implementing a so-called X-masking function
(XMF) [Tan04]. The XMF can be kept quite small by carefully selecting those bits of
the test responses carrying the information about the CUT correctness which have to
remain unmasked.

The inputs of the BFF and the XMF are the state bits of the pattern counter, the shift
counter and the test pattern generator (TPG) which can be an LFSR and, eventualy, a
phase shifter. Both functions are incompletely specified functions. Consequently, they
can be described by an ON-set and an OFF-set, containing the input assignments for
which these functions must take the values ‘1’ and ‘0", respectively. The remaining
input assignments build the DC-set.

According to Chapter 5, the ON-set and the OFF-set of the BFF are the sets of states
that correspond to the clock cycles in which the TPG output must or must not be
flipped, respectively. The DC-set is the set of states that correspond to the clock
cyclesin which the LFSR output may be arbitrarily flipped.

In the case of the XMF, the ON-set is the set of states that correspond to the clock cy-
cles in which an unknown test response bit must be masked before it is scanned into

. v
Scan Chain 1 >
Scan Chain 2 | _@_> I
Core Under Test 2
Scan Chain m | or
A
A
Shift Counter p—#4
| r XMF
A [Pattern Counter p—#4
Test Control Unit
i | | | i |

Figure 7.1: Embedded test architecture with MISR and X-masking function (XMF).

7.2 Proposed FBDD-based Logic Synthesis 71

the MISR. Similarly, the OFF-set is the set of states that correspond to the clock
cyclesin which atest response bit carrying the information about the CUT correctness
must not be masked. The DC-set contains the states that correspond to the clock
cycles in which the test response bits may be arbitrarily masked before they are
propagated into the MISR.

The DC-sets cover more than 99.99% of the definition space of both functions while
the ON-sets and OFF-sets are randomly distributed over the rest of the definition
space. One can identify the following sources of the high cardinality of the DC-sets.

* Not al the possible states and state combinations of the shift counter, pattern
counter, LFSR and phase shifter (Figure 7.1) are necessarily appearing during the
testing process.

* In the case of the BFF, the deterministic test cubes that have to be mapped to the
pseudo-random test sequence contain many don’'t care bits and the number of
embedded deterministic test cubes is a small fraction of the total number of
pseudo-random test patterns.

* In the case of the XMF, usualy a very small fraction of the bits in test responses
are Xsor relevant to the fault coverage.

The large DC-sets offer a good base to optimize the logic implementation of these
functions despite their irregularity, which is not the case with random functions with
no or small DC-sets.

7.2 Proposed FBDD-based L ogic Synthesis

This section proposes a new synthesis approach that transforms the ROBDD-based
representation of an incompletely specified Boolean function into a FBDD-like cover
whose circuit description requires a reduced number of gates. The following
considerations are based on the notations introduced in Chapter 4 and on the
definition below.

Definition 7.1 The cardinality of afunction f:{0,1}"—{ 0,1}, denoted by |[f||, indicates
the number of fully specified input assignments mapped to ‘1’, i.e. the
number of minterms (Definition 4.7).

The goal of the synthesis procedure described below is to generate FBDD-like covers
with areduced gate count in the resulting circuit descriptions. Thisis achieved by first
reducing the number of paths from the root node to aleaf node and second by looking
for node sharing among different paths and even different FBDDs.

On one hand, each path in a BDD corresponds to a sub-space which is mapped either
to ‘1 or to ‘0. Similarly, the cover of an incompletely specified function F(fon, for)
can be chosen equal to ‘0’ on the subspaces mapped by f,, to ‘0" and equal to ‘1’ on
the subspaces mapped by fu to ‘0. Consequently, the path reduction of the FBDD-
based implementation can be achieved by finding a minimal partition of the definition
space of the considered function into appropriate sub-spaces on which either fo, or fo
isequa to ‘0. Given the incompletely specified function F(fon, forf) and the set of its
input variables V, the synthesis method introduced here looks for a good partition of

72 7 Scalable Synthesis of Irregular Combinational Functions with Large Don’'t Care Sets

the definition space into such specia sub-spaces using the recursive depth-first
process sketched below.

CreateCover (fon, forr, V){
/I'V contains the indices of al the relevant input variables

if size(fon) > size(fy) then // size= ROBDD node count
return - CreateCover (for, fon, V);

| = /[7

Cov = Createl iteralCover (fon, forr, V, 1);
if (Cov#0) then return Cov;

Cov = FindCover (fon, for); // optional: DC-based node reduction
if (Cov#) then return Cov;

for all i OV and for |; C{x, =X}
if fonlli =0and foff||i =0or
if fonlii = fonl-ii @nd fosthi = forlii then V =V —{i};

if | #/7 then
Cov = CreateCover (fonl-1, foitl-1, V);
if fo OCov = 0 then return Cov,
elsereturn (=1) ov; // new FBDD-node required

return SplitOperator (fonl1, forth1, V);
}

First, it is decided whether F(fon, forr) OF = F(forr, fon) 1S implemented, depending on the
compactness of the ROBDD-based representation of fon, and fo. The ROBDD sizes are
determined by their node count.

Subsequently, a variable x is determined (procedures CreateliteralCover or
SolitOperator) with respect to which the current definition subspace is decomposed
into two new subspaces where x is either *1’ or *0’. For each of the two subspaces a
further recursive call of CreateCover may be required. The size of the resulting cover
may be reduced by determining a minimal number of such successive recursive calls.
Procedures CreateliteralCover and SplitOperator implement heuristics to obtain
near-optimal solutions.

CreatelLiteralCover (fon, forr, V, 1){
Min = oo;
for all i OV and for |; C{x;, - x}
if fonli = 0 and || fosl-ii || < Min then

Min = || foselii |} 1 = 1i;
if Min # o then
if forflo1 = 0 then return - 1;

return O;
}

The procedure CreateliteralCover provides the recursive process with the first stop
condition. The recursion is stopped if alitera | is found for which fol.; and fon| are

7.2 Proposed FBDD-based Logic Synthesis

73

equal to ‘0. In this case -1 is chosen as cover for F. If this condition cannot be
fulfilled and there are literals |;, for which fo|i is equal to ‘0", then that literal |; which

minimizes the cardinality of fox|.; will be assigned to the generic argument I.

The procedure FindCover which provides the algorithm with the second stop condi-
tion is optional and will be discussed |ater.

Subsequently, the set of input variables V is pruned from those variables on which fy,
and fo depend in atrivial way (for loop of CreateCover). Depending on whether the
literal | returned by CreateliteralCover is different from the empty set [1, either
CreateCover or JplitOperator is called.

SplitOperator (fon, forr, V){

}

/I first heuristic (| val | used for the absolute value of val)
Max = O;
foralidV

Check = [|Ifonhll - lIforehall | + [Ifottl-xill = [fonl-xill [;
if Check > Max then Max = Check; m=;

/I second heuristic

if Max = [|[fosrl| - [ifonll | then
MinOn = co; MinOff = co;
for all i OV and for |; C{x;, - x}
if |Ifonlill < MinOn or
if |fonli]l = MinOn and |[fostl-1i|| < MinOff then
MinON = |[fonfii]l; MIinOFf = |(fostl-iill; m=1;

/I choose the literal for thefirst recursion
V=V-{m};
choose |L{ Xm, = xm} such that |ffoh|| = [fforl-]I

Cov, = CreateCover (fonli, forl, V);
if Covifx#0 then
Cov, = CreateCover (fon|—||, foffl-.|, V);
elseif forf-) # 0 then
Cov, = CreateCover ((— Covq)dhnl-1, fofil-1, V);
elseCov, = -1,

/] assemble the cover: new FBDD-node required

if Covy i # 0then Covy =1/ Covy;
if Cov, o # 0then Cov, = = [Covy;
return Cov; + Covy;

Procedure SplitOperator uses two heuristics. The first one looks for a literal | such
that the cardinalities |[fon|i|| and |fforsl-i|| @e higher than the cardinalities |[fos)|| and
Ifonl-1]l, respectively. If such an unbalancing occurs, then the following inequality

must hold:

| Ifonbdl = Ifoftlll | + 1 [{fottl-ll - lfonkxll 1> T Iiforl - [ifonll |

(7.1)

74 7 Scalable Synthesis of Irregular Combinational Functions with Large Don’'t Care Sets

The intuition behind the unbalancing is that we heuristically try to find the variable x
that simultaneously minimizes both cardinaities fon| and fogl1 (IC{X, —x}). For
example, consider the definition space presented in Figure 7.2, where the symbols ‘X’
and ‘0’ are used to represent the input assignments belonging to the ON-set and the
OFF-set of the considered function, respectively. The dashed sgquares give a minimal
partition of the definition space into sub-spaces containing only input assignments
belonging either to the ON-set or to the OFF-set. Assume that one has to choose
between the input variables x; and x, for the decomposition of the considered
definition space. The enclosed table shows the number of input assignments
belonging to the ON-set and the OFF-set in the sub-spaces defined by x; = 1, X3 = 0, X2
= 1 and x; = 0. The other input variables are not explicitly shown for simplicity
reasons. In this case, the first heuristics of the procedure SplitOperator chooses the
variable x; with respect to which the definition space is unbalanced and the inequality
(7.1) isfulfilled. The left-hand side member of the inequality (7.1) is evaluated to 15/3
with respect to the variable xi/x,. In total, there are 13/10 input assignments belonging
to the ON-set/OFF-set, so that the right-hand side member of the inequality (7.1) is
evauated to 3. It can aso be observed that the cut line corresponding to the
decomposition of the definition space with respect the input variables x; does not
intersect any sub-space of the minimal partition. This does not happen in the case of
the variable x..

If no unbalancing variable has been found, then the second heuristic is used. This
heuristic chooses the variable x, which has an associated literal 10{x, ~x} that mini-
mizes the cardinality |[fon|i|| @ a primary optimization goal and minimizes the cardinal-
ity |[fore|-1]] @ & secondary optimization objective. The intuition behind thisis similar to
the one mentioned for the first heuristic of SplitOperator. For each literal IT{x, - x} a
recursive call with the argument (fon|i, fort|)) is performed iff foq|) Z O.

Both heuristics in SplitOperator are used to increase the chance of fulfilling the stop
condition from Createliteral Cover in the next recursive calls and thus to decrease in a
greedy manner the number of subsequent recursive cals of the procedure
CreateCover.

X =1 X1=0
S T o)
e=1|ix i il ton ON-set | OFF-set
I R x=1| 10 2
P X PXETO | @)
; M S S S Rt X1=0 8
L X o
: P X=1 5
x2=0 | ! X0 o
R EeStostivsttood X2=0 5
X X O
XX o L X O

Figure 7.2: Example of the proposed decomposition of the definition space.

7.2 Proposed FBDD-based Logic Synthesis 75

In order to limit the memory consumption of the whole process, the cofactor f|x is
computed using the operator BDD.Compose instead of the operator BDD.ANd. In this
way, the dependence of the cofactor f|; on the variable x is eliminated.

The heuristics used here to choose the new variable x depend only on the distribution
of the ON-set and of the OFF-set over the definition space of the target function F.
This makes the algorithm largely independent of the variable order used for the
underlying ROBDD-based representation, which is not the case with the heuristic
used in [Gue99], which has been proposed only for completely specified functions.

The structure of the resulting Cov(F) can be efficiently modeled as a FBDD
(Definition 4.12). A FBDD-based representation is preferred in this case, since an
OBDD could require excessive memory usage. Consequently, in this process a
FBDD-based representation is constructed node by node. Each non-terminal node of
the FBDD is created during a distinct recursion step. A node created outside
FlitOperator requires at most one 2-input logic operator, while a node created inside
SolitOperator may require between one and three 2-input logic operators. NAND and
NOR operators are preferred to AND and OR operators. In this way the logic is
optimized not only by reducing the number of nodes in the FBDD, but also by
reducing the operator count per node. Both goals are achieved by exploiting the DC-
Set.

So far, the node count has been minimized only by attempting to decrease the path
count (e.g. looking for minimal partitions of the definition space, where either f,, or
forr IS equal to ‘0’). The node count can be further reduced by allowing non-terminal
nodes to become children of more than one parent node and by allowing parent nodes
of the same child to belong to FBDDs corresponding to different outputs of the target
function. Thisis nothing else than the well-known node reduction [Bry86] that usually
makes the ROBDDs very compact, but which in the case of FBDDs is expected to
have less impact on the node count.

Procedure FindCover is used to check whether the covers Cov(SG) implemented by
aready synthesized sub-graphs SG are useful also in the case of the target function
F(fon, forr). If such a sub-graph is found, one has only to point to its root node with a
normal or a complemented edge (when - Cov(SG) is required).

In order to reduce the node depth of the cover returned by CreateCover, it is
important that CreatelLiteralCover is called before FindCover. In order to increase the
chances that a cover will be found by FindCover, this should be called before the for
loop in CreateCover.

FindCover (fon, forf){

for each element SG of a sub-set of al completed sub-graphs

if fon/CoV(SG) = fon and for LCOV(SG) = 0 then
return Cov(SG);

if fon/Cov(SG) =0 and fu [Cov(SG) = for then
return = Cov(SG);

return U;

76 7 Scalable Synthesis of Irregular Combinational Functions with Large Don’'t Care Sets

The DC-based node reduction implemented by FindCover has the effect that the same
node index (variable) may appear more than once on a path going from the root to a
terminal node of the resulting FBDD (Definition 4.12). Nevertheless, such an effect
has never been observed during the experiments, except for some increase of the
circuit depth.

In order to be able to express al the possible forms that Cov(F) can take, a specia
node structure has been chosen. This alows the use of complemented edges to
indicate the inversion of the function implemented by the sub-graph to which they
point. As long as it is not required that the FBDD-based representations of the
resulting covers are canonical, both else and then edges are allowed to be
complemented. Special flags indicate whether the function implemented by each of
the two child nodes has to be multiplied or not with the current node variable, taken
with the right polarity. These flags have been introduced to support the optimization
of the logic implementation by reducing the gate count per node. Each FBDD node
also contains a pointer to the ROBDD-based representation of the function
implemented by its sub-graph. In this way, the Boolean functions involved in the DC-
based node reduction can be efficiently manipulated. The run-time and the memory
consumption of the search associated with the DC-based node reduction can be
reduced by limiting the number of investigated nodes (Appendix 1).

The worst case run-time complexity of the FBDD-based logic implementation of an
incompletely specified function is proportiona to the product of the number of input
variables, the maximum size of the ROBDD-based representation of each output and
the size of the resulting cover. When the DC-based node reduction is enabled, the
square of the resulting cover size has to be taken. The node counts of the resulting
covers are usually orders of magnitude smaller than the node counts of the original
ROBDDs.

7.3 Experimental Results

The FBDD-based approaches published so far do not target the synthesis of
incompletly specified functions. Consequently, the proposed FBDD-based method has
been evaluated with respect to SIS [Sen92] and the OBDD-based methods availablein
the CUDD-package [Cudd] that are able to handle don’t cares.

The experimental setup and results are described in Appendix 1 (Table 7.1 —7.5).

First, the FBDD-based approach has been compared to the restrict operator
(Definition 4.14). For the other OBDD-based optimization methods from [Cudd] that
are able to handle don’t cares like constrain (Definition 4.13) or squeeze, similar
results have been obtained as with restrict.

The FBDD-based approach outperforms the restrict-based approach with respect to
the node count and the number of logic operators in the resulting circuit descriptions
at the cost of arun-time increase. The run-time requirement of the proposed approach
can be significantly reduced by decreasing the searching space associated with the
DC-based node reduction. On the other hand, enlarging this searching space will
further improve the compaction of the resulting FBDD-like cover. The size of the
searching space associated with the DC-based node reduction can be controlled with
the help of severa thresholds described in Appendix 2.

7.3 Experimental Results 77

Subsequently, the FBDD-based method has been compared with severa OBDD-based
approaches that use combinations of the restrict operator and variable reordering. The
variable reordering has been applied to all OBDDs corresponding to each output of
the target function. As a result, al the covers obtained with the OBDD-based
approach have the same variable ordering and, consequently, a maximized probability
of node sharing among them. Variable reordering improves the operator count at the
cost of asignificant increase in the run-time.

The results of this comparison prove that the proposed FBDD-based method
outperforms al the investigated OBDD-based approaches. Running the FBDD-based
flow with the DC-based node reduction switched off results in operator counts that are
between two and four times better than those obtained with the best investigated
ROBDD-based approach. The FBDD-based approach with DC-based node reduction
disabled also provides the implementations with the smallest depths. The operator
count of the FBDD-based covers can be further improved by enabling the DC-based
node reduction and increasing the associated searching space. In this way, one can
obtain tradeoffs between the size of the resulting covers and the required run-time.

The resulting circuit descriptions have been synthesized with Synopsys Design
Compiler and using a proprietary library. Compared to the best investigated ROBDD-
based approach, the FBDD-based flow with the DC-based node reduction disabled
reduces the area figures by a factor between two and three. This improvement has
been achieved by using shorter run-times as compared to al ROBDD-based
approaches. Moreover, the run-time of this simple configuration of the FBDD-based
approach is by at least one order of magnitude shorter than the run-time of the
ROBDD-based approach with the best logic area results. The area results of the
FBDD-based approach can be further improved by enabling the DC-based node
reduction.

In the end, the FBDD-based approach has been compared to SIS [Sen92] with respect
to the implementation of single-output incompletely specified functions with large
DC-sets. It is obvious that the FBDD-based method scales better and improves
dramatically the number of gates and area (between 2 and 19 times). This suggests
that the proposed FBDD-based approach enables a much better use of the don’t cares
which in the descriptions of SIS and MIS are referred to as external don't cares
[Bra87][Sen92].

78 7 Scalable Synthesis of Irregular Combinational Functions with Large Don’'t Care Sets

7.4 Conclusion

A new BDD-based logic synthesis procedure for irregular and incompletely specified
functions with large DC-sets has been presented, which can help to find efficient
multi-level implementations. The problem is reduced to the construction of a minimal
FBDD by performing DC-based node reduction and mainly by partitioning the
definition space of the target function into a reduced number of subspaces, which may
be mapped either to ‘0’ or to ‘1. Heuristics are used to find near-optimal partitions of
the definition space into such subspaces and, consequently, to minimize the path and
node count of the resulting FBDD-like covers. Furthermore, this approach is also able
to use the DC-set to reduce the number of logic operators (i.e. gates) appearing in the
circuit description of the non-terminal nodes.

Applying this approach to the synthesis of some benchmark bit-flipping functions
[Ghe04] resulted in covers whose circuit descriptions contained about 70% less logic
operators than the implementations obtained with the methods available in the
CUDD-package (restrict operator and variable reordering) [Cudd]. The synthesis of
the resulting circuit descriptions with Synopsys Design Compiler revealed that the
FBDD-based approach improves the area figures by a factor between two and three,
while the run-time consumption is significantly reduced. Moreover, the proposed
method scal es better and succeeds to get a better advantage of the DC-set than SIS.

A tool that implements a version of the approach presented here can be downloaded
from [Fbdd].

Chapter 8

Conclusions

8.1 Summary

This work presents and details the development of the first scalable deterministic
logic built-in self-test (DLBIST) approach. The implemented scheme is based on the
STUMPS architecture (Figure 3.3) and it relies on a pattern generator that can achieve
very high fault coverage. The particularity of this pattern generator is a combinational
module that implements a so-caled bit-flipping function (BFF). The BFF maps
deterministic test cubes to a pseudo-random test sequence generated by an LFSR and,
optionally, a phase shifter. Finding an efficient pattern (cube) mapping with low
hardware overhead is a challenging task. The contribution of this work is a scalable
solution for both the pattern mapping problem and the logic synthesis of the resulting
BFF that describes this mapping.

This work starts with a short presentation of three of the basic fault models used to
describe the defects which can appear during the manufacturing process of integrated
circuits and with an introduction in the field of built-in self-test. An overview of the
state-of-the-art methods that can be used for the logic synthesis of incompletely
specified Boolean functionsis aso given.

A new pattern mapping agorithm has been proposed for bit-flipping and more
generally for test set embedding DLBIST schemes. The new mapping method exploits
the maneuverability and the compactness of the BDD-based function representation.
Evaluations performed in the case of stuck-at fault testing have revealed that both run-
time and memory requirements are improved by several orders of magnitude as com-
pared to the original cube-based approach. Moreover, the proposed generation and
implementation of the BFF does not require more run-time and memory resources
than the ATPG or the fault simulation steps. This efficiency gain can be used to obtain
even better solutions in terms of logic overhead and fault coverage.

For the first time, the effectiveness of the embedded test sequences obtained by map-
ping deterministic test cubes to pseudo-random test sequences has been evaluated
with respect to the coverage of non-target defects. The resistive bridging fault model
has been used to model non-target defects. The experimental results reveal that both
deterministic test cubes and pseudo-random test sequences are useful for detecting
non-target defects. Furthermore, it has been shown that increasing the length of the
test sequences enhances their non-target defect coverage and significantly reduces the

80 8 Conclusions

logic overhead. This increases the appeal of the proposed DLBIST scheme and
reduces the need for expensive ATEs.

An extension of the bit-flipping DLBIST approach for transition fault testing has been
also presented. This is the first time when a DLBIST scheme is used to test delay
faults in circuits with standard scan design. The investigated delay testing approach is
based on functional justification, but the scheme can also be applied with a minimum
modification to an approach based on scan shifting. A special combinational module,
the correction logic (CRL), has been introduced to further improve the test pattern
embedding. Due to the rather low random-pattern testability of the transition faults,
the saturation of their random fault coverage requires significantly longer test se-
guences, which in turn is beneficia for both limiting the hardware overhead and
improving the coverage of the target and non-target defects.

A new BDD-based logic synthesis procedure for irregular and incompletely specified
functions with large DC-sets has been presented, which can help to find efficient
multi-level implementations. The problem is reduced to the construction of a minimal
FBDD by performing DC-based node reduction and mainly by partitioning the
definition space of the target function into a reduced number of subspaces, which may
be mapped either to ‘0’ or to ‘1. Heuristics are used to find near-optimal partitions of
the definition space into such subspaces and, consequently, to minimize the path and
node count of the resulting FBDD-like covers. Furthermore, this approach is also able
to use the DC-set to reduce the number of logic operators (i.e. gates) appearing in the
circuit description of the non-terminal nodes.

Despite the fact that this new approach has been developed to optimize the
implementations of the BFF and the CRL, the resulting algorithm can be applied for
the synthesis of any incompletely specified function that is irregular and has a large
DC-set. Among others, examples of such functions are the bit-fixing function (BFX)
[Tou96] and the X-making function (XMF) [Tan04].

Applying this approach to the synthesis of some benchmark bit-flipping functions
[Ghe04] resulted in implementations whose circuit descriptions contained about 70%
less logic operators than the implementations obtained with the methods available in a
state-of-the-art BDD package (restrict operator and variable reordering) [Cudd]. The
synthesis of the resulting circuit descriptions with Synopsys Design Compiler
revealed that the FBDD-based approach improves the area figures by a factor between
two and three, while the run-time consumption is significantly reduced. Moreover, the
proposed method scales better and succeeds to get a better advantage of the don’t
cares which in the descriptions of SIS and MIS are referred to as external don’'t cares.

A tool that implements a version of the approach presented here can be downloaded
from [Fbdd].

8.2 Contributions Overview 81

8.2 Contributions Overview

The main contributions of the research presented in thiswork are as follows:

Scalable Pattern Mapping Approach: An innovative approach has been
introduced for mapping deterministic cubes to a pseudo-random test sequence.
This approach relies on the ROBDD-based representation and manipulation of
the involved Boolean functions and sets. The used algorithm assigns a pseudo-
random pattern to each deterministic cube based on new and efficient mapping
cost functions.

Evaluation of an Embedded Test Sequence with Respect to the Cover age of
Non-modeled Defects: An analysis has been presented of the coverage of non-
modeled defects by pseudo-random sequences in which deterministic cubes
have been embedded for the test of stuck-at faults. Resistive bridging faults have
been used as a surrogate of hon-modeled defects.

Evaluation of the Test Length Impact on Hardware Overhead and Defect
Coverage: The impact of the length of the embedded test sequences on the
hardware overhead and the coverage of non-modeled defects has been investi-
gated as well.

Extension of the bit-flipping DLBIST for Transition Fault Testing: An
extension of the bit-flipping DLBIST scheme for transition fault testing has been
described. In order to improve pattern embedding, the bit-flipping scheme has
been extended with a combinational logic module called correction logic.
Possible tradeoffs between test length, hardware overhead and final transition
fault coverage have been presented.

Innovative FBDD-Based Logic Synthesis Approach: An important achieve-
ment of this work is a logic synthesis tool, which is used to improve the
implementation of the BFF. In general, this tool is especialy suited for the logic
implementations of irregular functions that have large don’t care sets. For such
functions (e.g. BFF, BFX [Tou96] and XMF [Tan04]), FBDD-like covers are
obtained and used as multi-level logic implementations.

The correspondence between these contributions and the chapters of the manu-
scriptisgivenin Table 8.1.

82 8 Conclusions

Work Contributions Manuscript Structure

Scalable Pattern Mapping Approach

Evaluation of an Embedded Test Sequence with

Respect to the Coverage of Non-modeled Defects Chapter 5
Evaluation of the Test Length Impact on Hardware
Overhead and Defect Coverage
Extension of the bit-flipping DLBIST for Transition
Fault Testing Chapter 6
Innovative FBDD-Based Logic Synthesis Approach Chapter 7

Table 8.1: Contributions of the work mapped to the structure of the manuscript.

8.3 FutureWork

The proposed DLBIST scheme has been investigated only with respect to the
transition fault testing based on functional justification (Chapter 6). Nevertheless, in
some cases [Sav94] the scan shifting approach may ensure a better random testability
of the transition faults and, consequently, a lower hardware overhead for the same
final fault coverage.

Transition fault testing based on scan shifting can be done in paralld to stuck-at fault
testing without affecting the diagnosis capability. In the case of transition fault testing
based on functional justification, the diagnosis complexity is significantly increased if
the investigated circuits are not guaranteed to pass the stuck-at fault test, at least for
the initialization patterns used for transition fault testing. The problem here is that
such a guarantee is expensive in the context of deterministic logic BIST.

Once an appropriate ATPG tool will be available, the proposed DLBIST scheme
should be evaluated also for the test of path delay faults especially of the critical
paths. A combination of critical path-delay tests and transition tests provides an
adequate at-speed testing [Bus00].

The test sequence generated by the DLBIST scheme introduced here cannot be modi-
fied anymore, once the target CUT together with dedicated test hardware have been
cast in silicon. Consequently, it would be interesting to combine this method with
other approaches that retrieve the test information from on-chip memory or ATE. In
this way, the scheme introduced here becomes more flexible and aso the memory and
bandwidth requirements of the on-top method may be significantly reduced.

Another extension of the work presented here is to develop a new data compression
method for deterministic test cubes, in which, instead of encoding directly deter-
ministic patterns, bit-flipping and reseeding [Hel92] information is stored and
compressed. This method would work especially well when the don’t care ratio in the
embedded deterministic test cubes is sufficiently large, such that the encoded

8.3 Future Work 83

information can be efficiently stored on-chip or on a cheap ATE. A first step in this
direction is described in [Hak05].

The power consumption of any at-speed BIST-based approach can exceed the power
rating of the chip, due to the high signa activity that random test patterns cause in
some circuits. Both peak and average power for the presented DLBIST scheme should
be analyzed and, if necessary, corrected.

References

[Abro0] M. Abramovici, M.A. Breuer, A.D. Friedman “Digital Systems Testing and
Testable Design,” New York: Computer Science Press (W. H. Freeman and
Co.), 1990.

[Agr8l] V.K. Agrawal, E. Cerny “Store and Generate Built-In Testing Approach,”
|EEE International Symposium on Fault-Tolerant Computing (FTCS), 1981,
pp. 35-40.

[Akr78] S.B. Akers “Binary Decision Diagrams,” |EEE Transactions on Computers,
Vol. C-27, No. 6, June 1978, pp. 509-516.

[Bal04] K.J. Balakrishnan, N.A. Touba “Improving Encoding Efficiency for Linear
Decompressors Using Scan Inversion,” 1EEE International Test Conference
(ITC), 2004, pp. 936-944.

[Bar82] H. Bardell, W.H. McAnney “Self-testing of Multi-chip Logic Modules,”
|EEE International Test Conference (ITC), 1982, pp. 200-204.

[Bar87] H. Bardell, W.H. McAnney, J. Savir “Built-In Test for VLSI,” Wiley-
Interscience, New Y ork, 1987.

[Bar90] H. Bardell “Design Considerations for Parallel Pseudo-Random Pattern
Generators,” Journal of Electronic Testing: Theory and Applications
(JETTA), Vol. 1, No. 1, 1990, pp. 73-87.

[Bas89] R.W. Bassett “Low Cost Testing of High Density Logic Components,” |EEE
International Test Conference (ITC), 1989, pp. 550-557.

[Bec92] B. Becker “Synthesis for Testability: Binary Decision Diagrams,” Springer
Verlag, STACS LNCS Voal. 577, 1992, pp. 501-512.

[Bec95] B. Becker, R. Dreschler, R. Werchner “On the Relation Between BDDs and
FDDs,” Information and Computation, Vol. 123, No. 2, December 1995, pp.
185-197.

[Bra87] R.K. Brayton, R. Rudell, A.L. Sangiovanni-Vincentelli, A. Wang “MIS: a
Multiple-Level Logic Optimization System,” IEEE Transactions on CAD,
November 1987, pp. 1062-1081.

[Bra97] R.K. Brayton, G.D. Hachtel, C.T. McMullen, A.L. Sangiovanni-Vincentelli
“Logic Minimization Algorithms for VLSI Synthesis,” Kluver Academic
Publishers, 1997.

[Brg84] F. Brglez “On Testability Anaysis of Combinational Networks,” IEEE
International Symposium on Circuits and Systems (ISCAS), 1984, pp. 221-
225,

[Brg89] F. Brglez, C. Gloster, G. Kedem “Hardware-Based Weighted Random Pat-
tern Generation for Boundary Scan,” |EEE International Test Conference
(ITC), 1989, pp. 264-274.

[Bry86] R.E. Bryant “Graph-Based Algorithms for Boolean Function Manipulation,”
|EEE Transactions on Computers, Vol. C-35, No. 8, 1986, pp. 677-691.

[Bry9l] R.E. Bryant “On the Complexity of VLSI Implementations and Graph Repre-

86 References

presentations of Boolean Functions with Application to Integer Multiplica-
tion,” IEEE Transactions on Computers, Vol. 40, No. 2, 1991, pp. 205-213.

[BusOO] M.L. Bushnell, V.D. Agrawal “Essentials of Electronic Testing,” Kluwer
Academic Publishers, 2000.

[Cat96] K. Cattel, J.C. Muzio “ Synthesis of One-Dimensional Linear Hybrid Cellular
Automata,” |EEE Transactions on CAD of Integrated Circuits and Systems,
Vol. 15, No. 3, March 1996, pp. 325-335.

[Cha00] K. Chakrabarty, S. Swaminathan “Built-In Self Testing of High-Performance
Circuits Using Twisted-Ring Counters,” IEEE International Symposium on
Circuits and Systems, 2000, pp. 72-76.

[Cha01] A. Chandra, K. Chakrabarty “Frequency-Directed Run Length (FDR) Codes
with Application to System-On-A-Chip Test Data Compression,” VLS Test
Symposium (VTS), 2001, pp. 42-47.

[Cha94] S.-C. Chang, D.I. Cheng, M. Marek-Sadowska “Minimizing ROBDD Size of
Incompletely Specified Multiple Output Functions,” |EEE European Design
and Test Conference (EDAC), 1994, pp. 620-624.

[Cha96] J.T.-Y. Chang, E.J. McCluskey “Detecting Delay Flaws by Very-Low-
Voltage Testing,” |EEE International Test Conference (ITC), 1996, pp. 367-
376.

[CheB8] C. L. Chen “Exhaustive Test Pattern Generation Using Cyclic Codes,” IEEE
Transactions on Computers, Vol. 37, No. 2, February 1988, pp. 225 -228.

[Ched6] C.A. Chen, SK. Gupta “BIST Test Pattern Generators for Two-Pattern
Testing-Theory and Design Algorithms,” IEEE Transactions on Computers,
Vol. 45, No.3, 1996, pp. 257-269.

[Coc98] B. F. Cockburn, A. L.-C. Kwong “Transition Maximation Techniques for
Enhancing the Two-Pattern Fault Coverage of Pseudorandom Test Pattern
Generators,” IEEE VLS Test Symposium (VTS), Monterey, CA, 1998, pp.
430-439.

[Cou89] O. Coudert, C. Berthet, J. C. Madre “Verification of Sequential Machines
Using Boolean Functional Vectors” IFIP International Workshop on
Applied Formal Methods for Correct VLS Design, 1989, pp. 111-128.

[Cou90] O. Coudert, J.C. Madre “Verification of Synchronous Sequential Machines
Based on Symbolic Execution,” Automatic Verification Methods for Finite
Sate Systems, Springer-Verlag, 1990, pp. 365-373.

[Cudd] http://vlg.colorado.edu/~fabio/CUDD/cuddintro.html

[Dac90] W. Dachn, T.W. Williams, K.D. Wagner “Aliasing Errors in Linear
Automata Used as Multiple-input Signature Analyzers,” I1BM Journal of
Research and Development, Vol. 34, No. 2/3, 1990, pp 363-380.

[Dam89]M. Damiani, P. Olivo, M. Favalli, B. Ricco “An Analytica Model for the
Aliasing Probability in Signature Analysis Testing,” |IEEE Transactions on
CAD, Val. 8, No. 11, 1989, pp. 1133-1144.

[Dre94] R. Drechdler, A. Sarabi, M. Theobald, B. Becker, M.A. Perkowski “Efficient
Representation and Manipulation of Switching Functions Based on Ordered
Kronecker Functional Decision Diagrams,” 31% ACM/IEEE Design Automa-
tion Conference, 1994, pp. 415-419.

[Dre98] R. Drechder, B. Becker “Binary Decision Diagrams Theory and
Implementation,” Kluver Academic Publishers, Dordrecht, 1998.

[Dr98] R. Drechder, B. Becker “Ordered Kronecker Functional Decision Diagrams
— A Data Structure for Representation and Manipulation of Boolean Func-
tions,” IEEE Transactions on CAD of Integrated Circuits and Systems, Vol.

References 87

17, No. 10, October 1998, pp. 965-973.

[Duf97] C. Dufaza, Y. Zorian “On the Generation of Pseudo-deterministic Two-
patterns Test Sequence with LFSRs,” IEEE European Design and Test
Conference (EDAC), 1997, pp. 69-76.

[Eic83] B. Eichelberger, E. Lindbloom “Random Pattern Coverage Enhancement and
Diagnosis for LSSD Logic Self-Test,” IBM Journal of Research and
Development, VVol. 27, No. 3, May 1983, pp. 265-272.

[Eng03] P. Engelke, I. Polian, M. Renovell, B. Becker “Simulating Resistive
Bridging and Stuck-at Faults,” IEEE International Test Conference (ITC),
2003, pp. 1051-1059.

[Eng04] P. Engelke, I. Polian, M. Renovell, B. Becker “Automatic Test Pattern
Generation for Resistive Bridging Faults,” |EEE European Test Symposium
(ETS), 2004, pp. 160-165.

[Eng05] P. Engelke, V. Gherman, I. Polian, Y. Tang, H.-J. Wunderlich, B. Becker
“Seguence Length, Area Cost and Non-Target Defect Coverage Tradeoffs in
Deterministic Logic BIST,” 1EEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECYS), 2005, pp. 11-18.

[Fbdd] www.ra.informatik.uni-stuttgart.de/~ghermanv/benchmarks/index.phtml

[Fel93] E. Fdt, G. York, R. Brayton, A. Sangiovanni-Vincentelli “Dynamic Variable
Reordering for BDD Minimization,” |IEEE European Design Automation
Conference, September 1993, pp. 130-135.

[Fur9l] K. Furuya, E.J. McCluskey “Two-Pattern Test Capabilities of Autonomous
TPG Circuits,” IEEE International Test Conference (ITC), 1991, pp. 704-
711.

[Geu00] M.J. Geuzebroek, J.Th. van der Linden, A.J. van de Goor “Test Point
Insertion for Compact Test Sets,” |EEE International Test Conference (ITC),
2000, pp. 506-514.

[Ger96] J. Gergov, C. Meine “Mod-2-OBDDs. A Generdization of OBDDs and
ExOR-Sum-Of-Products,” Formal Methods in System Design, Kluwer, Vol.
8, No. 3, 1996, pp. 273-282.

[Ghe04] V. Gherman, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, M.
Garbers “Efficient Pattern Mapping for Deterministic Logic BIST,” IEEE
International Test Conference (ITC), 2004, pp. 48-56.

[Ghe05] V. Gherman, H.-J. Wunderlich, M. Garbers, J. Schitffel “DLBIST for Delay
Testing,” 17th ITG/GI/GMM Workshop “ Testmethoden und Zuverléssigkeit
von Schaltungen und Systemen,” Innsbruck, 2005, pp. 39-43.

[Gir97] P. Girard, C. Landrault, V. Moreda, S. Pravossoudovitch “An Optimized
BIST Test Pattern Generator for Delay Testing,” |EEE VLS Test Symposium
(VTS), 1997, pp. 94-100.

[Gol82] SW. Golomb “Shift Register Sequences,” Aegan Park Press, Laguna Hills,
1982.

[Gon02] P. Gonciari, B. Al-Hashimi, N. Nicolici “Improving Compression Ratio,
Area Overhead, and Test Application Time for System-On-A-Chip Test Data
Compression/Decompression,” |EEE Design, Automation and Test in
Europe (DATE), 2002, pp 604-611.

[Gue99] W. Gunther, R. Drechdler “Minimization of Free BDDs,” ASP Design
Automation Conference, 1999, pp. 323-326.

[Gue00] W. Gunther “Minimization of Free BDDs Using Evolutionary Techniques,”
International Workshop on Logic Synthesis, Dana Point, CA, May, 2000.

88 References

[Gup96] S. Gupta, J. Raski, J. Tyszer “Arithmetic Adaptive Generators of Pseudo-
Exhaustive Test Patterns,” |EEE Transactions on Computers, Vol. 8, No. 45,
1996, pp. 939-949.

[Hak05] A. W. Hakmi, V. Gherman, H.-J. Wunderlich, M. Garbers, J. Schloffel
“Implementing a Scheme for External Deterministic Self-Test,” IEEE VLS
Test Symposium (VTS), 2005, pp. 101-106.

[Hay74] J.P. Hayes, A.D. Friedman “Test Point Placement to Simplify Fault Detec-
tion,” IEEE Transactions on Computers, Vol. C-33, July 1974, pp. 727-735.

[Hel90] S. Hellebrand, H.-J. Wunderlich, O.F. Haberl “Generating Pseudo-
Exhaustive Vectors for External Testing,” I|EEE International Test
Conference (ITC), 1990, pp. 670-679.

[HEl92] S. Hellebrand, S. Tarnick, J. Raski, B. Courtois “Generation of Vector
Patterns through Reseeding of Multiple-Polynomia Linear Feedback Shift
Registers,” |EEE International Test Conference (ITC), 1992, pp. 120-129.

[Hel95] S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich *Pattern Generation for
a Deterministic BIST Scheme,” ACM/IEEE International Conference on
CAD-95 (ICCAD95), 1995, pp. 88-94.

[Hel96] S. Hellebrand, H.-J. Wunderlich, A. Hertwig “Mixed-Mode BIST Using
Embedded Processors,” 1EEE International Test Conference (ITC), 1996, pp.
195-204.

[Her96] K. Heragu, JH. Patel, V.D. Agrawa “Segment Delay Faults: a New Fault
Model,” IEEE VLS Test Symposium (VTS), 1996, pp. 32-39.

[Het99] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, J. Rgjski
“Logic BIST for Large Industrial Designs: Real Issues and Case Studies,”
|EEE International Test Conference (ITC), 1999, pp. 358-367.

[Hon97] Y. Hong, P. Beerel, J. Burch, K. McMillan “Safe BDD Minimization Using
Don’'t Cares,” ACM/IEEE Design Automation Conference, 1997, pp. 208-
213.

[HonOO] Y. Hong, P. Beerel, J. Burch, K. McMillan “Sibling-Substitution-Based
BDD Minimization Using Don't Cares,” IEEE Transactions on CAD of
Integrated Circuits and Systems, 2000, pp. 44-55.

[Hua03] L. Huaguo “A New Technique for Deterministic Scan-Based Built-In Self-
Test (BIST),” Ph.D. Thesis, Shaker Verlag, 2003.

[HsuO1] F.F. Hsu, K.M. Butler, J.H. Patel “A Case Study on the Implementation of
the Illinois Scan Architecture,” |EEE International Test Conference (ITC),
2001, pp. 538-547.

[Hug84] JL.A. Hughes, E.J. McCluskey “An Anaysis of the Multiple Fault
Detection Capabilities of Single Stuck-At Fault Test Sets,” IEEE Interna-
tional Test Conference (ITC), 1984, pp. 52-58.

[Iba75] O.H. Ibara, S. Sahmi “Polynomial Complete Fault Detection Problems,”
|EEE Transactions on Computers, Vol. C-24, No. 3, 1975, pp. 242-249.

[Ish91] N. Ishiura, H. Sawada, S. Ygima “Minimization of Binary Decision
Diagrams Based on Exchange of Variables,” IEEE International Conference
on CAD (ICCAD), November 1991, pp. 472-475.

[lye90] V.S. lyengar, B.K. Rosen, JA. Waicukauski “On Computing the Sizes of
Detected Delay Faults,” IEEE Transactions on CAD, Vol. 9, No. 3, 1990, pp.
299-312.

[Jou9d5] Journal of Electronic Testing: Theory and Applications (JETTA): Special
Issue on Partial Scan Methods, Vol. 7, August/October, 1995.

References 89

[Kg95] S. Kajihara, I. Pomeranz, K. Kinoshita, S.M. Reddy “Cost-Effective Genera-
tion of Minima Test Sets for Stuck-At Faults in Combinatorial Logic
Circuits,” IEEE Transactions on Computers, Vol. 14, 1995, pp. 1496-1504.

[Kar98] R. Karri, N. Mukherjee “Versatile BIST: an Integrated Approach to ON-Line
/Off-Line BIST,” IEEE International Test Conference (ITC), 1998, pp. 910-
917.

[Keb92] U. Kebschull, E. Schubert, W. Rosenstiel “Multi-Level Logic Synthesis
Based on Functional Decision Diagrams,” European Conference on Design
Automation (EDAC), 1992, pp. 43-47.

[Keb93] U. Kebschull, W. Rosenstiel “Efficient Graph-Based Computation of and
Manipulation of Functional Decision Diagrams,” European Conference on
Design Automation (EDAC), 1993, pp. 278-282.

[Kei99] M. Keim, I. Polian, H. Hengster, B. Becker “A Scalable BIST Architecture
for Delay Faults,” |IEEE European Test Workshop (ETW), 1999, pp. 98-103.

[Kha87] M. Khare, A. Albicki “Cellular Automata Used for Test Pattern Generation,”
IEEE International Conference on Computer Design (ICCD), 1987, pp. 56-
59.

[Kie97] G. Kiefer, H.-J. Wunderlich “Using BIST Control for Pattern Generation,”
|EEE International Test Conference (ITC), 1997, pp. 347-355.

[Kie98] G. Kiefer, H.-J. Wunderlich “Deterministic BIST with Multiple Scan
Chains,” |EEE International Test Conference (ITC), 1998, pp. 1057-1064.

[KieO0] G. Kiefer, H. Vranken, E. J. Marinissen, H.-J. Wunderlich “Application of
Deterministic Logic BIST on Industrial Circuits,” 1EEE International Test
Conference (ITC), 2000, pp. 105-114.

[Koe79] B. Koenemann, J. Mucha, G. Zwiehoff “Built-In Logic Block Observation
Techniques,” IEEE International Test Conference (ITC), Cherry Hill, NJ,
1979, pp. 37-41.

[Koe9l] B. Koenemann “LFSR-Coded Test Patterns for Scan Designs,” |EEE
European Test Conference (ETC), 1991, pp. 237-242.

[KoeOl] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, D.
Wesather “A SmartBIST Variant with Guaranteed Encoding,” IEEE Asian
Test Symposium (ATS), 2001, pp. 325-300.

[Kra89] A. Krasniewski, S. Pilarski “Circular Self-Test Path: a Low Cost BIST Tech-
nique of VLSI Circuits,” IEEE Transactions on CAD, January 1989, pp. 46-
55.

[Krs98] A. Krstic, K.T. Cheng “Delay Fault Testing for VLSI Circuits,” Boston:
Kluver Academic Publishers, 1998.

[LaiO4] L. Lai, JH. Patel, T. Rinderknecht, W.T. Cheng “Logic BIST with Scan
Chain Segmentation,” IEEE International Test Conference (ITC), 2004, pp.
57-66.

[LeeS9] C.Y. Lee “Representation of Switching Circuits by Binary-Decision
Programs,” Bell System Technical Journal, Vol. 38, July 1959, pp. 985-999.

[LeeO0] C. Lee, D.M. H.Walker “PROBE: a PPSFP Simulator for Resistive Bridging
Faults,” IEEE VLS Test Symposium (VTS), 2000, pp. 105-110.

[Lev86] Y. Levendel, R.P. Menon “Transition Faults in Combinationa Circuits:
Input Transition Test Generation and Fault Simulation,” |EEE International
Fault-Tolerant Computing Symposium (FTCS), 1986, pp. 278-283.

[LiO3] W. Li, C. Yu, SM. Reddy, I. Pomeranz “A Scan BIST Generation Method
Using a Markov Source and Partia Bit-fixing,” IEEE Design Automation
Conference (DAC), 2003, pp. 554-559.

90 References

[Lin87] C.J. Lin, SM. Reddy “On Delay Fault Testing in Logic Circuits,” IEEE
Transanctions on CAD, 1987, pp. 694-703.

[Lia02] H. Liang, S. Hellebrand, H.-J. Wunderlich “Two-Dimensional Test Data
Compression for Scan-Based Deterministic BIST,” Journal of Electronic
Testing-Theory and Applications (JETTA), Vol. 18, No. 2, 2002, pp. 157-
168.

[Mal92] Y.K. Malalya, R. Rajsuman “Bridging Faults and IDDQ Testing,” |IEEE
Computer Society Press, Los Alamitos, Californial992.

[Mcc65] E.J. McCluskey “Introduction to the Theory of Switching Circuits,”
McGraw-Hill, 1965.

[Mcc81l] E.J. McCluskey, S. Bozorgui-Nesbat “Design for Autonomous Test,” IEEE
Transactions on Computers, Vol. 30, No. 11, 1981, pp. 866-875.

[Min97] S. Minato “Binary Decision Diagrams and Applications for VLS CAD,”
Kluver Academic Publishers, Dordrecht, 1997.

[Mit04] S. Mitra, K.S. Kim “X-Compact: an Efficient Response Compaction
Technique for Test Cost Reduction,” IEEE Transactions on CAD, Vol. 23,
No. 3, March 2004, pp. 421-432.

[MUk98]N. Mukherjee, T.J. Chakraborty, S. Bhawmik “A BIST Scheme for the
Detection of Path-Delay Faults,” IEEE International Test Conference (ITC),
1998, pp. 422-432.

[Oli98] A.L. Oliveira, L.P. Carloni, T. Villa, A.L. Sangiovanni-Vincentelli “Exact
Minimization of Binary Decision Diagrams Using Implicit Techniques,”
|EEE Transactions on Computers, Vol. 47, No. 11, 1998, pp. 1282-1296.

[Pan94] S. Panda, F. Somenzi, B.F. Plessier “Symmetry Detection and Dynamic
Variable Ordering of Decision Diagrams,” |EEE International Conference
on CAD (ICCAD), San Jose, CA, November 1994, pp. 628-631.

[Ra93] J. Raski, J. Tyszer “Test Responses Compaction in Accumulators with
Rotate Carry Adders,” IEEE Transactions on CAD of Integrated Circuits
and Systems, Vol. 12, No. 4, April 1993, pp. 531-539.

[Raj98] J. Rgjski, J. Tyszer “Design of Phase Shifters for BIST Applications,” |IEEE
VLS Test Symposium (VTS), 1998, pp. 218-224.

[Raj02] J. Rgjski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsai, A.
Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, J. Qian “Embedded
Deterministic Test for Low Cost Manufacturing Test,” IEEE International
Test Conference (ITC), 2002, pp. 301-310.

[Red92] L. N. Reddy, I. Pomeranz, S. M. Reddy “ROTCO: a Reverse Order Test
Compaction Technique,” |IEEE EURO-ASC Conference, September 1992,
pp. 189-194.

[Ren95] M. Renovell, P. Huc, Y. Bertrand “The Concept of Resistance Interva: a
New Parametric Model for Resistive Bridging Fault,” IEEE VLS Test
Symposium (VTS), 1995, pp. 184-189.

[Ren99] M. Renovell, F. Azais, Y. Bertrand “ Detection of Defects Using Fault Model
Oriented Test Sequences,” Journal of Electronic Testing: Theory and
Applications (JETTA), Vol. 14, No. 1-2, 1999, pp. 13-22.

[Rud93] R. Ruddl “Dynamic Variable Ordering for Ordered Binary Decision Dia
grams,” |EEE International Conference on CAD (ICCAD), November 1993,
pp. 42-47.

[Sau96] M. Sauerhoff, I. Wegener “On the Complexity of Minimizing the OBDD
Size for Incompletely Specified Functions,” IEEE Transactions on CAD,
Vol. 15, November 1996, pp. 1435-1437.

References 91

[Sav84] J. Savir, G.S. Ditlow, P.H. Bardell “Random Pattern Testability,” IEEE
Transactions on Computers, Vol. C-33, No. 1, 1984, pp. 79-90.

[Sav92] J. Savir “Skewed-Load Transition Test: Part I, Calculus,” IEEE International
Test Conference (ITC), 1992, pp.705-713.

[Sav94] J. Savir, S. Patil “Broad-Side Delay Test,” IEEE Transactions on CAD of
Integrated Circuits and Systems, Vol. 13, No. 8, 1994, pp. 1057-1064.

[Sch99] C. Scholl, D. Mdller, P. Malitor, R. Drechsler “BDD Minimization Using
Symmetries,” IEEE Transactions on CAD of Integrated Circuits and
Systemss, Vol. 18, No. 2, 1999, pp. 81-100.

[Sei91] B.H. Seil3, P.M. Trouborst, M.H. Schulz “Test Point Insertion for Scan-
Based BIST,” IEEE European Test Conference (ETC), April 1991, pp. 253-
262.

[Sen92] E. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, A. Sangiovanni-
Vincentelli “Sequential Circuit Design Using Synthesis and Optimization,”
|EEE International Conference on Computer Design (ICCD), October 1992,
pp. 328-333.

[Sha00] M. Sharma, JH. Patel “Enhanced Delay Defect Coverage with Path-
Segments,” |EEE International Test Conference (1TC), 2000, pp. 385-392.

[Sha03] M. Sharma, JH. Patel, J. Rearick “Test Data Compression and Test Time
Reduction of Longest-Path-Per-Gate Tests Based on Illinois Scan Architec-
ture,” IEEE VLS Test Symposium (VTS), 2003, pp. 15-21.

[Shi94] T. Shiple, R. Hojati, A. Sangiovanni-Vicentelli, R. Brayton “Heuristic
Minimization of BDDs Using Don’'t Cares,” ACM/IEEE Design Automation
Conference, 1994, pp. 225-231.

[Sie93] D. Sieling, |. Wegener “Reduction of OBDDs in Linear Time’”
Information Processing Letters, Vol. 48, No. 3, 1993, pp.139-144.

[SieQ5] D. Siding, 1. Wegener “Graph Driven BDDs — a New Data Structure for
Boolean Functions,” IEEE Theoretical Computer Science, Vol. 141, No.1-2,
1995, pp. 283-310.

[Sie99] D. Sieling “The Complexity of Minimizing FBDDs,” Mathematical
Foundations of Computer Science (MFCS), 1999, pp. 251-261.

[Smi85] G.L. Smith “Model for Delay Faults Based Upon Paths,” |EEE International
Test Conference (ITC), 1985, pp. 342-349.

[Str90] A.P. Stroele, H.-J. Wunderlich “Error Masking in Self-Testable Circuits,”
|EEE International Test Conference (ITC), 1990, pp. 544-552.

[Str94] A.P. Stroele, H.-J. Wunderlich “Configuring Flip-Flops to BIST Registers,”
|EEE International Test Conference (ITC), 1994, pp. 939-948.

[Tan04] Y. Tang, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, P. Engelke, I.
Polian, B. Becker “X-Masking During Logic BIST and Its Impact on Defect
Coverage,” |IEEE International Test Conference (ITC), 2004, pp. 442-451.

[Tim83] C. Timoc, M. Buehler, T. Griswold, C. Pina, F. Scott, L. Hess “Logicd
Models of Physical Failures,” IEEE International Test Conference (ITC),
1983, pp. 546-553.

[Tou96] N.A. Touba, E.J. McCluskey “Altering A Pseudo-Random Bit Sequence for
Scan-Based BIST,” IEEE International Test Conference (ITC), 1996, pp.
167-175.

[TouO4] K.J. Balakrishan, N.A. Touba “Relating Entropy Theory to Test Data
Compression,” IEEE European Test Symposium (ETS), 2004, pp. 187- 192.

92 References

[Tri80] E. Trischler “Incomplete Scan Path with Automatic Test Generation
Methodology,” |EEE International Test Conference (ITC), 1980, pp. 153-
162.

[Tro9l] G. Tromp “Minimal Test Sets for Combinatorial Circuits,” 1EEE Interna-
tional Test Conference (ITC), 1991, pp. 204-209.

[Tsa00] K.-H. Tsai, J. Rajski, M. Marek-Sadowska “ Star Test: the Theory and Its
Applications,” IEEE Transactions on CAD of Integrated Circuits and
Systems, Vol. 19, No. 9, September 2000, pp. 1052-1064.

[Tsa97] K.-H. Tsal, S. Hellebrand, J. Rgjski, M. Marek-Sadowska “STARBIST: Scan
Autocorrelated Random-Pattern Generation,” ACM/IEEE Design Automa-
tion Conference (DAC), 1997, pp. 472-478.

[Vra02] H. Vranken, F. Meister, H.-J. Wunderlich “Combining Deterministic Logic
BIST with Test Point Insertion,” IEEE European Test Workshop (ETW),
May 2002, pp. 389-3%4.

[VraD4] H. Vranken, H.-J. Wunderlich, F.S. Sapel “Impact of Test Point Insertion on
Silicon Area and Timing During Layout,” |IEEE Design, Automation and
Test in Europe (DATE), February 2004, pp. 810-815.

[Wai87] J.A. Waicukauski, E. Lindbloom, B.K. Rosen, V.S. lyengar “ Transition Fault
Simulation,” |EEE Design and Test of Computers, Vol. 4, 1987, pp. 32-38.

[Wan86]L.T. Wang, E.J. McCluskey “Concurrent Built-In Logic Block Observer
(CBILBO),” IEEE International Symposium on Circuits and Systems
(ISCAS), 1986, pp. 1054-1057.

[WueO4] A. Wuertenberger, C.S. Tautermann, S. Hellebrand “Data Compression for
Multiple Scan Chain Using Dictionaries with Corrections,” |EEE
International Test Conference (ITC), 2004, pp. 926-935.

[Wun85]H.-J. Wunderlich “PROTEST: a Tool for Probabilistic Testability Analysis,”
ACM/IEEE Design Automation Conference (DAC), 1985, pp. 204-211.

[Wun88]H.-J. Wunderlich “Multiple Distributions for Biased Random Test Patterns,”
|EEE International Test Conference (ITC), 1988, pp. 236-244.

[Wun90]H.-J. Wunderlich “Multiple Distributions for Biased Random Test Patterns,”
|EEE Transactions on CAD, Val. 9, No. 6, June 1990, pp. 594-602.
[Wun96]H.-J. Wunderlich, G. Kiefer “Bit-Flipping BIST,” IEEE International

Conference on CAD (ICCAD), 1996, pp. 337-343.

[Wu98] H.-J. Wunderlich, R. Dorsch “Accumulator Based Deterministic BIST,”
|EEE International Test Conference (ITC), Washington D.C., 1998, pp. 412-
421.

[Wun98]H.-J. Wunderlich “BIST for Systems-On-A-Chip,” INTEGRATION, the VLS
Journal, 1998, pp. 55-78.

[WunO2]H.-J. Wunderlich “Design and Test of System-on-a-Chip,” Lecture Notes,
University of Stuttgart, 2002.

[Wur95] B. Wurth, K. Fuchs “A BIST Approach to Delay Fault Testing with Reduced
Test Length,” IEEE European Design and Test Conference (EDAC), 1995,
pp. 418-423.

[Xia03] D. Xiang, S. Gu, J.G. Sun, Y. Wu “A Cost-Effective Scan Architecture for
Scan Testing with Non-Scan Test Power and Test Application Cost,” |EEE
Design Automation Conference (DAC), June 2003, pp. 744-747.

[Zor90] Y. Zorian, V.K. Agarval “Optimizing Error Masking in BIST by Output
Data Modification,” Journal of Electronic Testing Theory and Applications
(JETTA), Vol. 1, No. 1, February 1990, pp. 59-72.

| ndex

A F

activation pattern 59 fault coverage 9

aliasing 28 fault efficiency 9

analogue detectability interval 10 fault model 24

apply operator 35 feedback coefficients 20
feedback polynomia 20

B folding counter 24
freeBDD 34

BIST control unit 16
bit-fixing function 80
bit-flipping function 43, 70
Boolean network 32

functional Decision Diagram 34
functiona justification 59

bridging fault 9 G

broadside approach 59 gate delay fault 12
built-in self-test 15 global fault coverage 11
C H

capture mode 17 hash table 35
cardinality 71

characteristic function 51 I

characteristic polynomia 20 Hlinoi 17
complemented edge 35 irr:SI?I:ZnSfago

conjunctive form 30 implicat 30

constra_in olper_ator 36 incompletely specified functions 29
correction logic 65 initialization pattern 59

cover 29 : : ;
irreducible polynomial 20
cube 30 irredundant cover 31
D irregular functions 3
delay fault 12 L
design for testability 19 linear feedback shift register 17, 19

deterministic pattern testing 25

digunctive form 30 linear hybrid cellular automata 19

linear logic elements 19
linear space compactors 26

E literdl 30
error masking 28 logic BIST 2
essential bit 46

essential pattern 46, 62
exhaustive testing 24

> Index
M scan enable signal 17
minterm 30 scan forest 17
mixed mode approache 25 scan shifting 59
shift counter 16, 42
modular LFSR 22 !
multi-level representation 31 shift mode 17
multiple input shift register 17 signature andysis 25
skew load 59

multiple scan chains 16
multiple stuck-at fault 8

@)
ordered BDD 34

P

parallel signature analysis 27
path delay fault 12

pattern counter 16, 42

pattern mapping 2

prime cover 31

prime implivant 31

primitive polynomial 20
probabilistic fault coverage 10
product-term 30
programmable logic array 30
pseudo-random pattern generator 19

R

recurrence equation 20

reduced BDD 34

redundant fault 8

remainder polynomia 27

resistive bridging fault 9

resistive bridging fault coverage 11
restrict operator 36

S
satisfying set 35

slow-to-fall transition fault 13
sow-to-rise transition fault 13
Space compression 26
standard LFSR 19

state transitions matrix 20
store and generate 2, 24
stuck-at fault 8

STUMPS 17

T

tautology check 35

test confidence 60

test response evaluator 16
test set embedding 2, 25
test-per-clock 18
test-per-scan 16

time compression 25
transition fault 13
two-level representation 30

U
untestable bridging fault 11

W
weighted-random pattern testing 23

Y
yield 18, 59

Appendix 1 — Tableswith Experimental Results

The first experiments considered here refer to the evaluation of the new BDD-based
pattern mapping approach presented in Chapter 5 with respect to the original cube-
based approach [Wun96]. The experimental results (Table 5.5 — 5.11) have been
obtained using GNU Linux machines equipped with 1 GB of memory and an AMD
Athlon-XP processor running at 1.5 GHz. The BDD-based computations have been
implemented using the CUDD-package [Cudd].

Table 5.5 presents the characteristics of the industrial designs that have been used as
benchmark circuits. The first column reports the circuit name encoded as pN, where N
denotes the number of nets in the design. The second column gives the number of
scan flip-flops contained in each circuit. The last two columns report the stuck-at fault
coverage and efficiency (Definition 2.1 — 2.2) achieved after applying 10,000 pseudo-
random test patterns generated by a 32-stages long LFSR with a primitive polynomial.

Deterministic test cubes generated with an industrial ATPG tool (AMSAL™) have
been embedded into the pseudo-random test sequences using the original cube-based
and the new BDD-based mapping approaches.

During the generation of the BDD-based representations of the resulting BFFs, no
static or dynamic variable reordering has been performed. The variables have been a
priori and optimally arranged in groups corresponding to the state bits of the LFSR,
the pattern counter and the shift counter. No phase shifter has been used. The
experiments have been performed with the same variable order for all the designs.

In Table 5.6, the BDD-based and the cube-based mapping approaches have been
compared with respect to the run-time requirements of the pattern mapping, ATPG
and fault simulation tasks. The BDD-based approach reduces the pattern mapping
time from severa days down to a few minutes. The run-times of the two other tasks,
ATPG and fault ssmulation, are considerably improved as well.

Design |# Flip-flops| Random stuck-at fault coverage [%] | Random stuck-at fault efficiency [%]
p19k 1,407 63.11 69.03
p59k 4,730 87.30 97.00

p127k 5,116 82.14 83.96

p278k 9,967 79.92 81.29

p333k 20,756 93.64 95.57

p951k | 104,624 92.91 92.56

p2074k| 58,835 64.11 92.54

Table5.5: Benchmark designs characteristics with respect to stuck-at fault testing.

19 Automatic Multi restartable Scan test pattern generation And Localization of faults.

96 Appendix 1

Cube-based approach BDD-based approach
Design Mapping |ATPG time|Fault simulation| Mapping |ATPG time| Fault simulation
time [h:m] [h:m] time [h:m] time [h:m] [h:m] time[h:m]

p19k 02:57 00:00 00:33 00:02 00:00 00:01

p59k 02:20 00:05 00:30 00:02 00:01 00:03
p127k 76:54 02:22 18:25 00:14 03:10 00:12
p278k | 193:10 05:20 37:23 00:09 02:29 00:22
p333k 116:15 00:48 47:45 00:14 00:37 00:17
p951k - - - 03:12 01:14 00:57
p2074k - - - 03:59 02:55 00:35

Table5.6: Run-time for different tasks of the cube-based and BDD-based a go-
rithms. For the design p2074k a machine equipped with 2 GB of memory
and an Intel Pentium 4 CPU running at 2.4 GHz has been used.

The overal run-time (Time) and the memory (Memory) consumption (including also
the run-time and the memory required for the BDD-based logic optimization) are
quoted in Table 5.7. The BDD-based approach is able to reduce the total run-time
from more than a week down to severa hours, while also the memory requirements
scale quite well with the circuit size.

The fault efficiencies and the cell area overhead obtained with both mapping ap-
proaches are reported in Table 5.8. In order to have comparable experimental results,
the fault efficiency of the BDD-based approach has been limited to the maximum
reachable with the cube-based approach. By spending more resources, even higher
fault efficiency could be achieved. The only limitation is represented by the resources
given to the ATPG tool. The last column (Cell area) shows the cell area overhead of
the BFF implementation relative to the cell area of the CUT, obtained using Synopsys
Design Compiler and a proprietary library. Only the logic overhead of the BFF
implementation is given. The overhead of the other parts of the DLBIST hardware is
relatively small and it may be neglected.

Cube-based approach BDD-based approach
Design
Time[h:m] Memory [MB] | Time[h:m] | Memory [MB]

p19k 03:30 58 00:27 58

p59k 02:55 138 00:11 66
p127k 97:41 368 11:13 211
p278k 235:53 584 15:21 318
p333k 164:48 660 09:07 290
p951k - - 14:22 1106
p2074k - - 18:37 1865

Table 5.7: Run-time and memory consumption of the cube-based and BDD-based
algorithms. For the design p2074k a machine equipped with 2 GB of
memory and an Intel Pentium 4 CPU running at 2.4 GHz has been used.

Tables with Experimental Results 97

Cube-based approach BDD-based approach
d gf‘:;;aéyf?;lﬁ Cell area [%] gf‘:;kenaéyfﬁ%; Cell area [%]
p19k 96.57 89.67 97.46 21.71
p59k 98.95 7.64 99.05 3.59
p127k 94.56 27.86 95.47 9.81
p278k 90.67 25.77 91.47 9.66
p333k 97.41 12.07 97.47 3.56
p951k - 99.65 1.49
p2074k - 98.97 2.64
Table5.8: Fault efficiency and logic overhead of the cube-based and BDD-based
algorithms.

Due to excessive run-time and memory requirements, no experimenta results are
available for the cube-based approach in the case of the 2 largest designsin Table 5.6,
5.7 and 5.8.

Table 5.9 illustrates how the new pattern mapping approach scales when the target
fault efficiency is increased to the highest levels allowed by the ATPG tool. Most of
the additiona run-time is consumed during the deterministic pattern generation and
the BDD-based logic synthesis of the BFF, while the time spent for fault simulation
remains constant. These final fault efficiencies are practicaly not reachable by the
cube-based approach in the case of the largest five designs. The presented approach
does not only scale very well in terms of run-time and memory consumption, but also
in terms of fault efficiency and area overhead. Additionally, it is shown that the logic
overhead decreases considerably in the case of the largest designs.

Below, it is shown how the new mapping approach performs on smaller, but still
difficult to test designs (Table 5.10 — 5.11). For this purpose, the ISCAS-85 and the
combinational part of the ISCAS-89 benchmarks [Brg89][Wun96] have been used.
The two benchmark suites are identified with the symbols“c” and “cs’, respectively.

Design # Embedded Fault efficiency Ti.me Memory | Cell area
patterns [%] [h:m] [MB] [%0]
p19k 181 99.19 00:32 91 25.36
p59k 137 99.10 00:11 68 3.75
p127k 582 99.26 18:20 295 21.81
p278k 1,549 98.87 55:37 536 34.58
p333k 1,298 99.30 23:00 359 7.00
p951k 259 99.65 14:22 1,106 1.49
p2074k 302 98.97 18:37 1,865 2.64

Table 5.9: Results obtained with the BDD-based approach targeting the fault
efficiency allowed by the ATPG tool. For the designs p278k and p2074k

amachine equipped with 2 GB of memory and an Intel Pentium 4 CPU

running at 2.4 GHz has been used.

98 Appendix 1

Table 5.10 presents the number of scan flip-flops contained in each circuit and the
stuck-at fault efficiency (Definition 2.2) obtained after applying 10,000 pseudo-ran-
dom patterns generated by a 13-stages long LFSR with a primitive polynomial. Only
those ISCAS benchmarks which still have undetected non-redundant stuck-at faults
after applying 10,000 pseudo-random patterns are analyzed.

In Table 5.11, a comparison is presented between the BDD-based and the cube-based
approaches with respect to the mentioned ISCAS designs. In most of these experi-
ments, it has not been possible to achieve 100% final fault efficiency, due to the fact
that the available ATPG tool was especially adapted for large industrial designs,
whereit is not relevant whether a few faults expensive to detect remain undetected.

For all the designs it has been possible to reach higher final fault efficiencies with the
BDD-based approach. This is due to a loss of pseudo-randomly testable faults after
some iterations of the cube-based approach, which could not be recovered by the
available ATPG tool. With the exception of 2 small ISCAS designs (cs641, cs713),
which have been completed in a few seconds, the total run-time of the BDD-based
approach is much shorter, sometimes by even one order of magnitude. For the larger
ISCAS designs the difference between the two approaches is more obvious. This
proves the better scalability of the BDD-based algorithm, just like the experimental
results for the large industrial designs. Furthermore, with the exception of a few
ISCAS designs, the memory consumption (cs641, cs713, ¢s838) and the logic area
(cs641, cs5378) are lower for the BDD-based a gorithm.

Tables 5.12 — 5.13 present the experimenta results of an investigation of the non-
target defect coverage of the embedded test sequences obtained with the bit-flipping
DLBIST scheme. Resistive bridging faults are used as a surrogate of non-target
defects [Eng05]. The same types of machines have been utilized as for the
experiments considered before.

Design Size [FFs] Random fault efficiency[%]
c2670 221 91.77
c7552 313 97.11
cs641 78 98.01
cs713 77 98.16
cs338 67 69.19
€s5378 263 97.44
€s9234 286 87.75
cs13207 852 91.69
¢s15850 761 94.48
cs38417 1,770 92.22
€s38584 1,768 98.05

Table5.10: Characteristics of the ISCAS (85 and 89) benchmark designs.

Tables with Experimental Results 99

Cube-based approach BDD-based approach
Design Final fault | Time |Memory |Cell area| Final fault | Time [Memory [Cell area
efficiency [%]| [m:s] | [MB] [um? |efficiency [%]| [m:s] | [MB] | [pum?]
€2670 99.00 07:30 10 2,213 99.67 06:55 5 852
c7552 99.73 03:59 14 5,694 99.87 01:16 6 3,272
cs641 99.65 00:03 4 73 99.65 00:04 4 101
cs/713 99.78 00:03 4 87 99:78 00:03 4 79
cs838 97:13 00:13 4 1,631 98.35 00:06 4 1,362
csb378 99.71 01:21 14 1,043 99.94 00:12 5 1,065
€s9234 98.89 69:18 17 8,575 99.40 31:59 6 5,578
€s13207 99.25 29:06 46 4,740 99.74 01:25 8 3,226
€s15850 99.88 11:23 27 11,235 100.00 00:35 9 6,259
cs38417 99.87 557:48| 113 56,338 99.99 46:24 15 25,534
€s38584 99.95 94:37 88 8,696 99.99 02:29 14 4,769

Table5.11: Comparison of the two approaches on some ISCAS (85 and 89) designs.

Sequences of 1K, 5K and 10K test patterns have been considered. The stuck-at fault
coverage (Definition 2.1) achieved by the pseudo-random test sequences (before de-
terministic cube embedding) is reported in Table 5.12. The pseudo-random test
sequences have been generated by a 13-stages long LFSR with a primitive
polynomial. The results are reported for those ISCAS-85 and combinationa cores of
the ISCAS-89 circuits for which the 10K long pseudo-random test sequence did not
detect all the non-redundant faults. For the other ISCAS circuits, no pattern embed-
dingisrequired for 10K long test sequences.

The pseudo-random test sequences have been simulated for resistive bridging faults
before and after deterministic test cubes have been embedded. The fault set consists of
10K randomly selected non-feedback resistive bridging faults. A density function p
(Section 2.2) derived from the one used in [Lee00] is employed for al experiments.
All measurements are performed using the ssmulator from [Eng03]. The SAT-based
ATPG procedure from [Eng04] is used for computing the exact vaue of ADlIg
(Definition 2.5). Due to the fact that the embedded deterministic cubes consider only
the stuck-at faults, resistive bridging faults are a valid surrogate of non-target defects.

Design 1K 5K 10K

c7552 92.38 93.51 94.68
c309234 72.31 80.79 83.60
cs13207 76.56 86.76 91.47
cs15850 84.58 89.98 91.14
cs38417 86.23 90.57 92.61
cs38584 90.47 93.44 94.31

Table5.12: Stuck-at coverage of pseudo-random sequences before deterministic
cube embedding.

100 Appendix 1

Due to the fact that AMSAL and the available briging fault simulator [Eng03] do not
use compatible circuit formats, the Mentor Grapics tool, FlexTest, has been utilized
for stuck-at fault simulation and deterministic test pattern generation. The determinis-
tic test patterns generated by FlexTest have been transformed into deterministic test
cubes by inserting don't cares based on fault simulation.

Table 5.13 reports the resistive bridging fault coverage FCs (Definition 2.6) of the
pseudo-random test sequence (Random FCg) and of the test sequence obtained after
the deterministic cubes had been embedded (Embedded FCg), for the circuits men-
tioned in Table 5.12 and the test sequence lengths mentioned before. The size of the
bit-flipping logic (LS ZE) is measured as the number of 2-input logic operators in the
resulting circuit descriptions.

It can be seen that the resistive bridging fault coverage of the pseudo-random se-
guences is consistently higher than their stuck-at fault coverage. Interestingly, random
pattern resistant faults seem to be distributed differently in the case of stuck-at and
resistive bridging faults. Two circuits (cs09234, ¢s38584) have more random pattern
resistant resistive bridging faults than the other circuits. While cs09234 has the lowest
stuck-at fault coverage, cs38584 has the second highest stuck-at coverage. Hence, the
validity of stuck-at fault coverage in identifying circuits with many random pattern
resistant resistive bridging faults appears to be limited.

The resistive bridging fault coverage increases considerably due to embedding.
However, the pseudo-random test patterns also contribute to the detection of non-
target defects. This is implied by the fact that applying more pseudo-random test
patterns results in significantly higher resistive bridging fault coverage. This can be
seen best in the case of the two circuits with a large number of random pattern
resistant resistive bridging faults, cs09234 and ¢s38584, for which the coverage gain
from 1K to 5K is 5% and 2%, respectively. Note that the circuits for which the
sequence yielded good resistive bridging fault coverage before embedding also have
the highest resistive bridging fault coverage after embedding.

Finally, it can be observed that the increase of the test sequence length reduces the
overhead of the bit-flipping logic up to afactor of 2.4 (cs13207).

1K 5K 10K
Design | Random | Embedded Random| Embedded Random |Embedded
FCe FCe LSIZE FCe FCq LSIZE FCq FCq LSIZE

c7552 | 99.28 99.83 583 | 99.44 99.87 546 99.61 99.87 433
c309234| 90.68 98.55 1,097 | 95.30 99.26 824 96.55 99.39 683
cs13207| 95.58 99.31 889 | 97.62 99.66 541 98.53 99.70 367
cs15850| 96.29 99.36 1,107 | 98.34 99.67 783 98.81 99.70 686
cs38417| 97.50 99.46 4,135 | 98.57 99.54 3,170 | 98.93 99.65 | 2,697
€s38584| 93.01 98.74 894 | 95.10 99.43 878 96.47 99.67 590

Table5.13: Resistive bridging fault coverage (FCg) of the pseudo-random and
embedded test sequences and DLBIST overhead (LSIZE).

Tables with Experimental Results 101

In Table 6.1, the effect of using the correction logic (CRL) on the logic overhead of
the bit-flipping DLBIST architecture is shown in the case of stuck-at fault testing. The
final stuck-at fault efficiency and the 2-input logic gates in the circuit description of
the bit-flipping logic and the correction logic are reported for both architectures (with
and without CRL). The last column (Overhead Improvement) shows the ratio of the
overhead with and without CRL.

The next experiments considered here refer to the evauation of the bit-flipping
DLBIST scheme, as proposed in Chapter 6, with respect to transition fault testing.
The reported experimenta results (Table 6.2 — 6.5) have been obtained using GNU
Linux machines equipped with 2 GB of memory and an Intel Pentium 4 processor
running at 2.4 GHz.

Table 6.2 presents the industrial designs that have been used as benchmark circuits. It
is assumed that these circuits contain only single-cycle paths. The same circuit
denomination is utilized as in the case of Table 5.5. The second and the third columns
give the number of scan flip-flops (# Flip-flops) and scan chains (# Scan Chains)
contained by each design. The following column (Test length) shows the length of the
test sequence. The last two columns report the pseudo-random stuck-at and transition
fault efficiencies (Definition 2.2), respectively. For each design, the last entry line
corresponds to a test sequence whose application would require one second at the
frequency of 100 MHz. The pseudo-random test patterns have been generated by a
32-stages long LFSR with a primitive polynomial and a phase shifter.

In Table 6.3, one can compare the results obtained using the bit-flipping DLBIST
approach for the stuck-at and transition fault testing of the benchmarks in Table 6.2.
Table 6.3 reports the number of embedded deterministic test cubes, the percentage of
specified bits in each set of embedded test cubes, the achieved final fault efficiency
and the cell area overhead of the BFF and CRL (Figure 6.3) implementations for both
fault models. The overhead of the other parts of the DLBIST hardware is relatively
small and it may be neglected.

In order to limit the hardware overhead in the case of the three largest designs, the
number of deterministic test cubes embedded for transition fault testing has been
limited to 800.

Without CRL With CRL Overhead

Design ["BFF | Final fault efficiency [BFF+CRL|Final fault efficiency | | MProvement
[# gates] [%] [# gates] [%] [%]
plok | 8,636 99.98 8,520 99.97 98.7
p59k | 3,357 99.15 3,015 99.15 89.8
p127k | 71,795 99.87 68,049 99.87 94.8
p278k | 97,270 99.49 93,443 99.42 96.1
p333k | 33,406 99.43 31,136 99.44 93.2

Table 6.1: CRL impact on the overhead of the bit-flipping DLBIST architecture.

102 Appendix 1
Desian #Flip- | #Scan Test Random stuck-at fault | Random transition fault
9 flops chains | length efficiency [%] efficiency [%]
10K 80.80 73.66
p19K 1,407 29 32K 85.54 82.64
64K 90.38 86.97
1923K 95.87 90.74
10K 97.12 81.87
p59K 4730 20 32K 97.94 85.63
64K 98.11 87.31
192K 98.35 89.67
10K 84.42 55.83
127K | 5,116 11 32K 89.39 64.80
64K 91.65 68.53
187K 93.75 73.82
10K 84.29 63.86
0278K | 9,967 32K 88.66 71.02
64K 90.62 75.00
318K 93.38 82.81
10K 95.62 66.66
p333K | 20,756 20 32K 96.73 73.39
64K 97.14 76.39
140K 97.51 78.26

Table 6.2: Benchmark characteristics with respect to transition fault testing.

With the exception of the design p19K, the deterministic cubes embedded for transi-
tion fault testing have larger ratios of specified bits. Thisis due to the lower transition
fault testability. In the case of the design p19K, this lower testability has the effect that
the used ATPG tool (AMSAL) deliversless deterministic test cubes with less detected
faults and also less specified bits per cube than in the case of stuck-at fault testing.

Stuck-at fault testing Transition fault testing
Design # Ratio of| Fault | Cell # Ratioof | Fault | Cell
Embeddedspecifiediefficiency| area |Embedded| specified [efficiency] area
patterns |bits[%]| [%] [%] | patterns | bits[%] [%] [%]
p19K 181 26.48 | 99.19 25 145 10.64 94.40 17
p59K 137 277 | 99.10 4 1,077 03.00 96.43 26
pl27K 582 12.04 | 99.26 22 800 15.24 76.35 43
p278K 1,549 6.10 | 98.87 35 800 14.48 86.66 62
p333K 1,298 0.75 | 99.30 7 800 2.94 84.95 22

Table 6.3: DLBIST applied to stuck-at and transition fault testing (10K test patterns).

Tables with Experimental Results 103

In all cases, the final stuck-at fault efficiency is much larger than the fina transition
fault efficiency. Moreover, this has been achieved along with a lower cell area
overhead with the exception of the design p19K. The reason for this difference is
again the lower random testability of the transition faults with the consequence that
more patterns have to be embedded and more bits have to be flipped or preserved in
the pseudo-random sequence. This seems not to be the case of the pl9K design.
Nevertheless, as mentioned before, here it was just the ATPG that provided fewer
deterministic test cubes to be embedded for transition fault testing.

In Table 6.4, one can observe the impact of increasing the test length on the final fault
efficiency and cell area overhead (BFF and CRL) of the considered DLBIST scheme
used for transition fault testing. The run-time and memory requirements are reported
aswell.

As expected, the hardware overhead of the first two designs, for which the number of
embedded patterns has not been limited, is significantly reduced by the increase of the
test length. Extending the test length from 10K to 64K reduces the overhead by more
than 10% of the CUT size. In the case of the last entry corresponding to the design
p19K, increasing the test length by 2 orders of magnitude has reduced the overhead to
half of the level from the previous entry that corresponds to a test sequence containing
64K patterns, at the price of a large increase in the run-time and memory require-
ments.

Test # Run- M emor Final fault | Fault efficiency | Cell area
Design lenath Embedded | time [MB]y efficiency impr ovement over head
9N\ patterns | [h:m] (%] [%)] [%)]
10K 145 00:16 58 94.40 20.74 17
32K 125 00:24 61 94.40 11.76 11
p19K
64K 105 00:23 67 94.40 7.43
1,923K 54 04:01 577 94.41 3.67
10K 1077 07:22 252 96.43 14.56 26
059K 32K 942 06:19 240 96.55 10.92 20
64K 865 05:45 230 96.64 9.33 18
192K 738 05:53 286 96.69 7.02 15
10K 800 32:55 716 76.35 20.52 43
p127K 32K 800 32:09 738 82.20 17.40 14
64K 800 31:47 755 84.98 16.45 14
187K 800 30:17 786 87.75 13.93 42
10K 800 29:01 1,408 86.66 22.80 62
32K 800 30:34 1,415 90.24 19.22 57
P278K | 6ax 800 |3216| 1,431 91.84 16.84 54
318K 800 48:37 1,508 94.93 12.12 51
10K 800 33:40 758 84.95 18.29 22
p333K 32K 800 35:58 760 86.77 13.38 19
64K 800 35:29 742 87.61 11.22 17
140K 800 35:39 801 88.25 9.99 15

Table 6.4: Test sequence length impact on DLBIST used for transition fault testing.

104 Appendix 1

Asin the case of the previous experiments, the number of embedded deterministic test
cubes for the three largest designs has been limited to 800, in order to limit the hard-
ware overhead. As long as the same number of deterministic test cubes is embedded,
it is difficult to predict the dependence of the hardware overhead on the length of the
test sequence. In this case, the overhead primarily depends on the average number of
specified bits per embedded test cube, which is determined by the number and the
difficulty of the target faults.

Longer pseudo-random test sequences leave undetected faults which are more diffi-
cult to test. This tends to increase the number of specified bits necessary to detect the
remaining fault. On the other hand, this may also decrease the number of new de-
tected faults per embedded test cube. That iswhy it is difficult to predict the evolution
of the average number of specified bits per embedded test cube when the length of the
test sequence is augmented. Increasing the length of the test sequence also improves
the pattern embedding opportunities.

In the case of the design p127K, increasing the length of the test sequence does not
significantly change the hardware overhead, but it improves the final fault efficiency
by more than 11%. In the case of the designs p278K and p333K, increasing the length
of the test sequence has a twofold beneficial impact. Choosing a test sequence length
of 318K and 140K instead of 10K reduces the overhead by 11% and 7%, respectively.
In paraldl, the final fault efficiency is improved by more than 8% and 3%, respec-
tively. It should be mentioned that the increase of the test sequence length improves
the coverage of the non-modeled defects as well (Section 5.6).

In the case of the three largest designs, increasing the length of the test sequence has
no significant impact on the run-time and memory requirements.

Table 6.5 reports possible trade-offs between the fault efficiency and the hardware
overhead in the case of the largest three benchmark designs. The considered test
sequences contain the maximum number of test patterns which can fit in one second
of test time at the frequency of 100 MHz. In the case of the designs p127K and
p278K, 10 deterministic patterns are aready enough to obtain alarger fault efficiency
than in the case when 800 deterministic test patterns are embedded into a 10K long
test sequence. In this way, the hardware overhead can be reduced to 1% from 43%
and 62% (Table 6.4), respectively. In the case of the design p333K, a similar fault
efficiency can be achieved by embedding 100 deterministic test patterns, at the cost of
5.5%, instead of 22%, hardware overhead.

The experiments described in the following have been conducted to evaluate the
FBDD-based logic synthesis approach proposed in Chapter 7. For this purpose, SIS
[Sen92] and the OBDD-based methods available in the CUDD-package [Cudd] that
are able to handle don’'t cares have been used as reference. The experiments have
been performed on GNU Linux machines equipped with 2 GB of memory and an Intel
Pentium 4 processor running at 2.4 GHz.

Table 7.1 presents three multi-output bit-flipping functions which will be used as
benchmark functions. These functions can be downloaded from [Fbdd]. The second
and the third column report the number of inputs and outputs of the target functions.
The fourth column (|[ON-set|| + |[|OFF-set||) gives the sum of the cardinalities of the
ON-set and the OFF-set corresponding to each function. The last two columns show
the non-terminal node count of the OBDD-based representation of each function.

Tables with Experimental Results 105
_ Test # Run— Memory Fin_al_ fault F_ault efficiency | Cell area
Design length Embedded t|!11e [MB] efficiency impr ovement overhead
patterns | [h:m] [%] [%] [%]
10 5:16 477 76.83 3.01 1
50 5:38 492 79.48 5.66 3
pl27K | 187K 100 6:41 510 80.56 6.74 5
400 16:22 731 85.28 11.46 24
800 30:17 786 87.75 13.93 42
10 23:44 1,150 87.96 5.15
50 24:00 1,169 88.98 6.17 4
p278K | 318K 100 26:44 1,190 90.71 7.90 6.5
400 34:53 1,306 93.26 10.45 275
800 48:37 1,508 94.93 12.12 51
10 5:33 528 81.29 3.03 15
50 7:36 630 83.32 5.06 4
p333K | 140K 100 9:44 661 84.47 6.21 55
400 31:05 786 87.28 9.02 115
800 35:39 801 88.25 9.99 15

Table 6.5: Possible trade-offs between the fault efficiency and the hardware
corresponding to the maximum test length which can fit in one second
of test time at the frequency of 100 MHz.

First, the FBDD-based approach has been compared to the restrict operator
(Definition 4.14). This evaluation has been done with respect to the synthesis of each
single output of the functions in Table 7.1. The results are reported in Table 7.2. For
the other OBDD-based optimization methods from [Cudd] that are able to handle
don't cares, like constrain (Definition 4.13) or squeeze, similar results have been
obtained as with restrict.

The node sharing among the ROBDDs in the manager of the CUDD-package, which
correspond to different outputs of the target functions, has not been taken into account
and, consequently, no node or logic sharing has been allowed among the FBDD-based
covers of the different outputs.

Multi-output function | #inputs | #outputs l;r())NF;:S-etséltﬁ Ol\[I#BnI?)S;]size OFE;EEdD;]size
p19K 82 24 85,215 615,379 654,387
p59K 77 19 9,918 158,160 315,314
pl27K 67 10 663,750 6,876,383 8,067,136

Table 7.1: Multi-output incompletely specified benchmark functions.

106 Appendix 1

Single-output Restrict-based FBDD-based FBDD/Restrict
function
fonSize | fusSize Run- Run-

#nodes| #gates #nodes| #gates| Run- time|#nodes|#gates

[#nodes] | [#nodeg] time time
142 142 2 3 Oms 1 0 Oms 0.50 0 -
207 7 2 1 Oms 1 0 Oms 0.50 0 -
162 160 3 3 Oms 1 0 Oms 0.33 0 -
206 308 6 5 Oms 1 0 Oms 0.17 0 -
142 450 5 5 Oms 1 0 Ooms 0.20 0 -
321 801 9 10 Oms 1 0 Oms 0.11 0 -
519 950 12 15 Oms 6 6 10ms 0.50 0.40 -
605 1,554 21 28 Oms 7 6 20ms 0.33 0.21 -

1,011 2,447 29 39 Oms 10 11 20ms 0.34 0.28 -
1,096 2,853 31 46 Oms 5 4 10ms 0.16 0.09 -
1,696 1,936 30 49 Oms 11 14 50ms 0.37 0.29

1,637 3,902 54 82 10ms 14 18 60ms 0.26 0.22 6
2,132 3,416 52 76 Oms 3 2 10ms 0.06 0.03 -
2,877 4,483 70 117 Oms 24 31 80ms 0.34 0.26 -
2,983 5,421 61 105 Oms 22 30 420ms 0.36 0.29 -
4,533 5,369 82 146 Oms 15 17 60ms 0.18 0.12 -
4,997 8,100 105 208 Oms 41 52 370ms 0.39 0.25 -
6,516 8,592 109 190 Oms 16 20 80ms 0.15 0.11 -

6,672 10,402 130 243 Oms 30 37 150ms 0.23 0.15 -
10,620 15,783 199 365 10ms 68 102 290ms 0.34 0.28 29
9,644 17,004 202 390 10ms 49 61 250ms 0.24 0.16 25
14,152 22,127 259 493 10ms 38 50 180ms 0.15 0.10 18
21,934 30,621 369 736 10ms 27 33 310ms 0.07 0.04 31
24,298 32,539 368 774 10ms 22 23 270ms 0.06 0.03 27
30,745 63,286 651 1,337 20ms 235 373 4s:370ms 0.36 0.28 218
60,075 87,712 897 1,973 20ms 230 342 3s:310ms 0.26 0.17 165
46,628 116,086 | 1,133 | 2,261 20ms 287 464 5s:370ms 0.25 0.21 268
64,744 128,072 | 1,260 | 2,763 30ms 285 429 7s:530ms 0.23 0.16 251
101,594 133,596 | 1,330 | 3,136 40ms 488 778 | 13s410ms | 0.37 0.25 335
102,056 134,892 | 1,371 | 3,177 40ms 69 82 3s:290ms 0.05 0.03 82
122,817 168,964 | 1,646 | 3,830 50ms 347 541 | 11s310ms | 0.21 0.14 226
121,533 179,303 | 1,682 | 3,911 50ms 128 170 4s:800ms 0.08 0.04 96
128,631 175122 | 1,673 | 3,945 50ms 84 103 3s:250ms 0.05 0.03 65
125,024 181,348 | 1,700 | 3,977 50ms 65 80 3s:280ms 0.04 0.02 65
135,639 171,062 | 1,754 | 4,092 50ms 143 194 5s:560ms 0.08 0.05 111
140,137 179,155 | 1,758 | 4,140 50ms 97 123 4s:230ms 0.06 0.03 84
168,650 202,362 | 2,075 | 4,908 60ms 104 136 5s:270ms 0.05 0.03 87
162,915 215,385 | 2,129 | 4,980 60ms 103 124 5s:840ms 0.05 0.02 97
165,145 216,792 | 2,129 | 4,975 60ms 546 876 | 20s:510ms | 0.26 0.18 341
172,147 242,628 | 2,221 | 5,319 70ms 858 | 1,485 | 38s500ms | 0.39 0.28 550
170,524 249,451 | 2,253 | 5,326 70ms 877 | 1,483 | 43s070ms | 0.39 0.28 615
188,465 249,986 | 2,364 | 5,651 80ms 601 967 | 31s:330ms | 0.25 0.17 391
195,170 245448 | 3,683 | 8,699 | 090ms | 1,068 | 1,758 | 25s:840ms | 0.29 0.20 287
397,885 514,001 | 7,117 | 17,405 | 210ms | 2,635 | 4,796 6m:19s 0.37 0.28 | 1,804
657,647 816,669 | 11,268 | 28,345 | 340ms | 2,245 | 3,836 5m:21s 0.20 0.14 944
1,025,346 | 1,261,458 | 16,832 | 43,348 | 530ms | 4,295 | 7,463 | 14m:59s 0.26 0.17 | 1,696
1,001,823 | 1,305,252 | 17,343 | 44,309 | 490ms | 6,927 | 13,001 | 22m:42s 0.40 0.29 | 2,779
1,296,617 | 1,609,523 | 21,175 | 54,782 | 630ms | 7,190 | 12,960 | 32m:17s 0.34 0.24 | 3,074
1,330,764 | 1,706,077 | 22,397 | 57,813 | 610ms | 7,771 | 14,362 | 28m:46s 0.35 0.25 | 2,829
1,408,613 | 1,749,112 | 22,837 | 59,246 | 700ms | 7,672 | 14,030 | 46m:57s 0.34 0.24 | 4,024
1,429,387 | 1,760,305 | 22,979 | 59,886 | 730ms | 8,227 | 14,972 | 38m:19s 0.36 0.25 | 3,149
1,732,319 | 2,137,125 | 28,219 | 73,670 | 870ms | 8,357 | 15,041 | 1h:05m 0.30 0.20 | 4,482

Table 7.2: Comparison between the FBDD-based optimization approach and the
approach based on the restrict operator.

Tables with Experimental Results 107

The first two columns in Table 7.2 report the number of non-termina nodes (size) of
the ROBDD-based representation of each output of the functions in Table 7.1. The
synthesis results obtained with the restrict operator and the FBDD-based method are
shown in the following six columns. The two methods are evaluated with respect to
the required run-times, the non-terminal node counts (#nodes) and the logic operator
counts (#gates) in the resulting circuit descriptions.

The number of logic operators in the circuit description of a non-terminal FBDD node
is obtained by counting the 2-input logic operators in the expression of the corre-
sponding cover Cov(F). In the case of the OBDD-based implementation, the circuit
description of each non-terminal node may require 3, 1 or 0 2-input logic operators,
depending on whether the node has 0, 1 or respectively 2 children, that are terminal
nodes [Bec92]. The terminal nodes require no hardware implementation and, as a
consequence, their gate count is zero. The circuit description of a BDD with only 1
non-terminal node requires no logic operator (gate) for its implementation. Thisis the
case of the first examplesin Table 7.2. 1-input logic operators (e.g. INV-operator) are
not counted. The last three columns in Table 7.2 report the ratios between the node
counts (#nodes), logic operator counts (#gates) and the run-times (run-time) required
by restrict and the FBDD-based method.

The FBDD-based approach outperforms the restrict-based approach with respect to
the node count and the number of logic operators in the resulting circuit descriptions
at the cost of arun-time increase. The run-time requirement of the proposed approach
can be significantly reduced by decreasing the searching space associated with the
DC-based node reduction. On the other hand, enlarging this searching space will
further improve the compaction of the resulting FBDD-like cover. The size of the
searching space associated with the DC-based node reduction can be controlled with
the help of severa thresholds described in Appendix 2.

Table 7.3 provides a comparison between the FBDD-based method and OBDD-based
approaches that use combinations of variable reordering and the restrict operator. This
evaluation has been done with respect to the synthesis of the functions in Table 7.1.
The number of 2-input logic operators (#gates), the node depth (Node depth) and the
2-input gate depth (Gate depth) of the resulting covers as well as the run-time
required to generate these covers (Optimization time) are reported for both ap-
proaches.

Each function has been synthesized three times with each approach. In the case of the
FBDD-based approach, the reported experiments show tradeoffs between the run-time
and the number of 2-input logic operators in the circuit description of the resulting
covers. These tradeoffs have been obtained by changing the thresholds that control the
size of the searching space associated with the DC-based node reduction. The first run
corresponding to each function has been done with the DC-based node reduction
disabled.

In the OBDD-based approaches used for the evaluation of the FBDD-based method,
the variable reordering has been applied before restrict and to all ON- and OFF-
ROBDDs corresponding to each output of the target function. As a result, al the
covers obtained with the restrict operator have the same variable ordering and,
consequently, a maximized probability of node sharing among them.

108 Appendix 1

An unexpected observation is that the variable reordering performed on the covers
found with restrict does not bring any node reduction of a multi-output implementa-
tion. Due to the fact that variable reordering is a time consuming procedure, the
reported run-time consumption of the ROBDD-based approach with variable
reordering takes into account only the application of the restrict operator and of the
variable reordering done beforeit.

In the first OBDD-based run, no variable reordering has been performed. In the next
two runs, the variables have been reordered based on the heuristicss. CUDD _
REORDER_SYMM_SIFT and CUDD_REORDER_SYMM_SIFT_CONV [Cudd],
respectively. The first heuristic is an implementation of symmetric sifting [Pan94],
while the second heuristic is a converging variant of the first one. Variable reordering
improves the operator count at the cost of a significant increase in the run-time. The
converging heuristic for reordering the variables of the function p127K was still
incompl ete after days of execution.

The proposed method outperforms all the investigated OBDD-based approaches. Run-
ning the FBDD-based flow with the DC-based node reduction switched off results in
operator counts (#gates) that are between two and four times better than those
obtained with the best investigated ROBDD-based approach. The operator count of
the FBDD-based covers can be further improved by enabling the DC-based node
reduction and increasing the associated searching space.

The FBDD-based approach with DC-based node reduction disabled also provides the
implementations with the smallest depths. In the case where the DC-based node
reduction is enabled, the maximum node depth is always less than the number of input
variables. A variable index appearing more than once on a path from root to a leave
node has never been observed.

The circuit descriptions presented in Table 7.3 have been synthesized with Synopsys
Design Compiler and using a proprietary library. Table 7.4 reports the resulting area
(Cell area) measured in an arbitrary unit, the synthesis run-time (Synthesis time) and
the total run-time required to generate the covers (Optimization time, in Table 7.3) and
to synthesize them (Synthesistime, in Table 7.4).

. Restrict + Variable Reordering FBDD
M ultl-oytput Node | Gate |Optimization Node Gate |Optimization

function | #gates | yooin | depth time #OAES | Genth | depth time
54672 | 17 30 0m:20s 8,269 15 24 1m:31s
p19K 39231 | 17 30 4m:52s 7,200 23 37 17m:28s
33443 | 17 29 40m:22s | 7,61 27 42 22m:07s

7084 | 20 33 2s 1,543 16 25 11s

59K 4669 | 19 31 2m:16s 1,428 23 34 27s
4601 | 19 30 18m:27s 1,423 23 34 1m:10s
390,057 | 23 42 24m21s | 120122 | 21 36 35m:18s
P127K 56883 | 24 42 11h16m | 94,113 | 68 97 15h:00m
93837 | 61 % 16h:34m

Table 7.3: Optimization potential of the FBDD-based and the OBDD-based
(restrict + variable reordering) approaches.

Tables with Experimental Results

109

M ulti- Restrict + Variable Reordering FBDD
output | el area Syr!thesis Optimizgtiqn *| cal area Syr!thesis Optimizgti(_)n +
function time Synthesistime time Synthesistime
147,074 | 46m:32s 46m:52s 34,464 1m:56s 3m:27s
p19K | 101,332 | 25m:30s 30m:22s 33,286 1m:29s 18m:57s
89,681 17m:12s 57m:34s 32,917 1m:30s 23m:37s
23,075 1m:54s 1m:56s 7,014 30s 41s
p59K | 15,198 1m:02s 3m:18s 7,046 37s 1m:04s
15,292 Im:07s 19m:34s 6,869 29s 1m:39s
1,349,051 | 15h:02m 15h:26m 521,814 4h:40m 5h:15m
P127K 11,036,493 7h:06m 18h:22m 507,949 2h:51m 17h:51m
- - - 508,840 3h:07m 19h:41m

Table 7.4: Synthesis results obtained using the FBDD-based and the OBDD-based
(restrict + variable reordering) approaches.

Compared to the best investigated OBDD-based approach, the FBDD-based flow with
the DC-based node reduction disabled reduces the area figures by a factor between
two and three. This improvement has been achieved by using shorter run-times as
compared to all OBDD-based approaches, if one considers the sum of Optimization
time and Synthesis time. Moreover, the run-time of this ssmple configuration of the
FBDD-based approach is by at |east one order of magnitude shorter than the run-time
of the OBDD-based approach with the best logic arearesults.

In the case of the FBDD-based approach, the area results can be further improved by
enabling the DC-based node reduction. Nevertheless, the logic area is not aways
reduced by enabling the DC-based node reduction. A reason for this surprising
phenomenon is the fact that the DC-based node reduction approach has not been tuned
towards improving the area performance of Design Compiler, considered here as a
black-box. This also indicates that Design Compiler can perform an efficient node
reduction, equivalent to the node reduction based on graph isomorphism. The DC-
based node reduction of the FBDD-based approach is especially useful in the case
where the available logic synthesis tool cannot perform efficient logic optimizations.

Table 7.5 presents a comparison between SIS [Sen92] and the FBDD-based approach
with respect to the implementation of incompletely specified functions with large DC-
sets. Due to the scaling problems of SIS, only some of the smallest but untrivial
functions that correspond to single outputs of the functions presented in Table 7.1
could be implemented. The second column reports the number of inputs of each
single-output function. The third column (||[ON-set|| + ||OFF-set||) gives the sum of the
cardinalities of the ON-set and the OFF-set corresponding to each function. The
fourth and the fifth columns show the non-terminal node count of the OBDD-based
representation of each function. The next three columns (SIS) report the resulting
number of gates, area and the required run-time when the target functions have been
implemented directly with SIS. In the last three columns (FBDD+SIS), the same
parameters are reported for the case where FBDD-like covers have been generated
and later synthesized using SIS. In al the cases, SIS has been run with the rugged
script. The statement full_simplify -m nocomp has been inserted at the beginning of
the script. The library nand-nor.genlib has been used.

110 Appendix 1

Single- (ON-set][+| ON-BDD | OFF-BDD SIS FBDD + SIS

output |Anputs e o | Size size cal | Run- cell | RUN-

function [#nodes] | [#nodes] [*0ates ..o tl[r;}e #gates . o t'[z]‘e
pl 82 229 6,516 8,592 354 | 760 28.60 21 | 39 | 011
p2 82 843 21,934 30,621 180 | 395 3.83 31 | 64 | 031
p3 77 1,708 30,745 63,286 674 | 1,534 |1,046.74| 366 | 754 |26.85
p4 77 3,652 64,744 128,072 |1,145| 2,586 [3,997.47| 366 | 820 | 7.58

Table 7.5: Comparison between SIS and the FBDD-based approach combined
with SIS.

It is obvious that the FBDD-based approach scales better and improves dramatically
the number of gates and area (between 2 and 19 times). This suggests that the
proposed FBDD-based approach enables a much better use of the don’'t cares which
in the descriptions of SIS and MIS are referred to as external don’t cares [Bra37]
[Sen92].

Appendix 2 — Implementation of the Proposed
M ethods

This appendix presents some information related to the C/C++ code that implements
the DFT flow sketched in Figure 6.4 and the logic synthesis algorithm shown in
Figure 7.2. The DFT flow has been integrated into an industrial tool of Philips
(AMSAL™), and its algorithm is a generalization of the algorithm in Figures 5.5.

The agorithm is implemented by the function do_bddFlow. Relative to the storage
system of the Institut fir Technische Informatik (IT1) at the University of Stuttgart,
the function do_bddFlow isincluded in the file:

/home/ghermanv/vob 39 sa/amsal/src/atpg/sr c/bitfliping/bitfli ping/bddFlow.cxx
in the case of stuck-at fault testing, and in thefile:
/home/gher manv/vob_gd/amsal/src/atpg/sr c¢/bitfliping/bitfli ping/bddFlow.cxx

in the case of transition fault testing. The paths above correpond to the AMSAL
release 3.9.

Relative to the flow presented in Figure 6.4, its tasks are executed by the functions
listedin Table 9.1.

Function Task
do_simulatel fsrPattern Performs the fault simulation
do_atpg Performsthe ATPG
do_mapping Implements the pattern mapping agorithm

Implements the BDD-based optimization and logic

LogicSyntheis BFF synthesis of the BFF

LogicSyntheis CRL Implements the BDD-based optimization and logic

B synthesis of the CRL

Synthesizes a combinational module that can be used

LogicSyntheis WEIGHT | toweight, with asingle set of complementary weights,

- the pseudo-random test sequence where the
deterministic test cubes are embeded

Table 9.1: The functions that implement the flow presented in Figure 6.4.

1 Automatic Multi restartable Scan test pattern generation And Localization of faults.

112 Appendix 2

In the same folder with the file bddFlow.cxx are the files bflBdd.* in which the class
CbflBdd is defined. The most important methods of this class are explained in Table
9.2. In the same folder, the files FBDD.* and bdd.* can be found, where the structure
Node and the class CBdd are defined. The structure Node contains all the parameters
of a FBDD node (Chapter 7). The class CBdd is an encapsulation of the BDD class
defined in the CUDD-package [Cudd].

In order to enable different configurations of the considered DFT flow described in
Figure 6.4, different thresholds and flags are defined at the beginning of the files
bflBdd.* and bddFlow.cxx. Some of the most important of these parameters are de-
scribed in Table 9.3.

The DFT flow described in Figure 5.2 is implemented by the procedure
processBitFlip, which isincluded in thefile:

/home/ghermanv/vob_3.4.0/amsal/sr c/atpg/sr c/bitfliping/bitfliping/bitflip.cxx

relative to the storage system of the Institut fir Technische Informatik (ITI) at the
University of Stuttgart.

Function Task
_ Implements the mapping cost function used by the pattern
AssignTestPattern mapping algorithm

Itiscalled by do_mapping

LogicSynthels BFF
and See Table9.1
LogicSynthels CRL

Implements the heuristics described in Figure 7.2

OBad2FBdd It iscalled by LogicSyntheis BFF and by LogicSyntheis CRL
Performs the DC-based node reduction described in
search Chapter 7
Itis called by ROBdd2FBdd
WriteVhdIBfl It is called by the function do_writel ogic from the aready
mentioned top function do_bddFlow
traverse It is used to dump the BFF and CRL in VHDL format Itis

called by WriteVhdlBfl

_ It checks whether the bits of a pattern generated by the LFSR
GetFlippedPattern | and, eventually, by a phase shifter (PS) have to be flipped by
the BFF and the CRL

Table 9.2: The most important methods of the class CbflBdd.

Implementation of the Proposed M ethods

113

Parameter Name File Used to
Enable the weighting with a single set of
: complementary weights of the pseudo-
ComplWexght bflBdd.h random test sequence where deterministic
patterns are embedded
e Set the fraction of the test sequence where
SequencePartitioning bflBdd.h deterministic cubes are embedded
USeCRL bflBdd.h Enable the use and th(_almple_mentatlon of
the correction logic
Control the number of FBDD nodes that
THRESHOLD OVERLAR bflBdd.cxx point to the ROBBD-based representation
- ' of the function implemented by their sub-
graph
Control the size of the searching space
THRESHOLD_SEARCH | bflBdd.cxx | used for the DC-based node reduction
(Section 7.3)
Permute the groups of ROBDD variables
corresponding to the state of the: LFSR,
PERMUTATION bfl Bad.cxx shift counter (SC), pattern counter (PC),
phase shifter (PS) and scan chain number
INVERSION bl Bdld.cxx Inverse the order of variablesinside the
' groups mentioned above
considerLFSR / bl Bdld.cxx Enable the inclusion of the LFSR/PS
considersPS ' states in the definition space of the BFF
Set OFF-set = - ON-set
FLIP2FIX bflBdd.cxx | Transforms the BFF in a completely
specified function
Store bfIBdd / bddEl ow.cxX Stores/L oads the ROBDD-based
Load_bflBdd ' representation of the BFF
Store atpg/ bddEl ow.cxX Stores/L oads the deterministic test cubes
Load atpg ' to be embedded
Mapping bddFlow.cxx| Choose one pattern mapping heuristic

Table 9.3: Thresholds and flags used to configure the DFT flow in Figure 6.4.

Appendix 3 — Related Papers

Conference Proceedings

1. V. Gherman, H.-J. Wunderlich, J. Schloffel, M. Garbers “Deterministic Logic
BIST for Transition Fault Testing,” IEEE European Test Symposium (ETS), 2006,
pp. 123-128.

2. AW. Hami, V. Gherman, H.-J. Wunderlich, M. Garbers, J. Schloffel
“Implementing a Scheme for External Deterministic Self-Test,” IEEE VLS Test
Symposium (VTS), 2005, pp. 101-106.

3. V. Gherman, H.-J. Wunderlich, H. Vranken, H. Vranken, F. Hapke, M. Wittke, M.
Garbers “Efficient Pattern Mapping for Deterministic Logic BIST,” IEEE
International Test Conference (ITC), 2004, pp. 48-56.

Workshop Contributions

1. P. Engelke, V. Gherman, |. Polian, Y. Tang, H.-J. Wunderlich, B. Becker
“Sequence Length, Area Cost and Non-Target Defect Coverage Tradeoffs in
Deterministic Logic BIST,” IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECYS), 2005, pp. 11-18.

2. P. Engelke, V. Gherman, I. Polian, Y. Tang, H.-J. Wunderlich, B. Becker
“Sequence Length, Area Cost and Non-Target Defect Coverage Tradeoffs in
Deterministic Logic BIST,” 17th ITG/GI/GMM Workshop “ Testmethoden und
Zuverlassigkeit von Schaltungen und Systemen,” 2005, pp. 16-20.

3. V. Gherman, H.-J. Wunderlich, M. Garbers, J. Schléffel “DLBIST for Delay
Testing,” 17th ITG/GI/GMM Workshop “ Testmethoden und Zuverlassigkeit von
Schaltungen und Systemen,” 2005, pp. 39-43.

4. AW. Hakmi, H.-J. Wunderlich, V. Gherman, M. Garbers, J. Schloffel
“Implementing a Scheme for External Deterministic Self-Test,” 17th ITG/GI/
GMM Workshop *“ Testmethoden und Zuverlassigkeit von Schaltungen und
Systemen,” 2005, pp. 27-31.

5. V. Gherman, H.-J. Wunderlich “Scalable Deterministic Logic Built-In Self-Test
(DLBIST),” (poster), Ekompass-Workshop, Hannover, May, 2004.

6. V. Gherman, H.-J. Wunderlich "BDD-Based Implementation of the Bit-Flipping
DLBIST,” Fachworkshop Testen, Hannover, November, 2003.

Appendix 4 — Short Presentation of the Author

Valentin Gherman received the M.S. degree in
technica physics from the *“Politehnica’
University of Bucharest, Romania, in 1997, and
the Dipl.-Phys. degree in physics from the
University of Siegen, Germany, in 2000. He also
completed the curriculum Maitrise en Physique
at “Université de Bourgogne”, France, in 1995,
as participant in the program TEMPUS for
student exchange in Europe.

From 2000 to 2001, he was research assistant at
the University of Siegen, where he developed
software models for the calculation of ground
state observables (energy, number of spin flips)
for two dimensional spin textures (skyrmions).

He has been with the University of Stuttgart since 2001, where he has worked as Teaching
Assistant and has been involved in the project AZTEKE supported by the German Federal
Ministry of Education and Research (BMBF) under the contract number 01M 3063C.

Valentin Gherman is member of IEEE.
Hisresearch interests are in logic synthesis, BDDs, data compression and logic BIST.

