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Abstract

Driven by the ongoing miniaturization of computer technology as well as the proliferation of
wireless communication technology, Pervasive Computing envisions seamless and distraction-
free task support by distributed applications that are executed on computers embedded in
everyday objects. As such, this vision is equally appealing to the computer industry and the user.
Induced by various factors such as invisible integration, user mobility and computer failures, the
resulting computer systems are heterogeneous, highly dynamic and evolving. As a consequence,
applications that are executed in these systems need to adapt continuously to their ever-
changing execution environment. Without further precautions, the need for adaptation can
complicate application development and utilization which hinders the realization of the basic

vision.

As solution to this dilemma, this dissertation describes the design of system software for
Pervasive Computing that simplifies the development of adaptive applications. As opposed to
shifting the responsibility for adapting an application to the user or the application developer,
the system software introduces a component-based application model that can be configured
and adapted automatically. To enable automation at the system level, the application developer
specifies the dependencies on components and resources in an abstract manner using contracts.
Upon application startup, the system uses the contractual descriptions to compute and execute
valid configurations. At runtime, it detects changes to the configuration that require adaptation

and it reconfigures the application.

To compute valid configurations upon application startup, the dissertation identifies the
requirements for configuration algorithms. Based on an analysis of the problem complexity, the
dissertation classifies possible algorithmic solutions and it presents an integrated approach for
configuration based on a parallel backtracking algorithm. Besides from scenario specific
modifications, retrofitting the backtracking algorithm requires a problem mapping from
configuration to constraint satisfaction which can be computed on-the-fly at runtime. The
resulting approach for configuration is then extended to support the optimization of a cost
function that captures the most relevant cost factors during adaptation. This enables the use of

the approach for configuration upon startup and reconfiguration during runtime adaptation.

As basis for the evaluation of the system software and the algorithm, the dissertation outlines a
prototypical implementation. The prototypical implementation is used for a thorough evaluation
of the presented concepts and algorithms by means of real world measurements and a number
of simulations. The evaluation results suggest that the presented system software can indeed

simplify the development of distributed applications that compensate the heterogeneity,
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dynamics and evolution of the underlying system. Furthermore, they indicate that the algorithm
for configuration and the extensions for adaptation provide a sufficiently high performance in
typical applications scenarios. Moreover, the results also suggest that they are preferable over of

alternative solutions.

To position the presented solution within the space of possible and existing solutions, the
dissertation discusses major representatives of existing systems and it proposes a classification
of the relevant aspects. The relevant aspects are the underlying conceptual model of the system
and the distribution of the responsibility for configuration and adaptation. The classification
underlines that in contrast to other solutions, the presented solution provides a higher degree of
automation without relying on the availability of a powerful computer. Thus, it simplifies the
task of the application developer without distracting the user while being applicable to a
broader range of scenarios. After discussing the related approaches and clarifying similarities
and differences, the dissertation concludes with a short summary and an outlook on future

work.
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Zusammenfassung

Das vorliegende Kapitel fasst den Inhalt der Arbeit in deutscher Sprache zusammen.
Entsprechend folgt der Aufbau dieses Kapitels dem Aufbau der detaillierten Ausarbeitung, die in
englischer Sprache verfasst ist. Kapitel 1 skizziert zundchst das Themengebiet und motiviert die
grundlegende Problemstellung. Die Kapitel 2 bis 4 beschreiben die Ansitze fur die
resultierenden Teilprobleme auf konzeptioneller Ebene. Kapitel 5 skizziert eine prototypische
Implementierung der zuvor entwickelten Konzepte. Kapitel 6 diskutiert die Evaluation der in
Kapitel 2 bis 4 beschriebenen Ansitze auf Basis der Implementierung aus Kapitel 5. Kapitel 7
ordnet die Arbeit in den Rahmen existierender Ansadtze ein. Kapitel 8 schlieft mit einer kurzen

Zusammenfassung und einem Ausblick auf einige weitergehende Forschungsfragen.

1 Einleitung

Angetrieben von der voranschreitender Miniaturisierung und der anhaltenden exponentiellen
Leistungssteigerung, waren Rechnersysteme Uber die letzten Jahrzehnte in der Lage, sich standig
neue Einsatzgebiete zu erschlieBen. Bereits heute wird der Gberwiegende Teil an Rechnern nicht
mehr als Allzweckrechner eingesetzt, sondern er findet seine Bestimmung als eingebettetes
System zur Uberwachung und Steuerung von physikalischen Prozessen. Mit Hilfe von drahtloser
Vernetzungstechnik, wird es zukiinftigen Generationen von eingebetteten Systemen in

verstarktem Mal3e moglich sein, miteinander zu kommunizieren.

Aufbauend auf diesen Trends beschreibt die Vision des Pervasive Computings — also die Vision
des alles durchdringenden Rechnens — einen grundlegenden Paradigmenwechsel hinsichtlich des
Einsatzes und der Nutzung von Rechnersystemen. Durch die Integration werden Rechner immer
weniger als solche zu erkennen sein und durch die drahtlose Vernetzung kénnen sie bei Bedarf
spontan miteinander interagieren. Dadurch sind sie in der Lage, selbstandig komplizierte
Aufgaben zu I6sen, die nicht oder nur bedingt von einem einzelnen eingebetteten System gelost
werden konnen. Die Anwendungen, die gemeinsam von diesen eingebetteten Systemen
ausgefiihrt werden, werden ihre Nutzer nahtlos in ihrem taglichen Leben unterstiitzen, ohne sie

von ihren Aufgaben abzulenken.

Die aus dieser Vision resultierenden vernetzten Systeme unterscheiden sich von herkémmlichen.
Insbesondere werden sie, bedingt durch die Spezialisierung einzelner Rechner, hochgradig
heterogen sein. Weiterhin werden sie durch die Eigenschaften der drahtlosen
Kommunikationstechnik und durch die Mobilitdt von Benutzern und Rechnern zeitweise hoch

dynamisch sein. Darlber hinaus wird sich die eingesetzte Rechnertechnik schneller entwickeln
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als sie von ihren Eigentiimern ersetzt wird. Dies fuhrt letztlich dazu, dass die vernetzten Systeme

aus Rechnern unterschiedlicher Generationen bestehen werden.

Aus Sicht der Anwendungen fiihren diese Eigenschaften zu zusatzlichen Anforderungen, da sie
sich an die Heterogenitat und Dynamik anpassen miissen um dem Anwender eine moglichst
nahtlose Unterstiitzung zu bieten. Allerdings kdénnen Anwendungen zur Steuerung der
Anpassung nicht auf den Nutzer zurlickgreifen, da dieser durch die zusatzliche Interaktion von
der zu erledigenden Aufgabe abgelenkt wird. Dies wiederum erschwert die Aufgabe des
Anwendungsentwicklers, da dieser neben der eigentlichen Anwendungslogik zuséatzlich noch

robuste Anpassungslogik entwickeln muss.

Um diesem Problem zu begegnen, entwickelt, beschreibt und bewertet diese Arbeit Konzepte
und Verfahren, mit denen die Anpassung einer verteilten Anwendung an die verfligbaren
Ressourcen automatisiert werden kann. Neben der strukturellen Anpassung der Verteilung
durch Konfiguration wird dabei auch die Anpassung einzelner Anwendungsteile durch
Parametrisierung berlicksichtigt. Der Fokus liegt vornehmlich auf einer reaktiven Anpassung bei
der auch Anderungen beriicksichtigt werden kénnen, die wihrend der Ausfiihrung nur schlecht

oder Uberhaupt nicht vorherzusehen sind.

Im Gegensatz zu existierenden Konzepten und Verfahren zielt die vorliegende Arbeit vorwiegend
auf den Einsatz in spontan vernetzten Systemen ab, die aus einer Reihe von ressourcenarmen
Rechnern bestehen. Da deshalb nicht von der standigen Verfligbarkeit eines ressourcenreichen
Rechners ausgegangen werden kann, sind die resultierenden Verfahren grundsatzlich vollstandig
verteilt. Zum einen kann der vorgestellte Ansatz dadurch in einem breiten Spektrum
unterschiedlicher Szenarien effektiv eingesetzt werden und zum anderen kann dadurch die

inharente Parallelitat dieser vernetzten Systeme zur Leistungssteigerung ausgenutzt werden.

2 Systemsoftware

Als Basis fiir die automatische Anpassung der Struktur und Parametrisierung einer verteilten
Anwendung ist es zunachst erforderlich, die zuldssigen Strukturen und Parametrisierungen sowie
die umsetzbaren Konfigurationen in geeigneter Weise zu erfassen. Da die zuldssigen Strukturen
und Parametrisierungen anwendungsabhangig sind, miissen diese vom Anwendungsentwickler
vorgegeben werden. Unter Berlicksichtigung der jeweils verfligbaren Rechner und Ressourcen
konnen daraufhin mogliche Konfigurationen automatisch berechnet, ausgefiihrt und falls

notwendig auch angepasst werden.

Kapitel 2 diskutiert hierfir die grundlegenden Konzepte des Komponentensystems PCOM das

speziell fir verteilte Anwendungen entwickelt wurde, die zur Laufzeit automatisch konfiguriert
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und angepasst werden missen. Um die Konzepte des Systems zu motivieren, werden zunachst
die Anforderungen an ein solches System abgeleitet. Die Anforderungen ergeben sich dabei zum
einen aus den Eigenschaften zukiinftiger Rechnersysteme, die im vorhergehenden Kapitel
erlautert wurden, und zum anderen aus dem Wunsch eine fir den Anwendungsentwickler

moglichst transparente Anpassung der Anwendung zur Laufzeit zu ermdglichen.

Auf Basis der Anforderungen wird daraufhin beschrieben, wie ein flexibles und haufig
eingesetztes dienstbasiertes Anwendungsmodell in ein Komponentenmodell transformiert
werden kann, das die automatische Konfiguration und Anpassung der Anwendung zur Laufzeit
erlaubt. Im Gegensatz zu einem Dienst, bei dem lediglich die angebotene Funktionalitat
spezifiziert wird, werden Komponenten mit einer zusatzlichen Beschreibung ihrer
Abhangigkeiten ausgestattet. Die Beschreibung der Abhangigkeiten umfasst Komponenten, die
von der jeweiligen Komponente lokal oder entfernt benétigt werden, und lokale Ressourcen. Das
Angebot und die Abhdngigkeiten einer Komponente werden in Form von sogenannten Vertragen
festgehalten. Vertrdge stellen eine Zusicherung dar, die besagt, dass eine Komponente die
spezifizierte Funktionalitdit in der festgelegten Giite erbringen kann solange die dafir
notwendigen Komponenten und Ressourcen in ausreichender Giite und Anzahl verfligbar sind.
Um verschiedene Giltestufen zu spezifizieren, konnen Komponenten grundsatzlich mit

mehreren, alternativen Vertragen ausgestattet werden, die wahlweise einsetzbar sind.

Durch einen automatischen Abgleich von vertraglichen Angeboten und Anforderungen kénnen
die Komponenten, die auf einer Reihe von vernetzten Rechnern verfiigbar sind, zu verteilten
Anwendungen zusammengesetzt werden. Die eigentliche Anwendung wird dabei immer durch
die sogenannte Kernkomponente reprasentiert, die entlang ihrer rekursiven Abhangigkeiten
einen Baum von Komponenten aufspannt. Da der Vertrag einer Komponente ihre Funktionalitat
nur dann zusichert, wenn die vertraglichen Anforderungen erfiillt werden kénnen, ergibt sich
daraus konsequenterweise, dass eine Anwendung genau dann ausgefiihrt werden kann, wenn

die vertraglichen Anforderungen der gesamten Anwendung erfiillt werden kénnen.

Da sich die verfiigbaren Komponenten und Ressourcen wahrend der Ausfihrung einer
Anwendung dandern kénnen, kann eine ausflihrbare Anwendung zu jedem Zeitpunkt nicht mehr
ausfiihrbar werden. Aus diesem Grund muss die Ausfiihrung der Anwendung standig Gberwacht
werden und bei Bedarf muss die Zusammenstellung der Komponenten und Vertrage angepasst
werden. Da dies eine anwendungsiibergreifende Aufgabe ist, wird sie von einem sogenannten
Komponentencontainer ibernommen, der auf jedem System ausgefiihrt wird. Neben der reinen
Uberwachung (bernimmt der Komponentencontainer noch weitere Aufgaben, die die
Anwendungsentwicklung vereinfachen. Beispiele hierfiir sind die Steuerung des Lebenszyklus

einer Komponente, die Erzeugung und Bindung von Stellvertreterobjekten zur entfernten
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Kommunikation und die Sicherung und Ubertragung des Anwendungszustands von
zustandsbehafteten Komponenten sofern diese ausgetauscht werden missen. Darliber hinaus
initiiert der Komponentencontainer auch die Konfiguration einer Anwendung zum Startzeitpunkt
und er liefert notwendige Aufwandsschatzungen wahrend der Anpassung der Anwendung. Dazu
greift er auf den Konfigurationsalgorithmus und der Optimierungsheuristik, die in den Kapiteln 3

und 4 entwickelt werden, zurick.

3 Automatische Konfiguration

Sobald eine Anwendung gestartet werden soll, muss zunachst eine ausfiihrbare Konfiguration
berechnet werden. Da die verfligbaren Komponenten und Ressourcen von der jeweiligen
Zusammensetzung und aktuellen Auslastung der verfligbaren Rechner abhdngen, muss die
Berechnung zur Laufzeit unter Bericksichtigung der jeweiligen Verfligbarkeit stattfinden. Dies
erfordert ein Berechnungsverfahren fiir Konfigurationen, das eine befriedigende Leistung

erbringt und die Rechenkapazitat der ressourcenarmen Rechner nicht iberfordert.

Kapitel 3 stellt die grundlegenden Konzepte eines solches Verfahren vor. Hierzu wird zunachst
das Problem der automatischen Konfiguration mit Hilfe eines Beispiels verdeutlicht und in einem
weiteren Schritt formalisiert. Daraufhin wird die Problemkomplexitdt untersucht. Die Analyse
zeigt, dass das Problem NP-vollsténdig ist. Nach der Problemanalyse werden die Anforderungen
an Verfahren zur Konfiguration diskutiert. Neben der Eignung fiir ressourcenarme, spontan
vernetzte Rechner sind vor allem Effizienz und Vollstéandigkeit zwei wesentliche Anforderungen.
Eine detaillierte Betrachtung dieser Anforderungen verdeutlicht, dass sie aufgrund der
Problemkomplexitdat in Konflikt zueinander stehen. Im Rahmen dieser Arbeit wird daraufhin
davon ausgegangen, dass die Effizienz des Verfahrens der Vollstandigkeit unterzuordnen ist, da
ein unvollstandiges Verfahren zu einem Systemverhalten fihren kann, das fir den Nutzer nicht

nachvollziehbar ist.

Als Grundlage fir die Entwicklung eines Verfahrens werden daraufhin vollstéandige Verfahren zur
Lésung ahnlicher Probleme klassifiziert und bewertet. Ausgangspunkt sind dabei insbesondere
Backtrackingalgorithmen zur LOsung sogenannter Bedingungserfillungsprobleme (engl.
Constraint Satisfaction Problems). Diese Verfahren kombinieren in der Regel zwei
komplementdre Losungsstrategien. Zum einen kénnen sie systematisch Suchen indem sie alle
moglichen Kombinationen bilden und prifen. Zum anderen kdnnen sie das Ausgangsproblem so
transformieren, dass das resultierende Problem einfacher zu l6sen ist. Die verschiedenen
Verfahren unterscheiden sich deshalb insbesondere hinsichtlich der Frage, wie viel Aufwand fir
die systematische Suche und fir die Problemtransformation aufgewendet wird. Die Effizienz der

Verfahren hangt im Allgemeinen allerdings vom jeweiligen Problem am. In der Regel gilt jedoch,
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dass eine vollstandige Problemtransformation ineffizienter ist als eine teilweise Transformation
mit anschlieBender systematischer Suche. Neben der Losungsstrategie lassen sich die Verfahren
auch hinsichtlich ihrer Ausfiihrung in sequentielle und parallele Verfahren aufteilen. Sequentielle
Verfahren fiihren in der Regel zu einem geringeren Rechenaufwand, da parallele Verfahren
inkonsistente Zustdnde wahrend der Ausfiihrung zulassen um Synchronisation zu vermeiden.
Allerdings erfordern sequentielle Verfahren einen leistungsstarken Rechner, da die verteilte
Ausfiihrung eines sequentiellen Verfahrens aufgrund der Latenz entfernter Kommunikation zu

langen Rechenzeiten fuhrt.

Da die zu erwartenden Rechnersysteme aus einer Vielzahl ressourcenarmer Rechner bestehen,
wird das parallele Verfahren namens Asynchronous Backtracking als Basis fiir die Konfiguration
vorgeschlagen. Dieses Verfahren kombiniert die beiden Strategien der Problemtransformation
und systematischen Suche in geeigneter Weise und erfordert nur wenig Synchronisation
wodurch eine hohe Parallelitat ermoglicht wird. Um dieses Verfahren einzusetzen muss das
Konfigurationsproblem zunachst in ein verteiltes Bedingungserfillungsproblem (engl.
Distributed Constraint Satisfaction Problem) liberflihrt werden. Hierfir wird eine Abbildung
entwickelt, die keinerlei Vorabberechnung erfordert sondern direkt wahrend der Ausfiihrung
des Backtrackingalgorithmus angewendet werden kann. Dadurch wird vermieden, dass der
kombinatorisch sehr groRe Suchraum vollstandig durchschritten werden muss - sofern dies nicht

zur Bestimmung einer Losung erforderlich ist.

Zusatzlich zur Abbildung der Konfiguration auf ein verteiltes Bedingungserfiillungsproblem muss
das Ausgangsverfahren um Mechanismen erweitert werden, die den Einsatz in dynamischen
Rechnersystemen ermdglichen. Dazu gehoren insbesondere Vorkehrungen zum Umgang mit der
schwankenden Verfligbarkeit einzelner Rechner. Anstatt die gesamte Konfiguration von neuem
zu starten, werden bei einem Verbindungsabbruch zusatzliche Bedingungen erzeugt wodurch
die Wiederverwendung abgeleiteter Bedingungen bei einem Neustart ermoglicht wird. Dariber
hinaus lassen sich noch weitere problemspezifische Verbesserungen umsetzen, die insbesondere
darauf abzielen, den Kommunikationsaufwand zu reduzieren. Die vorgeschlagenen
Verbesserungen nutzen dabei aus, dass die Semantik der Bedingungen und ihre Struktur,
aufgrund der Abbildung der Konfiguration auf ein Bedingungserfiillungsproblem, bereits von

vorn herein bekannt sind.

4 Automatische Anpassung

Das in Kapitel 3 entwickelte Verfahren ist in der Lage, vor dem Start einer Anwendung eine
ausfiihrbare Konfiguration zu bestimmen sofern diese existiert. Da die Suche nach einer

Konfiguration den Start der Anwendung verzogert, wird die Konfiguration, die zuerst gefunden
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werden kann, verwendet. Fiir den Fall, dass die Anwendung zur Laufzeit angepasst werden muss,
kann das Verfahren zwar grundsatzlich unverdandert wiederverwendet werden, allerdings muss
bei der Anpassung einer laufenden Anwendung beachtet werden, dass unterschiedliche
Konfigurationen unterschiedliche Kosten verursachen koénnen. Eine Ursache dafiir sind
beispielsweise zusatzliche Verzégerungen, die durch den Transfer von anwendungsspezifischem
Zustand beim Ersetzen einer Komponente auftreten kdnnen. Aus diesem Grund ist es vorteilhaft,

im Fall einer Anpassung die Konfiguration hinsichtlich der Anpassungskosten zu optimieren.

Deshalb wird in Kapitel 4 das Verfahren zur Suche einer Konfiguration aus Kapitel 3 um eine
Heuristik erweitert, mit der die resultierenden Anpassungskosten bereits wahrend der Suche
minimiert werden kénnen. Die Vorgehensweise zur Entwicklung der Heuristik entspricht der
Vorgehensweise in Kapitel 3. Zunachst wird das Problem an einem Beispiel verdeutlicht und auf
dieser Basis formalisiert. Im Anschluss an die Formalisierung wird die resultierende Komplexitat
betrachtet. Dabei wird zum einen festgestellt, dass die tatsachliche Komplexitdt von den
Eigenschaften der Kostenfunktion abhangt. Zum anderem wird aber auch verdeutlicht, dass die
Komplexitat bestenfalls der des Konfigurationsproblems entsprechen kann, da auch die
Optimierung eine ausfiihrbare Konfiguration finden muss. Im Anschluss an die Betrachtung der
Komplexitdt werden die konkreten Anforderungen an die Optimierung diskutiert. Dabei wird
verdeutlicht, dass die Suche nach einer Konfiguration mit minimalen Anpassungskosten mit der
Forderung nach Effizienz in Konflikt steht. Im weiteren Verlauf der Arbeit wird der Effizienz eine
hohere Prioritat zugewiesen, da die die Minimierung der Kosten in der Regel mit dem Wunsch

einer Effizienzsteigerung begriindet wird.

Als Basis fiir die Entwicklung des Optimierungsverfahrens werden im Anschluss zunéachst
unterschiedliche Ansatze und Verfahren klassifiziert und bewertet. Die Klassifikation erfolgt
dabei entlang der Garantien hinsichtlich der Optimalitdt, die vom jeweiligen Ansatz erreicht
werden konnen. Vollstdndige Ansatze sind in der Lage immer eine der besten Losungen zu
finden. Allerdings erfordert dies einen Rechenaufwand, der in der Regel zu hoch ist. Beschrankte
Optimierungsansatze reduzieren den Rechenaufwand indem sie lediglich garantieren, dass die
Gute der gefundenen Loésung lediglich eine vordefinierte Abweichung von der Giite der besten
Losung abweicht. Heuristische Ansatze hingegen machen keinerlei Garantien hinsichtlich der
Gute der Losung, allerdings fiihren sie im Allgemeinen auch zum geringsten Rechenaufwand. Da
der Rechenaufwand fiir die Anpassung einer Konfiguration den hoéchsten Stellenwert einnimmt,

wird die heuristische Optimierung als Basis flir das Verfahren ausgewahlt.

Im Anschluss an diese Entscheidung werden die konkreten Kostenfaktoren, die bei der
Optimierung berticksichtigt werden missen, diskutiert. Dazu werden zunidchst die moglichen

Kostenfaktoren vorgestellt. Darauf hin werden die primdren Kostenfaktoren in einem
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Kostenmodell formalisiert. Da Komponenten, die nicht mehr verfligbar sind, in jedem Fall ersetzt
werden mussen, erfasst das Kostenmodell insbesondere die Kosten, die durch die Ersetzungen
von Komponente anfallen, die noch verfiigbar sind. Die tatsdchlichen Kosten die bei der
Ersetzung einer Komponente anfallen lassen sich dann rekursiv (ber die Kosten aller
Komponenten berechnen, die durch die Ersetzung ebenfalls ersetzt werden missen. Die Kosten
einer Komponente kénnen sich dabei aus unterschiedlichen Faktoren ergeben. Beispiele hierfir
sind der Umfang des Anwendungszustands der Komponente, der bei der Ersetzung transferiert

werden muss, oder die Funktion der Komponente.

Nach der Vorstellung des Kostenmodells wird das Optimierungsverfahren selbst entwickelt.
Grundsatzlich trifft das Verfahren Entscheidungen, die jeweils fiir sich gesehen lokal optimal
sind. Diese ,gierigen” Entscheidungen missen allerdings nicht notwendigerweise zu einer in
globaler Hinsicht optimalen Loésung flihren. Das in Kapitel 3 vorgestellte Verfahren zur
Konfiguration bietet hierfir zwei komplementdre Ansatzpunkte, die sich im Rahmen einer
Sortierungsheuristik von Werten und einer Sortierungsheuristik von Variablen ausnutzen lassen.
Die Sortierungsheuristik fir Werte zielt darauf ab, dass Komponenten, die wiederverwendet
werden konnen, zunidchst auch wiederverwendet werden. Die Sortierungsheuristik von
Variablen zielt darauf ab, dass bei einer unabdingbaren Ersetzung von Komponenten zuerst die
Komponenten ersetzt werden, die die geringsten Anpassungskosten nach sich ziehen. Zwar
kénnen beide Vorgehen in globaler Hinsicht suboptimal sein, z.B. kann die Ersetzung vieler
Komponenten mit geringen Kosten teurer sein als die Ersetzung einer teuren Komponente,

allerdings kann angenommen werden, dass diese Falle seltener auftreten.

Wahrend sich die Heuristik fiir Werte problemlos in das bestehende Verfahren integrieren lasst,
erfordert die zweite Heuristik zusatzliche Vorkehrungen. Um sicherzustellen, dass die
Korrektheit des urspriinglichen Verfahrens nicht verletzt wird, muss die Sortierung der Variablen
global konsistent sein. Die Arbeit beschreibt hierflir wie die Sortierung ohne Vorabberechnung
und ohne zusatzlichen Nachrichtenaustausch zwischen verschiedenen Rechnern umgesetzt
werden kann. Die notwendige Ordnungsinformation wird als Bestandteil von Nachrichten
versendet, die bereits flr das urspriingliche Verfahren notwendig sind. Durch dieses Vorgehen
kann der zusatzliche Aufwand fiir das Optimierungsverfahren vernachlassigt werden, da er sich

auf minimal umfangreichere Nachrichten und einfache lokale Sortieroperationen beschrankt.

5 Prototyp

Um die Konzepte und Verfahren, die in den Kapiteln 2 bis 4 entwickelt und prasentiert wurden,
zu bewerten, wurden diese prototypisch implementiert. Neben dem Algorithmus, der sich aus

den Kapiteln 3 und 4 ergibt, wurden auch das Komponentensystem aus Kapitel 2 vollstandig
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implementiert. Zusatzlich wurden Entwicklungswerkzeuge und graphische Oberflachen fir
unterschiedliche Rechnersysteme entwickelt. Darlber hinaus wurden der Algorithmus aus
Kapitel 3 und 4 sowie eine Reihe weiterer Algorithmen als Teil eines ereignisbasierten Simulators
implementiert. Dadurch ist es zum einen moglich, das Gesamtsystem unter realitdtsnahen
Bedingungen zu bewerten und zum anderen ist es moglich, die Grenzen der Leistungsfahigkeit

der Algorithmen umfangreich unter synthetischen Bedingungen zu bewerten.

Im ersten Teil von Kapitel 5 wird die Architektur des Gesamtsystems beschrieben. Dazu werden
zundchst die architektonischen Bausteine und Schichten eingefiihrt. Auf dieser Basis werden
daraufhin die Abhangigkeiten beschrieben. Schlieflich wird die Funktion der einzelnen Bausteine
im Detail beschrieben und abschlieBend wird deren Interaktion als Gesamtsystem betrachtet. Im
zweiten Teil des Kapitels wird dann die Implementierung der Architektur auf Basis einer
existierenden Kommunikationsmiddleware beschrieben. Da die Implementierung recht
umfangreich ist, wird sie auf einem relativ hohen Abstraktionsniveau beschrieben. Deshalb
werden in der Regel nur die die wesentlichen Teilfunktionen der architektonischen Bausteine

sowie deren Interaktion kurz skizziert.

6 Evaluation

In den vorhergehenden Kapiteln wurden Konzepte und Verfahren zur automatischen Anpassung
einer verteilten Anwendung entwickelt. Fiir die dabei aufgetretenen Problemstellungen wurden
zielgerichtet, d.h. unter Berlicksichtigung der problemspezifischen Anforderungen, Losungen
entwickelt. Um die zu erwartenden Eigenschaften nachweisen zu koénnen wurde das
Gesamtsystem prototypisch implementiert. Die Architektur und Implementierung dieses

Systems wurde in Kapitel 5 skizziert.

Ziel von Kapitel 6 ist die Validierung der Eigenschaften der Lésungen und die Bewertung der
entwickelten Verfahren auf der Basis der Implementierung. Dazu werden zwei komplementéare
Methoden eingesetzt. Zum einen werden Messungen mit vergleichsweise leistungsschwachen
Rechnern durchgefiihrt. Zum anderen werden Simulationen durchgefiihrt, die von den
Eigenschaften der Rechner und der zugrundeliegenden Netzwerktechnologie abstrahieren. Mit
Hilfe der Messungen werden die grundlegenden Eigenschaften hinsichtlich der Leistung und des
Aufwands im Kleinen untersucht. Die Simulationen werden dazu verwendet, die Tendenzen im

Verhalten der Verfahren im GroRen zu bestimmen.

Als erstes werden die Abstraktionen und Mechanismen des Komponentensystems untersucht. In
einem ersten Schritt wird eine Reihe von Messungen durchgefiihrt die die zusatzlichen Kosten
erfassen, die aus den Abstraktionen und Mechanismen resultieren. Um die Ergebnisse der

Messungen im Kontext zu betrachten, werden sie soweit dies moglich ist mit dhnlichen
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Messungen auf Basis der zugrundeliegenden Middleware verglichen. Betrachtet werden dabei
der Speicherbedarf sowie die Rechen- und Kommunikationskosten. Die Ergebnisse zeigen, dass
sich die Kosten in vertretbaren Grenzen halten. In einem zweiten Schritt werden daraufhin die
Vor- und Nachteile der Abstraktionen entlang einer umfangreichen Beispielanwendung
diskutiert. Die Diskussion verdeutlicht, dass die Abstraktionen und Mechanismen die gesteckten

Ziele erfullen kénnen.

Im Anschluss an die Bewertung des Komponentensystems, werden das Verfahren zur
Konfiguration und die Heuristik zur Optimierung hinsichtlich ihrer Leistung bewertet. Dazu wird
insbesondere der Kommunikationsaufwand des Konfigurationsalgorithmus Uber eine Vielzahl
von Simulationen bestimmt. Die Ergebnisse dieser Simulationen werden mit alternativen
Ansatzen verglichen. Zusatzlich wird die entstehende Verzogerung lber eine Reihe von
Messungen erfasst und mit alternativen Ansatzen verglichen. Wie erwartet zeigen die
Simulationen und Messungen, dass das entwickelte Konfigurationsverfahren in der Tendenz
einen exponentiellen Kommunikationsaufwand verursacht. Allerdings zeigen die Ergebnisse
ebenfalls, dass das entwickelte Verfahren in einem breiten Spektrum unterschiedlicher
Anwendungsszenarien problemlos eingesetzt werden kann. Dabei ist das Verfahren in vielen

Fallen den alternativen Ansatzen vorzuziehen.

Abschliefend wird die Leistung der Heuristik zur Optimierung der Anpassungskosten bewertet.
Dazu wird eine Reihe unterschiedlicher Szenarien simuliert. Da der Rechen- und
Kommunikationsaufwand, der durch den Einsatz der Heuristik entsteht, vernachlassigt werden
kann, konzentriert sich die Evaluation hierbei auf die Anpassungskosten. Da die
unterschiedlichen Szenarien stark voneinander abweichen miissen um aussagekraftige
Ergebnisse zu erzielen, werden nicht die tatsdchlichen Anpassungskosten als primare Metrik
verwendet sondern es wird eine abstrakte Metrik eingesetzt, die die Kosten im Kontext des
Szenarios betrachtet. Dazu werden die entstandenen Kosten mit Hilfe der minimalen und
maximalen Kosten eines Szenarios normiert. Die so gewonnen Ergebnisse zeigen, dass die
Heuristik in vielen Szenarien in der Lage ist, eine gute Losung zu finden. In Szenarien, in denen
die Heuristik eine teure Losung findet, ist es moglich, die Ergebnisse durch eine randomisierte
Wiederholung der Ausfihrung signifikant zu verbessern. Falls notwendig kann so eine
problemspezifische Abwagung von Optimierungsaufwand und Adaptationskosten umgesetzt

werden. Allerdings wird dies in einem breiten Spektrum von Szenarien nicht erforderlich sein.

7 Verwandte Arbeiten

Nach der Entwicklung der Konzepte und Verfahren zur Anpassung einer verteilten Anwendung

und der abschlieRenden Bewertung im vorangegangenen Kapitel, ordnet das Kapitel 7 die Arbeit
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und die Ergebnisse in den Rahmen der verwandten Arbeiten ein. Dazu werden diese zunachst
exemplarisch vorgestellt und klassifiziert. Auf Basis dieser Klassifikation wird diese Arbeit mit

ihren Ergebnissen eingeordnet.

Die Vorstellung verwandter Arbeiten beginnt mit einem kurzen Uberblick tber klassische
Systemsoftware, die in herkdmmlichen vernetzten Rechnersystemen eingesetzt wird. Dabei
werden vorwiegend die Abstraktionen und Mechanismen herkdmmlicher Middleware zur
Kommunikationsunterstiitzung und Komponentensysteme vorgestellt. Im Gegensatz zur
Zielsetzung dieser Arbeit zielen diese Systeme in der Regel nicht auf den Einsatz in spontan
vernetzten Systemen aus ressourcenarmen Rechnern ab. Aus diesem Grund bieten sie keine
Mechanismen zur automatischen Konfiguration und Anpassung der Verteilung und

Parametrisierung einer Anwendung zur Laufzeit an.

Die Systemsoftware, die speziell mit Blick auf die Vision des Pervasive Computing entwickelt
wurden, lassen sich grob in zwei Klassen aufteilen. Die erste Klasse betrachtet sogenannte
intelligente Umgebungen (engl. Smart Environments). Intelligente Umgebungen sind raumlich
begrenzte Bereiche, z.B. ein Raum oder eine Wohnung, in denen die integrierten Rechner
kooperieren um die Aufgaben ihrer Nutzer zu unterstiitzen. Aufgrund der Ortsbindung
intelligenter Umgebungen kann in der Regel vorausgesetzt werden, dass die Koordination der
Rechner von einem fest installierten, leistungsstarken und stdndig verfligbaren Rechner
Ubernommen wird. Abhangig von der Lokation werden mobile Rechnersysteme dynamisch in die
umgebende intelligente Umgebung eingefligt wodurch eine begrenzte Dynamik entstehen kann.
Auch wenn die konkret genutzten Abstraktionen in diesem Bereich von denen in dieser Arbeit
entwickelten abweichen kénnen, so betrachten einige Arbeiten ebenfalls das Problem der
automatischen Konfiguration und Anpassung. Die existierenden Lésungsansatze machen sich
jedoch die standige Verfligbarkeit eines leistungsstarken Rechners zu nutze. Dadurch kénnen sie

nicht eingesetzt werden, wenn ein solcher Rechner nicht verfiigbar ist.

Die zweite Klasse betrachtet sogenannte intelligente Gruppen gleichgestellter Rechner (engl.
Smart Peer Groups). Im Gegensatz zu intelligenten Umgebungen, die an einen festen Ort
gebunden sind, konnen sich intelligente Gruppen bewegen. Begrenzt werden sie durch
raumliche Nahe, die durch eine kommunikationsbasierte Metrik wie z.B. Hop-Count angenahert
werden kann. Da sich diese Gruppen an jedem beliebigen Ort bilden kénnen, kann nicht davon
ausgegangen werden, dass ein leistungsstarker Rechner standig verfiigbar ist. Dementsprechend
missen sich die Rechner, die eine intelligente Gruppe bilden, gemeinsam verteilt abstimmen.
Bislang beschaftigten sich Arbeiten in diesem Bereich (berwiegend mit der verteilten
Koordination auf Kommunikationsebene. Dementsprechend sehen nur wenige Ansdtze

Abstraktionen zur automatischen Konfiguration und Anpassung einer verteilten Anwendung vor.
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Die Ansatze, die sich explizit mit der Konfiguration und Anpassung einer Anwendung
beschéftigen, zielen nicht auf deren Automatisierung ab, sondern sie Uberlassen diese Aufgabe
dem Anwendungsentwickler oder dem Nutzer. Wie bereits zuvor erwahnt, kann das zu einer
erheblichen Belastung fiir den Entwickler bzw. den Nutzer werden. Im Rahmen dieser Arbeit
wurde gezeigt, wie das vermieden werden kann, indem die Konfiguration und Anpassung der

Anwendung vom System automatisiert wird.

8 Fazit

Das Kapitel 8 schlieBt die Arbeit mit einer kurzen Zusammenfassung der wichtigsten
Erkenntnisse dieser Arbeit. Diese lassen sich als die Entwicklung neuer Konzepte und Verfahren
zur automatischen Anpassung von verteilten Anwendungen zusammenfassen. Abgrenzend zu
existierenden Konzepten und Verfahren zeichnet sich die in die Arbeit vorgestellten
insbesondere durch ihre Eignung fiir dynamische, vernetzte Rechnersysteme aus, die aus einer
Vielzahl ressourcenarmer, drahtlos vernetzter Rechner bestehen. Die Eignung und
Leistungsfahigkeit der Konzepte und Verfahren wurde durch eine umfangreiche Evaluation mit

Hilfe einer vollstandigen Implementierung des Systems nachgewiesen.

AbschlieBend werden in Kapitel 8 eine Reihe angrenzender und erweiternder Forschungsthemen
skizziert. Dazu gehoren z.B. die Entwicklung einer ergdanzenden Metrik zur Unterstiitzung
proaktiver Anpassungen, die zum einem Zeitpunkt ausgefiihrt werden, zu dem die Anpassung
noch nicht zwingend erforderlich ist. Ein weiteres Beispiel ist die Entwicklung von
Konfigurationsverfahren, bei denen der Grad der Verteilung zur Laufzeit angepasst werden kann.
Solche Verfahren kdonnten mutmalilich deutliche Leistungssteigerungen erzielen, sofern die

Verfligbarkeit eines ressourcenreichen Rechners gegeben ist.
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1 Introduction

The chapter motivates the work presented in this dissertation and introduces its foundations by
discussing the vision of Pervasive Computing. It identifies adaptive applications as a key enabling
technique of Pervasive Computing. Based on this insight, different ways of supporting
adaptation are discussed. Subsequently, the automation of adaptation using system software is
proposed as a way to reduce the complexities that persons face when they are creating,
operating or using pervasive applications. Thereafter, the chapter briefly reviews existing system
software for pervasive applications before it identifies the gap closed by this dissertation. Finally,

the chapter summarizes the contribution and describes the structure of the remaining chapters.

1.1 Background

Over the last decades, computer technology found its way into many areas of our daily life. Like
many other technologies, computers started as incredibly expensive and room-filling tools. Over
time, they became smaller and prices dropped. This, in turn, enabled their application to new

areas in ways that could not be foreseen by their inventors.

A primary example is commerce. There, computers had a tremendous influence on the way
people work. Before the emergence of computers, people were using type-writers to issue
invoices that were calculated with pen and paper. Files of vendors and customers where
manually archived in cabinets that occupied the best part of many offices. The time for retrieving
a single file could easily be measured using an ordinary wristwatch as it often required minutes.
With the advent of computer technology, people began to store their files on disks and the time
for retrieval has been reduced from minutes to milliseconds. Over time, the file cabinets that

previously occupied the offices simply disappeared.

Probably even more amazing than the sheer number of application areas for computer
technology is the speed at which they were conquered. This can be attributed to a trend that
emerged in 1965. In his famous article Gordon Moore notes that during the last ten years the
integration density of micro-electronic circuits roughly doubled every year (Moore, 1965). He
also states that there are no reasons to assume that this trend would come to an end during the
next ten years. As it turned out, this prediction remains to be valid in 2008 and thus, it is not

overly surprising that it made history as Moore's Law.
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1.2 Pervasive Computing

The remarkable advances of computer technology are the foundation for a vision that was first
formulated by Mark Weiser in 1991 known as Ubiquitous Computing or Pervasive Computing"
(Weiser, 1991). The overall goal of this vision is to provide seamless and distraction-free support
for the everyday tasks of persons through computer technology. To enable this, Pervasive
Computing relies on a radical shift in the way in which people interact with computers. The
impact of this shift is comparable to the advent of inexpensive personal computers. In contrast
to the emergence of personal computers, however, Pervasive Computing does not focus on the
computer technology per se. Instead, this vision focuses on the realization of a paradox, namely

numerous computers that are both, ubiquitous and invisible.

To this end, Pervasive Computing envisions a multitude of miniaturized computers that are
integrated into all kinds of everyday objects. Through this integration, computers become
ubiquitous. Many of the computerized objects are equipped with inexpensive short-range
wireless communication technology which, in turn, enables them to form networks. In
combination with various embedded sensors, the objects are able to perceive their physical
environment and they are able to share their perceptions with other objects. Together, these
networks of computerized objects can receive a large number of their inputs through the
unobtrusive perception of their surroundings. As a result, the interaction with individual objects
is more intuitive since in most cases it does not encompass the use of special human-computer-
interfaces like mice or keyboards. Due to this natural interaction, the integrated computers

become practically invisible.

From a technical perspective, Pervasive Computing introduces a new class of networked
computer systems that differs from traditional ones. In the following this class of systems is
referred to by the term pervasive systems. The primary differentiating characteristics of

pervasive systems are:

e Heterogeneity: Just like ordinary everyday objects, their computerized pendants are
specialized and typically, they are only able to provide a predetermined set of
functionality. As a result, many integrated computers are highly task-specific. Since
these specialized computers co-exist with traditional computers, the span of computers
that constitute the technical foundation of Pervasive Computing ranges from small,
resource-poor and specialized embedded systems to clusters of resource-rich general

purpose computers. This heterogeneity also extends to the communication technology

! In contrast to other definitions such as (Mattern, 2001), this dissertation does not draw a distinction
between the terms Ubiquitous Computing and Pervasive Computing. To avoid confusion, the term
Pervasive Computing is used consistently throughout the remainder of the dissertation.
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leveraged in pervasive systems. While many embedded computers are solely equipped
with inexpensive short-range wireless communication technologies such as Bluetooth
(Bluetooth Special Interest Group, 2004) or IEEE 802.11 (Institute of Electrical and
Electronics Engineers, 2003), more resource-rich ones leverage multiple technologies
including long-range technologies such as GPRS via GSM (European Telecommunication
Standards Institute, 2000).

e Dynamics: As many everyday objects can be moved by persons, a large number of
computers encountered in pervasive systems are not fixed to a single location. Due to
the mobility of computers and the utilization of short-range wireless communication
technology, pervasive systems exhibit dynamic network topologies. In many cases, the
degree of fluctuations depends on the mobility of the persons that leverage the
integrated computers. In office scenarios, for instance, the rate of fluctuations is rather
low, since the workers do not change their location frequently. Similarly, many of the
computerized objects, such as projectors or whiteboards, found in these scenarios are
fixed to specific location. In shopping scenarios, however, persons move relatively fast
from one location to another. Thereby, they implicitly move their wearable and portable
computers which, in turn, can cause drastic and unforeseeable changes to the
connectivity. Thus, the degree of dynamics of pervasive systems spans the complete
range from infrequent changes that only affect the quality of the wireless network links
to frequent changes that cause disruptive changes to the network topology.

e FEvolution: As a consequence of Moore’s Law, most general purpose computers, e.g.
personal computers and laptops, exhibit comparatively short life spans. At the time of
writing, a large fraction of computers is replaced by newer models within two to five
years, depending on their application area. In contrast to that, many everyday objects
exhibit life spans that exceed the ones of computers by factors of more than four.
According to a study of the Australian government (Environment Australia, 2001), the
average life span of refrigerators lies between ten to twenty-five years. Similarly, the
freezers and air conditioning systems have life spans of twenty years and above. It is
conceivable that the integration of computers into such objects must not significantly
lessen their life spans as this will most likely not be tolerated by consumers. Thus,
pervasive systems will consist of computers that represent four or five different
computer generations which requires appropriate precautions to cope with the

unforeseeable continuous evolution of everyday objects and computers.

The seamless and distraction-free support for everyday tasks envisioned by Pervasive Computing
relies on applications that combine different sets of functionality. As the computerized objects

residing in pervasive systems are specialized, applications need to combine the functionality of
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multiple objects to provide intuitive and natural task support. This leads to the conclusion that
the applications encountered in pervasive systems are inherently distributed. The remainder of
this dissertation refers to such applications that combine the distinct functionality of different

computers in a pervasive system as pervasive applications.

1.2.1 Adaptation

The dynamics and heterogeneity of pervasive systems as well as the fact that pervasive
applications are necessarily distributed raises an inherent need for adaptation. In order to
function properly despite the changing network link quality and topology, applications need to
adapt to the overall system properties and the available capabilities that can be leveraged at a
certain point in time during their execution. If a computerized object that is used by an
application is no longer reachable over the network because it has been moved by a person, the
application must somehow react to this fact. Similarly, if the network link quality worsens

significantly, the application must change its behavior.

It is noteworthy that adaptation can be avoided — at least to certain extend — by reducing the
requirements of an application on its execution environment. As this approach reduces the
dependencies of the application towards external factors, the number of cases that require the
application to change its behavior can be reduced. For instance, if distribution can be avoided
completely, an application can be executed independently from the properties of the network.
In many cases, however, the reduction of the application requirements leads to a significant loss
in quality. Since Pervasive Computing strives for distraction-free support of everyday tasks by
combining the distinct functionality of various integrated computers, reducing the external
dependencies is frequently not desirable and in some cases impossible. In fact, Pervasive
Computing demands applications that leverage the available integrated computers as far as

possible to achieve the goal of invisibility.

In general, the adaptation of a distributed application can be classified along three orthogonal
dimensions. The first dimension classifies the adaptation of an application regarding the point in
time when an adaptation takes place. In this dimension, the following two classes can be

identified:

e Proactive: Proactive adaptation denotes a modification to an application that is
performed before an application can no longer be executed. Thus, proactive adaptation
tries to avoid application failures. To enable this kind of adaptation, the entity that
controls the adaptation process needs to have a priori knowledge that can be used to
avoid situations that lead to failures. In cases where such knowledge is not available, a

prediction heuristic that provides a close estimate of the future situation can be used as
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substitute. An example for a system that performs proactive adaptation is the GSM
network. There, mobile phones perform a cell hand-over before they can no longer
contact their current cell. To do this, they change their current cell whenever they detect
another cell with a higher signal quality.

e Reactive: Reactive adaptation denotes a modification to an application that takes place
at a point in time when the application can no longer be executed. As such, reactive
adaptation fixes an application after it has experienced a failure. To enable this kind of
adaptation, the entity that controls the adaptation process needs to be able to detect
failures whenever they occur. Examples for reactive application adaptation can be found
in Internet-based video phone applications. Typically, these applications reduce the
audio and video quality and thus, the amount of data that needs to be transferred

whenever the available bandwidth drops below the required bandwidth.

The second dimension classifies adaptation depending on the type of modification applied to the
communicating processes that constitute the distributed application. In this dimension, the

following two classes can be identified:

e Parameterization: Adaptation by parameterization modifies the behavior by changing
parameters of a subset of the functionality that constitutes the distributed application.
To do this, the functionality that can be adapted defines a set of parameters and ranges
for their values. Depending on the values, the functionality changes its behavior. A
premier example of adaptation by parameterization can be found in multimedia play-
back applications that transcode the multimedia content depending on the properties of
the network connection. These applications can for instance reduce the required
network bandwidth by increasing the compression applied to the media. This way these
applications can dynamically balance the bandwidth requirements and the amount of
processing required to render the media.

e Reconfiguration: Adaptation by reconfiguration modifies the behavior of an application
by changing the structure or the distribution of the functionality that constitutes the
application. A simple form of this kind of adaptation is an isomorphic transformation of
the application by migrating a number of processes. Examples for this type of adaptation
are web server replicas that use a load balancer to dispatch incoming requests for web
pages to the server with the least load. More complex transformations can for instance
split functionality into a number of individual parts or they can collapse a number of
parts into one. To enable this kind of adaptation, the application must exhibit an
adequate structure that supports multiple mappings to computers and enables the

migration of all application-specific state.
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The last dimension classifies the adaptation of a distributed application based on the control of
the adaptation process. The control of the adaptation process can be classified into the following

two categories:

e Manual: Manual adaptation is performed manually by a person. To support this type of
adaptation, the person that controls the adaptation process must be supplied with a
mental model of the application together with a set of possible modifications.
Furthermore, the person must be able to perceive relevant properties of the overall
system to make proper adaptation decisions.

e Automatic: Automatic adaptation is performed by the application without user
intervention. To automate the adaptation control, the application must possess the
same type of information that is required for manual adaptation. In order to perform
adequate adaptation decisions, the application must select a possible modification
based on the system properties. In addition to manual adaptation, however, automatic

adaptation requires a strategy that selects the modifications.

1.2.2 Automation

The potentially high dynamics of pervasive systems as well as the goal of providing distraction-
free support for tasks, limit the applicability of manual adaptation. In scenarios that are highly
dynamic, adaptation must be performed frequently. Thus, if adaptation is performed manually,
the person interacting with an application must frequently shift the attention from completing
the supported task to performing adaptation decisions. Additionally, for technically unversed
persons acquiring a mental model of the low level details of a distributed application — to an

extend that allows educated decisions — might be an impossibly hard task.

To avoid the problems resulting from manual adaptation, the responsibility for adaptation can
be pushed into the application. The application developer must then programmatically deal with
all changes in the pervasive system that affects the application during its execution. To do this,
the application developer must provide additional functionality to detect all relevant changes
and determine an appropriate action that deals with each individual change. Depending on the
type of change there might be multiple actions that can be taken. Thus, determining an action

entails computing possible actions and selecting the most appropriate one.

Pushing the responsibility for adaptation into the application without further precautions
complicates the task of application development. Selecting an appropriate action in response to
a change requires reasoning about effects of the action on the execution environment of the
application. Due to the dynamic and heterogeneous nature of pervasive systems as well as the

fact that these systems evolve continuously, it is practically impossible to foresee all possible
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execution environments of an application at development time. Thus, this reasoning must be
performed programmatically at runtime. Additionally, if adaptation is handled individually by
each application, every application must implement its own set of monitoring mechanisms to
detect relevant changes. Since such mechanisms consume system resources like memory,
processing power, or network bandwidth, their duplicate implementation introduces

undesirable overhead if multiple applications are used simultaneously.

In order to mitigate the drawbacks arising from automatic adaptation while achieving many of
its benefits, the responsibility for adaptation can be pushed into adequate system software. This
approach has been applied successfully to the domain of distributed multimedia applications
(Dermler, 1999) and it has been proposed as a general solution to reduce the complexity of
application deployment and maintenance in distributed software systems (Arshad, Heimbigner,
& Wolf, 2003). Enabling the system software to adapt an application automatically requires
explicit application knowledge. Specifically, the system software must be able to detect the
changes that affect the execution of an application. Furthermore, the system software must be
able to determine possible adaptations. If multiple adaptations can be performed in response to
a change, the system software must be able to evaluate them in order to select the most

appropriate.

1.3 System Software

In the past, a number of software systems have been proposed by various researchers that ease
the development of pervasive applications. They can be classified depending on the underlying
conceptual model of what constitutes the pervasive system. At the present time, two models —
namely smart environments and smart peer groups — can be identified. The organization of the
individual system software solutions and the provided support with respect to application

adaptation depends heavily on the utilized model.

1.3.1 Smart Environments

Early system software solutions for pervasive systems such as (Garlan, Siewiorek, Smailagic, &
Steenkiste, 2002), (Roman, Hess, Cerqueira, Ranganathan, Campbell, & Nahrstedt, 2002), and
(Johanson, Fox, & Winograd, 2002) focused on supporting the concept of smart environments. A
smart environment is thereby defined as a spatially limited area, e.g. a meeting room or an
apartment, equipped with various sensors, actuators and computers. Computers in a smart
environment can either be mobile — in which case they are dynamically integrated into the
environment depending on their location — or they can be immobile — in which case they are

continuously part of the same surrounding environment.

In order to simplify application development, system software for smart environments typically

provides a set of basic services for the applications executed in their spatial area. Common
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services include authentication of computers, access control to resources, unified access to
persistent storage, and management of data captured by the sensors of the environment. To
provide further support for application development and administration, some systems
additionally introduce abstractions used to structure an application. These range from basic
service abstractions that enable the transparent usage of different implementations of the same
functionality within an application up to comparatively complex component abstractions that

support automated application adaptation.

To facilitate automatic adaptation, the component abstractions separate the task of application
development into low-level component development and high-level application composition.
Component development is then typically supported through a general purpose programming
language and an adequate programming framework while composition is usually supported by a
custom scripting language. At runtime the system software interprets the script and wires the
specified components according to the defined composition. Depending on the design of the
scripting language and the component abstraction, this approach can be used to automate the
initial deployment of an application in a smart environment, e.g. by selecting the computers and
components used within an application, and it can also allow the runtime adaptation of an
application, e.g. by dynamically replacing or migrating individual components. Apart from
fostering automatic adaptation, the separation of component development and application
composition can also be used to empower persons with limited programming experience to
create their own applications — given that the scripting language is kept simple or that adequate

development tools are available.

Independent from provided services and the utilized abstractions for application development,
most system software for smart environments relies on a single computer to provide the basic
services and to coordinate the execution of applications. Since the services are used by most — if
not all — applications executed in the smart environment, the presence of the coordinating
computer is required at all times. If this computer is not present or if it fails, e.g. due to some
hardware failure, no applications can be executed in the environment. Thus, the computer
responsible for providing the services must be immobile and it must guarantee a high
availability. As a result, most system software for smart environments assumes the presence of a
dedicated reliable and resource-rich general purpose computer in a smart environment. While
this assumption can greatly simplify the development of system services and applications, it

suffers from a number of technical and economic drawbacks.

Without further precautions, the coordinating computer introduces a single point of failure and
it limits the spatial area that can be covered by one smart environment. Clearly, managing a

single meeting room with tens of integrated computers and a handful of running applications
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should not be a problem for current personal computers. However, trying to manage a complete
office building with hundreds of computers and applications can easily overload the resources of
a single coordinating computer. Apart from technical availability and scalability issues, relying on
a dedicated computer also raises a number of economic issues that can limit the applicability of
the concept of a centrally managed smart environment. Obviously, requiring the presence of a
resource-rich coordinating computer in each smart environment introduces monetary costs.
Since this computer is a single point of failure for the smart environment, the hardware and
software running on the computer must be able to guarantee a high availability which increases
the cost. Depending on the purpose of the smart environment, achieving the desired availability
might even require costly server technology, e.g. redundant hard disks or processors and
memory supporting hot replacement. In addition to the initial cost of the computer, this
approach also introduces cost that incur continuously. Most notably the computer used for
coordination must be administered properly. While this is most likely not a problem in business
environments with technical staff that already administers other infrastructure, it can introduce
an undesirable hurdle if the smart environment is utilized non-commercially, e.g. in a home

environment, where persons do not exhibit an appropriate level of technical expertise.

1.3.2 Smart Peer Groups

In order to mitigate the limitations of smart environments, researches developed the concept of
smart peer groups (Schiele, 2007). In contrast to smart environments that view a pervasive
system as a set of computers located in a fixed and predefined spatial area, smart peer groups
postulate a people-centric perspective on pervasive systems. The key idea is to view a pervasive
system as the dynamic collection of computers that surrounds a person independent from the
person’s current physical location. Technically speaking, smart peer groups differ from smart

environments with respect to the following four characteristics:

e Networking: In order to support mobility, the utilized networking technology is typically
wireless and supports short-range communication with a comparatively high bandwidth
that is free of charge. Current examples of such networking technology are IEEE802.11
and Bluetooth. These technologies enable the transmission of multiple megabits of data
per second using a freely available band. It is noteworthy that computers of a smart peer
group can be equipped with multiple communication interfaces at the same time.

e Self-organization: The computers forming a smart peer group are self-organizing.
Specifically, this means that the computers do not have to be configured to participate
in a group. Instead, they are capable of forming a group dynamically without manual
intervention. They allow persons to use the functionality provided by individual
computers of a group in an intuitive manner which reduces the required technical

expertise to a minimum.
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e Cooperation: The computers in a smart peer group cooperate spontaneously without
requiring any additional technical infrastructure. From a technical point of view, this is
probably the main differentiating characteristic of smart peer groups when compared to
smart environments. Through spontaneous cooperation, computers can use the
functionalities of others everywhere and at any point in time. Clearly, spontaneous
cooperation requires adequate mechanisms to detect the computer systems that are
close-by and to integrate them into a group.

e  Proximity: Smart peer groups use physical proximity to create the necessary locality
required to keep the unstructured and dynamic network manageable. The key
assumption thereby is that persons are in general more interested in functionality that
can be provided by computers close-by. Clearly, this assumption conflicts with the
traditional goal of computer networks since they aim at hiding physical distance
whenever possible. Yet, many — if not most — computers in a pervasive system are
integrated into physical objects. Thus, there is a natural locality resulting from a reduced
usefulness of distant objects. As an example, consider for instance a person that uses a
display to view a document. In this — and many other scenarios — the person does not
want to use a display that resides in another building or city. Instead, the person is

interested in using one in viewing distance.

At the time of writing, there exists only one system software that specifically focuses on support
for smart peer groups (Becker, Schiele, Gubbels, & Rothermel, 2003), however, there are various
other solutions that can be adapted to this model (Aitenbichler, Kangasharju, & Mihlhduser,
2005), (Grimm, 2004). Current system software for smart peer groups focuses mainly
communication support. Towards this end, the solutions offer fundamental services such as
device and service discovery as well as basic service abstractions used to unify access to the
functionality available in a group. In order to communicate with other computers in a smart peer
group, these systems support various communication paradigms, including message passing,
remote method calls, and publish-subscribe-based event and data dissemination. Adaptation is
typically supported at the communication layer but not at the application layer. BASE (Becker,
Schiele, Gubbels, & Rothermel, 2003), for instance, can support multiple communication
technologies on the same computer. If a remote computer can no longer be reached using one
technology, BASE can dynamically switch to another technology even within an ongoing
interaction. By adapting the communication, BASE can hide fluctuating network properties as
long as an alternative network is available. If a computer is no longer reachable at all, BASE does

not provide any further support for application developers.
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Since the definition of a smart peer group is not bound to a specific location but is rather given in
terms of physical proximity, this conceptual model for pervasive systems cannot rely on the
permanent presence of a single computer. In principle, each computer might leave or enter a
group at any point in time. As a result, the tasks performed by the system software are
organized in a completely decentralized manner. While this approach naturally does not lead to
a single point of failure, it can have a negative impact on the overall efficiency. In practice,
however, one can assume that many groups will consist of a rather static core of computers that
is formed by the mobile computers such as PDAs, mobile phones, and laptops carried by
persons. This observation can be used to increase the efficiency of system services for instance
by dynamically clustering the computers that form the core of a smart peer group. In the past,
this approach has been applied successfully to increase the energy efficiency of a discovery

service for smart peer groups (Schiele, Becker, & Rothermel, 2004).

By avoiding the use of a central resource-rich and immobile personal computer, smart peer
groups are well suited to support applications that continuously support persons during their
daily journeys. Furthermore, since they are self-organizing and do not require any coordinating
computer, smart peer groups can execute applications everywhere and they are more resilient
to failures of individual computers. Also they do not require persons to invest in hardware that
does not provide application-specific functionality. Similarly, persons do not have to administer
computers apart from those that they use for their applications. This has the potential to greatly
speed up the overall adoption of pervasive applications. Right from the start, smart peer groups
can cost-effectively support isolated application scenarios that are highly useful for persons. If at
a later point in time more embedded computers become available, existing applications can
make use of them and new applications, whose additional value would not justify the
investment in computer and network technology, can be introduced. Clearly, in some cases
investing in a coordinating computer might be desirable in order to increase the performance
and efficiency of the pervasive system. Likely examples are business scenarios where people
with the required level of expertise and administration skills are present already. For many non-
commercial application scenarios such as home automation, however, this prerequisite does not
hold true. In these scenarios, relying on a smart peer group as conceptual basis for pervasive

systems is a more suitable approach.

1.4 Motivation

As pointed out in the previous sections, pervasive applications aim at easing our daily live by
unobtrusively leveraging the cooperative capabilities of integrated networked computers.
Induced by their inherent heterogeneity and dynamics as well as their continuous evolution,
pervasive systems pose new challenges to application developers. The two main challenges that

differentiate application development for pervasive systems from application development for
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traditional networked computer systems are dynamic integration of functionality provided by
multiple computers and continuous adaptation to the ever-changing sets of available

functionality.

Smart peer groups provide a conceptual model for pervasive systems that is worthwhile
investigating from an economic as well as a technical point of view. While there are existing
system software solutions for smart environments that provide suitable abstractions to
overcome the dynamics, the current solutions for smart peer groups solely focus on adaptive
communication support. Clearly, enabling adaptive communication between heterogeneous
networked mobile computers is a mandatory step to enable the development of applications
running in a smart peer group. Yet, providing only communication support and rudimentary
service abstractions requires application developers to programmatically configure and adapt
applications to the changing set of available functionality. In order to avoid this overhead,
system software for smart peer groups must go one step further and automatically determine

and adapt the composition of functionality used by a pervasive application.

Supporting automatic configuration and adaptation with system software requires abstractions
for application development that go beyond services. More specifically, the utilized abstractions
must not only model the functionalities available in a smart peer group, but they must capture
the requirements of an application. Using adequate abstractions, system software can then
provide algorithms that automatically determine possible application configurations.
Furthermore, it can provide mechanisms to manage the execution of a specific configuration and
it can provide mechanisms to support the automatic adaptation from one configuration to

another.

From an application developer’s perspective, such system software would ideally create the
illusion of a static system that is preconfigured and does not change at runtime. For obvious
technical reasons creating such an illusion, however, is a hard — if not impossible — undertaking
in practice. Thus, designing system software for smart peer groups that supports adaptive
pervasive applications entails compromises between adaptation transparency, efficiency and
usability. Yet, even if the system software is not capable of fully hiding the dynamics of pervasive

systemes, it can still hide many details which can greatly simplify application development.

1.5 Scope and Focus

As briefly hinted in Section 1.3 and detailed in Chapter 7, there are various system software
solutions that ease the development of pervasive application. Current solutions that facilitate
automatic application adaptation have been specifically designed to meet the challenges

encountered in smart environments. Even though these solutions are all targeted at the same
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class of pervasive systems, they frequently offer completely different programming abstractions.
One of the key reasons for this results from the fact that they are targeted at supporting

different types of pervasive applications.

Approaches like (Nam, Shin, Hur, & Han, 2007), for instance, are targeting applications that
control the actuators present in a smart room using the inputs of embedded sensors. Thereby,
they model an application as a set of event-condition-action rules residing on the coordinating
computer. If a sensor recognizes that a person has entered the room, the coordinating computer
is notified and it evaluates the conditions of installed rules. If the condition evaluates to true, the
corresponding action is triggered. The action might then power a motor that closes the jalousies

attached to the windows of the room.

Other approaches like IROS (Ponnekanti, Johanson, Kiciman, & Fox, 2003) view a pervasive
application as an orchestrated set of traditional applications. To support their integration, IROS
provides a central communication facility that enables an application to post events and to listen
to events. By augmenting a number of traditional (and usually non-distributed) applications with
scripts, this communication facility can be used to create the desired integrated behavior in a
smart room. As an example, consider a presentation application that posts an event when a
presentation is started or stopped. By listening to these events, a light control application
running in the room can automatically dim the light when the presentation application is started

and it can brighten the light when the presentation ends.

Finally, approaches like GAIA (Roman & Campbell, 2000) propose a relatively generic component
model that separates the task of combining an application from components and the task of
mapping components to individual computers in a smart environment. An application consists of
a script that describes the composition of components and another script that describes the
placement of the components. Using these scripts a central coordinating computer can start and
stop the distributed component-based application and it can deliver additional services to unify

the access to resources that are required by all components, e.g. access to persistent storage.

These three examples for system software clearly show that the application support is heavily
dependent on the targeted application model. Thus, depending on the type of application that
must be implemented by a developer, system software can either be well-suited or ill-suited.
Implementing a complex application on the basis of event-condition-action rules, for instance,
might lead to numerous rules that trigger each other in an unforeseeable way leading to
software that is hard to program and debug. Yet, relying on multiple scripts as in GAIA in order
to program a very simple application for a specific environment might introduce setup and
configuration overhead that may very well exceed the effort for developing the application

without any system software support at all.
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Similarly, the notion of adaptation varies heavily depending on the application model. The
abstractions introduced in IROS, for example, render adaptation an implicit process that does
not have to (and cannot) be managed by the system software. By completely decoupling
individual applications, each application can operate independently and an arbitrary number of
applications can react to a single posted event. In contrast to that, the component abstraction
provided by GAIA requires explicit measures to adapt an application. If some required
component cannot be executed or if it fails, the application needs to be adapted explicitly in

order to work properly.

At first glance, abstractions that foster implicit adaptation might seem preferable as they offer a
high degree of flexibility and they are seemingly more robust. However, this perception is only
true for a certain type of applications for which cooperation is an option but not a requirement.
If coordinated interaction is required to achieve a desired application behavior, these
abstractions can only provide very limited support for application developers. In such cases,
abstractions that model the interacting parts explicitly can provide more thorough support, for
example, by signaling that some part is currently not available or by replacing one part with

another.

In summary, this leads to the conclusion that it is essential to define the class of applications that
should be supported by system software. The work presented in this dissertation focuses
exclusively on applications that require the coordinated interaction of a distributed set of
functionalities. The key rationale for this deliberate focus results from the fact that such
applications repeatedly pose a hard challenge for application developers. Namely, each
application that requires the coordinated interaction of multiple functionalities will need to

manage their exact composition continuously to cope with the dynamics of pervasive systems.

As a consequence, system software that tackles this challenge on behalf of the developer can
greatly simplify application development. In addition to that, support for applications for which
the interaction of multiple functionalities is optional can easily be layered on top, since they

pose less restrictive requirements on the underlying system software.

1.6 Contribution

The contribution of this dissertation is the design and evaluation of an integrated component
system for smart peer groups that eases application development by automating the initial
configuration and runtime adaptation of pervasive applications. In contrast to other approaches
that aim at automating the adaptation of distributed applications, the presented approach is

fully distributed and does not rely on the availability of a resource-rich computer. Instead, it
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leverages the parallelism inherent in smart peer groups by relying on a distributed configuration

and adaptation algorithm that operates asynchronously.

As base for automation, the dissertation introduces a lightweight component and resource
abstraction as well as a generic application model to capture the requirements of applications
and to describe the capabilities of different computers in a pervasive system (Becker, Handte,
Schiele, & Rothermel, 2004), (Handte, Schiele, Urbanski, Becker, & Rothermel, 2005). The explicit
knowledge of system capabilities and application requirements is then used to automatically
compute an application configuration that satisfies all requirements. To determine such a
configuration, the dissertation proposes an algorithm that can find configurations even in the
presence of strictly limited resources (Handte, Becker, & Rothermel, 2005). To automate the
runtime adaptation of an application, the dissertation additionally proposes a simple yet
powerful model that captures the cost for adapting a running configuration (Handte, Herrmann,
Schiele, Becker, & Rothermel, 2007). Furthermore, it presents a heuristic approach towards
adaptation that aims at minimizing the adaptation cost without increasing the runtime overhead

of the algorithm for initial configuration.

To demonstrate the applicability of the overall concepts, the dissertation presents a prototypical
implementation of the system software as a component system running on top of BASE (Becker,
Schiele, Gubbels, & Rothermel, 2003), (Handte, Becker, & Schiele, 2003), a communication
middleware for smart peer groups. Furthermore, it discusses an exemplary application (Handte,
Urbanski, Becker, Reinhardt, Engel, & Smith, 2006) that has been built using the component
system and compares the proposed configuration and adaptation algorithm with alternative
approaches. The comparison shows that the proposed approach is preferable in a broad

spectrum of possible future scenarios.

1.7 Structure

The remaining chapters of the dissertation are structured as follows. Chapter 2 presents the
design of the component system used to support the automatic adaptation of pervasive
applications executed by smart peer groups. To motivate the design rationale of this system, the
chapter derives the requirements on system software for pervasive applications that enables the
automatic adaptation of applications. Thereafter, the chapter introduces the abstractions

provided by the proposed system software and discusses why they are needed.

Chapter 3 describes the algorithm that computes the initial configuration of a pervasive
application. Thereby, the chapter starts with a problem formalization of the configuration
problem and shows that the overall problem of finding a single configuration in the presence of
strictly limited resources is NP-complete in general. The chapter derives the requirements on

automatic configuration of pervasive applications and discusses a set of candidate algorithm
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classes with respect to their suitability for solving the configuration problem. Based on this
discussion, the chapter describes how an algorithm of the most suitable class can be modified to

find an initial configuration.

Chapter 4 describes heuristic extensions to the configuration algorithm that aim at minimizing
the adaptation cost without adding runtime overhead. Initially, the chapter formalizes the
adaptation problem and introduces a simply yet powerful cost model to capture the cost for
modifying a configuration. Subsequently, the chapter derives the requirements on algorithms for
automatic adaptation and discusses possible algorithmic solutions. Finally, the chapter presents
a heuristic extension to the configuration algorithm presented in Chapter 3 that aims at

minimizing the adaptation cost without introducing additional communication.

Chapter 5 presents the overall architecture and some implementation details of a prototype
realization of the component system described in Chapter 2 as well as the configuration
algorithm and adaptation heuristics presented in Chapter 3 and 4. The prototypical realization
allows the evaluation of the basic concepts of the system and it facilitates comparisons of

alternative approaches to automatic configuration and adaptation.

Chapter 6 evaluates the system software and the associated configuration and adaptation
algorithm presented in Chapter 2, 3, and 4. It starts with a discussion of the overheads
introduced by the system software. Thereafter, it discusses the benefits and limitations of the
approach using a realistic application that has been built with the system. Finally, the chapter
evaluates the proposed configuration and adaptation algorithm using event-discrete simulations
and real-world experiments. In order to restrict the parameter space of the simulations, the
relevant parts of the parameter space are derived from the previously presented applications

and the assumptions that have been introduced in Chapter 2.

Chapter 7 provides an overview of existing system software and discusses similarities and
differences to the approach taken by this dissertation. To provide a more complete overview,
the chapter first outlines system support for traditional distributed applications. Thereafter, the
chapter provides a detailed comparison of existing system software for pervasive systems.
Thereby, the chapter classifies the software depending on its requirements on the execution
environment into system software for smart environments and system software that can be

used in smart peer groups.

Finally, Chapter 8 concludes the dissertation by summarizing the major findings and
contributions. In addition, the chapter also describes a number of possible enhancements and

future research directions.
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2 System Software

This chapter describes the overall design of a distributed component system that enables the
automated configuration and adaptation of pervasive applications (Becker, Handte, Schiele, &
Rothermel, 2004). To motivate the design, the chapter derives general requirements on system
software that must be fulfilled to enable automatic application configuration and adaptation at
the system level. Thereafter, the chapter describes the high-level design rationale and the
individual abstractions introduced by the system. Finally, the chapter briefly outlines why and

how the abstractions fulfill the requirements. A more detailed analysis is presented in Chapter 6.

2.1 Requirements

Using the smart peer group model presented in the previous chapter and the overall goal of
supporting automatic application adaptation at the system level, we can derive a number of
requirements that must be fulfilled by system software for pervasive systems. Based on their
origin, we can classify them in requirements resulting from the goal of suitability for smart peer
groups and the goal of supporting automatic adaptation. The first two requirements, namely
minimalism and extensibility, and decentralized coordination result immediately from the smart
peer group model. Whereas the last three requirements, namely flexible explicit application
specification, continuous application monitoring, and high adaptation transparency result from

the goal of automating adaptation at the system level.

2.1.1 Minimalism and Extensibility

Smart peer groups consist of heterogeneous networked computers ranging from resource-poor
sensors integrated into small objects like pens and wrist-watches to resource-rich general
purpose computers like laptops and personal computers. In order to support the resource-poor
computers of a smart peer group as well as the resource-rich ones with one particular system
software, the system software must be minimal with respect to its resource requirements. Since
a system software per-se does not provide application-specific functionality, resources of
interest are thereby mainly the required network bandwidth, the dynamic and static memory
used to execute the system software and to store its binary image, and the consumed processing
power. To keep the resource requirements minimal, the core of the system software should only
introduce abstractions that are required by all applications. Introducing only a minimal number
of abstractions has the additional advantage of reducing the learning effort for application
developers. Clearly, relying solely on a minimal set of abstractions might lead to system software
that cannot make use of the capabilities of resource-rich computers. Thus, the system software
must be extensible in order to utilize the power resulting from the availability of resource-rich

computers. By being both, minimal and extensible, the system software can be tailored to the
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individual capabilities of the target computer and provide the required functionality with

minimal resource overhead.

2.1.2 Decentralized Coordination

A smart peer group is a dynamic collection of networked computers in which the continuous
availability of single computer system cannot be guaranteed. In fact, any computer of a smart
peer group may become unavailable at any point in time. While there is a body of research on
predicting the future unavailability of a networked computer system based on the current signal
quality of its wireless link, the utilized predictions are typically inaccurate. This is especially true
for indoor scenarios with obstacles causing shadowing effects. In such scenarios, solid walls or
steel beams embedded in the ceiling can lead to immediate disconnections of a mobile
computer. Without a complete a prior knowledge of an environment and the movement of the
mobile computer, such disconnections cannot be predicted. Therefore, the system software

must be able to deal with the unavailability of any computer that is part of the group.

Apart from that, the smart peer group model also does not guarantee the availability of a single
resource-rich computer. In many scenarios, groups are formed by a number of resource-poor
computers that need to share their functionality cooperatively in order to create the desired
application behavior. As an example consider a group of travelers that schedules a meeting using
their mobile phones and personal digital assistants. Thus, system software for smart peer groups
cannot rely on a resource-rich computer that centrally coordinates the interaction of the

participating computers.

To deal with the dynamics as well as with the possible unavailability of a resource-rich computer,
system software must coordinate the interaction of computers forming a smart peer group in a
decentralized manner. Clearly, in some scenarios where resource-rich computers are available,
one computer could be selected as coordinator in order to increase the performance. Yet, since
this performance optimization is not possible in all scenarios, system software that supports
centralized coordination must always be able to switch to decentralized coordination if no

resource-rich computer is available.

2.1.3 Flexible Explicit Application Specification

In order to enable automatic adaptation at the system level, the system software needs to be
able to reason about possible application configurations. To do this the system software needs
to have explicit knowledge about the capabilities of the computers that participate in a group.
Furthermore, the system software also needs to have explicit knowledge about the
requirements of an application with respect to these capabilities. By explicitly specifying

application requirements and computer capabilities in such a way that the system software can
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match them automatically, the system software can determine an application configuration that

can be executed in a group without requiring manual intervention or programming.

Thereby, it is important to realize that the utilization of a specific capability usually requires
resources on the computer that provides it. For instance, using an mp3-player to stream music
to some wireless headphones requires memory and processing power on the player. Naturally,
such resources are limited by the design of the underlying internal hardware and the external
devices attached to the computer. Thus, in order to enable the system software to reason about
the limitations of individual computers, the explicit knowledge of the capabilities must be able to
capture available and required resources imposed by using them. Without knowing the
limitations of individual resources, the system software cannot decide whether a certain
configuration results in the desired behavior or whether it simply overloads the available
resources which can often cause undesirable side-effects. Overloading the computational
resources in the previous mp3-player example might for instance cause distracting interruptions
in the audio playback since the player is no longer able to meet the deadlines for decompressing

the mp3.

Apart from capturing resource utilization and limitations, the application specification must be
flexible to cope with the dynamics, heterogeneity and the continuous evolution of pervasive
systems. Since different computers might be able to provide the same or a similar functionality
in different ways, the requirements specification must support varying degrees of freedom in
order to execute an application whenever possible. As a consequence, it should not define
restrictions that are not necessary to ensure the correct operation and it should support a high

compositional flexibility to support different and continuously evolving execution environments.

As a simple example, the application specification should not require the availability of a certain
computer if another one could be used instead. Clearly, for some applications it might be
necessary to define the exact computer that must provide a specific functionality. In most cases,
however, it is more desirable to capture the application requirements in terms of functionalities
with desirable properties rather than in terms of identities. If an application, for instance,
requires a large display to show some information, the application specification should rather
describe the properties of the display, e.g. the required resolution and physical size, than its
identity. This allows persons to use the application in all smart peer groups that contain an
appropriate display whereas relying on the displays identity would limit the application to

groups containing that specific display.

In summary, system software for pervasive applications requires an explicit application
specification to reason about different configurations and possible adaptations. However, in

order to support the distraction-free execution in vastly different, continuously evolving
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execution environments, the specification must be flexible and it must support a high degree of

compositional flexibility without endangering the correctness of the resulting application.

2.1.4 Continuous Application Monitoring

Due to the inherent dynamics of smart peer groups, the set of available functionality is
continuously fluctuating. The functionality available on a certain computer becomes unavailable
to other computers of its smart peer group as soon as the computer leaves the group. Apart
from such fluctuations that are a result of the short-range wireless network technology used by
computers of a smart peer group, certain functionality can also become unavailable if the
resource availability on a computer changes. If a person, for instance, manually disconnects an
external resource, e.g. a display or a hard drive, the available resources on the affected

computer change. Such a change can make it impossible to provide certain functionality.

In order to react to such potentially disruptive changes, the system software must be able to
detect them. This requires the system software to continuously monitor the executed
applications. It is noteworthy that this monitoring is not only required to manage running
applications but it is also required to maximize the possible resource utilization in a smart peer
group by detecting stale functionality. Consider, for instance, a computer that provides a display
exclusively for an application. If the computer leaves its group, the system software must
monitor the application in order to detect that it can no longer make use of the display. Using

this information the system software can then assign the display to some other application.

2.1.5 High Adaptation Transparency

In order to execute a pervasive application in a smart peer group despite the fluctuations, the
system software must not only be able to determine possible configurations, but it must also
provide means to adapt a configuration at runtime. From the perspective of the user and the
application developer, the reconfiguration should — ideally — be transparent. Meaning that
neither one realizes that an adaptation takes place. In practice there are many situations in
which it is not possible to adapt an application transparently. As an example consider for
instance a person using a wall-mounted display to view some documents. If the power supply of
the display fails, the application needs to adapt, e.g. by redirecting the output to some battery-
powered computer. Clearly, this adaptation will be noticed by the person interacting with the
display and there is no way of hiding it. Thus, in practice system software can only aim at hiding

the details of the adaptation process as far as possible.

With the addition that sometimes it is not desirable to hide all details of the adaptation process,
this argumentation holds also true for application development. As an example consider an
application that uses distributed application-specific state in order to reduce its requirements

with respect to network bandwidth. In order to deal with unpredictable failures, the system
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software must transparently replicate the state held on each computer on some other one. If a
failure occurs the system software can then use the replicated state to continue the execution of
the application. Yet, replicating the application-specific state introduces communication and
thus, conflicts with the initial goal of reducing the network bandwidth required by the
application. As a result, system software for smart peer group should target for high adaptation
transparency but it should empower the application developer to manually control the degree of

transparency, if necessary.

2.2 Design Rationale

This section describes the design rationale of a distributed component system that has been
geared towards fulfilling the requirements derived and described in the previous section. To
motivate the abstractions that are detailed in the next section, this section first presents the
targeted model of pervasive applications. Thereafter, the section discusses the resulting
implications on application adaptation and it proposes a way of automating adaptation using

software components.

2.2.1 Pervasive Applications

The technical basis of a smart peer group is a set of spontaneously networked computers. Since
the computers are frequently integrated into everyday objects, they are usually highly
specialized. Thus, most meaningful applications will need to combine the specialized
functionality of a number of computers in order to create a desired application behavior. While
the exact combination of functionality is clearly application-dependent, the functionality
provided by a single computer should not necessarily be tailored towards a specific application.
As a result, applications executed in smart peer groups consist of application-independent

functionality and application-specific logic that acts as overarching “glue”.

In order to support such a high-level view on applications, we adopt a generic service-oriented
model for pervasive applications. This model is frequently used by mainstream system software
that is targeted at the development of traditional distributed applications. With Java RMI (Sun
Microsystems, 2004) and CORBA (Object Management Group, 2004) as premium examples, the
overall model can be considered to be time-proven. Apart from traditional distributed
applications, this model is also proposed by a number of system software solutions for pervasive
systems including BASE, the communication middleware for smart peer groups. The main

features of this application model are detailed in the following.

e Atomic core: Each application is executed on behalf of a specific person. The overarching
application-specific logic of an application is implemented in an application core. This
core is atomic with respect to distribution and thus, it is executed on a single computer.

If a person is using an application on-the-go, the computer that executes the application
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core is a mobile computer carried by the person. If the person uses an application solely
in a certain room, the executing computer might as well be one that continuously
resides there. In order to provide the desired application behavior, the core will typically
require functionality that can only be provided by other computers of the smart peer
group.

e Distributed services: Computers of a smart peer group offer their application-
independent functionality in terms of remotely accessible services, i.e. interfaces with
predefined methods, parameters and return values that hide the actual implementation.
In order to use the functionality of some remote computer, the application core can call
methods of the desired service. To do this, the application core must first find a suitable
service in its smart peer group. To select the most suitable service, each service
augments its functional description, i.e. its interface description, with properties that
describe non-functional properties, e.g. the quality of the provided functionality.

e Composed services: Due to the fact that most computers provide only a small number of
specialized services, application cores will frequently need to combine a number of
services on multiple computers in a meaningful manner. In order to reduce the size of
the application core and to enable the coarse-grained reuse of similar functionality
across different applications, some computers of a group can be equipped with services
that provide high-level functionality by combining a number of low-level services.
Naturally, this type of service composition can be continued recursively. Moreover, since
it might be possible to synthesize the same high-level functionality by combining
different low-level services, a smart peer group might contain similar high-level services

with different requirements.

In addition to these common features, we make additional specializations that adhere to the fact
that many computers encountered in pervasive systems will be tightly integrated into everyday

objects. From this foreseeable tight integration we derive the following two features.

e Pre-deployed services: Although it might be technically feasible for some computers to
assume that services can be dynamically installed or migrated, we assume that the set of
services provided by one computer is fixed and cannot be changed easily. The reason for
this deliberate limitation originates from the observation that most computers in future
pervasive systems will be tightly integrated into small and inexpensive everyday objects.
Despite the effects of Moore’s Law, integrating computer technology into an object will
always increase its monetary cost. For many objects, the cost resulting from an

integrated computer will exceed the cost of the underlying object. Thus, in order to
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minimize the cost, manufacturers will refrain from adding costly features like over-the-
air programming to their embedded micro-controllers.

e Limited resources: Utilizing a service within an application requires resources on the
hosting computer. Independent from the type of service, each service requires a certain
amount of processing power and memory. Yet, a majority of services found in a smart
peer group is likely to offer functionality that is specific to the object in which the
computer is embedded. Thus, many services require additional resources. Examples
might be cameras attached to a smart phone or LEDs integrated in a smart pen.
Naturally, such resources are limited by the hardware design and depending on the type
of integration their availability might also fluctuate over time. As an example consider an
SD card that can be dynamically plugged into personal digital assistant. If some limited
resources cannot — or should not — be multiplexed between simultaneously running
applications, the available resources of a computer impose constraints on the number of

applications that can be served by its services at the same time.

2.2.2 Implications on Adaptation

After having defined the overall picture of what constitutes a pervasive application, it becomes
clear that services play the central role. By defining services as atomic with respect to
distribution, they act as starting point for application configuration and adaptation. In order to
function properly, the application core requires a specific set of services and resources. The
services may, in turn, require other services and resources. Thus, the configuration of an

application is formed by the transitive closure of the services and resources used by it.

Since the set of services is usually distributed across a number of computers, the configuration
of an application is typically distributed. Due to the dynamics of the underlying smart peer group
model, the set of computers that constitutes the smart peer group is continuously fluctuating.
This leads to the conclusion that maintaining a static configuration for a long period of time is
not possible in general. Thus, in order to execute an application despite the changing set of

computers, the set of services that constitutes the application needs to be adapted.

The same holds true for the configuration of an individual service. Since the set and the amount
of resources available on some computer of a smart peer group might change in a non-
predictable manner, e.g. because a person unplugs some external device without prior notice,
the services that are using resources need to adapt to the changing availability at runtime. It is
noteworthy that the availability of resources might also fluctuate due to the changing utilization
of services on a computer. However, such fluctuations can be compensated through appropriate
resource reservation mechanisms. In order to do that, the services can reserve the required

amount of resources upfront whenever an application starts using them.
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As indicated by this discussion, there two types of changes in a smart peer group that raise the
need for adaptation. On the one hand, there are changes in connectivity that can lead to an
immediate and unpredictable unavailability of a computer used by an application. On the other
hand, there are changes to the resource availability that can be similarly unpredictable. As
introduced in the previous chapter, there are two types of modifications that can be applied to a

distributed application, namely parameterization and reconfiguration.

If we interpret parameterization in the context of this specific application model, we can apply
parameterization to deal with fluctuating resources. To do this, we view the resources required
by a service as its set of parameters. Analogous, we view the current reservation of a resource
for a service as the value assignment of the corresponding parameter. If a previously reserved
amount of resources can no longer be guaranteed, the values of the parameters change and the

service can adapt its behavior accordingly.

Naturally, there are limitations on the resource fluctuations that can be compensated by such a
technique. For some services, the availability of a certain set of resources might be absolutely
necessary to provide the functionality. For other services, reducing the amount of a certain
resource might lead to changes in its provided quality of service. As an example consider a
service that requires a certain amount of processing power to answer requests within a certain
time frame. If the amount of available processing power is reduced the time required to answer

request increases.

In order to broaden the scope of parameterization beyond a single service, we can extend it to
the non-functional descriptions of services. Thus, if the lack of available resources cannot be
compensated by a single service, it can propagate this by dynamically modifying its non-
functional properties. From the perspective of the using service or the application core
respectively, the individual non-functional properties can then be seen as parameters. If some
properties of a used service change, the using service can try to compensate the change by

changing its behavior.

Even if parameterization is extended across different services, it cannot be used to compensate
all changes. If a service can no longer provide its functionality at all or if it becomes unavailable
because a computer left the smart peer group, the application must be reconfigured structurally.
This means that a subset of the services and resources contained in an application configuration
is replaced with another set. In the simplest form of structural reconfiguration, a service that is
no longer available is just replaced with a similar service. Yet, there are scenarios where such a
simple replacement is not possible because the smart peer group does not contain a service with

the required interface or non-functional properties. In such cases it might be necessary to
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replace services that are still available as well in order to create another configuration that does

not require such a service.

Based on this discussion of parameterization and reconfiguration, one can argue that adaptation
by parameterization is not an essential type of modification as parameterization can be
interpreted as special case of structural adaptation. To do this, the possible parameterizations
supported by an individual service can be modeled as a virtual service that does not support
different value assignments, i.e. parameterizations. As a result, each parameterization of the
original service can now be handled by a virtual service and thus, each fluctuation can be

compensated by structural adaptation.

While this argumentation is true in general, it is still relevant to make a distinction between
parameterization and reconfiguration in practice. The key reason for this is the fact that
reconfiguration introduces additional overhead compared to parameterization. Usually, the
reconfiguration of an application leads to changes regarding the set of utilized services and
resources. Thus, in order to allow an adapted application to continue its execution seamlessly,
the internal state of the new set of services must reflect the program logic that has been
executed already with the original set of services. Therefore, it might be necessary to repeat the

execution of some parts of the already executed program after the reconfiguration took place.

Due to the trade-off between efficiency and general applicability encompassed with
parameterization and reconfiguration, it is desirable to support both types of modifications.
Thereby, the main goal should be to apply parameterization whenever possible and to rely on
structural reconfiguration in cases where parameterization cannot be applied. This approach
combines the efficiency of adaptation by parameterization with the broader applicability of

adaptation by reconfiguration.

2.2.3 Automation with Components

Mainstream system software for service-oriented applications frequently relies on service
descriptions and associated centralized registry services, e.g. naming and trading services, to
model and to share services. Whenever a service is installed or started, the service registers its
own service description at a certain registry service. Using this registry service, another service
can perform arbitrary queries that specify the desired properties of required services, e.g. their
names or types and the desired quality of service. In response to a query, the registry service
returns a list of candidate services that exhibit the desired properties. Using this list, the

requesting service can then select a particular service to interact with.

While this approach has proven to be successful for the development of traditional distributed

applications, it is not well-suited to support automatic application adaptation in smart peer
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groups for the following two reasons. First, this approach relies on the permanent presence of a
centralized registry service which cannot be guaranteed in smart peer groups. This problem can
be avoided by utilizing a federated registry service as done in BASE, for example. Secondly and
more importantly, this approach enables services to perform arbitrary queries at runtime which
makes it hard — if not impossible — for the underlying system software to reason about possible
dependencies between services. To avoid this problem, services must explicitly specify their

dependencies towards their execution environment.

A service that explicitly specifies its dependencies qualifies as a software component under the
definition given in (Szyperski, 1997) where “a software component is a binary unit of
composition that exhibits solely explicit contextual dependencies”. According to the previous
discussion on configuration and adaptation, a service can exhibit dependencies to services as
well as resources. Thus, each service must explicitly model these two types of dependencies.
Thereby, the resource dependencies are used to model required functionality that must be
provided by the computer executing the service. Dependencies to services, on the contrary, are
used to model required functionality that can be provided by some arbitrary computer of the

smart peer group.

The necessity of modeling dependencies explicitly immediately raises the question whether or
not a service should be enabled to change its dependencies dynamically. In the traditional
service-oriented systems, such changes are supported by the fact that arbitrary queries for other
services can be performed at any point in time. In most cases, however, the set of services that
will be contacted by one service is limited by its provided functionality. As an example consider a
service that displays a document. While such a service might require external services to convert

a document, it will — by design — never contact services that control the room temperature.

This leads to the conclusion that for a large number of services it is possible to derive the
complete set of possible dependencies by deriving the superset of all potentially required
services and resources. Thus, one might argue that it is possible to utilize a completely static set
of dependencies. Yet, it should be clear that using all potentially required resources and
components as static dependencies might be inefficient in cases where only a small subset is
really used. This is especially problematic for functionality that is rarely required. As an example
consider the dependency of a word processor service on some printer. The word processor only
requires the availability of a printer in cases where a person that uses the service actually wants

to print a document.

On the other hand, if required services and resources are only treated as dependencies at the

point in time when they are actually required, the set of dependencies of a certain service might

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

fluctuate frequently. Such frequent changes introduce two major problems that result
immediately from the fact that each change will require adaptation. At best — that is if all
dependencies can be resolved — this introduces runtime overhead. This alone already limits the
frequency of changes that can be supported in practice. However, in cases where an additional
dependency cannot be resolved, the resulting unresolved dependency must be handled

programmatically by the application developer or the execution of the service will fail.

In order to deal with these issues, we propose a solution that lies in the middle of both
extremes. Thereby, we assume that the dependencies of a service can be captured statically for
a concrete usage of a service within a single run of an application. That way, the superset of all
possibly required services and resources can be narrowed down significantly without incurring
the drawbacks of highly dynamic dependencies. In order to support this approach, each service
needs to specify its dependencies on the basis of the requirements that it should fulfill. On the
basis of this specification, the system software can then ensure that these requirements are met
during a single run of the application and the service developer can always rely on the presence

of all required services and resources.

For the exemplary word processor service this would mean that if it is used as part of a simple
spell checker application, the processor service would not specify a dependency on a printer
service. If the word processor would be used in a document viewer application that supports
printing, the processor would exhibit a dependency on a printer. Clearly, for some scenarios this
solution might not be flexible enough as the question of whether or not a printer is required
might depend on the person that uses the application. In order to support such scenarios, we
describe ways of integrating user preferences into the configuration in the next section. Yet,
these preferences follow the same overarching pattern in the sense that they should be mostly

static for a single run of an application.

2.3 Component System

Based on the application model presented in Section 2.2.1, we have developed a component
system that supports automatic application adaptation at system level (Becker, Handte, Schiele,
& Rothermel, 2004). To underline the fact that this system is specifically targeted at pervasive
applications, we named it PCOM as abbreviation for pervasive components. This component
system introduces a strict separation between the development of individual components and
the runtime configuration and adaptation of the set of components that constitutes an
application. By separating these two tasks, the latter can be automated completely using the
concepts for configuration and adaptation that have been derived in Section 2.2.2. To do that
each component specifies its provided functionality as well as its required functionality explicitly

as indicated in Section 2.2.3.
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In the following, we first provide a high-level overview of all abstractions and their
interdependencies before we discuss their purpose and design in detail. Thereafter, we describe
the mechanisms of PCOM that are required to enable adaptation. Finally, we close the chapter
by relating the individual abstractions and mechanisms to the requirements derived previously.
The algorithms that are necessary to automatically configure and adapt an application are
detailed in Chapter 3 and Chapter 4. Chapter 5 describes the overall architecture of PCOM as
well as some implementation details and Chapter 6 contains a more detailed evaluation of the
abstractions. To keep the following description of the component system as lean as possible we
to refer to these chapters for details. Where necessary, we highlight the interdependencies

between the concepts and models introduced in this section and the functions of the algorithms.

2.3.1 Overview

PCOM uses components as uniform abstraction to model basic and composed services as well as
application cores. These components themselves are atomic with respect to distribution but
when a component is used, it may interact with other components across the boundaries of a
single computer. An application may thus be distributed by combining a set of non-distributed

components running on different computers.

Component Container

-'I hg

Environment

Environment I Component | Component I

Environment
Component | Component

Component Container

Figure 1 — Dynamic Execution Environment

The execution of a component is controlled by a so-called component container. To support
multiple services on one computer, each component container is capable of hosting multiple
components. As a result, each computer of the pervasive system requires only a single
component container. The set of component containers that can communicate with each other

forms a homogeneous execution environment for their hosted components and applications.

Induced by mobility and failures, the execution environment may be highly dynamic as indicated
by the example shown in Figure 1. On the left side, the execution environment is formed by
eight computers carried by two persons. If the persons are moving away from each other, the

physical distance between the persons eventually exceeds the communication range supported
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by the short-range wireless communication adapters of their computers. This in turn causes the
network to split in two independent partitions consisting of the individual computers carried by
each person. Thus, the network partitioning induced by mobility creates two separate

environments as shown on the right side of Figure 1.

The component containers cooperate to automate the task of configuring an application upon
startup and adapting an application at runtime. To enable this, each component specifies its
dependencies towards the execution environment explicitly using so-called component
contracts. Thereby, each contract denotes the functionality provided by a specific component as
well as the required functionality in terms of components and resources. Thus, each component
container can determine whether the available resources suffice to execute a component by
inspecting the requirements stated in its contract. By providing adequate matching operators for
contracts, the component containers can furthermore automatically determine whether the
requirements denoted in a contract can be satisfied by the functionality described in contracts of

other components.

To support a high degree of compositional flexibility, the contractual specification refrains from
describing the internal implementation details of a component. Instead, the functionality
provided and required by a certain component is modeled indirectly through syntactical
descriptions that can be extended with properties to describe the non-functional characteristics
of the implementation. Thus, component implementations with the same syntactical interface

are considered to be equivalent, given that they exhibit the same non-functional characteristics.

An application in PCOM is formed by recursively composing components along their contractual
requirements starting from the corresponding application core. Thereby, the composition
assumes that different requirements can be satisfied independently from each other, i.e. there
are no further dependencies between components other than the ones that are specified
contractually. Since each contract may specify an arbitrary number of required components, this

type of independent composition will always form a tree rooted at the application core.

In order to simplify the remaining detailed description of PCOM, we adopt some very basic
terminology from graph theory to describe the tree. The term child component or simply child is
used to denote a component that is used by some other component. Similarly, the term parent
component or parent is used to denote a component that is using another component. Finally,
the term root is used to describe the application core in cases where the tree structure of PCOM

applications should be emphasized.
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Figure 2 — Exemplary Application Configuration

An exemplary application configuration is depicted in Figure 2. In this simplified example, the
contract of the application core specifies two required components that can provide the
functionality A and B. Such components can be found on two different computers in the
environment. The component providing the functionality A does not require further
components. However, the component that provides B requires further components that are
capable of providing the functionality C and D. In this example, C and D are the children of B and

the application core is the parent of A and B.

By convention, an application can be executed if and only if all contractually specified
requirements can be met. This means that for each recursively occurring component
requirement there must be one component with a contract that provides a matching
functionality. Furthermore, this also means that there must be sufficient available resources on
all component containers that are hosting components of the application such that the
components can utilize their required resources simultaneously. As a result, the components
that are forming the leafs of an executable application will never specify further component
requirements and the containers that are hosting components of an executable application will
always exhibit an equal or greater amount of resources than the sum of the resources required

by the components.

When the component containers cooperatively configure an application, they ensure that only
executable configurations are computed and started. However, since the set of component
containers and resources that is available in an environment can change during the execution of
an application, an executable application might become non-executable at runtime. If this
happens, the component containers need to adapt the configuration in such a way that the
resulting configuration becomes executable again. If this is not possible, they need to stop the

execution of the application.
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To adapt an application, PCOM provides mechanisms that can replace sub-trees of an
application with newly computed sub-tress that result in an overall executable configuration.
While this type of adaptation is a comparatively simple process for sub-trees that are stateless,
additional precautions must be taken if some components exhibit application-specific state. In
order to continue the execution of an application at the point where it left off when its
configuration became non-executable, the state of all modified sub-trees need to be restored

appropriately.

Each component container provides a set of semi-automatic check-pointing, logging and replay
mechanisms that can greatly simplify the task of developing components that can be adapted
automatically. The underlying principle is to continuously capture information during the
execution of a component that can be used to restore the state of its required components at
any point in time. However, to restore the state of a reconfigured sub-tree in a consistent
manner, the mechanisms need to reset all previous state that is possibly carried by reused
components of an adapted sub-tree. Thus, in order to avoid such explicit resets, PCOM simplifies
adaptation by replacing complete sub-trees. This approach does not only simplify the restoration
of state, but it also supports a greater degree of compositional flexibility. For instance, the
component B in Figure 2 can be replaced by any component that is capable of resolving the

corresponding dependency of the core, since it does not have to reuse the components D and E.

The previously described model already provides a basic overview of the fundamental concepts
of PCOM components and applications. However, there are a number of refinements of the

component model that need to be mentioned to complete the overview.

First of all, PCOM components may support multiple contracts with different non-functional
provisions or requirements. The key reason for this results from the observation that a single
component implementation might support multiple modes of operation. Depending on the
implementation, one component might for instance be able to provide a high-performance as
well as a low-performance mode of operation that require a high and a low amount of resources
respectively. Thus, supporting multiple contracts can be used to model different component
parameterizations. As indicated by the discussion in Section 2.2.3, supporting component
parameterization can greatly improve the adaptation performance by avoiding more costly

reconfigurations.

Furthermore, in order to enable the usage of one component in multiple applications or in
different sub-trees of a single application, components are instantiated for each individual
usage. Thus, applications are not formed directly by components but they are formed by a set of
component instances. Thereby, each component instance used within the application is

equipped with exactly one contract at any point in time. Thus, different parameterizations of
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one component might be used for different component instances at the same time. In order to
manage components during the execution and adaptation of an application, PCOM defines a
basic lifecycle for component instances that is controlled by the hosting component container by
means of callbacks. As explained in greater detail in the following sections, this enables
component instances to react to changes in an application configuration and it allows the

container to ensure that all unused component instances are released properly.

A similar approach is taken with respect to resource utilization where the usage is abstracted in
a so-called resource assignment that is issued by a resource manager. Just like component
instances represent a single usage of a component in some sub-tree of an application, resource
assignments represent a single resource usage by one component instance. Similar to
component instances, resource assignments might be parameterized differently and thus, they
also follow a predefined lifecycle. However, in contrast to the component lifecycle which is
completely controlled by the component container, the lifecycle of resource assignments only
partly controlled by the component container since resources may become unavailable at

runtime.

Finally, as we discuss in depth in Chapter 3 and Chapter 4, automatic configuration and
adaptation of PCOM applications are tasks that might have to compute partial configurations
frequently. During the configuration and adaptation, the component system needs to reason
about possible configurations by composing components along their contractually specified
dependencies. Since the instantiation of a component might be a comparatively expensive task
in terms of processing and memory requirements, PCOM components and PCOM resources are
represented by so-called component factories and resource managers respectively. These
representatives are used to efficiently create and issue appropriate contracts without
instantiating a component or reserving a resource and they are also used to instantiate

components and to make resource reservations when they are really needed.

2.3.2 Contracts

To enable automated reasoning on possible configurations and necessary adaptations, PCOM
relies on an explicit contractual description of dependencies between all parts that constitute an
application. As a natural consequence of the component and the resource abstraction
introduced by PCOM, the component system employs component contracts to model the
provision and the demand of a component and resource contracts to model the provision of a
resource. Since a component may depend on other components as well as resources, the
component demand may specify required components and required resources. In contrast to
that, resources are assumed to have no further dependencies, thus, their contracts do not

contain demands.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Although there are a number of technical differences between components and resources,
PCOM uses very similar concepts to describe dependencies on components and on resources. In
order to avoid repetitive descriptions, we will first discuss the scope of the contract model
including the overall design decisions and the general matching rules, before we present the
details of component contracts and resource contracts. In the general discussion, we refer to
dependencies on software components as placeholder for dependencies on components and on
resources. From a theoretical point of view, this does not conflict with the definition of the term
software component given earlier since resources are also units of composition with explicit

dependencies as well.

2.3.2.1 Contract Scope

There are different possible ways of describing the provision and demand of a software
component using contracts. According to (Beugnard, Jezequel, Plouzeau, & Watkins, 1999)
contracts of software components can be classified according to their contents into the

following four levels of increasing expressiveness:

e Syntactic level: On the lowest level, a contract can model the syntactic interface of the
software component. The syntactic level usually describes the supported operation of a
component in terms of names, return type(s) and parameter types as well as possible
exceptions. Syntactic descriptions form the basis of most mainstream imperative and
object-oriented programming languages such as C++ or Java and they are also frequently
used to model services or remote objects in many traditional communication
middleware systems such as CORBA or Java RMI.

e Behavioral level: In addition to solely describing the syntax of the interface of a software
component, a contract can also describe its internal behavior. To do this, the contract
can describe pre- and post-conditions as well as invariants that hold during execution.
Behavioral descriptions allow a more thorough reasoning about the correctness of a
program that is composed from different parts without looking at the implementation of
the individual parts. This form of description is used in some “newer” programming
languages such as Eiffel and it is also used by the Object Constraint Language which is a
part of the Unified Modeling Language.

e Synchronization level: The behavioral level already captures some of the internals of a
software component without exposing the implementation. However, behavioral
descriptions usually assume sequential execution and they fall short of capturing the
internals in cases where parallelism is present. In order to model the effects of
parallelism, contracts can also contain synchronization descriptions. At the time of
writing, such synchronization contracts are rarely found in existing products. In fact,

some component-based technologies such as Enterprise Java Beans explicitly try to hide
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the complexities of parallel programming by ensuring that components are always
executed within the context of a single thread.

e Quality of service level: The previous levels of descriptions are mostly concerned about
what the software component performs. In addition to simply describing what a
software component does, a contract can also model how well it performs this task
under certain conditions. In this case the contract would describe the quality of service
delivered by the concrete implementation. Possible quality parameters could be the

execution time of a certain operation or the precision of some result value.

Many techniques that facilitate the reuse of functionality such as program libraries solely
describe the syntactical interface explicitly. However, it should be noted that this does not mean
that there are no descriptions of the functionality on the higher levels. Usually such descriptions
are available as some kind of human readable documentation. Yet, descriptions based on natural
language are difficult to process automatically and they are hard to check for completeness or
correctness. As a result, weak low-level descriptions can easily endanger the correctness of
programs, especially, if they are used to perform automatic configuration. On the other hand,
correct and complete descriptions in natural language may be easier to understand for a
developer than potentially complex formal descriptions and thus, they may simplify the manual

reuse of functionality.

To contractually describe dependencies between software components, we decided to adopt a
solution that lies in the middle ground between low- and high-level descriptions that has proven
to be successful in the past. Essentially, we utilize descriptions based on interface names to
capture the syntactic interfaces and we utilize typed name-values pairs to model relevant
aspects of the implementation. Thus, the resulting types of contracts capture the syntactic and
the quality of service level. However, it is important to mention that the overall approach on
configuration and adaptation as well as the programming model of PCOM applications is not
tightly coupled to the features that are modeled in contracts. Thus, it is possible to change the

type of contract at will without affecting most other parts of the component system.

For the syntactic description of interfaces, we assume that there exists some common
agreement on the names, their associated behavior, their synchronization as well as their
semantic. This assumption is frequently made by many programming languages such as Java or
.NET, for example. Accidental collisions of interface names can be effectively prevented by
adopting appropriate naming conventions. As an example consider the convention for the Java
programming language as proposed by Sun Microsystems (Sun Microsystems, 1999) where
Internet domain names are used as primary prefix to ensure uniqueness of package names. In

order to avoid the potentially tedious definition of a single interface for each type of software

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

component, we allow them to expose multiple interfaces. Thus, types are modeled by listing the

name of the interfaces that are supported or required.

For the typed name-value pairs, we support basic primitive types such as Booleans, Integers and
Strings to capture the quality of service provided by a component implementation. In analogy to
the assumptions made for interfaces, we assume that their number, their types and their
semantics are known in advance and tied to the corresponding interface. Thus, the declaration
of the properties related to quality of service becomes a task that needs to be done by the
designer of an interface whereas the task of assigning concrete values for a certain
implementation needs to be performed by the developer of a component. To simplify the task of

assigning meaningful names to type-value pairs, we group them into so-called dimensions.

2.3.2.2 Contract Matching

Apart from defining the scope of contractual descriptions, it is also important to define how the
captured provision and demand can be compared with each other. Thereby, it is important to
mention that the complete demand of a contract can encompass multiple individual demands
either on other components or on resources. Since the PCOM application model assumes
independence between different requirements, the notion of comparison only needs to be

defined on the basis of provisions and individual demands.

For the syntactical descriptions on the basis of interfaces the comparison is relatively straight-
forward. Due to the uniqueness of interface names, we can simply perform a comparison of the
interface names to match individual interfaces. However, since contracts may contain multiple
interface names, we need to define additional rules on the basis of sets of interfaces. Naturally it
should be clear that if a contractual provision does not contain all interface names that are
contained in the demand, the software component that will run under this provision cannot
satisfy the demand as it misses some required functionality. Thus, in order to satisfy some
demand a contractual provision must at least provide the interfaces that are also required. The
question whether a contract that offers more interfaces than required should also match a
certain requirement can simply be defined as true according to the usual sub-typing rules of

programming languages.

While we can simply use the equality of interface names to compare the provision and demand
of a contract, comparing the typed name-value pairs is slightly more complicated. This can be
attributed to the fact that their meaning is not predefined as with interfaces. In order to support
a variety of different usage scenarios, PCOM contracts support different evaluation methods for
the name-value pairs. These evaluation methods can be attached to individual name-value pairs.
Based on the type of the pair, a contract may contain simple comparators such as Equals that

can be used to demand a provision that represents a certain point in the multidimensional space

MARcCUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

spanned by the corresponding name-value pair. In addition, a contract may also contain range
comparators such as Greater, GreaterOrEquals, Less, LessOrEquals, InRange and OutRange that

declare a certain region of the space as matching.

y Y y
4+ 4 4+
x Equals 2 x Greater 2 xInRange (1,4)

I y Equals 1 3T y Greater 1 IF y InRange (1,2)
2+ 2+ 2+
i i o 1+ A

—t—+— ——1+— R e

1 2 3 4 X 1 2 3 4 X 1 2 3 4 X

Figure 3 — Contract Comparators

Figure 3 shows three examples for points and ranges resulting from different comparators in a
two-dimensional space spanned by the two integer name-value pairs x and y. The leftmost
example shows a point that is spanned by two Equal comparators. The rightmost example shows
a rectangle that is formed by two InRange operators and the example in the center indicates the
infinite range spanned by two Greater operators. Naturally, these are only very simple examples.
Real component contracts will usually declare a greater set of name-value pairs and they will

frequently combine different operators.

Clearly, one might ask whether these comparators suffice cover all application scenarios. As
discussed in Chapter 4.2.4.5, the comparators that have been discussed so far are sufficient to
effectively support our set of exemplary demonstration applications but there might be cases
where the limitations of these comparators require rather inconvenient workarounds. To
mitigate such cases, the set of comparators could be extended but since the comparators need
to be available on all component containers, such an extension cannot be done in isolation. Yet,
there are no mechanisms in PCOM that are dependent on the specifics of the set of
comparators. Thus, the question whether the set is complete can be neglected from a

conceptual point of view.

In summary, we can define a match between a provision p (with the provided interfaces ifs(p))

and a demand d (with the required interfaces ifs(d)) more formally as follows:
(Vd, eifs(d)3p; eifs(p) : match, (d,, p;)

Formula 1 — Contract Matching
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The Boolean functions match;(d,p;) between a required interface d; (with the required type
name(d;) and the dimensions dms(d;)) and a provided interface p; (with the provided type

name(p;) and dimensions dms(p;)) is defined as:
(name(d,) = name(p,)) A (vd, € dms(d,)3p, € dms(p,) : match,(d,, p,))

Formula 2 — Interface Matching

The Boolean function matchy(dyp,) for a required dimension dy (with the name name(d,) and
the set of properties prs(dy)) and a provided dimension py (with the name name(py) and the set

of properties prs(p,)) is defined as:
((name(d,) =name(p,)) A (vd, € prs(d,)3p, € prs(p,) : match,(d,, p,))

Formula 3 — Dimension Matching

The Boolean function match,(d,p,) for a required property d, (with the name name(d,), the type
type(d,), the value value(d,) and the comparator cmp,,) and the provided property p, (with the
name(p,), the type type(p,), and the value(p,)) is defined as:

(name(d,,) = name(p,)) A (type(d,) =type(p,)) A (cmp,,(value(d,), (value(p,)))

Formula 4 — Property Matching

The comparator functions cmpy, are defined as their corresponding mathematical expression,
e.g. Greater(x,y) corresponds to x > y and InRange((x,y),z) is defined as x <= z <= y. The concrete
comparator can be flexibly specified by the developer and the set of comparators could be

extended if needed.

2.3.2.3 Component Contracts

As mentioned previously, components may exhibit dependencies on other components as well
as on resources. In both cases, these dependencies are captured by specifying the interfaces
using identifiers and the quality-related aspects using typed name-value pairs that are grouped
into dimensions. However, in order to efficiently support interaction, PCOM components can
support two different and incompatible types of interfaces. As explained in more detail in
Section 2.3.3, these two types of interfaces are mainly a technical optimization. Yet, since they

are not compatible, they need to be described separately to ensure that they are not confused.

To do this, component contracts contain separate keywords for interfaces based on method calls
and on events. By extending the matching rules in such a way that they compare these two types
of interfaces separately, we ensure that only interfaces based on the same type of interaction

are compared with each other. More formally, we can extend Formula 1 for a component
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demand d (with the interfaces for method calls ifs,,(d) and the interfaces for events ifs.(d)) and a

component provision p (with the interfaces for method calls ifs,,(p) and for events ifs.(p)) as:

(v, <ifs, (d)3p,, <ifs, (p): match,(d,,, p,)) A (V0 ifs, (d)3p, <ifs,(p): match (d,, )

Formula 5 — Component Contract Matching

Thereby, the Boolean functions match; between a required interface based on method calls (d,,)
or events (d.) and a provided interface based on method calls (p,,) or events (p.) is defined as

shown in Formula 2.

Component Contract
Provision
Interface (name)*
Dimension (name)*
Property (type, name, value)*
Event (name)*
Dimension (name)*
Property (type, name, value)*
Demand
Component (name)*
Interface (name)*
Dimension (name)*
Property (type, name, value, comparator)*
Event (name)*
Dimension (name)*
Property (type, name, value, comparator)*
Resource (name)*
Interface (name)*
Dimension (name)*
Property (type, name, value, comparator)* * zero or more occurences

Component Contract Component Contract
Provision Provision
Interface (info.pppc.|Application) Interface (info.pppc.IScreen)
Dimension (Screen) Dimension (Size)
Property (Boolean, Visible, true) Property (Integer, Width, 640)
Event (info.pppc.KeyEvent) Property (Integer, Height, 480)
Demand Demand
Component (Input)
Interface (info.pppc.IFileStore)
Dimension (Space)
Property (Integer, Free, 1024, >)
Component (Output)
Interface (info.pppc.IScreen)
Dimension (Size)
Property (Integer, Width, 640, ==)
Property (Integer, Height, 480, ==)

Figure 4 — Component Contracts

Figure 4 shows the resulting generalized structure of component contracts as well as two
exemplary instances. As indicated by the generalized structure shown on the left side, a contract
always contains the provision and the demand section. In the provision section, a contract may
contain an arbitrary number of interface definitions for interfaces based on method calls or
events. These may in turn contain an arbitrary number of dimensions that group a set of
properties, i.e. the typed name-value pairs that model the quality related characteristics of the

corresponding component implementation.

In the demand section, a contract may declare an arbitrary number of dependencies either on
components or resources. To simplify the development process, developers must attach a locally
unique name to each of the specified dependencies. These names can later on be used to
identify the dependencies in the component implementation. Each dependency on a component
can in turn contain an arbitrary number of interface and event declarations that must be

supported by a matching component. Each interface declaration may declare the required set of
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properties grouped into dimensions. However, in addition to just providing typed name-value
pairs, a property that describes a demand must also contain a comparator to enable automated
matching. The description of resource dependencies is similar to the description of
dependencies on components. However, resources may only exhibit one type of interface. More

details on resource dependencies are given in the following section on resource contracts.

With these definitions, it is generally possible to specify a provision that does not contain any
interface declaration. Similarly, it is possible to specify component demands without any
required interfaces or events. While PCOM can operate with such descriptions, specifying them
will usually not make sense. This results from the fact that a provision that does not contain any
interface specification does not specify any provision at all. As a result, such a component will
usually not be usable by others. Similarly, a demand that does not specify at least one interface
will be satisfied by every possible provision. However, in practice such contracts should not
occur as component developers would not be able to use the functionality of some component

whose type is not known during development.

According to the generalized structure introduced previously, the two exemplary contract
instances shown on the right side of Figure 4 declare a provision and a set of demands. The
leftmost contract instance declares that the corresponding component provides an interface and
an event and it requires two further components. The contract shown on the right side declares
that the component provides one interface. According to the matching rules of contracts, the
provision specified by the contract on the right side would match a declared dependency of the
contract shown on the left side. This is a result of the fact that both, the demand and the
provision, are specifying the same set of interfaces with the same dimensions and the same
properties and the Equals comparators specified together with the properties of the demand

evaluate to true for the values specified by both contracts.

2.3.2.4 Resource Contracts

In addition to dependencies on components, component contracts may also declare
dependencies on resources. In contrast to dependencies on components which differentiate two
types of interfaces, resource dependencies may only support one type of interface. This is a
result of the fact that resources are always allocated on the same container as the component
that uses the resource. Thus, there is no need for supporting different types of interactions since

specialized interaction patterns can be integrated easily.

In general, dependency declarations on resources follow the same overall approach used for
dependencies on components. A component contract may contain an arbitrary number of
resource specifications that are identified by a locally unique name. Each resource specification

may then contain an arbitrary number of interface specifications which may contain typed
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name-value pairs with comparators that are grouped into dimensions. Similar to component
provisions, resource contracts will contain a provision section that follows the same general

structure with interfaces, dimensions and properties.

Component Contract Component Contract * zero or more occurences
Provision Provision

Resource Contract

Demand Demand Provision

Interface (info.pppc.ICPU)
Dimension (Amount)

Resources (name)* Resource (CPU)
Property (Integer, KIPS, 10)

Interface (name)* Interface (info.pppc.ICPU)
Dimension (name)* Dimension (Amount) match
Property (type, name, value, comparator)*

Resource (RAM) match

Resource Contract Interface (info.pppc.IRAM) Resource Contract
Provision Dimension (Amount) Provision

Interface (info.pppc.IRAM)
Dimension (Amount)
Property (Integer, KB, 1024)

Interface (name)*
Dimension (name)*
Property (type, name, value)* Interface (info.pppc.IMonitor)

Figure 5 — Resource Contracts

The left side of Figure 5 shows the resulting generalized structure of the relevant part of the
demand section of a component contract as well as the generalized structure of a resource
contract. In addition, the center and the right side of Figure 5 show an exemplary fragment of a
component contract that requires three resources. According to the general matching rules of
contracts defined earlier, the provision of the resource contracts shown on the right side can be

used to satisfy two of the three resource requirements defined by the component contract.

2.3.3 Components

In order to enable the development of services that can be adapted by the system, PCOM
introduces a light-weight and unifying component model to represent application cores, services
and composed services. Following most mainstream component systems such as .NET (Chappell,
2002) and COM (Microsoft Corporation, 1995), the component model does not regulate the
granularity of individual components, but it leaves this decision up to the application developer.
However, due to the fact that PCOM performs automatic application configuration and
adaptation, there is an inherent tradeoff between smaller components, e.g. to improve the
reuse, and configuration overhead, e.g. due to a higher number of component instances that
need to be composed as an application. The main programming abstractions of this model are
component contracts, component factories and component instances. Their high-level relations

are depicted in Figure 6.

As described in Section 2.3.2, dependencies between components and resources are explicitly
modeled using component contracts. The component factory is responsible for creating
component contracts and component instances whenever needed. Component instances are the

basic unit of composition and they are used solely to satisfy one dependency in one application
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at a time. The component container that hosts the component is responsible for managing the
execution of the component factory as well as all component instances. It requests the creation
of component contracts as well as component instances, it signals changes that affect the
execution of a component instance and it is responsible for controlling the configuration and
adaptation process. In the following, we describe the internals of component instances and

component factories and the interaction with the component container in more detail.

Component
Contract1

Application 1 Sl Component Component I
Instance 1 Factory Contracts

Component
ContractN

Component Component
Instance N P
Container

Figure 6 — Component Model

2.3.3.1 Component Instances

In PCOM, component instances represent the basic unit of composition. As a result of the tree-
based application model, each component instance that is not representing an application core
is used by exactly one other component instance and every component instance may require an
arbitrary but fixed number of other component instances. These component instances can be
hosted either on the same component container or on some remote component container. In
addition, a component instance may also require an arbitrary but fixed number of resources.
However, resources will always be provided by the component container that is hosting the

instance.

Component instances provide the implementation of the component-specific functionality that
may be utilized by other component instances during the execution of an application. This
component-specific functionality is made available indirectly through interfaces. The interfaces
hide the internals of a concrete implementation which causes the so-called dependency
inversion where both — the service and its clients — are solely depending on the interface instead

of on each other.
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Figure 7 — Component Instance Interaction

A component instance can interact with the components that it requires as well as with the
component instance that uses it. Similarly, a component may interact with the resources that
are required by it. However, PCOM only supports interaction between component instances or
resources that are directly depending on each other, i.e. between parent and children. This
deliberate restriction is made mainly for two reasons. First of all, it ensures that implementation-
specific details such as the utilization of resources or component instances are not exposed to
other component instances. As a result, this enables component implementations to synthesize
their functionality in vastly different ways without affecting their clients. Secondly, this
restriction also ensures that component instances in different sub-trees can be adapted
independently without affecting references that are hidden within a component
implementation. Thus, this strong information hiding is a necessary prerequisite to support the

high degree of compositional flexibility that is targeted by PCOM.

As depicted in Figure 7, the primary interaction mechanism between two PCOM component
instances is a (usually synchronous) method call that originates from a parent component
instance and targets a child component instance. This enables parent instances to utilize the
functionality provided by its required instances as needed. In addition, a component instance
can also signal changes to its parent by firing a (usually asynchronous) event. Such events can

used to signal internal state changes in an efficient manner by avoiding costly polling.

Since both types of interaction involve remote communication (in many cases), PCOM uses the
well-known remote proxy concept (Gamma, Helm, Johnson, & Vlissides, 1995) in order to hide
all details of remote communication except for failure handling. Thereby, the component
container that is hosting the corresponding component instance takes care of preparing the

proxies that can be used to perform method calls and to fire events. Furthermore, the hosting
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component container is also responsible for redirecting the calls to the proxy to a newly bound

component instance in cases where the application configuration has been adapted.

In contrast to component instances, which can be running in separate component containers on
different computers, resources are always guaranteed to be available locally. Thus, PCOM
components can make use of them in a direct manner. To do this, a resource may provide a
handle as a (local) object which acts as a fagade for the functionality that is provided by the
resource. However, such a fagade is not useful for all types of resources as some might either be
used implicitly or because abstracting accesses using a facade would cause too much runtime or

programming overhead.

The PCOM component containers try to ensure that every required component instance is
resolved appropriately and that all required resources are available during the lifetime of the
component instance. However, due to unforeseeable changes and the distributed nature of
PCOM applications this strong guarantee can only be approximated in general. Thus, there might
be (usually short) periods of time, in which the resource requirements of an instantiated
component are not met or in which one or more required component instances are not
available. During this period, accesses to an unavailable resource or component instance will

result in a failure that needs to be handled programmatically by the component developer.

Finalize
STARTED STOPPED

INSTANTIATED DESTROYED

Stop

Figure 8 — Component Instance Lifecycle

At a first glance, this might seem to limit the applicability of the overall approach, since this
means that developers need to deal with all failures that can occur at runtime. However, in
many cases providing appropriate failure handlers is extremely simple, since the hosting PCOM
container will eventually detect and resolve the problem. Thus, in most cases failures can either
be signaled immediately to the component instance that initiated an interaction, for instance by
raising an exception, or the component instance that detects a failure can simply wait until the
component container has resolved the problem, for example by adapting the application, and

repeat the action to complete it successfully.
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In order to enable this type of failure handling and in order to minimize the period of time in
which such failures can occur, the PCOM component model introduces a lifecycle for component
instances. Conceptually, the lifecycle consists of three states, namely STARTED, STOPPED and
PAUSED as shown in Figure 8. The STARTED state models the fact that a component is used and is
resolved properly, meaning that a failure has not yet been detected by the component
container. The PAUSED state is used to model that a component may not be resolved properly
and that it should refrain from performing actions until its state changes. The STOPPED state is
used to model the fact that the component instance is no longer in use and that it must

immediately stop using other component instances and resources.

Transitions between these states are triggered externally by the hosting component container
using Start, Pause and Stop triggers as shown in Figure 8. According to the depicted lifecycle, a
component instance will be eventually started after it has been instantiated. Thereafter, it might
be paused and started again several time until it is finally stopped. It might be either stopped
while it is paused or started. After an instance has been stopped, it will eventually be finalized
and destroyed. The reasons for triggering each state transition depend on the overall lifecycle of

the application which is discussed in greater detail in Section 2.3.5.

Ideally, a component instance should not require separate triggers for these states as the pure
fact that a component has been instantiated can be used to model the fact that it is used by an
application. Similarly, the destruction of a component instance suffices to model the fact that it
is no longer needed or is not resolved properly. However, in order to avoid frequent and
potentially costly component instantiations, the PCOM component model separates these states

from component instantiation.

2.3.3.2 Component Factories

As discussed in Section 2.2.3, PCOM is based on the idea of keeping dependencies between
components and resources static at runtime while supporting the flexible declaration of
different dependencies on the basis of the usage of a component. Since PCOM contracts are
created individually for each instance, keeping dependencies static can be achieved by
prohibiting contract manipulations at runtime. However, in order to support the specification of
different dependencies on the basis of the usage of a component, contracts need to be

adaptable to different demands.

To support contracts that are both, modifiable during configuration and static at runtime, PCOM
introduces the concept of component factories. Component factories act as the local
representative of a component for the hosting component container. The component factory is
responsible for creating component instances and for creating contracts during configuration of

an application without actually instantiating a component. This allows the component system to
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reason about different possible configuration without introducing the overhead of instantiating
components that cannot be executed later on. To create the contents of a component contract
for a component instance on the basis of its usage by an application, the component container
supplies the component factory with a corresponding demand that needs to be satisfied. Based

on this demand, the component factory can refine the dependencies.

Since the component container should be strictly separated from component implementations
in order to support the development of arbitrary components, it cannot and should not have
knowledge about the contracts supported by a certain factory. Thus, the component container
may pass demands to component factories that cannot be satisfied by its instances, e.g. because
the instance does not support a required interface or because the desired quality of service
cannot be achieved with the implementation. In such cases the component factory will not be
able to create a contract that matches with the demand. In other cases, where the component
demand can be potentially met by the instances of the component, the factory will return one or
more matching contracts. Creating more than one contract might be necessary to express that

the instance can support various tradeoffs to support the desired quality of service.

In principle, tradeoffs between different demands can also be modeled by providing appropriate
mapping functions that explicitly model how quality of service related provisions can be broken
down into requirements. However, since such mappings can become arbitrarily complicated — at
least from a theoretical point of view — designing a generic mapping language that covers all
relevant cases — without developing a general purpose language — is a non-trivial task. Thus,
instead of expressing the mapping explicitly using a domain specific language, we allow
developers to specify a set of possible mappings as individual contracts. As discussed in the next
chapter, this approach additionally transforms the overall problem of finding a configuration

from a continuous problem into a discrete one.

The potential loss of expressiveness that is accompanied with this discretization can to some
extend be mitigated by utilizing ranges instead of points to capture requirements. Thus, instead
of modeling that a required parameter should have a certain value, a contract can specify that
the parameter should be within a certain range. As discussed later on, this approach has the
additional advantage that the ranges can be used to support a very light-weight form of
adaptation by parameterization and thus, they reduce the frequency of more costly
reconfigurations. However, from a theoretical perspective, introducing such ranges will waste

some resources since they will not be assigned optimally.

As discussed in Chapter 6, we have not found this to be a major problem for the applications and
components that we have built to evaluate the component system. However, this may be a

result of the fact that our exemplary components are using the quality of service related
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parameters mostly to describe the context of components, e.g. the location or the capabilities of
the hosting component container, instead of their performance. In order to provide additional
support for component developers during contract creation, negotiation mechanisms and
protocols could be offered to component factories as system services. Yet, the utilization of such

mechanisms is orthogonal to the overall approach on automatic configuration and adaptation.

2.3.4 Resources

Besides from facilitating extensibility at the application level by supporting the development and
use of arbitrary components, the PCOM component system also supports extensibility on the
system level by enabling the development and use of arbitrary resources. Thereby, resources
follow the same pattern as components. Like a component, a resource consists of three parts,
namely resource assignments that are issued to components, resource contracts that describe
the provision of a resource and resource managers that act as local representative for a certain

resource. The relation of these parts is shown in Figure 9.

Resource

Resource
Contract1

Resource
; Resource Manager Resource |
Assignment 1 Contracts

Resource

Component
Instance 1

ContractN

Component ‘ Resource
Instance N Assignment N

Component

Container

Figure 9 — Resource Model

Resource contracts are used to describe the provision of a resource with respect to a certain
demand in a way that enables automated reasoning about possible configurations and
adaptations. If a resource is used by a component instance, the resource manager is responsible
for issuing an appropriate resource assignment to the instance. Thereby, the resource
assignments are representing the fact that a resource or parts of it are exclusively assigned to
the instance. Following the general approach of component factories, resource managers are
also responsible for creating contracts during the configuration without actually making
reservations for assignments. In addition to the responsibilities of component factories, resource
managers are also responsible for ensuring that the resource is actually available as long as a
resource assignment is issued. Thus, it needs to revoke resource assignments in cases where the

corresponding resources become unavailable.
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2.3.4.1 Resource Assignments

Resource assignments are similar to component instances with respect to the fact that they are
the runtime representation of a certain resource that is used by some component instance. In
contrast to component instances whose type depends on the functionality provided by the
component, PCOM resource assignments are generic entities that are created by the container
and issued by the resource manager. This shift results from the observation that there are a
number of resources that are used implicitly or whose abstraction as a single entity would be too
expensive — either in terms of runtime or programming overhead. Examples for resources that
are usually used implicitly are processor cycles or main memory in high-level programming
languages that support automated memory management, e.g. by means of garbage collection.
An example for a resource whose abstraction might be too expensive in terms of programming
overhead could be a program library with a broad interface. Clearly, there are also resources
that are used explicitly. To cover such resources in an adequate manner, resource assignments
may contain a handle that provides a facade to the actual resource. An example for such a

handle might be a window handle for a resource that represents a graphical user interface.

Stop/Revoke

Finalize
STARTED STOPPED

INSTANTIATED DESTROYED

Stop/Revoke

Figure 10 — Resource Assignment Lifecycle

In contrast to components that may depend on other components or resources, resources are
not allowed to have further dependencies. However, this does not mean that resource
assignments can be issued unconditionally. Unlike components that are solely used to
encapsulate a piece of program logic and thus, represent a virtual part of the application,
resources in PCOM can represent physical resources such as cycles of a processor, main memory
or external 1/O devices. So the question whether a resource assighment can be issued typically
boils down to the question whether there are sufficient physical resources available in order to
provide the requesting component instance with the required amount. Since this question
cannot be answered without additional knowledge about the resource, it is the responsibility of
the resource manager to issue assignments only if sufficient resources are available.
Furthermore, as physical resources might become unavailable at any point in time, a resource

assignment that once represented an available resource might need to be revoked later on.
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In order to enable the resource managers to correctly compute the amount of resources that are
available and that can be assigned to component instances, resource assignments are equipped
with a lifecycle that is similar to the lifecycle of component instances. Each resource assignment
can be STARTED, STOPPED or PAUSED. Resource assignments in the STARTED state represent
resources that are reserved for component instances. Resource assignments in the STOPPED state
represent resources that are no longer needed or that can no longer be provided. Resource
assignments in the PAUSED state represent resources that are bound to instances that are

currently also in the PAUSED state.

Probably one of the most important differences between the lifecycle of resource assignments
and the lifecycle of components is that the lifecycle of resource assignments is not completely
under the control of the hosting component container. Instead the control over the assignment
is shared between the component container and the corresponding resource manager. Similar
to component instances, the container signals the resource manager when to issue resource
assignments and when their execution should be suspended. Furthermore, the container also
signals that a certain resource assignment is no longer needed. This is done by the
corresponding start, pause and stop signals depicted in Figure 10. However, in cases where a
resource or parts of a resource become unavailable, the resource manager can revoke a
resource assignment without further notice by invoking a revoke method. This shared
responsibility is necessary to cover cases where a resource or some parts of it become
unavailable. An example for such a case can be a resource that represents a USB webcam. As
long as the webcam is plugged into the computer, it can be assigned to some component.
However, since the webcam may be unplugged at any point in time without further notice, it is

not possible to hide the unavailability of an issued assignment.

2.3.4.2 Resource Managers

Just like resource assignments are the resources’ equivalent to instances of components,
resource managers are the pendants to component factories. Thus, they are the local
representation of a resource installed in the component container. They take care of creating
resource contracts and they are responsible for issuing resource assignments. In addition, they
are also responsible for revoking resource assignments when the corresponding resource is no

longer available.

Just like a component factory, a resource manager can create zero or more contracts in response
to a request for a resource by the component container. Yet, since resources can represent
physical resources that can be strictly limited, resource managers need to perform additional
tasks. In order to support the automated reasoning about potential conflicts between different

resource assignments in a generalized way, the resource manager is responsible for mapping the
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amount of available resources as well as the amount of physical resources required in order to
issue an assignment with a certain resource contract to a non-negative integer value. As a result,
the component system can check whether two assignments can be issued simultaneously by
summing up the required amount of resources and comparing it with the available amount of
resources. Intuitively, for this to work correctly, the mapping performed by the resource
manager needs to ensure that a set of resource assignments with a certain set of resource
contracts can be issued as long as the amount of available resources is larger than or equal to

the sum of the resources required by the set of assignments.

It is noteworthy that this kind of mapping is primarily targeted at resources that are limited and
that do not have a relevant identity. Typical examples for such resources are main memory and
network bandwidth. For main memory, it is usually considered to be irrelevant which part of a
memory chip is assigned to an application. Similarly, for network bandwidth it is irrelevant which
bits are used to guarantee a certain rate of bits per time interval. However, using simple
workarounds the overall approach can easily extended to cover unlimited resources as well as
resources where the identity matters. For example, in order to support resources that are not
limited or that can be virtualized easily, a resource manager can simply return 0 as integer value
for the required amount of resources. Similarly, in order to support resources with a relevant
identity, a component container can be equipped with multiple resource managers for the same
type of resource where each resource manager is responsible for managing an individual

identity.

2.3.5 Applications

The PCOM component system is geared towards hiding many details of distribution from the
application developer. From an application developer’s perspective, the ultimate goal is to
create the illusion of a static execution environment that contains sufficient resources and
suitable services. While it should be clear that such a goal can only be approximated in general,
the overall idea is the main rationale behind the application model. To achieve this goal as far as
possible, the application model closely approximates the guarantee that a started component
instance does not have unsatisfied requirements. If this cannot be guaranteed, the component

instance should not be started.

2.3.5.1 Application Model

By extending this concept from a single component to a set of components recursively, PCOM
defines an application as a tree of component instances and resource assignments that is
spanned by some root component instance. This root component instance represents an
application core and thus, it is the only part of the tree that does not fluctuate at runtime. Due

to the fact that the root component instance does not change at any time during its execution, it
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is also called the application anchor. The availability of the other component instances and
resource assignments may fluctuate unexpectedly at runtime. Thus, the exact composition of
the tree might need to be adapted dynamically in order to ensure that each recursively specified

contractual demand is satisfied by some matching provision.
Component Contract (ComponentA)
Provision (Component A)
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Figure 11 — Cyclic Component Contracts

Clearly, this type of recursive definition is not guaranteed to terminate in cases where a demand
contained in a component contract can be satisfied — either directly or indirectly — through the
same component contract. An example for such contracts that may result in such infinite cycles
is depicted in Figure 11. There, the demand of a contract created by component A can be
satisfied with the provision of a contract created by component B. The demand of this contract
can, in turn, be satisfied by the provision of the contract of component A. In order to avoid the
problems associated with non-terminating definitions, PCOM prohibits such definitions
conceptually. However, since cycles can also be the result of unrelated component
developments, the PCOM component container also performs runtime checks to detect and to

break cycles.

2.3.5.2 Application Anchor

The application anchor plays a special role in PCOM applications since it is the only component
instance that is not started on behalf of another component instance. Instead, it provides stand-
alone functionality that may require other functionality. As a result, it is the only component
instance that does not have to satisfy a specific demand. However, from a conceptual point of
view, it satisfies some demand. Namely, it satisfies the demand of the user that uses the

application implemented by the application anchor.

Due to this observation, we decided to apply the same rules to application anchors as to other
components instances. Instead of providing special models and abstractions, we require that an
application anchor must specify a certain provision as well. This can be done by creating a virtual

interface that is provided by the application anchor. Thus, in order to start a certain type of
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application anchor, we can specify a demand on the virtual interface. This allows us to express
the fact that a user demands a certain type of application using the component demand part of

a component contract.

Besides from minimizing the number of abstractions introduced by the component system, this
has a number of additional advantages. First, as a side-effect of reducing the number of
abstractions, it simplifies the implementation of PCOM. Secondly and more importantly, it allows
the definition of application suites by specifying a virtual set of demands that must be fulfilled
simultaneously and thus, it allows that the approach towards automatic configuration detailed in
the next section can be used to configure multiple applications simultaneously. Finally, as we
explain in the following, it can also be used to support user preferences during the configuration

of an application.

2.3.5.3 Application Preferences

After unifying the concepts of component instances and application anchors using virtual
interface declarations, we can use the features of the contract model to integrate user
preferences into the configuration. To do this, an application that supports multiple modes of
operation may declare these modes as different provisions using dimensions and properties that
are usually used to express the non-functional characteristics of an implementation. By using
specific demands that require a certain value for the properties, a user may express his demand

to start an application in a specific mode of operation.

Using this approach of requesting a certain mode of operation, we can simply extend this to
preferences on different modes by supporting the specification of an ordered list of demands
that are optional. Clearly, there are many other possible approaches of modeling preferences
between different modes. However, this approach has the benefit that it does not require any
additional models. In fact, since component factories can specify multiple optional contracts that
can be used to execute a component instance, such preferences can be integrated without

requiring any additional mechanisms.

This is especially beneficial since it does not require specialized algorithms to deal with
preferences. Instead, a configuration algorithm can simply try to configure the application with
the demand that represents the highest preference. If the configuration fails, it can try to start
the next demand and so on. Due to this reason, the approach towards automatic configuration

that is detailed in Chapter 3 and Chapter 4 does not specifically discuss preferences.

However, it should be noted that this simple approach also introduces overhead that is linear
with the number of optional contracts that represent the preferences. As we will briefly discuss

in Chapter 8, this can be mitigated by taking the internals of contracts into account and by
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defining additional operators on contracts. Specifically, by defining an inclusion relationship on
contracts, it is possible to revise more intelligent search strategies for some preferences that

represent relaxations. For more details on these optimizations, we refer to this chapter.

2.3.5.4 Application Lifecycle

Intuitively, the lifecycle of the application anchor defines the lifecycle of the other component
instances and resource assignments and thus, it defines overall lifecycle of the application. If the
anchor is started, the application is started. If the anchor is stopped, the remaining component
instances and resource assignments are no longer needed. Thus, they can be stopped as well in
order to avoid unnecessary resource utilization. Since the dynamics of the execution
environment cannot be hidden completely, the execution of the application anchor may need to
be paused temporarily to minimize the time in which the application anchor is started despite
the fact that the tree exhibits unsatisfied dependencies. This should be signaled to the all other
component instances and resource assignments to avoid interactions between them during

adaptation.

Due to the distributed nature of PCOM applications, the state transitions in the lifecycle of
component instances and resource assignments cannot be triggered at the same instant of time.
However, since component instances that are started may interact at any point in time with
their child component instances and resource assignments, the state transitions to the STARTED
state should also not be triggered in an arbitrary order. Similarly, the state transitions to the
STOPPED and PAUSED states should also not be triggered in an arbitrary order as component
instances that have been stopped or paused should not be required any longer by their parents.
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Figure 12 — Parallel Bottom-Up Lifecycle Transition

For transitions to the STARTED state this means that the component system should ensure that all
(available) children have already made the transition when a parent is triggered. This can be
achieved by triggering this state in a bottom-up fashion. If this would be done sequentially, it

would correspond to a post-order traversal of the tree. However, in order to utilize the potential
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parallelism resulting from the distribution of the application, it is favorable to perform the state
transition in parallel in different sub-trees. As shown in Figure 12, this can be done by initiating a
series of synchronous triggers in parallel to all children that need to be completed before the

trigger of their parent is called.
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Figure 13 — Parallel Top-Down Lifecycle Transition

In contrast to transitions to the STARTED state, which should be triggered bottom-up, transitions
to the STOPPED and PAUSED state should be triggered in a top-down fashion. This ensures that the
parent is no longer interacting with the children when they are paused or stopped. If done
sequentially, this would correspond to a pre-order traversal of the tree, but similar to transitions

to the STARTED state it can also be done in parallel as depicted in Figure 13.

2.3.6 Adaptation

After having defined the concepts of the component system that are used to support the model
of pervasive applications introduced in Section 2.2.1, we now present how these concepts can
be applied to support automatic adaptation. As motivated in Section 2.2.2, the basic principle of
our approach towards supporting automatic adaptation at the system level is to utilize
parameterization whenever possible and to use reconfiguration as a last resort. In the following,
we first describe how parameterization and reconfiguration can be supported using the
previously introduced concepts. Thereafter, we classify the reasons for adapting a PCOM
application and we briefly outline how the need for adaptation can be detected automatically.
Using this classification, we discuss cases in which parameterization and reconfiguration should

be applied and we describe the scope that need to be considered when adapting an application.

2.3.6.1 Parameterization

PCOM component instances and resource assignments rely on contracts to capture their
functional and non-functional dependencies in a way that enables the automated matching. As
presented in Section 2.3.2, a contract models a conditional statement that guarantees that a

certain provision can be achieved if all specified demands can be fulfilled.
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According to the contract model, the provision is always representing a point in the parameter
space spanned by the non-functional properties. With respect to the demands specified by a
contract, a contract may denote either points or regions in the parameter space. Although this
provides certain flexibility, the definition of a single region alone is not sufficient to cover all
cases. Specifically, in cases where a component implementation can make tradeoffs between
the values of different properties in order to fulfill its provision, it may need to specify a number
of regions that cannot be merged into a single connected region. As a simple example, consider
a component that requires that the sum of two properties — A and B — should add up to some

value V.

In order to support the specification of different regions of the parameter space, the component
system enables component factories and resource managers to specify multiple optional
contracts that can be used to satisfy the same demand. So given the previous example, a
component could specify several possible combinations such A=V and B=0, A=V/2 and B=V/2 or
A=V/4 and B=3V/4, etc. According to the conditional statement represented by a contract, the
implementation must be able to provide a matching provision if all the requirements of one
contract can be met and each contract is equally well suited. Thus, by definition, a correct
component implementation must be able to support each of the specified contracts. As a result,
the specification of optional contracts essentially entails the explicit definition of possible
alternative parameterizations of a component instance or resource assignment. Due to this fact,
the component system can switch between the different contracts in order to parameterize a

component instance or resource assignment differently.

In addition to this explicit parameterization, there is also an implicit parameterization which is a
result of the fact that a demand may specify regions whereas a provision may only specify a
point in the corresponding parameter space. Although, the point denoted by the provision of a
child will — by definition — always lie within the region spanned by the demand of its parent, the
exact location of the point may depend on the provisions of its children. Thus, a contract that
uses regions within a demand will usually model a potentially unlimited number of possible

parameterizations that are hidden from the component system.

In order to avoid that a potentially high number of contracts needs to be considered on an
individual basis during the configuration of an application, the component system allows
component factories and resource managers to specify wildcards in provisions during the
configuration of an application. Since the resulting parameterization is not explicit, switching
between these parameterizations cannot be done by the component system. Instead, this
requires the cooperation of the corresponding component instance. However, in order to switch

to the right parameterization, i.e. in order to compute the exact provided point in the parameter
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space, the component instance needs to know the provided points of its child component

instances and resource assignments.

As a result, the parameterization of a component may also be changed in cases where the
provision of child component instance or a resource assignment changes. In these cases, the
component system cannot control the new parameterization. However, due to the definition of
contracts, the resulting point must always lie within the region demanded by the parent in cases

where the children specify solely matching points.

2.3.6.2 Reconfiguration

In addition to supporting different parameterizations, the PCOM application model also supports
the reconfiguration of the overall application at runtime by changing the set of component
instances and resource assignments that constitute an application. However, in contrast to
changes to the parameterization of components instances, changing the set of component
instances and resource assignments is a more complex undertaking that requires further

considerations due to the following two reasons.

First, two component instances that declare the same provision might have vastly different
demands. Thus, replacing a single component instance might not only require the replacement
of its children with similar component instances and resource assignments, but it might also
require a completely different set of children in terms of the functionality provided by them and
the resources represented by them. As a result, changing a single component instance can
induce the need for further reconfigurations. It is noteworthy that some reconfigurations could
be done in isolation. As an example consider the replacement of a component instance hosted
by one component container with the same implementation hosted by another component
container. However, if we would restrict adaptation to such reconfigurations, we would severely

restrict the compositional flexibility of the overall application model.

Secondly, since component instances may contain application-specific state, changing the set of
component instances requires additional care in order to ensure that the state is migrated as
well. However, there are two issues that complicate such a migration. First of all, since a
replaced component instance may require a different set of children, the component system
cannot know how the application-specific state that was held by the individual component
instances of the initially bound sub-tree needs to be migrated to the individual component
instances of newly bound sub-tree. Secondly, since we want to apply reconfiguration to cope
with the unforeseeable unavailability of component instances, there is no guarantee that a
component instance that is replaced during the course of a reconfiguration is actually available.
Thus, without further precautions the state of a component instance that becomes unavailable

at runtime might not be recoverable. Clearly, these problems could be avoided by prohibiting
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component implementations that carry application-specific state, but introducing such a

restriction could have significant negative performance implications.

To enable the reconfiguration in such a way that it supports different structural configurations of
the functionality and that it can take care of the application-specific state held by the
corresponding component instances, we need to extend the concepts of the component model
that have been introduced previously. The extensions are an immediate response to the
problem that dealing with the application-specific state encapsulated in component instance
requires further application knowledge. In order to externalize this knowledge, we split the
responsibility of dealing with the application-specific state between the application developer
and the component system. Since our goal thereby is to provide a generic but efficient solution,

we introduce the following additional requirements on component implementations.

First of all, an application developer that is designing the interface of a new component
additionally needs to define how the internal state of the functionality can be represented
independently from the implementation. Each component instance that implements the
interface must be capable of loading and storing this state. It is noteworthy that a component
instance does not have to use the same representation internally. It only has to perform the
mapping between its internal representation and the predefined generic representation. As a
result, the system can migrate the state between different implementations of the same
functionality. To do this, it stores the state of the old component, transfers it and loads the state

into the new component.

Secondly, we require that each component instance is capable of restoring the state of the sub-
tree spanned by it using the state stored in the implementation independent representation.
This way, we can avoid the problem that the component system does not know how to
distribute the state that was held by other sub-trees. Due to this requirement, we can
additionally simplify the reconfiguration process by always replacing the complete sub-tree
spanned by a component instance in cases where it is replaced. Clearly, doing that can increase
the amount of time and resources that are required to reconfigure an application. At the same
time it also eases the task of the application developer as a component instance can simply
restore the state of its children whenever it is loading its client-specific application state.
Furthermore, this also ensures that the restoration can be performed consistently in cases

where a component instance replaced because it is no longer available.

Using these two extensions, the component system can migrate the state between different
component implementations that are providing the same functionality and it can ensure that the

state of a replaced component instance can be restored as long as the component instance is
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available to retrieve the state during migration (Handte, Schiele, Urbanski, Becker, & Rothermel,
2005). In order to support cases where a replaced component instance is no longer available, the
component system needs to keep track of the changes to the internal state of the component
instance continuously. To do this in a generic way, the component system can proactively store
the state held by each component instance whenever it changes and it can transfer this state to
the component container that hosts the parent instance. As a result, the component container
of the parent component instance is able to restore the state at any point in time without
requiring the presence of the component container that hosts the child. However, this simple
approach can lead to high performance overheads in cases where the state is comparatively

large and where changes to the state occur frequently.

In order to mitigate this, we do not store the state continuously for all component instances.
Instead, we introduce a supplemental mechanism that works well for component instances that
exhibit the behavior of a state machine (Schneider, 1990). In interactive applications, this type of
components is rather common. Specifically, most components that provide output-related
functionality exhibit this characteristic. Within such component instances, the internal state
solely depends on the sequence of calls that they have received from their parent instance.
Thus, we can restore the state either by setting it directly using a previously stored state or by
replaying the exact sequence of calls that they have received from their parent. Furthermore, we
can also restore the state using a combination of both where we directly set the state to some
intermediary state and then apply the remaining sequence of calls that have been made after
the state has been stored. To do this, we log the sequence of calls performed by the parent
component instance and occasionally, we store the state of the child component instance and
remove all previously logged calls. In order to increase the efficiency of this mechanism even
further, we can allow the application developer to manipulate the logged sequence of calls and

we enable the developer to record the internal state of component instance whenever needed.

2.3.6.3 Changes

According to the underlying system model and the abstractions introduced by the component
system, we can classify the changes that may occur in the system along different orthogonal
axes. In the following, we consider the source of the change and the effects of the change on the

application configuration.

First of all, changes can be either a result of the fact that the underlying system has changed or
that the requirements on the application have changed. The former is a result of the changing
availability of resources on a single component container and the changing availability of
component containers that are part of the same smart peer group. The latter is a result of

changing user preferences that are directed towards an executed application.
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Furthermore, changes may either invalidate the application configuration or they might leave
the configuration intact. Changes that invalidate the application configuration can be changes to
the user preferences that are not fulfilled by the current configuration and changes to the
available resources or component instances that break one or more contracts. Changes that
leave the application configuration intact can either be changes to the preferences that are met
by the current configuration and changes to the availability of resources that can be

compensated.

Preferences Preferences Preferences Preferences Preferences

Requires <core>

Requires <core> Requires <core>

size>3

Requires <core>
size > 10
invalid

Requires <core>

size>3 size>3

Component Contract

Component Contract

Component Contract

Component Contract

Component Contract

Provides <core>
size=7

Requires <A>

Provides <core>
size=7
Requires <A>

Provides <core>
size=7
Requires <A>

Provides <core> Provides <core>
size=7

Requires <A>

Requires <A>

Component Contract Component Contract Component Contract Component Contract Component Contract

Provides <A>
Requires <resource>
amount > 10

Provides <A>
Requires <resource>
amount > 10

Provides <A>
Requires <resource>
amount > 10

Provides <A>
Requires <resource>
amount > 10

Provides <A>
Requires <resource>
amount > 10

Resource Contract Resource Contract Resource Contract Resource Contract

Provides <resource>
amount =12

Provides <resource>,
amount=11

Provides <resource>
amount =12

Provides <resource>
amount =12

Figure 14 - Effects of Changes

Figure 14 shows the basic categories and their effects on an exemplary application configuration.
The configuration consists of two components, namely the application core and component A.
Component A requires a certain amount of some resource in order to function properly. The
changes are (from left to right) a change to the preferences and a change to the available
resources that do not invalidate the configuration as well as a change to the preferences and a

change to the available resources that invalidate the configuration.

With this set of possible changes, it should be clear that most changes can be detected by
monitoring changes to contracts. Usually, this can be done locally by the component container
that hosts the corresponding component instance. If a contract is modified, for example, by a
resource manager that revokes some resource assignment, the component container can notify
the affected component instance. In general, this holds true for all changes except for changes
that result from the unavailability of a computer. If a computer leaves the smart peer group, it
can no longer contact the remaining computers and thus, it cannot inform the affected

component containers.

In order to detect such cases, a component container that relies on component instances

provided by some other component container needs to monitor its availability continuously.
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Similarly, a component container that provides component instances for some other container
needs to monitor its availability in order to release stale component instances. Both, monitoring
and avoiding stale state, can be done by relying on soft-state approach. To implement this, the
containers are periodically exchanging messages to ensure that the required component
instances are still available and that the provided component instances are still needed. If the
periodic message exchange fails, the providing component container can stop the unused
component instances and the other component container can detect and signal the broken

contract.

2.3.6.4 Utilization

Changes in the smart peer group that do not affect the validity of a configuration are a natural
consequence of contracts supporting certain ranges as part of their requirement specifications.
If such changes occur, it is not necessary to modify the configuration. However, since the
provision specified by a contract may depend on the individual provisions specified by the
required components and resources, it is necessary to propagate the changes in order to enable
component instances to update their provisions accordingly. Thus, a change to a resource might
trigger recursive modifications to provisions that ripple through the configuration from bottom
to top. Yet, a change that does not break a contract at a lower level of the configuration does
not lead to broken contracts on higher levels of the tree. According to the differentiation of
parameterization in explicit and implicit presented in Section 2.3.6.1, these changes can be

thought of as handled by implicit parameterization.

Changes that affect the validity of cannot be handled by implicit parameterization as they break
at least one contract of the configuration. As a consequence, they must be handled by changing
one or more contracts of the configuration, i.e. by explicit parameterization, or by changing
some of the component instances, i.e. by reconfiguration. Although, parameterization is usually
preferable over reconfiguration, there are cases in which reconfiguration cannot be avoided.
Besides from the obvious case that some required component instances are no longer available
at all, reconfiguration may also be required in cases where all component instances are still
available. As an example consider a required resource that becomes unavailable at runtime.
Although, all component instances are still available, it might be necessary to replace a
component instance with some instance on another computer to ensure that the resource
requirements can be met. As a result, it is not possible to associate a particular adaptation
mechanism to the remaining changes that cannot be handled by implicit parameterization.
Instead, the decision of whether explicit parameterization or reconfiguration should be applied
must be performed dynamically at runtime on the basis of the properties of the configuration
and the capabilities of the smart peer group. In Chapter 4, we describe our approach to perform

these decisions as an extension to the configuration algorithm presented in the next chapter.
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2.3.6.5 Scope

Now that the reasons and the possible ways of adapting a PCOM application are defined, the
only remaining issue that has yet to be determined is the scope. Intuitively, it seems more
efficient to limit the scope of an adaptation as this minimizes the effects on the unaffected parts
of a configuration. However, as we discuss in the following, it is usually not possible to define a

meaningful scope a priori — other than the complete configuration.

For changes that can be compensated by implicit parameterization, a meaningful local scope can
be identified easily. For instance, if the resource availability on some computer changes, it is
sufficient to notify the component instance that utilizes the resource. If the modified resource
availability does not induce a change to the provision of the component instance, it is not
necessary to perform further notifications. If the contract of the instance changes, it is sufficient
to notify the parent as it is the only part of the configuration that could be affected, and so on.
As a consequence, the effects of changes that can be compensated implicitly are limited to the

set of ancestors in a configuration.

For other changes, i.e. the changes that affect the validity of a configuration, it is not possible to
identify a smaller scope than the overall configuration. The reason for this is that the attempt to
deal with them might require multiple changes to various parts of the configuration. This, in
turn, is a result of the fact that modifying a contract may lead to modified resource
requirements and thus, it can lead to arbitrary conflicts. As an example, consider a configuration
in which some sub-tree has become unavailable. Although, it might be possible to find a set of
component instances to replace the sub-tree, the set of instances will typically introduce new
resource requirements. In order to fulfill these, it can be necessary to reduce the resource
requirements in order parts of the configuration, e.g. by changing the parameterization or by
replacing the existing component instances as well. Since it is not possible to restrict the scope
of adaptation in general, it is necessary to consider the complete configuration as soon as a
single contract needs to be modified. The approach towards automatic adaptation detailed in
Chapter 4 takes this into account by computing a complete configuration whenever a contract
needs to be changed. Thereby, it introduces a cost model to capture the costs of different
alternative adaptations that is geared towards minimizing the effects on parts of the

configuration that are not directly affected by a change.

2.4 Discussion

In this chapter, we derived the requirements on system software that enables the automatic
adaptation of a pervasive application in smart peer groups. Based on the characteristics of the
underlying system model, we have identified the requirements on minimalism, extensibility and

decentralized operation. Due to the goal of automating adaptation at the system level, we have
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furthermore identified the requirements on a flexible and explicit application specification,

continuous application monitoring and high adaptation transparency.

By applying these requirements to the widely used service-based model for building distributed
applications in which a non-distributed application makes use of local and remote services, we
have revised a component system for smart peer groups. This component system can be used to
automate the initial configuration as well as the runtime adaptation. The component model
introduced by this system is minimal as it solely introduces abstractions that are necessary to
support the automatic configuration and adaptation using the targeted application model. Since
the component system does not impose any restrictions on the functionality and the granularity
of components and resources and due to the fact that the component container may host an
arbitrary set of components and resources, the system can be customized to the capabilities of
different computers, ranging from resource-poor specialized systems up to powerful general
purpose computers. The mechanisms that are needed to execute an application do not depend
on a single system and as we discuss in more detail in Chapter 5, it is comparatively simple to

implement them in a distributed fashion on top of existing communication middleware.

In order to explicitly specify an application, the component model utilizes contracts. Contracts
describe the syntactical and non-functional properties of a component in an abstract manner
and it is possible to provide various implementations for the same contract. Due to the fact that
the application model is defined recursively on the basis of contracts, it allows a great deal of
compositional flexibility. As a consequence, it is possible to compose a complete application as
well as individual components from vastly different sets of components and resources. This
enables the introduction of new applications that reuse existing components and it also enables
the continuous evolution of applications, components and resources. In order to support the
efficient adaptation of an application, the component model supports parameterization. To
enable parameterization, a component may specify contracts with ranges of allowable values as
well as multiple optional contracts to model alternative modes of operation. In order to cope
with the unavailability of resources and components at runtime, the component model supports
reconfiguration. Due to the recursive definition of a configuration, the reconfiguration is not
limited to replacing components with identical ones. Instead, each component that can provide

a matching functionality can be used interchangeably at any point in time.

Due to the explicit application specification, the component system can automate the initial
configuration of an application. As a consequence, the application developer does not have to
provide program logic that deals with composition. Furthermore, to enable a high degree of
adaptation transparency, the component system takes care of continuously monitoring relevant

changes to contracts and changes to the availability of required components. If a relevant
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change occurs, the component system notifies the affected components so that they can update
their provisions. If the change requires more complex modifications, such as changing a contract
or a component, the component system automatically computes a new and valid configuration.
Thus, instead of developing the program logic for configuration and adaptation as part of each
application, the developer solely needs to specify possible modes of operations for the individual
components as contracts and implement the component with the pre-defined lifecycle. In order
to simplify the consistent management of application-specific state during an adaptation, the
component system provides mechanisms to migrate the state of individual components, if

necessary.

As a result of these simplifications for the application developer, the component system is fully
responsible for computing valid configurations, for detecting invalid configurations and for
computing and performing appropriate adaptations. As we show in the following chapters, both
tasks are non-trivial and computationally expensive, since they need to consider the global
configuration. Yet, they are necessary to support the application model of the component
system which is, in turn, based on a service-based model that is widely-used. In contrast to the
proposed component system, however, configuring and adapting the composition of services is
usually left as a task for the application developer which implies that the developer must solve
the resulting problems in a satisfying way for each individual application. In the following two
chapters, we describe how configuration and adaptation can be handled automatically in a
generic fashion. Thereafter, we describe a prototypical implementation of the overall
component system and we evaluate it using an exemplary application, simulations and
experiments. Finally in Chapter 7, we compare it with other existing system software and in

Chapter 8, we discuss possible future extensions.
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3 Automatic Configuration

This chapter introduces and formalizes the configuration problem introduced by PCOM
applications. It discusses the overall problem complexity and derives the requirements on
approaches for automatic configuration. Consecutively, the chapter presents our approach for
automatic configuration (Handte, Becker, & Rothermel, 2005). The basic idea is to interpret the
configuration problem as a constraint satisfaction problem. Using this interpretation, we can
apply arbitrary algorithmic solutions for solving such problems to automatic configuration. From
the set of possible algorithms, we show how asynchronous backtracking can be modified to
meet the requirements on automatic configuration. Thereby, we discuss a number of problem
specific optimizations to the basic algorithm that can be used to reduce its communication

overhead. Finally, we close the chapter with a discussion.

3.1 The Configuration Problem

Automatic configuration denotes the task of automatically determining a composition of
components that can be executed simultaneously as application. Such a composition is subject
to two classes of constraints. The first class is given by structural constraints. They describe what
constitutes a valid composition in terms of functionalities. The second class is given by the
resource constraints. They are a result of the resource requirements of components and the

limited availability of resources on the individual computers that host them.

Structural constraints can be either specified in advance, e.g. as an architectural model
expressed in some description language, or they can be individually associated with
components, e.g. as dependencies contained in contracts. If an architectural model is used, the
configuration must ensure the availability of a suitable component for each part of the model. If
structural constraints are individually associated with components, the configuration must
ensure that all recursively specified dependencies can be resolved with a suitable component. As

discussed in the previous chapter, we associate each component with such contracts.

Resource constraints can be modeled in various ways. For the sake of simplicity, we rely on a
simple but powerful model that is also used in (Xu, Nahrstedt, & Wichadakul, 2001). In this
model, components specify their local resource requirements in advance as part of their
contracts. Each contract contains an integer vector whose dimensions denote a specific
resource. The actual requirements on the resource are represented by the corresponding value
of the dimension. A requirement is specified by a positive value and thus, the vector does not
contain negative values. Similarly, the available resources on each computer can be modeled as
a vector with non-negative values. Since the availability of resources can change, the values

might fluctuate at runtime. To satisfy the resource constraints, the configuration has to ensure
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that at any time the index-wise sum of all requirement vectors of local instances is index-wise

less than or equal to the vector that specifies the locally available resources.

The complexity of automatic configuration arises from the fact that both, resource and structural
constraints must be fulfilled simultaneously. Due to the recursive definition of structural
constraints, it is not possible to calculate the resource requirements of a certain sub-tree in
advance without determining all possible configurations of that sub-tree. But even if it was
possible, the strictly limited resource availability might lead to exclusions between structurally
possible configurations of arbitrary sub-trees. Thereby it is important to mention that finding all

exclusions is as complex as finding a possible configuration in general.

3.1.1 Example

To illustrate the configuration problem, we briefly describe the process of automatic
configuration with the previously introduced abstractions using a simple application in an
exemplary smart peer group. As depicted in Figure 15, the smart peer group consists of three

computers, i.e. a desktop, a personal digital assistant (PDA) and a laptop.
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(Anchor) Display 1
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Figure 15 — Exemplary Smart Peer Group

Each computer of the group has a certain amount of resources. The desktop and the laptop are
equipped with one Display, one Library and one Disk resource. In addition they possess a certain
amount of processing power (CPU) and a certain amount of memory (Memory). The personal
digital assistant is also equipped with a Display resource and a certain amount of memory as well

as certain amount of processing power.

Each computer hosts some components that provide certain functionality. To simplify the
description, we assume that each component solely provides a single mode of execution and
thus, each component can be described using a single contract. Furthermore, we omit the

dimensions in the vector that specify the resource demand whose value would be zero. Instead,

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

we assign a name to clarify the mapping between the available amount of resources and the

contractually specified resource demands.

The personal digital assistant hosts the application anchor (Presentation Control) that enables
the user to display a presentation on some computer of the smart peer group. In order to be
executable, the application anchor requires the Display resource, a certain amount of processing
power and a certain amount of memory. Furthermore, it requires a functionality to load the
presentation (/nput) and a functionality to show the presentation (Output). The laptop hosts a
component that enables a computer of the group to access its file system (Remote File Access)
and another one that is capable of displaying a presentation (Remote Viewer). Each usage of this
component requires CPU, Memory and access to the local Library resource as well as two
components that provide the Display functionality. The desktop also hosts a component to
access its file system (Remote File Access). In addition, it hosts a component that can be used to
show images on the display of the desktop (Image Viewer). Furthermore, it hosts a component

that is capable of displaying a presentation on the desktop (Simple Viewer).

Executable Configurations Non-executable Configurations
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Figure 16 — Possible Configurations

If the application is about to be started, the personal digital assistant must assign sufficient
resources to the component and it must resolve the dependencies (Input and Output). To
resolve the dependencies, it needs to find components on the computers of the smart peer
group that are capable of delivering compatible provisions. Thereafter, it can decide to use one
of the possible components to satisfy the dependency. If a component is selected, this
component needs to be configured recursively by assigning the required amount of resources
and resolving all of its contractually specified dependencies using a matching contract of some

component.

In this example, the Input dependency can be resolved using a component instance of the

Remote File Access on the laptop or on the desktop. The Output dependency can be resolved by
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the Remote Viewer component on the laptop or the Simple Viewer component on the desktop. If
the personal digital assistant uses the Remote Viewer, the laptop must assign the resources and
resolve the Display dependencies. To do this, it can only use the Image Viewer component on

the desktop.

Altogether, there are four structural possibilities to configure the application depending on the
choice for the Input and Output dependency as shown in Figure 16. Since the Image Viewer
component can only be used once due to the limitation of Display resources, there is no way of
using the Remote Viewer component in such a way that all resource requirements are met. The
two executable configurations use a Remote File Access component on the desktop or on the

laptop and the Simple Viewer component on the desktop.

Besides from illustrating the configuration process using the previously introduced abstractions,
this example also nicely demonstrates the interrelation of resource and structural constraints.
Choosing an instance that represents a locally valid option such as the Remote Viewer can induce
conflicting resource requirements later on. Such conflicts can only be discovered gradually since

they require the computation of parts of the configuration along the structural dependencies.

3.1.2 Formalization
To formalize the configuration problem, we need to introduce some standard definitions from

graph theory. For a tree G =(E,V) consisting of the nodes v eV and the directed edges

(v, ,Vj) € E, we use the function 77(v) :V —V U{}to denote the parent of node v which will
be {}if and only if vis the root, i.e.—EI(Vj,Vi) cE .V =V,, and some other node V; eV for all

other cases where EI(Vj,Vi) e E:v=V,. To denote the transitive closure of7(v), we use the

notation 77 * (V).

Furthermore, we use the following definitions and simplifications to represent the abstractions

introduced by the component system. Let u(d,p):DxP —{true, false}be the Boolean
matching function between the infinite set of contractual component demands D and the

infinite set of contractual provisions P . Without loss of generality, let C; be a contract with the
provision 7(C;) = P, € P, the set ofn component demands &(c;) ={d, ,...,d; .} = (DU{})
and the mresource requirements p(C;) = (fy,....,;,) € Ny". Furthermore, let m be a

. k
computer that has k available resources a(m;) = (@, ,,...,@;,) € Ny and that host components

which can support the (possibly infinite) set of contracts Cj = (ijl,ijz,...). As a simplification,

we assume that the n-tuples of the resource demand and the resource provision have the same

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

dimensionality, if the contract is provided by a component on the computer, i.e.

¢ eC,=>m=k.

Finally, in order to represent the resource model, we use the following definitions. For two n-
tuples a=(a,..,a,)andb=(0,,...,b,), we define a<b:N,"xN," —{true, false} as
component wise comparison & < A...A8, <D and we define a+b: NOn X NOn - NOn as

component wise addition (8, +1,,...,&, +1,) of the tuples.

Using these definitions, we can formalize the configuration problem as follows. Given a set of |

computers that form a smart peer group M ={ml,...,m|} and the contract of an application

anchor C,.0r €C:=C,U..UC, find a directed tree G =(E,V) with a function that maps

nodes to contracts y(v) =C:V — C such that the following five conditions hold true:

(1) veV n\v)={3A x(V) =C.ogor

This condition ensures that the right application is configured by enforcing that the root node of

the tree must represent the contract of the application anchor.
(2) V(v;,v;) e E 3d e 6(e(v;)): u(d, z(v;))

Condition two ensures that an edge may only be contained if the contract represented by a
source node has a component demand that can be fulfilled by the provision of the contract of

the target node.
(3) W, eV Vd e 5(2(v,)) (v, v,) € E: u(d, 2(2(v,))

Condition three ensures that each component demand of a contract represented by a node
requires the presence of exactly one edge in the tree. Together with condition two, which
prohibits the existence of edges that do not represent a demand and a matching provision, this
ensures that the tree consists solely of edges that represent demands and each demand is

represented once.
(4) WweV:xV) e x(m*\V)

Condition four ensures that the contracts do not cause cycles. To do this, it enforces that the
same contract is not used twice on the path to the root of the tree. Together, the previous four
conditions enforce the structural constraints defined by the application model are fulfilled for

the right application, i.e. the contract of the application anchor.
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Vil

(5) YV, ={v;|v; eV A x(v;) e C}:ax(m;) SZP(Z(VJ'))

Finally, condition five ensures that the resource constraints are met by enforcing that the sum of
the resource requirements of contracts on each computer does not exceed the available

resources on it.

3.1.3 Complexity

In the following, we show that the automatic configuration problem as discussed above is NP-
complete. To do this, we first show that there exists a non-deterministic polynomial time
algorithm to solve the configuration problem. From this, we can conclude that the configuration
problem lies in NP. Furthermore, we show that we can reduce 3-SAT (Cook, 1971), i.e. a special
form of Boolean satisfiability in which the input is restricted to a conjunctive normal form that
exhibits at most three literals per clause, using a polynomial time algorithm to automatic
configuration. To do this, we embed 3-SAT into automatic configuration. Since 3-SAT is known to
be NP-hard, we can therefore conclude that automatic configuration must be at least NP-hard as
well. By combining these two results, we can conclude that automatic configuration must be NP-

complete.

Without loss of generality, we assume that the configuration problem consists of the smart peer

group M ={m,,...,m} and the contract of the application anchor C,,,,. Then the total number

[
of resources is given by the problem-specific but constant valuel' = Zi:1| a(mi) | . Starting from

the application anchor, we construct a directed tree by recursively adding nodes along the
dependencies that represent contracts in a non-deterministic fashion. Again without loss of
generality, assume that the resulting solution consists of a directed tree G =(E,V) and the
function y . Now, we initialize an integer vector of length r with the available amount for each
resource and we traverse the tree spanned by the contracts. In every step, we subtract the
resource requirements defined by the contract from the corresponding dimensions of the vector
and we check whether the edges for the node fulfill the requirements, i.e. resolve the
dependencies. If one of the dimensions of the vector becomes negative or if the edges of the
tree are invalid, we can abort the algorithm since the solution is not correct. If the traversal has
reached all nodes and the algorithm did not abort, the solution is correct. The complexity of this

algorithm is O(r|V |) for validating the resources and O(|V |+|E|) for validating the
dependencies. Since G = (E,V) isatree| E|HV | —1. Thus, the overall algorithm isO(r |V |) .

To perform the second step, we reduce 3-SAT to automatic configuration using a polynomial

time algorithm by means of embedding. To do this, we construct a specific instance of a
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configuration problem for every possible conjunctive normal form of 3-SAT. Assume without loss
of generality that the conjunctive normal form consists of ¢ clauses with at most three literals.
As a result, there is a linear relationship between the number of literals and the number of

clauses, i.e. the total number of distinct literals can be at most3c .

We begin the reduction algorithm by constructing c resources for each distinct literal and we set
the amount of available resources for each resource toc. Then, we create one contract for each
distinct literal andc contracts that represent its negation. Thereby, we set the resource
requirements of the contract that represents the literal to one for each of the corresponding ¢
resources. For each of the contracts that represent a negation, we set the resource
requirements to C units of one of the resources. This ensures that a valid configuration can
either contain contracts that represent the literal or contracts that represent its negation, but
not both. In addition, it ensures that we can use the literal or its negotiation ¢ times which is the

maximal number of occurrences of the literal in any conjunctive normal form.

(X V.V )AC Vo VL)ALV VL)

Resources Contracts

—X; —X;

Figure 17 — Reduction Procedure for Literals

The result of this construction for a literal of conjunctive normal form with 3 clauses is depicted
in Figure 17. In this example, the contract representing x; requires one resource of R; and R, and
Rs. The contracts representing the negation of x; require either three resources of Ry, R, or Ra.
Since each resource can be used three times, the contract x; can be used three times and each
of the contracts representing the negation can be used once. More importantly, however, the
construction guarantees that x; and its negotiation can never be used at the same time as this
would require at least four resources from R; or R, or R;, depending on the choice of the

contract for the negation.

Now, we construct an application anchor with ¢ distinct dependencies. These dependencies
represent the individual clauses of the conjunctive normal form that must be fulfilled
simultaneously. Finally, we create contracts that map each dependency of the application

anchor to the literals or their negotiation according to the corresponding clause of the
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conjunctive normal form. These contracts represent the individual entries of the clause that can

be used to satisfy the complete clause. An example of this construction is shown in Figure 18.

C,AC,AC,

¢ G

(X V=X VX)) AV VL)ALV VL) ???

Figure 18 — Reduction Procedure for Clauses

A solution to the conjunctive normal form can now be found by computing a valid configuration
and by looking at the literals represented by the leaf contracts of the configuration. Since the
specific construction of the resource dependencies prohibits the simultaneous use of contracts
that represent positive and negative assignments for literals the contracts will always be
positive, negative or unassigned. If a certain literal does not occur in the overall configuration, its
concrete value assignment in the CNF is irrelevant for the specific value assignments that have

been chosen for the remaining literals.

The correctness of this mapping should be immediately apparent since the overall structure of
the search space corresponds directly to the conjunctive normal form. Resolving the
dependencies of the anchor corresponds to solving the individual clauses of the conjunctive
normal form and vice versa. The resource requirements of the contracts that represent literals

and their negation ensure that a literal can only be used in its positive or negative form.

The most complex operation performed by the algorithm is the construction of the resources
and the construction of the contracts that represent the negation of a literal. Since these

operations are both quadratic in the number of clauses the overall complexity of the reduction

O(CZ) . Therefore, we can conclude that 3-SAT can be reduced to automatic configuration using

a polynomial algorithm. As a result, automatic configuration must be at least NP-hard as well.

3.1.4 Requirements
In the following, we derive the general requirements on solving the configuration problem that
has been presented previously. The requirements can be derived directly from the underlying

smart peer group model and the overall vision of Pervasive Computing with respect to the
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distraction-free support of user tasks through applications that are executed on invisibly

integrated computers.

Completeness

If a valid application configuration exists an approach for solving the configuration problem
should be able to determine one. Also, it should be capable of detecting that a certain
application is currently not executable at all. If an approach for automatic configuration is
frequently not able to find a valid configuration even though it exists, the usability will suffer and
users will eventually become frustrated. This clearly contradicts the vision of distraction-free
support for user tasks. However, as discussed previously the problem of finding a single
configuration is NP-complete. As a result, achieving completeness for large problem instances is
not practicable. Thus, in practice we can only demand that automatic configuration is capable of

finding solutions in a broad range of application scenarios.

Efficiency

Since the configuration problem is NP-complete, even the best (known) complete solutions
exhibit exponential runtime complexity (if P # NP ). Thus, any complete solution will necessarily
introduce a configuration delay that increases exponentially with the size of the problem. From
the perspective of the user, long configuration delays are especially problematic since the user
might be waiting for the application to start. Thus, long configuration delays will conflict with the
goal of providing seamless support for user tasks. As a result, efficiency becomes a major
requirement on approaches towards automatic configuration in order to be able to solve
problem instances of relevant sizes with reasonable configuration delays. Thus, approaches for
solving the configuration problem should include optimizations that enable speed-ups whenever
possible but without overloading the resources of the computers of a smart peer group and
without sacrificing completeness. While such optimization cannot reduce the inherent

complexity of automatic configuration, they can reduce the values of the constants.

Optimism

Ideally, approaches for automatic configuration should be fast in resource-poor as well as
resource-rich scenarios. Typically there is a trade-off between optimizing worst- and best-case
scenarios. For example, for some instances of the configuration problem, it might be more
efficient to perform a pre-computation to reduce the search space instead of performing a
search directly. However, for other problem instances such pre-computations might cause
additional overhead. Since users would expect to achieve speedups by adding computers and
resources, optimizations of the worst-case delays in resource-poor scenarios at the cost of
higher execution times in resource-rich scenarios are not desirable. Therefore, automatic

configuration should be optimistic.
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Distribution

In smart peer groups, the availability of a powerful and reliable computer cannot be guaranteed.
As a result, the efficiency of a centralized approach will be limited in environments that consist
of a large number of resource-poor computers. In order to utilize the resources of all kinds of
smart peer groups effectively, automatic configuration should be performed cooperatively by
the available computers. Furthermore, to reduce the configuration delay as far as possible,
approaches for automatic configuration should be able to utilize the parallelism inherent in
smart peer groups that consist of multiple computers. Thus, instead of computing the solution

sequentially, they should try achieve a speed up through parallel computations.

Resilience

The mobility of users and computers in pervasive systems leads to continuous and possibly
unpredictable fluctuations regarding the availability of functionality and resources. As a result,
applications in such systems have to cope with the resulting dynamics at runtime. Since
computing a valid configuration is a process that might take multiple seconds, approaches for
automatic configuration should be able to deal with the fluctuations that can be detected during
the process. Furthermore, since automatic configuration is a fundamental part of the system

software, the overall process itself must be resilient to failures.

3.2 Approach

As discussed previously, finding a single executable configuration in the presence of strictly
limited resources is an NP-complete problem. As a result, approaches for automatic
configuration can apply all NP-complete formalisms. By applying such formalisms, we can reuse
existing algorithms which allows us to benefit from many optimizations that have been
developed in the past. Constraint satisfaction (Russell & Norvig, 2003) is one such formalism and

there exists a large body of algorithmic solutions for solving Constraint Satisfaction Problems.

As we show in the following, automatic configuration can be mapped efficiently to a Constraint
Satisfaction Problem (Handte, Becker, & Rothermel, 2005). Due to the specifics of the system
model, sequential approaches towards solving Constraint Satisfaction Problems cannot fulfill the
requirement regarding distribution. The foundations for parallel algorithms have been
developed in the field of Distributed Artificial Intelligence. In this field, the notion of Distributed
Constraint Satisfaction Problems has been formalized (Yokoo, Durfee, Ishida, & Kuwabara, 1998)
which has led to the development of a considerable set of parallel algorithms for solving such
problems (Yokoo & Hirayama, 2000). From this set of algorithms, we show how asynchronous
backtracking (Yokoo, Durfee, Ishida, & Kuwabara, 1992) can be extended to fulfill all

requirements on automatic configuration.
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In the following, we briefly outline the theoretical foundation of Constraint Satisfaction
Problems and their algorithmic solutions. For the sake of brevity, we focus on complete solutions
that are based on backtracking. Following the discussion, we show how automatic configuration
can be mapped to a Constraint Satisfaction Problem. Thereafter, we show how we can integrate
the mapping into the configuration process and we discuss the necessary extensions that are

required to utilize asynchronous backtracking as configuration algorithm.

3.2.1 Constraint Satisfaction

Constraint Satisfaction Problems (Russell & Norvig, 2003) can be described as follows: Given a

set of variables V ={V,,...,V,) with corresponding finite domains D, and a set of constraints
K ={K,,...,K, } between a subset of the variables that describe the allowed combinations of

values for that set, find a variable assignment X = (X, € D,,...,X, € D,) such that all constraints

are met. Constraint Satisfaction Problems can be represented graphically as constraint network.
In order to represent such a network graphically it might be favorable to restrict the set of
constraints to unary and binary constraints. As discussed in (Rossi, Perie, & Dhar, 1990) it is

possible to convert n-ary constraints to binary constraints.

A slight variation of the Constraint Satisfaction Problem is the Distributed Constraint Satisfaction
Problem. Distributed Constraint Satisfaction Problems are simply Constraint Satisfaction
Problems in which the set of variables are distributed across a number of agents. In contrast to
Constraint Satisfaction Problems that have inspired the creation of a broad range of sequential
algorithms, the notion of Distributed Constraint Satisfaction Problems has inspired the
development of an ever increasing set of parallel algorithms. An important simplification that is
frequently made during algorithm design, is that each agent maintains just one variable. If this
problem can be solved, other mappings of agents to variables can be solved by applying the
algorithm multiple times, i.e. once for all variables managed by the agent. Since many of these
parallel algorithms are based on the ideas of one or more sequential algorithms, we first discuss
the general algorithm design space and we present basic sequential backtracking algorithms

before we introduce parallel solutions.

3.2.1.1 Backtracking Algorithm Design Space

Approaches for solving constraint satisfaction problems can follow to complementary strategies
to which we will refer to as systematic search and constraint propagation in the following.
Backtracking algorithms can be seen as a combination of these strategies. As discussed in
(Kumar, 1992), it is possible to order the backtracking algorithms depending on the amount of
constraint propagation performed by them. It is noteworthy that there is a broad spectrum of

approaches in which search and constraint propagation are not performed in a systematical
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manner, e.g. (Selman, Levesque, & Mitchell, 1992) . These strategies usually result in incomplete
algorithms, i.e. they are not able to guarantee that they find valid solutions for all problem
instances. Due to the completeness requirement on automatic configuration, we restrict the

following discussion to systematic approaches.

The first strategy simply performs a systematic search on the original problem. The basic
approach is to generate a complete assignment which is then validated against the constraints. If
no constraint conflicts with the generated assignment, the algorithm has found a solution. If the
generation is done in a systematical manner, this algorithm will eventually find a solution if it
exists and it is also able to detect that a certain problem instance cannot be solved in cases
where all possible solutions have been tested exhaustively. Since this algorithm needs to
generate all possible solutions, its complexity depends on the product of the size of all variable

domains.

The second strategy tries to transform the problem into a simpler one by eliminating invalid
(combinations of) assignments. In the context of this discussion, the most important concept is
arc consistency. Arc consistency is a directional concept between two variables that denotes the
fact that for each variable assignment of the first variable, there is a variable assignment in the
second variable that does not conflict with the constraints between the variables. Two variables
can be made arc consistent by deleting values from the domain of the first variable for which no
valid assignment in the second variable exists. Removing such values from the domain will not
change the solutions of the problems, since the values can never be selected simultaneously.
There are efficient algorithms such as AC-3 (Mackworth, 1977) that can make constraint
problems arc consistent. However, arc consistency alone is in general not sufficient to avoid
search. Stronger notions of consistency (i.e. k consistency, a generalization of arc consistency
which results in global consistency for a large enough value of k) can be defined to achieve that.
However, applying them such that the problem does not require search is usually considered to

be more expensive than searching.

3.2.1.2 Sequential Backtracking Algorithms

As mentioned previously, most algorithms combine the notion of constraint propagation and
systematic search in order to reduce the search space. These schemes usually assign values to
the variable sequentially and after each assignment, they perform some tests. Depending on the
performed tests that reduce the search space, the schemes can be classified in look-back and
look-ahead (Dechter & Rossi, 2000). Look-back schemes try to improve the value assignment by
learning from previous assignments that failed, i.e. try to avoid the same failures to some extent.

Look-forward schemes try to improve the value assignment by looking at the remaining
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solutions for the variables that have not been assigned already. Thus, they try to avoid future

failures to some extent.

The most basic algorithm in this category is backtracking. Starting from one variable, the
algorithm sequentially assigns a first valid value to one variable after another. If it detects that it
is not possible to assign a valid value to the next variable, it revisits the variable that has been
assigned last and modifies the assignment by selecting the next value in the domain. If the
domain has no further values, it revisits the previous variable and so on. In contrast to generate-
and-test, backtracking ignores some parts of the search space that cannot contain a valid
solution. Thus, backtracking will always perform better than generate-and-test. However, due to
the fact that backtracking changes values without considering the cause, it still performs many
redundant assignments and test that fail repeatedly for the same reason. This problem is

commonly referred to as thrashing.

Thrashing can be partially avoided by considering the cause of the conflict as done in intelligent
backtracking schemes. Instead of blindly changing the variable that has been assigned last, these
schemes backtrack directly to the variable that caused the problem. Since they “jump” over the
intermediate variable assignments without trying to change them, these schemes are sometimes
also referred to as back jumping (Gaschnig, 1977). However, while going back to the variable,
intelligent backtracking schemes will invalidate intermediate assignments. Thus, they will have
to perform the associated assignments and validations again, after they have changed the value
of a variable. Thus, they might have to rediscover invalid combinations of assignments for

intermediate variables.

An approach that also avoids this cause of thrashing is called dependency-directed backtracking
(Bayardo & Miranker, 1994). The basic idea is to combine back-jumping with a set of so-called
nogoods that record causes of invalid assignments after they have been detected. During the
variable assignment, this set of nogoods is used to restrict the domain of a variable that needs to
be assigned in order to avoid failures that have been made already. As a result, dependency-
directed backtracking is able to prune the search space just like plain backtracking, it can directly

jump to variables that may resolve a conflict and it will never make the same failure twice.

Plain backtracking, back jumping and dependency-directed backtracking are solely looking back
at previously made failures. In contrast to that, schemes that look forward are performing tests
on the search space that has not been assigned already. A simple scheme for doing this is
forward checking. Forward checking essentially enforces arc consistency between a partial
assignment and the remaining variables using the procedure described in the following. Before a
new value is assigned to the next variable, forward checking will tentatively remove all values

from the domains of the remaining variables that conflict with the new assignment. If one of the
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domains of the remaining variables becomes empty, another value is chosen and if there is no
other value in the domain, the algorithm performs backtracking. Otherwise, the value is chosen,
the tentative restriction of the domains is made permanent and the search continues with the

next variable.

Forward checking essentially enforces arc consistency solely between a partial assignment and
the remaining variables. In addition it is possible to enforce a higher degree of arc consistency by
enforcing it also between (parts of) the variables that have not been assigned yet. Schemes that
do this in an increasingly manner are for example partial look-ahead and full-look ahead.
However, the basic problem with all advanced schemes is that they essentially trade-off the
overhead of systematic search with the overhead of enforcing consistency. It has been noted
that for some problems even dependency-directed backtracking can create a higher runtime
overhead than plain backtracking due to the higher computational effort for recording nogoods
and finding an assignment. So the question whether the higher degrees of consistency are

beneficial depends on the type of problem.

It is noteworthy that the backtracking schemes presented previously do not completely specify
how a solution should be generated. Specifically, they do not prescribe how to order the
variables and how to order the values in a domain. The resulting degree of freedom can be
leveraged by variable and value-ordering heuristics. A variable heuristic may, for example, try to
rearrange the variables such that the most constraining variables are assigned first. The main
problem with such variable ordering heuristics is that static orderings may not be optimal and
rearranging the variables dynamically at runtime requires additional precautions in order to
maintain completeness. A complete algorithm that performs such reordering while maintaining
completeness is dynamic backtracking (Ginsberg, 1993). A simple value ordering heuristic could
try to assign the values such that it opposes the lowest amount of constraints on the remaining
unassigned variables. This value ordering heuristic is commonly referred to as min-conflict

heuristic and it provides a considerable speedup for many problems.

3.2.1.3 Parallel Backtracking Algorithms

While the notion of Constraint Satisfaction Problems spawned the development of a broad
number of sequential backtracking algorithms, the notion of Distributed Constraint Satisfaction
Problems (Yokoo, Durfee, Ishida, & Kuwabara, 1998) has lead to the development of various
parallel algorithms (Yokoo & Hirayama, 2000). Many parallel algorithms are inspired by the
design rationales of one or more sequential algorithms, however, that is not to say that they are
simply distributed variants. In order to maximize the parallelism, the algorithms usually require
some form of non-trivial coordination mechanism that minimizes the amount of synchronization

between individual agents.
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Asynchronous backtracking (Yokoo, Durfee, Ishida, & Kuwabara, 1992) is one of the earlier
parallel algorithms that have been developed to solve the Distributed Constraint Satisfaction
Problem. It is a dependency-directed backtracking algorithm which means that it records
nogoods in order to avoid repetitive failures during search. In asynchronous backtracking all
agents assign values to their variables independently in parallel. Agents whose variables share
one or more constraints are exchanging their variable assignments. If a conflict is detected, it is
recorded as nogood and it is exchanged with potential candidates that can resolve the conflict.
Using a set of rules for the previously described exchanges of variable assignments and nogoods,
asynchronous backtracking ensures completeness and termination. The basic idea to ensure
completeness is to perform backtracking steps resulting from nogoods sequentially and in a
predefined and fixed order. The basic idea to ensure termination is to use a total ordering
between variable to construct (and maintain) a directed acyclic communication graph in which

assignments are always sent top down and nogoods are always sent bottom up.

More recently, there have been a number of proposals to improve the basic scheme.
Aggregations (Silaghi, Sam-Haroud, & Faltings, 2000), for instance, improve upon asynchronous
backtracking by exchanging aggregated nogoods that represent a certain range of exclusions
instead of individual exclusions. The two potential advantages of this are a lower communication
overhead due to aggregation and higher privacy of agents due to less precise information
sharing. Another possible optimization is the nogood generation procedure described in
(Hirayama & Yokoo, 2000) that tries to derive the most constraining nogood in cases where
different nogoods can be derived. Since the performance of asynchronous backtracking depends
on the number of backtrackings which is in turn dependent on the precision of nogoods,
improving the generation of nogoods ultimately reduces the communication and computational

overhead.

As mentioned, asynchronous backtracking is a dependency-directed algorithm that is solely
based on look back techniques. However, there are also algorithms that leverage look forward
techniques. Examples are the asynchronous forward-checking algorithm (Meisels & Zivan, 2007)
or the distributed arc consistency algorithm described in (Hamadi, 2002). Asynchronous forward
checking is essentially a parallel version of the synchronous forward-checking algorithm.
Similarly, distributed arc consistency is an algorithm that enforces full arc consistency over a
problem in a distributed manner using an optimal amount of messages. Furthermore, there are
also complete and parallel algorithms that perform dynamic variable reordering. Examples are
the asynchronous weak commitment search (Yokoo, 1995), dynamic distributed back jumping
(Nguyen, Sam-Haroud, & Faltings, 2004) and distributed dynamic backtracking (Bessiere,
Maestre, & Meseguer, 2001).
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The previously mentioned algorithms have in common that they try to maximize the amount of
parallelism in order to achieve the highest possible speedup. However, maximizing parallelism is
not a cost-free undertaking. In order to reduce the amount of synchronization, all algorithms
necessarily allow temporary inconsistencies between the local information of the individual
agents. These temporary inconsistencies cause additional communication and computation
overhead. In some scenarios, the overheads may be so drastic that a parallel algorithm has not
only higher computation and communication costs but also longer execution times than its
sequential pendant (Zivan & Meisels, 2003). To mitigate such problems, it is possible to combine
a parallel algorithm with sequential procedures in order to reduce the degree of inconsistency as

proposed in (Hamadi, 2002), for example.

3.2.2 Configuration as Constraint Satisfaction

To use existing techniques for solving Constraint Satisfaction Problems as basis for automatic
configuration, the functionalities present in a smart peer group as well as structural and
resource constraints must be represented as variables, domains and constraints. Our basic
approach is to map dependencies to variables and contracts that can resolve them to their
domains. Furthermore, we define a set of constraints to ensure that the resulting configuration
adheres to the application model and we introduce one constraint per computer to ensure that
its resources are not overloaded. Since the automatic configuration only needs to find a partial
value assignment for the resulting constraint graph, we introduce a pseudo value into the
domain of the variables. Using additional constraints for this pseudo value, we can effectively

transform the search for a partial assignment into a search for complete assignment.

Before we describe this mapping formally, we sketch the idea using the example smart peer
group and application shown in Figure 15. For the Presentation Control which has the two
dependencies Input and Output, we create two variables. Since there are two possibilities to
satisfy the dependency Output (Remote Viewer and Simple Viewer) and two possibility to satisfy
the dependency Input (Remote File Access on two different computers), the domain of all
variables will be {0, 1}. For the Remote Viewer, we also create two variables, one for each
Display dependency. The domain of these variables will be {0} since there is only one contract,
i.e. the contract of the Image Viewer which can be used to resolve the dependency. We now
extend all domains with the pseudo value -1. This allows us to model the fact that not all
dependencies need to be resolved with one of the contracts that are forming the remainder of
their domains. As an example consider that if the dependency Output is satisfied by the Simple

Viewer it is not necessary to resolve the dependencies of the Remote Viewer.

In order to ensure that all required dependencies are resolved, we prohibit the use of the

pseudo value in variables of the application anchor by adding a corresponding constraint.
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Intuitively, the dependencies of the application anchor always need to be resolved.
Furthermore, we add constraints to denote that a dependency must be resolved, if and only if
the contract that contains the dependency is used as part of the configuration. Finally, we add
constraints to ensure that the resulting configuration does not overload the resources of the
individual computers. Together these constraints ensure that the resulting variable assignment

for all variables represents a valid application configuration.

More formally, we can describe this mapping procedure using the functions u,a,p,0,7
introduced as part of the problem formalization in Section 3.1.2. Thereby, we assume without

loss of generality that M :{ml,...,ml} is the set of computers of the configuration problem

with the contracts C:=C, U..\UC, and the application anchor C,,;:

For each dependency d € 0(Cyenop) OF the application anchor we create one variable

anchori

v with the domain D Thereby, we initialize the domain of each variable V with

anchori anchor;i * anchori

the union of the pseudo value —1land the set of contracts that can be used to satisfy the
dependenCy' ie. Danchor,i :{_1}U{Cj |Cj EC_{Canchor}/\/u(danchor,ilﬂ'(cj))}' NOWr we
perform this procedure recursively for each contract which is part of one of the domains. So for

each dependency dk’i € 0(C, ) of the contract C,, we create the variable Vy; Wwith the domain
D ={=8uA{c; |c; € (C—P) A u(dy;, 7(c;))} where Pis the set of contracts on the path

from C, to the application anchor C,, 4., The resulting set of variables and domains form the sets

for the Constraint Satisfaction Problem. The only thing that remains to be done now is to define

the set of constraints. To represent the structural constraints, we add the following constraint to

each variable Vv of the anchor:

anchori

(1) v -1

anchor,i

Constraint one ensures that the dependencies of the application anchor must be resolved

properly by some contract. Furthermore, for each variable V; that has introduced the variables

V,, due to a match of the demand d; € §(C;) and the provision P, = 72(C, ) of the contract C,

we create the following constraints:

2 vVv,=¢ =V, #-1

B)Vv,#¢c =V, =-1
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These constraints ensure (2) that all dependencies are resolved if the associated contract is used

in the configuration and (3) that the dependencies are not resolved if the contract is not used.

Finally, we add constraints that are defined as follows. LetVi be the subset of the variables

whose value assignment }((Vi) represents a contract on computer M, then:

Mil
(4) a(m;) < Zp(z(vi )

The constraint ensures that (4) the available resources of every computer that participates in the

configuration are not overloaded.

3.2.3 Configuration with Asynchronous Backtracking

Using the presented mapping of configuration to constraint satisfaction it is possible to use any
approach for solving constraint satisfaction problems in order to solve configuration problems.
Thus, it is possible to base a configuration algorithm on any backtracking algorithm that has
been described previously. From the set of possible algorithms, we use asynchronous
backtracking as basis for automatic configuration. While this might seem like a rather arbitrary
design decision, there are three main reasons for using asynchronous backtracking instead of

other algorithms.

First and foremost, asynchronous backtracking is a parallel and complete algorithm and thus, in
contrast to sequential algorithms, it can fulfill the requirements on completeness and
distribution. Secondly, asynchronous backtracking is a dependency-directed backtracking
algorithm which ensures that it avoids repetitive failures of backtracking algorithms that perform
lower amounts of constraint propagation. Thus, it can fulfill the requirements on efficiency.
Thirdly, since it is solely based on look back techniques, it does not unfold the search space

unnecessarily.

The third characteristic is specifically important, since automatic configuration requires only a
partial assignment of variables. If higher degrees of consistency are enforced, e.g. using forward
checking, the constraint propagation procedures will lead to tests on variables that may not
even be part of the solution. Thus, look forward techniques will introduce considerable
overheads. These overheads can increase drastically with the number of available contracts and
thus, they contradict the requirement on optimism. As a result, by relying on asynchronous
backtracking, we are using the highest amount of constraint propagation that is reasonable for

automatic configuration.

In the following, we first introduce the relevant details of asynchronous backtracking.

Thereafter, we describe the necessary extensions that are required to utilize asynchronous
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backtracking as basis for automatic configuration and we discuss optimizations on the rather
naive mapping presented in the previous section. Then, we present the resulting algorithm in
detail and we discuss how resilience can be achieved. Finally, we present further optimizations

that reduce the communication overhead.

3.2.3.1 Asynchronous Backtracking

Before we can discuss further considerations that are specific for asynchronous backtracking, we
describe the original algorithm as presented in (Yokoo, Durfee, Ishida, & Kuwabara, 1998). For
this description, it is important to mention that the original algorithm assumes that each agent is
responsible for exactly one variable. However, as explained earlier, this assumption can be

relaxed effortlessly.

A beneficial characteristic of asynchronous backtracking is that it only poses comparatively weak
requirements on the communication between different agents. Specifically, it does not assume a
certain timing of messages. However, it requires that messages are never lost and that multiple
messages that are sent from one computer to another are received in the same order they are
sent. While the assumptions on communication can be met rather easily, the assumptions on
the overall constraint graph are more problematic. In order to operate properly, asynchronous
backtracking requires a total priority ordering between variables and it requires the
establishment of unidirectional communication links between variables that share a constraint.
These communication links needs to be established from the variable with the higher priority to

the variable with the lower priority.

After this structure is established, the algorithm operates as follows. The algorithm starts in
parallel by letting each agent assign some value to its variable in such a way that it does not
conflict with its known constraints. The agents with higher priority variables send their current
assignment to linked agents with lower priority variables as soon as they change it. The lower
priority agents, in turn, evaluate the constraints that they share with higher priority agents. If an
agent receives an assignment it records the assignment and it chooses its own value in such a
way that it does not conflict with its constraints. If the agent needs to change the assignment, it

sends its new assignment to all linked agents.

If an agent detects that it cannot assign a value to its variable in such a way that does not conflict
with a constraint, it creates a nogood. This nogood contains the set of assignments from higher
priority agents that cause the conflict. The agent picks the assignment with the lowest priority
and sends the nogood to the agent that created this assignment. If this agent receives the
nogood it checks whether the nogood is still valid. This check is done by comparing the value
assignments of variables that it has recorded already with the variable assignments contained in

the nogood. The nogood is still valid, if all the recorded variable assignments and the variable
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assignments contained in the nogood match. If the nogood is not valid, the agent can simply
ignore it, since the nogood may be a result of a temporary inconsistency between the local views
of the agent. If it is still valid, the agent establishes new links from all agents to it that participate
in the constraint and that have not been linked so far. Then it records the nogood as new
constraint and it tries to assign a new value to its variable that adheres to all locally known

constraints.

The newly created links are needed to ensure that the agent can keep track of changes to
assignments of conflicting variables. Thus, they basically ensure the validity of the invariant that
all agents that share a constraint are linked to each other. Note that since the agent that detects
a new constraint will send this constraint to the agent with the lowest priority, new links will
always be created from higher priority agents to lower priority agents. This, together with the
fact that the initial links also pointed from higher priority agents to lower priority agents,

ensures that the constraint network will always be a directed acyclic graph.

The algorithm terminates unsuccessfully when some agent cannot assign a valid value to its
variable and there are no higher priority agents that could change their assignments in order to
resolve the conflict. If a valid assignment has been found, the algorithm will eventually stop
creating new messages. Since this is a stable global predicate, it can be detected using a

distributed snapshot algorithm.

3.2.3.2 Mapping

As mentioned previously, it is possible to utilize any algorithm for solving a constraint
satisfaction problem using the mapping procedure described in Section 3.2.2. To apply
asynchronous backtracking, we would have to create the initial constraint graph using the
mapping procedure and we would have to establish an arbitrary total ordering between the
variables. Using this total ordering, we would have to construct the directed communication

links accordingly.

Yet, this simple approach has the following two drawbacks. First, the previously introduced
mapping would cause considerable communication overhead that can be avoided easily and
secondly, it would require a considerable amount of time to completely unfold the search space.
To avoid the first problem, we can optimize the problem mapping by considering the underlying
meaning of constraints. To avoid the second problem, we can unfold the search space during
configuration. Both optimizations are essentially a result of the specific problem structure of the

configuration problem.

To motivate the first problem consider that asynchronous backtracking creates links between

variables that share a constraint. These links are then used to exchange value assignments and
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nogoods. Furthermore, consider that the problem mapping constructs n variables for each
contract that has n dependencies. In order to ensure that the dependencies of the contract are
resolved if and only if the contract is used in the configuration, the mapping algorithm
established constraints between each variable of a dependency and the variable that “uses” the
contract. This causes the creation of n communication links. However, if the “using” variable is
the variable with the higher priority, the value communicated over these links will always be the
same. As indicated on the left side of Figure 19, this is especially problematic in cases where the

links are pointing to variables on a different computer since the resulting communication will be

remote.
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Figure 19 — Avoiding Unnecessary Communication Links

We can avoid such cases by combining the variables that represent the same contract as shown
on the right side of Figure 19. In addition to reducing the number of initial communication links,
the aggregation of variables also has a potential to reduce the number of communication links
created during the configuration. Furthermore, the resulting multi-dimensional variable will also
reduce the space overhead, since the local knowledge of individual variables can be shared.
Finally, we can use the multi-dimensional variable to reduce the number of validations that need
to be performed to enforce the resource constraints, since the resource constraints can be

validated once for the multi-dimensional variable.

To motivate the second problem consider that automatic configuration requires a partial
solution for the overall constraint satisfaction problem. As a result, completely unfolding the
search space may be unnecessary for many problem instances. This is specifically problematic
and costly if some potential structural options can never be used due to resource constraints or
if the problem instance is not hard to solve, e.g. if it can be solved without backtracking. Thus, a

complete unfolding of the search space would conflict with the requirement on optimism.
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In order to avoid the complete unfolding, we can virtually assign the pseudo value to all variables
that have not been constructed. Then, we can gradually unfold the search space by constructing
new variables only if they are needed as part of the solution. This on-demand construction of
variables is correct since the underlying constraints enforce that all variables whose contract is
not used to satisfy a certain dependency should be set to the pseudo value. However,
constructing the variables on demand necessarily restricts the ordering of variables to one which

is compatible with the creation sequence.

As a result, the on-demand creation of variables introduces a partial order over the variables in
which a variable of a contract that is used to resolve a dependency necessarily has a lower
priority than the variable that represents this dependency. Any total order that we introduce for
variables must not conflict with this partial order. The remaining degree of freedom can be
utilized to define an arbitrary order over the unordered elements. However, in order to achieve
a high degree of parallelism during the configuration, it is desirable to avoid synchronization by
constructing the ordering in such a way that new elements can be introduced locally. To do this,
we construct the ordering on the basis of the path of the variable in the tree that represents the
configuration. That way, we can assign a globally unique id to each variable which can be used to

perform comparisons.
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Figure 20 — Mapping Optimizations

To demonstrate the extensions and optimizations described above, consider the search space
shown on the left hand side of Figure 20. The search space consists of the computers C1 and C2
which host components with the contracts A to F and the dependencies 1 to 4. The contracts A,
B and E reside on computer C1 and the contracts C, D and F reside on computer C2. The contract

B can be used to resolve the dependency 1. The contract C and D can be used to resolve the

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

dependency 2. If contract C is used to resolve dependency 2, it introduces two additional

dependencies (3 and 4), which can be resolved using the contracts £ and F.

Since we combine the variables of contracts into one multi-dimensional variable, we introduce
only one directed (remote) communication link from the variable of dependency 2 to the
variables introduced by contract C. If dependency 2 is resolved using contract C, we can perform
the associated resource validation once and we can simultaneously enforce that both
dependencies 3 and 4 are resolved. The same can be done for all other variables in any other
problem instance. As discussed previously, this optimization is possible due to the specific

structure of the configuration problem.

Structurally valid solutions for the problem instance shown above consist of the contracts A, B,
C, E, For A, B, C, D. If the both solutions would also be valid with respect to the resource
constraints, it would not be necessary to unfold the complete search space for solving the
problem instance. If the contract B and C are used to resolve the dependencies of the
application anchor, there is no need to unfold the variables that might have been introduced by
contract D. Similarly, if the contracts B and D would have been used to resolve them, there is no

need to unfold the dependencies introduced by contract C.

=*®  Backtrackingdirection
[  Modified component

[] Unmodified component

[}
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Figure 21 — Backtracking Strategies

In order to establish a total order between variables, we assign identifiers to each variable and
each value of the domain of the variable. In order to avoid synchronization for the assignment of
the identifiers, they must be constructed locally. Using the local identifiers, we can create
globally unique identifiers by concatenating them along the path to the variable. Note that the
concatenation requires that each variable knows its place within the tree. Thus, upon the first
usage of a contract, each contract needs to be supplied with the identifier assigned by its parent.
The parent can easily create this identifier locally by concatenating its own local identifier with a
unique identifier for the dependency and the value of that dimension under which the specific
contract is selected. In the example shown in Figure 20, we can use (1, 2, 1, 1, 1) to identify the

variables of contract £ and (1, 1, 1) to identify the variables of contract B and so on.
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These globally unique identifiers can now be used to perform comparisons. In order to adhere to
the partial ordering introduced due to the on-demand creation of variables, we must ensure that
all identifiers that are a prefix of another identifier have higher priority, e.g. (1, 2,1, 1, 1< 1, 2,
1). Apart from that we can define an arbitrary order using the length of the identifiers and their
individual values. It is noteworthy that the chosen order defines the backtracking strategy in
asynchronous backtracking, since variables with higher priority are changed later. Thus, if we
decide to make the length of the identifier the most significant operation during comparison, we
end up with the backtracking strategy shown on the left side of Figure 21. If we decide to make
the values of the identifiers the most significant operation during comparison, we end up with
the backtracking strategy shown on the right side of Figure 21. For the evaluation, we use the
strategy that reconfigures contracts on lower levels first, i.e. precedence on the length. The
rationale for this decision is that switching between contracts at lower levels reduces the
communication overhead due to lower number of recursively required contracts. However, this

is a heuristic and there are cases where this leads to higher overhead.

3.2.3.3 Algorithm

In the following, we provide an overview of the resulting algorithm that utilizes the optimized
mapping introduced in the previous section. For the sake of clarity, we only present a simplified
version that configures only one application at a time. It should be clear that support for
multiple applications can be added easily by adding a unique application identifier to the
identifier of variables. In addition, we also postpone the discussion of further optimizations, the
extensions to achieve resilience as well as the protocol used to detect the termination. Since
these extensions and optimizations are crosscutting concerns, we present them in detail in

subsequent sections.

To describe the algorithm, we follow the overall structure of the description of asynchronous
backtracking given in (Yokoo, Durfee, Ishida, & Kuwabara, 1998). Thus, we model the algorithm
as reactive process that responds to incoming message in its Receive_* procedures. The main
difference between the algorithm shown below and the original asynchronous backtracking
algorithm is the algorithms capability to deal with multiple variables and the mechanisms to
dynamically create the variables on demand. Furthermore, we introduce a resource reservation

and validation procedure to avoid the explicit representation of resource constraints.

As in the original version of asynchronous backtracking, the algorithm uses three types of
message namely update, backtrack and link. Update messages send the value assignment from a
high priority variable to a linked low priority variable. The initial links reflect the dependencies
between different contracts, but during its execution, asynchronous backtracking may generate

additional links in response to backtracking messages. Backtracking messages report a nogood,
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i.e. an assignment to a set of high priority variables that prohibit the assignment of a valid value
in some low priority variable. Thus, backtracking message are always sent into the opposite
direction of update messages, i.e. from low to high priority variable. Finally, link messages
inform some variable that it needs to create an additional link to some previously unlinked
variable. In contrast to update and backtracking messages, which are sent asynchronously, link
messages are exchanged synchronously to ensure that the links are created whenever a
backtracking message is processed. Since the link establishment is trivial, we omit the discussion

of the Receive_Link procedure for link messages.

In order to support multiple variables on the same computer, the algorithm maintains a so-
called configuration object for each contract that has been used during the configuration
process. The configuration object represents the local knowledge about the contract. The local
knowledge consists of the multi-dimensional variable that represents the dependencies of the
contract, a set of constraints that has been derived during the execution of the algorithm and a
so-called view which contains the assignments of variables with higher priority that are linked.
Furthermore, it contains the domain for each dimension of the multi-dimensional variable which
is given by the set of contracts that can be used to resolve the corresponding dependency. In
addition, the configuration object also stores a flag that denotes whether the resources for the
contract have been reserved successfully. Finally, the object also needs to store information

about the links that have been established already in order to avoid their duplicate creation.

1l: Receive Update(Identifier, Contract, Value)

2: Configuration Object = Get Configuration Object (Identifier)

3: If (Configuration Object == Null)

4: Configuration Object=Create Configuration Object (Identifier, ontract)
5 Add Assignment (Configuration Object, Value)

6 Validate Constraints(Configuration Object)

Algorithm 1 — Receive Update Procedure

The previously introduced information held by the configuration object is sufficient to discuss
the overall algorithm. However, it should be noted that in a real implementation the
configuration object also has to store information about the computers that host the contract
and factories that provide them. Furthermore, the update messages that are used to initialize a
variable must contain additional information about the new contract and its factory as well as
about the set of contracts that have caused its creation in order to prevent cycles in the
configuration of an application. Similarly, the link and backtracking messages must contain the
computer identifier of all variables contained in message since the targeted variable may not
know the mapping between variables and computers. However, in order to minimize the space

consumption, it is possible to store the mapping information once per computer.

Since each computer can host multiple contracts, the algorithm must be capable of uniquely

identifying them. To globally identify a contract and its position within the application
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configuration, we use the generated identifiers discussed in Section 3.2.3.2. Thus, we represent
the application anchor with the empty identifier {}, the first contract that can be used to resolve
the first dependency of the anchor is identified by {(0) [0]}. The second instance for this
dependency is identified by {(0) [1]} and so on. Thus, identifiers are arbitrarily long sequences of
pairs, where the first index of a pair denotes the dependency and the second index denotes the
contract used to satisfy this dependency. As the algorithm allows the dynamic creation of new
variables, we can simply start the algorithm by sending an initial update message for the

application anchor. This message will then eventually create all recursively required variables.

When the algorithm receives an update message (Algorithm 1), it must first retrieve the
corresponding configuration object (Line 2). If the configuration object does not exist (Line 3), it
needs to be created. To create the configuration object, the algorithm needs to initialize a multi-
dimensional variable for the corresponding contract and it needs to query the computers for
contracts that can be used to resolve each individual dependency. These contracts will then from
the domain for the dimensions (Line 4). Thereafter, it performs basically the same steps as in the
original version of asynchronous backtracking, i.e. it adds the received value to the local
knowledge of the configuration object and it validates the constraints. If the constraints are not
met, the algorithm will either change the assignment of the variable held by the configuration

object and it will inform the linked variables about this change or it will generate a backtracking

message.
1l: Validate Constraints(Configuration_Object)
2: If (! Is Valid(Configuration Object))
3: If (Can Create Assignment (Configuration Object))
4: If(Is Used(Configuration Object) &!Is Reserved(Configuration Object))
5: If (Can Reserve (Configuration Object))
6: Reserve (Configuration Object)
7: Assignment = Create Assignment (Configuration Object)
8: Set Assignment (Configuration Object, Assignment)
9: Else
10: Trigger Backtracking(Configuration Object)
11: Return
12: If(!Is Used(Configuration Object)&Is Reserved(Configuration Object))
13: Free (Configuration Object)
14: Assignment = Create Assignment (Configuration Object)
15: Set Assignment (Configuration Object, Assignment)
l6: Else
17: Trigger Backtracking(Configuration Object)
18: Return

19: Send Update(Configuration Object) // for all dimensions to all links

Algorithm 2 — Validate Constraints Procedure

To validate the constraints of a configuration object (Algorithm 2), the algorithm needs to
compare the current assignment and the local view on the problem, i.e. the assignments of

linked variables, with the known constraints. These constraints can either be initial constraints,

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS EN

i.e. resource and structural constraints, or derived constraints that have been created from
nogoods sent by other variables. In order to ensure that any configuration does not consume
more than the available resources, the algorithm performs resource reservations. Thus, the
validity check (Line 1) returns true if the current assignment does not conflict with any initial or
derived constraint and if the resources have been reserved or freed accordingly. If the check
succeeds, the algorithm simply reinforces the current value assignment (Line 19). If the check
fails, the algorithm checks whether it is possible to assign a consistent value to the variable (Line
3). If that is not possible, it performs backtracking (Line 16-18). If it is possible, it tries to free or
reserve the resources according to the knowledge stored in the configuration object (Line 4-15),
i.e. if the contract is used, the resources need to be reserved, if the contract is not used, the
resources need to be freed. During this procedure there can only be conflicts in cases where the
contract is used and the resources cannot be reserved. If this happens, the algorithm needs to
perform backtracking (Line 10-11). Otherwise, the algorithm can simply assign the value to

variable and reinforce the assignment (Line 6-8 or Line 13-15 and Line 19).

1: Trigger Backtracking(Configuration_Object)

2 If (Is_Anchor(Configuration Object))

3 // Unsuccessful termination

4 Else

5: Conflict Set = Create Minimum Conflict Set (Configuration Object)

6 Minimum Assignment = Get Minimum Assignment (Conflict Set)

7 Remove Assignment (Configuration Object, Minimum Assignment)

8 If (!Is Used(Configuration Object) &Is Reserved(Configuration Object))
9 Free (Configuration Object)

10: Send Backtracking (Minimum Assignment, Conflict Set)

Algorithm 3 — Trigger Backtracking Procedure

Asynchronous backtracking terminates unsuccessfully, when a certain conflict can never be
resolved. Due to the specific problem structure of automatic configuration, this case occurs if
and only if the application anchor triggers a backtracking step. The rationale for this is twofold.
First, only those contracts that are used within a configuration can cause conflicts. Second, all
contracts except for the contract of the application anchor can request that they are not used by
issuing a corresponding nogood. Thus, before a backtracking step is about to be triggered, the
algorithm should check whether the backtracking is issued by the configuration object of the
anchor (Line 2). If it is the anchor, the algorithm terminates unsuccessfully (Line 3). If it is not the
anchor, the algorithm needs to compute the set of variables assignments that cause the conflict
(Line 5). The simplest way to compute the conflict set is to use all assignments of variables that
are linked to the configuration object since the combination of these variables make a valid
assignment impossible. However, in order to avoid repetitive failures, the conflict set should be
minimal. Computing this set is a non-trivial task. However, if the conflict was not caused by a
lack of resources, the set can be reduced by using only those variables that are part of one or
more constraints that restrict the domain. Similarly, if the conflict is caused by a lack of

resources, the set can be reduced by using only those assignments that also require the limited
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resource. If the set has been computed, the algorithm can remove the assignment of the lowest
variable contained in the conflict set (Line 7). Thereafter, it may release the resource reservation
in cases where the lowest variable was the variable of the parent (Line 8-9) and it can send the

backtracking message to the lowest variable (Line 10).

Receive Backtracking(Identifier, Conflict_Set)
Configuration Object = Get Configuration Object (Identifier)
Create Links(Configuration Object, Conflict Set)
If (! Is Outdated(Configuration Object, Conflict Set)
Add Constraint (Configuration Object, Conflict Set)
Validate Constraints(Configuration Object)
Else
Send Update (Configuration Object) // for all dimensions to all links

O Joy Ul W R

Algorithm 4 — Receive Backtracking Procedure

The steps that need to be taken whenever a backtracking message is received are almost
identical to asynchronous backtracking (Algorithm 4). The first thing that needs to be done is to
retrieve the configuration object that is addressed by the conflict set (Line 2). Thereafter, the
algorithm generates the links to all variables of the conflict set that have not been linked so far
(Line 3). Note that the creation of these links is done synchronously. After the links have been
established, the algorithm determines whether the conflict is still valid (Line 4). According to the
asynchronous backtracking algorithm, a conflict is still valid, if the variable assignments
contained in the conflict set do not conflict with the local knowledge contained in the
configuration object. If the conflict is still valid, the algorithm records the conflict set as a new
constraint (Line 5) and it revalidates the assignments of the configuration object (Line 6). If the

conflict is outdated, the algorithm simply reinforces the current value assignment.

3.2.3.4 Correctness

Since this algorithm does not modify the logic of asynchronous backtracking, the proof of
correctness follows the argumentation provided in (Yokoo, Durfee, Ishida, & Kuwabara, 1998).
Since all configuration objects create either update or backtracking messages in response to
changes, algorithm cannot reach a stable state as long as some variables have an invalid
assignment. Even in cases where a backtracking message is ignored due to outdated information
in the conflict set, the algorithm ensures that all variables will eventually have the same

consistent local knowledge by reinforcing the variable assignment across all links.

Due to the total ordering of variables and the construction of the directed links from high to low
priority variables, the initial constraint graph cannot contain cycles. Furthermore, since the
backtracking messages are always sent to the lowest priority variable contained in the conflict
set, further links are always created from high to low priority variables. Thus, the constraint
graph will always remain acyclic. This ensures that the continuous reinforcements will stop

eventually if all variables have assigned a valid value. If the constraint satisfaction problem is
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over-constrained, i.e. if it does not have a solution, the algorithm will eventually create an empty
conflict set. Due to the specific structure such an empty conflict set can only be generated at the
application anchor. The reason for this is that all other contracts may always as their parent to

change the dependency.

3.2.3.5 Optimizations

The mapping described in Section 3.2.3.2 already reduces the number of messages required for
configuration significantly when compared to the basic mapping described in Section 3.2.2.
However, the on-demand creation of variables only considers that variables that have not been
used do not require updates. It is possible to apply the same idea also to variables that have

been created but that are currently no longer used.

To motivate this consider the constraints (2) and (3) introduced in Section 3.2.2. These
constraints essentially state that a contract that is used to resolve a dependency must be
resolved properly and a contract that is not used to resolve a dependency must not be resolved.
However, when asynchronous backtracking decides to select a different contract to resolve a
variable it will send an update to all contracts that have been used previously to resolve the
variable. This will cause unnecessary overhead for variables whose domain contains at least
three different contracts. The reason for this is that at least one of the three contracts knew

already that it was not used and sending the update to this contract does not lead to changes.

As a result, it is possible to restrict the update messages to the contracts that actually need to be
informed about a change and in cases where a variable does not change its value assignment at
all, we can avoid sending any updates. As a result, we can compute the set of links that require a
certain update as the set of links that are linked to changed variable minus the set of links that
point to variables that are not affected by the change because they are not used within the
configuration. These links do not have to be updated since a change to the variable assignment

will never lead to changes.

Yet, if the update messages are restricted to links that truly require a variable assignment,
additional care needs to be taken during backtracking. The reason for this is that a backtracking
message that is silently dropped due to a temporary inconsistency will require an unconditional
reinforcement of the variable assignment to resolve the inconsistency. While this is not a
problem for a single backtracking message it will become a problem in cases where the
reception of a backtracking message leads to another backtracking message. To understand this
consider that the procedure that creates the conflict set automatically removes the lowest
variable assignment from the local knowledge from the configuration object that detected the

conflict. If this is happens multiple times due to a chain of backtracking messages which is
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eventually dropped due to an inconsistency, the reverse path of the backtracking messages

needs to be updated to restore the removed values.

To ensure that this is done correctly, it is possible to record the variable identifiers of the
senders of a backtracking message in cases where a backtracking message is accepted. Due to
the links created by asynchronous backtracking, the variable of the sender of the backtracking
message will always be linked to the variable that receives the backtracking message already.
Thus, we can simply mark the link as a link that needs to be updated unconditionally upon the
next reception of an update message. Using these modifications, it is possible to drastically
reduce the number of update messages since they will be sent only to those variables that

actually require updates.

3.2.3.6 Resilience

As stated in Section 3.1.4, an algorithm that performs automatic configuration must be capable
of dealing with fluctuations that occur during its execution. Such fluctuations might be the result
of the unavailability of local resources or the mobility of computers. In general, these
fluctuations are typically hard to predict and in pervasive systems, they may be frequent. As
examples consider a user that removes some USB camera from its computer by simply

unplugging it or a moving user who carries a set of mobile computers.

Failure Model

Besides from being hard to predict, fluctuations resulting from mobility and failures are also hard
to detect since pervasive systems essentially resemble asynchronous systems. This can be easily
explained by the fact that the underlying networking technologies often do not guarantee an
upper bound on the message delivery delay. As a consequence, it is not possible to reliably
detect the unavailability of a computer by exchanging messages. In practice, we can therefore
only detect such failures heuristically, for example, by securing message delivery with
acknowledgements that must arrive within a reasonably large timeframe. If an
acknowledgement does not arrive within the timeframe we must assume that the message has
not been delivered due to a computer failure or a network partitioning. Of course, it is possible
and desirable to apply more complex protocols, for example, by dynamically estimating the
message round-trip time to deal with network congestion and by introducing retransmissions to

overcome unreliable communication channels.

However, independent from the concrete implementation such protocols can only determine
the unavailability of a computer heuristically since there may be cases where the network or the
receiver are simply too slow. Other failures such as messages that are modified during
transmission can usually be prevented by means of checksums or forward error correction.

Furthermore, since we assume that the computers in a pervasive system are cooperative, we
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can safely argue that they will not modify messages on purpose. As a consequence, we can
assume that all failures that may occur are detectable by means of missing acknowledgements.
However, since asynchronous backtracking does not continuously communicate with all
computers, detecting failures requires some form of periodic beaconing to ensure that a

computer that has not received a message for some time is still available.

Our prototype implementation described in Chapter 5 introduces such a mechanism by means of
leases. This lease mechanism ensures that all computers are notified in cases where a previously
available computer becomes unavailable due to mobility or failures. Note that in the case of a
network partitioning the lease mechanism also ensures that the computers which are no longer

able to contact the coordinating computer are able to remove their orphaned state.

In contrast to changes in computer availability, the unavailability of a previously available
resource can be detected easily due to the fact that each resource is managed locally by one
computer. Given that the computer is able to detect changes, a reduction in resource availability
can be handled directly locally or it can be propagated if necessary. Thereby, it is noteworthy
that reductions in resource availability only need to be handled in cases where the change
conflicts with a reservation. In other cases, it can be ignored silently since the resource is
currently not needed. If it is needed at some later point in time, the resource reservation

procedure ensures that the resulting conflict is handled properly.

Failure Handling

The simplest way to deal with fluctuations is to restart the complete configuration algorithm.
Yet, this approach may obviously introduce a high overhead since all constraints that have been
discovered so far need to be rediscovered again. Fortunately, asynchronous backtracking does
not impose timing constraints on the reception of messages. This allows us to implement a much
more efficient failure handling for both types of fluctuations in a relatively straight-forward

manner.

e Local resources: In order to deal with the unavailability of local resources, we can simply
compute the conflict sets of resource reservations for the resource or the resources that
are no longer available in a sufficient quantity. Using the conflict sets, we can create
corresponding backtracking messages that we inject from the configuration object with
the lowest priority contained in the conflict set. The generation of these backtracking
messages will not endanger the correctness of the overall algorithm since the same
backtracking message would have been generated by the algorithm in cases where the
resource reservation would have failed at an earlier point in time.

e Remote computers: To deal with the unavailability of computers we apply a less

lightweight procedure. Whenever the unavailability of some computer is detected, we
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stop the execution of the algorithm. Thereafter, we iterate over all configuration objects
and we add constraints that prohibit variable assignments in the domain of the variable
of the configuration objects that would select contracts on the unavailable computer.
Thereafter, we deselect all configuration objects and we free the associated resource
reservations. In addition, we remove all links to configuration objects on the unavailable
computer. Finally, we restart the algorithm by selecting the configuration object that

represents the application core.

Note that our extensions for resilience are solely targeted at fluctuations that result in the
unavailability of local resources and remote computers. Thus, these extensions essentially
reduce the search space monotonically. Extensions that would allow the usage of newly
available computers and resources would be more complicated. The main reason for this is that
newly available resources and computers might lead to new options in the search space. As a
result, they could invalidate some of the derived constraints that have been discovered and
propagated already. In order to eliminate the wrong constraints, we would have to analyze the

effect of the additions using a distributed algorithm.

Correctness

As explained previously, the correctness of the failure handling procedure for local resources is
obvious since the same message sequence could have been produced by the normal algorithm
execution if the unavailable resource would not have been available in the first place and the
backtracking message would have been deferred. As a consequence, this procedure must be

correct, given that the original algorithm was correct.

The correctness of the failure handling procedure for remote computers is more complicated.
The first step of stopping the algorithm ensures that the algorithm execution does not interfere
with the failure handling procedure. The second step, namely the introduction of additional
constraints ensures that a future execution of the algorithm will not attempt to form a
configuration that contains configuration objects on the unavailable computer. The last step
resets the state that has been created by the algorithm to enable a consistent restart. However,
instead of removing all state the procedure only deselects all configuration objects, frees all

resources and removes unnecessary broken links.

The resulting state is mostly corresponds to the initial state of the algorithm (no configuration
objects selected and no resources selected) with the exception that there are more propagated
constraints and additional links that have been created in response to the constraint
propagation. In cases where the propagated constraints do not contain configuration objects on
the unavailable computer, the unavailability of the computer does not affect them. The same

holds true for the links that have been created by the propagation of these constraints. In other
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cases, a newly introduced constraint that disallows the selection of the configuration object on
the unavailable computer supersedes them. Thus, the removal of the broken link does not affect
the correctness since the associated configuration object cannot be used anymore and thus,

there is also no need to inform it about changes to ensure completeness.

As a consequence, the remaining conflicts and links represent a consistent intermediate set of
conflicts and links that could have been produced by the normal algorithm execution if the
configuration objects on the unavailable computer could have never been selected in the first
place. However, since the current value assignment of variables may be conflicting with the
newly introduced constraints, it is necessary to rerun all of them. By deselecting all configuration
objects and freeing all resources before restarting the algorithm, we effectively ensure this. The
consecutive executions of the constraint validation procedures will then also consider the newly
introduced constraints. This in turn ensures that the unavailable computer is effectively excluded

from the configuration and thus, the resulting configuration will be valid.

3.2.3.7 Termination

Asynchronous backtracking terminates unsuccessfully if an empty constraint set is generated
during the execution, i.e. if there is no further choice that can be reconsidered in order to
resolve an unsatisfied constraint. Due to the specific structure of the configuration problem,
such an empty set can only be generated by the configuration object of the application anchor.
All other configuration objects can always ask their parents to reconfigure themselves in such a
way that they are no longer used. Thus, an unsuccessful run will be recognized by the computer

that hosts the configuration object of the application anchor.

The successful termination of the algorithm is achieved if all participating computers stopped
generating new messages and all messages have been processed. Therefore, the successful
termination represents a stable predicate on the state of the distributed system that can be
detected using distributed snapshots (Chandy & Lamport, 1985). Due to the practical importance
of this problem class for distributed computations, this class is widely known as distributed
termination (Francez, 1980) and there are various algorithms to solve it, e.g. (Dijkstra &
Scholten, 1980), (Tel & Mattern, 1993). The taxonomy presented in (Matocha & Camp, 1998)
alone compares 35 different algorithms. It classifies the algorithms based on the type of
algorithm, e.g. wave-based, credit-based, etc., on the assumptions on the network structure, e.g.
tree-based, cycle-based, etc., and on the communication channel, e.g. FIFO, etc., and on the

symmetry of the algorithm, among others.

From a conceptual point of view, we could use any of these algorithms to detect the successful
termination of the configuration algorithm. Yet, in order to satisfy the requirement on resilience,

the termination detection algorithm itself must be resilient. Since the failures that may occur
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during automatic configuration may be a result of mobility, we must assume that they can be
permanent only. Thus, termination detection algorithms that support the recovery from
transient failures such as (Tseng & Tan, 2001), for example, cannot be used. Instead, the
termination detection algorithm for automatic configuration needs to be able to deal with
permanent failures. An example for such a termination detection algorithm is presented in (Lai &
Wu, 1995). Given a set of n processes whose termination should be detected, the algorithm is
capable of dealing with n-1 faulty processes. To do this, the algorithm extends the wave-based
mechanism presented in (Dijkstra & Scholten, 1980). However, since some of the extensions are
not necessary for automatic configuration, we decided not to rely on this algorithm. An example
for such an unnecessary extension is the capability of dynamically switching the coordinator in
cases where it fails. This extension is not required for automatic configuration, since if this
computer would fail, the whole configuration process could be aborted as the computer that

hosts the application anchor would no longer be available.

To come up with a more specialized and simpler solution, we extend the credit-based
termination detection algorithm presented in (Mattern, 1989). The basic idea behind this
algorithm is the distribution and recovery of so-called credits whose construction maintains the
invariant that the sum of all credits corresponds to a fixed known value, e.g. 1. When the basic
computation, i.e. the configuration algorithm, starts, the coordinator, i.e. the computer that
hosts the application anchor, will be equipped with a credit that corresponds to 1. Every time
the basic computation transmits messages to other computers, the algorithm attaches a
fragment of the credit to the message. Every time a message is received, the computer detaches
the credit form the message and stores it. The stored credit fragments can then be used to equip
further messages with credits. As soon as a computer detects the local termination, it returns
the credits to the coordinator. If the credits contained at the application anchor add up to the
known fixed value, i.e. 1, the termination algorithm can safely assume that all participating

computers have terminated locally and that there are no further messages.

Since the participating computers may become unavailable during the configuration of an
application, the algorithm described previously may lose the credits, e.g., that are stored on the
computer that is no longer available. To cope with lost credits, we can try to determine the
amount of missing credits. Doing that would cause considerable effort since we need to ensure
that we have collected all remaining credits including the ones that may still be in transit. Due to
the fact that we also need to restart the configuration algorithm in response to an unavailable
computer, we can simplify this significantly by synchronizing the participating computers and
restarting the termination detection protocol as well. To minimize the overhead of restarting the

configuration, we use the following strategy.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

In addition to credits, each computer and each message is equipped with an epoch value. If the
epoch value is started at 0, the epoch essentially denotes the number of computers that have
failed during the configuration. As soon as a computer detects that another computer is no
longer available, it signals this to the coordinator, i.e. the computer that configures the
application anchor. This may result in two outcomes. If the computer that detects the failure has
left the smart peer group, it can no longer communicate with the coordinator. Thus, it can
simply remove all state associated with the configuration algorithm. If the computer that detects
the failure is still part of the smart peer group, it will be able to contact the coordinator and thus,
it simply waits. In response to the signal, the coordinator will send a failure notification to all
computers that are still participating in the configuration. The failure notification contains the
identifier of the computer that has failed, i.e. the one that has left the smart peer group. In
response to that, the computers stop their computation, increase their epoch value and remove
all messages and all credits. Since there may be additional messages in transit the computers will
simply ignore all further messages that have a lower epoch value. Finally, each computer needs
to perform the corrective actions described in the previous section and it needs to signal the
completion of these actions to the coordinator. After the actions have been performed on all
remaining computers, the coordinator resets its credit to the original value, e.g. 1, and starts the

configuration again.

Although, the previously described approach suffices to deal with failures of computers, the
utilization of a credit-based termination detection algorithm complicates the resilience to
fluctuating resource availability. To clarify this, consider that the fluctuating resource availability
may cause the detection of a new conflict at any point in time. Yet, in the formalization of the
termination detection problem a process may only become active in response to a message.
Moreover, the correctness of the credit-based termination detection algorithm depends upon
this restriction. If a computer becomes active spontaneously because a resource has become
unavailable, the algorithm may detect the global termination incorrectly. However, incorrect
termination detection may only occur in cases where the local termination has already been
signaled to the coordinator. Thus, reacting to a resource fluctuation is unproblematic as long as
the affected computer is still in possession of some credits. In cases where the computer has
already sent its credits to the coordinator additional precautions need to be taken. To deal with

such cases, we introduce a credit request message that retrieves a credit from coordinator.

Clearly, since resource fluctuations and connectivity fluctuations may occur at any point in time,
no termination detection algorithm can guarantee that the detection of a successful termination
also results in a successful configuration of an application. As counter examples consider a
disconnection or a resource fluctuation that is detected at the same instant of time at which the

termination detection algorithm detects the global termination. However, the previously
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described approach reduces the gap during which a fluctuation can have this negative impact to
an absolute minimum and thus, is reduces the probability of such cases as far as possible. If the
computed configuration cannot be executed, it would be possible to perform the previously
described corrective actions again. Yet, due to the low likelihood of this situation, we decided

not to implement this. Instead, in our implementation, we restart the algorithm from scratch.

A good and desirable characteristic of the previously introduced termination detection algorithm
is its low termination detection delay. If a computer returns its credits immediately after it has
detected the local termination, the detection delay is optimal. In the worst case, it corresponds
to the latency introduced by the network for transmitting a single credit recovery message.
However, since a computer may become active again due to the reception of another message
from the basic computation, there is a trade-off between optimizing the detection latency and
reducing the number of credit recovery messages. In the worst case, the immediate
transmissions of recovery messages can double the number of messages of the basic
computation. As an example consider a case where the local termination is detected after every
single message that has to be processed. Although it is theoretically always possible to construct
a scenario in which the algorithm exhibits this pathologic behavior, we can largely avoid it in
practice by deferring the transmission of credit recovery messages for a certain amount of time.
While this increases the termination detection delay and thus, it also increases the overall
configuration delay, we found that the reduction of recovery messages that results even from
small delays makes it worthwhile to rely on this strategy. In fact, for some scenarios, the reduced
number of recovery messages also leads to a reduction of the overall discovery delay despite the

additional delay introduced by deferring the recovery messages.

3.2.3.8 Integration

To integrate the previously described extensions for resilience and to detect the successful
termination, we first extend the algorithm described in Section 3.2.3.3 by wrapping the
Receive_* and Send_* procedures of the configuration algorithm using the procedures shown in
Algorithm 5 and Algorithm 6 and we introduce the timer procedure and the recovery procedure
shown in Algorithm 7 and Algorithm 8, respectively. For the sake of clarity, we assume that the

procedures are executed sequentially and thus, we omit the necessary synchronization.

1l: Receive Message (Message)

2 If (Message.GetEpoch() != Computer.Epoch) return;
3: Computer.Termination Timer.Stop();

4: Computer.Processing = True;

5 Computer.Credits.Add (Message.Get Credit());

9 Do Receive Message (Message) ;

7 Computer.Processing = False;

8 Computer.Termination Timer.Start (TIMEOUT VALUE) ;

Algorithm 5 — Receive Message Wrapper Procedure
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As explained earlier, the wrapper for the receive procedure (see Algorithm 5) filters out
messages that do not correspond to the current epoch of the computer (Line 2) and it collects
the credits that are attached to the configuration algorithm messages (Line 5). Furthermore, in
order to initiate the recovery of credits later on, it controls a timer to collect the credits (Line 3
and 8). In order to perform the local termination detection on the coordinator, the procedure

additionally toggles a flag that denotes ongoing local computations (Line 4 and 7).

Send Message (Message)
Message.setEpoch (Computer.Epoch) ;
Message.setCredit (Computer.Credits.Split());
Do Send Message (Message) ;

S W N

Algorithm 6 — Send Message Wrapper Procedure

Similarly, the wrapper for the send procedures (see Algorithm 6), attaches the epoch (Line 2)

and a fragment of the credit (Line 3) to each message before it is transmitted (Line 4).

1l: Termination_Timer Expired ()
2: Send Recover Credits(Computer.Epoch, Computer.Credits);
3: Computer.Credits.Clear();

Algorithm 7 — Termination Timer Procedure

The expiration procedure for the termination timer (see Algorithm 7) that is running on every
computer is also very simple. Upon expiration, each computer just transfers its locally stored
credits to the coordinator (Line 2) and removes them (Line 3). Analogue to messages of the

configuration algorithm, the transmission of credits must also contain the epoch.

Receive Recover Credits (Epoch, Credits)
If (Computer.Epoch != Epoch) return;
Computer.Credits.Add (Credits);
If (! Computer.Processing && Computer.Credits.Is Complete())
// terminate successfully

g WK

Algorithm 8 — Credit Recovery Procedure

When a set of credits arrives at the coordinator (Algorithm 8), the coordinator uses the epoch to
filter outdated messages (Line 2). Thereafter, it adds the credits to the local credits (Line 3) and it
determines whether the local computation has been terminated and whether all credits have
been recovered. If both conditions hold, the local termination has been detected. In all other

cases, the basic computation is still running.

1l: Detect Failure (Identifier)
2: Send Notify Failure (Identifier) // to coordinator

Algorithm 9 — Detect Failure Procedure

The previous set of procedures suffices to implement the basic termination detection protocol.
In order to deal with connectivity fluctuations and disconnections, we add the procedure shown
in Algorithm 9. The purpose of this procedure is to signal all detected failures to the coordinator
(Line 2). To do this, the computer that detects a communication failure sends the identifier of

the failing computer to the coordinator.
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1l: Receive_Notify Failure (Identifier)

2: If (! Is Participant(Identifier)) return;

3: Stop_Computation();

4: Computer.Epoche += 1;

5: Computer.Credits.Clear();

6: Reset Configuration Objects (Identifier);

7 Record Removed Participant (Identifier);

8: If (Computer.Is Coordinator())

9: Send Notify Failure(Identifier); // to all remaining participants

10: Computer.Credits = new Credit(); // reset the credit to initial value
11 Create Initial Message (..); // restart the configuration algorithm

Algorithm 10 — Receive Failure Notification Procedure

As shown in Algorithm 10, the coordinator uses this to distribute the failure message
consistently to all remaining computers that participate in the configuration process (Line 9). In
response to that, all computers terminate their current computations (Line 3), they increase
their current epoch (Line 4) and they clear their credits (Line 5). Furthermore, they perform the
corrective actions for the removed computer as described in the previous section (Line 6). In
addition to that, the coordinator creates a new credit (Line 10) and restarts the configuration
algorithm in the new epoch with the corresponding message (Line 11). As we pointed out earlier,
the implementation of this procedure also requires an adequate synchronization which is
omitted for the sake of clarity. Since it is possible that two different computers detect a failure of
one computer in the same epoch, the coordinator also needs to filter out duplicate notifications
(Line 2). To do this, it may either keep track of the removed computers or it can keep track of the
computers that are still included (Line 7). A duplicate failure notification in two different epochs
can never occur since the participating computers will never use the removed computer again.

To guarantee this, they also need to keep track of the removed participants.

1l: Detect Resource_ Fluctuation ()

2 If (Reservations Valid()) return; // ignore if reservations are valid
3 If (Computer.Credits.Is Cleared()) // retrieve credit if none available
4 Credits.Add(Send Retrieve Credit()):;

5: Computer.Termination Timer.Stop(); // perform corrective actions

6 Computer.Processing = True;

7 Reset Affected Reservations();

8 Computer.Processing = False;

9 Computer.Termination Timer.Start (TIMEOUT VALUE);

Algorithm 11 — Receive Failure Notification Procedure

Finally, to deal with resource fluctuations, we add the procedure shown in Algorithm 11. To
avoid unnecessary overhead, the procedure first checks whether the resource fluctuation affects
the current resource reservations (Line 2). If not it simply returns. If some resource reservations
are affected, the procedure ensures that there are some credits available, if not it retrieves some
from the coordinator (Line 3 and 4). Thereafter, it simply performs the corrective actions (Line 7)
which might result in new backtracking messages that will be sent to other computers. To
ensure that the procedure does not impact the overall termination detection algorithm it is
wrapped in the same statements that are used by the wrapper procedure for the reception of

messages (Line 5, 6, 8 and 9).
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3.2.3.9 Example

To describe the configuration process performed by the algorithm in a more dynamic manner,
we will use the exemplary smart peer group and the presentation application shown in Figure
15. When the presentation application needs to be configured, the algorithm is initiated by
calling the Receive_Update procedure with {}, an identifier that locally identifies the contract of

the Presentation Control and the value {}. This signals that an anchor should be started (a).

Since this is the first time that the configuration algorithm sees an update for {}, it creates a
configuration object for the contract. Using the contract, it determines that Presentation Control
has two dependencies, thus it creates a two-dimensional variable ([Input]), ([Output]). To
determine the domain of the variable, i.e. possible options to satisfy the dependencies, the
algorithm performs local and remote lookups (b). Thereby, the algorithm discovers the following
options: File System (desktop) {((0)[0])}, Remote File Access (laptop) {((0)[1])}, Remote Viewer
(laptop) {((1)[0])} and Simple Viewer (desktop) {((1)[1])}. Thus, the domain for the variable is ([-1,
0, 1]), ([-1, 0, 1]). For the new variable, the initial assignment is ([-1]), ([-1]).

update .
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Figure 22 — Configuration Process

The algorithm continues to add the value {} to the local knowledge which states that the

contract bound to the configuration object is required. Thereafter, the algorithm calls the
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Validate _Constraints procedure and determines that the current assignment ([-1]), ([-1]) is not
valid, since the instance is used according to the local knowledge. Note that this is a result of the
built-in constraints presented in 3.2.2. Next, the algorithm determines a valid assignment ([0]),
([0]) and reserves the resources. The reservation finishes successfully and the algorithm

continues to send parallel update messages to the Remote File Access {((0)[0])} and the Remote

Viewer {((1)[0])} (c).

When the update message for the Remote File Access arrives, the algorithm creates the
configuration object. Since the contract does not introduce further dependencies, the
configuration object will simply contain a zero-dimensional variable and the algorithm will not
perform any further lookups. After the configuration object has been created, the algorithm
adds the value to the local knowledge and it checks the constraints. Thereby, it performs the

resource reservation successfully and it stops without sending further messages (d).

In response to the update for the Remote Viewer, the algorithm creates a new two-dimensional
variable with the domain ([-1, 0]), ([-1, 0]). After checking the constraints and successfully
completing the resource reservation, the algorithm sends two updates, both to an Image Viewer
with the IDs {((1)[0](0)[0])} and {((1)[0](1)[0])}, respectively.

The first update message creates a new configuration object and finishes successfully. The
second update fails due to a lack of resources. Thus, the Trigger Backtracking procedure
determines that the minimum conflicting sets consist of exactly one set of component instances
that contains both instances of the Image Viewer (e). Note that although the Remote File Access
is also configured on the desktop, its identifier will not be added to the conflict set since it has
nothing to do with the shortage on displays. Furthermore, the algorithm does not need to add
the complete path to the anchor to the constraint as it can be gradually generated whenever a
conflict is escalated. Following the traversal strategy, {((1)[0](1)[0])} is picked as the smallest
identifier and a backtrack message is sent to is parent. Additionally, the instance is deactivated

and all potentially reserved resources.

When the backtracking message arrives at the Remote Viewer, the algorithm will determine
whether it has to create any new links. Since both identifiers contained in the conflict set are
local variables, no new link must be created. Therefore, the algorithm continues to add a mutual
exclusion constraint between {((1)[0](0)[0])} and {((1)[0](1)[0])} to the local knowledge. In cases
where added conflicts are not conflicts between linked instances, the addition of new links
between the assigning instance and the instance that recorded the constraint is necessary to
ensure that the constraint evaluation always considers all relevant variable assignments of the

present situation.
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Since the Remote Viewer cannot create a valid assignment, it creates a backtracking message
that contains its own identifier and sends it to its parent. Thereafter, the Remote Viewer is
deactivated and its constraints are checked again. Thereby, the algorithm releases all resources,

assigns ([-1]), ([-1]) and creates updates that will eventually release previously bound instances

().

When the Presentation Control receives the backtracking message, it adds the constraint that
the Remote Viewer can never be started and assigns another value for the Output dependency.
It selects the Simple Viewer {((1)[1])} and it creates an update (g). When the update arrives, the

Simple Viewer will be reserved and the algorithm stops.

When the algorithm succeeds, the application must still be started. Therefore, a parallel
traversal of the tree-structure starting from the application anchor is sufficient. This will not
result in conflicts, since each configuration object has already reserved the resources for the
chosen bindings (h). After the application has been started, all configuration objects that have

been created can be removed.

3.3 Discussion

This chapter has introduced and formalized the configuration problem introduced by PCOM
applications. The formalization allows us to utilize various existing algorithmic solutions to the
problem. Based on the underlying system model of a smart peer group, we have identified the
requirements on distribution and resilience. Furthermore, we have derived the requirements on
completeness, efficiency and optimism from the overall vision of providing a seamless and

distraction-free user experience.

We resolve the resulting conflict between efficiency and completeness in favor of completeness
in order to avoid user frustration from false negatives. As a consequence, we can rule out
incomplete algorithmic solutions and we focus our discussion of possible approaches on existing
complete algorithms. Due to the requirement on distribution and efficiency, we can also rule out
non-distributed algorithms and algorithms that are not capable of utilizing the inherent
parallelism of pervasive systems. Finally, in order to satisfy the requirement of optimism, we
cannot rely on algorithms that are unfolding the search space as this would result in higher

configuration delays in scenarios that are comparatively easy to solve.

On the basis of this rationale, we select the asynchronous backtracking as underlying algorithm
to solve the configuration problem. In order to apply this algorithm, we must provide a suitable
mapping between the configuration problem and a Distributed Constraint Satisfaction Problem.
To create this mapping, we represent dependencies with the potential candidates to resolve

them as variables and domains, respectively. The structural constrains and the resource
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constraints, introduced by the application and the system model, are defining the constraints of
the Distributed Constraint Satisfaction Problem. Since automatic configuration must only find a
partial assignment of the corresponding Distributed Constraint Satisfaction Problem, we
introduce a pseudo-value in the domain of each variable. This value is assigned to variables that
are not required in the configuration. To ensure that the pseudo and non-pseudo values are

assigned as needed, we introduce an additional set of constraints.

In order to allow the on-the-fly construction of the mapping during the configuration, we assign
the pseudo value virtually to all variables of the configuration problem that have not been
created. Furthermore, we introduce an ordering between variables that can be constructed
dynamically with local computations. The potentially high number of variables resulting from the
mapping may lead to a significant communication overhead. This problem is exacerbated by the
fact that only a subset of them is required. In order to reduce the communication overhead, we
optimize the number of communication links between variables by combining the ones that are
always transmitting the same piece of information. Furthermore, since we know the semantics
of the constraints that represent the application model, we can also avoid the transmission of
messages that do not lead to changes. The ability of constructing the mapping on-the-fly is a
necessary precondition to achieve the overall goal of optimism. The optimizations to reduce the
communication overhead improve the efficiency of the asynchronous backtracking algorithm

when applied to the configuration problem.

As a last step, we introduce a credit-based termination detection protocol to detect the
successful termination of the algorithm and we make modifications to deal with the
unavailability of computers during the execution of the algorithm. The key idea thereby is to
dynamically introduce additional constraints for unavailable computers. These constraints
ensure that the components on unavailable computer are not — and can no longer be — used as
part of the configuration. Since asynchronous backtracking does not impose restrictions on the
point in time when constraints are detected and propagated, these modifications can be
introduced in a straight-forward manner without affecting the correctness. However, due to the
fact that we are relying on a credit-based termination detection protocol, we also need to deal
with lost credits that may be in transit or stored on an unavailable computer. To do this, we
restart the algorithm every time a computer becomes unavailable. In order to differentiate the
messages created before and after a restart, we introduce an epoch that needs to be
transmitted with each message. Before a restart, the epoch is increased monotonically in a
consistent manner on all remaining computers of the smart peer group. As a consequence, it can

be used easily to drop outdated messages.
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In summary, we get an integrated approach for automatic configuration that is capable of
fulfilling the requirements on distribution, resilience, completeness and optimism by design. In
the next chapter, we show how this approach can be extended to automatic adaptation.
Thereafter, we discuss how this approach can be integrated into the component system
presented in the previous chapter. In Chapter 6, we evaluate how well the approach fulfills the
last remaining requirement, namely efficiency. Due to the nature of the problem, an approach
that achieves completeness cannot be efficient enough for every possible scenario. However, as
our simulations and experiments indicate, the approach works well in many typical scenarios
and it is often preferable over incomplete approaches. Finally in Chapter 7, we discuss how other
system software deals with the problem of automatic configuration and in Chapter 8, we

describe possible future extensions.
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4 Automatic Adaptation

This chapter introduces and formalizes the problem of adapting a PCOM application. It discusses
the overall problem complexity and derives the requirements on approaches for automatic
adaptation. As we will show in this chapter, automatic adaptation can be seen as an optimization
problem on top of automatic configuration (Handte, Herrmann, Schiele, Becker, & Rothermel,
Automatic Reactive Adaptation of Pervasive Applications, 2007). As a result, we mainly focus on
the discussion of the differences to automatic configuration and we refer to the previous
chapter for a detailed description of the commonalities. Thereafter, we present our approach for
automatic adaptation. To motivate the approach, we briefly introduce and classify possible
solutions. Thereafter, we describe the high-level rationale for the optimization heuristics as well
as the relevant implementation details. The basic goal is to perform the optimization without
increasing the communication overhead of the configuration algorithm. Towards this end, we
incorporate a greedy heuristic into the configuration algorithm that operates on a specifically
constructed value and variable ordering. After discussing the algorithm, we close the chapter

with a summary.

4.1 The Adaptation Problem

Automatic adaptation denotes the task of modifying an existing and usually invalid composition
of components in such a way that it can be executed as an application. Consequently, the
composition resulting from automatic adaptation is also subject to the same structural and
resource constraints as automatic configuration. Thus, automatic configuration can be seen as a
sub problem of automatic adaptation and unless the original composition is not taken into
account at all, they are not equivalent. As we show later on, this also increases the overall

complexity.

A primary reason for taking the original configuration into account is usually the desire to
minimize the user distraction resulting from an adaptation. A more detailed look at this goal
enables us to classify the sources for this distraction into two basic categories. The first category
entails modifications during the adaptation of an application that are perceivable by the user.
The second category entails the decreased responsiveness of the application during the course

of an adaptation.

For an interactive application, for instance, perceivable changes are usually modifications of
components that are responsible for providing a part of the user interface. For a component-
based distributed application, this implies that replacing a component that provides some

service in the background may go unnoticed while replacing another one may immediately affect
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the perceivable representation of the application. On a more abstract level, we can thus

conclude that modifying or replacing some components may be less distractive than others.

Besides that, the adaptation process itself may be distracting as it interferes with the execution
of the application which may, for instance, increase its response time. Such effects are partly a
result of the fact that the adaptation is performed reactively, i.e. at a point in time when the
application can no longer be executed and adaptation is required. However, even for proactive
adaptation it can be very challenging to avoid all effects. This can be attributed to the fact that
the adaptation process itself competes with the application for shared resources and that some
delays, e.g. for switching from one configuration to another, can solely be minimized but not

nullified, in general.

For reactive adaptation, we can classify the sources for delays into two broad categories. First,
the algorithm that computes the new configuration requires some time to finish its task.
Secondly, switching from one configuration to another configuration also requires some time,
e.g. to transfer the application-specific state from one configuration to the other. In the
following, we refer these two time intervals as search and reconfiguration latency, respectively.
Unfortunately, both latencies cannot be minimized independently — in general. Since the
reconfiguration latency may critically depend on the characteristics of the old and the new
configuration, finding a new configuration that causes a minimal reconfiguration latency
increases the search latency. Furthermore, due to the fact that finding a single configuration is
an NP-complete problem, the absolute minimization of the reconfiguration latency can easily
lead to search latencies that exceed the savings with respect to reconfiguration latency by far.
Thus, in order to optimize the overall latency, it is necessary to trade-off the search and

reconfiguration latency in an adequate manner.

In order to motivate our approach on solving the problem of automatic adaptation, we first
discuss an example using the application introduced in the previous chapter. Thereafter, we
formalize the overall problem in the most general form. On the basis of the problem
formalization, we briefly outline the resulting problem complexity and we derive the

requirements for approaches for automatic adaptation.

4.1.1 Example

Figure 23 shows an exemplary smart peer group similar to the smart peer group shown in Figure
15. The group consists of four computers, i.e. a personal digital assistant (PDA), a laptop, a
desktop and a server, that provide a set of resources and components for the distributed
presentation application introduced previously. In contrast to the original example, the Simple
Viewer component in this example can support two different parameterizations. To simplify the

description, we refer to these parameterizations as Fast and Slow, however, this does not
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necessarily imply that the Fast parameterization is “better” than the Slow. From a system’s point
of view, both parameterizations can be used to resolve the Output dependency. The technically
important difference between the parameterizations is the utilization of CPU resources. The Fast

parameterization requires 100 units of CPU whereas the Slow parameterization requires only 50

units.
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Figure 23 — Extended Exemplary Smart Peer Group

Given these components with the corresponding parameterizations, there are a number of valid
configurations that can be used to execute the application. These configurations differ
depending on the choices for the Input dependency, i.e. the location of the Remote File Access,
and the Output dependency, i.e. the parameterization and the location of the Simple Viewer.
Without considering the resource constraints, there are five possible options for Output and
three possible options for Input. Thus, there are fifteen structurally valid configurations.
However, due to a lack of Display resources on the desktop, it is not possible to use the Remote
Viewer in any configuration. Furthermore, due to a lack of CPU resources on the desktop, it is
not possible to use the Remote File Access on the desktop together with the Fast
parameterization of the Simple Viewer on the same computer. As a result, the valid

configurations in this example sum up to eleven.

To continue, assume that initially the application has been configured with the Presentation
Control on the PDA, the Remote File Access on the laptop and the Simple Viewer with the Fast
parameterization on the desktop. After this configuration has been started successfully, the
laptop leaves the smart peer group, for instance, because the user decided to turn off the laptop
to save the remaining battery power. As shown in Figure 24, the initial configuration will become

invalid due to the unavailability of the Remote File Access induced by the unavailability of the
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laptop. As a result, the now invalid configuration needs to be adapted in order to continue the

execution of the application.

Given the remaining three computers, i.e. the PDA, the desktop and the server, with their
components and their possible parameterizations, there are multiple ways of adapting the
configuration in such a way that it becomes valid again. Figure 25 shows three adaptations
resulting in the configurations A, B, and C that exhibit significant conceptual differences.
Depending on the properties of the smart peer group and the implementation of the individual
components, these may also result in vastly different reconfiguration latencies and user

distraction.
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Figure 24 - Effects of Unavailable Laptop

Configuration A and B can be derived from the original configuration shown in Figure 24 by using
the Remote File Access component on the desktop to resolve the unresolved Input dependency.
Yet, if this is the only change to the configurations, they will not be valid due to a lack of CPU
resources on the desktop. As a consequence, the utilization of the Remote File Access
component on the desktop necessarily implies a change to the configuration of the Output
dependency as well. In configuration A, this is reflected by replacing the Fast parameterization of
the Simple Viewer on the desktop with the Fast parameterization of the Simple Viewer on the
server. In configuration B, the Simple Viewer on the desktop is adapted by changing its
parameterization to Slow. Due to the switch from the Fast parameterization to the Slow
parameterization, the Simple Viewer requires only 50 units of CPU resources. The freed
resources can then be used by the Remote File Access component. In configuration C, this
shortage of CPU resources on the desktop is avoided altogether by using the Remote File Access
component on the server instead of on the desktop. As a consequence, it is not necessary to

change the configuration of the Output dependency.
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The actual cost in terms of resulting user distraction for each of these configurations may vary
depending on the characteristics of the smart peer group and the component implementations.
Due to the nature of reactive adaptation, the distraction resulting from the replaced Input
dependency cannot be avoided. Yet, whether it is less distractive to use the Remote File Access
on the server or on the desktop depends on the difference between the reconfiguration
latencies. If the reconfiguration latency for the Remote File Access on the server is lower than
the reconfiguration latency for the desktop, this reconfiguration is clearly favorable as it does
not require further changes to the configuration of the Output dependency. If the
reconfiguration latency for the Remote File Access on the server is higher, then it might make
sense to consider the configurations A and B as well. When comparing the costs of these
configurations, it is not sufficient to solely compare the reconfiguration latencies. The reason for
this is the (avoidable) structural change implied by configuration A which may cause additional
user distraction because the user interface of the application is no longer displayed on the
desktop. Thus, to determine the optimal configuration it is necessary to jointly compare all

factors causing user distraction.
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Figure 25 — Possible Adaptations

Besides from demonstrating the interrelation of the different sources of user distraction, the
example also demonstrates two further key challenges of automatic adaptation. First, it shows
that the resulting user distraction cannot be captured independently for each sub-tree of the
configuration. Instead, the distraction resulting from an adaptation is given by the total
distraction resulting from all effects on all sub-trees of the application. Secondly, it shows that
due to resource conflicts it is not possible to minimize the distraction independently within the
sub-trees of an application. As an example consider the configurations A and B. There the choice
of using the Remote File Access on the desktop makes it impossible to keep the configuration of

the Output dependency as it is.
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Finally, it should also be immediately apparent that minimizing the user distraction in terms of
replaced user interface components or reconfiguration time can easily increase the search
latency. Clearly, the search latency can be minimized by computing only one configuration but
the resulting configuration can introduce an intolerably high distraction with respect to the
remaining factors of distraction. To handle this, we define the reconfiguration latency and the
user distraction resulting from replaced components as optimization goals during the adaptation
and we incorporate the minimization of the search latency as an overall design goal for the

adaptation algorithm.

4.1.2 Formalization

In order to formalize the adaptation problem, we can reuse most definitions that we introduced
for the configuration problem. To avoid the duplication of all definitions, we would like to refer
to Section 3.1.2 for detailed descriptions. However, to make the following description readable,

we remind that we model a configuration as a tree of instances G =(E,V) with its
corresponding mapping to contracts y:V — C .The contracts of instances sharing directed

edges adhere to the Boolean matching function x(d, p):DxP —{true, false} between

component demands  6(¢)={d,,,...d; J=(DU{}) and component provisions

7z'(Ci) =P, €P. In order for G=(E,V) to represent a valid configuration, we furthermore

require that each component demand is met by exactly one provision of one instance and that
the smart peer group is able to satisfy the resource requirements of all contracts for all instances

of the configuration simultaneously — see conditions one to five in Section 3.1.2.

In the most general form, the adaptation problem can be seen as a configuration problem in

which we search for the best configuration, i.e. the one that introduces the least cost, as

opposed to anyone. As a result, we require some global function ¥/ ., that determines the

cost of a given configuration by mapping it to some integer value in N, for example. The input

parameters of this global cost function depend on the cost factors that should be considered. As
indicated by the example in the previous section, the cost factors can depend on the changes

that are made to instances as well as changes that are made to contracts. These changes can be

evaluated using the original tree of instances G° = (E°,V°") with its mapping to contracts

old .Vold new

— C° and their new pendants, i.e. G™" and X . Thus, for a specific problem we

X
require the global cost function to map the old configuration and all potential new

configurations to some non-negative costs.

Contrary to this definition, it is usually possible and desirable to represent the global cost

function as an aggregation of local costs. In addition to simplifying the formulation of the global
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cost function, the availability of a local cost function facilitates the development of local
heuristics that, for instance, try to avoid seemingly bad options — that is, options that are
introducing high costs. To define such a local cost function, we can base the computation of the
global costs on the costs for individual modifications. In the subsequent section, we describe a
cost model that allows the local approximation of the resulting costs on the basis of changes to

the path of an instance to the parent.

This model essentially allows us to assign costs to the individual edges of G"®". Using these local

costs of edges in E"", we can then compute the global costs by summing up the costs of the
individual edges, i.e. ¥ o, is then given by zliil |1//|00a, (e, e E™) where ., depends only

on parts of G°1, )(Old,G"eW and ™" . On the basis of the local cost function, we can then
define the adaptation problem as global minimization problem over the search space given by

the corresponding configuration problem. That is, given the smart peer group M ={ml,..., m,}
with the existing and potentially invalid configuration G° = (E° Vo), »°¢:v°l 5 cov
find a tree G"™ =(E"™ V") with a function that maps instance to contracts

2" V™ C™ such that G™, ¥"" resembles a valid configuration — according to the

conditions one to five in Section 3.1.2. Thereby, minimize the following term:

(6) lelil |l//local(ei € EneW)

4.1.3 Complexity

Since the adaptation problem is essentially an extended version of the configuration problem, it
should be immediately clear that the complexity of the adaptation problem can only be equal or
higher than the complexity of the configuration problem. The question whether the problem
exhibits a strictly higher complexity depends on the characteristics of the local cost function.
Clearly, if the local cost function is constant and zero, i.e. it assigns zero costs to all options, both
configuration and adaptation exhibit the same complexity. However, for non-trivial cost
functions, the overall problem of adaptation is strictly more complex since the problem lies no

longer in NP.

To follow this argumentation, consider that if the adaptation problem would lie in NP, it must be
possible to determine an algorithm that validates a solution in polynomial time. So given a non-
deterministically “guessed” solution, we need to validate whether the solution is correct. To do
this, we need to determine whether the solution is correct with respect to the conditions one to
five stated in Section 3.1.2. As discussed previously, it is possible to derive an algorithm that

does this in polynomial time.
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Yet, according to condition six stated in Section 4.1.2, we also need to determine that the
solution is optimal, i.e. it needs to exhibit minimum costs. Although there are specific cases, e.g.
cases where the costs are exactly zero, where we can guarantee optimality, we cannot derive an
algorithm that is capable of dealing with all cases. To clarify this, consider that validating the
optimality of a result requires the comparison with other solutions, in general. Since finding a
single solution lies already in NP, performing the computation of configuration as well as the

comparison cannot lie in P.

4.1.4 Requirements

Based on the formalization and the complexity analysis of the adaptation problem, we can
derive the requirements on solving this problem automatically. For the sake of the following
argumentation, it is important to stress that we are focusing on reactive adaptation, i.e.
adaptation in cases where the currently executed configuration has become invalid already.
Thus, analogous to the configuration problem described in the previous chapter, the user cannot
use the application unless its configuration has been adapted successfully. Due to this reason,
the overall requirements of automatic configuration remain valid for automatic adaptation as

well (see Section 3.1.4).

Specifically, this means that we must also require completeness in the sense that an algorithm
for automatic adaptation should be able to find a new configuration, if it exists. Otherwise, the
user cannot continue to use the application. Undoubtedly, this could easily frustrate users.
Furthermore, since the work of the user is interrupted until the new configuration has been
found, we must also demand efficiency. Apart from that the overall scenario for automatic
adaptation corresponds to the one of automatic configuration. Thus, we must keep the
requirements for optimism, distribution as well as resilience. However, due to the fact that
automatic adaptation should minimize the user distraction, we need to extend the requirements

of automatic configuration accordingly.

Optimality

Under the assumption that all valid configurations are equally well suited for adaptation, the
search for a new configuration corresponds to the configuration problem. However, when an
application needs to be adapted, there is still an invalid configuration available. Clearly, this
configuration might lack some necessary component instances or it might require more than the
available resources. Yet, if the adaptation algorithm does not take this configuration into
account, the resulting configuration might differ significantly from the original one. As a result,
even small changes that can be easily fixed, e.g. by changing the parameterization of a single

component, can cause significant changes.
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Besides from introducing a higher delay by an unnecessarily increased reconfiguration latency,
this can also lead to changes that are immediately perceivable by the user and which can
therefore, increase the distraction resulting from adaptation. Of course, due to the fact that we
are focusing on reactive adaptation, some distraction cannot be avoided. If the level of
distraction is modeled in terms of a suitable cost function, it becomes apparent that approaches
for automatic adaptation should try to minimize the resulting costs and ideally, they should be

able to find the optimal solution.

Unfortunately, due to the complexity of the resulting problem for a non-trivial cost function,
determining the optimal solution conflicts with the goal of efficiency. In fact, even seemingly
small problems can easily cause intolerably high adaptation delays since the corresponding
optimization algorithm needs to compute and evaluate multiple configurations. Thus, minimizing
the perceived user distraction requires a deliberate trade-off between the decreased distraction
due to configurations with lower costs and the increased distraction for higher search delays. In
essence, this means that algorithms for automatic adaptation need to make use of adequate
optimization heuristics. In the next section, we present such a heuristic and we show how it can

be integrated into the configuration algorithm described in the previous section.

4.2 Approach

To minimize the overall user distraction resulting from adaptation, we first define a basic cost
model that approximates the user distraction in terms of reconfiguration latency and replaced
components. The cost model allows us to express the problem of minimizing the user distraction
mathematically as minimization problem. The proposed cost model captures all relevant details
of the original (invalid) configuration but in order to avoid a high overhead during its
initialization, it abstracts from all cost factors that depend on the properties of the new
configuration. While this may result in an imprecise estimation, it ensures that the necessary
computations do not conflict with the requirement of optimism. Specifically, the initialization of
the model does not require the complete or even partial unfolding of the search space. All
necessary computations can be performed within a single traversal of the available parts of the

original configuration which must be done anyway.

Even with such a simple cost model for approximating the user distraction, the resulting
optimization problem is NP hard. As a consequence, it is technically possible to reuse existing
approaches for constraint optimization to tackle this problem. However, due to the
computational complexity of the problem, we cannot target a complete or a bounded-error
optimization since this can easily lead to intolerable search latencies. Similarly, we cannot
perform the optimization within an a priory fixed bound since a meaningful bound will vary

depending on the preferences of the user, the type of application and last but not least the
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characteristics of the smart peer group. To clarify this, we briefly discuss the benefits and

limitations of a possible optimization approaches in the next subsection.

On the basis of this discussion, we propose a light-weight optimization strategy that is a
combination of two greedy heuristics. As we will show, these heuristics can be incorporated
easily in the previously described configuration algorithm. The basic idea behind both heuristics
is the targeted utilization of the available degrees of freedom — that is the undefined value
ordering and the partially defined variable ordering during configuration. As we will show in the
following sections, simple yet effective value and variable orderings can be constructed on-the-
fly from the cost captured by the cost model and their integration requires only insignificant

amounts of additional ordering information that can be attached to existing messages.

Since both heuristics are greedy, they are obviously sensitive to the chosen starting point of the
computation. In order to mitigate this, it is possible to execute the overall algorithm multiple
times using a randomized starting point in cases where the resulting cost is comparatively high
and the already experienced search latency is low. Such an incremental approach has the benefit
of quickly producing a valid configuration while still providing a way of improving the previously
found configurations. However, the evaluation of the overall approach suggests that in many
scenarios the initial solution is sufficiently good already. Thus, iterations are only required in
some cases. In these cases, it is often possible to find a solution that is close to the optimum

with a small number of iterations.

4.2.1 Constraint Optimization

As indicated previously, it is possible to interpret the adaptation problem as a general Constraint
Optimization Problem. This interpretation is quite natural considering the fact that we have
already applied a constraint satisfaction technique to solve the configuration problem. Just like
adaptation can be seen as a generalization of configuration, Constraint Optimization Problems
can be viewed as a generalization of Constraint Satisfaction Problem and there are a set of

equivalent ways of formalizing Constraint Optimization Problems.

Given the formalization of the adaptation problem described above, an obvious way would be to
model it as a classical Constraint Satisfaction Problem that has a number of soft constraints with
associated weights in addition to the hard constraints of the satisfaction problem. The goal is to
find a solution that satisfies the hard constraints and that minimizes the sum of the weights of
soft constraints that are not met. In this formulation the cost for different alternatives during
adaptation are represented as soft constraints whereas the constraints that define a valid

configuration can be expressed as hard constraints.
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Under the assumption that the weights of the soft constraints are finite, it is simple to remove
the differentiation between soft and hard constraints by assigning infinite weights to hard
constraints. After the best solution has been determined it is simple to check its validity by
determining whether it results in finite costs. If the best solution does not have finite costs, the
underlying Constraint Satisfaction Problem is over-constrained and the returned solution does
not represent a valid configuration. Otherwise, the returned solution is one of the best solutions,

i.e. it is one of the configurations that exhibit the lowest adaptation costs.

Of course, it is possible to formulate a distributed variant of constraint optimization in order to
model the fact that the constraints and variables are distributed among a set of agents. Similarly
to Distributed Constraint Satisfaction Problems, there exists a considerable body of knowledge
on solutions for Distributed Constraint Optimization Problems. In the following, we provide a
rough overview over some of the existing solutions. Thereby, we first introduce a classification
of the design space for optimization techniques and we use this classification to sort the pointers
to different algorithms. However, since we are not relying of the implementation of these
algorithms, we only describe their main ideas and we refer to the original publications for a

more detailed description.

4.2.1.1 Optimization Technique Design Space

Existing optimization techniques can be classified on the basis of the guarantees that they
provide with respect to their solutions. The two extremes are guaranteed optimality and no
guarantees at all. In between it is possible to revise techniques that guarantee optimality with
respect to a certain bound. For some problems, such bounds may be useful since a bounded
optimization can result in significantly less computational effort than the complete optimization.
However, the applicability of such techniques depends on the availability of a suitable bound
and on the type of problem. Although, techniques that provide guaranteed or bounded
optimality are theoretically appealing, they often induce a computational complexity that makes
them prohibitively expensive. As a result, it is often not possible to rely on them in practice.
Thus, many problems need to be solved by some heuristic that makes a suitable trade-off

between computational effort and typical solution quality.

Besides classifying optimization techniques on the basis of their guarantees, it is also possible to
classify individual algorithms depending on their characteristics, e.g. sequential vs. parallel,
centralized vs. distributed, required amount of preprocessing, etc. Since automatic adaptation
inherits the requirements of automatic configuration it should be clear that we are mostly
interested in solutions that are parallel, distributed and require only little preprocessing. As a
consequence, the following description of optimization techniques focuses on those techniques

that have led to one or more algorithms with these characteristics. Albeit, we already mentioned
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that our approach is heuristic, we also describe some complete and bounded optimization
techniques. This allows us to indicate why we are not relying on them as basis for automatic

adaptation.

4.2.1.2 Complete Optimization

Probably the simplest complete optimization technique is the enumeration of all solutions with
their respective costs. If this technique is applied, the best solution can be picked from the set of
solutions as the one with the lowest costs. Obviously, this technique cannot be applied to
continuous optimization problems or problems that do not exhibit a finite set of solutions.
Fortunately, automatic configuration and adaptation of PCOM applications are both discrete and
finite due to the fact that each component factory provides only a discrete set of contracts and
that the application model does not allow cycles. However, for many practical problems —
including adaptation — the enumeration of all solutions is costly. This can either be a result of the
fact that the number of solutions is high or that computing them is expensive. As a consequence,
the computational effort for enumerating all possible solutions can be considered to be

prohibitive for automatic configuration.

The efficiency of complete enumeration can be improved by aborting the computation of a
solution as soon as it is possible to show that the current partial solution cannot be part of the
best. This technique is usually called branch and bound. The idea is to keep track of an (over-)
estimated upper bound for the costs of the optimal solution. Initially, this bound is set to infinity.
Thereafter, the solutions are computed sequentially. During the computation of the solutions,
the costs for the current partial solution are estimated whenever the partial solution is
expanded. The estimation must ensure that the costs are never overestimated. If this condition
can be met, the computation of the current solution can be aborted as soon as the estimated
costs for the partial solution are higher than the bound. The rationale for this is that there is at
least one solution that exhibits lower costs. If the current partial solution can be expanded to a
solution with lower costs than the costs estimated by the current bound, the bound can be
adjusted — that is decreased — accordingly. As a result, the initially overestimated bound will

eventually become exact.

The basic idea of branch and bound dates back to the 1960s and the first algorithm has been
formulated in 1965 (Dakin, 1965). Since then there have been a good deal of improvements on
the basic scheme that resulted in a variety of algorithms. An early example for an algorithm in
the domain of distributed constraint optimization is the synchronous branch and bound
algorithm described in (Hirayama & Yokoo, 1997). As indicated by its name, this algorithm simply
translates the idea of branch and bound into a distributed setting by means of a predetermined

static variable ordering. As a result, it does not provide any speedup since it does not support
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parallelism. The no commitment branch and bound algorithm presented in (Chechetka & Sycara,
2006) improves on this by allowing parallel computations in unrelated parts of the search space.
Finally, the branch and bound ADOPT algorithm described in (Yeoh, Felner, & Koenig, 2008)

resembles a completely asynchronous version of the branch and bound strategy.

Branch and bound drops a partial solution as soon as it is possible to prove that all possible
completions cannot be better than the best solution found so far. To do this, it relies on an
overestimated upper bound of the optimal costs of all solutions. Besides that it is also possible
to use a lower bound underestimation over all remaining partial solutions to ensure that they
cannot be better. This technique is usually called best first search. The key idea for this is to
continuously (over)estimate the minimum costs of the current partial solution and to
underestimate the minimum costs of all other solutions. As soon as it turns out that there might
be another assignment for the current partial solution that could have lower costs, the current
partial solution is dropped in favor of the seemingly better one. During the process of expanding
a changing set of partial solutions, the estimations are gradually improved due to the fact that
more or larger partial solutions are explored. If the process completes, it is clear that the current
complete solution must have the lowest cost since the underestimated costs of all other

solutions are already known to be higher.

Similarly to the branch and bound technique, there are asynchronous versions of the best first
optimization technique that have been specifically developed to solve Distributed Constraint
Optimization Problems. ADOPT (Modi, Shen, Tambe, & Yokoo, 2003), (Modi, Shen, Tambe, &
Yokoo, 2005), for instance, is a polynomial space algorithm that enables asynchronous best first
search. The communication structure in ADOPT is comparable to asynchronous backtracking, i.e.
it organizes the constraint network as a depth first search tree with directed links that reflect
constraints and it sends variable values across the links. However, instead of sending
backtracking messages in case of a conflict, ADOPT continuously exchanges cost messages that
contain a partial cost estimate. Within the tree these partial cost estimates are aggregated in a
bottom up fashion and eventually they are transferred to the root as complete cost information.
In order to eliminate inconsistent cost aggregations, cost message contain context information
that is similar to the nogoods in asynchronous backtracking. As soon as a potentially sub-optimal
variable assignment is revealed by means of a partial cost estimate, the variables are changed
accordingly. Thus, the final solution will eventually be optimal. The basic scheme used in ADOPT
can also be extended with so-called valued nogoods as done by ADOPT-ng (Silaghi & Yokoo,
2006). This enables ADOPT to adapt the original communication graph as done in asynchronous

backtracking which can improve the speed of convergence.

MARcCUS HANDTE



120 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

4.2.1.3 Bounded Optimization

Even with advanced techniques that cutoff irrelevant parts of the search space such as branch
and bound or best first search, the computational effort for finding the optimal solution is often
too high. In addition, in many practical problems, it is not necessary to find the optimal solution.
Instead, it suffices to find a solution that is close to the optimum. This relaxation can be
exploited with optimization techniques that guarantee optimality with respect to a certain
bound. Such bounds can either be expressed relative to the optimal solution in which case the
distance between the produced solution and the optimal solution is guaranteed to be at most ¢ .
As a result, these techniques are commonly referred to as ¢ - approximations or bounded error
approximations. The other alternative for a bound is to express it absolute a priori, i.e.

independent from the optimal solution.

A practical advantage of bounded optimization techniques is that for many problems finding a
good solution or one that is close to the optimum is much simpler — in terms of computational
effort — than finding the optimal solution. Or to put it in other words, after a good solution has
been found, a lot of computational effort is required to achieve the last (minor) improvements.
A potential disadvantage of bounded techniques is that it may be hard to define a useful bound.
Due to their very nature, &- approximations require an efficient way to estimate a good lower
bound for the optimal solution. In addition, it is necessary to define a suitable ¢, i.e. one that is
sufficiently small but avoids the high effort for the complete optimization. A similar argument
can be made about absolute bounds that are defined a priori. There the fixed bound may be too
restrictive or simply not relevant. This is often problematic in cases where the cost of the

optimal solution exhibits major fluctuations across different problem instances.

Bounded error and fixed bound approximations for Distributed Constraint Optimization
Problems can be derived from complete optimization techniques. For instance, it is possible to
derive a bounded error approximation from the best first search performed by the ADOPT
algorithm (Modi, Shen, Tambe, & Yokoo, 2005). The basic idea behind this is rather straight-
forward. Instead of switching directly to the partial solution that might exhibit lower costs, the
algorithm simply defers switching until the seemingly best solution has a distance of ¢ . Thus, the
first solution found by the algorithm has a distance of at most & from the best possible solution.
Similarly, it is rather simple to derive a fixed bound search from branch and bound techniques.
To do this, one may simply stop the enumeration of further solutions, after the first solution

with acceptable cost has been found.

Another way to perform this type of optimization is to apply constraint satisfaction techniques
iteratively as described in (Hirayama & Yokoo, 2000). The main idea thereby is to consider the

optimization problem as a sequence of gradually relaxed satisfaction problems. The sequence
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can for instance be created by gradually removing sets of constraints from the original problem.
If the relaxation removes constraints systematically on the basis of increasing cost, the solution
to the first (least relaxed) problem represents an optimal solution of the corresponding
optimization problem. Clearly, this approach suffers from the potential combinatorial explosion
of possible relaxations. However, bounded approximations greatly reduce the number of
combinations since many (i.e. weak) relaxations do not have to be considered and others (i.e.
too strong relaxations) can be ruled out as well. Interestingly, it is also possible to reverse the
search order. That is to move from most relaxed to least relaxed problem. The key idea is that if
all problems with a certain cost cannot be solved, all problem instances with lower cost (that is

less relaxed problem) cannot be solved as well since they would only be more constrained.

4.2.1.4 Heuristic Optimization

Although, bounded optimization techniques can drastically reduce the computational effort for
optimization in practical scenarios, in many cases they are still too expensive. To reduce the
effort for optimization even further, it is necessary to rely on heuristic techniques. However,
heuristics do not provide guarantees with respect to the quality of their solutions. From a
theoretical point of view, many heuristic techniques can even return solutions that are arbitrarily
bad with respect to quality. Yet, good heuristics usually take problem-specific domain knowledge
into account to ensure that the produced solutions are acceptable for typical problem instances.
As a consequence, good heuristics are often preferable over techniques with provable
properties, because they provide good results for the relevant problem instances while causing a

considerably lower computational effort.

From a high level point of view, heuristics can be classified into two broad categories. The first
category entails constructive heuristics that try to come up with a good solution during the initial
construction. Typical examples are greedy algorithms. Given a set of choices during the
construction of a solution, a greedy algorithm may simply pick the one with the seemingly
lowest cost without revisiting the choice again. Obviously, such techniques do not result in
optimal solutions in cases where globally optimal choices cannot be made independently.
However, due to their simplicity and low computational complexity, greedy algorithms are
frequently applied to problems where there is only a low interdependency between individual
choices. A simple way to improve greedy algorithms, is to increase their “field of view” so that
they also consider the effects on (some) other choices as well but this increases the

computational effort for making the next “best” choice.

The second category entails iterative heuristics that try to improve upon a solution gradually.
Typical examples are algorithms that are based on local search. Starting from one solution, they

construct and analyze a (hopefully) small set of neighboring solutions. If one of the neighboring
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solutions is better, they use this solution to compute the next set of neighboring solutions. This
process is repeated until the neighboring set does not contain a better solution, in which case
the current solution is returned as the seemingly best. Although this technique is fairly simple, it
can produce good results. Yet in general, it suffers from two potential deficiencies. First, the set
of neighboring solutions can be quite large. If this is the case, choosing the next solution from
the set can be quite costly. Secondly, since the next solution must be strictly better than the
current solution, the overall approach is only capable of finding local optima. Depending on the
type of problem, there may be many such local optima and some of them may be significantly

worse than the global optimum.

To overcome the problem of large sets of neighboring solutions, it is possible to reduce the set
heuristically. An example for this approach is the so-called fast local search described in (Tsang &
Voudouris, 1995). The basic idea is to heuristically deactivate some ways of creating neighboring
solutions if they have not created better solutions in the past. If it turns out that a similar way of
producing neighbors has succeeded, the deactivated production rules are activated again. The
selection procedure of how production rules are activated or deactivated depends on domain
knowledge. However, the general idea has been applied successfully to a number of different

problems, including travelling salesman and resource scheduling.

To overcome the problem of getting trapped in local minima, there are two alternative
approaches. First, one may simply run the overall search using multiple starting solutions. This
approach can even lead to (provable) optimal results if it is possible to select the starting points
in such a way that they cover all local optima. However, for non-trivial problems it is often hard
or even impossible to perform this selection properly. Alternatively, one may modify the strictly
greedy behavior of the iterations by integrating some form of noise (Selman, Kautz, & Cohen,
1994). Noise can be integrated randomly, for instance, by allowing the search algorithm to pick a
seemingly worse solution or by introducing a non-neighboring solution in the set of neighboring

solutions from time to time.

Instead of relying on the power of randomization, it is also possible to use a more systematic
approach such as guided local search (Tsang & Voudouris, 1999), for example. The basic idea of
Guided Local Search is to modify the cost function every time a local minimum is found by
means of local search. The modification of the cost function is done in such a way that unwanted
features of the locally optimal solution are penalized increasingly. So after the cost function has
been modified, the solution might no longer be optimal since some of its unwanted features are
now resulting in high costs. This strategy effectively directs the local search to different areas of

the search space and thus, it can often avoid hangs in local minima.
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Alternatively, it is also possible to utilize techniques that are inspired by natural phenomena. A
frequently used example is simulated annealing, e.g. (Martin & Otto, 1993). A survey of
applications of Simulated Annealing can be found in (Koulamas, Antony, & Jean, 1994).
Simulated Annealing mimics the behavior of a solid that evolves to thermal equilibrium. The
basic idea of its application to optimization problems is to perform local search that may
sometimes pick a solution that does not reflect the optimal neighbor. The probability for picking
such a suboptimal solution is based on a slowly decreasing temperature value — the higher the
temperature, the higher the chance of selecting a suboptimal solution. Although, this technique
is based on randomization, it is possible to show that it converges with high probability, given

that the temperature decreases slowly enough.

Apart from simulated annealing, there are other optimization techniques that are based on
natural phenomena. Although these techniques are iterative, they do not use local search
directly. A primary example is genetically inspired optimization techniques that mimic evolution,
e.g. (Affenzeller & Mayrhofer, 2002). The idea is to start off with a set of solutions — a so-called
population — that are manipulated by means of genetic operators such as mutation or cross-over
that are found in biological systems. Newly created solutions are evaluated by means of a fitness
function. If the new solutions are fit enough they will survive and continue to evolve, if they do
not withstand the fitness test, they will die. Genetic techniques can also be executed in parallel
(Rivera, 2001) to speed up the optimization. Unfortunately, the overall approach also mimics
some unwanted properties of evolution — that is, for many problems it requires a considerable

amount of time and resources.

4.2.2 Cost Model

Independent from the chosen optimization technique, it is necessary to formulate a cost model
to capture the quality of alternative solutions. As a minimum requirement for reactive
adaptation, the cost model must be able to measure the total cost for each valid configuration
that can be used to adapt a given invalid configuration. Although the cost may also be expressed
in terms of an ordinal scale that simply provides an ordering, usually it is possible to measure the

costs on the basis of an absolution scale.

In addition, it is frequently desirable to compute the total cost on the basis of local costs that
result from individual decisions made during the configuration. Many of the above described
techniques depend on the availability of a model that can be computed incrementally. As an
example consider branch and bound that relies on cost estimates for partial solutions in order to
reduce the search in areas of the search space that are provably irrelevant. Other examples are
constructive heuristics that rely on local cost estimates for individual options to perform their

greedy decisions.
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In the following, we derive a cost model that approximates the cost of adapting PCOM
applications. The proposed model supports the incremental computation of costs via
aggregation and thus, it allows the utilization of a broad range of optimization techniques.
Although, this model itself is problem-specific by its very nature, the proposed approach for
optimization depends only on a subset of its properties. Thus, the optimization heuristics
presented in the next section can be applied to other models as well, given that the main

requirements are fulfilled.

4.2.2.1 Cost Factors

In order to understand the design rationale of our cost model, it is useful to revisit the possible
sources of adaptation cost. As indicated previously, the overall adaptation cost can be broadly
classified into cost resulting from search and cost resulting from modifications to the original
configuration. Both types of cost cannot be minimized independently. Thus, we aim at
minimizing the cost for search by means of a suitable — i.e. a light-weight — optimization
technique. Consequently, the cost model itself does not have to capture the cost for search.

Instead, the model can concentrate on the remaining cost factors, i.e. the cost for modifications.

The cost for modifications can, in turn, be classified depending on their sources. On the one
hand, there are non-technical sources such as the distraction resulting from a modification to a
component that provides a part of the user interface. Such sources cannot be captured without
additional help from the component developer, since the actual cost depends on the
functionality provided by the component. As a consequence, we enable the application
developer to specify this manually per component instance. On the other hand, there are
technical sources such as the delay introduced by switching from one configuration to another.
These sources can be approximated automatically since the relevant factors are known. As a
result, the cost captured by the model may consist of a combination of cost factors that are
specified manually by the component developer and cost factors that are approximated

automatically by the component system.

To enable the incremental estimation of costs, it is necessary to determine the total cost on the
basis of the individual modifications that need to be performed. In general, we can distinguish
the following two basic cases. First, the parameterization of one component instance may
change and secondly, one component instance may be replaced by another component
instance. When comparing the two modifications, it becomes clear that the cost for changing a
parameterization can be neglected. This is an immediate result of the fact that the modification
of a parameterization does not affect the structure of the application and it can always be
handled locally. Of course, a modification of a parameterization may in turn lead to further

modifications. However, these modifications induce further costs that should be aggregated by
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the model when looking at the overall costs. In contrast to modifications of parameterizations,
replacing a component instance with another component instance will usually affect two
computers that need to coordinate in order to avoid a loss of application-specific state.
Moreover, these changes may cause visible effects and thus, they may introduce considerable
costs. As a result, our model focuses on capturing the costs induced by replaced component

instance.

The cost factors for replacing a component instance can be classified in factors that depend on
the existing configuration and cost factors that depend on the new configuration. Cost factors of
the existing configuration are the delay induced by storing the state of a component instance
and by transferring this state to the parent instance. The cost factors that depend on the new
configuration are the delay induced by transferring the state from the parent to the new
instance and the delay induced by restoring the state. To simplify this, we can assume that the
costs incurred by the transfers are independent from the original and the new configuration.
Furthermore, we can also assume that they are directly proportional to the amount of the state
held by the component instance. These simplifications are valid since the transfer time is usually
bounded by the bandwidth of the network. Furthermore, we can neglect the delay induced for
storing and restoring the state, since these costs are small in practice, e.g. in most cases the

component instances will directly transfer its internal fields.

A potential complication arises from the mechanisms of the component system. In order to keep
the application-specific state consistent without requiring more complex coordination, PCOM
always replaces complete sub-trees. Thus, the state stored by the original component instance
must enable the new component instance to restore the state of its children as well.
Consequently, it is possible to approximate the state that needs to be stored for a component
instance as the sum of the states of the original sub-tree spanned by it. However, it is
noteworthy to point out that this is a course-grained estimation since the amount of state that
needs to be transferred during restoration may depend on the new configuration as well. Thus,

the real costs may be higher or lower.

To clarify this, consider that it is the deliberate goal of the component model to enable a high
compositional flexibility. Thus, it is possible that a component instance A that does not require
any further component instance may be replaced with a component instance B that requires
two further component instances C and D. If component A is replaced, the overall state of A
must be transferred to B which will then use this state to initialize C and D. Thus, the overall
amount of state that needs to be transferred during restoration will be higher than the overall

amount of state that needs to be transferred to store the state. Similarly, if B, C and D would be
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replaced by component instance A, the actual amount of state that needs to be transferred

during restoration might be lower.

Yet, in order to account for these differences in the cost model, it would be necessary to
compute the structural differences between the original and the new configuration during the
adaptation. Due to the fact that some structurally valid configurations may not result in valid
configurations due to resource constraints, this computation cannot be done in advance. As a
result, including these factors in the cost model could significantly increase the costs incurred by
search since comparing the cost of two alternatives would require the computation of both. As a
consequence, we do not to model these differences. This limits the quality of the approximation

but it greatly simplifies the computation of the cost model.

4.2.2.2 Formalization

To formalize the resulting cost model, we first need to define the notion of a replaced
component instance. Since PCOM replaces complete sub-trees, the notion of replacement does
not simply correspond to the removed component instances. Instead the replaced component
instances are solely the removed instances whose ancestors have not changed. In other words,
we can define the actually replaced instances as the set of the topmost instances of a

configuration that have been removed.

We reuse the definition of the tree of component instances G = (E,V) introduced previously to
formalize the configuration and the adaptation problem, respectively. Remember that this tree
G =(E,V) consists of the nodes V ={V,,...,V,} and the directed edges E ={g,,...,€, ;} where
V; represents a component instance and € = (VJ-,Vk) represents a dependency of the
component instanceV; on the component instanceV, . Based on this, we can define the parent
relation P(Vi) of component instance V; as the set that contains the instances depending onV;,
ie. P(v,)={v;|(v;,v,) € E}. SinceG = (E,V) represents a tree, the set returned by P(V;) is
empty for the root and it contains one component instance in all remaining cases. Intuitively, we

can define the ancestor relation A(V,) as the transitive closure of P(V,), i.e. A(V,):=P"(v).

Given two trees of instances G,y =(E,4,Voy) and G,y = (E e Vaew) representing the old
configuration and the new configuration of an adaptation, we can easily compute the set of

removed component instances as V

removed = Vord — Ve - FUrthermore, we can compute the set of

replaced instances as the set of topmost removed instances (whose ancestors have not been

removed), i.e. Vg jaced

:{Vi |Vi EVremoved A _‘Elvj : (Vj EVremoved /\Vj € A(V|)}
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The cost resulting from a replacement of a single component instance V; can be computed locally

as C,yea (V) from the amount of state T (V) carried locally by the component instance and the
amount of user distraction D(V) caused by replacing the instance. Since these two factors are
experienced independently upon replacement, we can consider them to be additive, i.e.
Ciocat(V) =T (V) + D(V). Clearly, in order to perform this computation it is necessary to express

the user distraction relative to the amount of state, e.g. replacing the component instance is as
distracting as transferring a certain amount of state, or vice versa. Alternatively, one may
consider these factors as independent dimensions, but eventually they need to be combined
somehow to support programmatic comparisons and decisions. Since the replacement of a
single component instance always replaces the complete sub-tree, it is necessary to compute

the total cost as the sum of the local costs of all component instances that are removed due to

the replacement. To do this, we can first define the set of descendants S(V;) of a component
instanceV; as the set of component instances that haveV, as an ancestor, i.e.
S(v,)={v;|v; €V AV, € A(v))}. Now, given the set of descendants S(V)={V,...,V;} of a

concrete component instanceVwe can compute the total cost C, (V) for replacing V as
S
CtotaI(V) = Clocal(v) + Zlclocal(vi) .

Finally, we can extend the computation to span the whole set of replaced components by
aggregating the total costs for all of them. This raises the question of how the total costs for
individual replacements should be aggregated. For the costs that represent user distraction in
terms of replaced component instances, it is quite clear that the costs are additive, e.g. replacing
two user interface component instances is worse than one. However, the costs for state
restorations are not necessarily behaving additively, e.g. replacing two component instances
with the same amount of state will not necessarily double the reconfiguration latency. To clarify
this, consider that the replaced component instances represent different parts of the tree. Thus,
it is technically possible to replace them in parallel. As a consequence, one might argue to
aggregate them as the maximum of all experienced individual replacement costs. However, this
is also not a precise estimate in cases where the set of computers that participates in the

configuration overlaps. As a consequence, we sum up the individual replacement costs in our

model. So if the set of replaced components V 4 consists of the component instances

replacel

.
{v,,...,V,}, we get the total adaptation cost C for all replaced components as C = ZlCtota,(Vi) .

It is noteworthy that due to this simplification, it is also possible to express the total cost of an

adaptation on the basis of the removed components, i.e. without considering the replacements
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at all. To do this, we can simply add up the individual local costs C,(V) of removed

component instances V, ynoueq -

4.2.2.3 Discussion

As discussed, the cost model described above introduces a number of simplifications that may
impact the quality of the estimate. Undoubtedly, it is possible to introduce other models that
provide better estimates. However, a more detailed cost model will also increase the effort that

is required to compute estimates. To clarify this, reconsider the three main simplifications:

First, the automatically computed parts of the model are solely based on the amount of state
held by a component instance. Thus, the model neglects the differences of storing and restoring
the state for individual computers. In order to improve the estimate, we could, for instance,
introduce weights to model the differences in storing time. However, since the time will depend
on dynamic factors such as the CPU utilization, they might fluctuate during the adaptation. As a
consequence, the more detailed information may become outdated at runtime. Similarly, in
order to improve the estimate with respect to restoration time, we would have to take the new
configuration into account. Thus, we would have to compute new configurations in order to
precisely estimate the resulting delays. Although this is possible in general, the induced

computational and communication effort can easily nullify the potential gains.

Secondly, the cost model sums up the costs that occur in different sub-trees. As explained
earlier, this estimate may be imprecise since it may be possible to replace component instances
in parallel. However, if the sets of computers that host the affected component instances
overlap, the assumption of a parallel replacement is invalidated. Similarly, if the computers are
communicating using a shared network, the assumption will break as soon as the amount of
state to transfer exceeds the available bandwidth. Thus, in order to get a more detailed
estimate, the cost model would have to account for the dynamically changing network
conditions and it would have to base its computation on the details of the new configuration as
well. As discussed earlier, it is questionable whether the achievable gains in estimation quality

would justify the additional effort.

Thirdly, the model does not capture any costs for parameterizations. As a consequence all
parameterizations are considered to be equivalent. In contrast to the previously described
simplifications, this simplification is not a result of a performance optimization. Instead, it would
be perfectly viable to model the cost of different parameterizations. However, since we assume
that parameterizations reflect modes of operation that provide similar functionality, we argue
that switching between different parameterizations will be a comparatively lightweight

operation in general. As a result, there is no technical need to model the differences with

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 129

respect to cost. If this assumption would not be valid, it would be easy to introduce the
associated costs as local costs. Similarly, it would be possible to extend the optimization

approach described in the subsequent sections.

Even though the proposed cost model is simple, it provides us with valuable information at a
very low overhead. Yet, due to the reasons discussed above the costs cannot be mapped directly
into a delay. Moreover, since the total costs also include other factors, i.e. the user distraction
resulting from replacements, it is hard to interpret the value without further knowledge. As
discussed previously, this could be mitigated by considering different cost factors separately.
However, any approach will eventually define a mapping between the factors to reason about
individual options. In summary, the total cost information as defined by the cost model enables
guided replacement decisions during adaptation since the available cost information allows us to

order component instances on the basis of their cost.

In order to determine the cost information for each component instance, it is sufficient to
perform a single traversal of all component instances of the original configuration. This traversal
is required in order to perform the aggregation of costs for sub-trees. The traversal can be
parallelized and it is possible to reuse existing messages that are required to trigger the
transitions in the component lifecycle. After finishing the traversal, each component instance
knows its own total costs and the total costs of the children that are incurred when the
corresponding instance is replaced. As we will explain in the following sections, it may be
necessary to distribute the information even further. To do this, it is possible to piggy-back the

information on other existing messages.

4.2.3 Adaptation as Constraint Optimization

On the basis of the cost model presented in the previous section, we can interpret adaptation as
optimization problem in which we want to minimize the cost (Handte, Herrmann, Schiele,
Becker, & Rothermel, Automatic Reactive Adaptation of Pervasive Applications, 2007). Since we
want to ensure that the new configuration resulting from adaptation is valid, we can reuse the
transformation described in Section 3.2.2. Thus, the variables of the optimization problem
correspond to individual dependencies of contracts. The domains are defined by the contracts
that can be used to resolve the corresponding dependency. The constraints reflect the structural

and the resource constraints.

In addition, we must use the original (invalid) configuration and the concrete values of the cost
model to introduce soft constraints with penalty values. The soft constraints can be broken but if
they are broken, the resulting cost will occur. The constraints can be created gradually, by

traversing through all options in the search space starting from the application anchor. Given a

reused instance V,of the original configuration with a dependency that is resolved by an
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instancevj, we assign C (Vj) to a single constraint for all options of the corresponding

total

variable that would cause the reuse of vi. These options are essentially all contracts that are

created by the factory that issued the contract of vi. The goal is then to find a solution that does

not break any hard constraint while minimizing the sum of the penalty values for broken soft

constraints.

As an example, consider the exemplary scenario introduced in Section 4.1.1 and three possible
adaptations shown in Figure 25. The original (invalid) configuration consists of two remaining

components, i.e. the Presentation Control and the Simple Viewer. Now assume that the costs

Ciocar Of the Simple Viewer are given by C,,,,(S) and the costs of the Presentation Control are

given by C, ,,(P). Since the Simple Viewer does not have any further dependencies, its total

loca

costC,.,,(S) corresponds to the local costs C,(S). Furthermore, the total cost of the

Presentation Control C,, (P) can then be computed as C, ., (P)+C,,.(S). Note that the

total cost of the Presentation Control does not contain any costs for the Remote File Access,
since this component instance is no longer available. As a consequence, it is not considered by
the cost model which is reasonable since it needs to be replaced in any case. On the basis of
these costs, we can introduce soft constraints using the procedure sketched above. This results
in soft constraints for reusing the Presentation Control and reusing the Simple Viewer. If we

evaluate the costs for the possible configurations shown in Figure 25, we can assign the cost
Ciotai(S) to the configuration A as it replaces the Simple Viewer. Furthermore, we can assign the

cost of 0 to the configuration B and C since both configurations reuse the Simple Viewer and the
Presentation Control. The differences between configuration B and C do not affect the cost

captured in the cost model and thus, they are considered to be equivalent.

4.2.4 Adaptation with Heuristic Optimization

The mapping outlined above allows us to apply any optimization technique for constraint
optimization. However, since our goal is to minimize both, the search latency and the cost
captured by the cost model, we do not apply a complete or bounded optimization technique. As
explained earlier, both types of techniques may cause high overheads with respect to search. To
minimize the search overhead, we propose the utilization of heuristic optimization as basis for
adaptation. However, the decision to rely on heuristic search still leaves a considerable degree of
freedom ranging from constructive techniques over iterative techniques to techniques that are

inspired by natural phenomena.

To reduce the effort for search as far as possible, we propose to apply a constructive technique

as primary basis for adaptation. In contrast to other heuristic optimizations that are based on
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iterations, a constructive optimization technique ensures that the initially constructed solution is
likely to exhibit low costs already. Most other techniques do not exhibit this characteristic.
Iterative techniques, for instance, start at some random starting point which may be arbitrarily
bad. Thus, they exhibit an initial overhead for computing the starting point. This starting point is
then subject to multiple iterations in order to improve the cost of the final solution. Clearly,
every time a better solution has been found, it is possible to use this configuration for
adaptation. However, since the computation of a single configuration may already be a time-
consuming task, computing multiple configurations may not be a viable approach for many
scenarios. A similar argument can be made about other approaches such as genetically inspired

optimization, for example.

Of course, applying a constructive optimization technique is also not free of limitations.
Depending on the concrete technique, constructing an optimized solution may be a
computationally demanding process. For instance, if the construction process frequently needs
to inspect the potential completions for the current partial solution, the overall process may lead
to significant overheads when compared to a non-optimizing approach for finding a
configuration. Alternatively, if the technique is very lightweight, it may result in a reduced or
even insufficient solution quality. Iterative techniques based on local search, for instance, ensure
that the final solution represents a local minimum. Although, this minimum may be distant from
the global minimum, there is at least a guarantee for local optimality. Achieving even such weak

guarantees via construction may be complicated.

In order to combine the benefits of constructive and iterative optimization techniques, we
propose to extend the basic constructive optimization with an iterative scheme that applies
randomization to vary the constructed solutions. The randomization naturally fills the gap
resulting from seemingly identical choices that cannot be distinguished by a greedy heuristic. On
the basis of this randomization, it is then possible to compute different solutions using the
constructive optimization technique. Thus, it is possible to rerun the construction multiple times
and to store the best solution. As a result, one may use the best configuration that has been
found so far at any point in time. This enables us to continue the optimization in cases where a
solution has been found quickly but exhibits comparatively high costs. Thus, it is possible to

dynamically balance the benefits and limitations of constructive and iterative techniques.

In the following, we describe the details of the constructive optimization technique. Thereby, we
discuss possible ways of introducing randomization. Since the iterative part of the optimization
process is straight-forward, we do not discuss any details on this. The basic principle is simply to
execute the constructive part multiple times and to store the best solution together with the

cost. In Section 6.3, we discuss the effects of randomization and iteration on different scenarios.
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Since any optimization technique needs to ensure that the resulting solutions are representing
valid configurations, we integrate the heuristics directly into the configuration algorithm
presented in the previous chapter. As a consequence, it is important to briefly revisit the basic
principles of asynchronous backtracking. However, in order to avoid duplicate descriptions, we

solely describe the most important concepts and we refer to Section 3.2.3.1 for more details.

4.2.4.1 Optimization Heuristics

For our optimization heuristics, we do not want to change the basic principles of asynchronous
backtracking. This allows us to avoid additional effort for optimization and at the same time, it
enables us to use the same algorithm for the initial configuration and adaptation. As a
consequence, we need to integrate the construction heuristics in such a way that they do not
change the communication flow and that they do not introduce significant computations.
Besides from ensuring minimal effort, this also ensures that the important characteristics of our
configuration algorithm such as completeness, resilience, distribution, etc. remain unchanged.
Since reactive automatic adaptation inherits the requirements of automatic configuration, this
approach ensures by design that all requirements except for the additional requirement on

optimality can be met effortlessly.

As basic premises, it is necessary to remember that many backtracking algorithms already
introduce a significant degree of freedom that may be used for optimization purposes.
Specifically, many backtracking algorithms can support arbitrary value and variable orderings,
i.e. they rely on the existence of an ordering but they are agnostic to the concrete
implementation. It is a well established fact that the value and variable orderings may have
significant impact on the performance of backtracking algorithms. For example, a value ordering
heuristics such as min-conflict may significantly reduce the number of backtracking steps in
practice, since it helps spreading the search through different parts of the space quickly.
Similarly, it is possible to improve the performance of backtracking by modifying the variable
ordering. The usual goal during reordering is to define the ordering in such a way that the most
constraining variables are assigned first. Since it is hard to determine an optimal variable
ordering, some backtracking algorithms even reorder variables dynamically at runtime, e.g.

(Yokoo, 1995).

Instead of using value and variable ordering heuristics to improve the search latency, we
propose to use them to optimize the constructed solution with respect to the resulting costs

which reduces the reconfiguration latency. To do this, we use the information provided by the

cost model, specifically the individual values forC to define a partial value and variable

total #
ordering that guides the individual decisions made during value and variable selection. Thus,

when the configuration algorithm is about to resolve a dependency, it will prefer options with

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 133

lower costs over options with higher costs. Similarly, when the configuration algorithm needs to

backtrack, it will first try to change the parts of the configuration that result in low costs.

The basic assumption for both orderings is that the total costs for replacing a component
instance and its potential children are known and can be accessed locally on the corresponding
computer. As discussed earlier, this can be achieved by traversing the configuration once. Apart
from this, we only require information that is already stored on each computer of the smart peer
group. Specifically, we solely require that each computer knows its own component instances
and the component instances that are directly used by them. This assumption is not limiting
since the local component instances need to know the used component instances anyway to

interact with them.

On the basis of this information, we can dynamically construct the necessary orderings on-the-
fly. The on-the-fly constructability of the ordering is an important precondition in order to
ensure that the characteristics of the configuration algorithm are not changed. To clarify this,
remember that it is a primary goal of the mapping of configuration to constraint satisfaction to
enable the on-the-fly construction. This allows the algorithm to unfold only those parts of the
search space that need to be unfolded. This, in turn, is particularly important since the basic
mapping can easily result in a high number of variables, even for a comparatively low number of

components.

In the following, we discuss how both heuristics can be integrated into the configuration
algorithm. The result of this integration is a configuration algorithm that is capable of optimizing
costs, i.e. an algorithm to solve the adaptation problem. It is noteworthy to point out that if the
cost information is not available it is still possible to use the same algorithm to automatically
compute a configuration. To do this, we can simply think of all costs being zero. As a

consequence, the adaptation algorithm can be used for configuration as well.

4.2.4.2 Value Ordering Heuristic

The idea behind the value ordering heuristic is rather obvious. Starting from the application
anchor, the configuration algorithm recursively resolves dependencies using some matching
contract. Algorithmically, this is done by creating a variable for each dependency. Thereby, the
domain of the variable is initialized according to the amount of contracts that can be used to
resolve the corresponding dependency, i.e. with the exception of the pseudo value each value
represents a certain contract. Without any value ordering, the configuration algorithm simply
uses the first possible value that does not conflict with a known constraint. However, in many
cases there will be multiple possible assignments and they may cause different costs. Thus, the
value ordering should ensure that the algorithm first tries the values that cause no cost before it

switches to values that introduce costs.
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Intuitively, the overall value ordering should be considered whenever the value of the variable
needs to be changed, e.g. due to a newly discovered resource constraint. As a consequence, it
makes sense to determine the ordering once, i.e. at the point in time when the configuration
algorithm creates the variable. The ordering can then be stored in the corresponding
configuration object, e.g. by ordering the mapping between values and contracts according to

the costs.

In order to compute the ordering, each configuration object needs three pieces of information.
First, it needs to know whether the configuration object itself represents a contract that can be
used to parameterize an existing component instance. If this is the case it needs to know which
component instances are bound to each of the dependencies. Finally, it needs to know which

contracts would allow the reuse of the potentially bound component instance.

Since the first piece of information also depends on the value selections for the parent variables,
the information whether a configuration object allows the reuse cannot be determined locally.
However, the parent configuration object can simply pass this information along recursively
when the value for the corresponding variable is selected. The second piece of information can
be gathered locally by inspecting the existing configuration and the third piece of information
can be determined by comparing the factory of the potentially bound component instance with

the factory that created the contracts returned by a remote query.

1l: Initialize Configuration Object (Contract, Is_Reuse, .)

2: ConfigurationObject Config = new ConfiguratonObject (Contract, Reuse, ..)
3: .

4: Dependency[] Deps = Contract.getDependencies ()

5: For (int i = 0; 1 < Deps.length; i++)

6: // initialize one variable for each dependency

7 Contract[] Opts = PerformQuery (Deps[i])

8: Variable Var = ConfigurationObject.CreateVariable (Deps[i])

9: Contract BndCnt = GetCurrentConfiguraton (Deps[i])

10: FactoryID BndFacID = (BndCnt==Null)? Null : BndCnt.getFactoryID/()
11: For (int j = 0; j < Opts.length; j++)

12: FactoryID FacID = Opts[j].getFactoryID()

13: Var.AddOption (Opts[j], (Is Reuse && FacID == BndFacID))

14:

Algorithm 12 — Variable Ordering Initialization

The relevant piece pseudo code for the initialization of the configuration object is shown as
Algorithm 12. When a configuration object is used for the first time, the parent of the
configuration object will send a Boolean flag that indicates whether the component instance
represented by the configuration object can be reused. Furthermore, the parent will also pass

the corresponding contract represented by the configuration object (Line 1).

In order to initialize the variables of the configuration object (Line 6-13), we step through the
individual dependencies specified by the contract (Line 4). In a simplified version, we perform a

set of remote queries to determine the potential contracts that can be used to resolve the
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dependency (Line 5). Thereafter, we can create the variable that represents the dependency
(Line 7). Furthermore, we retrieve the globally unique identifier of the factory for the currently
bound instance, if any (Line 8-9). This process can be done locally by inspecting the existing

configuration.

Finally, we can iterate over the contracts that can be used to resolve the dependency and we
add them as an option to the variable (Line 11-13). If combined with the pseudo value, the
options will form the domain of the variable. The second parameter of the method specifies
whether the corresponding option would allow the reuse of a component instance. A reuse is
possible, if the configuration object already reflects a reused component instance and if a
potentially existing instance is created by the same factory as the contract that corresponds to

the option (Line 13).

When the configuration object needs to assign a value to a variable, it can now first check the
options that have been added with the Boolean flag set to true and only if these options cannot
be used, it considers the options that have been added as false. Furthermore, if a value is used
for the first time, it can add the Boolean flag as part of the corresponding update message of the
configuration algorithm. This ensures that the receiving system can perform the initialization

correctly. Together these changes complete the variable ordering heuristic.

4.2.4.3 Variable Ordering Heuristic

Besides from preferring variable assignments with lower costs during value selection, we can
also prefer variable assignments with lower cost during backtracking. To do this, we introduce a
variable ordering heuristic that reflects the cost for replacements. The variable ordering heuristic
makes use of the fact that the ordering between the variables of unrelated paths of the tree can
be arbitrary. The general idea is that during backtracking, the algorithm should first change the
variables that select instances causing low costs before it changes variables that select instances
with high costs. Note that if two assignments conflict, the original algorithm changes the

assignment of the variable with the lower priority first. Thus, by defining the priority on the basis
of the total costs C,,, of a potentially bound component instance for each variable, we can

achieve the desired behavior.

While the value ordering heuristic can be integrated in a straight-forward manner, the
integration of the variable ordering heuristic causes a subtle problem. To clarify this, consider
that the correctness of asynchronous backtracking is based on the fact that the variable ordering

is static. Thus, if a variable has assignments that can either reuse or replace an existing
component instance, we could either assign the priority C,,, to reflect a reused instance or 0 to

reflect a replaced instance, but not both.
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Both options are suboptimal: If we assign the priority 0 to the variable, we do not get the desired
ordering. As a consequence, we should rather assign a priority of C,,. However, if the

algorithm already detected that the existing instance cannot be used, e.g. due to a resource
conflict, changing the new instance does not increase the cost. Thus, if a newly bound instance
conflicts with other parts of the application, it is more cost-efficient to change it before even

more parts of the application are replaced.

An example for such a variable can be seen in Figure 26. The left side of the figure shows a
fragment of the existing configuration that consists of two instances 1 and 2 created by the
components A and B, respectively. The right side of the figure shows an exemplary search space
during adaptation. Contract A is selected when its parent variable is set to the value X. Under the
assumption that the usage of contract A supports the reuse of component instance 1, selecting
contract B would reuse component instance 2. Selecting contract C instead would require the
creation of a new instance of type C and the restoration of the state of instance 2 in the new

instance. As discussed, we can therefore either assign the priority of O to reflect the selection of

contract C or we could assign the priority C,y,, of instance 1.

Existing Configuration Iff parent of A selects x

1 Dependency

! Contract - reserve resources for A
- select Al with value I=-1
Component A (Component A) )
(Compon ) ) - release reservation of A

- select Al with value =-1

Variable A1
Domain:-1,0, 1

Contract

v
ContractB ContractC
(Component B) ) (Component B) (Component C)

N Dependency 1] Nz iy

Not Reused

Figure 26 — Subtle Mapping Problem

To avoid this problem without further modifications to the basic principles of the configuration
algorithm, we split such variables into two variables to assign individual priorities for each of
them. To do this, we partition the possible value assignments into assignments that allow reuse
and assignments that do not allow reuse. Note that this classification is already done to
implement the value ordering heuristic (see Algorithm 12). However, since both variables are

representing the same dependency, we also need to ensure that the algorithm does never select
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a contract for both variables. This can be done by introducing an additional pseudo value (-2)

and a constraint that enforces this.

As an example for this, consider the exemplary search space shown in Figure 26. When the
algorithm initializes the domain of A1, it detects that there are assignments that can reuse the
existing instance (A1=0) and assignments that would replace the instance (A1=1). Thus, it splits
the variable and creates a new pseudo variable PsA1. The domain of the variable A1 consists of
the assignments that reuse the instance, including the pseudo values -1 (i.e. sub-tree not

required) and -2 (i.e. reuse not possible but sub-tree required).

Existing Configu| Iff parent of A selects x
| - reserve resources for A

- select A1 withvalue I=-1 R
Instance BN _ ContractA Iff Al selects -2
(Componen preference onvalue >=0 (Component A) —select Al withvalue I=-1
= else  |SSs—— else
1 - release reservation of A Sselect A1 with value = -1
- select Al withvalue =-1
T Variable A1 Variable PsA1
Domain:-2,-1, 0, Domain:-1,0

Priority=0

| Priority=C,, (Instance 2) |

\4
Smponent il
(ComponentB) ) (Component B) (Component C)

1 2

Figure 27 — Extended Mapping

The domain of the variable PsA1 is constructed from the assignments that do not reuse the
instance and the pseudo value -1 (sub-tree not required or reuse possible). The algorithm adds a
built-in constraint that models the fact that PsA1 must only select a value if A1 must be assigned
but cannot reuse an existing instance (A1=-2). Since PsA1 now shares a constraint with A1, the
configuration algorithm needs to add a link from A1 to PsA1. As a final step, the algorithm must

assign priorities to the variables. This can now be done statically. The priority of A1 is initialized
with C, ., of instance 1 since changing a selection (>=0) could add these costs. The priority of

PsA1 is 0 since changing a selection (>=0) will never add costs. The result of this procedure is

shown in Figure 27.

In order to consider the priorities during backtracking, we need to replace the existing ID-based
variable ordering. As discussed in the previous chapter, the online mapping performed by the

algorithm requires that a parent variable has a higher priority than its children. The definition of

Cioia already ensures that a parent has at least the same C,,,,, than its children. Thus, a parent

will never have a lower priority. Yet, C,,,, does not establish a total ordering which is required
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by the algorithm. In order to create a total ordering, we can combine the priority-based partial
ordering resulting from C, ., with the lexicographic ID-based total ordering introduced in the

previous chapter. For two variables A and B, we define the ordering between variables on the

basis of the priorities and the identifiers as:
A< B < (priority(A) < priority(B)) v (priority (A) == priority(B) A ID(A) < ID(B))

As indicated previously, this approach requires the computation of Ctomfor each component
instance which can be done with a single traversal of the existing configuration. The traversal

ensures that each computer knows C,,,,,; of the instances hosted by it. However, the algorithm

needs to ensure that C,, is always available on each computer that requires it for a

comparison.

To clarify which computers need the ordering information, consider that the configuration
algorithm uses the ordering solely during backtracking in order to determine the variable that
should be changed first. Thus, we can safely conclude that the priority information of a variable
solely needs to be known by other variables that may be conflicting at some point in time. Of

course, the exact sets of variables that may conflict is only discovered gradually.

A seemingly simple approach to fix this would be to distribute the priority information globally
among all computers of the smart peer group. However, this would require a complete unfolding
of the search space in order to detect the mapping between the dynamically created variable
identifiers and the total cost of the potentially existing instances. Alternatively, we can
dynamically distribute only the priority information that is really required for the variables that
have been created so far. To do this without introducing additional messages, we may reuse the
messages of the algorithm. A simple and effective approach would be to include the priority
information for the transmitted identifiers in all messages of the algorithm, i.e. update, link and
backtracking messages. Since computers can only detect that they have a conflict with another
variable, if they already know the identifier, this approach guarantees that the computer also

knows the priority of the variable.

However, if the mapping between the identifiers and priority information is stored on each
computer, it is sufficient to include the priority only in link response messages. The reason for
this is that backtracking messages can only result directly from resource conflicts or indirectly
from a number of other conflicts that together cause a conflict. Since resource conflicts are

always a result of local constraints, the priority values for all affected variables are always known

already. Note that this is a result of the assumption that each computer knows C,, for its
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hosted instance. Due to the fact that the configuration algorithm creates new links to higher
priority variables contained in a backtracking message, before accepting it, we can use the
response message to a link request in order to distribute the priority information to this variable.
Since it is guaranteed that the algorithm will only send backtracking messages to linked
variables, this approach suffices for all cases, i.e. other variables are not known and thus, they
cannot cause a conflict. Since the link establish is not done repeatedly, i.e. links are only

established once and then reused if similar conflicts appear, this is also minimal.

4.2.4.4 Example

In the following, we outline an exemplary execution of the value and the variable ordering
heuristic as part of the configuration algorithm using the scenario introduced in Section 4.1.1. As
discussed, the original configuration consists of three component instances, i.e. the Presentation
Control on the personal digital assistant, the Remote File Access on the laptop, and the Simple
Viewer on the desktop. The initial configuration becomes invalid because the laptop leaves the
smart peer group. As a consequence, the Input dependency of the Presentation Control is no

longer resolved properly because of the induced unavailability of the Remote File Access.

After the laptop is no longer available, the component system detects and signals the unresolved
dependency either by means of a timeout or due to a failing communication attempt which
eventually triggers the adaptation process. As a first step, the component system notifies all
remaining component instances and causes the appropriate transition in their lifecycle. This is
done by traversing the tree of remaining component instances. At the same time, the system
computes the values for the cost model according to the state held by the available component
instances and other cost factors specified by the component developer. Finally, the traversal also

creates the data structures required to execute the configuration algorithm.

After the traversal of the remaining component instances, the adaptation algorithm starts. The
individual steps are depicted in Figure 28. Just like the original configuration algorithm, the
adaptation algorithm starts with an update message for the application anchor (a). The update
message contains the identifiers for the component instance that have been introduced in the
previous chapter. Additionally, the update message also contains a flag that indicates whether
an existing instance may be reused. Since the Presentation Control is still available, the flag is set

to true.
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Figure 28 — Adaptation Process

When the update message is processed, the personal digital assistant creates a configuration
object with an appropriate set of variables and it initializes their domains by performing a local
and remote lookup for matching contracts (b). Note that although the Presentation Control has
only two dependencies, the configuration object contains three variables. This is a result of the
fact that the original configuration still has an instance that is bound to the Output dependency,
i.e. the Simple Viewer, and thus, there is a need to split the variable representing the Output
dependency. As discussed in the previous subsection, this is necessary to differentiate between
contracts that induce the replacement of the instance and contracts that allow the reuse of the
instance. Also note that due to the additional built-in constraint discussed previously, the two
variables that represent the Output dependency are never resolved at the same time. The
priority of the variables is set according to the total cost induced by a potential replacement.
Thus, the priority of the first variable is 0, since the Input dependency is not resolved. Similarly,
the priority of the last variable is 0, since this variable represents options that replace the
component instance that is still bound to the Output dependency. The priority of the second
variable is set to the total costs induced by replacing the Simple Viewer, since changing the
values of this variable might lead to a replacement of the existing sub-tree bound to the Output

dependency.
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After the remote and local lookup has been completed, the domains of all variables are
initialized according to the contracts (c). In this scenario, there are two options to resolve the
Input dependency. Thus, the domain of the first variable is -1, 0, and 1. Furthermore, there are
four options to resolve the Output dependency. These options can be grouped into options that
induce the replacement of the existing component instance and options that support the reuse.
The two options that support the reuse are essentially parameterizations of the existing
component instance. The other two options are contracts from factories of other components,
potentially residing on other computers. As a consequence, the domain of the second variable is
-1, 0, 1 and -2 to denote the fact that the third variable can be used as well. Furthermore, the
domain of the third variable is -1, 0, and 1. After the initialization is completed, the algorithm
resolves the dependencies by assigning values to the variables. According to the mapping
between contracts and variable domains, the algorithm selects the Remote File Access on the
desktop and the Fast parameterization of the Simple Viewer on the desktop. This is done by
assigning 0 to the first and the second variable. Due to the fact that the second variable is not
set to -2, the third variable will be set to -1 automatically. Note that this is a result of the built-in
constraint that prohibits multiple resolutions of the same dependency by pseudo variables. The
modified variable assignment causes new update messages that are sent to the desktop. Just like
the initial update message, the new update messages contain the identifier and the flag to
indicate the reuse. Since the Input dependency is not resolved, the flag is set to false for the
update message sent to the Remote File Access. However, due to the fact that both, the
Presentation Control and the Simple Viewer, can be reused, the flag is set to true for the

remaining update message.

When the update messages are processed by the desktop (d), the desktop creates the necessary
configuration objects and performs the usual steps of the configuration algorithm. When the
algorithm performs the resource reservation for the second configuration object, it detects the
shortage of CPU resources and it derives the set of conflicting assignments as the Fast
parameterization of the Simple Viewer and the Remote File Access. The original configuration
algorithm would now initiate backtracking according to the lexicographical ordering between the
variables involved in the conflict. Thus, the Output dependency would be the first dependency
that would be changed. However, due to the variable ordering heuristic, the adaptation
algorithm considers the priorities of the variables as most significant ordering information and it
uses the lexicographical ordering information only to break ties. Thus, when the priority of the
Simple Viewer is higher, the adaptation algorithm will first change the Input dependency before
changing the Output dependency. If we assume for the scenario that the Simple Viewer carries at
least some state, its total cost will be higher than zero. As a consequence, the backtracking

would be performed on the Input dependency first. Note that in this example, there is no need
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to create links during backtracking. However, if there was a need to create a link, it would be

necessary to distribute the priority information as discussed in the previous subsection.

Finally, when the backtracking message is processed by the personal digital assistant, the
computer records the constraint and tries to assign other values. In this example, it assigns 1 to
the first variable and leaves the second and third variable unchanged. This causes two update
messages that are sent to the Remote File Access on the desktop and on the server. After they
have been processed, the algorithm terminates successfully and the new configuration is given
by the Presentation Control on the personal digital assistant, the Fast parameterization of the
Simple Viewer on the desktop and the Remote File Access on the server. In this exemplary
scenario, we can see that both, the value ordering and the variable ordering heuristic, can be
effective. The value ordering heuristic ensures that the algorithm prefers the parameterizations
of existing component instances, i.e. it prefers to use combinations that reuse existing parts of
the configuration, as in the case of the Simple Viewer. Furthermore, if there are conflicts
between variable assignments of non-existing or replaced sub-trees with variable assignments of
reused sub-trees, the algorithm first changes the non-existing or replaced sub-trees as in the
case of the Remote File Access. The combination of these two light-weight heuristics leads to an

optimal result in this scenario.

4.2.4.5 Limitations

Although, the exemplary scenario demonstrates nicely that the effectiveness of the proposed
value and variable ordering heuristic can be high, the overall effectiveness depends on the
properties of the scenario, in general. Since both heuristics are greedy, the distance between the
quality of the optimal and the determined solution can be arbitrarily high. The reason for this is
the inherent discrepancy between the local cost estimates that serve as the basis for algorithmic

decisions and the resulting global costs.

To clarify this, consider that even though, it is never “wrong” to reuse a component instance,
different parameterizations might indirectly cause different costs but the value ordering
heuristic assigns identical costs to all parameterizations of the same component. As a
consequence, the resulting discrepancy between estimated and induced costs may lead to sub-
optimal value selections. A simple example would be a component that supports two different

parameterizations whose dependencies cannot be resolved by the same component.

Clearly, it is possible to improve the quality of the estimate by broadening its scope. However, to
do this, one would have to unfold larger parts of the search space upfront and therefore this
approach would conflict with the requirement on optimism. Furthermore, even if the search

space would be unfolded completely, the resource constraints might lead to conflicts that have
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an impact on the costs. Thus, in order to compute the exact costs, one would have to compute

multiple configurations, in general.

The variable ordering heuristic exhibits similar limitations. First, it is not guaranteed that
changing the parts of the configuration that exhibit lower costs results in a configuration with
minimum costs. As an example consider that it might be more cost efficient to replace a single
expensive component instance than to replace a number of less expensive component
instances. Secondly, the variable ordering does not systematically search through all possible
parameterizations. As an example, consider that it might be more cost efficient to change the
parameterization of an expensive component instance before replacing a less expensive one.
However, since changes to a variable may only occur as result of backtracking, which must
consider the variable ordering in order to remain complete, the value of a variable with lower
priority will always be changed before the value of a higher priority variable. As a consequence,
the heuristic might force the replacement of a component instance that is bound to a lower
priority variable before it changes the parameterization of a component instance that is bound
to a higher priority variable. Last but not least, the variable ordering heuristic does not create a
total ordering as can be seen by the necessity of using the identifiers to break ties. However, the

ordering in which ties are broken may have an impact on the resulting costs.

Again, it is possible to mitigate this, e.g. by introducing more variables to support more fine-
grained control and by computing more detailed estimates which result in better orderings.
However, these approaches require additional computations and thus they increase the overall
effort required for search. Since a higher effort cannot be tolerated in scenarios where finding a
single configuration consumes significant amounts of time, we propose an alternative strategy in
the following. Although, this strategy is not perfect, it does not increase the overhead of the

basic algorithm since it can be added on-demand.

4.2.4.6 Randomization

The limitations discussed previously, are a result of the greedy nature of the heuristics and the
fact that the estimated local costs may not reflect the actual induced costs precisely. As a result,
the overall approach is sensitive to the starting point of the computation. This means that the
ordering in which different options are selected may have a significant impact on the solution
quality. As a consequence, it is possible to utilize this property of the heuristics to compute

multiple solutions with varying costs without changing the underlying algorithm.

To do this, we can introduce randomization at various points. For instance, in order to modify
the backtracking order, we may use different schemes to compare identifiers. Alternatively, we
can simply reorder the dependencies. However, a simpler way of introducing randomization is to

reorder the mapping between variable assignments and contracts. If the algorithm uses a
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deterministic way of selecting the next option, changing this mapping induces different
traversals of the search space. As we show in Chapter 6, this simple randomization strategy

yields good results in many scenarios.

Using this approach to randomization, we can revise an iterative search scheme by computing
multiple configurations using the previously described constructive heuristics. The basic idea is
to compute randomized configurations with their resulting total cost iteratively. Thereby, we
store the configuration that exhibits the least cost. Whenever a better configuration has been
found, we store it as the new optimum. The iterative computation can be aborted at any point in
time — after the first valid configuration has been found — or it can be continued until a

sufficiently good configuration has been found.

Of course, it is possible to revise strategies that hand over the decision to the user or that
perform trade-offs based on some heuristic. For instance, one may argue that if the adaptation
costs of the current solution are low and the computation of the last configuration caused a
comparatively high search effort, it is better to adapt the application than to increase the search
effort even further. Similarly, if the last configuration has been found quite fast and the current
optimal configuration exhibits high adaptation costs, it may be worthwhile to continue the
search. Alternatively, one could argue that if the last configuration did not improve the quality, it

might not be worthwhile to compute another one.

However, since this tradeoff boils down to a comparison of the user distraction resulting from
replaced components and user distraction resulting from increased search effort, we assume
that it is subjective in general. As a result, we argue that it should be controlled by the user as
opposed to the system. To do this, a user may specify the aggressiveness of the optimization by
means of an application preference. This preference can either be expressed as an absolute
boundary for costs or it can directly select one of the strategies discussed above. From a
system’s point of view, the type of strategy does not affect the internal mechanisms, since it
only decides whether the next configuration should be computed or whether the current

configuration should be used for adaptation.

4.3 Discussion

In this chapter, we have formalized the adaptation problem as an extension to the configuration
problem detailed in the previous chapter. The formalization shows that adaptation can be seen
as an optimization problem on top of configuration. Based on the formalization, we identify the
requirements on adaptation as an extended set of requirements on configuration in which we

introduce the additional requirement on optimality. The requirement on optimality is conflicting
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with the requirement on efficiency. In order to account for this, we aim for a solution that

imposes only minimal additional overhead on adaptation when compared to configuration.

To find a suitable solution, we discuss possible optimization techniques and we classify them on
the basis of the provided guarantees with respect to the optimization result. From the set of
possible techniques, we rely on a constructive heuristic that uses a local cost estimate to
perform decisions. In order to gather suitable cost estimates, we propose a cost model. This
model captures the costs of different adaptations in an abstract manner. The proposed cost
model focuses on costs for replacing individual component instances. Such costs may be
composed from different cost factors. The two main cost factors that we are considering are
costs for migrating applications-specific state and costs resulting from disruptive changes to the
user-experience. Since the cost model represents costs with an abstract value, other cost factors
could be considered as well. By adding reasonable simplifying assumptions, it is possible to
compute the costs for a concrete problem upfront. Since it is possible to reuse existing

messages, the effort for applying the cost model is marginal.

To optimize a configuration, we integrate a greedy value ordering heuristic and a greedy variable
ordering heuristic in the configuration algorithm. While the value ordering heuristic can be
integrated in a straight-forward manner, the variable ordering heuristic requires additional
precautions. Specifically, we need to split variables whose domain can consist of values with
different costs. To ensure that the split variables behave properly, we introduce an additional
value into the domain and we add specific constraints to ensure that value selection are
mutually exclusive. Finally, in order to ensure that the variable ordering can be computed on
each computer, we transmit the costs of variables during the link establishment as part of the
link request. The resulting constructive optimization algorithm is very light-weight when
compared to the configuration algorithm since it requires only marginal computations and it
does not cause additional message transmissions. Yet, due to its greedy nature and the
characteristics of the underlying problem, it cannot provide guarantees on the quality of the
determined solutions. As mitigation, we propose to apply randomization during the value
selection in combination with multiple executions. This approach can then be used to introduce

various strategies for balancing the efforts of search and reconfiguration at runtime.

Since both overheads, i.e. the overhead for communication and the overhead for computations,
can be neglected when compared to the overhead of the original configuration algorithm, the
resulting approach naturally fulfills all requirements apart from optimality. In the following
chapter, we first discuss how the adaptation algorithm can be integrated into the component
system. Thereafter in Chapter 6, we use simulations to verify that the algorithm can fulfill the

requirement on optimality in many scenarios. Furthermore, we show that the randomization can
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be used to balance the efforts for search and reconfiguration in scenarios in which the initial run
of the constructive algorithm delivers unsatisfying results. In Chapter 7, we compare the
approach for automatic adaptation with other approaches taken by existing system software.
Finally in Chapter 8, we describe future research directions to extend the proposed approach on

automatic adaptation.
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5 Prototype

In order to evaluate the concepts and abstractions introduced in the previous chapters, we have
developed a prototypical version of the PCOM component system. On the basis of this
implementation, we have developed a prototypical version of the configuration algorithm
described in Chapter 3. Besides from enabling automatic configuration, this algorithm also
supports automatic adaptation using the extensions detailed in Chapter 4. In the following
section, we first outline the architecture of this prototype. Thereafter, we present some
implementation details. Due to the size of the implementation, it is not possible to discuss all
details in depth. Thus, we focus on the description of the internal structure of the individual

parts. Finally, we close the chapter with a discussion.

5.1 Architecture

To motivate the design decisions, we first present the architectural goals that guided our design.
Thereafter, we provide an overview over the architectural building blocks and we group them
into two layers. Subsequently, we describe the dependencies between the building blocks and
the resulting interfaces. Finally, we describe the interaction of the building blocks by walking

through an exemplary reconfiguration of an application at runtime.

5.1.1 Design Goals
As mentioned previously, the purpose of our prototypical version of PCOM is primarily the
evaluation of the concepts introduced by its component model. As a result, we can derive the

following two architectural design goals:

e Completeness: The abstractions and the mechanisms discussed previously are tightly
integrated and sometimes, they depend heavily on each other. In fact, many
abstractions are useless if they are not supported with appropriate mechanisms. As an
example consider the different lifecycles of component instances, resource assignments
and applications. They are only useful, if the components and resources developed by an
application developer can actually depend on the associated guarantees. Thus, to
provide a thorough evaluation of the benefits and the limitations of the component
model, the abstractions and mechanisms cannot be realized and evaluated on an
individual basis. As a result, the architecture must be complete and it must support all
abstractions and mechanisms discussed previously.

e Resilience: The primary goal of PCOM is to ease the task of developing pervasive
applications for smart peer groups. To achieve this goal, the component system tries to
hide many complications that arise from the distributed nature of pervasive applications

and the dynamic nature of the execution environment. As a consequence, the
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component system itself must be highly resilient to failures. Cleary, this resilience cannot
be solely achieved by the architecture, e.g. the implementation also needs to be
defensive. However, an architecture that defines the interaction between its building
blocks in an appropriate manner can greatly simplify the implementation. As a result, we
require that the prototypical architecture should ensure that the defined building blocks

can function properly in isolation and may fail independently.

Apart from solely ensuring that the concepts can be implemented, we also want to be able to
determine the potential overheads introduced by them. Since the evaluation of the overheads
should approximate a high-quality implementation, we can derive the following design two

design goals:

e Minimalism: Although, PCOM can also be used in traditional networked computing
environments in principle, its primary application area are smart peer groups that will
frequently consist of a number of resource-poor computers. In order to support such
environments, the system software must be minimal with respect to resource utilization.
Thus, the underlying architecture should be simple and minimal and it should not
tradeoff increased flexibility with size in cases where the flexibility is not mandatory.

e fEfficiency: The same argument that has been made about minimalism can also be made
about efficiency. In order to determine realistic estimates of the runtime overheads
introduced by PCOM, the architecture should foster an efficient implementation
wherever possible. This means that the architecture should not tradeoff flexibility with
efficiency in cases where the gains in flexibility are not required to fulfill another design

goal.

Finally, we also want to use our prototype component system to evaluate the algorithm for
automatic configuration and the adaptation heuristics proposed in the previous chapters. To
perform a detailed evaluation, we need to be able to measure their runtime overhead and we
need to be able to compare the proposed approaches with other alternatives (Handte,

Herrmann, Schiele, & Becker, 2007). Thus, we can derive the final architectural design goal:

o Pluggable algorithms: In order to enable the comparison of different approaches
towards automatic configuration, the architecture must support the utilization of
different configuration algorithms. In order to provide an unbiased basis for the
evaluation, the support for different configuration algorithms must not predetermine
internal details of the algorithm implementation. Specifically, it should not provide

mechanisms that simplify one type of algorithm while complicating another. To do this,
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the architecture must refrain from specifying specialized interfaces wherever possible

and it should offer alternative interfaces in cases where this is not possible.

It should be noted that the five architectural design goals are not completely orthogonal. For
example, the design goal of supporting pluggable algorithms conflicts with the goal of creating a
minimal architecture. Due to the research-centered nature of our prototype, this conflict cannot
be avoided and regarding this point, our prototype provides a higher flexibility at the cost of a
non-minimal architecture. However, in a broader context — beyond the scope of this dissertation
— support for multiple configuration algorithms can also be used as the basis for adaptive
approaches towards automatic configuration. Some more details on this are presented in

Chapter 8.

5.1.2 Building Blocks

To simplify the description of our prototype architecture in the following, we abstract from the
low-level tasks that are needed in order to enable the remote communication between the
computers that are part of a smart peer group. These tasks include discovery of new computers
that enter the smart peer group and the detection of computers that have left the smart peer
group. It should be noted that these tasks can be performed by any communication middleware
for smart peer groups. In fact, in order to implement the architecture, we have used a slightly

extended version of the BASE micro-broker and BASE takes care of these issues.

Our architecture splits the responsibilities of the component system that are not directly related
to low-level communication into three major functional building blocks. These building blocks
are called component container, application manager and assembler. Each of these building
blocks is self-contained and they can be deployed separately on the computers of a smart peer
group. However, in order to use the functionality of other computers and in order to share
functionality with the computers of the smart peer group, a computer must be equipped at least
with a component container. Depending on the concrete implementation of the assembler it
might be necessary to deploy one as well. For example, the algorithm for automatic
configuration detailed in the previous two chapters requires a specific type of assembler. Since
this assembler is fully distributed, it must be deployed on each computer of the smart peer

group that is equipped with a component container.

As indicated by its name, the core of the architecture is formed by the component container.
The component container is responsible for realizing the component and the resource
abstractions of PCOM that have been introduced previously. To do this, it provides an
application development framework for developers. Furthermore, it enforces the guarantees
provided by the application model and it monitors the changes to the environment and signals

them. The application manager implements all specific functionality that is needed to support
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preferences and it is responsible for managing the lifecycle of the application. In addition, it is
responsible for initiating the configuration and reconfiguration of an application by selecting and
initializing an assembler. The assembler is used to compute a configuration in cases where an
application needs to be configured or reconfigured. To do this, the assembler may need to
gather information about the available components and resources and about the existing

configuration.

The decision to separate the functionality of the assembler from the functionality of the
component container is a result of the design goal to simultaneously support alternative
approaches towards automatic configuration. The reason for separating the functionality of the
application manager from the functionality of the component container is twofold. First and
foremost, it simplifies the tasks of the component container significantly by alleviating the need
of providing specialized functionality for the root of an application. In fact, in the proposed
architecture, the component container is exclusively realizing the concepts of components and
resources that are part of a tree and thus, virtually all functionality can be realized through some
form of recursion. Secondly, it can also reduce the memory requirements of PCOM since only
those computers that are starting applications on behalf of a user need to be equipped with an

application manager. This helps in fulfilling the design goal of minimalism.

5.1.3 Layers

In order to explain the dependencies between the individual building blocks, it is necessary to
show the overarching concepts of how a configuration and reconfiguration is performed. As
shown in Figure 29, the key idea of our prototype architecture is to differentiate explicitly
between the execution layer and the configuration layer. The execution layer is formed by the
application manager and the component container. The configuration layer is formed by the
assembler. To decouple the execution layer from the configuration layer, the architecture uses
models that abstract from the internal details of the layers. These models contain sufficient

details to configure an application and to execute a configuration.

In principle, there are two different ways how these models could be exchanged between the
assembler and the component container. First, they could be exchanged unconditionally and
completely and secondly, they could be exchanged partially in an on-demand fashion.
Furthermore, there are two possible options for controlling the data exchange, i.e. either the
execution layer or the configuration layer could be responsible for controlling it. In order support
the efficient implementation of the architectural building blocks, we combine these approaches

depending on the purpose and type of the model.

For efficiency reasons, we only exchange those models that are always needed completely and

upfront. The other models are retrieved partially and on-demand. Besides from supporting the
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design goal of efficiency, this also helps in creating a fair basis for the comparison of different
approaches towards automatic configuration as they may restrict themselves to retrieving only
those parts of the models that are actually required. As result, the models that contain
configuration related information are always exchanged upfront and completely and the models
that contain environmental information, e.g. the contracts supported by a component instance,

etc., are exchanged partially and on-demand.

Assembler

Resource Component
Contract Contract

Configure

Model

Environment

Retrieve

preference I Component i I Component 7l I Component i I Component
) l Factory l Instance — l Factory l Instance

Execute

W WG|
o o Manager Assignment Manager Assignment
Application

Manager Component Container Component Container

Figure 29 — Architectural Layers

In order to support a resilient implementation, we ensure that the application manager and the
component container remain in control over all interactions with the assembler. This allows
them to take corrective actions in cases where the assembler becomes unavailable. Thus, the
exchange of models that contain configuration information is always initiated and controlled by
the execution layer. The exchange of environmental information is controlled by the assembler

in order to allow arbitrary retrieval strategies.

In addition, the component container and the application manager are also validating all models
retrieved from the assembler in a defensive manner before they are using them to adapt the
executed configuration. Clearly, at a first glance, such defensive validations might seem to
introduce additional overhead and thus, they might seem to contradict the goal of an efficient
implementation. However, this approach ensures that the guarantees defined by the component
model can be enforced without relying on the proper functioning of an assembler and this, in

turn, greatly simplifies the task and the implementation of the assembler.
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5.1.4 Dependencies

Figure 30 depicts the resulting responsibilities of the three building blocks and it shows their
interdependencies. The application manager hosts the preferences and ultimately controls the
application lifecycle upon user request (1). It relies on the assembler to compute a configuration
for the application (2) as soon as it needs to be started. To do this, the application manager and
the component container provide the appropriate information about any existing configuration.
In addition, the assembler requests additional information about the environment from the

component container (3).

1 Initiate configuration and reconfiguration
2 Compute valid application configurations Assembler
3 Gather information about application, o=

components and resources Compute application configuration
4 Execute components and signal changes

Application Manager Component Container

/ Initiate application Host components and
/ \ configuration resources

Figure 30 — Architectural Dependencies

After a configuration has been computed, the application manager relies on the component
container to host the application anchor (4). Besides from hosting the application anchor, the
component container also takes the responsibility to signal changes to application back to the
application manager. In order to fulfill this responsibility, the component container depends on
other component containers that host components and resources recursively. If an application
configuration can no longer be executed, the component container depends on the application
manager to initiate a reconfiguration of the application (1). To do this, the application manager

needs to interpret the signals received from the component container.

5.1.5 Component Container

As indicated in the architectural overview, the component container is responsible for hosting
components and resources. According to the dependencies of other building blocks on the
component container, its interfaces can be classified into three categories. These categories are
best explained by looking at the roles of the component container using a fragment of an

application as shown in Figure 31.

The fragment of the application consists of three component instances A, B, and C. In its
contractual demand, component instance A declares a dependency (Dg) that is fulfilled by the

contractual provision (Pg) of component instance B. Component instance B, in turn, contractually
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demands a component (D¢) of type C which can be matched by the provision (P¢) of component
instance C. For the sake of simplicity, we assume that each component instance is hosted in a
different component container called A, B, and C and we look at the application from the

perspective of the component container that hosts the component instance B.

With respect to the component instance A, the component container B acts in the role of a
Provider, i.e. it provides a component instance with a certain provision for the application. This
means that it needs to be informed about transitions to the lifecycle of component instance A. If
component instance A is about to be started, stopped or paused the component instance B
should be notified accordingly by the component container B. It is noteworthy that conceptually,
the component container B also needs to be informed if the component container A is no longer
part of the same smart peer group. However, due to obvious reasons such a notification cannot
be performed explicitly by component container A. As a result, monitoring of the availability of

component container A becomes a conceptual part of the interface required to fulfill the role of

Assembler
Signallifecycle Signalcontract

changesofAtoB changesof CtoB

=
a5,

a providing component container.

Gatherinformation about
components and resources

Provider
Demander

Component Component
Container A ContainerB ContainerC

Component

Figure 31 — Component Container Interfaces

With respect to the component container C, the component container B acts in the role of
Demander, i.e. it demands a component instance with a certain provision. This means that it
needs to be informed about changes to the provision of the component instance B. Such
changes can either be the result of a failure induced by mobility or an unforeseeable change in
resource availability. In addition, component container B also needs to be informed if
component container C becomes unavailable. In analogy to the role of a providing component
container, the unavailability of component container C cannot be signaled explicitly but must be
detected by component container B. Thus, conceptually the detection of the unavailability of the

providing container is also part of this interface of the demanding component container.
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As third and final role, component container B also acts as a data repository for the assembler,
i.e. it needs to enable the assembler to retrieve relevant internal information in cases where the
assembler needs to configure or adapt an application. To do this, the component container
enables the assembler to query for possible resource and component contracts using a
component or resource demand. In order to minimize the number of interactions between the
assembler and the component container, the interface also support batch queries for sets of
components and resource contracts. Additionally, the assembler may also query for the available

amount of resources in order to determine resource conflicts.

5.1.6 Application Manager
The application manager is responsible for storing the user preferences and for managing the
overall lifecycle of an application. Thus, the application manager needs to support two types of

interfaces. These interfaces are depicted in Figure 32.

Manipulate preferences, Signalcontract
start/stop applications changes of A
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Component

Maintainer
Demander

User
Interface

Application
Manager ContainerA

Figure 32 — Application Manager Interfaces

The interface depicted on the left side enables the user to create, modify and remove
preferences and that enables the user to start and stop applications using the stored
preferences. It is noteworthy, that this interface is the only interface that is geared at supporting
interaction with the user. All other interfaces are solely used internally. However, it should be
clear that this interface is not accessed directly by a user. Instead, it is usually used indirectly
through some user interface. As briefly discussed in the next section, we have implemented a

graphical user interface for this purpose.

In contrast to the first interface which is supporting interaction with the user, the second
interface is needed during the execution of applications. To motivate the design of this
interface, it is noteworthy to point out that there is no conceptual difference between
preferences and demands during the execution of an application. Thus, the component
container implementation can be simplified by hiding the distinction between the application
manager and the component container interface. Since a preference can be interpreted as a

demand on a component, we can do this by reusing the demander interface of the container.
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5.1.7 Assembler

The assembler is responsible for computing configurations during the initial configuration and
during adaptation. As shown in Figure 33, the assembler provides three interfaces for this task. It
provides a control interface that can be used to start and stop the configuration of an
application. In addition, it provides interfaces to initialize the assembler with an existing

configuration and to retrieve a successfully computed configuration from the assembler.

Assembler

Control Initializer Retriever
Prepareand control Initialize with Retrieve new
(re-)configuration configuration configuration

Application Component
Manager ContainerA

Figure 33 — Assembler Interfaces

The details of these interfaces are explained best by looking at the dynamic cooperation of the
component container, the application manager and the assembler. Since we describe the
interaction of these architectural components in following in Section 5.1.9, we refer to this

section for more details.

5.1.8 Signaling

As indicated previously, the application manager is responsible for managing the overall lifecycle
of an application. In order to do that, the application manager must be notified by the
containers as soon as the configuration is no longer valid. Since each component containers only
knows the component containers that provide or use some component instance, the signaling

must be done recursively.
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Figure 34 — Ambiguous Signals due to Parallelism
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Since applications are usually distributed, changes in different parts of the application might be
detected a signaled in parallel. Without further precautions, the resulting parallel signals may
result in unnecessary overhead. Figure 34 shows an example for this. The application consists of
three component instances. After component instance 2 becomes unavailable, component
instance 1 detects this and signals the failure to its parent, the application manager (1). Shortly
after the change has been signaled, the unavailability of component instance 3 is detected (2). In
response to the detected failure, the application manager signals a transition in the application
lifecycle. At the same time, component instance 1 signals the unavailability of component
instance 3 to the application manager (3). Due to the fact that the application manager does not
know whether the failure signaled by component instance 1 has happened before or after the
transition of the lifecycle, it needs to treat the failure. However, in this particular case, treating
the failure is not necessary. In extreme cases, e.g. if messages are delayed for long periods or if a
irrelevant failure is signaled while switching from one configuration to another, this problem
might not only cause duplicate transitions in the application lifecycle, but it might also lead to
duplicate adaptations. Since the effort for performing an adaptation is comparatively high, it is

necessary to avoid such cases.
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Figure 35 — Disambiguation with Logical Timestamps

To do this, we introduce a logical timestamps to capture the causal relation between transitions
in the application lifecycle and the detection of failures. Conceptually, the logical phases are
similar to logical clocks (Lamport, 1978). However, instead of capturing the causal relationship
between all events, we limit the scope to the relevant subset. To realize this, we keep an integer
timestamp for each component. The timestamp is increased for every lifecycle transition. When

a failure is detected, the current timestamp is included in the message. By comparing the local
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timestamp with the timestamp contained in the message, the receiving computer can detect

whether the failure has been detected before or after the last transition.

A concrete example is depicted in Figure 34. Again, the application consists of three components
from which two will fail. When the application has been started completely and successfully, the
timestamp for each component is equal and shows the value t. After the first failure is detected
by component instance 1 (1), it is signaled to the application manager (2). As described earlier,
the signal contains the timestamp associated with component instance 1. Since the timestamp
of the application manager shows the same value, it accepts the message and initiates a lifecycle
transition. Thereby, it increases its local timestamp (3). At the same point in time, the
unavailability of component instance 3 is detected (4) and signaled using another message to the
application manager (5). When the second failure signal arrives, the application manager finds
that the timestamp contained in the message has been created before the transition has been
signaled. Thus, it can simply drop the message as the initiated lifecycle transition will also handle
this problem. When component instance 1 eventually receives and processes the lifecycle

transition, it can adjust its local timestamp according to the value contained in the message (6).

Note that although it might seem possible to avoid the transmission of the current timestamp as
part of the lifecycle transition messages by incrementing the timestamp, this approach will not
work in general. The reason for this is that adaptation can introduce new component instances
that need to be initialized with the current timestamp. This can either be done by performing a
special initialization during adaptation or by transmitting the timestamp as part of the transition,

as shown in the example.

5.1.9 Interaction

In the following, we describe the dynamic cooperation of the three building blocks by walking
through the complete adaptation process of an application. To simplify the description, we
assume that the assembler implementation is fully distributed. This means that each computer is
not only equipped with a component container but also with an assembler that computes the

parts of the configuration that are relevant for the computer that hosts it.

Figure 36 depicts the sequence of interactions required to initialize the reconfiguration process
for an exemplary application consisting of four components (A, B, C, D) running on four
computers (1, 2, 3, 4) of a smart peer group that needs to be adapted because computer 4 is no

longer reachable.

When a component instance used by the application is no longer available the container that
hosts the parent component instance detects this and sends a message to the application

manager that started the application (1). As explained earlier, this is done by signaling the

MARcCUS HANDTE



158 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

change recursively on the path to the parent through the demand interface of the component

container until the signal arrives at the application manager.

The application manager then selects the assembler that shall compute the configuration and
calls a prepare method through the control interface of the assembler (2). In response, the
assembler can prepare its internal data structures and if it requires other assembler instances, it
can initialize them. Since this example assumes that the assembler is fully distributed, the
assembler implementation would usually use the control interface of all other assemblers in the

smart peer group to initialize them as well.

Computer 1
A ' Dle
Computer 3
ol el 9. configure
Applicatio dnage 5. setup Assemble
3. pause 8. setup
a 0 a = ontaine
6. pause
4. pause 7. pause
7. pause ! \
8. setup none ontaine
A o Dle
Computer2 Computer4

Figure 36 — Initializing an Adaptation

After the prepare call returns, the application manager signals the container to pause the anchor
(3). This transition in the lifecycle is sent through the provider interface of the container.
Thereby, the application manager passes the reference of the assembler to the container. The
container will then send a pause signal to the anchor (4) since component instances and
resource assignments are paused and stopped in a top down fashion. In addition, the container
will prepare a setup object that describes the anchor, its contractually specified dependencies,
and the remote systems that host child components for these dependencies. This setup object
essentially represents the model that is used to provide the assembler with sufficient

information about the existing configuration to compute a new configuration.

The setup object is sent to the assembler represented by the reference and the assembler

returns a reference to an assembler for each component declared in the setup object (5). Since

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 159

the references are issued by the assemblers, neither the component container nor the
application manager must be aware of the distribution degree of the assembler. Thus, the
initialization interface of the assembler is also used to hide the internal details of the assembler

implementation that are related to distribution.

Thereafter, the component container sends the pause request to all containers that host
children of the anchor. As part of the call, the component container passes the reference of the
corresponding assembler to the container (6). To do this the component container uses the
provider interfaces of the component containers. The contacted component containers will
continue with this process recursively until the complete configuration has been put into the

assembler and all component instances have been paused (7, 8).

As soon as the initial pause call returns, the assemblers have a complete view of the
configuration. Thus, they can start to compute a new configuration. However, since the
configuration is pushed into the assemblers, they need to be informed about the fact that the
pause call is complete. To do this, the application manager sends a configure call to the initial

assembler (9). Again, this is done through the control interface of the assembler.

In response, the assembler will prepare a valid configuration. Since the assembler has received a
setup object for each component instance, it can determine which dependencies need to be
resolved in order to transform the current invalid configuration into a valid one. To compute a
valid configuration, the assembler needs to be able to determine the set of resources that is
available on each computer and it needs to be able to find the components that can be used to
resolve a dependency. To this end, the assembler uses the query interface of the component

containers that are part of the smart peer group.

As soon as the assembler has computed a valid configuration, it returns the configuration to the
application manager as return value of the configure call. In order to provide efficient support
for different distribution degrees, the result must not necessarily contain the complete
configuration. Instead, the data structure used to describe the tree of components can either
contain the full configuration data or a reference to the assembler that can provide the
configuration data for a certain sub-tree upon request. Using this data structure, the

configuration data can be retrieved lazily.

Figure 37 shows the sequence of actions for the previous example required to transform the
running invalid configuration into a valid configuration. To do this, the component B running on
computer 3 is replaced with component B’ on computer 4. Note that the example assumes that
the configuration is stored in each assembler and is returned lazy upon request as explained

previously.
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After receiving the configuration, the application manager sends a start request to the anchor
(1). Thereby, it passes the configuration data received by the assembler. Since this is a transition
of the lifecycle of a component instance, this call is done through the provider interface of the

component container.

The container retrieves the configuration for each child component required by the anchor (2).
Towards this end, the container places calls to retriever interface of the corresponding
assemblers. Note that the component container does not immediately start the anchor

component as a result of the bottom-up startup of applications.
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Figure 37 — Performing an Adaptation

Using the retrieved configuration, the component container decides whether the child must be
reused or replaced. If the child must be replaced, the container first stores the internal state of
the component instance (3) and releases it by sending a stop call (4). The internal state can later
on be used to restore the state of the component instance in another component instance on

another component container.

Thereafter, the container will send a start call to the container that hosts the new component
(5). The start call then contains the state of the stopped component. If the component is reused,
the container simply sends a start call to the container of the reused component. As part of the
start call, the container sends the configuration for the child and the recursion continues

through the provider interface of the component containers.
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The return value of a start call signals whether a child has been started successfully. If all start
calls for all children of a certain component have returned successfully, the component itself is
started (6) and all state is restored (7). After the component and its children have been started
recursively, the start call returns the status. If this procedure fails at any point in time, e.g.
because a computer is no longer available, the start calls will simply return that the startup is not
successful. If that happens, the application manager can then restart the complete adaptation

process which pauses the components that have been started.

When the start call returns successfully, the application manager sends a remove call to the
control interface of the assembler (8). This allows the assembler to remove all data stored for
the application. If the assembler used instances on other computers, it can forward the remove

call to release their data, too.

5.2 Implementation

In order to evaluate the concepts introduced by the PCOM component system as well as the
architecture presented in the previous section, we have implemented PCOM on top of BASE, a
service-oriented communication middleware for smart peer groups. In addition to developing
the core elements of the overall architecture described previously, we extended the
functionality of BASE in order to enable the reliable monitoring of remote objects and in order to
allow an efficient implementation of the algorithms. Furthermore, we developed a set of
optional graphical user interfaces as well as a development tool for PCOM components. In the
following, we briefly outline BASE as well as the extension that we made to monitor remote
objects. Thereafter, we discuss some implementation details of the component container, the
assembler and the application manager. Finally, we provide a brief overview of the graphical

user interfaces for the component system and the development tools for PCOM components.

5.2.1 Communication Middleware

As presented in (Schiele, 2007), BASE is a service-oriented communication middleware for smart
peer groups that is based on the idea of a minimal yet extensible core. The functionality
provided by this minimal core is the remote and local mediation of requests between application
objects. To support different communication technologies and protocols, the BASE micro-broker

can be flexibly extended with various communication plugins.

The details of this are not relevant for the remainder and thus, we refer the interested reader to
(Schiele, 2007) for an in-depth discussion of the associated concepts. However, from the
perspective of the PCOM component system, it is important to mention that BASE utilizes four
components to mediate requests between application objects. These components are called
InvocationBroker, PluginManager, DeviceRegistry and ObjectRegistry. The interaction between

these components is depicted in Figure 38 and detailed in the following.
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The InvocationBroker is responsible for accepting requests from application objects that need to
be mediated. In order to represent such requests, BASE introduces a unifying abstraction called
Invocation. Invocations that need to be delivered to a local application object are directly
handled by the InvocationBroker. Invocations that need to be transferred to some remote

computer are passed to the PluginManager.
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Figure 38 — BASE Architecture and Interaction

The PluginManager then takes care of transmitting the Invocation to the remote computer.
Since the PluginManager can support different communication technologies and protocols, the
PluginManager first needs to select a suitable communication technology and a suitable set of
communication protocols depending on the capabilities of the local and the remote system. In
order to make this selection, the PluginManager relies on the information held in the

DeviceRegistry.

The DeviceRegistry is responsible for storing information about the computers that are currently
part of the smart peer group. This information entails the set of plug-ins that are available on
each computer as well as plug-in-related information that is needed to initiate the
communication. In addition, the DeviceRegistry also stores information about the system
services that are available on each computer. All information held by the DeviceRegistry is

proactively distributed within the smart peer group by means of discovery protocols.

When an Invocation arrives at the PluginManager of the computer that contains the target
object, the PluginManager passes the Invocation to the local InvocationBroker. The
InvocationBroker then delivers the Invocation to the targeted application object. In order to do
this, each potential target object is registered at the ObjectRegistry using a globally unique
identifier. This globally unique identifier is contained in the Invocation and thus, the

InvocationBroker can select the right target object and pass the Invocation to it.
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It is important to mention that the ObjectRegistry distinguishes two possible types of identifiers,
namely well-known identifiers and automatically generated identifiers. Well-known identifiers
are used to identify system services. Automatically generated identifiers are used to identify
other application objects. The main difference between the two types is that well-known
identifiers are distributed proactively by means of discovery protocols and they are stored within
the DeviceRegistry of each computer in the smart peer group. Thus, each computer can
determine whether some remote system that is part of the smart peer group is equipped with a
certain system service by locally inspecting the well-known identifiers contained in the

DeviceRegistry.

BASE uses this proactive distribution of well-known identifiers to bootstrap further application
support. The original system described in (Schiele, 2007) uses this for instance to implement a
ServiceRegistry for user-defined services. For PCOM, we use this interface to develop the
architectural building blocks as well as the BASE extension described next. This allows the
seamless coexistence of computers that are equipped with the PCOM extensions with other
computers that are solely executing the core functionality of BASE. Moreover, it can also support
the utilization of existing application objects that have been developed with BASE by providing
appropriate wrappers that interface with the PCOM container either as components or

resources.

5.2.2 Lease Registry

The core functionality of BASE, as described in (Schiele, 2007) does not provide strong
guarantees on the information stored in the DeviceRegistry. The reason for this is that the
DeviceRegistry does not explicitly regulate how the discovery plugins need to update the stored
information in order to allow the implementation of different device discovery protocols. This
leads to the problem that BASE does not guarantee that temporary disconnections are
recognized by all group members. The resulting asymmetry of information renders the

DeviceRegistry useless in order to monitor the availability of a certain remote object.

In order to understand the implications of this problem, consider the following example in which
a client and a server are solely relying on notifications of their local DeviceRegistries to manage
client-specific session data stored at the server. If the client and the server are temporarily
disconnected, there are four possible outcomes. If the period of time in which client and server
are disconnected is very short, neither the client nor the server might recognize the
disconnection. In this case, nothing needs to be done. In the second case, both DeviceRegistries
detect the disconnection and signal this to the client and the server respectively. In this case, the
client and the server both know that the client-specific session data has been removed and the

client can perform corrective actions, e.g. it can reinitialize the client-specific session data. In the
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third and the fourth case, either the client or the server detects the disconnection. The former
might lead to stale state on the server, while the latter can break the client implementation

when it continues to interact with the server.

In order to mitigate this problem without changing the semantics of the DeviceRegistry and
existing discovery plugins, we extend the functionality of BASE with a generic and configurable
monitoring mechanism for remote objects. However, it should be noted that the overall system
model of a smart peer group corresponds to that of an asynchronous system. Thus, the reliable
monitoring of remote objects can only be approximated in general and the premature removal
of state cannot be prevented in every case. Yet, for the requirements of the PCOM it is sufficient
to reliably detect the cases where the state has been removed prematurely and to provide a

solution that avoids the premature removal on a best effort basis.

We have implemented this mechanism as a BASE system service that we named the
LeaseRegistry to underline the similarity with leases (Gray & Cheriton, 1989). The LeaseRegistry
introduces periodic communication between the computer that hosts a remotely used object
and the computer that relies on the presence of the object. The periodicity can be flexibly
configured for each object. To hide the details of the underlying communication, the object is
associated with a lease. The lease is created when the remote object is registered at the
LeaseRegistry of its hosting computer. The lease can then be passed to one or more interested
clients. The clients need to register the lease at their local LeaseRegistry. Using the information
contained in the lease, the participating LeaseRegistries can cooperatively ensure that both, the
clients and the computer that hosts the remote object, are notified when either one is no longer
available. To do this, the client LeaseRegistries periodically extend the lease. If the hosting
computer has already released the object, the lease extension will fail and the clients know that
the object has been removed. If the hosting computer does not receive a lease extension in a
certain amount of time, the object can be removed. If the removal was premature, all remaining

clients will be notified upon their next lease extension attempt.

5.2.3 Streaming Semantic

The flexibility to switch between different communication technologies and protocols introduces
additional overhead. In order to support temporary disconnections on different technologies,
BASE composes a suitable communication stack for each remote interaction. Usually, the
overhead for doing this can be neglected when compared to the delay resulting from remote
communication. However, the configuration algorithm and the adaptation heuristics described
in Chapter 3 and 4 are typically transmitting a high number of comparatively small messages
(usually few bytes to represent variable identifiers and value assignments). Furthermore, the

algorithm assumes that the messages that are exchanged by two computers are received and
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processed in first-in-first-out order. As a result, the utilization of a synchronous remote method
call to transmit a large number of small messages sequentially would result in very high
configuration delays. Of course, it is possible to use sequence numbers to enable the parallel
message transmission while maintaining the first-in-first-out order. Yet, this approach still

suffers from unnecessary overhead for composing protocol stacks over and over again.

To avoid this overhead, we have developed a high-level BASE communication plugin that
provides remote objects with direct access to the connection-oriented transports provided by
the communication plugins on lower levels. This way, we can use the first-in-first-out guarantees
provided by connections and we can reuse the same communication stack for multiple
transmissions. According to the terminology introduced by BASE, the plugin is situated on the
semantic layer and thus, it defines the communication semantic in terms of synchronization,
retransmissions, etc. We use the flexibility of this layer to introduce a special type of semantic
that simply opens a connection to another service using the standard facilities of the
PluginManager. After the connection has been established, it passes on the Connector that
represents the connection to both, the source and the target object. In order to do that in a
controlled manner, we introduce a streaming interface that needs to be implemented by objects
that support connection-oriented communication and we modify the proxy and skeleton
generator of BASE so that it can generate special proxies and skeletons for objects that

implement this particular interface.
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Figure 39 — Streaming Plugin

Figure 39 shows the resulting interaction between a source and a target object. The target
object implements the streaming interface which defines an accept method. When the proxy

and skeleton generator detects this interface, it generates a special proxy that implements an
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open method. By calling this method, the source object can get access to a Connector. To create
this connector, the proxy sends an invocation to the InvocationBroker that is eventually
delivered to the streaming semantic plugin. The plugin then creates a connection that with the
remote object using the standard facilities of the PluginManager. When the connection has been
established, the streaming plugin puts the corresponding Connector in an invocation and returns
it to the proxy which passes it to the source. On the target system, the streaming semantic does
the same. The skeleton then dispatches the connection to the target object which receives the
connection through the accept method. After the connection has been established successfully,

the source and the target object may use it to transmit an arbitrary sequence of bytes.

Since the streaming plugin allows direct access to the underlying connections and protocols, it
can be used to avoid the repeated composition of communication stacks. However, the
drawback of this approach is that many of the advantages of the BASE plugin architecture are
bypassed as well. For instance, the semantic puts the burden of dealing with disconnections on
the application developer. Furthermore, the application developer needs to ensure that the
connections are released properly in order to avoid unnecessary resource consumption. As a
consequence, the advantages and disadvantages implied by the streaming semantic should be
considered carefully. However, since we use the streaming semantic to efficiently implement the
communication between different assemblers, the advantages clearly outweigh the potential

drawbacks in this case.

5.2.4 Component Container

As introduced in the architectural overview, the component container is the core building block
of PCOM. Besides from exposing the interfaces required by the application manager and the
assembler, the component container is responsible for implementing the component and the
resource abstraction. In order to realize these abstractions, the component container provides a

framework for developers. The framework consists of three main parts.

The first part is the contract object model which implements the component and resource
contracts described in Section 2.3.2. In order to reduce the memory footprint of the contract
object model, the implementation is condensed into a single class whose instances can be
organized into a tree-structured object graph. Instead of using different classes in order to
represent the individual sections of the contracts, the contract model uses a specialized type
system that is build using a predefined set of constants and built-in mapping tables. These tables
define valid compositions and ensure that the sections of the contracts appear in the right order
at the right place. However, since this approach results in a rather unintuitive programming
interface, we decided to abstract from this type system using a set of interfaces together with an

adapter class. Besides a small memory footprint, this implementation also allows us to restrict
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the access to different parts of a contract depending on its usage. Towards this end, the
implementation conceptually distinguishes between three different classes of contracts, which
we called setup, template and status. The setup class is used during the creation of a contract
through the component factory or the resource manager and thus, it allows full read and write
access to all parts of the contract. The template class is used to represent the contract of a
component instance or a resource assignment at runtime and thus, only the provision specified
by the contract can be changed. Finally, the status class is used to represent the dynamic
provision of other component instances and resource assignments that are used by some other

component instance and thus, they cannot be changed.

The second part is a set of interfaces that define the callbacks of component factories,
component instances and resource managers. Note that there is no interface for resource
assignments since these are generic objects that are implemented by the component container.
Application developers can create new components and resources by implementing the
corresponding interfaces. In addition to providing its container-specific interface, a component
instance will usually support further application-specific interfaces. These application-specific
interfaces can be designed freely, but they must be compatible with the interfaces defined by
the framework, i.e. the methods declared in the application-specific interfaces must not contain
methods that have the same or a conflicting signature. The same holds true for the handle to a
resource that may be contained in a resource assignment. There, the handle will usually expose
an application-specific interface. However, since the handle is not accessed by the component

container, it can expose an arbitrary interface.

The third and final part is a set of interfaces that enables component factories, component
instances and resource managers to retrieve and to manipulate relevant information provided
by their component container at runtime. Towards this end, the container provides component
factories, component instances and resource managers with references to their so-called
context objects. Each context object stores all information that is needed by a single component
factory, component instance or resource manager. The exact information and functionality that
is made accessible through the context object depends on the type of the application element.
In addition, the context object also manages all information required to execute the

corresponding application element.

Due to this design, the container itself is solely responsible for dispatching incoming calls from
the architectural building blocks of PCOM to the corresponding context object. To perform this
dispatch, the container assigns a globally unique identifier to all application elements whenever

they are installed or created and it stores the mapping between identifiers and application
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elements in a component table and a resources table. An overview over the resulting internal

structure of the component container and the context objects is shown in Figure 40 .
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Figure 40 — Component Container Implementation

The component table contains the mapping between the context objects of the component
factories and their globally unique identifier. The context object of a component factory contains
references to the factory in order to query for potential component contracts during the
configuration of an application and to instantiate component instances if they are needed. In
addition, it also maintains a table of the context objects of component instances that have been
created by the corresponding component factory. Apart from enabling the dispatch of incoming
calls to the right context object of a component instance, this table is also required to support
the clean removal of a component factory together with all of its component instances from the
component container. The component factory can use its context object to create new

candidate component contracts during configuration.

The context object of the component instances is more complicated than that. Analogous to the
context object of component factories, it also needs to maintain a reference to the component
instance. This reference is used to trigger changes to the lifecycle of the component instance. In
order to enable the remote communication between different component instances, each

context object of a component instance also needs to manage an appropriate set of proxies and
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skeletons. Since a component instance may expose two types of interfaces, i.e. one interface for
transmitting events to its parent instance and one interface for receiving calls from its parents,
each component is equipped with a so-called event emitter to send events and a skeleton to

dispatch the remote calls of the parent.

In addition, each component instance may exhibit an arbitrary number of dependencies on
other components and resources. To represent these dependencies, the context object relies on
so-called binding objects. Since each required component instance may, in turn, expose an
interface for events and an interface for calls, the instance binding object needs to maintain a
reference to a proxy for calling the methods provided by a child component instance and a
reference to an event collector for receiving events that are generated by the child.
Furthermore, in order to support the automatic adaptation of stateful component instances, the
binding object also needs to maintain information about the state of the child, i.e. the history of
method calls and checkpoints. For resource bindings it is sufficient to maintain a reference to the
corresponding resource assignment. Since resources in PCOM are always used locally, this
reference can be a direct reference. Finally, in order to enable component instances to
efficiently inspect the demand of their parents as well as the provision of their children, the
context object and the bindings respectively are maintaining a cached version of the relevant
parts of their contracts. These cached versions are stored initially during the configuration and
they are automatically updated if the part of the underlying contract is changed. In order to
receive notifications about changes, the component instance may register listeners at its context

object.

Analogous to components, the resource table also contains a mapping between the globally
unique identifiers and the corresponding context objects for resource managers. Since resource
managers perform similar tasks to component factories, the context objects of resource
managers are also maintaining a reference to the resource manager and table of the issued
resource assignments. The reference to the resource manager is used to query for resource
contracts and to request resource assignments. The table of issued resource assignments is used
to compute the remaining amount of available resources and to remove the resource from the

component container upon request.

In contrast to component instances, which are application elements that are designed by the
application developers, resource assignments are generic objects that are a part of the
component container implementation. Thus, there is no need for providing a special context
object for resource assignments. Instead, the resource assignment can be seen as the context
object. Similarly, the optional handle to the resource which can be included in a resource

assignment can be seen as the application element. Since resource assignments do not depend
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on other application elements and cannot be used directly from a remote computer, the
information held by them is rather simple. Apart from the optional handle to the represented
resource, the resource assignment stores the resource contract and information about the
status of the assignment, i.e. whether it is started or stopped. Finally, in order to avoid duplicate
copies of the same contract on the same component container, it contains a reference to the
resource binding that uses the assignment in order to gather the details of the demand directed

towards the assignments instead of a cached version.

5.2.5 Application Manager

As discussed previously, the application manager is responsible for managing the preferences
and initiating the configuration and adaptation. To do this, the application manager provides an
interface for users that can be used to define application preferences and to start and stop an
application. Furthermore, in order to interact with component containers, the application
manager provides an interface that allows the component containers to signal changes and
failures. Since there is no conceptual difference between preferences and requirements, we can
reuse the demander interface of the component container. As a consequence, a component
container does not have to differentiate another component container from an application
manager which unifies its implementation. Furthermore, since the application manager now

needs to mimic the behavior of a container its internal implementation becomes quite similar.
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Figure 41 — Application Manager Implementation

Figure 41 shows the main data structures of the application manager. Similar to a component
container, the application manager holds a table that maps globally unique identifiers to
application objects. The application object consists of the preferences which are essentially an
ordered list of contracts that describes the requirements on the application anchor.
Furthermore, for each application it stores information such as the current lifecycle state and
the configured preference, etc. In order to enable the support for different assemblers, the

application manager stores a reference to the assembler that is responsible for configuring the
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application. Finally, in order to mimic the behavior of a component container, the application
manager must hold a data structure that closely resembles the component binding of the
component container. However, since the application manager will not interact with the
application anchor, it is sufficient to maintain generic proxies and event collectors that
implement the protocols required by the component container. In order to react to changes, e.g.
to start the configuration and adaptation process, the application manager uses one thread per
application that is started when the user requests an application startup and stopped when the

application is stopped.

5.2.6 Assembler

The assembler is responsible for configuring and adapting a configuration. As indicated in
Section 5.1.9, the application manager and the component container cooperate closely with the
assembler during the configuration and adaptation. Specifically, they provide the model of the
existing configuration and the associated adaptation costs. Furthermore, they enable the
assembler to retrieve relevant information about the environment such as the available
components, resources and contracts. Since the general interaction between these three
entities is fixed, we have developed a basic framework to simplify the implementation of

different assemblers.
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Figure 42 — Assembler Implementation

Figure 42 depicts this framework together with the protocol and algorithm-specific parts. Since
an assembler must be able to support multiple simultaneous configuration and adaptation
processes for different applications, it contains an application table that maps the unique
identifier of an application to a data structure. This data structure represents the configuration
or adaptation process for a single application on a single computer. It is created when the
configuration or adaptation process is about to be started and it is deleted when the process has
finished. In order to avoid stale state, the data structure is tied to leases provided by the registry

described in 5.2.2. In our implementation of the configuration algorithm and adaptation
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heuristics described in Chapter 3 and Chapter 4, the leases are monitored by the assembler that

is hosted on the computer with the application anchor.

The general parts of the data structure consist of a messaging subsystem that uses queues and a
dispatching subsystem to decouple the message transmissions and receptions from processing.
In order to efficiently support algorithms that require termination detection protocols, the
messaging subsystem provides a generic interface for different termination detection protocols.
In order to support failure handling during the execution of the algorithm, the messaging
subsystem can signal failures and it can suppress outdated messages using an epoch value as
described in 3.2.3.6. To maximize the performance of the messaging subsystem, it is
implemented multi-threaded and it uses the streaming semantic described in Section 5.2.3.
Since multi-threaded algorithm implementations are complicated, the messaging subsystem
serializes the processing of messages using a dispatch module. This allows us to implement the
algorithm described in Chapter 3 and Chapter 4 as reactive processes without additional
synchronization — just like we have described them. Finally, in order to support adaptation, the
framework stores the information about the existing configuration in a data repository. This data
repository can be consulted, for example, to determine the adaptation costs of different

adaptation options.

To implement the configuration algorithm and the adaptation heuristics, we implement a credit-
based termination detection protocol that we hook up to the messaging subsystem.
Furthermore, we add storage for algorithm-specific information, i.e. the configuration objects,
the amounts of available resources on the component container, etc. Finally, we implement the
basic algorithm as detailed previously and in order to support resilience, we implement a
module that performs failure handling. The failure handling module is responsible for signaling
failures to other computers and it creates the necessary additional constraints, in cases where a
computer becomes unavailable during configuration. Thus, it essentially implements the

algorithm modifications described in Section 3.2.3.6.

5.2.7 Graphical Interface

In addition to implementing the system services of PCOM, we also developed a set of graphical
user interfaces that enable users and developers to interact with the core runtime system. Since
the implementation of the PCOM system service allows the flexible configuration of a system
with different subsets of the system services, we have also implemented the graphical user
interfaces in a configurable manner. To do this, we divide the user interface into application

browser, component browser and assembler visualizer library as depicted in Figure 43.

In order to support a broad range of computers, the user interface parts have been

implemented using the multi-platform user interface library SWT. Thus, the user interfaces can
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be executed on personal computers that are running Windows, Linux or MacOS as well as on
most systems based on Windows CE. To support a broad spectrum of mobile phones as well, we
also implemented MIDP versions of the application browser and the container browser.
However, due to the limited screen real-estate that is typically available on mobile phones, we
did not implement the assembler visualizer library using MIDP. Thus, this library is solely
available on systems that are supported by SWT.
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Figure 43 — Graphical User Interface

As indicated by the names, each user interface part supports one architectural components of
the core runtime system of PCOM. The application browser enables the interaction with the
application manager. The container browser enables the interaction with the component
container and the assembler visualizer library simplifies the development of visualizations for
assembler implementations. All user interface parts are developed on top of the BASE system
browser and they solely depend on the presence of this user interface and the corresponding
PCOM system service. In the following, we briefly outline the functionalities of the individual

user interface parts.

The application browser enables users to start and stop PCOM applications. To do this, a user
may define its preferences for a certain application anchor and the user may select a desired
assembler implementation that is used to configure and adapt the application. The preferences
can be used immediately to start an application and they can be stored in the application
browser for later reuse. In addition to starting and stopping applications, the application

browser also enables users to manually trigger the reconfiguration of a running application. This
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functionality can be used to manually search for better application configurations and it can be

useful for developers in order to test Assembler implementations.

The container browser enables users to visually inspect the current internal state of a local or
remote component container. The container browser is capable of displaying the installed
components and resources. Furthermore, it can list the executed component instances and
resource assignments together with their contracts. In addition, the container browser can also
display the amount of available resources for each resource and the amount of resources used
by the currently issued resource assignments. Finally, the container browser can also revoke
resource assignments and it can stop the execution of a component instance. This simplifies
runtime testing of resource and component implementations by manually injecting the typical

failures resulting from mobility and unforeseeable resource fluctuations.

In contrast to the assembler browser and the container browser which can be used directly by
users, the assembler visualizer provides a library for developers. This library simplifies the
process of developing visualizations for Assembler implementations. To do this, the library
provides a set of user interface controls to visualize the dependencies between component
instances and resource assignments. In addition, the assembler visualizer Library also contains a
control that animates the construction of a configuration and hides the details of computing a
proper layout for the resulting tree of component instances and resource assignments. By
integrating this control with the assembler implementation, a developer can create animated

visualizations of the underlying configuration algorithm that can be executed at various speeds.

5.2.8 Development Tools

In addition to the graphical user interface, we also provide a set of development tools that
simplify component development. In order to develop a component, a developer needs to
implement a component factory that creates component contracts and a component instance
that provides the component-specific functionality. Both, component factories and instances,
are required to implement a certain set of interfaces provided by the container. In addition, the
component instance also needs to implement the component-specific interfaces declared in its
component contract. Furthermore, to connect component instances with arbitrary component
interfaces, PCOM requires an appropriate skeleton for the component instance and a set of
proxies for the dependencies of the instance. Due to the technical restrictions of the J2ME CLDC
runtime environment, these proxies and skeletons cannot be generated at runtime by the

container but they must be generated offline.

As a result, it may become quite complicated to ensure that all proxies and skeletons are
generated properly and that the component instance, the component factory and the

component contract exhibit the required structure. This is especially problematic for developers
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that do not fully understand the overall concepts of PCOM, e.g. when they just started to work
with the component system. In order to simplify this, we have developed a development tool

that is integrated into the Eclipse platform as shown in Figure 44.

Component Factory

. Template
Component Declaration

(XmL) Validation Code
(Xerces) Generation] Component Instance
Template

Component Contract
Template

PCOM Plug-in

JDTPlug-ins Xerces Plugin

Component Model
(Internal)

Component Defintion
(XML Schema)

Eclipse Platform | l
Reflection
(JDT Model) Component

- Proxies & Skeleton
Interface Definitons

Figure 44 — Development Tools

To use this plug-in, a developer first defines the application interfaces of the component using
Java. Thereafter, the developer needs to specify an XML document that describes the contents
of the component contract. Using this specification, the plug-in can check whether all required
application interfaces are available and whether they are suitable, e.g. whether their parameters
can be serialized by BASE and whether the methods of the interfaces declare remote exceptions
that might be raised by BASE, etc. If this check succeeds, the plug-in generates appropriate
templates for the component instance, the component factory, the component contract as well
as the required skeleton and all potentially required proxies. If the check fails, the plug-in can
bring the problems to the attention of the developer by marking the lines of code that are

causing the problem.

The basis of this overall process is an XML schema that defines all possible structures of a
component in an abstract manner. Using this XML schema, a developer can declare the provision
and the demand of the component instance as an XML document. By using existing Eclipse
plugins such as the XML editors provided by the WTP project, this declaration can be done
graphically. The graphical editor ensures that the XML document conforms to the XML schema
at design time. When such an XML document is passed to the PCOM development tools, the
plug-in can use existing validating XML parsers such as Xerces to ensure that the structure is
valid. In order perform the checks on the component-specific interface, the plug-in relies on the
reflection capabilities of the Eclipse JDT plugins. The JDT plugins are also used to generate the
resulting templates for the component factory, instance and contract as well as the proxies and

the skeleton.
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5.2.9 Simulator

Finally, in order to ease the evaluation of the configuration algorithm and the adaptation
heuristics, we have developed an event-discrete simulator for the component system. Just like
the simulator used in (Yokoo, Durfee, Ishida, & Kuwabara, 1998), the simulator abstracts from all
details of the underlying computer hardware and networking technology. To do this, it delivers
and processes all messages generated in one time “tick” in the next time “tick”. This allows us to
measure and compare many relevant properties of different algorithms in a broad variety of
scenarios in an abstract manner. By performing a small number of real-world experiments, we

can then relate the abstract figures to real configuration and adaptation overheads.

Assembler LI Assembler ) Scenario Analysis
Configurator Algorithm
Logging
Scenario 1
Components / Runtime Analysis P
Containers
Generator Environment Evaluation | | Developer
g - | Developer/
ootstrap Scheduler Core Framework

Simulator - Framework

Figure 45 — Simulator

As shown in Figure 45, the simulator consists of five basic modules. The core of the simulator is
formed by a scheduler that is responsible for message scheduling and processing. In order to
process messages, the core relies on the environment module which provides a light-weight
implementation of the fundamental concepts of the component system, e.g. containers,
components, resources, etc. The environment module has interfaces that allow the
implementation of different configuration and adaptation algorithms. Furthermore, both the
environment and the core have interfaces to support the analysis of characteristics of the
scenario modeled by the environment and the properties of the algorithm. Finally, in order to
generate different applications and smart peer groups, the simulator provides a scenario

generator.

Since the simulator is a tool for the evaluation of the properties of algorithms, practically all
relevant aspects can be configured and extended. The only exceptions to its extensibility are the
abstractions of the component system and the logging module. However, as indicated by the
different colors in Figure 45, there are (multiple) default implementations for all aspects of the

simulation that are independent from the algorithm. Thus, in order to simulate the execution of
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an algorithm, a developer solely has to implement the algorithm using the framework defined by
the simulator and if necessary, a configuration module for the algorithm. Thereafter, the
developer can perform different simulations by creating a bootstrap program that selects the
proper modules for scenario generation, scheduling and evaluation. The output generated by

the logging module can then be imported in other programs to aggregate or visualize the results.

5.3 Discussion

In this chapter, we have presented a prototypical architecture and implementation of the
component system described in Chapter 2 and we have discussed how the configuration
algorithm and the adaptation heuristics detailed in Chapter 3 and Chapter 4 can be integrated.
The design goals for the architecture are completeness, resilience, minimalism, efficiency and
support for pluggable algorithms. The conflict of support for pluggable algorithms regarding
efficiency and minimalism is resolved in favor of pluggable algorithms to simplify the comparison

of alternative approaches for automatic configuration and adaptation.

Completeness is achieved by integrating all concepts and mechanisms described in the previous
chapters. Minimalism is achieved by applying the classical design principle of separation of
concerns. This results in a lean component container implementation that does not have to deal
with the specifics of preferences, automatic configuration or automatic adaptation. Resilience is
achieved by allowing the individual parts of the architecture to fail independently. This is made
possible by enabling the component containers to control all processes that are critical to ensure
the desired behavior. Efficiency is supported by designing the interfaces between the
architectural parts in such a way that they avoid unnecessary communication. Furthermore, in
cases where the architecture must support multiple implementations, we incorporated
alternative ways of interface usages that allow the efficient implementation of many
alternatives. Examples for this are the assembler interface which supports the eager as well as
the lazy retrieval of a configuration or the container interface which supports simple and batch

queries.

To simplify the implementation of the component system, we have reused an existing
implementation of the BASE middleware for smart peer groups. To enable the efficient
implementation of the architecture on top of this middleware, we have extended it with an
additional system service to detect the unavailability of arbitrary remote objects. Furthermore,
we have added an additional communication plugin to support the efficient transmission of
comparatively high amounts of small messages in FIFO order. Using these extensions, we can
implement all architectural parts as system service on top of the micro-broker. In order to
improve the usability of the resulting core system, we have additionally developed a set of

graphical user interfaces and an Eclipse-based development tool. Finally, in order to simplify the
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systematic evaluation of configuration algorithms and adaptation heuristics in various settings,
we have developed an event-discrete simulator that allows us to create arbitrary smart peer
groups. Using this simulator, we can compare the performance and overhead of multiple

algorithms in thousands of different scenarios.

In the next chapter, we use this implementation to evaluate the component system presented in
Chapter 2 as well as the configuration algorithm and the adaptation heuristics presented in
Chapter 3 and Chapter 4. In Chapter 7, we discuss how other system software compares to the

proposed architecture and in Chapter 8, we outline possible extensions.
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6 Evaluation

The chapter evaluates the component system proposed in Chapter 2 using the implementation
presented in Chapter 5. To show the performance of the implementation, the Chapter presents
a set of micro benchmarks for relevant parts of the system. To show the benefits and limitations
of the abstractions, the chapter discusses an exemplary application. After the evaluation of the
component system, the chapter presents an evaluation of the configuration algorithm described
in Chapter 3. Thereby, the evaluation is centered on performance measurements in different
settings. To perform a thorough evaluation, the chapter presents an extensive set of event-
discrete simulations and to show that the simulations approximate reality, the chapter
additionally presents a set of real-world experiments. After the evaluation of the configuration
algorithm, the chapter provides an evaluation of the adaptation heuristics presented in Chapter
4. To do this, it discusses the results of a number of event-based simulations. Finally, the chapter

closes with a discussion.

6.1 System Software

In the following, we evaluate the overheads as well as the benefits and limitations of the
component system proposed in Chapter 2. First, we present a set of micro-benchmarks that
have been gathered using the prototypical implementation presented in Chapter 5. Thereafter,
we contrast the proposed approach for component-based application development with the
service-oriented approach for application development taken by other systems. As basis for this
discussion, we use the abstractions introduced by the BASE communication middleware. Given
that we used BASE, both to derive the necessary abstractions and to implement them, this

choice is quite natural.

6.1.1 Performance

To show the overheads associated with utilizing the component system, we first present a set of
measurements and micro-benchmarks. To put the results into context, we compare them with
similar measurements and micro-benchmarks that have been gathered using the BASE
communication middleware. The reason for selecting BASE for comparison is twofold. First,
PCOM has been implemented on top of BASE and thus, the performance of BASE defines the
baseline for PCOM. Secondly, BASE is also targeted at simplifying the development of pervasive
applications. However, in contrast to PCOM, BASE does not enable the automatic configuration
and adaptation of applications. Instead, it shifts the responsibility for this to the application
developer. As a consequence, the comparison of BASE and PCOM clearly illustrates the cost

incurred by automation.
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We start the discussion with a comparison of the overall memory footprint of BASE and PCOM.
Thereafter, we compare individual mechanisms along the lifecycle of an application. Specifically,
we compare BASE service selection with PCOM component matching, communication between
BASE services and between PCOM components and finally, we describe the overheads of the
monitoring and signaling mechanisms of PCOM. To get meaningful absolute numbers for
resource-poor computers, all measurements have been gathered with the IBM J9 JVM on
Windows Mobile PDAs (Xscale PAX270) that are connected via a wireless network (802.11b). To
reduce uncontrollable side-effects, the just-in-time compiler of the virtual machine has been
deactivated so that it is solely running in interpreter mode. After presenting the overheads, we
discuss the benefits and limitations of the component system in the next section. The overall
overheads of automatic configuration and adaptation are discussed in depth in Section 6.2 and

Section 6.3.

6.1.1.1 Footprint

Due to the implementation of PCOM as extension to BASE, the component system increases the
memory footprint. Since the component system does not require all architectural building blocks
on all computers, the exact overhead depends on the configuration of the computer. The set of
building blocks that is required on a computer, in turn, depends on the application scenario, for

example, whether it shall provide a component or whether it shall solely start applications, etc.

LOC NOC NOI SIZE (KB)

BASE Micro-broker 4514 33 25 141
BASE Service Registry 621 9 1 28,5
BASE Plugins (Bluetooth, IP, IRDA) 5273 48 1 186
BASE GUI (LCD) 3234 26 3 105
BASE GUI (SWT) 2931 28 4 171
PCOM Lease Registry 743 9 1 30,1
PCOM Component Container 7607 56 68 299,6
PCOM Application Manager 1411 6 1 41
PCOM Assembler 1500-3000 15-30 10-30 50-100
PCOM GUI (LCD) 2113 22 2 32,6
PCOM GUI (SWT) 3329 42 4 217
PCOM GUI Assembler (SWT) 1152 7 0 50

Table 1 — Memory Footprint per Building Block

Table 1 shows the memory requirements for different architectural building blocks of BASE and
PCOM. Besides from showing the uncompressed binary code size in kilobytes (SIZE), the table

also shows the lines of code without comments and blank lines (LOC), the number of classes
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(NOC) and the number of interfaces (NOI). The table indicates that the PCOM component
container is significantly larger than the BASE service registry. However, this should not come as
a surprise, given that the BASE service registry solely provides a minimal lookup service whereas
the component container provides the component lifecycle guarantees and mechanisms for
automatic configuration and adaptation. The memory footprint of the application manager is
similar to the size of the service registry. The memory footprint of the assembler depends on the
concrete implementation. A simple assembler can be implemented with approximately 1500
lines of code. A more complicated assembler that implements the configuration algorithm and
adaptation heuristics described in Chapter 3 and 4 can easily double the size. The user interfaces

for BASE and PCOM exhibit approximately the same size.

LOC NOC NOI SIZE (KB) DIFF (%)
BASE (Usage) 10408 90 27 355,5 -
PCOM (Usage) 11941 9% 28 398,1 12
BASE (Provision) 10408 90 27 355,5 -
PCOM (Provision) 19673-21173 161-176 105-125  706,7-756,7  99-113
BASE (PDA) 13339 118 31 526,5 .
PCOM (PDA) 27308-28808 237-252 114-134 1135,7-1185,7 116-120

Table 2 — Memory Footprint per Configuration

More interesting than the raw size of the architectural building blocks is the increase of the
footprint for different usage scenarios. Table 2 depicts three configurations of BASE and PCOM
with the necessary architectural building blocks for using a service or an application (Usage),
providing a service or a component (Provision) as well as an exemplary configuration for a PDA.
As indicated by the table, with exception of using an application (Usage), the memory footprint
increases approximately by a factor of two. The fact that the application usage does not lead to a
drastic increase can be attributed to the fact that PCOM solely requires the lease registry and
the application manager in order to use an application. However, if a computer shall offer a
component, it needs to be equipped with a lease registry, a component container and an

assembler.

It is noteworthy that the absolute memory footprint in kilobytes (SIZE) of BASE and PCOM shown
in Table 1 and Table 2 might seem prohibitively high for resource-poor systems at a first glance.
However, the comparatively high absolute numbers result mainly from the Java programming
language and can easily be reduced by a factor of two to five without modifying the
implementation. The root cause of the problem is that a Java application can always load
additional code. As a consequence a Java class file always contains full qualified signatures of

implemented and referenced methods and types. At the same time, the Java coding conventions
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require that package collisions ought to be avoided by using full qualified domain names to
uniquely identify packages. Together these two factors lead to very large constant pools in the

Java class files which consist mostly of repetitive string constants.

The usual way to mitigate this problem is to compress the binary code before shipment. Applied
to BASE and PCOM, this approach already reduces the footprint by a factor of two to three. A
more effective way to reduce the size is to use an obfuscator to modify the signatures of
methods and types. This approach is often taken by development tools for embedded systems.
Usually, the programs on these systems must be uploaded into a static program memory with
external development tools. As a result, the program code cannot be changed and extended at
runtime. In effect, this nullifies the extensibility of Java programs and thus, it is possible to

statically link the individual program parts.

By using these approaches to reduce the memory footprint, we have successfully deployed
PCOM on all target platforms that are also supported by BASE. This includes embedded micro-
processors such as the JStamp+, Linux- and Windows Mobile-based personal digital assistants,
mobile phones, laptops, desktops, etc. As a consequence, we can say that the increase in
memory footprint is not prohibitive, but it must be noted that the additional memory required
for PCOM is not available for applications. On the other hand, if an application needs support for
parameterization or automatic configuration, the application developer has to implement the
functionality of the component system as part of the application and this increases the size of
the application. If a computer provides only a single service, the increase might be slightly
smaller but if the computer shall host multiple services the increase can easily be higher,

especially, if the mechanisms are implemented individually for each service.

6.1.1.2 Matching

Another source of potential overhead is the description of components and resources with
contracts. In order to find suitable components and resources, the component system has to
match demands with provisions since components and resources are always bound dynamically.
In contrast to that, services in BASE may interact with other services directly — given that they
have the necessary remote reference. However, in order to acquire a reference in the first place,
a service must retrieve it via some naming or trading services. BASE implements a federated
naming and trading service as part of its service registry. In order to search for suitable
implementations, a BASE service uses properties that support the comparison of different
services. To get an indication for the overhead of the contract model introduced by PCOM, we

compare it with the property-based service description of BASE service in the following.
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Parameters 10 20 30 40 50
BASE Service Description 0,140 0,234 0,349 0,468 0,621
PCOM Component Contract 2,851 4,836 7,107 10,600 13,491
Overhead 20,364 20,667 20,364 22,650 21,725

Table 3 — Local Matching Latency and Overhead

Table 3 and Table 4 compare the overhead of one local and one remote lookup for service
descriptions and component contracts with an increasing number of name value pairs or
parameters, respectively. The parameters contained in the contract are strings with a
comparison operator that validates case-sensitive equality to closely mimic the behavior of BASE
service descriptions. To reduce uncontrollable side-effects of system immanent mechanisms

such as automatic garbage collection, the values resemble the average of ten runs with 1000

matches.
Parameters 10 20 30 40 50
BASE Service Description 86,970 142,200 187,210 235,760 267,960
PCOM Component Contract 123,190 201,480 269,540 336,720 389,700
Overhead 1,416 1,417 1,440 1,428 1,454

Table 4 — Remote Matching Latency and Overhead

As indicated by the figures for local lookups, searching for a component contract with twenty
attributed requires approximately 4.836 milliseconds whereas searching for a service description
requires only 0.234 milliseconds on average. Throughout the measurements, matching a
component contract is approximately twenty times slower than matching a service description.
This can be attributed to three factors. First and foremost, component contracts provide a
significant higher flexibility by supporting multiple data types and different comparators. This
increases the overhead during the evaluation as it requires multiple type inspections and casts.
Secondly, the lookup interface of the component container supports batch queries and thus, the
qguery and the results of the query need to be wrapped in an additional data structure. Finally,
the contracts are created dynamically upon each request, whereas service descriptions are

created statically in advance.

Although this overhead seems to be quite high at a first glance, the comparison of the remote
lookups shows a different picture. Here, the relative overhead shrinks down to approximately
40% percent. The reason for this is that remote method calls in BASE are much more expensive
than the local lookup, e.g. factor 400 to 600. Thus in a real-world scenario, in which components
need to searched on all computers of the smart peer group, the seemingly high overhead for
component matching is clearly dominated by remote communication. At the same time, the

absolute numbers indicate that the total cost of 2-14 milliseconds for local lookups is still
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reasonable. The remaining cost factors of remote calls can be attributed to differences during

serialization and the more flexible structure of contracts.

6.1.1.3 Communication

Besides from lookups and matching, a potential source of overhead is communication between
component instances. Since our implementation of PCOM uses similar proxies and skeletons as
BASE and since the component container registers them directly at the BASE micro-broker, we
can expect very little overhead. However, due to the fact that the component container inspects
the return values in order to detect broken dependencies, there is some small overhead for each
method call. Furthermore, if a component developer wants to utilize the logging to automate
the management of application-specific component state, there is additional overhead. To
determine exact numbers for these overheads, we compare communication of BASE services

with communication of PCOM component instances.

Size 0K 10K 20K 30K 40K
BASE 101,050 120,650 123,900 132,800 158,550
PCOM (Plain) 103,900 120,600 124,500 135,000 159,100
PCOM (Logging) 106,000 127,050 130,600 140,600 170,600
Overhead (Plain) 1,028 1,000 1,005 1,017 1,003
Overhead (Logging) 1,020 1,053 1,049 1,041 1,072

Table 5 — Remote Communication Latency and Overhead

Table 5 shows the latency of a remote method call between services and components for
varying parameter sizes. For BASE, we simply measure the latency of a synchronous method call
between two services. For PCOM, we perform two measurements, one without message logging
(Plain) and one with message logging (Logging). If message logging is disabled, only the return
value needs to be checked. If logging is enabled, the parameters of the call need to be serialized
and stored. To vary the size of the parameters of the remote call, we transmit a byte array with
different sizes from 0 to 40000 bytes. As indicated by the measurements, PCOM does not
introduce significant overhead in cases where logging is disabled. If logging is enabled, the
overhead depends on the size of the parameters but it remains low, even for larger parameter

sizes, e.g. seven percent for 40000 bytes.

6.1.1.4 Monitoring

Another source of overheads is the monitoring mechanism introduced by PCOM. In order to
detect the unavailability of a required component instance, PCOM monitors the communication
between component instances. As shown previously, the overhead for this can be neglected. In
addition, the component system utilizes a lease mechanism to detect the unavailability of

component instances that are not contacted frequently. The lease mechanism is also used to
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prevent stale component instances on computers that have left the smart peer group. By its very
nature, the mechanism introduces periodic communication to renew existing leases. If a
communication attempt or a lease renewal fails, the application is notified by means of a
transition in its lifecycle. The overhead for signaling these transitions is discussed in the next
section. Since there is no counterpart for these mechanisms in BASE, we cannot perform a
comparative evaluation to determine the overhead. Instead we discuss an analytical model for
the cost of the monitoring mechanism in terms of additional communication and we perform

measurements to determine the cost of the signaling mechanisms.

Since the soft-state lease mechanism introduces period communication, the overhead for
monitoring depends mostly on the periodicity and the total monitoring time. If there are no
failures during the execution of an application, the total monitoring time boils down to the total
time that the application is executed. At the beginning of the monitoring, the component
container that provides a component instance for another component container registers a
lease at the lease registry and transfers it to the requester. Thereafter, the requesting
component container registers the lease to start the monitoring. During the monitoring period,
the lease registry on the computer that hosts the requesting component container will
periodically send lease renewals. At the end of the monitoring period, the lease registry sends a
lease removal to indicate that the associated component instance can be released. As a

consequence, we can model the overall requirements with respect to communication as

M. +n*(Mg +M,)+Mywhere M represents the transfer of the newly created lease, M,

represents a renewal message, M ,represents the acknowledgement and M represents the
deletion request. The number of lease renewals Ncan be computed from the total monitoring
time T and the periodicity Pasn=T /P. In order to compute the actual cost, we measure the

size of the messages that need to be transferred.

Message Mc Mg Ma Mp

Size 47 69 56 60

Table 6 — Message Sizes for Monitoring

Table 6 lists the message size for all necessary messages in bytes. The figures solely represent
the application level payload and do not include any headers from lower layers of the protocol
stack. The primary reason for this is that BASE can support different protocol stacks and
communication technologies which results in different header sizes. Furthermore, the lease
registry automatically bundles lease renewals that need to be sent to the same computer at
around the same time. Thus, the relative cost introduced at lower layers decreases with an
increase of leases. As one can see, the absolute size for the messages is small, i.e. below 100

bytes, and given that the periodicity is usually specified in the order of seconds, the total cost for
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monitoring is also small. However, it should be clear that there is a tradeoff between the
monitoring quality and the periodicity. By decreasing the frequency of renewals, failures can be

detected earlier. However, this also causes higher costs.

6.1.1.5 Signaling

The last source of overhead is the component lifecycle introduced by PCOM. If a new application
is started, all component instances need to be instantiated and started. If an invalid application
configuration is detected, all available component instances need to be paused. If an application
is stopped, all component instances need to be stopped and released. To perform these
notifications, PCOM traverses the configuration starting from the application anchor. Since BASE
services are not equipped with a lifecycle, we cannot compare it with an existing mechanism in
BASE. Thus, in analogy to the monitoring mechanisms, we mainly focus on measuring the cost

for performing these notifications.

However, it must be noted that the traversals of the configuration are not only used to signal a
transition in the lifecycle. As indicated in Section 5.1.9, the traversals are also used to instantiate
components upon initial startup, to compute the cost model and to load the application model
into the configuration algorithm upon pause, to retrieve the new configuration from the
algorithm and to modify the existing configuration after a successful reconfiguration, and to
release the component instances while stopping an application. As a result, the total cost
indicated by the following measurements would have to be divided among these mechanisms as

all of them require traversals.
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Figure 46 — Latency for Pausing a Configuration

To determine the overall cost for a traversal, we measure the total time to pause a configuration
before an adaptation takes place (Figure 46) as well as the total time to start an application after
the application has been reconfigured successfully (Figure 47) for applications with a varying

number of components. The application structure resembles a binary tree, i.e. each component
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instances requires at most two further components, for which we ensure that all adjacent
components reside on different computers. For these measurements, we use 4 Windows Mobile
PDAs (Xscale PAX270) that are connected via a wireless network (802.11b). To reduce the effects
of uncontrollable system properties, Figure 46 and Figure 47 show the average result of 500 runs

per value as well as the standard deviation.

As indicated by the steeper increases at application sizes of 2, 4, and 8 in Figure 46, the overhead
for performing a traversal depends to a large extend on the height of the tree as well as on the
latency for performing a remote call. The correlation between the delay and the height of the
application can be explained easily by the parallel execution of the traversals as discussed in
Section 2.3.5.4. Thus, when the application height increases by one, the overall delay is
increased by the delay for performing one more remote method call sequentially. In addition,
another interesting observation can be made by comparing the total delays of Figure 46 and

Figure 47.
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Figure 47 — Latency for Starting a Configuration

The figures indicate that the overhead for starting an application is higher than the overhead for
pausing it. Thus, computing the values of the cost model is obviously significantly less expensive
than determining the necessary changes to the configuration which allows us to conclude that
the cost model is indeed very light-weight. Finally, with a total overhead of less than 600
milliseconds for notifying an application with 12 components running on 4 Windows Mobile
PDAs, we can also conclude that the cost for signaling is tolerable. But probably more important,
we can also conclude that in many scenarios, there will only be short periods of time in which

the application is started with an invalid configuration.

6.1.2 Benefits and Limitations
In the following, we discuss the benefits and limitations of the component abstraction

introduced by PCOM. To do this, we contrast application development in PCOM with application
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development in BASE. We are aware of the fact that a thorough analysis would require the
development of several identical applications using both systems with different groups of
developers including professional application developers. Due to the associated monetary costs
of performing such an evaluation, we must consider this analysis beyond the scope of this
dissertation. Thus, we cannot claim that PCOM simplifies application development in general.
However, by describing the development of a realistic exemplary application with PCOM and by
discussing how a developer can benefit from the capabilities of PCOM, we can provide anecdotal

evidence for its usefulness and we can derive potential limitations.

6.1.2.1 Application

In order to experiment with PCOM, we have developed a set of simple applications that allow us
to test, demonstrate and evaluate individual aspects of PCOM. In addition, we also have
developed a small set of realistic applications. From this set, we describe one application called
Pervasive Presenter in the following. The Pervasive Presenter allows us to discuss all relevant
aspects of PCOM since it uses all features. Furthermore, the implementation of the Pervasive
Presenter is quite mature and we have used it for multiple public demonstrations of PCOM, e.g.

(Handte, Urbanski, Becker, Reinhardt, Engel, & Smith, 2006).

Preferences:

Computerowner Resource Purpose

Computer identifiers GUI Access to PCOM Ul

Display properties com Access to PowerPoint via COM

File location D Unique identifier of computer
DISPLAY Description of display properties
DISK Access to file system location
OWNER Description of comp owner

Presentation

Control
Computerowner

Computer identifier
File location

Computer identifier
Display properties

com 1
ID 1
DISPLAY 1

DISK 1
ID 1
OWNER 1

PowerPoint

Remote File

Access Viewer

Figure 48 — Pervasive Presenter Application

The use-case for the Pervasive Presenter is similar to the use-case of the exemplary applications
that we have used to motivate automatic configuration and adaptation in Section 3.1.1 and
Section 4.1.1. It allows a user to control a presentation from a hand-held computer in an
arbitrary smart peer group. To make use of the capabilities of the smart peer group, the
application is split in three main functionalities as indicated in : a control functionality that
provides the user interface, an input functionality that acts as data source and an output

functionality to display individual slides during the presentation.
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For the simplest possible implementation, we have realized these three functionalities as three
separate components. The Presentation Control running on a personal digital assistant allows a
user to load a PowerPoint presentation from some remote file system and to skip from one slide
to another. The access to the remote file system is provided through the Remote File Access
component. The individual slides are shown using a PowerPoint Viewer component on a desktop
or a laptop. The PowerPoint Viewer component simply provides a PCOM wrapper for PowerPoint
through COM. In addition to displaying slides, the PowerPoint Viewer also converts the currently
displayed slide to a small image which is shown by graphical user interface of the Presentation

Control.

In order to differentiate between components on different computers, we introduce a set of
non-functional properties in the component contracts. To avoid the configuration of each
individual property on a per-component basis, we create resources (Owner, ID, Display) that
provide the details for each computer. As a result, the component implementation becomes
generic and can be deployed on different computers without any configuration. Consequently, in
order to function properly each component requires some local resource to determine the
concrete properties of its hosting computer. As an example consider for instance the Display
resource used by the PowerPoint Viewer. Instead of specifying the concrete resolution or the
physical size of the display for each PowerPoint Viewer upon deployment, we introduce a
resource that specifies these properties. If a PowerPoint Viewer with specific display-related
properties is requested, the component can simply forward the requirements to the resource. If
the resource supports them, the PowerPoint Viewer can create a suitable component. As
indicated in , by implementing a similar forwarding of properties in the Presentation Control, the

application can be configured flexibly through user preferences.

= —
powerroint T
'owerPoin
,k Viewer 1D 1
Presentation \ \\ DISPLAY 1
Control -

il

com 1
ID 1
DISPLAY 1

PowerPoint
Viewer

Figure 49 — Pervasive Presenter Application with Dynamic Preferences

Since it might be cumbersome to specify the desired properties of the PowerPoint Viewer for

different smart peer groups as part of the preferences, we have extended the application
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manager and the resource that provides the computer identifier. Instead of specifying the
concrete identifier in the preferences, a user may specify an abstract value to indicate that the
application manager should provide the concrete identifier at runtime. To determine the proper
identifier, the application manager listens to incoming identifiers via infrared. The resource
manager installed on the computer that hosts the PowerPoint Viewer uses infrared to broadcast
its identifier. This allows a user to “point” to the computer that shall be used to display the
presentation. As shown in Figure 49, a user can also switch from one computer to another by
pointing to it. When the application manager receives the new identifier via infrared (1), it
simply adjusts the preferences (2). This, in turn, initiates an adaptation which selects the desired
component (3). This simple extension demonstrates nicely, how additional context information
can be used to simplify the specification of dynamic preferences. Yet, to ensure a broader
applicability, the simple infrared-based sensor would have to be replaced with a more powerful
context management infrastructure such as Nexus (Hohl, Kubach, Leonhardi, Rothermel, &

Schwehm, 1999) or Cobra (Chen, Finin, & Joshi, 2004), for example.

Preferences:
Computerowner Resource Purpose
Computer identifiers GUI Access to PCOM Ul
Display properties com Access to PowerPoint via COM
File location D Unique identifier of computer
DISPLAY Description of display properties
DISK Access to file system location
Presentation OWNER Description of computer owner
Control
(PDA / Phone)
Computerowner
Computeridentifier Computer identifier
File location Display properties ?::‘,:;ﬁ Computer identifier

Display properties

DISK 1
ID 1
OWNER 1

com 1
ID 1
DISPLAY 1

PowerPoint
Viewer

Remote File
Access

ID 1
DISPLAY 1

PowerPoint
Viewer

Image
Viewer

Figure 50 — Pervasive Presenter Application with Multiple Configurations

To demonstrate that the PCOM component model allows the flexible extension of an application
in different dimensions, we have developed three additional components. First, we have
developed a replacement for the Presentation Control component that can be executed on a
mobile phone. In terms of functionality, this component is similar to the original version except
that it uses a different API to interface with the windowing toolkit of a J2ME-based mobile
phone. The implementation of this component shows that it is straight-forward to reuse the
functionality of existing components. Secondly, to demonstrate that it is also possible to use
different implementations of the same component, we have developed a replacement for the
PowerPoint Viewer. This replacement removes the requirement of having PowerPoint installed

on the computer that shows the slides. To do this, the replacement reuses the image conversion
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functionality of the PowerPoint component to convert slides. The converted slides can then be
displayed on any component that is capable of displaying an image. The resulting set of

configurations is depicted in Figure 50.

6.1.2.2 Benefits

In the following, we discuss the benefits of the PCOM component model in contrast to the
service model introduced by BASE. To clarify the individual points, we use the exemplary
application described in the previous section and we show how this application benefits from
the abstractions and mechanisms used by PCOM. The benefits can be summarized as simplified
configuration, simplified adaptation and simplified monitoring of applications. In the next
section, we describe the potential limitations of the abstractions and the mechanisms and we

discuss how they can be avoided or mitigated.

The primary goal of PCOM is to automate configuration and adaptation at the system level in
such a way that the application developer can benefit from a high degree of transparency. To do
this, the developer must specify both, the requirements and the provision of all atomic
functionalities, as component or resource contracts. In terms of development effort, the
specification of component or a resource contract is similar to the specification of service
descriptors that are used to export or to find services in BASE. Consequently, if the developer of
a BASE service needs to use the trading capabilities of the service registry, the development

effort for BASE services and PCOM components is similar.

In contrast to a service developer, the component developer does not have to provide logic that
evaluates and selects a component or resource as this is done by the configuration and
adaptation algorithm. Instead, the component developer must implement the callbacks that
signal transitions in the component lifecycle. At a first glance, this might not seem to be a great
relief, since performing a query in BASE can be done with a single local method call and
comparing different services boils down to iterating through them. However, the configuration
and adaptation algorithm proposed in Chapter 3 and Chapter 4 performs much more than just
selecting the next matching component. In fact, the algorithm ensures that all selections are
conflict-free and low-cost on a global, i.e. application-spanning, basis. This is definitely the single

most important simplification introduced by the PCOM component system.

To clarify this, consider that the suitability of the Remote Viewer component in the Pervasive
Presenter depends on the availability of a PowerPoint Viewer and the suitability of the Image
Viewer. Thus, in order to implement adequate decision logic, a service developer would not only
have to look at a single service but at all possible combinations of recursively required services.
Clearly, implementing this functionality in an interoperable way across multiple services is not

desirable and in fact, it is also not sufficient. As counter example consider that even two services
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in independent parts of the application configuration can conflict due to resource constrains. If
this happens, the service developer can either ignore the problem which unavoidably results in
cases where applications cannot be executed despite a sufficient amount of available resources.
Alternatively, the service developer can also try to coordinate the selection across the whole
application which essentially requires the implementation of a configuration algorithm at the
application level. Given that an implementation of a simple complete algorithm can easily
exceed one thousand lines of code, this is clearly not a desirable alternative. The same argument
can be made with respect to adaptation since finding a cost-effective adaptation also requires a

systematic cooperative search for a conflict-free set of services.

When looking at the components and resources of the Pervasive Presenter, one might argue that
the resources utilized by the application are not limited per se. For instance, the virtual resource
that provides the computer identifier can be issued an infinite number of times. Similarly, one
may argue that memory or processing capabilities do not have to be modeled due to virtual
memory and fair scheduling. Thus, if many components are instantiated on the same computer
the worst thing that can happen is graceful performance degradation. After all, the virtualization
of resources is a frequently used approach to avoid resource conflicts. While this might be true
for many resources, the Pervasive Presenter also provides two adequate counter examples,
namely the user-interface related resources. It is conceivable that in a typical presentation
scenario the input capabilities of the mobile phone should be dedicated solely to the control of
the presentation. Similarly, if the slides ought to be shown in full-screen mode, the display of the
computer running the PowerPoint Viewer cannot be shared with other applications. As a
consequence, the associated resources must be assigned exclusively which bears a potential for

conflicts.

Besides from simplifying the configuration of an application, PCOM also eases the development
of robust components that can deal with multiple applications simultaneously. The key to this is
component instantiation since it provides a natural way of defining boundaries between
applications. If these boundaries are not removed deliberately by the developer, they create
locality and thus, they ensure that the scope of failures is restricted. For example, due to the fact
that bindings are always established between instances, instances from one application cannot
contact the instances of another application accidentally. As a side-effect, the developer does
not have to maintain an error-prone mapping between parent components and child
components of different applications. Thus, if the proxies are not passed across instance
boundaries, two simultaneously running instances of the same component are isolated. Of
course, if the cooperation of multiple instances is required, it can be implemented by means of
shared memory. However, this is likely to be an exception and the components that we have

implemented so far, including the components of the Pervasive Presenter, do not require it.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 193

Along the same line, instances can also be used to simplify the management of application-
specific state. In our Java-based prototypical implementation, various aspects are even fully
automated due to the garbage collection performed by the Java Virtual Machine. For example,
by referencing application-specific state from instance variables, the component container can
ensure that the memory used by an instance can be freed completely as soon as it is no longer
needed. Similarly, it is possible to automatically generate the necessary code to store and to
initialize the application-specific state of a component instance which can be used to support the
migration of stateful component instances during adaptation. In combination with the automatic
message logging facility of PCOM, this can greatly simplify the development of stateful

components.

In fact, all output components of the Pervasive Presenter are using a combination of
checkpointing and automatic message logging to support the seamless continuation of a
presentation despite potential reconfigurations. In this application, the code for dealing with
failures usually boils down to the same pattern. If a communication attempt fails, the calling
thread is suspended until an adaptation has taken place. A successful adaptation is indicated by
means of a lifecycle transition. When the transition is signaled, the component system has
already reconfigured the application and it has restored the state in components that have been
replaced. Thus, the suspended call can be repeated either until it finishes successful or until the
application is stopped. The code to achieve this behavior is well below one hundred lines in all

components of the Pervasive Presenter.

Finally, PCOM also simplifies the monitoring of components in scenarios where the interaction
frequency is low. In order to monitor the availability of BASE service, the service developer has
no other chance than to initiate periodic communication attempts. In PCOM, this periodic
communication is performed automatically by the component containers. If a computer leaves
the smart peer group, the component containers automatically trigger an adaptation and they
free the component instances and resource assignments that are no longer needed. For
interactive applications, this functionality is particularly relevant since communication between
components is often an implication of some manual input and the frequency of such inputs may
vary heavily in an unpredictable way. In the Pervasive Presenter, for example, communication
between the Presentation Control and the other components is only needed when a
presentation is loaded or when a slide is switched. Thus, the periods of time in which no
communication takes place can often exceed one minute. However, the monitoring mechanisms
of PCOM go beyond the pure monitoring of the availability as PCOM also supports the
monitoring of contracts. In the Pervasive Presenter application, this monitoring facility is, for
example, used to detect changes to resolution of the display that shows the slides. If such a

change occurs, the component container first validates that the new resolution is still within
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acceptable limits. If this is not the case, it initiates an adaptation. If the resolution is still

sufficient, the change is signaled to the parent, which may adapt its contract as well.

6.1.2.3 Limitations

In the following, we outline the limitations of application development with PCOM when
compared to BASE. Since most of the limitations do not apply to the Pervasive Presenter
application introduced previously, we discuss additional examples to clarify the points where
necessary. The limitations can be summarized as limitations due to overheads, mechanisms and

abstractions.

Perhaps the most obvious limitation of PCOM is its overhead with respect to resource
consumption. Although, we did not experience this problem on our test platforms, the increased
memory footprint might be too high for some computers. Similarly, the additional requirements
on communication and computation might rule out some platforms. One way to mitigate this is
to develop a specialized component container that solely provides the necessary abstractions.
However, when considering the exemplary components and applications that we have
developed so far, we are convinced that the proposed abstractions are needed in a broad
spectrum of applications and it is highly questionable whether an implementation at the
application-level would be much more space efficient. Yet, since our prototype implementation
trades off support for pluggable algorithms against minimalism and efficiency, even a complete

but less flexible implementation might reduce the associated overhead to some extent.

Another potential limitation is that PCOM only simplifies the development but does not
automate it. In order to develop a component that is robust and that provides a reasonable
performance, the developer has to understand the potential changes in the component lifecycle
and he needs to provide suitable code that reacts appropriately. A similar argument can be
made about the mechanisms that automate the migration of component-specific state as well as
the monitoring and signaling mechanisms. Although, it is often straight-forward to develop a
component instance whose state can be migrated, developing an instance whose migration can
be done quickly requires thoughtful use of the mechanisms. As an example consider the
dependency between the Remote Viewer and the Image Viewer. Although one may restore the
state of the Image Viewer by replaying the sequence of images that have been displayed, it is
actually sufficient to restore the state using the last image. Thus, in order to minimize the

overhead a developer can manually clear the message log when the next image is transmitted.

Finally, another potential limitation of PCOM is its static application model. As discussed in
Chapter 2, PCOM has been developed specifically to support applications that require a certain
set of functionalities during the execution of an application. As a consequence, unresolved

dependencies are immediately triggering an adaptation and if a dependency cannot be resolved
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at all, the execution of the application is stopped. This makes the application model ill-suited to
support cases in which the application makes use of optional dependencies. Of course, it is
possible to integrate such optional dependencies by means of alternative contracts or user
preferences. From a broader perspective, however, some of the mechanisms and algorithms in
PCOM would have to be extended or at least fine-tuned to integrate optional dependencies well.
To clarify this, consider that an adaptation algorithm should probably not replace a required
component of the configuration to bind an optional component. Similarly, it might be often
undesirable to search though all possible configurations systematically just to resolve an
optional dependency that is not absolutely necessary. Thus, we would argue that for a suitable
integration, we would have to reconsider the tradeoffs made with respect to configuration and

adaptation. However, it should be clear that this does not affect the required dependencies.

6.1.3 Discussion

The previous description of the overheads, benefits and limitations of PCOM clearly indicates
that introducing an additional layer of system software not a free. Even though PCOM does not
introduce complicated abstractions, the prototypical implementation approximately doubles the
size of BASE. However, our exemplary components and applications indicate that the
abstractions are indeed needed and useful. As a consequence, the overhead introduced by
PCOM cannot be avoided by implementing applications directly on top of BASE. This would
solely shift the overhead but not reduce it. In fact, if multiple components require the
abstractions, an application-specific implementation is likely to increase the overheads. In
addition, some parts of PCOM such as the configuration and adaptation algorithm are hard to
implement at an application level since they require the coordinated interaction of all parts of
the application. The exemplary applications leave little doubt that PCOM can simplify the
development of applications but developing a robust and efficient component still requires
thoughtful implementations. As indicated in the previous section, a detailed and more
meaningful analysis would require a structured comparison with multiple groups of developers,
which is beyond the scope of this dissertation. Thus, we continue with the evaluation of the

configuration algorithm and the optimization heuristics in the following two sections.

6.2 Automatic Configuration

As discussed in Chapter 3, our approach to automatic configuration is based on asynchronous
backtracking. Together with the mapping introduced in the chapter, the algorithm fulfills the
requirements regarding completeness, optimism and distribution by design. Furthermore, it can
be extended to fulfill the requirements with respect to resilience. In this section, we evaluate
how well the resulting algorithm can fulfill the last remaining requirement, namely efficiency. To
do this, we first discuss factors that have an impact on the efficiency and we describe our

assumptions with respect to them. Thereafter, we describe the relevant metrics to measure the
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efficiency. Finally, we present a number of simulations and experiments and we close the section

with a discussion.

6.2.1 Influencing Factors

Asynchronous backtracking resolves unrelated conflicts simultaneously and it reconsiders only
those instances that have the potential to resolve a conflict. Thus, the configuration complexity
depends on the induced width, i.e. the size of sub problems that can be solved independently,
and not the total width of the search space (Baker, 1995). Besides from the size of the
application, the induced width of automatic configuration depends mostly on the conflict
potential and the locality of conflicts, i.e. the number of instances that have conflicting

requirements towards the same resources.

The potential for conflicts can be increased by creating more structurally valid configurations
without increasing the number of valid configurations, e.g. by increasing the number of
components that are structurally valid options but cannot be part of a valid configuration due to
resource constraints. This increases the chance that the configuration algorithm randomly
selects an option that leads to a conflict. The conflict locality can be decreased by creating the
resource constraints in such a way that more and more components compete for the same
scarce resource. Thus, when a resource conflict is detected, there will be an increasing number

of alternative combinations for resolving it.

Of course, an interesting question is how these factors behave in future pervasive systems and it
should be clear that there is no definite answer. However, in many pervasive systems, resource
conflicts can be assumed to be relatively local. To justify this, consider that the worst-case
occurs, when many instances are executed on one computer and a widely used resource (e.g.
memory or processing power) is not available. However, the integration of computers into
everyday objects leads to smart peer groups in which the majority of computers are specialized
embedded systems. Just like everyday objects, they will be tailored towards a small number of
specific purposes, which will increase the locality. The potential for conflicts itself depends on
the number of available components that can be used successfully as part of the application and

thus, it heavily depends on the capabilities of the smart peer group.

6.2.2 Metrics

Undoubtedly, from a user’s perspective, the most relevant metric is the total configuration
delay. That is the total time required to configure an application. Measuring this delay is
absolutely unproblematic for a concrete scenario. However, relying on this metric as
performance indicator exhibits several drawbacks. First and foremost, the absolute

configuration delay depends heavily on the performance of the underlying hard- and software.
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Secondly, it also depends on external factors such as the usage of shared resources like

processing power or network bandwidth by other applications.

In order to reduce the dependencies on hard- and software or external factors, we can evaluate
the performance in terms of abstract metrics. Due to the fact that the configuration algorithm is
a reactive process that performs computations solely in response of incoming messages, we can
use the number of messages as a primary indicator for the overall overhead. Yet, if the smart
peer group consists of multiple computers, messages are usually processed in parallel and thus,

more messages do not necessarily result in a higher configuration delay.

As an abstract indicator for the achievable parallelism in a certain setting, we can divide the
configuration process into rounds consisting of message reception, message processing and
message generation, i.e. within one round all messages from all computers generated in the
previous round are processed by all computers which generates the messages for the next
round. As a result, the total number of rounds provides an indicator for the best achievable

configuration delay since it reflects the case that all messages can be handled in parallel.

Clearly, no pervasive system will be able to handle an arbitrarily high number of messages in
parallel. Thus, solely relying on the number of rounds is too optimistic in cases where the total
number of messages is high. To identify such cases, we can combine the number of rounds with
the total number of messages and compute metrics such as the average number of messages
per round. From this metric, we can then create an estimate for the latency of a round for a
given system in a given scenario as a higher average number of messages will result in higher
latencies in cases where the resulting amount of transmitted data exceeds the available network
bandwidth.

Due to the complexity of automatic configuration and due to the requirement on completeness,
the total configuration delay in a demanding scenario may be high. Obviously, it is not realistic to
assume that a user is satisfied with very high configuration delays. Consequentially, we can look
at the achievable completeness with bounded overhead. To measure the overhead, we can rely
for instance on the total number of messages or in a concrete system, we can also use the total

configuration delay directly.

6.2.3 Simulations

To analyze the effects of different degrees of conflict locality and different conflict probabilities
for varying application sizes, we have performed an extensive set of simulations using the event-
discrete simulator introduced briefly in Section 5.2.9. Since the total amount of collected raw
data boils down to several hundred megabytes of information, we only show a condensed

excerpt of relevant results in the following.
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In order to put the simulation results into a broader context, we have implemented a greedy
configuration algorithm in addition to the algorithm proposed in Chapter 3. This allows us to
compare the metrics for both algorithms. The greedy configuration algorithm solely selects an
assignment for a variable and if this assignment is not possible, it selects the next one until there
are no further options. If a chosen assignment can be used to configure a complete sub-tree
successfully, the algorithm will not modify the assignment anymore. Due to the fact that it never
reconsiders successful value assignments, it never performs backtracking. Consequently, the

approach is incomplete but it is also very light-weight.

To generate scenarios with varying degrees of conflict locality, conflict probabilities and
application sizes, we use the following construction procedure. First, we create an application
that consists of n instances with n> 2 by adding n components to a binary tree from left to
right, top to bottom. Thereafter, we create one container and place the application anchor on it.
For the remaining N—1 components, we create m containers with 1< m<n-1 and we
distribute the components on them round-robin. During this process, we set the resource
requirements of each component to one unit of one resource that is used by all components on
the same container. Furthermore, we set the available amount of the resource to the number of

components that are hosted on this container.

After this procedure has been completed, we have a created a configuration that resembles a
binary tree of n components distributed on m+21containers. There is only one structurally valid
way of configuring the application and this configuration is also valid with respect to resources
since there are sufficient resources on each container. To increase the conflict possibility, we
randomly pick kK components and replicate them. Before we place them on randomly selected
containers, we increase their resource requirements from one unit of the resource on the
container to two units. The Kk replicated components increase the structurally valid
configurations. However, due to the fact that the available amount of resources on all containers
is not sufficient to start one component that requires two units of a resource, they can never be

part of a valid configuration.

As a result, increasing the number of initial components n increases the size of the application.
Furthermore, increasing the number of replicated components k will lead to a higher potential
for conflicting selections during configuration, since it increases the structurally valid options
without increasing the number of valid configurations. Similarly, decreasing the number of
containers m will decrease the locality of the resulting conflicts. For instance, if the number of
components excluding the anchor n—1 is equal to the number of generated containers m,
value selections that are not part of the valid configuration can be identified immediately. The

reason for this is that every container is only equipped with a single resource and each
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replicated component requires at least two resources. Thus, if the resource reservation fails, it is
clear that this particular component can never be used, i.e. the conflict set during backtracking
will only contain one value assignment. If the number of containers is decreased to one, all
components compete for the same resource and thus, whenever a conflict occurs, all possible
reconfigurations need to be considered, i.e. the conflict set generated during backtracking will

contain all value assignments.
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Figure 51 — Average number of structural possibilities

Independent from the settings for all parameters, there will always be exactly one valid
configuration. This configuration consists solely of instances provided by the initially placed
components. However, the number of structurally valid configurations increases with an
increase of the number of replicated components k. Figure 51 shows the average number of
structural possibilities that result from 100 randomly generated scenarios for applications with
Nn=8, n=12, and n=17 components and k =1..20 replicated components. For example,
with n =17 and k = 20 there are almost 80000 structurally valid configurations on average. The
exponential growth in the number of structural possibilities can be attributed to the tree
structure of applications, i.e. an increase of possibilities in one sub-tree has multiplicative effects
on other sub-trees. The high factor of the exponential growth can be attributed to the way
conflicting components are introduced, i.e. by replicating existing components. If a component is

duplicated and added, it can reuse all existing combinations of child components.

To analyze the effects of an increasing conflict probability, we measured the performance of the
configuration algorithm in two different scenarios. In the first, conflicts are comparatively local.
In the second, the assumption of locality does not hold. For the first scenario, we dynamically

adapt the number of containers to the size of the application by setting m=(n—-1)/2. As a

consequence, conflict sets usually consist of 2-3 value assignments. For the second one, we

statically set the number of containers to m = 4 which results in larger conflict sets as the size of
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the application increases. The following figures refer to these scenarios as Locality and No
Locality. Aggregate values are a result of 100 simulations. Although, we have performed the
measurements for a broad spectrum of application sizes, we restrict the figureston=8, n=12

and n=17. This allows us to show the tendency and at the same time it avoids cluttering.
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Figure 52 — Average Number of Messages (Locality)

Figure 52 shows the average number of messages for the scenario in which conflicts exhibit
locality. For a medium-sized application consisting of 8-12 components, the average number of
messages required to find the configuration stays well below 200, even if we introduce 20
replicated components. Additionally, the figure also already indicates the exponential increase

as the number of replicated components increases.
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Figure 53 — Maximum Number of Messages (Locality)

However, the exponential increase becomes more apparent, when looking at the maximum
number of messages as shown in Figure 53. Especially, when looking at the series of simulations

with the application consisting of 17 components. There, the maximum number of messages
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reaches 900 when the number of replicated components is increased to 20. Depending on the
underlying hard- and software, such a high number of messages may lead to significant
configuration delays. Yet, when comparing the average and the maximum numbers, it is clear

that such high numbers are an exception in this scenario.
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Figure 54 — Average Number of Messages (No Locality)

When we compare the average and the maximum number of messages in the scenario that
exhibits locality (Figure 52 and Figure 53) with the same metrics for the scenario that exhibits
low locality (Figure 54 and Figure 55), we can see a drastic increase. This increase can easily be
explained. Without locality, the configuration algorithm cannot create suitable restrictions on
the conflict set. As a consequence, it can only start enumerating all possible configurations. Due
to the fact that the scenario generation results in a high number of structurally valid

configurations, this enumeration is extremely costly.
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Figure 55 — Maximum Number of Messages (No Locality)
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Yet, in many smart peer groups it is possible to utilize parallelism to reduce the resulting

configuration delay. This can be seen by looking the average number of rounds which is depicted

in Figure 56. The comparison of the average number of rounds with the average number of

messages shown in Figure 54 indicates that is possible to achieve very high speed ups. Clearly,

the exact speedup depends on the concrete structure of the search space and the underlying

hard- and software.
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Figure 56 — Average Number of Rounds (No Locality)

Given these overheads, one might argue that it would be better to use a heuristic approach to

automatic configuration. In order to show that this is not the case in general, we have compared

the achievable completeness with a bounded amount of messages with the completeness that

can be achieved by the greedy heuristic. As explained earlier, this heuristic does not perform

backtracking and thus, it will fail in cases where it does not select appropriate components that

can be used as part of a valid configuration.
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Figure 57 shows the achieved completeness of the greedy heuristic for different application sizes
in a scenario with locality. When computing a configuration, the heuristic approach typically
requires less than 100 messages. Yet, in contrast to the complete algorithm, it also fails
frequently and after introducing more than 8 replicated components, the achievable

completeness drops below 50%, even for small applications with few components.
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Figure 58 — Achievable Backtracking Completeness (Locality)

If we perform the same experiment with the proposed configuration algorithm, we can see a
different picture. Figure 58 shows the achievable completeness for an application that consists
of twelve components when the number of messages is limited to 100, 200, 300, and 400
messages, respectively. In contrast to the heuristic algorithm, the complete algorithm can still
find the configuration in more than 90% of the runs for 8 replicated components, even if number

of messages is limited to 100.
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Figure 59 — Achievable Greedy Completeness (No Locality)
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If we measure the greedy completeness in a scenario where the locality assumption does not
hold, the success rates drop even further. As shown in Figure 59, with 8 replicated components,
the greedy heuristic can only find the valid configuration in ten percent of the scenarios. The
reason for this is that without locality, the greedy heuristic must perform multiple flawless
decisions. This becomes increasingly improbable with an increasing conflict probability. Clearly,
the same argument holds true for the complete algorithm. However, the complete algorithm can

apply backtracking to correct minor flaws.
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Figure 60 — Achievable Backtracking Completeness (No Locality)

Figure 60 demonstrates this behavior by depicting the achievable completeness for an
application that consists of 12 components. In comparison to Figure 58, the achievable
completeness with a limited number of messages drops faster. However, when limited to 100
messages, the algorithm is still capable of succeeding in almost forty percent of the cases with 8

replicated components.

6.2.4 Experiments

To validate the results of the simulations, we have performed an additional set of experiments
with the prototypical implementation described in the previous chapter. To provide meaningful
values for resource-poor computers, we placed an application with 7 components on 2 personal
digital assistants (XScale PAX270) connected via a wireless network (IEEE 802.11b) using the
procedure described in the previous section. Since all components were using the same resource
on each of the component containers on the personal digital assistants, this experiment reflects

a situation where the locality of conflicts is low.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

—&— Average Maximum

700
600

500

400
300 /_/4
200

100 /

v

Number of messages

0 2 4 6 8 10 12

Number of conflicting components (k)
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We ran 7 experiments with 0, 2, 4, 6, 8, 10 and 12 randomly created conflicting components.
Due to the fact that setting up the experiments is more complicated, we have reduced the
number of runs from 100 per value to 10. Figure 61 and Figure 62 show the results of these
experiments with respect average and maximum number of messages as well as the achievable
completeness within bounded delays. The delay as well as the number of messages also includes

the overhead introduced by the distributed termination detection protocol.
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Figure 62 — Achievable Completeness (n=7, m=2)

Our experiments show that the completeness of the backtracking algorithm that can be
achieved with bounded delay is always higher, even if the delay is limited to 10 seconds. Note
that this is only slightly higher than the average runtime of the greedy algorithm which lies

between 8 and 9 seconds.

6.2.5 Discussion
Our simulations and experiments show that automatic configuration is a complex problem and

solving this problem in a satisfying way is not an easy task. Due to the fact that our configuration
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algorithm is complete, it exhibits exponential overhead. This is especially problematic in
scenarios that exhibit a high conflict probability and a low locality of conflicts. In these cases the
optimizations of the configuration algorithm become less effective and the algorithm has no
other chance then to enumerate the possible solutions. If the conflict locality is high or if the
conflict probability is low, the optimizations make our approach viable. We can assume that in
many future pervasive systems, the conflict locality will be high but there may be a remaining set

of cases in which the high locality assumption does not hold.

Given that an average user can tolerate unresponsive systems for approximately 10 - 15 seconds
(Testa & Dearie, 1974) without becoming totally distracted from a problem-solving task, our
comparison with a greedy heuristic shows that our proposed approach is also preferable in such
scenarios. The primary reason for this is that although being fast, the greedy heuristic will often
fail to find a valid configuration. In a relevant set of scenarios, a small amount of backtracking
can significantly improve the achievable completeness. Besides that, our proposed approach
also enables a user to tradeoff configuration delay and completeness. Thus, if a user is willing to

wait, the complete approach can find a solution eventually, if it exists.

6.3 Automatic Adaptation

As discussed in Chapter 4, our approach for automatic adaptation is based on a value-ordering
and a variable-ordering heuristic. Since the overhead for computing these heuristics can be
neglected and due to the fact that the approach does not introduce additional messages when
compared with configuration, the overall approach for automatic adaptation exhibits the same
properties than the approach for configuration with respect to efficiency. As a consequence, we
evaluate the approach with respect to optimality. To do this, we first discuss the influencing
factors and we introduce the relevant metrics to measure their impact. Thereafter, we present

the results of a set of event-discrete simulations and we close the section with a discussion.

6.3.1 Influencing Factors

Due to the fact that our adaptation heuristics are greedy, they are susceptible to the starting
point of adaptation. This problem can be neglected in scenarios that support only few possible
adaptations and in scenarios where all possible adaptations exhibit similar costs. In other
scenarios, the achievable optimality depends primarily on the effect of the local greedy decisions
on the global adaptation cost. If the local costs provide a good estimate for the resulting global
costs, the heuristics are effective. If the local costs do not approximate the resulting global cost,

the heuristics compute sub-optimal adaptations.

Besides from rather obscure cases in which an expensive replacement is less expensive than a

series of cheaper replacements due to resource constraints, the local and global costs can differ
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significantly if different parameterizations of one component require completely different sub-
trees. Thus, in order to create scenarios with varying effects on the achievable optimality, we
can vary the number of parameterizations that do not support the reuse of existing components.
By increasing the number of such parameterizations it becomes more and more likely that the

heuristics select one of them leading to less optimal adaptation costs.

6.3.2 Metrics

A simplistic metric to measure the suitability of our adaptation heuristics is the total adaptation
cost. However, without additional information on the scenario, this metric is not meaningful and
does not allow us to draw conclusions across different scenarios. To avoid this, we must put the
total adaptation cost into the context of the scenario. This can be done easily by normalizing the
cost using the optimal and the worst costs of a given scenario. On top of normalization, we can
then compute the normalized distance to the optimum solution to get a meaningful metric that
is independent from the concrete scenario. If the normalized distance is close to zero, the
computed solution is close to the optimum of the scenario. If the normalized distance is close to

one, the computed solution is close to the worst-case.

6.3.3 Simulations

As basis for our simulations, we create a binary tree consisting of 15 contracts that originate
from different components. This tree constitutes the running application. The cost for replacing
each component is randomly initialized using a standard distribution with an average of 10 and a
deviation of 10. We use this abstract metric for the state size since we are only interested in the
relative differences. The assumption here is that most components will carry a similarly low

amount of state, yet, there are some components that carry high amounts of state.

In order to create alternative configurations, we randomly pick d sub-trees of the application
and for each, we create a additional sub-tree that can be used as its replacement. Thus, by
increasingd , we create more alternative configurations. For each contract of the new sub-tree,
we decide with a probability p, whether the contract is a parameterization of the corresponding
existing component (i.e. it can be reused). If it is not a parameterization, we create a new

component for the contract. Thus, by increasing p it becomes more likely that the d sub-trees

are parameterizations as opposed to alternative components.
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Figure 63 — 1°* Run Solution Quality (d=20)

The resource requirements are initialized randomly such that each component requires 1 and 10
instances of a single abstract resource type. Then we create 4 containers on which we place the
components randomly. Each container provides 30 resources. Finally, we increase the resource
requirements of one of the contracts of the original application to 31 to simulate that the chosen
configuration can no longer be executed. In order to get representative results despite the

randomization, each measurement is based on 10000 simulations.

Figure 63 shows nine histograms of solutions grouped into 10 categories according to their
solution quality for 20 duplicated sub-trees d =20 and varying parameterization probabilities

p =20..80. Note that these histograms denote the solutions found after the first run of the

algorithm. For this parameterization probability, the heuristics are able to find a solution that
has a maximum normalized distance of 0.1 from the optimum in 58% of the simulations.
Intuitively, if the probability is increased, the solution quality becomes worse up to a certain
point where it increases again. The reason for this lies in the fact that if the probability is
relatively low, there are only few parameterizations and, thus, the value-ordering heuristic
works effectively. If the probability is high, most duplicated sub-trees will not inflict any costs
and, thus, each parameterization leads to a similar (high) quality. If the parameterization
probability lies around 50%, the scenario is likely to exhibit a number of parameterizations
whose selection will indirectly introduce costs since they lead to the replacement of some child
instance. Thus, the value-ordering becomes less effective since the local costs are not longer a

good indicator for the resulting global cost.
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To improve the quality of the solutions, we may execute the algorithm iteratively starting with a
random variable assignment on each run. After each run the best configuration is used. The

resulting solution quality after a varying number of runs for d =20 and p=60is shown in

Figure 64. The figure indicates that the quality can be increased significantly by running the
algorithm a second time. Since the overhead in these simulated scenarios is moderate
(approximately 100 messages per run), a second execution is likely to be worthwhile in cases

where the first solution exhibits high costs.
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Figure 65 — 1° Run Solution Quality (p=50)
Finally, in order to measure the effects of a changing number of possible solutions, we have
varied the number of duplicated sub-trees for a fixed parameterization probability p =50.

Figure 65 shows that the solution quality is reduced if the number of duplicated sub-trees is
raised. This is most likely a result of the fact that the relative number of solutions with average

cost increases disproportionately high. Again, this can be mitigated by executing multiple runs.
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However, in real world scenarios, the number of parameterizations supported by one

component will be limited since each parameterization needs to be programmed and tested.

6.3.4 Discussion

As indicated by the simulation results presented previously, the value- and variable-ordering
adaptation heuristics are an effective and light-weight approach that can achieve good results in
a broad spectrum of scenarios. In scenarios, where the resulting adaptation cost after the first
run is not satisfactory, it is possible to utilize randomization to improve the result. However, it
must be noted that the second run is likely to double the configuration delay. As a result, this is
only a viable option in cases where the adaptation costs are high. Consequently, a simple
strategy to determine whether another randomized run is worthwhile would only perform a
second run if the current cost is significantly higher than the cost resulting from doubling the

search latency. Given the overall results, we argue that this case will occur only rarely.
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7 Related Work

This chapter presents and discusses related work. Thereby, the chapter groups related
approaches according to characteristics of the targeted system. As basis, the chapter provides a
brief review of system-support for conventional applications. Thereafter, the chapter discusses
various approaches to support pervasive applications. Finally, the chapter closes with a
discussion that highlights the differences between the existing systems and the approach

described in this dissertation.

7.1 System-support for Conventional Applications

Traditionally, distributed applications have been developed for static systems. Although, most
systems are not completely static, e.g. they might change sometimes due to failures. The overall
approach of ignoring changes works well, given that the frequency is sufficiently low and the
consequences of communication and application failures are tolerable. If this is not the case,
some of the abstractions proposed by system software for conventional applications can also be
extended. Yet, existing system software that has not been targeted specifically at pervasive
systems covers the resulting challenges only partially and fails to address them in an integrated

way.

7.1.1 Communication Middleware

Communication middleware commonly refers to a layer of software that is stacked on top of a
traditional network operating system to ease the development of distributed applications.
Thereby, one of the main tasks of most middleware is to hide the heterogeneity of the
underlying hardware, operating systems or programming languages. Existing middleware offers
various communication abstractions to develop distributed applications. These abstractions
range from network-oriented message passing primitives and publish-subscribe abstractions
(Eugster, Felber, Guerraoui, & Kermarrec, 2003) over associative memory paradigms such as
tuple spaces (Carriero & Gelernter, 1986) to remote procedure calls (Birrel & Nelson, 1984) or
their object-oriented counterpart of a remote method invocation. Since the latter extends the
concept of a local procedure call — or a method invocation respectively — to distributed

application development, it is commonly supported by mainstream middleware.

Prominent examples of middleware that supports the remote method invocations are systems
that are based on the Common Object Request Broker Architecture (CORBA) (Object
Management Group, 2004). CORBA defines an Interface Definition Language (IDL) as basis for
interoperability. The IDL enables application developers to explicitly describe the interfaces of
their (remotely) accessible objects in a platform-independent manner. To do this, application

developers must explicitly model all methods including return and parameter types. Using tools,
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the description can then be compiled into platform-specific code that hides most of the details
of (remote) communication®. The generated code can then be integrated into the application in
the form of so-called stubs that act as local representatives for remote objects (proxies) and
abstract templates that need to be implemented by accessible objects (skeletons). In addition to
IDL, interoperability protocols and language bindings, CORBA also defines a number of
middleware services such as naming and trading services that are used to bootstrap
communication. However, CORBA leaves the management of the dependencies between the

objects that constitute a distributed application to the application developer.

Nevertheless, the general approach of CORBA towards enabling interoperability has proven to
be successful. The basic concepts found their way into popular programming frameworks such
as the Java 2 Standard Edition in the form of Java RMI (Sun Microsystems, 2004) and the .NET
Framework as .NET Remoting (Chappell, 2002). The concrete implementations exhibit notable
differences when compared with CORBA since both frameworks are based on a standardized
virtual machine that provides a homogeneous platform. Due to this fact, Java RMI and .NET
Remoting can simplify the task of defining a remotely accessible interface by reusing the
language specific interfaces available in the Java programming language and the Microsoft
Intermediate Language respectively. In addition to that, they can also provide advanced features
such as automatic stub generation on application load time and distributed garbage collection.
To enable interoperability with legacy computers and applications, both frameworks can be
configured to support various interoperability protocols as well. Java RMI, for instance, can be
configured to generate stubs that communicate with IIOP, i.e. the interoperability protocol used
by CORBA. Yet, using this configuration sacrifices advanced RMl-specific features such as

distributed garbage collection.

Apart from programming frameworks, many fundamental concepts of CORBA can also be found
in current web technologies such as web services (World Wide Web Consortium, 2002). Similar
to the Object Management Group that defined CORBA, the World Wide Web consortium
introduces standards that describe interfaces and data types (World Wide Web Consortium,
2007) as well as protocols (World Wide Web Consortium, 2007). In contrast to CORBA, many
standards are based on the Extensible Markup Language (XML) which has become a widely used
language for data exchange on the Internet. From a conceptual point of view, however, there

are only minor differences between remote objects in CORBA and web services.

In addition to these mainstream developments, there exists a body of research on various

specialized areas of system-support with communication middleware. These include for instance

’ One aspect that is usually not hidden from the application developer is handling of network and node
failures. In many implementations, such failures are signaled by a failure-specific type of exception.
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minimum middleware for resource-poor computers such as minimum CORBA (Object
Management Group, 2002) or the PalmORB (Roman, Singhai, Carvalho, Hess, & Campbell, 1999)
that restrict the functionality provided by the middleware. Further examples are configurable
middleware systems that can be adapted to the capabilities of the computer, e.g. (Roman, Kon,
& Campbell, 2001), and reflective middleware systems (Blair, Coulson, Robin, & Papathomas,

1998) that can adapt their internal mechanisms and protocols dynamically.

While the previous examples for communication middleware are primarily targeted at static
systems, Jini (Sun Microsystems, 2001) is a Java-based network technology that enables the
utilization of distributed services in dynamic computer networks. As such, it provides a number
of basic communication-related services. These include service discovery to detect the services
that are available in an environment and leases to avoid orphaned client state. With respect to
its goals, Jini is similar to Universal Plug and Play (Microsoft Cooperation, 2000) which also
supports the dynamic detection of the services that are available in an environment. In contrast
to Universal Plug and Play which uses XML-based protocols to facilitate interaction, Jini relies on
mobile code to distribute service-specific proxies to clients. Both, Universal Plug and Play and
Jini, provide basic lookup and signaling functionality that enables the development of distributed
applications in dynamic settings. Yet, communication failures resulting from disconnections must

be handled programmatically by the application developer.

To avoid application-level failure handling despite temporary disconnections, communication
middleware can utilize persistent message queues. On top of these queues, it is possible to
implement higher abstractions like queued remote procedure calls as done by the Rover Toolkit
(Joseph, Tauber, & Kaashoek, 1997), for example. By storing requests and responses in
persistent queues, a client and a server can be disconnected temporarily at any point in time and
both can continue their interaction once they are connected again. Yet, the application of
queued remote procedure calls is only suitable in cases where very high latencies can be
tolerated and they require that the communication partners meet eventually to finish their

interaction. These assumptions can decrease the applicability of the approach, in general.

7.1.2 Component Systems

A potential shortcoming of communication middleware is a lack of defined application structure
which may limit the reusability of individual application parts. Component systems try to
mitigate this by introducing the notion of a software component as a structuring element. The
basic idea of software components is to facilitate the reusability of application logic by dividing it
into smaller parts that can be composed in various ways. Thus, software components are
essentially an analogy to hardware components which can be assembled differently to suit

various purposes. Yet, in contrast to hardware, software is an immaterial artifact that does not
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have to follow the laws of physics. As a result, there exists a higher flexibility in defining
abstractions and this flexibility has led to various competing definitions of the term of software
component (Szyperski, 1997). Some of these definitions are so weak that the some of the

previously discussed middleware systems may be classified as component systems as well.

Besides from spawning multiple definitions, the flexibility of software has also led to a plethora
of component abstractions that vary significantly depending on the goals of their designers. The
JavaBeans component model (Sun Microsystems, 1997), for instance, is primarily targeted at the
visual construction of applications. Thus, it is mostly concerned about defining components in
such a way that they can be easily used by visual builder tools. In contrast to that, the COM?
component model (Microsoft Corporation, 1995) defines software components in such a way
that they can be replaced easily, that they can evolve independently, and that different
implementations can coexist peacefully on the same computer. As a result, it is mostly
concerned about defining identification schemes for interfaces and implementations. The
service platform defined by the Open Service Gateway Initiative (OSGi Alliance, 2007) has a
similar focus but it uses a slightly different approach. To support the evolution of code on a
single computer, the service platform relies on a component abstraction called bundle that
defines a lifecycle and supports the specification of dependencies between different bundles.
Bundles may import and export code directly and they may provide and use each other’s
services. A framework provides the required supportive functionality such as lifecycle and
dependency management or service registration and lookup. In addition to specifying the
component abstraction and the framework interface, the Open Service Gateway Initiative also
standardizes the interfaces of frequently used services (OSGi Alliance, 2007) and it defines

interfaces with communication middleware such as Universal Plug and Play.

Interestingly from a high-level point of view, such extreme differences are not present in
mainstream distributed component systems, e.g. DCOM/COM+ (Microsoft Corporation, 1996),
(Chung, et al., 1998), (Chappell, 2002), the CORBA Component Model (Object Management
Group, 2006) and Enterprise JavaBeans (Roman, Siganesh, & Brose, 2005). A potential reason for
that is that they are all targeted at enterprise applications. Thus, even though the concrete
abstractions vary to some degree they feature similar services to support the component and

application development. Typically, these services include:

e Object pooling and just in time activation: A component may require a considerable amount
of resources. Thus, for some components it might make sense to active them only in cases

where they are actually accessed. Similarly, it might be beneficial to pool component

* Note that COM is also used as an umbrella term for other technologies such as OLE, ActiveX, DCOM and
COM-+. Here, we refer to the original version of the Component Object Model developed in 1993.
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instances to reduce the resource consumption. As a result, many component systems are
readily equipped with such mechanisms and they foresee them in their component model.

e Load balancing and clustering: Since business applications are frequently used
simultaneously by large numbers of users, a single computer may not be able to handle all
requests. To increase the scalability of applications, many distributed component systems
provide mechanisms for load balancing or clustering on a set of computers.

e Authentication and access control: Many business applications manipulate business data
that may only be accessed by privileged personnel. As a result, most component systems
provide mechanisms to authenticate requests. The authenticated requests are then
accepted or denied on the basis of access control specifications provided by a developer or
an administrator.

e Distributed transactions: Since data integrity and consistency is essential for business
applications, most component systems are able to support distributed transactions. In many
cases, performing a transactional rollback is the only way of dealing with failures that appear
during the execution of an application.

e Message queuing: Besides support for distributed transactions, some component systems
are relying on asynchronous message delivery using message queues to mask the temporary
unavailability of other computers. However, obviously such mechanisms can only be applied

in cases where the result of a request is not required in a timely manner.

As one might guess from the set of services that can be used to deal with failures, mainstream
distributed component systems are mainly targeted at execution environments that exhibit
transient failures. If the response to a message is not needed immediately, such failures can be
easily masked by decoupling the sender and the receiver using persistent message queues. If a
response is needed, distributed transactions can be used to ensure that a certain set of
operations is either executed successfully or not at all. As explained earlier, the failures and
disconnections that arise in a smart peer group may be permanent and thus, such mechanisms

should not or cannot be applied there to deal with failures in a generic manner.

Besides from mainstream component systems that focus on enterprise applications, there are
also a number of distributed component systems that specifically focus on the automatic
configuration of distributed applications. Many of these systems are targeted specifically
towards multimedia applications (Rothermel, Barth, & Helbig, 1994), (Dermler, 1999), although
some of them have been used for other applications as well (Kon, 2000). Besides from
introducing application-specific component models, these systems typically rely on a centralized
computer for configuration. Given that multimedia applications often require resource-intensive
transformations such as on-the-fly stream transcoding, this is a clearly viable approach. Yet, in

smart peer groups the availability of such a powerful computer cannot be guaranteed and thus,
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the approaches taken by these component systems cannot be applied. In addition, most systems
focus on the initial configuration of the application, e.g. to support different sets of clients that
display the multimedia content or to support mixing of different media sources at runtime, and

thus, they do not support the automatic adaptation of the configuration at runtime.

7.2 System-support for Pervasive Systems

Existing system-support for pervasive systems can be broadly classified into systems that aim at
the integrated usage of computers in a physically restricted space, i.e. smart environments, and
systems that aim at the integration of computers that are in physical proximity, i.e. smart peer
groups. The first class of systems usually relies on a centralized server that takes care of the
fundamental management tasks. Examples of such tasks are discovery, mediated
communication and access control. The second class of systems does not rely on a centralized
computer. Instead, they organize their management tasks in a distributed fashion. For both
classes of systems, the support for application developers and the degree of automation depend
heavily on the underlying application model. In the following, we provide an overview over both

classes and we discuss a selection of relevant representatives of each class in greater detail.

7.2.1 Smart Environments

A smart environment is a spatially limited area, e.g. a meeting room or an apartment, equipped
with various sensors, actuators and computers. In order to simplify application development,
system software for smart environments typically provides a set of basic services for the
applications executed in their spatial area. Common services include authentication of
computers, access control to resources, unified access to persistent storage, and management of
data captured by sensors of the environment. To provide further support for application
development and administration, some systems additionally introduce abstractions used to
structure an application. These range from basic service abstractions that enable the transparent
usage of different implementations of the same functionality within an application up to
comparatively complex component abstractions that support automated application adaptation.
However, usually these systems rely on the permanent availability of a comparatively powerful
computer which makes them ill-suited for smart peer groups. In the following, we discuss five

major approaches towards enabling smart environments.

7.2.1.1 IROS

IROS (Ponnekanti, Johanson, Kiciman, & Fox, 2003) is a meta operating system for intelligent
rooms that has been developed as part of the Interactive Workspaces project (Johanson, Fox, &
Winograd, 2002) at the University of Stanford. It is mainly targeted at distributed applications

that support collaborative work. The overall application model of IROS is based around the idea
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of enabling the simultaneous and coordinated use of interactive legacy applications on multiple

computers in a single room.

Applications in IROS consist of independent entities that are only loosely coupled. These entities
can be programs running on general purpose computers, e.g. an instance of a web browser
running on a PDA, as well as appliances, i.e. specialized embedded systems such as a video
projector that is capable of displaying images. In order to coordinate their behavior, entities may
exchange messages and they may cooperatively use a globally shared storage. To support this
application model, IROS introduces three different abstractions, namely ICrafter to control the
individual entities, the EventHeap to support the message exchange between them and the

DataHeap to support global storage.

ICrafter (Ponnekanti, Lee, Fox, Hanrahan, & Winograd, 2001) is a framework that provides
support for user interface selection, generation and adaptation. Its main purpose is to enable
users to interact with the individual entities that are available in the smart environment. To do
this, each entity describes its capabilities and it continuously announces its presence using
beacons. Using the announcements, ICrafter can detect the entities that are usable in an
environment and using the description of the capabilities, it can synthesize a user interface.
Optionally, each entity may also provide its own user interface which can be integrated by
ICrafter. By combining these mechanisms, ICrafter can be used to remote control programs and

appliances.

Besides from controlling individual entities using ICrafter, IROS also supports the coordinated
utilization of a number of entities. To do this, it provides a communication mechanism called
EventHeap (Johanson & Fox, 2002), (Ballagas, Szybalski, & Fox, 2004). The EventHeap enables
entities to post and to receive messages. The messages essentially resemble strongly typed
tuples. Upon reception of a message, the event heap stores this message for later retrieval by
interested entities. In addition, the EventHeap can also redistribute the message to interested
entities that are already known. In order to avoid memory overflows in the EventHeap,
messages are pruned after a certain timeout. By using the EventHeap to mediate messages, IROS
essentially decouples the individual entities and it can mimic different communication

paradigms, e.g. unicast, broadcast, publish-subscribe, etc.

The EventHeap is mainly targeted at small messages that signal a state transition in some entity.
In order to share larger amounts of data among entities, IROS provides a storage mechanism
called DataHeap. The DataHeap is in many ways similar to a network file system, i.e. it stores
meta information such as file type, creation time, owner, etc., and the actual content. However,

beyond the capabilities of a traditional file system, the DataHeap also provides an extensible
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transcoding scheme using Paths (Kiciman & Fox, 2000). This allows one entity to store data in

some data format and another one to retrieve the same data in some other format.

Together these mechanisms can be used to easily integrate legacy applications. To do this, the
legacy application needs to be wrapped using the ICrafter framework and it can be extended
with scripts to post and receive messages to announce and trigger internal state changes.
Furthermore, if the application requires some data to operate on, it can use the DataHeap to
store, retrieve and share it. Similarly, IROS also makes it easy to leverage varying compositions of
entities since all communication is mediated through the EventHeap and through the DataHeap.
Moreover, the mediated communication also allows entities to fail independently and since the
messages are stored by the EventHeap, appropriately written entities may recover transparently

from transient failures.

With respect to system-support for smart peer groups, the structure of IROS also exhibits three
severe limitations. First of all, it requires a central computer to execute the EventHeap and the
DataHeap. This alone limits the applicability of IROS to environments where the permanent
presence of a single computer can be guaranteed. Secondly, the EventHeap and the DataHeap
constitute single points of failures. This can be somewhat mitigated by the fact that the
EventHeap of IROS can be restarted comparatively fast. However, in order to improve the
efficiency, IROS does not store the messages contained in the EventHeap on persistent storage.
Thus, a restart of the EventHeap might lead to inconsistencies due to lost messages. Thirdly, the
coordination mechanisms in IROS are weak by design. As a result, the entities in IROS cannot rely
on the presence of any other entity during their execution. Thus, one might argue that IROS
makes the implicit assumption that the communication between different entities is mostly

optional and solely improves the coordination.

7.2.1.2 AURA

AURA (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) is a software infrastructure for
pervasive applications that has been developed at the Carnegie Mellon University. The
architecture of AURA incorporates several building blocks developed originally for mobile
computing applications. These building blocks include the Coda distributed file system
(Satyanarayanan, 2002) to manage persistent data and the Odyssey system (Noble,
Satyanarayanan, Tilton, Jason, & Walker, 1997), (Noble & Satyanarayanan, 1999) which enables
adaptation to fluctuating resource availability. In addition, AURA relies on a remote execution
framework called SPECTRA (Flinn, Narayanan, & Satyanaray, 2001) that enables the utilization of
remote resources to optimize the performance or the resource consumption of an application.
On top of these rather traditional building blocks, AURA introduces PRISM (Sousa & Garlan,

2002), a so-called task manager, to implement the concept of task-driven computing.
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All building blocks of the AURA architecture are geared towards supporting adaptation at
different levels. CODA provides adaptive access to persistent data that can even support
disconnected operation by keeping logs and synchronizing them at a later point in time. In
addition to this, Odyssey can adapt the data itself depending on the resource availability. To do
this, Odyssey introduces the concept of data fidelity which can be thought of as a data type
dependent tradeoff between data quality and size. For example, by using a more aggressive
compression the size of an image can be reduced in order to safe bandwidth during its
transmission. SPECTRA tries to optimize the local resource utilization of a mobile computer by
distributing individual functions of an application based on the capabilities of the environment
and the characteristics of the functions. Finally, PRISM adapts the composition of the

applications to support a certain set of user tasks in different environments.

As indicated by the functionality provided by the building blocks of the AURA architecture,
applications in AURA are usually not distributed, although individual functions can be distributed
on demand by SPECTRA. Instead of distributing the application to use the specific functionality of
an environment, AURA adapts the set of applications to support a certain set of user tasks. To do
this, user tasks such as “edit a document” or “display a piece of information” are modeled in an
application-independent manner. If a certain task shall be executed, PRISM determines an
appropriate application, launches it and supplies it with the necessary data, e.g. the desired
document or the requested piece of information. To perform the mapping from tasks to
applications, PRISM relies on a centralized environment manager which represents an
environment-specific application registry. If a user wants to continue a task that has been
performed in another environment, PRISM picks a suitable application and CODA ensures that

the necessary data is made available.

7.2.1.3 GAIA

GAIA (Roman & Campbell, 2000), (Roman, Hess, Cerqueira, Ranganathan, Campbell, &
Nahrstedt, 2002) is a meta-operating system for Active Spaces that has been developed by the
University of Illinois at Urbana-Champaign. In order to support communication GAIA relies on a
communication middleware called Unified Object Bus (Roman & Campbell, 2001). On top of this
communication middleware, GAIA provides a number of generic services to simplify the
application development. These services include discovery, shared persistent storage, context

management as well as component and application lifecycle management.

Applications in GAIA are usually distributed and consist of a set of components. Components are
glued together using a scripting language. In order to deploy applications in different active
spaces and in order to customize them for different usage scenarios, GAIA introduces two types

of application descriptions, the application generic description and the application customized
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description. The application generic description lists the set of required components, their
maximum and minimum allowed numbers as well as their requirements on the executing
computer. The application customized description entails a concrete mapping of components

onto the computers of an active space.

To structure the applications, GAIA proposes a model-view-controller-coordinator pattern that
extends the well-known model-view-controller pattern of desktop applications (Gamma, Helm,
Johnson, & Vlissides, 1995). Thereby, the model, view and controller perform the same task as in
a traditional application and the coordinator takes care of managing different views and
controllers. Thus, the coordinator takes care of adapting an application to changes
programmatically. Thereby, it essentially modifies the initial configuration of the application that

is described in the application customized description.

Besides from these basic concepts and mechanisms there are a number of extensions that
improve the flexibility and fault tolerance of applications. Instead of implementing applications
in a scripting language that directly refers to individual components, it is possible to program
applications on a higher level using the Olympus framework (Ranganathan, Chetan, Al-Muhtadi,
Campbell, & Mickunas, 2005). The framework then takes care of finding matching components
and enforcing constraints that have been specified by the programmer or an administrator.
Towards this end, the framework relies on an ontology for match-making and on Prolog to

define and enforce rules.

To detect failures and to deal with some failures in a generic manner, GAIA relies on periodic
heart-beat messages. In order to mask transient application failures, the core system of GAIA has
been extended to periodically capture checkpoints of the state of an application. Using these
checkpoints, the system can then automatically restore an application in cases where it does no

longer transmit heart-beat messages (Chetan, Ranganathan, & Campbell, 2005).

7.2.1.4 MetaGlue

MetaGlue (Coen, Phillips, Warshawsky, Weisman, Peters, & Finin, 1999) is agent platform that
has been developed for the Intelligent Room project (Brooks, 1997) at MIT. The platform
provides a runtime environment for mobile agents on top of the Java virtual machine. MetaGlue
extends the Java language with a number of additional constructs to simplify the development

of agents. However, these constructs are translated into Java code before execution.

Apart from constructs to load and store persistent data in a platform independent manner, the
most notable extensions are statements that enable agents to specify their dependencies on the
execution environment. The dependencies may consist of resource requirements on the

computer that executes the agent and requirements on other agents. An agent can only be
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executed on computers that are able to fulfill the specified resource requirements. Furthermore,
the runtime system ensures that an agent is only executed if all recursively required agents are
present. If a required agent is not available or if it becomes unavailable at runtime, the system

defers the execution of the dependent agents until the required agent becomes available again.

Since the resources in MetaGlue represent physical resources whose availability may be strictly
limited, the configuration problem in MetaGlue is similar to the one discussed in this
dissertation. The main difference is that an agent in MetaGlue may be reused to satisfy multiple
requests. To solve the resulting problem, MetaGlue relies on the Rascal resource manager
(Gajos, 2001). The tasks of Rascal consist of resource mapping and arbitration (Gajos, Weisman,
& Shrobe, 2001). That is the selection of suitable agents and the selection of computers to
execute them in such a way that their resources are not overloaded. To perform mapping and
arbitration in an optimal manner, Rascal supports the definition of a utility and a cost function
that describe the quality of a certain match and the penalty for changing an executed set of
agents. To avoid changes with negative impacts, Rascal solely performs changes that lead to an

increase in the overall system utility.

Although, MetaGlue is inherently distributed due to the fact that agents may reside on different
computers, Rascal has been built as a centralized resource manager. This design enables the
utilization of JSolver (Chun, 1999) — a standard non-distributed constraint satisfaction engine —
to compute and compare different solutions. However, at the same time, this centralized design
makes Rascal also a single point of failure which is ill-suited for the application in a smart peer

group.

7.2.1.5 02S

02S (Paluska, Pham, Saif, Chau, & Ward, 2008) is the system software that has been developed
as a part of the Oxygen project at MIT. It proposes a programming paradigm called goal-oriented
programming (Saif, Pham, Paluska, Waterman, Terman, & Ward, 2003). From a non-technical
perspective, a Goal represents a user requirement that must be fulfilled by the system. Often
times such a user requirement can be decomposed hierarchically into a set of simpler goals

whose simultaneous fulfillment will satisfy the initial high-level goal.

Technically speaking, a Goal can be seen as a procedure call that takes a number of typed
arguments. In contrast to a procedure call, a Goal does not provide an implementation. Instead,
a Goal may have multiple alternative implementations that can be selected dynamically at
runtime. These implementations are called Techniques. A Technique consists of a declarative
description and some arbitrary piece of code. In its declarative description a Technique may
specify dependencies on further Goals. Thus, by resolving a Goal with a Technique, 02S

decomposes a Goal hierarchically until it solely consists of Techniques. Together the transitive
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closure of techniques that has been selected in order to satisfy a certain Goal forms the

executable application.

In 02S, computing a set of suitable Techniques is done by a centralized planning engine. In order
to select the best Technique to resolve a Goal, each Technique provides a utility function.
However, since the utility functions are evaluated independently, the planning engine does not
perform a complete optimization. The 0O2S planning engine makes use of a number of heuristics
in order to improve the efficiency. Some of these heuristics reduce the search space in such a
way that the resulting search is no longer complete. To avoid the complete reconstruction of a
plan during adaptation, the planning engine caches the currently executed plan and it solely

evaluates some parts of the plan.

7.2.2 Smart Peer Groups

Smart peer groups are self-organizing groups of networked computers that are dynamically
established when the computers are in physical proximity. Current system software for smart
peer groups focuses mainly communication support. Towards this end, the solutions offer
fundamental services such as device and service discovery as well as basic service abstractions
used to unify access to the functionality available in a group. In order to communicate with other
computers in a smart peer group, these systems support various communication paradigms,
including message passing, remote method calls, and publish-subscribe-based event and data
dissemination. Adaptation is typically supported at the communication layer but not at the
application layer. Although, there is currently only one system that is specifically targeted at
smart peer groups, there is a set of system software solutions that could accommodate this
system model as well. In the following, we discuss relevant representatives in detail and we

contrast them to the system software proposed in this dissertation.

7.2.2.1 BASE

BASE (Becker, Schiele, Gubbels, & Rothermel, 2003), (Handte, Becker, & Schiele, 2003) is a
communication middleware for smart peer groups that has been developed in the Peer-to-peer
Pervasive Computing project at the Universitdt Stuttgart. The core of this middleware is a
minimal yet extensible micro-broker. The micro-broker takes care of managing local and remote
communication. To integrate various communication technologies and protocols, the micro-
broker can be flexibly extended using plug-ins. The basic functionality provided by BASE is
energy-efficient discovery and a unified access to local and remote services available in a smart

peer group.

As a result, applications usually consist of an atomic application core that leverages the BASE
micro-broker to interact with the services that are hosted on the computers in their surrounding

smart peer group. Towards this end, each computer that runs BASE hosts a service registry.
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Installed services register themselves at their local service registry with their name, their type
and optional properties that describe the non-functional characteristics of their implementation.
Other services as well as application cores, in turn, may query their local registry for services that

are available either on the local or on a remote computer.

With this approach, BASE closely follows the traditional model of object- and service-oriented
communication middleware. The main difference to traditional middleware is threefold. First of
all, the middleware consists of a minimal core that can be tailored to the capabilities of
individual computers. This limits the amount of resources required to execute BASE and thus, it
makes BASE suitable for resource-poor computers. Second, BASE decouples the communication
model of the application from the communication model of the interoperability protocol. This
enables BASE to dynamically switch between different communication technologies or
protocols, even during on-going remote interaction. As a result, BASE can shield the application
developer from many communication failures. Last but not least, all internal mechanisms in
BASE can be federated dynamically without configuration or centralized services to support the

concept of dynamically formed smart peer groups.

In cases where BASE cannot mask failures or in cases where a required service becomes
unavailable, BASE solely provides signaling mechanisms. Thus, BASE forces application
developers to deal with such failures explicitly. In contrast to BASE, PCOM aims to mask these
failures as well. To do this, it adapts the configuration of an application, i.e. the set of services
that constitutes an application, at runtime. Performing such an adaptation with BASE would
require the development of adaptation logic within each service. However, the simple
reselection of a service would not be sufficient as global resource conflicts might require the
reconsideration of the complete application configuration. To enable the necessary global
reconfiguration, each service that is used within an application would need to cooperate with
the other services in order to enable a complete search through the space of possible application

configurations.

7.2.2.2 Speakeasy

Speakeasy (Edwards K. W., et al., 2002) is a component system for pervasive computing
applications that has been developed at the Palo Alto Research Center. Speakeasy is targeted at
support for recombinant computing (Edwards K. W., Newman, Sedivy, Smith, & Izadi, 2002). The
key idea behind recombinant computing is to enable the interaction of different components
beyond the ways that have been foreseen by their developers. To realize this idea, the
component model of Speakeasy defines four interfaces that need to be implemented by each
component. These interfaces provide a description of the context of the component, e.g. its

type, location, etc. and they define how to interact with the component, e.g. the supported data
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types, protocols and its user interface. Similar to Jini, accessing a component requires the
download and execution of mobile code. However in contrast to Jini, the mobile code of each
component is self-contained since it does not define specialized interfaces beyond the ones

defined by the component model.

Once the code for a component is downloaded and running, a user may use the component’s
user interface to interact with it. Since the description of components by means of their built-in
context interface is not standardized, the composition of an application from components
cannot be automated. Instead, Speakeasy relies on manual configuration (Newman, et al., 2002)
through the user. Due to the fact that the components are self-contained, there are no limits to
the compositions that can be performed by the user. This makes Speakeasy extremely flexible
and it can be used to support unstructured tasks such as the collaboration of users. Yet, the high
level of compositional freedom is not always beneficial, since the component system cannot

validate the compositions.

7.2.2.3 P2PComp

The goal of the P2PComp component system (Ferscha, Hechinger, Mayrhofer, & Oberhauser,
2004), (Ferscha, Hechinger, Mayrhofer, & Oberhauser, 2004) is to support the development of
distributed component-based applications in a way that is independent from the underlying
communication mechanism and protocol. To achieve this goal, a lightweight component
container running on each computer mediates the communication between components on
different computers. The component model of P2PComp is build on top of the model defined by
the OSGi framework and it extends this model with a ports concept to enable the remote

interaction between components.

The ports concept can be seen as the remote extension of the local service concept introduced
in the OSGi framework. In the OSGi framework, a component can export one or more services
that can then be used by other components. Similarly in P2PComp, a component can export one
or more provides-ports. Other components can then make use of these ports through so-called
use-ports. A port manager that is running on each component container is responsible for
performing the necessary tasks to connect the provides-ports and the use-ports either locally or
remotely. Both, provides-ports and use-ports, can be declared dynamically at runtime and
components may also register continuous queries for provides-ports at the port manager. Since
a network of computers may contain multiple provides-ports that might be suitable for a given
use-port, a component may define a suitability value when registering a provides-port. This
suitability value can then be used to break ties during the selection. If a provides-port is
connected to a use-port, the port manager will dynamically create a proxy for the connection

that is passed to the component that declares the use-port. This proxy can then be used for
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asynchronous and synchronous RPC-style interaction. If a connected component becomes
unavailable, P2PComp is capable of switching transparently to another component that declares
a suitable provides-port. However, P2PComp does not provide any services to support client-
specific component state and thus, it cannot transparently handle the unavailability of stateful

components.

As a result of this overall design, the components are shielded from the underlying
communication mechanism and the port manager is the only part of the component system that
needs to interface with it. As proof of concept, the P2PComp prototype system uses a JXTA (Sun
Microsystems, 2007) implementation as basic communication mechanism. The JXTA protocols
enable computers on a network to form a peer-to-peer overlay network that can then be used
to share resources. Thus, JXTA takes care of registering and finding resources available on the
network and it allows all computers to communicate with each other. Thus, the implementation
of the port manager is greatly simplified, since it solely delegates the declaration of ports and

queries to the corresponding parts of the JXTA implementation.

7.2.2.4 one.world

one.world (Grimm, 2004), (Grimm, et al., 2004) is an architecture for pervasive applications that
has been developed at the University of Washington. The main goal of one.world is to empower
application developers to program adaptive applications. Thus, in contrast to most other system
software for pervasive applications, one.world does not strive for highly transparent adaptation.
Instead, its main concern is to expose applications to all relevant changes that may be

experienced during the execution of an application.

In order to avoid the complexities of dealing with the heterogeneity of computers, one.world
relies on the Java virtual machine as single supported platform. On top of the Java virtual
machine, one.world defines a framework for applications. The framework defines abstractions
to structure an application and using these abstractions, it provides basic monitoring support as
well as some mechanisms that can be used to adapt an application. However, the framework
does not provide mechanisms to abstract from resources and it leaves the task of resource

management to the application developer.

Applications in one.world are structured in environments, tasks and tuples. Environments are a
controlling element in applications and they isolate different parts of an application from each
other. An environment may contain tasks, tuples and other environments. Thus, environments
may form a tree structure. Tasks are individual computations that are controlled by their
surrounding environment — which, in turn, is controlled by its parent environments. Tasks can

store their data in strongly typed and persistent tuples that are shared among the tasks of the
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same environment. Individual tasks can use asynchronous messages to communicate with each

other.

The runtime system of one.world informs applications about changes using asynchronous
events. As reaction they may create new environments and tasks, for example by copying them,
or they may migrate or stop existing environments. Towards this end, the runtime system
provides the necessary migration mechanisms. However, in contrast to traditional process
migration, one.world does not deal with references to external resources. Instead, the runtime
system will just free all resources of a migrating environment and it places the burden of

allocating the new resources after the migration onto the application developer.

7.3 Discussion

The detailed analysis of existing system software for pervasive computing clearly shows that
there is a great diversity in approaches and abstractions. At the communication level, systems
like BASE or IROS are pursuing different approaches to hide the dynamic nature of the short-
range wireless communication networks found in pervasive systems. Beyond the communication
level, the systems introduce specialized abstractions to structure applications. Just like in system
software for traditional applications, the abstractions vary heavily depending on the primary
goals of their designers. Besides from classical service- and component-based approaches taken
by BASE, Gaia, 02S, Speakeasy and P2PComp, there are systems that propose the utilization of
traditional non-distributed applications as done in IROS and AURA, systems that propose the
utilization of mobile agents as done in MetaGlue and even systems that propose novel

abstractions as one.world.

To contrast these diverse approaches with the approach taken in this dissertation we can classify
them. For the classification, we can look at their assumptions regarding the structure of the
underlying pervasive system. On the basis of this, we can group the existing systems into system
software for smart environments and system software for smart peer groups as done in the
previous section. As explained earlier, system software for smart environments is usually built
around a set of services that are coordinated by a single powerful computer. Due to this
limitation, system software for smart environments cannot be applied directly to smart peer

groups.

In addition to the system model, we can also classify the system software depending on how it
handles the configuration and adaptation of an application. Here, we can identify approaches
that propose the manual configuration by the user, approaches that target at support for
programmatic configuration and adaptation by the application developer and systems that

support the automatic configuration and adaptation at the system level. Clearly, approaches
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that strive for the automation of configuration and adaptation usually require some input from
the application developer and they provide hooks to perform programmatic configuration or
adaptation. Thus, many of the systems that are capable of automating configuration and

adaptation can also support it programmatically, but not vice versa.

System Model

|
GAP

-

@ P2PComp
«» s
Smart Environment Smart Peer Group

Figure 66 — Classification of System Support for Pervasive Applications
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Figure 66 shows the result of this classification for the systems discussed previously. With the
exception of IROS that proposes manual composition by means of ICrafter, all systems for smart
environments are automating the configuration and adaptation. MetaGlue and 02S use
centralized solvers for this task. Similarly, the Olympus service in GAIA uses a centralized
approach to map components to the available computers. Finally, AURA uses the PRISM task
manager which relies on a centralized environment manager to map tasks to applications. In
contrast to this, the systems that are geared towards support for smart peer groups are focusing
primarily on programmatic configuration and adaptation that is done by the application
developer. As indicated in Figure 66, this results in a research gap with respect to system
support for automatic configuration and adaptation in smart peer groups. The PCOM
component system with its configuration algorithm and the adaptation heuristics fills this gap.
This shows that automatic configuration and adaptation can also be done in a distributed

fashion that is suitable for smart peer groups.
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8 Conclusion

This chapter closes the dissertation with a short summary. The component system as well as the
mechanisms and algorithms detailed in the previous chapters provide a solid basis for the
development of adaptive pervasive applications that are executed by smart peer groups. Yet, the
work presented in this dissertation indicates that a number of possible extensions might be
worthwhile investigating. After summarizing the major findings of the dissertation, we present

some of these extensions as an outlook on future work.

8.1 Summary

The proliferation of wireless communication technology and the ongoing miniaturization and
integration of embedded systems are the technical foundation for future pervasive systems. On
the one hand, pervasive applications that are executed in these systems have a potential to
improve our daily life significantly. On the other, they complicate the task of application
developers since they have to deal with the dynamics and the heterogeneity of the underlying

networked computers as well as the continuous evolution of hard- and software.

Automatic configuration and adaptation at the system-level can greatly simplify application
development as it enables applications to provide a seamless and distraction-free user
experience despite their ever-changing execution environment. Yet, automatic configuration
and adaptation at the system-level requires adequate abstractions that can be used to identify
valid configurations and adaptations. In addition, it requires appropriate mechanisms to detect
relevant changes as well as algorithms that can compute desirable configurations and

adaptations.

In this dissertation, we have presented an integrated approach to enable automatic
configuration and adaptation of pervasive applications. The approach is built around a
component system that defines an application configuration as a set of components and
resources that are hierarchically composed along contractually specified dependencies. The
utilized contract model allows the specification of functional and non-functional properties. By
supporting dynamic contracts with range operators and by allowing the specification of multiple
optional contracts per component, the configurations can be adapted by means of

reconfiguration and parameterization.

To automatically determine a valid configuration at runtime, we have proposed a distributed
and parallel configuration algorithm. The algorithm is based upon asynchronous backtracking
and thus, it inherits its properties. To apply this algorithm, we have presented a mapping that
does not require the complete unfolding of the search space and that can be computed online

without synchronization. Furthermore, we have added a termination detection protocol based
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on credit distribution and recovery to detect the successful computation of a configuration.
Finally, we have proposed a number of problem specific optimizations and we have developed

an approach to achieve resilience.

In order to support reactive automatic adaptation, we have introduced a number of supportive
mechanisms for monitoring, signaling and state maintenance and we have designed a cost
model to capture the cost of modifying parts of the configuration. On the basis of this model, we
have developed a set of light weight optimization heuristics and we have discussed how these

heuristics can be integrated into the configuration algorithm.

To integrate the component system, the configuration algorithm and the adaptation heuristics,
we have designed a prototypical architecture which we have implemented. On the basis of this
implementation, we have evaluated the resulting overheads, benefits and limitations of the
component system. Furthermore, we have evaluated the overhead of automatic configuration
and the suitability of the adaptation heuristics. The evaluation clearly indicates that introduced
abstractions and algorithms may introduce considerable overheads. However, the evaluation
also suggests that the proposed approach can greatly simplify application development and that

the overheads are reasonable for a broad spectrum of application scenarios.

Although, the proposed component system exhibits some similarities with other system
software for pervasive applications, the in-depth comparison clearly shows that there are
important differences. Most noteworthy, our approach is specifically targeted at smart peer
groups. As a consequence, it must be lightweight and it cannot rely on the presence of a
powerful and reliable computer that can be used for centralized coordination. Thus, all
mechanisms and algorithms must be designed in such a way that they cause little overhead and
that they can tolerate unpredictable failures of other computers without permanent undesirable
effects. The integrated approach described in this dissertation shows that such a design is

possible and that it can be applied in practice.

8.2 Outlook

Together, the abstractions, mechanisms and algorithms presented in this dissertation provide a
solid basis for the development of adaptive pervasive applications. Yet, it is possible to identify a
number of extensions that might be worthwhile to investigate more closely as part of future
research. With respect to configuration and adaptation algorithms possible research topics
include metrics to enable proactive adaptation, optimized support for user preferences, and
dynamically distributed configuration algorithms as well as system-wide conflict resolution.
Besides the topics that are related to algorithms, there are also further research areas that might

be worthwhile to explore such as end-user development and customization tools.
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8.2.1 Metrics for Proactive Adaptation

The mechanisms and algorithms presented in this dissertation are geared towards reactive
adaptation, i.e. adaptation that takes place after a disruptive change occurred. Given an
adequate set of prediction methods, it might be possible to prevent reactive adaptation in some
cases by adapting the application before a disruptive change occurs. As a simple example,
consider that it might be possible to predict future disconnections by measuring the changes in
connection quality of wireless links over time. This can significantly reduce the impact of
changes, e.g. by minimizing the perceived adaptation delay. Yet, performing such proactive
adaptations requires adequate prediction metrics and adequate adaptation metrics that decide
when and how to compute an adaptation. Technically, such metrics could be integrated into the
optimization heuristics during adaptation. However, the design of such metrics requires a
conscious tradeoff between the adaptation costs and the achievable optimization. As a

consequence, designing such metrics requires more thorough research.

8.2.2 Optimizations for User Preferences

The proposed component system enables users to specify user preferences as an ordered list of
independent requirements towards the application anchor. As a consequence, the computation
of different requests is also performed independently, i.e. one configuration attempt is
performed for each individual preference. Yet, in some cases user preferences are merely an
ordered set of relaxations that strictly extend the number of possible configurations. As an
example consider a performance related set of preferences that first tries to find a high
performance configuration before it additionally allows low performance configurations. For
user preferences that are strict relaxations of requirements, it is possible to speed up the
configuration process by reusing the results of the previous configuration attempt. For instance,
one might try to compute a low performance configuration and if that is possible, one may
introduce additional constraints to restrict the result to high performance configurations. If the
first configuration attempt fails already, it is clear that a high performance configuration cannot
be found as well. In order to perform such an optimization, it is necessary to specifically consider

inclusion relationships during the configuration of an application.

8.2.3 Dynamically Distributed Configuration

In order to support smart peer groups that consist solely of resource-poor computers, our
configuration algorithm is fully distributed. However, not all future smart peer groups will solely
consist of resource-poor computers. Instead a number of them may contain resource-rich
computers such as desktops or servers as well. In such smart peer groups it may be possible to
speed up the configuration by dynamically adapting the distribution of the configuration
algorithm according to the capabilities of the computers. As an extreme example, one could

dynamically pick the most powerful computer to compute the configuration in a centralized
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manner (Handte, Herrmann, Schiele, & Becker, 2007). Clearly, there is a broad spectrum of
intermediate possibilities between the full distribution proposed in this dissertation and
centralized configuration that is frequently utilized by other systems. Technically, our proposed
architecture can support the dynamic distribution of the configuration process as it does not
prescribe the mapping between assembler and container. However, in order to optimally
leverage the resources of a smart peer group it is necessary to design suitable distribution
metrics and heuristics. This requires a thorough analysis of the cost factors and the achievable

speedups.

8.2.4 System-wide Conflict Resolution

The configuration and adaptation algorithms described in this dissertation only resolve resource
conflicts of a single application. Clearly, it is easy to extend the approach to multiple applications
by combining multiple user preferences. In fact, our implementation can already support such
cases as it does not pose restrictions on the number of components referenced within a user
preference. Thus, it is technically possible to resolve resource conflicts across multiple
applications that are executed on behalf of the same user. However, it is conceivable that future
pervasive systems will be used by multiple users at the same time. This creates a potential for
resource conflicts between applications that are executed on behalf of different users and a
resource assignment on a first-come-first-served basis is not desirable in all cases (Schiele,
Handte, & Becker, 2007). As a result, it is necessary to detect such cases and to provide
adequate conflict resolution strategies that also consider potential interference and social

aspects.

8.2.5 End-user Development Tools

The proposed component system enables the development of applications that can adapt to the
capabilities of the execution environment and to the preferences of their users. Yet, the basis for
this adaptation is the availability of components that combine different components and
resources to provide the desired functionality. Clearly, future hardware providers will rely on
professional application developers to provide a number of components that allow the usage in
different applications. Yet, the available components may not be sufficient to support the
heterogeneity of hardware and the diversity of application scenarios resulting from different
user needs. This can be mitigated by allowing technically versed users to customize their
applications with application-specific components. Yet, the abstractions introduced by the
component system are clearly geared towards professional application developers and they
might be too complicated for technically versed users. This problem can be mitigated by
providing high-level component development tools that are suitable for end-users. In an initial
attempt for building such a tool, we have developed Nexel (Weis, Handte, Knoll, & Becker,

2006). Yet, there is still a need for a thorough evaluation of the suitability of such approaches.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 233

9 Bibliography
Affenzeller, M., & Mayrhofer, R. (2002, October). Generic Heuristic. 9th International Conference
on Operational Research (KOI) , pp. 83-92.

Aitenbichler, E., Kangasharju, J., & Miihlhduser, M. (2005). Experiences with MundoCore. 3rd
IEEE International Conference on Pervasive Computing and Communications Workshops, (pp.

168-172). Hawaii, USA.

Arshad, N., Heimbigner, D., & Wolf, A. (2003). Deployment and Dynamic Reconfiguration
Planning for Distributed Software Systems. 15th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI'03), (pp. 39-46). Sacramento, USA.

Baker, A. (1995, March). Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD Thesis, University of Oregon , pp. 1-172.

Ballagas, R., Szybalski, A., & Fox, A. (2004). Patch Panel: Enabling Control-Flow Interoperability in
Ubicomp Environments. 2nd IEEE International Conference on Pervasive Computing and

Communications (PerCom'04), (pp. 241-52). Orlando, USA.

Bayardo, R., & Miranker, D. (1994). Backtrack-Bounded Search in Polynomial Space. Technical
Report (94-12), University of Texas , pp. 1-20.

Becker, C., Handte, M., Schiele, G., & Rothermel, K. (2004). PCOM — A Component System for
Pervasive Computing. 2nd IEEE International Conference on Pervasive Computing and

Communications (PerCom'04), (pp. 67-76). Orlando, USA.

Becker, C., Schiele, G., Gubbels, H., & Rothermel, K. (2003). BASE - A Micro-broker-based
Middleware for Pervasive Computing. 1st IEEE International Conference on Pervasive Computing

and Communications, (pp. 443-451). Fort Worth, USA.

Bessiere, C., Maestre, A., & Meseguer, P. (2001, August). Distributed Dynamic Backtracking.
Workshop on Distributed Constraints (I/CAI-01) , pp. 1-8.

Beugnard, A., Jezequel, J.-M., Plouzeau, N., & Watkins, D. (1999, July). Making Components
Contract Aware. IEEE Computer, 32 (7), pp. 38-45.

Birrel, A.,, & Nelson, B. (1984, February). Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems (TOCS) , 2 (1), pp. 39-59.

MARcCUS HANDTE



234 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Blair, G., Coulson, G., Robin, P., & Papathomas, M. (1998). An Architecture for Next Generation
Middleware. IFIP International Conference on Distributed Systems Platforms and Open

Distributed Processing , pp. 1-16.

Bluetooth Special Interest Group. (2004, November). Bluetooth Core Specification, Version 2.0.

http://www.bluetooth.org .

Brooks, R. (1997). The Intelligent Room Project. 2nd International Cognitive Technology
Conference (CT'97), (pp. 271-278). Aizu, Japan.

Carriero, N., & Gelernter, D. (1986, May). The S/Net's Linda Kernel. ACM Transactions on
Computer Systems (TOCS) , 4 (2), pp. 110-129.

Chandy, M., & Lamport, L. (1985, February). Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems, 3 (1), pp. 63-75.

Chappell, D. (2002). .Net verstehen. Addison-Wesley.

Chechetka, A., & Sycara, K. (2006, May). No-commitment branch and bound search for
distributed constraint optimization. Fifth International Joint Conference on Autonomous Agents

and Multi-Agent Systems , pp. 1427 - 1429.

Chen, H., Finin, T., & Joshi, A. (2004). Semantic Web in the Context Broker Architecture. Second
IEEE International Conference on Pervasive Computing and Communications (PerCom'04), (pp.

277-286). Orlando, USA.

Chetan, S., Ranganathan, A., & Campbell, R. (2005, Spring). Towards Fault Tolerant Pervasive
Computing. IEEE Technology and Society , 24 (1), pp. 28-44.

Chun, A. (1999, April). Constraint Programming with JSolver. 1st International Conference and
Exhibition on the Practical Application of Constraint Technologies and Logic Programming , pp. 1-
12.

Chung, E., Huang, Y., Yajnik, S., Liang, D., Shih, J.,, Wang, C.-Y., et al. (1998, January). DCOM and
CORBA Side by Side, Step by Step, and Layer by Layer. C++ Report, 10 (1), pp. 18-29.

Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., & Finin, P. (1999). Meeting the
Computational Needs of Intelligent Environments: The Metaglue System. 1st International

Workshop on Managing Interactions in Smart Environments (MANSE'99) , pp. 201-212.

Cook, S. (1971). The Complexity of Theorem-Proving Procedures. STOC '71: 3rd Annual ACM
Symposium on Theory of Computing , pp. 151-158.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 235

Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming problems. Computer

Journal, 3, pp. 250-255.

Dechter, R., & Rossi, F. (2000). Constraint Satisfaction. Encyclopedia of Cognitive Sciences , pp. 1-
15.

Dermler, G. (1999). Ressourcenreservierung und Task-Platzierung in verteilten Multimedia-

Systemen. Dissertation, Universitat Stuttgart.

Dijkstra, E., & Scholten, C. (1980, August). Termination Detection for Diffusing Computations.

Information Processing Letters, 1, pp. 1-7.

Edwards, K. W., Newman, M. W., Sedivy, J. Z., Smith, T. F., Balfanz, D., Smetters, D. K., et al.
(2002). Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration. 2002 ACM Conference on
Computer Supported Cooperative Work , pp. 256-265.

Edwards, K. W., Newman, M. W., Sedivy, J., Smith, T., & Izadi, S. (2002). Challenge: Recombinant
Computing and the Speakeasy Approach. 8th Annual International Conference on Mobile

Computing and Networking , pp. 279-286.
Environment Australia. (2001). Major Appliances Materials Project. Australia: Enproc Pty Ltd.

Eugster, P., Felber, P., Guerraoui, R., & Kermarrec, A.-M. (2003, June). The Many Faces of
Publish/Subscribe. ACM Computing Surveys (CSUR), 35 (2), pp. 114-131.

European Telecommunication Standards Institute. (2000, September). General Packet Radio

Service(GPRS), Version 7.4.1, EN 301 344, (2000-9). http.//www.etsi.org .

Ferscha, A., Hechinger, M., Mayrhofer, R., & Oberhauser, R. (2004). A Light-Weight Component
Model for Peer-to-Peer Applications. 2nd International Workshop on Mobile Distributed

Computing, (pp. 520-527). Tokyo, Japan.

Ferscha, A., Hechinger, M., Mayrhofer, R., & Oberhauser, R. (2004). A Peer-to-Peer Light-Weight
Component Model for Context-Aware Smart Space Applications. International Journal of

Wireless and Mobile Computing , 2004 (4), pp. 1-10.

Flinn, J.,, Narayanan, D., & Satyanaray, M. (2001, May). Self-tuned Remote Execution for
Pervasive Computing. 8th Workshop on Hot Topics in Operating Systems , pp. 61-66.

Francez, N. (1980, January). Distributed Termination. ACM Transactions on Programming

Languages and Systems , 2 (1), pp. 42-55.

MARcCUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Gajos, K. (2001). Rascal - A Resource Manager for Multi Agent Systems in Smart Spaces. 2nd
International Workshop of Central and Eastern Europe on Multi-Agent Systems, (pp. 111-120).

Cracow, Poland.

Gajos, K., Weisman, L., & Shrobe, H. (2001). Design Principles For Resource Management

Systems For Intelligent Spaces. 2nd International Workshop on Self-Adaptive Software , pp. 1-19.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Amsterdam, Netherlands: Addison-Wesley Longman.

Garlan, D., Siewiorek, D., Smailagic, A., & Steenkiste, P. (2002, April-June). Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing, 1 (2), pp. 22-31.

Gaschnig, J. (1977, August). A General Backtrack Algorithm that Eliminates Most Redundant

Tests. 5th International Joint Conference on Artificial Intelligence , p. 457.

Ginsberg, M. (1993, August). Dynamic Backtracking. Journal of Artificial Intelligence Research, 1,
pp. 25-46.

Gray, C., & Cheriton, D. (1989). Leases: An Efficient and Fault-tolerant Mechanism for Distributed
File Cache Consistency. 12th ACM Symposium on Operating Systems Principles , pp. 202-210.

Grimm, R. (2004, July-September). One.world: Experiences with a Pervasive Computing

Architecture. IEEE Pervasive Computing , 3 (3), pp. 22-30.

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., et al. (2004, November).
System Support for Pervasive Applications. ACM Transactions on Computer Systems , 22 (4), pp.
421-486.

Hamadi, Y. (2002, May). Interleaved Backtracking in Distributed Constraint Networks.

International Journal on Artificial Intelligence Tools, 11 (2), pp. 167-188.
Hamadi, Y. (2002). Optimal Distributed Arc-Consistency. Constraints (7), pp. 367-385.

Handte, M., Becker, C., & Rothermel, K. (2005). Peer-based Automatic Configuration of Pervasive
Applications. International Conference on Pervasive Services 2005 (ICPS '05), (pp. 249-260).

Santorini, Greece.

Handte, M., Becker, C., & Rothermel, K. (2005, December). Peer-based Automatic Configuration
of Pervasive Applications. Journal on Pervasive Computing and Communications (JPCC) , 1 (4), pp.

251-264.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 237

Handte, M., Becker, C., & Schiele, G. (2003). Experiences: Minimalsim and Extensibility in BASE.
Workshop on System Support for Ubiquitous Computing (UbiSys'03), (pp. 1-8). Seattle, USA.

Handte, M., Herrmann, K., Schiele, G., & Becker, C. (2007). Supporting Pluggable Configuration
Algorithms in PCOM. Middleware Support for Pervaisve Computing Workshop (PerWare at
PerCom'07), (pp. 472-476 ). New York, USA.

Handte, M., Herrmann, K., Schiele, G., Becker, C., & Rothermel, K. (2007). Automatic Reactive
Adaptation of Pervasive Applications. IEEE International Conference on Pervasive Services 2007

(ICPS'07), (pp. 214-222). Istanbul, Turkey.

Handte, M., Schiele, G., Urbanski, S., Becker, C., & Rothermel, K. (2005). Adaptation Support for
Stateful Components in PCOM. Workshop on Software Architectures for Self-Organization:
Beyond Ad-Hoc Networking at Pervasive 2005, (pp. 1-6). Munich, Germany.

Handte, M., Urbanski, S., Becker, C., Reinhardt, P., Engel, M., & Smith, M. (2006). 3PC/MarNET
Pervasive Presenter. Demonstration at 4th Annual IEEE International Conference on Pervasive

Computing and Communications (PerCom'06), (pp. 1-2). Pisa, Italy.

Hirayama, K., & Yokoo, M. (2000). An Approach to Over-constrained Distributed Constraint
Satisfaction Problems: Distributed Hierarchical Constraint Satisfaction. 4th International

Conference on Multiagent Systems , pp. 135-142.
Hirayama, K., & Yokoo, M. (1997). Distributed Partial Constraint Satisfaction Problem.

Hirayama, K., & Yokoo, M. (2000). The Effect of Nogood Learning in Distributed Constraint
Satisfaction. 20th IEEE International Conference on Distributed Computing Systems , pp. 169-177.

Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., & Schwehm, M. (1999). Next Century
Challenges: Nexus - An Open Global Infrastructure for Spatial-Aware Applications. Fifth Annual
International Conference on Mobile Computing and Networking (MobiCom '99), (pp. 249-255).
Seattle, WA, USA.

Institute of Electrical and Electronics Engineers. (2003, June). IEEE Standard 802.11, 1999 Edition
(R2003). http://standards.ieee.org .

Johanson, B., & Fox, A. (2002). The Event Heap: A Coordination Infrastructure for Interactive
Workspaces. 4th IEEE Workshop on Mobile Computing Systems and Applications, (pp. 83-93).
Callicoon, USA.

Johanson, B., Fox, A., & Winograd, T. (2002, April-June). The Interactive Workspaces Project:
Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Computing , pp. 67-74.

MARcCUS HANDTE



238 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Joseph, A., Tauber, J., & Kaashoek, F. (1997, March). Mobile Computing with the Rover Toolkit.
IEEE Transactions on Computers, 46 (3), pp. 337-352.

Kiciman, E., & Fox, A. (2000). Using Dynamic Mediation to Integrate COTS Entities in a Ubiquitous
Computing Environment. 2nd International Symposium on Handheld and Ubiquitous Computing ,

pp. 211-226.

Kon, F. (2000). Automatic Configuration of Component-Based Distributed Systems. Department

of Computer Science, University of Illinois at Urbana Champaign: PhD Thesis.

Koulamas, C., Antony, S., & Jean, R. (1994). A Survey of Simulated Annealing Applications to
Operations Research Problems. Omega International Journal of Management Science , 22 (1),

pp. 41-56.

Kumar, V. (1992). Algorithms for Constraint-Satisfaction Problems: A Survey. (A. A. Intelligence,
Ed.) Al Magazine, 13 (1), pp. 32-44.

Lai, T.-H., & Wu, L.-F. (1995, January). An (N-1)-Resilient Algorithm for Distributed Termination
Detection. IEEE Transactions on Parallel and Distributed Systems , 6 (1), pp. 63-78.

Lamport, L. (1978, July). Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM , 21 (7), pp. 558-565.

Mackworth, A. (1977). Consistency in Networks of Relations. Artificial Intelligence , 8 (1), pp. 99-
118.

Martin, O., & Otto, S. (1993). Combining Simulated Annealing with Local Search Heuristics. (O. G.
Engineering, Ed.) Technical Report CSE-94-016 , pp. 1-15.

Matocha, J., & Camp, T. (1998, November). A Taxonomy of Distributed Termination Detection
Algorithms. Journal of Systems and Software , 43 (3), pp. 2007-221.

Mattern, F. (1989). Global Quiescence Detection Based on Credit Distribution and Recovery.

Information Processing Letters, 30 (4), pp. 195-200.

Mattern, F. (2001, June). Pervasive/Ubiquitous Computing. Informatik-Spektrum , 24 (3), pp.
145-147.

Meisels, A., & Zivan, R. (2007, March). Asynchronous Forward-checking for DisCSPs. Constraints ,
pp. 131-150.

Microsoft Cooperation. (2000). Understanding Universal Plug and Play: A White Paper. UPnP

Forum.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 239

Microsoft Corporation. (1996, November). DCOM Technical Overview. Retrieved July 2007, from
Microsoft Developer Network Library: http://msdn2.microsoft.com/en-

us/library/ms809340.aspx

Microsoft Corporation. (1995, October). The Component Object Model Specification. Retrieved
July 2007, from COM: Component Object Model Technology Website:

http://www.microsoft.com/com

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous Distributed
Constraint Optimization with Quality Guarantees. Artificial Intelligence Journal , 161, pp. 149-
180.

Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2003, July). An Asynchronous Complete
Method for Distributed Constraint Optimization. Second International Joint Conference on

Autonomous Agents and Multiagent Systems , pp. 161-168.

Moore, G. (1965, April). Cramming more Components onto Integrated Circuits. Electronics

Magazine, 38 (8), pp. 114-117.

Nam, J., Shin, D., Hur, S., & Han, C. (2007). An ECA-based Mechanism of Non-blocking Device
Coordination for a Ubiquitous Environment. IEEE International Conference on Convergence

Information Technology (ICCIT'07) (pp. 573-579). Washington, USA: IEEE Computer Society.

Newman, M. W., Sedivy, J. Z., Neuwirth, C. M., Edwards, K. W., Hong, J. |., Izadi, S., et al. (2002).
Designing for Serendipity: Supporting End-User Configuration of Ubiquitous Computing

Environment. 4th Conference on Designing Interactive Systems , pp. 147-156.

Nguyen, V., Sam-Haroud, D., & Faltings, B. (2004, September). Dynamic Distributed Backjumping.
5th Workshop on Distributed Constraints Reasoning , pp. 1-15.

Noble, B., & Satyanarayanan, M. (1999, December). Experience with Adaptive Mobile
Applications in Odyssey. Mobile Networks and Applications , 4 (4), pp. 245-254.

Noble, B., Satyanarayanan, M., Tilton, J., Jason, F., & Walker, K. (1997). Agile Application-Aware
Adaptation for Mobility. 16th ACM Symposium on Operating Systems Principles, (pp. 276-287).

Saint Malo, France.

Object Management Group. (2004, March). Common Object Request Broker Architecture: Core
Specification. Retrieved July 2007, from Object Management Group Homepage:
http://www.omg.org/docs/formal/04-03-12.pdf

MARcCUS HANDTE



240 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Object Management Group. (2006, April). CORBA Component Model Specification. Retrieved July
2007, from Object Management Group Homepage: http://www.omg.org/docs/formal/06-04-
01.pdf

Object Management Group. (2002, August). Minimum Corba Specification (Version 1.0).
Retrieved January 2008, from Object Management Group Homepage: http://www.omg.org/cgi-
bin/apps/doc?formal/02-08-01.pdf

OSGi Alliance. (2007, April). OSGi Service Platform Core Specification. Retrieved July 2007, from
0OSGi Alliance Specifications Website: http://www2.0sgi.org/Specifications/HomePage

0OSGi Alliance. (2007, April). OSGi Service Platform Service Compendium. Retrieved July 2007,
from OSGi Specifications Website: http://www2.osgi.org/Specifications/HomePage

Paluska, J., Pham, H., Saif, U., Chau, G., & Ward, S. (2008, March). Structured Decomposition of
Adaptive Applications. 6th Annual IEEE International Conference on Pervasive Computing and

Communications , pp. 1-10.

Ponnekanti, S., Johanson, B., Kiciman, E., & Fox, A. (2003, March). Portability, Extensibility and
Robustness in iROS. 1st IEEE International Conference on Pervasive Computing and

Communications , pp. 11-19.

Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., & Winograd, T. (2001). ICrafter: A Service
Framework for Ubiquitous Computing Environments. 3rd International Conference on Ubiquitous

Computing , pp. 56-75.

Ranganathan, A., Chetan, S., Al-Muhtadi, J.,, Campbell, R., & Mickunas, D. (2005, March).
Olympus: A High-Level Programming Model for Pervasive Computing Environments. 3rd IEEE

International Conference on Pervasive Computing and Communications , pp. 7-16.

Rivera, W. (2001). Scalable Parallel Genetic Algorithms. (K. A. Publishers, Ed.) Artificial
Intelligence Review, 16 (2), pp. 153-168.

Roman, E., Siganesh, R., & Brose, G. (2005). Mastering Enterprise JavaBeans (3rd Edition).
Indianapolis, USA: Wiley Publishing.

Roman, M., & Campbell, R. (2000, September). Gaia: Enabling Active Spaces. 9th ACM SIGOPS
European Workshop , pp. 229-234.

Roman, M., & Campbell, R. (2001). Unified Object Bus: Providing Support for Dynamic
Management of Heterogeneous Components. UIUC Technical Report, UIUCDCS-R-2001-2222 ,
pp. 1-18.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 241

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.,, & Nahrstedt, K. (2002,
October-December). Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive

Computing, 1 (4), pp. 74-83.

Roman, M., Kon, F., & Campbell, R. (2001, July). Reflective Middleware: From Your Desk to Your
Hand. IEEE Distributed Systems Online , 2 (5).

Roman, M., Singhai, A., Carvalho, D., Hess, C., & Campbell, R. (1999). Integrating PDAs into
Distributed Systems: 2K and PalmORB. 1st International Symposium on Handheld and Ubiquitous
Computing , pp. 137-149.

Rossi, F., Perie, C., & Dhar, V. (1990). On the Equivalence of Constraint Satisfaction Problems. 9th
European Conference on Artificial Intelligence , pp. 550-556.

Rothermel, K., Barth, I., & Helbig, T. (1994). Cinema - An Architecture for Distributed Multimedia
Applications. In O. Spaniol, A. Danthine, & W. Effelsberg, Architecture and Protocols for High-
Speed Networks (pp. 253-271). Kluwer Academic Publishers.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (Second Edition,

Chapter 5). Prentice Hall International.

Saif, U., Pham, H., Paluska, J., Waterman, J., Terman, C., & Ward, S. (2003, October). A Case for
Goal-oriented Programming Semantics. System Support for Ubiquitous Computing Workshop,

5th Annual Conference on Ubiquitous Computing , pp. 1-8.

Satyanarayanan, M. (2002, May). The Evolution of Coda. (ACM, Ed.) ACM Transactions on
Computer Systems, 20 (2), pp. 85-124.

Schiele, G. (2007). System Support for Spontaneous Pervasive Computing Environments.

Dissertation, Universitat Stuttgart.

Schiele, G., Becker, C., & Rothermel, K. (2004). Energy-Efficient Cluster-based Service Discovery
for Ubiquitous Computing. 11th ACM SIGOPS European Workshop, (pp. 1-5). Leuven, Belgium.

Schiele, G., Handte, M., & Becker, C. (2007). Good Manners for Pervasive Applications - An
Approach Based on the Ambient Calculus. WIP-Track, 5th IEEE International Conference on
Pervasive Computing and Communications (PerCom'07), (pp. 585-588). New York, USA.

Schneider, F. (1990, December). Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Computing Surveys , 22 (4), pp. 299-319.

Selman, B., Kautz, H., & Cohen, B. (1994, July). Noise Strategies for Improving Local Search.
Twelfth National Conference on Artificial Intelligence (AAAI'94) , pp. 337--343.

MARcCUS HANDTE



242 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Selman, B., Levesque, H., & Mitchell, D. (1992). A New Method for Solving Hard Satisfiability
Problems. 10th National Conference on Artificial Intelligence , pp. 440-446.

Silaghi, M. C., & Yokoo, M. (2006, May). Nogood based Asynchronous Distributed Optimization.
Fifth International Joint Conference on Autonomous Agents and Multiagent Systems , pp. 1389 -

1396.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Asynchronous Search with Aggreations. 7th
National Conference on Artificial Intelligence/12th Conference on Innovative Applications on

Artificial Intelligence , pp. 917-922.

Sousa, J. P., & Garlan, D. (2002, August). AURA: An Architectural Framework for User Mobility in
Ubiquitous Computing Environments. 3rd IEEE/IFIP Conference on Software Architecture , pp. 29-
43.

Sun Microsystems. (1999, September 12). Code Conventions for the Java Programming
Language. Retrieved October 2007, from Sun Developer Network Homepage:

http://java.sun.com/docs/codeconv/

Sun Microsystems. (2004). Java Remote Method Invocation Specification. Retrieved July 2007,
from Java Technology Website: http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf

Sun Microsystems. (1997, August). JavaBeans Specification Version 1.01. Retrieved January 2008,
from Sun Developer Network Homepage:

http://java.sun.com/products/javabeans/docs/spec.html

Sun Microsystems. (2001, December). Jini Technology Core Platform Specification. Retrieved July

2007, from Java Technology Website.

Sun Microsystems. (2007, October). JXTA Protocols Specification (Version 2.0). Retrieved April 9,
2007, from JXTA Community Homepage: https://jxta-spec.dev.java.net/

Szyperski, C. (1997). Component Software Beyond Object-Oriented Programming. Addison-
Wesley.

Tel, G., & Mattern, F. (1993, January). The Derivation of Distributed Termination Detection
Algorithms from Garbage Collection Schemes. ACM Transactions on Programming Languages

and Systems, 15 (1), pp. 1-35.

Testa, C., & Dearie, D. (1974). Human Factors Design Criteria in Man-Computer Interaction. ACM
74: 1974 Annual Conference , pp. 61-65.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 243

Tsang, E., & Voudouris, C. (1995). Fast Local Search and Guided Local Search and Their
Application to British Telecom's Workforce Scheduling Problem. (U. o. Essex, Ed.) Technical

Report CSM-246 , pp. 1-15.

Tsang, E., & Voudouris, C. (1999, March). Guided Local Search and its application to the
Travelling Salesman Problem. (A. Publishing, Ed.) European Journal of Operational Research , 113

(2), pp. 469-499 .

Tseng, Y.-C., & Tan, C.-C. (2001, June). Termination Detection Protocols for Mobile Distributed

Systems. IEEE Transactions on Parallel and Distributed Systems , 12 (6).

Weis, T., Handte, M., Knoll, M., & Becker, C. (2006). Customizable Pervasive Applications. 4th
Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'06),

(pp. 239-244). Pisa, ltaly.

Weiser, M. (1991, February). The computer for the 21st century. Scientific American , 265 (3),
pp. 66-75.

World Wide Web Consortium. (2007, April). SOAP (Version 1.2). W3C Recommendation .

World Wide Web Consortium. (2007, June). Web Service Description Language (Version 2.0).

W3C Recommendation .

World Wide Web Consortium. (2002). Web Services. Retrieved January 2008, from
http://www.w3.0rg/2002/ws/

Xu, D., Nahrstedt, K., & Wichadakul, D. (2001, April). QoS and Contention-aware Multi-Resource
Reservation. Cluster Computing , 4 (2), pp. 95-107.

Yeoh, W., Felner, A., & Koenig, S. (2008, May). BnB-ADOPT: An Asynchronous Branch-and-Bound
DCOP Algorithm. International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS) , pp. 591-598.

Yokoo, M. (1995). Asynchronous Weak-Commitment Search for Solving Distributed Constraint
Satisfaction Problems. 1st International Conference on Principles and Practice of Constraint

Programming , pp. 88-102.

Yokoo, M., & Hirayama, K. (2000). Algorithms for Distributed Constraint Satisfaction: A Review.
Aoutonomous Agents and Multi-Agent Systems , 2, pp. 198-212.

Yokoo, M., Durfee, E., Ishida, T., & Kuwabara, K. (1992). Distributed Constraint Satisfaction for
Formalizing Distributed Problem Solving. 12th IEEE International Conference on Distributed

Computing Systems , pp. 614-621.

MARcCUS HANDTE



244 SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Yokoo, M., Durfee, E., Ishida, T., & Kuwabara, K. (1998, September/October). The Distributed
Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Transactions on Knowledge

and Data Engineering , 10 (5), pp. 673-685.

Zivan, R., & Meisels, A. (2003, December). Synchronous vs. Asynchronous search on DisCSPs. 1st

European Workshop on Multi Agent System , pp. 1-11.

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

10 Indexes

10.1 Index of Figures

Figure 1 — Dynamic Execution EnNVironment ..., 28
Figure 2 — Exemplary Application Configuration ..........ccoccuieiieiiieee e 30
Figure 3 — Contract ComMParators ..o 36
Figure 4 — Component CoNtractsS......ccoeeiiiiiiiiii 38
Figure 5 —ReSoUICe CONTIaCS...cciiiiiiiiiiiii e 40
Figure 6 — COmMPONENT MOTEL.......oiiiiiiieceee et e e et e e e e rte e e e e are e e e e anteeeeennees 41
Figure 7 — Component Instance Interaction........ccccoo i, 42
Figure 8 — Component INStance LIfECYCIe ... uuii it 43
FIUIre 9 — RESOUICE MOUE ...ttt e e e e tae e e e et re e e s e nara e e e e nnraeeeennees 46
Figure 10 — Resource Assignment LifeCYCle. ..o 47
Figure 11 — Cyclic Component CONTrACES......uiiiiiiiiiiiiiie ettt e e e saree e e 50
Figure 12 — Parallel Bottom-Up Lifecycle Transition ........cccceeeccieieeciieee e e 52
Figure 13 — Parallel Top-Down Lifecycle Transition ........cccceeecciiieeie e 53
Figure 14 — Effects Of Changes .....ciui ittt e e e e e e e s st e e e snaee e e s e 58
Figure 15 — EXemplary SMart PEEI GrOUP .....ccccuieeeeciieeeeiieeeeeciieeeeetteeeestaeeesssteeessnreeesenraeeeennens 64
Figure 16 — Possible CoONfigUrations ........cc.uuiiiriiii i e e e e 65
Figure 17 — Reduction Procedure for Literals.......cccuuueiiiiieieciiee ettt 69
Figure 18 — Reduction Procedure for CIAUSES .........cccueiieciiiieeciiee et avee e e 70
Figure 19 — Avoiding Unnecessary Communication LiNKS..........cceeeveiieecciiiiieeee e 83
Figure 20 — Mapping OptimizatioNns .....ccceeuiiiiiiiiiiiiiieee ettt e e e e s s s ibar e e e e e s s ssasnrees 84
Figure 21 — Backtracking Strat@gies......cccucuiiiiiiiiie ettt e e et e e aree e e e aree e e nees 85
Figure 22 — Configuration ProCESS.....iiii ettt e e et e e e e e e e rre e e e e e e e eeanns 101
Figure 23 — Extended Exemplary SMart PEEIr GroUP ....ccccveeeeiciieeeiiieeeecieee e esiee e svee e svee e e 109
Figure 24 — Effects of Unavailable Laptop ....cccccveeiiciiie ettt 110
Figure 25 — P0ssible AdAPtations ... e e e e e e e e 111
Figure 26 — Subtle Mapping Problem .........coo i 136
Figure 27 — EXteNded MapPing....cccccuieeeiiiiie e ciiiee e eeieee e eeire e e eetee e e seatee e e sate e e s s satae e s eataeeesntaeeeennens 137
Figure 28 — Adaptation PrOCESS......uuiiii i iccciieeee ettt e et e e e e e e e trre e e e e e e e e e eanbeaeeeeeeeeeaanns 140
Figure 29 — Archite@CtUral LAYerS..ccccciiii ettt ettt e e ree e s s abee e e s nbae e e s e 151
Figure 30 — Architectural DEPENAENCIES ......ccccviiiiiiiiie et e eree e e 152
Figure 31 — Component Container INterfaces .......covccuiiiiiiie e 153
Figure 32 — Application Manager INTerfaces ......ccevcieiiiiciiie e 154
Figure 33 — AssembIler INTEIfaCES ......uvii i e e 155
Figure 34 — Ambiguous Signals due to Parallelism .........cccceeeeeeciiiiiiie e 155

MARcCUS HANDTE

245




246

SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Figure 35 — Disambiguation with Logical Timestamps.......ccccvvivciiiiiriiiie e 156
Figure 36 — Initializing an Adaptation .........cceeeiiciiie i aaee e 158
Figure 37 — Performing an Adaptation........c.ccececciieeiciiiee et e e e e e saaee e e earaee e 160
Figure 38 — BASE Architecture and INteraction.......cccccuveeieciiieiiciiie e 162
Figure 39 — Streaming PIUGIN ....ocvviii ittt ettt e et e e e s ata e e e et a e e e e abaeeeennaeeean 165
Figure 40 — Component Container Implementation.........ccccceei e 168
Figure 41 — Application Manager Implementation.........cccocvieiiiciiiiiniieece e 170
Figure 42 — Assembler Implementation..........coocciiie e 171
Figure 43 — Graphical USer INTEIrface .....cccii i e e e 173
Figure 44 — Development TOOIS .....ciiiiciiiiiiiiieeciriee et ee sttt e etre e e st ree e s saba e e e ssraeessnbaeessnseeeean 175
FIUIE 45 — SIMUIGTON ...uviiiciiiee ettt e e e et e e e et e e e e sab e e e e essaeeeennsaeeesnnnaneaan 176
Figure 46 — Latency for Pausing @ Configuration ..........ccccuveeeii i 186
Figure 47 — Latency for Starting @ Configuration .........ccccovvciiiiiiiiiie e 187
Figure 48 — Pervasive Presenter AppliCation ......cc..oeocciiiiiciiiie e 188
Figure 49 — Pervasive Presenter Application with Dynamic Preferences........cccccceeeivccivvennennnnnn. 189
Figure 50 — Pervasive Presenter Application with Multiple Configurations........c.cccceecvveviiinnenn. 190
Figure 51 — Average number of structural possibilities ..........ccceccuveieeiiiie e, 199
Figure 52 — Average Number of Messages (LOCality)......cccocvuereeciieieeiiiie e 200
Figure 53 — Maximum Number of Messages (LOCality) .....ccccvvveeieeeiiieriieeee e 200
Figure 54 — Average Number of Messages (N0 Locality) ......cccceecvieeeeiiiieicciiie e 201
Figure 55 — Maximum Number of Messages (N0 LOCAlity)......cccccueeieeciiiiierciiieee e, 201
Figure 56 — Average Number of Rounds (NO LOCality).......ccccvrevieriiiieriiecee et 202
Figure 57 — Achievable Greedy Completeness (Locality)......cccceeeiiereriiieeecciee e 202
Figure 58 — Achievable Backtracking Completeness (Locality).......cccocovereeciiieiieciieeeeceeeeecieeee, 203
Figure 59 — Achievable Greedy Completeness (N0 LOCAlity) ......ccceeveievriercieieiiee e 203
Figure 60 — Achievable Backtracking Completeness (No Locality) ......ccccceeevveeeiiiieeeiciieeeccinen, 204
Figure 61 — Number of Messages (N=7, M=2) ..ottt e et e e e e aaee e 205
Figure 62 — Achievable Completeness (N=7, M=2).....cccccccieeiiieeiieeiie e e ecree e e sre e e sraeesaeeerae s 205
Figure 63 — 1* Run Solution QUality (A=20) ......c.cceeieiieeriieeeieeee ettt 208
Figure 64 — N™ Run Solution QuUality (d=20, P=60) «....eeeveveeeeeereeeeeeeeeseeeseeeeeseeeeeseeseeeseseesesesnees 209
Figure 65 — 1% Run Solution QUality (P=50) .......cveveveieveeieeeieeeeeeeeeeeeeseseseeeeessesssesss s ssesessssseseens 209
Figure 66 — Classification of System Support for Pervasive Applications .......cccccceeevcvveeencnnnenn. 227

10.2 Index of Formulas

Formula 1 — Contract MatChiNg .......cocuiiiiiiiiiee ettt et e e e er e e e etae e e e entae e e sentaeeeeanes 36
Formula 2 — Interface MatChiNg .......occuiiii ittt e e e tae e e e etae e e eeataeeeeenes 37
Formula 3 — Dimension MatChing......ccuueviiiiiiiiiiie sttt e s e sreeeeenes 37

MARcUS HANDTE



SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS 247

Formula 4 — Property MatChing .....cccueiioiiiie et et e e e e e aree e e nes 37

Formula 5 — Component Contract MatChing........ccccuuiiieiii i e 38

10.3 Index of Algorithms

Algorithm 1 — Receive Update ProCeAUIE ......cceiiieiiiiieee ettt e et e e e e 87
Algorithm 2 — Validate Constraints ProCeAUIE .......cuuuiiiiciiei ittt 88
Algorithm 3 — Trigger Backtracking ProCeAUIE..........ueiiiciiieieieie ettt 89
Algorithm 4 — Receive Backtracking Procedure .........eeeiioicciiiiiee et 90
Algorithm 5 — Receive Message Wrapper ProCeAUIE ........coovciiieiiciieeiiiiiee e scieeeescneeeessvee e e svaee s 98
Algorithm 6 — Send Message Wrapper ProCEAUNE ........ccvveeieciiieeecieeeeecieee e cvr e e e eavre e s saaaee s 99
Algorithm 7 — Termination TiMer ProCeAUIE ..........uuiiiiieie ettt 99
Algorithm 8 — Credit RECOVEIY ProCERAUIE ........uiiiiiiiiie ettt ettt e s e e e s sabae e e s snraee s 99
Algorithm 9 — Detect Failure ProCEAUIE......cocuviii ittt et e e e saaaee s 99
Algorithm 10 — Receive Failure Notification Procedure ..........cccceeeiieeccciiieeeee e 100
Algorithm 11 — Receive Failure Notification Procedure.........ccueeiveiieiiiiiieeiincieee e 100
Algorithm 12 — Variable Ordering INitialization..........cooocieiiiiiii e 134

10.4 Index of Tables

Table 1 — Memory Footprint per Building BIOCK..........ccccveiieiiiiiiiiieeecee et 180
Table 2 — Memory Footprint per Configuration ..........cccccuvieieiiiiiieciee e e e 181
Table 3 — Local Matching Latency and OVErhead.......cccocuueveiiiiiieiciiee et 183
Table 4 — Remote Matching Latency and Overhead ..........ccocvveieeeiieee e 183
Table 5 — Remote Communication Latency and Overhead........cccccoueeeecieieecciiee e 184
Table 6 — Message Sizes fOr MONITOMING......coicuiiiiiiiiieeciee e e e ree e s are e e s e 185

MARcCUS HANDTE






SYSTEM SUPPORT FOR ADAPTIVE PERVASIVE APPLICATIONS

Erklarung

Ich erkladre hiermit, dass ich, abgesehen von den ausdriicklich bezeichneten Hilfsmitteln und den
Ratschlagen von jeweils namentlich aufgefiihrten Personen, die Dissertation selbststindig

verfasst habe.

Marcus Handte

MARcCUS HANDTE



	Introduction
	Background
	Pervasive Computing
	Adaptation
	Automation

	System Software
	Smart Environments
	Smart Peer Groups

	Motivation
	Scope and Focus
	Contribution
	Structure

	System Software
	Requirements
	Minimalism and Extensibility
	Decentralized Coordination
	Flexible Explicit Application Specification
	Continuous Application Monitoring
	High Adaptation Transparency

	Design Rationale
	Pervasive Applications
	Implications on Adaptation
	Automation with Components

	Component System
	Overview
	Contracts
	Contract Scope
	Contract Matching
	Component Contracts
	Resource Contracts

	Components
	Component Instances
	Component Factories

	Resources
	Resource Assignments
	Resource Managers

	Applications
	Application Model
	Application Anchor
	Application Preferences
	Application Lifecycle

	Adaptation
	Parameterization
	Reconfiguration
	Changes
	Utilization
	Scope


	Discussion

	Automatic Configuration
	The Configuration Problem
	Example
	Formalization
	Complexity
	Requirements
	Completeness
	Efficiency
	Optimism
	Distribution
	Resilience


	Approach
	Constraint Satisfaction
	Backtracking Algorithm Design Space
	Sequential Backtracking Algorithms
	Parallel Backtracking Algorithms

	Configuration as Constraint Satisfaction
	Configuration with Asynchronous Backtracking
	Asynchronous Backtracking
	Mapping
	Algorithm
	Correctness
	Optimizations
	Resilience
	Failure Model
	Failure Handling
	Correctness

	Termination
	Integration
	Example


	Discussion

	Automatic Adaptation
	The Adaptation Problem
	Example
	Formalization
	Complexity
	Requirements
	Optimality


	Approach
	Constraint Optimization
	Optimization Technique Design Space
	Complete Optimization
	Bounded Optimization
	Heuristic Optimization

	Cost Model
	Cost Factors
	Formalization
	Discussion

	Adaptation as Constraint Optimization
	Adaptation with Heuristic Optimization
	Optimization Heuristics
	Value Ordering Heuristic
	Variable Ordering Heuristic
	Example
	Limitations
	Randomization


	Discussion

	Prototype
	Architecture
	Design Goals
	Building Blocks
	Layers
	Dependencies
	Component Container
	Application Manager
	Assembler
	Signaling
	Interaction

	Implementation
	Communication Middleware
	Lease Registry
	Streaming Semantic
	Component Container
	Application Manager
	Assembler
	Graphical Interface
	Development Tools
	Simulator

	Discussion

	Evaluation
	System Software
	Performance
	Footprint
	Matching
	Communication
	Monitoring
	Signaling

	Benefits and Limitations
	Application
	Benefits
	Limitations

	Discussion

	Automatic Configuration
	Influencing Factors
	Metrics
	Simulations
	Experiments
	Discussion

	Automatic Adaptation
	Influencing Factors
	Metrics
	Simulations
	Discussion


	Related Work
	System-support for Conventional Applications
	Communication Middleware
	Component Systems

	System-support for Pervasive Systems
	Smart Environments
	IROS
	AURA
	GAIA
	MetaGlue
	O2S

	Smart Peer Groups
	BASE
	Speakeasy
	P2PComp
	one.world


	Discussion

	Conclusion
	Summary
	Outlook
	Metrics for Proactive Adaptation
	Optimizations for User Preferences
	Dynamically Distributed Configuration
	System-wide Conflict Resolution
	End-user Development Tools


	Bibliography
	Indexes
	Index of Figures
	Index of Formulas
	Index of Algorithms
	Index of Tables


