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Zusammenfassung

Prüfungen können große Teile des Budgets eines Software‐Projekts aufzehren, erlau‐
ben aber, die Produktqualität zu beurteilen und zu verbessern. Sie dürfen nicht ver‐
nachlässigt werden, da Defizite der Produktqualität nach Projektende teuer werden
können. Projektleiter und Verantwortliche für die Qualität müssen bereits in der Pla‐
nung über Prüfungen entscheiden. Sie  sind  in einer  schwierigen Situation, weil  sie
dabei viele komplexe und langfristig wirkende Entscheidungen über Prüfungen und
über einzelne Parameter der Prüfungen  treffen müssen. Die Kosten der Prüfungen
sind früh sichtbar und messbar. Im Gegensatz dazu wird der Nutzen durch schwierig
zu messende Qualitätsverbesserungen  erreicht,  die  zu  langfristigen  Einsparungen
führen. Zusätzlich hängen Kosten und Nutzen von der Projektsituation ab. Für jedes
Projekt ist darum ein individueller Kompromiss zwischen den Kosten für Prüfungen
und ihrem Nutzen nötig, so dass minimale Gesamtkosten erreicht werden.

Um diese Entscheidungen zu unterstützen, wird in dieser Arbeit ein Kosten‐Nutzen‐
Modell  für Softwareprüfungen, CoBe, entwickelt und validiert. Mit diesem Modell
kann untersucht und prognostiziert werden, wie sich Entscheidungen über Prüfun‐
gen und über einzelne Parameter der Prüfungen auswirken. Dazu werden die Ent‐
scheidungen  und  die  Projektsituation  durch  Modelleingaben  dargestellt.  Die
Modellresultate sind die Wirkungen dieser Entscheidungen: die Kosten, die durch die
Prüfung  entstehen, und der daraufhin  erreichte Nutzen durch  eingesparte Kosten.
Kosten und Nutzen zeigen sich während des Projekts, während der Wartung des Pro‐
dukts und beim Einsatz des Produkts. Damit Kosten und Nutzen abgewogen und
Gesamtkosten minimiert werden können, werden die Modellresultate als Geldwerte
berechnet. Zur Projektplanung werden Kosten und Nutzen durch Aufwand, Dauer
und Personalbedarf einzelner Aktivitäten dargestellt. Dazu enthält CoBe  feingranu‐
lare Prüfungsmodelle aus einzelnen, quantitativen Wirkungszusammenhängen.

Die Validierung des Modells erfolgte mit Daten aus Software‐Projekten. Dabei wur‐
den einzelne Zusammenhänge und das gesamte Modell mit Daten aus über 20 stu‐
dentischen  Projekten  geprüft.  CoBe  ist  mit  Daten  aus  zwei  iterativen
Industrieprojekten mit umfangreicher, paralleler Entwicklung validiert. Das Modell‐
verhalten wird  durch  Sensitivitätsanalyse  untersucht,  zusätzlich wird  das Kosten‐
Optimum analysiert. Die Validierung zeigt, dass CoBe ausreichend genau beschreibt,
wie sich Entscheidungen über Prüfungen auswirken. Da die Resultate der studenti‐
schen Projekte deutlich streuen, ergibt sich eine gewisse Abweichung zwischen den
Projektresultaten und den Modellresultaten. Die Resultate sind für die beiden Indus‐
trieprojekte genauer. Deutlich wird, dass CoBe für eine bestimmte Umgebung kalib‐
riert werden muss, damit die Resultate ausreichend genau sind. Dazu sind wenige
Daten aus abgeschlossenen Software‐Projekten notwendig. Die Daten sind oft verfüg‐
bar, da  sie häufiger als andere Daten erhoben werden. Die Validierung zeigt, dass
CoBe gut verallgemeinerbar ist. Die Daten, die für den Einsatz von CoBe notwendig
sind, sind in Projekten verfügbar, können gemessen oder erfragt werden.



Abstract

Software quality assurance can consume large parts of a software projectʹs budget. On
the  other  hand,  quality  assurance  permits  product  quality  to  be  assessed  and
improved. Cutting quality assurance  investments may  lead  to  increased  costs after
delivery. 

Project managers and quality managers have  to decide on quality assurance while
planning and running a project. They have to make many complex and far‐reaching
decisions on reviews, tests, and their parameters without having the necessary infor‐
mation  available.  In  particular,  quality‐related  information  is  hard  to  get  because
quality improvements appear as long‐term savings, whereas the costs of reviews and
tests can be measured early on. As every project has its own special characteristics, a
tailored trade‐off between costs and benefits of quality‐assurance activities is needed
to minimise total costs.

In  this work CoBe, a quantitative  cost‐benefit model  to  support  these decisions,  is
developed and validated. CoBe is able to analyse and predict the effects that decisions
on quality assurance activities and on their parameters will have. To do so, decisions
on quality assurance and project characteristics are modelled as inputs. The output of
the model consists of the costs and benefits resulting from these decisions. Costs and
benefits occur during the project, in maintenance, and during product usage. For the
purpose  of  comparing  costs  and  benefits  and minimising  overall  costs,  the model
results are expressed in monetary values. For project planning, costs and benefits are
expressed as effort, duration, and staff of single activities. For calculating the results,
CoBe uses fine‐grained models built on single quantitative relationships.

CoBe was validated against real‐world software project data. Single relationships and
the entire model were examined using data from more than 20 student projects. CoBe
was validated using data from two iterative industry projects that used extensive par‐
allel development. Model behaviour is subjected to sensitivity analysis, and the opti‐
mum  cost  is  analysed.  The  validation  shows  that  CoBe  describes  the  effects  of
decisions on quality assurance sufficiently accurate. As student projects scatter, model
results differ from project results up to a certain extent. Results are more accurate for
industry projects. It is evident that CoBe needs to be calibrated for a certain environ‐
ment. However, only few data from past projects is required for this. The necessary
data is readily available in most projects. Results indicate that CoBe is generalisable,
and that the necessary data is either available in the projects or can be measured or
obtained by enquiry.
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Kapitel 1

Einleitung und Überblick

1.1 Motivation

In einem Software‐Projekt können die Kosten, die für Prüfungen und für Nacharbeit
nach Prüfungen anfallen, einen großen Teil des Projektbudgets ausmachen. Bereits
die Nacharbeit nach Prüfungen kann  40 % des Projektaufwands oder mehr kosten
(Haley et al., 1995; Ellims et al., 2006). Für Prüfungen gibt es viele Möglichkeiten: Soft‐
ware kann von Menschen etwa mit technischen Reviews, Walkthroughs oder einfa‐
chen Stellungnahmen begutachtet werden. Programme können mit unterschiedlichen
Techniken  auf unterschiedlichen  Integrationsebenen  (oder Teststufen nach  Spillner
und Linz, 2003) getestet werden. Je nachdem, welche Prüfungen wie intensiv durch‐
geführt werden, entstehen niedrigere oder höhere Kosten.

Darum muss bei der Planung und Durchführung von Projekten entschieden werden:
Wie viel soll geprüft werden? Welche Prüfungen sollen durchgeführt werden? Wie
intensiv, nach welchen Kriterien sollen diese Prüfungen durchgeführt werden? Daran
schließen sich weitere Fragen an: Wie lange werden Prüfung und Korrektur dauern?
Wie viele Mitarbeiter werden benötigt? Wie wird sich die Prüfung auf die Qualität
auswirken? Reicht eine günstigere und weniger intensive Prüfung aus? 

Diese Fragen müssen bereits bei der Planung eines Projekts beantwortet werden. Der
Projektleiter, der über diese Fragen entscheidet, muss einen Kompromiss zwischen
Termin, Kosten und Qualität (Kerzner, 2006) oder Dauer, Kosten, Umfang und Quali‐
tät  (Yourdon,  1995)  wählen.  Dargestellt  wird  dies  als  Dreieck  oder  Viereck
(Abbildung 1). 

Termin

QualitätKosten

Abb. 1: Der Kompromiss des Projektleiters

Kosten Qualität

Termin Umfang
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Abbildung 1  illustriert, dass diese Dimensionen voneinander abhängen: Die Ände‐
rung der einen Dimension führt zu Änderungen an anderen Dimensionen. Wird also
der  Termin  vorgezogen,  führt  dies  zu  höheren  Kosten,  schlechterer Qualität  und
geringerem Umfang; zumindest eine dieser Dimensionen ist betroffen. Die Bedingun‐
gen, Einschränkungen und Ziele gibt der Kunde vor, der Projektleiter sucht für diese
Situation den optimalen Kompromiss.

Dieser Kompromiss lässt sich als Optimierungsproblem beschreiben, wenn die Kos‐
ten  für  die  Prüfung  und  die  Kosten  für  Qualitätsdefizite  (Fehlerkosten)  auf  eine
gemeinsame Kostenskala abgebildet werden. Abbildung 2 zeigt den Zusammenhang
zwischen Qualität und Gesamtkosten  (Kerzner, 2006). Dieser stammt aus der Ferti‐
gung von Gütern (Juran, 1962; Juran und Godfrey, 1998) und wird auf die Software‐
Entwicklung übertragen (Krasner, 1998). Die Abbildung stellt dar, dass die Fehlerkos‐
ten sinken, je besser die Qualität ist. Um die Qualität zu verbessern, muss in die Qua‐
litätssicherung  investiert  werden.  Die  Summe  dieser  beiden  Kosten  sind  die
Qualitätskosten insgesamt. Dabei wird angenommen, dass das Optimum der Quali‐
tätskosten nicht bei der besten Qualität liegt, sondern dass das Optimum durch einen
Kompromiss zwischen den  Investitionen  in die Qualitätssicherung und den Fehler‐
kosten erreicht wird (Juran und Godfrey, 1998; Krasner, 1998).

Dieses Problem lässt sich aus mehreren Gründen intuitiv nicht optimal lösen: Prüfun‐
gen wirken indirekt, weil mit Prüfungen die Qualität beurteilt und verbessert werden
kann. Qualität und Qualitätsverbesserungen sind schwierig zu bewerten. Sie werden
erst  langfristig  als Einsparungen  sichtbar. Es muss  also  ein großer Zeitraum über‐
blickt werden, um diese Einsparungen zu beobachten. Zusätzlich sind die Einsparun‐
gen nicht direkt sichtbar, sondern können nur durch Vergleich mit einem Fall ohne
Prüfungen oder mit weniger  intensiven Prüfungen erfasst werden. Die Zusammen‐
hänge,  die  durchschaut werden müssen,  sind  also  komplex.  Die  Entscheidungen
müssen überwiegend schon in der Planung getroffen werden. Dabei fehlen aber wich‐
tige  Informationen  über  das  Projekt  und  das  Produkt.  Beispielsweise  kann  der
Umfang  der  zu  entwickelnden  Artefakte  nur  geschätzt  werden.  Prozessver‐
besserungsmethoden wie CMMI (CMMI Product Team, 2002) oder SPICE (Hörmann
et al., 2006) beantworten die Fragen nach optimalen Prüfungen und Prüfparametern

Qualität

K
o
s
te

n

Qualitätskosten gesamt

Kosten für
Qualitätssicherung

Fehlerkosten

Abb. 2: Optimierung der Qualitätskosten (Kerzner, 2007)
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nicht konkret. Projekte  sind unterschiedlich,  so dass  eine  allgemeingültige Lösung
nicht möglich ist.

1.2 Lösungsansatz

Für die Lösung dieses Entscheidungsproblems wird in dieser Arbeit das quantitative
Modell  CoBe  entwickelt.  Es  unterstützt  die  Entscheidungen,  die  über  Software‐
Prüfungen in einem Softwareprojekt getroffen werden müssen. Der Zweck von CoBe
ist, den Nutzen und die Kosten von Software‐Prüfungen zu demonstrieren, im Nach‐
hinein  für bestimmte Projekte darzustellen, zu vergleichen und zu prognostizieren,
um zukünftige Projekte zu planen. Dazu werden die Entscheidungen als Eingaben
und ihre Wirkungen als Ausgaben dargestellt:

Mit dem Modell wird der Handlungsspielraum, der durch die Wahl der Prüfungen
und  Prüfparameter  gegeben  ist,  durch Modelleingaben  abgebildet.  Die  speziellen
Prozess‐ und Produktmerkmale werden durch weitere Eingaben in das Modell abge‐
bildet. Die Modellresultate sind Kosten und Nutzen, dargestellt wie folgt: Durch eine
Prüfung  entstehen Kosten. Der Nutzen  ist  durch  diejenigen Kosten  bestimmt,  die
dank der Prüfung entfallen. Das Modell bildet kurzfristige Auswirkungen im Projekt
und langfristige Auswirkungen von Prüfungen ab. Prüf‐ und Korrekturkosten, orga‐
nisatorische Kosten, Folgekosten für Kunden und Benutzer und Kosten für die kor‐
rektive  Wartung  werden  betrachtet.  Kosten  und  Nutzen  werden  für  einzelne
Aktivitäten berechnet, um die Planung einzelner Arbeitspakete mit Aufwand, Dauer
und Personalbedarf zu unterstützen. Die Resultate werden zusammengefasst und auf
einer gemeinsamen Skala, als Geldwerte, dargestellt.

CoBe ist aus einzelnen Zusammenhängen aufgebaut, die als Funktionen beschrieben
werden. Diese  Zusammenhänge  sind weitgehend  empirisch  belegt  und  empirisch
quantifiziert. Das Modell bietet die Möglichkeit, diese Zusammenhänge anzupassen
und  zu  ändern.  Einzelne  Prüfungen  können  unabhängig  von  anderen  Teilen  des
Modells modelliert und  angepasst werden.  Somit  ist das Modell  generisch  genug,
damit es an spezielle Projektsituationen angepasst werden kann. Es ist aber auch kon‐
kret genug, dass es direkt eingesetzt werden kann. Für den Modelleinsatz wird ein
iteratives  Vorgehen  vorgeschlagen,  das  sowohl  Prozessverbesserungen  als  auch
Modellverbesserungen ermöglicht.

1.3 Überblick

Die Arbeit gliedert sich wie folgt: Kapitel 2 enthält die grundlegenden Begriffe, die in
der Arbeit verwendet werden: Modelle, Metriken, Entscheidungsmodelle, Software‐
Qualität, Software‐Projekte und Software‐Qualitätssicherung. 

In Kapitel 3 wird der Lösungsansatz aus Problemen hergeleitet, die bei Entscheidun‐
gen über Qualitätssicherung in Software‐Projekten auftreten: Kosten von Prüfungen
müssen gegen schwierig zu bewertende Qualitätsverbesserungen aufgewogen wer‐
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den.  Daraus  leitet  sich  die  Idee  der  Arbeit,  der  Lösungsansatz  ab.  Der  iterative
Modelleinsatz und der Modellierungsansatz werden festgelegt.

In Kapitel 4 werden die Arbeiten diskutiert, auf denen das Modell aufbaut. Aus dem
QS‐Modell (Drappa, 1998) des SESAM‐Systems und aus dem Kostenschätzverfahren
COCOMO II  (Boehm,  2000) können Zusammenhänge direkt übernommen werden.
Jones  (1996 und 2007) enthält Daten, mit denen Zusammenhänge quantifiziert wer‐
den können. CoBe ergänzt vorhandene Arbeiten, weil es erlaubt, die Auswirkungen
konkreter, detaillierter Prüfparameter zu untersuchen, und weil es langfristige Kosten
darstellt, insbesondere Folgekosten beim Produkteinsatz. Die Analyse für die Zusam‐
menhänge des Modells wird in Kapitel 5 dargestellt.

Kapitel 6 zeigt das Modell CoBe, das aus einem Basismodell, Reviewmodellen und
Testmodellen  besteht.  Diese Modelle  sind  als  Zusammenhänge  quantitativ  durch
Gleichungen beschrieben. Die Quantifizierung beruht auf Datensammlungen, empi‐
risch belegten Modellen und einzelnen Untersuchungen über Prüfungen.

In Kapitel 7 wird die Realisierung des Modells als Tabellenkalkulation und als Java‐
Programm  sowie die Erprobung des Modells beschrieben. Vorgehen und Kriterien
für die Validierung werden festgelegt. Ausgewählte Zusammenhänge  in CoBe wer‐
den mit Daten aus studentischen Projekten überprüft. Dann werden die Modellresul‐
tate mit  den  Istwerten  dieser  Projekte  verglichen. Modelldefizite werden  sichtbar.
CoBe wird für diese konkrete Situation kalibriert. Dann stimmen Modellresultate und
Istwerte gut überein.

Die Validierung erfolgt mit Daten aus zwei Industrieprojekten (Kapitel 8). Die iterativ
und parallel ablaufenden Projekte werden auf CoBe abgebildet. Die Modellresultate
stimmen gut mit den Istwerten überein. Die Erprobung und Validierung beruht auf
anderen Daten als die Modellbildung und Quantifizierung: Während das Modell auf
empirischen  Studien und Daten  aus der Literatur basiert, werden  zur Validierung
Werte aus konkreten Projekten verwendet. Die Sensitivitätsanalyse und die Analyse
optimaler Lösungen ergänzen die Validierung. Den Modelleinsatz demonstriere  ich
zusätzlich mit Beispielen. Dazu  gehört, dass der Nutzen, der  in der Realität  nicht
direkt sichtbar ist, nachträglich berechnet und gezeigt werden kann. Die entfallenden
Wartungsaufwände und der entfallende Schaden für Benutzer werden sichbar. Kos‐
ten und Nutzen werden vergleichbar, so dass gezeigt werden kann, welche Prüfung
in welcher Situation kostengünstiger ist.

Kapitel 9  fasst die Resultate  zusammen. Das Modell CoBe wird bewertet und von
anderen Modellen abgegrenzt. Kosten, Nutzen und Grenzen des Modells werden dis‐
kutiert. Der Ausblick zeigt, wie auf das Modell aufgebaut werden kann.



Kapitel 2

Grundlagen und Begriffe

In diesem Kapitel werden die Grundlagen, auf denen die Arbeit aufbaut, dargestellt.
Zentral  ist  dabei  der  Begriff  des  Modells.  Metriken  sind  spezielle,  quantitative
Modelle. Begriffe  für Kosten und Nutzen,  Software‐Qualität,  Software‐Projekt und
Software‐Qualitätssicherung werden geklärt. 

2.1 Modelle

Jedes Modell  besitzt  das Abbildungsmerkmal,  das  Verkürzungsmerkmal  und  das
pragmatische Merkmal.

Def. Abbildungsmerkmal. Modelle  sind  stets Modelle  von  etwas,  nämlich Abbil‐
dungen, Repräsentationen natürlicher oder künstlicher Originale, die selbst wie‐
der Modelle  sein  können  (Stachowiak,  1973).  Das  Original  kann  tatsächlich
vorhanden, geplant oder fiktiv sein (Ludewig und Lichter, 2007). 

Def. Verkürzungsmerkmal. Modelle erfassen im allgemeinen nicht alle Attribute des
durch  sie  repräsentierten  Originals,  sondern  nur  solche,  die  den  jeweiligen
Modellerschaffern  und/oder Modellbenutzern  relevant  scheinen  (Stachowiak,
1973). Die präterierten Attribute  fallen weg,  sie werden verkürzt und nicht  in
das Modell abgebildet. Abundante Attribute sind nur im Modell, nicht im Origi‐
nal vorhanden (Ludewig und Lichter, 2007).

Def. Pragmatisches Merkmal. Modelle sind ihren Originalen nicht per se eindeutig
zugeordnet. Sie erfüllen ihre Ersetzungsfunktion a) für bestimmte – erkennende
und/oder  handelnde, modellbenutzende  –  Subjekte,  b)  innerhalb  bestimmter
Zeitintervalle und c) unter Einschränkung auf bestimmte gedankliche oder tat‐
sächliche Operationen  (Stachowiak,  1973). Modelle  können unter  bestimmten
Bedingungen  das Original  für  bestimmte  Fragestellungen  ersetzen  (Ludewig
und Lichter, 2007).

Abbildung 3 illustriert das Abbildungsmerkmal mit den Attributen des Originals, die
vom Modell erfasst werden. Die präterierten Attribute (weiß dargestellt in der Abbil‐
dung  links) werden nicht erfasst, die abundanten Attribute  (hellgrau dargestellt  in
der Abbildung rechts) kommen im Modell dazu.

Deskriptive Modelle bilden das Original ab. Diese Beschreibung kann nachträglich
oder im Voraus erfolgen. Erfolgt die Beschreibung im Voraus, dann wird von einem
prognostischen Modell oder Prognosemodell gesprochen. Präskriptive Modelle sind
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Vorgaben für das Original. Mit einem explorativen Modell (Abbildung 4) können die
Folgen  von  Entscheidungen  beurteilt  werden,  bevor  die  Realität  verändert  wird.
Dazu wird zuerst der Ist‐Zustand modelliert, das deskriptive Modell rechts oben  in
Abbildung 4. Dann wird das Modell anstatt der Realität verändert (Modellmodifika‐
tion). Sobald man mit dem neuen Modellzustand zufrieden  ist, kann das geänderte
Modell den  neuen Zustand  für die Realität  vorgeben  (Präskriptives Modell  rechts
unten in Abbildung 4).

2.2 Deduktive und induktive Modelle

Erklärungs‐  und  Prognosemodelle werden  aus  einzelnen Aussagen  zusammenge‐
setzt, um für konkrete Situationen Folgerungen zu ziehen oder Prognosen zu erstellen
(Opp, 2005). Diese Aussagen erklären den Zusammenhang zwischen zwei Sachver‐
halten  (Schnell  et  al.,  2005)  und  werden  als  Hypothesen,  Gesetze  oder  Theorien
bezeichnet. Sie sind nicht aus logischen Gründen wahr oder falsch, es sind empirische
Aussagen. Sie können prinzipiell falsifiziert werden, lassen sich aber nicht beweisen.

Original Modell

präterierte
Attribute

abundante
Attribute

Abbildung

Abb. 3: Original und Modell nach Stachowiak

Ist‐Zustand
Deskriptives
Modell (Abbild)Modellierung

Riskante
Modifikation

Modell‐
modifikation

Präskriptives Modell (Vorbild)Geplanter Zustand

Anwendung (Realisierung)

Abb. 4: Explorativer Einsatz eines Modells (Ludewig und Lichter, 2007)
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Modelle bestehen aus quantitativen Zusammenhängen oder binären Zusammenhän‐
gen, die entweder “Ja” oder “Nein” ergeben. 

Diese Aussagen sind entweder deterministisch oder nicht‐deterministisch. Determi‐
nistische Aussagen  treffen mit Sicherheit zu. Daraus  entstehen deduktive Modelle,
aus denen Aussagen logisch abgeleitet werden können. Nicht‐deterministische Aus‐
sagen treffen mit einer bestimmten Wahrscheinlichkeit zu. Sie werden als statistische
oder probabilistische Aussagen bezeichnet. Mit statistischen Aussagen ist eine deduk‐
tive Ableitung nicht möglich, es können aber Wahrscheinlichkeitsaussagen getroffen
werden.  Dies  bedeutet,  dass  eine  aus  der  Theorie  abgeleitete  Aussage  mit  einer
bestimmten Wahrscheinlichkeit zutrifft. Modelle aus statistischen Aussagen werden
als induktive Modelle bezeichnet.

2.3 Metriken

Metriken sind im Software‐Engineering Modelle, die das Original auf eine Größe ver‐
kürzen. In IEEE 610 (1990) wird Metrik und Qualitätsmetrik definiert:

Def. metric. A quantitative measure of the degree to which a system, component or
process possesses a given attribute. See also: quality metric. (IEEE 610, 1990)

Def. quality metric. (1) A quantitative measure of the degree to which an item pos‐
sesses a given quality attribute.  (2) A  function whose  inputs are software data
and whose  output  is  a  single  numerical  value  that  can  be  interpreted  as  the
degree to which the software possesses a given quality attribute. (IEEE 610, 1990)

Stevens (1946) verwendet den Begriff Messung als Zuweisung von numerischen Wer‐
ten zu Objekten oder Ereignissen nach bestimmten Regeln. Der Begriff Metrik ist als
Messung definiert, mit der eine Zahl oder ein Symbol einer Entität der realen Welt
zugewiesen wird, um ein Merkmal zu charakterisieren  (Fenton und Pfleeger, 1997;
Zuse, 1998). Dabei kann auf skalare oder vektorielle Größen abgebildet werden (Lud‐
ewig und Lichter, 2007). Der konkrete Wert der Metrik für das Original wird als des‐
sen Bewertung bezeichnet.

2.3.1 Skalen und Skalentypen

Die Abbildung erfolgt auf eine Skala, die anhand  ihres Typs unterschieden werden
(Stevens, 1946; Fenton und Pfleeger, 1997; Ludewig und Lichter, 2007):

Def. Nominalskala. Die möglichen Metrikwerte sind eine ungeordnete Menge.

Def. Ordinalskala. Die möglichen Metrikwerte sind eine geordnete Menge.

Def. Intervallskala. Die Differenz zwischen den (geordneten) Metrikwerten ist defi‐
niert.

Def. Rationalskala. Zusätzlich  ist  der Nullpunkt  nicht willkürlich,  sondern  durch
das Original definiert.
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Def. Absolutskala. Die Metrikwerte sind direkt die Werte des Attributs im Original.
Die Metrikwerte sind ganze Zahlen, die durch Zählen ermittelt werden.

Die Skalentypen  liegen  selbst  auf  einer Ordinalskala. Dazu muss die Absolutskala
aber zur Rationalskala erweitert werden, weil mit natürlichen Zahlen beispielsweise
nicht  dividiert werden  kann. Die Nominalskala  ist  der  schwächste  Skalentyp,  die
Rationalskala der stärkste, weil er die meisten Operationen erlaubt. Mit einer Nomi‐
nalskala kann nur auf Gleichheit geprüft werden. Die Ordinalskala erlaubt, Perzentile
und Median zu bilden, also Aussagen zur Häufigkeit zu treffen. Erst auf der Intervall‐
skala kann gerechnet werden, Mittelwerte und Differenzen sind aussagekräftig. Um
Verhältnisse zu bilden, wird der Nullpunkt benötigt, der auf der Rationalskala defi‐
niert ist.

2.3.2 Merkmale von Metriken

Metriken lassen sich anhand ihrer Abbildungsvorschrift unterscheiden (Ludewig und
Lichter, 2007):

Def. Objektive Metriken. Die Abbildung  erfolgt  nach  einem Algorithmus,  durch
Messung (oder Zählung).

Def. Subjektive Metriken. Die Abbildung erfolgt als Beurteilung durch Gutachter,
verbal oder auf einer vorgegebenen Skala.

Def. Pseudometriken. Die Abbildung  erfolgt durch Berechnung aus anderen Mes‐
sungen, Schätzungen oder Beurteilungen, weil die Metrik nicht direkt gemessen
werden kann. 

Typisch für Pseudometriken sind Qualitätsbewertungen, weil das Attribut des Origi‐
nals nicht präzise definiert ist, und Prognosen, weil das Attribut des Originals noch
nicht real bewertet werden kann. 

Wie bei den Modellen werden deskriptive und präskriptive Metriken unterschieden
(Ludewig und Lichter, 2007). Eine deskriptive Metrik beschreibt einen Zustand, wie
er ist (oder sein wird), eine präskriptive Metrik gibt den Zustand vor. Eine deskriptive
Metrik kann prognostisch sein, dann wird ein zukünftiger Zustand beschrieben, oder
diagnostisch, dann wird ein bestehender Zustand beschrieben.

Weil Pseudometriken eine bestimmte Interpretation implizieren, müssen sie validiert
werden. Zuse (1998) und Fenton und Pfleeger (1997) definieren dazu die Repräsenta‐
tionsbedingung. Sie besagt, dass Unterschiede zwischen Attributwerten des Originals
als unterschiedliche Metrikwerte erhalten werden sollen. 

Für Metriken zur Qualitätsbewertung definiert der  IEEE‐Standard 1061  (1998) Vali‐
dierung als Aktivität, um die Übereinstimmung zwischen Metrik und Qualitätsmerk‐
mal (quality factor) zu prüfen:

Def. metric validation. The act or process of ensuring that a metric reliably predicts
or assesses a quality factor.
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Für die Validierung werden unterschiedliche Validierungskriterien mit statistischen
Maßen  vorgeschlagen.  Dazu  gehört  beispielsweise,  dass  Qualitätsmerkmal  und
Metrik korrelieren oder dass bei der Prognose  eine bestimmte Mindestgenauigkeit
erreicht wird.

Drappa (1998) definiert für die Validierung quantitativer (Simulations‐)Modelle: 

Def. Validierung. Validierung  eines  Simulationsmodells  bedeutet  festzustellen,  ob
das Simulationsmodell eine für den spezifizierten Zweck der Untersuchung hin‐
reichend  genaue Repräsentation des  betrachteten  realen  Systems  ist  (Drappa,
1998).

2.4 Entscheidungen und Entscheidungstheorie

Bei  einem  Entscheidungsproblem  muss  eine  Handlungsalternative  aus  mehreren
Handlungen ausgewählt werden (Laux, 1998; von Nitzsch, 2002). Damit ein Entschei‐
dungsproblem vorliegt, muss es mindestens zwei mögliche Handlungen geben. Die
möglichen Handlungen müssen  sich  dadurch  unterscheiden,  dass  ein  Ziel  unter‐
schiedlich gut erreicht wird (Laux, 1998, S. 4).

2.4.1 Modelle in der Entscheidungstheorie

Die deskriptive Entscheidungstheorie beschäftigt  sich mit der Frage, wie Entschei‐
dungen  ablaufen. Bei Entscheidungen durch Menschen  spielen nicht nur  rationale
Ziele  eine  Rolle, weil Menschen  Informationen  beschränkt wahrnehmen  und  nur
beschränkt verarbeiten können. Sie werden durch Gefühle und Gruppen beeinflusst
(von Nitzsch,  2002).  Die  präskriptive  Entscheidungstheorie  versucht,  vorzugeben,
wie Entscheidungen  rationaler getroffen werden können. Dazu wird das Entschei‐
dungsproblem durch ein Entscheidungsmodell dargestellt (Laux, 1998). Das Modell
besteht  aus dem Entscheidungsfeld und den Zielfunktionen des Entscheiders. Das
Entscheidungsfeld stellt dar:

• Die Handlungsalternativen werden als variierbare Größen dargestellt. Es können
mehrere Entscheidungsvariablen  relevant  sein,  so dass der Handlungsspielraum
durch Werte‐Tupel dieser Variablen beschrieben wird.

• Die Konsequenzen einer Handlung müssen  in das Modell abgebildet werden. Es
reicht aus, diejenigen Konsequenzen abzubilden, die für den Entscheider relevant
sind. Diese Konsequenzen werden als Zielvariablen bezeichnet. Die konkrete Aus‐
prägung wird als Ergebnis bezeichnet.

• Die Umweltzustände sind die Größen, die der Entscheider nicht beeinflussen kann.
Diejenigen Größen, die sich auf die Zielvariablen auswirken, müssen berücksich‐
tigt  werden. Welche  Variablen  zu  den  Entscheidungsvariablen,  welche  zu  den
Umweltzuständen gehören, hängt vom Entscheider ab.

Entscheidungsprobleme  werden  unterschiedlich  modelliert,  je  nachdem,  wie  viel
über den Umweltzustand bekannt ist: 
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• Ist dem Entscheider der wahre Zustand bekannt, dann wird von Entscheidungen
bei Sicherheit gesprochen. 

• Ist der wahre Zustand nicht bekannt, aber die Wahrscheinlichkeit der möglichen
Zustände, wird von Entscheidungen bei Risiko gesprochen.

• Bei Entscheidungen bei Unsicherheit im eigentlichen Sinne kann kein Wahrschein‐
lichkeitsurteil über die möglichen Zustände gefällt werden.

Die Zielfunktion stellt die Wünsche des Entscheiders dar. Sie beschreibt den zukünfti‐
gen Zustand, der angestrebt wird.  In der Regel wird eine Maximierung angestrebt;
andere Zielrichtungen wie die Minimierung oder ein angestrebter Wert  lassen  sich
auf eine Maximierung zurückführen (Laux, 1998). Die Lösung des Entscheidungspro‐
blems, d.h. die Identifikation der optimalen Handlungsalternative, kann, muss aber
nicht Teil des Entscheidungsmodells  sein. Abhängig von der Komplexität des Pro‐
blems  sind graphische oder numerische Lösungen möglich,  aber  auch Heuristiken
können eingesetzt werden (Laux, 1998, S. 49).

2.4.2 Nutzen und Grenzen

Der Nutzen eines Entscheidungsmodells wird von von Nitzsch (2002) in der rationa‐
len, vernünftigen Entscheidung gesehen. Nach Laux (1998) wird der Nutzen dadurch
ereicht, dass die Ziele des Entscheiders besser erreicht werden.

Laux  (1998) diskutiert die Grenzen der Entscheidungsmodelle. Sie entstehen durch
die Verkürzung der Realität und die Subjektivität der Modellbildung und des Modell‐
einsatzes: Die Verkürzung  erfolgt  zwangsläufig bei der Modellbildung,  aber  auch,
weil  empirisches Wissen über die Realität  fehlt. Typisch wird das Modell unüber‐
sichtlicher und seine Modellbildung  teurer,  je weniger verkürzt wird. Ein Entschei‐
dungsmodell  ist also ein Kompromiss zwischen den Kosten des Modells und dem
damit erreichbaren Nutzen. Zusätzlich ist die Modellkonstruktion in mehrfacher Hin‐
sicht subjektiv geprägt: So wird die Zielfunktion subjektiv bestimmt. Der Entscheider
sieht nicht alle Alternativen, die möglich wären, und bewertet die Umweltzustände
subjektiv. Die Handlungsalternativen sind in einer konkreten Situation beschränkt.

Entscheidungsmodelle bieten also eine Entscheidungshilfe, sie treffen aber nicht die
Entscheidung.  Laux  (1998)  schlägt  darum  vor,  dass  Entscheidungsmodelle  iterativ
eingesetzt und entwickelt werden. Insbesondere muss der Entscheider auf diejenigen
Aspekte achten, die im Modell nicht berücksichtigt sind oder die auf Annahmen beru‐
hen. Nicht berücksichtigte Aspekte können zusätzlich berücksichtigt werden; ein ite‐
ratives  Vorgehen  entsteht,  wenn  das Modell  so  überarbeitet wird,  dass  fehlende
Aspekte ergänzt oder angenommene Aspekte geprüft und verbessert werden.
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2.5 Kosten und Nutzen

2.5.1 Kosten‐ und Nutzenbegriffe

Der Kosten‐ und Nutzenbegriff  leitet  sich aus dem ökonomischen Prinzip ab. Weil
Güter zur Bedürfnisbefriedigung knapp sind, besteht ein Spannungsverhältnis zwi‐
schen  den  eingesetzten  Gütern  und  der  damit  erreichten  Bedürfnisbefriedigung
(Paul, 2007; Weber und Kabst, 2006; Corsten und Reiß, 1999). Daraus leiten sich Mini‐
malprinzip  und Maximalprinzip  ab  (Paul,  2007),  die  besagen,  dass  entweder mit
einem gegebenen Aufwand ein maximaler Ertrag erzielt werden  soll oder dass ein
gegebener Ertrag mit einem minimalen Aufwand erreicht werden soll.

Aufwand und Ertrag sind nicht auf materielle Güter oder Geld beschränkt, sondern
können auch immateriell sein (Weber und Kabst, 2006). Corsten und Reiß (1999) nen‐
nen für die Betriebswirtschaft vier Kategorien für Kosten und Nutzen, nämlich tech‐
nische, wirtschaftliche,  soziale  und  ökologische Ziele. Mühlenkamp  (1994)  erklärt:
“Im Sprachgebrauch der Ökonomen werden  im weitesten Sinne Vorteile als “Nutzen” und
Nachteile als “Kosten” bezeichnet.” Hanusch (1987) definiert Kosten und Nutzen für die
Kosten‐Nutzen‐Analyse von Projekten der öffentlichen Hand:

Def. Kosten sind alle negativen Auswirkungen einer Maßnahme.

Def. Nutzen sind alle positiven Auswirkungen einer Maßnahme.

Krauß  (2007) bezieht die Perspektive ein, weil die Auswirkungen einer Maßnahme
aus einer Perspektive als Kosten, aus einer anderen Perspektive als Nutzen gesehen
werden  können.  Im  Rechnungswesen  der  Betriebswirtschaft  müssen  Kosten  und
Leistung durch Geld bewertet werden, dabei  zählt Güterverbrauch  zu den Kosten
(Lück, 2004; Schneck, 2005). Gegenstück zu den Kosten ist die Leistung. Kosten und
Leistung werden durch einen Wert (z.B. den Preis) bewertet; in der Investitionsrech‐
nung werden Zahlungsströme betrachtet (Lück, 2004).

2.5.2 Kosten‐Nutzen‐Analyse und andere Verfahren

Mit der Kosten‐Nutzen‐Analyse sollen Entscheidungen über Projekte im öffentlichen
Sektor  unterstützt  werden  (Mühlenkamp,  1994;  Nas,  1996).  Im  Gegensatz  zum
betriebswirtschaftlichen  Rechnungswesen  werden  bei  der  Kosten‐Nutzen‐Analyse
nicht die in aller Regel wirtschaftlichen Interessen eines Unternehmens, sondern die
öffentlichen Interessen einer Gesellschaft berücksichtigt. 

Überblick über die Kosten‐Nutzen‐Analyse

Ziel der Kosten‐Nutzen‐Analyse  ist, die Wirkungen  von Projekten  zu  vergleichen.
Dazu sollen positive und negative Wirkungen für alle Betroffenen erfasst werden. Sie
werden auf einer gemeinsamen Skala dargestellt, Kosten und Nutzen liegen also auf
der selben Skala, unterscheiden sich aber im Vorzeichen. Nutzen wird durch negative
Kosten dargestellt, Kosten durch negativen Nutzen. Bei der Kosten‐Nutzen‐Analyse
werden in der Regel Geldwerte als Skala verwendet, prinzipiell sind aber auch andere
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Größen möglich (Mühlenkamp, 1994). Wirkungen  in der Zukunft werden abgezinst
(Diskontierung). Es entsteht ein quantitatives Kosten‐Nutzen‐Modell, mit dem Wir‐
kungen von Entscheidungen auf ein eindimensionales Güte‐ oder Entscheidungsmaß
abgebildet werden. Damit können Alternativen geordnet werden. Eine Alternative
kann empfohlen werden (Hanusch, 1987; Mühlenkamp, 1994; Nas, 1996). 

Die Vorteile  (Mühlenkamp,  1994)  sind, dass Kosten und Nutzen  von Maßnahmen
erfasst, bewertet und sichtbar werden. Zusammenhänge werden klar, die Entschei‐
dung wird transparent. Alle Betroffenen werden einbezogen. Kritikpunkte sind, dass
Kosten und Nutzen monetär bewertet werden müssen, auch wenn die Wirkung nicht
direkt in Geldwerten zu messen ist. Auch die Diskontierung ist problematisch, weil
der Zinssatz nicht  sicher  ist und weil unklar  ist,  ob Wirkungen  für Dritte und  ob
Umverteilungen diskontiert werden dürfen.

Die Kosten‐Nutzen‐Analyse  kostet  selber  nicht  unerheblichen Aufwand,  insbeson‐
dere um das Modell aufzustellen. In einfachen Situationen mit überschaubaren Aus‐
wirkungen ist sie nicht notwendig. In komplexen Situationen mit hohen Kosten und
hohem Nutzen, zahlreichen und langfristigen Auswirkungen über das Projekt hinaus
ist der Aufwand gerechtfertigt (Mühlenkamp, 1994).

Kosten‐Wirksamkeits‐Analyse und Nutzwert‐Analyse

Die Kosten‐Wirksamkeits‐Analyse und die Nutzwert‐Analyse sind zwei weitere Ver‐
fahren, um Entscheidungen zu unterstützen  (Hanusch, 1987). Die Kosten‐Wirksam‐
keits‐Analyse bewertet den Nutzen nicht monetär, sondern bezieht den Nutzen auf
die Ziele, die erreicht werden sollen. Für die Bewertung sollen für den Nutzen geeig‐
nete Maße oder Indikatoren eingesetzt werden. Die Rangfolge kann nicht mehr ein‐
deutig  festgelegt werden, wenn mehrere Ziele  berücksichtigt werden. Die Kosten‐
Wirksamkeits‐Analyse kann nur weitgehend verwandte Alternativen ordnen. 

Die Nutzwertanalyse betrachtet den Nutzen relativ zu Zielen. Dazu wird der Nutzen
zerlegt und mit einem gewichteten Zielerfüllungsgrad bewertet. Kosten werden ent‐
weder als gleich für alle Alternativen vorausgesetzt oder als negativer Nutzen in die
Bewertung aufgenommen. Bereits der Aufbau des Bewertungssystems  ist subjektiv,
die Entscheidung wird aber  transparent und  erfolgt  systematisch. Wie die Kosten‐
Wirksamkeits‐Analyse  können  nur  ähnliche Alternativen mit  gleichem  Zielsystem
verglichen werden.

Im  Vergleich  zur  Kosten‐Nutzen‐Analyse  sind  Kosten‐Wirksamkeits‐Analyse  und
Nutzwertanalyse  stärker  subjektiv geprägt, weil die Beteiligten der Nutzwert‐ und
Kosten‐Wirksamkeitsanalyse die Ziele und ihre Gewichtung direkt bestimmen. Diese
können  zwar  Interessen  anderer  Betroffener  berücksichtigen,  es  besteht  aber  die
Gefahr, dass mit den Zielen und ihrer Gewichtung das Ergebnis bewusst oder unbe‐
wusst  verfälscht wird.  Subjektive Werturteile  spielen  auch  in  der Kosten‐Nutzen‐
Analyse eine Rolle. Die Subjektivität ist aber abgeschwächt (Mühlenkamp, 1994), weil
die Auswirkungen und die Betroffenen identifiziert werden müssen und den Auswir‐
kungen Geldwerte zugewiesen werden müssen. 
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2.6 Software‐Projekte

Ein Software‐Projekt besteht aus Aktivitäten mit dem Ziel, ein Software‐Produkt an
einen Kunden auszuliefern:

Def. software  project.  The  set  of work  activities,  both  technical  and managerial,
required to satisfy the terms and conditions of a project agreement. (IEEE 1058,
1998; IEEE 1490, 2003) 

Das Software‐Projekt wird von Mitarbeitern des Herstellers durchgeführt (Ludewig
und  Lichter,  2007).  Der  Hersteller  wird  auch  als  Lieferant  oder  Auftragnehmer
bezeichnet  (V‐Modell  XT,  2004). Dabei  entstehen Artefakte. Artefakte,  die  an  den
Kunden ausgeliefert werden, werden als Produkt bezeichnet (CMMI Product Team,
2002). Als Wartung werden Aktivitäten nach der Auslieferung bezeichnet; Wartungs‐
arbeiten  können  aber  bereits während  des Projekts  anfallen  (Ludewig  und Opfer‐
kuch, 2004).

Def. maintenance.  (1)  The  process  of modifying  a  software  system  or  component
after delivery to correct faults, improve performance or other attributes, or adapt
to a changed environment. Syn.: software maintenance.  [...]  (2) The process of
retaining a hardware system or component in, or restoring it to, a state in which
it can perform its required function. [...] (IEEE 610, 1990)

2.6.1 Prozess

Der Begriff des Prozess wird definiert als Sequenz einzelner Schritte, mit denen ein
Ziel  erreicht werden  soll. Der  Begriff  bezeichnet  konkrete  Schritte,  aber  auch  ein
Modell dieser Aktivitäten (Ludewig und Lichter, 2007). Die einzelnen Schritte können
überlappen oder iterativ durchgeführt werden.

Def. process. (1) A sequence of steps performed for a given purpose; for example, the
software development process. (IEEE 610, 1990)

Def. software development process. The process by which user needs are translated
into a software product. The process  involves  translating user needs  into soft‐
ware requirements, transforming the software requirements into design, imple‐
menting  the  design  in  code,  testing  the  code,  and  sometimes,  installing  and
checking out the software for operational use. Note: These activities may overlap
or be performed iteratively. (IEEE 610, 1990)

Def. process. A  set  of  interrelated  activities, which  transform  inputs  into  outputs.
(IEEE 12207.0, 1996)

Ludewig und Lichter (2007) unterscheiden zwischen Prozess und Prozessmodell. Das
Prozessmodell beschreibt den Prozess, der einem Projekt zu Grunde  liegt. Das Pro‐
zessmodell besteht im Kern aus einem Vorgehensmodell, ergänzt um Organisations‐
strukturen,  Vorgaben  für  Projektmanagement  und  Qualitätssicherung,



26 2. Grundlagen und Begriffe

Dokumentation  und Konfigurationsverwaltung.  In  Projekten  sind  zwei  Zeiträume
wichtig: Die Entwicklungsdauer und die Lebensdauer:

Def. software development cycle. The period of time that begins with the decision to
develop a software product and ends when the software is delivered. This cycle
typically  includes a  requirements phase, design phase,  implementation phase,
test phase, and sometimes, installation and checkout phase. Contrast with: soft‐
ware life cycle. (IEEE 610, 1990)

Def. software  life cycle.  the period of  time  that begins when a software product  is
conceived and ends when  the software  is no  longer available  for use.  the soft‐
ware  life cycle  typically  includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and checkout phase, oper‐
ation  and maintenance phase, and,  sometimes,  retirement phase. Note: These
phases may overlap or be performed iteratively. Contrast with software develop‐
ment cycle. (IEEE 610, 1990)

2.6.2 Rollen in Software‐Projekten

Der Projektleiter  ist für Planung, Steuerung und Durchführung des Projekts verant‐
wortlich. Er wird durch den Qualitätssicherungs‐Verantwortlichen (QS‐Verantwortli‐
chen) unterstützt (V‐Modell XT, 2004):

Def. project manager (PM). The individual responsible for managing a project. (IEEE
1490, 2003).

Def. Der QS‐Verantwortliche ist mit der Überwachung der Qualität im Projekt beauf‐
tragt. Er ist damit für die Qualität der Projektergebnisse verantwortlich. 
(V‐Modell XT, 2004)

Die Rollen sind zu trennen (aus V‐Modell XT, 2004): “Die Rolle des QS‐Verantwortlichen
sollte nicht mit der Rolle des Projektleiters zusammengelegt werden, da dann Interessenkon‐
flikte (Projektleiter zuständig für Zeit und Budget contra QS‐Verantwortlicher zuständig für
Qualität) entstehen können.”

Die  von  einem  Projekt  Betroffenen werden  als  Stakeholder  bezeichnet; Glinz  und
Wieringa (2007) diskutieren den Begriff und definieren:

Def. A  stakeholder  is a person or organization who  influences a  system’s  require‐
ments or who is impacted by that system. (Glinz und Wieringa, 2007)

Def. stakeholder.  Individuals  and  organizations  that  are  actively  involved  in  the
project, or whose interests may be positively or negatively affected as a result of
project execution or project completion. They may also exert influence over the
project and its results. (IEEE 1490, 2003)

Zu den Stakeholdern gehören Kunde und Benutzer (CMMI Product Team, 2002; IEEE
1490,  2003),  aber  auch  das Wartungspersonal  (Glinz  und Wieringa,  2007).  Direkt
betroffen sind nach Alexander und Robertson (2004) die Benutzer und das Wartungs‐
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personal. Zum Wartungspersonal gehören Wartungsingenieure oder Entwickler, die
die Wartung durchführen  (Ludewig und Opferkuch,  2004), und die Benutzerbera‐
tung. Ludewig und Lichter (2007) verwenden den Begriff “Klient” und diskutieren,
dass die Unterscheidung zwischen Klienten und den Menschen, die im Auftrag eines
Kunden an der Software arbeiten, nicht immer möglich ist. Im Folgenden verwende
ich die genannte Definition für Stakeholder und die Begriffe Klient und Stakeholder
synonym.

Im V‐Modell sind Auftraggeber (Kunde) und Anwender (Benutzer) definiert:

Def. Anwender. Der Anwender nutzt das System zur Erfüllung seiner Fachaufgaben
nach  der  Auslieferung.  Er  leitet  aus  seiner  Erfahrung mit  dem  Einsatz  und
Betrieb  sowie  der  Pflege  und Wartung  von  Systemen Anforderungen  an  das
Gesamtsystem  ab  und  bringt  entsprechende  Änderungsvorschläge  ein.  (V‐
Modell XT, 2004)

Def. Auftraggeber. Unter einem Auftraggeber wird der Kunde im Rahmen einer Ver‐
tragssituation verstanden, also der Empfänger eines vom Auftragnehmer bereit‐
gestellten Produkts. (V‐Modell XT, 2004)

2.6.3 Projektleitung

Die Aufgaben des Projektleiters sind Planung, Organisation, Stellenbesetzung, Füh‐
rung, Überwachung und Steuerung  (Thayer und Christensen, 2002; Kerzner, 2006).
Die Planung bestimmt, was von wem bis wann durchgeführt werden soll (Kerzner,
2006). Sie gibt den Ablauf des Projekts vor:

Def. planning. Predetermining a course of action  for accomplishing organizational
objectives. (Thayer and Christensen, 2002)

Überwachung und Steuerung bedeutet, die Realität mit dem Plan zu vergleichen, so
dass bei Abweichungen vom Plan reagiert werden kann. Dies wird auch als Projekt‐
kontrolle bezeichnet:

Def. controlling. Establishing, measuring, and evaluating performance of activities
towards planned objectives. (Thayer and Christensen, 2002)

2.6.4 Kosten in Software‐Projekten

Typische Kostenkategorien  in Projekten  sind Arbeitskosten, Materialkosten, andere
direkte Kosten und indirekte Kosten (Kerzner, 2006, S. 610). Kosten basieren auf den
Projektaktivitäten (Kerzner, 2006, S. 544) und der zu leistenden Arbeit (Metzger und
Boddie, 1996, S. 49). Wichtige Metriken für die Planung und Kontrolle sind Aufwand,
Dauer und Personalbedarf (Boehm, 2000; Goethert et al., 1992; IEEE 1058, 1998). Diese
Metriken werden im Folgenden als Planungsmetriken bezeichnet.

Der Arbeitsaufwand  (kurz Aufwand, Effort) wird  in Entwicklerstunden  (Eh), Ent‐
wicklermonaten  (EM)  oder  Entwicklerjahren  (EJ)  gemessen.  Er  bestimmt  über  die
Personalkosten die Projektkosten (Jones, 2007, S. 13):
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Def. effort. A staff‐hour is an hour of time expended by a member of the staff. (IEEE
1045, 1992)

Def. effort.  The  number  of  labor  units  required  to  complete  an  activity  or  other
project  element. Usually  expressed  as  staff  hours,  staff  days,  or  staff weeks.
Should not be confused with duration. (IEEE 1490, 2003)

Die Dauer wird  zwischen  zwei  Zeitpunkten  (Goethert  et  al.,  1992)  gemessen,  als
Arbeitsdauer definiert und von der kalendarischen Dauer unterschieden. Typische
Einheiten sind Stunden  (h), Tage  (d), Monate  (M) oder  Jahre  (J). Unterschiede zwi‐
schen  Arbeitsdauer  und  kalendarischer  Dauer  zeigen  sich  beispielsweise  bei  der
Umrechnung zwischen Tagen und Wochen, weil eine Woche 5 Arbeitstage hat, aber
7 Tage dauert.

Def. duration  (DU). The number of work periods  (not  including holidays or other
nonworking periods) required to complete an activity or other project element.
Usually expressed as workdays or workweeks. Sometimes  incorrectly equated
with elapsed time. (IEEE 1490, 2003).

Def. Personalbedarf (syn. Mitarbeiterzahl, Zahl der Mitarbeiter). Die Zahl der benö‐
tigten Mitarbeiter.

Diese  Metriken  werden  auf  unterschiedlichen  Abstraktionsebenen  definiert.  Die
kleinste Einheit in einem Software‐Projekt wird als Task bezeichnet. Bei der Planung
werden die Aktivitäten (activity) definiert und geplant; es sind die einzelnen Arbeits‐
pakete, die von den Mitarbeitern noch weiter unterteilt werden können. Aktivitäten
werden zu Projektphasen (syn. Phase) zusammengefasst.

Def. activity.  An  element  of work  performed  during  the  course  of  a  project. An
activity  normally  has  an  expected  duration,  an  expected  cost,  and  expected
resource requirements. Activities can be subdivided into tasks. (IEEE 1490, 2003)

Def. task. A generic term for work that is not included in the work breakdown struc‐
ture,  but  potentially  could  be  a  further  decomposition  of work  by  the  indi‐
viduals responsible for that work. Also, lowest level of effort on a project. (IEEE
1490, 2003)

Def. project phase. A collection of logically related project activities, usually culmi‐
nating in the completion of a major deliverable. (IEEE 1490, 2003)

2.6.5 Kostenschätzung in Software‐Projekten

Kostenschätzung bezeichnet die Prognose von Aufwand, Dauer, Personalbedarf und
monetären Kosten (Fenton und Pfleeger, 1997). Die Kosten als Geldwerte ergeben sich
aus den Kosten der Projektaktivitäten  (Kerzner, 2006, S. 544) und der zu  leistenden
Arbeit (Metzger und Boddie, 1996, S. 49).

Als Bottom‐up‐Schätzung wird ein Vorgehen bezeichnet, bei dem zuerst Aufwand,
Dauer und Personal der einzelnen Aktivitäten  im Projekt geschätzt werden. Daraus
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folgen Aufwand, Dauer, Personalbedarf und Kosten als Geldwerte  für das gesamte
Projekt. Bei der Top‐down‐Schätzung werden zuerst die Gesamtkosten des Projekts
geschätzt und dann auf einzelne Aktivitäten aufgeteilt.

2.7 Qualität und Software‐Qualität

2.7.1 Der Qualitätsbegriff

DIN 55350 (1995) nennt für den Begriff Qualität drei unterschiedliche Bedeutungen:
Qualität kann eine neutrale Eigenschaft bezeichnen. Qualität kann “qualitativ hoch‐
wertig” bezeichnen. Qualität kann eine graduelle Eigenschaft oder Güte beschreiben
(DIN 55350, 1995). Garvin  (1988) nennt Blickwinkel auf die Qualität, die zu wider‐
sprüchlichen Zielen führen und begründet damit, dass eine einseitige Betrachtung zu
nicht‐optimalen Lösungen führt:

• Die transzendente Sicht: Qualität als wahrnehmbare, aber nicht präzis definierbare
Eigenschaft, die durch Erfahrung erkannt wird. 

• Die produkt‐basierte Sicht: Qualität als objektive, messbare,  inhärente Merkmale
des Produkts.

• Die benutzer‐basierte Sicht: Qualität als Bewertung durch Benutzer.

• Die hersteller‐basierte Sicht: Qualität als Erfüllung von Anforderungen. 

• Die wert‐basierte Sicht: Auch Kosten und Preis werden betrachtet.

2.7.2 Software‐Qualität

Software‐Qualität wird durch Taxonomien  (IEEE 1061, 1998) oder als Abwesenheit
von Defiziten (ISO 9000, 2000; IEEE 1044, 1993) definiert. 

Taxonomien der Software‐Qualität

Taxonomien unterteilen den Qualitätsbegriff in einzelne Merkmale. Die Taxonomien
von Ludewig und Lichter (2007) und des ISO/IEC‐Standard 9126 (2001) unterscheiden
zwischen Produkt‐ und Prozessqualität. Die Prozessqualität beeinflusst die Produkt‐
qualität, sie schafft günstige Voraussetzungen für eine hohe Produktqualität, ist aber
weder eine Garantie noch eine zwingend notwendige Voraussetzung. Der Standard
ISO/IEC 9126  (2001) unterteilt Qualität  in  interne Produktqualität, externe Produkt‐
qualität und Qualität im Einsatz. Der Standard stellt ein hierarchisches Qualitätsmo‐
dell für jeden dieser drei Aspekte bereit. 

Ludewig und Lichter (2007) unterteilen Prozessqualität und Produktqualität in einer
Taxonomie. Die Prozessqualität gliedert  sich  in Projektleistung, Planungssicherheit
und innere Prozessqualität. Planungssicherheit enthält beispielsweise die Terminein‐
haltung,  das  Projektklima  gehört  zur  inneren  Prozessqualität. Die  Produktqualität
besteht aus Brauchbarkeit und Wartbarkeit. Zur Brauchbarkeit gehören Aspekte der
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Bedienbarkeit, Nützlichkeit und Zuverlässigkeit. Prüfbarkeit, Änderbarkeit und Por‐
tabilität sind der Wartbarkeit zugeordnet.

Software‐Qualität als Erfüllung von Anforderungen

Die ISO (ISO 9000, 2000) definiert Qualität bezüglich Anforderungen:

Def. Qualität. Grad, in dem ein Satz inhärenter Merkmale Anforderungen erfüllt.

Def. Anforderung.  Erfordernis  oder  Erwartung,  das  oder  die  festgelegt,  üblicher‐
weise vorausgesetzt oder verpflichtend ist.

Def. Fehler. Nichterfüllung einer Anforderung.

Def. Mangel. Nichterfüllung  einer Anforderung  in Bezug auf  einen beabsichtigten
oder festgelegten Gebrauch.

Def. Merkmal. Kennzeichnende Eigenschaft.

Def. Qualitätsmerkmal.  Inhärentes Merkmal  eines  Produkts,  Prozesses  oder  Sys‐
tems, das sich auf eine Anforderung bezieht.

Der Begriff der Anomalie oder Abweichung  (IEEE‐Std.  1044,  1993)  entspricht dem
Fehlerbegriff der ISO. Der IEEE‐Standard 982.1 (2005) unterscheidet für Software die
Fehlerursache (fault) und das Fehlersymptom (failure), außerdem den Irrtum, der der
Fehlerursache zu Grunde liegt. Der Standard schränkt den Fehlerbegriff aber auf Feh‐
lerursachen im Programm und Fehlersymptome beim Verwenden des Systems ein. Er
stützt sich auf die Definitionen im IEEE Standard 610 (1990):

Def. fault. (1) A defect in a hardware device or component; for example, a short cir‐
cuit or broken wire. (2) An incorrect step, process, or data definition in a com‐
puter program. (IEEE 610, 1990)

Def. failure. The inability of a system or component to perform its required functions
within specified performance requirements. (IEEE 610, 1990)

Mit Fehlerentdeckung wird die Identifikation einer Abweichung bezeichnet, mit Kor‐
rektur die Änderung, mit der der Fehler entfernt, d.h. korrigiert, wird (Dunn, 1984).

Zuverlässigkeit ist über Fehlverhalten definiert:

Def. reliability. The ability of a system or component  to perform  its required  func‐
tions under stated conditions for a specified period of time. (IEEE 982.1, 2005)

Def. dependability. Trustworthiness of a computer system such that reliance can be
justifiably placed on the service it delivers. Reliability, availability, and maintain‐
ability are aspects of dependability. (IEEE 982.1, 2005)
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2.8 Software‐Qualitätssicherung

Software‐Qualitätssicherung bezeichnet alle geplanten und systematischen Aktivitä‐
ten,  die  das Vertrauen  in  die Konformität  zu  technischen Anforderungen  sichern
(IEEE 610, 1990; Thayer und Christensen, 2002; Ludewig und Lichter, 2007). Qualitäts‐
sicherung ist projektbezogen und wird von der projektübergreifenden Prozessverbes‐
serung  (oder  Qualitätsmanagement)  abgegrenzt  (Thayer  und  Christensen,  2002;
Ludewig und Lichter, 2007).

Def. quality assurance (QA). (1) A planned and systematic pattern of all actions nec‐
essary  to  provide  adequate  confidence  that  an  item  or  product  conforms  to
established  technical  requirements.  (2) A  set of activities designed  to evaluate
the process by which products are developed or manufactured. Contrast with:
quality control (1). (IEEE 610, 1990)

Qualitätssicherung  besteht  aus  organisatorischen,  konstruktiven  und  analytischen
Maßnahmen  (Ludewig und Lichter, 2007). Organisatorische Maßnahmen zielen auf
eine systematische Entwicklung und Qualitätssicherung. Mit konstruktiven Maßnah‐
men  sollen Defizite  vermieden werden. Analytischen Maßnahmen  enthalten  Soft‐
ware‐Prüfungen,  sie  ergänzen  andere  Maßnahmen.  Software‐Prüfungen  finden
entweder mechanisch  oder  nichtmechanisch, d.h. durch Menschen,  statt. Die  Soft‐
ware, die geprüft wird, wird als Prüfling bezeichnet. Zu den nichtmechanischen Prü‐
fungen  zählen  Inspektionen  (Fagan,  1976),  technische  Reviews  (Freedman  und
Weinberg,  1982),  Walkthroughs  und  Stellungnahmen  (Freedman  und  Weinberg,
1982; Frühauf et al., 2006). Zu den mechanischen Prüfungen, für die ein Rechner benö‐
tigt wird, gehören die dynamischen Tests (z.B. in Liggesmeyer, 2002). Dazu gehören
auch  statische Analysen  (Spinellis,  2006;  Louridas,  2006), mit  denen  Software mit
Regeln geprüft, die Konsistenz überprüft oder quantitative Merkmale erfasst werden.

Software‐Qualitätssicherung

organisatorisch konstruktiv analytisch

Software‐Prüfung

nichtmechanisch mechanisch

analysieren ausführen

Prüfung mit Rechner

statische Prüfung dynamische Prüfung (Test)

Abb. 5: Gliederung der Qualitätssicherung nach Ludewig und Lichter (2007)

Prüfung durch Menschen
(Inspektion, Review)
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2.9 Qualitätskosten und Software‐Qualitätskosten

Software‐Kosten  können  in  reine Entwicklungskosten, Qualitätskosten und Kosten
für  die Wartung  (ohne Qualitätskosten)  unterteilt werden  (Tomys,  1995;  Ludewig
und  Lichter,  2007).  Für Qualitätskosten  gibt  es  eine Reihe  leicht  unterschiedlicher
Taxonomien  (Ludewig und Lichter, 2007; Frühauf et al., 2006;  Jalote, 2000; Krasner,
1998; Slaughter  et al., 1998; Demirörs  et al., 2000). Abgeleitet aus  Juran  (1962) und
Juran und Godfrey (1998) wird definiert:

Def. Fehlerverhütungskosten (Prevention Costs). Kosten der Aktivitäten, mit denen
Qualitätsdefizite verhindert werden sollen.

Def. Prüfkosten  (Appraisal Costs). Kosten der Aktivitäten, mit denen die Qualität
festgestellt werden soll und mit denen man sich versichern will, dass die Pro‐
duktqualität ausreicht.

Def. Fehlerkosten  (Failure  Costs).  Kosten,  die  durch  Qualitätsdefizite  entstehen.
Diese Kosten können  in  interne und externe unterteilt werden. Interne Fehler‐
kosten fallen vor der Auslieferung des Produkts an. Externe Fehlerkosten fallen
nach der Auslieferung des Produkts an.

Fehlerfolgekosten sind externe Fehlerkosten, die von Fehlern für Kunde und Benutzer
verursacht werden. Externe Fehlerkosten fallen auch für den Hersteller an (Demirörs
et al.; 2000), dazu gehören Kosten für den technischen Support, Wartungs‐ und Aus‐
lieferungskosten für Fehler. Fehlerbehebungskosten fallen an, um entdeckte Fehler zu
entfernen  (einschließlich Qualitätssicherung der Korrektur). Zusätzlich können Ver‐
tragsstrafen, Kosten  für Produktrückrufe, Kosten, um den Kunden  zu besänftigen,
Markt‐ und Verkaufseinbußen, Garantie und Gewährleistung anfallen. 



Kapitel 3

Die Idee eines Kosten‐Nutzen‐Modells für 

Prüfungen

In diesem Kapitel werden die Probleme beschrieben, mit denen Projektleiter und QS‐
Verantwortliche bei der Planung und Kontrolle der Software‐Qualitätssicherung kon‐
frontiert werden. Der Lösungsansatz, ein quantitatives Modell für Kosten und Nut‐
zen  von  Prüfungen,  wird  dargestellt.  Die  Einbettung  des  Modells  in  die
Projektplanung  und  ‐kontrolle  und  in  Prozessverbesserungen  wird  gezeigt.  Der
Modellierungsansatz wird festgelegt.

3.1 Schwierigkeiten mit Entscheidungen über Qualitätssicherung

Projektleiter und QS‐Verantwortliche  treffen Entscheidungen  bei der Planung und
Steuerung  eines  Projekts  (Kerzner,  2006;  Thayer  und Christensen,  2002,  S.  217; V‐
Modell XT, 2004). Mit diesen Entscheidungen versucht der Projektleiter, das Projekt
erfolgreich durchzuführen. Dazu  ist  ein Kompromiss zwischen Kosten, Dauer und
Qualität  notwendig,  weil  diese  Größen  voneinander  abhängen  und  Ressourcen
beschränkt  sind  (Kerzner,  2006).  Für  diesen Kompromiss werden  Entscheidungen
über die Qualitätssicherung gefällt. Die Entscheidungen sind schwierig, weil es sinn‐
voll ist, sie früh im Projekt zu treffen, aber nur unzureichend Informationen über die
Qualität verfügbar sind:

• Je früher Entscheidungen getroffen werden, desto größer ist der Handlungsspiel‐
raum. Wenn  mehr  Zeit  und  mehr  Ressourcen  zur  Verfügung  stehen,  können
andere, auch umfangreichere Optionen gewählt werden. Kerzner (2006) zeigt dazu
eine Studie des Departement of Defense  (Abbildung 6 auf Seite 34). Die Projekt‐
phasen, die das Departement of Defense verwendet, sind auf der Zeitachse darge‐
stellt.  Das  Projektmanagement  übernimmt  die  Verantwortung  nach  der
Konzeptdefinition  (Conceptual Definition  in Abbildung 6).  Je weiter das Projekt
fortgeschritten  ist, desto weniger Entscheidungen können getroffen werden. Die
Abbildung zeigt dies durch den prozentualen Anteil der Entscheidungen, die bis
zu einem gewissen Zeitpunkt  im Projekt getroffen worden sind  (Decisions affec‐
ting life‐cycle costs in Abbildung 6).

• Mit frühen Entscheidungen ist die Wirksamkeit der Handlungen am größten. Die
Studie in Kerzner (2006) zeigt, dass die Einsparmöglichkeiten im Verlauf des Pro‐
jekts abnehmen (Cost reduction opportunity in Abbildung 6).
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Weil der Handlungsspielraum und die Wirksamkeit der Handlungen im Verlauf des
Projekts abnehmen, folgt, dass die wichtigsten Entscheidungen in der Planung getrof‐
fen werden. Zu diesem Zeitpunkt sind aber nur wenig Informationen bekannt. Wie
stark sich eine Entscheidung auswirkt, kann darum nur mit beträchtlicher Unsicher‐
heit geschätzt werden. Boehm  (2000) gibt an, dass Schätzungen bei der Projektpla‐
nung typisch um den Faktor 2 von den tatsächlichen Werten abweichen.

Die Entscheidungen des Projektleiters und des QS‐Verantwortlichen über die Quali‐
tätssicherungsmaßnahmen  bestimmen  die  Software‐Qualität,  weil  Qualitätssiche‐
rungsmaßnahmen die Prozessqualität und die Produktqualität bestimmen, aber auch,
weil die Prozessqualität die Produktqualität prägt (Ludewig und Lichter, 2007; Hun‐
ter und Thayer, 2001, S. 290). Dies zeigt sich deutlich bei Prüfungen, also analytischen
Qualitätssicherungsmaßnahmen,  die  die  Produktqualität  durch  Fehlerentdeckung
verbessern  (Ludewig  und  Lichter,  2007)  und  die  Prozessqualität  durch  Kontrolle
erhöhen  (Thayer und Christensen,  2002;  Jalote,  2000). Da Prüfungen  teuer werden
können, besteht die Gefahr, dass nicht ausreichend geprüft wird und somit die Pro‐
zessqualität sinkt. Dann können aber Qualitätsmängel hohe Kosten nach sich ziehen.
Entscheidungen, die die Qualität betreffen, sind besonders schwierig zu treffen:

• Der Handlungsspielraum für Prüfungen  ist  im Prinzip groß: Da Prüfungen nicht
zwingend notwendig sind, um ein Produkt zu erstellen, reicht der Handlungsspiel‐
raum prinzipiell von der Entscheidung, überhaupt nicht zu prüfen, bis zur Ent‐
scheidung, sehr viel und sehr intensiv zu prüfen. Dabei können abhängig von der
Projektklasse unterschiedliche und unterschiedlich viele Prüfungen durchgeführt
werden  (Jones, 2007). Vor allem aber kann  jede einzelne Prüfung unterschiedlich
intensiv durchgeführt werden. Vorgaben  in Standardprozessen schränken diesen
Handlungsspielraum ein, sie lassen aber Spielraum und werden an Projekte indivi‐
duell angepasst (Ellims et al., 2006).
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• Die Qualitätsbewertung  ist  schwierig,  da  eine  Bewertung  der Qualität mit  ein‐
fachen, objektiven Metriken interpretiert werden muss und unplausible Ergebnisse
liefern  kann.  Die  Resultate  einer  solchen  Qualitätsbewertung  sind  nur  einge‐
schränkt plausibel, weil diese Metriken  nur  einen  kleinen Teil  eines  komplexen
Projekts erfassen (Kitchenham et al., 2007; Fenton und Neil, 1999). Zur Qualitäts‐
kontrolle können auch Prüfungen (Thayer und Christensen, 2002; Jalote, 2000) und
subjektive Bewertungen (z.B. Sunazuka et al., 1985) eingesetzt werden. Sie ermögli‐
chen verlässlichere Aussagen zur Qualität als einfache Metriken. Prüfungen und
subjektive Bewertungen sind aber teuer; sie kosten Zeit, Aufwand, Mitarbeiter und
Geld. 

• Die indirekten Wirkungen der Prüfungen sind komplex und schwierig zu durch‐
schauen  und  können  am  Projektende  nicht  objektiv  festgestellt werden  (Thayer
und  Christensen,  2002).  Beispielsweise  können  Qualitätsverbesserungen  nicht
direkt gemessen werden. Sie werden als Einsparungen über die gesamte Lebens‐
dauer sichtbar. Somit muss also ein langer Zeitraum überblickt werden; Einsparun‐
gen können nur im Vergleich zu Kosten gemessen werden.

• Im  Gegensatz  zu  den  Qualitätsverbesserungen  sind  die  Kosten  für  Prüfungen
offensichtlich: Prüfungen und Korrekturen dauern, benötigen Mitarbeiter und kos‐
ten somit Zeit, Aufwand, Mitarbeiter und Geld.

• Für rationale Entscheidungen über Qualitätssicherung müssen Qualität und Kos‐
ten gegeneinander abgewogen und verglichen werden. Diese Abwägung und der
Vergleich sind schwierig. Kosten und Dauer von Qualitätssicherungsmaßnahmen
sind durch standardisierte Metriken am Ende des Projekts vollständig feststellbar
und können für einzelne Prüfungen während des Projekts gemessen werden. Die
Qualitätsbewertung  liefert  im Gegensatz dazu subjektive Einschätzungen und  ist
während des Projekts und am Projektende teuer. Messen lassen sich Qualitätsver‐
besserungen nicht direkt, aber Einsparungen werden über die gesamte Produktle‐
bensdauer  sichtbar.  Ein  direkter  Vergleich  zwischen  Qualität  oder
Qualitätsverbesserungen und den dafür investierten Kosten ist also nicht möglich.

• Die Anforderungen an das Produkt und an den Prozess unterscheiden sich zwi‐
schen Projekten. Somit spielen Qualität und Kosten eine unterschiedlich wichtige
Rolle  (Yourdon,  1995). Darum  ist  nicht möglich,  allgemeingültig Prüfungen mit
bestimmter Intensität vorzuschreiben. Die optimalen Entscheidungen über Prüfun‐
gen hängen also von der konkreten Situation und den Anforderungen des Projekts
ab. Prozessstandards enthalten Vorgaben, welche Art von Prüfungen durchgeführt
werden sollen, aber keine Vorgaben, wie intensiv die Prüfungen stattfinden sollen
(CMMI Product Team, 2002; Hörmann et al., 2006).

Die Situation des Projektleiters und QS‐Verantwortlichen  ist also schwierig. Sie ent‐
scheiden über Prüfungen mit weitreichenden Folgen auf Basis unzureichender Infor‐
mationen. Sie können Entscheidungen nicht rückgängig machen und nicht objektiv
begründen. Untersuchungen bestätigen diese Schwierigkeiten (Ahonen und Junttila,
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2003; Mandl‐Striegnitz und Lichter, 1998): Die Planung ist unzureichend, Qualitätssi‐
cherung und Fortschrittskontrolle werden vernachlässigt.

3.2 Ziele des Kosten‐Nutzen‐Modells für Prüfungens

In dieser  schwierigen Situation  sollen darum Projektleiter und QS‐Verantwortliche
durch  ein  quantitatives Modell unterstützt werden  (Abbildung 7). Das Modell  hat
also den Zweck, Projektleiter und QS‐Verantwortliche bei Entscheidungen über Qua‐
litätssicherung zu unterstützen. Dieser Zweck lässt sich konkreter aus den Schwierig‐
keiten ableiten:

• Demonstration der Auswirkungen von Entscheidungen: Weil die Wirkungen der
Qualitätssicherungsmaßnahmen  indirekt und komplex  sind,  soll das Modell zei‐
gen, wie sich die konkreten und detaillierten Entscheidungen, die Projektleiter und
QS‐Verantwortliche treffen, auswirken. Das Modell soll die kurzfristigen Auswir‐
kungen auf das Projekt und  langfristige Auswirkungen, d.h. Auswirkungen auf
Einsatz und Wartung des Produkts, darstellen.

• Diagnose der Auswirkungen von Entscheidungen: Das Modell soll die Auswirkun‐
gen widerspiegeln, die sich in realen Projekten aus den getroffenen Entscheidun‐
gen  ergeben;  es  soll  die  Kosten  und  den  Nutzen  der  Maßnahmen  zur
Qualitätssicherung zeigen, damit Entscheidungen nachträglich begründet werden
können. Das Modell soll also deskriptiv, diagnostisch, für bestehende Projekte ein‐
gesetzt werden können.

• Prognose  der Auswirkungen  zur  Planung  von  Prüfungen: Das Modell  soll  die
Planung der einzelnen Qualitätssicherungsmaßnahmen unterstützen. Das Modell
soll beispielsweise fähig sein, Kosten und Nutzen von Prüfungen zu prognostizie‐
ren, um den Projektleiter rechtzeitig zu unterstützen.

• Vergleich  und Optimierung: Das Modell  soll  ermöglichen,  die Kosten  und  den
Nutzen der Qualitätssicherungsmaßnahmen miteinander zu vergleichen, um Ent‐
scheidungen zu begründen. Dadurch soll das Modell ermöglichen, Kosten zu mini‐
mieren oder den Nutzen zu maximieren. Das Modell soll also explorativ eingesetzt
werden können.

Um diese Ziele zu erreichen, wird der Handlungsspielraum  für Qualitätssicherung
auf  Modelleingaben  abgebildet.  Das  Modell  erlaubt,  Handlungen  auszuwählen
(Abbildung 7). Es berechnet abhängig von diesen Eingaben und Merkmalen des Pro‐
jekts die Kosten und den Nutzen dieser Entscheidung. Kurzfristige und  langfristige
Auswirkungen, die in der gesamten Lebensdauer des Produkts auftreten, werden im
Modell berücksichtigt und vergleichbar dargestellt. Dazu gehören Kosten und Nut‐
zen für einzelne Phasen des Projekts, für das gesamte Projekt und für wichtige Pro‐
jektklienten.

Das quantitative Modell erhält den Namen CoBe, abgeleitet aus Cost  (Kosten) und
Benefit (Nutzen). Es handelt sich um ein Kosten‐Nutzen‐Modell, da nur diese Modell‐



3.3. Unterstützte Entscheidungen 37

form  erlaubt,  Kosten  und  Nutzen  direkt  zu  vergleichen  (Abschnitt 2.5.2).  Damit
gehört  es  zu  den  Entscheidungsmodellen.  CoBe  liefert  aber  nicht  die  optimale
Lösung, sondern zeigt die Wirkungen für die (im Modell) getroffenen Entscheidun‐
gen. Nur so können auch nicht‐optimale Situationen dargestellt werden, etwa um die
Folgen von Fehlentscheidungen zu demonstrieren.

Für CoBe werden im Folgenden zuerst die prägenden Merkmale festgelegt, bevor das
Modell erstellt wird. Da Entscheidungen unterstützt werden sollen, wird zuerst fest‐
gelegt, welche Entscheidungen durch welche Eingaben und durch welche Ausgaben
unterstützt werden. Zum Modellzweck gehört auch der vorgesehene Modelleinsatz.
Der Modellierungsansatz beschreibt, wie das Modell erstellt und gestaltet wird.

3.3 Unterstützte Entscheidungen

Die Modelleingaben leiten sich aus den Qualitätssicherungsmaßnahmen, für die das
Modell Kosten und Nutzen berechnet, und dem Handlungsspielraum, den Projektlei‐
ter und QS‐Verantwortliche für diese Maßnahmen haben, ab.

3.3.1 Auswahl der Qualitätssicherungsmaßnahmen

Qualitätssicherung kann in drei Bereiche eingeteilt werden (Frühauf et al., 2001): Kon‐
struktive Maßnahmen,  analytische Maßnahmen  (Prüfungen)  und  organisatorische
Maßnahmen. Das Modell konzentriert sich auf analytische Maßnahmen, weil der Pro‐
jektleiter über die analytischen Maßnahmen entscheiden kann (PMI, 2000; IEEE‐Std.
1490, 2003). Konstruktive Qualitätssicherung, z.B. die Einführung neuer Prozesse, der
Einsatz geeigneter Werkzeuge oder Sprachen, die Schulung von Mitarbeitern, werden
häufig organisationsweit eingeführt; sie werden dem Prozess‐Management zugeord‐
net  (CMMI  Product  Team,  2002).  Organisatorische  Maßnahmen  sollen  mit  dem
Modell unterstützt werden und sind darum nicht Teil des Modells.
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Gewählte Handlungen 
zur Qualitätssicherung

DatenDatenfluss
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Abb. 7: Idee für das Kosten‐Nutzen‐Modell CoBe
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3.3.2 Entscheidungen über Prüfungen und Prüfparameter

Reviews und Tests sind weit verbreitete Prüfungen und werden darum in CoBe dar‐
gestellt. Diese Prüfungen können unterschiedlich  intensiv durchgeführt werden,  je
nach  Intensität der Prüfung ändern sich die Kosten und der Nutzen. Die  Intensität
wird durch einzelne Prüfparameter und somit also durch einzelne Entscheidungen
bestimmt.  Diese  Parameter  werden  für  die  Planung  als  klare  Vorgaben  benötigt
(Kerzner, 2006), der Qualitätsplan  soll  für Tests und Reviews detaillierte Prüfpara‐
meter enthalten (IEEE‐Std. 12207.1, 1997). Darum werden in CoBe detaillierte Vorga‐
ben, d.h. Prüfparameter, abgebildet.

In Reviews wird Software von Gutachtern geprüft. Das technische Review gehört zu
den aufwändigsten und formalsten Review‐Varianten. Darum wird es in CoBe darge‐
stellt. Im Review bereiten sich Gutachter zuerst einzeln vor, dann werden dabei ent‐
deckte Befunde  in  einer Sitzung durchgesprochen  (Freedman und Weinberg, 1982;
Fagan, 1976). Für Reviews werden die  folgenden Vorgaben durch CoBe dargestellt:
Die Zahl der Gutachter und die Auswahl der passenden Gutachter  (Freedman und
Weinberg, 1982), die ausreichende Vorbereitung auf die Sitzung (Fagan, 1986; Früh‐
auf et al., 2006), und wie viel der Software begutachtet werden soll  (Frühauf et al.,
2006; Schwinn, 2003). 

Tests werden üblicherweise in Phasen organisiert, die sich auf unterschiedlichen Inte‐
grationsebenen oder Teststufen befinden (Liggesmeyer, 2002). Auf allen Ebenen wer‐
den ähnliche Entscheidungen getroffen (Lauterbach und Randall, 1989; Ellims et al.,
2006; Liggesmeyer, 2002): 

• Im Test werden Testfälle definiert und durchgeführt. Testfälle werden anhand von
Testtechniken  abgeleitet.  Darum werden  Entscheidungen  über  die  eingesetzten
Testtechniken und ihre Intensität getroffen, d.h. über die Überdeckung des Codes
oder die Abdeckung von Anforderungen  (Liggesmeyer, 2002; Spillner und Linz,
2003; Frühauf et al., 2006).

• Die Testfälle können definiert werden, bevor der Prüfling zur Verfügung steht, es
kann  also über den Zeitpunkt der Testvorbereitung  entschieden werden  (Press‐
man, 2005; Jalote, 2000; Frühauf et al., 2006).

• Testfälle werden von Testern definiert. Die Auswahl der passenden Tester, d.h. die
Kompetenz der Tester, ist eine wichtige Entscheidung (Spillner und Linz, 2003; Lig‐
gesmeyer, 2002).

• Über die Testwiederholung nach der Korrektur, die während des Projekts oder in
der Wartung erfolgt, wird entschieden  (van Megen und Meyerhoff, 1995; Ligges‐
meyer,  2002; Haley  et  al., 1995; Sneed  et al., 2004; Pigoski, 1997;  ISO/IEC  14764,
1999).

Eine weitere Prüfung ist die automatische statische Codeanalyse, im Folgenden kurz
als Codeanalyse bezeichnet. Der Programmcode wird von einem Werkzeug auf ver‐
dächtige Konstrukte hin untersucht (Spinellis, 2006; Louridas, 2006).
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3.4 Kosten und Nutzen von Prüfungen

Prüfungen nützen  indirekt. Tabelle 1 fasst Erfahrungen zusammen. Reviews nützen
zusätzlich durch  frühe Fehlerentdeckung und Schulungseffekte der Reviewteilneh‐
mer, dafür können aber auch weitere Kosten anfallen  (Tabelle 2). Durch Tests wird
zusätzlich das Vertrauen in das Produkt erhöht. 

Nutzen von Prüfungen Kosten von Prüfungen

• Konkrete Schwächen werden identifiziert
(Ludewig  und  Lichter,  2007;  Freedman
und Weinberg, 1982; Beizer, 1990), diese
können  korrigiert werden  (Fagan,  1986;
Beizer, 1990).

• Gute  und  unbrauchbare  Prüflinge  wer‐
den  identifiziert  (Ludewig  und  Lichter,
2007; Freedman und Weinberg, 1982).

• Die Projektleitung wird erleichtert, wenn
die Qualität durch frühe Prüfungen kon‐
trolliert und durch Korrektur  verbessert
wird. Dadurch schwankt die Qualität der
Artefakte  im  Projekt  und  des  Produkts
weniger  stark.  Somit wird  das  gesamte
Projekt planbarer  (Freedman und Wein‐
berg, 1982).

• Das  Projekt  kann mit  konkreten  Quali‐
tätskriterien (Ludewig und Lichter, 2007),
Meilensteinkriterien und Qualitätsbewer‐
tung  (Freedman  und  Weinberg,  1982;
Fagan, 1986; Deininger, 1995) besser kon‐
trolliert werden.

• Die  Erwartung  einer  Prüfung  führt  zu
besseren Prüflingen  (Ludewig und Lich‐
ter, 2007).

• Prüfdaten  ermöglichen  Fehlervermei‐
dung  und  Prozessverbesserungen
(Fagan, 1986; Chillarege et al., 1992).

• Bessere Produktqualität führt zu höherer
Kundenzufriedenheit (Buckley und Chil‐
larege, 1995; Chulani et al., 2003).

Es entstehen Kosten durch
• die Prüfungsorganisation,
• die Prüfungsvorbereitung,
• die Durchführung der Prüfung,
• die Auswertung der Prüfung,
• die  Korrektur  der  in  der  Prüfung  ent‐

deckten Fehler,
• Werkzeuge  für  die  Prüfung,  z.B.  für

Lizenzen, Installation und Wartung,
• Schulungen für Prüfungen,
• die  Einführung,  die  kurzfristig  die  Pro‐

duktivität senkt,
• Prozessänderungen,  zu  denen  auch

Änderungen  der  Qualitätssicherung
gehören.  Sie  können  zu  Chaos  und
Widerständen führen (DeMarco und Lis‐
ter, 1999).

Tabelle 1: Kosten und Nutzen von Prüfungen
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3.4.1 Modellierte Kosten und modellierter Nutzen

Im Idealfall stellt ein Modell alle genannten Kosten und den gesamten Nutzen dar.
Dieses Ideal  lässt sich aus praktischen Gründen kaum erreichen, weil nur messbare
Merkmale  in  ein  quantitatives Modell  aufgenommen werden  können. Die Grenze
zwischen messbaren  (tangiblen)  und  nicht‐messbaren  (intangiblen) Merkmalen  ist
fließend. Sie ist durch die Kosten zur Datenerhebung bestimmt (Hanusch, 1987). Die
möglichen Kosten, um ein Modell zu erstellen und an konkrete Situationen anzupas‐
sen, begrenzen also, welche Kosten und welcher Nutzen dargestellt werden können.

Die Auswahl der Kosten und des Nutzens muss aber berücksichtigen, dass die wich‐
tigen,  wesentlichen  Kosten‐  und  Nutzenmerkmale  abgebildet  werden,  weil  das
Modell sonst nicht plausibel ist und seinen Zweck nur unzureichend erfüllt. 

Wesentlich  für alle Prüfungen  ist der Nutzen durch die Fehlerentdeckung. Daraus
folgt, dass Kosten für die Fehlerkorrektur und Nutzen durch vermiedene Fehlerkos‐
ten  abgebildet werden müssen. Dieses Konzept  der Qualitätskosten wähle  ich  als

Nutzen von Reviews Kosten von Reviews

• Frühe  Fehlerentdeckung  reduziert  die
Korrekturkosten  (Fagan,  1986; Diaz und
King,  2002; Haley,  1996;  Freedman  und
Weinberg, 1982). 

• Frühe Fehlerentdeckung senkt die Kosten
für  Testwiederholung  (Haley,  1996;
Freedman und Weinberg, 1982).

• Technische  Informationen  werden  früh
sichtbar (Freedman und Weinberg, 1982).
Dadurch werden Schätzungen und Pläne
besser (Freedman und Weinberg, 1982).

• Gutachter  lernen aus entdeckten Fehlern
(Fagan,  1986).  Sie werden  geschult  und
kompetenter  (Freedman  und Weinberg,
1982). 

• Technische  Informationen werden  kom‐
muniziert  (Freedman  und  Weinberg,
1982).

• Reviews  führen  zu  einer  professionelle‐
ren  Entwicklungskultur  (Fagan,  1986;
Freedman und Weinberg, 1982), weniger
Personalwechsel und höherer gegenseiti‐
ger Wertschätzung (Freedman und Wein‐
berg, 1982).

• Bei der Revieweinführung kann die Pro‐
duktivität sinken (Weller, 1993). 

• Ohne  Reviewregeln  steigen  Aufwand
und Dauer, das Projektklima leidet (Früh‐
auf et al., 2006; Freedman und Weinberg,
1982). 

• Das  Projekt  kann  aus  organisatorischen
Gründen und Zeitmangel der Beteiligten
verzögert werden  (Freedman und Wein‐
berg, 1982; Porter und Votta, 1997).

Tabelle 2: Kosten und Nutzen von Reviews
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Grundlage für das Modell, weil Fehler und Fehlerkosten leicht zu erheben sind und
weil diese Daten in vielen Projekten bereits verfügbar sind. 

Die Grenze, ab der Kosten und Nutzen nicht in das Modell abgebildet werden, ergibt
sich aus dem Modellzweck. Der Modellzweck ist, Projektleiter und QS‐Verantwortli‐
che bei der Planung eines Projekt zu unterstützen. Sie können Entscheidungen tref‐
fen,  die  das  Projekt  und  das  Produkt  betreffen.  Sie  können  aber  keine
organisationsweiten Entscheidungen, beispielsweise zur Marktstrategie oder zu orga‐
nisationsweiten Prozessverbesserungen,  treffen. Zu den nicht berücksichtigten Kos‐
ten und Nutzen zählen darum die folgenden:

• Schulungseffekte und andere psychologische Auswirkungen können nur indirekt
erfasst werden, darum  ist  eine Bewertung dieser Auswirkungen  teuer. Es  reicht
nicht aus, diese Auswirkungen  einmal zu  erfassen, um das Modell zu  erstellen,
weil sich Unternehmenskultur und  individuelle Eigenschaften der Mitarbeiter  in
unterschiedlichen  Umgebungen  unterscheiden.  Soll  das Modell  in  einer  neuen
Umgebung  eingesetzt  werden,  dann  muss  zumindest  geprüft  werden,  ob  das
Modell valide  für die neue Umgebung  ist. Falls nicht, dann müssen die Auswir‐
kungen erneut modelliert und quantifiziert werden. Modellbildung und Modell‐
einsatz  werden  also  teuer;  CoBe  wird  weniger  verallgemeinerbar.  Diese
Auswirkungen werden darum nicht im Modell dargestellt.

• Kosten  für die Einführung und die damit verbundene Schulung von Prüfungen
oder Prüftechniken werden in CoBe nicht dargestellt, weil es sich dabei um strate‐
gische  und  organisationsweite  Prozessverbesserungen  handelt  (CMMI  Product
Team,  2002).  Für  eine  Kosten‐Nutzen‐Betrachtung  müssten  die  Auswirkungen
über mehrere Projekte der Organisation berücksichtigt werden. Auch der Nutzen,
der durch Prüfdaten, ihre Analyse und dadurch mögliche Fehlervermeidung und
Prozessverbesserung erreicht wird, wirkt über mehrere Projekte und wird darum
nicht berücksichtigt. 

• Auswirkungen, die durch eine verbesserte Projektkontrolle erreicht werden, wer‐
den nicht dargestellt, weil sie nur  indirekt erfasst werden können. Beispielsweise
muss erfasst werden, wie  sich eine höhere Planungssicherheit auswirkt. Ähnlich
wie bei Schulungseffekten wird solch eine Bewertung sehr  teuer und  ist von der
Umgebung und den individuellen Eigenschaften der Projektleiter und QS‐Verant‐
wortlichen abhängig.  Insbesondere spielt eine Rolle, wie gut die Projektkontrolle
bislang durchgeführt wurde, also welches Verbesserungspotential für das Modell
überhaupt möglich ist. 

Die nicht erfassten Auswirkungen der Prüfungen müssen bei der Interpretation der
Modellresultate einbezogen werden. Das Modell kann Entscheidungen nicht treffen
(Laux, 1998), weil nur ein Teil der Auswirkungen erfasst wird.
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3.4.2 Darstellung der Kosten und des Nutzens

CoBe  ist ein Modell, dessen Zweck  im Vergleich von Kosten und Nutzen  liegt. Für
diesen Vergleich müssen die Modellresultate der Kosten und des Nutzens auf der
gleichen Skala liegen. Darum ist eine Nutzwert‐Analyse oder eine Kosten‐Wirksam‐
keitsanalyse nicht geeignet. Die Kosten‐Nutzen‐Analyse ist geeignet, weil sie Kosten
und Nutzen als Geldwerte ausdrückt. Prinzipiell enthalten Kosten und Nutzen nicht
nur materielle,  sondern  auch  immaterielle Auswirkungen, die  zur Kosten‐Nutzen‐
Analyse auf Geldwerte abgebildet werden. Daraus  folgt, dass  in CoBe die Auswir‐
kungen  der  Prüfungen  also mit Geld  bewertbar  sein müssen.  Bei  diesem Ansatz
unterscheiden sich Kosten und Nutzen  im Vorzeichen.  Im Modell wird darum der
Nutzen  als  entfallende Kosten dargestellt. Weil CoBe  auch  zur Planung  eingesetzt
werden soll und um darzustellen, wann Kosten an‐ oder entfallen, basiert Cobe auf
einzelnen Aktivitäten im Projekt und in der Wartung mit Aufwand, Dauer und Perso‐
nalbedarf (Abschnitt 2.6.4). Daraus werden Kosten und Nutzen als Geldwerte berech‐
net. Der Aufbau von CoBe orientiert sich also am Vorgehen zur Kostenschätzung, bei
dem Geldwerte aus den Merkmalen der Projektaktivitäten, beispielsweise Aufwand
und Dauer, abgeleitet werden (Kerzner, 2006; Metzger und Boddie, 1996).

3.4.3 Abstraktionsebene der Kosten und des Nutzens

Die ideale Abstraktionsebene für Metriken gibt es nicht (Ludewig und Lichter, 2007),
da sie vom Zweck der Metrik abhängt. Zur Planung sind  für den Projektleiter ein‐
zelne Aktivitäten und Arbeitspakete mit Dauer und Personal die kleinsten Planungs‐
einheiten  (Abschnitt 2.6.4; PMI,  2000;  IEEE  1490,  2003).  Seine wichtigen Ziele  sind
aber das Projekt als Ganzes, also Projekttermin und ‐kosten (V‐Modell XT, 2004). War‐
tungspersonal, Kunde und Benutzer  sind direkt von der Produktqualität betroffen
(Alexander und Robertson, 2004). Um Kosten über die Lebensdauer des Produkts zu
minimieren oder den Gesamtnutzen über die Lebensdauer zu maximieren, müssen
Kosten dieser Klienten dargestellt werden. Darum  liefert CoBe Resultate auf diesen
drei Abstraktionsebenen.  In CoBe werden also Auswirkungen der Entscheidungen
auf Aufwand, Dauer und Personal einzelner Aktivitäten, Auswirkungen auf das Pro‐
jekt. und Auswirkungen über die gesamte Produktlebensdauer abgebildet. Zu den
langfristigen Auswirkungen über die Lebensdauer gehören der Aufwand in der War‐
tung, für den Kunden zu erwartender Schaden oder vermiedene Probleme. 

3.5 Prozess‐ und Produktmerkmale

Kosten und Nutzen der Prüfungen hängen von den individuellen Prozess‐ und Pro‐
duktmerkmalen des Projekts ab. Zu diesen Merkmalen gehören diejenigen, die Prü‐
fungen betreffen. Diese werden  in CoBe dadurch  erfasst, dass die Entscheidungen
über Prüfungen und über Merkmale der Prüfungen abgebildet werden. Zu den indi‐
viduellen  Prozess‐  und  Produktmerkmalen  gehören  aber  auch  eine  Vielzahl  von
Merkmalen,  die  das  Umfeld,  die  Anforderungen  und  die  Organisation  betreffen.
Diese  Vielfalt  zeigt  sich  in  den  Merkmalen,  die  für  die  Kostenschätzung  mit
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COCOMO II  (Boehm, 2000) oder  für den Projektvergleich  in  Jones  (1996 und 2003)
benötigt werden. Diejenigen, die sich auf Prüfungen auswirken, sollen auf das Modell
abgebildet werden.

Wichtige Merkmale sind die Organisation der Arbeit, die Stellenbesetzung und das
zu Grunde liegende Vorgehensmodell. Modelle, die diese Aspekte und ihre Wirkun‐
gen quantitativ beschreiben, werden groß und komplex.  Ich verkürze diese Merk‐
male,  um  die  Auswirkungen  der  Prüfungen  in  den  Vordergrund  zu  stellen.  Als
Grundlage  des Modells  dient  der  Software‐Lebenslauf mit  Spezifikation,  Entwurf,
Implementierung, Test und Betrieb. Dieses Vorgehen findet sich als Vorgabe in Pro‐
zessverbesserungsprogrammen wieder  (Chrissis et al., 2003; Hörmann et al., 2006).
Ich wähle ein sequentielles Vorgehen für das Modell. Projekte mit nicht‐linearem Vor‐
gehen müssen auf das sequentielle Modell abgebildet werden. 

3.6 Modelleinsatz

Das Modell muss in den organisatorischen Rahmen des Projekts, in dem Prozessver‐
besserungen durchgeführt werden, und  in die Tätigkeiten des Projektleiters  einge‐
bunden werden. 

3.6.1 Modellkalibrierung und ‐anpassung an Projekte und Prozesse

Das Modell bildet eine Menge von Projekten ab; es basiert auf allgemeinen Erfahrun‐
gen über Software‐Projekte. Für den Modellzweck der Demonstration sind diese all‐
gemeinen Erfahrungen, die sich auf ein fiktives, durchschnittliches Projekt beziehen,
ausreichend.  Sobald  aber Aussagen über  reale Projekte und Prozesse möglich  sein
sollen, d.h. wenn Auswirkungen nachträglich dargestellt, Kosten und Nutzen pro‐
gnostiziert und optimiert werden sollen,  ist es notwendig, die konkrete Situation  in
das Modell abzubilden: 

• Kalibrierung:  Erfahrungen  mit  Kostenschätzmodellen  zeigen,  dass  quantitative
Modelle an die Umgebung angepasst, d.h. kalibriert, werden müssen, um ausrei‐
chend genaue Resultate zu erhalten (Kemerer, 1987; Boehm, 2000). Diese quantita‐
tive Anpassung eines Modells an eine konkrete Umgebung wird als Kalibrierung
bezeichnet und wird durch spezielle Kalibrierungsparameter des Modells und eine
Kalibrierungsmethode unterstützt und durchgeführt.

• Projekt und Prozess: Projekte unterscheiden sich in den Rahmenbedingungen und
im  Projektumfang.  Diese  Unterschiede  werden  durch  Eingabeparameter
(Abschnitt 3.5) erfasst.

• Prozess: Prozesse und damit der Prüfprozess ändern sich kontinuierlich  im Rah‐
men von Prozessverbesserungen  (Chrissis et al., 2003; Hörmann et al., 2006) und
durch  den  Einsatz  des Modells.  Verändern  sich  Prozessmerkmale,  die  nicht  in
CoBe modelliert  sind,  dann  soll  das Modell  entweder  kalibriert  oder  angepasst
werden können.
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• Laux  (1998)  argumentiert,  dass  Entscheidungsmodelle  immer  revidiert werden
müssen,  weil  sie  verkürzen  und  weil  sie  subjektive  Elemente  enthalten
(Abschnitt 2.4.2). Diese  verkürzten Merkmale  stellen  sich  erst  im  Lauf  der  Zeit
durch den Modelleinsatz heraus. Es können also keine Eingaben vorgesehen wer‐
den. Darum soll das Modell entweder kalibriert oder um diese Merkmale erweitert
werden können.

Abbildung 8 skizziert diese Zusammenhänge: Auf der  linken Seite werden  in CoBe
Projekte im Allgemeinen abgebildet. Somit können mit CoBe Auswirkungen der Prü‐
fungen im Allgemeinen demonstriert werden. Auf der rechten Seite soll ein spezielles
Projekt in CoBe abgebildet werden, um Auswirkungen von Prüfungen in diesem Pro‐
jekt zu prognostizieren. Um dieses spezielle Projekt darstellen zu können, muss das
Modell kalibriert werden. 

Die Kalibrierung passt also das Modell einer allgemeinen Realität an eine konkrete
Situation an. Die Kalibrierung muss erlauben, das Modell an die Projektumgebung,
d.h.  an  die Organisation  und  den  Einfluss  ihrer Kultur  oder  die Art  der  Projekte
(Anwendungsgebiet, Prozessreife)  anzupassen. Dazu  ist notwendig, wenige Einga‐
ben zu bieten, die mit Archivdaten belegt werden können. Archivdaten sind Daten
abgeschlossener Projekte. Die Änderungen  im Rahmen  von Prozessverbesserungs‐
maßnahmen  und  die  Revidierung  des  Modells,  wenn  beispielsweise  wichtige
Aspekte  im Modell  fehlen  und  ergänzt werden  sollen,  zählen  zur Modellbildung
(Anpassung). Abbildung 9  zeigt die Einbindung des Modells  in Projekte und Pro‐
zesse für Anpassung und Kalibrierung. 

Angelehnt an den Ansatz von Basili (1995) fließen Archivdaten aus abgeschlossenen
Projekten als Erfahrungen in das Modell ein (Datenfluss 1 in Abbildung 9). Sie dienen
beispielsweise der Kalibrierung. Damit die Modellresultate zur Projektplanung und ‐
kontrolle  verwendet werden  können, müssen Merkmale  des  zukünftigen  Projekts
und  Prozesses  in  das Modell  eingegeben werden  (1). Die Modellresultate  können
direkt in der Projektplanung verwendet werden (2), qualitativ, etwa um zu entschei‐
den, wie eine Prüfung stattfinden soll, oder quantitativ, etwa um die Dauer und die
Mitarbeiter einzuplanen. Dadurch wirken die Modellresultate indirekt auf die Projek‐
tresultate und Erfahrungen (2). Für den Einsatz des Modells in Projekten mit definier‐
tem,  vorgegebenem  Prozess,  der  kontinuierlich  verbessert wird, wird  der  Ansatz
erweitert. Der definierte Prozess wird durch Prozessvorgaben in Projekten durchge‐
führt  (3),  Erfahrungen  aus  Projekten  fließen  als  Prozessänderungen  ein  (5).  Das
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Abb. 8: Abbildung allgemeiner und spezieller Projekte durch das Modell
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Modell  berücksichtigt  die  Prozessvorgaben  (4),  seine  Resultate  können  verwendet
werden, um die Prozessvorgaben zu ändern (6).

3.6.2 Planung und Kontrolle

In einem Software‐Projekt müssen unterschiedliche Aspekte geplant und kontrolliert
werden. Der IEEE‐Standard 1490 (2003) und das PMBOK (PMI, 2000) definieren neun
solcher Aspekte (Tabelle 3). Das Modell CoBe gehört zum Qualitätsmanagement, ins‐
besondere zur Qualitätsplanung und der verlangten Kosten‐Nutzen‐Analyse. Unter‐
stützt werden Zeit‐, Kosten‐ und Personalmanagement.  

Die Planung findet zu Beginn eines Projekts statt und wird während des Projekts wie‐
derholt;  Planung  und Kontrolle  sind  verzahnt, weil  bei Abweichungen  vom  Plan
unter Umständen neu geplant werden muss (Kerzner, 2006, S. 396). Der Projektplan
wird  iterativ  erstellt  (Kerzner,  2006,  S.  486;  Ludewig,  1999).  Basierend  auf  dem
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Management
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Management

Project Time 
Management

Project Cost 
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Project Human 
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Project Procurement 
Management

Tabelle 3: Gebiete des Projektmanagements nach PMI (2000)
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Inhaltsverzeichnis  eines  Projektplans  aus  Metzger  und  Boddie  (1996)  beschreibt
Ludewig (1999) die einzelnen Schritte der Planung (Abbildung 10). Termine, Aktivitä‐
ten und Meilensteine werden aufeinander abgestimmt, damit das Produkt unter den
gegebenen Randbedingungen entwickelt werden kann. Der Modelleinsatz erfolgt ite‐
rativ; die Entscheidung kommt im Dialog zwischen Entscheider und Modell zustande
(Abschnitt 2.4.2; Laux, 1998).

Die Qualitätsplanung wird von CoBe unterstützt, weil das Modell die Möglichkeiten
zur Prüfung und die möglichen Prüfparameter zeigt; es verdeutlicht den prinzipiellen
Handlungsspielraum  (Datenfluss  2  in  Abbildung 10).  Prozess‐  und  Produktmerk‐
male, insbesondere der Umfang, werden eingegeben (1), zusätzlich kann das Modell
kalibriert werden. Die geplanten Prüfungen und Prüfparameter werden mit den Pro‐
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zess‐  und  Produktmerkmalen  in  CoBe  eingegeben  (3).  Die  Organisationsplanung
wird durch die Resultate für den Personalbedarf einzelner Prüf‐ und Korrekturaktivi‐
täten unterstützt  (4). Durchgeführte Prüfungen und  ihre Prüfparameter können zur
Definition inhaltlicher Kriterien der Meilensteine verwendet werden (5). In den Zeit‐
plan fließen die Modellresultate für Dauer, Aufwand und Personalbedarf der einzel‐
nen Aktivitäten ein (6).

3.7 Modellierungsansatz

Bossel (2004) unterscheidet quantitative Modelle nach ihrem Aufbau durch Begriffs‐
gegensätze:

• Systemerklärend ‐ verhaltensbeschreibend: Systemerklärende Modelle haben die
gleiche Wirkungsstruktur wie  das Original,  soweit  die  Struktur  erkennbar  und
bekannt ist. Die Wirkungsstruktur verhaltensbeschreibender Modelle ist vom Ori‐
ginal verschieden. Die Begriffe spannen ein kontinuierliches Spektrum auf, Bossel
(2004) spricht von Systemen, die durchsichtig, halbdurchsichtig oder undurchsich‐
tig sind.

• Realparameter  ‐ Parameteranpassung: Modelle mit Realparametern haben Para‐
meter, die direkt gemessen werden können. Bei Modellen mit Parameteranpassung
werden die Parameter so gewählt, dass das entsprechende Verhalten erzeugt wird.
Auch dieses Begriffspaar lässt Mischformen zu, wenn manche Parameter gemessen
werden können, andere nicht messbar sind.

Angelehnt an den Ansatz von Ludewig et al. (1994) wähle ich einen systemerklären‐
den,  realparametrischen Ansatz,  soweit die Wirkungsstruktur  bekannt  ist und die
Parameter  messbar  sind.  Bei  einem  solchen  Ansatz  stellt  das  systemerklärende
Modell die einzelnen Elemente des Originals und ihre Beziehungen dar. Das Verhal‐
ten des Modells entsteht aus dem Verhalten der Elemente und  ihren Beziehungen.
Empirisch belegte Zusammenhänge werden verwendet, um das Modell zu erstellen.
Die Vorteile sind, dass einzelne Bestandteile des Modells ergänzt oder geändert wer‐
den  können,  dass  einzelne Bestandteile  empirisch  untersucht werden  können und
dass  das Modell mit  empirisch  belegten  Bestandteilen  plausible  Resultate  ergibt.
Diese Vorteile werden durch ein komplexes Modell erkauft, das aus vielen, miteinan‐
der verbundenen Teilen besteht. Die Verwendung von Realparametern ist vorteilhaft,
weil erst dadurch die einzelnen Bestandteile kalibriert und empirisch validiert wer‐
den können. Für diese Realparameter ziehe  ich verbreitete Metriken vor, weil dann
Daten  leichter verfügbar sind und von den Beteiligten  leichter  interpretiert werden
können. Da  empirische Zusammenhänge verwendet werden und da die Realpara‐
meter  mit  empirischen,  statistischen Werten  quantifiziert  werden,  sind  auch  die
Resultate statistische Werte. Somit handelt es sich um ein induktives Modell.
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Nach Fishwick  (1995) können  für die  systemerklärende Modellierung verschiedene
Blickwinkel eingenommen werden. Anhand dieser Blickwinkel  lassen  sich Ansätze
zur Modellierung unterscheiden, die auf unterschiedlichen Abstraktionsebenen auch
gemeinsam eingesetzt werden können:

• Declarative Modeling.  Diskrete  Zustände  und  die  Übergänge  zwischen  diesen
Zuständen werden modelliert. Der Ansatz  ist geeignet  für die Beschreibung von
Ereignissen, Phasen und gekoppelten Zuständen.

• Functional Modeling. Funktionen, die durch Ein‐ und Ausgaben gekoppelt sind,
werden modelliert. Der Ansatz  ist geeignet  für Objekte, die gerichtet verbunden
sind, und um Flüsse durch ein System zu beschreiben.

• Constraint Modeling. Gleichgewichtsbedingungen und  andere Einschränkungen
bestimmen das Modell. Der Ansatz ist geeignet für Systeme, die durch Konstanten
beschrieben werden.

• Spatial Modeling. Räumliche Beziehungen werden modelliert. Der Ansatz erlaubt
detaillierte Modelle kleiner Teilchen.

Für Prüfungen und ihre Auswirkungen wähle ich einen funktionsorientierten Ansatz,
weil die detaillierten Entscheidungen über Prüfungen, die das Modell unterstützt,
kontinuierlich wirken. Auch die einzelnen Aktivitäten, die das Modell beschreibt, lau‐
fen kontinuierlich ab. Es ist nicht notwendig, bei der Prognose in den Verlauf des Pro‐
jekts  einzugreifen,  da  die  Modellresultate  der  getroffenen  Entscheidungen
interessieren; die Modellresultate für andere Entscheidungen sollen direkt verglichen
werden können.

Diskrete Zustandsübergänge spielen in der Software‐Entwicklung für Projektphasen
eine wichtige Rolle. Für den Modellzweck stehen Entscheidungen über diesen Über‐
gang aber nicht  im Mittelpunkt,  sondern die detaillierten Entscheidungen über die
Prüfungen. Somit ist also nicht notwendig, diese Entscheidungen explizit abzubilden
und einzelne Zustände zu unterscheiden. 

Modelle  mit  Gleichgewichtsbedingungen  sind  für  die  Problemstellung  weniger
geeignet, weil das Modell auch erlauben soll, nicht‐optimale Entscheidungen darzu‐
stellen,  beispielsweise  zur  Demonstration.  Werden  Gleichgewichtsbedingungen
modelliert, so führen diese zu optimalen Lösungen, so dass andere Entscheidungen
nicht mehr dargestellt werden können. Ein räumliches Modell ist offensichtlich kaum
geeignet, weil Raum im Modell keine Rolle spielt.

Zufallseffekte werden mit dem Modell nicht  explizit modelliert, weil die Resultate
durch Zufallseffekte zusätzlich unsicherer werden. Dadurch wird auch der Vergleich
zwischen Modell und Realität erschwert, weil dann die Zufallsereignisse zwischen
Modell und Realität übereinstimmen müssen. Darum handelt es sich um ein determi‐
nistisches Modell (Bossel, 2004). Das Modell basiert auf empirischen Aussagen, d.h.
aus  empirischen Zusammenhängen, die durch  statistische Daten quantifiziert wer‐
den. Darum handelt es sich um ein  induktives Modell. Es erlaubt somit statistische
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Aussagen. Das Modell erlaubt keine sicheren Aussagen, weil diese nur  für winzige
Ausschnitte aus den komplexen Projekten der Software‐Entwicklung möglich sind.

Die Modellbildung  erfolgt mehrstufig  (Drappa,  1998; Bossel,  2004;  Fishwick,  1995;
Sargent, 2005). Abbildung 11 skizziert die einzelnen Schritte: Die Realität wird zuerst
als  konzeptionelles Modell  natürlichsprachlich  beschrieben.  Dieses  konzeptionelle
Modell wird in ein funktionales, mathematisches Modell überführt, das aus Gleichun‐
gen und Parametern besteht. Dieses Modell wird durch Metriken und konkrete Werte
quantifiziert; dies wird als Quantifizierung bezeichnet. Für die Realisierung wird kein
Simulationssystem  benötigt. Das Modell  kann  durch  unterschiedliche  Programme
realisiert werden.

3.8 Zusammenfassung

3.8.1 Prüfungen und Prüfparameter in CoBe

Das Modell bildet Kosten und Nutzen von Prüfungen ab. Prüfungen werden durch
Prüfparameter  beschrieben.  Reviews  werden  als  Spezifikations‐,  Entwurfs‐  und
Codereviews modelliert mit Eingaben für die Gutachterzahl, die Kompetenz der Gut‐
achter, die Vorbereitungsintensität, den Umfang des Prüflings mit oder ohne wieder‐
verwendeter  Software.  Modultest,  Subsystem‐  und  Systemintegrationstest,
Systemtest werden durch Testtechniken und Parameter für diese Techniken, den Zeit‐
punkt der Testvorbereitung, die Kompetenz der Tester und die Strategien der Test‐
wiederholung  modelliert.  Die  automatische  statische  Codeanalyse  ergänzt  diese
Prüfungen.

Realität

y f x z,( )=
z a sb⋅=

12 KLOC

5 Fehler

Modell der 
Realität

Funktionales 
Modell

Metrik

ModellbildungLegende

Abb. 11: Modellbildung eines funktionalen Modells (angelehnt an Drappa, 1998)



50 3. Die Idee eines Kosten‐Nutzen‐Modells für Prüfungen

3.8.2 Kosten und Nutzen in CoBe

Das Modell stellt Kosten und Nutzen von Prüfungen dar. Nutzen ist definiert durch
entfallende Kosten, Kosten und Nutzen unterscheiden sich nur im Vorzeichen. Kos‐
ten und Nutzen werden auf Geldwerte abgebildet. Die Modellresultate  für Kosten
und Nutzen beruhen auf Prüf‐ und Fehlerkosten (Abschnitt 2.9). Für anfallende und
entfallende Kosten (Nutzen) werden also Behebungskosten (Korrektur und Prüfung
der  Korrektur),  Fehlerfolgekosten  (Kosten  beim  produktiven  Einsatz),  Prüfkosten
(Vorbereitung, Durchführung, Auswertung)  jeweils einschließlich organisatorischer
Kosten betrachtet.  Im Modell werden Kosten und Nutzen  für  einzelne Aktivitäten
beschrieben. Kosten und Nutzen sind dargestellt durch Planungsmetriken (Aufwand,
Dauer, Personalbedarf, Abschnitt 2.6.4) und Geldwerte. Die Resultate werden zusam‐
mengerechnet, um Gesamtkosten und Gesamtnutzen zu berechnen.



Kapitel 4

Verwandte Arbeiten

Es gibt bereits eine Reihe quantitativer Modelle für Software‐Projekte und für Quali‐
tätssicherung in Software‐Projekten. Im Folgenden werden zwei dieser Modelle näher
betrachtet, weil sie als Grundlagen  für CoBe verwendet werden: SESAM  (Software
Engineering Simulation durch Animierte Modelle) enthält ein quantitatives Modell
mit  dem  Schwerpunkt  Qualitätssicherung,  das  QS‐Modell  (Qualitätssicherungs‐
Modell); COCOMO II  ist  ein Kostenschätzverfahren  (Abschnitt 4.2). Diese Modelle
diskutiere ich vor allem unter dem Aspekt der Wiederverwendung von Modellteilen
für CoBe. Das Archiv von Jones enthält umfangreich Metriken (Abschnitt 4.3); es bie‐
tet sich damit ebenfalls als Fundgrube  für quantitative Zusammenhänge an. Daran
schließt  sich die Diskussion weiterer verwandter Arbeiten an  (Abschnitt 4.4). Auch
bei dieser Diskussion  spielt  eine wichtige Rolle, ob Teile dieser Arbeiten  für CoBe
genutzt werden können.

4.1 Projektsimulation mit SESAM und dem QS‐Modell

SESAM (Ludewig et al., 1994) ist ein Simulationssystem, das eingesetzt wird, um Pro‐
jektleiter zu schulen. Der  (angehende) Projektleiter wird  in SESAM Spieler genannt
(Abbildung 12). Er leitet ein fiktives Projekt, übernimmt also die Rolle des Projektlei‐
ters. Dazu wird das fiktive Projekt mit SESAM simuliert. Der Spieler kann während
des Projektverlaufs über eine Benutzungsschnittstelle  in des Projekt eingreifen. Der
Tutor führt die Schulung durch und analysiert die simulierten Projekte. Dabei wird er
durch Analysewerkzeuge unterstützt. 

In SESAM wird zwischen dem generischen Simulator und dem Modell eines Projekts
unterschieden. Der Simulator wird als Basismaschine bezeichnet. Er speichert Infor‐
mationen über den Projektzustand und führt den dynamischen Teil des Modells aus.
Die Simulation erfolgt in einzelnen Zeitschritten. Jeder Zeitschritt entspricht einer fes‐
ten Dauer im Projekt, z.B. einem Tag. Der Spieler kann nach jedem Zeitschritt eingrei‐
fen und den nächsten Schritt anstossen. Die Projektzeit wird auf die Simulationszeit
abgebildet, so dass ein Projekt am Simulator in wenigen Stunden durchgeführt wer‐
den kann. 

Das Modell wird vom Modellbauer erstellt und gewartet. SESAM‐Modelle bestehen
aus drei Komponenten: 
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• Der Modellbauer definiert im Schemamodell die möglichen Entitäten des Projekts
als  Entitätstypen. Wichtige  Entitätstypen  sind Dokumente  oder Mitarbeiter. Die
möglichen  Beziehungen werden  durch  Relationstypen  definiert. Wichtige  Rela‐
tionstypen  beschreiben  beispielsweise,  dass  ein  Mitarbeiter  die  Spezifikation
erstellt oder korrigiert oder an einem Review teilnimmt. Die Typen werden durch
Attribute beschrieben.

• Die Startsituation  ist eine konkrete Ausprägung des Schemamodells für den Pro‐
jektbeginn. Sie beschreibt beispielsweise, welche Mitarbeiter zur Verfügung stehen. 

• Dieser Startzustand wird von der Basismaschine anhand des Regelmodells verän‐
dert. Das Regelmodell enthält Kommandos, Nachrichten und Regeln. Kommandos
und Nachrichten sind zur Kommunikation zwischen Projektleiter und Simulator
definiert. Der  Spieler kann  in  jedem Zeitschritt mit Kommandos  eingreifen und
bekommt durch Nachrichten Informationen mitgeteilt. Die Regeln definieren, wie
sich das Projekt verhält. Eine Regel wird durch zwei Teile beschrieben, den Bedin‐
gungsteil und den Aktionsteil. Zuerst werden Bedingungen für den Zustand fest‐
gelegt.  Sind  diese  Bedingungen  im  aktuellen Zustand  erfüllt,  dann werden  die
Zustandsänderungen durchgeführt, die  im zweiten Teil der Regel, dem Aktions‐
teil, formuliert sind. Zum Beispiel könnte eine Bedingung sein, dass ein Mitarbeiter
an der Spezifikation arbeitet. Ist diese Bedingung  im Zustand des aktuellen Zeit‐
schritts  erfüllt,  dann  wird  die  Zustandsänderung  durchgeführt.  Beispielsweise
werden in diesem Zeitschritt Anforderungen zur Spezifikation hinzugefügt.

Aufzeichnungen

Modell 
(Basissprache)

Modell
(Hochsprache)
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Nachrichten

Modellierungs‐
werkzeug
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Modellcompiler 
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werkzeuge

Dolmetscher

Modellbauer

Spieler
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Daten
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Abb. 12: SESAM‐Komponenten und SESAM‐Rollen (Reißing, 1996)
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4.1.1 Das Qualitätssicherungs‐Modell

Das Qualitätssicherungs‐Modell (QS‐Modell) wird in Schulungen eingesetzt (Drappa,
1998). Mit diesem Modell sollen Auswirkungen des Projektmanagements auf die Soft‐
ware‐Qualität gezeigt werden. Das Modell umfasst Projektaktivitäten von der Ana‐
lyse  bis  zur Übergabe  an  den Kunden. Modelliert werden  kleine  und mittelgroße
Projekte, die ein simulierter Kunde als Auftrag  für ein  Informationssystem vergibt.
Der Kunde fordert ein Produkt mit bestimmtem Umfang und mit bestimmter Quali‐
tät, definiert durch die Fehlerzahl. Er stellt ein Budget zur Verfügung und nennt einen
Termin für die Auslieferung. 

Aufgaben des Projektleiters

Das QS‐Modell stellt den Spieler in der Rolle des Projektleiter vor die Aufgaben der
Planung, Stellenbesetzung und Projektführung:

• Die Spieler müssen selbständig planen. Die dazu notwendigen Informationen sind
im Modell enthalten und werden zu Beginn der Simulation durch Nachrichten aus‐
gegeben. 

• Das Modell bietet dem Spieler Kommandos an, mit denen der Spieler simulierte
Mitarbeiter mit unterschiedlichen Erfahrungen und Fähigkeiten zu beliebigen Zeit‐
punkten in das Projekt aufnehmen und aus dem Projekt entlassen kann. 

• Der Spieler kann durch Kommandos den simulierten Mitarbeitern Aufgaben zutei‐
len, zu beliebigen Zeitpunkten. Dazu gehört, dass Dokumente einschließlich Code
erstellt werden und dass der Code integriert wird. Der Spieler kann verschiedene
Prüfungen anordnen, nämlich Reviews der Dokumente mit zwei oder drei Gutach‐
tern, Modultest, Integrationstest und Systemtest. Nach jeder Prüfung kann die Kor‐
rektur zugeteilt werden. Diese Aktivitäten können frei zu beliebigen Zeitpunkten
an Mitarbeiter vergeben werden, so dass unterschiedliche Projektverläufe möglich
sind. Die dabei entstehende Software ist nicht real, sondern wird durch Attribute
beschrieben. Dazu gehört der Umfang einzelner Anforderungen und die Zahl der
enthaltenen Fehler.

• Für die Projektverfolgung können Informationen über das Projekt abgefragt wer‐
den. Es sind aber nur diejenigen Informationen zugänglich, die auch in der Realität
verfügbar sind. So kann der Projektleiter zwar erfragen, wie viele Fehler  im Sys‐
temtest  entdeckt wurden,  aber nicht, wie viele Fehler  in der  Software  enthalten
sind.

Organisation spielt eine untergeordnete Rolle. Personalführung  lässt sich mit einem
Simulationssystem kaum trainieren (Drappa, 1998). 

Zusammenhänge des Modells

Das Modell  beruht  auf  empirisch  abgesicherten Zusammenhängen,  deren Zusam‐
menspiel untereinander und mit den Eingriffen des Projektleiters den Verlauf und
das Ergebnis des Projekts bestimmen. Die wesentlichen Zusammenhänge sind:
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• Die Software‐Entwicklung erfolgt als  schrittweise Transformation von Vorgaben.
Fehler  werden  dabei  aus  der  Vorgabe  übernommen,  zusätzlich werden  Fehler
gemacht. Fehlen  Informationen  in der Vorgabe, dann können sie nicht übernom‐
men werden. Informationen aus der Vorgabe können bei der Entwicklung verges‐
sen werden.

• Entwickler haben bestimmte Qualifikationen und Erfahrungen für einzelne Aktivi‐
täten. Sie unterscheiden sich in diesen Eigenschaften. Beispielsweise kann ein Ent‐
wickler  ein  erfahrener  Tester  sein,  ein  anderer  Entwickler  hat  dafür  mehr
Erfahrung im Entwurf. Abhängig von diesen Eigenschaften entstehen bessere oder
schlechtere Resultate. Auch das Gehalt hängt von den Qualifikationen und Erfah‐
rungen der Entwickler ab. Die Personalkosten des Projekts hängen also auch davon
ab, welche Entwickler mit welchen Qualifikationen und Erfahrungen  eingestellt
werden.

• Die Kosten des Projekts sind durch die Personalkosten bestimmt.

• Aufwand und Dauer  sind eng gekoppelt. So gilt, dass das Resultat desto  früher
verfügbar  ist,  je mehr Entwickler gemeinsam daran arbeiten.  Je mehr Entwickler
zusammenarbeiten, desto höher wird der Aufwand, da der Kommunikationsauf‐
wand steigt. Für jedes Projekt kann eine bestimmte Zahl Entwickler sinnvoll einge‐
setzt werden. Eine  bestimmte Dauer wird mindestens  benötigt,  um das  Projekt
abzuschließen. 

• Je später ein Fehler entdeckt wird, desto aufwändiger wird seine Korrektur. Der
Autor ist für die Korrektur besser als andere Entwickler geeignet.

• Reviews  erlauben,  Fehler  früh  zu  finden. Die  Fehlerentdeckung  hängt  von  den
Gutachtern, vom Prüfling und von der Vorgabe ab. Gutachter sollten geeignet und
vorbereitet  sein. Die Dokumente  sollten  eine Mindestqualität haben. Der Kunde
kann in der Spezifikation und im Handbuch weitere Fehler entdecken.

• Dynamische Modellkonzepte beschreiben die Aufteilung in Arbeitspakete, so dass
mehrere Entwickler die gleiche Aktivität durchführen können. Die Konzepte erlau‐
ben eine freie Wahl der Reihenfolge und überlappende Aktivitäten. 

Metriken des Modells

Die wesentlichen Entitätstypen des Modells sind Mitarbeiter, Dokumente, Code und
Prüfberichte. Diese werden durch Attribute quantitativ beschrieben.

• Qualifikation und Erfahrung eines Entwicklers werden jeweils für die unterschied‐
lichen Aktivitäten auf einer vierstufigen Ordinalskala dargestellt.

• Jedes Dokument wird durch seinen Umfang in Adjusted Function Points (IFPUG,
2004) beschrieben. Der Code‐Umfang wird abhängig von der Programmiersprache
auf Lines of Code umgerechnet, der Umfang anderer Dokumente wird durch die
Zahl ihrer Seiten dargestellt.
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• Die Qualität jedes Dokuments wird durch Korrektheit und Vollständigkeit darge‐
stellt. Korrektheit wird durch die Fehlerzahl (IEEE 1044, 1993) beschrieben, unter‐
schieden  nach  Analysefehlern,  Grobentwurfsfehlern,  Feinentwurfsfehlern,
Codefehlern und Handbuchfehlern. Vollständigkeit wird durch fehlenden Umfang
im Vergleich zum geforderten Umfang in Function Points gemessen.

Das Ergebnis der Entwicklungsaktivitäten wird durch die Produktivität (in Function
Points pro Stunde), die Fehlerrate (in eingefügte Fehler pro Function Point) und die
Verlustquote (Anteil nicht umgesetzter Function Points) bestimmt. Das Ergebnis wird
beeinflusst durch die Merkmale des Entwicklers, d.h. seine Erfahrungen und Qualifi‐
kationen  für die Entwicklungsaktivität und  für das Resultat. Prüfungen sind durch
die Produktivität (in Funktion Points pro Stunde) und durch Fehlerentdeckungsquo‐
ten quantifiziert. Die Fehlerentdeckungsquote beschreibt den Anteil der entdeckten
Fehler, bezogen auf die zu entdeckenden Fehler. Analog wird die Verlustentdeckung
dargestellt.

4.1.2 Einsatz und Anwendung

Schulungen mit SESAM folgen einem festen Ablauf, um einen Lernerfolg zu ermögli‐
chen  (Mandl‐Striegnitz,  2001). Der Ablauf beginnt mit  einer Einführungsveranstal‐
tung. Danach  spielen  die  Teilnehmer  ihr  erstes  Spiel. Der  Tutor  analysiert  dieses
Spiel, um dann  in einer Feedback‐Runde die Stärken und Schwächen aufzuzeigen.
Nach diesem Feedback haben die Spieler in einem zweiten Spiel die Möglichkeit, ihre
Schwächen zu verbessern. 

Die Analyse durch den Tutor erfolgt von den Projektresultaten ausgehend. Für den
Tutor sind dabei alle Modelldaten über den gesamten Verlauf des Projekts zugäng‐
lich, also auch diejenigen, die in der Realität nicht bekannt sind. Beispielsweise kön‐
nen  enthaltene  Fehler  analysiert  werden.  Damit  der  Tutor  konkrete  Schwächen
aufzeigen kann, muss er einzelne,  sich überlagernde Effekte  identifizieren  (Hampp
und Opferkuch, 2007). SESAM  ermöglicht also,  simulierte Projekte nachträglich zu
analysieren. SESAM gibt aber nicht vor, wie ein ideales Projekt auszusehen hat, son‐
dern schränkt den Spieler so wenig wie möglich ein. Dies erlaubt dem Spieler, ganz
unterschiedliche Lösungen auszuprobieren, ohne dass der Modellbauer diese Lösun‐
gen explizit bei der Modellierung berücksichtigen muss. Durch die Modellkomplexi‐
tät ist nicht möglich, eine optimale Lösung im Voraus zu bestimmen.

4.1.3 Andere Modelle in SESAM

Für SESAM gibt es weitere Modelle und Modellvarianten. Mit dem strikt atomaren
Modell SAM wird die Erstellung einzelner Dokumente durch Entwickler so detailliert
wie möglich modelliert (Eisenbarth und Rohrbach, 1998). Das QSVA‐Modell erweitert
das QS‐Modell um Verhaltensaspekte der Entwickler, beispielsweise Motivation oder
Krankheit  (Kalajzic,  2001).  Eine  feingranulare Variante  des QS‐Modells  beschreibt
Spezifikations‐ und Entwurfsreviews detailliert (Hampp, 2001). In dieser Modellvari‐
ante entdecken einzelne Gutachter Fehler durch Vorbereitung auf die Reviewsitzung,
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abhängig vom Umfang des Prüflings, zu prüfenden Aspekten und  ihrer Erfahrung.
Auch Zusammenhänge in der Reviewsitzung sind modelliert: So wirkt sich aus, wie
erfahren der Moderator und die Gutachter sind, oder ob ein Aktuar (oder Protokoll‐
führer) anwesend ist.

4.1.4 Bewertung und Folgerungen

Das  SESAM‐System  soll  zur  Projektleiter‐Schulung  eingesetzt werden. Dieses Ziel
prägt die Basismaschine, die Werkzeuge und die Modelle. CoBe soll zur Planung ein‐
gesetzt werden. Daraus  ergeben  sich Gemeinsamkeiten  und Unterschiede  für  die
Gestaltung und Realisierung des Modells:

SESAM bildet die Projektzeit auf die Simulationszeit ab und erlaubt,  in  jedem Zeit‐
schritt  in das Projekt einzugreifen. Da CoBe zur Planung eingesetzt wird, sollen  im
Gegensatz dazu die Resultate sofort und direkt dargestellt werden. 

Mit SESAM soll der Spieler nur die Informationen erfahren können, die auch in der
Realität verfügbar sind. CoBe soll im Gegensatz dazu Informationen liefern, die nicht
oder noch nicht verfügbar sind. 

Das QS‐Modell bietet eine Reihe von Modellelementen, die  für ein Kosten‐Nutzen‐
Modell  für Prüfungen als Grundlage dienen können: Die Zusammenhänge  im QS‐
Modell sind empirisch belegt und können in ein Kosten‐Nutzen‐Modell übernommen
werden. Dazu  gehört  insbesondere der Zusammenhang der  Fehlerentstehung und
Fehlerentdeckung, der auch als Fehlerstrommodell bezeichnet wird. Das Modell ent‐
hält mögliche Metrikdefinitionen  für den Umfang,  für Fehler,  für Erfahrungen und
für Fähigkeiten der Entwickler.

Der  Schwerpunkt  des QS‐Modells  liegt  auf  den  Tätigkeiten  des  Projektleiters; mit
CoBe  sollen  dagegen  ganz  bestimmte  Entscheidungen  unterstützt werden.  Einige
Aspekte des QS‐Modells werden darum in CoBe nicht benötigt, andere Aspekte feh‐
len im QS‐Modell: Mit dem QS‐Modell können Entscheidungen über Prüfungen und
ihre Prüfparameter nicht direkt unterstützt werden, da das Modell mit der Ausliefe‐
rung des Produkts endet. Wirkungen der Prüfungen während der Wartung und beim
Einsatz werden darum nicht dargestellt. Außerdem wird nur ein Teil der Entschei‐
dungen über Prüfungen dargestellt. Dies gilt  insbesondere  für den Test: Es können
unterschiedliche Teststufen, aber nicht die eingesetzten Methoden oder ihre Vollstän‐
digkeit gewählt werden. Diese Parameter sind im QS‐Modell fest vorgegeben. Auch
ein Vergleich zwischen Kosten und Nutzen der Prüfungen  ist mit dem QS‐Modell
nicht direkt möglich. Dazu werden zwei Spielverläufe benötigt, die sich in den Ent‐
scheidungen  des  Spielers  über  Prüfungen  unterscheiden  (Hampp  und Opferkuch,
2007). Dauer, Aufwand, Kosten, Code‐ und Handbuchqualität (Korrektheit, Vollstän‐
digkeit)  bilden  eine  vektorielle  Größe,  so  dass  eine  lineare  Bewertung  mehrerer
SESAM‐Projekte nicht möglich ist.
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Das QS‐Modell enthält als wichtigen Aspekt der Simulation den Zeitbezug zwischen
Aktivitäten: Ein Prüfling kann etwa nur dann vollständig geprüft werden, wenn er
komplett ist. Diese Abhängigkeiten sollen die Spieler kennenlernen und beachten. Für
ein Modell, mit dem Entscheidungen über Prüfparameter unterstützt werden, ist die‐
ser Aspekt aber nicht wichtig, da mit diesem Aspekt die Organisation der Arbeit, aber
nicht die Prüfparameter  im Vordergrund  stehen. Die Beziehungen werden darum
nicht übernommen.

4.2 Kostenschätzung mit COCOMO II

COCOMO II  (Boehm,  2000)  ist  ein  algorithmisches  Kostenschätzverfahren.  Mit
COCOMO II werden Aufwand, Dauer und Personalbedarf  für ein Software‐Projekt
geschätzt. Das Modell wurde  auf  empirischem Wege  erstellt,  es  basiert  auf  einem
Regressionsverfahren.  COCOMO II  beschreibt  das  Verhalten,  aber  nicht  die Wir‐
kungsstruktur in Software‐Projekten. 

4.2.1 Zusammenhänge in COCOMO II

In COCOMO II wird der Aufwand aus dem Umfang und aus weiteren Einflusspara‐
metern berechnet:   mit PM als Aufwand und S als Umfang. Ein‐
flussparameter  sind A, E und EM. A  ist ein Kalibrierungsparameter, der angepasst
werden kann.

• Der  Aufwand  wächst  überproportional  mit  dem  Umfang  S,  der  als  Zahl  der
Anweisungen gemessen wird (Abbildung 13). Der Exponent E ist in der Regel grö‐
ßer als 1. Er wird durch im Wesentlichen durch Prozessmerkmale, z.B. den Reife‐
grad oder die Flexibilität, bestimmt.

• Der Aufwand wird durch weitere 17 Merkmale bestimmt, die den Einflussfaktor
EM ergeben. Die Merkmale sind  in Gruppen  für Projektmerkmale, Prozessmerk‐
male, Merkmale der Entwicklungsplattform und Personalmerkmale gegliedert. Ein
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Abb. 13: Umfang, Aufwand und Dauer in COCOMO II
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einzelnes Merkmal kann den Aufwand um einen Faktor größer 2 beeinflussen, die
Personalmerkmale können den Aufwand um den Faktor 3,5 verändern.

Die Dauer wird aus dem Aufwand berechnet:

• Dauer, Aufwand und Personal  sind nicht  frei wählbar. Das Verhältnis zwischen
Dauer  und  Aufwand  ist  durch  die  folgende  Gleichung  bestimmt:

 mit TDEV als Entwicklungsdauer, PM als Aufwand, C und D
als Einflussparameter. Abbildung 13 zeigt diesen Zusammenhang im rechten Dia‐
gramm; der Exponent D liegt typisch um den Wert 0,3, ist also deutlich kleiner 1.
Der Zusammenhang  lässt  sich  in gewissen Grenzen verändern, etwa um großen
Termindruck darzustellen. Dazu kann die Dauer aber höchstens um 25 % verkürzt
werden, die Verkürzung führt zu höherem Aufwand.

• Für ein Standardvorgehen, angelehnt an das Wasserfallmodell, gibt es eine  typi‐
sche Verteilung des Aufwands und der Dauer auf die Phasen und  innerhalb der
Phasen auf die Aktivitäten.

4.2.2 Kalibrierung und Validierung

Das Modell wurde mit 161 Datenpunkten aus der Industrie kalibriert und validiert.
Für den Einsatz wird aber eine lokale Kalibrierung empfohlen, weil die Bewertungen
der Faktoren subjektiv sind, Prozessunterschiede zum Tragen kommen und Begriffs‐
definitionen unterschiedlich sein können.

4.2.3 Bewertung und Folgerungen

COCOMO II bietet eine Top‐down‐Schätzung für Aufwand, Dauer und Personalbe‐
darf  eines  Software‐Projekts,  seiner  Phasen  und Aktivitäten.  Entscheidungen  über
Prüfungen sind aber nicht Teil des Modells.

Für  ein Kosten‐Nutzen‐Modell, mit dem Entscheidungen über Prüfungen und die
Projektplanung  unterstützt werden  sollen,  ist  der  Zusammenhang  zwischen  Auf‐
wand, Dauer und Personalbedarf relevant: Der Projektleiter benötigt diese Größen für
die Planung der Prüfungen. Mit den COCOMO‐II‐Zusammenhängen können Perso‐
nalbedarf  und Dauer  aus  dem Aufwand  abgeleitet werden. Dies  ist  nur möglich,
wenn,  anders  als  im QS‐Modell, Auswirkungen  der Organisation, Verteilung  und
Reihenfolge der Arbeit nicht gezeigt werden sollen. Dazu muss der Prozess festgelegt
werden, in COCOMO II etwa ein sequentieller Prozess.

Die Erfahrungen bei der Kalibrierung und Validierung von COCOMO II zeigen, dass
die Formeln  für Aufwand und Dauer an die Organisation, Domäne oder Projektart
quantitativ angepasst werden müssen. Sie müssen  für die  lokale Einsatzumgebung
kalibriert werden. Die Kalibrierung, die Einflussfaktoren und der überproportionale
Einfluss des Umfangs wirken sowohl auf den Gesamtaufwand als auch auf den Auf‐
wand einzelner Aktivitäten im Projekt.

TDEV C PMD⋅=
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Mit  der Entscheidung,  die Zusammenhänge  aus COCOMO II  zu  verwenden,  sind
einige Metriken (Umfang und Projektmerkmale) festgelegt: Die Grundlage bildet der
Software‐Umfang, gemessen  in SLOC  (logische Lines of Code, Anweisungen), defi‐
niert nach Park (1992). Alternativ können Unadjusted Function Points (IFPUG, 2004)
auf Lines of Code abgebildet werden. Die 22 Merkmale werden durch eine siebenstu‐
fige Ordinalskala abgebildet. Die einzelnen Kategorien sind teilweise durch quantita‐
tive Grenzwerte definiert, teilweise durch Beschreibungen.

4.3 Das Datenarchiv und die Analysen von Jones

Jones  (1996, 2003 und 2007) zeigt Metriken und Metrikwerte aus einem umfangrei‐
chen Datenarchiv.  Im Archiv  sind Daten  aus mehreren  Tausend  Projekten. Diese
Daten sind durch ein Metrikprogramm beschrieben, das definiert, welche Metriken
auf welcher Abstraktionsebene erhoben werden (Jones, 1996). 

Die Grundlage bildet der funktionale Umfang von Software in Function Points. Auf‐
wand, Dauer und Personalbedarf  sind wesentliche Metriken  zur Produktivitätsbe‐
wertung, Fehlerzahlen werden zur Qualitätsbewertung erhoben.

Diese Daten werden  für  das  gesamte  Projekt  und  einzelne Aktivitäten  archiviert.
Dabei ist der Begriff der Aktivität auf einer ähnlichen Abstraktionsebene definiert wie
in COCOMO II (Boehm, 2000), orientiert vor allem an den Dokumenten (Jones, 1996):
Anforderungen, Entwurf, Benutzerdokumentation, Testdokumentation. Diese Daten
werden  in  6 Domänen und  6 Umfangsklassen  aufgegliedert. Die  6 Domänen  sind
Endbenutzer‐Software,  Informationssysteme,  Software  in  Auftragsprojekten,  Soft‐
ware  für den Markt, Software  für das Militär und Systemsoftware. Die 6 Umfangs‐
klassen sind durch den Function‐Point‐Umfang  in 10er‐Potenzen definiert, von der
Klasse mit Software unter 1 Function Point bis zur Klasse mit Software ab 10 000 bis
100 000 Function Points. Größere Projekte sind nicht dargestellt.

Die Daten werden teilweise als Absolutwerte gezeigt, sind aber meist aber durch den
Umfang normiert. In einigen Fällen wird der Mittelwert durch Minimum und Maxi‐
mum ergänzt.

Die Daten werden unter unterschiedlichen Blickwinkeln betrachtet und ausgewertet:

In Jones (1996) werden diese Daten und ihre Anwendung gezeigt, beispielsweise die
Messung  von  Verbesserungen  und  die  Identifikation  der  besten  Methoden.  Der
Schwerpunkt liegt aber auf dem Datenarchiv, also dem Metrikprogramm und seinen
Definitionen. Analysen  und  Präsentation  der Resultate werden  beispielhaft  darge‐
stellt.

Jones  (2003)  stellt  strategische Aspekte  in den Vordergrund. Dazu gehört der Ver‐
gleich mit anderen Organisationen und die Identifikation der erfolgreichsten und der
schädlichsten Methoden. Dabei werden vor allem Daten verwendet, die das gesamte
Projekt charakterisieren. 



60 4. Verwandte Arbeiten

Detaillierter wird  in  Jones  (2007) beschrieben, wie die Kosten einzelner Aktivitäten
geschätzt werden können, untermauert mit Durchschnittsdaten aus dem Archiv. Das
Werkzeug  KnowledgePLAN  (SPR,  2009)  enthält  die  Archivdaten  und  macht  sie
zugänglich. Das Werkzeug bietet Resultate für die Kostenschätzung, also Dauer, Auf‐
wand  und  Personalbedarf,  zusätzlich  die  Fehlerzahl  und  Fehlerdichte  für  das
gesamte Projekt und einzelne Phasen.

Bewertung und Folgerungen

Die aktivitätsbezogenen Daten sind eine wichtige Basis für das QS‐Modell (Drappa,
1998). Die Datensammlung  ist umfangreich und  enthält  Industriedaten. Sie  enthält
somit Mittelwerte vieler Projekte, repräsentiert also Projekte im Allgemeinen. 

Da  die Daten  aktivitätsbezogen  dargestellt werden,  können  sie  als Grundlage  für
Modelle dienen, die einzelne Aktivitäten abbilden. Da mit CoBe Aktivitäten und Aus‐
wirkungen der Prüfungen auf Aktivitäten dargestellt werden  sollen, verwende  ich
die Daten von Jones, um das Modell CoBe zu quantifizieren.

Die Ziele, die mit CoBe  verfolgt werden,  können  aber mit dieser Datensammlung
nicht erreicht werden, da Jones vor allem die Resultate, aber keine Korrelations‐ oder
Ursache‐Wirkungs‐Beziehungen analysiert und beschreibt. Zusammenhänge, die zur
Modellbildung  verwendet  werden  können,  werden  nicht  explizit  genannt.  Diese
Zusammenhänge können aber anhand der Daten analysiert und interpretiert werden.

Das Werkzeug KnowledgePlan enthält solche Zusammenhänge, macht sie aber nicht
öffentlich.  Prüfparameter werden  nicht  dargestellt,  somit werden  auch  keine  Ent‐
scheidungen über die Prüfparameter unterstützt. Fehlerfolgekosten beim Einsatz des
Produkts und Kosten  in der Wartung spielen  in den Diskussionen so gut wie keine
Rolle, weil das Augenmerk vor allem auf dem Projekt liegt. 

Da Mittelwerte vieler Projekte gezeigt werden, können die Werte eines speziellen Pro‐
jekts abweichen. Darum ist eine Aussage, wie gut die Werte von Jones auf ein speziel‐
les Projekt übertragen werden können, nicht möglich. 

4.4 Weitere Kosten‐Nutzen‐Modelle

Es gibt eine Reihe weiterer quantitativer Modelle, die  sich mit Kosten und Nutzen
von  Prüfungen  auseinandersetzen.  Im  Folgenden  werden  diejenigen  Modelle
betrachtet, die Tests und Reviews enthalten und darum mit dem konzipierten Kosten‐
Nutzen‐Modell CoBe verglichen werden können.

4.4.1 COCOMO‐Erweiterungen

Kosten  und  Nutzen  von  Qualitätsverbesserungen  werden  in  iDave  (Information
Dependability Attribute Value Enhancement) hinsichtlich der Zuverlässigkeit bewer‐
tet (Huang und Boehm, 2006; Boehm et al., 2003; Boehm et al., 2004). Das Modell ver‐
wendet  COCOMO II  und  COQUALMO,  ein  Fehlerstrommodell  (Boehm,  2000).
Entscheidungen über Prüfungen werden durch die Prozessreife der Prüfungsarten
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dargestellt. Tabelle 4 zeigt dies beispielhaft für Reviews, das gleiche Vorgehen wird
für Tests und für die automatisierte Analyse angewendet.

Für den Vergleich zwischen Kosten und Nutzen werden Dauer und Qualität durch
VERs (Value estimating relationships) auf Geldwerte abgebildet. Diese Beziehungen
zwischen Prozess‐ und Produktqualität auf Geldwerte stammen aus einer Wirtschaft‐
lichkeitsbewertung  durch  Klienten,  sind  also  nicht  vom Modell  vorgegeben.  Die
Beziehungen können unterschiedliche Formen haben, es kann sich um lineare, stufen‐
förmige, s‐förmige oder einer Pareto‐Verteilung folgende Funktionen handeln. iDave
bietet einige einfache generische Beziehungen zwischen Prozess‐ und Produktqualität
und Geldwerten. Dazu gehört, wie viel ein Fehler oder eine bestimmte Ausfalldauer
kostet. Es können aber auch Risikokosten zur Zuverlässigkeitsbewertung einbezogen
werden.

Bewertung und Folgerungen

Mit  iDave wird  ein ähnliches Ziel wie mit CoBe verfolgt: Kosten und Nutzen von
Qualitätsverbesserungen sollen dargestellt werden. Der Blickwinkel von  iDave  liegt
aber auf strategischer Ebene:

iDave unterstützt nicht Entscheidungen über einzelne Prüfungen und einzelne Prüf‐
parameter, sondern betrachtet die Prozessreife der Prüfungen und  ihre Auswirkun‐
gen. Damit unterscheidet es sich wesentlich von CoBe. 

Der Nutzen der Maßnahmen wird  in  iDave nicht direkt dargestellt, sondern  ist nur
durch Vergleich der Resultate unterschiedlicher Eingaben möglich.

Wartungskosten und Prüfungen in der Wartung werden nicht dargestellt. Wirkungen
beim Einsatz, etwa durch Fehlerfolgekosten, sind durch generische Beziehungen  in
iDave abgebildet. Eine direkte Unterstützung der Projektleiter oder QS‐Verantwort‐
lichen für eine Einschätzung der Fehlerfolgekosten ist also nicht in iDave enthalten.

Rating Peer Reviews

Very Low No Peer review.

Low Ad‐hoc informal walkthroughs.

Nominal Well defined sequence of preparation, review, minimal follow‐up.

High Formal review roles with well‐trained participants and using basic checklists, 
follow‐up.

Very High Basic review checklists, root cause analysis. Formal follow‐up using historical 
data on inspection rate, preparation rate, fault density.

Extra High Formal review roles and procedures. Extensive review checklists, root cause 
analysis. Continuous review process improvement. Statistical Process Control.

Tabelle 4: Bewertung der Prozessreife von Reviews (Boehm et al., 2004)
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Wie im QS‐Modell liegt iDave ein Fehlerstrommodell zu Grunde. Dieses Fehlerstrom‐
modell COQUALMO entspricht im Grundsatz dem Fehlermodell des QS‐Modells. 

4.4.2 El Emams Return‐On‐Investment‐Modell

El Emam  (2005) verwendet ein ROI‐Modell, um Kosten und Nutzen konkreter Pro‐
zessverbesserungen zu demonstrieren. Mit dem ROI‐Modell werden die Auswirkun‐
gen  einer  konkreten  Prüfung  in  einer  bestimmten  Situation  bewertet.  Die
Fehlerentdeckung einer Prüfung wird verwendet, um Kosten und Nutzen darzustel‐
len.  Kosten  und Nutzen werden  durch  anfallende  und  entfallende  Korrekturauf‐
wände  berechnet;  Dauer  und  Mitarbeiter  werden  über  COCOMO II  abgeleitet.
Aufwand wird auf Geldwerte umgerechnet. Fehlerfolgekosten für den Kunden sind
die Installationskosten der Korrektur.

Bewertung und Folgerungen

Das ROI‐Modell von El Emam und CoBe haben einen ähnlichen Zweck, entsprechend
ähnlich ist die Modellgestaltung als funktionales Modell. Ein Fehlerstrommodell bil‐
det die Grundlage. Qualitätskosten werden modelliert. Die gesamte Lebensdauer mit
Wartung und Betrieb wird betrachtet. El Emam legt den Schwerpunkt auf Bewertun‐
gen des Return‐On‐Investment. Das Modell unterscheidet sich deutlich von CoBe:

• Das ROI‐Modell enthält keine Entscheidungen über einzelne Prüfparameter und
damit auch keine Zusammenhänge, um die Auswirkungen dieser Parameter dar‐
zustellen.

• Ein Modell, um die Planung einzelner Aktivitäten mit Dauer, Aufwand und Perso‐
nalbedarf zu unterstützen,  ist nicht enthalten. COCOMO II wird verwendet, um
die Dauer aus dem Aufwand abzuleiten, diese Zusammenhänge werden aber nur
zur ROI‐Berechnung verwendet.

• Als Fehlerfolgekosten beim Einsatz werden die Installationskosten betrachtet. Die
Installationskosten machen einen Teil der Fehlerfolgekosten für den Kunden und
die Benutzer aus. Es fehlt eine Unterstützung der Projektleiter und QS‐Verantwort‐
lichen, um die Kosten, die für Kunde und Benutzer anfallen, einschätzen zu kön‐
nen. Auswirkungen der  Intensität, mit der das Produkt verwendet wird, können
beispielsweise nicht direkt dargestellt werden.

• Das ROI‐Modell ist mit allgemeinen Daten quantifiziert; für spezielle Projekte kann
es neu quantifiziert werden. Es bietet aber keine direkte Kalibrierung, um es an
spezielle Projekte anzupassen.

4.4.3 Wagners Modelle zur Kosten‐Nutzen‐Optimierung

Wagner (2007) entwickelt zwei Modelle mit dem Ziel, Kosten und Nutzen für analyti‐
sche Qualitätssicherung zu optimieren. Das Modell orientiert sich am V‐Modell XT
(2004). Das erste, analytische Modell ist so detailliert wie möglich. Das zweite Modell
wurde für den praktischen Einsatz vereinfacht. Entscheidungen über Prüfungen wer‐
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den durch investierten Aufwand dargestellt. Dazu stellt das Modell unterschiedliche
Funktionen zur Verfügung, beispielsweise für lineare oder exponentielle Zusammen‐
hänge. Wagner nimmt  für den praktischen Einsatz  einen  linearen Zusammenhang
zwischen Aufwand  und  Fehlerentdeckung  an  (Wagner,  2007,  S.  65). Die Modelle
berechnen Prüf‐, Korrektur‐ und Fehlerfolgekosten.

Bewertung und Folgerungen

Mit den Modellen werden ähnliche Ziele wie mit CoBe verfolgt. Sie sind auch ähnlich
wie CoBe als funktionale Modelle gestaltet. Sie basieren auf einem Fehlerstrommodell
und Qualitätskosten. Der Aufwand einzelner Aktivitäten wird betrachtet. Die Ziele
von CoBe können aber nicht mit den Modellen von Wagner  erreicht werden, weil
wichtige Eigenschaften fehlen:

Die Modelle  bieten  keine Unterstützung  für  Entscheidungen  über  Prüfparameter,
sondern modellieren den Aufwand, der  investiert wird. Nicht dargestellt  ist  somit,
auf welche Art und Weise der Aufwand in die Prüfung investiert wird und wie der
Aufwand  sinnvoll  investiert werden  kann. Unklar  bleibt  damit  beispielsweise,  ob
sinnvoller  in  einen  intensiveren Black‐Box‐Test  investiert  oder  ob dieser Aufwand
besser  in einen Glass‐Box‐Test  investiert wird. Nicht betrachtet wird die Wiederho‐
lung von Prüfungen.

Der Nutzen der Prüfungen wird von den Modellen nicht direkt dargestellt. Er wird
erst durch Vergleich zwischen den Modellresultaten aus unterschiedlich  intensiven
Prüfungen sichtbar.

Dauer und Personalbedarf werden nicht dargestellt. Sie  fließen nicht  in die Bewer‐
tung ein; es gibt also keine direkte Unterstützung der Planung. 

Fehlerfolgekosten werden als mittlere Kosten pro Fehler  im Modell angegeben. Die
Modelle bieten somit keine Unterstützung bei der Abschätzung dieser Kosten, etwa
um die Auswirkungen der Intensität, mit der die Software eingesetzt wird, zu erfas‐
sen.

Das Modell ist mit allgemeinen Daten quantifiziert. Es wurde praktisch erprobt, bietet
aber keine Möglichkeit zur Kalibrierung für spezielle Projekte oder Umgebungen.

4.4.4 Müllers Produktlinienmodell

Müller (2007) bewertet Kosten und Nutzen der analytischen Qualitätssicherung in der
Produktlinienentwicklung mit dem Simulationsmodell SQASIM. Das Simulationsmo‐
dell deckt die Produktlinienentwicklung von der Architektur bis zur  Implementie‐
rung ab. Die Entwicklung der Produktplattform und der einzelnen Produkte, die aus
der Plattform abgeleitet werden, werden betrachtet. Anforderungsentwicklung und
Wartung liegen außerhalb der Modellgrenzen. 

Die wesentlichen Eingaben sind, an welchen Punkten im Prozess Prüfungen durchge‐
führt werden, welcher Anteil an Fehlern durch eine Prüfung entdeckt wird, die Pro‐
duktkomplexität,  die  Mitarbeiterzahl  und  die  Zahl  der  eingefügten  Fehler.  Die
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Ausgaben sind Aufwand und Dauer einzelner Phasen und Aktivitäten, Personalbe‐
darf und Fehlerzahlen.

Prozessänderungen werden durch Szenarien beschrieben. Müller (2007) nennt die fol‐
genden Beispiele: Änderung von Prüfungen und ihrer Intensität, Änderung der Per‐
sonalbelegung, Änderung der Fehlerverteilung auf Software‐Module, Änderung der
Auftragsrate und Wechsel der Produktplattform.

Bewertung und Folgerungen

Das Modell  beruht  auf  einem  Fehlerstrommodell  und  stellt, wie CoBe, Aufwand,
Dauer  und  Personalbedarf  einzelner  Aktivitäten  dar.  Da  der  Schwerpunkt  des
Modells  auf der Produktlinienentwicklung  liegt, werden Betrieb und Wartung der
Produkte nicht betrachtet. Fehlerfolgekosten und Kosten für korrektive Wartung wer‐
den nicht dargestellt. Dafür steht die Modellierung von Fehlern, ihrer Entstehung und
ihrer Entdeckung in der Produktplattform und den Produkten im Vordergrund. 

Entscheidungen über Prüfparameter sind im Modell nicht enthalten, auch nicht über
die Wiederholung  von  Prüfungen.  Statt  dessen muss  die  Fehlerentdeckung  direkt
geschätzt werden.

Das Modell wurde  in Projekten  eingesetzt,  es  bietet  aber  keine Unterstützung  zur
Kalibrierung.

4.4.5 Prozesssimulation von Raffo et al.

Martin und Raffo (2000 und 2001) verwenden ein Modell zur Prozesssimulation, das
sich an den ISO‐Standard 12207 (IEEE 12207.0, 1996) anlehnt. Mit diesem Modell sol‐
len unter anderem auch Kosten und Nutzen der Qualitätssicherung untersucht wer‐
den  (Raffo, o.J.; Raffo  et al., o.  J.). Angestrebt wird der Einsatz  in der Planung  für
betriebswirtschaftliche Kenngrößen (Harrison et al., 1999; Raffo, 2005). Entscheidun‐
gen sind  für ganze Aktivitäten,  ihre Kombination und Reihenfolge möglich. Kosten
basieren  auf Korrekturkosten,  ausgegeben werden Aufwand, Dauer, Personal und
entdeckte Fehler der Prüfungen und nach Auslieferung.

Bewertung und Folgerungen

Das Simulationsmodell bietet einen  festen Satz an Prüfungen und ergibt Aufwand,
Dauer und Personalbedarf der Aktivitäten. Dies entspricht in etwa den Metriken, die
auch mit CoBe berechnet werden  sollen. Es unterstützt aber keine Entscheidungen
über einzelne Prüfparameter. Auch Entscheidungen über die Prüfwiederholung wer‐
den nicht unterstützt.

Wartung und Betrieb der Software werden im Modell nicht explizit dargestellt; Fehler
können  zwar  prinzipiell  durch  Kostenfunktionen  bewertet  werden  (Raffo,  2005),
dabei werden die Modellbenutzer und  ‐entwickler aber nicht unterstützt. Die  lang‐
fristigen  Auswirkungen  der  Prüfungen  sind  also  im  Modell  nicht  ausreichend
bewertbar.
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Der Nutzen, der durch eine bestimmte Prüfung erreicht wird, wird nicht direkt dar‐
gestellt: Dazu müssen verschiedene Simulationsläufe durchgeführt und deren Resul‐
tate verglichen werden.

4.5 Bewertungen und Folgerungen

Die Modelle können nicht direkt verwendet werden, weil die einzelnen Prüfparame‐
ter nicht abgebildet werden. Die Modelle bilden im Wesentlichen ab, welche Prüfun‐
gen  stattfinden.  Somit  werden  detaillierte  Entscheidungen  über  Prüfungen  nur
unzureichend unterstützen. Eine Ausnahme bilden die Reviews in SESAM, die detail‐
lierter modelliert  sind. Der  Spieler kann  beispielsweise  entscheiden, ob mehr  oder
weniger Gutachter teilnehmen (Drappa, 1998; Hampp, 2001). Konkrete Entscheidun‐
gen über den Test, beispielsweise über die Testüberdeckung oder Testvorbereitung,
werden dagegen auch in diesen Modellen nicht dargestellt.

Ein weiterer Grund, warum bestehende Modelle nicht direkt übernommen werden
können,  ist, dass die vorhandenen Modelle die  langfristigen Kosten nicht oder nur
unzureichend darstellen. Dazu gehören Wartungskosten für Korrektur und Testwie‐
derholung,  insbesondere  aber die Kosten, die Kunden und Benutzer  tragen. Diese
Kosten werden, wenn  überhaupt,  unvollständig  oder  sehr  grob  dargestellt.  Somit
werden Kosten und Nutzen  für die direkten Klienten des Projekts,  also Benutzer,
Kunde und Wartungspersonal, nicht oder unvollständig  abgebildet. Beispielsweise
werden  die  Fehlerfolgekosten  durch  Installationskosten  der  Korrektur  (El  Emam,
2005) modelliert oder müssen direkt als Kosten pro Fehler angegeben werden (Wag‐
ner, 2007; Huang und Boehm, 2006).

Die grundlegenden Begriffe und Zusammenhänge in Software‐Projekten sind in ähn‐
licher Form  in allen Modellen enthalten. Dazu gehören das Fehlerstrommodell, der
Anstieg  der  Korrekturkosten  mit  der  Latenzzeit  oder  der  Einfluss  des  Software‐
Umfangs. Diese Zusammenhänge sind empirisch belegt und als Teil der Modelle vali‐
diert. Sie können also  in einem Kosten‐Nutzen‐Modell  für Software‐Prüfungen ver‐
wendet werden.
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Kapitel 5

Analyse der Kosten und des Nutzens von 

Prüfungen

Da sich die Ziele von CoBe mit bestehenden Modellen nicht erreichen lassen, werden
in diesem Kapitel die Zusammenhänge für Kosten und Nutzen von Prüfungen analy‐
siert. Diese Analyse ist der erste Schritt der Modellbildung (Abschnitt 3.7). Dabei wer‐
den  auch  die  bereits  bestehenden  Modelle  und  andere  empirische  Arbeiten
berücksichtigt,  um  Teile  aus  diesen Modellen  zu  verwenden.  Dazu  gehören  die
grundlegenden Begriffe und Zusammenhänge in Software‐Projekten. Diese Basiszu‐
sammenhänge werden in Abschnitten 5.1 bis 5.3 gezeigt. Die Analyse von Prüfungen
ist in den Abschnitten 5.4 bis 5.6 dargestellt. 

5.1 Begriffe

Als  ersten  Schritt  der  Modellbildung  werden  im  Folgenden  die  grundlegenden
Zusammenhänge beschrieben. Ich beginne mit den Begriffen, bevor die Zusammen‐
hänge beschrieben werden.

Fehler und Fehlermerkmale

Für Fehler gibt es unterschiedliche Definitionen (Abschnitt 2.7; IEEE 1044, 1993; IEEE
982.1, 2005;  IEEE 610, 1990;  ISO 9000, 2000).  Im QS‐Modell  (Drappa, 1998) wird die
Definition aus IEEE 1044 (1993) für Fehler in einem Artefakt verwendet:

Def. anomaly. Any condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc. or from some‐
one’s perceptions or experiences. (IEEE 1044, 1993)

Diese Definition entspricht dem Fehlerbegriff der ISO 9000 (2000), wenn Anforderun‐
gen aller Klienten und implizite Anforderungen einbezogen werden:

Def. Fehler. Nichterfüllung einer Anforderung. (ISO 9000, 2000)

Unterschieden werden zwischen Abweichungen (anomaly) in einem Artefakt, z.B. in
einem Dokument oder  im Code  (Florac, 1992) und dem Fehlverhalten oder  failure
(IEEE 610, 1990; IEEE 982.1, 2005; Liggesmeyer, 2002):

Def. failure. The inability of a system or component to perform its required functions
within specified performance requirements. (IEEE 610, 1990)
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Def. Fehlverhalten. Ein Fehlverhalten oder Ausfall (failure) zeigt sich dynamisch bei
der Benutzung eines Produkts. Beim dynamischen Test einer Software erkennt
man keine Fehler, sondern Fehlverhalten bzw. Ausfälle. Diese sind Wirkungen
von Fehlern im Programm.

Def. fault. (1) A defect in a hardware device or component; for example, a short cir‐
cuit or broken wire. (2) An incorrect step, process, or data definition in a com‐
puter program. (IEEE 610, 1990)

Def. Fehler. Ein Fehler oder Defekt (fault, defect) ist bei Software die statisch im Pro‐
grammcode vorhandene Ursache eines Fehlverhaltens oder Ausfalls.

Fehler haben unterschiedliche Merkmale, die als Kategorie bezeichnet werden (IEEE
1044, 1993). Jede Kategorie besteht aus Klassen. Ein Fehler wird einer Klasse in einer
Kategorie durch Klassifizierung zugeordnet, beispielsweise der Klasse “dringend” in
der Kategorie “Priorität”. Zwei wichtige Kategorien sind die Fehlerart und die Fehler‐
schwere, weil sie mit Kosten zusammenhängen. Die Fehlerart beschreibt die Aktivi‐
tät,  bei  der  ein  Fehler  gemacht  wird  (Drappa,  1998).  Sie  wird  auch  als
Abstraktionsebene der Fehlerentstehung (Drappa, 1998; Ludewig und Lichter, 2007)
oder Origin (Runeson et al., 2006) bezeichnet:

Def. Fehlerart. Die Fehlerart  ist durch die Aktivität bestimmt, durch die ein Fehler
entstanden ist. 

Im QS‐Modell werden etwa Analysefehler, Feinentwurfsfehler, Grobentwurfsfehler,
Implementierungsfehler und Handbuchfehler unterschieden (Drappa, 1998).

Die Fehlerschwere beschreibt die Auswirkungen eines Fehlers auf die Software‐Ent‐
wicklung und den Einsatz der Software (IEEE 610, 1992):

Def. criticality. The degree of impact that a requirement, module, error, fault, failure
or other  item has on  the development or operation of a system. Syn: severity.
(IEEE 610, 1992)

Frühauf et al. (2006) nennen für Prüfungen, insbesondere für Reviews, drei Klassen,
die durch Auswirkungen auf Projekt und Betrieb definiert sind:

Def. Kritischer Fehler. Prüfling ist für den vorgesehenen Zweck unbrauchbar, Fehler
muss vor der Freigabe behoben werden.

Def. Hauptfehler. Nutzbarkeit des Prüflings ist beeinträchtigt, Fehler sollte vor Frei‐
gabe behoben werden.

Def. Nebenfehler. beeinträchtigen den Nutzen kaum.

Die  Fehlerschwere  kann  unterschiedlich  definiert  und  bewertet werden,  abhängig
von den betrachteten Auswirkungen eines Fehlers. Bassin et al. (2002) betrachten bei‐
spielsweise die Auswirkungen  auf den  Test und unterscheiden  auch  blockierende
Fehler:
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Def. Blockierender Fehler. Ein blockierender Fehler verhindert die weitere Ausfüh‐
rung des Programms, etwa um Testfälle durchzuführen. (Bassin et al., 2002).

Für  verschiedene  Fehlerwirkungen  nennt  der  IEEE‐Standard  1044  (1993)  verschie‐
dene Kategorien. Dazu gehören Dringlichkeit, Auswirkungen auf Projektkosten und
Projektdauer und Auswirkungen, die der Fehler beim Einsatz hat  (oder hätte). Für
jedes Merkmal sind Klassen vorgegeben. Fenton und Pfleeger (1997), Jones (1996, S.
232, S. 367), Dunn (1984), Grady und Caswell (1987) zeigen Beispiele, bei denen sich
die Fehlerschwere auf den Schaden bezieht, der beim Einsatz der Software entsteht.

Software‐Umfang

Der Umfang des Produkts kann  in Function Points mit unterschiedlichen Varianten
(ISO/IEC 14143, 2007; Jones, 2007; IFPUG, 2004) gemessen werden. Der Umfang des
Codes kann in Anweisungen (logische Zeilen, durch Sprachelemente definiert) oder
Lines of Code (physische Zeilen, durch Zeilenumbrüche definiert) gemessen werden
(IEEE 1045, 1992; Park, 1992). Im Folgenden verwende ich Anweisungen, wenn logi‐
sche  Zeilen  gemeint  sind,  und  Codezeilen  oder  Zeilen,  wenn  physische  Zeilen
gemeint  sind. Der  IEEE‐Standard unterscheidet,  ob  Software  in  einem Projekt neu
erstellt  (hinzugefügt),  geändert  oder  unverändert  wiederverwendet  wird.  Dieses
Merkmal wird als Ursprung (Origin) bezeichnet:

Def. Hinzugefügte Software. Software, die im Projekt neu erstellt wird.

Def. Geänderte Software. Software, die bereits vorhanden war und im Projekt geän‐
dert wird.

Def. Wiederverwendete Software. Software, die bereits vorhanden war und unver‐
ändert im Projekt verwendet wird.

Def. Neue Software. Hinzugefügte und geänderte Software. 

Function  Points  erlauben,  den  Umfang  der  Software  in  allen  Projektphasen  zu
beschreiben (Jones, 1996; Drappa, 1998). Zwischen Code‐Umfang und Function Points
kann umgerechnet werden  (Jones, 1996; Boehm, 2000). Der Faktor  für die Umrech‐
nung hängt von der Programmiersprache ab.  Im QS‐Modell wird der Umfang aller
Dokumente durch Function Points beschrieben (Drappa, 1998). In COCOMO II kön‐
nen die Zahl der Anweisungen,  bezeichnet  als  SLOC,  oder die Zahl der  Function
Points verwendet werden (Boehm, 2000). Der Zusammenhang zwischen Anweisun‐
gen und Function Points  schwankt weniger  stark  als  zwischen Lines of Code und
Function Points (Jones, 1996). Der Umfang von Dokumenten kann in Seiten gemessen
werden  (IEEE 1045, 1992). Zwischen Function Points und Seiten kann umgerechnet
werden (Drappa, 1998; Jones, 2007). Die Faktoren hängen von der gewählten Notation
und Methode zur Dokumentation ab (Drappa, 1998; Jones, 2007). 
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5.2 Analyse der Fehlerentstehung, ‐entdeckung und ‐korrektur

Entwicklungs‐ und Prüfprozesse

Bei der Software‐Entwicklung gehen die einzelnen Dokumente durch einen kreativen
Prozess auseinander hervor  (Ludewig und Lichter, 2007). Der Entwickler  ist dabei
schöpferisch  tätig. Beispielsweise setzt ein Entwickler Anforderungen  in einen Ent‐
wurf um;  er  entwirft. Dabei  bleiben  Informationen  aus der  Spezifikation  erhalten,
andere  kommen hinzu,  andere  fallen weg. Drappa  (1998) nennt  explizit, dass  von
einer Vorgabe ausgehend auf die nächstniedere Abstraktionsebene der Entwicklung
transformiert  wird,  dass  also  die  Spezifikation  immer  den  Entwurf  vorgibt.  Das
bedeutet nicht, dass der Entwurf immer dokumentiert werden muss, er kann auch im
Kopf des Entwicklers entstehen. Für die Software‐Entwicklung werden von Drappa
(1998), Jones (1996) und Boehm (2000) und von Begriff‐ und Prozessstandards (IEEE
610,  1990; Automotive  SIG,  2005; CMMI  Product  Team,  2002; V‐Modell XT,  2004)
typisch die Spezifikation, Architektur‐ und Feinentwurf, Implementierung und Inte‐
gration genannt. Die Integration kann mehrere Schritte umfassen. Ein typischer Prüf‐
prozess mit  typischen  Prüfungen wird  z.B  in  Jones  (1996)  dargestellt.  Im  Prozess
werden  Dokumente  Reviews  unterzogen  (Spezifikationsreview,  Entwurfsreview,
Codereviews). Der  Test  findet  auf  unterschiedlichen  Ebenen  statt, mit Modultest,
Integrationstest  in  einzelnen  Schritten,  Systemtest.  Zusätzlich  kann  die  Software
durch einen Feldtest beim Kunden geprüft werden. Mit der automatischen statischen
Codeanalyse,  im  Folgenden  kurz Codeanalyse  genannt, werden  verdächtige Kon‐
strukte im Code von einem Werkzeug identifiziert und dokumentiert (Spinellis, 2006;
Louridas, 2006).

Fehlerentstehung

Die Zahl der entstehenden Fehler hängt vom Umfang des Produkts ab (Jones, 1996).
Fenton und Pfleeger (1997) bezeichen die Fehlerdichte als De‐Facto‐Standard für die
Software‐Qualität. Sie ist definiert als die Zahl der Fehler bezogen auf den Software‐
Umfang. In vielen Fällen werden Erfahrungswerte der Fehlerdichte berichtet (z.B. in
Jones, 1996; Kan, 2003; Grady, 1992).

Der Zusammenhang zwischen Umfang und Fehlerzahl ist überproportional. Er wird
in den Modellen von Drappa (1998), Huang und Boehm (2006); El Emam (2005) und
Martin und Raffo (2000 und 2001) für vollständig neu entwickelte Software verwen‐
det. Software‐Änderungen werden  in den Modellen nicht direkt betrachtet. Möller
und Paulish (1993b) stellen fest, dass sich die Fehlerdichte zwischen neuen und geän‐
derten Modulen  bei  größerem Änderungsumfang  (etwa  ab  70 Zeilen) nicht unter‐
scheidet.  Basili  und  Perricone  (1984)  zeigen  etwas  mehr  Fehler  in  geänderten
Modulen als  in neu  entwickelten Modulen und machen dafür die  falsche Verwen‐
dung vorhandener Schnittstellen verantwortlich.
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Fehler entstehen bei den Aktivitäten der Software‐Entwicklung und werden  in das
Artefakt eingefügt, das bearbeitet wird (Drappa, 1998). Daraus folgt, dass Fehler bei
der Erstellung von Software, aber auch bei der Korrektur von Software entstehen kön‐
nen.

Die Zahl der entstehenden Fehler hängt von vielen Merkmalen ab. Dazu gehört die
Projektart (Jones, 1996) und die Prozessreife; in Projekten mit hoher Prozessreife wer‐
den halb so viele Fehler (Jones, 1996) oder noch weniger (Gibson et al., 2006)  insge‐
samt  entdeckt. Komplexität und  Struktur  spielen  eine Rolle  (El Emam  et  al.,  2001;
Jiang et al., 2008; Olague et al., 2007), der Einfluss lässt sich aber nicht mehr nachwei‐
sen, wenn der Umfang einzelner Klassen einbezogen wird (El Emam et al., 2001; Ola‐
gue et al., 2007). Für das Modell COQUALMO (Boehm, 2000; Devnani‐Chulani, 1997)
wurden Experten  in  einer Delphi‐Befragung  gefragt, wie  stark  sich die  Fehlerzahl
abhängig  von COCOMO‐II‐Parametern  verändert.  Eine Messung  und Validierung
des Einflusses dieser Merkmale fand bislang nicht statt. 

Die Art des Software‐Projekts bestimmt, wie sich die Fehler auf die Fehlerarten vertei‐
len (Jones, 1996). Die konkreten Einflüsse auf die Fehlerzahl und die Verteilung auf
die Fehlerart sind nicht bekannt. Die Verteilung der Fehler auf die Klassen der Fehler‐
schwere hängt von der Definition der Fehlerschwere ab.

Fehlerentdeckung und Fehlerkorrektur

Jede Prüfung entdeckt einen Anteil der Fehler, die im Prüfling enthalten sind. Dieser
Anteil wird als Fehlerentdeckungsquote Q (Drappa, 1998; Kan, 2003) bezeichnet.

Kan (2003) definiert die Defect Removal Effectiveness DRE nicht mit entdeckten, son‐
dern entfernten Fehlern. Die Zahl der enthaltenen Fehler ist in realen Projekten nicht
bekannt, darum wird die Fehlerentdeckungsquote für reale Projekte definiert durch

Prüfungen  entdecken  Fehler  systematisch  auf  einer  bestimmten Abstraktionsebene
(Frühauf et al., 2006; Drappa, 1998). Die Fehlerentdeckungsquote unterscheidet sich
also für verschiedene Fehlerarten (Jones, 1996).

Entdeckte Fehler werden  in der Korrektur behoben. Dabei können  aber durch die
Änderung neue Fehler gemacht werden, außerdem kann die Korrektur unvollständig
sein  (Drappa,  1998). Das  Fehlerstrommodell  beschreibt,  dass  Fehler während  Ent‐
wicklung (und Korrektur) eingefügt und durch Prüfung entdeckt, dann mit der Kor‐
rektur  entfernt  werden.  Abbildung 14  nach  Boehm  (1981,  S.  382)  zeigt  dies
vereinfacht, ohne die Fehlerentstehung durch Korrektur. 

Q Zahl durch Prüfung entdeckter Fehler
 Zahl enthaltener Fehler

-----------------------------------------------------------------------------------------------------=

Q Zahl in Prüfung entdeckter Fehler
Zahl in Prüfung entdeckter Fehler Zahl nach Prüfung entdeckter Fehler+
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Drappa (1998) beschreibt dies anhand der Entwicklung mit Vorgabe. Dabei werden
Fehler aus der Vorgabe übernommen. Das Fehlerstrommodell bildet die Grundlage
aller Modelle,  die  sich mit Kosten  und Nutzen  von  Prüfungen  auseinandersetzen
(Huang und Boehm, 2006; El Emam, 2005; Wagner, 2007; Müller, 2007; Martin und
Raffo, 2000 und 2001).

Fehlerentstehung, Fehlerentdeckung und die Korrektur hängen mit den Erfahrungen
und Kenntnissen der beteiligten Entwickler zusammen (Drappa, 1998).

5.3 Analyse von Fehlerkosten

Fehlerkosten sind unterteilt in Fehlerbehebungskosten und Fehlerfolgekosten. Fehler‐
behebungskosten sind alle Kosten, die mit der Behebung des Fehlers einschließlich
der Prüfung der Korrektur zu  tun haben. Fehlerfolgekosten entstehen durch Fehler
beim Einsatz der Software (Abschnitt 2.9).

5.3.1 Fehlerbehebungskosten

Fehlerkorrektur. Die Korrektur eines Fehlers erfolgt in mehreren Schritten. Falls ein
Fehlverhalten entdeckt wird, beispielsweise im Test oder beim Einsatz der Software,
dann muss bei der Korrektur zuerst die Ursache für dieses Fehlverhalten identifiziert
werden. Dies wird als Fehleranalyse bezeichnet. Falls der Fehler direkt  identifiziert
wurde,  beispielsweise  in  einem  Review  oder  durch  Codeanalyse,  entfällt  diese
Ursachenanalyse. Dann wird die Korrektur entworfen und  implementiert  (Basili et
al., 1996; Sommerville, 2007, Kap. 22), d.h. die Software wird geändert. Je länger ein
Fehler unentdeckt bleibt, desto teurer wird die Korrektur. Die Dauer, die der Fehler
unentdeckt bleibt, wird als Latenzzeit bezeichnet. Diese hängt ab von der Prüfung, bei
der der Fehler entdeckt wurde (Boehm, 1976; Möller und Paulish, 1993a; Kan, 2003),
und der Aktivität, bei der der Fehler gemacht wurde  (Drappa, 1998; Ludewig und
Lichter,  2007;  Kan,  2003).  Beispielsweise  kostet  ein  Fehler,  der  beim  Spezifizieren

Spezifikationsfehler

Entwurfsfehler

Codefehler

In Prüfungen entdeckte und korrigierte Fehler

ausgelieferte 
Fehler

Dokumentationsfehler

Abb. 14: Das Fehlerstrommodell (nach Boehm, 1981)
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gemacht wurde, das zehnfache, wenn er  im Systemtest anstatt  im Spezifikationsre‐
view entdeckt wird. Auf diesem Zusammenhang basieren die Modelle, die sich mit
Kosten und Nutzen von Prüfungen auseinandersetzen (El Emam, 2005; Wagner, 2007;
Müller, 2007; Martin und Raffo, 2000 und 2001; Huang und Boehm, 2006). Wie stark
der Korrekturaufwand ansteigt, hängt vom Umfang der Software ab; in kleinen Pro‐
jekten steigt der Aufwand weniger stark als  in großen Projekten  (Boehm, 1981 und
1976). Zusätzlich  spielt die Fehlerschwere eine Rolle:  Je  schwerer der Fehler, desto
aufwändiger die Korrektur (Zage und Zage, 2003; Kan, 2003). 

Falsche Befunde. Wenn eine Prüfung eine Abweichung zeigt, bei der sich etwa bei
der Fehleranalyse herausstellt, dass es sich nicht um einen Fehler handelt, wird dieses
Prüfresultat als falscher Befund bezeichnet. Falsche Befunde können in jeder Prüfung
entstehen. In Reviews werden diese Befunde in der Regel in der Sitzung identifiziert
(Sabaliauskaite et al., 2002; Votta, 1993). In Tests können falsche Befunde durch Fehl‐
bedienung entstehen.  In der Codeanalyse werden  sehr viele  falsche Befunde ange‐
zeigt (Zheng et al., 2006). Sabaliauskaite et al. (2002) beschreiben den Lebenslauf eines
falschen Befunds. Ein  falscher Befund wird während der Fehleranalyse als  falscher
Befund klassifiziert. Diese Analyse gehört zur Korrektur  (Pressman, 2005, Kap. 13;
Sommerville, 2007, Kap.  22);  es  fällt Analyseaufwand an. Behebungsaufwand oder
Aufwand für die Wiederholung der Prüfung fällt für einen falschen Befund nicht an. 

Prüfwiederholung nach der Korrektur. Nach der Korrektur kann die Prüfung wie‐
derholt werden. Der Umfang der Wiederholung  ist unterschiedlich und  spielt  sich
zwischen vollständiger und gezielter Wiederholung  ab  (Thaller,  2002;  Sneed  et  al.,
2004; Müller  et  al.,  1998). Bei  einer  vollständigen Wiederholung wird die Prüfung
erneut  für  den  gesamten  Prüfling  durchgeführt.  Bei  einer  gezielten Wiederholung
wird  gezielt überprüft,  ob der  Fehler  korrigiert wurde. Es werden  also diejenigen
Testfälle weggelassen, von denen vermutet wird, dass sie durch die Änderung nicht
betroffen sind.

Ob eine Wiederholung durchgeführt wird, ob die Prüfung vollständig oder gezielt
wiederholt wird, kann in der Wartung und in der Entwicklung unterschiedlich sein.
Bei der Entwicklung kann in Projekten diejenige Prüfung wiederholt werden, bei der
der Fehler entdeckt wurde. In anderen Projekten wird die Korrektur durch eine Reihe
von Prüfungen überprüft  (Hörmann  et al., 2006),  einem Korrekturprüfprozess. Ein
solcher Korrekturprüfprozess kann auch in der Wartung nach der Korrektur durch‐
geführt werden (ISO/IEC 14764, 1999; Pigoski, 1997). Dabei kann der Korrekturprüf‐
prozess  von  der  Fehlerschwere  abhängen,  weil  beispielsweise  besonders
schwerwiegende Fehler und weniger schwerwiegende Fehler unterschiedlich behan‐
delt  werden  und  ihre  Korrektur  unterschiedlichen  Prüfungen  unterzogen  wird
(Sneed et al., 2004). In allen Fällen kann die Änderung in einem Review begutachtet
werden (Hörmann et al., 2006; ISO/IEC 14764, 1999; Pigoski, 1997). Die Kosten für die
Wiederholung eines Tests hängen vom Umfang der Wiederholung und vom Grad der
Automatisierung des Tests ab (van Megen und Meyerhoff, 1995).
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Prüfung. Blockierende Fehler sind Fehler, die den Test unterbrechen. Sie verursachen
durch die Unterbrechung Kosten im Test (Kan, 2003; Bassin et al., 2002). Soll der Test
nach der Korrektur weiter durchgeführt werden, dann muss  erst der Zustand der
Testumgebung,  in der der Prüfling ausgeführt wird  (IEEE 610, 1990), wiederherge‐
stellt werden. Bassin et al. (2002) beschreiben: “Blocked” status was used when the test
case attempt did not succeed because access to the targeted area was blocked by code that was
not functioning correctly. Kan (2003) nennt diese Fehler “Showstopper”. Sie gehören zu
den kritischen Fehlern.

5.3.2 Fehlerfolgekosten und Zuverlässigkeit

Fehler zeigen sich beim Einsatz des Produkts als Fehlverhalten: ein Fehler  tritt auf.
Ein Fehler  tritt abhängig von der Art und  Intensität der Verwendung der Software
durch die Benutzer mehr oder weniger häufig auf  (Fenton und Pfleeger, 1997). Bei‐
spielsweise kann die  Software  sehr häufig und  auf  eine bestimmte Art verwendet
werden, dabei werden manche Funktionen mehr, andere Funktionen weniger stark
genutzt. Darum kann ein Fehler gar nicht, einmal oder mehrmals auftreten. 

Die  Zuverlässigkeit wird  quantitativ  durch  Zuverlässigkeitsmetriken,  Zuverlässig‐
keitsmodelle  zur  Prognose  und  Zuverlässigkeitstests  dargestellt.  Zuverlässigkeits‐
metriken,  beispielsweise MTBF  (mittlere  Betriebsdauer  zwischen  Ausfällen, mean
time between failures) basieren auf der Häufigkeit des Fehlverhaltens, typisch bezo‐
gen auf die Einsatzdauer (IEEE 982.1, 2005). Zuverlässigkeitsmodelle prognostizieren
diese Zuverlässigkeit (Lyu, 1995). Sie basieren auf Messungen der Zuverlässigkeit im
Test oder auf der Fehlerdichte. Die Auswahl der Zuverlässigkeitsmodelle ist schwie‐
rig, weil unklar  ist, welches Modell  in welcher Situation ausreichend genau  ist; der
Test muss  dem  Einsatz  ähneln  (Pul,  1993). Die Modelle müssen mit  vorhandenen
Daten quantifiziert werden  (Kan, 2003), dabei  ist unklar, ob Archivdaten eingesetzt
werden können. Zuverlässigkeitstests bestimmen die Zuverlässigkeit, erlauben also
auch  eine Prognose  (Poore und Trammell,  1996). Dafür wird  ein Benutzungsprofil
benötigt, das beschreibt, wie das Produkt verwendet wird. In diesen Zuverlässigkeits‐
metriken,  ‐modellen  und  ‐tests  werden  alle  Fehler  und  ihr  Auftreten  als  gleich
schwerwiegend bewertet. 

Der  Schaden,  den  ein  Fehler  beim  Einsatz  der  Software  verursachen  kann,  kann
unterschiedliche Wirkungen haben und unterschiedlich hoch sein. Für eine subjektive
Einschätzung der Schadenshöhe nennt der IEEE‐Standard 1044 (1993) unterschiedli‐
che Kategorien, um zu beschreiben, wie sich der Fehler auswirkt: Severity, Priority,
Customer value, Mission safety, Societal. Diese Aspekte beziehen sich nicht auf den
Hersteller, sondern auf Klienten des Projekts. Für alle diese Kategorien gibt es Klassen
für die Bewertung, die von keinem Schaden bis zu hohem Schaden reichen; für sicher‐
heitskritische Software reicht die Spanne von leichten Verletzungen bis zu mehreren
Todesfällen (Smith und Simpson, 2005). Boehm (2000) und Huang und Boehm (2006)
verwenden  fünf  Klassen,  um  die  verlangte  Zuverlässigkeit  zu  beschreiben. Diese
Klassen sind definiert durch den Schaden, der verursacht werden kann. Sie reichen
von Komfortproblemen bis zu Personenschaden. El Emam (2005) berechnet die Folge‐
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kosten aus der Zahl der Fehler, die ein Kunde entdeckt, und den organisatorischen
Kosten  für den Kunden. Wagner  (2007) berechnet Fehlerfolgekosten getrennt nach
Fehlerschwere aus der Fehlerzahl und einem durchschnittlichen Schaden pro Fehler.
Nicht berücksichtigt wird aber, wie häufig die Benutzer das Produkt nutzen (die Ver‐
wendungshäufigkeit) und wie intensiv und auf welche Art ein Benutzer das Produkt
nutzt (die Verwendungsintensität).

Ludewig und Lichter  (2007) diskutieren den Zuverlässigkeitsbegriff ausgehend von
der Unzuverlässigkeit. Sie definieren eine Unzuverlässigkeitsmetrik als die Zahl der
Fehler, gewichtet mit der Häufigkeit ihres Auftretens und den Folgekosten, bezogen
auf  die  Betriebsdauer.  Ein  Fehler wird  also mit  dem  Schaden,  den  er  im  Einsatz
anrichtet, bewertet. Der Schaden hängt von der Häufigkeit des Auftretens und den
Kosten jedes einzelnen Auftretens ab. 

5.3.3 Organisationsaufwand

Zusätzlich zu den Kosten der Aktivitäten, die zur Fehlerbehebung durchgeführt wer‐
den, und den Fehlerfolgekosten, die für den Benutzer anfallen, fallen Kosten für wei‐
tere Aktivitäten an: Bei der Software‐Bearbeitung werden unterstützende Aktivitäten
durchgeführt,  da  Prüfung  und Korrektur  geplant  und  organisiert werden müssen
(Quality Management in PMI, 2000). Fehlerkorrekturen und die Prüfungen der Kor‐
rektur können dokumentiert werden (IEEE 1044, 1992), etwa um die Fehleranalyse zu
unterstützen oder zur Kontrolle der Fehlerbehebung. Kosten für die Verwaltung der
Software können anfallen  (IEEE 828, 2005),  im Wesentlichen zur Definition, Verfol‐
gung, Speicherung und Rückverfolgung betroffener Software‐Einheiten.

5.3.4 Aufwand, Dauer und Personalbedarf

Zur Planung von Software‐Projekten und zur Kostenschätzung gehört die Schätzung
von  Aufwand,  Dauer,  Personalbedarf  und  Kosten  als  Geldwerte  (CMMI  Product
Team, 2002; Sommerville, 2007; Kerzner, 2006). Dabei werden die Kosten als Geld‐
werte aus dem Aufwand, der Dauer und dem Personalbedarf einzelner Aktivitäten
abgeleitet (Kerzner, 2006). 

Kostenschätzverfahren wie COCOMO II prognostizieren darum den Aufwand, die
Dauer und den typischen, idealen Personalbedarf. Dabei geht COCOMO II von einer
typischen, idealen Stellenbesetzung und Organisation der Arbeit aus, um Aufwand,
Dauer und Personalbedarf zu berechnen. Im Gegensatz dazu wird dies im QS‐Modell
nicht  vorgegeben,  da  die  erfolgreiche  Planung  zu  den  Lernzielen  des QS‐Modells
gehört.  Den  Aufwand  zu  schätzen  und  den  Personalbedarf  zu  bestimmen  ist  in
SESAM‐Schulungen die Aufgabe des Spielers. Er soll beispielsweise selbst festlegen,
wie viele Mitarbeiter für welche Tätigkeit eingesetzt werden (Drappa, 1998). 

Weil mit  einem Kosten‐Nutzen‐Modell wie CoBe  die  Planung  unterstützt werden
soll,  ist aber sinnvoll, diese Größen zu prognostizieren und darum die Zusammen‐
hänge  zwischen Aufwand, Dauer  und  Personalbedarf  für  typische  Situationen  zu
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modellieren. Die Zusammenhänge zwischen den drei Planungsmetriken Aufwand,
Dauer und Personalbedarf fasse ich wie folgt zusammen: 

Der Aufwand wird durch Merkmale des Projekts, des Prozesses, der Plattform und
des Personals, vor allem aber durch den Umfang bestimmt. Der Umfang bestimmt
den Aufwand überproportional. Die Dauer und damit der Personalbedarf hängen mit
dem Aufwand zusammen  (Boehm, 2000);  es gibt also  ein  typisches, projektspezifi‐
sches Verhältnis zwischen Aufwand, Dauer und Personal.

Der Zusammenhang zwischen Umfang und Aufwand muss an die Umgebung ange‐
passt werden können (Boehm, 2000, Kap. 5), um eine hohe Genauigkeit zu erzielen;
Kostenschätzverfahren  müssen  für  eine  Umgebung  kalibriert  werden  (Kemerer,
1987). Das Verhältnis  zwischen Dauer, Aufwand und Personalbedarf  kann  sich  in
kleinen  Projekten  oder  in  Projekten,  die  einem  anderen  Prozess  folgen,  von  den
COCOMO‐Werten erheblich unterscheiden. Es ist also notwendig, diese Zusammen‐
hänge zu kalibrieren.

Der Aufwand verteilt sich, einen ähnlichen Prozess vorausgesetzt, in bestimmten Ver‐
hältnissen auf die einzelnen Phasen und Aktivitäten. Die Dauer verteilt sich, einen
ähnlichen Prozess vorausgesetzt, in bestimmten Verhältnissen auf die einzelnen Pha‐
sen und Aktivitäten. Damit wirken sich die Kalibrierung, die Merkmale des Projekts,
des Prozesses, der Plattform und des Personals und des Umfangs auf den Gesamtauf‐
wand und auf den Aufwand einzelner Aktivitäten in gleichem Maße aus. Sie wirken
sich auf die Gesamtdauer und die Dauer einzelner Aktivitäten in gleichem Maße aus.

Diese Zusammenhänge  können  angelehnt  an El Emam  (2005) direkt übernommen
werden, weil COCOMO II ein funktionales Modell ist (Abschnitt 3.7). Damit sind die
Metriken  aus  COCOMO II  vorgegeben.  Die  Grundlage  bildet  also  der  Software‐
Umfang, gemessen in Anweisungen. Alternativ können Unadjusted Function Points
(IFPUG,  2004)  auf  Lines  of  Code  abgebildet  werden.  Zusätzlich  werden  die  22
COCOMO‐II‐Merkmale  verwendet,  um  die  konkrete  Situation  des  Projekts  zu
beschreiben.

5.3.5 Geldwerte

Kosten und Nutzen werden für den Vergleich durch Geldwerte dargestellt (Hanusch,
1987; Mühlenkamp, 1994). Wie in El Emam (2005) und Huang und Boehm (2006) müs‐
sen die Auswirkungen von Prüfungen  also  auf Geldwerte  abgebildet werden. Der
Aufwand  im  Projekt  bestimmt  durch  die  Personalkosten  die  Kosten  des  Projekts
(Drappa,  1998;  El  Emam,  2005).  Verzögerungen  des  Projekts  können  Kosten  z.B.
durch Vertragsstrafen  oder  entgangene  Einnahmen  nach  sich  ziehen  (Huang  und
Boehm, 2006). Huang und Boehm (2006) verwenden Funktionen, um von Aufwand
und Dauer auf Geldwerte umzurechnen. Langfristige Kosten oder langfristiger Nut‐
zen wird abgezinst  (Hanusch, 1987), diese Abzinsung  ist aber umstritten  (Mühlen‐
kamp, 1994; Nas, 1996), wenn andere Gruppen von den abgezinsten Werten betroffen
sind.
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5.4 Analyse von Reviews

Der Begriff Review wird für die Begutachtung eines Prüflings verwendet (Schwinn,
2003). Als Prüfling kommen alle Dokumente und der Quellcode in Frage. Freedman
und Weinberg  (1982) und Frühauf et al.  (2006) grenzen das  technische Review von
anderen Varianten ab, da der Begriff  in unterschiedlichen Bedeutungen verwendet
wird: 

• Im technischen Review bereiten sich die Gutachter vor, ihre Befunde werden in der
Sitzung  gewichtet  und  dokumentiert. Dazu  zählt  auch  die  Inspektion mit  Ein‐
führungssitzung und Vorleser (Fagan, 1976).

• Im Walkthrough stellt der Autor sein Dokument vor, die Gutachter können, müs‐
sen aber nicht vorbereitet sein. Sie stellen keine Fehler fest, sondern stellen Fragen.

• Bei  der  Stellungnahme  begutachtet  ein Kollege  das Dokument.  Es  handelt  sich
dabei nicht um ein formales Review. 

Technische Reviews sind am  teuersten, weil sie  formal ablaufen und eine  intensive
Begutachtung enthalten. Für diese Reviews sind umfangreiche Erfahrungen vorhan‐
den:

Ablauf. Ein technisches Review (Freedman und Weinberg, 1982; Frühauf et al., 2006)
wird vom Moderator, dem Autor, einem Notar und mehreren Gutachtern durchge‐
führt. Der Moderator  ist  für die Organisation des Reviews und den Ablauf der Sit‐
zung verantwortlich. Der Autor steht in der Sitzung für Fragen zur Verfügung. Der
Notar, auch als Protokollführer oder Sekretär bezeichnet, notiert die Befunde, die die
Gutachter in der Sitzung nennen. Ein Review besteht aus der Planung, der Vorberei‐
tung, der Sitzung mit Empfehlung über das weitere Vorgehen, der optionalen Nach‐
arbeit  (oder Korrektur) und der optionalen Nachprüfung mit Freigabeentscheidung
(Frühauf  et al., 2006; Freedman und Weinberg, 1982).  In den Reviewmodellen von
SESAM (Drappa, 1998; Hampp, 2001) wird modelliert, dass der Prüfling auf mehrere
Sitzungen verteilt wird, auf die sich die Gutachter vorbereiten.

Fehlerentdeckung durch Gutachter. Die Gutachter bereiten sich getrennt voneinan‐
der vor. Jeder Gutachter entdeckt einen Teil der Fehler; manche Fehler werden von
mehreren Gutachtern entdeckt. Diese Duplikate werden  in der Sitzung  identifiziert.
Biffl  (2001) modellieren dies durch die Wahrscheinlichkeit, mit der  ein Fehler von
einem Gutachter entdeckt wird; Hampp  (2001) modelliert die Fehlerentdeckung als
sich überlappende Fehlermengen, die von den Gutachtern entdeckt werden.  In der
Sitzung werden wenige weitere Fehler entdeckt (Laitenberger et al., 1999; Sauer et al.,
2000).

Vorbereitungsintensität. Eine gründliche Vorbereitung  ist  für eine hohe Fehlerent‐
deckungsquote  notwendig  (Freedman  und Weinberg,  1982; Weller,  1993;  Fagan,
1986). Die Gründlichkeit der Vorbereitung wird  im Folgenden als Vorbereitungsin‐
tensität bezeichnet. Sie hängt eng mit der Vorbereitungsrate, gemessen als Verhältnis
von Umfang und Dauer, zusammen (Fagan, 1986), da die Gutachter ausreichend Zeit
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benötigen. Laitenberger et al. (1999) zeigen den Zusammenhang zwischen Vorberei‐
tungsintensität und Aufwand mit 340 Spezifikations‐, Entwurfs‐ und Codereviews:
Eine zu kurze Vorbereitung mindert die Fehlerentdeckungsquote, eine zu lange Vor‐
bereitung erhöht hauptsächlich die Dauer; es gibt eine optimale, adäquate Vorberei‐
tungsdauer (Biffl, 2001; Laitenberger et al., 1999; Raz und Yaung, 1997). Jalote (2000),
Grady (1992) und Cusumano (1992) nennen Richtlinien für die Vorbereitungrate und
den Durchsatz in der Sitzung, gemessen als Verhältnis zwischen Umfang und Dauer.
Damit sich die Gutachter  intensiv vorbereiten, benötigen sie Managementunterstüt‐
zung,  Schulungen  und  ausreichend Zeit; der Moderator  spielt  eine wichtige Rolle
(Fagan, 1986).

Gutachterzahl. Freedman und Weinberg (1982) fordern mindestens zwei Gutachter,
damit die Objektivität gewährleistet  ist, und so viele Gutachter, dass alle wichtigen
Merkmale geprüft werden können. Fagan  (1976)  schlägt Entwerfer, Programmierer
und Tester als Gutachter vor. Porter und Votta (1997) zeigen Vorteile von zwei Gut‐
achtern gegenüber einem, aber keine Verbesserung durch vier Gutachter. Bush (1990)
nennt drei Gutachter als ausreichend für Code‐Inspektionen. Weller (1993) berichtet,
dass Inspektionen mit vier Gutachtern den Inspektionen mit drei Gutachtern überle‐
gen sind. Sauer et al. (2000) und Laitenberger et al. (1999) sprechen von einem Sätti‐
gungseffekt. In Drappa (1998) sind Reviews mit zwei oder drei Gutachtern möglich,
mit drei Gutachtern werden etwas mehr Fehler entdeckt.

Gutachterkompetenz.  Freedman  und Weinberg  (1982)  fordern  technische Kompe‐
tenz. Basili und Selby (1987) zeigen, dass Praktiker den Akademikern in der Fehler‐
entdeckungsquote und bei der benötigten Dauer überlegen sind. Die Erfahrung spielt
aber eine geringe Rolle (Basili und Selby, 1987; Maldenado et al., 2006; Biffl und Hal‐
ling, 2002). Biffl und Halling (2002) zeigen, dass kompetente Gutachter durch Probe‐
reviews  identifiziert  werden  können.  Minimale  Kenntnisse  über  Software‐
Entwicklung und über die Notation des Dokuments sind notwendig. Welche Eigen‐
schaften zu einer hohen Kompetenz gehören, kann aber nicht gezeigt werden. Die
vereinte Kompetenz der Gutachter prägt die Fehlerentdeckung (Weller, 1993; Sauer et
al., 2000).

Kosten und Umfang. Die Dauer der  Sitzung  ist durch den Umfang des Prüflings
bestimmt, sollte aber auf zwei Stunden beschränkt sein, weil sonst die Konzentration
der Gutachter sinkt. Darum wird ein zu umfangreicher Prüfling auf mehrere Sitzun‐
gen aufgeteilt (Freedman und Weinberg, 1982; Fagan, 1976; Frühauf et al., 2006). Die
Dauer der Vorbereitung  ist durch den Umfang des Prüflings und die  Intensität der
Vorbereitung  bestimmt  (Fagan,  1986;  Biffl,  2001).  Ein  zu  groß  gewählter  Prüfling
hängt mit niedriger Fehlerentdeckung zusammen (Raz und Yaung, 1997). Porter und
Votta  (1997) nennen organisatorische Gründe  (Freedman und Weinberg, 1982) und
eine hohe Zahl von Gutachtern für eine lange Dauer zwischen Reviewbeginn und Sit‐
zung von bis zu vier Wochen.

Prüflingsüberdeckung. Fehler können nur  in dem geprüften Teil eines Dokuments
entdeckt werden. Reviews sollen sich auf die kritischen Entwicklungsresultate kon‐
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zentrieren (Frühauf et al., 2006), insbesondere in Situationen, in denen umfangreiche
Dokumentation  nicht  vollständig  begutachtet  werden  kann  (Schwinn,  2003).  Es
erfolgt also eine Priorisierung der Dokumententeile; diejenigen, die als kritische ange‐
sehen werden, werden  begutachtet,  andere, weniger  kritische  Teile werden  nicht
begutachtet.

Hilfsmittel. Checklisten oder Szenarien können bei der Begutachtung helfen. Es gibt
keine  eindeutigen Untersuchungsergebnisse: Regnell  et  al.  (2000)  stellen  fest,  dass
eine systematische Begutachtung mit diesen Hilfsmitteln den Reviews ohne Hilfsmit‐
tel überlegen ist. Maldenado et al. (2006) können keinen Unterschied zwischen Szena‐
rien und Checklisten feststellen. Porter et al. (1995) zeigen aber, dass die Verwendung
von Szenarien der Verwendung von Checklisten oder einem Vorgehen ohne Hilfsmit‐
tel überlegen ist. Einzelne Gutachter sind mit Checklisten umfassender vorbereitet als
mit Szenarien,  in der Sitzung gleicht  sich dies wieder aus  (Biffl und Halling, 2002;
Biffl, 2001). Checklisten sind etwas günstiger als Szenarien (Biffl, 2001). Regnell et al.
(2000) und Maldenado et al. (2006) können nicht zeigen, dass unterschiedliche Szena‐
rien unterschiedliche Fehler entdecken.

Reviews von Änderungen.  Korrekturen  können  im  Rahmen  eines  Änderungs‐
prozesses  (Hörmann et al., 2006) und des Wartungsprozesses  (ISO/IEC 14764, 1999;
Pigoski, 1997) durch Reviews begutachtet werden. Beispielsweise  soll geprüft wer‐
den, ob die Änderung korrekt ist und ob sie den Richtlinien entspricht. Dabei wird ein
Ausschnitt des Codes betrachtet, nämlich die Änderung und der unmittelbar damit
zusammenhängende Code.

5.5 Analyse von Tests

Testen ist das Ausführen eines Programms mit dem Ziel, Fehler zu entdecken (IEEE
610, 1990; Frühauf et al., 2006). Für den Test werden Testfälle definiert:

Def. test  case.  (1) A  set  of  test  inputs,  execution  conditions,  and  expected  results
developed  for  a particular objective,  such  as  to  exercise  a particular program
path or to verify compliance with a specific requirement.
(2) (IEEE Std 829‐1983 [5]) Documentation specifying  inputs, predicted results,
and a set of execution conditions for a test item. (IEEE 610, 1990)

Jeder Testfall legt den Anfangszustand, Testeingaben, Bedienungen, Sollresultate und
den Endzustand fest. Durch den Vergleich zwischen Sollresultat und Istresultat soll
Fehlverhalten erkannt werden. 

Der Test erfolgt auf unterschiedlichen Integrationsebenen. In IEEE 610 (1990) werden
Unit‐, Modul‐, Integrations‐,Schnittstellen‐ und Systemtests unterschieden, der Prüf‐
ling kann eine einzelne syntaktische Einheit, eine Komponente oder das System sein.
Ellims  et  al.  (2006)  definieren  die  Integrationsebenen  konkret  in  ihrer Umgebung.
Drappa (1998) unterscheidet im QS‐Modell zwischen Modultest, Integrationstest und
Systemtest. Auf allen Ebenen werden die gleichen Testtechniken eingesetzt (Lauter‐
bach und Randall, 1989; Ellims et al., 2006; Liggesmeyer, 2002). Einzelne Komponen‐
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ten, die auch als Subsysteme bezeichnet werden, oder das gesamte Produkt können
integriert und anschließend getestet werden  (Chrissis et al., 2003;  Jones, 2007). Der
Systemtest kann unterschiedliche Schwerpunkte setzen, etwa auf Funktionen, Men‐
gengerüst  oder  Last‐  und  Stressverhalten  (Pressman,  2005,  Kap.  13;  Liggesmeyer,
2002, S. 359). 

In einem systematischen Test werden folgende Aktivitäten durchgeführt (Sneed et al.,
2007; Spillner et al., 2006; Pressman, 2005, Kap. 13; Frühauf et al., 2006; IEEE 829, 1998;
Sommerville, 2007, Kap. 22; ISO/IEC 12207, 1997; Automotive SIG, 2005; Jalote, 2000;
van Megen und Meyerhoff, 1995; Chernak, 2001): 

• Testplanung,

• Vorbereitung der logischen und konkreten Testfälle und Anordnung der Testfälle
in Testsequenzen, die die Reihenfolge bestimmen, in der die Testfälle abgearbeitet
werden (IEEE 829, 1998),

• Aufbau des Testgeschirrs, d.h. der Testumgebung mit Testtreibern, Testdaten und
Platzhaltern (stubs), in der die Software im Test läuft (Frühauf et al., 2006; Sommer‐
ville, 2007, Kap. 23; Chernak, 2001), 

• Testdurchführung und  ‐protokollierung der Testfälle mit und ohne Abweichung
zwischen Soll‐ und Istresultat, 

• Testauswertung für Entscheidungen über das Testende und das weitere Vorgehen
(Sneed et al., 2007; Spillner et al., 2006), 

• Optionale Korrektur als eigenständige Aktivität, die auch die Ursachenanalyse für
eine Abweichung, die Fehleranalyse, enthält  (Pressman, 2005, Kap. 13; Sommer‐
ville, 2007, Kap. 22), 

• Optionale Testwiederholung nach der Korrektur  (Liggesmeyer, 2002; van Megen
und Meyerhoff,  1995;  Ebert  et  al.,  2005;  Automotive  SIG,  2005),  zwischen  den
Extremfällen der vollständigen Testwiederholung und der gezielten Wiederholung
derjenigen Testfälle, die  eine Abweichung zwischen Soll‐ und  Istresultat zeigten
(Thaller, 2002; Sneed et al., 2004; Müller et al., 1998), 

• Abschluss und Archivierung (Spillner et al., 2006; Frühauf et al., 2006).

Diese Aktivitäten werden für Testprozesse vorgegeben (Jalote, 2000; Kan, 2003) und
in der Praxis mehr oder weniger umfangreich, detailliert und systematisch durchge‐
führt und dokumentiert (Siegwart, 2004; Müller et al., 1998). 

Testfalldefinition. In der Testvorbereitung werden Testfälle definiert, d.h. Eingaben
ausgewählt  und  um  Sollresultate  ergänzt.  Die  Testfallauswahl  (oder  Definition)
bestimmt die Fehlerentdeckung und dadurch den Testerfolg (Endres und Rombach,
2003, S. 126; Frühauf et al., 2006). In der Praxis wird für jeden Test im Mittel eine typi‐
sche Zahl von Testfällen definiert  (Jones, 2007).  Jeder Testfall prüft einen Punkt  im
praktisch unendlich großen Eingaberaum der Software (Endres und Rombach, 2003;
Dahl et al., 1972). Da der Eingaberaum so groß ist, ist ein vollständiger Test praktisch
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nicht möglich. Anstatt also den Eingaberaum vollständig zu testen, wird der Eingabe‐
raum in Bereiche geteilt und  jeder Bereich durch einen Testfall geprüft. Der Testfall
soll  zu  allen  anderen  Testfällen  des  Bereichs  äquivalent  bezüglich  der  Fehlerent‐
deckung  sein  (Goodenough  und Gerhart,  1977; Weyuker  und Ostrand,  1980). Der
Bereich wird als Äquivalenzklasse bezeichnet. Ein Fehler definiert eine starke Äqui‐
valenzklasse (Ludewig und Lichter, 2007; Weyuker und Ostrand, 1980) durch die Ein‐
gaben, die den Fehler wirksam werden  lassen. Weil der Fehler erst durch den Test
entdeckt wird, werden mit  Testtechniken  vermutete Äquivalenzklassen  abgeleitet.
Diese  vermuteten  Äquivalenzklassen  bezeichnen  Ludewig  und  Lichter  (2007)  als
schwache Äquivalenzklassen. 

Testfalldefinition  im  Black‐Box‐Test.  Testfälle werden  aus  der  Vorgabe  für  den
Prüfling abgeleitet, d.h. im Systemtest aus der Spezifikation, im Integrationstest aus
dem  (Grob‐)Entwurf,  im Modultest  aus  dem  (Fein‐)Entwurf. Dazu werden  unter‐
schiedliche Elemente verwendet, um den Eingabebereich aufzuteilen, etwa einzelne
Funktionen,  Entscheidungen,  Zustände,  Eingabe‐  und  Ausgabebereiche  (Ligges‐
meyer, 2002). Es werden also verschiedene Testtechniken verwendet, um Äquivalenz‐
klassen  abzuleiten. Der  Test  der Grenzen  dieser  Eingabebereiche  kann  als  eigene
Testtechnik (Pressmann, 2005) oder als Teil der anderen Testtechniken (Liggesmeyer,
2002) aufgefasst werden. In der Praxis sind diese Black‐Box‐Testtechniken weit ver‐
breitet: 

• Eine wichtige  Testtechnik,  die  als minimale  Forderung  für  den  Test  verwendet
wird, ist die Funktionsabdeckung (Frühauf et al., 2006). Sie wird als erstes intuitiv
angestrebt (Cornelissen et al., 1995). Diese Testtechnik ist in der Praxis am Weites‐
ten verbreitet (Müller et al., 1998). 

• Grenzwerte werden häufig geprüft (Müller et al., 1998). 

• Der Test wird ergänzt um weitere Äquivalenzklassen (Spillner und Linz, 2003; Lig‐
gesmeyer,  2002; Müller  et  al.,  1998), Zufallstest  und Ursache‐Wirkungsanalysen
(Müller et al., 1998).

Testfalldefinition  im Glass‐Box‐Test. Für den Glass‐Box‐Test wird gemessen, wie
viel Quellcode durch bereits ausgeführte Testfälle überdeckt wird. Dann werden neue
Testfälle  aus  der  Spezifikation  und  der  bislang  erreichten Überdeckung  abgeleitet
und ausgeführt, so  lange, bis ein Überdeckungskriterium erreicht  ist  (Liggesmeyer,
2002). Unterschieden werden die Techniken anhand der Definition der Überdeckung.
Dabei werden  kontrollflussorientierte  von  datenflussorientierten  Techniken  unter‐
schieden. Die  kontrollflussorientierten Techniken der Anweisungs‐, Zweig‐, Term‐
und Schleifenüberdeckung sind praxisrelevant (Liggesmeyer, 2002):

• Bei der Anweisungsüberdeckung wird gemessen, wie viele Anweisungen ausge‐
führt wurden.

• Bei  der  Zweigüberdeckung wird  gemessen, wie  viele  Zweige  im  Kontrollfluss
durchlaufen wurden.
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• Bei  der  Bedingungsüberdeckung werden  die  einzelnen  Terme  einer  Bedingung
betrachtet. Liggesmeyer  (2002) nennt mehrere Varianten.  Insbesondere die Term‐
überdeckung (MC/DC) ist relevant, weil sie für Software in der Luftfahrt gefordert
wird (RTCA, 1992). Sie prüft, ob jeder einzelne Term in einem logischen Ausdruck
durch den Test das Resultat bestimmt.

• Bei der Schleifenüberdeckung wird gemessen, ob eine Schleife nicht, einmal und
mehrmals durchlaufen wird. Auch dafür gibt es Varianten, etwa wie mit geschach‐
telten Schleifen umgegangen wird (Liggesmeyer, 2002).

Die kontrollflussorientierten Testtechniken sind nicht unabhängig voneinander: 

• Die  Zweigüberdeckung  impliziert  Anweisungsüberdeckung,  außer  bei  totem
Code. 

• Die Termüberdeckung impliziert die Zweigüberdeckung (Liggesmeyer, 2002; Lud‐
ewig und Lichter, 2007). 

• Die  Schleifenüberdeckung  liegt  dagegen  quer  zu  den  anderen  Testtechniken:
Durch  Schleifenüberdeckung wird  ein  Teil  der  Zweige  überdeckt,  nämlich  die
Zweige, die durch Schleifen entstehen. Mit Zweigüberdeckung wird nur teilweise
Schleifenüberdeckung erreicht, weil für die Zweigüberdeckung zwar eine Schleife
mindestens einmal durchlaufen werden muss, dann fehlt aber entweder der mehr‐
malige Durchlauf oder der einmalige Durchlauf.

Datenflussorientierte Techniken werden nicht durch Werkzeuge unterstützt, diversi‐
fizierende Tests spielen nur bei redundant ausgelegter Software eine Rolle. Der kon‐
trollflussorientierte  Glass‐Box‐Test  wird  durch  Standards  gefordert  (RTCA,  1992;
Smith und Simpson, 2005). Müller et al.  (1998) zeigen, dass selbst die Anweisungs‐
überdeckung nur selten eingesetzt werden.

Zusammenhang  Black‐Box‐  und Glass‐Box‐Test. Der Glass‐Box‐Test wird  ergän‐
zend  zum  Black‐Box‐Test  durchgeführt,  erfolgt  also,  nachdem  der  Black‐Box‐Test
durchgeführt wurde  (Lauterbach und Randall,  1989,  zitiert  in Grady,  1992; RTCA,
1992).  Eine  Kombination  der  Black‐Box‐  und  Glass‐Box‐Techniken  wird  benötigt
(Juristo et al., 2002 und 2004), um möglichst viele, auch kritische Fehler zu entdecken
(Dupuy und Leveson, 2000). Weyuker und Ostrand  (1980) begründen dies mit der
Theorie, dass die maximale Zahl an Äquivalenzklassen durch die Zahl der möglichen
Pfade  durch  das  Programm  definiert  ist.  Ein  systematischer  Black‐Box‐Test  erzielt
etwa 50% Anweisungsüberdeckung. Für reale Produkte sind 80% Anweisungsüber‐
deckung  ein  realistisches Testkriterium  (Grady,  1992; Piwowarski  et  al.,  1993). Die
Überdeckung zu steigern wird aufwändiger, je mehr Einheiten bereits überdeckt sind.
Kann Code nicht erreicht werden, dann ist eine vollständige Überdeckung nicht mög‐
lich. Malaiya et al. (1994) verwenden anstatt der Anweisungsüberdeckung die Block‐
überdeckung,  d.h. wie  viele  Blöcke  des  Programmcodes  durchlaufen wurden.  Sie
formulieren und prüfen die Annahme, dass Block‐ und Zweigüberdeckung in einem
bestimmten Bereich  linear zusammenhängen. In diesem Bereich werden alle Blöcke
nahezu überdeckt, die Zweigüberdeckung wächst mit der Blocküberdeckung propor‐
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tional, bleibt insgesamt aber niedriger. In der Untersuchung wurden dann keine wei‐
teren  Testfälle  ausgeführt,  so  dass  keine  Aussage  darüber  möglich  ist,  wie  die
Zweigüberdeckung wächst, wenn bei vollständiger Blocküberdeckung weitere Test‐
fälle durchgeführt werden.

Techniken als Heuristiken. Mit den Testtechniken für Black‐Box‐ und Glass‐Box‐Test
werden keine konkreten Werte für die Testeingaben abgeleitet. Für diese konkreten
Werte  ist der Tester  auf  seine  Intuition  angewiesen  (Liggesmeyer,  2002). Selbst  im
Glass‐Box‐Test, bei dem der Code sichtbar ist, ist es nicht möglich, konkrete Testein‐
gaben auszurechnen: Um beispielsweise eine bestimmte Codezeile auszuführen, kön‐
nen ganz unterschiedliche Pfade durch das Programm durchlaufen und damit ganz
unterschiedliche Eingaben gewählt werden (Beizer, 1990); Bedingungen geben einen
Bereich, aber keinen einzelnen Wert vor: “Kontrollflussorientierte Testtechniken definie‐
ren, wie alle strukturorientierten Testtechniken, keine Regeln für die Erzeugung von Testfäl‐
len” (aus Liggesmeyer, 2002).

Fehlerentdeckung. Auf  jeder Testebene werden systematisch Fehler einer bestimm‐
ten Abstraktionsebene entdeckt (Drappa, 1998). Zusätzlich können Fehler der darun‐
ter liegenden Abstraktionsebene entdeckt werden (Drappa, 1998; Jones, 1996). Da der
Systemtest  gegen  die  Spezifikation  prüft, werden  darum  systematisch  (Grob‐)Ent‐
wurfsfehler  entdeckt. Der  Systemtest  lässt  aber  auch Codefehler wirksam werden.
Außerdem werden Fehler unsystematisch in der Vorgabe, d.h. auf der nächsthöheren
Abstraktionsebene, entdeckt  (Drappa, 1998;  Jones, 1996). Somit werden Spezifikati‐
onsfehler im Systemtest unsystematisch bei der Definition von Testfällen im Zuge der
Verwendung der Spezifikation, etwa um Sollresultate zu definieren, gefunden. Ähnli‐
ches  gilt  für  den  Integrationstest,  der den Grobentwurf  als Vorgabe  hat,  und  den
Modultest, der den Feinentwurf als Vorgabe hat  (Drappa, 1998).  Im Glass‐Box‐Test
werden  tendenziell  andere  Fehlerarten  als  im  Black‐Box‐Test  entdeckt. Der Glass‐
Box‐Test  entdeckt  keine  nicht‐implementierten  Anforderungen  (Basili  und  Selby,
1987; Kamsties und Lott, 1995). 

Empirische  Untersuchungen  dazu  ergeben  aber widersprüchliche  Ergebnisse  und
basieren auf wenigen Fallstudien  (Basili und Selby, 1987; Kamsties und Lott, 1995;
Lauterbach  und Randall,  1989). Die  Entdeckung  neuer  Fehler  nimmt mit  der Zeit
(Kan, 2003; Cornelissen et al., 1995) und mit steigender Zweigüberdeckung (Malaiya
et al., 1994) ab. Die Fehlerentdeckung unterliegt starken Schwankungen (Hutchins et
al, 1994; Wong et al., 1994), begründet durch Querbeziehungen im Code (Chaar et al.,
1993), unterschiedliche Arten der entstandenen Fehler (Juristo et al., 2002 und 2004)
und die konkrete Definition der Testfälle, die nicht durch die Testtechniken abgeleitet
werden kann (Liggesmeyer, 2002).

Vorbereitungszeitpunkt.  Der  Black‐Box‐Test  kann  vorbereitet  werden,  bevor  der
Prüfling erstellt wird. Beim Systemtest kann die Vorbereitung also nach Spezifikation
und  Architekturentwurf  erfolgen  (Jalote,  2000;  van Megen  und Meyerhoff,  1995).
Beim Test einzelner Einheiten wird dieses Vorgehen als  testgetriebene Entwicklung
bezeichnet  (Beck, 2003). Bei der Vorbereitung wird die Vorgabe verwendet, so dass
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dabei  –  unsystematisch  –  Fehler  in  der Vorgabe  entdeckt werden  (Drappa,  1998).
Beim Systemtest werden somit Fehler in der Spezifikation entdeckt. Erfolgt die Vor‐
bereitung früh, dann können diese Fehler früh korrigiert werden. Diese frühe Korrek‐
tur ist günstiger als die Korrektur in der entsprechenden Testphase, weil noch nicht
auf den Spezifikationsfehler aufgebaut wurde  (Abschnitt 5.3). Kann ein Spezifikati‐
onsfehler  erst  in  der  Systemtestphase  korrigiert werden  (späte  Vorbereitung  und
späte Korrektur),  dann wurde  der  Fehler  aus  der  Spezifikation  in  die  Folgedoku‐
mente  und  in  den  Code  übertragen  und  ist  darum  aufwändiger  zu  korrigieren
(Abschnitt 5.3).

Testerkompetenz. Die Kompetenz, Intuition und Erfahrung des Testers oder der Tes‐
ter  spielt  eine  große Rolle  (Spillner und Linz,  2003; Liggesmeyer,  2002; Basili und
Selby, 1987; Lauterbach und Randall, 1989; Müller et al, 1998), weil die Testtechniken
auf Heuristiken beruhen.

Umfang und Aufwand. Der Produktumfang bestimmt den Testaufwand (Jones, 1996;
Boehm, 2000). Der Eingaberaum wächst überproportional mit der Zahl der Eingabe‐
parameter (Endres und Rombach, 2003; Dahl et al., 1972). Darum kann vermutet wer‐
den, dass die Zahl der möglichen Testfälle überproportional mit dem Umfang wächst.
Erfahrungswerte aus der Praxis zeigen aber einen linearen Zusammenhang zwischen
Umfang und Testfallzahl (Jones, 2007, S. 506). Testfallzahl und Überdeckung verhal‐
ten  sich nichtlinear  (Liggesmeyer, 2002, S.86), weil ein Sättigungseffekt eintritt: Die
ersten Testfälle steigern die Überdeckung stärker, spätere Testfälle steigern die Über‐
deckung weniger stark.

Folgerungen

Für die Modellierung der Tests folgere ich: Tests unterschiedlicher Integrationsebene
unterscheiden sich quantitativ, z. B. in der Fehlerentdeckung, aber nicht in den Test‐
techniken und qualitativen Zusammenhängen. Testfälle spielen die zentrale Rolle im
Test. Da der Eingaberaum  von Programmen praktisch unendlich  groß  ist,  können
praktisch nahezu unendlich viele Testfälle definiert werden. Mit welcher Testtechnik
ein Testfall abgeleitet wurde, lässt sich am Testfall nicht erkennen. Die starken Äqui‐
valenzklassen sind unbekannt, weil die Fehler nicht bekannt sind. Darum handelt es
sich bei den Testtechniken um Heuristiken. Somit kann die Zahl der Testfälle, die mit
den Testtechniken abgeleitet werden, d.h. die Zahl der schwachen Äquivalenzklas‐
sen, nicht berechnet, nur geschätzt werden. Daraus folgt auch: Ob ein Testfall einen
Fehler entdeckt, erscheint bei der ersten Ausführung des Testfalls als Zufall, weil die
starken Äquivalenzklassen  nicht  bekannt  sind.  So  ist  unklar,  ob  es  sich  um  einen
bereits getesteten oder noch nicht getesteten Pfad handelt (also eine mögliche Äquiva‐
lenzklasse), und selbst wenn es sich um einen neuen Pfad handelt,  ist unklar, ob er
Teil einer bestimmten starken Äquivalenzklasse ist.
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5.6 Analyse automatischer statischer Codeanalyse

Mit  der  automatischen  statischen  Codeanalyse,  im  Folgenden  kurz  Codeanalyse
genannt, werden verdächtige Konstrukte im Code von einem Werkzeug identifiziert
und dokumentiert (Spinellis, 2006; Louridas, 2006). Es gibt eine Reihe von Werkzeu‐
gen für unterschiedliche Programmiersprachen. Ein frühes, nach wie vor eingesetztes
Werkzeug  für  C‐Code  ist  Lint  (Johnson,  1978).  Die Werkzeuge  verwenden  unter
anderem  Syntax‐,  Kontrollfluss‐  und  Datenflussanalysen.  Damit  sind  sie  fähig,
bestimmte Fehlerarten zu entdecken, können aber bestimmte Fehlerarten prinzipiell
nicht zeigen (Zheng et al., 2006). Die von den Werkzeugen entdeckten Fehler können
ohne diese Werkzeuge in Folgeprüfungen entdeckt werden oder im Einsatz auftreten.
Welche Fehlerarten entdeckt werden können, hängt von den verwendeten Analyse‐
verfahren ab. Die meisten Werkzeuge zeigen auch falsche Befunde an, weil die Analy‐
sen  auf  möglichen,  nur  vermuteten  Fehlern  beruhen  (Zheng  et  al.,  2006).  Das
Werkzeug BEAM (Brand, 2000; Brand und Krohm, 2003; Brand et al., 2007) verfolgt
dagegen den Ansatz, nur tatsächliche Fehler anzuzeigen.

Damit die Prüfung durchgeführt werden kann, muss das Werkzeug  installiert und
eingerichtet werden. Dafür  fällt Vorbereitungsaufwand  für den Entwickler an. Für
die Prüfungsdurchführung ist der Aufwand minimal, weil das Werkzeug nur gestar‐
tet werden muss. Es kann auch in den Build‐Prozess eingebunden werden (Spinellis,
2006). Die Analyse der Resultate kostet Aufwand, um falsche Befunde und Fehler zu
unterscheiden. Für Fehler fällt Korrekturaufwand an.
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Kapitel 6

Ein quantitatives Modell für Prüfungen: CoBe

In  diesem  Kapitel  wird  das  Modell  CoBe  beschrieben.  Abschnitt 6.1  zeigt  einen
Modellüberblick. Das Modell besteht aus einem Basismodell und Prüfungsmodellen.
In Abschnitt 6.2 wird  die Architektur  von CoBe mit  einem  Beispiel  erläutert. Das
Basismodell und seine Zusammenhänge werden in Abschnitt 6.3 dargestellt. Modelle
für Reviews werden  in Abschnitt 6.4,  für die Codeanalyse  in Abschnitt 6.5 und  für
Tests  in Abschnitt 6.6 beschrieben.  In Abschnitt 6.7 werden die Modellteile gemein‐
sam dargestellt. Abschnitt 6.8 enthält die Quantifizierung.

6.1 Überblick über das Modell CoBe

Abbildung 15 zeigt CoBe  im Überblick. Die Eingaben des Modells gliedern  sich  in
Eingaben  für den Prüfprozess des Projekts,  für Prüfparameter einzelner Prüfungen
und  für  Prozess‐  und  Produktmerkmale,  zu  denen  auch  die  Kalibrierung  gehört.
CoBe  stellt Nutzen durch entfallende Kosten dar und gibt Kosten und Nutzen der
Prüfungen pro Aktivität im Projekt aus. Die Kosten werden zusammengefasst, zuerst
alle Kosten im Projekt und alle Kosten nach Auslieferung, dann die Kosten insgesamt
über die gesamte Lebensdauer des Produkts. Nutzen wird auf gleiche Weise zusam‐
mengefasst. Die Zusammenhänge zwischen Eingaben und Ausgaben sind durch Glei‐
chungen beschrieben, die durch interne Parameter quantifiziert sind.
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Kosten pro 
Aktivität

Nutzen pro 
Aktivität

Kosten 
insgesamt
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insgesamt

Prüfprozess 
und 
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zusammen‐
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Ein‐ oder Ausgaben DatenModellzusammenhänge

Ausgaben

Abb. 15: Überblick über das Modell
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CoBe gliedert sich  in ein Basismodell und einzelne Prüfungsmodelle. Abbildung 16
skizziert  diesen  Aufbau.  Das  Basismodell  enthält  die  grundlegenden  Zusammen‐
hänge der Qualitätskosten. Jede Prüfungsart wird durch ein Modell dargestellt. Die
Abbildung zeigt beispielhaft Spezifikationsreview, Entwurfsreview und Systemtest.
Die einzelnen Prüfungsmodelle  sind über Parameter mit dem Basismodell verbun‐
den. Die Struktur erlaubt, das Modell um Prüfungen zu erweitern oder Modelle ein‐
zelner  Prüfungen  zu  ändern,  z.B.  um  unterschiedliche  Entscheidungen  zu
unterstützen. Die Modellkomponenten können einzeln geprüft werden, weil Werte
direkt an den Schnittstellen sichtbar sind. Diese Struktur erlaubt auch, das Modell an
ein anderes Vorgehen  im Projekt anzupassen, beispielsweise weil  sich die Sequenz
der Prüfungen  ändert. Diese Änderung  ist möglich,  ohne die Prüfungsmodelle  zu
ändern. 

6.2 Die Architektur von CoBe

Das Basismodell und die Prüfungsmodelle bestehen  jeweils aus  einzelnen Kompo‐
nenten  (Abschnitt 6.2.1).  Ein  Beispiel  zeigt  im  Folgenden, wie  die Modellresultate
durch die Komponenten berechnet werden (Abschnitt 6.2.2). Die Parameter zur Kali‐
brierung sind in Abschnitt 6.2.3 beschrieben.

6.2.1 Die Modellkomponenten von CoBe

Abbildung 17  zeigt  die  Komponenten  von  CoBe.  Die  Eingaben  sind  oben  in  der
Abbildung, die Ausgaben im unteren Teil. Die Abbildung zeigt, durch welche Kom‐
ponenten die Ausgaben berechnet werden. Die Komponenten des Basismodells sind
in der Abbildung hell dargestellt, die Prüfungsmodelle dunkel. Die Prüfungsmodelle
gliedern sich  für  jede Prüfung  in ein Modell der Fehlerentdeckung und ein Modell
der Prüfkosten. Kosten für die Prüfwiederholung werden getrennt davon berechnet.

Eingaben

Prozess- und
Produktmerkmale

Ausgaben

Kosten und Nutzen
pro Aktivität

Kosten und Nutzen
insgesamt

...

Eingaben Prüfprozess und Prüfparameter

MetrikenBasismodell Prüfungsmodelle

Basismodell

...Entwurfs-
review

System-
test

Spez.-
review

Abb. 16: Überblick über den Modellaufbau
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Die Eingaben werden hier skizziert, sie werden mit den Modellkomponenten detail‐
liert beschrieben (Abschnitte 6.3 bis 6.6). Die Komponenten sind im Einzelnen:

• Das Umfangsmodell gehört zum Basismodell. Es berechnet den Umfang verschie‐
dener Artefakte der  Software‐Entwicklung  aus Eingaben  für den Umfang neuer
und wiederverwendeter Software.

• Die  Prüfungsmodelle  der  Fehlerentdeckung  berechnen  die  Fehlerentdeckungs‐
quoten  (Abschnitt 5.2)  für  unterschiedliche  Fehlerarten  und  Fehlerschwere.  Die
Eingaben beschreiben den Prüfprozess, also ob  eine Prüfung  stattfindet, ob und
wie  die  Prüfung  wiederholt  wird  und  ob  wiederverwendete  Software  geprüft
wird. Eingaben für Prüfparameter sind z.B. die Zahl der Gutachter in Reviews oder
Testtechniken und ihre Vollständigkeit.

• Das Fehlerstrommodell beschreibt die Fehlerentstehung und Fehlerentdeckung. Es
stellt  dar,  welche  Prüfungen  in  welcher  Reihenfolge  stattfinden  können,  und
beschreibt dadurch, welche Prüfsequenzen möglich sind. Für die Fehlerentstehung
werden Verteilungen  auf Fehlerarten und Fehlerschwere und  ein Kalibrierungs‐
parameter für die Fehlerzahl eingegeben. Für die Fehlerentdeckung verwendet das
Fehlerstrommodell  die  Fehlerentdeckungsquoten  der  Prüfungsmodelle.  Das
Ergebnis sind Zahlen für entdeckte, korrigierte und entfallende Fehler für jede Prü‐
fung.

• Die Modelle für die Prüfkosten berechnen für  jede Prüfung den anfallenden Auf‐
wand.  Zusätzlich  werden  in  den  Reviewmodellen  Personalbedarf  und  Dauer
berechnet, weil sich diese direkt aus den Prüfparametern des Reviews ergeben. In
den  Testmodellen  geben  die  Prüfparameter  keinen  bestimmten  Personalbedarf
oder eine bestimmte Dauer vor, so dass nur der Aufwand berechnet wird.

• Die Modelle der Prüfwiederholungskosten  ergeben den Aufwand, der zur Prüf‐
wiederholung  nach Korrekturen  im  Projekt  und  in  der Wartung  benötigt wird,
abhängig von den Eingaben des Prüfprozesses. Der Aufwand wird als anfallende
Kosten oder entfallende Kosten (Nutzen) dargestellt.

• Das Modell  für den Korrekturaufwand berechnet aus den Fehlerzahlen, wie viel
Aufwand für die entdeckten Fehler anfällt (Kosten) und später entfällt (Nutzen).

• Das Aufwandseinflussmodell beschreibt, wie  sich Prozess und Produkt  auf den
Aufwand  auswirken.  Es  verwendet  die  Parameter  von  COCOMO II,  einen
Zuschlag für die Organisation der einzelnen Aktivitäten und einen Kalibrierungs‐
parameter für den Aufwand.

• Das Dauer‐ und Personalmodell  beschreibt die Zusammenhänge  zwischen Auf‐
wand, Dauer und Personalbedarf, um aus dem Aufwand die Dauer und den Perso‐
nalbedarf  abzuleiten.  Dazu  werden  Zusammenhänge  und  Parameter  aus
COCOMO II und zusätzlich ein Kalibrierungsparameter für die Dauer verwendet.

• Das  Fehlerfolgekostenmodell  erlaubt  durch Klassifikation  und Gewichtung  von
Fehlern, die Fehlerfolgekosten abzuschätzen. 
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• Das Geldwertemodell ermöglicht die Gewichtung von Aufwand, Dauer und Perso‐
nalbedarf durch Geldwerte als gemeinsame Skala für den Vergleich.

Die  Metriken  sind  aktivitätsbezogen,  weil  Aufwand,  Dauer,  Personalbedarf  und
Geldwerte pro Aktivität dargestellt werden. Diese Werte werden dann zusammenge‐
fasst. Resultate für die Kosten einer Prüfung sind anfallender Aufwand, Dauer, Perso‐
nalbedarf und Geldwerte pro Aktivität. Resultate für den Nutzen einer Prüfung sind
entfallender Aufwand, gesparte Dauer, dadurch nicht benötigtes Personal und Geld
pro Aktivität. Tabelle 5 zeigt die anfallenden Kosten für die Prüfung (links) und die
entfallenden Kosten, der Nutzen, der durch die Prüfung erreicht wird  (rechts). Der
Nutzen ist in der Tabelle durch ein ’ gekennzeichnet. In CoBe werden unterschieden:

Def. Prüfkosten. Kosten, die für Prüfungen ohne Prüfwiederholung anfallen.

Def. Fehlerbehebungskosten. Kosten  für Korrektur mit  Fehleranalyse  und Ände‐
rung der Software und Kosten  für die Prüfung der Korrektur  (Prüfwiederho‐
lung) im Projekt oder in der Wartung.

Def. Fehlerfolgekosten. Kosten, die beim Einsatz des Produkts durch Fehler verur‐
sacht werden. Kosten für die Fehlerbehebung zählen nicht dazu.

Def. Fehlerkosten. Fehlerbehebungs‐ und Fehlerfolgekosten.

Def. Projekt‐Qualitätskosten. Summe der im Projekt anfallenden Prüf‐ und Fehler‐
behebungskosten.

Def. Gesamt‐Qualitätskosten. Summe der anfallenden Prüf‐, Fehlerbehebungs‐ und
Fehlerfolgekosten im Projekt, im Produkteinsatz und in der Wartung.

6.2.2 Ein Beispiel zur Illustration von CoBe

Die Berechnung der Resultate durch die Modellkomponenten zeigt das folgende Bei‐
spiel für Kosten und Nutzen des Spezifikationsreviews. Die Modellresultate werden
nicht vollständig, sondern ausschnitthaft gezeigt. Insbesondere wird der Nutzen nur
für den Systemtest, nicht für andere Prüfungen betrachtet.

Prüfprozess.  Ein Prüfprozess mit Spezifikations‐ und Entwurfsreview, Modul‐, Sys‐
temintegrations‐, System‐ und Feldtest wird in CoBe eingegeben.

Kosten für Prüfung Entfallende Kosten (Nutzen) durch Prüfung.

• Prüfkosten
• Fehlerbehebungskosten

• Prüfkosten’
• Fehlerbehebungskosten’
• Fehlerfolgekosten’

Tabelle 5: Kosten und Nutzen durch anfallende und entfallende Kosten
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Umfangsmodell. Für  eine Neuentwicklung werden  für  den  Software‐Umfang  200
Function  Points  neue  Software  eingegeben.  Daraus  berechnen  sich  etwa  11 000
Anweisungen Java‐Code, 88 Seiten Spezifikation, 1 Jahr Projektdauer und 3 Mitarbei‐
ter.

Fehlerstrommodell (Fehlerentstehung). Insgesamt entstehen rund 662 Fehler, davon
sind 159 Spezifikationsfehler.

Prüfungsmodell für Fehlerentdeckung (Spezifikationsreview).   Das  vollständige
Spezifikationsreview  wird  durch  5  kompetente  Gutachter  durchgeführt,  die  sich
gründlich vorbereiten. Das Prüfungsmodell des Spezifikationsreviews berechnet aus
diesen Eingaben eine Fehlerentdeckungsquote von etwa 60%. 

Fehlerstrommodell (entdeckte Fehler). Das  Fehlerstrommodell  berechnet,  dass  96
Spezifikationsfehler entdeckt werden. 

Fehlerstrommodell (entfallende Fehler). Mit  dem  Fehlerstrommodell wird  berech‐
net, wie viele dieser 96 Spezifikationsfehler in späteren Prüfungen und nach Ausliefe‐
rung entfallen. Beispielsweise entfallen durch das Spezifikationsreview rund 7 Fehler
im Systemtest, die ohne Spezifikationsreview nach dem Systemtest korrigiert werden
müssten. Nach Auslieferung entfallen 52 Fehler.

Modell für Prüfkosten (Spezifikationsreview). Das Modell  für  die  Prüfkosten  des
Spezifikationsreviews ergibt 7 Mitarbeiter (Gutachter, Autor, Moderator). Es werden
insgesamt 75 Entwicklerstunden Aufwand investiert. Die drei Sitzungen finden ver‐
teilt auf 9 Arbeitstage statt.

Modell für Korrekturaufwand und Aufwandseinfluss.   CoBe  berechnet,  dass  die
Korrektur nach dem Spezifikationsreview 123 Entwicklerstunden kostet. 

Modelle für Korrekturaufwand (entfallend) und für Aufwandseinfluss.   CoBe
berechnet, dass 95 Entwicklerstunden Korrektur im Systemtest entfallen, weil dabei 7
Fehler entfallen. In der Wartung werden für die 52 Fehler, die durch das Spezifikati‐
onsreview entfallen, rund 720 Entwicklerstunden für die Korrektur eingespart.

Modelle für Prüfungswiederholung (entfallend) und für Aufwandseinfluss. Test‐
wiederholung wird im Systemtest nicht eingespart, weil der Test im Beispiel vollstän‐
dig  wiederholt  wird.  In  der  Wartung  entfallen  1150  Entwicklerstunden  für  die
Prüfung der Korrektur durch Modul‐ und Systemtest. 

Dauer‐ und Personalmodell. Aus  den Aufwänden wird  die Dauer  und  der  Perso‐
nalbedarf  berechnet. Die  Korrektur  nach  dem  Spezifikationsreview  beispielsweise
dauert 25 Arbeitstage. Nach dem Systemtest sind mit der Korrektur rund 2 Mitarbei‐
ter beschäftigt, so dass etwa 6 Arbeitstage durch das Spezifikationsreview entfallen.

Geldwertemodell. Der Aufwand wird durch Personalkosten mit 100 Euro pro Ent‐
wicklerstunde gewichtet. Damit ergeben sich für Spezifikationsreview und Korrektur
etwa 20 000 Euro. Dafür entfallen beispielsweise in der Korrektur nach dem System‐
test 9 500 Euro und nach Auslieferung 186 000 Euro für Wartung.
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Fehlerfolgekostenmodell. Die  52  entfallenden  Fehler  nach  Auslieferung  würden
unter den gegebenen Prozess‐ und Produktmerkmalen einen Schaden von insgesamt
rund 66 000 Euro verursachen. Diese Kosten entfallen.

Zuammenfassung. CoBe berechnet Kosten und Nutzen von Qualitätssicherungsmaß‐
nahmen: Der Nutzen des Spezifikationsreviews besteht im Beispiel aus entfallenden
Aufwänden für Korrektur, dazu gehören 95 Entwicklerstunden nach dem Systemtest
und 720 Entwicklerstunden in der Wartung, entfallenden Aufwänden für Testwieder‐
holung  (1150 Entwicklerstunden  in  der Wartung), die dafür  notwendige Dauer  (6
Arbeitstage  nach  dem  Systemtest)  und  entfallenden  Fehlerfolgekosten. CoBe  sum‐
miert den Nutzen im Projekt auf entfallende Personalkosten von 34 000 Euro1. Für die
Wartung wird berechnet, dass 186 000 Euro Personalkosten und 66 000 Euro Folge‐
kosten entfallen. Im Beispiel werden die folgenden Kosten berechnet: Die Kosten des
Spezifikationsreviews  fallen  für die Prüfung  (76 Entwicklerstunden,  9 Arbeitstage)
und die Korrektur  (123 Entwicklerstunden, 25 Arbeitstage) an. Daraus ergeben sich
20 000 Euro  für das Spezifikationsreview. CoBe berechnet  im Beispiel Qualitätskos‐
ten, die im Projekt anfallen (Projekt‐Qualitätskosten) in Höhe von 239 000 Euro und
Qualitätskosten  einschließlich  Wartung  und  Einsatz  (Gesamt‐Qualitätskosten)  in
Höhe von 926 000 Euro.

6.2.3 Die Kalibrierungsparameter von CoBe

Die Parameter von CoBe sind mit Mittelwerten aus der Industrie quantifiziert. Erfah‐
rungen mit Kostenschätzmodellen zeigen, dass eine solche Quantifizierung an spezi‐
fische  Projekte  angepasst  werden  muss.  Dies  wird  als  Kalibrierung  bezeichnet
(Abschnitt 3.6.1). Diese Kalibrierung wird in CoBe durch spezielle Kalibrierungspara‐
meter  unterstützt. Diese  Parameter  ergeben  sich  aus  der Analyse  in  Kapitel 5.  In
Abbildung 17 sind oben die Eingaben des Modells dargestellt. Zu den Kalibrierungs‐
parametern gehören die folgenden Eingaben:

• CoBe  bietet  einen  Aufwands‐  und  einen  Dauerfaktor,  weil  Erfahrungen  mit
COCOMO zeigen, dass Aufwand und Dauer an die Umgebung angepasst werden
müssen. 

• Der Fehlerfaktor zur Kalibrierung der Gesamtfehlerzahl wird benötigt, weil viele
Einflüsse auf die Fehlerentstehung unbekannt, zumindest quantitativ unklar sind.
Als Gesamtfehlerzahl wird die Zahl der insgesamt entdeckten Fehler bezeichnet. 

• Die  Fehler  verteilen  sich  abhängig  vom  Produkt  und  von  der  Projektart  unter‐
schiedlich auf die Fehlerarten und auf die Fehlerschwere. Insbesondere die Fehler‐
schwere kann unterschiedlich definiert  sein. Darum kann die Verteilung auf die
Fehlerarten und die Verteilung  auf die Fehlerschwere  als Parameter  eingegeben
werden. 

1. Dazu gehören neben den entfallenden Kosten im Systemtest auch entfallende Kosten ande‐
rer Prüfungen, die hier im Beispiel nicht gezeigt sind. 
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• CoBe bietet einen Umfangsfaktor für den Code, für die Spezifikation und für den
Entwurf, um den Umfang dieser Artefakte zu berechnen. Die Faktoren  sind mit
Standardwerten belegt und können aus Daten abgeschlossener Projekte berechnet
werden (Abschnitt 6.7.2).

6.3 Das Basismodell mit den grundlegenden Zusammenhängen

Im Folgenden wird jede Modellkomponente mit ihren Eingaben und ihren Resultaten
durch  Gleichungen  und  durch  Ursache‐Wirkungs‐Diagramme  beschrieben.  Die
Bezeichner, die in den Gleichungen verwendet werden, sind zusätzlich im Anhang ab
Seite 281 aufgeführt. Die Ursache‐Wirkungs‐Diagramme stellen dar, welche Ursachen
oder Gruppen von Ursachen sich auf eine bestimmte Größe auswirken (Kan, 2003).

Abbildung 18 zeigt links den grundsätzlichen Aufbau der Diagramme. Die Pfeile stel‐
len Wirkungen in Richtung der Pfeilspitze dar. Die Ursachen werden gruppiert und
in Form von Fischgräten um einen horizontalen Pfeil herum angeordnet. Die zusam‐
mengefasste Wirkung wird  rechts an diesem Pfeil dargestellt. Die Gruppierung  ist
vorgegeben, wenn die Diagramme zur Ursachenanalyse eingesetzt werden.

Für das quantitative Modell sind die Parameter die Ursachen, aus denen das Modell‐
resultat berechnet wird (Rechts in Abbildung 18). In den Diagrammen für CoBe folgt
die Gruppierung keinem festen Schema, sondern wird eingesetzt, um die Parameter
zu gliedern.

Im  Folgenden werden  zuerst  Ausschnitte  des Modells  gezeigt,  um  die  einzelnen
Zusammenhänge zu  erläutern. Abschnitt 6.7 zeigt dann die Komponenten gemein‐
sam.

Die grundlegenden Begriffe, die in CoBe verwendet werden, sind in Kapitel 2 und in
Abschnitt 5.1 definiert. Die Definitionen werden  in diesem Abschnitt an den Stellen
wiederholt, an denen sie benötigt werden.

6.3.1 Das Umfangsmodell von CoBe

Das Umfangsmodell von CoBe beschreibt den Umfang des Software‐Produkts. Dazu
wird die Definition aus dem  IEEE‐Standard 1045  (1992)  für Software übernommen.
Software wird nach ihrem Ursprung unterschieden (siehe Abschnitt 5.1):

Def. Hinzugefügte Software. Software, die im Projekt neu erstellt wird.

Ursache Ursache

Wirkung

Ursache

Parameter Parameter

Modell-
resultat

Parameter

Abb. 18: Ursache‐Wirkungs‐Diagramme zur Beschreibung von CoBe
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Def. Geänderte Software. Software, die bereits vorhanden war und im Projekt geän‐
dert wird.

Def. Wiederverwendete Software. Software, die bereits vorhanden war und unver‐
ändert im Projekt verwendet wird.

Def. Neue Software. Hinzugefügte und geänderte Software. 

Weil CoBe zur Planung eingesetzt werden soll, werden Function Points (IFPUG, 2004)
als Umfangsmetrik verwendet. Sie können bereits zur Planungszeit gezählt werden
(Metzger und Boddie, 1996) und können als gemeinsame Umfangsmetrik über die
Projektdauer und Lebensdauer des Produkts verwendet werden (Drappa, 1998). Der
Code‐Umfang wird  in Anweisungen  (logische Zeilen nach  IEEE 1045, 1992) darge‐
stellt, definiert nach Park (1992), und über einen Umfangsfaktor aus Function Points
abgeleitet (Boehm, 2000). Ich wähle Anweisungen als Metrik und nicht physische Zei‐
len, weil der Umfangsfaktor zwischen Function Points und Anweisungen, nicht zwi‐
schen Function Points und Zeilen, definiert  ist  (Boehm, 2000) und weil  Jones  (1996)
zeigt, dass der Zusammenhang zwischen Function Points und Anweisungen stärker
als der Zusammenhang zwischen Function Points und Zeilen ist (Abschnitt 5.1).

Für die Spezifikation und den Entwurf wird jeweils auf den Umfang in Seiten umge‐
rechnet  (Drappa, 1998;  Jones, 2007). Der Umfangsfaktor  für Spezifikation und Ent‐
wurf  hängt  von  der  Notation,  in  der  die  Dokumente  erstellt  werden,  und  der
Methode zur Erstellung ab (Drappa, 1998; Jones, 2007). Tabelle 6 zeigt die Eingaben. 

Die Umfangsfaktoren dienen der Kalibrierung von CoBe, weil die Faktoren durch die
speziellen Merkmale eines Projekts beeinflusst werden. Zur Kalibrierung sind darum
Daten aus ähnlichen Projekten nötig. Zu den Einflüssen auf die Faktoren gehört, dass
die Umrechnung  auf Anweisungen  durch  die  Programmiersprache  beeinflusst  ist,
durch  den  Programmierstil  oder  durch  die  vorgegebenen  Programmierrichtlinien.
Die Umrechnung auf den Umfang der Dokumente in Seiten hängt unter anderem von
der Notation ab. Da die verwendete Variante der Function‐Points nicht für technisch‐
wissenschaftliche Anwendungen geeignet  ist, kann der Umfang dieser Anwendun‐
gen  in CoBe  entweder  durch Anweisungen  oder  andere  Function‐Point‐Varianten

Eingabeparameter (Prozess und Produkt) Wertebereich

Umfang hinzugefügter Software
Zahl der Anweisungen oder 
Function PointsUmfang geänderter Software

Umfang wiederverwendeter Software

Umfangsfaktor Spezifikation Seiten pro Function Point

Umfangsfaktor Entwurf Seiten pro Function Point

Umfangsfaktor Code  Anweisungen pro Function Point

Tabelle 6: Eingaben für den Umfang
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dargestellt werden. Für  eine andere Function‐Point‐Variante müssen die Umfangs‐
faktoren kalibriert werden. Wird der Umfang in Anweisungen eingegeben, dann wer‐
den Function Points nur zur Umrechnung zwischen Code‐Umfang und Umfang der
Spezifikation und des Entwurfs verwendet. 

6.3.2 Der Fehlerbegriff und das Fehlermodell in CoBe

CoBe basiert auf Fehlerzahlen. Darum wird zuerst der in CoBe verwendete Fehlerbe‐
griff definiert. Die Definition soll erlauben, entdeckte Fehler über die gesamte Soft‐
ware‐Lebensdauer  zu  zählen. Angelehnt  an Drappa  (1998) wird  der  Fehlerbegriff
“Abweichung”  (“anomaly”)  aus  IEEE  1044  (1993)  verwendet. Der  Begriff wird  in
Abschnitt 5.1 diskutiert:

Def. anomaly. Any condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc. or from some‐
one’s perceptions or experiences. (IEEE 1044, 1993)

Im Modell werden Fehler von Fehlverhalten abgegrenzt  (Abschnitt 5.1;  IEEE 982.1,
2005; Liggesmeyer, 2002):

Def. Fehlverhalten. Ein Fehlverhalten oder Ausfall (failure) zeigt sich dynamisch bei
der Benutzung eines Produkts. Beim dynamischen Test einer Software erkennt
man keine Fehler, sondern Fehlverhalten bzw. Ausfälle. Diese sind Wirkungen
von Fehlern im Programm.

Def. Fehler. Ein Fehler oder Defekt (fault, defect) ist bei Software die statisch im Pro‐
grammcode vorhandene Ursache eines Fehlverhaltens oder Ausfalls.

Zwischen Fehlern und Fehlverhalten wird also eine Ursache‐Wirkungs‐Beziehung zu
Grunde gelegt (IEEE 982.1, 2005; Liggesmeyer, 2002), weil Fehler im Code beim Aus‐
führen des Codes wirksam werden können und sich dann als Fehlverhalten manifes‐
tieren.  Fehlverhalten  wird  auch  als  Fehlersymptom  oder  Auftreten  des  Fehlers
bezeichnet. Im Review identifizieren die Gutachter Fehler im Prüfling. Im Test wer‐
den Abweichungen  vom  Sollresultat  identifiziert,  somit wird  das  Fehlersymptom
oder Fehlverhalten erkannt. Die Ursache, der Fehler, muss identifiziert werden.

Fehler werden in CoBe durch Fehlerzahlen repräsentiert, die auf einer Rationalskala
anstatt  auf  einer Absolutskala dargestellt  sind.  Somit kann mit Anteilen gerechnet
werden. Dies ist aus folgenden Gründen nötig: Das Modell wird mit Mittelwerten aus
Datensammlungen  der  Industrie  quantifiziert  und mit Mittelwerten der Organisa‐
tion, in der es eingesetzt wird, kalibriert; es berechnet einen statistischen Erwartungs‐
wert; Unstetigkeiten durch Rundung müssen vermieden werden. 

Fehlerkategorien in CoBe

Fehler  werden  nach  Fehlerart  und  Fehlerschwere  unterschieden,  weil  sich  diese
Merkmale auf Fehlerkosten auswirken. Die Fehler werden durch Verteilungen auf die
unterschiedlichen Klassen dieser beiden Merkmale verteilt. Die Definition der Fehler‐
art orientiert sich an Drappa (1998) und Runeson et al. (2006):
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Def. Fehlerart. Die Fehlerart  ist durch die Aktivität bestimmt, durch die ein Fehler
entstanden ist. 

In CoBe werden Spezifikationsfehler, Entwurfsfehler und Codefehler unterschieden,
da diese Arten in der Literatur verwendet werden (Jones, 1996; Kan, 2003). Sie können
entstehen, wenn Software erstellt oder korrigiert wird.

Da  die  Fehlerschwere  ganz  unterschiedlich  definiert werden  kann  (Abschnitt 5.1),
bietet das Modell die  Standard‐Definition des  IEEE‐Standards  610  (1992) und drei
Klassen aus Frühauf et al. (2006). Blockierende Fehler gehören zu den kritischen Feh‐
lern.

Def. Fehlerschwere. Die Fehlerschwere ist das Maß für den Einfluss eines Fehlers auf
die Entwicklung oder den Einsatz eines Systems. (IEEE 610, 1992)

Def. Kritischer Fehler. Prüfling ist für den vorgesehenen Zweck unbrauchbar, Fehler
muss vor der Freigabe behoben werden. (Frühauf et al., 2006)

Def. Hauptfehler. Nutzbarkeit des Prüflings ist beeinträchtigt, Fehler sollte vor Frei‐
gabe behoben werden. (Frühauf et al., 2006)

Def. Nebenfehler  stören,  aber  beeinträchtigen  den Nutzen  kaum.  (Frühauf  et  al.,
2006)

Def. Blockierender Fehler. Ein blockierender Fehler verhindert die weitere Ausfüh‐
rung des Programms, etwa um Testfälle durchzuführen. (Bassin et al., 2002).

In Projekten können andere Definitionen verwendet werden. Dann ist es notwendig,
die Verteilung der Fehler auf diese Klassen anzupassen; dies gehört zur Kalibrierung.
Wird die Fehlerschwere durch den Schaden definiert, den der Fehler beim Einsatz
verursacht oder verursachen würde, dann bietet CoBe die Möglichkeit, die Fehler‐
schwere anhand des Schadens zu definieren (Abschnitt 6.3.10). 

6.3.3 Modellierung der Fehlerentstehung in CoBe

Bei der Planung eines Projekts ist die Zahl der enthaltenen oder entstehenden Fehler
in  der  Software  unbekannt.  Im Modell werden  diese  Fehlerzahlen  aber  benötigt,
damit Fehlerkosten berechnet werden können. Darum wird in CoBe die Zahl der ent‐
stehenden Fehler aus dem Umfang neuer und wiederverwendeter Software und der
Qualität wiederverwendeter Software  abgeleitet. Der Kalibrierungsparameter  (Feh‐
lerfaktor) und die Verteilung der Fehler auf Fehlerschwere und Fehlerarten beeinflus‐
sen die Fehlerzahlen  (Abbildung 19, Tabelle 7); andere Einflüsse auf die Fehlerzahl
sind in CoBe nicht dargestellt, sondern müssen über die Kalibrierung abgebildet wer‐
den, weil diese Einflüsse nicht belegt sind (Abschnitt 5.2). 

In CoBe wird die Fehlerdichte fd verwendet, um die Zahl der in neuer Software einge‐
fügten Fehler Fneu zu berechnen, weil die Fehlerdichte die gebräuchliche Metrik für
Software‐Qualität ist (Fenton und Pfleeger, 1997). Die Fehlerdichte zwischen geänder‐
ter und hinzugefügter Software wird im Modell nicht unterschieden, da Erfahrungen
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keinen Unterschied zeigen (Möller und Paulish, 1993b). Die Fehlerdichte  fd steigt in
CoBe  mit  dem  Umfang  neuer  Software  in  Function  Points  (Jones,  1996).  Diesen
Zusammenhang  stelle  ich  als  Logarithmusfunktion  zur  Basis  10  dar, weil  Daten‐
sammlungen  Projekte  nach  ihrer  Größenordnung  in  10er‐Potenzen  klassifizieren
(Jones, 1996 und 2003). Die Parameter r0f und r1f können durch lineare Regression aus
Archivdaten berechnet werden. Die Zahl der entstehenden Fehler Fneu berechnet sich
aus der Fehlerdichte, dem Umfang neuer Software und dem Fehlerfaktor kF zur Kali‐
brierung (Abschnitt 6.2.3):1

,     

Wiederverwendete Software wird unverändert übernommen, darum entstehen in der
wiederverwendeten Software keine neuen Fehler. In der neu erstellten Software, die
andere Software wiederverwendet, können Schnittstellenfehler entstehen (Basili und
Perricone, 1984). Da es dafür keine weiteren Daten gibt, wird dies im Modell durch
die Kalibrierung abgebildet. Die Zahl der Fehler in wiederverwendeter Software Fwv
wird  aus der  Fehlerdichte  fd, dem Kalibrierungsparameter  kF und dem Anteil der
Fehler, die bereits vor der Wiederverwendung entfernt wurden (Qwv), berechnet: 

Eingabeparameter Wertebereich

Fehlerfaktor Verhältnis Istwert und 
Modellresultat ohne Kalibrierunga

Verteilung auf Fehlerschwere 
(kritische Fehler, Hauptfehler, Nebenfehler) Anteil jeweils 0...100 %

Verteilung auf Fehlerarten
(Spezifikationsfehler, Entwurfsfehler, Codefehler) Anteil jeweils 0...100 %

Tabelle 7: Eingaben für Fehlerentstehung
a. Zur Kalibrierung werden Archivdaten verwendet.

1. Die Bezeichner in den Formeln sind im Verzeichnis der Bezeichner ab Seite 281 beschrieben.

Umfang neuer
Software

Umfang wieder-
verwendeter SW

Fehlerentdeckung
in wiederverw. SW

Fehlerfaktor

Verteilung auf
Fehlerarten

Verteilung auf
Fehlerschwere

Entstehende Fehler
pro Fehlerart und
pro Fehlerschwere

Abb. 19: Ursache‐Wirkungs‐Diagramm der Fehlerentstehung

fd r0f r1f SFPneu( )10log⋅+= Fneu kF SFPneu fd⋅ ⋅=

Fwv kF SFPwv fd 1 Qwv–( )⋅ ⋅ ⋅=
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Die  entstehenden  Fehler werden  auf  die Klassen  für  Fehlerschwere  und  Fehlerart
anhand der Eingaben in Prozent verteilt.

6.3.4 Modellierung der Fehlerentdeckung und Fehlerkorrektur in CoBe

Fehler werden in Prüfungen entdeckt. Die Sequenz der möglichen Prüfungen in CoBe
(Abbildung 20)  lehnt  sich  an  Prozessstandards  und  typische  Prozesse  an
(Abschnitt 5.2). Zu diesen Prozessen und Vorgaben gehören die  folgenden Prüfun‐
gen: Spezifikationsreview, Entwurfsreview, Codereview und automatische statische
Codeanalyse (kurz: Codeanalyse), Modultest, Subsystem‐ und Systemintegrationstest
und Systemtest, außerdem der Test durch den Kunden, der auch als Feldtest bezeich‐
net wird (Jones, 1996). Diese Prüfungen werden darum in CoBe dargestellt.

Die Prüfsequenz, der CoBe folgt, leite ich aus den gleichen Prozessen und Vorgaben
ab; sie folgt den Abstraktionsebenen der Entwicklung (Spezifikation, Entwurf, Imple‐
mentierung). Die Sequenz basiert auf den folgenden Annahmen:

• Ich nehme  ein  sequentielles Vorgehen  an,  so dass  zuerst  Software  erstellt, dann
geprüft, dann korrigiert wird. Die Spezifikation wird also beispielsweise nach dem
Review erst korrigiert, bevor der Entwurf beginnt. 

• Ich nehme an, dass Entwickler die Codeanalyse selbst anstoßen, sie findet also par‐
allel zur Implementierung statt. 

• Codereviews  finden  nach  Modultest  und  Subsystemintegrationstest  statt,  weil
Reviews Zeit  zur Organisation  benötigen. Modultests werden  häufig  durch  die
Entwickler selbst und verwoben mit der Implementierung durchgeführt (Siegwart,
2004). Auch die  Subsystem‐Integration mit dem Test  findet  im Modell vor dem
Review statt, weil beispielsweise kontinuierlich integriert wird. 

Diese Sequenz deckt also das typische Vorgehen vieler Projekte ab (Abschnitt 5.2); für
Projekte mit anderer Reihenfolge muss CoBe angepasst werden. Mit den Eingaben
über den Prüfprozess kann bestimmt werden, welche dieser Prüfungen durchgeführt
werden  (Parameter  P)1,  und  ob  in  einer  Prüfung  auch  wiederverwendeter  Code
geprüft wird (Parameter WV, Tabelle 8).

Die Fehlerentdeckungsquote Q beschreibt die Fehlerentdeckung einer Prüfung:

Def. Fehlerentdeckungsquote Q. Anteil der  entdeckten Fehler an den  enthaltenen
Fehlern, unterschieden nach Fehlerart und Fehlerschwere.

Jedes  Prüfungsmodell  berechnet  die  zugehörige  Fehlerentdeckungsquote  Q,  die
unterschiedlich hoch für verschiedene Fehlerarten und Fehlerschwere ist. 

1. Binäre Eingaben und Auswahleingaben sind fett gesetzt.
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Eingabeparameter für

Wertebereich

Durchführung der 
Prüfung (P)

einschl. wiederverwendeter 
Software (WV)

Spezifikationsreview ja / nein ja / nein

Entwurfsreview ja / nein ja / nein

Codeanalyse ja / nein ja / nein

Modultest ja / nein ja / nein

Subsystem‐Integrationstest ja / nein ja / nein

Codereview ja / nein ja / nein

Systemintegrationstest ja / nein ja / nein

Systemtest ja / nein ja / nein

Feldtest ja / nein ja / nein

Tabelle 8: Eingaben für Prüfprozess

Abb. 20: Prüfsequenz in CoBe

Modultest

Subsystem‐Integrationstest

Codereview

Systemintegrationstest

Systemtest

Feldtest Sequenz

Codeanalyse

Spezifikationsreview

Entwurfsreview

Legende
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Bei der Korrektur können Fehler unvollständig korrigiert werden oder neue Fehler
eingefügt werden. Weil  in CoBe Fehler als Zahl dargestellt werden, gibt es  in CoBe
keine Unterscheidung, ob entdeckte Fehler nicht korrigiert oder Fehler neu eingefügt
wurden.  Stattdessen wird  durch  die  Korrekturquote QK  dargestellt,  dass  nur  ein
Anteil der Fehler korrigiert wird: 

Def. Korrekturquote QK. Anteil der entdeckten Fehler, der korrigiert wird. 

Im Modell wird die gleiche Korrekturquote für die unterschiedlichen Fehlerarten und
für unterschiedlich schwere Fehler verwendet. Das Modell erlaubt unterschiedliche
Korrekturquoten,  um  beispielsweise  darzustellen,  dass  schwere  Fehler  bevorzugt
korrigiert  werden. Weil  dazu  aber  detaillierte  Erfahrungswerte  fehlen,  ist  dieser
Aspekt quantitativ nicht dargestellt. Abbildung 21 zeigt das Fehlerstrommodell mit
diesen Parametern.

Entdeckte und korrigierte Fehler pro Prüfung

Weil die Fehlerkosten von der Fehlerart, der Fehlerschwere und der Prüfung, bei der
ein Fehler entdeckt wird, abhängen, berechnet CoBe  für  jede Prüfung die Zahl der
entdeckten Fehler, der korrigierten Fehler und der danach in der Software enthalte‐
nen Fehler jeweils getrennt nach Fehlerart und Fehlerschwere (Abbildung 22). 

Fehlerzahlen werden mit F bezeichnet. Sie werden getrennt nach dem Ursprung der
Software, d.h. getrennt für neue und für wiederverwendete Software, berechnet. Feh‐
ler in neuer Software werden entdeckt und korrigiert, wenn die Prüfung stattfindet,
wenn also P auf “ja” gesetzt ist (Tabelle 8). Ist zusätzlich WV gesetzt, dann wird auch
wiederverwendete  Software  geprüft.  Somit  werden  Fehler  in  wiederverwendeter
Software entdeckt und korrigiert. Beispielsweise wird die Zahl der im Spezifikations‐

Fehlerzahlen

Zahl
entstehender
Fehler
pro Fehlerart und
pro Fehlerschwere
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Für jede Prüfung die Zahl der entfallenden Fehler pro Folgeprüfung

Abb. 21: Ursache‐Wirkungs‐Diagramm für das Fehlerstrommodell
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review  (SR)  entdeckten  Fehler  FSR,entdeckt,Ursprung,Art,Schwere  für  Fehler  der Art  und
Schwere aus den eingefügten Fehlern  für neue und  für wiederverwendete Software
(Ursprung) berechnet:

Bei der Korrektur werden Fehler unvollständig korrigiert und neue Fehler eingefügt,
so  dass  nur  ein  Teil  der  entdeckten  Fehler,  FSR,korrigiert,Ursprung,Art,Schwere,  entfernt
wird:

 

Nach der Korrektur verbleiben Fehler in der Software; dies sind die enthaltenen Feh‐
ler FSR,enthalten,Ursprung,Art,Schwere:

Beispielsweise werden 50 der 100 Spezifikationsfehler entdeckt (Q = 50 %). Die Kor‐
rekturquote beträgt 90 %, d.h.  in der Korrektur werden 90 % der entdeckten Fehler
tatsächlich korrigiert (45 Fehler). Damit bleiben 55 Spezifikationsfehler übrig.

Nach dem Spezifikationsreview kommen durch den Entwurf Entwurfsfehler  in die
Software. Im Entwurfsreview sind also diejenigen Fehler zu finden, die nach der Kor‐
rektur des Spezifikationsreviews und nach dem Entwurf enthalten sind; sie stammen
aus der Spezifikation oder aus dem Entwurf:

Mit  einer  Fehlerentdeckungsquote  für  Spezifikationsfehler  von  10 %  entdeckt  das
Entwurfsreview also 5,5 Fehler der 55 Spezifikationsfehler und zusätzlich Entwurfs‐
fehler, die  in diesem Beispiel nicht betrachtet werden. Die Fehlerentdeckung  einer
Prüfung bezieht  sich  immer auf die  enthaltenen Fehler,  also diejenigen Fehler, die

Enthaltene
Fehler (neue SW)

Fehlerent-
deckungsquote

WV: Prüfung
wv. Software

Korrekturquote

Enthaltene Fehler
nach Prüfung und
Korrektur

Korrigierte Fehler

Enthaltene
Fehler (wv. SW)

Fehlerentdeckungs-
und Korrekturquoten
in Folgeprüfungen

Entfallende
Fehler nach
Prüfung und
Korrektur

Abb. 22: Ursache‐Wirkungs‐Diagramm für enthaltene, entdeckte, korrigierte 
und entfallende Fehler

FSR,entdeckt Ursprung Art Schwere, , , FUrsprung A, rt Schwere, QSR,Art Schwere,⋅=

FSR,korrigiert Ursprung Art Schwere, , , FUrsprung A, rt Schwere, QSR,Art Schwere, QK⋅ ⋅=

FSR,enthalten Ursrpung Art Schwere, , ,

FUrsprung Art Schwere, , FSR,korrigiert Ursprung Art Schwere, , ,–=

FER,entdeckt Ursprung Art Schwere, , , FSR,enthalten Ursrpung A, , rt Schwere, QER,Art Schwere,⋅=
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nach der Korrektur der vorherigen Prüfung übrig sind, und diejenigen Fehler, die neu
in die Software eingefügt wurden. 

Die Zahl entdeckter und korrigierter Fehler der anderen Prüfungen im Modell wird
auf die gleiche Art und Weise berechnet. Daraus ergibt sich die Zahl der ausgeliefer‐
ten Fehler. Ein Teil dieser Fehler  tritt nicht auf, wird nicht gemeldet oder erscheint
tolerierbar und wird darum auch nicht in der Wartung korrigiert.

Entfallende Fehler durch Prüfung und Korrektur

In CoBe  ist der Nutzen durch entfallende Fehlerkosten definiert. Diejenigen Fehler,
die bereits korrigiert wurden, können nicht mehr in folgenden Prüfungen und nach
Auslieferung  entdeckt werden. Diese  Fehler werden  im  Folgenden  als  entfallende
Fehler  bezeichnet.  Die  Zahl  entfallender  Fehler wird mit  den  gleichen  Fehlerent‐
deckungs‐  und  Korrekturquoten  berechnet  wie  die  Zahl  entdeckter  Fehler
(Abbildung 22); dabei entfallen so viele Fehler in den Folgeprüfungen und nach Aus‐
lieferung, wie korrigiert wurden. Im Beispiel oben entfallen also die 45 Spezifikations‐
fehler, die nach dem Spezifikationsreview korrigiert werden, in den Folgeprüfungen
und nach Auslieferung. Ohne das Spezifikationsreview und dessen Korrektur wür‐
den z.B. 10 % dieser Fehler im Entwurfsreview entdeckt werden (FSR,entfallend,ER = 4,5
Fehler) und entsprechende Korrekturkosten verursachen.

Wird zum Beispiel in CoBe eingegeben, dass im Prüfprozess keine Codeanalyse statt‐
findet, aber ein Modultest und ein Subsystem‐Integrationstest, dann entfallen Fehler,
die bereits nach dem Spezifikationsreview korrigiert wurden, im Modultest (MT) und
dann im Subsystem‐Integrationstest (PT1):

1. Der Subsystem‐Integrationstest wird durch PT gekennzeichnet; dabei steht P für “Package”.

FSR,entfallend,ER Ursprung Art Schwere, , ,

FSR,korrigiert Ursprung Art Schwere, , , QER,Art Schwere,⋅=

FSR,entfallend,MT Ursprung Art Schwere, , ,

FSR,korrigiert Ursprung Art Schwere, , , 1 QER,Art Schwere, QK,ER⋅–( ) QMT,Art Schwere,⋅ ⋅=

FSR,entfallend,PT Ursrprung Art Schwere, , ,

FSR,korrigiert Ursprung Art Schwere, , ,

1 QER,Art Schwere, QK,ER⋅–( ) 1 QMT,Art Schwere, QK,MT⋅–( ) QPT,Art Schwere,⋅ ⋅ ⋅

=
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Falsche Befunde

Falsche Befunde werden  in CoBe durch  ihre Anzahl  beschrieben.  In  Studien wird
typisch das Verhältnis  zwischen  falschen Befunden und  echten Fehlern dargestellt
(Wagner et al., 2005; Zheng et al., 2006). Darum wird im Modell die Zahl der falschen
Befunde linear aus der Zahl der entdeckten Fehler berechnet. 

6.3.5 Das Modell für den Korrekturaufwand in CoBe

Zu den Kosten der Fehlerbehebung gehören die Korrekturkosten. Dazu gehört auch
der Aufwand  zur Erkennung  falscher Befunde. Das Modell  für den Korrekturauf‐
wand beschreibt, welcher Aufwand  für die Korrektur der entdeckten Fehler anfällt
oder entfällt  (Abbildung 23). Dabei spielt die Latenzzeit, der Software‐Umfang und
die Fehlerschwere eine Rolle.

Diese Zusammenhänge werden  in CoBe modelliert,  in dem  ein Basisaufwand pro
Fehler,  aKBasis,  verändert  wird.  Dieser  Basisaufwand  unterliegt  dem  Einfluss  der
Latenzzeit, also der Zeit, die der Fehler unentdeckt bleibt. Der Einfluss der Latenzzeit
wird durch die Fehlerart und den Entdeckungszeitpunkt, d.h. die Prüfung, bei der
der Fehler entdeckt wird, modelliert. Für die Fehlerart wird der Basisaufwand mit
dem Faktor afArt angepasst. Für den Entdeckungszeitpunkt wird der Basisaufwand
mit dem Faktor afp für die Prüfung p, bei der der Fehler entdeckt wird, und den Fak‐
tor  afW  für die Wartungsphase  angepasst. Um den Einfluss des Umfangs  auf den
Anstieg des Korrekturaufwands zu modellieren, ist der Faktor afp eine Funktion des
Umfangs, der  für den Systemtest der Faktor 10  ist, wenn es sich um umfangreiche
Software handelt. Er  ist 4, wenn es sich um ein kleines Produkt handelt; Zwischen‐
werte für den Umfang werden interpoliert (Abbildung 24). 

Ein Beispiel illustriert diese Berechnung: Mit einem Basisaufwand von einer Entwick‐
lerstunde pro Fehler kostet die Korrektur eines Spezifikationsfehlers nach dem Spezi‐
fikationsreview  eine  Entwicklerstunde.  Der  Faktor  afST  für  den  Systemtest  ist  im
Beispiel 8, für die Wartung  ist afW 15; Spezifikationsfehler sind teurer als Entwurfs‐
fehler und werden durch den Faktor afSpez mit 1,3 angepasst. Codefehler sind günsti‐
ger,  sie  werden  mit  dem  Faktor  afCode  mit  0,8  angepasst.  Damit  ist  also  der
Korrekturaufwand für einen Spezifikationsfehler, der im Systemtest entdeckt wurde,
10,4 Entwicklerstunden. Wird ein Spezifikationsfehler in der Wartung korrigiert, kos‐
tet dies 19,5 Entwicklerstunden, ein Codefehler kostet 12 Entwicklerstunden. 

Zahl der
entdeckten Fehler
je Art und Schwere

Zahl der falschen
Befunde

Prüfung

Fehlerschwere

Aufwand für
Fehlerkorrektur

Fehlerart

SW-Umfang

Abb. 23: Ursache‐Wirkungs‐Diagramm für den Korrekturaufwand
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Die Fehlerschwere ist der dritte Einfluss auf den Korrekturaufwand. Der Einfluss ist
durch den Faktor afSchwere modelliert, mit afNF, afHF und afKF für Neben‐, Haupt‐ bzw.
kritische Fehler. 

Für den Korrekturaufwand nach einer Prüfung p werden die Aufwände der entdeck‐
ten Fehler aufsummiert. Der Korrekturaufwand AK,p nach der Prüfung p berechnet
sich somit aus der Zahl entdeckter Fehler Fp,entdeckt, dem Basisaufwand aKBasis und
den Faktoren af für Fehlerart, Fehlerschwere und Prüfung: 

Die  Erkennung  falscher  Befunde  gehört  zur Korrektur. Der Analyseaufwand,  um
einen  falschen  Befund  zu  erkennen, wird  als Anteil  des Korrekturaufwands  eines
Fehlers berechnet; die Zahl der entdeckten falschen Befunde erfolgt durch das Modell
der Fehlerentdeckung.

6.3.6 Das Modell für die Kosten der Prüfwiederholung in CoBe

Zu den Fehlerbehebungskosten gehören Kosten, die entstehen, wenn nach der Kor‐
rektur  erneut geprüft wird.  In CoBe wird darum  zwischen der Prüfung und  ihrer
Wiederholung nach der Korrektur unterschieden. Die erste Prüfung wird im Folgen‐
den als initiale Prüfung bezeichnet, die Prüfung nach der Korrektur als Prüfwieder‐
holung. Die beiden unterschiedlichen Vorgehen zur Prüfwiederholung in CoBe leiten
sich aus dem Standard ISO/IEC 14764 (1999) und aus Pigoski (1997) ab:

a) Nach der Korrektur wird die Prüfung wiederholt.

b) Nach der Korrektur werden mehrere Prüfungen wiederholt (Hörmann et al., 2006).
Dies wird  in CoBe  als Korrekturprüfprozess  bezeichnet. Eingegeben wird, nach
welchen Prüfungen ein Korrekturprüfprozess  stattfindet, und welche Prüfungen
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Abb. 24: Einfluss des Umfangs auf den Anstieg der Korrekturkosten
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zu diesem Prozess gehören.  In der Wartung kann sich der Korrekturprüfprozess
kritischer  Fehler  vom  Prüfprozess  der  Haupt‐  und  Nebenfehler  unterscheiden
(Sneed et al., 2004).

Um diesen Aufwand zu modellieren, wird  in CoBe unabhängig vom Vorgehen der
Wiederholungsaufwand einer Prüfung auf gleiche Art berechnet. Im Fall a) wird der
Aufwand nur für die bestimmte Prüfung, im Fall b) für alle Prüfungen des Prüfpro‐
zesses berechnet. Die unterschiedlichen Möglichkeiten, eine einzelne Prüfung zu wie‐
derholen (Thaller, 2002; Sneed et al., 2004; Müller et al., 1998), werden in CoBe durch
drei Möglichkeiten abgebildet: 

• ohne: Die Prüfung wird nicht wiederholt.

• gezielt: Für jeden Fehler wird ein Teil der Prüfung wiederholt.

• vollständig: Die gesamte Prüfung wird wiederholt, nachdem alle Fehler korrigiert
wurden.

CoBe enthält die Wiederholung von Tests und die gezielte Wiederholung des Codere‐
views (Tabelle 9 und Tabelle 11). Für jede Prüfung kann angegeben werden, ob nach
der Korrektur die Prüfung wiederholt wird oder ob nach der Korrektur der Korrek‐
turprüfprozess durchgeführt wird (Tabelle 10, Prüfung mit Korrekturprüfprozess). In
CoBe wird eingegeben, welche Prüfungen zu diesem Korrekturprüfprozess gehören
(Tabelle 10, Prüfung gehört zum Korrekturprüfprozess). Werden beispielsweise Kor‐
rekturen  nach  dem Modultest  durch  eine Wiederholung  des Modultests  geprüft,
dann wird der Parameter ’Prüfung mit Korrekturprüfprozess’ für den Modultest auf
’nein’  gesetzt. Werden  Korrekturen  nach  dem  Systemtest  durch  ein  Codereview,
einen erneuten Integrationstest und einen erneuten Systemtest geprüft, dann wird der
Parameter  ’Prüfung mit Korrekturprüfprozess’  für  den  Systemtest  auf  ’ja’  gesetzt.
Zusätzlich werden  die  Parameter  ’Prüfung  gehört  zum Korrekturprüfprozess’  für
Codereview, Integrationstest und Systemtest auf ’ja’ gesetzt.

Ich modelliere die vollständige Wiederholung der  Spezifikations‐ und Entwurfsre‐
views nicht, weil bereits eine erste Begutachtung in vielen Situationen kaum durch‐
setzbar ist (Schwinn, 2003); diese Möglichkeit ist also kaum praxisrelevant.   

Der Aufwand für die Prüfwiederholung basiert auf dem Aufwand der initialen Prü‐
fung. Für den Test ist dies der Aufwand für die Testdurchführung (Abschnitt 6.6.2),
weil  vorausgesetzt wird,  dass  die  gleichen  Testfälle wiederholt werden,  und  dass
diese Testfälle nicht erneut definiert werden. Dieser Aufwand wird in CoBe als initia‐
ler Durchführungsaufwand bezeichnet. Er hängt von der speziellen Projektsituation
ab, darum enthält CoBe zwei Eingaben (Tabelle 12):

• Der Aufwand  für die  vollständige Wiederholung  eines Tests berechnet  sich  aus
dem initialen Durchführungsaufwand und dem Anteil des Aufwands, der für die
Wiederholung  benötigt  wird  (awdh,Test).  Dieser Wiederholungsanteil  hängt  bei‐
spielsweise von der Automatisierung des Tests ab.
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• Zusätzlich wird bei gezielter Wiederholung berücksichtigt, dass pro Fehler nur ein
Teil des Tests wiederholt wird. Dieser Wiederholunganteil (swdh,Test) wird benötigt,
um beispielsweise einen bestimmten Ausgangszustand der Software herzustellen
oder eine Sequenz von Testfällen zu wiederholen, um die Korrektur zu prüfen.  

Der Wiederholungsaufwand nach einer Korrektur wird abhängig vom Vorgehen der
Wiederholung berechnet (Abbildung 25): Wird eine Prüfung gezielt für jeden Fehler
wiederholt, dann wird der Aufwand pro Fehler aufsummiert. Auch der Korrektur‐
prüfprozess wird  für  jeden  Fehler  einzeln  durchgeführt,  darum werden  die Auf‐
wände  aller  Prüfungen  des  Korrekturprüfprozesses  pro  Fehler  zusammengezählt.
Der Aufwand für die vollständige Wiederholung berechnet sich direkt als Anteil des

Eingabeparameter für Prüfunga
Wertebereich

Wiederholung der Prüfung

Modultest ohne / gezielt / vollständig

Subsystemint.‐test ohne / gezielt / vollständig

Codereviewb ohne / gezielt

Systemint.‐test ohne / gezielt / vollständig

Systemtest ohne / gezielt / vollständig

Feldtestc ohne / gezielt 

Tabelle 9: Parameter für Prüfwiederholung
a. Wiederholung der Spezifikations‐ und Entwurfsreviews ist nicht modelliert.
b. Das gezielte Review einer Codeänderung ist eine eigene Modellkomponente.
c. Im Feldtest wird vereinfacht der Test als Zuschlag zur Korrektur dargestellt, weil der Test 

beim Kunden durch Probeeinsatz stattfindet.

Eingabeparameter für 
Prüfung

Wertebereich

Prüfung mit 
Korrekturprüfprozess

Prüfung gehört zum 
Korrekturprüfprozess

Modultest ja / nein ja / nein

Subsystemint.‐test ja / nein ja / nein

Codereview ja / nein ja / nein

Systemint.‐test ja / nein ja / nein

Systemtest ja / nein ja / nein

Feldtest ja / nein ‐

Tabelle 10: Parameter für Prüfwiederholung
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initialen Durchführungsaufwands. Für die Berechnung des Nutzens spielen nur die
gezielte Prüfung und der Korrekturprüfprozess eine Rolle, weil nur dann der Wieder‐
holungsaufwand von der Zahl entdeckter Fehler abhängt. 

Durch die Testwiederholung wird ein Teil der fehlerhaften Korrekturen entdeckt, da
ich voraussetze, dass die Testfälle unverändert wiederholt werden. Diese Fehler wer‐
den erneut korrigiert.  In CoBe wird dies durch Anpassung der Fehlerentdeckungs‐
und Korrekturquote modelliert. Wie sich unterschiedliche Korrekturprüfprozesse mit
mehr oder weniger Prüfungen auf die Fehlerentdeckung nach der Korrektur auswir‐
ken, ist in CoBe über die Korrekturquote parametrisierbar. Da keine Daten zu unter‐

Prüfstrategie in der 
Wartunga

Wertebereich für Wiederholung nach Korrektur von

kritischen Fehlern Haupt‐ und Nebenfehlern

Modultest ohne / gezielt / vollständig ohne / gezielt / vollständig

Subsystemint.‐test ohne / gezielt / vollständig ohne / gezielt / vollständig

Codereviewb ohne / gezielt ohne / gezielt

Systemint.‐test ohne / gezielt / vollständig ohne / gezielt / vollständig

Systemtest ohne / gezielt / vollständig ohne / gezielt / vollständig

Tabelle 11: Parameter für Prüfstrategie in der Wartung
a. Wiederholung der Spezifikations‐ und Entwurfsreviews und Feldtest sind für die Wartung 

nicht modelliert.
b. Das gezielte Review von Codeänderungen ist als einzelne Prüfung modelliert.

Eingabeparameter für Prüfunga
Wertebereich für Wiederholungsanteil des

Aufwands Umfangs

Modultest 0...100% 0...100%

Subsystemint.‐test 0...100% 0...100%

Codereviewb (100%) (25 Codezeilen)

Systemint.‐test 0...100% 0...100%

Systemtest 0...100% 0...100%

Feldtestc 0...100% ‐

Tabelle 12: Parameter für Prüfwiederholung
a. Wiederholung der Spezifikations‐ und Entwurfsreviews ist nicht modelliert.
b. Das gezielte Review von Codeänderungen ist als einzelne Prüfung modelliert.
c. Im Feldtest wird vereinfacht der Test als Zuschlag zur Korrektur dargestellt, weil der Test 

beim Kunden durch Probeeinsatz stattfindet.
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schiedlichen  Prüfprozessen  verfügbar  sind,  muss  dieser  Unterschied  speziell  für
konkrete Situationen quantifiziert werden.

6.3.7 Das Modell für den Aufwandseinfluss in CoBe

Damit der Aufwand an konkrete Situationen angepasst werden kann, wird in CoBe
zuerst der nominale Aufwand einzelner Aktivitäten berechnet. Diese nominalen Auf‐
wände werden alle gleichförmig, d.h. durch die gleichen Faktoren mit den gleichen
Werten, angepasst.  Ich verwende die  folgenden Zusammenhänge aus COOCMO II:
Die Einflussfaktoren EM  für Merkmale des Produkts, der Plattform, des Personals
und des Prozesses, die Skalierungsfaktoren SF und der Einfluss des Umfangs S wir‐
ken sich auf die Aufwände in CoBe aus. Der Aufwand einzelner Aktivitäten steigt in
gleichem Maße, in dem der Gesamtaufwand mit dem Umfang wächst. In diesem Teil
von CoBe wird auch der Kalibrierungsparameter für den Aufwand, der Aufwands‐
faktor kA, und der Organisationsaufwand als prozentualer Zuschlag afO berücksich‐
tigt.  Tabelle 13  zeigt  die  Eingaben,  Abbildung 26  die  Ursache‐Wirkungs‐
Beziehungen.

Der Produktivitätsparameter af von CoBe fasst diese Einflüsse zusammen. Die Skalie‐
rungsfaktoren von COCOMO II bestimmen über den Exponenten E den überpropor‐
tionalen  Einfluss  des  Umfangs  (S)  auf  den  Aufwand  (PM);  A  ist  der
Produktivitätsfaktor in COCOMO II.

Zahl der entd.
Fehler je Schwere

Prüfstragegie für
Haupt-/Nebenfehler

Anteil Wieder-
holungsumfang

Wiederholungs-
aufwand

Wdh.-aufwand
pro Fehler

Anteil Wieder-
holungsaufwand

Prüfstragegie für
kritische Fehler

Initialer
Prüfaufwand

Prüfprozess für
Korrekturen

Wdh.-aufwand anderer
Prüfungen pro Fehler

Wiederholung
der Prüfung

Abb. 25: Ursache‐Wirkungs‐Diagramm des Aufwands zur Prüfwiederholung

Aufwand
(nominal)

Organisations-
zuschlag

Einflussfaktoren

Aufwandsfaktor

Aufwand

Umfang

Skalierungsfaktoren

Abb. 26: Ursache‐Wirkungs‐Diagramm der Aufwandseinflüsse
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mit   und  .

Wiederverwendete  und  geänderte  Software  wird  auf  äquivalente  Anweisungen
umgerechnet, um Auswahl und Einarbeitung zu berücksichtigen (Boehm, 2000).

6.3.8 Das Modell für Dauer und Personal in CoBe

Weil Dauer und Personalbedarf wichtige Planungsmetriken  sind, werden  in CoBe
Dauer und Personalbedarf aus dem Aufwand einzelner Aktivitäten berechnet, basie‐
rend auf der COCOMO zu Grunde liegenden Annahme, dass es eine typische, ideale
Personenzahl für ein Projekt und für seine Aktivitäten gibt. 

Dieses typische Verhältnis wird in CoBe mit COCOMO II berechnet (Abbildung 27).
Dazu wird zuerst das Verhältnis zwischen Aufwand, Dauer und Personalbedarf für
das gesamte Projekt berechnet. Dabei spielen die COCOMO‐II‐Einflüsse eine Rolle.
Zusätzlich werden zur Kalibrierung von CoBe der Aufwandsfaktor und der Dauer‐

Eingabeparameter Wertebereich

COCOMO‐II‐Parameter: 
Skalierungs‐ und Einflussfaktoren

Kategorien mit jeweils 7 Klassen 
(Boehm, 2000)

Aufwandsfaktor kA
Verhältnis Istwert und COCOMO‐II‐Resultat 
ohne Kalibrierunga

Organisationszuschlag afO 0 %... X %

Tabelle 13: Eingaben für Aufwandseinflüsse
a. Zur Kalibrierung werden Archivdaten verwendet.
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Skalierungsfaktoren

Aufwandsfaktor
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auf Aktivitäten
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auf Aktivitäten

Anteil
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Abb. 27: Ursache‐Wirkungs‐Diagramm für Dauer‐ und Personalberechnung
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faktor von CoBe berücksichtigt. Dann wird der Personalbedarf für einzelne Aktivitä‐
ten mit den folgenden Schritten bestimmt:

• COCOMO und COCOMO II (Boehm, 1981 und 2000) enthalten Tabellen, in denen
die Verteilung des Aufwands und die Verteilung der Dauer auf Phasen und Aktivi‐
täten angegeben werden. Beispielsweise benötigt der Entwurf 6 % des Projektauf‐
wands  und  19 %  der  Projektdauer.  Da  es  die  Tabellen  für  feste  Umfänge  gibt
(2 KDSI1, 8 KDSI, 16 KDSI, 64 KDSI, 128 KDSI, 512 KDSI), werden  in CoBe Zwi‐
schenwerte linear aus dem Umfang interpoliert.

• Die Tabellen gibt es für die drei Projektarten in COCOMO: organic, semi‐detached,
embedded. Für  jede dieser Projektarten  ist ein Exponent  für die Berechnung des
Aufwands  und  ein  Exponent  für  die  Berechnung  der  Dauer  vorgegeben.  In
COCOMO II gibt es keine Projektarten mehr, sondern 5 Skalierungsfaktoren, aus
denen diese Exponenten berechnet wird. Darum werden  in CoBe die Zwischen‐
werte  für den Exponenten  linear  interpoliert. Resultat  sind also Aufwands‐ und
Dauerverteilung  für  den  Umfang.  Kalibriert  mit  Dauer‐  und  Aufwandsfaktor
berechnet sich daraus der Personalbedarf pro Aktivität. Die Dauer wird aus dem
Personalbedarf  der  einzelnen  Aktivitäten  berechnet  (Abbildung 28).  Die  Dauer
wird  in  Arbeitstagen  oder  Arbeitsstunden  ausgegeben,  der  Personalbedarf  als
Anzahl Mitarbeiter. Weil CoBe mit Mittelwerten  rechnet, sind alle Ausgaben auf
einer Rationalskala.

1. KDSI bezeichnet 1000 delivered source instructions, also 1000 gelieferte Anweisungen

Aufwandsverteilungen pro 
Phase und Aktivität (in %)

Dauerverteilungen pro 
Phase und Aktivität (in %)

Umfang (in Anweisungen) 
und Skalierungsfaktoren

Aufwand, Dauer, 
Personal für Projekt

Aufwandsanteil 
pro Aktivität (in %)

Daueranteil 
pro Aktivität (in %)

Personalanteil pro
Aktivität (in %)

Personalbedarf
pro Aktivität

Datenberechnet ausLegende

Abb. 28: Berechnung des Personalbedarfs aus COCOMO‐II‐Parametern
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CoBe verwendet  für den Personalbedarf der Korrektur die Zahl der Entwickler der
entsprechenden Phase, da COCOMO die Korrektur nicht darstellt. Es kann eingege‐
ben werden, welcher Teil der Entwickler verfügbar ist (Tabelle 14).

6.3.9 Das Geldwerte‐Modell von CoBe

Das Geldwerte‐Modell beschreibt, wie Planungsmetriken in Geldwerte umgerechnet
werden.  Dazu  können  Dauer,  Aufwand  und  Personalbedarf  jeweils  durch  Geld
gewichtet werden. Damit wird möglich, Kosten mit Nutzen zu vergleichen, weil alle
Auswirkungen der Prüfung auf eine einheitliche Skala abgebildet werden. 

Die Gewichtung  des Aufwands  erfolgt  durch  Personalkosten. Anders  als  im QS‐
Modell (Drappa, 1998) kosten in CoBe alle Mitarbeiter gleich viel, weil Mitarbeiter in
CoBe  als Zahl dargestellt werden, während  sie  im QS‐Modell unterscheidbar  sind
und abhängig von ihren Kenntnissen und Fähigkeiten unterschiedlich viel kosten. Die
Gewichtung der Dauer und des Personalbedarfs ist projektspezifisch, da in manchen
Projekten Verzögerungen teuer sind, etwa weil sie Vertragsstrafen nach sich ziehen;
in manchen Projekten ist zusätzliches Personal nicht verfügbar. Diese Faktoren kön‐
nen in CoBe durch die Gewichtung dargestellt werden.

Eine Abzinsung langfristiger Kosten (Hanusch, 1987; Mühlenkamp, 1994; Nas, 1996;
Harrison et al., 1999; Raffo, 2005; Kerzner, 2006) ist in CoBe nicht enthalten. Dafür gibt
es mehrere Gründe: Die Wartungsphase der Software wird im Modell als eine einzige
logische Phase betrachtet, sie kann sich abhängig vom Produkt über einen kürzeren
oder einen  längeren Zeitraum erstrecken. Abhängig von der Art und  Intensität des
Einsatzes werden Fehler  früher  oder  später  in der Wartungsphase  entdeckt. Diese
Einflüsse sind im Modell nicht enthalten. Außerdem sind von den langfristigen Aus‐
wirkungen  andere Personengruppen, die Klienten,  betroffen. Dann  ist  fraglich,  ob
abgezinst werden darf und wer den Zinssatz bestimmt, der die Resultate stark prägen
kann (Hanusch, 1987).

6.3.10 Das Fehlerfolgekostenmodell von CoBe

Fehlerfolgekosten  werden  nicht  im  Geldwertemodell,  sondern  durch  ein  eigenes
Modell dargestellt. Dieses Fehlerfolgekostenmodell beschreibt, welche Kosten beim
Einsatz des Produkts durch Fehler verursacht werden. Es gewichtet Fehlverhalten der
Software mit Geldwerten, angelehnt an die Unzuverlässigkeitsmetrik von Ludewig

Eingabeparameter Wertebereich

Dauerfaktor kD
Verhältnis Istwert und COCOMO‐II‐Resultat 
ohne Kalibrierunga

a. Zur Kalibrierung werden Archivdaten verwendet.

Anteil Korrektoren mK 0...100 %

Tabelle 14: Eingaben für Dauer und Personal
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und Lichter  (2007).  Im Modell der  Fehlerfolgekosten  von CoBe werden die  Folge‐
kosten von Fehlern über die gesamte Lebensdauer des Produkts betrachtet, basierend
auf zwei Zusammenhängen: 

• Wenn ein Fehler auftritt, dann wird Schaden verursacht; jedes Fehlverhalten kostet.
Dazu gehört, dass ein Benutzer Arbeitszeit verliert oder dass die Software direkt
finanziellen Schaden verursacht.

• Ob und wie häufig ein Fehler auftritt, hängt von der Verwendung der Software ab.
Da die Software auf eine bestimmte Art verwendet werden muss, um den Fehler
wirken zu lassen, hängt dies von vielen Einflüssen und einer komplexen Ursache‐
Wirkungs‐Kette  ab.  So kann  ein  einzelner Fehler mehrfach  auftreten, wenn bei‐
spielsweise die gleichen Daten mehrfach eingegeben werden. Ein Fehler kann nicht
auftreten, weil genau die Datenkombination, die den Fehler wirksam werden lässt,
nicht vorkommt. Ein Fehler kann in einem fehlertoleranten System zwar wirksam
werden, sich aber nicht als Fehlverhalten manifestieren, weil dies durch das System
verdeckt wird. Obwohl der Zusammenhang zwischen Fehler (Ursache) und Fehl‐
verhalten (Wirkung) also kausal ist, ist eine Aussage über die Häufigkeit, mit der
Fehlerursachen wirksam werden,  nur  im  Rückblick möglich.  Somit  ist  nur  im
Rückblick möglich, die Häufigkeit zu messen, aber nicht im Voraus, die Häufigkeit
deterministisch zu bestimmen.

Nachträglich können diese Daten im Prinzip gemessen werden. Zur Planung sind sie
aber aus den folgenden Gründen nicht verfügbar:

• Absolute Fehlerzahlen sind bei der Planung nicht bekannt. 

• Der Schaden, der durch Fehlverhalten verursacht wird, kann  im Prinzip bei den
Benutzern  gemessen werden.  Praktisch  sind  die  Benutzer  für  die Hersteller  in
vielen  Fällen  nicht  zugänglich;  die Messung  ist  besonders  schwierig, wenn  der
Schaden indirekt entsteht, z.B. die Kunden des Kunden betrifft. Selbst Archivdaten
sind darum kaum verfügbar.

• Die Verwendung der Software kann ganz verschieden sein. Beispielsweise kann ein
Produkt bei einem einzigen Kunden  regelmäßig verwendet werden. Ein anderes
Produkt kann einen Service bieten, der mehr oder weniger häufig genutzt wird. Bei
einem Produkt  für den Markt  ist unklar, wie viele Benutzer die Software haben
wird. Bei der Planung ist es also in vielen Fällen kaum möglich, die genaue Häufig‐
keit der Verwendung zu prognostizieren.

• Die Wahrscheinlichkeit, mit der ein Fehler auftritt, ist durch die Verwendung der
Software und durch den Fehler bestimmt. Fehler sind bei der Planung unbekannt.
Die konkrete Verwendung der Software ist bei der Planung nicht bekannt. Darum
ist eine genaue Prognose kaum möglich.

• Zuverlässigkeitstests (Poore und Trammell, 1996) können nicht zur Planung einge‐
setzt  werden,  um  z.B.  die  Häufigkeit  des  Fehlverhaltens  zu  prognostizieren
(Abschnitt 5.3), weil diese Tests ohne Programm nicht durchgeführt werden kön‐
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nen.  Zuverlässigkeitsmodelle  (Lyu,  1995)  benötigten  Testdaten  zur  Quantifizie‐
rung;  es  ist unklar, ob und unter welchen Bedingungen Archivdaten verwendet
werden  können.  Zumindest  für  unterschiedliche  Benutzungsprofile müssen  sie
erneut angepasst werden. Unterschiedlich hohe Schäden unterschiedlicher Fehler
werden in den Zuverlässigkeitstests und ‐modellen nicht berücksichtigt.

Weil also zur Planung wenig Informationen verfügbar sind, wird in CoBe ein statisti‐
scher Mittelwert für die Folgekosten eines Fehlers aus Eingaben, die zur Planungszeit
bestimmt werden können,  abgeschätzt. Daraus werden  anfallende und  entfallende
Fehlerfolgekosten  der  ausgelieferten  Fehler  berechnet. Zu  diesem Zweck wird  für
CoBe ein risikobasierter Ansatz (Boehm, 1991) mit Klassifikationen gewählt. Risiko ist
definiert als die Wahrscheinlichkeit für einen Schaden. Der Risikowert ist definiert als
Produkt aus Eintrittswahrscheinlichkeit und Schaden. CoBe verwendet drei Parame‐
ter:

• Auftretenswahrscheinlichkeit: Ein Fehler führt bei einer Verwendung der Software
mit einer bestimmten Wahrscheinlichkeit zu einem Fehlverhalten.

• Schaden: Ein  Fehlverhalten verursacht  einen bestimmten, monetär bezifferbaren
Schaden. Ein einzelner Fehler kann  in der Realität mehrfach auftreten und dabei
unterschiedlichen Schaden hervorrufen, je nachdem, in welcher Situation der Feh‐
ler wirksam wird. In Cobe wird pro Fehler ein statistischer Mittelwert verwendet;
ein einzelner Fehler verursacht also bei jedem Auftreten einen bestimmten mittle‐
ren Schaden. Ein anderer Fehler kann  in CoBe beim Auftreten zu einem anderen
mittleren Schaden führen.

• Verwendungshäufigkeit: Die Software kann unterschiedlich häufig verwendet wer‐
den, bis ein Fehler korrigiert wird. Je häufiger die Software verwendet wird, desto
häufiger hat ein Fehler die Chance, wirksam zu werden. Dabei werden nicht alle
Fehler gemeldet oder korrigiert, damit kann die Verwendungshäufigkeit bis zur
Korrektur  also  unterschiedlich  sein.  Im  Extremfall  bleibt  ein  Fehler  über  die
gesamte Lebensdauer in der Software. 

Mit diesen drei Fehlermerkmalen können die Fehlerfolgekosten eines Fehlers berech‐
net werden:

Da während der Planung nicht auf Messungen zurückgegriffen werden kann, werden
in CoBe Fehler nicht einzeln klassifiziert. Stattdessen wird der Anteil der Fehler pro
Schadensklasse, pro Klasse der Auftretenswahrscheinlichkeit und pro Klasse der Ver‐
wendungshäufigkeit eingegeben. Daraus werden die mittleren Fehlerfolgekosten pro
Fehler berechnet. Beispielsweise kann eingegeben werden, dass 20 % der Fehler zur
Schadensklasse der Komfortprobleme  gehören und  80 % der  Fehler  zur  Schadens‐
klasse für eine verlorene Aufwandsstunde. 20 % der Fehler treten in den Hauptfunk‐
tionen  auf,  d.h.  sie  treten  mit  hoher  Wahrscheinlichkeit  auf,  20 %  sind  in  den

Fehlerfolgekosten eines Fehlers
Schaden Auftretenswahrscheinlichkeit Verwendungshäufigkeit⋅ ⋅=
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Nebenfunktionen und treten darum selten auf, 60 % der Fehler treten in Ausnahme‐
fällen, also sehr selten, auf. Die Software wird von einem Benutzer zehnmal verwen‐
det, bis der Fehler korrigiert wird. Wie  in COCOMO II werden die Klassen durch
quantitative Angaben und Beschreibungen definiert. Die Klassifikation für den Scha‐
den  (Tabelle 15)  orientiert  sich  an  der  Zuverlässigkeitsbewertung  in  COCOMO II.
Tabellen 16 und 17 zeigen die Klassifikation für die Auftretenswahrscheinlichkeit und
die Verwendungshäufigkeit. Ich nehme an, dass die Fehleranteile, d.h. die Verteilung
der Fehler auf die Klassen, aus ähnlichen Projekten übernommen werden können.     

Schaden 
(Euro) Beschreibung und Beispiele Wertebereich: 

Fehleranteila

a. Insgesamt 100% über alle Klassen

0 kein Schaden 0...100 %

10 Komfortprobleme, typische Bedienungsprobleme 0...100 %

100 Geringer, leicht auszugleichender Schaden, Workarounds mit 
einer Dauer bis zu einer Stunde 0...100 %

1000 Mittlerer, auszugleichender Schaden, Verlust von etwa einem 
Tag Arbeit 0...100 %

10 000 Mittlerer Schaden, Verlust von mehreren Tagen Arbeit 0...100 %

100 000 Hoher finanzieller Schaden 0...100 %

1 000 000 Sehr hoher finanzieller Schaden 0...100 %

10 000 000 Personenschaden (Smith und Simpson, 2005, S. 39) 0...100 %

Tabelle 15: Schadensklassen in CoBe

Auftretenswahr‐
scheinlichkeit Beschreibung und Beispiele Wertebereich: 

Fehleranteila

a. Insgesamt 100% über alle Klassen

0 Fehler tritt nie auf 0...100 %

0,125 Fehler tritt in Ausnahme‐ und Sonderfällen auf 0...100 %

0,25
Fehler tritt selten bei Verwendung auf, z.B. in einer 
Nebenfunktion oder in einer Hauptfunktion unter 
bestimmten Bedingungen

0...100 %

0,5 Fehler tritt bei typischer Verwendung auf, z.B. in einer 
Hauptfunktion  0...100 %

1,0 Fehler tritt sicher bei Verwendung auf, z.B. beim Starten 
der Software 0...100 %

Tabelle 16: Klassen der Auftretenswahrscheinlichkeit in CoBe
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Die  Verwendung  definiere  ich  nicht  genauer, weil  diese Definition  vom  Produkt
abhängt.  Stattdessen  orientiere  ich mich  an der Kritikalitätsbewertung  (Smith und
Simpson, 2005),  für die eine ähnlich allgemeine Definition verwendet wird. Fehler,
die nie auftreten oder keinen Schaden verursachen, werden nicht gemeldet und ver‐
ursachen darum auch keinen Wartungsaufwand. 

Für die Verteilung auf den Schaden kann zusätzlich gewählt werden, ob und welche
Schadensklasse welcher Fehlerschwere zugeordnet wird. Dies  ist  für Projekte  sinn‐
voll,  in denen die Fehlerschwere ausschließlich durch den Schaden, der durch den
Fehler beim Einsatz verursacht werden kann, definiert ist.

6.4 Reviews im Modell

CoBe enthält Prüfungsmodelle für das Spezifikationsreview, das Entwurfsreview und
das Codereview. Für  alle Reviews gelten die gleichen Zusammenhänge,  sie unter‐
scheiden sich aber in der Quantifizierung.

6.4.1 Eingaben für Reviews

Die Eingaben für das Spezifikationsreview, das Entwurfsreview und das Codereview
sind  in Tabelle 18 beschrieben. Die Tabellen 20 und 21  fassen die Ausgaben zusam‐
men. In CoBe wird berücksichtigt, dass zwischen einzelnen Sitzungen Zeit zur Vorbe‐
reitung  und Organisation  benötigt wird. Die  daraus  resultierende Dauer wird  als
Bruttodauer bezeichnet. Die Nettodauer dagegen enthält die Dauer ohne Verzögerun‐

Verwendungs‐
häufigkeit Beschreibung und Beispiele Eingabewert: 

Fehleranteila

0 Fehler in nicht verwendetem Software‐Teil 0...100 %

1 Fehler wird sofort korrigiert, Software wird einmal 
eingesetzt 0...100 %

10 Wenige Benutzer, Software wird 10 mal eingesetzt 0...100 %

100 Über 10 Benutzer oder lange Korrekturdauer 0...100 %

1000 Über 100 Benutzer und lange Korrekturdauer 0...100 %

10 000 Über 1000 Benutzer, lange Korrekturdauer, 
intensive Verwendung 0...100 %

100 000 Über 10 000 Benutzer, lange Korrekturdauer,
 intensive Verwendung 0...100 %

1 000 000 Über 100 000 Benutzer, lange Korrekturdauer, 
 intensive Verwendung 0...100 %

Tabelle 17: Klassen der Verwendungshäufigkeit in CoBe
a. Insgesamt 100% über alle Klassen
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gen. Weil Mitarbeiter zu verschiedenen Zeitpunkten und für verschiedene Aktivitä‐
ten eingesetzt werden, wird ihre Anzahl für das Gesamtresultat nicht addiert. 

6.4.2 Zusammenhänge im Reviewmodell

Abbildung 29 zeigt, welche Eingaben die Fehlerentdeckung beeinflussen.

Gutachterzahl. Der Zusammenhang zwischen der Gutachterzahl und der Fehlerent‐
deckungsquote basiert  in CoBe auf  einem Modell, das  sich an Biffl  (2001) anlehnt:
Jeder Gutachter entdeckt einen bestimmten Anteil qr der Fehler. Das bedeutet, dass
jeder weitere Gutachter einen Teil derjenigen Fehlern, die von keinem anderen Gut‐
achter entdeckt wurden, entdeckt. Abbildung 30 skizziert den Zusammenhang, der
sich daraus ergibt: Die Fehlerentdeckungsquote steigt mit der Gutachterzahl. Je mehr
Gutachter teilnehmen, desto geringer steigt die Fehlerentdeckungsquote durch einen
weiteren Gutachter. Biffl (2001) beschreibt dies durch die Wahrscheinlichkeit, mit der
ein Gutachter einen bestimmten Fehler entdeckt. 

In CoBe wird die  Fehlerentdeckungsquote durch die Gutachterzahl GReview, durch
den Fehleranteil qr, den ein Gutachter entdeckt, und durch den Parameter rqr berech‐
net. Die Form der Gleichung ist so gewählt, dass sie umgeformt und dann mit linearer
Regression quantifiziert werden kann:

Eingabeparameter Wertebereich

Prüflingsüberdeckung sReview Anteil des Prüflings am Artefakt

Zahl der Gutachter GReview Anzahl

Kompetenz der Gutachter KPReview
Siebenstufige Skala von “extrem niedrig” bis 
“extrem hoch”

Vorbereitungsintensität der Gutachter vRe‐
view

Vorbereitungsrate in Stunden pro Seite des 
Prüflings

Prüfung wiederverwendeter Software WV Prüfung nur von neuer Software oder Prü‐
fung einschl. wiederverwendeter Software

Tabelle 18: Entscheidungsparameter für Reviews

Gutachterzahl
Gutachter-
kompetenz

Prüflings-
überdeckung

Fehler-
entdeckungsquote

Vorbereitungs-
intensität

Abb. 29: Ursache‐Wirkungs‐Diagramm der Fehlerentdeckung
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Fehlerart. Spezifikations‐, Entwurfs‐ und Codereview unterscheiden sich in der Feh‐
lerentdeckungsquote  für die unterschiedlichen Fehlerarten. Beispielsweise  entdeckt
das Entwurfsreview vor allem Entwurfsfehler und nur einen geringen Anteil Spezifi‐
kationsfehler. Der Faktor ffReview,Art passt die Fehlerentdeckungsquote eines Reviews
an verschiedene Fehlerarten an.

Fehlerschwere. Reviews können sich in der Fehlerentdeckungsquote für die Fehler‐
schwere unterscheiden. Der Faktor  ffReview,Schwere passt die Fehlerentdeckungsquote
eines Reviews für unterschiedlich schwere Fehler an.

Vorbereitungsintensität. Die Vorbereitungsintensität wird im Modell durch die Vor‐
bereitungsrate  vReview  in  Seiten  pro  Stunde  dargestellt. Der  Einfluss  der Vorberei‐
tungsintensität  wird  durch  die  Funktion  fVorbereitung (vReview)  beschrieben
(Abbildung 31). Sie basiert auf den folgenden Zusammenhängen: Ein gewisser Min‐
destaufwand muss  von  einem  Gutachter  investiert  werden,  damit  der  Gutachter
überhaupt  Fehler  entdeckt.  Ich  bezeichne  diesen  Punkt  als  negative  Effektgrenze.
Dann steigt die Fehlerentdeckungsquote mit dem Vorbereitungsaufwand über einen
typischen Wert hinaus, bis sich die Fehlerentdeckungsquote stabilisiert, weil auch mit
noch mehr Aufwand kaum noch mehr Fehler entdeckt werden;  im Modell werden
keine weiteren Fehler mehr entdeckt. Diesen Punkt bezeichne ich als positive Effekt‐
grenze. Beispielsweise werden  für die  Spezifikation  etwa  10  Seiten pro  Stunde  als
Normalfall angegeben  (Abschnitt 6.8.2). Bis 5 Seiten pro Stunde werden noch mehr
Fehler  entdeckt, mit  einer  langsameren Vorbereitung  als  5  Seiten pro  Stunde  aber
nicht mehr. Ab 35 Seiten pro Stunde werden keine Fehler entdeckt, weil der Gutach‐
ter das Dokument überfliegt. Der Einfluss wird abhängig von der durch den Normal‐
fall normierten Vorbereitungsintensität berechnet (Abbildung 31). 

Gutachterkompetenz. Die  Kompetenz wird  angelehnt  an  Boehm  (2000)  auf  einer
Ordinalskala mit 7 Kompetenzklassen dargestellt.  Jeder Klasse  ist ein Wert  für den
Faktor ffReview,KP zugeordnet. Hochkompetente Gutachter finden beispielsweise etwa
20% mehr Fehler als der Durchschnitt, der Faktor ist dann 1,2.
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Abb. 30: Gutachterzahl und Fehlerentdeckung (Skizze)
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Prüflingsüberdeckung. Fehler können nur im geprüften Teil eines Artefakts entdeckt
werden, abhängig vom geprüften Umfangsanteil sReview des Prüflings. Die Fehler, die
im geprüften Umfangsteil enthalten sind, bezeichne ich als entdeckbare Fehler. Erfol‐
gen  die  Reviews  ohne  Priorisierung,  dann  ist  der  Zusammenhang  zwischen
Umfangsanteil und den entdeckbaren Fehlern  linear. Mit Priorisierung werden die
kritischen Teile bevorzugt geprüft. Diese Teile enthalten überproportional viele Feh‐
ler. Abbildung 32 illustriert diesen Zusammenhang zwischen dem geprüften Umfang
und dem Anteil der  entdeckbaren Fehler. Werden  100 % beispielsweise des Codes
geprüft, dann können darin 100 % derjenigen Fehler entdeckt werden, die prinzipiell
mit der Prüfung  entdeckbar  sind. Werden 20 % des Codes geprüft, die als kritisch
angesehen  werden,  dann  können  rund  40 %  dieser  Fehler  entdeckt  werden.  Der
Zusammenhang  zwischen Umfang  und  entdeckbaren  Fehlern  ist  also  nicht‐linear
und wird durch die Funktion fPriorisierung zwischen Fehlerentdeckungsquote und der
Prüflingsüberdeckung sReview modelliert: 

 

f  V
or
be
re
itu

ng

pos. Effekt‐
grenze

Vorbereitungsrate
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Abb. 31: Funktion für die Vorbereitungsintensität (Skizze)
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Abb. 32: Geprüfter Umfang und entdeckbare Fehler (Skizze)
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Der Exponent rs,Schwere beschreibt, wie stark sich Fehler im kritischen Teil konzentrie‐
ren. Fehler werden nur dann  in wiederverwendeter Software entdeckt, wenn diese
auch geprüft wird.

Der Exponent liegt zwischen 0 und 1. Bei dieser Funktion wird die Steigung unend‐
lich, wenn der Umfang nahe Null geht.  In diesem Grenzbereich wird nur ein  sehr
kleiner Bruchteil des Dokuments geprüft, beispielsweise das  erste Wort des Doku‐
ments. Es ist aber nicht realistisch, in einem Review ausschließlich das erste Wort zu
prüfen. Darum gehe ich davon aus, dass immer ein gewisser Mindestumfang geprüft
wird und somit der Bereich nahe Null keine Rolle spielt.

Die Fehlerentdeckungsquote berechnet sich somit aus:

Kosten und Umfang. Spezifikations‐, Entwurfs‐ und Codeumfang werden aus dem
Umfang in Function Points abgeleitet. Der Aufwand für die Vorbereitung wird über
den Prüflingsumfang, die Zahl der Gutachter und ihre Vorbereitungsrate berechnet.
Die Gutachterkompetenz beeinflusst den Normalwert der Vorbereitungsintensität, in
dem jeder Kompetenzklasse ein Wert für einen Einflussfaktor zugeordnet ist; die Ein‐
gabe für die Vorbereitungsrate wird nicht verändert, weil die Eingabe messbar sein
soll.  Bei  hoher Kompetenz  können  beispielsweise  13  Seiten  pro  Stunde  gründlich
geprüft werden, bei normaler Kompetenz 10 Seiten. Der Durchsatz in Sitzungen wird
durch einen Parameter  in Seiten pro Stunde oder Anweisungen pro Stunde darge‐
stellt. Aufwand und Nettodauer für Sitzungen berechnen sich direkt aus diesem Sit‐
zungsdurchsatz, dem Prüflingsumfang und der Teilnehmerzahl. Die Teilnehmerzahl
ergibt  sich aus der Zahl der Gutachter, einem Moderator, einem Autor und einem
Protokollführer. Die Bruttodauer enthält den Abstand zwischen Sitzungen, weil dafür
der Prüfling so aufgeteilt wird, dass einzelne Sitzungen höchstens zwei Stunden dau‐
ern. Der Abstand zwischen zwei Sitzungen beträgt drei Tage (Drappa, 1998). Zusam‐
menhänge eines zu umfangreichen Prüflings, zu  langer Sitzungen und den Einfluss
des Moderators (Hampp, 2001) modelliere ich nicht, weil für diese detaillierten Pla‐
nungen  der Moderator  zuständig  ist.  Hilfsmittel  und  ihr  Einfluss  sind  nicht  im
Modell enthalten, weil die Studien keinen klaren Unterschiede zeigen.

Codereviews von Korrekturen. Für das Review einer Änderung gelten die gleichen
Zusammenhänge wie für das Codereview. In einem Review einer Änderung wird nur
ein kleiner Ausschnitt des Codes betrachtet, nämlich die Änderung und der unmittel‐
bar damit zusammenhängende Code.

QReview Art Schwere, , ffReview Art, f⋅ fReview Schwere, ffReview KP,

fPriorisierung Schwere sReview,( )

fVorbereitung vReview( )
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6.5 Automatische statische Codeanalyse

Die  Codeanalyse  ist  in  CoBe  durch  ihre  Fehlerentdeckungsquoten,  den  Vorberei‐
tungsaufwand und die Dauer der Durchführung modelliert: Der Vorbereitungsauf‐
wand  zur  Einbindung  und  Konfiguration  des  Werkzeugs  in  der  individuellen
Entwicklungsumgebung ist in CoBe konstant, der Durchführungsaufwand wird ver‐
nachlässigt. Als Parameter  kann die Dauer  der Durchführung  angegeben werden,
damit rechenintensive Verfahren für umfangreichen Code von CoBe dargestellt wer‐
den können. 

Prüfparameter  werden  nicht  modelliert,  stattdessen  wird  die  Fehlerentdeckungs‐
quote festgelegt und nur die Eingabe, ob die Codeanalyse durchgeführt wird, angege‐
ben. Diese  einfache Modellierung wird  gewählt, weil  sich  die Auswirkungen  von
Prüfparametern der Codeanalyse in CoBe aus den folgenden Gründen nicht darstel‐
len  lassen: Da die Prüfparameter die möglichen Entscheidungen über die Codeana‐
lyse  darstellen,  müssten  diese  Entscheidungen  modelliert  werden.  Diese
Entscheidungen  sind die Auswahl des Werkzeugs und die  eingesetzten Analysen.
Diese  Entscheidungen wirken,  indem  unterschiedliche  Fehlerarten  unterschiedlich
gut entdeckt werden. Dazu gehört beispielsweise, ob die Verwendung von Nullpoin‐
tern entdeckt wird, oder welche Konstrukte als gefährlich eingestuft werden. Diese
Unterschiede sind in CoBe nicht sichtbar, da die Fehlerart über die Fehlerentstehung
definiert ist und somit nicht erlaubt, die Verwendung von Nullpointern oder die Ver‐
wendung  bestimmter Konstrukte darzustellen.  Für  eine  solche detaillierte Darstel‐
lung der Fehler fehlen aber auch empirische Daten. 

6.6 Tests im Modell

CoBe enthält Prüfungsmodelle für den Modultest, Subsystem‐ und Systemintegrati‐
onstest und den Systemtest. Diese Prüfungsmodelle sind durch die gleichen Zusam‐
menhänge, aber mit unterschiedlicher Quantifizierung beschrieben.

6.6.1 Eingaben von Tests

Die Eingaben  für die Testmodelle sind  in Tabelle 19 dargestellt. Für den Black‐Box‐
Test kann die Vollständigkeit der Testtechniken eingegeben werden, beispielsweise
wie viele der Funktionen durch Testfälle abgedeckt werden. Als zusätzliche Eingabe
kann der verfügbare Aufwand  für den Black‐Box‐Test eingegeben werden, da Auf‐
wand im Vergleich zur Zahl entdeckter Fehler als Testendekriterium verwendet wird
(Kan, 2003; Stark et al., 1994). Dies wird in CoBe als Brute‐Force‐Test bezeichnet. Für
den Glass‐Box‐Test werden messbare und gebräuchliche Überdeckungen modelliert.
Aus  den Varianten  der  Bedingungsüberdeckung wähle  ich  die  Termüberdeckung
(MC/DC), weil sie  in RTCA  (1992) gefordert wird. Als Schleifenüberdeckung wähle
ich  den  Boundary‐Interior‐Test,  der  präzise  definiert  ist  (Liggesmeyer,  2002).  Ich
unterscheide  zwischen  Überdeckungskriterium  als  zu  erreichende  und  Überde‐
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ckungsgrad als erreichte Überdeckung. Die Tabellen 20 und 21 fassen die Modellre‐
sultate zusammen. 

6.6.2 Zusammenhänge im Testmodell

Abbildung 33 zeigt die Eingaben und ihren Einfluss auf die Fehlerentdeckung.

Die Zahl der Testfälle bildet die Grundlage für das Testmodell (Abbildung 34), weil
Testfälle die Fehlerentdeckung und den Aufwand prägen (Abschnitt 5.5).

Testfälle werden im Modell durch die Testfallzahl T auf der Rationalskala dargestellt.
Die Testfallzahl ist nach oben nicht beschränkt. 

Eingabeparameter Wertebereich

Black‐Box‐Test mit Funktionsabdeckung, mit 
Äquivalenzklassen, mit Sonderfällen

Prozentwerte für die Abdeckung der 
einzelnen Testtechniken

Zusätzlicher Aufwand für weitere Testfälle 
(Brute‐Force‐Test) Aufwand in Entwicklerstunden

Vorbereitungszeitpunkt des Black‐Box‐Tests 
(nur für Systemtest) Entwurfsphase oder Testphase

Glass‐Box‐Test (ergänzend) mit Kriterien für 
Anweisungs‐, Zweig‐, Bedingungs‐ und 
Schleifenüberdeckung

Prozentwerte für die Überdeckung der 
einzelnen Einheiten

Kompetenz der Tester Siebenstufige Skala von “extrem niedrig” bis 
“extrem hoch”

Wiederholung des Tests  Ohne, gezielt oder vollständig

Prüfung wiederverwendeter Software  Neue Software oder gesamte Software

Tabelle 19: Entscheidungsparameter für den Systemtest

Äquivalenzklassen-
abdeckung

Tester-
kompetenz

Testfallzahl
Brute-Force-Test

Fehler-
entdeckungsquote
getrennt für
Vorbereitung und
Durchführung

Abdeckung Sonderfälle

Funktionsabdeckung

Anweisungsüberdeckung

Termüberdeckung

Schleifenüberdeckung

Zweigüberdeckung

Umfang neuer
Software

Umfang wv.
Software

Test wv.
Software

Frühe Test-
vorbereitung

Abb. 33: Ursache‐Wirkungs‐Diagramm für Fehlerentdeckung durch Test
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Einzelne Testfälle sind in CoBe bezüglich der Fehlerentdeckung nicht unterscheidbar,
weil sich nicht am Testfall erkennen  lässt, mit welcher Testtechnik der Testfall ent‐
standen  ist;  ein Testfall besteht ausschließlich aus Testeingaben und Sollresultaten.
Alle Testfälle werden  als gleichwertig betrachtet, obwohl  Studien  zeigen, dass der
Black‐Box‐Test andere Fehlerarten als der Glass‐Box‐Test entdeckt. Die Studien zei‐
gen aber widersprüchliche Ergebnisse (Juristo et al., 2004).

Testfälle  im Black‐Box‐Test. Für einen vollständigen Black‐Box‐Test und zur Nor‐
mierung wird in CoBe die nominale Zahl der Testfälle Tn berechnet. Sie ist durch den
Umfang SFP in Function Points bestimmt, unterschieden nach neuer und wiederver‐
wendeter Software. Die nominale Testfallzahl Tn beschreibt, wie viele Testfälle  für
einen Black‐Box‐Test durchgeführt werden, bei dem  alle Testtechniken vollständig
angewendet werden. Die Parameter  r0t und  r1t quantifizieren den Zusammenhang:

. Diese Modellierung setzt voraus, dass Function Points für die Software
geeignet sind; in anderen Fällen können Function Points aber als interne Rechengröße
verwendet werden, aus der der Code‐Umfang berechnet wird (Abschnitt 6.3.1). Wird
eine andere Variante der Function Points verwendet, muss der Zusammenhang neu
quantifiziert, zumindest überprüft werden.

Den Testtechniken des Black‐Box‐Tests wird  jeweils die  gleiche Zahl  an Testfällen
zugeordnet. T bezeichnet  im Modell die Testfallzahl, die  sich  linear aus der Abde‐
ckung  der  Testtechniken  berechnet. Werden  beispielsweise  alle  Funktionen  abge‐
deckt,  dann wird  ein Drittel  der  Testfälle  Tn  vorbereitet  und  durchgeführt. Diese
Testfallzahl T wird mit Tn zur relativen Testfallzahl t normiert. Dadurch wird der Ein‐
fluss des Umfangs herausgerechnet. Grundlage ist also die normierte Testfallzahl t.

Testfälle  im Glass‐Box‐Test. Die Zahl der Testfälle, die  im Glass‐Box‐Test definiert
und durchgeführt werden, hängt in CoBe vom Überdeckungsgrad ab, der durch den
Black‐Box‐Test erreicht wurde, und vom Überdeckungskriterium, das für den Glass‐
Box‐Test gefordert wird. Damit die Zahl der Testfälle  im Glass‐Box‐Test berechnet
werden kann, muss der Zusammenhang zwischen Testfallzahl einerseits und Überde‐

Parameter für 
Black‐Box‐Test

Kriterien für 
Glass‐Box‐Test

Testfallzahl
Black‐Box‐Test

Erreichte 
Überdeckungsgrade

Testfall‐
zahl gesamt

Testfallzahl
Glass‐Box‐Test

Fehlerent‐
deckungsquote Q

Tester‐
kompetenz

Abb. 34: Überblick über das Testmodell
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ckungsgrad oder ‐kriterium andererseits definiert werden. Qualitativ gehe ich davon
aus, dass im Mittel jeder Testfall die Überdeckung erhöht, solange noch nicht die voll‐
ständige Überdeckung erreicht  ist. Denkbar  sind verschiedene quantitative Zusam‐
menhänge zwischen Testfallzahl und Überdeckungsgraden:

• Mit einem linearen Zusammenhang überdeckt jeder Testfall konstant viele Einhei‐
ten. Dies wird aber durch Erfahrungen widerlegt. Grady (1992) berichtet beispiels‐
weise, dass etwa 80 % Anweisungsüberdeckung  leicht zu erreichen sind, dass es
dann aber mühsam wird, die Überdeckung weiter zu steigern. Der Umfang neuen
Codes, den ein Testfall ausführt, nimmt typisch ab, je mehr Testfälle bereits ausge‐
führt wurden. 

• Legt man dem Modell die Annahme zu Grunde, dass  jeder Testfall den gleichen
Anteil noch nicht ausgeführter Einheiten überdeckt,  führt dies zu einem Zusam‐
menhang zwischen der Überdeckung c und der Testfallzahl t und dem Anteil q, der
pro Testfall überdeckt wird, mit der Form  . Damit kann aber nicht
dargestellt werden, dass 100 % Überdeckung erreicht werden oder erreicht werden
sollen. In der Realität kann aber im Glass‐Box‐Test 100 % Überdeckung gefordert
werden.  Es  sind  auch  Situationen  vorstellbar,  in  denen  100 %  Überdeckung
erreicht werden, aber weitere Testfälle durchgeführt werden.

Darum wähle ich als Näherung einen Zusammenhang zwischen dem Überdeckungs‐
grad c und der normierten Testfallzahl t, der durch die Parameter r0c und r1c quantifi‐
ziert ist:  . 

Geht die normierte Testfallzahl gegen Null, dann wird die Steigung dieser Funktion
unendlich. Dieser Fall spielt aber in der Realität keine Rolle, da ein Testfall nicht teil‐
bar ist und somit auch die normierte Testfallzahl nicht gegen Null gehen kann. Sie ist
entweder Null oder hat eine bestimmte Mindestgröße.

Da die Überdeckung  in der Realität nie über  100 % wachsen  kann, verhindert die
Minimumfunktion, dass  c  im Modell über 100 % wächst, wenn  entsprechend viele
Testfälle durchgeführt werden. Abbildung 35 zeigt skizzenhaft den Zusammenhang
zwischen der normierten Testfallzahl und der erreichten Überdeckung: Die Überde‐
ckung steigt mit steigender Testfallzahl, bis 100 % erreicht sind, und bleibt dann kon‐
stant.

Anweisungen,  Zweige,  Schleifen  und  Terme  werden  bei  gleicher  Testfallzahl  in
unterschiedlichem Ausmaß  überdeckt. Angelehnt  an Malaiya  et  al.  (1994) wird  in
CoBe  angenommen,  dass  es  einen  linearen  statistischen Zusammenhang  zwischen
den unterschiedlichen Überdeckungsgraden gibt. Dieser Zusammenhang  ist  einge‐
schränkt auf einen bestimmten Bereich, für den gilt, dass die Überdeckung nicht voll‐
ständig  ist  und  nicht  gezielt  angestrebt wird.  Abbildung 36  zeigt  diesen  linearen
Zusammenhang mit  c0  für Anweisungsüberdeckung,  c1  für Zweigüberdeckung,  c3
für Termüberdeckung und c4  für Schleifenüberdeckung1. Solange die Anweisungs‐

1. Die Nummerierung c0 bis c4 orientiert sich an Sneed und Winter (2002)

c 1 1 qt–( )t–=

c min 1 r0c, t
r1c⋅( )=
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überdeckung unter 100 %  liegt, wachsen Zweig‐, Term‐ und Schleifenüberdeckung
linear mit der Anweisungsüberdeckung.

Abbildung 37 zeigt den Zusammenhang zwischen der normierten Testfallzahl und
den Überdeckungsgraden. Die Überdeckungsgrade steigen bei niedriger normierter
Testfallzahl an (links im Diagramm). Erreicht die Anweisungsüberdeckung c0 100 %,
dann bleibt sie konstant (etwa im rechten Drittel des Diagramms). Die Zweigüberde‐
ckung c1 steigt weiter an – solange, bis 100 % Zweigüberdeckung erreicht werden.

Somit wird  der  Zusammenhang  zwischen  normierter  Testfallzahl  und  erreichtem
Überdeckungsgrad durch die folgenden Gleichungen beschrieben:

• Anweisungsüberdeckung 

• Zweigüberdeckung 

• Termüberdeckung 

• Schleifenüberdeckung 
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Abb. 35: Normierte Testfallzahl und Überdeckungsgrad
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c0 min 1 r0c, t
r1c⋅( )=

c1 min 1 cf1, r0c t
r1c⋅ ⋅( )=

c3 min 1 cf3, r0c t
r1c⋅ ⋅( )=

c4 min 1 c, f4 r0c t
r1c⋅ ⋅( )=
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Im Glass‐Box‐Test  sind die Überdeckungskriterien vorgegeben, beispielsweise dass
80 % der Anweisungen überdeckt werden müssen. In CoBe wird aus diesen Kriterien
die Zahl der Testfälle berechnet, die benötigt werden, um das Kriterium zu erfüllen.
Dazu wird  der Zusammenhang  zwischen Überdeckung und  Testfallzahl  nach der
Testfallzahl aufgelöst. 

Anweisungen, die bereits durch den Black‐Box‐Test überdeckt wurden, müssen nicht
mehr  im Glass‐Box‐Test überdeckt werden. Wird also  eine bestimme Anweisungs‐
überdeckung gefordert, dann müssen nur Testfälle definiert und durchgeführt wer‐
den, mit denen noch nicht überdeckte Anweisungen ausgeführt werden. Auch die
verschiedenen  Überdeckungskriterien  beeinflussen  sich  gegenseitig:  Testfälle,  die
durchgeführt werden, um Anweisungen zu überdecken, überdecken auch Zweige.
Mit  einer  bestimmten  Anweisungsüberdeckung  wird  also  auch  eine  bestimmte
Zweigüberdeckung  erreicht. Wird  dann  eine  bestimmte Zweigüberdeckung  gefor‐
dert, dann müssen Testfälle für bereits überdeckte Zweige nicht mehr durchgeführt
werden. Den gleichen Zusammenhang nehme  ich  für den Einfluss der Zweigüber‐
deckung  auf  die  Termüberdeckung  und  auf  die  Schleifenüberdeckung  an. Diesen
Zusammenhang  modelliere  ich  in  CoBe  wieder  durch  den  statistischen,  linearen
Zusammenhang  zwischen den Überdeckungsgraden  aus Abbildung 36.  Im Modell
wird also ein statistischer Zusammenhang zwischen den Überdeckungskriterien ver‐
wendet. Dabei werden beispielsweise Effekte durch nicht erreichbaren Code vernach‐
lässigt.

Die Testfälle im Glass‐Box‐Test werden gezielt so definiert, dass bestimmte Code‐Ein‐
heiten  überdeckt werden, während  im  Black‐Box‐Test  der Code  nicht  sichtbar  ist.
Trotzdem  lege  ich den  gleichen Zusammenhang  zwischen den  Testfällen und der
Code‐Überdeckung zu Grunde, der auf einem Sättigungseffekt beruht: 

• Ist bereits  eine hohe Überdeckung erreicht, dann können mit  einem Testfall nur
ganz  gezielt  einige  wenige  weitere  Einheiten  überdeckt  werden.  Bei  niedriger
Überdeckung werden mit diesem Testfall nicht nur diese wenigen Einheiten über‐
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deckt,  sondern auch weitere, die auf dem Pfad  liegen, der durch diesen Testfall
ausgeführt wird. 

• Zusätzlich spielt eine Rolle, dass die Testfälle nicht mechanisch aus den zu über‐
deckenden Code‐Einheiten bestimmt werden können. Wie im Black‐Box‐Test gehe
ich  davon  aus,  dass  es  schwieriger wird,  einen  Testfall  so  zu  definieren,  dass
bestimmte  und  dass  möglichst  viele  Code‐Einheiten  überdeckt  werden,  wenn
bereits viele Einheiten überdeckt sind.

Darum verwende  ich  im Glass‐Box‐Test die gleiche Form des Zusammenhangs wie
im  Black‐Box‐Test. Weil  aber  der Code  sichtbar  ist  und weil  der  Tester  versucht,
gezielt noch nicht geprüfte Bereiche zu überdecken, modelliere  ich, dass der Über‐
deckungsgrad  stärker als  im Black‐Box‐Test wächst. Ein Testfall  im Glass‐Box‐Test
trägt also mehr zur Überdeckung bei als ein Testfall im Black‐Box‐Test.

Fehlerentdeckung. Um die Fehlerentdeckung im Test zu modellieren, nehme ich an,
dass ein einzelner Testfall einen Fehler mit bestimmter Wahrscheinlichkeit entdeckt.
Es handelt sich also um einen Zufallseffekt, da die Testtechniken, mit denen Testfälle
hergeleitet werden,  Heuristiken  sind  (Abschnitt 5.5).  In  CoBe wird  nicht mit  der
Wahrscheinlichkeit gerechnet, statt dessen wird mit Anteilen gerechnet. Jeder Testfall
entdeckt also einen Teil der unentdeckten Fehler. In CoBe wird dies formal über den
Anteil  qt  der  noch  nicht  entdeckten  Fehler,  die  ein  einzelner  Testfall  entdeckt,
beschrieben. Die Fehlerentdeckungsquote eines Tests ergibt sich somit aus der Zahl
der Testfälle, die durchgeführt werden; unabhängig davon, ob die Testfälle im Black‐
Box‐Test oder im Glass‐Box‐Test definiert und durchgeführt werden. 

Daraus folgt, dass die Zahl aller Testfälle zusammengezählt wird. Sie wird normiert,
damit  das Modell  unabhängig  vom  Software‐Umfang  quantifiziert werden  kann.
Somit wird die  Fehlerentdeckungsquote QTest  aus der  normierten Testfallzahl  tTest
eines Tests berechnet. 

Damit eine Quantifizierung mit linearer Regression möglich wird, wird der zusätzli‐
che Faktor rqt benötigt. Damit bei sehr niedriger normierter Testfallzahl keine negati‐
ven  Resultate  möglich  sind,  wird  der  Wertebereich  durch  die  Maximalfunktion
eingeschränkt. Die Formel, mit der die Fehlerentdeckungsquote berechnet wird, lau‐
tet damit:

Für die Quantifizierung durch lineare Regression wird die Gleichung umgeformt; die
Beschränkung des Wertebereichs fällt weg1. Die Regression berechnet rqt und qt aus
einzelnen Datenpunkten durch die Gleichung der Form 

Abbildung 38 skizziert diesen Zusammenhang zwischen normierter Testfallzahl und
Fehlerentdeckungsquote.  In einem kleinen Bereich  links unten  im Diagramm bleibt

1. Bei sehr wenigen Testfälle kann die Fehlerentdeckungsquote im Prinzip negativ werden, 
abhängig von den Datenpunkten, die bei der Regression verwendet werden. Dies wird in 
CoBe durch die Maximalfunktion verhindert, die Fehlerentdeckungsquote bleibt dann 0 %.

QTest max 0 1, rqt 1 qt–( )
tTest–( )=

1 QTest– rqt 1 qt–( )
tTest=
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die Fehlerentdeckungsquote auf 0 %, auch wenn einige wenige Testfälle durchgeführt
werden. Dann  steigt  die  Fehlerentdeckungsquote  steil  an  und  flacht  dann  ab.  Sie
nähert sich asymptotisch der Fehlerentdeckungsquote von 100 % (rechts oben im Dia‐
gramm).

Diese Fehlerentdeckungsquote wird für die unterschiedliche Entdeckung der Fehler‐
arten und  ‐schwere  in den verschiedenen Tests angepasst. Beispielsweise findet der
Modultest keine Spezifikationsfehler, der Systemtest einen geringen Teil der Spezifi‐
kationsfehler, aber vor allem Entwurfs‐und Codefehler. Dazu werden die Faktoren
ffTest,Art  für den Einfluss der Fehlerart und  ffTest,Schwere  für den Einfluss der Fehler‐
schwere verwendet.

Testerkompetenz. Die Kompetenz spielt eine Rolle, weil die Testmethoden Heuristi‐
ken bieten. Die Testerkompetenz KPTest wird auf einer  siebenstufigen Skala darge‐
stellt,  jeder  Klasse  der  Skala  ist  ein  Wert  des  Faktors  ffTest,KP  zugeordnet.
Hochkompetente Tester finden etwa 20 % mehr Fehler als der Durchschnitt.

Die Fehlerentdeckungsquote für einen Test berechnet sich somit aus

Frühe  Testvorbereitung.  Eine  frühe  Vorbereitung  ist  nur  für  den  Black‐Box‐Test
möglich, weil  die  Testfälle  im  Glass‐Box‐Test  abhängig  von  der  erreichten  Über‐
deckung definiert werden. Die Vorbereitung kann frühestens erfolgen, wenn die Vor‐
gabe für den Test fertig ist. Für den Systemtest ist dies die Spezifikation, der Test kann
also während des Entwurfs vorbereitet werden. In der Vorbereitung wird ein Teil der
Fehler in der Spezifikation entdeckt. Diese Fehler werden vor der Codierung entfernt.
In CoBe  ist dieser Zusammenhang  für  Spezifikationsfehler des  Systemtests  darge‐
stellt. Die durch frühe Testvorbereitung entfernten Fehler sind in den Prüfungen nach
dem  Entwurfsreview  nicht mehr  enthalten. Andere  Tests  können  frühestens  nach
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Abb. 38: Normierte Testfallzahl und Fehlerentdeckungsquote

QTest Art Schwere, , ffTest Art, f⋅ fTest Schwere, ffTest KP, max 0 1, rqt 1 qt–( )
tTest–( )⋅ ⋅=
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dem Entwurf vorbereitet werden, darum  ist  für den Korrekturaufwand kein Unter‐
schied modelliert.

Aufwand.  Jeder Testfall kostet den gleichen Aufwand. Für den Black‐Box‐Test ver‐
teilt  sich dieser Aufwand anteilig auf Vorbereitung, Testaufbau und Testdurchfüh‐
rung. Im Glass‐Box‐Test ist der Aufwand für den Testaufbau konstant. Vorbereitung
und Durchführung lassen sich nicht trennen. Der Aufwand wird durch die Kompe‐
tenz der Tester und den Produktivitätsparameter af (Abschnitt 6.3.7) beeinflusst. Zu
diesem Aufwand, der für alle Testfälle gleich ist, kommt Aufwand für blockierende
Fehler dazu: Nachdem der  blockierende  Fehler  korrigiert wurde, muss  zumindest
derjenige Testfall wiederholt werden, mit dem der Fehler entdeckt wurde. Dies ent‐
spricht einer gezielten Wiederholung für diesen Fehler, darum wird der gleiche Auf‐
wand wie für die gezielte Testwiederholung berechnet (Abschnitt 6.3.6).

Brute‐Force‐Test.  Beim Brute‐Force‐Test werden Testfälle mit den Testtechniken des
Black‐Box‐Tests definiert, solange Aufwand verfügbar ist. Die Zahl der Testfälle wird
also im Modell aus dem Aufwand berechnet. Sie wird zu den Testfällen im Black‐Box‐
Test addiert.

6.7 Zusammenfassung

In diesem Abschnitt werden die Ursache‐Wirkungs‐Zusammenhänge in CoBe zusam‐
mengefasst und das Vorgehen zur Kalibrierung erläutert.

6.7.1 Zusammenhänge im Überblick

Abbildung 39  zeigt  die  Zusammenhänge,  die  die  Fehlerzahlen  betreffen,
Abbildung 40 die Zusammenhänge für Kosten und Nutzen (entfallende Kosten).   

Die Abbildungen  stellen die anfallenden Fehlerkosten dar, die entfallenden Kosten
werden mit den gleichen Zusammenhängen berechnet. Abbildung 39 zeigt beispiel‐
haft das Prüfungsmodell für den Systemintegrationstest (oben links) und das Spezifi‐
kationsreview  (darunter)  mit  ihren  Eingaben.  Beide  Modelle  berechnen  die
entsprechenden Fehlerentdeckungsquoten.  In das Fehlerstrommodell  (rechts unten)
fließen die Zahlen für die entstehenden Fehler, die Fehlerentdeckungs‐ und Korrek‐
turquoten und die Eingaben für den Prüfprozess. Das Resultat sind die Fehlerzahlen.
Abbildung 40 zeigt, wie für diese beiden Prüfungen (links oben) Fehlerkosten für die
Korrektur und Testwiederholung (links unten) und Fehlerfolgekosten (rechts unten)
berechnet werden. Die Abbildung zeigt, wie die Aufwände durch den Aufwandsein‐
fluss angepasst werden und wie daraus Dauer und Personalbedarf berechnet werden
(rechts).

Die  Zusammenhänge  aus  dem  QS‐Modell  (Drappa,  1998)  und  aus  COCOMO II
(Boehm,  2000)  sind markiert.  Der  Schwerpunkt  in  CoBe  liegt,  anders  als  im QS‐
Modell, auf den Prüfungsmodellen mit ihren Prüfparametern, Kosten für Prüfwieder‐
holung, langfristigen Kosten der Wartung und des Einsatzes und der direkten Berech‐
nung  des  Nutzens  als  entfallende  Kosten.  Dazu  wird  auch  die  Wartungs‐  und
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Einsatzphase des Produkts betrachtet. CoBe unterscheidet  sich zusätzlich vom QS‐
Modell, weil  in CoBe unterschiedlich  schwere  Fehler und wiederverwendete  Soft‐
ware dargestellt werden. Zusammenhänge aus COCOMO II sind in CoBe integriert,
um Zusammenhänge für Dauer und Personal zu beschreiben. Mit COCOMO II wer‐
den auch Einflussparameter der Projektumgebung integriert, mit denen der Aufwand
kalibriert  wird.  Zusätzlich  werden  in  CoBe  Kalibrierungsparameter  bereitgestellt.
Diese Kalibrierungsparameter greifen  an wenigen  Stellen  im Modell; die wesentli‐
chen Modellkomponenten  für Prüfung, Fehlerentdeckung, Korrektur und Prüfwie‐
derholung werden nicht  geändert. Der Umfang wirkt  an  vielen  Stellen und  ist  an
diesen Stellen als Eingabe dargestellt, damit die Diagramme übersichtlicher sind.

Die Ausgaben  sind  in den Tabellen 20 und  21 dargestellt. Der Organisationsanteil
wird auf den Aufwand aufgeschlagen. Für den Feldtest werden die Fehlerbehebungs‐
kosten  dargestellt;  sein Nutzen  sind  entfallende Wartungskosten  und  entfallende
Fehlerfolgekosten. Kosten und Nutzen werden pro Prüfung schrittweise zusammen‐
gefasst: Die Kosten zu Prüfkosten und Fehlerbehebungskosten; entfallende Fehlerkos‐
ten zum Nutzen im Projekt und zum Nutzen in der Wartung. Alle Aufwands‐, Dauer‐
und Personalausgaben werden in Geldwerte umgerechnet und als Geldwerte ausge‐
geben. Qualitätskosten  (und Nutzen)  im Projekt,  in der Wartung und beim Einsatz
werden zu den Gesamt‐Qualitätskosten zusammengefasst, aber auch getrennt ausge‐
geben. Für die Projekt‐Qualitätskosten werden die im Projekt anfallenden Kosten auf‐
summiert.  Der  Gesamtnutzen  ist  die  Differenz  zwischen  Kosten  und  Nutzen
(Hanusch, 1987).  

Ausgabeparameter für Kosten Ausgabewerte

Vorbereitung Aufwand, Dauer, Mitarbeiter

Für Tests: Aufbau des Testgeschirrs Aufwand, Dauer, Mitarbeiter

Durchführung (In Reviews: Sitzung) Aufwand, Dauer (Netto und Brutto in 
Reviews), Mitarbeiter

 Summe Prüfkosten

Korrektur (einschließlich Analyse falscher 
Befunde) Aufwand, Dauer, Mitarbeiter

Korrektur nach früher Testvorbereitung für 
Systemtest Aufwand, Dauer, Mitarbeiter

Wiederholung der Prüfung Aufwand, Dauer, Mitarbeiter

Wiederholung mit Prüfprozess: Wiederho‐
lung insgesamt nach der Prüfung und 
getrennt für einzelne Prüfungen 

Aufwand, Dauer, Mitarbeiter

Summe Fehlerbehebungskosten

Tabelle 20: Modellresultate für anfallende Kosten einer Prüfung
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6.7.2 Vorgehen zur Kalibrierung

Die Kalibrierung des Modells erfolgt in fünf aufeinander folgenden Schritten. Zuerst
wird der Umfangsfaktor für den Code gesetzt, bevor Aufwand und Dauer kalibriert
werden.  Dann werden  die  Fehlerzahl,  die  Fehlerverteilungen  und  schließlich  die
Umfangsfaktoren der Dokumente kalibriert. Die  im Folgenden genannten und ver‐
wendeten Daten sind Archivdaten, also Daten aus abgeschlossenen Projekten:

• Umfang in Anweisungen oder in Function Points,

• Gesamtaufwand und ‐dauer des Projekts,

• COCOMO‐II‐Parameter,

• Fehlerzahlen,

• Verteilung der Fehler auf Fehlerart und Fehlerschwere,

• Umfang der Spezifikation und des Entwurfs in Seiten.

Kalibrierung des Umfangsfaktors für den Code.   Für  den  Umfangsfaktor  werden
der Code‐Umfang  in Anweisungen und der Produktumfang  in Function Points  für
neuen und hinzugefügten Code benötigt. Der Umfangsfaktor ist das Verhältnis dieser
Größen. Ist der Umfang in Function Points nicht verfügbar, dann können Erfahrungs‐
werte verwendet werden, die für verschiedene Programmiersprachen das Verhältnis

Ausgabeparameter für Nutzen Ausgabewerte

Entfallende Korrektur einschließlich Analyse 
falscher Befunde in Folgeprüfungen Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten für blockierende Fehler 
im Integrations‐ und Systemtest Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten bei gezielter Testwieder‐
holung in den folgenden Prüfungen Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten pro Prüfung, falls ein 
Prüfprozess in Folgeprüfungen durchge‐
führt wird

Jeweils Aufwand, Dauer, Mitarbeiter

Summe entfallende Projektkosten

Entfallende Korrektur in der Wartung Aufwand

Entfallende Testwiederholung für den Prüf‐
prozess in der Wartung Aufwand

Summe entfallende Wartungskosten

Entfallende Fehlerfolgekosten Geldwert

Tabelle 21: Modellresultate für den Nutzen
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zwischen der Zahl der Anweisungen und den Function Points beschreiben (Boehm,
2000; Jones, 1996; QSM, 2009).

Kalibrierung des Aufwands und der Dauer.   Der  Aufwandsfaktor  basiert  auf  der
Aufwandsgleichung  aus  COCOMO II.  Aus  Archivdaten  werden  der  Umfang  in
Anweisungen,  die  COCOMO‐II‐Parameter  oder  eine  Einschätzung  der  Parameter
und der Gesamtaufwand benötigt. Dann kann entweder der Produktivitätsfaktor von
COCOMO II mit dem in Boehm (2000) vorgeschlagenen Regressionsverfahren ange‐
passt werden; der Aufwandsfaktor  ist dann das Verhältnis  zwischen  angepasstem
und originalem Produktivitätsfaktor. Alternativ kann der Aufwandsfaktor  als Ver‐
hältnis zwischen dem berechneten Gesamtaufwand und dem tatsächlichen, gemesse‐
nen Gesamtaufwand (dem Istwert) berechnet werden. Der Dauerfaktor wird mit dem
gleichen Vorgehen berechnet, aber basierend auf Aufwand und Dauer der Projekte
mit der COCOMO‐II‐Gleichung für die Dauer.

Kalibrierung der Gesamtfehlerzahl.  In den Fällen, in denen Archivdaten für alle in
Prüfungen  und  (für  einen  bestimmten  Zeitraum)  nach  Auslieferung  entdeckten
Fehler vorhanden sind, wird mit CoBe aus dem Umfang der abgeschlossenen Projekte
die  zu  erwartende Gesamtfehlerzahl berechnet. Der Fehlerfaktor  ist das Verhältnis
aus der gemessenen Zahl der Fehler (dem Istwert) und dem Modellresultat. Sind nur
unvollständige  Fehlerzahlen  archiviert,  beispielsweise  nur  für  einen  Teil  der
Prüfungen, dann ist es notwendig, zusätzlich zum Umfang den Prüfprozess und die
Prüfparameter in CoBe zu setzen. Für ein Projekt wird dann die vorhandene Fehler‐
zahl berechnet. Der Fehlerfaktor ist das Verhältnis aus dem Istwert und dem Modell‐
resultat.

Kalibrierung der Fehlerverteilung auf Fehlerarten und Fehlerschwere.   Die  Vertei‐
lung  auf  die  Fehlerarten  und  auf  die  Fehlerschwere  kann  direkt  aus  archivierten
Fehlerzahlen berechnet werden. Für die Fehlerarten ist wichtig, dass die Fehlerzahlen
möglichst aus allen Prüfungen und aus der Wartung stammen. Fehlen zum Beispiel
Zahlen aus den stattgefundenen Spezifikationsreviews, dann wird ein großer Teil der
Spezifikationsfehler nicht erfasst. Die Verteilung auf die Fehlerarten  ist dann durch
zu wenig Spezifikationsfehler verzerrt. 

Kalibrierung der Umfangsfaktoren für Dokumente.  Die Umfangsfaktoren  für Spe‐
zifikation und Entwurf berechnen sich wie der Umfangsfaktor  für den Code, basie‐
rend aber auf dem Umfang in Seiten und dem Umfang in Function Points.

6.8 Quantifizierung 

Die Quantifizierung des Basismodells erfolgt weitgehend mit Daten aus Jones (1996),
die auch die Grundlage  für das QS‐Modell bilden, und mit Daten aus COCOMO II
(Boehm, 2000). Die Zusammenhänge für die Prüfungsmodelle werden, soweit mög‐
lich, konsistent mit dieser Datensammlung quantifiziert. Ergänzend wird auf einzelne
Untersuchungen zurückgegriffen.
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6.8.1 Basismodell

Umfang. Der Umfang des Produkts wird zwischen Function Points und Anweisun‐
gen umgerechnet. Für die Spezifikation und den Entwurf wird der Umfang in Seiten
abgeleitet (Tabelle 22).

Fehlerentstehung.  Die  Fehlerdichte  fd  wird  mit  den  Daten  für  Auftragsprojekte
abhängig  vom  Umfang  in  Function  Points  quantifiziert  (Jones,  1996,  S.  230)  und
beträgt  für  neue  Software  .  In  wiederverwendeter
Software ist die Fehlerdichte auf 5 % der Fehlerdichte neuer Software reduziert (QWV
= 95%). 

Die Verteilung auf die Fehlerart (Tabelle 23) erfolgt mit Daten aus Jones (1996). Hand‐
buchfehler werden im Modell nicht dargestellt. Fehlerhafte Korrekturen werden auf
andere Fehlerarten verteilt, da sie in CoBe bei der Korrektur berücksichtigt werden.
Die Verteilung auf die Fehlerschwere (Tabelle 24) stammt aus mozilla (2007), da Jones
seine eigenen Daten über die Fehlerschwere in Jones (1996, S. 384) kritisch diskutiert.

Fehlerentdeckung. Die Fehlerentdeckung aus Jones (1996) wird für den Nominalfall
aller Prüfungen mit typischen Prüfparametern übernommen (Tabelle 25).

Korrekturaufwand.  Die Basis für den Korrekturaufwand eines Fehlers nach Prüfun‐
gen (Tabelle 26, Jones, 1996) wird mit dem Einfluss aus Boehm (1981) angepasst, so
dass der Korrekturaufwand in kleinen Projekten um den Faktor 4 von früher zu spä‐
ter Fehlerentdeckung  steigt,  in großen Projekten um den Faktor  10.  Ich wähle  100
Function Points als kleines Projekt und 10.000 Function Points als großes Projekt. Der
Faktor für den Anstieg wird für andere Umfangswerte linear inter‐ und extrapoliert.
Die Erfahrungswerte in Tabelle 26 unterscheiden sich deutlich. Für die Werte ist aber

Umfangsfaktor  Wert

Umfangsfaktor Code Abhängig von der Programmiersprache (Boehm, 2000), 
53 Anweisungen pro Function Point in Java

Umfangsfaktor Spezifikation 0,44 Seiten pro Function Point (Drappa, 1998)

Umfangsfaktor Entwurf 0,44 Seiten pro Function Point (Drappa, 1998)

Tabelle 22: Umrechungsfaktoren für den Umfang

Fehlerart (%)

Spezifikationsfehler 22 %

Entwurfsfehler 28 %

Codefehler 39 %

Tabelle 23: Verteilung auf die Fehlerarten aus Jones (1996)

fd 1 05 1 11, SFPneu( )10log⋅+,=
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unsicher,  ob  die  Testwiederholung  enthalten  ist;  es  ist  unklar,  ob  es  sich  um
Messungen  oder  Schätzungen  handelt.  Für  die Wartung wähle  ich  den Wert  der
ISBSG  (2005), weil  dieser Wert  aus Messungen  in  54  Projekten  unterschiedlicher
Organisationen stammt.  

Für den Einfluss der Fehlerart gibt es unterschiedliche Zahlen. Grady (1992) berichtet,
dass  ein  Spezifikationsfehler  den  fünffachen Wartungsaufwand  eines  Codefehlers
benötigt. Basili und Perricone (1984) nennen einen Faktor 1,5 zwischen einem Spezifi‐
kationsfehler und einem Entwurfs‐ oder Codefehler. Kan (2003) nennt ein Verhältnis
von 1 : 0,7 zwischen der Korrektur von Entwurfsfehlern und Codefehlern in der Test‐
phase. CoBe verwendet ein Verhältnis von 1,3 : 1 : 0,7 zwischen Spezifikations‐, Ent‐
wurfs‐ und Codefehlern, orientiert an Kan (2003) und Basili und Perricone (1984).

Unterschiedlichen Einfluss der Fehlerschwere nennen Kan  (2003)  für den Test und
Zage und Zage (2003). CoBe verwendet die Werte von Kan (2003).

Fehlerschwere (%)

Blockierende Fehler 1,1 %
10,8 %

Kritische Fehler 9,7 %

Hauptfehler 12,7 %
77,7 %

Normale Fehler 65,0 %

Nebenfehler 8,6 %
11,5 %

Kosmetische Fehler 2,9 %

Tabelle 24: Verteilung auf die Fehlerschwere (mozilla, 2007)

Fehlerentdeckungsquote aus Jones (1996) Spezifikations‐
fehler

Entwurfs‐
fehler Codefehler

Spezifikationsreview 40 % 15 %a 0 %

Entwurfsreview 15 % 55 % 0 %

Codereview 20 % 40 % 65 %

Modultest 0 % 5 % 20 %

Integrationstest 10 % 15 % 30 %

Systemtest 10 % 15 % 35 %

Feldtest 20 % 20 % 25 %

Tabelle 25: Fehlerentdeckung nach Jones (1996)
a. Im Spezifikationsreview in CoBe werden ausschließlich Spezifikationsfehler entdeckt



6.8. Quantifizierung 137

Falsche Befunde. Die Quantifizierung des Aufwands für falsche Befunde stützt sich
auf  den  Analyseaufwand  von  Fehlern,  der  in  unterschiedlichen  Studien  genannt
wird.  Basili  et  al.  (1996)  haben  Aufwände  von  Wartungstätigkeiten  gemessen
(Tabelle 28).  Niessink  und  Van  Vliet  (1998),  Evanco  (2001),  Rombach  und  Ulery
(1989a und 1989b) nennen zwischen 15 % und 72 %  für die Analyse der Korrektur.
Für  die  Quantifizierung  werden  die  Erfahrungswerte  der  Isolation  in  Tabelle 28
(Basili et al., 1996) verwendet und auf den Aufwand ohne Organisation (Analyse in
Tabelle 28), Prüfung und Beratung bezogen. Somit werden  in CoBe 28,8 % des Kor‐
rekturaufwands pro Fehler benötigt, um einen falschen Befund zu erkennen.

Testwiederholung. Für jeden blockierenden Fehler nehme ich an, dass 50 % der Test‐
fälle wiederholt werden. Dazu sind, angelehnt an van Megen und Meyerhoff (1995),
zusätzlich 25 % des Aufwands der ersten Testdurchführung notwendig. Die gezielte
Testwiederholung wird mit den gleichen Werten quantifiziert wie blockierende Feh‐
ler. Für den Korrekturprüfprozess werden die gleichen Werte verwendet. Dies sind
Annahmen, die an ein konkretes Testvorgehen angepasst werden müssen. Organisa‐
torische Kosten werden mit 0 quantifiziert.

Korrekturaufwand 
pro Fehler (Eh)

Jones 
(1996)

Kan 
(2003) Erfahrungswerte

Spez.‐review 1,0 ‐ ‐

Entwurfsreview 1,5 0,5 24 (Leszak et al., 2002); 2,5 (Rico, 2000)

Codereview 1,5 0,5 2,5 (Rico, 2000)

Modultest 2,5 3,0

Integrations‐ und 
Funktionstest 5,0 3,5 13,5 (Mittel), 16 (Median) (Basili et al., 1996);

48 (Leszak et al., 2002)

Systemtest und 
Feldtest 10 3,8 13,5 (Mittel), 16 (Median) (Basili et al., 1996); 

4 (Jalote, 2000); 25 (Rico, 2000)

Wartung ‐ ‐

15 (ISBSG, 2005); 2,7 (Grady, 1992); 250 (Rico, 2000); 
1, 2, 4 (Demirörs et al., 2000); 72 (Leszak et al., 2002);
29 (Shull et al., 2002); 17 (Jalote, 2000); 
21, 28 (Sneed, 2004); 27 (Basili et al., 1996)

Tabelle 26: Korrekturaufwand pro Fehler nach Prüfungen

Aufwand (Eh) Nebenfehler Hauptfehler krit. Fehler Verhältnis

Kan (2003) 3,4 4,0 5,1 0,85 : 1,0 : 1,28

Zage und Zage (2003) 3,3 8,2 6,2 0,40 : 1,0 : 0,75

Tabelle 27: Fehlerschwere und Korrekturaufwand
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6.8.2 Reviews

Gutachterzahl. Die Fehlerentdeckungsquote wird mit Daten aus Biffl (2001) für Spe‐
zifikationsreviews  mit  Checklisten  quantifiziert  (Tabelle 29).  Die  Parameter  rqr  =
0,7653 und qr = 0,1009  (Abschnitt 6.4.2) werden durch  lineare Regression berechnet.
Abbildung 41 zeigt den Zusammenhang für die Messwerte (4 bis 6 Gutachter) und für
extrapolierte Werte mit weniger als 4 Gutachtern und mehr als 6 Gutachtern. 

Prüfling, Fehlerart und Fehlerschwere. Mit dem Faktor ffp,Art wird die Entdeckungs‐
quote  eines nominalen Reviews mit  5 Gutachtern an Tabelle 25  angepasst. Für die
Anpassung an die Fehlerschwere sind keine Daten verfügbar.

Vorbereitungsintensität.  Typisch  werden  für  eine  gründliche  Vorbereitung  von
Dokumenten (Spezifikation und Entwurf) 10 Seiten pro Stunde, für Code 300 Zeilen
pro Stunde benötigt  (Frühauf et al., 2006). Die Quantifizierung  für den Einfluss der

Tätigkeit und Beschreibung Aufwandsanteil

Analyse: Problemmeldung, Entscheidung über Lösung 6 %

Isolation: Fehlerursache identifizieren 26 %

Entwurf der Lösung 26 %

Implementierung und Modultest der Lösung 38 %

Inspection, Certification, Consulting (Prüfungen, Beratung) 4 %

Tabelle 28: Aufwandsverteilung in der korrektiven Wartung (Basili et al., 1996)

Gutachterzahl 4 5 6

QReview 0,499 0,550 0,600

Tabelle 29: Fehlerentdeckung im Review (Biffl, 2001, Tab. 5.2.4a)
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Abb. 41: Gutachter und Fehlerentdeckung
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Vorbereitungsintensität leitet sich aus der Untersuchung von Biffl und Halling (2003)
ab,  die  den  Einfluss  des  Vorbereitungsaufwands  auf  die  Fehlerentdeckung  zeigt:
Abhängig vom Vorbereitungsaufwand der einzelnen Gutachter verändert sich deren
Fehlerentdeckung  (Tabelle 30,  linker  Teil).  Deutlich  wird,  dass  die  Fehlerent‐
deckungsquote zuerst mit mehr Aufwand wächst, dann aber nahezu konstant bleibt.
Die  Spezifikation  in Biffl und Halling  (2003) umfasst  35  Seiten. Aus der Vorberei‐
tungsrate  von  10  Seiten  pro  Stunde  folgt,  dass  Gutachter,  die  zwischen  2  und
4 Stunden  aufgewendet  haben,  dem  Normalfall  entsprechen  (Nominalfall:
3,5 Stunden, in Tabelle 30 2 ‐ 4 Stunden). Mit diesem Bezugspunkt werden die Daten
normiert,  so dass die  lineare  Funktion  für den Einfluss  quantifiziert werden  kann
(Tabelle 30, rechter Teil). Einen Rückgang der Entdeckungsquote für mehr als sechs
Stunden Vorbereitung modelliere  ich nicht, weil der Effekt gering  ist, und weil der
hohe Aufwand vermutlich mit geringer Gutachterkompetenz zusammenhängt.

Gutachterkompetenz.  In  Probereviews  mit  Studenten  werden  deutliche  Unter‐
schiede zwischen 177 Gutachtern sichtbar (Biffl und Halling, 2002). Um diese Unter‐
schiede  in der Studie darzustellen, wurden die Gutachter  in vier Klassen eingeteilt.
Diese Klassen sind durch die Zahl der entdeckten Fehler definiert. Es gibt also Klas‐
sen  für Gutachter, die wenige, einige, viele,  sehr viele Fehler entdecken. Tabelle 32
zeigt die abgeleitete Quantifizierung des Einflusses. Dazu wurden alle Werte auf den
Nominalfall normiert (Tabelle 31), der durch die Klasse mit Gutachtern, die viele Feh‐
ler  entdecken, definiert  ist  (“Viele Fehler”  in Tabelle 31). Die Zuordnung auf die 7
Kompetenzklassen des Modells erfolgt  teilweise durch  Inter‐ und Extrapolation; da
die Klassen aber auf einer Ordinalskala definiert sind,  ist dies nicht direkt möglich.
Statt dessen nehme  ich  für die  Inter‐ und Extrapolation an, dass der Abstand zwi‐
schen  den Klassen  gleich  ist. Der  Einfluss  extrem  niedriger Kompetenz  ist  durch
Daten  der  Gutachter  mit  mangelnden  Kenntnissen  quantifiziert  (Biffl  und
Halling, 2002).  

Daten aus Biffl und Halling (2003) Abgeleitete Quantifizierung

Reading Time Effectiveness (%)a

a. Detect Detection Effectiveness (DDE), entspricht der Fehlerentdeckungsquote Q

Vorbereitungsaufwandb

b. bezogen auf den Nominalfall

fVorbereitung (%)c

c. Einfluss auf die Fehlerentdeckungsquote Q im Modell

0 ‐ 2 h 8,5 % 50 % 48 %

2 ‐ 4 h 17,7 % 100 % 100 %

4 ‐ 6 h 20,9 % 150 % 118 %

6 ‐ 8 h 19,5 % 200 % 118 %

Tabelle 30: Vorbereitungsdauer und Quantifizierung, 
abgeleitet aus Biffl und Halling (2003)
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Prüflingsumfang. Es gibt keine Erfahrungswerte für die unterschiedliche Fehlerent‐
deckung durch priorisierte Begutachtung verdächtiger Teile der Software. Darum ist
dieser Zusammenhang  in CoBe parametrisierbar; es kann der Fehleranteil  für 20 %
des Umfangsanteils angegeben werden. Eine Pareto‐Verteilung  (20 % des Umfangs
enthalten 80 % der Fehler) kann somit beispielsweise direkt angegeben werden. Mit
diesem Wertepaar und den Randwerten (kein Umfang, keine Fehler; voller Umfang,
alle Fehler) wird der Zusammenhang durch  lineare Regression berechnet. Um aber
überhaupt eine Quantifizierung in CoBe vorzugeben, orientiere ich mich an der Fall‐
studie von Do et al. (2006). Die Fallstudie untersucht die Wirkung der Testfallpriori‐
sierung.  Im  besten  Fall,  der  nur  im Rückblick  bestimmt werden  kann,  ergibt  sich
tatsächlich eine Pareto‐Verteilung. Im Gegensatz dazu zeigt die zufällige Anordnung
der Testfälle eine lineare Verteilung. Ich gehe davon aus, dass der optimale Fall in der
Praxis nicht  erreicht werden kann, weil nur zusammenhängende Teile begutachtet
werden können und weil nur subjektiv bewertet werden kann, welche Teile kritischer
als andere sind. Darum wähle ich einen Kompromiss (rs,Schwere = 0,5). Es sammeln sich
45% der Fehler in 20% des Prüflings (Abbildung 42).

Codereviews von Korrekturen.  Codereviews von Korrekturen werden mit gleichen
Werten wie Codereviews neuer Software quantifiziert. Einziger Unterschied  ist der
Umfang, der begutachtet wird; bei Codereviews der Korrekturen ist dies der Ände‐
rungsumfang  der Korrektur.  Für  den Änderungsumfang  nennen  Lyu  et  al.  (2003)
typisch 11 Anweisungen pro Korrektur, Jones (2007, S. 576) nennt 25 Anweisungen.

Klasse für Zahl entdeckter Fehler in 
Probereviews

Wenige 
Fehler

Einige 
Fehler

Viele 
Fehler

Sehr viele 
Fehler

Einfluss auf Fehlerentdeckung 0,69 0,79 1,00 1,22

Einfluss auf Aufwand pro Fehler 0,69 0,79 1,00 1,31

Tabelle 31: Kompetenzeinfluss auf Fehlerentdeckung und Aufwand pro Fehler 
aus Biffl und Halling (2002)

Einfluss auf Extra 
Low

Very 
Low Low Nomi‐

nal High Very 
High

Extra 
High

Q (Faktor ffReview,KP)
(1,00)a (1,65)b

0,62 0,69 0,79 1,00 1,22 1,43 1,65

Vorbereitungsrate 0,69 0,69 0,79 1,00 1,31 (1,62)c (1,93)c

Aufwand 1,76 1,44 1,27 1,00 0,76 0,62 0,52

Tabelle 32: Quantifizierung des Kompetenzeinflusses, 
abgeleitet aus Biffl und Halling (2002)

a. Nominalfall aus Biffl und Halling (2002)
b. Optimalfall aus Biffl und Halling (2002)
c. Extrapolation aus den Werten der Klassen mit geringerer Kompetenz
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Ich verwende den größeren Wert, um darzustellen, dass die Gutachter  auch Code
betrachten, der nicht geändert wurde, aber mit der Änderung zusammenhängt. Es
reicht nicht, nur geänderten Code zu begutachten, weil die Gutachter den Kontext der
Änderung verstehen müssen.

6.8.3 Codeanalyse

Die Fehlerentdeckungsquote hängt vom Werkzeug und den eingesetzten Analysen
ab; sie ist definiert als der Anteil der im Prüfling enthaltenen Fehler, der durch eine
Prüfung entdeckt wird. El Emam (2005) nennt 5 % als Erfahrungswert. Studien über
die  Codeanalyse  enthalten  keine  verlässlichen  Zahlen.  So werden  in  den  Studien
wenige Projekte betrachtet. Fehlerzahlen aus dem Einsatz des Produkts fehlen (Kiku‐
chi und Kikuno, 2001; Zheng et al., 2006). Das Werkzeug wird nachträglich  für ein
bereits  intensiv  eingesetztes Produkt angewendet  (Wagner  et al., 2005). Es werden
absolute Zahlen  angegeben,  der  Bezugswert  für  die  Fehlerentdeckungsquote  fehlt
(Brand und Krohm, 2003). Darum wird die Fehlerentdeckungsquote  für Codefehler
auf 5 % gesetzt, Spezifikations‐ und Entwurfsfehler werden nicht entdeckt.

Zheng  et al.  (2006) messen Aufwand  in  etwa der gleichen Größenordnung  für die
Fehlerkorrektur  nach Codereview  und  nach  Codeanalyse. Darum  kosten  in CoBe
Fehler, die  in der Codeanalyse und  im Codereview entdeckt werden, den gleichen
Korrekturaufwand.  Bei  der  Codeanalyse  werden  unterschiedlich  viele  falsche
Befunde identifiziert, abhängig vom Werkzeug und den eingesetzten Analysen. Wag‐
ner et al.  (2005) und Chou et al.  (2001) messen zwischen 30 % und 96 %.  Ich wähle
50 % für das Modell, auf jeden Fehler kommt also ein falscher Befund. Den Vorberei‐
tungsaufwand für die Einbindung des Werkzeugs in die individuelle Entwicklungs‐
umgebung des Entwicklers lege ich auf zwei Arbeitstage fest, beeinflusst durch den
Produktivitätsfaktor af. 

6.8.4 Tests

Zahl  der  Testfälle.  Die  Testfallzahl  wird  linear  aus  dem  Umfang  berechnet
(Tabelle 33  aus  Jones,  2007). Für  einen überproportionalen Zusammenhang gibt  es
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Abb. 42: Priorisierungsfunktion
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keine Daten. Das Maximum  ist dem vollständigen Black‐Box‐Test zugeordnet, etwa
im Systemtest mit Tn = 0,6 Testfällen pro Function Point. Werte des Integrationstests
werden  in CoBe  für den Subsystemintegrationstest und den Systemintegrationstest
verwendet. 

Berichte über die  erreichte Überdeckung  im Black‐Box‐Systemtest nennen 50 % bis
60 % Anweisungsüberdeckung  (Grady, 1992; Burr und Young, 1998; Piwowarski et
al., 1993). Dies gilt auch im Modultest (Briand und Pfahl, 1999; Lyu et al., 2003; Hor‐
gan et al., 1994; Janzen und Saiedian, 2006; Burr und Young, 1998). 80 % der Anwei‐
sungen werden durch Vervollständigung  (Burr und Young, 1998; Nagappan et al.,
2008)  überdeckt.  Sehr  kleine  Programme  (Müller  und Höfer,  2007) werden  leicht
nahezu vollständig überdeckt. Daten zur Term‐ und Schleifenüberdeckung sind nicht
verfügbar.  Die  erreichte  Anweisungsüberdeckung  ist  durch  vier  Datenpunkten
(Tabelle 34) mit linearer Regression quantifiziert:

  .

Diese Quantifizierung wird  im Modell  für den Zusammenhang zwischen der Zahl
der Testfälle und der Anweisungsüberdeckung verwendet. Die Quantifizierung der
Zweig‐, Schleifen‐ und Termüberdeckung erfolgt mit den Daten aus Abschnitt 7.4.2.

Testfallzahl pro Function Point Minimum Mittelwert Maximum

Modultest 0,20 0,45 1,20

Integrationstest 0,20 0,40 0,75

Systemtest 0,15 0,25 0,60

Tabelle 33: Testfallzahl pro Function Point nach Jones (2007)

Testparameter c0a

a. Erreichte Anweisungsüberdeckung

Quelle Q (%)b

b. Fehlerentdeckungsquote

Quelle

Nominaler Black‐Box‐Test 50 % Grady (1992), 
Piwowarski et al. 
(1993)

35 % Jones (1996)

Vollständiger Black‐Box‐Test 60 % 60 % Piwowarski et al. (1993)

76% der Anweisungen und 
Zweige ‐ ‐ 68 % Lauterbach und 

Randall (1989)

Doppelt so viele Testfälle wie 
im nominalen Black‐Box‐Test 80 % Dupuy und 

Leveson (2000) ‐

Ohne Testfälle 0 % 0 % ‐

Tabelle 34: Quantifizierung der Überdeckung und der Fehlerentdeckung

c0 0 6103, t0 5151,⋅=
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Da  im Glass‐Box‐Test gezielt bestimmte Code‐Einheiten überdeckt werden, nehme
ich an, dass pro Testfall im statistischen Mittel eine höhere Überdeckung als im Black‐
Box‐Test erreicht wird. Diese Annahme wird in Dupuy und Leveson (2000) bestätigt.
Angelehnt  an diesen  Erfahrungsbericht wird  in CoBe  der  Faktor  zwei  verwendet:

.

Fehlerentdeckung.  Die  Fehlerentdeckung  im  Systemtest  wird  mit  verschiedenen
Quellen  quantifiziert  (Tabelle 34).  Die  Parameter  rqt  und  qt  werden  über  lineare
Regression ermittelt (Abbildung 43). Die Entdeckungsquoten aller Tests werden mit
dem Faktor ffp,Art an die Tests und die Fehlerarten angepasst (Tabelle 25). Die Fehler‐
schwere hat keinen Einfluss, weil dafür keine Daten verfügbar sind. Die Korrektur‐
quote beträgt 90 %, somit werden 90 % der entdeckten Fehler korrigiert (Jones, 1996). 

Aufwand. Der Aufwand pro Testfall wird mit den Werten  aus  Jones  (1996,  2007)
bestimmt. Die Verteilung auf Vorbereitung, Aufbau und Durchführung orientiert sich
an Jones (1996, 2007) und van Megen und Meyerhoff (1995), so dass für Vorbereitung
38 %, für das Testgeschirr 29 % und für die Durchführung 33 % des Aufwands benö‐
tigt werden.  Im Glass‐Box‐Test gibt es keine Trennung zwischen Vorbereitung und
Durchführung. Der Aufwand für den Testaufbau, insbesondere für die Instrumentie‐
rung,  ist konstant durch 29% des Testaufwands  für 80 % Anweisungsüberdeckung
definiert. Die Programmiersprache beeinflusst den Testaufwand  im Glass‐Box‐Test
im gleichen Verhältnis, in dem Function Points und Anweisungen zueinander stehen.

 Aufwand pro Testfall

Modultest 0,73 Eh

Subsystem‐ und Systemintegrationstest 1,00 Eh

Systemtest 1,10 Eh

Tabelle 35: Aufwand für Testfälle abgeleitet aus Jones (1996, 2007)

c0 1 221, t0 5151,⋅=
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Abb. 43: Testfälle und Fehlerentdeckung
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Testerkompetenz. Die Quantifizierung orientiert sich an Devnani‐Chulani (1997) und
dem  Einfluss  der  Programmierfähigkeit  auf  Fehlereinfügerate  und  Produktivität.
Andere Werte sind nicht verfügbar. 

Vorbereitungszeitpunkt. Bei  früher Vorbereitung werden 100 % der Spezifikations‐
fehler des Systemtests entdeckt und früh korrigiert. Für den Korrekturaufwand wird
der gleiche Wert wie im Entwurfsreview verwendet.

Einfluss der 
Kompetenz auf

Extra 
Low

Very 
Low Low Nomi‐

nal High Very 
High

Extra 
High

Q (Faktor ffTest,KP) 0,76 0,76 0,87 1,00 1,15 1,32 1,32

Aufwand 1,34 1,34 1,15 1,00 0,85 0,71 0,71

Tabelle 36: Einfluss der Kompetenz, abgeleitet aus Devnani‐Chulani (1997)



Kapitel 7

Modellrealisierung, Modellprüfung und 

Modellverbesserung

In  diesem  Kapitel  ist  die  Implementierung  von  CoBe  beschrieben  (Abschnitt 7.1).
Dann wird das Vorgehen festgelegt, mit dem CoBe geprüft wird (Abschnitt 7.2). Dazu
werden zuerst Daten aus studentischen Projekten verwendet (Abschnitt 7.3). Mit den
Daten  werden  Modellzusammenhänge  (Abschnitt 7.4)  und  Modellresultate
(Abschnitte 7.5  und 7.6)  geprüft.  Zwei  Verbesserungen  werden  identifiziert  und
umgesetzt.  Die  Ergebnisse  zeigen,  dass  die  Kalibrierung  notwendig  ist.  Modell‐
resultate und Daten aus den Projekten stimmen gut überein.

7.1 Die Realisierung von CoBe

Die Modellrealisierung ist der letzte Schritt der Modellbildung. Dieser Schritt erfolgt,
nachdem ein Modell der Realität erstellt und als funktionales Modell dargestellt wird
(Abschnitt 3.7). CoBe wurde sowohl als Tabellenkalkulation als auch als Java‐Anwen‐
dung realisiert.

7.1.1 Vorgehen zur Realisierung des Modells

Prinzipiell können die Modellresultate von Hand ausgerechnet werden. Da dies auf‐
wändig und fehleranfällig ist, wurde das Modell als ausführbare Anwendung reali‐
siert.  Da  die  Modellbildung  iterativ  erfolgt,  angelehnt  an  das  Konzept  für  den
Modelleinsatz  (Abschnitt 3.6.1), gehört die Erprobung zur Modellbildung. Sie zeigt,
ob  wichtige  Zusammenhänge  fehlen  oder  falsch  sind.  Somit  ist  notwendig,  das
Modell  frühzeitig  zu  implementieren,  auch wenn  die Konzepte  des Modells  noch
nicht stabil sind.

Die Realisierung  des Modells  als  Programm  und  die Verifikation  des  Programms
kann aufwändig werden, vor allem, wenn das Programm und die Programmstruktur
häufig umgearbeitet werden. Dies kann der Fall sein, wenn das Modell  iterativ ent‐
steht, da sich dann die Modellkonzepte und die Modellzusammenhänge ändern kön‐
nen.  Darum  erfolgte  die  Realisierung  in  mehreren  Stufen  mit  unterschiedlichen
Modellen: Zuerst wurde das Modell als Tabellenkalkulation realisiert, um während
der Modellbildung flexibel bei umfangreichen Modelländerungen zu sein. Die Tabel‐
lenkalkulation  ermöglichte,  CoBe  frühzeitig  zu  implementieren  und  zu  erproben.
Somit  können  Fragen  untersucht werden,  die  sich  bei  der Modellbildung  stellen.



146 7. Modellrealisierung, Modellprüfung und Modellverbesserung

Dazu gehört etwa: Welche Zusammenhänge sind relevant? Welche Zusammenhänge
wirken sich auf die Modellresultate aus? Wie können die Zusammenhänge quantifi‐
ziert werden? Welche Eingaben sind notwendig? Die Tabellenkalkulation ist also vor
allem ein Werkzeug zur Forschung.

Erst nachdem die Modellbildung weitgehend abgeschlossen war, erfolgte die Reali‐
sierung als Java‐Anwendung. Damit wird eine komfortable Bedienung und die auto‐
matisierte  Berechnung  für  die  Sensitivitätsanalyse  im  Rahmen  der  Validierung
(Abschnitt 7.2.2) ermöglicht.

Tabellenkalkulation  und  Java‐Programm  wurden  in  zwei  Ausbaustufen  erstellt.
Somit  konnten  zuerst  das  Basismodell  und  die  Prüfungsmodelle  geprüft werden,
bevor CoBe vollständig realisiert wurde:

• Version 1: Die erste Version enthält das Basismodell und detaillierte Prüfungsmo‐
delle für das Spezifikationsreview, das Entwurfsreview und das Codereview. Der
Systemtest ist im Detail modelliert. Da die Zusammenhänge des Testmodells aber
nur durch wenige Daten untermauert sind, sind andere Testebenen nicht detailliert
modelliert, sondern nur durch Fehlerentdeckungsquoten dargestellt.

• Version 2: Für die zweite Version wurde die Version 1 um die Codeanalyse, den
Integrationstest von Subsystemen, Korrekturprüfprozesse, Codereviews von Kor‐
rekturen, detaillierte Modelle  für Tests auf allen Ebenen und  ein Modell  für die
Kosten falscher Befunde erweitert.

Abbildung 44 skizziert den zeitlichen Ablauf der Modellrealisierung für die Tabellen‐
kalkulation und die Java‐Anwendung in den beiden Ausbaustufen. Die Version 1 der
Tabellenkalkulation erfolgte während der Modellbildung und Erprobung. Sie wurde
zur Version 2 für die Validierung erweitert. Dabei entstand die erste Version der Java‐
Anwendung, die dann zur Version 2 ausgebaut wurde.

Zeit

Tabellen‐
kalkulation

Java‐
Anwendung

Version 1

Version 1

Version 2

Version 2

Modellbildung und 
Erprobung

Validierung und 
Erweiterung

Realisierungs‐
zeitraum

Abb. 44: Zeiträume der Realisierung

Legende
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7.1.2 Realisierung als Tabellenkalkulation

Die Tabellenkalkulation für CoBe ist auf mehrere Arbeitsblätter aufgeteilt. Die Auftei‐
lung  orientiert  sich  an der Modellstruktur  in Abbildung 17.  Jedes Prüfungsmodell
besteht aus einem Arbeitsblatt  für die Zusammenhänge und einem Arbeitsblatt  für
das Fehlerstrommodell, mit dem entdeckte und entfallende Fehler berechnet werden.
Weitere Arbeitsblätter enthalten COCOMO II, Korrekturkosten und Funktionen zur
Kalibrierung und Quantifizierung des Modells.

Die Modelleingaben  für den Prüfprozess, die Prüfparameter und die Produkt‐ und
Projektmerkmale  sind auf einem Arbeitsblatt gemeinsam mit den Modellresultaten
enthalten. Die Abbildungen 45 und 46 zeigen beispielhaft einen Ausschnitt aus die‐
sem Arbeitsblatt. Abbildung 45 stellt die Eingaben für das Spezifikationsreview dar,
Abbildung 46 zeigt die Eingaben für den Modultest. Dabei sind die Eingaben für den
Test Mindestforderungen.  0 %  Anweisungsüberdeckung  bedeutet  also  nicht,  dass
keine Anweisungen überdeckt werden dürfen, sondern dass auch mehr als 0 % der
Anweisungen überdeckt werden können. Das Arbeitsblatt enthält die Modellausga‐
ben in tabellarischer Form. Ein zusätzliches Arbeitsblatt enthält Diagramme, die diese
Resultate als Balkendiagramme darstellen. Abbildung 47 zeigt als Beispiel den Nut‐
zen des Spezifikationsreviews in Euro.

Abb. 45: Eingaben des Spezifikationsreviews

Abb. 46: Eingaben des Modultests
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Die Quantifizierung des Modells wird durch die Tabellenkalkulation direkt unter‐
stützt,  indem  wichtige  Zusammenhänge  des  Modells  jeweils  in  einem  eigenen
Arbeitsblatt quantifiziert werden können:

Späte Korrekturkosten. Für  jede Prüfung kann ein Basiswert  für den Korrekturauf‐
wand  pro  Fehler  eingegeben  werden.  Die  Faktoren,  mit  denen  der  Einfluss  der
Fehlerschwere und der Fehlerart modelliert sind, können direkt eingegeben werden,
auch einzeln für  jede Prüfung. Beispielsweise wird ein Faktor von 1,3 als Verhältnis
des Korrekturaufwands zwischen kritischen Fehlern und Hauptfehlern  eingegeben
(Abschnitt 6.3.5). Die weiteren Einflüsse,  insbesondere der Produktumfang und der
Aufwandsfaktor zur Kalibrierung, werden berücksichtigt. Das Arbeitsblatt enthält als
Ergebnis den Korrekturaufwand pro Fehler für jede Prüfung, jeweils für jede Kombi‐
nation aus Fehlerart und Fehlerschwere.

Priorisierung von Reviews. In diesem Arbeitsblatt können die Datenpunkte, die zur
Beschreibung der Priorisierungsfunktion notwendig sind (Abschnitt 6.4.2), direkt ein‐
gegeben werden. Diese Eingaben sind  jeweils  für kritische Fehler, Hauptfehler und
Nebenfehler möglich. Daraus wird der Exponent der Priorisierungsfunktion berech‐
net. Die Funktion wird graphisch dargestellt; Abbildung 42  stammt direkt  aus der
Tabellenkalkulation.

Test. Eingegeben werden können Datenpunkte für den Zusammenhang zwischen der
Testfallzahl und der erreichten Überdeckung (Abschnitt 6.6.2). Daraus berechnet die
Tabellenkalkulation die Parameter für die Gleichung und stellt den Zusammenhang
graphisch dar. Auch der Zusammenhang zwischen der Testfallzahl und der Fehler‐
entdeckungsquote wird  in diesem Arbeitsblatt durch die Eingabe  einzelner Daten‐
punkte  in  eine Tabelle quantifiziert. Die Parameter der Gleichung  (Abschnitt 6.6.2)
werden berechnet. Der Zusammenhang wird graphisch dargestellt (Abbildung 43).

Abb. 47: Resultate für das Spezifikationsreview
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Review. Datenpunkte für den Zusammenhang zwischen der Zahl der Gutachter und
der Fehlerentdeckungsquote können in eine Tabelle eingegeben werden. Die Parame‐
ter der Gleichung (Abschnitt 6.4.2) werden aus diesen Eingaben berechnet. Das Resul‐
tat wird graphisch dargestellt. Abbildung 41 ist aus dem Arbeitsblatt übernommen.

7.1.3 Realisierung als Java‐Anwendung

Während  die  Realisierung  als  Tabellenkalkulation  vor  allem  zur  Erprobung  des
Modells  und  der Konzepte  gedacht war, wird  die  Java‐Anwendung  benötigt,  um
Resultate  vieler  Eingabekombinationen  zu  berechnen. Dies  ist  notwendig,  um  das
Verhalten des Modells zu untersuchen. Die Anwendung trägt den Namen CoBeCalc.

Einsatzszenarien für CoBeCalc

CoBeCalc bietet Einsatzmöglichkeiten für drei Einsatzszenarien:

• Im interaktiven Modus werden Modellresultate für einen Satz Eingaben berechnet.
Dabei wird jede Eingabe über die Benutzungsschnittstelle auf einen einzigen Wert
gesetzt. Diese Wertebelegung kann in einer Datei gespeichert werden.

• Damit das Verhalten des Modells untersucht werden kann, müssen Resultate  für
viele  Eingabekombinationen  berechnet werden. Dies wird mit CoBeCalc  unter‐
stützt, indem Dateien eingelesen werden können, die viele Eingabekombinationen
enthalten. Diese Schnittstelle ist speziell für das Werkzeug SimLab (SimLab, 2009)
zur Sensitivitätsanalyse des Modells implementiert (Abschnitt 8.1). SimLab erzeugt
die Eingabekombinationen durch pseudo‐zufällige Auswahl aus den Werteberei‐
chen der Eingaben.

• Eingabekombinationen, die aus  fest vorgegebenen Werten gebildet werden, wer‐
den mit CoBeCalc durch Klassen unterstützt, die die Erzeugung der Kombinatio‐
nen und die Berechnung der Resultate realisieren (Abschnitt 8.1).

Für die interaktive Verwendung von CoBeCalc werden die Modellresultate in tabella‐
rischer Form  an der Benutzungsschnittstelle  ausgegeben und können  als  csv‐Datei
gespeichert werden.  Sie  können  somit  leicht  in  andere Anwendungen  übertragen
werden. Bei den anderen beiden Verwendungsmöglichkeiten werden die Resultate
für Projekt‐Qualitätskosten und Gesamt‐Qualitätskosten in eine Datei geschrieben.

Die Benutzungsschnittstelle von CoBeCalc

Die Benutzungsschnittstelle ist für die Eingaben gegliedert in Prozess‐ und Produkt‐
merkmale, Eingaben  für die Fehlerfolgekosten, den Prüfprozess und die  einzelnen
Prüfparameter für Reviews und für Tests. Jeder dieser Teile ist in einem Reiter ange‐
ordnet. Abbildung 48 zeigt einen Teil der Eingaben  für Prozess‐ und Produktmerk‐
male, Abbildung 49 zeigt die Eingaben für Reviews.     
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Abbildung 50 zeigt die zusammengefassten Resultate für Qualitätskosten in Euro und
die COCOMO‐II‐Resultate, die zur Kalibrierung benötigt werden. Aufwand, Dauer,
Personalbedarf  und  Geldwerte  werden  für  einzelne  Aktivitäten  ausgegeben
(Abbildung 51). Ergänzend werden enthaltene und entdeckte Fehler ausgegeben. 

Die Struktur von CoBeCalc

Bauer  (2008)  gliedert  das  Programm  in  die  drei  Pakete  uI,  inputOutput  und
calculation. Das Paket uI realisiert die graphische Benutzungsschnittstelle. Das Paket
inputOutput enthält die Klassen für die Datenein‐ und ‐ausgabe. 

Die Modellzusammenhänge sind  im Paket calculation realisiert. Die Klassen  in die‐
sem Paket orientieren sich am Aufbau des Modells. Pro Prüfung gibt es jeweils eine
Klasse (Abbildung 53). Diese enthält Methoden und Aktivitäten des Prüfungsmodells
zur Fehlerentdeckung, des Modells der Prüfkosten und des Modells der Prüfwieder‐
holungskosten. Das Fehlerstrommodell ist für die verschiedenen Dokumente in ein‐
zelnen Klassen realisiert (Abbildung 52). Alle Werte  für die Quantifizierung sind  in

Abb. 48: Modelleingaben für Prozess und Produkt (Ausschnitt)

Abb. 49: Eingaben der Review‐Prüfparameter
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einer Textdatei enthalten und können dadurch angepasst werden. Insbesondere kön‐
nen spezielle Anpassungen an eine Umgebung durchgeführt werden, ohne dass Code
geändert werden muss. 

7.2 Überblick über die Modellprüfung

CoBe berechnet aus Eingaben über Prüfungen und Prüfparametern die Resultate, also
Kosten und Nutzen. Somit gehört das Modell zu den Pseudometriken (Ludewig und
Lichter, 2007), diese müssen validiert werden. Die möglichen Eingabewerte beschrei‐
ben  den Handlungsspielraum. Die Resultate  berechnen  sich  aus  einem  gewählten

Abb. 50: Modellresultate für Qualitätskosten und COCOMO‐II‐Resultate

Abb. 51: Modellresultate für Aktivitäten (Auszug)
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Punkt in diesem Handlungsspielraum. Somit handelt es sich um ein Entscheidungs‐
modell, auch wenn die optimale Handlungsalternative nicht direkt berechnet wird
(Laux, 1998). Damit treten bei der Validierung von CoBe die speziellen Schwierigkei‐
ten  auf, die  typisch bei der Validierung von quantitativen Entscheidungsmodellen
auftreten. Darum wird zuerst ein Überblick über die Prüfmethoden und die damit
verbundenen Schwierigkeiten gegeben, bevor das Vorgehen festgelegt wird.

7.2.1 Verifikation und Validierung für quantitative Modelle

Für die Prüfung quantitativer Modelle wird zwischen Verifikation und Validierung
unterschieden (Drappa, 1998; Rykiel, 1995; Sargent, 2005):

Def. Validierung. Validierung  eines  Simulationsmodells  bedeutet  festzustellen,  ob
das Simulationsmodell eine für den spezifizierten Zweck der Untersuchung hin‐
reichend  genaue Repräsentation des  betrachteten  realen  Systems  ist  (Drappa,
1998).

Def. Verifikation.  Verifikation  eines  Simulationsmodells  bedeutet  sicherzustellen,
dass das Modell mit hinreichender Genauigkeit von einer Repräsentationsform
in eine andere überführt wurde (Drappa, 1998).

Die Validierung erfolgt also gegen den Modellzweck. Verifikation und Validierung
werden den Schritten der Modellbildung zugeordnet  (Sargent, 2005). Abbildung 54
zeigt  diese  Zuordnung  für  den  gewählten  funktionalen  Modellierungsansatz
(Abschnitt 3.7, S. 49).

Document

DocumentDesignDocumentSpecification DocumentCode

Abb. 52: Klassen für Dokumente

SystemTestCodeAnalysis FieldTestCodeReview SubsystemIntTestDesignReviewSpecificationReview

Review
Test

ModuleTest IntTest

QualityAssuranceActivity

Abb. 53: Klassen für Prüfungen
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Verifikation

Das  funktionale Modell wurde gegen das Modell der Realität durch Walkthroughs
geprüft  (Schritt  2).  Konstruktiv  ist  dieser  Schritt  abgesichert,  weil  formalisierte
Zusammenhänge  aus Modellen verwendet wurden, die bereits geprüft und belegt
wurden. Dazu gehören zum Beispiel die COCOMO‐II‐Zusammenhänge. Die Modell‐
realisierung  (Schritt 3) wurde durch Tests und Walkthroughs geprüft. Tracing, das
Nachverfolgen  von  Berechnungen,  und Modularisierung  sind wichtige  Techniken
(Drappa, 1998). Tracing konnte durch die Modularisierung einfach durchgeführt wer‐
den, da die Modellstruktur auch Zwischenergebnisse sichtbar macht (Abschnitt 6.2).
Somit konnten  in den Tests nicht nur Endergebnisse, sondern auch Zwischenergeb‐
nisse geprüft werden. Dazu wurden Sollresultate für Zwischen‐ und Endergebnisse
vorgegeben, so dass die Modellberechnungen Schritt  für Schritt nachvollzogen und
geprüft wurden. Tabellenkalkulation und Java‐Programm wurden unabhängig von‐
einander erstellt und gegeneinander geprüft (Bauer, 2008).

Validierung

Die direkte Methode zur Validierung ist, Modellresultate mit Werten aus der Realität,
den  Istwerten, zu vergleichen. Bei der direkten Validierung von CoBe  treten dann
aber die folgenden Schwierigkeiten auf:

1. Entscheidungen können nicht rückgängig gemacht werden. Darum stehen Istwerte
alternativer Handlungen  für  dieselbe  Situation  prinzipiell  nicht  zur  Verfügung
(Gass, 1983).

2. Bei vielen Eingabeparametern werden sehr viele Messungen benötigt, um eine ver‐
lässliche Aussage über die Modellvalidität zu  treffen  (Sargent, 2005). Dies kostet
Zeit und Aufwand, beide stehen nicht unbegrenzt zur Verfügung.

nach Sargent (2005)

Real world
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model

Simulation model 
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Validierung 
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Abb. 54: Modellbildung, Verifikation und Validierung nach Sargent (2005)
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3. Weil CoBe Industrieprojekte repräsentieren soll, muss die Validierung mit Indus‐
trieprojekten erfolgen. Die Istwerte, d.h. die Werte, mit denen die Modellresultate
verglichen  werden,  müssen  also  in  realen  Projekten  gemessen  werden.  Ihre
Erhebung kostet Aufwand und dauert  lange, weil dazu der Prozess des Projekts
analysiert werden muss. Dabei müssen verfügbare Daten identifiziert, dann ausge‐
wertet werden. Nicht verfügbare Daten müssen  erhoben werden. Zeit und Auf‐
wand stehen aber in dieser Arbeit nicht unbegrenzt zur Verfügung. Vor allem fällt
für die Mitarbeiter der  Industrieprojekte Aufwand an; deren Aufwand  ist beson‐
ders begrenzt, weil in Projekten Zeit und Aufwand knapp sind.

4. Für die Prüfung der Prognose muss zuerst das Projekt und dann zumindest ein Teil
der  Einsatz‐  und Wartungsphase  abgewartet werden.  Dies  ist  in  dieser  Arbeit
kaum möglich, weil ein reales Projekt und sein Produkt dazu über mehrere Jahre
begleitet werden müssen; dazu reicht die Zeit der Arbeit nicht aus.

5. Eine vollständige Validierung eines quantitativen Modells ist nicht möglich, jedes
Modell kann nur falsifiziert werden (Sargent, 2005).

Eine direkte, vollständige Validierung  ist also nicht möglich. Die Validierung bleibt
zwangsweise lückenhaft. Gass (1983) nennt darum weitere Methoden, die ergänzend
zur unvollständigen, direkten Validierung eingesetzt werden können: 

• Die Bewertung durch Experten, 

• die Validierung einzelner Modellteile und 

• die Sensitivitätsanalyse, um das Modellverhalten zu betrachten und zu bewerten. 

Die Sensitivitätsanalyse ergänzt die Validierung, weil sie nicht auf einem Vergleich
zwischen Modellresultat und Realität beruht, sondern zeigt, wie und wie stark sich
die Modellparameter auf die Modellausgaben auswirken: Ändern sich die Aussagen
des Modells? Welche Eingaben wirken  sich  stärker, welche wirken  sich  schwächer
aus? Wie verhält sich das Modell? Wie wirken sich unsichere Parameter aus?

7.2.2 Schritte der Modellprüfung

Das Modell CoBe wird zuerst mit studentischen Projekten validiert, weil diese Werte
leichter verfügbar sind. Außerdem können die notwendigen Metriken passend zum
Modell  definiert werden.  Vorteilhaft  ist  auch,  CoBe  vor  dem  Industrieeinsatz  zu
erproben, um Modelldefizite vor einer teuren Industriestudie zu erkennen. Weil stu‐
dentische Projekte nur  eingeschränkt verallgemeinerbar  sind  (Prechelt, 2001), kann
auf eine Validierung in der Industrie aber nicht verzichtet werden. Mit studentischen
Projekten und Industrieprojekten steht die Validierung auf einer breiten Datenbasis.
Sie erfolgt schritthaltend mit den Schritten der Modellrealisierung (Abschnitt 7.1), so
dass die Modellversion 1 mit studentischen Projekten geprüft wurde. Auch diese Prü‐
fung erfolgte in einzelnen Schritten, um nach und nach unterschiedliche Aspekte des
Modells abzudecken:
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• Die Zusammenhänge in CoBe sind unterschiedlich gut belegt. Darum werden aus‐
gewählte  Zusammenhänge  mit  Daten  aus  studentischen  Projekten  untersucht
(Abschnitt 7.4). Damit werden die einzelnen Annahmen, aus denen das Modell der
Realität  besteht,  überprüft  (Schritt  1  in Abbildung 54). Dies  erlaubt,  zumindest
einen Teil des Wertebereichs eines Parameters zu prüfen (Problem 2) und die Wir‐
kungen von Entscheidungen zu prüfen, ohne dass auf unterschiedliche Projekte
zurückgegriffen werden muss (Problem 1). 

• Im nächsten Schritt wird CoBe mit Durchschnittswerten aus 21 studentischen Pro‐
jekten erprobt  (Abschnitt 7.5), zuerst mit einem unkalibrierten Modell und dann
mit einem kalibrierten Modell. Es erfolgt also zuerst eine Erprobung, bevor teure
Industriedaten verwendet werden (Problem 3).

• Mit den Daten der studentischen Projekte wird geprüft, ob CoBe Kosten und Nut‐
zen  einzelner  Projekte  ausreichend  genau  nachträglich  beschreibt  (Schritt  4  in
Abbildung 54). Da die Projekte ähnlich sind, kann die Wirkung unterschiedlicher
Prüfparameter  durch  Vergleich  geprüft  werden  (Problem 1).  Abschnitt 7.6.1
beschreibt die Resultate.

• Die Prognose der Kosten und des Nutzens mit CoBe wird durch eine Kreuzvalidie‐
rung in Abschnitt 7.6.2 untersucht (Schritt 4 in Abbildung  54). Mit einer Kreuzvali‐
dierung wird nachgebildet, dass bei der Prognose einige Eingaben nicht gemessen,
sondern  nur  geschätzt werden  können  oder  aus  Archivdaten  stammen.  Damit
muss nicht die Wartungs‐ und Einsatzphase abgewartet werden (Problem 4).

• Die  Sensitivitätsanalyse  in Abschnitt 8.1  zeigt, wie  die Modellresultate  von  den
Eingaben abhängen. Die Wirkungen der Entscheidungen über Prüfungen und die
Wirkungen von unsicheren Eingaben werden untersucht (Problem 1). Das Verhal‐
ten des Modells kann beurteilt werden (Problem 5), auch für sehr viele Eingaben
(Problem 2). Dies wird durch die Optimierung von Prüfprozessen zusätzlich unter‐
sucht (Abschnitte 8.2).

• Die Validierung mit Industrieprojekten (Abschnitte 8.4 und 8.5) zeigt, ob CoBe für
deren  Prozess  erweitert werden  kann.  Sie  erfolgt mit  der Modellversion  2,  die
Erweiterungen für die Industrieprojekte enthält. Dieser Vergleich mit Istwerten aus
der Industrie zeigt (Problem 3), ob CoBe diese Projekte ausreichend genau reprä‐
sentiert (Schritt 4 in Abbildung  54).

Anschließend wird der Modelleinsatz demonstriert:

• Modelleinsatz  und Modellverhalten werden mit  Beispielen  demonstriert.  Dazu
werden auch Daten aus Berichten über Prozessverbesserungsmaßnahmen verwen‐
det (Abschnitt 8.7, Schritt 4 in Abbildung  54).

7.2.3 Kriterien für die Modellprüfung

Die Definition der Validierung verlangt, dass das Modell das  reale System  ausrei‐
chend  genau  repräsentiert. Dazu werden Modellresultate mit  Istwerten  verglichen
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(IEEE 1061, 1998); die Prognose soll eine Mindestgenauigkeit erreichen  (Tabelle 39).
Validierungskriterien  definieren  dafür  Metriken  mit  Grenzwerten.  Die  Standard‐
Metrik für die Bewertung der Genauigkeit ist der Betrag des relativen Fehlers (Magni‐
tude of relative error, MRE, IEEE 1061, 1998; Fenton und Pfleeger, 1997; Conte et al.,
1986; Kemerer, 1987):

Conte et al. (1986) fordern, dass Modellresultate im Schnitt weniger als 25 % abwei‐
chen und dass 75 % der Modellresultate innerhalb dieser 25 %‐Grenze liegen. Darge‐
stellt wird dieses Kriterium als  . 

Der relative Fehler MRE ist nur bedingt plausibel, weil zu niedrige Modellresultate zu
schwach bewertet werden. Berechnet das Modell beispielsweise 90 % zu wenig Feh‐
ler, dann  erscheint die Abweichung  intuitiv größer,  als wenn das Modell  90 %  zu
viele Fehler berechnet. In beiden Fällen beträgt der relative Fehler aber 90 %. Das Ver‐
hältnis zwischen Modellresultat und Istwert ist aussagekräftiger (1 : 10 im ersten, fast
2 : 1  im zweiten Fall) und  ist ohne Angabe eines Istwerts anschaulicher. Verhältnis‐
werte zwischen Modellresultat und Istwert sind ebenso wie der relative Fehler üblich,
um die Schätzungenauigkeit bei der Planung zu beschreiben  (Boehm, 1981). Daran
angelehnt verwende  ich das  logarithmierte Verhältnis zwischen Modellresultat und
Istwert: Die logarithmische Abweichung LE (Error) ist definiert mit der Hilfsmaßein‐
heit deziBel (dB)1; Tabelle 37 zeigt Abweichungen im Vergleich.

Der 25 %‐Grenze von Conte et al. (1986) entspricht etwa 1 dB. Diese Grenze ist erfah‐
rungsgemäß sehr eng und wird selbst von COCOMO II kaum erreicht: 

1. Der Betrag des Logarithmus ermöglicht, dass der gleiche Faktor im Zähler und im Nenner 
gleich bewertet wird: Ein Verhältnis von 1 : 2 wird gleich wie 2 : 1 bewertet.

LE
Modellresultat zu niedrig Modellresultat zu hoch

Faktor MRE Faktor MRE

3,0 dB 0,50 50 % 2,00 100 %

2,0 dB 0,63 37 % 1,58 58 %

1,0 dB 0,79 21 % 1,26 26 %

Tabelle 37: Vergleich logarithmierter und relativer Fehler

MRE Istwert Modellresultat–
Istwert

-----------------------------------------------------------------=

pred 25 %·( ) 75 %≥

LE 10 Modellresultat
Istwert

----------------------------------------⎝ ⎠
⎛ ⎞

10
log⋅=
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• Von  83 Projekten  aus  18 Organisationen  liegen  49 % der COCOMO‐II‐Resultate
innerhalb der 25 %‐Grenze. Nach der Kalibrierung für die Organisation sind 55 %
der Resultate innerhalb der 25 %‐Grenze (Boehm, 2000, S. 162). 

• Eine Kreuzvalidierung von COCOMO II mit 161 Projekten ergibt, dass vor Kalib‐
rierung für die Organisation 68 % der Modellresultate  in der 25 %‐Grenze liegen.
Nach Kalibrierung  für die Organisation  sind 76 % der Modellresultate  innerhalb
dieser Grenze (Boehm, 2000, S. 173). 

• Abhängig vom Kalibrierungsverfahren und der Datenmenge liegen zwischen 39 %
und 63 % der Resultate in der 25 %‐Grenze (Boehm, 2000, S. 174).

Boehm (1981 und 2000) zeigt einen Faktor zwei als typische Abweichung der Schät‐
zungen während der Planung. Dies entspricht 3 dB. CoBe  soll die Planung verbes‐
sern. Damit sind 3 dB zu schwach. 1 dB ist ein sehr gutes Ergebnis, 2 dB wähle ich als
Grenze für die Validität (Tabelle 38) und bezeichne dieses Kriterium als 2‐dB‐Grenze. 

Ein Paar aus Istwert und zugehörigem Modellresultat bezeichne ich im Folgenden als
Datenpunkt. Ein einzelner Datenpunkt kann direkt mit der  logarithmischen Abwei‐
chung beurteilt werden. Werden mehrere Projekte  in  jeweils eine Instanz von CoBe
abgebildet, dann werden für jedes Projekt Resultate berechnet. Es müssen also meh‐
rere Datenpunkte beurteilt werden. Um mehrere Vergleiche zusammenzufassen, ver‐
wende ich zwei Kriterien:

• Der Anteil der Datenpunkte, der  innerhalb  einer bestimmten Grenze  liegt, wird
nach IEEE 1061 (1998) und Boehm(2000) durch pred(x) dargestellt. Dabei bezeichnet
“x” die Grenze, die verwendet wird. Ich verwende im Folgenden pred(2 dB); liegen
zum Beispiel 7 von 10 Vergleichen innerhalb der 2‐dB‐Grenze, dann ist pred(2 dB) =
70 %.

• Den Median aus den Werten der  logarithmischen Abweichung des LE bezeichne
ich  im Folgenden durch MLE.  Ich wähle den Median und nicht den Mittelwert,
weil der Median robust gegen Ausreißer ist.

Der  IEEE‐Standard  1061  (1998)  nennt  weitere  Kriterien  für  Qualitätsmetriken
(Tabelle 39):

Kriterium Bewertung Folgerung

 Modell valide

Modell valide Ursachenanalyse mit 
unsicheren Eingaben und 
unklarem ProzessValidität fraglich, Modell nicht valide

Tabelle 38: Kriterien für die Validierung

0dB LE 1dB≤ ≤

1dB LE 2dB≤<

2dB LE<
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• Correlation, Discriminative Power, Consistency: Werden Datenpunkte über einen
Bereich hinweg betrachtet werden, dann werden Aussagen zur Differenziertheit,
Konsistenz  und  Korrelation möglich.  Aussagen  über  die  Korrelation  zwischen
Software‐Umfang und Projektaufwand sind beispielsweise nur möglich, wenn der
Umfang auch tatsächlich variiert. Bleibt er gleich, dann ergibt sich keine Korrela‐
tion. 

• Tracking: Werden Datenpunkte über eine Zeitspanne hinweg betrachtet, dann wird
geprüft, ob sich Istwert und Modellresultat gleichartig verhalten. Zeitliche Aspekte
spielen für die Validierung von CoBe keine Rolle.

7.3 Studentische Projekte für die Modellvalidierung

Die Istwerte  für die Validierung einzelner Zusammenhänge und  für eine erste Prü‐
fung der Modellresultate stammen aus dem Software‐Praktikum. Dieses Praktikum
ist eine Pflichtveranstaltung im dritten und vierten Semester des Studiengangs Soft‐
waretechnik der Universität Stuttgart (Ludewig et al., 2001). Die Daten stammen aus
dem Praktikum 2007. Es dauerte 21 Wochen von Februar bis August. Die Prüfungs‐
ordnung gibt 720 Entwicklerstunden (Eh) Aufwand vor. Das Praktikum wurde von
zwei wissenschaftlichen Mitarbeitern betreut. Ein weiterer Mitarbeiter übernahm die
Kundenrolle. Er forderte ein Werkzeug zur Erfassung und Verwaltung von Testfällen
und Testprotokollen.

Kriterium Beschreibung

Correlation 
(Korrelation)

Qualitätsmerkmal und Metrik sollen eng, d.h. mit hoher 
Bestimmtheit, zusammenhängen.

Tracking 
(Verfolgung)

Änderungen des Qualitätsmerkmals von einem Zeitpunkt T1 zum 
Zeitpunkt T2 sollen sich auch als Änderungen in der richtigen 
Richtung in der Metrik zeigen.

Consistency 
(Konsistenz)

Werden Produkte anhand des Qualitätsmerkmals in einer 
bestimmten Reihenfolge geordnet, dann soll auch die Metrik die 
Produkte in dieser Reihenfolge ordnen.

Predictability 
(Genauigkeit)

Eine Metrik, die ein Merkmal prognostiziert, soll das Merkmal mit 
einer bestimmten Mindestgenauigkeit vorhersagen.

Discriminative power 
(Differenziertheit)

Unterschiedliche Ausprägungen eines Qualitätsmerkmals sollen 
auch durch die Metrik unterschiedlich bewertet werden.

Reliability 
(Verlässlichkeit)

Erfolgt die Validierung mit mehreren Bewertungen (etwa mit 
mehreren Produkten oder zu mehreren Zeitpunkten), dann soll 
mindestens ein bestimmter Teil der Bewertungen die oben 
genannten Validierungskriterien erfüllen.

Tabelle 39: Validierungskriterien (IEEE 1061, 1998)
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7.3.1 Ablauf, Datenerhebung und Datenvalidierung

Im Praktikum arbeiteten in der Regel Dreierteams an dieser Aufgabe. In Ausnahme‐
fällen wurden Zweierteams gebildet. 25 Teams haben das Praktikum begonnen, 23
Teams haben es erfolgreich abgeschlossen, Daten aus 21 Teams liegen vor. Das Prakti‐
kum  folgte  einem  definierten  Prozess mit  vorgegebenen  Schritten  und  Terminen
(Tabelle 40). Spezifikation und Entwurf erfolgten mit UML. Der Code wurde in Java
geschrieben. Der Modultest  erfolgte mit  JUnit. Der  Systemtest wurde  ohne Werk‐
zeugunterstützung durchgeführt. Die Teilnehmer mussten  ihr  eigenes Produkt zur
Verwaltung und Dokumentation der Testfälle und des Tests einsetzen. 

Die Betreuer haben Vorgaben für einen Teil der Prüfungen gemacht (Tabelle 41). Die
Anweisungsüberdeckung  im Systemtest musste mit dem Werkzeug EMMA gemes‐
sen werden. Anweisungen sind in EMMA über den Bytecode von Java definiert.

Tabelle 42  zeigt  die  erhobenen Daten. Die Umfangsmetriken  konnten  nachträglich
gemessen werden. Dabei wurde Code  für  Testfälle  und wiederverwendeter Code
nicht gezählt. Auch Aufwände konnten gemessen werden. Andere Metriken mussten
subjektiv klassifiziert und bewertet werden. Dazu gehören die Abdeckung der einzel‐
nen Testmethoden im Black‐Box‐Test, Fehlerschwere, Fehlerart und die Klassifikatio‐
nen für die Fehlerfolgekosten. Angelehnt an Prechelt (2001) wurden Kriterien für eine

Prozessschritte Abgaben Termin

Einführungsveranstaltung ‐ 12.02.2007

Vorbereitung auf Kundenbefragung ‐ 14.02.2007

Kundenbefragung ‐ 14.02.2007

Projektplanung und Analyse Projektplan, Analysenotizen 23.02.2007

Spezifikation Spezifikation 09.03.2007

Spezifikationsreview Reviewprotokoll 16.03.2007

Korrektur Spezifikation Spezifikation 23.03.2007

Entwurf, Review und Korrektur Entwurf 13.04.2007

Walkthrough mit Betreuer Präsentation des Entwurfs 19./20.04.2007

Implementierung Code 01.06.2007

Modultest und Korrektur  Testprotokoll und Code 15.06.2007

Systemtest und Korrektur Testprotokoll und Code 29.06.2007

Abnahme Alle Dokumente und Code 05./06.07.2007

Korrektur Korrigierte Dokumente und Code 20.07.2007

Tabelle 40: Ablauf des Software‐Praktikums mit vorgegebenen Terminen
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nachvollziehbare  und  einheitliche  Bewertung  definiert  und  verwendet,  damit  die
Bewertung nachvollziehbar und einheitlich erfolgt. Kosten in Form von Geldwerten
wurden im Praktikum nicht erhoben, weil in studentischen Projekten Personalkosten
nicht definiert sind.

Die  erhobenen Werte wurden  auf  Konsistenz  und  Glaubwürdigkeit  geprüft.  Bei‐
spielsweise  können  im  Spezifikationsreview  keine  Codefehler  entdeckt  werden.
Darum sollte die Zahl der entdeckten Codefehler null sein. Wurden dann tatsächlich
Codefehler im Spezifikationsreview dokumentiert, dann konnte etwa mit dem Datum
der  Entdeckung  oder  mit  dem  Fehlerkommentar  geprüft  werden,  ob  Fehlerart,
Fehlerkommentar,  Prüfung  und  Datum  konsistent  sind.  Zeigten  sich  extreme
Abweichungen von typischen Werten, dann wurden die Dokumente des Projekts her‐
angezogen. Wurden beispielsweise keine Fehler im Systemtest dokumentiert, konnte
dies anhand des Testprotokolls kontrolliert werden. Wurde ein extrem hoher Korrek‐
turaufwand für einen Fehler dokumentiert, konnte dies mit dem Kommentar, der für
den Fehler dokumentiert wurde, überprüft werden. Prechelt (2001) bezeichnet diesen
Schritt als Datenvalidierung.

7.3.2 Interne und externe Validität

Bei der Erprobung des Modells wird das Software‐Praktikum stellvertretend für alle
Software‐Projekte,  für die das Modell gültig sein  soll, verwendet. Damit ähnelt die
Erprobung und auch die Validierung des Modells einem Experiment, obwohl keine
unabhängige Variable manipuliert wird, weil eine Stichprobe  (das Software‐Prakti‐
kum) stellvertretend für die Gesamtpopulation (alle Projekte, für die das Modell gül‐

Prüfung Vorgaben

Spezifikations‐
review

Begutachtung der Spezifikation mit Checkliste, im Normalfall durch vier 
Gutachter und einen Moderator aus anderen Teams. Die Organisationen 
mit Zeiten und Räumen war vorgegeben.

Entwurfs‐
review

Begutachtung des Entwurfs mit Checkliste, im Normalfall mit den gleichen 
Beteiligten wie im Spezifikationsreview. Die Organisationen musste von 
den Teilnehmern geleistet werden.

Walkthrough 
des Entwurfs Der Entwurf musste den Betreuern vorgestellt werden.

Programmier‐
richtlinie

Der Code musste einer gegebenen Programmierrichtlinie genügen. Die 
Teilnehmer waren für die Einhaltung selbst verantwortlich.

Modultest Keine Vorgabe.

Systemtest Alle Funktionen mussten getestet werden. Mindestens 90 % der Zeilen 
mussten ausgeführt werden.

Tabelle 41: Vorgaben für die Prüfungen im Praktikum
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tig  sein  soll)  verwendet  wird.  Zur  Gesamtpopulation  gehören  vor  allem
Industrieprojekte. Darum stellt sich die Frage nach der Gültigkeit der gewonnenen
Aussagen (Prechelt, 2001): 

• Die  innere Gültigkeit  oder  interne  Validität  ist  durch  unkontrollierte  Variablen
bedroht.

• Die äußere Gültigkeit oder externe Validität beschreibt, ob und  in welchem Grad
sich die Resultate auf andere Situationen, in denen das Modell eingesetzt werden
soll, übertragen lassen.

Interne Validität.  Alle Teams mussten die gleichen Vorgaben  für den Prozess und
die Prüfungen erfüllen. Die Aufgabe war für alle Teams gleich. Sie befragten gemein‐
sam den Kunden. Die spezifizierten Anforderungen waren stabil. Dadurch entfallen
viele unkontrollierte Variablen, so dass die Projekte gut vergleichbar sind. Der gleich‐

Aktivität Metriken

Korrektur
Die Teilnehmer dokumentierten für jeden Fehler den Korrekturaufwand, die 
Fehlerart, die Fehlerschwere und die Prüfunga. Diese Merkmale sind die 
konsistent mit CoBe definiert (Abschnitt 6.3.2).

Spez.‐
review

Der Moderator dokumentierte die Namen der Gutachter (und damit die Zahl 
der Gutachter) und den Vorbereitungsaufwand pro Gutachter.

System‐
test

Im Testprotokoll steht die Zahl der Testfälle, für jeden Testfall der Erfolg, der 
Durchführungsaufwand und die Anweisungsüberdeckungb.

Pro Testfall wurden nachträglich Anweisungs‐, Zweig‐, Term‐ und 
Schleifenüberdeckung gemessenc und die kumulierte Fehlerzahld berechnet.

Die Abdeckung der Methoden für den Black‐Box‐Test wurde anhand des 
Testprotokolls bewertet.

Software‐
Umfang

Seitenzahl der Spezifikation (mit Begriffslexikon) vor dem Review

Seitenzahl des Entwurfs vor dem Walkthrough

Zahl der Anweisungen und Zeilen der Endabgabee

Fehlerfol‐
gekosten

Fehler wurden nachträglich nach Schaden, Auftretenswahrscheinlichkeit und 
Verwendungshäufigkeit klassifiziert.f

Tabelle 42: Metriken im Software‐Praktikum
a. Gemessen mit dem Werkzeug JDefectCollector (Hampp und Knauß, 2008)
b. Gemessen mit dem Werkzeug EMMA
c. Gemessen mit dem Werkzeug CodeCover
d. Die Zahl der Fehler, die bis zu diesem Testfall entdeckt wurden
e. Gemessen mit dem Werkzeug CodeCount
f. Die Auftretenswahrscheinlichkeit beschreibt, mit welcher Wahrscheinlichkeit ein Fehler bei 

einer Verwendung auftritt. Die Verwendungshäufigkeit beschreibt, wie oft die Software 
beim Einsatz verwendet wird, bis ein Fehler korrigiert wird (Abschnitt 6.3.10)
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förmige Prüfprozess hat  aber den Nachteil, dass Unterschiede durch  verschiedene
Prüfparameter  nur  schwer  gezeigt werden  können. Damit wird  es  schwierig,  den
Nutzen von Prüfungen zu zeigen, weil der Nutzen als Kostendifferenz sichtbar wird.
Die Teilnehmer waren unterschiedlich motiviert und fähig. Sie konnten ihren Prozess
und ihr Produkt im gegebenen Rahmen selbst bestimmen. Motivation und Fähigkeit
wurden nicht, Prüfungen, Prozess‐ und Produktmerkmale zumindest teilweise kon‐
trolliert. Die große Anzahl der Teams  erleichtert die Analyse, weil Aussagen über
Mittelwerte und die Streuung um den Mittelwert möglich sind. Sie stärkt die interne
Validität, weil das Ergebnis durch die vielen Datenpunkte  robuster gegen zufällige
Störeffekte ist.

Externe Validität. Die  Verallgemeinerbarkeit  leidet  unter  dem  relativ  kleinen  und
einfachen Produkt. Projekt und Produkt sind aber komplett. Solche kleinen Produkte
gibt es auch in der Praxis (Jones, 1996). Die Anforderungen im Praktikum sind stabil,
eine Situation, die nicht typisch für die Praxis ist. Dieser Aspekt spielt in den Modell‐
annahmen aber keine direkte Rolle. Die Teilnehmer des Praktikums sind im Vergleich
zu  Entwicklern  in  der  Industrie  eher  unerfahren, weil  das  Praktikum  im  dritten
Semester beginnt. Damit ist es für viele Teilnehmer das erste vollständige Software‐
Projekt, das sie durchführen. Diese Bedrohung der Validität wird durch die gleichar‐
tige Vorbereitung der Teilnehmer abgeschwächt: Entwurf und Programmierung sind
die Themen der Lehrveranstaltungen “Programmierkurs” und “Programmentwick‐
lung”  im  ersten  und  dritten  Semester.  In  der  Vorlesung  “Einführung  in  die
Softwaretechnik I”  haben  sie  die  Schritte  eines  Projekts  kennengelernt  und  geübt
(Ludewig  et  al.,  2001).  Eine weitere  Bedrohung  der Verallgemeinerbarkeit  ist  der
fehlenden Kostenbegriff  in studentischen Projekten, weil  in studentischen Projekten
kein Geld fließt, während in Industrieprojekten die Kosten in Geldwerten anfallen. In
beiden Fällen können  aber Arbeitsaufwand  (z.B.  in Entwicklerstunden, Eh), Dauer
und Personalbedarf gemessen werden.

7.4 Prüfung ausgewählter Modellzusammenhänge

In  dieser  Arbeit  können  nicht  alle  Annahmen  und  Zusammenhänge  von  CoBe
geprüft werden, weil dazu die verfügbare Zeit nicht ausreicht. Ich wähle drei Berei‐
che aus: Erstens die Zusammenhänge zwischen Fehlerentstehung, Fehlerentdeckung
und Korrekturaufwand, zweitens die Zusammenhänge zwischen Testfällen, Überde‐
ckung und Fehlerentdeckung im Systemtest und drittens die Bewertung der Fehler‐
folgekosten.

Die Zusammenhänge zwischen Fehlerentstehung, Fehlerentdeckung und Korrektur‐
aufwand werden geprüft, weil sie die Basis des Modells bilden. Für diese Basis gibt es
nur wenige Daten aus jüngeren Studien (Boehm, 1976, 1981 und 1987; Basili und Per‐
ricone, 1984; Humphrey, 1995, Kan, 2003). Zum Teil werden Daumenregeln zusam‐
mengefasst  (Shull,  2002). Die Zusammenhänge  im  Systemtest  zwischen  Testfällen,
Überdeckungen  und  Fehlerentdeckung  werden  geprüft,  weil  sie  nur  punktweise
empirisch belegt sind (Abschnitt 5.5) und Daten auf breiter empirischer Basis fehlen.
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Diese Zusammenhänge werden statistisch geprüft, dazu wird  jeder Zusammenhang
als Arbeitshypothese  formuliert. Eine Arbeitshypothese kann nicht direkt bestätigt
werden. Stattdessen wird  eine Nullhypothese  formuliert, die die Arbeitshypothese
negiert. Diese Nullhypothese kann falsifiziert werden. Wird die Nullhypothese falsifi‐
ziert, dann wird dies als “Verwerfen” oder “Abweisen” der Nullhypothese bezeich‐
net. Dadurch wird die Arbeitshypothese bestätigt.

Nullhypothesen werden durch statistische Tests geprüft. Sind die zu untersuchenden
Daten normalverteilt, dann kann der t‐Test verwendet werden. Für beliebige Vertei‐
lungen  der  untersuchten  Daten  kann  der Wilcoxon‐Rangsummen‐Test  verwendet
werden (Prechelt, 2001; Fahrmeir et al., 2007). Diese Tests ergeben, ob die Nullhypo‐
these statistisch signifikant abgewiesen werden kann. Dabei bedeutet statistisch signi‐
fikant, dass die Wahrscheinlichkeit für einen Irrtum ausreichend gering ist. Es wird
also betrachtet, mit welcher Wahrscheinlichkeit die Nullhypothese fälschlicherweise
abgewiesen wird. Diese Wahrscheinlichkeit wird durch den p‐Wert dargestellt (Fahr‐
meir et al., 2007). p‐Werte sind Wahrscheinlichkeiten und  liegen darum zwischen 0
und 1. Je geringer der p‐Wert, desto weniger wahrscheinlich ist, dass die Nullhypo‐
these fälschlicherweise abgewiesen wird. Ein kleiner p‐Wert spricht also für ein ver‐
trauenswürdiges Ergebnis. Für eine objektive Bewertung wird der p‐Wert mit einem
geforderten  ‐Wert  verglichen. Der  ‐Wert  ist  das  geforderte  Signifikanzniveau,
typische Werte sind 0,1, 0,05 oder 0,01 (10 %, 5 % oder 1 %). Für die Signifikanz p wird
im Folgenden ein 5 %‐Niveau gefordert (  = 0,05). Mit diesem Signifikanzniveau soll
die Wahrscheinlichkeit  für  einen  Irrtum  also  unter  0,05  liegen.  Sobald  der  p‐Wert
unter dem  ‐Wert von 0,05 liegt, wird die Nullhypothese abgelehnt und die Arbeits‐
hypothese bestätigt. 

Die Stärke eines Zusammenhangs,  im Folgenden auch als Bestimmtheit bezeichnet,
wird durch das Bestimmtheitsmaß, den Determinationskoeffizienten R2, gemessen.
Er drückt aus, welcher Anteil der Streuung der abhängigen Variable durch die unab‐
hängige erklärt wird (Fahrmeir et al., 2007). Dabei gilt 50 % bereits als guter Wert im
wirtschaftswissenschaftlichen Bereich. Humphrey  (1995)  fordert über 70 %. Für die
Messung des Bestimmtheitsmaßes wird eine lineare Regression durchgeführt (Fahr‐
meir et al., 2007), durch die der Zusammenhang zwischen zwei Variablen als Gerade
geschätzt wird.  Die  Berechnungen  erfolgen mit  den  Statistikpaketen  SPSS  (SPSS,
2008) und R (R, 2008).

Der dritte Bereich, der untersucht wird, ist die Bewertung der Fehlerfolgekosten, also
derjenigen Kosten, die beim Produkteinsatz durch Fehler  für den Kunden anfallen.
Für diesen Bereich fehlen gemessene Vergleichswerte, weil die Produkte des Prakti‐
kums  nicht  produktiv  eingesetzt  wurden;  nur  ein  Produkt  wurde  erprobt  und
demonstriert. Darum  kann  nur  beurteilt werden,  ob  die Modellresultate  plausibel
erscheinen und untereinander konsistent sind.

α α

α

α
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7.4.1 Fehlerentstehung, Fehlerentdeckung, Korrekturaufwand

Die Zusammenhänge zwischen Fehlerentstehung, Fehlerentdeckung und Korrektur‐
aufwand lassen sich mit drei Hypothesen beschreiben (Hampp und Knauß, 2008):

H1: Prüfungen entdecken nur Fehler, die auf der gleichen Abstraktionsebene oder
auf einer tieferen Abstraktionsebene der Entwicklung gemacht wurden.

H2: Je länger ein Fehler unentdeckt bleibt, desto aufwändiger ist seine Korrektur.

H3: Je schwerwiegender ein Fehler ist, desto aufwändiger ist seine Korrektur.

Prüfung H 1: Abstraktionsebene der Fehlerentdeckung.

Tabelle 43 zeigt die  im Software‐Praktikum erhobenen Fehlerzahlen, unterschieden
nach Spezifikations‐, Entwurfs‐ und Codefehlern. Diese Fehlerarten sind konsistent
mit CoBe definiert (Abschnitt 6.3.2). 

In jeder Prüfung werden Fehler vor allem einer bestimmten Art entdeckt. Spezifikati‐
onsfehler werden hauptsächlich im Spezifikationsreview entdeckt, dann erst wieder
im  Systemtest.  Sie werden  nicht  auf  niedrigerer Abstraktionsebene  entdeckt.  Ent‐
wurfsfehler werden vor allem im Entwurfsreview entdeckt. Ein kleiner Teil der Ent‐
wurfsfehler wird im Modultest auf niedriger Abstraktionseben entdeckt, ein Teil erst
im Systemtest auf höherer Abstraktionsebene. Codefehler werden sowohl im Modul‐
test, also auf der gleichen Abstraktionsebene, als auch im Systemtest, also durch Test
auf höherer Abstraktionsebene, entdeckt.

Bewertung.  Die Resultate widerlegen die Hypothese H 1 von CoBe nicht,  sondern
bestätigen sie. Besonders deutlich wird dies, weil keine Spezifikationsfehler auf nied‐
riger  Abstraktionsebene  entdeckt  werden.  Dass  einige  Entwurfsfehler  bereits  im
Modultest  entdeckt werden,  führe  ich  darauf  zurück,  dass  die  Teilnehmer  bereits
während des Modultests kontinuierlich integriert haben. Somit enthält der Modultest
bereits einen Integrationstest, der auf höherer Abstraktionsebene liegt. Auf einen sta‐
tistischen Test verzichte ich, weil nur wenige der Spezifikations‐ und Entwurfsfehler
in Modul‐ und  Systemtests  entdeckt wurden. Die  interne Validität  ist durch diese
geringe  Fehlerzahl  bedroht.  Die  externe  Validität  ist  bedroht  durch  die  stabilen

Zahl entdeckter Fehler pro Fehlerart Spez.‐fehler Entwurfsfehler Codefehler

Spezifikationsreview 572 0 0

Entwurfsreview 1 209 0

Modultest 0 4 107

Systemtest 13 3 150

Abnahme 0 0 7

Tabelle 43: Zahl entdeckter Fehler im Praktikum, getrennt nach Fehlerart



7.4. Prüfung ausgewählter Modellzusammenhänge 165

Anforderungen; Jones (1996) bestätigt quantitativ den Verlauf der Fehlerentdeckung
mit Industriedaten.

Folgerung. Damit werden die unterschiedlichen Fehlerentdeckungsquoten  für Feh‐
lerarten  und  für  Prüfungen,  die  in  CoBe  verwendet werden,  qualitativ  bestätigt.
Bestätigt wird, dass es  in CoBe notwendig  ist, die unterschiedlichen Fehlerarten zu
modellieren.

Prüfung H 2: Je länger ein Fehler unentdeckt bleibt, desto aufwändiger ist seine 
Korrektur.

Die Abbildung 55 zeigt den Korrekturaufwand pro Fehler nach den verschiedenen
Prüfungen  im Software‐Praktikum. Rechts sind die Box‐Plots ohne extreme Ausrei‐
ßer1 dargestellt. Der Korrekturaufwand steigt deutlich  im Verlauf des Projekts. Die
Aufwände streuen stark, es gibt extreme Ausreißer nach oben.

Damit die Hypothese H 2 geprüft werden kann, muss bestimmt werden, wie  lange
ein Fehler unentdeckt bleibt. Diese Zeitdauer hängt vom Entstehungszeitpunkt und
vom Entdeckungszeitpunkt ab. Sie wird auch als Latenzzeit eines Fehlers bezeichnet.
Der Entstehungszeitpunkt  ist durch die Fehlerart bestimmt, die konsistent zu CoBe
definiert  ist  (Abschnitt 6.3.2).  Der  Entdeckungszeitpunkt  ist  durch  die  Prüfung
bestimmt, mit der der Fehler entdeckt wird. Der Einfluss der Latenzzeit wird durch
zwei Hypothesen  geprüft.  In  diesen Hypothesen werden  Spezifikations‐  und  Ent‐
wurfsfehler als  frühe Fehler zusammengefasst, weil  in den Tests nur wenige dieser
frühen Fehler entdeckt wurden. Codefehler werden als späte Fehler bezeichnet. Die
frühe Korrektur findet nach Reviews statt, die späte Korrektur nach den Tests. 

1. Als extreme Ausreißer oder Extremwerte werden im Boxplot diejenigen Werte bezeichnet, 
die mehr als 3 Boxlängen vom Rand der Box entfernt sind (SPSS, 2008). Die Boxlänge ist der 
Abstand zwischen unterer und oberer Quartile.

Abb. 55: Korrekturaufwand pro Fehler nach Prüfungen im Praktikum: 
links mit, rechts ohne extreme Ausreißer
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H 2.1: Die späte Korrektur früher Fehler ist aufwändiger als die frühe Korrektur.

H 2.2: Die  späte Korrektur  früher Fehler  ist aufwändiger als die Korrektur  später
Fehler.

Tabelle 44  fasst die Daten über die Korrekturaufwände pro Fehler zusammen. Der
Mittelwert ist deutlich höher als der Median. Die Maximalwerte erreichen Korrektur‐
aufwände von bis zu 30 Entwicklerstunden pro Fehler. Dies deutet darauf hin, dass
die Aufwände nicht normalverteilt  sind. Für den Hypothesentest wird darum der
Wilcoxon‐Rangsummen‐Test eingesetzt. 

Im Praktikum waren die frühen Fehler etwa 6 mal so teuer zu korrigieren, wenn sie in
den  Tests  entdeckt  wurden.  Der  Unterschied  ist  statistisch  signifikant  (p‐
Wert < 0,0011), so dass die Nullhypothese für H 2.1 abgewiesen werden kann. Die frü‐
hen Fehler waren in den Tests etwa 4 mal so teuer zu korrigieren wie die späten Feh‐
ler. Der Unterschied  ist  signifikant  (p‐Wert = 0,004),  so dass die Nullhypothese  für
H 2.2 abgewiesen werden kann.

Bewertung. Die Hypothese H 2  von  CoBe wird  durch  die  Daten  des  Praktikums
bestätigt. Die interne Validität ist bedroht, weil im Praktikum wenig frühe Fehler spät
entdeckt wurden  und  Spezifikations‐  und  Entwurfsfehler  für  den Hypothesentest
zusammengefasst wurden. Die externe Validität  ist durch den Produktumfang, das
einfache Produkt und die intensiven frühen Prüfungen eingeschränkt. Die Resultate
entsprechen aber den bisherigen Beobachtungen. Der Anstieg der Korrekturkosten
fällt geringer  aus  als bei großen Projekten  (1 : 6  statt  1 : 10), dies  ist konsistent mit
Daten in Boehm (1976 und 1981).

Aufwand 
(Entwicklerminuten)

Frühe Fehler 
in Reviews

Frühe Fehler 
in Tests

Späte Fehler in 
Tests

Minimum 0,0 4,0 1,0

1. Quartil 3,0 10,0 5,0

Median 6,0 37,5 10,0

Mittelwert 18,7 131,8 32,0

3. Quartil 15,0 150,2 30,0

Maximum 1800,0 918,0 601,0

Std.‐Abweichung 73,2 222,7 63,4

Tabelle 44: Korrekturaufwand nach Prüfungen im Praktikum

1. Die Wahrscheinlichkeit, dass die Nullhypothese fälschlicherweise abgewiesen wird, liegt 
unter 0,001 und damit unter dem geforderten Signifikanzniveau von 0,05.
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Folgerungen. Die Ergebnisse bestätigen den  in CoBe modellierten Zusammenhang
zwischen Latenzzeit und Korrekturaufwand. Es wird bestätigt, dass der Entstehungs‐
zeitpunkt und der Entdeckungszeitpunkt eines Fehlers modelliert werden müssen. 

Prüfung H 3: Je schwerwiegender ein Fehler ist, desto aufwändiger ist seine 
Korrektur.

Die Fehlerschwere  ist  im Praktikum  gleich wie  in CoBe definiert,  es  gibt kritische
Fehler, Hauptfehler  und Nebenfehler  (Abschnitt 6.3.2).  Kritische  Fehler  kosten  im
Praktikum mehr Korrekturaufwand als Hauptfehler. Hauptfehler kosten mehr Kor‐
rekturaufwand als Nebenfehler (Abbildung 56). Für einen statistischen Test wird die
Hypothese aufgeteilt:

H3.1: Hauptfehler sind aufwändiger zu korrigieren als Nebenfehler.

H3.2: Kritische Fehler sind aufwändiger zu korrigieren als Nebenfehler.

H3.3: Kritische Fehler sind aufwändiger zu korrigieren als Hauptfehler.

Der Hypothesentest erfolgt mit dem Wilcoxon‐Rangsummen‐Test.  Jede Prüfung  im
Praktikum wird einzeln betrachtet. Nur die Fehler derjenigen Fehlerart werden unter‐
sucht, die vorrangig in der Prüfung entdeckt wird. Alle Hypothesen für das Spezifi‐
kationsreview können bestätigt werden. Für das Entwurfsreview kann die Hypothese
für den Unterschied zwischen Nebenfehlern und anderen Fehlern bestätigt werden,
aber nicht für den Unterschied zwischen kritischen und Hauptfehlern. Dies kann aber
auf die geringe Zahl an kritischen Fehlern zurückgeführt werden: Im Entwurfsreview
waren  20  Fehler  von  insgesamt  209  Entwurfsfehlern  kritisch. Die Hypothesen  für
Tests können nicht bestätigt werden (Tabelle 45).

Bewertung. Die Ergebnisse für die Korrektur nach Tests widersprechen Industrieda‐
ten  (Kan,  2003). Die  interne Validität  ist beeinträchtigt, weil die Teilnehmer wenig
Erfahrung  bei  der  Klassifikation  der  Fehler  haben.  Dies  beeinträchtigt  auch  die

Abb. 56: Korrekturaufwand im Praktikum für unterschiedlich schwere Fehler
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externe Validität. Werden alle Fehler  im Praktikum betrachtet, dann unterscheiden
sich die Korrekturaufwände abhängig von der Fehlerschwere. Dies zeigt sich auch in
Industriedaten (Kan, 2003; Zage und Zage, 2003).

Folgerungen. Der Zusammenhang zwischen Fehlerschwere und Korrekturaufwand,
der in CoBe modelliert ist, wird für Reviews bestätigt. Er wird für alle Fehler bestätigt,
aber nicht einzeln für die Korrektur nach Tests. Weil dazu aber Industriedaten vor‐
handen sind (Kan, 2003), wird CoBe nicht verändert.

7.4.2 Testfälle, Code‐Überdeckung, Fehlerentdeckungsquote

Die  Hypothesen  der  Zusammenhänge  für  Testfälle,  Überdeckung  und  Fehlerent‐
deckung im Test beziehen sich auf das funktionale Modell und seine Quantifizierung.
Die erste Hypothese über den Test betrifft die Form des Zusammenhangs zwischen
Testfallzahl und Überdeckungsgrad:

H4: Der  Zusammenhang  zwischen  der  normierten  Zahl  der  Testfälle  t  und  dem
Überdeckungsgrad  c  kann  durch  einen  Zusammenhang  der  Form

 dargestellt werden.

Abbildung 57  skizziert  den Zusammenhang  der Hypothese H 4;  die Überdeckung
bleibt bei 100 % konstant, auch wenn weitere Testfälle spezifiziert und durchgeführt
werden.

Im Modell wird die Testfallzahl durch den Produktumfang normiert; ich nehme also
an dass es eine  typische Zahl von Testfällen pro Function Point gibt, angelehnt an
Jones (2007). Diese Zahl wird  zur Normierung  verwendet;  dazu müssen  Function
Points für die Art der Software geeignet sein (Abschnitt 6.3.2). Diese Voraussetzung
wird im Praktikum erfüllt, weil das Produkt ein Werkzeug zur Testfallverwaltung ist.
Ob diese Normierung den Zusammenhang zwischen Testfallzahl und Überdeckung
verfälscht, wird mit der folgenden Hypothese untersucht:

H5: Durch die Normierung der Testfallzahl wird der Zusammenhang mit den Über‐
deckungsgraden nicht schwächer.

p‐Wert (Signifikanz)a der Hypothesen pro Prüfung H3.1 H3.2 H3.3

Spezifikationsreview und Spezifikationsfehler < 0,001 < 0,001 0,001

Entwurfsreview und Entwurfsfehler 0,016 < 0,001 0,079

Modultest und Codefehler 0,487 0,021 0,114

Systemtest und Codefehler 0,076 0,575 0,344

Tabelle 45: Hypothesentests für den Einfluss der Fehlerschwere
a. Statistisch signifikante Ergebnisse (5 %‐Niveau) sind fett gedruckt. Die Wahrscheinlichkeit, 

dass die Nullhypothese fälschlicherweise abgewiesen wird, liegt dabei unter dem geforder‐
ten Signifikanzniveau von 0,05.

c min 1 r0c, t
r1c⋅( )=
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Das Testmodell von CoBe beruht für die Anweisungs‐, Zweig‐, Schleifen‐ und Term‐
überdeckung auf folgender Annahme: Die Überdeckungen hängen linear zusammen;
Diesen linearen Zusammenhang zeigt Abbildung 58. Dieser Zusammenhang gilt für
den Bereich zwischen 0 % und 100 % Überdeckung. 

Beispielsweise  ist  der  Zusammenhang  für  die  Anweisungsüberdeckung
  und  für  die  Zweigüberdeckung 

(Abschnitt 6.6.2).  Die  Berechnung  der  Zweigüberdeckung  unterscheidet  sich  nur
durch den Faktor cf1 von der Berechnung der Anweisungsüberdeckung. Somit muss
die folgende Hypothese geprüft werden:

H6: Die Überdeckungsmetriken hängen untereinander linear zusammen.

Außerdem prüfe ich zusätzlich, ob sich die Modellresultate mit einem solchen linea‐
ren Modell verschlechtern und ob ein nichtlinearer Zusammenhang geeigneter ist:

Abb. 57: Normierte Testfallzahl und Überdeckungsgrad
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Abb. 58: Anweisungsüberdeckung und andere Überdeckungsgrade
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H7: Für die Berechnung der Überdeckungsgrade  für Zweige, Schleifen und Terme
ist dieser lineare Zusammenhang gut geeignet.

Diese  Annahme  gilt  aber  nur  unter  bestimmten  Voraussetzungen  und  in  einem
bestimmten  Bereich,  der  durch  die  vollständige Überdeckung  nach  oben  begrenzt
wird.  Sobald mit  einer Metrik  100 % Überdeckung  erreicht wird,  können  andere,
unvollständige  Überdeckungen  trotzdem  vervollständigt  werden.  Der  lineare
Zusammenhang gilt dann also nicht mehr. Abbildung 59 skizziert dies: Während die
Zweigüberdeckung (c1 in der Abbildung) weiter ansteigt, bleibt die Anweisungsüber‐
deckung (c0 in der Abbildung) konstant, sobald 100 % erreicht werden. Unklar ist, ob
dieser Zusammenhang nicht mehr gilt, wenn  eine bestimmte Überdeckung gezielt
erreicht werden soll.

Die  fünfte  Annahme  des  Testmodells  betrifft  die  Fehlerentdeckung.  Das  Modell
basiert  auf  der Annahme,  dass  die Zahl  der  Testfälle  die  Fehlerentdeckungsquote
nicht‐linear bestimmt:

H8: Der Zusammenhang zwischen der normierten Anzahl der Testfälle  t und der
Fehlerentdeckungsquote Q hat die Form  .

Abbildung 60 skizziert diesen Zusammenhang, mit dem sich die Fehlerentdeckungs‐
quote asymptotisch 100 % nähert, wenn sehr viele Testfälle durchgeführt werden.

Für den Test der Hypothesen 7 und 8 werden die Daten der Teams  im Praktikum
gleichmäßig auf zwei Datengruppen aufgeteilt (Abbildung 61):

• Die Daten  der Datengruppe  1 werden  verwendet,  um  die  Zusammenhänge  zu
quantifizieren.  Beispielsweise  werden  im  Folgenden  die  Parameter  rqt  und  qt
(Hypothese 8) mit Daten der Datengruppe 1 durch Regression bestimmt. Mit die‐
ser Quantifizierung werden Modellresultate für die Datengruppe 1 berechnet, um
Aussagen über die Signifikanz und Bestimmtheit zu treffen. 

Abb. 59: Normierte Testfallzahl und verschiedene Überdeckungsgrade
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• Die Daten der Datengruppe 2 werden verwendet, um die quantifizierten Zusam‐
menhänge zu prüfen: Die Quantifizierung beruht auf der Datengruppe 1. Mit die‐
ser Quantifizierung werden Modellresultate mit Eingaben aus der Datengruppe 2
berechnet.  Beispielsweise wird  die  Fehlerentdeckungsquote  aus  der  normierten
Testfallzahl berechnet. Die Resultate werden mit den Istwerten der Datengruppe 2
verglichen. Somit können Aussagen über die Prognosefähigkeit getroffen werden. 

Die Teams sind einer Datengruppe durch Zufallsauswahl zugeordnet. 11 Teams sind
in Datengruppe 1, 10 Teams in Datengruppe 2. 

Um die Überdeckungsgrade zu messen, wurde der Systemtest mit dem  instrumen‐
tierten Programm anhand der Testprotokolle wiederholt. Überdeckungsgrade, Test‐
fallzahl und die kumulierte Fehlerzahl aus dem Testprotokoll wurden notiert. Falls

Abb. 60: Normierte Testfallzahl und Fehlerentdeckungsquote
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vorhanden, wurde die Abgabe vor dem Systemtest verwendet, weil dies der realen
Situation des Tests entspricht.

Prüfung H 4: Der Zusammenhang zwischen der normierten Zahl der Testfälle und 
dem Überdeckungsgrad kann durch einen Zusammenhang der Form 

 dargestellt werden. 

Der postulierte Zusammenhang wird in Abbildung 57 (Seite 169) skizziert. Die Hypo‐
these wird durch  eine  lineare Regression mit  logarithmierten Daten geprüft. Dazu
berechnet die Regression die Parameter r0c und r1c, mit denen der funktionale Zusam‐
menhang  zwischen  normierter  Testfallzahl  und  Überdeckung  quantifiziert  wird.
Abbildung 62 veranschaulicht diesen Zusammenhang mit Daten aus dem Praktikum
(Datengruppe 1). Die Diagramme stellen die Daten mehrerer Teams gemeinsam dar,
um die Streuung der Daten zu zeigen. 

c min 1 r0c, t
r1c⋅( )=
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Abb. 62: Normierte Testfallzahl und Überdeckungsgrad im Praktikum
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• Die x‐Achse zeigt die normierte Testfallzahl, weil in CoBe mit normierten Testfall‐
zahlen gerechnet wird. Dazu wird Zahl der durchgeführten Testfälle mit der typi‐
schen Testfallzahl normiert. Die  typische Testfallzahl basiert auf dem Mittelwert
von Jones (2007) und ist als 100 %‐Wert dargestellt. 

• Die  y‐Achse  zeigt  den Überdeckungsgrad  in  Prozent  für  eine  bestimmte Über‐
deckungsmetrik, oben links zum Beispiel für die Anweisungsüberdeckung. 

• Jeder dunkle Punkt im Diagramm repräsentiert einen Testfall aus dem Praktikum:
Mit diesem Testfall wurden vom Team insgesamt x % der normierten Testfallzahl
durchgeführt, mit diesem Testfall wurden y % Überdeckung erreicht. 

• Die hellen Punkte stellen die Ergebnisse der Regression dar. 

Tabelle 46 zeigt Signifikanz und Bestimmtheit. Die Nullhypothese wird abgelehnt, da
der p‐Wert weit unter 0,05 liegt. Die Bestimmtheit ist hoch. Somit wird die Hypothese
bestätigt.

Bewertung.  Die Ergebnisse bestätigen die Hypothese H 4 von CoBe, da die Nullhy‐
pothese abgewiesen werden kann. Die interne Validität ist bedroht, weil nur wenige
Tests  sehr  intensiv  durchgeführt  wurden.  Dadurch  besteht  die  Gefahr,  dass  die
Regressionsanalyse durch wenige Fälle geprägt ist. Abbildung 62 zeigt dies anschau‐
lich im oberen rechten Teil der Diagramme, in dem die Werte für sehr intensive Tests
liegen; dort wird die Überdeckung  tendenziell zu hoch berechnet. Die Diagramme
bestätigen aber den Zusammenhang für die weniger intensiven Tests: Im Bereich mit
weniger  intensiven  Tests,  jeweils  in  der  linken Hälfte  der Diagramme,  sind  viele
Datenpunkte vorhanden. Der Zusammenhang ist in diesem Teil trotz einer gewissen
Streuung gut erkennbar. Die externe Validität ist eingeschränkt, weil alle Prüflinge in
der  gleichen Größenordnung  liegen  (2700  bis  16 000 Anweisungen),  so dass  keine
Aussagen für größere Produkte möglich sind.

Folgerungen. Die  im Testmodell von CoBe verwendete Form des Zusammenhangs
zwischen Testfällen und Überdeckungsgraden wird bestätigt.

Überdeckung Faktor r0c’ a

a. Zur Unterscheidung zwischen Modellparametern und Regressionsparameter sind die 
Regressionsparameter durch ein ’ gekennzeichnet.

Exponent r1c’ p‐Wertb

b.  Statistisch signifikante Ergebnisse (5 %‐Niveau) sind fett gedruckt.

R2

Anweisungen 11,7 0,35 < 0,001 0,68

Zweige 3,7 0,51 < 0,001 0,83

Schleifen 2,1 0,55 < 0,001 0,62

Terme 1,1 0,66 < 0,001 0,81

Tabelle 46: Ergebnisse für normierte Testfallzahl und Überdeckungsgrad
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Prüfung H 5: Durch die Normierung der Testfallzahl wird der Zusammenhang mit 
den Überdeckungsgraden nicht schwächer. 

Tabelle 47 zeigt die Bestimmtheit des Zusammenhangs von Hypothese 4 mit normier‐
ter Testfallzahl. Im Vergleich dazu wird die Bestimmtheit gezeigt, wenn die absolute
statt  die  normierte  Testfallzahl  verwendet wird. Die  Bestimmtheit mit  normierter
Testfallzahl  ist  höher.  Alle  Zusammenhänge  sind  signifikant  (p‐Wert < 0,001).  Die
Wahrscheinlichkeit, mit der die Nullhypothese  fälschlicherweise  abgewiesen wird,
liegt also unter 0,001 und damit unter dem geforderten Signifikanzniveau von 0,05.

Bewertung. Da die Bestimmtheit mit normierter Testfallzahl höher  ist,  ist eine Nor‐
mierung mit dem Code‐Umfang sinnvoll. Der Umfang hat also einen Einfluss auf die
Zahl der Testfälle. Dieser Einfluss zeigt sich im Praktikum, obwohl die Programme in
der gleichen Größenordnung  liegen  (2700 bis 16 000 Anweisungen). Die Hypothese
H 5 von CoBe wird trotz der geringen Schwankung des Code‐Umfangs bestätigt, da
die Nullhypothese abgewiesen werden kann.

Folgerungen. Die Normierung der Testfallzahl mit dem Umfang, die  in CoBe ver‐
wendet wird, ist sinnvoll und kann zur Berechnung des Überdeckungsgrads verwen‐
det werden.

Prüfung H 6: Die Überdeckungsmetriken hängen untereinander linear zusammen.

Dieser  lineare  Zusammenhang  ist  in  Abbildung 58  (Seite 169)  skizziert.  Um  den
Zusammenhang  zu prüfen, verwende  ich  eine  lineare Regression durch den Null‐
punkt. Die Resultate zeigen für die Daten aus dem Praktikum (Datengruppe 1) einen
starken, signifikanten Zusammenhang: Tabelle 48 zeigt die berechneten Faktoren cfx
zwischen den Überdeckungsgraden. Wie im Modell angenommen steigt die Anwei‐
sungsüberdeckung schneller als die Zweigüberdeckung. Die Termüberdeckung steigt
am langsamsten. Die Bestimmtheit ist mit über 90 % hoch. Alle Zusammenhänge sind
statistisch signifikant mit p‐Werten unter 0,05.

Bewertung.  Die Hypothese H 6 von CoBe wird bestätigt, die Nullhypothese abge‐
lehnt.  Eine  einfache  Quantifizierung  mit  konstantem  Exponenten  für  alle  Über‐
deckungsmetriken  ist möglich. Die  Beobachtung  von Malaiya  et  al.  (1994)  für  die
Anweisungs‐ und Zweigüberdeckung wird  für die anderen Überdeckungsmetriken

R2 für die Überdeckung mit normierter Testfallzahl absoluter Testfallzahl

Anweisungen 0,68 0,62

Zweige 0,83 0,74

Schleifen 0,62 0,53

Terme 0,81 0,72

Tabelle 47: Bestimmtheit mit normierter und mit absoluter Testfallzahl für 
Überdeckungsgrade im Praktikum
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bestätigt. Die interne Validität ist wieder durch die wenigen extrem intensiven Tests
bedroht. Ob die Ergebnisse verallgemeinert werden können, ist fraglich. In jedem Fall
gilt die Einschränkung, dass diese Zusammenhänge nicht mehr  gelten, wenn  eine
Überdeckung gezielt erreicht werden soll. 

Folgerungen. Der  in  CoBe  verwendete  Zusammenhang  zwischen  der  normierten
Testfallzahl und den Überdeckungsgraden wird bestätigt.

Prüfung H 7: Für die Berechnung der Überdeckungsgrade für Zweige, Schleifen 
und Terme ist dieser lineare Zusammenhang gut geeignet.

Zur Prüfung dieser Hypothese werden zwei Zusammenhänge verglichen:

• Mit dem vollständigen Modell werden Anweisungs‐, Zweig‐, Term‐ und Schleifen‐
überdeckung aus der normierten Testfallzahl mit den Parametern aus Tabelle 46
berechnet.

• Das lineare Modell berechnet nur die Anweisungsüberdeckung aus der normierten
Testfallzahl mit den Parametern aus Tabelle 46. Aus der Anweisungsüberdeckung
werden  linear  Zweig‐,  Schleifen‐  und  Termüberdeckung mit  den  Faktoren  aus
Tabelle 48 berechnet.

In beiden Fällen wird also ein Zusammenhang geprüft, der in Abbildung 63 skizziert
ist.  Im ersten Fall  (vollständiges Modell) werden Faktoren und Exponenten  für alle
Überdeckungsgrade durch das Regressionsverfahren bestimmt. Im zweiten Fall wer‐
den  für Zweig‐, Schleifen‐ und Termüberdeckung  (c1,  c3,  c4  in der Abbildung) die
jeweiligen  Faktoren,  aber  nicht  die  Exponenten  mit  dem  Regressionsverfahren
bestimmt. Der Exponent wird aus der Regression der Anweisungsüberdeckung (c0 in
Abbildung 63)  verwendet. Der  Fall,  dass  die Anweisungsüberdeckung  von  100 %
erreicht wird (rechts oben  in der Abbildung), kommt  in den Daten aus dem Prakti‐
kum nicht vor.

Überdeckung Faktor cfx’ p‐Werta R2

Zweige (cf1’) 0,69 < 0,001 0,97

Terme (cf3’) 0,44 < 0,001 0,93

Schleifen (cf4’) 0,50 < 0,001 0,92

Tabelle 48: Signifikanz und Bestimmtheit zwischen Überdeckungen im Praktikum
a. Statistisch signifikante Ergebnisse (5 %‐Niveau) sind fett gedruckt. Die Wahrscheinlichkeit, 

dass die Nullhypothese fälschlicherweise abgewiesen wird, liegt dabei unter dem geforder‐
ten Signifikanzniveau von 0,05.
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Die Datengruppe 1 wurde zur Analyse und Bewertung des Zusammenhangs verwen‐
det. Ihre Regressionsanalyse ergibt die Parameterwerte für die Modelle. Diese Para‐
meter werden dann verwendet, um die Überdeckungsgrade der Datengruppe 1 zu
berechnen. Wie gut diese Berechnung die Istwerte trifft, wird mit dem Bestimmtheits‐
maß R2 bewertet. 

Die Analysemodelle zeigen, dass die Überdeckungsgrade durch das lineare Modell in
gleichem Maße wie durch das vollständige Modellen bestimmt sind. Tabelle 49 zeigt
die Bestimmtheit des vollständigen Modells (linke Spalte) und des linearen Modells
(rechte Spalte). Die Bestimmtheit der Zweig‐, Schleifen‐ und Termüberdeckung durch
die normierte Testfallzahl  ist  in beiden Fällen gleich hoch. Die Anweisungsüberde‐
ckung wird in beiden Modellen gleich berechnet und hat damit die gleiche Bestimmt‐
heit.

Aussagen  über  die  Fähigkeit  der Modelle, Werte  zu  prognostizieren,  können  nur
getroffen werden, wenn Quantifizierung und Prognose mit unterschiedlichen Daten
durchgeführt werden. Für die Prognose werden darum Daten aus der Datengruppe 2
verwendet.

R2 der Analyse mit vollständigem Modell linearem Modell

Anweisungen 0,74 ‐

Zweige 0,83 0,83

Schleifen 0,68 0,68

Terme 0,85 0,85

Tabelle 49: Vergleich des vollständigen und des linearen Modells mit Daten aus dem 
Praktikum (Analyse, Regressionsmodell)

Abb. 63: Testfälle und Überdeckungsgrade
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Dazu werden die Zusammenhänge zuerst mit Parametern quantifiziert, die aus der
Datengruppe 1 stammen; es werden die Parameter verwendet, die durch Regression
in den  obigen Abschnitten  berechnet wurden. Beispielsweise wird der Faktor  0,69
zwischen Anweisungs‐ und Zweigüberdeckung aus Tabelle 48 verwendet. Dann wer‐
den die normierten Testfallzahlen aus der Datengruppe 2 verwendet, um die zugehö‐
rigen Überdeckungsgrade zu berechnen. Diese berechneten Resultate (prognostizierte
Werte) werden mit den Istwerten aus der Datengruppe 2 verglichen.

Die Prognose der Daten der Gruppe 2 zeigt eine etwas höhere Bestimmtheit des linea‐
ren Modells (Tabelle 50). Die Tabelle zeigt zusätzlich die Abweichung zwischen den
Istwerten und den prognostizierten Werten  in dB. Sie  ist mit dem  linearen Modell
etwas geringer und unter der 2‐dB‐Grenze. 

Alle Zusammenhänge sind statistisch signifikant; die Nullhypothese kann abgewie‐
sen  werden.  Abbildung 64  veranschaulicht  die  Resultate  der  Prognose.  Die  Dia‐
gramme  überlagern  die Werte  mehrerer  Teams,  um  die  Streuung  zwischen  den
Teams zu zeigen. Das Diagramm zeigt auf der x‐Achse die normierte Testfallzahl und
auf der y‐Achse den Überdeckungsgrad.  Jeder dunkle Punkt  im Diagram  stellt die
Werte eines Testfalls der Datengruppe 2 dar. Mit dem Testfall wurden vom Team x %
der normierten Testfallzahl durchgeführt. Dabei wurden y % Überdeckung erreicht.
Die hellen Punkte stellen die Ergebnisse des Prognosemodells mit  linearem Zusam‐
menhang dar.

Bewertung. Die Hypothese H 7  von CoBe wird  bestätigt. Die Modellierung  durch
einen  linearen  Zusammenhang  ergibt  eine  hohe  Übereinstimmung  zwischen  den
Werten, die mit dem Modell berechnet werden, und den Istwerten.

Folgerungen. Der  in CoBe  verwendete Zusammenhang  zur Berechnung der Über‐
deckung  ist stark genug, dass er zur Prognose verwendet werden kann. CoBe wird
für die Fälle, in denen Zweige, Terme oder Schleifen nicht gezielt überdeckt werden,
mit den Faktoren aus Tabelle 48 quantifiziert; andere Daten sind nicht verfügbar. Den

Überdeckung

R2 des Prognosemodells MLE der Prognose (dB)a

a. Median des 

Vollständiges 
Modell

Lineares 
Modell

Vollständiges 
Modell

Lineares
Modell

Anweisungen 0,65 ‐ 0,70 ‐

Zweige 0,75 0,77 0,79 0,76

Schleifen 0,63 0,67 1,23 1,19

Terme 0,82 0,83 1,21 1,11

Tabelle 50: Vergleich des vollständigen und des linearen Modells mit Daten aus dem 
Praktikum (Prognosemodell)

LE 10 Modellresultat Istwert⁄( )log⋅=
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Zusammenhang zwischen der normierten Testfallzahl und der Anweisungsüberde‐
ckung verändere  ich nicht, weil  im Praktikum  eine hohe Überdeckung bereits mit
wenigen Testfällen  erreicht wird. Dies widerspricht  Industriedaten  (Abschnitt 5.5);
die Produkte des Praktikums sind kleiner als Industrie‐Produkte.

Prüfung H 8: Der Zusammenhang zwischen der normierten Anzahl der Testfälle 
und der Fehlerentdeckungsquote hat die Form  .

Im Testmodell von CoBe wird angenommen, dass  jeder Testfall einen bestimmten,
kleinen Anteil qt der enthaltenen Fehler entdeckt. Dieser Zusammenhang wird durch
eine Funktion der Form   dargestellt  (Abbildung 60,
Seite 171 und Abschnitt 6.6.2). QTest ist die Fehlerentdeckungsquote, tTest ist die nor‐
mierte  Testfallzahl,  rqt  und  qt  sind  Parameter. Dieser Zusammenhang wird  durch
Regression  mit  logarithmierter  Fehlerentdeckungsquote  mit  dem  umgeformten
Zusammenhang   geprüft: 
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Abb. 64: Prognose der Überdeckung im Praktikum mit linearem Modell

QTest max 0 1, rqt 1 qt–( )
tTest–( )=

QTest max 0 1, rqt 1 qt–( )
tTest–( )=

1 QTest– rqt 1 qt–( )
tTest=
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• Die  Fehlerentdeckungsquote  wird  für  jeden  Testfall  für  jedes  Team  berechnet.
Dazu werden die Abweichungen, die bis zu diesem Testfall im Testprotokoll erfasst
sind, aufsummiert. Diese Summe bildet den Zähler der Fehlerentdeckungsquote
bis zu diesem Testfall. Die insgesamt im Systemtest und in der Abnahme entdeckte
Zahl Fehler bildet den Nenner der Fehlerentdeckungsquote. 

• Die normierte Testfallzahl ist die Zahl der Testfälle, die bis zum jeweiligen Testfall
durchgeführt wurden, normiert mit der typischen Testfallzahl. 

• Die Analyse wird wieder mit der Datengruppe 1 durchgeführt. Mit diesen Daten
der  Gruppe  1 werden  rqt’  und  qt’  durch  Regression  bestimmt.  Dann wird  die
Fehlerentdeckungsquote QTest aus den Testfallzahlen der Datengruppe 1 berechnet
und mit den Istwerten verglichen. Signifikanz, Bestimmtheit (R2) und Genauigkeit
(Median der logarithmischen Abweichung, MLE) werden geprüft.

• Die Parameter rqt’ und qt’ werden verwendet, um die Fehlerentdeckungsquote für
die Testfallzahlen der Datengruppe 2 zu berechnen. Damit  lassen sich Aussagen
über die Prognose mit diesem Zusammenhang gewinnen.

Der  Zusammenhang  zwischen  dieser  normierten  Testfallzahl  und  der  Fehlerent‐
deckungsquote  ist für die Daten aus dem Software‐Praktikum statistisch signifikant
(p‐Wert < 0,001). Tabelle 51 zeigt Signifikanz, Bestimmtheit und Genauigkeit für die
Datengruppe 1 (Analyse) in der ersten Zeile, für die Prognose in der zweiten Zeile. In
beiden Fällen  ist der Zusammenhang statistisch signifikant. Bei der Analyse  ist die
Bestimmtheit und die Genauigkeit hoch. Bei der Prognose nehmen Genauigkeit und
Bestimmtheit ab. Der Median für die logarithmischen Abweichung MLE liegt inner‐
halb der 2‐dB‐Grenze.

In Abbildung 65 sind die Daten aller Teams der Datengruppe 1 (Analyse, linkes Dia‐
gramm) und der Datengruppe 2 (Prognose, rechtes Diagramm) dargestellt. Die Dar‐
stellung überlagert die Werte mehrerer Teams, um die Streuung zwischen den Teams
darzustellen. An der x‐Achse ist die normierte Testfallzahl dargestellt. Jeder Testfall
wird anhand der durchgeführten Testfälle des Teams auf der x‐Achse und anhand
der mit der bis zum Testfall erreichten Fehlerentdeckungsquote auf der y‐Achse auf‐
getragen.  Die  dunklen  Punkte  sind  Istwerte,  die  hellen  Punkte  die  Resultate  der
Berechnung. 

Modell Signifikanz pa

a. Statistisch signifikante Ergebnisse (5 %‐Niveau) sind fett gedruckt. 

Bestimmtheit R2 MLE (dB)b

b. Median des 

Analyse (Datengruppe 1) < 0,001 0,50 1,55

Prognose (Datengruppe 2) < 0,001 0,22 1,73

Tabelle 51: Ergebnisse der Regression mit den Daten aus dem Praktikum für die 
Fehlerentdeckungsquote

LE 10 Modellresultat Istwert⁄( )log⋅=
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Die  Diagramme  verdeutlichen  die  niedrige  Bestimmtheit.  Sie  entsteht  durch  die
starke Streuung der Fehlerentdeckungsquote, wenn kein Fehler oder wenige Fehler
entdeckt wurden: 

• Wird beispielsweise nur ein Fehler im gesamten Test mit einem frühen Testfall ent‐
deckt, dann schnellt die Fehlerentdeckungsquote  früh auf 100 % hoch. Dies zeigt
sich in beiden Diagrammen. So hat mindestens ein Team in jeder Datengruppe mit
einem Bruchteil der normierten Testfallzahl bereits  100 % derjenigen Fehler  ent‐
deckt, die im Systemtest und in der Abnahme entdeckt wurden (Punkte 1 und 2 in
Abbildung 65). 

• Es gibt aber auch Teams, die bis zu 100 % der normierten Testfallzahl durchführen
und keine Fehler entdecken (Punkt 3); die Fehlerentdeckungsquote steigt erst mit
vielen Testfällen an (Punkt 4).

Bewertung. Die Hypothese H 8 von CoBe wird bestätigt, da die Nullhypothese abge‐
wiesen werden kann; der Zusammenhang ist signifikant. Die Streuung ist aber groß,
bedingt durch unkontrollierte Variablen. Dazu gehören die unterschiedliche Intensi‐
tät des Systemtests und die  fehlenden Fehlerzahlen aus dem Einsatz des Produkts.
Die  starke  Streuung  wird  aber  auch  in  anderen  Untersuchungen  beobachtet
(Abschnitt 5.5).

Folgerungen.  Der im Testmodell von CoBe verwendete Zusammenhang wird bestä‐
tigt. Weil im Praktikum die Streuung groß und das Produkt klein ist, behalte ich die
Quantifizierung von CoBe mit Werten aus der Industrie bei. 

0% 200% 400%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Analyse

Normierte Testfallzahl

F
e
h
le

re
n
td

e
c
k
u
n
g
s
q
u

o
te

0% 200% 400%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Prognose

Normierte Testfallzahl

F
e
h
le

re
n
td

e
c
k
u
n
g
s
q
u

o
te

Abb. 65: Zusammenhang der Testfallzahl mit Fehlerentdeckung im Praktikum
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7.4.3 Fehlerfolgekosten

Das Modell zur Abschätzung der Fehlerfolgekosten (Abschnitt 6.3.10) wird überprüft,
weil dazu keine Erfahrungswerte vorhanden sind. Gemessene Daten sind im Prakti‐
kum aber nicht verfügbar, da die Produkte nicht bei einem Kunden durch Benutzer
unter realen Bedingungen eingesetzt werden. Darum prüfe ich, wie sich unterschied‐
lich  detaillierte  Fehlerklassifikationen  auf  die  Fehlerfolgekosten  auswirken.  Dazu
werden Resultate, die mit einzeln klassifizierten Fehlern berechnet werden  (Fall 1),
mit Resultaten verglichen, die etwa aus Archivdaten für die Modelleingaben berech‐
net werden. Insgesamt unterscheide ich vier Fälle:

1. Als Vergleichswerte verwende ich Daten aus dem Software‐Praktikum und klassi‐
fiziere  jeden  Fehler,  der  im  Praktikum  entdeckt wurde. Daraus  lassen  sich  die
Fehleranteile für die Schadensklassen,  für die Klassen der Auftretenswahrschein‐
lichkeit und für die Klasse der Verwendungshäufigkeit berechnen, die in CoBe ein‐
gegeben werden. Das Resultat ist ein Vergleichswert für die Fehlerfolgekosten; die
Verteilungen können direkt verglichen werden. 

Während der Planung von Projekten sind diese Daten nicht verfügbar. Darum muss
auf andere Daten zurückgegriffen werden:

2. Es wird angenommen, dass sich die Fehleranteile gleichmäßig auf die Klassen für
die Fehlerfolgekosten verteilt. Beispielsweise wird eine maximale Schadensklasse
bestimmt  (1000 Euro). Die Fehler verteilen  sich dann gleichmäßig  auf die  Scha‐
densklassen 0 Euro, 10 Euro, 100 Euro, 1000 Euro.

3. Es wird  angenommen,  dass  die  Fehlerschwere  vor  allem  durch  den möglichen
Schaden, den der Fehler verursacht, definiert ist. Beispielsweise verursachen kriti‐
sche Fehler 1000 Euro Schaden, wenn sie auftreten, Hauptfehler 100 Euro Schaden,
Nebenfehler  10  Euro  Schaden.  Die  Verteilung  auf  die  Fehlerschwere wird  aus
Abschnitt 6.8.1 verwendet, mit  rund  10 % kritischen Fehlern,  78 % Hauptfehlern
und 12 % Nebenfehlern.

4. Wie in Fall 3 wird die Fehlerschwere durch den Schaden definiert ist. Die Vertei‐
lung auf die Fehlerschwere aus dem Praktikum wird verwendet (51 % Nebenfeh‐
ler, 31 % Hauptfehler, 18 % kritische Fehler).

Damit für den Fall 1 Fehler einzeln klassifiziert werden können, betrachte ich die Feh‐
lerkommentare.  Die  Teilnehmer  im  Praktikum  haben  jeden  Fehler  kommentiert.
Anhand dieser Fehlerkommentare wurde jeder Fehler einer Schadensklasse und einer
Klasse für die Auftretenshäufigkeit zugeordnet: 

• Schadensklasse:  Ich gehe von einem maximalen Schaden von 1000 Euro aus und
stütze mich dabei auf den gedachten Einsatz der Software. Da mit der Software
Testfälle verwaltet werden,  ist der größte Schaden, wenn diese Testfälle verloren
gehen. Der schlimmste Fall ist, wenn Daten nicht gespeichert oder geladen werden
können; dann ist das Werkzeug nutzlos. Dies merkt der Tester spätestens, wenn er
nach einem Tag Arbeit die Arbeit fortsetzen will und dazu die gespeicherten Daten
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lädt. Somit ist also im schlimmsten Fall ungefähr ein Tag Arbeit des Testers verlo‐
ren. 

• Auftretenswahrscheinlichkeit:  Die  Auftretenswahrscheinlichkeit  wird  abhängig
davon klassifiziert, ob ein Fehler nur unter ganz bestimmten Bedingungen auftritt,
dann wird er als “selten auftretend” klassifiziert. Ein Fehler, der  immer bei einer
Hauptfunktion  auftritt, wird  als  “sicher  auftretend”  klassifiziert,  beispielsweise,
wenn das Sollresultat für einen Testfall nicht eingegeben werden kann. 

• Verwendungshäufigkeit:  Ich nehme  für die Verwendungshäufigkeit bis zur Kor‐
rektur einen Mittelwert an, dazu setze ich als Annahme, dass die Software im Mit‐
tel  10 mal  verwendet wird,  bis  ein  Fehler  korrigiert wird.  Vermutlich werden
schwere Fehler rascher behoben als weniger schwere Fehler. Da es dazu aber keine
weiteren Informationen gibt, verwende ich einen Mittelwert.

Für  612  Fehler,  die  im  Praktikum  durch  alle  Teams  insgesamt  entdeckt wurden,
waren Kommentare verfügbar. Diese Fehler wurden klassifiziert. 

Die Tabellen 54 und 55 zeigen die Resultate dieser Klassifikation, den Fall 1. Beispiels‐
weise würden immerhin 83 Fehler jedesmal auftreten, wenn die Software verwendet
wird1; 129 Fehler  treten nie beim Einsatz auf, beispielsweise weil es sich um Kom‐
mentarfehler  handelt.  149  Fehler  würden  einen  Arbeitstag  Verlust  bedeuten,
177 Fehler den Verlust von etwa einer Arbeitsstunde. Aus diesen absoluten Fehler‐
zahlen wird direkt die Verteilung  in Prozent  auf die Fehlerklassen berechnet, d.h.
welcher Anteil aller Fehler einer Klasse des Schadens und welcher Anteil aller Fehler
einer Klasse der Auftretenswahrscheinlichkeit zugeordnet ist. 

1. Klassifiziert wurden alle Fehler, also beispielsweise auch diejenigen, die im Spezifikations‐
review entdeckt wurden.

Auftretens‐
wahrscheinlichkeit Beschreibung der Klassea

a. Die Beschreibung ist gekürzt.

Zahl der zu‐
geordneten Fehler

0 Fehler tritt nie auf 129

0,125 Fehler tritt in Ausnahmefällen auf 52

0,25 Fehler tritt selten bei Verwendung auf 172

0,5 Fehler tritt bei typischer Verwendung auf 176

1 Fehler tritt sicher bei Verwendung auf 83

Insgesamt 612

Tabelle 52: Fehlerklassifikation der Auftretenswahrscheinlichkeit im Praktikum 



7.4. Prüfung ausgewählter Modellzusammenhänge 183

Für den Vergleich zeigen die Tabellen 54 und 55 die Verteilung der Fehler  für die
Klassifikation  einzelner  Fehler  (Fall 1)  und  andere Verteilungen  (Fälle 2  bis  4).  Im
Falle des Praktikums stimmt eine gleichmäßige Verteilung auf die Schadensklasse gut
mit der Klassifikation einzelner Fehler überein. 

Schaden (Euro) Beschreibung der Klasse Zahl der zu‐
geordneten Fehler

0 kein Schadena 129

10 Komfortprobleme 157

100 Geringer, leicht auszugleichender Schaden 177

1000 Mittlerer, auszugleichender Schaden 149

Insgesamt 612

Tabelle 53: Fehlerklassifikation im Praktikum für den Schaden beim Auftreten
a. Fehler, die nicht auftreten, sind als 0 Euro Schaden klassifiziert.

Verteilung (Anteil der Fehler) auf Klassen Fall 1 Fall 2 Fall 3 Fall 4

Fehler tritt nie auf 21 % 20 % 20 % 20 %

Fehler tritt in Ausnahmefällen auf 8 % 20 % 20 % 20 %

Fehler tritt selten bei Verwendung auf 28 % 20 % 20 % 20 %

Fehler tritt bei typischer Verwendung auf 29 % 20 % 20 % 20 %

Fehler tritt sicher bei Verwendung auf 14 % 20 % 20 % 20 %

Insgesamt 100 % 100 % 100 % 100 %

Tabelle 54: Verteilungen der Fehler für die Auftretenswahrscheinlichkeit

Verteilung (Anteil der Fehler) auf Klassen Fall 1 Fall 2 Fall 3 Fall 4

kein Schaden 21 % 25 % 0 % 0 %

Komfortprobleme 26 % 25 % 12 % 51 %

Geringer, leicht auszugleichender Schaden 29 % 25 % 78 % 31 %

Mittlerer, auszugleichender Schaden 24 % 25 % 10 % 18 %

Insgesamt 100 % 100 % 100 % 100 %

Tabelle 55: Verteilungen der Fehler für den Schaden beim Auftreten
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Die statistischen Fehlerfolgekosten pro Fehler für die vier Fälle zeigt Tabelle 56. Die
Fehlerfolgekosten, die sich aus einer gleichmäßigen Verteilung auf die Fehlerklassen
ergeben  (Fall 2),  stimmen  gut mit  den  Fehlerfolgekosten  überein,  die  sich  aus  der
Klassifikation einzelner Fehler berechnen  (Fall 1). Die Abweichung  liegt unter 2 dB
(0,7 dB). Im Fall 3 und im Fall 4 stimmen die Kosten weniger gut überein. Die Klassifi‐
kation mit der Fehlerschwere ist nur im Fall 4 unter der 2‐dB‐Grenze (1,8 dB). Diese
Abweichung  führe  ich auf die Definition der Fehlerschwere  im Praktikum zurück.
Die Fehlerschwere berücksichtigt nicht nur den möglichen Schaden, sondern auch die
möglichen Folgen des Fehlers für das Projekt. 

Bewertung. Ich bewerte die Ergebnisse  als plausibel,  soweit dies mit den wenigen
Erfahrungen möglich  ist. Schlussfolgern  lässt  sich, dass  eine Fehlerschwere‐Defini‐
tion, die Auswirkungen auf das Projekt und den Einsatz berücksichtigt, unabhängig
vom Schaden ist, den ein Fehler beim Auftreten verursachen kann. Diese Unterschei‐
dung muss bei der Anwendung des Modells berücksichtigt werden.

7.4.4 Folgerungen

Auch wenn die  interne und externe Validität der Untersuchung durch die spezielle
Situation im Praktikum bedroht wird, werden die Hypothesen bestätigt.

Die Prüfung der Hypothesen  zur  Fehlerentdeckung,  zur  Fehlerentstehung und  zu
den Korrekturaufwänden  bestätigt  bereits  Bekanntes,  aber  stärker  auf  das Modell
zugeschnitten. Insbesondere werden die Annahmen auch für Java‐Programme bestä‐
tigt. 

Die Annahmen, die dem Testmodell zu Grunde liegen, werden bestätigt. Fraglich ist
aber,  ob  diese  Annahmen  verallgemeinert werden  können.  Da wenig  empirische
Untersuchungen existieren,  ist ein Vergleich schwierig. Für eine besser verallgemei‐
nerbare Validierung des Modells müssen Daten auf einer breiteren Basis, vor allem
aus  Industrieprojekten mit großer und komplexer Software, gesammelt und analy‐
siert werden. 

Für die Bewertung der Fehlerfolgekosten fehlen Vergleichswerte, die Ergebnisse kön‐
nen aber als plausibel beurteilt werden. Insbesondere zeigt sich, dass eine detaillierte
Klassifizierung einzelner Fehler nicht notwendig ist. Es zeigt sich, dass die Definition
der Fehlerschwere berücksichtigt werden muss:  In Projekten, bei denen die Fehler‐
schwere über den möglichen  Schaden definiert  ist, können Daten über die Fehler‐
schwere verwendet werden. In anderen Fällen kann eine gleichmäßige Verteilung der
Fehler bis zum maximalen Schaden verwendet werden.

Fehlerfolgekosten pro Fehler (Euro) Fall 1 Fall 2 Fall 3 Fall 4

1230 1040 700 810

Tabelle 56: Statistische Fehlerfolgekosten pro Fehler
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7.5 Erprobung im Software‐Praktikum

Nachdem einzelne Zusammenhänge, aus denen CoBe besteht, geprüft wurden, wer‐
den im nächsten Schritt die Resultate von CoBe mit Istwerten verglichen. Als Einga‐
ben  für  CoBe  werden  zuerst  Mittelwerte  und  Mediane  aus  dem  Praktikum
verwendet. Tabelle 57 zeigt diese Eingaben. Die Modellresultate, die mit diesen Ein‐
gaben berechnet werden, werden mit Mittelwerten und Medianen der  Istwerte aus
dem Praktikum verglichen.

7.5.1 Vergleich mit Mittelwerten und Kalibrierung

Zuerst wird  eine unkalibrierte Modellversion  erprobt. Diese Version  enthält  einen
negativen, aber keinen positiven Einfluss der Gutachterkompetenz. Sie enthält keinen
Umfangseinfluss auf den Anstieg der Korrekturkosten mit der Latenzzeit:  In dieser
Modellversion kostet ein Spezifikationsfehler immer das zehnfache, wenn er im Sys‐
temtest anstatt durch ein Spezifikationsreview entdeckt wird, unabhängig davon, ob
das Produkt einen geringen oder einen hohen Umfang hat. 

Die Istwerte, die für die Eingaben und zum Vergleich der Modellresultate verwendet
werden, sind nicht vollständig, weil im Praktikum nicht alle Daten verfügbar waren.

Eingabeparameter Wert und Beschreibung

Umfang 7104 Anweisungena

a. Der Median und nicht der Mittelwert wird verwendet, weil der Median robuster gegen Aus‐
reißer ist, die beispielsweise entstehen, weil bei der Umfangsmessung fremde Bibliotheken 
oder Testcode nicht erkannt wurde.

Umfangsfaktor Code 53 Statements pro Function Point für Java

COCOMO‐II‐
Faktoren

Die Parameter sind mit den Vorgaben aus Boehm (2000) belegt. Der 
Exponent ist 1,05; der Gesamteinfluss 0,63.

Reviews 4 Gutachter mit Nominalvorbereitung und ‐eignung

Modultest, 
Integrationstest

Beide Tests werden durchgeführt. Da im Praktikum kontinuierlich 
integriert wird, beginnend mit der Implementierung bis zu Korrek‐
turen nach dem Systemtest, wird dies in CoBe als Integrationstest 
dargestellt.

Systemtest

Black‐Box‐Test der Funktionen und Äquivalenzklassen

Glass‐Box‐Test mit 86 % Anweisungsüberdeckung im Mittel

Keine Testwiederholung, keine getrennte Testvorbereitung, nomi‐
nale Eignung der Tester

Feldtest Für die Abbildung des Praktikums in CoBe nehme ich an, dass der 
Feldtest in CoBe in etwa der Abnahme im Praktikum entspricht.

Tabelle 57: Eingabeparameter für das Software‐Praktikum
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Insbesondere für den Vergleich des Gesamtaufwands muss auf die Vorgabe der Prü‐
fungsordnung zurückgegriffen werden. Diese Vorgabe wird aber von den Betreuern
des Praktikums in engen Bandbreiten gehalten, weil der benötigte Aufwand von den
Betreuern auf Basis einer intensiven Analyse der Aufgabe geschätzt wird. Da die Ter‐
mine der Meilensteine in geringem Abstand folgen und die Abgaben kontrolliert wer‐
den, sind die Teilnehmer deutlich eingeschränkt. Sie können den Aufwand nicht zu
stark minimieren, weil sonst ihre Abgabe nicht abgenommen wird. Sie können nicht
zu viel Aufwand investieren, weil sie sonst den nächsten Meilenstein nicht erreichen. 

Tabelle 58 zeigt die ersten Resultate. Ohne Kalibrierung weichen die Modellresultate
stark von den Istwerten ab, mit Ausnahme der Testfallzahl. 

Dies zeigt, dass eine Kalibrierung notwendig  ist. Die Kalibrierung erfolgte mit dem
Aufwandsfaktor, dem Dauerfaktor, dem Fehlerfaktor, der Verteilung auf die Fehler‐
arten und den Umfangsfaktoren für Dokumente (Tabelle 59). 

7.5.2 Modellverbesserungen

Zwei Modellverbesserungen wurden durchgeführt: 

• In der erprobten Modellversion war kein positiver Einfluss der Gutachterkompe‐
tenz quantifiziert. Die Teilnehmer begutachteten die Spezifikation in der Review‐
vorbereitung mit rund 18 Seiten pro Stunde (Median 16 Seiten pro Stunde) anstatt
mit 10 Seiten pro Stunde. Die Fehlerentdeckungsquote im Software‐Praktikum ist

Parameter Modellresultatea

a. für ein Java‐Projekt mit 7104 Anweisungen

Istwert 

Gesamtaufwand in 
Entwicklerstunden (Eh)  2639 720b

b. Richtwert der Prüfungsordnung

Gesamtdauer in Arbeitstagen 227 105c

c. Vorgabe der Betreuer

Zahl der Projektmitarbeiter 1,9 3,0d Teilzeitmitarbeiter,
1,0 Vollzeitmitarbeiter

d. Regelfall, nur in Ausnahmefällen sind Zweier‐Teams möglich; 720 Entwicklerstunden ent‐
sprechen bei 21 Wochen Dauer insgesamt rund 34 Stunden pro Woche.

Zahl der Fehler im Projekt 324 Mittelwert 74
Median 51

Verteilung auf Fehlerart 
(Spez. / Entwurf / Code) 22 % / 28 % / 39 % 51 % / 19 % / 30 %

Zahl der Testfälle 80 Mittelwert 91
Median 68

Tabelle 58: Parameter im Überblick
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mit 72 % hoch, daraus  folgt, dass die Begutachtung nicht oberflächlich war, son‐
dern dass die hohe Vorbereitungsrate von 18 Seiten pro Stunde andere Gründe hat.
Die Gründe  dafür  vermute  ich  in  der Gutachterauswahl,  da  die Gutachter  aus
anderen Teams des Praktikums  stammen.  Sie  kennen  somit die Anforderungen
sehr  genau, weil  sie  Analyse  und  Spezifikation  für  die  gleiche  Aufgabe  selbst
durchgeführt haben. Darum wurde die Quantifizierung des Kompetenzeinflusses
in CoBe um einen positiven Effekt hoher Kompetenz auf den notwendigen Auf‐
wand und die Fehlerentdeckung ergänzt.

• Die Korrekturkosten  steigen  im Verlauf des Projekts weniger  stark an als  in der
erprobten Modellversion  quantifiziert  (Tabelle 44).  Dass  die  Korrekturkosten  in
kleinen Projekten weniger stark mit der Latenzzeit ansteigen, zeigt Boehm  (1981
und 1976); der Zusammenhang wurde in CoBe ergänzt.

Die beiden Abbildungen 66 und 67 zeigen, welche Teile des Modells von der Kalibrie‐
rung und welche Teile des Modells von der Verbesserung betroffen sind. Die Ände‐
rungen sind lokal begrenzt. 

7.5.3 Modellresultate und Mittelwerte des Praktikums

Der folgende Vergleich zeigt Modellresultate und Mittelwerte des Praktikums. Dazu
werden die gleichen Istwerte verwendet, gegen die bereits vor der Verbesserung ver‐
glichen wurde (Abschnitt 7.5.1).

Fehlerentdeckung und Fehlerkorrektur.  

Die absoluten Fehlerzahlen zeigen eine gute Übereinstimmung (Tabelle 60) zwischen
den Modellresultaten  und  den  Istwerten  aus  dem  Software‐Praktikum.  Auch  die
Modellresultate  für  die  Fehleranteile  stimmen  gut mit  den  Istwerten  überein: Die
Anteile der Spezifikationsfehler entsprechen den Mittelwerten des Software‐Prakti‐
kums  (Tabelle 61). Es gibt Abweichungen bei den Zahlen der  frühen Fehler  in den
Tests und beim Abnahmetest, die sich aber durch die unklare Situation der Entwurfs‐
reviews, die kontinuierliche Integration und den oberflächlichen Abnahmetest erklä‐

Modellparameter Ursprünglicher Wert Änderung für Praktikum

Aufwandsfaktor 1,00 0,28

Dauerfaktor 1,00 0,71

Fehlerfaktor 1,00 0,20

Umfangsfaktor Spezifikation 0,44 Seiten / FP 0,32 Seiten / FP

Umfangsfaktor Entwurf 0,44 Seiten / FP 0,18 Seiten / FP

Verteilung auf Fehlerart 
(Spez./Entwurf/Code) 22 % / 28 % / 39 % 51 % / 19 % / 30 %

Tabelle 59: Kalibrierung von CoBe für das Praktikum
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ren lassen. Der Korrekturaufwand wird mit hoher Genauigkeit berechnet (Tabelle 62).
Die Modellresultate liegen meist zwischen Mittelwert und Median der Istwerte.  

Prüfaufwand und ‐dauer. Die  vorgegebenen  Termine  wurden  von  den  meisten
Teams  leicht erreicht. Sie sind großzügig bemessen. Die Modellresultate passen gut
zu den Vorgaben und sind darum plausibel (Tabelle 63). Die Vorgabe für den System‐
test ist, verglichen mit den Modellresultaten, knapp. Stimmt der Mittelwert, den das
Modell berechnet, dann könnten etwa die Hälfte der Gruppen den Abgabetermin nur
mit Mühe oder nicht einhalten. Dafür gibt es zwei Gründe. Der Durchführungsauf‐
wand für jeden Testfall ist in CoBe etwas höher als im Praktikum, aber auch der Zeit‐

Modellresultate Software‐Praktikum

Prüfung Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Spezifikationsreview 34,6 34,8

Entwurfsreview 1,8 9,5 0 0,1 11,6

Unittest 0 0,4 6,0 0 0,3 7,6

Integrationstest 1,1 1,2 7,2

Systemtest 1,2 1,3 7,2 0,7 0,2 9,2

Abnahme 1,6 1,0 2,2 0,4

Andere 1,9 1,9 4,8

Tabelle 60: Zahl entdeckter Fehler

Modellresultat Software‐Praktikum

Prüfung Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Spezifikationsreview 86 % 93 %

Entwurfsreview 4 % 71 % 0 % 83 %

Modultest 0 % 3 % 27 % 0 % 2 % 35 %

Integrationstest 3 % 9 % 32 %

Systemtest 3 % 9 % 32 % 2 % 4 % 42 %

Abnahme 4 % 8 % 10 % 0 % 0 % 2 %

Andere 5 % 14 % 22 %

Tabelle 61: Anteile entdeckter Fehler
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rahmen für das Praktikum war tatsächlich etwas eng, weil im Gegensatz zu früheren
Praktika die Messung der Anweisungsüberdeckung verlangt wurde, ohne den Zeit‐
plan anzupassen.

7.6 Vergleich mit einzelnen Projekten des Software‐Praktikums

Nach dem Vergleich mit den Mittelwerten stellt sich die Frage nach der Bandbreite,
d.h. nach den Unterschieden zwischen den einzelnen Projekten. Wie stark streuen die
Resultate? Gibt es Ausreißer einzelner Projekte? Wie groß sind die Unterschiede  im
Prozess? Dazu werden die Projekte  individuell analysiert.  Jedes Projekt wird durch
eine Modellinstanz dargestellt. Damit  können  folgende Merkmale untersucht wer‐
den:

• Die  Streuung  der  unterschiedlichen  Projekte mit  gleichen  Rahmenbedingungen
soll für die Projekte und für das Modell untersucht werden. 

• Damit kann auch der Einfluss unkontrollierter Variablen bewertet werden. Da mit
gleicher Aufgabe und gleichem Prozess viele Projekte durchgeführt wurden, sind
die Projekte ähnlich. Trotzdem streuen die Istwerte deutlich. Darum soll der Ver‐
gleich mit den Modellresultaten  zeigen, welcher Teil dieser  Streuung durch das
Modell  erklärt wird und welcher Teil  nicht. Damit  kann  auf die  zu  erwartende
Ungenauigkeit beim Vergleich mit einzelnen Projekten geschlossen werden.

Korrekturaufwand 
(Eh) nach Prüfung

Modell‐
resultat

Median des 
Praktikums

Mittelwert des 
Praktikums

Spezifikationsreview 7,5 6,9 9,6

Entwurfsreview 3,4 2,5 4,5

Modultest 2,0 1,6 4,9

Systemtest 11,9 9,9 9,2

Tabelle 62: Resultate für den Korrekturaufwand

Prüfung und 
Korrektur

Modellresultate Vorgabe

Aufwand (Eh) Dauer (Tage) Dauer (Tage)

Spezifikationsreview 32 8 14

Entwurfsreview 19 3 ‐

Modultest 10 9 14

Systemtest 32 14 14

Tabelle 63: Vorgaben und Modellresultate
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• Die Genauigkeit des Modells soll anhand von Situationen, in denen viele Informa‐
tionen zur Verfügung stehen, bewertet werden. Dazu gehört der diagnostische Ein‐
satz  von  Cobe, mit  dem  bestehende  Projekte  nachträglich  beschrieben werden,
beispielsweise um den Nutzen von Prozessverbesserungen zu zeigen.

• Mit einer Kreuzvalidierung wird die Prognosesituation nachgebildet, weil bei der
Prognose  weniger Modellparameter  bekannt  sind  als  bei  einer  diagnostischen,
nachträglichen Betrachtung. Darum werden die unbekannten Parameter nicht mit
den  Istwerten des Projekts belegt, sondern mit Durchschnittswerten aus anderen
Projekten; dieses Vorgehen entspricht einer Kalibrierung mit historischen Daten.

• Obwohl die Unterschiede der Prüfintensität gering waren, soll untersucht werden,
ob der Nutzen von mehr oder weniger intensiven Prüfungen sowohl im Modell als
auch in der Realität gezeigt werden kann.

7.6.1 Diagnose einzelner Projekte

Die Eingaben von CoBe werden für die Diagnose auf die verfügbaren Werte der ein‐
zelnen Projekte (Tabelle 42, Seite 161) gesetzt. Tabelle 64 zeigt die individuellen Ein‐
gaben. 

Die Genauigkeit von CoBe wird durch den Vergleich zwischen Istwerten und Modell‐
resultaten untersucht. Dafür sind nicht alle Daten verfügbar, die im Idealfall für den
Vergleich vorhanden wären: 

• Als Gesamtaufwand muss der Richtwert der Prüfungsordnung  (720 Entwickler‐
stunden) verwendet werden, um den Aufwandsfaktor zu berechnen. 

• Die Gesamtdauer wurde für alle Projekte von den Betreuern vorgegeben. 

• Die Gesamtfehlerzahl wurde nicht  individuell kalibriert, weil keine Fehlerzahlen
aus dem Einsatz des Produkts verfügbar waren. Der Fehlerfaktor ist somit für alle
Projekte gleich. 

• Über  das  Entwurfsreview  und  über  den Modultest  gibt  es  keine  individuellen
Informationen. 

Prozess‐ und Produktmerkmale Prüfprozess

• Umfang des Codes
• Umfangsfaktoren Spezifikation, Entwurf
• Aufwandsfaktor
• Dauerfaktor
• Verteilung auf Fehlerart

• Gutachterzahl und Vorbereitungs‐
intensität im Spezifikationsreview

• Intensität des Black‐Box‐Tests und 
Anweisungsüberdeckung des 
Glass‐Box‐Tests

Tabelle 64: Individuelle Eingaben für das Modell
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Weil diese Informationen fehlen, werden die Modellresultate ungenauer. Die Aussa‐
gen über die Genauigkeit von CoBe, die mit diesen Daten getroffen werden, bewerten
CoBe  tendenziell als zu ungenau. Diese Situation spiegelt aber die Situation  in der
Praxis wider, wenn Daten unvollständig sind.

Vergleich mit Istwerten. Tabelle 65  zeigt  die Abweichung  der Modellresultate  von
den  Istwerten und die Korrelation zwischen den Werten. Die Abbildung 68 veran‐
schaulicht die Resultate  für den Korrekturaufwand nach dem Spezifikationsreview
und nach dem Systemtest. 

Die Modellresultate für die Fehlerzahlen liegen für rund die Hälfte der Projekte inner‐
halb der  2‐dB‐Grenze.  Im Median übersteigt die Abweichung diese Grenze,  bleibt
aber  unterhalb  von  3  dB. Der  Korrekturaufwand weicht  teilweise  stärker  ab,  die
Modellresultate  liegen  für etwa ein Drittel der Projekte  innerhalb der Grenze von 2
dB. Der Median  übersteigt  zum  Teil  3  dB. Die  Testfallzahl wird wieder  genauer
berechnet mit einem Median der Abweichung von 1,6 dB und zwei Drittel der Pro‐
jekte innerhalb der 2‐dB‐Grenze.

Die Resultate sind somit nicht mehr plausibel. Dafür gibt es aber Ursachen, die so in
Industrieprojekten nicht gegeben sind, sondern speziell für das Praktikum gelten. Die
Ursachen diskutiere ich mit den Ergebnissen der Kreuzvalidierung in Abschnitt 7.6.3.

Vergleich des Nutzens. Der Nutzen  einer Prüfung  ist  in den Projekten nicht direkt
sichtbar. Er kann nur durch den Vergleich zwischen Projekten mit mehr oder weniger
intensiver Prüfung sichtbar werden. Um die Modellresultate für den Nutzen zu prü‐
fen, werden im Folgenden die Auswirkungen mehr oder weniger intensiver Spezifi‐
kationsreviews  betrachtet.  Dazu  werden  die  Teams  anhand  des  Aufwands  zur
Begutachtung pro Seite geordnet; dieser Aufwand pro Seite berechnet sich aus der
Gutachterzahl, die zwischen 3 und 4 liegt, und der Vorbereitungsintensität jeden Gut‐
achters, die sich aus der Anzahl Seiten und dem Vorbereitungsaufwand berechnet.
Eine Datengruppe wird aus den 7 Teams gebildet, deren Spezifikation am intensivs‐
ten  geprüft wurde  (rund  3,7  Seiten pro Entwicklerstunde  im Median). Die  andere
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Abb. 68: Korrekturaufwände
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Datengruppe wird  aus  den  7  Teams  gebildet,  deren  Spezifikation  am  wenigsten
intensiv begutachtet wurde (rund 7 Seiten pro Entwicklerstunde im Median). Im Fol‐
genden wird  die Anzahl  der  verfügbaren Werte  angegeben, weil  die Daten  nicht
immer für alle Teams zur Verfügung stehen. 

Der  Unterschied  zwischen  gründlichen  und  oberflächlichen  Spezifikationsreviews
zeigt sich konsistent  in den Modellresultaten und  in den  Istwerten des Praktikums
(Abbildung 69,  Tabelle 66).  Die  intensiven,  gründlichen  Reviews  finden  im Mittel
mehr Fehler, entsprechend ist der Korrekturaufwand nach intensiven Reviews höher
als nach oberflächlichen Reviews. Abbildung 69 zeigt dies graphisch  im  linken Teil.
Die dunklen Balken sind Werte für den Korrekturaufwand gründlicher Reviews, die
hellen Balken für oberflächlichere Reviews. Das erste Balkenpaar  links zeigt die Ist‐
werte, das zweite Balkenpaar daneben die Modellresultate für den mittleren Korrek‐
turaufwand nach dem Spezifikationsreview. In beiden Fällen ist die Korrektur teurer,
wenn die Spezifikation intensiv geprüft wurde.

Tabelle 67 zeigt Istwerte und Modellresultate für den Systemtest. Im Systemtest wur‐
den im Praktikum bei gründlichen Spezifikationsreviews weniger Spezifikationsfeh‐
ler entdeckt  (Tabelle 67). Dieser Unterschied wird auch durch CoBe berechnet. Der
Unterschied ist aber gering. Da die Reviews gründlich waren, wurden im Systemtest
wenig Spezifikationsfehler entdeckt. Somit kann sich der Unterschied nicht mehr im
Median der Istwerte zeigen.  

Nach dem Systemtest ist der Korrekturaufwand für alle Fehler, also auch für Code‐
fehler  und  für  Entwurfsfehler,  mit  gründlichen  Spezifikationsreviews  geringer
(Tabelle 67). Dieser Unterschied zeigt sich konsistent in den Modellresultaten und in
den Istwerten. Abbildung 69 zeigt dies graphisch im rechten Teil. Die dunklen Balken
stehen  für den Korrekturaufwand  in Projekten mit gründlichen Reviews, die hellen

Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Fehler 
gesamt

Korrektur‐
aufwand

Spez.‐
review

MLE (dB)a 2,3 4,2

pred(2 dB) 47 % 35 %

Entwurfs‐
review

MLE (dB) 2,1 2,0 3,1

pred(2 dB) 50 % 50 % 44 %

Modultest
MLE (dB) 1,6 1,8 4,2

pred(2 dB) 71 % 50 % 36 %

Systemtest
MLE (dB) 1,7 2,7 2,9

pred(2 dB) 56 % 39 % 42 %

Tabelle 65: Genauigkeit des Modells
a. Median des LE 10 Modellresultat Istwert⁄( )log⋅=
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Entdeckte Fehler und 
Korrekturaufwand nach 
Spezifikationsreview

Spez.‐fehler Korrekturaufwand (Eh)

Ist Modell Ist Modell

Mittelwert gründliche Reviews 39,2 39,0 12,2 9,5

Median gründliche Reviews 35,0 39,5 9,8 9,1

Anzahl Teams 6 4

Mittelwert oberflächliche Reviews 26,4 25,6 8,3 5,0

Median oberflächliche Reviews 24,0 19,1 6,9 5,0

Anzahl Teams 5 5

Tabelle 66: Fehler und Korrekturaufwand für Spezifikationsreviews

Entdeckte Spezifikationsfehler und 
Korrekturaufwand im Systemtest

Spez.‐fehler Korrekturaufwand (Eh)

Ist Modell Ist Modell

Mittelwert gründliche Reviews 0,4 0,6 4,3 9,1

Median gründliche Reviews 0 0,4 2,1 9,8

Anzahl Teams 6 4

Mittelwert oberflächliche Reviews 1 1,5 12,3 14,0

Median oberflächliche Reviews 0 1,6 10,9 13,6

Anzahl Teams 6 3

Tabelle 67: Fehler und Korrekturaufwand im Systemtest
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Abb. 69: Auswirkungen der Spezifikationsreview‐Unterschiede
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Balken  für den Korrekturaufwand  in Projekten mit oberflächlicheren Reviews. Das
dritte Balkenpaar von links zeigt die Istwerte, das Balkenpaar rechts die Modellresul‐
tate für den Korrekturaufwand nach dem Systemtest. In beiden Fällen ist der Korrek‐
turaufwand niedriger, wenn die Spezifikation intensiv geprüft wurde.

Die Istwerte zeigen für die wenigen verfügbaren Daten einen größeren Unterschied
als  die Modellresultate:  Tabelle 67  zeigt  in  den  Istwerten  eine Differenz  von  etwa
8 Entwicklerstunden für die Korrektur nach dem Systemtest. Die Modellresultate für
den Nutzen des Spezifikationsreviews im Systemtest (Tabelle 68) und für die Korrek‐
tur aller Fehler nach Systemtest sind dagegen mit etwa 4 Entwicklerstunden in allen
Fällen niedriger. Mehrere Erklärungen sind möglich: 

• Zufall: Die gründlich begutachteten Teams haben zufällig insgesamt weniger Feh‐
ler gemacht und darum auch weniger Fehler nach dem Systemtest zu korrigieren.
Dagegen  spricht, dass mit gründlicheren Reviews mehr Fehler entdeckt wurden
und mehr Korrekturaufwand benötigt wurde (Tabelle 66). 

• Höhere Systemtest‐Intensität: Eine höhere Intensität des Systemtests der oberfläch‐
lich begutachteten Teams spielt keine Rolle, weil sowohl die Teams mit intensiven
Reviews als auch die Teams mit oberflächlichen Reviews im Mittel jeweils 91 Test‐
fälle durchgeführt haben.

• Gründliches Entwurfsreview: Eine andere mögliche Ursache liegt in den gründli‐
chen Gutachtern, die nicht nur die Spezifikation, sondern auch den Entwurf begut‐
achtet  haben,  so  dass  sich  nicht  nur  der  Effekt  des  gründlichen
Spezifikationsreviews, sondern auch des gründlichen Entwurfsreviews zeigt.

• Zufall:  Insgesamt sind nur wenige Datenpunkte verfügbar, so dass die Aussage‐
kraft eingeschränkt ist und die Ergebnisse zufällig entstanden sein könnten. 

Nutzen durch Spezifikationsreview im 
Systemtest

 Entfallender Korrekturaufwand (Eh)

Modella Modellb

Mittelwert gründliche Reviews 9,4 9,4

Median gründliche Reviews 7,2 9,7

Anzahl Teams 7 4

Mittelwert oberflächliche Reviews 4,3 4,3

Median oberflächliche Reviews 4,6 4,9

Anzahl Teams 7 3

Tabelle 68: Berechneter Nutzen durch das Modell
a. Dargestellt werden Mittelwerte und Vergleichswerte für alle Teams.
b. Dargestellt werden nur Werte der Teams, für die Istwerte verfügbar sind.
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Die Unterschiede der  Istwerte  sind  statistisch nicht  signifikant  (5 %‐Niveau). Auch
die Modellresultate unterscheiden sich nicht statistisch signifikant, außer im Korrek‐
turaufwand nach dem Spezifikationsreview (5 %‐Niveau). Ich führe darum die man‐
gelnde  statistische  Aussagekraft  auf  die  wenigen  verfügbaren  Werte  und  den
geringen Unterschied in der Vorbereitungsintensität zurück.

7.6.2 Kreuzvalidierung als Ersatz für die Prognose

Für die Kreuzvalidierung werden alle Projekte des Praktikums per Zufallsauswahl
auf 10 Datengruppen verteilt. Die Eingabewerte einer Datengruppe sind Mittelwerte
der anderen 9 Datengruppen. Die Eingaben sind so gewählt, dass die Situation der
Projektplanung ungefähr nachgestellt wird  (Tabelle 69). Dabei werden die Kalibrie‐
rungsparameter aus Daten abgeschlossener Projekte berechnet.  Ich nehme an, dass
der Code‐Umfang  hinreichend  genau mit  Function Points  geschätzt werden  kann.
Der Prüfprozess kann im Voraus festgelegt werden. Der Fehlerfaktor muss wieder für
alle Projekte angenommen werden, weil Daten aus dem Einsatz der Software nicht
verfügbar sind.

Die Daten aus anderen Datengruppen des Software‐Praktikums sind aus verfügbaren
Metriken der Projekte im Praktikum (Tabelle 42, Seite 161) berechnet: 

• Spezifikations‐, Entwurfs‐ und Codeumfang wurden gemessen, daraus können die
Umfangsfaktoren berechnet werden. 

• Die  Kalibrierungsparameter  für Dauer  und Aufwand werden mit  COCOMO II
berechnet; für Aufwand und Dauer stehen aber nur die Vorgaben der Prüfungsord‐
nung beziehungsweise der Betreuer zur Verfügung. 

• Die Verteilung auf die Fehlerart wird aus gemessenen Werten für die Fehlerzahlen
getrennt nach Fehlerart berechnet.

Prozess‐ und 
Produktmerkmale Prüfprozess Berechnete Werte aus 

anderen Datengruppen

• Umfang des Codes • Gutachterzahl und Vor‐
bereitungsintensität im 
Spezifikationsreview

• Intensität des Black‐Box‐
Tests und Anweisungs‐
überdeckung des Glass‐
Box‐Tests

• Umfangsfaktoren Spezifi‐
kation und Entwurf

• Aufwandsfaktor
• Dauerfaktor
• Verteilung auf Fehlerart
• Fehlerfaktora

a. aus allen Projekten und nicht aus anderen Datengruppen
Tabelle 69: Individuelle Eingaben der Kreuzvalidierung
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Die Abweichungen bei der Kreuzvalidierung sind ähnlich wie bei der individuellen
Analyse. Tabelle 70 zeigt den Median der Abweichungen MLE1 und den Anteil der
Projekte innerhalb der 2‐db‐Grenze für den MLE, pred(2 dB). Die Genauigkeit nimmt
ab,  deutlich  bei  den  Korrekturaufwänden.  Die  Abweichung  übersteigt  2 dB  im
Median. Trotz dieser hohen Abweichung  liegen aber  zwischen  20 % und 60 % der
Resultate innerhalb der 2‐dB‐Grenze. Dies deutet auf starke unkontrollierte Einflüsse
in einem großen Teil der Projekte hin. 

Die Resultate für intensive und oberflächliche Spezifikationsreviews sind dagegen in
der Kreuzvalidierung kaum weniger genau (Tabellen 71, 72 und 73). Modellresultate
und  Istwerte  sind konsistent  für  entdeckte Fehler  im  Spezifikationsreview und  im
Systemtest. Sie sind konsistent für den Korrekturaufwand. Wieder unterscheiden sich
die Modellresultate für den Korrekturaufwand nach dem Systemtest am deutlichsten
von den Istwerten.

7.6.3 Bewertung und Folgerungen

Bewertung der Resultate unterschiedlicher Prüfintensität

Der Unterschied zwischen mehr oder weniger intensiven Reviews wird konsistent in
den Modellresultaten und  in den Projektwerten sichtbar. Dies stützt die Annahmen
des Modells  für Zusammenhänge  in Reviews und  für Zusammenhänge der Fehler‐
entstehung und Fehlerentdeckung. Das Modell ist ausreichend genau, um selbst die‐
sen kleinen Unterschied sichtbar zu machen. Der Unterschied ist aber weder in den
Modellresultaten noch  in den Projektwerten  statistisch  signifikant. Da Modell und
Realität betroffen sind, führe ich dies aber auf die geringe Anzahl Werte, den gerin‐

1. Median des 

Spez.‐
fehler

Entwurfs‐
fehler

Code‐
fehler

Fehler 
gesamt

Korrektur‐
aufwand

Spez.‐
review

MLE (dB) 1,6 3,2

pred(2 dB) 58 % 35 %

Entwurfs‐
review

MLE (dB) 2,8 2,9 3,5

pred(2 dB) 44 % 39 % 22 %

Modultest
MLE (dB) 3,0 3,4 4,9

pred(2 dB) 50 % 43 % 21 %

Systemtest
MLE (dB) 2,2 2,1 3,2

pred(2 dB) 44 % 50 % 33 %

Tabelle 70: Genauigkeit der Kreuzvalidierung

LE 10 Modellresultat Istwert⁄( )log⋅=
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Entdeckte Fehler und 
Korrekturaufwand nach 
Spezifikationsreview

Spez.‐fehler Korrekturaufwand (Eh)

Ist Modell Ist Modell

Mittelwert gründliche Reviews 39,2 34,7 12,2 8,1

Median gründliche Reviews 35,0 34,2 9,8 7,6

Anzahl Teams 6 4

Mittelwert oberflächliche Reviews 26,4 27,3 8,3 7,3

Median oberflächliche Reviews 24,0 30,9 6,9 7,9

Anzahl Teams 5 5

Tabelle 71: Fehler und Korrekturaufwand für Spezifikationsreviews

Entdeckte Spezifikationsfehler und 
Korrekturaufwand im Systemtest

Spez.‐fehler Korrekturaufwand (Eh)

Ist Modell Ist Modell

Mittelwert gründliche Reviews 0,4 0,6 4,3 10,4

Median gründliche Reviews 0 0,4 2,1 9,5

Anzahl Teams 6 4

Mittelwert oberflächliche Reviews 1 1,9 12,3 12,0

Median oberflächliche Reviews 0 2,2 10,9 16,3

Anzahl Teams 6 3

Tabelle 72: Fehler und Korrekturaufwand im Systemtest

Nutzen durch Spezifikationsreview im 
Systemtest

 Entfallender Korrekturaufwand (Eh)

Modella Modellb

Mittelwert gründliche Reviews 8,9 8,9

Median gründliche Reviews 7,3 9,3

Anzahl Teams 7 4

Mittelwert oberflächliche Reviews 5,4 5,4

Median oberflächliche Reviews 8,5 5,0

Anzahl Teams 7 3

Tabelle 73: Berechneter Nutzen durch das Modell
a. Dargestellt werden Mittelwerte und Vergleichswerte für alle Teams.
b. Dargestellt werden nur Werte der Teams, für die Istwerte verfügbar sind.
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gen Unterschied im Vorbereitungsaufwand und die große Streuung durch unkontrol‐
lierte Variablen zurück.

Bewertung der Streuung in den Projektdaten und der Modellgenauigkeit

Die 2‐dB‐Grenze für ein valides Modell wird von etwa der Hälfte der Resultate über‐
schritten. Dies lässt sich aber auf die speziellen Eigenschaften des Praktikums zurück‐
führen, so dass in Industrieprojekten eine höhere Genauigkeit zu erwarten ist:

• Die Korrektur umfasst typisch 10 bis 30 Fehler und Aufwände von wenigen Stun‐
den pro Prüfung. Die Eigenschaften eines einzelnen Fehlers machen sich im Auf‐
wand stärker bemerkbar als in großen Projekten, bei denen sich diese Unterschiede
ausmitteln.

• Im Praktikum waren einige Daten nicht verfügbar. Vor allem  fehlen Gesamtauf‐
wand und Zahl der Fehler nach Auslieferung. In der Industrie sind diese beiden
Daten häufiger verfügbar als andere. Im Praktikum wurden Unterschiede der Ent‐
wurfsreviews  und  des Modultests  nicht  erfasst.  Dieser  unkontrollierte  Einfluss
wirkt sich direkt und in den folgenden Phasen auf Fehlerzahlen und Korrekturauf‐
wände aus.

• Die Istwerte des Praktikums streuen über einen großen Bereich. Ein Teil der Streu‐
ung wird  nicht  durch  das Modell  erklärt. Er  lässt  sich  auf die unterschiedliche
Motivation,  Erfahrung  und  Fähigkeiten  der  Studenten  zurückführen.  Sie  haben
zwar die gleichen Lehrveranstaltungen besucht, und Inhalt und Termine des Prak‐
tikums sind vorgegeben und werden kontrolliert. Für viele Studenten  ist es aber
das erste Projekt. Einige Teilnehmer haben bereits umfangreich Programmiererfah‐
rung, während für andere Teilnehmer die Programmiersprache neu ist. Die Teams
sind  unterschiedlich motiviert.  Ein  Teil  versucht,  das  Praktikum mit möglichst
wenig Aufwand  zu bestehen. Andere Teams versuchen,  ein möglichst perfektes
Produkt zu entwickeln. Weil sich die Teams selber finden, finden sich auch meist
Teilnehmer ähnlicher Motivation, Kenntnisse und Fähigkeiten zu einem Team. In
der  Industrie werden  diese Merkmale  innerhalb  einer Organisation  eingeebnet,
weil  sich  die  Entwickler  eine  gemeinsame  Firmen‐ und Projektkultur  teilen;  sie
haben bereits Projekte durchgeführt, sind also ähnlich motiviert und erfahren. In
einem professionellen Umfeld mit Vorgesetzten kann sich die Motivation nicht so
stark auswirken.

• Andere nicht kontrollierte Einflüsse können nicht gemessen werden; dazu gehören
einzelne Fehler, die extrem aufwändig zu suchen und zu beheben sind. Bei gerin‐
gem  Projektumfang  oder  wenigen  einzelnen  Tätigkeiten  können  sich  einzelne
Abweichungen vom Mittelwert nicht ausgleichen. 

Verglichen mit den Abweichungen der Top‐down‐Kostenschätzung ganzer Projekte
in Kemerer  (1987) und Boehm  (2000) bewerte  ich die Resultate aus einem weiteren
Grund als plausibel: Die einzelnen Aktivitäten, die vom Modell abgebildet werden,
lassen sich kaum steuern. In einem ganzen Projekt dagegen kann die Projektleitung
auf Abweichungen  reagieren.  Sie  kann  die Abweichungen  darum  zumindest  teil‐



7.6. Vergleich mit einzelnen Projekten des Software‐Praktikums 201

weise ausgleichen, so dass sie weniger stark das Gesamtergebnis bestimmen. Ich fol‐
gere  daraus,  dass  bei  detaillierten Modellen mit  stärkeren  Abweichungen  als  bei
Modellen für ganze Projekte gerechnet werden muss. 

Die Abweichungen für den Korrekturaufwand und die extremen Ausreißer einzelner
Fehler zeigen, dass die Korrektur ein großes Risiko  für Projektverzögerungen birgt.
Darum  folgere  ich, dass ein einzelner Wert als Modellresultat kaum ausreicht, son‐
dern dass ein Bereich, der die zu erwartende Spanne zeigt, sinnvoller ist. Die Progno‐
seergebnisse ergänzen also andere Verfahren.

Der Vergleich der Genauigkeit zwischen der individuellen Analyse und der Kreuzva‐
lidierung zeigt, dass CoBe empfindlich auf die Kalibrierungsparameter reagiert. Dar‐
aus  folgere  ich,  dass  unbekannte  Parameter  variiert  werden  sollten,  um  diese
Unsicherheit abzubilden. Diese Menge von Modellen für ein Projekt wird im Folgen‐
den als Modellvarianten bezeichnet. Ihre Resultate ergeben einen Bereich, der diese
Unsicherheit sichtbar macht. Auf der anderen Seite erlaubt das Modell aber, Unter‐
schiede  in Projektresultaten ohne diese Streuung darzustellen. Dies ermöglicht, den
Nutzen direkt sichtbar zu machen. In realen Projekten kann der Unterschied in Pro‐
jektresultaten, der durch unterschiedliches Vorgehen in Prüfungen verursacht wurde,
durch andere Einflüsse überdeckt werden.

Bewertung der Validierung

Eine  eigentliche Validierung wurde  nicht  erreicht, weil  das Modell  geändert  und
dann erneut mit den Daten verglichen wurde. Für die Validität des Modells spricht
aber, dass die beiden Modelländerungen auf empirischen, unabhängigen Daten basie‐
ren. Unabhängige Daten bedeutet, dass die Daten zur Quantifizierung nicht zum Ver‐
gleich herangezogen wurden, sondern aus der Literatur stammen. Die Änderungen
sind lokal eng begrenzt (Abbildungen 66 und 67). Auch die Notwendigkeit zur Kalib‐
rierung wird  durch  unabhängige  Quellen  bestätigt.  Aufwandsfaktor,  Dauerfaktor
und Fehlerfaktor verändern nicht die Verhältnisse zwischen den einzelnen, detaillier‐
ten Modellresultaten. Selbst bei einer Anpassung der Verteilung der Fehler auf die
Fehlerarten ändern sich die Verhältnisse, z.B. der entdeckten Fehler, innerhalb einer
Art nicht. Der Vergleich vor und nach der Modelländerung erfolgte nicht gegen exakt
gleiche Daten, statt dessen wurden individuelle Projektwerte erst nach der Änderung
betrachtet.

Gegen die externe Validität spricht, dass es sich um kleine, studentische Projekte han‐
delt. Eine Validierung mit Industrieprojekten ist darum notwendig. Die Projektwerte
streuen im Praktikum deutlich, dies lässt sich nicht auf Industrieprojekte übertragen.
Die  interne Validität  ist durch unvollständige Daten und den geringen Unterschied
im Prüfprozess bedroht. Die unvollständigen Daten, vor allem  für den Gesamtauf‐
wand und  für die Zahl ausgelieferter Fehler, verschlechtern die Modellgenauigkeit.
Der einheitliche Prüfprozess führt zu geringen Unterschieden, während die individu‐
ellen Merkmale der Teams im Praktikum die Istwerte deutlich prägen. Insgesamt füh‐
ren die Bedrohungen also zu einer zu negativen Bewertung der Modellvalidität.
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Kapitel 8

Evaluation des Modells

In diesem Kapitel wird die Sensitivitätsanalyse von CoBe  (Abschnitt 8.1), die Opti‐
mierung mit CoBe (Abschnitt 8.2) und die Validierung von CoBe mit Industriedaten
beschrieben.  Für  die  Validierung  in  der  Industrie  wird  das  Vorgehen  geklärt
(Abschnitt 8.3).  Die  Projekte  und  die  Validierungsresultate  werden  dargestellt
(Abschnitte 8.4 und 8.5). Die Modellprüfung von CoBe wird in Abschnitt 8.6 bewer‐
tet. Den Einsatz des Modells zeige ich an Beispielszenarien; dabei werden die Modell‐
resultate auch mit Erfahrungen bei Prozessverbesserungen verglichen (Abschnitt 8.7).

8.1 Sensitivitätsanalyse

Durch  die  Sensitivitätsanalyse wird  die  Einflussstärke  von Modellparametern  auf
Modellresultate untersucht. Sie zeigt das Verhalten des Modells.

8.1.1 Ziele und Hypothesen der Sensitivitätsanalyse

Die Sensitivitätsanalyse von CoBe orientiert sich an Hypothesen, die aus dem Modell‐
konzept abgeleitet sind (Kapitel 3). Im Konzept wird festgelegt, dass Entscheidungen
über Prüfungen durch Modelleingaben dargestellt werden. Das Konzept basiert also
auf den folgenden Hypothesen:

H 1: Die Entscheidungen über Prüfparameter bestimmen die Qualitätskosten.

H2: Es gibt keinen allgemeingültigen Prüfprozess, der in allen Projektsituationen zu
einem optimalen Ergebnis führt.

H3: Die Qualitätskosten sind durch die Kombination der Entscheidungen und der
Prozess‐ und Produktmerkmale bestimmt, so dass die Auswirkungen schwierig
zu durchschauen sind.

H4: Kurzfristige Kosten zu minimieren und langfristige Kosten zu minimieren sind
konkurrierende Ziele.

Zusätzlich wird untersucht, wie sich unsichere Eingaben auswirken. Dazu gehören in
CoBe  die  Kalibrierungsparameter,  die  aus  Archivdaten  stammen,  der  Software‐
Umfang, der  bei der Planung  geschätzt wird, und die  Fehlerfolgekosten, die  grob
abgeschätzt werden.

H5: Die Fehlerfolgekosten bestimmen die Modellresultate.
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H6: Die Kalibrierung ist notwendig.

H7: Der Software‐Umfang hat einen wesentlichen Einfluss auf die Resultate.

Ich lege den Schwerpunkt auf die Frage, welche Parameter möglichst genau sein müs‐
sen und wie die Aussagen, die mit CoBe gewonnen werden können, durch unsichere
Eingaben beeinflusst werden.

8.1.2 Vorgehen zur Sensitivitätsanalyse

Szenarien

Die Hypothese 3 kann nur mit einer globalen Sensitivitätsanalyse untersucht werden,
bei der die Eingaben variiert und daraus Kombinationen gebildet werden (Saltelli et
al., 2008). Mit  einem naiven Ansatz werden also alle Parameter von CoBe variiert.
Dann wird statistisch analysiert, wie stark  jeder Parameter wirkt. Dieser Ansatz  ist
problematisch, weil nicht jede Kombination, die in CoBe möglich ist, auch sinnvoll ist.
Beispielsweise sind Projekte mit oberflächlichem Prüfprozess und sehr hohen Fehler‐
folgekosten unrealistisch. Diese Kombinationen verzerren die Analyseergebnisse und
überdecken andere, relevante Zusammenhänge. Darum wähle  ich einen Ansatz mit
Szenarien, die durch Prozess‐ und Produktmerkmale und den Prüfprozess festgelegt
werden. Für die Szenarien werden diejenigen Eingaben variiert, die für die Prüfung
der Hypothesen notwendig sind.

Analyse

Die  Sensitivitätsanalyse  von CoBe  soll  zwei  unterschiedliche  Fragen  beantworten:
Wie wirken sich Entscheidungen, d.h. die Eingaben für Prüfprozess und Prüfparame‐
ter, aus? Wie wirkt sich die Unsicherheit über das Projekt zum Zeitpunkt der Planung
aus?  Für  die  globale  Sensitivitätsanalyse wird  die Unsicherheit  durch  ein Monte‐
Carlo‐Experiment mit einer statistischen, pseudo‐zufälligen Auswahl der unsicheren
Eingaben modelliert (Sobol und FAST nach Saltelli et al., 2008). Für die Analyse der
Entscheidungen  ist diese Art der  Sensitivitätsanalyse  nicht  geeignet, weil  die Ent‐
scheidungen bewusst durch Projektleiter und QS‐Verantwortliche getroffen werden.
Die Entscheidungen sind also nicht unsicher und nicht durch Zufallseffekte geprägt,
sondern gegeben. Die beiden Fragen nach den Wirkungen der Entscheidungen und
der unsicheren Eingaben können darum nur mit unterschiedlichen Analysen beant‐
wortet werden. Die  Sensitivitätsanalyse  für die Entscheidungen  erfolgt darum mit
fest  vorgegebenen  Eingabekombinationen.  Da  dann  eine  Analyse  mit  Sobol  und
FAST nicht mehr möglich ist, erfolgt die Analyse graphisch und zusätzlich statistisch
durch lineare Regression. Die Kalibrierungsparameter und der Umfang dagegen sind
unsicher, weil ihr wahrer Wert bei der Planung unbekannt ist. Dafür werden Analy‐
sen mit statistischer Auswahl der Eingaben eingesetzt. Die Eingaben für Fehlerfolge‐
kosten  werden  dagegen  durch  die  unterschiedlichen  Szenarien  variiert,  weil  die
verwendeten Klassifizierungen durch Größenordnungen definiert  sind und bereits
eine Klasse einen großen Bereich abdeckt.
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Eingaben

Bei einer Analyse mit Szenarien bleibt die Annahme bestehen, dass die Qualitätskos‐
ten durch die Kombination der Entscheidungen bestimmt sind. Diese Annahme kann
nur  überprüft werden, wenn  die Wechselwirkungen  oder  Interaktionseffekte  zwi‐
schen den Entscheidungen erkannt werden können. Darum müssen die verschiede‐
nen Kombinationen der möglichen Entscheidungen betrachtet werden.

In CoBe gibt es viele Entscheidungen, weil es viele Prüfungen gibt und weil für jede
Prüfung viele Prüfparameter eingegeben werden können. Da es also viele Parameter
mit vielen möglichen Werten gibt, sind sehr viele Kombinationen möglich; die kombi‐
natorische Vielfalt wird sehr groß. Dies verursacht Rechenaufwand. Vor allem aber
wird  die  Analyse  komplex, weil  sehr  viele  Eingabekombinationen  und  Resultate
betrachtet und in Beziehung zueinander gesetzt werden müssen.

Es ist also notwendig, die Analyse zu vereinfachen. Darum werden nicht alle Einga‐
bekombinationen aller Reviews analysiert, stattdessen wird im Folgenden ein Review
stellvertretend  für alle Reviews betrachtet. Dies  ist möglich, da alle Reviews gleich
modelliert sind und sich nur in der Quantifizierung unterscheiden. Für diese Betrach‐
tung ist das Spezifikationsreview gut geeignet, weil Spezifikationsfehler am teuersten
sind, wenn sie später entdeckt werden. Dadurch wirken sich die Entscheidungen über
das Review also stärker als Entscheidungen über andere Reviews aus. Im Entwurfs‐
und Codereview können zwar mehr Fehler entdeckt werden, da neue Fehler beim
Entwerfen  und  Codieren  entstehen.  Deren  Entdeckungszeitpunkt wirkt  sich  aber
weniger stark aus.

Auch für die Tests gilt, dass sie gleich modelliert sind und nur unterschiedlich quanti‐
fiziert. Es reicht also wieder, einen Test stellvertretend zu untersuchen. Dazu ist der
Systemtest gut geeignet, weil er sich stärker als andere Tests auswirkt. Dafür gibt es
zwei Gründe: Mit dem Systemtest können mehr Fehler als in anderen Tests entdeckt
werden, weil der Systemtest mit den höchsten Fehlerentdeckungsquoten quantifiziert
ist. Ein Testfall ist im Systemtest am teuersten.

Modellresultate

Die Modellresultate, die untersucht werden, leiten sich direkt aus der Hypothese H 4
ab: Die Wirkungen auf die Projekt‐Qualitätskosten (im Projekt anfallende Prüf‐ und
Fehlerkosten) und die Gesamt‐Qualitätskosten (Prüfkosten und Fehlerkosten im Pro‐
jekt und in der Wartung) werden untersucht.

8.1.3 Szenarien für die Sensitivitätsanalyse

Für die Sensitivitätsanalyse sollen die Szenarien die unterschiedlichen Merkmale von
Software‐Projekten abdecken, um den Einfluss dieser Merkmale zu zeigen. Produkti‐
vität und Qualität  in  Software‐Projekten  können durch über  250 Merkmale  beein‐
flusst werden (Jones, 2003). Zur Produktivitätsbewertung und zur Kostenschätzung
werden über 20 Merkmale erfasst (IEEE Std. 1045, 1992; Boehm, 2000). Die wichtigs‐
ten Merkmale sind nach Jones (2003):
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• Die Software‐Art:  Jones  (1996, 2003) unterscheidet System‐Software, Software  für
den Markt,  Informationssysteme, Auftragsprojekte, Software  für das Militär und
Endbenutzer‐Software.

• Die  Projektmerkmale:  Dazu  gehören  Umfang,  Komplexität,  Randbedingungen,
Entwicklungsart (Neuentwicklung, Wartung oder Verbesserung), Anwendungsart
und Scope (System, Programm, Modul).

• Die Technologie mit formalen Methoden, Projektmanagement, Qualitätssicherung,
Programmiersprachen und Wiederverwendung.

• Die Soziologie umfasst Erfahrung, Organisation, Moral und Prozessreife.

• Die Ergonomie der Arbeitsplätze und die Kommunikation am Arbeitsplatz.

• Merkmale durch Internationalität sind lokale Gesetze, Personalkosten, Arbeitszeit
und Mitarbeiterverhalten.

Für die Analyse werden die Merkmale durch unterschiedliche Parameterwerte  für
CoBe  abgedeckt:  Unterschiedliche  Software‐Arten  werden  durch  unterschiedliche
Fehlerfolgekosten  und  Prüfprozesse  abgedeckt. Unterschiede  der  Projektmerkmale
werden durch verschiedenen Umfang, die Technologie durch verschiedene Prüfpro‐
zesse und Wiederverwendung dargestellt. Die Kalibrierung  fasst alle Merkmale als
Einfluss zusammen. Die Erfahrung wird durch die Kompetenz abgebildet. Personal‐
kosten werden nicht variiert, weil sich dieser Faktor gleichförmig auf alle Resultate
auswirkt. Die verschiedenen Eingaben bilden folgende Szenarien:

• Nominalszenario: Das Nominalprojekt bildet den Normalfall mit durchschnittli‐
chen Eingabewerten ab; ein Auftragsprojekt.

• Szenario mit Wiederverwendung: Das Projekt mit Wiederverwendung  zeigt die
Auswirkungen durch wiederverwendete Software. Andere Eingaben entsprechen
dem Nominalprojekt.

• Kritisches Szenario: Das Projekt für sicherheitskritische System‐Software hat einen
kleineren Umfang. Alle Prüfungen werden vollständig durchgeführt. Es werden
erfahrene Mitarbeiter eingesetzt. Die Prozessreife ist hoch. Die Technologie unter‐
scheidet sich von anderen Projekten, weil eine andere Programmiersprache einge‐
setzt wird.

• Initialszenario: In diesem Projekt wird ein Produkt mit kleinem Umfang und gerin‐
gen  Fehlerfolgekosten  entwickelt. Das  Projekt  hat  eine  niedrige  Prozessreife,  es
werden wenig Prüfungen durchgeführt. Damit die Wirkung des Spezifikationsre‐
views untersucht werden kann, gibt es das Szenario mit und ohne Spezifikationsre‐
view.

• Großes  Szenario:  Ein  großes  Projekt  unterscheidet  sich  im Umfang  und  in  der
hohen Prozessreife vom Nominalprojekt.
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• Prozedurales  Szenario.  Es  unterscheidet  sich  vom  Nominalprojekt,  weil  keine
objektorientierte Programmiersprache eingesetzt wird.

8.1.4 Eingaben für die Sensitivitätsanalyse

Das Nominalszenario ist die Basis aller Szenarien. Tabelle 74 zeigt die für alle Szena‐
rien gleichen Eingaben, Tabelle 75 die unterschiedlichen Eingaben.

Tabelle 76 zeigt die Eingabewerte, die für die Sensitivitätsanalyse verwendet werden.
Der abgedeckte Bereich orientiert sich an praxistypischen Werten. Im Glass‐Box‐Test
betrachte ich für die Analyse nur die Anweisungsüberdeckung, weil andere Überde‐
ckungsmetriken vor  allem  für  sicherheitskritische  Software  eingesetzt werden. Die
Modellresultate werden  für  jede Kombination berechnet. Zwei Sonderfälle werden
eingefügt: Der Fall, in dem kein Review stattfindet, und der Fall, in dem kein System‐
test stattfindet.

8.1.5 Statistische Sensitivitätsanalyse

Analyse

Mit der Analyse durch  lineare Regression wird die Einflussstärke einer Modellein‐
gabe auf ein Modellresultat durch den standardisierten Regressionskoeffizienten dar‐

Eingabe Werte

Prüf‐
prozess

Nominales Spezifikationsreview, nominales Entwurfsreview mit 
5 gründlichen Gutachtern, vollständige Prüfung, kein Codereview.

Nominaler Modul‐, Systemintegrations‐ und Systemtest jeweils mit Funktio‐
nen und Äquivalenzklassen und vollständiger Wiederholung, Feldtest.

Nach der Korrektur eines Fehlers in der Wartung wird die Korrektur gezielt 
getestet, dazu wird ein Teil des Modultests, des Sytemintegrationstests und 
des Systemtests wiederholt.

Personal‐
kosten 200 000 Euro pro Entwicklerjahr, 110 Euro pro Entwicklerstunde

Fehler‐
folgekosten

Verwendungshäufigkeit: Ein Fehler, der 10 000 Euro Schaden oder mehr ver‐
ursacht, wird sofort korrigiert. Bei anderen Fehlern wird die Software zehnmal 
verwendet, bis ein Fehler korrigiert wird. Fehler, die nie im Einsatz auftreten, 
verursachen keinen Schaden. Auftretenswahrscheinlichkeit: Die Fehler sind 
auf die Klassen Auftretenswahrscheinlichkeit gleichmäßig verteilt 
(Abschnitt 7.4.3). 

Kalibrie‐
rung

Aufwandsfaktor, Dauerfaktor und Fehlerfaktor: 1,0, 
Umfangsfaktor Code für Java: 53 Anweisungen pro Function Point,
Umfangsfaktoren Spezifikation, Entwurf: 0,44 Seiten pro Function Point.

Tabelle 74: Eingaben für alle Szenarien
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Szenario Unterschiedliche Eingaben und Eingabewerte

Nominal
Nominaler Prüfprozess, nominale Kalibrierung, Java, 1000 FPa neu, maximaler 
Schaden: 10 000 Euro, Fehler sind auf Schadensklassen (bis 10 000 Euro) 
gleichmäßig verteilt.

Wiederver‐
wendung

Nominalszenario, aber mit 700 FP wiederverwendeter und 300 FP neuer Soft‐
ware, maximaler Schaden: 10 000 Euro wie im Nominalszenario

Kritisch
Vollständiger Prüfprozess, Kalibrierung für hohe Prozessreife (Aufwands‐ 
und Fehlerfaktor 0,5), C++, 100 FP, maximaler Schaden: 10 000 000 Euro, Fehler 
sind auf Schadensklassen gleichmäßig verteilt 

Initial
Prüfprozess ohne Reviews, ohne Integrations‐ und Feldtest, nominale Kalib‐
rierung, Java, 100 FP, maximaler Schaden: 10 Euro, mit und ohne Spezifikati‐
onsreview

Groß
Nominaler Prüfprozess, Kalibrierung für hohe Prozessreife (Aufwands‐ und 
Fehlerfaktor 0,5), Java, 10 000 FP neu, maximaler Schaden: 10 000 Euro wie im 
Nominalszenario

Prozedural Nominaler Prüfprozess, nominale Kalibrierung, Java, 1000 FP neu, maximaler 
Schaden: 10 000 Euro wie im Nominalszenario

Tabelle 75: Unterschiedliche Eingaben für Szenarien
a. FP: Function Points

Prüfung Eingabe Eingabewerte

Spezifikations‐
review

Gutachterzahl 2, 3, 4, 5 Gutachter

Intensität 5, 10, 20 Seiten pro Stunde

Gutachterkompetenz sehr niedrig, nominal, sehr hoch

Prüflingsüberdeckung 50 %, 100 %

Ein Sonderfall ohne Spezifikationsreview (0 % Überdeckung).

Systemtest

Abdeckung Black‐Box‐Test‐
techniken

Funktionen, Äquivalenzklassen, Sonder‐
fälle 

Anweisungsüberdeckung 
Glass‐Box‐Test 0 %, 80 %, 100 %

Testerkompetenz sehr niedrig, nominal, sehr hoch

Testwiederholung Mit und ohne vollständige Wiederholung

Ein zusätzlicher Sonderfall ohne Systemtest.

Tabelle 76: Variierte Eingaben
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gestellt  (Saltelli  et  al.,  2008).  Standardisierte  Regressionskoeffizienten werden mit
einer Regressionsgleichung berechnet, die aus Regressionskoeffizienten, den variier‐
ten Modelleingaben und dem Modellresultat aufgebaut  ist. Die Regressionskoeffizi‐
enten werden  aus  Eingabewerten  und  zugehörigem Resultatswert  berechnet1. Die
standardisierten Regressionskoeffizienten werden auf den Wertebereich der Eingabe
und des Resultats normiert. Sie liegen zwischen ‐1 und 1. Ein hoher Betrag bedeutet
einen starken Einfluss; ein Koeffizient mit Wert 0 bedeutet keinen Einfluss. Ein positi‐
ver Koeffizient bedeutet  einen positiven Zusammenhang,  ein negativer Koeffizient
einen negativen. Im Folgenden wird mit Koeffizient der standardisierte Regressions‐
koeffizient bezeichnet. Die Analyse erfolgt mit dem Statistikpaket R (2008).

Die lineare Regression ist nur dann aussagekräftig, wenn sich das Modell im Bereich
der  variierten Prüfparameter weitgehend  linear  verhält. Das Bestimmtheitsmaß R2
erlaubt, die Linearität zu prüfen, weil es ausdrückt, welcher Anteil der Streuung der
abhängigen Variable durch die unabhängige erklärt wird (Fahrmeir et al., 2007). Mit
R2 über 70 % ist die Analyse aussagekräftig (Saltelli et al., 2008). Nicht‐lineare Zusam‐
menhänge werden graphisch gezeigt (Fahrmeir et al., 2007; Saltelli et al., 2008).

Interaktionseffekte  sind  Wirkungen,  die  ausschließlich  durch  mehrere  Eingaben
gemeinsam auftreten. Sie werden von  einem  einfachen  linearen Regressionsmodell
nicht erfasst, darum analysiere ich diese Effekte graphisch. Effekte zwischen den Sze‐
narien werden durch Vergleich der Koeffizienten sichtbar.

Analyseergebnisse

Aus  den  Eingabewerten  ergeben  sich  3961  unterschiedliche  Kombinationen.  Die
Annahme der Linearität gilt für den untersuchten Bereich, da R2 in allen Fällen über
70 %  liegt  (Tabelle 77). Projekt‐Qualitätskosten  sind Qualitätskosten, die  im Projekt
anfallen; Gesamt‐Qualitätskosten enthalten Qualitätskosten  im Projekt,  in der War‐
tung und im Einsatz des Produkts.

1. Alle Eingaben mit Ausnahme der Testerkompetenz und der Testwiederholung sind auf 
einer Rationalskala. Die Testwiederholung kann als Dummy‐Variable direkt verwendet wer‐
den. Die Testerkompetenz befindet sich auf einer Ordinalskala, ich nehme für die Regres‐
sion gleiche Abstände zwischen den Werten an.

R2 für 
Qualitätskosten

Nomi‐
nal Kritisch Groß Initial

Initial 
Spez.‐
review

Proze‐
dural

Wieder‐
verw.

Gesamt 0,90 0,90 0,88 0,90 0,90 0,87 0,90

Projekt 0,92 0,91 0,91 0,92 0,92 0,91 0,92

Tabelle 77: Bestimmtheit der Resultate
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Tabelle 78 zeigt Minimum und Maximum der Gesamt‐ und Projekt‐Qualitätskosten.
Der Faktor  ist das Verhältnis zwischen maximalen und minimalen Qualitätskosten.
Ein Faktor 2 bedeutet also, dass die maximalen Qualitätskosten doppelt so hoch wie
die minimalen sind. 

Die Wirkung der Entscheidungen  ist groß: Die Gesamt‐Qualitätskosten  schwanken
um Verhältnisse zwischen 1 : 1,2 und 1 : 6,3, die Projekt‐Qualitätskosten sogar bis zu
einem Verhältnis von 1 : 14,2. Diese Streuung hängt vom Szenario ab: Mit hohen Feh‐
lerkosten schwanken die Gesamt‐Qualitätskosten besonders stark, mit niedrigen Feh‐
lerkosten  oder Wiederverwendung  besonders  wenig.  Die  Projekt‐Qualitätskosten
streuen besonders bei den Projekten mit einem  initialen Prüfprozess; am geringsten
beim kritischen Projekt mit den meisten Prüfungen. Die Qualitätskosten steigen über‐
proportional mit dem Umfang: Obwohl im großen Szenario die Prozessreife hoch ist,
steigen die Qualitätskosten überproportional, also um mehr als das Zehnfache der
Kosten im Nominalszenario.

Der Vergleich mit COCOMO‐II‐Resultaten zeigt, dass die Projekt‐Qualitätskosten, die
CoBe berechnet, plausibel sind  (Tabelle 79), weil die Qualitätskosten maximal etwa
bei der Hälfte der Projektkosten liegen. 

Tabelle 80 zeigt die Koeffizienten für die Gesamt‐Qualitätskosten, Tabelle 81 für die
Projekt‐Qualitätskosten. Ein negativer Koeffizient bedeutet, dass eine höhere Eingabe
die Kosten senkt, mehr Gutachter bedeuten beispielsweise weniger Qualitätskosten.
Mit positivem Koeffizienten steigen die Kosten, eine höhere Vorbereitungsrate bedeu‐
tet also höhere Qualitätskosten. Alle Eingaben bis auf zwei Ausnahmen sind statis‐
tisch signifikant mit einem p‐Wert < 0.0011.

Szenario
Gesamt‐Qualitätskosten Projekt‐Qualitätskosten

Min. (Euro) Max. (Euro) Faktor Min. (Euro) Max. (Euro) Faktor

Nominal 3 752 495 10 047 472 2,7 1 168 266 2 451 328 2,1

Kritisch 2 961 274 18 771 991 6,3 40 170 55 751 1,4

Groß 43 182 533 174 153 000 4,0 6 156 719 12 586 561 2,0

Initial 292 333 342 814 1,2 8 171 116 186 14,2

Initial Spez.‐
review 187 653 342 225 1,8 9 065 118 675 13,1

Prozedural 4 366 631 13 779 409 3,2 1 268 339 2 719 070 2,1

Wiederver‐
wendung 1 147 818 2 226 785 1,9 303 676 573 563 1,9

Tabelle 78: Qualitätskosten
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Tabelle 80 zeigt die folgenden Aussagen:

• Die Kompetenz der Gutachter und der Tester spielt die wichtigste Rolle. Die Koef‐
fizienten liegen zwischen ‐0,32 und ‐0,90 und haben somit den höchsten Betrag. Je
höher die Kompetenz, desto geringer sind die Qualitätskosten; in CoBe kosten Ent‐
wickler unabhängig von ihrer Kompetenz gleich viel.

• Die Eingaben  für das Spezifikationsreview wirken  in allen Szenarien  in der glei‐
chen Richtung, weil die Koeffizienten das gleiche Vorzeichen haben. Dies bedeutet
für den hier untersuchten Bereich: Je mehr Gutachter prüfen, je mehr vom Prüfling

1. Die Wahrscheinlichkeit, dass die Nullhypothese fälschlicherweise abgewiesen wird, liegt 
unter 0,001.

COCOMO‐II‐Resultate Aufwand 
(EM)

Dauer 
(M)

Personal‐
bedarf

Personalkosten 
(Euro)

Nominal (1000 FP) 247 25 10 4 129 840

Kritisch (100 FP, hohe Prozessreife) 10 9 1 167 200

Groß (10 000 FP, hohe Prozessreife) 1554 45 34 25 982 880

Initial (100 FP) 20 11 2 334 400

Tabelle 79: Projektkosten mit COCOMO II

Koeffizienten für 
Gesamt‐

Qualitätskosten

Nomi‐
nal Kritisch Groß Initial

Initial 
Spez.‐
review

Proze‐
dural

Wieder‐
verw.

Gutachterzahl ‐0,14 ‐0,16 ‐0,10 ‐ ‐0,16 ‐0,11 ‐0,14

Vorbereitungsrate 0,29 0,33 0,20 ‐ 0,35 0,23 0,31

Gutachterkompetenz ‐0,52 ‐0,57 ‐0,36 ‐ ‐0,65 ‐0,41 ‐0,55

Prüflingsüberdeckung ‐0,35 ‐0,40 ‐0,24 ‐ ‐0,42 ‐0,28 ‐0,37

Abdeckung Black‐Box‐
Testtechniken ‐0,21 ‐0,28 ‐0,12 ‐0,14 ‐0,06 ‐0,25 ‐0,24

Anweisungs‐
überdeckung 0,04 ‐0,29 0,32 0,19 0,07 0,39 ‐0,11

Testerkompetenz ‐0,60 ‐0,32 ‐0,73 ‐0,90 ‐0,37 ‐0,60 ‐0,52

Testwiederholung 0,02 ‐0,01a 0,01b 0,20 0,08 0,02 0,03

Tabelle 80: Koeffizienten für Gesamt‐Qualitätskosten
a. p‐Wert < 0,1
b. statistisch nicht signifikant, p‐Wert > 0,1
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überdeckt  wird,  je  gründlicher  die  Vorbereitung,  desto  geringer  werden  die
Gesamt‐Qualitätskosten. Dabei wirkt sich die Gutachterzahl am schwächsten aus.
Die Einflussstärke verändert sich von Szenario zu Szenario, beispielsweise sinkt im
großen Szenario die Einflussstärke aller Revieweingaben.

• Die Einflussstärke und die Einflussrichtung der Testeingaben verändern sich von
Szenario zu Szenario: Die Abdeckung im Black‐Box‐Test senkt die Qualitätskosten.
Im  Initialszenario mit  und  ohne  Spezifikationsreview  und  im  großen  Szenario
schwindet dieser Einfluss. Die Wirkung der Anweisungsüberdeckung hängt vom
Szenario und vom Prüfprozess ab: Im kritischen Szenario und mit Wiederverwen‐
dung  sinken  die  Gesamt‐Qualitätskosten;  im  Nominalszenario  und  im  Initial‐
szenario mit Spezifikationsreview ist der Einfluss gering; in den anderen Szenarien
steigen die Qualitätskosten mit der geforderten Überdeckung von 80 % und 100 %,
die zusätzlich zum Black‐Box‐Test erreicht werden soll. 

Tabelle 81 zeigt den Einfluss der Prüfparameter auf die Qualitätskosten im Projekt:

• Der wichtigste Einfluss sind die Testparameter im Systemtest, weil ihre Koeffizien‐
ten am größten sind; sie liegen nahe oder über 0,5. Dies bedeutet: Je intensiver der
Test, desto teurer wird das Projekt. 

• Für die Projektkosten spielt die Kompetenz der Gutachter und Tester eine wichtige
Rolle, weil die Koeffizienten einen großen Betrag aufweisen. Die Stärke des Ein‐
flusses hängt vom Szenario ab. Im kritischen Szenario ändert sich sogar die Rich‐
tung des Einflusses.

• Die Projekt‐Qualitätskosten werden durch die Prüfparameter  für das Spezifikati‐
onsreview wenig beeinflusst, weil die Koeffizienten niedrig sind. Abhängig vom

Koeffizienten 
für Projekt‐

Qualitätskosten

Nomi‐
nal Kritisch Groß Initial

Initial 
Spez.‐
review

Proze‐
dural

Wieder‐
verw.

Gutachterzahl ‐0,04 0,18 ‐0,02 ‐ 0,03 ‐0,04 ‐0,03

Vorbereitungsrate 0,12 ‐0,13 0,09 ‐ ‐0,03 0,11 0,1

Gutachterkompetenz ‐0,26 ‐0,24 ‐0,27 ‐ ‐0,01 ‐0,24 ‐0,24

Prüflingsüberdeckung ‐0,14 0,16 ‐0,11 ‐ 0,03 ‐0,13 ‐0,11

Abdeckung Black‐Box‐
Testtechniken 0,54 0,57 0,56 0,57 0,57 0,48 0,57

Anweisungs‐
überdeckung 0,55 0,59 0,57 0,58 0,58 0,65 0,57

Testerkompetenz 0,37 ‐0,21 0,33 0,44 0,43 0,31 0,33

Testwiederholung 0,17 0,13 0,17 0,15 0,15 0,16 0,17

Tabelle 81: Koeffizienten für Projekt‐Qualitätskosten
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Szenario wird das Projekt etwas teurer oder etwas günstiger: Beispielsweise sinken
im Nominalszenario die Kosten, wenn mehr begutachtet wird. Im kritischen Sze‐
nario steigen die Kosten im Projekt.

8.1.6 Graphische Sensitivitätsanalyse

Die  graphische  Analyse  ergänzt  die  Regressionsanalyse,  da  sie  nicht‐lineare  und
nicht‐additive Effekte zeigen kann (Saltelli et al., 2008). Um die Diagramme übersicht‐
lich zu halten, werden die Eingaben einer Prüfung variiert, während die Eingaben der
anderen Prüfung konstant bleiben.

Spezifikationsreview

Die Analyse des Spezifikationsreviews erfolgt also mit konstanten Eingaben für einen
nominalen Systemtest. Abbildung 70 zeigt den Einfluss des Spezifikationsreviews auf
die Gesamt‐Qualitätskosten im Nominalszenario. Die Gesamt‐Qualitätskosten an der
y‐Achse sind  im  linken Diagramm abhängig von den Reviewkosten dargestellt,  im
rechten Diagramm  abhängig  von  der Überdeckung  der  Spezifikation. Die Daten‐
punkte  in  den  Diagrammen  sind  nach  der  Gutachterkompetenz  geordnet: Weiße
Punkte stehen für niedrige, schwarze für nominale und graue für hohe Kompetenz.
Die Kosten des Spezifikationsreviews ändern sich nicht mit der Kompetenz, weil die
tatsächliche, messbare Vorbereitungsrate eingegeben wird; sie  ist also  fest vorgege‐
ben und verändert sich nicht mit der Kompetenz. 

Durch Mehraufwand  im  Spezifikationsreview  können  die Gesamt‐Qualitätskosten
gesenkt werden (Abbildung 70, links), im besten Fall um fast die Hälfte. Die Wirkung
ist nicht  linear, da mit hohen Kosten nur noch  eine geringe Verbesserung  erreicht
werden kann. So sinken die Gesamt‐Qualitätskosten ab rund 40 000 Euro Reviewkos‐
ten kaum noch. Notwendig ist eine Mindestkompetenz und die vollständige Prüfung
der  Spezifikation  (Abbildung 70,  rechts).  Die  Spezifikationsüberdeckung  verstärkt
den Effekt der Kompetenz, es handelt sich darum um Interaktionseffekte.
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Abb. 70: Wirkung des Spezifikationsreviews auf die Gesamt‐Qualitätskosten für 
Reviewkosten (links) und Prüflingsüberdeckung (rechts)
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Die Fehlerfolgekosten und der Prüfprozess beeinflussen die Wirkung des Reviews.
Dies zeigt Abbildung 71. Beide Diagramme sind aufgebaut wie das linke Diagramm
in der vorigen Abbildung; sie zeigen die Gesamt‐Qualitätskosten an der y‐Achse  in
Abhängigkeit von den Kosten des Spezifikationsreviews an der x‐Achse. Mit hohen
Fehlerfolgekosten und intensivem Prüfprozess nützt das Review mehr, die Qualitäts‐
kosten können auf ein Drittel gesenkt werden (Abbildung 71 links, kritisches Szena‐
rio); mit  oberflächlichem Prüfprozess und  niedrigen  Fehlerfolgekosten  können die
Qualitätskosten auf etwa zwei Drittel gesenkt werden  (Abbildung 71 rechts,  Initial‐
szenario mit Spezifikationsreview).

Abbildung 72 zeigt die Projekt‐Qualitätskosten  in Abhängigkeit von den Kosten für
das  Spezifikationsreview. Die Diagramme  bestätigen  die  Ergebnisse  in  Tabelle 81.
Das  Spezifikationsreview  beeinflusst  die  Projekt‐Qualitätskosten wenig.  Im  besten
Fall werden die Kosten gesenkt (Abbildung 72, links, Nominalszenario), im schlech‐
testen Fall steigen die Kosten leicht an (Abbildung 72, rechts, Initialszenario).

Systemtest

Die graphische Analyse des Tests basiert auf einem nominalen Spezifikationsreview.
Abbildung 73 zeigt die Gesamt‐Qualitätskosten in Abhängigkeit von den Kosten für
den Systemtest. Die verschiedenen Testtechniken für den Black‐Box‐Test sind farblich
unterschieden. Der Punkt auf der y‐Achse kennzeichnet die Kosten ohne Systemtest.

Das Diagramm zeigt den Einfluss der Testparameter des Systemtests, weil  sich  im
Nominalszenario die Parameter  in etwa  in der gleichen Größenordnung auswirken
wie die Parameter des Spezifikationsreviews:  In beiden Fällen werden die Gesamt‐
Qualitätskosten im Bereich zwischen rund 5 und 9 Millionen Euro verändert (Abbil‐
dungen 70 und 73). Die niedrigsten Gesamt‐Qualitätskosten können im Nominalsze‐
nario durch  einen Black‐Box‐Test mit Äquivalenzklassen und Sonderfällen  erreicht
werden. In ungünstigen Kombinationen steigen die Qualitätskosten aber.  
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Abb. 71: Reviewwirkung auf die Gesamt‐Qualitätskosten im kritischen Szenario 
(links) und im Initialszenario (rechts)
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Abbildung 73  zeigt dies mit den Gesamt‐Qualitätskosten  in Abhängigkeit von den
Kosten für den Systemtest. Die Abbildung zeigt aber auch, dass nicht allein der Ein‐
fluss der Black‐Box‐Testparameter über die Qualitätskosten  entscheidet. Zusätzlich
spielen weitere Parameter eine Rolle: Der Anstieg der Qualitätskosten durch den Sys‐
temtest ist durch die Anweisungsüberdeckung bestimmt und hängt von der Tester‐
kompetenz und den Fehlerfolgekosten ab. 

Abbildung 74, links, zeigt dies anhand der Gesamt‐Qualitätskosten für das Nominals‐
zenario in Abhängigkeit von der geforderten Anweisungsüberdeckung. Mit niedriger
Kompetenz  (schwarze Punkte) steigen die Kosten mit der Überdeckung; mit hoher
Kompetenz bleiben die Kosten nahezu konstant (graue Punkte). Mit hohen Fehlerfol‐
gekosten sinken die Qualitätskosten  (Abbildung 74,  rechts, kritisches Szenario). Ein
gründlicher Black‐Box‐Test lohnt sich also langfristig immer, ein Glass‐Box‐Test nur
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Abb. 72: Reviewwirkung auf die Projekt‐Qualitätskosten im Nominalszenario 
(links) und im Initialszenario mit Spezifikationsionsreview (rechts)
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Abb. 73: Wirkung des Systemtests auf die Gesamt‐Qualitätskosten, gegliedert 
nach Prüfparameter für den Black‐Box‐Test
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bei hohen Fehlerkosten oder mit  sehr kompetenten Testern. Daraus  folgt, dass die
vier Eingaben für Black‐Box‐Testparameter, dem Kriterium für die Anweisungsüber‐
deckung, dem Parameter der Kompetenz und den Fehlerfolgekosten durch Interakti‐
onseffekte wirken. 

Abbildung 75  zeigt, wie  die Projekt‐Qualitätskosten  (y‐Achse)  von den Kosten  für
den Systemtest (x‐Achse) abhängen. Je intensiver der Systemtest abläuft, desto teurer
wird das Projekt. Abhängig vom Szenario steigen die Projektkosten deutlich (Nomi‐
nalszenario,  Abbildung 75,  links)  oder  um  ein  Vielfaches  (Initialszenario,
Abbildung 75, rechts).
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Abb. 74: Wirkung der Testparameter auf die Gesamt‐Qualitätskosten im 
Nominalszenario (links) und im kritischen Szenario (rechts)
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Abb. 75: Wirkung des Systemtests auf die Projekt‐Qualitätskosten für 
Nominalszenario (links) und Initialszenario mit Spezifikationsreview (rechts)
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Interaktionseffekte zwischen Spezifikationsreview und Systemtest

Den Interaktionseffekt zwischen Review und Test zeigt Abbildung 76 für den Fall mit
nominaler Gutachter‐ und Testerkompetenz. Wie stark sich das Spezifikationsreview
auswirkt, hängt auch von den gewählten Testtechniken des Systemtests ab. Durch die
Kombination der Prüfungen wird der Nutzen bestimmt.

8.1.7 Sensitivitätsanalyse für unsichere Eingaben

In CoBe gibt es mehrere unsichere Eingaben: Die Fehlerfolgekosten müssen bei der
Planung abgeschätzt werden. Sie bestimmen das Modellresultat qualitativ und quan‐
titativ, weil sich Höhe und Richtung der Koeffizienten des Systemtests mit den Fehl‐
erfolgekosten  ändern  (Abschnitt 8.1.5).  Die  Eingaben  der  Fehlerfolgekosten  sind
offensichtlich unsicher. Weitere unsichere Modelleingaben sind der Software‐Umfang
und die Kalibrierungsparameter. Sie  sind zum Zeitpunkt der Projektplanung nicht
bekannt. Der Umfang muss geschätzt werden. Die Kalibrierungsparameter müssen
aus Archivdaten berechnet werden.

Vorgehen

Diese Unsicherheit modelliere ich für die Sensitivitätsanalyse als Zufallseffekt, indem
die Parameter anhand einer bestimmten Verteilung variiert werden. Dann wird der
Einfluss auf das Modellresultat analysiert (Saltelli et al., 2008). Die Unsicherheit der
Eingaben orientiere  ich an  folgenden Erfahrungswerten: Bei der Planung  führt die
Unsicherheit für Umfang und Projektkosten zu einem Faktor von 0,5 bis 2,0 für diese
Schätzwerte  (Boehm, 1981). Die Resultate einer Function‐Point‐Zählung schwanken
typisch um 20 % bis zu 50 %, je nachdem, wer zählt (Kemerer, 1993). Der Umfangsfak‐
tor für den Code schwankt um den Faktor 2 (QSM, 2009). Jones (2007) berichtet eine
ähnliche Streuung für Umfangsfaktoren der Dokumente. Darum werden zur Analyse
die unsicheren Eingaben um  einen Standardwert mit Faktoren zwischen 0,5 und 2
variiert. 
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Abb. 76: Interaktionseffekte zwischen Review und Test
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Die Werte werden anhand der Standard‐Normalverteilung  (Mittelwert 0, Standard‐
Abweichung  1)  aus  diesem  Bereich  ausgewählt.  Sie wird  so  angepasst,  dass  der
Bereich zwischen 0,5 und 2 durch die  sechsfache Standard‐Abweichung abgedeckt
wird. Die dreifache Standardabweichung nach unten ergibt folglich den Faktor 0,5 für
die  Eingabe;  keine  Abweichung  ergibt  den  Standard‐Eingabewert;  die  dreifache
Standardabweichung nach oben ergibt den Faktor 2 für die Eingabe. Tabelle 82 zeigt
die Eingabeparameter und den variierten Standardwert  für das verwendete Nomi‐
nalszenario. Die Umfangsfaktoren für Spezifikation und Entwurf werden gemeinsam
variiert, damit die kombinatorische Vielfalt eingeschränkt wird. Sie wirken beide auf
den Reviewaufwand.

Die Analyse erfolgt mit dem Werkzeug SimLab (SimLab, 2009) und der Methode von
Sobol  (Saltelli  et al., 2008). Es werden 12 288 Eingabekombinationen generiert und
analysiert.

Analyseergebnisse

Tabelle 83 zeigt die Sensitivitätsindizes für den Gesamteffekt und den Haupteffekt. Je
höher der Index, desto stärker wirkt sich der Parameter auf das Modellresultat aus;
desto stärker wird also das Resultat durch die Unsicherheit beeinflusst. Der Hauptef‐
fekt entsteht durch den Parameter allein. Der Gesamteffekt enthält zusätzlich Interak‐
tionseffekte durch die Kombination mit anderen Parametern.

Den  stärksten  Einfluss  haben  der Umfang  und  der Umfangsfaktor  für  den Code.
Danach folgt für die Gesamt‐Qualitätskosten der Fehlerfaktor, für die Projekt‐Quali‐
tätskosten der Aufwandsfaktor. Der Umfangsfaktor  für  Spezifikation und Entwurf
spielt eine geringe Rolle. Die Haupteffekte ergeben in der Summe weniger als 1, das
Modell  enthält  also  Interaktionseffekte.  Die  Gesamteffekte  sind  insgesamt  größer
als 1, das Modell ist darum nicht‐additiv (Saltelli et al., 2008).

Gesamt‐ und Projekt‐Qualitätskosten streuen deutlich, wie die Häufigkeitsverteilun‐
gen  in Abbildung 77  zeigen. Durch die unsicheren Eingaben werden die Resultate
von CoBe also quantitativ deutlich verändert.

Variierter Eingabeparameter Standardwert

Umfang neuer Software (Function Points) 1000 Function Points

Umfangsfaktor Spezifikation, Entwurf 0,44 Seiten pro Function Point

Umfangsfaktor Code 53 Anweisungen pro Function Point

Aufwandsfaktor 1,0

Fehlerfaktor 1,0

Tabelle 82: Variierte und kombinierte Eingabeparameter
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8.1.8 Analyse der Auswirkungen unsicherer Eingaben

Diese Unsicherheit wirkt sich auf die Ziele des Modells unterschiedlich aus: Für das
Ziel, die Kosten zu prognostizieren, muss das Modell auf jeden Fall kalibriert werden,
da die Modellresultate quantitativ durch die unsicheren Eingaben bestimmt werden.

Sensitivitätsindex für Parameter

Gesamt‐
Qualitätskosten

Projekt‐
Qualitätskosten

Haupt‐
effekt

Gesamt‐
effekt

Haupt‐
effekt

Gesamt‐
effekt

Umfang neuer Software 0,326 0,417 0,304 0,370

Umfangsfaktor Code 0,309 0,411 0,270 0,343

Fehlerfaktor 0,145 0,202 0,134 0,178

Aufwandsfaktor 0,083 0,119 0,182 0,232

Umfangsfaktor Spezifikation, Entwurf 0,000 0,000 0,000 0,001

Tabelle 83: Sensitivitätsindizes der Sobol‐Analyse
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Abb. 77: Häufigkeit der Modellresultate für Gesamt‐Qualitätskosten (oben) 
und Projekt‐Qualitätskosten (unten)
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Für die Ziele, Kosten und Nutzen zu vergleichen und Qualitätskosten zu optimieren,
untersuche ich, ob sich das Modellverhalten qualitativ verändert: Reagiert das Modell
also  so empfindlich auf die beiden wichtigen Eingabeparameter  (Software‐Umfang
und Code‐Umfangsfaktor), dass sich Aussagen ändern? 

Dazu werden die Aussagen aus Abschnitt 8.1.5 untersucht:

• Das  Spezifikationsreview wirkt  sich  auf die Gesamt‐Qualitätskosten  aus,  ändert
aber wenig an den Projekt‐Qualitätskosten.

• Im Nominalszenario lohnt die Anweisungsüberdeckung im Systemtest kaum.

• Die Kompetenz der Gutachter und Tester spielt die wesentliche Rolle. Danach ist
im Review die Prüflingsüberdeckung, im Systemtest die Abdeckung durch Black‐
Box‐Testtechniken wichtig.

Für diese Analyse werden die Extremwerte und Standardwerte der beiden Eingaben
(Umfang und Umfangsfaktor Code) kombiniert. Es entstehen 9 Kombinationen. Für
jede Kombination werden wie in Abschnitt 8.1.5 die standardisierten Regressionsko‐
effizienten  der  Prüfparameter  für  Projekt‐  und Gesamt‐Qualitätskosten  berechnet.
Schwankt deren Wert stark zwischen den Kombinationen oder ändert sich das Vor‐
zeichen, dann verändert  sich die Modellaussage qualitativ durch die Unsicherheit.
Tabelle 84  zeigt  die  Bereiche  der  Koeffizienten.  Sie  zeigt  für  die  oben  genannten
Modellaussagen, dass die Unsicherheit die Aussagen teilweise beeinflusst:

• Die Kompetenz spielt in allen Fällen eine wichtige Rolle. Weil die Koeffizienten in
einem engen Bereich liegen und gleiche Vorzeichen haben, ändert sich diese Aus‐
sage nicht durch die Unsicherheit.

• Die Koeffizienten der Eingaben für das Spezifikationsreview bewegen sich für die
Gesamt‐ und Projekt‐Qualitätskosten in einem engen Bereich und ändern das Vor‐
zeichen nicht. Die Aussagen über das Spezifikationsreview gelten also auch trotz
den unsicheren Eingaben. 

• Die Koeffizienten des  Systemtests  reagieren  empfindlicher  auf die Unsicherheit.
Insbesondere wechselt das Vorzeichen für den Koeffizienten der Anweisungsüber‐
deckung. Diese Aussage ändert sich also durch unsichere Eingaben, sie ist darum
unsicher.

Daraus  folgt,  dass  das Modell  nur mit Kalibrierung  eingesetzt werden  kann. Der
Umfangsfaktor für den Code ist der wichtigste Kalibrierungsparameter; die Program‐
miersprache ist ein wichtiger Einflussfaktor.

8.1.9 Zusammenfassung der Sensitivitätsanalyse

Die Ergebnisse der Sensitivitätsanalyse bestätigen die Hypothesen:
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Die Hypothese H 1 wird bestätigt: Die Eingaben der Prüfparameter wirken sich statis‐
tisch signifikant auf die Modellresultate aus. Die Entscheidungen über diese Prüfpa‐
rameter  bestimmen  also  die  Projekt‐  und  Gesamt‐Qualitätskosten.  Vor  allem
Kompetenz, Reviewvollständigkeit und Testtechniken prägen die Kosten.

Insbesondere die Effekte im Systemtest bestätigen die Hypothese H 2: Abhängig vom
Szenario kann der Glass‐Box‐Test die Kosten senken oder steigern. Spezifikationsre‐
views senken die Gesamt‐Qualitätskosten in jedem Szenario, wirken sich aber unter‐
schiedlich auf die Projekt‐Qualitätskosten aus.

Die  unterschiedliche Wirkrichtung  der  Entscheidungen  über  den  Systemtest,  die
Interaktionseffekte  zwischen  den  Systemtesteingaben  und  den  Szenarien  und  die
Interaktionseffekte zwischen den Prüfungen bestätigten die Hypothese H 3: Die Qua‐
litätskosten sind durch die Kombination der Entscheidungen und der Prozess‐ und
Produktmerkmale bestimmt, so dass die Auswirkungen schwierig zu durchschauen
sind.

Die Analyse zeigt, dass die Senkung der Projektkosten und der Gesamtkosten wider‐
sprüchliche Ziele sind (Hypothese H 4). Dies gilt vor allem für den Systemtest, weil er
die Projekt‐Qualitätskosten erhöht, aber die Gesamt‐Qualitätskosten senkt. Das Spezi‐
fikationsreview lohnt sich nahezu immer, weil die Projekt‐Qualitätskosten nur gering
erhöht werden, die Gesamt‐Qualitätskosten aber deutlich gesenkt werden.

Die Aussagen, die basierend auf CoBe getroffen werden können, hängen quantitativ
und qualitativ von der Genauigkeit der Umfangsschätzung und der Kalibrierung ab.
Die Hypothesen H 6  und H 7 werden  durch  die  Sensitivitätsanalyse  bestätigt. Die
Kalibrierung mit Archivdaten ist notwendig. Zumindest muss überprüft werden, ob
Modellresultate mit historische Daten ähnlicher Projekte übereinstimmen. Die Aussa‐

Eingabe
Gesamt‐Qualitätskosten Projekt‐Qualitätskosten

Minimum Maximum Minimum Maximum

Gutachterzahl ‐0,14 ‐0,12 ‐0,06 ‐0,03

Vorbereitungsrate 0,25 0,31 0,09 0,15

Gutachterkompetenz ‐0,55 ‐0,44 ‐0,29 ‐0,23

Prüflingsüberdeckung ‐0,37 ‐0,30 ‐0,17 ‐0,11

Abdeckung BBT ‐0,28 ‐0,07 0,50 0,56

Anweisungsüberdeckung GBT ‐0,15 0,31 0,50 0,66

Testerkompetenz ‐0,71 ‐0,52 0,27  0,42

Testwiederholung 0,01 0,03 0,16 0,17

Tabelle 84: Schwankung der Koeffizienten durch Unsicherheit
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gen hängen von den Angaben zu den Fehlerfolgekosten ab; deren Einschätzung  ist
ein wichtiger Teil des Modells (Hypothese H 5).

Diese Resultate bestätigen also die Folgerung der Prüfung mit studentischen Daten:
Da die Modellparameter unsicher sind, ist sinnvoll, einen Bereich einzugeben, so dass
die Unsicherheit als Bereich der Modellresultate deutlich wird.

8.2 Analyse des Optimums mit CoBe

Aus den Ergebnissen der Sensitivitätsanalyse  lassen  sich Folgerungen  für optimale
Prüfprozesse ziehen: Reviews sind fast immer lohnend, ein Glass‐Box‐Test ist nur bei
hohen Fehlerfolgekosten sinnvoll.

Mit  CoBe  können  solche  Aussagen  über  besonders  sinnvolle  (oder  besonders
unsinnige) Prüfprozesse und Prüfparameter erkannt und dargestellt werden. In der
folgenden Analyse werden dazu die Projekt‐Qualitätskosten, die die Sicht des Her‐
stellers spiegeln, und die Gesamt‐Qualitätskosten, die für den Kunden entscheidend
sind, betrachtet. Dies entspricht einer Situation, in der der Kunde auch die Projektkos‐
ten trägt, beispielsweise wenn Hersteller und Kunde der gleichen Organisation ange‐
hören oder nach Aufwand bezahlt wird. 

Bei Auftragsprojekten mit Festpreis sind für den Kunden die Kosten nach Ausliefe‐
rung  relevant,  also die Gesamt‐Qualitätskosten  abzüglich der Projekt‐Qualitätskos‐
ten.  Da  die  Sensitivitätsanalyse  zeigt,  dass  die  Projekt‐Qualitätskosten wesentlich
geringer als die Gesamt‐Qualitätskosten  sind, kann  erwartet werden, dass  sich die
Aussagen der Optimierung für diese Betrachtungsweise wenig ändern.

8.2.1 Vorgehen

Für diese Analyse werden die Szenarien der Sensitivitätsanalyse verwendet. Zusätz‐
lich werden zwei Varianten des Nominalszenarios gebildet:

• Mit Variante 1 wird untersucht, wie sich eine monetäre Gewichtung der Dauer aus‐
wirkt, weil beispielsweise Vertragsstrafen bei verspäteter Lieferung oder Umsatz‐
verluste  drohen.  Dazu  wird  jeder  Tag,  der  im  Projekt  in  Prüfungen  und
Fehlerbehebung  investiert wird, mit 0,5 % der Projektkosten gewichtet. Mit die‐
sem Wert ergibt sich für das Nominalszenario in etwa ein Gleichgewicht zwischen
Vertragsstrafen und Fehlerfolgekosten. Strafzahlungen  in der Praxis  sind höher
und können pro Tag etwa 3 % des Projektpreises ausmachen. Diese Kosten fallen
zusätzlich zu den Personalkosten von 100 Euro pro Entwicklerstunde an.

• Mit Variante 2 wird untersucht, wie sich die Testautomatisierung auswirkt. Dazu
wird der Aufwandsanteil für die Wiederholung auf 10 % gesenkt.

Die Analyse erfolgt angelehnt an die Sensitivitätsanalyse. Dabei werden wieder die
Eingaben von CoBe für den Prüfprozess und für die Prüfparameter variiert. Daraus
werden mit CoBe die Gesamt‐ und Projekt‐Qualitätskosten berechnet. Dann werden
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die Qualitätskosten verglichen, um denjenigen Prüfprozess und diejenigen Prüfpara‐
meter zu finden, die zu minimalen Kosten führen. 

Die kombinatorische Vielfalt, die durch die vielen Eingabeparameter von CoBe ent‐
steht,  führt  zu  einer  komplexen Analyse, weil  sehr  viele Kombinationen  und  ihre
Resultate betrachtet werden müssen. Darum grenze ich die Vielfalt der Eingaben ein
und variiere nur die Folgenden:

• Da die Sensitivitätsanalyse die große Bedeutung der Reviews und  ihrer Vollstän‐
digkeit zeigt, wird die Vollständigkeit des Spezifikationsreviews, des Entwurfsre‐
views und des Codereviews variiert. Weil Personal knapp  ist, werden Reviews
mit 2 oder 5 Gutachtern durchgerechnet.

• Für den Systemtest wird die Intensität in einzelnen Schritten gesteigert. Sie reicht
von  keinem  Systemtest  über  die  aufeinander  aufbauenden  Testtechniken  des
Black‐Box‐Tests  (Abdeckung von Funktionen, Äquivalenzklassen, Sonderfällen),
bis  zur  vollständigen  Überdeckung  von  Anweisungen,  Zweigen,  Termen  und
Schleifen im Glass‐Box‐Test. 

Konstant  sind  folgende Eingaben: Ein Feldtest, also eine Erprobung beim Kunden,
findet  auf  jeden  Fall  statt, weil  von  einem Auftragsprojekt  ausgegangen wird.  Ich
gehe davon aus, dass Entwickler in solchen Projekten einen Modultest durchführen.
Auch ein  Integrationstest  findet  statt, wenn die  Integration  stattfindet und auspro‐
biert wird, ob das integrierte Programm läuft. Außerdem gehe ich davon aus, dass in
den Tests nach der korrektiven Wartung die gleichen Testparameter wie  im Projekt
gefordert werden: Wird also im Projekt für den Systemtest 80% Anweisungsüberde‐
ckung verlangt, wird dies auch für die Korrektur verlangt. Mit diesen Eingabewerten
werden die Qualitätskosten für 1944 Kombinationen je Szenario berechnet.

8.2.2 Resultate

Die Resultate aller Szenarien, bei denen die Dauer nicht gewichtet wird, sind ähnlich:

Projekt‐Qualitätskosten

Frühe Reviews lohnen sich bereits für den Hersteller, weil dadurch die Projekt‐Quali‐
tätskosten minimal gehalten werden. In allen Szenarien sind intensive Reviews, also
mit 5 Gutachern und vollständiger Prüfung der Spezifikation und des Entwurfs, opti‐
mal; nur bei Wiederverwendung reichen 2 Gutachter für den optimalen Fall. Der Sys‐
temtest verteuert die Projekt‐Qualitätskosten; das  ist konsistent mit den Resultaten
der Sensitivitätsanalyse.

Abbildung 78 zeigt dies für das Nominalszenario. Die Projekt‐Qualitätskosten sind an
der  x‐Achse,  die  Gesamt‐Qualitätskosten  an  der  y‐Achse  abgetragen.  Die  Daten‐
punkte  sind  für  einen Prüfprozess ohne Reviews  in  schwarz dargestellt,  für  einen
Prüfprozess mit frühen Reviews ohne Codereviews in hellgrau, für einen Prüfprozess
mit allen Reviews in dunkelgrau und für andere Prüfprozesse in weiß dargestellt. Die
Datenpunkte ganz links stehen also für minimale Projektkosten; sie gehören zu Prüf‐
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prozessen mit  ganz  unterschiedlichen  Entscheidungen  über  Reviews.  So  befinden
sich Vorgehen ganz ohne Reviews, mit frühen Reviews oder mit allen Reviews links
im  Diagramm  mit  nahezu  gleichen  Projekt‐Qualitätskosten.  Diese  Datenpunkte
unterscheiden sich aber erheblich in den Gesamt‐Qualitätskosten. Daraus folgt, dass
Entscheidungen über Reviews die Projekt‐Qualitätskosten kaum beeinflussen,  aber
deutlich die Gesamt‐Qualitätskosten prägen.

Gesamt‐Qualitätskosten

Für  die Gesamt‐Qualitätskosten  sind  alle  Reviews wichtig,  da  nur mit  intensiven
Reviews  für  Spezifikation,  Entwurf  und  Code  minimale  Gesamt‐Qualitätskosten
erreicht werden  können. Es  ist  also  im  Interesse  des Kunden,  dass diese Reviews
durchgeführt werden. Dies zeigt Abbildung 78 für das Nominalszenario: Die minima‐
len Gesamt‐Qualitätskosten sind die niedrigsten Punkte  im Diagramm. Sie gehören
zu den Prüfprozessen mit allen Reviews.

Der optimale Fall der Systemtest‐Prüfparameter hängt von dem Szenario, vor allem
von den Fehlerfolgekosten ab: 

• Bei geringen Fehlerfolgekosten (Initialszenario) ist ein Systemtest ausreichend, mit
dem alle Funktionen getestet werden. Dieses Vorgehen ist typisch für die Praxis.

• In Szenarien mit mittleren Fehlerfolgekosten werden minimale Gesamt‐Qualitäts‐
kosten mit einem nominalen Systemtest erreicht. Im nominalen Test werden Test‐
fälle für alle Funktionen und für zusätzliche Äquivalenzklassen erstellt.

• Wenn in Szenarien mit mittleren Fehlerfolgekosten die Testwiederholung automa‐
tisiert wird, dann können Tests günstig wiederholt werden (Variante 2 des Nomi‐
nalszenarios).  In  dieser  Situation  lohnt  sich  ein  zusätzlicher Glass‐Box‐Test,  in
dem Zweigüberdeckung angestrebt wird. Durch den niedrigeren Wiederholungs‐
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Abb. 78: Projekt‐ gegen Gesamt‐Qualitätskosten im Nominalszenario
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aufwand, der  sich vor allem  in der Wartung zeigt, können  somit um  fast 20 %
niedrigere Gesamt‐Qualitätskosten als im Nominalszenario erreicht werden. 

• Im kritischen Szenario mit  extrem hohen Fehlerfolgekosten  führt  ein Glass‐Box‐
Test mit allen Überdeckungskriterien zu minimalen Gesamt‐Qualitätskosten.

Abbildung 79  zeigt  Projekt‐  und Gesamt‐Qualitätskosten  des  kritischen  Szenarios,
Abbildung 80 des Szenarios mit Testautomatisierung. Die Diagramme sind gleich wie
Abbildung 78 aufgebaut. Da intensivere Systemtests die Projektkosten verteuern, lie‐
gen die Datenpunkte mit hohem Systemtest‐Aufwand im rechten Diagrammbereich.
Im Nominalszenario (Abbildung 78) steigen die Gesamt‐Qualitätskosten mit den Pro‐
jekt‐Qualitätskosten; sie steigen also mit intensiverem Systemtest. Im kritischen Sze‐
nario  (Abbildung 79)  sinken  die  Gesamt‐Qualitätskosten  mit  steigenden  Projekt‐
Qualitätskosten, d.h. mit steigender Systemtest‐Intensität.  In Abbildung 80  liegt das
Optimum bei mittleren Projekt‐Qualitätskosten, also bei einer mittleren Systemtest‐
Intensität.

Einfluss der Dauer

Kostet eine spätere Auslieferung Geld, dann lohnt sich im Nominalszenario für den
Hersteller tatsächlich nicht, Prüfungen durchzuführen, weil die niedrigsten Projekt‐
Qualitätskosten ohne Prüfungen erreicht werden. Die geringsten Gesamt‐Qualitäts‐
kosten werden mit vollständigen Spezifikations‐ und Entwurfsreviews erreicht. Das
Spezifikationsreview  führt  zur  geringsten  Steigerung  der  Projekt‐Qualitätskosten.
Abbildung 81  zeigt  dies:  Investitionen  in  Projekt‐Qualitätskosten  führen  zuerst  zu
geringeren Gesamt‐Qualitätskosten. Dann  aber  steigen die Gesamt‐Qualitätskosten
mit den Projekt‐Qualitätskosten, weil die Kosten  für die Dauer höher als die einge‐
sparten Fehlerkosten werden. Es gibt  also Situationen mit hohem Termindruck,  in
denen es sinnvoll  ist, weniger  intensiv zu prüfen. Da  in diesem Szenario  jeder Tag
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Abb. 79: Projekt‐ gegen Gesamt‐Qualitätskosten im kritischen Szenario
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Dauer mit Geld bewertet wird, entspricht dies einer Situation,  in der  jeder Tag auf
dem Markt zählt. In Situationen mit Vertragsstrafen dürfen nur Terminüberschreitun‐
gen  gewichtet  werden;  die  Dauer  darf  also  erst  ab  einem  gewissen  Schwellwert
bewertet  werden.  Unter  dem  Schwellwert  entsprechen  die  Modellresultate  dem
Nominalszenario, über dem Schwellwert steigen die Kosten an und entsprechen dem
Szenario mit gewichteter Dauer.

Vergleich der Resultate

In allen Fällen widerspricht das Ziel, die Projektkosten zu minimieren, dem Ziel, die
Gesamtkosten zu minimieren. Hersteller und Kunde verfolgen also widersprüchliche
Ziele.  In  allen  Fällen  führt  ein  Prüfprozess  ganz  ohne  Reviews  zu  den  teuersten
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Abb. 80: Projekt‐ gegen Gesamt‐Qualitätskosten mit Testautomatisierung
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Gesamt‐Qualitätskosten (Abbildungen 78, 79, 80 und 81). Die Resultate für diese vier
Szenarien,  dem Nominalszenario, mit  Testautomatisierung, mit  gewichteter Dauer
und dem kritischen Szenario, zeigt Abbildung 82 im Vergleich. 

Da das Produkt im kritischen Szenario einen kleineren Umfang als das Produkt der
anderen Szenarien hat (100 Function Points statt 1000 Function Points Umfang), sind
die  Projekt‐Qualitätskosten  entsprechend  gering. Die Datenpunkte werden  darum
ganz links im Diagramm aufgetragen. Durch die hohen Fehlerfolgekosten können die
Gesamt‐Qualitätskosten aber sehr hoch werden. Die Nominalszenarien mit und ohne
Testautomatisierung  (graue  beziehungsweise weiße Datenpunkte) überdecken  sich
nahezu. Die Datenpunkte liegen im linken Viertel des Diagramms. Mit Testautomati‐
sierung sind die Kosten etwas geringer als ohne. Durch die Gewichtung der Dauer
steigen die Projekt‐Qualitätskosten deutlich (graue Datenpunkte).

8.3 Vorgehen für die Validierung in der Industrie

Mit CoBe sollen Aussagen über Industrieprojekte getroffen werden. Darum ist CoBe
mit Industrieprojekten validiert. Dafür konnten zwei externe Partner aus unterschied‐
lichen Organisationen gewonnen werden.  In  jeder Organisation wurde  ein Projekt
analysiert. Projektdaten wurden erhoben und  für die Validierung des Modells ver‐
wendet. Da die Projekte komplex sind, erfolgte die Validierung in einzelnen Schritten:

1. Vorgespräche: In diesen Gesprächen wurden Modell und Projekt grob vorgestellt
und umrissen. Das weitere Vorgehen wurde geklärt.
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2. Befragung und Datenerhebung: Zuerst wurden Informationen über den Prozess,
dann  über  verfügbare  Metriken  und  über  Erfahrungswerte  gesammelt.  Diese
Gespräche  erfolgten  als  Interview,  die  Befragten  erhielten  einen  Fragebogen  im
Voraus, der als Gesprächsleitfaden diente.

3. Analyse: Die  Informationen über das Projekt wurden gesichtet,  sortiert,  zusam‐
mengefasst und den Modellparametern zugeordnet. Dabei entstand eine Prozess‐
beschreibung mit Metriken und Istwerten.

4. Modellparameter: Aus dieser Prozessbeschreibung wurden die Modelleingaben
und die Istwerte für die Validierung entnommen. Dabei wurden fehlende Informa‐
tionen  identifiziert. Fehlen  Informationen, die  für Modelleingaben benötigt wer‐
den, dann sind diese Eingaben unsicher. In solchen Fällen wurden Modellvarianten
gebildet, in dem verschiedene Werte für die unsicheren Eingaben verwendet wer‐
den. Die Modellvarianten ergeben einen Bereich der Modellresultate und machen
dadurch die Unsicherheit sichtbar. 

5. Kalibrierung: Zuerst wurden die Modellresultate betrachtet, die zur Kalibrierung
benötigt werden: Gesamtaufwand, Gesamtdauer, Gesamtfehlerzahl. Das Modell
wurde  anhand  dieser Daten  kalibriert. Wurden  nicht  alle  Fehler  gezählt,  dann
erfolgte die Kalibrierung mit der Summe der verfügbaren Fehlerzahlen. 

6. Validierung: Die Modellresultate wurden mit den  Istwerten  verglichen. Abwei‐
chungen  und Übereinstimmungen wurden  identifiziert. Abweichungen wurden
diskutiert und, wenn möglich, erklärt.

7. Referenzmodell: Für konkrete Fragestellungen wurde ein Referenzmodell erstellt.
Es liefert exakte Resultate, während die Modellvarianten einen Bereich liefern. Die‐
ses Modell  enthält weitere Anpassungen, die  sich  aus den  vorherigen  Schritten
ergeben, um das Projekt möglichst genau zu beschreiben.

8. Diskussion  und  Prüfung: Die Resultate wurden  gemeinsam mit  den Befragten
diskutiert und auf Plausibilität geprüft.

9. Nacharbeit: Falls Missverständnisse erkannt wurden oder weitere  Informationen
verfügbar wurden, wurde das Modell überarbeitet.

In den Vorgesprächen hat sich gezeigt, dass das Modell erweitert werden muss; es
entstand die Version 2 von CoBe  (Abschnitt 8.1). Dazu wurden alle Tests detailliert
mit Prüfparametern modelliert, die Codeanalyse und der Korrekturprüfprozess wur‐
den ergänzt. Die Prozessanalyse zeigte also auf, wo das Modell unvollständig ist. Dies
stützt das iterative Vorgehen, das dem Modelleinsatz zu Grunde liegt (Abschnitt 3.6).

Bei einem iterativen Vorgehen besteht die Gefahr, dass das Modell so lange angepasst
wird,  bis  es  die  Realität  ausreichend  genau  beschreibt.  Dann  ist  die  Validierung
ungültig, weil ein Vergleich der Modellresultate mit Istwerten nicht mehr sinnvoll ist.
Bestimmte Modelländerungen stellen aber keine Bedrohung der Validierung dar:
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• Das Modell  kann  für die Validierung  kalibriert werden, weil dies  auch  für den
Modelleinsatz vorgesehen ist. 

• Erweiterungen, die unabhängig von den Istwerten der Validierung modelliert und
quantifiziert werden, können mit den Istwerten validiert werden.

• Bleiben bestehende Modellteile unverändert, dann ändern Erweiterungen nichts an
Aussagen zur Validität der unveränderten Teile. Unveränderte Modellteile können
von den Erweiterungen unabhängig validiert werden. 

Daraus folgt, dass die Erweiterungen für die Industrieprojekte die Validierung nicht
bedrohen, weil sie nichts an bestehenden Zusammenhängen ändern. Stattdessen wer‐
den bestehende Zusammenhänge ergänzt. Sie bedrohen die Validierung nicht, weil
sie auf Daten basieren, die nicht aus den Industrieprojekten stammen. Für die Tests
werden Zusammenhänge wiederverwendet, aber neu quantifiziert. Dadurch werden
bestehende Zusammenhänge  sogar gestützt. Anpassungen  sind  im Referenzmodell
möglich, um das Projekt möglichst genau zu beschreiben. Eine Validierung mit Refe‐
renzmodell ist dann aber nicht aussagekräftig.

Als  Validierungskriterium  wird  die  logarithmische  Abweichung  in  deziBel
(Abschnitt 7.2.3) mit  2 dB  als Grenzwert  verwendet  (Tabelle 85);  3 dB  entsprechen
einem Faktor 2: 

 

8.4 Industrieprojekt 1

In diesem Abschnitt wird die Validierung mit dem ersten Industrieprojekts beschrie‐
ben. Dazu werden zuerst die Analyse des Projekts  (Abschnitt 8.4.1), die Abbildung
auf  das Modell  (Abschnitte 8.4.2  und 8.4.3),  die Kalibrierung  (Abschnitt 8.4.4)  und
dann die Ergebnisse (Abschnitte 8.4.5 und 8.4.6) gezeigt.

Im Projekt wurde Firmware für ein Rechnersystem erstellt, das für den Markt entwi‐
ckelt wurde. Ein wesentliches Merkmal ist die hohe Verfügbarkeit des Systems. Für
das Rechnersystem wird  regelmäßig, etwa  im Abstand von zwei  Jahren, ein neues
Rechnermodell  angeboten.  Im Projekt wurde die  bereits  bestehende  Firmware des
vorherigen  Rechnermodells  erweitert,  teilweise  wiederverwendet  und  teilweise

Kriterium Bewertung Folgerung

Modell valide

Modell valide Ursachenanalyse mit unsi‐
cheren Eingaben und unkla‐
ren ProzessValidität fraglich, Modell nicht valide

Tabelle 85: Kriterien für die Validierung
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ersetzt. Die Entwicklung ist in Subsysteme aufgeteilt, jedes Subsystem wird in einem
Subsystem‐Projekt entwickelt.

Für die Validierung werden das Gesamtprojekt und drei Subsystem‐Projekte betrach‐
tet. Entwickler der  Subsysteme, Produktmanager und QS‐Verantwortliche wurden
befragt.  Es  wurden  qualitative  Merkmale,  aber  auch  quantitative  Daten  erfragt.
Zusätzlich  standen gemessene Werte  zur Verfügung; Tabelle 86 zeigt die wesentli‐
chen Daten. Insgesamt waren rund 400 Mitarbeiter in den zwei Jahren mit dem Pro‐
jekt beschäftigt. Der Umfang des Codes beträgt etwa 11 Millionen Anweisungen, zum
großen Teil in C++; etwa 25 % wurden neu erstellt oder geändert.

8.4.1 Das Projekt und sein Prozess

Da im Projekt System‐Software parallel entwickelt wurde, werden zuerst diese spezi‐
ellen Merkmale und ihre Abbildung in CoBe dargestellt.

Einbettung in die Projektumgebung und Anforderungen

Die Anforderungen für das gesamte System wurden zentral festgelegt und dann für
die Hardware und die Software verfeinert und aufgeteilt. Software bezeichnet in die‐
sem Kontext die Firmware. Die Software‐Anforderungen wurden auf einzelne Sub‐
systeme  verteilt  und  beschreiben  grob  die  Funktion.  Die  Anforderungen  waren
weitgehend stabil. Im betrachteten Ausschnitt des Projekts sind diese Anforderungen
fest vorgegeben. Abbildung 83 zeigt den Zusammenhang zwischen Software‐Anfor‐
derungen, der Aufteilung auf Subsystem‐Projekte und die  Integration der Software
zum System. Um Subsystem‐Projekte vom gesamten Projekt abzugrenzen, wird das
gesamte Projekt im Folgenden auch als Gesamtprojekt bezeichnet 

Detailliertere  Anforderungen  für  die  Software waren  im Wesentlichen  durch  die
Schnittstellen  zur  Hardware  und  zu  anderen  Software‐Komponenten  definiert.
Anforderungen  und  Entwurf  wurden  für  Erweiterungen  und  für  ersetzte

Verfügbare Istwerte

Korrekturaufwand pro Fehler nach den unterschiedlichen Prüfungen mit Minimal‐ und 
Maximalwerten

Reviewprozess mit Gutachterzahl, Vorbereitungsintensität, Sitzungsdauer

Zahl entdeckter Fehler in Reviews, typisch pro Sitzung

Testmethoden und ‐parameter, Automatisierung, Wiederholung

Dauer und Mitarbeiterzahl des Projekts und der Subsystem‐Projekte

Zahl entdeckter Fehler in der Entwicklungsumgebung, im Systemtest und durch 
Vorablieferung

Umfang des Codes (Hinzugefügt, geändert, wiederverwendet)

Tabelle 86: Istwerte des Industrieprojekts 1
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Komponenten mit UML‐Diagrammen und natürlichsprachlich  in einem Dokument,
dem Entwurf, beschrieben; Auforderungen und Entwurf ließen sich kaum voneinan‐
der trennen, da die Anforderungen zum einen durch die Systemanforderungen und
zum anderen durch die Schnittstellen des Subsystems und des vorhandenen Codes
definiert  waren  und  damit  weitgehend  vorgegeben  waren.  Im  betrachteten  Aus‐
schnitt des Projekts wurden C++ und  eine  firmenspezifische höhere Programmier‐
sprache verwendet. 

Ablauf und Organisation der Entwicklung

Die Entwicklung erfolgte iterativ und parallel, weil  jedes Subsystem parallel zu den
anderen Subsystemen weiterentwickelt und gepflegt wurde. Ein Entwickler bearbei‐
tete einen Teil, eine Komponente. Dazu wurden die Anforderungen und der Entwurf
im Entwurf dokumentiert, der Code wurde implementiert und dann in das Subsys‐
tem  integriert. Diese Entwicklung erfolgte  in einer Entwicklungsumgebung, die das
neue Rechnersystem simulierte. Die Systemintegration, bei der die Subsysteme inte‐
griert werden, erfolgte alle zwei Wochen. Das Resultat wird als Treiber bezeichnet. Er
wurde abwechselnd in der Entwicklungsumgebung eingesetzt oder an unabhängige
Tester ausgeliefert.

Prüfungen und Prüfprozesse

Die folgenden Prüfungen wurden durchgeführt:

• Entwurfsreview

• Codeanalyse

• Modultest

• Subsystem‐Integrationstest

• Codereview

System‐Entwicklung

System‐
integration

Software

Spezifikation 
der System‐
anforderungen

Projekt

Subsystem‐Projekt B

Subsystem‐Projekt A

Aktivität

Subsystem ...

Abb. 83: Aufteilung in Subsystem‐Projekte

Legende
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• Systemintegrationstest

• Systemtest (unabhängig)

• Interne und externe Vorablieferung gegen Projektende

Entwurfsreview,  Codeanalyse,  Modultest,  Subsystem‐Integrationstest  und  Code‐
review  sind  der  Subsystem‐Entwicklung  zugeordnet  und wurden  unterschiedlich
intensiv für die verschiedenen Subsysteme durchgeführt. Das Codereview fand zeit‐
nah nach der Implementierung statt, aber erst, nachdem der Entwickler den Modul‐
test durchgeführt hat. Da die Subsysteme kontinuierlich  integriert wurden und der
Subsystem‐Integrationstest  in diesen  Schritt  eingebunden war,  erfolgten die Code‐
reviews nach dem Subsystem‐Integrationstest. Die Subsysteme wurden zum System
integriert  und  dann  durch  Systemintegrationstest,  Systemtest  und  die  Vorab‐
lieferungen geprüft. Systemintegrationstest und Systemtest erfolgten durch unabhän‐
gige Testabteilungen. Die Übergabe an diese Testabteilungen erfolgte regelmäßig ab
dem Zeitpunkt eines ersten lauffähigen Systems. Der Systemintegrationstest und der
Systemtest  erfolgten  also  zeitversetzt,  aber  parallel  zur  Entwicklung.  Das  System
wurde während  der  Entwicklung  als  Entwicklungsumgebung  eingesetzt. Dadurch
wird es implizit bei der Subsystem‐Entwicklung und ‐Prüfung mitgeprüft.

Merkmale einzelner Prüfungen

In den Teilprojekten wurden die Prüfungen unterschiedlich  intensiv durchgeführt.
Die Ergebnisse der Befragung sind in Tabelle 87 zusammengefasst.

Das  integrierte  System wurde mit  dem  Systemintegrationstest  geprüft,  damit  ein
funktionierendes System an die Entwicklungsumgebung oder an den unabhängigen
Systemtest geliefert wird; es wurde geprüft, ob das System reif für den Test ist. Der
Systemtest erfolgte durch unabhängige Tester und organisatorisch getrennt. Testfälle
wurden in Testpaketen von den unabhängigen Testern aus den Anforderungen abge‐
leitet. Dabei wurden auch Testfälle  früherer Rechnermodelle wiederverwendet und
angepasst. Der Testplan, der die Testfälle beschreibt, wurde von Entwicklern begut‐
achtet. Dabei konnten Mängel des Testplans identifiziert und korrigiert werden. Das
System wurde, bevor es für den Markt verfügbar wurde, in zwei Vorablieferungen im
produktiven Einsatz erprobt, zuerst intern im Konzern, dann extern bei ausgewählten
Kunden.

8.4.2 Die Abbildung in das Modell

Zuerst wird die Abbildung des Prozesses in CoBe gezeigt. Die detaillierten Eingaben
folgen im Abschnitt 8.4.3, die Resultate in den Abschnitten 8.4.5 und 8.4.6.

Für die Validierung betrachte ich das gesamte Projekt und drei Subsystem‐Projekte.
Die Subsysteme werden einzeln betrachtet, weil sich der Prüfprozess der Subsystem‐
Entwicklungen unterscheidet. Darum werden vier Modellinstanzen von CoBe erstellt:
Ein Gesamtmodell und drei Subsystem‐Modelle.  Ich bilde die Projekte auf die vier
Modelle wie folgt ab:
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Der parallele und  iterative Prozess  kann direkt  auf den  sequentiellen Prozess  von
CoBe abgebildet werden, weil die Entwicklung einer einzelnen Komponente  inner‐
halb eines Subsystems dem gleichen Prozess folgte. Ich nehme also an, dass die Ent‐
wicklung im Wesentlichen additiv erfolgte und dass die wesentlichen Effekte additiv
sind.  Das  bedeutet,  dass  die  einzelnen  Komponenten  aufeinander  aufbauen  und
sequentiell  erstellt werden  können;  eine  fertige,  geprüfte Komponente wird  nicht
oder nur unwesentlich verändert. Abbildung 84 skizziert diese Zuordnung beispiel‐
haft für ein System, das aus zwei Komponenten besteht, und für den Modultest, die
Subsystemintegration und die Systemintegration. Die Meilensteine M1 und M2  für
den Abschluss des Modultests der beiden Komponenten fallen in CoBe auf den Mei‐

Prüfung Subsystem A Subsystem B Subsystem C

Ent‐
wurfs‐
review

Gutachter waren Tester und Entwickler des gleichen oder anderer Subsysteme 
mit betroffenen Schnittstellen. Die Vorbereitung erfolgte gründlich. Neue Soft‐
ware wurde vollständig geprüft. Eine Sitzung dauerte höchstens zwei Stunden.

5 ‐ 6 Teilnehmer mit 
Autor

Bis zu 10, maximal 15 
Teilnehmer insgesamt

Maximal 10 Teilnehmer 
insgesamt

Code‐
analyse

BEAM (Brand, 2000) und Lint (Johnson, 1978) wurden eingesetzt. Durch Konfi‐
guration der Werkzeuge wurden wenig falsche Befunde entdeckt.

Modul‐
test

Automatisierte Tests 
überdeckten im Mittel 
70 %, bis zu 85 % der 
Anweisungen.

Testfälle wurden manuell 
durchgeführt, weil Hard‐ 
und Software eng gekop‐
pelt sind.

Zum Teil automatisierte, 
zum Teil manuelle Test‐
durchführung.

Sub‐
system‐
Int.‐test

Das Subsystem wurde von den Entwicklern kontinuierlich integriert. Dann 
erfolgte der Test dieser Version in der Entwicklungsumgebung. Diese besteht 
aus der letzten Version des Systems.

Nächtliche Wiederho‐
lung des Modultests.

Wiederholung des 
Modultests und weitere 
Testfälle

Code‐
review

Rund 25 % des neuen 
Codes wurden von 3 bis 
5 Gutachtern geprüfta. 
Die Gutachter sind 
betroffende Entwickler. 
Pro Sitzung wurden 500 
bis 600 Zeilen gründlich 
vorbereitet, pro Sitzung 
wurden bis 200 Zeilen 
detailliert besprochen.

Neuer Code wurde von 3 
bis 5 Gutachtern geprüft, 
die sich intensiv vorbe‐
reiteten.

Kritischer Code wurde 
von 5 bis 6 Gutachtern 
geprüft. Die Vorberei‐
tung war intensiv mit 
einer Vorgabe von 100 
Zeilen pro Stunde. Die 
Sitzung dauerte maxi‐
mal 1,5 Stunden.

Tabelle 87: Subsystem‐Prüfungen und ihre Unterschiede (Projekt)
a. Dazu wurde kritischer Code ausgewählt.
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lenstein M, die Meilensteine S1 und S2 auf den Meilenstein S. Da in Cobe eine Prü‐
fung  durch Verwendung  als  Entwicklungsumgebung  nicht modelliert  ist  und  die
kontinuierliche Integration nicht explizit dargestellt wird, ordne ich diese beiden Prü‐
fungen dem Subsystem‐Integrationstest in CoBe zu. 

Durch diese Modellierung muss bei der Interpretation und Bewertung der Resultate
mit Unschärfen gerechnet werden: Fehlerentdeckung durch Fernwirkungen in ande‐
ren Komponenten wird  im Modell nicht dargestellt, weil CoBe keine Komponenten
kennt. Wirkungen, die dadurch entstehen, dass bereits fertige und geprüfte Kompo‐
nenten erneut mit neuen Komponenten mitgeprüft werden, sind nicht im Modell ent‐
halten. Es  ist unklar, wie parallele Prozesse  in COCOMO II abgebildet werden und
wie sich diese Art der Organisation dann auf den Zusammenhang zwischen Umfang,
Aufwand, Dauer und Personalbedarf auswirkt.

In  den  Subsystem‐Projekten  wird  zwischen  spezifizierten,  detaillierten  Software‐
Anforderungen und Entwurf nicht hart getrennt; beides wurde  im Entwurf doku‐
mentiert und gemeinsam geprüft. Die Trennung ist für Firmware nicht möglich. Da
die groben Anforderungen an die Komponente und die externen Schnittstellen  fest
vorgegeben waren, werden  im Modell keine Spezifikationsfehler abgebildet.  In den

Software‐Entwicklung und ‐Prüfung des Systems Meilenstein

Abb. 84: Realer Prozess und modellierter Prozess

Modultest

Subsystem‐Inte‐
gration und ‐test

M1 S1

M1, M2, M: Meilenstein Modultest abgeschlossen
S1, S2, S:  Meilenstein Subsystem integriert und getestet
I:  Meilenstein System integriert und getestet

IM2 S2

Systemintegration 
und ‐test

M S I

 t (Modell)t (real)

Realer Prozess Abbildung in CoBe

Software‐Entwicklung und ‐Prüfung der Komponente 1
Software‐Entwicklung und ‐Prüfung der Komponente 2

Legende
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erhobenen Fehlerzahlen  erfolgt keine Trennung  zwischen Entwurfs‐ und Codefeh‐
lern, diese werden aber in CoBe dargestellt. Im Projekt ist die Fehlerschwere über den
Schaden definiert. Für den Schaden werden kritische Fehler, die zum Stillstand des
Systems führen, und Hauptfehler, die den Betrieb behindern, erfasst. Darum werden
in CoBe nur diese schweren Fehler dargestellt.

8.4.3 Modelleingaben im Detail

Die Modelleingaben ergeben sich aus der Analyse des Projekts. Sie werden wie folgt
gesetzt: Für die Validierung wird das gesamte Projekt betrachtet, weil dafür die meis‐
ten Istwerte verfügbar sind. 

Der Code umfasst etwa 10 Millionen Anweisungen, davon  ist rund ein Viertel neu.
Als  Umfangsfaktoren  verwende  ich  55  Anweisungen  pro  Function  Point  (C++,
Boehm, 2000) und 0,88 Seiten pro Function Point für den Entwurf, also den doppelten
Umfang wie ursprünglich quantifiziert, weil Anforderungen und Entwurf gemein‐
sam beschrieben werden.

Die Quantifizierung der Fehlerdichte wurde von Auftragsprojekten auf Projekte für
Systemsoftware umgestellt (Jones, 1996 und 2007), ebenso die Verteilung auf die Feh‐
lerarten  (ohne Spezifikationsfehler) und auf die Fehlerschwere  (ohne Nebenfehler).
Die  Parameter  von  COCOMO II wurden  anhand  der  Befragungsergebnisse  ange‐
passt.

Da sich der Ablauf der Prüfungen in den Subsystem‐Projekten unterscheidet, müssen
für dieses Gesamtmodell mittlere Prüfparameter ausgewählt werden, die diese Unter‐
schiede  in etwa ausgleichen. Tabelle 88 zeigt die Eingaben des Gesamtmodells. Die
Tests werden wiederholt; für den Modultest übernimmt dies der Subsystemintegrati‐
onstest. 

Für einige Eingaben sind keine Istwerte vorhanden. Dies führt zu unsicheren Einga‐
ben und unsicheren Modellresultaten. Darum werden Modellvarianten gebildet,  in
dem die unsichersten Eingaben variiert werden:

• Die Eingaben für die Intensität der späten Tests sind unsicher. Beispielsweise wird
der Systemtest mit erfahrenen Testern durchgeführt, dabei werden auch bewährte
Testfälle aus früheren Projekten übernommenen. Die Testfälle werden begutachtet.
Dies spricht für einen intensiven Test; es liegen aber keine Werte über Testfälle vor.

• Die Entwickler sind sehr erfahren, der Prozess hat eine hohe Prozessreife. Darum
werden möglicherweise weniger Fehler entstehen (Jones, 2003).

• Bei der Vorablieferung handelt sich um einen intensiven, produktiven Einsatz des
Systems. Für Erprobungen dieser Art sind kaum Daten verfügbar, insbesondere ist
unklar, ob die Quantifizierung des Feldtests  in CoBe  für  eine  solche Erprobung
geeignet ist. Jones (2007) diskutiert diesen Punkt und zeigt stark unterschiedliche
Fehlerentdeckungsquoten.

• Für die Codeanalyse stehen kaum Erfahrungswerte zur Verfügung.
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• Die Qualität des wiederverwendeten Codes ist vermutlich sehr hoch, weil die Soft‐
ware intensiv erprobt und intensiv eingesetzt wird. Unklar ist aber, wie viele Feh‐
ler enthalten sind. Beispielsweise werden nicht alle Fehler sofort korrigiert, weil es
sich um ein fehlertolerantes System handelt.

• Die Kompetenz der beteiligten Prüfer ist hoch, weil es sich um erfahrene Entwick‐
ler handelt. Sie  ist aber  trotzdem unsicher, ebenso  ist die Zahl der Gutachter  im
Codereview unterschiedlich und darum unsicher.

Um diese Unsicherheit abzubilden, werden Resultate aus 12 Varianten berechnet und
Minimum, Maximum und Median angegeben (Tabelle 89). Ich verwende den Median
und nicht den Mittelwert, da die Unsicherheit mit den 12 Varianten nicht durch eine
bestimmte Verteilung dargestellt wird,  sondern  einzelne,  auch  extreme Werte ver‐

Prüfung Modelleingaben

Entwurfsreview 
neuer Software

5 hochkompetente Gutachter bereiten sich mit 10 Seiten pro Stunde 
vor. Der gesamte Entwurf wird geprüft.

Codeanalyse neuer 
Software

5 % der Codefehler werden entdeckt und korrigiert, ebenso viele fal‐
sche Befunde werden zusätzlich entdeckt

Modultest neuer 
Software

Vollständiger Black‐Box‐Test hochkompetenter Tester mit 50 % Auf‐
wand und 1 % Umfang für die Wiederholung, weil der Test zum Teil 
automatisiert abläuft und einzelne Komponenten entwickelt werden.

Subsystem‐
Integrationstest 
neuer Software

Vollständiger Black‐Box‐Test hochkompetenter Tester mit 50 % Auf‐
wand und 5 % Umfang für die Wiederholung, weil der Test zum Teil 
automatisiert abläuft und weil für einen bestimmten Test ein bestimm‐
ter Systemzustand herbeigeführt werden muss.a

Codereview neuen 
Codes

25 % des Codes werden priorisiert von 5 hochkompetenten Gutachtern 
mit 200 Anweisungen pro Stunde vorbereitet.

System‐
integrationstest der 
gesamten Software

Vollständiger Black‐Box‐Test hochkompetenter Tester mit 50 % Auf‐
wand und 5 % Umfang für die Wiederholung, weil der Test zum Teil 
automatisiert abläuft und weil für einen bestimmten Test ein bestimm‐
ter Systemzustand herbeigeführt werden muss.a

Systemtest der 
gesamten Software

Vollständiger Black‐Box‐Test hochkompetenter Tester mit 50 % Auf‐
wand und 5 % Umfang für die Wiederholung, weil der Test zum Teil 
automatisiert abläuft und weil für einen bestimmten Test ein bestimm‐
ter Systemzustand herbeigeführt werden muss.a

Vorablieferung der 
gesamten Software

Fehlerentdeckung des Feldtests (Jones,1998) mit 20 % Entwurfs‐ und 
25 % Codefehler.

Tabelle 88: Modelleingaben für Prüfungen
a. Tritt beispielsweise ein Fehler erst ab einer bestimmten Auslastung des Systems auf, dann 

muss diese Auslastung erzeugt werden, damit geprüft werden kann, ob der Fehler korri‐
giert wurde.
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wendet. Der Mittelwert würde durch die extremen Fälle verzerrt werden. Insbeson‐
dere werden zwei extreme Varianten gebildet. Eine extreme Variante kombiniert alle
variierten Eingaben  für  eine niedrige  Fehlerentdeckung  in den  frühen Phasen, die
andere extreme Variante kombiniert die Eingaben mit Werten für hohe Fehlerentde‐
ckung in allen Prüfungen.

Die Unterschiede zwischen den Eingaben für die Subsystem‐Projekte fasst Tabelle 90
zusammen. Die Befragten der Subsysteme B und C haben Maximalwerte für die Gut‐
achterzahl im Entwurfsreview angegeben; im Modell rechne ich für alle Subsysteme
mit  5  Gutachtern. Obwohl  teilweise mehr  Gutachter  teilgenommen  haben,  haben
manche Gutachter nur einen Teil des Prüflings betrachtet; sie haben beispielsweise
nur diejenigen Schnittstellen geprüft, die sie verwendet haben.

Für die Fehlerfolgekosten nehme ich 1000 Verwendungen bis zur Korrektur an, weil
mehrere tausend Installationen betrieben werden. Korrekturen werden nicht  immer
oder spät installiert, weil die Installation ständig verfügbar sein muss. Tritt ein kriti‐
scher  Fehler  auf,  dann  kostet  er  1 Million  Euro,  weil  auf  den  Rechnern  typisch
geschäftskritische Anwendungen laufen.

8.4.4 Kalibrierung des Modells

Zuerst werden alle Modellvarianten des Gesamtprojekts mit gleichen Parameterwer‐
ten kalibriert. Diese Kalibrierung wird dann auf die Modelle für die Teilprojekte über‐
tragen.  Ein  erster  Vergleich  zur  Kalibrierung  zeigt,  dass  Aufwand  und  Dauer

Nr. Modellvarianten für Eingaben, deren Werte nicht verfügbar sind

1 Normalfall (Tabelle 88)

2 Testintensität im Systemintegrationstest, Systemtest und im Feldtest (Faktor 3)

3 Fehlerrate für den besten Fall (50 %)

4 Fehlerentdeckung der Codeanalyse (7 %)

5 Nominale Tester‐ und Gutachterkompetenz

6 Testintensität im Systemtest und im Feldtest (Faktor 3)

7 Weniger Gutachter im Codereview

8 Feldtest mit Erfahrungswerten für intensiven Test nach Jones (2007), Faktor 3

9 Wenig Fehler in wiederverwendetem Code (0,01 % statt 1 %)

10 Weniger intensive Subsystemtests, weil für Sonderfälle Hardware benötigt wird

11 Worst Case für frühe Fehlerentdeckung

12 Best Case der Fehlerentdeckung

Tabelle 89: Varianten für unsichere Eingaben
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kalibriert werden müssen. COCOMO II berechnet zu viel Aufwand, einen zu gerin‐
gen Personalbedarf und eine zu lange Dauer. Mögliche Gründe sind die starke Paral‐
lelisierung mit der Aufteilung  in Subsystem‐Entwicklungen. Darum wird CoBe  für
den Aufwand mit dem Faktor 0,66 und für die Dauer mit dem Faktor 0,4 kalibriert.
Die Modellresultate für Personalbedarf (Mitarbeiterzahl) und Dauer treffen damit die
Istwerte sehr gut (Tabelle 91).

Für den Vergleich werden die Fehlerzahlen für den Systemintegrationstest und den
Systemtest verwendet. Darin sind zusätzlich Fehler enthalten, die während der Ent‐
wicklung in anderen Subsystemen entdeckt wurden. Die Modellresultate für Fehler,
die in späten Tests entdeckt wurden, treffen diese Zahl gut. Sie liegen etwas niedrig
(Tabelle 91). Die Fehlerzahl wird nicht kalibriert, weil die Modellresultate nicht die
Fehler,  die während  der  Entwicklung  in  anderen  Subsystemen  entdeckt wurden,
berücksichtigt.

8.4.5 Vergleich der Modellresultate mit Istwerten

Die Modellvarianten werden  nur  für das Gesamtprojekt  berechnet, weil dafür die
meisten  Istwerte  verfügbar  sind. Die  folgenden  Vergleiche  beziehen  sich  auf  das
Gesamtprojekt und die Modellvarianten:

Prüfung Subsystem A Subsystem B Subsystem C

Modultest 
und Sub‐
system‐
Int.‐test

Vollständiger Black‐Box‐
Test, 70 % Anweisungs‐
überdeckung, 10 % Auf‐
wand für Wiederholung.

Nominaler Modultest, 
50 % Aufwand für Wie‐
derholung.

Nominaler Modultest, 
25 % Aufwand für Wie‐
derholung.

Code‐
review

25 % des neuen Codes 
wird priorisiert von 4 
Gutachter mit 200 Zeilen 
pro Stunde vorbereitet.

Hinzugefügter Code 
wird von 4 Gutachtern 
mit 200 Zeilen pro 
Stunde vorbereitet.

25 % des neuen Codes 
wird priorisiert von 4 
Gutachter mit 200 Zeilen 
pro Stunde vorbereitet.

Tabelle 90: Unterschiede der Modelle für die Subsysteme

Modellresultat LEa

a.  

Mitarbeiterzahl 0,38 dB

Gesamtdauer 0,08 dB

Zahl später Fehler 1,81 dB

Tabelle 91: Abweichungen nach Kalibrierung
LE 10 Modellresultat Istwert⁄( )log⋅=
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Korrekturaufwand pro Fehler in den verschiedenen Phasen

Die Modellresultate für den Korrekturaufwand einzelner Fehler stimmen gut mit den
Befragungsergebnissen überein  (Tabelle 92). Der Korrekturaufwand  ist der Arbeits‐
aufwand,  den  ein  Entwickler  oder mehrere  Entwickler  für  Ursachenanalyse  und
Änderung  investieren. Mehrere Entwickler  sind dann beteiligt, wenn  sich der Wir‐
kungsmechanismus eines Fehlers über mehrere Subsysteme erstreckt. Dann wurden
sehr hohe Aufwände berichtet. Konsistent zum Vergleich mit den Korrekturaufwän‐
den der studentischen Projekte spiegelt CoBe diese Ausreißer nicht, sondern berech‐
net einen engeren Bereich. Fehler, die in der Codeanalyse entdeckt werden, werden
von CoBe zu teuer berechnet. 

Fehlerzahlen pro Reviewsitzung

Tabelle 93 zeigt Befragungsergebnisse und Modellresultate für die Zahl der entdeck‐
ten  Fehler  pro  Reviewsitzung.  Befragungsergebnisse  und Modellresultate  für  das
Codereview stimmen sehr gut überein. 

Das Modellresultat für die Fehlerzahl im Entwurfsreview ist dagegen eher zu hoch.
Dafür kann es mehrere Gründe geben:

Befragungsergebnisse Modellresultate

Codeanalyse wenige Minuten, max. 1 Eh 0,8 bis 1,7 Eh

Modultest normal 1 Eh bis 8 Eh, über 24 Eh möglich 1 bis 1,5 Eh

Codereview 1 Eh normal 0,8 bis 1,7 Eh

Subsystem‐
Integrationstest normal 1 Eh bis 16 Eh, über 24 Eh möglich 2,4 bis 5,2 Eh

Systemintegrationstest, 
Systemtest 2 Eh bis 24 Eh 4,7 bis 10,2 Eh

Wartung 2 Eh bis 24 Eh ohne Prüfung  7,0 bis 15,2 Eh

Tabelle 92: Vergleich des Korrekturaufwands pro Fehler

Fehlerzahl pro Sitzung Befragungsergebnis Modellspanne Modellmedian

Entwurfsreview 2 bis 10 Fehler 8 bis 16 Fehler  16 Fehler

Codereview 3 bis 15 Fehler  3 bis 12 Fehler  9 Fehler

Tabelle 93: Fehler pro Reviewsitzung
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• Der Umfangsfaktor für den Entwurf ist in CoBe zu klein. Dies wird gestützt durch
Jones (2007), der einen größeren Faktor angibt (1,25 statt 0,88 Seiten pro Function
Point). Mit größerem Umfangsfaktor sinkt die Fehlerdichte, die sich auf die Seiten‐
zahl bezieht.

• Daten über die Zahl der Seiten, die in einer Sitzung besprochen werden, sind nicht
verfügbar.

• CoBe  berechnet  eine  zu  hohe  Fehlerentdeckungsquote. Gegen  diese Hypothese
spricht, dass CoBe die  Fehlerentdeckung durch Reviews der  studentischen Pro‐
jekte gut beschrieben hat.  Im  Industrieprojekt  sind die Gutachter professionelle,
erfahrene Entwickler mit viel Domänenwissen, die darum vermutlich sogar eine
höhere Fehlerentdeckungsquote als Studenten haben. 

• Die Entwickler haben viel Erfahrung und Domänenwissen, bestehende Software
wird weiterentwickelt. Darum werden weniger  Fehler  im  Projekt  als  in  durch‐
schnittlichen Projekten gemacht. Dieser Effekt wird aber durch die Kalibrierung
der Fehlerzahl berücksichtigt.

Ich führe darum die Abweichungen auf den zu geringen Umfangsfaktor zurück.

Fehlerzahlen in späten Phasen

Die Modellresultate für die Zahl der entdeckten Fehler sind für die späten Prüfungen,
d.h. Systemintegrationstest, Systemtest und Vorablieferung, ingesamt etwas zu nied‐
rig, konsistent zur Modellkalibrierung (Abbildung 851). Die Zahl der Fehler sinkt aber
konsistent in den Istwerten und in den Modellresultaten. Für den Vergleich werden
zwei Fälle unterschieden: Im ersten Fall wird der Median aller Varianten, im zweiten
Fall der Median der Varianten mit intensiven späten Prüfungen und intensiver Vor‐
ablieferung verwendet. Der Zahl der ausgelieferten Fehler  liegt ein erfragter Erfah‐
rungswert für Systemausfälle zu Grunde.

1. Die Abbildung enthält aus Gründen der Vertraulichkeit keine absoluten Fehlerzahlen.

Systemint.-
test

Systemtest Vorab-
lieferung

Ausgeliefert

Istwerte

Modellresultate
(alle Varianten)

Modellresultate
(intensive Vorab-
lieferung)
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Abb. 85: Median der Fehlerzahlen aus Modellvarianten
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Weil  die  Fehlerzahlen  vertraulich  sind  und  darum  nicht  gezeigt werden, werden
Abweichungen der Modellresultate von den Istwerten mit dem logarithmischen Feh‐
ler (LE) in dB bewertet. Sie liegt noch unter 3 dB, aber über 2 dB: 

• Das Modellresultat für die Fehlerzahl  im Systemintegrationstest  ist um 2,1 dB zu
niedrig. Die Abweichung  entsteht, weil  für  den  Istwert  auch  diejenigen  Fehler
gezählt werden, die während der Subsystem‐Entwicklung in anderen Subsystemen
entdeckt wurden. 

• Das Modellresultat für die Fehlerzahl im Systemtest ist um 3 dB zu niedrig. Dies
erklärt sich durch den Systemtest des Projekts, der intensiver als typische System‐
tests  ist, weil  im Projekt Testfälle vorbereitet, wiederverwendet und begutachtet
werden.  Der  Test  erfolgt  unabhängig  in  einer  eigenen  Testabteilung.  Dass  der
Systemtest sehr intensiv ist, wird durch seine Kosten bestätigt, wie der Abschnitt
unten zeigt.

• Die  Fehlerzahl der Vorablieferung und der Auslieferung wird  von den Modell‐
varianten mit  intensiven späten Tests gut berechnet. Die Abweichung beträgt  für
Vorablieferung  und  Auslieferung  0,3  dB.  Fehlerzahlen  der  anderen  Modell‐
varianten sind zu hoch.

• Das Modellresultat für die Zahl der ausgelieferten Fehler wird auch mit intensiven
späten Tests zu hoch berechnet. Dafür vermute  ich mehrere Gründe: Der  Istwert
beruht auf der Fehlerzahl pro  Jahr und einer Einschätzung  für die Einsatzdauer;
einzelne Kunden setzen das System aber auch länger ein. Aus den Befragungser‐
gebnissen lässt sich ableiten, dass die Vorablieferung mit internem und externem
produktiven Einsatz sehr intensiv prüft. Es werden vor allem kritische Fehler, d.h.
Ausfälle, berichtet. Das System ist fehlertolerant, darum treten nicht alle Fehler auf.
Da die Fehlerkorrektur risikoreich ist, wurden Fehler, für die das System tolerant
ist, nicht korrigiert. Stattdessen wird die Korrektur wird  für die nächste Version
vorgemerkt, der Fehler wird nicht gezählt.

Kosten für Prüfung und Korrektur

Die Modellresultate der Prüf‐ und Korrekturkosten sind plausibel:

Die Kosten des Systemtests bestätigen, dass der Systemtest intensiv ist. Die Mitarbei‐
terzahl weicht unter 0,5 dB ab. Im Projekt findet der Systemtest parallel zur Entwick‐
lung statt, seine Durchführung beginnt etwa zur Halbzeit des Projekts und dauert bis
zum  Ende.  Die  Modellresultate  für  einen  intensiven  Systemtest  ergeben  für  die
Durchführung des Tests 46 % der Projektdauer. Sie stimmen also gut mit der Realität
überein.

Die Modellresultate  für den Aufwand des Systemintegrationstest  stimmen mit den
Daumenregeln, die für das Projekt erfragt wurden, überein. Im Modell werden aber
zu viele Mitarbeiter zugeordnet, so dass die Dauer zu niedrig berechnet wird. Mit rea‐
listischer Mitarbeiterzahl ergibt sich die gleiche Dauer wie für den Systemtest, dieses
Resultat entspricht in etwa der Realität.
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Die Modellresultate ergeben plausible Aufwandsanteile  für Prüfung und Korrektur
im Vergleich zum erfragten Gesamtaufwand des Projekts, da die Modellvarianten im
Median einen Prüf‐ und Korrekturaufwand im Projekt von 38 % des erfragten Projek‐
taufwands ergeben, mit intensiven späten Prüfungen 52 %. 

Vergleicht  man  diese  Resultate  mit  der  Aufwandsverteilung  auf  Phasen  in
COCOMO II, zeigt  sich, dass die CoBe‐Resultate auch  im Vergleich dazu plausibel
sind: So machen die Modellresultate  für Prüf‐ und Korrekturaufwand  jeweils  rund
20 %  des  Aufwands  der  Entwurfsphase  und  der  Implementierungsphase  in
COCOMO II aus (Tabelle 94). Der Median aller Modellvarianten für Integration und
Test trifft etwa die untere Grenze des COCOMO‐II‐Integrations‐ und Testaufwands.
Der Median der Varianten mit intensiven Tests überschreitet die obere Grenze leicht.

8.4.6 Resultate der Referenzmodelle

Fehlerzahlen des Gesamtprojekt werden gut berechnet, weil die Resultate für System‐
test und Vorablieferung weniger als 2 dB abweichen. Abbildung 86 enthält aus Grün‐
den der Vertraulichkeit keine absoluten Fehlerzahlen. Der Vergleich für die einzelnen
Subsystem‐Projekte erfolgt  für eine Eingabekombination, die als passende Variante
gewählt wurde. Die späten Prüfungen sind  intensiv; andere Prüfungen sind an den
Prüfprozess der Subsysteme angepasst (Tabelle 87). Die Zahl der ausgelieferten Feh‐
ler wird von CoBe etwas zu hoch berechnet (LE = 2,1 dB), dies lässt sich aber mit dem
fehlertoleranten System begründen. 

Aufwandsanteil der Phasen, mittlere 
bis große Projekte in COCOMO II

Median der Modellresultate für Prüfung und 
Korrektur

Phasea

a. Die Phase Plans and Requirements ist nicht dargestellt.

Anteil (%)b

b. Alle Anteile beziehen sich auf den Gesamtaufwand des Projekts.

Prüfung Anteil (%)c

c. Alle Anteile beziehen sich auf den erfragten Gesamtaufwand des Projekts.

Product Design 16 % ‐ 18 % Entwurfsreview 4 %

Programming 48 % ‐ 62 % Modultest, Codeanalyse, Code‐
review, Subsystem‐Int.‐test 11 %

Integration and Test 22 % ‐ 34 %

Systemintegrationstest, Systemtest 
(Alle Modellvarianten) 23 %

Modellvarianten mit intensivem Sys‐
temint.‐Test und Systemtest 37 %

Tabelle 94: Aufwandsanteile im Vergleich
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Mit dieser Kalibrierung wird  ein Modell pro  Subsystem  erstellt und die Resultate
gegen Istwerte verglichen. Die Resultate sind plausibel, weil die Zahl der Entwickler
mit guter, zum Teil sogar sehr guter Genauigkeit berechnet wird (Tabelle 95). Die Ent‐
wicklungsdauer für die Subsystem‐Projekte ist in den Modellen auf die Projektdauer
der gesamten Entwicklung gesetzt. 

Die Modellresultate zeigen, dass die Prüfung und Korrektur einen großen Anteil des
Aufwands  der  Subsystem‐Entwicklung  einnimmt  (Tabelle 96).  Dieser  hohe  Anteil
erklärt sich durch die Einbettung dieser Subsystemprojekte  in das gesamte Projekt.
Dabei gehören beispielsweise Projektmanagement, Systemintegration und Systemtest
nicht zum Subsystemprojekt. Somit sind diese Aufwände, die sich auf das gesamte
System beziehen, nicht im erfragten Aufwand für die Entwicklung der einzelnen Sub‐
systeme enthalten. 

Entwicklerzahl Istwerte A B C

pro Subsystem etwa 20 28 23 16

Tabelle 95: Entwicklerzahl pro Subsystem

Modellresultat für den Aufwandsanteila

a. Der Anteil bezieht sich auf den Aufwand, der sich aus den Befragungsergebnissen für die 
Zahl der Mitarbeiter im Subsystem‐Projekt und die Dauer ergibt.

A B C

Entwurfsreview mit Korrektur 19 % 15 % 10 %

Codereview mit Korrektur 8 % 18 % 5 %

Modultest mit Korrektur 18 % 9 % 6 %

Subsystem‐Integrationstest mit Korrektur 22 % 13 % 8 %

Tabelle 96: Aufwandsanteil für Prüfungen und Korrektur
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Abb. 86: Fehlerzahlen des Referenzmodells
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8.5 Industrieprojekt 2

CoBe wird mit  dem  Industrieprojekt  2 mit  dem  gleichen Vorgehen wie mit  dem
Industrieprojekt 1 validiert: Nach der Analyse (Abschnitt 8.5.1) erfolgt die Abbildung
in CoBe (Abschnitte 8.5.2 und 8.5.3). Resultate sind in den Abschnitten 8.5.4 und 8.5.5.

Im  Projekt  wurde  Steuergeräte‐Software  für  PKW  im  Kundenauftrag  entwickelt.
Steuergerät und Software bilden eine Einheit. Es handelt sich um eine nahezu voll‐
ständige Neuentwicklung, Ausnahme sind mathematische Bibliotheken. Das Projekt
wurde als sicherheitskritisch (SIL‐3, Smith und Simpson, 2005) eingestuft. Das Projekt
ist SPICE Level 3 (Hörmann et al., 2006) mit definiertem Standard‐Prozess. Im Projekt
waren  in etwa 2,5  Jahren  rund 14 Mitarbeiter,  teilweise  in Teilzeit, beschäftigt. Die
Software umfasst rund 35 000 Anweisungen.

8.5.1 Das Projekt und sein Prozess

Einbettung in die Projektumgebung und Anforderungen

Die Anforderungen an das System stammten vom Kunden. Das Steuergerät ist stan‐
dardisiert. Das Projekt verlief iterativ, indem Anforderungen mit dem Kunden abge‐
sprochen wurden;  der Kunde  bekam  dann  regelmäßig  –  alle  zwei Monate  –  eine
Lieferung. Der betrachtete Ausschnitt der Realität enthält die Anforderungsanalyse
und ‐prüfung durch den Kunden.

Ablauf und Organisation der Entwicklung

Die Entwicklung  erfolgte  iterativ.  Jede  Iteration bildete  eine Phase. Für  jede Phase
wurde die zu  realisierende Funktionalität geplant, nach  jeder Phase wurde an den
Kunden  ausgeliefert.  Eine  Phase  dauerte  zwei Monate.  In  jeder  Phase wurde  ein
sequentieller Entwicklungsprozess durchlaufen. Mit diesem Prozess wurden zuerst
System‐, dann Software‐Anforderungen  festgelegt, dann  entworfen,  implementiert,
dann  integriert, parametrisiert und schließlich ausgeliefert. Anforderungen wurden
werkzeuggestützt als  identifizierbare Einheiten verwaltet. Es wurde ein Funktions‐
entwurf erstellt. Die Programmierung erfolgte in C.

Prüfungen und Prüfprozesse

Für die Validierung werden zwei Prüfprozesse in CoBe abgebildet. Sie liefen ineinan‐
der verwoben ab: Ein Prüfprozess des Entwicklungsprozesses, d.h. initiale Prüfungen
in jeder Phase, und ein Prüfprozess für Änderungen waren vorgegeben. Reviews sind
für ein SIL‐3‐Projekt obligatorisch. In jeder Phase wurden die folgenden initialen Prü‐
fungen durchgeführt:

• Kundenreviews und internes Anforderungsreview

• Entwurfsreview

• Codeanalyse

• Modultest
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• Codereview

• Releasetest (entspricht dem Integrationstest)

• Software‐Test (HiL‐ und SiL‐Test, entspricht dem Systemtest)1

• Interne und externe Fahrzeugtests

Änderungen,  z.B.  Korrekturen,  wurden  in  einem  definierten  Änderungsprozess
parallel zur Entwicklung geprüft mit:

• Codeanalyse

• Modultest

• Codereview

• Software‐Test (HiL‐ und SiL‐Test, entspricht dem Systemtest)

Im  Folgenden  werden  die  Prüfungen  nicht mit  den  firmenspezifischen  Begriffen
(Releasetest, Softwaretest), sondern mit den Begriffen von CoBe (Integrationstest, Sys‐
temtest) bezeichnet. 

Die Prüfungen der Änderungen erfolgten abgestimmt auf den Entwicklungsprozess
(Abbildung 87):  Die  Integration  erfolgte  regelmäßig.  Dabei  wurden  sowohl  neue
Komponenten als auch Änderungen integriert und danach durch einen Integrations‐
test  geprüft. Der  Systemtest wurde  für  jede Änderung  erweitert;  die Änderungen
wurden separat getestet. Der Systemtest wurde  für neu entwickelte Teile erweitert.
Bestehende Testfälle wurden wiederholt. Die integrierte Software wurde dann inter‐
nen und externen Fahrzeugtests unterzogen. Tabelle 97 fasst die erhobenen Daten des
Projekts zusammen. 

Merkmale einzelner Prüfungen

Die detaillierten Modelleingaben basieren auf den folgenden Analyseergebnissen: Die
Anforderungen wurden  in Reviews mit 4 bis 5 Gutachtern beim Kunden diskutiert
und abgesprochen. Interne Spezifikationsreviews fanden mit 2 bis 3 Gutachtern statt.
Dokumentationsreviews wurden durchgeführt. Anforderungen und Dokumentation
ließen  sich aus Sicht der Beteiligten  schwer  trennen. Auch die Trennung zwischen
Anforderungsänderung, Anforderungsanalyse  und  Fehlerentdeckung  ist  in  diesen
Prüfungen unscharf.

Der  Entwurf  erfolgte mit UML  und wurde  durch  Entwurfsreviews  in  Form  eines
Walkthroughs mit einem Gutachter, teilweise mit Moderator, geprüft.

Codereviews  wurden  entweder  informal  oder  formal  durchgeführt.  Informale
Reviews konnten nur bei unkritischen (SIL‐0‐)Modulen oder unkritischen Änderun‐
gen  stattfinden. Befunde  informaler Reviews  konnten  vom Autor direkt  korrigiert

1. HiL (Hardware‐in‐the‐Loop): Die Software wird mit dem Steuergerät in einer simulierten 
Umgebung getestet. SiL (Software‐in‐the‐Loop): Das Steuergerät wird zusätzlich simuliert, 
nur die Software wird in einer simulierten Umgebung getestet.
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werden, während Befunde formaler Reviews einem Prozess unterworfen und formal
verwaltet  wurden:  Die  Korrektur  dieser  Befunde  folgte  dem  Änderungsprozess.
Codereviews wurden  für neue Module und  für Änderungen  als Walkthrough mit
einem Gutachter, teilweise mit Moderator, durchgeführt. Bei Änderungen mit SIL‐3
wurde die gesamte  geänderte  Funktion  erneut geprüft. Bei Änderungen mit  SIL‐0
reichte aus, die geänderte Software zu betrachten.

Der Modultest erfolgte durch die Entwickler nach dem Vier‐Augen‐Prinzip. Er wurde
in der Entwicklungsumgebung durchgeführt und war weitgehend nicht  automati‐

Verfügbare Istwerte

Umfang des Codes

Zahl der Anforderungen und Anforderungsänderungen

Zahl der Änderungen

Aufwand und Aufwandsverteilung auf Entwicklung und Prüfung von Änderungen

Zahl der späten Fehler (Systemtest und Fahrzeugtest)

Aufwand für späte Fehler

Anforderungs‐ und Zweigüberdeckung, Umfang pro Modul im Softwaretest

Aufwand für Prüfungen (Initial und Änderung, ohne Modultest)

Dauer und Mitarbeiterzahl

Gutachterzahl in Reviews

Tabelle 97: Istwerte des Industrieprojekts 2

Änderung Code‐
review

Modul‐
test

System‐
test

Änderungsprozess

Entwicklungsprozess

Integra‐
tionstest

System‐
test

Code‐
analyse

Prüfsequenz bei 
Änderungen

Abb. 87: Einbindung des Änderungsprozesses

Code‐
analyse

Entwurfs‐
review

Kunden‐ u. 
Anf.‐review

Modul‐
test

Code‐
review

Prüfsequenz der 
Entwicklung
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siert. Der Ablauf des Tests und die Testfälle wurden anhand einer Vorlage dokumen‐
tiert.  Der  Modultest  wurde  für  ein  neues  Modul  und  bei  jeder  Änderung
durchgeführt. Im Modultest wird keine Überdeckung gemessen, er findet also nicht
als Glass‐Box‐Test statt.

Die  Integration erfolgte durch einen  Integrator und nach dem Vier‐Augen‐Prinzip.
Der  Integrationstest  stellte  sicher, dass die  Software prinzipiell  funktioniert. Dabei
wurden externe Schnittstellen, z.B. für Sensoren, und interne Schnittstellen geprüft.

Nach diesem Test wurden Systemtest und Fahrzeugtests parallel durchgeführt. Der
Systemtest bestand aus mehreren Teilen: Für jedes Release wurden im HiL‐Test auto‐
matisiert  die Anforderungen  geprüft.  Testfälle  für  SIL‐3‐Anforderungen waren  zu
96 % automatisiert,  für SIL‐0‐Anforderungen zu 65 %, die übrigen wurden manuell
geprüft. Das Kriterium für die Zweigüberdeckung wurde für jedes Modul individuell
festgelegt und wurde im SiL‐Test überprüft. Die Testfälle waren für den HiL‐Test und
für den SiL‐Test weitgehend gleich. Ausnahmen waren wenige Testfälle, die nicht im
SiL‐Test geprüft werden konnten, weil dazu Hardware benötigt wurde. Die Testfälle
wurden durch Tester erstellt und dann in einem Review geprüft. Sie wurden als Test‐
sequenz implementiert, so dass sie automatisch durchgeführt werden konnten. Ände‐
rungen im Änderungsprozess wurden im HiL‐Test geprüft; die Überdeckung wurde
im SiL‐Test kontrolliert, bei Bedarf wurden die Testfälle erweitert. Die internen und
externen Fahrzeugtests fanden teilweise gemeinsam mit dem Kunden statt.

8.5.2 Die Abbildung in das Modell

Dieser Prozess wird in das Modell abgebildet. Die detaillierten Eingaben für Prüfun‐
gen sind im Abschnitt 8.5.3, die Resultate in den Abschnitten 8.5.4 und 8.5.5.

Iterativer Entwicklungsprozess mit initialen Prüfungen

Der  iterative, stufenförmige Entwicklungsprozess mit den  initialen Prüfungen wird
auf  den  sequentiellen  Prozess  in  CoBe  nach  dem  gleichen  Prinzip  wie  im
Validierungsprojekt 1 abgebildet (Abbildung 84). Dies ist möglich, weil in den einzel‐
nen Iterationen  jeweils der gleiche, sequentielle Prozess durchlaufen wird. Dadurch
bleibt das Modell einfach. Diese Abbildung in das Modell hat aber Nachteile: Effekte
durch mehrfach wiederholte Prüfungen können nicht sichtbar werden; die grundle‐
gende Annahme ist, dass die Entwicklung additiv verläuft und nur additive Effekte
enthält.  Sie wächst  also  stetig,  bestehende  Teile werden  bei  der  Entwicklung  nur
geringfügig geändert. Die Alternative,  jede  Iteration durch ein Modell darzustellen,
hätte zu einem extrem komplexen und unübersichtlichen Modell geführt. Die Aus‐
wahl der Hardware, Entwurfsentscheidungen  zur Hardware und  zur Realisierung
der Redundanz  für  SIL‐3‐Systeme werden  im Modell  nicht  dargestellt, weil CoBe
keine Zusammenhänge für Hardware‐Entwicklung enthält.

Anforderungskritikalität

Die Entwicklung und Prüfung erfolgte für SIL‐3‐Module anders als für SIL‐0‐Module.
Diese unterschiedliche Entwicklung bilde  ich  in CoBe durch zwei unterschiedliche
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Modellinstanzen ab. Das SIL‐0‐Modell beschreibt die Entwicklung und Prüfung der
SIL‐0‐Software, das SIL‐3‐Modell beschreibt die Entwicklung und Prüfung der SIL‐3‐
Software.

Verfügbare Umfangsdaten sind der Code‐Umfang  (rund 35 000 Anweisungen), die
Zahl der  SIL‐0‐Anforderungen und die Zahl der  SIL‐3‐Anforderungen. Der Code‐
Umfang wurde proportional zur Zahl der Anforderungen auf SIL‐0‐ und auf SIL‐3‐
Modell verteilt:

Da  67 % der Anforderungen  SIL‐0‐Anforderungen  sind,  folgere  ich, dass  67 % des
Codes mit SIL‐0 entwickelt wurden. In das SIL‐0‐Modell wird also eingegeben, dass
der Umfang hinzugefügten Codes 67 % der rund 35 000 Anweisungen beträgt, also
etwa 24 000 Anweisungen.

Aus den 33 % SIL‐3‐Anforderungen ergibt sich somit, dass der Umfang hinzugefüg‐
ten Codes im SIL‐3‐Modell etwa 11 000 Anweisungen beträgt.

Anforderungsänderungen

Während  des  Projekts  änderte  der  Kunde  Anforderungen.  Diese  Anforderungs‐
änderungen  bilde  ich  in CoBe  als  zusätzlichen,  geänderten Code  ab,  angelehnt  an
Boehm (2000). Diese Modellierung basiert auf der Annahme, dass bestehender Code
ersetzt werden muss, wenn sich Anforderungen ändern; Code wird also gelöscht und
neu erstellt. Dies entspricht der Definition für geänderten Code aus IEEE 1045 (1992).

Daten über den Umfang geänderten Codes sind nicht verfügbar. Darum nehme  ich
an, dass  für  jede Anforderungsänderung genau  so viel Software wie  für eine neue
Anforderung  entwickelt wird.  Ich modelliere  also, dass pro Anforderung und pro
Anforderungsänderung der gleiche Umfang Code implementiert und geprüft wird.

Von den SIL‐0‐Anforderungen wurden 9 % geändert. Daraus folgere ich, dass 9 % der
hinzugefügten Anforderungen geändert wurden. Zu den 24 000 Anweisungen kom‐
men also rund 2 200 geänderte Anweisungen dazu. 

Rund 6 % der SIL‐3‐Anforderungen änderten sich. Somit wurden 6 % der hinzuge‐
fügten Anweisungen geändert, also etwa 710 Anweisungen der 11 000 Anweisungen
im SIL‐3‐Modell.

Tabelle 98 fasst die Eingaben für die beiden Modellinstanzen zusammen.

Eingabeparameter SIL‐0‐Modell SIL‐3‐Modell

Hinzugefügte Software (Anweisungen) 24 000 11 000

Geänderte Software (Anweisungen) 2 200 710

Tabelle 98: Eingaben für den Software‐Umfang
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Abstraktionsebenen und Prüfprozess

Beim Projekt handelt es sich um eine Systementwicklung. Darum kläre ich die Abbil‐
dung der Entwicklung in CoBe wie folgt: Ich betrachte nur den Teil des Projekts für
die Software‐Entwicklung des Steuergeräts.  Im Projekt gab  es Entscheidungen, die
die Wahl der Hardware betreffen. Diese fanden zu Beginn des Projekts statt, so dass
ich  von  vorgegebener  Standard‐Hardware  im Modell  ausgehe.  System‐  und  Soft‐
ware‐Anforderungen  können  in  dieser  Situation  nicht  getrennt  betrachtet werden,
darum wird  im Modell keine Unterscheidung getroffen. Spezifikationsfehler betref‐
fen  also  alle  Anforderungen,  ich  vernachlässige  aber  die  Anforderungen  an  das
Steuergerät. Entwurfsfehler werden im Modell nur für die Software abgebildet. Code‐
fehler entstehen auch im Projekt nur für die Software.

Alle  Reviews  der  Anforderungen  werden  im  Modell  zum  Spezifikationsreview
zusammengefasst. Unklar  ist der Umfang und der Aufwand, der durch die zusätz‐
lichen Kundenreviews  entsteht. Entwurfsreview, Codeanalyse und Modultest wer‐
den direkt in das Modell abgebildet. Der Releasetest entspricht dem Integrationstest,
er hat das gleiche Ziel: Die  Schnittstellen und die grundlegende Funktion werden
geprüft. Eine Aufteilung  in Subsystemintegration und Systemintegration gibt es  im
Projekt nicht und wird darum auch  in CoBe nicht dargestellt. Der Softwaretest des
Projekts  entspricht dem Systemtest  in CoBe: Die gesamte Software wird gegen die
Anforderungen geprüft.

Änderungsprozess 

Der Änderungsprozess für eine Korrektur wird durch die Korrektur und die darauf
folgenden Prüfungen der Korrektur (Korrekturprüfprozess  in Cobe) abgebildet: Die
Änderung wird vom Entwickler im Modultest geprüft und durch einen Gutachter im
Codereview geprüft. Die Änderung wird im Systemtest geprüft.

8.5.3 Modelleingaben im Detail

Im Folgenden werden die detaillierten Modelleingaben gezeigt: Der Umfang des C‐
Codes wird mit 128 Anweisungen pro Function Point (Boehm, 2000) und 0,44 Seiten
pro  Function  Point  für  Spezifikation  und  Entwurf  umgerechnet. Aufwand,  Perso‐
nalbedarf und Fehlerzahl werden proportional zum Umfang auf das SIL‐0‐ und das
SIL‐3‐Modell verteilt.

Die Fehlerdichte  für entstehenden Fehler und die Verteilung auf die Fehlerschwere
und die Fehlerart sind an die Werte für Systemsoftware aus Jones (1996) angepasst.
Die  Parameter  von  COCOMO II  sind  entsprechend  den  Befragungsergebnissen
gesetzt.

Die  Korrekturen  folgen  dem  Korrekturprüfprozess, wenn  Fehler  im  Codereview,
dem Integrationstest, dem Systemtest und in den Fahrzeugtests entdeckt werden. Da
der Modultest durch die Entwickler erfolgt,  findet die Korrektur nach diesem Test
direkt statt. Im Korrekturprüfprozess werden Codereview, Modultest und Systemtest
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gezielt wiederholt. Der Integrationstest wird vollständig wiederholt (Abbildung 87).
Tabelle 99 zeigt die Prüfungen und ihre Parameter.

Für das Projekt sind viele Istwerte verfügbar. Trotzdem sind Werte einiger Ein‐ und
Ausgaben von CoBe nicht bekannt. Diese Unsicherheit wurde durch Modellvarianten
abgebildet:

• Der Einfluss der  Sicherheitsanforderungen  auf den Aufwand und  auf den Auf‐
wandsfaktor ist unklar.

• Die Prozessreife ist hoch, die Mitarbeiter erfahren. Dies senkt die Zahl entstehen‐
der Fehler.

Prüfung Parameter

Spezifikations‐
review

Vier hochkompetente Gutachter prüfen die gesamte Spezifikation und 
bereiten sich gründlich vor.

Entwurfsreview Ein hochkompetenter Gutachter prüft den gesamten Entwurf und berei‐
tet sich gründlich vor.

Codeanalyse Durch Codeanalyse wird eine Entdeckungsquote von 5 % der Codefeh‐
ler erzielt.

Modultest
Der Modultest ist ein vollständiger Black‐Box‐Test. Die Wiederholung 
kostet 50 % des Aufwands. Für eine Korrektur muss 1 % der Testfälle 
wiederholt werden.

Codereview

Ein hochkompetenter Gutachter prüft den gesamten Code und bereitet 
sich gründlich vor. Nach einer SIL‐0‐Korrektur werden 25 LoC begutach‐
tet (Jones, 2007), nach einer SIL‐3‐Korrektur wird ein Modul (gemessen: 
387 LoC pro Modul) begutachtet.

Integrationstest Der Integrationstest erfolgt als normaler Black‐Box‐Test (Funktionen 
und Äquivalenzklassen). Die Wiederholung kostet 50 % des Aufwands.a

a. Der Test ist weitgehend automatisiert und würde darum weniger für eine Wiederholung 
kosten. Weil er aber mehrfach wiederholt wird, wähle ich diesen höheren Wert.

Systemtest

Der Systemtest erfolgt zuerst als Black‐Box‐Test (Funktionen, Äquiva‐
lenzklassen, Sonderfälle) und wird dann für den Glass‐Box‐Test mit 83 % 
Zweigüberdeckung (gemessen im Projekt) ergänzt. Die Wiederholung 
kostet 10 % des Aufwands. Für eine Korrektur müssen 10 % der Testfälle 
wiederholt werden.

Fahrzeugtest Die Quantifizierung des Feldtests wird aus Jones (1996) 
übernommen.

Tabelle 99: Parameter der Prüfungen im Modell
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• Die Verteilungen auf Fehlerart und ‐schwere stehen nur für späte Phasen zur Ver‐
fügung; die Abbildung auf der  im Projekt verwendeten Fehlerschwere‐Definition
auf die Definition von CoBe ist unklar.

• Die Kompetenz der Prüfer wird subjektiv eingeschätzt, darum werden zwei Vari‐
anten mit höherer und niedrigerer Kompetenz gebildet.

• Unklar sind Umfang und Umfangsfaktoren von Spezifikation und Entwurf.

• Es ist unklar, ob Anweisungen oder Zeilen gemessen werden

• Unklar ist die Intensität und Fehlerentdeckungsquote der Fahrzeugtests.

• Es  ist unklar, wie viel Aufwand  für die Wiederholung von Tests benötigt wird.
Darum werden verschiedene Annahmen durchgerechnet.

Tabelle 100 fasst die Varianten zusammen. 

8.5.4 Vergleich der Modellresultate mit Istwerten

Kalibrierungsfaktoren 

Die Fehlerzahl des Modells wurde kalibriert, aber nicht Aufwand und Dauer, weil in
diesem Projekt die COCOMO‐Resultate für den Gesamtaufwand und für die Gesamt‐
dauer gut mit den Istwerten übereinstimmen (Tabelle 101). Die Modellresultate liegen
leicht unter dem tatsächlichen Aufwand. Ich führe dies vor allem darauf zurück, dass

Nr. Modellvarianten

1 Normalfall

2 Produktivität durch Sicherheitsanforderungen

3 Niedrige Fehlerzahl für hohe Prozessreife (Jones, 2003)

4 Fehlerverteilung mit gemessenen Werten der späten Phasen

5 Nominale (anstatt hoher) Kompetenz der Prüfer

6 Sehr hohe Kompetenz der Prüfer

7 Umfangreiche Spezifikation, umfangreicher Entwurf (1,25 statt 0,44 Seiten / FP)

8 Messung des Code‐Umfangs in Lines of Code statt in Anweisungen

9 Intensive Fahrzeugtests (Faktor 3 im Vergleich zum Feldtest)

10 Fehlerverteilung auf Fehlerschwere ohne kosmetische Fehler (Jones, 1998)

11 Höherer Wiederholungsanteil im Modultest

12 Höherer Aufwandsanteil für Wiederholung im Systemtest: 25 % mit Funktionsände‐
rung statt 10 % ohne Änderung (van Megen und Meyerhoff, 1995)

Tabelle 100: Varianten für unsichere Eingaben
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Mitarbeiter nicht immer Vollzeit im Projekt arbeiteten. Hardware‐bezogene Aktivitä‐
ten und Prozessanforderungen für SIL‐3 werden in COCOMO II nicht oder nicht aus‐
reichend  berücksichtigt.  Aufwand  und  Dauer  werden  nicht  kalibriert,  weil  die
Prüfparameter für SIL‐3 in CoBe explizit berücksichtigt werden und sich Zusatzarbei‐
ten bei der Bottom‐up‐Schätzung nicht auf die betrachteten Aktivitäten auswirken. 

Dagegen zeigt der Vergleich der spät entdeckten Fehler für den Normalfall, dass das
Modellresultat  für die Fehlerzahl etwa doppelt  so hoch wie der  Istwert  ist. Darum
wurde die Fehlerzahl mit dem Fehlerfaktor auf 50 % angepasst.

Entdeckte Fehler

Abbildung 88 zeigt den Median der Fehlerzahlen aus den Modellvarianten  im Ver‐
gleich zu Istwerten für Änderungsaufträge. Bei den Prüfungen, bei denen keine Ist‐
werte als Balken dargestellt sind, sind keine Fehlerzahlen verfügbar. Weil die Daten
vertraulich sind, ist die Skala nicht beschriftet.

• Istwerte für Fehler in Kundenreviews, internen Spezifikationsreviews, Entwurfsre‐
views, Modultests, in der Codeanalyse und im Integrationstest sind nicht verfüg‐
bar.

• Für die Codereviews ist die Zahl der Änderungsaufträge verfügbar: Entdeckte Feh‐
ler  in  formalen  Codereviews  wurden  über  Änderungsaufträge  korrigiert.  Ein
Änderungsauftrag konnte mehrere Befunde enthalten, weil der Auftrag einem zu
ändernden Modul zugeordnet ist; er erlaubt, das Modul auszuchecken. Nebenfeh‐
ler wurden  im Zuge späterer Änderungen korrigiert und nicht als eigener Ände‐

Abweichung von LEa

a.  

Mitarbeiterzahl 0,2 dB bis 3,7 dB

Dauer  0,3 dB bis 1,9 dB

Tabelle 101: Abweichungen der COCOMO‐II‐Resultate in den Modellvarianten
LE 10 Modellresultat Istwert⁄( )log⋅=
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Abb. 88: Fehlerzahlen und Änderungsaufträge im Vergleich
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rungsauftrag behandelt. Das Modell berechnet im Median rund drei mal so viele
Fehler wie  Änderungsaufträge  (Minimum:  Faktor  2, Maximum:  Faktor  4).  Die
Befragten bewerteten dieses Verhältnis als plausibel.

• Die berechnete Fehlerzahl und der Istwert für Änderungsaufträge stimmen für den
Systemtest  (einschließlich  interne  Fahrzeugtests)  gut  überein  (LE  =  1,3 dB). Die
Abweichung für externe Tests durch den Kunden ist höher (LE = 2,2 dB). Ich führe
dies auf den Feldtest  im Modell zurück, der auf  Jones  (1996) basiert. Er  ist nicht
vergleichbar mit einer intensiven Fahrzeugtest. Die Modellvariante mit intensivem
Feldtest zeigt sehr geringere Abweichungen (LE für Systemtest und interne Fahr‐
zeugtests: 0 dB, LE für externe Fahrzeugtests: 1,2 dB).

Initiale Prüfkosten

Die Modellresultate  für den Aufwand  initialer Prüfungen stimmen gut mit den  Ist‐
werten überein. Abbildung 89 zeigt den Aufwand  in Entwicklerstunden. Die Werte
sind nicht dargestellt, weil die Daten vertraulich sind. Die Ausnahme ist der Integra‐
tionstest, für den das Modellresultat zu niedrig ist.

Der Vergleich der Istwerte mit dem Median der Modellresultate zeigt:

• Der Aufwand für das Spezifikationsreview weicht um 1,3 dB ab. Das Resultat  ist
gut. Die Abweichung kann dadurch erklärt werden, dass  in CoBe die Kundenre‐
views nicht dargestellt werden und dass im Projekt Spezifikation und Dokumenta‐
tion nicht  strikt getrennt wurden. Der Prüflingsumfang und der Umfangsfaktor
sind für das Projekt nicht bekannt, da Anforderungen als einzelne Einheiten ver‐
waltet wurden. 

• Der Aufwand für das Entwurfsreview wird vom Modell mit 1,2 dB gut berechnet.
Der Umfang des Prüflings  ist unklar,  Jones  (2007) zeigt einen großen Bereich  für
den Umfangsfaktor. 

• Das Modellresultat für Codereviewaufwand ist gut, liegt aber etwas zu niedrig (1,3
dB). Die  Istwerte des Projekts enthalten aber auch Aufwand  für  formale Codere‐
views nach der Fehlerkorrektur.
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Abb. 89: Aufwand für initiale Prüfungen
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• Für Modultest und Codeanalyse sind keine Istwerte verfügbar. 

• Das Modellresultat  für  den  Integrationstest  ist  zu  niedrig,  die Abweichung  ist
4,8 dB. Die Ursache vermute ich im iterativen Vorgehen, dabei wird der Integrati‐
onstest mehrmals wiederholt. Dieser Aspekt wird in CoBe nicht dargestellt.

• Das Modellresultat für den Systemtest‐Aufwand stimmt sehr gut mit dem Istwert
überein (0,3 dB).

Die  Testfallzahl  wird  zu  niedrig  berechnet  (3,9  dB).  Ich  vermute,  dass  sich  die
Erfahrungswerte  von  Jones  (2007)  nicht  ohne  weiteres  auf  die  Entwicklung  von
Steuergeräte‐Software übertragen lassen, weil die Werte auf Function Points beruhen,
die für die betrachtete Domäne nicht geeignet sind. Außerdem wurden im Projekt aus
den Testfällen Testsequenzen abgeleitet; dazu müssen die einzelnen Testfälle relativ
detailliert  definiert  sein.  Somit  entstehen  also mehr,  dafür  feingranulare  Testfälle.
Aufwand und Fehlerentdeckung sind aber plausibel.

Aufwand für Korrekturen und Prüfung der Korrekturen

Der Aufwand für Korrektur und Prüfung der Fehler, die im Systemtest und den Fahr‐
zeugtests  entdeckt  wurden,  stimmt  gut  zwischen  Modell  und  Projekt  überein
(Tabelle 102). Die  Istwerte  liegen  im Bereich, den die Modellvarianten aufspannen.
Der Median aus dem Projekt liegt nahe am Minimum der Modellvarianten. Der Mit‐
telwert aus dem Projekt  liegt nahe beim Median der Modellvarianten. Da  jede ein‐
zelne Variante einen  statistischen Mittelwert  für den Korrekturaufwand pro Fehler
berechnet,  ist  der  Vergleich  zwischen  Mittelwert  und  Median  möglich.  Da  die
Modellvarianten auch extreme Varianten enthalten, wird kein Mittelwert der Modell‐
varianten berechnet; er würde durch die extremen Varianten verzerrt, der Median ist
robuster.

Der Aufwand, der für die Behebung der späten Fehler (Korrektur und Prüfung der
Korrektur)  insgesamt  anfällt, wird mit  hoher  Genauigkeit  berechnet.  So  liegt  der
Median  der Modellresultate  nur  etwas  zu  niedrig  (1,5  dB). Die Ursache  für  diese
Abweichung sind die zu niedrigen Modellresultate für den Modultest. Dies zeigt die
Aufwandsverteilung  der  Änderungen  (Abbildung 90).  Die  gewählten  Wiederho‐
lungsanteile für die Tests, vor allem für den Modultest, wurden zu niedrig gewählt;
diese Einschätzung wurde von den Befragten bestätigt. Die Verteilung der  Istwerte
basiert auf allen Änderungen. Sie enthält damit auch Aufwände für Anforderungsän‐

Aufwand (Eh) 
pro Fehler

Istwert Modellresultat

Mittelwert Median Median Minimum Maximum

SIL‐0 20,1 11,0 20,1 9,6 46,0

SIL‐3 19,6 13,0 22,5 12,3 47,7

Tabelle 102: Vergleich des Aufwands zur Korrektur und Prüfung eines Fehlers
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derungen  und  andere  Änderungen.  Aufwand  für  Codereviews  der  Änderungen
wurde im Projekt nicht gesondert dokumentiert und ist darum nicht dargestellt.

8.5.5 Resultate des Referenzmodells

Der Median der Modellvarianten stimmt gut mit den Istwerten des Projekts überein.
Einige wenige Werte weichen deutlich ab, liegen aber noch im Rahmen des Validie‐
rungskriteriums. Diese Abweichungen lassen sich auf den Prozess und die Domäne
zurückführen; diese Einschätzung wurde in der Diskussion mit den Projektbeteiligten
bestätigt. Für das Referenzmodell werden diese Erkenntnisse als Eingaben übernom‐
men:

• Der Wiederholungsanteil im Modultest wird auf 10 % erhöht. Dies entspricht der
Einschätzung der Befragten, die für den Modultest einer Änderung einen wesent‐
lich höheren Aufwand erwarten als im Systemtest.

• Für die Testwiederholung  im Systemtest wird 20 % Zusatzaufwand benötigt, ein
Kompromiss zwischen dem Zusatzaufwand für Korrekturen ohne Funktionsände‐
rung  und  dem  Zusatzaufwand  für  Korrekturen  mit  Funktionsänderung  (van
Megen und Meyerhoff, 1995).

• Die Fehlerverteilungen für Fehlerart und Fehlerschwere werden vom Industriepro‐
jekt übernommen.

• Für  interne  Fahrzeugtests wird  die  Intensität  des  Feldtests mit  dem  Faktor  2,5
angepasst; der Kunde entdeckt 95 % der Fehler vor Produktionsbeginn.

• Die Fehlerschwere ist durch den Schaden definiert. Kritische Fehler können Perso‐
nenschäden verursachen; bei schweren Fehlern erfolgt eine Rückrufaktion. Kriti‐
sche Fehler werden also mit 10 Millionen Euro Schaden beim Auftreten bewertet,
Hauptfehler mit 1 Million Euro.

Mit diesen Eingaben stimmen die Istwerte und Modellresultate noch genauer über‐
ein.  Abbildung 91  zeigt  die  Fehlerzahlen;  fehlende  Istwerte  im  Diagramm waren
nicht  verfügbar.  Die  Zahlenwerte  sind  vertraulich  und  darum  nicht  dargestellt.
Fehlerzahlen des  Systemtest mit  internen Fahrzeugtests und  externe Fahrzeugtests
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Abb. 90: Aufwandsverteilung auf Korrektur und Prüfung der Korrektur
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durch  den Kunden werden  nahezu  exakt  getroffen;  die  Fehlerzahl  im  Systemtest
weicht um 0,3 dB, in externen Tests um 0,0 dB ab. Für das Codereview ist der Istwert
die Zahl der Änderungsaufträge, die nicht direkt mit der Fehlerzahl vergleichbar ist.

Die Modellresultate  für den Behebungsaufwand der späten Fehler weichen um nur
0,4 dB ab. Die Verteilung auf die Korrektur und die Prüfungen der Korrektur stimmt
gut mit den Istwerten überein (Abbildung 92).

8.6 Bewertung der Validierung

Ich  diskutiere  zuerst  die  Resultate  der  Validierung  (Abschnitt 8.6.1)  und  bewerte
dann ihre Aussagekraft (Abschnitt 8.6.2). Folgerungen enthält Abschnitt 8.6.3.

8.6.1 Resultate der Validierung

Die Validierung mit Industrieprojekten zeigt, dass CoBe fähig ist, umfangreiche, ite‐
rativ und parallel ablaufende Projekte zu beschreiben, die unterschiedlich sicherheits‐
kritische und sich ändernde oder stabile Anforderungen haben. Das Modell spiegelt
auch die Entwicklung von Systemsoftware gut wieder. Die Kalibrierungsparameter
für Aufwand, Dauer und Fehlerzahl, und zusätzlich die Verteilung auf die Fehlerart
wurden angepasst. Die dazu notwendigen Daten werden häufiger als andere Metri‐
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Abb. 91: Fehlerzahlen im Vergleich
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ken  erfasst  und  archiviert  (Brodman  und  Johnson,  1996;  Fink  und Hampp,  2005;
Kasunic, 2006).

Die folgenden Modellresultate stimmen gut mit Istwerten überein, weil sie weniger
als 2 dB abweichen:

• Der Korrekturaufwand pro Fehler (verfügbar in Projekt 1 und 2), 

• der Prüfaufwand pro Fehler nach Korrektur (verfügbar in Projekt 2), 

• die Fehlerzahlen aus späten Tests (verfügbar in Projekt 2); mit Einschränkung, d.h.
nur im Referenzmodell, die Fehlerzahlen aus Kundentests und dem Einsatz (ver‐
fügbar in Projekt 1 und 2) und intensiven Tests (verfügbar in Projekt 1),

• die Zahl der Fehler pro Reviewsitzung in Codereviews (verfügbar in Projekt 1) und
die Fehlerzahl insgesamt der Codereviews (verfügbar in Projekt 2, durch Befragte), 

• der Aufwand, Dauer und Mitarbeiterzahl  für  späte Tests  (verfügbar  in Projekt 1
und 2), 

• der Aufwand für Reviews (verfügbar in Projekt 2),

• der  Aufwand  für  die Wiederholung  von  Prüfungen  und  den  Korrektur‐  und
Prüfaufwand für späte Fehler (beide verfügbar in Projekt 2).

Insgesamt wurden  die Modellresultate  von  den  Beteiligten  als  plausibel  bewertet.
Probleme zeigten sich bei der Abbildung intensiver Erprobungen und Vorablieferun‐
gen  des  Produkts.  Dies  lässt  sich  dadurch  begründen,  dass  der  Feldtest mit  der
Fehlerentdeckungsquote  aus  Jones  (1996)  einem  solchen  intensiven  Probebetrieb
nicht entspricht. Jones (2007) diskutiert diesen Punkt und erklärt, dass die Intensität
unterschiedlich  sein  kann  und  sich  die  Fehlerentdeckungsquote  dementsprechend
ändert.

Für die Testwiederholung und den dazu notwendigen Umfangs‐ und Aufwandsan‐
teil gibt es kaum Erfahrungswerte. Dies führt zu Abweichungen der Kosten für den
Modultest  und  für  den  Integrationstest  bei  iterativem Vorgehen  und  bei  gezielter
Prüfwiederholung. Die Modelleingaben waren mehr oder weniger frei gewählt und
enthalten eine große Unsicherheit.

8.6.2 Gültigkeit der Validierungsresultate

Die externe und die interne Validität der Validierung ist eingeschränkt. Die Ursachen
für diese Einschränkungen sind:

• Fehlerzahlen aus den frühen Phasen, d.h. aus den Reviews, waren in beiden Pro‐
jekten nicht vollständig verfügbar. Für das Industrieprojekt 1 und seine Subsystem‐
Projekte konnte aber die Zahl der Fehler pro Sitzung erfragt werden. Problematisch
an dieser Metrik  ist, dass sie durch den Umfang und die Merkmale der Sitzung
beeinflusst wird; über den Umfang des Dokuments standen aber keine Istwerte zur
Verfügung.
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• Es  sind  nur  wenig  Projekte  untersucht  worden.  Die  Projekte  wurden  nach
Abschluss  betrachtet.  Somit  handelt  es  sich  um  zwei  Fallstudien. Die Resultate
können zufällig gut mit den Istwerten übereinstimmen. Im Idealfall wären Istwerte
aus mehreren Projekten in ähnlicher oder der gleichen Umgebung, aber mit unter‐
schiedlichem Prüfprozess, verfügbar. Dann könnte der Nutzen validiert werden.
Aussagen über die Streuung wären möglich.

• Es erfolgte keine Prognose, sondern eine nachträgliche Bewertung.

Ich  bewerte  die  Industrievalidierung  aber  trotzdem  als  aussagekräftig  und  erfolg‐
reich. Die Kritikpunkte können nicht vollständig entkräftet werden; sie können aber
entschärft werden, wenn die Resultate der  studentischen Projekte einbezogen wer‐
den:

• Auch wenn wenig Projekte untersucht wurden, so handelt es sich um sehr unter‐
schiedliche Projekte (Abbildung 93). Da CoBe für so unterschiedliche Projekte gute
Resultate erbringt, kann vorsichtig auf eine gute Verallgemeinerbarkeit geschlos‐
sen werden. 

• Der Nutzen  des  Spezifikationsreviews  konnte  durch  Vergleich  der  Kosten mit
unterschiedlichen Prüfparametern gezeigt werden. Der Nutzen anderer Prüfungen
konnte nicht direkt durch einen Vergleich der Kosten durch unterschiedliche Prüf‐
prozesse und Prüfparameter  gezeigt  und  validiert werden. Die Projekte  für die
Validierung unterschieden sich aber deutlich in den Prüfungen, beispielsweise bei
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Abb. 93: Überblick über die Projekte für die Validierung
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der Zahl der Gutachter oder bei den Testparametern. Die Modellresultate stimmen
gut mit den Istwerten überein. Darum können diejenigen Zusammenhänge, deren
Eingabeparameter  sich  für  die  Projekte  unterscheiden,  bestätigt  werden.
Tabelle 103 zeigt, welche Istwerte und welche Unterschiede im Prüfprozess durch
Istwerte geprüft wurden.

• Die Kreuzvalidierung mit  den  studentischen  Projekten  kann  eine  Prognose  für
Industrieprojekte nicht ersetzen, zeigt aber, dass die Ungenauigkeit größer wird.
Da CoBe  für die  Industrieprojekte  eine höhere Genauigkeit als  für die  studenti‐
schen Projekte in der Diagnose zeigt, kann gefolgert werden, dass auch die Prog‐
nose von Industrieprojekten genauer als die Prognose studentischer Projekte wird.

Ein  weiteres  mögliches  Problem  der  Gültigkeit  dieser  Validierung  ist,  dass  das
Modell für die studentischen Projekte geändert wurde. Für die Industrieprojekte wur‐
den Modellvarianten für nicht verfügbare Eingaben erstellt. CoBe wurde für alle Pro‐
jekte kalibriert.

• Die Kalibrierung verändert nicht die Zusammenhänge und deren Parameter;  sie
verändert die Resultate gleichmäßig. Die Abbildungen 39 und 40  (Abschnitt 6.7)
zeigen  dies  deutlich. Wird  beispielsweise  die  Fehlerzahl  kalibriert,  dann  ändert
dies nichts an Zusammenhängen der Fehlerentdeckung und anfallenden und ent‐
fallenden  Fehlerkosten.  Die  Kalibrierungsparameter  können  aus  historischen
Daten berechnet werden. Die Voraussetzung, um gültige Aussagen mit CoBe zu
treffen, ist also erfüllbar.

Unterschied des Prüfprozesses Istwerte aus Projekt Prüfung durch Vergleich 
mit

Codereview mit einem oder vielen 
Gutachtern

Industrieprojekte 1 
und 2

Fehlerzahl pro Sitzung und 
Fehlerzahl

Oberflächliche Abnahme oder inten‐
sive Erprobung

Stud. Projekte, Indus‐
trieprojekte 1 und 2 Fehlerzahl

Systemtest mit Black‐Box‐Test und 
Anweisungsüberdeckung, mit inten‐
sivem Black‐Box‐Test, mit Black‐Box‐
Test und Zweigüberdeckung

Stud. Projekte, Indus‐
trieprojekte 1 und 2

Testaufwand, Fehlerzahl 
und Korrekturaufwand

Korrektur oder Korrektur mit Prüf‐
prozess

Stud. Projekte, Indus‐
trieprojekte 1 und 2

Aufwand pro Fehler und 
Gesamtaufwand für Fehler

Mehr oder weniger intensive Spezifi‐
kationsreviews mit vielen Gutach‐
tern

Studentische Projekte
Fehlerzahlen und Korrek‐
turaufwand nach Spezifika‐
tionsreview und Systemtest

Tabelle 103: Kosten und Nutzen geprüft durch Istwerte
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• Die beiden Modellverbesserungen, die nach der ersten Erprobung von CoBe mit
studentischen Projekten erfolgten, bedrohen die Gültigkeit nicht: Sie basieren auf
empirischen Untersuchungen und nicht auf den  Istwerten, mit denen verglichen
wurde. Nach der Modellverbesserung wurden die Modellresultate mit anderen Ist‐
werten verglichen: Vor der Modelländerung wurden Mittelwerte der Projekte ver‐
wendet. Im Gegensatz dazu wurden nach der Modelländerung einzelne Projekte
des Praktikums analysiert und für den Vergleich verwendet. 

• Die  Erweiterungen  der  Modellversion  1  von  CoBe  zur  Modellversion  2
(Abschnitt 7.1) mit detaillierten Tests auf allen  Integrationsebenen, der Codeana‐
lyse und dem Korrekturprüfprozess ändern nichts an bestehenden Modellzusam‐
menhängen.  Sie  bedrohen  darum  nicht  die  Aussagen  der  durchgeführten
Erprobung des Modells. Da für alle Tests die gleichen Zusammenhänge modelliert
werden, werden diese Zusammenhänge sogar zusätzlich bestätigt.

• Kritisch für die Validierung mit den Industrieprojekten sind Modelleingaben, die
nicht  verfügbar waren.  Dabei  handelt  es  sich  um  Kalibrierungsparameter  und
Prüfparameter.  Die  Lösung mit Modellvarianten  für  unsichere Modelleingaben
schlage ich auch für den Praxiseinsatz vor. Die Prüfparameter sind nur in der nach‐
träglichen Validierung  nicht  bekannt, da  beim Modelleinsatz die Prüfparameter
vorgegeben werden. Diese Unsicherheit ist darum ein spezielles Merkmal der Dia‐
gnose, also des nachträglichen Modelleinsatzes. Die Validierung zeigt zwei Para‐
meter, die in bestimmten Situationen zusätzlich durch Erfahrungswerte angepasst
werden sollten: Die Intensität des Feldtests  ist unklar. Der Aufwand für die Wie‐
derholung der Tests ist unsicher. Wie für die Kalibrierungsparameter können diese
Werte aber aus Archivdaten ähnlicher Projekte erhoben werden.

8.6.3 Folgerungen

Je genauer die Eingaben gesetzt werden können, desto genauer werden die Resultate.
Für eine erste Kalibrierung  sind vier Faktoren  (Aufwand, Dauer, Fehler, Fehlerart)
ausreichend, die mit Archivdaten belegt werden können. Zusätzlich können weitere
Eingaben mit Archivdaten belegt werden. Dazu gehört etwa der Wiederholungsanteil
und  ‐aufwand  in  Tests. Die Modellresultate  sind  ähnlich  genau wie  die Resultate
anderer algorithmischer Kostenschätzverfahren. CoBe ergänzt also die Kostenschät‐
zung um eine Bottom‐up‐Kostenschätzung für Prüfungen, Korrekturen und Wieder‐
holung der Prüfungen. Vor allem aber macht das Modell den Nutzen der Prüfungen
sichtbar. Dieser Nutzen ist in der Realität nur durch den Vergleich von Projekten mit
unterschiedlichen Prüfungen messbar, weil dazu die Kostendifferenz durch unter‐
schiedliche Prüfungen betrachtet werden muss.

Die Validierung zeigt, dass CoBe  im Grundsatz allgemein eingesetzt werden kann.
Dazu müssen aber die Kalibrierungsparameter mit Archivdaten ähnlicher Projekte,
z.B. der Organisation, belegt werden. Mit diesen Voraussetzungen sind die Resultate,
die in der Validierung berechnet werden, für ganz unterschiedliche Projekte und Prü‐
fungen ausreichend genau. CoBe enthält einen umfangreichen Prüfprozess. Die in der
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Praxis  typisch eingesetzten Prüfungen werden abgedeckt  (Liggesmeyer, 2002; Sieg‐
wart, 2004; Jones, 1996). 

Die Validierung bestätigt, dass die Prüfparameter wichtige Modelleingaben sind. Ein‐
zig für unterschiedliche Arten des Feldtests war keine ausreichende empirische Basis
für ein solches Modell verfügbar. Es zeigt sich in der Validierung, dass unterschied‐
lich  intensive Feldtests eine Rolle spielen. Beim Modelleinsatz sollten darum Erfah‐
rungswerte zur Verfügung stehen. Falls solche Werte nicht vorhanden sind, zeigt die
Validierung,  dass  unsichere  Eingaben  durch  Modellvarianten  dargestellt  werden
können.

Das  iterative Vorgehen  für den Modelleinsatz wurde bereits während der Validie‐
rung deutlich: Wenn Eingaben unsicher sind oder Ausgaben stark abweichen, dann
wird deutlich, dass Informationen über das Projekt fehlen. Damit wird eine gezielte
Analyse möglich, die zu einem besseren Prozessverständnis führt. Dadurch kann das
Modell genauer angepasst und verbessert werden. Die Analyse zeigt, welche Annah‐
men über den Prozess oder  im Modell nicht haltbar sind. Sie zeigt, ob und wie das
Modell erweitert werden muss. Das Modell macht nicht verfügbare Metriken sichtbar
und ergänzt somit vorhandene Daten.

8.7 Modellverhalten und Modelleinsatz

Die Validierung zeigt, dass CoBe reale Projekte ausreichend genau widerspiegelt, um
Aussagen über Kosten und Nutzen von Prüfungen zu treffen; das Modell kann also
die Realität für diesen Aspekt diagnostisch oder prognostisch abbilden. Die Modell‐
ziele sind (Abschnitt 3.2):

• Mit dem Modell  sollen die Auswirkungen von konkreten und detaillierten Ent‐
scheidungen über Prüfungen gezeigt werden können. Dazu gehören Kosten und
Nutzen  im  Projekt,  aber  auch  die  langfristigen  Auswirkungen,  beispielsweise
durch Fehlerfolgekosten.

• Mit dem Modell sollen Auswirkungen von Entscheidungen über Prüfungen, die in
realen  Projekten  getroffen  wurden,  diagnostiziert,  d.h.  nachträglich  dargestellt
werden können,  es  soll Unterschiede  zwischen Prozessen deutlich machen,  ihre
Auswirkungen im Projekt und ihre langfristigen Auswirkungen darstellen können.

• Das Modell soll erlauben, die Kosten mit dem Nutzen zu vergleichen, um Kosten
und Nutzen gegeneinander abzuwägen.

• Das Modell  soll ermöglichen, den Prüfprozess und die Prüfparameter bezüglich
der Kosten und des Nutzens zu optimieren, um die Gesamtkosten zu minimieren.

• Das Modell soll die Planung eines Projekts unterstützen und darum die Auswir‐
kungen von Entscheidungen auf der dazu passenden Abstraktionsebene und als
Planungsmetriken darzustellen.
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Für den Modelleinsatz schlage  ich ein Vorgehen vor, das sich an GQM  (Basili und
Rombach, 1988) orientiert (Abbildung 94): Im ersten Schritt wird die Frage formuliert,
dann werden diejenigen Modellausgaben ausgewählt, mit denen die Frage quantita‐
tiv beantwortet werden kann.  Im nächsten Schritt wird das Modell kalibriert, dazu
werden die Kalibrierungsparameter für Dauer, Aufwand, Fehlerzahlen gesetzt. Falls
notwendig, werden weitere Parameter angepasst. Dann werden die anderen Modell‐
eingaben für die Prozess‐ und Produktmerkmale und für die Prüfungen gesetzt. Für
den Vergleich unterschiedlicher Prozesse können dabei auch mehrere Modellinstan‐
zen verwendet werden. Die Modellresultate werden gesammelt und dargestellt; sie
müssen interpretiert werden.

Im Folgenden zeige ich die Einsatzmöglichkeiten des Modells mit einem fiktiven Pro‐
jekt und mit Daten aus einem Bericht über Prozessverbesserungen (Haley et al., 1995).
Dazu verwende ich fünf Fragen als Beispiele:

1. Wie hoch sind die Kosten, d.h. Dauer, Aufwand und Personalbedarf für einen Prüf‐
prozess, der ausschließlich auf Tests basiert? Wie hoch sind die langfristigen Kos‐
ten bei diesem Vorgehen?

2. Wie viel kostet, wieviel nützt das Entwurfsreview bei einem solchen Prüfprozess?
Wie wirkt sich das Review im Projekt und wie wirkt sich das Review langfristig in
der Wartung und  im Einsatz  aus?  Sind  fünf Gutachter notwendig, oder  reichen
zwei Gutachter aus?

3. Wie wirken  sich Prozessverbesserungen mit Reviews aus, wie  sie beispielsweise
von CMM gefordert werden?

Frage(n) formulieren

Modellresultate identifizieren

Prozess‐ und Produktmerkmale eingeben

Eingaben für Prüfungen in einem oder 
mehreren Modellen setzen

Modellresultate sammeln und darstellen

Resultate interpretieren, um die Frage(n) 
zu beantworten

Abb. 94: Schritte beim Modelleinsatz

Modell kalibrieren
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4. Sollen die Modultests verbessert oder Codereviews eingeführt werden? 

5. Was kosten Regressionstests, wenn  sie von Hand durchgeführt werden müssen?
Sind solche Tests in einem Projekt mit beschränkter Dauer und beschränktem Auf‐
wand machbar? Was bringt eine Testautomatisierung?

Tabelle 104 gibt einen Überblick über die Modellziele und das Beispiel, mit dem der
Modelleinsatz für dieses Ziel illustriert wird.

8.7.1 Ein fiktives Beispielprojekt

Das Beispielprojekt hat einen Umfang von 200 Function Points und soll in Java reali‐
siert werden.  Alle  Parameter  des Modells werden  auf  ihre Normalwerte  gesetzt.
COCOMO II  berechnet  für das Projekt  42 Entwicklermonate Aufwand,  14 Monate
Dauer (rund 280 Arbeitstage) und 3 Mitarbeiter. Als Ausgangspunkt für den Prüfpro‐
zess werden typische, normale Tests (Modultest, Integrationstest, Systemtest) durch‐
geführt und von Hand wiederholt. Es findet ein Feldtest statt. In der Wartung werden
Modultest und Systemtest gezielt  für die Korrektur wiederholt, der  Integrationstest
wird als Regressionstest durchgeführt. Die Fehlerschwere ist im Beispielprojekt durch
den möglichen Schaden im Einsatz definiert. Dabei handelt es sich um eine Anwen‐
dung, bei der ein kritischer Fehler einen Schaden von 10 000 Euro verursachen kann;
die Hauptfehler verteilen sich zu gleichen Teilen auf einen Schaden von 1000 Euro
und 100 Euro, Nebenfehler führen zu Komfortverlusten. Etwa 10 % der Fehler treten
nicht auf und werden auch nicht gemeldet. Die Software wird nach der Auslieferung
häufig verwendet. Kritische Fehler werden sofort korrigiert; die Software wird erst
wieder eingesetzt, wenn der Fehler behoben  ist. Bei anderen Fehlern wird die Soft‐
ware etwa zehnmal verwendet, bis ein Fehler korrigiert wird. 

Modellziel Beispiel

Auswirkungen von Entschei‐
dungen im Projekt darstellen

Frage 2: Entwurfsreviews mit Varianten (Abschnitt 8.7.2)
Frage 5: Testautomatisierung (Abschnitt 8.7.5)

Langfristige Auswirkungen 
der Entscheidungen darstellen Frage 2: Entwurfsreviews mit Varianten (Abschnitt 8.7.3)

Auswirkungen darstellen und 
Unterschiede deutlich machen

Frage 3: Verbesserung mit Reviews (Abschnitt 8.7.4)
Frage 5: Verbesserungen durch Testautomatisierung 
(Abschnitt 8.7.5)

Kosten und Nutzen verglei‐
chen, abwägen und optimieren

Frage 2: Entwurfsreview mit Varianten (Abschnitt 8.7.3)
Frage 4: Codereviews oder Modultest (Abschnitt 8.7.6)

Planungsmetriken darstellen
Frage 1: Kosten von Tests (Abschnitt 8.7.1)
Frage 2: Kosten der Entwurfsreviews (Abschnitt 8.7.2)
Frage 5: Kosten für Regressionstest (Abschnitt 8.7.5)

Tabelle 104: Überblick über die Modellziele und Beispiele für den Modelleinsatz



264 8. Evaluation des Modells

Die  Modellresultate  für  die  Qualitätskosten  der  Tests  und  Korrekturen  zeigt
Tabelle 105 mit dem Aufwand in Entwicklerstunden, der Dauer in Arbeitstagen und
dem  Personalbedarf  (gerundet).  Die  Resultate  basieren  auf  den  Fehlerzahlen,  die
CoBe berechnet  (Tabelle 106).  Insgesamt  fallen 193 Arbeitstage und  rund 2702 Ent‐
wicklerstunden für die Tests und die Korrektur im Projekt an. Die Fehlerfolge‐ und
Wartungskosten sind  im Vergleich zu den Projektkosten und zu den Projekt‐Quali‐
tätskosten um Größenordnungen höher. In der Wartung macht die Prüfung nach der
Korrektur den wesentlichen Anteil aus (rund 15 000 Entwicklerstunden). Die Fehler‐
folgekosten liegen bei rund 657 000 Euro.

Bewertung

Diese  Planungsmetriken  ergänzen  die  Kostenschätzung,  beispielsweise  die  Top‐
down‐Schätzung mit COCOMO II. Sie zeigen, dass der Zeitplan mit diesen Prüfun‐
gen eng ist, wenn strikt sequentiell vorgegangen wird, weil bereits Prüfung und Kor‐
rektur  rund  zwei  Drittel  der  Projektdauer  benötigten.  Der  Vergleich  des
Wartungsaufwands  mit  dem  Aufwand  für  Prüfungen  und  Korrektur  im  Projekt
deutet eine nicht optimale Situation an.

8.7.2 Kosten und Nutzen des Entwurfsreviews

Die Demonstration von Kosten und Nutzen  zeige  ich am Beispiel des Entwurfsre‐
views  für zwei Fälle.  Im ersten Fall wird ein  formales Review mit  fünf Gutachtern
durchgeführt,  im  zweiten  Fall  erfolgt das Review mit  zwei Gutachtern. CoBe  gibt
diese beiden Fälle nicht  fest vor;  es  erlaubt,  eine andere Gutachterzahl, Gutachter‐

Qualitätskosten Aufwand 
(Eh) Dauer (Tage) Mitarbeiter 

Prüfung
Mitarbeiter 
Korrektur

Modultest, Korrektur 325 20 2 0a

a. Im Modultest prüfen und korrigieren die gleichen Entwickler

Integr.‐test, Korrektur 685 56 3 2

Systemtest, Korrektur 972 72 3 2

Korrektur Feldtest 720 45 ‐ 2

Wartung, nur Korrektur 3611

Wartung, nur Retest 11 388

Tabelle 105: Modellresultate für Qualitätskosten

Zahl der Fehler Insgesamt Ausgeliefert Gemeldet und wirksam

642 290 261

Tabelle 106: Modellresultate für Fehlerzahlen
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kompetenz oder Vorbereitungsintensität zu wählen. In beiden Fällen erfolgt die Vor‐
bereitung  gründlich.  Die  Prüfung  wird,  falls  notwendig,  auf  mehrere  Sitzungen
verteilt, die von einem Moderator betreut werden. CoBe zeigt, welche Kosten entste‐
hen. Tabelle 107 zeigt Modellresultate für die Planungsmetriken eines Review mit 5
Gutachtern, Tabelle 108 das Review mit 2 Gutachtern. Das Projekt verzögert sich ohne
eine parallele Organisation des Entwurfsreviews und der Korrektur um etwa zwei
Wochen.

Abbildung 95 vergleicht den Nutzen der Reviewvarianten. Mit 2 Gutachtern  ist das
Review etwas günstiger (221 Entwicklerstunden Aufwand und 47 Tage einschließlich
Korrektur), dafür  ist der Nutzen geringer, der mit 5 Gutachtern im Projekt 515 Ent‐
wicklerstunden beträgt. Berücksichtigt man den Aufwand  für das Review und die
Korrektur,  dann werden mit  5 Gutachtern  171  Entwicklerstunden  eingespart. Mit
zwei Gutachter (Tabelle 108) werden 135 Entwicklerstunden eingespart. 

8.7.3 Langfristiger Nutzen des Entwurfsreviews

Deutlicher wird der Nutzen des Reviews, wenn die langfristigen Auswirkungen nach
Auslieferung, d.h. die entfallenden Wartungskosten und die entfallenden Fehlerfolge‐
kosten für Kunden und Benutzer beim Einsatz, betrachtet werden (Tabelle 109). Per‐
sonalkosten sind mit 200 000 Euro pro Entwicklerjahr gewichtet.  

Entwurfsreview mit 
5 Gutachtern

Aufwand
(Eh)

Dauer
(Tage)

Mitarbeiter 
Prüfung

Mitarbeiter 
Korrektur

Review‐
kosten

Entwurfsreview 75 9 7,0 ‐

Korrektur 269 55 ‐ 0,6

Weitere 
Qualitäts‐
kostena

a. Die Prüfungen sind einschließlich Korrektur dargestellt.

Modultest 308 19 2,0 ‐b

b. Im Modultest prüfen und korrigieren die gleichen Entwickler

Integrationstest 573 49 2,9 2,0

Systemtest 790 61 2,9 2,0

Feldtestc

c. Nur Korrektur nach Feldtest

517 32 2,0

Entfallende 
Kosten 
(Nutzen)a

Modultest 17 1 0,2 2,0

Integr.‐test 113 7 1,8 2,0

Systemtest 182 11 0,9 2,0

Feldtestc 203 13 ‐ 2,0

Tabelle 107: Modellresultate für ein Entwurfsreviews mit 5 Gutachtern
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Die Gesamt‐Qualitätskosten  in Euro machen sichtbar, dass das Review nützlich  ist.
Für Tabelle 110 werden Personalkosten mit 200 000 Euro pro Entwicklerjahr berech‐
net. Durch das Entwurfsreview werden Personalkosten während des Projekts einge‐
spart. Der größte Teil des Nutzens wird aber durch entfallende Personalkosten in der
Wartung erreicht. Fall 1 betrachtet Personalkosten und Fehlerfolgekosten. Personal‐
kosten in der Wartung und Fehlerfolgekosten sinken bei einem Review mit 5 Gutach‐
tern auf etwa zwei Drittel im Vergleich zu einem Projekt ohne Entwurfsreview (Fall 1
in Tabelle 110, Abbildung 96, links).

Entwurfsreview mit 
2 Gutachtern

Aufwand
(Eh)

Dauer
(Tage)

Mitarbeiter 
Prüfung

Mitarbeiter 
Korrektur

Review‐
kosten

Entwurfsreview 35 9 4,0 0,0

Korrektur 186 38 0,0 0,6

Weitere 
Qualitäts‐
kostena

Modultest 313 19 2,0 ‐b

Integrationstest 607 51 2,9 2,0

Systemtest 846 64 2,9 2,0

Feldtestc 579 36 2,0

Nutzena

Modultest 12 1 0,2 2,0

Integrationstest 78 5 1,8 2,0

Systemtest 126 8 0,9 2,0

Feldtestc 141 9 2,0

Tabelle 108: Modellresultate für ein Entwurfsreviews mit 2 Gutachtern
a. Die Prüfungen sind einschließlich Korrektur dargestellt.
b. Im Modultest prüfen und korrigieren die gleichen Entwickler.
c. Nur Korrektur nach Feldtest

Review Modul-
test

Integra-
tionstest

System-
test

Feldtest
-400

-300

-200

-100

0

100

200
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400
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2 Gutachter
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Abb. 95: Nutzen des Entwurfsreviews mit 5 oder 2 Gutachtern
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Langfristige Auswirkungen 5 Gutachter 2 Gutachter

Entfallende Wartung (nur Korrektur) in Eh 1080 748

Entfallende Wartung (Korrektur und Test) in Eh 4377 3033

Entfallende Personalkosten für die Wartung in Euro 479 955 332 578

Entfallende Folgekosten beim Einsatz in Euro 190 236 131 821

Tabelle 109: Langfristige Auswirkungen

Qualitätskosten in Euro im Vergleich Ohne Review 5 Gutachter 2 Gutachter

Personalkosten für Prüfung und Korrektur im 
Projekt  296 353 277 506 281 470

Personalkosten für Prüfung und Korrektur in 
der Wartung 1 644 656 1 164 701 1 312 078

Summe Personalkosten 1 941 009 1 442 207 1 593 548

Fehlerfolgekosten beim Einsatz der Software 657 023 466 787 525 202

Niedrige Fehlerfolgekosten beim Einsatz  228 734 162 506 191 196

Kosten für Dauer bei Vertragsstrafe im Projekt 2 970 416 3 861 552 3 643 188

Fall 1: Summe Personal‐ und Fehlerfolgekosten 2 598 032 1 908 994 2 118 750

Fall 1: Davon langfristige Kosten (Wartung und 
Fehlerfolgekosten) 2 301 679 1 631 488 1 837 280

Fall 2: Summe Personalkosten, Fehlerfolgekos‐
ten, Vertragsstrafen 5 568 448 5 770 546 5 761 938

Fall 2: Summe Personalkosten, niedrige Fehler‐
folgekosten, Vertragsstrafen 5 140 159 5 466 265 5 427 932

Tabelle 110: Qualitätskosten im Vergleich
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Abb. 96: Qualitätskosten im Vergleich
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Spielt aber die Dauer eine wichtige Rolle, beispielsweise weil Vertragsstrafen bei Ver‐
zögerungen  drohen  (Fall  2),  dann macht  CoBe  deutlich,  dass  –  bei  ungeschickter
Organisation  der  Reviews  und  einem  strikt  sequentiellen Vorgehen  –  das  Projekt
teurer wird, vor allem mit 5 Gutachtern. Tabelle 110 zeigt die Qualitätskosten für die‐
sen Fall 2. Für die monetäre Gewichtung der Dauer werden 3 % der gesamten Projekt‐
kosten als Vertragsstrafe pro Tag gesetzt. Der langfristige Nutzen gleicht die höheren
Projektkosten nahezu aus (Fall 2 in Tabelle 110, Abbildung 96, mitte). Sind die Fehler‐
folgekosten niedrig, verursachen also Fehler maximal einen Schaden von 1000 Euro
und wird das Produkt selten eingesetzt, dann verändert sich die Aussage von CoBe:
Die Dauer wird zum bestimmenden Einfluss. (Fall 3 in Tabelle 110 und Abbildung 96,
rechts).

Bewertung

Die Modellresultate machen sichtbar, wann und in welchem Maß Nutzen durch Prü‐
fungen erreicht wird. Mit dem Modell können auch kleine, nicht offensichtliche Ver‐
besserungen dargestellt werden. Der Nutzen  ist  in  realen Projekten nur durch den
Vergleich der Kosten sichtbar, weil er durch entfallende Fehler entsteht. In vielen Fäl‐
len sind Metriken, die für einen solchen Vergleich nötig sind, nicht verfügbar. Selbst
wenn sie verfügbar sind, dann ist der Vergleich schwierig, weil andere Unterschiede
der Projekte den Effekt der Prüfungen überlagern können.

Die Modellresultate zeigen den langfristigen Nutzen und machen Unterschiede, die
durch unterschiedliche Prüfparameter verursacht werden, deutlich. Die Modellresul‐
tate machen deutlich, welche Kosten für die Entscheidungen über Prüfungen relevant
sind: Fehlerfolgekosten beim Einsatz, Projektkosten oder Wartungskosten prägen die
Gesamt‐Qualitätskosten und damit die Gesamtkosten. Nutzen und Kosten werden
durch die Abbildung auf Geldwerte vergleichbar; dieser Vergleich ist aber durch die
Gewichtung der Basismetriken, also der Dauer, des Aufwands, und der Fehlerkosten,
geprägt. Über Prüfungen kann rationaler entschieden werden, weil die Gewichtung
dieser Metriken  durch  plausible  Erfahrungswerte möglich  ist. Das  Beispiel macht
deutlich, dass es keinen Standard‐Prüfprozess gibt, der  in allen Situationen optimal
ist; die konkrete Situation bestimmt den Nutzen.

Prinzipiell ist natürlich möglich, die Metriken mit Geldwerten so zu gewichten, dass
eine gewollte Entscheidung begründet wird. Insofern kann CoBe unterlaufen werden.
Die Gewichtung ist aber sichtbar und mit Erfahrungswerten belegt.

8.7.4 Prozessverbesserung durch Reviews

Mit dem Modell können Effekte von Prozessverbesserungen nachträglich dargestellt
werden. Dazu wird der Effekt von formalen Reviews betrachtet; Reviews werden bei‐
spielsweise von CMMI  (CMMI Product Team, 2002) gefordert. Die Modellresultate
für Spezifikations‐, Entwurfs‐ und Codereview mit jeweils 5 Gutachtern und mit den
gleichen Prozess‐ und Produktmerkmalen wie in Abschnitt 8.7.1 zeigen, dass die Kor‐
rekturkosten auf rund zwei Drittel gesenkt werden können (Tabelle 111).
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Haley et al. (1995) berichten einen ähnlich hohen Nutzen dieser Reviews, die im Rah‐
men der Prozessverbesserung mit CMM eingeführt wurden. Zuerst wurden formale
Entwurfs‐ und Codereviews, dann Anforderungsreviews etabliert. Es zeigte sich im
Verlauf der Prozessverbesserung, dass der Anteil für Nacharbeit an den Projektkos‐
ten von rund 40 % auf 20 % gesenkt werden konnte.

Ich beziehe die Korrekturkosten, die CoBe berechnet, auf den Projektaufwand, den
COCOMO II berechnet, damit die Anteile in Prozent direkt verglichen werden kön‐
nen. COCOMO II  berechnet  42  Entwicklermonate Aufwand  für  das  Projekt. CoBe
berechnet  34 %  von  diesen  42  Entwicklermonaten  für  die  Korrektur,  falls  keine
Reviews durchgeführt werden. Mit Reviews mit 5 Gutachtern sinkt dieser Anteil  in
CoBe auf 21 %. Durch Reviews sinkt also der Anteil der Korrekturkosten von 34 % auf
21 %  in CoBe, von 40 % auf 20 %  im Bericht von Haley  et al.  (1995) durch CMMI.
CMMI wirkt also etwas stärker, vermutlich weil Verbesserungen der Planung, Schu‐
lung und Anforderungsdefinition zusätzlich wirken.

Bewertung

Das Modell demonstriert die Verbesserung und macht sie sichtbar, ohne dass reale
Projekte  in großem Umfang durchgeführt werden müssen. Das Beispiel  zeigt  aber
auch  eine  wichtige  Grenze  des  Modells,  weil  die  Einführung  der  Reviews,  der
Trainingsaufwand und die organisatorischen Schwierigkeiten mit Reviews, damit es
zu keinen Verzögerungen kommt, nicht dargestellt werden. Das Beispiel zeigt auch,
dass  CoBe  andere  Verbesserungen,  z.B.  der  Anforderungsdefinition,  der  Planung
oder der Schulung, nicht direkt darstellt. Diese Verbesserungen durch Fehlervermei‐
dung können nicht direkt dargestellt werden, aber  indirekt durch die Kalibrierung
einbezogen werden.

Korrekturaufwand (Eh) Ohne Review 5 Gutachter 2 Gutachter

Spezifikationsreview ‐ 123 85

Entwurfsreviewkorrektur ‐ 233 169

Codereviewkorrektur ‐ 251 220

Modultestkorrektur 141 123 129

Integrationstestkorrektur 506 151 233

Systemtestkorrektur 818 242 375

Feldtestkorrektur 720 197 317

Summe (Eh) 2185 1322 1528

Summe (EM) 14 9 10

Tabelle 111: Einfluss von Reviews auf den Korrekturaufwand



270 8. Evaluation des Modells

8.7.5 Prozessverbesserung durch Testautomatisierung

Auch dieses Beispiel stammt aus dem Bericht von Haley et al. (1995). Im Projekt, über
das berichtet wird,  erfolgte die  Systemintegration  inkrementell. Dazu wurde  jedes
Release mit den zu integrierenden Komponenten und Funktionen geplant, dann ent‐
wickelt. Nach jeder Integration sollte ein Regressionstest das Release prüfen, um die
Funktionsfähigkeit zu gewährleisten. Da der Test nicht automatisiert war, wurde er
vernachlässigt; er war zu teuer. 

Das Modell kann dieses Problem darstellen. Von Hand kostet die Wiederholung des
Tests  rund  75 % des Aufwands der  ersten Durchführung,  automatisiert  10 % ohne
Funktionsänderung,  25 % mit  Funktionsänderung.  Für  den  Integrationstest  nehme
ich an, dass die Korrektur von 5 Fehlern in ein Release kommt. Dies entspricht etwa 8
Integrationsschritten; es wird in etwa einmal pro Woche integriert. 

Ohne Automatisierung müssen rund 2,5 Entwicklermonate aufgewendet werden, der
Test dauert über 2 Monate. Diese Kosten lassen sich um mehr als die Hälfte reduzie‐
ren. Dies entspricht den Erfahrungen von Haley et al. (1995). 

Bewertung

Das Modell kann die Auswirkungen einzelner, konkreter Verbesserungsmaßnahmen
zeigen. Die Modellresultate stimmen mit Erfahrungen aus Prozessverbesserungsmaß‐
nahmen überein.

8.7.6 Codereview durchführen oder Modultest verbessern

Die Auswahl zwischen zwei Verbesserungen zeige ich mit der folgenden Frage: Soll
ein Modultest, der als Black‐Box‐Test durchgeführt wird, durch einen Glass‐Box‐Test
mit 80 % Anweisungs‐ und Zweigüberdeckung verbessert werden? Oder soll der glei‐
che Aufwand  in Codereviews  investiert werden soll? Diese Frage diskutiere  ich für
das  fiktive Projekt  aus Abschnitt 8.7.1. Der Prüfprozess  ist mit  Spezifikations‐ und
Entwurfsreviews, Modultest, Systemintegrationstest, Systemtest und Feldtest angege‐
ben. Die Reviews finden jeweils mit 5 gründlichen Gutachtern statt. Die Eingaben für
alle Tests sind auf den Nominalfall, d.h. Black‐Box‐Test der Funktionen und Äquiva‐
lenzklassen, gesetzt. Alle Prozess‐ und Produktmerkmale sind auf die gleichen Werte
wie in Abschnitt 8.7.1 gesetzt, mit rund 200 Function Points Umfang und einem maxi‐
malen Schaden, den ein Fehler beim Auftreten verursachen kann, von 10 000 Euro.

Ohne Automatisierung Mit Automatisierung

Aufwand (Eh) 368 159

Dauer (Tage) 51 22

Tabelle 112: Nutzen der Testautomatisierung
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Die Tabellen 113 und 114 zeigen die Modellresultate für diesen Prozess mit den drei
unterschiedlichen Varianten. Der gleiche Aufwand, der für den intensiveren Modul‐
test  einschließlich der Korrekturen  anfällt, wird  statt dessen  in Codereviews mit  4
Gutachtern investiert. Dies erlaubt, rund 57 % des Codes zu begutachten; die Reviews
werden  priorisiert,  sie  konzentrieren  sich  auf  kritischen,  risikoreichen  Code.  In
Tabelle 114 sind die Projekt‐Qualitätskosten (also Prüfungen, Korrektur, Prüfwieder‐
holung), die Qualitätskosten in der Wartung (Korrektur, Prüfwiederholung) und die
Fehlerfolgekosten beim Einsatz des Produkts dargestellt. Die Gesamt‐Qualitätskosten
bestehen aus den Projekt‐Qualitätskosten, den Qualitätskosten der Wartung und den
Fehlerfolgekosten. 

Die Modellresultate zeigen, dass der Aufwand für die Prüfung und Korrektur in bei‐
den Fällen etwa gleich ist. Die Codereviews dauern aber länger, falls sie nicht so orga‐
nisiert werden, dass sie parallel durchgeführt werden. Der Nutzen, d.h. entfallende
Personal‐ und Fehlerfolgekosten, unterscheidet sich deutlich: Mit Codereviews wer‐
den bereits  im Projekt die Qualitätskosten gesenkt,  langfristig sinken die Qualitäts‐

Kosten für Aufwand 
(Eh)

Dauer 
(Tage)

Modultest (Black‐Box‐Test) mit normaler Intensität 308 19

Modultest (Black‐Box‐Test mit normaler Intensität) 
und Codereview (4 Gutachter, 57 % des Codes)

Modultest  308 19

Codereview 326 29

Gesamt 634 48

Modultest (Black‐Box‐Test mit normaler Intensität) ergänzt um 
Glass‐Box‐Test bis 80 % Anweisungs‐ und Zweigüberdeckung 636 39

Tabelle 113: Kosten der Prüfung und Fehlerbehebung im Vergleich

Qualitätskosten Projekt Wartung Fehler‐
folgekosten Gesamt

Modultest (Black‐Box‐Test) mit normaler 
Intensität 261 886 851 618 349 241 1 462 745

Modultest (Black‐Box‐Test mit normaler 
Intensität) und Codereview (4 Gutachter, 
57 % des Codes)

242 983 557 773 222 653 1 023 409

Modultest (Black‐Box‐Test mit normaler 
Intensität) ergänzt um Glass‐Box‐Test bis 
80 % Anweisungs‐ und Zweigüberde‐
ckung

282 661 788 620 318 358 1 389 639

Tabelle 114: Qualitätskosten im Vergleich
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kosten noch deutlicher. Mit dem intensiveren Modultest steigen die Qualitätskosten
im Projekt, ein geringer Nutzen wird langfristig erreicht.

Am Beispiel des Codereviews wird deutlich, dass die Modellresultate für die Planung
des  Projekts  und  der  Prüfungen  verwendet werden  können:  CoBe  ergibt,  dass  6
Reviewsitzungen  eingeplant werden müssen,  für  die  ein  Gutachter  insgesamt  20
Stunden zur Vorbereitung benötigt. Der Aufwand der Korrektur wird mit über einem
Entwicklermonat  berechnet,  die  Dauer  mit  zwei  Entwicklern  rund  2  Wochen
(12 Arbeitstage).

Bewertung

CoBe zeigt den Unterschied zwischen den Alternativen. Dieser direkte Vergleich ist
in der Realität kaum möglich, weil dazu vergleichbare Projekte durchgeführt werden
müssen, die sich nur in den Prüfungen unterscheiden. 

CoBe macht Kosten sichtbar, die sonst nur schwer messbar sind. Dazu gehören Kos‐
ten  für den Modultest, der  häufig  von den Entwicklern  selbst durchgeführt wird,
seine Kosten sind kaum von der Implementierung zu trennen.

CoBe zeigt, dass sich die Dauer der Alternativen unterscheidet – entgegengesetzt zum
Aufwand. Dies zeigt, dass dieser Aspekt des Modells für die Entscheidung eine wich‐
tige Rolle spielt und darum nicht verkürzt werden sollte.

Das Beispiel zeigt aber auch die Grenzen von CoBe: Sollen Reviews eingeführt wer‐
den, und die Entwickler  sind unwillig, Code zu begutachten, aber motivierter, die
eher  technische Lösung des Glass‐Box‐Tests durchzuführen, dann müssen die Ent‐
wickler von Reviews überzeugt werden. Dies stellt das Modell nicht dar. Der Nutzen
durch Schulungseffekte der Codereviews oder durch erhöhtes Vertrauen in das Pro‐
dukt mit dem intensiveren Test wird nicht deutlich. 

CoBe zeigt Kosten und Nutzen von Prüfungen; es kennt aber nur einen bestimmten,
abgeschlossenen Handlungsspielraum.  Die  Resultate  beruhen  auf  Annahmen  z.B.
über die Reihenfolge von Prüfungen. Das Modell kennt keine Effekte, die sich durch
Parallelisierung  z.B. von Reviews und der  zugehörigen Korrektur  ergeben; da das
Modell aber einzelne Aktivitäten betrachtet, sind die Grundlagen für eine solche Pla‐
nung vorhanden.



Kapitel 9

Zusammenfassung und Bewertung

In diesem Kapitel werden die Arbeit und  ihre Resultate zusammengefasst. Sie wer‐
den im Hinblick auf die Modellziele und den Modelleinsatz bewertet. Darauf folgen
Ausblick und Schlussbemerkungen.

9.1 Zusammenfassung

Das Resultat dieser Arbeit ist das quantitative Kosten‐Nutzen‐Modell CoBe für kon‐
krete Entscheidungen, die in Projekten über Prüfungen und Prüfparameter getroffen
werden. CoBe stellt die Wirkung von Entscheidungen über Prüfungen und Prüfpara‐
meter  als  anfallende  Kosten  und Nutzen  als  entfallende  Kosten  dar.  Das Modell
berücksichtigt Auswirkungen der Entscheidungen im Projekt, in der Wartung und im
Einsatz des Produkts. Somit lassen sich die Wirkungen der Entscheidungen verglei‐
chen,  demonstrieren  und  nachträglich  für  konkrete  Projekte  diagnostizieren,  aber
auch während der Planung prognostizieren; die Modellresultate enthalten eine Bot‐
tom‐up‐Kostenschätzung  für Prüfung und Fehlerbehebung. CoBe unterstützt  somit
Projektleiter und QS‐Verantwortliche: Sie können die Wirkungen der Entscheidungen
direkt aus dem Modell ablesen. 

CoBe unterscheidet  sich von  anderen Modellen, die  sich mit Entscheidungen über
Prüfungen in Software‐Projekten befassen, durch die Abbildung der konkreten Ent‐
scheidungen über Prüfparameter. Dazu enthält es ein detailliertes Reviewmodell, ein
detailliertes Testmodell und Modelle für die Wiederholung von Prüfungen während
des Projekts und in der Wartung. Es berücksichtigt Fehlerfolgekosten, die auf Einga‐
ben über die Verwendung der Software basieren.

Das Modell ist quantitativ und besteht aus einzelnen, überprüfbaren Zusammenhän‐
gen. Diese  stammen aus  anderen Modellen, aus Datensammlungen, Erfahrungsbe‐
richten und Experimenten; sie sind empirisch belegt.

CoBe ist in die Planung und in die Prozessverbesserung eingebunden. Die dazu not‐
wendige Kalibrierung erfolgt in Schritten mit definierten Parametern. Die wichtigsten
Metriken  für die Kalibrierung sind Umfangs‐ und Aufwandsdaten  für das gesamte
Projekt und Fehlerzahlen.
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9.1.1 Validierung

Die Validierung erfolgte mit Daten, die gezielt für die Validierung erhoben wurden
und darum zur Modellbildung nicht zur Verfügung standen. Sie folgt einem Konzept,
das sich aus den Schwierigkeiten der Validierung von Entscheidungsmodellen ablei‐
tet. Für die Validierung des Modells wurden Daten in studentischen Projekten und in
Industrieprojekten erhoben. Diese Projekte decken ein breites Spektrum ab, mit klei‐
nen, studentischen Projekten (typisch 3 Teilnehmer pro Team, 21 Wochen Dauer), mit
einem mittelgroßen, sicherheitskritischen Projekt  (2,5  Jahre, 14 Mitarbeiter) und mit
einem großen Projekt, dessen Subsysteme parallel  entwickelt wurden  (2  Jahre, 400
Mitarbeiter). Daten  aus  studentischen  Projekten  zeigen,  dass  einzelne Zusammen‐
hänge des Modells gelten. Daten aus den studentischen Projekten und aus der Indus‐
trie  zeigen, dass das Modell unterschiedlich  komplexe und umfangreiche Projekte
ausreichend genau darstellen kann. Dazu ist aber eine Kalibrierung notwendig. 

Die Zusammenhänge zur Modellbildung waren unterschiedlich gut belegt. Während
der Validierung wurden die Zusammenhänge unterschiedlich intensiv validiert. Dar‐
aus ergibt sich, welche Modellkomponenten verlässlichere und welche weniger ver‐
lässliche Aussagen erlauben:

• Der grundlegende Zusammenhang des Fehlerstrommodells und der Einsparungen
durch entfallende Fehler ist empirisch belegt und wurde zusätzlich durch die Vali‐
dierung belegt.

• Die Korrekturkosten  eines  Fehlers  sind durch umfangreiche  empirische  Studien
und zusätzlich durch die Validierung belegt.

• Die Zusammenhänge von Reviews sind umfangreich untersucht, sie werden durch
die Validierung zusätzlich gestützt.

• Die Zusammenhänge  im Test sind wenig  in der Literatur untersucht, aber  in der
Validierung  einzeln  und  insgesamt mit  studentischen  Projekten und mit  Indus‐
trieprojekten validiert; es fehlen aber breite empirische Daten, vor allem aber quan‐
titative Aussagen zur Term‐ und Schleifenüberdeckung.

• Kosten zur Testwiederholung werden vom Modell übereinstimmend zur Realität
berechnet.  Es  fehlen  aber  Erfahrungswerte  und  eine  breite Datenbasis,  um  die
Basiswerte für den Umfang und den Aufwand der Testwiederholung verlässlich zu
prognostizieren.

• Eher unklar  ist auch die Situation bei Erprobungen oder beim Feldtest, also bei
allen Tests, die unter mehr oder weniger realen Einsatzbedingungen ablaufen. Die
Literatur enthält einige wenige Daten. Diese Daten zeigen aber eine breite Streu‐
ung, abhängig von der Intensität der Erprobung.

• Die Abschätzung der Fehlerfolgekosten ist kaum durch Messungen bestätigt und
validiert. Fehlerfolgekosten sind aber ein wesentliches Entscheidungskriterium, so
das dieser Aspekt nicht vernachlässigt werden darf.
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9.1.2 Aussagen des Modells

Die Sensitivitätsanalyse und die Analyse  zur Optimierung  ergänzen diese Validie‐
rung. Mit diesen Analysen können folgende Aussagen des Modells gezeigt werden:

• Einzelne Prüfparameter prägen Kosten und Nutzen der Prüfungen. 

• Ihre Wirkung hängt von der Situation ab, besonders deutlich von den Fehlerfolge‐
kosten, aber auch von Kosten für spätere Auslieferung. Bei den Fehlerfolgekosten
stellt  CoBe  nicht  nur  einzelne,  spektakuläre  Schäden  dar,  sondern  auch  solche
Schäden, die sich über viele Benutzer und Verwendungen der Software aufsum‐
mieren.

• Minimale  Projektkosten  und minimale Qualitätskosten  über  die  Produktlebens‐
dauer können widersprüchliche Ziele sein; die Prüfungen und ihre Parameter sind
also ein Kompromiss.

Für typische Situationen zeigt die Sensitivitätsanalyse und die Optimierung:

• Die Kompetenz der Prüfer spielt im Review und im Test die entscheidende Rolle.

• Frühe Reviews lohnen sich immer, weil die Projektkosten höchstens wenig steigen,
aber langfristig ein hoher Nutzen erreicht wird. Dazu ist eine vollständige Prüfung
mit gründlicher Vorbereitung notwendig.

• In typischen Fällen ist ein gründlicher Black‐Box‐Systemtest ausreichend; je höher
die  Fehlerfolgekosten werden,  desto  nützlicher wird  der  Glass‐Box‐Test,  wenn
langfristige Folgen betrachtet werden. Die Projektkosten steigen mit der Testinten‐
sität.

CoBe  zeigt, dass  es  keinen  allgemeingültigen  optimalen Prüfprozess  gibt,  sondern
dass die  individuellen Rahmenbedingungen eines Projekts betrachtet werden müs‐
sen. Dabei sind Daten zum Einsatz des Produkts und zum möglichen Schaden durch
Fehler wichtig. Das Modell zeigt, dass eine Kalibrierung notwendig  ist, und welche
Metriken dafür notwendig sind: Produktumfang, Gesamtaufwand, Gesamtdauer und
Fehlerzahlen. CoBe enthält quantitative Erfahrungen über Auswirkungen von Prü‐
fungen. Damit enthält das Modell implizit ein Metrikprogramm zur Qualitätsbewer‐
tung. Dabei stehen Aufwände der einzelnen Aktivitäten, also der Prüfung, Korrektur
und Prüfwiederholung, im Mittelpunkt.

9.2 Bewertung

9.2.1 Modellziele

Abschnitt 8.7 zeigt, dass die Modellziele von CoBe prinzipiell erreicht werden: Aus‐
wirkungen von Entscheidungen über Prüfungen können demonstriert werden. Die
zur Planung und Optimierung nötigen Informationen, die Planungsmetriken, werden
ausgegeben. Kosten und Nutzen werden  vergleichbar dargestellt. Die Validierung
zeigt, dass mit CoBe Kosten und Nutzen  von Prüfungen nachträglich  beschrieben
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werden können, CoBe kann also diagnostisch eingesetzt werden. Die Prognosefähig‐
keit des Modells ist durch die Kreuzvalidierung untersucht (Abschnitt 7.6.2).

9.2.2 Verallgemeinerbarkeit

Die Validierung zeigt, dass CoBe prinzipiell für ganz unterschiedliche Projekte geeig‐
net  ist  (Abschnitt 8.6),  aber  für  eine  konkrete Umgebung  kalibriert werden muss.
Dazu sind Archivdaten notwendig. Diese Metriken stehen häufiger als andere Metri‐
ken in der Industrie zur Verfügung (Brodman und Johnson, 1996; Fink und Hampp,
2005; Kasunic, 2006). CoBe basiert auf Function Points, die in der verwendeten Vari‐
ante  nicht direkt  für  technisch‐wissenschaftliche Anwendungen  geeignet  sind. Die
Validierung zeigt, dass Function Points als interne Parameter auch in diesen Anwen‐
dungsgebieten eingesetzt werden können.

Die Prüfungen im Modell gehören zu den typischen Prüfungen in Industrieprojekten.
Ihre Reihenfolge  im Modell  ist vorgegeben, CoBe  ist also auf eine bestimmte Prüf‐
sequenz eingeschränkt. Einfache, sequentiell ablaufende Projekte mit den Prüfungen
oder  einem  Teil  der  Prüfungen  in  der  gleichen  Reihenfolge  können  direkt  in  das
Modell abgebildet werden. Für parallele,  iterative Prozesse mit Anforderungsände‐
rungen ist eine Modellbildung notwendig. Die Validierung zeigt, dass solche Projekte
in das Modell  abgebildet werden können. Damit  eine andere Prüfreihenfolge oder
andere Prüfungen durch CoBe dargestellt werden können, muss das Modell geändert
werden.

9.2.3 Kosten und Nutzen des Modelleinsatzes

Der Nutzen des Modells wird erreicht, wenn mit dem Modell günstigere Gesamtkos‐
ten als ohne Modell entstehen: Prüfungen können gezielter durchgeführt und kon‐
trolliert werden. Die Planungssicherheit wird durch die Bottom‐up‐Schätzung von
CoBe verbessert. Zusätzlich werden Erkenntnisse über den Prozess durch die Analyse
für das Modell gewonnen. 

Das Modell ist auch in Situationen nützlich, in denen der Prozess mit Prüfparametern
definiert  ist  und  genügend  Erfahrung  für  die  Kostenschätzung  vorhanden  ist:  Es
erlaubt, Kosten und Nutzen darzustellen, beispielsweise für den Vergleich mit Kon‐
kurrenten. Bei sich ändernden Rahmenbedingungen zeigt CoBe, ob und wie der Pro‐
zess  angepasst werden  kann.  Experten  für  die Kostenschätzung  können  ausfallen
oder nicht verfügbar  sein. Dann  ist CoBe nützlich, weil es quantitativ Erfahrungen
aus abgeschlossenen Projekten enthält und dadurch die Kostenschätzung unterstützt.
Die Kosten‐Nutzen‐Analyse wird verlangt (PMI, 2000) und kann mit CoBe auf einfa‐
che Weise für ein konkretes Projekt durchgeführt werden.

Basierend  auf den Erfahrungen  in der Validierung  lassen  sich die Kosten  für den
Modelleinsatz abschätzen: Für die Datenerhebung muss für Befragung und Beschaf‐
fung von Archivdaten mit etwa einer Arbeitswoche gerechnet werden. Für Analyse
und Abbildung komplexer Prozesse werden zwischen zwei und vier Arbeitswochen
benötigt. Modelländerungen kosten zwischen einer Stunde, beispielsweise um Ergeb‐
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nisse zusammenzufassen und übersichtlich darzustellen, und einem Entwicklermo‐
nat.  Sobald Daten  für  die Quantifizierung  benötigt werden,  nimmt  vor  allem  die
Literatursuche viel Zeit in Anspruch.

9.2.4 Abgrenzung zu SESAM und zum QS‐Modell

In CoBe  sind Zusammenhänge  aus  SESAM‐Modellen übernommen, vor  allem  aus
dem QS‐Modell (Drappa, 1998). Die beiden Ansätze und die Modelle unterscheiden
sich auf mehreren Ebenen:

• Der Modellzweck  ist unterschiedlich. Mit SESAM und dem QS‐Modell sollen die
Spieler Projektleitung erfahren können. Es wird also ein Lernziel verfolgt, das alle
wesentlichen Aktivitäten des Projektleiters enthält: Planung, Stellenbesetzung und
Projektführung  sollen erlernt werden. CoBe dagegen verfolgt kein Lernziel, son‐
dern soll Entscheidungen über Prüfungen unterstützen,  in dem es dazu notwen‐
dige Informationen liefert. CoBe konzentriert sich darum auf die Prüfplanung.

• Abgeleitet aus dem Modellzweck  liefert CoBe Antworten auf bestimmte Fragen,
die durch die Eingaben festgelegt sind. SESAM ist im Gegensatz dazu prinzipiell
offen: Der Spieler hat mehr Freiheit, er  ist z.B. nicht an eine zeitliche Reihenfolge
gebunden und kann bestimmen, welche und wie viele Mitarbeiter für welche Akti‐
vität eingesetzt werden sollen. Er kann in jedem Schritt in das Projekt eingreifen. Es
ist dann aber notwendig, dass der Tutor die Spiele analysiert. Der Tutor bestimmt
dabei, welche Fragen beantwortet werden sollen. Er verdeutlicht die Stärken und
Schwächen der Spieler durch Vergleich  (Hampp und Opferkuch, 2007), während
CoBe den Vergleich bereits enthält: Der Nutzen zeigt die entfallenden Kosten.

• Im QS‐Modell stehen konkrete Entscheidungen über den Zeitpunkt und die Stel‐
lenbesetzung der Prüfungen und der Korrektur um Vordergrund, dagegen sind in
CoBe einzelne Prüfparameter modelliert.

• Planung  und  Kostenschätzung  der  Qualitätssicherung  ist  ein  Lernziel  des  QS‐
Modells; CoBe unterstützt Planung und Kostenschätzung direkt.

• CoBe berücksichtigt die  langfristigen Auswirkungen des Projekts durch den Ein‐
satz und die Wartung des Produkts. Im QS‐Modell endet die Simulation, wenn das
Produkt ausgeliefert wurde; Qualität wird durch Fehler und Unvollständigkeiten
des Produkts dargestellt.

• CoBe und QS‐Modell können kalibriert werden. In CoBe ist die Kalibrierung aber
explizit durch Parameter modelliert.

• CoBe bildet, anders als das QS‐Modell, Wiederverwendung von Software ab.

9.2.5 Grenzen

CoBe bildet Auswirkungen von Entscheidungen für das Projekt und durch das Pro‐
dukt ab. Nach Auslieferung werden Fehlerfolgekosten im Einsatz und Kosten für kor‐
rektive Wartung betrachtet. Wartbarkeit wird nicht betrachtet. Auswirkungen über
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das Projekt und sein Produkt hinaus sind nicht enthalten, weil CoBe auf die Entschei‐
dungen  des  Projektleiters  und  QS‐Verantwortlichen  zugeschnitten  ist.  Unter‐
nehmensstrategie oder organisationsweite Prozessverbesserung  sind nicht direkt  in
CoBe  abgebildet. Dazu  gehören  beispielsweise  der  Lerneffekt,  der  durch  Reviews
erreicht wird, oder Marktvorteile durch ein bestimmtes Produkt, die sich erst in fol‐
genden Produktversionen auszahlen.

Wie bei anderen algorithmischen Kostenschätzverfahren handelt es sich bei CoBe um
ein induktives Modell, das mit statistischen Mittelwerten arbeitet und dessen Resul‐
tate Mittelwerte sind. Die Werte sind zwar durch die Modelleingaben mit den Prüf‐
parametern  und  der  Kalibrierung  speziell  für  das  geplante  Projekt  berechnet.  Sie
werden aber nicht exakt zutreffen, weil es sich um ein induktives Modell handelt. Der
Istwert wird also von den Werten etwas abweichen, so dass die Modellresultate nicht
direkt in die Planung übernommen werden können. Mit einer unterstellten Normal‐
verteilung wird  eine  solche Mittelwertschätzung mit  einer Wahrscheinlichkeit  von
50 % überschritten.

Da das Modell die Realität verkürzt, kann es nicht direkt zur Optimierung verwendet
werden.  Insbesondere muss der Entscheider zusätzlich diejenigen Aspekte betrach‐
ten, die nicht im Modell enthalten sind (Laux, 1998).

9.3 Ausblick

Das Modell kann als Erfahrungssammlung dienen, um andere Modelle aus einzelnen
Zusammenhängen  zu  konstruieren.  Ähnlich  wie  CoBe  Zusammenhänge  des  QS‐
Modells verwendet, können andere Modelle Zusammenhänge aus CoBe verwenden.

CoBe enthält die Metriken, mit denen Prüfungen und ihre Auswirkungen erfasst und
kontrolliert werden können. Damit gibt es ein Metrikprogramm vor, das die wesentli‐
chen Merkmale zur Qualitätsbewertung enthält. Die Metriken sind gebräuchlich, so
dass sie auch ohne Modell interpretiert werden können. Die Modellzusammenhänge
klären die Interpretation der Metriken.

9.4 Schlussbemerkungen

Jeder Projektleiter muss  sich Entscheidungen über den Kompromiss  zwischen den
Kosten, zu denen auch Termin und Personal gehören, und der Qualität stellen. In der
Software‐Entwicklung,  bei  der  ein  immaterielles  Produkt  entsteht,  sind  diese  Ent‐
scheidungen schwierig zu treffen und schwierig zu rechtfertigen. Prozesszertifzierun‐
gen geben Entscheidungen zwar auf abstrakter, aber nicht auf konkreter Ebene vor.
Projekte sind zu unterschiedlich, als dass ein allgemeingültiges Vorgehen vorgegeben
werden kann.

In dieser Arbeit wurde, aufbauend auf anderen quantitativen Modellen, ein Kosten‐
Nutzen‐Modell  für Entscheidungen über Prüfungen erstellt. Dazu wurden vorhan‐
dene Erkenntnisse über  die Zusammenhänge  zwischen  konkreten Entscheidungen
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über Prüfungen in Software‐Projekten und ihren Auswirkungen auf Kosten und Nut‐
zen analysiert,  formalisiert und  implementiert. Das Modell wurde  in der  Industrie
validiert. Das Modell erlaubt, die schwierigen Entscheidungen rationaler zu diskutie‐
ren und rationaler zu fällen.
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Verzeichnis der Bezeichner 

In den Gleichungen von CoBe, die in Kapitel 6 dargestellt sind, werden die unten auf‐
geführten Bezeichner verwendet. Dabei gelten folgende Konventionen:

• Direkte Metriken sind großgeschrieben (z.B. S für den Umfang). 

• Abgeleitete Metriken sind in der Regel kleingeschrieben (z.B. m). Ausnahmen sind
die Fehlerentdeckungsquote Q und die Überdeckung C, um zwischen geforderter
(C) und erreichter Überdeckung (c) zu unterscheiden.

• Variable Parameter sind kursiv, binäre Variablen fett gesetzt.

Grundlagen

Kalibrierungsparameter 

S Umfang
SFP Umfang in Function Points
SFPneu Umfang neuer Software Umfang in Function Points
SFPwv Umfang wiederverwendeter Software in Function Points
SSeiten  Umfang in Seiten 
SAnweisungen  Umfang in Anweisungen
s Umfangsanteil
Q, Qwv Fehlerentdeckungsquote, in wiederverwendeter Software
QK Korrekturquote
Qp,Art,Schwere Fehlerentdeckungsquote in Prüfung p einer Fehlerart und ‐schwere
A Aufwand in Entwicklerstunden (Eh), ‐monaten (EM), ‐jahren (EJ)
M Mitarbeiterzahl
D Dauer in Arbeitstagen, ‐wochen, ‐monaten
fd Fehlerdichte 
af Einflussfaktoren auf den Aufwand
ff Einflussfaktoren auf die Fehlerzahlen
cf Einflussfaktoren auf die Überdeckungen
r0 und r1 Regressionsparameter allgemein
r0f und r1f Regressionsparameter zur Berechnung der Fehlerdichte

kF Fehlerfaktor sfCode Umfangsfaktor Code
kA  Aufwandsfaktor  sfSpez Umfangsfaktor Spezifikation
kD Dauerfaktor sfEntwurf Umfangsfaktor Entwurf
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Abkürzungen der Prüfungen

Eingaben für den Prüfprozess

Fehler und Fehlerkategorien

SR Spezifikationsreview PT Subsystemsintegrationstest 
(Package für Subsystem)ER Entwurfsreview

CR Codereview IT Systemintegrationstest 
CA Codeanalyse ST Systemtest 
MT Modultest  FT Feldtest 

p Formelzeichen für eine Prüfung
Review Formelzeichen für ein Review (SR, ER oder CR)
Test Formelzeichen für einen Test (MT, PT, IT, ST)
P Findet die Prüfung statt?
WV Wird wiederverwendete Software geprüft?
swdh,Test Umfangsanteil für die Wiederholung
awdh,Test Aufwandsanteil für die Wiederholung
mK Anteil Korrektoren

Schwere Fehlerkategorie mit Klassen Nebenfehler (NF), Hauptfehler (HF), kritische 
Fehler (KF); Blockierende Fehler (BF) als Teil der kritischen Fehler.

Art Fehlerkategorie mit Klassen Spezifikation, Entwurf, Code

Ursprung Software‐Ursprung, Fehlerentstehung: Hinzugefügt, geändert, wiederverwen‐
det (“wv”), “neu” fasst hinzugefügt und geändert zusammen

fpNF, fpHF, fpKF, fpBF
Prozentuale Verteilung auf Fehlerschwere 

fpSpez, fpEntwurf, fpCode
Prozentuale Verteilung auf Fehlerarten

Fneu, Fwv Zahl eingefügten Fehler in neuer oder in wiederverwendete Software
Fentdeckt, Fenthalten, Fkorrigiert, Fentfallend

Fehlerzahlen für entdeckte, enthaltene, korrigierte, entfallende Fehler, unter‐
schieden für Prüfungen, Arten und Schwere durch den Index, beispielsweise 
für korrigierte Fehler und für entfallende Fehler:

Fp,korrigiert,Ursrpung,Art,Schwere 
 Zahl korrigierter Fehler der Art und Schwere nach der Prüfung p

Fp,entfallend,p’,Ursrpung,Art,Schwere 
Zahl der entfallenden Fehler in der Prüfung p’, weil die Fehler in der Prüfung p 
bereits entdeckt und dann korrigiert wurden.

KP Tester‐ oder Gutachterkompetenz mit 7 Klassen: extra niedrig, sehr niedrig, 
niedrig, normal, hoch, sehr hoch, extra hoch (XL, VL, L, N, H, VH, XH) 
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COCOMO‐II‐Formelzeichen

Korrekturaufwand

Aufwandseinfluss

Review

EMi Einflussfaktor i
E, B, SFj, Aa

a. In CoBe steht A für Aufwand, in COCOMO II für den Produktivitätsparameter

Exponent und Parameter des Exponenten für Aufwandsformel
PM Mit COCOMO II berechneter Aufwand

aKBasis Basiswert für den Korrekturaufwand pro Fehler
afp Einfluss der Prüfung (Latenzzeit), abhängig vom Umfang
afW Einfluss der Wartung (Latenzzeit), abhängig vom Umfang
afArt Einfluss der Fehlerart (Latenzzeit)
afSchwere Einfluss der Fehlerschwere (afNF, afHF und afKF)
aK,p,Art,Schwere Korrekturaufwand pro Fehler der Art und Schwere nach Prüfung p
AK,p Korrekturaufwand nach Prüfung p

afO Zuschlag für Organisation (in %)
af Modellweiter Produktivitätsparameter

GReview Gutachterzahl im Review Review
QReview Basis‐Fehlerentdeckungsquote für das Review Review
qr Fehlerentdeckungsquote eines Gutachters, durch Regression ermittelbar
rqr Regressionsparameter für Gutachterzahl und Fehlerentdeckungsquote
ffReview,Art Anpassung der Entdeckungsquote an die Fehlerart Art
ffReview,Schwere  Anpassung der Entdeckungsquote an die Fehlerschwere
fPriorisierung Funktion für Fehlerentdeckung mit priorisierten Reviews
fVorbereitung Funktion für den Einfluss der Vorbereitung auf die Fehlerentdeckung 
vReview Vorbereitungsrate für das Review
KPReview Gutachterkompetenz, 7 Klassen (extra niedrig bis extra hoch)
ffReview,KP Einflussfaktor für Fehlerentdeckungsquote durch Gutachterkompetenz KP
sReview Anteil des geprüften Umfangs des Artefakts im Review

rs,Schwere
Regressionsparameter für Einfluss auf Fehlerentdeckung verschiedener Fehler‐
schwere durch priorisiert geprüften Teil eines Artefakts
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Test

Testtechniken sind Black‐Box‐Test (BBT), Glass‐Box‐Test (GBT) und Brute‐Force‐Test
(BFT). Im Black‐Box‐Test wird unterschieden: Funktionsabdeckung (Funktion), Äqui‐
valenzklassenabdeckung (Äquivalenzklasse) und Sonderfälle.

T, TTest Testfallzahl, Testfallzahl für den Test Test
Tn, Tn,Test Nominale Testfallzahl für den vollständigen Black‐Box‐Test, für den Test Test
r0t, r1t Regressionsparameter zwischen Umfang und nominaler Testfallzahl
r0t,Test, r1t,Test Regressionsparameter für den Test Test
t Normierte Testfallzahl: 
tTest Normierte Testfallzahl des Tests Test.
c Erreichte Überdeckung allgemein (Überdeckungsgrad)
C Geforderte Überdeckung allgemein (Überdeckungskriterium)
c0, C0 Erreichte und geforderte Anweisungsüberdeckung 
c1, C1 Erreichte und geforderte Zweigüberdeckung 
c3, C3 Erreichte und geforderte Termüberdeckung 
c4, C4 Erreichte und geforderte Schleifenüberdeckung 
cf1, cf3, cf4 Faktoren für den Zusammenhang zwischen den Überdeckungen
r0c, r1c Regressionsparameter für normierte Testfallzahl und Überdeckungsgrad
qt Anteil der Fehler, die ein einziger Testfall entdeckt
rqt Parameter für die Schätzung von qt mit linearer Regression
ffTest,Art Anpassung der Entdeckungsquote an die Fehlerart Art
ffTest,Schwere  Anpassung der Entdeckungsquote an die Fehlerschwere
KPTest Testerkompetenz, 7 Klassen (extra niedrig bis extra hoch)
ffTest,KP Einflussfaktor für Fehlerentdeckungsquote durch Testerkompetenz KP

t T Tn⁄=
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