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Zusammenfassung

Priifungen konnen grofie Teile des Budgets eines Software-Projekts aufzehren, erlau-
ben aber, die Produktqualitdt zu beurteilen und zu verbessern. Sie diirfen nicht ver-
nachlassigt werden, da Defizite der Produktqualitdt nach Projektende teuer werden
konnen. Projektleiter und Verantwortliche fiir die Qualitat miissen bereits in der Pla-
nung iiber Priifungen entscheiden. Sie sind in einer schwierigen Situation, weil sie
dabei viele komplexe und langfristig wirkende Entscheidungen tiber Priifungen und
iiber einzelne Parameter der Priifungen treffen miissen. Die Kosten der Priifungen
sind friih sichtbar und messbar. Im Gegensatz dazu wird der Nutzen durch schwierig
zu messende Qualitatsverbesserungen erreicht, die zu langfristigen Einsparungen
tithren. Zusatzlich hangen Kosten und Nutzen von der Projektsituation ab. Fiir jedes
Projekt ist darum ein individueller Kompromiss zwischen den Kosten fiir Priifungen
und ihrem Nutzen nétig, so dass minimale Gesamtkosten erreicht werden.

Um diese Entscheidungen zu unterstiitzen, wird in dieser Arbeit ein Kosten-Nutzen-
Modell fiir Softwarepriifungen, CoBe, entwickelt und validiert. Mit diesem Modell
kann untersucht und prognostiziert werden, wie sich Entscheidungen iiber Priifun-
gen und tiiber einzelne Parameter der Priifungen auswirken. Dazu werden die Ent-
scheidungen und die Projektsituation durch Modelleingaben dargestellt. Die
Modellresultate sind die Wirkungen dieser Entscheidungen: die Kosten, die durch die
Priifung entstehen, und der daraufhin erreichte Nutzen durch eingesparte Kosten.
Kosten und Nutzen zeigen sich wahrend des Projekts, wahrend der Wartung des Pro-
dukts und beim Einsatz des Produkts. Damit Kosten und Nutzen abgewogen und
Gesamtkosten minimiert werden konnen, werden die Modellresultate als Geldwerte
berechnet. Zur Projektplanung werden Kosten und Nutzen durch Aufwand, Dauer
und Personalbedarf einzelner Aktivititen dargestellt. Dazu enthalt CoBe feingranu-
lare Priifungsmodelle aus einzelnen, quantitativen Wirkungszusammenhangen.

Die Validierung des Modells erfolgte mit Daten aus Software-Projekten. Dabei wur-
den einzelne Zusammenhange und das gesamte Modell mit Daten aus iiber 20 stu-
dentischen Projekten gepriift. CoBe ist mit Daten aus zwei iterativen
Industrieprojekten mit umfangreicher, paralleler Entwicklung validiert. Das Modell-
verhalten wird durch Sensitivitatsanalyse untersucht, zusatzlich wird das Kosten-
Optimum analysiert. Die Validierung zeigt, dass CoBe ausreichend genau beschreibt,
wie sich Entscheidungen tiber Priifungen auswirken. Da die Resultate der studenti-
schen Projekte deutlich streuen, ergibt sich eine gewisse Abweichung zwischen den
Projektresultaten und den Modellresultaten. Die Resultate sind fiir die beiden Indus-
trieprojekte genauer. Deutlich wird, dass CoBe fiir eine bestimmte Umgebung kalib-
riert werden muss, damit die Resultate ausreichend genau sind. Dazu sind wenige
Daten aus abgeschlossenen Software-Projekten notwendig. Die Daten sind oft verfiig-
bar, da sie haufiger als andere Daten erhoben werden. Die Validierung zeigt, dass
CoBe gut verallgemeinerbar ist. Die Daten, die fiir den Einsatz von CoBe notwendig
sind, sind in Projekten verfligbar, konnen gemessen oder erfragt werden.



Abstract

Software quality assurance can consume large parts of a software project's budget. On
the other hand, quality assurance permits product quality to be assessed and
improved. Cutting quality assurance investments may lead to increased costs after
delivery.

Project managers and quality managers have to decide on quality assurance while
planning and running a project. They have to make many complex and far-reaching
decisions on reviews, tests, and their parameters without having the necessary infor-
mation available. In particular, quality-related information is hard to get because
quality improvements appear as long-term savings, whereas the costs of reviews and
tests can be measured early on. As every project has its own special characteristics, a
tailored trade-off between costs and benefits of quality-assurance activities is needed
to minimise total costs.

In this work CoBe, a quantitative cost-benefit model to support these decisions, is
developed and validated. CoBe is able to analyse and predict the effects that decisions
on quality assurance activities and on their parameters will have. To do so, decisions
on quality assurance and project characteristics are modelled as inputs. The output of
the model consists of the costs and benefits resulting from these decisions. Costs and
benefits occur during the project, in maintenance, and during product usage. For the
purpose of comparing costs and benefits and minimising overall costs, the model
results are expressed in monetary values. For project planning, costs and benefits are
expressed as effort, duration, and staff of single activities. For calculating the results,
CoBe uses fine-grained models built on single quantitative relationships.

CoBe was validated against real-world software project data. Single relationships and
the entire model were examined using data from more than 20 student projects. CoBe
was validated using data from two iterative industry projects that used extensive par-
allel development. Model behaviour is subjected to sensitivity analysis, and the opti-
mum cost is analysed. The validation shows that CoBe describes the effects of
decisions on quality assurance sufficiently accurate. As student projects scatter, model
results differ from project results up to a certain extent. Results are more accurate for
industry projects. It is evident that CoBe needs to be calibrated for a certain environ-
ment. However, only few data from past projects is required for this. The necessary
data is readily available in most projects. Results indicate that CoBe is generalisable,
and that the necessary data is either available in the projects or can be measured or
obtained by enquiry.
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Kapitel 1

Einleitung und Uberblick

1.1 Motivation

In einem Software-Projekt konnen die Kosten, die fiir Priifungen und fiir Nacharbeit
nach Priifungen anfallen, einen grofien Teil des Projektbudgets ausmachen. Bereits
die Nacharbeit nach Priifungen kann 40 % des Projektaufwands oder mehr kosten
(Haley et al., 1995; Ellims et al., 2006). Fiir Priifungen gibt es viele Moglichkeiten: Soft-
ware kann von Menschen etwa mit technischen Reviews, Walkthroughs oder einfa-
chen Stellungnahmen begutachtet werden. Programme konnen mit unterschiedlichen
Techniken auf unterschiedlichen Integrationsebenen (oder Teststufen nach Spillner
und Linz, 2003) getestet werden. Je nachdem, welche Priifungen wie intensiv durch-
gefiihrt werden, entstehen niedrigere oder hohere Kosten.

Darum muss bei der Planung und Durchfiihrung von Projekten entschieden werden:
Wie viel soll gepriift werden? Welche Priifungen sollen durchgefiihrt werden? Wie
intensiv, nach welchen Kriterien sollen diese Priifungen durchgefiihrt werden? Daran
schliefien sich weitere Fragen an: Wie lange werden Priifung und Korrektur dauern?
Wie viele Mitarbeiter werden bendtigt? Wie wird sich die Priifung auf die Qualitat
auswirken? Reicht eine giinstigere und weniger intensive Priifung aus?

Diese Fragen miissen bereits bei der Planung eines Projekts beantwortet werden. Der
Projektleiter, der iiber diese Fragen entscheidet, muss einen Kompromiss zwischen
Termin, Kosten und Qualitét (Kerzner, 2006) oder Dauer, Kosten, Umfang und Quali-
tat (Yourdon, 1995) wahlen. Dargestellt wird dies als Dreieck oder Viereck
(Abbildung 1).

Termin Termin Umfang

Kosten Qualitat Kosten Qualitat

Abb. 1: Der Kompromiss des Projektleiters
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Abbildung 1 illustriert, dass diese Dimensionen voneinander abhingen: Die Ande-
rung der einen Dimension fiihrt zu Anderungen an anderen Dimensionen. Wird also
der Termin vorgezogen, fiihrt dies zu hoheren Kosten, schlechterer Qualitat und
geringerem Umfang; zumindest eine dieser Dimensionen ist betroffen. Die Bedingun-
gen, Einschrankungen und Ziele gibt der Kunde vor, der Projektleiter sucht fiir diese
Situation den optimalen Kompromiss.

Dieser Kompromiss ldsst sich als Optimierungsproblem beschreiben, wenn die Kos-
ten fiir die Priifung und die Kosten fiir Qualitatsdefizite (Fehlerkosten) auf eine
gemeinsame Kostenskala abgebildet werden. Abbildung 2 zeigt den Zusammenhang
zwischen Qualitdat und Gesamtkosten (Kerzner, 2006). Dieser stammt aus der Ferti-
gung von Giitern (Juran, 1962; Juran und Godfrey, 1998) und wird auf die Software-
Entwicklung tibertragen (Krasner, 1998). Die Abbildung stellt dar, dass die Fehlerkos-
ten sinken, je besser die Qualitat ist. Um die Qualitat zu verbessern, muss in die Qua-
litatssicherung investiert werden. Die Summe dieser beiden Kosten sind die
Qualitatskosten insgesamt. Dabei wird angenommen, dass das Optimum der Quali-
tatskosten nicht bei der besten Qualitét liegt, sondern dass das Optimum durch einen
Kompromiss zwischen den Investitionen in die Qualitdtssicherung und den Fehler-
kosten erreicht wird (Juran und Godfrey, 1998; Krasner, 1998).

Qualitatskosten gesamt

Kosten fiir
Qualitatssicherung

Kosten

Fehlerkosten

Qualitat

Abb. 2: Optimierung der Qualitatskosten (Kerzner, 2007)

Dieses Problem lasst sich aus mehreren Griinden intuitiv nicht optimal 16sen: Priifun-
gen wirken indirekt, weil mit Priifungen die Qualitat beurteilt und verbessert werden
kann. Qualitat und Qualitatsverbesserungen sind schwierig zu bewerten. Sie werden
erst langfristig als Einsparungen sichtbar. Es muss also ein grofier Zeitraum iiber-
blickt werden, um diese Einsparungen zu beobachten. Zusatzlich sind die Einsparun-
gen nicht direkt sichtbar, sondern konnen nur durch Vergleich mit einem Fall ohne
Priifungen oder mit weniger intensiven Priifungen erfasst werden. Die Zusammen-
hédnge, die durchschaut werden miissen, sind also komplex. Die Entscheidungen
miissen iiberwiegend schon in der Planung getroffen werden. Dabei fehlen aber wich-
tige Informationen iiber das Projekt und das Produkt. Beispielsweise kann der
Umfang der zu entwickelnden Artefakte nur geschdatzt werden. Prozessver-
besserungsmethoden wie CMMI (CMMI Product Team, 2002) oder SPICE (Hormann
et al., 2006) beantworten die Fragen nach optimalen Priifungen und Priifparametern
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nicht konkret. Projekte sind unterschiedlich, so dass eine allgemeingiiltige Losung
nicht moglich ist.

1.2 Losungsansatz

Fiir die Losung dieses Entscheidungsproblems wird in dieser Arbeit das quantitative
Modell CoBe entwickelt. Es unterstiitzt die Entscheidungen, die iiber Software-
Priifungen in einem Softwareprojekt getroffen werden miissen. Der Zweck von CoBe
ist, den Nutzen und die Kosten von Software-Priifungen zu demonstrieren, im Nach-
hinein fiir bestimmte Projekte darzustellen, zu vergleichen und zu prognostizieren,
um zukiinftige Projekte zu planen. Dazu werden die Entscheidungen als Eingaben
und ihre Wirkungen als Ausgaben dargestellt:

Mit dem Modell wird der Handlungsspielraum, der durch die Wahl der Priifungen
und Priifparameter gegeben ist, durch Modelleingaben abgebildet. Die speziellen
Prozess- und Produktmerkmale werden durch weitere Eingaben in das Modell abge-
bildet. Die Modellresultate sind Kosten und Nutzen, dargestellt wie folgt: Durch eine
Priifung entstehen Kosten. Der Nutzen ist durch diejenigen Kosten bestimmt, die
dank der Priifung entfallen. Das Modell bildet kurzfristige Auswirkungen im Projekt
und langfristige Auswirkungen von Priifungen ab. Priif- und Korrekturkosten, orga-
nisatorische Kosten, Folgekosten fiir Kunden und Benutzer und Kosten fiir die kor-
rektive Wartung werden betrachtet. Kosten und Nutzen werden fiir einzelne
Aktivitaten berechnet, um die Planung einzelner Arbeitspakete mit Aufwand, Dauer
und Personalbedarf zu unterstiitzen. Die Resultate werden zusammengefasst und auf
einer gemeinsamen Skala, als Geldwerte, dargestellt.

CoBe ist aus einzelnen Zusammenhangen aufgebaut, die als Funktionen beschrieben
werden. Diese Zusammenhange sind weitgehend empirisch belegt und empirisch
quantifiziert. Das Modell bietet die Moglichkeit, diese Zusammenhénge anzupassen
und zu andern. Einzelne Priifungen konnen unabhéngig von anderen Teilen des
Modells modelliert und angepasst werden. Somit ist das Modell generisch genug,
damit es an spezielle Projektsituationen angepasst werden kann. Es ist aber auch kon-
kret genug, dass es direkt eingesetzt werden kann. Fiir den Modelleinsatz wird ein
iteratives Vorgehen vorgeschlagen, das sowohl Prozessverbesserungen als auch
Modellverbesserungen ermdglicht.

1.3 Uberblick

Die Arbeit gliedert sich wie folgt: Kapitel 2 enthalt die grundlegenden Begriffe, die in
der Arbeit verwendet werden: Modelle, Metriken, Entscheidungsmodelle, Software-
Qualitat, Software-Projekte und Software-Qualitédtssicherung.

In Kapitel 3 wird der Losungsansatz aus Problemen hergeleitet, die bei Entscheidun-
gen liber Qualitdtssicherung in Software-Projekten auftreten: Kosten von Priifungen
miissen gegen schwierig zu bewertende Qualitatsverbesserungen aufgewogen wer-
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den. Daraus leitet sich die Idee der Arbeit, der Losungsansatz ab. Der iterative
Modelleinsatz und der Modellierungsansatz werden festgelegt.

In Kapitel 4 werden die Arbeiten diskutiert, auf denen das Modell aufbaut. Aus dem
QS-Modell (Drappa, 1998) des SESAM-Systems und aus dem Kostenschatzverfahren
COCOMOII (Boehm, 2000) konnen Zusammenhange direkt tibernommen werden.
Jones (1996 und 2007) enthalt Daten, mit denen Zusammenhange quantifiziert wer-
den konnen. CoBe erganzt vorhandene Arbeiten, weil es erlaubt, die Auswirkungen
konkreter, detaillierter Priifparameter zu untersuchen, und weil es langfristige Kosten
darstellt, insbesondere Folgekosten beim Produkteinsatz. Die Analyse fiir die Zusam-
menhdnge des Modells wird in Kapitel 5 dargestellt.

Kapitel 6 zeigt das Modell CoBe, das aus einem Basismodell, Reviewmodellen und
Testmodellen besteht. Diese Modelle sind als Zusammenhdnge quantitativ durch
Gleichungen beschrieben. Die Quantifizierung beruht auf Datensammlungen, empi-
risch belegten Modellen und einzelnen Untersuchungen tiber Priifungen.

In Kapitel 7 wird die Realisierung des Modells als Tabellenkalkulation und als Java-
Programm sowie die Erprobung des Modells beschrieben. Vorgehen und Kriterien
tir die Validierung werden festgelegt. Ausgewahlte Zusammenhéange in CoBe wer-
den mit Daten aus studentischen Projekten tiberpriift. Dann werden die Modellresul-
tate mit den Istwerten dieser Projekte verglichen. Modelldefizite werden sichtbar.
CoBe wird fiir diese konkrete Situation kalibriert. Dann stimmen Modellresultate und
Istwerte gut tiberein.

Die Validierung erfolgt mit Daten aus zwei Industrieprojekten (Kapitel 8). Die iterativ
und parallel ablaufenden Projekte werden auf CoBe abgebildet. Die Modellresultate
stimmen gut mit den Istwerten tiberein. Die Erprobung und Validierung beruht auf
anderen Daten als die Modellbildung und Quantifizierung: Wahrend das Modell auf
empirischen Studien und Daten aus der Literatur basiert, werden zur Validierung
Werte aus konkreten Projekten verwendet. Die Sensitivitatsanalyse und die Analyse
optimaler Losungen erganzen die Validierung. Den Modelleinsatz demonstriere ich
zusatzlich mit Beispielen. Dazu gehort, dass der Nutzen, der in der Realitdt nicht
direkt sichtbar ist, nachtraglich berechnet und gezeigt werden kann. Die entfallenden
Wartungsaufwande und der entfallende Schaden fiir Benutzer werden sichbar. Kos-
ten und Nutzen werden vergleichbar, so dass gezeigt werden kann, welche Priifung
in welcher Situation kostengiinstiger ist.

Kapitel 9 fasst die Resultate zusammen. Das Modell CoBe wird bewertet und von
anderen Modellen abgegrenzt. Kosten, Nutzen und Grenzen des Modells werden dis-
kutiert. Der Ausblick zeigt, wie auf das Modell aufgebaut werden kann.



Kapitel 2

Grundlagen und Begriffe

In diesem Kapitel werden die Grundlagen, auf denen die Arbeit aufbaut, dargestellt.
Zentral ist dabei der Begriff des Modells. Metriken sind spezielle, quantitative
Modelle. Begriffe fiir Kosten und Nutzen, Software-Qualitat, Software-Projekt und
Software-Qualitatssicherung werden geklart.

2.1 Modelle

Jedes Modell besitzt das Abbildungsmerkmal, das Verkiirzungsmerkmal und das
pragmatische Merkmal.

Def. Abbildungsmerkmal. Modelle sind stets Modelle von etwas, namlich Abbil-
dungen, Représentationen nattirlicher oder kiinstlicher Originale, die selbst wie-
der Modelle sein konnen (Stachowiak, 1973). Das Original kann tatsdchlich
vorhanden, geplant oder fiktiv sein (Ludewig und Lichter, 2007).

Def. Verkiirzungsmerkmal. Modelle erfassen im allgemeinen nicht alle Attribute des
durch sie reprasentierten Originals, sondern nur solche, die den jeweiligen
Modellerschaffern und/oder Modellbenutzern relevant scheinen (Stachowiak,
1973). Die praterierten Attribute fallen weg, sie werden verkiirzt und nicht in
das Modell abgebildet. Abundante Attribute sind nur im Modell, nicht im Origi-
nal vorhanden (Ludewig und Lichter, 2007).

Def. Pragmatisches Merkmal. Modelle sind ihren Originalen nicht per se eindeutig
zugeordnet. Sie erfiillen ihre Ersetzungsfunktion a) fiir bestimmte — erkennende
und/oder handelnde, modellbenutzende — Subjekte, b) innerhalb bestimmter
Zeitintervalle und c) unter Einschrankung auf bestimmte gedankliche oder tat-
sdchliche Operationen (Stachowiak, 1973). Modelle konnen unter bestimmten
Bedingungen das Original fiir bestimmte Fragestellungen ersetzen (Ludewig
und Lichter, 2007).

Abbildung 3 illustriert das Abbildungsmerkmal mit den Attributen des Originals, die
vom Modell erfasst werden. Die praterierten Attribute (weifs dargestellt in der Abbil-
dung links) werden nicht erfasst, die abundanten Attribute (hellgrau dargestellt in
der Abbildung rechts) kommen im Modell dazu.

Deskriptive Modelle bilden das Original ab. Diese Beschreibung kann nachtréaglich
oder im Voraus erfolgen. Erfolgt die Beschreibung im Voraus, dann wird von einem
prognostischen Modell oder Prognosemodell gesprochen. Praskriptive Modelle sind
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Abbildung

abundante
Attribute

praterierte
Attribute

Original Modell

Abb. 3: Original und Modell nach Stachowiak

Vorgaben fiir das Original. Mit einem explorativen Modell (Abbildung 4) konnen die
Folgen von Entscheidungen beurteilt werden, bevor die Realitdt verandert wird.
Dazu wird zuerst der Ist-Zustand modelliert, das deskriptive Modell rechts oben in
Abbildung 4. Dann wird das Modell anstatt der Realitdt verandert (Modellmodifika-
tion). Sobald man mit dem neuen Modellzustand zufrieden ist, kann das geanderte
Modell den neuen Zustand fiir die Realitdt vorgeben (Praskriptives Modell rechts
unten in Abbildung 4).

Deskriptives
Ist-Z(upstand Modellierung Modell (Abbild)
Riskante | Modell-
Modifikation : modifikation
% Anwendung (Realisierung)
Geplanter Zustand Praskriptives Modell (Vorbild)

Abb. 4: Explorativer Einsatz eines Modells (Ludewig und Lichter, 2007)

2.2 Deduktive und induktive Modelle

Erklarungs- und Prognosemodelle werden aus einzelnen Aussagen zusammenge-
setzt, um fiir konkrete Situationen Folgerungen zu ziehen oder Prognosen zu erstellen
(Opp, 2005). Diese Aussagen erkldaren den Zusammenhang zwischen zwei Sachver-
halten (Schnell et al.,, 2005) und werden als Hypothesen, Gesetze oder Theorien
bezeichnet. Sie sind nicht aus logischen Griinden wahr oder falsch, es sind empirische
Aussagen. Sie konnen prinzipiell falsifiziert werden, lassen sich aber nicht beweisen.
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Modelle bestehen aus quantitativen Zusammenhangen oder bindren Zusammenhan-
gen, die entweder “Ja” oder “Nein” ergeben.

Diese Aussagen sind entweder deterministisch oder nicht-deterministisch. Determi-
nistische Aussagen treffen mit Sicherheit zu. Daraus entstehen deduktive Modelle,
aus denen Aussagen logisch abgeleitet werden konnen. Nicht-deterministische Aus-
sagen treffen mit einer bestimmten Wahrscheinlichkeit zu. Sie werden als statistische
oder probabilistische Aussagen bezeichnet. Mit statistischen Aussagen ist eine deduk-
tive Ableitung nicht moglich, es konnen aber Wahrscheinlichkeitsaussagen getroffen
werden. Dies bedeutet, dass eine aus der Theorie abgeleitete Aussage mit einer
bestimmten Wahrscheinlichkeit zutrifft. Modelle aus statistischen Aussagen werden
als induktive Modelle bezeichnet.

2.3 Metriken

Metriken sind im Software-Engineering Modelle, die das Original auf eine Grofse ver-
kiirzen. In IEEE 610 (1990) wird Metrik und Qualitatsmetrik definiert:

Def. metric. A quantitative measure of the degree to which a system, component or
process possesses a given attribute. See also: quality metric. (IEEE 610, 1990)

Def. quality metric. (1) A quantitative measure of the degree to which an item pos-
sesses a given quality attribute. (2) A function whose inputs are software data
and whose output is a single numerical value that can be interpreted as the
degree to which the software possesses a given quality attribute. (IEEE 610, 1990)

Stevens (1946) verwendet den Begriff Messung als Zuweisung von numerischen Wer-
ten zu Objekten oder Ereignissen nach bestimmten Regeln. Der Begriff Metrik ist als
Messung definiert, mit der eine Zahl oder ein Symbol einer Entitdt der realen Welt
zugewiesen wird, um ein Merkmal zu charakterisieren (Fenton und Pfleeger, 1997;
Zuse, 1998). Dabei kann auf skalare oder vektorielle Groien abgebildet werden (Lud-
ewig und Lichter, 2007). Der konkrete Wert der Metrik fiir das Original wird als des-
sen Bewertung bezeichnet.

2.3.1 Skalen und Skalentypen

Die Abbildung erfolgt auf eine Skala, die anhand ihres Typs unterschieden werden
(Stevens, 1946; Fenton und Pfleeger, 1997; Ludewig und Lichter, 2007):

Def. Nominalskala. Die moglichen Metrikwerte sind eine ungeordnete Menge.
Def. Ordinalskala. Die moglichen Metrikwerte sind eine geordnete Menge.

Def. Intervallskala. Die Differenz zwischen den (geordneten) Metrikwerten ist defi-
niert.

Def. Rationalskala. Zusatzlich ist der Nullpunkt nicht willkiirlich, sondern durch
das Original definiert.
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Def. Absolutskala. Die Metrikwerte sind direkt die Werte des Attributs im Original.
Die Metrikwerte sind ganze Zahlen, die durch Zahlen ermittelt werden.

Die Skalentypen liegen selbst auf einer Ordinalskala. Dazu muss die Absolutskala
aber zur Rationalskala erweitert werden, weil mit natiirlichen Zahlen beispielsweise
nicht dividiert werden kann. Die Nominalskala ist der schwachste Skalentyp, die
Rationalskala der starkste, weil er die meisten Operationen erlaubt. Mit einer Nomi-
nalskala kann nur auf Gleichheit gepriift werden. Die Ordinalskala erlaubt, Perzentile
und Median zu bilden, also Aussagen zur Haufigkeit zu treffen. Erst auf der Intervall-
skala kann gerechnet werden, Mittelwerte und Differenzen sind aussagekraftig. Um
Verhiltnisse zu bilden, wird der Nullpunkt benétigt, der auf der Rationalskala defi-
niert ist.

2.3.2 Merkmale von Metriken

Metriken lassen sich anhand ihrer Abbildungsvorschrift unterscheiden (Ludewig und
Lichter, 2007):

Def. Objektive Metriken. Die Abbildung erfolgt nach einem Algorithmus, durch
Messung (oder Zahlung).

Def. Subjektive Metriken. Die Abbildung erfolgt als Beurteilung durch Gutachter,
verbal oder auf einer vorgegebenen Skala.

Def. Pseudometriken. Die Abbildung erfolgt durch Berechnung aus anderen Mes-
sungen, Schatzungen oder Beurteilungen, weil die Metrik nicht direkt gemessen
werden kann.

Typisch fiir Pseudometriken sind Qualitatsbewertungen, weil das Attribut des Origi-
nals nicht prazise definiert ist, und Prognosen, weil das Attribut des Originals noch
nicht real bewertet werden kann.

Wie bei den Modellen werden deskriptive und praskriptive Metriken unterschieden
(Ludewig und Lichter, 2007). Eine deskriptive Metrik beschreibt einen Zustand, wie
er ist (oder sein wird), eine praskriptive Metrik gibt den Zustand vor. Eine deskriptive
Metrik kann prognostisch sein, dann wird ein zukiinftiger Zustand beschrieben, oder
diagnostisch, dann wird ein bestehender Zustand beschrieben.

Weil Pseudometriken eine bestimmte Interpretation implizieren, miissen sie validiert
werden. Zuse (1998) und Fenton und Pfleeger (1997) definieren dazu die Reprasenta-
tionsbedingung. Sie besagt, dass Unterschiede zwischen Attributwerten des Originals
als unterschiedliche Metrikwerte erhalten werden sollen.

Fiir Metriken zur Qualitdtsbewertung definiert der IEEE-Standard 1061 (1998) Vali-
dierung als Aktivitat, um die Ubereinstimmung zwischen Metrik und Qualitatsmerk-
mal (quality factor) zu priifen:

Def. metric validation. The act or process of ensuring that a metric reliably predicts
or assesses a quality factor.
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Fiir die Validierung werden unterschiedliche Validierungskriterien mit statistischen
Mafien vorgeschlagen. Dazu gehort beispielsweise, dass Qualitdtsmerkmal und
Metrik korrelieren oder dass bei der Prognose eine bestimmte Mindestgenauigkeit
erreicht wird.

Drappa (1998) definiert fiir die Validierung quantitativer (Simulations-)Modelle:

Def. Validierung. Validierung eines Simulationsmodells bedeutet festzustellen, ob
das Simulationsmodell eine fiir den spezifizierten Zweck der Untersuchung hin-
reichend genaue Reprasentation des betrachteten realen Systems ist (Drappa,
1998).

24 Entscheidungen und Entscheidungstheorie

Bei einem Entscheidungsproblem muss eine Handlungsalternative aus mehreren
Handlungen ausgewahlt werden (Laux, 1998; von Nitzsch, 2002). Damit ein Entschei-
dungsproblem vorliegt, muss es mindestens zwei mogliche Handlungen geben. Die
moglichen Handlungen miissen sich dadurch unterscheiden, dass ein Ziel unter-
schiedlich gut erreicht wird (Laux, 1998, S. 4).

2.4.1 Modelle in der Entscheidungstheorie

Die deskriptive Entscheidungstheorie beschaftigt sich mit der Frage, wie Entschei-
dungen ablaufen. Bei Entscheidungen durch Menschen spielen nicht nur rationale
Ziele eine Rolle, weil Menschen Informationen beschrankt wahrnehmen und nur
beschrankt verarbeiten konnen. Sie werden durch Gefiithle und Gruppen beeinflusst
(von Nitzsch, 2002). Die praskriptive Entscheidungstheorie versucht, vorzugeben,
wie Entscheidungen rationaler getroffen werden konnen. Dazu wird das Entschei-
dungsproblem durch ein Entscheidungsmodell dargestellt (Laux, 1998). Das Modell
besteht aus dem Entscheidungsfeld und den Zielfunktionen des Entscheiders. Das
Entscheidungsfeld stellt dar:

* Die Handlungsalternativen werden als variierbare Grofien dargestellt. Es konnen
mehrere Entscheidungsvariablen relevant sein, so dass der Handlungsspielraum
durch Werte-Tupel dieser Variablen beschrieben wird.

* Die Konsequenzen einer Handlung miissen in das Modell abgebildet werden. Es
reicht aus, diejenigen Konsequenzen abzubilden, die fiir den Entscheider relevant
sind. Diese Konsequenzen werden als Zielvariablen bezeichnet. Die konkrete Aus-
pragung wird als Ergebnis bezeichnet.

¢ Die Umweltzustiande sind die Grofien, die der Entscheider nicht beeinflussen kann.
Diejenigen Grofien, die sich auf die Zielvariablen auswirken, miissen berticksich-
tigt werden. Welche Variablen zu den Entscheidungsvariablen, welche zu den
Umweltzustanden gehoren, hangt vom Entscheider ab.

Entscheidungsprobleme werden unterschiedlich modelliert, je nachdem, wie viel
tber den Umweltzustand bekannt ist:
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* Ist dem Entscheider der wahre Zustand bekannt, dann wird von Entscheidungen
bei Sicherheit gesprochen.

¢ Ist der wahre Zustand nicht bekannt, aber die Wahrscheinlichkeit der moglichen
Zustande, wird von Entscheidungen bei Risiko gesprochen.

* Bei Entscheidungen bei Unsicherheit im eigentlichen Sinne kann kein Wahrschein-
lichkeitsurteil iiber die moglichen Zustande geféllt werden.

Die Zielfunktion stellt die Wiinsche des Entscheiders dar. Sie beschreibt den zukiinfti-
gen Zustand, der angestrebt wird. In der Regel wird eine Maximierung angestrebt;
andere Zielrichtungen wie die Minimierung oder ein angestrebter Wert lassen sich
auf eine Maximierung zuriickfiithren (Laux, 1998). Die Losung des Entscheidungspro-
blems, d.h. die Identifikation der optimalen Handlungsalternative, kann, muss aber
nicht Teil des Entscheidungsmodells sein. Abhédngig von der Komplexitit des Pro-
blems sind graphische oder numerische Losungen mdglich, aber auch Heuristiken
konnen eingesetzt werden (Laux, 1998, S. 49).

2.4.2 Nutzen und Grenzen

Der Nutzen eines Entscheidungsmodells wird von von Nitzsch (2002) in der rationa-
len, verniinftigen Entscheidung gesehen. Nach Laux (1998) wird der Nutzen dadurch
ereicht, dass die Ziele des Entscheiders besser erreicht werden.

Laux (1998) diskutiert die Grenzen der Entscheidungsmodelle. Sie entstehen durch
die Verkiirzung der Realitdt und die Subjektivitat der Modellbildung und des Modell-
einsatzes: Die Verkiirzung erfolgt zwangsldufig bei der Modellbildung, aber auch,
weil empirisches Wissen iiber die Realitdt fehlt. Typisch wird das Modell uniiber-
sichtlicher und seine Modellbildung teurer, je weniger verkiirzt wird. Ein Entschei-
dungsmodell ist also ein Kompromiss zwischen den Kosten des Modells und dem
damit erreichbaren Nutzen. Zusatzlich ist die Modellkonstruktion in mehrfacher Hin-
sicht subjektiv gepragt: So wird die Zielfunktion subjektiv bestimmt. Der Entscheider
sieht nicht alle Alternativen, die moglich waren, und bewertet die Umweltzustande
subjektiv. Die Handlungsalternativen sind in einer konkreten Situation beschrankt.

Entscheidungsmodelle bieten also eine Entscheidungshilfe, sie treffen aber nicht die
Entscheidung. Laux (1998) schldgt darum vor, dass Entscheidungsmodelle iterativ
eingesetzt und entwickelt werden. Insbesondere muss der Entscheider auf diejenigen
Aspekte achten, die im Modell nicht beriicksichtigt sind oder die auf Annahmen beru-
hen. Nicht berticksichtigte Aspekte konnen zusétzlich bertiicksichtigt werden; ein ite-
ratives Vorgehen entsteht, wenn das Modell so iiberarbeitet wird, dass fehlende
Aspekte erganzt oder angenommene Aspekte gepriift und verbessert werden.
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2.5 Kosten und Nutzen

2.5.1 Kosten- und Nutzenbegriffe

Der Kosten- und Nutzenbegriff leitet sich aus dem 6konomischen Prinzip ab. Weil
Giiter zur Bediirfnisbefriedigung knapp sind, besteht ein Spannungsverhaltnis zwi-
schen den eingesetzten Giitern und der damit erreichten Bediirfnisbefriedigung
(Paul, 2007; Weber und Kabst, 2006; Corsten und Reifs, 1999). Daraus leiten sich Mini-
malprinzip und Maximalprinzip ab (Paul, 2007), die besagen, dass entweder mit
einem gegebenen Aufwand ein maximaler Ertrag erzielt werden soll oder dass ein
gegebener Ertrag mit einem minimalen Aufwand erreicht werden soll.

Aufwand und Ertrag sind nicht auf materielle Giiter oder Geld beschrankt, sondern
konnen auch immateriell sein (Weber und Kabst, 2006). Corsten und Reifs (1999) nen-
nen fiir die Betriebswirtschaft vier Kategorien fiir Kosten und Nutzen, namlich tech-
nische, wirtschaftliche, soziale und 6kologische Ziele. Miihlenkamp (1994) erklart:
“Im Sprachgebrauch der Okonomen werden im weitesten Sinne Vorteile als “Nutzen” und
Nachteile als “Kosten” bezeichnet.” Hanusch (1987) definiert Kosten und Nutzen fiir die
Kosten-Nutzen-Analyse von Projekten der 6ffentlichen Hand:

Def. Kosten sind alle negativen Auswirkungen einer Mafsnahme.
Def. Nutzen sind alle positiven Auswirkungen einer Mafsnahme.

Kraufd (2007) bezieht die Perspektive ein, weil die Auswirkungen einer Mafisnahme
aus einer Perspektive als Kosten, aus einer anderen Perspektive als Nutzen gesehen
werden konnen. Im Rechnungswesen der Betriebswirtschaft miissen Kosten und
Leistung durch Geld bewertet werden, dabei zdhlt Giiterverbrauch zu den Kosten
(Liick, 2004; Schneck, 2005). Gegenstiick zu den Kosten ist die Leistung. Kosten und
Leistung werden durch einen Wert (z.B. den Preis) bewertet; in der Investitionsrech-
nung werden Zahlungsstrome betrachtet (Liick, 2004).

2.5.2 Kosten-Nutzen-Analyse und andere Verfahren

Mit der Kosten-Nutzen-Analyse sollen Entscheidungen tiber Projekte im o6ffentlichen
Sektor unterstiitzt werden (Miihlenkamp, 1994; Nas, 1996). Im Gegensatz zum
betriebswirtschaftlichen Rechnungswesen werden bei der Kosten-Nutzen-Analyse
nicht die in aller Regel wirtschaftlichen Interessen eines Unternehmens, sondern die
offentlichen Interessen einer Gesellschaft berticksichtigt.

Uberblick iiber die Kosten-Nutzen-Analyse

Ziel der Kosten-Nutzen-Analyse ist, die Wirkungen von Projekten zu vergleichen.
Dazu sollen positive und negative Wirkungen fiir alle Betroffenen erfasst werden. Sie
werden auf einer gemeinsamen Skala dargestellt, Kosten und Nutzen liegen also auf
der selben Skala, unterscheiden sich aber im Vorzeichen. Nutzen wird durch negative
Kosten dargestellt, Kosten durch negativen Nutzen. Bei der Kosten-Nutzen-Analyse
werden in der Regel Geldwerte als Skala verwendet, prinzipiell sind aber auch andere
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Grofien moglich (Miithlenkamp, 1994). Wirkungen in der Zukunft werden abgezinst
(Diskontierung). Es entsteht ein quantitatives Kosten-Nutzen-Modell, mit dem Wir-
kungen von Entscheidungen auf ein eindimensionales Giite- oder Entscheidungsmaf3
abgebildet werden. Damit konnen Alternativen geordnet werden. Eine Alternative
kann empfohlen werden (Hanusch, 1987; Miihlenkamp, 1994; Nas, 1996).

Die Vorteile (Miithlenkamp, 1994) sind, dass Kosten und Nutzen von Mafsnahmen
erfasst, bewertet und sichtbar werden. Zusammenhange werden klar, die Entschei-
dung wird transparent. Alle Betroffenen werden einbezogen. Kritikpunkte sind, dass
Kosten und Nutzen monetar bewertet werden miissen, auch wenn die Wirkung nicht
direkt in Geldwerten zu messen ist. Auch die Diskontierung ist problematisch, weil
der Zinssatz nicht sicher ist und weil unklar ist, ob Wirkungen fiir Dritte und ob
Umverteilungen diskontiert werden diirfen.

Die Kosten-Nutzen-Analyse kostet selber nicht unerheblichen Aufwand, insbeson-
dere um das Modell aufzustellen. In einfachen Situationen mit iiberschaubaren Aus-
wirkungen ist sie nicht notwendig. In komplexen Situationen mit hohen Kosten und
hohem Nutzen, zahlreichen und langfristigen Auswirkungen iiber das Projekt hinaus
ist der Aufwand gerechtfertigt (Miithlenkamp, 1994).

Kosten-Wirksamkeits-Analyse und Nutzwert-Analyse

Die Kosten-Wirksamkeits-Analyse und die Nutzwert-Analyse sind zwei weitere Ver-
fahren, um Entscheidungen zu unterstiitzen (Hanusch, 1987). Die Kosten-Wirksam-
keits-Analyse bewertet den Nutzen nicht monetar, sondern bezieht den Nutzen auf
die Ziele, die erreicht werden sollen. Fiir die Bewertung sollen fiir den Nutzen geeig-
nete Mafie oder Indikatoren eingesetzt werden. Die Rangfolge kann nicht mehr ein-
deutig festgelegt werden, wenn mehrere Ziele berticksichtigt werden. Die Kosten-
Wirksamkeits-Analyse kann nur weitgehend verwandte Alternativen ordnen.

Die Nutzwertanalyse betrachtet den Nutzen relativ zu Zielen. Dazu wird der Nutzen
zerlegt und mit einem gewichteten Zielerfiillungsgrad bewertet. Kosten werden ent-
weder als gleich fiir alle Alternativen vorausgesetzt oder als negativer Nutzen in die
Bewertung aufgenommen. Bereits der Aufbau des Bewertungssystems ist subjektiv,
die Entscheidung wird aber transparent und erfolgt systematisch. Wie die Kosten-
Wirksamkeits-Analyse konnen nur dhnliche Alternativen mit gleichem Zielsystem
verglichen werden.

Im Vergleich zur Kosten-Nutzen-Analyse sind Kosten-Wirksamkeits-Analyse und
Nutzwertanalyse starker subjektiv geprédgt, weil die Beteiligten der Nutzwert- und
Kosten-Wirksamkeitsanalyse die Ziele und ihre Gewichtung direkt bestimmen. Diese
konnen zwar Interessen anderer Betroffener berticksichtigen, es besteht aber die
Gefahr, dass mit den Zielen und ihrer Gewichtung das Ergebnis bewusst oder unbe-
wusst verfadlscht wird. Subjektive Werturteile spielen auch in der Kosten-Nutzen-
Analyse eine Rolle. Die Subjektivitit ist aber abgeschwacht (Mithlenkamp, 1994), weil
die Auswirkungen und die Betroffenen identifiziert werden miissen und den Auswir-
kungen Geldwerte zugewiesen werden miissen.
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2.6 Software-Projekte

Ein Software-Projekt besteht aus Aktivititen mit dem Ziel, ein Software-Produkt an
einen Kunden auszuliefern:

Def. software project. The set of work activities, both technical and managerial,
required to satisfy the terms and conditions of a project agreement. (IEEE 1058,
1998; IEEE 1490, 2003)

Das Software-Projekt wird von Mitarbeitern des Herstellers durchgefiihrt (Ludewig
und Lichter, 2007). Der Hersteller wird auch als Lieferant oder Auftragnehmer
bezeichnet (V-Modell XT, 2004). Dabei entstehen Artefakte. Artefakte, die an den
Kunden ausgeliefert werden, werden als Produkt bezeichnet (CMMI Product Team,
2002). Als Wartung werden Aktivitaten nach der Auslieferung bezeichnet; Wartungs-
arbeiten konnen aber bereits wahrend des Projekts anfallen (Ludewig und Opfer-
kuch, 2004).

Def. maintenance. (1) The process of modifying a software system or component
after delivery to correct faults, improve performance or other attributes, or adapt
to a changed environment. Syn.: software maintenance. [...] (2) The process of
retaining a hardware system or component in, or restoring it to, a state in which
it can perform its required function. [...] (IEEE 610, 1990)

2.6.1 Prozess

Der Begriff des Prozess wird definiert als Sequenz einzelner Schritte, mit denen ein
Ziel erreicht werden soll. Der Begriff bezeichnet konkrete Schritte, aber auch ein
Modell dieser Aktivititen (Ludewig und Lichter, 2007). Die einzelnen Schritte kénnen
iiberlappen oder iterativ durchgefiihrt werden.

Def. process. (1) A sequence of steps performed for a given purpose; for example, the
software development process. (IEEE 610, 1990)

Def. software development process. The process by which user needs are translated
into a software product. The process involves translating user needs into soft-
ware requirements, transforming the software requirements into design, imple-
menting the design in code, testing the code, and sometimes, installing and
checking out the software for operational use. Note: These activities may overlap
or be performed iteratively. (IEEE 610, 1990)

Def. process. A set of interrelated activities, which transform inputs into outputs.
(IEEE 12207.0, 1996)

Ludewig und Lichter (2007) unterscheiden zwischen Prozess und Prozessmodell. Das
Prozessmodell beschreibt den Prozess, der einem Projekt zu Grunde liegt. Das Pro-
zessmodell besteht im Kern aus einem Vorgehensmodell, ergianzt um Organisations-
strukturen, Vorgaben fiir = Projektmanagement und  Qualitdtssicherung,



26 2. Grundlagen und Begriffe

Dokumentation und Konfigurationsverwaltung. In Projekten sind zwei Zeitraume
wichtig: Die Entwicklungsdauer und die Lebensdauer:

Def. software development cycle. The period of time that begins with the decision to
develop a software product and ends when the software is delivered. This cycle
typically includes a requirements phase, design phase, implementation phase,
test phase, and sometimes, installation and checkout phase. Contrast with: soft-
ware life cycle. (IEEE 610, 1990)

Def. software life cycle. the period of time that begins when a software product is
conceived and ends when the software is no longer available for use. the soft-
ware life cycle typically includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and checkout phase, oper-
ation and maintenance phase, and, sometimes, retirement phase. Note: These
phases may overlap or be performed iteratively. Contrast with software develop-
ment cycle. (IEEE 610, 1990)

2.6.2 Rollen in Software-Projekten

Der Projektleiter ist fiir Planung, Steuerung und Durchfiihrung des Projekts verant-
wortlich. Er wird durch den Qualitatssicherungs-Verantwortlichen (QS-Verantwortli-
chen) unterstiitzt (V-Modell XT, 2004):

Def. project manager (PM). The individual responsible for managing a project. (IEEE
1490, 2003).

Def. Der QS-Verantwortliche ist mit der Uberwachung der Qualitit im Projekt beauf-
tragt. Er ist damit fiir die Qualitdt der Projektergebnisse verantwortlich.
(V-Modell XT, 2004)

Die Rollen sind zu trennen (aus V-Modell XT, 2004): “Die Rolle des QS-Verantwortlichen
sollte nicht mit der Rolle des Projektleiters zusammengelegt werden, da dann Interessenkon-
flikte (Projektleiter zustindig fiir Zeit und Budget contra QS-Verantwortlicher zustindig fiir
Qualitit) entstehen konnen.”

Die von einem Projekt Betroffenen werden als Stakeholder bezeichnet; Glinz und
Wieringa (2007) diskutieren den Begriff und definieren:

Def. A stakeholder is a person or organization who influences a system’s require-
ments or who is impacted by that system. (Glinz und Wieringa, 2007)

Def. stakeholder. Individuals and organizations that are actively involved in the
project, or whose interests may be positively or negatively affected as a result of
project execution or project completion. They may also exert influence over the
project and its results. (IEEE 1490, 2003)

Zu den Stakeholdern gehoren Kunde und Benutzer (CMMI Product Team, 2002; IEEE
1490, 2003), aber auch das Wartungspersonal (Glinz und Wieringa, 2007). Direkt
betroffen sind nach Alexander und Robertson (2004) die Benutzer und das Wartungs-
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personal. Zum Wartungspersonal gehoren Wartungsingenieure oder Entwickler, die
die Wartung durchfiihren (Ludewig und Opferkuch, 2004), und die Benutzerbera-
tung. Ludewig und Lichter (2007) verwenden den Begriff “Klient” und diskutieren,
dass die Unterscheidung zwischen Klienten und den Menschen, die im Auftrag eines
Kunden an der Software arbeiten, nicht immer moglich ist. Im Folgenden verwende
ich die genannte Definition fiir Stakeholder und die Begriffe Klient und Stakeholder
synonym.

Im V-Modell sind Auftraggeber (Kunde) und Anwender (Benutzer) definiert:

Def. Anwender. Der Anwender nutzt das System zur Erfiillung seiner Fachaufgaben
nach der Auslieferung. Er leitet aus seiner Erfahrung mit dem Einsatz und
Betrieb sowie der Pflege und Wartung von Systemen Anforderungen an das
Gesamtsystem ab und bringt entsprechende Anderungsvorschlige ein. (V-
Modell XT, 2004)

Def. Auftraggeber. Unter einem Auftraggeber wird der Kunde im Rahmen einer Ver-
tragssituation verstanden, also der Empfanger eines vom Auftragnehmer bereit-
gestellten Produkts. (V-Modell XT, 2004)

2.6.3 Projektleitung

Die Aufgaben des Projektleiters sind Planung, Organisation, Stellenbesetzung, Fiih-
rung, Uberwachung und Steuerung (Thayer und Christensen, 2002; Kerzner, 2006).
Die Planung bestimmt, was von wem bis wann durchgefiihrt werden soll (Kerzner,
2006). Sie gibt den Ablauf des Projekts vor:

Def. planning. Predetermining a course of action for accomplishing organizational
objectives. (Thayer and Christensen, 2002)

Uberwachung und Steuerung bedeutet, die Realitdt mit dem Plan zu vergleichen, so
dass bei Abweichungen vom Plan reagiert werden kann. Dies wird auch als Projekt-
kontrolle bezeichnet:

Def. controlling. Establishing, measuring, and evaluating performance of activities
towards planned objectives. (Thayer and Christensen, 2002)

2.6.4 Kosten in Software-Projekten

Typische Kostenkategorien in Projekten sind Arbeitskosten, Materialkosten, andere
direkte Kosten und indirekte Kosten (Kerzner, 2006, S. 610). Kosten basieren auf den
Projektaktivitaten (Kerzner, 2006, S. 544) und der zu leistenden Arbeit (Metzger und
Boddie, 1996, S. 49). Wichtige Metriken fiir die Planung und Kontrolle sind Aufwand,
Dauer und Personalbedarf (Boehm, 2000; Goethert et al., 1992; IEEE 1058, 1998). Diese
Metriken werden im Folgenden als Planungsmetriken bezeichnet.

Der Arbeitsaufwand (kurz Aufwand, Effort) wird in Entwicklerstunden (Eh), Ent-
wicklermonaten (EM) oder Entwicklerjahren (EJ) gemessen. Er bestimmt iiber die
Personalkosten die Projektkosten (Jones, 2007, S. 13):
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Def. effort. A staff-hour is an hour of time expended by a member of the staff. (IEEE
1045, 1992)

Def. effort. The number of labor units required to complete an activity or other
project element. Usually expressed as staff hours, staff days, or staff weeks.
Should not be confused with duration. (IEEE 1490, 2003)

Die Dauer wird zwischen zwei Zeitpunkten (Goethert et al., 1992) gemessen, als
Arbeitsdauer definiert und von der kalendarischen Dauer unterschieden. Typische
Einheiten sind Stunden (h), Tage (d), Monate (M) oder Jahre (J). Unterschiede zwi-
schen Arbeitsdauer und kalendarischer Dauer zeigen sich beispielsweise bei der
Umrechnung zwischen Tagen und Wochen, weil eine Woche 5 Arbeitstage hat, aber
7 Tage dauert.

Def. duration (DU). The number of work periods (not including holidays or other
nonworking periods) required to complete an activity or other project element.
Usually expressed as workdays or workweeks. Sometimes incorrectly equated
with elapsed time. (IEEE 1490, 2003).

Def. Personalbedarf (syn. Mitarbeiterzahl, Zahl der Mitarbeiter). Die Zahl der beno-
tigten Mitarbeiter.

Diese Metriken werden auf unterschiedlichen Abstraktionsebenen definiert. Die
kleinste Einheit in einem Software-Projekt wird als Task bezeichnet. Bei der Planung
werden die Aktivitdten (activity) definiert und geplant; es sind die einzelnen Arbeits-
pakete, die von den Mitarbeitern noch weiter unterteilt werden konnen. Aktivitaten
werden zu Projektphasen (syn. Phase) zusammengefasst.

Def. activity. An element of work performed during the course of a project. An
activity normally has an expected duration, an expected cost, and expected
resource requirements. Activities can be subdivided into tasks. (IEEE 1490, 2003)

Def. task. A generic term for work that is not included in the work breakdown struc-
ture, but potentially could be a further decomposition of work by the indi-
viduals responsible for that work. Also, lowest level of effort on a project. (IEEE
1490, 2003)

Def. project phase. A collection of logically related project activities, usually culmi-
nating in the completion of a major deliverable. (IEEE 1490, 2003)

2.6.5 Kostenschitzung in Software-Projekten

Kostenschatzung bezeichnet die Prognose von Aufwand, Dauer, Personalbedarf und
monetdren Kosten (Fenton und Pfleeger, 1997). Die Kosten als Geldwerte ergeben sich
aus den Kosten der Projektaktivititen (Kerzner, 2006, S. 544) und der zu leistenden
Arbeit (Metzger und Boddie, 1996, S. 49).

Als Bottom-up-Schitzung wird ein Vorgehen bezeichnet, bei dem zuerst Aufwand,
Dauer und Personal der einzelnen Aktivitaten im Projekt geschatzt werden. Daraus
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folgen Aufwand, Dauer, Personalbedarf und Kosten als Geldwerte fiir das gesamte
Projekt. Bei der Top-down-Schiatzung werden zuerst die Gesamtkosten des Projekts
geschatzt und dann auf einzelne Aktivitaten aufgeteilt.

2.7 Qualitdt und Software-Qualitit

2.7.1 Der Qualititsbegriff

DIN 55350 (1995) nennt fiir den Begriff Qualitat drei unterschiedliche Bedeutungen:
Qualitat kann eine neutrale Eigenschaft bezeichnen. Qualitdat kann “qualitativ hoch-
wertig” bezeichnen. Qualitdt kann eine graduelle Eigenschaft oder Giite beschreiben
(DIN 55350, 1995). Garvin (1988) nennt Blickwinkel auf die Qualitat, die zu wider-
spriichlichen Zielen fithren und begriindet damit, dass eine einseitige Betrachtung zu
nicht-optimalen Losungen fiihrt:

* Die transzendente Sicht: Qualitdt als wahrnehmbare, aber nicht prazis definierbare
Eigenschaft, die durch Erfahrung erkannt wird.

* Die produkt-basierte Sicht: Qualitat als objektive, messbare, inharente Merkmale
des Produkts.

* Die benutzer-basierte Sicht: Qualitat als Bewertung durch Benutzer.
* Die hersteller-basierte Sicht: Qualitat als Erfiillung von Anforderungen.

¢ Die wert-basierte Sicht: Auch Kosten und Preis werden betrachtet.

2.7.2 Software-Qualitit

Software-Qualitat wird durch Taxonomien (IEEE 1061, 1998) oder als Abwesenheit
von Defiziten (ISO 9000, 2000; IEEE 1044, 1993) definiert.

Taxonomien der Software-Qualitit

Taxonomien unterteilen den Qualitatsbegriff in einzelne Merkmale. Die Taxonomien
von Ludewig und Lichter (2007) und des ISO/IEC-Standard 9126 (2001) unterscheiden
zwischen Produkt- und Prozessqualitat. Die Prozessqualitat beeinflusst die Produkt-
qualitat, sie schafft giinstige Voraussetzungen fiir eine hohe Produktqualitat, ist aber
weder eine Garantie noch eine zwingend notwendige Voraussetzung. Der Standard
ISO/IEC 9126 (2001) unterteilt Qualitat in interne Produktqualitdt, externe Produkt-
qualitat und Qualitdt im Einsatz. Der Standard stellt ein hierarchisches Qualitdtsmo-
dell fiir jeden dieser drei Aspekte bereit.

Ludewig und Lichter (2007) unterteilen Prozessqualitdt und Produktqualitét in einer
Taxonomie. Die Prozessqualitdt gliedert sich in Projektleistung, Planungssicherheit
und innere Prozessqualitat. Planungssicherheit enthalt beispielsweise die Terminein-
haltung, das Projektklima gehort zur inneren Prozessqualitdt. Die Produktqualitat
besteht aus Brauchbarkeit und Wartbarkeit. Zur Brauchbarkeit gehoren Aspekte der
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Bedienbarkeit, Niitzlichkeit und Zuverlassigkeit. Priifbarkeit, Anderbarkeit und Por-
tabilitat sind der Wartbarkeit zugeordnet.

Software-Qualitit als Erfiillung von Anforderungen
Die ISO (ISO 9000, 2000) definiert Qualitat beziiglich Anforderungen:
Def. Qualitit. Grad, in dem ein Satz inhdrenter Merkmale Anforderungen erfiillt.

Def. Anforderung. Erfordernis oder Erwartung, das oder die festgelegt, iiblicher-
weise vorausgesetzt oder verpflichtend ist.

Def. Fehler. Nichterfiillung einer Anforderung.

Def. Mangel. Nichterfiillung einer Anforderung in Bezug auf einen beabsichtigten
oder festgelegten Gebrauch.

Def. Merkmal. Kennzeichnende Eigenschaft.

Def. Qualititsmerkmal. Inhdrentes Merkmal eines Produkts, Prozesses oder Sys-
tems, das sich auf eine Anforderung bezieht.

Der Begriff der Anomalie oder Abweichung (IEEE-Std. 1044, 1993) entspricht dem
Fehlerbegriff der ISO. Der IEEE-Standard 982.1 (2005) unterscheidet fiir Software die
Fehlerursache (fault) und das Fehlersymptom (failure), aufierdem den Irrtum, der der
Fehlerursache zu Grunde liegt. Der Standard schrankt den Fehlerbegriff aber auf Feh-
lerursachen im Programm und Fehlersymptome beim Verwenden des Systems ein. Er
stiitzt sich auf die Definitionen im IEEE Standard 610 (1990):

Def. fault. (1) A defect in a hardware device or component; for example, a short cir-
cuit or broken wire. (2) An incorrect step, process, or data definition in a com-
puter program. (IEEE 610, 1990)

Def. failure. The inability of a system or component to perform its required functions
within specified performance requirements. (IEEE 610, 1990)

Mit Fehlerentdeckung wird die Identifikation einer Abweichung bezeichnet, mit Kor-
rektur die Anderung, mit der der Fehler entfernt, d.h. korrigiert, wird (Dunn, 1984).

Zuverlassigkeit ist iiber Fehlverhalten definiert:

Def. reliability. The ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time. (IEEE 982.1, 2005)

Def. dependability. Trustworthiness of a computer system such that reliance can be
justifiably placed on the service it delivers. Reliability, availability, and maintain-
ability are aspects of dependability. (IEEE 982.1, 2005)
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2.8 Software-Qualititssicherung

Software-Qualitdtssicherung bezeichnet alle geplanten und systematischen Aktivita-
ten, die das Vertrauen in die Konformitdt zu technischen Anforderungen sichern
(IEEE 610, 1990; Thayer und Christensen, 2002; Ludewig und Lichter, 2007). Qualitéts-
sicherung ist projektbezogen und wird von der projektiibergreifenden Prozessverbes-
serung (oder Qualititsmanagement) abgegrenzt (Thayer und Christensen, 2002;
Ludewig und Lichter, 2007).

Def. quality assurance (QA). (1) A planned and systematic pattern of all actions nec-
essary to provide adequate confidence that an item or product conforms to
established technical requirements. (2) A set of activities designed to evaluate
the process by which products are developed or manufactured. Contrast with:
quality control (1). (IEEE 610, 1990)

Qualitatssicherung besteht aus organisatorischen, konstruktiven und analytischen
Mafinahmen (Ludewig und Lichter, 2007). Organisatorische Mafinahmen zielen auf
eine systematische Entwicklung und Qualitatssicherung. Mit konstruktiven Mafsnah-
men sollen Defizite vermieden werden. Analytischen Mafsnahmen enthalten Soft-
ware-Priifungen, sie ergianzen andere Mafisnahmen. Software-Priifungen finden
entweder mechanisch oder nichtmechanisch, d.h. durch Menschen, statt. Die Soft-
ware, die gepriift wird, wird als Priifling bezeichnet. Zu den nichtmechanischen Prii-
fungen zdhlen Inspektionen (Fagan, 1976), technische Reviews (Freedman und
Weinberg, 1982), Walkthroughs und Stellungnahmen (Freedman und Weinberg,
1982; Friihauf et al., 2006). Zu den mechanischen Priifungen, fiir die ein Rechner beno-
tigt wird, gehoren die dynamischen Tests (z.B. in Liggesmeyer, 2002). Dazu gehoren
auch statische Analysen (Spinellis, 2006; Louridas, 2006), mit denen Software mit
Regeln gepriift, die Konsistenz tiberpriift oder quantitative Merkmale erfasst werden.

Software-Qualitatssicherung
[
o | . l.
organisatorisch konstruktiv analytisch

Softvxlfare—Prﬁfung

. [ R -
nichtmechanisch mechanisch

Priifung durch Menschen  Priifung mit Rechner
(Inspektion, Review)

| il
analysieren ausfiihren

statische Priifung dynamische Priifung (Test)

Abb. 5: Gliederung der Qualitdtssicherung nach Ludewig und Lichter (2007)
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2.9 Qualitiatskosten und Software-Qualitiatskosten

Software-Kosten konnen in reine Entwicklungskosten, Qualitdtskosten und Kosten
fiir die Wartung (ohne Qualitatskosten) unterteilt werden (Tomys, 1995; Ludewig
und Lichter, 2007). Fiir Qualitdtskosten gibt es eine Reihe leicht unterschiedlicher
Taxonomien (Ludewig und Lichter, 2007; Friihauf et al., 2006; Jalote, 2000; Krasner,
1998; Slaughter et al., 1998; Demirérs et al., 2000). Abgeleitet aus Juran (1962) und
Juran und Godfrey (1998) wird definiert:

Def. Fehlerverhiitungskosten (Prevention Costs). Kosten der Aktivitdten, mit denen
Qualitatsdefizite verhindert werden sollen.

Def. Priifkosten (Appraisal Costs). Kosten der Aktivitdten, mit denen die Qualitat
festgestellt werden soll und mit denen man sich versichern will, dass die Pro-
duktqualitat ausreicht.

Def. Fehlerkosten (Failure Costs). Kosten, die durch Qualitatsdefizite entstehen.
Diese Kosten konnen in interne und externe unterteilt werden. Interne Fehler-
kosten fallen vor der Auslieferung des Produkts an. Externe Fehlerkosten fallen
nach der Auslieferung des Produkts an.

Fehlerfolgekosten sind externe Fehlerkosten, die von Fehlern fiir Kunde und Benutzer
verursacht werden. Externe Fehlerkosten fallen auch fiir den Hersteller an (Demir6rs
et al.; 2000), dazu gehoren Kosten fiir den technischen Support, Wartungs- und Aus-
lieferungskosten fiir Fehler. Fehlerbehebungskosten fallen an, um entdeckte Fehler zu
entfernen (einschliefllich Qualitédtssicherung der Korrektur). Zusatzlich konnen Ver-
tragsstrafen, Kosten fiir Produktriickrufe, Kosten, um den Kunden zu besanftigen,
Markt- und Verkaufseinbufsen, Garantie und Gewahrleistung anfallen.



Kapitel 3

Die Idee eines Kosten-Nutzen-Modells fiir

Priifungen

In diesem Kapitel werden die Probleme beschrieben, mit denen Projektleiter und QS-
Verantwortliche bei der Planung und Kontrolle der Software-Qualitatssicherung kon-
frontiert werden. Der Losungsansatz, ein quantitatives Modell fiir Kosten und Nut-
zen von Prifungen, wird dargestellt. Die Einbettung des Modells in die
Projektplanung und -kontrolle und in Prozessverbesserungen wird gezeigt. Der
Modellierungsansatz wird festgelegt.

3.1 Schwierigkeiten mit Entscheidungen iiber Qualititssicherung

Projektleiter und QS-Verantwortliche treffen Entscheidungen bei der Planung und
Steuerung eines Projekts (Kerzner, 2006; Thayer und Christensen, 2002, S. 217; V-
Modell XT, 2004). Mit diesen Entscheidungen versucht der Projektleiter, das Projekt
erfolgreich durchzufiihren. Dazu ist ein Kompromiss zwischen Kosten, Dauer und
Qualitat notwendig, weil diese Groflen voneinander abhdngen und Ressourcen
beschrankt sind (Kerzner, 2006). Fiir diesen Kompromiss werden Entscheidungen
tiber die Qualitatssicherung gefallt. Die Entscheidungen sind schwierig, weil es sinn-
voll ist, sie frith im Projekt zu treffen, aber nur unzureichend Informationen tiber die
Qualitat verfiigbar sind:

* Je frither Entscheidungen getroffen werden, desto grofier ist der Handlungsspiel-
raum. Wenn mehr Zeit und mehr Ressourcen zur Verfiigung stehen, konnen
andere, auch umfangreichere Optionen gewahlt werden. Kerzner (2006) zeigt dazu
eine Studie des Departement of Defense (Abbildung 6 auf Seite 34). Die Projekt-
phasen, die das Departement of Defense verwendet, sind auf der Zeitachse darge-
stellt. Das Projektmanagement {ibernimmt die Verantwortung nach der
Konzeptdefinition (Conceptual Definition in Abbildung 6). Je weiter das Projekt
fortgeschritten ist, desto weniger Entscheidungen konnen getroffen werden. Die
Abbildung zeigt dies durch den prozentualen Anteil der Entscheidungen, die bis
zu einem gewissen Zeitpunkt im Projekt getroffen worden sind (Decisions affec-
ting life-cycle costs in Abbildung 6).

e Mit frithen Entscheidungen ist die Wirksamkeit der Handlungen am grofiten. Die
Studie in Kerzner (2006) zeigt, dass die Einsparmoglichkeiten im Verlauf des Pro-
jekts abnehmen (Cost reduction opportunity in Abbildung 6).
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Abb. 6: Entscheidungs- und Einsparmdoglichkeiten nach Kerzner (2006)

Weil der Handlungsspielraum und die Wirksamkeit der Handlungen im Verlauf des
Projekts abnehmen, folgt, dass die wichtigsten Entscheidungen in der Planung getrof-
fen werden. Zu diesem Zeitpunkt sind aber nur wenig Informationen bekannt. Wie
stark sich eine Entscheidung auswirkt, kann darum nur mit betréchtlicher Unsicher-
heit geschatzt werden. Boehm (2000) gibt an, dass Schatzungen bei der Projektpla-
nung typisch um den Faktor 2 von den tatsachlichen Werten abweichen.

Die Entscheidungen des Projektleiters und des QS-Verantwortlichen {iber die Quali-
tatssicherungsmafinahmen bestimmen die Software-Qualitdt, weil Qualitdtssiche-
rungsmafinahmen die Prozessqualitiat und die Produktqualitat bestimmen, aber auch,
weil die Prozessqualitat die Produktqualitat pragt (Ludewig und Lichter, 2007; Hun-
ter und Thayer, 2001, S. 290). Dies zeigt sich deutlich bei Priifungen, also analytischen
Qualitatssicherungsmafinahmen, die die Produktqualitit durch Fehlerentdeckung
verbessern (Ludewig und Lichter, 2007) und die Prozessqualitit durch Kontrolle
erhohen (Thayer und Christensen, 2002; Jalote, 2000). Da Priifungen teuer werden
konnen, besteht die Gefahr, dass nicht ausreichend gepriift wird und somit die Pro-
zessqualitdt sinkt. Dann konnen aber Qualitatsmangel hohe Kosten nach sich ziehen.
Entscheidungen, die die Qualitdt betreffen, sind besonders schwierig zu treffen:

e Der Handlungsspielraum fiir Priifungen ist im Prinzip grof: Da Priifungen nicht
zwingend notwendig sind, um ein Produkt zu erstellen, reicht der Handlungsspiel-
raum prinzipiell von der Entscheidung, tiberhaupt nicht zu priifen, bis zur Ent-
scheidung, sehr viel und sehr intensiv zu priifen. Dabei konnen abhdngig von der
Projektklasse unterschiedliche und unterschiedlich viele Priifungen durchgefiihrt
werden (Jones, 2007). Vor allem aber kann jede einzelne Priifung unterschiedlich
intensiv durchgefiihrt werden. Vorgaben in Standardprozessen schranken diesen
Handlungsspielraum ein, sie lassen aber Spielraum und werden an Projekte indivi-
duell angepasst (Ellims et al., 2006).
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e Die Qualitatsbewertung ist schwierig, da eine Bewertung der Qualitat mit ein-
tachen, objektiven Metriken interpretiert werden muss und unplausible Ergebnisse
liefern kann. Die Resultate einer solchen Qualitdtsbewertung sind nur einge-
schrankt plausibel, weil diese Metriken nur einen kleinen Teil eines komplexen
Projekts erfassen (Kitchenham et al., 2007; Fenton und Neil, 1999). Zur Qualitats-
kontrolle konnen auch Priifungen (Thayer und Christensen, 2002; Jalote, 2000) und
subjektive Bewertungen (z.B. Sunazuka et al., 1985) eingesetzt werden. Sie ermogli-
chen verlasslichere Aussagen zur Qualitat als einfache Metriken. Priifungen und

subjektive Bewertungen sind aber teuer; sie kosten Zeit, Aufwand, Mitarbeiter und
Geld.

* Die indirekten Wirkungen der Priifungen sind komplex und schwierig zu durch-
schauen und konnen am Projektende nicht objektiv festgestellt werden (Thayer
und Christensen, 2002). Beispielsweise konnen Qualitdtsverbesserungen nicht
direkt gemessen werden. Sie werden als Einsparungen iiber die gesamte Lebens-
dauer sichtbar. Somit muss also ein langer Zeitraum tiberblickt werden; Einsparun-
gen konnen nur im Vergleich zu Kosten gemessen werden.

* Im Gegensatz zu den Qualitatsverbesserungen sind die Kosten fiir Priifungen
offensichtlich: Priifungen und Korrekturen dauern, benttigen Mitarbeiter und kos-
ten somit Zeit, Aufwand, Mitarbeiter und Geld.

» Fiir rationale Entscheidungen tiber Qualitdtssicherung miissen Qualitat und Kos-
ten gegeneinander abgewogen und verglichen werden. Diese Abwagung und der
Vergleich sind schwierig. Kosten und Dauer von Qualitatssicherungsmafinahmen
sind durch standardisierte Metriken am Ende des Projekts vollstandig feststellbar
und konnen fiir einzelne Priifungen wahrend des Projekts gemessen werden. Die
Qualitatsbewertung liefert im Gegensatz dazu subjektive Einschdtzungen und ist
wahrend des Projekts und am Projektende teuer. Messen lassen sich Qualitdtsver-
besserungen nicht direkt, aber Einsparungen werden tiiber die gesamte Produktle-
bensdauer sichtbar. Ein direkter Vergleich zwischen Qualitait oder
Qualitatsverbesserungen und den dafiir investierten Kosten ist also nicht méglich.

* Die Anforderungen an das Produkt und an den Prozess unterscheiden sich zwi-
schen Projekten. Somit spielen Qualitat und Kosten eine unterschiedlich wichtige
Rolle (Yourdon, 1995). Darum ist nicht moglich, allgemeingiiltig Priifungen mit
bestimmter Intensitat vorzuschreiben. Die optimalen Entscheidungen iiber Priifun-
gen hangen also von der konkreten Situation und den Anforderungen des Projekts
ab. Prozessstandards enthalten Vorgaben, welche Art von Priifungen durchgefiihrt
werden sollen, aber keine Vorgaben, wie intensiv die Priifungen stattfinden sollen
(CMMI Product Team, 2002; Hérmann et al., 2006).

Die Situation des Projektleiters und QS-Verantwortlichen ist also schwierig. Sie ent-
scheiden tiber Priifungen mit weitreichenden Folgen auf Basis unzureichender Infor-
mationen. Sie konnen Entscheidungen nicht riickgangig machen und nicht objektiv
begriinden. Untersuchungen bestatigen diese Schwierigkeiten (Ahonen und Junttila,
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2003; Mandl-Striegnitz und Lichter, 1998): Die Planung ist unzureichend, Qualitatssi-
cherung und Fortschrittskontrolle werden vernachlassigt.

3.2 Ziele des Kosten-Nutzen-Modells fiir Priifungens

In dieser schwierigen Situation sollen darum Projektleiter und QS-Verantwortliche
durch ein quantitatives Modell unterstiitzt werden (Abbildung 7). Das Modell hat
also den Zweck, Projektleiter und QS-Verantwortliche bei Entscheidungen iiber Qua-
litatssicherung zu unterstiitzen. Dieser Zweck lasst sich konkreter aus den Schwierig-
keiten ableiten:

* Demonstration der Auswirkungen von Entscheidungen: Weil die Wirkungen der
Qualitatssicherungsmafinahmen indirekt und komplex sind, soll das Modell zei-
gen, wie sich die konkreten und detaillierten Entscheidungen, die Projektleiter und
QS-Verantwortliche treffen, auswirken. Das Modell soll die kurzfristigen Auswir-
kungen auf das Projekt und langfristige Auswirkungen, d.h. Auswirkungen auf
Einsatz und Wartung des Produkts, darstellen.

* Diagnose der Auswirkungen von Entscheidungen: Das Modell soll die Auswirkun-
gen widerspiegeln, die sich in realen Projekten aus den getroffenen Entscheidun-
gen ergeben; es soll die Kosten und den Nutzen der Mafinahmen zur
Qualitatssicherung zeigen, damit Entscheidungen nachtraglich begriindet werden
konnen. Das Modell soll also deskriptiv, diagnostisch, fiir bestehende Projekte ein-
gesetzt werden konnen.

* Prognose der Auswirkungen zur Planung von Priifungen: Das Modell soll die
Planung der einzelnen Qualitdtssicherungsmafsnahmen unterstiitzen. Das Modell
soll beispielsweise fihig sein, Kosten und Nutzen von Priifungen zu prognostizie-
ren, um den Projektleiter rechtzeitig zu unterstiitzen.

e Vergleich und Optimierung: Das Modell soll ermdglichen, die Kosten und den
Nutzen der Qualitdtssicherungsmafinahmen miteinander zu vergleichen, um Ent-
scheidungen zu begriinden. Dadurch soll das Modell ermdglichen, Kosten zu mini-
mieren oder den Nutzen zu maximieren. Das Modell soll also explorativ eingesetzt
werden konnen.

Um diese Ziele zu erreichen, wird der Handlungsspielraum fiir Qualitatssicherung
auf Modelleingaben abgebildet. Das Modell erlaubt, Handlungen auszuwéhlen
(Abbildung 7). Es berechnet abhdngig von diesen Eingaben und Merkmalen des Pro-
jekts die Kosten und den Nutzen dieser Entscheidung. Kurzfristige und langfristige
Auswirkungen, die in der gesamten Lebensdauer des Produkts auftreten, werden im
Modell beriicksichtigt und vergleichbar dargestellt. Dazu gehdren Kosten und Nut-
zen fiir einzelne Phasen des Projekts, fiir das gesamte Projekt und fiir wichtige Pro-
jektklienten.

Das quantitative Modell erhdlt den Namen CoBe, abgeleitet aus Cost (Kosten) und
Benefit (Nutzen). Es handelt sich um ein Kosten-Nutzen-Modell, da nur diese Modell-
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Quantitatives
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Abb. 7: Idee fiir das Kosten-Nutzen-Modell CoBe

form erlaubt, Kosten und Nutzen direkt zu vergleichen (Abschnitt2.5.2). Damit
gehort es zu den Entscheidungsmodellen. CoBe liefert aber nicht die optimale
Losung, sondern zeigt die Wirkungen fiir die (im Modell) getroffenen Entscheidun-
gen. Nur so konnen auch nicht-optimale Situationen dargestellt werden, etwa um die
Folgen von Fehlentscheidungen zu demonstrieren.

Fiir CoBe werden im Folgenden zuerst die pragenden Merkmale festgelegt, bevor das
Modell erstellt wird. Da Entscheidungen unterstiitzt werden sollen, wird zuerst fest-
gelegt, welche Entscheidungen durch welche Eingaben und durch welche Ausgaben
unterstiitzt werden. Zum Modellzweck gehort auch der vorgesehene Modelleinsatz.
Der Modellierungsansatz beschreibt, wie das Modell erstellt und gestaltet wird.

3.3 Unterstiitzte Entscheidungen

Die Modelleingaben leiten sich aus den Qualitdtssicherungsmafinahmen, fiir die das
Modell Kosten und Nutzen berechnet, und dem Handlungsspielraum, den Projektlei-
ter und QS-Verantwortliche fiir diese Mafsnahmen haben, ab.

3.3.1 Auswahl der Qualititssicherungsmafinahmen

Qualitatssicherung kann in drei Bereiche eingeteilt werden (Frithauf et al., 2001): Kon-
struktive MafSinahmen, analytische Mafinahmen (Priifungen) und organisatorische
MafSnahmen. Das Modell konzentriert sich auf analytische Mafinahmen, weil der Pro-
jektleiter iiber die analytischen Mafinahmen entscheiden kann (PMI, 2000; IEEE-Std.
1490, 2003). Konstruktive Qualitatssicherung, z.B. die Einfithrung neuer Prozesse, der
Einsatz geeigneter Werkzeuge oder Sprachen, die Schulung von Mitarbeitern, werden
haufig organisationsweit eingefiihrt; sie werden dem Prozess-Management zugeord-
net (CMMI Product Team, 2002). Organisatorische MafiSnahmen sollen mit dem
Modell unterstiitzt werden und sind darum nicht Teil des Modells.
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3.3.2 Entscheidungen iiber Priifungen und Priifparameter

Reviews und Tests sind weit verbreitete Priifungen und werden darum in CoBe dar-
gestellt. Diese Priifungen konnen unterschiedlich intensiv durchgefiihrt werden, je
nach Intensitdt der Priifung andern sich die Kosten und der Nutzen. Die Intensitat
wird durch einzelne Priifparameter und somit also durch einzelne Entscheidungen
bestimmt. Diese Parameter werden fiir die Planung als klare Vorgaben bendétigt
(Kerzner, 2006), der Qualitatsplan soll fiir Tests und Reviews detaillierte Priifpara-
meter enthalten (IEEE-Std. 12207.1, 1997). Darum werden in CoBe detaillierte Vorga-
ben, d.h. Priifparameter, abgebildet.

In Reviews wird Software von Gutachtern gepriift. Das technische Review gehort zu
den aufwéndigsten und formalsten Review-Varianten. Darum wird es in CoBe darge-
stellt. Im Review bereiten sich Gutachter zuerst einzeln vor, dann werden dabei ent-
deckte Befunde in einer Sitzung durchgesprochen (Freedman und Weinberg, 1982;
Fagan, 1976). Fiir Reviews werden die folgenden Vorgaben durch CoBe dargestellt:
Die Zahl der Gutachter und die Auswahl der passenden Gutachter (Freedman und
Weinberg, 1982), die ausreichende Vorbereitung auf die Sitzung (Fagan, 1986; Friih-
auf et al., 2006), und wie viel der Software begutachtet werden soll (Frithauf et al,,
2006; Schwinn, 2003).

Tests werden tiblicherweise in Phasen organisiert, die sich auf unterschiedlichen Inte-
grationsebenen oder Teststufen befinden (Liggesmeyer, 2002). Auf allen Ebenen wer-
den dhnliche Entscheidungen getroffen (Lauterbach und Randall, 1989; Ellims et al.,
2006; Liggesmeyer, 2002):

* Im Test werden Testfélle definiert und durchgefiihrt. Testfdlle werden anhand von
Testtechniken abgeleitet. Darum werden Entscheidungen tiiber die eingesetzten
Testtechniken und ihre Intensitit getroffen, d.h. iiber die Uberdeckung des Codes
oder die Abdeckung von Anforderungen (Liggesmeyer, 2002; Spillner und Linz,
2003; Friithauf et al., 2006).

¢ Die Testfdlle konnen definiert werden, bevor der Priifling zur Verfiigung steht, es
kann also iiber den Zeitpunkt der Testvorbereitung entschieden werden (Press-
man, 2005; Jalote, 2000; Frithauf et al., 2006).

* Testfédlle werden von Testern definiert. Die Auswahl der passenden Tester, d.h. die
Kompetenz der Tester, ist eine wichtige Entscheidung (Spillner und Linz, 2003; Lig-
gesmeyer, 2002).

e Uber die Testwiederholung nach der Korrektur, die wihrend des Projekts oder in
der Wartung erfolgt, wird entschieden (van Megen und Meyerhoff, 1995; Ligges-
meyer, 2002; Haley et al., 1995; Sneed et al., 2004; Pigoski, 1997; ISO/IEC 14764,
1999).

Eine weitere Priifung ist die automatische statische Codeanalyse, im Folgenden kurz
als Codeanalyse bezeichnet. Der Programmcode wird von einem Werkzeug auf ver-
dachtige Konstrukte hin untersucht (Spinellis, 2006; Louridas, 2006).
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3.4 Kosten und Nutzen von Priifungen

Priifungen niitzen indirekt. Tabelle 1 fasst Erfahrungen zusammen. Reviews niitzen
zusatzlich durch frithe Fehlerentdeckung und Schulungseffekte der Reviewteilneh-
mer, dafiir konnen aber auch weitere Kosten anfallen (Tabelle 2). Durch Tests wird
zusatzlich das Vertrauen in das Produkt erhoht.

Nutzen von Priifungen Kosten von Priifungen

e Konkrete Schwachen werden identifiziert | Es entstehen Kosten durch
(Ludewig und Lichter, 2007, Freedman
und Weinberg, 1982; Beizer, 1990), diese
konnen korrigiert werden (Fagan, 1986;
Beizer, 1990). ¢ die Durchfithrung der Priifung,

¢ die Priifungsorganisation,

¢ die Priifungsvorbereitung,

e Gute und unbrauchbare Priiflinge wer-| ® die Auswertung der Priifung,

den identifiziert (Ludewig und Lichter, | o« Jie Korrektur der in der Priifung ent-
2007; Freedman und Weinberg, 1982). deckten Fehler,

¢ Die Projektleitung wird erleichtert, wenn | Werkzeuge fiir die Priifung, z.B. fiir
die Qualitdt durch frithe Priifungen kon- Lizenzen, Installation und Wartung,
trolliert und durch Korrektur verbessert
wird. Dadurch schwankt die Qualitat der
Artefakte im Projekt und des Produkts | ® die Einfithrung, die kurzfristig die Pro-

¢ Schulungen fiir Priifungen,

weniger stark. Somit wird das gesamte duktivitat senkt,

Projekt planbarer (Freedman und Wein- | e Prozessinderungen, zu denen auch

berg, 1982). Anderungen der Qualitdtssicherung
e Das Projekt kann mit konkreten Quali- gehoren. Sie konnen zu Chaos und

tatskriterien (Ludewig und Lichter, 2007), Widerstédnden fiihren (DeMarco und Lis-

Meilensteinkriterien und Qualitatsbewer- ter, 1999).

tung (Freedman und Weinberg, 1982;
Fagan, 1986; Deininger, 1995) besser kon-
trolliert werden.

e Die Erwartung einer Priifung fiihrt zu
besseren Priiflingen (Ludewig und Lich-
ter, 2007).

¢ Priifdaten ermoglichen Fehlervermei-
dung und  Prozessverbesserungen
(Fagan, 1986; Chillarege et al., 1992).

¢ Bessere Produktqualitat fithrt zu hoherer
Kundenzufriedenheit (Buckley und Chil-
larege, 1995; Chulani et al., 2003).

Tabelle 1: Kosten und Nutzen von Priifungen
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Nutzen von Reviews

Kosten von Reviews

Frithe Fehlerentdeckung reduziert die
Korrekturkosten (Fagan, 1986; Diaz und
King, 2002; Haley, 1996; Freedman und
Weinberg, 1982).

Friithe Fehlerentdeckung senkt die Kosten
fiir Testwiederholung (Haley, 1996;
Freedman und Weinberg, 1982).

Technische Informationen werden frith
sichtbar (Freedman und Weinberg, 1982).
Dadurch werden Schiatzungen und Plane

* Bei der Revieweinfithrung kann die Pro-

duktivitat sinken (Weller, 1993).

Ohne Reviewregeln steigen Aufwand
und Dauer, das Projektklima leidet (Friih-
auf et al., 2006; Freedman und Weinberg,
1982).

Das Projekt kann aus organisatorischen
Griinden und Zeitmangel der Beteiligten
verzogert werden (Freedman und Wein-
berg, 1982; Porter und Votta, 1997).

besser (Freedman und Weinberg, 1982).

¢ Gutachter lernen aus entdeckten Fehlern
(Fagan, 1986). Sie werden geschult und
kompetenter (Freedman und Weinberg,
1982).

e Technische Informationen werden kom-
muniziert (Freedman und Weinberg,
1982).

* Reviews fiihren zu einer professionelle-
ren Entwicklungskultur (Fagan, 1986;
Freedman und Weinberg, 1982), weniger
Personalwechsel und hoherer gegenseiti-
ger Wertschatzung (Freedman und Wein-
berg, 1982).

Tabelle 2: Kosten und Nutzen von Reviews

3.4.1 Modellierte Kosten und modellierter Nutzen

Im Idealfall stellt ein Modell alle genannten Kosten und den gesamten Nutzen dar.
Dieses Ideal ldsst sich aus praktischen Griinden kaum erreichen, weil nur messbare
Merkmale in ein quantitatives Modell aufgenommen werden konnen. Die Grenze
zwischen messbaren (tangiblen) und nicht-messbaren (intangiblen) Merkmalen ist
fliesend. Sie ist durch die Kosten zur Datenerhebung bestimmt (Hanusch, 1987). Die
moglichen Kosten, um ein Modell zu erstellen und an konkrete Situationen anzupas-
sen, begrenzen also, welche Kosten und welcher Nutzen dargestellt werden konnen.

Die Auswahl der Kosten und des Nutzens muss aber beriicksichtigen, dass die wich-
tigen, wesentlichen Kosten- und Nutzenmerkmale abgebildet werden, weil das
Modell sonst nicht plausibel ist und seinen Zweck nur unzureichend erftillt.

Wesentlich fiir alle Priifungen ist der Nutzen durch die Fehlerentdeckung. Daraus
folgt, dass Kosten fiir die Fehlerkorrektur und Nutzen durch vermiedene Fehlerkos-
ten abgebildet werden miissen. Dieses Konzept der Qualitatskosten wahle ich als
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Grundlage fiir das Modell, weil Fehler und Fehlerkosten leicht zu erheben sind und
weil diese Daten in vielen Projekten bereits verfiigbar sind.

Die Grenze, ab der Kosten und Nutzen nicht in das Modell abgebildet werden, ergibt
sich aus dem Modellzweck. Der Modellzweck ist, Projektleiter und QS-Verantwortli-
che bei der Planung eines Projekt zu unterstiitzen. Sie konnen Entscheidungen tref-
fen, die das Projekt und das Produkt betreffen. Sie konnen aber keine
organisationsweiten Entscheidungen, beispielsweise zur Marktstrategie oder zu orga-
nisationsweiten Prozessverbesserungen, treffen. Zu den nicht berticksichtigten Kos-
ten und Nutzen zdhlen darum die folgenden:

* Schulungseffekte und andere psychologische Auswirkungen kénnen nur indirekt
erfasst werden, darum ist eine Bewertung dieser Auswirkungen teuer. Es reicht
nicht aus, diese Auswirkungen einmal zu erfassen, um das Modell zu erstellen,
weil sich Unternehmenskultur und individuelle Eigenschaften der Mitarbeiter in
unterschiedlichen Umgebungen unterscheiden. Soll das Modell in einer neuen
Umgebung eingesetzt werden, dann muss zumindest gepriift werden, ob das
Modell valide fiir die neue Umgebung ist. Falls nicht, dann miissen die Auswir-
kungen erneut modelliert und quantifiziert werden. Modellbildung und Modell-
einsatz werden also teuer; CoBe wird weniger verallgemeinerbar. Diese
Auswirkungen werden darum nicht im Modell dargestellt.

* Kosten fiir die Einfiihrung und die damit verbundene Schulung von Priifungen
oder Priiftechniken werden in CoBe nicht dargestellt, weil es sich dabei um strate-
gische und organisationsweite Prozessverbesserungen handelt (CMMI Product
Team, 2002). Fiir eine Kosten-Nutzen-Betrachtung miissten die Auswirkungen
tiber mehrere Projekte der Organisation berticksichtigt werden. Auch der Nutzen,
der durch Priifdaten, ihre Analyse und dadurch mogliche Fehlervermeidung und
Prozessverbesserung erreicht wird, wirkt tiber mehrere Projekte und wird darum
nicht berticksichtigt.

* Auswirkungen, die durch eine verbesserte Projektkontrolle erreicht werden, wer-
den nicht dargestellt, weil sie nur indirekt erfasst werden konnen. Beispielsweise
muss erfasst werden, wie sich eine hohere Planungssicherheit auswirkt. Ahnlich
wie bei Schulungseffekten wird solch eine Bewertung sehr teuer und ist von der
Umgebung und den individuellen Eigenschaften der Projektleiter und QS-Verant-
wortlichen abhangig. Insbesondere spielt eine Rolle, wie gut die Projektkontrolle
bislang durchgefiihrt wurde, also welches Verbesserungspotential fiir das Modell
tiberhaupt moglich ist.

Die nicht erfassten Auswirkungen der Priifungen miissen bei der Interpretation der
Modellresultate einbezogen werden. Das Modell kann Entscheidungen nicht treffen
(Laux, 1998), weil nur ein Teil der Auswirkungen erfasst wird.
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3.4.2 Darstellung der Kosten und des Nutzens

CoBe ist ein Modell, dessen Zweck im Vergleich von Kosten und Nutzen liegt. Fiir
diesen Vergleich miissen die Modellresultate der Kosten und des Nutzens auf der
gleichen Skala liegen. Darum ist eine Nutzwert-Analyse oder eine Kosten-Wirksam-
keitsanalyse nicht geeignet. Die Kosten-Nutzen-Analyse ist geeignet, weil sie Kosten
und Nutzen als Geldwerte ausdriickt. Prinzipiell enthalten Kosten und Nutzen nicht
nur materielle, sondern auch immaterielle Auswirkungen, die zur Kosten-Nutzen-
Analyse auf Geldwerte abgebildet werden. Daraus folgt, dass in CoBe die Auswir-
kungen der Priifungen also mit Geld bewertbar sein miissen. Bei diesem Ansatz
unterscheiden sich Kosten und Nutzen im Vorzeichen. Im Modell wird darum der
Nutzen als entfallende Kosten dargestellt. Weil CoBe auch zur Planung eingesetzt
werden soll und um darzustellen, wann Kosten an- oder entfallen, basiert Cobe auf
einzelnen Aktivitaten im Projekt und in der Wartung mit Aufwand, Dauer und Perso-
nalbedarf (Abschnitt 2.6.4). Daraus werden Kosten und Nutzen als Geldwerte berech-
net. Der Aufbau von CoBe orientiert sich also am Vorgehen zur Kostenschatzung, bei
dem Geldwerte aus den Merkmalen der Projektaktivitdten, beispielsweise Aufwand
und Dauer, abgeleitet werden (Kerzner, 2006; Metzger und Boddie, 1996).

3.4.3 Abstraktionsebene der Kosten und des Nutzens

Die ideale Abstraktionsebene fiir Metriken gibt es nicht (Ludewig und Lichter, 2007),
da sie vom Zweck der Metrik abhangt. Zur Planung sind fiir den Projektleiter ein-
zelne Aktivitaten und Arbeitspakete mit Dauer und Personal die kleinsten Planungs-
einheiten (Abschnitt 2.6.4; PMI, 2000; IEEE 1490, 2003). Seine wichtigen Ziele sind
aber das Projekt als Ganzes, also Projekttermin und -kosten (V-Modell XT, 2004). War-
tungspersonal, Kunde und Benutzer sind direkt von der Produktqualitat betroffen
(Alexander und Robertson, 2004). Um Kosten tiber die Lebensdauer des Produkts zu
minimieren oder den Gesamtnutzen tiber die Lebensdauer zu maximieren, miissen
Kosten dieser Klienten dargestellt werden. Darum liefert CoBe Resultate auf diesen
drei Abstraktionsebenen. In CoBe werden also Auswirkungen der Entscheidungen
auf Aufwand, Dauer und Personal einzelner Aktivitaten, Auswirkungen auf das Pro-
jekt. und Auswirkungen {iiber die gesamte Produktlebensdauer abgebildet. Zu den
langfristigen Auswirkungen tiber die Lebensdauer gehoren der Aufwand in der War-
tung, fiir den Kunden zu erwartender Schaden oder vermiedene Probleme.

3.5 Prozess- und Produktmerkmale

Kosten und Nutzen der Priifungen hiangen von den individuellen Prozess- und Pro-
duktmerkmalen des Projekts ab. Zu diesen Merkmalen gehoren diejenigen, die Prii-
fungen betreffen. Diese werden in CoBe dadurch erfasst, dass die Entscheidungen
tiber Priifungen und {iber Merkmale der Priifungen abgebildet werden. Zu den indi-
viduellen Prozess- und Produktmerkmalen gehoren aber auch eine Vielzahl von
Merkmalen, die das Umfeld, die Anforderungen und die Organisation betreffen.
Diese Vielfalt zeigt sich in den Merkmalen, die fiir die Kostenschdatzung mit
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COCOMOII (Boehm, 2000) oder fiir den Projektvergleich in Jones (1996 und 2003)
benotigt werden. Diejenigen, die sich auf Priifungen auswirken, sollen auf das Modell
abgebildet werden.

Wichtige Merkmale sind die Organisation der Arbeit, die Stellenbesetzung und das
zu Grunde liegende Vorgehensmodell. Modelle, die diese Aspekte und ihre Wirkun-
gen quantitativ beschreiben, werden grofs und komplex. Ich verkiirze diese Merk-
male, um die Auswirkungen der Priifungen in den Vordergrund zu stellen. Als
Grundlage des Modells dient der Software-Lebenslauf mit Spezifikation, Entwurf,
Implementierung, Test und Betrieb. Dieses Vorgehen findet sich als Vorgabe in Pro-
zessverbesserungsprogrammen wieder (Chrissis et al., 2003; Hormann et al., 2006).
Ich wahle ein sequentielles Vorgehen fiir das Modell. Projekte mit nicht-linearem Vor-
gehen miissen auf das sequentielle Modell abgebildet werden.

3.6 Modelleinsatz

Das Modell muss in den organisatorischen Rahmen des Projekts, in dem Prozessver-
besserungen durchgefiihrt werden, und in die Tatigkeiten des Projektleiters einge-
bunden werden.

3.6.1 Modellkalibrierung und -anpassung an Projekte und Prozesse

Das Modell bildet eine Menge von Projekten ab; es basiert auf allgemeinen Erfahrun-
gen iiber Software-Projekte. Fiir den Modellzweck der Demonstration sind diese all-
gemeinen Erfahrungen, die sich auf ein fiktives, durchschnittliches Projekt beziehen,
ausreichend. Sobald aber Aussagen iiber reale Projekte und Prozesse moglich sein
sollen, d.h. wenn Auswirkungen nachtréaglich dargestellt, Kosten und Nutzen pro-
gnostiziert und optimiert werden sollen, ist es notwendig, die konkrete Situation in
das Modell abzubilden:

e Kalibrierung: Erfahrungen mit Kostenschdatzmodellen zeigen, dass quantitative
Modelle an die Umgebung angepasst, d.h. kalibriert, werden miissen, um ausrei-
chend genaue Resultate zu erhalten (Kemerer, 1987; Boehm, 2000). Diese quantita-
tive Anpassung eines Modells an eine konkrete Umgebung wird als Kalibrierung
bezeichnet und wird durch spezielle Kalibrierungsparameter des Modells und eine
Kalibrierungsmethode unterstiitzt und durchgefiihrt.

* Projekt und Prozess: Projekte unterscheiden sich in den Rahmenbedingungen und

im Projektumfang. Diese Unterschiede werden durch Eingabeparameter
(Abschnitt 3.5) erfasst.

* Prozess: Prozesse und damit der Priifprozess @ndern sich kontinuierlich im Rah-
men von Prozessverbesserungen (Chrissis et al., 2003; Hormann et al., 2006) und
durch den Einsatz des Modells. Verandern sich Prozessmerkmale, die nicht in
CoBe modelliert sind, dann soll das Modell entweder kalibriert oder angepasst
werden konnen.
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e Laux (1998) argumentiert, dass Entscheidungsmodelle immer revidiert werden
miissen, weil sie verkiirzen und weil sie subjektive Elemente enthalten
(Abschnitt 2.4.2). Diese verkiirzten Merkmale stellen sich erst im Lauf der Zeit
durch den Modelleinsatz heraus. Es konnen also keine Eingaben vorgesehen wer-
den. Darum soll das Modell entweder kalibriert oder um diese Merkmale erweitert
werden konnen.

Abbildung 8 skizziert diese Zusammenhange: Auf der linken Seite werden in CoBe
Projekte im Allgemeinen abgebildet. Somit konnen mit CoBe Auswirkungen der Prii-
fungen im Allgemeinen demonstriert werden. Auf der rechten Seite soll ein spezielles
Projekt in CoBe abgebildet werden, um Auswirkungen von Priifungen in diesem Pro-
jekt zu prognostizieren. Um dieses spezielle Projekt darstellen zu konnen, muss das
Modell kalibriert werden.

Projekte Modellbildung Modell Diagnose Spezielles
allgemein Demonstration . CoBe ™ Prognose Projekt

Legende —# Abbildung in das Modell

Abb. 8: Abbildung allgemeiner und spezieller Projekte durch das Modell

Die Kalibrierung passt also das Modell einer allgemeinen Realitdt an eine konkrete
Situation an. Die Kalibrierung muss erlauben, das Modell an die Projektumgebung,
d.h. an die Organisation und den Einfluss ihrer Kultur oder die Art der Projekte
(Anwendungsgebiet, Prozessreife) anzupassen. Dazu ist notwendig, wenige Einga-
ben zu bieten, die mit Archivdaten belegt werden konnen. Archivdaten sind Daten
abgeschlossener Projekte. Die Anderungen im Rahmen von Prozessverbesserungs-
mafinahmen und die Revidierung des Modells, wenn beispielsweise wichtige
Aspekte im Modell fehlen und ergéinzt werden sollen, zdhlen zur Modellbildung
(Anpassung). Abbildung 9 zeigt die Einbindung des Modells in Projekte und Pro-
zesse fiir Anpassung und Kalibrierung.

Angelehnt an den Ansatz von Basili (1995) fliefSen Archivdaten aus abgeschlossenen
Projekten als Erfahrungen in das Modell ein (Datenfluss 1 in Abbildung 9). Sie dienen
beispielsweise der Kalibrierung. Damit die Modellresultate zur Projektplanung und -
kontrolle verwendet werden konnen, miissen Merkmale des zukiinftigen Projekts
und Prozesses in das Modell eingegeben werden (1). Die Modellresultate kénnen
direkt in der Projektplanung verwendet werden (2), qualitativ, etwa um zu entschei-
den, wie eine Priifung stattfinden soll, oder quantitativ, etwa um die Dauer und die
Mitarbeiter einzuplanen. Dadurch wirken die Modellresultate indirekt auf die Projek-
tresultate und Erfahrungen (2). Fiir den Einsatz des Modells in Projekten mit definier-
tem, vorgegebenem Prozess, der kontinuierlich verbessert wird, wird der Ansatz
erweitert. Der definierte Prozess wird durch Prozessvorgaben in Projekten durchge-
filhrt (3), Erfahrungen aus Projekten flieflen als Prozessdnderungen ein (5). Das
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Modell beriicksichtigt die Prozessvorgaben (4), seine Resultate konnen verwendet
werden, um die Prozessvorgaben zu andern (6).

Vorgaben (4)
Erfahrungen (1),
Projektmerkmale
Vorgaben (3)
Prozess- » Projektdaten, Quantitatives
definition | Archivdaten Modell
Erfahrungen (5)

T Resultate (2)

Resultate (6)

—» Datenfluss

Legende [ ] Daten () Modell

Abb. 9: Modellanpassung und Modellkalibrierung

3.6.2 Planung und Kontrolle

In einem Software-Projekt miissen unterschiedliche Aspekte geplant und kontrolliert
werden. Der IEEE-Standard 1490 (2003) und das PMBOK (PMI, 2000) definieren neun
solcher Aspekte (Tabelle 3). Das Modell CoBe gehort zum Qualitdtsmanagement, ins-
besondere zur Qualitdtsplanung und der verlangten Kosten-Nutzen-Analyse. Unter-
stiitzt werden Zeit-, Kosten- und Personalmanagement.

Project Management
Project Integration Project Scope Project Time
Management Management Management
Project Cost Project Quality Project Human
Management Management Resource Management
Project Communica- Project Risk Project Procurement
tions Management Management Management

Tabelle 3: Gebiete des Projektmanagements nach PMI (2000)

Die Planung findet zu Beginn eines Projekts statt und wird wahrend des Projekts wie-
derholt; Planung und Kontrolle sind verzahnt, weil bei Abweichungen vom Plan
unter Umstanden neu geplant werden muss (Kerzner, 2006, S. 396). Der Projektplan
wird iterativ erstellt (Kerzner, 2006, S. 486; Ludewig, 1999). Basierend auf dem
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Inhaltsverzeichnis eines Projektplans aus Metzger und Boddie (1996) beschreibt
Ludewig (1999) die einzelnen Schritte der Planung (Abbildung 10). Termine, Aktivita-
ten und Meilensteine werden aufeinander abgestimmt, damit das Produkt unter den
gegebenen Randbedingungen entwickelt werden kann. Der Modelleinsatz erfolgt ite-
rativ; die Entscheidung kommt im Dialog zwischen Entscheider und Modell zustande
(Abschnitt 2.4.2; Laux, 1998).

Prozessmodell
auswahlen
* Prozess-/Produktmerkmale,
Gesamtumfang und -auf- Kalibrierungsparameter (1)
wand grob abschatzen
* Dauer und Aufwand von Priif-
Zeitplan und Korrekturaktivitaten (6)
aufstellen
Dokumentationsplan
aufstellen
* Mogliche Priifungen '
und Priifparameter (2) I
Priifplan
aufstellen CoBe
Geplante Priifungen, Priifparameter,
* Prozess-/Produktmerkmale (3)
Organisationsplan - I
aufstellen Personalbedarf fiir Priif-
* und Korrekturaktivitaten (4)
Meilensteine -
definieren Geplante Prifungen
und Priifparameter (5)
Legende

—» Aktivitdtensequenz  [] Modell = Datenfluss vom / zum Modell

Abb. 10: Modelleinsatz bei der Planung

Die Qualitatsplanung wird von CoBe unterstiitzt, weil das Modell die Moglichkeiten
zur Priifung und die moglichen Priifparameter zeigt; es verdeutlicht den prinzipiellen
Handlungsspielraum (Datenfluss 2 in Abbildung 10). Prozess- und Produktmerk-
male, insbesondere der Umfang, werden eingegeben (1), zusatzlich kann das Modell
kalibriert werden. Die geplanten Priifungen und Priifparameter werden mit den Pro-
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zess- und Produktmerkmalen in CoBe eingegeben (3). Die Organisationsplanung
wird durch die Resultate fiir den Personalbedarf einzelner Priif- und Korrekturaktivi-
taten unterstiitzt (4). Durchgefiihrte Priifungen und ihre Priifparameter kénnen zur
Definition inhaltlicher Kriterien der Meilensteine verwendet werden (5). In den Zeit-
plan flieffen die Modellresultate fiir Dauer, Aufwand und Personalbedarf der einzel-
nen Aktivitaten ein (6).

3.7 Modellierungsansatz

Bossel (2004) unterscheidet quantitative Modelle nach ihrem Aufbau durch Begriffs-
gegensatze:

¢ Systemerkldrend - verhaltensbeschreibend: Systemerklarende Modelle haben die
gleiche Wirkungsstruktur wie das Original, soweit die Struktur erkennbar und
bekannt ist. Die Wirkungsstruktur verhaltensbeschreibender Modelle ist vom Ori-
ginal verschieden. Die Begriffe spannen ein kontinuierliches Spektrum auf, Bossel
(2004) spricht von Systemen, die durchsichtig, halbdurchsichtig oder undurchsich-
tig sind.

* Realparameter - Parameteranpassung: Modelle mit Realparametern haben Para-
meter, die direkt gemessen werden konnen. Bei Modellen mit Parameteranpassung
werden die Parameter so gewahlt, dass das entsprechende Verhalten erzeugt wird.
Auch dieses Begriffspaar lasst Mischformen zu, wenn manche Parameter gemessen
werden konnen, andere nicht messbar sind.

Angelehnt an den Ansatz von Ludewig et al. (1994) wahle ich einen systemerkldren-
den, realparametrischen Ansatz, soweit die Wirkungsstruktur bekannt ist und die
Parameter messbar sind. Bei einem solchen Ansatz stellt das systemerklarende
Modell die einzelnen Elemente des Originals und ihre Beziehungen dar. Das Verhal-
ten des Modells entsteht aus dem Verhalten der Elemente und ihren Beziehungen.
Empirisch belegte Zusammenhange werden verwendet, um das Modell zu erstellen.
Die Vorteile sind, dass einzelne Bestandteile des Modells erganzt oder geandert wer-
den konnen, dass einzelne Bestandteile empirisch untersucht werden kénnen und
dass das Modell mit empirisch belegten Bestandteilen plausible Resultate ergibt.
Diese Vorteile werden durch ein komplexes Modell erkauft, das aus vielen, miteinan-
der verbundenen Teilen besteht. Die Verwendung von Realparametern ist vorteilhaft,
weil erst dadurch die einzelnen Bestandteile kalibriert und empirisch validiert wer-
den konnen. Fiir diese Realparameter ziehe ich verbreitete Metriken vor, weil dann
Daten leichter verfligbar sind und von den Beteiligten leichter interpretiert werden
konnen. Da empirische Zusammenhadnge verwendet werden und da die Realpara-
meter mit empirischen, statistischen Werten quantifiziert werden, sind auch die
Resultate statistische Werte. Somit handelt es sich um ein induktives Modell.
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Nach Fishwick (1995) konnen fiir die systemerklarende Modellierung verschiedene
Blickwinkel eingenommen werden. Anhand dieser Blickwinkel lassen sich Ansatze
zur Modellierung unterscheiden, die auf unterschiedlichen Abstraktionsebenen auch
gemeinsam eingesetzt werden konnen:

e Declarative Modeling. Diskrete Zustinde und die Uberginge zwischen diesen
Zustanden werden modelliert. Der Ansatz ist geeignet fiir die Beschreibung von
Ereignissen, Phasen und gekoppelten Zustanden.

* Functional Modeling. Funktionen, die durch Ein- und Ausgaben gekoppelt sind,
werden modelliert. Der Ansatz ist geeignet fiir Objekte, die gerichtet verbunden
sind, und um Fliisse durch ein System zu beschreiben.

¢ Constraint Modeling. Gleichgewichtsbedingungen und andere Einschrankungen
bestimmen das Modell. Der Ansatz ist geeignet fiir Systeme, die durch Konstanten
beschrieben werden.

* Spatial Modeling. Raumliche Beziehungen werden modelliert. Der Ansatz erlaubt
detaillierte Modelle kleiner Teilchen.

Fiir Priiffungen und ihre Auswirkungen wéhle ich einen funktionsorientierten Ansatz,
weil die detaillierten Entscheidungen tiber Priifungen, die das Modell unterstiitzt,
kontinuierlich wirken. Auch die einzelnen Aktivitaten, die das Modell beschreibt, lau-
fen kontinuierlich ab. Es ist nicht notwendig, bei der Prognose in den Verlauf des Pro-
jekts einzugreifen, da die Modellresultate der getroffenen Entscheidungen
interessieren; die Modellresultate fiir andere Entscheidungen sollen direkt verglichen
werden konnen.

Diskrete Zustandsiibergéange spielen in der Software-Entwicklung fiir Projektphasen
eine wichtige Rolle. Fiir den Modellzweck stehen Entscheidungen iiber diesen Uber-
gang aber nicht im Mittelpunkt, sondern die detaillierten Entscheidungen {iiber die
Priifungen. Somit ist also nicht notwendig, diese Entscheidungen explizit abzubilden
und einzelne Zustande zu unterscheiden.

Modelle mit Gleichgewichtsbedingungen sind fiir die Problemstellung weniger
geeignet, weil das Modell auch erlauben soll, nicht-optimale Entscheidungen darzu-
stellen, beispielsweise zur Demonstration. Werden Gleichgewichtsbedingungen
modelliert, so fithren diese zu optimalen Losungen, so dass andere Entscheidungen
nicht mehr dargestellt werden konnen. Ein raumliches Modell ist offensichtlich kaum
geeignet, weil Raum im Modell keine Rolle spielt.

Zufallseffekte werden mit dem Modell nicht explizit modelliert, weil die Resultate
durch Zufallseffekte zusatzlich unsicherer werden. Dadurch wird auch der Vergleich
zwischen Modell und Realitdt erschwert, weil dann die Zufallsereignisse zwischen
Modell und Realitét tibereinstimmen miissen. Darum handelt es sich um ein determi-
nistisches Modell (Bossel, 2004). Das Modell basiert auf empirischen Aussagen, d.h.
aus empirischen Zusammenhangen, die durch statistische Daten quantifiziert wer-
den. Darum handelt es sich um ein induktives Modell. Es erlaubt somit statistische
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Aussagen. Das Modell erlaubt keine sicheren Aussagen, weil diese nur fiir winzige
Ausschnitte aus den komplexen Projekten der Software-Entwicklung moglich sind.

Die Modellbildung erfolgt mehrstufig (Drappa, 1998; Bossel, 2004; Fishwick, 1995;
Sargent, 2005). Abbildung 11 skizziert die einzelnen Schritte: Die Realitdt wird zuerst
als konzeptionelles Modell natiirlichsprachlich beschrieben. Dieses konzeptionelle
Modell wird in ein funktionales, mathematisches Modell tiberfiihrt, das aus Gleichun-
gen und Parametern besteht. Dieses Modell wird durch Metriken und konkrete Werte
quantifiziert; dies wird als Quantifizierung bezeichnet. Fiir die Realisierung wird kein
Simulationssystem benotigt. Das Modell kann durch unterschiedliche Programme
realisiert werden.

—» 12 KLOC
— —
—» 5 Fehler
[ H

Realitat Modell der Funktionales Metrik
Realitat Modell

Legende . Modellbildung

Abb. 11: Modellbildung eines funktionalen Modells (angelehnt an Drappa, 1998)

3.8 Zusammenfassung

3.8.1 Priifungen und Priifparameter in CoBe

Das Modell bildet Kosten und Nutzen von Priifungen ab. Priifungen werden durch
Priifparameter beschrieben. Reviews werden als Spezifikations-, Entwurfs- und
Codereviews modelliert mit Eingaben fiir die Gutachterzahl, die Kompetenz der Gut-
achter, die Vorbereitungsintensitdt, den Umfang des Priiflings mit oder ohne wieder-
verwendeter Software. Modultest, Subsystem- und Systemintegrationstest,
Systemtest werden durch Testtechniken und Parameter fiir diese Techniken, den Zeit-
punkt der Testvorbereitung, die Kompetenz der Tester und die Strategien der Test-
wiederholung modelliert. Die automatische statische Codeanalyse erganzt diese
Priifungen.
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3.8.2 Kosten und Nutzen in CoBe

Das Modell stellt Kosten und Nutzen von Priifungen dar. Nutzen ist definiert durch
entfallende Kosten, Kosten und Nutzen unterscheiden sich nur im Vorzeichen. Kos-
ten und Nutzen werden auf Geldwerte abgebildet. Die Modellresultate fiir Kosten
und Nutzen beruhen auf Priif- und Fehlerkosten (Abschnitt 2.9). Fiir anfallende und
entfallende Kosten (Nutzen) werden also Behebungskosten (Korrektur und Priifung
der Korrektur), Fehlerfolgekosten (Kosten beim produktiven Einsatz), Priifkosten
(Vorbereitung, Durchfiihrung, Auswertung) jeweils einschliefdlich organisatorischer
Kosten betrachtet. Im Modell werden Kosten und Nutzen fiir einzelne Aktivitaten
beschrieben. Kosten und Nutzen sind dargestellt durch Planungsmetriken (Aufwand,
Dauer, Personalbedarf, Abschnitt 2.6.4) und Geldwerte. Die Resultate werden zusam-
mengerechnet, um Gesamtkosten und Gesamtnutzen zu berechnen.



Kapitel 4

Verwandte Arbeiten

Es gibt bereits eine Reihe quantitativer Modelle fiir Software-Projekte und fiir Quali-
tatssicherung in Software-Projekten. Im Folgenden werden zwei dieser Modelle niaher
betrachtet, weil sie als Grundlagen fiir CoBe verwendet werden: SESAM (Software
Engineering Simulation durch Animierte Modelle) enthalt ein quantitatives Modell
mit dem Schwerpunkt Qualitdtssicherung, das QS-Modell (Qualitdtssicherungs-
Modell); COCOMO II ist ein Kostenschatzverfahren (Abschnitt 4.2). Diese Modelle
diskutiere ich vor allem unter dem Aspekt der Wiederverwendung von Modellteilen
tiir CoBe. Das Archiv von Jones enthalt umfangreich Metriken (Abschnitt 4.3); es bie-
tet sich damit ebenfalls als Fundgrube fiir quantitative Zusammenhénge an. Daran
schlief3t sich die Diskussion weiterer verwandter Arbeiten an (Abschnitt 4.4). Auch
bei dieser Diskussion spielt eine wichtige Rolle, ob Teile dieser Arbeiten fiir CoBe
genutzt werden konnen.

41 Projektsimulation mit SESAM und dem QS-Modell

SESAM (Ludewig et al., 1994) ist ein Simulationssystem, das eingesetzt wird, um Pro-
jektleiter zu schulen. Der (angehende) Projektleiter wird in SESAM Spieler genannt
(Abbildung 12). Er leitet ein fiktives Projekt, tibernimmt also die Rolle des Projektlei-
ters. Dazu wird das fiktive Projekt mit SESAM simuliert. Der Spieler kann wahrend
des Projektverlaufs iiber eine Benutzungsschnittstelle in des Projekt eingreifen. Der
Tutor fithrt die Schulung durch und analysiert die simulierten Projekte. Dabei wird er
durch Analysewerkzeuge untersttitzt.

In SESAM wird zwischen dem generischen Simulator und dem Modell eines Projekts
unterschieden. Der Simulator wird als Basismaschine bezeichnet. Er speichert Infor-
mationen iiber den Projektzustand und fithrt den dynamischen Teil des Modells aus.
Die Simulation erfolgt in einzelnen Zeitschritten. Jeder Zeitschritt entspricht einer fes-
ten Dauer im Projekt, z.B. einem Tag. Der Spieler kann nach jedem Zeitschritt eingrei-
fen und den néchsten Schritt anstossen. Die Projektzeit wird auf die Simulationszeit
abgebildet, so dass ein Projekt am Simulator in wenigen Stunden durchgefiihrt wer-
den kann.

Das Modell wird vom Modellbauer erstellt und gewartet. SESAM-Modelle bestehen
aus drei Komponenten:
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Modellierungs- ( Modell .
werkzeug (HochspracheD’ Modellcompiler
Modell
(Basissprache)
‘/C Nachrichten D\

Dolmetscher Basismaschine

Spieler \( Kommandos )/
Analyse-
We?liz}éiege Aufzeichnungen

Legende [ | Komponente —# Datenfluss

Q Daten % Rolle

:

Modellbauer

:

:

Tutor

Abb. 12: SESAM-Komponenten und SESAM-Rollen (Reifiing, 1996)

Der Modellbauer definiert im Schemamodell die moglichen Entitaten des Projekts
als Entitatstypen. Wichtige Entitdtstypen sind Dokumente oder Mitarbeiter. Die
moglichen Beziehungen werden durch Relationstypen definiert. Wichtige Rela-
tionstypen beschreiben beispielsweise, dass ein Mitarbeiter die Spezifikation
erstellt oder korrigiert oder an einem Review teilnimmt. Die Typen werden durch
Attribute beschrieben.

Die Startsituation ist eine konkrete Auspragung des Schemamodells fiir den Pro-
jektbeginn. Sie beschreibt beispielsweise, welche Mitarbeiter zur Verfiigung stehen.

Dieser Startzustand wird von der Basismaschine anhand des Regelmodells veran-
dert. Das Regelmodell enthédlt Kommandos, Nachrichten und Regeln. Kommandos
und Nachrichten sind zur Kommunikation zwischen Projektleiter und Simulator
definiert. Der Spieler kann in jedem Zeitschritt mit Kommandos eingreifen und
bekommt durch Nachrichten Informationen mitgeteilt. Die Regeln definieren, wie
sich das Projekt verhalt. Eine Regel wird durch zwei Teile beschrieben, den Bedin-
gungsteil und den Aktionsteil. Zuerst werden Bedingungen fiir den Zustand fest-
gelegt. Sind diese Bedingungen im aktuellen Zustand erfiillt, dann werden die
Zustandsanderungen durchgefiihrt, die im zweiten Teil der Regel, dem Aktions-
teil, formuliert sind. Zum Beispiel konnte eine Bedingung sein, dass ein Mitarbeiter
an der Spezifikation arbeitet. Ist diese Bedingung im Zustand des aktuellen Zeit-
schritts erfiillt, dann wird die Zustandsanderung durchgefiihrt. Beispielsweise
werden in diesem Zeitschritt Anforderungen zur Spezifikation hinzugeftigt.
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4.1.1 Das Qualitdtssicherungs-Modell

Das Qualitatssicherungs-Modell (QS-Modell) wird in Schulungen eingesetzt (Drappa,
1998). Mit diesem Modell sollen Auswirkungen des Projektmanagements auf die Soft-
ware-Qualitdt gezeigt werden. Das Modell umfasst Projektaktivititen von der Ana-
lyse bis zur Ubergabe an den Kunden. Modelliert werden kleine und mittelgrofe
Projekte, die ein simulierter Kunde als Auftrag fiir ein Informationssystem vergibt.
Der Kunde fordert ein Produkt mit bestimmtem Umfang und mit bestimmter Quali-
tat, definiert durch die Fehlerzahl. Er stellt ein Budget zur Verfiigung und nennt einen
Termin fiir die Auslieferung.

Aufgaben des Projektleiters

Das QS-Modell stellt den Spieler in der Rolle des Projektleiter vor die Aufgaben der
Planung, Stellenbesetzung und Projektfithrung;:

* Die Spieler miissen selbstandig planen. Die dazu notwendigen Informationen sind
im Modell enthalten und werden zu Beginn der Simulation durch Nachrichten aus-
gegeben.

* Das Modell bietet dem Spieler Kommandos an, mit denen der Spieler simulierte
Mitarbeiter mit unterschiedlichen Erfahrungen und Fahigkeiten zu beliebigen Zeit-
punkten in das Projekt aufnehmen und aus dem Projekt entlassen kann.

* Der Spieler kann durch Kommandos den simulierten Mitarbeitern Aufgaben zutei-
len, zu beliebigen Zeitpunkten. Dazu gehort, dass Dokumente einschliefSlich Code
erstellt werden und dass der Code integriert wird. Der Spieler kann verschiedene
Priifungen anordnen, namlich Reviews der Dokumente mit zwei oder drei Gutach-
tern, Modultest, Integrationstest und Systemtest. Nach jeder Priifung kann die Kor-
rektur zugeteilt werden. Diese Aktivitaten konnen frei zu beliebigen Zeitpunkten
an Mitarbeiter vergeben werden, so dass unterschiedliche Projektverldufe moglich
sind. Die dabei entstehende Software ist nicht real, sondern wird durch Attribute
beschrieben. Dazu gehort der Umfang einzelner Anforderungen und die Zahl der
enthaltenen Fehler.

* Fiir die Projektverfolgung konnen Informationen tiber das Projekt abgefragt wer-
den. Es sind aber nur diejenigen Informationen zuganglich, die auch in der Realitat
verfligbar sind. So kann der Projektleiter zwar erfragen, wie viele Fehler im Sys-
temtest entdeckt wurden, aber nicht, wie viele Fehler in der Software enthalten
sind.

Organisation spielt eine untergeordnete Rolle. Personalfiihrung lasst sich mit einem
Simulationssystem kaum trainieren (Drappa, 1998).

Zusammenhinge des Modells

Das Modell beruht auf empirisch abgesicherten Zusammenhangen, deren Zusam-
menspiel untereinander und mit den Eingriffen des Projektleiters den Verlauf und
das Ergebnis des Projekts bestimmen. Die wesentlichen Zusammenhange sind:
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Die Software-Entwicklung erfolgt als schrittweise Transformation von Vorgaben.
Fehler werden dabei aus der Vorgabe tibernommen, zusatzlich werden Fehler
gemacht. Fehlen Informationen in der Vorgabe, dann konnen sie nicht tibernom-
men werden. Informationen aus der Vorgabe konnen bei der Entwicklung verges-
sen werden.

Entwickler haben bestimmte Qualifikationen und Erfahrungen fiir einzelne Aktivi-
taten. Sie unterscheiden sich in diesen Eigenschaften. Beispielsweise kann ein Ent-
wickler ein erfahrener Tester sein, ein anderer Entwickler hat daftir mehr
Erfahrung im Entwurf. Abhédngig von diesen Eigenschaften entstehen bessere oder
schlechtere Resultate. Auch das Gehalt hangt von den Qualifikationen und Erfah-
rungen der Entwickler ab. Die Personalkosten des Projekts hangen also auch davon
ab, welche Entwickler mit welchen Qualifikationen und Erfahrungen eingestellt
werden.

Die Kosten des Projekts sind durch die Personalkosten bestimmt.

Aufwand und Dauer sind eng gekoppelt. So gilt, dass das Resultat desto friiher
verfiigbar ist, je mehr Entwickler gemeinsam daran arbeiten. Je mehr Entwickler
zusammenarbeiten, desto hoher wird der Aufwand, da der Kommunikationsauf-
wand steigt. Fiir jedes Projekt kann eine bestimmte Zahl Entwickler sinnvoll einge-
setzt werden. Eine bestimmte Dauer wird mindestens benétigt, um das Projekt
abzuschliefsen.

Je spater ein Fehler entdeckt wird, desto aufwandiger wird seine Korrektur. Der
Autor ist fiir die Korrektur besser als andere Entwickler geeignet.

Reviews erlauben, Fehler frith zu finden. Die Fehlerentdeckung hangt von den
Gutachtern, vom Priifling und von der Vorgabe ab. Gutachter sollten geeignet und
vorbereitet sein. Die Dokumente sollten eine Mindestqualitdat haben. Der Kunde
kann in der Spezifikation und im Handbuch weitere Fehler entdecken.

Dynamische Modellkonzepte beschreiben die Aufteilung in Arbeitspakete, so dass
mehrere Entwickler die gleiche Aktivitdt durchfiihren konnen. Die Konzepte erlau-
ben eine freie Wahl der Reihenfolge und tiberlappende Aktivitaten.

Metriken des Modells

Die wesentlichen Entitatstypen des Modells sind Mitarbeiter, Dokumente, Code und
Priifberichte. Diese werden durch Attribute quantitativ beschrieben.

* Qualifikation und Erfahrung eines Entwicklers werden jeweils fiir die unterschied-

lichen Aktivitaten auf einer vierstufigen Ordinalskala dargestellt.

* Jedes Dokument wird durch seinen Umfang in Adjusted Function Points (IFPUG,
2004) beschrieben. Der Code-Umfang wird abhangig von der Programmiersprache
auf Lines of Code umgerechnet, der Umfang anderer Dokumente wird durch die
Zahl ihrer Seiten dargestellt.
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* Die Qualitat jedes Dokuments wird durch Korrektheit und Vollstandigkeit darge-
stellt. Korrektheit wird durch die Fehlerzahl (IEEE 1044, 1993) beschrieben, unter-
schieden nach Analysefehlern, Grobentwurfsfehlern, Feinentwurfsfehlern,
Codefehlern und Handbuchfehlern. Vollstandigkeit wird durch fehlenden Umfang
im Vergleich zum geforderten Umfang in Function Points gemessen.

Das Ergebnis der Entwicklungsaktivitaten wird durch die Produktivitét (in Function
Points pro Stunde), die Fehlerrate (in eingefligte Fehler pro Function Point) und die
Verlustquote (Anteil nicht umgesetzter Function Points) bestimmt. Das Ergebnis wird
beeinflusst durch die Merkmale des Entwicklers, d.h. seine Erfahrungen und Qualifi-
kationen fiir die Entwicklungsaktivitat und fiir das Resultat. Priifungen sind durch
die Produktivitat (in Funktion Points pro Stunde) und durch Fehlerentdeckungsquo-
ten quantifiziert. Die Fehlerentdeckungsquote beschreibt den Anteil der entdeckten
Fehler, bezogen auf die zu entdeckenden Fehler. Analog wird die Verlustentdeckung
dargestellt.

4.1.2 Einsatz und Anwendung

Schulungen mit SESAM folgen einem festen Ablauf, um einen Lernerfolg zu ermogli-
chen (Mandl-Striegnitz, 2001). Der Ablauf beginnt mit einer Einfiihrungsveranstal-
tung. Danach spielen die Teilnehmer ihr erstes Spiel. Der Tutor analysiert dieses
Spiel, um dann in einer Feedback-Runde die Starken und Schwachen aufzuzeigen.
Nach diesem Feedback haben die Spieler in einem zweiten Spiel die Moglichkeit, ihre
Schwichen zu verbessern.

Die Analyse durch den Tutor erfolgt von den Projektresultaten ausgehend. Fiir den
Tutor sind dabei alle Modelldaten iiber den gesamten Verlauf des Projekts zugéang-
lich, also auch diejenigen, die in der Realitdt nicht bekannt sind. Beispielsweise kon-
nen enthaltene Fehler analysiert werden. Damit der Tutor konkrete Schwachen
aufzeigen kann, muss er einzelne, sich iiberlagernde Effekte identifizieren (Hampp
und Opferkuch, 2007). SESAM ermoglicht also, simulierte Projekte nachtréaglich zu
analysieren. SESAM gibt aber nicht vor, wie ein ideales Projekt auszusehen hat, son-
dern schrankt den Spieler so wenig wie mdglich ein. Dies erlaubt dem Spieler, ganz
unterschiedliche Losungen auszuprobieren, ohne dass der Modellbauer diese Losun-
gen explizit bei der Modellierung berticksichtigen muss. Durch die Modellkomplexi-
tat ist nicht moglich, eine optimale Losung im Voraus zu bestimmen.

41.3 Andere Modelle in SESAM

Fiir SESAM gibt es weitere Modelle und Modellvarianten. Mit dem strikt atomaren
Modell SAM wird die Erstellung einzelner Dokumente durch Entwickler so detailliert
wie moglich modelliert (Eisenbarth und Rohrbach, 1998). Das QSVA-Modell erweitert
das QS-Modell um Verhaltensaspekte der Entwickler, beispielsweise Motivation oder
Krankheit (Kalajzic, 2001). Eine feingranulare Variante des QS-Modells beschreibt
Spezifikations- und Entwurfsreviews detailliert (Hampp, 2001). In dieser Modellvari-
ante entdecken einzelne Gutachter Fehler durch Vorbereitung auf die Reviewsitzung,
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abhiangig vom Umfang des Priiflings, zu priifenden Aspekten und ihrer Erfahrung.
Auch Zusammenhange in der Reviewsitzung sind modelliert: So wirkt sich aus, wie
erfahren der Moderator und die Gutachter sind, oder ob ein Aktuar (oder Protokoll-
flihrer) anwesend ist.

414 Bewertung und Folgerungen

Das SESAM-System soll zur Projektleiter-Schulung eingesetzt werden. Dieses Ziel
pragt die Basismaschine, die Werkzeuge und die Modelle. CoBe soll zur Planung ein-
gesetzt werden. Daraus ergeben sich Gemeinsamkeiten und Unterschiede fiir die
Gestaltung und Realisierung des Modells:

SESAM bildet die Projektzeit auf die Simulationszeit ab und erlaubt, in jedem Zeit-
schritt in das Projekt einzugreifen. Da CoBe zur Planung eingesetzt wird, sollen im
Gegensatz dazu die Resultate sofort und direkt dargestellt werden.

Mit SESAM soll der Spieler nur die Informationen erfahren konnen, die auch in der
Realitat verfligbar sind. CoBe soll im Gegensatz dazu Informationen liefern, die nicht
oder noch nicht verfiigbar sind.

Das QS-Modell bietet eine Reihe von Modellelementen, die fiir ein Kosten-Nutzen-
Modell fiir Priifungen als Grundlage dienen konnen: Die Zusammenhange im QS-
Modell sind empirisch belegt und konnen in ein Kosten-Nutzen-Modell tibernommen
werden. Dazu gehort insbesondere der Zusammenhang der Fehlerentstehung und
Fehlerentdeckung, der auch als Fehlerstrommodell bezeichnet wird. Das Modell ent-
halt mogliche Metrikdefinitionen fiir den Umfang, fiir Fehler, fiir Erfahrungen und
tir Fahigkeiten der Entwickler.

Der Schwerpunkt des QS-Modells liegt auf den Tatigkeiten des Projektleiters; mit
CoBe sollen dagegen ganz bestimmte Entscheidungen unterstiitzt werden. Einige
Aspekte des QS-Modells werden darum in CoBe nicht benoétigt, andere Aspekte feh-
len im QS-Modell: Mit dem QS-Modell konnen Entscheidungen tiber Priifungen und
ihre Priifparameter nicht direkt unterstiitzt werden, da das Modell mit der Ausliefe-
rung des Produkts endet. Wirkungen der Priifungen wahrend der Wartung und beim
Einsatz werden darum nicht dargestellt. Aufierdem wird nur ein Teil der Entschei-
dungen {iiber Priifungen dargestellt. Dies gilt insbesondere fiir den Test: Es konnen
unterschiedliche Teststufen, aber nicht die eingesetzten Methoden oder ihre Vollstan-
digkeit gewahlt werden. Diese Parameter sind im QS-Modell fest vorgegeben. Auch
ein Vergleich zwischen Kosten und Nutzen der Priifungen ist mit dem QS-Modell
nicht direkt moglich. Dazu werden zwei Spielverldaufe benotigt, die sich in den Ent-
scheidungen des Spielers iiber Priifungen unterscheiden (Hampp und Opferkuch,
2007). Dauer, Aufwand, Kosten, Code- und Handbuchqualitit (Korrektheit, Vollstan-
digkeit) bilden eine vektorielle Grofie, so dass eine lineare Bewertung mehrerer
SESAM-Projekte nicht moglich ist.
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Das QS-Modell enthalt als wichtigen Aspekt der Simulation den Zeitbezug zwischen
Aktivitaten: Ein Priifling kann etwa nur dann vollstandig gepriift werden, wenn er
komplett ist. Diese Abhangigkeiten sollen die Spieler kennenlernen und beachten. Fiir
ein Modell, mit dem Entscheidungen {iiber Priifparameter unterstiitzt werden, ist die-
ser Aspekt aber nicht wichtig, da mit diesem Aspekt die Organisation der Arbeit, aber
nicht die Priifparameter im Vordergrund stehen. Die Beziehungen werden darum
nicht iibernommen.

4.2 Kostenschitzung mit COCOMO II

COCOMOII (Boehm, 2000) ist ein algorithmisches Kostenschatzverfahren. Mit
COCOMO II werden Aufwand, Dauer und Personalbedarf fiir ein Software-Projekt
geschdtzt. Das Modell wurde auf empirischem Wege erstellt, es basiert auf einem
Regressionsverfahren. COCOMO II beschreibt das Verhalten, aber nicht die Wir-
kungsstruktur in Software-Projekten.

421 Zusammenhinge in COCOMO II

In COCOMO 1II wird der Aufwand aus dem Umfang und aus weiteren Einflusspara-
metern berechnet: PM = A-S"- EM mit PM als Aufwand und S als Umfang. Ein-
flussparameter sind A, E und EM. A ist ein Kalibrierungsparameter, der angepasst
werden kann.

* Der Aufwand wachst iiberproportional mit dem Umfang S, der als Zahl der
Anweisungen gemessen wird (Abbildung 13). Der Exponent E ist in der Regel gro-
Ber als 1. Er wird durch im Wesentlichen durch Prozessmerkmale, z.B. den Reife-
grad oder die Flexibilitat, bestimmt.
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Abb. 13: Umfang, Aufwand und Dauer in COCOMO II

e Der Aufwand wird durch weitere 17 Merkmale bestimmt, die den Einflussfaktor
EM ergeben. Die Merkmale sind in Gruppen fiir Projektmerkmale, Prozessmerk-
male, Merkmale der Entwicklungsplattform und Personalmerkmale gegliedert. Ein
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einzelnes Merkmal kann den Aufwand um einen Faktor grofSer 2 beeinflussen, die
Personalmerkmale konnen den Aufwand um den Faktor 3,5 verandern.

Die Dauer wird aus dem Aufwand berechnet:

e Dauer, Aufwand und Personal sind nicht frei wahlbar. Das Verhaltnis zwischen
Dauer und A5.1fwand ist durch die folgende Gleichung bestimmt:
TDEV = C-PM~ mit TDEV als Entwicklungsdauer, PM als Aufwand, C und D
als Einflussparameter. Abbildung 13 zeigt diesen Zusammenhang im rechten Dia-
gramm; der Exponent D liegt typisch um den Wert 0,3, ist also deutlich kleiner 1.
Der Zusammenhang lasst sich in gewissen Grenzen verdandern, etwa um grofien
Termindruck darzustellen. Dazu kann die Dauer aber hochstens um 25 % verkiirzt
werden, die Verkiirzung fiihrt zu hoherem Aufwand.

» Fiir ein Standardvorgehen, angelehnt an das Wasserfallmodell, gibt es eine typi-
sche Verteilung des Aufwands und der Dauer auf die Phasen und innerhalb der
Phasen auf die Aktivitdten.

4.2.2 Kalibrierung und Validierung

Das Modell wurde mit 161 Datenpunkten aus der Industrie kalibriert und validiert.
Fiir den Einsatz wird aber eine lokale Kalibrierung empfohlen, weil die Bewertungen
der Faktoren subjektiv sind, Prozessunterschiede zum Tragen kommen und Begriffs-
definitionen unterschiedlich sein konnen.

4.2.3 Bewertung und Folgerungen

COCOMO II bietet eine Top-down-Schatzung fiir Aufwand, Dauer und Personalbe-
darf eines Software-Projekts, seiner Phasen und Aktivitaten. Entscheidungen {iiber
Priifungen sind aber nicht Teil des Modells.

Fiir ein Kosten-Nutzen-Modell, mit dem Entscheidungen {iiber Priifungen und die
Projektplanung unterstiitzt werden sollen, ist der Zusammenhang zwischen Auf-
wand, Dauer und Personalbedarf relevant: Der Projektleiter benotigt diese Grofien fiir
die Planung der Priifungen. Mit den COCOMO-II-Zusammenhéngen konnen Perso-
nalbedarf und Dauer aus dem Aufwand abgeleitet werden. Dies ist nur mdglich,
wenn, anders als im QS-Modell, Auswirkungen der Organisation, Verteilung und
Reihenfolge der Arbeit nicht gezeigt werden sollen. Dazu muss der Prozess festgelegt
werden, in COCOMO II etwa ein sequentieller Prozess.

Die Erfahrungen bei der Kalibrierung und Validierung von COCOMO II zeigen, dass
die Formeln fiir Aufwand und Dauer an die Organisation, Doméne oder Projektart
quantitativ angepasst werden miissen. Sie miissen fiir die lokale Einsatzumgebung
kalibriert werden. Die Kalibrierung, die Einflussfaktoren und der iiberproportionale
Einfluss des Umfangs wirken sowohl auf den Gesamtaufwand als auch auf den Auf-
wand einzelner Aktivitaten im Projekt.
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Mit der Entscheidung, die Zusammenhidnge aus COCOMO II zu verwenden, sind
einige Metriken (Umfang und Projektmerkmale) festgelegt: Die Grundlage bildet der
Software-Umfang, gemessen in SLOC (logische Lines of Code, Anweisungen), defi-
niert nach Park (1992). Alternativ konnen Unadjusted Function Points (IFPUG, 2004)
auf Lines of Code abgebildet werden. Die 22 Merkmale werden durch eine siebenstu-
fige Ordinalskala abgebildet. Die einzelnen Kategorien sind teilweise durch quantita-
tive Grenzwerte definiert, teilweise durch Beschreibungen.

4.3 Das Datenarchiv und die Analysen von Jones

Jones (1996, 2003 und 2007) zeigt Metriken und Metrikwerte aus einem umfangrei-
chen Datenarchiv. Im Archiv sind Daten aus mehreren Tausend Projekten. Diese
Daten sind durch ein Metrikprogramm beschrieben, das definiert, welche Metriken
auf welcher Abstraktionsebene erhoben werden (Jones, 1996).

Die Grundlage bildet der funktionale Umfang von Software in Function Points. Auf-
wand, Dauer und Personalbedarf sind wesentliche Metriken zur Produktivitatsbe-
wertung, Fehlerzahlen werden zur Qualitatsbewertung erhoben.

Diese Daten werden fiir das gesamte Projekt und einzelne Aktivititen archiviert.
Dabei ist der Begriff der Aktivitat auf einer dhnlichen Abstraktionsebene definiert wie
in COCOMO II (Boehm, 2000), orientiert vor allem an den Dokumenten (Jones, 1996):
Anforderungen, Entwurf, Benutzerdokumentation, Testdokumentation. Diese Daten
werden in 6 Doméanen und 6 Umfangsklassen aufgegliedert. Die 6 Doméanen sind
Endbenutzer-Software, Informationssysteme, Software in Auftragsprojekten, Soft-
ware fiir den Markt, Software fiir das Militar und Systemsoftware. Die 6 Umfangs-
klassen sind durch den Function-Point-Umfang in 10er-Potenzen definiert, von der
Klasse mit Software unter 1 Function Point bis zur Klasse mit Software ab 10 000 bis
100 000 Function Points. Grofiere Projekte sind nicht dargestellt.

Die Daten werden teilweise als Absolutwerte gezeigt, sind aber meist aber durch den
Umfang normiert. In einigen Fallen wird der Mittelwert durch Minimum und Maxi-
mum erganzt.

Die Daten werden unter unterschiedlichen Blickwinkeln betrachtet und ausgewertet:

In Jones (1996) werden diese Daten und ihre Anwendung gezeigt, beispielsweise die
Messung von Verbesserungen und die Identifikation der besten Methoden. Der
Schwerpunkt liegt aber auf dem Datenarchiv, also dem Metrikprogramm und seinen
Definitionen. Analysen und Prédsentation der Resultate werden beispielhaft darge-
stellt.

Jones (2003) stellt strategische Aspekte in den Vordergrund. Dazu gehort der Ver-
gleich mit anderen Organisationen und die Identifikation der erfolgreichsten und der
schadlichsten Methoden. Dabei werden vor allem Daten verwendet, die das gesamte
Projekt charakterisieren.
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Detaillierter wird in Jones (2007) beschrieben, wie die Kosten einzelner Aktivitdaten
geschatzt werden konnen, untermauert mit Durchschnittsdaten aus dem Archiv. Das
Werkzeug KnowledgePLAN (SPR, 2009) enthélt die Archivdaten und macht sie
zuganglich. Das Werkzeug bietet Resultate fiir die Kostenschatzung, also Dauer, Auf-
wand und Personalbedarf, zusitzlich die Fehlerzahl und Fehlerdichte fiir das
gesamte Projekt und einzelne Phasen.

Bewertung und Folgerungen

Die aktivitatsbezogenen Daten sind eine wichtige Basis fiir das QS-Modell (Drappa,
1998). Die Datensammlung ist umfangreich und enthélt Industriedaten. Sie enthalt
somit Mittelwerte vieler Projekte, reprasentiert also Projekte im Allgemeinen.

Da die Daten aktivititsbezogen dargestellt werden, konnen sie als Grundlage fiir
Modelle dienen, die einzelne Aktivitaten abbilden. Da mit CoBe Aktivitaten und Aus-
wirkungen der Priifungen auf Aktivititen dargestellt werden sollen, verwende ich
die Daten von Jones, um das Modell CoBe zu quantifizieren.

Die Ziele, die mit CoBe verfolgt werden, konnen aber mit dieser Datensammlung
nicht erreicht werden, da Jones vor allem die Resultate, aber keine Korrelations- oder
Ursache-Wirkungs-Beziehungen analysiert und beschreibt. Zusammenhange, die zur
Modellbildung verwendet werden konnen, werden nicht explizit genannt. Diese
Zusammenhange konnen aber anhand der Daten analysiert und interpretiert werden.

Das Werkzeug KnowledgePlan enthilt solche Zusammenhange, macht sie aber nicht
offentlich. Priifparameter werden nicht dargestellt, somit werden auch keine Ent-
scheidungen tiber die Priifparameter unterstiitzt. Fehlerfolgekosten beim Einsatz des
Produkts und Kosten in der Wartung spielen in den Diskussionen so gut wie keine
Rolle, weil das Augenmerk vor allem auf dem Projekt liegt.

Da Mittelwerte vieler Projekte gezeigt werden, konnen die Werte eines speziellen Pro-
jekts abweichen. Darum ist eine Aussage, wie gut die Werte von Jones auf ein speziel-
les Projekt tibertragen werden konnen, nicht moglich.

44 Weitere Kosten-Nutzen-Modelle

Es gibt eine Reihe weiterer quantitativer Modelle, die sich mit Kosten und Nutzen
von Priifungen auseinandersetzen. Im Folgenden werden diejenigen Modelle
betrachtet, die Tests und Reviews enthalten und darum mit dem konzipierten Kosten-
Nutzen-Modell CoBe verglichen werden konnen.

4.4.1 COCOMO-Erweiterungen

Kosten und Nutzen von Qualitatsverbesserungen werden in iDave (Information
Dependability Attribute Value Enhancement) hinsichtlich der Zuverlassigkeit bewer-
tet (Huang und Boehm, 2006; Boehm et al., 2003; Boehm et al., 2004). Das Modell ver-
wendet COCOMOII und COQUALMO, ein Fehlerstrommodell (Boehm, 2000).
Entscheidungen {tiber Priifungen werden durch die Prozessreife der Priifungsarten
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dargestellt. Tabelle 4 zeigt dies beispielhaft fiir Reviews, das gleiche Vorgehen wird
fiir Tests und fiir die automatisierte Analyse angewendet.

Rating Peer Reviews

Very Low | No Peer review.

Low Ad-hoc informal walkthroughs.

Nominal | Well defined sequence of preparation, review, minimal follow-up.

Formal review roles with well-trained participants and using basic checklists,

High follow-up.

Basic review checklists, root cause analysis. Formal follow-up using historical

Very High . . . .
Y HI8N | qata on inspection rate, preparation rate, fault density.

Formal review roles and procedures. Extensive review checklists, root cause

Extra High analysis. Continuous review process improvement. Statistical Process Control.

Tabelle 4: Bewertung der Prozessreife von Reviews (Boehm et al., 2004)

Fiir den Vergleich zwischen Kosten und Nutzen werden Dauer und Qualitat durch
VERs (Value estimating relationships) auf Geldwerte abgebildet. Diese Beziehungen
zwischen Prozess- und Produktqualitiat auf Geldwerte stammen aus einer Wirtschaft-
lichkeitsbewertung durch Klienten, sind also nicht vom Modell vorgegeben. Die
Beziehungen konnen unterschiedliche Formen haben, es kann sich um lineare, stufen-
formige, s-formige oder einer Pareto-Verteilung folgende Funktionen handeln. iDave
bietet einige einfache generische Beziehungen zwischen Prozess- und Produktqualitét
und Geldwerten. Dazu gehort, wie viel ein Fehler oder eine bestimmte Ausfalldauer
kostet. Es konnen aber auch Risikokosten zur Zuverlassigkeitsbewertung einbezogen
werden.

Bewertung und Folgerungen

Mit iDave wird ein dhnliches Ziel wie mit CoBe verfolgt: Kosten und Nutzen von
Qualitatsverbesserungen sollen dargestellt werden. Der Blickwinkel von iDave liegt
aber auf strategischer Ebene:

iDave unterstiitzt nicht Entscheidungen iiber einzelne Priifungen und einzelne Priif-
parameter, sondern betrachtet die Prozessreife der Priifungen und ihre Auswirkun-
gen. Damit unterscheidet es sich wesentlich von CoBe.

Der Nutzen der Mafinahmen wird in iDave nicht direkt dargestellt, sondern ist nur
durch Vergleich der Resultate unterschiedlicher Eingaben moglich.

Wartungskosten und Priifungen in der Wartung werden nicht dargestellt. Wirkungen
beim Finsatz, etwa durch Fehlerfolgekosten, sind durch generische Beziehungen in
iDave abgebildet. Eine direkte Unterstiitzung der Projektleiter oder QS-Verantwort-
lichen fiir eine Einschatzung der Fehlerfolgekosten ist also nicht in iDave enthalten.
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Wie im QS-Modell liegt iDave ein Fehlerstrommodell zu Grunde. Dieses Fehlerstrom-
modell COQUALMO entspricht im Grundsatz dem Fehlermodell des QS-Modells.

4.4.2 FEl Emams Return-On-Investment-Modell

El Emam (2005) verwendet ein ROI-Modell, um Kosten und Nutzen konkreter Pro-
zessverbesserungen zu demonstrieren. Mit dem ROI-Modell werden die Auswirkun-
gen einer konkreten Priifung in einer bestimmten Situation bewertet. Die
Fehlerentdeckung einer Priifung wird verwendet, um Kosten und Nutzen darzustel-
len. Kosten und Nutzen werden durch anfallende und entfallende Korrekturauf-
wiande berechnet; Dauer und Mitarbeiter werden iiber COCOMOII abgeleitet.
Aufwand wird auf Geldwerte umgerechnet. Fehlerfolgekosten fiir den Kunden sind
die Installationskosten der Korrektur.

Bewertung und Folgerungen

Das ROI-Modell von El Emam und CoBe haben einen dhnlichen Zweck, entsprechend
dhnlich ist die Modellgestaltung als funktionales Modell. Ein Fehlerstrommodell bil-
det die Grundlage. Qualitatskosten werden modelliert. Die gesamte Lebensdauer mit
Wartung und Betrieb wird betrachtet. El Emam legt den Schwerpunkt auf Bewertun-
gen des Return-On-Investment. Das Modell unterscheidet sich deutlich von CoBe:

* Das ROI-Modell enthilt keine Entscheidungen iiber einzelne Priifparameter und
damit auch keine Zusammenhange, um die Auswirkungen dieser Parameter dar-
zustellen.

* Ein Modell, um die Planung einzelner Aktivitaten mit Dauer, Aufwand und Perso-
nalbedarf zu unterstiitzen, ist nicht enthalten. COCOMO II wird verwendet, um
die Dauer aus dem Aufwand abzuleiten, diese Zusammenhange werden aber nur
zur ROI-Berechnung verwendet.

* Als Fehlerfolgekosten beim Einsatz werden die Installationskosten betrachtet. Die
Installationskosten machen einen Teil der Fehlerfolgekosten fiir den Kunden und
die Benutzer aus. Es fehlt eine Unterstiitzung der Projektleiter und QS-Verantwort-
lichen, um die Kosten, die fiir Kunde und Benutzer anfallen, einschatzen zu kon-
nen. Auswirkungen der Intensitat, mit der das Produkt verwendet wird, konnen
beispielsweise nicht direkt dargestellt werden.

* Das ROI-Modell ist mit allgemeinen Daten quantifiziert; fiir spezielle Projekte kann
es neu quantifiziert werden. Es bietet aber keine direkte Kalibrierung, um es an
spezielle Projekte anzupassen.

4.4.3 Wagners Modelle zur Kosten-Nutzen-Optimierung

Wagner (2007) entwickelt zwei Modelle mit dem Ziel, Kosten und Nutzen fiir analyti-
sche Qualitatssicherung zu optimieren. Das Modell orientiert sich am V-Modell XT
(2004). Das erste, analytische Modell ist so detailliert wie moglich. Das zweite Modell
wurde fiir den praktischen Einsatz vereinfacht. Entscheidungen tiber Priifungen wer-
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den durch investierten Aufwand dargestellt. Dazu stellt das Modell unterschiedliche
Funktionen zur Verfligung, beispielsweise fiir lineare oder exponentielle Zusammen-
hange. Wagner nimmt fiir den praktischen Einsatz einen linearen Zusammenhang
zwischen Aufwand und Fehlerentdeckung an (Wagner, 2007, S. 65). Die Modelle
berechnen Priif-, Korrektur- und Fehlerfolgekosten.

Bewertung und Folgerungen

Mit den Modellen werden dhnliche Ziele wie mit CoBe verfolgt. Sie sind auch ahnlich
wie CoBe als funktionale Modelle gestaltet. Sie basieren auf einem Fehlerstrommodell
und Qualitatskosten. Der Aufwand einzelner Aktivitaten wird betrachtet. Die Ziele
von CoBe konnen aber nicht mit den Modellen von Wagner erreicht werden, weil
wichtige Eigenschaften fehlen:

Die Modelle bieten keine Unterstiitzung fiir Entscheidungen tiiber Priifparameter,
sondern modellieren den Aufwand, der investiert wird. Nicht dargestellt ist somit,
auf welche Art und Weise der Aufwand in die Priifung investiert wird und wie der
Aufwand sinnvoll investiert werden kann. Unklar bleibt damit beispielsweise, ob
sinnvoller in einen intensiveren Black-Box-Test investiert oder ob dieser Aufwand
besser in einen Glass-Box-Test investiert wird. Nicht betrachtet wird die Wiederho-
lung von Priifungen.

Der Nutzen der Priifungen wird von den Modellen nicht direkt dargestellt. Er wird
erst durch Vergleich zwischen den Modellresultaten aus unterschiedlich intensiven
Priifungen sichtbar.

Dauer und Personalbedarf werden nicht dargestellt. Sie flieffen nicht in die Bewer-
tung ein; es gibt also keine direkte Unterstiitzung der Planung.

Fehlerfolgekosten werden als mittlere Kosten pro Fehler im Modell angegeben. Die
Modelle bieten somit keine Unterstiitzung bei der Abschatzung dieser Kosten, etwa
um die Auswirkungen der Intensitdt, mit der die Software eingesetzt wird, zu erfas-
sen.

Das Modell ist mit allgemeinen Daten quantifiziert. Es wurde praktisch erprobt, bietet
aber keine Moglichkeit zur Kalibrierung fiir spezielle Projekte oder Umgebungen.

4.4.4 Miillers Produktlinienmodell

Miiller (2007) bewertet Kosten und Nutzen der analytischen Qualitatssicherung in der
Produktlinienentwicklung mit dem Simulationsmodell SQASIM. Das Simulationsmo-
dell deckt die Produktlinienentwicklung von der Architektur bis zur Implementie-
rung ab. Die Entwicklung der Produktplattform und der einzelnen Produkte, die aus
der Plattform abgeleitet werden, werden betrachtet. Anforderungsentwicklung und
Wartung liegen auflerhalb der Modellgrenzen.

Die wesentlichen Eingaben sind, an welchen Punkten im Prozess Priifungen durchge-
tithrt werden, welcher Anteil an Fehlern durch eine Priifung entdeckt wird, die Pro-
duktkomplexitdat, die Mitarbeiterzahl und die Zahl der eingefiigten Fehler. Die
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Ausgaben sind Aufwand und Dauer einzelner Phasen und Aktivitiaten, Personalbe-
darf und Fehlerzahlen.

Prozessanderungen werden durch Szenarien beschrieben. Miiller (2007) nennt die fol-
genden Beispiele: Anderung von Priifungen und ihrer Intensitit, Anderung der Per-
sonalbelegung, Anderung der Fehlerverteilung auf Software-Module, Anderung der
Auftragsrate und Wechsel der Produktplattform.

Bewertung und Folgerungen

Das Modell beruht auf einem Fehlerstrommodell und stellt, wie CoBe, Aufwand,
Dauer und Personalbedarf einzelner Aktivititen dar. Da der Schwerpunkt des
Modells auf der Produktlinienentwicklung liegt, werden Betrieb und Wartung der
Produkte nicht betrachtet. Fehlerfolgekosten und Kosten fiir korrektive Wartung wer-
den nicht dargestellt. Dafiir steht die Modellierung von Fehlern, ihrer Entstehung und
ihrer Entdeckung in der Produktplattform und den Produkten im Vordergrund.

Entscheidungen tiber Priifparameter sind im Modell nicht enthalten, auch nicht iiber
die Wiederholung von Priifungen. Statt dessen muss die Fehlerentdeckung direkt
geschatzt werden.

Das Modell wurde in Projekten eingesetzt, es bietet aber keine Unterstiitzung zur
Kalibrierung.

4.4.5 Prozesssimulation von Raffo et al.

Martin und Raffo (2000 und 2001) verwenden ein Modell zur Prozesssimulation, das
sich an den ISO-Standard 12207 (IEEE 12207.0, 1996) anlehnt. Mit diesem Modell sol-
len unter anderem auch Kosten und Nutzen der Qualitatssicherung untersucht wer-
den (Raffo, o.].; Raffo et al,, o. J.). Angestrebt wird der Einsatz in der Planung fiir
betriebswirtschaftliche Kenngrofien (Harrison et al., 1999; Raffo, 2005). Entscheidun-
gen sind fiir ganze Aktivitaten, ihre Kombination und Reihenfolge moglich. Kosten
basieren auf Korrekturkosten, ausgegeben werden Aufwand, Dauer, Personal und
entdeckte Fehler der Priifungen und nach Auslieferung.

Bewertung und Folgerungen

Das Simulationsmodell bietet einen festen Satz an Priifungen und ergibt Aufwand,
Dauer und Personalbedarf der Aktivitaten. Dies entspricht in etwa den Metriken, die
auch mit CoBe berechnet werden sollen. Es unterstiitzt aber keine Entscheidungen
iiber einzelne Priifparameter. Auch Entscheidungen tiber die Priifwiederholung wer-
den nicht unterstiitzt.

Wartung und Betrieb der Software werden im Modell nicht explizit dargestellt; Fehler
konnen zwar prinzipiell durch Kostenfunktionen bewertet werden (Raffo, 2005),
dabei werden die Modellbenutzer und -entwickler aber nicht unterstiitzt. Die lang-
fristigen Auswirkungen der Priifungen sind also im Modell nicht ausreichend
bewertbar.
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Der Nutzen, der durch eine bestimmte Priifung erreicht wird, wird nicht direkt dar-
gestellt: Dazu miissen verschiedene Simulationslaufe durchgefiihrt und deren Resul-
tate verglichen werden.

4.5 Bewertungen und Folgerungen

Die Modelle kénnen nicht direkt verwendet werden, weil die einzelnen Priifparame-
ter nicht abgebildet werden. Die Modelle bilden im Wesentlichen ab, welche Priifun-
gen stattfinden. Somit werden detaillierte Entscheidungen {iiber Priifungen nur
unzureichend unterstiitzen. Eine Ausnahme bilden die Reviews in SESAM, die detail-
lierter modelliert sind. Der Spieler kann beispielsweise entscheiden, ob mehr oder
weniger Gutachter teilnehmen (Drappa, 1998; Hampp, 2001). Konkrete Entscheidun-
gen iiber den Test, beispielsweise iiber die Testiiberdeckung oder Testvorbereitung,
werden dagegen auch in diesen Modellen nicht dargestellt.

Ein weiterer Grund, warum bestehende Modelle nicht direkt iibernommen werden
konnen, ist, dass die vorhandenen Modelle die langfristigen Kosten nicht oder nur
unzureichend darstellen. Dazu gehoren Wartungskosten fiir Korrektur und Testwie-
derholung, insbesondere aber die Kosten, die Kunden und Benutzer tragen. Diese
Kosten werden, wenn iiberhaupt, unvollstindig oder sehr grob dargestellt. Somit
werden Kosten und Nutzen fiir die direkten Klienten des Projekts, also Benutzer,
Kunde und Wartungspersonal, nicht oder unvollstindig abgebildet. Beispielsweise
werden die Fehlerfolgekosten durch Installationskosten der Korrektur (El Emam,
2005) modelliert oder miissen direkt als Kosten pro Fehler angegeben werden (Wag-
ner, 2007; Huang und Boehm, 2006).

Die grundlegenden Begriffe und Zusammenhange in Software-Projekten sind in dhn-
licher Form in allen Modellen enthalten. Dazu gehoren das Fehlerstrommodell, der
Anstieg der Korrekturkosten mit der Latenzzeit oder der Einfluss des Software-
Umfangs. Diese Zusammenhiange sind empirisch belegt und als Teil der Modelle vali-
diert. Sie konnen also in einem Kosten-Nutzen-Modell fiir Software-Priifungen ver-
wendet werden.
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4. Verwandte Arbeiten




Kapitel 5

Analyse der Kosten und des Nutzens von

Priifungen

Da sich die Ziele von CoBe mit bestehenden Modellen nicht erreichen lassen, werden
in diesem Kapitel die Zusammenhange fiir Kosten und Nutzen von Priifungen analy-
siert. Diese Analyse ist der erste Schritt der Modellbildung (Abschnitt 3.7). Dabei wer-
den auch die bereits bestehenden Modelle und andere empirische Arbeiten
berticksichtigt, um Teile aus diesen Modellen zu verwenden. Dazu gehoren die
grundlegenden Begriffe und Zusammenhange in Software-Projekten. Diese Basiszu-
sammenhdnge werden in Abschnitten 5.1 bis 5.3 gezeigt. Die Analyse von Priifungen
ist in den Abschnitten 5.4 bis 5.6 dargestellt.

5.1 Begriffe

Als ersten Schritt der Modellbildung werden im Folgenden die grundlegenden
Zusammenhange beschrieben. Ich beginne mit den Begriffen, bevor die Zusammen-
héange beschrieben werden.

Fehler und Fehlermerkmale

Fiir Fehler gibt es unterschiedliche Definitionen (Abschnitt 2.7; IEEE 1044, 1993; IEEE
982.1, 2005; IEEE 610, 1990; ISO 9000, 2000). Im QS-Modell (Drappa, 1998) wird die
Definition aus IEEE 1044 (1993) fiir Fehler in einem Artefakt verwendet:

Def. anomaly. Any condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc. or from some-
one’s perceptions or experiences. (IEEE 1044, 1993)

Diese Definition entspricht dem Fehlerbegriff der ISO 9000 (2000), wenn Anforderun-
gen aller Klienten und implizite Anforderungen einbezogen werden:

Def. Fehler. Nichterfiillung einer Anforderung. (ISO 9000, 2000)

Unterschieden werden zwischen Abweichungen (anomaly) in einem Artefakt, z.B. in
einem Dokument oder im Code (Florac, 1992) und dem Fehlverhalten oder failure
(IEEE 610, 1990; IEEE 982.1, 2005; Liggesmeyer, 2002):

Def. failure. The inability of a system or component to perform its required functions
within specified performance requirements. (IEEE 610, 1990)
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Def. Fehlverhalten. Ein Fehlverhalten oder Ausfall (failure) zeigt sich dynamisch bei
der Benutzung eines Produkts. Beim dynamischen Test einer Software erkennt
man keine Fehler, sondern Fehlverhalten bzw. Austfille. Diese sind Wirkungen
von Fehlern im Programm.

Def. fault. (1) A defect in a hardware device or component; for example, a short cir-
cuit or broken wire. (2) An incorrect step, process, or data definition in a com-
puter program. (IEEE 610, 1990)

Def. Fehler. Ein Fehler oder Defekt (fault, defect) ist bei Software die statisch im Pro-
grammcode vorhandene Ursache eines Fehlverhaltens oder Ausfalls.

Fehler haben unterschiedliche Merkmale, die als Kategorie bezeichnet werden (IEEE
1044, 1993). Jede Kategorie besteht aus Klassen. Ein Fehler wird einer Klasse in einer
Kategorie durch Klassifizierung zugeordnet, beispielsweise der Klasse “dringend” in
der Kategorie “Prioritat”. Zwei wichtige Kategorien sind die Fehlerart und die Fehler-
schwere, weil sie mit Kosten zusammenhangen. Die Fehlerart beschreibt die Aktivi-
tit, bei der ein Fehler gemacht wird (Drappa, 1998). Sie wird auch als
Abstraktionsebene der Fehlerentstehung (Drappa, 1998; Ludewig und Lichter, 2007)
oder Origin (Runeson et al., 2006) bezeichnet:

Def. Fehlerart. Die Fehlerart ist durch die Aktivitat bestimmt, durch die ein Fehler
entstanden ist.

Im QS-Modell werden etwa Analysefehler, Feinentwurfsfehler, Grobentwurfsfehler,
Implementierungsfehler und Handbuchfehler unterschieden (Drappa, 1998).

Die Fehlerschwere beschreibt die Auswirkungen eines Fehlers auf die Software-Ent-
wicklung und den Einsatz der Software (IEEE 610, 1992):

Def. criticality. The degree of impact that a requirement, module, error, fault, failure
or other item has on the development or operation of a system. Syn: severity.
(IEEE 610, 1992)

Frithauf et al. (2006) nennen fiir Priifungen, insbesondere fiir Reviews, drei Klassen,
die durch Auswirkungen auf Projekt und Betrieb definiert sind:

Def. Kritischer Fehler. Priifling ist fiir den vorgesehenen Zweck unbrauchbar, Fehler
muss vor der Freigabe behoben werden.

Def. Hauptfehler. Nutzbarkeit des Priiflings ist beeintrachtigt, Fehler sollte vor Frei-
gabe behoben werden.

Def. Nebenfehler. beeintrachtigen den Nutzen kaum.

Die Fehlerschwere kann unterschiedlich definiert und bewertet werden, abhangig
von den betrachteten Auswirkungen eines Fehlers. Bassin et al. (2002) betrachten bei-
spielsweise die Auswirkungen auf den Test und unterscheiden auch blockierende
Fehler:
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Def. Blockierender Fehler. Ein blockierender Fehler verhindert die weitere Ausfiith-
rung des Programms, etwa um Testfdlle durchzufiihren. (Bassin et al., 2002).

Fiir verschiedene Fehlerwirkungen nennt der IEEE-Standard 1044 (1993) verschie-
dene Kategorien. Dazu gehoren Dringlichkeit, Auswirkungen auf Projektkosten und
Projektdauer und Auswirkungen, die der Fehler beim Einsatz hat (oder hatte). Fiir
jedes Merkmal sind Klassen vorgegeben. Fenton und Pfleeger (1997), Jones (1996, S.
232, S. 367), Dunn (1984), Grady und Caswell (1987) zeigen Beispiele, bei denen sich
die Fehlerschwere auf den Schaden bezieht, der beim Einsatz der Software entsteht.

Software-Umfang

Der Umfang des Produkts kann in Function Points mit unterschiedlichen Varianten
(ISO/IEC 14143, 2007; Jones, 2007; IFPUG, 2004) gemessen werden. Der Umfang des
Codes kann in Anweisungen (logische Zeilen, durch Sprachelemente definiert) oder
Lines of Code (physische Zeilen, durch Zeilenumbriiche definiert) gemessen werden
(IEEE 1045, 1992; Park, 1992). Im Folgenden verwende ich Anweisungen, wenn logi-
sche Zeilen gemeint sind, und Codezeilen oder Zeilen, wenn physische Zeilen
gemeint sind. Der IEEE-Standard unterscheidet, ob Software in einem Projekt neu
erstellt (hinzugefiigt), gedandert oder unverandert wiederverwendet wird. Dieses
Merkmal wird als Ursprung (Origin) bezeichnet:

Def. Hinzugefiigte Software. Software, die im Projekt neu erstellt wird.

Def. Gednderte Software. Software, die bereits vorhanden war und im Projekt gedn-
dert wird.

Def. Wiederverwendete Software. Software, die bereits vorhanden war und unver-
andert im Projekt verwendet wird.

Def. Neue Software. Hinzugefiigte und gednderte Software.

Function Points erlauben, den Umfang der Software in allen Projektphasen zu
beschreiben (Jones, 1996; Drappa, 1998). Zwischen Code-Umfang und Function Points
kann umgerechnet werden (Jones, 1996; Boehm, 2000). Der Faktor fiir die Umrech-
nung hangt von der Programmiersprache ab. Im QS-Modell wird der Umfang aller
Dokumente durch Function Points beschrieben (Drappa, 1998). In COCOMO II kon-
nen die Zahl der Anweisungen, bezeichnet als SLOC, oder die Zahl der Function
Points verwendet werden (Boehm, 2000). Der Zusammenhang zwischen Anweisun-
gen und Function Points schwankt weniger stark als zwischen Lines of Code und
Function Points (Jones, 1996). Der Umfang von Dokumenten kann in Seiten gemessen
werden (IEEE 1045, 1992). Zwischen Function Points und Seiten kann umgerechnet
werden (Drappa, 1998; Jones, 2007). Die Faktoren hangen von der gewdhlten Notation
und Methode zur Dokumentation ab (Drappa, 1998; Jones, 2007).
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5.2 Analyse der Fehlerentstehung, -entdeckung und -korrektur

Entwicklungs- und Priifprozesse

Bei der Software-Entwicklung gehen die einzelnen Dokumente durch einen kreativen
Prozess auseinander hervor (Ludewig und Lichter, 2007). Der Entwickler ist dabei
schopferisch tatig. Beispielsweise setzt ein Entwickler Anforderungen in einen Ent-
wurf um; er entwirft. Dabei bleiben Informationen aus der Spezifikation erhalten,
andere kommen hinzu, andere fallen weg. Drappa (1998) nennt explizit, dass von
einer Vorgabe ausgehend auf die nachstniedere Abstraktionsebene der Entwicklung
transformiert wird, dass also die Spezifikation immer den Entwurf vorgibt. Das
bedeutet nicht, dass der Entwurf immer dokumentiert werden muss, er kann auch im
Kopf des Entwicklers entstehen. Fiir die Software-Entwicklung werden von Drappa
(1998), Jones (1996) und Boehm (2000) und von Begriff- und Prozessstandards (IEEE
610, 1990; Automotive SIG, 2005, CMMI Product Team, 2002; V-Modell XT, 2004)
typisch die Spezifikation, Architektur- und Feinentwurf, Implementierung und Inte-
gration genannt. Die Integration kann mehrere Schritte umfassen. Ein typischer Priif-
prozess mit typischen Priifungen wird z.B in Jones (1996) dargestellt. Im Prozess
werden Dokumente Reviews unterzogen (Spezifikationsreview, Entwurfsreview,
Codereviews). Der Test findet auf unterschiedlichen Ebenen statt, mit Modultest,
Integrationstest in einzelnen Schritten, Systemtest. Zusatzlich kann die Software
durch einen Feldtest beim Kunden gepriift werden. Mit der automatischen statischen
Codeanalyse, im Folgenden kurz Codeanalyse genannt, werden verdachtige Kon-
strukte im Code von einem Werkzeug identifiziert und dokumentiert (Spinellis, 2006;
Louridas, 2006).

Fehlerentstehung

Die Zahl der entstehenden Fehler hangt vom Umfang des Produkts ab (Jones, 1996).
Fenton und Pfleeger (1997) bezeichen die Fehlerdichte als De-Facto-Standard fiir die
Software-Qualitat. Sie ist definiert als die Zahl der Fehler bezogen auf den Software-
Umfang. In vielen Fallen werden Erfahrungswerte der Fehlerdichte berichtet (z.B. in
Jones, 1996; Kan, 2003; Grady, 1992).

Der Zusammenhang zwischen Umfang und Fehlerzahl ist iiberproportional. Er wird
in den Modellen von Drappa (1998), Huang und Boehm (2006); El Emam (2005) und
Martin und Raffo (2000 und 2001) fiir vollstandig neu entwickelte Software verwen-
det. Software-Anderungen werden in den Modellen nicht direkt betrachtet. Méller
und Paulish (1993b) stellen fest, dass sich die Fehlerdichte zwischen neuen und gean-
derten Modulen bei groferem Anderungsumfang (etwa ab 70 Zeilen) nicht unter-
scheidet. Basili und Perricone (1984) zeigen etwas mehr Fehler in geanderten
Modulen als in neu entwickelten Modulen und machen dafiir die falsche Verwen-
dung vorhandener Schnittstellen verantwortlich.
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Fehler entstehen bei den Aktivitdten der Software-Entwicklung und werden in das
Artefakt eingefiigt, das bearbeitet wird (Drappa, 1998). Daraus folgt, dass Fehler bei
der Erstellung von Software, aber auch bei der Korrektur von Software entstehen kon-
nen.

Die Zahl der entstehenden Fehler hangt von vielen Merkmalen ab. Dazu gehort die
Projektart (Jones, 1996) und die Prozessreife; in Projekten mit hoher Prozessreife wer-
den halb so viele Fehler (Jones, 1996) oder noch weniger (Gibson et al., 2006) insge-
samt entdeckt. Komplexitat und Struktur spielen eine Rolle (El Emam et al., 2001;
Jiang et al., 2008; Olague et al., 2007), der Einfluss ldsst sich aber nicht mehr nachwei-
sen, wenn der Umfang einzelner Klassen einbezogen wird (El Emam et al., 2001; Ola-
gue et al., 2007). Fiir das Modell COQUALMO (Boehm, 2000; Devnani-Chulani, 1997)
wurden Experten in einer Delphi-Befragung gefragt, wie stark sich die Fehlerzahl
abhiangig von COCOMO-II-Parametern verandert. Eine Messung und Validierung
des Einflusses dieser Merkmale fand bislang nicht statt.

Die Art des Software-Projekts bestimmt, wie sich die Fehler auf die Fehlerarten vertei-
len (Jones, 1996). Die konkreten Einfliisse auf die Fehlerzahl und die Verteilung auf
die Fehlerart sind nicht bekannt. Die Verteilung der Fehler auf die Klassen der Fehler-
schwere hangt von der Definition der Fehlerschwere ab.

Fehlerentdeckung und Fehlerkorrektur

Jede Priifung entdeckt einen Anteil der Fehler, die im Priifling enthalten sind. Dieser
Anteil wird als Fehlerentdeckungsquote Q (Drappa, 1998; Kan, 2003) bezeichnet.

Zahl durch Priifung entdeckter Fehler
Zahl enthaltener Fehler

Q:

Kan (2003) definiert die Defect Removal Effectiveness DRE nicht mit entdeckten, son-
dern entfernten Fehlern. Die Zahl der enthaltenen Fehler ist in realen Projekten nicht
bekannt, darum wird die Fehlerentdeckungsquote fiir reale Projekte definiert durch

Zahl in Priifung entdeckter Fehler
Zahl in Priifung entdeckter Fehler + Zahl nach Priifung entdeckter Fehler

Q:

Priifungen entdecken Fehler systematisch auf einer bestimmten Abstraktionsebene
(Frithauf et al., 2006; Drappa, 1998). Die Fehlerentdeckungsquote unterscheidet sich
also fiir verschiedene Fehlerarten (Jones, 1996).

Entdeckte Fehler werden in der Korrektur behoben. Dabei konnen aber durch die
Anderung neue Fehler gemacht werden, auSerdem kann die Korrektur unvollstandig
sein (Drappa, 1998). Das Fehlerstrommodell beschreibt, dass Fehler wahrend Ent-
wicklung (und Korrektur) eingefiigt und durch Priifung entdeckt, dann mit der Kor-
rektur entfernt werden. Abbildung 14 nach Boehm (1981, S. 382) zeigt dies
vereinfacht, ohne die Fehlerentstehung durch Korrektur.
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Dokumentationsfehler _p Aausgelieferte

— Fehler

Codefehler E—
Entwurfsfehler

Spezifikationsfehler ’—‘ ‘
P

In Priifungen entdeckte und korrigierte Fehler

Abb. 14: Das Fehlerstrommodell (nach Boehm, 1981)

Drappa (1998) beschreibt dies anhand der Entwicklung mit Vorgabe. Dabei werden
Fehler aus der Vorgabe iibernommen. Das Fehlerstrommodell bildet die Grundlage
aller Modelle, die sich mit Kosten und Nutzen von Priifungen auseinandersetzen
(Huang und Boehm, 2006; El Emam, 2005, Wagner, 2007; Miiller, 2007; Martin und
Raffo, 2000 und 2001).

Fehlerentstehung, Fehlerentdeckung und die Korrektur hangen mit den Erfahrungen
und Kenntnissen der beteiligten Entwickler zusammen (Drappa, 1998).

5.3 Analyse von Fehlerkosten

Fehlerkosten sind unterteilt in Fehlerbehebungskosten und Fehlerfolgekosten. Fehler-
behebungskosten sind alle Kosten, die mit der Behebung des Fehlers einschliefdlich
der Priifung der Korrektur zu tun haben. Fehlerfolgekosten entstehen durch Fehler
beim Einsatz der Software (Abschnitt 2.9).

5.3.1 Fehlerbehebungskosten

Fehlerkorrektur. Die Korrektur eines Fehlers erfolgt in mehreren Schritten. Falls ein
Fehlverhalten entdeckt wird, beispielsweise im Test oder beim Einsatz der Software,
dann muss bei der Korrektur zuerst die Ursache fiir dieses Fehlverhalten identifiziert
werden. Dies wird als Fehleranalyse bezeichnet. Falls der Fehler direkt identifiziert
wurde, beispielsweise in einem Review oder durch Codeanalyse, entfdllt diese
Ursachenanalyse. Dann wird die Korrektur entworfen und implementiert (Basili et
al., 1996, Sommerville, 2007, Kap. 22), d.h. die Software wird geadndert. Je langer ein
Fehler unentdeckt bleibt, desto teurer wird die Korrektur. Die Dauer, die der Fehler
unentdeckt bleibt, wird als Latenzzeit bezeichnet. Diese hdngt ab von der Priifung, bei
der der Fehler entdeckt wurde (Boehm, 1976, Moller und Paulish, 1993a; Kan, 2003),
und der Aktivitat, bei der der Fehler gemacht wurde (Drappa, 1998; Ludewig und
Lichter, 2007; Kan, 2003). Beispielsweise kostet ein Fehler, der beim Spezifizieren
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gemacht wurde, das zehnfache, wenn er im Systemtest anstatt im Spezifikationsre-
view entdeckt wird. Auf diesem Zusammenhang basieren die Modelle, die sich mit
Kosten und Nutzen von Priifungen auseinandersetzen (El Emam, 2005; Wagner, 2007;
Miiller, 2007; Martin und Raffo, 2000 und 2001; Huang und Boehm, 2006). Wie stark
der Korrekturaufwand ansteigt, hangt vom Umfang der Software ab; in kleinen Pro-
jekten steigt der Aufwand weniger stark als in grofien Projekten (Boehm, 1981 und
1976). Zusétzlich spielt die Fehlerschwere eine Rolle: Je schwerer der Fehler, desto
aufwandiger die Korrektur (Zage und Zage, 2003; Kan, 2003).

Falsche Befunde. Wenn eine Priifung eine Abweichung zeigt, bei der sich etwa bei
der Fehleranalyse herausstellt, dass es sich nicht um einen Fehler handelt, wird dieses
Priifresultat als falscher Befund bezeichnet. Falsche Befunde konnen in jeder Priifung
entstehen. In Reviews werden diese Befunde in der Regel in der Sitzung identifiziert
(Sabaliauskaite et al., 2002; Votta, 1993). In Tests konnen falsche Befunde durch Fehl-
bedienung entstehen. In der Codeanalyse werden sehr viele falsche Befunde ange-
zeigt (Zheng et al., 2006). Sabaliauskaite et al. (2002) beschreiben den Lebenslauf eines
falschen Befunds. Ein falscher Befund wird wahrend der Fehleranalyse als falscher
Befund klassifiziert. Diese Analyse gehort zur Korrektur (Pressman, 2005, Kap. 13;
Sommerville, 2007, Kap. 22); es féllt Analyseaufwand an. Behebungsaufwand oder
Aufwand fiir die Wiederholung der Priifung fallt fiir einen falschen Befund nicht an.

Priifwiederholung nach der Korrektur. Nach der Korrektur kann die Priifung wie-
derholt werden. Der Umfang der Wiederholung ist unterschiedlich und spielt sich
zwischen vollstandiger und gezielter Wiederholung ab (Thaller, 2002; Sneed et al.,
2004; Miiller et al., 1998). Bei einer vollstindigen Wiederholung wird die Priifung
erneut fiir den gesamten Priifling durchgefiihrt. Bei einer gezielten Wiederholung
wird gezielt tiberpriift, ob der Fehler korrigiert wurde. Es werden also diejenigen
Testfille weggelassen, von denen vermutet wird, dass sie durch die Anderung nicht
betroffen sind.

Ob eine Wiederholung durchgefiihrt wird, ob die Priifung vollstindig oder gezielt
wiederholt wird, kann in der Wartung und in der Entwicklung unterschiedlich sein.
Bei der Entwicklung kann in Projekten diejenige Priifung wiederholt werden, bei der
der Fehler entdeckt wurde. In anderen Projekten wird die Korrektur durch eine Reihe
von Priifungen tberpriift (Héormann et al., 2006), einem Korrekturpriifprozess. Ein
solcher Korrekturpriifprozess kann auch in der Wartung nach der Korrektur durch-
gefiihrt werden (ISO/IEC 14764, 1999; Pigoski, 1997). Dabei kann der Korrekturpriif-
prozess von der Fehlerschwere abhdangen, weil beispielsweise besonders
schwerwiegende Fehler und weniger schwerwiegende Fehler unterschiedlich behan-
delt werden und ihre Korrektur unterschiedlichen Priifungen unterzogen wird
(Sneed et al., 2004). In allen Fillen kann die Anderung in einem Review begutachtet
werden (Hormann et al., 2006; ISO/IEC 14764, 1999; Pigoski, 1997). Die Kosten fiir die
Wiederholung eines Tests hangen vom Umfang der Wiederholung und vom Grad der
Automatisierung des Tests ab (van Megen und Meyerhoff, 1995).
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Priifung. Blockierende Fehler sind Fehler, die den Test unterbrechen. Sie verursachen
durch die Unterbrechung Kosten im Test (Kan, 2003; Bassin et al., 2002). Soll der Test
nach der Korrektur weiter durchgefithrt werden, dann muss erst der Zustand der
Testumgebung, in der der Priifling ausgefiihrt wird (IEEE 610, 1990), wiederherge-
stellt werden. Bassin et al. (2002) beschreiben: “Blocked” status was used when the test
case attempt did not succeed because access to the targeted area was blocked by code that was
not functioning correctly. Kan (2003) nennt diese Fehler “Showstopper”. Sie gehdren zu
den kritischen Fehlern.

5.3.2 Fehlerfolgekosten und Zuverlissigkeit

Fehler zeigen sich beim Einsatz des Produkts als Fehlverhalten: ein Fehler tritt auf.
Ein Fehler tritt abhdngig von der Art und Intensitat der Verwendung der Software
durch die Benutzer mehr oder weniger héaufig auf (Fenton und Pfleeger, 1997). Bei-
spielsweise kann die Software sehr haufig und auf eine bestimmte Art verwendet
werden, dabei werden manche Funktionen mehr, andere Funktionen weniger stark
genutzt. Darum kann ein Fehler gar nicht, einmal oder mehrmals auftreten.

Die Zuverlassigkeit wird quantitativ durch Zuverlassigkeitsmetriken, Zuverlassig-
keitsmodelle zur Prognose und Zuverlassigkeitstests dargestellt. Zuverlassigkeits-
metriken, beispielsweise MTBF (mittlere Betriebsdauer zwischen Ausfillen, mean
time between failures) basieren auf der Haufigkeit des Fehlverhaltens, typisch bezo-
gen auf die Einsatzdauer (IEEE 982.1, 2005). Zuverlassigkeitsmodelle prognostizieren
diese Zuverlassigkeit (Lyu, 1995). Sie basieren auf Messungen der Zuverlassigkeit im
Test oder auf der Fehlerdichte. Die Auswahl der Zuverlassigkeitsmodelle ist schwie-
rig, weil unklar ist, welches Modell in welcher Situation ausreichend genau ist; der
Test muss dem FEinsatz d@hneln (Pul, 1993). Die Modelle miissen mit vorhandenen
Daten quantifiziert werden (Kan, 2003), dabei ist unklar, ob Archivdaten eingesetzt
werden konnen. Zuverldssigkeitstests bestimmen die Zuverldssigkeit, erlauben also
auch eine Prognose (Poore und Trammell, 1996). Dafiir wird ein Benutzungsprofil
benoétigt, das beschreibt, wie das Produkt verwendet wird. In diesen Zuverlassigkeits-
metriken, -modellen und -tests werden alle Fehler und ihr Auftreten als gleich
schwerwiegend bewertet.

Der Schaden, den ein Fehler beim Einsatz der Software verursachen kann, kann
unterschiedliche Wirkungen haben und unterschiedlich hoch sein. Fiir eine subjektive
Einschatzung der Schadenshohe nennt der IEEE-Standard 1044 (1993) unterschiedli-
che Kategorien, um zu beschreiben, wie sich der Fehler auswirkt: Severity, Priority,
Customer value, Mission safety, Societal. Diese Aspekte beziehen sich nicht auf den
Hersteller, sondern auf Klienten des Projekts. Fiir alle diese Kategorien gibt es Klassen
tiir die Bewertung, die von keinem Schaden bis zu hohem Schaden reichen; fiir sicher-
heitskritische Software reicht die Spanne von leichten Verletzungen bis zu mehreren
Todesfallen (Smith und Simpson, 2005). Boehm (2000) und Huang und Boehm (2006)
verwenden fiinf Klassen, um die verlangte Zuverldssigkeit zu beschreiben. Diese
Klassen sind definiert durch den Schaden, der verursacht werden kann. Sie reichen
von Komfortproblemen bis zu Personenschaden. El Emam (2005) berechnet die Folge-
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kosten aus der Zahl der Fehler, die ein Kunde entdeckt, und den organisatorischen
Kosten fiir den Kunden. Wagner (2007) berechnet Fehlerfolgekosten getrennt nach
Fehlerschwere aus der Fehlerzahl und einem durchschnittlichen Schaden pro Fehler.
Nicht berticksichtigt wird aber, wie haufig die Benutzer das Produkt nutzen (die Ver-
wendungshaufigkeit) und wie intensiv und auf welche Art ein Benutzer das Produkt
nutzt (die Verwendungsintensitat).

Ludewig und Lichter (2007) diskutieren den Zuverlassigkeitsbegriff ausgehend von
der Unzuverldssigkeit. Sie definieren eine Unzuverlassigkeitsmetrik als die Zahl der
Fehler, gewichtet mit der Haufigkeit ihres Auftretens und den Folgekosten, bezogen
auf die Betriebsdauer. Ein Fehler wird also mit dem Schaden, den er im Einsatz
anrichtet, bewertet. Der Schaden hangt von der Haufigkeit des Auftretens und den
Kosten jedes einzelnen Auftretens ab.

5.3.3 Organisationsaufwand

Zusétzlich zu den Kosten der Aktivitaten, die zur Fehlerbehebung durchgefiihrt wer-
den, und den Fehlerfolgekosten, die fiir den Benutzer anfallen, fallen Kosten fiir wei-
tere Aktivitaten an: Bei der Software-Bearbeitung werden unterstiitzende Aktivitaten
durchgefiihrt, da Priifung und Korrektur geplant und organisiert werden miissen
(Quality Management in PMI, 2000). Fehlerkorrekturen und die Priifungen der Kor-
rektur konnen dokumentiert werden (IEEE 1044, 1992), etwa um die Fehleranalyse zu
unterstiitzen oder zur Kontrolle der Fehlerbehebung. Kosten fiir die Verwaltung der
Software konnen anfallen (IEEE 828, 2005), im Wesentlichen zur Definition, Verfol-
gung, Speicherung und Riickverfolgung betroffener Software-Einheiten.

5.3.4 Aufwand, Dauer und Personalbedarf

Zur Planung von Software-Projekten und zur Kostenschatzung gehort die Schatzung
von Aufwand, Dauer, Personalbedarf und Kosten als Geldwerte (CMMI Product
Team, 2002; Sommerville, 2007; Kerzner, 2006). Dabei werden die Kosten als Geld-
werte aus dem Aufwand, der Dauer und dem Personalbedarf einzelner Aktivitaten
abgeleitet (Kerzner, 2006).

Kostenschatzverfahren wie COCOMO II prognostizieren darum den Aufwand, die
Dauer und den typischen, idealen Personalbedarf. Dabei geht COCOMO II von einer
typischen, idealen Stellenbesetzung und Organisation der Arbeit aus, um Aufwand,
Dauer und Personalbedarf zu berechnen. Im Gegensatz dazu wird dies im QS-Modell
nicht vorgegeben, da die erfolgreiche Planung zu den Lernzielen des QS-Modells
gehort. Den Aufwand zu schitzen und den Personalbedarf zu bestimmen ist in
SESAM-Schulungen die Aufgabe des Spielers. Er soll beispielsweise selbst festlegen,
wie viele Mitarbeiter fiir welche Téatigkeit eingesetzt werden (Drappa, 1998).

Weil mit einem Kosten-Nutzen-Modell wie CoBe die Planung unterstiitzt werden
soll, ist aber sinnvoll, diese Groflen zu prognostizieren und darum die Zusammen-
hange zwischen Aufwand, Dauer und Personalbedarf fiir typische Situationen zu
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modellieren. Die Zusammenhange zwischen den drei Planungsmetriken Aufwand,
Dauer und Personalbedarf fasse ich wie folgt zusammen:

Der Aufwand wird durch Merkmale des Projekts, des Prozesses, der Plattform und
des Personals, vor allem aber durch den Umfang bestimmt. Der Umfang bestimmt
den Aufwand tiberproportional. Die Dauer und damit der Personalbedarf hangen mit
dem Aufwand zusammen (Boehm, 2000); es gibt also ein typisches, projektspezifi-
sches Verhaltnis zwischen Aufwand, Dauer und Personal.

Der Zusammenhang zwischen Umfang und Aufwand muss an die Umgebung ange-
passt werden konnen (Boehm, 2000, Kap. 5), um eine hohe Genauigkeit zu erzielen;
Kostenschatzverfahren miissen fiir eine Umgebung kalibriert werden (Kemerer,
1987). Das Verhaltnis zwischen Dauer, Aufwand und Personalbedarf kann sich in
kleinen Projekten oder in Projekten, die einem anderen Prozess folgen, von den
COCOMO-Werten erheblich unterscheiden. Es ist also notwendig, diese Zusammen-
héange zu kalibrieren.

Der Aufwand verteilt sich, einen dhnlichen Prozess vorausgesetzt, in bestimmten Ver-
haltnissen auf die einzelnen Phasen und Aktivititen. Die Dauer verteilt sich, einen
dhnlichen Prozess vorausgesetzt, in bestimmten Verhaltnissen auf die einzelnen Pha-
sen und Aktivitaten. Damit wirken sich die Kalibrierung, die Merkmale des Projekts,
des Prozesses, der Plattform und des Personals und des Umfangs auf den Gesamtauf-
wand und auf den Aufwand einzelner Aktivitdten in gleichem Mafle aus. Sie wirken
sich auf die Gesamtdauer und die Dauer einzelner Aktivitdten in gleichem Mafle aus.

Diese Zusammenhange konnen angelehnt an El Emam (2005) direkt tibernommen
werden, weil COCOMO II ein funktionales Modell ist (Abschnitt 3.7). Damit sind die
Metriken aus COCOMO Il vorgegeben. Die Grundlage bildet also der Software-
Umfang, gemessen in Anweisungen. Alternativ konnen Unadjusted Function Points
(IFPUG, 2004) auf Lines of Code abgebildet werden. Zusatzlich werden die 22
COCOMO-II-Merkmale verwendet, um die konkrete Situation des Projekts zu
beschreiben.

5.3.5 Geldwerte

Kosten und Nutzen werden fiir den Vergleich durch Geldwerte dargestellt (Hanusch,
1987; Miithlenkamp, 1994). Wie in El Emam (2005) und Huang und Boehm (2006) miis-
sen die Auswirkungen von Priifungen also auf Geldwerte abgebildet werden. Der
Aufwand im Projekt bestimmt durch die Personalkosten die Kosten des Projekts
(Drappa, 1998; El Emam, 2005). Verzogerungen des Projekts konnen Kosten z.B.
durch Vertragsstrafen oder entgangene Einnahmen nach sich ziehen (Huang und
Boehm, 2006). Huang und Boehm (2006) verwenden Funktionen, um von Aufwand
und Dauer auf Geldwerte umzurechnen. Langfristige Kosten oder langfristiger Nut-
zen wird abgezinst (Hanusch, 1987), diese Abzinsung ist aber umstritten (Miihlen-
kamp, 1994; Nas, 1996), wenn andere Gruppen von den abgezinsten Werten betroffen
sind.
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54 Analyse von Reviews

Der Begriff Review wird fiir die Begutachtung eines Priiflings verwendet (Schwinn,
2003). Als Priifling kommen alle Dokumente und der Quellcode in Frage. Freedman
und Weinberg (1982) und Frithauf et al. (2006) grenzen das technische Review von
anderen Varianten ab, da der Begriff in unterschiedlichen Bedeutungen verwendet
wird:

¢ Im technischen Review bereiten sich die Gutachter vor, ihre Befunde werden in der
Sitzung gewichtet und dokumentiert. Dazu zahlt auch die Inspektion mit Ein-
tithrungssitzung und Vorleser (Fagan, 1976).

e Im Walkthrough stellt der Autor sein Dokument vor, die Gutachter kénnen, miis-
sen aber nicht vorbereitet sein. Sie stellen keine Fehler fest, sondern stellen Fragen.

* Bei der Stellungnahme begutachtet ein Kollege das Dokument. Es handelt sich
dabei nicht um ein formales Review.

Technische Reviews sind am teuersten, weil sie formal ablaufen und eine intensive
Begutachtung enthalten. Fiir diese Reviews sind umfangreiche Erfahrungen vorhan-
den:

Ablauf. Ein technisches Review (Freedman und Weinberg, 1982; Friihauf et al., 2006)
wird vom Moderator, dem Autor, einem Notar und mehreren Gutachtern durchge-
tithrt. Der Moderator ist fiir die Organisation des Reviews und den Ablauf der Sit-
zung verantwortlich. Der Autor steht in der Sitzung fiir Fragen zur Verfiigung. Der
Notar, auch als Protokollfithrer oder Sekretar bezeichnet, notiert die Befunde, die die
Gutachter in der Sitzung nennen. Ein Review besteht aus der Planung, der Vorberei-
tung, der Sitzung mit Empfehlung iiber das weitere Vorgehen, der optionalen Nach-
arbeit (oder Korrektur) und der optionalen Nachpriifung mit Freigabeentscheidung
(Frithauf et al., 2006; Freedman und Weinberg, 1982). In den Reviewmodellen von
SESAM (Drappa, 1998; Hampp, 2001) wird modelliert, dass der Priifling auf mehrere
Sitzungen verteilt wird, auf die sich die Gutachter vorbereiten.

Fehlerentdeckung durch Gutachter. Die Gutachter bereiten sich getrennt voneinan-
der vor. Jeder Gutachter entdeckt einen Teil der Fehler; manche Fehler werden von
mehreren Gutachtern entdeckt. Diese Duplikate werden in der Sitzung identifiziert.
Biffl (2001) modellieren dies durch die Wahrscheinlichkeit, mit der ein Fehler von
einem Gutachter entdeckt wird; Hampp (2001) modelliert die Fehlerentdeckung als
sich tiberlappende Fehlermengen, die von den Gutachtern entdeckt werden. In der
Sitzung werden wenige weitere Fehler entdeckt (Laitenberger et al., 1999; Sauer et al.,
2000).

Vorbereitungsintensitit. Eine griindliche Vorbereitung ist fiir eine hohe Fehlerent-
deckungsquote notwendig (Freedman und Weinberg, 1982; Weller, 1993; Fagan,
1986). Die Griindlichkeit der Vorbereitung wird im Folgenden als Vorbereitungsin-
tensitat bezeichnet. Sie hangt eng mit der Vorbereitungsrate, gemessen als Verhaltnis
von Umfang und Dauer, zusammen (Fagan, 1986), da die Gutachter ausreichend Zeit
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benotigen. Laitenberger et al. (1999) zeigen den Zusammenhang zwischen Vorberei-
tungsintensitat und Aufwand mit 340 Spezifikations-, Entwurfs- und Codereviews:
Eine zu kurze Vorbereitung mindert die Fehlerentdeckungsquote, eine zu lange Vor-
bereitung erhoht hauptsachlich die Dauer; es gibt eine optimale, addquate Vorberei-
tungsdauer (Biffl, 2001; Laitenberger et al., 1999; Raz und Yaung, 1997). Jalote (2000),
Grady (1992) und Cusumano (1992) nennen Richtlinien fiir die Vorbereitungrate und
den Durchsatz in der Sitzung, gemessen als Verhaltnis zwischen Umfang und Dauer.
Damit sich die Gutachter intensiv vorbereiten, benotigen sie Managementunterstiit-
zung, Schulungen und ausreichend Zeit; der Moderator spielt eine wichtige Rolle
(Fagan, 1986).

Gutachterzahl. Freedman und Weinberg (1982) fordern mindestens zwei Gutachter,
damit die Objektivitat gewahrleistet ist, und so viele Gutachter, dass alle wichtigen
Merkmale gepriift werden konnen. Fagan (1976) schlagt Entwerfer, Programmierer
und Tester als Gutachter vor. Porter und Votta (1997) zeigen Vorteile von zwei Gut-
achtern gegentiiber einem, aber keine Verbesserung durch vier Gutachter. Bush (1990)
nennt drei Gutachter als ausreichend fiir Code-Inspektionen. Weller (1993) berichtet,
dass Inspektionen mit vier Gutachtern den Inspektionen mit drei Gutachtern iiberle-
gen sind. Sauer et al. (2000) und Laitenberger et al. (1999) sprechen von einem Satti-
gungseffekt. In Drappa (1998) sind Reviews mit zwei oder drei Gutachtern moglich,
mit drei Gutachtern werden etwas mehr Fehler entdeckt.

Gutachterkompetenz. Freedman und Weinberg (1982) fordern technische Kompe-
tenz. Basili und Selby (1987) zeigen, dass Praktiker den Akademikern in der Fehler-
entdeckungsquote und bei der benétigten Dauer iiberlegen sind. Die Erfahrung spielt
aber eine geringe Rolle (Basili und Selby, 1987; Maldenado et al., 2006; Biffl und Hal-
ling, 2002). Biffl und Halling (2002) zeigen, dass kompetente Gutachter durch Probe-
reviews identifiziert werden konnen. Minimale Kenntnisse tiiber Software-
Entwicklung und iiber die Notation des Dokuments sind notwendig. Welche Eigen-
schaften zu einer hohen Kompetenz gehoren, kann aber nicht gezeigt werden. Die
vereinte Kompetenz der Gutachter pragt die Fehlerentdeckung (Weller, 1993; Sauer et
al., 2000).

Kosten und Umfang. Die Dauer der Sitzung ist durch den Umfang des Priiflings
bestimmt, sollte aber auf zwei Stunden beschrankt sein, weil sonst die Konzentration
der Gutachter sinkt. Darum wird ein zu umfangreicher Priifling auf mehrere Sitzun-
gen aufgeteilt (Freedman und Weinberg, 1982; Fagan, 1976; Friihauf et al., 2006). Die
Dauer der Vorbereitung ist durch den Umfang des Priiflings und die Intensitdt der
Vorbereitung bestimmt (Fagan, 1986; Biffl, 2001). Ein zu grofs gewdhlter Priifling
héangt mit niedriger Fehlerentdeckung zusammen (Raz und Yaung, 1997). Porter und
Votta (1997) nennen organisatorische Griinde (Freedman und Weinberg, 1982) und
eine hohe Zahl von Gutachtern fiir eine lange Dauer zwischen Reviewbeginn und Sit-
zung von bis zu vier Wochen.

Priiflingsiiberdeckung. Fehler konnen nur in dem gepriiften Teil eines Dokuments
entdeckt werden. Reviews sollen sich auf die kritischen Entwicklungsresultate kon-
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zentrieren (Frithauf et al., 2006), insbesondere in Situationen, in denen umfangreiche
Dokumentation nicht vollstindig begutachtet werden kann (Schwinn, 2003). Es
erfolgt also eine Priorisierung der Dokumententeile; diejenigen, die als kritische ange-
sehen werden, werden begutachtet, andere, weniger kritische Teile werden nicht
begutachtet.

Hilfsmittel. Checklisten oder Szenarien konnen bei der Begutachtung helfen. Es gibt
keine eindeutigen Untersuchungsergebnisse: Regnell et al. (2000) stellen fest, dass
eine systematische Begutachtung mit diesen Hilfsmitteln den Reviews ohne Hilfsmit-
tel tiberlegen ist. Maldenado et al. (2006) konnen keinen Unterschied zwischen Szena-
rien und Checklisten feststellen. Porter et al. (1995) zeigen aber, dass die Verwendung
von Szenarien der Verwendung von Checklisten oder einem Vorgehen ohne Hilfsmit-
tel tiberlegen ist. Einzelne Gutachter sind mit Checklisten umfassender vorbereitet als
mit Szenarien, in der Sitzung gleicht sich dies wieder aus (Biffl und Halling, 2002;
Biffl, 2001). Checklisten sind etwas glinstiger als Szenarien (Biffl, 2001). Regnell et al.
(2000) und Maldenado et al. (2006) konnen nicht zeigen, dass unterschiedliche Szena-
rien unterschiedliche Fehler entdecken.

Reviews von Anderungen. Korrekturen kénnen im Rahmen eines Anderungs-
prozesses (Hormann et al., 2006) und des Wartungsprozesses (ISO/IEC 14764, 1999;
Pigoski, 1997) durch Reviews begutachtet werden. Beispielsweise soll gepriift wer-
den, ob die Anderung korrekt ist und ob sie den Richtlinien entspricht. Dabei wird ein
Ausschnitt des Codes betrachtet, ndmlich die Anderung und der unmittelbar damit
zusammenhangende Code.

5.5 Analyse von Tests

Testen ist das Ausfiihren eines Programms mit dem Ziel, Fehler zu entdecken (IEEE
610, 1990; Friithauf et al., 2006). Fiir den Test werden Testfalle definiert:

Def. test case. (1) A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program
path or to verify compliance with a specific requirement.

(2) (EEE Std 829-1983 [5]) Documentation specifying inputs, predicted results,
and a set of execution conditions for a test item. (IEEE 610, 1990)

Jeder Testfall legt den Anfangszustand, Testeingaben, Bedienungen, Sollresultate und
den Endzustand fest. Durch den Vergleich zwischen Sollresultat und Istresultat soll
Fehlverhalten erkannt werden.

Der Test erfolgt auf unterschiedlichen Integrationsebenen. In IEEE 610 (1990) werden
Unit-, Modul-, Integrations-,Schnittstellen- und Systemtests unterschieden, der Priif-
ling kann eine einzelne syntaktische Einheit, eine Komponente oder das System sein.
Ellims et al. (2006) definieren die Integrationsebenen konkret in ihrer Umgebung.
Drappa (1998) unterscheidet im QS-Modell zwischen Modultest, Integrationstest und
Systemtest. Auf allen Ebenen werden die gleichen Testtechniken eingesetzt (Lauter-
bach und Randall, 1989; Ellims et al., 2006; Liggesmeyer, 2002). Einzelne Komponen-
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ten, die auch als Subsysteme bezeichnet werden, oder das gesamte Produkt konnen
integriert und anschlieSend getestet werden (Chrissis et al., 2003; Jones, 2007). Der
Systemtest kann unterschiedliche Schwerpunkte setzen, etwa auf Funktionen, Men-
gengeriist oder Last- und Stressverhalten (Pressman, 2005, Kap. 13; Liggesmeyer,
2002, S. 359).

In einem systematischen Test werden folgende Aktivitaten durchgefiihrt (Sneed et al.,
2007; Spillner et al., 2006; Pressman, 2005, Kap. 13; Friihauf et al., 2006; IEEE 829, 1998;
Sommerville, 2007, Kap. 22; ISO/IEC 12207, 1997; Automotive SIG, 2005; Jalote, 2000;
van Megen und Meyerhoff, 1995; Chernak, 2001):

¢ Testplanung,

* Vorbereitung der logischen und konkreten Testfdlle und Anordnung der Testfdlle
in Testsequenzen, die die Reihenfolge bestimmen, in der die Testfélle abgearbeitet
werden (IEEE 829, 1998),

* Aufbau des Testgeschirrs, d.h. der Testumgebung mit Testtreibern, Testdaten und
Platzhaltern (stubs), in der die Software im Test lauft (Frithauf et al., 2006; Sommer-
ville, 2007, Kap. 23; Chernak, 2001),

¢ Testdurchfithrung und -protokollierung der Testfalle mit und ohne Abweichung
zwischen Soll- und Istresultat,

* Testauswertung fiir Entscheidungen tiber das Testende und das weitere Vorgehen
(Sneed et al., 2007; Spillner et al., 2006),

* Optionale Korrektur als eigenstandige Aktivitat, die auch die Ursachenanalyse fiir
eine Abweichung, die Fehleranalyse, enthdlt (Pressman, 2005, Kap. 13; Sommer-
ville, 2007, Kap. 22),

* Optionale Testwiederholung nach der Korrektur (Liggesmeyer, 2002; van Megen
und Meyerhoff, 1995; Ebert et al., 2005; Automotive SIG, 2005), zwischen den
Extremfallen der vollstandigen Testwiederholung und der gezielten Wiederholung
derjenigen Testfdlle, die eine Abweichung zwischen Soll- und Istresultat zeigten
(Thaller, 2002; Sneed et al., 2004; Miiller et al., 1998),

* Abschluss und Archivierung (Spillner et al., 2006; Frithauf et al., 2006).

Diese Aktivitaten werden fiir Testprozesse vorgegeben (Jalote, 2000; Kan, 2003) und
in der Praxis mehr oder weniger umfangreich, detailliert und systematisch durchge-
fiihrt und dokumentiert (Siegwart, 2004; Miiller et al., 1998).

Testfalldefinition. In der Testvorbereitung werden Testfélle definiert, d.h. Eingaben
ausgewahlt und um Sollresultate erganzt. Die Testfallauswahl (oder Definition)
bestimmt die Fehlerentdeckung und dadurch den Testerfolg (Endres und Rombach,
2003, S. 126; Frithauf et al., 2006). In der Praxis wird fiir jeden Test im Mittel eine typi-
sche Zahl von Testfdllen definiert (Jones, 2007). Jeder Testfall priift einen Punkt im
praktisch unendlich grofien Eingaberaum der Software (Endres und Rombach, 2003;
Dahl et al., 1972). Da der Eingaberaum so grofs ist, ist ein vollstandiger Test praktisch
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nicht moglich. Anstatt also den Eingaberaum vollstandig zu testen, wird der Eingabe-
raum in Bereiche geteilt und jeder Bereich durch einen Testfall gepriift. Der Testfall
soll zu allen anderen Testfdllen des Bereichs dquivalent beziiglich der Fehlerent-
deckung sein (Goodenough und Gerhart, 1977; Weyuker und Ostrand, 1980). Der
Bereich wird als Aquivalenzklasse bezeichnet. Ein Fehler definiert eine starke Aqui-
valenzklasse (Ludewig und Lichter, 2007; Weyuker und Ostrand, 1980) durch die Ein-
gaben, die den Fehler wirksam werden lassen. Weil der Fehler erst durch den Test
entdeckt wird, werden mit Testtechniken vermutete Aquivalenzklassen abgeleitet.
Diese vermuteten Aquivalenzklassen bezeichnen Ludewig und Lichter (2007) als
schwache Aquivalenzklassen.

Testfalldefinition im Black-Box-Test. Testfdlle werden aus der Vorgabe fiir den
Priifling abgeleitet, d.h. im Systemtest aus der Spezifikation, im Integrationstest aus
dem (Grob-)Entwurf, im Modultest aus dem (Fein-)Entwurf. Dazu werden unter-
schiedliche Elemente verwendet, um den Eingabebereich aufzuteilen, etwa einzelne
Funktionen, Entscheidungen, Zustinde, Eingabe- und Ausgabebereiche (Ligges-
meyer, 2002). Es werden also verschiedene Testtechniken verwendet, um Aquivalenz-
klassen abzuleiten. Der Test der Grenzen dieser Eingabebereiche kann als eigene
Testtechnik (Pressmann, 2005) oder als Teil der anderen Testtechniken (Liggesmeyer,
2002) aufgefasst werden. In der Praxis sind diese Black-Box-Testtechniken weit ver-
breitet:

* Eine wichtige Testtechnik, die als minimale Forderung fiir den Test verwendet
wird, ist die Funktionsabdeckung (Frithauf et al., 2006). Sie wird als erstes intuitiv
angestrebt (Cornelissen et al., 1995). Diese Testtechnik ist in der Praxis am Weites-
ten verbreitet (Miiller et al., 1998).

* Grenzwerte werden haufig gepriift (Miiller et al., 1998).

o Der Test wird ergénzt um weitere Aquivalenzklassen (Spillner und Linz, 2003; Lig-
gesmeyer, 2002; Miiller et al., 1998), Zufallstest und Ursache-Wirkungsanalysen
(Mtller et al., 1998).

Testfalldefinition im Glass-Box-Test. Fiir den Glass-Box-Test wird gemessen, wie
viel Quellcode durch bereits ausgefiihrte Testféalle tiberdeckt wird. Dann werden neue
Testfélle aus der Spezifikation und der bislang erreichten Uberdeckung abgeleitet
und ausgefiihrt, so lange, bis ein Uberdeckungskriterium erreicht ist (Liggesmeyer,
2002). Unterschieden werden die Techniken anhand der Definition der Uberdeckung.
Dabei werden kontrollflussorientierte von datenflussorientierten Techniken unter-
schieden. Die kontrollflussorientierten Techniken der Anweisungs-, Zweig-, Term-
und Schleifeniiberdeckung sind praxisrelevant (Liggesmeyer, 2002):

* Bei der Anweisungsiiberdeckung wird gemessen, wie viele Anweisungen ausge-
fithrt wurden.

* Bei der Zweigiiberdeckung wird gemessen, wie viele Zweige im Kontrollfluss
durchlaufen wurden.
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* Bei der Bedingungsiiberdeckung werden die einzelnen Terme einer Bedingung
betrachtet. Liggesmeyer (2002) nennt mehrere Varianten. Insbesondere die Term-
tiberdeckung (MC/DC) ist relevant, weil sie fiir Software in der Luftfahrt gefordert
wird (RTCA, 1992). Sie priift, ob jeder einzelne Term in einem logischen Ausdruck
durch den Test das Resultat bestimmt.

* Bei der Schleifeniiberdeckung wird gemessen, ob eine Schleife nicht, einmal und
mehrmals durchlaufen wird. Auch dafiir gibt es Varianten, etwa wie mit geschach-
telten Schleifen umgegangen wird (Liggesmeyer, 2002).

Die kontrollflussorientierten Testtechniken sind nicht unabhéngig voneinander:

e Die Zweigiliberdeckung impliziert Anweisungsiiberdeckung, aufSer bei totem
Code.

* Die Termiiberdeckung impliziert die Zweigiliberdeckung (Liggesmeyer, 2002; Lud-
ewig und Lichter, 2007).

* Die Schleifeniiberdeckung liegt dagegen quer zu den anderen Testtechniken:
Durch Schleifeniiberdeckung wird ein Teil der Zweige tiberdeckt, namlich die
Zweige, die durch Schleifen entstehen. Mit Zweigiiberdeckung wird nur teilweise
Schleifentiberdeckung erreicht, weil fiir die Zweigiiberdeckung zwar eine Schleife
mindestens einmal durchlaufen werden muss, dann fehlt aber entweder der mehr-
malige Durchlauf oder der einmalige Durchlauf.

Datenflussorientierte Techniken werden nicht durch Werkzeuge unterstiitzt, diversi-
tizierende Tests spielen nur bei redundant ausgelegter Software eine Rolle. Der kon-
trollflussorientierte Glass-Box-Test wird durch Standards gefordert (RTCA, 1992;
Smith und Simpson, 2005). Miiller et al. (1998) zeigen, dass selbst die Anweisungs-
iiberdeckung nur selten eingesetzt werden.

Zusammenhang Black-Box- und Glass-Box-Test. Der Glass-Box-Test wird ergan-
zend zum Black-Box-Test durchgefiihrt, erfolgt also, nachdem der Black-Box-Test
durchgefiihrt wurde (Lauterbach und Randall, 1989, zitiert in Grady, 1992; RTCA,
1992). Eine Kombination der Black-Box- und Glass-Box-Techniken wird bendétigt
(Juristo et al., 2002 und 2004), um mdoglichst viele, auch kritische Fehler zu entdecken
(Dupuy und Leveson, 2000). Weyuker und Ostrand (1980) begriinden dies mit der
Theorie, dass die maximale Zahl an Aquivalenzklassen durch die Zahl der moglichen
Pfade durch das Programm definiert ist. Ein systematischer Black-Box-Test erzielt
etwa 50% Anweisungsiiberdeckung. Fiir reale Produkte sind 80% Anweisungsiiber-
deckung ein realistisches Testkriterium (Grady, 1992; Piwowarski et al., 1993). Die
Uberdeckung zu steigern wird aufwandiger, je mehr Einheiten bereits iiberdeckt sind.
Kann Code nicht erreicht werden, dann ist eine vollstindige Uberdeckung nicht mdg-
lich. Malaiya et al. (1994) verwenden anstatt der Anweisungsiiberdeckung die Block-
iiberdeckung, d.h. wie viele Blocke des Programmcodes durchlaufen wurden. Sie
formulieren und priifen die Annahme, dass Block- und Zweigiiberdeckung in einem
bestimmten Bereich linear zusammenhéngen. In diesem Bereich werden alle Blocke
nahezu tiberdeckt, die Zweigiiberdeckung wachst mit der Blockiiberdeckung propor-
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tional, bleibt insgesamt aber niedriger. In der Untersuchung wurden dann keine wei-
teren Testfalle ausgefiihrt, so dass keine Aussage dariiber moglich ist, wie die
Zweigiiberdeckung wachst, wenn bei vollstandiger Blockiiberdeckung weitere Test-
talle durchgefiihrt werden.

Techniken als Heuristiken. Mit den Testtechniken fiir Black-Box- und Glass-Box-Test
werden keine konkreten Werte fiir die Testeingaben abgeleitet. Fiir diese konkreten
Werte ist der Tester auf seine Intuition angewiesen (Liggesmeyer, 2002). Selbst im
Glass-Box-Test, bei dem der Code sichtbar ist, ist es nicht moglich, konkrete Testein-
gaben auszurechnen: Um beispielsweise eine bestimmte Codezeile auszufiihren, kon-
nen ganz unterschiedliche Pfade durch das Programm durchlaufen und damit ganz
unterschiedliche Eingaben gewahlt werden (Beizer, 1990); Bedingungen geben einen
Bereich, aber keinen einzelnen Wert vor: “Kontrollflussorientierte Testtechniken definie-
ren, wie alle strukturorientierten Testtechniken, keine Regeln fiir die Erzeugung von Testfil-
len” (aus Liggesmeyer, 2002).

Fehlerentdeckung. Auf jeder Testebene werden systematisch Fehler einer bestimm-
ten Abstraktionsebene entdeckt (Drappa, 1998). Zusatzlich konnen Fehler der darun-
ter liegenden Abstraktionsebene entdeckt werden (Drappa, 1998; Jones, 1996). Da der
Systemtest gegen die Spezifikation priift, werden darum systematisch (Grob-)Ent-
wurfsfehler entdeckt. Der Systemtest lasst aber auch Codefehler wirksam werden.
Aufierdem werden Fehler unsystematisch in der Vorgabe, d.h. auf der nachsthéheren
Abstraktionsebene, entdeckt (Drappa, 1998; Jones, 1996). Somit werden Spezifikati-
onsfehler im Systemtest unsystematisch bei der Definition von Testféllen im Zuge der
Verwendung der Spezifikation, etwa um Sollresultate zu definieren, gefunden. Ahnli-
ches gilt fiir den Integrationstest, der den Grobentwurf als Vorgabe hat, und den
Modultest, der den Feinentwurf als Vorgabe hat (Drappa, 1998). Im Glass-Box-Test
werden tendenziell andere Fehlerarten als im Black-Box-Test entdeckt. Der Glass-
Box-Test entdeckt keine nicht-implementierten Anforderungen (Basili und Selby,
1987; Kamsties und Lott, 1995).

Empirische Untersuchungen dazu ergeben aber widerspriichliche Ergebnisse und
basieren auf wenigen Fallstudien (Basili und Selby, 1987; Kamsties und Lott, 1995;
Lauterbach und Randall, 1989). Die Entdeckung neuer Fehler nimmt mit der Zeit
(Kan, 2003; Cornelissen et al., 1995) und mit steigender Zweigiiberdeckung (Malaiya
et al., 1994) ab. Die Fehlerentdeckung unterliegt starken Schwankungen (Hutchins et
al, 1994; Wong et al., 1994), begriindet durch Querbeziehungen im Code (Chaar et al.,
1993), unterschiedliche Arten der entstandenen Fehler (Juristo et al., 2002 und 2004)
und die konkrete Definition der Testfalle, die nicht durch die Testtechniken abgeleitet
werden kann (Liggesmeyer, 2002).

Vorbereitungszeitpunkt. Der Black-Box-Test kann vorbereitet werden, bevor der
Priifling erstellt wird. Beim Systemtest kann die Vorbereitung also nach Spezifikation
und Architekturentwurf erfolgen (Jalote, 2000; van Megen und Meyerhoff, 1995).
Beim Test einzelner Einheiten wird dieses Vorgehen als testgetriebene Entwicklung
bezeichnet (Beck, 2003). Bei der Vorbereitung wird die Vorgabe verwendet, so dass
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dabei — unsystematisch — Fehler in der Vorgabe entdeckt werden (Drappa, 1998).
Beim Systemtest werden somit Fehler in der Spezifikation entdeckt. Erfolgt die Vor-
bereitung frith, dann konnen diese Fehler friih korrigiert werden. Diese friihe Korrek-
tur ist giinstiger als die Korrektur in der entsprechenden Testphase, weil noch nicht
auf den Spezifikationsfehler aufgebaut wurde (Abschnitt 5.3). Kann ein Spezifikati-
onsfehler erst in der Systemtestphase korrigiert werden (spate Vorbereitung und
spate Korrektur), dann wurde der Fehler aus der Spezifikation in die Folgedoku-
mente und in den Code iibertragen und ist darum aufwandiger zu korrigieren
(Abschnitt 5.3).

Testerkompetenz. Die Kompetenz, Intuition und Erfahrung des Testers oder der Tes-
ter spielt eine grofie Rolle (Spillner und Linz, 2003; Liggesmeyer, 2002; Basili und
Selby, 1987; Lauterbach und Randall, 1989; Miiller et al, 1998), weil die Testtechniken
auf Heuristiken beruhen.

Umfang und Aufwand. Der Produktumfang bestimmt den Testaufwand (Jones, 1996;
Boehm, 2000). Der Eingaberaum waéchst {iberproportional mit der Zahl der Eingabe-
parameter (Endres und Rombach, 2003; Dahl et al., 1972). Darum kann vermutet wer-
den, dass die Zahl der moglichen Testfalle ﬁberproportional mit dem Umfang wachst.
Erfahrungswerte aus der Praxis zeigen aber einen linearen Zusammenhang zwischen
Umfang und Testfallzahl (Jones, 2007, S. 506). Testfallzahl und Uberdeckung verhal-
ten sich nichtlinear (Liggesmeyer, 2002, S.86), weil ein Sattigungseffekt eintritt: Die
ersten Testfille steigern die Uberdeckung stirker, spatere Testfille steigern die Uber-
deckung weniger stark.

Folgerungen

Fiir die Modellierung der Tests folgere ich: Tests unterschiedlicher Integrationsebene
unterscheiden sich quantitativ, z. B. in der Fehlerentdeckung, aber nicht in den Test-
techniken und qualitativen Zusammenhangen. Testfille spielen die zentrale Rolle im
Test. Da der Eingaberaum von Programmen praktisch unendlich grof3 ist, konnen
praktisch nahezu unendlich viele Testfédlle definiert werden. Mit welcher Testtechnik
ein Testfall abgeleitet wurde, lasst sich am Testfall nicht erkennen. Die starken Aqui-
valenzklassen sind unbekannt, weil die Fehler nicht bekannt sind. Darum handelt es
sich bei den Testtechniken um Heuristiken. Somit kann die Zahl der Testfille, die mit
den Testtechniken abgeleitet werden, d.h. die Zahl der schwachen Aquivalenzklas-
sen, nicht berechnet, nur geschitzt werden. Daraus folgt auch: Ob ein Testfall einen
Fehler entdeckt, erscheint bei der ersten Ausfithrung des Testfalls als Zufall, weil die
starken Aquivalenzklassen nicht bekannt sind. So ist unklar, ob es sich um einen
bereits getesteten oder noch nicht getesteten Pfad handelt (also eine mogliche Aquiva-
lenzklasse), und selbst wenn es sich um einen neuen Pfad handelt, ist unklar, ob er
Teil einer bestimmten starken Aquivalenzklasse ist.
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5.6 Analyse automatischer statischer Codeanalyse

Mit der automatischen statischen Codeanalyse, im Folgenden kurz Codeanalyse
genannt, werden verdachtige Konstrukte im Code von einem Werkzeug identifiziert
und dokumentiert (Spinellis, 2006; Louridas, 2006). Es gibt eine Reihe von Werkzeu-
gen fiir unterschiedliche Programmiersprachen. Ein frithes, nach wie vor eingesetztes
Werkzeug fiir C-Code ist Lint (Johnson, 1978). Die Werkzeuge verwenden unter
anderem Syntax-, Kontrollfluss- und Datenflussanalysen. Damit sind sie fahig,
bestimmte Fehlerarten zu entdecken, konnen aber bestimmte Fehlerarten prinzipiell
nicht zeigen (Zheng et al., 2006). Die von den Werkzeugen entdeckten Fehler konnen
ohne diese Werkzeuge in Folgepriifungen entdeckt werden oder im Finsatz auftreten.
Welche Fehlerarten entdeckt werden konnen, hdangt von den verwendeten Analyse-
verfahren ab. Die meisten Werkzeuge zeigen auch falsche Befunde an, weil die Analy-
sen auf moglichen, nur vermuteten Fehlern beruhen (Zheng et al.,, 2006). Das
Werkzeug BEAM (Brand, 2000; Brand und Krohm, 2003; Brand et al., 2007) verfolgt
dagegen den Ansatz, nur tatsachliche Fehler anzuzeigen.

Damit die Priifung durchgefiihrt werden kann, muss das Werkzeug installiert und
eingerichtet werden. Dafiir fallt Vorbereitungsaufwand fiir den Entwickler an. Fiir
die Priifungsdurchfiihrung ist der Aufwand minimal, weil das Werkzeug nur gestar-
tet werden muss. Es kann auch in den Build-Prozess eingebunden werden (Spinellis,
2006). Die Analyse der Resultate kostet Aufwand, um falsche Befunde und Fehler zu
unterscheiden. Fiir Fehler fillt Korrekturaufwand an.
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Kapitel 6

Ein quantitatives Modell fiir Priifungen: CoBe

In diesem Kapitel wird das Modell CoBe beschrieben. Abschnitt 6.1 zeigt einen
Modelliiberblick. Das Modell besteht aus einem Basismodell und Priifungsmodellen.
In Abschnitt 6.2 wird die Architektur von CoBe mit einem Beispiel erlautert. Das
Basismodell und seine Zusammenhange werden in Abschnitt 6.3 dargestellt. Modelle
fiir Reviews werden in Abschnitt 6.4, fiir die Codeanalyse in Abschnitt 6.5 und fiir
Tests in Abschnitt 6.6 beschrieben. In Abschnitt 6.7 werden die Modellteile gemein-
sam dargestellt. Abschnitt 6.8 enthalt die Quantifizierung.

6.1 Uberblick iiber das Modell CoBe

Abbildung 15 zeigt CoBe im Uberblick. Die Eingaben des Modells gliedern sich in
Eingaben fiir den Priifprozess des Projekts, fiir Priifparameter einzelner Priifungen
und fiir Prozess- und Produktmerkmale, zu denen auch die Kalibrierung gehort.
CoBe stellt Nutzen durch entfallende Kosten dar und gibt Kosten und Nutzen der
Priifungen pro Aktivitat im Projekt aus. Die Kosten werden zusammengefasst, zuerst
alle Kosten im Projekt und alle Kosten nach Auslieferung, dann die Kosten insgesamt
iiber die gesamte Lebensdauer des Produkts. Nutzen wird auf gleiche Weise zusam-
mengefasst. Die Zusammenhange zwischen Eingaben und Ausgaben sind durch Glei-
chungen beschrieben, die durch interne Parameter quantifiziert sind.

Eingaben &odell- \ Ausgaben
Priifprozess il;;alzmen- Kosten pro Kosten
und 8 » Aktivitat > insgesamt
Priifparameter [ ™| Gleichungen
und interne

gigéisli_und Parameter Nutzen pro Nutzen

» Aktivitit > insgesamt
merkmale \_ -
Legende

@) Modellzusammenhénge [ ]Ein- oder Ausgaben —# Daten

Abb. 15: Uberblick iiber das Modell
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CoBe gliedert sich in ein Basismodell und einzelne Priifungsmodelle. Abbildung 16
skizziert diesen Aufbau. Das Basismodell enthilt die grundlegenden Zusammen-
hange der Qualitatskosten. Jede Priifungsart wird durch ein Modell dargestellt. Die
Abbildung zeigt beispielhaft Spezifikationsreview, Entwurfsreview und Systemtest.
Die einzelnen Priifungsmodelle sind iiber Parameter mit dem Basismodell verbun-
den. Die Struktur erlaubt, das Modell um Priifungen zu erweitern oder Modelle ein-
zelner Priifungen zu &dndern, z.B. um unterschiedliche Entscheidungen zu
unterstiitzen. Die Modellkomponenten konnen einzeln gepriift werden, weil Werte
direkt an den Schnittstellen sichtbar sind. Diese Struktur erlaubt auch, das Modell an
ein anderes Vorgehen im Projekt anzupassen, beispielsweise weil sich die Sequenz
der Priifungen dndert. Diese Anderung ist mdglich, ohne die Priifungsmodelle zu
andern.

Eingaben Prifprozess und Prifparameter

v

Spez.- Entwurfs-

review review
Eingaben Ausgaben
Prozess-und —p» —p» Kosten und Nutzen
Produktmerkmale pro Aktivitat

Basi dell
asismode Kosten und Nutzen

insgesamt

Basismodell Prifungsmodelle Metriken
4>

Abb. 16: Uberblick iiber den Modellaufbau

6.2 Die Architektur von CoBe

Das Basismodell und die Priifungsmodelle bestehen jeweils aus einzelnen Kompo-
nenten (Abschnitt 6.2.1). Ein Beispiel zeigt im Folgenden, wie die Modellresultate
durch die Komponenten berechnet werden (Abschnitt 6.2.2). Die Parameter zur Kali-
brierung sind in Abschnitt 6.2.3 beschrieben.

6.2.1 Die Modellkomponenten von CoBe

Abbildung 17 zeigt die Komponenten von CoBe. Die Eingaben sind oben in der
Abbildung, die Ausgaben im unteren Teil. Die Abbildung zeigt, durch welche Kom-
ponenten die Ausgaben berechnet werden. Die Komponenten des Basismodells sind
in der Abbildung hell dargestellt, die Priifungsmodelle dunkel. Die Priifungsmodelle
gliedern sich fiir jede Priifung in ein Modell der Fehlerentdeckung und ein Modell
der Priifkosten. Kosten fiir die Priifwiederholung werden getrennt davon berechnet.
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Die Eingaben werden hier skizziert, sie werden mit den Modellkomponenten detail-
liert beschrieben (Abschnitte 6.3 bis 6.6). Die Komponenten sind im Einzelnen:

Das Umfangsmodell gehort zum Basismodell. Es berechnet den Umfang verschie-
dener Artefakte der Software-Entwicklung aus Eingaben fiir den Umfang neuer
und wiederverwendeter Software.

Die Priifungsmodelle der Fehlerentdeckung berechnen die Fehlerentdeckungs-
quoten (Abschnitt 5.2) fiir unterschiedliche Fehlerarten und Fehlerschwere. Die
Eingaben beschreiben den Priifprozess, also ob eine Priifung stattfindet, ob und
wie die Priifung wiederholt wird und ob wiederverwendete Software gepriift
wird. Eingaben fiir Priifparameter sind z.B. die Zahl der Gutachter in Reviews oder
Testtechniken und ihre Vollstandigkeit.

Das Fehlerstrommodell beschreibt die Fehlerentstehung und Fehlerentdeckung. Es
stellt dar, welche Priifungen in welcher Reihenfolge stattfinden konnen, und
beschreibt dadurch, welche Priifsequenzen moglich sind. Fiir die Fehlerentstehung
werden Verteilungen auf Fehlerarten und Fehlerschwere und ein Kalibrierungs-
parameter fiir die Fehlerzahl eingegeben. Fiir die Fehlerentdeckung verwendet das
Fehlerstrommodell die Fehlerentdeckungsquoten der Priifungsmodelle. Das
Ergebnis sind Zahlen fiir entdeckte, korrigierte und entfallende Fehler fiir jede Prii-
fung.

Die Modelle fiir die Priifkosten berechnen fiir jede Priifung den anfallenden Auf-
wand. Zuséatzlich werden in den Reviewmodellen Personalbedarf und Dauer
berechnet, weil sich diese direkt aus den Priifparametern des Reviews ergeben. In
den Testmodellen geben die Priifparameter keinen bestimmten Personalbedarf
oder eine bestimmte Dauer vor, so dass nur der Aufwand berechnet wird.

Die Modelle der Priifwiederholungskosten ergeben den Aufwand, der zur Priif-
wiederholung nach Korrekturen im Projekt und in der Wartung benétigt wird,
abhangig von den Eingaben des Priifprozesses. Der Aufwand wird als anfallende
Kosten oder entfallende Kosten (Nutzen) dargestellt.

Das Modell fiir den Korrekturaufwand berechnet aus den Fehlerzahlen, wie viel
Aufwand fiir die entdeckten Fehler anfallt (Kosten) und spater entfallt (Nutzen).

Das Aufwandseinflussmodell beschreibt, wie sich Prozess und Produkt auf den
Aufwand auswirken. Es verwendet die Parameter von COCOMOII, einen
Zuschlag fiir die Organisation der einzelnen Aktivitaten und einen Kalibrierungs-
parameter fiir den Aufwand.

Das Dauer- und Personalmodell beschreibt die Zusammenhange zwischen Auf-
wand, Dauer und Personalbedarf, um aus dem Aufwand die Dauer und den Perso-
nalbedarf abzuleiten. Dazu werden Zusammenhidnge und Parameter aus
COCOMO II und zusitzlich ein Kalibrierungsparameter fiir die Dauer verwendet.

Das Fehlerfolgekostenmodell erlaubt durch Klassifikation und Gewichtung von
Fehlern, die Fehlerfolgekosten abzuschatzen.
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Abb. 17: Struktur von CoBe
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* Das Geldwertemodell ermdglicht die Gewichtung von Aufwand, Dauer und Perso-
nalbedarf durch Geldwerte als gemeinsame Skala fiir den Vergleich.

Die Metriken sind aktivitatsbezogen, weil Aufwand, Dauer, Personalbedarf und
Geldwerte pro Aktivitat dargestellt werden. Diese Werte werden dann zusammenge-
fasst. Resultate fiir die Kosten einer Priifung sind anfallender Aufwand, Dauer, Perso-
nalbedarf und Geldwerte pro Aktivitat. Resultate fiir den Nutzen einer Priifung sind
entfallender Aufwand, gesparte Dauer, dadurch nicht bendtigtes Personal und Geld
pro Aktivitat. Tabelle 5 zeigt die anfallenden Kosten fiir die Priifung (links) und die
entfallenden Kosten, der Nutzen, der durch die Priifung erreicht wird (rechts). Der
Nutzen ist in der Tabelle durch ein ” gekennzeichnet. In CoBe werden unterschieden:

Def. Priifkosten. Kosten, die fiir Priifungen ohne Priifwiederholung anfallen.

Def. Fehlerbehebungskosten. Kosten fiir Korrektur mit Fehleranalyse und Ande-
rung der Software und Kosten fiir die Priifung der Korrektur (Priifwiederho-
lung) im Projekt oder in der Wartung,.

Def. Fehlerfolgekosten. Kosten, die beim Einsatz des Produkts durch Fehler verur-
sacht werden. Kosten fiir die Fehlerbehebung zahlen nicht dazu.

Def. Fehlerkosten. Fehlerbehebungs- und Fehlerfolgekosten.

Def. Projekt-Qualitdtskosten. Summe der im Projekt anfallenden Priif- und Fehler-
behebungskosten.

Def. Gesamt-Qualititskosten. Summe der anfallenden Priif-, Fehlerbehebungs- und
Fehlerfolgekosten im Projekt, im Produkteinsatz und in der Wartung.

Kosten fiir Priifung Entfallende Kosten (Nutzen) durch Priifung.
¢ Priifkosten ¢ Priifkosten’
¢ Fehlerbehebungskosten ¢ Fehlerbehebungskosten’
¢ Fehlerfolgekosten’

Tabelle 5: Kosten und Nutzen durch anfallende und entfallende Kosten

6.2.2 Ein Beispiel zur Illustration von CoBe

Die Berechnung der Resultate durch die Modellkomponenten zeigt das folgende Bei-
spiel fiir Kosten und Nutzen des Spezifikationsreviews. Die Modellresultate werden
nicht vollstindig, sondern ausschnitthaft gezeigt. Insbesondere wird der Nutzen nur
tiir den Systemtest, nicht fiir andere Priifungen betrachtet.

Priifprozess. Ein Priifprozess mit Spezifikations- und Entwurfsreview, Modul-, Sys-
temintegrations-, System- und Feldtest wird in CoBe eingegeben.
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Umfangsmodell. Fiir eine Neuentwicklung werden fiir den Software-Umfang 200
Function Points neue Software eingegeben. Daraus berechnen sich etwa 11 000
Anweisungen Java-Code, 88 Seiten Spezifikation, 1 Jahr Projektdauer und 3 Mitarbei-
ter.

Fehlerstrommodell (Fehlerentstehung). Insgesamt entstehen rund 662 Fehler, davon
sind 159 Spezifikationsfehler.

Priifungsmodell fiir Fehlerentdeckung (Spezifikationsreview). Das vollstindige
Spezifikationsreview wird durch 5 kompetente Gutachter durchgefiihrt, die sich
griindlich vorbereiten. Das Priifungsmodell des Spezifikationsreviews berechnet aus
diesen Eingaben eine Fehlerentdeckungsquote von etwa 60%.

Fehlerstrommodell (entdeckte Fehler). Das Fehlerstrommodell berechnet, dass 96
Spezifikationsfehler entdeckt werden.

Fehlerstrommodell (entfallende Fehler). Mit dem Fehlerstrommodell wird berech-
net, wie viele dieser 96 Spezifikationsfehler in spateren Priifungen und nach Ausliefe-
rung entfallen. Beispielsweise entfallen durch das Spezifikationsreview rund 7 Fehler
im Systemtest, die ohne Spezifikationsreview nach dem Systemtest korrigiert werden
miissten. Nach Auslieferung entfallen 52 Fehler.

Modell fiir Priifkosten (Spezifikationsreview). Das Modell fiir die Priifkosten des
Spezifikationsreviews ergibt 7 Mitarbeiter (Gutachter, Autor, Moderator). Es werden
insgesamt 75 Entwicklerstunden Aufwand investiert. Die drei Sitzungen finden ver-
teilt auf 9 Arbeitstage statt.

Modell fiir Korrekturaufwand und Aufwandseinfluss. CoBe berechnet, dass die
Korrektur nach dem Spezifikationsreview 123 Entwicklerstunden kostet.

Modelle fiir Korrekturaufwand (entfallend) und fiir Aufwandseinfluss. CoBe
berechnet, dass 95 Entwicklerstunden Korrektur im Systemtest entfallen, weil dabei 7
Fehler entfallen. In der Wartung werden fiir die 52 Fehler, die durch das Spezifikati-
onsreview entfallen, rund 720 Entwicklerstunden fiir die Korrektur eingespart.

Modelle fiir Priifungswiederholung (entfallend) und fiir Aufwandseinfluss. Test-
wiederholung wird im Systemtest nicht eingespart, weil der Test im Beispiel vollstan-
dig wiederholt wird. In der Wartung entfallen 1150 Entwicklerstunden fiir die
Priifung der Korrektur durch Modul- und Systemtest.

Dauer- und Personalmodell. Aus den Aufwanden wird die Dauer und der Perso-
nalbedarf berechnet. Die Korrektur nach dem Spezifikationsreview beispielsweise
dauert 25 Arbeitstage. Nach dem Systemtest sind mit der Korrektur rund 2 Mitarbei-
ter beschaftigt, so dass etwa 6 Arbeitstage durch das Spezifikationsreview entfallen.

Geldwertemodell. Der Aufwand wird durch Personalkosten mit 100 Euro pro Ent-
wicklerstunde gewichtet. Damit ergeben sich fiir Spezifikationsreview und Korrektur
etwa 20 000 Euro. Dafiir entfallen beispielsweise in der Korrektur nach dem System-
test 9 500 Euro und nach Auslieferung 186 000 Euro fiir Wartung.
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Fehlerfolgekostenmodell. Die 52 entfallenden Fehler nach Auslieferung wiirden
unter den gegebenen Prozess- und Produktmerkmalen einen Schaden von insgesamt
rund 66 000 Euro verursachen. Diese Kosten entfallen.

Zuammenfassung. CoBe berechnet Kosten und Nutzen von Qualitatssicherungsmafi-
nahmen: Der Nutzen des Spezifikationsreviews besteht im Beispiel aus entfallenden
Aufwanden fiir Korrektur, dazu gehoren 95 Entwicklerstunden nach dem Systemtest
und 720 Entwicklerstunden in der Wartung, entfallenden Aufwéanden fiir Testwieder-
holung (1150 Entwicklerstunden in der Wartung), die dafiir notwendige Dauer (6
Arbeitstage nach dem Systemtest) und entfallenden Fehlerfolgekosten. CoBe sum-
miert den Nutzen im Projekt auf entfallende Personalkosten von 34 000 Euro'. Fiir die
Wartung wird berechnet, dass 186 000 Euro Personalkosten und 66 000 Euro Folge-
kosten entfallen. Im Beispiel werden die folgenden Kosten berechnet: Die Kosten des
Spezifikationsreviews fallen fiir die Priifung (76 Entwicklerstunden, 9 Arbeitstage)
und die Korrektur (123 Entwicklerstunden, 25 Arbeitstage) an. Daraus ergeben sich
20 000 Euro fiir das Spezifikationsreview. CoBe berechnet im Beispiel Qualitatskos-
ten, die im Projekt anfallen (Projekt-Qualitdtskosten) in Hohe von 239 000 Euro und
Qualitatskosten einschliefSlich Wartung und Einsatz (Gesamt-Qualitdtskosten) in
Hohe von 926 000 Euro.

6.2.3 Die Kalibrierungsparameter von CoBe

Die Parameter von CoBe sind mit Mittelwerten aus der Industrie quantifiziert. Erfah-
rungen mit Kostenschatzmodellen zeigen, dass eine solche Quantifizierung an spezi-
fische Projekte angepasst werden muss. Dies wird als Kalibrierung bezeichnet
(Abschnitt 3.6.1). Diese Kalibrierung wird in CoBe durch spezielle Kalibrierungspara-
meter unterstiitzt. Diese Parameter ergeben sich aus der Analyse in Kapitel 5. In
Abbildung 17 sind oben die Eingaben des Modells dargestellt. Zu den Kalibrierungs-
parametern gehoren die folgenden Eingaben:

* CoBe bietet einen Aufwands- und einen Dauerfaktor, weil Erfahrungen mit
COCOMO zeigen, dass Aufwand und Dauer an die Umgebung angepasst werden
miissen.

* Der Fehlerfaktor zur Kalibrierung der Gesamtfehlerzahl wird benétigt, weil viele
Einfliisse auf die Fehlerentstehung unbekannt, zumindest quantitativ unklar sind.
Als Gesamtfehlerzahl wird die Zahl der insgesamt entdeckten Fehler bezeichnet.

* Die Fehler verteilen sich abhdngig vom Produkt und von der Projektart unter-
schiedlich auf die Fehlerarten und auf die Fehlerschwere. Insbesondere die Fehler-
schwere kann unterschiedlich definiert sein. Darum kann die Verteilung auf die
Fehlerarten und die Verteilung auf die Fehlerschwere als Parameter eingegeben
werden.

1. Dazu gehoren neben den entfallenden Kosten im Systemtest auch entfallende Kosten ande-
rer Priifungen, die hier im Beispiel nicht gezeigt sind.
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* CoBe bietet einen Umfangsfaktor fiir den Code, fiir die Spezifikation und fiir den
Entwurf, um den Umfang dieser Artefakte zu berechnen. Die Faktoren sind mit
Standardwerten belegt und konnen aus Daten abgeschlossener Projekte berechnet
werden (Abschnitt 6.7.2).

6.3 Das Basismodell mit den grundlegenden Zusammenhingen

Im Folgenden wird jede Modellkomponente mit ihren Eingaben und ihren Resultaten
durch Gleichungen und durch Ursache-Wirkungs-Diagramme beschrieben. Die
Bezeichner, die in den Gleichungen verwendet werden, sind zuséatzlich im Anhang ab
Seite 281 aufgefiihrt. Die Ursache-Wirkungs-Diagramme stellen dar, welche Ursachen
oder Gruppen von Ursachen sich auf eine bestimmte Grofie auswirken (Kan, 2003).

Abbildung 18 zeigt links den grundsatzlichen Aufbau der Diagramme. Die Pfeile stel-
len Wirkungen in Richtung der Pfeilspitze dar. Die Ursachen werden gruppiert und
in Form von Fischgraten um einen horizontalen Pfeil herum angeordnet. Die zusam-
mengefasste Wirkung wird rechts an diesem Pfeil dargestellt. Die Gruppierung ist
vorgegeben, wenn die Diagramme zur Ursachenanalyse eingesetzt werden.

Fiir das quantitative Modell sind die Parameter die Ursachen, aus denen das Modell-
resultat berechnet wird (Rechts in Abbildung 18). In den Diagrammen fiir CoBe folgt
die Gruppierung keinem festen Schema, sondern wird eingesetzt, um die Parameter
zu gliedern.

Im Folgenden werden zuerst Ausschnitte des Modells gezeigt, um die einzelnen
Zusammenhange zu erldutern. Abschnitt 6.7 zeigt dann die Komponenten gemein-
sam.

Ursache Ursache Parameter» Parameter
M» Parameter
Wirkung Modell-
> > resultat

Abb. 18: Ursache-Wirkungs-Diagramme zur Beschreibung von CoBe

Die grundlegenden Begriffe, die in CoBe verwendet werden, sind in Kapitel 2 und in
Abschnitt 5.1 definiert. Die Definitionen werden in diesem Abschnitt an den Stellen
wiederholt, an denen sie benétigt werden.

6.3.1 Das Umfangsmodell von CoBe

Das Umfangsmodell von CoBe beschreibt den Umfang des Software-Produkts. Dazu
wird die Definition aus dem IEEE-Standard 1045 (1992) fiir Software iibernommen.
Software wird nach ihrem Ursprung unterschieden (siehe Abschnitt 5.1):

Def. Hinzugefiigte Software. Software, die im Projekt neu erstellt wird.
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Def. Gednderte Software. Software, die bereits vorhanden war und im Projekt gean-
dert wird.

Def. Wiederverwendete Software. Software, die bereits vorhanden war und unver-
andert im Projekt verwendet wird.

Def. Neue Software. Hinzugefiigte und geanderte Software.

Weil CoBe zur Planung eingesetzt werden soll, werden Function Points (IFPUG, 2004)
als Umfangsmetrik verwendet. Sie konnen bereits zur Planungszeit gezahlt werden
(Metzger und Boddie, 1996) und konnen als gemeinsame Umfangsmetrik iiber die
Projektdauer und Lebensdauer des Produkts verwendet werden (Drappa, 1998). Der
Code-Umfang wird in Anweisungen (logische Zeilen nach IEEE 1045, 1992) darge-
stellt, definiert nach Park (1992), und tiber einen Umfangsfaktor aus Function Points
abgeleitet (Boehm, 2000). Ich wahle Anweisungen als Metrik und nicht physische Zei-
len, weil der Umfangsfaktor zwischen Function Points und Anweisungen, nicht zwi-
schen Function Points und Zeilen, definiert ist (Boehm, 2000) und weil Jones (1996)
zeigt, dass der Zusammenhang zwischen Function Points und Anweisungen starker
als der Zusammenhang zwischen Function Points und Zeilen ist (Abschnitt 5.1).

Fiir die Spezifikation und den Entwurf wird jeweils auf den Umfang in Seiten umge-
rechnet (Drappa, 1998; Jones, 2007). Der Umfangsfaktor fiir Spezifikation und Ent-
wurf hiangt von der Notation, in der die Dokumente erstellt werden, und der
Methode zur Erstellung ab (Drappa, 1998; Jones, 2007). Tabelle 6 zeigt die Eingaben.

Eingabeparameter (Prozess und Produkt) Wertebereich

Umfang hinzugefiigter Software

Zahl der Anweisungen oder

Umfang gednderter Software Function Points

Umfang wiederverwendeter Software

Umfangsfaktor Spezifikation Seiten pro Function Point
Umfangsfaktor Entwurf Seiten pro Function Point
Umfangsfaktor Code Anweisungen pro Function Point

Tabelle 6: Eingaben fiir den Umfang

Die Umfangsfaktoren dienen der Kalibrierung von CoBe, weil die Faktoren durch die
speziellen Merkmale eines Projekts beeinflusst werden. Zur Kalibrierung sind darum
Daten aus dhnlichen Projekten nétig. Zu den Einfliissen auf die Faktoren gehort, dass
die Umrechnung auf Anweisungen durch die Programmiersprache beeinflusst ist,
durch den Programmierstil oder durch die vorgegebenen Programmierrichtlinien.
Die Umrechnung auf den Umfang der Dokumente in Seiten hangt unter anderem von
der Notation ab. Da die verwendete Variante der Function-Points nicht fiir technisch-
wissenschaftliche Anwendungen geeignet ist, kann der Umfang dieser Anwendun-
gen in CoBe entweder durch Anweisungen oder andere Function-Point-Varianten
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dargestellt werden. Fiir eine andere Function-Point-Variante miissen die Umfangs-
faktoren kalibriert werden. Wird der Umfang in Anweisungen eingegeben, dann wer-
den Function Points nur zur Umrechnung zwischen Code-Umfang und Umfang der
Spezifikation und des Entwurfs verwendet.

6.3.2 Der Fehlerbegriff und das Fehlermodell in CoBe

CoBe basiert auf Fehlerzahlen. Darum wird zuerst der in CoBe verwendete Fehlerbe-
griff definiert. Die Definition soll erlauben, entdeckte Fehler iiber die gesamte Soft-
ware-Lebensdauer zu zdhlen. Angelehnt an Drappa (1998) wird der Fehlerbegriff
“Abweichung” (“anomaly”) aus IEEE 1044 (1993) verwendet. Der Begriff wird in
Abschnitt 5.1 diskutiert:

Def. anomaly. Any condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc. or from some-
one’s perceptions or experiences. (IEEE 1044, 1993)

Im Modell werden Fehler von Fehlverhalten abgegrenzt (Abschnitt 5.1; IEEE 982.1,
2005; Liggesmeyer, 2002):

Def. Fehlverhalten. Ein Fehlverhalten oder Ausfall (failure) zeigt sich dynamisch bei
der Benutzung eines Produkts. Beim dynamischen Test einer Software erkennt
man keine Fehler, sondern Fehlverhalten bzw. Austfille. Diese sind Wirkungen
von Fehlern im Programm.

Def. Fehler. Ein Fehler oder Defekt (fault, defect) ist bei Software die statisch im Pro-
grammcode vorhandene Ursache eines Fehlverhaltens oder Ausfalls.

Zwischen Fehlern und Fehlverhalten wird also eine Ursache-Wirkungs-Beziehung zu
Grunde gelegt (IEEE 982.1, 2005; Liggesmeyer, 2002), weil Fehler im Code beim Aus-
tithren des Codes wirksam werden konnen und sich dann als Fehlverhalten manifes-
tieren. Fehlverhalten wird auch als Fehlersymptom oder Auftreten des Fehlers
bezeichnet. Im Review identifizieren die Gutachter Fehler im Priifling. Im Test wer-
den Abweichungen vom Sollresultat identifiziert, somit wird das Fehlersymptom
oder Fehlverhalten erkannt. Die Ursache, der Fehler, muss identifiziert werden.

Fehler werden in CoBe durch Fehlerzahlen représentiert, die auf einer Rationalskala
anstatt auf einer Absolutskala dargestellt sind. Somit kann mit Anteilen gerechnet
werden. Dies ist aus folgenden Griinden notig: Das Modell wird mit Mittelwerten aus
Datensammlungen der Industrie quantifiziert und mit Mittelwerten der Organisa-
tion, in der es eingesetzt wird, kalibriert; es berechnet einen statistischen Erwartungs-
wert; Unstetigkeiten durch Rundung miissen vermieden werden.

Fehlerkategorien in CoBe

Fehler werden nach Fehlerart und Fehlerschwere unterschieden, weil sich diese
Merkmale auf Fehlerkosten auswirken. Die Fehler werden durch Verteilungen auf die
unterschiedlichen Klassen dieser beiden Merkmale verteilt. Die Definition der Fehler-
art orientiert sich an Drappa (1998) und Runeson et al. (2006):
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Def. Fehlerart. Die Fehlerart ist durch die Aktivitat bestimmt, durch die ein Fehler
entstanden ist.

In CoBe werden Spezifikationsfehler, Entwurfsfehler und Codefehler unterschieden,
da diese Arten in der Literatur verwendet werden (Jones, 1996; Kan, 2003). Sie konnen
entstehen, wenn Software erstellt oder korrigiert wird.

Da die Fehlerschwere ganz unterschiedlich definiert werden kann (Abschnitt 5.1),
bietet das Modell die Standard-Definition des IEEE-Standards 610 (1992) und drei
Klassen aus Frithauf et al. (2006). Blockierende Fehler gehoren zu den kritischen Feh-
lern.

Def. Fehlerschwere. Die Fehlerschwere ist das Mafs fiir den Einfluss eines Fehlers auf
die Entwicklung oder den Einsatz eines Systems. (IEEE 610, 1992)

Def. Kritischer Fehler. Priifling ist fiir den vorgesehenen Zweck unbrauchbar, Fehler
muss vor der Freigabe behoben werden. (Frithauf et al., 2006)

Def. Hauptfehler. Nutzbarkeit des Priiflings ist beeintrachtigt, Fehler sollte vor Frei-
gabe behoben werden. (Frithauf et al., 2006)

Def. Nebenfehler storen, aber beeintrdchtigen den Nutzen kaum. (Friihauf et al,,
2006)

Def. Blockierender Fehler. Ein blockierender Fehler verhindert die weitere Ausfiih-
rung des Programms, etwa um Testfalle durchzufiihren. (Bassin et al., 2002).

In Projekten konnen andere Definitionen verwendet werden. Dann ist es notwendig,
die Verteilung der Fehler auf diese Klassen anzupassen; dies gehort zur Kalibrierung.
Wird die Fehlerschwere durch den Schaden definiert, den der Fehler beim Einsatz
verursacht oder verursachen wiirde, dann bietet CoBe die Moglichkeit, die Fehler-
schwere anhand des Schadens zu definieren (Abschnitt 6.3.10).

6.3.3 Modellierung der Fehlerentstehung in CoBe

Bei der Planung eines Projekts ist die Zahl der enthaltenen oder entstehenden Fehler
in der Software unbekannt. Im Modell werden diese Fehlerzahlen aber bendtigt,
damit Fehlerkosten berechnet werden konnen. Darum wird in CoBe die Zahl der ent-
stehenden Fehler aus dem Umfang neuer und wiederverwendeter Software und der
Qualitat wiederverwendeter Software abgeleitet. Der Kalibrierungsparameter (Feh-
lerfaktor) und die Verteilung der Fehler auf Fehlerschwere und Fehlerarten beeinflus-
sen die Fehlerzahlen (Abbildung 19, Tabelle 7); andere Einfliisse auf die Fehlerzahl
sind in CoBe nicht dargestellt, sondern miissen iiber die Kalibrierung abgebildet wer-
den, weil diese Einfliisse nicht belegt sind (Abschnitt 5.2).

In CoBe wird die Fehlerdichte fd verwendet, um die Zahl der in neuer Software einge-
fiigten Fehler F,,., zu berechnen, weil die Fehlerdichte die gebrauchliche Metrik fiir
Software-Qualitat ist (Fenton und Pfleeger, 1997). Die Fehlerdichte zwischen gednder-
ter und hinzugefiigter Software wird im Modell nicht unterschieden, da Erfahrungen
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Umfang neuer
Software Fehlerfakt
W % Entstehende Fehler
- pro Fehlerart und

Fehlerentdeckung Verteilung auf pro Fehlerschwere
in wiederverw. SW Fehlerarten

Verteilung auf
Fehlerschwere

Umfang wieder-
verwendeter SW

Abb. 19: Ursache-Wirkungs-Diagramm der Fehlerentstehung

Eingabeparameter Wertebereich

Verhaltnis Istwert und

Fehlerfaktor Modellresultat ohne Kalibrierung?

Verteilung auf Fehlerschwere

(kritische Fehler, Hauptfehler, Nebenfehler) Anteil jeweils 0...100 %

Verteilung auf Fehlerarten

(Spezifikationsfehler, Entwurfsfehler, Codefehler) Anteil jeweils 0...100 %

Tabelle 7: Eingaben fiir Fehlerentstehung

a. Zur Kalibrierung werden Archivdaten verwendet.

keinen Unterschied zeigen (Moller und Paulish, 1993b). Die Fehlerdichte fd steigt in
CoBe mit dem Umfang neuer Software in Function Points (Jones, 1996). Diesen
Zusammenhang stelle ich als Logarithmusfunktion zur Basis 10 dar, weil Daten-
sammlungen Projekte nach ihrer Grofienordnung in 10er-Potenzen klassifizieren
(Jones, 1996 und 2003). Die Parameter ry; und ;¢ konnen durch lineare Regression aus
Archivdaten berechnet werden. Die Zahl der entstehenden Fehler F,,.,, berechnet sich
aus der Fehlerdichte, dem Umfang neuer Software und dem Fehlerfaktor kg zur Kali-
brierung (Abschnitt 6.2.3):!

fd = Tost Ty Iog 10(SFPneu)/ Fneu = kF ) SFPneu fd

Wiederverwendete Software wird unverandert ibernommen, darum entstehen in der
wiederverwendeten Software keine neuen Fehler. In der neu erstellten Software, die
andere Software wiederverwendet, konnen Schnittstellenfehler entstehen (Basili und
Perricone, 1984). Da es datfiir keine weiteren Daten gibt, wird dies im Modell durch
die Kalibrierung abgebildet. Die Zahl der Fehler in wiederverwendeter Software F,,
wird aus der Fehlerdichte fd, dem Kalibrierungsparameter kg und dem Anteil der
Fehler, die bereits vor der Wiederverwendung entfernt wurden (Q,,), berechnet:

va = kF ) SFPWV fd (1= Qwv)

1. Die Bezeichner in den Formeln sind im Verzeichnis der Bezeichner ab Seite 281 beschrieben.
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Die entstehenden Fehler werden auf die Klassen fiir Fehlerschwere und Fehlerart
anhand der Eingaben in Prozent verteilt.

6.3.4 Modellierung der Fehlerentdeckung und Fehlerkorrektur in CoBe

Fehler werden in Priifungen entdeckt. Die Sequenz der mdoglichen Priifungen in CoBe
(Abbildung 20) lehnt sich an Prozessstandards und typische Prozesse an
(Abschnitt 5.2). Zu diesen Prozessen und Vorgaben gehoren die folgenden Priifun-
gen: Spezifikationsreview, Entwurfsreview, Codereview und automatische statische
Codeanalyse (kurz: Codeanalyse), Modultest, Subsystem- und Systemintegrationstest
und Systemtest, aufSerdem der Test durch den Kunden, der auch als Feldtest bezeich-
net wird (Jones, 1996). Diese Priifungen werden darum in CoBe dargestellt.

Die Priifsequenz, der CoBe folgt, leite ich aus den gleichen Prozessen und Vorgaben
ab; sie folgt den Abstraktionsebenen der Entwicklung (Spezifikation, Entwurf, Imple-
mentierung). Die Sequenz basiert auf den folgenden Annahmen:

* Ich nehme ein sequentielles Vorgehen an, so dass zuerst Software erstellt, dann
gepriift, dann korrigiert wird. Die Spezifikation wird also beispielsweise nach dem
Review erst korrigiert, bevor der Entwurf beginnt.

* Ich nehme an, dass Entwickler die Codeanalyse selbst anstof3en, sie findet also par-
allel zur Implementierung statt.

* Codereviews finden nach Modultest und Subsystemintegrationstest statt, weil
Reviews Zeit zur Organisation bendtigen. Modultests werden haufig durch die
Entwickler selbst und verwoben mit der Implementierung durchgefiihrt (Siegwart,
2004). Auch die Subsystem-Integration mit dem Test findet im Modell vor dem
Review statt, weil beispielsweise kontinuierlich integriert wird.

Diese Sequenz deckt also das typische Vorgehen vieler Projekte ab (Abschnitt 5.2); fiir
Projekte mit anderer Reihenfolge muss CoBe angepasst werden. Mit den Eingaben
iiber den Priifprozess kann bestimmt werden, welche dieser Priifungen durchgefiihrt
werden (Parameter P)!, und ob in einer Priifung auch wiederverwendeter Code
gepriift wird (Parameter WV, Tabelle 8).

Die Fehlerentdeckungsquote Q beschreibt die Fehlerentdeckung einer Priifung:

Def. Fehlerentdeckungsquote Q. Anteil der entdeckten Fehler an den enthaltenen
Fehlern, unterschieden nach Fehlerart und Fehlerschwere.

Jedes Priifungsmodell berechnet die zugehorige Fehlerentdeckungsquote Q, die
unterschiedlich hoch fiir verschiedene Fehlerarten und Fehlerschwere ist.

1. Binare Eingaben und Auswahleingaben sind fett gesetzt.
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Spezifikationsreview
Entwur¥sreview
Codeanalyse
Modultest
Subsystem-Integrationstest
Codereview
Systemintegrationstest

Systemtest

Legende

Feldtest Sequenz

Abb. 20: Priifsequenz in CoBe

Wertebereich
Eingabeparameter fiir Durchfiihrung der einschl. wiederverwendeter
Priifung (P) Software (WV)
Spezifikationsreview ja /nein ja / nein
Entwurfsreview ja / nein ja / nein
Codeanalyse ja/nein ja / nein
Modultest ja / nein ja / nein
Subsystem-Integrationstest ja / nein ja / nein
Codereview ja / nein ja / nein
Systemintegrationstest ja / nein ja / nein
Systemtest ja / nein ja / nein
Feldtest ja / nein ja / nein

Tabelle 8: Eingaben fiir Priifprozess
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Bei der Korrektur konnen Fehler unvollstindig korrigiert werden oder neue Fehler
eingefiigt werden. Weil in CoBe Fehler als Zahl dargestellt werden, gibt es in CoBe
keine Unterscheidung, ob entdeckte Fehler nicht korrigiert oder Fehler neu eingefiigt
wurden. Stattdessen wird durch die Korrekturquote Qg dargestellt, dass nur ein
Anteil der Fehler korrigiert wird:

Def. Korrekturquote Qx Anteil der entdeckten Fehler, der korrigiert wird.

Im Modell wird die gleiche Korrekturquote fiir die unterschiedlichen Fehlerarten und
tiir unterschiedlich schwere Fehler verwendet. Das Modell erlaubt unterschiedliche
Korrekturquoten, um beispielsweise darzustellen, dass schwere Fehler bevorzugt
korrigiert werden. Weil dazu aber detaillierte Erfahrungswerte fehlen, ist dieser
Aspekt quantitativ nicht dargestellt. Abbildung 21 zeigt das Fehlerstrommodell mit
diesen Parametern.

Spez.- Modul- Subsystem- System- Feld-
review test int.-test int.-test test
Zahl

entstehender
Fehler wv wv wv
pro Fehlerart und Q Q Q

pro Fehlerschwere

P Fehlerzahlen

QK QK QK QK QK
Q Q Q Q
Q Q Q Q
wv wv wv wv
P P P P

Entwurfs- Code- Code- System-
review analyse review test

Fehlerzahlen

Zahl entdeckter Fehler pro Prifung
Fur jede Prufung die Zahl der entfallenden Fehler pro Folgeprifung

Abb. 21: Ursache-Wirkungs-Diagramm fiir das Fehlerstrommodell

Entdeckte und korrigierte Fehler pro Priifung

Weil die Fehlerkosten von der Fehlerart, der Fehlerschwere und der Priifung, bei der
ein Fehler entdeckt wird, abhangen, berechnet CoBe fiir jede Priifung die Zahl der
entdeckten Fehler, der korrigierten Fehler und der danach in der Software enthalte-
nen Fehler jeweils getrennt nach Fehlerart und Fehlerschwere (Abbildung 22).

Fehlerzahlen werden mit F bezeichnet. Sie werden getrennt nach dem Ursprung der
Software, d.h. getrennt fiir neue und fiir wiederverwendete Software, berechnet. Feh-
ler in neuer Software werden entdeckt und korrigiert, wenn die Priifung stattfindet,
wenn also P auf “ja” gesetzt ist (Tabelle 8). Ist zusatzlich WV gesetzt, dann wird auch
wiederverwendete Software gepriift. Somit werden Fehler in wiederverwendeter
Software entdeckt und korrigiert. Beispielsweise wird die Zahl der im Spezifikations-
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Enthaltene WV: Prifung
Fehler (neue SW) wv. Software Enthaltene Fehler
—_—»

Enthaltene
Fehler (wv. SW)

P Korrigierte Fehler
Fehlerent-
deckungsquote Korrekturquote
—_——P
Fehlerentdeckungs-

und Korrekturquoten
in Folgeprifungen

nach Prufung und
Korrektur

Entfallende
Fehler nach
Prifung und
Korrektur

Abb. 22: Ursache-Wirkungs-Diagramm fiir enthaltene, entdeckte, korrigierte
und entfallende Fehler

review (SR) entdeckten Fehler Fsg entdeckt, Ursprung, Art, Schwere fir Fehler der Art und
Schwere aus den eingefiigten Fehlern fiir neue und fiir wiederverwendete Software
(Ursprung) berechnet:

PSR,entdeth, Ursprung, Art, Schwere = Fllrsprung, Art, Schwere QSR,Art, Schwere

Bei der Korrektur werden Fehler unvollstandig korrigiert und neue Fehler eingefiigt,
so dass nur ein Teil der entdeckten Fehler, Fsg worrigiert, Ursprung, Art, Schwerer €Ntfernt
wird:

FSR,korrigiert, Ursprung, Art, Schwere = FUrsprung,Art, Schwere QSR,Art, Schwere QK

Nach der Korrektur verbleiben Fehler in der Software; dies sind die enthaltenen Feh-
ler F SR,enthalten, Ursprung, Art,Schwere:

FSR,enthalten, Ursrpung, Art, Schwere
= FUrsprung, Art, Schwere — FSR,korrigiert, Ursprung, Art, Schwere

Beispielsweise werden 50 der 100 Spezifikationsfehler entdeckt (Q =50 %). Die Kor-
rekturquote betragt 90 %, d.h. in der Korrektur werden 90 % der entdeckten Fehler
tatsachlich korrigiert (45 Fehler). Damit bleiben 55 Spezifikationsfehler {ibrig.

Nach dem Spezifikationsreview kommen durch den Entwurf Entwurfsfehler in die
Software. Im Entwurfsreview sind also diejenigen Fehler zu finden, die nach der Kor-
rektur des Spezifikationsreviews und nach dem Entwurf enthalten sind; sie stammen
aus der Spezifikation oder aus dem Entwurf:

FER,entdeth, Ursprung, Art, Schwere = FSR,enthalten, Ursrpung, Art, Schwere QER,Art, Schwere

Mit einer Fehlerentdeckungsquote fiir Spezifikationsfehler von 10 % entdeckt das
Entwurfsreview also 5,5 Fehler der 55 Spezifikationsfehler und zusatzlich Entwurfs-
fehler, die in diesem Beispiel nicht betrachtet werden. Die Fehlerentdeckung einer
Priifung bezieht sich immer auf die enthaltenen Fehler, also diejenigen Fehler, die



6.3. Das Basismodell mit den grundlegenden Zusammenhangen 103

nach der Korrektur der vorherigen Priifung tibrig sind, und diejenigen Fehler, die neu
in die Software eingefiigt wurden.

Die Zahl entdeckter und korrigierter Fehler der anderen Priifungen im Modell wird
auf die gleiche Art und Weise berechnet. Daraus ergibt sich die Zahl der ausgeliefer-
ten Fehler. Ein Teil dieser Fehler tritt nicht auf, wird nicht gemeldet oder erscheint
tolerierbar und wird darum auch nicht in der Wartung korrigiert.

Entfallende Fehler durch Priifung und Korrektur

In CoBe ist der Nutzen durch entfallende Fehlerkosten definiert. Diejenigen Fehler,
die bereits korrigiert wurden, konnen nicht mehr in folgenden Priifungen und nach
Auslieferung entdeckt werden. Diese Fehler werden im Folgenden als entfallende
Fehler bezeichnet. Die Zahl entfallender Fehler wird mit den gleichen Fehlerent-
deckungs- und Korrekturquoten berechnet wie die Zahl entdeckter Fehler
(Abbildung 22); dabei entfallen so viele Fehler in den Folgepriifungen und nach Aus-
lieferung, wie korrigiert wurden. Im Beispiel oben entfallen also die 45 Spezifikations-
tehler, die nach dem Spezifikationsreview korrigiert werden, in den Folgepriifungen
und nach Auslieferung. Ohne das Spezifikationsreview und dessen Korrektur wiir-
den z.B. 10 % dieser Fehler im Entwurfsreview entdeckt werden (FsR entfallend, ER = 42
Fehler) und entsprechende Korrekturkosten verursachen.

FSR,entfallend,ER, Ursprung, Art, Schwere

= FSR,korrigiert, Ursprung, Art, Schwere QER,Art, Schwere

Wird zum Beispiel in CoBe eingegeben, dass im Priifprozess keine Codeanalyse statt-
tfindet, aber ein Modultest und ein Subsystem-Integrationstest, dann entfallen Fehler,
die bereits nach dem Spezifikationsreview korrigiert wurden, im Modultest (MT) und
dann im Subsystem-Integrationstest (PTY):

FSR,entfallend,MT, Ursprung, Art, Schwere

= FSR,korrigiert, Ursprung, Art, Schwere ’ (1- QER,Art, Schwere QK,ER) ’ QMT,Art, Schwere

FSR,entfallend,PT, Ursrprung, Art, Schwere
= FSR,korrigiert, Ursprung, Art, Schwere

(1= QER,Art, Schwere QK,ER)' (1- QMT,Art, Schwere * QK,MT) ’ QPT,Art, Schwere

1. Der Subsystem-Integrationstest wird durch PT gekennzeichnet; dabei steht P fiir “Package”.
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Falsche Befunde

Falsche Befunde werden in CoBe durch ihre Anzahl beschrieben. In Studien wird
typisch das Verhaltnis zwischen falschen Befunden und echten Fehlern dargestellt
(Wagner et al., 2005; Zheng et al., 2006). Darum wird im Modell die Zahl der falschen
Befunde linear aus der Zahl der entdeckten Fehler berechnet.

6.3.5 Das Modell fiir den Korrekturaufwand in CoBe

Zu den Kosten der Fehlerbehebung gehoren die Korrekturkosten. Dazu gehort auch
der Aufwand zur Erkennung falscher Befunde. Das Modell fiir den Korrekturauf-
wand beschreibt, welcher Aufwand fiir die Korrektur der entdeckten Fehler anfallt
oder entfallt (Abbildung 23). Dabei spielt die Latenzzeit, der Software-Umfang und
die Fehlerschwere eine Rolle.

Prifung

Zahl der Fehlerart
entdeckten Fehler

je Art und Schwere SW-Umfang

> Aufwand fur

Zahl der falschen Fehlerkorrektur
Befunde Fehlerschwere

Abb. 23: Ursache-Wirkungs-Diagramm fiir den Korrekturaufwand

Diese Zusammenhidnge werden in CoBe modelliert, in dem ein Basisaufwand pro
Fehler, agp.siss verandert wird. Dieser Basisaufwand unterliegt dem Einfluss der
Latenzzeit, also der Zeit, die der Fehler unentdeckt bleibt. Der Einfluss der Latenzzeit
wird durch die Fehlerart und den Entdeckungszeitpunkt, d.h. die Priifung, bei der
der Fehler entdeckt wird, modelliert. Fuir die Fehlerart wird der Basisaufwand mit
dem Faktor af,; angepasst. Fiir den Entdeckungszeitpunkt wird der Basisaufwand
mit dem Faktor af, fiir die Priifung p, bei der der Fehler entdeckt wird, und den Fak-
tor afyy fir die Wartungsphase angepasst. Um den Einfluss des Umfangs auf den
Anstieg des Korrekturaufwands zu modellieren, ist der Faktor af, eine Funktion des
Umfangs, der fiir den Systemtest der Faktor 10 ist, wenn es sich um umfangreiche
Software handelt. Er ist 4, wenn es sich um ein kleines Produkt handelt; Zwischen-
werte fiir den Umfang werden interpoliert (Abbildung 24).

Ein Beispiel illustriert diese Berechnung: Mit einem Basisaufwand von einer Entwick-
lerstunde pro Fehler kostet die Korrektur eines Spezifikationsfehlers nach dem Spezi-
fikationsreview eine Entwicklerstunde. Der Faktor afgr fiir den Systemtest ist im
Beispiel 8, fiir die Wartung ist afyy 15; Spezifikationsfehler sind teurer als Entwurfs-
fehler und werden durch den Faktor afsp,., mit 1,3 angepasst. Codefehler sind gtinsti-
ger, sie werden mit dem Faktor afc,qe mit 0,8 angepasst. Damit ist also der
Korrekturaufwand fiir einen Spezifikationsfehler, der im Systemtest entdeckt wurde,
10,4 Entwicklerstunden. Wird ein Spezifikationsfehler in der Wartung korrigiert, kos-
tet dies 19,5 Entwicklerstunden, ein Codefehler kostet 12 Entwicklerstunden.
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Abb. 24: Einfluss des Umfangs auf den Anstieg der Korrekturkosten

Die Fehlerschwere ist der dritte Einfluss auf den Korrekturaufwand. Der Einfluss ist
durch den Faktor afg ;. modelliert, mit af\g, afyr und afgg fiir Neben-, Haupt- bzw.
kritische Fehler.

Fiir den Korrekturaufwand nach einer Priifung p werden die Aufwande der entdeck-
ten Fehler aufsummiert. Der Korrekturaufwand Ay , nach der Priifung p berechnet
sich somit aus der Zahl entdeckter Fehler F}, opigecky dem Basisaufwand agggsis und
den Faktoren af fiir Fehlerart, Fehlerschwere und Priifung:

AK, p = Z Fp, entdeckt, Ursprung, Art, Schwere AKBasis * afArt ) afSchwere ’ afp
Ursprung, Art, Schwere

Die Erkennung falscher Befunde gehort zur Korrektur. Der Analyseaufwand, um
einen falschen Befund zu erkennen, wird als Anteil des Korrekturaufwands eines
Fehlers berechnet; die Zahl der entdeckten falschen Befunde erfolgt durch das Modell
der Fehlerentdeckung.

6.3.6 Das Modell fiir die Kosten der Priifwiederholung in CoBe

Zu den Fehlerbehebungskosten gehoren Kosten, die entstehen, wenn nach der Kor-
rektur erneut gepriift wird. In CoBe wird darum zwischen der Priifung und ihrer
Wiederholung nach der Korrektur unterschieden. Die erste Priifung wird im Folgen-
den als initiale Priifung bezeichnet, die Priifung nach der Korrektur als Priifwieder-
holung. Die beiden unterschiedlichen Vorgehen zur Priifwiederholung in CoBe leiten
sich aus dem Standard ISO/IEC 14764 (1999) und aus Pigoski (1997) ab:

a) Nach der Korrektur wird die Priifung wiederholt.

b) Nach der Korrektur werden mehrere Priifungen wiederholt (Hormann et al., 2006).
Dies wird in CoBe als Korrekturpriifprozess bezeichnet. Eingegeben wird, nach
welchen Priifungen ein Korrekturpriifprozess stattfindet, und welche Priifungen
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zu diesem Prozess gehoren. In der Wartung kann sich der Korrekturpriifprozess
kritischer Fehler vom Priifprozess der Haupt- und Nebenfehler unterscheiden
(Sneed et al., 2004).

Um diesen Aufwand zu modellieren, wird in CoBe unabhangig vom Vorgehen der
Wiederholungsaufwand einer Priifung auf gleiche Art berechnet. Im Fall a) wird der
Aufwand nur fiir die bestimmte Priifung, im Fall b) fiir alle Priifungen des Priifpro-
zesses berechnet. Die unterschiedlichen Moglichkeiten, eine einzelne Priifung zu wie-
derholen (Thaller, 2002; Sneed et al., 2004; Miiller et al., 1998), werden in CoBe durch
drei Moglichkeiten abgebildet:

* ohne: Die Priifung wird nicht wiederholt.
» gezielt: Fiir jeden Fehler wird ein Teil der Priifung wiederholt.

* vollstandig: Die gesamte Priifung wird wiederholt, nachdem alle Fehler korrigiert
wurden.

CoBe enthalt die Wiederholung von Tests und die gezielte Wiederholung des Codere-
views (Tabelle 9 und Tabelle 11). Fiir jede Priifung kann angegeben werden, ob nach
der Korrektur die Priifung wiederholt wird oder ob nach der Korrektur der Korrek-
turpriifprozess durchgefiihrt wird (Tabelle 10, Priifung mit Korrekturpriifprozess). In
CoBe wird eingegeben, welche Priifungen zu diesem Korrekturpriifprozess gehoren
(Tabelle 10, Priifung gehort zum Korrekturpriifprozess). Werden beispielsweise Kor-
rekturen nach dem Modultest durch eine Wiederholung des Modultests gepriift,
dann wird der Parameter ‘Priifung mit Korrekturpriifprozess’ fiir den Modultest auf
‘nein’ gesetzt. Werden Korrekturen nach dem Systemtest durch ein Codereview,
einen erneuten Integrationstest und einen erneuten Systemtest gepriift, dann wird der
Parameter 'Priifung mit Korrekturpriifprozess’ fiir den Systemtest auf ’ja’ gesetzt.
Zusatzlich werden die Parameter 'Priifung gehort zum Korrekturpriifprozess’ fiir
Codereview, Integrationstest und Systemtest auf ‘ja’ gesetzt.

Ich modelliere die vollstindige Wiederholung der Spezifikations- und Entwurfsre-
views nicht, weil bereits eine erste Begutachtung in vielen Situationen kaum durch-
setzbar ist (Schwinn, 2003); diese Moglichkeit ist also kaum praxisrelevant.

Der Aufwand fiir die Priifwiederholung basiert auf dem Aufwand der initialen Prii-
fung. Fiir den Test ist dies der Aufwand fiir die Testdurchfiihrung (Abschnitt 6.6.2),
weil vorausgesetzt wird, dass die gleichen Testfdlle wiederholt werden, und dass
diese Testfdlle nicht erneut definiert werden. Dieser Aufwand wird in CoBe als initia-
ler Durchfiithrungsaufwand bezeichnet. Er hangt von der speziellen Projektsituation
ab, darum enthalt CoBe zwei Eingaben (Tabelle 12):

* Der Aufwand fiir die vollstindige Wiederholung eines Tests berechnet sich aus
dem initialen Durchfithrungsaufwand und dem Anteil des Aufwands, der fiir die
Wiederholung benotigt wird (aygn 1est)- Dieser Wiederholungsanteil hangt bei-
spielsweise von der Automatisierung des Tests ab.
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Wertebereich
Eingabeparameter fiir Priifung?®
Wiederholung der Priifung
Modultest ohne / gezielt / vollstandig
Subsystemint.-test ohne / gezielt / vollstandig
Codereview® ohne / gezielt
Systemint.-test ohne / gezielt / vollstandig
Systemtest ohne / gezielt / vollstandig
Feldtest® ohne / gezielt

Tabelle 9: Parameter fiir Priifwiederholung

a. Wiederholung der Spezifikations- und Entwurfsreviews ist nicht modelliert.

b. Das gezielte Review einer Codednderung ist eine eigene Modellkomponente.

c. Im Feldtest wird vereinfacht der Test als Zuschlag zur Korrektur dargestellt, weil der Test
beim Kunden durch Probeeinsatz stattfindet.

Wertebereich

Eingabeparameter fiir
Priifung Priifung mit Priifung gehort zum

Korrekturpriifprozess Korrekturpriifprozess
Modultest ja / nein ja / nein
Subsystemint.-test ja /nein ja /nein
Codereview ja / nein ja / nein
Systemint.-test ja /nein ja /nein
Systemtest ja /nein ja /nein
Feldtest ja / nein -

Tabelle 10: Parameter fiir Priifwiederholung

* Zusatzlich wird bei gezielter Wiederholung berticksichtigt, dass pro Fehler nur ein
Teil des Tests wiederholt wird. Dieser Wiederholunganteil (sy,qp, 1051) Wird benotigt,
um beispielsweise einen bestimmten Ausgangszustand der Software herzustellen
oder eine Sequenz von Testfdllen zu wiederholen, um die Korrektur zu priifen.

Der Wiederholungsaufwand nach einer Korrektur wird abhangig vom Vorgehen der
Wiederholung berechnet (Abbildung 25): Wird eine Priifung gezielt fiir jeden Fehler
wiederholt, dann wird der Aufwand pro Fehler aufsummiert. Auch der Korrektur-
priifprozess wird fiir jeden Fehler einzeln durchgefiihrt, darum werden die Auf-
wande aller Priifungen des Korrekturpriifprozesses pro Fehler zusammengezahlt.
Der Aufwand fiir die vollstaindige Wiederholung berechnet sich direkt als Anteil des
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Priifstrategie in der

Wertebereich fiir Wiederholung nach Korrektur von

Wartung?®

kritischen Fehlern

Haupt- und Nebenfehlern

Modultest

ohne / gezielt / vollstandig

ohne / gezielt / vollstandig

Subsystemint.-test

ohne / gezielt / vollstandig

ohne / gezielt / vollstandig

Codereview?

ohne / gezielt

ohne / gezielt

Systemint.-test

ohne / gezielt / vollstandig

ohne / gezielt / vollstandig

Systemtest

ohne / gezielt / vollstandig

ohne / gezielt / vollstandig

Tabelle 11: Parameter fiir Priifstrategie in der Wartung

a. Wiederholung der Spezifikations- und Entwurfsreviews und Feldtest sind fiir die Wartung
nicht modelliert.
b. Das gezielte Review von Codednderungen ist als einzelne Priifung modelliert.

Wertebereich fiir Wiederholungsanteil des

Eingabeparameter fiir Priiffung?

Aufwands Umfangs
Modultest 0...100% 0...100%
Subsystemint.-test 0...100% 0...100%
Codereview® (100%) (25 Codezeilen)
Systemint.-test 0...100% 0...100%
Systemtest 0...100% 0...100%
Feldtest® 0...100% -

Tabelle 12: Parameter fiir Priifwiederholung

a. Wiederholung der Spezifikations- und Entwurfsreviews ist nicht modelliert.

b. Das gezielte Review von Codednderungen ist als einzelne Priifung modelliert.

c. Im Feldtest wird vereinfacht der Test als Zuschlag zur Korrektur dargestellt, weil der Test
beim Kunden durch Probeeinsatz stattfindet.

initialen Durchfithrungsaufwands. Fiir die Berechnung des Nutzens spielen nur die
gezielte Priifung und der Korrekturpriifprozess eine Rolle, weil nur dann der Wieder-
holungsaufwand von der Zahl entdeckter Fehler abhangt.

Durch die Testwiederholung wird ein Teil der fehlerhaften Korrekturen entdeckt, da
ich voraussetze, dass die Testfalle unverandert wiederholt werden. Diese Fehler wer-
den erneut korrigiert. In CoBe wird dies durch Anpassung der Fehlerentdeckungs-
und Korrekturquote modelliert. Wie sich unterschiedliche Korrekturpriifprozesse mit
mehr oder weniger Priifungen auf die Fehlerentdeckung nach der Korrektur auswir-
ken, ist in CoBe iiber die Korrekturquote parametrisierbar. Da keine Daten zu unter-
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Zahl der entd. Priifprozess fur
FehlerJe Schwere Korrekturen
Wlederholung Initialer Wdh.-aufwand anderer )
der Prufung Prufaufwand Priifungen pro Fehler Wiederholungs-
aufwand
Priifstragegie fir Anteil Wieder- Wdh.-aufwand
kritische Fehler holungsaufwand pro Fehler

Anteil Wieder-
holungsumfang

Priifstragegie fir
Haupt-/Nebenfehler

Abb. 25: Ursache-Wirkungs-Diagramm des Aufwands zur Priifwiederholung

schiedlichen Priifprozessen verfligbar sind, muss dieser Unterschied speziell fiir
konkrete Situationen quantifiziert werden.

6.3.7 Das Modell fiir den Aufwandseinfluss in CoBe

Damit der Aufwand an konkrete Situationen angepasst werden kann, wird in CoBe
zuerst der nominale Aufwand einzelner Aktivitdten berechnet. Diese nominalen Auf-
wiande werden alle gleichférmig, d.h. durch die gleichen Faktoren mit den gleichen
Werten, angepasst. Ich verwende die folgenden Zusammenhange aus COOCMO II:
Die Einflussfaktoren EM fiir Merkmale des Produkts, der Plattform, des Personals
und des Prozesses, die Skalierungsfaktoren SF und der Einfluss des Umfangs S wir-
ken sich auf die Aufwande in CoBe aus. Der Aufwand einzelner Aktivitaten steigt in
gleichem Mafle, in dem der Gesamtaufwand mit dem Umfang wachst. In diesem Teil
von CoBe wird auch der Kalibrierungsparameter fiir den Aufwand, der Aufwands-
faktor k5, und der Organisationsaufwand als prozentualer Zuschlag afq berticksich-
tigt. Tabelle 13 zeigt die FEingaben, Abbildung26 die Ursache-Wirkungs-
Beziehungen.

Einflussfaktoren

Umfang
Aufwand

(nominal)

Organisations-
zuschlag Aufwandsfaktor
4>

Abb. 26: Ursache-Wirkungs-Diagramm der Aufwandseinfliisse

Skalierungsfaktoren

P Aufwand

Der Produktivitatsparameter af von CoBe fasst diese Einfliisse zusammen. Die Skalie-
rungsfaktoren von COCOMO II bestimmen iiber den Exponenten E den iiberpropor-
tionalen FEinfluss des Umfangs (S) auf den Aufwand (PM);, A ist der
Produktivitatsfaktor in COCOMO II.
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Eingabeparameter Wertebereich
COCOMO-II-Parameter: Kategorien mit jeweils 7 Klassen
Skalierungs- und Einflussfaktoren (Boehm, 2000)

Aufwandsfaktor ko Verhaltm‘s Is.twert ;md COCOMO-II-Resultat
ohne Kalibrierung
Organisationszuschlag afo 0%... X%

Tabelle 13: Eingaben fiir Aufwandseinfliisse

a. Zur Kalibrierung werden Archivdaten verwendet.

17
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Wiederverwendete und gednderte Software wird auf dquivalente Anweisungen
umgerechnet, um Auswahl und Einarbeitung zu beriicksichtigen (Boehm, 2000).

6.3.8 Das Modell fiir Dauer und Personal in CoBe

Weil Dauer und Personalbedarf wichtige Planungsmetriken sind, werden in CoBe
Dauer und Personalbedarf aus dem Aufwand einzelner Aktivitaten berechnet, basie-
rend auf der COCOMO zu Grunde liegenden Annahme, dass es eine typische, ideale
Personenzahl fiir ein Projekt und fiir seine Aktivitaten gibt.

Aufwandsverteilung
auf Aktivitaten

Aufwand Skalierungsfaktoren

Dauerverteilung
auf Aktivitaten
Personal

Aufwandsfakt >
ufwandsfaktor Anteil Dauer
Gesamtaufwand Dauerfaktor Korrektoren

Abb. 27: Ursache-Wirkungs-Diagramm fiir Dauer- und Personalberechnung

Dieses typische Verhiltnis wird in CoBe mit COCOMO II berechnet (Abbildung 27).
Dazu wird zuerst das Verhiltnis zwischen Aufwand, Dauer und Personalbedarf fiir
das gesamte Projekt berechnet. Dabei spielen die COCOMO-II-Einfliisse eine Rolle.
Zusétzlich werden zur Kalibrierung von CoBe der Aufwandsfaktor und der Dauer-
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tfaktor von CoBe beriicksichtigt. Dann wird der Personalbedarf fiir einzelne Aktivita-
ten mit den folgenden Schritten bestimmt:

e COCOMO und COCOMO II (Boehm, 1981 und 2000) enthalten Tabellen, in denen
die Verteilung des Aufwands und die Verteilung der Dauer auf Phasen und Aktivi-
taten angegeben werden. Beispielsweise benotigt der Entwurf 6 % des Projektauf-
wands und 19 % der Projektdauer. Da es die Tabellen fiir feste Umfange gibt
(2 KDSI!, 8 KDSI, 16 KDSI, 64 KDSI, 128 KDSI, 512 KDSI), werden in CoBe Zwi-
schenwerte linear aus dem Umfang interpoliert.

* Die Tabellen gibt es fiir die drei Projektarten in COCOMO: organic, semi-detached,
embedded. Fiir jede dieser Projektarten ist ein Exponent fiir die Berechnung des
Aufwands und ein Exponent fiir die Berechnung der Dauer vorgegeben. In
COCOMOI gibt es keine Projektarten mehr, sondern 5 Skalierungsfaktoren, aus
denen diese Exponenten berechnet wird. Darum werden in CoBe die Zwischen-
werte flir den Exponenten linear interpoliert. Resultat sind also Aufwands- und
Dauerverteilung fiir den Umfang. Kalibriert mit Dauer- und Aufwandsfaktor
berechnet sich daraus der Personalbedarf pro Aktivitat. Die Dauer wird aus dem
Personalbedarf der einzelnen Aktivititen berechnet (Abbildung 28). Die Dauer
wird in Arbeitstagen oder Arbeitsstunden ausgegeben, der Personalbedarf als
Anzahl Mitarbeiter. Weil CoBe mit Mittelwerten rechnet, sind alle Ausgaben auf
einer Rationalskala.

Aufwandsverteilungen pro
Phase und Aktivitit (in %) \ Aufwandsantel
/ pro Aktivitit (in %) \
Umfang (in Anweisungen) Personalanteil pro
und Skalierungsfaktoren \ Daueranteil Aktivitat (in %)
/ pro Aktivitit (in %)
Dauerverteilungen pro
Phase und Aktivitat (in %)
Aufwand, Dauer, > Personalbedarf
Personal fiir Projekt pro Aktivitat

Legende g berechnet aus [ ] Daten

Abb. 28: Berechnung des Personalbedarfs aus COCOMO-II-Parametern

1. KDSI bezeichnet 1000 delivered source instructions, also 1000 gelieferte Anweisungen
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CoBe verwendet fiir den Personalbedarf der Korrektur die Zahl der Entwickler der
entsprechenden Phase, da COCOMO die Korrektur nicht darstellt. Es kann eingege-
ben werden, welcher Teil der Entwickler verfiigbar ist (Tabelle 14).

Eingabeparameter Wertebereich

Verhaltnis Istwert und COCOMO-II-Resultat

Dauerfaktor kp ohne Kalibrierung?

Anteil Korrektoren my 0...100 %

Tabelle 14: Eingaben fiir Dauer und Personal

a. Zur Kalibrierung werden Archivdaten verwendet.

6.3.9 Das Geldwerte-Modell von CoBe

Das Geldwerte-Modell beschreibt, wie Planungsmetriken in Geldwerte umgerechnet
werden. Dazu konnen Dauer, Aufwand und Personalbedarf jeweils durch Geld
gewichtet werden. Damit wird moglich, Kosten mit Nutzen zu vergleichen, weil alle
Auswirkungen der Priifung auf eine einheitliche Skala abgebildet werden.

Die Gewichtung des Aufwands erfolgt durch Personalkosten. Anders als im QS-
Modell (Drappa, 1998) kosten in CoBe alle Mitarbeiter gleich viel, weil Mitarbeiter in
CoBe als Zahl dargestellt werden, wahrend sie im QS-Modell unterscheidbar sind
und abhangig von ihren Kenntnissen und Fahigkeiten unterschiedlich viel kosten. Die
Gewichtung der Dauer und des Personalbedarfs ist projektspezifisch, da in manchen
Projekten Verzogerungen teuer sind, etwa weil sie Vertragsstrafen nach sich ziehen;
in manchen Projekten ist zusatzliches Personal nicht verfiigbar. Diese Faktoren kon-
nen in CoBe durch die Gewichtung dargestellt werden.

Eine Abzinsung langfristiger Kosten (Hanusch, 1987; Miithlenkamp, 1994; Nas, 1996;
Harrison et al., 1999; Raffo, 2005; Kerzner, 2006) ist in CoBe nicht enthalten. Dafiir gibt
es mehrere Griinde: Die Wartungsphase der Software wird im Modell als eine einzige
logische Phase betrachtet, sie kann sich abhangig vom Produkt {iber einen kiirzeren
oder einen ldngeren Zeitraum erstrecken. Abhdngig von der Art und Intensitat des
Einsatzes werden Fehler frither oder spater in der Wartungsphase entdeckt. Diese
Einfliisse sind im Modell nicht enthalten. Aufserdem sind von den langfristigen Aus-
wirkungen andere Personengruppen, die Klienten, betroffen. Dann ist fraglich, ob
abgezinst werden darf und wer den Zinssatz bestimmt, der die Resultate stark pragen
kann (Hanusch, 1987).

6.3.10 Das Fehlerfolgekostenmodell von CoBe

Fehlerfolgekosten werden nicht im Geldwertemodell, sondern durch ein eigenes
Modell dargestellt. Dieses Fehlerfolgekostenmodell beschreibt, welche Kosten beim
Einsatz des Produkts durch Fehler verursacht werden. Es gewichtet Fehlverhalten der
Software mit Geldwerten, angelehnt an die Unzuverldssigkeitsmetrik von Ludewig
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und Lichter (2007). Im Modell der Fehlerfolgekosten von CoBe werden die Folge-
kosten von Fehlern iiber die gesamte Lebensdauer des Produkts betrachtet, basierend
auf zwei Zusammenhangen:

Wenn ein Fehler auftritt, dann wird Schaden verursacht; jedes Fehlverhalten kostet.
Dazu gehort, dass ein Benutzer Arbeitszeit verliert oder dass die Software direkt
finanziellen Schaden verursacht.

Ob und wie haufig ein Fehler auftritt, hangt von der Verwendung der Software ab.
Da die Software auf eine bestimmte Art verwendet werden muss, um den Fehler
wirken zu lassen, hangt dies von vielen Einfliissen und einer komplexen Ursache-
Wirkungs-Kette ab. So kann ein einzelner Fehler mehrfach auftreten, wenn bei-
spielsweise die gleichen Daten mehrfach eingegeben werden. Ein Fehler kann nicht
auftreten, weil genau die Datenkombination, die den Fehler wirksam werden ldsst,
nicht vorkommt. Ein Fehler kann in einem fehlertoleranten System zwar wirksam
werden, sich aber nicht als Fehlverhalten manifestieren, weil dies durch das System
verdeckt wird. Obwohl der Zusammenhang zwischen Fehler (Ursache) und Fehl-
verhalten (Wirkung) also kausal ist, ist eine Aussage tiber die Haufigkeit, mit der
Fehlerursachen wirksam werden, nur im Riickblick mdoglich. Somit ist nur im
Riickblick moglich, die Haufigkeit zu messen, aber nicht im Voraus, die Haufigkeit
deterministisch zu bestimmen.

Nachtréglich konnen diese Daten im Prinzip gemessen werden. Zur Planung sind sie
aber aus den folgenden Griinden nicht verfligbar:

Absolute Fehlerzahlen sind bei der Planung nicht bekannt.

Der Schaden, der durch Fehlverhalten verursacht wird, kann im Prinzip bei den
Benutzern gemessen werden. Praktisch sind die Benutzer fiir die Hersteller in
vielen Fallen nicht zuganglich; die Messung ist besonders schwierig, wenn der
Schaden indirekt entsteht, z.B. die Kunden des Kunden betrifft. Selbst Archivdaten
sind darum kaum verfiigbar.

Die Verwendung der Software kann ganz verschieden sein. Beispielsweise kann ein
Produkt bei einem einzigen Kunden regelmafiig verwendet werden. Ein anderes
Produkt kann einen Service bieten, der mehr oder weniger haufig genutzt wird. Bei
einem Produkt fiir den Markt ist unklar, wie viele Benutzer die Software haben
wird. Bei der Planung ist es also in vielen Fallen kaum moglich, die genaue Haufig-
keit der Verwendung zu prognostizieren.

Die Wahrscheinlichkeit, mit der ein Fehler auftritt, ist durch die Verwendung der
Software und durch den Fehler bestimmt. Fehler sind bei der Planung unbekannt.
Die konkrete Verwendung der Software ist bei der Planung nicht bekannt. Darum
ist eine genaue Prognose kaum maoglich.

Zuverlassigkeitstests (Poore und Trammell, 1996) konnen nicht zur Planung einge-
setzt werden, um z.B. die Haufigkeit des Fehlverhaltens zu prognostizieren
(Abschnitt 5.3), weil diese Tests ohne Programm nicht durchgefiihrt werden kon-
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nen. Zuverldssigkeitsmodelle (Lyu, 1995) benétigten Testdaten zur Quantifizie-
rung; es ist unklar, ob und unter welchen Bedingungen Archivdaten verwendet
werden konnen. Zumindest fiir unterschiedliche Benutzungsprofile miissen sie
erneut angepasst werden. Unterschiedlich hohe Schaden unterschiedlicher Fehler
werden in den Zuverlassigkeitstests und -modellen nicht berticksichtigt.

Weil also zur Planung wenig Informationen verfiigbar sind, wird in CoBe ein statisti-
scher Mittelwert fiir die Folgekosten eines Fehlers aus Eingaben, die zur Planungszeit
bestimmt werden konnen, abgeschitzt. Daraus werden anfallende und entfallende
Fehlerfolgekosten der ausgelieferten Fehler berechnet. Zu diesem Zweck wird fiir
CoBe ein risikobasierter Ansatz (Boehm, 1991) mit Klassifikationen gewahlt. Risiko ist
definiert als die Wahrscheinlichkeit fiir einen Schaden. Der Risikowert ist definiert als
Produkt aus Eintrittswahrscheinlichkeit und Schaden. CoBe verwendet drei Parame-
ter:

* Auftretenswahrscheinlichkeit: Ein Fehler fiihrt bei einer Verwendung der Software
mit einer bestimmten Wahrscheinlichkeit zu einem Fehlverhalten.

e Schaden: Ein Fehlverhalten verursacht einen bestimmten, monetar bezifferbaren
Schaden. Ein einzelner Fehler kann in der Realitat mehrfach auftreten und dabei
unterschiedlichen Schaden hervorrufen, je nachdem, in welcher Situation der Feh-
ler wirksam wird. In Cobe wird pro Fehler ein statistischer Mittelwert verwendet;
ein einzelner Fehler verursacht also bei jedem Auftreten einen bestimmten mittle-
ren Schaden. Ein anderer Fehler kann in CoBe beim Auftreten zu einem anderen
mittleren Schaden fiihren.

* Verwendungshaufigkeit: Die Software kann unterschiedlich haufig verwendet wer-
den, bis ein Fehler korrigiert wird. Je haufiger die Software verwendet wird, desto
haufiger hat ein Fehler die Chance, wirksam zu werden. Dabei werden nicht alle
Fehler gemeldet oder korrigiert, damit kann die Verwendungshéaufigkeit bis zur
Korrektur also unterschiedlich sein. Im Extremfall bleibt ein Fehler {iber die
gesamte Lebensdauer in der Software.

Mit diesen drei Fehlermerkmalen konnen die Fehlerfolgekosten eines Fehlers berech-
net werden:

Fehlerfolgekosten eines Fehlers
= Schaden - Auftretenswahrscheinlichkeit - Verwendungshaufigkeit

Da wahrend der Planung nicht auf Messungen zuriickgegriffen werden kann, werden
in CoBe Fehler nicht einzeln klassifiziert. Stattdessen wird der Anteil der Fehler pro
Schadensklasse, pro Klasse der Auftretenswahrscheinlichkeit und pro Klasse der Ver-
wendungshaufigkeit eingegeben. Daraus werden die mittleren Fehlerfolgekosten pro
Fehler berechnet. Beispielsweise kann eingegeben werden, dass 20 % der Fehler zur
Schadensklasse der Komfortprobleme gehdren und 80 % der Fehler zur Schadens-
klasse fiir eine verlorene Aufwandsstunde. 20 % der Fehler treten in den Hauptfunk-
tionen auf, d.h. sie treten mit hoher Wahrscheinlichkeit auf, 20 % sind in den
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Nebenfunktionen und treten darum selten auf, 60 % der Fehler treten in Ausnahme-
fallen, also sehr selten, auf. Die Software wird von einem Benutzer zehnmal verwen-
det, bis der Fehler korrigiert wird. Wie in COCOMO II werden die Klassen durch
quantitative Angaben und Beschreibungen definiert. Die Klassifikation fiir den Scha-
den (Tabelle 15) orientiert sich an der Zuverladssigkeitsbewertung in COCOMO IL
Tabellen 16 und 17 zeigen die Klassifikation fiir die Auftretenswahrscheinlichkeit und
die Verwendungshdaufigkeit. Ich nehme an, dass die Fehleranteile, d.h. die Verteilung
der Fehler auf die Klassen, aus ahnlichen Projekten tibernommen werden kénnen.

Schaden . . Wertebereich:
(Euro) Beschreibung und Beispiele Fehleranteil?
0 | kein Schaden 0...100 %
10 | Komfortprobleme, typische Bedienungsprobleme 0...100 %
Geringer, leicht auszugleichender Schaden, Workarounds mit o
100 | . . . 0...100 %
einer Dauer bis zu einer Stunde
1000 Mlttlerer,' auszugleichender Schaden, Verlust von etwa einem 0..100 %
Tag Arbeit
10 000 | Mittlerer Schaden, Verlust von mehreren Tagen Arbeit 0...100 %
100 000 | Hoher finanzieller Schaden 0...100 %
1 000 000 | Sehr hoher finanzieller Schaden 0...100 %
10 000 000 | Personenschaden (Smith und Simpson, 2005, S. 39) 0...100 %
Tabelle 15: Schadensklassen in CoBe
a. Insgesamt 100% iiber alle Klassen
Auftretenswahr- . . Wertebereich:
scheinlichkeit Beschreibung und Beispiele Fehleranteil®
0 | Fehler tritt nie auf 0...100 %
0,125 | Fehler tritt in Ausnahme- und Sonderfallen auf 0...100 %
Fehler tritt selten bei Verwendung auf, z.B. in einer
0,25 | Nebenfunktion oder in einer Hauptfunktion unter 0...100 %
bestimmten Bedingungen
05 Fehler tritt bel typischer Verwendung auf, z.B. in einer 0..100 %
Hauptfunktion
10 Fehler tritt sicher bei Verwendung auf, z.B. beim Starten 0..100 %

der Software

Tabelle 16: Klassen der Auftretenswahrscheinlichkeit in CoBe

a. Insgesamt 100% tiber alle Klassen
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Verwendungs- . o Eingabewert:
haufigkeit Beschreibung und Beispiele Fehleranteil®
0 | Fehler in nicht verwendetem Software-Teil 0...100 %
Fehler wird sofort korrigiert, Software wird einmal o
1], 0...100 %
eingesetzt
10 | Wenige Benutzer, Software wird 10 mal eingesetzt 0...100 %
100 | Uber 10 Benutzer oder lange Korrekturdauer 0...100 %
1000 | Uber 100 Benutzer und lange Korrekturdauer 0...100 %
10 000 Uber 1‘000 Benutzer, lange Korrekturdauer, 0..100 %
intensive Verwendung
100 000 Uber 1Q 000 Benutzer, lange Korrekturdauer, 0..100 %
intensive Verwendung
1 000 000 Uber 190 000 Benutzer, lange Korrekturdauer, 0..100 %
intensive Verwendung

Tabelle 17: Klassen der Verwendungshadufigkeit in CoBe

a. Insgesamt 100% iiber alle Klassen

Die Verwendung definiere ich nicht genauer, weil diese Definition vom Produkt
abhangt. Stattdessen orientiere ich mich an der Kritikalitaitsbewertung (Smith und
Simpson, 2005), fiir die eine dhnlich allgemeine Definition verwendet wird. Fehler,
die nie auftreten oder keinen Schaden verursachen, werden nicht gemeldet und ver-
ursachen darum auch keinen Wartungsaufwand.

Fiir die Verteilung auf den Schaden kann zusatzlich gewahlt werden, ob und welche
Schadensklasse welcher Fehlerschwere zugeordnet wird. Dies ist fiir Projekte sinn-
voll, in denen die Fehlerschwere ausschlieslich durch den Schaden, der durch den
Fehler beim Einsatz verursacht werden kann, definiert ist.

6.4 Reviewsim Modell

CoBe enthalt Priifungsmodelle fiir das Spezifikationsreview, das Entwurfsreview und
das Codereview. Fiir alle Reviews gelten die gleichen Zusammenhéange, sie unter-
scheiden sich aber in der Quantifizierung.

6.4.1 Eingaben fiir Reviews

Die Eingaben fiir das Spezifikationsreview, das Entwurfsreview und das Codereview
sind in Tabelle 18 beschrieben. Die Tabellen 20 und 21 fassen die Ausgaben zusam-
men. In CoBe wird berticksichtigt, dass zwischen einzelnen Sitzungen Zeit zur Vorbe-
reitung und Organisation benoétigt wird. Die daraus resultierende Dauer wird als
Bruttodauer bezeichnet. Die Nettodauer dagegen enthalt die Dauer ohne Verzogerun-
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gen. Weil Mitarbeiter zu verschiedenen Zeitpunkten und fiir verschiedene Aktivita-
ten eingesetzt werden, wird ihre Anzahl fiir das Gesamtresultat nicht addiert.

Eingabeparameter Wertebereich
Priiflingstiberdeckung sg,piew Anteil des Priiflings am Artefakt
Zahl der Gutachter Ggeyien Anzahl

Siebenstufige Skala von “extrem niedrig” bis

Kompetenz der Gutachter KPR, pipw “extrem hoch”

Vorbereitungsintensitat der Gutachter vg,. | Vorbereitungsrate in Stunden pro Seite des
view Priiflings

Priifung nur von neuer Software oder Prii-

Prifung wiederverwendeter Software fung einschl. wiederverwendeter Software

Tabelle 18: Entscheidungsparameter fiir Reviews

6.4.2 Zusammenhinge im Reviewmodell

Abbildung 29 zeigt, welche Eingaben die Fehlerentdeckung beeinflussen.

Gutachter-

Gutachterzahl kompetenz
- —p—>

Vorbereitungs-

intensitat )

> Fehler-

Priflings- entdeckungsquote

Uberdeckung
4>

Abb. 29: Ursache-Wirkungs-Diagramm der Fehlerentdeckung

Gutachterzahl. Der Zusammenhang zwischen der Gutachterzahl und der Fehlerent-
deckungsquote basiert in CoBe auf einem Modell, das sich an Biffl (2001) anlehnt:
Jeder Gutachter entdeckt einen bestimmten Anteil g, der Fehler. Das bedeutet, dass
jeder weitere Gutachter einen Teil derjenigen Fehlern, die von keinem anderen Gut-
achter entdeckt wurden, entdeckt. Abbildung 30 skizziert den Zusammenhang, der
sich daraus ergibt: Die Fehlerentdeckungsquote steigt mit der Gutachterzahl. Je mehr
Gutachter teilnehmen, desto geringer steigt die Fehlerentdeckungsquote durch einen
weiteren Gutachter. Biffl (2001) beschreibt dies durch die Wahrscheinlichkeit, mit der
ein Gutachter einen bestimmten Fehler entdeckt.

In CoBe wird die Fehlerentdeckungsquote durch die Gutachterzahl Gg,;,,, durch
den Fehleranteil g,, den ein Gutachter entdeckt, und durch den Parameter Tqr berech-
net. Die Form der Gleichung ist so gewahlt, dass sie umgeformt und dann mit linearer
Regression quantifiziert werden kann:
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Abb. 30: Gutachterzahl und Fehlerentdeckung (Skizze)

GRevier ie
QReview =1- rqr(l =q,) e 1~ QReview = rqr(l —q,) e
Fehlerart. Spezifikations-, Entwurfs- und Codereview unterscheiden sich in der Feh-
lerentdeckungsquote fiir die unterschiedlichen Fehlerarten. Beispielsweise entdeckt
das Entwurfsreview vor allem Entwurfsfehler und nur einen geringen Anteil Spezifi-
kationsfehler. Der Faktor ffr.yieu, 4+ Passt die Fehlerentdeckungsquote eines Reviews
an verschiedene Fehlerarten an.

Fehlerschwere. Reviews konnen sich in der Fehlerentdeckungsquote fiir die Fehler-
schwere unterscheiden. Der Faktor ffr.view, Schwere Passt die Fehlerentdeckungsquote
eines Reviews fiir unterschiedlich schwere Fehler an.

Vorbereitungsintensitit. Die Vorbereitungsintensitat wird im Modell durch die Vor-
bereitungsrate v,y in Seiten pro Stunde dargestellt. Der Einfluss der Vorberei-
tungsintensitait wird durch die Funktion fyombereitung (VReview) beschrieben
(Abbildung 31). Sie basiert auf den folgenden Zusammenhangen: Ein gewisser Min-
destaufwand muss von einem Gutachter investiert werden, damit der Gutachter
tiberhaupt Fehler entdeckt. Ich bezeichne diesen Punkt als negative Effektgrenze.
Dann steigt die Fehlerentdeckungsquote mit dem Vorbereitungsaufwand iiber einen
typischen Wert hinaus, bis sich die Fehlerentdeckungsquote stabilisiert, weil auch mit
noch mehr Aufwand kaum noch mehr Fehler entdeckt werden; im Modell werden
keine weiteren Fehler mehr entdeckt. Diesen Punkt bezeichne ich als positive Effekt-
grenze. Beispielsweise werden fiir die Spezifikation etwa 10 Seiten pro Stunde als
Normalfall angegeben (Abschnitt 6.8.2). Bis 5 Seiten pro Stunde werden noch mehr
Fehler entdeckt, mit einer langsameren Vorbereitung als 5 Seiten pro Stunde aber
nicht mehr. Ab 35 Seiten pro Stunde werden keine Fehler entdeckt, weil der Gutach-
ter das Dokument tiberfliegt. Der Einfluss wird abhangig von der durch den Normal-
fall normierten Vorbereitungsintensitat berechnet (Abbildung 31).

Gutachterkompetenz. Die Kompetenz wird angelehnt an Boehm (2000) auf einer
Ordinalskala mit 7 Kompetenzklassen dargestellt. Jeder Klasse ist ein Wert fiir den
Faktor ffrepiew, kp Zugeordnet. Hochkompetente Gutachter finden beispielsweise etwa
20% mehr Fehler als der Durchschnitt, der Faktor ist dann 1,2.
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Abb. 31: Funktion fiir die Vorbereitungsintensitat (Skizze)

Priiflingsiiberdeckung. Fehler konnen nur im gepriiften Teil eines Artefakts entdeckt
werden, abhdngig vom gepriiften Umfangsanteil sg,,;.,, des Priiflings. Die Fehler, die
im gepriiften Umfangsteil enthalten sind, bezeichne ich als entdeckbare Fehler. Erfol-
gen die Reviews ohne Priorisierung, dann ist der Zusammenhang zwischen
Umfangsanteil und den entdeckbaren Fehlern linear. Mit Priorisierung werden die
kritischen Teile bevorzugt gepriift. Diese Teile enthalten tiberproportional viele Feh-
ler. Abbildung 32 illustriert diesen Zusammenhang zwischen dem gepriiften Umfang
und dem Anteil der entdeckbaren Fehler. Werden 100 % beispielsweise des Codes
gepriift, dann konnen darin 100 % derjenigen Fehler entdeckt werden, die prinzipiell
mit der Priifung entdeckbar sind. Werden 20 % des Codes gepriift, die als kritisch
angesehen werden, dann konnen rund 40 % dieser Fehler entdeckt werden. Der
Zusammenhang zwischen Umfang und entdeckbaren Fehlern ist also nicht-linear
und wird durch die Funktion fpijorisierung ZWischen Fehlerentdeckungsquote und der
Priiflingsiiberdeckung sg,y;.,, modelliert:

_100%
80% |
60%
40%

20%

Entdeckbare Fehler (%

0%

T T T T 1
0% 20% 40% 60% 80% 100%
Geprifter Umfang (%)

Abb. 32: Gepriifter Umfang und entdeckbare Fehler (Skizze)
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Der Exponent 7 gppere beschreibt, wie stark sich Fehler im kritischen Teil konzentrie-
ren. Fehler werden nur dann in wiederverwendeter Software entdeckt, wenn diese
auch gepriift wird.

Der Exponent liegt zwischen 0 und 1. Bei dieser Funktion wird die Steigung unend-
lich, wenn der Umfang nahe Null geht. In diesem Grenzbereich wird nur ein sehr
kleiner Bruchteil des Dokuments gepriift, beispielsweise das erste Wort des Doku-
ments. Es ist aber nicht realistisch, in einem Review ausschliefSlich das erste Wort zu
priifen. Darum gehe ich davon aus, dass immer ein gewisser Mindestumfang gepriift
wird und somit der Bereich nahe Null keine Rolle spielt.

Die Fehlerentdeckungsquote berechnet sich somit aus:

QReview, Art, Schwere = ffReview, Art 'ffReview, Schwere 'ffReview, KP

’ fPriorisierung( Schwere, SReview)

) fVorbereitung(vReview)
GReview
(L= rgp(1= ) ")

Kosten und Umfang. Spezifikations-, Entwurfs- und Codeumfang werden aus dem
Umfang in Function Points abgeleitet. Der Aufwand fiir die Vorbereitung wird {iber
den Priiflingsumfang, die Zahl der Gutachter und ihre Vorbereitungsrate berechnet.
Die Gutachterkompetenz beeinflusst den Normalwert der Vorbereitungsintensitat, in
dem jeder Kompetenzklasse ein Wert fiir einen Einflussfaktor zugeordnet ist; die Ein-
gabe fiir die Vorbereitungsrate wird nicht verdandert, weil die Eingabe messbar sein
soll. Bei hoher Kompetenz konnen beispielsweise 13 Seiten pro Stunde griindlich
gepriift werden, bei normaler Kompetenz 10 Seiten. Der Durchsatz in Sitzungen wird
durch einen Parameter in Seiten pro Stunde oder Anweisungen pro Stunde darge-
stellt. Aufwand und Nettodauer fiir Sitzungen berechnen sich direkt aus diesem Sit-
zungsdurchsatz, dem Priiflingsumfang und der Teilnehmerzahl. Die Teilnehmerzahl
ergibt sich aus der Zahl der Gutachter, einem Moderator, einem Autor und einem
Protokollfiihrer. Die Bruttodauer enthalt den Abstand zwischen Sitzungen, weil dafiir
der Priifling so aufgeteilt wird, dass einzelne Sitzungen hochstens zwei Stunden dau-
ern. Der Abstand zwischen zwei Sitzungen betrdgt drei Tage (Drappa, 1998). Zusam-
menhdnge eines zu umfangreichen Priiflings, zu langer Sitzungen und den Einfluss
des Moderators (Hampp, 2001) modelliere ich nicht, weil fiir diese detaillierten Pla-
nungen der Moderator zustandig ist. Hilfsmittel und ihr Einfluss sind nicht im
Modell enthalten, weil die Studien keinen klaren Unterschiede zeigen.

Codereviews von Korrekturen. Fiir das Review einer Anderung gelten die gleichen
Zusammenhéange wie fiir das Codereview. In einem Review einer Anderung wird nur
ein kleiner Ausschnitt des Codes betrachtet, nimlich die Anderung und der unmittel-
bar damit zusammenhangende Code.
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6.5 Automatische statische Codeanalyse

Die Codeanalyse ist in CoBe durch ihre Fehlerentdeckungsquoten, den Vorberei-
tungsaufwand und die Dauer der Durchfithrung modelliert: Der Vorbereitungsauf-
wand zur Einbindung und Konfiguration des Werkzeugs in der individuellen
Entwicklungsumgebung ist in CoBe konstant, der Durchfiihrungsaufwand wird ver-
nachlassigt. Als Parameter kann die Dauer der Durchfiihrung angegeben werden,
damit rechenintensive Verfahren fiir umfangreichen Code von CoBe dargestellt wer-
den konnen.

Priifparameter werden nicht modelliert, stattdessen wird die Fehlerentdeckungs-
quote festgelegt und nur die Eingabe, ob die Codeanalyse durchgefiihrt wird, angege-
ben. Diese einfache Modellierung wird gewahlt, weil sich die Auswirkungen von
Priifparametern der Codeanalyse in CoBe aus den folgenden Griinden nicht darstel-
len lassen: Da die Priifparameter die moglichen Entscheidungen iiber die Codeana-
lyse darstellen, miissten diese Entscheidungen modelliert werden. Diese
Entscheidungen sind die Auswahl des Werkzeugs und die eingesetzten Analysen.
Diese Entscheidungen wirken, indem unterschiedliche Fehlerarten unterschiedlich
gut entdeckt werden. Dazu gehort beispielsweise, ob die Verwendung von Nullpoin-
tern entdeckt wird, oder welche Konstrukte als gefdahrlich eingestuft werden. Diese
Unterschiede sind in CoBe nicht sichtbar, da die Fehlerart iiber die Fehlerentstehung
definiert ist und somit nicht erlaubt, die Verwendung von Nullpointern oder die Ver-
wendung bestimmter Konstrukte darzustellen. Fiir eine solche detaillierte Darstel-
lung der Fehler fehlen aber auch empirische Daten.

6.6 Tests im Modell

CoBe enthalt Priifungsmodelle fiir den Modultest, Subsystem- und Systemintegrati-
onstest und den Systemtest. Diese Priifungsmodelle sind durch die gleichen Zusam-
menhdnge, aber mit unterschiedlicher Quantifizierung beschrieben.

6.6.1 Eingaben von Tests

Die Eingaben fiir die Testmodelle sind in Tabelle 19 dargestellt. Fiir den Black-Box-
Test kann die Vollstandigkeit der Testtechniken eingegeben werden, beispielsweise
wie viele der Funktionen durch Testfdlle abgedeckt werden. Als zusatzliche Eingabe
kann der verfiigbare Aufwand fiir den Black-Box-Test eingegeben werden, da Auf-
wand im Vergleich zur Zahl entdeckter Fehler als Testendekriterium verwendet wird
(Kan, 2003; Stark et al., 1994). Dies wird in CoBe als Brute-Force-Test bezeichnet. Fiir
den Glass-Box-Test werden messbare und gebriuchliche Uberdeckungen modelliert.
Aus den Varianten der Bedingungsiiberdeckung wahle ich die Termiiberdeckung
(MC/DC), weil sie in RTCA (1992) gefordert wird. Als Schleifeniiberdeckung wahle
ich den Boundary-Interior-Test, der prazise definiert ist (Liggesmeyer, 2002). Ich
unterscheide zwischen Uberdeckungskriterium als zu erreichende und Uberde-
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ckungsgrad als erreichte Uberdeckung. Die Tabellen 20 und 21 fassen die Modellre-

sultate zusammen.

Eingabeparameter

Wertebereich

Black-Box-Test mit Funktionsabdeckung, mit
Aquivalenzklassen, mit Sonderféllen

Prozentwerte fiir die Abdeckung der
einzelnen Testtechniken

Zusatzlicher Aufwand fiir weitere Testfalle
(Brute-Force-Test)

Aufwand in Entwicklerstunden

Vorbereitungszeitpunkt des Black-Box-Tests
(nur fiir Systemtest)

Entwurfsphase oder Testphase

Glass-Box-Test (erganzend) mit Kriterien fiir
Anweisungs-, Zweig-, Bedingungs- und
Schleifeniiberdeckung

Prozentwerte fiir die Uberdeckung der
einzelnen Einheiten

Kompetenz der Tester

Siebenstufige Skala von “extrem niedrig” bis
“extrem hoch”

Wiederholung des Tests

Ohne, gezielt oder vollstandig

Priifung wiederverwendeter Software

Neue Software oder gesamte Software

Tabelle 19: Entscheidungsparameter fiir den Systemtest

6.6.2 Zusammenhinge im Testmodell

Abbildung 33 zeigt die Eingaben und ihren Einfluss auf die Fehlerentdeckung.

Funktionsabdeckung

Tester-
kompetenz
Frihe Test-
vorbereitung

Aquivalenzklassen-
abdeckun

Abdeckung Sonderfalle

Test wv.

Software
e

bbb B

Fehler-

Anweisungsiberdeckung

Zweiguberdeckung
Testfallzahl

Schleifentberdeckung Brute-Force-Test

Termiberdeckung

> entdeckungsquote
getrennt fur
Vorbereitung und
Durchfiihrung

Umfang neuer
Software

Umfang wv.
Software

Abb. 33: Ursache-Wirkungs-Diagramm fiir Fehlerentdeckung durch Test

Die Zahl der Testfalle bildet die Grundlage fiir das Testmodell (Abbildung 34), weil
Testfélle die Fehlerentdeckung und den Aufwand pragen (Abschnitt 5.5).

Testtdlle werden im Modell durch die Testfallzahl T auf der Rationalskala dargestellt.
Die Testfallzahl ist nach oben nicht beschrankt.
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Parameter flir Testfallzahl
Black-Box-Test Black-Box-Test

v

Erreichte Testtall-
Uberdeckungsgrade zahl gesamt \
Fehlerent-
+ deckungsquote Q
Kriterien fiir Testfallzahl Tester- /
Glass-Box-Test[ ™| Glass-Box-Test kompetenz

Abb. 34: Uberblick iiber das Testmodell

Einzelne Testfélle sind in CoBe beziiglich der Fehlerentdeckung nicht unterscheidbar,
weil sich nicht am Testfall erkennen lasst, mit welcher Testtechnik der Testfall ent-
standen ist; ein Testfall besteht ausschliefdlich aus Testeingaben und Sollresultaten.
Alle Testfdlle werden als gleichwertig betrachtet, obwohl Studien zeigen, dass der
Black-Box-Test andere Fehlerarten als der Glass-Box-Test entdeckt. Die Studien zei-
gen aber widerspriichliche Ergebnisse (Juristo et al., 2004).

Testfille im Black-Box-Test. Fiir einen vollstaindigen Black-Box-Test und zur Nor-
mierung wird in CoBe die nominale Zahl der Testfalle T}, berechnet. Sie ist durch den
Umfang Sgp in Function Points bestimmt, unterschieden nach neuer und wiederver-
wendeter Software. Die nominale Testfallzahl T,, beschreibt, wie viele Testfélle fiir
einen Black-Box-Test durchgefiihrt werden, bei dem alle Testtechniken vollstandig
angewendet werden. Die Parameter rp; und r1; quantifizieren den Zusammenhang:
T, = o+ S . Diese Modellierung setzt voraus, dass Function Points fiir die Software
geeignet sind; in anderen Fallen konnen Function Points aber als interne Rechengrofie
verwendet werden, aus der der Code-Umfang berechnet wird (Abschnitt 6.3.1). Wird
eine andere Variante der Function Points verwendet, muss der Zusammenhang neu

quantifiziert, zumindest tiberpriift werden.

Den Testtechniken des Black-Box-Tests wird jeweils die gleiche Zahl an Testfdllen
zugeordnet. T bezeichnet im Modell die Testfallzahl, die sich linear aus der Abde-
ckung der Testtechniken berechnet. Werden beispielsweise alle Funktionen abge-
deckt, dann wird ein Drittel der Testfdlle T,, vorbereitet und durchgefiihrt. Diese
Testfallzahl T wird mit T}, zur relativen Testfallzahl ¢ normiert. Dadurch wird der Ein-
fluss des Umfangs herausgerechnet. Grundlage ist also die normierte Testfallzahl ¢.

Testfille im Glass-Box-Test. Die Zahl der Testfille, die im Glass-Box-Test definiert
und durchgefiihrt werden, hingt in CoBe vom Uberdeckungsgrad ab, der durch den
Black-Box-Test erreicht wurde, und vom Uberdeckungskriterium, das fiir den Glass-
Box-Test gefordert wird. Damit die Zahl der Testfdlle im Glass-Box-Test berechnet
werden kann, muss der Zusammenhang zwischen Testfallzahl einerseits und Uberde-
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ckungsgrad oder -kriterium andererseits definiert werden. Qualitativ gehe ich davon
aus, dass im Mittel jeder Testfall die Uberdeckung erhéht, solange noch nicht die voll-
staindige Uberdeckung erreicht ist. Denkbar sind verschiedene quantitative Zusam-
menhinge zwischen Testfallzahl und Uberdeckungsgraden:

* Mit einem linearen Zusammenhang tiberdeckt jeder Testfall konstant viele Einhei-
ten. Dies wird aber durch Erfahrungen widerlegt. Grady (1992) berichtet beispiels-
weise, dass etwa 80 % Anweisungsiiberdeckung leicht zu erreichen sind, dass es
dann aber mithsam wird, die Uberdeckung weiter zu steigern. Der Umfang neuen
Codes, den ein Testfall ausfiihrt, nimmt typisch ab, je mehr Testfdlle bereits ausge-
fiihrt wurden.

* Legt man dem Modell die Annahme zu Grunde, dass jeder Testfall den gleichen
Anteil noch nicht ausgefiihrter Einheiten tiberdeckt, fiihrt dies zu einem Zusam-
menhang zwischen der Uberdeckung c und der Testfallzahl t und dem Anteil g, der
pro Testfall tiberdeckt wird, mit der Form ¢ = 1-(1- qt) Damit kann aber nicht
dargestellt werden, dass 100 % Uberdeckung erreicht werden oder erreicht werden
sollen. In der Realitdat kann aber im Glass-Box-Test 100 % Uberdeckung gefordert
werden. Es sind auch Situationen vorstellbar, in denen 100 % Uberdeckung
erreicht werden, aber weitere Testfdlle durchgefiihrt werden.

Darum wihle ich als Néherung einen Zusammenhang zwischen dem Uberdeckungs-
grad c und der normierten Testfallzahl £, der durch die Parameter 7. und ;. quantifi-
ziertist: ¢ = min(l, 7, - ¢ Y

Geht die normierte Testfallzahl gegen Null, dann wird die Steigung dieser Funktion
unendlich. Dieser Fall spielt aber in der Realitdt keine Rolle, da ein Testfall nicht teil-
bar ist und somit auch die normierte Testfallzahl nicht gegen Null gehen kann. Sie ist
entweder Null oder hat eine bestimmte Mindestgrofde.

Da die Uberdeckung in der Realitit nie iiber 100 % wachsen kann, verhindert die
Minimumfunktion, dass ¢ im Modell iiber 100 % wdchst, wenn entsprechend viele
Testfélle durchgefiihrt werden. Abbildung 35 zeigt skizzenhaft den Zusammenhang
zwischen der normierten Testfallzahl und der erreichten Uberdeckung: Die Uberde-
ckung steigt mit steigender Testfallzahl, bis 100 % erreicht sind, und bleibt dann kon-
stant.

Anweisungen, Zweige, Schleifen und Terme werden bei gleicher Testfallzahl in
unterschiedlichem Ausmafs tiberdeckt. Angelehnt an Malaiya et al. (1994) wird in
CoBe angenommen, dass es einen linearen statistischen Zusammenhang zwischen
den unterschiedlichen Uberdeckungsgraden gibt. Dieser Zusammenhang ist einge-
schrankt auf einen bestimmten Bereich, fiir den gilt, dass die Uberdeckung nicht voll-
standig ist und nicht gezielt angestrebt wird. Abbildung 36 zeigt diesen linearen
Zusammenhang mit c0 fiir Anweisungsiiberdeckung, c1 tiir Zweigtliberdeckung, c3
fiir Termiiberdeckung und c4 fiir Schleifeniiberdeckung’. Solange die Anweisungs-

1. Die Nummerierung cg bis ¢4 orientiert sich an Sneed und Winter (2002)
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tiberdeckung unter 100 % liegt, wachsen Zweig-, Term- und Schleifeniiberdeckung
linear mit der Anweisungsiiberdeckung.

Uberdeckungsgrad ¢

100%

80%

60% -

40%

20%

0%

T 1
Normierte Testfallzahl ¢

Abb. 35: Normierte Testfallzahl und Uberdeckungsgrad

Abb. 36: Anweisungsiiberdeckung und andere Uberdeckungsgrade

Uberdeckungsgrad ¢

100%

80%

60%

40%

20%

0% +=

c1

~ c3

0%

50% 100%

Uberdeckungsgrad cO

Abbildung 37 zeigt den Zusammenhang zwischen der normierten Testfallzahl und
den Uberdeckungsgraden. Die Uberdeckungsgrade steigen bei niedriger normierter
Testfallzahl an (links im Diagramm). Erreicht die Anweisungsiiberdeckung c0 100 %,
dann bleibt sie konstant (etwa im rechten Drittel des Diagramms). Die Zweigiiberde-

ckung c1 steigt weiter an — solange, bis 100 % Zweigtiberdeckung erreicht werden.

Somit wird der Zusammenhang zwischen normierter Testfallzahl und erreichtem
Uberdeckungsgrad durch die folgenden Gleichungen beschrieben:

* Anweisungsiiberdeckung

* Zweigiiberdeckung
* Termiiberdeckung

* Schleifentiberdeckung

Co —

Qo
w =
| |

)
IN
|

min(1, 7. - tm)

= min(l, Cfl * TOC * trlc)

= min(l, cf5 - 7y, - £

= min(l, Cf4 * TOC * trlc)
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Normierte Testfallzahl t

Abb. 37: Normierte Testfallzahl und verschiedene Uberdeckungsgrade

Im Glass-Box-Test sind die Uberdeckungskriterien vorgegeben, beispielsweise dass
80 % der Anweisungen iiberdeckt werden miissen. In CoBe wird aus diesen Kriterien
die Zahl der Testfdlle berechnet, die benttigt werden, um das Kriterium zu erfiillen.
Dazu wird der Zusammenhang zwischen Uberdeckung und Testfallzahl nach der
Testtallzahl aufgeldst.

Anweisungen, die bereits durch den Black-Box-Test tiberdeckt wurden, miissen nicht
mehr im Glass-Box-Test tiberdeckt werden. Wird also eine bestimme Anweisungs-
tiberdeckung gefordert, dann miissen nur Testfdlle definiert und durchgefiihrt wer-
den, mit denen noch nicht iiberdeckte Anweisungen ausgefiihrt werden. Auch die
verschiedenen Uberdeckungskriterien beeinflussen sich gegenseitig: Testfélle, die
durchgefiihrt werden, um Anweisungen zu iiberdecken, iiberdecken auch Zweige.
Mit einer bestimmten Anweisungsiiberdeckung wird also auch eine bestimmte
Zweigiiberdeckung erreicht. Wird dann eine bestimmte Zweigiiberdeckung gefor-
dert, dann miissen Testfalle fiir bereits liberdeckte Zweige nicht mehr durchgefiihrt
werden. Den gleichen Zusammenhang nehme ich fiir den Einfluss der Zweigiiber-
deckung auf die Termﬁberdeckung und auf die Schleifeniiberdeckung an. Diesen
Zusammenhang modelliere ich in CoBe wieder durch den statistischen, linearen
Zusammenhang zwischen den Uberdeckungsgraden aus Abbildung 36. Im Modell
wird also ein statistischer Zusammenhang zwischen den Uberdeckungskriterien ver-
wendet. Dabei werden beispielsweise Effekte durch nicht erreichbaren Code vernach-
lassigt.

Die Testfélle im Glass-Box-Test werden gezielt so definiert, dass bestimmte Code-Ein-
heiten tiberdeckt werden, wahrend im Black-Box-Test der Code nicht sichtbar ist.
Trotzdem lege ich den gleichen Zusammenhang zwischen den Testfdllen und der
Code-Uberdeckung zu Grunde, der auf einem Sattigungseffekt beruht:

e Ist bereits eine hohe Uberdeckung erreicht, dann kénnen mit einem Testfall nur
ganz gezielt einige wenige weitere Einheiten tiberdeckt werden. Bei niedriger
Uberdeckung werden mit diesem Testfall nicht nur diese wenigen Einheiten tiber-
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deckt, sondern auch weitere, die auf dem Pfad liegen, der durch diesen Testfall
ausgefiihrt wird.

* Zusatzlich spielt eine Rolle, dass die Testfalle nicht mechanisch aus den zu tiber-
deckenden Code-Einheiten bestimmt werden konnen. Wie im Black-Box-Test gehe
ich davon aus, dass es schwieriger wird, einen Testfall so zu definieren, dass
bestimmte und dass moglichst viele Code-Einheiten iiberdeckt werden, wenn
bereits viele Einheiten tiberdeckt sind.

Darum verwende ich im Glass-Box-Test die gleiche Form des Zusammenhangs wie
im Black-Box-Test. Weil aber der Code sichtbar ist und weil der Tester versucht,
gezielt noch nicht gepriifte Bereiche zu tiberdecken, modelliere ich, dass der Uber-
deckungsgrad starker als im Black-Box-Test wachst. Ein Testfall im Glass-Box-Test
tragt also mehr zur Uberdeckung bei als ein Testfall im Black-Box-Test.

Fehlerentdeckung. Um die Fehlerentdeckung im Test zu modellieren, nehme ich an,
dass ein einzelner Testfall einen Fehler mit bestimmter Wahrscheinlichkeit entdeckt.
Es handelt sich also um einen Zufallseffekt, da die Testtechniken, mit denen Testfalle
hergeleitet werden, Heuristiken sind (Abschnitt 5.5). In CoBe wird nicht mit der
Wahrscheinlichkeit gerechnet, statt dessen wird mit Anteilen gerechnet. Jeder Testfall
entdeckt also einen Teil der unentdeckten Fehler. In CoBe wird dies formal {iber den
Anteil g, der noch nicht entdeckten Fehler, die ein einzelner Testfall entdeckt,
beschrieben. Die Fehlerentdeckungsquote eines Tests ergibt sich somit aus der Zahl
der Testfille, die durchgefiihrt werden; unabhangig davon, ob die Testfélle im Black-
Box-Test oder im Glass-Box-Test definiert und durchgefiihrt werden.

Daraus folgt, dass die Zahl aller Testfédlle zusammengezahlt wird. Sie wird normiert,
damit das Modell unabhangig vom Software-Umfang quantifiziert werden kann.
Somit wird die Fehlerentdeckungsquote Qr,s; aus der normierten Testfallzahl t7,;
eines Tests berechnet.

Damit eine Quantifizierung mit linearer Regression moglich wird, wird der zusatzli-
che Faktor 7. benotigt. Damit bei sehr niedriger normierter Testfallzahl keine negati-
ven Resultate moglich sind, wird der Wertebereich durch die Maximalfunktion
eingeschrankt. Die Formel, mit der die Fehlerentdeckungsquote berechnet wird, lau-
tet damit:

t est

Qrest = max(0, 1 -7 (1-q,) ey

Fiir die Quantifizierung durch lineare Regression wird die Gleichung umgeformt; die
Beschrankung des Wertebereichs fallt weg!. Die Regression berechnet rqt und g; aus
einzelnen Datenpunkten durch die Gleichung der Form 1-Qr,; = rqt(l - q;) fest

Abbildung 38 skizziert diesen Zusammenhang zwischen normierter Testfallzahl und
Fehlerentdeckungsquote. In einem kleinen Bereich links unten im Diagramm bleibt

1. Bei sehr wenigen Testfalle kann die Fehlerentdeckungsquote im Prinzip negativ werden,
abhéngig von den Datenpunkten, die bei der Regression verwendet werden. Dies wird in
CoBe durch die Maximalfunktion verhindert, die Fehlerentdeckungsquote bleibt dann 0 %.
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die Fehlerentdeckungsquote auf 0 %, auch wenn einige wenige Testfdlle durchgefiihrt
werden. Dann steigt die Fehlerentdeckungsquote steil an und flacht dann ab. Sie
nahert sich asymptotisch der Fehlerentdeckungsquote von 100 % (rechts oben im Dia-
gramm).

100% - ——— - ——— ———-—-—=
¢

% 80%

=]

3

(@] 60'% 7

c
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ﬁ 40%

c

o

o 20% -

=
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0% T T T

Normierte Testfallzahl t

Abb. 38: Normierte Testfallzahl und Fehlerentdeckungsquote

Diese Fehlerentdeckungsquote wird fiir die unterschiedliche Entdeckung der Fehler-
arten und -schwere in den verschiedenen Tests angepasst. Beispielsweise findet der
Modultest keine Spezifikationsfehler, der Systemtest einen geringen Teil der Spezifi-
kationsfehler, aber vor allem Entwurfs-und Codefehler. Dazu werden die Faktoren
ffTest Art flir den Einfluss der Fehlerart und ffres scppere fur den Einfluss der Fehler-
schwere verwendet.

Testerkompetenz. Die Kompetenz spielt eine Rolle, weil die Testmethoden Heuristi-
ken bieten. Die Testerkompetenz KPr,; wird auf einer siebenstufigen Skala darge-
stellt, jeder Klasse der Skala ist ein Wert des Faktors ffr,;xp zugeordnet.
Hochkompetente Tester finden etwa 20 % mehr Fehler als der Durchschnitt.

Die Fehlerentdeckungsquote fiir einen Test berechnet sich somit aus

— tTesf
QTest, Art, Schwere — ffTest, Art 'ffTest, Schwere 'ffTest, KP ' maX(O, 1- th(l - qt) )

Frithe Testvorbereitung. Eine frithe Vorbereitung ist nur fiir den Black-Box-Test
moglich, weil die Testfdlle im Glass-Box-Test abhéngig von der erreichten Uber-
deckung definiert werden. Die Vorbereitung kann friihestens erfolgen, wenn die Vor-
gabe fiir den Test fertig ist. Fiir den Systemtest ist dies die Spezifikation, der Test kann
also wahrend des Entwurfs vorbereitet werden. In der Vorbereitung wird ein Teil der
Fehler in der Spezifikation entdeckt. Diese Fehler werden vor der Codierung entfernt.
In CoBe ist dieser Zusammenhang fiir Spezifikationsfehler des Systemtests darge-
stellt. Die durch friihe Testvorbereitung entfernten Fehler sind in den Priifungen nach
dem Entwurfsreview nicht mehr enthalten. Andere Tests konnen friihestens nach
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dem Entwurf vorbereitet werden, darum ist fiir den Korrekturaufwand kein Unter-
schied modelliert.

Aufwand. Jeder Testfall kostet den gleichen Aufwand. Fiir den Black-Box-Test ver-
teilt sich dieser Aufwand anteilig auf Vorbereitung, Testaufbau und Testdurchfiih-
rung. Im Glass-Box-Test ist der Aufwand fiir den Testaufbau konstant. Vorbereitung
und Durchfithrung lassen sich nicht trennen. Der Aufwand wird durch die Kompe-
tenz der Tester und den Produktivitatsparameter af (Abschnitt 6.3.7) beeinflusst. Zu
diesem Aufwand, der fiir alle Testfdlle gleich ist, kommt Aufwand fiir blockierende
Fehler dazu: Nachdem der blockierende Fehler korrigiert wurde, muss zumindest
derjenige Testfall wiederholt werden, mit dem der Fehler entdeckt wurde. Dies ent-
spricht einer gezielten Wiederholung fiir diesen Fehler, darum wird der gleiche Auf-
wand wie fiir die gezielte Testwiederholung berechnet (Abschnitt 6.3.6).

Brute-Force-Test. Beim Brute-Force-Test werden Testfdlle mit den Testtechniken des
Black-Box-Tests definiert, solange Aufwand verfligbar ist. Die Zahl der Testfalle wird
also im Modell aus dem Aufwand berechnet. Sie wird zu den Testfallen im Black-Box-
Test addiert.

6.7 Zusammenfassung

In diesem Abschnitt werden die Ursache-Wirkungs-Zusammenhénge in CoBe zusam-
mengefasst und das Vorgehen zur Kalibrierung erldutert.

6.7.1 Zusammenhinge im Uberblick

Abbildung 39 zeigt die Zusammenhidnge, die die Fehlerzahlen betreffen,
Abbildung 40 die Zusammenhange fiir Kosten und Nutzen (entfallende Kosten).

Die Abbildungen stellen die anfallenden Fehlerkosten dar, die entfallenden Kosten
werden mit den gleichen Zusammenhangen berechnet. Abbildung 39 zeigt beispiel-
haft das Priifungsmodell fiir den Systemintegrationstest (oben links) und das Spezifi-
kationsreview (darunter) mit ihren Eingaben. Beide Modelle berechnen die
entsprechenden Fehlerentdeckungsquoten. In das Fehlerstrommodell (rechts unten)
fliefsen die Zahlen fiir die entstehenden Fehler, die Fehlerentdeckungs- und Korrek-
turquoten und die Eingaben fiir den Priifprozess. Das Resultat sind die Fehlerzahlen.
Abbildung 40 zeigt, wie fiir diese beiden Priifungen (links oben) Fehlerkosten fiir die
Korrektur und Testwiederholung (links unten) und Fehlerfolgekosten (rechts unten)
berechnet werden. Die Abbildung zeigt, wie die Aufwande durch den Aufwandsein-
fluss angepasst werden und wie daraus Dauer und Personalbedarf berechnet werden
(rechts).

Die Zusammenhdnge aus dem QS-Modell (Drappa, 1998) und aus COCOMO II
(Boehm, 2000) sind markiert. Der Schwerpunkt in CoBe liegt, anders als im QS-
Modell, auf den Priifungsmodellen mit ihren Priifparametern, Kosten fiir Priifwieder-
holung, langfristigen Kosten der Wartung und des Einsatzes und der direkten Berech-
nung des Nutzens als entfallende Kosten. Dazu wird auch die Wartungs- und
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Einsatzphase des Produkts betrachtet. CoBe unterscheidet sich zusatzlich vom QS-
Modell, weil in CoBe unterschiedlich schwere Fehler und wiederverwendete Soft-
ware dargestellt werden. Zusammenhange aus COCOMO 1I sind in CoBe integriert,
um Zusammenhénge fiir Dauer und Personal zu beschreiben. Mit COCOMO II wer-
den auch Einflussparameter der Projektumgebung integriert, mit denen der Aufwand
kalibriert wird. Zusatzlich werden in CoBe Kalibrierungsparameter bereitgestellt.
Diese Kalibrierungsparameter greifen an wenigen Stellen im Modell; die wesentli-
chen Modellkomponenten fiir Priifung, Fehlerentdeckung, Korrektur und Priifwie-
derholung werden nicht geandert. Der Umfang wirkt an vielen Stellen und ist an
diesen Stellen als Eingabe dargestellt, damit die Diagramme tibersichtlicher sind.

Die Ausgaben sind in den Tabellen 20 und 21 dargestellt. Der Organisationsanteil
wird auf den Aufwand aufgeschlagen. Fiir den Feldtest werden die Fehlerbehebungs-
kosten dargestellt; sein Nutzen sind entfallende Wartungskosten und entfallende
Fehlerfolgekosten. Kosten und Nutzen werden pro Priifung schrittweise zusammen-
gefasst: Die Kosten zu Priiftkosten und Fehlerbehebungskosten; entfallende Fehlerkos-
ten zum Nutzen im Projekt und zum Nutzen in der Wartung. Alle Aufwands-, Dauer-
und Personalausgaben werden in Geldwerte umgerechnet und als Geldwerte ausge-
geben. Qualitatskosten (und Nutzen) im Projekt, in der Wartung und beim Einsatz
werden zu den Gesamt-Qualitdtskosten zusammengefasst, aber auch getrennt ausge-
geben. Fiir die Projekt-Qualitatskosten werden die im Projekt anfallenden Kosten auf-
summiert. Der Gesamtnutzen ist die Differenz zwischen Kosten und Nutzen
(Hanusch, 1987).

Ausgabeparameter fiir Kosten Ausgabewerte
Vorbereitung Aufwand, Dauer, Mitarbeiter
Fiir Tests: Aufbau des Testgeschirrs Aufwand, Dauer, Mitarbeiter

Aufwand, Dauer (Netto und Brutto in

Durchfiihrung (In Reviews: Sitzung) Reviews), Mitarbeiter

Summe Prifkosten

Korrektur (einschliefilich Analyse falscher

Befunde) Aufwand, Dauer, Mitarbeiter

Korrektur nach friiher Testvorbereitung fiir

Aufwand, Dauer, Mitarbeiter
Systemtest

Wiederholung der Priifung Aufwand, Dauer, Mitarbeiter

Wiederholung mit Priifprozess: Wiederho-
lung insgesamt nach der Priifung und Aufwand, Dauer, Mitarbeiter
getrennt fiir einzelne Priifungen

Summe Fehlerbehebungskosten

Tabelle 20: Modellresultate fiir anfallende Kosten einer Priifung
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Ausgabeparameter fiir Nutzen Ausgabewerte

Entfallende Korrektur einschliefdlich Analyse

falscher Befunde in Folgepriifungen Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten fiir blockierende Fehler

. . ils Auf D i i
im Integrations- und Systemtest Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten bei gezielter Testwieder-

holung in den folgenden Priifungen Jeweils Aufwand, Dauer, Mitarbeiter

Entfallende Kosten pro Priifung, falls ein
Priifprozess in Folgepriifungen durchge- Jeweils Aufwand, Dauer, Mitarbeiter
fithrt wird

Summe entfallende Projektkosten

Entfallende Korrektur in der Wartung Aufwand

Entfallende Testwiederholung fiir den Priif-

prozess in der Wartung Aufwand

Summe entfallende Wartungskosten

Entfallende Fehlerfolgekosten Geldwert
Tabelle 21: Modellresultate fiir den Nutzen

6.7.2 Vorgehen zur Kalibrierung

Die Kalibrierung des Modells erfolgt in fiinf aufeinander folgenden Schritten. Zuerst
wird der Umfangsfaktor fiir den Code gesetzt, bevor Aufwand und Dauer kalibriert
werden. Dann werden die Fehlerzahl, die Fehlerverteilungen und schliefilich die
Umfangsfaktoren der Dokumente kalibriert. Die im Folgenden genannten und ver-
wendeten Daten sind Archivdaten, also Daten aus abgeschlossenen Projekten:

* Umfang in Anweisungen oder in Function Points,

* Gesamtaufwand und -dauer des Projekts,

e COCOMO-II-Parameter,

e Fehlerzahlen,

* Verteilung der Fehler auf Fehlerart und Fehlerschwere,
* Umfang der Spezifikation und des Entwurfs in Seiten.

Kalibrierung des Umfangsfaktors fiir den Code. Fiir den Umfangsfaktor werden
der Code-Umfang in Anweisungen und der Produktumfang in Function Points fiir
neuen und hinzugefiigten Code benottigt. Der Umfangsfaktor ist das Verhaltnis dieser
Grofsen. Ist der Umfang in Function Points nicht verfligbar, dann konnen Erfahrungs-
werte verwendet werden, die fiir verschiedene Programmiersprachen das Verhaltnis
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zwischen der Zahl der Anweisungen und den Function Points beschreiben (Boehm,
2000; Jones, 1996, QSM, 2009).

Kalibrierung des Aufwands und der Dauer. Der Aufwandsfaktor basiert auf der
Aufwandsgleichung aus COCOMOII. Aus Archivdaten werden der Umfang in
Anweisungen, die COCOMO-II-Parameter oder eine Einschdtzung der Parameter
und der Gesamtaufwand benétigt. Dann kann entweder der Produktivitatsfaktor von
COCOMO II mit dem in Boehm (2000) vorgeschlagenen Regressionsverfahren ange-
passt werden; der Aufwandsfaktor ist dann das Verhaltnis zwischen angepasstem
und originalem Produktivitatsfaktor. Alternativ kann der Aufwandsfaktor als Ver-
héltnis zwischen dem berechneten Gesamtaufwand und dem tatsdchlichen, gemesse-
nen Gesamtaufwand (dem Istwert) berechnet werden. Der Dauerfaktor wird mit dem
gleichen Vorgehen berechnet, aber basierend auf Aufwand und Dauer der Projekte
mit der COCOMO-II-Gleichung fiir die Dauer.

Kalibrierung der Gesamtfehlerzahl. In den Fallen, in denen Archivdaten fiir alle in
Priiffungen und (fiir einen bestimmten Zeitraum) nach Auslieferung entdeckten
Fehler vorhanden sind, wird mit CoBe aus dem Umfang der abgeschlossenen Projekte
die zu erwartende Gesamtfehlerzahl berechnet. Der Fehlerfaktor ist das Verhaltnis
aus der gemessenen Zahl der Fehler (dem Istwert) und dem Modellresultat. Sind nur
unvollstandige Fehlerzahlen archiviert, beispielsweise nur fiir einen Teil der
Priifungen, dann ist es notwendig, zusatzlich zum Umfang den Priifprozess und die
Priifparameter in CoBe zu setzen. Fiir ein Projekt wird dann die vorhandene Fehler-
zahl berechnet. Der Fehlerfaktor ist das Verhaltnis aus dem Istwert und dem Modell-
resultat.

Kalibrierung der Fehlerverteilung auf Fehlerarten und Fehlerschwere. Die Vertei-
lung auf die Fehlerarten und auf die Fehlerschwere kann direkt aus archivierten
Fehlerzahlen berechnet werden. Fiir die Fehlerarten ist wichtig, dass die Fehlerzahlen
moglichst aus allen Priifungen und aus der Wartung stammen. Fehlen zum Beispiel
Zahlen aus den stattgefundenen Spezifikationsreviews, dann wird ein grofser Teil der
Spezifikationsfehler nicht erfasst. Die Verteilung auf die Fehlerarten ist dann durch
zu wenig Spezifikationsfehler verzerrt.

Kalibrierung der Umfangsfaktoren fiir Dokumente. Die Umfangsfaktoren fiir Spe-
zifikation und Entwurf berechnen sich wie der Umfangsfaktor fiir den Code, basie-
rend aber auf dem Umfang in Seiten und dem Umfang in Function Points.

6.8 Quantifizierung

Die Quantifizierung des Basismodells erfolgt weitgehend mit Daten aus Jones (1996),
die auch die Grundlage fiir das QS-Modell bilden, und mit Daten aus COCOMO II
(Boehm, 2000). Die Zusammenhange fiir die Priifungsmodelle werden, soweit mog-
lich, konsistent mit dieser Datensammlung quantifiziert. Erganzend wird auf einzelne
Untersuchungen zuriickgegriffen.
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6.8.1 Basismodell

Umfang. Der Umfang des Produkts wird zwischen Function Points und Anweisun-
gen umgerechnet. Fiir die Spezifikation und den Entwurf wird der Umfang in Seiten
abgeleitet (Tabelle 22).

Umfangsfaktor Wert

Abhéangig von der Programmiersprache (Boehm, 2000),

Umfangsfaktor Code 53 Anweisungen pro Function Point in Java

Umfangsfaktor Spezifikation | 0,44 Seiten pro Function Point (Drappa, 1998)

Umfangsfaktor Entwurf 0,44 Seiten pro Function Point (Drappa, 1998)

Tabelle 22: Umrechungsfaktoren fiir den Umfang

Fehlerentstehung. Die Fehlerdichte fd wird mit den Daten fiir Auftragsprojekte
abhangig vom Umfang in Function Points quantifiziert (Jones, 1996, S. 230) und
betragt fiir neue Software fd = 1,05+1,11-10g,(Spppe,). In wiederverwendeter
Software ist die Fehlerdichte auf 5 % der Fehlerdichte neuer Software reduziert (Qyy
=95%).

Die Verteilung auf die Fehlerart (Tabelle 23) erfolgt mit Daten aus Jones (1996). Hand-
buchfehler werden im Modell nicht dargestellt. Fehlerhafte Korrekturen werden auf
andere Fehlerarten verteilt, da sie in CoBe bei der Korrektur berticksichtigt werden.
Die Verteilung auf die Fehlerschwere (Tabelle 24) stammt aus mozilla (2007), da Jones
seine eigenen Daten iiber die Fehlerschwere in Jones (1996, S. 384) kritisch diskutiert.

Fehlerart (%)
Spezifikationsfehler 22 %
Entwurfsfehler 28 %
Codefehler 39 %

Tabelle 23: Verteilung auf die Fehlerarten aus Jones (1996)

Fehlerentdeckung. Die Fehlerentdeckung aus Jones (1996) wird fiir den Nominalfall
aller Priifungen mit typischen Priifparametern iibernommen (Tabelle 25).

Korrekturaufwand. Die Basis fiir den Korrekturaufwand eines Fehlers nach Priifun-
gen (Tabelle 26, Jones, 1996) wird mit dem Einfluss aus Boehm (1981) angepasst, so
dass der Korrekturaufwand in kleinen Projekten um den Faktor 4 von friiher zu spa-
ter Fehlerentdeckung steigt, in grofien Projekten um den Faktor 10. Ich wahle 100
Function Points als kleines Projekt und 10.000 Function Points als grofses Projekt. Der
Faktor fiir den Anstieg wird fiir andere Umfangswerte linear inter- und extrapoliert.
Die Erfahrungswerte in Tabelle 26 unterscheiden sich deutlich. Fiir die Werte ist aber
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Fehlerschwere (%)

Blockierende Fehler 1,1 %

10,8 %
Kritische Fehler 9,7 %
Hauptfehler 12,7 %

77,7 %
Normale Fehler 65,0 %
Nebenfehler 8,6 %

11,5 %
Kosmetische Fehler 2,9 %

Tabelle 24: Verteilung auf die Fehlerschwere (mozilla, 2007)

Fehlerentdeckungsquote aus Jones (1996) Spezfiiihlﬁ’;ions- Er;’;gilerrfs- Codefehler

Spezifikationsreview 40 % 15 % 0 %
Entwurfsreview 15 % 55 % 0 %
Codereview 20 % 40 % 65 %
Modultest 0 % 5% 20 %
Integrationstest 10 % 15 % 30 %
Systemtest 10 % 15 % 35 %
Feldtest 20 % 20 % 25 %

Tabelle 25: Fehlerentdeckung nach Jones (1996)

a. Im Spezifikationsreview in CoBe werden ausschliefSlich Spezifikationsfehler entdeckt

unsicher, ob die Testwiederholung enthalten ist; es ist unklar, ob es sich um
Messungen oder Schatzungen handelt. Fiir die Wartung wahle ich den Wert der
ISBSG (2005), weil dieser Wert aus Messungen in 54 Projekten unterschiedlicher
Organisationen stammt.

Fiir den Einfluss der Fehlerart gibt es unterschiedliche Zahlen. Grady (1992) berichtet,
dass ein Spezifikationsfehler den fiinffachen Wartungsaufwand eines Codefehlers
benotigt. Basili und Perricone (1984) nennen einen Faktor 1,5 zwischen einem Spezifi-
kationsfehler und einem Entwurfs- oder Codefehler. Kan (2003) nennt ein Verhaltnis
von 1: 0,7 zwischen der Korrektur von Entwurfsfehlern und Codefehlern in der Test-
phase. CoBe verwendet ein Verhaltnis von 1,3 :1:0,7 zwischen Spezifikations-, Ent-
wurfs- und Codefehlern, orientiert an Kan (2003) und Basili und Perricone (1984).

Unterschiedlichen Einfluss der Fehlerschwere nennen Kan (2003) fiir den Test und
Zage und Zage (2003). CoBe verwendet die Werte von Kan (2003).
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Korrekturaufwand | Jones Kan Erfahrungswerte
pro Fehler (Eh) (1996) | (2003)

Spez.-review 1,0 - -

Entwurfsreview 1,5 0,5 24 (Leszak et al., 2002); 2,5 (Rico, 2000)

Codereview 1,5 0,5 2,5 (Rico, 2000)

Modultest 2,5 3,0

13,5 (Mittel), 16 (Median) (Basili et al., 1996);
48 (Leszak et al., 2002)

13,5 (Mittel), 16 (Median) (Basili et al., 1996);

Integrations- und

Funktionstest 50 35

Systemtest und

Feldtest 1073814 (Jalote, 2000); 25 (Rico, 2000)
15 (ISBSG, 2005); 2,7 (Grady, 1992); 250 (Rico, 2000);
Wart i 11,2, 4 (Demirdrs et al., 2000); 72 (Leszak et al., 2002);
artung 29 (Shull et al., 2002); 17 (Jalote, 2000);
21, 28 (Sneed, 2004); 27 (Basili et al., 1996)
Tabelle 26: Korrekturaufwand pro Fehler nach Priifungen
Aufwand (Eh) Nebenfehler Hauptfehler krit. Fehler Verhaltnis
Kan (2003) 3,4 4,0 51| 0,85:1,0:1,28
Zage und Zage (2003) 3,3 8,2 6,2 040:1,0:0,75

Tabelle 27: Fehlerschwere und Korrekturaufwand

Falsche Befunde. Die Quantifizierung des Aufwands fiir falsche Befunde stiitzt sich
auf den Analyseaufwand von Fehlern, der in unterschiedlichen Studien genannt
wird. Basili et al. (1996) haben Aufwande von Wartungstatigkeiten gemessen
(Tabelle 28). Niessink und Van Vliet (1998), Evanco (2001), Rombach und Ulery
(1989a und 1989b) nennen zwischen 15 % und 72 % fiir die Analyse der Korrektur.
Fir die Quantifizierung werden die Erfahrungswerte der Isolation in Tabelle 28
(Basili et al., 1996) verwendet und auf den Aufwand ohne Organisation (Analyse in
Tabelle 28), Priifung und Beratung bezogen. Somit werden in CoBe 28,8 % des Kor-
rekturaufwands pro Fehler benttigt, um einen falschen Befund zu erkennen.

Testwiederholung. Fiir jeden blockierenden Fehler nehme ich an, dass 50 % der Test-
talle wiederholt werden. Dazu sind, angelehnt an van Megen und Meyerhoff (1995),
zusatzlich 25 % des Aufwands der ersten Testdurchfiihrung notwendig. Die gezielte
Testwiederholung wird mit den gleichen Werten quantifiziert wie blockierende Feh-
ler. Fiir den Korrekturpriifprozess werden die gleichen Werte verwendet. Dies sind
Annahmen, die an ein konkretes Testvorgehen angepasst werden miissen. Organisa-
torische Kosten werden mit 0 quantifiziert.



138 6. Ein quantitatives Modell fiir Priifungen: CoBe

Tatigkeit und Beschreibung Aufwandsanteil
Analyse: Problemmeldung, Entscheidung {iber Losung 6 %
Isolation: Fehlerursache identifizieren 26 %
Entwurf der Losung 26 %
Implementierung und Modultest der Losung 38 %
Inspection, Certification, Consulting (Priifungen, Beratung) 4 %

Tabelle 28: Aufwandsverteilung in der korrektiven Wartung (Basili et al., 1996)

6.8.2 Reviews

Gutachterzahl. Die Fehlerentdeckungsquote wird mit Daten aus Biffl (2001) fiir Spe-
zifikationsreviews mit Checklisten quantifiziert (Tabelle 29). Die Parameter rgy, =
0,7653 und g, = 0,1009 (Abschnitt 6.4.2) werden durch lineare Regression berechnet.
Abbildung 41 zeigt den Zusammenhang fiir die Messwerte (4 bis 6 Gutachter) und fiir
extrapolierte Werte mit weniger als 4 Gutachtern und mehr als 6 Gutachtern.

100%
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80%
70%
60%
50%
40%- .
30% -
20%
10%

Fehlerentdeckungsquote Q

0% T
1 2

Abb. 41: Gutachter und Fehlerentdeckung
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Gutachterzahl
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QReview

0,499

0,550
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Tabelle 29: Fehlerentdeckung im Review (Biffl, 2001, Tab. 5.2.4a)

Priifling, Fehlerart und Fehlerschwere. Mit dem Faktor ff, 4,4 wird die Entdeckungs-
quote eines nominalen Reviews mit 5 Gutachtern an Tabelle 25 angepasst. Fiir die

Anpassung an die Fehlerschwere sind keine Daten verfligbar.

Vorbereitungsintensitit. Typisch werden fiir eine griindliche Vorbereitung von
Dokumenten (Spezifikation und Entwurf) 10 Seiten pro Stunde, fiir Code 300 Zeilen
pro Stunde benétigt (Friithauf et al., 2006). Die Quantifizierung fiir den Einfluss der
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Vorbereitungsintensitat leitet sich aus der Untersuchung von Biffl und Halling (2003)
ab, die den Einfluss des Vorbereitungsaufwands auf die Fehlerentdeckung zeigt:
Abhangig vom Vorbereitungsaufwand der einzelnen Gutachter verandert sich deren
Fehlerentdeckung (Tabelle 30, linker Teil). Deutlich wird, dass die Fehlerent-
deckungsquote zuerst mit mehr Aufwand wachst, dann aber nahezu konstant bleibt.
Die Spezifikation in Biffl und Halling (2003) umfasst 35 Seiten. Aus der Vorberei-
tungsrate von 10 Seiten pro Stunde folgt, dass Gutachter, die zwischen 2 und
4 Stunden aufgewendet haben, dem Normalfall entsprechen (Nominalfall:
3,5 Stunden, in Tabelle 30 2 - 4 Stunden). Mit diesem Bezugspunkt werden die Daten
normiert, so dass die lineare Funktion fiir den Einfluss quantifiziert werden kann
(Tabelle 30, rechter Teil). Einen Riickgang der Entdeckungsquote fiir mehr als sechs
Stunden Vorbereitung modelliere ich nicht, weil der Effekt gering ist, und weil der
hohe Aufwand vermutlich mit geringer Gutachterkompetenz zusammenhangt.

Daten aus Biffl und Halling (2003) Abgeleitete Quantifizierung
Reading Time Effectiveness (%)® Vorbereitumgsaufwandb fvorbereitung (%)°
0-2h 8,5 % 50 % 48 %
2-4h 17,7 % 100 % 100 %
4-6h 20,9 % 150 % 118 %
6-8h 19,5 % 200 % 118 %

Tabelle 30: Vorbereitungsdauer und Quantifizierung,
abgeleitet aus Biffl und Halling (2003)

a. Detect Detection Effectiveness (DDE), entspricht der Fehlerentdeckungsquote Q
b. bezogen auf den Nominalfall
c. Einfluss auf die Fehlerentdeckungsquote Q im Modell

Gutachterkompetenz. In Probereviews mit Studenten werden deutliche Unter-
schiede zwischen 177 Gutachtern sichtbar (Biffl und Halling, 2002). Um diese Unter-
schiede in der Studie darzustellen, wurden die Gutachter in vier Klassen eingeteilt.
Diese Klassen sind durch die Zahl der entdeckten Fehler definiert. Es gibt also Klas-
sen fiir Gutachter, die wenige, einige, viele, sehr viele Fehler entdecken. Tabelle 32
zeigt die abgeleitete Quantifizierung des Einflusses. Dazu wurden alle Werte auf den
Nominalfall normiert (Tabelle 31), der durch die Klasse mit Gutachtern, die viele Feh-
ler entdecken, definiert ist (“Viele Fehler” in Tabelle 31). Die Zuordnung auf die 7
Kompetenzklassen des Modells erfolgt teilweise durch Inter- und Extrapolation; da
die Klassen aber auf einer Ordinalskala definiert sind, ist dies nicht direkt moglich.
Statt dessen nehme ich fiir die Inter- und Extrapolation an, dass der Abstand zwi-
schen den Klassen gleich ist. Der Einfluss extrem niedriger Kompetenz ist durch
Daten der Gutachter mit mangelnden Kenntnissen quantifiziert (Biffl und
Halling, 2002).
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Klasse fiir Zahl entdeckter Fehler in Wenige Einige Viele Sehr viele
Probereviews Fehler Fehler Fehler Fehler

Einfluss auf Fehlerentdeckung 0,69 0,79 1,00 1,22
Einfluss auf Aufwand pro Fehler 0,69 0,79 1,00 1,31

Tabelle 31: Kompetenzeinfluss auf Fehlerentdeckung und Aufwand pro Fehler
aus Biffl und Halling (2002)

Einfluss auf ]i)g;? XEI‘Z Low Nﬁ;?i_ High IYI?;;%II IE—I)ig}?
(1,00)2 (1,65)°
Q (Faktor ffReaiew, kp) 0,62 0,69 0,79 1,00 1,22 1,43 1,65
Vorbereitungsrate 0,69 0,69 0,79 1,00 1,31 (1,62)¢ (1,93)¢
Aufwand 1,76 1,44 1,27 1,00 0,76 0,62 0,52

Tabelle 32: Quantifizierung des Kompetenzeinflusses,
abgeleitet aus Biffl und Halling (2002)
a. Nominalfall aus Biffl und Halling (2002)

b. Optimalfall aus Biffl und Halling (2002)
c. Extrapolation aus den Werten der Klassen mit geringerer Kompetenz

Priiflingsumfang. Es gibt keine Erfahrungswerte fiir die unterschiedliche Fehlerent-
deckung durch priorisierte Begutachtung verdachtiger Teile der Software. Darum ist
dieser Zusammenhang in CoBe parametrisierbar; es kann der Fehleranteil fiir 20 %
des Umfangsanteils angegeben werden. Eine Pareto-Verteilung (20 % des Umfangs
enthalten 80 % der Fehler) kann somit beispielsweise direkt angegeben werden. Mit
diesem Wertepaar und den Randwerten (kein Umfang, keine Fehler; voller Umfang,
alle Fehler) wird der Zusammenhang durch lineare Regression berechnet. Um aber
tiberhaupt eine Quantifizierung in CoBe vorzugeben, orientiere ich mich an der Fall-
studie von Do et al. (2006). Die Fallstudie untersucht die Wirkung der Testfallpriori-
sierung. Im besten Fall, der nur im Riickblick bestimmt werden kann, ergibt sich
tatsachlich eine Pareto-Verteilung. Im Gegensatz dazu zeigt die zufallige Anordnung
der Testfélle eine lineare Verteilung. Ich gehe davon aus, dass der optimale Fall in der
Praxis nicht erreicht werden kann, weil nur zusammenhéngende Teile begutachtet
werden konnen und weil nur subjektiv bewertet werden kann, welche Teile kritischer
als andere sind. Darum wiébhle ich einen Kompromiss (7 scppere = 0,5)- Es sammeln sich
45% der Fehler in 20% des Priiflings (Abbildung 42).

Codereviews von Korrekturen. Codereviews von Korrekturen werden mit gleichen
Werten wie Codereviews neuer Software quantifiziert. Einziger Unterschied ist der
Umfang, der begutachtet wird; bei Codereviews der Korrekturen ist dies der Ande-
rungsumfang der Korrektur. Fiir den Anderungsumfang nennen Lyu et al. (2003)
typisch 11 Anweisungen pro Korrektur, Jones (2007, S. 576) nennt 25 Anweisungen.
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Abb. 42: Priorisierungsfunktion

Ich verwende den grofieren Wert, um darzustellen, dass die Gutachter auch Code
betrachten, der nicht geindert wurde, aber mit der Anderung zusammenhingt. Es
reicht nicht, nur gednderten Code zu begutachten, weil die Gutachter den Kontext der
Anderung verstehen miissen.

6.8.3 Codeanalyse

Die Fehlerentdeckungsquote hiangt vom Werkzeug und den eingesetzten Analysen
ab; sie ist definiert als der Anteil der im Priifling enthaltenen Fehler, der durch eine
Priifung entdeckt wird. El Emam (2005) nennt 5 % als Erfahrungswert. Studien tiber
die Codeanalyse enthalten keine verldsslichen Zahlen. So werden in den Studien
wenige Projekte betrachtet. Fehlerzahlen aus dem Einsatz des Produkts fehlen (Kiku-
chi und Kikuno, 2001; Zheng et al., 2006). Das Werkzeug wird nachtraglich fiir ein
bereits intensiv eingesetztes Produkt angewendet (Wagner et al., 2005). Es werden
absolute Zahlen angegeben, der Bezugswert fiir die Fehlerentdeckungsquote fehlt
(Brand und Krohm, 2003). Darum wird die Fehlerentdeckungsquote fiir Codefehler
auf 5 % gesetzt, Spezifikations- und Entwurfsfehler werden nicht entdeckt.

Zheng et al. (2006) messen Aufwand in etwa der gleichen Groflenordnung fiir die
Fehlerkorrektur nach Codereview und nach Codeanalyse. Darum kosten in CoBe
Fehler, die in der Codeanalyse und im Codereview entdeckt werden, den gleichen
Korrekturaufwand. Bei der Codeanalyse werden unterschiedlich viele falsche
Befunde identifiziert, abhangig vom Werkzeug und den eingesetzten Analysen. Wag-
ner et al. (2005) und Chou et al. (2001) messen zwischen 30 % und 96 %. Ich wahle
50 % fiir das Modell, auf jeden Fehler kommt also ein falscher Befund. Den Vorberei-
tungsaufwand fiir die Einbindung des Werkzeugs in die individuelle Entwicklungs-
umgebung des Entwicklers lege ich auf zwei Arbeitstage fest, beeinflusst durch den
Produktivitatsfaktor af.

6.8.4 Tests

Zahl der Testfille. Die Testfallzahl wird linear aus dem Umfang berechnet
(Tabelle 33 aus Jones, 2007). Fiir einen iiberproportionalen Zusammenhang gibt es
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keine Daten. Das Maximum ist dem vollstindigen Black-Box-Test zugeordnet, etwa
im Systemtest mit T}, = 0,6 Testfallen pro Function Point. Werte des Integrationstests
werden in CoBe fiir den Subsystemintegrationstest und den Systemintegrationstest
verwendet.

Testfallzahl pro Function Point | Minimum | Mittelwert | Maximum

Modultest 0,20 0,45 1,20
Integrationstest 0,20 0,40 0,75
Systemtest 0,15 0,25 0,60

Tabelle 33: Testfallzahl pro Function Point nach Jones (2007)

Berichte {iber die erreichte Uberdeckung im Black-Box-Systemtest nennen 50 % bis
60 % Anweisungsiiberdeckung (Grady, 1992; Burr und Young, 1998; Piwowarski et
al., 1993). Dies gilt auch im Modultest (Briand und Pfahl, 1999; Lyu et al., 2003; Hor-
gan et al., 1994; Janzen und Saiedian, 2006; Burr und Young, 1998). 80 % der Anwei-
sungen werden durch Vervollstindigung (Burr und Young, 1998; Nagappan et al.,
2008) tiberdeckt. Sehr kleine Programme (Miiller und Hofer, 2007) werden leicht
nahezu vollstandig tiberdeckt. Daten zur Term- und Schleifentiberdeckung sind nicht
verfligbar. Die erreichte Anweisungsiiberdeckung ist durch vier Datenpunkten
(Tabelle 34) mit linearer Regression quantifiziert:

co = 0,6103 - %1,

Testparameter co? Quelle Q (%)b Quelle
Nominaler Black-Box-Test 50 % | Grady (1992), 35 % | Jones (1996)

Piwowarski et al.

Vollstandiger Black-Box-Test | 60 % | (1993) 60 % | Piwowarski et al. (1993)
76% der Anweisungen und s 68 % Lauterbach und
Zweige ? | Randall (1989)
Doppelt so viele Testfalle wie 80 % Dupuy und )
im nominalen Black-Box-Test ? | Leveson (2000)
Ohne Testfalle 0 % 0% |-

Tabelle 34: Quantifizierung der Uberdeckung und der Fehlerentdeckung

a. Erreichte Anweisungsiiberdeckung
b. Fehlerentdeckungsquote

Diese Quantifizierung wird im Modell fiir den Zusammenhang zwischen der Zahl
der Testfdlle und der Anweisungsiiberdeckung verwendet. Die Quantifizierung der
Zweig-, Schleifen- und Termiiberdeckung erfolgt mit den Daten aus Abschnitt 7.4.2.
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Da im Glass-Box-Test gezielt bestimmte Code-Einheiten iiberdeckt werden, nehme

ich an, dass pro Testfall im statistischen Mittel eine hohere Uberdeckung als im Black-

Box-Test erreicht wird. Diese Annahme wird in Dupuy und Leveson (2000) bestatigt.

Angelehnt an (%%%%en Erfahrungsbericht wird in CoBe der Faktor zwei verwendet:
= 1,221

Fehlerentdeckung. Die Fehlerentdeckung im Systemtest wird mit verschiedenen
Quellen quantifiziert (Tabelle 34). Die Parameter r,; und g, werden tiber lineare
Regression ermittelt (Abbildung 43). Die Entdeckungsquoten aller Tests werden mit
dem Faktor ff, 4, an die Tests und die Fehlerarten angepasst (Tabelle 25). Die Fehler-
schwere hat kemen Einfluss, weil dafiir keine Daten verfiigbar sind. Die Korrektur-
quote betragt 90 %, somit werden 90 % der entdeckten Fehler korrigiert (Jones, 1996).

100%
90% - Rt
80% ‘.0’
70% .

60% o

50% S

40%

30%- .

20% - ¢

10%- *

0% -+ ; ; ; ‘
0% 100% 200% 300% 400%
Normierte Testfallzahl

0000000

Fehlerentdeckungsquote Q

Abb. 43: Testfdlle und Fehlerentdeckung

Aufwand. Der Aufwand pro Testfall wird mit den Werten aus Jones (1996, 2007)
bestimmt. Die Verteilung auf Vorbereitung, Aufbau und Durchfithrung orientiert sich
an Jones (1996, 2007) und van Megen und Meyerhoff (1995), so dass fiir Vorbereitung
38 %, fiir das Testgeschirr 29 % und fiir die Durchfiihrung 33 % des Aufwands beno-
tigt werden. Im Glass-Box-Test gibt es keine Trennung zwischen Vorbereitung und
Durchfithrung. Der Aufwand fiir den Testaufbau, insbesondere fiir die Instrumentie-
rung, ist konstant durch 29% des Testaufwands fiir 80 % Anweisungsiiberdeckung
definiert. Die Programmiersprache beeinflusst den Testaufwand im Glass-Box-Test
im gleichen Verhaltnis, in dem Function Points und Anweisungen zueinander stehen.

Aufwand pro Testfall
Modultest 0,73 Eh
Subsystem- und Systemintegrationstest 1,00 Eh
Systemtest 1,10 Eh

Tabelle 35: Aufwand fiir Testfdlle abgeleitet aus Jones (1996, 2007)
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Testerkompetenz. Die Quantifizierung orientiert sich an Devnani-Chulani (1997) und
dem Einfluss der Programmierfahigkeit auf Fehlereinfiigerate und Produktivitat.

Andere Werte sind nicht verfiigbar.

Einfluss der Extra Very Low Nomi- Hich Very Extra
Kompetenz auf Low Low © nal & High High
Q (Faktor ﬂfTest, KP) 0,76 0,76 0,87 1,00 1,15 1,32 1,32
Aufwand 1,34 1,34 1,15 1,00 0,85 0,71 0,71

Tabelle 36: Einfluss der Kompetenz, abgeleitet aus Devnani-Chulani (1997)

Vorbereitungszeitpunkt. Bei frither Vorbereitung werden 100 % der Spezifikations-
fehler des Systemtests entdeckt und friih korrigiert. Fiir den Korrekturaufwand wird
der gleiche Wert wie im Entwurfsreview verwendet.



Kapitel 7

Modellrealisierung, Modellpriifung und

Modellverbesserung

In diesem Kapitel ist die Implementierung von CoBe beschrieben (Abschnitt 7.1).
Dann wird das Vorgehen festgelegt, mit dem CoBe gepriift wird (Abschnitt 7.2). Dazu
werden zuerst Daten aus studentischen Projekten verwendet (Abschnitt 7.3). Mit den
Daten werden Modellzusammenhédnge (Abschnitt7.4) und Modellresultate
(Abschnitte 7.5 und 7.6) gepriift. Zwei Verbesserungen werden identifiziert und
umgesetzt. Die Ergebnisse zeigen, dass die Kalibrierung notwendig ist. Modell-
resultate und Daten aus den Projekten stimmen gut {iberein.

7.1 Die Realisierung von CoBe

Die Modellrealisierung ist der letzte Schritt der Modellbildung. Dieser Schritt erfolgt,
nachdem ein Modell der Realitit erstellt und als funktionales Modell dargestellt wird
(Abschnitt 3.7). CoBe wurde sowohl als Tabellenkalkulation als auch als Java-Anwen-
dung realisiert.

7.1.1 Vorgehen zur Realisierung des Modells

Prinzipiell konnen die Modellresultate von Hand ausgerechnet werden. Da dies auf-
wandig und fehleranfillig ist, wurde das Modell als ausfithrbare Anwendung reali-
siert. Da die Modellbildung iterativ erfolgt, angelehnt an das Konzept fiir den
Modelleinsatz (Abschnitt 3.6.1), gehort die Erprobung zur Modellbildung. Sie zeigt,
ob wichtige Zusammenhdnge fehlen oder falsch sind. Somit ist notwendig, das
Modell frithzeitig zu implementieren, auch wenn die Konzepte des Modells noch
nicht stabil sind.

Die Realisierung des Modells als Programm und die Verifikation des Programms
kann aufwandig werden, vor allem, wenn das Programm und die Programmstruktur
haufig umgearbeitet werden. Dies kann der Fall sein, wenn das Modell iterativ ent-
steht, da sich dann die Modellkonzepte und die Modellzusammenhénge andern kon-
nen. Darum erfolgte die Realisierung in mehreren Stufen mit unterschiedlichen
Modellen: Zuerst wurde das Modell als Tabellenkalkulation realisiert, um wahrend
der Modellbildung flexibel bei umfangreichen Modellanderungen zu sein. Die Tabel-
lenkalkulation ermdoglichte, CoBe friihzeitig zu implementieren und zu erproben.
Somit konnen Fragen untersucht werden, die sich bei der Modellbildung stellen.
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Dazu gehort etwa: Welche Zusammenhéange sind relevant? Welche Zusammenhéange
wirken sich auf die Modellresultate aus? Wie konnen die Zusammenhange quantifi-
ziert werden? Welche Eingaben sind notwendig? Die Tabellenkalkulation ist also vor
allem ein Werkzeug zur Forschung.

Erst nachdem die Modellbildung weitgehend abgeschlossen war, erfolgte die Reali-
sierung als Java-Anwendung. Damit wird eine komfortable Bedienung und die auto-
matisierte Berechnung fiir die Sensitivititsanalyse im Rahmen der Validierung
(Abschnitt 7.2.2) ermdglicht.

Tabellenkalkulation und Java-Programm wurden in zwei Ausbaustufen erstellt.
Somit konnten zuerst das Basismodell und die Priifungsmodelle gepriift werden,
bevor CoBe vollstandig realisiert wurde:

* Version 1: Die erste Version enthalt das Basismodell und detaillierte Priifungsmo-
delle fiir das Spezifikationsreview, das Entwurfsreview und das Codereview. Der
Systemtest ist im Detail modelliert. Da die Zusammenhange des Testmodells aber
nur durch wenige Daten untermauert sind, sind andere Testebenen nicht detailliert
modelliert, sondern nur durch Fehlerentdeckungsquoten dargestellt.

* Version 2: Fiir die zweite Version wurde die Version 1 um die Codeanalyse, den
Integrationstest von Subsystemen, Korrekturpriifprozesse, Codereviews von Kor-
rekturen, detaillierte Modelle fiir Tests auf allen Ebenen und ein Modell fiir die
Kosten falscher Befunde erweitert.

Abbildung 44 skizziert den zeitlichen Ablauf der Modellrealisierung fiir die Tabellen-
kalkulation und die Java-Anwendung in den beiden Ausbaustufen. Die Version 1 der
Tabellenkalkulation erfolgte wahrend der Modellbildung und Erprobung. Sie wurde
zur Version 2 fiir die Validierung erweitert. Dabei entstand die erste Version der Java-
Anwendung, die dann zur Version 2 ausgebaut wurde.

Tabellen- . .
Kalkulation Version 1 Version 2
Java- Version 1| Version 2
Anwendung

| | =

Modellbildung und Validierung und Zeit
Erprobung Erweiterung
Legende Realisierungs-
zeitraum

Abb. 44: Zeitraume der Realisierung
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7.1.2 Realisierung als Tabellenkalkulation

Die Tabellenkalkulation fiir CoBe ist auf mehrere Arbeitsblatter aufgeteilt. Die Auftei-
lung orientiert sich an der Modellstruktur in Abbildung 17. Jedes Priifungsmodell
besteht aus einem Arbeitsblatt fiir die Zusammenhdnge und einem Arbeitsblatt fiir
das Fehlerstrommodell, mit dem entdeckte und entfallende Fehler berechnet werden.
Weitere Arbeitsblatter enthalten COCOMO 11, Korrekturkosten und Funktionen zur
Kalibrierung und Quantifizierung des Modells.

Die Modelleingaben fiir den Priifprozess, die Priifparameter und die Produkt- und
Projektmerkmale sind auf einem Arbeitsblatt gemeinsam mit den Modellresultaten
enthalten. Die Abbildungen 45 und 46 zeigen beispielhaft einen Ausschnitt aus die-
sem Arbeitsblatt. Abbildung 45 stellt die Eingaben fiir das Spezifikationsreview dar,
Abbildung 46 zeigt die Eingaben fiir den Modultest. Dabei sind die Eingaben fiir den
Test Mindestforderungen. 0 % Anweisungsiiberdeckung bedeutet also nicht, dass
keine Anweisungen iiberdeckt werden diirfen, sondern dass auch mehr als 0 % der
Anweisungen tiberdeckt werden konnen. Das Arbeitsblatt enthélt die Modellausga-
ben in tabellarischer Form. Ein zusétzliches Arbeitsblatt enthalt Diagramme, die diese
Resultate als Balkendiagramme darstellen. Abbildung 47 zeigt als Beispiel den Nut-
zen des Spezifikationsreviews in Euro.

Spezifikationsreview

Prufingsuberdeckung 100% der Spezdikation
Gulachlarzahl § Gulachier
Gutachterkompetenz 3 0 (XL) bis 6 (XH)
Vorbereitungsintensiat 10 Seilen pro Stunde

Abb. 45: Eingaben des Spezifikationsreviews

Modultest

Black-Box-Test

Funktionen 100% Abdeckung
Aquivalenkiassen 100% Abdeckung
Sonderialle 0% Abdeckung
Glass-Box-Test

Anweisungen 0% Uberdeckung
Zweige 0% Uberdeckung
Schieden 0% Uberdeckung
Terme 0% Uberdeckung
Testerkompetenz 3

Abb. 46: Eingaben des Modultests
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Uberblick tber den Nutzen des Spezifikationsreviews

200000 -
150000 -
e
& 100000 -
50000
0 =
B
-50000 T T T
Prifung und Projekt Warung Fehler-
Kornektur folgekosten

Abb. 47: Resultate fiir das Spezifikationsreview

Die Quantifizierung des Modells wird durch die Tabellenkalkulation direkt unter-
stiitzt, indem wichtige Zusammenhange des Modells jeweils in einem eigenen
Arbeitsblatt quantifiziert werden konnen:

Spite Korrekturkosten. Fiir jede Priifung kann ein Basiswert fiir den Korrekturauf-
wand pro Fehler eingegeben werden. Die Faktoren, mit denen der Einfluss der
Fehlerschwere und der Fehlerart modelliert sind, konnen direkt eingegeben werden,
auch einzeln fiir jede Priifung. Beispielsweise wird ein Faktor von 1,3 als Verhaltnis
des Korrekturaufwands zwischen kritischen Fehlern und Hauptfehlern eingegeben
(Abschnitt 6.3.5). Die weiteren Einfliisse, insbesondere der Produktumfang und der
Aufwandsfaktor zur Kalibrierung, werden berticksichtigt. Das Arbeitsblatt enthalt als
Ergebnis den Korrekturaufwand pro Fehler fiir jede Priifung, jeweils fiir jede Kombi-
nation aus Fehlerart und Fehlerschwere.

Priorisierung von Reviews. In diesem Arbeitsblatt konnen die Datenpunkte, die zur
Beschreibung der Priorisierungsfunktion notwendig sind (Abschnitt 6.4.2), direkt ein-
gegeben werden. Diese Eingaben sind jeweils fiir kritische Fehler, Hauptfehler und
Nebenfehler moglich. Daraus wird der Exponent der Priorisierungsfunktion berech-
net. Die Funktion wird graphisch dargestellt; Abbildung 42 stammt direkt aus der
Tabellenkalkulation.

Test. Eingegeben werden konnen Datenpunkte fiir den Zusammenhang zwischen der
Testfallzahl und der erreichten Uberdeckung (Abschnitt 6.6.2). Daraus berechnet die
Tabellenkalkulation die Parameter fiir die Gleichung und stellt den Zusammenhang
graphisch dar. Auch der Zusammenhang zwischen der Testfallzahl und der Fehler-
entdeckungsquote wird in diesem Arbeitsblatt durch die Eingabe einzelner Daten-
punkte in eine Tabelle quantifiziert. Die Parameter der Gleichung (Abschnitt 6.6.2)
werden berechnet. Der Zusammenhang wird graphisch dargestellt (Abbildung 43).
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Review. Datenpunkte fiir den Zusammenhang zwischen der Zahl der Gutachter und
der Fehlerentdeckungsquote konnen in eine Tabelle eingegeben werden. Die Parame-
ter der Gleichung (Abschnitt 6.4.2) werden aus diesen Eingaben berechnet. Das Resul-
tat wird graphisch dargestellt. Abbildung 41 ist aus dem Arbeitsblatt {ibernommen.

7.1.3 Realisierung als Java-Anwendung

Wahrend die Realisierung als Tabellenkalkulation vor allem zur Erprobung des
Modells und der Konzepte gedacht war, wird die Java-Anwendung benétigt, um
Resultate vieler Eingabekombinationen zu berechnen. Dies ist notwendig, um das
Verhalten des Modells zu untersuchen. Die Anwendung tragt den Namen CoBeCalc.

Einsatzszenarien fiir CoBeCalc
CoBeCalc bietet Einsatzmoglichkeiten fiir drei Einsatzszenarien:

¢ Im interaktiven Modus werden Modellresultate fiir einen Satz Eingaben berechnet.
Dabei wird jede Eingabe iiber die Benutzungsschnittstelle auf einen einzigen Wert
gesetzt. Diese Wertebelegung kann in einer Datei gespeichert werden.

e Damit das Verhalten des Modells untersucht werden kann, miissen Resultate fiir
viele Eingabekombinationen berechnet werden. Dies wird mit CoBeCalc unter-
stiitzt, indem Dateien eingelesen werden konnen, die viele Eingabekombinationen
enthalten. Diese Schnittstelle ist speziell fiir das Werkzeug SimLab (SimLab, 2009)
zur Sensitivitdtsanalyse des Modells implementiert (Abschnitt 8.1). SimLab erzeugt
die Eingabekombinationen durch pseudo-zufallige Auswahl aus den Werteberei-
chen der Eingaben.

* Eingabekombinationen, die aus fest vorgegebenen Werten gebildet werden, wer-
den mit CoBeCalc durch Klassen unterstiitzt, die die Erzeugung der Kombinatio-
nen und die Berechnung der Resultate realisieren (Abschnitt 8.1).

Fiir die interaktive Verwendung von CoBeCalc werden die Modellresultate in tabella-
rischer Form an der Benutzungsschnittstelle ausgegeben und konnen als csv-Datei
gespeichert werden. Sie konnen somit leicht in andere Anwendungen tibertragen
werden. Bei den anderen beiden Verwendungsmoglichkeiten werden die Resultate
fiir Projekt-Qualitatskosten und Gesamt-Qualitdatskosten in eine Datei geschrieben.

Die Benutzungsschnittstelle von CoBeCalc

Die Benutzungsschnittstelle ist fiir die Eingaben gegliedert in Prozess- und Produkt-
merkmale, Eingaben fiir die Fehlerfolgekosten, den Priifprozess und die einzelnen
Priifparameter fiir Reviews und fiir Tests. Jeder dieser Teile ist in einem Reiter ange-
ordnet. Abbildung 48 zeigt einen Teil der Eingaben fiir Prozess- und Produktmerk-
male, Abbildung 49 zeigt die Eingaben fiir Reviews.
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CoBeCalc
| Prozess un... .Fehlerfolg... ¥ Prifprozess ¥ Reviews ¥ Tests " Resultate ... Resultate ... " Resultate ... “SimLab \

Umfang der Software W
Hinzugefigte Software 10600.0 Statements

Geanderte Software 0.0 Statements

Wiederverwendete Software 0.0 Statements

Programmiersprache Java L]
Kostenfaktoren

Personalkosten pro Entwicklerjahr 200000.0 Euro

Kosten pro Projekttag 0.0 Euro

Abb. 48: Modelleingaben fiir Prozess und Produkt (Ausschnitt)

CoBeCalc

[ Proz... Feh.. Pri... Rewi... Tesls" Res..  Res.. Res.. ¢
Spezifikations- Entwurfsreview Codereview "1
review

Abdeckung des 1000 | [1000 (100.0

Dokuments (%) . = = =

Gutachterzahl 4.0 4.0 3.0

Gutachterkompeten .Ha(h E] Nominal E] .Hoch E]

Vorbereitungsintensitat | 10.0 10.0 7 (3000

(Seiten/Stunde oder
LOC/Stunde)

(

Abb. 49: Eingaben der Review-Priifparameter

Abbildung 50 zeigt die zusammengefassten Resultate fiir Qualitatskosten in Euro und
die COCOMO-II-Resultate, die zur Kalibrierung benétigt werden. Aufwand, Dauer,
Personalbedarf und Geldwerte werden fiir einzelne Aktivititen ausgegeben
(Abbildung 51). Erganzend werden enthaltene und entdeckte Fehler ausgegeben.

Die Struktur von CoBeCalc

Bauer (2008) gliedert das Programm in die drei Pakete ul, inputOutput und
calculation. Das Paket ul realisiert die graphische Benutzungsschnittstelle. Das Paket
inputOutput enthalt die Klassen fiir die Datenein- und -ausgabe.

Die Modellzusammenhéange sind im Paket calculation realisiert. Die Klassen in die-
sem Paket orientieren sich am Aufbau des Modells. Pro Priifung gibt es jeweils eine
Klasse (Abbildung 53). Diese enthdlt Methoden und Aktivitaten des Priifungsmodells
zur Fehlerentdeckung, des Modells der Priiftkosten und des Modells der Priifwieder-
holungskosten. Das Fehlerstrommodell ist fiir die verschiedenen Dokumente in ein-
zelnen Klassen realisiert (Abbildung 52). Alle Werte fiir die Quantifizierung sind in
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CoBeCalc
I Proze... Fehler... Priifpr... Reviews  Tests Result... Result... Result... SimLab |
Projektresultate (mit COCOMO) Qualitatskosten
Gesamtaufwand 6396,2 Eh . - .
Projekt-Qualitatskosten 276744 Euro
Gesamtdauer 274,6 Tage
Wartungs-Qualitatskosten 203391 Euro
Personalbedarf 3,1 Personen .
Fehlerfolgen-Qualitatskosten 173320 Euro
Gesamt-Qualitatskosten 653455 Euro

Abb. 50: Modellresultate fiir Qualitatskosten und COCOMO-II-Resultate

CoBeCalc
! Proz... Feh.. Prii... Revi.. Tests Res... Res... Res...
Aufwand Dauer Mitarbeiter Kosten
(Eh) (Tage) (Euro)
Spezifikationsreview
21724
Prifung 74,8 9,0 7.0
Korrektur 123,3 25,4 0,6
Entwurfsreview L
792
Prifung 74,8 9,0 7.0 e
Korrektur 233,4 32,4 0,9
Codeanalyse
0
Prifung 0,0 0,0 2,0
Korrektur 0,0 0,0 2,0
Prufwiederholung 0,0 0,0 2,0
Modultest
4
Prifung 147,8 9,1 2,0 230
Korrektur 1248 7 2,0 1
Prufwiederholung 24,4 15 2,0 3
r >

Abb. 51: Modellresultate fiir Aktivititen (Auszug)

einer Textdatei enthalten und kénnen dadurch angepasst werden. Insbesondere kon-
nen spezielle Anpassungen an eine Umgebung durchgefiihrt werden, ohne dass Code
gedandert werden muss.

7.2 Uberblick iiber die Modellpriifung

CoBe berechnet aus Eingaben tiber Priifungen und Priifparametern die Resultate, also
Kosten und Nutzen. Somit gehort das Modell zu den Pseudometriken (Ludewig und
Lichter, 2007), diese miissen validiert werden. Die moglichen Eingabewerte beschrei-
ben den Handlungsspielraum. Die Resultate berechnen sich aus einem gewahlten
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Document

|DocumentSpecification | |DocumentDesign | |DocumentCode |

Abb. 52: Klassen fiir Dokumente

| QualityAssuranceActivity|

AN
Revi
/\
SpecificationReview| |DesignReview| |CodeReview| |CodeAnaIysis| |ModuIeTest| | IntTest | |Subsystem|ntTest| |SystemTest| |FieIdTest|

Abb. 53: Klassen fiir Priifungen

Punkt in diesem Handlungsspielraum. Somit handelt es sich um ein Entscheidungs-
modell, auch wenn die optimale Handlungsalternative nicht direkt berechnet wird
(Laux, 1998). Damit treten bei der Validierung von CoBe die speziellen Schwierigkei-
ten auf, die typisch bei der Validierung von quantitativen Entscheidungsmodellen
auftreten. Darum wird zuerst ein Uberblick {iber die Priifmethoden und die damit
verbundenen Schwierigkeiten gegeben, bevor das Vorgehen festgelegt wird.

7.2.1 Verifikation und Validierung fiir quantitative Modelle

Fiir die Priifung quantitativer Modelle wird zwischen Verifikation und Validierung
unterschieden (Drappa, 1998; Rykiel, 1995; Sargent, 2005):

Def. Validierung. Validierung eines Simulationsmodells bedeutet festzustellen, ob
das Simulationsmodell eine fiir den spezifizierten Zweck der Untersuchung hin-
reichend genaue Reprasentation des betrachteten realen Systems ist (Drappa,
1998).

Def. Verifikation. Verifikation eines Simulationsmodells bedeutet sicherzustellen,
dass das Modell mit hinreichender Genauigkeit von einer Reprasentationsform
in eine andere tiberfithrt wurde (Drappa, 1998).

Die Validierung erfolgt also gegen den Modellzweck. Verifikation und Validierung
werden den Schritten der Modellbildung zugeordnet (Sargent, 2005). Abbildung 54
zeigt diese Zuordnung fiir den gewadhlten funktionalen Modellierungsansatz
(Abschnitt 3.7, S. 49).
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Modellbildung  nach Sargent (2005)

Realitat Real world ..
Validierung
Modell der Conceptual (Schritt 1)
Realitat model ) Verifikation
Funktionales Simulation model (Schritt 2) \galklld‘lirzng
Modell specification :) Verifikation (Schritt 4)
Modell- Simulation (Schritt 3)
realisierung model
Resultate Model results

Abb. 54: Modellbildung, Verifikation und Validierung nach Sargent (2005)

Verifikation

Das funktionale Modell wurde gegen das Modell der Realitat durch Walkthroughs
gepriift (Schritt 2). Konstruktiv ist dieser Schritt abgesichert, weil formalisierte
Zusammenhdnge aus Modellen verwendet wurden, die bereits gepriift und belegt
wurden. Dazu gehdren zum Beispiel die COCOMO-II-Zusammenhange. Die Modell-
realisierung (Schritt 3) wurde durch Tests und Walkthroughs gepriift. Tracing, das
Nachverfolgen von Berechnungen, und Modularisierung sind wichtige Techniken
(Drappa, 1998). Tracing konnte durch die Modularisierung einfach durchgefiihrt wer-
den, da die Modellstruktur auch Zwischenergebnisse sichtbar macht (Abschnitt 6.2).
Somit konnten in den Tests nicht nur Endergebnisse, sondern auch Zwischenergeb-
nisse gepriift werden. Dazu wurden Sollresultate fiir Zwischen- und Endergebnisse
vorgegeben, so dass die Modellberechnungen Schritt fiir Schritt nachvollzogen und
gepriift wurden. Tabellenkalkulation und Java-Programm wurden unabhingig von-
einander erstellt und gegeneinander gepriift (Bauer, 2008).

Validierung

Die direkte Methode zur Validierung ist, Modellresultate mit Werten aus der Realitat,
den Istwerten, zu vergleichen. Bei der direkten Validierung von CoBe treten dann
aber die folgenden Schwierigkeiten auf:

1. Entscheidungen konnen nicht riickgangig gemacht werden. Darum stehen Istwerte
alternativer Handlungen fiir dieselbe Situation prinzipiell nicht zur Verfiigung
(Gass, 1983).

2. Bei vielen Eingabeparametern werden sehr viele Messungen benétigt, um eine ver-
lassliche Aussage tiber die Modellvaliditat zu treffen (Sargent, 2005). Dies kostet
Zeit und Aufwand, beide stehen nicht unbegrenzt zur Verfiigung.
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3. Weil CoBe Industrieprojekte reprasentieren soll, muss die Validierung mit Indus-
trieprojekten erfolgen. Die Istwerte, d.h. die Werte, mit denen die Modellresultate
verglichen werden, miissen also in realen Projekten gemessen werden. Ihre
Erhebung kostet Aufwand und dauert lange, weil dazu der Prozess des Projekts
analysiert werden muss. Dabei miissen verfiigbare Daten identifiziert, dann ausge-
wertet werden. Nicht verfligbare Daten miissen erhoben werden. Zeit und Auf-
wand stehen aber in dieser Arbeit nicht unbegrenzt zur Verfligung. Vor allem fallt
tiir die Mitarbeiter der Industrieprojekte Aufwand an; deren Aufwand ist beson-
ders begrenzt, weil in Projekten Zeit und Aufwand knapp sind.

4. Fir die Priifung der Prognose muss zuerst das Projekt und dann zumindest ein Teil
der Einsatz- und Wartungsphase abgewartet werden. Dies ist in dieser Arbeit
kaum moglich, weil ein reales Projekt und sein Produkt dazu iiber mehrere Jahre
begleitet werden miissen; dazu reicht die Zeit der Arbeit nicht aus.

5. Eine vollstandige Validierung eines quantitativen Modells ist nicht moglich, jedes
Modell kann nur falsifiziert werden (Sargent, 2005).

Eine direkte, vollstandige Validierung ist also nicht moglich. Die Validierung bleibt
zwangsweise liickenhaft. Gass (1983) nennt darum weitere Methoden, die erganzend
zur unvollstandigen, direkten Validierung eingesetzt werden kénnen:

* Die Bewertung durch Experten,
* die Validierung einzelner Modellteile und
* die Sensitivitatsanalyse, um das Modellverhalten zu betrachten und zu bewerten.

Die Sensitivitdtsanalyse erganzt die Validierung, weil sie nicht auf einem Vergleich
zwischen Modellresultat und Realitdt beruht, sondern zeigt, wie und wie stark sich
die Modellparameter auf die Modellausgaben auswirken: Andern sich die Aussagen
des Modells? Welche Eingaben wirken sich starker, welche wirken sich schwacher
aus? Wie verhalt sich das Modell? Wie wirken sich unsichere Parameter aus?

7.2.2 Schritte der Modellpriifung

Das Modell CoBe wird zuerst mit studentischen Projekten validiert, weil diese Werte
leichter verfligbar sind. Aufierdem konnen die notwendigen Metriken passend zum
Modell definiert werden. Vorteilhaft ist auch, CoBe vor dem Industrieeinsatz zu
erproben, um Modelldefizite vor einer teuren Industriestudie zu erkennen. Weil stu-
dentische Projekte nur eingeschrankt verallgemeinerbar sind (Prechelt, 2001), kann
auf eine Validierung in der Industrie aber nicht verzichtet werden. Mit studentischen
Projekten und Industrieprojekten steht die Validierung auf einer breiten Datenbasis.
Sie erfolgt schritthaltend mit den Schritten der Modellrealisierung (Abschnitt 7.1), so
dass die Modellversion 1 mit studentischen Projekten gepriift wurde. Auch diese Prii-
fung erfolgte in einzelnen Schritten, um nach und nach unterschiedliche Aspekte des
Modells abzudecken:
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* Die Zusammenhéange in CoBe sind unterschiedlich gut belegt. Darum werden aus-
gewahlte Zusammenhdnge mit Daten aus studentischen Projekten untersucht
(Abschnitt 7.4). Damit werden die einzelnen Annahmen, aus denen das Modell der
Realitdt besteht, tiberpriift (Schritt 1 in Abbildung 54). Dies erlaubt, zumindest
einen Teil des Wertebereichs eines Parameters zu priifen (Problem 2) und die Wir-
kungen von Entscheidungen zu priifen, ohne dass auf unterschiedliche Projekte
zuriickgegriffen werden muss (Problem 1).

* Im nachsten Schritt wird CoBe mit Durchschnittswerten aus 21 studentischen Pro-
jekten erprobt (Abschnitt 7.5), zuerst mit einem unkalibrierten Modell und dann
mit einem kalibrierten Modell. Es erfolgt also zuerst eine Erprobung, bevor teure
Industriedaten verwendet werden (Problem 3).

e Mit den Daten der studentischen Projekte wird gepriift, ob CoBe Kosten und Nut-
zen einzelner Projekte ausreichend genau nachtraglich beschreibt (Schritt 4 in
Abbildung 54). Da die Projekte dhnlich sind, kann die Wirkung unterschiedlicher
Priifparameter durch Vergleich gepriift werden (Problem 1). Abschnitt7.6.1
beschreibt die Resultate.

* Die Prognose der Kosten und des Nutzens mit CoBe wird durch eine Kreuzvalidie-
rung in Abschnitt 7.6.2 untersucht (Schritt 4 in Abbildung 54). Mit einer Kreuzvali-
dierung wird nachgebildet, dass bei der Prognose einige Eingaben nicht gemessen,
sondern nur geschatzt werden konnen oder aus Archivdaten stammen. Damit
muss nicht die Wartungs- und Einsatzphase abgewartet werden (Problem 4).

* Die Sensitivitatsanalyse in Abschnitt 8.1 zeigt, wie die Modellresultate von den
Eingaben abhdngen. Die Wirkungen der Entscheidungen {iber Priifungen und die
Wirkungen von unsicheren Eingaben werden untersucht (Problem 1). Das Verhal-
ten des Modells kann beurteilt werden (Problem 5), auch fiir sehr viele Eingaben
(Problem 2). Dies wird durch die Optimierung von Priifprozessen zusétzlich unter-
sucht (Abschnitte 8.2).

* Die Validierung mit Industrieprojekten (Abschnitte 8.4 und 8.5) zeigt, ob CoBe fiir
deren Prozess erweitert werden kann. Sie erfolgt mit der Modellversion 2, die
Erweiterungen fiir die Industrieprojekte enthalt. Dieser Vergleich mit Istwerten aus
der Industrie zeigt (Problem 3), ob CoBe diese Projekte ausreichend genau repra-
sentiert (Schritt 4 in Abbildung 54).

Anschliefiend wird der Modelleinsatz demonstriert:

* Modelleinsatz und Modellverhalten werden mit Beispielen demonstriert. Dazu
werden auch Daten aus Berichten iiber Prozessverbesserungsmafsnahmen verwen-
det (Abschnitt 8.7, Schritt 4 in Abbildung 54).

7.2.3 Kriterien fiir die Modellpriifung

Die Definition der Validierung verlangt, dass das Modell das reale System ausrei-
chend genau reprasentiert. Dazu werden Modellresultate mit Istwerten verglichen
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(IEEE 1061, 1998); die Prognose soll eine Mindestgenauigkeit erreichen (Tabelle 39).
Validierungskriterien definieren dafiir Metriken mit Grenzwerten. Die Standard-
Metrik fiir die Bewertung der Genauigkeit ist der Betrag des relativen Fehlers (Magni-
tude of relative error, MRE, IEEE 1061, 1998; Fenton und Pfleeger, 1997; Conte et al.,
1986; Kemerer, 1987):

MRE = |[stwert— Modellresultat
Istwert

Conte et al. (1986) fordern, dass Modellresultate im Schnitt weniger als 25 % abwei-
chen und dass 75 % der Modellresultate innerhalb dieser 25 %-Grenze liegen. Darge-
stellt wird dieses Kriterium als pred(25 %) =75 % .

Der relative Fehler MRE ist nur bedingt plausibel, weil zu niedrige Modellresultate zu
schwach bewertet werden. Berechnet das Modell beispielsweise 90 % zu wenig Feh-
ler, dann erscheint die Abweichung intuitiv grofier, als wenn das Modell 90 % zu
viele Fehler berechnet. In beiden Fallen betragt der relative Fehler aber 90 %. Das Ver-
haltnis zwischen Modellresultat und Istwert ist aussagekraftiger (1 : 10 im ersten, fast
2:1 im zweiten Fall) und ist ohne Angabe eines Istwerts anschaulicher. Verhaltnis-
werte zwischen Modellresultat und Istwert sind ebenso wie der relative Fehler tiblich,
um die Schitzungenauigkeit bei der Planung zu beschreiben (Boehm, 1981). Daran
angelehnt verwende ich das logarithmierte Verhaltnis zwischen Modellresultat und
Istwert: Die logarithmische Abweichung LE (Error) ist definiert mit der HilfsmafSein-
heit deziBel (dB)!; Tabelle 37 zeigt Abweichungen im Vergleich.

LE = 10 log (Moteliresuliar)
Modellresultat zu niedrig Modellresultat zu hoch
H Faktor MRE Faktor MRE
3,0dB 0,50 50 % 2,00 100 %
2,0dB 0,63 37 % 1,58 58 %
1,0 dB 0,79 21 % 1,26 26 %

Tabelle 37: Vergleich logarithmierter und relativer Fehler

Der 25 %-Grenze von Conte et al. (1986) entspricht etwa 1 dB. Diese Grenze ist erfah-
rungsgemafs sehr eng und wird selbst von COCOMO II kaum erreicht:

1. Der Betrag des Logarithmus ermdglicht, dass der gleiche Faktor im Zéhler und im Nenner
gleich bewertet wird: Ein Verhaltnis von 1 : 2 wird gleich wie 2 : 1 bewertet.
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e Von 83 Projekten aus 18 Organisationen liegen 49 % der COCOMO-II-Resultate
innerhalb der 25 %-Grenze. Nach der Kalibrierung fiir die Organisation sind 55 %
der Resultate innerhalb der 25 %-Grenze (Boehm, 2000, S. 162).

* Eine Kreuzvalidierung von COCOMO II mit 161 Projekten ergibt, dass vor Kalib-
rierung fiir die Organisation 68 % der Modellresultate in der 25 %-Grenze liegen.
Nach Kalibrierung fiir die Organisation sind 76 % der Modellresultate innerhalb
dieser Grenze (Boehm, 2000, S. 173).

* Abhangig vom Kalibrierungsverfahren und der Datenmenge liegen zwischen 39 %
und 63 % der Resultate in der 25 %-Grenze (Boehm, 2000, S. 174).

Boehm (1981 und 2000) zeigt einen Faktor zwei als typische Abweichung der Schat-
zungen wahrend der Planung. Dies entspricht 3 dB. CoBe soll die Planung verbes-
sern. Damit sind 3 dB zu schwach. 1 dB ist ein sehr gutes Ergebnis, 2 dB wahle ich als
Grenze fiir die Validitat (Tabelle 38) und bezeichne dieses Kriterium als 2-dB-Grenze.

Kriterium Bewertung Folgerung
0dB<LE<1dB | Modell valide
1dB<LE<2dB |Modell valide Ursachenanalyse mit
unsicheren Eingaben und
2dB <LE Validitat fraglich, Modell nicht valide | ynklarem Prozess

Tabelle 38: Kriterien fiir die Validierung

Ein Paar aus Istwert und zugehorigem Modellresultat bezeichne ich im Folgenden als
Datenpunkt. Ein einzelner Datenpunkt kann direkt mit der logarithmischen Abwei-
chung beurteilt werden. Werden mehrere Projekte in jeweils eine Instanz von CoBe
abgebildet, dann werden fiir jedes Projekt Resultate berechnet. Es miissen also meh-
rere Datenpunkte beurteilt werden. Um mehrere Vergleiche zusammenzufassen, ver-
wende ich zwei Kriterien:

* Der Anteil der Datenpunkte, der innerhalb einer bestimmten Grenze liegt, wird
nach IEEE 1061 (1998) und Boehm(2000) durch pred(x) dargestellt. Dabei bezeichnet
“x” die Grenze, die verwendet wird. Ich verwende im Folgenden pred(2 dB); liegen
zum Beispiel 7 von 10 Vergleichen innerhalb der 2-dB-Grenze, dann ist pred(2 dB) =
70 %.

* Den Median aus den Werten der logarithmischen Abweichung des LE bezeichne
ich im Folgenden durch MLE. Ich wahle den Median und nicht den Mittelwert,
weil der Median robust gegen Ausreifser ist.

Der IEEE-Standard 1061 (1998) nennt weitere Kriterien fiir Qualitatsmetriken
(Tabelle 39):
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Kriterium Beschreibung
Correlation Qualitatsmerkmal und Metrik sollen eng, d.h. mit hoher
(Korrelation) Bestimmtheit, zusammenhangen.

Anderungen des Qualititsmerkmals von einem Zeitpunkt T1 zum

(T;Ziz?gu ng) Zeitpunkt T2 sollen sich auch als Anderungen in der richtigen
sUNS Richtung in der Metrik zeigen.
Consistenc Werden Produkte anhand des Qualitatsmerkmals in einer
(Konsis ten;,) bestimmten Reihenfolge geordnet, dann soll auch die Metrik die
Produkte in dieser Reihenfolge ordnen.
Predictability Eine Metrik, die ein Merkmal prognostiziert, soll das Merkmal mit
(Genauigkeit) einer bestimmten Mindestgenauigkeit vorhersagen.

Discriminative power | Unterschiedliche Auspragungen eines Qualitatsmerkmals sollen
(Differenziertheit) auch durch die Metrik unterschiedlich bewertet werden.

Erfolgt die Validierung mit mehreren Bewertungen (etwa mit
Reliability mehreren Produkten oder zu mehreren Zeitpunkten), dann soll
(Verlasslichkeit) mindestens ein bestimmter Teil der Bewertungen die oben
genannten Validierungskriterien erfiillen.

Tabelle 39: Validierungskriterien (IEEE 1061, 1998)

* Correlation, Discriminative Power, Consistency: Werden Datenpunkte iiber einen
Bereich hinweg betrachtet werden, dann werden Aussagen zur Differenziertheit,
Konsistenz und Korrelation moglich. Aussagen tiber die Korrelation zwischen
Software-Umfang und Projektaufwand sind beispielsweise nur moglich, wenn der
Umfang auch tatsdachlich variiert. Bleibt er gleich, dann ergibt sich keine Korrela-
tion.

» Tracking: Werden Datenpunkte iiber eine Zeitspanne hinweg betrachtet, dann wird
gepriift, ob sich Istwert und Modellresultat gleichartig verhalten. Zeitliche Aspekte
spielen fiir die Validierung von CoBe keine Rolle.

7.3 Studentische Projekte fiir die Modellvalidierung

Die Istwerte fiir die Validierung einzelner Zusammenhinge und fiir eine erste Prii-
fung der Modellresultate stammen aus dem Software-Praktikum. Dieses Praktikum
ist eine Pflichtveranstaltung im dritten und vierten Semester des Studiengangs Soft-
waretechnik der Universitat Stuttgart (Ludewig et al., 2001). Die Daten stammen aus
dem Praktikum 2007. Es dauerte 21 Wochen von Februar bis August. Die Priifungs-
ordnung gibt 720 Entwicklerstunden (Eh) Aufwand vor. Das Praktikum wurde von
zwei wissenschaftlichen Mitarbeitern betreut. Ein weiterer Mitarbeiter tibernahm die
Kundenrolle. Er forderte ein Werkzeug zur Erfassung und Verwaltung von Testfallen
und Testprotokollen.
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7.3.1 Ablauf, Datenerhebung und Datenvalidierung

Im Praktikum arbeiteten in der Regel Dreierteams an dieser Aufgabe. In Ausnahme-
fallen wurden Zweierteams gebildet. 25 Teams haben das Praktikum begonnen, 23
Teams haben es erfolgreich abgeschlossen, Daten aus 21 Teams liegen vor. Das Prakti-
kum folgte einem definierten Prozess mit vorgegebenen Schritten und Terminen
(Tabelle 40). Spezifikation und Entwurf erfolgten mit UML. Der Code wurde in Java
geschrieben. Der Modultest erfolgte mit JUnit. Der Systemtest wurde ohne Werk-
zeugunterstiitzung durchgefiihrt. Die Teilnehmer mussten ihr eigenes Produkt zur
Verwaltung und Dokumentation der Testfdlle und des Tests einsetzen.

Prozessschritte Abgaben Termin
Einfithrungsveranstaltung - 12.02.2007
Vorbereitung auf Kundenbefragung | - 14.02.2007
Kundenbefragung - 14.02.2007
Projektplanung und Analyse Projektplan, Analysenotizen 23.02.2007
Spezifikation Spezifikation 09.03.2007
Spezifikationsreview Reviewprotokoll 16.03.2007
Korrektur Spezifikation Spezifikation 23.03.2007
Entwurf, Review und Korrektur Entwurf 13.04.2007
Walkthrough mit Betreuer Prasentation des Entwurfs 19./20.04.2007
Implementierung Code 01.06.2007
Modultest und Korrektur Testprotokoll und Code 15.06.2007
Systemtest und Korrektur Testprotokoll und Code 29.06.2007
Abnahme Alle Dokumente und Code 05./06.07.2007
Korrektur Korrigierte Dokumente und Code 20.07.2007

Tabelle 40: Ablauf des Software-Praktikums mit vorgegebenen Terminen

Die Betreuer haben Vorgaben fiir einen Teil der Priifungen gemacht (Tabelle 41). Die
Anweisungsiiberdeckung im Systemtest musste mit dem Werkzeug EMMA gemes-
sen werden. Anweisungen sind in EMMA tiiber den Bytecode von Java definiert.

Tabelle 42 zeigt die erhobenen Daten. Die Umfangsmetriken konnten nachtréaglich
gemessen werden. Dabei wurde Code fiir Testfidlle und wiederverwendeter Code
nicht gezahlt. Auch Aufwéande konnten gemessen werden. Andere Metriken mussten
subjektiv klassifiziert und bewertet werden. Dazu gehoren die Abdeckung der einzel-
nen Testmethoden im Black-Box-Test, Fehlerschwere, Fehlerart und die Klassifikatio-
nen fiir die Fehlerfolgekosten. Angelehnt an Prechelt (2001) wurden Kriterien fiir eine
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Priifung Vorgaben

Begutachtung der Spezifikation mit Checkliste, im Normalfall durch vier

ifikations- . . L
Spezifikations Gutachter und einen Moderator aus anderen Teams. Die Organisationen

review mit Zeiten und Raumen war vorgegeben.
Begutachtung des Entwurfs mit Checkliste, im Normalfall mit den gleichen
Entwurfs- I, > S . . L
. Beteiligten wie im Spezifikationsreview. Die Organisationen musste von
review : .
den Teilnehmern geleistet werden.
Walkthrough

Der Entwurf musste den Betreuern vorgestellt werden.
des Entwurfs

Programmier- | Der Code musste einer gegebenen Programmierrichtlinie geniigen. Die

richtlinie Teilnehmer waren fiir die Einhaltung selbst verantwortlich.
Modultest Keine Vorgabe.

Alle Funktionen mussten getestet werden. Mindestens 90 % der Zeilen
Systemtest

mussten ausgefiihrt werden.

Tabelle 41: Vorgaben fiir die Priifungen im Praktikum

nachvollziehbare und einheitliche Bewertung definiert und verwendet, damit die
Bewertung nachvollziehbar und einheitlich erfolgt. Kosten in Form von Geldwerten
wurden im Praktikum nicht erhoben, weil in studentischen Projekten Personalkosten
nicht definiert sind.

Die erhobenen Werte wurden auf Konsistenz und Glaubwiirdigkeit gepriift. Bei-
spielsweise konnen im Spezifikationsreview keine Codefehler entdeckt werden.
Darum sollte die Zahl der entdeckten Codefehler null sein. Wurden dann tatsachlich
Codefehler im Spezifikationsreview dokumentiert, dann konnte etwa mit dem Datum
der Entdeckung oder mit dem Fehlerkommentar gepriift werden, ob Fehlerart,
Fehlerkommentar, Priifung und Datum konsistent sind. Zeigten sich extreme
Abweichungen von typischen Werten, dann wurden die Dokumente des Projekts her-
angezogen. Wurden beispielsweise keine Fehler im Systemtest dokumentiert, konnte
dies anhand des Testprotokolls kontrolliert werden. Wurde ein extrem hoher Korrek-
turaufwand fur einen Fehler dokumentiert, konnte dies mit dem Kommentar, der fiir
den Fehler dokumentiert wurde, tiberpriift werden. Prechelt (2001) bezeichnet diesen
Schritt als Datenvalidierung.

7.3.2 Interne und externe Validitit

Bei der Erprobung des Modells wird das Software-Praktikum stellvertretend fiir alle
Software-Projekte, fiir die das Modell giiltig sein soll, verwendet. Damit dhnelt die
Erprobung und auch die Validierung des Modells einem Experiment, obwohl keine
unabhéngige Variable manipuliert wird, weil eine Stichprobe (das Software-Prakti-
kum) stellvertretend fiir die Gesamtpopulation (alle Projekte, fiir die das Modell giil-
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Aktivitat

Metriken

Die Teilnehmer dokumentierten fiir jeden Fehler den Korrekturaufwand, die

Korrektur | Fehlerart, die Fehlerschwere und die Priifung®. Diese Merkmale sind die
konsistent mit CoBe definiert (Abschnitt 6.3.2).
Spez.- Der Moderator dokumentierte die Namen der Gutachter (und damit die Zahl
review der Gutachter) und den Vorbereitungsaufwand pro Gutachter.
Im Testprotokoll steht die Zahl der Testfélle, fiir jeden Testfall der Erfolg, der
Durchfithrungsaufwand und die Anweisungsiiberdeckung®.
System- | Pro Testfall wurden nachtraglich Anweisungs-, Zweig-, Term- und
test Schleifeniiberdeckung gemessen® und die kumulierte Fehlerzahl9 berechnet.
Die Abdeckung der Methoden fiir den Black-Box-Test wurde anhand des
Testprotokolls bewertet.
Seitenzahl der Spezifikation (mit Begriffslexikon) vor dem Review
Software- Seitenzahl des Entwurfs vor dem Walkthrough
Umfang
Zahl der Anweisungen und Zeilen der Endabgabe®
Fehlerfol- | Fehler wurden nachtraglich nach Schaden, Auftretenswahrscheinlichkeit und
gekosten | Verwendungshaufigkeit klassifiziert.
Tabelle 42: Metriken im Software-Praktikum
a. Gemessen mit dem Werkzeug JDefectCollector (Hampp und Knauf3, 2008)
b. Gemessen mit dem Werkzeug EMMA
c. Gemessen mit dem Werkzeug CodeCover
d. Die Zahl der Fehler, die bis zu diesem Testfall entdeckt wurden
e. Gemessen mit dem Werkzeug CodeCount
f. Die Auftretenswahrscheinlichkeit beschreibt, mit welcher Wahrscheinlichkeit ein Fehler bei

einer Verwendung auftritt. Die Verwendungshéufigkeit beschreibt, wie oft die Software
beim Einsatz verwendet wird, bis ein Fehler korrigiert wird (Abschnitt 6.3.10)

tig sein soll) verwendet wird. Zur Gesamtpopulation gehoren vor allem
Industrieprojekte. Darum stellt sich die Frage nach der Giiltigkeit der gewonnenen
Aussagen (Prechelt, 2001):

e Die innere Giiltigkeit oder interne Validitat ist durch unkontrollierte Variablen

bedroht.

* Die aufiere Giiltigkeit oder externe Validitat beschreibt, ob und in welchem Grad
sich die Resultate auf andere Situationen, in denen das Modell eingesetzt werden
soll, tibertragen lassen.

Interne Validitit. Alle Teams mussten die gleichen Vorgaben fiir den Prozess und
die Priifungen erfiillen. Die Aufgabe war fiir alle Teams gleich. Sie befragten gemein-
sam den Kunden. Die spezifizierten Anforderungen waren stabil. Dadurch entfallen
viele unkontrollierte Variablen, so dass die Projekte gut vergleichbar sind. Der gleich-
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formige Priifprozess hat aber den Nachteil, dass Unterschiede durch verschiedene
Priifparameter nur schwer gezeigt werden konnen. Damit wird es schwierig, den
Nutzen von Priifungen zu zeigen, weil der Nutzen als Kostendifferenz sichtbar wird.
Die Teilnehmer waren unterschiedlich motiviert und fahig. Sie konnten ihren Prozess
und ihr Produkt im gegebenen Rahmen selbst bestimmen. Motivation und Fahigkeit
wurden nicht, Priifungen, Prozess- und Produktmerkmale zumindest teilweise kon-
trolliert. Die grofle Anzahl der Teams erleichtert die Analyse, weil Aussagen {iiber
Mittelwerte und die Streuung um den Mittelwert moglich sind. Sie starkt die interne
Validitat, weil das Ergebnis durch die vielen Datenpunkte robuster gegen zufallige
Storeffekte ist.

Externe Validitit. Die Verallgemeinerbarkeit leidet unter dem relativ kleinen und
einfachen Produkt. Projekt und Produkt sind aber komplett. Solche kleinen Produkte
gibt es auch in der Praxis (Jones, 1996). Die Anforderungen im Praktikum sind stabil,
eine Situation, die nicht typisch fiir die Praxis ist. Dieser Aspekt spielt in den Modell-
annahmen aber keine direkte Rolle. Die Teilnehmer des Praktikums sind im Vergleich
zu Entwicklern in der Industrie eher unerfahren, weil das Praktikum im dritten
Semester beginnt. Damit ist es fiir viele Teilnehmer das erste vollstandige Software-
Projekt, das sie durchfiihren. Diese Bedrohung der Validitat wird durch die gleichar-
tige Vorbereitung der Teilnehmer abgeschwacht: Entwurf und Programmierung sind
die Themen der Lehrveranstaltungen “Programmierkurs” und “Programmentwick-
lung” im ersten und dritten Semester. In der Vorlesung “Einfithrung in die
Softwaretechnik I” haben sie die Schritte eines Projekts kennengelernt und getibt
(Ludewig et al., 2001). Eine weitere Bedrohung der Verallgemeinerbarkeit ist der
fehlenden Kostenbegriff in studentischen Projekten, weil in studentischen Projekten
kein Geld fliefst, wahrend in Industrieprojekten die Kosten in Geldwerten anfallen. In
beiden Fillen konnen aber Arbeitsaufwand (z.B. in Entwicklerstunden, Eh), Dauer
und Personalbedarf gemessen werden.

74 Priifung ausgewdhlter Modellzusammenhinge

In dieser Arbeit konnen nicht alle Annahmen und Zusammenhdnge von CoBe
gepriift werden, weil dazu die verfiigbare Zeit nicht ausreicht. Ich wahle drei Berei-
che aus: Erstens die Zusammenhéange zwischen Fehlerentstehung, Fehlerentdeckung
und Korrekturaufwand, zweitens die Zusammenhange zwischen Testfallen, Uberde-
ckung und Fehlerentdeckung im Systemtest und drittens die Bewertung der Fehler-
folgekosten.

Die Zusammenhange zwischen Fehlerentstehung, Fehlerentdeckung und Korrektur-
aufwand werden gepriift, weil sie die Basis des Modells bilden. Fiir diese Basis gibt es
nur wenige Daten aus jiingeren Studien (Boehm, 1976, 1981 und 1987; Basili und Per-
ricone, 1984; Humphrey, 1995, Kan, 2003). Zum Teil werden Daumenregeln zusam-
mengefasst (Shull, 2002). Die Zusammenhdnge im Systemtest zwischen Testfallen,
Uberdeckungen und Fehlerentdeckung werden gepriift, weil sie nur punktweise
empirisch belegt sind (Abschnitt 5.5) und Daten auf breiter empirischer Basis fehlen.
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Diese Zusammenhdnge werden statistisch gepriift, dazu wird jeder Zusammenhang
als Arbeitshypothese formuliert. Eine Arbeitshypothese kann nicht direkt bestatigt
werden. Stattdessen wird eine Nullhypothese formuliert, die die Arbeitshypothese
negiert. Diese Nullhypothese kann falsifiziert werden. Wird die Nullhypothese falsifi-
ziert, dann wird dies als “Verwerfen” oder “Abweisen” der Nullhypothese bezeich-
net. Dadurch wird die Arbeitshypothese bestatigt.

Nullhypothesen werden durch statistische Tests gepriift. Sind die zu untersuchenden
Daten normalverteilt, dann kann der t-Test verwendet werden. Fiir beliebige Vertei-
lungen der untersuchten Daten kann der Wilcoxon-Rangsummen-Test verwendet
werden (Prechelt, 2001; Fahrmeir et al., 2007). Diese Tests ergeben, ob die Nullhypo-
these statistisch signifikant abgewiesen werden kann. Dabei bedeutet statistisch signi-
tikant, dass die Wahrscheinlichkeit fiir einen Irrtum ausreichend gering ist. Es wird
also betrachtet, mit welcher Wahrscheinlichkeit die Nullhypothese filschlicherweise
abgewiesen wird. Diese Wahrscheinlichkeit wird durch den p-Wert dargestellt (Fahr-
meir et al., 2007). p-Werte sind Wahrscheinlichkeiten und liegen darum zwischen 0
und 1. Je geringer der p-Wert, desto weniger wahrscheinlich ist, dass die Nullhypo-
these falschlicherweise abgewiesen wird. Ein kleiner p-Wert spricht also fiir ein ver-
trauenswiirdiges Ergebnis. Fiir eine objektive Bewertung wird der p-Wert mit einem
geforderten o-Wert verglichen. Der o -Wert ist das geforderte Signifikanzniveau,
typische Werte sind 0,1, 0,05 oder 0,01 (10 %, 5 % oder 1 %). Fiir die Signifikanz p wird
im Folgenden ein 5 %-Niveau gefordert (a. = 0,05). Mit diesem Signifikanzniveau soll
die Wahrscheinlichkeit fiir einen Irrtum also unter 0,05 liegen. Sobald der p-Wert
unter dem a-Wert von 0,05 liegt, wird die Nullhypothese abgelehnt und die Arbeits-
hypothese bestatigt.

Die Starke eines Zusammenhangs, im Folgenden auch als Bestimmtheit bezeichnet,
wird durch das Bestimmtheitsmaf3, den Determinationskoeffizienten RZ, gemessen.
Er driickt aus, welcher Anteil der Streuung der abhéangigen Variable durch die unab-
hangige erklart wird (Fahrmeir et al., 2007). Dabei gilt 50 % bereits als guter Wert im
wirtschaftswissenschaftlichen Bereich. Humphrey (1995) fordert iiber 70 %. Fiir die
Messung des Bestimmtheitsmafies wird eine lineare Regression durchgefiihrt (Fahr-
meir et al., 2007), durch die der Zusammenhang zwischen zwei Variablen als Gerade
geschatzt wird. Die Berechnungen erfolgen mit den Statistikpaketen SPSS (SPSS,
2008) und R (R, 2008).

Der dritte Bereich, der untersucht wird, ist die Bewertung der Fehlerfolgekosten, also
derjenigen Kosten, die beim Produkteinsatz durch Fehler fiir den Kunden anfallen.
Fiir diesen Bereich fehlen gemessene Vergleichswerte, weil die Produkte des Prakti-
kums nicht produktiv eingesetzt wurden; nur ein Produkt wurde erprobt und
demonstriert. Darum kann nur beurteilt werden, ob die Modellresultate plausibel
erscheinen und untereinander konsistent sind.
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7.4.1 Fehlerentstehung, Fehlerentdeckung, Korrekturaufwand

Die Zusammenhange zwischen Fehlerentstehung, Fehlerentdeckung und Korrektur-
aufwand lassen sich mit drei Hypothesen beschreiben (Hampp und Knaufs, 2008):

H1: Priifungen entdecken nur Fehler, die auf der gleichen Abstraktionsebene oder
auf einer tieferen Abstraktionsebene der Entwicklung gemacht wurden.

H2: Jeldnger ein Fehler unentdeckt bleibt, desto aufwéndiger ist seine Korrektur.
H3: Je schwerwiegender ein Fehler ist, desto aufwandiger ist seine Korrektur.
Priifung H 1: Abstraktionsebene der Fehlerentdeckung.

Tabelle 43 zeigt die im Software-Praktikum erhobenen Fehlerzahlen, unterschieden
nach Spezifikations-, Entwurfs- und Codefehlern. Diese Fehlerarten sind konsistent
mit CoBe definiert (Abschnitt 6.3.2).

Zahl entdeckter Fehler pro Fehlerart Spez.-fehler | Entwurfsfehler Codefehler
Spezifikationsreview 572 0 0
Entwurfsreview 1 209 0
Modultest 0 4 107
Systemtest 13 3 150
Abnahme 0 0 7

Tabelle 43: Zahl entdeckter Fehler im Praktikum, getrennt nach Fehlerart

In jeder Priifung werden Fehler vor allem einer bestimmten Art entdeckt. Spezifikati-
onsfehler werden hauptsachlich im Spezifikationsreview entdeckt, dann erst wieder
im Systemtest. Sie werden nicht auf niedrigerer Abstraktionsebene entdeckt. Ent-
wurfsfehler werden vor allem im Entwurfsreview entdeckt. Ein kleiner Teil der Ent-
wurfsfehler wird im Modultest auf niedriger Abstraktionseben entdeckt, ein Teil erst
im Systemtest auf hoherer Abstraktionsebene. Codefehler werden sowohl im Modul-
test, also auf der gleichen Abstraktionsebene, als auch im Systemtest, also durch Test
auf hoherer Abstraktionsebene, entdeckt.

Bewertung. Die Resultate widerlegen die Hypothese H 1 von CoBe nicht, sondern
bestatigen sie. Besonders deutlich wird dies, weil keine Spezifikationsfehler auf nied-
riger Abstraktionsebene entdeckt werden. Dass einige Entwurfsfehler bereits im
Modultest entdeckt werden, fithre ich darauf zuriick, dass die Teilnehmer bereits
wiahrend des Modultests kontinuierlich integriert haben. Somit enthélt der Modultest
bereits einen Integrationstest, der auf hoherer Abstraktionsebene liegt. Auf einen sta-
tistischen Test verzichte ich, weil nur wenige der Spezifikations- und Entwurfsfehler
in Modul- und Systemtests entdeckt wurden. Die interne Validitat ist durch diese
geringe Fehlerzahl bedroht. Die externe Validitat ist bedroht durch die stabilen
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Anforderungen; Jones (1996) bestatigt quantitativ den Verlauf der Fehlerentdeckung
mit Industriedaten.

Folgerung. Damit werden die unterschiedlichen Fehlerentdeckungsquoten fiir Feh-
lerarten und fiir Priiffungen, die in CoBe verwendet werden, qualitativ bestatigt.
Bestatigt wird, dass es in CoBe notwendig ist, die unterschiedlichen Fehlerarten zu
modellieren.

Priifung H 2: Je langer ein Fehler unentdeckt bleibt, desto aufwindiger ist seine
Korrektur.

Die Abbildung 55 zeigt den Korrekturaufwand pro Fehler nach den verschiedenen
Priifungen im Software-Praktikum. Rechts sind die Box-Plots ohne extreme Ausrei-
Ber! dargestellt. Der Korrekturaufwand steigt deutlich im Verlauf des Projekts. Die
Aufwande streuen stark, es gibt extreme AusreifSer nach oben.
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Abb. 55: Korrekturaufwand pro Fehler nach Priifungen im Praktikum:
links mit, rechts ohne extreme Ausreifser

Damit die Hypothese H 2 gepriift werden kann, muss bestimmt werden, wie lange
ein Fehler unentdeckt bleibt. Diese Zeitdauer hdangt vom Entstehungszeitpunkt und
vom Entdeckungszeitpunkt ab. Sie wird auch als Latenzzeit eines Fehlers bezeichnet.
Der Entstehungszeitpunkt ist durch die Fehlerart bestimmt, die konsistent zu CoBe
definiert ist (Abschnitt 6.3.2). Der Entdeckungszeitpunkt ist durch die Priifung
bestimmt, mit der der Fehler entdeckt wird. Der Einfluss der Latenzzeit wird durch
zwei Hypothesen gepriift. In diesen Hypothesen werden Spezifikations- und Ent-
wurfsfehler als frithe Fehler zusammengefasst, weil in den Tests nur wenige dieser
frithen Fehler entdeckt wurden. Codefehler werden als spate Fehler bezeichnet. Die
frithe Korrektur findet nach Reviews statt, die spate Korrektur nach den Tests.

1. Als extreme AusreifSer oder Extremwerte werden im Boxplot diejenigen Werte bezeichnet,
die mehr als 3 Boxldangen vom Rand der Box entfernt sind (SPSS, 2008). Die Boxlange ist der
Abstand zwischen unterer und oberer Quartile.
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H 2.1: Die spate Korrektur friither Fehler ist aufwandiger als die frithe Korrektur.

H 2.2: Die spate Korrektur frither Fehler ist aufwandiger als die Korrektur spater
Fehler.

Tabelle 44 fasst die Daten iiber die Korrekturaufwande pro Fehler zusammen. Der
Mittelwert ist deutlich hoher als der Median. Die Maximalwerte erreichen Korrektur-
aufwinde von bis zu 30 Entwicklerstunden pro Fehler. Dies deutet darauf hin, dass
die Aufwande nicht normalverteilt sind. Fiir den Hypothesentest wird darum der
Wilcoxon-Rangsummen-Test eingesetzt.

Aufwand Frithe Fehler | Friihe Fehler | Spate Fehlerin
(Entwicklerminuten) in Reviews in Tests Tests

Minimum 0,0 4.0 1,0
1. Quartil 3,0 10,0 5,0
Median 6,0 37,5 10,0
Mittelwert 18,7 131,8 32,0
3. Quartil 15,0 150,2 30,0
Maximum 1800,0 918,0 601,0
Std.-Abweichung 73,2 2227 63,4

Tabelle 44: Korrekturaufwand nach Priifungen im Praktikum

Im Praktikum waren die frithen Fehler etwa 6 mal so teuer zu korrigieren, wenn sie in
den Tests entdeckt wurden. Der Unterschied ist statistisch signifikant (p-
Wert < 0,0011), so dass die Nullhypothese fiir H 2.1 abgewiesen werden kann. Die frii-
hen Fehler waren in den Tests etwa 4 mal so teuer zu korrigieren wie die spaten Feh-
ler. Der Unterschied ist signifikant (p-Wert =0,004), so dass die Nullhypothese fiir
H 2.2 abgewiesen werden kann.

Bewertung. Die Hypothese H2 von CoBe wird durch die Daten des Praktikums
bestatigt. Die interne Validitat ist bedroht, weil im Praktikum wenig friihe Fehler spat
entdeckt wurden und Spezifikations- und Entwurfsfehler fiir den Hypothesentest
zusammengefasst wurden. Die externe Validitat ist durch den Produktumfang, das
einfache Produkt und die intensiven frithen Priifungen eingeschrankt. Die Resultate
entsprechen aber den bisherigen Beobachtungen. Der Anstieg der Korrekturkosten
fallt geringer aus als bei grofien Projekten (1:6 statt 1:10), dies ist konsistent mit
Daten in Boehm (1976 und 1981).

1. Die Wahrscheinlichkeit, dass die Nullhypothese falschlicherweise abgewiesen wird, liegt
unter 0,001 und damit unter dem geforderten Signifikanzniveau von 0,05.
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Folgerungen. Die Ergebnisse bestitigen den in CoBe modellierten Zusammenhang
zwischen Latenzzeit und Korrekturaufwand. Es wird bestatigt, dass der Entstehungs-
zeitpunkt und der Entdeckungszeitpunkt eines Fehlers modelliert werden miissen.

Priifung H 3: Je schwerwiegender ein Fehler ist, desto aufwindiger ist seine
Korrektur.

Die Fehlerschwere ist im Praktikum gleich wie in CoBe definiert, es gibt kritische
Fehler, Hauptfehler und Nebenfehler (Abschnitt 6.3.2). Kritische Fehler kosten im
Praktikum mehr Korrekturaufwand als Hauptfehler. Hauptfehler kosten mehr Kor-
rekturaufwand als Nebenfehler (Abbildung 56). Fiir einen statistischen Test wird die
Hypothese aufgeteilt:

H3.1: Hauptfehler sind aufwandiger zu korrigieren als Nebenfehler.
H3.2: Kiritische Fehler sind aufwéndiger zu korrigieren als Nebenfehler.
H3.3: Kiritische Fehler sind aufwéndiger zu korrigieren als Hauptfehler.

Der Hypothesentest erfolgt mit dem Wilcoxon-Rangsummen-Test. Jede Priifung im
Praktikum wird einzeln betrachtet. Nur die Fehler derjenigen Fehlerart werden unter-
sucht, die vorrangig in der Priifung entdeckt wird. Alle Hypothesen fiir das Spezifi-
kationsreview konnen bestatigt werden. Fiir das Entwurfsreview kann die Hypothese
tiir den Unterschied zwischen Nebenfehlern und anderen Fehlern bestatigt werden,
aber nicht fiir den Unterschied zwischen kritischen und Hauptfehlern. Dies kann aber
auf die geringe Zahl an kritischen Fehlern zurtickgefiihrt werden: Im Entwurfsreview
waren 20 Fehler von insgesamt 209 Entwurfsfehlern kritisch. Die Hypothesen fiir
Tests konnen nicht bestétigt werden (Tabelle 45).
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Abb. 56: Korrekturaufwand im Praktikum fiir unterschiedlich schwere Fehler
Bewertung. Die Ergebnisse fiir die Korrektur nach Tests widersprechen Industrieda-

ten (Kan, 2003). Die interne Validitat ist beeintrachtigt, weil die Teilnehmer wenig
Erfahrung bei der Klassifikation der Fehler haben. Dies beeintrachtigt auch die
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p-Wert (Signifikanz)? der Hypothesen pro Priifung H3.1 H3.2 H3.3
Spezifikationsreview und Spezifikationsfehler < 0,001 < 0,001 0,001
Entwurfsreview und Entwurfsfehler 0,016 < 0,001 0,079
Modultest und Codefehler 0,487 0,021 0,114
Systemtest und Codefehler 0,076 0,575 0,344

Tabelle 45: Hypothesentests fiir den Einfluss der Fehlerschwere

a. Statistisch signifikante Ergebnisse (5 %-Niveau) sind fett gedruckt. Die Wahrscheinlichkeit,
dass die Nullhypothese félschlicherweise abgewiesen wird, liegt dabei unter dem geforder-
ten Signifikanzniveau von 0,05.

externe Validitat. Werden alle Fehler im Praktikum betrachtet, dann unterscheiden
sich die Korrekturaufwande abhangig von der Fehlerschwere. Dies zeigt sich auch in
Industriedaten (Kan, 2003; Zage und Zage, 2003).

Folgerungen. Der Zusammenhang zwischen Fehlerschwere und Korrekturaufwand,
der in CoBe modelliert ist, wird fiir Reviews bestatigt. Er wird fiir alle Fehler bestétigt,
aber nicht einzeln fiir die Korrektur nach Tests. Weil dazu aber Industriedaten vor-
handen sind (Kan, 2003), wird CoBe nicht verandert.

7.4.2 Testfille, Code-Uberdeckung, Fehlerentdeckungsquote

Die Hypothesen der Zusammenhinge fiir Testfille, Uberdeckung und Fehlerent-
deckung im Test beziehen sich auf das funktionale Modell und seine Quantifizierung.
Die erste Hypothese iiber den Test betrifft die Form des Zusammenhangs zwischen
Testfallzahl und Uberdeckungsgrad:

H4: Der Zusammenhang zwischen der normierten Zahl der Testfdlle { und dem
Uberdeckungsgrad ¢ kann durch einen Zusammenhang der Form
¢ = min(l, ry, - t ) dargestellt werden.

Abbildung 57 skizziert den Zusammenhang der Hypothese H 4; die Uberdeckung
bleibt bei 100 % konstant, auch wenn weitere Testfélle spezifiziert und durchgefiihrt
werden.

Im Modell wird die Testfallzahl durch den Produktumfang normiert; ich nehme also
an dass es eine typische Zahl von Testfdllen pro Function Point gibt, angelehnt an
Jones (2007). Diese Zahl wird zur Normierung verwendet; dazu miissen Function
Points fiir die Art der Software geeignet sein (Abschnitt 6.3.2). Diese Voraussetzung
wird im Praktikum erfiillt, weil das Produkt ein Werkzeug zur Testfallverwaltung ist.
Ob diese Normierung den Zusammenhang zwischen Testfallzahl und Uberdeckung
verfalscht, wird mit der folgenden Hypothese untersucht:

H5: Durch die Normierung der Testfallzahl wird der Zusammenhang mit den Uber-
deckungsgraden nicht schwacher.
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Abb. 57: Normierte Testfallzahl und Uberdeckungsgrad

Das Testmodell von CoBe beruht fiir die Anweisungs-, Zweig-, Schleifen- und Term-
{iberdeckung auf folgender Annahme: Die Uberdeckungen hingen linear zusammen;
Diesen linearen Zusammenhang zeigt Abbildung 58. Dieser Zusammenhang gilt fiir
den Bereich zwischen 0 % und 100 % Uberdeckung.
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Abb. 58: Anweisungsiiberdeckung und andere Uberdeckungsgrade

Beispielsweise ist der Zusammenhang fiir die Anweisungsiiberdeckung
cg = min(d, ry,. - t“) und fiir die Zweigiiberdeckung c¢; = min(l, cf; -7, - t“)
(Abschnitt 6.6.2). Die Berechnung der Zweigiliberdeckung unterscheidet sich nur
durch den Faktor cf; von der Berechnung der Anweisungsiiberdeckung. Somit muss
die folgende Hypothese gepriift werden:

H6: Die Uberdeckungsmetriken hangen untereinander linear zusammen.

Auflerdem priife ich zusétzlich, ob sich die Modellresultate mit einem solchen linea-
ren Modell verschlechtern und ob ein nichtlinearer Zusammenhang geeigneter ist:
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H7: Fiir die Berechnung der Uberdeckungsgrade fiir Zweige, Schleifen und Terme
ist dieser lineare Zusammenhang gut geeignet.

Diese Annahme gilt aber nur unter bestimmten Voraussetzungen und in einem
bestimmten Bereich, der durch die vollstindige Uberdeckung nach oben begrenzt
wird. Sobald mit einer Metrik 100 % Uberdeckung erreicht wird, konnen andere,
unvollstindige Uberdeckungen trotzdem vervollstindigt werden. Der lineare
Zusammenhang gilt dann also nicht mehr. Abbildung 59 skizziert dies: Wahrend die
Zweigiiberdeckung (cI in der Abbildung) weiter ansteigt, bleibt die Anweisungsiiber-
deckung (c0 in der Abbildung) konstant, sobald 100 % erreicht werden. Unklar ist, ob
dieser Zusammenhang nicht mehr gilt, wenn eine bestimmte Uberdeckung gezielt
erreicht werden soll.
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Abb. 59: Normierte Testfallzahl und verschiedene Uberdeckungsgrade

Die flinfte Annahme des Testmodells betrifft die Fehlerentdeckung. Das Modell
basiert auf der Annahme, dass die Zahl der Testfdlle die Fehlerentdeckungsquote
nicht-linear bestimmt:

HS8: Der Zusammenhang zwischen der normierten Anzahl der Testféalle ; und der
Fehlerentdeckungsquote Q hat die Form Q,.; = max(0, 1 - rqt(l -q) ).

Abbildung 60 skizziert diesen Zusammenhang, mit dem sich die Fehlerentdeckungs-
quote asymptotisch 100 % nahert, wenn sehr viele Testfédlle durchgefiihrt werden.

Fiir den Test der Hypothesen 7 und 8 werden die Daten der Teams im Praktikum
gleichmafliig auf zwei Datengruppen aufgeteilt (Abbildung 61):

e Die Daten der Datengruppe 1 werden verwendet, um die Zusammenhange zu
quantifizieren. Beispielsweise werden im Folgenden die Parameter rg; und g
(Hypothese 8) mit Daten der Datengruppe 1 durch Regression bestimmt. Mit die-
ser Quantifizierung werden Modellresultate fiir die Datengruppe 1 berechnet, um
Aussagen tiber die Signifikanz und Bestimmtheit zu treffen.
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Abb. 60: Normierte Testfallzahl und Fehlerentdeckungsquote

* Die Daten der Datengruppe 2 werden verwendet, um die quantifizierten Zusam-
menhdnge zu priifen: Die Quantifizierung beruht auf der Datengruppe 1. Mit die-
ser Quantifizierung werden Modellresultate mit Eingaben aus der Datengruppe 2
berechnet. Beispielsweise wird die Fehlerentdeckungsquote aus der normierten
Testfallzahl berechnet. Die Resultate werden mit den Istwerten der Datengruppe 2
verglichen. Somit konnen Aussagen iiber die Prognosefahigkeit getroffen werden.

Die Teams sind einer Datengruppe durch Zufallsauswahl zugeordnet. 11 Teams sind
in Datengruppe 1, 10 Teams in Datengruppe 2.

Datengruppe 1
1. Analyse, Istwerte 4 Vergleich der Istwerte mit
Quantifizierung  (Eingaben, Resultate) Modellresultaten
Analysemodell
2. Prognose Istwerte Vergleich der Istwerte mit
(Eingaben) Y Modellresultaten
Datengruppe 2

Abb. 61: Analyse und Prognose zur Hypothesenpriifung

Um die Uberdeckungsgrade zu messen, wurde der Systemtest mit dem instrumen-
tierten Programm anhand der Testprotokolle wiederholt. Uberdeckungsgrade, Test-
fallzahl und die kumulierte Fehlerzahl aus dem Testprotokoll wurden notiert. Falls
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vorhanden, wurde die Abgabe vor dem Systemtest verwendet, weil dies der realen
Situation des Tests entspricht.

Priifung H 4: Der Zusammenhang zwischen der normierten Zahl der Testfélle und
dem Uberdeckungsgrad kann durch einen Zusammenhang der Form
c = min(l,ry -t ) dargestellt werden.

Der postulierte Zusammenhang wird in Abbildung 57 (Seite 169) skizziert. Die Hypo-
these wird durch eine lineare Regression mit logarithmierten Daten gepriift. Dazu
berechnet die Regression die Parameter r,. und r{., mit denen der funktionale Zusam-
menhang zwischen normierter Testfallzahl und Uberdeckung quantifiziert wird.
Abbildung 62 veranschaulicht diesen Zusammenhang mit Daten aus dem Praktikum
(Datengruppe 1). Die Diagramme stellen die Daten mehrerer Teams gemeinsam dar,
um die Streuung der Daten zu zeigen.
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Abb. 62: Normierte Testfallzahl und Uberdeckungsgrad im Praktikum
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* Die x-Achse zeigt die normierte Testfallzahl, weil in CoBe mit normierten Testfall-
zahlen gerechnet wird. Dazu wird Zahl der durchgefiihrten Testfalle mit der typi-
schen Testfallzahl normiert. Die typische Testfallzahl basiert auf dem Mittelwert
von Jones (2007) und ist als 100 %-Wert dargestellt.

 Die y-Achse zeigt den Uberdeckungsgrad in Prozent fiir eine bestimmte Uber-
deckungsmetrik, oben links zum Beispiel fiir die Anweisungsiiberdeckung.

* Jeder dunkle Punkt im Diagramm reprasentiert einen Testfall aus dem Praktikum:
Mit diesem Testfall wurden vom Team insgesamt x % der normierten Testfallzahl
durchgefiihrt, mit diesem Testfall wurden y % Uberdeckung erreicht.

* Die hellen Punkte stellen die Ergebnisse der Regression dar.

Tabelle 46 zeigt Signifikanz und Bestimmtheit. Die Nullhypothese wird abgelehnt, da
der p-Wert weit unter 0,05 liegt. Die Bestimmtheit ist hoch. Somit wird die Hypothese
bestatigt.

Uberdeckung Faktor . @ Exponent 71 p-Wert? R’
Anweisungen 11,7 0,35 < 0,001 0,68
Zweige 3,7 0,51 < 0,001 0,83
Schleifen 2,1 0,55 < 0,001 0,62
Terme 1,1 0,66 < 0,001 0,81

Tabelle 46: Ergebnisse fiir normierte Testfallzahl und Uberdeckungsgrad

a. Zur Unterscheidung zwischen Modellparametern und Regressionsparameter sind die
Regressionsparameter durch ein ’ gekennzeichnet.
b. Statistisch signifikante Ergebnisse (5 %-Niveau) sind fett gedruckt.

Bewertung. Die Ergebnisse bestitigen die Hypothese H 4 von CoBe, da die Nullhy-
pothese abgewiesen werden kann. Die interne Validitat ist bedroht, weil nur wenige
Tests sehr intensiv durchgefithrt wurden. Dadurch besteht die Gefahr, dass die
Regressionsanalyse durch wenige Falle gepragt ist. Abbildung 62 zeigt dies anschau-
lich im oberen rechten Teil der Diagramme, in dem die Werte fiir sehr intensive Tests
liegen; dort wird die Uberdeckung tendenziell zu hoch berechnet. Die Diagramme
bestédtigen aber den Zusammenhang fiir die weniger intensiven Tests: Im Bereich mit
weniger intensiven Tests, jeweils in der linken Halfte der Diagramme, sind viele
Datenpunkte vorhanden. Der Zusammenhang ist in diesem Teil trotz einer gewissen
Streuung gut erkennbar. Die externe Validitat ist eingeschrankt, weil alle Priiflinge in
der gleichen Grofienordnung liegen (2700 bis 16 000 Anweisungen), so dass keine
Aussagen fiir grofsere Produkte moglich sind.

Folgerungen. Die im Testmodell von CoBe verwendete Form des Zusammenhangs
zwischen Testfdllen und Uberdeckungsgraden wird bestatigt.
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Priifung H 5: Durch die Normierung der Testfallzahl wird der Zusammenhang mit
den Uberdeckungsgraden nicht schwicher.

Tabelle 47 zeigt die Bestimmtheit des Zusammenhangs von Hypothese 4 mit normier-
ter Testfallzahl. Im Vergleich dazu wird die Bestimmtheit gezeigt, wenn die absolute
statt die normierte Testfallzahl verwendet wird. Die Bestimmtheit mit normierter
Testfallzahl ist hoher. Alle Zusammenhange sind signifikant (p-Wert <0,001). Die
Wahrscheinlichkeit, mit der die Nullhypothese fdlschlicherweise abgewiesen wird,
liegt also unter 0,001 und damit unter dem geforderten Signifikanzniveau von 0,05.

R? fiir die Uberdeckung mit normierter Testfallzahl absoluter Testfallzahl
Anweisungen 0,68 0,62
Zweige 0,83 0,74
Schleifen 0,62 0,53
Terme 0,81 0,72

Tabelle 47: Bestimm‘t'heit mit normierter und mit absoluter Testfallzahl fiir
Uberdeckungsgrade im Praktikum

Bewertung. Da die Bestimmtheit mit normierter Testfallzahl hoher ist, ist eine Nor-
mierung mit dem Code-Umfang sinnvoll. Der Umfang hat also einen Einfluss auf die
Zahl der Testfélle. Dieser Einfluss zeigt sich im Praktikum, obwohl die Programme in
der gleichen Gréfsenordnung liegen (2700 bis 16 000 Anweisungen). Die Hypothese
H 5 von CoBe wird trotz der geringen Schwankung des Code-Umfangs bestatigt, da
die Nullhypothese abgewiesen werden kann.

Folgerungen. Die Normierung der Testfallzahl mit dem Umfang, die in CoBe ver-
wendet wird, ist sinnvoll und kann zur Berechnung des Uberdeckungsgrads verwen-
det werden.

Priifung H 6: Die Uberdeckungsmetriken hingen untereinander linear zusammen.

Dieser lineare Zusammenhang ist in Abbildung 58 (Seite 169) skizziert. Um den
Zusammenhang zu priifen, verwende ich eine lineare Regression durch den Null-
punkt. Die Resultate zeigen fiir die Daten aus dem Praktikum (Datengruppe 1) einen
starken, signifikanten Zusammenhang: Tabelle 48 zeigt die berechneten Faktoren cf,
zwischen den Uberdeckungsgraden. Wie im Modell angenommen steigt die Anwei-
sungsiiberdeckung schneller als die Zweigiiberdeckung. Die Termiiberdeckung steigt
am langsamsten. Die Bestimmtheit ist mit {iber 90 % hoch. Alle Zusammenhéange sind
statistisch signifikant mit p-Werten unter 0,05.

Bewertung. Die Hypothese H 6 von CoBe wird bestatigt, die Nullhypothese abge-
lehnt. Eine einfache Quantifizierung mit konstantem Exponenten fiir alle Uber-
deckungsmetriken ist moglich. Die Beobachtung von Malaiya et al. (1994) fiir die
Anweisungs- und Zweigiiberdeckung wird fiir die anderen Uberdeckungsmetriken
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Uberdeckung Faktor cf,’ p-Wert” R?
Zweige (cf1") 0,69 < 0,001 0,97
Terme (cf3") 0,44 < 0,001 0,93
Schleifen (cfy) 0,50 < 0,001 0,92

Tabelle 48: Signifikanz und Bestimmtheit zwischen Uberdeckungen im Praktikum

a. Statistisch signifikante Ergebnisse (5 %-Niveau) sind fett gedruckt. Die Wahrscheinlichkeit,
dass die Nullhypothese félschlicherweise abgewiesen wird, liegt dabei unter dem geforder-
ten Signifikanzniveau von 0,05.

bestatigt. Die interne Validitat ist wieder durch die wenigen extrem intensiven Tests
bedroht. Ob die Ergebnisse verallgemeinert werden konnen, ist fraglich. In jedem Fall
gilt die Einschrankung, dass diese Zusammenhénge nicht mehr gelten, wenn eine
Uberdeckung gezielt erreicht werden soll.

Folgerungen. Der in CoBe verwendete Zusammenhang zwischen der normierten
Testfallzahl und den Uberdeckungsgraden wird bestétigt.

Priifung H 7: Fiir die Berechnung der Uberdeckungsgrade fiir Zweige, Schleifen
und Terme ist dieser lineare Zusammenhang gut geeignet.

Zur Priifung dieser Hypothese werden zwei Zusammenhange verglichen:

e Mit dem vollstindigen Modell werden Anweisungs-, Zweig-, Term- und Schleifen-
tiberdeckung aus der normierten Testfallzahl mit den Parametern aus Tabelle 46
berechnet.

* Das lineare Modell berechnet nur die Anweisungsiiberdeckung aus der normierten
Testfallzahl mit den Parametern aus Tabelle 46. Aus der Anweisungsiiberdeckung
werden linear Zweig-, Schleifen- und Termiiberdeckung mit den Faktoren aus
Tabelle 48 berechnet.

In beiden Fallen wird also ein Zusammenhang gepriift, der in Abbildung 63 skizziert
ist. Im ersten Fall (vollstandiges Modell) werden Faktoren und Exponenten fiir alle
Uberdeckungsgrade durch das Regressionsverfahren bestimmt. Im zweiten Fall wer-
den fiir Zweig-, Schleifen- und Termiiberdeckung (c1, c3, c4 in der Abbildung) die
jeweiligen Faktoren, aber nicht die Exponenten mit dem Regressionsverfahren
bestimmt. Der Exponent wird aus der Regression der Anweisungsiiberdeckung (c0 in
Abbildung 63) verwendet. Der Fall, dass die Anweisungsiiberdeckung von 100 %
erreicht wird (rechts oben in der Abbildung), kommt in den Daten aus dem Prakti-
kum nicht vor.
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Abb. 63: Testfille und Uberdeckungsgrade

Die Datengruppe 1 wurde zur Analyse und Bewertung des Zusammenhangs verwen-
det. Thre Regressionsanalyse ergibt die Parameterwerte fiir die Modelle. Diese Para-
meter werden dann verwendet, um die Uberdeckungsgrade der Datengruppe 1 zu
berechnen. Wie gut diese Berechnung die Istwerte trifft, wird mit dem Bestimmtheits-
maf R? bewertet.

Die Analysemodelle zeigen, dass die Uberdeckungsgrade durch das lineare Modell in
gleichem MafSe wie durch das vollstandige Modellen bestimmt sind. Tabelle 49 zeigt
die Bestimmtheit des vollstandigen Modells (linke Spalte) und des linearen Modells
(rechte Spalte). Die Bestimmtheit der Zweig-, Schleifen- und Termiiberdeckung durch
die normierte Testfallzahl ist in beiden Fallen gleich hoch. Die Anweisungsiiberde-
ckung wird in beiden Modellen gleich berechnet und hat damit die gleiche Bestimmt-
heit.

R? der Analyse mit | vollstindigem Modell linearem Modell
Anweisungen 0,74 -
Zweige 0,83 0,83
Schleifen 0,68 0,68
Terme 0,85 0,85

Tabelle 49: Vergleich des vollstandigen und des linearen Modells mit Daten aus dem
Praktikum (Analyse, Regressionsmodell)

Aussagen iiber die Fahigkeit der Modelle, Werte zu prognostizieren, konnen nur
getroffen werden, wenn Quantifizierung und Prognose mit unterschiedlichen Daten
durchgefiihrt werden. Fiir die Prognose werden darum Daten aus der Datengruppe 2
verwendet.
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Dazu werden die Zusammenhédnge zuerst mit Parametern quantifiziert, die aus der
Datengruppe 1 stammen; es werden die Parameter verwendet, die durch Regression
in den obigen Abschnitten berechnet wurden. Beispielsweise wird der Faktor 0,69
zwischen Anweisungs- und Zweigiiberdeckung aus Tabelle 48 verwendet. Dann wer-
den die normierten Testfallzahlen aus der Datengruppe 2 verwendet, um die zugeho-
rigen Uberdeckungsgrade zu berechnen. Diese berechneten Resultate (prognostizierte
Werte) werden mit den Istwerten aus der Datengruppe 2 verglichen.

Die Prognose der Daten der Gruppe 2 zeigt eine etwas hohere Bestimmtheit des linea-
ren Modells (Tabelle 50). Die Tabelle zeigt zusatzlich die Abweichung zwischen den
Istwerten und den prognostizierten Werten in dB. Sie ist mit dem linearen Modell
etwas geringer und unter der 2-dB-Grenze.

Alle Zusammenhéange sind statistisch signifikant; die Nullhypothese kann abgewie-
sen werden. Abbildung 64 veranschaulicht die Resultate der Prognose. Die Dia-
gramme {iberlagern die Werte mehrerer Teams, um die Streuung zwischen den
Teams zu zeigen. Das Diagramm zeigt auf der x-Achse die normierte Testfallzahl und
auf der y-Achse den Uberdeckungsgrad. Jeder dunkle Punkt im Diagram stellt die
Werte eines Testfalls der Datengruppe 2 dar. Mit dem Testfall wurden vom Team x %
der normierten Testfallzahl durchgefiihrt. Dabei wurden y % Uberdeckung erreicht.
Die hellen Punkte stellen die Ergebnisse des Prognosemodells mit linearem Zusam-
menhang dar.

R? des Prognosemodells MLE der Prognose (dB)?
Uberdeckung Vollstandiges Lineares Vollstandiges Lineares
Modell Modell Modell Modell
Anweisungen 0,65 - 0,70 -
Zweige 0,75 0,77 0,79 0,76
Schleifen 0,63 0,67 1,23 1,19
Terme 0,82 0,83 1,21 1,11

Tabelle 50: Vergleich des vollstandigen und des linearen Modells mit Daten aus dem
Praktikum (Prognosemodell)

a. Median des LE = 10 - |log(Modellresultat/Istwert)|

Bewertung. Die Hypothese H7 von CoBe wird bestétigt. Die Modellierung durch
einen linearen Zusammenhang ergibt eine hohe Ubereinstimmung zwischen den
Werten, die mit dem Modell berechnet werden, und den Istwerten.

Folgerungen. Der in CoBe verwendete Zusammenhang zur Berechnung der Uber-
deckung ist stark genug, dass er zur Prognose verwendet werden kann. CoBe wird
tir die Falle, in denen Zweige, Terme oder Schleifen nicht gezielt tiberdeckt werden,
mit den Faktoren aus Tabelle 48 quantifiziert; andere Daten sind nicht verfiigbar. Den
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Abb. 64: Prognose der Uberdeckung im Praktikum mit linearem Modell

Zusammenhang zwischen der normierten Testfallzahl und der Anweisungsiiberde-
ckung verdndere ich nicht, weil im Praktikum eine hohe Uberdeckung bereits mit
wenigen Testfédllen erreicht wird. Dies widerspricht Industriedaten (Abschnitt 5.5);
die Produkte des Praktikums sind kleiner als Industrie-Produkte.

Priifung H 8: Der Zusammenhang zwischen der normierten Anzahl der Testfille
und der Fehlerentdeckungsquote hat die Form Qr,,, = max(0,1-r,(1-4,) .

Im Testmodell von CoBe wird angenommen, dass jeder Testfall einen bestimmten,
kleinen Anteil g der enthaltenen Fehler entdeckt. Dieser Zusammenhang wird durch
eine Funktion der Form Qg,.; = max(0,1-r_(1-g,) ™) dargestellt (Abbildung 60,
Seite 171 und Abschnitt 6.6.2). Qr,; ist die Fehlerentdeckungsquote, tg,,; ist die nor-
mierte Testfallzahl, ¢ und g; sind Parameter. Dieser Zusammenhang wird durch
Regression mit logarithmierter Fehlerentdeckungsquote mit dem umgeformten
Zusammenhang 1—Qr,g; = 7g(1-4y) " gepriift:
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* Die Fehlerentdeckungsquote wird fiir jeden Testfall fiir jedes Team berechnet.
Dazu werden die Abweichungen, die bis zu diesem Testfall im Testprotokoll erfasst
sind, aufsummiert. Diese Summe bildet den Zahler der Fehlerentdeckungsquote
bis zu diesem Testfall. Die insgesamt im Systemtest und in der Abnahme entdeckte
Zahl Fehler bildet den Nenner der Fehlerentdeckungsquote.

* Die normierte Testfallzahl ist die Zahl der Testfille, die bis zum jeweiligen Testfall
durchgefiihrt wurden, normiert mit der typischen Testfallzahl.

* Die Analyse wird wieder mit der Datengruppe 1 durchgefiihrt. Mit diesen Daten
der Gruppe 1 werden r, und g, durch Regression bestimmt. Dann wird die
Fehlerentdeckungsquote bTest aus den Testfallzahlen der Datengruppe 1 berechnet
und mit den Istwerten verglichen. Signifikanz, Bestimmtheit (R”) und Genauigkeit
(Median der logarithmischen Abweichung, MLE) werden gepriift.

* Die Parameter 7, und g,/ werden verwendet, um die Fehlerentdeckungsquote fiir
die Testfallzahlen der Datengruppe 2 zu berechnen. Damit lassen sich Aussagen
tiber die Prognose mit diesem Zusammenhang gewinnen.

Der Zusammenhang zwischen dieser normierten Testfallzahl und der Fehlerent-
deckungsquote ist fiir die Daten aus dem Software-Praktikum statistisch signifikant
(p-Wert < 0,001). Tabelle 51 zeigt Signifikanz, Bestimmtheit und Genauigkeit fiir die
Datengruppe 1 (Analyse) in der ersten Zeile, fiir die Prognose in der zweiten Zeile. In
beiden Fallen ist der Zusammenhang statistisch signifikant. Bei der Analyse ist die
Bestimmtheit und die Genauigkeit hoch. Bei der Prognose nehmen Genauigkeit und
Bestimmtheit ab. Der Median fiir die logarithmischen Abweichung MLE liegt inner-
halb der 2-dB-Grenze.

Modell Signifikanz p® Bestimmtheit R MLE (dB)®
Analyse (Datengruppe 1) < 0,001 0,50 1,55
Prognose (Datengruppe 2) < 0,001 0,22 1,73

Tabelle 51: Ergebnisse der Regression mit den Daten aus dem Praktikum fiir die
Fehlerentdeckungsquote

a. Statistisch signifikante Ergebnisse (5 %-Niveau) sind fett gedruckt.
b. Median des LE = 10 - |log(Modellresultat/Istwert)|

In Abbildung 65 sind die Daten aller Teams der Datengruppe 1 (Analyse, linkes Dia-
gramm) und der Datengruppe 2 (Prognose, rechtes Diagramm) dargestellt. Die Dar-
stellung tiberlagert die Werte mehrerer Teams, um die Streuung zwischen den Teams
darzustellen. An der x-Achse ist die normierte Testfallzahl dargestellt. Jeder Testfall
wird anhand der durchgefiihrten Testfalle des Teams auf der x-Achse und anhand
der mit der bis zum Testfall erreichten Fehlerentdeckungsquote auf der y-Achse auf-
getragen. Die dunklen Punkte sind Istwerte, die hellen Punkte die Resultate der
Berechnung.
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Abb. 65: Zusammenhang der Testfallzahl mit Fehlerentdeckung im Praktikum

Die Diagramme verdeutlichen die niedrige Bestimmtheit. Sie entsteht durch die
starke Streuung der Fehlerentdeckungsquote, wenn kein Fehler oder wenige Fehler
entdeckt wurden:

* Wird beispielsweise nur ein Fehler im gesamten Test mit einem friithen Testfall ent-
deckt, dann schnellt die Fehlerentdeckungsquote friith auf 100 % hoch. Dies zeigt
sich in beiden Diagrammen. So hat mindestens ein Team in jeder Datengruppe mit
einem Bruchteil der normierten Testfallzahl bereits 100 % derjenigen Fehler ent-
deckt, die im Systemtest und in der Abnahme entdeckt wurden (Punkte 1 und 2 in
Abbildung 65).

* Es gibt aber auch Teams, die bis zu 100 % der normierten Testfallzahl durchfiihren
und keine Fehler entdecken (Punkt 3); die Fehlerentdeckungsquote steigt erst mit
vielen Testfédllen an (Punkt 4).

Bewertung. Die Hypothese H 8 von CoBe wird bestatigt, da die Nullhypothese abge-
wiesen werden kann; der Zusammenhang ist signifikant. Die Streuung ist aber grof,
bedingt durch unkontrollierte Variablen. Dazu gehoren die unterschiedliche Intensi-
tat des Systemtests und die fehlenden Fehlerzahlen aus dem Einsatz des Produkts.
Die starke Streuung wird aber auch in anderen Untersuchungen beobachtet
(Abschnitt 5.5).

Folgerungen. Der im Testmodell von CoBe verwendete Zusammenhang wird besta-
tigt. Weil im Praktikum die Streuung grofs und das Produkt klein ist, behalte ich die
Quantifizierung von CoBe mit Werten aus der Industrie bei.
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7.4.3 Fehlerfolgekosten

Das Modell zur Abschdtzung der Fehlerfolgekosten (Abschnitt 6.3.10) wird iiberpriift,
weil dazu keine Erfahrungswerte vorhanden sind. Gemessene Daten sind im Prakti-
kum aber nicht verfligbar, da die Produkte nicht bei einem Kunden durch Benutzer
unter realen Bedingungen eingesetzt werden. Darum priife ich, wie sich unterschied-
lich detaillierte Fehlerklassifikationen auf die Fehlerfolgekosten auswirken. Dazu
werden Resultate, die mit einzeln klassifizierten Fehlern berechnet werden (Fall 1),
mit Resultaten verglichen, die etwa aus Archivdaten fiir die Modelleingaben berech-
net werden. Insgesamt unterscheide ich vier Falle:

1. Als Vergleichswerte verwende ich Daten aus dem Software-Praktikum und klassi-
tiziere jeden Fehler, der im Praktikum entdeckt wurde. Daraus lassen sich die
Fehleranteile fiir die Schadensklassen, fiir die Klassen der Auftretenswahrschein-
lichkeit und fiir die Klasse der Verwendungshaufigkeit berechnen, die in CoBe ein-
gegeben werden. Das Resultat ist ein Vergleichswert fiir die Fehlerfolgekosten; die
Verteilungen konnen direkt verglichen werden.

Wahrend der Planung von Projekten sind diese Daten nicht verfiigbar. Darum muss
auf andere Daten zuriickgegriffen werden:

2. Es wird angenommen, dass sich die Fehleranteile gleichmafig auf die Klassen fiir
die Fehlerfolgekosten verteilt. Beispielsweise wird eine maximale Schadensklasse
bestimmt (1000 Euro). Die Fehler verteilen sich dann gleichmafiig auf die Scha-
densklassen 0 Euro, 10 Euro, 100 Euro, 1000 Euro.

3. Es wird angenommen, dass die Fehlerschwere vor allem durch den moglichen
Schaden, den der Fehler verursacht, definiert ist. Beispielsweise verursachen kriti-
sche Fehler 1000 Euro Schaden, wenn sie auftreten, Hauptfehler 100 Euro Schaden,
Nebenfehler 10 Euro Schaden. Die Verteilung auf die Fehlerschwere wird aus
Abschnitt 6.8.1 verwendet, mit rund 10 % kritischen Fehlern, 78 % Hauptfehlern
und 12 % Nebenfehlern.

4. Wie in Fall 3 wird die Fehlerschwere durch den Schaden definiert ist. Die Vertei-
lung auf die Fehlerschwere aus dem Praktikum wird verwendet (51 % Nebenfeh-
ler, 31 % Hauptfehler, 18 % kritische Fehler).

Damit fiir den Fall 1 Fehler einzeln klassifiziert werden konnen, betrachte ich die Feh-
lerkommentare. Die Teilnehmer im Praktikum haben jeden Fehler kommentiert.
Anhand dieser Fehlerkommentare wurde jeder Fehler einer Schadensklasse und einer
Klasse fiir die Auftretenshaufigkeit zugeordnet:

* Schadensklasse: Ich gehe von einem maximalen Schaden von 1000 Euro aus und
stiitze mich dabei auf den gedachten Einsatz der Software. Da mit der Software
Testfdlle verwaltet werden, ist der grofite Schaden, wenn diese Testfdlle verloren
gehen. Der schlimmste Fall ist, wenn Daten nicht gespeichert oder geladen werden
konnen; dann ist das Werkzeug nutzlos. Dies merkt der Tester spatestens, wenn er
nach einem Tag Arbeit die Arbeit fortsetzen will und dazu die gespeicherten Daten



182 7. Modellrealisierung, Modellpriifung und Modellverbesserung

ladt. Somit ist also im schlimmsten Fall ungefdhr ein Tag Arbeit des Testers verlo-
ren.

* Auftretenswahrscheinlichkeit: Die Auftretenswahrscheinlichkeit wird abhangig
davon klassifiziert, ob ein Fehler nur unter ganz bestimmten Bedingungen auftritt,
dann wird er als “selten auftretend” klassifiziert. Ein Fehler, der immer bei einer
Hauptfunktion auftritt, wird als “sicher auftretend” klassifiziert, beispielsweise,
wenn das Sollresultat fiir einen Testfall nicht eingegeben werden kann.

* Verwendungshaufigkeit: Ich nehme fiir die Verwendungshaufigkeit bis zur Kor-
rektur einen Mittelwert an, dazu setze ich als Annahme, dass die Software im Mit-
tel 10 mal verwendet wird, bis ein Fehler korrigiert wird. Vermutlich werden
schwere Fehler rascher behoben als weniger schwere Fehler. Da es dazu aber keine
weiteren Informationen gibt, verwende ich einen Mittelwert.

Fiir 612 Fehler, die im Praktikum durch alle Teams insgesamt entdeckt wurden,
waren Kommentare verfiigbar. Diese Fehler wurden klassifiziert.

Die Tabellen 54 und 55 zeigen die Resultate dieser Klassifikation, den Fall 1. Beispiels-
weise wiirden immerhin 83 Fehler jedesmal auftreten, wenn die Software verwendet
wird!; 129 Fehler treten nie beim Einsatz auf, beispielsweise weil es sich um Kom-
mentarfehler handelt. 149 Fehler wiirden einen Arbeitstag Verlust bedeuten,
177 Fehler den Verlust von etwa einer Arbeitsstunde. Aus diesen absoluten Fehler-
zahlen wird direkt die Verteilung in Prozent auf die Fehlerklassen berechnet, d.h.
welcher Anteil aller Fehler einer Klasse des Schadens und welcher Anteil aller Fehler
einer Klasse der Auftretenswahrscheinlichkeit zugeordnet ist.

wah?slzflizei;(i?csﬁkeit Beschreibung der Klasse™ geozril}rlllefcieerl; lzglelk_ller
0 | Fehler tritt nie auf 129
0,125 | Fehler tritt in Ausnahmefallen auf 52
0,25 | Fehler tritt selten bei Verwendung auf 172
0,5 | Fehler tritt bei typischer Verwendung auf 176
1| Fehler tritt sicher bei Verwendung auf 83
Insgesamt 612

Tabelle 52: Fehlerklassifikation der Auftretenswahrscheinlichkeit im Praktikum

a. Die Beschreibung ist gekiirzt.

1. Klassifiziert wurden alle Fehler, also beispielsweise auch diejenigen, die im Spezifikations-
review entdeckt wurden.
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Schaden (Euro) Beschreibung der Klasse geozrilkrlllef:rf ;sk_ﬂer
0 | kein Schaden? 129
10 | Komfortprobleme 157
100 | Geringer, leicht auszugleichender Schaden 177
1000 | Mittlerer, auszugleichender Schaden 149
Insgesamt 612

Tabelle 53: Fehlerklassifikation im Praktikum fiir den Schaden beim Auftreten

a. Fehler, die nicht auftreten, sind als 0 Euro Schaden klassifiziert.

Fiir den Vergleich zeigen die Tabellen 54 und 55 die Verteilung der Fehler fiir die
Klassifikation einzelner Fehler (Fall 1) und andere Verteilungen (Falle 2 bis 4). Im
Falle des Praktikums stimmt eine gleichmafSige Verteilung auf die Schadensklasse gut

mit der Klassifikation einzelner Fehler tiberein.

Verteilung (Anteil der Fehler) auf Klassen Fall 1 Fall 2 Fall 3 Fall 4
Fehler tritt nie auf 21 % 20 % 20 % 20 %
Fehler tritt in Ausnahmefallen auf 8 % 20 % 20 % 20 %
Fehler tritt selten bei Verwendung auf 28 % 20 % 20 % 20 %
Fehler tritt bei typischer Verwendung auf 29 % 20 % 20 % 20 %
Fehler tritt sicher bei Verwendung auf 14 % 20 % 20 % 20 %
Insgesamt 100 % 100 % 100 % 100 %

Tabelle 54: Verteilungen der Fehler fiir die Auftretenswahrscheinlichkeit

Verteilung (Anteil der Fehler) auf Klassen Fall 1 Fall 2 Fall 3 Fall 4
kein Schaden 21 % 25 % 0% 0%
Komfortprobleme 26 % 25 % 12 % 51 %
Geringer, leicht auszugleichender Schaden 29 % 25 % 78 % 31 %
Mittlerer, auszugleichender Schaden 24 % 25 % 10 % 18 %
Insgesamt 100 % 100 % 100 % 100 %

Tabelle 55: Verteilungen der Fehler fiir den Schaden beim Auftreten
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Die statistischen Fehlerfolgekosten pro Fehler fiir die vier Falle zeigt Tabelle 56. Die
Fehlerfolgekosten, die sich aus einer gleichmafsigen Verteilung auf die Fehlerklassen
ergeben (Fall 2), stimmen gut mit den Fehlerfolgekosten iiberein, die sich aus der
Klassifikation einzelner Fehler berechnen (Fall 1). Die Abweichung liegt unter 2 dB
(0,7 dB). Im Fall 3 und im Fall 4 stimmen die Kosten weniger gut {iberein. Die Klassifi-
kation mit der Fehlerschwere ist nur im Fall 4 unter der 2-dB-Grenze (1,8 dB). Diese
Abweichung fiihre ich auf die Definition der Fehlerschwere im Praktikum zurtick.
Die Fehlerschwere berticksichtigt nicht nur den moglichen Schaden, sondern auch die
moglichen Folgen des Fehlers fiir das Projekt.

Fehlerfolgekosten pro Fehler (Euro) | Falll | Fall2 | Fall3 | Fall4

1230 1040 700 810

Tabelle 56: Statistische Fehlerfolgekosten pro Fehler

Bewertung. Ich bewerte die Ergebnisse als plausibel, soweit dies mit den wenigen
Erfahrungen moglich ist. Schlussfolgern lasst sich, dass eine Fehlerschwere-Defini-
tion, die Auswirkungen auf das Projekt und den Einsatz berticksichtigt, unabhangig
vom Schaden ist, den ein Fehler beim Auftreten verursachen kann. Diese Unterschei-
dung muss bei der Anwendung des Modells beriicksichtigt werden.

7.4.4 Folgerungen

Auch wenn die interne und externe Validitdt der Untersuchung durch die spezielle
Situation im Praktikum bedroht wird, werden die Hypothesen bestitigt.

Die Priifung der Hypothesen zur Fehlerentdeckung, zur Fehlerentstehung und zu
den Korrekturaufwanden bestatigt bereits Bekanntes, aber stiarker auf das Modell
zugeschnitten. Insbesondere werden die Annahmen auch fiir Java-Programme besta-
tigt.

Die Annahmen, die dem Testmodell zu Grunde liegen, werden bestatigt. Fraglich ist
aber, ob diese Annahmen verallgemeinert werden kénnen. Da wenig empirische
Untersuchungen existieren, ist ein Vergleich schwierig. Fiir eine besser verallgemei-
nerbare Validierung des Modells miissen Daten auf einer breiteren Basis, vor allem
aus Industrieprojekten mit grofier und komplexer Software, gesammelt und analy-
siert werden.

Fiir die Bewertung der Fehlerfolgekosten fehlen Vergleichswerte, die Ergebnisse kon-
nen aber als plausibel beurteilt werden. Insbesondere zeigt sich, dass eine detaillierte
Klassifizierung einzelner Fehler nicht notwendig ist. Es zeigt sich, dass die Definition
der Fehlerschwere beriicksichtigt werden muss: In Projekten, bei denen die Fehler-
schwere iiber den moglichen Schaden definiert ist, konnen Daten iiber die Fehler-
schwere verwendet werden. In anderen Fallen kann eine gleichmaflige Verteilung der
Fehler bis zum maximalen Schaden verwendet werden.
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7.5 Erprobung im Software-Praktikum

Nachdem einzelne Zusammenhange, aus denen CoBe besteht, gepriift wurden, wer-
den im ndchsten Schritt die Resultate von CoBe mit Istwerten verglichen. Als Einga-
ben fiir CoBe werden zuerst Mittelwerte und Mediane aus dem Praktikum
verwendet. Tabelle 57 zeigt diese Eingaben. Die Modellresultate, die mit diesen Ein-
gaben berechnet werden, werden mit Mittelwerten und Medianen der Istwerte aus
dem Praktikum verglichen.

Eingabeparameter Wert und Beschreibung
Umfang 7104 Anweisungen®
Umfangsfaktor Code | 53 Statements pro Function Point fiir Java
COCOMOH-II- Die Parameter sind mit den Vorgaben aus Boehm (2000) belegt. Der
Faktoren Exponent ist 1,05; der Gesamteinfluss 0,63.
Reviews 4 Gutachter mit Nominalvorbereitung und -eignung
Beide Tests werden durchgefiihrt. Da im Praktikum kontinuierlich
Modultest, integriert wird, beginnend mit der Implementierung bis zu Korrek-
Integrationstest turen nach dem Systemtest, wird dies in CoBe als Integrationstest
dargestellt.

Black-Box-Test der Funktionen und Aquivalenzklassen

Glass-Box-Test mit 86 % Anweisungsiiberdeckung im Mittel

Systemtest
Keine Testwiederholung, keine getrennte Testvorbereitung, nomi-
nale Eignung der Tester

Feldtest Fiir die Abbildung des Praktikums in CoBe nehme ich an, dass der

Feldtest in CoBe in etwa der Abnahme im Praktikum entspricht.

Tabelle 57: Eingabeparameter fiir das Software-Praktikum

a. Der Median und nicht der Mittelwert wird verwendet, weil der Median robuster gegen Aus-
reiffer ist, die beispielsweise entstehen, weil bei der Umfangsmessung fremde Bibliotheken
oder Testcode nicht erkannt wurde.

7.5.1 Vergleich mit Mittelwerten und Kalibrierung

Zuerst wird eine unkalibrierte Modellversion erprobt. Diese Version enthélt einen
negativen, aber keinen positiven Einfluss der Gutachterkompetenz. Sie enthalt keinen
Umfangseinfluss auf den Anstieg der Korrekturkosten mit der Latenzzeit: In dieser
Modellversion kostet ein Spezifikationsfehler immer das zehnfache, wenn er im Sys-
temtest anstatt durch ein Spezifikationsreview entdeckt wird, unabhéngig davon, ob
das Produkt einen geringen oder einen hohen Umfang hat.

Die Istwerte, die fiir die Eingaben und zum Vergleich der Modellresultate verwendet
werden, sind nicht vollstandig, weil im Praktikum nicht alle Daten verfiigbar waren.
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Insbesondere fiir den Vergleich des Gesamtaufwands muss auf die Vorgabe der Prii-
fungsordnung zurtickgegriffen werden. Diese Vorgabe wird aber von den Betreuern
des Praktikums in engen Bandbreiten gehalten, weil der bendtigte Aufwand von den
Betreuern auf Basis einer intensiven Analyse der Aufgabe geschatzt wird. Da die Ter-
mine der Meilensteine in geringem Abstand folgen und die Abgaben kontrolliert wer-
den, sind die Teilnehmer deutlich eingeschrankt. Sie konnen den Aufwand nicht zu
stark minimieren, weil sonst ihre Abgabe nicht abgenommen wird. Sie konnen nicht
zu viel Aufwand investieren, weil sie sonst den nachsten Meilenstein nicht erreichen.

Tabelle 58 zeigt die ersten Resultate. Ohne Kalibrierung weichen die Modellresultate
stark von den Istwerten ab, mit Ausnahme der Testfallzahl.

Parameter Modellresultate® Istwert
Gesamtaufwand in b
Entwicklerstunden (Eh) 2639 720
Gesamtdauer in Arbeitstagen 227 105¢

3,04 Teilzeitmitarbeiter,

Zahl der Projektmitarbeiter L9 1,0 Vollzeitmitarbeiter
Zahl der Fehler im Projekt 324 Mi;ﬁggﬁ 57);1
(Sper.] Bawurt | Code 228139 e
Zahl der Testfalle 80 Mi;\t/[eé‘cfj[\,;i 2313

Tabelle 58: Parameter im Uberblick

a. fiir ein Java-Projekt mit 7104 Anweisungen

b. Richtwert der Priifungsordnung

c. Vorgabe der Betreuer

d. Regelfall, nur in Ausnahmefallen sind Zweier-Teams mdglich; 720 Entwicklerstunden ent-
sprechen bei 21 Wochen Dauer insgesamt rund 34 Stunden pro Woche.

Dies zeigt, dass eine Kalibrierung notwendig ist. Die Kalibrierung erfolgte mit dem
Aufwandsfaktor, dem Dauerfaktor, dem Fehlerfaktor, der Verteilung auf die Fehler-
arten und den Umfangsfaktoren fiir Dokumente (Tabelle 59).

7.5.2 Modellverbesserungen

Zwei Modellverbesserungen wurden durchgefiihrt:

* In der erprobten Modellversion war kein positiver Einfluss der Gutachterkompe-
tenz quantifiziert. Die Teilnehmer begutachteten die Spezifikation in der Review-
vorbereitung mit rund 18 Seiten pro Stunde (Median 16 Seiten pro Stunde) anstatt
mit 10 Seiten pro Stunde. Die Fehlerentdeckungsquote im Software-Praktikum ist
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Modellparameter Urspriinglicher Wert Anderung fiir Praktikum
Aufwandsfaktor 1,00 0,28
Dauerfaktor 1,00 0,71
Fehlerfaktor 1,00 0,20
Umfangsfaktor Spezifikation 0,44 Seiten / FP 0,32 Seiten / FP
Umfangsfaktor Entwurf 0,44 Seiten / FP 0,18 Seiten / FP
?gegé‘;ﬂ/‘éﬁijﬁ;éﬁ;’” 22 % /28 % / 39 % 51% /19 % /30 %

Tabelle 59: Kalibrierung von CoBe fiir das Praktikum

mit 72 % hoch, daraus folgt, dass die Begutachtung nicht oberflachlich war, son-
dern dass die hohe Vorbereitungsrate von 18 Seiten pro Stunde andere Griinde hat.
Die Griinde dafiir vermute ich in der Gutachterauswahl, da die Gutachter aus
anderen Teams des Praktikums stammen. Sie kennen somit die Anforderungen
sehr genau, weil sie Analyse und Spezifikation fiir die gleiche Aufgabe selbst
durchgefiihrt haben. Darum wurde die Quantifizierung des Kompetenzeinflusses
in CoBe um einen positiven Effekt hoher Kompetenz auf den notwendigen Auf-
wand und die Fehlerentdeckung erganzt.

* Die Korrekturkosten steigen im Verlauf des Projekts weniger stark an als in der
erprobten Modellversion quantifiziert (Tabelle 44). Dass die Korrekturkosten in
kleinen Projekten weniger stark mit der Latenzzeit ansteigen, zeigt Boehm (1981
und 1976); der Zusammenhang wurde in CoBe erganzt.

Die beiden Abbildungen 66 und 67 zeigen, welche Teile des Modells von der Kalibrie-
rung und welche Teile des Modells von der Verbesserung betroffen sind. Die Ande-
rungen sind lokal begrenzt.

7.5.3 Modellresultate und Mittelwerte des Praktikums

Der folgende Vergleich zeigt Modellresultate und Mittelwerte des Praktikums. Dazu
werden die gleichen Istwerte verwendet, gegen die bereits vor der Verbesserung ver-
glichen wurde (Abschnitt 7.5.1).

Fehlerentdeckung und Fehlerkorrektur.

Die absoluten Fehlerzahlen zeigen eine gute Ubereinstimmung (Tabelle 60) zwischen
den Modellresultaten und den Istwerten aus dem Software-Praktikum. Auch die
Modellresultate fiir die Fehleranteile stimmen gut mit den Istwerten iiberein: Die
Anteile der Spezifikationsfehler entsprechen den Mittelwerten des Software-Prakti-
kums (Tabelle 61). Es gibt Abweichungen bei den Zahlen der frithen Fehler in den
Tests und beim Abnahmetest, die sich aber durch die unklare Situation der Entwurfs-
reviews, die kontinuierliche Integration und den oberflachlichen Abnahmetest erkla-
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ren lassen. Der Korrekturaufwand wird mit hoher Genauigkeit berechnet (Tabelle 62).
Die Modellresultate liegen meist zwischen Mittelwert und Median der Istwerte.

Modellresultate Software-Praktikum
Priifung ?pez.— Entwurfs- | Code- || Spez.- | Entwurfs- | Code-
ehler fehler fehler fehler fehler fehler
Spezifikationsreview 34,6 34,8
Entwurfsreview 1,8 95 0 0,1 11,6
Unittest 0 0,4 6,0 0 0,3 7,6
Integrationstest 1,1 1,2 7,2
Systemtest 1,2 1,3 7,2 0,7 0,2 9,2
Abnahme 1,6 1,0 2,2 0,4
Andere 1,9 1,9 4,8
Tabelle 60: Zahl entdeckter Fehler
Modellresultat Software-Praktikum
Priifung ?pez.— Entwurfs- | Code- || Spez.- | Entwurfs- | Code-
ehler fehler fehler || fehler fehler fehler
Spezifikationsreview 86 % 93 %
Entwurfsreview 4 % 71 % 0% 83 %
Modultest 0 % 3%| 27% 0 % 2% 35 %
Integrationstest 3 % 9% | 32%
Systemtest 3 % 9% | 32% 2% 4% 42 %
Abnahme 4 % 8 % 10 % 0% 0 % 2%
Andere 5% 14 % 22 %

Tabelle 61: Anteile entdeckter Fehler

Priifaufwand und -dauer. Die vorgegebenen Termine wurden von den meisten
Teams leicht erreicht. Sie sind grof3ziigig bemessen. Die Modellresultate passen gut
zu den Vorgaben und sind darum plausibel (Tabelle 63). Die Vorgabe fiir den System-
test ist, verglichen mit den Modellresultaten, knapp. Stimmt der Mittelwert, den das
Modell berechnet, dann konnten etwa die Hélfte der Gruppen den Abgabetermin nur
mit Miihe oder nicht einhalten. Dafiir gibt es zwei Griinde. Der Durchfiihrungsauf-
wand fiir jeden Testfall ist in CoBe etwas hoher als im Praktikum, aber auch der Zeit-
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Korrekturaufwand Modell- Median des | Mittelwert des
(Eh) nach Priifung resultat Praktikums Praktikums
Spezifikationsreview 7,5 6,9 9,6
Entwurfsreview 3,4 2,5 45
Modultest 2,0 1,6 49
Systemtest 11,9 99 92

Tabelle 62: Resultate fiir den Korrekturaufwand

Priifung und Modellresultate Vorgabe
Korrektur Aufwand (Eh) | Dauer (Tage) Dauer (Tage)
Spezifikationsreview 32 8 14
Entwurfsreview 19 3 -
Modultest 10 9 14
Systemtest 32 14 14

Tabelle 63: Vorgaben und Modellresultate

rahmen fiir das Praktikum war tatsdachlich etwas eng, weil im Gegensatz zu fritheren
Praktika die Messung der Anweisungsiiberdeckung verlangt wurde, ohne den Zeit-
plan anzupassen.

7.6  Vergleich mit einzelnen Projekten des Software-Praktikums

Nach dem Vergleich mit den Mittelwerten stellt sich die Frage nach der Bandbreite,
d.h. nach den Unterschieden zwischen den einzelnen Projekten. Wie stark streuen die
Resultate? Gibt es Ausreifier einzelner Projekte? Wie grof sind die Unterschiede im
Prozess? Dazu werden die Projekte individuell analysiert. Jedes Projekt wird durch
eine Modellinstanz dargestellt. Damit konnen folgende Merkmale untersucht wer-
den:

* Die Streuung der unterschiedlichen Projekte mit gleichen Rahmenbedingungen
soll fiir die Projekte und fiir das Modell untersucht werden.

* Damit kann auch der Einfluss unkontrollierter Variablen bewertet werden. Da mit
gleicher Aufgabe und gleichem Prozess viele Projekte durchgefiihrt wurden, sind
die Projekte dhnlich. Trotzdem streuen die Istwerte deutlich. Darum soll der Ver-
gleich mit den Modellresultaten zeigen, welcher Teil dieser Streuung durch das
Modell erklart wird und welcher Teil nicht. Damit kann auf die zu erwartende
Ungenauigkeit beim Vergleich mit einzelnen Projekten geschlossen werden.
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* Die Genauigkeit des Modells soll anhand von Situationen, in denen viele Informa-
tionen zur Verfiigung stehen, bewertet werden. Dazu gehort der diagnostische Ein-
satz von Cobe, mit dem bestehende Projekte nachtraglich beschrieben werden,
beispielsweise um den Nutzen von Prozessverbesserungen zu zeigen.

* Mit einer Kreuzvalidierung wird die Prognosesituation nachgebildet, weil bei der
Prognose weniger Modellparameter bekannt sind als bei einer diagnostischen,
nachtraglichen Betrachtung. Darum werden die unbekannten Parameter nicht mit
den Istwerten des Projekts belegt, sondern mit Durchschnittswerten aus anderen
Projekten; dieses Vorgehen entspricht einer Kalibrierung mit historischen Daten.

* Obwohl die Unterschiede der Priifintensitdt gering waren, soll untersucht werden,
ob der Nutzen von mehr oder weniger intensiven Priifungen sowohl im Modell als
auch in der Realitdt gezeigt werden kann.

7.6.1 Diagnose einzelner Projekte

Die Eingaben von CoBe werden fiir die Diagnose auf die verfligbaren Werte der ein-
zelnen Projekte (Tabelle 42, Seite 161) gesetzt. Tabelle 64 zeigt die individuellen Ein-
gaben.

Prozess- und Produktmerkmale Priifprozess

¢ Umfang des Codes ¢ Gutachterzahl und Vorbereitungs-

e Umfangsfaktoren Spezifikation, Entwurf intensitét im Spezifikationsreview

e Aufwandsfaktor ¢ Intensitdt des Black-Box-Tests und
fak Anweisungsiiberdeckung des
* Dauerfaktor Glass-Box-Tests

¢ Verteilung auf Fehlerart

Tabelle 64: Individuelle Eingaben fiir das Modell

Die Genauigkeit von CoBe wird durch den Vergleich zwischen Istwerten und Modell-
resultaten untersucht. Dafiir sind nicht alle Daten verfiigbar, die im Idealfall fiir den
Vergleich vorhanden wéren:

e Als Gesamtaufwand muss der Richtwert der Priifungsordnung (720 Entwickler-
stunden) verwendet werden, um den Aufwandsfaktor zu berechnen.

* Die Gesamtdauer wurde fiir alle Projekte von den Betreuern vorgegeben.

¢ Die Gesamtfehlerzahl wurde nicht individuell kalibriert, weil keine Fehlerzahlen
aus dem Einsatz des Produkts verfiigbar waren. Der Fehlerfaktor ist somit fiir alle
Projekte gleich.

e Uber das Entwurfsreview und {iber den Modultest gibt es keine individuellen
Informationen.
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Weil diese Informationen fehlen, werden die Modellresultate ungenauer. Die Aussa-
gen liber die Genauigkeit von CoBe, die mit diesen Daten getroffen werden, bewerten
CoBe tendenziell als zu ungenau. Diese Situation spiegelt aber die Situation in der
Praxis wider, wenn Daten unvollstandig sind.

Vergleich mit Istwerten. Tabelle 65 zeigt die Abweichung der Modellresultate von
den Istwerten und die Korrelation zwischen den Werten. Die Abbildung 68 veran-
schaulicht die Resultate fiir den Korrekturaufwand nach dem Spezifikationsreview
und nach dem Systemtest.

Korrektur nach Spez.-review Korrektur nach Systemtest
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Abb. 68: Korrekturaufwande

Die Modellresultate fiir die Fehlerzahlen liegen fiir rund die Halfte der Projekte inner-
halb der 2-dB-Grenze. Im Median iibersteigt die Abweichung diese Grenze, bleibt
aber unterhalb von 3 dB. Der Korrekturaufwand weicht teilweise starker ab, die
Modellresultate liegen fiir etwa ein Drittel der Projekte innerhalb der Grenze von 2
dB. Der Median {ibersteigt zum Teil 3 dB. Die Testfallzahl wird wieder genauer
berechnet mit einem Median der Abweichung von 1,6 dB und zwei Drittel der Pro-
jekte innerhalb der 2-dB-Grenze.

Die Resultate sind somit nicht mehr plausibel. Dafiir gibt es aber Ursachen, die so in
Industrieprojekten nicht gegeben sind, sondern speziell fiir das Praktikum gelten. Die
Ursachen diskutiere ich mit den Ergebnissen der Kreuzvalidierung in Abschnitt 7.6.3.

Vergleich des Nutzens. Der Nutzen einer Priifung ist in den Projekten nicht direkt
sichtbar. Er kann nur durch den Vergleich zwischen Projekten mit mehr oder weniger
intensiver Priifung sichtbar werden. Um die Modellresultate fiir den Nutzen zu prii-
fen, werden im Folgenden die Auswirkungen mehr oder weniger intensiver Spezifi-
kationsreviews betrachtet. Dazu werden die Teams anhand des Aufwands zur
Begutachtung pro Seite geordnet; dieser Aufwand pro Seite berechnet sich aus der
Gutachterzahl, die zwischen 3 und 4 liegt, und der Vorbereitungsintensitat jeden Gut-
achters, die sich aus der Anzahl Seiten und dem Vorbereitungsaufwand berechnet.
Eine Datengruppe wird aus den 7 Teams gebildet, deren Spezifikation am intensivs-
ten gepriift wurde (rund 3,7 Seiten pro Entwicklerstunde im Median). Die andere
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Spez.- Entwurfs- Code- Fehler Korrektur-
fehler fehler fehler gesamt aufwand

Spez.- MLE (dB)* 23 4,2
review 142 dB) 47 % 35 %
Entwurfs- | MLE (dB) 2,1 2,0 3,1
review pred(2 dB) 50 % 50 % 44 %

MLE (dB) 1,6 1,8 42
Modultest

pred(2 dB) 71 % 50 % 36 %

MLE (dB) 1,7 2,7 2,9
Systemtest

pred(2 dB) 56 % 39 % 42 %

Tabelle 65: Genauigkeit des Modells
a. Median des LE = 10 - |log(Modellresultat/Istwert)|

Datengruppe wird aus den 7 Teams gebildet, deren Spezifikation am wenigsten
intensiv begutachtet wurde (rund 7 Seiten pro Entwicklerstunde im Median). Im Fol-
genden wird die Anzahl der verfiigbaren Werte angegeben, weil die Daten nicht
immer fiir alle Teams zur Verfiigung stehen.

Der Unterschied zwischen griindlichen und oberflachlichen Spezifikationsreviews
zeigt sich konsistent in den Modellresultaten und in den Istwerten des Praktikums
(Abbildung 69, Tabelle 66). Die intensiven, griindlichen Reviews finden im Mittel
mehr Fehler, entsprechend ist der Korrekturaufwand nach intensiven Reviews hoher
als nach oberflachlichen Reviews. Abbildung 69 zeigt dies graphisch im linken Teil.
Die dunklen Balken sind Werte fiir den Korrekturaufwand griindlicher Reviews, die
hellen Balken fiir oberflachlichere Reviews. Das erste Balkenpaar links zeigt die Ist-
werte, das zweite Balkenpaar daneben die Modellresultate fiir den mittleren Korrek-
turaufwand nach dem Spezifikationsreview. In beiden Fallen ist die Korrektur teurer,
wenn die Spezifikation intensiv gepriift wurde.

Tabelle 67 zeigt Istwerte und Modellresultate fiir den Systemtest. Im Systemtest wur-
den im Praktikum bei griindlichen Spezifikationsreviews weniger Spezifikationsfeh-
ler entdeckt (Tabelle 67). Dieser Unterschied wird auch durch CoBe berechnet. Der
Unterschied ist aber gering. Da die Reviews griindlich waren, wurden im Systemtest
wenig Spezifikationsfehler entdeckt. Somit kann sich der Unterschied nicht mehr im
Median der Istwerte zeigen.

Nach dem Systemtest ist der Korrekturaufwand fiir alle Fehler, also auch fiir Code-
fehler und fiir Entwurfsfehler, mit griindlichen Spezifikationsreviews geringer
(Tabelle 67). Dieser Unterschied zeigt sich konsistent in den Modellresultaten und in
den Istwerten. Abbildung 69 zeigt dies graphisch im rechten Teil. Die dunklen Balken
stehen fiir den Korrekturaufwand in Projekten mit griindlichen Reviews, die hellen
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Grindliche

reviews

[] Oberflachl. Spez.-

Entdeckte Fehler und Spez.-fehler Korrekturaufwand (Eh)
Korrekturaufwand nach

Spezifikationsreview Ist Modell Ist Modell
Mittelwert griindliche Reviews 39,2 39,0 12,2 9,5
Median griindliche Reviews 35,0 39,5 9,8 9,1
Anzahl Teams 6 4
Mittelwert oberflachliche Reviews 26,4 25,6 8,3 5,0
Median oberflachliche Reviews 24,0 19,1 6,9 5,0
Anzahl Teams 5 5

Tabelle 66: Fehler und Korrekturaufwand fiir Spezifikationsreviews

Entdeckte Spezifikationsfehler und Spez.-fehler Korrekturaufwand (Eh)
Korrekturaufwand im Systemtest Ist Modell Ist Modell
Mittelwert griindliche Reviews 04 0,6 43 9,1
Median griindliche Reviews 0 0,4 2,1 9.8

Anzahl Teams 6 4
Mittelwert oberflachliche Reviews 1 1,5 12,3 14,0
Median oberflachliche Reviews 0 1,6 10,9 13,6
Anzahl Teams 6 3

Tabelle 67: Fehler und Korrekturaufwand im Systemtest
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Nutzen durch Spezifikationsreview im Entfallender Korrekturaufwand (Eh)

Systemtest Modell® Modell®
Mittelwert griindliche Reviews 94 9,4
Median griindliche Reviews 7,2 9,7
Anzahl Teams 7 4
Mittelwert oberflachliche Reviews 43 43
Median oberflachliche Reviews 46 49
Anzahl Teams 7 3

Tabelle 68: Berechneter Nutzen durch das Modell

a. Dargestellt werden Mittelwerte und Vergleichswerte fiir alle Teams.
b. Dargestellt werden nur Werte der Teams, fiir die Istwerte verfiigbar sind.

Balken fiir den Korrekturaufwand in Projekten mit oberflachlicheren Reviews. Das
dritte Balkenpaar von links zeigt die Istwerte, das Balkenpaar rechts die Modellresul-
tate fiir den Korrekturaufwand nach dem Systemtest. In beiden Fallen ist der Korrek-
turaufwand niedriger, wenn die Spezifikation intensiv gepriift wurde.

Die Istwerte zeigen fiir die wenigen verfiigbaren Daten einen grofleren Unterschied
als die Modellresultate: Tabelle 67 zeigt in den Istwerten eine Differenz von etwa
8 Entwicklerstunden fiir die Korrektur nach dem Systemtest. Die Modellresultate fiir
den Nutzen des Spezifikationsreviews im Systemtest (Tabelle 68) und fiir die Korrek-
tur aller Fehler nach Systemtest sind dagegen mit etwa 4 Entwicklerstunden in allen
Fallen niedriger. Mehrere Erklarungen sind moglich:

Zufall: Die griindlich begutachteten Teams haben zufillig insgesamt weniger Feh-
ler gemacht und darum auch weniger Fehler nach dem Systemtest zu korrigieren.
Dagegen spricht, dass mit griindlicheren Reviews mehr Fehler entdeckt wurden
und mehr Korrekturaufwand benétigt wurde (Tabelle 66).

Hohere Systemtest-Intensitat: Eine hohere Intensitdt des Systemtests der oberflach-
lich begutachteten Teams spielt keine Rolle, weil sowohl die Teams mit intensiven
Reviews als auch die Teams mit oberflachlichen Reviews im Mittel jeweils 91 Test-
talle durchgefiihrt haben.

Griindliches Entwurfsreview: Eine andere mogliche Ursache liegt in den griindli-
chen Gutachtern, die nicht nur die Spezifikation, sondern auch den Entwurf begut-
achtet haben, so dass sich nicht nur der Effekt des griindlichen
Spezifikationsreviews, sondern auch des griindlichen Entwurfsreviews zeigt.

Zufall: Insgesamt sind nur wenige Datenpunkte verfiigbar, so dass die Aussage-
kraft eingeschréankt ist und die Ergebnisse zufallig entstanden sein konnten.
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Die Unterschiede der Istwerte sind statistisch nicht signifikant (5 %-Niveau). Auch
die Modellresultate unterscheiden sich nicht statistisch signifikant, aufSer im Korrek-
turaufwand nach dem Spezifikationsreview (5 %-Niveau). Ich fiihre darum die man-
gelnde statistische Aussagekraft auf die wenigen verfiigbaren Werte und den
geringen Unterschied in der Vorbereitungsintensitat zurtick.

7.6.2 Kreuzvalidierung als Ersatz fiir die Prognose

Fiir die Kreuzvalidierung werden alle Projekte des Praktikums per Zufallsauswahl
auf 10 Datengruppen verteilt. Die Eingabewerte einer Datengruppe sind Mittelwerte
der anderen 9 Datengruppen. Die Eingaben sind so gewahlt, dass die Situation der
Projektplanung ungefdahr nachgestellt wird (Tabelle 69). Dabei werden die Kalibrie-
rungsparameter aus Daten abgeschlossener Projekte berechnet. Ich nehme an, dass
der Code-Umfang hinreichend genau mit Function Points geschétzt werden kann.
Der Priifprozess kann im Voraus festgelegt werden. Der Fehlerfaktor muss wieder fiir
alle Projekte angenommen werden, weil Daten aus dem Einsatz der Software nicht
verfligbar sind.

Prozess- und Pritfprozess Berechnete Werte aus
Produktmerkmale p anderen Datengruppen
¢ Umfang des Codes ¢ Gutachterzahl und Vor- ¢ Umfangsfaktoren Spezifi-
bereitungsintensitat im kation und Entwurf
Spezifikationsreview e Aufwandsfaktor
° ;ntensitéé (/:1;5 Blrflck-Box— e Dauerfaktor
ests und Anweisungs-
iber dlé ckun gvc\; els glags . ¢ Verteilung auf Fehlerart
Box-Tests e Fehlerfaktor?

Tabelle 69: Individuelle Eingaben der Kreuzvalidierung

a. aus allen Projekten und nicht aus anderen Datengruppen

Die Daten aus anderen Datengruppen des Software-Praktikums sind aus verfiigbaren
Metriken der Projekte im Praktikum (Tabelle 42, Seite 161) berechnet:

* Sperzifikations-, Entwurfs- und Codeumfang wurden gemessen, daraus konnen die
Umfangsfaktoren berechnet werden.

* Die Kalibrierungsparameter fiir Dauer und Aufwand werden mit COCOMO II
berechnet; fiir Aufwand und Dauer stehen aber nur die Vorgaben der Priifungsord-
nung beziehungsweise der Betreuer zur Verfiigung.

* Die Verteilung auf die Fehlerart wird aus gemessenen Werten fiir die Fehlerzahlen
getrennt nach Fehlerart berechnet.
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Die Abweichungen bei der Kreuzvalidierung sind dhnlich wie bei der individuellen
Analyse. Tabelle 70 zeigt den Median der Abweichungen MLE! und den Anteil der
Projekte innerhalb der 2-db-Grenze fiir den MLE, pred(2 dB). Die Genauigkeit nimmt
ab, deutlich bei den Korrekturaufwanden. Die Abweichung {iibersteigt 2 dB im
Median. Trotz dieser hohen Abweichung liegen aber zwischen 20 % und 60 % der
Resultate innerhalb der 2-dB-Grenze. Dies deutet auf starke unkontrollierte Einfliisse
in einem groflen Teil der Projekte hin.

Spez.- Entwurfs- Code- Fehler Korrektur-
fehler fehler fehler gesamt aufwand
Spez.- MLE (dB) 1,6 3,2
review |,04(2 dB) 58 % 35 %
Entwurfs- | MLE (dB) 2,8 2,9 3,5
review pred(2 dB) 44 % 39 % 22 %
MLE (dB) 3,0 3,4 4,9
Modultest
pred(2 dB) 50 % 43 % 21 %
MLE (dB) 2,2 21 3,2
Systemtest
pred(2 dB) 44 % 50 % 33 %

Tabelle 70: Genauigkeit der Kreuzvalidierung

Die Resultate fiir intensive und oberflachliche Spezifikationsreviews sind dagegen in
der Kreuzvalidierung kaum weniger genau (Tabellen 71, 72 und 73). Modellresultate
und Istwerte sind konsistent fiir entdeckte Fehler im Spezifikationsreview und im
Systemtest. Sie sind konsistent fiir den Korrekturaufwand. Wieder unterscheiden sich
die Modellresultate fiir den Korrekturaufwand nach dem Systemtest am deutlichsten
von den Istwerten.

7.6.3 Bewertung und Folgerungen
Bewertung der Resultate unterschiedlicher Priifintensitat

Der Unterschied zwischen mehr oder weniger intensiven Reviews wird konsistent in
den Modellresultaten und in den Projektwerten sichtbar. Dies stiitzt die Annahmen
des Modells fiir Zusammenhénge in Reviews und fiir Zusammenhange der Fehler-
entstehung und Fehlerentdeckung. Das Modell ist ausreichend genau, um selbst die-
sen kleinen Unterschied sichtbar zu machen. Der Unterschied ist aber weder in den
Modellresultaten noch in den Projektwerten statistisch signifikant. Da Modell und
Realitat betroffen sind, fiihre ich dies aber auf die geringe Anzahl Werte, den gerin-

1. Median des LE = 10 -|log(Modellresultat/Istwert)|
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Entdeckte Fehler und Spez.-fehler Korrekturaufwand (Eh)
Korrekturaufwand nach

Spezifikationsreview Ist Modell Ist Modell
Mittelwert griindliche Reviews 39,2 34,7 12,2 8,1
Median griindliche Reviews 35,0 34,2 9,8 7,6
Anzahl Teams 6 4
Mittelwert oberflachliche Reviews 26,4 27,3 8,3 7,3
Median oberflachliche Reviews 24,0 30,9 6,9 7,9
Anzahl Teams 5 5

Tabelle 71: Fehler und Korrekturaufwand fiir Spezifikationsreviews

Entdeckte Spezifikationsfehler und Spez.-fehler Korrekturaufwand (Eh)
Korrekturaufwand im Systemtest Ist Modell Ist Modell
Mittelwert griindliche Reviews 0,4 0,6 43 10,4
Median griindliche Reviews 0 04 2,1 95

Anzahl Teams 6 4
Mittelwert oberflachliche Reviews 1 1,9 12,3 12,0
Median oberflachliche Reviews 0 2,2 10,9 16,3
Anzahl Teams 6 3

Tabelle 72: Fehler und Korrekturaufwand im Systemtest

Nutzen durch Spezifikationsreview im

Entfallender Korrekturaufwand (Eh)

Systemtest Modell? Modell®
Mittelwert griindliche Reviews 8,9 8,9
Median griindliche Reviews 7,3 93
Anzahl Teams 7 4
Mittelwert oberflachliche Reviews 5,4 5,4
Median oberflachliche Reviews 8,5 5,0
Anzahl Teams 7 3

Tabelle 73: Berechneter Nutzen durch das Modell

a. Dargestellt werden Mittelwerte und Vergleichswerte fiir alle Teams.
b. Dargestellt werden nur Werte der Teams, fiir die Istwerte verfiigbar sind.
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gen Unterschied im Vorbereitungsaufwand und die grofie Streuung durch unkontrol-
lierte Variablen zurtick.

Bewertung der Streuung in den Projektdaten und der Modellgenauigkeit

Die 2-dB-Grenze fiir ein valides Modell wird von etwa der Halfte der Resultate iiber-
schritten. Dies lasst sich aber auf die speziellen Eigenschaften des Praktikums zurtick-
fiihren, so dass in Industrieprojekten eine hohere Genauigkeit zu erwarten ist:

* Die Korrektur umfasst typisch 10 bis 30 Fehler und Aufwéande von wenigen Stun-
den pro Priifung. Die Eigenschaften eines einzelnen Fehlers machen sich im Auf-
wand starker bemerkbar als in grofien Projekten, bei denen sich diese Unterschiede
ausmitteln.

* Im Praktikum waren einige Daten nicht verfiigbar. Vor allem fehlen Gesamtauf-
wand und Zahl der Fehler nach Auslieferung. In der Industrie sind diese beiden
Daten haufiger verfiigbar als andere. Im Praktikum wurden Unterschiede der Ent-
wurfsreviews und des Modultests nicht erfasst. Dieser unkontrollierte Einfluss
wirkt sich direkt und in den folgenden Phasen auf Fehlerzahlen und Korrekturauf-
wande aus.

* Die Istwerte des Praktikums streuen iiber einen grofsen Bereich. Ein Teil der Streu-
ung wird nicht durch das Modell erklart. Er lasst sich auf die unterschiedliche
Motivation, Erfahrung und Fahigkeiten der Studenten zuriickfithren. Sie haben
zwar die gleichen Lehrveranstaltungen besucht, und Inhalt und Termine des Prak-
tikums sind vorgegeben und werden kontrolliert. Fiir viele Studenten ist es aber
das erste Projekt. Einige Teilnehmer haben bereits umfangreich Programmiererfah-
rung, wahrend fiir andere Teilnehmer die Programmiersprache neu ist. Die Teams
sind unterschiedlich motiviert. Ein Teil versucht, das Praktikum mit moglichst
wenig Aufwand zu bestehen. Andere Teams versuchen, ein moglichst perfektes
Produkt zu entwickeln. Weil sich die Teams selber finden, finden sich auch meist
Teilnehmer dhnlicher Motivation, Kenntnisse und Fahigkeiten zu einem Team. In
der Industrie werden diese Merkmale innerhalb einer Organisation eingeebnet,
weil sich die Entwickler eine gemeinsame Firmen- und Projektkultur teilen; sie
haben bereits Projekte durchgefiihrt, sind also dhnlich motiviert und erfahren. In
einem professionellen Umfeld mit Vorgesetzten kann sich die Motivation nicht so
stark auswirken.

* Andere nicht kontrollierte Einfliisse konnen nicht gemessen werden; dazu gehdren
einzelne Fehler, die extrem aufwandig zu suchen und zu beheben sind. Bei gerin-
gem Projektumfang oder wenigen einzelnen Téatigkeiten konnen sich einzelne
Abweichungen vom Mittelwert nicht ausgleichen.

Verglichen mit den Abweichungen der Top-down-Kostenschatzung ganzer Projekte
in Kemerer (1987) und Boehm (2000) bewerte ich die Resultate aus einem weiteren
Grund als plausibel: Die einzelnen Aktivititen, die vom Modell abgebildet werden,
lassen sich kaum steuern. In einem ganzen Projekt dagegen kann die Projektleitung
auf Abweichungen reagieren. Sie kann die Abweichungen darum zumindest teil-
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weise ausgleichen, so dass sie weniger stark das Gesamtergebnis bestimmen. Ich fol-
gere daraus, dass bei detaillierten Modellen mit stirkeren Abweichungen als bei
Modellen fiir ganze Projekte gerechnet werden muss.

Die Abweichungen fiir den Korrekturaufwand und die extremen Ausreifler einzelner
Fehler zeigen, dass die Korrektur ein grofies Risiko fiir Projektverzdgerungen birgt.
Darum folgere ich, dass ein einzelner Wert als Modellresultat kaum ausreicht, son-
dern dass ein Bereich, der die zu erwartende Spanne zeigt, sinnvoller ist. Die Progno-
seergebnisse erganzen also andere Verfahren.

Der Vergleich der Genauigkeit zwischen der individuellen Analyse und der Kreuzva-
lidierung zeigt, dass CoBe empfindlich auf die Kalibrierungsparameter reagiert. Dar-
aus folgere ich, dass unbekannte Parameter variiert werden sollten, um diese
Unsicherheit abzubilden. Diese Menge von Modellen fiir ein Projekt wird im Folgen-
den als Modellvarianten bezeichnet. Ihre Resultate ergeben einen Bereich, der diese
Unsicherheit sichtbar macht. Auf der anderen Seite erlaubt das Modell aber, Unter-
schiede in Projektresultaten ohne diese Streuung darzustellen. Dies ermoglicht, den
Nutzen direkt sichtbar zu machen. In realen Projekten kann der Unterschied in Pro-
jektresultaten, der durch unterschiedliches Vorgehen in Priifungen verursacht wurde,
durch andere Einfliisse iiberdeckt werden.

Bewertung der Validierung

Eine eigentliche Validierung wurde nicht erreicht, weil das Modell gedandert und
dann erneut mit den Daten verglichen wurde. Fiir die Validitat des Modells spricht
aber, dass die beiden Modellanderungen auf empirischen, unabhéangigen Daten basie-
ren. Unabhéngige Daten bedeutet, dass die Daten zur Quantifizierung nicht zum Ver-
gleich herangezogen wurden, sondern aus der Literatur stammen. Die Anderungen
sind lokal eng begrenzt (Abbildungen 66 und 67). Auch die Notwendigkeit zur Kalib-
rierung wird durch unabhdngige Quellen bestitigt. Aufwandsfaktor, Dauerfaktor
und Fehlerfaktor verandern nicht die Verhaltnisse zwischen den einzelnen, detaillier-
ten Modellresultaten. Selbst bei einer Anpassung der Verteilung der Fehler auf die
Fehlerarten andern sich die Verhaltnisse, z.B. der entdeckten Fehler, innerhalb einer
Art nicht. Der Vergleich vor und nach der Modellanderung erfolgte nicht gegen exakt
gleiche Daten, statt dessen wurden individuelle Projektwerte erst nach der Anderung
betrachtet.

Gegen die externe Validitat spricht, dass es sich um kleine, studentische Projekte han-
delt. Eine Validierung mit Industrieprojekten ist darum notwendig. Die Projektwerte
streuen im Praktikum deutlich, dies lasst sich nicht auf Industrieprojekte tibertragen.
Die interne Validitat ist durch unvollstandige Daten und den geringen Unterschied
im Priifprozess bedroht. Die unvollstandigen Daten, vor allem fiir den Gesamtauf-
wand und fir die Zahl ausgelieferter Fehler, verschlechtern die Modellgenauigkeit.
Der einheitliche Priifprozess fithrt zu geringen Unterschieden, wahrend die individu-
ellen Merkmale der Teams im Praktikum die Istwerte deutlich pragen. Insgesamt fiih-
ren die Bedrohungen also zu einer zu negativen Bewertung der Modellvaliditat.



202 7. Modellrealisierung, Modellpriifung und Modellverbesserung




Kapitel 8

Evaluation des Modells

In diesem Kapitel wird die Sensitivitatsanalyse von CoBe (Abschnitt 8.1), die Opti-
mierung mit CoBe (Abschnitt 8.2) und die Validierung von CoBe mit Industriedaten
beschrieben. Fiir die Validierung in der Industrie wird das Vorgehen geklart
(Abschnitt 8.3). Die Projekte und die Validierungsresultate werden dargestellt
(Abschnitte 8.4 und 8.5). Die Modellpriifung von CoBe wird in Abschnitt 8.6 bewer-
tet. Den Einsatz des Modells zeige ich an Beispielszenarien; dabei werden die Modell-
resultate auch mit Erfahrungen bei Prozessverbesserungen verglichen (Abschnitt 8.7).

8.1 Sensitivititsanalyse

Durch die Sensitivititsanalyse wird die Einflussstarke von Modellparametern auf
Modellresultate untersucht. Sie zeigt das Verhalten des Modells.

8.1.1 Ziele und Hypothesen der Sensitivititsanalyse

Die Sensitivitatsanalyse von CoBe orientiert sich an Hypothesen, die aus dem Modell-
konzept abgeleitet sind (Kapitel 3). Im Konzept wird festgelegt, dass Entscheidungen
tiber Priifungen durch Modelleingaben dargestellt werden. Das Konzept basiert also
auf den folgenden Hypothesen:

H 1: Die Entscheidungen iiber Priifparameter bestimmen die Qualitdtskosten.

H2: Es gibt keinen allgemeingiiltigen Priifprozess, der in allen Projektsituationen zu
einem optimalen Ergebnis fiihrt.

H3: Die Qualitatskosten sind durch die Kombination der Entscheidungen und der
Prozess- und Produktmerkmale bestimmt, so dass die Auswirkungen schwierig
zu durchschauen sind.

H4: Kurzfristige Kosten zu minimieren und langfristige Kosten zu minimieren sind
konkurrierende Ziele.

Zusatzlich wird untersucht, wie sich unsichere Eingaben auswirken. Dazu gehoren in
CoBe die Kalibrierungsparameter, die aus Archivdaten stammen, der Software-
Umfang, der bei der Planung geschatzt wird, und die Fehlerfolgekosten, die grob
abgeschatzt werden.

H5: Die Fehlerfolgekosten bestimmen die Modellresultate.
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Heé: Die Kalibrierung ist notwendig.
H7: Der Software-Umfang hat einen wesentlichen Einfluss auf die Resultate.

Ich lege den Schwerpunkt auf die Frage, welche Parameter moglichst genau sein miis-
sen und wie die Aussagen, die mit CoBe gewonnen werden konnen, durch unsichere
Eingaben beeinflusst werden.

8.1.2 Vorgehen zur Sensitivititsanalyse
Szenarien

Die Hypothese 3 kann nur mit einer globalen Sensitivitdtsanalyse untersucht werden,
bei der die Eingaben variiert und daraus Kombinationen gebildet werden (Saltelli et
al., 2008). Mit einem naiven Ansatz werden also alle Parameter von CoBe variiert.
Dann wird statistisch analysiert, wie stark jeder Parameter wirkt. Dieser Ansatz ist
problematisch, weil nicht jede Kombination, die in CoBe moglich ist, auch sinnvoll ist.
Beispielsweise sind Projekte mit oberflachlichem Priifprozess und sehr hohen Fehler-
folgekosten unrealistisch. Diese Kombinationen verzerren die Analyseergebnisse und
iiberdecken andere, relevante Zusammenhange. Darum wahle ich einen Ansatz mit
Szenarien, die durch Prozess- und Produktmerkmale und den Priifprozess festgelegt
werden. Fiir die Szenarien werden diejenigen Eingaben variiert, die fiir die Priifung
der Hypothesen notwendig sind.

Analyse

Die Sensitivitatsanalyse von CoBe soll zwei unterschiedliche Fragen beantworten:
Wie wirken sich Entscheidungen, d.h. die Eingaben fiir Priifprozess und Priifparame-
ter, aus? Wie wirkt sich die Unsicherheit tiber das Projekt zum Zeitpunkt der Planung
aus? Fiir die globale Sensitivitatsanalyse wird die Unsicherheit durch ein Monte-
Carlo-Experiment mit einer statistischen, pseudo-zufélligen Auswahl der unsicheren
Eingaben modelliert (Sobol und FAST nach Saltelli et al., 2008). Fiir die Analyse der
Entscheidungen ist diese Art der Sensitivitdtsanalyse nicht geeignet, weil die Ent-
scheidungen bewusst durch Projektleiter und QS-Verantwortliche getroffen werden.
Die Entscheidungen sind also nicht unsicher und nicht durch Zufallseffekte gepragt,
sondern gegeben. Die beiden Fragen nach den Wirkungen der Entscheidungen und
der unsicheren Eingaben konnen darum nur mit unterschiedlichen Analysen beant-
wortet werden. Die Sensitivitatsanalyse fiir die Entscheidungen erfolgt darum mit
fest vorgegebenen Eingabekombinationen. Da dann eine Analyse mit Sobol und
FAST nicht mehr moglich ist, erfolgt die Analyse graphisch und zusatzlich statistisch
durch lineare Regression. Die Kalibrierungsparameter und der Umfang dagegen sind
unsicher, weil ihr wahrer Wert bei der Planung unbekannt ist. Dafiir werden Analy-
sen mit statistischer Auswahl der Eingaben eingesetzt. Die Eingaben fiir Fehlerfolge-
kosten werden dagegen durch die unterschiedlichen Szenarien variiert, weil die
verwendeten Klassifizierungen durch Grofienordnungen definiert sind und bereits
eine Klasse einen grofien Bereich abdeckt.
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Eingaben

Bei einer Analyse mit Szenarien bleibt die Annahme bestehen, dass die Qualitatskos-
ten durch die Kombination der Entscheidungen bestimmt sind. Diese Annahme kann
nur lberpriift werden, wenn die Wechselwirkungen oder Interaktionseffekte zwi-
schen den Entscheidungen erkannt werden konnen. Darum miissen die verschiede-
nen Kombinationen der moglichen Entscheidungen betrachtet werden.

In CoBe gibt es viele Entscheidungen, weil es viele Priifungen gibt und weil fiir jede
Priifung viele Priifparameter eingegeben werden konnen. Da es also viele Parameter
mit vielen moglichen Werten gibt, sind sehr viele Kombinationen moglich; die kombi-
natorische Vielfalt wird sehr grofs. Dies verursacht Rechenaufwand. Vor allem aber
wird die Analyse komplex, weil sehr viele Eingabekombinationen und Resultate
betrachtet und in Beziehung zueinander gesetzt werden miissen.

Es ist also notwendig, die Analyse zu vereinfachen. Darum werden nicht alle Einga-
bekombinationen aller Reviews analysiert, stattdessen wird im Folgenden ein Review
stellvertretend fiir alle Reviews betrachtet. Dies ist mdglich, da alle Reviews gleich
modelliert sind und sich nur in der Quantifizierung unterscheiden. Fiir diese Betrach-
tung ist das Spezifikationsreview gut geeignet, weil Spezifikationsfehler am teuersten
sind, wenn sie spéter entdeckt werden. Dadurch wirken sich die Entscheidungen tiber
das Review also starker als Entscheidungen iiber andere Reviews aus. Im Entwurfs-
und Codereview konnen zwar mehr Fehler entdeckt werden, da neue Fehler beim
Entwerfen und Codieren entstehen. Deren Entdeckungszeitpunkt wirkt sich aber
weniger stark aus.

Auch fiir die Tests gilt, dass sie gleich modelliert sind und nur unterschiedlich quanti-
fiziert. Es reicht also wieder, einen Test stellvertretend zu untersuchen. Dazu ist der
Systemtest gut geeignet, weil er sich starker als andere Tests auswirkt. Dafiir gibt es
zwei Griinde: Mit dem Systemtest konnen mehr Fehler als in anderen Tests entdeckt
werden, weil der Systemtest mit den hochsten Fehlerentdeckungsquoten quantifiziert
ist. Ein Testfall ist im Systemtest am teuersten.

Modellresultate

Die Modellresultate, die untersucht werden, leiten sich direkt aus der Hypothese H 4
ab: Die Wirkungen auf die Projekt-Qualitdtskosten (im Projekt anfallende Priif- und
Fehlerkosten) und die Gesamt-Qualitatskosten (Priifkosten und Fehlerkosten im Pro-
jekt und in der Wartung) werden untersucht.

8.1.3 Szenarien fiir die Sensitivititsanalyse

Fiir die Sensitivitdatsanalyse sollen die Szenarien die unterschiedlichen Merkmale von
Software-Projekten abdecken, um den Einfluss dieser Merkmale zu zeigen. Produkti-
vitat und Qualitat in Software-Projekten konnen durch tiber 250 Merkmale beein-
flusst werden (Jones, 2003). Zur Produktivitatsbewertung und zur Kostenschiatzung
werden tiber 20 Merkmale erfasst (IEEE Std. 1045, 1992; Boehm, 2000). Die wichtigs-
ten Merkmale sind nach Jones (2003):
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Die Software-Art: Jones (1996, 2003) unterscheidet System-Software, Software fiir
den Markt, Informationssysteme, Auftragsprojekte, Software fiir das Militar und
Endbenutzer-Software.

Die Projektmerkmale: Dazu gehdéren Umfang, Komplexitdt, Randbedingungen,
Entwicklungsart (Neuentwicklung, Wartung oder Verbesserung), Anwendungsart
und Scope (System, Programm, Modul).

Die Technologie mit formalen Methoden, Projektmanagement, Qualitatssicherung,
Programmiersprachen und Wiederverwendung.

Die Soziologie umfasst Erfahrung, Organisation, Moral und Prozessreife.
Die Ergonomie der Arbeitspldtze und die Kommunikation am Arbeitsplatz.

Merkmale durch Internationalitat sind lokale Gesetze, Personalkosten, Arbeitszeit
und Mitarbeiterverhalten.

Fiir die Analyse werden die Merkmale durch unterschiedliche Parameterwerte fiir
CoBe abgedeckt: Unterschiedliche Software-Arten werden durch unterschiedliche
Fehlerfolgekosten und Priifprozesse abgedeckt. Unterschiede der Projektmerkmale
werden durch verschiedenen Umfang, die Technologie durch verschiedene Priifpro-
zesse und Wiederverwendung dargestellt. Die Kalibrierung fasst alle Merkmale als
Einfluss zusammen. Die Erfahrung wird durch die Kompetenz abgebildet. Personal-
kosten werden nicht variiert, weil sich dieser Faktor gleichformig auf alle Resultate
auswirkt. Die verschiedenen Eingaben bilden folgende Szenarien:

Nominalszenario: Das Nominalprojekt bildet den Normalfall mit durchschnittli-
chen Eingabewerten ab; ein Auftragsprojekt.

Szenario mit Wiederverwendung: Das Projekt mit Wiederverwendung zeigt die
Auswirkungen durch wiederverwendete Software. Andere Eingaben entsprechen
dem Nominalprojekt.

Kritisches Szenario: Das Projekt fiir sicherheitskritische System-Software hat einen
kleineren Umfang. Alle Priifungen werden vollstandig durchgefiihrt. Es werden
erfahrene Mitarbeiter eingesetzt. Die Prozessreife ist hoch. Die Technologie unter-
scheidet sich von anderen Projekten, weil eine andere Programmiersprache einge-
setzt wird.

Initialszenario: In diesem Projekt wird ein Produkt mit kleinem Umfang und gerin-
gen Fehlerfolgekosten entwickelt. Das Projekt hat eine niedrige Prozessreife, es
werden wenig Priifungen durchgefiihrt. Damit die Wirkung des Spezifikationsre-
views untersucht werden kann, gibt es das Szenario mit und ohne Spezifikationsre-
view.

Grofies Szenario: Ein grofies Projekt unterscheidet sich im Umfang und in der
hohen Prozessreife vom Nominalprojekt.
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* Prozedurales Szenario. Es unterscheidet sich vom Nominalprojekt, weil keine
objektorientierte Programmiersprache eingesetzt wird.
8.1.4 Eingaben fiir die Sensitivitdtsanalyse

Das Nominalszenario ist die Basis aller Szenarien. Tabelle 74 zeigt die fiir alle Szena-
rien gleichen Eingaben, Tabelle 75 die unterschiedlichen Eingaben.

Eingabe Werte

Nominales Spezifikationsreview, nominales Entwurfsreview mit
5 griindlichen Gutachtern, vollstandige Priifung, kein Codereview.

Nominaler Modul-, Systemintegrations- und Systemtest jeweils mit Funktio-

gigi_ess nen und Aquivalenzklassen und vollstandiger Wiederholung, Feldtest.
Nach der Korrektur eines Fehlers in der Wartung wird die Korrektur gezielt
getestet, dazu wird ein Teil des Modultests, des Sytemintegrationstests und
des Systemtests wiederholt.

Eggiszal_ 200 000 Euro pro Entwicklerjahr, 110 Euro pro Entwicklerstunde

Verwendungshaufigkeit: Ein Fehler, der 10 000 Euro Schaden oder mehr ver-
ursacht, wird sofort korrigiert. Bei anderen Fehlern wird die Software zehnmal
Fehler- verwendet, bis ein Fehler korrigiert wird. Fehler, die nie im Einsatz auftreten,
folgekosten | verursachen keinen Schaden. Auftretenswahrscheinlichkeit: Die Fehler sind
auf die Klassen Auftretenswahrscheinlichkeit gleichmafSig verteilt

(Abschnitt 7.4.3).

Aufwandsfaktor, Dauerfaktor und Fehlerfaktor: 1,0,
Umfangsfaktor Code fiir Java: 53 Anweisungen pro Function Point,
Umfangsfaktoren Spezifikation, Entwurf: 0,44 Seiten pro Function Point.

Kalibrie-
rung

Tabelle 74: Eingaben fiir alle Szenarien

Tabelle 76 zeigt die Eingabewerte, die fiir die Sensitivitdtsanalyse verwendet werden.
Der abgedeckte Bereich orientiert sich an praxistypischen Werten. Im Glass-Box-Test
betrachte ich fiir die Analyse nur die Anweisungsiiberdeckung, weil andere Uberde-
ckungsmetriken vor allem fiir sicherheitskritische Software eingesetzt werden. Die
Modellresultate werden fiir jede Kombination berechnet. Zwei Sonderfille werden
eingefiigt: Der Fall, in dem kein Review stattfindet, und der Fall, in dem kein System-
test stattfindet.

8.1.5 Statistische Sensitivititsanalyse

Analyse

Mit der Analyse durch lineare Regression wird die Einflussstarke einer Modellein-
gabe auf ein Modellresultat durch den standardisierten Regressionskoeffizienten dar-
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Szenario Unterschiedliche Eingaben und Eingabewerte
Nominaler Priifprozess, nominale Kalibrierung, Java, 1000 FP? neu, maximaler
Nominal Schaden: 10 000 Euro, Fehler sind auf Schadensklassen (bis 10 000 Euro)
gleichmaflig verteilt.
Wiederver- | Nominalszenario, aber mit 700 FP wiederverwendeter und 300 FP neuer Soft-
wendung ware, maximaler Schaden: 10 000 Euro wie im Nominalszenario
Vollstandiger Priifprozess, Kalibrierung fiir hohe Prozessreife (Aufwands-
Kritisch und Fehlerfaktor 0,5), C++, 100 FP, maximaler Schaden: 10 000 000 Euro, Fehler
sind auf Schadensklassen gleichmaf3ig verteilt
Priifprozess ohne Reviews, ohne Integrations- und Feldtest, nominale Kalib-
Initial rierung, Java, 100 FP, maximaler Schaden: 10 Euro, mit und ohne Spezifikati-
onsreview
Nominaler Priifprozess, Kalibrierung fiir hohe Prozessreife (Aufwands- und
Grof3 Fehlerfaktor 0,5), Java, 10 000 FP neu, maximaler Schaden: 10 000 Euro wie im
Nominalszenario
Nominaler Priifprozess, nominale Kalibrierung, Java, 1000 FP neu, maximaler
Prozedural

Schaden: 10 000 Euro wie im Nominalszenario

Tabelle 75: Unterschiedliche Eingaben fiir Szenarien

a. FP: Function Points

Priifung Eingabe Eingabewerte

Gutachterzahl 2, 3,4, 5 Gutachter
Intensitat 5, 10, 20 Seiten pro Stunde

fgveizeljékatlons- Gutachterkompetenz sehr niedrig, nominal, sehr hoch
Priiflingstiberdeckung 50 %, 100 %
Ein Sonderfall ohne Spezifikationsreview (0 % Uberdeckung).
Abdeckung Black-Box-Test- Funktionen, Aquivalenzklassen, Sonder-
techniken falle
Anweisungsiiberdeckung 0%, 80 %, 100 %
Glass-Box-Test

Systemtest
Testerkompetenz sehr niedrig, nominal, sehr hoch
Testwiederholung Mit und ohne vollstandige Wiederholung
Ein zusatzlicher Sonderfall ohne Systemtest.

Tabelle 76: Variierte Eingaben
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gestellt (Saltelli et al.,, 2008). Standardisierte Regressionskoeffizienten werden mit
einer Regressionsgleichung berechnet, die aus Regressionskoeffizienten, den variier-
ten Modelleingaben und dem Modellresultat aufgebaut ist. Die Regressionskoeffizi-
enten werden aus Eingabewerten und zugehorigem Resultatswert berechnet!. Die
standardisierten Regressionskoeffizienten werden auf den Wertebereich der Eingabe
und des Resultats normiert. Sie liegen zwischen -1 und 1. Ein hoher Betrag bedeutet
einen starken Einfluss; ein Koeffizient mit Wert 0 bedeutet keinen Einfluss. Ein positi-
ver Koeffizient bedeutet einen positiven Zusammenhang, ein negativer Koeffizient
einen negativen. Im Folgenden wird mit Koeffizient der standardisierte Regressions-
koeffizient bezeichnet. Die Analyse erfolgt mit dem Statistikpaket R (2008).

Die lineare Regression ist nur dann aussagekraftig, wenn sich das Modell im Bereich
der variierten Priifparameter weitgehend linear verhilt. Das Bestimmtheitsmafl R?
erlaubt, die Linearitat zu priifen, weil es ausdriickt, welcher Anteil der Streuung der
abhangigen Variable durch die unabhéngige erklart wird (Fahrmeir et al., 2007). Mit
R? iiber 70 % ist die Analyse aussagekriftig (Saltelli et al., 2008). Nicht-lineare Zusam-
menhénge werden graphisch gezeigt (Fahrmeir et al., 2007; Saltelli et al., 2008).

Interaktionseffekte sind Wirkungen, die ausschliefslich durch mehrere Eingaben
gemeinsam auftreten. Sie werden von einem einfachen linearen Regressionsmodell
nicht erfasst, darum analysiere ich diese Effekte graphisch. Effekte zwischen den Sze-
narien werden durch Vergleich der Koeffizienten sichtbar.

Analyseergebnisse

Aus den Eingabewerten ergeben sich 3961 unterschiedliche Kombinationen. Die
Annahme der Linearitit gilt fiir den untersuchten Bereich, da R? in allen Fillen iiber
70 % liegt (Tabelle 77). Projekt-Qualitatskosten sind Qualitatskosten, die im Projekt
anfallen; Gesamt-Qualitatskosten enthalten Qualitdtskosten im Projekt, in der War-
tung und im Einsatz des Produkts.

2 . . Initial .
R fiir Nomi- Kritisch | Grof3 Initial Spez.- Proze- | Wieder-
Qualitatskosten nal . dural Verw.
review
Gesamt 0,90 0,90 0,88 0,90 0,90 0,87 0,90
Projekt 0,92 0,91 0,91 0,92 0,92 0,91 0,92

Tabelle 77: Bestimmtheit der Resultate

1. Alle Eingaben mit Ausnahme der Testerkompetenz und der Testwiederholung sind auf
einer Rationalskala. Die Testwiederholung kann als Dummy-Variable direkt verwendet wer-
den. Die Testerkompetenz befindet sich auf einer Ordinalskala, ich nehme fiir die Regres-
sion gleiche Abstédnde zwischen den Werten an.
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Tabelle 78 zeigt Minimum und Maximum der Gesamt- und Projekt-Qualitdtskosten.
Der Faktor ist das Verhiltnis zwischen maximalen und minimalen Qualitatskosten.
Ein Faktor 2 bedeutet also, dass die maximalen Qualitatskosten doppelt so hoch wie
die minimalen sind.

Die Wirkung der Entscheidungen ist grofs: Die Gesamt-Qualitdtskosten schwanken
um Verhéltnisse zwischen 1:1,2 und 1: 6,3, die Projekt-Qualitdtskosten sogar bis zu
einem Verhaltnis von 1 : 14,2. Diese Streuung hangt vom Szenario ab: Mit hohen Feh-
lerkosten schwanken die Gesamt-Qualitdatskosten besonders stark, mit niedrigen Feh-
lerkosten oder Wiederverwendung besonders wenig. Die Projekt-Qualitatskosten
streuen besonders bei den Projekten mit einem initialen Priifprozess; am geringsten
beim kritischen Projekt mit den meisten Priifungen. Die Qualitdtskosten steigen tiber-
proportional mit dem Umfang: Obwohl im grofien Szenario die Prozessreife hoch ist,
steigen die Qualitdtskosten tiberproportional, also um mehr als das Zehnfache der
Kosten im Nominalszenario.

Gesamt-Qualitatskosten Projekt-Qualitatskosten
Szenario

Min. (Euro) | Max. (Euro) | Faktor | Min. (Euro) | Max. (Euro) | Faktor
Nominal 3 752 495 10 047 472 2,7 1168 266 2451 328 2,1
Kritisch 2961 274 18 771 991 6,3 40 170 55 751 1,4
Grofs 43182533 | 174153 000 4,0 6 156 719 12 586 561 2,0
Initial 292 333 342 814 1,2 8171 116 186 14,2
Initial Spez.- 187 653 342 225 18 9065 118675 13,1
review
Prozedural 4 366 631 13 779 409 3,2 1268 339 2719 070 2,1
Wiederver- 1147818 2226785 1,9 303 676 573 563 1,9
wendung

Tabelle 78: Qualitatskosten

Der Vergleich mit COCOMO-II-Resultaten zeigt, dass die Projekt-Qualitatskosten, die
CoBe berechnet, plausibel sind (Tabelle 79), weil die Qualitatskosten maximal etwa
bei der Halfte der Projektkosten liegen.

Tabelle 80 zeigt die Koeffizienten fiir die Gesamt-Qualitatskosten, Tabelle 81 fiir die
Projekt-Qualitdtskosten. Ein negativer Koeffizient bedeutet, dass eine hohere Eingabe
die Kosten senkt, mehr Gutachter bedeuten beispielsweise weniger Qualitdtskosten.
Mit positivem Koeffizienten steigen die Kosten, eine hohere Vorbereitungsrate bedeu-
tet also hohere Qualitatskosten. Alle Ein%aben bis auf zwei Ausnahmen sind statis-
tisch signifikant mit einem p-Wert <0.001".
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COCOMO-II-Resultate A‘zgl‘\’fi‘)“d D(?\‘/Ilfr Pf)resé’:él' Pers‘(’]f:‘il;‘)”ten
Nominal (1000 FP) 247 25 10 4129 840
Kfritisch (100 FP, hohe Prozessreife) 10 9 1 167 200
Grofs (10 000 FP, hohe Prozessreife) 1554 45 34 25982 880
Initial (100 FP) 20 11 2 334 400
Tabelle 79: Projektkosten mit COCOMO II
Koef(f;l:::;;in o Nomi- Kritisch | Grofs Initial g;)l:za{ Proze- | Wieder-
Qualitatskosten nal review dural verw.
Gutachterzahl -0,14 -0,16 -0,10 - -0,16 -0,11 -0,14
Vorbereitungsrate 0,29 0,33 0,20 - 0,35 0,23 0,31
Gutachterkompetenz -0,52 -0,57 -0,36 - -0,65 -0,41 -0,55
Priiflingsiiberdeckung -0,35 -0,40 -0,24 - -0,42 -0,28 -0,37
?;ftiiii?feilaCk'Box' 021 -028| -012| -0,14| -006| -025| -024
ﬁ;‘ggi‘fﬁ; 004 -029| 032| 019/ 007 039 -011
Testerkompetenz -0,60 -0,32 -0,73 -0,90 -0,37 -0,60 -0,52
Testwiederholung 0,02 -0,01° 0,01b 0,20 0,08 0,02 0,03

Tabelle 80: Koeffizienten fiir Gesamt-Qualitatskosten

a. p-Wert<0,1
b. statistisch nicht signifikant, p-Wert > 0,1

Tabelle 80 zeigt die folgenden Aussagen:

* Die Kompetenz der Gutachter und der Tester spielt die wichtigste Rolle. Die Koef-
tizienten liegen zwischen -0,32 und -0,90 und haben somit den hochsten Betrag. Je
hoher die Kompetenz, desto geringer sind die Qualitdtskosten; in CoBe kosten Ent-
wickler unabhdngig von ihrer Kompetenz gleich viel.

* Die Eingaben fiir das Spezifikationsreview wirken in allen Szenarien in der glei-
chen Richtung, weil die Koeffizienten das gleiche Vorzeichen haben. Dies bedeutet
fiir den hier untersuchten Bereich: Je mehr Gutachter priifen, je mehr vom Priifling

1. Die Wahrscheinlichkeit, dass die Nullhypothese falschlicherweise abgewiesen wird, liegt
unter 0,001.
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Koeffizienten Nomi- Initial Proze- | Wieder-
tiir Projekt- 0 Kritisch | Grof3 Initial Spez.- oze cde
. nal ) dural Verw.
Qualitatskosten review
Gutachterzahl -0,04 0,18 -0,02 - 0,03 -0,04 -0,03
Vorbereitungsrate 0,12 -0,13 0,09 - -0,03 0,11 0,1
Gutachterkompetenz -0,26 -0,24 -0,27 - -0,01 -0,24 -0,24
Priiflingsiiberdeckung -0,14 0,16 -0,11 - 0,03 -0,13 -0,11
Abdeckung Black-Box- 0,54 0,57 0,56 0,57 0,57 0,48 0,57
Testtechniken
Anweisungs- 0,55 0,59 0,57 0,58 0,58 0,65 0,57
iiberdeckung
Testerkompetenz 0,37 -0,21 0,33 0,44 0,43 0,31 0,33
Testwiederholung 0,17 0,13 0,17 0,15 0,15 0,16 0,17

Tabelle 81: Koeffizienten fiir Projekt-Qualitdtskosten

tiberdeckt wird, je griindlicher die Vorbereitung, desto geringer werden die
Gesamt-Qualitatskosten. Dabei wirkt sich die Gutachterzahl am schwachsten aus.
Die Einflussstarke verandert sich von Szenario zu Szenario, beispielsweise sinkt im
grofien Szenario die Einflussstarke aller Revieweingaben.

* Die Einflussstiarke und die Einflussrichtung der Testeingaben verandern sich von
Szenario zu Szenario: Die Abdeckung im Black-Box-Test senkt die Qualitatskosten.
Im Initialszenario mit und ohne Spezifikationsreview und im grofien Szenario
schwindet dieser Einfluss. Die Wirkung der Anweisungsiiberdeckung hangt vom
Szenario und vom Priifprozess ab: Im kritischen Szenario und mit Wiederverwen-
dung sinken die Gesamt-Qualitdtskosten; im Nominalszenario und im Initial-
szenario mit Spezifikationsreview ist der Einfluss gering; in den anderen Szenarien
steigen die Qualitatskosten mit der geforderten Uberdeckung von 80 % und 100 %,
die zusatzlich zum Black-Box-Test erreicht werden soll.

Tabelle 81 zeigt den Einfluss der Priifparameter auf die Qualitatskosten im Projekt:

* Der wichtigste Einfluss sind die Testparameter im Systemtest, weil ihre Koeffizien-
ten am grofiten sind; sie liegen nahe oder iiber 0,5. Dies bedeutet: Je intensiver der
Test, desto teurer wird das Projekt.

* Fiir die Projektkosten spielt die Kompetenz der Gutachter und Tester eine wichtige
Rolle, weil die Koeffizienten einen grofien Betrag aufweisen. Die Starke des Ein-
flusses hangt vom Szenario ab. Im kritischen Szenario d@ndert sich sogar die Rich-
tung des Einflusses.

* Die Projekt-Qualitdtskosten werden durch die Priifparameter fiir das Spezifikati-
onsreview wenig beeinflusst, weil die Koeffizienten niedrig sind. Abhangig vom
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Szenario wird das Projekt etwas teurer oder etwas giinstiger: Beispielsweise sinken
im Nominalszenario die Kosten, wenn mehr begutachtet wird. Im kritischen Sze-
nario steigen die Kosten im Projekt.

8.1.6 Graphische Sensitivitdtsanalyse

Die graphische Analyse erganzt die Regressionsanalyse, da sie nicht-lineare und
nicht-additive Effekte zeigen kann (Saltelli et al., 2008). Um die Diagramme iibersicht-
lich zu halten, werden die Eingaben einer Priifung variiert, wahrend die Eingaben der
anderen Priifung konstant bleiben.

Spezifikationsreview

Die Analyse des Spezifikationsreviews erfolgt also mit konstanten Eingaben fiir einen
nominalen Systemtest. Abbildung 70 zeigt den Einfluss des Spezifikationsreviews auf
die Gesamt-Qualitatskosten im Nominalszenario. Die Gesamt-Qualitatskosten an der
y-Achse sind im linken Diagramm abhdngig von den Reviewkosten dargestellt, im
rechten Diagramm abhéngig von der Uberdeckung der Sperzifikation. Die Daten-
punkte in den Diagrammen sind nach der Gutachterkompetenz geordnet: Weifde
Punkte stehen fiir niedrige, schwarze fiir nominale und graue fiir hohe Kompetenz.
Die Kosten des Spezifikationsreviews andern sich nicht mit der Kompetenz, weil die
tatsachliche, messbare Vorbereitungsrate eingegeben wird; sie ist also fest vorgege-
ben und verandert sich nicht mit der Kompetenz.

Durch Mehraufwand im Spezifikationsreview konnen die Gesamt-Qualitatskosten
gesenkt werden (Abbildung 70, links), im besten Fall um fast die Halfte. Die Wirkung
ist nicht linear, da mit hohen Kosten nur noch eine geringe Verbesserung erreicht
werden kann. So sinken die Gesamt-Qualitatskosten ab rund 40 000 Euro Reviewkos-
ten kaum noch. Notwendig ist eine Mindestkompetenz und die vollstandige Priifung
der Spezifikation (Abbildung 70, rechts). Die Spezifikationsiiberdeckung verstarkt
den Effekt der Kompetenz, es handelt sich darum um Interaktionseffekte.

[e]
€ 9000000 Ana 5 9000 000 2 A Niedrige
' 8000000- %ﬁ% 8o, 'Y 8000000 Kompetenz
c 7000000 CESe. g 7000000 - + Nominale
% 6000000 o8 @ 6000000 Kompetenz
]
% 5000000 é 5000 000 O Hohe
% 4 000 000 % 4 000 000 - Kompetenz
S 3000000 - 5 3000000 -
£ 2000000 £ 2000 000 -
@ 1000000 - @ 1000000
(D O T T 1 O 0 T T T 1
0 25000 50000 75000 0 25 50 75 100
Kosten fiir Spezifikationsreview in Euro Uberdeckung der Spezifikation in %

Abb. 70: Wirkung des Spezifikationsreviews auf die Gesamt-Qualitdtskosten fiir
Reviewkosten (links) und Priiflingsiiberdeckung (rechts)
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Die Fehlerfolgekosten und der Priifprozess beeinflussen die Wirkung des Reviews.
Dies zeigt Abbildung 71. Beide Diagramme sind aufgebaut wie das linke Diagramm
in der vorigen Abbildung; sie zeigen die Gesamt-Qualitdtskosten an der y-Achse in
Abhangigkeit von den Kosten des Spezifikationsreviews an der x-Achse. Mit hohen
Fehlerfolgekosten und intensivem Priifprozess niitzt das Review mehr, die Qualitats-
kosten konnen auf ein Drittel gesenkt werden (Abbildung 71 links, kritisches Szena-
rio); mit oberflachlichem Priifprozess und niedrigen Fehlerfolgekosten konnen die
Qualitatskosten auf etwa zwei Drittel gesenkt werden (Abbildung 71 rechts, Initial-
szenario mit Spezifikationsreview).
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Abb. 71: Reviewwirkung auf die Gesamt-Qualitdtskosten im kritischen Szenario
(links) und im Initialszenario (rechts)

Abbildung 72 zeigt die Projekt-Qualitatskosten in Abhéngigkeit von den Kosten fiir
das Spezifikationsreview. Die Diagramme bestdtigen die Ergebnisse in Tabelle 81.
Das Spezifikationsreview beeinflusst die Projekt-Qualitatskosten wenig. Im besten
Fall werden die Kosten gesenkt (Abbildung 72, links, Nominalszenario), im schlech-
testen Fall steigen die Kosten leicht an (Abbildung 72, rechts, Initialszenario).

Systemtest

Die graphische Analyse des Tests basiert auf einem nominalen Spezifikationsreview.
Abbildung 73 zeigt die Gesamt-Qualitdtskosten in Abhéangigkeit von den Kosten fiir
den Systemtest. Die verschiedenen Testtechniken fiir den Black-Box-Test sind farblich
unterschieden. Der Punkt auf der y-Achse kennzeichnet die Kosten ohne Systemtest.

Das Diagramm zeigt den Einfluss der Testparameter des Systemtests, weil sich im
Nominalszenario die Parameter in etwa in der gleichen Grofienordnung auswirken
wie die Parameter des Spezifikationsreviews: In beiden Fallen werden die Gesamt-
Qualitatskosten im Bereich zwischen rund 5 und 9 Millionen Euro verandert (Abbil-
dungen 70 und 73). Die niedrigsten Gesamt-Qualitdtskosten konnen im Nominalsze-
nario durch einen Black-Box-Test mit Aquivalenzklassen und Sonderfillen erreicht
werden. In ungiinstigen Kombinationen steigen die Qualitatskosten aber.
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Abb. 72: Reviewwirkung auf die Projekt-Qualitdtskosten im Nominalszenario
(links) und im Initialszenario mit Spezifikationsionsreview (rechts)
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Abb. 73: Wirkung des Systemtests auf die Gesamt-Qualitatskosten, gegliedert
nach Priifparameter fiir den Black-Box-Test

Abbildung 73 zeigt dies mit den Gesamt-Qualitatskosten in Abhangigkeit von den
Kosten fiir den Systemtest. Die Abbildung zeigt aber auch, dass nicht allein der Ein-
fluss der Black-Box-Testparameter iiber die Qualitatskosten entscheidet. Zusatzlich
spielen weitere Parameter eine Rolle: Der Anstieg der Qualitatskosten durch den Sys-
temtest ist durch die Anweisungsiiberdeckung bestimmt und hangt von der Tester-
kompetenz und den Fehlerfolgekosten ab.

Abbildung 74, links, zeigt dies anhand der Gesamt-Qualitatskosten fiir das Nominals-
zenario in Abhdngigkeit von der geforderten Anweisungsiiberdeckung. Mit niedriger
Kompetenz (schwarze Punkte) steigen die Kosten mit der Uberdeckung; mit hoher
Kompetenz bleiben die Kosten nahezu konstant (graue Punkte). Mit hohen Fehlerfol-
gekosten sinken die Qualitdtskosten (Abbildung 74, rechts, kritisches Szenario). Ein
griindlicher Black-Box-Test lohnt sich also langfristig immer, ein Glass-Box-Test nur
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bei hohen Fehlerkosten oder mit sehr kompetenten Testern. Daraus folgt, dass die
vier Eingaben fiir Black-Box-Testparameter, dem Kriterium fiir die Anweisungsiiber-
deckung, dem Parameter der Kompetenz und den Fehlerfolgekosten durch Interakti-
onseffekte wirken.
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Abb. 74: Wirkung der Testparameter auf die Gesamt-Qualitdtskosten im
Nominalszenario (links) und im kritischen Szenario (rechts)

Abbildung 75 zeigt, wie die Projekt-Qualitdtskosten (y-Achse) von den Kosten fiir
den Systemtest (x-Achse) abhangen. Je intensiver der Systemtest ablauft, desto teurer
wird das Projekt. Abhdngig vom Szenario steigen die Projektkosten deutlich (Nomi-
nalszenario, Abbildung 75, links) oder um ein Vielfaches (Initialszenario,
Abbildung 75, rechts).
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Abb. 75: Wirkung des Systemtests auf die Projekt-Qualitatskosten fiir
Nominalszenario (links) und Initialszenario mit Spezifikationsreview (rechts)
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Interaktionseffekte zwischen Spezifikationsreview und Systemtest

Den Interaktionseffekt zwischen Review und Test zeigt Abbildung 76 fiir den Fall mit
nominaler Gutachter- und Testerkompetenz. Wie stark sich das Spezifikationsreview
auswirkt, hangt auch von den gewéhlten Testtechniken des Systemtests ab. Durch die
Kombination der Priifungen wird der Nutzen bestimmt.
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Abb. 76: Interaktionseffekte zwischen Review und Test

8.1.7 Sensitivititsanalyse fiir unsichere Eingaben

In CoBe gibt es mehrere unsichere Eingaben: Die Fehlerfolgekosten miissen bei der
Planung abgeschatzt werden. Sie bestimmen das Modellresultat qualitativ und quan-
titativ, weil sich Hohe und Richtung der Koeffizienten des Systemtests mit den Fehl-
erfolgekosten d@ndern (Abschnitt 8.1.5). Die Eingaben der Fehlerfolgekosten sind
offensichtlich unsicher. Weitere unsichere Modelleingaben sind der Software-Umfang
und die Kalibrierungsparameter. Sie sind zum Zeitpunkt der Projektplanung nicht
bekannt. Der Umfang muss geschétzt werden. Die Kalibrierungsparameter miissen
aus Archivdaten berechnet werden.

Vorgehen

Diese Unsicherheit modelliere ich fiir die Sensitivitatsanalyse als Zufallseffekt, indem
die Parameter anhand einer bestimmten Verteilung variiert werden. Dann wird der
Einfluss auf das Modellresultat analysiert (Saltelli et al., 2008). Die Unsicherheit der
Eingaben orientiere ich an folgenden Erfahrungswerten: Bei der Planung fiihrt die
Unsicherheit fiir Umfang und Projektkosten zu einem Faktor von 0,5 bis 2,0 fiir diese
Schatzwerte (Boehm, 1981). Die Resultate einer Function-Point-Zahlung schwanken
typisch um 20 % bis zu 50 %, je nachdem, wer zahlt (Kemerer, 1993). Der Umfangsfak-
tor fiir den Code schwankt um den Faktor 2 (QSM, 2009). Jones (2007) berichtet eine
ahnliche Streuung fiir Umfangsfaktoren der Dokumente. Darum werden zur Analyse
die unsicheren Eingaben um einen Standardwert mit Faktoren zwischen 0,5 und 2
variiert.
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Die Werte werden anhand der Standard-Normalverteilung (Mittelwert 0, Standard-
Abweichung 1) aus diesem Bereich ausgewdhlt. Sie wird so angepasst, dass der
Bereich zwischen 0,5 und 2 durch die sechsfache Standard-Abweichung abgedeckt
wird. Die dreifache Standardabweichung nach unten ergibt folglich den Faktor 0,5 fiir
die Eingabe; keine Abweichung ergibt den Standard-Eingabewert; die dreifache
Standardabweichung nach oben ergibt den Faktor 2 fiir die Eingabe. Tabelle 82 zeigt
die Eingabeparameter und den variierten Standardwert fiir das verwendete Nomi-
nalszenario. Die Umfangsfaktoren fiir Spezifikation und Entwurf werden gemeinsam
variiert, damit die kombinatorische Vielfalt eingeschrankt wird. Sie wirken beide auf
den Reviewaufwand.

Variierter Eingabeparameter Standardwert
Umfang neuer Software (Function Points) 1000 Function Points
Umfangsfaktor Spezifikation, Entwurf 0,44 Seiten pro Function Point
Umfangsfaktor Code 53 Anweisungen pro Function Point
Aufwandsfaktor L0
Fehlerfaktor L0

Tabelle 82: Variierte und kombinierte Eingabeparameter

Die Analyse erfolgt mit dem Werkzeug SimLab (SimLab, 2009) und der Methode von
Sobol (Saltelli et al., 2008). Es werden 12 288 Eingabekombinationen generiert und
analysiert.

Analyseergebnisse

Tabelle 83 zeigt die Sensitivitatsindizes fiir den Gesamteffekt und den Haupteffekt. Je
hoher der Index, desto starker wirkt sich der Parameter auf das Modellresultat aus;
desto starker wird also das Resultat durch die Unsicherheit beeinflusst. Der Hauptef-
fekt entsteht durch den Parameter allein. Der Gesamteffekt enthalt zusatzlich Interak-
tionseffekte durch die Kombination mit anderen Parametern.

Den starksten Einfluss haben der Umfang und der Umfangsfaktor fiir den Code.
Danach folgt fiir die Gesamt-Qualitatskosten der Fehlerfaktor, fiir die Projekt-Quali-
tatskosten der Aufwandsfaktor. Der Umfangsfaktor fiir Spezifikation und Entwurf
spielt eine geringe Rolle. Die Haupteffekte ergeben in der Summe weniger als 1, das
Modell enthélt also Interaktionseffekte. Die Gesamteffekte sind insgesamt grofier
als 1, das Modell ist darum nicht-additiv (Saltelli et al., 2008).

Gesamt- und Projekt-Qualitatskosten streuen deutlich, wie die Haufigkeitsverteilun-
gen in Abbildung 77 zeigen. Durch die unsicheren Eingaben werden die Resultate
von CoBe also quantitativ deutlich verandert.
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Abb. 77: Haufigkeit der Modellresultate fiir Gesamt-Qualitdtskosten (oben)
und Projekt-Qualitatskosten (unten)
Gesamt- Projekt-
Qualitatskosten Quualitatskosten
Sensitivitatsindex fiir Parameter
Haupt- Gesamt- Haupt- Gesamt-
effekt effekt effekt effekt
Umfang neuer Software 0,326 0,417 0,304 0,370
Umfangsfaktor Code 0,309 0,411 0,270 0,343
Fehlerfaktor 0,145 0,202 0,134 0,178
Aufwandsfaktor 0,083 0,119 0,182 0,232
Umfangsfaktor Spezifikation, Entwurf 0,000 0,000 0,000 0,001

Tabelle 83: Sensitivitatsindizes der Sobol-Analyse

8.1.8 Analyse der Auswirkungen unsicherer Eingaben

Diese Unsicherheit wirkt sich auf die Ziele des Modells unterschiedlich aus: Fiir das
Ziel, die Kosten zu prognostizieren, muss das Modell auf jeden Fall kalibriert werden,
da die Modellresultate quantitativ durch die unsicheren Eingaben bestimmt werden.
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Fiir die Ziele, Kosten und Nutzen zu vergleichen und Qualitdtskosten zu optimieren,
untersuche ich, ob sich das Modellverhalten qualitativ verandert: Reagiert das Modell
also so empfindlich auf die beiden wichtigen Eingabeparameter (Software-Umfang
und Code-Umfangsfaktor), dass sich Aussagen andern?

Dazu werden die Aussagen aus Abschnitt 8.1.5 untersucht:

* Das Spezifikationsreview wirkt sich auf die Gesamt-Qualitdtskosten aus, andert
aber wenig an den Projekt-Qualitatskosten.

¢ Im Nominalszenario lohnt die Anweisungsiiberdeckung im Systemtest kaum.

* Die Kompetenz der Gutachter und Tester spielt die wesentliche Rolle. Danach ist
im Review die Priiflingsiiberdeckung, im Systemtest die Abdeckung durch Black-
Box-Testtechniken wichtig.

Fiir diese Analyse werden die Extremwerte und Standardwerte der beiden Eingaben
(Umfang und Umfangsfaktor Code) kombiniert. Es entstehen 9 Kombinationen. Fiir
jede Kombination werden wie in Abschnitt 8.1.5 die standardisierten Regressionsko-
effizienten der Priifparameter fiir Projekt- und Gesamt-Qualitatskosten berechnet.
Schwankt deren Wert stark zwischen den Kombinationen oder @ndert sich das Vor-
zeichen, dann verandert sich die Modellaussage qualitativ durch die Unsicherheit.
Tabelle 84 zeigt die Bereiche der Koeffizienten. Sie zeigt fiir die oben genannten
Modellaussagen, dass die Unsicherheit die Aussagen teilweise beeinflusst:

* Die Kompetenz spielt in allen Fallen eine wichtige Rolle. Weil die Koeffizienten in
einem engen Bereich liegen und gleiche Vorzeichen haben, andert sich diese Aus-
sage nicht durch die Unsicherheit.

* Die Koeffizienten der Eingaben fiir das Spezifikationsreview bewegen sich fiir die
Gesamt- und Projekt-Qualitdtskosten in einem engen Bereich und dndern das Vor-
zeichen nicht. Die Aussagen iiber das Spezifikationsreview gelten also auch trotz
den unsicheren Eingaben.

* Die Koeffizienten des Systemtests reagieren empfindlicher auf die Unsicherheit.
Insbesondere wechselt das Vorzeichen fiir den Koeffizienten der Anweisungsiiber-
deckung. Diese Aussage dndert sich also durch unsichere Eingaben, sie ist darum
unsicher.

Daraus folgt, dass das Modell nur mit Kalibrierung eingesetzt werden kann. Der
Umfangsfaktor fiir den Code ist der wichtigste Kalibrierungsparameter; die Program-
miersprache ist ein wichtiger Einflussfaktor.

8.1.9 Zusammenfassung der Sensitivititsanalyse

Die Ergebnisse der Sensitivitatsanalyse bestatigen die Hypothesen:
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Gesamt-Qualitatskosten Projekt-Qualitatskosten
Eingabe

Minimum | Maximum | Minimum | Maximum
Gutachterzahl -0,14 -0,12 -0,06 -0,03
Vorbereitungsrate 0,25 0,31 0,09 0,15
Gutachterkompetenz -0,55 -0,44 -0,29 -0,23
Priiflingsiiberdeckung -0,37 -0,30 -0,17 -0,11
Abdeckung BBT -0,28 -0,07 0,50 0,56
Anweisungsiiberdeckung GBT -0,15 0,31 0,50 0,66
Testerkompetenz -0,71 -0,52 0,27 0,42
Testwiederholung 0,01 0,03 0,16 0,17

Tabelle 84: Schwankung der Koeffizienten durch Unsicherheit

Die Hypothese H 1 wird bestétigt: Die Eingaben der Priifparameter wirken sich statis-
tisch signifikant auf die Modellresultate aus. Die Entscheidungen iiber diese Priifpa-
rameter bestimmen also die Projekt- und Gesamt-Qualitdtskosten. Vor allem
Kompetenz, Reviewvollstindigkeit und Testtechniken pragen die Kosten.

Insbesondere die Effekte im Systemtest bestatigen die Hypothese H 2: Abhéangig vom
Szenario kann der Glass-Box-Test die Kosten senken oder steigern. Spezifikationsre-
views senken die Gesamt-Qualitdtskosten in jedem Szenario, wirken sich aber unter-
schiedlich auf die Projekt-Qualitatskosten aus.

Die unterschiedliche Wirkrichtung der Entscheidungen {iiber den Systemtest, die
Interaktionseffekte zwischen den Systemtesteingaben und den Szenarien und die
Interaktionseffekte zwischen den Priifungen bestatigten die Hypothese H 3: Die Qua-
litatskosten sind durch die Kombination der Entscheidungen und der Prozess- und
Produktmerkmale bestimmt, so dass die Auswirkungen schwierig zu durchschauen
sind.

Die Analyse zeigt, dass die Senkung der Projektkosten und der Gesamtkosten wider-
spriichliche Ziele sind (Hypothese H 4). Dies gilt vor allem fiir den Systemtest, weil er
die Projekt-Qualitatskosten erhoht, aber die Gesamt-Qualitatskosten senkt. Das Spezi-
fikationsreview lohnt sich nahezu immer, weil die Projekt-Qualitatskosten nur gering
erhoht werden, die Gesamt-Qualitatskosten aber deutlich gesenkt werden.

Die Aussagen, die basierend auf CoBe getroffen werden konnen, hdngen quantitativ
und qualitativ von der Genauigkeit der Umfangsschatzung und der Kalibrierung ab.
Die Hypothesen H6 und H7 werden durch die Sensitivititsanalyse bestatigt. Die
Kalibrierung mit Archivdaten ist notwendig. Zumindest muss iiberpriift werden, ob
Modellresultate mit historische Daten d@hnlicher Projekte iibereinstimmen. Die Aussa-
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gen hingen von den Angaben zu den Fehlerfolgekosten ab; deren Einschitzung ist
ein wichtiger Teil des Modells (Hypothese H 5).

Diese Resultate bestdtigen also die Folgerung der Priifung mit studentischen Daten:
Da die Modellparameter unsicher sind, ist sinnvoll, einen Bereich einzugeben, so dass
die Unsicherheit als Bereich der Modellresultate deutlich wird.

8.2 Analyse des Optimums mit CoBe

Aus den Ergebnissen der Sensitivitdtsanalyse lassen sich Folgerungen fiir optimale
Priifprozesse ziehen: Reviews sind fast immer lohnend, ein Glass-Box-Test ist nur bei
hohen Fehlerfolgekosten sinnvoll.

Mit CoBe konnen solche Aussagen {iiber besonders sinnvolle (oder besonders
unsinnige) Priifprozesse und Priifparameter erkannt und dargestellt werden. In der
folgenden Analyse werden dazu die Projekt-Qualitatskosten, die die Sicht des Her-
stellers spiegeln, und die Gesamt-Qualitdtskosten, die fiir den Kunden entscheidend
sind, betrachtet. Dies entspricht einer Situation, in der der Kunde auch die Projektkos-
ten tragt, beispielsweise wenn Hersteller und Kunde der gleichen Organisation ange-
horen oder nach Aufwand bezahlt wird.

Bei Auftragsprojekten mit Festpreis sind fiir den Kunden die Kosten nach Ausliefe-
rung relevant, also die Gesamt-Qualitatskosten abziiglich der Projekt-Qualitdtskos-
ten. Da die Sensitivitdtsanalyse zeigt, dass die Projekt-Qualitdatskosten wesentlich
geringer als die Gesamt-Qualitatskosten sind, kann erwartet werden, dass sich die
Aussagen der Optimierung fiir diese Betrachtungsweise wenig andern.

8.2.1 Vorgehen

Fiir diese Analyse werden die Szenarien der Sensitivititsanalyse verwendet. Zusatz-
lich werden zwei Varianten des Nominalszenarios gebildet:

e Mit Variante 1 wird untersucht, wie sich eine monetdare Gewichtung der Dauer aus-
wirkt, weil beispielsweise Vertragsstrafen bei verspateter Lieferung oder Umsatz-
verluste drohen. Dazu wird jeder Tag, der im Projekt in Priifungen und
Fehlerbehebung investiert wird, mit 0,5 % der Projektkosten gewichtet. Mit die-
sem Wert ergibt sich fiir das Nominalszenario in etwa ein Gleichgewicht zwischen
Vertragsstrafen und Fehlerfolgekosten. Strafzahlungen in der Praxis sind hoher
und konnen pro Tag etwa 3 % des Projektpreises ausmachen. Diese Kosten fallen
zusatzlich zu den Personalkosten von 100 Euro pro Entwicklerstunde an.

e Mit Variante 2 wird untersucht, wie sich die Testautomatisierung auswirkt. Dazu
wird der Aufwandsanteil fiir die Wiederholung auf 10 % gesenkt.

Die Analyse erfolgt angelehnt an die Sensitivitatsanalyse. Dabei werden wieder die
Eingaben von CoBe fiir den Priifprozess und fiir die Priifparameter variiert. Daraus
werden mit CoBe die Gesamt- und Projekt-Qualitatskosten berechnet. Dann werden
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die Qualitdtskosten verglichen, um denjenigen Priifprozess und diejenigen Priifpara-
meter zu finden, die zu minimalen Kosten fiihren.

Die kombinatorische Vielfalt, die durch die vielen Eingabeparameter von CoBe ent-
steht, fiihrt zu einer komplexen Analyse, weil sehr viele Kombinationen und ihre
Resultate betrachtet werden miissen. Darum grenze ich die Vielfalt der Eingaben ein
und variiere nur die Folgenden:

* Da die Sensitivitatsanalyse die grofie Bedeutung der Reviews und ihrer Vollstan-
digkeit zeigt, wird die Vollstandigkeit des Spezifikationsreviews, des Entwurfsre-
views und des Codereviews variiert. Weil Personal knapp ist, werden Reviews
mit 2 oder 5 Gutachtern durchgerechnet.

* Fiir den Systemtest wird die Intensitat in einzelnen Schritten gesteigert. Sie reicht
von keinem Systemtest iiber die aufeinander aufbauenden Testtechniken des
Black-Box-Tests (Abdeckung von Funktionen, Aquivalenzklassen, Sonderféllen),
bis zur vollstindigen Uberdeckung von Anweisungen, Zweigen, Termen und
Schleifen im Glass-Box-Test.

Konstant sind folgende Eingaben: Ein Feldtest, also eine Erprobung beim Kunden,
findet auf jeden Fall statt, weil von einem Auftragsprojekt ausgegangen wird. Ich
gehe davon aus, dass Entwickler in solchen Projekten einen Modultest durchfiihren.
Auch ein Integrationstest findet statt, wenn die Integration stattfindet und auspro-
biert wird, ob das integrierte Programm lduft. Aufserdem gehe ich davon aus, dass in
den Tests nach der korrektiven Wartung die gleichen Testparameter wie im Projekt
gefordert werden: Wird also im Projekt fiir den Systemtest 80% Anweisungsiiberde-
ckung verlangt, wird dies auch fiir die Korrektur verlangt. Mit diesen Eingabewerten
werden die Qualitatskosten fiir 1944 Kombinationen je Szenario berechnet.

8.2.2 Resultate
Die Resultate aller Szenarien, bei denen die Dauer nicht gewichtet wird, sind dhnlich:
Projekt-Qualititskosten

Frithe Reviews lohnen sich bereits fiir den Hersteller, weil dadurch die Projekt-Quali-
tatskosten minimal gehalten werden. In allen Szenarien sind intensive Reviews, also
mit 5 Gutachern und vollstandiger Priifung der Spezifikation und des Entwurfs, opti-
mal; nur bei Wiederverwendung reichen 2 Gutachter fiir den optimalen Fall. Der Sys-
temtest verteuert die Projekt-Qualitdtskosten; das ist konsistent mit den Resultaten
der Sensitivitatsanalyse.

Abbildung 78 zeigt dies fiir das Nominalszenario. Die Projekt-Qualitatskosten sind an
der x-Achse, die Gesamt-Qualitdtskosten an der y-Achse abgetragen. Die Daten-
punkte sind fiir einen Priifprozess ohne Reviews in schwarz dargestellt, fiir einen
Priifprozess mit frithen Reviews ohne Codereviews in hellgrau, fiir einen Priifprozess
mit allen Reviews in dunkelgrau und fiir andere Priifprozesse in weif; dargestellt. Die
Datenpunkte ganz links stehen also fiir minimale Projektkosten; sie gehoren zu Priif-
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prozessen mit ganz unterschiedlichen Entscheidungen iiber Reviews. So befinden
sich Vorgehen ganz ohne Reviews, mit frithen Reviews oder mit allen Reviews links
im Diagramm mit nahezu gleichen Projekt-Qualitatskosten. Diese Datenpunkte
unterscheiden sich aber erheblich in den Gesamt-Qualitdtskosten. Daraus folgt, dass
Entscheidungen tiber Reviews die Projekt-Qualitdtskosten kaum beeinflussen, aber
deutlich die Gesamt-Qualitatskosten pragen.
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Abb. 78: Projekt- gegen Gesamt-Qualitatskosten im Nominalszenario

Gesamt-Qualititskosten

Fir die Gesamt-Qualitatskosten sind alle Reviews wichtig, da nur mit intensiven
Reviews fiir Spezifikation, Entwurf und Code minimale Gesamt-Qualitatskosten
erreicht werden konnen. Es ist also im Interesse des Kunden, dass diese Reviews
durchgefiihrt werden. Dies zeigt Abbildung 78 fiir das Nominalszenario: Die minima-
len Gesamt-Qualitdtskosten sind die niedrigsten Punkte im Diagramm. Sie gehoren
zu den Priifprozessen mit allen Reviews.

Der optimale Fall der Systemtest-Priifparameter hangt von dem Szenario, vor allem
von den Fehlerfolgekosten ab:

* Bei geringen Fehlerfolgekosten (Initialszenario) ist ein Systemtest ausreichend, mit
dem alle Funktionen getestet werden. Dieses Vorgehen ist typisch fiir die Praxis.

* In Szenarien mit mittleren Fehlerfolgekosten werden minimale Gesamt-Qualitats-
kosten mit einem nominalen Systemtest erreicht. Im nominalen Test werden Test-
talle fiir alle Funktionen und fiir zusatzliche Aquivalenzklassen erstellt.

* Wenn in Szenarien mit mittleren Fehlerfolgekosten die Testwiederholung automa-
tisiert wird, dann konnen Tests giinstig wiederholt werden (Variante 2 des Nomi-
nalszenarios). In dieser Situation lohnt sich ein zusatzlicher Glass-Box-Test, in
dem Zweigiiberdeckung angestrebt wird. Durch den niedrigeren Wiederholungs-
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aufwand, der sich vor allem in der Wartung zeigt, konnen somit um fast 20 %
niedrigere Gesamt-Qualitatskosten als im Nominalszenario erreicht werden.

* Im kritischen Szenario mit extrem hohen Fehlerfolgekosten fiihrt ein Glass-Box-
Test mit allen Uberdeckungskriterien zu minimalen Gesamt-Qualitdtskosten.

Abbildung 79 zeigt Projekt- und Gesamt-Qualitdatskosten des kritischen Szenarios,
Abbildung 80 des Szenarios mit Testautomatisierung. Die Diagramme sind gleich wie
Abbildung 78 aufgebaut. Da intensivere Systemtests die Projektkosten verteuern, lie-
gen die Datenpunkte mit hohem Systemtest-Aufwand im rechten Diagrammbereich.
Im Nominalszenario (Abbildung 78) steigen die Gesamt-Qualitdtskosten mit den Pro-
jekt-Qualitatskosten; sie steigen also mit intensiverem Systemtest. Im kritischen Sze-
nario (Abbildung 79) sinken die Gesamt-Qualitdtskosten mit steigenden Projekt-
Qualitatskosten, d.h. mit steigender Systemtest-Intensitit. In Abbildung 80 liegt das
Optimum bei mittleren Projekt-Qualitatskosten, also bei einer mittleren Systemtest-
Intensitat.
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Abb. 79: Projekt- gegen Gesamt-Qualitatskosten im kritischen Szenario

Einfluss der Dauer

Kostet eine spitere Auslieferung Geld, dann lohnt sich im Nominalszenario fiir den
Hersteller tatsdchlich nicht, Priifungen durchzufiihren, weil die niedrigsten Projekt-
Qualitatskosten ohne Priifungen erreicht werden. Die geringsten Gesamt-Qualitéts-
kosten werden mit vollstandigen Spezifikations- und Entwurfsreviews erreicht. Das
Spezifikationsreview fiithrt zur geringsten Steigerung der Projekt-Qualitatskosten.
Abbildung 81 zeigt dies: Investitionen in Projekt-Qualitatskosten fiihren zuerst zu
geringeren Gesamt-Qualitatskosten. Dann aber steigen die Gesamt-Qualitatskosten
mit den Projekt-Qualitatskosten, weil die Kosten fiir die Dauer hoher als die einge-
sparten Fehlerkosten werden. Es gibt also Situationen mit hohem Termindruck, in
denen es sinnvoll ist, weniger intensiv zu priifen. Da in diesem Szenario jeder Tag
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Abb. 80: Projekt- gegen Gesamt-Qualitdtskosten mit Testautomatisierung

Dauer mit Geld bewertet wird, entspricht dies einer Situation, in der jeder Tag auf
dem Markt z&hlt. In Situationen mit Vertragsstrafen diirfen nur Terminiiberschreitun-
gen gewichtet werden; die Dauer darf also erst ab einem gewissen Schwellwert
bewertet werden. Unter dem Schwellwert entsprechen die Modellresultate dem
Nominalszenario, tiber dem Schwellwert steigen die Kosten an und entsprechen dem
Szenario mit gewichteter Dauer.
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Abb. 81: Projekt- gegen Gesamt-Qualitatskosten mit gewichteter Dauer

Vergleich der Resultate

In allen Fallen widerspricht das Ziel, die Projektkosten zu minimieren, dem Ziel, die
Gesamtkosten zu minimieren. Hersteller und Kunde verfolgen also widerspriichliche
Ziele. In allen Fallen fiihrt ein Priifprozess ganz ohne Reviews zu den teuersten



8.3. Vorgehen fiir die Validierung in der Industrie 227

Gesamt-Qualitatskosten (Abbildungen 78, 79, 80 und 81). Die Resultate fiir diese vier
Szenarien, dem Nominalszenario, mit Testautomatisierung, mit gewichteter Dauer
und dem kritischen Szenario, zeigt Abbildung 82 im Vergleich.
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Abb. 82: Kosten im Vergleich

Da das Produkt im kritischen Szenario einen kleineren Umfang als das Produkt der
anderen Szenarien hat (100 Function Points statt 1000 Function Points Umfang), sind
die Projekt-Qualitdtskosten entsprechend gering. Die Datenpunkte werden darum
ganz links im Diagramm aufgetragen. Durch die hohen Fehlerfolgekosten konnen die
Gesamt-Qualitatskosten aber sehr hoch werden. Die Nominalszenarien mit und ohne
Testautomatisierung (graue beziehungsweise weifSe Datenpunkte) tiberdecken sich
nahezu. Die Datenpunkte liegen im linken Viertel des Diagramms. Mit Testautomati-
sierung sind die Kosten etwas geringer als ohne. Durch die Gewichtung der Dauer
steigen die Projekt-Qualitatskosten deutlich (graue Datenpunkte).

8.3 Vorgehen fiir die Validierung in der Industrie

Mit CoBe sollen Aussagen iiber Industrieprojekte getroffen werden. Darum ist CoBe
mit Industrieprojekten validiert. Dafiir konnten zwei externe Partner aus unterschied-
lichen Organisationen gewonnen werden. In jeder Organisation wurde ein Projekt
analysiert. Projektdaten wurden erhoben und fiir die Validierung des Modells ver-
wendet. Da die Projekte komplex sind, erfolgte die Validierung in einzelnen Schritten:

1. Vorgespriche: In diesen Gesprachen wurden Modell und Projekt grob vorgestellt
und umrissen. Das weitere Vorgehen wurde geklart.
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2. Befragung und Datenerhebung: Zuerst wurden Informationen iiber den Prozess,
dann {iiber verfiigbare Metriken und tiber Erfahrungswerte gesammelt. Diese
Gesprache erfolgten als Interview, die Befragten erhielten einen Fragebogen im
Voraus, der als Gespréchsleitfaden diente.

3. Analyse: Die Informationen iiber das Projekt wurden gesichtet, sortiert, zusam-
mengefasst und den Modellparametern zugeordnet. Dabei entstand eine Prozess-
beschreibung mit Metriken und Istwerten.

4. Modellparameter: Aus dieser Prozessbeschreibung wurden die Modelleingaben
und die Istwerte fiir die Validierung entnommen. Dabei wurden fehlende Informa-
tionen identifiziert. Fehlen Informationen, die fiir Modelleingaben bendtigt wer-
den, dann sind diese Eingaben unsicher. In solchen Fallen wurden Modellvarianten
gebildet, in dem verschiedene Werte fiir die unsicheren Eingaben verwendet wer-
den. Die Modellvarianten ergeben einen Bereich der Modellresultate und machen
dadurch die Unsicherheit sichtbar.

5. Kalibrierung: Zuerst wurden die Modellresultate betrachtet, die zur Kalibrierung
benotigt werden: Gesamtaufwand, Gesamtdauer, Gesamtfehlerzahl. Das Modell
wurde anhand dieser Daten kalibriert. Wurden nicht alle Fehler gezahlt, dann
erfolgte die Kalibrierung mit der Summe der verfiigbaren Fehlerzahlen.

6. Validierung: Die Modellresultate wurden mit den Istwerten verglichen. Abwei-
chungen und Ubereinstimmungen wurden identifiziert. Abweichungen wurden
diskutiert und, wenn moglich, erklart.

7. Referenzmodell: Fiir konkrete Fragestellungen wurde ein Referenzmodell erstellt.
Es liefert exakte Resultate, wahrend die Modellvarianten einen Bereich liefern. Die-
ses Modell enthalt weitere Anpassungen, die sich aus den vorherigen Schritten
ergeben, um das Projekt moglichst genau zu beschreiben.

8. Diskussion und Priifung: Die Resultate wurden gemeinsam mit den Befragten
diskutiert und auf Plausibilitat geprtift.

9. Nacharbeit: Falls Missverstandnisse erkannt wurden oder weitere Informationen
verfligbar wurden, wurde das Modell tiberarbeitet.

In den Vorgesprachen hat sich gezeigt, dass das Modell erweitert werden muss; es
entstand die Version 2 von CoBe (Abschnitt 8.1). Dazu wurden alle Tests detailliert
mit Priifparametern modelliert, die Codeanalyse und der Korrekturpriifprozess wur-
den erganzt. Die Prozessanalyse zeigte also auf, wo das Modell unvollstandig ist. Dies
stiitzt das iterative Vorgehen, das dem Modelleinsatz zu Grunde liegt (Abschnitt 3.6).

Bei einem iterativen Vorgehen besteht die Gefahr, dass das Modell so lange angepasst
wird, bis es die Realitdt ausreichend genau beschreibt. Dann ist die Validierung
ungiiltig, weil ein Vergleich der Modellresultate mit Istwerten nicht mehr sinnvoll ist.
Bestimmte Modelldnderungen stellen aber keine Bedrohung der Validierung dar:
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e Das Modell kann fiir die Validierung kalibriert werden, weil dies auch fiir den
Modelleinsatz vorgesehen ist.

* Erweiterungen, die unabhangig von den Istwerten der Validierung modelliert und
quantifiziert werden, konnen mit den Istwerten validiert werden.

* Bleiben bestehende Modellteile unverdandert, dann andern Erweiterungen nichts an
Aussagen zur Validitdt der unveranderten Teile. Unveranderte Modellteile konnen
von den Erweiterungen unabhéngig validiert werden.

Daraus folgt, dass die Erweiterungen fiir die Industrieprojekte die Validierung nicht
bedrohen, weil sie nichts an bestehenden Zusammenhangen dndern. Stattdessen wer-
den bestehende Zusammenhéange erganzt. Sie bedrohen die Validierung nicht, weil
sie auf Daten basieren, die nicht aus den Industrieprojekten stammen. Fiir die Tests
werden Zusammenhédnge wiederverwendet, aber neu quantifiziert. Dadurch werden
bestehende Zusammenhange sogar gestiitzt. Anpassungen sind im Referenzmodell
moglich, um das Projekt moglichst genau zu beschreiben. Eine Validierung mit Refe-
renzmodell ist dann aber nicht aussagekréftig.

Als Validierungskriterium wird die logarithmische Abweichung in deziBel
(Abschnitt 7.2.3) mit 2 dB als Grenzwert verwendet (Tabelle 85); 3 dB entsprechen
einem Faktor 2:

LE = 10-|log (Modellresultat)
10 Istwert
Kriterium Bewertung Folgerung
0dB<LE<1dB |Modell valide
1dB<LE <2dB |Modell valide Ursachenanalyse mit unsi-
cheren Eingaben und unkla-
2dB < LE Validitat fraglich, Modell nicht valide ren Prozess

Tabelle 85: Kriterien fiir die Validierung

8.4 Industrieprojekt1

In diesem Abschnitt wird die Validierung mit dem ersten Industrieprojekts beschrie-
ben. Dazu werden zuerst die Analyse des Projekts (Abschnitt 8.4.1), die Abbildung
auf das Modell (Abschnitte 8.4.2 und 8.4.3), die Kalibrierung (Abschnitt 8.4.4) und
dann die Ergebnisse (Abschnitte 8.4.5 und 8.4.6) gezeigt.

Im Projekt wurde Firmware fiir ein Rechnersystem erstellt, das fiir den Markt entwi-
ckelt wurde. Ein wesentliches Merkmal ist die hohe Verfiigbarkeit des Systems. Fiir
das Rechnersystem wird regelmafsig, etwa im Abstand von zwei Jahren, ein neues
Rechnermodell angeboten. Im Projekt wurde die bereits bestehende Firmware des
vorherigen Rechnermodells erweitert, teilweise wiederverwendet und teilweise
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ersetzt. Die Entwicklung ist in Subsysteme aufgeteilt, jedes Subsystem wird in einem
Subsystem-Projekt entwickelt.

Fiir die Validierung werden das Gesamtprojekt und drei Subsystem-Projekte betrach-
tet. Entwickler der Subsysteme, Produktmanager und QS-Verantwortliche wurden
befragt. Es wurden qualitative Merkmale, aber auch quantitative Daten erfragt.
Zusatzlich standen gemessene Werte zur Verfiigung; Tabelle 86 zeigt die wesentli-
chen Daten. Insgesamt waren rund 400 Mitarbeiter in den zwei Jahren mit dem Pro-
jekt beschiftigt. Der Umfang des Codes betragt etwa 11 Millionen Anweisungen, zum
grofien Teil in C++; etwa 25 % wurden neu erstellt oder geandert.

Verfiligbare Istwerte

Korrekturaufwand pro Fehler nach den unterschiedlichen Priifungen mit Minimal- und
Maximalwerten

Reviewprozess mit Gutachterzahl, Vorbereitungsintensitit, Sitzungsdauer

Zahl entdeckter Fehler in Reviews, typisch pro Sitzung

Testmethoden und -parameter, Automatisierung, Wiederholung

Dauer und Mitarbeiterzahl des Projekts und der Subsystem-Projekte

Zahl entdeckter Fehler in der Entwicklungsumgebung, im Systemtest und durch
Vorablieferung

Umfang des Codes (Hinzugefiigt, gedndert, wiederverwendet)

Tabelle 86: Istwerte des Industrieprojekts 1

8.4.1 Das Projekt und sein Prozess

Da im Projekt System-Software parallel entwickelt wurde, werden zuerst diese spezi-
ellen Merkmale und ihre Abbildung in CoBe dargestellt.

Einbettung in die Projektumgebung und Anforderungen

Die Anforderungen fiir das gesamte System wurden zentral festgelegt und dann fiir
die Hardware und die Software verfeinert und aufgeteilt. Software bezeichnet in die-
sem Kontext die Firmware. Die Software-Anforderungen wurden auf einzelne Sub-
systeme verteilt und beschreiben grob die Funktion. Die Anforderungen waren
weitgehend stabil. Im betrachteten Ausschnitt des Projekts sind diese Anforderungen
fest vorgegeben. Abbildung 83 zeigt den Zusammenhang zwischen Software-Anfor-
derungen, der Aufteilung auf Subsystem-Projekte und die Integration der Software
zum System. Um Subsystem-Projekte vom gesamten Projekt abzugrenzen, wird das
gesamte Projekt im Folgenden auch als Gesamtprojekt bezeichnet

Detailliertere Anforderungen fiir die Software waren im Wesentlichen durch die
Schnittstellen zur Hardware und zu anderen Software-Komponenten definiert.
Anforderungen und Entwurf wurden fiir Erweiterungen und fiir ersetzte
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System-Entwicklung

Subsystem-Projekt A
Spezifikation Systern-
der System- Subsystem-Projekt B integration
anforderungen

Subsystem ...

Legende ; Software
Projekt Aktivitat g

Abb. 83: Aufteilung in Subsystem-Projekte

Komponenten mit UML-Diagrammen und natiirlichsprachlich in einem Dokument,
dem Entwurf, beschrieben; Auforderungen und Entwurf liefSen sich kaum voneinan-
der trennen, da die Anforderungen zum einen durch die Systemanforderungen und
zum anderen durch die Schnittstellen des Subsystems und des vorhandenen Codes
definiert waren und damit weitgehend vorgegeben waren. Im betrachteten Aus-
schnitt des Projekts wurden C++ und eine firmenspezifische hohere Programmier-
sprache verwendet.

Ablauf und Organisation der Entwicklung

Die Entwicklung erfolgte iterativ und parallel, weil jedes Subsystem parallel zu den
anderen Subsystemen weiterentwickelt und gepflegt wurde. Ein Entwickler bearbei-
tete einen Teil, eine Komponente. Dazu wurden die Anforderungen und der Entwurf
im Entwurf dokumentiert, der Code wurde implementiert und dann in das Subsys-
tem integriert. Diese Entwicklung erfolgte in einer Entwicklungsumgebung, die das
neue Rechnersystem simulierte. Die Systemintegration, bei der die Subsysteme inte-
griert werden, erfolgte alle zwei Wochen. Das Resultat wird als Treiber bezeichnet. Er
wurde abwechselnd in der Entwicklungsumgebung eingesetzt oder an unabhéngige
Tester ausgeliefert.

Priifungen und Priifprozesse

Die folgenden Priifungen wurden durchgefiihrt:
* Entwurfsreview

¢ Codeanalyse

o Modultest

Subsystem-Integrationstest

Codereview
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¢ Systemintegrationstest
* Systemtest (unabhangig)
* Interne und externe Vorablieferung gegen Projektende

Entwurfsreview, Codeanalyse, Modultest, Subsystem-Integrationstest und Code-
review sind der Subsystem-Entwicklung zugeordnet und wurden unterschiedlich
intensiv fiir die verschiedenen Subsysteme durchgefiihrt. Das Codereview fand zeit-
nah nach der Implementierung statt, aber erst, nachdem der Entwickler den Modul-
test durchgefiihrt hat. Da die Subsysteme kontinuierlich integriert wurden und der
Subsystem-Integrationstest in diesen Schritt eingebunden war, erfolgten die Code-
reviews nach dem Subsystem-Integrationstest. Die Subsysteme wurden zum System
integriert und dann durch Systemintegrationstest, Systemtest und die Vorab-
lieferungen gepriift. Systemintegrationstest und Systemtest erfolgten durch unabhan-
gige Testabteilungen. Die Ubergabe an diese Testabteilungen erfolgte regelmafig ab
dem Zeitpunkt eines ersten lauffahigen Systems. Der Systemintegrationstest und der
Systemtest erfolgten also zeitversetzt, aber parallel zur Entwicklung. Das System
wurde wahrend der Entwicklung als Entwicklungsumgebung eingesetzt. Dadurch
wird es implizit bei der Subsystem-Entwicklung und -Priifung mitgepriift.

Merkmale einzelner Priifungen

In den Teilprojekten wurden die Priifungen unterschiedlich intensiv durchgefiihrt.
Die Ergebnisse der Befragung sind in Tabelle 87 zusammengefasst.

Das integrierte System wurde mit dem Systemintegrationstest gepriift, damit ein
funktionierendes System an die Entwicklungsumgebung oder an den unabhéngigen
Systemtest geliefert wird; es wurde gepriift, ob das System reif fiir den Test ist. Der
Systemtest erfolgte durch unabhéngige Tester und organisatorisch getrennt. Testfille
wurden in Testpaketen von den unabhangigen Testern aus den Anforderungen abge-
leitet. Dabei wurden auch Testfélle fritherer Rechnermodelle wiederverwendet und
angepasst. Der Testplan, der die Testfdlle beschreibt, wurde von Entwicklern begut-
achtet. Dabei konnten Mangel des Testplans identifiziert und korrigiert werden. Das
System wurde, bevor es fiir den Markt verfiigbar wurde, in zwei Vorablieferungen im
produktiven Einsatz erprobt, zuerst intern im Konzern, dann extern bei ausgewéahlten
Kunden.

8.4.2 Die Abbildung in das Modell

Zuerst wird die Abbildung des Prozesses in CoBe gezeigt. Die detaillierten Eingaben
folgen im Abschnitt 8.4.3, die Resultate in den Abschnitten 8.4.5 und 8.4.6.

Fiir die Validierung betrachte ich das gesamte Projekt und drei Subsystem-Projekte.
Die Subsysteme werden einzeln betrachtet, weil sich der Priifprozess der Subsystem-
Entwicklungen unterscheidet. Darum werden vier Modellinstanzen von CoBe erstellt:
Ein Gesamtmodell und drei Subsystem-Modelle. Ich bilde die Projekte auf die vier
Modelle wie folgt ab:
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Priifung Subsystem A Subsystem B Subsystem C
Ent- Gutachter waren Tester und Entwickler des gleichen oder anderer Subsysteme

5 Gutachtern gepriift®.
Die Gutachter sind
betroffende Entwickler.
Pro Sitzung wurden 500
bis 600 Zeilen griindlich
vorbereitet, pro Sitzung
wurden bis 200 Zeilen
detailliert besprochen.

die sich intensiv vorbe-
reiteten.

wurfs- mit betroffenen Schnittstellen. Die Vorbereitung erfolgte griindlich. Neue Soft-
review ware wurde vollstandig gepriift. Eine Sitzung dauerte hochstens zwei Stunden.
5 - 6 Teilnehmer mit Bis zu 10, maximal 15 Maximal 10 Teilnehmer
Autor Teilnehmer insgesamt insgesamt
Code- BEAM (Brand, 2000) und Lint (Johnson, 1978) wurden eingesetzt. Durch Konfi-
analyse | guration der Werkzeuge wurden wenig falsche Befunde entdeckt.
Modul- Automatisierte Tests Testfalle wurden manuell | Zum Teil automatisierte,
test uberdeckten im Mittel durchgefiihrt, weil Hard- | zum Teil manuelle Test-
70 %, bis zu 85 % der und Software eng gekop- | durchfiithrung.
Anweisungen. pelt sind.
Sub- Das Subsystem wurde von den Entwicklern kontinuierlich integriert. Dann
system- | erfolgte der Test dieser Version in der Entwicklungsumgebung. Diese besteht
Int.-test | aus der letzten Version des Systems.
Néchtliche Wiederho- Wiederholung des
lung des Modultests. Modultests und weitere
Testfalle
Code- Rund 25 % des neuen Neuer Code wurde von 3 | Kritischer Code wurde
review Codes wurden von 3 bis | bis 5 Gutachtern gepriift, | von 5 bis 6 Gutachtern

gepriift. Die Vorberei-

tung war intensiv mit

einer Vorgabe von 100
Zeilen pro Stunde. Die
Sitzung dauerte maxi-
mal 1,5 Stunden.

a. Dazu wurde kritischer Code ausgewahlt.

Tabelle 87: Subsystem-Priifungen und ihre Unterschiede (Projekt)

Der parallele und iterative Prozess kann direkt auf den sequentiellen Prozess von
CoBe abgebildet werden, weil die Entwicklung einer einzelnen Komponente inner-
halb eines Subsystems dem gleichen Prozess folgte. Ich nehme also an, dass die Ent-
wicklung im Wesentlichen additiv erfolgte und dass die wesentlichen Effekte additiv
sind. Das bedeutet, dass die einzelnen Komponenten aufeinander aufbauen und
sequentiell erstellt werden konnen; eine fertige, gepriifte Komponente wird nicht
oder nur unwesentlich verandert. Abbildung 84 skizziert diese Zuordnung beispiel-
haft fiir ein System, das aus zwei Komponenten besteht, und fiir den Modultest, die
Subsystemintegration und die Systemintegration. Die Meilensteine M1 und M2 fiir
den Abschluss des Modultests der beiden Komponenten fallen in CoBe auf den Mei-
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lenstein M, die Meilensteine S1 und S2 auf den Meilenstein S. Da in Cobe eine Prii-
fung durch Verwendung als Entwicklungsumgebung nicht modelliert ist und die
kontinuierliche Integration nicht explizit dargestellt wird, ordne ich diese beiden Prii-
fungen dem Subsystem-Integrationstest in CoBe zu.

Realer Prozess Abbildung in CoBe

M1 M2S1 S2 |
L YV Y'Y w______

Modultest

Subsystem-Inte-
gration und -test

Systemintegration =~~~ "~~~ —- """""""
und -test_ _ _ _ _ _ _ _ _ _ _ ____________

t (reem t (Modeﬁ)

Legende
[ Software-Entwicklung und -Priifung des Systems W Meilenstein

[ Software-Entwicklung und -Priifung der Komponente 1
[ ] Software-Entwicklung und -Priifung der Komponente 2
M1, M2, M: Meilenstein Modultest abgeschlossen

S1,S2,S:  Meilenstein Subsystem integriert und getestet
I: Meilenstein System integriert und getestet

Abb. 84: Realer Prozess und modellierter Prozess

Durch diese Modellierung muss bei der Interpretation und Bewertung der Resultate
mit Unscharfen gerechnet werden: Fehlerentdeckung durch Fernwirkungen in ande-
ren Komponenten wird im Modell nicht dargestellt, weil CoBe keine Komponenten
kennt. Wirkungen, die dadurch entstehen, dass bereits fertige und gepriifte Kompo-
nenten erneut mit neuen Komponenten mitgepriift werden, sind nicht im Modell ent-
halten. Es ist unklar, wie parallele Prozesse in COCOMO II abgebildet werden und
wie sich diese Art der Organisation dann auf den Zusammenhang zwischen Umfang,
Aufwand, Dauer und Personalbedarf auswirkt.

In den Subsystem-Projekten wird zwischen spezifizierten, detaillierten Software-
Anforderungen und Entwurf nicht hart getrennt; beides wurde im Entwurf doku-
mentiert und gemeinsam gepriift. Die Trennung ist fiir Firmware nicht moglich. Da
die groben Anforderungen an die Komponente und die externen Schnittstellen fest
vorgegeben waren, werden im Modell keine Spezifikationsfehler abgebildet. In den
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erhobenen Fehlerzahlen erfolgt keine Trennung zwischen Entwurfs- und Codefeh-
lern, diese werden aber in CoBe dargestellt. Im Projekt ist die Fehlerschwere iiber den
Schaden definiert. Fiir den Schaden werden kritische Fehler, die zum Stillstand des
Systems fiihren, und Hauptfehler, die den Betrieb behindern, erfasst. Darum werden
in CoBe nur diese schweren Fehler dargestellt.

8.4.3 Modelleingaben im Detail

Die Modelleingaben ergeben sich aus der Analyse des Projekts. Sie werden wie folgt
gesetzt: Fiir die Validierung wird das gesamte Projekt betrachtet, weil dafiir die meis-
ten Istwerte verfiigbar sind.

Der Code umfasst etwa 10 Millionen Anweisungen, davon ist rund ein Viertel neu.
Als Umfangsfaktoren verwende ich 55 Anweisungen pro Function Point (C+t,
Boehm, 2000) und 0,88 Seiten pro Function Point fiir den Entwurf, also den doppelten
Umfang wie urspriinglich quantifiziert, weil Anforderungen und Entwurf gemein-
sam beschrieben werden.

Die Quantifizierung der Fehlerdichte wurde von Auftragsprojekten auf Projekte fiir
Systemsoftware umgestellt (Jones, 1996 und 2007), ebenso die Verteilung auf die Feh-
lerarten (ohne Spezifikationsfehler) und auf die Fehlerschwere (ohne Nebenfehler).
Die Parameter von COCOMO II wurden anhand der Befragungsergebnisse ange-
passt.

Da sich der Ablauf der Priifungen in den Subsystem-Projekten unterscheidet, miissen
tiir dieses Gesamtmodell mittlere Priifparameter ausgewahlt werden, die diese Unter-
schiede in etwa ausgleichen. Tabelle 88 zeigt die Eingaben des Gesamtmodells. Die
Tests werden wiederholt; fiir den Modultest tibernimmt dies der Subsystemintegrati-
onstest.

Fiir einige Eingaben sind keine Istwerte vorhanden. Dies fiithrt zu unsicheren Einga-
ben und unsicheren Modellresultaten. Darum werden Modellvarianten gebildet, in
dem die unsichersten Eingaben variiert werden:

* Die Eingaben fiir die Intensitit der spaten Tests sind unsicher. Beispielsweise wird
der Systemtest mit erfahrenen Testern durchgefiihrt, dabei werden auch bewéahrte
Testtalle aus fritheren Projekten iibernommenen. Die Testfalle werden begutachtet.
Dies spricht fiir einen intensiven Test; es liegen aber keine Werte tiber Testfalle vor.

¢ Die Entwickler sind sehr erfahren, der Prozess hat eine hohe Prozessreife. Darum
werden moglicherweise weniger Fehler entstehen (Jones, 2003).

* Bei der Vorablieferung handelt sich um einen intensiven, produktiven Einsatz des
Systems. Fiir Erprobungen dieser Art sind kaum Daten verfiigbar, insbesondere ist
unklar, ob die Quantifizierung des Feldtests in CoBe fiir eine solche Erprobung
geeignet ist. Jones (2007) diskutiert diesen Punkt und zeigt stark unterschiedliche
Fehlerentdeckungsquoten.

* Fiir die Codeanalyse stehen kaum Erfahrungswerte zur Verfiigung.
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Priifung Modelleingaben
Entwurfsreview 5 hochkompetente Gutachter bereiten sich mit 10 Seiten pro Stunde

neuer Software

vor. Der gesamte Entwurf wird gepriift.

Codeanalyse neuer
Software

5 % der Codefehler werden entdeckt und korrigiert, ebenso viele fal-
sche Befunde werden zusatzlich entdeckt

Modultest neuer

Vollstandiger Black-Box-Test hochkompetenter Tester mit 50 % Auf-
wand und 1 % Umfang fiir die Wiederholung, weil der Test zum Teil

neuer Software

Software automatisiert ablauft und einzelne Komponenten entwickelt werden.
Subsvstem- Vollstandiger Black-Box-Test hochkompetenter Tester mit 50 % Auf-

Yo wand und 5 % Umfang fiir die Wiederholung, weil der Test zum Teil
Integrationstest

automatisiert ablauft und weil fiir einen bestimmten Test ein bestimm-
ter Systemzustand herbeigefiihrt werden muss.?

Codereview neuen
Codes

25 % des Codes werden priorisiert von 5 hochkompetenten Gutachtern
mit 200 Anweisungen pro Stunde vorbereitet.

System-
integrationstest der
gesamten Software

Vollstandiger Black-Box-Test hochkompetenter Tester mit 50 % Auf-
wand und 5 % Umfang fiir die Wiederholung, weil der Test zum Teil
automatisiert ablauft und weil fiir einen bestimmten Test ein bestimm-
ter Systemzustand herbeigefiihrt werden muss.?

Systemtest der
gesamten Software

Vollstandiger Black-Box-Test hochkompetenter Tester mit 50 % Auf-
wand und 5 % Umfang fiir die Wiederholung, weil der Test zum Teil
automatisiert ablauft und weil fiir einen bestimmten Test ein bestimm-
ter Systemzustand herbeigefiihrt werden muss.?

Vorablieferung der
gesamten Software

Fehlerentdeckung des Feldtests (Jones, 1998) mit 20 % Entwurfs- und
25 % Codefehler.

Tabelle 88: Modelleingaben fiir Priifungen

a. Tritt beispielsweise ein Fehler erst ab einer bestimmten Auslastung des Systems auf, dann
muss diese Auslastung erzeugt werden, damit gepriift werden kann, ob der Fehler korri-

giert wurde.

¢ Die Qualitat des wiederverwendeten Codes ist vermutlich sehr hoch, weil die Soft-
ware intensiv erprobt und intensiv eingesetzt wird. Unklar ist aber, wie viele Feh-
ler enthalten sind. Beispielsweise werden nicht alle Fehler sofort korrigiert, weil es
sich um ein fehlertolerantes System handelt.

* Die Kompetenz der beteiligten Priifer ist hoch, weil es sich um erfahrene Entwick-
ler handelt. Sie ist aber trotzdem unsicher, ebenso ist die Zahl der Gutachter im
Codereview unterschiedlich und darum unsicher.

Um diese Unsicherheit abzubilden, werden Resultate aus 12 Varianten berechnet und
Minimum, Maximum und Median angegeben (Tabelle 89). Ich verwende den Median
und nicht den Mittelwert, da die Unsicherheit mit den 12 Varianten nicht durch eine
bestimmte Verteilung dargestellt wird, sondern einzelne, auch extreme Werte ver-
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wendet. Der Mittelwert wiirde durch die extremen Félle verzerrt werden. Insbeson-
dere werden zwei extreme Varianten gebildet. Eine extreme Variante kombiniert alle
variierten Eingaben fiir eine niedrige Fehlerentdeckung in den frithen Phasen, die
andere extreme Variante kombiniert die Eingaben mit Werten fiir hohe Fehlerentde-
ckung in allen Priifungen.

Nr. Modellvarianten fiir Eingaben, deren Werte nicht verfiigbar sind

Normalfall (Tabelle 88)

Testintensitdt im Systemintegrationstest, Systemtest und im Feldtest (Faktor 3)

Fehlerrate fiir den besten Fall (50 %)

Fehlerentdeckung der Codeanalyse (7 %)

Testintensitat im Systemtest und im Feldtest (Faktor 3)

Weniger Gutachter im Codereview

Feldtest mit Erfahrungswerten fiir intensiven Test nach Jones (2007), Faktor 3

1
2
3
4
5 | Nominale Tester- und Gutachterkompetenz
6
7
8
9

Wenig Fehler in wiederverwendetem Code (0,01 % statt 1 %)

10 | Weniger intensive Subsystemtests, weil fiir Sonderfalle Hardware benotigt wird

11 | Worst Case fiir frithe Fehlerentdeckung

12 | Best Case der Fehlerentdeckung

Tabelle 89: Varianten fiir unsichere Eingaben

Die Unterschiede zwischen den Eingaben fiir die Subsystem-Projekte fasst Tabelle 90
zusammen. Die Befragten der Subsysteme B und C haben Maximalwerte fiir die Gut-
achterzahl im Entwurfsreview angegeben; im Modell rechne ich fiir alle Subsysteme
mit 5 Gutachtern. Obwohl teilweise mehr Gutachter teilgenommen haben, haben
manche Gutachter nur einen Teil des Priiflings betrachtet; sie haben beispielsweise
nur diejenigen Schnittstellen gepriift, die sie verwendet haben.

Fiir die Fehlerfolgekosten nehme ich 1000 Verwendungen bis zur Korrektur an, weil
mehrere tausend Installationen betrieben werden. Korrekturen werden nicht immer
oder spat installiert, weil die Installation standig verfligbar sein muss. Tritt ein kriti-
scher Fehler auf, dann kostet er 1 Million Euro, weil auf den Rechnern typisch
geschaftskritische Anwendungen laufen.

8.4.4 Kalibrierung des Modells

Zuerst werden alle Modellvarianten des Gesamtprojekts mit gleichen Parameterwer-
ten kalibriert. Diese Kalibrierung wird dann auf die Modelle fiir die Teilprojekte tiber-
tragen. Ein erster Vergleich zur Kalibrierung zeigt, dass Aufwand und Dauer
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Priifung Subsystem A Subsystem B Subsystem C

Modultest | Vollstandiger Black-Box- | Nominaler Modultest, Nominaler Modultest,

und Sub- Test, 70 % Anweisungs- |50 % Aufwand fiir Wie- | 25 % Aufwand fiir Wie-

system- tiberdeckung, 10 % Auf- | derholung. derholung.

Int.-test wand fiir Wiederholung.

Code- 25 % des neuen Codes Hinzugefiigter Code 25 % des neuen Codes

review wird priorisiert von 4 wird von 4 Gutachtern | wird priorisiert von 4
Gutachter mit 200 Zeilen | mit 200 Zeilen pro Gutachter mit 200 Zeilen
pro Stunde vorbereitet. | Stunde vorbereitet. pro Stunde vorbereitet.

Tabelle 90: Unterschiede der Modelle fiir die Subsysteme

kalibriert werden miissen. COCOMO II berechnet zu viel Aufwand, einen zu gerin-
gen Personalbedarf und eine zu lange Dauer. Mogliche Griinde sind die starke Paral-
lelisierung mit der Aufteilung in Subsystem-Entwicklungen. Darum wird CoBe fiir
den Aufwand mit dem Faktor 0,66 und fiir die Dauer mit dem Faktor 0,4 kalibriert.
Die Modellresultate fiir Personalbedarf (Mitarbeiterzahl) und Dauer treffen damit die
Istwerte sehr gut (Tabelle 91).

Modellresultat LE?
Mitarbeiterzahl 0,38 dB
Gesamtdauer 0,08 dB
Zahl spater Fehler 1,81 dB

Tabelle 91: Abweichungen nach Kalibrierung
a. LE = 10-[log(Modellresultat/Istwert)|

Fiir den Vergleich werden die Fehlerzahlen fiir den Systemintegrationstest und den
Systemtest verwendet. Darin sind zusétzlich Fehler enthalten, die wahrend der Ent-
wicklung in anderen Subsystemen entdeckt wurden. Die Modellresultate fiir Fehler,
die in spaten Tests entdeckt wurden, treffen diese Zahl gut. Sie liegen etwas niedrig
(Tabelle 91). Die Fehlerzahl wird nicht kalibriert, weil die Modellresultate nicht die
Fehler, die wahrend der Entwicklung in anderen Subsystemen entdeckt wurden,
berticksichtigt.

8.4.5 Vergleich der Modellresultate mit Istwerten

Die Modellvarianten werden nur fiir das Gesamtprojekt berechnet, weil dafiir die
meisten Istwerte verfiigbar sind. Die folgenden Vergleiche beziehen sich auf das
Gesamtprojekt und die Modellvarianten:
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Korrekturaufwand pro Fehler in den verschiedenen Phasen

Die Modellresultate fiir den Korrekturaufwand einzelner Fehler stimmen gut mit den
Befragungsergebnissen iiberein (Tabelle 92). Der Korrekturaufwand ist der Arbeits-
aufwand, den ein Entwickler oder mehrere Entwickler fiir Ursachenanalyse und
Anderung investieren. Mehrere Entwickler sind dann beteiligt, wenn sich der Wir-
kungsmechanismus eines Fehlers {iber mehrere Subsysteme erstreckt. Dann wurden
sehr hohe Aufwéande berichtet. Konsistent zum Vergleich mit den Korrekturaufwan-
den der studentischen Projekte spiegelt CoBe diese Ausreifier nicht, sondern berech-
net einen engeren Bereich. Fehler, die in der Codeanalyse entdeckt werden, werden
von CoBe zu teuer berechnet.

Befragungsergebnisse Modellresultate
Codeanalyse wenige Minuten, max. 1 Eh 0,8 bis 1,7 Eh
Modultest normal 1 Eh bis 8 Eh, {iber 24 Eh moglich 1bis 1,5 Eh
Codereview 1 Eh normal 0,8 bis 1,7 Eh
Subsystem- normal 1 Eh bis 16 Eh, iiber 24 Eh méglich | 2,4 bis 52 Eh
Integrationstest
Systemintegrationstest, 2 Eh bis 24 Eh 4,7 bis 10,2 Eh
Systemtest
Wartung 2 Eh bis 24 Eh ohne Priifung 7,0 bis 15,2 Eh

Tabelle 92: Vergleich des Korrekturaufwands pro Fehler

Fehlerzahlen pro Reviewsitzung

Tabelle 93 zeigt Befragungsergebnisse und Modellresultate fiir die Zahl der entdeck-
ten Fehler pro Reviewsitzung. Befragungsergebnisse und Modellresultate fiir das
Codereview stimmen sehr gut tiberein.

Fehlerzahl pro Sitzung | Befragungsergebnis Modellspanne Modellmedian
Entwurfsreview 2 bis 10 Fehler 8 bis 16 Fehler 16 Fehler
Codereview 3 bis 15 Fehler 3 bis 12 Fehler 9 Fehler

Tabelle 93: Fehler pro Reviewsitzung

Das Modellresultat fiir die Fehlerzahl im Entwurfsreview ist dagegen eher zu hoch.
Dafiir kann es mehrere Griinde geben:
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* Der Umfangsfaktor fiir den Entwurf ist in CoBe zu klein. Dies wird gestiitzt durch
Jones (2007), der einen grofleren Faktor angibt (1,25 statt 0,88 Seiten pro Function
Point). Mit grofierem Umfangsfaktor sinkt die Fehlerdichte, die sich auf die Seiten-
zahl bezieht.

* Daten tiber die Zahl der Seiten, die in einer Sitzung besprochen werden, sind nicht
verfiigbar.

* CoBe berechnet eine zu hohe Fehlerentdeckungsquote. Gegen diese Hypothese
spricht, dass CoBe die Fehlerentdeckung durch Reviews der studentischen Pro-
jekte gut beschrieben hat. Im Industrieprojekt sind die Gutachter professionelle,
erfahrene Entwickler mit viel Domanenwissen, die darum vermutlich sogar eine
hohere Fehlerentdeckungsquote als Studenten haben.

e Die Entwickler haben viel Erfahrung und Domanenwissen, bestehende Software
wird weiterentwickelt. Darum werden weniger Fehler im Projekt als in durch-
schnittlichen Projekten gemacht. Dieser Effekt wird aber durch die Kalibrierung
der Fehlerzahl berticksichtigt.

Ich fiihre darum die Abweichungen auf den zu geringen Umfangsfaktor zurtick.
Fehlerzahlen in spiten Phasen

Die Modellresultate fiir die Zahl der entdeckten Fehler sind fiir die spaten Priifungen,
d.h. Systemintegrationstest, Systemtest und Vorablieferung, ingesamt etwas zu nied-
rig, konsistent zur Modellkalibrierung (Abbildung 85'). Die Zahl der Fehler sinkt aber
konsistent in den Istwerten und in den Modellresultaten. Fiir den Vergleich werden
zwei Falle unterschieden: Im ersten Fall wird der Median aller Varianten, im zweiten
Fall der Median der Varianten mit intensiven spaten Priifungen und intensiver Vor-
ablieferung verwendet. Der Zahl der ausgelieferten Fehler liegt ein erfragter Erfah-
rungswert fiir Systemausfalle zu Grunde.

I Istwerte

— [ ] Modellresultate
(alle Varianten)

[l Modellresultate
(intensive Vorab-
] lieferung)

Systemint.- Systemtest Vorab- Ausgeliefert
test lieferung

Abb. 85: Median der Fehlerzahlen aus Modellvarianten

Fehlerzahl

1. Die Abbildung enthilt aus Griinden der Vertraulichkeit keine absoluten Fehlerzahlen.
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Weil die Fehlerzahlen vertraulich sind und darum nicht gezeigt werden, werden
Abweichungen der Modellresultate von den Istwerten mit dem logarithmischen Feh-
ler (LE) in dB bewertet. Sie liegt noch unter 3 dB, aber iiber 2 dB:

* Das Modellresultat fiir die Fehlerzahl im Systemintegrationstest ist um 2,1 dB zu
niedrig. Die Abweichung entsteht, weil fiir den Istwert auch diejenigen Fehler
gezdhlt werden, die wahrend der Subsystem-Entwicklung in anderen Subsystemen
entdeckt wurden.

* Das Modellresultat fiir die Fehlerzahl im Systemtest ist um 3 dB zu niedrig. Dies
erklart sich durch den Systemtest des Projekts, der intensiver als typische System-
tests ist, weil im Projekt Testfdlle vorbereitet, wiederverwendet und begutachtet
werden. Der Test erfolgt unabhidngig in einer eigenen Testabteilung. Dass der
Systemtest sehr intensiv ist, wird durch seine Kosten bestdtigt, wie der Abschnitt
unten zeigt.

* Die Fehlerzahl der Vorablieferung und der Auslieferung wird von den Modell-
varianten mit intensiven spaten Tests gut berechnet. Die Abweichung betrégt fiir
Vorablieferung und Auslieferung 0,3 dB. Fehlerzahlen der anderen Modell-
varianten sind zu hoch.

* Das Modellresultat fiir die Zahl der ausgelieferten Fehler wird auch mit intensiven
spaten Tests zu hoch berechnet. Dafiir vermute ich mehrere Griinde: Der Istwert
beruht auf der Fehlerzahl pro Jahr und einer Einschédtzung fiir die Einsatzdauer;
einzelne Kunden setzen das System aber auch langer ein. Aus den Befragungser-
gebnissen ldsst sich ableiten, dass die Vorablieferung mit internem und externem
produktiven Einsatz sehr intensiv priift. Es werden vor allem kritische Fehler, d.h.
Austille, berichtet. Das System ist fehlertolerant, darum treten nicht alle Fehler auf.
Da die Fehlerkorrektur risikoreich ist, wurden Fehler, fiir die das System tolerant
ist, nicht korrigiert. Stattdessen wird die Korrektur wird fiir die néchste Version
vorgemerkt, der Fehler wird nicht gezahlt.

Kosten fiir Priifung und Korrektur
Die Modellresultate der Priif- und Korrekturkosten sind plausibel:

Die Kosten des Systemtests bestatigen, dass der Systemtest intensiv ist. Die Mitarbei-
terzahl weicht unter 0,5 dB ab. Im Projekt findet der Systemtest parallel zur Entwick-
lung statt, seine Durchfiithrung beginnt etwa zur Halbzeit des Projekts und dauert bis
zum Ende. Die Modellresultate fiir einen intensiven Systemtest ergeben fiir die
Durchfiihrung des Tests 46 % der Projektdauer. Sie stimmen also gut mit der Realitat
iiberein.

Die Modellresultate fiir den Aufwand des Systemintegrationstest stimmen mit den
Daumenregeln, die fiir das Projekt erfragt wurden, {iberein. Im Modell werden aber
zu viele Mitarbeiter zugeordnet, so dass die Dauer zu niedrig berechnet wird. Mit rea-
listischer Mitarbeiterzahl ergibt sich die gleiche Dauer wie fiir den Systemtest, dieses
Resultat entspricht in etwa der Realitat.
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Die Modellresultate ergeben plausible Aufwandsanteile fiir Priifung und Korrektur
im Vergleich zum erfragten Gesamtaufwand des Projekts, da die Modellvarianten im
Median einen Priif- und Korrekturaufwand im Projekt von 38 % des erfragten Projek-
taufwands ergeben, mit intensiven spaten Priifungen 52 %.

Vergleicht man diese Resultate mit der Aufwandsverteilung auf Phasen in
COCOMOV], zeigt sich, dass die CoBe-Resultate auch im Vergleich dazu plausibel
sind: So machen die Modellresultate fiir Priif- und Korrekturaufwand jeweils rund
20 % des Aufwands der Entwurfsphase und der Implementierungsphase in
COCOMOII aus (Tabelle 94). Der Median aller Modellvarianten fiir Integration und
Test trifft etwa die untere Grenze des COCOMO-II-Integrations- und Testaufwands.
Der Median der Varianten mit intensiven Tests {iberschreitet die obere Grenze leicht.

Aufwandsanteil der Phasen, mittlere Median der Modellresultate fiir Priifung und
bis grofie Projekte in COCOMO II Korrektur
Phase® Anteil (%)P Priifung Anteil (%)°
Product Design 16 % - 18 % | Entwurfsreview 4%

Modultest, Codeanalyse, Code-

. o/ _ o, o)
Programming 48 % - 62 % review, Subsystem-Int.-test 11%
Systemintegrationstest, Systemtest 239
(Alle Modellvarianten) ?
Integration and Test 22 % -34 %
Modellvarianten mit intensivem Sys- 379
(]

temint.-Test und Systemtest

Tabelle 94: Aufwandsanteile im Vergleich

a. Die Phase Plans and Requirements ist nicht dargestellt.
b. Alle Anteile beziehen sich auf den Gesamtaufwand des Projekts.
c. Alle Anteile beziehen sich auf den erfragten Gesamtaufwand des Projekts.

8.4.6 Resultate der Referenzmodelle

Fehlerzahlen des Gesamtprojekt werden gut berechnet, weil die Resultate fiir System-
test und Vorablieferung weniger als 2 dB abweichen. Abbildung 86 enthalt aus Griin-
den der Vertraulichkeit keine absoluten Fehlerzahlen. Der Vergleich fiir die einzelnen
Subsystem-Projekte erfolgt fiir eine Eingabekombination, die als passende Variante
gewahlt wurde. Die spaten Priifungen sind intensiv; andere Priifungen sind an den
Priifprozess der Subsysteme angepasst (Tabelle 87). Die Zahl der ausgelieferten Feh-
ler wird von CoBe etwas zu hoch berechnet (LE = 2,1 dB), dies lasst sich aber mit dem
fehlertoleranten System begriinden.
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[ Istwerte
[ ] Modellresultate

.

Systemint.-  Systemtest Vorab-
test lieferung

Fehlerzahl

]
T

Ausgeliefert

Abb. 86: Fehlerzahlen des Referenzmodells

Mit dieser Kalibrierung wird ein Modell pro Subsystem erstellt und die Resultate
gegen Istwerte verglichen. Die Resultate sind plausibel, weil die Zahl der Entwickler
mit guter, zum Teil sogar sehr guter Genauigkeit berechnet wird (Tabelle 95). Die Ent-
wicklungsdauer fiir die Subsystem-Projekte ist in den Modellen auf die Projektdauer
der gesamten Entwicklung gesetzt.

Entwicklerzahl Istwerte A B C

pro Subsystem etwa 20 28 23 16

Tabelle 95: Entwicklerzahl pro Subsystem

Die Modellresultate zeigen, dass die Priifung und Korrektur einen groflen Anteil des
Aufwands der Subsystem-Entwicklung einnimmt (Tabelle 96). Dieser hohe Anteil
erklart sich durch die Einbettung dieser Subsystemprojekte in das gesamte Projekt.
Dabei gehoren beispielsweise Projektmanagement, Systemintegration und Systemtest
nicht zum Subsystemprojekt. Somit sind diese Aufwinde, die sich auf das gesamte
System beziehen, nicht im erfragten Aufwand fiir die Entwicklung der einzelnen Sub-
systeme enthalten.

Modellresultat fiir den Aufwandsanteil® A B C
Entwurfsreview mit Korrektur 19 % 15 % 10 %
Codereview mit Korrektur 8 % 18 % 5%
Modultest mit Korrektur 18 % 9% 6 %
Subsystem-Integrationstest mit Korrektur 22 % 13 % 8 %

Tabelle 96: Aufwandsanteil fiir Priifungen und Korrektur

a. Der Anteil bezieht sich auf den Aufwand, der sich aus den Befragungsergebnissen fiir die
Zahl der Mitarbeiter im Subsystem-Projekt und die Dauer ergibt.
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8.5 Industrieprojekt 2

CoBe wird mit dem Industrieprojekt 2 mit dem gleichen Vorgehen wie mit dem
Industrieprojekt 1 validiert: Nach der Analyse (Abschnitt 8.5.1) erfolgt die Abbildung
in CoBe (Abschnitte 8.5.2 und 8.5.3). Resultate sind in den Abschnitten 8.5.4 und 8.5.5.

Im Projekt wurde Steuergerate-Software fiir PKW im Kundenauftrag entwickelt.
Steuergerat und Software bilden eine Einheit. Es handelt sich um eine nahezu voll-
stindige Neuentwicklung, Ausnahme sind mathematische Bibliotheken. Das Projekt
wurde als sicherheitskritisch (SIL-3, Smith und Simpson, 2005) eingestuft. Das Projekt
ist SPICE Level 3 (Hormann et al., 2006) mit definiertem Standard-Prozess. Im Projekt
waren in etwa 2,5 Jahren rund 14 Mitarbeiter, teilweise in Teilzeit, beschaftigt. Die
Software umfasst rund 35 000 Anweisungen.

8.5.1 Das Projekt und sein Prozess
Einbettung in die Projektumgebung und Anforderungen

Die Anforderungen an das System stammten vom Kunden. Das Steuergerit ist stan-
dardisiert. Das Projekt verlief iterativ, indem Anforderungen mit dem Kunden abge-
sprochen wurden; der Kunde bekam dann regelmafiig — alle zwei Monate — eine
Lieferung. Der betrachtete Ausschnitt der Realitdt enthdlt die Anforderungsanalyse
und -priifung durch den Kunden.

Ablauf und Organisation der Entwicklung

Die Entwicklung erfolgte iterativ. Jede Iteration bildete eine Phase. Fiir jede Phase
wurde die zu realisierende Funktionalitdt geplant, nach jeder Phase wurde an den
Kunden ausgeliefert. Eine Phase dauerte zwei Monate. In jeder Phase wurde ein
sequentieller Entwicklungsprozess durchlaufen. Mit diesem Prozess wurden zuerst
System-, dann Software-Anforderungen festgelegt, dann entworfen, implementiert,
dann integriert, parametrisiert und schliefdlich ausgeliefert. Anforderungen wurden
werkzeuggestiitzt als identifizierbare Einheiten verwaltet. Es wurde ein Funktions-
entwurf erstellt. Die Programmierung erfolgte in C.

Priifungen und Priifprozesse

Fiir die Validierung werden zwei Priifprozesse in CoBe abgebildet. Sie liefen ineinan-
der verwoben ab: Ein Priifprozess des Entwicklungsprozesses, d.h. initiale Priifungen
in jeder Phase, und ein Priifprozess fiir Anderungen waren vorgegeben. Reviews sind
tiir ein SIL-3-Projekt obligatorisch. In jeder Phase wurden die folgenden initialen Prii-
fungen durchgefiihrt:

¢ Kundenreviews und internes Anforderungsreview
* Entwurfsreview
¢ Codeanalyse

e Modultest
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* Codereview

* Releasetest (entspricht dem Integrationstest)

e Software-Test (HiL- und SiL-Test, entspricht dem Systemtest)’
* Interne und externe Fahrzeugtests

Anderungen, z.B. Korrekturen, wurden in einem definierten Anderungsprozess
parallel zur Entwicklung gepriift mit:

¢ Codeanalyse

* Modultest

¢ Codereview

* Software-Test (HiL- und SiL-Test, entspricht dem Systemtest)

Im Folgenden werden die Priifungen nicht mit den firmenspezifischen Begriffen
(Releasetest, Softwaretest), sondern mit den Begriffen von CoBe (Integrationstest, Sys-
temtest) bezeichnet.

Die Priifungen der Anderungen erfolgten abgestimmt auf den Entwicklungsprozess
(Abbildung 87): Die Integration erfolgte regelméfiig. Dabei wurden sowohl neue
Komponenten als auch Anderungen integriert und danach durch einen Integrations-
test gepriift. Der Systemtest wurde fiir jede Anderung erweitert; die Anderungen
wurden separat getestet. Der Systemtest wurde fiir neu entwickelte Teile erweitert.
Bestehende Testfdlle wurden wiederholt. Die integrierte Software wurde dann inter-
nen und externen Fahrzeugtests unterzogen. Tabelle 97 fasst die erhobenen Daten des
Projekts zusammen.

Merkmale einzelner Priifungen

Die detaillierten Modelleingaben basieren auf den folgenden Analyseergebnissen: Die
Anforderungen wurden in Reviews mit 4 bis 5 Gutachtern beim Kunden diskutiert
und abgesprochen. Interne Spezifikationsreviews fanden mit 2 bis 3 Gutachtern statt.
Dokumentationsreviews wurden durchgefiihrt. Anforderungen und Dokumentation
liefen sich aus Sicht der Beteiligten schwer trennen. Auch die Trennung zwischen
Anforderungsanderung, Anforderungsanalyse und Fehlerentdeckung ist in diesen
Priifungen unscharf.

Der Entwurf erfolgte mit UML und wurde durch Entwurfsreviews in Form eines
Walkthroughs mit einem Gutachter, teilweise mit Moderator, gepriift.

Codereviews wurden entweder informal oder formal durchgefiihrt. Informale
Reviews konnten nur bei unkritischen (SIL-0-)Modulen oder unkritischen Anderun-
gen stattfinden. Befunde informaler Reviews konnten vom Autor direkt korrigiert

1. HiL (Hardware-in-the-Loop): Die Software wird mit dem Steuergerét in einer simulierten
Umgebung getestet. SiL (Software-in-the-Loop): Das Steuergerat wird zusétzlich simuliert,
nur die Software wird in einer simulierten Umgebung getestet.
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Entwicklungsprozess

Kunden-u. _ Entwurfs- _ Code- _ Modul- _ Code- $Integra System-

Anf.-review review analyse test review tlonstest test
Anderungsprozess / \ /
Anderung_> Code- —_p Modul- —_p Code- System-
analyse test review test
Priifsgquenz der Priifsequenz bei
Entwicklung Anderungen

Abb. 87: Einbindung des Anderungsprozesses

Verfiligbare Istwerte

Umfang des Codes

Zahl der Anforderungen und Anforderungsanderungen

Zahl der Anderungen

Aufwand und Aufwandsverteilung auf Entwicklung und Priifung von Anderungen

Zahl der spéten Fehler (Systemtest und Fahrzeugtest)

Aufwand fiir spate Fehler

Anforderungs- und Zweigiiberdeckung, Umfang pro Modul im Softwaretest

Aufwand fiir Priifungen (Initial und Anderung, ohne Modultest)

Dauer und Mitarbeiterzahl

Gutachterzahl in Reviews

Tabelle 97: Istwerte des Industrieprojekts 2

werden, wahrend Befunde formaler Reviews einem Prozess unterworfen und formal
verwaltet wurden: Die Korrektur dieser Befunde folgte dem Anderungsprozess.
Codereviews wurden fiir neue Module und fiir Anderungen als Walkthrough mit
einem Gutachter, teilweise mit Moderator, durchgefiihrt. Bei Anderungen mit SIL-3
wurde die gesamte gednderte Funktion erneut gepriift. Bei Anderungen mit SIL-0
reichte aus, die gedanderte Software zu betrachten.

Der Modultest erfolgte durch die Entwickler nach dem Vier-Augen-Prinzip. Er wurde
in der Entwicklungsumgebung durchgefiihrt und war weitgehend nicht automati-
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siert. Der Ablauf des Tests und die Testfdlle wurden anhand einer Vorlage dokumen-
tiert. Der Modultest wurde fiir ein neues Modul und bei jeder Anderung
durchgefiihrt. Im Modultest wird keine Uberdeckung gemessen, er findet also nicht
als Glass-Box-Test statt.

Die Integration erfolgte durch einen Integrator und nach dem Vier-Augen-Prinzip.
Der Integrationstest stellte sicher, dass die Software prinzipiell funktioniert. Dabei
wurden externe Schnittstellen, z.B. fiir Sensoren, und interne Schnittstellen gepriift.

Nach diesem Test wurden Systemtest und Fahrzeugtests parallel durchgefiihrt. Der
Systemtest bestand aus mehreren Teilen: Fiir jedes Release wurden im HiL-Test auto-
matisiert die Anforderungen gepriift. Testfélle fiir SIL-3-Anforderungen waren zu
96 % automatisiert, fiir SIL-0-Anforderungen zu 65 %, die {ibrigen wurden manuell
gepriift. Das Kriterium fiir die Zweigiiberdeckung wurde fiir jedes Modul individuell
testgelegt und wurde im SiL-Test tiberpriift. Die Testfalle waren fiir den HilL-Test und
tiir den SiL-Test weitgehend gleich. Ausnahmen waren wenige Testfille, die nicht im
SiL-Test gepriift werden konnten, weil dazu Hardware benotigt wurde. Die Testfélle
wurden durch Tester erstellt und dann in einem Review gepriift. Sie wurden als Test-
sequenz implementiert, so dass sie automatisch durchgefiihrt werden konnten. Ande-
rungen im Anderungsprozess wurden im HiL-Test gepriift; die Uberdeckung wurde
im SiL-Test kontrolliert, bei Bedarf wurden die Testfélle erweitert. Die internen und
externen Fahrzeugtests fanden teilweise gemeinsam mit dem Kunden statt.

8.5.2 Die Abbildung in das Modell

Dieser Prozess wird in das Modell abgebildet. Die detaillierten Eingaben fiir Priifun-
gen sind im Abschnitt 8.5.3, die Resultate in den Abschnitten 8.5.4 und 8.5.5.

Iterativer Entwicklungsprozess mit initialen Priifungen

Der iterative, stufenformige Entwicklungsprozess mit den initialen Priifungen wird
auf den sequentiellen Prozess in CoBe nach dem gleichen Prinzip wie im
Validierungsprojekt 1 abgebildet (Abbildung 84). Dies ist moglich, weil in den einzel-
nen Iterationen jeweils der gleiche, sequentielle Prozess durchlaufen wird. Dadurch
bleibt das Modell einfach. Diese Abbildung in das Modell hat aber Nachteile: Effekte
durch mehrfach wiederholte Priifungen konnen nicht sichtbar werden; die grundle-
gende Annahme ist, dass die Entwicklung additiv verlauft und nur additive Effekte
enthalt. Sie wachst also stetig, bestehende Teile werden bei der Entwicklung nur
geringfiigig gedndert. Die Alternative, jede Iteration durch ein Modell darzustellen,
hatte zu einem extrem komplexen und uniibersichtlichen Modell gefiihrt. Die Aus-
wahl der Hardware, Entwurfsentscheidungen zur Hardware und zur Realisierung
der Redundanz fiir SIL-3-Systeme werden im Modell nicht dargestellt, weil CoBe
keine Zusammenhange fiir Hardware-Entwicklung enthalt.

Anforderungskritikalitat

Die Entwicklung und Priifung erfolgte fiir SIL-3-Module anders als fiir SIL-0-Module.
Diese unterschiedliche Entwicklung bilde ich in CoBe durch zwei unterschiedliche
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Modellinstanzen ab. Das SIL-0-Modell beschreibt die Entwicklung und Priifung der
SIL-0-Software, das SIL-3-Modell beschreibt die Entwicklung und Priifung der SIL-3-
Software.

Verfiigbare Umfangsdaten sind der Code-Umfang (rund 35 000 Anweisungen), die
Zahl der SIL-0-Anforderungen und die Zahl der SIL-3-Anforderungen. Der Code-
Umfang wurde proportional zur Zahl der Anforderungen auf SIL-0- und auf SIL-3-
Modell verteilt:

Da 67 % der Anforderungen SIL-0-Anforderungen sind, folgere ich, dass 67 % des
Codes mit SIL-0 entwickelt wurden. In das SIL-0-Modell wird also eingegeben, dass
der Umfang hinzugefiigten Codes 67 % der rund 35 000 Anweisungen betragt, also
etwa 24 000 Anweisungen.

Aus den 33 % SIL-3-Anforderungen ergibt sich somit, dass der Umfang hinzugefiig-
ten Codes im SIL-3-Modell etwa 11 000 Anweisungen betragt.

Anforderungsinderungen

Wahrend des Projekts dnderte der Kunde Anforderungen. Diese Anforderungs-
anderungen bilde ich in CoBe als zusatzlichen, geinderten Code ab, angelehnt an
Boehm (2000). Diese Modellierung basiert auf der Annahme, dass bestehender Code
ersetzt werden muss, wenn sich Anforderungen dndern; Code wird also geloscht und
neu erstellt. Dies entspricht der Definition fiir gednderten Code aus IEEE 1045 (1992).

Daten tiber den Umfang gedanderten Codes sind nicht verfiigbar. Darum nehme ich
an, dass fiir jede Anforderungsanderung genau so viel Software wie fiir eine neue
Anforderung entwickelt wird. Ich modelliere also, dass pro Anforderung und pro
Anforderungsanderung der gleiche Umfang Code implementiert und gepriift wird.

Von den SIL-0-Anforderungen wurden 9 % geadndert. Daraus folgere ich, dass 9 % der
hinzugefiigten Anforderungen geandert wurden. Zu den 24 000 Anweisungen kom-
men also rund 2 200 gednderte Anweisungen dazu.

Rund 6 % der SIL-3-Anforderungen anderten sich. Somit wurden 6 % der hinzuge-
fiigten Anweisungen gedndert, also etwa 710 Anweisungen der 11 000 Anweisungen
im SIL-3-Modell.

Tabelle 98 fasst die Eingaben fiir die beiden Modellinstanzen zusammen.

Eingabeparameter SIL-0-Modell | SIL-3-Modell
Hinzugefiigte Software (Anweisungen) 24 000 11 000
Geidnderte Software (Anweisungen) 2200 710

Tabelle 98: Eingaben fiir den Software-Umfang
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Abstraktionsebenen und Priifprozess

Beim Projekt handelt es sich um eine Systementwicklung. Darum kldre ich die Abbil-
dung der Entwicklung in CoBe wie folgt: Ich betrachte nur den Teil des Projekts fiir
die Software-Entwicklung des Steuergerats. Im Projekt gab es Entscheidungen, die
die Wahl der Hardware betreffen. Diese fanden zu Beginn des Projekts statt, so dass
ich von vorgegebener Standard-Hardware im Modell ausgehe. System- und Soft-
ware-Anforderungen konnen in dieser Situation nicht getrennt betrachtet werden,
darum wird im Modell keine Unterscheidung getroffen. Spezifikationsfehler betref-
fen also alle Anforderungen, ich vernachlédssige aber die Anforderungen an das
Steuergerat. Entwurfsfehler werden im Modell nur fiir die Software abgebildet. Code-
tehler entstehen auch im Projekt nur fiir die Software.

Alle Reviews der Anforderungen werden im Modell zum Spezifikationsreview
zusammengefasst. Unklar ist der Umfang und der Aufwand, der durch die zusatz-
lichen Kundenreviews entsteht. Entwurfsreview, Codeanalyse und Modultest wer-
den direkt in das Modell abgebildet. Der Releasetest entspricht dem Integrationstest,
er hat das gleiche Ziel: Die Schnittstellen und die grundlegende Funktion werden
gepriift. Eine Aufteilung in Subsystemintegration und Systemintegration gibt es im
Projekt nicht und wird darum auch in CoBe nicht dargestellt. Der Softwaretest des
Projekts entspricht dem Systemtest in CoBe: Die gesamte Software wird gegen die
Anforderungen gepriift.

Anderungsprozess

Der Anderungsprozess fiir eine Korrektur wird durch die Korrektur und die darauf
folgenden Priifungen der Korrektur (Korrekturpriifprozess in Cobe) abgebildet: Die
Anderung wird vom Entwickler im Modultest gepriift und durch einen Gutachter im
Codereview gepriift. Die Anderung wird im Systemtest gepriift.

8.5.3 Modelleingaben im Detail

Im Folgenden werden die detaillierten Modelleingaben gezeigt: Der Umfang des C-
Codes wird mit 128 Anweisungen pro Function Point (Boehm, 2000) und 0,44 Seiten
pro Function Point fiir Spezifikation und Entwurf umgerechnet. Aufwand, Perso-
nalbedarf und Fehlerzahl werden proportional zum Umfang auf das SIL-0- und das
SIL-3-Modell verteilt.

Die Fehlerdichte fiir entstehenden Fehler und die Verteilung auf die Fehlerschwere
und die Fehlerart sind an die Werte fiir Systemsoftware aus Jones (1996) angepasst.
Die Parameter von COCOMOIII sind entsprechend den Befragungsergebnissen
gesetzt.

Die Korrekturen folgen dem Korrekturpriifprozess, wenn Fehler im Codereview,
dem Integrationstest, dem Systemtest und in den Fahrzeugtests entdeckt werden. Da
der Modultest durch die Entwickler erfolgt, findet die Korrektur nach diesem Test
direkt statt. Im Korrekturpriifprozess werden Codereview, Modultest und Systemtest
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gezielt wiederholt. Der Integrationstest wird vollstindig wiederholt (Abbildung 87).
Tabelle 99 zeigt die Priifungen und ihre Parameter.

Priiffung Parameter
Spezifikations- | Vier hochkompetente Gutachter priifen die gesamte Spezifikation und
review bereiten sich griindlich vor.
. Ein hochkompetenter Gutachter priift den gesamten Entwurf und berei-
Entwurfsreview . s
tet sich griindlich vor.
Durch Codeanalyse wird eine Entdeckungsquote von 5 % der Codefeh-
Codeanalyse .
ler erzielt.
Der Modultest ist ein vollstandiger Black-Box-Test. Die Wiederholung
Modultest kostet 50 % des Aufwands. Fiir eine Korrektur muss 1 % der Testfdlle
wiederholt werden.
Ein hochkompetenter Gutachter priift den gesamten Code und bereitet
Codereview sich griindlich vor. Nach einer SIL-0-Korrektur werden 25 LoC begutach-
tet (Jones, 2007), nach einer SIL-3-Korrektur wird ein Modul (gemessen:
387 LoC pro Modul) begutachtet.
Inteerationstest Der Integrationstest erfolgt als normaler Black-Box-Test (Funktionen
& und Aquivalenzklassen). Die Wiederholung kostet 50 % des Aufwands.?
Der Systemtest erfolgt zuerst als Black-Box-Test (Funktionen, Aquiva-
lenzklassen, Sonderfalle) und wird dann fiir den Glass-Box-Test mit 83 %
Systemtest Zweigiiberdeckung (gemessen im Projekt) ergénzt. Die Wiederholung
kostet 10 % des Aufwands. Fiir eine Korrektur miissen 10 % der Testfélle
wiederholt werden.
Fahrzeugtest Ple Quantifizierung des Feldtests wird aus Jones (1996)
iibernommen.

Tabelle 99: Parameter der Priifungen im Modell

a. Der Test ist weitgehend automatisiert und wiirde darum weniger fiir eine Wiederholung
kosten. Weil er aber mehrfach wiederholt wird, wahle ich diesen hoheren Wert.

Fiir das Projekt sind viele Istwerte verfiigbar. Trotzdem sind Werte einiger Ein- und
Ausgaben von CoBe nicht bekannt. Diese Unsicherheit wurde durch Modellvarianten

abgebildet:

* Der Einfluss der Sicherheitsanforderungen auf den Aufwand und auf den Auf-
wandsfaktor ist unklar.

e Die Prozessreife ist hoch, die Mitarbeiter erfahren. Dies senkt die Zahl entstehen-

der Fehler.
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* Die Verteilungen auf Fehlerart und -schwere stehen nur fiir spate Phasen zur Ver-
tiigung; die Abbildung auf der im Projekt verwendeten Fehlerschwere-Definition
auf die Definition von CoBe ist unklar.

* Die Kompetenz der Priifer wird subjektiv eingeschéatzt, darum werden zwei Vari-
anten mit hoherer und niedrigerer Kompetenz gebildet.

¢ Unklar sind Umfang und Umfangsfaktoren von Spezifikation und Entwurf.

* Esist unklar, ob Anweisungen oder Zeilen gemessen werden

e Unklar ist die Intensitdt und Fehlerentdeckungsquote der Fahrzeugtests.

e Es ist unklar, wie viel Aufwand fiir die Wiederholung von Tests benotigt wird.
Darum werden verschiedene Annahmen durchgerechnet.

Tabelle 100 fasst die Varianten zusammen.

Z

Modellvarianten

Normalfall

Produktivitat durch Sicherheitsanforderungen

Niedrige Fehlerzahl fiir hohe Prozessreife (Jones, 2003)

Fehlerverteilung mit gemessenen Werten der spaten Phasen

Nominale (anstatt hoher) Kompetenz der Priifer

Sehr hohe Kompetenz der Priifer

Umfangreiche Spezifikation, umfangreicher Entwurf (1,25 statt 0,44 Seiten / FP)

Messung des Code-Umfangs in Lines of Code statt in Anweisungen

O | 0 ([ I ||| =W |IDN| -

Intensive Fahrzeugtests (Faktor 3 im Vergleich zum Feldtest)

—_
e}

Fehlerverteilung auf Fehlerschwere ohne kosmetische Fehler (Jones, 1998)

—_
—_

Hoherer Wiederholungsanteil im Modultest

—_
N

Hoherer Aufwandsanteil fiir Wiederholung im Systemtest: 25 % mit Funktionsénde-
rung statt 10 % ohne Anderung (van Megen und Meyerhoff, 1995)

8.5.4

Tabelle 100: Varianten fiir unsichere Eingaben

Vergleich der Modellresultate mit Istwerten

Kalibrierungsfaktoren

Die Fehlerzahl des Modells wurde kalibriert, aber nicht Aufwand und Dauer, weil in
diesem Projekt die COCOMO-Resultate fiir den Gesamtaufwand und fiir die Gesamt-
dauer gut mit den Istwerten tibereinstimmen (Tabelle 101). Die Modellresultate liegen
leicht unter dem tatsachlichen Aufwand. Ich fiihre dies vor allem darauf zuriick, dass
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Mitarbeiter nicht immer Vollzeit im Projekt arbeiteten. Hardware-bezogene Aktivita-
ten und Prozessanforderungen fiir SIL-3 werden in COCOMO II nicht oder nicht aus-
reichend berticksichtigt. Aufwand und Dauer werden nicht kalibriert, weil die
Priifparameter fiir SIL-3 in CoBe explizit beriicksichtigt werden und sich Zusatzarbei-
ten bei der Bottom-up-Schatzung nicht auf die betrachteten Aktivitaten auswirken.

Abweichung von LE?
Mitarbeiterzahl 0,2 dB bis 3,7 dB
Dauer 0,3 dB bis 1,9 dB

Tabelle 101: Abweichungen der COCOMO-II-Resultate in den Modellvarianten
a. LE = 10-|log(Modellresultat/Istwert)|

Dagegen zeigt der Vergleich der spat entdeckten Fehler fiir den Normalfall, dass das
Modellresultat fiir die Fehlerzahl etwa doppelt so hoch wie der Istwert ist. Darum
wurde die Fehlerzahl mit dem Fehlerfaktor auf 50 % angepasst.

Entdeckte Fehler

Abbildung 88 zeigt den Median der Fehlerzahlen aus den Modellvarianten im Ver-
gleich zu Istwerten fiir Anderungsauftrige. Bei den Priifungen, bei denen keine Ist-
werte als Balken dargestellt sind, sind keine Fehlerzahlen verfiigbar. Weil die Daten
vertraulich sind, ist die Skala nicht beschriftet.

Il Istwert
7 [ ] Modellresultat
=1
< |
N
Qo |
<
()
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T T T T T T
Spez.- Entwurfs- Modultest Code- Int.-test System-  Ext. Tests

review review review test

Abb. 88: Fehlerzahlen und Anderungsauftrige im Vergleich

* Istwerte fiir Fehler in Kundenreviews, internen Spezifikationsreviews, Entwurfsre-
views, Modultests, in der Codeanalyse und im Integrationstest sind nicht verfiig-
bar.

e Fiir die Codereviews ist die Zahl der Anderungsauftrége verfiigbar: Entdeckte Feh-
ler in formalen Codereviews wurden {iber Anderungsauftrige korrigiert. Ein
Anderungsauftrag konnte mehrere Befunde enthalten, weil der Auftrag einem zu
andernden Modul zugeordnet ist; er erlaubt, das Modul auszuchecken. Nebenfeh-
ler wurden im Zuge spiterer Anderungen korrigiert und nicht als eigener Ande-
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rungsauftrag behandelt. Das Modell berechnet im Median rund drei mal so viele
Fehler wie Anderungsauftrage (Minimum: Faktor 2, Maximum: Faktor 4). Die
Befragten bewerteten dieses Verhaltnis als plausibel.

e Die berechnete Fehlerzahl und der Istwert fiir Anderungsauftrige stimmen fiir den
Systemtest (einschliefilich interne Fahrzeugtests) gut tiberein (LE = 1,3 dB). Die
Abweichung fiir externe Tests durch den Kunden ist hoher (LE = 2,2 dB). Ich fiihre
dies auf den Feldtest im Modell zuriick, der auf Jones (1996) basiert. Er ist nicht
vergleichbar mit einer intensiven Fahrzeugtest. Die Modellvariante mit intensivem
Feldtest zeigt sehr geringere Abweichungen (LE fiir Systemtest und interne Fahr-
zeugtests: 0 dB, LE fiir externe Fahrzeugtests: 1,2 dB).

Initiale Priifkosten

Die Modellresultate fiir den Aufwand initialer Priifungen stimmen gut mit den Ist-
werten iiberein. Abbildung 89 zeigt den Aufwand in Entwicklerstunden. Die Werte
sind nicht dargestellt, weil die Daten vertraulich sind. Die Ausnahme ist der Integra-
tionstest, fiir den das Modellresultat zu niedrig ist.
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Abb. 89: Aufwand fiir initiale Priifungen

Der Vergleich der Istwerte mit dem Median der Modellresultate zeigt:

* Der Aufwand fiir das Spezifikationsreview weicht um 1,3 dB ab. Das Resultat ist
gut. Die Abweichung kann dadurch erkldrt werden, dass in CoBe die Kundenre-
views nicht dargestellt werden und dass im Projekt Spezifikation und Dokumenta-
tion nicht strikt getrennt wurden. Der Priiflingsumfang und der Umfangsfaktor
sind fiir das Projekt nicht bekannt, da Anforderungen als einzelne Einheiten ver-
waltet wurden.

* Der Aufwand fiir das Entwurfsreview wird vom Modell mit 1,2 dB gut berechnet.

Der Umfang des Priiflings ist unklar, Jones (2007) zeigt einen groflen Bereich fiir
den Umfangsfaktor.

* Das Modellresultat fiir Codereviewaufwand ist gut, liegt aber etwas zu niedrig (1,3
dB). Die Istwerte des Projekts enthalten aber auch Aufwand fiir formale Codere-
views nach der Fehlerkorrektur.
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* Fiir Modultest und Codeanalyse sind keine Istwerte verfiigbar.

* Das Modellresultat fiir den Integrationstest ist zu niedrig, die Abweichung ist
4,8 dB. Die Ursache vermute ich im iterativen Vorgehen, dabei wird der Integrati-
onstest mehrmals wiederholt. Dieser Aspekt wird in CoBe nicht dargestellt.

* Das Modellresultat fiir den Systemtest-Aufwand stimmt sehr gut mit dem Istwert
tiberein (0,3 dB).

Die Testfallzahl wird zu niedrig berechnet (3,9 dB). Ich vermute, dass sich die
Erfahrungswerte von Jones (2007) nicht ohne weiteres auf die Entwicklung von
Steuergerate-Software iibertragen lassen, weil die Werte auf Function Points beruhen,
die fiir die betrachtete Doméne nicht geeignet sind. Aufierdem wurden im Projekt aus
den Testfédllen Testsequenzen abgeleitet; dazu miissen die einzelnen Testfalle relativ
detailliert definiert sein. Somit entstehen also mehr, dafiir feingranulare Testfalle.
Aufwand und Fehlerentdeckung sind aber plausibel.

Aufwand fiir Korrekturen und Priifung der Korrekturen

Der Aufwand fiir Korrektur und Priifung der Fehler, die im Systemtest und den Fahr-
zeugtests entdeckt wurden, stimmt gut zwischen Modell und Projekt iiberein
(Tabelle 102). Die Istwerte liegen im Bereich, den die Modellvarianten aufspannen.
Der Median aus dem Projekt liegt nahe am Minimum der Modellvarianten. Der Mit-
telwert aus dem Projekt liegt nahe beim Median der Modellvarianten. Da jede ein-
zelne Variante einen statistischen Mittelwert fiir den Korrekturaufwand pro Fehler
berechnet, ist der Vergleich zwischen Mittelwert und Median moglich. Da die
Modellvarianten auch extreme Varianten enthalten, wird kein Mittelwert der Modell-
varianten berechnet; er wiirde durch die extremen Varianten verzerrt, der Median ist
robuster.

Aufwand (Eh) Istwert Modellresultat

pro Fehler Mittelwert Median Median Minimum Maximum
SIL-0 20,1 11,0 20,1 9,6 46,0
SIL-3 19,6 13,0 22,5 12,3 47,7

Tabelle 102: Vergleich des Aufwands zur Korrektur und Priifung eines Fehlers

Der Aufwand, der fiir die Behebung der spéten Fehler (Korrektur und Priifung der
Korrektur) insgesamt anfallt, wird mit hoher Genauigkeit berechnet. So liegt der
Median der Modellresultate nur etwas zu niedrig (1,5 dB). Die Ursache fiir diese
Abweichung sind die zu niedrigen Modellresultate fiir den Modultest. Dies zeigt die
Aufwandsverteilung der Anderungen (Abbildung 90). Die gewéahlten Wiederho-
lungsanteile fiir die Tests, vor allem fiir den Modultest, wurden zu niedrig gewahlt;
diese Einschatzung wurde von den Befragten bestatigt. Die Verteilung der Istwerte
basiert auf allen Anderungen. Sie enthilt damit auch Aufwinde fiir Anforderungsan-
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derungen und andere Anderungen. Aufwand fiir Codereviews der Anderungen
wurde im Projekt nicht gesondert dokumentiert und ist darum nicht dargestellt.

Modellresultate Istwerte

[ ] Korrektur

] Modul-
test

B System-
test

Abb. 90: Aufwandsverteilung auf Korrektur und Priifung der Korrektur

8.5.5 Resultate des Referenzmodells

Der Median der Modellvarianten stimmt gut mit den Istwerten des Projekts iiberein.
Einige wenige Werte weichen deutlich ab, liegen aber noch im Rahmen des Validie-
rungskriteriums. Diese Abweichungen lassen sich auf den Prozess und die Doméne
zuriickfiithren; diese Einschatzung wurde in der Diskussion mit den Projektbeteiligten
bestatigt. Fiir das Referenzmodell werden diese Erkenntnisse als Eingaben iibernom-
men:

Der Wiederholungsanteil im Modultest wird auf 10 % erhoht. Dies entspricht der
Einschdtzung der Befragten, die fiir den Modultest einer Anderung einen wesent-
lich hoheren Aufwand erwarten als im Systemtest.

Fiir die Testwiederholung im Systemtest wird 20 % Zusatzaufwand bendétigt, ein
Kompromiss zwischen dem Zusatzaufwand fiir Korrekturen ohne Funktionsande-

rung und dem Zusatzaufwand fiir Korrekturen mit Funktionsianderung (van
Megen und Meyerhoff, 1995).

Die Fehlerverteilungen fiir Fehlerart und Fehlerschwere werden vom Industriepro-
jekt tibernommen.

Fiir interne Fahrzeugtests wird die Intensitat des Feldtests mit dem Faktor 2,5
angepasst; der Kunde entdeckt 95 % der Fehler vor Produktionsbeginn.

Die Fehlerschwere ist durch den Schaden definiert. Kritische Fehler konnen Perso-
nenschaden verursachen; bei schweren Fehlern erfolgt eine Riickrufaktion. Kriti-
sche Fehler werden also mit 10 Millionen Euro Schaden beim Auftreten bewertet,
Hauptfehler mit 1 Million Euro.

Mit diesen Eingaben stimmen die Istwerte und Modellresultate noch genauer iiber-
ein. Abbildung 91 zeigt die Fehlerzahlen; fehlende Istwerte im Diagramm waren
nicht verfiigbar. Die Zahlenwerte sind vertraulich und darum nicht dargestellt.
Fehlerzahlen des Systemtest mit internen Fahrzeugtests und externe Fahrzeugtests
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durch den Kunden werden nahezu exakt getroffen; die Fehlerzahl im Systemtest
weicht um O,C:’:_ dB, in externen Tests um 0,0 dB ab. Fiir das Codereview ist der Istwert
die Zahl der Anderungsauftrage, die nicht direkt mit der Fehlerzahl vergleichbar ist.

Il Istwert
[ ] Modellresultat

il j 1.

Spez.- Entwurfs- Modultest  Code- Int.-test  System- Ext.
review review review test Tests

Fehlerzahl
Il

Abb. 91: Fehlerzahlen im Vergleich

Die Modellresultate fiir den Behebungsaufwand der spaten Fehler weichen um nur
0,4 dB ab. Die Verteilung auf die Korrektur und die Priifungen der Korrektur stimmt
gut mit den Istwerten tiberein (Abbildung 92).

Referenzmodellresultate Istwerte

] Korrektur

] Modul-
test

W System-
test

Abb. 92: Aufwandsverteilung auf Korrektur und Priifung der Korrektur

8.6 Bewertung der Validierung

Ich diskutiere zuerst die Resultate der Validierung (Abschnitt 8.6.1) und bewerte
dann ihre Aussagekraft (Abschnitt 8.6.2). Folgerungen enthalt Abschnitt 8.6.3.

8.6.1 Resultate der Validierung

Die Validierung mit Industrieprojekten zeigt, dass CoBe fahig ist, umfangreiche, ite-
rativ und parallel ablaufende Projekte zu beschreiben, die unterschiedlich sicherheits-
kritische und sich dndernde oder stabile Anforderungen haben. Das Modell spiegelt
auch die Entwicklung von Systemsoftware gut wieder. Die Kalibrierungsparameter
tir Aufwand, Dauer und Fehlerzahl, und zusétzlich die Verteilung auf die Fehlerart
wurden angepasst. Die dazu notwendigen Daten werden haufiger als andere Metri-
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ken erfasst und archiviert (Brodman und Johnson, 1996; Fink und Hampp, 2005;
Kasunic, 2006).

Die folgenden Modellresultate stimmen gut mit Istwerten tiberein, weil sie weniger
als 2 dB abweichen:

* Der Korrekturaufwand pro Fehler (verfiigbar in Projekt 1 und 2),
* der Priifaufwand pro Fehler nach Korrektur (verfiigbar in Projekt 2),

* die Fehlerzahlen aus spaten Tests (verfiigbar in Projekt 2); mit Einschrankung, d.h.
nur im Referenzmodell, die Fehlerzahlen aus Kundentests und dem Einsatz (ver-
tiigbar in Projekt 1 und 2) und intensiven Tests (verfiigbar in Projekt 1),

¢ die Zahl der Fehler pro Reviewsitzung in Codereviews (verfiigbar in Projekt 1) und
die Fehlerzahl insgesamt der Codereviews (verfiigbar in Projekt 2, durch Befragte),

* der Aufwand, Dauer und Mitarbeiterzahl fiir spate Tests (verfligbar in Projekt 1
und 2),

* der Aufwand fiir Reviews (verfiigbar in Projekt 2),

e der Aufwand fiir die Wiederholung von Priifungen und den Korrektur- und
Priifaufwand fiir spate Fehler (beide verfligbar in Projekt 2).

Insgesamt wurden die Modellresultate von den Beteiligten als plausibel bewertet.
Probleme zeigten sich bei der Abbildung intensiver Erprobungen und Vorablieferun-
gen des Produkts. Dies ldsst sich dadurch begriinden, dass der Feldtest mit der
Fehlerentdeckungsquote aus Jones (1996) einem solchen intensiven Probebetrieb
nicht entspricht. Jones (2007) diskutiert diesen Punkt und erklart, dass die Intensitat
unterschiedlich sein kann und sich die Fehlerentdeckungsquote dementsprechend
andert.

Fiir die Testwiederholung und den dazu notwendigen Umfangs- und Aufwandsan-
teil gibt es kaum Erfahrungswerte. Dies fithrt zu Abweichungen der Kosten fiir den
Modultest und fiir den Integrationstest bei iterativem Vorgehen und bei gezielter
Priifwiederholung. Die Modelleingaben waren mehr oder weniger frei gewahlt und
enthalten eine grofse Unsicherheit.

8.6.2 Giiltigkeit der Validierungsresultate

Die externe und die interne Validitat der Validierung ist eingeschrankt. Die Ursachen
fiir diese Einschrankungen sind:

e Fehlerzahlen aus den frithen Phasen, d.h. aus den Reviews, waren in beiden Pro-
jekten nicht vollstandig verfiigbar. Fiir das Industrieprojekt 1 und seine Subsystem-
Projekte konnte aber die Zahl der Fehler pro Sitzung erfragt werden. Problematisch
an dieser Metrik ist, dass sie durch den Umfang und die Merkmale der Sitzung
beeinflusst wird; iber den Umfang des Dokuments standen aber keine Istwerte zur
Verfligung.
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Es sind nur wenig Projekte untersucht worden. Die Projekte wurden nach
Abschluss betrachtet. Somit handelt es sich um zwei Fallstudien. Die Resultate
konnen zufallig gut mit den Istwerten tibereinstimmen. Im Idealfall waren Istwerte
aus mehreren Projekten in dhnlicher oder der gleichen Umgebung, aber mit unter-
schiedlichem Priifprozess, verfligbar. Dann kénnte der Nutzen validiert werden.
Aussagen tiber die Streuung waren moglich.

Es erfolgte keine Prognose, sondern eine nachtrédgliche Bewertung.

Ich bewerte die Industrievalidierung aber trotzdem als aussagekraftig und erfolg-
reich. Die Kritikpunkte konnen nicht vollstandig entkréftet werden; sie konnen aber
entscharft werden, wenn die Resultate der studentischen Projekte einbezogen wer-
den:

Auch wenn wenig Projekte untersucht wurden, so handelt es sich um sehr unter-
schiedliche Projekte (Abbildung 93). Da CoBe fiir so unterschiedliche Projekte gute
Resultate erbringt, kann vorsichtig auf eine gute Verallgemeinerbarkeit geschlos-
sen werden.

Umfang A
des
Codes Projekt 1 mit
(log.) PY 3 Teilprojekten in C++
107 | max. Schaden 10° Euro
Projekt 2in C,
105 @ max. Schaden
1 107 Euro (SIL-3)
3 21 stud. Projekte in Java,
10° —— ® max. Schaden 103 Euro
Prozess-
Stabile Stabile Anforderungs- merkmale
Anforderungen, Anforderungen, anderungen,
sequentieller paralleler, paralleler,
Prozess iterativer Prozess iterativer Prozess

Abb. 93: Uberblick iiber die Projekte fiir die Validierung

* Der Nutzen des Sperzifikationsreviews konnte durch Vergleich der Kosten mit

unterschiedlichen Priifparametern gezeigt werden. Der Nutzen anderer Priifungen
konnte nicht direkt durch einen Vergleich der Kosten durch unterschiedliche Priif-
prozesse und Priifparameter gezeigt und validiert werden. Die Projekte fiir die
Validierung unterschieden sich aber deutlich in den Priifungen, beispielsweise bei
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der Zahl der Gutachter oder bei den Testparametern. Die Modellresultate stimmen
gut mit den Istwerten iiberein. Darum konnen diejenigen Zusammenhénge, deren
Eingabeparameter sich fiir die Projekte unterscheiden, bestitigt werden.
Tabelle 103 zeigt, welche Istwerte und welche Unterschiede im Priifprozess durch

Istwerte gepriift wurden.

Unterschied des Priifprozesses

Istwerte aus Projekt

Priifung durch Vergleich
mit

Codereview mit einem oder vielen
Gutachtern

Industrieprojekte 1
und 2

Fehlerzahl pro Sitzung und
Fehlerzahl

Oberflachliche Abnahme oder inten-
sive Erprobung

Stud. Projekte, Indus-
trieprojekte 1 und 2

Fehlerzahl

Systemtest mit Black-Box-Test und
Anweisungsiiberdeckung, mit inten-
sivem Black-Box-Test, mit Black-Box-
Test und Zweigiiberdeckung

Stud. Projekte, Indus-
trieprojekte 1 und 2

Testaufwand, Fehlerzahl
und Korrekturaufwand

Korrektur oder Korrektur mit Priif-
prozess

Stud. Projekte, Indus-
trieprojekte 1 und 2

Aufwand pro Fehler und
Gesamtaufwand fiir Fehler

Mehr oder weniger intensive Spezifi-
kationsreviews mit vielen Gutach-
tern

Studentische Projekte

Fehlerzahlen und Korrek-
turaufwand nach Spezifika-
tionsreview und Systemtest

Tabelle 103: Kosten und Nutzen gepriift durch Istwerte

Die Kreuzvalidierung mit den studentischen Projekten kann eine Prognose fiir
Industrieprojekte nicht ersetzen, zeigt aber, dass die Ungenauigkeit grofler wird.
Da CoBe fiir die Industrieprojekte eine hohere Genauigkeit als fiir die studenti-
schen Projekte in der Diagnose zeigt, kann gefolgert werden, dass auch die Prog-
nose von Industrieprojekten genauer als die Prognose studentischer Projekte wird.

Ein weiteres mogliches Problem der Giiltigkeit dieser Validierung ist, dass das
Modell fiir die studentischen Projekte gedndert wurde. Fiir die Industrieprojekte wur-
den Modellvarianten fiir nicht verfiigbare Eingaben erstellt. CoBe wurde fiir alle Pro-

jekte kalibriert.

e Die Kalibrierung verandert nicht die Zusammenhénge und deren Parameter; sie

verandert die Resultate gleichméfiig. Die Abbildungen 39 und 40 (Abschnitt 6.7)
zeigen dies deutlich. Wird beispielsweise die Fehlerzahl kalibriert, dann andert
dies nichts an Zusammenhangen der Fehlerentdeckung und anfallenden und ent-
fallenden Fehlerkosten. Die Kalibrierungsparameter konnen aus historischen
Daten berechnet werden. Die Voraussetzung, um giiltige Aussagen mit CoBe zu
treffen, ist also erftillbar.
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* Die beiden Modellverbesserungen, die nach der ersten Erprobung von CoBe mit
studentischen Projekten erfolgten, bedrohen die Giiltigkeit nicht: Sie basieren auf
empirischen Untersuchungen und nicht auf den Istwerten, mit denen verglichen
wurde. Nach der Modellverbesserung wurden die Modellresultate mit anderen Ist-
werten verglichen: Vor der Modellanderung wurden Mittelwerte der Projekte ver-
wendet. Im Gegensatz dazu wurden nach der Modellanderung einzelne Projekte
des Praktikums analysiert und fiir den Vergleich verwendet.

e Die Erweiterungen der Modellversion 1 von CoBe zur Modellversion 2
(Abschnitt 7.1) mit detaillierten Tests auf allen Integrationsebenen, der Codeana-
lyse und dem Korrekturpriifprozess dandern nichts an bestehenden Modellzusam-
menhdngen. Sie bedrohen darum nicht die Aussagen der durchgefiihrten
Erprobung des Modells. Da fiir alle Tests die gleichen Zusammenhénge modelliert
werden, werden diese Zusammenhange sogar zusatzlich bestatigt.

o Kiritisch fiir die Validierung mit den Industrieprojekten sind Modelleingaben, die
nicht verfiigbar waren. Dabei handelt es sich um Kalibrierungsparameter und
Priifparameter. Die Losung mit Modellvarianten fiir unsichere Modelleingaben
schlage ich auch fiir den Praxiseinsatz vor. Die Priifparameter sind nur in der nach-
traglichen Validierung nicht bekannt, da beim Modelleinsatz die Priifparameter
vorgegeben werden. Diese Unsicherheit ist darum ein spezielles Merkmal der Dia-
gnose, also des nachtraglichen Modelleinsatzes. Die Validierung zeigt zwei Para-
meter, die in bestimmten Situationen zusétzlich durch Erfahrungswerte angepasst
werden sollten: Die Intensitat des Feldtests ist unklar. Der Aufwand fiir die Wie-
derholung der Tests ist unsicher. Wie fiir die Kalibrierungsparameter konnen diese
Werte aber aus Archivdaten dhnlicher Projekte erhoben werden.

8.6.3 Folgerungen

Je genauer die Eingaben gesetzt werden konnen, desto genauer werden die Resultate.
Fiir eine erste Kalibrierung sind vier Faktoren (Aufwand, Dauer, Fehler, Fehlerart)
ausreichend, die mit Archivdaten belegt werden konnen. Zusitzlich konnen weitere
Eingaben mit Archivdaten belegt werden. Dazu gehort etwa der Wiederholungsanteil
und -aufwand in Tests. Die Modellresultate sind dhnlich genau wie die Resultate
anderer algorithmischer Kostenschatzverfahren. CoBe ergéanzt also die Kostenschat-
zung um eine Bottom-up-Kostenschatzung fiir Priifungen, Korrekturen und Wieder-
holung der Priifungen. Vor allem aber macht das Modell den Nutzen der Priifungen
sichtbar. Dieser Nutzen ist in der Realitdat nur durch den Vergleich von Projekten mit
unterschiedlichen Priifungen messbar, weil dazu die Kostendifferenz durch unter-
schiedliche Priifungen betrachtet werden muss.

Die Validierung zeigt, dass CoBe im Grundsatz allgemein eingesetzt werden kann.
Dazu miissen aber die Kalibrierungsparameter mit Archivdaten dhnlicher Projekte,
z.B. der Organisation, belegt werden. Mit diesen Voraussetzungen sind die Resultate,
die in der Validierung berechnet werden, fiir ganz unterschiedliche Projekte und Prii-
fungen ausreichend genau. CoBe enthalt einen umfangreichen Priifprozess. Die in der
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Praxis typisch eingesetzten Priifungen werden abgedeckt (Liggesmeyer, 2002; Sieg-
wart, 2004; Jones, 1996).

Die Validierung bestatigt, dass die Priifparameter wichtige Modelleingaben sind. Ein-
zig flir unterschiedliche Arten des Feldtests war keine ausreichende empirische Basis
tiir ein solches Modell verfiigbar. Es zeigt sich in der Validierung, dass unterschied-
lich intensive Feldtests eine Rolle spielen. Beim Modelleinsatz sollten darum Erfah-
rungswerte zur Verfligung stehen. Falls solche Werte nicht vorhanden sind, zeigt die
Validierung, dass unsichere Eingaben durch Modellvarianten dargestellt werden
konnen.

Das iterative Vorgehen fiir den Modelleinsatz wurde bereits wahrend der Validie-
rung deutlich: Wenn Eingaben unsicher sind oder Ausgaben stark abweichen, dann
wird deutlich, dass Informationen iiber das Projekt fehlen. Damit wird eine gezielte
Analyse moglich, die zu einem besseren Prozessverstandnis fiihrt. Dadurch kann das
Modell genauer angepasst und verbessert werden. Die Analyse zeigt, welche Annah-
men iiber den Prozess oder im Modell nicht haltbar sind. Sie zeigt, ob und wie das
Modell erweitert werden muss. Das Modell macht nicht verfiigbare Metriken sichtbar
und erganzt somit vorhandene Daten.

8.7 Modellverhalten und Modelleinsatz

Die Validierung zeigt, dass CoBe reale Projekte ausreichend genau widerspiegelt, um
Aussagen tiber Kosten und Nutzen von Priifungen zu treffen; das Modell kann also
die Realitdt fiir diesen Aspekt diagnostisch oder prognostisch abbilden. Die Modell-
ziele sind (Abschnitt 3.2):

* Mit dem Modell sollen die Auswirkungen von konkreten und detaillierten Ent-
scheidungen {tiber Priifungen gezeigt werden konnen. Dazu gehoren Kosten und
Nutzen im Projekt, aber auch die langfristigen Auswirkungen, beispielsweise
durch Fehlerfolgekosten.

e Mit dem Modell sollen Auswirkungen von Entscheidungen tiber Priifungen, die in
realen Projekten getroffen wurden, diagnostiziert, d.h. nachtraglich dargestellt
werden konnen, es soll Unterschiede zwischen Prozessen deutlich machen, ihre
Auswirkungen im Projekt und ihre langfristigen Auswirkungen darstellen konnen.

* Das Modell soll erlauben, die Kosten mit dem Nutzen zu vergleichen, um Kosten
und Nutzen gegeneinander abzuwagen.

* Das Modell soll ermoglichen, den Priifprozess und die Priifparameter beziiglich
der Kosten und des Nutzens zu optimieren, um die Gesamtkosten zu minimieren.

* Das Modell soll die Planung eines Projekts unterstiitzen und darum die Auswir-
kungen von Entscheidungen auf der dazu passenden Abstraktionsebene und als
Planungsmetriken darzustellen.
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Fiir den Modelleinsatz schlage ich ein Vorgehen vor, das sich an GQM (Basili und
Rombach, 1988) orientiert (Abbildung 94): Im ersten Schritt wird die Frage formuliert,
dann werden diejenigen Modellausgaben ausgewahlt, mit denen die Frage quantita-
tiv beantwortet werden kann. Im nachsten Schritt wird das Modell kalibriert, dazu
werden die Kalibrierungsparameter fiir Dauer, Aufwand, Fehlerzahlen gesetzt. Falls
notwendig, werden weitere Parameter angepasst. Dann werden die anderen Modell-
eingaben fiir die Prozess- und Produktmerkmale und fiir die Priifungen gesetzt. Fiir
den Vergleich unterschiedlicher Prozesse konnen dabei auch mehrere Modellinstan-
zen verwendet werden. Die Modellresultate werden gesammelt und dargestellt; sie
miissen interpretiert werden.

Frage(n) formulieren
Modellresultate identifizieren
Modell kalibrieren
Prozess- und Produktmerkmale eingeben

Eingaben fiir Priifungen in einem oder
mehreren Modellen setzen

Modellresultate sammeln und darstellen

Resultate interpretieren, um die Frage(n)
zu beantworten

Abb. 94: Schritte beim Modelleinsatz

Im Folgenden zeige ich die Einsatzmoglichkeiten des Modells mit einem fiktiven Pro-
jekt und mit Daten aus einem Bericht tiber Prozessverbesserungen (Haley et al., 1995).
Dazu verwende ich fiinf Fragen als Beispiele:

1. Wie hoch sind die Kosten, d.h. Dauer, Aufwand und Personalbedarf fiir einen Priif-
prozess, der ausschliefslich auf Tests basiert? Wie hoch sind die langfristigen Kos-
ten bei diesem Vorgehen?

2. Wie viel kostet, wieviel niitzt das Entwurfsreview bei einem solchen Priifprozess?
Wie wirkt sich das Review im Projekt und wie wirkt sich das Review langfristig in
der Wartung und im Einsatz aus? Sind fiinf Gutachter notwendig, oder reichen
zwei Gutachter aus?

3. Wie wirken sich Prozessverbesserungen mit Reviews aus, wie sie beispielsweise
von CMM gefordert werden?



8.7. Modellverhalten und Modelleinsatz 263

4. Sollen die Modultests verbessert oder Codereviews eingefiihrt werden?

5. Was kosten Regressionstests, wenn sie von Hand durchgefiihrt werden miissen?
Sind solche Tests in einem Projekt mit beschrankter Dauer und beschranktem Auf-
wand machbar? Was bringt eine Testautomatisierung?

Tabelle 104 gibt einen Uberblick iiber die Modellziele und das Beispiel, mit dem der
Modelleinsatz fiir dieses Ziel illustriert wird.

Modellziel Beispiel

Auswirkungen von Entschei- | Frage 2: Entwurfsreviews mit Varianten (Abschnitt 8.7.2)
dungen im Projekt darstellen | Frage 5: Testautomatisierung (Abschnitt 8.7.5)

Langfristige Auswirkungen

der Entscheidungen darstellen Frage 2: Entwurfsreviews mit Varianten (Abschnitt 8.7.3)

Frage 3: Verbesserung mit Reviews (Abschnitt 8.7.4)
Frage 5: Verbesserungen durch Testautomatisierung
(Abschnitt 8.7.5)

Auswirkungen darstellen und
Unterschiede deutlich machen

Kosten und Nutzen verglei- Frage 2: Entwurfsreview mit Varianten (Abschnitt 8.7.3)
chen, abwégen und optimieren | Frage 4: Codereviews oder Modultest (Abschnitt 8.7.6)

Frage 1: Kosten von Tests (Abschnitt 8.7.1)
Planungsmetriken darstellen | Frage 2: Kosten der Entwurfsreviews (Abschnitt 8.7.2)
Frage 5: Kosten fiir Regressionstest (Abschnitt 8.7.5)

Tabelle 104: Uberblick {iber die Modellziele und Beispiele fiir den Modelleinsatz

8.7.1 Ein fiktives Beispielprojekt

Das Beispielprojekt hat einen Umfang von 200 Function Points und soll in Java reali-
siert werden. Alle Parameter des Modells werden auf ihre Normalwerte gesetzt.
COCOMO I berechnet fiir das Projekt 42 Entwicklermonate Aufwand, 14 Monate
Dauer (rund 280 Arbeitstage) und 3 Mitarbeiter. Als Ausgangspunkt fiir den Priifpro-
zess werden typische, normale Tests (Modultest, Integrationstest, Systemtest) durch-
gefithrt und von Hand wiederholt. Es findet ein Feldtest statt. In der Wartung werden
Modultest und Systemtest gezielt fiir die Korrektur wiederholt, der Integrationstest
wird als Regressionstest durchgefiihrt. Die Fehlerschwere ist im Beispielprojekt durch
den moglichen Schaden im Einsatz definiert. Dabei handelt es sich um eine Anwen-
dung, bei der ein kritischer Fehler einen Schaden von 10 000 Euro verursachen kann;
die Hauptfehler verteilen sich zu gleichen Teilen auf einen Schaden von 1000 Euro
und 100 Euro, Nebenfehler fiihren zu Komfortverlusten. Etwa 10 % der Fehler treten
nicht auf und werden auch nicht gemeldet. Die Software wird nach der Auslieferung
haufig verwendet. Kritische Fehler werden sofort korrigiert; die Software wird erst
wieder eingesetzt, wenn der Fehler behoben ist. Bei anderen Fehlern wird die Soft-
ware etwa zehnmal verwendet, bis ein Fehler korrigiert wird.
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Die Modellresultate fiir die Qualitatskosten der Tests und Korrekturen zeigt
Tabelle 105 mit dem Aufwand in Entwicklerstunden, der Dauer in Arbeitstagen und
dem Personalbedarf (gerundet). Die Resultate basieren auf den Fehlerzahlen, die
CoBe berechnet (Tabelle 106). Insgesamt fallen 193 Arbeitstage und rund 2702 Ent-
wicklerstunden fiir die Tests und die Korrektur im Projekt an. Die Fehlerfolge- und
Wartungskosten sind im Vergleich zu den Projektkosten und zu den Projekt-Quali-
tatskosten um Groflenordnungen hoher. In der Wartung macht die Priifung nach der
Korrektur den wesentlichen Anteil aus (rund 15 000 Entwicklerstunden). Die Fehler-
folgekosten liegen bei rund 657 000 Euro.

Qualitatskosten Au(fg;a;nd Dauer (Tage) Mli;?jrfzii;er I\I/gjfgf :ﬁr
Modultest, Korrektur 325 20 2 0?
Integr.-test, Korrektur 685 56 3 2
Systemtest, Korrektur 972 72 3 2
Korrektur Feldtest 720 45 - 2
Wartung, nur Korrektur 3611
Wartung, nur Retest 11 388

Tabelle 105: Modellresultate fiir Qualitatskosten

a. Im Modultest priifen und korrigieren die gleichen Entwickler

Zahl der Fehler | Insgesamt | Ausgeliefert | Gemeldet und wirksam

642 290 261
Tabelle 106: Modellresultate fiir Fehlerzahlen

Bewertung

Diese Planungsmetriken erganzen die Kostenschatzung, beispielsweise die Top-
down-Schatzung mit COCOMO II. Sie zeigen, dass der Zeitplan mit diesen Priifun-
gen eng ist, wenn strikt sequentiell vorgegangen wird, weil bereits Priifung und Kor-
rektur rund zwei Drittel der Projektdauer bendtigten. Der Vergleich des
Wartungsaufwands mit dem Aufwand fiir Priifungen und Korrektur im Projekt
deutet eine nicht optimale Situation an.

8.7.2 Kosten und Nutzen des Entwurfsreviews

Die Demonstration von Kosten und Nutzen zeige ich am Beispiel des Entwurfsre-
views fiir zwei Falle. Im ersten Fall wird ein formales Review mit fiinf Gutachtern
durchgefiihrt, im zweiten Fall erfolgt das Review mit zwei Gutachtern. CoBe gibt
diese beiden Falle nicht fest vor; es erlaubt, eine andere Gutachterzahl, Gutachter-
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kompetenz oder Vorbereitungsintensitit zu wahlen. In beiden Fallen erfolgt die Vor-
bereitung griindlich. Die Priifung wird, falls notwendig, auf mehrere Sitzungen
verteilt, die von einem Moderator betreut werden. CoBe zeigt, welche Kosten entste-
hen. Tabelle 107 zeigt Modellresultate fiir die Planungsmetriken eines Review mit 5
Gutachtern, Tabelle 108 das Review mit 2 Gutachtern. Das Projekt verzogert sich ohne
eine parallele Organisation des Entwurfsreviews und der Korrektur um etwa zwei
Wochen.

Entwurfsreview mit Aufwand Dauer Mitarbeiter | Mitarbeiter
5 Gutachtern (Eh) (Tage) Priifung Korrektur
Review- Entwurfsreview 75 9 7,0 -
kosten Korrektur 269 55 - 0,6
Modultest 308 19 2,0 -b
Weitere Integrationstest 573 49 2,9 2,0
Qualitats-
kosten? Systemtest 790 61 2,9 2,0
Feldtest® 517 32 2,0
Modultest 17 1 0,2 2,0
Entfallende | [ntegr.-test 113 7 1,8 2,0
Kosten
(Nutzen)? Systemtest 182 11 0,9 2,0
Feldtest® 203 13 - 2,0

Tabelle 107: Modellresultate fiir ein Entwurfsreviews mit 5 Gutachtern

a. Die Priifungen sind einschliefSlich Korrektur dargestellt.
b. Im Modultest priifen und korrigieren die gleichen Entwickler
c. Nur Korrektur nach Feldtest

Abbildung 95 vergleicht den Nutzen der Reviewvarianten. Mit 2 Gutachtern ist das
Review etwas gilinstiger (221 Entwicklerstunden Aufwand und 47 Tage einschlieSlich
Korrektur), dafiir ist der Nutzen geringer, der mit 5 Gutachtern im Projekt 515 Ent-
wicklerstunden betragt. Berticksichtigt man den Aufwand fiir das Review und die
Korrektur, dann werden mit 5 Gutachtern 171 Entwicklerstunden eingespart. Mit
zwei Gutachter (Tabelle 108) werden 135 Entwicklerstunden eingespart.

8.7.3 Langfristiger Nutzen des Entwurfsreviews

Deutlicher wird der Nutzen des Reviews, wenn die langfristigen Auswirkungen nach
Auslieferung, d.h. die entfallenden Wartungskosten und die entfallenden Fehlerfolge-
kosten fiir Kunden und Benutzer beim Einsatz, betrachtet werden (Tabelle 109). Per-
sonalkosten sind mit 200 000 Euro pro Entwicklerjahr gewichtet.
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Abb. 95: Nutzen des Entwurfsreviews mit 5 oder 2 Gutachtern

Entwurfsreview mit Aufwand Dauer Mitarbeiter | Mitarbeiter
2 Gutachtern (Eh) (Tage) Priifung Korrektur

Review- Entwurfsreview 35 9 4,0 0,0

kosten Korrektur 186 38 0,0 0,6
Modultest 313 19 2,0 -b

Weitere Integrationstest 607 51 2,9 2,0

Qualitats-

kosten? Systemtest 846 64 2,9 2,0
Feldtest® 579 36 2,0
Modultest 12 1 0,2 2,0
Integrationstest 78 5 1,8 2,0

Nutzen?
Systemtest 126 8 0,9 2,0
Feldtest® 141 9 2,0

Tabelle 108: Modellresultate fiir ein Entwurfsreviews mit 2 Gutachtern

a. Die Priifungen sind einschliefSlich Korrektur dargestellt.
b. Im Modultest priifen und korrigieren die gleichen Entwickler.
¢. Nur Korrektur nach Feldtest

Die Gesamt-Qualitatskosten in Euro machen sichtbar, dass das Review niitzlich ist.
Fiir Tabelle 110 werden Personalkosten mit 200 000 Euro pro Entwicklerjahr berech-
net. Durch das Entwurfsreview werden Personalkosten wahrend des Projekts einge-
spart. Der grofite Teil des Nutzens wird aber durch entfallende Personalkosten in der
Wartung erreicht. Fall 1 betrachtet Personalkosten und Fehlerfolgekosten. Personal-
kosten in der Wartung und Fehlerfolgekosten sinken bei einem Review mit 5 Gutach-
tern auf etwa zwei Drittel im Vergleich zu einem Projekt ohne Entwurfsreview (Fall 1
in Tabelle 110, Abbildung 96, links).
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Qualitatskosten Qualitatskosten mit Vertragsstrafe Qualitatskosten mit Vertragsstrafen und niedrigen Folgekosten
7 500 000 - 7 500 000 - 7 500 000 -
5000 000 - 5000 000 5000 000 -
2500 000 2500 000+ 2500 000
[] Folgekosten
ol o 0. [ ] Wartung
Ohne 5 2 Ohne 5 2 Ohne 5 2 Il Projekt
Review Gutachter Review Gutachter Review Gutachter

Abb. 96: Qualitatskosten im Vergleich

Langfristige Auswirkungen 5 Gutachter 2 Gutachter
Entfallende Wartung (nur Korrektur) in Eh 1080 748
Entfallende Wartung (Korrektur und Test) in Eh 4377 3033
Entfallende Personalkosten fiir die Wartung in Euro 479 955 332578
Entfallende Folgekosten beim Einsatz in Euro 190 236 131 821

Tabelle 109: Langfristige Auswirkungen

Qualitatskosten in Euro im Vergleich Ohne Review | 5 Gutachter | 2 Gutachter
giggﬁalkosten fiir Priifung und Korrektur im 296 353 277 506 281 470
gglljs‘(/)\zil;%sgten fiir Priifung und Korrektur in 1 644 656 1164 701 1312 078
Summe Personalkosten 1941 009 1442 207 1593 548
Fehlerfolgekosten beim Einsatz der Software 657 023 466 787 525 202
Niedrige Fehlerfolgekosten beim Einsatz 228 734 162 506 191 196
Kosten fiir Dauer bei Vertragsstrafe im Projekt 2970 416 3 861 552 3643188
Fall 1: Summe Personal- und Fehlerfolgekosten 2598 032 1908 994 2118750

Fall 1: Davon langfristige Kosten (Wartung und

Fehlerfolgekosten) 2 301 679 1631 488 1 837 280

Fall 2: Summe Personalkosten, Fehlerfolgekos-

ten, Vertragsstrafen 5568 448 5770 546 5761938

Fall 2: Summe Personalkosten, niedrige Fehler-
folgekosten, Vertragsstrafen

Tabelle 110: Qualitatskosten im Vergleich

5140 159 5466 265 5427932
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Spielt aber die Dauer eine wichtige Rolle, beispielsweise weil Vertragsstrafen bei Ver-
zogerungen drohen (Fall 2), dann macht CoBe deutlich, dass — bei ungeschickter
Organisation der Reviews und einem strikt sequentiellen Vorgehen — das Projekt
teurer wird, vor allem mit 5 Gutachtern. Tabelle 110 zeigt die Qualitatskosten fiir die-
sen Fall 2. Fiir die monetare Gewichtung der Dauer werden 3 % der gesamten Projekt-
kosten als Vertragsstrafe pro Tag gesetzt. Der langfristige Nutzen gleicht die hoheren
Projektkosten nahezu aus (Fall 2 in Tabelle 110, Abbildung 96, mitte). Sind die Fehler-
folgekosten niedrig, verursachen also Fehler maximal einen Schaden von 1000 Euro
und wird das Produkt selten eingesetzt, dann verandert sich die Aussage von CoBe:
Die Dauer wird zum bestimmenden Einfluss. (Fall 3 in Tabelle 110 und Abbildung 96,
rechts).

Bewertung

Die Modellresultate machen sichtbar, wann und in welchem Mafs Nutzen durch Prii-
fungen erreicht wird. Mit dem Modell kénnen auch kleine, nicht offensichtliche Ver-
besserungen dargestellt werden. Der Nutzen ist in realen Projekten nur durch den
Vergleich der Kosten sichtbar, weil er durch entfallende Fehler entsteht. In vielen Fal-
len sind Metriken, die fiir einen solchen Vergleich notig sind, nicht verfiigbar. Selbst
wenn sie verfiigbar sind, dann ist der Vergleich schwierig, weil andere Unterschiede
der Projekte den Effekt der Priifungen tiberlagern konnen.

Die Modellresultate zeigen den langfristigen Nutzen und machen Unterschiede, die
durch unterschiedliche Priifparameter verursacht werden, deutlich. Die Modellresul-
tate machen deutlich, welche Kosten fiir die Entscheidungen tiber Priifungen relevant
sind: Fehlerfolgekosten beim Einsatz, Projektkosten oder Wartungskosten pragen die
Gesamt-Qualitatskosten und damit die Gesamtkosten. Nutzen und Kosten werden
durch die Abbildung auf Geldwerte vergleichbar; dieser Vergleich ist aber durch die
Gewichtung der Basismetriken, also der Dauer, des Aufwands, und der Fehlerkosten,
gepragt. Uber Priifungen kann rationaler entschieden werden, weil die Gewichtung
dieser Metriken durch plausible Erfahrungswerte moglich ist. Das Beispiel macht
deutlich, dass es keinen Standard-Priifprozess gibt, der in allen Situationen optimal
ist; die konkrete Situation bestimmt den Nutzen.

Prinzipiell ist nattirlich moglich, die Metriken mit Geldwerten so zu gewichten, dass
eine gewollte Entscheidung begriindet wird. Insofern kann CoBe unterlaufen werden.
Die Gewichtung ist aber sichtbar und mit Erfahrungswerten belegt.

8.7.4 Prozessverbesserung durch Reviews

Mit dem Modell kénnen Effekte von Prozessverbesserungen nachtraglich dargestellt
werden. Dazu wird der Effekt von formalen Reviews betrachtet; Reviews werden bei-
spielsweise von CMMI (CMMI Product Team, 2002) gefordert. Die Modellresultate
fiir Spezifikations-, Entwurfs- und Codereview mit jeweils 5 Gutachtern und mit den
gleichen Prozess- und Produktmerkmalen wie in Abschnitt 8.7.1 zeigen, dass die Kor-
rekturkosten auf rund zwei Drittel gesenkt werden konnen (Tabelle 111).
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Haley et al. (1995) berichten einen dhnlich hohen Nutzen dieser Reviews, die im Rah-
men der Prozessverbesserung mit CMM eingefiihrt wurden. Zuerst wurden formale
Entwurfs- und Codereviews, dann Anforderungsreviews etabliert. Es zeigte sich im
Verlauf der Prozessverbesserung, dass der Anteil fiir Nacharbeit an den Projektkos-
ten von rund 40 % auf 20 % gesenkt werden konnte.

Korrekturaufwand (Eh) Ohne Review 5 Gutachter 2 Gutachter
Spezifikationsreview - 123 85
Entwurfsreviewkorrektur - 233 169
Codereviewkorrektur - 251 220
Modultestkorrektur 141 123 129
Integrationstestkorrektur 506 151 233
Systemtestkorrektur 818 242 375
Feldtestkorrektur 720 197 317
Summe (Eh) 2185 1322 1528
Summe (EM) 14 9 10

Tabelle 111: Einfluss von Reviews auf den Korrekturaufwand

Ich beziehe die Korrekturkosten, die CoBe berechnet, auf den Projektaufwand, den
COCOMO II berechnet, damit die Anteile in Prozent direkt verglichen werden kon-
nen. COCOMO II berechnet 42 Entwicklermonate Aufwand fiir das Projekt. CoBe
berechnet 34 % von diesen 42 Entwicklermonaten fiir die Korrektur, falls keine
Reviews durchgefiihrt werden. Mit Reviews mit 5 Gutachtern sinkt dieser Anteil in
CoBe auf 21 %. Durch Reviews sinkt also der Anteil der Korrekturkosten von 34 % auf
21 % in CoBe, von 40 % auf 20 % im Bericht von Haley et al. (1995) durch CMML
CMMI wirkt also etwas starker, vermutlich weil Verbesserungen der Planung, Schu-
lung und Anforderungsdefinition zusatzlich wirken.

Bewertung

Das Modell demonstriert die Verbesserung und macht sie sichtbar, ohne dass reale
Projekte in groffem Umfang durchgefiihrt werden miissen. Das Beispiel zeigt aber
auch eine wichtige Grenze des Modells, weil die Einfiihrung der Reviews, der
Trainingsaufwand und die organisatorischen Schwierigkeiten mit Reviews, damit es
zu keinen Verzogerungen kommt, nicht dargestellt werden. Das Beispiel zeigt auch,
dass CoBe andere Verbesserungen, z.B. der Anforderungsdefinition, der Planung
oder der Schulung, nicht direkt darstellt. Diese Verbesserungen durch Fehlervermei-
dung konnen nicht direkt dargestellt werden, aber indirekt durch die Kalibrierung
einbezogen werden.
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8.7.5 Prozessverbesserung durch Testautomatisierung

Auch dieses Beispiel stammt aus dem Bericht von Haley et al. (1995). Im Projekt, tiber
das berichtet wird, erfolgte die Systemintegration inkrementell. Dazu wurde jedes
Release mit den zu integrierenden Komponenten und Funktionen geplant, dann ent-
wickelt. Nach jeder Integration sollte ein Regressionstest das Release priifen, um die
Funktionsfahigkeit zu gewdahrleisten. Da der Test nicht automatisiert war, wurde er
vernachlassigt; er war zu teuer.

Das Modell kann dieses Problem darstellen. Von Hand kostet die Wiederholung des
Tests rund 75 % des Aufwands der ersten Durchfiihrung, automatisiert 10 % ohne
Funktionsanderung, 25 % mit Funktionsanderung. Fiir den Integrationstest nehme
ich an, dass die Korrektur von 5 Fehlern in ein Release kommt. Dies entspricht etwa 8
Integrationsschritten; es wird in etwa einmal pro Woche integriert.

Ohne Automatisierung Mit Automatisierung
Aufwand (Eh) 368 159
Dauer (Tage) 51 22

Tabelle 112: Nutzen der Testautomatisierung

Ohne Automatisierung miissen rund 2,5 Entwicklermonate aufgewendet werden, der
Test dauert tiber 2 Monate. Diese Kosten lassen sich um mehr als die Halfte reduzie-
ren. Dies entspricht den Erfahrungen von Haley et al. (1995).

Bewertung

Das Modell kann die Auswirkungen einzelner, konkreter Verbesserungsmafsnahmen
zeigen. Die Modellresultate stimmen mit Erfahrungen aus Prozessverbesserungsmaf3-
nahmen iiberein.

8.7.6 Codereview durchfithren oder Modultest verbessern

Die Auswahl zwischen zwei Verbesserungen zeige ich mit der folgenden Frage: Soll
ein Modultest, der als Black-Box-Test durchgefiihrt wird, durch einen Glass-Box-Test
mit 80 % Anweisungs- und Zweigiiberdeckung verbessert werden? Oder soll der glei-
che Aufwand in Codereviews investiert werden soll? Diese Frage diskutiere ich fiir
das fiktive Projekt aus Abschnitt 8.7.1. Der Priifprozess ist mit Spezifikations- und
Entwurfsreviews, Modultest, Systemintegrationstest, Systemtest und Feldtest angege-
ben. Die Reviews finden jeweils mit 5 griindlichen Gutachtern statt. Die Eingaben fiir
alle Tests sind auf den Nominalfall, d.h. Black-Box-Test der Funktionen und Aquiva-
lenzklassen, gesetzt. Alle Prozess- und Produktmerkmale sind auf die gleichen Werte
wie in Abschnitt 8.7.1 gesetzt, mit rund 200 Function Points Umfang und einem maxi-
malen Schaden, den ein Fehler beim Auftreten verursachen kann, von 10 000 Euro.
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Die Tabellen 113 und 114 zeigen die Modellresultate fiir diesen Prozess mit den drei
unterschiedlichen Varianten. Der gleiche Aufwand, der fiir den intensiveren Modul-
test einschliefSlich der Korrekturen anfallt, wird statt dessen in Codereviews mit 4
Gutachtern investiert. Dies erlaubt, rund 57 % des Codes zu begutachten; die Reviews
werden priorisiert, sie konzentrieren sich auf kritischen, risikoreichen Code. In
Tabelle 114 sind die Projekt-Qualitatskosten (also Priifungen, Korrektur, Priifwieder-
holung), die Qualitatskosten in der Wartung (Korrektur, Priifwiederholung) und die
Fehlerfolgekosten beim Einsatz des Produkts dargestellt. Die Gesamt-Qualitatskosten
bestehen aus den Projekt-Qualitdtskosten, den Qualitdtskosten der Wartung und den
Fehlerfolgekosten.

Kosten fiir Aufwand | Dauer
(Eh) | (Tage)
Modultest (Black-Box-Test) mit normaler Intensitat 308 19
Modultest 308 19
Modultest (Black-Box-Test mit normaler Intensitat) .
und Codereview (4 Gutachter, 57 % des Codes) Codereview 326 2
Gesamt 634 48
Modultest (Black-Box-Test mit normaler Intensitat) erganzt um 636 39
Glass-Box-Test bis 80 % Anweisungs- und Zweigiiberdeckung

Tabelle 113: Kosten der Priifung und Fehlerbehebung im Vergleich

- . Fehler-

Qualitatskosten Projekt | Wartung folgekosten Gesamt
Modu%t?st (Black-Box-Test) mit normaler 261886| 851618 349041 | 146 745
Intensitat
Modultest (Black-Box-Test mit normaler
Intensitat) und Codereview (4 Gutachter, 242 983 557 773 222 653 | 1023409
57 % des Codes)
Modultest (Black-Box-Test mit normaler
Intensitat) erganzt um Glass-Box-Test bis
80 % Anweisungs- und Zweigiiberde- 2826611 788620 318358 | 1389639
ckung

Tabelle 114: Qualitdtskosten im Vergleich

Die Modellresultate zeigen, dass der Aufwand fiir die Priifung und Korrektur in bei-
den Féllen etwa gleich ist. Die Codereviews dauern aber ldnger, falls sie nicht so orga-
nisiert werden, dass sie parallel durchgefiihrt werden. Der Nutzen, d.h. entfallende
Personal- und Fehlerfolgekosten, unterscheidet sich deutlich: Mit Codereviews wer-
den bereits im Projekt die Qualitdtskosten gesenkt, langfristig sinken die Qualitats-
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kosten noch deutlicher. Mit dem intensiveren Modultest steigen die Qualitdtskosten
im Projekt, ein geringer Nutzen wird langfristig erreicht.

Am Beispiel des Codereviews wird deutlich, dass die Modellresultate fiir die Planung
des Projekts und der Priifungen verwendet werden konnen: CoBe ergibt, dass 6
Reviewsitzungen eingeplant werden miissen, fiir die ein Gutachter insgesamt 20
Stunden zur Vorbereitung benoétigt. Der Aufwand der Korrektur wird mit iiber einem
Entwicklermonat berechnet, die Dauer mit zwei Entwicklern rund 2 Wochen
(12 Arbeitstage).

Bewertung

CoBe zeigt den Unterschied zwischen den Alternativen. Dieser direkte Vergleich ist
in der Realitat kaum moglich, weil dazu vergleichbare Projekte durchgefiihrt werden
miissen, die sich nur in den Priifungen unterscheiden.

CoBe macht Kosten sichtbar, die sonst nur schwer messbar sind. Dazu gehdren Kos-
ten fiir den Modultest, der haufig von den Entwicklern selbst durchgefiihrt wird,
seine Kosten sind kaum von der Implementierung zu trennen.

CoBe zeigt, dass sich die Dauer der Alternativen unterscheidet — entgegengesetzt zum
Aufwand. Dies zeigt, dass dieser Aspekt des Modells fiir die Entscheidung eine wich-
tige Rolle spielt und darum nicht verkiirzt werden sollte.

Das Beispiel zeigt aber auch die Grenzen von CoBe: Sollen Reviews eingefiihrt wer-
den, und die Entwickler sind unwillig, Code zu begutachten, aber motivierter, die
eher technische Losung des Glass-Box-Tests durchzufiihren, dann miissen die Ent-
wickler von Reviews iiberzeugt werden. Dies stellt das Modell nicht dar. Der Nutzen
durch Schulungseffekte der Codereviews oder durch erhohtes Vertrauen in das Pro-
dukt mit dem intensiveren Test wird nicht deutlich.

CoBe zeigt Kosten und Nutzen von Priifungen; es kennt aber nur einen bestimmten,
abgeschlossenen Handlungsspielraum. Die Resultate beruhen auf Annahmen z.B.
iiber die Reihenfolge von Priifungen. Das Modell kennt keine Effekte, die sich durch
Parallelisierung z.B. von Reviews und der zugehorigen Korrektur ergeben; da das
Modell aber einzelne Aktivitaten betrachtet, sind die Grundlagen fiir eine solche Pla-
nung vorhanden.



Kapitel 9

Zusammenfassung und Bewertung

In diesem Kapitel werden die Arbeit und ihre Resultate zusammengefasst. Sie wer-
den im Hinblick auf die Modellziele und den Modelleinsatz bewertet. Darauf folgen
Ausblick und Schlussbemerkungen.

9.1 Zusammenfassung

Das Resultat dieser Arbeit ist das quantitative Kosten-Nutzen-Modell CoBe fiir kon-
krete Entscheidungen, die in Projekten tiber Priifungen und Priifparameter getroffen
werden. CoBe stellt die Wirkung von Entscheidungen {iber Priifungen und Priifpara-
meter als anfallende Kosten und Nutzen als entfallende Kosten dar. Das Modell
berticksichtigt Auswirkungen der Entscheidungen im Projekt, in der Wartung und im
Einsatz des Produkts. Somit lassen sich die Wirkungen der Entscheidungen verglei-
chen, demonstrieren und nachtraglich fiir konkrete Projekte diagnostizieren, aber
auch wahrend der Planung prognostizieren; die Modellresultate enthalten eine Bot-
tom-up-Kostenschatzung fiir Priifung und Fehlerbehebung. CoBe unterstiitzt somit
Projektleiter und QS-Verantwortliche: Sie konnen die Wirkungen der Entscheidungen
direkt aus dem Modell ablesen.

CoBe unterscheidet sich von anderen Modellen, die sich mit Entscheidungen {iiber
Priifungen in Software-Projekten befassen, durch die Abbildung der konkreten Ent-
scheidungen {iiber Priifparameter. Dazu enthilt es ein detailliertes Reviewmodell, ein
detailliertes Testmodell und Modelle fiir die Wiederholung von Priifungen wahrend
des Projekts und in der Wartung. Es berticksichtigt Fehlerfolgekosten, die auf Einga-
ben tiber die Verwendung der Software basieren.

Das Modell ist quantitativ und besteht aus einzelnen, iiberpriifbaren Zusammenhan-
gen. Diese stammen aus anderen Modellen, aus Datensammlungen, Erfahrungsbe-
richten und Experimenten; sie sind empirisch belegt.

CoBe ist in die Planung und in die Prozessverbesserung eingebunden. Die dazu not-
wendige Kalibrierung erfolgt in Schritten mit definierten Parametern. Die wichtigsten
Metriken fiir die Kalibrierung sind Umfangs- und Aufwandsdaten fiir das gesamte
Projekt und Fehlerzahlen.
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9.1.1 Validierung

Die Validierung erfolgte mit Daten, die gezielt fiir die Validierung erhoben wurden
und darum zur Modellbildung nicht zur Verfiigung standen. Sie folgt einem Konzept,
das sich aus den Schwierigkeiten der Validierung von Entscheidungsmodellen ablei-
tet. Fiir die Validierung des Modells wurden Daten in studentischen Projekten und in
Industrieprojekten erhoben. Diese Projekte decken ein breites Spektrum ab, mit klei-
nen, studentischen Projekten (typisch 3 Teilnehmer pro Team, 21 Wochen Dauer), mit
einem mittelgrofien, sicherheitskritischen Projekt (2,5 Jahre, 14 Mitarbeiter) und mit
einem grofien Projekt, dessen Subsysteme parallel entwickelt wurden (2 Jahre, 400
Mitarbeiter). Daten aus studentischen Projekten zeigen, dass einzelne Zusammen-
héange des Modells gelten. Daten aus den studentischen Projekten und aus der Indus-
trie zeigen, dass das Modell unterschiedlich komplexe und umfangreiche Projekte
ausreichend genau darstellen kann. Dazu ist aber eine Kalibrierung notwendig.

Die Zusammenhidnge zur Modellbildung waren unterschiedlich gut belegt. Wahrend
der Validierung wurden die Zusammenhéange unterschiedlich intensiv validiert. Dar-
aus ergibt sich, welche Modellkomponenten verlasslichere und welche weniger ver-
lassliche Aussagen erlauben:

* Der grundlegende Zusammenhang des Fehlerstrommodells und der Einsparungen
durch entfallende Fehler ist empirisch belegt und wurde zusatzlich durch die Vali-
dierung belegt.

* Die Korrekturkosten eines Fehlers sind durch umfangreiche empirische Studien
und zusatzlich durch die Validierung belegt.

* Die Zusammenhdnge von Reviews sind umfangreich untersucht, sie werden durch
die Validierung zusatzlich gestiitzt.

* Die Zusammenhdnge im Test sind wenig in der Literatur untersucht, aber in der
Validierung einzeln und insgesamt mit studentischen Projekten und mit Indus-
trieprojekten validiert; es fehlen aber breite empirische Daten, vor allem aber quan-
titative Aussagen zur Term- und Schleifentiiberdeckung.

* Kosten zur Testwiederholung werden vom Modell tibereinstimmend zur Realitat
berechnet. Es fehlen aber Erfahrungswerte und eine breite Datenbasis, um die
Basiswerte fiir den Umfang und den Aufwand der Testwiederholung verlasslich zu
prognostizieren.

e Eher unklar ist auch die Situation bei Erprobungen oder beim Feldtest, also bei
allen Tests, die unter mehr oder weniger realen Einsatzbedingungen ablaufen. Die
Literatur enthdlt einige wenige Daten. Diese Daten zeigen aber eine breite Streu-
ung, abhéangig von der Intensitit der Erprobung.

* Die Abschatzung der Fehlerfolgekosten ist kaum durch Messungen bestatigt und
validiert. Fehlerfolgekosten sind aber ein wesentliches Entscheidungskriterium, so
das dieser Aspekt nicht vernachlassigt werden darf.
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9.1.2 Aussagen des Modells

Die Sensitivitatsanalyse und die Analyse zur Optimierung ergdnzen diese Validie-
rung. Mit diesen Analysen konnen folgende Aussagen des Modells gezeigt werden:

* Einzelne Priifparameter pragen Kosten und Nutzen der Priifungen.

¢ Thre Wirkung hangt von der Situation ab, besonders deutlich von den Fehlerfolge-
kosten, aber auch von Kosten fiir spatere Auslieferung. Bei den Fehlerfolgekosten
stellt CoBe nicht nur einzelne, spektakuldre Schaden dar, sondern auch solche
Schaden, die sich iiber viele Benutzer und Verwendungen der Software aufsum-
mieren.

* Minimale Projektkosten und minimale Qualitdtskosten iiber die Produktlebens-
dauer konnen widerspriichliche Ziele sein; die Priifungen und ihre Parameter sind
also ein Kompromiss.

Fiir typische Situationen zeigt die Sensitivitatsanalyse und die Optimierung;:
* Die Kompetenz der Priifer spielt im Review und im Test die entscheidende Rolle.

¢ Frithe Reviews lohnen sich immer, weil die Projektkosten hochstens wenig steigen,
aber langfristig ein hoher Nutzen erreicht wird. Dazu ist eine vollstandige Priifung
mit griindlicher Vorbereitung notwendig.

* In typischen Fallen ist ein griindlicher Black-Box-Systemtest ausreichend; je hoher
die Fehlerfolgekosten werden, desto niitzlicher wird der Glass-Box-Test, wenn
langfristige Folgen betrachtet werden. Die Projektkosten steigen mit der Testinten-
sitat.

CoBe zeigt, dass es keinen allgemeingiiltigen optimalen Priifprozess gibt, sondern
dass die individuellen Rahmenbedingungen eines Projekts betrachtet werden mdis-
sen. Dabei sind Daten zum Einsatz des Produkts und zum mdglichen Schaden durch
Fehler wichtig. Das Modell zeigt, dass eine Kalibrierung notwendig ist, und welche
Metriken dafiir notwendig sind: Produktumfang, Gesamtaufwand, Gesamtdauer und
Fehlerzahlen. CoBe enthilt quantitative Erfahrungen iiber Auswirkungen von Prii-
fungen. Damit enthalt das Modell implizit ein Metrikprogramm zur Qualitatsbewer-
tung. Dabei stehen Aufwande der einzelnen Aktivitaten, also der Priifung, Korrektur
und Priifwiederholung, im Mittelpunkt.

9.2 Bewertung

9.2.1 Modellziele

Abschnitt 8.7 zeigt, dass die Modellziele von CoBe prinzipiell erreicht werden: Aus-
wirkungen von Entscheidungen tiber Priifungen kénnen demonstriert werden. Die
zur Planung und Optimierung notigen Informationen, die Planungsmetriken, werden
ausgegeben. Kosten und Nutzen werden vergleichbar dargestellt. Die Validierung
zeigt, dass mit CoBe Kosten und Nutzen von Priifungen nachtraglich beschrieben
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werden konnen, CoBe kann also diagnostisch eingesetzt werden. Die Prognoseféahig-
keit des Modells ist durch die Kreuzvalidierung untersucht (Abschnitt 7.6.2).

9.2.2 Verallgemeinerbarkeit

Die Validierung zeigt, dass CoBe prinzipiell fiir ganz unterschiedliche Projekte geeig-
net ist (Abschnitt 8.6), aber fiir eine konkrete Umgebung kalibriert werden muss.
Dazu sind Archivdaten notwendig. Diese Metriken stehen héufiger als andere Metri-
ken in der Industrie zur Verfiigung (Brodman und Johnson, 1996; Fink und Hampp,
2005; Kasunic, 2006). CoBe basiert auf Function Points, die in der verwendeten Vari-
ante nicht direkt fiir technisch-wissenschaftliche Anwendungen geeignet sind. Die
Validierung zeigt, dass Function Points als interne Parameter auch in diesen Anwen-
dungsgebieten eingesetzt werden konnen.

Die Priifungen im Modell gehoren zu den typischen Priifungen in Industrieprojekten.
Ihre Reihenfolge im Modell ist vorgegeben, CoBe ist also auf eine bestimmte Priif-
sequenz eingeschrankt. Einfache, sequentiell ablaufende Projekte mit den Priifungen
oder einem Teil der Priifungen in der gleichen Reihenfolge konnen direkt in das
Modell abgebildet werden. Fiir parallele, iterative Prozesse mit Anforderungsande-
rungen ist eine Modellbildung notwendig. Die Validierung zeigt, dass solche Projekte
in das Modell abgebildet werden konnen. Damit eine andere Priifreihenfolge oder
andere Priifungen durch CoBe dargestellt werden konnen, muss das Modell geandert
werden.

9.2.3 Kosten und Nutzen des Modelleinsatzes

Der Nutzen des Modells wird erreicht, wenn mit dem Modell giinstigere Gesamtkos-
ten als ohne Modell entstehen: Priifungen konnen gezielter durchgefiihrt und kon-
trolliert werden. Die Planungssicherheit wird durch die Bottom-up-Schiatzung von
CoBe verbessert. Zusatzlich werden Erkenntnisse iiber den Prozess durch die Analyse
tiir das Modell gewonnen.

Das Modell ist auch in Situationen niitzlich, in denen der Prozess mit Priifparametern
definiert ist und geniigend Erfahrung fiir die Kostenschatzung vorhanden ist: Es
erlaubt, Kosten und Nutzen darzustellen, beispielsweise fiir den Vergleich mit Kon-
kurrenten. Bei sich &ndernden Rahmenbedingungen zeigt CoBe, ob und wie der Pro-
zess angepasst werden kann. Experten fiir die Kostenschiatzung konnen ausfallen
oder nicht verfligbar sein. Dann ist CoBe niitzlich, weil es quantitativ Erfahrungen
aus abgeschlossenen Projekten enthalt und dadurch die Kostenschatzung unterstiitzt.
Die Kosten-Nutzen-Analyse wird verlangt (PMI, 2000) und kann mit CoBe auf einfa-
che Weise fiir ein konkretes Projekt durchgefiihrt werden.

Basierend auf den Erfahrungen in der Validierung lassen sich die Kosten fiir den
Modelleinsatz abschatzen: Fiir die Datenerhebung muss fiir Befragung und Beschaf-
fung von Archivdaten mit etwa einer Arbeitswoche gerechnet werden. Fiir Analyse
und Abbildung komplexer Prozesse werden zwischen zwei und vier Arbeitswochen
benotigt. Modellanderungen kosten zwischen einer Stunde, beispielsweise um Ergeb-
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nisse zusammenzufassen und iibersichtlich darzustellen, und einem Entwicklermo-
nat. Sobald Daten fiir die Quantifizierung benotigt werden, nimmt vor allem die
Literatursuche viel Zeit in Anspruch.

9.24 Abgrenzung zu SESAM und zum QS-Modell

In CoBe sind Zusammenhange aus SESAM-Modellen tibernommen, vor allem aus
dem QS-Modell (Drappa, 1998). Die beiden Ansétze und die Modelle unterscheiden
sich auf mehreren Ebenen:

e Der Modellzweck ist unterschiedlich. Mit SESAM und dem QS-Modell sollen die
Spieler Projektleitung erfahren konnen. Es wird also ein Lernziel verfolgt, das alle
wesentlichen Aktivitaten des Projektleiters enthalt: Planung, Stellenbesetzung und
Projektfiihrung sollen erlernt werden. CoBe dagegen verfolgt kein Lernziel, son-
dern soll Entscheidungen iiber Priifungen unterstiitzen, in dem es dazu notwen-
dige Informationen liefert. CoBe konzentriert sich darum auf die Priifplanung.

* Abgeleitet aus dem Modellzweck liefert CoBe Antworten auf bestimmte Fragen,
die durch die Eingaben festgelegt sind. SESAM ist im Gegensatz dazu prinzipiell
offen: Der Spieler hat mehr Freiheit, er ist z.B. nicht an eine zeitliche Reihenfolge
gebunden und kann bestimmen, welche und wie viele Mitarbeiter fiir welche Akti-
vitat eingesetzt werden sollen. Er kann in jedem Schritt in das Projekt eingreifen. Es
ist dann aber notwendig, dass der Tutor die Spiele analysiert. Der Tutor bestimmt
dabei, welche Fragen beantwortet werden sollen. Er verdeutlicht die Starken und
Schwachen der Spieler durch Vergleich (Hampp und Opferkuch, 2007), wahrend
CoBe den Vergleich bereits enthalt: Der Nutzen zeigt die entfallenden Kosten.

* Im QS-Modell stehen konkrete Entscheidungen iiber den Zeitpunkt und die Stel-
lenbesetzung der Priifungen und der Korrektur um Vordergrund, dagegen sind in
CoBe einzelne Priifparameter modelliert.

* Planung und Kostenschatzung der Qualitatssicherung ist ein Lernziel des QS-
Modells; CoBe unterstiitzt Planung und Kostenschéatzung direkt.

* CoBe berticksichtigt die langfristigen Auswirkungen des Projekts durch den Ein-
satz und die Wartung des Produkts. Im QS-Modell endet die Simulation, wenn das
Produkt ausgeliefert wurde; Qualitdat wird durch Fehler und Unvollstandigkeiten
des Produkts dargestellt.

¢ CoBe und QS-Modell konnen kalibriert werden. In CoBe ist die Kalibrierung aber
explizit durch Parameter modelliert.

e CoBe bildet, anders als das QS-Modell, Wiederverwendung von Software ab.

9.2.5 Grenzen

CoBe bildet Auswirkungen von Entscheidungen fiir das Projekt und durch das Pro-
dukt ab. Nach Auslieferung werden Fehlerfolgekosten im Finsatz und Kosten fiir kor-
rektive Wartung betrachtet. Wartbarkeit wird nicht betrachtet. Auswirkungen {tiber
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das Projekt und sein Produkt hinaus sind nicht enthalten, weil CoBe auf die Entschei-
dungen des Projektleiters und QS-Verantwortlichen zugeschnitten ist. Unter-
nehmensstrategie oder organisationsweite Prozessverbesserung sind nicht direkt in
CoBe abgebildet. Dazu gehoren beispielsweise der Lerneffekt, der durch Reviews
erreicht wird, oder Marktvorteile durch ein bestimmtes Produkt, die sich erst in fol-
genden Produktversionen auszahlen.

Wie bei anderen algorithmischen Kostenschatzverfahren handelt es sich bei CoBe um
ein induktives Modell, das mit statistischen Mittelwerten arbeitet und dessen Resul-
tate Mittelwerte sind. Die Werte sind zwar durch die Modelleingaben mit den Priif-
parametern und der Kalibrierung speziell fiir das geplante Projekt berechnet. Sie
werden aber nicht exakt zutreffen, weil es sich um ein induktives Modell handelt. Der
Istwert wird also von den Werten etwas abweichen, so dass die Modellresultate nicht
direkt in die Planung ibernommen werden konnen. Mit einer unterstellten Normal-
verteilung wird eine solche Mittelwertschdatzung mit einer Wahrscheinlichkeit von
50 % tiberschritten.

Da das Modell die Realitat verkiirzt, kann es nicht direkt zur Optimierung verwendet
werden. Insbesondere muss der Entscheider zusitzlich diejenigen Aspekte betrach-
ten, die nicht im Modell enthalten sind (Laux, 1998).

9.3 Ausblick

Das Modell kann als Erfahrungssammlung dienen, um andere Modelle aus einzelnen
Zusammenhangen zu konstruieren. Ahnlich wie CoBe Zusammenhange des QS-
Modells verwendet, konnen andere Modelle Zusammenhange aus CoBe verwenden.

CoBe enthalt die Metriken, mit denen Priifungen und ihre Auswirkungen erfasst und
kontrolliert werden konnen. Damit gibt es ein Metrikprogramm vor, das die wesentli-
chen Merkmale zur Qualitatsbewertung enthalt. Die Metriken sind gebrauchlich, so
dass sie auch ohne Modell interpretiert werden konnen. Die Modellzusammenhange
klaren die Interpretation der Metriken.

9.4 Schlussbemerkungen

Jeder Projektleiter muss sich Entscheidungen iiber den Kompromiss zwischen den
Kosten, zu denen auch Termin und Personal gehdren, und der Qualitat stellen. In der
Software-Entwicklung, bei der ein immaterielles Produkt entsteht, sind diese Ent-
scheidungen schwierig zu treffen und schwierig zu rechtfertigen. Prozesszertifzierun-
gen geben Entscheidungen zwar auf abstrakter, aber nicht auf konkreter Ebene vor.
Projekte sind zu unterschiedlich, als dass ein allgemeingiiltiges Vorgehen vorgegeben
werden kann.

In dieser Arbeit wurde, aufbauend auf anderen quantitativen Modellen, ein Kosten-
Nutzen-Modell fiir Entscheidungen iiber Priifungen erstellt. Dazu wurden vorhan-
dene Erkenntnisse iiber die Zusammenhange zwischen konkreten Entscheidungen
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tiber Priifungen in Software-Projekten und ihren Auswirkungen auf Kosten und Nut-
zen analysiert, formalisiert und implementiert. Das Modell wurde in der Industrie
validiert. Das Modell erlaubt, die schwierigen Entscheidungen rationaler zu diskutie-
ren und rationaler zu fallen.
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Verzeichnis der Bezeichner

In den Gleichungen von CoBe, die in Kapitel 6 dargestellt sind, werden die unten auf-
gefithrten Bezeichner verwendet. Dabei gelten folgende Konventionen:

* Direkte Metriken sind grofigeschrieben (z.B. S fiir den Umfang).

* Abgeleitete Metriken sind in der Regel kleingeschrieben (z.B. m). Ausnahmen sind
die Fehlerentdeckungsquote Q und die Uberdeckung C, um zwischen geforderter
(C) und erreichter Uberdeckung (c) zu unterscheiden.

* Variable Parameter sind kursiv, bindre Variablen fett gesetzt.

Grundlagen

S Umfang

Syp Umfang in Function Points

SFPneu Umfang neuer Software Umfang in Function Points

SEPwy Umfang wiederverwendeter Software in Function Points

Sgeiten Umfang in Seiten

SAnweisungen Umfang in Anweisungen

s Umfangsanteil

Q, Quv Fehlerentdeckungsquote, in wiederverwendeter Software

Qx Korrekturquote

Qp, Art, Schwere  Fehlerentdeckungsquote in Priifung p einer Fehlerart und -schwere
A Aufwand in Entwicklerstunden (Eh), -monaten (EM), -jahren (EJ)
M Mitarbeiterzahl

D Dauer in Arbeitstagen, -wochen, -monaten

fd Fehlerdichte

af Einflussfaktoren auf den Aufwand

ff Einflussfaktoren auf die Fehlerzahlen

cf Einflussfaktoren auf die Uberdeckungen

round rq Regressionsparameter allgemein

Tos und r¢ Regressionsparameter zur Berechnung der Fehlerdichte

Kalibrierungsparameter

kg Fehlerfaktor SfCode Umfangsfaktor Code
ka Aufwandsfaktor Sfspez Umfangsfaktor Spezifikation
kp Dauerfaktor SfEntwurf Umfangsfaktor Entwurf
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Abkiirzungen der Priifungen

SR Spezifikationsreview PT Subsystemsintegrationstest
ER Entwurfsreview (Package fiir Subsystem)
CR Codereview IT Systemintegrationstest

CA Codeanalyse ST Systemtest

MT Modultest FT Feldtest

Eingaben fiir den Priifprozess

p Formelzeichen fiir eine Priifung

Review Formelzeichen fiir ein Review (SR, ER oder CR)
Test Formelzeichen fiir einen Test (MT, PT, IT, ST)

P Findet die Priifung statt?

wv Wird wiederverwendete Software gepriift?
Swdh, Test Umfangsanteil fiir die Wiederholung

Aywdh, Test Aufwandsanteil fiir die Wiederholung

myg Anteil Korrektoren

Fehler und Fehlerkategorien
Fehlerkategorie mit Klassen Nebenfehler (NF), Hauptfehler (HF), kritische

Schwere Fehler (KF); Blockierende Fehler (BF) als Teil der kritischen Fehler.
Art Fehlerkategorie mit Klassen Spezifikation, Entwurf, Code
Ursprung Software-Ursprung, Fehlerentstehung: Hinzugefiigt, gedndert, wiederverwen-

det (“wv”), “neu” fasst hinzugefiigt und geandert zusammen

JPNE fPHE fPKE fPBE

Prozentuale Verteilung auf Fehlerschwere

Ir Spez JPEntwurt fPCode
Prozentuale Verteilung auf Fehlerarten

Freu, Fwv Zahl eingefiigten Fehler in neuer oder in wiederverwendete Software

F entdeckts F enthaltens F korrigierts F entfallend
Fehlerzahlen fiir entdeckte, enthaltene, korrigierte, entfallende Fehler, unter-
schieden fiir Priifungen, Arten und Schwere durch den Index, beispielsweise
fiir korrigierte Fehler und fiir entfallende Fehler:

F pkorrigiert, Ursrpung, Art,Schwere

Zahl korrigierter Fehler der Art und Schwere nach der Priifung p

F p.entfallend,p’,Ursrpung,Art,Schwere

Zahl der entfallenden Fehler in der Priifung p’, weil die Fehler in der Priifung p
bereits entdeckt und dann korrigiert wurden.

Tester- oder Gutachterkompetenz mit 7 Klassen: extra niedrig, sehr niedrig,

Kp niedrig, normal, hoch, sehr hoch, extra hoch (XL, VL, L, N, H, VH, XH)
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COCOMO-II-Formelzeichen

EM; Einflussfaktor i
E, B, SF]-, A?*  Exponent und Parameter des Exponenten fiir Aufwandsformel
PM Mit COCOMO II berechneter Aufwand

a. In CoBe steht A fiir Aufwand, in COCOMO II fiir den Produktivitdtsparameter

Korrekturaufwand

AKBasis Basiswert fiir den Korrekturaufwand pro Fehler

afy Einfluss der Priifung (Latenzzeit), abhangig vom Umfang
afw Einfluss der Wartung (Latenzzeit), abhangig vom Umfang
af st Einfluss der Fehlerart (Latenzzeit)

af Schwere Einfluss der Fehlerschwere (afnp afyr und afgr)

K p, Art,Schwere Korrekturaufwand pro Fehler der Art und Schwere nach Priifung p
Ax Korrekturaufwand nach Priifung p

P
Aufwandseinfluss
afo Zuschlag fiir Organisation (in %)
af Modellweiter Produktivitdtsparameter
Review
GReview Gutachterzahl im Review Review
QReview Basis-Fehlerentdeckungsquote fiir das Review Review
Jr Fehlerentdeckungsquote eines Gutachters, durch Regression ermittelbar
Tqr Regressionsparameter fiir Gutachterzahl und Fehlerentdeckungsquote

HReview, Art Anpassung der Entdeckungsquote an die Fehlerart Art
ffReview,Schwere Anpassung der Entdeckungsquote an die Fehlerschwere
fpriorisierung ~ Funktion fiir Fehlerentdeckung mit priorisierten Reviews

fvorbereitung ~ Funktion fiir den Einfluss der Vorbereitung auf die Fehlerentdeckung
UReview Vorbereitungsrate fiir das Review

KPReview Gutachterkompetenz, 7 Klassen (extra niedrig bis extra hoch)

HReview kP Einflussfaktor fiir Fehlerentdeckungsquote durch Gutachterkompetenz KP
SReview Anteil des gepriiften Umfangs des Artefakts im Review

. Regressionsparameter fiir Einfluss auf Fehlerentdeckung verschiedener Fehler-
s,Schwere schwere durch priorisiert gepriiften Teil eines Artefakts
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Test

Testtechniken sind Black-Box-Test (BBT), Glass-Box-Test (GBT) und Brute-Force-Test
(BFT). Im Black-Box-Test wird unterschieden: Funktionsabdeckung (Funktion), Aqui-
valenzklassenabdeckung (Aquivalenzklasse) und Sonderfille.

T, TTest
Tn, Tn, Test
Tov "1t

rOt,Test/ 7/1t,Test

t

tTest
C

C

co Co

1, G

3 C3

ey Cy

cf1, cf3 cfy
"o T1c

qt

Tqt

ff Test,Art

ff Test,Schwere
KP Test

ftest kp

Testfallzahl, Testfallzahl fiir den Test Test

Nominale Testfallzahl fiir den vollstandigen Black-Box-Test, fiir den Test Test
Regressionsparameter zwischen Umfang und nominaler Testfallzahl
Regressionsparameter fiir den Test Test

Normierte Testfallzahl: t = T/T,

Normierte Testfallzahl des Tests Test.

Erreichte Uberdeckung allgemein (Uberdeckungsgrad)

Geforderte Uberdeckung allgemein (Uberdeckungskriterium)

Erreichte und geforderte Anweisungsiiberdeckung

Erreichte und geforderte Zweigiiberdeckung

Erreichte und geforderte Termiiberdeckung

Erreichte und geforderte Schleifeniiberdeckung

Faktoren fiir den Zusammenhang zwischen den Uberdeckungen
Regressionsparameter fiir normierte Testfallzahl und Uberdeckungsgrad
Anteil der Fehler, die ein einziger Testfall entdeckt

Parameter fiir die Schdtzung von g; mit linearer Regression

Anpassung der Entdeckungsquote an die Fehlerart Art

Anpassung der Entdeckungsquote an die Fehlerschwere
Testerkompetenz, 7 Klassen (extra niedrig bis extra hoch)

Einflussfaktor fiir Fehlerentdeckungsquote durch Testerkompetenz KP
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