
Änderungspropagation für
autonome und heterogene

Informationssysteme

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von

Uwe Heinkel

aus Hannover

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Mitberichter: Prof. Dr.-Ing. Norbert Ritter

Tag der mündlichen Prüfung: 07.03.2011

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2011

Vorwort

Ganz besonders möchte ich mich bei meinem Doktorvater Prof. Dr. Mitschang bedan-
ken: Ich habe viel gelernt von Ihnen, als ich an der Universität Stuttgart am Institut für
Parallele und Verteilte Systeme (IPVS) beschäftigt war. Vielen Dank für unsere Dis-
kussionen über die Forschung zu meiner Doktorarbeit. Ihre Tipps werden mich auch
im weiteren beruflichen Leben voranbringen.

Weiterhin möchte ich meinem Mitberichter Prof. Dr. Ritter dafür danken, dass er
sich Zeit nahm, um meine Dissertation zu lesen und zu evaluieren.

Was wäre die schöne Zeit an der Universität Stuttgart ohne meine Kollegen ge-
wesen. Ich möchte mich deshalb bei allen Angestellten des IPVS bedanken. Besonde-
rer Dank gilt Dr. Carmen Constantinescu, Clemens Dorda, Fabian Kaiser, Sylvia Ra-
deschütz und Dr. Ralf Rantzau. Ebenfalls möchte ich meinen Dank an meine Kollegen
im Transferbereich 059 und Sonderforschungsbereich 467 aussprechen, insbesondere an
Olga Kernbach, Dr. Ralf Kapp, Ralph Winkler, Benno Löffler, Jan le Blond und Lars
Illenberger.

Für die große Unterstützung der Abteilung Infrastruktur am IPVS bedanke ich mich
ebenfalls herzlich. Besonders hervorheben möchte ich Ralf Aumüller, Heike Kniehl,
Manfred Rasch und Christine Reissner.

Großen Dank für die große Unterstützung möchte ich an meine Familie ausspre-
chen, insbesondere an meine Eltern Dieter und Regina, an meine Schwestern Sonja
und Bettina sowie an meine Oma Erna.

Uwe Heinkel
Stuttgart, den 07.03.2011

3

4

Inhaltsverzeichnis

Abkürzungsverzeichnis 9

Zusammenfassung in deutscher Sprache 11

Zusammenfassung in englischer Sprache (Abstract) 13

1 Einleitung 21
1.1 Problemstellung und Motivation . 21
1.2 Zielsetzung . 24
1.3 Gliederung . 25

2 Grundlagen 27
2.1 Informationssysteme . 27

2.1.1 Definition . 27
2.1.2 Architektur . 29
2.1.3 Modelle und Geschäftsobjekte 30

2.2 Enterprise-Resource-Planning-Systeme 31
2.3 Enterprise Application Integration . 33

2.3.1 Unternehmenssicht . 34
2.3.2 Klassifikationen . 34
2.3.3 Technologien . 37

2.4 Datenintegration im Unternehmen . 37
2.4.1 Globales Schema und homogene Systemlandschaft 37
2.4.2 Föderierte Datenbanken . 39
2.4.3 Lokale Modelle, Geschäftsprozesse und einheitliche Benutzerschnitt-

stelle . 41
2.5 Peer-Data-Management . 41
2.6 Workflows . 42

2.6.1 Grundlagen . 42

5

INHALTSVERZEICHNIS

2.6.2 Workflow-Managementsysteme (WFMS) 43

2.6.3 Workflow-Beschreibungen . 43

2.6.4 Datenintegration mit Workflows 45

2.7 XML Technologien . 46

2.8 Message Oriented Middleware . 47

2.9 Ereignissysteme . 49

2.10 Model-Management . 50

2.10.1 Übersicht . 50

2.10.2 Automatic Schema Matching 51

2.11 Schlussfolgerungen . 51

3 Grundlegende Konzeption 55

3.1 Lösung für Replikation der Informationssystemdaten 55

3.2 Basiskonzepte . 58

3.2.1 Abhängigkeiten und Propagationsprozesse 58

3.2.2 Änderungsbeschreibung . 60

3.3 Transaktionen . 61

3.4 XML als Basis für Änderungspropagation 62

3.4.1 XML zur Definition von Zustandsbeschreibungen 62

3.4.2 Technologie für eine XML-basierte Änderungspropagation . . . 63

3.5 Sprache für die Definition von Abhängigkeiten 64

3.5.1 Deklaration der Eingabe . 66

3.5.2 Kontrollfluss . 66

3.5.3 Verarbeitungs- und Output-Befehle 69

3.6 Pfadausdrücke für Änderungsbeschreibungen 72

3.6.1 Propagation Condition Language (PCL) 72

3.6.2 XPath-Bibliothek . 74

3.7 Komponenten . 75

3.7.1 Repository . 76

3.7.2 Propagationsmanager . 81

3.7.3 Abhängigkeitsmanager . 87

3.8 Konflikterkennung und Auflösung . 90

3.9 Reihenfolgeeinhaltung von propagierten Änderungsbeschreibungen . . . 93

3.10 Fehlerbehandlung . 95

3.10.1 Fehlerklassifikation . 95

3.10.2 Fehlerbehandlung im Prozessmanager 95

3.10.3 Fehlerbehandlung eines Propagationsprozesses 96

3.11 Adapter . 96

3.11.1 Genereller Adapter . 96

3.11.2 Adapter für relationale Datenbanken 98

3.12 Zusammenfassung . 101

6

INHALTSVERZEICHNIS

4 Komplexe Propagation 103

4.1 Einbindung von Daten aus Drittsystemen 104

4.1.1 Problemstellung . 104

4.1.2 Verwendung eines Datendienstes 105

4.1.3 Zugriffsarten . 107

4.1.4 Von der Definition zur Nutzung eines Datendienstes 107

4.1.5 Dienstbeschreibung . 109

4.1.6 Realisierung . 111

4.1.7 Beispiel . 115

4.2 Verarbeitung mehrerer Änderungen . 115

4.2.1 Problemstellung . 116

4.2.2 Implementierungskonzept der M-zu-N-Erweiterung 117

4.2.3 Erweiterung von XPDL . 122

4.2.4 Erweiterung von PCL . 123

4.2.5 Schlussfolgerungen . 123

4.3 Verteilte Propagation . 124

4.3.1 Problemstellung . 125

4.3.2 Einschränkungen der Lastverteilung 126

4.3.3 Load-Manager-Ansatz . 127

4.3.4 Selbstorganisierter Ansatz . 130

4.4 Zusammenfassung . 131

5 Evaluation des Propagationssystems 133

5.1 Praxistest . 133

5.1.1 Integrationsszenario . 133

5.1.2 Digitale Fabrik und ihre Werkzeuge 134

5.1.3 Integrationsplattform . 135

5.1.4 Integration der Digitalen Fabrik und des Planungstisches 137

5.1.5 Integration der Digitalen-Fabrik und des Montage-Konfigurators 139

5.1.6 Schlussfolgerungen . 139

5.2 Evaluierung der Performance . 140

5.2.1 Messmethodik . 140

5.2.2 Testumgebung . 141

5.2.3 Realisierung der zuverlässigen Multicast-Warteschlange 141

5.2.4 Testfälle . 142

5.2.5 Zusammenfassung . 156

5.2.6 Vergleich mit Anforderungen aus der Industrie 156

5.3 Vergleich mit EAI-Produkten . 157

5.3.1 BizTalk . 158

5.3.2 Oracle SOA Suite . 159

5.3.3 Websphere Message Broker . 159

5.3.4 Schlussfolgerung . 160

7

INHALTSVERZEICHNIS

6 Schlussfolgerung und Ausblick 161
6.1 Schlussfolgerungen . 161
6.2 Ausblick . 163

Literaturverzeichnis 165

8

Abkürzungsverzeichnis

API Application Programming Interface

EAI Enterprise Application Integration

ERP Enterprise Resource Planning

JMS Java Message Service

MOM Message-oriented Middleware

PCL Propagation Condition Language

RPC Remote Procedure Call

XML Extensible Markup Language

XPDL XML Propagation Definition Language

XPath XML Path Language

XSLT Extensible Stylesheet Language Transformation

9

Abkürzungsverzeichnis

10

Zusammenfassung in deutscher Sprache

Heutzutage müssen Unternehmen sich schnell an neue Situationen anpassen. Die Grün-
de hierfür sind vielfältig: Kundenanforderungen ändern sich, Konkurrenten entwickeln
neue Produkte bzw. Strategien oder neue Gesetze werden verabschiedet. Die Anpas-
sungsfähigkeit von Unternehmen wird als Wandlungsfähigkeit bezeichnet. Damit Unter-
nehmen diese Wandlungsfähigkeit erreichen können, müssen sie aus Einheiten bestehen,
die weitestgehend autonom sind. Durch die Autonomie wird erreicht, dass Entschei-
dungen schnell getroffen werden können, weil jede Einheit selbstständig reagieren kann.
Die Unternehmenseinheiten wurden im Sonderforschungsbereich 467

”
Wandlungsfähige

Unternehmensstrukturen für die variantenreiche Serienproduktion“, in dessen Rahmen
auch diese Arbeit entstand, Leistungseinheiten genannt. Leistungseinheiten brauchen
unter anderem eine Unterstützung durch Informationssysteme, welche Informationen
bereitstellen und verwalten. Damit sich die Leistungseinheiten an neue Situationen an-
passen können, müssen auch deren Informationssysteme so weit wie möglich autonom
bleiben. Dennoch muss der Austausch von Daten zwischen den Informationssystemen
garantiert sein, da Daten teilweise von vielen verschiedenen Leistungseinheiten und
ihren Informationssystemen verwendet werden. Besonders deutlich wird das bei Kun-
dendaten, die oftmals in vielen Unternehmensbereichen bzw. Informationssystemen
benötigt werden. Daten, die von mehreren Informationssystemen benötigt und gespei-
chert werden, liegen oft redundant im Unternehmen und meist in heterogener Form
vor. Werden redundante Daten in einem Informationssystem geändert, entsteht ein in-
konsistenter Zustand, da an anderer Stelle noch die alten Daten gespeichert sind. Um
diese Inkonsistenz zu verhindern, müssen die Informationssysteme integriert und die
redundanten Daten synchronisiert werden. Replizierte Datenbanken haben ein ähnli-
ches Problem: es müssen ebenfalls Daten synchronisiert werden. Hier sind die Daten
aber meistens homogen und die partizipierenden DBMS sind nicht autonom. Des Wei-
teren ändern replizierte Datenbanken ihre Daten nur über ihre bereitgestellte Schnitt-
stelle in der Datenschicht, in einem Informationssystem sollten sie hingegen in der
Anwendungsschicht geändert werden, weil dort die Anwendungslogik liegt und oftmals
wichtige Konsistenzregeln geprüft werden müssen.

11

Zusammenfassung in deutscher Sprache

Um diesen Anforderungen gerecht zu werden, wurde in dieser Arbeit ein XML-
basiertes Datenintegrationssystem konzipiert und entwickelt, das Änderungspropaga-
tion verwendet, um redundante Daten von Geschäftsobjekten zu synchronisieren. Ein
Geschäftsobjekt besteht aus einem oder mehreren Implementierungsobjekten, beispiels-
weise hat ein Kundenauftrag einen Auftragskopf und mehrere Auftragspositionen.
Aufgetretene Änderungen werden in einer sogenannten Änderungsbeschreibung pro
Geschäftsobjektänderung propagiert, die alle wichtigen Daten einer Änderung enthält.
Besonders wichtig sind die zwei Zustände von Geschäftsobjekten, vor und nach der
Änderung, und die Änderungsart (create, update, delete) des Geschäftsobjektes. Die
Verwendung von zwei Zuständen ermöglicht die Erkennung der Änderungsarten bei den
Implementierungsobjekten sowie die Ermittlung von Änderungsdeltas innerhalb des In-
tegrationssystems. Änderungsbeschreibungen werden entlang von definierten Abhängig-
keiten propagiert, die von einem Quellsystem zu mehreren Zielsystemen gehen. Um
diese Abhängigkeiten flexibel gestalten zu können, wurde eine XML-basierte Sprache
entwickelt, die den Namen XML Propagation Definition Language (XPDL) trägt. Des
Weiteren wurde eine XPath-basierte Sprache (Propagation Condition Language, PCL)
entworfen, die zustandsübergreifende Bedingungen ermöglicht, um Filter für Abhängig-
keiten zu definieren. Besonders wichtige Eigenschaften eines Datenintegrationssystems
sind die Einhaltung der Änderungsreihenfolge und die Erkennung von Änderungskon-
flikten. Beide Punkte wurden in dieser Arbeit umgesetzt. Für die Erkennung von Ände-
rungskonflikten wurde eine zustandsbasierte Methode entwickelt, die eine feingranula-
re Erkennung von Änderungskonflikten ermöglicht. XPDL und PCL ermöglichen eine
weitgehend abstrakte Beschreibung von Änderungspropagationen. Damit können dann
recht unterschiedliche Informationssysteme unterstützt werden und auch Drittsysteme,
die zusätzliche Daten bereitstellen, eingebunden werden.

12

Zusammenfassung in englischer Sprache (Abstract)

In order to stay competitive enterprises need to adapt themselves constantly to new
situations like new products in the market, changes of the competitors’ strategies,
new laws, changing of customers’ needs, and so on. For coping with these turbulent
situations, the enterprise has to have a fast decision making, which is facilitated by au-
tonomous organization units inside the enterprise. In the project SFB 467 with the title
“Transformable Business Structures for Multiple-Variant Series Production”, a kind of
organization units was developed that are called transformable business units. These
business units are characterized by processes that have products and/or information
as input and output; these processes have a customer value as well. The customers are
internal (other business units) or external customers (enterprise customers). On the
other hand, the business units need to act in concert and achieve common enterprise
goals. Therefore, the business units must be integrated among each other, which affects
also the integration of their information systems, since they are part of the information
exchange between the units.

Due to the fact that data of these information systems needs to be integrated and
locally stored, some data is redundant in the enterprise. Changes of the redundant
data lead involuntarily to inconsistent data inside the enterprise and problems arise in
handling enterprise wide processes. This inconsistency can be anticipated by a flexible
data integration that copes with heterogeneity. Heterogeneity represents a big topic
for integrations due to the fact that IT infrastructures are comprised of many different
products and individual software.

The integration of replicated data can be compared with the integration of repli-
cated databases, since the replicated databases store redundant data as well. On the
other hand, the redundant data in replicated databases exists in a homogenous form
and the update propagation - used to update redundant data - changes the data via the
data layer. Information systems consist usually of multiple layers, e.g. the data layer,
the application layer, and user interface layer. Above the data layer is the application
layer that realizes application logic, and thus consistency rules may also be realized
in this layer. A data integration of independent information systems should use the

13

Zusammenfassung in englischer Sprache (Abstract)

application layer interface and not that of the data layer, so that all the consistency
rules will be considered. Moreover, the application logic can trigger processes, which
will not be started if changes are done directly in the data.

Furthermore, there exist a lot of EAI-Products to integrate information systems
inside enterprises that apply data in the application layer. Nonetheless, they lack
of order control of changes handled by the integration system and the detection of
change conflicts. These EAI products are mostly made to integrate and implement
business processes, and thus not for the pure data integration without the involvement
of business processes. Furthermore, with the help of such EAI-Products so-called
integration applications are realized, which have their own communication channels.
On the other hand, a pure data integration system should have a central channel
independent of the existing integration applications. This channel provides the involved
information systems with a transparency of the realized integration applications. Hence
such applications can easily be removed, added or changed without the adaption of the
information system resulting in a more flexible way of data integration in an enterprise.

This thesis was part of the mentioned project SFB467. It proposes a data integra-
tion system called change propagation system that overcomes these shortages and is
especially developed for integrating data of autonomous and heterogeneous informa-
tion systems. The data integration is based on forwarding changes of business objects.
A business object represents an object with a value to the enterprise that can consist
of multiple implementation objects, e.g. a customer order with order header and or-
der positions as implementation objects. For representing states of business objects
XML is adequate, since it has a hierarchical structure, which facilitates the inclusion
of multiple implementation objects inside a document, and thus complete business ob-
jects. Furthermore, the combination of meta data and data provides a human readable
form of the business objects states. Not only the business object states are needed
as information for propagation; all needed information is subsumed under the term
change description that represents a propagated object. These change descriptions are
propagated along dependencies from one system (source system) to multiple systems
(destination systems). For the flexible constitution of dependencies an XML based lan-
guage was developed, which is called XML Propagation Definition Language (XPDL).
Furthermore, for the definition of conditions between the two states an XPath-based
language was developed, called Propagation Condition Language (PCL). A require-
ment for such a change propagation system is the guaranteed transmission of change
descriptions from the source system to destination systems. Thus persistent message
queues are used. Moreover, these queues facilitate a FIFO communication.

Important features of such a propagation system are the consideration of the cor-
rect order of change descriptions and the detection and resolution of change conflicts.
For the conflict detection we propose a method based on the business object states,
instead of using timestamps, which will be later explained in more detail. Due to the
heterogeneity we support transformations and integration of data from third systems.
Therefore we introduce data services - services offered by third systems - that provide
additional data for the destination system. These data services can be queried by a
Remote Procedure Call (RPC), SQL or XQuery, depending on the interface and stored

14

data.
The remainder of the abstract is organized as follows. In the first section we intro-

duce the change description. The second section gives an overview of the XML Propa-
gation Definition Language, which is followed by the Propagation Condition Language.
Afterwards the architecture of the Change Propagation System is sketched. Finally, in
the last two sections the conflict detection and data services are introduced.

CHANGE DESCRIPTIONS

First, there is a need for a complex object that contains all the necessary informa-
tion, which is needed by a destination system to adapt its data correspondently. This
complex object is called change description and is defined by the following tuple:

CD = (S,BOT,CT,B,A, TS)

S system where the change has occurred

BOT type of business object (e.g. Customer Order)

CT type of change (create, update or delete)

B state of the business object before the change

A state of the business object after the change

TS timestamp, when the change has occurred.

The usage of two states instead of only employing the after state facilitates the
detection of change types CT of implementation objects inside a business object. The
CT of an implementation object can differ from the CT of the business object. For
example a customer order could have been updated, while positions have been added,
updated, or deleted. Furthermore, change deltas can be calculated inside the change
propagation system, e.g. the movement vector of a production resource after the change
of its position in the factory layout. The two-state propagation facilitates the state-
based conflict detection as well.

We use two states (B and A) instead of a combination of change delta with one state,
since it makes the processing of the change descriptions easier. The main advantages
of using two states are that only one XML schema for validation is needed, only one
transformation script for adapting the states, and states can be easier described than
change deltas.

XML Propagation Definition Language (XPDL)

Another important feature of a change propagation system is the definition of de-
pendencies between business objects stored in different information systems. These

15

Zusammenfassung in englischer Sprache (Abstract)

dependencies should be as flexible as possible. A language can offer a great deal for
this purpose. We created a language called XML Propagation Definition Language
(XPDL). The XPDL artifacts are called propagation scripts and the executed propa-
gation scripts are named propagation processes. XPDL is a language that consists of
following statements:

I. Input Declaration
The input declaration consists of an input statement that selects the source sys-
tem (the system, where the change occurred) and the business object type.

II. Controll Flow

a. Sequence
The sequence statement allows the execution of subsequent statements in
order how they are specified.

b. Parallel
The parallel statement allows the execution of subsequent statements con-
currently.

c. Condition
The condition statement has two branches: the true and the false branch,
which will be executed depending on the evaluation of a Boolean expression.

III. Regular Statements

a. Transform
The statement adapts the states (B and A) of a change description. There-
fore it uses transformation scripts which can be either written in XSLT or
XQuery. The transform statement is used transparently to the number of
existing states in the change description; one transformation script is written
for one state, resulting in a transformation script that exactly transforms
one business object type.

b. Propagate
The propagate statement sends the change description to a destination sys-
tem by using its queue.

We came to the conclusion that there is no need for an iteration control flow,
since a business object should be handled as one business object and not separated
into many implementation objects inside the propagation system. This task should be
handled by an adapter of the information system. Furthermore, we don’t include filter
statements, since it is a better programming style to filter by condition statements.
Condition statements use control flow for filtering and filter statements use data flow.
The latter statement would make it difficult to analyze the behavior of the programmed
propagation script, because it would not be clear which statements will be executed.

16

Propagation Condition Language (PCL)

Sometimes it is necessary to define conditions between the two states of a change
description, e.g. we only want to propagate to a certain system, when the name of a
person has changed. Therefore we developed a language called Propagation Condition
Language, which is an extension of XPath. Another feature of this language is the
evaluation of the change type in a change description, which facilitates conditional
execution depending on the change type. The language consists of the following:

• before
The statement returns the before state.

• after
It returns the after state.

• beforeOrAfter
It represents the after state in case the before state is null. Can be used when
the before state can be replaced by the after state in case of none existence, e.g.
the order volume.

• afterOrBefore
The statement is similar to beforeOrAfter, but here the after state is preferred.

• chgType
It provides the change type of the change.

• timestamp
It returns the time when the change occurred. It facilitates the implementation
of time based propagations.

The statements are enclosed by the percentage marks and can be combined with
XPath expressions.

If we describe a condition for executing the succeeding statements based on the
fact that the last name of a customer has changed, the PCL condition looks like the
following:

%before%/Customer/Lastname != %after%/Customer/Lastname

Architecture

The change propagation system consists of three important components: the reposi-
tory, the dependency manager, and the propagation manager. The repository stores all
the meta data needed for propagation: system descriptions, XML Schemas for the val-
idation of business object states contained in change descriptions, propagation scripts
(XPDL artifacts) and transformation scripts required for the XPDL transform state-
ment. The dependency manager is a graphical tool to enter this meta data into the

17

Zusammenfassung in englischer Sprache (Abstract)

repository. The third component - the propagation manager - propagates change de-
scriptions from source systems to destination systems by executing propagation scripts.
It consists of several components: the queue manager is used to receive change descrip-
tions from source systems and to send processed change descriptions to destination
systems, the process manager for managing the propagation processes, the XPDL en-
gine for the execution of XPDL statements, an XML parser for the translation of states
into the internal format (DOM) and the validation of correctness due to a schema, as
well as two transformation engines (XSLT and XQuery).

Conflict Detection

A conflict can occur then the same business object is changed in more than one sys-
tem concurrently. The concurrent change of a business object needs to be detected,
since it would lead to inconsistent data in the involved systems. Furthermore, the
detected conflicts need to be evaluated and resolved, so that the information systems
are consistent again.

As we already mentioned, we suggest to use states for detecting change conflicts.
The state-based approach makes it unnecessary to adapt the data model of an infor-
mation system for the storage of timestamps, which are needed for timestamp-based
approaches. The biggest advantage of the approach is the flexible definition of zones
inside the business object, which facilitates the possibility of concurrent changes in
independent zones, e.g. the customer object could have independent zones with the
address and the account information. We call this approach a fine granular detection
approach based on states.

A schema annotated with zone information is illustrated in the following example:

<xs:schema ...>

<xs:element name="Customer">

<xs:complexType>

<xs:sequence>

<xs:element cd:id="true" name="ID"/>

<xs:element cd:group="name" name="Firstname"/>

<xs:element cd:group="name" name="Lastname"/>

<xs:element cd:group="address" name="Address">

</xs:element>

...

<xs:element cd:group="account" name="AccountInfo">

...

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

18

We introduced two attributes, which can be associated with element types: id and
group. Id defines the identifier of the business object to differentiate the business
objects. This identifier is needed to retrieve the local state of the business object. The
group attributes introduce independent zones inside the business object.

Data Services

The destination system may need data which is neither stored in the destination system
itself nor in a source system. An example is the integration of a factory layout system
with a digital factory solution. A factory layout system plans the positions of resources
in the factory, while the digital factory solution is used for the complete planning
process including production processes and resources. Thus, both systems should be
integrated with each other. The factory layout system stores production resources
just with a name and their positions (X, Y, and Z). In contrast, the digital factory
solution needs many attributes for resources. A resource can be created in the layout
system and then synchronized with the digital factory. Hence, it lacks of the additional
attributes required by the digital factory solution. These attributes can be provided by
a third system, e.g. a service of the resource manufacturer, which acts as data service.

The change propagation system needs to be extended to fulfill this purpose. First,
there is a need for a language to describe data services which is called Data Service
Definition Language (DSDL). The second extension is a new statement in XPDL for
the call of a data service. The approach provides the possibility of integration of three
types of data services: relational databases, XML stores, and RPC access. We made
the approach extensible so that the system can be extended by further types. The
only requirement is that the extension takes a set of parameters and provides an XML
document as result. The existing types use parameters for procedure calls (RPC) or for
parameterized queries (relational databases and XML stores). These parameters are
bound during runtime in the propagation system using PCL expressions for extracting
values out of the states included in a change description. Therefore, we extended the
XPDL with a data service call statement, which reads the DSDL definition of the data
service from the repository, binds the parameter, and sends via SOAP the call to the
data service. The retrieved result is integrated into the change description via standard
transformations.

19

Zusammenfassung in englischer Sprache (Abstract)

20

KAPITEL 1

Einleitung

1.1 Problemstellung und Motivation

Heutzutage sind Unternehmen einem immer größer werdenden Wettbewerbsdruck aus-
gesetzt: Lieferzeiten werden kürzer, Kundenwünsche ändern sich, Konkurrenten verän-
dern ihre Strategie und ihre Produktpaletten, oder es werden neue Rahmenbedingungen
geschaffen (z.B. Auflagen oder Gesetze). Dies sind nur einige Beispiele, wie sich die Si-
tuation eines Unternehmens verändern kann. Diese Veränderungen erfordern von den
Unternehmen, dass sie sich nicht nur in einem beschränkten flexiblen Rahmen bewe-
gen, sondern sich auch neuen und unvorhersehbaren Situationen anpassen können. Sie
sollten wandlungsfähig sein. Um diese Wandlungsfähigkeit zu ermöglichen, wurde im
Sonderforschungsbereich 467 (SFB 467)

”
Wandlungsfähige Unternehmensstrukturen

für die variantenreiche Serienfertigung“, in dessen Umfeld auch diese Arbeit entstand,
das Konzept der Leistungseinheiten (vgl. Abbildung 1.1) [WZ09, Wes06] entwickelt.

Leistungseinheiten sind organisatorische Einheiten in einem Unternehmen, die Pro-
dukte oder Informationen als Output haben (vgl. Abbildung 1.1). Leistungseinheiten
werden über mehrdimensionale Ziele koordiniert, die in Verhandlungs- und Abstim-
mungsprozessen festgelegt werden. Die Mitarbeiter einer Leistungseinheit versuchen
dann mit dem Einsatz von Ressourcen, diese Ziele zu erreichen. Die Hauptaufgabe einer
solchen Leistungseinheit ist, Produkte durch Ausführungsprozesse zu erzeugen, die den
Materialinput umwandeln. Handelt es sich um keine produzierende Leistungseinheit,
sind Input und Output Informationen. Produzierende Leistungseinheiten stellen eben-
falls Informationen bereit, die von anderen Leistungseinheiten benötigt bzw. weiterver-
arbeitet werden. Diese Informationen können beispielsweise Kundeninformationen oder
Stadien von Produktionsaufträgen sein. Sie werden oftmals durch Informationssyste-
me verwaltet. Um die Leistungseinheiten zu integrieren ist ein Informationsaustausch
zwischen den einzelnen Informationssystemen notwendig, damit die Leistungseinheiten
zusammenarbeiten und übergeordnete, gemeinsame Ziele erreichen können.

21

KAPITEL 1: Einleitung

Definition
Eine Leistungseinheit ist eine organisatorische
Einheit eines Unternehmens, in der ein oder
mehrere Mitarbeiter unter Zuhilfenahme von
Ressourcen abgestimmte Ziele verfolgen.
Aus Material und Informationen werden mittels
Führungs- und Ausführungsprozessen
Produkte oder Informationen generiert.

Merkmale�teilautonom�Selbstähnlichkeit�Variable Grenzen�Fremd- und Selbstorganisation�Selbstoptimierung

Ziele

Mitarbeiter
Ressourcen

Führungsprozesse

Ausführungsprozesse

Material
Informationen

Informatorische Schnittstellen
Schnittstellen zwischen LE

Produkte
Informationen

Ziele

Mitarbeiter
Ressourcen

Führungsprozesse

Ausführungsprozesse

Material
Informationen

Informatorische Schnittstellen
Schnittstellen zwischen LE

Produkte
Informationen

Abbildung 1.1: Leistungseinheiten als Grundbaustein eines wandlungsfähigen Unter-
nehmens [WZ09, Wes06]

Die Leistungseinheiten sind hierarchisch organisiert, d.h. eine Leistungseinheit kann
wiederum aus Leistungseinheiten bestehen (Selbstähnlichkeit). Durch die variablen
Grenzen und Teilautonomie wird die Wandlungsfähigkeit möglich, da Entscheidungen
unter Berücksichtigung der Zielvorgaben schnell gefällt werden können. Die variablen
Grenzen ermöglichen eine flexible Gestaltung der Leistungseinheit anhand des Bedarfs,
d.h. untergeordnete Leistungseinheiten können hinzugenommen oder abgegeben wer-
den.

Die Teilautonomie wirkt sich auch auf die IT-Infrastruktur des Unternehmens aus.
Die Informationssysteme, die Bestandteil der IT-Infrastruktur sind, sollten ebenfalls
weitestgehend autonom sein, da sie sonst die geforderte Wandlungsfähigkeit der Leis-
tungseinheiten behindern würden. Die Autonomie sagt dabei aus, dass die einzelnen
Informationssysteme möglichst lose gekoppelt seien sollen. Außerdem werden durch
die Autonomie der einzelnen Leistungseinheiten häufig Informationssysteme beschafft,
die sich sehr von denen anderer Leistungseinheiten unterscheiden. Das bedeutet, es
entsteht eine heterogene Infrastruktur im Unternehmen.

Die Heterogenität der Informationssysteme kann durch unterschiedliche Rechner-
architekturen, Betriebssysteme und/oder Datenbanksysteme entstehen. Den Daten-
banksystemen können unterschiedliche Datenmodelle zugrunde liegen, z.B. das relatio-
nale Datenmodell. Die Schemata der Datenbanken können unterschiedlich modelliert
sein. Hierbei unterscheidet man zwischen struktureller und semantischer Heterogenität
[Her03]. Zur strukturellen Heterogenität gehören unterschiedliche Datenmodelle, ver-
schiedene Beziehungsmöglichkeiten zwischen den Daten (z.B. Generalisierung oder As-
soziation) und die Möglichkeit der Modellierung von komplexen Objekten. Semanti-
sche Heterogenität ist begründet in unterschiedlichen Bezeichnungen, die beispielsweise
durch Synonyme oder Abkürzungen hervorgerufen werden.

Eine im Unternehmen entstandene heterogene Systemlandschaft könnte beispiels-
weise wie in Abbildung 1.2 dargestellt aussehen. Sie enthält eine Menge von Informa-
tionssystemen, wie zum Beispiel ein Enterprise-Resource-Planning-System oder eine
Lagerverwaltung. Diese müssen über ein Integrationssystem integriert werden, um den

22

1.1. PROBLEMSTELLUNG UND MOTIVATION

Abbildung 1.2: Informationssysteme in einem Unternehmen

angesprochenen Informationsaustausch zu realisieren. Ein mögliches Integrationssys-
tem ist ein Propagationssystem, über den diese Arbeit handelt.

Die Integration von Informationssystemen bildet, wie in Abbildung 1.3 dargestellt,
einen Graphen mit gerichteten und ungerichteten Kanten. Der Aufbau des Graphen
ist stark davon abhängig, wie die Kommunikationsbeziehungen zwischen den einzelnen
Leistungseinheiten und zwischen Informationssystemen innerhalb von Leistungseinhei-
ten definiert sind. Der Informationsaustausch kann sowohl in eine Richtung gehen (ge-
richtete Kante), als auch bidirektional sein (ungerichtete Kante). Informationssysteme
sind in der Regel in drei Schichten aufgebaut: einer Benutzerschnittstelle, einer An-
wendungsschicht und einer Datenschicht. Benutzer können über die Benutzerschnitt-
stelle Daten eingeben, pflegen und abfragen. Dafür verwendet die Benutzerschnittstelle
Anwendungslogiken, die in der Anwendungsschicht realisiert sind. Die Daten werden
schließlich in einer Datenschicht persistent vorgehalten. Diese Schicht kann zum Bei-
spiel durch Datenbanksysteme realisiert werden.

Um einen Informationsaustausch zwischen den einzelnen Informationssystemen der
Leistungseinheiten zu ermöglichen, müssen diese miteinander verbunden werden. Der
hier angestrebte Ansatz ist ein gesteuerter Informationsaustausch, der bei Änderungen
der Informationen eines Informationssystems diese an andere interessierte Informa-
tionssysteme mitteilt. Genauer gesagt handelt es sich um Änderungen von Daten, da
Daten erst durch ihre Interpretation zu Informationen werden. Wenn man die einzelnen
Informationssysteme betrachtet, so sind die Daten teilweise repliziert und zwar genau
dort, wo ein Informationsaustausch notwendig ist. Das heißt, Objekte sind sowohl in
dem einen System, als auch in anderen Systemen vorhanden. Diese Objekte müssen
nicht gleich sein, sondern können unterschiedlich repräsentiert sein: die Objekte können
sich anhand ihrer Struktur und Repräsentation der Daten unterscheiden. Beispielswei-
se kann ein System ausgeschriebene Ländernamen (z.B. Deutschland) und ein anderes
System Ländercodes (z.B. D) verwenden. Dies ist bedingt durch die Heterogenität in

23

KAPITEL 1: Einleitung

den Informationssystemen. Die replizierten Daten müssen für den angesprochenen In-
formationsaustausch integriert werden. Klassische Lösungen für replizierte Daten sind
replizierte Datenbanken. Bei diesen werden gleiche Daten auf unterschiedlichen Rech-
nern vorgehalten. Dadurch kann eine höhere Performanz und Verfügbarkeit erreicht
werden. Allerdings müssen die Daten bei Änderungen synchronisiert werden, sodass
alle Replikate auf dem gleichen Stand sind. Dies erfolgt mittels Update-Propagation,
welche die Konsistenz der Daten garantiert. Diese Systeme sind hauptsächlich für ein
homogenes Umfeld gemacht und spielen Änderungen auf der Datenschicht von Informa-
tionssystemen ein. Dies hat zum Nachteil, dass Konsistenzregeln und evtl. vorhandene
Anwendungslogiken umgangen werden. Stärken von solchen Systemen sind die Vermei-
dung oder Erkennung von Änderungskonflikten. Ob nun Konflikte nur erkannt oder
vermieden werden, hängt zum Teil von der Art der Replikation (z.B. Eager Replication
oder Lazy Replication) ab. Ein Änderungskonflikt tritt dann auf, wenn das gleiche reale
Objekt in zwei unterschiedlichen Systemen gleichzeitig geändert wird.

Eine weitere Möglichkeit, Informationssysteme zu integrieren, stellen EAI-Produkte
(Enterpise Application Integration) dar, die Informationen nachrichtenbasiert austau-
schen. Vorteile von solchen EAI-Produkten sind eine flexible Gestaltung von Integra-
tionsprozessen und die Möglichkeit der Transformation von Nachrichten. Sie haben
allerdings Schwächen in der Konfliktbehandlung und zumeist in der Einhaltung von
der korrekten Reihenfolge von Änderungen.

Um diese Schwächen zu beheben, wird in dieser Arbeit eine Mischung aus beiden
Ansätzen konzipiert, welche die Vorteile der beiden Welten vereinen soll. Dabei soll ein
Update-Propagationssystem für ein heterogenes Umfeld entstehen, was die Synchroni-
sation von geänderten Daten zwischen Informationssystemen ermöglicht. Dieser Ansatz
soll dabei für die Integration von heterogenen und autonomen Informationssystemen
maßgeschneidert sein. Die Änderungen sollen soweit wie möglich nicht in der Daten-
schicht eingespielt werden, sondern über Anwendungsschnittstellen in der Anwendungs-
schicht, damit Konsistenzregeln und Anwendungslogiken der Anwendungsschicht nicht
umgangen werden. Wichtige Eigenschaften eines solchen Propagationssystems sind die
oben beschriebene Erkennung oder Vermeidung von Änderungskonflikten. Werden die-
se nur erkannt, müssen Änderungskonflikte schließlich auch aufgelöst werden, d.h. es
wird versucht die korrekten Daten wieder zu rekonstruieren. Da die Reihenfolge von
verarbeiteten Änderungen eine große Rolle spielt, muss dafür gesorgt werden, dass diese
auch eingehalten wird.

1.2 Zielsetzung

Das Hauptziel der vorliegenden Arbeit war die Entwicklung eines Änderungspropaga-
tionssystems, das für heterogene und autonome Informationssysteme geeignet ist und
deren Anforderungen berücksichtigt. Um die Wandlungsfähigkeit des Unternehmens
zu unterstützen, sollte die angestrebte Lösung flexibel sein. Dies bedeutet vor allem,
dass neue Informationssysteme hinzugenommen oder nicht mehr benötigte entfernt
werden können. Außerdem soll die Änderung von Informationsmodellen (Schemas) der
einzelnen Informationssysteme möglich sein. Die angebundenen Informationssysteme

24

1.3. GLIEDERUNG

Abbildung 1.3: Aufbau von Informationssystemen und ihre Integration

sollen, wie die Leistungseinheiten, teilautonom sein. Die Informationssysteme sollen
dabei keine Kenntnis über andere Informationssysteme haben, mit denen sie einen In-
formationsaustausch haben. Des Weiteren sollen die Informationssysteme aus Gründen
des Informationsaustauschs mit anderen Informationssystemen möglichst nicht ange-
passt werden müssen. So ist es möglich, leicht Informationssysteme hinzuzunehmen, zu
entfernen oder auszutauschen. Die Informationssysteme reichen nun ihre geänderten
Informationen bzw. Daten an ein Änderungspropagationssystem weiter, dass dann die
entsprechenden Informationssysteme über die Änderung benachrichtigt.

1.3 Gliederung

Kapitel 2 gibt einen Überblick über Technologien, die in Konkurrenz zur Änderungs-
propagation stehen oder als Grundlage für diese verwendet werden können.

In Kapitel 3 wird das zur Grunde liegende Konzept des Änderungspropagations-
systems beschrieben. Dafür werden Änderungsbeschreibungen und eine Sprache zur
Definition von Propagationsprozessen definiert, die Änderungen verarbeiten. Außerdem
wird eine weitere Sprache für die Definition von Bedingungen zwischen Änderungsbe-
schreibungen definiert. Des Weiteren werden Konzepte zur Erkennung von Konflikten
und zur Einhaltung der Reihenfolge behandelt.

Mögliche Erweiterungen des Änderungspropagationssystem werden schließlich in
Kapitel 4 behandelt. Dazu gehören die Einbindung von Drittsystemen, Propagatio-
nen, die mehrere Änderungen verarbeiten können und die Verteilung des Propagati-
onssystems.

Die Evaluierung des Ansatzes anhand eines Integrationsszenarios und eine Perfor-
manceevaluierung erfolgt in Kapitel 5. Zusätzlich wird der Ansatz noch mit verwand-
ten EAI-Produkten verglichen.

Schlussfolgerungen und ein Ausblick in Kapitel 6 bilden den Abschluss dieser
Arbeit.

25

KAPITEL 1: Einleitung

26

KAPITEL 2

Grundlagen

In diesem Kapitel wird ein Überblick über Technologien gegeben, die im Zusammen-
hang mit der Integration von Informationssystemen mittels Änderungspropagation ste-
hen. Als Erstes wird der Begriff

”
Informationssystem“ geklärt. Danach werden Tech-

nologien untersucht, mit denen Integrationen innerhalb eines Unternehmens durch-
geführt werden können. Diese sind Enterprise-Resource-Planning-Systeme und En-
terprise Application Integration. Datenintegration fokussiert sich auf die Integration
von Daten innerhalb eines Unternehmens. Um dies in großen und flexiblen Netzen zu
ermöglichen, können Peer-Data-Management-Systeme eingesetzt werden. Eine weitere
Technologie, durch die Informationssysteme integriert werden, stellen Workflows dar.
Als Basistechnologien für die Integration von Informationssystemen sind XML und
Message-oriented-Middleware (MOM) weit verbreitet. Eine weitere Basistechnologie,
die verwandt zu MOM ist, sind Ereignissysteme. Da Integrationsaufgaben metadaten-
intensiv sind, werden noch Model-Managementsysteme untersucht. Zum Schluss wird
begründet, warum die vorgestellten Technologien für eine Änderungspropagation zwi-
schen heterogenen sowie autonomen Informationssystemen nicht ausreichend sind.

2.1 Informationssysteme

In diesem Abschnitt geht es um die Klärung des Begriffes
”
Informationssystem“, mögli-

che Architekturen und Modelle der Informationssysteme.

2.1.1 Definition

In der Literatur wird der Begriff
”
Informationssystem“ häufig verwendet [Vet90, BF97,

Ste02, Kur02], ohne dass dabei der Begriff näher erläutert oder definiert wird. Daraus
könnte man schließen, dass der Begriff und dessen Bedeutung weitläufig bekannt sind.

27

KAPITEL 2: Grundlagen

Da Informationssysteme in dieser Arbeit die Systeme sind, die miteinander integriert
werden sollen, wird dieser Begriff zunächst genauer untersucht.

Bevor wir eine Definition für den Begriff
”
Informationssystem“ finden, wollen wir

die Unterbegriffe
”
Information“ und

”
System“ genauer betrachten. In [Krc03] werden

Informationen, Daten und Zeichen definiert. Werden auf unterster Ebene Zeichen durch
eine Syntax kombiniert, erhält man Daten (z.B. 2,3). Wird zu den Daten ein Kontext
hinzugefügt, wie zum Beispiel ’Gewicht des Produktes in kg’, so erhält man Informa-
tionen. Die Daten sollten mit dem dazu gehörigen Kontext interpretiert werden, um
Informationen zu erhalten.

Ein System ist laut [Vet94] folgendermaßen definiert:

Ein System stellt eine abgeschlossene Gesamtheit von Elementen dar, die
miteinander durch Beziehungen verbunden sind und gemeinsam einen be-
stimmten Zweck zu erfüllen haben.

Bei technischen Systemen werden die Elemente, aus denen ein System besteht, als
Komponenten bezeichnet.

In [CS99] wird der Begriff
”
System“ durch seine Eigenschaften beschrieben: neue

Fähigkeiten, Hierarchie, Kommunikation und Steuerung. Ein System verfügt über neue
Fähigkeiten, die die einzelnen Komponenten noch nicht haben. Zum Beispiel kann
man ein Auto verwenden, um von A nach B zu kommen. Dies ist eine Fähigkeit,
die keine der Komponenten des Autos hat. Ein System setzt sich aus Komponenten
zusammen, die wiederum Systeme sein können. Folglich besteht ein System aus einer
Hierarchie von Komponenten. Zwischen den Komponenten muss eine Kommunikation
stattfinden, damit die neuen Fähigkeiten realisiert werden können. Um eine sinnvolle
Kommunikation zu erreichen, muss diese gesteuert werden.

Der Begriff
”
Informationssystem“ ist laut [Krc03] folgendermaßen definiert:

Bei Informationssystemen handelt es sich um soziotechnische (”Mensch-
Maschine”) Systeme, die menschliche und maschinelle Komponenten (Teil-
systeme) umfassen und zum Ziel der optimalen Bereitstellung von Informa-
tion und Kommunikation nach wirtschaftlichen Kriterien eingesetzt werden.

Wie an der Definition zu sehen ist, spielt der Mensch eine große Rolle im Informa-
tionssystem, da er die Daten interpretiert und dadurch aus den Daten Informationen
macht. Aus Sicht der Änderungspropagation muss der Begriff

”
Informationssystem“

aber nicht so streng definiert werden, da es sich dabei um ein System handelt, dessen
Daten integriert werden sollen. Es kann sich also dabei auch um ein Anwendungssystem
handeln, was auch oft als Teil eines Informationssystems oder als Informationssystem
selbst gesehen wird. Wichtig für uns aus Sicht der Integration von Daten ist nur,
dass das Informationssystem über eine persistente Datenspeicherung verfügt. Deshalb
genügt in diesem Zusammenhang die folgende abgeschwächte Aussage:

Ein Informationssystem ist ein System, das einen Teil seiner Daten
durch eine persistente Speicherung dauerhaft verwaltet.

Die persistente Speicherung kann in Datenbanken oder in Dateien erfolgen.

28

2.1. INFORMATIONSSYSTEME

Abbildung 2.1: Beispiel eines 4-Tier-Informationssystem [Har01a]

2.1.2 Architektur

In diesem Abschnitt soll die Architektur eines Informationssystems untersucht werden,
um festzustellen wo Datenänderungen eingespielt werden können. Um die Architektur
von Informationssystemen zu beschreiben, kann man die Artefakte des Informations-
systems Ebenen zuordnen. Verfügt ein Informationssystem über mehrere Ebenen so
spricht man von einer Ebenenarchitektur. Diese können wie in [Har01b] dargestellt
mehrere Schnittstellen zu unteren Ebenen haben, da sie zum Beispiel Funktionen von
zwei Ebenen brauchen, um ihre Funktionalität zu implementieren. Weiterhin kann eine
Ebene auch eine komplexe Unterstruktur haben.

Eine weitere Beschreibung von Informationssystem-Architekturen, ist die Untertei-
lung in so genannte Schichten (engl. Tiers, vgl. Abbildung 2.1). In [Har01b] ist eine
Schicht(Tier) folgendermaßen definiert:

A tier is a layer that corresponds to a process or a collection of processes.
A tier contains all artifacts of a software system that can be associated with
the tiers processes.

Wichtig bei der Definition ist, dass eine Schicht einer Ebene gleich gesetzt werden
kann. Mehrere Ebenen können sich innerhalb eines Betriebssystemprozesses befinden,
während eine Schicht einem oder mehreren Prozessen zugeordnet ist und damit zwi-
schen Schichten Prozessgrenzen befinden.

Informationssysteme verfügen des Öfteren über Konsistenzregeln für ihre Daten, die
oberhalb der Datenbankschicht angesiedelt sind, d.h. in den Schichten Anwendungslo-
gik und Datenzugriff. Aus diesem Grund sollte eine Datenintegration von heterogenen
und autonomen Informationssystemen auf der Ebene der Anwendungslogik erfolgen,
da diese alle Konsistenzregeln beachten kann, auch die in der Datenbankschicht. Wird
direkt die Datenbank für die Datenintegration angesprochen, so kann es durch die
Nichtbeachtung von Konsistenzregeln der oberen Schichten zu Inkonsistenzen führen.
Andererseits können alle Konsistenzregeln in der Datenbankschicht realisiert sein. Des
Weiteren führt die Umgehung der Anwendungsschicht dazu, dass Anwendungslogiken
teilweise im Integrationssystem nachprogrammiert werden müssen, da zum Beispiel bei
Änderungen von A auch B geändert werden muss.

29

KAPITEL 2: Grundlagen

2.1.3 Modelle und Geschäftsobjekte

Auf einer sehr abstrahierten Ebene stellt das Modell eines Informationssystems eine
Menge miteinander verbundener Geschäftsobjekte (engl. Business Objects) dar. Aus
diesem Grund wollen wir die Geschäftsobjekte genauer untersuchen. Laut [JGJ97] ist
ein Geschäftsobjekt wie folgt definiert:

We define a business object as representing something concrete and sig-
nificant in the business – a representation of members of the business or
”some thing” handled or used by people in the business.

Diese Definition ist sehr weitläufig und beinhaltet dadurch eine recht große Anzahl
an möglichen Geschäftsobjekten. Allerdings muss hier angemerkt werden, dass nicht in
allen Quellen das Geschäftsobjekt so weitläufig definiert ist.

In [Fay02] werden dagegen drei Arten von Eigenschaften/Objekten definiert: En-
during Business Themes, Business Objects und Industrial Objects. Enduring Business
Themes sind Eigenschaften des Modellierungsgegenstandes, die beständig sind. In ei-
ner Fabrik ist die Produktion ein Enduring Business Theme, während ein Produkti-
onsprozess ein Business Object und eine Fertigungsmaschine ein Industrial Object ist.
Um diese zu unterscheiden, stellt [Fay02] sieben Kriterien auf, die je nach Modellie-
rungsgegenstand andere Werte haben: Stability over time, Adaptibility, Essentiality,
Intuition, Expliciteness, Commonitality to the Domain, Tangebility. Betrachtet man
zum Beispiel Zeitstabilität (”Stability over time”) so sind Enduring Business The-
mes stabil, während Geschäftsobjekte nach außen stabil sind, sich aber intern ändern
können. In unserem Fall wollen wir die Unterscheidung nicht so stark vertiefen, son-
dern Geschäftsobjekte als Modell realer (z.B. Resource) oder künstlicher Objekte (z.B.
Auftrag) verstehen, die eine bestimmte Funktion im Unternehmen haben.

Gruppen von Geschäftsobjekten lassen sich zu Geschäftsobjekttypen zusammenfas-
sen, die sich in einer Meta-Ebene weiter oben befinden. Geschäftsobjekttypen entspre-
chen Klassen. In diesen Geschäftsobjekttypen werden die gemeinsamen Eigenschaften
der Geschäftsobjektgruppe festgelegt.

Weiterhin kapselt ein Geschäftsobjekt die Daten und Funktionalitäten desselben
[MS00]. Dies ist natürlich ähnlich zu der Definition programmiersprachlicher Objekte,
bei der die Daten durch Methoden gekapselt werden. Die Funktionalität ist durch die
bereitgestellten Methoden realisiert und liefert dadurch eine kontrollierte Möglichkeit
den Zustand zu ändern. Geschäftsobjekte haben laut [SE98] spezielle Implementie-
rungsobjekte, die die Repräsentation desselben für Benutzer anderer Geschäftsobjekte
oder anderer Systeme anbieten. Es muss angemerkt werden, dass ein Geschäftsobjekt
auch Implementierungsobjekte zur persistenten Speicherung verwendet. Vergleicht man
die Implementierungsklassen, aus denen ein Geschäftsobjekttyp besteht, mit dem Mo-
dell eines Informationssystems, so stellt laut [Sch98] der Geschäftsobjekttyp ein Teil
des Fachkonzepts dar, während die Hilfsklassen Bestandteil des DV-Konzeptes sind.
Dabei ist anzumerken, dass die Geschäftsobjekte Beziehungen untereinander haben.
Eine Ressource hat zum Beispiel Beziehungen zu Produkten, die sie bearbeitet und
zu Produktionsaufträgen, die sie fertigt. Dabei gibt es eine Vielzahl von Beziehungen,
die ein solches Geschäftsobjekt mit anderen Geschäftsobjekten unterhalten kann. In

30

2.2. ENTERPRISE-RESOURCE-PLANNING-SYSTEME

UML [BRJ99], eine Sprache mit der man beispielsweise Geschäftsobjekte modellieren
kann, gibt es vier Arten von Beziehungen: Vererbung (Is-A), Assoziation, Aggregation
und Komposition. Die Komposition stellt dabei eine Sonderrolle da, denn die interne
Zusammensetzung eines Geschäftsobjektes durch Hilfsobjekte, wie zum Beispiel Kun-
denauftrag und Auftragsposition, werden üblicherweise durch Kompositionen modelliert
und stellen dadurch eine enge Beziehung zwischen den Objekten dar. Je nach Betrach-
tungsebene können auch die Geschäftsobjekte selbst durch Kompositionen miteinander
verbunden sein. Ein Beispiel hierfür ist ein Auto, das abstrakt gesehen ein Geschäfts-
objekt darstellt. Dieses Geschäftsobjekt kann aber auch detaillierter betrachtet werden
und damit in seine Komponenten unterteilt werden.

Die Integration von Daten kann auf der Ebene von Geschäftsobjekten oder persis-
tenten Implementierungsobjekten erfolgen. Weil Implementierungsobjekte einen engen
Zusammenhalt haben, eignen sich Geschäftsobjekte besser für die Integration. Ein Bei-
spiel hierfür sind Auftragskopf und Auftragspositionen (Implementierungsobjekte), die
einen Kundenauftrag bilden (Geschäftsobjekt). Des Weiteren stellen Geschäftsobjekte
Objekte im Fachkonzept dar und ermöglichen dadurch eine bessere Diskussionsmöglich-
keit in Integrationsprojekten.

Da Geschäftsobjekte intern Kompositionen verwenden, eignet sich besonders XML
als Format für den Datenaustausch [Dau03]. Der Grund hierfür ist die ebenfalls hier-
archische Datenstruktur von XML. In einem späteren Abschnitt (2.7) dieses Kapitels
wird auf XML noch detaillierter eingegangen.

Betrachtet man nun ein produzierendes Unternehmen oder auch andere Unterneh-
men, so verfügen diese in den meisten Fällen über mehrere Informationssysteme, die
im Laufe der Zeit selbst entwickelt oder hinzugekauft wurden. Unternehmen verfügen
aus diesem Grund nicht über ein globales Unternehmensmodell. Selbst wenn das Un-
ternehmen SAP R/3 einsetzt, ist dieses Modell nicht all umfassend. Beispiele hierfür
sind die wichtigen Module auf der Ebene der taktischen Produktionsplanung, wie zum
Beispiel das Fabriklayout oder auch das Produktdatenmanagement. In Abbildung 2.2
wird dargestellt, dass sich ein Unternehmensmodell in den meisten Fällen aus meh-
reren Partialmodellen zusammensetzt. Diese Partialmodelle sind nicht disjunkt, son-
dern überschneiden sich in manchen Bereichen. Dies bedeutet, dass Daten von beiden
betroffenen Systemen, die die Überschneidung bilden, benötigt werden. Diese über-
schneidenden Bereiche sollten möglichst klein sein. Eine große Überschneidung kommt
dann zustande, wenn mehrere Informationssysteme ähnliche Aufgaben erledigen. Diese
Überschneidungen müssen mittels Integrationssystemen integriert werden, damit eine
globale Datenkonsistenz gewährleistet ist. Bevor wir die Enterprise Application Inte-
gration (EAI) untersuchen, wollen wir noch einen Blick auf die Enterprise-Resource-
Planning-Systeme werfen, zu denen auch das oben erwähnte SAP R/3 gehört.

2.2 Enterprise-Resource-Planning-Systeme

Enterprise-Resource-Planning-Systeme, abgekürzt ERP-Systeme, sind aus Material-
Requirements-Planning- (MRP) und aus Manufacturing-Resource-Planning-Systemen
(MRP II) entstanden [KvH00]. ERP-Systeme sind dabei konfigurierbare Informati-

31

KAPITEL 2: Grundlagen

Abbildung 2.2: Das Unternehmensmodell und seine Partiallmodelle [Hei00]

onssystempakete, die Daten sowie Prozesse innerhalb von Unternehmensfunktionen
übergreifend integrieren [KvH00]. In Abbildung 2.3 sind die wichtigsten Module eines
ERP-Systems bzw. Unternehmensfunktionen und deren Bezüge dargestellt. Durch die-
se Integration wird es möglich, genauere und zeitnahe Informationen über Abläufe im
Unternehmen zu bekommen [PG00]. Dies bedeutet zum Beispiel, dass für den Kun-
den genauere Informationen und auch Geschäftsregeln vorliegen, wie beispielsweise der
maximale Kredit eines Kunden. Durch ein ERP-System werden außerdem die Kosten
gesenkt, Reaktionszeiten verkürzt und der Kundenservice erhöht [STSB02].

Allerdings verlangt der Einsatz ein Business Reengineering [HC94], bei dem be-
stehende Geschäftsprozesse analysiert und dann für die Verwendung im ERP-System
angepasst werden. Die Geschäftsprozesse müssen dabei so angepasst werden, dass sie
durch das gewählte ERP-System realisierbar sind. Diese Aufgabe ist oft langwierig
und teuer. Laut [Has00] sollte sich eine Anwendung an die Geschäftsorganisation an-
passen und nicht umgekehrt. Als Argument für ein ERP-System spricht dabei, dass
durch ein solches System die besten Geschäftspraktiken realisiert werden. Allerdings
wie in [SKTY00] dargestellt, gibt es aber erhebliche Unterschiede zwischen den An-
forderungen aufgrund unterschiedlicher Kulturen und Länder. Dies führt zu einem er-
heblichen Anpassungsbedarf. Außerdem führt die Verwendung der konfigurierbaren
Geschäftsprozesse der ERP-Systeme zu einer Vereinheitlichung der Unternehmen, was
zu einem Verlust von Wettbewerbsvorteilen führen kann. Aus diesen Gründen haben
manche Unternehmen entschieden, kein Standard ERP-System einzusetzen und dafür
eine Eigenentwicklung zu verwenden. ERP-Systeme können an spezielle Anforderun-
gen angepasst werden, was aber dazu führt, dass neuere Versionen schwer einzupflegen
sind, da der Code des ERP-Systems verändert wurde. Bei vielen Projekten ist die
Einführung von ERP-Systemen gescheitert. Allerdings gibt es auch viele erfolgreiche
Beispiele, wie zum Beispiel in [Bro04], bei dem ein ERP-System für die Verwaltung
eines College eingesetzt wird.

Weiterhin stellt bei internationalen Unternehmen mit einer breiten Produktband-

32

2.3. ENTERPRISE APPLICATION INTEGRATIONZentraleDatenMarketingund Verkauf Produktion undMaterial-managementBuchhaltungundFinanzierung HumanResources
Abbildung 2.3: ERP-System und Integration [BMW01]

breite die ERP-Implementierung an mehreren Standorten eine Herausforderung dar
[MTvF00], die abhängig von der gewählten Geschäftsstrategie (z.B. mehrere teilauto-
nome Standorte) ist. Insbesondere ist hier das Ausmaß der Autonomie der Geschäfts-
bereiche ausschlaggebend. Für wandlungsfähige Unternehmen wird dabei von einem
hohen Grad von Autonomie ausgegangen, um eine schnelle Reaktion auf Veränderung-
en zu ermöglichen [Son99].

2.3 Enterprise Application Integration

Enterprise Application Integration (EAI) ist ein Schlagwort, das in der heutigen Zeit
häufig verwendet wird. Unter diesem Begriff versteht man die Anstrengung, die im
Unternehmen vorhandenen Anwendungen und Informationssysteme miteinander zu in-
tegrieren. Die EAI-Technologie entstand dabei Mitte der 90er Jahre [LSH03]. Da mit
EAI unterschiedlichste Anwendungen und Informationssysteme integriert werden und
in dieser Arbeit Informationssysteme miteinander integriert werden sollen, wollen wir
diese Technologie genauer untersuchen.

In [LSH03] wird ausgesagt, dass beim Einsatz von EAI eine geringere Anstrengung
für die Umsetzung innerhalb eines Unternehmens notwendig ist als durch die Verwen-
dung eines ERP-Systems. Durch diese Integration mit EAI wird erreicht, dass einheit-
liche Daten vorhanden und Geschäftsprozesse systemübergreifend realisiert sind. Die
Kostenersparnis ist dadurch begründet, dass in existierenden Systemen Prozesse schon
teilweise realisiert sind und die Daten bereits verwaltet werden. Mittels EAI können
nun die vorhandenen Daten bzw. Prozesse integriert werden.

33

KAPITEL 2: Grundlagen

Abbildung 2.4: Ebenen in einem Unternehmen [Cum02]

2.3.1 Unternehmenssicht

Mit dem Schlagwort EAI ist sehr deutlich herausgehoben, dass es sich um Anwen-
dungsintegration innerhalb eines Unternehmens handelt. Die Anwendungsintegration
kann auf verschiedenen Ebenen innerhalb des Unternehmens stattfinden. Abbildung 2.4
stellt diese unterschiedlichen Ebenen dar. Auf unterster Ebene werden unterschiedliche
Anwendungskomponenten zu einer Anwendung integriert. Diese können dann durch
unterschiedliche Geschäftsprozesse integriert werden, welche selber in unterschiedli-
chen Geschäftsdomänen existieren. Aus diesen setzt sich schließlich ein Unternehmen
zusammen, das wiederum Bestandteil einer oder mehrerer virtueller Unternehmen sein
kann. Diese Art von Unternehmen sind Unternehmenszusammenschlüsse, die ein ge-
meinsames Ziel erreichen wollen [AFHS95].

Ein Unternehmen kann durch verschiedene Organisationsansätze strukturiert wer-
den [Krü84]. Dies kann sich deutlich auf die Integration auswirken. Dadurch können
weitgehend unabhängige Bereiche geschaffen werden, wie zum Beispiel Divisionen. Der
Integrationsaufwand zwischen den Bereichen wird verringert, wenn die Bereiche un-
abhängiger sind. Im Sonderforschungsbereich 467 [Son99] wurden Leistungseinheiten
eingeführt, die weitgehend autonom sind, aber dennoch über Schnittstellen zu anderen
Leistungseinheiten verfügen. Der Grad der Autonomie hat einen großen Einfluss auf die
Wahl der Integrationslösung, denn die Softwaresysteme sollten bei hoher Autonomie
der Unternehmensbereiche auch selbst weitgehend autonom bleiben.

2.3.2 Klassifikationen

In der Literatur werden unterschiedliche Klassifikationen zum Thema EAI angegeben,
die in der Tabelle 2.1 zusammengefasst sind. Dabei gibt es unterschiedliche Meinungen
zu den Integrationsebenen, die sich teilweise überschneiden, bisweilen auch widerspre-

34

2.3. ENTERPRISE APPLICATION INTEGRATION

Dimensionen [Has00]
• Autonomie
• Heterogenität
• Verteilung

Integrationsebenen I [RMB01]

• Präsentationsebene
• Datenebene
• Datenkonsistenzebene
• Funktionsebene
• Prozessebene
• Komponentenebene

Integrationsebenen II [Lin00]

• Datenebene
• Funktionsebene
• Applikationsschnittstellenebene
• Methodenebene

Grad der Kopplung [RMB01]
• Lose Kopplung
• Enge Kopplung

Offenheit der zu integrier- • White-Box

enden Anwendung [RMB01] • Black-Box

Bereich [LJdP97]
• Innerhalb eines Unternehmens
• Zwischen Unternehmen

Art [LJdP97]
• Interfacing
• Integration

Architekturen [Mül05]

• Point-to-Point
• Hub & Spoke
• Bus-orientiert
• Verteile Objekte

Tabelle 2.1: Klassifikationen zum Thema EAI

chen. Wie man sieht, haben die Integrationsebenen (I und II) Überschneidungen, aber
auch disjunkte Teile. Im folgenden Absatz wird die Integrationsebene I erklärt.

Die Präsentationsebene integriert verschiedene Anwendungen zu einer einheitlichen
Benutzerschnittstelle, so dass es für den Benutzer aussieht, als ob es sich um eine einzige
Anwendung handelt. Ein ERP-System verfügt über mehrere Anwendungen, hat aber
wie am Beispiel von SAP R/3 ersichtlich auch eine einheitliche Benutzerschnittstelle.
Im Umfeld von Web-Technologien eignen sich besonders Portale um unterschiedlichste
Anwendungen in einer Benutzerschnittstelle zusammenzuführen. Ein weiteres wichtiges
Schlagwort in diesem Zusammenhang ist das einheitliche und anwendungsübergreifende

”
Look-And-Feel“. Dies ermöglicht dem Benutzer ein schnelles Zurechtfinden in fremden

Anwendungen.

Unter der Datenebene wird hier hauptsächlich die Integration autonomer Daten-

35

KAPITEL 2: Grundlagen

quellen zu einer einheitlichen Zugriffsebene verstanden, wie zum Beispiel durch Föder-
ierte Datenbanksysteme (Abschnitt 2.4.2). Bei dieser Art von Datenbanksystemen wird
zusätzlich noch ein einheitliches Schema bereitgestellt, über das die einzelnen Daten-
quellen integriert sind.

Bei der Integration auf der Ebene der Datenkonsistenz werden im Vergleich zur
Datenebene die autonomen Datenquellen so integriert, dass ihre Daten konsistent un-
tereinander bleiben. Dies kann durch eine globale Anwendung erfolgen, die Datenände-
rungen an alle Anwendungen sendet oder auch durch den Austausch von Änderungsin-
formationen untereinander. Begriffe, die in diesem Zusammenhang oft auftauchen, sind
Synchronisation und Propagation. Update Propagation wird zum Beispiel von replizier-
ten Datenbanken verwendet, um die Daten zu synchronisieren. In [RMB01] gehört die
konsistenzerhaltende Datenintegration hingegen zur Funktionsintegration, da im Bei-
spiel des Buches [RMB01] eine globale Anwendung zwei Änderungsfunktionen aufruft.
Wir dagegen sind der Meinung, dass die konsistenzerhaltende Datenintegration auch
unabhängig von den Funktionen erledigt werden kann, indem zum Beispiel Veränderun-
gen direkt in der Datenhaltungsschicht erkannt und verteilt werden. Dies ist aber nicht
in allen Fällen zu empfehlen, da dadurch Konsistenzregeln umgangen werden, die in
der Anwendungsschicht realisiert sind. Besser ist es, Änderungen im heterogenen Um-
feld über die Anwendungsschichten einzuspielen, sofern eine Schnittstelle bereitgestellt
wird. Sind keine Konsistenzregeln in der Anwendungsschicht realisiert oder handelt
es sich um eine homogene Systemlandschaft, kann die Anwendungsschicht umgangen
werden.

Die Funktionsebene integriert Anwendungen durch den gegenseitigen Aufruf von
Funktionen, die zum Beispiel als RPC oder über verteilte Objekttechnologien bereit-
gestellt werden.

Auf der Prozessebene werden unterschiedliche Funktionen zu einem Geschäftspro-
zess integriert. Dies erfolgt häufig durch die Verwendung von so genannten Workflow-
Management-Systemen (WFMS) und wird in Abschnitt 2.6 noch genauer untersucht.

Als letzte Ebene ist die Komponentenintegration zu sehen, bei der Anwendungen
aus verschieden Komponenten zusammengesetzt werden. Dies verkürzt die Anwen-
dungsimplementierung, da Komponenten wieder verwendet werden können.

Linthicum [Lin00] schlägt in seinem Buch noch die Methodenintegration vor. Diese
soll wieder verwendete Methoden, die Geschäftslogiken realisieren, identifizieren und
global bereitstellen. Im Gegensatz zur Funktionsintegration sollen hierbei die einzelnen
Anwendungen angepasst werden, um Redundanzen zu vermeiden. Dies ist nicht immer
machbar, da Legacy-Systeme oft schlecht veränderbar sind. Außerdem ist mit dieser
Integrationsebene ein hoher oft nicht realisierbarer Aufwand verbunden.

Häufig wird die Art der Integration auch noch durch die Stärke der Kopplung
unterschieden: enge und lose Kopplung. In der Literatur herrschen zu diesen Begriffen
unterschiedliche Meinungen zu ihrer Definition. In [RMB01] wird zum Beispiel bei der
losen Kopplung von der Abhängigkeit weniger Schnittstellen, während in [Cum02] über
asynchrone Kommunikation im Zusammenhang mit loser Kopplung gesprochen wird.

Unterschieden werden muss noch zwischen der Integration innerhalb eines Unter-
nehmens, also die klassische EAI, und der Integration zwischen Unternehmen (B2B),

36

2.4. DATENINTEGRATION IM UNTERNEHMEN

die neue Anforderungen (z.B. kein zentrales Integrationssystem) mit sich bringt [SH01].

2.3.3 Technologien

Die Technologien, die zur Realisierung eines EAI-Projektes eingesetzt werden können,
sind vielfältig. Sie unterscheiden sich hauptsächlich durch die Integrationsebenen (Ta-
belle 2.1). Für die Datenintegration können föderierte Datenbanksysteme oder Daten-
bankmiddleware (z.B. JDBC oder ODBC) verwendet werden. Für die Funktionsinte-
gration können RPC-Systeme (z.B. DCE) oder verteilte Objektsysteme wie CORBA
[Zah99] und COM+ zum Einsatz kommen. Zur Integration von Komponenten und
ihr Deployment eignen sich J2EE und das Corba Component Modell CCM. Weiterhin
können zur Entkopplung der Anwendungen Message-Systeme eingesetzt werden, die
die Anwendung Point-to-Point mit einem Message-Broker oder einem Process-Broker
[JWP00] integrieren.

Nach der allgemeinen Betrachtung von EAI sollen im nächsten Abschnitt die un-
terschiedlichen Arten von Datenintegrationen angeschaut werden.

2.4 Datenintegration im Unternehmen

In diesem Abschnitt werden die unterschiedlichen Arten der Datenintegration unter-
sucht (vgl. Abbildung 2.5). Diese können unterteilt werden in das Vorhandensein eines
globalen Schemas1 mit homogener Infrastruktur (Zentrale Datenbank, Verteilte Da-
tenbank und replizierte Datenbanken), föderierte Datenbanken (globales Schema sowie
autonome, heterogene Komponentendatenbanken) und lokale Modelle (Schemata), die
über Geschäftsprozesse integriert sind.

2.4.1 Globales Schema und homogene Systemlandschaft

2.4.1.1 Zentrale Datenbank

Ein globales Schema wird häufig mit einer zentralen Datenbank in Verbindung ge-
bracht. Dabei werden alle Daten in einem DBMS und einer Datenbank gespeichert.
Dieser Ansatz wird häufig angestrebt, da es keine Probleme mit Duplikaten gibt. Da
alle Daten auf einem Rechner sind, kann dieser Rechner schnell zum Flaschenhals
werden. Außerdem ist keine hohe Ausfallsicherheit gegeben. Dieser Ansatz wurde un-
ternehmensweit in den 70er Jahre forciert, als die gesamten Unternehmensdaten auf
Großrechnern verwaltet wurden. Wenn die Leistung nicht ausreicht oder eine Datenlo-
kalität2 gefordert ist, können Verteilte Datenbanksysteme in Betracht gezogen werden.

1Hier wird Schema verwendet, da Datenmodell in der Literatur anders belegt ist (z.B. Relationales
Datenmodell)

2Datenlokalität steht hier für die Verwaltung von Daten, wo sie anfallen und benötigt werden. Das
bedeutet beispielsweise, dass deutsche Kunden in der deutschen Filiale und nicht in der amerikanischen
Zentrale verwaltet werden.

37

KAPITEL 2: Grundlagen

Abbildung 2.5: Arten von Datenintegrationen

2.4.1.2 Verteilte Datenbanken

Bei verteilten Datenbanken [Rah94, Dat00] werden die Daten einer Datenbank auf
mehrere DBMS verteilt, um eine höhere Performanz und Datenlokalität zu erreichen.
Dabei können die Daten repliziert oder nicht repliziert vorliegen. Da der erste Fall
mit den replizierten Daten besonders wichtig für diese Arbeit ist, wird ihm ein extra
Abschnitt gewidmet (Abschnitt 2.4.1.3).

Für den Datenbankanwender soll die verteilte Datenbank wie eine zentrale Da-
tenbank erscheinen. Dies wird durch unterschiedliche Arten von Transparenz erreicht
[Rah94]. Die Daten des globalen Schemas der verteilten Datenbank werden mittels
Fragmentierung und Allokation auf die einzelnen physischen Datenbanken verteilt. Die
Fragmentierung bildet Gruppen von Daten, die dann mit dem Allokationsschritt auf
die Datenbanken verteilt werden. Relationen können als Ganzes auf die einzelnen Da-
tenbanken verteilt werden. Die Fragmentierung kann ebenfalls innerhalb von Rela-
tionen erfolgen. Bei der horizontalen Partitionierung werden Zeilen auf verschiedene
Datenbanken verteilt, während bei der vertikalen Partitionierung einzelne Spalten auf
die Datenbanken verteilt werden.

Verteilte Datenbanken sind auf ein homogenes Umfeld beschränkt. Um dennoch He-
terogenität zwischen den einzelnen Datenbanken zu ermöglichen, gibt es zwei Ansätze
[dFRH98]: Database-Gateways und Database-Middleware3. Dadurch werden Hetero-
gene Verteilte Datenbanken möglich [Dat00], d.h. ein anderes DBMS verwendet ein
Gateway um eine Datenbank eines fremden DBMS einzubinden. Außerdem können
Database-Gateways auch dafür eingesetzt werden, um Anwendungen die gewohnte

3Der Begriff Database-Middleware wird hier und in der angegeben Literatur anders verwendet als
in Abschnitt 2.3.3

38

2.4. DATENINTEGRATION IM UNTERNEHMEN

Sicht eines DBMS zu bieten, obwohl die Datenbank von einem anderen DBMS ver-
waltet wird [ACM00]. Dadurch kann auch Heterogenität bezüglich Datenmodellen be-
seitigt werden, wie am Beispiel eines SQL Gateway für IMS [Pau93]. Der zweite Ansatz,
Database-Middleware, wird auch als

”
Föderierte Datenbanken“ bezeichnet. Föderierte

Datenbanken sind auch eine Art von verteilten, heterogenen Datenbanken bei der die
globale Sicht nur über die Föderation sichtbar ist (siehe Abschnitt 2.4.2).

2.4.1.3 Replikation

Nicht nur die Verteilung der Daten auf unterschiedliche Rechner bringt eine Daten-
lokalität und Performance, sondern auch die redundante Datenhaltung durch Repli-
kation. Allerdings bringt die Replikation nicht nur Vorteile, sondern auch Nachteile,
die je nach Methode der Replikation anders geartet sind. Diese Methoden lassen sich
danach unterscheiden, wie Änderungen an die Kopien mitgeteilt werden [GHOS96].
Die Aktualisierung der Kopien erfolgt bei der

”
Eager Replication“ [KA00] noch bevor

die Transaktion abgeschlossen wird. Bei Lazy Replication hingegen werden zuerst die
Transaktionen committed und dann die Kopien über Änderungen informiert. Außer-
dem kann man unterscheiden, ob Änderungen in einer Gruppe von Kopien oder nur in
einem ‘Master ’ vorgenommen werden können. Der Master kann sich dabei von Objekt
zu Objekt unterscheiden [GHOS96]. Die beiden Eigenschaften können in Lösungen be-
liebig kombiniert werden. Zum Beispiel kann es zu Änderungskonflikten kommen, wenn
Lazy Replikation mit Änderungen in einer Gruppe von Kopien kombiniert wird. Die-
se Konflikte müssen schließlich erkannt und aufgelöst werden. Ein Nachteil von Eager
Replikation ist die hohe Verfügbarkeitsanforderung – alle Systeme müssen bei einer
Änderung verfügbar sein und es darf keine Netzwerk-Partition existieren [AT89]. Die-
ses Problem kann durch Voting-Verfahren [Rah94, JM90] verbessert werden. Dadurch
kann der größere Teil der Netzwerk-Partition noch weiter arbeiten, da dieser die Mehr-
heit der Stimmen bekommen kann. Die Replikation kann durch das DBMS erfolgen,
was eine homogene Systemlandschaft zur Folge hat, oder durch Datenbank-Middleware
[PMJPKA05, LKPMJP05, MFJPPMK04]. Außerdem gibt es noch die Möglichkeit
Snapshots [AL80, LHM+86] bereitzustellen, die nur lesbar sind und keine allzu großen
Anforderungen an die Datenaktualität haben.

2.4.2 Föderierte Datenbanken

Mit einem Föderierten Datenbankmanagementsystem (FDBMS) werden einzelne DBMS
und ihre Daten zu einer Einheit zusammengeschlossen. Die einzelnen DBMS können
dabei untereinander heterogen sein und sollen so weit wie möglich ihre Autonomie
behalten [Con97]. Dabei soll mit einem FDBMS vor allem semantische Heterogenität
überwunden werden und eine Verteilungstransparenz geschaffen werden [Rah94]. Se-
mantische Heterogenität tritt dann auf, wenn bei gleichen oder in Beziehung stehenden
Daten unterschiedliche Bedeutungen, Interpretationen oder Verwendungszwecke exis-
tieren [SL90].

In Abbildung 2.6 ist die grundsätzliche Architektur eines föderierten Datenbanksys-
tems illustriert. Für ein solches System existieren zwei Arten von Anwendungen: lokale

39

KAPITEL 2: Grundlagen

Abbildung 2.6: Architektur eines Föderierten Datenbanksystems [Con97]

und globale Anwendungen. Die lokalen Anwendungen verwenden weiterhin die Dienste
des lokalen DBMS während die globalen die einheitliche Sicht verwenden, die durch
das FDBMS bereitgestellt wird. Kern eines solchen FDBMS ist der Föderierungsdienst,
der die einzelnen Komponenten-Datenbanksysteme integriert. Dafür verwendet er die
Schnittstellen der Komponenten-DBMS, die über lokale Datenbanken verfügen.

Wichtig bei Föderierten Datenbanken ist die Schema-Architektur [SL90], die aus
fünf Ebenen besteht. Das lokale Schema ist das Schema der lokalen Datenbank, des
Komponenten-DBMS. Darauf aufbauend existieren Komponenten-Schemata, welche
die lokalen Schemata in Schemata überführen, deren Datenmodell dem des FDBMSs
entspricht [Con97]. Da nicht das gesamte Schema in einer Föderation teilnehmen soll,
wird ein Export-Schema definiert, das einem Ausschnitt des Komponenten-Schema ent-
spricht. Diese Export-Schemata werden zu einem föderierten Schema integriert. Aus
dem föderierten Schema werden externe Schemata gebildet, die für die jeweiligen An-
wendungen zugeschnitten sind.

Da bei vielen Informationssystemen der Zugriff nicht direkt über die darunter lie-
genden DBS erfolgen soll, wurde in der Dissertation von Klaudia Hergula [Her03] eine
Möglichkeit geschaffen, Funktionen zu föderierten Funktionen zu integrieren. Dafür
wurde ein Workflow Management System (WFMS) verwendet. Zusätzlich werden die
Daten über ein FDBMS integriert, wobei beide Komponenten (WFMS und FDBMS)
ebenfalls miteinander integriert wurden.

40

2.5. PEER-DATA-MANAGEMENT

2.4.3 Lokale Modelle, Geschäftsprozesse und einheitliche Be-
nutzerschnittstelle

Das ERP-System R/3 von SAP (vgl. Abschnitt 2.2) verfügt über eine anwendungsüber-
greifende einheitliche Benutzerschnittstelle. Dies ermöglicht ein leichtes Zurechtfinden
in fremden Anwendungen. Bei einem SAP-System sind nur die benötigten Anwendun-
gen zu installieren. Damit diese Anwendungen miteinander integriert werden können,
tauschen diese Nachrichten aus. Dies basiert auf der Technologie Application Link
Enabling (ALE) und Intermediate Documents (IDoc) [SAP07]. Das bedeutet, dass eine
Anwendung nicht direkt in die Daten einer anderen Anwendung schreibt. Die Nach-
richten (IDoc) stoßen stattdessen in der anderen Anwendung Geschäftsprozesse an,
die dann die Daten entsprechend anpassen. Im nächsten Abschnitt untersuchen wir
noch eine weitere Art von Datenintegration in großen verteilten Netzen: Peer-Data-
Managementsysteme.

2.5 Peer-Data-Management

Peer-to-Peer-Systeme (P2P-Systeme) sind Rechnernetze, die es ermöglichen eine Viel-
zahl von Peers in einem Rechnernetz zu betreiben. Im Gegensatz zu Client-Server, kann
ein Peer sowohl Dienste in Anspruch nehmen als auch anbieten, wobei die Peers in
einem Rechnernetz gleichberechtigt sind. Eine Ausnahme sind die sogenannten Super-
peers. Das Netz an sich ist selbst organisierend. Eines der Vorteile eines solchen Netzes
ist die geringe Administration, da keine zentrale Infrastruktur benötigt wird. Für die-
se Arbeit sind die Peer-Data-Management-Systeme, ein Teilbereich der P2P-Systeme,
wichtig, die sich auch mit Datenintegration beschäftigen. Diese Systeme werden nach-
folgend genauer untersucht.

In einem Peer-Data-Management-System (PDM-System) [TIM+03, GHI+01]
[BGK+02, HIM+04] fragen die Peers semantisch reiche Daten an oder stellen Daten
bereit. Außerdem können die Daten der einzelnen Peers mittels Update Propagation
angepasst werden [BGK+02]. Weitere Peers können Rechnerleistung für die Anfra-
geverarbeitung bereitstellen. Zwischen den einzelnen Peers bestehen semantische Be-
ziehungen mit denen Update Propagationen oder Anfrage-Beziehungen definiert wer-
den. Anfrage-Beziehungen erfolgen in Form von Sichten und definieren dessen Zu-
sammensetzung aus weiteren Sichten bzw. Tabellen. Der letztere Teil ist verwandt
mit der klassischen Datenintegration (FDBMS, Abschnitt 2.4.2). Im Piazza-Projekt
[TIM+03, GHI+01, HIM+04] werden ebenfalls Global-As-View - und Local-As-View -
Konzepte verwendet, um die semantischen Beziehungen zwischen den einzelnen Sche-
mata zu beschreiben. Im Gegensatz zu einem FDBMS wird allerdings nicht ein globales
Schema definiert, sondern jeder Peer definiert seine eigenen Beziehungen. Im Gegensatz
zu reinen P2P-Systemen wird bei einem Peer-Data-Management davon ausgegangen,
dass Peers das System nicht so häufig verlassen [HIM+04], d.h. das System is beständi-
ger. Dennoch wird in einem Peer-Data-Management-System von einer Open-World-
Assumption ausgegangen, bei der Ergebnisse von Anfragen unvollständig sein können
[TIM+03].

41

KAPITEL 2: Grundlagen

Abbildung 2.7: Architektur eines Peers in einem PDM-System [BGK+02]

Die Architektur eines Peers ist in Abbildung 2.7 dargestellt. Der Benutzer kann
mittels der Benutzerschnittstelle (UI) Anfragen stellen, die dann an den Query Mana-
ger weitergeleitet werden. Dieser kommuniziert mit lokal bereitgestellten Daten (Local
Information Source) oder mit anderen Peers im Netzwerk. Außerdem können Daten
mittels Update Propagationen angepasst werden, was durch den Update Manager rea-
lisiert wird.

2.6 Workflows

2.6.1 Grundlagen

Workflow-Managementsysteme (WFMS) dienen zur Realisierung von Geschäftsprozes-
sen. Ein Geschäftsprozess stellt dabei die betriebswirtschaftliche Sicht eines Unterneh-
mensprozesses dar [JBS97]. Unter einem Unternehmensprozess wird ein Bündel von
Aktivitäten verstanden, welcher einen oder mehrere Inputs hat und für den Kunden
ein Output erzeugt, der für den Kunden einen Wert hat [HC94]. Die für die Informa-
tik wichtige Implementierungssicht eines Geschäftsprozesses wird dabei als Workflow
bezeichnet. Dabei muss man noch zwischen Modellen von Geschäftsprozessen sowie
Workflows und deren Instanzen, die die eigentliche Ausführung eines Modells darstel-
len [LR00], unterscheiden. In diesem Zusammenhang wird auch zwischen Design-Time
und Runtime oder auch Beschreibung und Ausführung [BW95] unterschieden. In der
Design-Time bzw. Beschreibung wird der Workflow definiert, während in der Runtime
bzw. Ausführung Instanzen der Beschreibungen erstellt werden, die dann ausgeführt

42

2.6. WORKFLOWS

werden. Ein Workflow-Modell besteht aus einer Menge von Tasks die über einen Kon-
trollfluss miteinander verbunden sind. Ein Task ist eine logische Einheit, die als Ganzes
von einer Ressource ausgeführt wird. Eine Ressource kann entweder eine Person, ein
Computersystem oder eine sonstige Maschine sein [vdAvH02]. Um eine Aktivität aus-
zuführen muss das Workflow-Managementsystem eine Ressource zuordnen. Für die
Zuordnung von menschlichen Ressourcen wird eine sogenannte Organisationsstruktur
verwendet, dies wird in der Literatur als staff resolution bezeichnet [LR00].

2.6.2 Workflow-Managementsysteme (WFMS)

Um die Workflow-Managementsysteme besser zu verstehen, wollen wir uns die Archi-
tektur eines solchen anschauen. Recht gut hierfür geeignet ist das Referenzmodell der
Workflow Management Coalition (Abbildung 2.8), die sich als Ziel gesetzt hat, die
Interoperabilität der Workflow-Produkte zu erhöhen [JBS97]. Aus diesem Grund han-
delt es sich beim Referenzmodell auch um eine Schnittstellendarstellung, bei der die
benötigten Schnittstellen zu anderen Komponenten definiert werden. Kern des Refe-
renzmodells ist der Workflow Enacting Service, der wiederum aus einer oder mehrerer
Workflow-Engines besteht. Die Workflow-Engine ist dabei für die Ausführung eines
Workflow zuständig. Dessen Beschreibung wird über eine Design-Time-Komponente
(Process Definition Tools) erstellt und dann über eine Schnittstelle dem Workflow
Enacting Service übergeben. Dafür ist eine standardisierte Sprache zur Beschreibung
des Prozesses notwendig [Hol04]. Deshalb wurde eine Prozessbeschreibungssprache auf
Basis von XML eingeführt mit dem Namen XML Process Definition Language (XPDL)
[Wor05b] bzw. Business Process Execution Language (BPEL) [ACD+03, Oas07]. Um
das WFMS zu verwalten und zu kontrollieren existieren Administration und Monito-
ring Tools, die dann über eine weitere Schnittstelle an den Enacting Service angeschlos-
sen sind. Weiterhin existieren spezielle Anwendungen, die Benutzern ihre Arbeitslisten
präsentieren [LR00]. Diese Anwendungen sind die sogenannten Workflow-Clients. Wei-
terhin existieren in Workflows Aktivitäten, die ohne Hilfe von Benutzern ausgeführt
werden können. Dafür werden Anwendungen direkt (Invoked Applications) aufgeru-
fen. Für die verteilte Ausführung von Workflows ist es nötig, dass Workflow Enacting
Services miteinander kommunizieren.

Workflows bzw. Geschäftsprozesse basieren häufig auf der Verarbeitung von Doku-
menten. Aus diesem Grund ist es von Vorteil, dass das WFMS eng mit Dokumenten-
managementsystemen (DMS) integriert ist [MR95]. Ein DMS verwaltet die Dokumente
(z.B. Auftragsbestätigung), die an oder vom Unternehmen gesendet werden, sowie Do-
kumente für die interne Kommunikation.

2.6.3 Workflow-Beschreibungen

Der Ablauf eines Workflows wird hauptsächlich durch seinen Kontroll- und Datenfluss
beschrieben, auf den in diesem Abschnitt eingegangen werden soll. Um den Kontroll-
und Datenfluss zu beschreiben verwenden die WFMS Workflow-Beschreibungssprachen,
die meist vom jeweiligen Produkt abhängig sind. Darauf soll hier nicht weiter einge-

43

KAPITEL 2: Grundlagen

Workflow EngineWorkflow EngineWorkflow EngineWorkflow API und Interchange FormatWorkflow Enactment ServiceInterface 1
Interface 2 Interface 3Interface 5 Interface 4

ProcessDefinition ToolsAdministration &Monitoring Tools Workflow ClientApplications InvokedApplications Other WorkflowEnactment ServicesWorkflowEngineWorkflowEngine
Abbildung 2.8: Referenzarchitektur nach WFMC [Wor05a]

gangen werden.

Der Kontrollfluss (Abbildung 2.9(a)) beschreibt den Ablauf der Tasks (Kreise) und
damit ihre zeitliche Reihenfolge. Der Pfeil gibt dabei die zeitliche Ordnung an und
bedeutet, dass der Task an der Spitze nach der Beendigung des Tasks am Start des
Pfeiles ausgeführt wird. Es besteht weiterhin die Möglichkeit bestimmte Aktivitäten
parallel auszuführen und damit die Workflow-Ausführung zu beschleunigen. Für eine
Parallelisierung gehen dabei von einer Aktivität mehrere Pfeile aus, was als Fork be-
zeichnet wird. Treffen die parallelen Zweige in einer Aktivität zusammen, so wird das
als Join bezeichnet. Die Zweige können selektiv ausgeführt werden, so wie in der Ab-
bildung 2.9(a), bei der die Zweige nach dem Auswerten des Stammkunden-Attributs
ausgeführt werden.

Der Datenfluss beschreibt dagegen nicht den Ablauf von Task-Ausführungen, son-
dern den Fluss der Daten zwischen den Tasks, so wie in Abbildung 2.9 (b) dargestellt.
Die Pfeile beschreiben, dass die Daten, die durch einen Task erzeugt werden (am Start
des Pfeiles) von der an der Pfeilspitze liegenden Task benötigt werden. Im Beispiel der
Abbildung existieren zweierlei Dokumente, welche ein Anforderungs- und ein Ange-
botsdokument enthalten. Allerdings muss vom WFMS sichergestellt werden, dass die
Daten vor der Ausführung der Aktivitäten vorhanden sind.

Mehr zur Kontroll- und Datenflussmodellierung steht in [LR00]. Es gibt auch noch
andere Ansätze zur Modellierung, die dann Aktivitäten-, Kommunikations-, Zustands-
oder Artifact-Modellierung heißen [CHR98].

44

2.6. WORKFLOWSAngebots-anforderungempfangen Standard-angeboterstellenSpeziellesAngeboterstellen AngebotversendenKein Stammkunde
Stammkunde

(a) Kontrollfluss

Anforderung Angebot
(b) Datenfluss

Abbildung 2.9: Kontroll- und Datenfluss eines Workflows[LR00]

2.6.4 Datenintegration mit Workflows

Die Workflow-Technologie wird hauptsächlich für die Integration von Funktionen ver-
schiedenster Anwendungssysteme eingesetzt. In der letzten Zeit realisiert diese Tech-
nologie auch die Integration zwischen Prozessen, d.h. Prozesse kommunizieren unter-
einander. In diesem Zusammenhang wird der Begriff Orchestration verwendet. Um
diese Anforderung zu realisieren, werden die Workflow-Systeme stark mit Messaging-
Systemen und anderen Kommunikationsarten gekoppelt.

In Abschnitt 2.3 wurde die konsistenzerhaltende Datenintegration eingeführt, mit
der erreicht werden soll, dass sämtliche Unternehmensdaten auf dem gleichen Stand
sind. In diesem Abschnitt soll nun untersucht werden, welche Ansätze es zur konsistenz-
erhaltenden Datenintegration mit der Workflow-Technologie gibt.

Ein WFMS bietet viele Konzepte zur Implementierung von Geschäftsprozessen.
Viele davon werden für die konsistenzerhaltende Datenintegration nicht benötigt, denn
es handelt sich bei den Prozessen um kurzlebige Prozesse, die keine Benutzerinterak-
tionen haben. Diese werden auch als Microflows bezeichnet [LR00, LR02, KKL+04].
Microflows sind Workflows, die nicht unterbrechbar sind, d.h. sie unterstützen kein
Vorwärts-Recovery [Ley96]. Vorwärts-Recovery sagt aus, dass nach einem Absturz der
Workflow am letzten Task vorgesetzt wird. Microflows hingegen arbeiten innerhalb
einer Transaktion und bei einem Absturz wird der gesamte Flow zurückgesetzt und
dann neu gestartet. Die nicht unterbrechbaren Workflows eignen sich auch deshalb
für die konsistenzerhaltende Datenintegration, da in dieser Art von Prozessen keine
menschliche Interaktion benötigt wird und die einzige Aufgabe darin besteht bei einer
Änderung eines Objektes alle Systeme, die ebenfalls Daten des Objektes speichern,
über diese Änderung zu informieren. In [LR02] wurde untersucht wie Workflows für
die Informationsintegration verwendet werden können. Diese Art von Integration fasst
die Funktions- und Datenintegration zusammen.

Ein weiteres Beispiel der Datenintegration mittels Workflow-Technologie findet man
bei der Integration mehrerer Informationssysteme im Bereich von Kliniken [JLM+05].
Dafür wurden die Prozesse der Klinik in Datenlogistik-Prozesse überführt. Bei den letz-
teren steht der Transport und die Transformation von Daten im Vordergrund. Sie ist

45

KAPITEL 2: Grundlagen

ein Ansatz zur Integration einer heterogenen Datenlandschaft, die ebenfalls Workflow-
Technologien verwendet und spezialisiert ist auf die Integration von Klein- und mit-
telständischen Unternehmen (KMU) mit einem Großunternehmen [SGB02]. Hier wird
ein Internet-Dateisystem verwendet, um Dateien mit dem KMU auszutauschen, die
dann Workflows beim Großunternehmen anstoßen. Diese Workflows übernehmen die
weitere Verarbeitung der Daten. Die gesamte Infrastruktur befindet sich auf den Rech-
nern des Großunternehmens, so dass die KMU finanziell nicht belastet werden.

2.7 XML Technologien

Die eXtensible Markup Language (XML) [BPSM+06] ist eine Metasprache, mit der
andere Sprachen definiert werden können. Diese Sprachen können aktiv sein, wie zum
Beispiel XSLT oder eine Sprache zum Speichern bzw. Austausch von Daten. XML ist
sowohl von Computersystemen als auch vom Menschen lesbar. Dadurch können Da-
ten, die zwischen einzelnen Informationssystemen ausgetauscht werden, leicht analy-
siert werden, mit der Möglichkeit der menschlichen Intervention. Außerdem enthält ein
XML-Dokument nicht nur die benötigten Daten, sondern auch Struktur- und Element-
informationen. Aus diesem Grund kommen immer wieder die Begriffe selbstbeschrei-
bend und semi-strukturiert im Zusammenhang mit XML zur Sprache. Einer der Nach-
teile von XML ist, dass außer dem String-Datentyp keinerlei Datentypen unterstützt
werden. Um dennoch andere Datentypen zu verwenden, müssen diese serialisiert wer-
den und können mittels XML Schema überprüft werden.

Weitere XML-Technologien:

XML Schema [FW04, TBMM04, BM04] ist eine Sprache mit der Schemabeschrei-
bungen definiert werden können. Damit kann die Struktur eines XML Dokumen-
tes festgelegt und den Elementen und Attributen Datentypen zugeordnet werden.

XPath [BBC+07] wird verwendet um einzelne Elemente, Attribute oder Inhalte aus
einem XML Dokument zu extrahieren. Außerdem können mit XPath Berechnung-
en und Bool’sche Bedingungen definiert werden.

XSLT (eXtensible Stylesheet Language Transformation) [Kay07] ist eine Sprache mit
der XML Dokumente transformiert werden können. Als Output der Transfor-
mation können wiederum XML Dokumente entstehen, aber auch HTML-Seiten
bzw. Textdokumente. Das Prinzip eines solchen Stylesheets ist die Definition einer
Menge von Transformationsregeln.

XQuery [BCF+07] ist eine Anfragesprache für XML, mit der Daten aus einer XML-
Datenbank oder XML-Dokumenten gefiltert und transformiert werden können.
Aus diesem Grund eignet sich XQuery wie XSLT für die Transformation von
XML Dokumenten. Wie in [Kep04, Kep02] gezeigt wird, sind XQuery als auch
XSLT Turing vollständig und damit auch gleich mächtig.

SOAP [Mit03, GHM+03a, GHM+03b], früher bekannt als Simple Object Access Pro-
tocol, ist ein Protokoll, mit dem Dokumente ausgetauscht werden können oder es

46

2.8. MESSAGE ORIENTED MIDDLEWARE

kann ein Remote Procedure Call realisiert werden. SOAP ist Grundlage für die
Realisierung von Web Services [ACKM04].

2.8 Message Oriented Middleware

Die Message Oriented Middleware (MOM) ist eine Infrastruktur, die den asynchronen
Austausch von Nachrichten ermöglicht [RMB01, Kel02]. Der Austausch kann dabei
persistent oder transient durchgeführt werden und ggf. auch transaktional. Außerdem
ermöglicht MOM eine lose Kopplung der Systeme. Ein weiterer Vorteil der MOM ist,
dass der Empfänger beim Senden und der Sender beim Empfang nicht verfügbar sein
müssen. Des Weiteren wird durch die Entkopplung und den expliziten Empfang von
Nachrichten garantiert, dass der Empfänger nicht überlastet wird, da dieser die Nach-
richten nur verarbeiten muss, wenn er derzeit dazu in der Lage ist. Allerdings kann bei
einer dauerhaften Überlast die Warteschlange (engl. Queue) volllaufen. Die Nachrich-
ten können frei definiert werden. Besonders interessant ist die Verwendung von XML
als Nachrichtenformat [Kel02]. Dies ist begründet durch die Flexibilität von XML und
dem selbstbeschreibenden Charakter. Die Message Oriented Middleware hat folgende
Entwurfsziele [Cum02]:

Store and Forward. Die Nachricht wird von der Message Oriented Middleware ent-
gegen genommen und solange vorgehalten, bis der Empfänger sie entgegen neh-
men kann. Außerdem wird der Sender bis zum Empfang der Nachricht nicht
blockiert (asynchron).

Message Broker. Der Message Broker ermöglicht flexiblere Kommunikationsmodelle
wie zum Beispiel Publish-Subscribe.

Garantiertes Versenden. Es soll sichergestellt werden, dass jede Nachricht genau
einmal verarbeitet wird. Dies wird unter anderem durch Transaktionen unterstützt.

Nachrichtenreihenfolge. Die Reihenfolge der Nachrichten von einer Quelle soll er-
halten bleiben, wenn diese von einem Zielsystem gelesen werden.

Symbolisches Routen. Die Transportmedien sollen anhand von symbolischen Na-
men identifiziert werden.

Request-Response. Es soll möglich sein, dass in einer Anfrage (Request) der Empfän-
ger der Antwort (Response) angegeben werden kann. Dadurch soll erreicht wer-
den, dass ein Server die Antwort an die richtige Adresse senden kann.

Nachrichtentransformation. Da bei mehreren Empfängern einer Nachricht dessen
Nachrichtenformatbedürfnisse auseinander gehen können, soll es die Möglichkeit
geben, diese Nachrichten zu transformieren.

Adhoc Empfänger. Die meisten Empfänger von Nachrichten sind eher statisch, da
sie immer die gleichen bestimmten Geschäftsfunktionen erfüllen müssen. Manche

47

KAPITEL 2: Grundlagen

Empfänger brauchen eine flexiblere Gestaltung von Nachrichtenabos. Sie brau-
chen so genannte Adhoc-Abos. Solche Adhoc-Abos werden nur für bestimmte
Zeit benötigt, wie zum Beispiel ein Performanzmonitor, der aktuelle Aktivitäten
darstellt.

Ausnahmeauflösung. Die Message Oriented Middleware soll dafür sorgen, dass mög-
lichst viele Ausnahmen aufgelöst werden, so dass der Anwendungsentwickler
möglichst wenige davon behandeln muss, ohne dabei die Anwendungsintegrität
zu verletzten.

Standards. Die Verwendung von Standards, wie zum Beispiel JMS (Java Message
Service), ermöglicht die leichte Austauschbarkeit von MOM-Produkten.

Dateitransfer. Manchmal ist es notwendig nicht nur die relativ kleinen Nachrichten
zu transportieren, sondern auch relativ große Dateien, wie zum Beispiel Grafiken
oder CAD-Zeichnungen. Dies könnte zum Beispiel über FTP erfolgen, wobei die
URL mit einer Nachricht verschickt wird.

Man kann das Versenden von Nachrichten mit einer MOM noch dahin unterschei-
den, ob das Kommunikationsparadigma eine Punkt-zu-Punkt-Kommunikation oder
Publish-Subscribe ist.

Die Punkt-zu-Punkt-Kommunikation [Ley99] hat immer einen Sender und einen
Empfänger pro Nachricht. Das Medium mit dem die Nachrichten ausgetauscht werden,
wird wie bereits erwähnt Warteschlangen genannt. Bei unterschiedlichen Nachrichten
können allerdings unterschiedliche Sender und Empfänger bei derselben Warteschlange
existieren.

Das Publish-Subscribe-Paradigma [Ley99] verwendet Message Broker um seine
Funktionalität zu realisieren. Dieser Ansatz ist in Abbildung 2.10 dargestellt. Im Gegen-
satz zur Punkt-zu-Punkt-Kommunikation können hier mehrere Empfänger pro Nach-
richt existieren, aber auch kein Empfänger. Ein Sender einer Nachricht wird Publisher
genannt und dieser hat kein Wissen über mögliche Empfänger. Ein Empfänger wird
Subscriber genannt. Dieser bekundet sein Interesse an bestimmten Nachrichten in dem
er Subscriptions anmeldet. Subscriptions sind bestimmt durch das Transportmedium
(Topic) und eventuellen Filterregeln.

Der Java Message Service (JMS) [HBS+02a] bietet eine einheitliche Schnittstelle
zwischen Java und MOM-Produkten. Eine JMS-Nachricht besteht aus einem Nachrich-
tenkopf (Header), Nachrichteneigenschaften (Properties) und dem Nachrichtenkörper
(Body). In JMS wird ebenfalls zwischen Punkt-zu-Punkt und Publish-Subscribe unter-
schieden. Sowohl für Punkt-zu-Punkt als auch Publish-Subscribe können Filter anhand
von Header-Elementen und Properties erfolgen. JMS bietet allerdings keine Möglich-
keit um die Transportmedien (Queues und Topics) zu erzeugen. Diese müssen über
das MOM-Produkt angelegt werden. Um an die Basisobjekte von JMS zu kommen
(Queues, Topic und die Connection Factories) wird der Java-Namensdienst JNDI ver-
wendet. Dadurch wird eine Entkopplung von Implementierungsobjekten und Schnitt-
stellen erreicht.

48

2.9. EREIGNISSYSTEME

Abbildung 2.10: Publish-Subscribe

2.9 Ereignissysteme

Die Idee hinter Ereignissystemen (Event Systems) ist, dass ein Objekt auf die Zu-
standsänderungen eines anderen Objekts reagieren kann [CDK01]. Objekte die Er-
eignisse repräsentieren werden üblicherweise Notifications genannt. Ereignisse können
mittels Push und Pull übertragen werden. Beim Push implementiert der Empfänger ein
Interface mit dem er die Nachrichten empfängt, die das sendende Objekt verschickt.
Bei Pull fragt der Empfänger Ereignisse ab, die nach einem bestimmten Zeitpunkt
auftraten. Schwachstellen von Ereignissystemen sind, dass der Zeitraum vom Senden
bis zum Empfang lang dauern kann und die Nachrichten in einer unterschiedlichen
Reihenfolge beim Empfänger ankommen können [Mic01].

Verteilte Ereignissysteme könnte man nun einsetzen, um ein Propagationssystem
zu realisieren, das Änderungen in der Anwendungsschicht mitteilt. Dies begründet sich
unter anderem darin, dass Anwendungsschichten oft objektorientiert realisiert sind und
diese Objekte Änderungen an denselben über ein Ereignissystem an andere Informa-
tionssysteme mitteilen könnten. Dieser Ansatz erfordert eine starke Anpassung der
Anwendungsschicht. Diese Anpassung ist nicht immer möglich und gewollt.

Es besteht eine gewisse Verwandtschaft zwischen Ereignissystemen und dem Publish-
Subscribe-Paradigma. Publish-Subscribe-Nachrichten können als Ereignisse angesehen
werden [Cum02]. Daher verwenden Ereignissysteme das Publish-Subscribe-Paradigma
[CDK01].

JINI ist ein Framework um verteilte Anwendungen zu erstellen. JINI definiert in
seinem Standard [Mic01, CDK01] die Möglichkeit, verteilte Ereignisse auszutauschen.
Dafür stellt der Standard eine Reihe von Schnittstellen und Klassen bereit. Die Kom-
munikation erfolgt über Remote Method Invocation (RMI). Allerdings definiert JINI
keine Infrastruktur, die für die Verteilung der Ereignisse eingesetzt wird. Um dies zu
ermöglichen, können sogenannte Third Party Objects eingesetzt werden.

49

KAPITEL 2: Grundlagen

Außerdem gibt es Ereignissysteme für die CORBA-Umgebung [Zah99]: Der Event
Service [Gro04a] und der Notification Service [Gro04b]. Zuerst wurde der Event Ser-
vice entwickelt und darauf aufbauend der Notification Service. Der Event Service hat
zwei Modi für das Verbreiten von Ereignissen: Push und Pull. Beim Pull implemen-
tiert das bereitstellende Objekt eine Schnittstelle, mit dem die Ereignisse angefordert
werden können. Der Konsument implementiert beim Push eine Schnittstelle mit dem
er gesendete Ereignisse empfangen kann. Es kann zwischen bereitstellendem Objekt
und Konsument ein Ereigniskanal zwischengeschaltet werden, der mehrere Ereignisbe-
reitsteller und Konsumenten erlaubt. Außerdem kann mit einem Ereigniskanal Push
und Pull kombiniert werden [Gro04a]. Der Notification Service ist eine Erweiterung
des Event Service. Es ermöglicht typisierte Ereignisse. Konsumenten können Ereignis-
se filtern und nach Ereignistypen fragen. Ereignisquellen können sich nach gewünschten
Ereignissen erkundigen. Außerdem ist es möglich, die Eigenschaften von Kanälen fest-
zulegen, wie zum Beispiel FIFO.

2.10 Model-Management

2.10.1 Übersicht

Insbesondere Integrationsaufgaben sind metadaten-intensiv. Es müssen Modelle der
einzelnen Informationssysteme verwaltet werden. Darauf aufbauend müssen Ände-
rungsnachrichten definiert und Transformationen zwischen diesen Nachrichten erstellt
werden. Um diese Aufgaben zu vereinfachen, können Model-Managementsysteme ein-
gesetzt werden.

Model-Managementsysteme werden entwickelt, um Aufgaben, die im Zusammen-
hang mit der Verwaltung von Metadaten stehen zu vereinfachen [BHP00a, BHP00b].
Unter Metadaten wird beispielsweise ein Datenbankschema, ein ER-Modell, XML Sche-
ma oder ein UML-Modell verstanden. Zur vereinfachten Handhabung werden diese Me-
tadaten durch einen Import vereinheitlicht, was generalisierte Operatoren ermöglicht.
Veränderte Modelle können dann wieder in eine spezielle Darstellungsform exportiert
werden. Modelle werden in Form von Graphen abgelegt, wobei die Knoten einzelne
Modellelemente (z.B. Klassen, Attribute) und Kanten Beziehungen darstellen. Es gibt
noch eine spezielle Art von Beziehungen, die eine Zuordnungsbeziehung darstellt, d.h.
eine Klasse ist beispielsweise in einem Modell enthalten oder ein Attribut ist einer
Klasse zugeordnet. Diese Art von Beziehung bildet einen azyklischen gerichteten Gra-
phen. Zwei weitere wichtige Konstrukte in einem Model-Managementsystem sind Map-
ping und Morphismen [MRB03]. Mapping und Morphismen sind selbst auch Modelle
[BHP00a, BHP00b], die Verbindungen zwischen zwei Modellen darstellen und damit
Korrespondenzen zwischen den Modellen beschreiben. Ein Mapping enthält dabei auch
Funktionen zum Übergang und ein Morphism nur die Relation zwischen mehreren Mo-
dellelementen.

Um einen Mehrwert zur Verwaltung der Metadaten zu bieten, stellen Model-Manage-
mentsysteme generische Operatoren bereit. Diese Operatoren haben als Eingabepara-
meter und als Ausgabeparameter Modelle, Mappings bzw. Morphismen. Die Operato-

50

2.11. SCHLUSSFOLGERUNGEN

ren lassen sich in zwei Gruppen aufteilen: Die einfachen und die komplexen Operatoren.
Zu den einfachen gehören zum Beispiel das Erzeugen und Verändern eines Modells. Zu
den komplexen gehören die folgenden:

Match Automatic Schema Matching (nächster Abschnitt).

Diff Das Finden der Unterschiede zwischen zwei Modellen anhand eines Morphismus
[MRB03].

Merge Die Erstellung eines integrierten Modells aus zwei Modellen [PB03].

Mapping Composition Das Integrieren zweier Mappings.

2.10.2 Automatic Schema Matching

Mit Automatic Schema Matching werden Korrespondenzen zwischen Schemata ge-
funden [RB01]. Diese Korrespondenzen können als Grundlage für die Erstellung von
Transformationen verwendet werden. Dies kann als unabhängiges System erfolgen oder
innerhalb eines Model-Managementsystems als Match-Operator. Um Korresponden-
zen zwischen den einzelnen Schemata zu finden, existieren unterschiedliche Metho-
den, die unterschiedliche Kriterien für das Erkennen von Korrespondenzen verwen-
den. Diese teilen sich auf in Schema-Matchers, Instance-Matcher, Hybrid-Matcher oder
Composite-Matchers. Schema-Matchers nehmen als Grundlage die Schema-Definition.
Beim Instance-Matching werden dagegen die vorhandenen Daten als Grundlage ver-
wendet. Der Hybrid-Matcher verwendet mehrere Ansätze innerhalb eines einzigen Mat-
chers. Im Gegensatz dazu ruft der Composite-Matcher mehrere unabhängige Matcher
auf, deren Ergebnisse er dann kombiniert. Beim Schema-Matcher kann noch unter-
schieden werden, ob einzelne Elemente gematched werden (auf Grundlage von Namen,
Beschreibungen oder Datentypen) oder die Struktur zu Rate gezogen wird.

Als Systeme (Forschungsprototypen) lassen sich hier Cupid [MBR01], Coma [DR02]
und Protoplasm [BMPQ04] aufführen. Mit Coma lassen sich durch einen festgeschrie-
benen Prozess mehrere Matcher kombinieren. Dieser Prozess besteht aus Benutzerinter-
aktion (Beurteilung des Ergebnis und Auswahl von Matcher), Ausführen der Matcher
und Gesamtergebnis berechnen. Gegebenenfalls kann der Prozess wiederholt werden.
Der Protoplasm Prototyp verwendet dagegen frei definierbare Prozesse, so dass der Be-
nutzer sich nicht mehr um die Auswahl und Reihenfolge der Matcher kümmern muss.

2.11 Schlussfolgerungen

Nachdem einige Technologien betrachtet wurden, die für eine Änderungspropagation
verwendet werden bzw. als Grundlage dienen können, sollen diese bewertet werden.

Die ERP-Systeme lösen eine Vielzahl von Integrationsproblemen in einem Unter-
nehmen. Allerdings decken sie nur einen Teilbereich der Softwareanwendungen ab, die
in einem Unternehmen benötigt werden. Des Weiteren sind auf dem Markt vorhan-
dene ERP-Systeme nicht für jedes Unternehmen geeignet oder es gibt Probleme mit

51

KAPITEL 2: Grundlagen

der Einführung. Aus diesen Gründen wird im Unternehmen weiterhin Integration von
Daten benötigt.

Die EAI stellt eine umfassende Technologie dar, die eine Vielzahl von Produk-
ten zum Vorschein gebracht hat. Die wichtigsten dieser Produkte sollen im Abschnitt
5.3 (Vergleich mit verwandten Ansätzen) untersucht werden. Wenn wir noch einmal
einen Blick auf die EAI-Architekturen von Tabelle 2.1 werfen, so lassen sich Point-to-
Point und Verteilte Objekte als Grundlage ausschließen. Point-to-Point hat zu viele
Verbindungen zwischen den einzelnen Informationssystemen und damit auch einen zu
hohen Erstellungs- und Wartungsaufwand. Verteilte Objekte dienen eher dazu, um Me-
thoden, die von Objekten bereitgestellt werden, für andere Prozesse anzubieten. Die
Bus-Architektur bietet eine gute Grundlage für ein Propagationssystem, ermöglicht
allerdings kein inhaltsbasiertes Verteilen von Nachrichten [Pap06] und hat außerdem
ein Problem beim Anpassen von Änderungsnachrichten nach den Anforderungen ei-
nes Zielsystems. Aus diesen Gründen wird als Basis eine Hub-and-Spoke-Architektur
gewählt, die diese Nachteile beseitigt. Allerdings muss angemerkt werden, dass der Hub
zu einem Flaschenhals werden kann.

Eine unternehmensweite zentrale Datenbank kann die Integrationsprobleme auch
nicht lösen. Um eine solche zentrale Datenbank zu entwerfen, ist ein immenser Ent-
wicklungsaufwand notwendig. Außerdem wird keine Datenlokalität und Autonomie rea-
lisiert. Des Weiteren stellt auch dieser Ansatz einen Flaschenhals dar. Diese Probleme
können mittels Verteilter Datenbanken und Replikation gelöst werden. Allerdings muss
weiterhin ein kostenintensives zentrales Modell entwickelt werden. Des Weiteren befin-
det sich die Integration bei der datenbankbasierten Replikation in der Datenschicht,
d.h. evtl. vorhandene Konsistenzregeln in der Anwendungsschicht werden umgangen.
Föderierte Datenbanken bringen unterschiedlichste Datenquellen auf ein gemeinsames
Modell, beschäftigen sich aber weniger mit der konsistenzerhaltenden Datenintegration.

Peer-Data-Management-Systeme ermöglichen flexible Netze, mit denen auch Up-
date Propagation möglich ist. Auch diese Systeme basieren auf der Datenschicht und
Konsistenzregeln werden in der Anwendungsschicht umgangen. Ein weiterer Nachteil
in der Unternehmensumgebung ist der meist dynamische Charakter eines solchen Sys-
tems. Im Speziellen muss hier auf die Open World Assumption hingewiesen werden.

Als Grundlage für ein Änderungspropagationssystem sind Prozesse geeignet, da sie
eine flexible Gestaltung von Propagationsaufgaben ermöglichen. Diese könnten zum
Beispiel mit Microflows realisiert werden, aber nicht mit Rückwärts-Recovery-basierten
Workflows. Allerdings hat die Workflow-Technologie noch keine standardisierten Tasks,
die für die Änderungspropagation benötigt werden. Des Weiteren werden mit Work-
flowsystemen die Reihenfolgeeinhaltung von Änderungen nicht garantiert, da die Pro-
zesszeiten stark voneinander abweichen können. Bei reinem Einsatz von Microflows
wäre es möglich, müsste aber zusätzlich realisiert werden. Ein weiterer Schwachpunkt
ist die Erkennung und Auflösung von Änderungskonflikten.

Eine Änderungspropagation sollte Änderungen von Geschäftsobjekten (z.B. Kun-
denauftrag) propagieren und nicht die von Implementierungsobjekten (z.B. Auftrags-
kopf und Auftragspositionen), da durch Geschäftsobjekte ein hoher Zusammenhang
zwischen den Implementierungsobjekten besteht. Außerdem soll das Einpflegen der

52

2.11. SCHLUSSFOLGERUNGEN

Daten wenn möglich auf der Ebene der Anwendungsschicht liegen, damit evtl. vorhan-
dene Konsistenzregeln in dieser Schicht nicht umgangen werden.

XML bietet durch seine flexible Gestaltung und der Möglichkeit von menschlicher
Ausnahmebehandlung bei Fehlern eine gute Grundlage um Änderungen zu beschreiben.
Des Weiteren bietet XML eine Vielzahl von weiteren Technologien und darauf aufbau-
enden Produkten, die in einem Propagationssystem verwendet werden können. Durch
seine hierarchische Struktur lassen sich die Daten von Geschäftsobjekten darstellen, da
Geschäftsobjekte intern ebenfalls eine hierarchische Struktur haben.

Eine weitere viel versprechende Technologie ist die Message-oriented Middleware
(MOM). Sie ermöglicht das sichere Übertragen von Änderungsnachrichten unter der
Einhaltung der Reihenfolge.

Verwandt damit sind Ereignissysteme, die ebenfalls eingesetzt werden könnten (z.B.
CORBA Notification Service). Zum Aufbau einer Hub-and-Spoke-Architektur eignen
sich aber MOM-Systeme besser, da sie Point-to-Point-Kommunikationen ermöglichen,
mit deren Hilfe die

”
Speichen“ (engl. Spokes) realisiert werden können. Außerdem er-

fordert die Verwendung von Ereignissystemen eine Anpassung der Anwendungsschicht
des Informationssystems.

Das Model-Management ist eine Technologie, mit deren Hilfe die Modelle der ein-
zelnen Informationssysteme verwaltet werden können und Transformationen zwischen
einzelnen Änderungsformaten semi-automatisch entwickelt werden könnten. Diese Sys-
teme werden in der vorliegenden Arbeit jedoch nicht genauer betrachtet.

53

KAPITEL 2: Grundlagen

54

KAPITEL 3

Grundlegende Konzeption

Nachdem Technologien und Konzepte zur Integration von Informationssystemen disku-
tiert und bewertet wurden, soll in diesem Kapitel das Konzept für das Änderungspro-
pagationssystem im heterogenen Umfeld entwickelt werden. Die Integration soll auf Ba-
sis von Propagationen von Geschäftsobjektänderungen erfolgen, da dies ein geringeres
Austauschvolumen als der vollständige Datenaustausch hat. Diese Art von Propagation
wird auch bei der Replikation von Datenbanken eingesetzt. Aus diesem Grund werden
zuerst die verschiedenen Replikationsvarianten untersucht. Dann werden die Basiskon-
zepte für die heterogene Propagation und je eine Sprache zur Definition von komplexen
Abhängigkeiten sowie eine zur Definition von Bedingungen für Bool’sche Ausdrücke auf
Änderungen vorgestellt. Anschließend werden die Komponenten des Propagationssys-
tems beschrieben. Weitere wichtige Eigenschaften eines solchen Propagationssystems
sind die Erkennung und Behandlung von Änderungskonflikten und die Einhaltung der
Änderungsreihenfolge. Die Anbindung der Informationssysteme erfolgt mit Adaptern,
was eine flexible Kapselung aus Sicht des Propagationssystems ermöglicht. Der Einsatz
von Adaptern ermöglicht eine geringe bis keine Anpassung im zu integrierenden Infor-
mationssystem und dient als Bindeglied zwischen dem Informationssystem und dem
Propagationssystem. Diese Eigenschaften und der Adapter des Propagationssystems
werden in den Unterkapiteln 3.8 - 3.11 diskutiert.

3.1 Lösung für Replikation der Informationssystem-

daten

Um ein Propagationssystem für heterogene und autonome Informationssysteme zu ent-
werfen, werden zuerst Lösungen für homogene Systeme nach passenden Konzepten
untersucht, die als Grundlage für den heterogenen Fall geeignet sind. Informations-
systeme haben im Gegensatz zur herkömmlichen Replikation (vgl. Abschnitt 2.4.1.3)

55

KAPITEL 3: Grundlegende Konzeption

Abbildung 3.1: Replikationsstrategien nach [GHOS96] und ihre Verwendung für die
Integration von Informationssystemen

keine explizit replizierten Daten. Das bedeutet, dass die Replikation nicht durch einen
Administrator definiert wurde und die Daten auf einzelne Rechner verteilt wurden. Die
Replikation zwischen den Informationssystemen entsteht über die Zeit und die einzel-
nen Systeme sind unabhängig voneinander. Die Gründe hierfür liegen in dem Datenbe-
darf einzelner Unternehmensbereiche, welche die Informationssysteme verwenden, und
den Kauf und Entwicklung neuer Informationssysteme, die dann Daten redundant zu
anderen Systemen verwalten. Die Datenbedürfnisse der einzelnen Informationssysteme
überschneiden sich teilweise und daher entsteht eine Art von Replikation. Durch die
unterschiedlichen Aufgaben und Abteilungen, die für die Informationssysteme verant-
wortlich sind, entsteht eine heterogene Systemlandschaft. Außerdem wachsen Informa-
tionssysteme mit der Zeit, d.h. neue Daten werden benötigt und neue Funktionalitäten
müssen implementiert werden. Um eine Lösung für das Replikationsproblem zwischen
den Informationssystemen zu konzipieren, muss sowohl die Heterogenität als auch die
Autonomie der Informationssysteme berücksichtigt werden. Die Autonomie begründet
sich hauptsächlich durch die Eigenverantwortung der einzelnen Abteilungen. Diese sol-
len weitestgehend unabhängig operieren können.

Als Erstes werden Lösungen im Bereich der replizierten Datenbanken genauer un-
tersucht. Laut [GHOS96] lassen sich die Replikationslösungen in Gruppen unterteilen,
die in Abbildung 3.1 dargestellt sind. Diese unterscheiden sich darin, ob alle Ände-
rungen innerhalb einer Transaktion durchgeführt werden (Eager Replication) oder ob
sie in unabhängigen Transaktionen für jedes System durchgeführt werden (Lazy Re-
plication). Des Weiteren kann man unterscheiden, ob es einen Objektbesitzer gibt,
d.h. ein änderbares Objekt (Master) oder ob es mehrere Objektbesitzer gibt, d.h. ei-
ne von Objektgruppe (Group) von der jedes beliebige Objekt geändert werden kann.
Eager Replikation garantiert die 1-Kopien-Serialisierbarkeit (One Copy Serializability)
[BG82, BG83]. Allerdings müssen bei einer Änderung alle Knoten verfügbar sein. Au-
ßerdem kann man noch unterscheiden, ob Änderungen nur an einer Stelle durchgeführt
werden können (Update-Master) oder in jedem Knoten (Update-Anywhere). Update-
Master in Zusammenhang mit Eager Replication verhindert Deadlocks und mit Lazy
Replication Änderungskonflikte.

Informationssysteme sollen unabhängig von anderen Informationssystemen sein (au-
tonom) und sie sollen ebenfalls kein Wissen über andere Informationssysteme haben,
mit denen sie integriert sind. Aus diesem Grund können Änderungen, die mehrere In-

56

3.1. LÖSUNG FÜR REPLIKATION DER INFORMATIONSSYSTEMDATEN

formationssysteme betreffen, nicht innerhalb einer Transaktion durchgeführt werden,
d.h. es wird hier eine Variante der Lazy Replikation verwendet. Daraus folgt aber auch,
dass so genannte veraltete Informationen (Stale Information) in Kauf genommen wer-
den müssen, was aber durch eine zeitnahe Weiterleitung von Änderungen verringert
werden kann. Werden Informationssysteme zwischen unterschiedlichen Geschäftsberei-
chen integriert, so handelt es sich hauptsächlich um eine Update-Master Variante, da
jedes der Geschäftsbereiche einen bestimmten Aufgabenbereich hat (vgl. z.B. Taylor).
Allerdings sollte nicht ausgeschlossen werden, dass das Replikationssystem auch in-
nerhalb eines Geschäftsbereichs eingesetzt wird oder die klassische Aufgabenverteilung
nicht angewendet wird, wie in neueren Unternehmensansätzen. Ein Beispiel hierfür ist
die Anpassung von Kundendaten durch einen Produktionsleiter, da der Kunde aus
anderen Gründen gerade mit ihm telefoniert. Weiterhin kann man bei Replikationssys-
temen noch unterscheiden, ob Änderungen bzw. geänderte Daten mittels Push oder
Pull [SS05] übertragen werden. Bei Pull kann noch unterschieden werden, ob die Ak-
tion benutzergesteuert (manuell), periodisch oder On-Demand (sobald auf ein Objekt
zugegriffen wird) ausgeführt wird. Benutzergesteuertes und periodisches Pull führt da-
zu, dass die Informationen stärker veraltet sind und die Konfliktwahrscheinlichkeit
steigt. Aber auch die On-Demand-Pull-Variante ist nicht besser als die Push-Variante,
wenn die Daten hauptsächlich gelesen werden, da in diesem Fall häufig die Aktualität
überprüft werden muss. Außerdem muss bei der On-Demand-Pull-Variante ein Mecha-
nismus implementiert werden, welcher die Erkennung des aktuellen Geschäftsobjektes
ermöglicht. Dies kann zum Beispiel durch einen Zeitstempel erreicht werden, was al-
lerdings zu einer Erweiterung der Informationssysteme führt, die aber bei nicht allen
Informationssystemen möglich ist. Außerdem müssen interne Zugriffe der lesenden Art
erkannt werden und an das Integrationssystem weitergeleitet werden. Dies führt zu
einer weiteren Anpassung der Informationssysteme. Aus diesem Grund wird in dieser
Arbeit die Push-Variante verwendet.

Bei Push kann noch unterschieden werden, ob Änderungen nach einer Transaktion
(deferred) oder sofort (immediate) weitergeleitet werden [PS00]. In der eager -Variante
kann es nur im Zusammenhang mit immediate verwendet werden, während lazy mit
beiden verwendet werden kann. Die Immediate-Variante erhöht die Datenaktualität.
Allerdings werden in den anderen Informationssystemen Daten sichtbar, die noch nicht
committed wurden, sofern diese Änderungen nicht in den anderen Informationssyste-
men ebenfalls in einer Transaktion ausgeführt werden. Es wurde für die hier entwickelte
Propagationslösung die Deferred -Variante gewählt, da Adapter1 die Veränderungen im
Informationssystem erkennen, darauf angewiesen sind, dass die Änderungen sichtbar
sind, d.h. die Transaktion erfolgreich abgeschlossen wurde. Außerdem müssen keine
Transaktionen unterstützt werden, die identisch im Quell- und Zielsystem sind.

Des Weiteren kann man unterscheiden, ob Zustände oder Operationen weiterge-
leitet werden [SS05]. In einer Lösung für homogene Systeme kann man durch Über-
mittlung von Operationen das Traffic-Aufkommen reduzieren, da eine Operation viele
Datensätze betreffen kann. Beispiel hierfür ist ein INSERT INTO, bei der ein SELECT

1Ein Adapter ist eine Komponente, die als Bindeglied zwischen einem Informationssystem und dem
hier konzipierten Propagationssystem dient.

57

KAPITEL 3: Grundlegende Konzeption

als Input verwendet wird. Problematisch wird dies aber im heterogenen Fall, denn die
Input-Tabelle muss im Zielsystem nicht unbedingt vorhanden sein. Aus diesem Grund
eignen sich hier keine Mengenoperationen sondern nur Satzoperationen. Allerdings ist
auch hier die Transformation schwieriger als bei der Transformation von Zuständen.
Als Beispiel hierfür kann die Transformation von Vorname und Nachname zu Name
genannt werden; wenn eine Änderungsoperation nur den Nachnamen ändert, d.h. der
Vorname ist in der Änderungsoperation nicht vorhanden, wird aber für die Transfor-
mation benötigt. Das Erkennen von Operationen auf der hier angedachten Geschäfts-
objektebene ist ebenfalls sehr schwierig und erfordert eine Anpassung der beteiligten
Informationssysteme. Eine solche Anpassung sollte allerdings bei diesem Ansatz ver-
mieden werden.

Nachdem die erste Auswahl an Konzepten statt gefunden hat, müssen weitere Ba-
siskonzepte entwickelt werden, die spezifisch für das hier angestrebte System sind, aber
durchaus auch in homogenen Fällen zum Einsatz kommen könnten.

3.2 Basiskonzepte

Um die Daten der Informationssysteme konsistent zu halten, sind die Konzepte der
Abhängigkeit und ihre Ausführungsinstanzen, die Propagationsprozesse sowie die Be-
schreibung einer Änderung wichtig. Diese werden in den folgenden Unterabschnitten
genauer untersucht.

3.2.1 Abhängigkeiten und Propagationsprozesse

Bevor Änderungen eines Geschäftsobjektes in einem System an die davon betroffenen
Geschäftsobjekte in anderen Systemen weitergeleitet werden können, müssen Beziehun-
gen zwischen den jeweiligen Geschäftsobjekttypen definiert werden. Für die Beziehun-
gen wurde der Begriff und das Konzept Abhängigkeit eingeführt. Eine Abhängigkeit ist
eine gerichtete Beziehung zwischen einem Quellobjekt in einem Quellsystem zu einem
oder mehreren Zielobjekten in Zielsystemen. Um eine Konsistenz der Informations-
systeme zu gewährleisten, müssen bei einer Änderung des Quellobjektes die Daten
des entsprechenden Zielobjektes ebenfalls angepasst werden. Anzumerken ist, dass die
Daten und die Datenstruktur eines Quellobjektes nicht notwendigerweise eins zu eins
mit denen des Zielobjektes übereinstimmen müssen. Dies ist in der Heterogenität der
Informationssysteme begründet. Änderungsbeschreibungen, die die geänderten Daten
eines Geschäftsobjektes beschreiben, müssen deshalb an die Anforderungen des Ziel-
objektes angepasst werden, d.h. die Änderungsbeschreibung muss unter Umständen
transformiert werden.

In Abbildung 3.2 sind Abhängigkeiten zwischen drei Informationssystemen (Qua-
drate) und deren Geschäftsobjekttypen (Kreise, siehe Abschnitt 2.1.3) dargestellt. Wie
in der Abbildung zu sehen ist, müssen nicht alle Geschäftsobjekttypen Quelle oder Ziel
einer Abhängigkeit sein. Eine Schwierigkeit entsteht, wenn ein Geschäftsobjekttyp Ziel
von zwei Abhängigkeiten ist. In diesem Fall muss sichergestellt werden, dass die von den

58

3.2. BASISKONZEPTE

Abbildung 3.2: Beispiel von Abhängigkeiten zwischen Informationssystemen und
Geschäftsobjekttypen

Abhängigkeiten betroffenen Teilmengen der Geschäftsobjekte disjunkt sind. Andern-
falls ist es schwierig zu entscheiden, welche Änderungen den Vorrang bekommen soll.
Dadurch kann es zu nicht deterministischen Verhalten kommen, denn die Quelle der
Änderung ist nicht mehr eindeutig. Außerdem ist aus der Abbildung ersichtlich, dass
eine Abhängigkeit mehrere Zielgeschäftsobjekte haben kann, die in unterschiedlichen
Informationssystemen liegen können. Diese werden 1-zu-N-Abhängigkeiten genannt,
wobei die Eins für die Anzahl von Quellen und N für die Anzahl von Zielen steht. In
diesem Kapitel ist die Anzahl der Quellen auf eins beschränkt. Sollen mehrere Quel-
len verarbeitet werden, ist das grundsätzlich möglich und wird im nächsten Kapitel
behandelt.

Um eine Integration der Informationssysteme zu ermöglichen, werden Änderun-
gen entlang der definierten Abhängigkeiten, wie in Abbildung 3.2 dargestellt, propa-
giert. Die Abhängigkeiten können deshalb als Pfade der Änderungen angesehen wer-
den, wobei die Abhängigkeit ein Design-Time-Charakter und der Pfad einen Runtime-
Charakter hat.

Die Realisierung eines solchen Pfades erfolgt durch ein weiteres Konzept, den so ge-
nannten Propagationsprozessen. Dieser stellt eine logische Einheit für die Propagation
von Änderungen dar. Wie bereits diskutiert, muss es sich bei einer Abhängigkeit nicht
um eine 1-zu-1-Beziehung handeln, sondern sie kann mehrere Ziele haben. Dies wirkt
sich ebenfalls auf den Propagationsprozess aus. Eine 1-zu-N-Abhängigkeit kann auch
als n 1-zu-1-Abhängigkeiten realisiert werden, hat dann aber eine andere Semantik im
Fehlerfall. Dadurch geht jedoch der logische Zusammenhalt verloren, denn es werden in
diesem Fall n Propagationsprozesse ausgeführt. Außerdem sollte ein Propagationspro-
zess als Microflow (Abschnitt 2.6.4 und 2.11) ausgeführt werden. Dies sollte innerhalb

59

KAPITEL 3: Grundlegende Konzeption

einer Transaktionssphäre2 geschehen, so dass fehlerhafte Prozesse wiederholt werden
können.

3.2.2 Änderungsbeschreibung

Damit Änderungen, die in einem Geschäftsobjekt aufgetreten sind, an andere Systeme
weitergeleitet werden können, müssen sie in einer definierten Art und Weise beschrieben
werden. In diesem Abschnitt wird deshalb die Beschreibung von Änderungen genauer
untersucht.

Ändern sich ein oder mehrere Attribute eines Geschäftsobjektes, so ändert sich
der Zustand des Geschäftsobjektes. Ein Zustand ist die Menge aller Attributwerte
eines Objektes. Diese können selbst komplexe Objekte sein, wie z.B. die Adresse eines
Kunden. Des Weiteren kann man die Art der Zustandsänderung unterscheiden. Es gibt
grundsätzlich drei Arten wie sich der Zustand eines Objektes ändern kann: ein neues
Objekt wird erzeugt (create), ein bestehendes Objekt wird geändert (update), d.h.
Attributwerte ändern sich, oder ein bestehendes Objekt wird gelöscht (delete).

Nachdem die Grundlagen einer Änderung diskutiert wurden, kann eine Änderungs-
beschreibung (AB) genauer untersucht werden. Eine Änderungsbeschreibung ist selbst
auch ein Objekt und beschreibt die Änderung, die in einem System aufgetreten ist
und vom Propagationssystem verarbeitet wird. Ein solches Objekt lässt sich durch ein
Tupel beschreiben:

AB = (S,GT,A,B,D, TS) (3.1)

S: System in dem die Änderung auftrat oder in dem sie angewendet werden soll.

GT: Typ des geänderten (zu ändernden) Geschäftsobjektes.

A: Änderungsart A ∈ {create, update, delete}.

B: Zustandsbeschreibung (kurz: Zustand) des Geschäftsobjektes im System S, bevor
die Änderung auftrat. Dieser Zustand wird Davor-Zustand bezeichnet.

D: Zustandsbeschreibung des Geschäftsobjektes im System S nach der Änderung. Die-
ser Zustand wird Danach-Zustand bezeichnet.

TS: Zeitstempel der Änderung.

Während der Verarbeitung im Propagationssystem können sich alle Elemente des
Tupels ändern. Das System S ändert sich vom Quellsystem auf das Zielsystem. Der Typ
des Geschäftsobjektes (GT) ändert sich aufgrund von unterschiedlichen Bezeichnern
im Quellsystem und Zielsystem. Der Übergang von einer Änderungsart (A) zu einer
anderen ist komplexer als die des Namens und wird deshalb anhand eines Beispiels
erklärt:

2Eine Transaktionssphäre ist ein Teilprozess, der nicht durch das übliche Store-and-Forward ab-
gehandelt wird, sondern innerhalb einer Transaktion und damit auch ggf. als Ganzes zurückgesetzt
wird.

60

3.3. TRANSAKTIONEN

Zustand create update delete

Davor (B) Null X X

Danach (D) X X Null

Tabelle 3.1: Änderungsarten und Zustände in Änderungsbeschreibungen

Ein Produkt ist im PDM-System3 sichtbar, da es mit dessen Hilfe entwickelt wird.
Das ERP-System (vgl. Abschnitt 2.2) hat aber noch keine Informationen über das
Produkt, da die Produktion noch nicht angelaufen ist. Der Zustand des Objektes ändert
sich nun auf einen produktionsbereiten Zustand. Dies ist eine Änderung im PDM und
wird deshalb auch als update an das Propagationssystem gesendet. Da das Objekt noch
nicht im ERP-System existiert, muss es angelegt werden und A muss sich auf create
ändern.

Die Verwendung der Zustandsbeschreibungen B und D sind abhängig von der Ände-
rungsart. Dies ist in Tabelle 3.1 dargestellt.

Die beiden Zustände (D u. B) ändern sich anhand von Transformationen, wobei eine
Transformation immer auf beide Zustände angewandt wird. Transformationen werden
benötigt, da die Daten der Systeme semantisch oder strukturell heterogen sind [Her03].

Um eine Änderungsbeschreibung vollständig zu definieren, sollte sie zwei Zustände
haben, da bei einem Update eines Geschäftsobjektes mit mehreren Implementierungs-
objekten (z.B. Kundenauftrag, der aus einem Auftragskopf und mehreren Auftragsposi-
tionen besteht), müssen die Unteränderungsarten (create, update, delete) erkannt wer-
den, um die entsprechenden Änderungen der Implementierungsobjekte durchzuführen.
In dem Beispiel der Kundenauftragsänderung können Auftragspositionen geändert wer-
den, wegfallen oder hinzukommen. Außerdem können durch die Verwendung von zwei
Zuständen Änderungsdeltas im Propagationssystem berechnet werden.

Die Änderung kann anstatt mit zwei Zuständen auch mit einem Zustand und einem
Änderungsdelta ∆ beschrieben werden. Allerdings ist die Verarbeitung im Propagati-
onssystem schwierig, da für das Änderungsdelta ein anderes Schema als für die Zustände
benötigt wird. Zum Beispiel für B = {betrag = 10} und D = {betrag = 30} ergibt
sich ein Änderungsdelta ∆ = {betrag+= 20}. Wird die gleiche Beschreibungsart (nur
Zustände) verwendet, können auch einheitliche Schemas (Zustandsvalidierung) und
Transformationen eingesetzt werden. Außerdem können Zustände leichter beschrieben
werden. Für Änderungsdeltas werden für Zahlen Addition und Subtraktion sowie für
Strings Anfüge- und Ausschneide-Operationen benötigt. Dies ist deutlich komplexer
als die Beschreibung durch Zustände.

3.3 Transaktionen

Nachdem die ersten Grundlagen eines Propagationssystems im heterogen Umfeld be-
sprochen wurden, soll in diesem Abschnitt noch die Rolle von Transaktionen in diesem

3Product Data Management dient zur Verwaltung von Produktdaten während der Entwicklungs-
phase.

61

KAPITEL 3: Grundlegende Konzeption

Umfeld besprochen werden. In [GHOS96] wird beschrieben, dass Transaktionen im
homogenen Fall, die im Quellsystem ausgeführt werden, auch so in den anderen Repli-
katen durchgeführt werden müssen. Die Frage stellt sich, ob das auf den heterogenem
Fall übertragen werden kann.

Werden im heterogenen Fall zwei Informationssysteme miteinander integriert, erle-
digen diese in den meisten Fällen unterschiedliche Aufgaben. Daraus lässt sich schlie-
ßen, dass die geänderten Geschäftsobjekte in unterschiedlichen Transaktionen verar-
beitet werden. Ein Beispiel ist ein BDE-System (Betriebsdatenerfassung), bei dem ein
Fertigungsauftrag durch das Eintreffen einer Meldung auf fertig markiert wird und
dieser mit der Endzeit versehen wird. Dagegen müssen im angebundenen Finanzbuch-
haltungssystem auf dieses Ereignis hin Buchungen im Halbfertigprodukt-Konto und
Fertigprodukt-Konto ausgeführt werden.

In vielen Fällen müssen deshalb keine Transaktionsinformationen mit versendet
werden. Da wir hier nur den heterogenen Fall betrachten wollen, werden keine Trans-
aktionsinformationen propagiert.

3.4 XML als Basis für Änderungspropagation

In diesem Abschnitt wird untersucht, welche Rolle XML für den Einsatz im Propagati-
onssystem spielen kann. XML wird dabei verwendet um flexible Zustandsbeschreibun-
gen der Geschäftsobjekte zu ermöglichen, die in einer Änderungsbeschreibung verpackt
sind. Darauf aufbauend können Technologien eingesetzt werden, die die Verarbeitung
dieser Zustände ermöglichen.

3.4.1 XML zur Definition von Zustandsbeschreibungen

Die eXtensible Markup Language, kurz XML, eignet sich besonders gut für die Defini-
tion der Zustände aus den folgenden Gründen. XML stellt eine Sprache bereit, mit der
gleichzeitig Daten sowie deren Bedeutung beschrieben werden. Deshalb werden XML-
Dokumente auch als selbstbeschreibend bezeichnet. Dies führt dazu, dass Daten vom
Menschen lesbar sind und Fehler schneller entdeckt werden können. Ein weiterer wichti-
ger Vorteil ist, dass durch die Standardisierung und weltweite Akzeptanz von XML eine
Reihe weiterer Standards und Technologien entwickelt wurden. So kann die Struktur
eines XML-Dokumentes durch XML Schema festgelegt und mit den entsprechenden
Parsern kontrolliert werden. Bedingungen können durch XPath-Ausdrücke definiert
werden und für Transformationen können Transformationssprachen wie XQuery4 und
XSLT verwendet werden.

XML wird dabei für die Beschreibung der Zustände B und D einer Änderungs-
beschreibung verwendet, denn durch die Verwendung von XML als Sprache für die
Zustände, ist die Bedeutung der geänderten Daten definiert. Durch die Überprüfung
der Struktur kann festgestellt werden, ob es sich um ein gewisses Geschäftsobjekt han-
delt. Wie schon in Abschnitt 2.1.3 erwähnt, kann ein Geschäftsobjekt aus weiteren

4XQuery wird als Anfragesprache für XML-Daten verwendet

62

3.4. XML ALS BASIS FÜR ÄNDERUNGSPROPAGATION

Propagations- skriptTransfor- mations- skriptSchema Schema
Abbildung 3.3: Das Zusammenspiel von Technologien zur Änderungspropagation

Objekten bestehen, die durch eine Komposition verbunden sind. Eine Komposition ist
eine strenge hierarchische Beziehung zwischen Objekten. Dies bedeutet aber auch, dass
ein Geschäftsobjekt durch die hierarchische Struktur von XML dargestellt werden kann
(vgl. [Dau03]).

3.4.2 Technologie für eine XML-basierte Änderungspropaga-
tion

Im vorigen Abschnitt wurde hervorgehoben, dass die Vielzahl von verfügbaren XML-
Standards und XML-Werkzeugen, einen großen Vorteil für den Einsatz von XML dar-
stellt. In diesem Abschnitt werden deshalb weitere Standards für den Einsatz der Ände-
rungspropagation untersucht. Als Beispiel soll hier eine neue Maschine (Ressource) von
System A zu System B propagiert werden (vgl. Abbildung 3.3). Die Schwierigkeit liegt
darin, dass die Koordinatensysteme einen unterschiedlichen Ursprung (x ist um 20m
verschoben) und unterschiedliche Einheiten (mm und m) haben. Außerdem muss noch
die Struktur der Daten angepasst werden.

In Abbildung 3.3 sind zunächst die grundsätzlich benötigten Technologien für eine
Änderungspropagation dargestellt. Die Abhängigkeit ist durch ein Propagationsskript
beschrieben, das weitere Technologien verwendet, um seine Aufgabe zu erledigen. Als
Erstes muss überprüft werden (1), ob die eingegangene Änderung überhaupt dem ent-

63

KAPITEL 3: Grundlegende Konzeption

spricht, was man erwartet. Dafür wird ein Schema verwendet, welches Strukturinfor-
mationen enthält. Im XML-Fall kann man dafür XML Schema verwenden, das zum
einen mächtiger als DTD (z.B. Datentypen) ist und zum anderen in XML beschrieben
ist. Kritiker von XML Schema merken oft an, dass XML Schema zu kompliziert ist
(z.B. Vorwort von [Dau03]). Es existieren aber eine Reihe von Editoren (z.B. XML Spy
von Altova), mit deren Hilfe man einfach XML Schemas erstellen kann.

Wie schon oben erwähnt, muss bei der Beispielspropagation eine Koordinatentrans-
lation und eine Strukturänderung vorgenommen werden. In (3) werden deswegen Trans-
formationsskripte aufgerufen. Dabei kann es sich um ein Transformationsskript handeln
oder um mehrere Skripte, die eine schrittweise Transformation ermöglichen. Im XML-
Fall hat man grundsätzlich die Wahl zwischen XSLT oder XQuery. In unserem System
wurden beide Möglichkeiten durch die Verwendung der Saxon-Engine realisiert. Eine
Diskussion über die Mächtigkeit von XSLT und XQuery ist in [BMN02, Kep02] zu
finden und soll hier nicht weiter vertieft werden.

Gegebenenfalls kann am Ende noch die Zieländerungsbeschreibung nach ihrer Struk-
tur überprüft werden (4). Dies ist aber nicht immer notwendig, denn wenn die Ein-
gangsänderungsbeschreibung und die Transformationen korrekt sind, muss auch die
Zieländerungsbeschreibung korrekt sein. Die Überprüfung ist eine Zeitfrage und ein
Weglassen kann somit die Performanz steigern. Solange man aber in einer Entwick-
lungsphase ist, ist die Überprüfung für den Integrationsprogrammierer eine Hilfe zum
Feststellen der Korrektheit von Transformationen und wird deshalb optional unterstützt.

Was aus der Abbildung nicht ersichtlich ist, ist die Definition von Filterregeln
und bedingten Ausführungen. Für diesen Zweck wird eine Sprache benötigt, die es
ermöglicht, Bedingungen auf den Änderungsanforderungen zu definieren. In XML gibt
es dafür eine mächtige Sprache, die auch von XQuery und XSLT verwendet wird:
XPath. Diese ist aber für die zustandsübergreifenden Regeln nicht ausreichend. Des-
wegen wird im Abschnitt 3.6.1 eine Sprache dafür eingeführt.

Um die Performanz der Ausführung eines Propagationsskriptes zu steigern, beson-
ders wenn viele Zwischenschritte, wie Transformationen ausführen oder Bedingungen
überprüfen, enthalten sind, empfiehlt es sich, besonders bei einem serialisierten For-
mat wie XML, ein internes Format (2) zu verwenden. Dieses wird dann bis zum Schluss
verwendet, bis die Änderungsanforderung wieder ins XML-Format umgewandelt wird
(5). Wird wie hier XML als externes Format verwendet, eignet sich DOM gut für die
interne Repräsentation, da dieses direkt von entsprechenden Werkzeugen unterstützt
wird. DOM [HHW+04] ist die objekt-orientierte Darstellung eines XML-Dokumentes.

3.5 Sprache für die Definition von Abhängigkeiten

Wie in Abschnitt 3.2 beschrieben, ist die Abhängigkeit das Basiskonzept einer Ände-
rungspropagation und beschreibt durch Pfeile die Integrationsbeziehungen zwischen
den Geschäftsobjekten. Allerdings ist diese Beschreibung durch die Verwendung von
Pfeilen und möglichen Attributen, die diesen zugeordnet sind, nicht mächtig genug,
da die Gestaltung durch diese Art eingeschränkt ist, z.B. ist es nicht möglich mehrere
Transformationsskripte zu verwenden, oder paralleler und sequentieller Verarbeitung

64

3.5. SPRACHE FÜR DIE DEFINITION VON ABHÄNGIGKEITEN

Abbildung 3.4: Aufbau eines Propagationsskriptes

zu definieren. Aus diesem Grund führen wir ein weiteres Konzept ein: Propagationss-
kripte (vgl. auch Abbildung 3.3). Diese beschreiben im Detail, wie eine Abhängigkeit
definiert ist.

Durch die Einführung von Propagationsskripten wird auch die Beziehung zwi-
schen Abhängigkeiten und Propagationsprozessen klarer. Denn ein Propagationspro-
zess ist die Ausführung eines Propagationsskriptes und damit auch einer Abhängigkeit.
Im Rahmen dieser Arbeit wurde die Sprache XML Propagation Definition Langua-
ge (XPDL) zur Definition der Propagationsskripte entwickelt. XPDL ist eine Spra-
che, die als Basis eine für Propagationsprozesse angepasste und erweiterte Version der
Workflow-Sprache XRL [vdAVK01, VHvdA02, vdAK03] hat. In früheren Veröffentli-
chungen wurde XPDL selbst XRL [Ker01, CHRM02, CHRM03] und XRL+ [RCHM02]
genannt.

In Abbildung 3.4 ist der grundsätzliche Aufbau eines Propagationsskriptes darge-
stellt. Wie in Abschnitt 3.2 beschrieben, gibt es ein Quellgeschäftsobjekt, in dem die
Datenänderung auftrat. Aus diesem Grund braucht man einen Teil im Propagations-
skript, der definiert, in welchem System und in welchem Geschäftsobjekt eine Änderung
auftrat. Angedeutet wurde auch schon, dass im heterogenen Fall oftmals Transforma-
tionen notwendig sein können. Diese und andere Verarbeitungsschritte können dann
im Verarbeitungsteil definiert werden. Schließlich hat jede Abhängigkeit mindestens
ein Zielsystem und Zielgeschäftsobjekt, das dann im Output-Teil definiert wird.

Ein Propagationsskript hat also Befehle um den Input zu deklarieren. Für den Ver-
arbeitungsteil gibt es Befehle, die den Kontrollfluss steuern und Befehle, die die Ände-
rungsbeschreibungen verarbeiten. Weiterhin braucht man spezielle Output-Befehle,
welche die Änderungsbeschreibungen an die Systeme überreichen. Die Befehle werden
in drei Gruppen unterteilt: Deklaration der Eingabe, Kontrollfluss und Verarbeitungs-
sowie Ausgabebefehle.

65

KAPITEL 3: Grundlegende Konzeption

3.5.1 Deklaration der Eingabe

In XPDL wird am Anfang eines Propagationsskriptes mit input declaration die Spe-
zifikation der zu empfangenden Änderungsbeschreibung eingeleitet. Dafür wird inner-
halb der Input-Deklaration ein Element mit dem Namen start input definiert. Da-
durch wird sichergestellt, dass beim Auftreten einer definierten Änderung im Quell-
system und Weiterleitung an das Propagationssystem als Änderungsbeschreibung das
entsprechende Propagationsskript gestartet wird.

start input(system (S), GO Typ (GT), out, expression?)

Die Änderungsbeschreibungen, die zu einem Start des Propagationsskriptes führen,
können anhand des Quellsystems S und dem Geschäftsobjekttypen GT (GO Typ) aus-
gewählt werden. Ausdrücke (expression) ermöglichen die weiteren Einschränkungen
der qualifizierenden Änderungsbeschreibungen anhand der Inhalte der Zustände B und
D und der Änderungsart A. Die Ausdrücke werden in einer speziellen, auf XPath-
basierenden Sprache abgefasst (siehe Abschnitt 3.6). Dadurch können Änderungsbe-
schreibungen vor der Verarbeitung gefiltert werden. Beispielsweise können dadurch
nur Kundenaufträge, die ein bestimmtes Volumen haben, an ein bestimmtes Zielsys-
tem gesendet werden.

Wird eine Änderungsbeschreibung empfangen, so wird diese gegen die Struktur des
Geschäftsobjektes anhand eines XML Schemas überprüft.

Um die empfangene Änderungsbeschreibung weiterverarbeiten zu können, wird ihr
ein interner Name (out) gegeben, der eindeutig sein muss und der dann als Input
für andere Befehle verwendet werden kann, um beispielsweise eine Transformation mit
dieser Änderungsbeschreibung durchzuführen, die die Änderungsbeschreibung als Input
nimmt und dabei den Namen als Referenz für die Änderungsbeschreibung verwendet.

3.5.2 Kontrollfluss

Ein Propagationsprozess kann durch seinen Kontroll- und Datenfluss beschrieben wer-
den, was einem Workflow ähnlich ist. Der Datenfluss beschreibt, wie eine Änderungs-
beschreibung verarbeitet wird, bis sie schließlich an ein Zielsystem propagiert wird.
Gesteuert wird der Datenfluss dabei durch den Input und Output der einzelnen Be-
fehle, die die Datenänderungen verarbeiten. Der Kontrollfluss steuert im Gegensatz
dazu, welcher Befehl als nächstes ausgeführt werden soll, welche parallel ausgeführt
werden können oder welche überhaupt ausgeführt werden sollen. Der Aufbau eines
Propagationsskriptes ähnelt dem eines Workflow (siehe Abschnitt 2.6). Aus diesem
Grund werden einige Workflow-Sprachen und deren Kontrollflusssteuerungen in die-
sem Abschnitt genauer untersucht. Um dann die Kontrollflusselemente für XPDL zu
definieren.

Um eine Grundlage für die Kontrollflusssteuerung in XPDL zu haben, wird die
Steuerung in bestehenden Workflow-Sprachen untersucht. Dabei wurden moderne Work-
flow-Sprachen ausgewählt. Diese sind entweder in der Forschung entstanden, wie die
eXchangeable Routing Language XRL [vdAVK01, VHvdA02, vdAK03], oder sind Be-
standteil von Industrie-Produkten, wie XLang von Microsoft, das von BizTalk [Tat01]

66

3.5. SPRACHE FÜR DIE DEFINITION VON ABHÄNGIGKEITEN

Gruppe sequentielle parallele bedingte
Ausführung Ausführung Ausführung

XRL [vdAVK01,
VHvdA02,
vdAK03]

• sequence
• any sequence
• beschränkte Aus-
wahl1

• parallel sync
• parallel no sync
• parallel part sync

• condition
• while do

XLang[Tat01] sequence all

• switch
• while
• pick

BPEL[ACD+03,
Oas07]

sequence flow

• switch (1.1)
• if (2.0)
• while
• repeatUntil
• pick
• forEach

Tabelle 3.2: Steuerung des Kontrollflusses in gängigen Workflow-Sprachen

verwendet wird. Weiterhin wurde ein Industriestandard untersucht, der zur Koordina-
tion von Web-Services dient, die sogenannte Business Process Execution Language for
Web Services BPEL4WS [ACD+03].

Die Befehle für die Kontrollflusssteuerungen wurden in drei Gruppen unterteilt:
die sequentielle, parallele und bedingte Ausführung, wie in Tabelle 3.2 zu sehen ist.
Befehle, die in XPDL (XML Propagation Definition Language) den Kontrollfluss eines
Propagationsprozesses steuern, werden entsprechend der Gruppe in den nachfolgenden
Abschnitten untersucht.

3.5.2.1 Sequentielle Ausführung

Befehle, die sequentiell ausgeführt werden sollen, werden nacheinander und in der ange-
gebenen Reihenfolge ausgeführt. Die untersuchten Workflow-Sprachen unterstützen alle
diese einfache Ausführungsart. Allerdings unterstützt XRL auch noch eine Ausführungs-
art, bei der die Befehle in beliebiger Reihenfolge ausgeführt werden können, d.h. die
Sequenz A, B, C kann zum Beispiel in der Reihenfolge B, C, A ausgeführt werden.
Weiterhin wird eine sequentielle Ausführung vorgeschlagen, bei der nur ein Teil aus-
geführt werden muss [KZ02]. Dies bedeutet bei einer 2-von-3-Ausführung, dass beim
obigen Beispiel die Sequenz B, C ausreichend ist.

Eine Propagationssprache und damit auch XPDL muss auf jeden Fall die Standard-
sequenz unterstützen, da Transformationen und Propagationen in einer bestimmten
Reihenfolge ausgeführt werden müssen. Eine wahlfreie Ausführung wird dagegen selte-
ner gebraucht und nur, wenn es sich um unabhängige Propagationsteilprozesse handelt.
Diese können allerdings aufgrund ihrer Unabhängigkeit und des Fehlens menschlicher

1Vorgeschlagen in [KZ02]

67

KAPITEL 3: Grundlegende Konzeption

Bearbeiter parallelisiert werden. Aus diesem Grund ist es unnötig eine wahlfreie und
beschränkte Ausführungsart für die Propagationssprache anzubieten.

Der sequence-Befehl hat keine Argumente und muss deshalb nicht gesondert erklärt
werden. Die Unterelemente beschreiben die Zweige, die in der angegebenen Reihenfolge
ausgeführt werden sollen.

3.5.2.2 Parallele Ausführung

Bei der parallelen Ausführungsart werden die Befehle nebenläufig ausgeführt. Dabei
gibt es wieder die einfache Form, bei der die nachfolgenden Befehle erst ausgeführt
werden, wenn alle parallelen Zweige beendet wurden. Dies kann aufgelockert werden,
so dass die Ausführung der nachfolgenden Befehle sofort (parallel no sync) oder nach
einer angegeben Anzahl beendeter Zweige (parallel part sync) fortgesetzt werden.

Wie im sequentiellen Fall wird die einfache Art des parallelen Ausführens in der
Propagationssprache XPDL unterstützt. Die anderen beiden von XRL angebotenen
Modi sind dabei weniger nützlich, da die nachfolgenden Befehle im Regelfall auf den
Ergebnissen der parallelen Zweige aufbauen. In einigen wenigen Fällen können die
nachfolgenden Befehle unabhängig sein und eine sofortige Fortsetzung ermöglichen. In
solch einem Fall können die nachfolgenden Befehle in einem weiteren parallelen Zweig
ausgeführt werden und damit die obigen Ausführungsarten für die Propagationssprache
XPDL überflüssig machen.

Der parallel-Befehl hat keine Argumente und muss deshalb nicht gesondert er-
klärt werden. Die Unterelemente beschreiben die Zweige, die parallel ausgeführt werden
sollen.

3.5.2.3 Bedingte Ausführung

Die bedingte Ausführung von Befehlen lässt sich in zwei Gruppen unterteilen. Bei der
ersten Gruppe werden die Zweigelemente nicht iterativ sondern nur einmal ausgeführt:
condition, if und switch, während bei der zweiten Gruppe der Zweig iterativ, d.h.
solange eine Bedingung gültig ist, ausgeführt wird (while, repeatUntil, forEach).

Der condition-Befehl steuert die Ausführung der untergeordneten Befehle abhängig
von der Auswertung einer Bedingung. Wird die Bedingung als wahr ausgewertet, so
wird der true-Zweig ausgeführt, anderenfalls der false-Zweig. Der switch-Befehl da-
gegen besteht aus mindestens einem case-Zweig, der eine Bedingung definiert, welche
die Ausführung seiner Zweigbefehle steuert. Dabei wird nur der erste als wahr eva-
luierte Zweig ausgeführt [Tat01]. Dadurch können bestimmte Transformationen oder
Propagationen in Abhängigkeit von Bedingungen auf bestimmten Feldern der Ände-
rungsbeschreibung ausgeführt werden.

Für die Verwendung in einer Propagationsumgebung wird der while-Befehl nicht
benötigt, da eine variable Anzahl von Propagationen an das gleiche System eher un-
wahrscheinlich ist. Das einzige Szenario, das vom while-Befehl bearbeitet werden kann,
ist eine Zerstückelung eines Geschäftsobjektes in seine Bestandteile. Ein Beispiel hierfür
wäre eine Aufteilung der einzelnen Positionen eines Kundenauftrages. Wie man aber
erkennen muss, kann das Geschäftsobjekt in seine Implementierungsobjekte auch im

68

3.5. SPRACHE FÜR DIE DEFINITION VON ABHÄNGIGKEITEN

Zielsystem aufgeteilt werden. Im Zielsystem bzw. seinen Adapter wird die Aufgabe er-
ledigt, die Geschäftsobjekte der logischen Ebene auf die Datenobjekte der Implemen-
tierungsebene zu transformieren. Dieses Verfahren ist deshalb so wichtig, da Geschäfts-
objekte einen logischen Zusammenhang haben und deshalb auch atomar im Zielsystem
geändert werden sollten.

Der condition-Befehl oder der switch-Befehl wird dagegen benötigt, um beding-
te Propagationen bzw. Transformationen durchzuführen. Ein Beispiel hierfür wäre
die Propagation von einer Fertigungsmaschine in Abhängigkeit der Veränderung des
Verfügbarkeitsstatus. Dadurch kann erreicht werden, dass nicht verfügbare Maschinen
an ein bestimmtes System gemeldet werden, beispielsweise an ein Fabrikcockpit.

condition(in, expression, truePart, falsePart)

Der condition-Befehl hat als Input eine Änderung, dessen Namen mit in ange-
geben wird. Der Ausdruck, der auf der Nachricht ausgewertet werden soll, wird mit
expression angegeben. Der truePart wird ausgeführt, wenn der boolesche Ausdruck
als wahr evaluiert wird und der falsePart, wenn nicht. Der boolesche Ausdruck soll wie
beim Befehl start change die Möglichkeit geben, Ausdrücke auf bestimmten Ände-
rungszuständen (B und D) zu definieren.

switch(in, case+, default?)

case(expression)

Der Befehl switch besteht aus einer Inputdeklaration und mindestens einer case-
Deklaration und einem optionalen default-Teil, der aufgerufen wird, sofern keine case-
Deklaration zur Ausführung ausgeführt wird. Ähnlich wie zu XLang [Tat01] wird jeweils
nur die erste als wahr validierte case-Deklaration ausgeführt.

3.5.3 Verarbeitungs- und Output-Befehle

In diesem Abschnitt werden nun die Befehle behandelt, mit denen Änderungsbeschrei-
bungen transformiert, gefiltert und propagiert werden können.

3.5.3.1 Transform-Befehl

Wie schon mehrmals hervorgehoben, wurde die Propagationslösung für die Integration
heterogener Informationssysteme konzipiert. Die Sprache XPDL soll es ermöglichen,
Änderungsbeschreibungen, genauer gesagt deren Zustandsbeschreibungen (B und D),
an die Geschäftsobjekte im Zielsystem anzupassen. Durch diese Anpassung benötigt das
Zielsystem keine Kenntnisse über den strukturellen Aufbau bzw. die semantischen Un-
terschiede zu den Geschäftsobjekten des Quellsystems. Eine Propagationssprache soll
ein Konstrukt bereitstellen, mit dem Transformationen der Zustandsbeschreibungen (B
und D) möglich sind. Als Beispiel für eine solche Beschreibung sei hier eine Koordina-
tentranslation zwischen zwei Fabriklayoutwerkzeugen genannt, die einen unterschiedli-
chen Koordinatenursprung haben, d.h. bei der Propagation von Fertigungsressourcen

69

KAPITEL 3: Grundlegende Konzeption

müssen die Koordinaten entsprechend dem neuen Koordinatensystem berechnet wer-
den.

Da XML verwendet wird, um die Zustände zu beschreiben, bietet sich die Ver-
wendung von XSLT oder XQuery für Transformationsskripte an. Das Bereitstellen
beider Varianten ermöglicht ein Entwicklungsfreiraum und durch die Verwendung von
Standard-Engines bzw. Prozessoren keinen erhöhten Entwicklungsaufwand. Da es für
den Entwickler eines Propagationsskriptes nicht entscheidend ist, in welcher Sprache
ein Transformationsskript implementiert ist, wird dies in XPDL transparent gehalten.
Das Propagationssystem hat Kenntnis wie es die unterschiedlichen Transformations-
skripte verwenden muss und deshalb kann es vom Entwickler transparent gehalten wer-
den. Dadurch kann die Sprache der Transformationsskripte gewechselt werden, ohne
dass das Propagationsskript verändert werden muss. Weiterhin soll für den Entwickler
verborgen werden, welcher der Zustände in der Änderungsbeschreibung vorhanden ist
(z.B. D für create) und transformiert werden muss. Des Weiteren sollen Übergänge
zwischen Änderungsarten möglich sein, wie schon in Abschnitt 3.2.2 erwähnt wurde.
Dies betrifft auch den Übergang von Änderungsbeschreibungen mit zwei Zuständen zu
Änderungsbeschreibungen mit einem Zustand, wofür eine Reduktion der Änderungs-
zustände möglich sein muss. Im Gegensatz dazu ist der umgekehrte Fall nicht möglich,
da nicht mehr Informationen generiert werden können als vorhanden sind. Deshalb
muss bei einer Änderungsbeschreibung mit einem Zustand, die Anzahl der Zustände
konstant bleiben. Der Transform-Befehl hat folgendes Aussehen:

transform(in, out, script, reduceTo?, parameter*)

Dieser Befehl hat als Input (in) und Output (out) eine Änderungsbeschreibung. Ein
weiteres obligatorisches Attribut ist der Name des Transformationsskriptes (skript),
unter dem das eigentliche Script zu finden ist. Optional ist dagegen die Reduktionsspe-
zifikation (reduceTo), mit der Änderungsbeschreibungen (update) mit zwei Zuständen
zu einem reduziert werden können. Die Reduktion erfordert ggf. den Zugriff auf den
anderen Zustand, was aus dem Transformationsskript möglich sein sollte. Dies kann für
Transformationen ohne Reduktion ebenfalls notwendig sein. Deshalb sollte es möglich
sein aus einem Transformationsskript auch auf den jeweils anderen Zustand zuzu-
greifen, was durch eine XPath-Bibliothek bereitgestellt wird, siehe Abschnitt 3.6.2.
Zusätzlich kann noch eine beliebige Anzahl von Parametern definiert werden, die dann
im Transformationsskript verwendet werden können. Diese Parameter bestehen aus
Namen-Wert-Paaren. Es kann damit zum Beispiel der Translationsvektor (vgl. Ab-
schnitt 3.4.2) für die oben erwähnte Koordinatentransformation übergeben werden und
damit kann das Transformationsskript unabhängig vom Translationsvektor bleiben.
Dies erhöht zu einem gewissen Grad die Wiederverwendbarkeit von Transformations-
skripten.

3.5.3.2 Propagate-Befehl

Die transformierten Änderungsbeschreibungen müssen irgendwann an ein Zielsystem
propagiert werden. Dafür ist der propagate-Befehl zuständig. Mit diesem Befehl wird

70

3.5. SPRACHE FÜR DIE DEFINITION VON ABHÄNGIGKEITEN

Quell- Zieländerungsart
änderungsart create update delete
create O - -
update X O X
delete X - O

Tabelle 3.3: Sinnvolle Übergänge zwischen Änderungsarten [(O) kein Übergang, (X)
sinnvoller Übergang, (-) nicht sinnvoller Übergang

das interne Format der Zustände der Änderungsbeschreibung (DOM) wieder seriali-
siert, d.h. in die Textrepräsentation von XML gebracht und schließlich wird die Ände-
rungsbeschreibung an das Zielsystem gesendet.

propagate(in, system, GO Typ, chg type?)

Dieser Befehl hat als Input die durch in definierte Änderungsbeschreibung. Der Pa-
rameter system definiert das Zielsystem. Der Name des Zielsystems wird dabei intern
in seine physische Adresse aufgelöst, an der das Zielsystem seine Änderungsbeschrei-
bungen abholt. Der GO Typ wird angegeben, damit das Zielsystem weiß, um welches
Geschäftsobjekt es sich handelt. Außerdem können im Debug-Modus die Änderungs-
beschreibungen daraufhin überprüft werden, ob die Änderungszustände dem Schema
entsprechen. Dies muss nur in einem Debug-Modus erfolgen, da bei korrektem Input
und korrekter Verarbeitung auch ein korrektes Ergebnis entsteht. Deshalb kann aus
Performancegründen die Überprüfung der Ausgabe ausgeschaltet werden. Der optio-
nale Parameter chg type wird zum Überschreiben von Änderungsarten verwendet, d.h.
der Übergang von einer Änderungsart in eine andere.

Beim Einsatz des Attributes chg type stellt sich die Frage, welche der Überschrei-
bungen von Änderungsarten wirklich sinnvoll sind. Tabelle 3.3 gibt darüber Aufschluss,
was im Folgenden diskutiert wird. Es ist nicht sinnvoll ein create in eine andere Ände-
rungsart überzuführen, denn das Objekt kann noch nicht in dem anderen System vor-
handen sein. Im Gegensatz dazu kann ein update zu einem create überführt werden.
Als Beispiel sei hier als Quelle ein Produktdatenmanagement-System (PDM) und als
Ziel ein ERP-System angegeben. Das PDM-System verwaltet Daten über Produkte
in der Entwicklung, während das ERP-System Produkte verwaltet, die Produktions-
reife haben. Wird im PDM ein Produkt zur Produktreife gebracht, was ein update
darstellt, so kann im ERP das Produkt angelegt werden (create). Das Gleiche gilt,
wenn das Produkt ausläuft. In diesem Fall wird das Produkt gelöscht (delete). Dafür
wird zuerst mit einer Transformation (Abschnitt 3.5.3.1) eine Reduktion des Updates
auf einen Zustand durchgeführt. Dies wird dann durch das Propagate in eine create-
Änderung umgewandelt. Die Überführung der Änderungsart delete ist durch das Ziel
einer Historie-Datenbank begründet, die die gesamte Historie der Änderungen verwal-
tet. In diesem Fall wird eine create Änderungsart benötigt, um einen Eintrag in die
Datenbank einzufügen.

71

KAPITEL 3: Grundlegende Konzeption

3.5.3.3 Der Filterbefehl

Es kann durchaus vorkommen, dass Filter-Befehle notwendig sind, um gezielt Ände-
rungsbeschreibungen anhand von Bedingungen zu filtern. Allerdings ermöglicht die
start input-Deklaration die Definition von Bedingungen, um eine Selektion der Ein-
gabe zu machen. Weiterhin wurde bei den Kontrollflussbefehlen schon eine bedingte
Verarbeitung eingeführt, so dass der Filter-Befehl nicht notwendig ist und zu unsau-
berer Programmierung und damit zu schwer erkennbaren Programmabläufen führen
würde. Denn der Filter-Befehl wirkt sich im Gegensatz zu den Kontrollflussbefehlen
auf den Datenfluss aus, der aus den Propagationsskripten schwer ersichtlich ist. Dies
könnte zwar durch eine geeignete Darstellung der Propagationsskripte vermindert wer-
den, doch ist das Filtern im Datenfluss der Kontrollflussregulierung durch bedingte
Ausführung unterlegen. Dies ist vor allem durch die bessere Lesbarkeit des Propagati-
onsskriptes begründet.

3.6 Pfadausdrücke für Änderungsbeschreibungen

Um bedingte Ausführungen über alle Zustände einer Änderungsbeschreibung in XPDL
zu ermöglichen, wird eine Sprache benötigt, die es ermöglicht Bedingungen zu formulie-
ren. Diese Sprache ist die Propagation Condition Language (PCL). Außerdem müssen in
bestimmten Fällen mit Pfadausdrücken aus einer der beiden Transformationssprachen
(XSLT oder XQuery) Fragmente selektiert werden, die aus anderen Zuständen oder
sogar anderen Änderungsbeschreibungen stammen. Da beide Transformationssprachen
XPath hierfür verwenden, wurde eine Erweiterung von XPath in Form einer Bibliothek
gewählt.

3.6.1 Propagation Condition Language (PCL)

In Abschnitt 3.5 wurde eine Sprache zur Steuerung von Informationsflüssen von Quell-
systemen zu Zielsystemen eingeführt. Dabei wurde festgestellt, dass bestimmte emp-
fangene Änderungsbeschreibungen gefiltert werden müssen (start input) und dass
der Kontrollfluss anhand von Bedingungen reguliert werden muss (condition oder
switch).

Diese Bedingungen können sich auf einen Zustand beziehen, wie zum Beispiel
/Person/Age > 18. Diese Art von Bedingungen kann einfach durch die Verwendung
der mächtigen Pfadausdruckssprache XPath definiert werden. Um die zwei Zustände
der Änderungsbeschreibung zu realisieren, könnte man diese Zustände in einem XML-
Dokument codieren, so dass zwei Elemente before und after unterhalb des Wurzel-
knotens wären und dann XPath für die Pfadausdrücke einsetzen. Dies führt aber dazu,
dass Ausdrücke schwer realisierbar wären, die beispielsweise auf den Danach-Zustand
und bei Nicht-Existenz (delete-Änderungsart) auf den Davor-Zustand Bezug nehmen.

Um diesen Anforderungen gerecht zu werden, wurde die Sprache XPath erweitert,
um die oben genannte Art von Ausdrücken zu ermöglichen. Dafür wurde ein von XPath
nicht verwendetes Zeichen ’%’ als Erkennungsmerkmal der Elemente der neuen Sprache

72

3.6. PFADAUSDRÜCKE FÜR ÄNDERUNGSBESCHREIBUNGEN

mit dem Namen Propagation Condition Language (PCL) eingeführt. Um jetzt die oben
genannte Bedingung zu beschreiben, wurden noch mehrere Schlüsselworte eingeführt.
Bevor die Schlüsselworte aufgelistet werden, soll die Sprache anhand eines Beispiels
verdeutlicht werden, bei dem die Änderung eines Namens abgeprüft wird.

(a) %after%/Person/Nachname != %before%/Person/Nachname

Dieser Ausdruck gibt die Bedingung auf einen geänderten Namen wieder. Der Nach-
name einer Person nach einer Änderung wird mit dem Nachnamen derselben Person
vor der Änderung verglichen. Nach dem Beispiel mit zwei Schlüsselworten, sollen nun
alle eingeführt werden.

before Dieses Schlüsselwort gibt das Wurzelelement des Davor-Zustandes (B) der ak-
tuellen Änderung zurück. Ist dieser Zustand nicht vorhanden, so wird ein Null
zurückgegeben. Dies trifft auf create zu.

beforeOrAfter Das Schlüsselwort ist ähnlich zu before, aber im Fall eines nicht vor-
handenen Davor-Zustandes wird der Danach-Zustand (D) verwendet. Hat bei-
spielsweise ein Kundenauftrag ein bestimmtes Volumen, so wird es an ein be-
stimmtes System propagiert oder beim Löschen wieder von dem bestimmten In-
formationssystem entfernt.

after Dieses Schlüsselwort gibt den Danach-Zustand (D) zurück, der ggf. Null sein
kann.

afterOrBefore Entspricht der bevorzugten Zustandsselektion für den Danach-Zustand.

chgType Dieses Schlüsselwort kann verwendet werden, um gezielt Bedingungen auf
die Änderungsart zu stellen.

timestamp Hiermit können bedingte Ausführungen oder Filterausdrücke realisiert
werden, die auf ein bestimmtes Zeitschema abzielen (z.B. erste Monatshälfte).

Die weiteren Elemente der Änderungsbeschreibung (System S, Geschäftsobjekttyp
GT) werden in PCL nicht benötigt, da jedes Propagationsskript speziell für Änderungs-
beschreibungen mit einem bestimmten System und Geschäftsobjekttyp geschrieben ist.

Die Implementierung der Propagation Condition Language erfolgt, indem die oben
genannten Schlüsselworte komplett in XPath übersetzt werden. Dies erfolgt durch die
in XPath ermöglichte Einbindung von selbst entwickelten Funktionen. Die Funktionen
sind dabei durch einen bestimmten Namespace gekennzeichnet. Die Realisierung der
Funktionen erfolgt durch ein Objekt, welches über die aktuelle Änderung verfügt. Das
oben genannte Beispiel (a) sieht übersetzt folgendermaßen aus:

pcl:after($pclObj)/Person/Nachname !=

pcl:before($pclObj)/Person/Nachname

Wie unschwer zu erkennen ist, leidet die Lesbarkeit deutlich unter der Übersetzung,
deshalb wurden die speziellen Sprachelemente von PCL eingeführt.

73

KAPITEL 3: Grundlegende Konzeption

PCL-Compiler

XPath-Engine

PCL

XPath
Aktuelle
Änderung

Abbildung 3.5: Die Architektur der Verarbeitung von PCL-Bedingungen

Der oben stehende XPath-Ausdruck entsteht durch Übersetzung des PCL-Ausdrucks
mittels des PCL-Compilers, wie in Abbildung 3.5 dargestellt. Dieser muss Kenntnis
über die aktuelle Änderung haben, muss aber nicht auf diese zu greifen. Der dabei
entstehende XPath-Ausdruck kann dann von dem verwendeten XPath-Prozessor aus-
geführt werden. Die dabei notwendige aktuelle Änderungsbeschreibung wird mittels
des PCL-Objektes ($pclObj) übergeben.

Diese Sprache wird eingesetzt um Bedingungen innerhalb von XPDL zu definie-
ren. Da die Sprache einen Compiler benötigt, ist dieser Ansatz nicht für den Einsatz
innerhalb einer Transformationssprache geeignet. Hierfür sollten bestehende Erweite-
rungsmöglichkeiten verwendet werden. Dafür bietet sich eine XPath-Bibliothek an, die
im folgenden Abschnitt behandelt wird.

3.6.2 XPath-Bibliothek

XPath wird ebenfalls von den Transformationsskripten verwendet, d.h. von XSLT und
XQuery. Um nun erweiterte Möglichkeiten für die Transformationen bereitzustellen,
wurde eine XPath-Bibliothek entwickelt, mit deren Hilfe auf Elemente des Propagati-
onsprozesses zugegriffen werden kann. Als Beispiel sei hier die Berechnung einer relati-
ven Verschiebung einer propagierten Fertigungsressource angegeben, die aus der alten
und neuen Position in der Fabrikhalle berechnet wird. Dies kann durch eine Transfor-
mation realisiert werden, bei der auf den anderen Zustand zurückgegriffen wird, sofern
es sich um einen Update handelt. Diese Art von Transformation kann mittels einer
XPath-Bibliothek realisiert werden. Ähnlich wie bei der PCL-Realisierung verfügt die
Bibliothek über ein Objekt, das Zugriff auf die prozessinternen Daten ermöglicht.

Es wurde hier die Form einer XPath-Erweiterung mit einer Bibliothek gewählt, an-
statt diese durch XSLT-Erweiterungselemente bereitzustellen, weil XPath-Erweiterung-

74

3.7. KOMPONENTEN

en flexibler einsetzbar sind, z.B. in Pfadausdrücken oder Bedingungen. Eine spezielle
Sprache wie im Falle von PCL, die XPath als Sprache erweitert, wurde deshalb nicht
weiterverfolgt, da dies zu Änderungen im Kern des XSLT-Prozessors bzw. der XQuery-
Engine geführt hätte und mit der XPath-Bibliothek nur der bestehende Erweiterungs-
mechanismus von XSLT bzw. XQuery verwendet werden muss.

Die Funktionen der Bibliothek lassen sich folgendermaßen gruppieren:

• Informationen zum aktuellen Prozess und der aktuellen Transformati-
on
Dieser Teil der Bibliothek stellt Informationen zum aktuellen Propagationspro-
zess bereit, wie die ID des Prozesses oder der Name des ausgeführten Propa-
gationsskriptes. Weiterhin kann man Informationen über die aktuelle Transfor-
mation erfahren, wie z.B. der Name des Transformationsskriptes oder welcher
Zustand aktuell transformiert wird (Davor- oder Danach-Zustand). Diese Art
von XPath-Funktionen wird eher seltener als die nachfolgenden Funktionen ge-
braucht. Allerdings kann hiermit auf verarbeitungsinterne Daten der Prozesse
zugegriffen werden, die in bestimmten Anwendungsfällen benötigt werden. Zum
Beispiel kann hier ein Transformationsskript verwendet werden, das nur bei der
Transformation des Danach-Zustandes die relative Verschiebung berechnet. Dies
wird durch die Abfrage des aktuell transformierten Zustandes ermöglicht.

• Zugriff auf Änderungen
Da jeder Prozess einen internen Speicher hat, in dem die Änderungsbeschreibun-
gen (ABs) unter ihren Namen abgelegt sind, kann mittels einer Funktion auf diese
ABs zugegriffen werden. Dafür wird der entsprechenden Funktion der Name der
Änderungsbeschreibung übergeben. Weiterhin kann man die Existenz einer Ände-
rungsbeschreibung abfragen. Diese Funktionalität ermöglicht die Integration von
mehreren Änderungsbeschreibungen.

• Zugriff auf Änderungselemente
Mit diesen Funktionen kann auf alle Elemente der Änderung zugegriffen werden,
die durch das Tupel AB = (S, GT, A, B, D, TS) definiert sind. Dadurch wird es
zum Beispiel möglich, die relative Verschiebung zwischen den beiden Positionen
zu berechnen, indem man bei der Danach-Transformation auf den Davor-Zustand
zugreift.

3.7 Komponenten

In diesem Abschnitt werden die einzelnen Komponenten des Propagationssystems dis-
kutiert. Als Erstes wird die Basisarchitektur vorgestellt. Danach wird auf jede einzelne
Komponente dieser Architektur genauer eingegangen.

In Abbildung 3.6 ist die Architektur mit den Hauptkomponenten eines Propaga-
tionssystems dargestellt. Diese Basisarchitektur wurde in [CHRM01] vorgestellt und
besteht aus drei Hauptkomponenten: dem Repository, dem Abhängigkeitsmanager und

75

KAPITEL 3: Grundlegende KonzeptionAbhängigkeitsmanagerPropagationsmanager Repository
Abbildung 3.6: Basisarchitektur eines Propagationssystems

dem Propagationsmanager. Das Repository stellt einen zentralen Speicher für die Abla-
ge von Abhängigkeiten und den dazugehörigen Daten bereit (vgl. Abschnitt 3.4.2). Zur
Realisierung des Repository sollte ein DBMS verwendet werden, um die Konsistenz der
darin enthaltenen Daten zu garantieren. Zur Definition oder Bearbeitung von den Da-
ten im Repository wird eine Design-Time-Komponente verwendet, der Abhängigkeits-
manager. Die eigentliche Propagation der Änderungsbeschreibungen von Quellsyste-
men zu den Zielsystemen wird vom Propagationsmanager ausgeführt. Dazu verwendet
er die Daten, die im Repository stehen und vom Abhängigkeitsmanager erstellt bzw.
geändert wurden.

Im Nachfolgenden werden die Hauptkomponenten genauer untersucht. Die dort
vorgestellten Komponenten sind schon auf eine Propagation von Änderungsbeschrei-
bungen mit XML-Technologien (vgl. Abschnitt 3.4) ausgelegt.

3.7.1 Repository

In diesem Abschnitt wird der Server diskutiert, der die Metadaten für die Propagation
bereitstellt, das Repository. Zuerst wird eine Übersicht über Aufgaben und Inhalte des
Repository gegeben, bevor das darunter liegende Datenmodell diskutiert wird. Schließ-
lich wird noch auf die Architektur des Repository eingegangen.

3.7.1.1 Übersicht

Das Repository dient als zentraler Speicher für Abhängigkeiten und alle Daten, die von
einer Abhängigkeit benötigt werden. Wie schon erwähnt, wird hier eine Abhängigkeit
durch ein Propagationsskript realisiert. Folgende Datenarten müssen im Repository
gespeichert werden:

• Propagationsskripte (Beschreibung von Abhängigkeiten)

• Systeme (Metadaten über integrierte Informationssysteme)

• Schemas (Struktur der Zustandsbeschreibungen der geänderten Geschäftsobjek-
te)

• Transformationsskripte (Transformation der Zustandsbeschreibungen).

Im nächsten Abschnitt wird das Datenmodell vorgestellt, das als Grundlage für die
Repository-Implementierung verwendet wird, um die oben beschriebenen Datenarten

76

3.7. KOMPONENTEN

Abbildung 3.7: Datenmodell des Repositorys

zu speichern. Hier wird unter einem Repository kein Software-Entwicklungsrepository
[McC93, BD94, Ber98, SBB+99] verstanden, sondern ein zentraler Speicher, der die
Daten bereitstellt. Des Weiteren müssen die oben genannten Daten nicht fein granular
gespeichert werden, da keine Anfragen auf z.B. Schemainhalte durchgeführt werden
müssen. Daraus folgt, dass diese Objekte in sogenannten BLOBs gespeichert werden
können und keine XML-Repository-Technologie [SRL00] notwendig ist.

3.7.1.2 Datenmodell

In Abbildung 3.7 ist das Repository-Datenmodell in der UML-Notation dargestellt. Die
implementierte Lösung des Repository basiert auf einem relationalen Datenbankma-
nagementsystem (RDBMS). Kern dieses Modells ist das Propagationsskript bzw. die
Abhängigkeit. Das Propagationsskript wird über einen Namen referenziert und enthält
das Skript in serialisierter Form, gespeichert als Binary Large Object (BLOB). Da un-
terschiedliche XML-Dokumente auch unterschiedliche Zeichensätze haben können, ist
das nicht-interpretierte Format (binär) besser geeignet. Das Propagationsskript enthält
Informationen über die Änderungsbeschreibungen, die das Propagationsskript starten
sollen (vgl. Abschnitt 3.5.1). Diese Art von Informationen werden redundant vorgehal-
ten (Klasse StartInfo), um eine effizientere Ermittlung der zu startenden Propagations-
skripte zu ermöglichen. Die Ermittlung erfolgt anhand von System und Geschäfts-
objekttyp (GOTyp), die über SystemGOTyp definiert sind und mit StartInfo ver-
bunden sind. Allerdings muss vom Repository garantiert werden, dass die StartInfo-
Informationen mit dem Inhalt der Propagationsskripte konsistent sind.

Grundsätzlich müssen alle Beziehungen zwischen einzelnen Daten, die im Reposi-
tory gespeichert werden, modelliert und gepflegt werden. Einen Überblick über diese
Beziehungen gibt Tabelle 3.4. Aus diesem Grund müssen im Datenmodell auch der
Input und Output eines Propagationsskriptes modelliert werden, um ein Löschen von
Schemata bzw. System-GOTyp-Paaren zu verhindern. Transformationsskripte müssen
ebenfalls vor dem Löschen geschützt werden, sofern diese von Propagationsskripten

77

KAPITEL 3: Grundlegende Konzeption

verwendet werden. Im Datenmodell muss die Art des Transformationsskriptes (XSLT
oder XQuery) abgelegt sein, damit die Laufzeitumgebung erkennt, welcher Prozessor
initialisiert werden muss. Diese Unterscheidung erfolgt mit dem Attribut Type in der
Klasse Transformationsskript (Abbildung 3.7). Das eigentliche Skript wird ebenfalls
in der Klasse Transformationsskript vorgehalten. Eine weitere wichtige Beziehung ei-
nes Transformationsskriptes ist die Verwendung eines anderen Transformationsskriptes.
Dadurch können Transformationsskriptteile ausgelagert und wiederverwendet werden.
In diesem Fall besteht eine Aggregationsbeziehung vom Typ n-zu-m, d.h. ein Transfor-
mationsskript kann von mehreren Transformationsskripten eingebunden werden. Wie-
derverwendete Transformationsskripte müssen ebenfalls vor unbeabsichtigtem Löschen
geschützt werden. Eine solche Wiederverwendung kann ebenfalls zwischen Schemas
definiert werden.

Grundsätzlich werden die Klassen als Relationen im RDBMS abgebildet, bei dem
die Attribute zur Spaltendefinition werden. Die Beziehungen zwischen den einzelnen
Klassen werden über Fremdschlüsselbeziehungen abgebildet, wobei die Lösch-Semantik
’Restrict’ verwendet wird. Dadurch wird ein unbeabsichtigtes Löschen von benötigten
Informationen verhindert. Diese Beziehungsinformationen müssen beim Speichern (An-
legen oder Ändern) eines Dokumentes im Repository aus dem Dokument extrahiert und
im Repository abgelegt werden. Nicht mehr gültige Beziehungen müssen gelöscht wer-
den. Anzumerken ist, dass der Primärschlüssel (Name) nicht geändert werden kann, so
dass die Fremdschlüssel-Beziehungen besser verwaltbar sind.

Betrachtet man das Repository auf einer Architektur-Ebene, so werden spezielle
Parser benötigt, die die Beziehungen zwischen den einzelnen Objekten extrahieren.
Weiterhin ist es die Aufgabe eines solchen Parsers sicherzustellen, dass das Dokument
(z.B. Transformationsskript) schema-konform ist. Um diesen Teil zu realisieren, können
die Parser auf einer XML-Parser Komponente aufbauen, welche einen DOM-Baum
erzeugt. Mit den speziellen Zugriffsroutinen kann auf die gesuchten Elemente wie import
und include beim XML Schema zugegriffen werden.

3.7.1.3 Architektur

Wie wir festgestellt haben, werden Parser für die Überprüfung der einzelnen Skrip-
te sowie Schemas benötigt und für die Extraktion der Beziehungen zwischen diesen
Dokumenten. Wie in Abbildung 3.8 dargestellt, existiert ein spezieller Parser für je-
des unterschiedliche Dokument: XML Schemas (Schema-Parser), Propagationsskrip-
te (PS-Parser) und Transformationsskripte (XSLT- u. XQuery-Parser). Bis auf den
XQuery-Parser basieren alle Parser auf einem XML-Parser, der durch Angabe eines
XML Schemas die Gültigkeit eines zu speichernden Dokumentes überprüft. Da der
jeweilige Parser auch Kenntnis darüber hat, wie in der entsprechenden Sprache Bezie-
hungen ausgedrückt werden, wird der Parser verwendet, um Beziehungen aus den Doku-
menten zu extrahieren und als Fremdschlüsselbeziehungen in der Datenbank abzulegen.
Die Datenbank wird durch ein RDBMS verwaltet. Dieses ermöglicht die Sicherstellung
der geforderten Konsistenz durch die Definition von Fremdschlüsselbeziehungen.

Weitere wichtige Komponenten sind der Verbindungsmanager und der Reposito-
rymanager, da sie direkt für den Client sichtbar sind. Repository-Clients sind, wie

78

3.7. KOMPONENTEN

D
at

en
ty

p
E

rz
eu

ge
n

Ä
n

d
er

n
L

ö
sc

h
en

P
ro

p
a
ga

ti
on

s-
sk

ri
p

t
(P

S
)

•
S

ch
em

a
ko

n
fo

rm
•

T
S

vo
rh

an
d

en
•

S
y
st

em
-G

O
T

y
p

-P
aa

r
vo

rh
an

d
en

•
S

ch
em

a
ko

n
fo

rm
•

T
S

vo
rh

an
d

en
•

S
y
st

em
-G

O
T

y
p

-P
aa

r
vo

rh
an

d
en

–

T
ra

n
sf

o
rm

a
ti

o
n

s-
sk

ri
p

t
(T

S
)

•
S

ch
em

a
ko

n
fo

rm
•

g
gf

.
T

S
v
or

h
an

d
en

(W
ie

d
er

ve
rw

en
d

u
n

g)

•
S

ch
em

a
ko

n
fo

rm
•

gg
f.

T
S

v
or

h
an

d
en

(W
ie

d
er

ve
rw

en
d

u
n

g)

•
vo

n
P

S
ve

rw
en

d
et

•
vo

n
T

S
ve

rw
en

d
et

S
ch

em
a

•
S

ch
em

a
ko

n
fo

rm
•

g
gf

.
S

ch
em

a
vo

r-
h

a
n

d
en

(W
ie

d
er

ve
r-

w
en

d
u

n
g
)

•
S

ch
em

a
ko

n
fo

rm
•

gg
f.

S
ch

em
a

vo
r-

h
an

d
en

(W
ie

d
er

ve
r-

w
en

d
u

n
g)

•
vo

n
S

ch
em

a
v
er

w
en

-
d

et
•

vo
n

T
S

ve
rw

en
d

et
•

vo
n

S
y
st

em
-G

O
T

y
p

-
P

aa
r

v
er

w
en

d
et

S
y
st

em
G

O
T

y
p

-
P

a
a
r

S
y
st

em
u

n
d

S
ch

em
a

vo
rh

a
n

d
en

S
y
st

em
u

n
d

S
ch

em
a

vo
rh

an
d

en
vo

n
P

S
ve

rw
en

d
et

S
y
st

em
–

–
w

ir
d

vo
n

S
y
st

em
G

O
-

T
y
p

ve
rw

en
d

et

T
ab

el
le

3.
4:

K
on

si
st

en
zr

eg
el

n
fü

r
d
as

P
ro

p
ag

at
io

n
sr

ep
os

it
or

y

79

KAPITEL 3: Grundlegende Konzeption

Abbildung 3.8: Architektur des Repositorys

in Abschnitt 3.7 erläutert, der Abhängigkeitsmanager und der Propagationsmanager.
Zusätzlich verfügt das Repository über eine Repository Shell, mit der auf einfache Weise
Daten im Repository eingesehen und verändert werden können. Es gibt zwei Kompo-
nenten, die von Clients zur Verwaltung der Daten verwendet werden. Die erste Kom-
ponente (Verbindungsmanager) stellt Funktionalität zur Anmeldung am Repository
bereit. Diese Verbindung zum Repository kann für die gesamte Zeit, in der das Reposi-
tory verwendet wird, gehalten werden. Allerdings sollte die Verbindung zum RDBMS
nicht an die Verbindung zum Client gekoppelt sein, da diese mit Zeitbeschränkungen
versehen sind und dann ihre Gültigkeit verlieren. Außerdem eignet sich in diesem Fall
ein sogenannter Connection-Pool besser, da dadurch die langen Initialisierungszeiten
von Datenbankverbindungen durch Wiederverwendung verhindert werden. Mit JDBC
2.0 [WH99] wird eine Schnittstelle zu relationalen Datenbanken bereitgestellt, die ein
Connection-Pooling unterstützt.

Die zweite Komponente, der eigentliche Repositorymanager, stellt eine Reihe von
Schnittstellen zum Zugriff auf die Repository-Daten bereit und implementiert diese.
Bei Änderung der Repository-Daten muss sichergestellt werden, dass die in Tabelle 3.4
aufgelisteten Konsistenzregeln eingehalten werden. Diese Konsistenzregeln ergeben sich
aus dem in Abbildung 3.7 dargestellten Datenmodell. Wie oben schon erwähnt, werden
die Konsistenzregeln durch Pflege von Fremdschlüsselbeziehungen und deren Verwal-
tung im RDBMS garantiert. Dafür verwendet der Repositorymanager die Parser und
speichert die extrahierten Fremdschlüsselbeziehungen zusammen mit dem eigentlichen
Dokument in der Datenbank.

Eine weitere Komponente kann dazu verwendet werden, Veränderungen in Doku-
menten sowie deren Auswirkungen auf andere Dokumente zu protokollieren und dem

80

3.7. KOMPONENTEN

Integrationsentwickler bereitzustellen. Wird zum Beispiel ein Schema verändert, so
sind die Transformationsskripte, die dieses Schema als Input oder Output haben, da-
von betroffen und müssen ebenfalls angepasst werden. Diese Komponente liefert dem
Entwickler nach der Schemaänderung alle Transformationsskripte, die von der Ände-
rung betroffen sind.

Als nächste Hauptkomponente wird der Propagationsmanager betrachtet, der die
Propagationen ausführt.

3.7.2 Propagationsmanager

In diesem Abschnitt wird die Komponente Propagationsmanager diskutiert. Zuerst
wird eine Übersicht gegeben, bevor die Architektur diskutiert wird. Schließlich wird
noch die Kommunikation zwischen dem Prozessmanager und den Prozessen diskutiert.

3.7.2.1 Übersicht

Der Propagationsmanager ist die Kernkomponente und die Laufzeitumgebung des Pro-
pagationssystems. Diese Kernkomponente verwendet die im Repository abgelegten und
durch den Abhängigkeitsmanager definierten Abhängigkeiten, um die Änderungsanfor-
derungen gezielt an die betroffenen Informationssysteme zu senden. Dafür werden, wie
in Abschnitt 3.7.1 festgestellt wurde, folgende Daten benötigt: Propagationsskripte,
Schemas, Systeminformationen und Transformationsskripte. Zusätzlich werden im Re-
pository die im Propagationsskript enthaltene Start-Information gepflegt. Diese Infor-
mation wird vom Propagationsmanager verwendet, um die entsprechenden Propagati-
onsskripte zu starten. Eine Kernkomponente des Propagationsmanagers ist die XPDL-
Engine, mit der die Propagationsskripte ausgeführt werden. Im nächsten Abschnitt
wird die Architektur genauer betrachtet.

3.7.2.2 Architektur

In Abbildung 3.9 ist der Aufbau des Propagationsmanagers illustriert. Wie oben erwähnt
wurde, ist eine der wichtigsten Komponenten die XPDL-Engine, die es ermöglicht, die
Abhängigkeiten bzw. Propagationsskripte, die in XPDL programmiert wurden, aus-
zuführen. Eine Ausführungsinstanz eines Propagationsskriptes ist der eingeführte Pro-
pagationsprozess (vgl. Abschnitt 3.2.1). Dieser führt die Beschreibung eines Propagati-
onsskriptes bzw. Abhängigkeit aus. Dafür werden die Befehle der Sprache XPDL (XML
Propagation Definition Language) in eine ausführbare Objektstruktur übersetzt, wo-
bei jeder Befehl durch eine Klasse und jede Instanz eines Befehls durch ein Objekt
repräsentiert werden [Ker01]. Diese Klassen verfügen über jeweils eine Initialisierungs-
und eine Ausführungsmethode, die in der entsprechenden Phase ausgeführt werden.
Durch die Realisierung von Klassen können neue Befehle hinzugefügt werden, indem
sie implementiert und der Engine bekannt gemacht werden. Jede Instanz verfügt über
einen Zustand, mit dem festgestellt werden kann, ob der Befehl initialisiert wurde,
ausgeführt wird, erfolgreich beendet oder abgebrochen wurde. Diese Zustände können

81

KAPITEL 3: Grundlegende Konzeption

Repository

Access
Repository

Access

Prozess-

manager

XPDL Engine

Prozess 1Prozess 1Prozess 1

CacheRepository

Access

Queue-

Manager
Queue-

Manager
Queue-

Access

XML-Werkzeuge

XML Parser &

Validator

Transformer

PCL-

Evaluator

Propagationsmanager

Input

Prozessinput

Output 1

Output n

..
.

Warteschlangenmanager

Repository

Server

Abbildung 3.9: Architektur des Propagationsmanagers

82

3.7. KOMPONENTEN

vom übergeordneten Propagationsprozess beeinflusst werden und damit eine fehlerhaf-
te Ausführung abgebrochen werden. Die Kontrolle über die einzelnen Prozesse, d.h.
das Erzeugen und ggf. das Neustarten, übernimmt der Prozessmanager. Er kann auch
Prozesse für das Herunterfahren des Propagationssystems abbrechen. Der Ablauf des
Prozessmanagers sieht folgendermaßen aus:

1. Transaktionsbeginn

2. Warten auf Änderungsbeschreibungsnachricht von der Eingangswarteschlange
(Input)

3. Hole Start-Informationen und die damit verbundenen Propagationsskripte vom
Repository

4. Übergabe der Änderungsbeschreibungen an die Prozesse über die Prozessein-
gangswarteschlange (Prozessinput)

5. Transaktionsende

6. Starte Prozesse mit den jeweiligen Propagationsskripten

7. Gehe zu 1.

Damit es zu keinem Deadlock kommt, wenn die maximale Anzahl gleichzeitiger
Prozesse kleiner ist als die Anzahl der Abhängigkeiten pro Änderung, müssen die Pro-
pagationsprozesse nach dem Transaktionsende gestartet und initialisiert werden. Die
maximale Anzahl gleichzeitiger Prozesse ist eine Möglichkeit zur Regulierung der Per-
formance.

Die Schritte 1-4 werden innerhalb einer Transaktion ausgeführt, sodass bei aufge-
tretenen Fehlern neu aufgesetzt werden kann. Der Prozessmanager greift dabei auf die
Funktionalitäten einer Queue-Zugriffskomponente (Queue-Access) zurück und verfügt
über eine Repository-Zugriffskomponente (Repository Access), um die Namen der Pro-
pagationsskripte zu bekommen (3.). Diese beiden Komponenten kapseln die Funktio-
nalität der dahinterliegenden Systeme.

Ein Propagationsprozess verfügt ebenfalls über die beiden oben genannten Kompo-
nenten, die nachfolgend genauer erklärt werden.

Die Queue-Zugriffskomponente stellt ein vereinfachtes Interface zu den Warteschlan-
gen (Queues) bereit, die in einem externen Warteschlangenmanager definiert sind.
Dafür bedient er sich des Java Message Services (JMS) [HBS+02b], der eine mächtige
Schnittstelle zu den Warteschlangen bereitstellt. Eine JMS-Nachricht besteht aus einem
Meta-Teil und der eigentlichen Nachricht, wobei der Meta-Teil selbst aus zwei Teilen
besteht, einem festen Teil mit Systemattributen und einem Benutzerteil mit beliebi-
gen Attributen. In letzerem werden die Informationen einer Änderungsbeschreibung
bis auf die Änderungszustände B und D ablegt, d.h. Informationen über die Herkunft
(System S und Geschäftsobjekttyp GT) und die Änderungsart A. Im festen Teil wird
schließlich noch der Änderungszeitpunkt TS oder genauer gesagt die Zeit, zu der die

83

KAPITEL 3: Grundlegende Konzeption

Update-Änderung Andere-Änderungen

1. Parsen und Über-
prüfen der Update-
Struktur gegen
internes Schema

2. Überprüfen Davor-
Zustand (DOM)
gegen Schema X

3. Überprüfen Danach-
Zustand (DOM) ge-
gen Schema X

Parsen und Überprüfen des
Nachrichteninhalts gegen
Schema X.

Tabelle 3.5: Schritte beim initialen Parsen der Änderungsanforderung

Änderungsbeschreibung an den Warteschlangenmanager übergeben wurde, festgehal-
ten. Die Herkunftsinformationen (S u. GT) werden vom Prozessmanager extrahiert und
dazu verwendet, die Propagationsskripte zu ermitteln, die gestartet werden sollen. Der
Name des Propagationsskripts wird dabei dem Prozess übergeben, der seinerseits der
XPDL-Engine die Aufforderung gibt, eine lauffähige Instanz des Propagationsskriptes
zu erzeugen.

Wie in Abschnitt 3.4 erwähnt, eignet sich XML als Basis für die Implementierung ei-
nes Propagationssystems wegen der Selbstbeschreibung und der Vielzahl der Standards
und Werkzeuge, die auf XML aufbauen. In diesem Propagationssystem wird deswegen
ein XML-Parser verwendet, der zum Aufbau der internen Repräsentation (DOM) von
Änderungsbeschreibungszuständen und zur Validierung der erwarteten Struktur eines
solchen Zustandes dient.

In Tabelle 3.5 ist dargestellt, welche Schritte beim Parsen der Startnachricht not-
wendig sind. Diese sind abhängig davon, ob es nur einen Zustand oder zwei Zustände
(Update) gibt. Im ersten Fall kann der Zustand direkt in der Nachricht kodiert wer-
den. Im zweiten Fall braucht man eine Unterstützungsstruktur, die es ermöglicht, beide
Zustände in einem Dokument zu verpacken. Dafür wird ein Dokument mit Namespaces
verwendet und mit einem Wurzelelement update, welches zwei Unterelemente (before
und after) hat. Der Inhalt dieser beiden Unterelemente wird dann noch als beliebig
definiert (XML Schema Datentyp any). Dadurch können beliebige Zustände in den
Unterelementen beschrieben werden, die, wie in Tabelle 3.5, getrennt und mit dem
gleichen Schema für beide Zustände überprüft werden.

Für die Implementierung wäre aus Performanzgründen wünschenswert, dass nach
dem Parsen der Update-Struktur deren Unterelemente nur noch validiert werden müss-
ten und dafür kein erneutes Parsen notwendig wäre. Dies ist seit DOM-Level 3 möglich
[HHW+04]. Allerdings wird dieser zum aktuellen Zeitpunkt noch nicht von allen einge-
setzten Werkzeugen unterstützt. Deshalb wurde auf eine Behelfslösung zurückgegriffen,
bei der der DOM-Baum zuerst serialisiert und danach erneut geparst sowie anhand des

84

3.7. KOMPONENTEN

entsprechenden Schemas validiert wird.
Einen weiteren Bestandteil der verwendeten XML-Werkzeuge stellen die Transfor-

mer dar, die in Form von XSLT-Prozessor und XQuery-Engine auftreten. Der Aufruf
der richtigen Komponente erfolgt dabei transparent für den XPDL-Entwickler, da er
nur den Namen der Transformationsskripte benötigt; die Art wird über das Repository
ermittelt. Im Regelfall hat eine Transformation einen DOM-Zustand bzw. ein Doku-
ment als Input und einen DOM-Zustand bzw. ein Dokument als Output. Bei einer
Update-Änderungsbeschreibung werden beide Zustände nacheinander und transparent
für den Programmierer transformiert. Über eine XPath-Bibliothek können noch wei-
tere Zustände (z.B. der Davor-Zustand bei der Danach-Transformation) eingebunden
werden und damit Inhalte verbunden werden. Dies ermöglicht zum Beispiel die Berech-
nung der relativen Verschiebung einer Maschine, wobei im Davor-Zustand B die alte
Position und im Danach-Zustand D die aktuelle Position kodiert ist.

Die PCL-Komponente (PCL-Evaluator) ist im Gegensatz zu den anderen zwei nicht
als Off-The-Shelve-Komponente zu haben, basiert aber auf einer XPath-Implementie-
rung, die in den meisten Fällen Bestandteil eines XSLT-Prozessors oder einer XQuery-
Engine ist.

3.7.2.3 Kommunikation zwischen Prozessmanager und Propagationspro-
zessen

Die Kommunikation zwischen Prozessmanager und Propagationsprozessen stellt eine
Herausforderung dar, denn es können mehrere Propagationsprozesse durch eine einge-
gangene Änderungsbeschreibung gestartet werden, sofern mehrere Abhängigkeiten für
ein System und Geschäftsobjekttyp definiert sind. Die hier gestellten Anforderungen
treffen auch auf das Publish-Subscribe-Konzept [EFGK03] zu. Sendet ein Publisher
eine Nachricht, so wird diese durch die Infrastruktur an alle interessierten Subscri-
ber verteilt. Dies erfolgt über sogenannte Abonnements (Subscriptions), bei denen der
Subscriber mitteilt, an welchen Nachrichten er interessiert ist. Das bedeutet, dass das
Publish-Subscribe-Konzept vom Kommunikationssendepunkt gesteuert wird. Für die
hier angestrebten Informationsaustausch wird aber eine Kommunikation benötigt, die
vom Publisher gesteuert wird, d.h. vom Nachrichtensender bzw. Prozessmanager. Die-
ses Prinzip ist in Abbildung 3.10 dargestellt. Der Prozessmanager empfängt eine Ände-
rungsbeschreibung über die Eingangswarteschlange (Input), startet die entsprechenden
Prozesse (P2 u. P3) und reicht die Änderungsbeschreibung gezielt an die gestarteten
Prozesse weiter. Es können aber schon ältere Prozesse (P1) existieren, die die Ände-
rungsbeschreibung nicht bekommen sollen. Um eine Lösung für die Problematik zu
finden, werden zunächst die Anforderungen beschrieben.

• Die Verteilung der Änderungsbeschreibungen soll sendergesteuert erfolgen: Beim
Versenden der Änderungsbeschreibung an die Propagationsprozesse übergibt der
Prozessmanager dem Kommunikationssystem zusammen mit der Änderungsbe-
schreibung eine Menge P = {pid1, pid2 . . . pidn} von Prozesskennungen, um dem
Kommunikationssystem mitzuteilen, für welche Propagationsprozesse die Ände-
rungsbeschreibungen bestimmt sind (vgl. Abbildung 3.10).

85

KAPITEL 3: Grundlegende Konzeption

Abbildung 3.10: Problematik der Kommunikation zwischen Prozessmanager und den
Propagationsprozessen

• Die Kommunikation soll asynchron erfolgen, d.h. der Propagationsprozess muss
noch nicht zum Lesen bereit sein. Dadurch kann der Prozessmanager die Nach-
richten versenden, ohne auf die Prozesse zu warten.

• Es soll garantiert werden, dass jede Änderungsbeschreibung von jedem Empfänger
nur einmal gelesen wird.

• Es sollen Transaktionen unterstützt werden. Wird ein Propagationsprozess abge-
brochen oder ein System-Crash tritt auf, dann müssen alle nicht vollständig ver-
arbeiteten Änderungsbeschreibungen dem Propagationssystem wieder bereitge-
stellt werden, sodass die entsprechenden Prozesse wieder gestartet werden können.
Die Transaktionsunterstützung wird auch beim Senden gefordert, d.h. Ände-
rungsbeschreibungen werden für den Empfänger erst sichtbar, wenn der Sender
(Prozessmanager) die Transaktion erfolgreich beendet hat.

• Nach einem Systemabsturz soll dem Prozessmanager alle nicht erfolgreich be-
endeten Propagationsprozesse mitgeteilt werden, sodass diese erneut gestartet
werden können.

• Es sollen Änderungsbeschreibungen zuverlässig an die Propagationsprozesse über-
tragen werden. Jede Änderungsbeschreibung, die an das Kommunikationssystem
gesendet wurde, muss von jedem Prozess vollständig verarbeitet werden. System-
Crashs sollen dabei keinen Einfluss auf die sichere Übertragung haben.

Diese Anforderungen können zum Teil von einem zuverlässigen Multicast, wie zum
Beispiel MBone [Hau99] erfüllt werden. Allerdings verfügt diese nicht über die gefor-
derte Transaktionalität und die Kommunikation basiert außerdem auf IP-Adressen und
nicht auf Prozesskennungen, wie sie hier gefordert werden.

Eine Lösung für das hier gestellte Problem sollte deshalb auf einem Warteschlan-
gensystem basieren. Da die hier gestellten Anforderungen bis jetzt nicht in Produk-
ten verfügbar sind, wurde eine Simulation dieses Prinzips gewählt, die darauf basiert,
dass jedem Propagationsprozess über eine zuverlässige Warteschlange die Änderungs-
beschreibungen übergeben werden. Jeder Prozess bekommt dabei eine dedizierte Nach-
richt. Die Prozess-ID wird dabei im Nachrichtenkopf codiert. Mittels JMS [HBS+02b]
und dieser Kodierung wird ein selektives Lesen möglich, bei dem jeder Prozess nur
seine Nachricht bekommt. Änderungsbeschreibungen, die nicht vollständig verarbei-
tet worden sind, können zusammen mit den dazu gehörigen Prozessen ermittelt wer-
den, da in diesem Fall die jeweilige Nachricht noch im Warteschlangensystem ist und

86

3.7. KOMPONENTEN

die Prozesskennung im Nachrichtenkopf steht. Dies erfolgt indem die Prozesseingangs-
warteschlange (Prozessinput) beim Recovery untersucht wird und die entsprechenden
Prozesse erneut gestartet werden.

Nachdem der Propagationsmanager betrachtet wurde, soll nun die letzte Haupt-
komponente betrachtet werden: der Abhängigkeitsmanager.

3.7.3 Abhängigkeitsmanager

Der Abhängigkeitsmanager [CHM02] unterstützt den Entwickler bei der Erstellung der
Abhängigkeiten (Propagationsskripte) und der Dokumente, die von diesen Propagati-
onsskripten verwendet werden (vgl. Abbildung 3.3). Diese sind im Einzelnen: System-
informationen, Schemas, Transformationsskripte und Propagationsskripte (Abhängig-
keiten). Systeminformationen werden dabei durch einen einfachen Dialog eingegeben,
denn die Informationen sind sehr einfach: Name und Beschreibung des Systems sowie
der Name der Warteschlange, die für die Kommunikation mit dem System verwen-
det wird. Komplizierter ist die Eingabe von Schemas und Transformationsskripten, für
deren Erstellung bzw. Modifizierung Standardwerkzeuge existieren, wie beispielswei-
se Altova Mapforce zur graphischen Erstellung von Transformationsskripten (XSLT
u. XQuery). Diese Werkzeuge werden vom Abhängigkeitsmanager eingebunden und
bei Bedarf aufgerufen. Die Kommunikation mit dem Werkzeug findet dabei über das
Dateisystem statt, d.h. der Abhängigkeitsmanager muss vor dem Werkzeugaufruf die
entsprechenden Dokumente aus dem Repository bereitstellen und nach der Bearbeitung
im Falle einer Änderung diese wieder ins Repository übernehmen.

Im Gegensatz dazu, handelt es sich bei den Propagationsskripten um keine Stan-
dard XML-Technologie und aus diesem Grund erfolgt die Unterstützung der Erstellung
bzw. Modifizierung ausschließlich im Abhängigkeitsmanager. Um den Entwickler bei
der Erstellung der Abhängigkeiten zu unterstützen, werden drei Darstellungsarten be-
reitgestellt, die in Abbildung 3.11 illustriert werden. Da die Darstellungsarten nach
rechts weiter eingeschränkt werden, sind die Übergänge nach rechts mit Bedingungen
versehen. Diese Darstellungsarten und ihre Übergänge werden nachfolgend erklärt.

Zu einer linken Darstellungsart kann man ohne Bedingungen wechseln, will man
jedoch in eine rechte Wechseln gelten folgende Bedingungen:

Von Textansicht zu Kontrollflussansicht: Das Dokument muss wohlgeformt und
dem XPDL-Schema entsprechen.

Von Kontrollflussansicht zu Abhängigkeitsansicht: Der Kontrollfluss muss ei-
ner einfachen Abhängigkeit entsprechen.

3.7.3.1 Textansicht

Die Textansicht ist für den Entwickler die anspruchsvollste Darstellungsart, da der
Entwickler direkt mit der internen XML-Repräsentation der Abhängigkeit konfron-
tiert wird. Dies bedeutet, dass der Abhängigkeitsmanager beim Speichern der Text-
ansicht und beim Übergang zur Kontroll- und Datenflussansicht überprüfen muss, ob

87

KAPITEL 3: Grundlegende Konzeption

Abbildung 3.11: Die unterschiedlichen Sichten auf ein PS und ihre Übergänge

das Dokument wohlgeformt und gültig ist. Gültig ist das Dokument dann, wenn es
schema-konform ist, d.h. nur die vorgesehenen Propagationsskriptbefehle verwendet
(vgl. Abschnitt 3.5).

3.7.3.2 Die Kontroll- und Datenflussansicht

Diese Form der Darstellung ist vergleichbar mit der eines Workflows. Der Kontrollfluss
wird dabei so dargestellt, dass die Abarbeitungssequenz von Oben nach Unten geht. In
Abbildung 3.12 ist ein Beispiel für die Kontroll- und Datenflussansicht dargestellt. Ganz
oben steht der Befehl, mit dem die erwartete Art von Änderungsbeschreibungen dekla-
riert wird, die die entsprechenden Propagationsprozesse starten. Parallel ausgeführte
Zweige werden dabei von rechts nach links dargestellt. Die einzelnen Befehle werden
durch Farben und Formen unterschieden, dadurch kann schnell die Art des Befehles
erkannt werden. Da diese Ansicht eine Untermenge der Textansicht ist, können alle
Propagationsskripte aus dieser Ansicht in die Textansicht überführt werden. Wie oben
schon erwähnt, ist das aber umgekehrt nicht möglich. Die Übergänge von und zur
Abhängigkeitsansicht werden im nächsten Abschnitt erklärt. Details für eine mögliche
Implementierung können in [Li03] gefunden werden.

Ebenfalls von oben nach unten geht der optional einblendbare Datenfluss. Dieser
zeigt an, woher der Input eines Befehls kommt und wohin der Output geht.

3.7.3.3 Die Abhängigkeitsansicht

Deutlich verständlicher für den Entwickler als die Kontroll- und Datenflussansicht ist
die Abhängigkeitsansicht (Abbildung 3.13). In dieser Ansicht wird der Datenfluss zwi-
schen den einzelnen Systemen dargestellt und ggf. vorhandene Filter bzw. Transfor-
mationsbefehle als Icons (Filter F und Transformation T) dargestellt. Die Abhängig-
keitsansicht ist abstrakter als die Kontroll- und Datenflussansicht. Aus diesem Grund
können nicht alle gültigen Propagationsskripte in dieser Ansicht dargestellt werden.
Diese müssen einem bestimmten Muster folgen:

• Eine start input-Deklaration mit ggf. einer Filterbedingung (F), die im
start input codiert ist, da es in XPDL keine Filterbefehle (vgl. Abschnitt 3.5.3.3)
gibt.

• Ggf. eine generelle Transformation (T).

• N-Zielsysteme (System 1 und 3), die parallel abgehandelt werden.

88

3.7. KOMPONENTEN

Abbildung 3.12: Die Kontrollflussansicht mit ausgeblendetem Datenfluss. Das Skript
implementiert eine Abhängigkeit aus Abbildung 3.2

89

KAPITEL 3: Grundlegende Konzeption

Abbildung 3.13: Die Abhängigkeitsansicht äquivalent zu Abb. 3.12

• Für jeden parallelen Zweig existiert ein propagate-Befehl (durch Pfeil darge-
stellt) und ggf. eine Filterbedingung (F), die über ein condition-Befehl realisiert
werden. Vor dem propagate-Befehl kann noch eine Transformation (T) durch-
geführt werden.

3.8 Konflikterkennung und Auflösung

In diesem Abschnitt wollen wir uns mit einem sehr wichtigen Aspekt eines Ände-
rungspropagationssystems beschäftigen: Die Erkennung und Auflösung von Konflik-
ten. Konflikte entstehen, wenn in mindestens zwei beteiligten Systemen “das gleiche”
Objekt quasi gleichzeitig geändert wird. Das gleiche Objekt steht dabei für Objekte,
die durch bidirektionale Integrationspfade zwischen den Systemen verbunden sind. Die
Objekte müssen nicht identisch sein, sondern es reicht aus, wenn nur ein Teil ihrer Da-
ten überlappend und durch Transformationen überführbar sind. Außerdem müssen die
Änderungen der Objekte nicht zum exakt gleichen Zeitpunkt erfolgen, sondern es muss
für einen Konflikt gelten, dass die Änderung des Objektes in System A zum Zeitpunkt
der Änderung im System B noch nicht im System B sichtbar war, sofern die Änderung
im System A vor der Änderung in System B erfolgte. In einer Formel ausgedrückt tritt
ein Konflikt genau dann auf wenn gilt:

iPath(CA, CB) ∧ iPath(CB, CA) ∧ t(CA) < t(CB) ∧
t(CA) + tsync(CA, A,B) > t(CB)

iPath(Cx,Cy): Die Funktion iPath beschreibt die Ausführung einer Abhängigkeit
zwischen der Änderung Cx im Quellsystem x und der Änderung Cy im Zielsystem
y.

t(Cx): Die Funktion t beschreibt den Zeitpunkt einer Änderung C im System X.

90

3.8. KONFLIKTERKENNUNG UND AUFLÖSUNG

tsync(Cx,X,Y): Die Funktion tsync beschreibt die Zeitdauer einer Synchronisation ei-
ner Änderung Cx von System X zu System Y. Der Zeitpunkt t(CA)+tsync(CA, A,B)
gibt an, wann die Änderung CA im System B sichtbar war.

Alternativ gibt es noch die Konfliktvermeidung, die durch eine Master-Update-
Situation oder durch Eager-Replikation sowie einigen Varianten davon erreicht werden
kann. Bei der Master-Update-Konfiguration kann ein Objekt immer nur in einem Sys-
tem geändert werden und bei der Eager-Variante werden alle Systeme innerhalb einer
Transaktion angepasst. Durch den Einsatz von Transaktionen für die Änderungspro-
pagation werden die üblichen Änderungskonflikte verhindert. Die Eager-Replikation
kann in einem solchen Propagationssystem nicht angewendet werden, da die beteilig-
ten Informationssysteme weitestgehend autonom sein sollen. Oft sollte es aber gegeben
sein, dass bestimmte Objekte nur in bestimmten Systemen geändert werden können
und wir eine Master-Update-Situation vorliegen haben. Dennoch wird diese Situation
nicht immer und für alle Geschäftsobjekttypen erreichbar sein und deshalb muss man
Konflikte erkennen und auflösen.

Konflikte können durch logische Vektoruhren [Mat89] erkannt werden, die logische
Zeit [Lam78] verwenden. Kann eine logische Uhr von einer einkommenden Synchro-
nisationsnachricht nicht mit der lokalen Uhr in Reihenfolge gebracht werden, so liegt
ein Konflikt vor [SS05]. Da logische Vektoruhren einige Nachteile haben [ABF02], wur-
den einige Varianten [TRA96, BA99, ABF02] entwickelt. Alternativ kann noch reale
Zeit verwendet werden, die vom so genannten Two-timestamp-Verfahren [GHOS96]
eingesetzt wird, bei der jedes Objekt über einen Zeitstempel (timestamp) der letzten
Änderung verfügt. Wird ein Objekt geändert, wird sowohl der Zeitstempel der letzten
Änderung als auch der aktuelle mit gesendet. Kommt jetzt eine Änderung in einem
entfernten System an, wird der Zeitstempel der letzten Änderung mit dem lokalen ver-
glichen, sind sie gleich, liegt kein Konflikt vor und die Änderung kann durchgeführt
werden, andernfalls wurde ein Konflikt erkannt.

Die Konfliktauflösung erfolgt zumeist manuell, in dem ein Administrator die betrof-
fenen Objekte betrachtet und versucht zu entscheiden, welche Daten gültig sind und
diese neuen Daten an die beteiligten Systeme verteilt, was wieder über das Propagati-
onssystem erfolgt.

Geschäftsobjekte können groß sein und deshalb kann es zu vielen erkannten Konflik-
ten kommen. Kleinere Objekte schaffen hier Abhilfe [SS05]. Um trotz großer Geschäfts-
objekte zu kleinen Objekten zu kommen, wird das Geschäftsobjekt in unabhängige
Zonen aufgeteilt. Der Kunde könnte zum Beispiel zwei unabhängige Zonen haben:
Adresse und Bankverbindung. Diese Zonen können durch entsprechende Annotationen
(group und id) in den XML Schemas der Geschäftsobjekte definiert werden, wobei
die id-Annotation ein eindeutiges Unterscheidungskriterium definiert und die group-
Annotation die Zone definiert (vgl. Abbildung 3.14). Da für jede Zone ein Zeitstempel
oder eine logische Uhr gespeichert werden muss und oft das Datenmodell eines Informa-
tionssystems nicht angepasst werden kann, schlagen wir ein zustandsbasiertes Verfah-
ren vor, das eine Variante vom Two-timestamp-Verfahren darstellt. Statt Zeitstempel
werden die Zustände der Objekte verwendet, welche ebenfalls einen bestimmten Zeit-
punkt repräsentieren. Der Algorithmus für die Konflikterkennung ist der gleiche wie

91

KAPITEL 3: Grundlegende Konzeption

<?xml version="1.0" encoding="UTF-8"?> <xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cd="http://www.uni-stuttgart.de/sfb467/sies/conflict-detection"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Kunde">

<xs:complexType>

<xs:sequence>

<xs:element cd:id="true" name="ID"/>

<xs:element cd:group="name" name="Vorname"/>

<xs:element cd:group="name" name="Nachname"/>

<xs:element cd:group="address" name="Adresse">

</xs:element>

...

<xs:element cd:group="bank" name="Bankverbindung">

...

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Abbildung 3.14: Beispiel eines XML Schemas für eine feingranulare Konflikterkennung

92

3.9. REIHENFOLGEEINHALTUNG VON PROPAGIERTEN
ÄNDERUNGSBESCHREIBUNGEN

beim Two-timestamp-Verfahren. Wird in System A eine Änderung ausgeführt, wird
diese mit dem Davor- und Danachzustand an das Zielsystem gesendet. Das Propaga-
tionssystem sendet schon aus anderen Gründen zwei Zustände (vgl. Abschnitt 3.2.2)
und damit kann dieses Verfahren gut in einem solchen Propagationssystem eingesetzt
werden. In System B wird der Davorzustand mit dem aktuellen Zustand verglichen,
sind diese gleich liegt kein Konflikt vor und die Synchronisation kann durchgeführt
werden. Bei diesem zustandsbasierten Verfahren handelt es sich um eine erste Lösung
für eine Konflikterkennung in solch einem Propagationssystem. Die Betrachtung von
Alternativverfahren würde den Rahmen dieser Arbeit sprengen.

Das Prinzip eines performanten Algorithmus für das zustandsbasierte Verfahren
für Informationssysteme mit relationalen Datenbanken ist, dass die Änderung im re-
lationalen System nur ausgeführt wird, wenn der Zustand mit dem Davorzustand
übereinstimmt. Dies erfolgt durch entsprechende Selektion in der Änderungsoperation.
Falls kein Objekt mit dem Zustand gefunden wurde, haben wir einen Konfliktkandi-
daten. Dieser Kandidat wird anhand seiner unabhängigen Zonen analysiert: erfolgte
die Änderungen in unabhängigen Zonen, kann die Änderung doch noch durchgeführt
werden, da kein Konflikt vorliegt. Die hohe Performanz wird dadurch erreicht, dass
der Primärschlüssel sich ebenfalls im Selektionskriterium befindet. Dadurch wird das
Objekt schnell gefunden und erst wenn es gefunden wurde, werden die anderen Selek-
tionskriterien ausgewertet.

3.9 Reihenfolgeeinhaltung von propagierten Ände-

rungsbeschreibungen

Die Änderungsbeschreibungen werden durch unabhängige Propagationsprozesse verar-
beitet, die unterschiedliche Laufzeiten haben. Dies kann zur Vertauschung der Ände-
rungsbeschreibungen für ein Zielsystem führen. Da Änderungsbeschreibungen grund-
sätzlich nicht als unabhängig angesehen werden können, muss die Reihenfolge der
Änderungsbeschreibungen eingehalten werden. Beispiele für Beziehungen zwischen den
einzelnen Änderungsbeschreibungen sind: Änderungen des gleichen Geschäftsobjektes,
die zeitnah erfolgten oder es werden zwei unterschiedliche Geschäftsobjekte erzeugt,
bei dem das zuletzt erzeugte Objekt eine Referenz auf das erste hat.

Um in replizierten Datenbanken überall die gleiche Reihenfolge zu garantieren, wur-
de die 1-Kopien-Serialisierbarkeit (One Copy Serializability) [BG82, BG83] eingeführt.
Es sind dabei nur Schedules zulässig, die zu serialisierbaren Schedules auf einer nicht
redundanten Datenbank äquivalent sind [Rah94]. Diese Eigenschaft wird in der Regel
bei der Lazy-Replikation nicht erreicht [BKR+99, ATS+05]. Lösungen, die dieses Pro-
blem beseitigen, sind reine Eager-Replikationsansätze oder hybride Ansätze [BK97,
BKR+99, ATS+05], die Eager- und Lazy-Replikation kombinieren. In Abschnitt 3.1
wurde argumentiert, dass innerhalb unabhängiger (autonomer) und heterogener Infor-
mationssysteme nur die Lazy Replikation in Frage kommt und dadurch die vorgeschla-
genen Algorithmen nicht angewendet werden können, d.h. die 1-Kopien-Serialisierbarkeit
kann in einem solchen Umfeld vermutlich nicht erreicht werden.

93

KAPITEL 3: Grundlegende Konzeption

Aus diesem Grund greifen wir auf Reihenfolgeregeln zurück, die von Verteilten Sys-
temen stammen und Ordnungen genannt werden. Bevor diese definiert werden können,
müssen noch ein paar grundlegende Dinge eingeführt werden:

P: Menge aller Propagationsprozesse. Jeder Propagationsprozess hat einen Startkno-
ten und mehrere Zielknoten, wobei der Startknoten über gerichtete Kanten mit
den Zielknoten verbunden ist.

sn(p): Gibt den Startknoten eines Propagationsprozesses p ∈ P zurück.

Zp: Menge aller Zielknoten eines Propagationsprozesses p ∈ P .

kn1 ∼ kn2: Definiert eine Relation, bei der die Knoten (kn1, kn2; Start oder Zielkno-
ten) das gleiche Informationssystem als Quelle bzw. Ziel haben.

kn1 < kn2: Die Relation < definiert, dass kn1 zeitlich vor kn2 lag.

Nun können die Ordnungen definiert werden, wobei als Grundlage [CBMT96] diente:

1. Totale Propagationsordnung:

Bei der totalen Propagationsordnung werden alle Änderungsbeschreibungen in
Reihenfolge gebracht, sofern sie für das gleiche Zielsystem bestimmt sind.

∀pi, pj ∈ P, ∀zpi ∈ Zpi , ∀zpj ∈ Zpj :

pi 6= pj ∧ sn(pi) < sn(pj) ∧ zpi ∼ zpj ⇒ zpi < zpj

2. FIFO-Propagationsordnung mit Berücksichtigung von Startsystem und
Zielsystem:

Bei der FIFO-Ordnung werden Änderungsbeschreibungen in Reihenfolge gebracht,
wenn sie vom gleichen Quellsystem und für das gleiche Zielsystem bestimmt sind.

∀pi, pj ∈ P, ∀zpi ∈ Zpi , ∀zpj ∈ Zpj :

pi 6= pj ∧ sn(pi) ∼ sn(pj) ∧ sn(pi) < sn(pj) ∧ zpi ∼ zpj ⇒ zpi < zpj

3. Ungeordnet:

Bei dieser Propagationsordnung wird keinerlei Einfluss auf die Reihenfolge der
Änderungen genommen, d.h. die Änderungen werden so angewendet, wie sie
durch die Propagationsprozesse verarbeitet wurden.

Diese Propagationsordnungen können mit der Konfiguration des Propagationssys-
tems eingestellt werden. In unserem Prototypen ist die Verwendung der FIFO-Propaga-
tionsordnung als Standard eingestellt, da sie für die meisten Anwendungsfälle aus-
reichend ist. Dabei werden alle Änderungsbeschreibungen, die vom gleichen System
stammen und für das gleiche System bestimmt sind, in Reihenfolge gebracht.

94

3.10. FEHLERBEHANDLUNG

3.10 Fehlerbehandlung

In diesem Abschnitt werden die Fehler und deren Behandlung diskutiert, die im Pro-
zessmanager oder den Propagationsprozessen auftreten können. Bevor auf diese einge-
gangen werden, sollen die möglichen Fehler klassifiziert werden.

3.10.1 Fehlerklassifikation

Die Fehler, die während einer Änderungspropagation auftreten, können in verschiedene
Kategorien klassifiziert werden. Zuerst kann man unterscheiden, ob es sich um ein ein-
maliges Auftreten handelt oder ob sich der Fehler wiederholt. Zustandsbeschreibungen
die nicht schema-konform sind, ist ein Beispiel für wiederholende Fehler. Ansonsten
kann die Wiederholbarkeit schwer vorausgesagt werden und es wird einfach eine obere
Grenze von Wiederholversuchen festgelegt. Weiterhin kann die Quelle des Fehlers un-
terschieden werden, ob der Fehler durch ein externes System oder intern auftritt (z.B.
Skript oder Warteschlangenmanager). Ähnlich dazu lässt sich unterscheiden, ob es sich
um einen Fehler der Abhängigkeitsdefinition, einen Kommunikationsfehler oder einen
Lesefehler der Definitionen handelt. Außerdem kann man einen Fehler nach dem Ort
des Auftretens unterscheiden: ob der Fehler im Prozessmanager oder in einem Prozess
auftritt.

Wichtig ist vor allem die Unterscheidung, ob sich der Fehler voraussichtlich wieder-
holt oder ein einmaliges Auftreten hat. Im letzteren Fall kann versucht werden, den
Prozessmanager oder den Prozess neu zu starten.

3.10.2 Fehlerbehandlung im Prozessmanager

Die Fehlerbehandlung im Prozessmanager erfolgt vom Lesen einer Änderungsanforde-
rung, dem Starten der jeweiligen Prozesse, bis zum Schreiben in die Warteschlange
zur Kommunikation mit den Prozessen. Dieser Ablauf erfolgt unter der Kontrolle einer
Transaktion. Beim erfolgreichen Ausführen wird die Transaktion mit einem Commit
abgeschlossen, so dass die Leseoperation zu einem Entfernen der Änderungsanforde-
rungen aus der Eingangswarteschlange führt und die Schreiboperationen sichtbar wer-
den. Handelt es sich um einen sich nicht wiederholenden Fehler, so wird ein Rollback
durchgeführt. Komplizierter ist das Vorgehen bei einem sich wiederholenden Fehler, da
in diesem Fall ein Rollback durchgeführt werden muss, damit alle Schreiboperationen
zurückgesetzt werden. Dann wird die Nachricht nochmals gelesen und in einem Fehler-
speicher abgelegt. Der Fehlerspeicher kann die Form einer Tabelle in einer Datenbank
oder die Form einer Warteschlange haben, wobei im letzteren Fall die Änderungsan-
forderung mit der Fehlerinformation angereichert werden muss, um einem Adminis-
trator zur Verfügung gestellt zu werden. Im Fall der Verwendung einer Tabelle kann
die Fehlerinformation in einer Extra-Spalte gespeichert werden, unabhängig von der
Änderungsanforderung. Der Ansatz mit der Warteschlange wird zum Beispiel in dem
Produkt BizTalk verwendet [AHH+02, WML+05].

95

KAPITEL 3: Grundlegende Konzeption

3.10.3 Fehlerbehandlung eines Propagationsprozesses

Wie schon erwähnt wurde, ist ein Propagationsprozess die ausführende Instanz eines
Propagationsskriptes. Die Fehlerbehandlung innerhalb eines Propagationsskriptes er-
folgt transparent für den Programmierer, wobei die Transaktionsgrenzen sich zwischen
Start und Beenden eines Prozesses befinden. Einfacher gestaltet sich wieder die erfolg-
reiche Ausführung, bei der am Ende ein Commit ausgeführt wird. Bei einem sich nicht
wiederholenden Fehler wird ein Rollback ausgeführt, der Prozess neu initialisiert und
dann neu gestartet wird. Komplizierter ist die Reaktion bei einem sich wiederholenden
Fehler. Dabei wird der Prozess zurückgesetzt, die Änderungsbeschreibung nochmals
gelesen und mit Fehlerinformation angereichert und an die Fehlerwarteschlange gesen-
det. Dort kann sie dann von einem Administrator abgeholt, der Fehler behoben und
wieder an das Propagationssystem übergeben werden.

Der Unterschied zwischen einer 1-zu-N-Abhängigkeit und n 1-zu-1-Abhängigkeiten
ist bei der Fehlerbehandlung besonders groß. Tritt bei der Ausführung ein Fehler auf,
so wird im 1-zu-N-Fall keine Änderungsbeschreibung propagiert, während beim 1-zu-1-
Fall n Propagationsprozesse separat ausgeführt werden, von denen manche erfolgreich
ausgeführt werden und manche durch einen Fehler zurückgesetzt werden.

3.11 Adapter

In diesem Abschnitt wird zuerst der generelle Aufbau eines Adapters und seine Funktio-
nen untersucht. Weiterhin wird die Realisierung eines Adapters für relationale Daten-
banken untersucht, wobei die Konzepte für Ziel- und Quelladapter getrennt betrachtet
werden.

3.11.1 Genereller Adapter

Die Aufgaben eines Adapters unterteilen sich in zwei Gruppen: Aufgaben eines Quellad-
apters und Aufgaben eines Zieladapters. Zu den Aufgaben eines Quelladapters gehören
das Erkennen von Veränderungen in den Daten des Informationssystems, die Erstellung
der XML-Repräsentation der Änderungsinformation und das Übergeben der Ände-
rungsinformation an das Propagationssystem. Die Aufgaben des Zieladapters sind das
Warten auf Änderungsinformationen in der entsprechenden Warteschlange, das Parsen
der Änderungsinformationen und das Anwenden dieser auf die Daten des Informa-
tionssystems. Da aufgrund von Konsistenzregeln, die im Informationssystem definiert
sind, Änderungen abgelehnt werden können, müssen Fehlerinformationen abgespeichert
werden können. Außerdem muss der Zieladapter über Mechanismen verfügen, die die
Erkennung von Konflikten ermöglichen, so wie sie in Abschnitt 3.8 eingeführt wurden.

In Abbildung 3.15 ist der grundsätzliche Aufbau eines Quell- und Zieladapters dar-
gestellt. In diesem Bild sind beide Arten vereint, da viele Systeme sowohl Quell- als
auch Zielsystem sind. Der Adapter hat drei Schnittstellen nach außen: eine zum Propa-
gationssystem, eine zum Informationssystem und eine zu Benutzern. Die Schnittstelle
zum Propagationssystem führt über das Warteschlangensystem, wobei Änderungsbe-

96

3.11. ADAPTER

Abbildung 3.15: Die Architektur eines generellen Quell- und Zieladapters

97

KAPITEL 3: Grundlegende Konzeption

schreibungen sowohl versendet als auch empfangen werden können. Die Schnittstelle
zum Informationssystem führt über die Zugriffsmöglichkeiten des jeweiligen Systems.
Dabei kann es sich beispielsweise um eine spezielle API handeln. Die dritte Schnitt-
stelle, die Benutzerschnittstelle, ermöglicht die Auflösung von Konflikten, das Ansehen
von nicht anwendbaren Änderungsbeschreibungen5 und die Auflösung dieser.

Im Zentrum des Adapters steht die Steuerungskomponente, die die oben genannten
Aufgaben koordiniert und dafür die anderen Komponenten verwendet. In der Kon-
flikterkennung werden die Regeln aus Abschnitt 3.8 implementiert und dadurch eine
Erkennung von Konflikten möglich. Die Änderungserkennung erfolgt durch die entspre-
chende Komponente. Dies kann beispielsweise durch den Vergleich mit Kopien erfolgen,
die in der Kopie-DB gespeichert sind. Gegebenenfalls ist diese Komponente unnötig,
da das Informationssystem Änderungen aktiv mitteilt. Erkannte Änderungen werden
durch den Geschäftsobjekt-Handler (GO-Handler) als Änderungen von Geschäftsob-
jekten transformiert und schließlich von der Steuerungseinheit als Änderungsbeschrei-
bungen verschickt. Der GO-Handler ist deshalb notwendig, da Änderungen feingra-
nularer erkannt werden können, beispielsweise wird von einem Auftrag die Änderung
einer Auftragsposition erkannt. Der GO-Handler dient aber auch zur Zerlegung der
Geschäftsobjekte in ihre Speicherungseinheiten, sofern die Systemschnittstelle dies ver-
langt. Für die Analyse der Änderungszustände verwendet der GO-Handler einen XML-
Parser. Sofern die Systemschnittstelle auf der Ebene von Geschäftsobjekten arbeitet
und Änderungen auch auf dieser Ebene mitgeteilt werden, kann der GO-Handler weg-
gelassen werden. Das jeweilige Informationssystem kann die Änderungen ablehnen. In
diesem Fall muss der Adapter den gemeldeten Fehler analysieren und in die Fehler-DB
mitsamt der Änderungsbeschreibung schreiben, so dass ein Administrator den Grund
oder Fehler analysieren und Korrekturmaßnahmen ergreifen kann. Der gesamte Pro-
zess vom Empfang einer Änderungsbeschreibung bis zur Anwendung der Änderungen
muss steuerbar sein. Das gilt auch für den umgekehrten Fall, bei dem Änderungen er-
kannt werden und als Änderungsbeschreibungen an das Propagationssystem verschickt
werden. Dafür dient die Konfiguration mittels der Konfigurationsdatei.

3.11.2 Adapter für relationale Datenbanken

Da die Informationssysteme oft Konsistenzregeln in der Anwendungsschicht realisiert
haben und da auch aus anderen Gründen (z.B. implementierte Geschäftslogiken) nicht
direkt auf die darunter liegende Datenbank zugegriffen werden soll, ist es oft unabding-
bar, die API eines Informationssystems zu verwenden. Allerdings gibt es auch Systeme,
die auf einer relationalen Datenbank beruhen und keine API bereitstellen. Aus diesem
Grund muss in diesem Fall direkt auf die Datenbank zugegriffen werden. Daher wird in
diesem Abschnitt die Lösung eines generellen Quell- bzw. Zieladapters für relationale
Datenbanken genauer untersucht.

Grundsätzlich müssen Quell- und Zieladapter miteinander kommunizieren, so dass
vom Zieladapter empfangene Änderungen nicht wieder vom Quelladapter erkannt wer-
den und es dadurch zu sogenannten Propagationsschleifen [Spr05] kommt.

5Beispielsweise aufgrund von Konsistenzregeln

98

3.11. ADAPTER

Abbildung 3.16: Der Prozess für die Erkennung von Änderungen und Weiterleitung an
das Propagationssystem [Spr05]

3.11.2.1 Quelladapter

Der Quelladapter [Spr05] dient dazu, veränderte Geschäftsobjekte an das Propagations-
system weiterzuleiten. Problematisch dabei ist, dass Geschäftsobjekte nicht als solche in
einer relationalen Datenbank vorliegen, sondern in ihren Bestandteilen. Beispielsweise
setzt sich ein Kundenauftrag aus einem Auftragskopf und seinen Positionen zusammen.
Um diesen Unterschied zu überbrücken, muss der Quelladapter den in Abbildung 3.16
dargestellten Prozess implementieren.

Als Erstes muss ein solcher Adapter Veränderungen in den Daten feststellen und
das zugehörige Geschäftsobjekt ermitteln. Dieser Schritt kann zum Beispiel durch den
Vergleich mit einer Kopie erfolgen. Dafür werden beide Tabellen, das Original und
die Kopie, sortiert und schrittweise verglichen. Dadurch können sowohl neue Objekte
(nur im Original vorhanden), geänderte Objekte (in beiden vorhanden, aber mit un-
terschiedlichen Werten) und gelöschte Objekte (nur in der Kopie vorhanden) erkannt
werden. Außerdem ermöglicht dieser Ansatz eine vollständige Beschreibung der Ände-
rung mit Davor- (B) und Danach-Zustand (D). Als Ergebnis des Erkennungsschrittes
erhält man eine Liste von geänderten Geschäftsobjekten. Diese Liste enthält aller-
dings Duplikate, da beispielsweise Auftragskopf und Auftragspositionen des gleichen
Auftrags geändert wurden. Deshalb müssen im nächsten Schritt mehrmals vorhande-
ne Geschäftsobjekte gefiltert werden, sodass diese nur noch einmal vorhanden sind.
Die resultierende Liste wird wieder als Input für den nächsten Schritt verwendet, wel-
cher die Änderungsbeschreibungen erzeugt. Dafür muss eine Zusammensetzung des
Geschäftsobjektzustandes aus den Daten in der relationalen Datenbank bekannt sein.
Im letzten Schritt werden die Änderungsbeschreibungen an das Propagationssystem
gesendet, welches diese dann verteilt.

3.11.2.2 Zieladapter

Der Zieladapter liest Änderungsbeschreibungen ABs aus der jeweiligen Warteschlange
und transformiert diese in eine Menge von DML-Befehlen, die dann an die Datenbank
gesendet werden. Diese Transformation ist der Kernpunkt eines Zieladapters für rela-
tionale Datenbanken. Dafür muss eine passende Beschreibung gefunden werden, sodass
XML-Elemente der Zustandsbeschreibungen (B und D) in DML-Befehle transformiert
werden können.

Es wurden für das Mapping vier verschiedene Varianten identifiziert:

Annotiertes XML Schema

99

KAPITEL 3: Grundlegende Konzeption

Um das Mapping zu definieren, wird das XML Schema, das die Zustände defi-
niert mit Mapping-Informationen annotiert. Der Vorteil hierbei ist, dass das XML
Schema schon im Propagationssystem vorhanden ist und dann nur noch impor-
tiert und annotiert werden muss. Der Nachteil ist die Komplexität der Umsetzung
und die Verständlichkeit des annotierten Schemas.

Zielstruktur-basierte Mapping-Definition[Vu05]
Hier wird nicht, wie bei der ersten Mapping-Definition, die Quellstruktur als
Ausgangspunkt für die Mapping-Definition genommen, sondern die Zielstruktur.
Dies bedeutet für den Zieladapter, das relationale Schema. Die Zuordnung von
Tabellenzeilen und -spalten erfolgt mit XPath-Ausdrücken. Man erlangt durch
die Verwendung von XPath eine hohe Mächtigkeit. Außerdem kann zur Erken-
nung von Konflikten (siehe Abschnitt 3.8) der Primärschlüssel einfach definiert
werden oder direkt aus dem Katalog ausgelesen werden. Ein Nachteil ist, dass als
Grundlage eine bisher nicht vorhandene Struktur verwendet wird, die sich aber
aus dem DB-Katalog generieren und dann mit den XPath-Ausdrücken annotieren
ließe, die die Daten aus der Zustandsbeschreibung extrahieren.

Aufteilung durch Abhängigkeit
Hier teilt ein Transformationsskript innerhalb einer Abhängigkeit das Geschäfts-
objekt in seine relationalen Bestandteile auf. Dies muss natürlich sowohl für den
Davor- als auch für den Danach-Zustand gemacht werden. Der Adapter müss-
te die Beschreibungen in Beziehung setzen (Zeilen vom Davor- und Danach-
Zustand) und diese entsprechend in DML-Befehle umsetzen. Dies bedeutet eine
einfache Umsetzung im Adapter. Allerdings kann das Geschäftsobjekt nicht mehr
identifiziert werden, da es schon in seine Bestandteile zerlegt wurde. Was daraus
folgt, ist außerdem die unterschiedliche Repräsentation der Geschäftsobjekte als
Quell- oder Zielstruktur.

Aufteilung im Adapter
Mittels eines Transformationsskriptes im Adapter kann das Geschäftsobjekt in
seine Bestandteile zerlegt werden. Dadurch wäre die Quell- und Zielstruktur
gleich und die Zerlegung würde im Adapter erfolgen. Allerdings müssen noch
die Primarschlüssel festgelegt werden, die zur Erstellung der DML-Statements
benötigt werden. Dies könnte ebenfalls durch die Transformationsskripte erfol-
gen.

Am einfachsten und flexibelsten ist die Lösung mit der Aufteilung innerhalb des
Adapters mit Transformationsskripten.

Nicht nur das Mapping von XML-Zuständen zu relationalen Zeilen und Spalten
stellt ein Problem dar, sondern auch die Umsetzung der daraus generierten Zwischenre-
präsentation in DML-Statements. Dafür sollte bekannt sein, welche Werte den Primär-
schlüssel bilden. Denn ohne diese Definition müsste der where-Teil der Anfrage alle
Elemente des Davor-Zustandes enthalten und eventuell aufgetretene Konflikte (siehe
Abschnitt 3.8) würden die Identifikation verhindern.

100

3.12. ZUSAMMENFASSUNG

3.12 Zusammenfassung

In diesem Kapitel wurde die Basis für ein Propagationssystem zur Integration von au-
tonomen und heterogenen Informationssystemen geschaffen. Zuerst wurden verschie-
dene Ansätze, die für die Replikation im homogenen Bereich existieren, untersucht.
Als Grundlage für ein Propagationssystem wurde die Lazy-Replikation und das aktive
Verbreiten von Änderungsinformationen (Push) verwendet, wobei die Propagationen
nach den jeweiligen Quelltransaktionen ausgeführt werden (deferred). Außerdem wurde
die Propagation von Zuständen ausgewählt, da Zustände sich leichter als Operationen
transformieren lassen.

Grundbegriffe für eine solche Propagation sind Änderungsbeschreibungen ABs und
Abhängigkeiten. Änderungsbeschreibungen sind Tupel, die alle wichtigen Informatio-
nen über eine Änderung eines Geschäftsobjektes enthalten. Die wichtigsten Elemente
sind die zwei Zustände, die die Änderung des Geschäftsobjektes beschreiben. Zwei
Zustände beschreiben die Änderung vollständig, auch wenn sie nicht immer notwen-
dig wären. Außerdem ermöglichen die zwei Zustände Änderungen von Schlüsseln und
die zeitstempellose Erkennung von Konflikten. Abhängigkeiten beschreiben Pfade, ent-
lang derer Änderungsbeschreibungen von Quellsystemen zu Zielsystemen laufen sollen.
Diese werden über sogenannte Propagationsskripte realisiert. Außerdem wurden In-
stanzen eingeführt, welche die Propagationsskripte ausführen. Diese Instanzen heißen
Propagationsprozesse.

Des Weiteren wurde untersucht, ob Transaktionsinformationen im heterogenen Fall
mit propagiert werden. Da der Transaktionskontext nicht unbedingt erhalten bleibt,
ist es nicht immer sinnvoll, diese Informationen mitzusenden. In dieser Arbeit wurde
davon ausgegangen, dass der Transaktionskontext zwischen den einzelnen Informati-
onssystemen nicht erhalten bleibt und deshalb die Transaktionsinformationen nicht mit
gesendet werden müssen.

Um Änderungsbeschreibungen im heterogenem Fall zu propagieren, wurde XML
ausgewählt und eine spezielle Sprache auf Basis von XML entwickelt, mit der Propaga-
tionsskripte definiert werden können. Diese Sprache heißt XML Propagation Definition
Language (XPDL). Außerdem wurde die Architektur des Propagationssystems vorge-
stellt. Um Bedingungen zwischen einzelnen Zuständen von Änderungsbeschreibungen
zu ermöglichen, wurde die Propagation Condition Language (PCL) eingeführt, die auf
XPath aufbaut.

Treten durch Abhängigkeiten Zyklen auf, so können Konflikte entstehen, die erkannt
und aufgelöst werden müssen. Dafür wurden mehrere Varianten untersucht, wobei eine
Variation des Two-timestamp-Verfahrens vorgeschlagen wurde. Um die auftretenden
Konflikte zu minimieren, können Geschäftsobjekte in unabhängige Zonen aufgeteilt
werden, innerhalb derer gleichzeitig in unterschiedlichen Systemen geändert werden
können (beispielsweise Bankverbindung und Adresse).

Weiterhin sollte die Reihenfolge der Änderungen eingehalten werden. Aufbauend
auf Reihenfolgeordnungen in Verteilten Systemen wurden drei Reihenfolgeordnungen
für ein Propagationssystem eingeführt. Diese sind die totale, FIFO-Ordnung sowie keine
Ordnung (ungeordnet).

101

KAPITEL 3: Grundlegende Konzeption

Ebenfalls wurde die Fehlerbehandlung in einem Propagationssystem diskutiert und
die Aufgaben sowie Aufbau von Adaptern vorgestellt.

102

KAPITEL 4

Komplexe Propagation

Nachdem das Propagationssystem grundlegend vorgestellt und erklärt wurde, sollen in
diesem Kapitel mögliche Erweiterungen untersucht werden. Als Erstes soll betrachtet
werden, wie weitere Informationssysteme in die Änderungspropagation eingebunden
werden können. Dadurch können dem Zielsystem Daten bereitgestellt werden, die so
vom Quellsystem nicht bereitgestellt werden können. Ein Propagationssystem kon-
taktiert dafür weitere Informationssysteme (Drittsysteme), die ihm diese Daten be-
reitstellen. Bisher ist man davon ausgegangen, dass nicht mehr als eine empfangene
Änderungsbeschreibung von einem Propagationsprozess verarbeitet wird. In diesem
Kapitel soll nun untersucht werden, wie mehrere aufgetretene Änderungen zusammen
in einem Prozess verarbeitet werden können. Diese Art von Abhängigkeit wird M-zu-
N-Abhängigkeit genannt. Hierfür werden mögliche Anwendungsszenarien identifiziert.
Wie schon erwähnt wurde, ist ein Nachteil der Hub-and-Spoke-Architektur, dass das
Integrationssystem einen Flaschenhals darstellt. Um dieses Problem zu beheben, soll
untersucht werden, wie der Propagationsmanager verteilt werden kann.

In Abbildung 4.1 ist die Architektur der in diesem Kapitel besprochenen Erweite-
rungen des Gesamtsystems illustriert. Der Warteschlangenmanager und der Repository-
Server bleiben von den Erweiterungen weitestgehend unberührt. Dem Repository-Server
müssen nur eventuelle Sprachänderungen von XPDL bekannt gemacht werden, so dass
er erweiterte Propagationsskripte auf ihre Gültigkeit überprüfen kann. Betroffen von
den Erweiterungen sind vor allem der Propagationsmanager und der Abhängigkeitsma-
nager. Deren im vorigen Kapitel besprochene Kernfunktionalität wird durch die ange-
sprochenen Module erweitert: Die Einbindung von Drittsystemen und die Realiserung
von M-zu-N-Abhängigkeiten. Die Erweiterung des Abhängigkeitsmanagers steht dabei
nicht im Fokus dieses Kapitels. Die Verteilung des Propagationsmanagers ist durch
mehrere Propagationsmanager symbolisiert, die sich die Aufgabe der Änderungspropa-
gation teilen.

103

KAPITEL 4: Komplexe Propagation

Abbildung 4.1: Erweiterung des Propagationssystems

4.1 Einbindung von Daten aus Drittsystemen

In diesem Abschnitt wird die Erweiterung des Propagationssystems durch die Ein-
bindung von Daten in Änderungsbeschreibungen beschrieben, die so nicht von den
Quellsystemen und Zielsystemen bereitgestellt werden können. Als Erstes wird die
Problemstellung diskutiert, um dann auf die Verwendung eines Datendienstes einzu-
gehen. Ein Datendienst ist der Dienst eines Drittsystems, der seine Daten bereitstellt.
Weiterhin wird auf die Zugriffsarten eingegangen, mit denen auf die Daten eines sol-
chen Datendienstes zugegriffen werden kann. Als Nächstes werden die Schritte von
der notwendigen Beschreibung eines Datendienstes bis zu seiner Nutzung untersucht.
Um Dienste zu beschreiben, wird eine Sprache entwickelt: die Data Service Descrip-
tion Language (DSDL). Bevor ein abschließendes Beispiel betrachtet wird, wird die
Realisierung diskutiert.

4.1.1 Problemstellung

Im heterogenen Umfeld reicht die einfache Integration von Datenänderungen in vielen
Fällen nicht aus. Dieses Problem ist in Abbildung 4.2 dargestellt. In diesem Beispiel
wird eine Integration eines Fabriklayoutplanungswerkzeugs (Quellsystem) mit einem
Digitale-Fabrik-System (Zielsystem) betrachtet. Im Quellsystem wird nun eine neue
Maschine (eine Fertigungsressource) positioniert. Dies soll vom Quell- zum Zielsystem
propagiert werden. Das Zielsystem benötigt für seine Änderungsbeschreibung (ABZS)
noch zusätzliche Daten (ODP), die nicht von der Änderungsbeschreibung des Quell-
systems (ABQS) bereitgestellt werden können. In diesem Fall werden die Attribute

104

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

Abbildung 4.2: Problem der Einbindung von Daten von Drittsystemen

MTBF (meantime between failure) und MTTR (meantime to repair) benötigt. Da
diese von dem Fabriklayoutplanungswerkzeug nicht bereitgestellt werden, müssen sie
von einem dritten Informationssystem (hier: MaschinenInfoDB) geliefert werden. Die-
se Art von Informationssystem repräsentiert einen sogenannten Datenprovider. Das
Drittsystem kann sich innerhalb des Unternehmens befinden oder ein Service einer
externen Firma sein. Beispielsweise kann der Hersteller verwendeter Bearbeitungsma-
schinen (z.B. Fräsmaschinen) Informationen über sie bereitstellen, die dann abgefragt
werden können. Intern können zum Beispiel Datenbanken eingebunden werden, die
bestimmte Informationen bereitstellen (z.B. eine Kundendatenbank).

Außerdem können mit dieser Einbindung von Drittsystemen Unterschiede in der
Datenrepräsentation zwischen Quell- und Zielsystemen überwunden werden, indem so-
genannte Mapping-Tabellen zur Anwendung kommen. Ein solcher Unterschied könnte
beispielsweise die Länderrepräsentation in einer Adresse sein, wobei in einem System
ein Ländernamen (z.B. Deutschland) und in einem anderen ein Ländercode (z.B. D)
verwendet wird. Diese werden als Tupel in der Mapping-Tabelle gespeichert.

4.1.2 Verwendung eines Datendienstes

Der Datenprovider stellt durch einen Datendienst Daten bereit. Damit das Propaga-
tionssystem den Datendienst nutzen kann, stellt er eine Beschreibung seiner Meta-
daten im Propagationsrepository bereit. Dadurch wird es dem Abhängigkeitsmanager
ermöglicht, den Anforderungen entsprechend nach einem Datendienst zu suchen.

Von der Definition der Beschreibung bis zur eigentlichen Nutzung des Datendiens-

105

KAPITEL 4: Komplexe Propagation2. Finden u. Zugriffscodeerzeugen 1. Definieren u.publizieren
Abbildung 4.3: Übersicht über die Verwendung eines Datendienstes

tes werden drei Schritte benötigt, wie in Abbildung 4.3 dargestellt. In einem ersten
Schritt wird die Beschreibung des Datendienstes erzeugt und publiziert. Die Beschrei-
bung wird durch die im Rahmen dieser Arbeit entwickelte Data Service Description
Language (DSDL) ermöglicht. Diese Beschreibungen werden im zentralen Propagati-
onsrepository abgelegt. Zu einem späteren Zeitpunkt (Schritt 2) wird dann über den
Abhängigkeitsmanager nach den Beschreibungen gesucht, damit die benötigten Da-
tenprovider gefunden werden. Die Beschreibungen werden vom Abhängigkeitsmanager
verwendet, um den entsprechenden Zugriffscode zu erzeugen und in bestehende Pro-
pagationsskripte einzubinden. Im letzten Schritt wird schließlich der erzeugte Zugriffs-
code verwendet, um auf den Datendienst zuzugreifen. Die Kommunikation mit dem
Datendienst erfolgt über SOAP. SOAP ermöglicht den XML-basierten Austausch von
Nachrichten.

In Abbildung 4.3 ist auch die Verwandtschaft zum Webservice (vgl. [ACKM04] Sei-
te 146) zu erkennen. Allerdings sind Webservices eher gedacht um Dienste aufzurufen
(gekapselter Zugriff durch einen Dienst) als direkt auf Daten eines Systems zuzugrei-
fen. Sie definieren die Struktur von Nachrichten, die ausgetauscht werden, und weniger
die internen Datenstrukturen des Dienstanbieters (z.B. relationale Tabellen) auf die
zugegriffen werden kann. Bei Webservices wird ebenfalls ein Dreigestirn verwendet: ein
Service-Nutzer (hier: Propagationsmanager) fragt beim Service-Verzeichnis-Anbieter
(hier: Propagationsrepository) nach einem Service-Anbieter (hier: Datendienst). Dabei
werden im Fall von Webservices folgende Technologien verwendet: WSDL (Webservice
Description Language) zur Beschreibung des Service, UDDI (Universal Description
Discovery and Integration) als Service-Verzeichnis-Anbieter und SOAP als Kommu-
nikationsprotokoll. Allerdings wird bei Webservices SOAP auch zur Kommunikation
mit dem UDDI verwendet. Dies erfolgt im Fall des Datendienstes für die Propagati-
on durch die API des Repositorys. Da bis jetzt der einzige Datendienst-Verwender der
Propagationsmanager ist, eignet sich besonders das Propagationsrepository, um die Be-
schreibungen der Datendienste abzulegen. Dies ist begründet in der zentralen Ablage
aller propagationsrelevanten Metadaten.

106

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

4.1.3 Zugriffsarten

Ein Datenprovider stellt seine Daten über einen Datendienst bereit. Um möglichst
flexibel zu sein, sollten verschiedene Zugriffsarten unterstützt werden. Beispielsweise
sollte es möglich sein, auf Daten in relationalen Datenbanken zuzugreifen. In dem hier
vorgestellten Ansatz werden eine Reihe von Zugriffsarten unterstützt, die aber durch
weitere ergänzt werden können.

Standardmäßig werden vom Propagationssystem drei Arten unterstützt: SQL für
relationale Datenbanken, XQuery für XML-Daten in XML-Dokumenten sowie XML-
Datenbanken und SOAP-RPC (Remote Procedure Call). Um eine einheitliche Form des
Zugriffs zu gewährleisten, sollte jede Zugriffsart den Zugriff über eine Datenanforderung
ermöglichen, die eine Menge von Parametern hat. Das trifft bei einem RPC-Aufruf zu,
weil dieser wie ein lokaler Prozeduraufruf Parameter haben kann. Aus diesem Grund
wird von Webservices nur der RPC-Mode unterstützt. Verwendet man für SQL und
XQuery parametrisierte Anfragen, so trifft dies auch für diese Zugriffsarten zu. Durch
diesen Ansatz können dann zur Laufzeit die Parameter an die Daten der Änderungs-
beschreibungen gebunden werden.

Falls diese Zugriffsarten nicht ausreichend sind, da beispielsweise objektorientier-
te Datenbanken unterstützt werden sollen, so soll das Propagationssystem um weitere
Zugriffsarten ergänzt werden können. Dafür muss die DSDL-Sprache zuerst um Elemen-
te erweitert werden, die für die Zugriffsart spezifisch sind. Da die DSDL-Dokumente
als Ganzes im Repository abgelegt werden, müssen keine Änderungen im Propaga-
tionsrepository gemacht werden, außer der Integration des neuen DSDL-Schemas in
das Repository, damit die DSDL-Dokumente entsprechend validiert werden können.
Die Implementierung des entsprechenden XPDL-Befehls zum Aufruf des Datendiens-
tes muss im Propagationssystem um die neue Zugriffsart erweitert werden. Dies erfolgt
durch eine Plugin-Architektur.

4.1.4 Von der Definition zur Nutzung eines Datendienstes

Nachdem die Zugriffsarten für den Zugriff auf Datenprovider diskutiert wurden, soll nun
der Prozess zur Definition und Nutzung eines Datendienstes beschrieben werden. Der
Prozess unterteilt sich in zwei Bereiche (Abbildung 4.4): Entwicklungs- und Laufzeit.
Zur Entwicklungszeit wird der Datendienst definiert (Schritt 1) und zu einem späteren
Zeitpunkt wird der Zugriffscode generiert (Schritt 2). Zur Laufzeit wird schließlich der
Datendienst genutzt, um Daten anzufordern, die in einem Propagationsprozess eine
Änderungsbeschreibung mit zusätzlichen Informationen anreichern (Schritt 3).

Im ersten Schritt in Abbildung 4.4 wird zuerst die Beschreibung des Datendienstes
definiert, die dann im zweiten Schritt verwendet wird, um den Zugriffscode zu gene-
rieren. Dafür werden zunächst Metadaten des Dienstes gesammelt, wie zum Beispiel
das System, welches den Dienst implementiert, und die Zugriffsart, welche verwendet
wird. Die nachfolgende Definition ist von der gewählten Zugriffsart abhängig. Wird ein
RPC-Zugriff definiert, so wird dieser durch eine WSDL-Message beschrieben. WSDL
stellt dabei Elemente für die Beschreibung der RPC-Nachrichten (Request und Re-
sponse) bereit. Bei SQL wird der Zugriff in Form von Tabellenbeschreibungen und pa-

107

KAPITEL 4: Komplexe Propagation

Abbildung 4.4: Prozess der Definition und Nutzung eines Datendienstes

108

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

rametrisierten Anfragen beschrieben. Die Tabellenbeschreibungen werden verwendet,
um parametrisierte Anfragen durch spezialisierte Werkzeuge zu erzeugen. Die parame-
trisierten Anfragen können im ersten Schritt (Early Definition) oder erst im zweiten
Schritt definiert werden (Late Definition). Für XML-Daten werden die Zugriffsmöglich-
keiten durch die Strukturbeschreibung in Form von XML Schema angegeben. Ebenso
wie bei SQL können parametrisierte Anfragen definiert werden, die aber auf XQuery
basieren.

Die Struktur der Antwort wird anhand von XML Schema spezifiziert. Dies gilt auch
für den Webservice-Zugriff, da seit WSDL 2.0 [Wor07] eine WSDL-Message in XML
Schema beschrieben wird. Des Weiteren wird XML Schema schon zur Überprüfung der
Zustände der Änderungsbeschreibungen verwendet und ermöglicht dadurch eine gute
Integration in das Propagationssystem. Weiterhin unterstützen Mapping-Werkzeuge
(z.B. Altova Mapforce) XML Schema für die Definition von Input und Output der
Transformationen. Die Struktur bei den Zugriffsarten SQL und XQuery kann allerdings
erst bei der Definition einer parametrisierten Anfrage erfolgen, da vorher die Antwort-
struktur noch nicht feststeht. Die Antwortstruktur bei XQuery ist durch XQuery selbst
bestimmt. Bei SQL gibt es mehrere Verfahren, wie Anfrageergebnisse in XML trans-
formiert werden. Ein Beispiel hierfür ist der SQL/XML-Standard [EM02].

Die Zugriffscode-Erstellung in Schritt 2 (siehe Abbildung 4.4) wird gestartet, indem
nach dem benötigten Datendienst gesucht wird. Die Suche nach Datendiensten kann
durch eine Volltextsuche über Beschreibungstexte erfolgen oder durch eine struktu-
rierte Suche über eine strukturierte Beschreibung der angebotenen Daten. Werden die
Daten über die Zugriffsarten SQL oder XQuery angefragt, so muss nach einer passen-
den parametrisierten Anfrage gesucht werden. Ist diese nicht vorhanden, werden die
Tabellenstrukturen bzw. XML Schemas für XML als Input zur Generierung einer pa-
rametrisierten Anfrage verwendet. In den nächsten zwei Schritten werden dann die Zu-
griffsmethoden in Form von Transformationsskripten und von einem Aufrufsfragment
in XPDL erzeugt. Die Transformationsskripte erzeugen beispielsweise SOAP-Header
für zusätzliche Informationen (z.B. Daten für die Authentizierung) und das Aufrufs-
fragment steuert dabei den Aufruf des Datendienstes.

Der generierte Zugriffscode von Schritt 2 wird schließlich in Schritt 3, bei Zugriff
auf den Datendienst, verwendet. Dabei wird das Propagationsskript mit dem erzeugten
Fragment ausgeführt.

4.1.5 Dienstbeschreibung

Um Schritt 1 und 2 des Erstellungsprozesses miteinander zu integrieren, müssen die
Datendienste beschrieben werden. Des Weiteren müssen dem Propagationssystem Da-
ten über den Datendienst zur Laufzeit bereitgestellt werden, was in Abschnitt 4.1.6.2
noch genauer erläutert wird. Dafür wurde eine Sprache entwickelt, die Data Service
Definition Language (DSDL) heißt. Die Struktur dieser Sprache wird in Abbildung
4.5 in UML dargestellt. Die Sprache selbst ist in XML implementiert. Die im vori-
gen Abschnitt beschriebenen Metadaten des Dienstes werden direkt im DataService-
Element beschrieben und bestehen unter anderem aus dem Namen des Datendienstes

109

KAPITEL 4: Komplexe Propagation

Abbildung 4.5: Beschreibungssprache für Datendienste

sowie dessen Beschreibung. Das Attribute protocol gibt an, welches Protokoll für die
Kommunikation verwendet wird und ist standardmäßig auf SOAP gesetzt. Für den
Transport sind persistente Warteschlangen und HTTP vorgesehen. Die persistenten
Warteschlangen dienen zur Kommunikation mit den Informationssystemen, die idea-
lerweise an das Propagationssystem angebunden sind. Dadurch muss das Informati-
onssystem nur die vorhandene Schnittstelle erweitern und nicht eine neue Implemen-
tierung auf einer komplett anderen Technologie vorsehen. HTTP eignet sich besonders
für unternehmensexterne Systeme, da mit HTTP das Firewall-Problem leichter gelöst
werden kann, da der Standard-HTTP-Port oft in Firewalls frei geschaltet ist. Mit dem
type-Attribut wird die Zugriffsart festgelegt, die für die nachfolgende Dienstbeschrei-
bung ausschlaggebend ist. Unabhängig von der Zugriffsart, aber protokoll-abhängig,
sind die sogenannten SOAP-Header. Diese können Informationen enthalten, die nicht
über den Nachrichtenkörper (body) verschickt werden sollen, da sie zusätzliche Infor-
mationen, wie zum Beispiel Authentisierungsinformationen, darstellen.

Mittels der WebserviceDef wird die Zugriffsstruktur eines WS-RPC-Aufrufs de-
finiert. Der Aufruf und die Antwort werden durch WSDL-Messages definiert, wobei
diese die Parameter und die Rückgabe des RPC-Aufrufs definieren. Dabei verweist die
WebserviceDef auf den Namen des XML Schemas. Der Name wird verwendet, um

110

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

das Schema aus dem Repository zu laden. Wie schon angemerkt, wird in WSDL 2.0
[Wor07] XML Schema zur Definition von Messages verwendet.

Die Beschreibung eines SQL-Datendienstes ist in zwei Bereiche unterteilt. Im ers-
ten werden Tabellen oder Views definiert, auf die mittels Anfragen zugegriffen werden
kann. Darauf aufbauend können parametrisierte Anfragen definiert werden, die eine be-
stimmte Datenanfrage erfüllen. Die Selektivität kann mittels der Parameter bestimmt
werden. Für die Implementierung der parametrisierten Anfrage wird ein XML-Element
definiert, das sogenannten

”
Mixed Content“ verwendet, d.h. Textknoten und Elemente

wechseln sich ab. Dabei sind die SQL-Teile durch Textknoten repräsentiert und die
Parameter durch Elemente, wobei ein Parameterelement genau an der Stelle steht,
an der der Wert des Parameters eingefügt werden soll (z.B. ... WHERE ID=<Parameter

Name=‘ID’>).
Der XQuery-Zugriff wird durch XML Schema und parametrisierte Anfragen defi-

niert (vgl. Abbildung 4.5).
Für die Beschreibung des Datendienstes wurde nicht die bereits existierende Be-

schreibungssprache für Webservices verwendet, da diese zwar den Austausch der Nach-
richten zwischen Klienten und dem Webservice beschreibt, nicht aber deren interne
Strukturen wie Tabellen sowie Views für relationale Datenbanken und XML Schema
für XML-Dokumente bzw. -Datenbanken bereitstellt. Da allerdings auch Webservices
im RPC-Mode unterstützt werden sollen, wurden WSDL-Messages in die Datendienst-
Sprache integriert, die jedoch ebenfalls in XML Schema beschrieben werden (WSDL
2.0).

4.1.6 Realisierung

In diesem Abschnitt wird die Realisierung der Datendienstunterstützung innerhalb
des Propagationssystem diskutiert. Die Möglichkeiten zur Parameterbindung stellen
dabei die Grundlage für die Realisierung von XPDL-Befehlen, die den Sprachumfang
erweitern. Diese werden anschließend untersucht.

4.1.6.1 Parameterbindung

Um die Parameter zu binden und die SOAP-Anforderung zu erzeugen, wurden vier
Ansätze identifiziert:

• Stub-Ansatz
Der Zugriff auf Webservices wird oft durch sogenannte Stubs realisiert, sofern es
sich um die RPC-Zugriffsart handelt. So ist es möglich die gesamte Komplexität
des Aufrufs hinter einer Methode zu verstecken. Der Aufruf des RPCs erscheint
für den Programmierer wie ein lokaler Aufruf. Der Stub wird dabei aus der Be-
schreibung des Webservices generiert, d.h. aus der WSDL-Datei.

Ein ähnlicher Ansatz wäre ebenfalls für den Zugriff auf einen Datendienst denk-
bar, denn es existiert die WS-RPC-Zugriffsart, die Parameter wie eine Methode
hat. Für die beiden anderen Zugriffsarten, SQL und XQuery, werden parametri-
sierte Anfragen verwendet. Daraus folgt, dass der Aufruf des Datendienstes auch

111

KAPITEL 4: Komplexe Propagation

durch einen Stub erfolgen kann. Bei einem nachrichtenorientierten System, wie
bei einem Datenpropagationssystem, ist der Stub-Ansatz nicht sinnvoll, da zur
Entwicklungszeit Stubs erzeugt werden müssen, die aber schwer in ein nachrich-
tenorientiertes System einbindbar wären, da sie für ein anderes Programmierpa-
radigma ausgelegt sind.

• Einfacher Transformationsansatz
Als zweiten Ansatz könnte man Transformationen verwenden, um aus Ände-
rungsbeschreibungen direkt die SOAP-Nachrichten für den Datendienst zu erzeu-
gen. Die Antworten des Datendienstes in Form von SOAP-Nachrichten könnten
dann mit der jeweiligen Änderungsbeschreibung über weitere Transformationen
integriert werden. Dieser Ansatz ist allerdings sehr fehleranfällig, da die gesam-
te SOAP-Nachricht mittels Transformation erzeugt werden müsste und bei der
Erstellung der dafür benötigten Transformationsskripte Fehler gemacht werden
können.

• Transformationsansatz mit Schichten
Um dies zu verbessern wurden in unserem ersten Ansatz[HCM05] mehrere Schich-
ten eingeführt. Zuerst wird die eigentliche Datenanforderung mittels Transforma-
tion erzeugt und in der nächsten Schicht (SOAP-Schicht) in eine SOAP-Nachricht
verpackt. In der darauffolgenden Schicht (Transportschicht) wird die SOAP-
Nachricht verschickt und die Antwort empfangen. Die empfangene Antwort wird
in der SOAP-Schicht analysiert und die extrahierten Daten können dann mit-
tels Transformation mit einer Änderungsbeschreibung integriert werden. Dieser
Ansatz ist nicht so fehleranfällig wie der reine Transformationsansatz. Allerdings
können wegen der Erzeugung von Anforderungen (Requests) durch Transforma-
tionen immer noch Fehler auftreten. Diese Anfälligkeit kann weiter durch die
Verwendung von speziellen Werkzeugen reduziert werden. Ein Nachteil dieses An-
satzes ist die Einführung von drei neuen XPDL-Befehlen. Dies führt dazu, dass
der Ansatz für die Entwicklung von Propagationsskripten komplexer ausfällt.

• Paramaterbindungansatz zur Laufzeit
Um dieses Manko zu beseitigen, wurde noch ein weiterer Ansatz entworfen, der
soweit es geht auf Transformationen verzichtet und statt dessen Parameter zur
Laufzeit bindet. Die Parameter repräsentieren die Parameter des RPC-Aufrufs
oder der parameterisierten Anfrage von SQL oder XQuery. Um dies zu realisieren
braucht man einen Befehl, der eine beliebige Anzahl von Parametern als Input
nimmt und überprüft, ob diese vom entsprechenden RPC bzw. der parametrisier-
ten Anfrage unterstützt werden. Der Befehl erzeugt dann dynamisch die SOAP-
Nachricht und verarbeitet auch wieder die Antwort. Um die SOAP-Nachricht
zu erzeugen, werden zur Laufzeit das DSDL-Dokument analysiert und die Para-
meter gebunden. Die Parameter können mit sogenannten PCL-Ausdrücken (vgl.
Abschnitt 3.6.1) gesetzt werden. Falls PCL nicht ausreicht, kann man zuerst
die Änderungsbeschreibung transformieren und dann den Parameter extrahie-
ren. Der Ansatz benötigt nur einen neuen Befehl und ist nicht so fehleranfällig

112

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

wie die anderen zwei. Aus diesen Gründen wurde er für das Propagationssystem
ausgewählt.

4.1.6.2 XPDL-Befehle

4.1.6.2.1 Erzeugung der Header und ggf. Parametervorbereitung. Um einen
SOAP-Header zu erzeugen, wird ein transform-Befehl verwendet, wie er in Abschnitt
3.5.3.1 eingeführt wurde. Dieser hat folgendes Aussehen:

transform(in, out, script, reduceTo?, parameter*).

Wichtig dabei ist das reduceTo-Argument, um eine Update-Änderung mit zwei
Zuständen auf einen Zustand zu reduzieren. Der transform-Befehl kann außerdem für
die Parametervorbereitung eingesetzt werden, falls PCL für die Parameterzuordnung
nicht ausreichend ist.

4.1.6.2.2 Aufruf eines Datendienstes. Nachdem die SOAP-Header und evtl.
auch Parameter vorbereitet worden sind, kann der Data Service aufgerufen werden.
Dies erfolgt mit folgendem Befehl:

call data service(name, partName, out, error handler?, header*,

parameter*)

header(in, mustUnderstand)

parameter(name, in, expression)

Der Aufruf des Datendienstes benötigt zuerst den Namen des Datendienstes, um die
entsprechende DSDL-Beschreibung im Repository zu finden. Damit die RPC-Prozedur
oder die parametrisierte Anfrage gefunden werden kann, wird der partName verwen-
det. Das Ergebnis der Anfrage der analysierten Antwort wird dann unter dem Na-
men out zugänglich gemacht. Die optionale Angabe einer Fehlerauswertungskompo-
nente ermöglicht die entsprechende Reaktion auf Fehler, die im Datendienst aufgetre-
ten sind (vgl. Abschnitt 4.1.6.3). Mit header-Elementen können eine beliebige Anzahl
von SOAP-Header angegeben werden. Der Inhalt des Header ist über die Änderungsbe-
schreibung in definiert. Das Attribut mustUnderstand gibt an, ob der Datendienst den
Header verstehen und andernfalls die Bearbeitung verweigern muss. Es ist ein Stan-
dardattribut von SOAP. Die Parameter werden schließlich mit parameter angegeben,
wobei der Name des Parameters mit dem in der DSDL-Beschreibung übereinstimmen
muss. Die Nachricht, die den Parameterwert liefert, wird über in bestimmt und der
Wert wird über den PCL-Ausdruck (siehe Abschnitt 3.6.1) expression extrahiert.

Der Befehl bekommt die Kontaktdaten des Datendienstes aus dessen DSDL-Be-
schreibung und muss deswegen im Befehl nicht spezifiziert werden.

113

KAPITEL 4: Komplexe Propagation

4.1.6.2.3 Integration. Im letzten Schritt müssen noch die Änderungsbeschreibun-
gen ABQS (vgl. Abbildung 4.2) mit den angeforderten Daten integriert werden. Dies
erfolgt mittels Transformationsskripten. Dabei können die zusätzlichen Daten mit der
XPath-Bibliothek, die in Abschnitt 3.6.2 beschrieben wurde, importiert werden. Aller-
dings hat das jeweilige Transformationsskript dann mehrere XML Schemas als Input.
Die Zuordnung von Schemas zu Transformationsskripten muss im Repository hinterlegt
sein. Gründe hierfür sind vor allem die Konsistenz des Repository und das Erstellen
von Transformationsskripten zum Beispiel mit Mapping-Werkzeugen.

4.1.6.3 Fehlerbehandlung

Bei der Anforderung von zusätzlichen Daten können Fehler auftreten, die behandelt
werden müssen. Fehler können dabei im Datendienst auftreten, welche dann in ei-
nem sogenannten SOAP-Fault an das Propagationssystem zurückgegeben werden. Des
Weiteren können Fehler bei der Kommunikation mit dem Datendienst auftreten, die
etwa durch eine Zeitüberschreitung erkannt werden oder direkt durch das entsprechen-
de Kommunikationssystem. Bei der Zeitüberschreitung kann der Programmierer ent-
scheiden, ob abgebrochen werden soll oder ob die Ausführung des Propagationsskripts
fortgesetzt werden soll. Letzteres kann beispielsweise dann gewählt werden, wenn die
zusätzlichen Daten optional sind. Durch die XPath-Bibliothek (vgl. Abschnitt 3.6.2)
kann das Vorhandensein von zusätzlichen Daten abgefragt und entsprechend reagiert
werden. Tritt ein Fehler durch eine Zeitüberschreitung auf, kann evtl. auch ein zweiter
Datendienst einbezogen werden.

Wird ein Fehler im Kommunikationssystem erkannt, so wird der Propagationspro-
zess wiederholt. Erst nach einer bestimmten Anzahl von Wiederholungsversuchen wird
der Propagationsprozess abgebrochen und der Fehler protokolliert.

Tritt ein Fehler im Datendienst auf, welcher mit einem SOAP-Fault zurück an das
Propagationssystem gesendet wird, kann der Ausgang des Propagationsprozesses durch
ein optionales Fehlermodul (Handler) (vgl. Abschnitt 4.1.6.2) bestimmt werden. Es gibt
dabei drei Möglichkeiten:

• Prozess abbrechen

• Prozess wiederholen

• Fehler ignorieren und Prozess fortsetzen.

Die ersten zwei entsprechen der Reaktion auf sich wiederholende und nicht wie-
derholende Fehler. Die dritte dagegen ermöglicht, wie oben, eine unvollständige aber
dafür zeitnahe Version an das Zielsystem zu schicken oder gegebenenfalls einen anderen
Datendienst einzuschalten.

Wird dagegen kein Fehlermodul (Handler) angegeben, kann nur eine Standardreak-
tion erfolgen, die unabhängig vom Fehler ist. Es wurde hierbei die Variante gewählt, bei
der der Prozess wiederholt wird. Dies kann zwar bei einem sich wiederholenden Fehler
zu einer unnötigen Systemlast führen, dafür wird alles versucht, um die Propagation
dennoch erfolgreich abzuschließen.

114

4.2. VERARBEITUNG MEHRERER ÄNDERUNGEN

Abbildung 4.6: Beispiel für ein Propagationsskript mit der Integration eines Daten-
dienstes

4.1.7 Beispiel

Als Beispiel wird das Integrationsszenario von Abbildung 4.2 wieder aufgegriffen. Bei
diesem Szenario wird ein Layoutplanungssystem mit einem Digitale-Fabrik-System
integriert, wobei eine neue Maschine (Ressource) vom Layoutplanungssystem zum
Digitale-Fabrik-System propagiert wird. Außerdem wird die propagierte Ressource mit
Daten aus der MaschinenInfoDB angereichert.

In Abbildung 4.6 ist das dazugehörige Propagationsskript in der Kontrollflussan-
sicht (vgl. Abschnitt 3.7.3.2) dargestellt. Zuerst wird die getätigte Änderung (Neue
Maschine) empfangen. Daraufhin werden die Zugangsdaten für den Datendienst in
Form eines SOAP-Header erzeugt. Dieser wird im nächsten Schritt (Aufruf des Daten-
dienstes) in die Datenanforderung integriert. In diesem Schritt wird außerdem noch
die parametrisierte Anfrage aus Abbildung 4.7 aus der Datendienstbeschreibung extra-
hiert und die Parameter werden durch Werte aus der Änderungsbeschreibung ABQS

ersetzt. In diesem Fall gibt es einen Parameter ‘MachineType’, der durch den Wert in
dem Änderungszustand ‘/Resource/TypeID’ ersetzt wird, wobei dem Danach-Zustand
Vorrang gewährt wird (vgl. Abschnitt 3.6.1).

4.2 Verarbeitung mehrerer Änderungen

Nachdem die Einbindung von Daten aus Drittsystemen diskutiert wurde, wird in die-
sem Abschnitt der Einsatz und Realisierung von M-zu-N-Abhängigkeiten diskutiert.

115

KAPITEL 4: Komplexe Propagation

<Query>

SELECT XMLELEMENT(NAME ‘MachineInfo’, XMLFORREST(

MTBF AS ‘MTBF’, MTTR AS ‘MTTR’))

FROM MachineInfoTable

WHERE Type=<Parameter name="MachineType" type="Integer"/>

Abbildung 4.7: Beispiel einer parametrisierten Anfrage in DSDL-Beschreibung

4.2.1 Problemstellung

Bei den hier als M-zu-N-Abhängigkeiten bezeichneten Abhängigkeiten handelt es sich
um Konstrukte, bei denen mehrere Änderungsbeschreibungen (M, mindestens 2) emp-
fangen, verarbeitet und zu mindestens einem System (N) gesendet werden. Nun stellt
sich die Frage, was man mit solchen M-zu-N-Abhängigkeiten realisieren kann. Bei ein-
fachen Änderungen werden geänderte Daten propagiert, so dass ein Zielsystem seine
Daten ebenfalls anpassen kann. Beim Empfang und Verarbeitung mehrerer Änderungen
durch einen Propagationsprozess ist das nicht mehr der Fall. Ergebnisse von M-zu-N-
Propagationsprozessen sind erst spät sichtbar, d.h. wenn die letzte erwartete Änderung
empfangen wurde. Außerdem eröffnen sich durch die Beziehung der einzelnen Ände-
rungsbeschreibungen neue Anwendungsmöglichkeiten, die über die reine Änderungs-
propagation hinausgehen.

Mittels M-zu-N-Abhängigkeiten können Geschäftsregeln implementiert werden, wie
zum Beispiel:

”
Wenn der neue Kunde innerhalb von 24 Stunden eine neue Bestel-

lung aufgibt, so bekommt er einen Rabatt von 25 %“. Der neue Kunde ist das
auslösende Änderungsereignis und die neue Bestellung ist das zweite erwartete Ereig-
nis, das auftreten soll. Beide Ereignisse sollen maximal 24 Stunden auseinanderliegen.
Wenn diese Bedingungen erfüllt sind, so soll eine Änderungsbeschreibung neuer Rabatt
an ein Zielsystem versendet werden.

Abstrakt gesehen ist eine M-zu-N-Abhängigkeit eine Art von Prozessmodell, wie in
Abbildung 4.8 dargestellt. Nach dem Empfang einer Startänderungsbeschreibung wer-
den k Unterprozesse gestartet. Der Wert k ist eine Steuerungsgröße, die unabhängig
von M sowie N ist und die Anzahl von möglichen Prozessen bei gleicher Startände-
rungsbeschreibung angibt. Dadurch kann das obige Beispiel bei gleichem Kunden auf
mehrere Bestellungen ausgeweitet werden, d.h. dem Kunden wird bei k gleich fünf
Rabatt auf fünf Bestellungen gewährt. Dieser Wert wird innerhalb des Propagati-
onsskripts festgelegt. Danach werden noch n-1 Änderungsbeschreibungen erwartet,
sodass insgesamt n Änderungsbeschreibungen empfangen wurden. Die Auswahl der
zu empfangenden Änderungsbeschreibungen erfolgt durch die Angabe eines System-
GOTyp-Paares (Informationsystem und dessen Geschäftsobjekttyps) und eines optio-
nalen PCL-Ausdrucks. Mithilfe des PCL-Ausdrucks können die empfangenen Ände-
rungsbeschreibungen I1 − In−1 mit der Startänderungsbeschreibung IS in Beziehung
gebracht werden, sodass auch die passenden Änderungsbeschreibungen empfangen wer-
den. Nach dem obigen Beispiel bedeutet dies, dass die Bestellung empfangen wird,

116

4.2. VERARBEITUNG MEHRERER ÄNDERUNGEN

Unterprozess 1k Unterprozesse
Abbildung 4.8: Prozessdarstellung einer M-zu-N-Abhängigkeit

die vom entsprechenden Kunden getätigt wurde. In einem Verarbeitungsschritt wer-
den dann alle empfangenen Änderungsbeschreibungen verarbeitet und zum Output
transformiert, der dann versendet wird. Der ganze Propagationsprozess wird so lange
ausgeführt, bis alle benötigten Änderungsbeschreibungen empfangen wurden oder eine
Zeitüberschreitung eingetreten ist (timeout). Um negierte Geschäftsregeln zu ermögli-
chen, können optional nach dem Eintreten der Zeitüberschreitung alle Unterprozes-
se mit unvollständigem Input gestartet werden. Eine negierte Geschäftsregel ist eine
Geschäftsregel, die das Nicht-Eintreten eines Ereignisses abprüft und dann eine entspre-
chende Aktion auslöst. Ein Beispiel hierfür wäre, wenn der neu angelegte Kunde keine
Bestellung innerhalb von 20 Stunden aufgibt, ihm eine Benachrichtigung zu senden,
die ihn an das Angebot erinnert. Durch die Verwendung der XPath-Bibliothek (vgl.
Abschnitt 3.6.2) kann das Vorhandensein von Änderungsbeschreibungen abgefragt und
entsprechend reagiert werden.

4.2.2 Implementierungskonzept der M-zu-N-Erweiterung

Zuerst wird das Basiskonzept der Implementierung der M-zu-N-Erweiterung erklärt.
Danach wird auf die Implementierung des M-zu-N-Managers eingegangen. Um die M-
zu-N-Abhängigkeiten zu implementieren, muss der Prozessmanager um eine M-zu-N-
Komponente erweitert werden, welche M-zu-N-Manager heißt. Eine große Herausfor-
derung stellt dabei die Implementierung von Zeitüberschreitungen dar, deren Imple-

117

KAPITEL 4: Komplexe Propagation

mentierungsmöglichkeiten anschließend diskutiert werden. Schließlich wird noch auf die
Wiederherstellung von M-zu-N-Prozessen nach einem Systemcrash eingegangen.

4.2.2.1 Grundlegendes Konzept der M-zu-N-Realisierung

Da der Prozessmanager, so wie er bisher konzipiert wurde, die empfangenen Ände-
rungsbeschreibungen entgegennimmt, Prozesse startet und ABs an die Prozesse ver-
teilt, sollte er für das M-zu-N-Konzept ebenfalls im Mittelpunkt stehen. In Abbildung
4.9 ist das grundlegende Konzept dargestellt. Zuerst empfängt der Prozessmanager ei-
ne Startänderungsbeschreibung IS und lädt das entsprechende Propagationsskript PS.
Er initialisiert laut dessen Beschreibung k Unterprozesse (sPP1 − sPP5) und liest die
Selektionskriterien Selx für den Filter aus. Die Startänderungsbeschreibung wird jedem
Propagationsunterprozess zugeteilt. Kommen nun Änderungsbeschreibungen durch den
Filter, werden sie entsprechend ihres Typs den Unterprozessen zugeteilt, und zwar nach
der Reihenfolge der Initialisierung. Dies bedeutet, dass zuerst der erste Unterprozess
seine Änderungsbeschreibung bekommt. Wenn dieser die Änderungsbeschreibung schon
hat, bekommt sie der zweite usw. Besitzt ein Prozess (sPP1 und sPP2) alle benötigten
Änderungsbeschreibungen, wird er vom Prozessmanager gestartet und der Output wird
dann an die entsprechenden Systeme versendet. Dies ist die eigentliche Ausführung des
Unterprozesses und kann innerhalb eines Microflows erfolgen.

Der unten in der Abbildung 4.9 aufgeführte Beispielablauf an eintreffenden Ände-
rungsbeschreibungen führt zu der dargestellten Situation des Prozessmanagers.

Um M-zu-N-Abhängigkeiten zu implementieren, muss die Sprache XPDL (vgl. Ab-
schnitt 3.5) erweitert werden, damit der zusätzliche Input (I1− In−1) definiert und die
empfangenen Änderungsbeschreibungen integriert werden können. Weiterhin muss die
Sprache für Änderungsbedingungen (PCL vgl. Abschnitt 3.6.1) angepasst werden, so
dass Bedingungen Selx zwischen der Startänderung IS und den zusätzlichen Änderun-
gen Ix definiert werden können. Nicht nur die Sprachen zur Beschreibung von Abhängig-
keiten und Bedingungen müssen erweitert werden, sondern auch die Funktionalität der
Prozessmanager-Komponente des Propagationsmanagers. Dieser muss um die Filter-
komponente erweitert werden, die innerhalb der Unterkomponente M-zu-N-Manager
realisiert wird. Zusätzlich stellt die Wiederherstellung des Propagationsmanagers nach
einem Systemabsturz gewisse Herausforderungen dar, die mit der Implementierung von
Zeitüberschreitungen einhergehen.

4.2.2.2 M-zu-N-Manager

Der M-zu-N-Manager ist eine Unterkomponente des Prozessmanagers (vgl. Abschnitt
3.7.2) und verwaltet die Wartelisten der M-zu-N-Prozesse. Die Wartelisten geben an,
welcher Unterprozess auf welche Änderungsbeschreibungen wartet und verwaltet damit
die in Abbildung 4.9 dargestellte Situation an wartenden Prozessen mit den jeweiligen
Filterbedingungen. Diese Warteliste muss so realisiert sein, dass der M-zu-N-Manager
schnell bei einer eintreffenden Änderungsbeschreibung entscheiden kann, ob sie von
einem M-zu-N-Prozess benötigt wird oder nicht. Dies erfolgt durch eine Vorselektion
anhand des Systems und des Geschäftsobjekttyps. War die Vorselektion erfolgreich, so

118

4.2. VERARBEITUNG MEHRERER ÄNDERUNGEN

...

Abbildung 4.9: Implementierungsübersicht von M-zu-N-Abhängigkeiten

119

KAPITEL 4: Komplexe Propagation

werden die Zustandsbeschreibungen der Geschäftsobjekte geparst und die Filterbedin-
gungen Selx ausgewertet. Treffen diese Bedingungen auf die Änderungsbeschreibung
zu, wird sie dem ersten Unterprozess zugeordnet. Weiterhin weckt der M-zu-N-Manager
die M-zu-N-Prozesse auf, die über alle benötigten Änderungsbeschreibungen verfügen.

Der M-zu-N-Manager (M2NManager) verfügt über Methoden, die er zur Kommuni-
kation mit dem M-zu-N-Prozess oder Prozessmanager bereitstellt. Um die Erstellung
der Warteliste zu vereinfachen, meldet der Propagationsprozess die benötigten Fil-
ter für die Änderungsbeschreibungen an den M-zu-N-Manager. Dies begründet sich in
der Kenntnis der XPDL-Engine über die XPDL-Sprache, die der Prozessmanager so
nicht hat. Der Prozess, der in der XPDL-Engine initialisiert wurde, kann dadurch die
change input und timeout-Statements analysieren und dem M-zu-N-Manager mittei-
len.

4.2.2.3 Zeitüberschreitungen

Die Zeitüberschreitung ist durch einen Zeitraum definiert. Ist der Zeitraum abgelau-
fen, kommt es zu einer Zeitüberschreitung (timeout), die dann über das Ausgehen des
Propagationsprozesses entscheidet: entweder wird der Prozess abgebrochen (Geschäfts-
regel) oder trotzdem gestartet (negierte Geschäftsregel).

Die Problematik mit Zeitüberschreitungen ist die Definition der Zeitgrenzen, d.h.
wann fängt der Zeitraum an und wann endet er. Es existieren mehrere Möglichkeiten.
Der Anfang kann durch den Sendezeitpunkt der Startänderungsbeschreibung definiert
werden, wobei man zwischen realem und effektivem Zeitpunkt unterscheiden kann. Der
reale Zeitpunkt gibt dabei an, wann die Änderungsbeschreibung dem Warteschlangen-
manager übergeben wurde. Zu diesem Zeitpunkt muss die Änderungsbeschreibung noch
nicht sichtbar sein, da sie durch eine Transaktion erst bei deren Commit sichtbar wird.
Der Zeitpunkt, zu dem die Änderungsbeschreibung sichtbar wird, ist der effektive Zeit-
punkt. Weiterhin kann der Anfang des Zeitraums auch durch den Start des Prozesses
definiert werden, d.h. wenn der Propagationsmanager die Änderungsbeschreibung sieht.
Diese kann – je nach Länge der Eingangswarteschlange – deutlich von den anderen zwei
Zeitpunkten abweichen.

Am besten wäre der effektive Sendezeitpunkt, da zu dieser Zeit die Änderungsbe-
schreibung sichtbar wird, d.h. zum Beispiel die Bestellung wird aufgegeben. Allerdings
stellt das Java Message Service (JMS) diese Information nicht bereit, sondern nur den
realen Sendezeitpunkt. Die Spezifikation sagt aus, dass es dem Warteschlangensystem
überlassen wird, ob es den realen Sendezeitpunkt anbietet oder nicht. Der Zeitpunkt
des Prozessstarts ist weniger geeignet, da er im Minutenbereich nach dem aktuellen
Senden der Nachricht liegen kann.

Das Ende ist durch den Startzeitpunkt und die angegebene Zeitdauer definiert.
Auch hier kann man zwischen zwei Implementierungsmöglichkeiten unterscheiden. Ent-
weder kann sofort abgebrochen werden oder erst wenn alle aktuell vorhandenen Ände-
rungsbeschreibungen abgearbeitet sind. Da der Startzeitpunkt durch den realen Sen-
dezeitpunkt definiert ist, wird die letzte angenommene Änderungsbeschreibung auch
durch den realen Sendezeitpunkt definiert. Dabei wird eine effektive Zeitdauer deff ver-
wendet, die sich aus dem realen Sendezeitpunkt tAB, der Prozessstartzeit tP und ange-

120

4.2. VERARBEITUNG MEHRERER ÄNDERUNGEN

gebenen Zeitdauer d ergibt deff = d− (tP − tAB). Die effektive Zeitdauer gibt dabei die
noch verbleibende Wartezeit an. Die Berechnung der effektiven Zeitdauer ist deshalb
notwendig, da bei Prozessstart schon eine gewisse Zeit vergangen ist, seit die Ände-
rungsbeschreibung versendet wurde. Ein Timer benachrichtigt den M-zu-N-Manager
über den Ablauf von effektiven Zeitdauern. Tritt ein solches Ereignis auf, können sich
aber unverarbeitete Änderungsbeschreibungen in der Eingangswarteschlange befinden,
die noch dem M-zu-N-Unterprozessen zugeordnet werden müssen, d.h. der reale Sen-
dezeitpunkt liegt vor der aktuellen Zeit. Um die Verarbeitung zu ermöglichen wird
beim Auftreten eines Timer-Ereignisses eine Timeout-Nachricht in die Eingangswarte-
schlange geschrieben. Alle Änderungsbeschreibungen vor dieser Nachricht werden noch
angenommen, alle danach werden dem entsprechenden M-zu-N-Prozess nicht mehr zu-
geordnet. Falls gefordert, löst der Empfang der Timeout-Nachricht auch das Aufwe-
cken der unvollständigen Unterprozesse aus, da zu diesem Zeitpunkt alle im korrekten
Zeitraum empfangenen Änderungsbeschreibungen verfügbar sind. Danach kann der M-
zu-N-Manager die Warteliste des jeweiligen Propagationsprozesses löschen.

4.2.2.4 Wiederherstellung

Nach einem Systemabsturz gilt es, die Änderungsbeschreibungen, die Prozessinforma-
tionen im M-zu-N-Manager und die Timer-Informationen wiederherzustellen. Die Wie-
derherstellung der Änderungsbeschreibungen übernimmt das Warteschlangensystem.
Dies war einer der Gründe, warum ein persistentes Warteschlangensystem ausgewählt
wurde.

Die Prozessinformationen im M-zu-N-Manager können anhand der Startänderungs-
beschreibung und eines

”
Neustarts“ der jeweiligen Prozesse wiederhergestellt werden.

Zusätzlich muss die zuverlässige Multicast-Warteschlange (vgl. Abschnitt 3.7.2.3), die
zur Kommunikation mit den Prozessen dient, durchlaufen werden und die Verfügbar-
keit der Änderungsbeschreibungen im M-zu-N-Manager markiert werden. Als eine al-
ternative Implementierung bietet sich das Protokollieren der empfangenen zusätzlichen
Änderungsbeschreibungen an. Dies würde die Wiederherstellungsphase beschleunigen,
denn die Warteschlange zur Prozesskommunikation muss nicht durchlaufen werden.
Allerdings verlangsamt es den M-zu-N-Manager bei der Verarbeitung von Änderungs-
beschreibungen, da diese zusätzlich protokolliert werden müssen. Da eine Wiederher-
stellung seltener erforderlich ist, wurde die Verarbeitung in der

”
Normalphase“ be-

schleunigt und die Wiederherstellungsphase verlangsamt.

Der reale Sendezeitpunkt kann nicht durch die Multicast-Warteschlange ermittelt
werden, da diese durch die Eingangswarteschlange definiert war. Außerdem kann die
Prozessstartzeit nicht mehr ermittelt werden. Aus diesem Grund werden die Timer-
Informationen protokolliert. Dadurch kann bei Wiederherstellung festgestellt werden,
ob Prozesse in der Zwischenzeit einem Timeout unterlegen sind und für die ande-
ren Prozesse den Timeout neu setzen. Alternativ können diese Werte auch in den
Nachrichten-Properties von JMS gespeichert werden.

121

KAPITEL 4: Komplexe Propagation

4.2.3 Erweiterung von XPDL

Um M-zu-N-Abhängigkeiten zu realisieren, muss die Eingabedeklaration des Propagati-
onsskriptes ergänzt werden, damit auch der Empfang der Änderungsbeschreibungen I1
bis In−1 definiert werden kann. Des Weiteren soll eine Zeitbeschränkung in Form eines
Timeouts angeben werden können. Für die Definition der zu empfangenden Änderungs-
beschreibungen wird der folgende XPDL-Befehl eingeführt:

change input(system (s), GO Typ (GT), out, expression?).

Dieser Befehl unterscheidet sich kaum vom start input-Befehl (vgl. Abschnitt
3.5.1). Allerdings sollte der Befehl als expression keine allgemeine Bedingung ent-
halten, sondern eine Bedingung, die die Startänderungsbeschreibung Is mit der hier
geforderten Änderungsbeschreibung Ix verknüpft. Ein weiterer Unterscheidungspunkt
zu start input ist, dass der Empfang keinen Prozessstart auslöst, d.h. der Prozessma-
nager lädt kein Propagationsskript und initialisiert keinen Propagationsprozess. Aller-
dings wird bei Empfang aller geforderten Änderungsbeschreibungen ein Unterprozess
ausgeführt.

Der angesprochene Timeout wird mit dem folgenden Befehl ebenfalls in der Einga-
bedeklaration definiert:

timeout(duration, terminate).

Das duration-Attribut gibt die Zeitspanne an, wie lange der Prozess auf den Emp-
fang von Änderungsbeschreibungen wartet. Das zweite Attribut (terminate) gibt an,
ob der Prozess bei unvollständigen Ereignissen abgebrochen werden soll. Wie schon
erwähnt wurde, können bei nicht Beendigung des Propagationsprozesses nach dem
Auftreten einer Zeitüberschreitung, negierte Geschäftsregeln realisiert werden, die auf
das Nicht-Eintreffen einer Änderungsbeschreibung reagieren.

Des Weiteren wird XPDL so erweitert, dass die maximale Anzahl von Unterprozes-
sen definiert werden kann. Dies erfolgt im Wurzelelement (propagationscript).

Die Integration der Änderungsbeschreibungen wurde schon für die Einbindung von
Daten aus Drittsystemen benötigt. In diesem Fall musste die empfangene Änderungs-
beschreibung mit zusätzlichen Daten integriert werden. Bei M-zu-N dagegen handelt
es sich bei den

”
zusätzlichen Daten“ ebenfalls um Änderungsbeschreibungen ABs1. Es

wird ebenfalls eine Transformation für die Integration verwendet, wobei die Transfor-
mation über eine Hauptänderung und mehrere Nebenänderungen erfolgt. Die Hauptän-
derungsbeschreibung definiert dabei die Elemente S, GT, A und TS des Transformati-
onsoutputs, d.h. diese Elemente werden direkt von der Hauptänderung übernommen.
Die Zustände B und D werden transformiert und mit den Zuständen der anderen
Änderungen integriert. Die Integration wird durch die XPath-Bibliothek ermöglicht
(vgl. Abschnitt 3.6.2). Die Anzahl der zu transformierenden Zustände hängt von der
Hauptänderung ab.

1AB = (S,GT,A,B,D, TS) (vgl. Abschnitt 3.2.2)

122

4.2. VERARBEITUNG MEHRERER ÄNDERUNGEN

4.2.4 Erweiterung von PCL

Die zusätzlich benötigten Änderungsbeschreibungen für einen M-zu-N-Prozess müssen
mit der Startänderungsbeschreibung in Beziehung gesetzt werden. Dies erfolgt durch
Bedingungen (expression) innerhalb der change input-Deklaration. Da Bedingungen
im Propagationssystem mit einer speziellen Bedingungssprache (PCL), die in Abschnitt
3.6.1 eingeführt wurde, definiert werden, wird auch für diesen Anwendungsfall PCL
verwendet. Um die Art von Bedingungen genauer zu untersuchen, soll das Beispiel von
Abschnitt 4.2.1 betrachtet werden, indem ein Kunde mit einer Bestellung in Beziehung
gesetzt werden soll. Der Kunde verfügt über eine Kundennummer, die ihn eindeutig
definiert und die auch in der Bestellung verwendet wird. Dann können Kunde und
Bestellung mit

%startChange:afterOrBefore/Kunde/Kundennummer% =

%afterOrBefore%/Bestellung/Kundennummer

in Beziehung gesetzt werden. Der Kunde wird dabei eindeutig durch startChange

identifiziert. Es können nur Bedingungen zwischen der Änderungsbeschreibung I1−In−1

(im PCL-Beispiel die Bestellung) und der Startänderungsbeschreibung Is definiert wer-
den, denn die Startänderung ist die einzige Änderungsbeschreibung, die auf jeden Fall
vor allen anderen Änderungsbeschreibungen des M-zu-N-Prozesses empfangen wird.
Damit können nur diese und die aktuelle Änderungsbeschreibung in Bedingungen ver-
wendet werden. Weiterhin kann der PCL-StartChange-Teil, eingeschlossen durch die
Prozentzeichen, schon während der Prozessinitialisierung durch einen Wert ersetzt
werden, d.h. %startChange:/Kunde/kundennummer%’ wird zum Beispiel durch 123
ersetzt.

Um diese Art von Umsetzung der PCL-Bedingungen zu ermöglichen, muss die Ar-
chitektur des PCL-Compilers von Abschnitt 3.6.1 erweitert werden, sodass sie die
Startänderung als Input hat. Dadurch sieht die Architektur wie in Abbildung 4.10
dargestellt aus. Dabei wurde die ursprüngliche Architektur so erweitert, dass der PCL-
Compiler die Startänderung zur Verfügung hat.

4.2.5 Schlussfolgerungen

Die M-zu-N-Abhängigkeit ist eine Möglichkeit, um Geschäftsregeln mit einem Pro-
pagationssystem zu realisieren. Für die Implementierung von Geschäftsregeln bieten
sich aber eher Workflow-Managementsysteme (WfMS, siehe Abschnitt 2.6) an. Die-
se Systeme bieten mehr Möglichkeiten, um sogenannte Geschäftsregeln zu implemen-
tieren, da die Prozesse flexibler gestaltet werden können. Diese basieren dann aber
weniger auf geänderten Daten (Änderungsbeschreibungen). Ein Vorteil des hier vorge-
schlagenen Ansatzes ist, dass trotz lang laufender Prozesse keine Backward Recovery
(vgl. Abschnitt 2.6) benötigt wird, da die eigentliche Ausführung von kurzer Zeitdauer
ist und innerhalb einer normalen Transaktion des Propagationsprozesses ausgeführt
werden kann. Dies kann aber ebenfalls durch einen Workflow erreicht werden, indem
die Verarbeitung bis auf die Empfangsoperationen in einer Transaktionssphäre aus-
geführt wird. Änderungsbeschreibungen, die durch M-zu-N-Abhängigkeiten verarbei-

123

KAPITEL 4: Komplexe Propagation

PCL-Compiler

XPath-Engine

PCL

XPath
Aktuelle
Änderung

IS

Abbildung 4.10: Die Architektur der Verarbeitung von PCL-Bedingungen für die Un-
terstützung von M-zu-N-Abhängigkeiten

tet werden, können nicht mit den anderen Änderungsbeschreibungen in Reihenfolge
gebracht werden, da M-zu-N lang laufende Prozesse sind und sie die 1-zu-N-Prozesse
lange verzögern würden, wenn die M-zu-N-Prozesse ebenfalls in Reihenfolge gebracht
würden. Die Einhaltung der Reihenfolge stellt gerade bei einem Propagationssystem
eine wichtige Eigenschaft dar. Außerdem liegt das Verarbeiten von M-zu-N-Abhängig-
keiten außerhalb des

”
Kerngeschäfts“ des Propagationssystems. Aus diesen Gründen

wird in dieser Arbeit die Implementierung der M-zu-N-Abhängigkeiten als Modul vor-
geschlagen, das aktiviert und deaktiviert werden kann und nicht Kern eines jeden Pro-
pagationssystem ist.

4.3 Verteilte Propagation

In diesem Abschnitt wird die Verteilung des Propagationsmanagers diskutiert. Dadurch
soll ein höherer Durchsatz an verarbeiteten Änderungsbeschreibungen erreicht werden.
Um dieses Problem zu lösen, werden hier zwei Ansätze vorgestellt (Abbildung 4.11), der
Load-Manager-Ansatz und der selbstorganisierte Ansatz. Beim Load-Manager-Ansatz
gibt es eine zentrale Instanz, welche die Verteilung der Änderungsbeschreibungen über-
nimmt. Beim zweiten Ansatz erfolgt die Verteilung selbstorganisiert, indem jeder Pro-
pagationsmanager Änderungsbeschreibungen liest, sobald ihm es möglich ist. Das War-
teschlangensystem garantiert, dass jede Änderungsbeschreibung von jeweils nur einem
Propagationsmanager gelesen wird.

124

4.3. VERTEILTE PROPAGATION

... ...
Abbildung 4.11: Ansätze zur Verteilung des Propagationsmanagers

4.3.1 Problemstellung

In manchen Einsatzszenarien im Unternehmen kann es sein, dass der Durchsatz oder
die Verfügbarkeit des Propagationsmanagers nicht ausreichend ist. Für den ersten Fall
kommt man in den meisten Fällen nicht an einer Verteilung vorbei. In seltenen Fällen
kann auch die Optimierung von Propagationsmanager oder Repository ausreichend
sein. Eine weitere Möglichkeit ist die Verwendung einer leistungsstärkeren Hardware.
Der Abhängigkeitsmanager wirkt sich nicht auf die Performance von Änderungspropa-
gationen aus, da er nur für die Entwicklungszeit zuständig ist und damit keinen Einfluss
auf die Laufzeit hat. Für den zweiten Fall, die Verfügbarkeit, können auch sogenannte
Hot-Backups eingesetzt werden, die die Aufgaben des Propagationsmanagers im Fal-
le eines Ausfalls übernehmen. Diese Konstellation erhöht aber nicht die Performance,
was durch die Verteilung des Propagationsmanagers erreicht werden kann. Allerdings
kann die Verteilung die Verfügbarkeit nur bedingt erhöhen, da Beziehungen zwischen
den einzelnen Änderungsanforderungen existieren, die eine freie Verteilung verhindern.
Dies gilt insbesondere für die M-zu-N-Abhängigkeiten, da diese Abhängigkeiten zwi-
schen den einzelnen Änderungsbeschreibungen aufweisen.

Hier wird von einer Verteilung des Propagationsmanagers als Ganzes ausgegangen.
Alternativ kann man sich eine Verteilung seiner Komponenten, z.B. des Transformer
oder des PCL-Evaluator, vorstellen. Dieser Ansatz erhöht sowohl den Kommunikations-
bedarf innerhalb des Propagationsmanagers als auch die Fehleranfälligkeit. Weiterhin
sind Propagationsprozesse keine lang laufenden Prozesse und eine Belastung des Sys-
tems kommt eher durch eine Vielzahl von Propagationsprozessen zustande. Außerdem
ist die Lösung mit der Komponentenverteilung mit einem höheren Aufwand verbunden.
Bei der Verteilung des Propagationsmanagers als Ganzes müssen lediglich n Propaga-
tionsmanager auf n Rechner installiert werden sowie eventuell zusätzlich eine spezielle
Komponente, den sogenannten Load-Manager.

Es wird davon ausgegangen, dass für die einzelnen Warteschlangen (Queues) Stra-
tegien zur Performanceerhöhung existieren, wie zum Beispiel der Einsatz von RAID-
Laufwerken und die Verteilung des Warteschlangensystems.

125

KAPITEL 4: Komplexe Propagation

4.3.2 Einschränkungen der Lastverteilung

Die Verteilung der Last auf verschiedene Propagationsmanager wird durch Abhängig-
keiten zwischen den einzelnen zu verteilenden Änderungsbeschreibungen eingeschränkt.
Die Änderungsbeschreibungen sind im Grunde genommen sehr unabhängig und die
Verteilung wird nur durch das Reihenfolgeproblem und M-zu-N-Abhängigkeiten einge-
schränkt, was nachfolgend beschrieben wird.

4.3.2.1 Reihenfolgeproblem

Wie in Abschnitt 3.9 schon erwähnt wurde, muss die Reihenfolge von verarbeiteten
Änderungsbeschreibungen eingehalten werden, sofern es die entsprechende Propaga-
tionsordnung verlangt. Ebenfalls wird in Abschnitt 3.9 eine Lösung für den zentra-
len Ansatz entworfen. Dieser Ansatz funktioniert im verteilten Fall nur, wenn diese
Abhängigkeit zwischen den Änderungsbeschreibungen beachtet wird. Das bedeutet,
dass eine zentrale Implementierung für die gewählte Propagationsordnung gebraucht
wird, an die sich dann die einzelnen Propagationsmanager wenden. Dadurch können
die Änderungsbeschreibungen weiterhin flexibel verteilt werden. Alternativ könnte der
Load-Manager die Änderungsbeschreibung an die einzelnen Propagationsmanager ver-
teilen, so dass die Reihenfolge eingehalten wird. Dies schränkt die Verteilbarkeit je nach
Algorithmus deutlich ein und macht eine totale Propagationsordnung völlig unmöglich,
da in diesem Fall alle Änderungsbeschreibungen an ein Propagationssystem gesendet
werden müssten.

Aus diesem Grund wird eine freie Verteilung gewählt, bei der die Propagation von
Änderungsbeschreibungen gegebenenfalls verzögert wird. Das bedeutet, dass der erste
Teil (z.B. Transformationen und Bedingungen) schon ausgeführt wurde und nur die
letzten Schritte verzögert werden, d.h. das Schreiben in die Ausgangswarteschlangen.

4.3.2.2 M-zu-N-Abhängigkeiten

Die in diesem Kapitel eingeführten M-zu-N-Abhängigkeiten stellen ebenfalls eine Be-
schränkung der Verteilungsfreiheit des Load-Managers dar, weil M-zu-N-Prozesse auf
bestimmte Änderungsbeschreibungen warten, die der jeweilige Propagationsmanager
auch erhalten muss. Die erwartete Änderungsbeschreibung wird dabei durch (S, GO-
Typ, BE) bestimmt, wobei S das Quellsystem, GOTyp der Geschäftsobjekttyp und
BE die Bedingung ist, die den Inhalt einer Änderungsbeschreibung (B oder D) erfüllen
muss. Wann immer eine solche Änderungsbeschreibung erkannt wird, muss diese an
den entsprechenden Propagationsmanager gesendet werden, der auf diese Nachricht
wartet.

Allerdings sollte es vermieden werden, M-zu-N-Abhängigkeiten in eine verteilte
Lösung einzubinden, da sie die Abhängigkeiten zwischen den einzelnen Änderungsbe-
schreibungen stark erhöhen und damit auch die Leistungssteigerung bei der Verteilung
senken. Eine Möglichkeit dies zu umgehen, wenn M-zu-N unterstützt werden soll, ist
die Einrichtung eines Propagationsmanager oder einer Gruppe von Propagationsmana-
gern, die ausschließlich M-zu-N-Abhängigkeiten bearbeiten. Dadurch wird verhindert,

126

4.3. VERTEILTE PROPAGATION

dass die einfachen Prozesse verlangsamt werden.

4.3.2.3 Auswirkungen

Ein verteiltes System, das Warteschlangen zur Kommunikation verwendet, kann sich
selbstorganisieren, sofern keine Einschränkungen vorhanden sind. Dies bedeutet, dass
einer der Propagationsmanager eine Änderungsbeschreibung aus der Eingangswarte-
schlange holt, diese verarbeitet und sobald er fertig ist, eine neue holt. Dadurch ist
der Propagationsmanager nicht überlastet, da er nur soviel verarbeitet, wie er abar-
beiten kann. Da mehrere Propagationsmanager eingesetzt werden, können diese die
Last teilen. Kommen dagegen Abhängigkeiten zwischen den Änderungsbeschreibungen
ins Spiel, ist eine selbstorganisierte Vorgehensweise nicht mehr sinnvoll, da bestimmte
Änderungsbeschreibungen von bestimmten Propagationsmanagern verarbeitet werden
müssen. Dies führt zu einem erhöhten Kommunikationsaufwand zwischen den Propa-
gationsmanagern und zu einem Austausch der Änderungsbeschreibungen. Aus diesem
Grund ist eine organisierte Verteilung unumgänglich, die vom oben erwähnten Load-
Manager durchgeführt wird. Dies betrifft insbesondere die Unterstützung von M-zu-N-
Abhängigkeiten.

Abhängigkeiten durch die Reihenfolge können allerdings durch Selbstorganisati-
on erreicht werden, da ein zentraler Reihenfolge-Algorithmus die jeweiligen Prozesse
verzögern könnte. Dieser muss den jeweiligen Propagationsmanagern vorgeschaltet wer-
den. Zuerst wollen wir allerdings die Lösung mit einer organisierten Verteilung unter-
suchen, die einen Load-Manager verwendet und damit auch M-zu-N-Abhängigkeiten
unterstützt.

4.3.3 Load-Manager-Ansatz

Als Erstes soll die organisierte Verteilung anhand eines Load-Managers untersucht
werden. Der Load-Manager stellt eine zentralisierte Komponente dar, die die Last an
Änderungsbeschreibungen gleichmäßig auf die Propagationsmanager verteilen soll. Er
kann durch die Zentralisierung aber selbst einen Flaschenhals darstellen und ist ein
Ausfallrisiko, was aber durch ein Hot-Backup abgeschwächt werden kann. Das Hot-
Backup übernimmt bei einem Ausfall dessen Aufgaben [Yan04].

4.3.3.1 Architektur

Die Architektur eines Load-Managers für ein verteiltes Propagationssystem ist in Ab-
bildung 4.12 dargestellt. Kern der Anwendung ist das Kernmodul, welches die anderen
Module steuert. Für die Kommunikation mit der Außenwelt existieren zwei unter-
schiedliche Module. Die Warteschlangenschnittstelle dient zum Empfang der Ände-
rungsbeschreibungen durch die zentrale Eingangswarteschlange und zum Senden der
Änderungsbeschreibungen an die jeweiligen Warteschlangen der Propagationsmanager
(PMx). Im verteilten Fall mit Load-Manager-Ansatz hat jeder der Propagationsma-
nager eine Eingangswarteschlange, in der seine zu verarbeitenden Änderungsbeschrei-
bungen stehen. Dadurch wird eine Entkopplung der Propagationsmanager vom Load-

127

KAPITEL 4: Komplexe Propagation

Abbildung 4.12: Architektur des Load-Managers

Manager erreicht. Auch in diesem Fall ist der Einsatz von persistenten Warteschlan-
gen wichtig, um eine hohe Ausfallsicherheit und eine hohe Übermittlungsgarantie zu
gewährleisten.

Das zweite Kommunikationsmodul (Kommunikationsschnittstelle) dient zum Emp-
fang von Informationsnachrichten, wie zum Beispiel die aktuelle Lasten der Propaga-
tionsmanager oder Anfragen für die Reihenfolgeeinhaltung. Durch den Einbezug der
aktuellen Last kann eine bessere Verteilung erreicht werden. Des Weiteren kann die
Anzahl der Änderungsbeschreibungen in den Warteschlangen einbezogen werden, um
eine bessere Verteilung zu ermöglichen.

Der Lastverteiler steuert die Verteilung der Änderungsbeschreibungen auf die ein-
zelnen Propagationsmanager. Dafür existieren mehrere Strategien, die in den Untermo-
dulen realisiert sind und vom Verteiler angesteuert werden können (z.B. Round-Robin).
Beim Round-Robin Verfahren, werden die Änderungsbeschreibung der Reihe nach an
die einzelnen Propagationsmanager verteilt, ohne dass die aktuelle Last berücksichtigt
wird.

Weiterhin existieren noch zwei Module (M-zu-N- und Reihenfolge-Handler), die die
Verarbeitung von M-zu-N-Abhängigkeiten ermöglichen und die Einhaltung der Reihen-
folge garantieren.

4.3.3.2 M-zu-N-Verarbeitung

Das hier angestrebte Konzept basiert auf einer speziellen Gruppe von Propagationsma-
nagern, die die M-zu-N-Abhängigkeiten ausführen und damit die

”
einfachen“ Abhängig-

keiten nicht ausbremsen. Des Weiteren wird den M-zu-N-Propagationsmanagern eine

128

4.3. VERTEILTE PROPAGATION

Abbildung 4.13: Verteilung der M-zu-N-Abhängigkeiten

Gruppe von Filtern vorgeschaltet, die nur benötigte Änderungsbeschreibungen an die
entsprechenden Propagationsmanager durchlassen. Diese Filter dienen zur Entlastung
der Propagationsmanager. Die Filter sind außerdem notwendig, da ansonsten das M-
zu-N-Problem nicht verteilbar wäre, ohne den Propagationsmanager anzupassen. In
Abbildung 4.13 ist die Verteilungsarchitektur dargestellt.

Das Prinzip dabei ist, dass der Load-Manager das Starten von neuen Prozessen
steuert und die Verteilung auf die einzelnen Filter selbstorganisiert erfolgt, ermöglicht
durch eine gemeinsame Warteschlange. Dadurch wird eine optimale Verteilung an die
Filter ermöglicht.

Der Filter hat die Aufgabe, die Änderungsbeschreibungen anhand der Bedürfnisse
der Propagationsmanager zu filtern und sie nur an interessierte zu senden. Interessiert
ist ein Propagationsmanager, wenn er auf eine Änderungsbeschreibung wartet. Dafür
muss eine Warteliste verwaltet werden, deren Einträgen aus Quellsystem, Geschäftsob-
jekttyp, Bedingung und Propagationssystem bestehen. Die Filter kommunizieren über
einen Kommunikationskanal. Dadurch werden Änderungen in der Warteliste mitge-
teilt. Um die Aufgabe des Filters zu erfüllen, müssen die Zustände geparst und die
Warteliste ausgewertet werden. Wird dabei ein Eintrag gefunden, bei dem Quellsystem
sowie Geschäftsobjekttyp gleich sind und die Bedingung erfüllt ist, wird die Änderungs-
beschreibung an den entsprechenden Propagationsmanager weitergeleitet (Bedienung
bestehender Propagationsprozesse). Zusätzlich muss der Filter noch die Änderungsbe-
schreibung an den vom Load-Manager ausgewählten Propagationsmanager weiterlei-
ten, damit dieser neue M-zu-N-Prozesse starten kann. Eine weitere Aufgabe des Filters
ist die Verwaltung der Warteliste, die neue Einträge erhält, wenn Prozesse gestartet
werden.

Problematisch ist dabei die korrekte Abarbeitung der Warteliste, d.h. der Einbe-
zug aller benötigten Einträge, auch wenn diese evtl. noch nicht vorhanden sind. Dies
kann durch die Verteilung der Filter auftreten. Um den Einbezug aller Einträge zu
garantieren, verfügen die Änderungsbeschreibungen über eine logische Uhr (tAB). Ei-
ne logische Uhr [Lam78] ist durch einen Zähler implementiert. Die Warteliste verfügt
ebenfalls über eine logische Uhr (tWL), welche den letzten Stand der verarbeiteten
Änderungsbeschreibung enthält. Wenn eine empfangene Änderungsbeschreibung keine
Prozesse startet, werden auch keine Einträge der Warteliste hinzugefügt, aber dennoch

129

KAPITEL 4: Komplexe Propagation

muss die logische Uhr der Warteliste auf den aktuellen Stand gebracht werden. Wenn
jetzt ein Filter eine Änderungsbeschreibung bekommt, parst dieser die Zustände und
überprüft die Einträge der Warteliste. Ist die Warteliste veraltet, wartet der Filterpro-
zess bis die Warteliste aktualisiert wird und alle Änderungsbeschreibungen enthält, d.h.
tAB ≤ tWL−1. Die hinzukommenden Einträge werden sukzessive abgearbeitet. Ein Fil-
ter besteht aus mehreren Filterprozessen (realisiert als Threads), die die Filteraufgaben
übernehmen.

4.3.3.3 Der Umgang mit der Reihenfolge

Das Lösungsprinzip des Reihenfolgeproblems im verteilten Fall basiert auf der frei-
en Verteilung der Änderungsbeschreibung und der Implementierung der Reihenfolge-
Algorithmen (vgl. Abschnitt 3.9) im Load-Manager. Der Reihenfolger-Handler (Ab-
bildung 4.12) implementiert die verschiedenen Algorithmen, die mittels Konfiguration
ausgewählt werden können. Möchte ein Propagationsprozess eines Propagationsmana-
gers eine Änderungsbeschreibung propagieren, fragt er den Reihefolge-Handler über
die Kommunikationsschnittstelle, ob er schon an der Reihe ist. Eine weitere Informati-
onsnachricht informiert den Reihefolge-Handler über die abgeschlossene Verarbeitung
einer Änderungsbeschreibung. Dadurch können die nächsten anstehenden Prozesse ihre
Änderungsbeschreibungen propagieren.

4.3.3.4 Erhöhung der Zuverlässigkeit

Durch den Einsatz eines verteilten Systems wird auch die Zuverlässigkeit des Gesamt-
systems erhöht, da der Load-Manager einem ausgefallen Propagationsmanager keine
Arbeit mehr zuteilt. Dies ist allerdings nur in gewissem Rahmen möglich, denn die Rei-
henfolge und M-zu-N-Abhängigkeiten müssen trotzdem erfüllt sein. Das heißt, dass nur
frei verteilbare Änderungsbeschreibungen von anderen Propagationsmanagern bearbei-
tet werden können. Um dieses Manko zu beseitigen, kann ein Pool mit Hot-Backup-
Propagationsmanagern eingeführt werden [Yan04], um die Arbeit ausgefallener Pro-
pagationsmanager zu übernehmen. Ein solcher Propagationsmanager steht dabei in
Bereitschaft und beobachtet, ob ein anderer Propagationsmanager ausgefallen ist und
übernimmt in diesem Fall seine Arbeit. Sobald ein ausgefallener Propagationsmanager
wieder verfügbar ist, überprüft dieser, ob er benötigt wird und ordnet sich andernfalls
dem Hot-Backup-Pool zu.

Der Load-Manager muss zur Steigerung der Zuverlässigkeit auch mit Hot-Backups
ausgestattet werden [Yan04].

4.3.4 Selbstorganisierter Ansatz

Der selbstorganisierte Ansatz nutzt die hohe Verteilungsmöglichkeit durch den Ein-
satz von Warteschlangen aus. Dabei versucht ein Propagationsmanager immer sei-
ne Propagationsprozesse abzuarbeiten und nur bei Bedarf neue Änderungsbeschrei-
bungen anzunehmen. Dieser Ansatz schließt aber die Implementierung von M-zu-N-
Abhängigkeiten aus, da diese nicht selbstorganisiert verteilt werden können. In Abbil-

130

4.4. ZUSAMMENFASSUNG

...
Abbildung 4.14: Selbstorganisierter Ansatz mit Reihenfolgebehandlung

dung 4.14 ist dieser Ansatz dargestellt. Den Propagationsmanagern ist ein Reihenfolge-
Controller vorgeschaltet, der die Reihenfolge-Algorithmen realisiert. Die Propagati-
onsmanager fragen diesen an, ob Änderungsbeschreibungen schon propagiert werden
können (Verzögerungsanfragen). Zusätzlich informieren die Propagationsmanager den
Reihenfolge-Controller über abgearbeitete Änderungsbeschreibungen. Dies wird ermög-
licht indem die Änderungsbeschreibungen mit einer logischen Uhr [Lam78] versehen
wird, die den Änderungsbeschreibungen eine eindeutige Zahl zuordnen. Diese Uhr ist
durch einen Zähler implementiert. Dadurch kann der Reihenfolge-Controller entschei-
den, ob ein Propagationsmanager seine ausgehenden Änderungsbeschreibungen propa-
gieren kann.

4.4 Zusammenfassung

Im ersten Teil dieses Kapitels wurde eine Ergänzung eingeführt, mit der zusätzliche
Daten in Änderungsbeschreibungen eingebunden werden können, die so in der propa-
gierten Änderungsbeschreibung nicht vorhanden sind. Als Beispiel kann man hier die
Integration eines Layout-Planungswerkzeuges für Fabriken mit einem Digitalen-Fabrik-
System anführen. Beide verwalten Fertigungsressourcen, wobei das Layoutwerkzeug
nur den Namen und die Koordinaten speichert, während das Digitale-Fabrik-System
noch MTTR (Meantime to repair) und MTBF (Meantime between Failure) benötigt.
Diese Informationen können beispielsweise von einer MaschinenInfoDB, die Produktbe-
schreibungen zu Ressourcen verwaltet, kommen. Der Ansatz basiert auf der Einbindung
von Datendiensten, deren Daten mit SQL, XQuery oder SOAP-RPC abgefragt wer-
den können. Dies ermöglicht eine breite Unterstützung von Informationssystemen und
Datenbanken.

Im zweiten Teil wurde untersucht, wie mehrere Änderungen in einer Abhängigkeit
bzw. einem Propagationsprozess kombiniert werden können. Diese werden M-zu-N-
Abhängigkeiten genannt. Mit diesen Abhängigkeiten können zwei unterschiedliche Ar-
ten von einfachen Geschäftsregeln implementiert werden. Beispiel für den ersten Fall:
Wenn ein Kunde angelegt wurde und er innerhalb von 24 Stunden bestellt, wird ihm
ein Rabatt von 25% gewährleistet. Zweiter Fall (negierte Geschäftsregel): Wenn ein

131

KAPITEL 4: Komplexe Propagation

Kunde angelegt wurde und er nicht innerhalb von 20 Stunden bestellt, wird er an das
Angebot erinnert. Vorteil der Implementierung dieses Ansatzes ist die Erhaltung von
Microflows, da Prozesse verzögert gestartet werden, sobald alle Änderungsbeschreibun-
gen schon vorhanden sind. Die M-zu-N-Abhängigkeiten stellen nicht die Kernaufgabe
eines Propagationssystem dar. Deshalb sollte das M-zu-N-Modul nur integriert werden,
wenn dieses auch benötigt wird.

Im dritten und letzten Teil werden noch zwei Varianten zur Verteilung des Pro-
pagationsmanagers diskutiert, die selbstorganisierte und die mit Einsatz eines Load-
Managers. Dazu wurden zwei Einschränkungen zur freien Verteilung diskutiert: das
Reihenfolgeproblem und die M-zu-N-Abhängigkeiten.

132

KAPITEL 5

Evaluation des Propagationssystems

Nachdem das Propagationssystem grundlegend konzipiert und mögliche Erweiterungen
diskutiert wurden, soll in diesem Kapitel der Ansatz evaluiert werden. Es soll ein Ein-
satz in der Praxis untersucht werden, Leistungsmessungen des Propagationssystems
mit typischen Anforderungen aus der Industrie gegenübergestellt und das System mit
gängigen EAI-Produkten verglichen werden.

5.1 Praxistest

Innerhalb des Sonderforschungsbereichs 467, in dem das Propagationssystem entstand,
gab es verschiedene Integrationsaufgaben, bedingt durch die Vielzahl von eingesetz-
ten Systemen (z.B. der Planungstisch für die Layoutplanung von Fabriken), die in den
einzelnen Teilprojekten entstanden sind. Drei der Systeme wurden integriert und die-
se Integration als Praxistest verwendet. Der Integrationsansatz wurden in [CHB+05]
veröffentlicht.

5.1.1 Integrationsszenario

Der Praxiseinsatz des Propagationssystems findet in einem fiktiven Unternehmen statt,
das im Folgenden

”
Schwäbische Pumpenwerke“ [WZ09] genannt wird. Das Unterneh-

men fertigt in zwei Produktsegmenten Großpumpen und Kleinpumpen. Die aktuel-
le Marktlage für die Pumpenwerke ist durch einen drastischen Umsatzrückgang bei
Kleinpumpen und einen leichten Anstieg bei Großpumpen gekennzeichnet. Nach ei-
ner gründlichen Analyse kommt die Marketing-Abteilung zu dem Schluss, dass die
Marktveränderungen langfristig sind und die Produktion entsprechend umgestellt wer-
den muss. Die Unternehmensleitung beschließt daraufhin, die Produktion den neuen
Anforderungen anzupassen. Ziel der Umstrukturierung ist, die Kapazität der Großpum-
penfertigung bei gleichzeitigem Abbau der Kleinpumpenkapazität zu steigern. Dafür

133

KAPITEL 5: Evaluation des Propagationssystems

müssen neue Maschinen und Montageplätze für die Großpumpenfertigung beschafft und
in der Fertigungshalle aufgestellt werden. Die Zuständigkeit im Projekt liegt bei der
Fabrikplanung, die zwei Untersysteme hat: Planungstisch und Montage-Konfiguration.
Der Planungstisch ist zuständig für die Positionierung der Maschinen in der Fertigungs-
halle und die Montage-Konfiguration gestaltet die Montage-Arbeitsplätze [CHB+05].
Die Montage hat spezielle Anforderungen (z.B. an die Ergonomie der Montageplätze),
die vom Planungstisch nicht beachtet werden. Deshalb wird die Fabrikplanung fol-
gendermaßen realisiert: der Planungstisch legt das Layout für die Fertigungsmaschi-
nen fest und für die Montage wird nur ein Bereich zugeordnet, der anschließend von
der Montage-Konfiguration im Detail geplant wird. Der dazugehörige Planungsprozess
sieht im ersten Schritt die Fabrikplanung mit Zuordnung des Montagebereichs und im
zweiten Schritt die Montage-Feinplanung vor. Allerdings kann es notwendig sein, diese
Prozessschritte iterativ zu wiederholen, da zum Beispiel der zugewiesene Montagebe-
reich nicht ausreichend ist.

Zur Realisierung dieses Planungsprozesses müssen beide Werkzeuge miteinander
integriert werden. Dafür wurde bei den Schwäbischen Pumpenwerken eine Lösung für
die Digitale Fabrik eingeführt, die alle planungsrelevanten Daten speichert und die Da-
ten den Planungswerkzeugen zur Verfügung stellt. Die beiden Werkzeuge werden über
das Propagationssystem mit der Digitalen Fabrik integriert. Die Aufgabenaufteilung ist
im Anwendungsszenario streng getrennt, sodass eine verteilte Master-Update-Situation
[GHOS96] vorliegt. Bei diesem System können einzelne Objekte oder Einheiten nur in
einem System geändert werden. Dadurch müssen auch keine Konflikte erkannt und
aufgelöst werden, da keine auftreten können (vgl. Abschnitt 3.8).

5.1.2 Digitale Fabrik und ihre Werkzeuge

In diesem Abschnitt wird die Digitale Fabrik eingeführt sowie zwei Planungswerkzeuge:
der Planungstisch und der Montage-Konfigurator.

5.1.2.1 Die Digitale Fabrik

Die Digitale Fabrik unterstützt die Planung von Produktionsprozessen und Produk-
tionsanlagen und stellt damit ein digitales Abbild der Fabrik bereit. Dadurch wird
eine schnellere und kostengünstigere Einführung von neuen Produkten mit einer hohen
Planungssicherheit ermöglicht als ohne digitalem Abbild der Fabrik. Bei der Digitalen
Fabrik steht allerdings nicht die Entwicklung des Produktes im Vordergrund, sondern
die Prozesse, mit denen die Produkte produziert werden, sowie die Planung der Fer-
tigungsressourcen. Diese Ressourcen führen die Prozesse aus. Der Kern der Digitalen
Fabrik besteht aus einer Datenhaltung für Produkte, Prozesse und Ressourcen. Die Da-
ten werden in sogenannten Projekten organisiert. In diesen Projekten werden alle Daten
verwaltet, die zu einem Planungsprojekt gehören. Um diesen Kern kann eine Vielzahl
von Werkzeugen angesiedelt werden, die diese Daten verwenden oder Daten bereitstel-
len, zum Beispiel Werkzeuge zur Planung des Fabriklayouts (z.B. Fabrikplanungstisch
Abschnitt 5.1.2.2) sowie Montage (Abschnitt 5.1.2.3) oder auch Simulationswerkzeu-
ge, die zur Beurteilung der geplanten Fabrik anhand verschiedener Kennzahlen (z.B.

134

5.1. PRAXISTEST

Auftragserfüllung) dienen. Innerhalb des Sonderforschungsbereichs wurde der Delmia
Process Engineer (DPE) von Delmia als Datenhaltungssystem für die Digitale Fabrik
eingesetzt.

5.1.2.2 Fabrikplanungstisch

Der Fabrikplanungstisch [WvB01, WW02] ist eines der Werkzeuge, die im Sonderfor-
schungsbereich 467

”
Wandlungsfähige Unternehmensstrukturen für die variantenreiche

Serienfertigung“ entstanden sind. Dieses Werkzeug dient zur partizipativen Planung des
Fabriklayouts. Das Fabriklayout definiert dabei die räumliche Anordnung von Ressour-
cen in Fabrikhallen. Durch die partizipative Planung soll es auch Planungslaien (z.B.
Werkern) ermöglicht werden, bei Umstrukturierungen oder Neuplanungen mitzuwirken.
Ziel ist dabei eine höhere Akzeptanzrate für die Umstrukturierung bei der Belegschaft
zu erreichen. Diese partizipative Planung wird durch eine intuitive Planungsumgebung
mit einer 2D- und 3D-Ansicht möglich. Die Ressourcen können mittels Klötzen, die
mit einer reflektierenden Oberfläche versehen sind, verschoben werden, was über eine
Kamera erfasst wird.

Die Daten der Ressourcen sind in einer Access Datenbank gespeichert und können
über einen ODBC-Treiber ausgelesen und verändert werden. Die Software des Pla-
nungstischs verfügt über keine API. Ein zu entwickelnder Adapter (siehe auch Ab-
schnitt 3.11) kann deshalb nur eine Datenbankschnittstelle verwenden.

5.1.2.3 Montage-Konfigurator

Auch der Montage-Konfigurator ist, wie der Fabrikplanungstisch (Abschnitt 5.1.2.2)
im Sonderforschungsbereich 467 entstanden. Dieses spezialisierte Werkzeug dient der
Planung und Gestaltung der Montage-Arbeitsplätze [CHB+05].

Die Montage entspricht dem letzten Produktionsschritt bei der Erstellung eines Pro-
duktes, bei dem mehrere Einzelteile kombiniert werden. Um Montage-Arbeitsplätze zu
gestalten und zu planen, werden mehrere Eingabeparameter benötigt. Als Erstes muss
die Fläche, auf der die Montage-Arbeitsplätze positioniert werden können, festgelegt
werden. Diese Fläche wird durch den Fabrikplanungstisch (Abschnitt 5.1.2.2) zuge-
teilt. Außerdem werden Informationen über alle für die Montage relevanten Ressour-
cen benötigt, die durch die Digitale Fabrik bereitgestellt werden. Eine weitere wichtige
Information für die Planung stellen die Montageprozesse dar, die ebenfalls aus der Digi-
talen Fabrik bezogen werden können. Aus diesen Informationen gestaltet der Montage-
Konfigurator die Montage vom Layout der Montage-Arbeitsplätze bis zur Gestaltung
einzelner Arbeitsplätze, bei der auch die Ergonomie betrachtet wird.

5.1.3 Integrationsplattform

Die Integrationsplattform besteht aus einer Digitalen-Fabrik-Lösung und zwei Pla-
nungswerkzeugen (Planungstisch und Montage-Konfigurator, Abbildung 5.1). Die ein-
zelnen Planungswerkzeuge implementieren unterschiedliche Schritte im Planungspro-
zess und sind voneinander abhängig. Das bedeutet, dass der Output eines Planungs-

135

KAPITEL 5: Evaluation des Propagationssystems

Kommunikationsschnittstell
e

Kommunikationsschnittstell
e

Abbildung 5.1: Architektur der Integrationsplattform

werkzeugs Input des anderen ist, da sich die Werkzeuge beim iterativen Planungsprozess
abwechseln.

Die Digitale-Fabrik-Lösung stellt dabei Daten für den gesamten Planungsprozess be-
reit, d.h. es können noch weitere Planungswerkzeuge von der Digitalen-Fabrik-Lösung
mit Daten versorgt werden oder Daten für sie bereitstellen.

Integriert werden die Planungswerkzeuge mit der Digitalen-Fabrik-Lösung (im vor-
liegenden Fall das Produkt von Delmia) anhand des hier konzipierten und implemen-
tierten Propagationssystems. Die Architektur der Integrationsplattform ist in Abbil-
dung 5.1 illustriert. Um die Werkzeuge an das Propagationssystem anbinden zu können,
wurden Adapter (vgl. Abschnitt 3.11) entwickelt. Diese erzeugen aus geänderten Da-
ten Änderungsbeschreibungen und leiten diese über Warteschlangen an das Propaga-
tionssystem weiter. Empfangene Änderungsbeschreibungen müssen analysiert und im
jeweiligen System angewendet werden. Der Adapter für die Digitale-Fabrik setzt sich
aus einer Hilfskomponente und Skripten zusammen. Durch die Realisierung der Hilfs-
komponente mit der Microsoft COM-Technolgie, kann sie einfach durch die Skripte im
Skripting Host eingebunden werden. Die COM-Technologie (Component Object Model)
erlaubt eine Kommunikation zwischen Prozessen, aber auch das Einbinden von DLLs
in Prozessen. Die Skripte laufen im Windows Scripting Host ab und greifen über eine
Schnittstelle auf den Datenkern (PPR-Hub) zu. Die Hilfskomponente übernimmt dabei
die Kommunikation mit den Warteschlangen des Propagationssystems und die Skripte
übernehmen die Analyse und Verarbeitung der Änderungsbeschreibungen. Die Kom-
munikation erfolgt über die vom Warteschlangenprodukt bereitgestellte Kommunikati-
onsschnittstelle. Ein ähnliches Vorgehen wird bei dem Montage-Konfigurator verwen-
det, der seine Daten in Excel verwaltet. Dabei wird dieselbe Hilfskomponente verwendet
und die Analyse und Verarbeitung von Änderungsbeschreibungen mittels VBA-Makros
realisiert. Ebenfalls VBA ermöglicht das Einbinden von COM-Komponenten. Der Pla-
nungstisch hat einen Adapter, der speziell für den Planungstisch entwickelt wurde.
Dieser erkennt Änderungen in der Access DB und gibt sie direkt an die Eingangswar-

136

5.1. PRAXISTEST

teschlange des Propagationssystems weiter. Außerdem liest er Änderungen aus seiner
Warteschlange und wendet die Änderungsbeschreibungen auf die Access Datenbank
an.

Obwohl es sich bei der Digitalen-Fabrik-Lösung (Delmia) um eine Hub-and-Spoke-
Architektur handelt (zentrale Datenbank), ist es nicht sinnvoll, die einzelnen Planungs-
werkzeuge direkt anzubinden. Um die Daten der Werkzeuge mit Delmia zu intergrie-
ren, eignet sich ein Integrationssystem, wie das hier vorliegende Propagationssystems.
Dadurch bleiben die einzelnen Werkzeuge und auch Delmia unabhängig voneinander.
Änderungen in den Datenmodellen können innerhalb des Propagationssystem behan-
delt werden, ohne dass die einzelnen Werkzeuge angepasst werden müssen. Gerade
Digitale-Fabrik-Lösungen sind auf eine hohe Anpassungsmöglichkeit ihrer Modelle aus-
gelegt. Des Weiteren kann durch eine lose Kopplung einzelne Werkzeuge leichter ersetzt
werden.

5.1.4 Integration der Digitalen Fabrik und des Planungsti-
sches

Um den Planungstisch anzubinden, müssen zwei Richtungen realisiert werden: von der
Digitalen-Fabrik zum Planungstisch und zurück. Bei der ersten Richtung werden Da-
ten von der Digitalen-Fabrik exportiert. Beim Export werden zuerst alle Fertigungsres-
sourcen eines Projektes zum Planungstisch übertragen. Durch diesen Ansatz muss der
Planungstisch nicht alle Projekte vorhalten, sondern die Digitale-Fabrik-Lösung kann
sie bei Bedarf bereitstellen. Nachdem die Daten exportiert wurden, wird der Planungs-
schritt im Planungstisch durchgeführt. Danach wird schließlich auch die zweite Rich-
tung benötigt, das Zurückspielen von Änderungen, sodass die Digitale Fabrik wieder
auf dem aktuellen Stand ist. Die Erkennung der Änderungen soll automatisch erfolgen.
Der Zeitpunkt der Erkennung muss allerdings manuell angestoßen werden, da nicht
automatisch erkannt werden kann, wann der Planungsschritt abgeschlossen ist und die
Daten konsistent sind. Bei Planungssystemen können innerhalb des Planungsprozesses
Phasen existieren, in denen die Daten inkonsistent sind und nicht den Erwartungen
der Zielsysteme entsprechen. Ist eine Planung abgeschlossen, befindet sie sich wieder
in einem konsistenten Zustand. Deshalb sollte in den inkonsistenten Phasen nicht syn-
chronisiert werden.

Um Änderungskonflikte zu vermeiden, wurde eine Master-Update-Situation ver-
wendet, bei der nur der Planungstisch Positionen von Ressourcen ändern darf, diese
aber nicht direkt in der Digitalen-Fabrik-Lösung verändert werden. Auf der anderen
Seite ändert der Planungstisch keine weiteren Daten der Ressource.

Es ergaben sich bei der Integration der beiden Systeme folgende Schwierigkeiten, die
über die Schema-Heterogenität hinausgingen. Die erste war die Anordnung und Posi-
tionierung von Ressourcen in beiden Systemen. Die Digitale-Fabrik-Lösung verwendet
eine Ressourcenhierarchie mit relativen Koordinaten zur übergeordneten Ressource.
Der Planungstisch dagegen verwendet eine flache Struktur mit absoluten Koordina-
ten. Der Unterschied zwischen beiden Systemen ist in Abbildung 5.2 dargestellt. Um
die Richtung von der Digitalen-Fabrik aus zu realisieren, müssen absolute Koordina-

137

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.2: Gegenüberstellung der Koordinatensysteme von Digitale-Fabrik-Lösung
und Planungstisch

ten errechnet werden, indem in der Hierarchie von der aktuellen Ressource bis zur
Wurzel durchlaufen wird. Bei der Rückrichtung müssen die Änderungen auf die Posi-
tionen angewendet werden. Hierbei muss zwischen dem Erzeugen einer Ressource und
dem Ändern einer Ressource unterschieden werden. Beim Erzeugen wird die Ressour-
ce zunächst direkt in der Fabrikhalle abgelegt, die die absoluten Koordinaten hat (die
Wurzel). Eventuell kann es notwendig sein, die Ressource in einer untergeordneten Res-
source zu organisieren. Dies kann von Hand oder semi-automatisch erfolgen, indem dem
Planer eine Zuordnung anhand der Koordinaten vorgeschlagen wird. Dabei wird unter-
sucht, in welcher Ressourcenfläche sich die hinzugefügte Ressource befindet. Wird eine
Ressource umstrukturiert müssen neue Koordinaten errechnet werden, die der gleichen
Position entsprechen. Diese Koordinatenermittlung ist notwendig, da die Ressource mit
einer neuen Vaterressource auch ein neues Koordinatensystem bekommt. Während der
Umstrukturierung müssen auch neue Koordinaten ermittelt werden. Bei der Änderung
einer Ressource wird eine relative Verschiebung im Propagationssystem aus Davor- und
Danach-Zustand berechnet. Diese relative Verschiebung ist in beiden Systemen gleich
und kann deshalb auch auf die relativen Koordinaten angewendet werden. Allerdings
kann die Verschiebung einer Ressource dazu führen, dass sie umstrukturiert werden
muss, d.h. einer anderen übergeordneten Ressource zugeteilt wird. Dies kann wieder
semi-automatisch erfolgen. Die Ressource kann der Ressource zugeordnet werden, in
deren Fläche sie sich befindet.

Die zweite Schwierigkeit bestand darin, dass die Koordinatenursprünge an unter-
schiedlichen Positionen sind. Um dies auszugleichen, musste eine einfache Koordina-

138

5.1. PRAXISTEST

Abbildung 5.3: Ermittlung des Translationsvektors

tentranslation durchgeführt werden. Allerdings war die Ermittlung des Translations-
vektors eine Herausforderung, da die Koordinatenursprünge nur implizit vorhanden
sind. Deshalb wurde die Ermittlung folgendermaßen gelöst. Man nimmt einen markan-
ten Punkt (z.B. eine Ecke der Fabrikhalle) und ermittelt die Koordinaten; im zweiten
System wird von diesen Koordinaten bis zum markanten Punkt gemessen. Dies ergibt
den Translationsvektor (siehe Abbildung 5.3). Allerdings muss beachtet werden, dass
der Translationsvektor abhängig von der Integrationsrichtung ist, wobei in die andere
Richtung einfach der Gegenvektor verwendet wird.

5.1.5 Integration der Digitalen-Fabrik und des Montage-Kon-
figurators

Die Digitale-Fabrik-Lösung verwaltet auch die Daten für den Montage-Konfigurator.
Deshalb werden am Anfang eines Montage-Konfigurationsprojektes die notwendigen
Daten aus der Digitalen-Fabrik-Lösung exportiert. Bei den notwendigen Daten han-
delt es sich um alle montagerelevanten Ressourcen und die zur Verfügung gestellte
Fläche. Nachdem der Export von Delmia (Digitale-Fabrik-Lösung) erfolgte und vom
Propagationssystem verarbeitet wurde, können die Daten vom Montage-Konfigurator
importiert werden. Dafür wird von Excel ein VBA-Makro angestoßen. Dieses Makro
holt sich die exportierten Daten aus der entsprechenden Warteschlange und trägt die
Daten in die Excel-Arbeitsmappe ein.

Im Konfigurationsschritt werden die Montage-Arbeitsplätze und die Anordnung der
Arbeitsplätze geplant. Ist dieser Schritt abgeschlossen, werden die Änderungen in die
Digitale-Fabrik-Lösung zurückgespielt.

5.1.6 Schlussfolgerungen

Die im Sonderforschungsbereich erfolgreich durchgeführte Integration der Informati-
onssysteme Digitale-Fabrik-Lösung, Planungstisch und Montage-Konfigurator hat die
Einsetzbarkeit des Propagationssystems in der Praxis unter Beweis gestellt. Teilweise
wurden aber lange Synchronisationszeiten festgestellt, da eine Vielzahl von Objekten
exportiert wurde. Dies ist für die geringe Häufigkeit von Synchronisationen zwischen
den Werkzeugen und die Dauer im unteren Minutenbereich für den Export durchaus
verkraftbar. Allerdings muss angemerkt werden, dass der Export von gesamten Daten-
beständen nicht im Konzept vorgesehen ist und dafür eigentlich andere Technologien

139

KAPITEL 5: Evaluation des PropagationssystemsTestfallGenerator Propagations-managerN=5000Testkontrolle
TestergebnisseProtokoll1 23 45

Abbildung 5.4: Aufbau der Messumgebung

verwendet werden sollten, die für den Austausch von Massendaten geeigneter sind. Die
Performance des Propagationssystems wird im nächsten Abschnitt genauer untersucht.

5.2 Evaluierung der Performance

Um das vorgeschlagene Propagationssystem zu beurteilen, ist es wichtig, die Leistung
dieses Systems zu kennen. Die Leistung wird anhand des Durchsatzes an propagierten
Veränderungen und der durchschnittlichen Verarbeitungsdauer erfasst. Beide Kenn-
zahlen werden in Abhängigkeit von der Größe des Geschäftsobjektes erfasst. Für die
Messungen wurde als Geschäftsobjekt ein Kundenauftrag gewählt, da dieser durch ei-
ne beliebige Anzahl von Auftragspositionen, eine beliebige Größe annehmen kann. Die
Verarbeitungsdauer und der Durchsatz sind abhängig von vielen Größen, die in die-
sem Abschnitt genauer betrachtet werden sollen. Als Erstes wird die Messmethodik
vorgestellt. Danach wird auf die Testumgebung (verwendeter Rechner und Systeme)
und auf die Realisierung der zuverlässigen Broadcast-Warteschlange (vgl. Abschnitt
3.7.2.3) eingegangen. Schließlich werden eine Reihe von Messungen des Systems mit-
samt ihren Ergebnissen vorgestellt, die danach mit Anforderungen aus der Industrie
verglichen werden.

5.2.1 Messmethodik

In Abbildung 5.4 ist die grundsätzliche Messumgebung dargestellt. Die Komponente
Testkontrolle steuert und kontrolliert die Testumgebung. Bevor ein Testfall gestartet
wird, stellt die Testumgebung sicher, dass alle Warteschlangen leer sind, d.h. keine Ein-
träge haben, so dass die Umgebung in einem definierten Zustand ist. Danach startet
die Komponente Testkontrolle die Komponente Testfall-Generator (1), der dann die
Eingangswarteschlange des Propagationsmanagers mit 5000 Änderungsbeschreibungen
füllt (2). Es wurde ein große Anzahl gewählt, damit die Messergebnisse genauer sind
und eventuelle Ausreißer nicht so stark ins Gewicht fallen. Nachdem alle Nachrichten

140

5.2. EVALUIERUNG DER PERFORMANCE

erzeugt wurden, wird ein Protokoll geschrieben, welches die Statistik über die erzeug-
ten Nachrichten enthält (3). Wurden diese Aufgaben erledigt, kann der Propagations-
manager durch die Testkontrolle gestartet werden (4). Dieser findet nun eine volle
Eingangswarteschlange vor, die er abarbeitet. Dadurch wird sichergestellt, dass der
maximale Durchsatz tp ermittelt wird. Dieser ergibt sich aus dem Zeitpunkt ts (Verar-
beitungsstart der ersten Änderung), dem Zeitpunkt te (Verarbeitungsende der letzten
Änderung) und n der Anzahl von Änderungen:

tp =
n

te − ts
(5.1)

Um sicherzustellen, dass keine Effekte, wie zum Beispiel das Laden von Klassen,
das Testergebnis beeinflussen, werden die ersten 50 Änderungsnachrichten nicht berück-
sichtigt, d.h. der Propagationsmanager setzt die Messungen zurück. Hat der Propaga-
tionsmanager alle Änderungsnachrichten abgearbeitet, protokolliert er die Ergebnisse
in einer Datei (5).

Um eine hohe Qualität der Testergebnisse zu garantieren, wird ein solcher Test
dreimal wiederholt und die Ergebnisse gemittelt, nachdem eventuelle Ausreißer (mehr
als 20% Abweichung) entfernt wurden. Durch die Protokollierung der Ausgaben jeder
beteiligten Komponente können aufgetretene Fehler erkannt werden.

5.2.2 Testumgebung

Der Performancetest wurde auf einem Zweiprozessor Intel-Xeon-System mit je 2 Giga-
hertz und einem Hauptspeicher von 2 Gigabyte durchgeführt. Implementierungssprache
war Java 1.5, die auch die Laufzeitumgebung stellte. Als Warteschlangensystem wur-
de IBM Websphere MQ 5.7 verwendet, auf das mit dem Java Message Service (JMS)
zugegriffen wurde. Für das Parsen von XML wurde Apache-Xerces 2.6.2 und für die
Transformation mittels XSLT und XQuery1 wurde Saxon 8.1.1 eingesetzt. Für die Er-
zeugung von SOAP-Nachrichten für den Aufruf von externen Datendiensten wurde
SAAJ (SOAP with Attachments API for Java) in der Version 1.2.1 verwendet.

5.2.3 Realisierung der zuverlässigen Multicast-Warteschlange

Da die zuverlässige Multicast-Warteschlange, so wie sie in Abschnitt 3.7.2.3 eingeführt
wurde, nicht von den gängigen Warteschlangen-Herstellern unterstützt wird und auch
nicht in JMS angedacht ist, wurde eine Simulation implementiert. Sie ist durch eine
Nachricht pro Multicast-Empfänger gekennzeichnet. Dies bedeutet aber, dass z.B. bei
einer 1-zu-5-Abhängigkeit mit 5 Multicast-Empfängern auch 5 Nachrichten verschickt
werden müssen, was eine langsamere Ausführung zur Folge hat.

1XQuery wurde allerdings in diesem Test nicht eingesetzt.

141

KAPITEL 5: Evaluation des Propagationssystems

5.2.4 Testfälle

Um die Propagationsumgebung zu beurteilen, werden Änderungsnachrichten unter-
schiedlichster Größe erzeugt. Diese Änderungsnachrichten stellen Änderungen eines
Geschäftsobjektes Kundenauftrag dar. Dieser kann erstellt, gelöscht oder geändert wer-
den. Bei der Änderung können zum Beispiel die Adresse des Kunden angepasst werden
oder Auftragspositionen storniert werden. Die Geschäftsobjektgröße wird hauptsächlich
durch die Anzahl von Auftragspositionen reguliert. Ausnahme hiervon sind die kleinen
Größen (200 bzw 500 Bytes), da hier selbst ohne Positionen die Geschäftsobjekte noch
größer als die angestrebte Größen sind. Deshalb wurden weitere Informationen des
Kunden weggelassen. Daraus folgt, dass Änderungsbeschreibungen mit 200 und 500
Bytes in der Praxis eher selten vorkommen dürften. Größen ab 1000 sind realistischer.
Die oberen Grenzen der Tests sind bei 10000 und 20000 Bytes. Letztere erreicht 46
Auftragspositionen. Die Änderungen werden mit den drei Änderungsarten (create, up-
date und delete) verschickt, wobei sich bei der Änderungsart update noch die Größe
der Änderungsbeschreibung verdoppelt, was mit den zwei mitgegebenen Zuständen
zusammenhängt (vgl. Abschnitt 3.2.2).

Da es sich um ein Propagationssystem für das heterogene Umfeld handelt, sollte
die propagierte Änderungsbeschreibung sich von der empfangenen unterscheiden (He-
terogenität). Die Transformation verändert die Namen der Bezeichner und passt die
Struktur an, indem die Hierarchie der Elemente verändert wird. Außerdem wird die
Summe des Einkaufs berechnet, welche sich aus den einzelnen Mengen und Einzelprei-
sen aufsummiert über alle Auftragspositionen ergibt.

Das Transformationsskript wurde in XSLT 2.0 entwickelt und transformiert den
Kundenauftrag zum CustomerOrder.

Wenn nicht anderes angegeben, so wird mit einer Beschränkung von maximal 10
Propagationsprozessen zu jedem Zeitpunkt gearbeitet. Die Cache-Hitrate wird konstant
auf 100 Prozent gehalten, da eine Vergleichbarkeit nur durch einen konstanten Wert
gewährleistet ist und dieser durch die unterschiedlichsten Testfälle nur schwer einhalt-
bar ist, wenn es sich nicht um die zwei extremen Werte 0 oder 100 Prozent handelt.
Die Hitrate sagt aus mit wieviel Prozent der Cache Metadaten (z.B. Propagations-
skript) liefern konnte und nicht auf das Repository zurückgegriffen werden musste. Die
Hitrate wird im Testfall 5 untersucht. Die Propagationsskripte befinden sich nicht im
Debug-Modus (vgl. Abschnitt 3.5.3.2), d.h. die Überprüfung auf Schema-Konformität
der propagierten Änderungen findet nicht statt.

Im Folgenden werden neun Testfälle vorgestellt, die zeigen, welche Performance das
System unter verschiedenen Bedingungen aufweist.

5.2.4.1 Testfall 1: Update-Häufigkeit

Das Ziel von Testfall 1 ist die Ermittlung des Einflusses der Update-Häufigkeit auf die
Performance. Die Änderungsart Update stellt eine besondere Rolle im Propagations-
system dar, da diese Änderungsart zwei Zustände hat (vgl. Abschnitt 3.2.2). Dies hat
zur Folge, dass beim Parsen und beim Transformieren mehr Daten verarbeitet werden
müssen. Da das Schema für beide Zustände gilt, muss jeder Zustand überprüft werden.

142

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.5: Update-Häufigkeit und ihr Einfluss auf den Durchsatz

In der Realisierung des Propagationssystems werden beide Zustände in einem XML-
Dokument abgebildet. Das bedeutet, dass dieses XML-Dokument zuerst geparst und
die beiden Zustände extrahiert werden. Danach kann jeder Zustand validiert werden.
Das Validieren von DOM-Bäumen wird von DOM-Level-3 unterstützt. Da aber die
XML-Werkzeuge (z.B. XQuery-Engine) zum Zeitpunkt der Messung nur DOM-Level-2
unterstützten, muss das Parsen von DOM-Bäumen simuliert werden, indem der Baum
serialisiert und geparst wird. Dies führt allerdings zu Performanceeinbußen.

Es lässt sich zur Update-Häufigkeit anmerken, dass die Änderungsart update bei
Stammdaten in den meisten Fällen häufiger auftritt als die beiden anderen Änderungs-
arten (create und delete). Diese Aussage gilt allerdings nur für Stammdaten (z.B. Kun-
de). Bei Bewegungsdaten (z.B. Kundenauftrag) finden weniger Updates statt. Um den
Einfluss der Update-Häufigkeit zu untersuchen, wurden drei Fälle ausgewählt. Im ersten
Fall wird eine Update-Häufigkeit von 50% verwendet, wobei sich der Rest gleichmäßig
auf creates und deletes verteilt. Der zweite Fall untersucht 70% und der dritte 90%.
Das verwendete Propagationsskript ist ein einfaches und setzt sich aus einem Input,
einer Transformation und einer Propagation zusammen.

Die Ergebnisse der Untersuchung sind in zwei Diagrammen dargestellt, die den
Einfluss auf den Durchsatz (Abbildung 5.5) und die Prozesszeiten (Abbildung 5.6)
vermitteln. Letztere repräsentiert die Zeit, die der Propagationsprozess braucht, um
ein Propagationsskript abzuarbeiten.

Es fällt auf, dass der Durchsatz im Messbereich logarithmisches Verhalten hat,
denn die Kurve ist linear in einem Diagramm mit einer logarithmischen Skala, d.h. die
Auswirkungen werden bei größerer werdenden Geschäftsobjekten geringer. Die Pro-
zesszeiten haben im Messbereich dagegen ein lineares Verhalten, was aus den erfassten
Messwerten geschlossen werden kann. Die Kurven laufen beim Durchsatz-Diagramm bei
ansteigender Geschäftsobjektgröße zusammen, d.h. der Einfluss der Update-Häufigkeit
wird geringer. Bei den Prozesszeiten gehen die Kurven auseinander, d.h. der Einfluss
wird mit steigender Geschäftsobjektgröße stärker.

143

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.6: Update-Häufigkeit und ihr Einfluss auf die Prozesszeiten

Zu den möglichen Verbesserungen gehört das Umstellen auf XML-Werkzeuge, die
DOM-Level-3 unterstützen, welche zum Zeitpunkt der Messung aber noch nicht zur
Verfügung standen.

Für die nachfolgenden Tests wurde der Fall 70-30 gewählt, da von einer leicht
höheren Update-Häufigkeit ausgegangen wurde.

5.2.4.2 Testfall 2: Begrenzung der nebenläufigen Propagationsprozesse

Ziel dieses Testfalls war die Ermittlung des Einflusses der Prozessbegrenzung auf die
Performance. Das Propagationssystem verfügt über einen Prozesspool, der Propagati-
onsprozesse zur Verfügung stellt. Ein solcher Propagationsprozess ist als Thread reali-
siert. Dadurch können Ressourcen, wie Repository-Verbindung und Warteschlangenma-
nager, wiederverwendet werden. Ebenfalls wird hier die maximale Anzahl der Prozesse
beschränkt und dadurch können Überlastsituationen verhindert werden, bei denen die
Gesamtleistung drastisch abnimmt.

Der Test wurde in zwei Unterfälle unterteilt. Zuerst wurde gemessen, wie sich das
System verhält, wenn ein Propagationsprozess pro Änderung gestartet wird (siehe Ab-
bildungen 5.7 und 5.8). Um die Last zu erhöhen, wurden im zweiten Unterfall 5 Prozesse
pro Änderung gestartet (Abbildungen 5.9 und 5.10). Bei diesem Fall wird die Ände-
rung an 5 verschiedene Zielsysteme propagiert. Jeder dieser Unterfälle wurde mit 5
Prozessbegrenzungen gemessen: maximal 1, 5, 10, 15 und 20 Prozesse gleichzeitig. Für
das Propagationsskript wurde dasselbe Skript wie in Testfall 1 verwendet, d.h. eine
Transformation und eine Propagation. Bei der Transformation handelt es sich um die
Standardtransformation, wie in Abschnitt 5.2.4 beschrieben wurde. Es wurde die 70-30
Verteilung der Update-Häufigkeit von Testfall 1 verwendet.

Was im Unterfall 1 zuerst auffällt, ist dass mit zunehmender Anzahl von Prozessen
der Performancegewinn beim Durchsatz (Abbildung 5.7) abnimmt. Der größte Perfor-
mancegewinn wird noch von einem Prozess auf fünf Prozesse erreicht. Der Performan-

144

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.7: Einfluss der Prozessbegrenzung auf den Durchsatz (1 Prozess pro Ände-
rung)

Abbildung 5.8: Einfluss der Prozessbegrenzung auf die Prozesszeiten (1 Prozess pro
Änderung)

145

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.9: Einfluss der Prozessbegrenzung auf den Durchsatz (5 Prozesse pro
Änderung)

cegewinn sinkt auch bei der Zunahme der Größe des Geschäftsobjektes, das geändert
wird. Im Gegensatz dazu nehmen die Prozesszeiten in den hohen Prozessbegrenzun-
gen kaum mehr zu. Dies könnte damit zusammenhängen, dass sich das System durch
das Starten eines Prozesse pro Änderung selbst reguliert, da nicht alle frei verfügbaren
Prozesse genutzt werden können.

Bei Unterfall 2 mit 5 gestarteten Prozessen pro Änderung ist das Ergebnis ähn-
lich, nur dass die Performance in diesem Fall leicht geringer ausfällt als im Unterfall 1.
Das Durchsatzverhalten ist dabei in Abbildung 5.9 und die Prozesszeiten in Abbildung
5.10 dargestellt. Der große Abstand beim Durchsatz zwischen den 1 und 5 Prozessbe-
grenzungen, kommt dadurch zustande, dass bei 1 die Prozessbegrenzung unterhalb der
Anzahl der zu startenden Prozessen pro Änderung ist.

Für die nachfolgenden Testfälle wird eine Prozessbegrenzung von 10 Prozessen ver-
wendet, da diese einen guten Durchsatz bei akzeptablen Prozesszeiten hat.

5.2.4.3 Testfall 3: Anzahl der Transformationen

Ziel dieses Testfalls ist die Ermittlung des Einflusses der Transformationsanzahl pro
Propagationsprozess auf die Gesamtperformance des Systems. Wichtig hierbei waren
nicht die einzelnen Transformationszeiten, sondern wie sich mehrere Transformationen
auf die gesamte Prozesszeit und auf den Durchsatz auswirken, da diese Werte entschei-
dend für die Integration sind. In einem Propagationsskript können vom Empfang bis
zum Senden der Änderungen mehrere Transformationen ausgeführt werden. Dies ist
dadurch begründet, dass die Komplexität der einzelnen Transformationen verringert
werden soll, d.h. mehrere einfache Transformationen statt einer komplexen. Ein weite-
rer Grund ist ein allgemeines Zwischenformat, das als Grundlage für die Integration mit
den einzelnen Systemen verwendet wird. Die Transformationen werden beschleunigt,
da im Propagationssystem ein internes Format verwendet wird (Abschnitt 3.4.2), wo-

146

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.10: Einfluss der Prozessbegrenzung auf die Prozesszeiten (5 Prozesse pro
Änderung)

durch die Zustände zwischen den einzelnen Transformationen nicht serialisiert werden
müssen. Das interne Format des Prototypen ist DOM-Level-2.

In diesem Testfall wurden 5 Fälle untersucht: 1-5 Transformationen. Den Sonder-
fall

”
keine Transformation“ wurde hier nicht untersucht, da für das Propagationssystem

von einem heterogenen Umfeld und nicht von einem homogenen ausgegangen wird. Das
Propagationsskript entspricht dem der vorangegangenen Testfälle bis auf die Anzahl
der Transformationen. Das heißt, es enthält eine Input-Deklaration, 1-5 Transformati-
onsbefehle und eine Propagation. Die Transformationen sind so definiert, dass sie zwi-
schen Input- und Output-Format hin und her transformieren. Als weitere Parameter
der Messungen wurden wieder die 70-30-Verteilung der Update-Häufigkeit (Abschnitt
5.2.4.1), die Begrenzung auf 10 Prozesse und die Cache-Hitrate 100% verwendet.

Als Ergebnis lässt sich anmerken, dass beim Durchsatz (Abbildung 5.11) bei größer
werdenden Geschäftsobjekten der Einfluss der Transformationsanzahl abnimmt. Bei
den Prozesszeiten (Abbildung 5.12) nimmt der Einfluss dagegen zu. Greift man nun
wieder die Geschäftsobjektgröße von 1000 Bytes heraus, so ergibt sich bei 1 Transfor-
mation einen Durchsatz von 19,7 Prozesse pro Sekunde, während sich bei 5 Transfor-
mation ein Durchsatz von 10,7 ergibt, d.h. fast halbiert. Aber dennoch ist der Einfluss
geringer als man annimmt. Die Prozesszeiten sind dagegen 325 ms und 915 ms, was
dem dreifachen entspricht. Bei einer mittleren Geschäftsobjektgröße von 5000 Bytes
beträgt der Durchsatz 11 Prozesse pro Sekunde bei 1 Transformation und 7 Prozesse
bei 5 Transformationen, was ungefähr 36% weniger Durchsatz bedeutet. Bei den zwei
Werten (1000 und 5000) in Bezug auf den Durchsatz fällt schon die Einflussverkleine-
rung auf, die auch in Abbildung 5.11 zu erkennen ist. Die Prozesszeiten sind bei 5000
Bytes 888 ms und 1423 ms, was 37% entspricht. Dies lässt sich dadurch erklären, dass
zwischen den Kurven sich der Abstand kaum verändert, aber der prozentuale Einfluss
geringer wird bei höheren Werten.

147

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.11: Einfluss der Transformationsanzahl auf den Durchsatz

Abbildung 5.12: Einfluss der Transformationsanzahl auf die Prozesszeiten

148

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.13: Einfluss der Bedingungsanzahl auf den Durchsatz

5.2.4.4 Testfall 4: Anzahl der Bedingungen

Testfall 4 ist dem Testfall 3 ähnlich. Allerdings ist hier das Ziel, den Einfluss der Be-
dingungsanzahl im Propagationsskript zu messen. Diese Bedingungen treten dann auf,
wenn in bestimmten Fällen unterschiedliche Transformationen und Propagationen aus-
geführt werden müssen oder wenn nur bei bestimmten Werten propagiert werden soll.
Das entspricht der sogenannte Filter-Funktionalität, die durch bedingte Ausführung
realisiert werden kann. Als Propagationsskript wurde das Standardpropagationsskript
um die Anzahl von Bedingungen (maximal 4) erweitert. Die Bedingungen sind so
gewählt, dass bei dem gegebenen Input der Pfad so durchlaufen wird, dass einmal
transformiert und propagiert wird. Die einzelnen Bedingungen beziehen sich auf das
Datum des Auftrags, wobei immer ein bestimmter Wert extrahiert und mit einer Zahl
verglichen wird. Das heißt für die Bedingungen 1-4:

1. Extraktion des Jahres und Gleichheitsvergleich

2. Extraktion des Monats und Gleichheitsvergleich

3. Extraktion des Tags und Gleichheitsvergleich

4. Extraktion des Tags und Ungleichheitsvergleich.

Der Einfluss auf die Performance hat sich als äußerst gering herausgestellt und diese
machen sich nur im mittleren Bereich bemerkbar. Der Einfluss auf den Durchsatz ist in
Abbildung 5.13 und der Einfluss auf die Prozesszeiten ist in Abbildung 5.14 dargestellt.
Der geringe Einfluss lässt sich auf das Vorliegen der Änderungsnachricht im internen
DOM-Format zurückführen.

149

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.14: Einfluss der Bedingungsanzahl auf die Prozesszeiten

5.2.4.5 Testfall 5: Cache-Hitrate

In diesem Testfall soll der Einfluss der Verwendung eines Cache auf die Performance
des Systems ermittelt werden. Durch den Cache können Zugriffe auf die Datenbank
des Repositories verhindert werden und die Zugriffszeiten auf die Metadaten verkürzen
sich. Dabei spielt die erreichte

”
Hitrate“ ein große Rolle. Sind viele Abhängigkeiten

vorhanden, dann können nicht alle Abhängigkeiten im Cache vorgehalten werden und
es wird eine niedrige Hitrate erreicht. Dies kommt durch das Fehlen und Austauschen
von Inhalten des Cache zustande.

Die Untersuchung unterteilt sich in verschiedene Hitraten, die zwischen den zwei
Extremen 0% und 100% liegen. Diese zwei Extreme repräsentieren

”
kein Cache“ und

”
ausreichend großer Cache“. Für die anderen Testreihen wurden 25%, 50% und 75% als

Hitrate angestrebt. Die angestrebte Hitrate ist die Hitrate, die für den Test vorgesehen
wurde und die reale Hitrate ist die, die durch den Cache-Manager festgestellt wurde.

Bei der theoretischen Hitrate von 25% wurde schließlich eine Hitrate von 28%
erreicht. Diese wurde durch 4 verschiedene Abhängigkeiten realisiert, die jeweils auf
Änderungsbeschreibungen mit einem System-GOTyp-Paar reagieren. Die Verteilung
wurde auf 25% pro Änderung festgelegt.

Bei einer angestrebten Hitrate von 50% wurde effektiv 46% erreicht. Hier wurden
zwei verschiedene Änderungen mit je einer Abhängigkeit realisiert. Jede der zwei Ände-
rungen kommt mit einer Wahrscheinlichkeit von 50% vor. Die angestrebte Hitrate von
75% wurde ebenfalls durch zwei Änderungen mit Abhängigkeiten erreicht. Diesmal
wurde eine Verteilung der beiden Änderungen von 97% der einen Änderung und 3%
der anderen Änderung festgelegt. Effektiv wurde hierbei eine Hitrate von 77% erreicht.

Für alle Abhängigkeiten wurde das Standardpropagationsskript wie bei den ande-
ren Test verwendet. Das bedeutet für die Transformationsskripte, dass auch die Stan-
dardtransformation verwendet wurde. Es wurden sowohl der Durchsatz als auch die
Prozesszeiten ermittelt.

150

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.15: Einfluss der Cache-Hitrate auf den Durchsatz

Abbildung 5.16: Einfluss der Cache-Hitrate auf die Prozesszeiten

151

KAPITEL 5: Evaluation des Propagationssystems

Die beiden Messungen Durchsatz (Abbildung 5.15) und Prozesszeiten (Abbildung
5.16) ergaben, dass der prozentuale Einfluss bei steigender Geschäftsobjektgröße gerin-
ger wird. Beim Durchsatz ist dies auch beim realen Einfluss deutlich zu sehen. Bei klei-
nen und mittleren Größen des geänderten Geschäftsobjektes tritt ein optimaler Einfluss
erst bei sehr hohen Werten ein, dann aber mit sehr großen Performancesteigerungen.
Im Umkehrschluss bedeutet es, dass die Zugriffszeiten bei kleinen Geschäftsobjekten
einen großen Einfluss haben.

Schaut man sich das Verhalten bei einer Geschäftsobjektgröße von 1000 Bytes ge-
nauer an, so wird bei 0% ein Durchsatz von 7,2 Änderungen pro Sekunde erreicht und
bei 100% 19,71 Änderungen pro Sekunde, d.h. der Durchsatz erhöht sich um das 2,66-
fache. Betrachtet man dagegen 10000 Bytes, so ergeben sich Durchsätze von 4,6 zu
7,71 Änderungen pro Sekunde, d.h. der Durchsatz steigert sich um das 1,67-fache, was
deutlich geringer ist als die oben erreichte Performancesteigerung.

Die Cache-Hitrate hat Einfluss auf die Prozesszeiten, da der Propagationsprozess
die Metadaten, die er benötigt, selber holt.

5.2.4.6 Testfall 6: Vergleich einer 1-zu-N- mit N x 1-zu-1-Abhängigkeiten

Mit Testfall 6 sollen die zwei Arten, eine Änderung an mehrere Zielsysteme zu propa-
gieren gegenübergestellt werden. Einerseits ist es möglich, eine Änderung an N Ziel-
systemen mit N Propagationsskripten zu propagieren, die jeweils eine Propagation
enthalten, d.h. es gibt N 1-zu-1-Abhängigkeiten. Anderseits können die Propagationen
in einem Propagationsskript zusammengefasst werden, sodass eine 1-zu-N-Abhängig-
keit entsteht. Allerdings muss hier erwähnt werden, dass die Semantik im Fehlerfall
eine andere ist (vgl. Abschnitt 3.10.3), da jeder Abhängigkeit eine Transaktionssphäre
zugeordnet ist. D.h. für die beiden Realisierungen, dass im ersten Fall eine Propagation
und im zweiten Fall alle Propagationen im Fehlerfall zurückgesetzt werden.

Die Propagationsskripte wurden so gehalten, dass sie dem jeweiligen Vergleichssze-
nario entsprechen. D.h. für das Szenario mit zwei Zielsystemen, dass bei zwei Propa-
gationsskripten (1-zu-1-Abhängigkeiten) jeweils eine Transformation und eine Propa-
gation enthalten sind. Bei einem Propagationsskript (1-zu-2-Abhängigkeit) existieren
zwei parallele Pfade, die jeweils eine Transformation und eine Propagation enthalten.

Theoretisch gesehen unterscheiden sich die beiden Varianten nur durch die Anzahl
der Lesezugriffe. Bei dem N 1-zu-1-Fall sind es N Zugriffe während es bei dem 1-zu-N-
Fall nur einer ist. Da die zuverlässige Multicast-Warteschlange, so wie sie in Abschnitt
3.7.2.3 eingeführt wurde, nicht vorhanden ist und diese simuliert werden muss, kommen
noch N Schreibzugriffe für die zuverlässige Multicast-Warteschlange hinzu. Um die
beiden Varianten zu vergleichen, wurde der Durchsatz an Änderungen gemessen. Der
seither verwendete Prozessdurchsatz kann hier nicht zum Vergleich herangenommen
werden, da sich die beiden Ansätze durch die Anzahl von Prozessen pro Änderung
unterscheiden. Weiterhin können die Prozesszeiten nicht verwendet werden, da diese
sich anhand der zugeordneten Aufgaben stark unterscheiden würden.

Das Ergebnis der Messung (Abbildung 5.17) ist, dass die 1-zu-N-Variante mit ei-
nem Propagationsskript eine höhere Performance hat als die N x 1-zu-1-Variante mit N
Propagationsskripten. Dieser Vorsprung würde sich noch verringern, wenn – wie oben

152

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.17: Einfluss der Abhängigkeitsart (1-zu-N zu N x 1-zu-1) auf den Durch-
satz

erwähnt – die zuverlässige Multicast-Warteschlange optimiert würde. Betrachtet man
wieder eine mittlere Geschäftsobjektgröße von 1000 Bytes, so ergeben sich folgende
Durchsatzwerte (Änderungen pro Sekunde): 19,19 für eine 1-zu-1-Abhängigkeit, 10,94
für eine 1-zu-2-Abhängigkeit, 8,62 für zwei 1-zu-1-Abhängigkeiten, 5,75 für eine 1-zu-
5-Abhängigkeit und 3,51 für fünf 1-zu-1-Abhängigkeiten. Die beiden Varianten unter-
scheiden sich durch eine 27-prozentige Performancesteigerung bei zwei Propagationen
und eine 64-prozentige Performancesteigerung bei fünf Propagationen.

Lässt man die Transaktionssemantik außer acht, ist die Variante die Propagationen
in einem Propagationsskript zu kombinieren der N-Propagationsskriptvariante vorzu-
ziehen.

5.2.4.7 Testfall 7: Anzahl der wartenden M-zu-N-Prozesse

Ziel dieses Tests war die Messung des Einflusses der wartenden M-zu-N-Prozesse (vgl.
Abschnitt 4.2) auf die Performance (Durchsatz). Wenn mehrere M-zu-N-Prozesse auf
Änderungsbeschreibungen warten, müssen Änderungsbeschreibungen für die Zuord-
nung zu M-zu-N-Prozessen gefiltert werden, was Rechenzeit kostet. Für das Filtern
müssen die Zustände geparst und die PCL-Bedingungen (siehe Abschnitt 3.6.1 und
4.2.4) evaluiert werden.

Die Messungen wurden so durchgeführt, dass jede ankommende Änderungsbeschrei-
bung von jedem M-zu-N-Prozess anhand von System und Geschäftsobjekttyp erwartet
wurde, aber dennoch die Filterbedingungen nicht erfüllt waren. Es wurden Messungen
durchgeführt mit folgender Anzahl von wartenden M-zu-N-Prozessen: 0, 25, 50, 75,
100. Die recht niedrigen Zahlen haben den Hintergrund, dass dieses Konzept nicht so
häufig für die Propagation von Änderungen gebraucht wird. Die M-zu-N-Prozesse wer-
den am Anfang gestartet, was durch die Versendung von neuen Kunden passiert. Der
M-zu-N-Prozess wartet schließlich auf das Eintreffen eines Kundenauftrags. Es werden

153

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.18: Einfluss der wartenden M-zu-N-Prozesse auf den Durchsatz

beim anschließenden Test nur Kundenaufträge verschickt, d.h. jede Änderung ist ei-
ne potenzielle Änderung für die wartenden M-zu-N-Prozesse, die Filterbedingung tritt
aber nie ein, so dass der Prozess nie gestartet wird und so dem System erhalten bleibt
und die Anzahl wartender M-zu-N-Prozesse konstant bleibt.

Schaut man sich die Ergebnisse des Tests in Abbildung 5.18 (Durchsatzverhalten)
an, so stellt man fest, dass der größte Einbruch zwischen 0 und 25 wartenden Prozessen
liegt. Dies ist durch das benötigte Parsen begründet, das einen relativ hohen Zeitbedarf
gegenüber dem relativ kleinen bei der Bedingungsevaluation hat. Weiterhin konnte
festgestellt werden, dass der Einfluss mit steigender Geschäftsobjektgröße abnimmt.

5.2.4.8 Testfall 8: Integration externer Daten

Bei diesem Testfall sollte ermittelt werden, wie sich die in Abschnitt 4.1 eingeführte
Integration von Daten aus Drittsystemen auf die Performance des Gesamtsystems aus-
wirkt. Es wurden ebenfalls die beiden Implementierungsvarianten, schichtenbasierter
Transformationsansatz [HCM05] und Parameterbindung zur Laufzeit (vgl. Abschnitt
4.1.6.1), verglichen.

Gemessen wurde mit drei unterschiedlichen Propagationsskripten: keine Einbindung
von externen Daten, 1 und 2 externe Datenanbindungen. Um die Messungen durch-
zuführen, wurde wieder die Propagation von Kundenaufträgen verwendet. Das externe
System liefert den aktuellen Kreditstand (Datenanbindung 1) und die Kreditobergren-
ze (Datenanbindung 2) des Kunden. Diese sollen dann in den Kundenauftrag einge-
tragen und an das Zielsystem verschickt werden. Es gibt folgende Transformationen
in den Propagationsskripten: Zugriffsberechtigung, Anfragen erzeugen und Integration
der Ergebnisse mit der Änderungsbeschreibung.

Das externe System muss zuerst die Anfrage entpacken und dann die Zugriffsberech-
tigung überprüfen. Die Tabelle, welche die Zugriffsberechtigungen enthält, besteht aus
100 Einträgen. Ist diese Überprüfung erfolgreich, so wird die enthaltene SQL-Anfrage

154

5.2. EVALUIERUNG DER PERFORMANCE

Abbildung 5.19: Einfluss der Integration von externen Daten auf den Durchsatz

ausgeführt und das Ergebnis in XML verpackt. Dabei wird auf eine Kundentabelle
zugegriffen, die 1000 Einträge hat. Das Ergebnis wird schließlich an das Propagations-
system zurückgesendet.

Außerdem wurden in den Messungen die zwei vorgestellten Arten, um Datendienste
aufzurufen verglichen (vgl. Abschnitt 4.1.6.1): Transformationsansatz mit Schichten
(Schicht) und Paramaterbindungsansatz zur Laufzeit (Parameterbindung).

Die Messungen ergaben, dass der Durchsatz (Abbildung 5.19) bei niedriger Geschäfts-
objektgröße stark einbricht. Allerdings wird davon ausgegangen, dass durch die hohen
Wartezeiten der Durchsatz verbessert werden kann, indem die maximale Anzahl von
Prozessen bei dem Zugriff auf externe Daten kurzfristig hoch gesetzt wird. Dies muss
allerdings noch durch eine entsprechende Implementation und Messungen evaluiert
werden.

Die Prozesszeiten (Abbildung 5.20) sind bei dem Zugriff auf externe Daten deutlich
länger, verhalten sich aber weitgehend konstant im unteren Bereich. Dies ergibt sich
durch die ausschlaggebenden Kommunikationszeiten mit dem Drittsystem. Da zu die-
sen Zeiten das Propagationssystem auch nicht ausgelastet ist, könnten in diesen Fällen
neue Prozesse gestartet werden, die über die Prozessbegrenzung hinausgehen, was dann
zu einem höheren Durchsatz führen würde.

5.2.4.9 Testfall 9: Einhaltung der Änderungsreihenfolge

Im Testfall 9 wurde der Einfluss der Reihenfolgeeinhaltung (siehe Abschnitt 3.9) auf die
Performance ermittelt. Es wurde die FIFO-Propagationsordnung verwendet, wobei der
Test so ausgelegt war, dass alle Änderungsbeschreibungen geordnet werden müssen.
Die Messungen ergaben für die Reihenfolgeeinhaltung – bis auf feststellbare Warte-
zeiten (längere Prozesszeiten) – keinen Einfluss auf den Durchsatz. Dies ist dadurch
begründet, dass ein wartender Prozess keine Belastung für den Prozessor darstellt und
dadurch die anderen Prozesse schneller abgearbeitet werden können.

155

KAPITEL 5: Evaluation des Propagationssystems

Abbildung 5.20: Einfluss der Integration von externer Daten auf die Prozesszeiten

5.2.5 Zusammenfassung

In diesem Abschnitt wurden mehrere Testfälle untersucht. Bei einem Update wird die
Änderungsbeschreibung durch zwei Zustände größer und damit auch die Performance
kleiner. In Testfall 1 wurde der Einfluss der Update-Häufigkeit auf die Performance
untersucht. Dabei stellte sich heraus, dass der Einfluss auf die Prozesszeit mit höher
werdenden Geschäftsobjektgrößen stärker wird und beim Durchsatz abnimmt. Bei Test-
fall 2 (Prozessbegrenzungen) wurde festgestellt, dass ein Deadlock auftritt, wenn die
Prozessbegrenzung kleiner ist als die Anzahl der gestarteten Prozesse pro Änderung.
Um dies zu verhindern, musste der Ablauf des Prozessmanagers angepasst werden, so
dass die Propagationsprozesse erst nach der Transaktion gestartet werden. Während
die Anzahl der Transformationen pro Propagationsskript einen merklichen Einfluss be-
sitzt, hat die Anzahl der Bedingungen keinen ausschlaggebenden Einfluss. Der Einfluss
der Cache-Hitrate nimmt mit größeren Geschäftsobjekten ab und wirkt sich erst bei
großen Hitraten aus. Außerdem wurde festgestellt, dass 1 Propagationsskript (1-zu-
N-Abhängigkeit) N Propagationsskripten (1-zu-1-Abhängigkeit) vorzuziehen ist, wenn
man die Transaktionssemantik außer acht lässt.

5.2.6 Vergleich mit Anforderungen aus der Industrie

Mit den Messungen in diesem Kapitel sollte ein erster Eindruck von der Leistungsfähig-
keit des Propagationssystems ermittelt werden. Diese Werte sollen nun mit gängigen
Werten aus der Industrie verglichen werden. Nimmt man zum Beispiel die Verkaufszah-
len von Mercedes-Benz, Smart und Maybach zusammen (573.900 verkaufte Autos im
Jahr 2005 [Süd05]), so ergibt das ungefähr 573.900 Kundenaufträge. Rechnet man dies
auf eine Sekunde herunter, ergeben sich ungefähr 0,03 Kundenaufträge pro Sekunde (bei

156

5.3. VERGLEICH MIT EAI-PRODUKTEN

einer 5-Tage-Woche und Dreischichtbetrieb)2. Schaut man sich die Testergebnisse an,
so ist dies ein Durchsatz, der selbst durch Einbindung von zwei Drittsystemen erreicht
werden kann. Schwer abzuschätzen ist, wie viele Produktionsaufträge aus den Kunden-
aufträgen entstehen und welche Belastung hieraus entsteht. Ein Produktionsauftrag ist
ein interner Auftrag zur Herstellung eines Produktes. Bei der Beziehung zwischen Pro-
duktionsaufträgen und Kundenaufträgen handelt es sich um eine M-zu-N-Beziehung.
Weitaus höhere Zahlen werden Daten aus MDE- und BDE-Systemen (Maschinenda-
tenerfassung und Betriebsdatenerfassung) ergeben. Bei der Maschinendatenerfassung
werden Daten von Produktionsressourcen und bei der Betriebsdatenerfassung Rückmel-
dungen zu aktuell abgearbeiteten Produktionsaufträgen erfasst. Die anfallenden Daten
bei der BDE hängen hauptsächlich von der Anzahl von Meldepunkten und Produkti-
onsaufträgen ab. Diese Zahl lässt sich wiederum schwer abschätzen, da keine genauen
Zahlen zu Produktionsaufträgen vorliegen. Deswegen wird eine grobe Abschätzung
durchgeführt. Gehen wir aber von 30 Produktionsaufträgen pro Kundenauftrag und
10 Meldepunkten aus, so ergeben sich 9 Meldungen pro Sekunde. Untersucht man dar-
aufhin die Messungen von z.B. Abbildung 5.5, so stellt man fest, dass dies bis zu einer
Geschäftsobjektgröße von 5000 Bytes erreicht wird. Diese Größe sollte für die Verarbei-
tung von Meldungen ausreichen. Ermittelt man nun die Summe aus Kundenaufträgen,
Produktionsaufträgen und Auftragsmeldungen, so ergibt sich eine leicht höhere Zahl
von 9,93 Propagationen pro Sekunde. Dies wird auch von dem erwähnten Testfall bis
ungefähr 5000 Bytes erreicht. Nimmt man jetzt allerdings noch an, dass 5 Zielsysteme
(vgl. Abbildung 5.17) pro Propagation geändert werden sollen, so reicht die Leistung
des Propagationsmanagers nicht aus und es muss an eine Verteilung (Abschnitt 4.3)
oder schnellerer Hardware gedacht werden. Ebenfalls kritisch ist die Einbindung von
Drittsystemen, da dort der Durchsatzeinbruch durch Wartezeiten begründet ist. Der
Durchsatz müsste aber durch eine intelligente Wahl von Prozessbegrenzungen erhöht
werden können.

5.3 Vergleich mit EAI-Produkten

Es existiert auf dem Markt eine Vielzahl von EAI-Produkten (Enterprise Applica-
tion Integration, vgl. Abschnitt 2.3) bzw. Enterprise-Service-Bus-Produkten (ESB-
Produkte), die die Integration von Informationssystemen ermöglichen. Diese können
für die Entwicklung von Integrationsanwendungen verwendet werden, die meist an-
hand von Prozessen definiert werden, d.h. die Integrationsebene ist vor allem die Pro-
zessebene. Beim Propagationssystem werden allerdings Informationssysteme auf der
Datenebene durch die Weiterleitung von Datenänderungen integriert. Das bedeutet
aber nicht, dass diese Produkte nicht ebenfalls für die Integration von Daten eingesetzt
werden können, was von den Herstellern auch teilweise vorgeschlagen wird. Bei den
Produkten handelt es sich bei den ausgetauschten Daten um Daten ohne bestimmte
Semantik, d.h. es muss sich nicht unbedingt um eine Datenänderung handeln. Im Ver-

2Anmerkung: Kundenaufträge werden nicht im Dreischichtbetrieb angenommen und eingepflegt.
Allerdings trifft es auf die Produktionsdaten zu, die später eingeführt werden und die ein größeres
Aufkommen haben als die Kundenaufträge

157

KAPITEL 5: Evaluation des Propagationssystems

gleich dazu existiert beim Propagationssystem die Semantik, dass ausgetauschte Ob-
jekte Änderungsbeschreibungen von Geschäftsobjekten sind. Die Nachrichten der EAI-
und ESB-Produkte sind außerdem für nur einen Objektzustand gedacht. Durch eine
entsprechende Definition der Nachrichten kann der Transport von zwei Zuständen simu-
liert werden. Allerdings müssen die Transformationsskripte und die Korrektheitsüber-
prüfung entsprechend definiert werden, d.h. sie müssen die Hilfsstruktur kennen und
haben dadurch keine Transparenz in der Verarbeitung. Die Hilfsstruktur mit integrier-
ten Geschäftsobjektzuständen muss schließlich für alle Integrationsanwendungen bzw.
Propagationsskripte definiert werden, was eine große Fehlerquelle darstellt.

Die betrachteten Produkte sind der BizTalk-Server von Microsoft, die SOA-Suite
von Oracle und der Websphere Message Broker von IBM. Dies ist nur eine Auswahl von
EAI-Produkten. Die meisten Produkte sind auf einer abstrakten Ebene sehr ähnlich.
Sie unterscheiden sich in ihren Produkteigenschaften, arbeiten aber auf den gleichen
Prinzipien. Das Produkt, welches von den dreien am meisten abweicht, ist der Web-
sphere Message Broker, da dieser nicht einen reinen Geschäftsprozessansatz hat.

5.3.1 BizTalk

Der BizTalk Server [WML+05, AHH+02, Mic08] ist eine Lösung zur Implementierung
von Geschäftsprozessen. Im Vordergrund steht dabei die Orchestration von Geschäftspro-
zessen, d.h. das Zusammenspiel mehrerer Geschäftsprozesse. Ein Beispiel hierfür ist
der Geschäftsprozess für eine Bestellung, der direkt mit dem Prozess des Lieferan-
ten zusammenarbeitet, der die Kundenaufträge bearbeitet. Die Sprache zur Definition
von Geschäftsprozessen ist XLang. Die Geschäftsprozesse können in BPEL [ACD+03,
Oas07] exportiert oder importiert werden. Allerdings kommt der Entwickler mit der
darunter liegenden Sprache nicht in Kontakt, da er ein graphisches Werkzeug (Orche-
stration Designer) verwendet. Die Geschäftsprozesse basieren auf dem Austausch von
Nachrichten, die mit verschiedenen Technologien kommuniziert werden können (z.B.
Warteschlangen). Nachrichten können mittels Transformationsskripten angepasst wer-
den, die über den BizTalk-Mapper erzeugt werden. Der BizTalk-Mapper ist ein graphi-
sches Werkzeug zur Definition von Transformationen, vergleichbar mit Altova MapFor-
ce. Die Mapping-Definitionen (eigenes Mapping-Format) werden schließlich in XSLT
überführt.

Grundsätzlich kann der BizTalk-Server auch für den Verwendungszweck EAI einge-
setzt werden. In diesem Fall werden mit dem Orchestration Designer keine Geschäftspro-
zesse im eigentlichen Sinn erzeugt, sondern EAI-Anwendungen. Gerade die Vielzahl
von bereitgestellten und verfügbaren Adaptern und Transportmedien ermöglicht den
Einsatz als EAI-Werkzeug.

Vergleicht man jetzt BizTalk-Server mit dem Propagationssystem, so fällt als Erstes
das Anwendungsgebiet auf. Der BizTalk-Server dient zur Integration von Geschäftspro-
zessen sowie EAI. Das Propagationssystem dient zur Datenintegration auf Basis von
Änderungspropagationen. Prinzipiell lassen sich solche Änderungsbeschreibungen auch
mit dem BizTalk-Server austauschen, allerdings ist der BizTalk-Server nicht für diesen
Anwendungsfall spezialisiert. Dies zeigt sich zuerst einmal in der Unterstützung von

158

5.3. VERGLEICH MIT EAI-PRODUKTEN

zwei Zuständen im Propagationssystem. Dies muss direkt im Nachrichtenformat co-
diert werden und der BizTalk-Server bietet keine Transparenz für dessen Behandlung,
d.h. der Mapping-Ersteller muss Wissen sowohl über die Hilfsstruktur als auch über die
Struktur des Zustandes haben. Das Gleiche gilt für die XML Schemas, die ebenfalls auf
der Ebene der Hilfsstruktur definiert werden müssen. Des Weiteren fehlt in BizTalk die
Anwendungstransparenz, d.h. das Quellsystem müsste direkt mit dem jeweiligen Pro-
pagationsskript kommunizieren bzw. ein Integrationsentwickler könnte dies mittels der
spezifischen Konfiguration von Channels simulieren, was jedoch im Propagationssys-
tem automatisch funktioniert. Außerdem werden in BizTalk keine Konflikte behandelt,
was aber durch den hier vorgestellten Ansatz (vgl. Abschnitt 3.8) leicht realisierbar
wäre, da dieser Ansatz auf zwei Zuständen basiert und im Adapter gehandhabt wird.
Ein weiterer Vorteil des Propagationssystems ist die Möglichkeit einer recht einfachen
Darstellung der Propagationsskripte durch die Abhängigkeitsansicht (vgl. Abschnitt
3.7.3.3).

5.3.2 Oracle SOA Suite

Die Oracle SOA Suite [Ora06, Ora07, Ora08] ist ein Produkt, mit dem ebenfalls Ge-
schäftsprozesse realisiert werden können. Im Vordergrund steht die Realisierung ei-
ner Service-oriented Architecture (SOA). Außerdem können Web Services über Orche-
strationen realisiert werden. Die Grundlage für die Orchestration bildet die Sprache
BPEL [ACD+03, Oas07]. Dadurch wird die Verwandschaft zu BizTalk klar. Besonders
erwähnenswerte Technologien sind die Domain Value Maps und Cross Reference Ta-
bles. Mit Domain Value Maps können Werte, wie beispielsweise Abkürzungen auf aus-
geschriebene Worte, abgebildet werden. Cross Reference Tables dienen zum Mapping
der IDs aus unterschiedlichen Systemen. Diese beiden Technologien sind in dem Propa-
gationssystem nicht realisiert, sondern müssen durch Drittsysteme (vgl. Abschnitt 4.1)
eingebunden werden. Dies kann aber in zukünftigen Erweiterungen realisiert werden.

Der größte Unterschied stellt, wie bei BizTalk, das Anwendungsgebiet dar. Die Fo-
kussierung liegt hier auf der Orchestration von Web Services, statt auf der Integration
von Informationssysteme auf der Datenebene. Um Oracle als Datenintegrationssys-
tem einzusetzen, müsste die Anwendungstransparenz aufgegeben werden bzw. durch
zusätzliche Definition von Routing Rules im Oracle Mediator simuliert werden. Des
Weiteren müsste die Hilfsstruktur zusammen mit den beiden Zuständen kodiert wer-
den und XML Schemas und Transformationsskripte könnten nicht auf der Ebene der
Zustände definiert werden. Ebenfalls könnte der hier entwickelte Konflikterkennungs-
mechanismus zum Einsatz kommen, da auch hier Adapter eingesetzt werden, die die
Konflikterkennung realisieren können.

5.3.3 Websphere Message Broker

Der Websphere Message Broker [IBM08b, IBM08a, IBM08c] ist ein Enterprise Service
Bus (ESB) von IBM, wobei es noch zwei weitere ESB-Produkte von IBM gibt. Dieses
Produkt wurde zum Vergleich ausgewählt, da es Websphere MQ verwendet, sowie das

159

KAPITEL 5: Evaluation des Propagationssystems

Propagationssystem.
Das Prinzip von Websphere Message Broker ist, dass man Nachrichtenflüsse (Messa-

ge flows) definiert. Diese entsprechen dem Datenfluss eines Workflows. Diese Nachrich-
tenflüsse basieren auf einer IBM-spezifischen Sprache. Es existieren Quellen und Sen-
ken, Transformationen mit XSLT oder sogenannte Nachrichten-Maps. Die Nachrichten-
Maps können graphisch erstellt werden. Zusätzlich gibt es die Sprache ESQL (Extended
SQL). Sie ist eine Sprache zur Datendefiniton und Manipulation von Daten innerhalb
eines Nachrichtenflusses. Diese Sprache kann zum Beispiel in Berechnungsknoten und
Filterknoten eingesetzt werden. Des Weiteren können Funktionen in ESQL erzeugt
werden, die wiederum in Mappings eingesetzt werden können.

Wie bei den anderen Produkten steht hier im Vordergrund der Austausch von
Nachrichten, die noch keine spezifische Semantik haben. Dies hat zur Folge, dass die
Zustände in einer Nachricht codiert werden müssen, was Auswirkungen auf die Trans-
parenz der Schema-Definition und die Transformation hat. Des Weiteren existiert keine
Integrationsanwendungstransparenz, wie beim Propagationssystem. Das bedeutet, dass
ein Adapter die Integrationsanwendungen kennen muss, während bei dem hier vorge-
stellten Ansatz nur das Propagationssystem bekannt sein muss. Das Propagationssys-
tem verteilt dann selbständig die Änderungsbeschreibungen auf die einzelnen Prozesse.
Der in dieser Arbeit entwickelte Mechanismus zur Konflikterkennung könnte auch hier
zum Einsatz kommen, sofern zwei Zustände verwendet werden. Die Dokumentation
macht keine Aussage über eventuelle Algorithmen zur Einhaltung der Reihenfolge.

5.3.4 Schlussfolgerung

Die hier vorgestellten Produkte lassen sich nur bedingt vergleichen, da hier oftmals die
Integration von Prozessen (Orchestration) im Vordergrund steht und nicht wie im Pro-
pagationssystem die Integration von Daten. Die Kodierung von zwei Zuständen in den
Nachrichten ergibt allerdings Probleme, da dadurch Transparenz aufgegeben werden
muss. Noch problematischer ist die Aufgabe der Integrationsanwendungstransparenz,
d.h. Informationssysteme müssen die Integrationsanwendung kennen bzw. den Propa-
gationsprozess. Für die von den Produkten angestrebte Anwendung ist dies aber nicht
von Nachteil, sondern stellt sich eher als Vorteil heraus. Für ein reines Änderungs-
propagationssystem ist dies aber ein Nachteil, da in diesem Fall die entsprechenden
Propagationsprozesse den angebundenen Informationssystemen unbekannt bleiben und
das Propagationssystem die Verteilung intern regelt. Die Konfliktbehandlung ist von
allen drei untersuchten Systemen nicht vorgesehen. Über die Reihenfolgeeinhaltung
wird in den Systembeschreibungen keine Aussage gemacht. Sie kann deswegen nicht
genauer untersucht werden. Bezüglich der vergleichbaren Punkte sind diese Systeme
also nur bedingt als Propagationssystem einsetzbar, da wichtige Eigenschaften fehlen,
wie die Transparenz der Integrationsanwendung, die Anzahl von Änderungszuständen,
die Einhaltung der Reihenfolge sowie die Konflikterkennung und -auflösung.

160

KAPITEL 6

Schlussfolgerung und Ausblick

In diesem Kapitel werden die wichtigsten Punkte zusammengefasst und Schlussfolge-
rungen aus der Arbeit gezogen. Des Weiteren wird ein Ausblick auf zukünftige For-
schungsarbeiten gegeben, die im Zusammenhang mit der Änderungspropagation für
heterogene Systeme durchgeführt werden könnten.

6.1 Schlussfolgerungen

In dieser Arbeit wurde ein Integrationssystem entwickelt, das Geschäftsobjektänderun-
gen propagiert. Dadurch soll erreicht werden, dass die Daten zwischen den einzelnen
Informationssystemen konsistent bleiben. Konsistenz ist dabei so definiert: Befindet
sich das Gesamtsystem in einem inkonsistenten Zustand und es erfolgen keinerlei ex-
terne Änderungen mehr, die weitere Inkonsistenz verursachen, wird das Gesamtsys-
tem nach einer gewissen Zeit wieder in einem konsistenten Zustand sein, sofern alle
benötigten Abhängigkeiten definiert wurden. Die Zeitdauer bis das Gesamtsystem wie-
der konsistent ist, hängt von folgenden Faktoren ab: Die Dauer bis eine Änderung
in einem Quellsystem erkannt wird, die Warteschlangenlängen vor dem Propagations-
system sowie den Zielsystemen, Verarbeitungsdauer im Propagationssystem und die
Zeitdauer zum Einspielen der Änderung im Zielsystem. Die Technologie Update Propa-
gation von replizierten Datenbanken wurde genauer untersucht (Abschnitt 3.1), da bei
dieser Technologie viele Varianten zur Propagation von Änderungen erforscht wurden
und deshalb gewisse Verfahren auch für ein solches Propagationssystem geeignet sind
(z.B. Lazy Replikation). Die Integration mittels des Änderungspropagationssystems
befindet sich also auf der Datenebene, d.h. es werden Daten miteinander integriert.
Ziel der Arbeit war es die Autonomie der integrierten Informationssysteme soweit wie
möglich beizubehalten und eine hohe Heterogenität zwischen den Systemen zuzulassen.
Die Autonomie wurde durch eine starke Entkopplung der Informationssysteme erreicht.
Die Informationssysteme benötigen keine Kenntnis von anderen Informationssystemen

161

KAPITEL 6: Schlussfolgerung und Ausblick

mit denen sie integriert sind. Des Weiteren kann durch den Einsatz von Adaptoren ihre
Unabhängigkeit vom Änderungspropagationssystem erreicht werden. Die Verwendung
von persistenten und asynchronen Warteschlangen ermöglicht weiterhin eine Entkopp-
lung der Informationssysteme vom Propagationssystem. Die Heterogenität wird durch
Transformation der Änderungen und die Einbindung von Daten aus Drittsystemen über
sogenannte Datendienste (Abschnitt 4.1) überwunden. Weitere wichtige Eigenschaften
eines solchen Propagationssystem sind eine hohe Zuverlässigkeit, die Einhaltung der
Reihenfolge und die Erkennung und Auflösung von Änderungskonflikten.

Die wichtigsten Beiträge der Arbeit sind im Folgenden aufgelistet:

• Die Entwicklung eines Propagationssystems für autonome und heterogene Infor-
mationssysteme auf Basis der Technologie Update Propagation (Abschnitt 3.1).

• Die Definition von Änderungsbeschreibungen (Abschnitt 3.2.2), die der Propaga-
tion von Geschäftsobjektänderungen zwischen heterogenen und autonomen Sys-
temen gerecht werden.

• Die Propagation von zwei Zuständen (vor und nach der Änderung, 3.2.2). Dies
ermöglicht die Berechnung von Änderungsdeltas innerhalb des Propagations-
systems und das Erkennen der Änderungsarten von Implementationsobjekten.
Geschäftsobjekte können aus mehreren Implementationsobjekten bestehen, die
abweichende Änderungsarten haben. Zum Beispiel können bei der Änderung ei-
ner Bestellung Bestellposten hinzukommen oder gelöscht werden.

• Das Quellsystem muss keine Kenntnis haben, in welchen Integrationsanwendun-
gen es teilnimmt oder welche Propagationsskripte für seine Änderungen existie-
ren: Integrationsanwendungstransparenz

• Die Entwicklung der Sprache XML Propagation Definition Language (XPDL,
Abschnitt 3.5) zur Definition von Propagationsskripten.

• Die Sprache Propagation Condition Language (PCL, Abschnitt 3.6.1) auf Basis
von XPath für die Definition von Bedingungen zwischen Zuständen.

• Der Entwickler der Propagationsskripte, Transformationsskripte und Schemas
muss kein Wissen über die Anzahl der Änderungszustände der verarbeiteten
Änderungsbeschreibung haben. Transformationsskripte und Schemas werden für
einen Zustand entwickelt. Dies wird hier Zustandstransparenz bezeichnet.

• Eine Konflikterkennung für Änderungskonflikte auf Basis von Zuständen (Ab-
schnitt 3.8)

• Eine Abhängigkeitsansicht (Abschnitt 3.7.3.3) zur einfachen Erstellung von Pro-
pagationsskripten, die die Abhängigkeiten der einzelnen Geschäftsobjekte/Sys-
teme darstellt.

• Die Definition und Einbindung von Datendiensten für das Propagationssystem
(Abschnitt 4.1).

162

6.2. AUSBLICK

Bei einem Einsatz des entwickelten Propagationssystems innerhalb des Sonderfor-
schungsbereichs, bei dem drei Systeme integriert wurden, hat sich die Praxistauglich-
keit des Ansatzes herausgestellt (Abschnitt 5.1). Die durchgeführte Evaluation der
Performanz (Abschnitt 5.2) sind zu einem positiven Ergebnis gekommen, die sich mit
gängigen Anforderungen der Industrie (Abschnitt 5.2.6) messen lassen können. Aller-
dings muss angemerkt werden, dass die Erkennung von Änderungen in manchen Infor-
mationssystemen schwierig sein könnte, so dass häufig Eingriffe in das System nötig
werden, wie z.B. Skripte anpassen oder neu entwickeln. Allerdings ist das langfristi-
ge Ziel, dass Informationssysteme einen Propagationsstandard unterstützen und damit
die Erkennung von Änderungen direkt im System gehandhabt wird, ohne dass die In-
formationssysteme angepasst werden müssen und die erkannten Änderungen dann an
ein Propagationssystem weitergeleitet werden.

6.2 Ausblick

Der Propagationsmanager kann erweitert werden, um die Technologien ID Mapping
(Cross Reference Tables) und Domain Value Mapping (Abschnitt 5.3.2) zu unterstützen.
Bei Ersterem werden die IDs der unterschiedlichen Systeme aufeinander abgebildet. Das
Domain Value Mapping ermöglicht die Transformation von Werten. Zum Beispiel kann
damit

”
Bundesrepublik Deutschland“ auf

”
BRD“ abgebildet werden und umgekehrt.

Das Mapping von Werten wird bisher im Propagationssystem durch die Einbindung
von Drittsystemen realisiert. Allerdings könnte durch direkte Speicherung der Tabellen
im Repository, die Performanz erhöht werden.

Die zustandsbasierte Konflikterkennung muss in einem solchen Propagationssys-
tem noch genauer erforscht werden. Außerdem könnte die Konfliktauflösung durch so
genannte Merge-Funktionen teilweise automatisiert werden [TTP+95].

Gerade die Erstellung von Transformationen lässt sich durch die Einbindung von
Automatic Schema Matching (Abschnitt 2.10.2) deutlich beschleunigen und vereinfa-
chen. Des Weiteren ist die Untersuchung von Schema-Evolution und deren Auswirkun-
gen auf Transformations- und Propagationsskripten von großem Interesse, wobei das
von Boris Stumm vorgeschlagene System [Stu10] zum Einsatz kommen könnte.

Die Begrenzung der maximal gleichzeitig laufenden Propagationsprozesse kann an-
hand der wartenden Propagationsprozesse (Einbindung von Drittsystemen) intelligent
angepasst werden. Dies führt wahrscheinlich zu einer deutlichen Steigerung des Durch-
satzes bei der Einbindung von Drittsystemen.

Die Umsetzung des gesamten Systems mit SOA-Technologien lässt eine weitere
Verbesserung hinsichtlich Änderbarkeit, Erweiterbarkeit und Einsatzmöglichkeiten des
gesamten Propagationssystems erwarten. Erste Ansätze dazu wurden in [MJHM09]
genauer betrachtet und zusammengestellt.

163

KAPITEL 6: Schlussfolgerung und Ausblick

164

Literaturverzeichnis

[ABF02] Paulo Sergio Almeida, Carlos Baquero, und Victor Fonte. Version
Stamps – Decentralized Version Vectors. In 22nd International Con-
ference on Distributed Computing Systems (ICDS), Seiten 544–551,
Wien, Österreich, 2002.

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron
Goland, Johannes Klein, Frank Leymann, Kevin Liu, Die-
ter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, und
Sanjiva Weerawarana. Business Process Execution Langua-
ge for Web Services – Version 1.1. Specification, Micro-
soft, IBM, Siebel Systems, BEA, SAP, 2003. Verfügbar bei:
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf [30.06.2005].

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, und Vilay Machiraju.
Web Services – Concepts, Architecture and Applications. Springer,
2004.

[ACM00] Paolo Atzeni, Luca Cabibbo, und Giansalvatore Mecca. Database Co-
operation: Classification and Middleware Tools. Journal of Database
Management, 11(1), 2000.

[AFHS95] Oksana Arnold, Wolfgang Faisst, Martina Härtling, und Pascal Sieber.
Virtuelle Unternehmen als Unternehmenstyp der Zukunft? HMD -
Praxis der Wirtschaftsinformatik, (185), September 1995.

[AHH+02] Susie Adams, Dilip Hardas, Akhtar Hossein, Clifford R. Cannon, Rand
Morimoto, Kevin Price, Stephan Tranchida, Bill Martschenko, Rick
Pearson, Tom Lake, Rob Oikawa, Cuneyt Havlioglu, Charlie Kaiman,
und Larry Wall. BizTalk – Unleashed. Sams Publishing, 2002.

165

LITERATURVERZEICHNIS

[AL80] Michel E. Adiba und Bruce G. Lindsay. Database Snapshots. In
Sixth International Conference on Very Large Data Bases, October 1-
3, 1980, Montreal, Quebec, Canada, Proceedings, Seiten 86–91. IEEE
Computer Society, 1980.

[AT89] A. El Abbadi und S. Toueg. Maintaining availability in partitioned rep-
licated databases. ACM Transactions on Database Systems, 14(2):264–
290, 1989.

[ATS+05] Fuat Akal, Can Türker, Hans-Jörg Schek, Yuri Breitbart, Torsten
Grabs, und Lourens Veen. Fine-grained replication and scheduling
with freshness and correctness guarantees. In VLDB ’05: Proceedings
of the 31st International Conference on Very Large Data Bases, Seiten
565–576. VLDB Endowment, 2005.

[BA99] Carlos Baquero und Paulo Sérgio Almeida. Towards efficient time-
stamping for autonomous versioning. In Actas informais do EPCM’99,
Encontro Português de Computação Nómada, 1999.

[BBC+07] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández,
Michael Kay, Jonathan Robie, und Jérôme Siméon. XML Path Lan-
guage (XPath) 2.0. W3C Recommendation, World Wide Web Con-
sortium, 2007.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, und Jérôme Siméon. XQuery 1.0: An XML Que-
ry Language. W3C Recommendation, World Wide Web Consortium,
2007.

[BD94] Philip A. Bernstein und Umeshwar Dayal. An Overview of Reposi-
tory Technology. In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, Seiten 705–713, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[Ber98] Philip A. Bernstein. Repositories and object oriented databases. SIG-
MOD Record, 27(1):88–96, 1998.

[BF97] Hans-Jörg Bullinger und Klaus-Peter Fähnrich. Betriebliche Informa-
tionssysteme – Grundlagen und Werkzeuge der methodischen Softwa-
reentwicklung. Springer Verlag, 1997.

[BG82] Philip A. Bernstein und Nathan Goodman. Concurrency control algo-
rithms for multiversion database systems. In PODC ’82: Proceedings
of the first ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, Seiten 209–215, New York, NY, USA, 1982. ACM
Press.

166

LITERATURVERZEICHNIS

[BG83] Philip A. Bernstein und Nathan Goodman. The failure and recovery
problem for replicated databases. In PODC ’83: Proceedings of the
second annual ACM Symposium on Principles of Distributed Compu-
ting, Seiten 114–122, New York, NY, USA, 1983. ACM Press.

[BGK+02] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Se-
rafini, und I. Zaihrayeu. Data Management for Peer-to-Peer Com-
puting: A Vision. In Fifth International Workshop on the Web and
Databases (WebDB 2002), 2002.

[BHP00a] Phillip A. Bernstein, Alon Y. Halevy, und Rachel A. Pottinger. A
vision for management of complex models. SIGMOD Record, 29(4):55–
63, 2000.

[BHP00b] Phillip A. Bernstein, Alon Y. Halevy, und Rachel A. Pottinger. A
vision for management of complex models. Technical Report MSR-
TR-2000-53, Microsoft Research, 2000.

[BK97] Yuri Breitbart und Henry F. Korth. Replication and consistency:
being lazy helps sometimes. In PODS ’97: Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems, Seiten 173–184, New York, NY, USA, 1997. ACM Press.

[BKR+99] Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi, S. Seshadri,
und Avi Silberschatz. Update propagation protocols for replicated
databases. In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, Seiten 97–108, New
York, NY, USA, 1999. ACM Press.

[BM04] Paul V. Biron und Ashok Malhotra. XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation, World Wide Web Consorti-
um, 2004.

[BMN02] Geert Jan Bex, Sebastian Maneth, und Frank Neven. A formal model
for an expressive fragment of XSLT. Information Systems, 27(1):21–
39, 2002.

[BMPQ04] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, und Chri-
stoph Quix. Industrial-strength schema matching. SIGMOD Record,
33(4):38–43, 2004.

[BMW01] Joseph A. Brady, Ellen F. Monk, und Bret J. Wagner. Concepts in En-
terprise Resource Planning. Course Technology - Thomson Learning,
2001.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, und John Cowan. Extensible Markup Language (XML) 1.1

167

LITERATURVERZEICHNIS

(Second Edition). W3C Recommendation, World Wide Web Consor-
tium, 2006.

[BRJ99] Grady Booch, James Rumbaugh, und Ivar Jacobson. Das UML-
Benutzerhandbuch. Addison-Wesley, 1999.

[Bro04] Wayne Brown. Enterprise resource planning (ERP) implementation
planning and structure: a recipe for ERP success. In SIGUCCS ’04:
Proceedings of the 32nd annual ACM SIGUCCS conference on User
services, Seiten 82–86, New York, NY, USA, 2004. ACM Press.

[BW95] Paulo Barthelmess und Jacques Wainer. WorkFlow systems: a few
definitions and a few suggestions. In COCS ’95: Proceedings of Con-
ference on Organizational Computing Systems, Seiten 138–147, New
York, NY, USA, 1995. ACM Press.

[CBMT96] Bernadette Charron-Bost, Friedemann Mattern, und Gerard Tel. Syn-
chronous, Asynchronous, and Causally Ordered Communication. Dis-
tributed Computing, 9(4):173–191, 1996.

[CDK01] George Coularis, Jean Dollimore, und Tim Kindberg. Distributed Sys-
tems – Concepts and Design. Addison Wesley, 3. Edition, 2001.

[CHB+05] Carmen Constantinescu, Uwe Heinkel, Jan Le Blond, Stephan Schrei-
ber, Bernhard Mitschang, und Engelbert Westkämper. Flexible Inte-
gration of Layout Planning and Adaptive Assembly Systems in Digital
Enterprises. In Proceedings of the 38th CIRP International Seminar
on Manufacturing Systems (CIRP ISMS), Mai 2005.

[CHM02] Carmen Constantinescu, Uwe Heinkel, und Holger Meinecke. A Data
Change Propagation System for Enterprise Application Integration.
In Waleed W. Smari, Nordine Melab, und Shu-Ching Chen, Edito-
ren, The 2nd International Conference on Information Systems and
Engineering (ISE 2002), Seiten 129–134. San Diego: The Society for
Modeling and Simulation International, Juli 2002.

[CHR98] Andrzej Cichocki, Abdelsalam Helal, und Marek Rusinkiewicz. Work-
flow and Process Automation – Concepts and Technology. Kluwer Aca-
demic Publishers, 1998.

[CHRM01] Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. SIES - An Approach for a Federated Information Sys-
tem in Manufacturing. In Proceedings of the International Symposium
on Information Systems and Engineering (ISE); Las Vegas, Nevada,
USA, June 2001, Seiten 269–275. CSREA Press, Juni 2001.

[CHRM02] Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. A System for Data Change Propagation in Heterogeneous

168

LITERATURVERZEICHNIS

Information Systems. In Proceedings of the International Conference
on Enterprise Information Systems (ICEIS), Volume I, Cuidad Re-
al, Spain, April 2002, Seiten 73–80. ICEIS Press/Escola Superior de
Technologia de Setubal, Portugal, April 2002.

[CHRM03] Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. A System For Data Change Propagation In Heteroge-
neous Information Systems, Seiten 51–59. Enterprise Information Sys-
tems IV. Dordrecht, Netherlands: Kluwer Academic Publishers, Januar
2003. ISBN: 1-4020-1086-9.

[Con97] Stefan Conrad. Föderierte Datenbanksysteme – Konzepte der Daten-
integration. Springer Verlag, 1997.

[CS99] Peter Checkland und Jim Scholes. Soft System Methodology in Action.
John Wiley & Sons Ltd., Chichester, 1999.

[Cum02] Fred A. Cummins. Enterprise Integration – An Architecture for En-
terprise Application and System Integration. OMG Press - John Wiley
Computer Publishing, 2002.

[Dat00] C.J. Date. An Introduction to Database Systems. Addison-Wesley,
2000.

[Dau03] Berthold Daum. Modeling Business Objects with XML Schema. Mor-
gan Kaufmann Publisher and dpunkt.Verlag, 2003.

[dFRH98] Fernando de Ferreira Rezende und Klaudia Hergula. The Heterogenei-
ty Problem and Middleware Technology: Experiences with and Perfor-
mance of Database Gateways. In VLDB ’98: Proceedings of the 24rd
International Conference on Very Large Data Bases, Seiten 146–157,
New York, NY, USA, 1998. Morgan Kaufmann Publishers Inc.

[DR02] Hong Hai Do und Erhard Rahm. COMA - A System for Flexible
Combination of Schema Matching Approaches. In VLDB, Seiten 610–
621, 2002.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, und Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
puting Survey, 35(2):114–131, 2003.

[EM02] Andrew Eisenberg und Jim Melton. SQL/XML is making good pro-
gress. ACM SIGMOD Record, 31(2):101–108, 2002.

[Fay02] Mohamed Fayad. Accomplishing software stability. Communications
of ACM, 45(1):111–115, 2002.

169

LITERATURVERZEICHNIS

[FW04] David C. Fallside und Priscilla Walmsley. XML Schema Part 0: Primer
Second Edition. W3C Recommendation, World Wide Web Consorti-
um, 2004.

[GHI+01] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, und D. Suciu. What can
databases do for peer-to-peer. June, 2001.

[GHM+03a] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Mo-
reau, und Henrik Frystyk Nielsen. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, World Wide Web Consortium,
2003.

[GHM+03b] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Mo-
reau, und Henrik Frystyk Nielsen. SOAP Version 1.2 Part 2: Adjuncts.
W3C Recommendation, World Wide Web Consortium, 2003.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, und Dennis Shasha. The dan-
gers of replication and a solution. In SIGMOD ’96: Proceedings of
the 1996 ACM SIGMOD International Conference on Management of
Data, Seiten 173–182, New York, NY, USA, 1996. ACM Press.

[Gro04a] Object Management Group. Event Service Specification – Version 1.2.
Specification, Object Management Group, 2004.

[Gro04b] Object Management Group. Notification Service Specification – Ver-
sion 1.1. Specification, Object Management Group, 2004.

[Har01a] Christoph Hartwich. N-Tier Enterprise-Applikation. In Martin En-
dig und Thomas Herstel, Editoren, 13. GI-Workshop Grundlagen von
Datenbanken, Gommern, Sachsen-Anhalt, Germany, 2001.

[Har01b] Christoph Hartwich. Why It Is So Difficult to Build N-Tiered Enter-
prise Applications. Technical Report B 01-05., Institute of Computer
Science, Freie Universität Berlin, 2001.

[Has00] Wilhelm Hasselbring. Information system integration. Communicati-
ons of ACM, 43(6):32–38, 2000.

[Hau99] Manfred Hauswirth. Internet-Scale Push Systems for Information Dis-
tribution – Architecture, Components, and Communication. Disserta-
tion, Technisch-Naturwissenschaftliche Fakultät, Technischen Univer-
sität Wien, 1999.

[HBS+02a] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, und Kate
Stout. Java Message Service. Specification, SUN Microsystems, 2002.

[HBS+02b] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, und Kate
Stout. Java Message Service – Version 1.1 April 12, 2002. Spezifikation,
Sun Microsystems, Inc., 2002.

170

LITERATURVERZEICHNIS

[HC94] Michael Hammer und James Champy. Business Reengineering – Die
Radikalkur für das Unternehmen. Campus Verlag, 1994.

[HCM05] Uwe Heinkel, Carmen Constantinescu, und Bernhard Mitschang. In-
tegrating Data Changes with Data from Data Service Providers. In
Proceedings of the 18th International Conference on Computer Appli-
cations in Industry and Engineering (CAINE 2005), Seiten 146–151.
ICSA, November 2005.

[Hei00] Uwe Heinkel. Informationsmodelle für wandlungsfähige Produktions-
systeme. Diplomarbeit, Universität Stuttgart, 2000.

[Her03] Klaudia Hergula. Daten- und Funktionsintegration durch Föderierte
Datenbanksysteme. Dissertation, Technische Universität Kaiserslau-
tern, 2003.

[HHW+04] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, und Steve Byrne. Document Ob-
ject Model (DOM) Level 3 Core Specification – Version 1.0. W3C
Recommendation, World Wide Web Consortium, 2004.

[HIM+04] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan
Suciu, und Igor Tatarinov. The Piazza Peer Data Management System.
IEEE Transactions on Knowledge and Data Engineering, 16(7):787–
798, 2004.

[Hol04] David Hollingsworth. The Workflow Handbook 2004, Kapitel The
Workflow Reference Model 10 Years on, Seiten 295–312. Future Stra-
tegies Inc., 2004.

[IBM08a] IBM. WebSphere Message Broker – ESQL. Developer’s Guide, IBM
Corp., 2008.

[IBM08b] IBM. WebSphere Message Broker – Introduction. Developer’s Guide,
IBM Corp., 2008.

[IBM08c] IBM. WebSphere Message Broker – Message Flows. Developer’s Guide,
IBM Corp., 2008.

[JBS97] Stefan Jablonski, Markus Böhm, und Wolfgang Schulze, Editoren.
Workflow-Management: Entwicklung von Anwendungen und Syste-
men; Facetten einer neuen Technologie. DPunkt Verlag, 1997.

[JGJ97] Ivar Jacobson, Martin Griss, und Patrik Jonsson. Software Reuse –
Architecture, Process and Organization for Business Success. ACM
Press, 1997.

171

LITERATURVERZEICHNIS

[JLM+05] Stefan Jablonski, Rainer Lay, Christian Meiler, Sascha Müller, und
Wolfgang Hümmer. Data logistics as a means of integration in health-
care applications. In SAC ’05: Proceedings of the 2005 ACM symposi-
um on Applied computing, Seiten 236–241, New York, NY, USA, 2005.
ACM Press.

[JM90] S. Jajodia und David Mutchler. Dynamic voting algorithms for main-
taining the consistency of a replicated database. ACM Transactions
on Database Systems, 15(2):230–280, 1990.

[JWP00] P. Johannesson, B. Wrangler, und P.Jayaweera. Application and Pro-
cess Integration – Concepts, Issues, and Research Directions. In Infor-
mation Systems Engineering Symposium–CAiSE 2000, Chigago, USA,
2000.

[KA00] Bettina Kemme und Gustavo Alonso. A new approach to developing
and implementing eager database replication protocols. ACM Tran-
sactions on Database Systems, 25(3):333–379, 2000.

[Kay07] Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Re-
commendation, World Wide Web Consortium, 2007.

[Kel02] Wolfgang Keller. Enterprise Application Integration – Erfahrung aus
der Praxis. DPunkt Verlag, 2002.

[Kep02] Stephan Kepser. A Proof of the Turing-completeness of XSLT and
XQuery. Technischer Bericht, SFB 441, Universität Tübingen, Mai
2002.

[Kep04] Stephan Kepser. A Simple Proof of the Turing-Completeness of XSLT
and XQuery. In Extreme Markup Languages, 2004.

[Ker01] Oliver Kersten. Konzeption eines Propagationsmanagers. Diplomar-
beit, IPVS – Universität Stuttgart, 2001.

[KKL+04] Matthias Kloppmann, Dieter König, Frank Leymann, Gerhard Pfau,
und Dieter Roller. Business process choreography in WebSphere: Com-
bining the Power of BPEL and J2EE. IBM System Journal, 43(2):270
– 296, 2004.

[Krü84] Wilfried Krüger. Organisation der Unternehmung. Kohlhammer Lehr-
buchreihe Betriebswirtschaft, 1984.

[Krc03] Helmut Krcmar. Informationsmanagement. Springer Verlag, 3. Editi-
on, 2003.

[Kur02] Alexander Kurth. Entwicklung agentenorienter Informationssysteme
für die Fertigungsleittechnik. Dissertation, RWTH Aachen, 2002.

172

LITERATURVERZEICHNIS

[KvH00] Kuldeep Kumar und Jos van Hillegersberg. Enterprise resource plan-
ning: introduction. Communications of ACM, 43(4):22–26, 2000.

[KZ02] Akhil Kumar und J. Leon Zhao. Workflow support for electronic com-
merce applications. Elsevier Decision Support Systems, 32(3):265–272,
2002.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distri-
buted system. Communications of ACM, 21(7):558–565, 1978.

[Ley96] Frank Leymann. Transaktionskonzepte für Workflow-Management-
Systeme. In Gottfried Vossen und Jörg Becker, Editoren, Geschäftspro-
zessmodellierung und Workflow-Management, Seiten 335–351. Thom-
son Publishing, 1996.

[Ley99] Frank Leymann. A practitioners approach to database federation. In
Proceedings of 4th Workshop on Federated Databases - Integration of
Heterogeneous Information Sources, Berlin, Deutschland, 1999.

[LHM+86] Bruce Lindsay, Laura Haas, C. Mohan, Hamid Pirahesh, und Paul
Wilms. A snapshot differential refresh algorithm. In SIGMOD ’86:
Proceedings of the 1986 ACM SIGMOD international conference on
Management of data, Seiten 53–60, New York, NY, USA, 1986. ACM
Press.

[Li03] Qiang Li. Entwicklung einer graphischen Eingabemöglichkeit für Pro-
pagationsskripte. Studienarbeit, IPVS – Universität Stuttgart, 2003.

[Lin00] Davis S. Linthicum. Enterprise Application Integration. Addison-
Wesley, 2000.

[LJdP97] Soon Huat Lim, Neal Juster, und Alan de Pennington. The seven ma-
jor aspects of enterprise modelling and integration: a position paper.
SIGGROUP Bullutin, 18(1):71–75, 1997.

[LKPMJP05] Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, und Ricardo
Jiménez-Peris. Middleware based data replication providing snapshot
isolation. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data, Seiten 419–430, New
York, NY, USA, 2005. ACM Press.

[LR00] Frank Leymann und Dieter Roller. Production Workflow – Concepts
and Techniques. Prentice Hall, 2000.

[LR02] Framk Leymann und Dieter Roller. Using flows in information inte-
gration. IBM Systems Journal, 41(4):732 – 742, 2002.

[LSH03] Jinyoul Lee, Keng Siau, und Soongoo Hong. Enterprise integration
with ERP and EAI. Communications of ACM, 46(2):54–60, 2003.

173

LITERATURVERZEICHNIS

[Mat89] Friedemann Mattern. Virtual Time and Global States of Distributed
Systems. In Proceedings of the International Workshop on Parallel
and Distributed Algorithms, 1989.

[MBR01] Jayant Madhavan, Philip A. Bernstein, und Erhard Rahm. Generic
Schema Matching with Cupid. In VLDB, Seiten 49–58, 2001.

[McC93] Carma McClure. Software-Automatisierung: reengineering – repository
– Wiederverwendbarkeit. Prentice-Hall International, 1993.

[MFJPPMK04] Jesús M. Milan-Franco, Ricardo Jiménez-Peris, Marta Patiño-
Mart́ınez, und Bettina Kemme. Adaptive middleware for data rep-
lication. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, Seiten 175–194, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

[Mic01] Sun Microsystems. Jini Technology Core Platform Specification – Ver-
sion 1.2. Specification, Sun Microsystems, 2001.

[Mic08] Microsoft. Microsoft BizTalk Server. Webseite (Zugegriffen
am 21.08.2008), Microsoft Corporation, 2008. Verfügbar bei
http://www.microsoft.com.

[Mit03] Nilo Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation,
World Wide Web Consortium, 2003.

[MJHM09] Jorge Mı́nguez, Mihaly Jakob, Uwe Heinkel, und Bernhard Mitschang.
A SOA-based Approach for the Integration of a Data Propagation
System. In Proceedings IEEE International Conference on Information
Reuse. Integration IRI ’09, Seiten 47–52, New York, NY, USA, 10-12
August 2009.

[Mül05] Joachim Müller. Workflow-based Integration – Grundlagen, Technolo-
gien, Management. Springer, 2005.

[MR95] Stefan Morschheuser und Heinz Raufer. Integrated document and
workflow management applied to the offer processing of a machine tool
company. In COCS ’95: Proceedings of Conference on Organizational
Computing Systems, Seiten 106–115, New York, NY, USA, 1995. ACM
Press.

[MRB03] Sergey Melnik, Erhard Rahm, und Philip A. Bernstein. Rondo: a
programming platform for generic model management. In SIGMOD
’03: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, Seiten 193–204, New York, NY, USA, 2003.
ACM Press.

174

LITERATURVERZEICHNIS

[MS00] Zakaria Maamar und Jeff Sutherland. Toward intelligent business ob-
jects. Communications of ACM, 43(10):99–101, 2000.

[MTvF00] M. Lynne Markus, Cornelis Tanis, und Paul C. van Fenema. Enterprise
resource planning: multisite ERP implementations. Communications
of ACM, 43(4):42–46, 2000.

[Oas07] Oasis. Web Services Business Process Execution Language Version
2.0. Oasis Standard, Sun Microsystems, Inc., 2007.

[Ora06] Oracle. Oracle Enterprise Service Bus. Data Sheet, Oracle Corp.,
2006.

[Ora07] Oracle. Oracle Enterprise Service Bus. Developer’s Guide, Oracle
Corp., 2007.

[Ora08] Oracle. Oracle SOA Suite. Data Sheet, Oracle Corp., 2008.

[Pap06] Christian Pape. Enterprise Application Integration – Integrationsar-
chitekturen. Vorlesungsscript, Hochschule Karlsruhe – Technik und
Wirtschaft, 2006.

[Pau93] G. N. Paulley. Engineering an SQL gateway to IMS. In CASCON ’93:
Proceedings of the 1993 Conference of the Centre for Advanced Studies
on Collaborative Research, Seiten 789–803. IBM Press, 1993.

[PB03] Rachel Pottinger und Philip A. Bernstein. Merging Models Based on
Given Correspondences. In VLDB, Seiten 826–873, 2003.

[PG00] Robin Poston und Severin Grabski. The impact of enterprise resour-
ce planning systems on firm performance. In ICIS ’00: Proceedings
of the twenty first international conference on information systems,
Seiten 479–493, Atlanta, GA, USA, 2000. Association for Information
Systems.

[PMJPKA05] Marta Patiño-Martinez, Ricardo Jiménez-Peris, Bettina Kemme, und
Gustavo Alonso. MIDDLE-R: Consistent database replication at
the middleware level. ACM Transactions on Computer Systems,
23(4):375–423, 2005.

[PS00] Esther Pacitti und Eric Simon. Update propagation strategies to im-
prove freshness in lazy master replicated databases. The VLDB Jour-
nal, 8(3-4):305–318, 2000.

[Rah94] Erhard Rahm. Mehrrechner-Datenbanksysteme. Addison-Wesley,
1994.

[RB01] Erhard Rahm und Philip A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4):334–350, 2001.

175

LITERATURVERZEICHNIS

[RCHM02] Ralf Rantzau, Carmen Constantinescu, Uwe Heinkel, und Holger Mei-
necke. Champagne: Data Change Propagation for Heterogeneous In-
formation Systems. In Proceedings of the International Conference
on Very Large Databases (VLDB); Demonstration Paper; Hong Kong,
August 20-23, 2002. Morgan Kaufmann, August 2002.

[RMB01] William A. Ruh, Francis X. Maginnis, und William J. Brown. En-
terprise Application Integration – A Wiley Tech Brief. John Wiley
Computer Publisching, 2001.

[SAP07] SAP AG. SAP Bibliothek. Online Hilfe, SAP AG, http://help.sap.com
(Zugriff 30.10.2007), 2007.

[SBB+99] David Shutt, Philip A. Bernstein, Thomas Bergstraesser, Jason Carl-
son, Shankar Pal, und Paul Sanders. Microsoft repository version 2
and the open information model. Information Systems, 24(2):71–98,
1999.

[Sch98] August-Whilhelm Scheer. ARIS-Vom Geschäftsprozeß zum Anwen-
dungssystem. Springer Verlag, 3. Edition, 1998.

[Süd05] Süddeutsche Zeitung. BMW hängt Mercedes ab. Webseite (Zugegriffen
am 22.07.2008), Süddeutsche Zeitung, 2005.

[SE98] Oliver Sims und Peter Eeles. Building Business Objects. John Wiley
& Sons, Inc., 1998.

[SGB02] Rainer A. Sommer, Thomas R. Gulledge, und David Bailey. The n-tier
hub technology. SIGMOD Record, 31(1):18–23, 2002.

[SH01] Michael Stonebraker und Joseph M. Hellerstein. Content integrati-
on for e-business. In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, Seiten
552–560, New York, NY, USA, 2001. ACM Press.

[SKTY00] Christina Soh, Sia Siew Kien, und Joanne Tay-Yap. Enterprise re-
source planning: cultural fits and misfits: is ERP a universal solution?
Communications of ACM, 43(4):47–51, 2000.

[SL90] Amit P. Sheth und James A. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous databases.
ACM Computing Survey, 22(3):183–236, 1990.

[Son99] Sonderforschungsbereich 467. Wandlungsfähige Unternehmensstruk-
turen für die variantenreiche Serienfertigung. Finanzierungsantrag,
Universität Stuttgart, 1999.

[Spr05] Sven Sprandel. Entwicklung eines Quelladapters für relationale Da-
tenbanken. Diplomarbeit, IPVS, Universität Stuttgart, 2005.

176

LITERATURVERZEICHNIS

[SRL00] Budi Surjanto, Norbert Ritter, und Henrik Loeser. XML Content
Management Based on Object-Relational Database Technology. In
Web Information Systems Engineering, Seiten 70–79, 2000.

[SS05] Yasushi Saito und Marc Shapiro. Optimistic replication. ACM Com-
puting Survey, 37(1):42–81, 2005.

[Ste02] Michael Stender. Eine komponentenorientierte Softwarearchitektur
für Informationssysteme im Investitionsgütermarketing. Dissertation,
Universität Stuttgart, 2002.

[STSB02] Siew Kien Sia, May Tang, Christina Soh, und Wai Fong Boh. En-
terprise resource planning (ERP) systems as a technology of power:
empowerment or panoptic control? SIGMIS Database, 33(1):23–37,
2002.

[Stu10] Boris Stumm. Änderungsmanagement in großen Informationssyste-
men. Dissertation, Technische Universität Kaiserslauten, 2010.

[Tat01] Satish Tatte. XLANG – Web Services For Business Process De-
sign. Specification, Microsoft Corporation, 2001. Verfügbar bei:
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm
[27.01.2004].

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, und Noah Men-
delsohn. XML Schema Part 1: Structures Second Edition. W3C Re-
commendation, World Wide Web Consortium, 2004.

[TIM+03] Igor Tatarinov, Zachary Ives, Jayant Madhavan, Alon Halevy, Dan Su-
ciu, Nilesh Dalvi, Xin (Luna) Dong, Yana Kadiyska, Gerome Miklau,
und Peter Mork. The Piazza peer data management project. SIGMOD
Record, 32(3):47–52, 2003.

[TRA96] Francisco J. Torres-Rojas und Mustaque Ahamad. Plausible Clocks:
Constant Size Logical Clocks for Distributed Systems. In 10th Work-
shop on Distributed Algorithms (WDAG), Seiten 71–88, 1996.

[TTP+95] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J.
Spreitzer, und C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In SOSP ’95: Proceedings
of the fifteenth ACM Symposium on Operating Systems Principles, Sei-
ten 172–182, New York, NY, USA, 1995. ACM Press.

[vdAK03] W. M. P. van der Aalst und Akhil Kumar. XML-Based Schema Defini-
tion for Support of Interorganizational Workflow. Information Systems
Research, 14(1):23–46, 2003.

177

LITERATURVERZEICHNIS

[vdAvH02] Wil van der Aalst und Kees van Hee. Workflow Management – Models,
Methods, and Systems. MIT Press, 2002.

[vdAVK01] W. M. P. van der Aalst, H. M. W. Verbeek, und A. Kumar. Verification
of XRL: An XML-based Workflow Language. In Proceedings of the 6th
International Conference on CSCW in Design, Seiten 427–432. NRC
Research Press, Ottawa, Canada, 2001.

[Vet90] Max Vetter. Aufbau betrieblicher Informationssysteme – mittels kon-
zeptioneller Datenmodellierung. B.G. Teubner Stuttgart, 6. Edition,
1990.

[Vet94] Max Vetter. Informationssysteme in der Unternehmung: eine Ein
führung in die Datenmodellierung und Anwendungsentwicklung. B.G.
Teubner Stuttgart, 2. Edition, 1994.

[VHvdA02] H. M. W. Verbeek, A. Hirnschall, und W. M. P. van der
Aalst. XRL/Flower: Supporting Interorganizational Workflows using
XRL/Petri-net Technology. In Lecture Notes in Computer Science:
Web Services, E-Business, and the Semantic Web, CAiSE 2002 In-
ternational Workshop (WES 2002), Seiten 93–108. Springer Verlag,
Berlin, 2002.

[Vu05] Tien Minh Vu. Entwicklung eines Zieladapters für relationale Daten-
banken. Diplomarbeit, IPVS – Universität Stuttgart, 2005.

[Wes06] Engelbert Westkämper. Wandlungsfähige Unternehmensstrukturen
für die variantenreiche Serienproduktion – Sonderforschungsbereich
467. Abschlussbericht, Universität Stuttgart, 2006.

[WH99] Seth White und Mark Hapner. JDBC 2.1 API. Spezifikation, Sun
Microsystems, Inc., 1999.

[WML+05] Scott Woodgate, Stephan Mohr, Brian Loesgen, Susie Adams, Alex
Cobb, Benjamin Goeltz, Brandon Gross, Chris Whytock, Erik Lea-
seburg, Gavin Islip, Imran Aziz, Kevin Smith, Michael Roze, Naveen
Goli, Puru Amradkar, und Stephen Roger. Microsoft BizTalk Server
2004 – Unleashed. Sams Publishing, 2005.

[Wor05a] Workflow Management Coalition. Reference Model.
http://www.wfmc.org/standards/model2.htm [30.09.2005], 2005.

[Wor05b] Workflow Management Coalition (WfMC). Process Definition Inter-
face – XML Process Definition Language (Version 1.09). Specificati-
on, Workflow Management Coalition (WfMC), 2005. Verfügbar bei:
http://www.wfmc.org [01.07.05].

178

LITERATURVERZEICHNIS

[Wor07] World Wide Web Consortium (W3C). Web Services Description Lan-
guage (WSDL) Version 2.0 Part 0: Primer. W3C Recommendation 26
June 2007, W3C, 2007.

[WvB01] Engelbert Westkämper und Ralf von Briel. Continious improvement
and participative factory planing by computer systems. In Proceedings
of the 51st General Assembly of CIRP, Seiten 347–352, Nancy, France,
2001.

[WW02] Engelbert Westkämper und Ralph Winkler. The Use of System Mo-
delling for the Intelligent Planning, Scheduling and Control of Agile
Manufacturing. In Proceedings of the 35th CIRP ISMS ”Manufactu-
ring technology in the information age”, Seiten 644–655, Seoul, South
Korea, 2002.

[WZ09] Engelbert Westkämper und Erich Zahn, Editoren. Wandlungsfähi-
ge Unternehmensstrukturen – Das Stuttgarter Unternehmensmodell.
Springer Verlag, 2009.

[Yan04] Yingwei Yang. Distribution of the Propagation System. Master thesis,
IPVS – Universität Stuttgart, 2004.

[Zah99] Ron Zahavi. Enterprise Application Integration with CORBA – Com-
ponent and Web-Based Solutions. OMG Press - John Wiley Computer
Publishing, 1999.

179

	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	Zusammenfassung in deutscher Sprache
	Zusammenfassung in englischer Sprache (Abstract)
	1 Einleitung
	1.1 Problemstellung und Motivation
	1.2 Zielsetzung
	1.3 Gliederung

	2 Grundlagen
	2.1 Informationssysteme
	2.1.1 Definition
	2.1.2 Architektur
	2.1.3 Modelle und Geschäftsobjekte

	2.2 Enterprise-Resource-Planning-Systeme
	2.3 Enterprise Application Integration
	2.3.1 Unternehmenssicht
	2.3.2 Klassifikationen
	2.3.3 Technologien

	2.4 Datenintegration im Unternehmen
	2.4.1 Globales Schema und homogene Systemlandschaft
	2.4.1.1 Zentrale Datenbank
	2.4.1.2 Verteilte Datenbanken
	2.4.1.3 Replikation

	2.4.2 Föderierte Datenbanken
	2.4.3 Lokale Modelle, Geschäftsprozesse und einheitliche Benutzerschnittstelle

	2.5 Peer-Data-Management
	2.6 Workflows
	2.6.1 Grundlagen
	2.6.2 Workflow-Managementsysteme (WFMS)
	2.6.3 Workflow-Beschreibungen
	2.6.4 Datenintegration mit Workflows

	2.7 XML Technologien
	2.8 Message Oriented Middleware
	2.9 Ereignissysteme
	2.10 Model-Management
	2.10.1 Übersicht
	2.10.2 Automatic Schema Matching

	2.11 Schlussfolgerungen

	3 Grundlegende Konzeption
	3.1 Lösung für Replikation der Informationssystemdaten
	3.2 Basiskonzepte
	3.2.1 Abhängigkeiten und Propagationsprozesse
	3.2.2 Änderungsbeschreibung

	3.3 Transaktionen
	3.4 XML als Basis für Änderungspropagation
	3.4.1 XML zur Definition von Zustandsbeschreibungen
	3.4.2 Technologie für eine XML-basierte Änderungspropagation

	3.5 Sprache für die Definition von Abhängigkeiten
	3.5.1 Deklaration der Eingabe
	3.5.2 Kontrollfluss
	3.5.2.1 Sequentielle Ausführung
	3.5.2.2 Parallele Ausführung
	3.5.2.3 Bedingte Ausführung

	3.5.3 Verarbeitungs- und Output-Befehle
	3.5.3.1 Transform-Befehl
	3.5.3.2 Propagate-Befehl
	3.5.3.3 Der Filterbefehl

	3.6 Pfadausdrücke für Änderungsbeschreibungen
	3.6.1 Propagation Condition Language (PCL)
	3.6.2 XPath-Bibliothek

	3.7 Komponenten
	3.7.1 Repository
	3.7.1.1 Übersicht
	3.7.1.2 Datenmodell
	3.7.1.3 Architektur

	3.7.2 Propagationsmanager
	3.7.2.1 Übersicht
	3.7.2.2 Architektur
	3.7.2.3 Kommunikation zwischen Prozessmanager und Propagationsprozessen

	3.7.3 Abhängigkeitsmanager
	3.7.3.1 Textansicht
	3.7.3.2 Die Kontroll- und Datenflussansicht
	3.7.3.3 Die Abhängigkeitsansicht

	3.8 Konflikterkennung und Auflösung
	3.9 Reihenfolgeeinhaltung von propagierten Änderungsbeschreibungen
	3.10 Fehlerbehandlung
	3.10.1 Fehlerklassifikation
	3.10.2 Fehlerbehandlung im Prozessmanager
	3.10.3 Fehlerbehandlung eines Propagationsprozesses

	3.11 Adapter
	3.11.1 Genereller Adapter
	3.11.2 Adapter für relationale Datenbanken
	3.11.2.1 Quelladapter
	3.11.2.2 Zieladapter

	3.12 Zusammenfassung

	4 Komplexe Propagation
	4.1 Einbindung von Daten aus Drittsystemen
	4.1.1 Problemstellung
	4.1.2 Verwendung eines Datendienstes
	4.1.3 Zugriffsarten
	4.1.4 Von der Definition zur Nutzung eines Datendienstes
	4.1.5 Dienstbeschreibung
	4.1.6 Realisierung
	4.1.6.1 Parameterbindung
	4.1.6.2 XPDL-Befehle
	4.1.6.2.1 Erzeugung der Header und ggf. Parametervorbereitung.
	4.1.6.2.2 Aufruf eines Datendienstes.
	4.1.6.2.3 Integration.

	4.1.6.3 Fehlerbehandlung

	4.1.7 Beispiel

	4.2 Verarbeitung mehrerer Änderungen
	4.2.1 Problemstellung
	4.2.2 Implementierungskonzept der M-zu-N-Erweiterung
	4.2.2.1 Grundlegendes Konzept der M-zu-N-Realisierung
	4.2.2.2 M-zu-N-Manager
	4.2.2.3 Zeitüberschreitungen
	4.2.2.4 Wiederherstellung

	4.2.3 Erweiterung von XPDL
	4.2.4 Erweiterung von PCL
	4.2.5 Schlussfolgerungen

	4.3 Verteilte Propagation
	4.3.1 Problemstellung
	4.3.2 Einschränkungen der Lastverteilung
	4.3.2.1 Reihenfolgeproblem
	4.3.2.2 M-zu-N-Abhängigkeiten
	4.3.2.3 Auswirkungen

	4.3.3 Load-Manager-Ansatz
	4.3.3.1 Architektur
	4.3.3.2 M-zu-N-Verarbeitung
	4.3.3.3 Der Umgang mit der Reihenfolge
	4.3.3.4 Erhöhung der Zuverlässigkeit

	4.3.4 Selbstorganisierter Ansatz

	4.4 Zusammenfassung

	5 Evaluation des Propagationssystems
	5.1 Praxistest
	5.1.1 Integrationsszenario
	5.1.2 Digitale Fabrik und ihre Werkzeuge
	5.1.2.1 Die Digitale Fabrik
	5.1.2.2 Fabrikplanungstisch
	5.1.2.3 Montage-Konfigurator

	5.1.3 Integrationsplattform
	5.1.4 Integration der Digitalen Fabrik und des Planungstisches
	5.1.5 Integration der Digitalen-Fabrik und des Montage-Konfigurators
	5.1.6 Schlussfolgerungen

	5.2 Evaluierung der Performance
	5.2.1 Messmethodik
	5.2.2 Testumgebung
	5.2.3 Realisierung der zuverlässigen Multicast-Warteschlange
	5.2.4 Testfälle
	5.2.4.1 Testfall 1: Update-Häufigkeit
	5.2.4.2 Testfall 2: Begrenzung der nebenläufigen Propagationsprozesse
	5.2.4.3 Testfall 3: Anzahl der Transformationen
	5.2.4.4 Testfall 4: Anzahl der Bedingungen
	5.2.4.5 Testfall 5: Cache-Hitrate
	5.2.4.6 Testfall 6: Vergleich einer 1-zu-N- mit N x 1-zu-1-Abhängigkeiten
	5.2.4.7 Testfall 7: Anzahl der wartenden M-zu-N-Prozesse
	5.2.4.8 Testfall 8: Integration externer Daten
	5.2.4.9 Testfall 9: Einhaltung der Änderungsreihenfolge

	5.2.5 Zusammenfassung
	5.2.6 Vergleich mit Anforderungen aus der Industrie

	5.3 Vergleich mit EAI-Produkten
	5.3.1 BizTalk
	5.3.2 Oracle SOA Suite
	5.3.3 Websphere Message Broker
	5.3.4 Schlussfolgerung

	6 Schlussfolgerung und Ausblick
	6.1 Schlussfolgerungen
	6.2 Ausblick

	Literaturverzeichnis

