Anderungspropagation fiir
autonome und heterogene
Informationssysteme

Von der Fakultét Informatik, Elektrotechnik und Informationstechnik der
Universitdt Stuttgart zur Erlangung der Wiirde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von

Uwe Heinkel

aus Hannover

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang
Mitberichter: Prof. Dr.-Ing. Norbert Ritter

Tag der miindlichen Priifung: 07.03.2011

Institut fiir Parallele und Verteilte Systeme (IPVS)
der Universitiat Stuttgart

2011

Vorwort

Ganz besonders moéchte ich mich bei meinem Doktorvater Prof. Dr. Mitschang bedan-
ken: Ich habe viel gelernt von Thnen, als ich an der Universitdt Stuttgart am Institut fiir
Parallele und Verteilte Systeme (IPVS) beschéftigt war. Vielen Dank fiir unsere Dis-
kussionen iiber die Forschung zu meiner Doktorarbeit. IThre Tipps werden mich auch
im weiteren beruflichen Leben voranbringen.

Weiterhin mochte ich meinem Mitberichter Prof. Dr. Ritter dafiir danken, dass er
sich Zeit nahm, um meine Dissertation zu lesen und zu evaluieren.

Was wire die schone Zeit an der Universitat Stuttgart ohne meine Kollegen ge-
wesen. Ich mochte mich deshalb bei allen Angestellten des IPVS bedanken. Besonde-
rer Dank gilt Dr. Carmen Constantinescu, Clemens Dorda, Fabian Kaiser, Sylvia Ra-
deschiitz und Dr. Ralf Rantzau. Ebenfalls mochte ich meinen Dank an meine Kollegen
im Transferbereich 059 und Sonderforschungsbereich 467 aussprechen, insbesondere an
Olga Kernbach, Dr. Ralf Kapp, Ralph Winkler, Benno Loéffler, Jan le Blond und Lars
Illenberger.

Fiir die grofle Unterstiitzung der Abteilung Infrastruktur am IPVS bedanke ich mich
ebenfalls herzlich. Besonders hervorheben mochte ich Ralf Aumiiller, Heike Kniehl,
Manfred Rasch und Christine Reissner.

Groflien Dank fiir die grofle Unterstiitzung mochte ich an meine Familie ausspre-
chen, insbesondere an meine Eltern Dieter und Regina, an meine Schwestern Sonja
und Bettina sowie an meine Oma Erna.

Uwe Heinkel
Stuttgart, den 07.03.2011

Inhaltsverzeichnis

Abkiirzungsverzeichnis 9
Zusammenfassung in deutscher Sprache 11
Zusammenfassung in englischer Sprache (Abstract) 13
1 Einleitung 21
1.1 Problemstellung und Motivation 21
1.2 Zielsetzungo 24
1.3 Gliederung 25
2 Grundlagen 27
2.1 Informationssysteme 27
2.1.1 Definition 27
2.1.2 Architektur 29
2.1.3 Modelle und Geschéftsobjekte 30
2.2 Enterprise-Resource-Planning-Systeme 31
2.3 Enterprise Application Integration 33
2.3.1 Unternehmenssicht 34
2.3.2 Klassifikationeno 34
2.3.3 Technologien 37
2.4 Datenintegration im Unternehmen 37
2.4.1 Globales Schema und homogene Systemlandschaft 37
2.4.2 Foderierte Datenbanken00 0L 39

2.4.3 Lokale Modelle, Geschéftsprozesse und einheitliche Benutzerschnitt-
stelleo 41
2.5 Peer-Data-Management Lo 41
2.6 Workflows 42
2.6.1 Grundlagen 42

INHALTSVERZEICHNIS

2.6.2 Workflow-Managementsysteme (WFMS) 43
2.6.3 Workflow-Beschreibungen 43
2.6.4 Datenintegration mit Workflows 45

2.7 XML Technologien 46
2.8 Message Oriented Middleware 47
2.9 FEreignissystemeo 49
2.10 Model-Managemento 50
2.10.1 Ubersicht 50
2.10.2 Automatic Schema Matching 51

2.11 Schlussfolgerungen 51
3 Grundlegende Konzeption 55
3.1 Losung fiir Replikation der Informationssystemdaten 55
3.2 Basiskonzepte 58
3.2.1 Abhéngigkeiten und Propagationsprozesse 58
3.2.2 Anderungsbeschreibung 60

3.3 Transaktionen 61
3.4 XML als Basis fiir Anderungspropagation 62
3.4.1 XML zur Definition von Zustandsbeschreibungen 62
3.4.2 Technologie fiir eine XML-basierte Anderungspropagation . . . 63

3.5 Sprache fiir die Definition von Abhéngigkeiten 64
3.5.1 Deklaration der Eingabe 66
3.5.2 Kontrollfluss 66
3.5.3 Verarbeitungs- und Output-Befehle 69

3.6 Pfadausdriicke fir Anderungsbeschreibungen 72
3.6.1 Propagation Condition Language (PCL) 72
3.6.2 XPath-Bibliothek 74

3.7 Komponenten 75
3.7.1 Repository 76
3.7.2 Propagationsmanager 81
3.7.3 Abhéngigkeitsmanager 87

3.8 Konflikterkennung und Auflésung 90
3.9 Reihenfolgeeinhaltung von propagierten Anderungsbeschreibungen . . . 93
3.10 Fehlerbehandlung 95
3.10.1 Fehlerklassifikation 95
3.10.2 Fehlerbehandlung im Prozessmanager 95
3.10.3 Fehlerbehandlung eines Propagationsprozesses 96

3.11 Adapter 96
3.11.1 Genereller Adapter 96
3.11.2 Adapter fiir relationale Datenbanken 98

3.12 Zusammenfassungo Lo 101

INHALTSVERZEICHNIS

4 Komplexe Propagation 103
4.1 Einbindung von Daten aus Drittsystemen 104
4.1.1 Problemstellung 104

4.1.2 Verwendung eines Datendienstes 105
4.1.3 Zugriffsarten 107
4.1.4 Von der Definition zur Nutzung eines Datendienstes 107
4.1.5 Dienstbeschreibungo 109

4.1.6 Realisierungo 111

4.1.7 Beispiel 115

4.2 Verarbeitung mehrerer Anderungen 115
4.2.1 Problemstellung oo 116

4.2.2 Implementierungskonzept der M-zu-N-Erweiterung 117
4.2.3 Erweiterung von XPDLo 122
4.2.4 FErweiterung von PCL 123
4.2.5 Schlussfolgerungen oL 123

4.3 Verteilte Propagation oo 124
4.3.1 Problemstellung oo 125

4.3.2 Einschréankungen der Lastverteilung 126
4.3.3 Load-Manager-Ansatz 127
4.3.4 Selbstorganisierter Ansatz 130

4.4 Zusammenfassung 131
5 Evaluation des Propagationssystems 133
5.1 Praxistest 133
5.1.1 Integrationsszenario 133

5.1.2 Digitale Fabrik und ihre Werkzeuge 134
5.1.3 Imtegrationsplattform L. 135

5.1.4 Integration der Digitalen Fabrik und des Planungstisches 137
5.1.5 Integration der Digitalen-Fabrik und des Montage-Konfigurators 139
5.1.6 Schlussfolgerungen L. 139

5.2 Evaluierung der Performance 140
5.2.1 Messmethodik oo 140
5.2.2 Testumgebungo 141
5.2.3 Realisierung der zuverlédssigen Multicast-Warteschlange 141
5.2.4 Testfille 142
5.2.5 Zusammenfassung 156
5.2.6 Vergleich mit Anforderungen aus der Industrie 156

5.3 Vergleich mit EAI-Produkten 157
53.1 BizTalk 158
5.3.2 Oracle SOA Suite 159
5.3.3 Websphere Message Broker 159
5.3.4 Schlussfolgerung 160

INHALTSVERZEICHNIS

6 Schlussfolgerung und Ausblick 161
6.1 Schlussfolgerungeno 161
6.2 Ausblick 163

Literaturverzeichnis 165

Abkiirzungsverzeichnis

API

EAI

ERP

JMS

MOM

PCL

RPC

XML

XPDL

XPath

XSLT

Application Programming Interface
Enterprise Application Integration
Enterprise Resource Planning

Java Message Service

Message-oriented Middleware
Propagation Condition Language
Remote Procedure Call

Extensible Markup Language

XML Propagation Definition Language
XML Path Language

Extensible Stylesheet Language Transformation

Abkiirzungsverzeichnis

10

Zusammenfassung in deutscher Sprache

Heutzutage miissen Unternehmen sich schnell an neue Situationen anpassen. Die Griin-
de hierfiir sind vielfaltig: Kundenanforderungen dndern sich, Konkurrenten entwickeln
neue Produkte bzw. Strategien oder neue Gesetze werden verabschiedet. Die Anpas-
sungsfiahigkeit von Unternehmen wird als Wandlungsféhigkeit bezeichnet. Damit Unter-
nehmen diese Wandlungsféhigkeit erreichen konnen, miissen sie aus Einheiten bestehen,
die weitestgehend autonom sind. Durch die Autonomie wird erreicht, dass Entschei-
dungen schnell getroffen werden kénnen, weil jede Einheit selbststéindig reagieren kann.
Die Unternehmenseinheiten wurden im Sonderforschungsbereich 467 ,, Wandlungsfdhige
Unternehmensstrukturen fiir die variantenreiche Serienproduktion®, in dessen Rahmen
auch diese Arbeit entstand, Leistungseinheiten genannt. Leistungseinheiten brauchen
unter anderem eine Unterstiitzung durch Informationssysteme, welche Informationen
bereitstellen und verwalten. Damit sich die Leistungseinheiten an neue Situationen an-
passen konnen, miissen auch deren Informationssysteme so weit wie moglich autonom
bleiben. Dennoch muss der Austausch von Daten zwischen den Informationssystemen
garantiert sein, da Daten teilweise von vielen verschiedenen Leistungseinheiten und
ihren Informationssystemen verwendet werden. Besonders deutlich wird das bei Kun-
dendaten, die oftmals in vielen Unternehmensbereichen bzw. Informationssystemen
bendtigt werden. Daten, die von mehreren Informationssystemen benétigt und gespei-
chert werden, liegen oft redundant im Unternehmen und meist in heterogener Form
vor. Werden redundante Daten in einem Informationssystem geédndert, entsteht ein in-
konsistenter Zustand, da an anderer Stelle noch die alten Daten gespeichert sind. Um
diese Inkonsistenz zu verhindern, miissen die Informationssysteme integriert und die
redundanten Daten synchronisiert werden. Replizierte Datenbanken haben ein dhnli-
ches Problem: es miissen ebenfalls Daten synchronisiert werden. Hier sind die Daten
aber meistens homogen und die partizipierenden DBMS sind nicht autonom. Des Wei-
teren dndern replizierte Datenbanken ihre Daten nur iiber ihre bereitgestellte Schnitt-
stelle in der Datenschicht, in einem Informationssystem sollten sie hingegen in der
Anwendungsschicht gedndert werden, weil dort die Anwendungslogik liegt und oftmals
wichtige Konsistenzregeln gepriift werden miissen.

11

Zusammenfassung in deutscher Sprache

Um diesen Anforderungen gerecht zu werden, wurde in dieser Arbeit ein XML-
basiertes Datenintegrationssystem konzipiert und entwickelt, das Anderungspropaga-
tion verwendet, um redundante Daten von Geschéftsobjekten zu synchronisieren. Ein
Geschéftsobjekt besteht aus einem oder mehreren Implementierungsobjekten, beispiels-
weise hat ein Kundenauftrag einen Auftragskopf und mehrere Auftragspositionen.
Aufgetretene Anderungen werden in einer sogenannten Anderungsbeschreibung pro
Geschéftsobjektinderung propagiert, die alle wichtigen Daten einer Anderung enthélt.
Besonders wichtig sind die zwei Zustdnde von Geschéftsobjekten, vor und nach der
Anderung, und die Anderungsart (create, update, delete) des Geschéaftsobjektes. Die
Verwendung von zwei Zusténden ermoglicht die Erkennung der Anderungsarten bei den
Implementierungsobjekten sowie die Ermittlung von Anderungsdeltas innerhalb des In-
tegrationssystems. Anderungsbeschreibungen werden entlang von definierten Abhéngig-
keiten propagiert, die von einem Quellsystem zu mehreren Zielsystemen gehen. Um
diese Abhéngigkeiten flexibel gestalten zu kénnen, wurde eine XML-basierte Sprache
entwickelt, die den Namen XML Propagation Definition Language (XPDL) tragt. Des
Weiteren wurde eine XPath-basierte Sprache (Propagation Condition Language, PCL)
entworfen, die zustandsiibergreifende Bedingungen erméglicht, um Filter fiir Abhéngig-
keiten zu definieren. Besonders wichtige Eigenschaften eines Datenintegrationssystems
sind die Einhaltung der Anderungsreihenfolge und die Erkennung von Anderungskon-
flikten. Beide Punkte wurden in dieser Arbeit umgesetzt. Fiir die Erkennung von Ande-
rungskonflikten wurde eine zustandsbasierte Methode entwickelt, die eine feingranula-
re Erkennung von Anderungskonflikten erméglicht. XPDL und PCL ermdglichen eine
weitgehend abstrakte Beschreibung von Anderungspropagationen. Damit kénnen dann
recht unterschiedliche Informationssysteme unterstiitzt werden und auch Drittsysteme,
die zusétzliche Daten bereitstellen, eingebunden werden.

12

Zusammenfassung in englischer Sprache (Abstract)

In order to stay competitive enterprises need to adapt themselves constantly to new
situations like new products in the market, changes of the competitors’ strategies,
new laws, changing of customers’ needs, and so on. For coping with these turbulent
situations, the enterprise has to have a fast decision making, which is facilitated by au-
tonomous organization units inside the enterprise. In the project SF'B 467 with the title
“Transformable Business Structures for Multiple-Variant Series Production”, a kind of
organization units was developed that are called transformable business units. These
business units are characterized by processes that have products and/or information
as input and output; these processes have a customer value as well. The customers are
internal (other business units) or external customers (enterprise customers). On the
other hand, the business units need to act in concert and achieve common enterprise
goals. Therefore, the business units must be integrated among each other, which affects
also the integration of their information systems, since they are part of the information
exchange between the units.

Due to the fact that data of these information systems needs to be integrated and
locally stored, some data is redundant in the enterprise. Changes of the redundant
data lead involuntarily to inconsistent data inside the enterprise and problems arise in
handling enterprise wide processes. This inconsistency can be anticipated by a flexible
data integration that copes with heterogeneity. Heterogeneity represents a big topic
for integrations due to the fact that I'T infrastructures are comprised of many different
products and individual software.

The integration of replicated data can be compared with the integration of repli-
cated databases, since the replicated databases store redundant data as well. On the
other hand, the redundant data in replicated databases exists in a homogenous form
and the update propagation - used to update redundant data - changes the data via the
data layer. Information systems consist usually of multiple layers, e.g. the data layer,
the application layer, and user interface layer. Above the data layer is the application
layer that realizes application logic, and thus consistency rules may also be realized
in this layer. A data integration of independent information systems should use the

13

Zusammenfassung in englischer Sprache (Abstract)

application layer interface and not that of the data layer, so that all the consistency
rules will be considered. Moreover, the application logic can trigger processes, which
will not be started if changes are done directly in the data.

Furthermore, there exist a lot of EAI-Products to integrate information systems
inside enterprises that apply data in the application layer. Nonetheless, they lack
of order control of changes handled by the integration system and the detection of
change conflicts. These EAI products are mostly made to integrate and implement
business processes, and thus not for the pure data integration without the involvement
of business processes. Furthermore, with the help of such EAI-Products so-called
integration applications are realized, which have their own communication channels.
On the other hand, a pure data integration system should have a central channel
independent of the existing integration applications. This channel provides the involved
information systems with a transparency of the realized integration applications. Hence
such applications can easily be removed, added or changed without the adaption of the
information system resulting in a more flexible way of data integration in an enterprise.

This thesis was part of the mentioned project SFB467. It proposes a data integra-
tion system called change propagation system that overcomes these shortages and is
especially developed for integrating data of autonomous and heterogeneous informa-
tion systems. The data integration is based on forwarding changes of business objects.
A business object represents an object with a value to the enterprise that can consist
of multiple implementation objects, e.g. a customer order with order header and or-
der positions as implementation objects. For representing states of business objects
XML is adequate, since it has a hierarchical structure, which facilitates the inclusion
of multiple implementation objects inside a document, and thus complete business ob-
jects. Furthermore, the combination of meta data and data provides a human readable
form of the business objects states. Not only the business object states are needed
as information for propagation; all needed information is subsumed under the term
change description that represents a propagated object. These change descriptions are
propagated along dependencies from one system (source system) to multiple systems
(destination systems). For the flexible constitution of dependencies an XML based lan-
guage was developed, which is called XML Propagation Definition Language (XPDL).
Furthermore, for the definition of conditions between the two states an XPath-based
language was developed, called Propagation Condition Language (PCL). A require-
ment for such a change propagation system is the guaranteed transmission of change
descriptions from the source system to destination systems. Thus persistent message
queues are used. Moreover, these queues facilitate a FIFO communication.

Important features of such a propagation system are the consideration of the cor-
rect order of change descriptions and the detection and resolution of change conflicts.
For the conflict detection we propose a method based on the business object states,
instead of using timestamps, which will be later explained in more detail. Due to the
heterogeneity we support transformations and integration of data from third systems.
Therefore we introduce data services - services offered by third systems - that provide
additional data for the destination system. These data services can be queried by a
Remote Procedure Call (RPC), SQL or XQuery, depending on the interface and stored

14

data.

The remainder of the abstract is organized as follows. In the first section we intro-
duce the change description. The second section gives an overview of the XML Propa-
gation Definition Language, which is followed by the Propagation Condition Language.
Afterwards the architecture of the Change Propagation System is sketched. Finally, in
the last two sections the conflict detection and data services are introduced.

CHANGE DESCRIPTIONS

First, there is a need for a complex object that contains all the necessary informa-
tion, which is needed by a destination system to adapt its data correspondently. This
complex object is called change description and is defined by the following tuple:

CD = (S,BOT,CT,B,A,TS)
S system where the change has occurred
BOT type of business object (e.g. Customer Order)
CT type of change (create, update or delete)
B state of the business object before the change
A state of the business object after the change
TS timestamp, when the change has occurred.

The usage of two states instead of only employing the after state facilitates the
detection of change types CT of implementation objects inside a business object. The
CT of an implementation object can differ from the CT of the business object. For
example a customer order could have been updated, while positions have been added,
updated, or deleted. Furthermore, change deltas can be calculated inside the change
propagation system, e.g. the movement vector of a production resource after the change
of its position in the factory layout. The two-state propagation facilitates the state-
based conflict detection as well.

We use two states (B and A) instead of a combination of change delta with one state,
since it makes the processing of the change descriptions easier. The main advantages
of using two states are that only one XML schema for validation is needed, only one
transformation script for adapting the states, and states can be easier described than
change deltas.

XML Propagation Definition Language (XPDL)

Another important feature of a change propagation system is the definition of de-
pendencies between business objects stored in different information systems. These

15

Zusammenfassung in englischer Sprache (Abstract)

dependencies should be as flexible as possible. A language can offer a great deal for
this purpose. We created a language called XML Propagation Definition Language
(XPDL). The XPDL artifacts are called propagation scripts and the executed propa-
gation scripts are named propagation processes. XPDL is a language that consists of
following statements:

I. Input Declaration
The input declaration consists of an input statement that selects the source sys-
tem (the system, where the change occurred) and the business object type.

II. Controll Flow

a. Sequence
The sequence statement allows the execution of subsequent statements in
order how they are specified.

b. Parallel
The parallel statement allows the execution of subsequent statements con-
currently.

c. Condition
The condition statement has two branches: the true and the false branch,
which will be executed depending on the evaluation of a Boolean expression.

IT1. Regular Statements

a. Transform
The statement adapts the states (B and A) of a change description. There-
fore it uses transformation scripts which can be either written in XSLT or
XQuery. The transform statement is used transparently to the number of
existing states in the change description; one transformation script is written
for one state, resulting in a transformation script that exactly transforms
one business object type.

b. Propagate
The propagate statement sends the change description to a destination sys-
tem by using its queue.

We came to the conclusion that there is no need for an iteration control flow,
since a business object should be handled as one business object and not separated
into many implementation objects inside the propagation system. This task should be
handled by an adapter of the information system. Furthermore, we don’t include filter
statements, since it is a better programming style to filter by condition statements.
Condition statements use control flow for filtering and filter statements use data flow.
The latter statement would make it difficult to analyze the behavior of the programmed
propagation script, because it would not be clear which statements will be executed.

16

Propagation Condition Language (PCL)

Sometimes it is necessary to define conditions between the two states of a change
description, e.g. we only want to propagate to a certain system, when the name of a
person has changed. Therefore we developed a language called Propagation Condition
Language, which is an extension of XPath. Another feature of this language is the
evaluation of the change type in a change description, which facilitates conditional
execution depending on the change type. The language consists of the following:

e before
The statement returns the before state.

e after
It returns the after state.

e beforeOrAfter
It represents the after state in case the before state is null. Can be used when
the before state can be replaced by the after state in case of none existence, e.g.
the order volume.

o afterOrBefore
The statement is similar to beforeOrAfter, but here the after state is preferred.

e chgType
It provides the change type of the change.

e timestamp
It returns the time when the change occurred. It facilitates the implementation
of time based propagations.

The statements are enclosed by the percentage marks and can be combined with
XPath expressions.

If we describe a condition for executing the succeeding statements based on the
fact that the last name of a customer has changed, the PCL condition looks like the
following;:

Y%before¥/Customer/Lastname != Yafter%/Customer/Lastname

Architecture

The change propagation system consists of three important components: the reposi-
tory, the dependency manager, and the propagation manager. The repository stores all
the meta data needed for propagation: system descriptions, XML Schemas for the val-
idation of business object states contained in change descriptions, propagation scripts
(XPDL artifacts) and transformation scripts required for the XPDL transform state-
ment. The dependency manager is a graphical tool to enter this meta data into the

17

Zusammenfassung in englischer Sprache (Abstract)

repository. The third component - the propagation manager - propagates change de-
scriptions from source systems to destination systems by executing propagation scripts.
It consists of several components: the queue manager is used to receive change descrip-
tions from source systems and to send processed change descriptions to destination
systems, the process manager for managing the propagation processes, the XPDL en-
gine for the execution of XPDL statements, an XML parser for the translation of states
into the internal format (DOM) and the validation of correctness due to a schema, as
well as two transformation engines (XSLT and XQuery).

Conflict Detection

A conflict can occur then the same business object is changed in more than one sys-
tem concurrently. The concurrent change of a business object needs to be detected,
since it would lead to inconsistent data in the involved systems. Furthermore, the
detected conflicts need to be evaluated and resolved, so that the information systems
are consistent again.

As we already mentioned, we suggest to use states for detecting change conflicts.
The state-based approach makes it unnecessary to adapt the data model of an infor-
mation system for the storage of timestamps, which are needed for timestamp-based
approaches. The biggest advantage of the approach is the flexible definition of zones
inside the business object, which facilitates the possibility of concurrent changes in
independent zones, e.g. the customer object could have independent zones with the
address and the account information. We call this approach a fine granular detection
approach based on states.

A schema annotated with zone information is illustrated in the following example:

<xs:schema ...>
<xs:element name="Customer">
<xs:complexType>
<xs:sequence>

<xs:element cd:id="true" name="ID"/>
<xs:element cd:group="name" name="Firstname"/>
<xs:element cd:group="name" name="Lastname"/>
<xs:element cd:group="address" name="Address">
</xs:element>

<xs:element cd:group="account" name="AccountInfo">

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

18

We introduced two attributes, which can be associated with element types: id and
group. Id defines the identifier of the business object to differentiate the business
objects. This identifier is needed to retrieve the local state of the business object. The
group attributes introduce independent zones inside the business object.

Data Services

The destination system may need data which is neither stored in the destination system
itself nor in a source system. An example is the integration of a factory layout system
with a digital factory solution. A factory layout system plans the positions of resources
in the factory, while the digital factory solution is used for the complete planning
process including production processes and resources. Thus, both systems should be
integrated with each other. The factory layout system stores production resources
just with a name and their positions (X, Y, and Z). In contrast, the digital factory
solution needs many attributes for resources. A resource can be created in the layout
system and then synchronized with the digital factory. Hence, it lacks of the additional
attributes required by the digital factory solution. These attributes can be provided by
a third system, e.g. a service of the resource manufacturer, which acts as data service.

The change propagation system needs to be extended to fulfill this purpose. First,
there is a need for a language to describe data services which is called Data Service
Definition Language (DSDL). The second extension is a new statement in XPDL for
the call of a data service. The approach provides the possibility of integration of three
types of data services: relational databases, XML stores, and RPC access. We made
the approach extensible so that the system can be extended by further types. The
only requirement is that the extension takes a set of parameters and provides an XML
document as result. The existing types use parameters for procedure calls (RPC) or for
parameterized queries (relational databases and XML stores). These parameters are
bound during runtime in the propagation system using PCL expressions for extracting
values out of the states included in a change description. Therefore, we extended the
XPDL with a data service call statement, which reads the DSDL definition of the data
service from the repository, binds the parameter, and sends via SOAP the call to the
data service. The retrieved result is integrated into the change description via standard
transformations.

19

Zusammenfassung in englischer Sprache (Abstract)

20

KAPITEL 1

Einleitung

1.1 Problemstellung und Motivation

Heutzutage sind Unternehmen einem immer grofler werdenden Wettbewerbsdruck aus-
gesetzt: Lieferzeiten werden kiirzer, Kundenwiinsche d&ndern sich, Konkurrenten verén-
dern ihre Strategie und ihre Produktpaletten, oder es werden neue Rahmenbedingungen
geschaffen (z.B. Auflagen oder Gesetze). Dies sind nur einige Beispiele, wie sich die Si-
tuation eines Unternehmens verdndern kann. Diese Verdnderungen erfordern von den
Unternehmen, dass sie sich nicht nur in einem beschrinkten flexiblen Rahmen bewe-
gen, sondern sich auch neuen und unvorhersehbaren Situationen anpassen konnen. Sie
sollten wandlungsfihig sein. Um diese Wandlungsfahigkeit zu ermoglichen, wurde im
Sonderforschungsbereich 467 (SFB 467) ,, Wandlungsfihige Unternehmensstrukturen
fiir die variantenreiche Serienfertigung”, in dessen Umfeld auch diese Arbeit entstand,
das Konzept der Leistungseinheiten (vgl. Abbildung 1.1) [WZ09, Wes06] entwickelt.
Leistungseinheiten sind organisatorische Einheiten in einem Unternehmen, die Pro-
dukte oder Informationen als Output haben (vgl. Abbildung 1.1). Leistungseinheiten
werden iiber mehrdimensionale Ziele koordiniert, die in Verhandlungs- und Abstim-
mungsprozessen festgelegt werden. Die Mitarbeiter einer Leistungseinheit versuchen
dann mit dem Einsatz von Ressourcen, diese Ziele zu erreichen. Die Hauptaufgabe einer
solchen Leistungseinheit ist, Produkte durch Ausfiihrungsprozesse zu erzeugen, die den
Materialinput umwandeln. Handelt es sich um keine produzierende Leistungseinheit,
sind Input und Output Informationen. Produzierende Leistungseinheiten stellen eben-
falls Informationen bereit, die von anderen Leistungseinheiten benotigt bzw. weiterver-
arbeitet werden. Diese Informationen koénnen beispielsweise Kundeninformationen oder
Stadien von Produktionsauftrdgen sein. Sie werden oftmals durch Informationssyste-
me verwaltet. Um die Leistungseinheiten zu integrieren ist ein Informationsaustausch
zwischen den einzelnen Informationssystemen notwendig, damit die Leistungseinheiten
zusammenarbeiten und {ibergeordnete, gemeinsame Ziele erreichen kénnen.

21

KAPITEL 1: Einleitung

Definition

Eine Leistungseinheit ist eine organisatorische
Einheit eings Un%ernehmens, ip der ein oder Informatorische Schnittstellen
mehrere Mitarbeiter unter Zuhilfenahme von . N

Ressourcen abgestimmte Ziele verfolgen. Schnittstellen zwischen LE
Aus Material und Informationen werden mittels ,’

Fuhrungs- und Ausfiihrungsprozessen eI -/
Produkte oder Informationen generiert. -7

/
,

’
’

| Material
Merkmale Informatione:
D

_| Produkte
Informatione

’
,
4

=teilautonom y] .
=Selbstahnlichkeit .. Mitarbeiter
=Variable Grenzen Sl Ressourcen
sFremd- und Selbstorganisaton " T==eecmamee=="7
=Selbstoptimierung

Abbildung 1.1: Leistungseinheiten als Grundbaustein eines wandlungsfihigen Unter-

nehmens [WZ09, Wes06]

Die Leistungseinheiten sind hierarchisch organisiert, d.h. eine Leistungseinheit kann
wiederum aus Leistungseinheiten bestehen (Selbstéhnlichkeit). Durch die variablen
Grenzen und Teilautonomie wird die Wandlungsfahigkeit moglich, da Entscheidungen
unter Beriicksichtigung der Zielvorgaben schnell gefillt werden kénnen. Die variablen
Grenzen erméglichen eine flexible Gestaltung der Leistungseinheit anhand des Bedarfs,
d.h. untergeordnete Leistungseinheiten kénnen hinzugenommen oder abgegeben wer-
den.

Die Teilautonomie wirkt sich auch auf die IT-Infrastruktur des Unternehmens aus.
Die Informationssysteme, die Bestandteil der I'T-Infrastruktur sind, sollten ebenfalls
weitestgehend autonom sein, da sie sonst die geforderte Wandlungsféahigkeit der Leis-
tungseinheiten behindern wiirden. Die Autonomie sagt dabei aus, dass die einzelnen
Informationssysteme moglichst lose gekoppelt seien sollen. Auflerdem werden durch
die Autonomie der einzelnen Leistungseinheiten haufig Informationssysteme beschaftt,
die sich sehr von denen anderer Leistungseinheiten unterscheiden. Das bedeutet, es
entsteht eine heterogene Infrastruktur im Unternehmen.

Die Heterogenitiat der Informationssysteme kann durch unterschiedliche Rechner-
architekturen, Betriebssysteme und/oder Datenbanksysteme entstehen. Den Daten-
banksystemen kénnen unterschiedliche Datenmodelle zugrunde liegen, z.B. das relatio-
nale Datenmodell. Die Schemata der Datenbanken konnen unterschiedlich modelliert
sein. Hierbei unterscheidet man zwischen struktureller und semantischer Heterogenitét
[Her03]. Zur strukturellen Heterogenitit gehoren unterschiedliche Datenmodelle, ver-
schiedene Beziehungsmoglichkeiten zwischen den Daten (z.B. Generalisierung oder As-
soziation) und die Mdoglichkeit der Modellierung von komplexen Objekten. Semanti-
sche Heterogenitét ist begriindet in unterschiedlichen Bezeichnungen, die beispielsweise
durch Synonyme oder Abkiirzungen hervorgerufen werden.

Eine im Unternehmen entstandene heterogene Systemlandschaft konnte beispiels-
weise wie in Abbildung 1.2 dargestellt aussehen. Sie enthélt eine Menge von Informa-
tionssystemen, wie zum Beispiel ein Enterprise-Resource-Planning-System oder eine
Lagerverwaltung. Diese miissen iiber ein Integrationssystem integriert werden, um den

22

1.1. PROBLEMSTELLUNG UND MOTIVATION

ERP Lager- Montage-
verwaltung Konfiguration
) . Legende:
SCM Prozsgaetlf])ns— Faglr; '::ﬁr};;m- |:| Informationssystem
I:l Informationssystem im
SFB467 entstanden
Integrationssystem
(SFB467)
ERP: Enterprise Resource
Legacy Digitale Logistik- Planning
System Fabrik priifstand SCM: Supply-Chain-
Management

Abbildung 1.2: Informationssysteme in einem Unternehmen

angesprochenen Informationsaustausch zu realisieren. Ein mogliches Integrationssys-
tem ist ein Propagationssystem, {iber den diese Arbeit handelt.

Die Integration von Informationssystemen bildet, wie in Abbildung 1.3 dargestellt,
einen Graphen mit gerichteten und ungerichteten Kanten. Der Aufbau des Graphen
ist stark davon abhéngig, wie die Kommunikationsbeziehungen zwischen den einzelnen
Leistungseinheiten und zwischen Informationssystemen innerhalb von Leistungseinhei-
ten definiert sind. Der Informationsaustausch kann sowohl in eine Richtung gehen (ge-
richtete Kante), als auch bidirektional sein (ungerichtete Kante). Informationssysteme
sind in der Regel in drei Schichten aufgebaut: einer Benutzerschnittstelle, einer An-
wendungsschicht und einer Datenschicht. Benutzer konnen iiber die Benutzerschnitt-
stelle Daten eingeben, pflegen und abfragen. Dafiir verwendet die Benutzerschnittstelle
Anwendungslogiken, die in der Anwendungsschicht realisiert sind. Die Daten werden
schlieflich in einer Datenschicht persistent vorgehalten. Diese Schicht kann zum Bei-
spiel durch Datenbanksysteme realisiert werden.

Um einen Informationsaustausch zwischen den einzelnen Informationssystemen der
Leistungseinheiten zu ermdglichen, miissen diese miteinander verbunden werden. Der
hier angestrebte Ansatz ist ein gesteuerter Informationsaustausch, der bei Anderungen
der Informationen eines Informationssystems diese an andere interessierte Informa-
tionssysteme mitteilt. Genauer gesagt handelt es sich um Anderungen von Daten, da
Daten erst durch ihre Interpretation zu Informationen werden. Wenn man die einzelnen
Informationssysteme betrachtet, so sind die Daten teilweise repliziert und zwar genau
dort, wo ein Informationsaustausch notwendig ist. Das heifit, Objekte sind sowohl in
dem einen System, als auch in anderen Systemen vorhanden. Diese Objekte miissen
nicht gleich sein, sondern kénnen unterschiedlich représentiert sein: die Objekte konnen
sich anhand ihrer Struktur und Repréasentation der Daten unterscheiden. Beispielswei-
se kann ein System ausgeschriebene Léndernamen (z.B. Deutschland) und ein anderes
System Léndercodes (z.B. D) verwenden. Dies ist bedingt durch die Heterogenitét in

23

KAPITEL 1: Einleitung

den Informationssystemen. Die replizierten Daten miissen fiir den angesprochenen In-
formationsaustausch integriert werden. Klassische Losungen fiir replizierte Daten sind
replizierte Datenbanken. Bei diesen werden gleiche Daten auf unterschiedlichen Rech-
nern vorgehalten. Dadurch kann eine hohere Performanz und Verfiigharkeit erreicht
werden. Allerdings miissen die Daten bei Anderungen synchronisiert werden, sodass
alle Replikate auf dem gleichen Stand sind. Dies erfolgt mittels Update-Propagation,
welche die Konsistenz der Daten garantiert. Diese Systeme sind hauptséchlich fiir ein
homogenes Umfeld gemacht und spielen Anderungen auf der Datenschicht von Informa-
tionssystemen ein. Dies hat zum Nachteil, dass Konsistenzregeln und evtl. vorhandene
Anwendungslogiken umgangen werden. Stérken von solchen Systemen sind die Vermei-
dung oder Erkennung von Anderungskonflikten. Ob nun Konflikte nur erkannt oder
vermieden werden, héingt zum Teil von der Art der Replikation (z.B. Eager Replication
oder Lazy Replication) ab. Ein Anderungskonflikt tritt dann auf, wenn das gleiche reale
Objekt in zwei unterschiedlichen Systemen gleichzeitig gedndert wird.

Eine weitere Moglichkeit, Informationssysteme zu integrieren, stellen EAI-Produkte
(Enterpise Application Integration) dar, die Informationen nachrichtenbasiert austau-
schen. Vorteile von solchen EAI-Produkten sind eine flexible Gestaltung von Integra-
tionsprozessen und die Moglichkeit der Transformation von Nachrichten. Sie haben
allerdings Schwichen in der Konfliktbehandlung und zumeist in der Einhaltung von
der korrekten Reihenfolge von Anderungen.

Um diese Schwichen zu beheben, wird in dieser Arbeit eine Mischung aus beiden
Ansétzen konzipiert, welche die Vorteile der beiden Welten vereinen soll. Dabei soll ein
Update-Propagationssystem fiir ein heterogenes Umfeld entstehen, was die Synchroni-
sation von gednderten Daten zwischen Informationssystemen erméglicht. Dieser Ansatz
soll dabei fiir die Integration von heterogenen und autonomen Informationssystemen
maBgeschneidert sein. Die Anderungen sollen soweit wie méglich nicht in der Daten-
schicht eingespielt werden, sondern iiber Anwendungsschnittstellen in der Anwendungs-
schicht, damit Konsistenzregeln und Anwendungslogiken der Anwendungsschicht nicht
umgangen werden. Wichtige Eigenschaften eines solchen Propagationssystems sind die
oben beschriebene Erkennung oder Vermeidung von Anderungskonflikten. Werden die-
se nur erkannt, miissen Anderungskonflikte schlieBlich auch aufgelost werden, d.h. es
wird versucht die korrekten Daten wieder zu rekonstruieren. Da die Reihenfolge von
verarbeiteten Anderungen eine groBe Rolle spielt, muss dafiir gesorgt werden, dass diese
auch eingehalten wird.

1.2 Zielsetzung

Das Hauptziel der vorliegenden Arbeit war die Entwicklung eines Anderungspropaga-
tionssystems, das fiir heterogene und autonome Informationssysteme geeignet ist und
deren Anforderungen beriicksichtigt. Um die Wandlungsfihigkeit des Unternehmens
zu unterstiitzen, sollte die angestrebte Losung flexibel sein. Dies bedeutet vor allem,
dass neue Informationssysteme hinzugenommen oder nicht mehr benétigte entfernt
werden konnen. AuBerdem soll die Anderung von Informationsmodellen (Schemas) der
einzelnen Informationssysteme moglich sein. Die angebundenen Informationssysteme

24

1.3. GLIEDERUNG

IS Informations-
IS system (IS) IS

Benutzer-
IS schnittstelle | || |5

Anwendungs-

IS logik IS
IS
@ Daten

Abbildung 1.3: Aufbau von Informationssystemen und ihre Integration

sollen, wie die Leistungseinheiten, teilautonom sein. Die Informationssysteme sollen
dabei keine Kenntnis {iber andere Informationssysteme haben, mit denen sie einen In-
formationsaustausch haben. Des Weiteren sollen die Informationssysteme aus Griinden
des Informationsaustauschs mit anderen Informationssystemen moglichst nicht ange-
passt werden miissen. So ist es moglich, leicht Informationssysteme hinzuzunehmen, zu
entfernen oder auszutauschen. Die Informationssysteme reichen nun ihre gednderten
Informationen bzw. Daten an ein Anderungspropagationssystem weiter, dass dann die
entsprechenden Informationssysteme iiber die Anderung benachrichtigt.

1.3 Gliederung

Kapitel 2 gibt einen Uberblick iiber Technologien, die in Konkurrenz zur Anderungs-
propagation stehen oder als Grundlage fiir diese verwendet werden konnen.

In Kapitel 3 wird das zur Grunde liegende Konzept des Anderungspropagations-
systems beschrieben. Dafiir werden Anderungsbeschreibungen und eine Sprache zur
Definition von Propagationsprozessen definiert, die Anderungen verarbeiten. Aufierdem
wird eine weitere Sprache fiir die Definition von Bedingungen zwischen Anderungsbe-
schreibungen definiert. Des Weiteren werden Konzepte zur Erkennung von Konflikten
und zur Einhaltung der Reihenfolge behandelt.

Mogliche Erweiterungen des Anderungspropagationssystem werden schlieBlich in
Kapitel 4 behandelt. Dazu gehoren die Einbindung von Drittsystemen, Propagatio-
nen, die mehrere Anderungen verarbeiten kénnen und die Verteilung des Propagati-
onssystems.

Die Evaluierung des Ansatzes anhand eines Integrationsszenarios und eine Perfor-
manceevaluierung erfolgt in Kapitel 5. Zusétzlich wird der Ansatz noch mit verwand-
ten EAI-Produkten verglichen.

Schlussfolgerungen und ein Ausblick in Kapitel 6 bilden den Abschluss dieser
Arbeit.

25

KAPITEL 1: Einleitung

26

KAPITEL 2

Grundlagen

In diesem Kapitel wird ein Uberblick iiber Technologien gegeben, die im Zusammen-
hang mit der Integration von Informationssystemen mittels Anderungspropagation ste-
hen. Als Erstes wird der Begriff |, Informationssystem® geklart. Danach werden Tech-
nologien untersucht, mit denen Integrationen innerhalb eines Unternehmens durch-
gefithrt werden konnen. Diese sind Enterprise-Resource- Planning-Systeme und En-
terprise Application Integration. Datenintegration fokussiert sich auf die Integration
von Daten innerhalb eines Unternehmens. Um dies in groflen und flexiblen Netzen zu
ermoglichen, konnen Peer-Data-Management-Systeme eingesetzt werden. Eine weitere
Technologie, durch die Informationssysteme integriert werden, stellen Workflows dar.
Als Basistechnologien fiir die Integration von Informationssystemen sind XML und
Message-oriented-Middleware (MOM) weit verbreitet. Eine weitere Basistechnologie,
die verwandt zu MOM ist, sind Ereignissysteme. Da Integrationsaufgaben metadaten-
intensiv sind, werden noch Model-Managementsysteme untersucht. Zum Schluss wird
begriindet, warum die vorgestellten Technologien fiir eine Anderungspropagation zwi-
schen heterogenen sowie autonomen Informationssystemen nicht ausreichend sind.

2.1 Informationssysteme

In diesem Abschnitt geht es um die Klarung des Begriffes ,, Informationssystem®, mogli-
che Architekturen und Modelle der Informationssysteme.

2.1.1 Definition

In der Literatur wird der Begriff ,, Informationssystem* haufig verwendet [Vet90, BF97,
Ste02, Kur(02], ohne dass dabei der Begriff niher erlautert oder definiert wird. Daraus
konnte man schlieflen, dass der Begriff und dessen Bedeutung weitldufig bekannt sind.

27

KAPITEL 2: Grundlagen

Da Informationssysteme in dieser Arbeit die Systeme sind, die miteinander integriert
werden sollen, wird dieser Begriff zunéchst genauer untersucht.

Bevor wir eine Definition fiir den Begriff ,, Informationssystem® finden, wollen wir
die Unterbegriffe ,,Information“ und ,,System* genauer betrachten. In [Krc03] werden
Informationen, Daten und Zeichen definiert. Werden auf unterster Ebene Zeichen durch
eine Syntax kombiniert, erhélt man Daten (z.B. 2,3). Wird zu den Daten ein Kontext
hinzugefiigt, wie zum Beispiel 'Gewicht des Produktes in kg’, so erhélt man Informa-
tionen. Die Daten sollten mit dem dazu gehorigen Kontext interpretiert werden, um
Informationen zu erhalten.

Ein System ist laut [Vet94] folgendermafien definiert:

Ein System stellt eine abgeschlossene Gesamtheit von Elementen dar, die
miteinander durch Beziehungen verbunden sind und gemeinsam einen be-
stimmten Zweck zu erfiillen haben.

Bei technischen Systemen werden die Elemente, aus denen ein System besteht, als
Komponenten bezeichnet.

In [CS99] wird der Begriff ,System* durch seine Eigenschaften beschrieben: neue
Féahigkeiten, Hierarchie, Kommunikation und Steuerung. Ein System verfiigt {iber neue
Féhigkeiten, die die einzelnen Komponenten noch nicht haben. Zum Beispiel kann
man ein Auto verwenden, um von A nach B zu kommen. Dies ist eine Fahigkeit,
die keine der Komponenten des Autos hat. Ein System setzt sich aus Komponenten
zusammen, die wiederum Systeme sein kénnen. Folglich besteht ein System aus einer
Hierarchie von Komponenten. Zwischen den Komponenten muss eine Kommunikation
stattfinden, damit die neuen Fahigkeiten realisiert werden kénnen. Um eine sinnvolle
Kommunikation zu erreichen, muss diese gesteuert werden.

Der Begriff ,, Informationssystem* ist laut [Krc03] folgendermaflen definiert:

Bei Informationssystemen handelt es sich um soziotechnische (" Mensch-
Maschine”) Systeme, die menschliche und maschinelle Komponenten (Teil-
systeme) umfassen und zum Ziel der optimalen Bereitstellung von Informa-
tion und Kommunikation nach wirtschaftlichen Kriterien eingesetzt werden.

Wie an der Definition zu sehen ist, spielt der Mensch eine grofie Rolle im Informa-
tionssystem, da er die Daten interpretiert und dadurch aus den Daten Informationen
macht. Aus Sicht der Anderungspropagation muss der Begriff , Informationssystem*
aber nicht so streng definiert werden, da es sich dabei um ein System handelt, dessen
Daten integriert werden sollen. Es kann sich also dabei auch um ein Anwendungssystem
handeln, was auch oft als Teil eines Informationssystems oder als Informationssystem
selbst gesehen wird. Wichtig fiir uns aus Sicht der Integration von Daten ist nur,
dass das Informationssystem iiber eine persistente Datenspeicherung verfiigt. Deshalb
geniigt in diesem Zusammenhang die folgende abgeschwichte Aussage:

Ein Informationssystem ist ein System, das einen Teil seiner Daten
durch eine persistente Speicherung dauerhaft verwaltet.

Die persistente Speicherung kann in Datenbanken oder in Dateien erfolgen.

28

2.1. INFORMATIONSSYSTEME

ﬁ (2) Anwendungslogik
B

[@@] (3) Datenzugriff
K Y (4) Datenbank-Tier

[J =Prozess = —— = Kommunikationsbeziehung

Abbildung 2.1: Beispiel eines 4-Tier-Informationssystem [Har(la]

2.1.2 Architektur

In diesem Abschnitt soll die Architektur eines Informationssystems untersucht werden,
um festzustellen wo Datendnderungen eingespielt werden kénnen. Um die Architektur
von Informationssystemen zu beschreiben, kann man die Artefakte des Informations-
systems Ebenen zuordnen. Verfiigt ein Informationssystem iiber mehrere Ebenen so
spricht man von einer Ebenenarchitektur. Diese kénnen wie in [Har0lb] dargestellt
mehrere Schnittstellen zu unteren Ebenen haben, da sie zum Beispiel Funktionen von
zwei Ebenen brauchen, um ihre Funktionalitéit zu implementieren. Weiterhin kann eine
Ebene auch eine komplexe Unterstruktur haben.

Eine weitere Beschreibung von Informationssystem-Architekturen, ist die Untertei-
lung in so genannte Schichten (engl. Tiers, vgl. Abbildung 2.1). In [Har0O1b] ist eine
Schicht(Tier) folgendermaBen definiert:

A tier is a layer that corresponds to a process or a collection of processes.
A tier contains all artifacts of a software system that can be associated with
the tiers processes.

Wichtig bei der Definition ist, dass eine Schicht einer Ebene gleich gesetzt werden
kann. Mehrere Ebenen konnen sich innerhalb eines Betriebssystemprozesses befinden,
wéahrend eine Schicht einem oder mehreren Prozessen zugeordnet ist und damit zwi-
schen Schichten Prozessgrenzen befinden.

Informationssysteme verfiigen des Ofteren iiber Konsistenzregeln fiir ihre Daten, die
oberhalb der Datenbankschicht angesiedelt sind, d.h. in den Schichten Anwendungslo-
gik und Datenzugriff. Aus diesem Grund sollte eine Datenintegration von heterogenen
und autonomen Informationssystemen auf der Ebene der Anwendungslogik erfolgen,
da diese alle Konsistenzregeln beachten kann, auch die in der Datenbankschicht. Wird
direkt die Datenbank fiir die Datenintegration angesprochen, so kann es durch die
Nichtbeachtung von Konsistenzregeln der oberen Schichten zu Inkonsistenzen fiihren.
Andererseits konnen alle Konsistenzregeln in der Datenbankschicht realisiert sein. Des
Weiteren fiihrt die Umgehung der Anwendungsschicht dazu, dass Anwendungslogiken
teilweise im Integrationssystem nachprogrammiert werden miissen, da zum Beispiel bei
Anderungen von A auch B geéindert werden muss.

29

KAPITEL 2: Grundlagen

2.1.3 Modelle und Geschiftsobjekte

Auf einer sehr abstrahierten Ebene stellt das Modell eines Informationssystems eine
Menge miteinander verbundener Geschiftsobjekte (engl. Business Objects) dar. Aus
diesem Grund wollen wir die Geschiftsobjekte genauer untersuchen. Laut [JGJ97] ist
ein Geschéftsobjekt wie folgt definiert:

We define a business object as representing something concrete and sig-
nificant in the business — a representation of members of the business or
“some thing” handled or used by people in the business.

Diese Definition ist sehr weitldufig und beinhaltet dadurch eine recht grofle Anzahl
an moglichen Geschéftsobjekten. Allerdings muss hier angemerkt werden, dass nicht in
allen Quellen das Geschéftsobjekt so weitldufig definiert ist.

In [Fay02] werden dagegen drei Arten von Eigenschaften/Objekten definiert: En-
during Business Themes, Business Objects und Industrial Objects. Enduring Business
Themes sind Eigenschaften des Modellierungsgegenstandes, die bestdndig sind. In ei-
ner Fabrik ist die Produktion ein Enduring Business Theme, wiahrend ein Produkti-
onsprozess ein Business Object und eine Fertigungsmaschine ein Industrial Object ist.
Um diese zu unterscheiden, stellt [Fay02] sieben Kriterien auf, die je nach Modellie-
rungsgegenstand andere Werte haben: Stability over time, Adaptibility, Essentiality,
Intuition, Expliciteness, Commonitality to the Domain, Tangebility. Betrachtet man
zum Beispiel Zeitstabilitdt (”Stability over time”) so sind Enduring Business The-
mes stabil, wihrend Geschéftsobjekte nach auflen stabil sind, sich aber intern &ndern
konnen. In unserem Fall wollen wir die Unterscheidung nicht so stark vertiefen, son-
dern Geschéftsobjekte als Modell realer (z.B. Resource) oder kiinstlicher Objekte (z.B.
Auftrag) verstehen, die eine bestimmte Funktion im Unternehmen haben.

Gruppen von Geschéftsobjekten lassen sich zu Geschiéftsobjekttypen zusammenfas-
sen, die sich in einer Meta-Ebene weiter oben befinden. Geschéftsobjekttypen entspre-
chen Klassen. In diesen Geschéftsobjekttypen werden die gemeinsamen Eigenschaften
der Geschiftsobjektgruppe festgelegt.

Weiterhin kapselt ein Geschéftsobjekt die Daten und Funktionalitéiten desselben
[MSS00]. Dies ist natiirlich &hnlich zu der Definition programmiersprachlicher Objekte,
bei der die Daten durch Methoden gekapselt werden. Die Funktionalitét ist durch die
bereitgestellten Methoden realisiert und liefert dadurch eine kontrollierte Moglichkeit
den Zustand zu dndern. Geschéftsobjekte haben laut [SE98] spezielle Implementie-
rungsobjekte, die die Représentation desselben fiir Benutzer anderer Geschéftsobjekte
oder anderer Systeme anbieten. Es muss angemerkt werden, dass ein Geschéftsobjekt
auch Implementierungsobjekte zur persistenten Speicherung verwendet. Vergleicht man
die Implementierungsklassen, aus denen ein Geschéftsobjekttyp besteht, mit dem Mo-
dell eines Informationssystems, so stellt laut [Sch98] der Geschéftsobjekttyp ein Teil
des Fachkonzepts dar, wihrend die Hilfsklassen Bestandteil des DV-Konzeptes sind.
Dabei ist anzumerken, dass die Geschéftsobjekte Beziehungen untereinander haben.
Eine Ressource hat zum Beispiel Beziehungen zu Produkten, die sie bearbeitet und
zu Produktionsauftrigen, die sie fertigt. Dabei gibt es eine Vielzahl von Beziehungen,
die ein solches Geschiftsobjekt mit anderen Geschiftsobjekten unterhalten kann. In

30

2.2. ENTERPRISE-RESOURCE-PLANNING-SYSTEME

UML [BRJ99], eine Sprache mit der man beispielsweise Geschiftsobjekte modellieren
kann, gibt es vier Arten von Beziehungen: Vererbung (Is-A), Assoziation, Aggregation
und Komposition. Die Komposition stellt dabei eine Sonderrolle da, denn die interne
Zusammensetzung eines Geschéftsobjektes durch Hilfsobjekte, wie zum Beispiel Kun-
denauftrag und Auftragsposition, werden iiblicherweise durch Kompositionen modelliert
und stellen dadurch eine enge Beziehung zwischen den Objekten dar. Je nach Betrach-
tungsebene konnen auch die Geschéftsobjekte selbst durch Kompositionen miteinander
verbunden sein. Ein Beispiel hierfiir ist ein Auto, das abstrakt gesehen ein Geschiifts-
objekt darstellt. Dieses Geschéftsobjekt kann aber auch detaillierter betrachtet werden
und damit in seine Komponenten unterteilt werden.

Die Integration von Daten kann auf der Ebene von Geschéftsobjekten oder persis-
tenten Implementierungsobjekten erfolgen. Weil Implementierungsobjekte einen engen
Zusammenhalt haben, eignen sich Geschéftsobjekte besser fiir die Integration. Ein Bei-
spiel hierfiir sind Auftragskopf und Auftragspositionen (Implementierungsobjekte), die
einen Kundenauftrag bilden (Geschéftsobjekt). Des Weiteren stellen Geschéftsobjekte
Objekte im Fachkonzept dar und ermoglichen dadurch eine bessere Diskussionsméglich-
keit in Integrationsprojekten.

Da Geschéftsobjekte intern Kompositionen verwenden, eignet sich besonders XML
als Format fiir den Datenaustausch [Dau03]|. Der Grund hierfiir ist die ebenfalls hier-
archische Datenstruktur von XML. In einem spéteren Abschnitt (2.7) dieses Kapitels
wird auf XML noch detaillierter eingegangen.

Betrachtet man nun ein produzierendes Unternehmen oder auch andere Unterneh-
men, so verfiigen diese in den meisten Féllen {iber mehrere Informationssysteme, die
im Laufe der Zeit selbst entwickelt oder hinzugekauft wurden. Unternehmen verfiigen
aus diesem Grund nicht {iber ein globales Unternehmensmodell. Selbst wenn das Un-
ternehmen SAP R/3 einsetzt, ist dieses Modell nicht all umfassend. Beispiele hierfiir
sind die wichtigen Module auf der Ebene der taktischen Produktionsplanung, wie zum
Beispiel das Fabriklayout oder auch das Produktdatenmanagement. In Abbildung 2.2
wird dargestellt, dass sich ein Unternehmensmodell in den meisten Féllen aus meh-
reren Partialmodellen zusammensetzt. Diese Partialmodelle sind nicht disjunkt, son-
dern iiberschneiden sich in manchen Bereichen. Dies bedeutet, dass Daten von beiden
betroffenen Systemen, die die Uberschneidung bilden, benétigt werden. Diese iiber-
schneidenden Bereiche sollten méglichst klein sein. Eine grofie Uberschneidung kommt
dann zustande, wenn mehrere Informationssysteme dhnliche Aufgaben erledigen. Diese
Uberschneidungen miissen mittels Integrationssystemen integriert werden, damit eine
globale Datenkonsistenz gewahrleistet ist. Bevor wir die Enterprise Application Inte-
gration (EAI) untersuchen, wollen wir noch einen Blick auf die Enterprise-Resource-
Planning-Systeme werfen, zu denen auch das oben erwiahnte SAP R/3 gehort.

2.2 Enterprise-Resource-Planning-Systeme
Enterprise- Resource- Planning-Systeme, abgekiirzt ERP-Systeme, sind aus Material-
Requirements-Planning- (MRP) und aus Manufacturing-Resource- Planning-Systemen

(MRP 1I) entstanden [KvH00]. ERP-Systeme sind dabei konfigurierbare Informati-

31

KAPITEL 2: Grundlagen

FiBu
Personal-
wirtschaft
Material-
wirtschaft
Kapazitats-
wirtschaft

PDM
FiBu: Finanzbuchhaltung

PDM: Produktdatenmanagement

Abbildung 2.2: Das Unternehmensmodell und seine Partiallmodelle [Hei00]

onssystempakete, die Daten sowie Prozesse innerhalb von Unternehmensfunktionen
tibergreifend integrieren [KvHO00]. In Abbildung 2.3 sind die wichtigsten Module eines
ERP-Systems bzw. Unternehmensfunktionen und deren Beziige dargestellt. Durch die-
se Integration wird es moglich, genauere und zeitnahe Informationen iiber Abldufe im
Unternehmen zu bekommen [PGO00]. Dies bedeutet zum Beispiel, dass fiir den Kun-
den genauere Informationen und auch Geschéftsregeln vorliegen, wie beispielsweise der
maximale Kredit eines Kunden. Durch ein ERP-System werden auflerdem die Kosten
gesenkt, Reaktionszeiten verkiirzt und der Kundenservice erhoht [STSB02].

Allerdings verlangt der Einsatz ein Business Reengineering [HC94], bei dem be-
stehende Geschéftsprozesse analysiert und dann fiir die Verwendung im ERP-System
angepasst werden. Die Geschéftsprozesse miissen dabei so angepasst werden, dass sie
durch das gewihlte ERP-System realisierbar sind. Diese Aufgabe ist oft langwierig
und teuer. Laut [Has00] sollte sich eine Anwendung an die Geschéftsorganisation an-
passen und nicht umgekehrt. Als Argument fiir ein ERP-System spricht dabei, dass
durch ein solches System die besten Geschéftspraktiken realisiert werden. Allerdings
wie in [SKTYO00] dargestellt, gibt es aber erhebliche Unterschiede zwischen den An-
forderungen aufgrund unterschiedlicher Kulturen und Lénder. Dies fiithrt zu einem er-
heblichen Anpassungsbedarf. Auflerdem fiihrt die Verwendung der konfigurierbaren
Geschéftsprozesse der ERP-Systeme zu einer Vereinheitlichung der Unternehmen, was
zu einem Verlust von Wettbewerbsvorteilen fithren kann. Aus diesen Griinden haben
manche Unternehmen entschieden, kein Standard ERP-System einzusetzen und dafiir
eine Eigenentwicklung zu verwenden. ERP-Systeme konnen an spezielle Anforderun-
gen angepasst werden, was aber dazu fiihrt, dass neuere Versionen schwer einzupflegen
sind, da der Code des ERP-Systems verdndert wurde. Bei vielen Projekten ist die
Einfithrung von ERP-Systemen gescheitert. Allerdings gibt es auch viele erfolgreiche
Beispiele, wie zum Beispiel in [Bro04], bei dem ein ERP-System fiir die Verwaltung
eines College eingesetzt wird.

Weiterhin stellt bei internationalen Unternehmen mit einer breiten Produktband-

32

2.3. ENTERPRISE APPLICATION INTEGRATION

Marketing
und Verkauf

Buchhaltung Produktion und
und Z[e)g’f(rear:e Material-
Finanzierung management

Human
Resources

Abbildung 2.3: ERP-System und Integration [BMWO01]

breite die ERP-Implementierung an mehreren Standorten eine Herausforderung dar
[IMTVF00], die abhéngig von der gewdhlten Geschéftsstrategie (z.B. mehrere teilauto-
nome Standorte) ist. Insbesondere ist hier das Ausmafl der Autonomie der Geschiifts-
bereiche ausschlaggebend. Fiir wandlungsfihige Unternehmen wird dabei von einem
hohen Grad von Autonomie ausgegangen, um eine schnelle Reaktion auf Verdanderung-
en zu ermdglichen [Son99.

2.3 Enterprise Application Integration

Enterprise Application Integration (EAI) ist ein Schlagwort, das in der heutigen Zeit
haufig verwendet wird. Unter diesem Begriff versteht man die Anstrengung, die im
Unternehmen vorhandenen Anwendungen und Informationssysteme miteinander zu in-
tegrieren. Die EAI-Technologie entstand dabei Mitte der 90er Jahre [LSHO03|. Da mit
EAT unterschiedlichste Anwendungen und Informationssysteme integriert werden und
in dieser Arbeit Informationssysteme miteinander integriert werden sollen, wollen wir
diese Technologie genauer untersuchen.

In [LSHO3] wird ausgesagt, dass beim Einsatz von EAI eine geringere Anstrengung
fiir die Umsetzung innerhalb eines Unternehmens notwendig ist als durch die Verwen-
dung eines ERP-Systems. Durch diese Integration mit EAI wird erreicht, dass einheit-
liche Daten vorhanden und Geschéftsprozesse systemiibergreifend realisiert sind. Die
Kostenersparnis ist dadurch begriindet, dass in existierenden Systemen Prozesse schon
teilweise realisiert sind und die Daten bereits verwaltet werden. Mittels EAI kénnen
nun die vorhandenen Daten bzw. Prozesse integriert werden.

33

KAPITEL 2: Grundlagen

Virtuelle
Unternehmen

/ Unternehmen \
/ Geschéftsdoménen \
/ Geschéftsprozesse \
/ Geschaftsanwendungen \
/ Anwendungskomponenten \

Abbildung 2.4: Ebenen in einem Unternehmen [Cum02]

2.3.1 Unternehmenssicht

Mit dem Schlagwort EAI ist sehr deutlich herausgehoben, dass es sich um Anwen-
dungsintegration innerhalb eines Unternehmens handelt. Die Anwendungsintegration
kann auf verschiedenen Ebenen innerhalb des Unternehmens stattfinden. Abbildung 2.4
stellt diese unterschiedlichen Ebenen dar. Auf unterster Ebene werden unterschiedliche
Anwendungskomponenten zu einer Anwendung integriert. Diese kénnen dann durch
unterschiedliche Geschéftsprozesse integriert werden, welche selber in unterschiedli-
chen Geschaftsdoménen existieren. Aus diesen setzt sich schliellich ein Unternehmen
zusammen, das wiederum Bestandteil einer oder mehrerer virtueller Unternehmen sein
kann. Diese Art von Unternehmen sind Unternehmenszusammenschliisse, die ein ge-
meinsames Ziel erreichen wollen [AFHS95].

Ein Unternehmen kann durch verschiedene Organisationsansétze strukturiert wer-
den [Krii84]. Dies kann sich deutlich auf die Integration auswirken. Dadurch kénnen
weitgehend unabhéngige Bereiche geschaffen werden, wie zum Beispiel Divisionen. Der
Integrationsaufwand zwischen den Bereichen wird verringert, wenn die Bereiche un-
abhéngiger sind. Im Sonderforschungsbereich 467 [Son99] wurden Leistungseinheiten
eingefiihrt, die weitgehend autonom sind, aber dennoch iiber Schnittstellen zu anderen
Leistungseinheiten verfiigen. Der Grad der Autonomie hat einen grofien Einfluss auf die
Wahl der Integrationslosung, denn die Softwaresysteme sollten bei hoher Autonomie
der Unternehmensbereiche auch selbst weitgehend autonom bleiben.

2.3.2 Klassifikationen

In der Literatur werden unterschiedliche Klassifikationen zum Thema EAI angegeben,
die in der Tabelle 2.1 zusammengefasst sind. Dabei gibt es unterschiedliche Meinungen
zu den Integrationsebenen, die sich teilweise iiberschneiden, bisweilen auch widerspre-

34

2.3. ENTERPRISE APPLICATION INTEGRATION

e Autonomie
Dimensionen [Has00] e Heterogenitét

Verteilung

Préasentationsebene
Datenebene
Datenkonsistenzebene
Funktionsebene
Prozessebene
Komponentenebene

Integrationsebenen I [RMBO01]

Datenebene

Funktionsebene
Applikationsschnittstellenebene
Methodenebene

Integrationsebenen IT [Lin00]

Lose Kopplung

Grad der Kopplung [RMBO1] e Enge Kopplung

Offenheit der zu integrier- White-Box
enden Anwendung [RMBO1] e Black-Box

e Innerhalb eines Unternehmens
e Zwischen Unternehmen

Bereich [LJdP97]

e Interfacing

Art [LJdP97] Integration

Point-to-Point
Hub & Spoke

Bus-orientiert

Verteile Objekte

Architekturen [Miil05]

Tabelle 2.1: Klassifikationen zum Thema EAI

chen. Wie man sieht, haben die Integrationsebenen (I und II) Uberschneidungen, aber
auch disjunkte Teile. Im folgenden Absatz wird die Integrationsebene I erklért.

Die Prisentationsebene integriert verschiedene Anwendungen zu einer einheitlichen
Benutzerschnittstelle, so dass es fiir den Benutzer aussieht, als ob es sich um eine einzige
Anwendung handelt. Ein ERP-System verfiigt iiber mehrere Anwendungen, hat aber
wie am Beispiel von SAP R/3 ersichtlich auch eine einheitliche Benutzerschnittstelle.
Im Umfeld von Web-Technologien eignen sich besonders Portale um unterschiedlichste
Anwendungen in einer Benutzerschnittstelle zusammenzufiihren. Ein weiteres wichtiges
Schlagwort in diesem Zusammenhang ist das einheitliche und anwendungsiibergreifende
,Look-And-Feel“. Dies ermoglicht dem Benutzer ein schnelles Zurechtfinden in fremden
Anwendungen.

Unter der Datenebene wird hier hauptséchlich die Integration autonomer Daten-

35

KAPITEL 2: Grundlagen

quellen zu einer einheitlichen Zugriffsebene verstanden, wie zum Beispiel durch Foder-
ierte Datenbanksysteme (Abschnitt 2.4.2). Bei dieser Art von Datenbanksystemen wird
zusétzlich noch ein einheitliches Schema bereitgestellt, iiber das die einzelnen Daten-
quellen integriert sind.

Bei der Integration auf der Ebene der Datenkonsistenz werden im Vergleich zur
Datenebene die autonomen Datenquellen so integriert, dass ihre Daten konsistent un-
tereinander bleiben. Dies kann durch eine globale Anwendung erfolgen, die Datenénde-
rungen an alle Anwendungen sendet oder auch durch den Austausch von Anderungsin-
formationen untereinander. Begriffe, die in diesem Zusammenhang oft auftauchen, sind
Synchronisation und Propagation. Update Propagation wird zum Beispiel von replizier-
ten Datenbanken verwendet, um die Daten zu synchronisieren. In [RMBO01] gehort die
konsistenzerhaltende Datenintegration hingegen zur Funktionsintegration, da im Bei-
spiel des Buches [RMBO01] eine globale Anwendung zwei Anderungsfunktionen aufruft.
Wir dagegen sind der Meinung, dass die konsistenzerhaltende Datenintegration auch
unabhéngig von den Funktionen erledigt werden kann, indem zum Beispiel Veranderun-
gen direkt in der Datenhaltungsschicht erkannt und verteilt werden. Dies ist aber nicht
in allen Fillen zu empfehlen, da dadurch Konsistenzregeln umgangen werden, die in
der Anwendungsschicht realisiert sind. Besser ist es, Anderungen im heterogenen Um-
feld iiber die Anwendungsschichten einzuspielen, sofern eine Schnittstelle bereitgestellt
wird. Sind keine Konsistenzregeln in der Anwendungsschicht realisiert oder handelt
es sich um eine homogene Systemlandschaft, kann die Anwendungsschicht umgangen
werden.

Die Funktionsebene integriert Anwendungen durch den gegenseitigen Aufruf von
Funktionen, die zum Beispiel als RPC oder iiber verteilte Objekttechnologien bereit-
gestellt werden.

Auf der Prozessebene werden unterschiedliche Funktionen zu einem Geschéftspro-
zess integriert. Dies erfolgt haufig durch die Verwendung von so genannten Workflow-
Management-Systemen (WFMS) und wird in Abschnitt 2.6 noch genauer untersucht.

Als letzte Ebene ist die Komponentenintegration zu sehen, bei der Anwendungen
aus verschieden Komponenten zusammengesetzt werden. Dies verkiirzt die Anwen-
dungsimplementierung, da Komponenten wieder verwendet werden kénnen.

Linthicum [Lin00] schlégt in seinem Buch noch die Methodenintegration vor. Diese
soll wieder verwendete Methoden, die Geschéftslogiken realisieren, identifizieren und
global bereitstellen. Im Gegensatz zur Funktionsintegration sollen hierbei die einzelnen
Anwendungen angepasst werden, um Redundanzen zu vermeiden. Dies ist nicht immer
machbar, da Legacy-Systeme oft schlecht verdnderbar sind. Auflerdem ist mit dieser
Integrationsebene ein hoher oft nicht realisierbarer Aufwand verbunden.

Héufig wird die Art der Integration auch noch durch die Stérke der Kopplung
unterschieden: enge und lose Kopplung. In der Literatur herrschen zu diesen Begriffen
unterschiedliche Meinungen zu ihrer Definition. In [RMBO01] wird zum Beispiel bei der
losen Kopplung von der Abhéngigkeit weniger Schnittstellen, wihrend in [Cum02] tiber
asynchrone Kommunikation im Zusammenhang mit loser Kopplung gesprochen wird.

Unterschieden werden muss noch zwischen der Integration innerhalb eines Unter-
nehmens, also die klassische EAI, und der Integration zwischen Unternchmen (B2B),

36

2.4. DATENINTEGRATION IM UNTERNEHMEN

die neue Anforderungen (z.B. kein zentrales Integrationssystem) mit sich bringt [SHO1].

2.3.3 Technologien

Die Technologien, die zur Realisierung eines EAI-Projektes eingesetzt werden kénnen,
sind vielfdltig. Sie unterscheiden sich hauptséchlich durch die Integrationsebenen (Ta-
belle 2.1). Fiir die Datenintegration kénnen foderierte Datenbanksysteme oder Daten-
bankmiddleware (z.B. JDBC oder ODBC) verwendet werden. Fiir die Funktionsinte-
gration konnen RPC-Systeme (z.B. DCE) oder verteilte Objektsysteme wie CORBA
[Zah99] und COM+ zum Einsatz kommen. Zur Integration von Komponenten und
ihr Deployment eignen sich J2EE und das Corba Component Modell CCM. Weiterhin
kénnen zur Entkopplung der Anwendungen Message-Systeme eingesetzt werden, die
die Anwendung Point-to-Point mit einem Message-Broker oder einem Process-Broker
[JWPO00] integrieren.

Nach der allgemeinen Betrachtung von EAI sollen im néchsten Abschnitt die un-
terschiedlichen Arten von Datenintegrationen angeschaut werden.

2.4 Datenintegration im Unternehmen

In diesem Abschnitt werden die unterschiedlichen Arten der Datenintegration unter-
sucht (vgl. Abbildung 2.5). Diese kénnen unterteilt werden in das Vorhandensein eines
globalen Schemas! mit homogener Infrastruktur (Zentrale Datenbank, Verteilte Da-
tenbank und replizierte Datenbanken), féderierte Datenbanken (globales Schema sowie
autonome, heterogene Komponentendatenbanken) und lokale Modelle (Schemata), die
iiber Geschiéftsprozesse integriert sind.

2.4.1 Globales Schema und homogene Systemlandschaft
2.4.1.1 Zentrale Datenbank

Ein globales Schema wird haufig mit einer zentralen Datenbank in Verbindung ge-
bracht. Dabei werden alle Daten in einem DBMS und einer Datenbank gespeichert.
Dieser Ansatz wird héufig angestrebt, da es keine Probleme mit Duplikaten gibt. Da
alle Daten auf einem Rechner sind, kann dieser Rechner schnell zum Flaschenhals
werden. Auflerdem ist keine hohe Ausfallsicherheit gegeben. Dieser Ansatz wurde un-
ternehmensweit in den 70er Jahre forciert, als die gesamten Unternehmensdaten auf
Grofirechnern verwaltet wurden. Wenn die Leistung nicht ausreicht oder eine Datenlo-
kalitéit? gefordert ist, kénnen Verteilte Datenbanksysteme in Betracht gezogen werden.

Hier wird Schema verwendet, da Datenmodell in der Literatur anders belegt ist (z.B. Relationales
Datenmodell)

2Datenlokalitét steht hier fiir die Verwaltung von Daten, wo sie anfallen und benétigt werden. Das
bedeutet beispielsweise, dass deutsche Kunden in der deutschen Filiale und nicht in der amerikanischen
Zentrale verwaltet werden.

37

KAPITEL 2: Grundlagen

| | | |
AS
| | AS | | |
| As Tas| L1 [as][as] |
| | E | | AS
I
| | ,f | |
FDBMS
| | | |
| | | | =
| | E l | -
| | s s]
AS AS
| | AS | | |
Zentrale I Verteilte | Repliziete | Foderierte | Lokale Modelle,
Datenbank | Datenbank | Datenbanken | Datenbanken | Geschéftsprozesse

AS: Anwendungsschicht
FDBMS: Féderiertes Datenbankmanagementsystem

Abbildung 2.5: Arten von Datenintegrationen

2.4.1.2 Verteilte Datenbanken

Bei verteilten Datenbanken [Rah94, Dat00] werden die Daten einer Datenbank auf
mehrere DBMS verteilt, um eine hohere Performanz und Datenlokalitédt zu erreichen.
Dabei konnen die Daten repliziert oder nicht repliziert vorliegen. Da der erste Fall
mit den replizierten Daten besonders wichtig fiir diese Arbeit ist, wird ihm ein extra
Abschnitt gewidmet (Abschnitt 2.4.1.3).

Fiir den Datenbankanwender soll die verteilte Datenbank wie eine zentrale Da-
tenbank erscheinen. Dies wird durch unterschiedliche Arten von Transparenz erreicht
[Rah94]. Die Daten des globalen Schemas der verteilten Datenbank werden mittels
Fragmentierung und Allokation auf die einzelnen physischen Datenbanken verteilt. Die
Fragmentierung bildet Gruppen von Daten, die dann mit dem Allokationsschritt auf
die Datenbanken verteilt werden. Relationen kénnen als Ganzes auf die einzelnen Da-
tenbanken verteilt werden. Die Fragmentierung kann ebenfalls innerhalb von Rela-
tionen erfolgen. Bei der horizontalen Partitionierung werden Zeilen auf verschiedene
Datenbanken verteilt, wihrend bei der vertikalen Partitionierung einzelne Spalten auf
die Datenbanken verteilt werden.

Verteilte Datenbanken sind auf ein homogenes Umfeld beschrankt. Um dennoch He-
terogenitit zwischen den einzelnen Datenbanken zu ermdoglichen, gibt es zwei Ansétze
[dFRH98]: Database-Gateways und Database-Middleware®. Dadurch werden Hetero-
gene Verteilte Datenbanken moglich [Dat00], d.h. ein anderes DBMS verwendet ein
Gateway um eine Datenbank eines fremden DBMS einzubinden. Auflerdem koénnen
Database-Gateways auch dafiir eingesetzt werden, um Anwendungen die gewohnte

3Der Begriff Database-Middleware wird hier und in der angegeben Literatur anders verwendet als
in Abschnitt 2.3.3

38

2.4. DATENINTEGRATION IM UNTERNEHMEN

Sicht eines DBMS zu bieten, obwohl die Datenbank von einem anderen DBMS ver-
waltet wird [ACMO00]. Dadurch kann auch Heterogenitét beziiglich Datenmodellen be-
seitigt werden, wie am Beispiel eines SQL Gateway fiir IMS [Pau93]. Der zweite Ansatz,
Database-Middleware, wird auch als , Féderierte Datenbanken® bezeichnet. Foderierte
Datenbanken sind auch eine Art von verteilten, heterogenen Datenbanken bei der die
globale Sicht nur iiber die Foderation sichtbar ist (siche Abschnitt 2.4.2).

2.4.1.3 Replikation

Nicht nur die Verteilung der Daten auf unterschiedliche Rechner bringt eine Daten-
lokalitéit und Performance, sondern auch die redundante Datenhaltung durch Repli-
kation. Allerdings bringt die Replikation nicht nur Vorteile, sondern auch Nachteile,
die je nach Methode der Replikation anders geartet sind. Diese Methoden lassen sich
danach unterscheiden, wie Anderungen an die Kopien mitgeteilt werden [GHOS96].
Die Aktualisierung der Kopien erfolgt bei der ,, Fager Replication [IKKA00] noch bevor
die Transaktion abgeschlossen wird. Bei Lazy Replication hingegen werden zuerst die
Transaktionen committed und dann die Kopien iiber Anderungen informiert. Aufer-
dem kann man unterscheiden, ob Anderungen in einer Gruppe von Kopien oder nur in
einem ‘Master’ vorgenommen werden kénnen. Der Master kann sich dabei von Objekt
zu Objekt unterscheiden [GHOS96]. Die beiden Eigenschaften kénnen in Losungen be-
liebig kombiniert werden. Zum Beispiel kann es zu Anderungskonflikten kommen, wenn
Lazy Replikation mit Anderungen in einer Gruppe von Kopien kombiniert wird. Die-
se Konflikte miissen schliefllich erkannt und aufgelost werden. Ein Nachteil von Eager
Replikation ist die hohe Verfiigharkeitsanforderung — alle Systeme miissen bei einer
Anderung verfiighar sein und es darf keine Netzwerk-Partition existieren [AT89]. Die-
ses Problem kann durch Voting-Verfahren [Rah94, JM90] verbessert werden. Dadurch
kann der groflere Teil der Netzwerk-Partition noch weiter arbeiten, da dieser die Mehr-
heit der Stimmen bekommen kann. Die Replikation kann durch das DBMS erfolgen,
was eine homogene Systemlandschaft zur Folge hat, oder durch Datenbank-Middleware
[PMJPKA05, LKPMJP05, MFJPPMKO04]. Aulerdem gibt es noch die Moglichkeit
Snapshots [AL80, LHMT86] bereitzustellen, die nur lesbar sind und keine allzu grofien
Anforderungen an die Datenaktualitdt haben.

2.4.2 Foderierte Datenbanken

Mit einem Foderierten Datenbankmanagementsystem (FDBMS) werden einzelne DBMS
und ihre Daten zu einer Einheit zusammengeschlossen. Die einzelnen DBMS koénnen
dabei untereinander heterogen sein und sollen so weit wie moglich ihre Autonomie
behalten [Con97]. Dabei soll mit einem FDBMS vor allem semantische Heterogenitét
tiberwunden werden und eine Verteilungstransparenz geschaffen werden [Rah94]. Se-
mantische Heterogenitét tritt dann auf, wenn bei gleichen oder in Beziehung stehenden
Daten unterschiedliche Bedeutungen, Interpretationen oder Verwendungszwecke exis-
tieren [SL90].

In Abbildung 2.6 ist die grundsétzliche Architektur eines foderierten Datenbanksys-
tems illustriert. Fiir ein solches System existieren zwei Arten von Anwendungen: lokale

39

KAPITEL 2: Grundlagen

Globale Globale
Anwendung Anwendung
b el
/ . P N

Foderierungsdienst

- Lokale
Anwendung

Lokale _
Anwendung | > DBMS 1

Komponenten Komponenten

DBS 1 DBS n
~— —

Féderiertes Datenbanksystem
- J

Abbildung 2.6: Architektur eines Foderierten Datenbanksystems [Con97]

und globale Anwendungen. Die lokalen Anwendungen verwenden weiterhin die Dienste
des lokalen DBMS wéhrend die globalen die einheitliche Sicht verwenden, die durch
das FDBMS bereitgestellt wird. Kern eines solchen FDBMS ist der Foderierungsdienst,
der die einzelnen Komponenten-Datenbanksysteme integriert. Dafiir verwendet er die
Schnittstellen der Komponenten-DBMS, die iiber lokale Datenbanken verfiigen.

Wichtig bei Foderierten Datenbanken ist die Schema-Architektur [SLI0], die aus
fiinf Ebenen besteht. Das lokale Schema ist das Schema der lokalen Datenbank, des
Komponenten-DBMS. Darauf aufbauend existieren Komponenten-Schemata, welche
die lokalen Schemata in Schemata iiberfithren, deren Datenmodell dem des FDBMSs
entspricht [Con97]. Da nicht das gesamte Schema in einer Féderation teilnehmen soll,
wird ein Export-Schema definiert, das einem Ausschnitt des Komponenten-Schema ent-
spricht. Diese Export-Schemata werden zu einem foderierten Schema integriert. Aus
dem foderierten Schema werden externe Schemata gebildet, die fiir die jeweiligen An-
wendungen zugeschnitten sind.

Da bei vielen Informationssystemen der Zugriff nicht direkt iiber die darunter lie-
genden DBS erfolgen soll, wurde in der Dissertation von Klaudia Hergula [Her03] eine
Moglichkeit geschaffen, Funktionen zu foderierten Funktionen zu integrieren. Dafiir
wurde ein Workflow Management System (WFMS) verwendet. Zusétzlich werden die
Daten iiber ein FDBMS integriert, wobei beide Komponenten (WFMS und FDBMS)
ebenfalls miteinander integriert wurden.

40

2.5. PEER-DATA-MANAGEMENT

2.4.3 Lokale Modelle, GGeschiftsprozesse und einheitliche Be-
nutzerschnittstelle

Das ERP-System R/3 von SAP (vgl. Abschnitt 2.2) verfiigt {iber eine anwendungsiiber-
greifende einheitliche Benutzerschnittstelle. Dies ermoglicht ein leichtes Zurechtfinden
in fremden Anwendungen. Bei einem SAP-System sind nur die benotigten Anwendun-
gen zu installieren. Damit diese Anwendungen miteinander integriert werden kénnen,
tauschen diese Nachrichten aus. Dies basiert auf der Technologie Application Link
Enabling (ALE) und Intermediate Documents (IDoc) [SAPO7]. Das bedeutet, dass eine
Anwendung nicht direkt in die Daten einer anderen Anwendung schreibt. Die Nach-
richten (IDoc) stoBen stattdessen in der anderen Anwendung Geschéftsprozesse an,
die dann die Daten entsprechend anpassen. Im néchsten Abschnitt untersuchen wir
noch eine weitere Art von Datenintegration in groflen verteilten Netzen: Peer-Data-
Managementsysteme.

2.5 Peer-Data-Management

Peer-to-Peer-Systeme (P2P-Systeme) sind Rechnernetze, die es ermdglichen eine Viel-
zahl von Peers in einem Rechnernetz zu betreiben. Im Gegensatz zu Client-Server, kann
ein Peer sowohl Dienste in Anspruch nehmen als auch anbieten, wobei die Peers in
einem Rechnernetz gleichberechtigt sind. Eine Ausnahme sind die sogenannten Super-
peers. Das Netz an sich ist selbst organisierend. Eines der Vorteile eines solchen Netzes
ist die geringe Administration, da keine zentrale Infrastruktur benotigt wird. Fiir die-
se Arbeit sind die Peer-Data-Management-Systeme, ein Teilbereich der P2P-Systeme,
wichtig, die sich auch mit Datenintegration beschéftigen. Diese Systeme werden nach-
folgend genauer untersucht.

In einem Peer-Data-Management-System (PDM-System) [TIM*03, GHIT01]
[BGKT02, HIM"04] fragen die Peers semantisch reiche Daten an oder stellen Daten
bereit. AuBerdem konnen die Daten der einzelnen Peers mittels Update Propagation
angepasst werden [BGKT02]. Weitere Peers kénnen Rechnerleistung fiir die Anfra-
geverarbeitung bereitstellen. Zwischen den einzelnen Peers bestehen semantische Be-
ziechungen mit denen Update Propagationen oder Anfrage-Beziehungen definiert wer-
den. Anfrage-Bezichungen erfolgen in Form von Sichten und definieren dessen Zu-
sammensetzung aus weiteren Sichten bzw. Tabellen. Der letztere Teil ist verwandt
mit der klassischen Datenintegration (FDBMS, Abschnitt 2.4.2). Im Piazza-Projekt
[TIMT03, GHIT01, HIM*04] werden ebenfalls Global-As-View- und Local-As-View-
Konzepte verwendet, um die semantischen Beziehungen zwischen den einzelnen Sche-
mata zu beschreiben. Im Gegensatz zu einem FDBMS wird allerdings nicht ein globales
Schema definiert, sondern jeder Peer definiert seine eigenen Beziehungen. Im Gegensatz
zu reinen P2P-Systemen wird bei einem Peer-Data-Management davon ausgegangen,
dass Peers das System nicht so hiufig verlassen [HIM*04], d.h. das System is bestéandi-
ger. Dennoch wird in einem Peer-Data-Management-System von einer Open-World-
Assumption ausgegangen, bei der Ergebnisse von Anfragen unvollstéindig sein kénnen
[TIM*03].

41

KAPITEL 2: Grundlagen

User
Q ™ User Interface (Ul) _
User 1
> > ()
Q Uodat User 2
uery pdate -
Manager Manager :Qe,
(Qm) (UM) -
/T_ P2P Network
Ll >
Wrapper User n
4> LRM Layer T *O
A 4
Local Information Source (LIS)
A Node

Abbildung 2.7: Architektur eines Peers in einem PDM-System [BGK™02]

Die Architektur eines Peers ist in Abbildung 2.7 dargestellt. Der Benutzer kann
mittels der Benutzerschnittstelle (UI) Anfragen stellen, die dann an den Query Mana-
ger weitergeleitet werden. Dieser kommuniziert mit lokal bereitgestellten Daten (Local
Information Source) oder mit anderen Peers im Netzwerk. Auflerdem kénnen Daten
mittels Update Propagationen angepasst werden, was durch den Update Manager rea-
lisiert wird.

2.6 Workflows

2.6.1 Grundlagen

Workflow-Managementsysteme (WFMS) dienen zur Realisierung von Geschéftsprozes-
sen. Ein Geschiftsprozess stellt dabei die betriebswirtschaftliche Sicht eines Unterneh-
mensprozesses dar [JBS97]. Unter einem Unternehmensprozess wird ein Biindel von
Aktivitdten verstanden, welcher einen oder mehrere Inputs hat und fiir den Kunden
ein Output erzeugt, der fiir den Kunden einen Wert hat [HC94]. Die fiir die Informa-
tik wichtige Implementierungssicht eines Geschéftsprozesses wird dabei als Workflow
bezeichnet. Dabei muss man noch zwischen Modellen von Geschéftsprozessen sowie
Workflows und deren Instanzen, die die eigentliche Ausfithrung eines Modells darstel-
len [LRO0], unterscheiden. In diesem Zusammenhang wird auch zwischen Design-Time
und Runtime oder auch Beschreibung und Ausfithrung [BW95] unterschieden. In der
Design-Time bzw. Beschreibung wird der Workflow definiert, wéhrend in der Runtime
bzw. Ausfithrung Instanzen der Beschreibungen erstellt werden, die dann ausgefiihrt

42

2.6. WORKFLOWS

werden. Ein Workflow-Modell besteht aus einer Menge von Tasks die iiber einen Kon-
trollfluss miteinander verbunden sind. Ein Task ist eine logische Einheit, die als Ganzes
von einer Ressource ausgefiihrt wird. Eine Ressource kann entweder eine Person, ein
Computersystem oder eine sonstige Maschine sein [vdAvHO02]. Um eine Aktivitét aus-
zufithren muss das Workflow-Managementsystem eine Ressource zuordnen. Fiir die
Zuordnung von menschlichen Ressourcen wird eine sogenannte Organisationsstruktur
verwendet, dies wird in der Literatur als staff resolution bezeichnet [LRO0].

2.6.2 Workflow-Managementsysteme (WFMS)

Um die Workflow-Managementsysteme besser zu verstehen, wollen wir uns die Archi-
tektur eines solchen anschauen. Recht gut hierfiir geeignet ist das Referenzmodell der
Workflow Management Coalition (Abbildung 2.8), die sich als Ziel gesetzt hat, die
Interoperabilitét der Workflow-Produkte zu erhéhen [JBS97]. Aus diesem Grund han-
delt es sich beim Referenzmodell auch um eine Schnittstellendarstellung, bei der die
benotigten Schnittstellen zu anderen Komponenten definiert werden. Kern des Refe-
renzmodells ist der Workflow Enacting Service, der wiederum aus einer oder mehrerer
Workflow-Engines besteht. Die Workflow-Engine ist dabei fiir die Ausfiihrung eines
Workflow zusténdig. Dessen Beschreibung wird iiber eine Design-Time-Komponente
(Process Definition Tools) erstellt und dann iiber eine Schnittstelle dem Workflow
Enacting Service iibergeben. Dafiir ist eine standardisierte Sprache zur Beschreibung
des Prozesses notwendig [Hol04]. Deshalb wurde eine Prozessbeschreibungssprache auf
Basis von XML eingefiihrt mit dem Namen XML Process Definition Language (XPDL)
[Wor05b] bzw. Business Process Execution Language (BPEL) [ACD*03, Oas07]. Um
das WFMS zu verwalten und zu kontrollieren existieren Administration und Monito-
ring Tools, die dann iiber eine weitere Schnittstelle an den Enacting Service angeschlos-
sen sind. Weiterhin existieren spezielle Anwendungen, die Benutzern ihre Arbeitslisten
préasentieren [LR00]. Diese Anwendungen sind die sogenannten Workflow-Clients. Wei-
terhin existieren in Workflows Aktivitaten, die ohne Hilfe von Benutzern ausgefiihrt
werden konnen. Dafiir werden Anwendungen direkt (Invoked Applications) aufgeru-
fen. Fiir die verteilte Ausfithrung von Workflows ist es notig, dass Workflow Enacting
Services miteinander kommunizieren.

Workflows bzw. Geschéftsprozesse basieren héufig auf der Verarbeitung von Doku-
menten. Aus diesem Grund ist es von Vorteil, dass das WFMS eng mit Dokumenten-
managementsystemen (DMS) integriert ist [MR95]. Ein DMS verwaltet die Dokumente
(z.B. Auftragsbestitigung), die an oder vom Unternehmen gesendet werden, sowie Do-
kumente fiir die interne Kommunikation.

2.6.3 Workflow-Beschreibungen

Der Ablauf eines Workflows wird hauptséchlich durch seinen Kontroll- und Datenfluss
beschrieben, auf den in diesem Abschnitt eingegangen werden soll. Um den Kontroll-
und Datenfluss zu beschreiben verwenden die WFMS Workflow-Beschreibungssprachen,
die meist vom jeweiligen Produkt abhéngig sind. Darauf soll hier nicht weiter einge-

43

KAPITEL 2: Grundlagen

Process
Definition Tools

A
Interface 1

v

Workflow API und Interchange Format

Workflow Engine —H
I
I

Workflow Enactment Service

Administration &
Monitoring Tools

Workflow
Engine

Other Workflow
Enactment Services

.
Interface 5
v
—
Interface 4
v

—
Interface 2 Interface 3
v v
Workflow Client Invoked
Applications Applications

Abbildung 2.8: Referenzarchitektur nach WEMC [Wor05a]

gangen werden.

Der Kontrollfluss (Abbildung 2.9(a)) beschreibt den Ablauf der Tasks (Kreise) und
damit ihre zeitliche Reihenfolge. Der Pfeil gibt dabei die zeitliche Ordnung an und
bedeutet, dass der Task an der Spitze nach der Beendigung des Tasks am Start des
Pfeiles ausgefiihrt wird. Es besteht weiterhin die Moglichkeit bestimmte Aktivitédten
parallel auszufithren und damit die Workflow-Ausfithrung zu beschleunigen. Fiir eine
Parallelisierung gehen dabei von einer Aktivitidt mehrere Pfeile aus, was als Fork be-
zeichnet wird. Treffen die parallelen Zweige in einer Aktivitdt zusammen, so wird das
als Join bezeichnet. Die Zweige kénnen selektiv ausgefiithrt werden, so wie in der Ab-
bildung 2.9(a), bei der die Zweige nach dem Auswerten des Stammkunden-Attributs
ausgefiihrt werden.

Der Datenfluss beschreibt dagegen nicht den Ablauf von Task-Ausfiithrungen, son-
dern den Fluss der Daten zwischen den Tasks, so wie in Abbildung 2.9 (b) dargestellt.
Die Pfeile beschreiben, dass die Daten, die durch einen Task erzeugt werden (am Start
des Pfeiles) von der an der Pfeilspitze liegenden Task benotigt werden. Im Beispiel der
Abbildung existieren zweierlei Dokumente, welche ein Anforderungs- und ein Ange-
botsdokument enthalten. Allerdings muss vom WFMS sichergestellt werden, dass die
Daten vor der Ausfithrung der Aktivitdten vorhanden sind.

Mehr zur Kontroll- und Datenflussmodellierung steht in [LR00]. Es gibt auch noch

andere Ansétze zur Modellierung, die dann Aktivitdten-, Kommunikations-, Zustands-
oder Artifact-Modellierung heien [CHR9S].

44

2.6. WORKFLOWS

Standard-
angebot
erstellen

Kein Stammkunde

Angebots- Anforderung Angebot
anforderung Angebot
empfangen versenden
Spezielles
Stammkunde Angebot
erstellen
(a) Kontrollfluss (b) Datenfluss

Abbildung 2.9: Kontroll- und Datenfluss eines Workflows[LR00]

2.6.4 Datenintegration mit Workflows

Die Workflow-Technologie wird hauptséchlich fiir die Integration von Funktionen ver-
schiedenster Anwendungssysteme eingesetzt. In der letzten Zeit realisiert diese Tech-
nologie auch die Integration zwischen Prozessen, d.h. Prozesse kommunizieren unter-
einander. In diesem Zusammenhang wird der Begriff Orchestration verwendet. Um
diese Anforderung zu realisieren, werden die Workflow-Systeme stark mit Messaging-
Systemen und anderen Kommunikationsarten gekoppelt.

In Abschnitt 2.3 wurde die konsistenzerhaltende Datenintegration eingefiihrt, mit
der erreicht werden soll, dass sdmtliche Unternechmensdaten auf dem gleichen Stand
sind. In diesem Abschnitt soll nun untersucht werden, welche Ansétze es zur konsistenz-
erhaltenden Datenintegration mit der Workflow-Technologie gibt.

Ein WFEMS bietet viele Konzepte zur Implementierung von Geschéaftsprozessen.
Viele davon werden fiir die konsistenzerhaltende Datenintegration nicht benétigt, denn
es handelt sich bei den Prozessen um kurzlebige Prozesse, die keine Benutzerinterak-
tionen haben. Diese werden auch als Microflows bezeichnet [LR00, LR02, KKL*04].
Microflows sind Workflows, die nicht unterbrechbar sind, d.h. sie unterstiitzen kein
Vorwiérts-Recovery [Ley96]. Vorwirts-Recovery sagt aus, dass nach einem Absturz der
Workflow am letzten Task vorgesetzt wird. Microflows hingegen arbeiten innerhalb
einer Transaktion und bei einem Absturz wird der gesamte Flow zuriickgesetzt und
dann neu gestartet. Die nicht unterbrechbaren Workflows eignen sich auch deshalb
fiir die konsistenzerhaltende Datenintegration, da in dieser Art von Prozessen keine
menschliche Interaktion benotigt wird und die einzige Aufgabe darin besteht bei einer
Anderung eines Objektes alle Systeme, die ebenfalls Daten des Objektes speichern,
iiber diese Anderung zu informieren. In [LR02] wurde untersucht wie Workflows fiir
die Informationsintegration verwendet werden koénnen. Diese Art von Integration fasst
die Funktions- und Datenintegration zusammen.

Ein weiteres Beispiel der Datenintegration mittels Workflow-Technologie findet man
bei der Integration mehrerer Informationssysteme im Bereich von Kliniken [JLM105].
Dafiir wurden die Prozesse der Klinik in Datenlogistik-Prozesse iiberfiihrt. Bei den letz-
teren steht der Transport und die Transformation von Daten im Vordergrund. Sie ist

45

KAPITEL 2: Grundlagen

ein Ansatz zur Integration einer heterogenen Datenlandschaft, die ebenfalls Workflow-
Technologien verwendet und spezialisiert ist auf die Integration von Klein- und mit-
telsténdischen Unternehmen (KMU) mit einem Grofunternehmen [SGB02]. Hier wird
ein Internet-Dateisystem verwendet, um Dateien mit dem KMU auszutauschen, die
dann Workflows beim Groflunternehmen anstoflen. Diese Workflows iibernehmen die
weitere Verarbeitung der Daten. Die gesamte Infrastruktur befindet sich auf den Rech-
nern des Grofunternehmens, so dass die KMU finanziell nicht belastet werden.

2.7 XML Technologien

Die eXtensible Markup Language (XML) [BPSM™06] ist eine Metasprache, mit der
andere Sprachen definiert werden konnen. Diese Sprachen kénnen aktiv sein, wie zum
Beispiel XSLT oder eine Sprache zum Speichern bzw. Austausch von Daten. XML ist
sowohl von Computersystemen als auch vom Menschen lesbar. Dadurch kénnen Da-
ten, die zwischen einzelnen Informationssystemen ausgetauscht werden, leicht analy-
siert werden, mit der Moglichkeit der menschlichen Intervention. Auflerdem enthélt ein
XML-Dokument nicht nur die benotigten Daten, sondern auch Struktur- und Element-
informationen. Aus diesem Grund kommen immer wieder die Begriffe selbstbeschrei-
bend und semi-strukturiert im Zusammenhang mit XML zur Sprache. Einer der Nach-
teile von XML ist, dass auler dem String-Datentyp keinerlei Datentypen unterstiitzt
werden. Um dennoch andere Datentypen zu verwenden, miissen diese serialisiert wer-
den und kénnen mittels XML Schema iiberpriift werden.
Weitere XML-Technologien:

XML Schema [FW04, TBMMO04, BM04] ist eine Sprache mit der Schemabeschrei-
bungen definiert werden kénnen. Damit kann die Struktur eines XML Dokumen-
tes festgelegt und den Elementen und Attributen Datentypen zugeordnet werden.

XPath [BBCT07] wird verwendet um einzelne Elemente, Attribute oder Inhalte aus
einem XML Dokument zu extrahieren. Auflerdem kénnen mit XPath Berechnung-
en und Bool’sche Bedingungen definiert werden.

XSLT (eXtensible Stylesheet Language Transformation) [Kay07] ist eine Sprache mit
der XML Dokumente transformiert werden kénnen. Als Output der Transfor-
mation konnen wiederum XML Dokumente entstehen, aber auch HTML-Seiten
bzw. Textdokumente. Das Prinzip eines solchen Stylesheets ist die Definition einer
Menge von Transformationsregeln.

XQuery [BCF107] ist eine Anfragesprache fiir XML, mit der Daten aus einer XML-
Datenbank oder XML-Dokumenten gefiltert und transformiert werden koénnen.
Aus diesem Grund eignet sich XQuery wie XSLT fiir die Transformation von
XML Dokumenten. Wie in [Kep04, Kep02] gezeigt wird, sind XQuery als auch
XSLT Turing vollstéindig und damit auch gleich méchtig.

SOAP [Mit03, GHM*03a, GHM™03b], frither bekannt als Simple Object Access Pro-

tocol, ist ein Protokoll, mit dem Dokumente ausgetauscht werden kénnen oder es

46

2.8. MESSAGE ORIENTED MIDDLEWARE

kann ein Remote Procedure Call realisiert werden. SOAP ist Grundlage fiir die
Realisierung von Web Services [ACKMO04].

2.8 Message Oriented Middleware

Die Message Oriented Middleware (MOM) ist eine Infrastruktur, die den asynchronen
Austausch von Nachrichten ermdéglicht [RMBO1, Kel02]. Der Austausch kann dabei
persistent oder transient durchgefiihrt werden und ggf. auch transaktional. Aulerdem
ermoglicht MOM eine lose Kopplung der Systeme. Ein weiterer Vorteil der MOM ist,
dass der Empféanger beim Senden und der Sender beim Empfang nicht verfiighar sein
miissen. Des Weiteren wird durch die Entkopplung und den expliziten Empfang von
Nachrichten garantiert, dass der Empfanger nicht iiberlastet wird, da dieser die Nach-
richten nur verarbeiten muss, wenn er derzeit dazu in der Lage ist. Allerdings kann bei
einer dauerhaften Uberlast die Warteschlange (engl. Queue) volllaufen. Die Nachrich-
ten konnen frei definiert werden. Besonders interessant ist die Verwendung von XML
als Nachrichtenformat [Kel02]. Dies ist begriindet durch die Flexibilitdt von XML und
dem selbstbeschreibenden Charakter. Die Message Oriented Middleware hat folgende
Entwurfsziele [Cum02]:

Store and Forward. Die Nachricht wird von der Message Oriented Middleware ent-
gegen genommen und solange vorgehalten, bis der Empfanger sie entgegen neh-
men kann. Auflerdem wird der Sender bis zum Empfang der Nachricht nicht
blockiert (asynchron).

Message Broker. Der Message Broker ermoglicht flexiblere Kommunikationsmodelle
wie zum Beispiel Publish-Subscribe.

Garantiertes Versenden. Es soll sichergestellt werden, dass jede Nachricht genau
einmal verarbeitet wird. Dies wird unter anderem durch Transaktionen unterstiitzt.

Nachrichtenreihenfolge. Die Reihenfolge der Nachrichten von einer Quelle soll er-
halten bleiben, wenn diese von einem Zielsystem gelesen werden.

Symbolisches Routen. Die Transportmedien sollen anhand von symbolischen Na-
men identifiziert werden.

Request-Response. Es soll moglich sein, dass in einer Anfrage (Request) der Empfin-
ger der Antwort (Response) angegeben werden kann. Dadurch soll erreicht wer-
den, dass ein Server die Antwort an die richtige Adresse senden kann.

Nachrichtentransformation. Da bei mehreren Empféingern einer Nachricht dessen
Nachrichtenformatbediirfnisse auseinander gehen koénnen, soll es die Moglichkeit
geben, diese Nachrichten zu transformieren.

Adhoc Empfianger. Die meisten Empfianger von Nachrichten sind eher statisch, da
sie immer die gleichen bestimmten Geschéftsfunktionen erfiillen miissen. Manche

47

KAPITEL 2: Grundlagen

Empfinger brauchen eine flexiblere Gestaltung von Nachrichtenabos. Sie brau-
chen so genannte Adhoc-Abos. Solche Adhoc-Abos werden nur fiir bestimmte
Zeit benotigt, wie zum Beispiel ein Performanzmonitor, der aktuelle Aktivitaten
darstellt.

Ausnahmeauflésung. Die Message Oriented Middleware soll dafiir sorgen, dass mog-
lichst viele Ausnahmen aufgelost werden, so dass der Anwendungsentwickler
moglichst wenige davon behandeln muss, ohne dabei die Anwendungsintegritat
zu verletzten.

Standards. Die Verwendung von Standards, wie zum Beispiel JMS (Java Message
Service), ermoglicht die leichte Austauschbarkeit von MOM-Produkten.

Dateitransfer. Manchmal ist es notwendig nicht nur die relativ kleinen Nachrichten
zu transportieren, sondern auch relativ grofie Dateien, wie zum Beispiel Grafiken
oder CAD-Zeichnungen. Dies kénnte zum Beispiel iiber FTP erfolgen, wobei die
URL mit einer Nachricht verschickt wird.

Man kann das Versenden von Nachrichten mit einer MOM noch dahin unterschei-
den, ob das Kommunikationsparadigma eine Punkt-zu-Punkt-Kommunikation oder
Publish-Subscribe ist.

Die Punkt-zu-Punkt-Kommunikation [Ley99] hat immer einen Sender und einen
Empfénger pro Nachricht. Das Medium mit dem die Nachrichten ausgetauscht werden,
wird wie bereits erwdhnt Warteschlangen genannt. Bei unterschiedlichen Nachrichten
konnen allerdings unterschiedliche Sender und Empfanger bei derselben Warteschlange
existieren.

Das Publish-Subscribe-Paradigma [Ley99] verwendet Message Broker um seine
Funktionalitéit zu realisieren. Dieser Ansatz ist in Abbildung 2.10 dargestellt. Im Gegen-
satz zur Punkt-zu-Punkt-Kommunikation kénnen hier mehrere Empfanger pro Nach-
richt existieren, aber auch kein Empfanger. Ein Sender einer Nachricht wird Publisher
genannt und dieser hat kein Wissen iiber mogliche Empfanger. Ein Empfanger wird
Subscriber genannt. Dieser bekundet sein Interesse an bestimmten Nachrichten in dem
er Subscriptions anmeldet. Subscriptions sind bestimmt durch das Transportmedium
(Topic) und eventuellen Filterregeln.

Der Java Message Service (JMS) [HBST02a] bietet eine einheitliche Schnittstelle
zwischen Java und MOM-Produkten. Eine JMS-Nachricht besteht aus einem Nachrich-
tenkopf (Header), Nachrichteneigenschaften (Properties) und dem Nachrichtenkorper
(Body). In JMS wird ebenfalls zwischen Punkt-zu-Punkt und Publish-Subscribe unter-
schieden. Sowohl fiir Punkt-zu-Punkt als auch Publish-Subscribe kénnen Filter anhand
von Header-Elementen und Properties erfolgen. JMS bietet allerdings keine Moglich-
keit um die Transportmedien (Queues und Topics) zu erzeugen. Diese miissen iiber
das MOM-Produkt angelegt werden. Um an die Basisobjekte von JMS zu kommen
(Queues, Topic und die Connection Factories) wird der Java-Namensdienst JNDI ver-
wendet. Dadurch wird eine Entkopplung von Implementierungsobjekten und Schnitt-
stellen erreicht.

48

2.9. EREIGNISSYSTEME

Subscription

Land=

“DE“
k
NN N _ ’ DE I St
l DE . Topic ubscriber
|24

Publisher us

Land=

“US* Subscriber

Subscription

Abbildung 2.10: Publish-Subscribe

2.9 Ereignissysteme

Die Idee hinter Ereignissystemen (FEvent Systems) ist, dass ein Objekt auf die Zu-
standsénderungen eines anderen Objekts reagieren kann [CDKO1]. Objekte die Er-
eignisse reprasentieren werden iiblicherweise Notifications genannt. Ereignisse kénnen
mittels Push und Pull {ibertragen werden. Beim Push implementiert der Empfénger ein
Interface mit dem er die Nachrichten empféangt, die das sendende Objekt verschickt.
Bei Pull fragt der Empfanger Ereignisse ab, die nach einem bestimmten Zeitpunkt
auftraten. Schwachstellen von Ereignissystemen sind, dass der Zeitraum vom Senden
bis zum Empfang lang dauern kann und die Nachrichten in einer unterschiedlichen
Reihenfolge beim Empfinger ankommen koénnen [Mic01].

Verteilte Ereignissysteme konnte man nun einsetzen, um ein Propagationssystem
zu realisieren, das Anderungen in der Anwendungsschicht mitteilt. Dies begriindet sich
unter anderem darin, dass Anwendungsschichten oft objektorientiert realisiert sind und
diese Objekte Anderungen an denselben iiber ein Ereignissystem an andere Informa-
tionssysteme mitteilen konnten. Dieser Ansatz erfordert eine starke Anpassung der
Anwendungsschicht. Diese Anpassung ist nicht immer mdéglich und gewollt.

Es besteht eine gewisse Verwandtschaft zwischen Ereignissystemen und dem Publish-
Subscribe-Paradigma. Publish-Subscribe-Nachrichten kénnen als Ereignisse angesehen
werden [Cum02]. Daher verwenden Ereignissysteme das Publish-Subscribe-Paradigma
[CDKO1].

JINI ist ein Framework um verteilte Anwendungen zu erstellen. JINI definiert in
seinem Standard [Mic01, CDKO1] die Moglichkeit, verteilte Ereignisse auszutauschen.
Dafiir stellt der Standard eine Reihe von Schnittstellen und Klassen bereit. Die Kom-
munikation erfolgt iiber Remote Method Invocation (RMI). Allerdings definiert JINI
keine Infrastruktur, die fiir die Verteilung der Ereignisse eingesetzt wird. Um dies zu
ermoglichen, kénnen sogenannte Third Party Objects eingesetzt werden.

49

KAPITEL 2: Grundlagen

AufBlerdem gibt es Ereignissysteme fiir die CORBA-Umgebung [Zah99]: Der Event
Service [Gro04a] und der Notification Service [Gro04b]. Zuerst wurde der Event Ser-
vice entwickelt und darauf aufbauend der Notification Service. Der Event Service hat
zwei Modi fiir das Verbreiten von Ereignissen: Push und Pull. Beim Pull implemen-
tiert das bereitstellende Objekt eine Schnittstelle, mit dem die Ereignisse angefordert
werden konnen. Der Konsument implementiert beim Push eine Schnittstelle mit dem
er gesendete Ereignisse empfangen kann. Es kann zwischen bereitstellendem Objekt
und Konsument ein Ereigniskanal zwischengeschaltet werden, der mehrere Ereignisbe-
reitsteller und Konsumenten erlaubt. Auflerdem kann mit einem Ereigniskanal Push
und Pull kombiniert werden [GroO4al. Der Notification Service ist eine Erweiterung
des FEvent Service. Es ermoglicht typisierte Ereignisse. Konsumenten konnen Ereignis-
se filtern und nach Ereignistypen fragen. Ereignisquellen kénnen sich nach gewiinschten
Ereignissen erkundigen. Aulerdem ist es moglich, die Eigenschaften von Kanélen fest-
zulegen, wie zum Beispiel FIFO.

2.10 Model-Management

2.10.1 Ubersicht

Insbesondere Integrationsaufgaben sind metadaten-intensiv. Es miissen Modelle der
einzelnen Informationssysteme verwaltet werden. Darauf aufbauend miissen Ande-
rungsnachrichten definiert und Transformationen zwischen diesen Nachrichten erstellt
werden. Um diese Aufgaben zu vereinfachen, kénnen Model-Managementsysteme ein-
gesetzt werden.

Model-Managementsysteme werden entwickelt, um Aufgaben, die im Zusammen-
hang mit der Verwaltung von Metadaten stehen zu vereinfachen [BHP00a, BHPOOD].
Unter Metadaten wird beispielsweise ein Datenbankschema, ein ER-Modell, XML Sche-
ma oder ein UML-Modell verstanden. Zur vereinfachten Handhabung werden diese Me-
tadaten durch einen Import vereinheitlicht, was generalisierte Operatoren erméglicht.
Verdanderte Modelle kénnen dann wieder in eine spezielle Darstellungsform exportiert
werden. Modelle werden in Form von Graphen abgelegt, wobei die Knoten einzelne
Modellelemente (z.B. Klassen, Attribute) und Kanten Beziehungen darstellen. Es gibt
noch eine spezielle Art von Beziehungen, die eine Zuordnungsbeziehung darstellt, d.h.
eine Klasse ist beispielsweise in einem Modell enthalten oder ein Attribut ist einer
Klasse zugeordnet. Diese Art von Beziehung bildet einen azyklischen gerichteten Gra-
phen. Zwei weitere wichtige Konstrukte in einem Model-Managementsystem sind Map-
ping und Morphismen [MRBO03]. Mapping und Morphismen sind selbst auch Modelle
[BHP00a, BHPOOb], die Verbindungen zwischen zwei Modellen darstellen und damit
Korrespondenzen zwischen den Modellen beschreiben. Ein Mapping enthélt dabei auch
Funktionen zum Ubergang und ein Morphism nur die Relation zwischen mehreren Mo-
dellelementen.

Um einen Mehrwert zur Verwaltung der Metadaten zu bieten, stellen Model-Manage-
mentsysteme generische Operatoren bereit. Diese Operatoren haben als Eingabepara-
meter und als Ausgabeparameter Modelle, Mappings bzw. Morphismen. Die Operato-

20

2.11. SCHLUSSFOLGERUNGEN

ren lassen sich in zwei Gruppen aufteilen: Die einfachen und die komplexen Operatoren.
Zu den einfachen gehoren zum Beispiel das Erzeugen und Verédndern eines Modells. Zu
den komplexen gehoren die folgenden:

Match Automatic Schema Matching (ndchster Abschnitt).

Diff Das Finden der Unterschiede zwischen zwei Modellen anhand eines Morphismus
[IMRBO3].

Merge Die Erstellung eines integrierten Modells aus zwei Modellen [PB03].

Mapping Composition Das Integrieren zweier Mappings.

2.10.2 Automatic Schema Matching

Mit Automatic Schema Matching werden Korrespondenzen zwischen Schemata ge-
funden [RBO1]. Diese Korrespondenzen konnen als Grundlage fiir die Erstellung von
Transformationen verwendet werden. Dies kann als unabhéngiges System erfolgen oder
innerhalb eines Model-Managementsystems als Match-Operator. Um Korresponden-
zen zwischen den einzelnen Schemata zu finden, existieren unterschiedliche Metho-
den, die unterschiedliche Kriterien fiir das Erkennen von Korrespondenzen verwen-
den. Diese teilen sich auf in Schema-Matchers, Instance-Matcher, Hybrid-Matcher oder
Composite-Matchers. Schema-Matchers nehmen als Grundlage die Schema-Definition.
Beim Instance-Matching werden dagegen die vorhandenen Daten als Grundlage ver-
wendet. Der Hybrid-Matcher verwendet mehrere Ansétze innerhalb eines einzigen Mat-
chers. Im Gegensatz dazu ruft der Composite-Matcher mehrere unabhéingige Matcher
auf, deren Ergebnisse er dann kombiniert. Beim Schema-Matcher kann noch unter-
schieden werden, ob einzelne Elemente gematched werden (auf Grundlage von Namen,
Beschreibungen oder Datentypen) oder die Struktur zu Rate gezogen wird.

Als Systeme (Forschungsprototypen) lassen sich hier Cupid [MBRO01], Coma [DR02]
und Protoplasm [BMPQ04] auffithren. Mit Coma lassen sich durch einen festgeschrie-
benen Prozess mehrere Matcher kombinieren. Dieser Prozess besteht aus Benutzerinter-
aktion (Beurteilung des Ergebnis und Auswahl von Matcher), Ausfithren der Matcher
und Gesamtergebnis berechnen. Gegebenenfalls kann der Prozess wiederholt werden.
Der Protoplasm Prototyp verwendet dagegen frei definierbare Prozesse, so dass der Be-
nutzer sich nicht mehr um die Auswahl und Reihenfolge der Matcher kiimmern muss.

2.11 Schlussfolgerungen

Nachdem einige Technologien betrachtet wurden, die fiir eine Anderungspropagation
verwendet werden bzw. als Grundlage dienen koénnen, sollen diese bewertet werden.
Die ERP-Systeme l6sen eine Vielzahl von Integrationsproblemen in einem Unter-
nehmen. Allerdings decken sie nur einen Teilbereich der Softwareanwendungen ab, die
in einem Unternehmen bendtigt werden. Des Weiteren sind auf dem Markt vorhan-
dene ERP-Systeme nicht fiir jedes Unternehmen geeignet oder es gibt Probleme mit

51

KAPITEL 2: Grundlagen

der Einfithrung. Aus diesen Griinden wird im Unternehmen weiterhin Integration von
Daten bendétigt.

Die EAI stellt eine umfassende Technologie dar, die eine Vielzahl von Produk-
ten zum Vorschein gebracht hat. Die wichtigsten dieser Produkte sollen im Abschnitt
5.3 (Vergleich mit verwandten Ansétzen) untersucht werden. Wenn wir noch einmal
einen Blick auf die EAI-Architekturen von Tabelle 2.1 werfen, so lassen sich Point-to-
Point und Verteilte Objekte als Grundlage ausschlieen. Point-to-Point hat zu viele
Verbindungen zwischen den einzelnen Informationssystemen und damit auch einen zu
hohen Erstellungs- und Wartungsaufwand. Verteilte Objekte dienen eher dazu, um Me-
thoden, die von Objekten bereitgestellt werden, fiir andere Prozesse anzubieten. Die
Bus-Architektur bietet eine gute Grundlage fiir ein Propagationssystem, ermoglicht
allerdings kein inhaltsbasiertes Verteilen von Nachrichten [Pap06] und hat auflerdem
ein Problem beim Anpassen von Anderungsnachrichten nach den Anforderungen ei-
nes Zielsystems. Aus diesen Griinden wird als Basis eine Hub-and-Spoke-Architektur
gewihlt, die diese Nachteile beseitigt. Allerdings muss angemerkt werden, dass der Hub
zu einem Flaschenhals werden kann.

Eine unternehmensweite zentrale Datenbank kann die Integrationsprobleme auch
nicht 16sen. Um eine solche zentrale Datenbank zu entwerfen, ist ein immenser Ent-
wicklungsaufwand notwendig. Aulerdem wird keine Datenlokalitdt und Autonomie rea-
lisiert. Des Weiteren stellt auch dieser Ansatz einen Flaschenhals dar. Diese Probleme
kénnen mittels Verteilter Datenbanken und Replikation gelost werden. Allerdings muss
weiterhin ein kostenintensives zentrales Modell entwickelt werden. Des Weiteren befin-
det sich die Integration bei der datenbankbasierten Replikation in der Datenschicht,
d.h. evtl. vorhandene Konsistenzregeln in der Anwendungsschicht werden umgangen.
Foderierte Datenbanken bringen unterschiedlichste Datenquellen auf ein gemeinsames
Modell, beschiftigen sich aber weniger mit der konsistenzerhaltenden Datenintegration.

Peer-Data-Management-Systeme ermoglichen flexible Netze, mit denen auch Up-
date Propagation moglich ist. Auch diese Systeme basieren auf der Datenschicht und
Konsistenzregeln werden in der Anwendungsschicht umgangen. Ein weiterer Nachteil
in der Unternehmensumgebung ist der meist dynamische Charakter eines solchen Sys-
tems. Im Speziellen muss hier auf die Open World Assumption hingewiesen werden.

Als Grundlage fiir ein Anderungspropagationssystem sind Prozesse geeignet, da sie
eine flexible Gestaltung von Propagationsaufgaben ermoglichen. Diese konnten zum
Beispiel mit Microflows realisiert werden, aber nicht mit Riickwérts-Recovery-basierten
Workflows. Allerdings hat die Workflow-Technologie noch keine standardisierten Tasks,
die fiir die Anderungspropagation benétigt werden. Des Weiteren werden mit Work-
flowsystemen die Reihenfolgeeinhaltung von Anderungen nicht garantiert, da die Pro-
zesszeiten stark voneinander abweichen kénnen. Bei reinem Einsatz von Microflows
wére es moglich, miisste aber zusétzlich realisiert werden. Ein weiterer Schwachpunkt
ist die Erkennung und Auflésung von Anderungskonflikten.

Eine Anderungspropagation sollte Anderungen von Geschiftsobjekten (z.B. Kun-
denauftrag) propagieren und nicht die von Implementierungsobjekten (z.B. Auftrags-
kopf und Auftragspositionen), da durch Geschiftsobjekte ein hoher Zusammenhang
zwischen den Implementierungsobjekten besteht. Auflerdem soll das Einpflegen der

52

2.11. SCHLUSSFOLGERUNGEN

Daten wenn moglich auf der Ebene der Anwendungsschicht liegen, damit evtl. vorhan-
dene Konsistenzregeln in dieser Schicht nicht umgangen werden.

XML bietet durch seine flexible Gestaltung und der Mdoglichkeit von menschlicher
Ausnahmebehandlung bei Fehlern eine gute Grundlage um Anderungen zu beschreiben.
Des Weiteren bietet XML eine Vielzahl von weiteren Technologien und darauf aufbau-
enden Produkten, die in einem Propagationssystem verwendet werden konnen. Durch
seine hierarchische Struktur lassen sich die Daten von Geschéftsobjekten darstellen, da
Geschiéftsobjekte intern ebenfalls eine hierarchische Struktur haben.

Eine weitere viel versprechende Technologie ist die Message-oriented Middleware
(MOM). Sie erméglicht das sichere Ubertragen von Anderungsnachrichten unter der
Einhaltung der Reihenfolge.

Verwandt damit sind Ereignissysteme, die ebenfalls eingesetzt werden kénnten (z.B.
CORBA Notification Service). Zum Aufbau einer Hub-and-Spoke-Architektur eignen
sich aber MOM-Systeme besser, da sie Point-to-Point-Kommunikationen erméglichen,
mit deren Hilfe die ,,Speichen® (engl. Spokes) realisiert werden kénnen. Auflerdem er-
fordert die Verwendung von Ereignissystemen eine Anpassung der Anwendungsschicht
des Informationssystems.

Das Model-Management ist eine Technologie, mit deren Hilfe die Modelle der ein-
zelnen Informationssysteme verwaltet werden kéonnen und Transformationen zwischen
einzelnen Anderungsformaten semi-automatisch entwickelt werden kénnten. Diese Sys-
teme werden in der vorliegenden Arbeit jedoch nicht genauer betrachtet.

93

KAPITEL 2: Grundlagen

o4

KAPITEL 3

Grundlegende Konzeption

Nachdem Technologien und Konzepte zur Integration von Informationssystemen disku-
tiert und bewertet wurden, soll in diesem Kapitel das Konzept fiir das Anderungspro-
pagationssystem im heterogenen Umfeld entwickelt werden. Die Integration soll auf Ba-
sis von Propagationen von Geschéftsobjektinderungen erfolgen, da dies ein geringeres
Austauschvolumen als der vollstandige Datenaustausch hat. Diese Art von Propagation
wird auch bei der Replikation von Datenbanken eingesetzt. Aus diesem Grund werden
zuerst die verschiedenen Replikationsvarianten untersucht. Dann werden die Basiskon-
zepte fiir die heterogene Propagation und je eine Sprache zur Definition von komplexen
Abhéngigkeiten sowie eine zur Definition von Bedingungen fiir Bool’sche Ausdriicke auf
Anderungen vorgestellt. AnschlieBend werden die Komponenten des Propagationssys-
tems beschrieben. Weitere wichtige Eigenschaften eines solchen Propagationssystems
sind die Erkennung und Behandlung von Anderungskonflikten und die Einhaltung der
Anderungsreihenfolge. Die Anbindung der Informationssysteme erfolgt mit Adaptern,
was eine flexible Kapselung aus Sicht des Propagationssystems ermoglicht. Der Einsatz
von Adaptern ermoglicht eine geringe bis keine Anpassung im zu integrierenden Infor-
mationssystem und dient als Bindeglied zwischen dem Informationssystem und dem
Propagationssystem. Diese Eigenschaften und der Adapter des Propagationssystems
werden in den Unterkapiteln 3.8 - 3.11 diskutiert.

3.1 Losung fiir Replikation der Informationssystem-
daten

Um ein Propagationssystem fiir heterogene und autonome Informationssysteme zu ent-
werfen, werden zuerst Losungen fiir homogene Systeme nach passenden Konzepten
untersucht, die als Grundlage fiir den heterogenen Fall geeignet sind. Informations-
systeme haben im Gegensatz zur herkommlichen Replikation (vgl. Abschnitt 2.4.1.3)

95

KAPITEL 3: Grundlegende Konzeption

Lazy Replication | Eager Replication

1 Objektbesitzer | 1 Objektbesitzer

Master | N Transaktionen | 1 Transaktion

N Objektbesitzer | N Objektbesitzer

Group N Transaktionen 1 Transaktion

Abbildung 3.1: Replikationsstrategien nach [GHOS96| und ihre Verwendung fiir die
Integration von Informationssystemen

keine explizit replizierten Daten. Das bedeutet, dass die Replikation nicht durch einen
Administrator definiert wurde und die Daten auf einzelne Rechner verteilt wurden. Die
Replikation zwischen den Informationssystemen entsteht iiber die Zeit und die einzel-
nen Systeme sind unabhéngig voneinander. Die Griinde hierfiir liegen in dem Datenbe-
darf einzelner Unternehmensbereiche, welche die Informationssysteme verwenden, und
den Kauf und Entwicklung neuer Informationssysteme, die dann Daten redundant zu
anderen Systemen verwalten. Die Datenbediirfnisse der einzelnen Informationssysteme
iiberschneiden sich teilweise und daher entsteht eine Art von Replikation. Durch die
unterschiedlichen Aufgaben und Abteilungen, die fiir die Informationssysteme verant-
wortlich sind, entsteht eine heterogene Systemlandschaft. Auflerdem wachsen Informa-
tionssysteme mit der Zeit, d.h. neue Daten werden benétigt und neue Funktionalitdten
miissen implementiert werden. Um eine Losung fiir das Replikationsproblem zwischen
den Informationssystemen zu konzipieren, muss sowohl die Heterogenitét als auch die
Autonomie der Informationssysteme beriicksichtigt werden. Die Autonomie begriindet
sich hauptséchlich durch die Eigenverantwortung der einzelnen Abteilungen. Diese sol-
len weitestgehend unabhéngig operieren konnen.

Als Erstes werden Losungen im Bereich der replizierten Datenbanken genauer un-
tersucht. Laut [GHOS96] lassen sich die Replikationslosungen in Gruppen unterteilen,
die in Abbildung 3.1 dargestellt sind. Diese unterscheiden sich darin, ob alle Ande-
rungen innerhalb einer Transaktion durchgefiihrt werden (Eager Replication) oder ob
sie in unabhéngigen Transaktionen fiir jedes System durchgefiihrt werden (Lazy Re-
plication). Des Weiteren kann man unterscheiden, ob es einen Objektbesitzer gibt,
d.h. ein dnderbares Objekt (Master) oder ob es mehrere Objektbesitzer gibt, d.h. ei-
ne von Objektgruppe (Group) von der jedes beliebige Objekt gedndert werden kann.
Fager Replikation garantiert die 1-Kopien-Serialisierbarkeit (One Copy Serializability)
[BG82, BG83]. Allerdings miissen bei einer Anderung alle Knoten verfiigbar sein. Au-
Berdem kann man noch unterscheiden, ob Anderungen nur an einer Stelle durchgefiihrt
werden konnen (Update-Master) oder in jedem Knoten (Update-Anywhere). Update-
Master in Zusammenhang mit Fager Replication verhindert Deadlocks und mit Lazy
Replication Anderungskonflikte.

Informationssysteme sollen unabhéngig von anderen Informationssystemen sein (au-
tonom) und sie sollen ebenfalls kein Wissen iiber andere Informationssysteme haben,
mit denen sie integriert sind. Aus diesem Grund koénnen Anderungen, die mehrere In-

o6

3.1. LOSUNG FUR REPLIKATION DER INFORMATIONSSYSTEMDATEN

formationssysteme betreffen, nicht innerhalb einer Transaktion durchgefithrt werden,
d.h. es wird hier eine Variante der Lazy Replikation verwendet. Daraus folgt aber auch,
dass so genannte veraltete Informationen (Stale Information) in Kauf genommen wer-
den miissen, was aber durch eine zeitnahe Weiterleitung von Anderungen verringert
werden kann. Werden Informationssysteme zwischen unterschiedlichen Geschéftsberei-
chen integriert, so handelt es sich hauptsichlich um eine Update-Master Variante, da
jedes der Geschiftsbereiche einen bestimmten Aufgabenbereich hat (vgl. z.B. Taylor).
Allerdings sollte nicht ausgeschlossen werden, dass das Replikationssystem auch in-
nerhalb eines Geschéftsbereichs eingesetzt wird oder die klassische Aufgabenverteilung
nicht angewendet wird, wie in neueren Unternehmensanséatzen. Ein Beispiel hierfiir ist
die Anpassung von Kundendaten durch einen Produktionsleiter, da der Kunde aus
anderen Griinden gerade mit ihm telefoniert. Weiterhin kann man bei Replikationssys-
temen noch unterscheiden, ob Anderungen bzw. geiinderte Daten mittels Push oder
Pull [SS05] tibertragen werden. Bei Pull kann noch unterschieden werden, ob die Ak-
tion benutzergesteuert (manuell), periodisch oder On-Demand (sobald auf ein Objekt
zugegriffen wird) ausgefithrt wird. Benutzergesteuertes und periodisches Pull fiihrt da-
zu, dass die Informationen stéirker veraltet sind und die Konfliktwahrscheinlichkeit
steigt. Aber auch die On-Demand-Pull-Variante ist nicht besser als die Push-Variante,
wenn die Daten hauptséchlich gelesen werden, da in diesem Fall haufig die Aktualitéit
iiberpriift werden muss. Auflerdem muss bei der On-Demand-Pull-Variante ein Mecha-
nismus implementiert werden, welcher die Erkennung des aktuellen Geschéftsobjektes
ermoglicht. Dies kann zum Beispiel durch einen Zeitstempel erreicht werden, was al-
lerdings zu einer Erweiterung der Informationssysteme fiihrt, die aber bei nicht allen
Informationssystemen moglich ist. Aulerdem miissen interne Zugriffe der lesenden Art
erkannt werden und an das Integrationssystem weitergeleitet werden. Dies fiithrt zu
einer weiteren Anpassung der Informationssysteme. Aus diesem Grund wird in dieser
Arbeit die Push-Variante verwendet.

Bei Push kann noch unterschieden werden, ob Anderungen nach einer Transaktion
(deferred) oder sofort (immediate) weitergeleitet werden [PS00]. In der eager-Variante
kann es nur im Zusammenhang mit immediate verwendet werden, wahrend lazy mit
beiden verwendet werden kann. Die Immediate-Variante erhoht die Datenaktualitét.
Allerdings werden in den anderen Informationssystemen Daten sichtbar, die noch nicht
committed wurden, sofern diese Anderungen nicht in den anderen Informationssyste-
men ebenfalls in einer Transaktion ausgefiithrt werden. Es wurde fiir die hier entwickelte
Propagationslésung die Deferred-Variante gewihlt, da Adapter! die Verdnderungen im
Informationssystem erkennen, darauf angewiesen sind, dass die Anderungen sichtbar
sind, d.h. die Transaktion erfolgreich abgeschlossen wurde. Auflerdem miissen keine
Transaktionen unterstiitzt werden, die identisch im Quell- und Zielsystem sind.

Des Weiteren kann man unterscheiden, ob Zustdnde oder Operationen weiterge-
leitet werden [SSO05]. In einer Losung fiir homogene Systeme kann man durch Uber-
mittlung von Operationen das Traffic-Aufkommen reduzieren, da eine Operation viele
Datensétze betreffen kann. Beispiel hierfiir ist ein INSERT INTO, bei der ein SELECT

'Ein Adapter ist eine Komponente, die als Bindeglied zwischen einem Informationssystem und dem
hier konzipierten Propagationssystem dient.

o7

KAPITEL 3: Grundlegende Konzeption

als Input verwendet wird. Problematisch wird dies aber im heterogenen Fall, denn die
Input-Tabelle muss im Zielsystem nicht unbedingt vorhanden sein. Aus diesem Grund
eignen sich hier keine Mengenoperationen sondern nur Satzoperationen. Allerdings ist
auch hier die Transformation schwieriger als bei der Transformation von Zustédnden.
Als Beispiel hierfiir kann die Transformation von Vorname und Nachname zu Name
genannt werden; wenn eine Anderungsoperation nur den Nachnamen #ndert, d.h. der
Vorname ist in der Anderungsoperation nicht vorhanden, wird aber fiir die Transfor-
mation benétigt. Das Erkennen von Operationen auf der hier angedachten Geschéfts-
objektebene ist ebenfalls sehr schwierig und erfordert eine Anpassung der beteiligten
Informationssysteme. Eine solche Anpassung sollte allerdings bei diesem Ansatz ver-
mieden werden.

Nachdem die erste Auswahl an Konzepten statt gefunden hat, miissen weitere Ba-
siskonzepte entwickelt werden, die spezifisch fiir das hier angestrebte System sind, aber
durchaus auch in homogenen Fiéllen zum Einsatz kommen kénnten.

3.2 Basiskonzepte

Um die Daten der Informationssysteme konsistent zu halten, sind die Konzepte der
Abhéngigkeit und ihre Ausfithrungsinstanzen, die Propagationsprozesse sowie die Be-
schreibung einer Anderung wichtig. Diese werden in den folgenden Unterabschnitten
genauer untersucht.

3.2.1 Abhingigkeiten und Propagationsprozesse

Bevor Anderungen eines Geschiftsobjektes in einem System an die davon betroffenen
Geschiéftsobjekte in anderen Systemen weitergeleitet werden konnen, miissen Beziehun-
gen zwischen den jeweiligen Geschéftsobjekttypen definiert werden. Fiir die Beziehun-
gen wurde der Begriff und das Konzept Abhdngigkeit eingefithrt. Eine Abhéngigkeit ist
eine gerichtete Beziehung zwischen einem Quellobjekt in einem Quellsystem zu einem
oder mehreren Zielobjekten in Zielsystemen. Um eine Konsistenz der Informations-
systeme zu gewihrleisten, miissen bei einer Anderung des Quellobjektes die Daten
des entsprechenden Zielobjektes ebenfalls angepasst werden. Anzumerken ist, dass die
Daten und die Datenstruktur eines Quellobjektes nicht notwendigerweise eins zu eins
mit denen des Zielobjektes iibereinstimmen miissen. Dies ist in der Heterogenitét der
Informationssysteme begriindet. Anderungsbeschreibungen, die die geinderten Daten
eines Geschiftsobjektes beschreiben, miissen deshalb an die Anforderungen des Ziel-
objektes angepasst werden, d.h. die Anderungsbeschreibung muss unter Umstéinden
transformiert werden.

In Abbildung 3.2 sind Abhéingigkeiten zwischen drei Informationssystemen (Qua-
drate) und deren Geschéftsobjekttypen (Kreise, siehe Abschnitt 2.1.3) dargestellt. Wie
in der Abbildung zu sehen ist, miissen nicht alle Geschéftsobjekttypen Quelle oder Ziel
einer Abhéangigkeit sein. Eine Schwierigkeit entsteht, wenn ein Geschéftsobjekttyp Ziel
von zwei Abhéngigkeiten ist. In diesem Fall muss sichergestellt werden, dass die von den

o8

3.2. BASISKONZEPTE

1-zu-1/ _ —V@ /®

J—

&=~ // it - ®
Om \ System 2
Syster\n 4 \
1-zu-1\ \\@ \\
System 3

Abbildung 3.2: Beispiel von Abhéngigkeiten zwischen Informationssystemen und
Geschiftsobjekttypen

Abhéngigkeiten betroffenen Teilmengen der Geschéftsobjekte disjunkt sind. Andern-
falls ist es schwierig zu entscheiden, welche Anderungen den Vorrang bekommen soll.
Dadurch kann es zu nicht deterministischen Verhalten kommen, denn die Quelle der
Anderung ist nicht mehr eindeutig. AuBlerdem ist aus der Abbildung ersichtlich, dass
eine Abhéngigkeit mehrere Zielgeschéftsobjekte haben kann, die in unterschiedlichen
Informationssystemen liegen kénnen. Diese werden 1-zu-N-Abhéngigkeiten genannt,
wobei die Eins fiir die Anzahl von Quellen und N fiir die Anzahl von Zielen steht. In
diesem Kapitel ist die Anzahl der Quellen auf eins beschriankt. Sollen mehrere Quel-

len verarbeitet werden, ist das grundsétzlich moglich und wird im néchsten Kapitel
behandelt.

Um eine Integration der Informationssysteme zu ermdoglichen, werden Anderun-
gen entlang der definierten Abhéingigkeiten, wie in Abbildung 3.2 dargestellt, propa-
giert. Die Abhéngigkeiten konnen deshalb als Pfade der Anderungen angesehen wer-
den, wobei die Abhéngigkeit ein Design-Time-Charakter und der Pfad einen Runtime-
Charakter hat.

Die Realisierung eines solchen Pfades erfolgt durch ein weiteres Konzept, den so ge-
nannten Propagationsprozessen. Dieser stellt eine logische Einheit fiir die Propagation
von Anderungen dar. Wie bereits diskutiert, muss es sich bei einer Abhéngigkeit nicht
um eine 1-zu-1-Beziehung handeln, sondern sie kann mehrere Ziele haben. Dies wirkt
sich ebenfalls auf den Propagationsprozess aus. Eine 1-zu-N-Abhéngigkeit kann auch
als n 1-zu-1-Abhéngigkeiten realisiert werden, hat dann aber eine andere Semantik im
Fehlerfall. Dadurch geht jedoch der logische Zusammenhalt verloren, denn es werden in
diesem Fall n Propagationsprozesse ausgefiihrt. Auflerdem sollte ein Propagationspro-
zess als Microflow (Abschnitt 2.6.4 und 2.11) ausgefiithrt werden. Dies sollte innerhalb

99

KAPITEL 3: Grundlegende Konzeption

einer Transaktionssphire? geschehen, so dass fehlerhafte Prozesse wiederholt werden
konnen.

3.2.2 Anderungsbeschreibung

Damit Anderungen, die in einem Geschiftsobjekt aufgetreten sind, an andere Systeme
weitergeleitet werden konnen, miissen sie in einer definierten Art und Weise beschrieben
werden. In diesem Abschnitt wird deshalb die Beschreibung von Anderungen genauer
untersucht.

Andern sich ein oder mehrere Attribute eines Geschiiftsobjektes, so @ndert sich
der Zustand des Geschéftsobjektes. Ein Zustand ist die Menge aller Attributwerte
eines Objektes. Diese kénnen selbst komplexe Objekte sein, wie z.B. die Adresse eines
Kunden. Des Weiteren kann man die Art der Zustandsénderung unterscheiden. Es gibt
grundsétzlich drei Arten wie sich der Zustand eines Objektes &ndern kann: ein neues
Objekt wird erzeugt (create), ein bestehendes Objekt wird geéndert (update), d.h.
Attributwerte dndern sich, oder ein bestehendes Objekt wird geloscht (delete).

Nachdem die Grundlagen einer Anderung diskutiert wurden, kann eine Anderungs-
beschreibung (AB) genauer untersucht werden. Eine Anderungsbeschreibung ist selbst
auch ein Objekt und beschreibt die Anderung, die in einem System aufgetreten ist
und vom Propagationssystem verarbeitet wird. Ein solches Objekt lédsst sich durch ein
Tupel beschreiben:

AB = (S,GT,A,B,D,TS) (3.1)
S: System in dem die Anderung auftrat oder in dem sie angewendet werden soll.
GT: Typ des gednderten (zu dndernden) Geschiftsobjektes.
A: Anderungsart A € {create, update, delete}.

B: Zustandsbeschreibung (kurz: Zustand) des Geschiftsobjektes im System S, bevor
die Anderung auftrat. Dieser Zustand wird Davor-Zustand bezeichnet.

D: Zustandsbeschreibung des Geschiftsobjektes im System S nach der Anderung. Die-
ser Zustand wird Danach-Zustand bezeichnet.

TS: Zeitstempel der Anderung.

Wiéhrend der Verarbeitung im Propagationssystem konnen sich alle Elemente des
Tupels &ndern. Das System S dndert sich vom Quellsystem auf das Zielsystem. Der Typ
des Geschiiftsobjektes (GT) dndert sich aufgrund von unterschiedlichen Bezeichnern
im Quellsystem und Zielsystem. Der Ubergang von einer Anderungsart (A) zu einer
anderen ist komplexer als die des Namens und wird deshalb anhand eines Beispiels
erklért:

2Eine Transaktionssphire ist ein Teilprozess, der nicht durch das iibliche Store-and-Forward ab-
gehandelt wird, sondern innerhalb einer Transaktion und damit auch ggf. als Ganzes zuriickgesetzt
wird.

60

3.3. TRANSAKTIONEN

Zustand create | update | delete
Davor (B) Null X X
Danach (D) X X Null

Tabelle 3.1: Anderungsarten und Zusténde in Anderungsbeschreibungen

Ein Produkt ist im PDM-System? sichtbar, da es mit dessen Hilfe entwickelt wird.
Das ERP-System (vgl. Abschnitt 2.2) hat aber noch keine Informationen iiber das
Produkt, da die Produktion noch nicht angelaufen ist. Der Zustand des Objektes &ndert
sich nun auf einen produktionsbereiten Zustand. Dies ist eine Anderung im PDM und
wird deshalb auch als update an das Propagationssystem gesendet. Da das Objekt noch
nicht im ERP-System existiert, muss es angelegt werden und A muss sich auf create
andern.

Die Verwendung der Zustandsbeschreibungen B und D sind abhéingig von der Ande-
rungsart. Dies ist in Tabelle 3.1 dargestellt.

Die beiden Zusténde (D u. B) &ndern sich anhand von Transformationen, wobei eine
Transformation immer auf beide Zustdnde angewandt wird. Transformationen werden
bendtigt, da die Daten der Systeme semantisch oder strukturell heterogen sind [Her03].

Um eine Anderungsbeschreibung vollstindig zu definieren, sollte sie zwei Zustéinde
haben, da bei einem Update eines Geschéftsobjektes mit mehreren Implementierungs-
objekten (z.B. Kundenauftrag, der aus einem Auftragskopf und mehreren Auftragsposi-
tionen besteht), miissen die Unterénderungsarten (create, update, delete) erkannt wer-
den, um die entsprechenden Anderungen der Implementierungsobjekte durchzufithren.
In dem Beispiel der Kundenauftragsdnderung konnen Auftragspositionen geédndert wer-
den, wegfallen oder hinzukommen. Auflerdem kénnen durch die Verwendung von zwei
Zustdnden Anderungsdeltas im Propagationssystem berechnet werden.

Die Anderung kann anstatt mit zwei Zustinden auch mit einem Zustand und einem
Anderungsdelta A beschrieben werden. Allerdings ist die Verarbeitung im Propagati-
onssystem schwierig, da fiir das Anderungsdelta ein anderes Schema als fiir die Zusténde
benotigt wird. Zum Beispiel fiir B = {betrag = 10} und D = {betrag = 30} ergibt
sich ein Anderungsdelta A = {betrag+= 20}. Wird die gleiche Beschreibungsart (nur
Zustande) verwendet, konnen auch einheitliche Schemas (Zustandsvalidierung) und
Transformationen eingesetzt werden. Auflerdem konnen Zusténde leichter beschrieben
werden. Fiir Anderungsdeltas werden fiir Zahlen Addition und Subtraktion sowie fiir
Strings Anfiige- und Ausschneide-Operationen benotigt. Dies ist deutlich komplexer
als die Beschreibung durch Zusténde.

3.3 Transaktionen

Nachdem die ersten Grundlagen eines Propagationssystems im heterogen Umfeld be-
sprochen wurden, soll in diesem Abschnitt noch die Rolle von Transaktionen in diesem

3Product Data Management dient zur Verwaltung von Produktdaten wihrend der Entwicklungs-
phase.

61

KAPITEL 3: Grundlegende Konzeption

Umfeld besprochen werden. In [GHOS96] wird beschrieben, dass Transaktionen im
homogenen Fall, die im Quellsystem ausgefiihrt werden, auch so in den anderen Repli-
katen durchgefiihrt werden miissen. Die Frage stellt sich, ob das auf den heterogenem
Fall iibertragen werden kann.

Werden im heterogenen Fall zwei Informationssysteme miteinander integriert, erle-
digen diese in den meisten Fillen unterschiedliche Aufgaben. Daraus ldsst sich schlie-
Ben, dass die gednderten Geschéftsobjekte in unterschiedlichen Transaktionen verar-
beitet werden. Ein Beispiel ist ein BDE-System (Betriebsdatenerfassung), bei dem ein
Fertigungsauftrag durch das Eintreffen einer Meldung auf fertig markiert wird und
dieser mit der Endzeit versehen wird. Dagegen miissen im angebundenen Finanzbuch-
haltungssystem auf dieses Ereignis hin Buchungen im Halbfertigprodukt-Konto und
Fertigprodukt-Konto ausgefiihrt werden.

In vielen Féllen miissen deshalb keine Transaktionsinformationen mit versendet
werden. Da wir hier nur den heterogenen Fall betrachten wollen, werden keine Trans-
aktionsinformationen propagiert.

3.4 XML als Basis fiir Anderungspropagation

In diesem Abschnitt wird untersucht, welche Rolle XML fiir den Einsatz im Propagati-
onssystem spielen kann. XML wird dabei verwendet um flexible Zustandsbeschreibun-
gen der Geschiftsobjekte zu ermdglichen, die in einer Anderungsbeschreibung verpackt
sind. Darauf aufbauend kénnen Technologien eingesetzt werden, die die Verarbeitung
dieser Zusténde ermoglichen.

3.4.1 XML zur Definition von Zustandsbeschreibungen

Die eXtensible Markup Language, kurz XML, eignet sich besonders gut fiir die Defini-
tion der Zustédnde aus den folgenden Griinden. XML stellt eine Sprache bereit, mit der
gleichzeitig Daten sowie deren Bedeutung beschrieben werden. Deshalb werden XML-
Dokumente auch als selbstbeschreibend bezeichnet. Dies fiithrt dazu, dass Daten vom
Menschen lesbar sind und Fehler schneller entdeckt werden kénnen. Ein weiterer wichti-
ger Vorteil ist, dass durch die Standardisierung und weltweite Akzeptanz von XML eine
Reihe weiterer Standards und Technologien entwickelt wurden. So kann die Struktur
eines XML-Dokumentes durch XML Schema festgelegt und mit den entsprechenden
Parsern kontrolliert werden. Bedingungen konnen durch XPath-Ausdriicke definiert
werden und fiir Transformationen kénnen Transformationssprachen wie XQuery* und
XSLT verwendet werden.

XML wird dabei fiir die Beschreibung der Zustinde B und D einer Anderungs-
beschreibung verwendet, denn durch die Verwendung von XML als Sprache fiir die
Zusténde, ist die Bedeutung der gedinderten Daten definiert. Durch die Uberpriifung
der Struktur kann festgestellt werden, ob es sich um ein gewisses Geschéftsobjekt han-
delt. Wie schon in Abschnitt 2.1.3 erwihnt, kann ein Geschéftsobjekt aus weiteren

4XQuery wird als Anfragesprache fiir XML-Daten verwendet

62

3.4. XML ALS BASIS FUR ANDERUNGSPROPAGATION

System A -’}\l :/.}\l System B
<Resource> <Machine>
<Type>Machine<Type> <Pos>
<Pos> 9 <X>40</%>
<X>20000</X> Abhangigkeit <Y>30</Y>
<Y>30000</Y> <7Z>0</7>
<Z>0</Z> <Pos>
<Pos> </Machine>
</Resource>
)
C
o ©
© "o E
E | g o E ol 2
s [g % <K
; @] & 7
3 o
o

-

Transfor-
mations
skript

Abbildung 3.3: Das Zusammenspiel von Technologien zur Anderungspropagation

Objekten bestehen, die durch eine Komposition verbunden sind. Eine Komposition ist
eine strenge hierarchische Beziehung zwischen Objekten. Dies bedeutet aber auch, dass
ein Geschéftsobjekt durch die hierarchische Struktur von XML dargestellt werden kann
(vgl. [Dau03]).

3.4.2 Technologie fiir eine XML-basierte Anderungspropaga-
tion

Im vorigen Abschnitt wurde hervorgehoben, dass die Vielzahl von verfiigharen XML-
Standards und XML-Werkzeugen, einen grolen Vorteil fiir den Einsatz von XML dar-
stellt. In diesem Abschnitt werden deshalb weitere Standards fiir den Einsatz der Ande-
rungspropagation untersucht. Als Beispiel soll hier eine neue Maschine (Ressource) von
System A zu System B propagiert werden (vgl. Abbildung 3.3). Die Schwierigkeit liegt
darin, dass die Koordinatensysteme einen unterschiedlichen Ursprung (x ist um 20m
verschoben) und unterschiedliche Einheiten (mm und m) haben. Aulerdem muss noch
die Struktur der Daten angepasst werden.

In Abbildung 3.3 sind zunéchst die grundsatzlich benotigten Technologien fiir eine
Anderungspropagation dargestellt. Die Abhingigkeit ist durch ein Propagationsskript
beschrieben, das weitere Technologien verwendet, um seine Aufgabe zu erledigen. Als
Erstes muss iiberpriift werden (1), ob die eingegangene Anderung iiberhaupt dem ent-

63

KAPITEL 3: Grundlegende Konzeption

spricht, was man erwartet. Dafiir wird ein Schema verwendet, welches Strukturinfor-
mationen enthélt. Im XML-Fall kann man dafiir XML Schema verwenden, das zum
einen méchtiger als DTD (z.B. Datentypen) ist und zum anderen in XML beschrieben
ist. Kritiker von XML Schema merken oft an, dass XML Schema zu kompliziert ist
(z.B. Vorwort von [Dau03]). Es existieren aber eine Reihe von Editoren (z.B. XML Spy
von Altova), mit deren Hilfe man einfach XML Schemas erstellen kann.

Wie schon oben erwéhnt, muss bei der Beispielspropagation eine Koordinatentrans-
lation und eine Strukturdnderung vorgenommen werden. In (3) werden deswegen Trans-
formationsskripte aufgerufen. Dabei kann es sich um ein Transformationsskript handeln
oder um mehrere Skripte, die eine schrittweise Transformation ermoglichen. Im XML-
Fall hat man grundsétzlich die Wahl zwischen XSLT oder XQuery. In unserem System
wurden beide Méglichkeiten durch die Verwendung der Saxon-Engine realisiert. Eine
Diskussion iiber die Méchtigkeit von XSLT und XQuery ist in [BMNO02, Kep02] zu
finden und soll hier nicht weiter vertieft werden.

Gegebenenfalls kann am Ende noch die Zielanderungsbeschreibung nach ihrer Struk-
tur tiberpriift werden (4). Dies ist aber nicht immer notwendig, denn wenn die Ein-
gangsinderungsbeschreibung und die Transformationen korrekt sind, muss auch die
Ziclanderungsbeschreibung korrekt sein. Die Uberpriifung ist eine Zeitfrage und ein
Weglassen kann somit die Performanz steigern. Solange man aber in einer Entwick-
lungsphase ist, ist die Uberpriifung fiir den Integrationsprogrammierer eine Hilfe zum
Feststellen der Korrektheit von Transformationen und wird deshalb optional unterstiitzt.

Was aus der Abbildung nicht ersichtlich ist, ist die Definition von Filterregeln
und bedingten Ausfithrungen. Fiir diesen Zweck wird eine Sprache benétigt, die es
ermoglicht, Bedingungen auf den Anderungsanforderungen zu definieren. In XML gibt
es dafiir eine méchtige Sprache, die auch von XQuery und XSLT verwendet wird:
XPath. Diese ist aber fiir die zustandsiibergreifenden Regeln nicht ausreichend. Des-
wegen wird im Abschnitt 3.6.1 eine Sprache dafiir eingefiihrt.

Um die Performanz der Ausfithrung eines Propagationsskriptes zu steigern, beson-
ders wenn viele Zwischenschritte, wie Transformationen ausfithren oder Bedingungen
iiberpriifen, enthalten sind, empfiehlt es sich, besonders bei einem serialisierten For-
mat wie XML, ein internes Format (2) zu verwenden. Dieses wird dann bis zum Schluss
verwendet, bis die Anderungsanforderung wieder ins XML-Format umgewandelt wird
(5). Wird wie hier XML als externes Format verwendet, eignet sich DOM gut fiir die
interne Représentation, da dieses direkt von entsprechenden Werkzeugen unterstiitzt
wird. DOM [HHW™04] ist die objekt-orientierte Darstellung eines XML-Dokumentes.

3.5 Sprache fiir die Definition von Abhingigkeiten

Wie in Abschnitt 3.2 beschrieben, ist die Abhiingigkeit das Basiskonzept einer Ande-
rungspropagation und beschreibt durch Pfeile die Integrationsbeziehungen zwischen
den Geschéaftsobjekten. Allerdings ist diese Beschreibung durch die Verwendung von
Pfeilen und moglichen Attributen, die diesen zugeordnet sind, nicht méchtig genug,
da die Gestaltung durch diese Art eingeschrankt ist, z.B. ist es nicht moglich mehrere
Transformationsskripte zu verwenden, oder paralleler und sequentieller Verarbeitung

64

3.5. SPRACHE FUR DIE DEFINITION VON ABHANGIGKEITEN

Input/Quelle

Verarbeitung

Output/Ziele

Abbildung 3.4: Aufbau eines Propagationsskriptes

zu definieren. Aus diesem Grund fiihren wir ein weiteres Konzept ein: Propagationss-
kripte (vgl. auch Abbildung 3.3). Diese beschreiben im Detail, wie eine Abhéngigkeit
definiert ist.

Durch die Einfiihrung von Propagationsskripten wird auch die Beziehung zwi-
schen Abhéngigkeiten und Propagationsprozessen klarer. Denn ein Propagationspro-
zess ist die Ausfithrung eines Propagationsskriptes und damit auch einer Abhéngigkeit.
Im Rahmen dieser Arbeit wurde die Sprache XML Propagation Definition Langua-
ge (XPDL) zur Definition der Propagationsskripte entwickelt. XPDL ist eine Spra-
che, die als Basis eine fiir Propagationsprozesse angepasste und erweiterte Version der
Workflow-Sprache XRL [vdAVKO01, VHvdA02, vdAKO03] hat. In fritheren Veroffentli-
chungen wurde XPDL selbst XRL [Ker01, CHRM02, CHRM03] und XRL+ [RCHMO02]

genannt.

In Abbildung 3.4 ist der grundsétzliche Aufbau eines Propagationsskriptes darge-
stellt. Wie in Abschnitt 3.2 beschrieben, gibt es ein Quellgeschéftsobjekt, in dem die
Datenédnderung auftrat. Aus diesem Grund braucht man einen Teil im Propagations-
skript, der definiert, in welchem System und in welchem Geschéftsobjekt eine Anderung
auftrat. Angedeutet wurde auch schon, dass im heterogenen Fall oftmals Transforma-
tionen notwendig sein konnen. Diese und andere Verarbeitungsschritte kénnen dann
im Verarbeitungsteil definiert werden. Schliellich hat jede Abhéngigkeit mindestens
ein Zielsystem und Zielgeschéftsobjekt, das dann im Output-Teil definiert wird.

Ein Propagationsskript hat also Befehle um den Input zu deklarieren. Fiir den Ver-
arbeitungsteil gibt es Befehle, die den Kontrollfluss steuern und Befehle, die die Ande-
rungsbeschreibungen verarbeiten. Weiterhin braucht man spezielle Output-Befehle,
welche die Anderungsbeschreibungen an die Systeme iiberreichen. Die Befehle werden
in drei Gruppen unterteilt: Deklaration der Eingabe, Kontrollfluss und Verarbeitungs-
sowie Ausgabebefehle.

65

KAPITEL 3: Grundlegende Konzeption

3.5.1 Deklaration der Eingabe

In XPDL wird am Anfang eines Propagationsskriptes mit input_declaration die Spe-
zifikation der zu empfangenden Anderungsbeschreibung eingeleitet. Dafiir wird inner-
halb der Input-Deklaration ein Element mit dem Namen start_input definiert. Da-
durch wird sichergestellt, dass beim Auftreten einer definierten Anderung im Quell-
system und Weiterleitung an das Propagationssystem als Anderungsbeschreibung das
entsprechende Propagationsskript gestartet wird.

start_input (system (S), GO_Typ (GT), out, expression?)

Die Anderungsbeschreibungen, die zu einem Start des Propagationsskriptes fiihren,
konnen anhand des Quellsystems S und dem Geschiftsobjekttypen GT (GO_Typ) aus-
gewdhlt werden. Ausdriicke (expression) ermdglichen die weiteren Einschrénkungen
der qualifizierenden Anderungsbeschreibungen anhand der Inhalte der Zustinde B und
D und der Anderungsart A. Die Ausdriicke werden in einer speziellen, auf XPath-
basierenden Sprache abgefasst (siche Abschnitt 3.6). Dadurch kénnen Anderungsbe-
schreibungen vor der Verarbeitung gefiltert werden. Beispielsweise konnen dadurch
nur Kundenauftriage, die ein bestimmtes Volumen haben, an ein bestimmtes Zielsys-
tem gesendet werden.

Wird eine Anderungsbeschreibung empfangen, so wird diese gegen die Struktur des
Geschiéftsobjektes anhand eines XML Schemas iiberpriift.

Um die empfangene Anderungsbeschreibung weiterverarbeiten zu kénnen, wird ihr
ein interner Name (out) gegeben, der eindeutig sein muss und der dann als Input
fiir andere Befehle verwendet werden kann, um beispielsweise eine Transformation mit
dieser Anderungsbeschreibung durchzufiihren, die die Anderungsbeschreibung als Input
nimmt und dabei den Namen als Referenz fiir die Anderungsbeschreibung verwendet.

3.5.2 Kontrollfluss

Ein Propagationsprozess kann durch seinen Kontroll- und Datenfluss beschrieben wer-
den, was einem Workflow &hnlich ist. Der Datenfluss beschreibt, wie eine Anderungs-
beschreibung verarbeitet wird, bis sie schliellich an ein Zielsystem propagiert wird.
Gesteuert wird der Datenfluss dabei durch den Input und Output der einzelnen Be-
fehle, die die Datenénderungen verarbeiten. Der Kontrollfluss steuert im Gegensatz
dazu, welcher Befehl als néchstes ausgefiihrt werden soll, welche parallel ausgefiihrt
werden konnen oder welche iiberhaupt ausgefithrt werden sollen. Der Aufbau eines
Propagationsskriptes dhnelt dem eines Workflow (siehe Abschnitt 2.6). Aus diesem
Grund werden einige Workflow-Sprachen und deren Kontrollflusssteuerungen in die-
sem Abschnitt genauer untersucht. Um dann die Kontrollflusselemente fiir XPDL zu
definieren.

Um eine Grundlage fiir die Kontrollflusssteuerung in XPDL zu haben, wird die
Steuerung in bestehenden Workflow-Sprachen untersucht. Dabei wurden moderne Work-
flow-Sprachen ausgewihlt. Diese sind entweder in der Forschung entstanden, wie die
eXchangeable Routing Language XRL [vdAVKO1, VHvdA02, vdAKO03], oder sind Be-
standteil von Industrie-Produkten, wie XLang von Microsoft, das von BizTalk [Tat01]

66

3.5. SPRACHE FUR DIE DEFINITION VON ABHANGIGKEITEN

Gruppe sequentielle parallele bedingte
Ausfithrung Ausfithrung Ausfithrung
e sequence
e any_sequence * parallelsync e condition
XRL -~ [vdAVKOL, e beschrinkte Aus- | ° parallel no_sync e while_do
VHvdA02, wahl! e parallel_part_sync
vdAKO3]
e switch
XLang[Tat01] sequence all e while
e pick
e switch (1.1)
o if (2.0)
BPEL[ACD"03, | sequence flow * while :
0as07] e repeatUntil
e pick
e forEach

Tabelle 3.2: Steuerung des Kontrollflusses in gdngigen Workflow-Sprachen

verwendet wird. Weiterhin wurde ein Industriestandard untersucht, der zur Koordina-
tion von Web-Services dient, die sogenannte Business Process Execution Language for
Web Services BPEL4WS [ACD*03].

Die Befehle fiir die Kontrollflusssteuerungen wurden in drei Gruppen unterteilt:
die sequentielle, parallele und bedingte Ausfithrung, wie in Tabelle 3.2 zu sehen ist.
Befehle, die in XPDL (XML Propagation Definition Language) den Kontrollfluss eines
Propagationsprozesses steuern, werden entsprechend der Gruppe in den nachfolgenden
Abschnitten untersucht.

3.5.2.1 Sequentielle Ausfithrung

Befehle, die sequentiell ausgefiihrt werden sollen, werden nacheinander und in der ange-
gebenen Reihenfolge ausgefiihrt. Die untersuchten Workflow-Sprachen unterstiitzen alle
diese einfache Ausfithrungsart. Allerdings unterstiitzt XRL auch noch eine Ausfithrungs-
art, bei der die Befehle in beliebiger Reihenfolge ausgefiihrt werden kénnen, d.h. die
Sequenz A, B, C kann zum Beispiel in der Reihenfolge B, C, A ausgefiithrt werden.
Weiterhin wird eine sequentielle Ausfithrung vorgeschlagen, bei der nur ein Teil aus-
gefiithrt werden muss [KZ02]. Dies bedeutet bei einer 2-von-3-Ausfithrung, dass beim
obigen Beispiel die Sequenz B, C ausreichend ist.

Eine Propagationssprache und damit auch XPDL muss auf jeden Fall die Standard-
sequenz unterstiitzen, da Transformationen und Propagationen in einer bestimmten
Reihenfolge ausgefiihrt werden miissen. Eine wahlfreie Ausfithrung wird dagegen selte-
ner gebraucht und nur, wenn es sich um unabhéngige Propagationsteilprozesse handelt.
Diese kénnen allerdings aufgrund ihrer Unabhéngigkeit und des Fehlens menschlicher

Worgeschlagen in [KZ02]

67

KAPITEL 3: Grundlegende Konzeption

Bearbeiter parallelisiert werden. Aus diesem Grund ist es unnétig eine wahlfreie und
beschrinkte Ausfithrungsart fiir die Propagationssprache anzubieten.

Der sequence-Befehl hat keine Argumente und muss deshalb nicht gesondert erklart
werden. Die Unterelemente beschreiben die Zweige, die in der angegebenen Reihenfolge
ausgefithrt werden sollen.

3.5.2.2 Parallele Ausfithrung

Bei der parallelen Ausfithrungsart werden die Befehle nebenléufig ausgefiihrt. Dabei
gibt es wieder die einfache Form, bei der die nachfolgenden Befehle erst ausgefiihrt
werden, wenn alle parallelen Zweige beendet wurden. Dies kann aufgelockert werden,
so dass die Ausfithrung der nachfolgenden Befehle sofort (parallel no_sync) oder nach
einer angegeben Anzahl beendeter Zweige (parallel_ part_sync) fortgesetzt werden.

Wie im sequentiellen Fall wird die einfache Art des parallelen Ausfiithrens in der
Propagationssprache XPDL unterstiitzt. Die anderen beiden von XRL angebotenen
Modi sind dabei weniger niitzlich, da die nachfolgenden Befehle im Regelfall auf den
Ergebnissen der parallelen Zweige aufbauen. In einigen wenigen Féllen konnen die
nachfolgenden Befehle unabhéngig sein und eine sofortige Fortsetzung erméglichen. In
solch einem Fall konnen die nachfolgenden Befehle in einem weiteren parallelen Zweig
ausgefithrt werden und damit die obigen Ausfithrungsarten fiir die Propagationssprache
XPDL iiberfliissig machen.

Der parallel-Befehl hat keine Argumente und muss deshalb nicht gesondert er-
klart werden. Die Unterelemente beschreiben die Zweige, die parallel ausgefiihrt werden
sollen.

3.5.2.3 Bedingte Ausfithrung

Die bedingte Ausfithrung von Befehlen lésst sich in zwei Gruppen unterteilen. Bei der
ersten Gruppe werden die Zweigelemente nicht iterativ sondern nur einmal ausgefiihrt:
condition, if und switch, widhrend bei der zweiten Gruppe der Zweig iterativ, d.h.
solange eine Bedingung giiltig ist, ausgefiihrt wird (while, repeatUntil, forEach).

Der condition-Befehl steuert die Ausfithrung der untergeordneten Befehle abhéngig
von der Auswertung einer Bedingung. Wird die Bedingung als wahr ausgewertet, so
wird der true-Zweig ausgefiihrt, anderenfalls der false-Zweig. Der switch-Befehl da-
gegen besteht aus mindestens einem case-Zweig, der eine Bedingung definiert, welche
die Ausfithrung seiner Zweigbefehle steuert. Dabei wird nur der erste als wahr eva-
luierte Zweig ausgefiihrt [Tat01]. Dadurch kénnen bestimmte Transformationen oder
Propagationen in Abhéingigkeit von Bedingungen auf bestimmten Feldern der Ande-
rungsbeschreibung ausgefiihrt werden.

Fiir die Verwendung in einer Propagationsumgebung wird der while-Befehl nicht
bendtigt, da eine variable Anzahl von Propagationen an das gleiche System eher un-
wahrscheinlich ist. Das einzige Szenario, das vom while-Befehl bearbeitet werden kann,
ist eine Zerstiickelung eines Geschéftsobjektes in seine Bestandteile. Ein Beispiel hierfiir
wire eine Aufteilung der einzelnen Positionen eines Kundenauftrages. Wie man aber
erkennen muss, kann das Geschéftsobjekt in seine Implementierungsobjekte auch im

68

3.5. SPRACHE FUR DIE DEFINITION VON ABHANGIGKEITEN

Zielsystem aufgeteilt werden. Im Zielsystem bzw. seinen Adapter wird die Aufgabe er-
ledigt, die Geschéftsobjekte der logischen Ebene auf die Datenobjekte der Implemen-
tierungsebene zu transformieren. Dieses Verfahren ist deshalb so wichtig, da Geschéfts-
objekte einen logischen Zusammenhang haben und deshalb auch atomar im Zielsystem
gedndert werden sollten.

Der condition-Befehl oder der switch-Befehl wird dagegen benétigt, um beding-
te Propagationen bzw. Transformationen durchzufiihren. Ein Beispiel hierfiir wére
die Propagation von einer Fertigungsmaschine in Abhéngigkeit der Verdnderung des
Verfiigbarkeitsstatus. Dadurch kann erreicht werden, dass nicht verfiighare Maschinen
an ein bestimmtes System gemeldet werden, beispielsweise an ein Fabrikcockpit.

condition(in, expression, truePart, falsePart)

Der condition-Befehl hat als Input eine Anderung, dessen Namen mit in ange-
geben wird. Der Ausdruck, der auf der Nachricht ausgewertet werden soll, wird mit
expression angegeben. Der truePart wird ausgefiithrt, wenn der boolesche Ausdruck
als wahr evaluiert wird und der falsePart, wenn nicht. Der boolesche Ausdruck soll wie
beim Befehl start_change die Moglichkeit geben, Ausdriicke auf bestimmten Ande-
rungszustanden (B und D) zu definieren.

switch(in, case+, default?)
case(expression)

Der Befehl switch besteht aus einer Inputdeklaration und mindestens einer case-
Deklaration und einem optionalen default-Teil, der aufgerufen wird, sofern keine case-
Deklaration zur Ausfithrung ausgefiihrt wird. Ahnlich wie zu XLang [Tat01] wird jeweils
nur die erste als wahr validierte case-Deklaration ausgefiihrt.

3.5.3 Verarbeitungs- und Output-Befehle

In diesem Abschnitt werden nun die Befehle behandelt, mit denen Anderungsbeschrei-
bungen transformiert, gefiltert und propagiert werden koénnen.

3.5.3.1 Transform-Befehl

Wie schon mehrmals hervorgehoben, wurde die Propagationslosung fiir die Integration
heterogener Informationssysteme konzipiert. Die Sprache XPDL soll es ermoglichen,
Anderungsbeschreibungen, genauer gesagt deren Zustandsbeschreibungen (B und D),
an die Geschéftsobjekte im Zielsystem anzupassen. Durch diese Anpassung benétigt das
Zielsystem keine Kenntnisse iiber den strukturellen Aufbau bzw. die semantischen Un-
terschiede zu den Geschiftsobjekten des Quellsystems. Eine Propagationssprache soll
ein Konstrukt bereitstellen, mit dem Transformationen der Zustandsbeschreibungen (B
und D) moglich sind. Als Beispiel fiir eine solche Beschreibung sei hier eine Koordina-
tentranslation zwischen zwei Fabriklayoutwerkzeugen genannt, die einen unterschiedli-
chen Koordinatenursprung haben, d.h. bei der Propagation von Fertigungsressourcen

69

KAPITEL 3: Grundlegende Konzeption

miissen die Koordinaten entsprechend dem neuen Koordinatensystem berechnet wer-
den.

Da XML verwendet wird, um die Zustéinde zu beschreiben, bietet sich die Ver-
wendung von XSLT oder XQuery fiir Transformationsskripte an. Das Bereitstellen
beider Varianten erméglicht ein Entwicklungsfreiraum und durch die Verwendung von
Standard-Engines bzw. Prozessoren keinen erhéhten Entwicklungsaufwand. Da es fiir
den Entwickler eines Propagationsskriptes nicht entscheidend ist, in welcher Sprache
ein Transformationsskript implementiert ist, wird dies in XPDL transparent gehalten.
Das Propagationssystem hat Kenntnis wie es die unterschiedlichen Transformations-
skripte verwenden muss und deshalb kann es vom Entwickler transparent gehalten wer-
den. Dadurch kann die Sprache der Transformationsskripte gewechselt werden, ohne
dass das Propagationsskript verdndert werden muss. Weiterhin soll fiir den Entwickler
verborgen werden, welcher der Zustinde in der Anderungsbeschreibung vorhanden ist
(z.B. D fiir create) und transformiert werden muss. Des Weiteren sollen Uberginge
zwischen Anderungsarten moglich sein, wie schon in Abschnitt 3.2.2 erwihnt wurde.
Dies betrifft auch den Ubergang von Anderungsbeschreibungen mit zwei Zustéinden zu
Anderungsbeschreibungen mit einem Zustand, wofiir eine Reduktion der Anderungs-
zustdnde moglich sein muss. Im Gegensatz dazu ist der umgekehrte Fall nicht mdéglich,
da nicht mehr Informationen generiert werden konnen als vorhanden sind. Deshalb
muss bei einer Anderungsbeschreibung mit einem Zustand, die Anzahl der Zusténde
konstant bleiben. Der Transform-Befehl hat folgendes Aussehen:

transform(in, out, script, reduceTo?, parameter*)

Dieser Befehl hat als Input (in) und Output (out) eine Anderungsbeschreibung. Ein
weiteres obligatorisches Attribut ist der Name des Transformationsskriptes (skript),
unter dem das eigentliche Script zu finden ist. Optional ist dagegen die Reduktionsspe-
zifikation (reduceTo), mit der Anderungsbeschreibungen (update) mit zwei Zustéinden
zu einem reduziert werden konnen. Die Reduktion erfordert ggf. den Zugriff auf den
anderen Zustand, was aus dem Transformationsskript moéglich sein sollte. Dies kann fiir
Transformationen ohne Reduktion ebenfalls notwendig sein. Deshalb sollte es moglich
sein aus einem Transformationsskript auch auf den jeweils anderen Zustand zuzu-
greifen, was durch eine XPath-Bibliothek bereitgestellt wird, sieche Abschnitt 3.6.2.
Zusétzlich kann noch eine beliebige Anzahl von Parametern definiert werden, die dann
im Transformationsskript verwendet werden konnen. Diese Parameter bestehen aus
Namen-Wert-Paaren. Es kann damit zum Beispiel der Translationsvektor (vgl. Ab-
schnitt 3.4.2) fiir die oben erwihnte Koordinatentransformation itbergeben werden und
damit kann das Transformationsskript unabhéngig vom Translationsvektor bleiben.
Dies erhoht zu einem gewissen Grad die Wiederverwendbarkeit von Transformations-
skripten.

3.5.3.2 Propagate-Befehl

Die transformierten Anderungsbeschreibungen miissen irgendwann an ein Zielsystem
propagiert werden. Dalfiir ist der propagate-Befehl zustéandig. Mit diesem Befehl wird

70

3.5. SPRACHE FUR DIE DEFINITION VON ABHANGIGKEITEN

Quell- Zielénderungsart
anderungsart | create | update | delete
create O - -
update X O X
delete X - O

Tabelle 3.3: Sinnvolle Ubergiinge zwischen Anderungsarten [(O) kein Ubergang, (X)
sinnvoller Ubergang, (-) nicht sinnvoller Ubergang

das interne Format der Zustéinde der Anderungsbeschreibung (DOM) wieder seriali-
siert, d.h. in die Textrepréisentation von XML gebracht und schliefSlich wird die Ande-
rungsbeschreibung an das Zielsystem gesendet.

propagate(in, system, GO_Typ, chg type?)

Dieser Befehl hat als Input die durch in definierte Anderungsbeschreibung. Der Pa-
rameter system definiert das Zielsystem. Der Name des Zielsystems wird dabei intern
in seine physische Adresse aufgelost, an der das Zielsystem seine Anderungsbeschrei-
bungen abholt. Der GO_Typ wird angegeben, damit das Zielsystem weifl, um welches
Geschéftsobjekt es sich handelt. AuBerdem kénnen im Debug-Modus die Anderungs-
beschreibungen daraufhin iiberpriift werden, ob die Anderungszustinde dem Schema
entsprechen. Dies muss nur in einem Debug-Modus erfolgen, da bei korrektem Input
und korrekter Verarbeitung auch ein korrektes Ergebnis entsteht. Deshalb kann aus
Performancegriinden die Uberpriifung der Ausgabe ausgeschaltet werden. Der optio-
nale Parameter chg_type wird zum Uberschreiben von Anderungsarten verwendet, d.h.
der Ubergang von einer Anderungsart in eine andere.

Beim Einsatz des Attributes chg_type stellt sich die Frage, welche der Uberschrei-
bungen von Anderungsarten wirklich sinnvoll sind. Tabelle 3.3 gibt dariiber Aufschluss,
was im Folgenden diskutiert wird. Es ist nicht sinnvoll ein create in eine andere Ande-
rungsart iiberzufithren, denn das Objekt kann noch nicht in dem anderen System vor-
handen sein. Im Gegensatz dazu kann ein update zu einem create iiberfithrt werden.
Als Beispiel sei hier als Quelle ein Produktdatenmanagement-System (PDM) und als
Ziel ein ERP-System angegeben. Das PDM-System verwaltet Daten iiber Produkte
in der Entwicklung, wihrend das ERP-System Produkte verwaltet, die Produktions-
reife haben. Wird im PDM ein Produkt zur Produktreife gebracht, was ein update
darstellt, so kann im ERP das Produkt angelegt werden (create). Das Gleiche gilt,
wenn das Produkt auslduft. In diesem Fall wird das Produkt geloscht (delete). Dafiir
wird zuerst mit einer Transformation (Abschnitt 3.5.3.1) eine Reduktion des Updates
auf einen Zustand durchgefiihrt. Dies wird dann durch das Propagate in eine create-
Anderung umgewandelt. Die Uberfithrung der Anderungsart delete ist durch das Ziel
einer Historie-Datenbank begriindet, die die gesamte Historie der Anderungen verwal-
tet. In diesem Fall wird eine create Anderungsart benétigt, um einen Eintrag in die
Datenbank einzufiigen.

71

KAPITEL 3: Grundlegende Konzeption

3.5.3.3 Der Filterbefehl

Es kann durchaus vorkommen, dass Filter-Befehle notwendig sind, um gezielt Ande-
rungsbeschreibungen anhand von Bedingungen zu filtern. Allerdings ermdoglicht die
start_input-Deklaration die Definition von Bedingungen, um eine Selektion der Ein-
gabe zu machen. Weiterhin wurde bei den Kontrollflussbefehlen schon eine bedingte
Verarbeitung eingefiihrt, so dass der Filter-Befehl nicht notwendig ist und zu unsau-
berer Programmierung und damit zu schwer erkennbaren Programmabldufen fithren
wiirde. Denn der Filter-Befehl wirkt sich im Gegensatz zu den Kontrollflussbefehlen
auf den Datenfluss aus, der aus den Propagationsskripten schwer ersichtlich ist. Dies
konnte zwar durch eine geeignete Darstellung der Propagationsskripte vermindert wer-
den, doch ist das Filtern im Datenfluss der Kontrollflussregulierung durch bedingte
Ausfiihrung unterlegen. Dies ist vor allem durch die bessere Lesbarkeit des Propagati-
onsskriptes begriindet.

3.6 Pfadausdriicke fiir Anderungsbeschreibungen

Um bedingte Ausfithrungen iiber alle Zustéinde einer Anderungsbeschreibung in XPDL
zu ermoglichen, wird eine Sprache benoétigt, die es ermoglicht Bedingungen zu formulie-
ren. Diese Sprache ist die Propagation Condition Language (PCL). Auflerdem miissen in
bestimmten Féllen mit Pfadausdriicken aus einer der beiden Transformationssprachen
(XSLT oder XQuery) Fragmente selektiert werden, die aus anderen Zusténden oder
sogar anderen Anderungsbeschreibungen stammen. Da beide Transformationssprachen
XPath hierfiir verwenden, wurde eine Erweiterung von XPath in Form einer Bibliothek
gewahlt.

3.6.1 Propagation Condition Language (PCL)

In Abschnitt 3.5 wurde eine Sprache zur Steuerung von Informationsfliissen von Quell-
systemen zu Zielsystemen eingefiihrt. Dabei wurde festgestellt, dass bestimmte emp-
fangene Anderungsbeschreibungen gefiltert werden miissen (start_input) und dass
der Kontrollfluss anhand von Bedingungen reguliert werden muss (condition oder
switch).

Diese Bedingungen konnen sich auf einen Zustand beziehen, wie zum Beispiel
/Person/Age > 18. Diese Art von Bedingungen kann einfach durch die Verwendung
der méchtigen Pfadausdruckssprache XPath definiert werden. Um die zwei Zustédnde
der Anderungsbeschreibung zu realisieren, konnte man diese Zustéinde in einem XML-
Dokument codieren, so dass zwei Elemente before und after unterhalb des Wurzel-
knotens wéren und dann XPath fiir die Pfadausdriicke einsetzen. Dies fiithrt aber dazu,
dass Ausdriicke schwer realisierbar wéren, die beispielsweise auf den Danach-Zustand
und bei Nicht-Existenz (delete-Anderungsart) auf den Davor-Zustand Bezug nehmen.

Um diesen Anforderungen gerecht zu werden, wurde die Sprache XPath erweitert,
um die oben genannte Art von Ausdriicken zu erméglichen. Dafiir wurde ein von XPath
nicht verwendetes Zeichen *%’ als Erkennungsmerkmal der Elemente der neuen Sprache

72

3.6. PFADAUSDRUCKE FUR ANDERUNGSBESCHREIBUNGEN

mit dem Namen Propagation Condition Language (PCL) eingefithrt. Um jetzt die oben
genannte Bedingung zu beschreiben, wurden noch mehrere Schliisselworte eingefiihrt.
Bevor die Schliisselworte aufgelistet werden, soll die Sprache anhand eines Beispiels
verdeutlicht werden, bei dem die Anderung eines Namens abgepriift wird.

(a) %after’%/Person/Nachname != Jbefore’,/Person/Nachname

Dieser Ausdruck gibt die Bedingung auf einen geénderten Namen wieder. Der Nach-
name einer Person nach einer Anderung wird mit dem Nachnamen derselben Person
vor der Anderung verglichen. Nach dem Beispiel mit zwei Schliisselworten, sollen nun
alle eingefiihrt werden.

before Dieses Schliisselwort gibt das Wurzelelement des Davor-Zustandes (B) der ak-
tuellen Anderung zuriick. Ist dieser Zustand nicht vorhanden, so wird ein Null
zuriickgegeben. Dies trifft auf create zu.

beforeOrAfter Das Schliisselwort ist dhnlich zu before, aber im Fall eines nicht vor-
handenen Davor-Zustandes wird der Danach-Zustand (D) verwendet. Hat bei-
spielsweise ein Kundenauftrag ein bestimmtes Volumen, so wird es an ein be-
stimmtes System propagiert oder beim Loschen wieder von dem bestimmten In-
formationssystem entfernt.

after Dieses Schliisselwort gibt den Danach-Zustand (D) zuriick, der ggf. Null sein
kann.

afterOrBefore Entspricht der bevorzugten Zustandsselektion fiir den Danach-Zustand.

chgType Dieses Schliisselwort kann verwendet werden, um gezielt Bedingungen auf
die Anderungsart zu stellen.

timestamp Hiermit konnen bedingte Ausfithrungen oder Filterausdriicke realisiert
werden, die auf ein bestimmtes Zeitschema abzielen (z.B. erste Monatshélfte).

Die weiteren Elemente der Anderungsbeschreibung (System S, Geschiftsobjekttyp
GT) werden in PCL nicht benétigt, da jedes Propagationsskript speziell fiir Anderungs-
beschreibungen mit einem bestimmten System und Geschéftsobjekttyp geschrieben ist.

Die Implementierung der Propagation Condition Language erfolgt, indem die oben
genannten Schliisselworte komplett in XPath iibersetzt werden. Dies erfolgt durch die
in XPath erméglichte Einbindung von selbst entwickelten Funktionen. Die Funktionen
sind dabei durch einen bestimmten Namespace gekennzeichnet. Die Realisierung der
Funktionen erfolgt durch ein Objekt, welches iiber die aktuelle Anderung verfiigt. Das
oben genannte Beispiel (a) sieht iibersetzt folgendermaflen aus:

pcl:after($pclObj) /Person/Nachname !=
pcl:before($pclObj)/Person/Nachname

Wie unschwer zu erkennen ist, leidet die Lesbarkeit deutlich unter der Ubersetzung,
deshalb wurden die speziellen Sprachelemente von PCL eingefiihrt.

73

KAPITEL 3: Grundlegende Konzeption

PCL
PCL-Compiler
|8 !
Aktuelle
XPath Anderung|

XPath-Engine

Abbildung 3.5: Die Architektur der Verarbeitung von PCL-Bedingungen

Der oben stehende XPath-Ausdruck entsteht durch Ubersetzung des PCL-Ausdrucks
mittels des PCL-Compilers, wie in Abbildung 3.5 dargestellt. Dieser muss Kenntnis
iiber die aktuelle Anderung haben, muss aber nicht auf diese zu greifen. Der dabei
entstehende XPath-Ausdruck kann dann von dem verwendeten XPath-Prozessor aus-
gefiihrt werden. Die dabei notwendige aktuelle Anderungsbeschreibung wird mittels
des PCL-Objektes ($pclObj) iibergeben.

Diese Sprache wird eingesetzt um Bedingungen innerhalb von XPDL zu definie-
ren. Da die Sprache einen Compiler benotigt, ist dieser Ansatz nicht fiir den Einsatz
innerhalb einer Transformationssprache geeignet. Hierfiir sollten bestehende Erweite-
rungsmoglichkeiten verwendet werden. Dafiir bietet sich eine XPath-Bibliothek an, die
im folgenden Abschnitt behandelt wird.

3.6.2 XPath-Bibliothek

XPath wird ebenfalls von den Transformationsskripten verwendet, d.h. von XSLT und
XQuery. Um nun erweiterte Moglichkeiten fiir die Transformationen bereitzustellen,
wurde eine XPath-Bibliothek entwickelt, mit deren Hilfe auf Elemente des Propagati-
onsprozesses zugegriffen werden kann. Als Beispiel sei hier die Berechnung einer relati-
ven Verschiebung einer propagierten Fertigungsressource angegeben, die aus der alten
und neuen Position in der Fabrikhalle berechnet wird. Dies kann durch eine Transfor-
mation realisiert werden, bei der auf den anderen Zustand zuriickgegriffen wird, sofern
es sich um einen Update handelt. Diese Art von Transformation kann mittels einer
XPath-Bibliothek realisiert werden. Ahnlich wie bei der PCL-Realisierung verfiigt die
Bibliothek iiber ein Objekt, das Zugriff auf die prozessinternen Daten ermoglicht.

Es wurde hier die Form einer XPath-Erweiterung mit einer Bibliothek gew&hlt, an-
statt diese durch XSLT-Erweiterungselemente bereitzustellen, weil XPath-Erweiterung-

74

3.7. KOMPONENTEN

en flexibler einsetzbar sind, z.B. in Pfadausdriicken oder Bedingungen. Eine spezielle
Sprache wie im Falle von PCL, die XPath als Sprache erweitert, wurde deshalb nicht
weiterverfolgt, da dies zu Anderungen im Kern des XSLT-Prozessors bzw. der XQuery-
Engine gefiihrt hatte und mit der XPath-Bibliothek nur der bestehende Erweiterungs-
mechanismus von XSLT bzw. XQuery verwendet werden muss.

Die Funktionen der Bibliothek lassen sich folgendermaflen gruppieren:

e Informationen zum aktuellen Prozess und der aktuellen Transformati-
on
Dieser Teil der Bibliothek stellt Informationen zum aktuellen Propagationspro-
zess bereit, wie die ID des Prozesses oder der Name des ausgefithrten Propa-
gationsskriptes. Weiterhin kann man Informationen iiber die aktuelle Transfor-
mation erfahren, wie z.B. der Name des Transformationsskriptes oder welcher
Zustand aktuell transformiert wird (Davor- oder Danach-Zustand). Diese Art
von XPath-Funktionen wird eher seltener als die nachfolgenden Funktionen ge-
braucht. Allerdings kann hiermit auf verarbeitungsinterne Daten der Prozesse
zugegriffen werden, die in bestimmten Anwendungsféillen bendtigt werden. Zum
Beispiel kann hier ein Transformationsskript verwendet werden, das nur bei der
Transformation des Danach-Zustandes die relative Verschiebung berechnet. Dies
wird durch die Abfrage des aktuell transformierten Zustandes ermoglicht.

e Zugriff auf Anderungen
Da jeder Prozess einen internen Speicher hat, in dem die Anderungsbeschreibun-
gen (ABs) unter ihren Namen abgelegt sind, kann mittels einer Funktion auf diese
ABs zugegriffen werden. Dafiir wird der entsprechenden Funktion der Name der
Anderungsbeschreibung iibergeben. Weiterhin kann man die Existenz einer Ande-
rungsbeschreibung abfragen. Diese Funktionalitéit ermoglicht die Integration von
mehreren Anderungsbeschreibungen.

e Zugriff auf Anderungselemente
Mit diesen Funktionen kann auf alle Elemente der Anderung zugegriffen werden,
die durch das Tupel AB = (S, GT, A, B, D, TS) definiert sind. Dadurch wird es
zum Beispiel moglich, die relative Verschiebung zwischen den beiden Positionen
zu berechnen, indem man bei der Danach-Transformation auf den Davor-Zustand
zugreift.

3.7 Komponenten

In diesem Abschnitt werden die einzelnen Komponenten des Propagationssystems dis-
kutiert. Als Erstes wird die Basisarchitektur vorgestellt. Danach wird auf jede einzelne
Komponente dieser Architektur genauer eingegangen.

In Abbildung 3.6 ist die Architektur mit den Hauptkomponenten eines Propaga-
tionssystems dargestellt. Diese Basisarchitektur wurde in [CHRMO1] vorgestellt und
besteht aus drei Hauptkomponenten: dem Repository, dem Abhéngigkeitsmanager und

75

KAPITEL 3: Grundlegende Konzeption

Abhangigkeitsmanager

Propagationsmanager Repository

Abbildung 3.6: Basisarchitektur eines Propagationssystems

dem Propagationsmanager. Das Repository stellt einen zentralen Speicher fiir die Abla-
ge von Abhéngigkeiten und den dazugehorigen Daten bereit (vgl. Abschnitt 3.4.2). Zur
Realisierung des Repository sollte ein DBMS verwendet werden, um die Konsistenz der
darin enthaltenen Daten zu garantieren. Zur Definition oder Bearbeitung von den Da-
ten im Repository wird eine Design-Time-Komponente verwendet, der Abhéangigkeits-
manager. Die eigentliche Propagation der Anderungsbeschreibungen von Quellsyste-
men zu den Zielsystemen wird vom Propagationsmanager ausgefiithrt. Dazu verwendet
er die Daten, die im Repository stehen und vom Abhéngigkeitsmanager erstellt bzw.
gedndert wurden.

Im Nachfolgenden werden die Hauptkomponenten genauer untersucht. Die dort
vorgestellten Komponenten sind schon auf eine Propagation von Anderungsbeschrei-
bungen mit XML-Technologien (vgl. Abschnitt 3.4) ausgelegt.

3.7.1 Repository

In diesem Abschnitt wird der Server diskutiert, der die Metadaten fiir die Propagation
bereitstellt, das Repository. Zuerst wird eine Ubersicht iiber Aufgaben und Inhalte des
Repository gegeben, bevor das darunter liegende Datenmodell diskutiert wird. Schlief3-
lich wird noch auf die Architektur des Repository eingegangen.

3.7.1.1 Ubersicht

Das Repository dient als zentraler Speicher fiir Abhéngigkeiten und alle Daten, die von
einer Abhéngigkeit benttigt werden. Wie schon erwéhnt, wird hier eine Abhéngigkeit
durch ein Propagationsskript realisiert. Folgende Datenarten miissen im Repository
gespeichert werden:

e Propagationsskripte (Beschreibung von Abhéngigkeiten)
e Systeme (Metadaten iiber integrierte Informationssysteme)

e Schemas (Struktur der Zustandsbeschreibungen der gednderten Geschéftsobjek-
te)

e Transformationsskripte (Transformation der Zustandsbeschreibungen).

Im néchsten Abschnitt wird das Datenmodell vorgestellt, das als Grundlage fiir die
Repository-Implementierung verwendet wird, um die oben beschriebenen Datenarten

76

3.7. KOMPONENTEN

System

+Name : Varchar
+Description : Varchar

+Queuename : Varchar

Startinfo SystemGOTyp
+GOTyp : Varchar o
InAndOut Schema
Definition +Name : Varchar
" " +Description : Varchar
Propagationsskript +Contents : BLOB

+Description : Varchar

+Name : Varchar thelnput
+Contents : BLOB L‘ jtheOutput
Transformationsskript
transforms [+Name : Varchar
+Description : Varchar
+Type : TS_Type
+Contents : BLOB

Abbildung 3.7: Datenmodell des Repositorys

zu speichern. Hier wird unter einem Repository kein Software-Entwicklungsrepository
[McC93, BD94, Ber98, SBB*99] verstanden, sondern ein zentraler Speicher, der die
Daten bereitstellt. Des Weiteren miissen die oben genannten Daten nicht fein granular
gespeichert werden, da keine Anfragen auf z.B. Schemainhalte durchgefiihrt werden
miissen. Daraus folgt, dass diese Objekte in sogenannten BLOBs gespeichert werden
konnen und keine XML-Repository-Technologie [SRL0O0] notwendig ist.

3.7.1.2 Datenmodell

In Abbildung 3.7 ist das Repository-Datenmodell in der UML-Notation dargestellt. Die
implementierte Losung des Repository basiert auf einem relationalen Datenbankma-
nagementsystem (RDBMS). Kern dieses Modells ist das Propagationsskript bzw. die
Abhéngigkeit. Das Propagationsskript wird iiber einen Namen referenziert und enthélt
das Skript in serialisierter Form, gespeichert als Binary Large Object (BLOB). Da un-
terschiedliche XML-Dokumente auch unterschiedliche Zeichensétze haben konnen, ist
das nicht-interpretierte Format (binér) besser geeignet. Das Propagationsskript enthélt
Informationen iiber die Anderungsbeschreibungen, die das Propagationsskript starten
sollen (vgl. Abschnitt 3.5.1). Diese Art von Informationen werden redundant vorgehal-
ten (Klasse StartInfo), um eine effizientere Ermittlung der zu startenden Propagations-
skripte zu ermoglichen. Die Ermittlung erfolgt anhand von System und Geschiéfts-
objekttyp (GOTyp), die iiber SystemGOTyp definiert sind und mit StartInfo ver-
bunden sind. Allerdings muss vom Repository garantiert werden, dass die StartInfo-
Informationen mit dem Inhalt der Propagationsskripte konsistent sind.

Grundsétzlich miissen alle Beziehungen zwischen einzelnen Daten, die im Reposi-
tory gespeichert werden, modelliert und gepflegt werden. Einen Uberblick iiber diese
Beziehungen gibt Tabelle 3.4. Aus diesem Grund miissen im Datenmodell auch der
Input und Output eines Propagationsskriptes modelliert werden, um ein Léschen von
Schemata bzw. System-GOTyp-Paaren zu verhindern. Transformationsskripte miissen
ebenfalls vor dem Loschen geschiitzt werden, sofern diese von Propagationsskripten

77

KAPITEL 3: Grundlegende Konzeption

verwendet werden. Im Datenmodell muss die Art des Transformationsskriptes (XSLT
oder XQuery) abgelegt sein, damit die Laufzeitumgebung erkennt, welcher Prozessor
initialisiert werden muss. Diese Unterscheidung erfolgt mit dem Attribut Type in der
Klasse Transformationsskript (Abbildung 3.7). Das eigentliche Skript wird ebenfalls
in der Klasse Transformationsskript vorgehalten. Eine weitere wichtige Beziehung ei-
nes Transformationsskriptes ist die Verwendung eines anderen Transformationsskriptes.
Dadurch kénnen Transformationsskriptteile ausgelagert und wiederverwendet werden.
In diesem Fall besteht eine Aggregationsbeziehung vom Typ n-zu-m, d.h. ein Transfor-
mationsskript kann von mehreren Transformationsskripten eingebunden werden. Wie-
derverwendete Transformationsskripte miissen ebenfalls vor unbeabsichtigtem Lschen
geschiitzt werden. Eine solche Wiederverwendung kann ebenfalls zwischen Schemas
definiert werden.

Grundsétzlich werden die Klassen als Relationen im RDBMS abgebildet, bei dem
die Attribute zur Spaltendefinition werden. Die Beziehungen zwischen den einzelnen
Klassen werden iiber Fremdschliisselbeziehungen abgebildet, wobei die Losch-Semantik
'Restrict’ verwendet wird. Dadurch wird ein unbeabsichtigtes Loschen von benotigten
Informationen verhindert. Diese Beziehungsinformationen miissen beim Speichern (An-
legen oder Andern) eines Dokumentes im Repository aus dem Dokument extrahiert und
im Repository abgelegt werden. Nicht mehr giiltige Beziehungen miissen geldscht wer-
den. Anzumerken ist, dass der Primérschliissel (Name) nicht gedndert werden kann, so
dass die Fremdschliissel-Beziehungen besser verwaltbar sind.

Betrachtet man das Repository auf einer Architektur-Ebene, so werden spezielle
Parser benotigt, die die Beziehungen zwischen den einzelnen Objekten extrahieren.
Weiterhin ist es die Aufgabe eines solchen Parsers sicherzustellen, dass das Dokument
(z.B. Transformationsskript) schema-konform ist. Um diesen Teil zu realisieren, konnen
die Parser auf einer XML-Parser Komponente aufbauen, welche einen DOM-Baum
erzeugt. Mit den speziellen Zugriffsroutinen kann auf die gesuchten Elemente wie import
und include beim XML Schema zugegriffen werden.

3.7.1.3 Architektur

Wie wir festgestellt haben, werden Parser fiir die Uberpriifung der einzelnen Skrip-
te sowie Schemas bendtigt und fiir die Extraktion der Beziehungen zwischen diesen
Dokumenten. Wie in Abbildung 3.8 dargestellt, existiert ein spezieller Parser fiir je-
des unterschiedliche Dokument: XML Schemas (Schema-Parser), Propagationsskrip-
te (PS-Parser) und Transformationsskripte (XSLT- u. XQuery-Parser). Bis auf den
XQuery-Parser basieren alle Parser auf einem XML-Parser, der durch Angabe eines
XML Schemas die Giiltigkeit eines zu speichernden Dokumentes iiberpriift. Da der
jeweilige Parser auch Kenntnis dariiber hat, wie in der entsprechenden Sprache Bezie-
hungen ausgedriickt werden, wird der Parser verwendet, um Beziehungen aus den Doku-
menten zu extrahieren und als Fremdschliisselbeziehungen in der Datenbank abzulegen.
Die Datenbank wird durch ein RDBMS verwaltet. Dieses ermdoglicht die Sicherstellung
der geforderten Konsistenz durch die Definition von Fremdschliisselbeziehungen.
Weitere wichtige Komponenten sind der Verbindungsmanager und der Reposito-
rymanager, da sie direkt fiir den Client sichtbar sind. Repository-Clients sind, wie

78

3.7. KOMPONENTEN

K1oy1sodaasuoryededorJ sep 1mj U[S0IZU0ISISUOY F'¢ d[[oqe],

jopuomron dAT,

-OHWLISAG UOA pIIm - - L EUISINS
S DUOMIOA on TOPURIOA TOPURTIOA TeeJ
P Sd RWOYDG PuUnN WBISAG | RWRUOS pun wo)sLg -dA1,0Hwe)sAg
TOPUSMISA TR J
-dAT,0D-wosfg woA e (Sunpuom (Sunpuom
19pUOMIOA G T, UOA e “IOAIOOLA) UOPURY | -IoAIOPOLA\) UOpUeL] RUIDYDG

3p
-UOMIOA dE@ﬂom UOA e

-I0A RWOYDS J33 e
ULIOJUOY BWAYDS e

-I0A RWOUYDS J33 e
ULIOJUOY BWAYDS e

19PUOMISA G T, UOA e
1OPUIMIDA G J UOA e

(SunpuomIoAIopaI)
UOPURYIOA GJ,]33 e
ULIOJUOY BWIAYDS @

(SunpuomIoAIopaI AN)
uopuRyIOA GJ, J33 e
ULIOJUOY BWIAYDS e

(SL) s

-SUOIJRULIOJSURIL]T,

USPURTIOA
Ieed-dAT,05)-WoISAG e

USPURYIOA
reeJ-dAT,05H-Wo)SAS e

(Sd) sdunys

USpPURIOA ST, @ UQPURYIOA G T, ® -suorjesedoiq
ULIOJUOY BWOYOS e ULIOJUOY BUIOYDS e
uaYISQT wepuy UDSNIZIG dAyuare(

79

KAPITEL 3: Grundlegende Konzeption

Repository Abhangigkeits- Propagations-
Shell manager manager
Repository
Dokumentbeziehungen und Giiltigkeit
Verbindungs- Zugriff auf
> . > Schema- PS -
manager Repository Parser Parser
XQuery -
XSLT - Parser
Parser
i} s | XML Parser |
Anderungs-
management [Y~a. RDBMS

Abbildung 3.8: Architektur des Repositorys

in Abschnitt 3.7 erldutert, der Abhangigkeitsmanager und der Propagationsmanager.
Zusétzlich verfiigt das Repository iiber eine Repository Shell, mit der auf einfache Weise
Daten im Repository eingesehen und verdndert werden kénnen. Es gibt zwei Kompo-
nenten, die von Clients zur Verwaltung der Daten verwendet werden. Die erste Kom-
ponente (Verbindungsmanager) stellt Funktionalitit zur Anmeldung am Repository
bereit. Diese Verbindung zum Repository kann fiir die gesamte Zeit, in der das Reposi-
tory verwendet wird, gehalten werden. Allerdings sollte die Verbindung zum RDBMS
nicht an die Verbindung zum Client gekoppelt sein, da diese mit Zeitbeschrénkungen
versehen sind und dann ihre Giiltigkeit verlieren. Auflerdem eignet sich in diesem Fall
ein sogenannter Connection-Pool besser, da dadurch die langen Initialisierungszeiten
von Datenbankverbindungen durch Wiederverwendung verhindert werden. Mit JDBC
2.0 [WH99] wird eine Schnittstelle zu relationalen Datenbanken bereitgestellt, die ein
Connection-Pooling unterstiitzt.

Die zweite Komponente, der eigentliche Repositorymanager, stellt eine Reihe von
Schnittstellen zum Zugriff auf die Repository-Daten bereit und implementiert diese.
Bei Anderung der Repository-Daten muss sichergestellt werden, dass die in Tabelle 3.4
aufgelisteten Konsistenzregeln eingehalten werden. Diese Konsistenzregeln ergeben sich
aus dem in Abbildung 3.7 dargestellten Datenmodell. Wie oben schon erwahnt, werden
die Konsistenzregeln durch Pflege von Fremdschliisselbeziehungen und deren Verwal-
tung im RDBMS garantiert. Dafiir verwendet der Repositorymanager die Parser und
speichert die extrahierten Fremdschliisselbeziehungen zusammen mit dem eigentlichen
Dokument in der Datenbank.

Eine weitere Komponente kann dazu verwendet werden, Verdnderungen in Doku-
menten sowie deren Auswirkungen auf andere Dokumente zu protokollieren und dem

80

3.7. KOMPONENTEN

Integrationsentwickler bereitzustellen. Wird zum Beispiel ein Schema verédndert, so
sind die Transformationsskripte, die dieses Schema als Input oder Output haben, da-
von betroffen und miissen ebenfalls angepasst werden. Diese Komponente liefert dem
Entwickler nach der Schemaénderung alle Transformationsskripte, die von der Ande-
rung betroffen sind.

Als néchste Hauptkomponente wird der Propagationsmanager betrachtet, der die
Propagationen ausfiihrt.

3.7.2 Propagationsmanager

In diesem Abschnitt wird die Komponente Propagationsmanager diskutiert. Zuerst
wird eine Ubersicht gegeben, bevor die Architektur diskutiert wird. Schliefilich wird
noch die Kommunikation zwischen dem Prozessmanager und den Prozessen diskutiert.

3.7.2.1 Ubersicht

Der Propagationsmanager ist die Kernkomponente und die Laufzeitumgebung des Pro-
pagationssystems. Diese Kernkomponente verwendet die im Repository abgelegten und
durch den Abhéngigkeitsmanager definierten Abhéngigkeiten, um die Anderungsanfor-
derungen gezielt an die betroffenen Informationssysteme zu senden. Dafiir werden, wie
in Abschnitt 3.7.1 festgestellt wurde, folgende Daten benétigt: Propagationsskripte,
Schemas, Systeminformationen und Transformationsskripte. Zusétzlich werden im Re-
pository die im Propagationsskript enthaltene Start-Information gepflegt. Diese Infor-
mation wird vom Propagationsmanager verwendet, um die entsprechenden Propagati-
onsskripte zu starten. Eine Kernkomponente des Propagationsmanagers ist die XPDL-
Engine, mit der die Propagationsskripte ausgefithrt werden. Im n#chsten Abschnitt
wird die Architektur genauer betrachtet.

3.7.2.2 Architektur

In Abbildung 3.9 ist der Aufbau des Propagationsmanagers illustriert. Wie oben erwéahnt
wurde, ist eine der wichtigsten Komponenten die XPDL-Engine, die es ermoglicht, die
Abhéngigkeiten bzw. Propagationsskripte, die in XPDL programmiert wurden, aus-
zufiihren. Eine Ausfithrungsinstanz eines Propagationsskriptes ist der eingefiihrte Pro-
pagationsprozess (vgl. Abschnitt 3.2.1). Dieser fiihrt die Beschreibung eines Propagati-
onsskriptes bzw. Abhéngigkeit aus. Dafiir werden die Befehle der Sprache XPDL (XML
Propagation Definition Language) in eine ausfithrbare Objektstruktur iibersetzt, wo-
bei jeder Befehl durch eine Klasse und jede Instanz eines Befehls durch ein Objekt
reprasentiert werden [Ker01]. Diese Klassen verfiigen iiber jeweils eine Initialisierungs-
und eine Ausfithrungsmethode, die in der entsprechenden Phase ausgefiihrt werden.
Durch die Realisierung von Klassen konnen neue Befehle hinzugefiigt werden, indem
sie implementiert und der Engine bekannt gemacht werden. Jede Instanz verfiigt iiber
einen Zustand, mit dem festgestellt werden kann, ob der Befehl initialisiert wurde,
ausgefiihrt wird, erfolgreich beendet oder abgebrochen wurde. Diese Zustédnde kénnen

81

KAPITEL 3: Grundlegende Konzeption

82

Propagationsmanager

Prozess- XML Parser &
manager] Prozess 1 Validator

XPDL Engine

XML-Werkzeuge

Transformer

PCL-

Queue- Evaluator

Repository
Server

Warteschlangenmanager

(Input O (Outp:ut 1 O

(Prozessinput O < OUtp‘Ut n O

Abbildung 3.9: Architektur des Propagationsmanagers

3.7. KOMPONENTEN

vom iibergeordneten Propagationsprozess beeinflusst werden und damit eine fehlerhaf-
te Ausfiihrung abgebrochen werden. Die Kontrolle iiber die einzelnen Prozesse, d.h.
das Erzeugen und ggf. das Neustarten, iibernimmt der Prozessmanager. Er kann auch
Prozesse fiir das Herunterfahren des Propagationssystems abbrechen. Der Ablauf des
Prozessmanagers sieht folgendermaflen aus:

1. Transaktionsbeginn

2. Warten auf Anderungsbeschreibungsnachricht von der Eingangswarteschlange
(Input)

3. Hole Start-Informationen und die damit verbundenen Propagationsskripte vom
Repository

4. Ubergabe der Anderungsbeschreibungen an die Prozesse iiber die Prozessein-
gangswarteschlange (Prozessinput)

5. Transaktionsende
6. Starte Prozesse mit den jeweiligen Propagationsskripten

7. Gehe zu 1.

Damit es zu keinem Deadlock kommt, wenn die maximale Anzahl gleichzeitiger
Prozesse kleiner ist als die Anzahl der Abhéngigkeiten pro Anderung, miissen die Pro-
pagationsprozesse nach dem Transaktionsende gestartet und initialisiert werden. Die
maximale Anzahl gleichzeitiger Prozesse ist eine Moglichkeit zur Regulierung der Per-
formance.

Die Schritte 1-4 werden innerhalb einer Transaktion ausgefiihrt, sodass bei aufge-
tretenen Fehlern neu aufgesetzt werden kann. Der Prozessmanager greift dabei auf die
Funktionalitéiten einer Queue-Zugriffskomponente (Queue-Access) zuriick und verfiigt
iiber eine Repository-Zugriffskomponente (Repository Access), um die Namen der Pro-
pagationsskripte zu bekommen (3.). Diese beiden Komponenten kapseln die Funktio-
nalitéit der dahinterliegenden Systeme.

Ein Propagationsprozess verfiigt ebenfalls iiber die beiden oben genannten Kompo-
nenten, die nachfolgend genauer erkléart werden.

Die Queue-Zugriffskomponente stellt ein vereinfachtes Interface zu den Warteschlan-
gen (Queues) bereit, die in einem externen Warteschlangenmanager definiert sind.
Dafiir bedient er sich des Java Message Services (JMS) [HBST02b], der eine méchtige
Schnittstelle zu den Warteschlangen bereitstellt. Eine JMS-Nachricht besteht aus einem
Meta-Teil und der eigentlichen Nachricht, wobei der Meta-Teil selbst aus zwei Teilen
besteht, einem festen Teil mit Systemattributen und einem Benutzerteil mit beliebi-
gen Attributen. In letzerem werden die Informationen einer Anderungsbeschreibung
bis auf die Anderungszustinde B und D ablegt, d.h. Informationen iiber die Herkunft
(System S und Geschiftsobjekttyp GT) und die Anderungsart A. Im festen Teil wird
schlieBlich noch der Anderungszeitpunkt TS oder genauer gesagt die Zeit, zu der die

83

KAPITEL 3: Grundlegende Konzeption

Update-Anderung Andere-Anderungen

1. Parsen und Uber-
priiffen der Update-
Struktur gegen
internes Schema

2. Uberpriifen ~ Davor-

Zustand (DOM) Parser.l und 'Uberpriifen des
Nachrichteninhalts gegen
gegen Schema X
Schema X.

3. Uberpriifen Danach-
Zustand (DOM) ge-
gen Schema X

Tabelle 3.5: Schritte beim initialen Parsen der Anderungsanforderung

Anderungsbeschreibung an den Warteschlangenmanager iibergeben wurde, festgehal-
ten. Die Herkunftsinformationen (S u. GT) werden vom Prozessmanager extrahiert und
dazu verwendet, die Propagationsskripte zu ermitteln, die gestartet werden sollen. Der
Name des Propagationsskripts wird dabei dem Prozess iibergeben, der seinerseits der
XPDL-Engine die Aufforderung gibt, eine lauffahige Instanz des Propagationsskriptes
Zu erzeugen.

Wie in Abschnitt 3.4 erwahnt, eignet sich XML als Basis fiir die Implementierung ei-
nes Propagationssystems wegen der Selbstbeschreibung und der Vielzahl der Standards
und Werkzeuge, die auf XML aufbauen. In diesem Propagationssystem wird deswegen
ein XML-Parser verwendet, der zum Aufbau der internen Représentation (DOM) von
Anderungsbeschreibungszustéinden und zur Validierung der erwarteten Struktur eines
solchen Zustandes dient.

In Tabelle 3.5 ist dargestellt, welche Schritte beim Parsen der Startnachricht not-
wendig sind. Diese sind abhéngig davon, ob es nur einen Zustand oder zwei Zustédnde
(Update) gibt. Im ersten Fall kann der Zustand direkt in der Nachricht kodiert wer-
den. Im zweiten Fall braucht man eine Unterstiitzungsstruktur, die es ermoglicht, beide
Zusténde in einem Dokument zu verpacken. Dafiir wird ein Dokument mit Namespaces
verwendet und mit einem Wurzelelement update, welches zwei Unterelemente (before
und after) hat. Der Inhalt dieser beiden Unterelemente wird dann noch als beliebig
definiert (XML Schema Datentyp any). Dadurch konnen beliebige Zustédnde in den
Unterelementen beschrieben werden, die, wie in Tabelle 3.5, getrennt und mit dem
gleichen Schema fiir beide Zustédnde tiberpriift werden.

Fiir die Implementierung wére aus Performanzgriinden wiinschenswert, dass nach
dem Parsen der Update-Struktur deren Unterelemente nur noch validiert werden miiss-
ten und dafiir kein erneutes Parsen notwendig wire. Dies ist seit DOM-Level 3 moglich
[HHW04]. Allerdings wird dieser zum aktuellen Zeitpunkt noch nicht von allen einge-
setzten Werkzeugen unterstiitzt. Deshalb wurde auf eine Behelfslosung zuriickgegriffen,
bei der der DOM-Baum zuerst serialisiert und danach erneut geparst sowie anhand des

84

3.7. KOMPONENTEN

entsprechenden Schemas validiert wird.

Einen weiteren Bestandteil der verwendeten XML-Werkzeuge stellen die Transfor-
mer dar, die in Form von XSLT-Prozessor und XQuery-Engine auftreten. Der Aufruf
der richtigen Komponente erfolgt dabei transparent fiir den XPDL-Entwickler, da er
nur den Namen der Transformationsskripte benotigt; die Art wird iiber das Repository
ermittelt. Im Regelfall hat eine Transformation einen DOM-Zustand bzw. ein Doku-
ment als Input und einen DOM-Zustand bzw. ein Dokument als Output. Bei einer
Update-Anderungsbeschreibung werden beide Zusténde nacheinander und transparent
fiir den Programmierer transformiert. Uber eine XPath-Bibliothek kénnen noch wei-
tere Zusténde (z.B. der Davor-Zustand bei der Danach-Transformation) eingebunden
werden und damit Inhalte verbunden werden. Dies erméglicht zum Beispiel die Berech-
nung der relativen Verschiebung einer Maschine, wobei im Davor-Zustand B die alte
Position und im Danach-Zustand D die aktuelle Position kodiert ist.

Die PCL-Komponente (PCL-Evaluator) ist im Gegensatz zu den anderen zwei nicht
als Off-The-Shelve-Komponente zu haben, basiert aber auf einer XPath-Implementie-
rung, die in den meisten Féllen Bestandteil eines XSLT-Prozessors oder einer XQuery-
Engine ist.

3.7.2.3 Kommunikation zwischen Prozessmanager und Propagationspro-
zessen

Die Kommunikation zwischen Prozessmanager und Propagationsprozessen stellt eine
Herausforderung dar, denn es kénnen mehrere Propagationsprozesse durch eine einge-
gangene Anderungsbeschreibung gestartet werden, sofern mehrere Abhéngigkeiten fiir
ein System und Geschéftsobjekttyp definiert sind. Die hier gestellten Anforderungen
treffen auch auf das Publish-Subscribe-Konzept [EFGKO03] zu. Sendet ein Publisher
eine Nachricht, so wird diese durch die Infrastruktur an alle interessierten Subscri-
ber verteilt. Dies erfolgt iiber sogenannte Abonnements (Subscriptions), bei denen der
Subscriber mitteilt, an welchen Nachrichten er interessiert ist. Das bedeutet, dass das
Publish-Subscribe-Konzept vom Kommunikationssendepunkt gesteuert wird. Fiir die
hier angestrebten Informationsaustausch wird aber eine Kommunikation benétigt, die
vom Publisher gesteuert wird, d.h. vom Nachrichtensender bzw. Prozessmanager. Die-
ses Prinzip ist in Abbildung 3.10 dargestellt. Der Prozessmanager empfingt eine Ande-
rungsbeschreibung tiber die Eingangswarteschlange (Input), startet die entsprechenden
Prozesse (P2 u. P3) und reicht die Anderungsbeschreibung gezielt an die gestarteten
Prozesse weiter. Es konnen aber schon #ltere Prozesse (P1) existieren, die die Ande-
rungsbeschreibung nicht bekommen sollen. Um eine Losung fiir die Problematik zu
finden, werden zunéchst die Anforderungen beschrieben.

e Die Verteilung der Anderungsbeschreibungen soll sendergesteuert erfolgen: Beim
Versenden der Anderungsbeschreibung an die Propagationsprozesse iibergibt der
Prozessmanager dem Kommunikationssystem zusammen mit der Anderungsbe-
schreibung eine Menge P = {pidy, pids ... pid,} von Prozesskennungen, um dem
Kommunikationssystem mitzuteilen, fiir welche Propagationsprozesse die Ande-
rungsbeschreibungen bestimmt sind (vgl. Abbildung 3.10).

85

KAPITEL 3: Grundlegende Konzeption

Process P2

{P2, P3}

Prozess
[Cinput |
Manager

Process P3

Abbildung 3.10: Problematik der Kommunikation zwischen Prozessmanager und den
Propagationsprozessen

e Die Kommunikation soll asynchron erfolgen, d.h. der Propagationsprozess muss
noch nicht zum Lesen bereit sein. Dadurch kann der Prozessmanager die Nach-
richten versenden, ohne auf die Prozesse zu warten.

e Essoll garantiert werden, dass jede Anderungsbeschreibung von jedem Empfénger
nur einmal gelesen wird.

e Es sollen Transaktionen unterstiitzt werden. Wird ein Propagationsprozess abge-
brochen oder ein System-Crash tritt auf, dann miissen alle nicht vollstandig ver-
arbeiteten Anderungsbeschreibungen dem Propagationssystem wieder bereitge-
stellt werden, sodass die entsprechenden Prozesse wieder gestartet werden kénnen.
Die Transaktionsunterstiitzung wird auch beim Senden gefordert, d.h. Ande-
rungsbeschreibungen werden fiir den Empfénger erst sichtbar, wenn der Sender
(Prozessmanager) die Transaktion erfolgreich beendet hat.

e Nach einem Systemabsturz soll dem Prozessmanager alle nicht erfolgreich be-
endeten Propagationsprozesse mitgeteilt werden, sodass diese erneut gestartet
werden konnen.

e Essollen Anderungsbeschreibungen zuverlissig an die Propagationsprozesse iiber-
tragen werden. Jede Anderungsbeschreibung, die an das Kommunikationssystem
gesendet wurde, muss von jedem Prozess vollstédndig verarbeitet werden. System-
Crashs sollen dabei keinen Einfluss auf die sichere Ubertragung haben.

Diese Anforderungen kénnen zum Teil von einem zuverldssigen Multicast, wie zum
Beispiel MBone [Hau99] erfiillt werden. Allerdings verfiigt diese nicht iiber die gefor-
derte Transaktionalitdt und die Kommunikation basiert auflerdem auf IP-Adressen und
nicht auf Prozesskennungen, wie sie hier gefordert werden.

Eine Losung fiir das hier gestellte Problem sollte deshalb auf einem Warteschlan-
gensystem basieren. Da die hier gestellten Anforderungen bis jetzt nicht in Produk-
ten verfiighar sind, wurde eine Simulation dieses Prinzips gewihlt, die darauf basiert,
dass jedem Propagationsprozess iiber eine zuverlissige Warteschlange die Anderungs-
beschreibungen iibergeben werden. Jeder Prozess bekommt dabei eine dedizierte Nach-
richt. Die Prozess-ID wird dabei im Nachrichtenkopf codiert. Mittels JMS [HBST02b]
und dieser Kodierung wird ein selektives Lesen moglich, bei dem jeder Prozess nur
seine Nachricht bekommt. Anderungsbeschreibungen, die nicht vollstindig verarbei-
tet worden sind, kénnen zusammen mit den dazu gehdrigen Prozessen ermittelt wer-
den, da in diesem Fall die jeweilige Nachricht noch im Warteschlangensystem ist und

86

3.7. KOMPONENTEN

die Prozesskennung im Nachrichtenkopf steht. Dies erfolgt indem die Prozesseingangs-
warteschlange (Prozessinput) beim Recovery untersucht wird und die entsprechenden
Prozesse erneut gestartet werden.

Nachdem der Propagationsmanager betrachtet wurde, soll nun die letzte Haupt-
komponente betrachtet werden: der Abhéngigkeitsmanager.

3.7.3 Abhéingigkeitsmanager

Der Abhéngigkeitsmanager [CHMO2] unterstiitzt den Entwickler bei der Erstellung der
Abhéngigkeiten (Propagationsskripte) und der Dokumente, die von diesen Propagati-
onsskripten verwendet werden (vgl. Abbildung 3.3). Diese sind im Einzelnen: System-
informationen, Schemas, Transformationsskripte und Propagationsskripte (Abhéngig-
keiten). Systeminformationen werden dabei durch einen einfachen Dialog eingegeben,
denn die Informationen sind sehr einfach: Name und Beschreibung des Systems sowie
der Name der Warteschlange, die fiir die Kommunikation mit dem System verwen-
det wird. Komplizierter ist die Eingabe von Schemas und Transformationsskripten, fiir
deren Erstellung bzw. Modifizierung Standardwerkzeuge existieren, wie beispielswei-
se Altova Mapforce zur graphischen Erstellung von Transformationsskripten (XSLT
u. XQuery). Diese Werkzeuge werden vom Abhéngigkeitsmanager eingebunden und
bei Bedarf aufgerufen. Die Kommunikation mit dem Werkzeug findet dabei iiber das
Dateisystem statt, d.h. der Abhédngigkeitsmanager muss vor dem Werkzeugaufruf die
entsprechenden Dokumente aus dem Repository bereitstellen und nach der Bearbeitung
im Falle einer Anderung diese wieder ins Repository iibernehmen.

Im Gegensatz dazu, handelt es sich bei den Propagationsskripten um keine Stan-
dard XML-Technologie und aus diesem Grund erfolgt die Unterstiitzung der Erstellung
bzw. Modifizierung ausschliefllich im Abhéngigkeitsmanager. Um den Entwickler bei
der Erstellung der Abhéngigkeiten zu unterstiitzen, werden drei Darstellungsarten be-
reitgestellt, die in Abbildung 3.11 illustriert werden. Da die Darstellungsarten nach
rechts weiter eingeschrénkt werden, sind die Ubergéinge nach rechts mit Bedingungen
versehen. Diese Darstellungsarten und ihre Ubergéinge werden nachfolgend erklirt.

Zu einer linken Darstellungsart kann man ohne Bedingungen wechseln, will man
jedoch in eine rechte Wechseln gelten folgende Bedingungen:

Von Textansicht zu Kontrollflussansicht: Das Dokument muss wohlgeformt und
dem XPDL-Schema entsprechen.

Von Kontrollflussansicht zu Abhéngigkeitsansicht: Der Kontrollfluss muss ei-
ner einfachen Abhéngigkeit entsprechen.

3.7.3.1 Textansicht

Die Textansicht ist fiir den Entwickler die anspruchsvollste Darstellungsart, da der
Entwickler direkt mit der internen XML-Représentation der Abhéngigkeit konfron-
tiert wird. Dies bedeutet, dass der Abhéangigkeitsmanager beim Speichern der Text-
ansicht und beim Ubergang zur Kontroll- und Datenflussansicht iiberpriifen muss, ob

87

KAPITEL 3: Grundlegende Konzeption

wohlgeformt & einfaches
valid Kontroll- und |Abh.-muster v .
Text- —> —— | Abhangigkeits-
: Datenfluss- :
ansicht - ansicht - ansicht

Abbildung 3.11: Die unterschiedlichen Sichten auf ein PS und ihre Uberginge

das Dokument wohlgeformt und giiltig ist. Giiltig ist das Dokument dann, wenn es
schema-konform ist, d.h. nur die vorgesehenen Propagationsskriptbefehle verwendet
(vgl. Abschnitt 3.5).

3.7.3.2 Die Kontroll- und Datenflussansicht

Diese Form der Darstellung ist vergleichbar mit der eines Workflows. Der Kontrollfluss
wird dabei so dargestellt, dass die Abarbeitungssequenz von Oben nach Unten geht. In
Abbildung 3.12 ist ein Beispiel fiir die Kontroll- und Datenflussansicht dargestellt. Ganz
oben steht der Befehl, mit dem die erwartete Art von Anderungsbeschreibungen dekla-
riert wird, die die entsprechenden Propagationsprozesse starten. Parallel ausgefiihrte
Zweige werden dabei von rechts nach links dargestellt. Die einzelnen Befehle werden
durch Farben und Formen unterschieden, dadurch kann schnell die Art des Befehles
erkannt werden. Da diese Ansicht eine Untermenge der Textansicht ist, konnen alle
Propagationsskripte aus dieser Ansicht in die Textansicht tiberfithrt werden. Wie oben
schon erwihnt, ist das aber umgekehrt nicht maglich. Die Uberginge von und zur
Abhéngigkeitsansicht werden im néachsten Abschnitt erklart. Details fiir eine mogliche
Implementierung kénnen in [Li03] gefunden werden.

Ebenfalls von oben nach unten geht der optional einblendbare Datenfluss. Dieser
zeigt an, woher der Input eines Befehls kommt und wohin der Output geht.

3.7.3.3 Die Abhéngigkeitsansicht

Deutlich verstéandlicher fiir den Entwickler als die Kontroll- und Datenflussansicht ist
die Abhéngigkeitsansicht (Abbildung 3.13). In dieser Ansicht wird der Datenfluss zwi-
schen den einzelnen Systemen dargestellt und ggf. vorhandene Filter bzw. Transfor-
mationsbefehle als Icons (Filter F und Transformation T) dargestellt. Die Abhéingig-
keitsansicht ist abstrakter als die Kontroll- und Datenflussansicht. Aus diesem Grund
konnen nicht alle giiltigen Propagationsskripte in dieser Ansicht dargestellt werden.
Diese miissen einem bestimmten Muster folgen:

e Eine start_input-Deklaration mit ggf. einer Filterbedingung (F), die im
start_input codiert ist, da es in XPDL keine Filterbefehle (vgl. Abschnitt 3.5.3.3)
gibt.

e Ggf. eine generelle Transformation (T).
e N-Zielsysteme (System 1 und 3), die parallel abgehandelt werden.

88

3.7. KOMPONENTEN

¥

System: 2
GO_Typ: E
Expression: /E/A = B’ Legende:
ST T T T N
, SR 2
|
} I
|
Script: transE2Gen 1 }
; Startinput |
I I
\\ J
Transform
Script: tranGen2C Script: tranGen2H — \}
I |
i Propagate i
I |
|
' ' ’ 3 i
| |
System: 1 System: 3 N A /
GO_Typ: C GO_Typ: H

4 ¥

Abbildung 3.12: Die Kontrollflussansicht mit ausgeblendetem Datenfluss. Das Skript
implementiert eine Abhéngigkeit aus Abbildung 3.2

89

KAPITEL 3: Grundlegende Konzeption

System: 1
GO_Typ: C
System: 2
GO_Typ: E
System: 3
GO_Typ: H

Abbildung 3.13: Die Abhéngigkeitsansicht dquivalent zu Abb. 3.12

e Fiir jeden parallelen Zweig existiert ein propagate-Befehl (durch Pfeil darge-
stellt) und ggf. eine Filterbedingung (F), die iiber ein condition-Befehl realisiert
werden. Vor dem propagate-Befehl kann noch eine Transformation (T) durch-
gefithrt werden.

3.8 Konflikterkennung und Auflésung

In diesem Abschnitt wollen wir uns mit einem sehr wichtigen Aspekt eines Ande-
rungspropagationssystems beschéftigen: Die Erkennung und Auflésung von Konflik-
ten. Konflikte entstehen, wenn in mindestens zwei beteiligten Systemen “das gleiche”
Objekt quasi gleichzeitig gedindert wird. Das gleiche Objekt steht dabei fiir Objekte,
die durch bidirektionale Integrationspfade zwischen den Systemen verbunden sind. Die
Objekte miissen nicht identisch sein, sondern es reicht aus, wenn nur ein Teil ihrer Da-
ten iiberlappend und durch Transformationen iiberfiihrbar sind. Auflerdem miissen die
Anderungen der Objekte nicht zum exakt gleichen Zeitpunkt erfolgen, sondern es muss
fiir einen Konflikt gelten, dass die Anderung des Objektes in System A zum Zeitpunkt
der Anderung im System B noch nicht im System B sichtbar war, sofern die Anderung
im System A vor der Anderung in System B erfolgte. In einer Formel ausgedriickt tritt
ein Konflikt genau dann auf wenn gilt:

iPath(Ca, Cg) A iPath(Cy,Ca) A H(Ca) < t(Cg) A
HCa) + tagne(Ca, A, B) > £(Clp)

iPath(Cx, Cy): Die Funktion iPath beschreibt die Ausfilhrung einer Abhéngigkeit
zwischen der Anderung C, im Quellsystem = und der Anderung Cy, im Zielsystem

Y.
t(Cy): Die Funktion ¢ beschreibt den Zeitpunkt einer Anderung C im System X.

90

3.8. KONFLIKTERKENNUNG UND AUFLOSUNG

tsync(Cx, X, Y): Die Funktion ¢,,. beschreibt die Zeitdauer einer Synchronisation ei-
ner Anderung C, von System X zu System Y. Der Zeitpunkt t(C'y) +tsync(Ca, A, B)
gibt an, wann die Anderung C4 im System B sichtbar war.

Alternativ gibt es noch die Konfliktvermeidung, die durch eine Master-Update-
Situation oder durch Eager-Replikation sowie einigen Varianten davon erreicht werden
kann. Bei der Master-Update-Konfiguration kann ein Objekt immer nur in einem Sys-
tem gedndert werden und bei der Eager-Variante werden alle Systeme innerhalb einer
Transaktion angepasst. Durch den Einsatz von Transaktionen fiir die Anderungspro-
pagation werden die iiblichen Anderungskonflikte verhindert. Die Eager-Replikation
kann in einem solchen Propagationssystem nicht angewendet werden, da die beteilig-
ten Informationssysteme weitestgehend autonom sein sollen. Oft sollte es aber gegeben
sein, dass bestimmte Objekte nur in bestimmten Systemen gedndert werden kénnen
und wir eine Master-Update-Situation vorliegen haben. Dennoch wird diese Situation
nicht immer und fiir alle Geschéftsobjekttypen erreichbar sein und deshalb muss man
Konflikte erkennen und auflosen.

Konflikte kénnen durch logische Vektoruhren [Mat89] erkannt werden, die logische
Zeit [Lam78] verwenden. Kann eine logische Uhr von einer einkommenden Synchro-
nisationsnachricht nicht mit der lokalen Uhr in Reihenfolge gebracht werden, so liegt
ein Konflikt vor [SS05]. Da logische Vektoruhren einige Nachteile haben [ABF02], wur-
den einige Varianten [TRA96, BA99, ABF02] entwickelt. Alternativ kann noch reale
Zeit verwendet werden, die vom so genannten Two-timestamp-Verfahren [GHOS96]
eingesetzt wird, bei der jedes Objekt {iber einen Zeitstempel (timestamp) der letzten
Anderung verfiigt. Wird ein Objekt geéindert, wird sowohl der Zeitstempel der letzten
Anderung als auch der aktuelle mit gesendet. Kommt jetzt eine Anderung in einem
entfernten System an, wird der Zeitstempel der letzten Anderung mit dem lokalen ver-
glichen, sind sie gleich, liegt kein Konflikt vor und die Anderung kann durchgefiihrt
werden, andernfalls wurde ein Konflikt erkannt.

Die Konfliktauflosung erfolgt zumeist manuell, in dem ein Administrator die betrof-
fenen Objekte betrachtet und versucht zu entscheiden, welche Daten giiltig sind und
diese neuen Daten an die beteiligten Systeme verteilt, was wieder {iber das Propagati-
onssystem erfolgt.

Geschiéftsobjekte konnen grof§ sein und deshalb kann es zu vielen erkannten Konflik-
ten kommen. Kleinere Objekte schaffen hier Abhilfe [SS05]. Um trotz grofier Geschéfts-
objekte zu kleinen Objekten zu kommen, wird das Geschéftsobjekt in unabhingige
Zonen aufgeteilt. Der Kunde kénnte zum Beispiel zwei unabhéngige Zonen haben:
Adresse und Bankverbindung. Diese Zonen konnen durch entsprechende Annotationen
(group und id) in den XML Schemas der Geschiftsobjekte definiert werden, wobei
die id-Annotation ein eindeutiges Unterscheidungskriterium definiert und die group-
Annotation die Zone definiert (vgl. Abbildung 3.14). Da fiir jede Zone ein Zeitstempel
oder eine logische Uhr gespeichert werden muss und oft das Datenmodell eines Informa-
tionssystems nicht angepasst werden kann, schlagen wir ein zustandsbasiertes Verfah-
ren vor, das eine Variante vom Two-timestamp-Verfahren darstellt. Statt Zeitstempel
werden die Zustédnde der Objekte verwendet, welche ebenfalls einen bestimmten Zeit-
punkt reprasentieren. Der Algorithmus fiir die Konflikterkennung ist der gleiche wie

91

KAPITEL 3: Grundlegende Konzeption

<?xml version="1.0" encoding="UTF-8"7> <xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cd="http://www.uni-stuttgart.de/sfb467/sies/conflict-detection"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Kunde">
<xs:complexType>
<xs:sequence>
<xs:element cd:id="true" name="ID"/>
<xs:element cd:group="name" name="Vorname"/>
<xs:element cd:group="name" name="Nachname"/>
<xs:element cd:group="address" name="Adresse">
</xs:element>

<xs:element cd:group="bank" name="Bankverbindung">

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Abbildung 3.14: Beispiel eines XML Schemas fiir eine feingranulare Konflikterkennung

92

3.9. REIHENFOLGEEINHALTUNG VON PROPAGIERTEN
ANDERUNGSBESCHREIBUNGEN

beim Two-timestamp-Verfahren. Wird in System A eine Anderung ausgefiihrt, wird
diese mit dem Davor- und Danachzustand an das Zielsystem gesendet. Das Propaga-
tionssystem sendet schon aus anderen Griinden zwei Zusténde (vgl. Abschnitt 3.2.2)
und damit kann dieses Verfahren gut in einem solchen Propagationssystem eingesetzt
werden. In System B wird der Davorzustand mit dem aktuellen Zustand verglichen,
sind diese gleich liegt kein Konflikt vor und die Synchronisation kann durchgefiihrt
werden. Bei diesem zustandsbasierten Verfahren handelt es sich um eine erste Losung
fiir eine Konflikterkennung in solch einem Propagationssystem. Die Betrachtung von
Alternativverfahren wiirde den Rahmen dieser Arbeit sprengen.

Das Prinzip eines performanten Algorithmus fiir das zustandsbasierte Verfahren
fiir Informationssysteme mit relationalen Datenbanken ist, dass die Anderung im re-
lationalen System nur ausgefithrt wird, wenn der Zustand mit dem Davorzustand
{ibereinstimmt. Dies erfolgt durch entsprechende Selektion in der Anderungsoperation.
Falls kein Objekt mit dem Zustand gefunden wurde, haben wir einen Konfliktkandi-
daten. Dieser Kandidat wird anhand seiner unabhéngigen Zonen analysiert: erfolgte
die Anderungen in unabhiingigen Zonen, kann die Anderung doch noch durchgefiihrt
werden, da kein Konflikt vorliegt. Die hohe Performanz wird dadurch erreicht, dass
der Primérschliissel sich ebenfalls im Selektionskriterium befindet. Dadurch wird das
Objekt schnell gefunden und erst wenn es gefunden wurde, werden die anderen Selek-
tionskriterien ausgewertet.

3.9 Reihenfolgeeinhaltung von propagierten Ande-
rungsbeschreibungen

Die Anderungsbeschreibungen werden durch unabhingige Propagationsprozesse verar-
beitet, die unterschiedliche Laufzeiten haben. Dies kann zur Vertauschung der Ande-
rungsbeschreibungen fiir ein Zielsystem fiihren. Da Anderungsbeschreibungen grund-
sitzlich nicht als unabhéngig angesehen werden konnen, muss die Reihenfolge der
Anderungsbeschreibungen eingehalten werden. Beispiele fiir Beziehungen zwischen den
einzelnen Anderungsbeschreibungen sind: Anderungen des gleichen Geschiftsobjektes,
die zeitnah erfolgten oder es werden zwei unterschiedliche Geschiftsobjekte erzeugt,
bei dem das zuletzt erzeugte Objekt eine Referenz auf das erste hat.

Um in replizierten Datenbanken iiberall die gleiche Reihenfolge zu garantieren, wur-
de die 1-Kopien-Serialisierbarkeit (One Copy Serializability) [BG82, BG83]| eingefiihrt.
Es sind dabei nur Schedules zuldssig, die zu serialisierbaren Schedules auf einer nicht
redundanten Datenbank dquivalent sind [Rah94]. Diese Eigenschaft wird in der Regel
bei der Lazy-Replikation nicht erreicht [BKR™99, ATST05]. Losungen, die dieses Pro-
blem beseitigen, sind reine Eager-Replikationsansitze oder hybride Ansétze [BK97,
BKR199, ATST05], die Eager- und Lazy-Replikation kombinieren. In Abschnitt 3.1
wurde argumentiert, dass innerhalb unabhéngiger (autonomer) und heterogener Infor-
mationssysteme nur die Lazy Replikation in Frage kommt und dadurch die vorgeschla-
genen Algorithmen nicht angewendet werden konnen, d.h. die 1-Kopien-Serialisierbarkeit
kann in einem solchen Umfeld vermutlich nicht erreicht werden.

93

KAPITEL 3: Grundlegende Konzeption

Aus diesem Grund greifen wir auf Reihenfolgeregeln zuriick, die von Verteilten Sys-
temen stammen und Ordnungen genannt werden. Bevor diese definiert werden kénnen,
miissen noch ein paar grundlegende Dinge eingefiihrt werden:

P: Menge aller Propagationsprozesse. Jeder Propagationsprozess hat einen Startkno-
ten und mehrere Zielknoten, wobei der Startknoten iiber gerichtete Kanten mit
den Zielknoten verbunden ist.

sn(p): Gibt den Startknoten eines Propagationsprozesses p € P zuriick.
Z,: Menge aller Zielknoten eines Propagationsprozesses p € P.

kn; ~ kny: Definiert eine Relation, bei der die Knoten (knq, kny; Start oder Zielkno-
ten) das gleiche Informationssystem als Quelle bzw. Ziel haben.

kn; < kns: Die Relation < definiert, dass kn; zeitlich vor kns lag.
Nun kénnen die Ordnungen definiert werden, wobei als Grundlage [CBMT96] diente:

1. Totale Propagationsordnung:

Bei der totalen Propagationsordnung werden alle Anderungsbeschreibungen in
Reihenfolge gebracht, sofern sie fiir das gleiche Zielsystem bestimmt sind.

vpivpj € Pv V'zpi € ZPi’ \V/ij S ij :
pi # pj A sn(pi) < sn(pj) A zp, ~ 2p; = 2p, < 2,

2. FIFO-Propagationsordnung mit Beriicksichtigung von Startsystem und
Zielsystem:

Bei der FIFO-Ordnung werden Anderungsbeschreibungen in Reihenfolge gebracht,
wenn sie vom gleichen Quellsystem und fiir das gleiche Zielsystem bestimmt sind.

Vpi,pj € P, V2, € 2y, V2, € 2y,
pi # ;i A sn(pi) ~ sn(p;) A sn(pi) < snlp;) A zp, ~ zp, = 2p, < 2,

3. Ungeordnet:

Bei dieser Propagationsordnung wird keinerlei Einfluss auf die Reihenfolge der
Anderungen genommen, d.h. die Anderungen werden so angewendet, wie sie
durch die Propagationsprozesse verarbeitet wurden.

Diese Propagationsordnungen kénnen mit der Konfiguration des Propagationssys-
tems eingestellt werden. In unserem Prototypen ist die Verwendung der FIFO-Propaga-
tionsordnung als Standard eingestellt, da sie fiir die meisten Anwendungsfille aus-
reichend ist. Dabei werden alle Anderungsbeschreibungen, die vom gleichen System
stammen und fiir das gleiche System bestimmt sind, in Reihenfolge gebracht.

94

3.10. FEHLERBEHANDLUNG

3.10 Fehlerbehandlung

In diesem Abschnitt werden die Fehler und deren Behandlung diskutiert, die im Pro-
zessmanager oder den Propagationsprozessen auftreten konnen. Bevor auf diese einge-
gangen werden, sollen die moglichen Fehler klassifiziert werden.

3.10.1 Fehlerklassifikation

Die Fehler, die withrend einer Anderungspropagation auftreten, konnen in verschiedene
Kategorien klassifiziert werden. Zuerst kann man unterscheiden, ob es sich um ein ein-
maliges Auftreten handelt oder ob sich der Fehler wiederholt. Zustandsbeschreibungen
die nicht schema-konform sind, ist ein Beispiel fiir wiederholende Fehler. Ansonsten
kann die Wiederholbarkeit schwer vorausgesagt werden und es wird einfach eine obere
Grenze von Wiederholversuchen festgelegt. Weiterhin kann die Quelle des Fehlers un-
terschieden werden, ob der Fehler durch ein externes System oder intern auftritt (z.B.
Skript oder Warteschlangenmanager). Ahnlich dazu lisst sich unterscheiden, ob es sich
um einen Fehler der Abhéangigkeitsdefinition, einen Kommunikationsfehler oder einen
Lesefehler der Definitionen handelt. Auflerdem kann man einen Fehler nach dem Ort
des Auftretens unterscheiden: ob der Fehler im Prozessmanager oder in einem Prozess
auftritt.

Wichtig ist vor allem die Unterscheidung, ob sich der Fehler voraussichtlich wieder-
holt oder ein einmaliges Auftreten hat. Im letzteren Fall kann versucht werden, den
Prozessmanager oder den Prozess neu zu starten.

3.10.2 Fehlerbehandlung im Prozessmanager

Die Fehlerbehandlung im Prozessmanager erfolgt vom Lesen einer Anderungsanforde-
rung, dem Starten der jeweiligen Prozesse, bis zum Schreiben in die Warteschlange
zur Kommunikation mit den Prozessen. Dieser Ablauf erfolgt unter der Kontrolle einer
Transaktion. Beim erfolgreichen Ausfithren wird die Transaktion mit einem Commit
abgeschlossen, so dass die Leseoperation zu einem Entfernen der Anderungsanforde-
rungen aus der Eingangswarteschlange fithrt und die Schreiboperationen sichtbar wer-
den. Handelt es sich um einen sich nicht wiederholenden Fehler, so wird ein Rollback
durchgefiihrt. Komplizierter ist das Vorgehen bei einem sich wiederholenden Fehler, da
in diesem Fall ein Rollback durchgefiihrt werden muss, damit alle Schreiboperationen
zuriickgesetzt werden. Dann wird die Nachricht nochmals gelesen und in einem Fehler-
speicher abgelegt. Der Fehlerspeicher kann die Form einer Tabelle in einer Datenbank
oder die Form einer Warteschlange haben, wobei im letzteren Fall die Anderungsan-
forderung mit der Fehlerinformation angereichert werden muss, um einem Adminis-
trator zur Verfiigung gestellt zu werden. Im Fall der Verwendung einer Tabelle kann
die Fehlerinformation in einer Extra-Spalte gespeichert werden, unabhéngig von der
Anderungsanforderung. Der Ansatz mit der Warteschlange wird zum Beispiel in dem
Produkt BizTalk verwendet [AHHT02, WML"05].

95

KAPITEL 3: Grundlegende Konzeption

3.10.3 Fehlerbehandlung eines Propagationsprozesses

Wie schon erwidhnt wurde, ist ein Propagationsprozess die ausfithrende Instanz eines
Propagationsskriptes. Die Fehlerbehandlung innerhalb eines Propagationsskriptes er-
folgt transparent fiir den Programmierer, wobei die Transaktionsgrenzen sich zwischen
Start und Beenden eines Prozesses befinden. Einfacher gestaltet sich wieder die erfolg-
reiche Ausfithrung, bei der am Ende ein Commit ausgefiihrt wird. Bei einem sich nicht
wiederholenden Fehler wird ein Rollback ausgefiihrt, der Prozess neu initialisiert und
dann neu gestartet wird. Komplizierter ist die Reaktion bei einem sich wiederholenden
Fehler. Dabei wird der Prozess zuriickgesetzt, die Anderungsbeschreibung nochmals
gelesen und mit Fehlerinformation angereichert und an die Fehlerwarteschlange gesen-
det. Dort kann sie dann von einem Administrator abgeholt, der Fehler behoben und
wieder an das Propagationssystem iibergeben werden.

Der Unterschied zwischen einer 1-zu-N-Abhéngigkeit und n 1-zu-1-Abhéngigkeiten
ist bei der Fehlerbehandlung besonders grof3. Tritt bei der Ausfithrung ein Fehler auf,
so wird im 1-zu-N-Fall keine Anderungsbeschreibung propagiert, wihrend beim 1-zu-1-
Fall n Propagationsprozesse separat ausgefithrt werden, von denen manche erfolgreich
ausgefiihrt werden und manche durch einen Fehler zuriickgesetzt werden.

3.11 Adapter

In diesem Abschnitt wird zuerst der generelle Aufbau eines Adapters und seine Funktio-
nen untersucht. Weiterhin wird die Realisierung eines Adapters fiir relationale Daten-
banken untersucht, wobei die Konzepte fiir Ziel- und Quelladapter getrennt betrachtet
werden.

3.11.1 Genereller Adapter

Die Aufgaben eines Adapters unterteilen sich in zwei Gruppen: Aufgaben eines Quellad-
apters und Aufgaben eines Zieladapters. Zu den Aufgaben eines Quelladapters gehoren
das Erkennen von Verdnderungen in den Daten des Informationssystems, die Erstellung
der XML-Reprisentation der Anderungsinformation und das Ubergeben der Ande-
rungsinformation an das Propagationssystem. Die Aufgaben des Zieladapters sind das
Warten auf Anderungsinformationen in der entsprechenden Warteschlange, das Parsen
der Anderungsinformationen und das Anwenden dieser auf die Daten des Informa-
tionssystems. Da aufgrund von Konsistenzregeln, die im Informationssystem definiert
sind, Anderungen abgelehnt werden kénnen, miissen Fehlerinformationen abgespeichert
werden konnen. Auflerdem muss der Zieladapter iiber Mechanismen verfiigen, die die
Erkennung von Konflikten erméglichen, so wie sie in Abschnitt 3.8 eingefiihrt wurden.

In Abbildung 3.15 ist der grundsétzliche Aufbau eines Quell- und Zieladapters dar-
gestellt. In diesem Bild sind beide Arten vereint, da viele Systeme sowohl Quell- als
auch Zielsystem sind. Der Adapter hat drei Schnittstellen nach auflen: eine zum Propa-
gationssystem, eine zum Informationssystem und eine zu Benutzern. Die Schnittstelle
zum Propagationssystem fiihrt iiber das Warteschlangensystem, wobei Anderungsbe-

96

3.11. ADAPTER

Adaptor GUI
GUI-Schnittstelle
Konflikt- Anderungs-
& erkennung erkennung %
S 2 ®
: g2 = :
Propagations- % :2 Steuerung GO- < Informations-
system = Handler %) system

Q£ £
£ 0 [0

>

n

XML- Fehler-
Parser analyse

Konflikte, Kopie
Ablehnungen
und Fehler DB

Konfiguration

Abbildung 3.15: Die Architektur eines generellen Quell- und Zieladapters

97

KAPITEL 3: Grundlegende Konzeption

schreibungen sowohl versendet als auch empfangen werden kénnen. Die Schnittstelle
zum Informationssystem fithrt {iber die Zugriffsmoglichkeiten des jeweiligen Systems.
Dabei kann es sich beispielsweise um eine spezielle API handeln. Die dritte Schnitt-
stelle, die Benutzerschnittstelle, ermoglicht die Auflésung von Konflikten, das Ansehen
von nicht anwendbaren Anderungsbeschreibungen® und die Auflssung dieser.

Im Zentrum des Adapters steht die Steuerungskomponente, die die oben genannten
Aufgaben koordiniert und dafiir die anderen Komponenten verwendet. In der Kon-
flikterkennung werden die Regeln aus Abschnitt 3.8 implementiert und dadurch eine
Erkennung von Konflikten maglich. Die Anderungserkennung erfolgt durch die entspre-
chende Komponente. Dies kann beispielsweise durch den Vergleich mit Kopien erfolgen,
die in der Kopie-DB gespeichert sind. Gegebenenfalls ist diese Komponente unnétig,
da das Informationssystem Anderungen aktiv mitteilt. Erkannte Anderungen werden
durch den Geschiftsobjekt-Handler (GO-Handler) als Anderungen von Geschiftsob-
jekten transformiert und schlieBlich von der Steuerungseinheit als Anderungsbeschrei-
bungen verschickt. Der GO-Handler ist deshalb notwendig, da Anderungen feingra-
nularer erkannt werden kénnen, beispielsweise wird von einem Auftrag die Anderung
einer Auftragsposition erkannt. Der GO-Handler dient aber auch zur Zerlegung der
Geschéftsobjekte in ihre Speicherungseinheiten, sofern die Systemschnittstelle dies ver-
langt. Fiir die Analyse der Anderungszustinde verwendet der GO-Handler einen XML-
Parser. Sofern die Systemschnittstelle auf der Ebene von Geschéftsobjekten arbeitet
und Anderungen auch auf dieser Ebene mitgeteilt werden, kann der GO-Handler weg-
gelassen werden. Das jeweilige Informationssystem kann die Anderungen ablehnen. In
diesem Fall muss der Adapter den gemeldeten Fehler analysieren und in die Fehler-DB
mitsamt der Anderungsbeschreibung schreiben, so dass ein Administrator den Grund
oder Fehler analysieren und Korrekturmafinahmen ergreifen kann. Der gesamte Pro-
zess vom Empfang einer Anderungsbeschreibung bis zur Anwendung der Anderungen
muss steuerbar sein. Das gilt auch fiir den umgekehrten Fall, bei dem Anderungen er-
kannt werden und als Anderungsbeschreibungen an das Propagationssystem verschickt
werden. Dafiir dient die Konfiguration mittels der Konfigurationsdatei.

3.11.2 Adapter fiir relationale Datenbanken

Da die Informationssysteme oft Konsistenzregeln in der Anwendungsschicht realisiert
haben und da auch aus anderen Griinden (z.B. implementierte Geschéftslogiken) nicht
direkt auf die darunter liegende Datenbank zugegriffen werden soll, ist es oft unabding-
bar, die API eines Informationssystems zu verwenden. Allerdings gibt es auch Systeme,
die auf einer relationalen Datenbank beruhen und keine API bereitstellen. Aus diesem
Grund muss in diesem Fall direkt auf die Datenbank zugegriffen werden. Daher wird in
diesem Abschnitt die Losung eines generellen Quell- bzw. Zieladapters fiir relationale
Datenbanken genauer untersucht.

Grundsatzlich miissen Quell- und Zieladapter miteinander kommunizieren, so dass
vom Zieladapter empfangene Anderungen nicht wieder vom Quelladapter erkannt wer-
den und es dadurch zu sogenannten Propagationsschleifen [Spr05] kommt.

5Beispielsweise aufgrund von Konsistenzregeln

98

3.11. ADAPTER

Umwandlung in Weiterleitung an
Anderungs- Propagations-
beschreibungen // system

Erkennung der Filtern doppelter
geanderten Daten // Geschaftsobjekte

Abbildung 3.16: Der Prozess fiir die Erkennung von Anderungen und Weiterleitung an
das Propagationssystem [Spr05]

3.11.2.1 Quelladapter

Der Quelladapter [Spr05] dient dazu, verdnderte Geschéftsobjekte an das Propagations-
system weiterzuleiten. Problematisch dabei ist, dass Geschéftsobjekte nicht als solche in
einer relationalen Datenbank vorliegen, sondern in ihren Bestandteilen. Beispielsweise
setzt sich ein Kundenauftrag aus einem Auftragskopf und seinen Positionen zusammen.
Um diesen Unterschied zu iiberbriicken, muss der Quelladapter den in Abbildung 3.16
dargestellten Prozess implementieren.

Als Erstes muss ein solcher Adapter Verinderungen in den Daten feststellen und
das zugehorige Geschéftsobjekt ermitteln. Dieser Schritt kann zum Beispiel durch den
Vergleich mit einer Kopie erfolgen. Dafiir werden beide Tabellen, das Original und
die Kopie, sortiert und schrittweise verglichen. Dadurch kénnen sowohl neue Objekte
(nur im Original vorhanden), geénderte Objekte (in beiden vorhanden, aber mit un-
terschiedlichen Werten) und geloschte Objekte (nur in der Kopie vorhanden) erkannt
werden. Auflerdem erméglicht dieser Ansatz eine vollstéindige Beschreibung der Ande-
rung mit Davor- (B) und Danach-Zustand (D). Als Ergebnis des Erkennungsschrittes
erhilt man eine Liste von geénderten Geschéftsobjekten. Diese Liste enthélt aller-
dings Duplikate, da beispielsweise Auftragskopf und Auftragspositionen des gleichen
Auftrags gedindert wurden. Deshalb miissen im néchsten Schritt mehrmals vorhande-
ne Geschiftsobjekte gefiltert werden, sodass diese nur noch einmal vorhanden sind.
Die resultierende Liste wird wieder als Input fiir den néchsten Schritt verwendet, wel-
cher die Anderungsbeschreibungen erzeugt. Dafiir muss eine Zusammensetzung des
Geschiéftsobjektzustandes aus den Daten in der relationalen Datenbank bekannt sein.
Im letzten Schritt werden die Anderungsbeschreibungen an das Propagationssystem
gesendet, welches diese dann verteilt.

3.11.2.2 Zieladapter

Der Zieladapter liest Anderungsbeschreibungen ABs aus der jeweiligen Warteschlange
und transformiert diese in eine Menge von DML-Befehlen, die dann an die Datenbank
gesendet werden. Diese Transformation ist der Kernpunkt eines Zieladapters fiir rela-
tionale Datenbanken. Dafiir muss eine passende Beschreibung gefunden werden, sodass
XML-Elemente der Zustandsbeschreibungen (B und D) in DML-Befehle transformiert
werden kénnen.

Es wurden fiir das Mapping vier verschiedene Varianten identifiziert:

Annotiertes XML Schema

99

KAPITEL 3: Grundlegende Konzeption

Um das Mapping zu definieren, wird das XML Schema, das die Zustdnde defi-
niert mit Mapping-Informationen annotiert. Der Vorteil hierbei ist, dass das XML
Schema schon im Propagationssystem vorhanden ist und dann nur noch impor-
tiert und annotiert werden muss. Der Nachteil ist die Komplexitédt der Umsetzung
und die Versténdlichkeit des annotierten Schemas.

Zielstruktur-basierte Mapping-Definition[Vu05]

Hier wird nicht, wie bei der ersten Mapping-Definition, die Quellstruktur als
Ausgangspunkt fiir die Mapping-Definition genommen, sondern die Zielstruktur.
Dies bedeutet fiir den Zieladapter, das relationale Schema. Die Zuordnung von
Tabellenzeilen und -spalten erfolgt mit XPath-Ausdriicken. Man erlangt durch
die Verwendung von XPath eine hohe Miachtigkeit. AuBlerdem kann zur Erken-
nung von Konflikten (sieche Abschnitt 3.8) der Primérschliissel einfach definiert
werden oder direkt aus dem Katalog ausgelesen werden. Ein Nachteil ist, dass als
Grundlage eine bisher nicht vorhandene Struktur verwendet wird, die sich aber
aus dem DB-Katalog generieren und dann mit den XPath-Ausdriicken annotieren
liefle, die die Daten aus der Zustandsbeschreibung extrahieren.

Aufteilung durch Abhéngigkeit

Hier teilt ein Transformationsskript innerhalb einer Abhéngigkeit das Geschéfts-
objekt in seine relationalen Bestandteile auf. Dies muss natiirlich sowohl fiir den
Davor- als auch fiir den Danach-Zustand gemacht werden. Der Adapter miiss-
te die Beschreibungen in Beziehung setzen (Zeilen vom Davor- und Danach-
Zustand) und diese entsprechend in DML-Befehle umsetzen. Dies bedeutet eine
einfache Umsetzung im Adapter. Allerdings kann das Geschéftsobjekt nicht mehr
identifiziert werden, da es schon in seine Bestandteile zerlegt wurde. Was daraus
folgt, ist auflerdem die unterschiedliche Représentation der Geschéftsobjekte als
Quell- oder Zielstruktur.

Aufteilung im Adapter
Mittels eines Transformationsskriptes im Adapter kann das Geschéftsobjekt in
seine Bestandteile zerlegt werden. Dadurch wére die Quell- und Zielstruktur
gleich und die Zerlegung wiirde im Adapter erfolgen. Allerdings miissen noch
die Primarschliissel festgelegt werden, die zur Erstellung der DML-Statements
bendtigt werden. Dies konnte ebenfalls durch die Transformationsskripte erfol-
gen.

Am einfachsten und flexibelsten ist die Losung mit der Aufteilung innerhalb des
Adapters mit Transformationsskripten.

Nicht nur das Mapping von XML-Zusténden zu relationalen Zeilen und Spalten
stellt ein Problem dar, sondern auch die Umsetzung der daraus generierten Zwischenre-
prasentation in DML-Statements. Dafiir sollte bekannt sein, welche Werte den Primér-
schliissel bilden. Denn ohne diese Definition miisste der where-Teil der Anfrage alle
Elemente des Davor-Zustandes enthalten und eventuell aufgetretene Konflikte (siche
Abschnitt 3.8) wiirden die Identifikation verhindern.

100

3.12. ZUSAMMENFASSUNG

3.12 Zusammenfassung

In diesem Kapitel wurde die Basis fiir ein Propagationssystem zur Integration von au-
tonomen und heterogenen Informationssystemen geschaffen. Zuerst wurden verschie-
dene Ansitze, die fiir die Replikation im homogenen Bereich existieren, untersucht.
Als Grundlage fiir ein Propagationssystem wurde die Lazy-Replikation und das aktive
Verbreiten von Anderungsinformationen (Push) verwendet, wobei die Propagationen
nach den jeweiligen Quelltransaktionen ausgefiihrt werden (deferred). Aulerdem wurde
die Propagation von Zustéinden ausgewéhlt, da Zusténde sich leichter als Operationen
transformieren lassen.

Grundbegriffe fiir eine solche Propagation sind Anderungsbeschreibungen ABs und
Abhanglgkelten Anderungsbeschreibungen sind Tupel, die alle wichtigen Informatio-
nen iiber eine Anderung eines Geschaftsobjektes enthalten. Die wichtigsten Elemente
sind die zwei Zustinde, die die Anderung des Geschiftsobjektes beschreiben. Zwei
Zustinde beschreiben die Anderung vollstéindig, auch wenn sie nicht immer notwen-
dig wiren. AuBerdem ermoglichen die zwei Zustinde Anderungen von Schliisseln und
die zeitstempellose Erkennung von Konflikten. Abhéngigkeiten beschreiben Pfade, ent-
lang derer Anderungsbeschreibungen von Quellsystemen zu Zielsystemen laufen sollen.
Diese werden iiber sogenannte Propagationsskripte realisiert. Auflerdem wurden In-
stanzen eingefiihrt, welche die Propagationsskripte ausfithren. Diese Instanzen heiflen
Propagationsprozesse.

Des Weiteren wurde untersucht, ob Transaktionsinformationen im heterogenen Fall
mit propagiert werden. Da der Transaktionskontext nicht unbedingt erhalten bleibt,
ist es nicht immer sinnvoll, diese Informationen mitzusenden. In dieser Arbeit wurde
davon ausgegangen, dass der Transaktionskontext zwischen den einzelnen Informati-
onssystemen nicht erhalten bleibt und deshalb die Transaktionsinformationen nicht mit
gesendet werden miissen.

Um Anderungsbeschreibungen im heterogenem Fall zu propagieren, wurde XML
ausgewahlt und eine spezielle Sprache auf Basis von XML entwickelt, mit der Propaga-
tionsskripte definiert werden kénnen. Diese Sprache heifit XML Propagation Definition
Language (XPDL). Aulerdem wurde die Architektur des Propagationssystems vorge-
stellt. Um Bedingungen zwischen einzelnen Zustinden von Anderungsbeschreibungen
zu ermoglichen, wurde die Propagation Condition Language (PCL) eingefiihrt, die auf
XPath aufbaut.

Treten durch Abhéangigkeiten Zyklen auf, so konnen Konflikte entstehen, die erkannt
und aufgelost werden miissen. Dafiir wurden mehrere Varianten untersucht, wobei eine
Variation des Two-timestamp-Verfahrens vorgeschlagen wurde. Um die auftretenden
Konflikte zu minimieren, konnen Geschiftsobjekte in unabhingige Zonen aufgeteilt
werden, innerhalb derer gleichzeitig in unterschiedlichen Systemen geédndert werden
konnen (beispielsweise Bankverbindung und Adresse).

Weiterhin sollte die Reihenfolge der Anderungen eingehalten werden. Aufbauend
auf Reihenfolgeordnungen in Verteilten Systemen wurden drei Reihenfolgeordnungen
fiir ein Propagationssystem eingefiihrt. Diese sind die totale, FIFO-Ordnung sowie keine
Ordnung (ungeordnet).

101

KAPITEL 3: Grundlegende Konzeption

Ebenfalls wurde die Fehlerbehandlung in einem Propagationssystem diskutiert und
die Aufgaben sowie Aufbau von Adaptern vorgestellt.

102

KAPITEL 4

Komplexe Propagation

Nachdem das Propagationssystem grundlegend vorgestellt und erkléart wurde, sollen in
diesem Kapitel mogliche Erweiterungen untersucht werden. Als Erstes soll betrachtet
werden, wie weitere Informationssysteme in die Anderungspropagation eingebunden
werden konnen. Dadurch kéonnen dem Zielsystem Daten bereitgestellt werden, die so
vom Quellsystem nicht bereitgestellt werden konnen. Ein Propagationssystem kon-
taktiert dafiir weitere Informationssysteme (Drittsysteme), die ihm diese Daten be-
reitstellen. Bisher ist man davon ausgegangen, dass nicht mehr als eine empfangene
Anderungsbeschreibung von einem Propagationsprozess verarbeitet wird. In diesem
Kapitel soll nun untersucht werden, wie mehrere aufgetretene Anderungen zusammen
in einem Prozess verarbeitet werden kénnen. Diese Art von Abhéngigkeit wird M-zu-
N-Abhéngigkeit genannt. Hierfiir werden mogliche Anwendungsszenarien identifiziert.
Wie schon erwidhnt wurde, ist ein Nachteil der Hub-and-Spoke-Architektur, dass das
Integrationssystem einen Flaschenhals darstellt. Um dieses Problem zu beheben, soll
untersucht werden, wie der Propagationsmanager verteilt werden kann.

In Abbildung 4.1 ist die Architektur der in diesem Kapitel besprochenen Erweite-
rungen des Gesamtsystems illustriert. Der Warteschlangenmanager und der Repository-
Server bleiben von den Erweiterungen weitestgehend unberiihrt. Dem Repository-Server
miissen nur eventuelle Sprachdnderungen von XPDL bekannt gemacht werden, so dass
er erweiterte Propagationsskripte auf ihre Giiltigkeit iiberpriifen kann. Betroffen von
den Erweiterungen sind vor allem der Propagationsmanager und der Abhéngigkeitsma-
nager. Deren im vorigen Kapitel besprochene Kernfunktionalitéit wird durch die ange-
sprochenen Module erweitert: Die Einbindung von Drittsystemen und die Realiserung
von M-zu-N-Abhéngigkeiten. Die Erweiterung des Abhéngigkeitsmanagers steht dabei
nicht im Fokus dieses Kapitels. Die Verteilung des Propagationsmanagers ist durch
mehrere Propagationsmanager symbolisiert, die sich die Aufgabe der Anderungspropa-
gation teilen.

103

KAPITEL 4: Komplexe Propagation

Kernmodul Einbindung von M-zu-N-
Drittsystemen Abhangigkeiten
Abhangigkeitsmanager
Kernmodul Einbindung von M-zu-N-
Drittsystemen Abhéngigkeiten
Propagationsmanager
I [
Repository Warteschlangenmanager

Abbildung 4.1: Erweiterung des Propagationssystems

4.1 Einbindung von Daten aus Drittsystemen

In diesem Abschnitt wird die Erweiterung des Propagationssystems durch die Ein-
bindung von Daten in Anderungsbeschreibungen beschrieben, die so nicht von den
Quellsystemen und Zielsystemen bereitgestellt werden konnen. Als Erstes wird die
Problemstellung diskutiert, um dann auf die Verwendung eines Datendienstes einzu-
gehen. Ein Datendienst ist der Dienst eines Drittsystems, der seine Daten bereitstellt.
Weiterhin wird auf die Zugriffsarten eingegangen, mit denen auf die Daten eines sol-
chen Datendienstes zugegriffen werden kann. Als Néchstes werden die Schritte von
der notwendigen Beschreibung eines Datendienstes bis zu seiner Nutzung untersucht.
Um Dienste zu beschreiben, wird eine Sprache entwickelt: die Data Service Descrip-
tion Language (DSDL). Bevor ein abschlieBendes Beispiel betrachtet wird, wird die
Realisierung diskutiert.

4.1.1 Problemstellung

Im heterogenen Umfeld reicht die einfache Integration von Datenénderungen in vielen
Féllen nicht aus. Dieses Problem ist in Abbildung 4.2 dargestellt. In diesem Beispiel
wird eine Integration eines Fabriklayoutplanungswerkzeugs (Quellsystem) mit einem
Digitale-Fabrik-System (Zielsystem) betrachtet. Im Quellsystem wird nun eine neue
Maschine (eine Fertigungsressource) positioniert. Dies soll vom Quell- zum Zielsystem
propagiert werden. Das Zielsystem benétigt fiir seine Anderungsbeschreibung (ABzs)
noch zusitzliche Daten (Opp), die nicht von der Anderungsbeschreibung des Quell-
systems (ABgs) bereitgestellt werden kénnen. In diesem Fall werden die Attribute

104

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

O

ABqs

” ABzs
(ID, Type, Position) (ID, Type, Position,
MTBF, MTTR)
Quellsystem Zielsystem
(Layoutplanung) (Digitale Fabrik)
Opp

(Type, MTBF, MTTR)

Datenprovider
(MaschineninfoDB)

Abbildung 4.2: Problem der Einbindung von Daten von Drittsystemen

MTBF (meantime between failure) und MTTR (meantime to repair) benotigt. Da
diese von dem Fabriklayoutplanungswerkzeug nicht bereitgestellt werden, miissen sie
von einem dritten Informationssystem (hier: MaschinenInfoDB) geliefert werden. Die-
se Art von Informationssystem représentiert einen sogenannten Datenprovider. Das
Drittsystem kann sich innerhalb des Unternehmens befinden oder ein Service einer
externen Firma sein. Beispielsweise kann der Hersteller verwendeter Bearbeitungsma-
schinen (z.B. Frasmaschinen) Informationen tiber sie bereitstellen, die dann abgefragt
werden konnen. Intern kénnen zum Beispiel Datenbanken eingebunden werden, die
bestimmte Informationen bereitstellen (z.B. eine Kundendatenbank).

AuBerdem konnen mit dieser Einbindung von Drittsystemen Unterschiede in der
Datenreprisentation zwischen Quell- und Zielsystemen iiberwunden werden, indem so-
genannte Mapping-Tabellen zur Anwendung kommen. Ein solcher Unterschied kénnte
beispielsweise die Landerrepriasentation in einer Adresse sein, wobei in einem System
ein Landernamen (z.B. Deutschland) und in einem anderen ein Léndercode (z.B. D)
verwendet wird. Diese werden als Tupel in der Mapping-Tabelle gespeichert.

4.1.2 Verwendung eines Datendienstes

Der Datenprovider stellt durch einen Datendienst Daten bereit. Damit das Propaga-
tionssystem den Datendienst nutzen kann, stellt er eine Beschreibung seiner Meta-
daten im Propagationsrepository bereit. Dadurch wird es dem Abhéngigkeitsmanager
ermoglicht, den Anforderungen entsprechend nach einem Datendienst zu suchen.

Von der Definition der Beschreibung bis zur eigentlichen Nutzung des Datendiens-

105

KAPITEL 4: Komplexe Propagation

AN 3. Verwenden
Propagations- | » Datendienst

system
< >
R, &
e(’@ o @ &
SN N2
S 8 2 o
%, ., % RS
%, % N Q
Repository

Abbildung 4.3: Ubersicht iiber die Verwendung eines Datendienstes

tes werden drei Schritte benotigt, wie in Abbildung 4.3 dargestellt. In einem ersten
Schritt wird die Beschreibung des Datendienstes erzeugt und publiziert. Die Beschrei-
bung wird durch die im Rahmen dieser Arbeit entwickelte Data Service Description
Language (DSDL) ermdglicht. Diese Beschreibungen werden im zentralen Propagati-
onsrepository abgelegt. Zu einem spéteren Zeitpunkt (Schritt 2) wird dann iiber den
Abhéngigkeitsmanager nach den Beschreibungen gesucht, damit die benétigten Da-
tenprovider gefunden werden. Die Beschreibungen werden vom Abhéngigkeitsmanager
verwendet, um den entsprechenden Zugriffscode zu erzeugen und in bestehende Pro-
pagationsskripte einzubinden. Im letzten Schritt wird schlielich der erzeugte Zugriffs-
code verwendet, um auf den Datendienst zuzugreifen. Die Kommunikation mit dem
Datendienst erfolgt iiber SOAP. SOAP erméglicht den XML-basierten Austausch von
Nachrichten.

In Abbildung 4.3 ist auch die Verwandtschaft zum Webservice (vgl. [ACKMO04] Sei-
te 146) zu erkennen. Allerdings sind Webservices eher gedacht um Dienste aufzurufen
(gekapselter Zugriff durch einen Dienst) als direkt auf Daten eines Systems zuzugrei-
fen. Sie definieren die Struktur von Nachrichten, die ausgetauscht werden, und weniger
die internen Datenstrukturen des Dienstanbieters (z.B. relationale Tabellen) auf die
zugegriffen werden kann. Bei Webservices wird ebenfalls ein Dreigestirn verwendet: ein
Service-Nutzer (hier: Propagationsmanager) fragt beim Service- Verzeichnis-Anbieter
(hier: Propagationsrepository) nach einem Service-Anbieter (hier: Datendienst). Dabei
werden im Fall von Webservices folgende Technologien verwendet: WSDL (Webservice
Description Language) zur Beschreibung des Service, UDDI (Universal Description
Discovery and Integration) als Service-Verzeichnis-Anbieter und SOAP als Kommu-
nikationsprotokoll. Allerdings wird bei Webservices SOAP auch zur Kommunikation
mit dem UDDI verwendet. Dies erfolgt im Fall des Datendienstes fiir die Propagati-
on durch die API des Repositorys. Da bis jetzt der einzige Datendienst-Verwender der
Propagationsmanager ist, eignet sich besonders das Propagationsrepository, um die Be-
schreibungen der Datendienste abzulegen. Dies ist begriindet in der zentralen Ablage
aller propagationsrelevanten Metadaten.

106

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

4.1.3 Zugriffsarten

Ein Datenprovider stellt seine Daten iiber einen Datendienst bereit. Um moglichst
flexibel zu sein, sollten verschiedene Zugriffsarten unterstiitzt werden. Beispielsweise
sollte es moglich sein, auf Daten in relationalen Datenbanken zuzugreifen. In dem hier
vorgestellten Ansatz werden eine Reihe von Zugriffsarten unterstiitzt, die aber durch
weitere ergidnzt werden kénnen.

Standardméfig werden vom Propagationssystem drei Arten unterstiitzt: SQL fiir
relationale Datenbanken, XQuery fiir XML-Daten in XML-Dokumenten sowie XML-
Datenbanken und SOAP-RPC (Remote Procedure Call). Um eine einheitliche Form des
Zugriffs zu gewahrleisten, sollte jede Zugriffsart den Zugriff iber eine Datenanforderung
ermoglichen, die eine Menge von Parametern hat. Das trifft bei einem RPC-Aufruf zu,
weil dieser wie ein lokaler Prozeduraufruf Parameter haben kann. Aus diesem Grund
wird von Webservices nur der RPC-Mode unterstiitzt. Verwendet man fiir SQL und
XQuery parametrisierte Anfragen, so trifft dies auch fiir diese Zugriffsarten zu. Durch
diesen Ansatz kénnen dann zur Laufzeit die Parameter an die Daten der Anderungs-
beschreibungen gebunden werden.

Falls diese Zugriffsarten nicht ausreichend sind, da beispielsweise objektorientier-
te Datenbanken unterstiitzt werden sollen, so soll das Propagationssystem um weitere
Zugriffsarten ergénzt werden kénnen. Dafiir muss die DSDL-Sprache zuerst um Elemen-
te erweitert werden, die fiir die Zugriffsart spezifisch sind. Da die DSDL-Dokumente
als Ganzes im Repository abgelegt werden, miissen keine Anderungen im Propaga-
tionsrepository gemacht werden, aufler der Integration des neuen DSDL-Schemas in
das Repository, damit die DSDL-Dokumente entsprechend validiert werden koénnen.
Die Implementierung des entsprechenden XPDL-Befehls zum Aufruf des Datendiens-
tes muss im Propagationssystem um die neue Zugriffsart erweitert werden. Dies erfolgt
durch eine Plugin-Architektur.

4.1.4 Von der Definition zur Nutzung eines Datendienstes

Nachdem die Zugriffsarten fiir den Zugriff auf Datenprovider diskutiert wurden, soll nun
der Prozess zur Definition und Nutzung eines Datendienstes beschrieben werden. Der
Prozess unterteilt sich in zwei Bereiche (Abbildung 4.4): Entwicklungs- und Laufzeit.
Zur Entwicklungszeit wird der Datendienst definiert (Schritt 1) und zu einem spéteren
Zeitpunkt wird der Zugriffscode generiert (Schritt 2). Zur Laufzeit wird schliefllich der
Datendienst genutzt, um Daten anzufordern, die in einem Propagationsprozess eine
Anderungsbeschreibung mit zusitzlichen Informationen anreichern (Schritt 3).

Im ersten Schritt in Abbildung 4.4 wird zuerst die Beschreibung des Datendienstes
definiert, die dann im zweiten Schritt verwendet wird, um den Zugriffscode zu gene-
rieren. Dafiir werden zunéchst Metadaten des Dienstes gesammelt, wie zum Beispiel
das System, welches den Dienst implementiert, und die Zugriffsart, welche verwendet
wird. Die nachfolgende Definition ist von der gewéhlten Zugriffsart abhéngig. Wird ein
RPC-Zugrift definiert, so wird dieser durch eine WSDL-Message beschrieben. WSDL
stellt dabei Elemente fiir die Beschreibung der RPC-Nachrichten (Request und Re-
sponse) bereit. Bei SQL wird der Zugriff in Form von Tabellenbeschreibungen und pa-

107

KAPITEL 4: Komplexe Propagation

Schritt 1: Definition und
Publikation ?

Definiere Metadaten

‘W;y sat —
- ‘ Definiere Tables ‘ Definiere XML Schema
Definiere

Messages
(WSDL) Definiere param.- Definiere param.-
Anfragen Anfragen

1 1

Schritt 2: Suche und Erstellung des Zugriffscodes

. . Erzeuge Trans- Erzeuge XPDL-
Suche Dienst g formationsskripte Fragment
L Definiere J

param.) .
Anfragen Entwicklu ngszelt

[Schritt 3: Verwendung] Laufzeit

Abbildung 4.4: Prozess der Definition und Nutzung eines Datendienstes

108

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

rametrisierten Anfragen beschrieben. Die Tabellenbeschreibungen werden verwendet,
um parametrisierte Anfragen durch spezialisierte Werkzeuge zu erzeugen. Die parame-
trisierten Anfragen konnen im ersten Schritt (Early Definition) oder erst im zweiten
Schritt definiert werden (Late Definition). Fiir XML-Daten werden die Zugriffsmoglich-
keiten durch die Strukturbeschreibung in Form von XML Schema angegeben. Ebenso
wie bei SQL konnen parametrisierte Anfragen definiert werden, die aber auf XQuery
basieren.

Die Struktur der Antwort wird anhand von XML Schema spezifiziert. Dies gilt auch
fir den Webservice-Zugriff, da seit WSDL 2.0 [Wor(07] eine WSDL-Message in XML
Schema beschrieben wird. Des Weiteren wird XML Schema schon zur Uberpriifung der
Zusténde der Anderungsbeschreibungen verwendet und erméglicht dadurch eine gute
Integration in das Propagationssystem. Weiterhin unterstiitzen Mapping-Werkzeuge
(z.B. Altova Mapforce) XML Schema fiir die Definition von Input und Output der
Transformationen. Die Struktur bei den Zugriffsarten SQL und XQuery kann allerdings
erst bei der Definition einer parametrisierten Anfrage erfolgen, da vorher die Antwort-
struktur noch nicht feststeht. Die Antwortstruktur bei XQuery ist durch XQuery selbst
bestimmt. Bei SQL gibt es mehrere Verfahren, wie Anfrageergebnisse in XML trans-
formiert werden. Ein Beispiel hierfiir ist der SQL/XML-Standard [EM02].

Die Zugriffscode-Erstellung in Schritt 2 (siehe Abbildung 4.4) wird gestartet, indem
nach dem benottigten Datendienst gesucht wird. Die Suche nach Datendiensten kann
durch eine Volltextsuche iiber Beschreibungstexte erfolgen oder durch eine struktu-
rierte Suche iiber eine strukturierte Beschreibung der angebotenen Daten. Werden die
Daten iiber die Zugriffsarten SQL oder XQuery angefragt, so muss nach einer passen-
den parametrisierten Anfrage gesucht werden. Ist diese nicht vorhanden, werden die
Tabellenstrukturen bzw. XML Schemas fiir XML als Input zur Generierung einer pa-
rametrisierten Anfrage verwendet. In den néchsten zwei Schritten werden dann die Zu-
grifftsmethoden in Form von Transformationsskripten und von einem Aufrufsfragment
in XPDL erzeugt. Die Transformationsskripte erzeugen beispielsweise SOAP-Header
fiir zusétzliche Informationen (z.B. Daten fiir die Authentizierung) und das Aufrufs-
fragment steuert dabei den Aufruf des Datendienstes.

Der generierte Zugriffscode von Schritt 2 wird schliellich in Schritt 3, bei Zugriff
auf den Datendienst, verwendet. Dabei wird das Propagationsskript mit dem erzeugten
Fragment ausgefiihrt.

4.1.5 Dienstbeschreibung

Um Schritt 1 und 2 des Erstellungsprozesses miteinander zu integrieren, miissen die
Datendienste beschrieben werden. Des Weiteren miissen dem Propagationssystem Da-
ten iiber den Datendienst zur Laufzeit bereitgestellt werden, was in Abschnitt 4.1.6.2
noch genauer erlautert wird. Dafiir wurde eine Sprache entwickelt, die Data Service
Definition Language (DSDL) heifit. Die Struktur dieser Sprache wird in Abbildung
4.5 in UML dargestellt. Die Sprache selbst ist in XML implementiert. Die im vori-
gen Abschnitt beschriebenen Metadaten des Dienstes werden direkt im DataService-
Element beschrieben und bestehen unter anderem aus dem Namen des Datendienstes

109

KAPITEL 4: Komplexe Propagation

DataService
— Header
+name : string _
+description : string SOAPDependent ‘ +name : strmg
+protocol : string L +schema: string
+transport : TransportDef +mustProvide : string
+address : string +mustUnderstand : string
+type : string
InDoc
ServiceDefinition XQueryDef +name : string
+description : string
+schema : string
ParameterisedXQuery
- +name : string
WebServiceDef +description : string
+operationName : string SQLDef +query : string]
+inputSchema : string +outputSchema : string
+outputSchema : string ' '
ParameterisedQuery Table
+name : string +name : string
+description : string +description : string
+query : string +def : TableDef
+outputSchema : string

Abbildung 4.5: Beschreibungssprache fiir Datendienste

sowie dessen Beschreibung. Das Attribute protocol gibt an, welches Protokoll fiir die
Kommunikation verwendet wird und ist standardméflig auf SOAP gesetzt. Fiir den
Transport sind persistente Warteschlangen und HTTP vorgesehen. Die persistenten
Warteschlangen dienen zur Kommunikation mit den Informationssystemen, die idea-
lerweise an das Propagationssystem angebunden sind. Dadurch muss das Informati-
onssystem nur die vorhandene Schnittstelle erweitern und nicht eine neue Implemen-
tierung auf einer komplett anderen Technologie vorsehen. HT'TP eignet sich besonders
fiir unternehmensexterne Systeme, da mit HT'TP das Firewall-Problem leichter gelost
werden kann, da der Standard-HTTP-Port oft in Firewalls frei geschaltet ist. Mit dem
type-Attribut wird die Zugriffsart festgelegt, die fiir die nachfolgende Dienstbeschrei-
bung ausschlaggebend ist. Unabhéingig von der Zugriffsart, aber protokoll-abhéngig,
sind die sogenannten SOAP-Header. Diese konnen Informationen enthalten, die nicht
tiber den Nachrichtenkérper (body) verschickt werden sollen, da sie zusétzliche Infor-
mationen, wie zum Beispiel Authentisierungsinformationen, darstellen.

Mittels der WebserviceDef wird die Zugriffsstruktur eines WS-RPC-Aufrufs de-
finiert. Der Aufruf und die Antwort werden durch WSDL-Messages definiert, wobei
diese die Parameter und die Riickgabe des RPC-Aufrufs definieren. Dabei verweist die
WebserviceDef auf den Namen des XML Schemas. Der Name wird verwendet, um

110

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

das Schema aus dem Repository zu laden. Wie schon angemerkt, wird in WSDL 2.0
[Wor07] XML Schema zur Definition von Messages verwendet.

Die Beschreibung eines SQL-Datendienstes ist in zwei Bereiche unterteilt. Im ers-
ten werden Tabellen oder Views definiert, auf die mittels Anfragen zugegriffen werden
kann. Darauf aufbauend konnen parametrisierte Anfragen definiert werden, die eine be-
stimmte Datenanfrage erfiillen. Die Selektivitit kann mittels der Parameter bestimmt
werden. Fiir die Implementierung der parametrisierten Anfrage wird ein XML-Element
definiert, das sogenannten , Mixed Content* verwendet, d.h. Textknoten und Elemente
wechseln sich ab. Dabei sind die SQL-Teile durch Textknoten repréisentiert und die
Parameter durch Elemente, wobei ein Parameterelement genau an der Stelle steht,
an der der Wert des Parameters eingefiigt werden soll (z.B. ... WHERE ID=<Parameter
Name=‘ID’>).

Der XQuery-Zugriff wird durch XML Schema und parametrisierte Anfragen defi-
niert (vgl. Abbildung 4.5).

Fiir die Beschreibung des Datendienstes wurde nicht die bereits existierende Be-
schreibungssprache fiir Webservices verwendet, da diese zwar den Austausch der Nach-
richten zwischen Klienten und dem Webservice beschreibt, nicht aber deren interne
Strukturen wie Tabellen sowie Views fiir relationale Datenbanken und XML Schema
fiir XML-Dokumente bzw. -Datenbanken bereitstellt. Da allerdings auch Webservices
im RPC-Mode unterstiitzt werden sollen, wurden WSDL-Messages in die Datendienst-
Sprache integriert, die jedoch ebenfalls in XML Schema beschrieben werden (WSDL
2.0).

4.1.6 Realisierung

In diesem Abschnitt wird die Realisierung der Datendienstunterstiitzung innerhalb
des Propagationssystem diskutiert. Die Moglichkeiten zur Parameterbindung stellen
dabei die Grundlage fiir die Realisierung von XPDL-Befehlen, die den Sprachumfang
erweitern. Diese werden anschliefend untersucht.

4.1.6.1 Parameterbindung

Um die Parameter zu binden und die SOAP-Anforderung zu erzeugen, wurden vier
Ansétze identifiziert:

e Stub-Ansatz
Der Zugrift auf Webservices wird oft durch sogenannte Stubs realisiert, sofern es
sich um die RPC-Zugriffsart handelt. So ist es moglich die gesamte Komplexitét
des Aufrufs hinter einer Methode zu verstecken. Der Aufruf des RPCs erscheint
fiir den Programmierer wie ein lokaler Aufruf. Der Stub wird dabei aus der Be-
schreibung des Webservices generiert, d.h. aus der WSDL-Datei.

Ein dhnlicher Ansatz wire ebenfalls fiir den Zugriff auf einen Datendienst denk-
bar, denn es existiert die WS-RPC-Zugriffsart, die Parameter wie eine Methode
hat. Fiir die beiden anderen Zugriffsarten, SQL und XQuery, werden parametri-
sierte Anfragen verwendet. Daraus folgt, dass der Aufruf des Datendienstes auch

111

KAPITEL 4: Komplexe Propagation

112

durch einen Stub erfolgen kann. Bei einem nachrichtenorientierten System, wie
bei einem Datenpropagationssystem, ist der Stub-Ansatz nicht sinnvoll, da zur
Entwicklungszeit Stubs erzeugt werden miissen, die aber schwer in ein nachrich-
tenorientiertes System einbindbar wéren, da sie fiir ein anderes Programmierpa-
radigma ausgelegt sind.

Einfacher Transformationsansatz

Als zweiten Ansatz konnte man Transformationen verwenden, um aus Ande-
rungsbeschreibungen direkt die SOAP-Nachrichten fiir den Datendienst zu erzeu-
gen. Die Antworten des Datendienstes in Form von SOAP-Nachrichten kénnten
dann mit der jeweiligen Anderungsbeschreibung iiber weitere Transformationen
integriert werden. Dieser Ansatz ist allerdings sehr fehleranfillig, da die gesam-
te SOAP-Nachricht mittels Transformation erzeugt werden miisste und bei der
Erstellung der dafiir benotigten Transformationsskripte Fehler gemacht werden
konnen.

Transformationsansatz mit Schichten

Um dies zu verbessern wurden in unserem ersten Ansatz[HCMO5] mehrere Schich-
ten eingefiihrt. Zuerst wird die eigentliche Datenanforderung mittels Transforma-
tion erzeugt und in der néchsten Schicht (SOAP-Schicht) in eine SOAP-Nachricht
verpackt. In der darauffolgenden Schicht (Transportschicht) wird die SOAP-
Nachricht verschickt und die Antwort empfangen. Die empfangene Antwort wird
in der SOAP-Schicht analysiert und die extrahierten Daten koénnen dann mit-
tels Transformation mit einer Anderungsbeschreibung integriert werden. Dieser
Ansatz ist nicht so fehleranféllig wie der reine Transformationsansatz. Allerdings
konnen wegen der Erzeugung von Anforderungen (Requests) durch Transforma-
tionen immer noch Fehler auftreten. Diese Anfilligkeit kann weiter durch die
Verwendung von speziellen Werkzeugen reduziert werden. Ein Nachteil dieses An-
satzes ist die Einfithrung von drei neuen XPDL-Befehlen. Dies fithrt dazu, dass
der Ansatz fiir die Entwicklung von Propagationsskripten komplexer ausfallt.

Paramaterbindungansatz zur Laufzeit

Um dieses Manko zu beseitigen, wurde noch ein weiterer Ansatz entworfen, der
soweit es geht auf Transformationen verzichtet und statt dessen Parameter zur
Laufzeit bindet. Die Parameter reprisentieren die Parameter des RPC-Aufrufs
oder der parameterisierten Anfrage von SQL oder XQuery. Um dies zu realisieren
braucht man einen Befehl, der eine beliebige Anzahl von Parametern als Input
nimmt und iiberpriift, ob diese vom entsprechenden RPC bzw. der parametrisier-
ten Anfrage unterstiitzt werden. Der Befehl erzeugt dann dynamisch die SOAP-
Nachricht und verarbeitet auch wieder die Antwort. Um die SOAP-Nachricht
zu erzeugen, werden zur Laufzeit das DSDL-Dokument analysiert und die Para-
meter gebunden. Die Parameter konnen mit sogenannten PCL-Ausdriicken (vgl.
Abschnitt 3.6.1) gesetzt werden. Falls PCL nicht ausreicht, kann man zuerst
die Anderungsbeschreibung transformieren und dann den Parameter extrahie-
ren. Der Ansatz benotigt nur einen neuen Befehl und ist nicht so fehleranfillig

4.1. EINBINDUNG VON DATEN AUS DRITTSYSTEMEN

wie die anderen zwei. Aus diesen Griinden wurde er fiir das Propagationssystem
ausgewdhlt.

4.1.6.2 XPDL-Befehle

4.1.6.2.1 Erzeugung der Header und ggf. Parametervorbereitung. Um einen
SOAP-Header zu erzeugen, wird ein transform-Befehl verwendet, wie er in Abschnitt
3.5.3.1 eingefiihrt wurde. Dieser hat folgendes Aussehen:

transform(in, out, script, reduceTo?, parameter*).

Wichtig dabei ist das reduceTo-Argument, um eine Update-Anderung mit zwei
Zustédnden auf einen Zustand zu reduzieren. Der transform-Befehl kann auflerdem fiir
die Parametervorbereitung eingesetzt werden, falls PCL fiir die Parameterzuordnung
nicht ausreichend ist.

4.1.6.2.2 Aufruf eines Datendienstes. Nachdem die SOAP-Header und evtl.
auch Parameter vorbereitet worden sind, kann der Data Service aufgerufen werden.
Dies erfolgt mit folgendem Befehl:

call data service(name, partName, out, error handler?, headerx,
parameterx)

header (in, mustUnderstand)

parameter(name, in, expression)

Der Aufruf des Datendienstes benétigt zuerst den Namen des Datendienstes, um die
entsprechende DSDL-Beschreibung im Repository zu finden. Damit die RPC-Prozedur
oder die parametrisierte Anfrage gefunden werden kann, wird der partName verwen-
det. Das Ergebnis der Anfrage der analysierten Antwort wird dann unter dem Na-
men out zuginglich gemacht. Die optionale Angabe einer Fehlerauswertungskompo-
nente ermoglicht die entsprechende Reaktion auf Fehler, die im Datendienst aufgetre-
ten sind (vgl. Abschnitt 4.1.6.3). Mit header-Elementen kénnen eine beliebige Anzahl
von SOAP-Header angegeben werden. Der Inhalt des Header ist iiber die Anderungsbe-
schreibung in definiert. Das Attribut mustUnderstand gibt an, ob der Datendienst den
Header verstehen und andernfalls die Bearbeitung verweigern muss. Es ist ein Stan-
dardattribut von SOAP. Die Parameter werden schlieflich mit parameter angegeben,
wobei der Name des Parameters mit dem in der DSDL-Beschreibung iibereinstimmen
muss. Die Nachricht, die den Parameterwert liefert, wird iiber in bestimmt und der
Wert wird iiber den PCL-Ausdruck (siehe Abschnitt 3.6.1) expression extrahiert.

Der Befehl bekommt die Kontaktdaten des Datendienstes aus dessen DSDL-Be-
schreibung und muss deswegen im Befehl nicht spezifiziert werden.

113

KAPITEL 4: Komplexe Propagation

4.1.6.2.3 Integration. Im letzten Schritt miissen noch die Anderungsbeschreibun-
gen ABgs (vgl. Abbildung 4.2) mit den angeforderten Daten integriert werden. Dies
erfolgt mittels Transformationsskripten. Dabei kénnen die zusétzlichen Daten mit der
XPath-Bibliothek, die in Abschnitt 3.6.2 beschrieben wurde, importiert werden. Aller-
dings hat das jeweilige Transformationsskript dann mehrere XML Schemas als Input.
Die Zuordnung von Schemas zu Transformationsskripten muss im Repository hinterlegt
sein. Griinde hierfiir sind vor allem die Konsistenz des Repository und das Erstellen
von Transformationsskripten zum Beispiel mit Mapping-Werkzeugen.

4.1.6.3 Fehlerbehandlung

Bei der Anforderung von zuséatzlichen Daten konnen Fehler auftreten, die behandelt
werden miissen. Fehler konnen dabei im Datendienst auftreten, welche dann in ei-
nem sogenannten SOAP-Fault an das Propagationssystem zuriickgegeben werden. Des
Weiteren konnen Fehler bei der Kommunikation mit dem Datendienst auftreten, die
etwa durch eine Zeitiiberschreitung erkannt werden oder direkt durch das entsprechen-
de Kommunikationssystem. Bei der Zeitiiberschreitung kann der Programmierer ent-
scheiden, ob abgebrochen werden soll oder ob die Ausfithrung des Propagationsskripts
fortgesetzt werden soll. Letzteres kann beispielsweise dann gewahlt werden, wenn die
zusétzlichen Daten optional sind. Durch die XPath-Bibliothek (vgl. Abschnitt 3.6.2)
kann das Vorhandensein von zusétzlichen Daten abgefragt und entsprechend reagiert
werden. Tritt ein Fehler durch eine Zeitiiberschreitung auf, kann evtl. auch ein zweiter
Datendienst einbezogen werden.

Wird ein Fehler im Kommunikationssystem erkannt, so wird der Propagationspro-
zess wiederholt. Erst nach einer bestimmten Anzahl von Wiederholungsversuchen wird
der Propagationsprozess abgebrochen und der Fehler protokolliert.

Tritt ein Fehler im Datendienst auf, welcher mit einem SOAP-Fault zuriick an das
Propagationssystem gesendet wird, kann der Ausgang des Propagationsprozesses durch
ein optionales Fehlermodul (Handler) (vgl. Abschnitt 4.1.6.2) bestimmt werden. Es gibt
dabei drei Moglichkeiten:

e Prozess abbrechen
e Prozess wiederholen
e Fehler ignorieren und Prozess fortsetzen.

Die ersten zwei entsprechen der Reaktion auf sich wiederholende und nicht wie-
derholende Fehler. Die dritte dagegen erméglicht, wie oben, eine unvollstandige aber
dafiir zeitnahe Version an das Zielsystem zu schicken oder gegebenenfalls einen anderen
Datendienst einzuschalten.

Wird dagegen kein Fehlermodul (Handler) angegeben, kann nur eine Standardreak-
tion erfolgen, die unabhéngig vom Fehler ist. Es wurde hierbei die Variante gew&hlt, bei
der der Prozess wiederholt wird. Dies kann zwar bei einem sich wiederholenden Fehler
zu einer unnotigen Systemlast fithren, dafiir wird alles versucht, um die Propagation
dennoch erfolgreich abzuschlieflen.

114

4.2. VERARBEITUNG MEHRERER ANDERUNGEN

ys Legende:
System: Layoutplanung ‘/'
GO_Type: Resource | @
Out: ABqs |

* i Startinput

Script: create_header ~
In: ABqs
Out: header
Transform

v

DataService: MachineninfoDB
PartName: GetMachinelnfo, Out: DS
Header_Element: (credentials, true)
Parameter: (MachineType, ABqs,
Y%afterOrBefore%/Resource/TypelD)

+ Propagate
Script: integrate_ds
In: ABgs, DS @
Out: ABzs \

propagate AB,s->(DigitaleFabrik,
Resource)

¥

Call_data_service <j

Tt

Abbildung 4.6: Beispiel fiir ein Propagationsskript mit der Integration eines Daten-
dienstes

4.1.7 Beispiel

Als Beispiel wird das Integrationsszenario von Abbildung 4.2 wieder aufgegriffen. Bei
diesem Szenario wird ein Layoutplanungssystem mit einem Digitale-Fabrik-System
integriert, wobei eine neue Maschine (Ressource) vom Layoutplanungssystem zum
Digitale-Fabrik-System propagiert wird. Aulerdem wird die propagierte Ressource mit
Daten aus der MaschinenlnfoDB angereichert.

In Abbildung 4.6 ist das dazugehorige Propagationsskript in der Kontrollflussan-
sicht (vgl. Abschnitt 3.7.3.2) dargestellt. Zuerst wird die getitigte Anderung (Neue
Maschine) empfangen. Daraufhin werden die Zugangsdaten fiir den Datendienst in
Form eines SOAP-Header erzeugt. Dieser wird im néchsten Schritt (Aufruf des Daten-
dienstes) in die Datenanforderung integriert. In diesem Schritt wird auflerdem noch
die parametrisierte Anfrage aus Abbildung 4.7 aus der Datendienstbeschreibung extra-
hiert und die Parameter werden durch Werte aus der Anderungsbeschreibung ABgs
ersetzt. In diesem Fall gibt es einen Parameter ‘MachineType’, der durch den Wert in
dem Anderungszustand ‘/Resource/TypelD’ ersetzt wird, wobei dem Danach-Zustand
Vorrang gewahrt wird (vgl. Abschnitt 3.6.1).

4.2 Verarbeitung mehrerer Anderungen

Nachdem die Einbindung von Daten aus Drittsystemen diskutiert wurde, wird in die-
sem Abschnitt der Einsatz und Realisierung von M-zu-N-Abhéngigkeiten diskutiert.

115

KAPITEL 4: Komplexe Propagation

<Query>
SELECT XMLELEMENT(NAME ‘MachineInfo’, XMLFORREST (
MTBF AS ‘MTBF’, MTTR AS ‘MTTR’))
FROM MachineInfoTable
WHERE Type=<Parameter name="MachineType" type="Integer"/>

Abbildung 4.7: Beispiel einer parametrisierten Anfrage in DSDL-Beschreibung

4.2.1 Problemstellung

Bei den hier als M-zu-N-Abhéngigkeiten bezeichneten Abhéngigkeiten handelt es sich
um Konstrukte, bei denen mehrere Anderungsbeschreibungen (M, mindestens 2) emp-
fangen, verarbeitet und zu mindestens einem System (N) gesendet werden. Nun stellt
sich die Frage, was man mit solchen M-zu-N-Abhéngigkeiten realisieren kann. Bei ein-
fachen Anderungen werden geénderte Daten propagiert, so dass ein Zielsystem seine
Daten ebenfalls anpassen kann. Beim Empfang und Verarbeitung mehrerer Anderungen
durch einen Propagationsprozess ist das nicht mehr der Fall. Ergebnisse von M-zu-N-
Propagationsprozessen sind erst spét sichtbar, d.h. wenn die letzte erwartete Anderung
empfangen wurde. Auflerdem eréffnen sich durch die Beziehung der einzelnen Ande-
rungsbeschreibungen neue Anwendungsmoglichkeiten, die iiber die reine Anderungs-
propagation hinausgehen.

Mittels M-zu-N-Abhéngigkeiten kénnen Geschéftsregeln implementiert werden, wie
zum Beispiel: ,, Wenn der neue Kunde innerhalb von 24 Stunden eine neue Bestel-
lung aufgibt, so bekommt er einen Rabatt von 25 %*“. Der neue Kunde ist das
auslosende Anderungsereignis und die neue Bestellung ist das zweite erwartete Ereig-
nis, das auftreten soll. Beide Ereignisse sollen maximal 24 Stunden auseinanderliegen.
Wenn diese Bedingungen erfiillt sind, so soll eine Anderungsbeschreibung neuer Rabatt
an ein Zielsystem versendet werden.

Abstrakt gesehen ist eine M-zu-N-Abhéangigkeit eine Art von Prozessmodell, wie in
Abbildung 4.8 dargestellt. Nach dem Empfang einer Startdnderungsbeschreibung wer-
den k Unterprozesse gestartet. Der Wert k ist eine Steuerungsgréfie, die unabhéngig
von M sowie N ist und die Anzahl von moglichen Prozessen bei gleicher Starténde-
rungsbeschreibung angibt. Dadurch kann das obige Beispiel bei gleichem Kunden auf
mehrere Bestellungen ausgeweitet werden, d.h. dem Kunden wird bei k gleich fiinf
Rabatt auf fiinf Bestellungen gewéhrt. Dieser Wert wird innerhalb des Propagati-
onsskripts festgelegt. Danach werden noch n-1 Anderungsbeschreibungen erwartet,
sodass insgesamt n Anderungsbeschreibungen empfangen wurden. Die Auswahl der
zu empfangenden Anderungsbeschreibungen erfolgt durch die Angabe eines System-
GOTyp-Paares (Informationsystem und dessen Geschéftsobjekttyps) und eines optio-
nalen PCL-Ausdrucks. Mithilfe des PCL-Ausdrucks kénnen die empfangenen Ande-
rungsbeschreibungen I; — I, ; mit der Startdnderungsbeschreibung g in Beziehung
gebracht werden, sodass auch die passenden Anderungsbeschreibungen empfangen wer-
den. Nach dem obigen Beispiel bedeutet dies, dass die Bestellung empfangen wird,

116

4.2. VERARBEITUNG MEHRERER ANDERUNGEN

Propagationsprozess

1 4] timeout

Empfange Is

P 3 T T
o _ Empfange |4 Empfange I, e Empfange I,.1
(2}
OB
N (7p]
| & \M
k5 'é_ Verarbeite
= % Input
e /N
Sende O Sende O, ce Sende Oy,
[

Abbildung 4.8: Prozessdarstellung einer M-zu-N-Abhéngigkeit

die vom entsprechenden Kunden getétigt wurde. In einem Verarbeitungsschritt wer-
den dann alle empfangenen Anderungsbeschreibungen verarbeitet und zum Output
transformiert, der dann versendet wird. Der ganze Propagationsprozess wird so lange
ausgefiihrt, bis alle benétigten Anderungsbeschreibungen empfangen wurden oder eine
Zeitiiberschreitung eingetreten ist (timeout). Um negierte Geschéftsregeln zu ermogli-
chen, konnen optional nach dem Eintreten der Zeitiiberschreitung alle Unterprozes-
se mit unvollstdndigem Input gestartet werden. Eine negierte Geschéftsregel ist eine
Geschéftsregel, die das Nicht-Eintreten eines Ereignisses abpriift und dann eine entspre-
chende Aktion auslost. Ein Beispiel hierfiir wére, wenn der neu angelegte Kunde keine
Bestellung innerhalb von 20 Stunden aufgibt, ihm eine Benachrichtigung zu senden,
die ihn an das Angebot erinnert. Durch die Verwendung der XPath-Bibliothek (vgl.
Abschnitt 3.6.2) kann das Vorhandensein von Anderungsbeschreibungen abgefragt und
entsprechend reagiert werden.

4.2.2 Implementierungskonzept der M-zu-N-Erweiterung

Zuerst wird das Basiskonzept der Implementierung der M-zu-N-Erweiterung erklért.
Danach wird auf die Implementierung des M-zu-N-Managers eingegangen. Um die M-
zu-N-Abhéngigkeiten zu implementieren, muss der Prozessmanager um eine M-zu-N-
Komponente erweitert werden, welche M-zu-N-Manager heifit. Eine grofle Herausfor-
derung stellt dabei die Implementierung von Zeitiiberschreitungen dar, deren Imple-

117

KAPITEL 4: Komplexe Propagation

mentierungsmoglichkeiten anschliefend diskutiert werden. Schliefilich wird noch auf die
Wiederherstellung von M-zu-N-Prozessen nach einem Systemcrash eingegangen.

4.2.2.1 Grundlegendes Konzept der M-zu-N-Realisierung

Da der Prozessmanager, so wie er bisher konzipiert wurde, die empfangenen Ande-
rungsbeschreibungen entgegennimmt, Prozesse startet und ABs an die Prozesse ver-
teilt, sollte er fiir das M-zu-N-Konzept ebenfalls im Mittelpunkt stehen. In Abbildung
4.9 ist das grundlegende Konzept dargestellt. Zuerst empfangt der Prozessmanager ei-
ne Startdnderungsbeschreibung /g und ladt das entsprechende Propagationsskript PS.
Er initialisiert laut dessen Beschreibung k Unterprozesse (sPP; — sPPs) und liest die
Selektionskriterien Sel, fiir den Filter aus. Die Startdnderungsbeschreibung wird jedem
Propagationsunterprozess zugeteilt. Kommen nun Anderungsbeschreibungen durch den
Filter, werden sie entsprechend ihres Typs den Unterprozessen zugeteilt, und zwar nach
der Reihenfolge der Initialisierung. Dies bedeutet, dass zuerst der erste Unterprozess
seine Anderungsbeschreibung bekommt. Wenn dieser die Anderungsbeschreibung schon
hat, bekommt sie der zweite usw. Besitzt ein Prozess (sPP; und sPP,) alle benstigten
Anderungsbeschreibungen, wird er vom Prozessmanager gestartet und der Output wird
dann an die entsprechenden Systeme versendet. Dies ist die eigentliche Ausfithrung des
Unterprozesses und kann innerhalb eines Microflows erfolgen.

Der unten in der Abbildung 4.9 aufgefiihrte Beispielablauf an eintreffenden Ande-
rungsbeschreibungen fiihrt zu der dargestellten Situation des Prozessmanagers.

Um M-zu-N-Abhéngigkeiten zu implementieren, muss die Sprache XPDL (vgl. Ab-
schnitt 3.5) erweitert werden, damit der zusétzliche Input (I; — I,,_1) definiert und die
empfangenen Anderungsbeschreibungen integriert werden kénnen. Weiterhin muss die
Sprache fiir Anderungsbedingungen (PCL vgl. Abschnitt 3.6.1) angepasst werden, so
dass Bedingungen Sel, zwischen der Startéinderung Is und den zusitzlichen Anderun-
gen I, definiert werden kénnen. Nicht nur die Sprachen zur Beschreibung von Abhéngig-
keiten und Bedingungen miissen erweitert werden, sondern auch die Funktionalitét der
Prozessmanager-Komponente des Propagationsmanagers. Dieser muss um die Filter-
komponente erweitert werden, die innerhalb der Unterkomponente M-zu-N-Manager
realisiert wird. Zusétzlich stellt die Wiederherstellung des Propagationsmanagers nach
einem Systemabsturz gewisse Herausforderungen dar, die mit der Implementierung von
Zeitiiberschreitungen einhergehen.

4.2.2.2 M-zu-N-Manager

Der M-zu-N-Manager ist eine Unterkomponente des Prozessmanagers (vgl. Abschnitt
3.7.2) und verwaltet die Wartelisten der M-zu-N-Prozesse. Die Wartelisten geben an,
welcher Unterprozess auf welche Anderungsbeschreibungen wartet und verwaltet damit
die in Abbildung 4.9 dargestellte Situation an wartenden Prozessen mit den jeweiligen
Filterbedingungen. Diese Warteliste muss so realisiert sein, dass der M-zu-N-Manager
schnell bei einer eintreffenden Anderungsbeschreibung entscheiden kann, ob sie von
einem M-zu-N-Prozess benotigt wird oder nicht. Dies erfolgt durch eine Vorselektion
anhand des Systems und des Geschéftsobjekttyps. War die Vorselektion erfolgreich, so

118

4.2. VERARBEITUNG MEHRERER ANDERUNGEN

[
Input N Sel,

Filter

3 sel,

PS

@ timeout
Is
/ SPP3 —
Is]
|_{» SPP4 —
| Gesamter Input
vorhanden oder
timeout
M s
SPP5 —
Wartende
Prozesse

Prozessmanager
Is
sPP, — > Output
Is
sPP, > Output
] Legende
PS: Propagationsskript
sPPy: Unterpropagationsprozess x
Sely: Selektionskriterium
Starténderung (s)
Laufende [1 Fehlende Anderung Iy
Prozesse [Empfangene Anderung Iy
l,: Anderung X

ISR EIRIEI I

l2 ls 12

3l s

* » Beispielsablauf
t

I3

Abbildung 4.9: Implementierungsiibersicht von M-zu-N-Abhéngigkeiten

119

KAPITEL 4: Komplexe Propagation

werden die Zustandsbeschreibungen der Geschéftsobjekte geparst und die Filterbedin-
gungen Sel, ausgewertet. Treffen diese Bedingungen auf die Anderungsbeschreibung
zu, wird sie dem ersten Unterprozess zugeordnet. Weiterhin weckt der M-zu-N-Manager
die M-zu-N-Prozesse auf, die iiber alle benétigten Anderungsbeschreibungen verfiigen.

Der M-zu-N-Manager (M2NManager) verfiigt iiber Methoden, die er zur Kommuni-
kation mit dem M-zu-N-Prozess oder Prozessmanager bereitstellt. Um die Erstellung
der Warteliste zu vereinfachen, meldet der Propagationsprozess die bendétigten Fil-
ter fiir die Anderungsbeschreibungen an den M-zu-N-Manager. Dies begriindet sich in
der Kenntnis der XPDL-Engine iiber die XPDL-Sprache, die der Prozessmanager so
nicht hat. Der Prozess, der in der XPDL-Engine initialisiert wurde, kann dadurch die
change_input und timeout-Statements analysieren und dem M-zu-N-Manager mittei-
len.

4.2.2.3 Zeitiiberschreitungen

Die Zeitiiberschreitung ist durch einen Zeitraum definiert. Ist der Zeitraum abgelau-
fen, kommt es zu einer Zeitiiberschreitung (timeout), die dann {iber das Ausgehen des
Propagationsprozesses entscheidet: entweder wird der Prozess abgebrochen (Geschéfts-
regel) oder trotzdem gestartet (negierte Geschéftsregel).

Die Problematik mit Zeitiiberschreitungen ist die Definition der Zeitgrenzen, d.h.
wann fangt der Zeitraum an und wann endet er. Es existieren mehrere Moglichkeiten.
Der Anfang kann durch den Sendezeitpunkt der Startdnderungsbeschreibung definiert
werden, wobei man zwischen realem und effektivem Zeitpunkt unterscheiden kann. Der
reale Zeitpunkt gibt dabei an, wann die Anderungsbeschreibung dem Warteschlangen-
manager iibergeben wurde. Zu diesem Zeitpunkt muss die Anderungsbeschreibung noch
nicht sichtbar sein, da sie durch eine Transaktion erst bei deren Commit sichtbar wird.
Der Zeitpunkt, zu dem die Anderungsbeschreibung sichtbar wird, ist der effektive Zeit-
punkt. Weiterhin kann der Anfang des Zeitraums auch durch den Start des Prozesses
definiert werden, d.h. wenn der Propagationsmanager die Anderungsbeschreibung sieht.
Diese kann — je nach Lénge der Eingangswarteschlange — deutlich von den anderen zwei
Zeitpunkten abweichen.

Am besten wire der effektive Sendezeitpunkt, da zu dieser Zeit die Anderungsbe-
schreibung sichtbar wird, d.h. zum Beispiel die Bestellung wird aufgegeben. Allerdings
stellt das Java Message Service (JMS) diese Information nicht bereit, sondern nur den
realen Sendezeitpunkt. Die Spezifikation sagt aus, dass es dem Warteschlangensystem
iiberlassen wird, ob es den realen Sendezeitpunkt anbietet oder nicht. Der Zeitpunkt
des Prozessstarts ist weniger geeignet, da er im Minutenbereich nach dem aktuellen
Senden der Nachricht liegen kann.

Das Ende ist durch den Startzeitpunkt und die angegebene Zeitdauer definiert.
Auch hier kann man zwischen zwei Implementierungsmoglichkeiten unterscheiden. Ent-
weder kann sofort abgebrochen werden oder erst wenn alle aktuell vorhandenen Ande-
rungsbeschreibungen abgearbeitet sind. Da der Startzeitpunkt durch den realen Sen-
dezeitpunkt definiert ist, wird die letzte angenommene Anderungsbeschreibung auch
durch den realen Sendezeitpunkt definiert. Dabei wird eine effektive Zeitdauer d.y; ver-
wendet, die sich aus dem realen Sendezeitpunkt ¢ 45, der Prozessstartzeit tp und ange-

120

4.2. VERARBEITUNG MEHRERER ANDERUNGEN

gebenen Zeitdauer d ergibt de.sf = d— (tp —tap). Die effektive Zeitdauer gibt dabei die
noch verbleibende Wartezeit an. Die Berechnung der effektiven Zeitdauer ist deshalb
notwendig, da bei Prozessstart schon eine gewisse Zeit vergangen ist, seit die Ande-
rungsbeschreibung versendet wurde. Ein Timer benachrichtigt den M-zu-N-Manager
iiber den Ablauf von effektiven Zeitdauern. Tritt ein solches Ereignis auf, konnen sich
aber unverarbeitete Anderungsbeschreibungen in der Eingangswarteschlange befinden,
die noch dem M-zu-N-Unterprozessen zugeordnet werden miissen, d.h. der reale Sen-
dezeitpunkt liegt vor der aktuellen Zeit. Um die Verarbeitung zu ermoglichen wird
beim Auftreten eines Timer-Ereignisses eine Timeout-Nachricht in die Eingangswarte-
schlange geschrieben. Alle Anderungsbeschreibungen vor dieser Nachricht werden noch
angenommen, alle danach werden dem entsprechenden M-zu-N-Prozess nicht mehr zu-
geordnet. Falls gefordert, 16st der Empfang der Timeout-Nachricht auch das Aufwe-
cken der unvollstandigen Unterprozesse aus, da zu diesem Zeitpunkt alle im korrekten
Zeitraum empfangenen Anderungsbeschreibungen verfiigbar sind. Danach kann der M-
zu-N-Manager die Warteliste des jeweiligen Propagationsprozesses l6schen.

4.2.2.4 Wiederherstellung

Nach einem Systemabsturz gilt es, die Anderungsbeschreibungen, die Prozessinforma-
tionen im M-zu-N-Manager und die Timer-Informationen wiederherzustellen. Die Wie-
derherstellung der Anderungsbeschreibungen iibernimmt das Warteschlangensystem.
Dies war einer der Griinde, warum ein persistentes Warteschlangensystem ausgewéhlt
wurde.

Die Prozessinformationen im M-zu-N-Manager konnen anhand der Starténderungs-
beschreibung und eines ,,Neustarts® der jeweiligen Prozesse wiederhergestellt werden.
Zusétzlich muss die zuverldssige Multicast-Warteschlange (vgl. Abschnitt 3.7.2.3), die
zur Kommunikation mit den Prozessen dient, durchlaufen werden und die Verfiighar-
keit der Anderungsbeschreibungen im M-zu-N-Manager markiert werden. Als eine al-
ternative Implementierung bietet sich das Protokollieren der empfangenen zusétzlichen
Anderungsbeschreibungen an. Dies wiirde die Wiederherstellungsphase beschleunigen,
denn die Warteschlange zur Prozesskommunikation muss nicht durchlaufen werden.
Allerdings verlangsamt es den M-zu-N-Manager bei der Verarbeitung von Anderungs-
beschreibungen, da diese zusétzlich protokolliert werden miissen. Da eine Wiederher-
stellung seltener erforderlich ist, wurde die Verarbeitung in der ,Normalphase“ be-
schleunigt und die Wiederherstellungsphase verlangsamt.

Der reale Sendezeitpunkt kann nicht durch die Multicast-Warteschlange ermittelt
werden, da diese durch die Eingangswarteschlange definiert war. Auflerdem kann die
Prozessstartzeit nicht mehr ermittelt werden. Aus diesem Grund werden die Timer-
Informationen protokolliert. Dadurch kann bei Wiederherstellung festgestellt werden,
ob Prozesse in der Zwischenzeit einem Timeout unterlegen sind und fiir die ande-
ren Prozesse den Timeout neu setzen. Alternativ konnen diese Werte auch in den
Nachrichten-Properties von JMS gespeichert werden.

121

KAPITEL 4: Komplexe Propagation

4.2.3 Erweiterung von XPDL

Um M-zu-N-Abhéngigkeiten zu realisieren, muss die Eingabedeklaration des Propagati-
onsskriptes erginzt werden, damit auch der Empfang der Anderungsbeschreibungen I
bis I,,_1 definiert werden kann. Des Weiteren soll eine Zeitbeschrinkung in Form eines
Timeouts angeben werden koénnen. Fiir die Definition der zu empfangenden Anderungs-
beschreibungen wird der folgende XPDL-Befehl eingefiihrt:

change input(system (s), GO Typ (GT), out, expression?).

Dieser Befehl unterscheidet sich kaum vom start_input-Befehl (vgl. Abschnitt
3.5.1). Allerdings sollte der Befehl als expression keine allgemeine Bedingung ent-
halten, sondern eine Bedingung, die die Startdnderungsbeschreibung I, mit der hier
geforderten Anderungsbeschreibung I, verkniipft. Ein weiterer Unterscheidungspunkt
zu start_input ist, dass der Empfang keinen Prozessstart auslost, d.h. der Prozessma-
nager ladt kein Propagationsskript und initialisiert keinen Propagationsprozess. Aller-
dings wird bei Empfang aller geforderten Anderungsbeschreibungen ein Unterprozess
ausgefiihrt.

Der angesprochene Timeout wird mit dem folgenden Befehl ebenfalls in der Einga-
bedeklaration definiert:

timeout (duration, terminate).

Das duration-Attribut gibt die Zeitspanne an, wie lange der Prozess auf den Emp-
fang von Anderungsbeschreibungen wartet. Das zweite Attribut (terminate) gibt an,
ob der Prozess bei unvollstéindigen Ereignissen abgebrochen werden soll. Wie schon
erwahnt wurde, konnen bei nicht Beendigung des Propagationsprozesses nach dem
Auftreten einer Zeitiiberschreitung, negierte Geschéftsregeln realisiert werden, die auf
das Nicht-Eintreffen einer Anderungsbeschreibung reagieren.

Des Weiteren wird XPDL so erweitert, dass die maximale Anzahl von Unterprozes-
sen definiert werden kann. Dies erfolgt im Wurzelelement (propagationscript).

Die Integration der Anderungsbeschreibungen wurde schon fiir die Einbindung von
Daten aus Drittsystemen benétigt. In diesem Fall musste die empfangene Anderungs-
beschreibung mit zusétzlichen Daten integriert werden. Bei M-zu-N dagegen handelt
es sich bei den ,zusétzlichen Daten“ ebenfalls um Anderungsbeschreibungen ABs!. Es
wird ebenfalls eine Transformation fiir die Integration verwendet, wobei die Transfor-
mation iiber eine Hauptédnderung und mehrere Nebenénderungen erfolgt. Die Hauptén-
derungsbeschreibung definiert dabei die Elemente S, GT, A und TS des Transformati-
onsoutputs, d.h. diese Elemente werden direkt von der Hauptédnderung iibernommen.
Die Zustdnde B und D werden transformiert und mit den Zustédnden der anderen
Anderungen integriert. Die Integration wird durch die XPath-Bibliothek ermdglicht
(vgl. Abschnitt 3.6.2). Die Anzahl der zu transformierenden Zustédnde hédngt von der
Hauptédnderung ab.

YAB = (S,GT, A, B, D,TS) (vgl. Abschnitt 3.2.2)

122

4.2. VERARBEITUNG MEHRERER ANDERUNGEN

4.2.4 Erweiterung von PCL

Die zusitzlich benétigten Anderungsbeschreibungen fiir einen M-zu-N-Prozess miissen
mit der Startdnderungsbeschreibung in Beziehung gesetzt werden. Dies erfolgt durch
Bedingungen (expression) innerhalb der change input-Deklaration. Da Bedingungen
im Propagationssystem mit einer speziellen Bedingungssprache (PCL), die in Abschnitt
3.6.1 eingefiihrt wurde, definiert werden, wird auch fiir diesen Anwendungsfall PCL
verwendet. Um die Art von Bedingungen genauer zu untersuchen, soll das Beispiel von
Abschnitt 4.2.1 betrachtet werden, indem ein Kunde mit einer Bestellung in Beziehung
gesetzt werden soll. Der Kunde verfiigt iiber eine Kundennummer, die ihn eindeutig
definiert und die auch in der Bestellung verwendet wird. Dann koénnen Kunde und
Bestellung mit

hstartChange:afterOrBefore/Kunde/Kundennummery, =
hafterOrBefore’,/Bestellung/Kundennummer

in Beziehung gesetzt werden. Der Kunde wird dabei eindeutig durch startChange
identifiziert. Es konnen nur Bedingungen zwischen der Anderungsbeschreibung I1 —1I,,_4
(im PCL-Beispiel die Bestellung) und der Startdnderungsbeschreibung I definiert wer-
den, denn die Starténderung ist die einzige Anderungsbeschreibung, die auf jeden Fall
vor allen anderen Anderungsbeschreibungen des M-zu-N-Prozesses empfangen wird.
Damit konnen nur diese und die aktuelle Anderungsbeschreibung in Bedingungen ver-
wendet werden. Weiterhin kann der PCL-StartChange-Teil, eingeschlossen durch die
Prozentzeichen, schon wéhrend der Prozessinitialisierung durch einen Wert ersetzt
werden, d.h. %startChange:/Kunde/kundennummer%’ wird zum Beispiel durch 123
ersetzt.

Um diese Art von Umsetzung der PCL-Bedingungen zu ermoglichen, muss die Ar-
chitektur des PCL-Compilers von Abschnitt 3.6.1 erweitert werden, sodass sie die
Starténderung als Input hat. Dadurch sieht die Architektur wie in Abbildung 4.10
dargestellt aus. Dabei wurde die urspriingliche Architektur so erweitert, dass der PCL-
Compiler die Startdnderung zur Verfiigung hat.

4.2.5 Schlussfolgerungen

Die M-zu-N-Abhingigkeit ist eine Moglichkeit, um Geschéftsregeln mit einem Pro-
pagationssystem zu realisieren. Fiir die Implementierung von Geschiéftsregeln bieten
sich aber eher Workflow-Managementsysteme (WMS, sieche Abschnitt 2.6) an. Die-
se Systeme bieten mehr Moglichkeiten, um sogenannte Geschéftsregeln zu implemen-
tieren, da die Prozesse flexibler gestaltet werden kénnen. Diese basieren dann aber
weniger auf geinderten Daten (Anderungsbeschreibungen). Ein Vorteil des hier vorge-
schlagenen Ansatzes ist, dass trotz lang laufender Prozesse keine Backward Recovery
(vgl. Abschnitt 2.6) benétigt wird, da die eigentliche Ausfithrung von kurzer Zeitdauer
ist und innerhalb einer normalen Transaktion des Propagationsprozesses ausgefiihrt
werden kann. Dies kann aber ebenfalls durch einen Workflow erreicht werden, indem
die Verarbeitung bis auf die Empfangsoperationen in einer Transaktionssphére aus-
gefiihrt wird. Anderungsbeschreibungen, die durch M-zu-N-Abhéngigkeiten verarbei-

123

KAPITEL 4: Komplexe Propagation

PCL Is
PCL-Compiler
< !
Aktuelle
XPath Anderung

XPath-Engine

Abbildung 4.10: Die Architektur der Verarbeitung von PCL-Bedingungen fiir die Un-
terstiitzung von M-zu-N-Abhéngigkeiten

tet werden, kénnen nicht mit den anderen Anderungsbeschreibungen in Reihenfolge
gebracht werden, da M-zu-N lang laufende Prozesse sind und sie die 1-zu-N-Prozesse
lange verzogern wiirden, wenn die M-zu-N-Prozesse ebenfalls in Reihenfolge gebracht
wiirden. Die Einhaltung der Reihenfolge stellt gerade bei einem Propagationssystem
eine wichtige Eigenschaft dar. Aulerdem liegt das Verarbeiten von M-zu-N-Abhéngig-
keiten auBerhalb des , Kerngeschifts®“ des Propagationssystems. Aus diesen Griinden
wird in dieser Arbeit die Implementierung der M-zu-N-Abhéngigkeiten als Modul vor-
geschlagen, das aktiviert und deaktiviert werden kann und nicht Kern eines jeden Pro-
pagationssystem ist.

4.3 Verteilte Propagation

In diesem Abschnitt wird die Verteilung des Propagationsmanagers diskutiert. Dadurch
soll ein héherer Durchsatz an verarbeiteten Anderungsbeschreibungen erreicht werden.
Um dieses Problem zu lésen, werden hier zwei Ansétze vorgestellt (Abbildung 4.11), der
Load-Manager-Ansatz und der selbstorganisierte Ansatz. Beim Load-Manager-Ansatz
gibt es eine zentrale Instanz, welche die Verteilung der Anderungsbeschreibungen iiber-
nimmt. Beim zweiten Ansatz erfolgt die Verteilung selbstorganisiert, indem jeder Pro-
pagationsmanager Anderungsbeschreibungen liest, sobald ihm es méglich ist. Das War-
teschlangensystem garantiert, dass jede Anderungsbeschreibung von jeweils nur einem
Propagationsmanager gelesen wird.

124

4.3. VERTEILTE PROPAGATION

PM, PM;

Load-
(j):/I\ Manager |— N

PM, PM,
PMy PMy
(a) Load-Manager-Ansatz (b) Selbstorganisierter Ansatz

Abbildung 4.11: Ansétze zur Verteilung des Propagationsmanagers

4.3.1 Problemstellung

In manchen Einsatzszenarien im Unternehmen kann es sein, dass der Durchsatz oder
die Verfiigbarkeit des Propagationsmanagers nicht ausreichend ist. Fiir den ersten Fall
kommt man in den meisten Féllen nicht an einer Verteilung vorbei. In seltenen Féllen
kann auch die Optimierung von Propagationsmanager oder Repository ausreichend
sein. Eine weitere Moglichkeit ist die Verwendung einer leistungsstédrkeren Hardware.
Der Abhingigkeitsmanager wirkt sich nicht auf die Performance von Anderungspropa-
gationen aus, da er nur fiir die Entwicklungszeit zusténdig ist und damit keinen Einfluss
auf die Laufzeit hat. Fiir den zweiten Fall, die Verfiigbarkeit, konnen auch sogenannte
Hot-Backups eingesetzt werden, die die Aufgaben des Propagationsmanagers im Fal-
le eines Ausfalls iibernehmen. Diese Konstellation erhoht aber nicht die Performance,
was durch die Verteilung des Propagationsmanagers erreicht werden kann. Allerdings
kann die Verteilung die Verfiigbarkeit nur bedingt erhéhen, da Beziehungen zwischen
den einzelnen Anderungsanforderungen existieren, die eine freie Verteilung verhindern.
Dies gilt insbesondere fiir die M-zu-N-Abhéngigkeiten, da diese Abhéngigkeiten zwi-
schen den einzelnen Anderungsbeschreibungen aufweisen.

Hier wird von einer Verteilung des Propagationsmanagers als Ganzes ausgegangen.
Alternativ kann man sich eine Verteilung seiner Komponenten, z.B. des Transformer
oder des PCL-Evaluator, vorstellen. Dieser Ansatz erhoht sowohl den Kommunikations-
bedarf innerhalb des Propagationsmanagers als auch die Fehleranfilligkeit. Weiterhin
sind Propagationsprozesse keine lang laufenden Prozesse und eine Belastung des Sys-
tems kommt eher durch eine Vielzahl von Propagationsprozessen zustande. Auflerdem
ist die Losung mit der Komponentenverteilung mit einem hoheren Aufwand verbunden.
Bei der Verteilung des Propagationsmanagers als Ganzes miissen lediglich n Propaga-
tionsmanager auf n Rechner installiert werden sowie eventuell zusétzlich eine spezielle
Komponente, den sogenannten Load-Manager.

Es wird davon ausgegangen, dass fiir die einzelnen Warteschlangen (Queues) Stra-
tegien zur Performanceerh6hung existieren, wie zum Beispiel der Einsatz von RAID-
Laufwerken und die Verteilung des Warteschlangensystems.

125

KAPITEL 4: Komplexe Propagation

4.3.2 Einschrinkungen der Lastverteilung

Die Verteilung der Last auf verschiedene Propagationsmanager wird durch Abhéngig-
keiten zwischen den einzelnen zu verteilenden Anderungsbeschreibungen eingeschrinkt.
Die Anderungsbeschreibungen sind im Grunde genommen sehr unabhiingig und die
Verteilung wird nur durch das Reihenfolgeproblem und M-zu-N-Abhéngigkeiten einge-
schriankt, was nachfolgend beschrieben wird.

4.3.2.1 Reihenfolgeproblem

Wie in Abschnitt 3.9 schon erwdhnt wurde, muss die Reihenfolge von verarbeiteten
Anderungsbeschreibungen eingehalten werden, sofern es die entsprechende Propaga-
tionsordnung verlangt. Ebenfalls wird in Abschnitt 3.9 eine Losung fiir den zentra-
len Ansatz entworfen. Dieser Ansatz funktioniert im verteilten Fall nur, wenn diese
Abhingigkeit zwischen den Anderungsbeschreibungen beachtet wird. Das bedeutet,
dass eine zentrale Implementierung fiir die gewéhlte Propagationsordnung gebraucht
wird, an die sich dann die einzelnen Propagationsmanager wenden. Dadurch kénnen
die Anderungsbesohrelbungen weiterhin flexibel verteilt werden. Alternativ kénnte der
Load-Manager die Anderungsbeschreibung an die einzelnen Propagationsmanager ver-
teilen, so dass die Reihenfolge eingehalten wird. Dies schréankt die Verteilbarkeit je nach
Algorithmus deutlich ein und macht eine totale Propagationsordnung vollig unméglich,
da in diesem Fall alle Anderungsbeschreibungen an ein Propagationssystem gesendet
werden miissten.

Aus diesem Grund wird eine freie Verteilung gewihlt, bei der die Propagation von
Anderungsbeschreibungen gegebenenfalls verzogert wird. Das bedeutet, dass der erste
Teil (z.B. Transformationen und Bedingungen) schon ausgefiihrt wurde und nur die
letzten Schritte verzogert werden, d.h. das Schreiben in die Ausgangswarteschlangen.

4.3.2.2 M-zu-N-Abhingigkeiten

Die in diesem Kapitel eingefiihrten M-zu-N-Abhéngigkeiten stellen ebenfalls eine Be-
schréankung der Verteilungsfreiheit des Load-Managers dar, weil M-zu-N-Prozesse auf
bestimmte Anderungsbeschreibungen warten, die der jeweilige Propagationsmanager
auch erhalten muss. Die erwartete Anderungsbeschreibung wird dabei durch (S, GO-
Typ, BE) bestimmt, wobei S das Quellsystem, GOTyp der Geschiftsobjekttyp und
BE die Bedingung ist, die den Inhalt einer Anderungsbeschreibung (B oder D) erfiillen
muss. Wann immer eine solche Anderungsbeschreibung erkannt wird, muss diese an
den entsprechenden Propagationsmanager gesendet werden, der auf diese Nachricht
wartet.

Allerdings sollte es vermieden werden, M-zu-N-Abhéingigkeiten in eine verteilte
Losung einzubinden, da sie die Abhéngigkeiten zwischen den einzelnen Anderungsbe-
schreibungen stark erhohen und damit auch die Leistungssteigerung bei der Verteilung
senken. Eine Méglichkeit dies zu umgehen, wenn M-zu-N unterstiitzt werden soll, ist
die Einrichtung eines Propagationsmanager oder einer Gruppe von Propagationsmana-
gern, die ausschlieBlich M-zu-N-Abhéngigkeiten bearbeiten. Dadurch wird verhindert,

126

4.3. VERTEILTE PROPAGATION

dass die einfachen Prozesse verlangsamt werden.

4.3.2.3 Auswirkungen

Ein verteiltes System, das Warteschlangen zur Kommunikation verwendet, kann sich
selbstorganisieren, sofern keine Einschrankungen vorhanden sind. Dies bedeutet, dass
einer der Propagationsmanager eine Anderungsbeschreibung aus der Eingangswarte-
schlange holt, diese verarbeitet und sobald er fertig ist, eine neue holt. Dadurch ist
der Propagationsmanager nicht iiberlastet, da er nur soviel verarbeitet, wie er abar-
beiten kann. Da mehrere Propagationsmanager eingesetzt werden, konnen diese die
Last teilen. Kommen dagegen Abhéngigkeiten zwischen den Anderungsbeschreibungen
ins Spiel, ist eine selbstorganisierte Vorgehensweise nicht mehr sinnvoll, da bestimmte
Anderungsbeschreibungen von bestimmten Propagationsmanagern verarbeitet werden
miissen. Dies fiihrt zu einem erhéhten Kommunikationsaufwand zwischen den Propa-
gationsmanagern und zu einem Austausch der Anderungsbeschreibungen. Aus diesem
Grund ist eine organisierte Verteilung unumggénglich, die vom oben erwiahnten Load-
Manager durchgefiihrt wird. Dies betrifft insbesondere die Unterstiitzung von M-zu-N-
Abhéngigkeiten.

Abhéngigkeiten durch die Reihenfolge konnen allerdings durch Selbstorganisati-
on erreicht werden, da ein zentraler Reihenfolge-Algorithmus die jeweiligen Prozesse
verzogern konnte. Dieser muss den jeweiligen Propagationsmanagern vorgeschaltet wer-
den. Zuerst wollen wir allerdings die Losung mit einer organisierten Verteilung unter-
suchen, die einen Load-Manager verwendet und damit auch M-zu-N-Abhéngigkeiten
unterstutzt.

4.3.3 Load-Manager-Ansatz

Als Erstes soll die organisierte Verteilung anhand eines Load-Managers untersucht
werden. Der Load-Manager stellt eine zentralisierte Komponente dar, die die Last an
Anderungsbeschreibungen gleichmifig auf die Propagationsmanager verteilen soll. Er
kann durch die Zentralisierung aber selbst einen Flaschenhals darstellen und ist ein
Ausfallrisiko, was aber durch ein Hot-Backup abgeschwécht werden kann. Das Hot-
Backup iibernimmt bei einem Ausfall dessen Aufgaben [Yan04].

4.3.3.1 Architektur

Die Architektur eines Load-Managers fiir ein verteiltes Propagationssystem ist in Ab-
bildung 4.12 dargestellt. Kern der Anwendung ist das Kernmodul, welches die anderen
Module steuert. Fiir die Kommunikation mit der Aulenwelt existieren zwei unter-
schiedliche Module. Die Warteschlangenschnittstelle dient zum Empfang der Ande-
rungsbeschreibungen durch die zentrale Eingangswarteschlange und zum Senden der
Anderungsbeschreibungen an die jeweiligen Warteschlangen der Propagationsmanager
(PM,). Im verteilten Fall mit Load-Manager-Ansatz hat jeder der Propagationsma-
nager eine Eingangswarteschlange, in der seine zu verarbeitenden Anderungsbeschrei-
bungen stehen. Dadurch wird eine Entkopplung der Propagationsmanager vom Load-

127

KAPITEL 4: Komplexe Propagation

Load Manager

D D D M-zu-N-Handler | “ZU-N-

Lastverteilung Gruppe
Kernmodul Reihenfolge-
Handler
Warteschlangen- Kommunikations- /
schnittstelle schnittstelle
A 4 A
PM;, PM, PM,

Abbildung 4.12: Architektur des Load-Managers

Manager erreicht. Auch in diesem Fall ist der Einsatz von persistenten Warteschlan-
gen wichtig, um eine hohe Ausfallsicherheit und eine hohe Ubermittlungsgarantie zu
gewahrleisten.

Das zweite Kommunikationsmodul (Kommunikationsschnittstelle) dient zum Emp-
fang von Informationsnachrichten, wie zum Beispiel die aktuelle Lasten der Propaga-
tionsmanager oder Anfragen fiir die Reihenfolgeeinhaltung. Durch den Einbezug der
aktuellen Last kann eine bessere Verteilung erreicht werden. Des Weiteren kann die
Anzahl der Anderungsbeschreibungen in den Warteschlangen einbezogen werden, um
eine bessere Verteilung zu ermoglichen.

Der Lastverteiler steuert die Verteilung der Anderungsbeschreibungen auf die ein-
zelnen Propagationsmanager. Dafiir existieren mehrere Strategien, die in den Untermo-
dulen realisiert sind und vom Verteiler angesteuert werden konnen (z.B. Round-Robin).
Beim Round-Robin Verfahren, werden die Anderungsbeschreibung der Reihe nach an
die einzelnen Propagationsmanager verteilt, ohne dass die aktuelle Last beriicksichtigt
wird.

Weiterhin existieren noch zwei Module (M-zu-N- und Reihenfolge-Handler), die die
Verarbeitung von M-zu-N-Abhéngigkeiten ermoglichen und die Einhaltung der Reihen-
folge garantieren.

4.3.3.2 M-zu-N-Verarbeitung

Das hier angestrebte Konzept basiert auf einer speziellen Gruppe von Propagationsma-
nagern, die die M-zu-N-Abhéngigkeiten ausfithren und damit die ,,einfachen Abhéngig-
keiten nicht ausbremsen. Des Weiteren wird den M-zu-N-Propagationsmanagern eine

128

4.3. VERTEILTE PROPAGATION

() M-zu-N-Manager

\

Load-

Manager (| M-zu-N-Manager

Kommuni-

kationskanal M-zu-N-Manager

L0

Abbildung 4.13: Verteilung der M-zu-N-Abhéngigkeiten

Gruppe von Filtern vorgeschaltet, die nur benstigte Anderungsbeschreibungen an die
entsprechenden Propagationsmanager durchlassen. Diese Filter dienen zur Entlastung
der Propagationsmanager. Die Filter sind auflerdem notwendig, da ansonsten das M-
zu-N-Problem nicht verteilbar wére, ohne den Propagationsmanager anzupassen. In
Abbildung 4.13 ist die Verteilungsarchitektur dargestellt.

Das Prinzip dabei ist, dass der Load-Manager das Starten von neuen Prozessen
steuert und die Verteilung auf die einzelnen Filter selbstorganisiert erfolgt, erméglicht
durch eine gemeinsame Warteschlange. Dadurch wird eine optimale Verteilung an die
Filter ermdoglicht.

Der Filter hat die Aufgabe, die Anderungsbeschreibungen anhand der Bediirfnisse
der Propagationsmanager zu filtern und sie nur an interessierte zu senden. Interessiert
ist ein Propagationsmanager, wenn er auf eine Anderungsbeschreibung wartet. Dafiir
muss eine Warteliste verwaltet werden, deren Eintrigen aus Quellsystem, Geschéftsob-
jekttyp, Bedingung und Propagationssystem bestehen. Die Filter kommunizieren iiber
einen Kommunikationskanal. Dadurch werden Anderungen in der Warteliste mitge-
teilt. Um die Aufgabe des Filters zu erfiillen, miissen die Zustidnde geparst und die
Warteliste ausgewertet werden. Wird dabei ein Eintrag gefunden, bei dem Quellsystem
sowie Geschéftsobjekttyp gleich sind und die Bedingung erfiillt ist, wird die Anderungs-
beschreibung an den entsprechenden Propagationsmanager weitergeleitet (Bedienung
bestehender Propagationsprozesse). Zusitzlich muss der Filter noch die Anderungsbe-
schreibung an den vom Load-Manager ausgewéhlten Propagationsmanager weiterlei-
ten, damit dieser neue M-zu-N-Prozesse starten kann. Eine weitere Aufgabe des Filters
ist die Verwaltung der Warteliste, die neue Eintrége erhélt, wenn Prozesse gestartet
werden.

Problematisch ist dabei die korrekte Abarbeitung der Warteliste, d.h. der Einbe-
zug aller benotigten Eintrédge, auch wenn diese evtl. noch nicht vorhanden sind. Dies
kann durch die Verteilung der Filter auftreten. Um den Einbezug aller Eintrage zu
garantieren, verfiigen die Anderungsbeschreibungen iiber eine logische Uhr (t4p). Ei-
ne logische Uhr [Lam78] ist durch einen Zihler implementiert. Die Warteliste verfiigt
ebenfalls {iber eine logische Uhr (ty1), welche den letzten Stand der verarbeiteten
Anderungsbeschreibung enthélt. Wenn eine empfangene Anderungsbeschreibung keine
Prozesse startet, werden auch keine Eintrage der Warteliste hinzugefiigt, aber dennoch

129

KAPITEL 4: Komplexe Propagation

muss die logische Uhr der Warteliste auf den aktuellen Stand gebracht werden. Wenn
jetzt ein Filter eine Anderungsbeschreibung bekommt, parst dieser die Zustéinde und
iiberpriift die Eintrige der Warteliste. Ist die Warteliste veraltet, wartet der Filterpro-
zess bis die Warteliste aktualisiert wird und alle Anderungsbeschreibungen enthilt, d.h.
tap < twr — 1. Die hinzukommenden Eintriage werden sukzessive abgearbeitet. Ein Fil-
ter besteht aus mehreren Filterprozessen (realisiert als Threads), die die Filteraufgaben
iibernehmen.

4.3.3.3 Der Umgang mit der Reihenfolge

Das Losungsprinzip des Reihenfolgeproblems im verteilten Fall basiert auf der frei-
en Verteilung der Anderungsbeschreibung und der Implementierung der Reihenfolge-
Algorithmen (vgl. Abschnitt 3.9) im Load-Manager. Der Reihenfolger-Handler (Ab-
bildung 4.12) implementiert die verschiedenen Algorithmen, die mittels Konfiguration
ausgewahlt werden kénnen. Mochte ein Propagationsprozess eines Propagationsmana-
gers eine Anderungsbeschreibung propagieren, fragt er den Reihefolge-Handler iiber
die Kommunikationsschnittstelle, ob er schon an der Reihe ist. Eine weitere Informati-
onsnachricht informiert den Reihefolge-Handler iiber die abgeschlossene Verarbeitung
einer Anderungsbeschreibung. Dadurch kénnen die nichsten anstehenden Prozesse ihre
Anderungsbeschreibungen propagieren.

4.3.3.4 Erhoéhung der Zuverlissigkeit

Durch den Einsatz eines verteilten Systems wird auch die Zuverléssigkeit des Gesamt-
systems erhoht, da der Load-Manager einem ausgefallen Propagationsmanager keine
Arbeit mehr zuteilt. Dies ist allerdings nur in gewissem Rahmen moglich, denn die Rei-
henfolge und M-zu-N-Abhéngigkeiten miissen trotzdem erfiillt sein. Das heifit, dass nur
frei verteilbare Anderungsbeschreibungen von anderen Propagationsmanagern bearbei-
tet werden konnen. Um dieses Manko zu beseitigen, kann ein Pool mit Hot-Backup-
Propagationsmanagern eingefithrt werden [Yan04], um die Arbeit ausgefallener Pro-
pagationsmanager zu iibernehmen. Ein solcher Propagationsmanager steht dabei in
Bereitschaft und beobachtet, ob ein anderer Propagationsmanager ausgefallen ist und
iibernimmt in diesem Fall seine Arbeit. Sobald ein ausgefallener Propagationsmanager
wieder verfiigbar ist, {iberpriift dieser, ob er benotigt wird und ordnet sich andernfalls
dem Hot-Backup-Pool zu.

Der Load-Manager muss zur Steigerung der Zuverlédssigkeit auch mit Hot-Backups
ausgestattet werden [Yan04].

4.3.4 Selbstorganisierter Ansatz

Der selbstorganisierte Ansatz nutzt die hohe Verteilungsmoglichkeit durch den Ein-
satz von Warteschlangen aus. Dabei versucht ein Propagationsmanager immer sei-
ne Propagationsprozesse abzuarbeiten und nur bei Bedarf neue Anderungsbeschrei-
bungen anzunehmen. Dieser Ansatz schliefit aber die Implementierung von M-zu-N-
Abhéngigkeiten aus, da diese nicht selbstorganisiert verteilt werden kénnen. In Abbil-

130

4.4. ZUSAMMENFASSUNG

PM;
Yy
PM
Reihenfolge 2 Legende
Controlier - PM: Propagationsmanager
’ I;‘> Datenfluss
A - Verzogerungsanfragen
PM,

Abbildung 4.14: Selbstorganisierter Ansatz mit Reihenfolgebehandlung

dung 4.14 ist dieser Ansatz dargestellt. Den Propagationsmanagern ist ein Reihenfolge-
Controller vorgeschaltet, der die Reihenfolge-Algorithmen realisiert. Die Propagati-
onsmanager fragen diesen an, ob Anderungsbeschreibungen schon propagiert werden
konnen (Verzogerungsanfragen). Zusétzlich informieren die Propagationsmanager den
Reihenfolge-Controller iiber abgearbeitete Anderungsbeschreibungen. Dies wird ermog-
licht indem die Anderungsbeschreibungen mit einer logischen Uhr [Lam?78] versehen
wird, die den Anderungsbeschreibungen eine eindeutige Zahl zuordnen. Diese Uhr ist
durch einen Zahler implementiert. Dadurch kann der Reihenfolge-Controller entschei-
den, ob ein Propagationsmanager seine ausgehenden Anderungsbeschreibungen propa-
gieren kann.

4.4 Zusammenfassung

Im ersten Teil dieses Kapitels wurde eine Ergénzung eingefiihrt, mit der zusétzliche
Daten in Anderungsbeschreibungen eingebunden werden kénnen, die so in der propa-
gierten Anderungsbeschreibung nicht vorhanden sind. Als Beispiel kann man hier die
Integration eines Layout-Planungswerkzeuges fiir Fabriken mit einem Digitalen-Fabrik-
System anfiihren. Beide verwalten Fertigungsressourcen, wobei das Layoutwerkzeug
nur den Namen und die Koordinaten speichert, wihrend das Digitale-Fabrik-System
noch MTTR (Meantime to repair) und MTBF (Meantime between Failure) bendotigt.
Diese Informationen kénnen beispielsweise von einer MaschinenInfoDB, die Produktbe-
schreibungen zu Ressourcen verwaltet, kommen. Der Ansatz basiert auf der Einbindung
von Datendiensten, deren Daten mit SQL, XQuery oder SOAP-RPC abgefragt wer-
den konnen. Dies erméglicht eine breite Unterstiitzung von Informationssystemen und
Datenbanken.

Im zweiten Teil wurde untersucht, wie mehrere Anderungen in einer Abhéngigkeit
bzw. einem Propagationsprozess kombiniert werden kénnen. Diese werden M-zu-N-
Abhéngigkeiten genannt. Mit diesen Abhéngigkeiten konnen zwei unterschiedliche Ar-
ten von einfachen Geschéftsregeln implementiert werden. Beispiel fiir den ersten Fall:
Wenn ein Kunde angelegt wurde und er innerhalb von 24 Stunden bestellt, wird ihm
ein Rabatt von 25% gewéhrleistet. Zweiter Fall (negierte Geschiftsregel): Wenn ein

131

KAPITEL 4: Komplexe Propagation

Kunde angelegt wurde und er nicht innerhalb von 20 Stunden bestellt, wird er an das
Angebot erinnert. Vorteil der Implementierung dieses Ansatzes ist die Erhaltung von
Microflows, da Prozesse verzogert gestartet werden, sobald alle Anderungsbeschreibun-
gen schon vorhanden sind. Die M-zu-N-Abhéngigkeiten stellen nicht die Kernaufgabe
eines Propagationssystem dar. Deshalb sollte das M-zu-N-Modul nur integriert werden,
wenn dieses auch bendtigt wird.

Im dritten und letzten Teil werden noch zwei Varianten zur Verteilung des Pro-
pagationsmanagers diskutiert, die selbstorganisierte und die mit Einsatz eines Load-
Managers. Dazu wurden zwei Einschrinkungen zur freien Verteilung diskutiert: das
Reihenfolgeproblem und die M-zu-N-Abhéngigkeiten.

132

KAPITEL b

Evaluation des Propagationssystems

Nachdem das Propagationssystem grundlegend konzipiert und mogliche Erweiterungen
diskutiert wurden, soll in diesem Kapitel der Ansatz evaluiert werden. Es soll ein Ein-
satz in der Praxis untersucht werden, Leistungsmessungen des Propagationssystems
mit typischen Anforderungen aus der Industrie gegeniibergestellt und das System mit
giangigen EAI-Produkten verglichen werden.

5.1 Praxistest

Innerhalb des Sonderforschungsbereichs 467, in dem das Propagationssystem entstand,
gab es verschiedene Integrationsaufgaben, bedingt durch die Vielzahl von eingesetz-
ten Systemen (z.B. der Planungstisch fiir die Layoutplanung von Fabriken), die in den
einzelnen Teilprojekten entstanden sind. Drei der Systeme wurden integriert und die-
se Integration als Praxistest verwendet. Der Integrationsansatz wurden in [CHB105]
verdffentlicht.

5.1.1 Integrationsszenario

Der Praxiseinsatz des Propagationssystems findet in einem fiktiven Unternehmen statt,
das im Folgenden ,,Schwibische Pumpenwerke® [WZ09] genannt wird. Das Unterneh-
men fertigt in zwei Produktsegmenten GroSpumpen und Kleinpumpen. Die aktuel-
le Marktlage fiir die Pumpenwerke ist durch einen drastischen Umsatzriickgang bei
Kleinpumpen und einen leichten Anstieg bei GroBpumpen gekennzeichnet. Nach ei-
ner griindlichen Analyse kommt die Marketing-Abteilung zu dem Schluss, dass die
Marktveranderungen langfristig sind und die Produktion entsprechend umgestellt wer-
den muss. Die Unternehmensleitung beschlie$t daraufhin, die Produktion den neuen
Anforderungen anzupassen. Ziel der Umstrukturierung ist, die Kapazitiat der Grof3pum-
penfertigung bei gleichzeitigem Abbau der Kleinpumpenkapazitit zu steigern. Dafiir

133

KAPITEL 5: Evaluation des Propagationssystems

miissen neue Maschinen und Montageplétze fiir die GroBpumpenfertigung beschafft und
in der Fertigungshalle aufgestellt werden. Die Zustédndigkeit im Projekt liegt bei der
Fabrikplanung, die zwei Untersysteme hat: Planungstisch und Montage-Konfiguration.
Der Planungstisch ist zustédndig fiir die Positionierung der Maschinen in der Fertigungs-
halle und die Montage-Konfiguration gestaltet die Montage-Arbeitsplitze [CHB105].
Die Montage hat spezielle Anforderungen (z.B. an die Ergonomie der Montageplitze),
die vom Planungstisch nicht beachtet werden. Deshalb wird die Fabrikplanung fol-
gendermaflen realisiert: der Planungstisch legt das Layout fiir die Fertigungsmaschi-
nen fest und fiir die Montage wird nur ein Bereich zugeordnet, der anschliefend von
der Montage-Konfiguration im Detail geplant wird. Der dazugehorige Planungsprozess
sieht im ersten Schritt die Fabrikplanung mit Zuordnung des Montagebereichs und im
zweiten Schritt die Montage-Feinplanung vor. Allerdings kann es notwendig sein, diese
Prozessschritte iterativ zu wiederholen, da zum Beispiel der zugewiesene Montagebe-
reich nicht ausreichend ist.

Zur Realisierung dieses Planungsprozesses miissen beide Werkzeuge miteinander
integriert werden. Dafiir wurde bei den Schwébischen Pumpenwerken eine Losung fiir
die Digitale Fabrik eingefiihrt, die alle planungsrelevanten Daten speichert und die Da-
ten den Planungswerkzeugen zur Verfiigung stellt. Die beiden Werkzeuge werden {iber
das Propagationssystem mit der Digitalen Fabrik integriert. Die Aufgabenaufteilung ist
im Anwendungsszenario streng getrennt, sodass eine verteilte Master- Update-Situation
[GHOS96] vorliegt. Bei diesem System konnen einzelne Objekte oder Einheiten nur in
einem System geéndert werden. Dadurch miissen auch keine Konflikte erkannt und
aufgelost werden, da keine auftreten konnen (vgl. Abschnitt 3.8).

5.1.2 Digitale Fabrik und ihre Werkzeuge

In diesem Abschnitt wird die Digitale Fabrik eingefiihrt sowie zwei Planungswerkzeuge:
der Planungstisch und der Montage-Konfigurator.

5.1.2.1 Die Digitale Fabrik

Die Digitale Fabrik unterstiitzt die Planung von Produktionsprozessen und Produk-
tionsanlagen und stellt damit ein digitales Abbild der Fabrik bereit. Dadurch wird
eine schnellere und kostengiinstigere Einfiihrung von neuen Produkten mit einer hohen
Planungssicherheit ermdoglicht als ohne digitalem Abbild der Fabrik. Bei der Digitalen
Fabrik steht allerdings nicht die Entwicklung des Produktes im Vordergrund, sondern
die Prozesse, mit denen die Produkte produziert werden, sowie die Planung der Fer-
tigungsressourcen. Diese Ressourcen fithren die Prozesse aus. Der Kern der Digitalen
Fabrik besteht aus einer Datenhaltung fiir Produkte, Prozesse und Ressourcen. Die Da-
ten werden in sogenannten Projekten organisiert. In diesen Projekten werden alle Daten
verwaltet, die zu einem Planungsprojekt gehéren. Um diesen Kern kann eine Vielzahl
von Werkzeugen angesiedelt werden, die diese Daten verwenden oder Daten bereitstel-
len, zum Beispiel Werkzeuge zur Planung des Fabriklayouts (z.B. Fabrikplanungstisch
Abschnitt 5.1.2.2) sowie Montage (Abschnitt 5.1.2.3) oder auch Simulationswerkzeu-
ge, die zur Beurteilung der geplanten Fabrik anhand verschiedener Kennzahlen (z.B.

134

5.1. PRAXISTEST

Auftragserfiillung) dienen. Innerhalb des Sonderforschungsbereichs wurde der Delmia
Process Engineer (DPE) von Delmia als Datenhaltungssystem fiir die Digitale Fabrik
eingesetzt.

5.1.2.2 Fabrikplanungstisch

Der Fabrikplanungstisch [WvB01, WW02] ist eines der Werkzeuge, die im Sonderfor-
schungsbereich 467 , Wandlungsfihige Unternehmensstrukturen fiir die variantenreiche
Serienfertigung® entstanden sind. Dieses Werkzeug dient zur partizipativen Planung des
Fabriklayouts. Das Fabriklayout definiert dabei die rdaumliche Anordnung von Ressour-
cen in Fabrikhallen. Durch die partizipative Planung soll es auch Planungslaien (z.B.
Werkern) erméglicht werden, bei Umstrukturierungen oder Neuplanungen mitzuwirken.
Ziel ist dabei eine hohere Akzeptanzrate fiir die Umstrukturierung bei der Belegschaft
zu erreichen. Diese partizipative Planung wird durch eine intuitive Planungsumgebung
mit einer 2D- und 3D-Ansicht moglich. Die Ressourcen konnen mittels Klotzen, die
mit einer reflektierenden Oberfliche versehen sind, verschoben werden, was iiber eine
Kamera erfasst wird.

Die Daten der Ressourcen sind in einer Access Datenbank gespeichert und kénnen
iiber einen ODBC-Treiber ausgelesen und veréndert werden. Die Software des Pla-
nungstischs verfiigt iiber keine API. Ein zu entwickelnder Adapter (siehe auch Ab-
schnitt 3.11) kann deshalb nur eine Datenbankschnittstelle verwenden.

5.1.2.3 Montage-Konfigurator

Auch der Montage-Konfigurator ist, wie der Fabrikplanungstisch (Abschnitt 5.1.2.2)
im Sonderforschungsbereich 467 entstanden. Dieses spezialisierte Werkzeug dient der
Planung und Gestaltung der Montage-Arbeitsplitze [CHBT05].

Die Montage entspricht dem letzten Produktionsschritt bei der Erstellung eines Pro-
duktes, bei dem mehrere Einzelteile kombiniert werden. Um Montage-Arbeitsplatze zu
gestalten und zu planen, werden mehrere Eingabeparameter benotigt. Als Erstes muss
die Fliche, auf der die Montage-Arbeitspliatze positioniert werden kénnen, festgelegt
werden. Diese Fldche wird durch den Fabrikplanungstisch (Abschnitt 5.1.2.2) zuge-
teilt. AuBlerdem werden Informationen iiber alle fiir die Montage relevanten Ressour-
cen bendtigt, die durch die Digitale Fabrik bereitgestellt werden. Eine weitere wichtige
Information fiir die Planung stellen die Montageprozesse dar, die ebenfalls aus der Digi-
talen Fabrik bezogen werden kénnen. Aus diesen Informationen gestaltet der Montage-
Konfigurator die Montage vom Layout der Montage-Arbeitsplitze bis zur Gestaltung
einzelner Arbeitsplitze, bei der auch die Ergonomie betrachtet wird.

5.1.3 Integrationsplattform

Die Integrationsplattform besteht aus einer Digitalen-Fabrik-Losung und zwei Pla-
nungswerkzeugen (Planungstisch und Montage-Konfigurator, Abbildung 5.1). Die ein-
zelnen Planungswerkzeuge implementieren unterschiedliche Schritte im Planungspro-
zess und sind voneinander abhéngig. Das bedeutet, dass der Output eines Planungs-

135

KAPITEL 5: Evaluation des Propagationssystems

Integrations-
ebene

Basisebene Werkzeugebene

Planungstisch

Access
Adapter

Montage-Konfigurator

Digitale Fabrik
(Delmia)

Hilfs-
Skripte ~ | komponente
(COM)

Scripting Host

N7

Propagations-
system

Hilfs-

komponente @ Excel-
(Com)

Dokument

Kommunikationsschnittstelle

_ﬂi___ﬁﬁl__

Kommunikationsschnittstelle

[PPRHub |

____j}_r_

Abbildung 5.1: Architektur der Integrationsplattform

werkzeugs Input des anderen ist, da sich die Werkzeuge beim iterativen Planungsprozess
abwechseln.

Die Digitale-Fabrik-Losung stellt dabei Daten fiir den gesamten Planungsprozess be-
reit, d.h. es konnen noch weitere Planungswerkzeuge von der Digitalen-Fabrik-Losung
mit Daten versorgt werden oder Daten fiir sie bereitstellen.

Integriert werden die Planungswerkzeuge mit der Digitalen-Fabrik-Losung (im vor-
liegenden Fall das Produkt von Delmia) anhand des hier konzipierten und implemen-
tierten Propagationssystems. Die Architektur der Integrationsplattform ist in Abbil-
dung 5.1 illustriert. Um die Werkzeuge an das Propagationssystem anbinden zu kénnen,
wurden Adapter (vgl. Abschnitt 3.11) entwickelt. Diese erzeugen aus geénderten Da-
ten Anderungsbeschreibungen und leiten diese iiber Warteschlangen an das Propaga-
tionssystem weiter. Empfangene Anderungsbeschreibungen miissen analysiert und im
jeweiligen System angewendet werden. Der Adapter fiir die Digitale-Fabrik setzt sich
aus einer Hilfskomponente und Skripten zusammen. Durch die Realisierung der Hilfs-
komponente mit der Microsoft COM-Technolgie, kann sie einfach durch die Skripte im
Skripting Host eingebunden werden. Die COM-Technologie (Component Object Model)
erlaubt eine Kommunikation zwischen Prozessen, aber auch das Einbinden von DLLs
in Prozessen. Die Skripte laufen im Windows Scripting Host ab und greifen iiber eine
Schnittstelle auf den Datenkern (PPR-Hub) zu. Die Hilfskomponente iibernimmt dabei
die Kommunikation mit den Warteschlangen des Propagationssystems und die Skripte
iibernehmen die Analyse und Verarbeitung der Anderungsbeschreibungen. Die Kom-
munikation erfolgt {iber die vom Warteschlangenprodukt bereitgestellte Kommunikati-
onsschnittstelle. Ein dhnliches Vorgehen wird bei dem Montage-Konfigurator verwen-
det, der seine Daten in Excel verwaltet. Dabei wird dieselbe Hilfskomponente verwendet
und die Analyse und Verarbeitung von Anderungsbeschreibungen mittels VBA-Makros
realisiert. Ebenfalls VBA ermoglicht das Einbinden von COM-Komponenten. Der Pla-
nungstisch hat einen Adapter, der speziell fiir den Planungstisch entwickelt wurde.
Dieser erkennt Anderungen in der Access DB und gibt sie direkt an die Eingangswar-

136

5.1. PRAXISTEST

teschlange des Propagationssystems weiter. Aufierdem liest er Anderungen aus seiner
Warteschlange und wendet die Anderungsbeschreibungen auf die Access Datenbank
an.

Obwohl es sich bei der Digitalen-Fabrik-Losung (Delmia) um eine Hub-and-Spoke-
Architektur handelt (zentrale Datenbank), ist es nicht sinnvoll, die einzelnen Planungs-
werkzeuge direkt anzubinden. Um die Daten der Werkzeuge mit Delmia zu intergrie-
ren, eignet sich ein Integrationssystem, wie das hier vorliegende Propagationssystems.
Dadurch bleiben die einzelnen Werkzeuge und auch Delmia unabhéngig voneinander.
Anderungen in den Datenmodellen kénnen innerhalb des Propagationssystem behan-
delt werden, ohne dass die einzelnen Werkzeuge angepasst werden miissen. Gerade
Digitale-Fabrik-Losungen sind auf eine hohe Anpassungsmoglichkeit ihrer Modelle aus-
gelegt. Des Weiteren kann durch eine lose Kopplung einzelne Werkzeuge leichter ersetzt
werden.

5.1.4 Integration der Digitalen Fabrik und des Planungsti-
sches

Um den Planungstisch anzubinden, miissen zwei Richtungen realisiert werden: von der
Digitalen-Fabrik zum Planungstisch und zuriick. Bei der ersten Richtung werden Da-
ten von der Digitalen-Fabrik exportiert. Beim Export werden zuerst alle Fertigungsres-
sourcen eines Projektes zum Planungstisch iibertragen. Durch diesen Ansatz muss der
Planungstisch nicht alle Projekte vorhalten, sondern die Digitale-Fabrik-Lésung kann
sie bei Bedarf bereitstellen. Nachdem die Daten exportiert wurden, wird der Planungs-
schritt im Planungstisch durchgefiihrt. Danach wird schliellich auch die zweite Rich-
tung benotigt, das Zuriickspielen von Anderungen, sodass die Digitale Fabrik wieder
auf dem aktuellen Stand ist. Die Erkennung der Anderungen soll automatisch erfolgen.
Der Zeitpunkt der Erkennung muss allerdings manuell angestoflen werden, da nicht
automatisch erkannt werden kann, wann der Planungsschritt abgeschlossen ist und die
Daten konsistent sind. Bei Planungssystemen kénnen innerhalb des Planungsprozesses
Phasen existieren, in denen die Daten inkonsistent sind und nicht den Erwartungen
der Zielsysteme entsprechen. Ist eine Planung abgeschlossen, befindet sie sich wieder
in einem konsistenten Zustand. Deshalb sollte in den inkonsistenten Phasen nicht syn-
chronisiert werden.

Um Anderungskonflikte zu vermeiden, wurde eine Master-Update-Situation ver-
wendet, bei der nur der Planungstisch Positionen von Ressourcen dndern darf, diese
aber nicht direkt in der Digitalen-Fabrik-Losung verdndert werden. Auf der anderen
Seite dndert der Planungstisch keine weiteren Daten der Ressource.

Es ergaben sich bei der Integration der beiden Systeme folgende Schwierigkeiten, die
iiber die Schema-Heterogenitét hinausgingen. Die erste war die Anordnung und Posi-
tionierung von Ressourcen in beiden Systemen. Die Digitale-Fabrik-Losung verwendet
eine Ressourcenhierarchie mit relativen Koordinaten zur iibergeordneten Ressource.
Der Planungstisch dagegen verwendet eine flache Struktur mit absoluten Koordina-
ten. Der Unterschied zwischen beiden Systemen ist in Abbildung 5.2 dargestellt. Um
die Richtung von der Digitalen-Fabrik aus zu realisieren, miissen absolute Koordina-

137

KAPITEL 5: Evaluation des Propagationssystems

R1
/\
R2 R3
/\ /I\
R4 R5 R6 R7 R8 R9 RI10 R4 R5 R6 R7 R8 R9 R10
R5 R7 R5 R7
R6 R9 R6 R9
R8 R8
R4 R10 R4 R10
R2 R3
Tﬂ%m) T—» lt (20,20)
(10,10) R1
(a) Digitale Fabrik (b) Planungstisch
(Relative Koordinaten mit (Absolute Koordinaten,
Ressourcenhierarchie) flache Struktur)

Abbildung 5.2: Gegeniiberstellung der Koordinatensysteme von Digitale-Fabrik-Loésung
und Planungstisch

ten errechnet werden, indem in der Hierarchie von der aktuellen Ressource bis zur
Wurzel durchlaufen wird. Bei der Riickrichtung miissen die Anderungen auf die Posi-
tionen angewendet werden. Hierbei muss zwischen dem Erzeugen einer Ressource und
dem Andern einer Ressource unterschieden werden. Beim Erzeugen wird die Ressour-
ce zunéchst direkt in der Fabrikhalle abgelegt, die die absoluten Koordinaten hat (die
Wurzel). Eventuell kann es notwendig sein, die Ressource in einer untergeordneten Res-
source zu organisieren. Dies kann von Hand oder semi-automatisch erfolgen, indem dem
Planer eine Zuordnung anhand der Koordinaten vorgeschlagen wird. Dabei wird unter-
sucht, in welcher Ressourcenfliche sich die hinzugefiigte Ressource befindet. Wird eine
Ressource umstrukturiert miissen neue Koordinaten errechnet werden, die der gleichen
Position entsprechen. Diese Koordinatenermittlung ist notwendig, da die Ressource mit
einer neuen Vaterressource auch ein neues Koordinatensystem bekommt. Wahrend der
Umstrukturierung miissen auch neue Koordinaten ermittelt werden. Bei der Anderung
einer Ressource wird eine relative Verschiebung im Propagationssystem aus Davor- und
Danach-Zustand berechnet. Diese relative Verschiebung ist in beiden Systemen gleich
und kann deshalb auch auf die relativen Koordinaten angewendet werden. Allerdings
kann die Verschiebung einer Ressource dazu fiihren, dass sie umstrukturiert werden
muss, d.h. einer anderen {ibergeordneten Ressource zugeteilt wird. Dies kann wieder
semi-automatisch erfolgen. Die Ressource kann der Ressource zugeordnet werden, in
deren Flache sie sich befindet.

Die zweite Schwierigkeit bestand darin, dass die Koordinatenurspriinge an unter-
schiedlichen Positionen sind. Um dies auszugleichen, musste eine einfache Koordina-

138

5.1. PRAXISTEST

Planungstisch Digitale-Fabrik-Lésung

(10, 10)
L
T_i1 0,—1|0) -

Abbildung 5.3: Ermittlung des Translationsvektors

tentranslation durchgefiithrt werden. Allerdings war die Ermittlung des Translations-
vektors eine Herausforderung, da die Koordinatenurspriinge nur implizit vorhanden
sind. Deshalb wurde die Ermittlung folgendermaflen gel6st. Man nimmt einen markan-
ten Punkt (z.B. eine Ecke der Fabrikhalle) und ermittelt die Koordinaten; im zweiten
System wird von diesen Koordinaten bis zum markanten Punkt gemessen. Dies ergibt
den Translationsvektor (sieche Abbildung 5.3). Allerdings muss beachtet werden, dass
der Translationsvektor abhéngig von der Integrationsrichtung ist, wobei in die andere
Richtung einfach der Gegenvektor verwendet wird.

5.1.5 Integration der Digitalen-Fabrik und des Montage-Kon-
figurators

Die Digitale-Fabrik-Losung verwaltet auch die Daten fiir den Montage-Konfigurator.
Deshalb werden am Anfang eines Montage-Konfigurationsprojektes die notwendigen
Daten aus der Digitalen-Fabrik-Losung exportiert. Bei den notwendigen Daten han-
delt es sich um alle montagerelevanten Ressourcen und die zur Verfiigung gestellte
Fldche. Nachdem der Export von Delmia (Digitale-Fabrik-Losung) erfolgte und vom
Propagationssystem verarbeitet wurde, konnen die Daten vom Montage-Konfigurator
importiert werden. Dafiir wird von Excel ein VBA-Makro angestolen. Dieses Makro
holt sich die exportierten Daten aus der entsprechenden Warteschlange und tragt die
Daten in die Excel-Arbeitsmappe ein.

Im Konfigurationsschritt werden die Montage-Arbeitspldtze und die Anordnung der
Arbeitspliitze geplant. Ist dieser Schritt abgeschlossen, werden die Anderungen in die
Digitale-Fabrik-Losung zuriickgespielt.

5.1.6 Schlussfolgerungen

Die im Sonderforschungsbereich erfolgreich durchgefiihrte Integration der Informati-
onssysteme Digitale-Fabrik-Losung, Planungstisch und Montage-Konfigurator hat die
Einsetzbarkeit des Propagationssystems in der Praxis unter Beweis gestellt. Teilweise
wurden aber lange Synchronisationszeiten festgestellt, da eine Vielzahl von Objekten
exportiert wurde. Dies ist fiir die geringe Haufigkeit von Synchronisationen zwischen
den Werkzeugen und die Dauer im unteren Minutenbereich fiir den Export durchaus
verkraftbar. Allerdings muss angemerkt werden, dass der Export von gesamten Daten-
bestédnden nicht im Konzept vorgesehen ist und dafiir eigentlich andere Technologien

139

KAPITEL 5: Evaluation des Propagationssystems

Testkontrolle

L1O) LIO)

Testfall N=5000 Propagations-
Generator (2 E manager
3 5
Protokoll Testergebnisse

Abbildung 5.4: Aufbau der Messumgebung

verwendet werden sollten, die fiir den Austausch von Massendaten geeigneter sind. Die
Performance des Propagationssystems wird im néchsten Abschnitt genauer untersucht.

5.2 Evaluierung der Performance

Um das vorgeschlagene Propagationssystem zu beurteilen, ist es wichtig, die Leistung
dieses Systems zu kennen. Die Leistung wird anhand des Durchsatzes an propagierten
Verénderungen und der durchschnittlichen Verarbeitungsdauer erfasst. Beide Kenn-
zahlen werden in Abhéngigkeit von der Grofle des Geschéftsobjektes erfasst. Fiir die
Messungen wurde als Geschéftsobjekt ein Kundenauftrag gewihlt, da dieser durch ei-
ne beliebige Anzahl von Auftragspositionen, eine beliebige Gréfle annehmen kann. Die
Verarbeitungsdauer und der Durchsatz sind abhéngig von vielen Gréflen, die in die-
sem Abschnitt genauer betrachtet werden sollen. Als Erstes wird die Messmethodik
vorgestellt. Danach wird auf die Testumgebung (verwendeter Rechner und Systeme)
und auf die Realisierung der zuverlidssigen Broadcast-Warteschlange (vgl. Abschnitt
3.7.2.3) eingegangen. Schliefllich werden eine Reihe von Messungen des Systems mit-
samt ihren Ergebnissen vorgestellt, die danach mit Anforderungen aus der Industrie
verglichen werden.

5.2.1 Messmethodik

In Abbildung 5.4 ist die grundsétzliche Messumgebung dargestellt. Die Komponente
Testkontrolle steuert und kontrolliert die Testumgebung. Bevor ein Testfall gestartet
wird, stellt die Testumgebung sicher, dass alle Warteschlangen leer sind, d.h. keine Ein-
trage haben, so dass die Umgebung in einem definierten Zustand ist. Danach startet
die Komponente Testkontrolle die Komponente Testfall-Generator (1), der dann die
Eingangswarteschlange des Propagationsmanagers mit 5000 Anderungsbeschreibungen
filllt (2). Es wurde ein grofle Anzahl gewihlt, damit die Messergebnisse genauer sind
und eventuelle Ausreifler nicht so stark ins Gewicht fallen. Nachdem alle Nachrichten

140

5.2. EVALUIERUNG DER PERFORMANCE

erzeugt wurden, wird ein Protokoll geschrieben, welches die Statistik iiber die erzeug-
ten Nachrichten enthélt (3). Wurden diese Aufgaben erledigt, kann der Propagations-
manager durch die Testkontrolle gestartet werden (4). Dieser findet nun eine volle
Eingangswarteschlange vor, die er abarbeitet. Dadurch wird sichergestellt, dass der
maximale Durchsatz tp ermittelt wird. Dieser ergibt sich aus dem Zeitpunkt ¢, (Verar-
beitungsstart der ersten Anderung), dem Zeitpunkt ¢, (Verarbeitungsende der letzten
Anderung) und n der Anzahl von Anderungen:

tp = (5.1)

Um sicherzustellen, dass keine Effekte, wie zum Beispiel das Laden von Klassen,
das Testergebnis beeinflussen, werden die ersten 50 Anderungsnachrichten nicht beriick-
sichtigt, d.h. der Propagationsmanager setzt die Messungen zuriick. Hat der Propaga-
tionsmanager alle Anderungsnachrichten abgearbeitet, protokolliert er die Ergebnisse
in einer Datei (5).

Um eine hohe Qualitdt der Testergebnisse zu garantieren, wird ein solcher Test
dreimal wiederholt und die Ergebnisse gemittelt, nachdem eventuelle Ausreiler (mehr
als 20% Abweichung) entfernt wurden. Durch die Protokollierung der Ausgaben jeder
beteiligten Komponente kénnen aufgetretene Fehler erkannt werden.

5.2.2 Testumgebung

Der Performancetest wurde auf einem Zweiprozessor Intel-Xeon-System mit je 2 Giga-
hertz und einem Hauptspeicher von 2 Gigabyte durchgefiihrt. Implementierungssprache
war Java 1.5, die auch die Laufzeitumgebung stellte. Als Warteschlangensystem wur-
de IBM Websphere MQ 5.7 verwendet, auf das mit dem Java Message Service (JMS)
zugegriffen wurde. Fiir das Parsen von XML wurde Apache-Xerces 2.6.2 und fiir die
Transformation mittels XSLT und XQuery! wurde Saxon 8.1.1 eingesetzt. Fiir die Er-
zeugung von SOAP-Nachrichten fiir den Aufruf von externen Datendiensten wurde
SAAJ (SOAP with Attachments API for Java) in der Version 1.2.1 verwendet.

5.2.3 Realisierung der zuverliassigen Multicast-Warteschlange

Da die zuverléssige Multicast-Warteschlange, so wie sie in Abschnitt 3.7.2.3 eingefiihrt
wurde, nicht von den géngigen Warteschlangen-Herstellern unterstiitzt wird und auch
nicht in JMS angedacht ist, wurde eine Simulation implementiert. Sie ist durch eine
Nachricht pro Multicast-Empfanger gekennzeichnet. Dies bedeutet aber, dass z.B. bei
einer 1-zu-5-Abhéngigkeit mit 5 Multicast-Empfangern auch 5 Nachrichten verschickt
werden miissen, was eine langsamere Ausfithrung zur Folge hat.

1XQuery wurde allerdings in diesem Test nicht eingesetzt.

141

KAPITEL 5: Evaluation des Propagationssystems

5.2.4 Testfille

Um die Propagationsumgebung zu beurteilen, werden Anderungsnachrichten unter-
schiedlichster GroBe erzeugt. Diese Anderungsnachrichten stellen Anderungen eines
Geschéftsobjektes Kundenauftrag dar. Dieser kann erstellt, geloscht oder gedndert wer-
den. Bei der Anderung kénnen zum Beispiel die Adresse des Kunden angepasst werden
oder Auftragspositionen storniert werden. Die Geschiéftsobjektgrofie wird hauptsachlich
durch die Anzahl von Auftragspositionen reguliert. Ausnahme hiervon sind die kleinen
GroBen (200 bzw 500 Bytes), da hier selbst ohne Positionen die Geschiéftsobjekte noch
groffer als die angestrebte Groflen sind. Deshalb wurden weitere Informationen des
Kunden weggelassen. Daraus folgt, dass Anderungsbeschreibungen mit 200 und 500
Bytes in der Praxis eher selten vorkommen diirften. Groflen ab 1000 sind realistischer.
Die oberen Grenzen der Tests sind bei 10000 und 20000 Bytes. Letztere erreicht 46
Auftragspositionen. Die Anderungen werden mit den drei Anderungsarten (create, up-
date und delete) verschickt, wobei sich bei der Anderungsart update noch die GréBe
der Anderungsbeschreibung verdoppelt, was mit den zwei mitgegebenen Zusténden
zusammenhéngt (vgl. Abschnitt 3.2.2).

Da es sich um ein Propagationssystem fiir das heterogene Umfeld handelt, sollte
die propagierte Anderungsbeschreibung sich von der empfangenen unterscheiden (He-
terogenitét). Die Transformation verdndert die Namen der Bezeichner und passt die
Struktur an, indem die Hierarchie der Elemente verdndert wird. Aulerdem wird die
Summe des Einkaufs berechnet, welche sich aus den einzelnen Mengen und Einzelprei-
sen aufsummiert iiber alle Auftragspositionen ergibt.

Das Transformationsskript wurde in XSLT 2.0 entwickelt und transformiert den
Kundenauftrag zum CustomerOrder.

Wenn nicht anderes angegeben, so wird mit einer Beschrankung von maximal 10
Propagationsprozessen zu jedem Zeitpunkt gearbeitet. Die Cache-Hitrate wird konstant
auf 100 Prozent gehalten, da eine Vergleichbarkeit nur durch einen konstanten Wert
gewahrleistet ist und dieser durch die unterschiedlichsten Testfdlle nur schwer einhalt-
bar ist, wenn es sich nicht um die zwei extremen Werte 0 oder 100 Prozent handelt.
Die Hitrate sagt aus mit wieviel Prozent der Cache Metadaten (z.B. Propagations-
skript) liefern konnte und nicht auf das Repository zuriickgegriffen werden musste. Die
Hitrate wird im Testfall 5 untersucht. Die Propagationsskripte befinden sich nicht im
Debug-Modus (vgl. Abschnitt 3.5.3.2), d.h. die Uberpriifung auf Schema-Konformitit
der propagierten Anderungen findet nicht statt.

Im Folgenden werden neun Testfille vorgestellt, die zeigen, welche Performance das
System unter verschiedenen Bedingungen aufweist.

5.2.4.1 Testfall 1: Update-Haufigkeit

Das Ziel von Testfall 1 ist die Ermittlung des Einflusses der Update-Héaufigkeit auf die
Performance. Die Anderungsart Update stellt eine besondere Rolle im Propagations-
system dar, da diese Anderungsart zwei Zustéinde hat (vgl. Abschnitt 3.2.2). Dies hat
zur Folge, dass beim Parsen und beim Transformieren mehr Daten verarbeitet werden
miissen. Da das Schema fiir beide Zustéande gilt, muss jeder Zustand iiberpriift werden.

142

5.2. EVALUIERUNG DER PERFORMANCE

w
o

}

Durchsatz [Prozesse/s]
= =
o o

N
o
!

=¢—50-50
70-30
==fe=90-10

9,

ﬂ_

o

200 500 1000 2000 5000 10000 20000
GeschiftsobjektgroRe [Bytes]

Abbildung 5.5: Update-Haufigkeit und ihr Einfluss auf den Durchsatz

In der Realisierung des Propagationssystems werden beide Zustdnde in einem XML-
Dokument abgebildet. Das bedeutet, dass dieses XML-Dokument zuerst geparst und
die beiden Zustédnde extrahiert werden. Danach kann jeder Zustand validiert werden.
Das Validieren von DOM-Baumen wird von DOM-Level-3 unterstiitzt. Da aber die
XML-Werkzeuge (z.B. XQuery-Engine) zum Zeitpunkt der Messung nur DOM-Level-2
unterstiitzten, muss das Parsen von DOM-B&dumen simuliert werden, indem der Baum
serialisiert und geparst wird. Dies fiihrt allerdings zu Performanceeinbuflen.

Es lisst sich zur Update-Haufigkeit anmerken, dass die Anderungsart update bei
Stammdaten in den meisten Fillen hiufiger auftritt als die beiden anderen Anderungs-
arten (create und delete). Diese Aussage gilt allerdings nur fiir Stammdaten (z.B. Kun-
de). Bei Bewegungsdaten (z.B. Kundenauftrag) finden weniger Updates statt. Um den
Einfluss der Update-H&aufigkeit zu untersuchen, wurden drei Falle ausgewéhlt. Im ersten
Fall wird eine Update-Héufigkeit von 50% verwendet, wobei sich der Rest gleichméBig
auf creates und deletes verteilt. Der zweite Fall untersucht 70% und der dritte 90%.
Das verwendete Propagationsskript ist ein einfaches und setzt sich aus einem Input,
einer Transformation und einer Propagation zusammen.

Die Ergebnisse der Untersuchung sind in zwei Diagrammen dargestellt, die den
Einfluss auf den Durchsatz (Abbildung 5.5) und die Prozesszeiten (Abbildung 5.6)
vermitteln. Letztere reprasentiert die Zeit, die der Propagationsprozess braucht, um
ein Propagationsskript abzuarbeiten.

Es fallt auf, dass der Durchsatz im Messbereich logarithmisches Verhalten hat,
denn die Kurve ist linear in einem Diagramm mit einer logarithmischen Skala, d.h. die
Auswirkungen werden bei gréflerer werdenden Geschiftsobjekten geringer. Die Pro-
zesszeiten haben im Messbereich dagegen ein lineares Verhalten, was aus den erfassten
Messwerten geschlossen werden kann. Die Kurven laufen beim Durchsatz-Diagramm bei
ansteigender Geschéftsobjektgrofle zusammen, d.h. der Einfluss der Update-Haufigkeit
wird geringer. Bei den Prozesszeiten gehen die Kurven auseinander, d.h. der Einfluss
wird mit steigender Geschiéftsobjektgrofle starker.

143

KAPITEL 5: Evaluation des Propagationssystems

2,5

2
o
c
215 =—4¢—50-50
5 70-30
g 1 ——90-10
o
a

0,5

0 T T T T T T 1

200 500 1000 2000 5000 10000 20000
GeschiftsobjektgroRe [Bytes]

Abbildung 5.6: Update-H&aufigkeit und ihr Einfluss auf die Prozesszeiten

Zu den moglichen Verbesserungen gehort das Umstellen auf XML-Werkzeuge, die
DOM-Level-3 unterstiitzen, welche zum Zeitpunkt der Messung aber noch nicht zur
Verfiigung standen.

Fiir die nachfolgenden Tests wurde der Fall 70-30 gewéhlt, da von einer leicht
hoheren Update-Haufigkeit ausgegangen wurde.

5.2.4.2 Testfall 2: Begrenzung der nebenlidufigen Propagationsprozesse

Ziel dieses Testfalls war die Ermittlung des Einflusses der Prozessbegrenzung auf die
Performance. Das Propagationssystem verfiigt {iber einen Prozesspool, der Propagati-
onsprozesse zur Verfiigung stellt. Ein solcher Propagationsprozess ist als Thread reali-
siert. Dadurch kénnen Ressourcen, wie Repository-Verbindung und Warteschlangenma-
nager, wiederverwendet werden. Ebenfalls wird hier die maximale Anzahl der Prozesse
beschrinkt und dadurch kénnen Uberlastsituationen verhindert werden, bei denen die
Gesamtleistung drastisch abnimmt.

Der Test wurde in zwei Unterfélle unterteilt. Zuerst wurde gemessen, wie sich das
System verhilt, wenn ein Propagationsprozess pro Anderung gestartet wird (siche Ab-
bildungen 5.7 und 5.8). Um die Last zu erhéhen, wurden im zweiten Unterfall 5 Prozesse
pro Anderung gestartet (Abbildungen 5.9 und 5.10). Bei diesem Fall wird die Ande-
rung an 5 verschiedene Zielsysteme propagiert. Jeder dieser Unterfille wurde mit 5
Prozessbegrenzungen gemessen: maximal 1, 5, 10, 15 und 20 Prozesse gleichzeitig. Fiir
das Propagationsskript wurde dasselbe Skript wie in Testfall 1 verwendet, d.h. eine
Transformation und eine Propagation. Bei der Transformation handelt es sich um die
Standardtransformation, wie in Abschnitt 5.2.4 beschrieben wurde. Es wurde die 70-30
Verteilung der Update-Héufigkeit von Testfall 1 verwendet.

Was im Unterfall 1 zuerst auffallt, ist dass mit zunehmender Anzahl von Prozessen
der Performancegewinn beim Durchsatz (Abbildung 5.7) abnimmt. Der grofite Perfor-
mancegewinn wird noch von einem Prozess auf fiinf Prozesse erreicht. Der Performan-

144

5.2. EVALUIERUNG DER PERFORMANCE

30

25 A

emfu==] Prozess
«={==5 Prozesse
gy 10 Prozesse
eyt 15 Prozesse
== 20 Prozesse

20 -

10

Durchsatz [Prozesse/s]
=
(03]

0 T T T T T T 1

200 500 1000 2000 5000 10000 20000
Geschéftsobjektgrofle [Bytes]

Abbildung 5.7: Einfluss der Prozessbegrenzung auf den Durchsatz (1 Prozess pro Ande-
rung)

e] Prozess
«={==5 Prozesse
e 10 Prozesse
15 Prozesse
=20 Prozesse

Prozesszeiten [s]

200 500 1000 2000 5000 10000 20000
GeschiftsobjektgroRe [Bytes]

Abbildung 5.8: Einfluss der Prozessbegrenzung auf die Prozesszeiten (1 Prozess pro
Anderung)

145

KAPITEL 5: Evaluation des Propagationssystems

N
(0]

N
o

5 Prozesse
e 10 Prozesse
15 Prozesse
i 20 Prozesse

=
o

Durchsatz [Prozesse/s]
=
(03]

(3}

o

200 500 1000 2000 5000 10000 20000
Geschaftsobjektgrofle [Bytes]

Abbildung 5.9: Einfluss der Prozessbegrenzung auf den Durchsatz (5 Prozesse pro
Anderung)

cegewinn sinkt auch bei der Zunahme der Grofle des Geschiftsobjektes, das geéndert
wird. Im Gegensatz dazu nehmen die Prozesszeiten in den hohen Prozessbegrenzun-
gen kaum mehr zu. Dies konnte damit zusammenhéngen, dass sich das System durch
das Starten eines Prozesse pro Anderung selbst reguliert, da nicht alle frei verfiigharen
Prozesse genutzt werden kénnen.

Bei Unterfall 2 mit 5 gestarteten Prozessen pro Anderung ist das Ergebnis #hn-
lich, nur dass die Performance in diesem Fall leicht geringer ausfillt als im Unterfall 1.
Das Durchsatzverhalten ist dabei in Abbildung 5.9 und die Prozesszeiten in Abbildung
5.10 dargestellt. Der grofle Abstand beim Durchsatz zwischen den 1 und 5 Prozessbe-
grenzungen, kommt dadurch zustande, dass bei 1 die Prozessbegrenzung unterhalb der
Anzahl der zu startenden Prozessen pro Anderung ist.

Fiir die nachfolgenden Testfille wird eine Prozessbegrenzung von 10 Prozessen ver-
wendet, da diese einen guten Durchsatz bei akzeptablen Prozesszeiten hat.

5.2.4.3 Testfall 3: Anzahl der Transformationen

Ziel dieses Testfalls ist die Ermittlung des Einflusses der Transformationsanzahl pro
Propagationsprozess auf die Gesamtperformance des Systems. Wichtig hierbei waren
nicht die einzelnen Transformationszeiten, sondern wie sich mehrere Transformationen
auf die gesamte Prozesszeit und auf den Durchsatz auswirken, da diese Werte entschei-
dend fiir die Integration sind. In einem Propagationsskript konnen vom Empfang bis
zum Senden der Anderungen mehrere Transformationen ausgefiithrt werden. Dies ist
dadurch begriindet, dass die Komplexitdt der einzelnen Transformationen verringert
werden soll, d.h. mehrere einfache Transformationen statt einer komplexen. Ein weite-
rer Grund ist ein allgemeines Zwischenformat, das als Grundlage fiir die Integration mit
den einzelnen Systemen verwendet wird. Die Transformationen werden beschleunigt,
da im Propagationssystem ein internes Format verwendet wird (Abschnitt 3.4.2), wo-

146

5.2. EVALUIERUNG DER PERFORMANCE

4,5
4
73 //K
= 3
c
[T
.E 2,5 /)< 5 Prozesse
by /(/ e=fe== 10 Prozesse
w 2
] ey 15 Prozesse
N
e 15 =20 Prozesse
a
1 T
0,5 -
0 T T T T T T 1

200 500 1000 2000 5000 10000 20000
GeschaftsobjektgroRe [Bytes]

Abbildung 5.10: Einfluss der Prozessbegrenzung auf die Prozesszeiten (5 Prozesse pro
Anderung)

durch die Zustande zwischen den einzelnen Transformationen nicht serialisiert werden
miissen. Das interne Format des Prototypen ist DOM-Level-2.

In diesem Testfall wurden 5 Fille untersucht: 1-5 Transformationen. Den Sonder-
fall , keine Transformation“ wurde hier nicht untersucht, da fiir das Propagationssystem
von einem heterogenen Umfeld und nicht von einem homogenen ausgegangen wird. Das
Propagationsskript entspricht dem der vorangegangenen Testfille bis auf die Anzahl
der Transformationen. Das heifit, es enthélt eine Input-Deklaration, 1-5 Transformati-
onsbefehle und eine Propagation. Die Transformationen sind so definiert, dass sie zwi-
schen Input- und Output-Format hin und her transformieren. Als weitere Parameter
der Messungen wurden wieder die 70-30-Verteilung der Update-Héufigkeit (Abschnitt
5.2.4.1), die Begrenzung auf 10 Prozesse und die Cache-Hitrate 100% verwendet.

Als Ergebnis lisst sich anmerken, dass beim Durchsatz (Abbildung 5.11) bei grofer
werdenden Geschéftsobjekten der Einfluss der Transformationsanzahl abnimmt. Bei
den Prozesszeiten (Abbildung 5.12) nimmt der Einfluss dagegen zu. Greift man nun
wieder die Geschéftsobjektgrofle von 1000 Bytes heraus, so ergibt sich bei 1 Transfor-
mation einen Durchsatz von 19,7 Prozesse pro Sekunde, wihrend sich bei 5 Transfor-
mation ein Durchsatz von 10,7 ergibt, d.h. fast halbiert. Aber dennoch ist der Einfluss
geringer als man annimmt. Die Prozesszeiten sind dagegen 325 ms und 915 ms, was
dem dreifachen entspricht. Bei einer mittleren Geschéftsobjektgrofle von 5000 Bytes
betragt der Durchsatz 11 Prozesse pro Sekunde bei 1 Transformation und 7 Prozesse
bei 5 Transformationen, was ungefihr 36% weniger Durchsatz bedeutet. Bei den zwei
Werten (1000 und 5000) in Bezug auf den Durchsatz fillt schon die Einflussverkleine-
rung auf, die auch in Abbildung 5.11 zu erkennen ist. Die Prozesszeiten sind bei 5000
Bytes 888 ms und 1423 ms, was 37% entspricht. Dies ldsst sich dadurch erkliren, dass
zwischen den Kurven sich der Abstand kaum verédndert, aber der prozentuale Einfluss
geringer wird bei hoheren Werten.

147

KAPITEL 5: Evaluation des Propagationssystems

30
E 25
ﬁ —4—1 Trafo
o 20 -
° =2 Trafos
&, 15 «=pe=73 Trafos
‘E ==/ Trafos
210
G ==ie=5 Trafos
5
a 5

o

200 500 1000 2000 5000 10000 20000
Geschiftsobjektgrofle [Bytes]

Abbildung 5.11: Einfluss der Transformationsanzahl auf den Durchsatz

3,5
3
»2,5 —4— 1 Trafo
.§ 2 =2 Trafos
8 =3 Trafos
@ L5 =>¢=4 Trafos
2 1 ==ie=5 Trafos

o
[

o

200 500 1000 2000 5000 10000 20000
Geschiftsobjektgrofe [Bytes]

Abbildung 5.12: Einfluss der Transformationsanzahl auf die Prozesszeiten

148

5.2. EVALUIERUNG DER PERFORMANCE

w
o

N
wv
1

,

Durchsatz [Prozesse/s]
[y N
o o

=== Bedingungen

\ 2 Bedingungen
==fe==14 Bedingungen

/

wv
|

o

200 500 1000 2000 5000 10000 20000
Geschéftsobjektgrofle [Bytes]

Abbildung 5.13: Einfluss der Bedingungsanzahl auf den Durchsatz

5.2.4.4 Testfall 4: Anzahl der Bedingungen

Testfall 4 ist dem Testfall 3 dhnlich. Allerdings ist hier das Ziel, den Einfluss der Be-
dingungsanzahl im Propagationsskript zu messen. Diese Bedingungen treten dann auf,
wenn in bestimmten Féllen unterschiedliche Transformationen und Propagationen aus-
gefiihrt werden miissen oder wenn nur bei bestimmten Werten propagiert werden soll.
Das entspricht der sogenannte Filter-Funktionalitét, die durch bedingte Ausfithrung
realisiert werden kann. Als Propagationsskript wurde das Standardpropagationsskript
um die Anzahl von Bedingungen (maximal 4) erweitert. Die Bedingungen sind so
gewihlt, dass bei dem gegebenen Input der Pfad so durchlaufen wird, dass einmal
transformiert und propagiert wird. Die einzelnen Bedingungen beziehen sich auf das
Datum des Auftrags, wobei immer ein bestimmter Wert extrahiert und mit einer Zahl
verglichen wird. Das heifit fiir die Bedingungen 1-4:

1. Extraktion des Jahres und Gleichheitsvergleich
2. Extraktion des Monats und Gleichheitsvergleich
3. Extraktion des Tags und Gleichheitsvergleich

4. Extraktion des Tags und Ungleichheitsvergleich.

Der Einfluss auf die Performance hat sich als &uflerst gering herausgestellt und diese
machen sich nur im mittleren Bereich bemerkbar. Der Einfluss auf den Durchsatz ist in
Abbildung 5.13 und der Einfluss auf die Prozesszeiten ist in Abbildung 5.14 dargestellt.
Der geringe Einfluss lisst sich auf das Vorliegen der Anderungsnachricht im internen
DOM-Format zuriickfithren.

149

KAPITEL 5: Evaluation des Propagationssystems

2,5

2
o,
§ 1,5 #—0 Bedingungen
g ==fe==2 Bedingungen
(7] .
o 1 ==ie=4 Bedingungen
<
a

0,5
o T T T T T T 1

200 500 1000 2000 5000 10000 20000
GeschiftsobjektgroRle [Bytes]

Abbildung 5.14: Einfluss der Bedingungsanzahl auf die Prozesszeiten

5.2.4.5 Testfall 5: Cache-Hitrate

In diesem Testfall soll der Einfluss der Verwendung eines Cache auf die Performance
des Systems ermittelt werden. Durch den Cache kénnen Zugriffe auf die Datenbank
des Repositories verhindert werden und die Zugriffszeiten auf die Metadaten verkiirzen
sich. Dabei spielt die erreichte ,,Hitrate ein grofie Rolle. Sind viele Abhéngigkeiten
vorhanden, dann konnen nicht alle Abhéngigkeiten im Cache vorgehalten werden und
es wird eine niedrige Hitrate erreicht. Dies kommt durch das Fehlen und Austauschen
von Inhalten des Cache zustande.

Die Untersuchung unterteilt sich in verschiedene Hitraten, die zwischen den zwei
Extremen 0% und 100% liegen. Diese zwei Extreme représentieren , kein Cache® und
yausreichend grofer Cache”. Fiir die anderen Testreihen wurden 25%, 50% und 75% als
Hitrate angestrebt. Die angestrebte Hitrate ist die Hitrate, die fiir den Test vorgesehen
wurde und die reale Hitrate ist die, die durch den Cache-Manager festgestellt wurde.

Bei der theoretischen Hitrate von 25% wurde schlielich eine Hitrate von 28%
erreicht. Diese wurde durch 4 verschiedene Abhéngigkeiten realisiert, die jeweils auf
Anderungsbeschreibungen mit einem System-GOTyp-Paar reagieren. Die Verteilung
wurde auf 25% pro Anderung festgelegt.

Bei einer angestrebten Hitrate von 50% wurde effektiv 46% erreicht. Hier wurden
zwei verschiedene Anderungen mit je einer Abhiingigkeit realisiert. Jede der zwei Ande-
rungen kommt mit einer Wahrscheinlichkeit von 50% vor. Die angestrebte Hitrate von
75% wurde ebenfalls durch zwei Anderungen mit Abhéingigkeiten erreicht. Diesmal
wurde eine Verteilung der beiden Anderungen von 97% der einen Anderung und 3%
der anderen Anderung festgelegt. Effektiv wurde hierbei eine Hitrate von 77% erreicht.

Fiir alle Abhéngigkeiten wurde das Standardpropagationsskript wie bei den ande-
ren Test verwendet. Das bedeutet fiir die Transformationsskripte, dass auch die Stan-
dardtransformation verwendet wurde. Es wurden sowohl der Durchsatz als auch die
Prozesszeiten ermittelt.

150

5.2. EVALUIERUNG DER PERFORMANCE

30

E' 25 . gy

N - 28%

a 15 e 46%

s —T77%

310 - °

= 0,

S —3¥=100%
3

u

o

200 500 1000 2000 5000 10000 20000
GeschiftsobjektgroRe [Bytes]

Abbildung 5.15: Einfluss der Cache-Hitrate auf den Durchsatz

3
2,5
o, ——0%
c 2
3 ==28%
515 = 46%
§ =—=T77%
o 1 -
& ~=100%
0,5 M
O T T T T T T 1
200 500 1000 2000 5000 10000 20000
Geschaftsobjektgrofe [Bytes]

Abbildung 5.16: Einfluss der Cache-Hitrate auf die Prozesszeiten

151

KAPITEL 5: Evaluation des Propagationssystems

Die beiden Messungen Durchsatz (Abbildung 5.15) und Prozesszeiten (Abbildung
5.16) ergaben, dass der prozentuale Einfluss bei steigender Geschiftsobjektgrofie gerin-
ger wird. Beim Durchsatz ist dies auch beim realen Einfluss deutlich zu sehen. Bei klei-
nen und mittleren Groflen des gednderten Geschiftsobjektes tritt ein optimaler Einfluss
erst bei sehr hohen Werten ein, dann aber mit sehr groflen Performancesteigerungen.
Im Umkehrschluss bedeutet es, dass die Zugriffszeiten bei kleinen Geschéftsobjekten
einen grofien Einfluss haben.

Schaut man sich das Verhalten bei einer GeschéftsobjektgroBie von 1000 Bytes ge-
nauer an, so wird bei 0% ein Durchsatz von 7,2 Anderungen pro Sekunde erreicht und
bei 100% 19,71 Anderungen pro Sekunde, d.h. der Durchsatz erh6ht sich um das 2,66-
fache. Betrachtet man dagegen 10000 Bytes, so ergeben sich Durchséitze von 4,6 zu
7,71 Anderungen pro Sekunde, d.h. der Durchsatz steigert sich um das 1,67-fache, was
deutlich geringer ist als die oben erreichte Performancesteigerung.

Die Cache-Hitrate hat Einfluss auf die Prozesszeiten, da der Propagationsprozess
die Metadaten, die er benétigt, selber holt.

5.2.4.6 Testfall 6: Vergleich einer 1-zu-N- mit N x 1-zu-1-Abhéingigkeiten

Mit Testfall 6 sollen die zwei Arten, eine Anderung an mehrere Zielsysteme zu propa-
gieren gegeniibergestellt werden. Einerseits ist es moglich, eine Anderung an N Ziel-
systemen mit N Propagationsskripten zu propagieren, die jeweils eine Propagation
enthalten, d.h. es gibt N 1-zu-1-Abhéngigkeiten. Anderseits konnen die Propagationen
in einem Propagationsskript zusammengefasst werden, sodass eine 1-zu-N-Abhéngig-
keit entsteht. Allerdings muss hier erwdhnt werden, dass die Semantik im Fehlerfall
eine andere ist (vgl. Abschnitt 3.10.3), da jeder Abhéngigkeit eine Transaktionssphére
zugeordnet ist. D.h. fiir die beiden Realisierungen, dass im ersten Fall eine Propagation
und im zweiten Fall alle Propagationen im Fehlerfall zuriickgesetzt werden.

Die Propagationsskripte wurden so gehalten, dass sie dem jeweiligen Vergleichssze-
nario entsprechen. D.h. fiir das Szenario mit zwei Zielsystemen, dass bei zwei Propa-
gationsskripten (1-zu-1-Abhéngigkeiten) jeweils eine Transformation und eine Propa-
gation enthalten sind. Bei einem Propagationsskript (1-zu-2-Abhéngigkeit) existieren
zwei parallele Pfade, die jeweils eine Transformation und eine Propagation enthalten.

Theoretisch gesehen unterscheiden sich die beiden Varianten nur durch die Anzahl
der Lesezugriffe. Bei dem N 1-zu-1-Fall sind es N Zugriffe wihrend es bei dem 1-zu-N-
Fall nur einer ist. Da die zuverlidssige Multicast-Warteschlange, so wie sie in Abschnitt
3.7.2.3 eingefiihrt wurde, nicht vorhanden ist und diese simuliert werden muss, kommen
noch N Schreibzugriffe fiir die zuverldssige Multicast-Warteschlange hinzu. Um die
beiden Varianten zu vergleichen, wurde der Durchsatz an Anderungen gemessen. Der
seither verwendete Prozessdurchsatz kann hier nicht zum Vergleich herangenommen
werden, da sich die beiden Ansitze durch die Anzahl von Prozessen pro Anderung
unterscheiden. Weiterhin kénnen die Prozesszeiten nicht verwendet werden, da diese
sich anhand der zugeordneten Aufgaben stark unterscheiden wiirden.

Das Ergebnis der Messung (Abbildung 5.17) ist, dass die 1-zu-N-Variante mit ei-
nem Propagationsskript eine hohere Performance hat als die N x 1-zu-1-Variante mit N
Propagationsskripten. Dieser Vorsprung wiirde sich noch verringern, wenn — wie oben

152

5.2. EVALUIERUNG DER PERFORMANCE

w
o

N
(2]
I

== 1x1-zu-1 Abh.

1x1-zu-2-Abh.
== 2x1-zU-1 Abh.
=== 1x1-zU-5-Abh.
=== 5x1-zu-1 Abh.

N
o

=
o

w
I

Durchsatz (Anderungen/s)
=
(0]

o

200 500 1000 2000 5000 10000 20000
Geschéftsobjektgrofle [Bytes]

Abbildung 5.17: Einfluss der Abhéingigkeitsart (1-zu-N zu N x 1-zu-1) auf den Durch-
satz

erwahnt — die zuverldssige Multicast-Warteschlange optimiert wiirde. Betrachtet man
wieder eine mittlere Geschéftsobjektgrofie von 1000 Bytes, so ergeben sich folgende
Durchsatzwerte (Anderungen pro Sekunde): 19,19 fiir eine 1-zu-1-Abhingigkeit, 10,94
fiir eine 1-zu-2-Abhéngigkeit, 8,62 fiir zwei 1-zu-1-Abhéngigkeiten, 5,75 fiir eine 1-zu-
5-Abhéngigkeit und 3,51 fiir fiinf 1-zu-1-Abhéngigkeiten. Die beiden Varianten unter-
scheiden sich durch eine 27-prozentige Performancesteigerung bei zwei Propagationen
und eine 64-prozentige Performancesteigerung bei fiinf Propagationen.

Léasst man die Transaktionssemantik aufler acht, ist die Variante die Propagationen
in einem Propagationsskript zu kombinieren der N-Propagationsskriptvariante vorzu-
ziehen.

5.2.4.7 Testfall 7: Anzahl der wartenden M-zu-N-Prozesse

Ziel dieses Tests war die Messung des Einflusses der wartenden M-zu-N-Prozesse (vgl.
Abschnitt 4.2) auf die Performance (Durchsatz). Wenn mehrere M-zu-N-Prozesse auf
Anderungsbeschreibungen warten, miissen Anderungsbeschreibungen fiir die Zuord-
nung zu M-zu-N-Prozessen gefiltert werden, was Rechenzeit kostet. Fiir das Filtern
miissen die Zustdnde geparst und die PCL-Bedingungen (siche Abschnitt 3.6.1 und
4.2.4) evaluiert werden.

Die Messungen wurden so durchgefiihrt, dass jede ankommende Anderungsbeschrei-
bung von jedem M-zu-N-Prozess anhand von System und Geschéftsobjekttyp erwartet
wurde, aber dennoch die Filterbedingungen nicht erfiillt waren. Es wurden Messungen
durchgefiithrt mit folgender Anzahl von wartenden M-zu-N-Prozessen: 0, 25, 50, 75,
100. Die recht niedrigen Zahlen haben den Hintergrund, dass dieses Konzept nicht so
haufig fiir die Propagation von Anderungen gebraucht wird. Die M-zu-N-Prozesse wer-
den am Anfang gestartet, was durch die Versendung von neuen Kunden passiert. Der
M-zu-N-Prozess wartet schliellich auf das Eintreffen eines Kundenauftrags. Es werden

153

KAPITEL 5: Evaluation des Propagationssystems

w
o

N
(a1
1

N
o

%= 0 M-zu-N-Prozesse
25 M-zu-N-Prozesse

50 M-zu-N-Prozesse
e 75 M-zu-N-Prozesse
100 M-zu-N-Prozesse

[any
o
1

v

Durchsatz [Anderungen/s]
=
(0]

o

200 500 1000 2000 5000 10000 20000
Geschaftsobjektgrofle [Bytes]

Abbildung 5.18: Einfluss der wartenden M-zu-N-Prozesse auf den Durchsatz

beim anschlieBenden Test nur Kundenauftriige verschickt, d.h. jede Anderung ist ei-
ne potenzielle Anderung fiir die wartenden M-zu-N-Prozesse, die Filterbedingung tritt
aber nie ein, so dass der Prozess nie gestartet wird und so dem System erhalten bleibt
und die Anzahl wartender M-zu-N-Prozesse konstant bleibt.

Schaut man sich die Ergebnisse des Tests in Abbildung 5.18 (Durchsatzverhalten)
an, so stellt man fest, dass der grofite Einbruch zwischen 0 und 25 wartenden Prozessen
liegt. Dies ist durch das benotigte Parsen begriindet, das einen relativ hohen Zeitbedarf
gegeniiber dem relativ kleinen bei der Bedingungsevaluation hat. Weiterhin konnte
festgestellt werden, dass der Einfluss mit steigender Geschéftsobjektgrofle abnimmt.

5.2.4.8 Testfall 8: Integration externer Daten

Bei diesem Testfall sollte ermittelt werden, wie sich die in Abschnitt 4.1 eingefiihrte
Integration von Daten aus Drittsystemen auf die Performance des Gesamtsystems aus-
wirkt. Es wurden ebenfalls die beiden Implementierungsvarianten, schichtenbasierter
Transformationsansatz [HCMO05] und Parameterbindung zur Laufzeit (vgl. Abschnitt
4.1.6.1), verglichen.

Gemessen wurde mit drei unterschiedlichen Propagationsskripten: keine Einbindung
von externen Daten, 1 und 2 externe Datenanbindungen. Um die Messungen durch-
zufithren, wurde wieder die Propagation von Kundenauftrédgen verwendet. Das externe
System liefert den aktuellen Kreditstand (Datenanbindung 1) und die Kreditobergren-
ze (Datenanbindung 2) des Kunden. Diese sollen dann in den Kundenauftrag einge-
tragen und an das Zielsystem verschickt werden. Es gibt folgende Transformationen
in den Propagationsskripten: Zugriffsberechtigung, Anfragen erzeugen und Integration
der Ergebnisse mit der Anderungsbeschreibung.

Das externe System muss zuerst die Anfrage entpacken und dann die Zugriffsberech-
tigung iberpriifen. Die Tabelle, welche die Zugriffsberechtigungen enthélt, besteht aus
100 Eintrégen. Ist diese Uberpriifung erfolgreich, so wird die enthaltene SQL-Anfrage

154

5.2. EVALUIERUNG DER PERFORMANCE

35 ==¢==(Datendienste

1 Datendienst
(Schicht)

\ 92 Datendienste
(Schicht)
\ == 1 Datendienst
\ (Parameterbindung)
#=2 Datendienste

e (Parameterbindung)

N w
(0] o
!

[any
(2}

[
o

Durchsatz [Prozesse/s]
N
o

'2

500 1000 2000 5000 10000 20000
GeschiftsobjektgroRe [Bytes]

Abbildung 5.19: Einfluss der Integration von externen Daten auf den Durchsatz

ausgefithrt und das Ergebnis in XML verpackt. Dabei wird auf eine Kundentabelle
zugegriffen, die 1000 Eintrége hat. Das Ergebnis wird schliellich an das Propagations-
system zuriickgesendet.

Auflerdem wurden in den Messungen die zwei vorgestellten Arten, um Datendienste
aufzurufen verglichen (vgl. Abschnitt 4.1.6.1): Transformationsansatz mit Schichten
(Schicht) und Paramaterbindungsansatz zur Laufzeit (Parameterbindung).

Die Messungen ergaben, dass der Durchsatz (Abbildung 5.19) bei niedriger Geschéfts-
objektgrofle stark einbricht. Allerdings wird davon ausgegangen, dass durch die hohen
Wartezeiten der Durchsatz verbessert werden kann, indem die maximale Anzahl von
Prozessen bei dem Zugriff auf externe Daten kurzfristig hoch gesetzt wird. Dies muss
allerdings noch durch eine entsprechende Implementation und Messungen evaluiert
werden.

Die Prozesszeiten (Abbildung 5.20) sind bei dem Zugriff auf externe Daten deutlich
langer, verhalten sich aber weitgehend konstant im unteren Bereich. Dies ergibt sich
durch die ausschlaggebenden Kommunikationszeiten mit dem Drittsystem. Da zu die-
sen Zeiten das Propagationssystem auch nicht ausgelastet ist, konnten in diesen Féllen
neue Prozesse gestartet werden, die {iber die Prozessbegrenzung hinausgehen, was dann
zu einem hoheren Durchsatz fithren wiirde.

5.2.4.9 Testfall 9: Einhaltung der Anderungsreihenfolge

Im Testfall 9 wurde der Einfluss der Reihenfolgeeinhaltung (siehe Abschnitt 3.9) auf die
Performance ermittelt. Es wurde die FIFO-Propagationsordnung verwendet, wobei der
Test so ausgelegt war, dass alle Anderungsbeschreibungen geordnet werden miissen.
Die Messungen ergaben fiir die Reihenfolgeeinhaltung — bis auf feststellbare Warte-
zeiten (langere Prozesszeiten) — keinen Einfluss auf den Durchsatz. Dies ist dadurch
begriindet, dass ein wartender Prozess keine Belastung fiir den Prozessor darstellt und
dadurch die anderen Prozesse schneller abgearbeitet werden kénnen.

155

KAPITEL 5: Evaluation des Propagationssystems

/)< ==¢==() Datendienste

/ 1 Datendienst
/ /‘* (Schicht)

==fe==2 Datendienste

(Schicht)
=== 1 Datendienst

M (Parameterbindung)
=2 Datendienste

——Oﬂ.ﬂ!—,M

500 1000 2000 5000 10000 20000
Geschiaftsobjektgrofe [Bytes]

Prozesszeiten [s]

O R, N W b U1 OO N O O

(Parameterbindung)

Abbildung 5.20: Einfluss der Integration von externer Daten auf die Prozesszeiten

5.2.5 Zusammenfassung

In diesem Abschnitt wurden mehrere Testfille untersucht. Bei einem Update wird die
Anderungsbeschreibung durch zwei Zusténde groBer und damit auch die Performance
kleiner. In Testfall 1 wurde der Einfluss der Update-Haufigkeit auf die Performance
untersucht. Dabei stellte sich heraus, dass der Einfluss auf die Prozesszeit mit hoher
werdenden Geschéaftsobjektgrofien starker wird und beim Durchsatz abnimmt. Bei Test-
fall 2 (Prozessbegrenzungen) wurde festgestellt, dass ein Deadlock auftritt, wenn die
Prozessbegrenzung kleiner ist als die Anzahl der gestarteten Prozesse pro Anderung.
Um dies zu verhindern, musste der Ablauf des Prozessmanagers angepasst werden, so
dass die Propagationsprozesse erst nach der Transaktion gestartet werden. Wahrend
die Anzahl der Transformationen pro Propagationsskript einen merklichen Einfluss be-
sitzt, hat die Anzahl der Bedingungen keinen ausschlaggebenden Einfluss. Der Einfluss
der Cache-Hitrate nimmt mit grofleren Geschéftsobjekten ab und wirkt sich erst bei
grofen Hitraten aus. AuBerdem wurde festgestellt, dass 1 Propagationsskript (1-zu-
N-Abhéngigkeit) N Propagationsskripten (1-zu-1-Abhéngigkeit) vorzuziehen ist, wenn
man die Transaktionssemantik aufler acht lésst.

5.2.6 Vergleich mit Anforderungen aus der Industrie

Mit den Messungen in diesem Kapitel sollte ein erster Eindruck von der Leistungsfiahig-
keit des Propagationssystems ermittelt werden. Diese Werte sollen nun mit géngigen
Werten aus der Industrie verglichen werden. Nimmt man zum Beispiel die Verkaufszah-
len von Mercedes-Benz, Smart und Maybach zusammen (573.900 verkaufte Autos im
Jahr 2005 [Siid05]), so ergibt das ungefédhr 573.900 Kundenauftrége. Rechnet man dies
auf eine Sekunde herunter, ergeben sich ungefiahr 0,03 Kundenauftriage pro Sekunde (bei

156

5.3. VERGLEICH MIT EAI-PRODUKTEN

einer 5-Tage-Woche und Dreischichtbetrieb)?. Schaut man sich die Testergebnisse an,
so ist dies ein Durchsatz, der selbst durch Einbindung von zwei Drittsystemen erreicht
werden kann. Schwer abzuschétzen ist, wie viele Produktionsauftrige aus den Kunden-
auftragen entstehen und welche Belastung hieraus entsteht. Ein Produktionsauftrag ist
ein interner Auftrag zur Herstellung eines Produktes. Bei der Beziehung zwischen Pro-
duktionsauftrigen und Kundenauftragen handelt es sich um eine M-zu-N-Beziehung.
Weitaus hohere Zahlen werden Daten aus MDE- und BDE-Systemen (Maschinenda-
tenerfassung und Betriebsdatenerfassung) ergeben. Bei der Maschinendatenerfassung
werden Daten von Produktionsressourcen und bei der Betriebsdatenerfassung Riickmel-
dungen zu aktuell abgearbeiteten Produktionsauftrigen erfasst. Die anfallenden Daten
bei der BDE héngen hauptséichlich von der Anzahl von Meldepunkten und Produkti-
onsauftragen ab. Diese Zahl lédsst sich wiederum schwer abschétzen, da keine genauen
Zahlen zu Produktionsauftragen vorliegen. Deswegen wird eine grobe Abschéitzung
durchgefiihrt. Gehen wir aber von 30 Produktionsauftrigen pro Kundenauftrag und
10 Meldepunkten aus, so ergeben sich 9 Meldungen pro Sekunde. Untersucht man dar-
aufhin die Messungen von z.B. Abbildung 5.5, so stellt man fest, dass dies bis zu einer
Geschéftsobjektgrofie von 5000 Bytes erreicht wird. Diese Grofle sollte fiir die Verarbei-
tung von Meldungen ausreichen. Ermittelt man nun die Summe aus Kundenauftrégen,
Produktionsauftrigen und Auftragsmeldungen, so ergibt sich eine leicht hohere Zahl
von 9,93 Propagationen pro Sekunde. Dies wird auch von dem erwahnten Testfall bis
ungefahr 5000 Bytes erreicht. Nimmt man jetzt allerdings noch an, dass 5 Zielsysteme
(vgl. Abbildung 5.17) pro Propagation gedndert werden sollen, so reicht die Leistung
des Propagationsmanagers nicht aus und es muss an eine Verteilung (Abschnitt 4.3)
oder schnellerer Hardware gedacht werden. Ebenfalls kritisch ist die Einbindung von
Drittsystemen, da dort der Durchsatzeinbruch durch Wartezeiten begriindet ist. Der
Durchsatz miisste aber durch eine intelligente Wahl von Prozessbegrenzungen erhoht
werden kénnen.

5.3 Vergleich mit EAI-Produkten

Es existiert auf dem Markt eine Vielzahl von EAI-Produkten (Enterprise Applica-
tion Integration, vgl. Abschnitt 2.3) bzw. Enterprise-Service-Bus-Produkten (ESB-
Produkte), die die Integration von Informationssystemen ermoglichen. Diese konnen
fiir die Entwicklung von Integrationsanwendungen verwendet werden, die meist an-
hand von Prozessen definiert werden, d.h. die Integrationsebene ist vor allem die Pro-
zessebene. Beim Propagationssystem werden allerdings Informationssysteme auf der
Datenebene durch die Weiterleitung von Datenédnderungen integriert. Das bedeutet
aber nicht, dass diese Produkte nicht ebenfalls fiir die Integration von Daten eingesetzt
werden konnen, was von den Herstellern auch teilweise vorgeschlagen wird. Bei den
Produkten handelt es sich bei den ausgetauschten Daten um Daten ohne bestimmte
Semantik, d.h. es muss sich nicht unbedingt um eine Datenénderung handeln. Im Ver-

2 Anmerkung: Kundenauftrige werden nicht im Dreischichtbetrieb angenommen und eingepflegt.
Allerdings trifft es auf die Produktionsdaten zu, die spéter eingefiihrt werden und die ein groéferes
Aufkommen haben als die Kundenauftrige

157

KAPITEL 5: Evaluation des Propagationssystems

gleich dazu existiert beim Propagationssystem die Semantik, dass ausgetauschte Ob-
jekte Anderungsbeschreibungen von Geschiftsobjekten sind. Die Nachrichten der EAI-
und ESB-Produkte sind auflerdem fiir nur einen Objektzustand gedacht. Durch eine
entsprechende Definition der Nachrichten kann der Transport von zwei Zustidnden simu-
liert werden. Allerdings miissen die Transformationsskripte und die Korrektheitsiiber-
priifung entsprechend definiert werden, d.h. sie miissen die Hilfsstruktur kennen und
haben dadurch keine Transparenz in der Verarbeitung. Die Hilfsstruktur mit integrier-
ten Geschiftsobjektzustdnden muss schlielich fiir alle Integrationsanwendungen bzw.
Propagationsskripte definiert werden, was eine grofle Fehlerquelle darstellt.

Die betrachteten Produkte sind der BizTalk-Server von Microsoft, die SOA-Suite
von Oracle und der Websphere Message Broker von IBM. Dies ist nur eine Auswahl von
EAI-Produkten. Die meisten Produkte sind auf einer abstrakten Ebene sehr dhnlich.
Sie unterscheiden sich in ihren Produkteigenschaften, arbeiten aber auf den gleichen
Prinzipien. Das Produkt, welches von den dreien am meisten abweicht, ist der Web-
sphere Message Broker, da dieser nicht einen reinen Geschéftsprozessansatz hat.

5.3.1 BizTalk

Der BizTalk Server [WML*05, AHH'02, Mic08] ist eine Losung zur Implementierung
von Geschéftsprozessen. Im Vordergrund steht dabei die Orchestration von Geschéftspro-
zessen, d.h. das Zusammenspiel mehrerer Geschéftsprozesse. Ein Beispiel hierfiir ist
der Geschéftsprozess fiir eine Bestellung, der direkt mit dem Prozess des Lieferan-
ten zusammenarbeitet, der die Kundenauftrige bearbeitet. Die Sprache zur Definition
von Geschéiftsprozessen ist XLang. Die Geschiftsprozesse kénnen in BPEL [ACD103,
Oas07] exportiert oder importiert werden. Allerdings kommt der Entwickler mit der
darunter liegenden Sprache nicht in Kontakt, da er ein graphisches Werkzeug (Orche-
stration Designer) verwendet. Die Geschiftsprozesse basieren auf dem Austausch von
Nachrichten, die mit verschiedenen Technologien kommuniziert werden kénnen (z.B.
Warteschlangen). Nachrichten kénnen mittels Transformationsskripten angepasst wer-
den, die {iber den BizTalk-Mapper erzeugt werden. Der BizTalk-Mapper ist ein graphi-
sches Werkzeug zur Definition von Transformationen, vergleichbar mit Altova MapFor-
ce. Die Mapping-Definitionen (eigenes Mapping-Format) werden schlielich in XSLT
iiberfiihrt.

Grundsétzlich kann der BizTalk-Server auch fiir den Verwendungszweck EAT einge-
setzt werden. In diesem Fall werden mit dem Orchestration Designer keine Geschéftspro-
zesse im eigentlichen Sinn erzeugt, sondern EAI-Anwendungen. Gerade die Vielzahl
von bereitgestellten und verfiigharen Adaptern und Transportmedien erméglicht den
Einsatz als EAI-Werkzeug.

Vergleicht man jetzt BizTalk-Server mit dem Propagationssystem, so fillt als Erstes
das Anwendungsgebiet auf. Der BizTalk-Server dient zur Integration von Geschéftspro-
zessen sowie EAI. Das Propagationssystem dient zur Datenintegration auf Basis von
Anderungspropagationen. Prinzipiell lassen sich solche Anderungsbeschreibungen auch
mit dem BizTalk-Server austauschen, allerdings ist der BizTalk-Server nicht fiir diesen
Anwendungsfall spezialisiert. Dies zeigt sich zuerst einmal in der Unterstiitzung von

158

5.3. VERGLEICH MIT EAI-PRODUKTEN

zwei Zustdnden im Propagationssystem. Dies muss direkt im Nachrichtenformat co-
diert werden und der BizTalk-Server bietet keine Transparenz fiir dessen Behandlung,
d.h. der Mapping-Ersteller muss Wissen sowohl iiber die Hilfsstruktur als auch tiber die
Struktur des Zustandes haben. Das Gleiche gilt fiir die XML Schemas, die ebenfalls auf
der Ebene der Hilfsstruktur definiert werden miissen. Des Weiteren fehlt in BizTalk die
Anwendungstransparenz, d.h. das Quellsystem miisste direkt mit dem jeweiligen Pro-
pagationsskript kommunizieren bzw. ein Integrationsentwickler konnte dies mittels der
spezifischen Konfiguration von Channels simulieren, was jedoch im Propagationssys-
tem automatisch funktioniert. Aulerdem werden in BizTalk keine Konflikte behandelt,
was aber durch den hier vorgestellten Ansatz (vgl. Abschnitt 3.8) leicht realisierbar
ware, da dieser Ansatz auf zwei Zustdnden basiert und im Adapter gehandhabt wird.
Ein weiterer Vorteil des Propagationssystems ist die Moglichkeit einer recht einfachen
Darstellung der Propagationsskripte durch die Abhéngigkeitsansicht (vgl. Abschnitt
3.7.3.3).

5.3.2 Oracle SOA Suite

Die Oracle SOA Suite [Ora06, Ora07, Ora08] ist ein Produkt, mit dem ebenfalls Ge-
schiiftsprozesse realisiert werden konnen. Im Vordergrund steht die Realisierung ei-
ner Service-oriented Architecture (SOA). AuBerdem konnen Web Services iiber Orche-
strationen realisiert werden. Die Grundlage fiir die Orchestration bildet die Sprache
BPEL [ACD"03, Oas07]. Dadurch wird die Verwandschaft zu BizTalk klar. Besonders
erwahnenswerte Technologien sind die Domain Value Maps und Cross Reference Ta-
bles. Mit Domain Value Maps kénnen Werte, wie beispielsweise Abkiirzungen auf aus-
geschriebene Worte, abgebildet werden. Cross Reference Tables dienen zum Mapping
der IDs aus unterschiedlichen Systemen. Diese beiden Technologien sind in dem Propa-
gationssystem nicht realisiert, sondern miissen durch Drittsysteme (vgl. Abschnitt 4.1)
eingebunden werden. Dies kann aber in zukiinftigen Erweiterungen realisiert werden.

Der grofite Unterschied stellt, wie bei BizTalk, das Anwendungsgebiet dar. Die Fo-
kussierung liegt hier auf der Orchestration von Web Services, statt auf der Integration
von Informationssysteme auf der Datenebene. Um Oracle als Datenintegrationssys-
tem einzusetzen, miisste die Anwendungstransparenz aufgegeben werden bzw. durch
zusétzliche Definition von Routing Rules im Oracle Mediator simuliert werden. Des
Weiteren miisste die Hilfsstruktur zusammen mit den beiden Zusténden kodiert wer-
den und XML Schemas und Transformationsskripte kénnten nicht auf der Ebene der
Zusténde definiert werden. Ebenfalls konnte der hier entwickelte Konflikterkennungs-
mechanismus zum Einsatz kommen, da auch hier Adapter eingesetzt werden, die die
Konflikterkennung realisieren kénnen.

5.3.3 Websphere Message Broker

Der Websphere Message Broker [IBM08b, IBM08a, IBMO08c] ist ein Enterprise Service
Bus (ESB) von IBM, wobei es noch zwei weitere ESB-Produkte von IBM gibt. Dieses
Produkt wurde zum Vergleich ausgewéhlt, da es Websphere M(Q verwendet, sowie das

159

KAPITEL 5: Evaluation des Propagationssystems

Propagationssystem.

Das Prinzip von Websphere Message Broker ist, dass man Nachrichtenfliisse (Messa-
ge flows) definiert. Diese entsprechen dem Datenfluss eines Workflows. Diese Nachrich-
tenfliisse basieren auf einer IBM-spezifischen Sprache. Es existieren Quellen und Sen-
ken, Transformationen mit XSLT oder sogenannte Nachrichten-Maps. Die Nachrichten-
Maps konnen graphisch erstellt werden. Zusétzlich gibt es die Sprache ESQL (Extended
SQL). Sie ist eine Sprache zur Datendefiniton und Manipulation von Daten innerhalb
eines Nachrichtenflusses. Diese Sprache kann zum Beispiel in Berechnungsknoten und
Filterknoten eingesetzt werden. Des Weiteren konnen Funktionen in ESQL erzeugt
werden, die wiederum in Mappings eingesetzt werden konnen.

Wie bei den anderen Produkten steht hier im Vordergrund der Austausch von
Nachrichten, die noch keine spezifische Semantik haben. Dies hat zur Folge, dass die
Zusténde in einer Nachricht codiert werden miissen, was Auswirkungen auf die Trans-
parenz der Schema-Definition und die Transformation hat. Des Weiteren existiert keine
Integrationsanwendungstransparenz, wie beim Propagationssystem. Das bedeutet, dass
ein Adapter die Integrationsanwendungen kennen muss, wiahrend bei dem hier vorge-
stellten Ansatz nur das Propagationssystem bekannt sein muss. Das Propagationssys-
tem verteilt dann selbsténdig die Anderungsbeschreibungen auf die einzelnen Prozesse.
Der in dieser Arbeit entwickelte Mechanismus zur Konflikterkennung kénnte auch hier
zum Einsatz kommen, sofern zwei Zustdnde verwendet werden. Die Dokumentation
macht keine Aussage iiber eventuelle Algorithmen zur Einhaltung der Reihenfolge.

5.3.4 Schlussfolgerung

Die hier vorgestellten Produkte lassen sich nur bedingt vergleichen, da hier oftmals die
Integration von Prozessen (Orchestration) im Vordergrund steht und nicht wie im Pro-
pagationssystem die Integration von Daten. Die Kodierung von zwei Zustdnden in den
Nachrichten ergibt allerdings Probleme, da dadurch Transparenz aufgegeben werden
muss. Noch problematischer ist die Aufgabe der Integrationsanwendungstransparenz,
d.h. Informationssysteme miissen die Integrationsanwendung kennen bzw. den Propa-
gationsprozess. Fiir die von den Produkten angestrebte Anwendung ist dies aber nicht
von Nachteil, sondern stellt sich eher als Vorteil heraus. Fiir ein reines Anderungs-
propagationssystem ist dies aber ein Nachteil, da in diesem Fall die entsprechenden
Propagationsprozesse den angebundenen Informationssystemen unbekannt bleiben und
das Propagationssystem die Verteilung intern regelt. Die Konfliktbehandlung ist von
allen drei untersuchten Systemen nicht vorgesehen. Uber die Reihenfolgeeinhaltung
wird in den Systembeschreibungen keine Aussage gemacht. Sie kann deswegen nicht
genauer untersucht werden. Beziiglich der vergleichbaren Punkte sind diese Systeme
also nur bedingt als Propagationssystem einsetzbar, da wichtige Eigenschaften fehlen,
wie die Transparenz der Integrationsanwendung, die Anzahl von Anderungszustinden,
die Einhaltung der Reihenfolge sowie die Konflikterkennung und -auflésung.

160

KAPITEL 6

Schlussfolgerung und Ausblick

In diesem Kapitel werden die wichtigsten Punkte zusammengefasst und Schlussfolge-
rungen aus der Arbeit gezogen. Des Weiteren wird ein Ausblick auf zukiinftige For-
schungsarbeiten gegeben, die im Zusammenhang mit der Anderungspropagation fiir
heterogene Systeme durchgefiithrt werden kénnten.

6.1 Schlussfolgerungen

In dieser Arbeit wurde ein Integrationssystem entwickelt, das Geschéftsobjektanderun-
gen propagiert. Dadurch soll erreicht werden, dass die Daten zwischen den einzelnen
Informationssystemen konsistent bleiben. Konsistenz ist dabei so definiert: Befindet
sich das Gesamtsystem in einem inkonsistenten Zustand und es erfolgen keinerlei ex-
terne Anderungen mehr, die weitere Inkonsistenz verursachen, wird das Gesamtsys-
tem nach einer gewissen Zeit wieder in einem konsistenten Zustand sein, sofern alle
bendétigten Abhéngigkeiten definiert wurden. Die Zeitdauer bis das Gesamtsystem wie-
der konsistent ist, hingt von folgenden Faktoren ab: Die Dauer bis eine Anderung
in einem Quellsystem erkannt wird, die Warteschlangenléngen vor dem Propagations-
system sowie den Zielsystemen, Verarbeitungsdauer im Propagationssystem und die
Zeitdauer zum Einspielen der Anderung im Zielsystem. Die Technologie Update Propa-
gation von replizierten Datenbanken wurde genauer untersucht (Abschnitt 3.1), da bei
dieser Technologie viele Varianten zur Propagation von Anderungen erforscht wurden
und deshalb gewisse Verfahren auch fiir ein solches Propagationssystem geeignet sind
(z.B. Lazy Replikation). Die Integration mittels des Anderungspropagationssystems
befindet sich also auf der Datenebene, d.h. es werden Daten miteinander integriert.
Ziel der Arbeit war es die Autonomie der integrierten Informationssysteme soweit wie
moglich beizubehalten und eine hohe Heterogenitéit zwischen den Systemen zuzulassen.
Die Autonomie wurde durch eine starke Entkopplung der Informationssysteme erreicht.
Die Informationssysteme benétigen keine Kenntnis von anderen Informationssystemen

161

KAPITEL 6: Schlussfolgerung und Ausblick

mit denen sie integriert sind. Des Weiteren kann durch den Einsatz von Adaptoren ihre
Unabhiingigkeit vom Anderungspropagationssystem erreicht werden. Die Verwendung
von persistenten und asynchronen Warteschlangen ermoglicht weiterhin eine Entkopp-
lung der Informationssysteme vom Propagationssystem. Die Heterogenitéat wird durch
Transformation der Anderungen und die Einbindung von Daten aus Drittsystemen iiber
sogenannte Datendienste (Abschnitt 4.1) iiberwunden. Weitere wichtige Eigenschaften
eines solchen Propagationssystem sind eine hohe Zuverléssigkeit, die Einhaltung der
Reihenfolge und die Erkennung und Auflssung von Anderungskonflikten.
Die wichtigsten Beitrdge der Arbeit sind im Folgenden aufgelistet:

162

Die Entwicklung eines Propagationssystems fiir autonome und heterogene Infor-
mationssysteme auf Basis der Technologie Update Propagation (Abschnitt 3.1).

Die Definition von Anderungsbeschreibungen (Abschnitt 3.2.2), die der Propaga-
tion von Geschéftsobjektdnderungen zwischen heterogenen und autonomen Sys-
temen gerecht werden.

Die Propagation von zwei Zustéinden (vor und nach der Anderung, 3.2.2). Dies
ermoglicht die Berechnung von Anderungsdeltas innerhalb des Propagations-
systems und das Erkennen der Anderungsarten von Implementationsobjekten.
Geschéftsobjekte konnen aus mehreren Implementationsobjekten bestehen, die
abweichende Anderungsarten haben. Zum Beispiel kénnen bei der Anderung ei-
ner Bestellung Bestellposten hinzukommen oder gel6scht werden.

Das Quellsystem muss keine Kenntnis haben, in welchen Integrationsanwendun-
gen es teilnimmt oder welche Propagationsskripte fiir seine Anderungen existie-
ren: Integrationsanwendungstransparenz

Die Entwicklung der Sprache XML Propagation Definition Language (XPDL,
Abschnitt 3.5) zur Definition von Propagationsskripten.

Die Sprache Propagation Condition Language (PCL, Abschnitt 3.6.1) auf Basis
von XPath fiir die Definition von Bedingungen zwischen Zusténden.

Der Entwickler der Propagationsskripte, Transformationsskripte und Schemas
muss kein Wissen iiber die Anzahl der Anderungszustinde der verarbeiteten
Anderungsbeschreibung haben. Transformationsskripte und Schemas werden fiir
einen Zustand entwickelt. Dies wird hier Zustandstransparenz bezeichnet.

Eine Konflikterkennung fiir Anderungskonflikte auf Basis von Zustinden (Ab-
schnitt 3.8)

Eine Abhéngigkeitsansicht (Abschnitt 3.7.3.3) zur einfachen Erstellung von Pro-
pagationsskripten, die die Abhéngigkeiten der einzelnen Geschéftsobjekte/Sys-
teme darstellt.

Die Definition und Einbindung von Datendiensten fiir das Propagationssystem
(Abschnitt 4.1).

6.2. AUSBLICK

Bei einem Einsatz des entwickelten Propagationssystems innerhalb des Sonderfor-
schungsbereichs, bei dem drei Systeme integriert wurden, hat sich die Praxistauglich-
keit des Ansatzes herausgestellt (Abschnitt 5.1). Die durchgefiihrte Evaluation der
Performanz (Abschnitt 5.2) sind zu einem positiven Ergebnis gekommen, die sich mit
gingigen Anforderungen der Industrie (Abschnitt 5.2. 6) messen lassen konnen. Aller-
dings muss angemerkt werden, dass die Erkennung von Anderungen in manchen Infor-
mationssystemen schwierig sein konnte, so dass héufig Eingriffe in das System nétig
werden, wie z.B. Skripte anpassen oder neu entwickeln. Allerdings ist das langfristi-
ge Ziel, dass Informationssysteme einen Propagationsstandard unterstiitzen und damit
die Erkennung von Anderungen direkt im System gehandhabt wird, ohne dass die In-
formationssysteme angepasst werden miissen und die erkannten Anderungen dann an
ein Propagationssystem weitergeleitet werden.

6.2 Ausblick

Der Propagationsmanager kann erweitert werden, um die Technologien ID Mapping
(Cross Reference Tables) und Domain Value Mapping (Abschnitt 5.3.2) zu unterstiitzen.
Bei Ersterem werden die IDs der unterschiedlichen Systeme aufeinander abgebildet. Das
Domain Value Mapping ermoglicht die Transformation von Werten. Zum Beispiel kann
damit ,,Bundesrepublik Deutschland* auf ,BRD*“ abgebildet werden und umgekehrt.
Das Mapping von Werten wird bisher im Propagationssystem durch die Einbindung
von Drittsystemen realisiert. Allerdings kénnte durch direkte Speicherung der Tabellen
im Repository, die Performanz erhéht werden.

Die zustandsbasierte Konflikterkennung muss in einem solchen Propagationssys-
tem noch genauer erforscht werden. Aulerdem koénnte die Konfliktauflosung durch so
genannte Merge-Funktionen teilweise automatisiert werden [TTP*95].

Gerade die Erstellung von Transformationen ldsst sich durch die Einbindung von
Automatic Schema Matching (Abschnitt 2.10.2) deutlich beschleunigen und vereinfa-
chen. Des Weiteren ist die Untersuchung von Schema-Evolution und deren Auswirkun-
gen auf Transformations- und Propagationsskripten von grofliem Interesse, wobei das
von Boris Stumm vorgeschlagene System [Stul0] zum Einsatz kommen konnte.

Die Begrenzung der maximal gleichzeitig laufenden Propagationsprozesse kann an-
hand der wartenden Propagationsprozesse (Einbindung von Drittsystemen) intelligent
angepasst werden. Dies fiithrt wahrscheinlich zu einer deutlichen Steigerung des Durch-
satzes bei der Einbindung von Drittsystemen.

Die Umsetzung des gesamten Systems mit SOA-Technologien lédsst eine weitere
Verbesserung hinsichtlich Anderbarkeit, Erweiterbarkeit und Einsatzmoglichkeiten des
gesamten Propagationssystems erwarten. Erste Ansétze dazu wurden in [MJHMO09]
genauer betrachtet und zusammengestellt.

163

KAPITEL 6: Schlussfolgerung und Ausblick

164

Literaturverzeichnis

[ABF02]

[ACD*03]

[ACKMOA4]

[ACMO0]

[AFHS95]

[AHH*02]

Paulo Sergio Almeida, Carlos Baquero, und Victor Fonte. Version
Stamps — Decentralized Version Vectors. In 22nd International Con-
ference on Distributed Computing Systems (ICDS), Seiten 544-551,
Wien, Osterreich, 2002.

Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron
Goland, Johannes Klein, Frank Leymann, Kevin Liu, Die-
ter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, und
Sanjiva Weerawarana. Business Process Execution Langua-
ge for Web Services — Version 1.1. Specification, Micro-
soft, IBM, Siebel Systems, BEA, SAP, 2003. Verfiighar bei:
ftp://www6.software.ibm.com /software/developer/library /ws-
bpel.pdf [30.06.2005].

Gustavo Alonso, Fabio Casati, Harumi Kuno, und Vilay Machiraju.
Web Services — Concepts, Architecture and Applications. Springer,
2004.

Paolo Atzeni, Luca Cabibbo, und Giansalvatore Mecca. Database Co-
operation: Classification and Middleware Tools. Journal of Database
Management, 11(1), 2000.

Oksana Arnold, Wolfgang Faisst, Martina Héartling, und Pascal Sieber.
Virtuelle Unternehmen als Unternehmenstyp der Zukunft? HMD -
Prazis der Wirtschaftsinformatik, (185), September 1995.

Susie Adams, Dilip Hardas, Akhtar Hossein, Clifford R. Cannon, Rand
Morimoto, Kevin Price, Stephan Tranchida, Bill Martschenko, Rick
Pearson, Tom Lake, Rob Oikawa, Cuneyt Havlioglu, Charlie Kaiman,
und Larry Wall. BizTalk — Unleashed. Sams Publishing, 2002.

165

LITERATURVERZEICHNIS

[ALS0)

[ATS89]

[ATST05]

[BA99]

[BBC*07]

[BCF+07]

[BD94|

[Ber9s]

[BF97]

[BG82]

166

Michel E. Adiba und Bruce G. Lindsay. Database Snapshots. In
Sixzth International Conference on Very Large Data Bases, October 1-
3, 1980, Montreal, Quebec, Canada, Proceedings, Seiten 86-91. IEEE
Computer Society, 1980.

A. El Abbadi und S. Toueg. Maintaining availability in partitioned rep-
licated databases. ACM Transactions on Database Systems, 14(2):264—
290, 1989.

Fuat Akal, Can Tiirker, Hans-Jorg Schek, Yuri Breitbart, Torsten
Grabs, und Lourens Veen. Fine-grained replication and scheduling
with freshness and correctness guarantees. In VLDB ’05: Proceedings
of the 31st International Conference on Very Large Data Bases, Seiten

565-576. VLDB Endowment, 2005.

Carlos Baquero und Paulo Sérgio Almeida. Towards efficient time-
stamping for autonomous versioning. In Actas informais do EPCM’99,
Encontro Portugués de Computa¢cao Nomada, 1999.

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez,
Michael Kay, Jonathan Robie, und Jérome Siméon. XML Path Lan-
guage (XPath) 2.0. W3C Recommendation, World Wide Web Con-
sortium, 2007.

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, und Jérome Siméon. XQuery 1.0: An XML Que-
ry Language. W3C Recommendation, World Wide Web Consortium,
2007.

Philip A. Bernstein und Umeshwar Dayal. An Overview of Reposi-
tory Technology. In VLDB °94: Proceedings of the 20th International
Conference on Very Large Data Bases, Seiten 705-713, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

Philip A. Bernstein. Repositories and object oriented databases. SIG-
MOD Record, 27(1):88-96, 1998.

Hans-Jorg Bullinger und Klaus-Peter Fahnrich. Betriebliche Informa-
tionssysteme — Grundlagen und Werkzeuge der methodischen Softwa-
reentwicklung. Springer Verlag, 1997.

Philip A. Bernstein und Nathan Goodman. Concurrency control algo-
rithms for multiversion database systems. In PODC ’82: Proceedings
of the first ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, Seiten 209-215, New York, NY, USA, 1982. ACM
Press.

LITERATURVERZEICHNIS

[BGS3)

[BGK+02]

[BHP00a]

[BHPOOb]

[BK97]

[BKR+99)

[BMO04]

[BMN02]

[BMPQOA]

[BMWOL]

[BPSM+06]

Philip A. Bernstein und Nathan Goodman. The failure and recovery
problem for replicated databases. In PODC ’83: Proceedings of the
second annual ACM Symposium on Principles of Distributed Compu-
ting, Seiten 114-122, New York, NY, USA, 1983. ACM Press.

P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Se-
rafini, und I. Zaihrayeu. Data Management for Peer-to-Peer Com-
puting: A Vision. In Fifth International Workshop on the Web and
Databases (WebDB 2002), 2002.

Phillip A. Bernstein, Alon Y. Halevy, und Rachel A. Pottinger. A
vision for management of complex models. SIGMOD Record, 29(4):55—
63, 2000.

Phillip A. Bernstein, Alon Y. Halevy, und Rachel A. Pottinger. A
vision for management of complex models. Technical Report MSR-
TR~2000-53, Microsoft Research, 2000.

Yuri Breitbart und Henry F. Korth. Replication and consistency:
being lazy helps sometimes. In PODS ’97: Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems, Seiten 173-184, New York, NY, USA, 1997. ACM Press.

Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi, S. Seshadri,
und Avi Silberschatz. Update propagation protocols for replicated
databases. In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, Seiten 97-108, New
York, NY, USA, 1999. ACM Press.

Paul V. Biron und Ashok Malhotra. XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation, World Wide Web Consorti-
um, 2004.

Geert Jan Bex, Sebastian Maneth, und Frank Neven. A formal model
for an expressive fragment of XSLT. Information Systems, 27(1):21-
39, 2002.

Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, und Chri-
stoph Quix. Industrial-strength schema matching. SIGMOD Record,
33(4):38-43, 2004.

Joseph A. Brady, Ellen F. Monk, und Bret J. Wagner. Concepts in En-
terprise Resource Planning. Course Technology - Thomson Learning,
2001.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francgois
Yergeau, und John Cowan. Extensible Markup Language (XML) 1.1

167

LITERATURVERZEICHNIS

[BRJ99)]

[Bro04]

[BW95]

[CBMTY6]

[CDKO1]

[CHB*05]

[CHMO02]

[CHR9S]

[CHRMO1]

[CHRMO02)

168

(Second Edition). W3C Recommendation, World Wide Web Consor-
tium, 2006.

Grady Booch, James Rumbaugh, und Ivar Jacobson. Das UML-
Benutzerhandbuch. Addison-Wesley, 1999.

Wayne Brown. Enterprise resource planning (ERP) implementation
planning and structure: a recipe for ERP success. In SIGUCCS 04:
Proceedings of the 32nd annual ACM SIGUCCS conference on User
services, Seiten 82-86, New York, NY, USA, 2004. ACM Press.

Paulo Barthelmess und Jacques Wainer. WorkFlow systems: a few
definitions and a few suggestions. In COCS '95: Proceedings of Con-
ference on Organizational Computing Systems, Seiten 138-147, New
York, NY, USA, 1995. ACM Press.

Bernadette Charron-Bost, Friedemann Mattern, und Gerard Tel. Syn-
chronous, Asynchronous, and Causally Ordered Communication. Dis-
tributed Computing, 9(4):173-191, 1996.

George Coularis, Jean Dollimore, und Tim Kindberg. Distributed Sys-
tems — Concepts and Design. Addison Wesley, 3. Edition, 2001.

Carmen Constantinescu, Uwe Heinkel, Jan Le Blond, Stephan Schrei-
ber, Bernhard Mitschang, und Engelbert Westkdmper. Flexible Inte-
gration of Layout Planning and Adaptive Assembly Systems in Digital
Enterprises. In Proceedings of the 38th CIRP International Seminar
on Manufacturing Systems (CIRP ISMS), Mai 2005.

Carmen Constantinescu, Uwe Heinkel, und Holger Meinecke. A Data
Change Propagation System for Enterprise Application Integration.
In Waleed W. Smari, Nordine Melab, und Shu-Ching Chen, Edito-
ren, The 2nd International Conference on Information Systems and
Engineering (ISE 2002), Seiten 129-134. San Diego: The Society for
Modeling and Simulation International, Juli 2002.

Andrzej Cichocki, Abdelsalam Helal, und Marek Rusinkiewicz. Work-
flow and Process Automation — Concepts and Technology. Kluwer Aca-
demic Publishers, 1998.

Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. SIES - An Approach for a Federated Information Sys-
tem in Manufacturing. In Proceedings of the International Symposium
on Information Systems and Engineering (ISE); Las Vegas, Nevada,
USA, June 2001, Seiten 269-275. CSREA Press, Juni 2001.

Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. A System for Data Change Propagation in Heterogeneous

LITERATURVERZEICHNIS

[CHRMO3]

[Con97]

[CS99]

[Cum02]

[Dat00]

[Dau03]

[dFRH98)

[DR02]

[EFGKO03]

[EM02]

[Fay02]

Information Systems. In Proceedings of the International Conference
on Enterprise Information Systems (ICEILS), Volume I, Cuidad Re-
al, Spain, April 2002, Seiten 73-80. ICEIS Press/Escola Superior de
Technologia de Setubal, Portugal, April 2002.

Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, und Bernhard
Mitschang. A System For Data Change Propagation In Heteroge-
neous Information Systems, Seiten 51-59. Enterprise Information Sys-
tems I'V. Dordrecht, Netherlands: Kluwer Academic Publishers, Januar
2003. ISBN: 1-4020-1086-9.

Stefan Conrad. Foderierte Datenbanksysteme — Konzepte der Daten-
integration. Springer Verlag, 1997.

Peter Checkland und Jim Scholes. Soft System Methodology in Action.
John Wiley & Sons Ltd., Chichester, 1999.

Fred A. Cummins. Enterprise Integration — An Architecture for En-
terprise Application and System Integration. OMG Press - John Wiley
Computer Publishing, 2002.

C.J. Date. An Introduction to Database Systems. Addison-Wesley,
2000.

Berthold Daum. Modeling Business Objects with XML Schema. Mor-
gan Kaufmann Publisher and dpunkt.Verlag, 2003.

Fernando de Ferreira Rezende und Klaudia Hergula. The Heterogenei-
ty Problem and Middleware Technology: Experiences with and Perfor-
mance of Database Gateways. In VLDB °98: Proceedings of the 24rd
International Conference on Very Large Data Bases, Seiten 146-157,
New York, NY, USA, 1998. Morgan Kaufmann Publishers Inc.

Hong Hai Do und Erhard Rahm. COMA - A System for Flexible
Combination of Schema Matching Approaches. In VLDB, Seiten 610—
621, 2002.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, und Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
puting Survey, 35(2):114-131, 2003.

Andrew Eisenberg und Jim Melton. SQL/XML is making good pro-
gress. ACM SIGMOD Record, 31(2):101-108, 2002.

Mohamed Fayad. Accomplishing software stability. Communications
of ACM, 45(1):111-115, 2002.

169

LITERATURVERZEICHNIS

[FW04]

[GHI*01]

[GHM™03a]

[GHM+03b)]

[GHOS96]

[Gro04a]

[Gro04b]

[HarO1la]

[Har01b]

[Has00]

[Hau99]

[HBS*02a)

[HBS+02b]

170

David C. Fallside und Priscilla Walmsley. XML Schema Part 0: Primer
Second Edition. W3C Recommendation, World Wide Web Consorti-
um, 2004.

S. Gribble, A. Halevy, Z. Ives, M. Rodrig, und D. Suciu. What can
databases do for peer-to-peer. June, 2001.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Mo-
reau, und Henrik Frystyk Nielsen. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, World Wide Web Consortium,
2003.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Mo-
reau, und Henrik Frystyk Nielsen. SOAP Version 1.2 Part 2: Adjuncts.
W3C Recommendation, World Wide Web Consortium, 2003.

Jim Gray, Pat Helland, Patrick O’Neil, und Dennis Shasha. The dan-
gers of replication and a solution. In SIGMOD ’96: Proceedings of
the 1996 ACM SIGMOD International Conference on Management of
Data, Seiten 173-182, New York, NY, USA, 1996. ACM Press.

Object Management Group. Event Service Specification — Version 1.2.
Specification, Object Management Group, 2004.

Object Management Group. Notification Service Specification — Ver-
sion 1.1. Specification, Object Management Group, 2004.

Christoph Hartwich. N-Tier Enterprise-Applikation. In Martin En-
dig und Thomas Herstel, Editoren, 13. GI-Workshop Grundlagen von
Datenbanken, Gommern, Sachsen-Anhalt, Germany, 2001.

Christoph Hartwich. Why It Is So Difficult to Build N-Tiered Enter-
prise Applications. Technical Report B 01-05., Institute of Computer
Science, Freie Universitdat Berlin, 2001.

Wilhelm Hasselbring. Information system integration. Communicati-
ons of ACM, 43(6):32-38, 2000.

Manfred Hauswirth. Internet-Scale Push Systems for Information Dis-
tribution — Architecture, Components, and Communication. Disserta-
tion, Technisch-Naturwissenschaftliche Fakultét, Technischen Univer-
sitdt Wien, 1999.

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, und Kate
Stout. Java Message Service. Specification, SUN Microsystems, 2002.

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, und Kate
Stout. Java Message Service — Version 1.1 April 12, 2002. Spezifikation,
Sun Microsystems, Inc., 2002.

LITERATURVERZEICHNIS

[HC94]

[HCMO5]

[Hei00]

[Her03]

[HHW04]

[HIM*04]

[Hol04]

[IBMO08a]

[IBMOSb]

[IBMO8(]

[JBS97]

[1GJ97]

Michael Hammer und James Champy. Business Reengineering — Die
Radikalkur fir das Unternehmen. Campus Verlag, 1994.

Uwe Heinkel, Carmen Constantinescu, und Bernhard Mitschang. In-
tegrating Data Changes with Data from Data Service Providers. In
Proceedings of the 18th International Conference on Computer Appli-
cations in Industry and Engineering (CAINE 2005), Seiten 146-151.
ICSA, November 2005.

Uwe Heinkel. Informationsmodelle fiir wandlungsfahige Produktions-
systeme. Diplomarbeit, Universitat Stuttgart, 2000.

Klaudia Hergula. Daten- und Funktionsintegration durch Fdderierte
Datenbanksysteme. Dissertation, Technische Universitat Kaiserslau-
tern, 2003.

Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, und Steve Byrne. Document Ob-
ject Model (DOM) Level 3 Core Specification — Version 1.0. W3C
Recommendation, World Wide Web Consortium, 2004.

Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan
Suciu, und Igor Tatarinov. The Piazza Peer Data Management System.
IEEE Transactions on Knowledge and Data Engineering, 16(7):787—
798, 2004.

David Hollingsworth. The Workflow Handbook 2004, Kapitel The
Workflow Reference Model 10 Years on, Seiten 295-312. Future Stra-
tegies Inc., 2004.

IBM. WebSphere Message Broker — ESQL. Developer’s Guide, IBM
Corp., 2008.

IBM. WebSphere Message Broker — Introduction. Developer’s Guide,
IBM Corp., 2008.

IBM. WebSphere Message Broker — Message Flows. Developer’s Guide,
IBM Corp., 2008.

Stefan Jablonski, Markus Bohm, und Wolfgang Schulze, Editoren.
Workflow-Management: Entwicklung von Anwendungen und Syste-
men; Facetten einer neuen Technologie. DPunkt Verlag, 1997.

Ivar Jacobson, Martin Griss, und Patrik Jonsson. Software Reuse —
Architecture, Process and Organization for Business Success. ACM
Press, 1997.

171

LITERATURVERZEICHNIS

[JLM*05]

[IMO0]

[TWPOO]

[KA00]

[Kay07]

[Kel02]

[Kep02]

[Kep04]

[Ker01]

[KKL*04]

[Krii84]

[Krc03]

[Kur02]

172

Stefan Jablonski, Rainer Lay, Christian Meiler, Sascha Miiller, und
Wolfgang Hiimmer. Data logistics as a means of integration in health-
care applications. In SAC ’05: Proceedings of the 2005 ACM symposi-
um on Applied computing, Seiten 236—241, New York, NY, USA, 2005.
ACM Press.

S. Jajodia und David Mutchler. Dynamic voting algorithms for main-
taining the consistency of a replicated database. ACM Transactions
on Database Systems, 15(2):230-280, 1990.

P. Johannesson, B. Wrangler, und P.Jayaweera. Application and Pro-
cess Integration — Concepts, Issues, and Research Directions. In Infor-
mation Systems Engineering Symposium—CAiSE 2000, Chigago, USA,
2000.

Bettina Kemme und Gustavo Alonso. A new approach to developing
and implementing eager database replication protocols. ACM Tran-
sactions on Database Systems, 25(3):333-379, 2000.

Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Re-
commendation, World Wide Web Consortium, 2007.

Wolfgang Keller. Enterprise Application Integration — Erfahrung aus
der Praxis. DPunkt Verlag, 2002.

Stephan Kepser. A Proof of the Turing-completeness of XSLT and
XQuery. Technischer Bericht, SFB 441, Universitdt Tiibingen, Mai
2002.

Stephan Kepser. A Simple Proof of the Turing-Completeness of XSLT
and XQuery. In Extreme Markup Languages, 2004.

Oliver Kersten. Konzeption eines Propagationsmanagers. Diplomar-
beit, IPVS — Universitat Stuttgart, 2001.

Matthias Kloppmann, Dieter Konig, Frank Leymann, Gerhard Pfau,
und Dieter Roller. Business process choreography in WebSphere: Com-
bining the Power of BPEL and J2EE. IBM System Journal, 43(2):270
— 296, 2004.

Wilfried Kriiger. Organisation der Unternehmung. Kohlhammer Lehr-
buchreihe Betriebswirtschaft, 1984.

Helmut Krecmar. Informationsmanagement. Springer Verlag, 3. Editi-
on, 2003.

Alexander Kurth. FEntwicklung agentenorienter Informationssysteme
fur die Fertigungsleittechnik. Dissertation, RWTH Aachen, 2002.

LITERATURVERZEICHNIS

[KvHOO]

(KZ02]

[Lam78|

[Ley96]

[Ley99]

[LHM*86]

[Li03]

[Lin00]

[LJAPY7]

[LKPMJP05]

[LR0O]

[LR02]

[LSHO3]

Kuldeep Kumar und Jos van Hillegersberg. Enterprise resource plan-
ning: introduction. Communications of ACM, 43(4):22-26, 2000.

Akhil Kumar und J. Leon Zhao. Workflow support for electronic com-
merce applications. Elsevier Decision Support Systems, 32(3):265-272,
2002.

Leslie Lamport. Time, clocks, and the ordering of events in a distri-
buted system. Communications of ACM, 21(7):558-565, 1978.

Frank Leymann. Transaktionskonzepte fiir Workflow-Management-
Systeme. In Gottfried Vossen und Jorg Becker, Editoren, Geschdftspro-
zessmodellierung und Workflow-Management, Seiten 335-351. Thom-
son Publishing, 1996.

Frank Leymann. A practitioners approach to database federation. In
Proceedings of 4th Workshop on Federated Databases - Integration of
Heterogeneous Information Sources, Berlin, Deutschland, 1999.

Bruce Lindsay, Laura Haas, C. Mohan, Hamid Pirahesh, und Paul
Wilms. A snapshot differential refresh algorithm. In SIGMOD ’86:
Proceedings of the 1986 ACM SIGMOD international conference on
Management of data, Seiten 53-60, New York, NY, USA, 1986. ACM
Press.

Qiang Li. Entwicklung einer graphischen Eingabemdglichkeit fiir Pro-
pagationsskripte. Studienarbeit, IPVS — Universitat Stuttgart, 2003.

Davis S. Linthicum. Enterprise Application Integration. Addison-
Wesley, 2000.

Soon Huat Lim, Neal Juster, und Alan de Pennington. The seven ma-
jor aspects of enterprise modelling and integration: a position paper.
SIGGROUP Bullutin, 18(1):71-75, 1997.

Yi Lin, Bettina Kemme, Marta Patino-Martinez, und Ricardo
Jiménez-Peris. Middleware based data replication providing snapshot
isolation. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data, Seiten 419-430, New
York, NY, USA, 2005. ACM Press.

Frank Leymann und Dieter Roller. Production Workflow — Concepts
and Techniques. Prentice Hall, 2000.

Framk Leymann und Dieter Roller. Using flows in information inte-
gration. IBM Systems Journal, 41(4):732 — 742, 2002.

Jinyoul Lee, Keng Siau, und Soongoo Hong. Enterprise integration
with ERP and EAIL. Communications of ACM, 46(2):54-60, 2003.

173

LITERATURVERZEICHNIS

[Mat89]

[MBRO]

[McC93]

[MFJPPMKO4]

[Mic01]

[Mic08]

[Mit03]

[MJHMO9]

[Miil05]

[MR95)

[MRBO03]

174

Friedemann Mattern. Virtual Time and Global States of Distributed
Systems. In Proceedings of the International Workshop on Parallel
and Distributed Algorithms, 1989.

Jayant Madhavan, Philip A. Bernstein, und Erhard Rahm. Generic
Schema Matching with Cupid. In VLDB, Seiten 49-58, 2001.

Carma McClure. Software-Automatisierung: reengineering — repository
— Wiederverwendbarkeit. Prentice-Hall International, 1993.

Jesis M. Milan-Franco, Ricardo Jiménez-Peris, Marta Patino-
Martinez, und Bettina Kemme. Adaptive middleware for data rep-
lication. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, Seiten 175-194, New York, NY, USA, 2004.

Springer-Verlag New York, Inc.

Sun Microsystems. Jini Technology Core Platform Specification — Ver-
sion 1.2. Specification, Sun Microsystems, 2001.

Microsoft. Microsoft BizTalk Server. Webseite (Zugegriffen
am 21.08.2008), Microsoft Corporation, 2008. Verfiigbar bei
http://www.microsoft.com.

Nilo Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation,
World Wide Web Consortium, 2003.

Jorge Minguez, Mihaly Jakob, Uwe Heinkel, und Bernhard Mitschang.
A SOA-based Approach for the Integration of a Data Propagation
System. In Proceedings IEEE International Conference on Information
Reuse. Integration IRI ’09, Seiten 47-52, New York, NY, USA, 10-12
August 20009.

Joachim Miiller. Workflow-based Integration — Grundlagen, Technolo-
gien, Management. Springer, 2005.

Stefan Morschheuser und Heinz Raufer. Integrated document and
workflow management applied to the offer processing of a machine tool
company. In COCS ’95: Proceedings of Conference on Organizational
Computing Systems, Seiten 106-115, New York, NY, USA, 1995. ACM
Press.

Sergey Melnik, Erhard Rahm, und Philip A. Bernstein. Rondo: a
programming platform for generic model management. In SIGMOD
'03: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, Seiten 193-204, New York, NY, USA, 2003.
ACM Press.

LITERATURVERZEICHNIS

[MS00]

[MTvF00]

[Oas07]

[Ora06]

[Ora07]

[Ora08g]
[Pap06]

[Pau93]

[PB03]

[PGOO]

[PMJPKAO5]

[PS00]

[Rah94]

[RBO1]

Zakaria Maamar und Jeff Sutherland. Toward intelligent business ob-
jects. Communications of ACM, 43(10):99-101, 2000.

M. Lynne Markus, Cornelis Tanis, und Paul C. van Fenema. Enterprise
resource planning: multisite ERP implementations. Communications
of ACM, 43(4):42-46, 2000.

Oasis. Web Services Business Process Execution Language Version
2.0. Oasis Standard, Sun Microsystems, Inc., 2007.

Oracle. Oracle Enterprise Service Bus. Data Sheet, Oracle Corp.,
2006.

Oracle. Oracle Enterprise Service Bus. Developer’s Guide, Oracle
Corp., 2007.

Oracle. Oracle SOA Suite. Data Sheet, Oracle Corp., 2008.

Christian Pape. Enterprise Application Integration — Integrationsar-
chitekturen. Vorlesungsscript, Hochschule Karlsruhe — Technik und
Wirtschaft, 2006.

G. N. Paulley. Engineering an SQL gateway to IMS. In CASCON ’95:
Proceedings of the 1993 Conference of the Centre for Advanced Studies
on Collaborative Research, Seiten 789-803. IBM Press, 1993.

Rachel Pottinger und Philip A. Bernstein. Merging Models Based on
Given Correspondences. In VLDB, Seiten 826-873, 2003.

Robin Poston und Severin Grabski. The impact of enterprise resour-
ce planning systems on firm performance. In ICIS ’00: Proceedings
of the twenty first international conference on information systems,
Seiten 479-493, Atlanta, GA, USA, 2000. Association for Information
Systems.

Marta Patino-Martinez, Ricardo Jiménez-Peris, Bettina Kemme, und
Gustavo Alonso. MIDDLE-R: Consistent database replication at
the middleware level. ACM Transactions on Computer Systems,
23(4):375-423, 2005.

Esther Pacitti und Eric Simon. Update propagation strategies to im-

prove freshness in lazy master replicated databases. The VLDB Jour-
nal, 8(3-4):305-318, 2000.

Erhard Rahm. Mehrrechner-Datenbanksysteme. Addison-Wesley,
1994.

Erhard Rahm und Philip A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4):334-350, 2001.

175

LITERATURVERZEICHNIS

[RCHM02]

[RMBO1]

[SAPO7]

[SBB+99]

[Sch9g]

[Siid05]

[SE9S]

[SGB02]

[SHO1]

[SKTYO0]

[SLOO]

[Son99]

[Spr05]

176

Ralf Rantzau, Carmen Constantinescu, Uwe Heinkel, und Holger Mei-
necke. Champagne: Data Change Propagation for Heterogeneous In-
formation Systems. In Proceedings of the International Conference
on Very Large Databases (VLDB); Demonstration Paper; Hong Kong,
August 20-23, 2002. Morgan Kaufmann, August 2002.

William A. Ruh, Francis X. Maginnis, und William J. Brown. En-
terprise Application Integration — A Wiley Tech Brief. John Wiley
Computer Publisching, 2001.

SAP AG. SAP Bibliothek. Online Hilfe, SAP AG, http://help.sap.com
(Zugriff 30.10.2007), 2007.

David Shutt, Philip A. Bernstein, Thomas Bergstraesser, Jason Carl-
son, Shankar Pal, und Paul Sanders. Microsoft repository version 2
and the open information model. Information Systems, 24(2):71-98,
1999.

August-Whilhelm Scheer. ARIS-Vom Geschiftsprozeff zum Anwen-
dungssystem. Springer Verlag, 3. Edition, 1998.

Siiddeutsche Zeitung. BMW hingt Mercedes ab. Webseite (Zugegriffen
am 22.07.2008), Stiddeutsche Zeitung, 2005.

Oliver Sims und Peter Eeles. Building Business Objects. John Wiley
& Sons, Inc., 1998.

Rainer A. Sommer, Thomas R. Gulledge, und David Bailey. The n-tier
hub technology. SIGMOD Record, 31(1):18-23, 2002.

Michael Stonebraker und Joseph M. Hellerstein. Content integrati-
on for e-business. In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, Seiten
552-560, New York, NY, USA, 2001. ACM Press.

Christina Soh, Sia Siew Kien, und Joanne Tay-Yap. Enterprise re-
source planning: cultural fits and misfits: is ERP a universal solution?
Communications of ACM, 43(4):47-51, 2000.

Amit P. Sheth und James A. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous databases.
ACM Computing Survey, 22(3):183-236, 1990.

Sonderforschungsbereich 467. Wandlungsfihige Unternehmensstruk-
turen fiir die variantenreiche Serienfertigung. Finanzierungsantrag,
Universitéat Stuttgart, 1999.

Sven Sprandel. Entwicklung eines Quelladapters fiir relationale Da-
tenbanken. Diplomarbeit, IPVS, Universitit Stuttgart, 2005.

LITERATURVERZEICHNIS

[SRLOO]

SS05]

[Ste02]

[STSB02]

[Stul0]

[Tat01]

[TBMMO04]

[TIM*03]

[TRA96]

[TTP*95]

[vdAKO3]

Budi Surjanto, Norbert Ritter, und Henrik Loeser. XML Content
Management Based on Object-Relational Database Technology. In
Web Information Systems Engineering, Seiten 70-79, 2000.

Yasushi Saito und Marc Shapiro. Optimistic replication. ACM Com-
puting Survey, 37(1):42-81, 2005.

Michael Stender. FEine komponentenorientierte Softwarearchitektur
fuir Informationssysteme im Investitionsgiitermarketing. Dissertation,
Universitéat Stuttgart, 2002.

Siew Kien Sia, May Tang, Christina Soh, und Wai Fong Boh. En-
terprise resource planning (ERP) systems as a technology of power:
empowerment or panoptic control? SIGMIS Database, 33(1):23-37,
2002.

Boris Stumm. Anderungsmanagement in grofien Informationssyste-
men. Dissertation, Technische Universitat Kaiserslauten, 2010.

Satish Tatte. XLANG — Web Services For Business Process De-
sign. Specification, Microsoft Corporation, 2001. Verfiigbar bei:

http://www.gotdotnet.com /team /xml_wsspecs/xlang-c/default.htm
[27.01.2004].

Henry S. Thompson, David Beech, Murray Maloney, und Noah Men-
delsohn. XML Schema Part 1: Structures Second Edition. W3C Re-
commendation, World Wide Web Consortium, 2004.

Igor Tatarinov, Zachary Ives, Jayant Madhavan, Alon Halevy, Dan Su-
ciu, Nilesh Dalvi, Xin (Luna) Dong, Yana Kadiyska, Gerome Miklau,
und Peter Mork. The Piazza peer data management project. SIGMOD
Record, 32(3):47-52, 2003.

Francisco J. Torres-Rojas und Mustaque Ahamad. Plausible Clocks:
Constant Size Logical Clocks for Distributed Systems. In 10th Work-
shop on Distributed Algorithms (WDAG), Seiten 71-88, 1996.

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J.
Spreitzer, und C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In SOSP ’95: Proceedings

of the fifteenth ACM Symposium on Operating Systems Principles, Sei-
ten 172-182, New York, NY, USA, 1995. ACM Press.

W. M. P. van der Aalst und Akhil Kumar. XML-Based Schema Defini-
tion for Support of Interorganizational Workflow. Information Systems
Research, 14(1):23-46, 2003.

177

LITERATURVERZEICHNIS

[vdAvHO02]

[vdAVKO1]

[Vet90]

[Vet94]

[VHvAA02]

[Vu05]

[Wes06]

[WH99]

[WML*05]

[Wor05a]

[Wor05b]

178

Wil van der Aalst und Kees van Hee. Workflow Management — Models,
Methods, and Systems. MIT Press, 2002.

W. M. P. van der Aalst, H. M. W. Verbeek, und A. Kumar. Verification
of XRL: An XML-based Workflow Language. In Proceedings of the 6th
International Conference on CSCW in Design, Seiten 427-432. NRC
Research Press, Ottawa, Canada, 2001.

Max Vetter. Aufbau betrieblicher Informationssysteme — mittels kon-
zeptioneller Datenmodellierung. B.G. Teubner Stuttgart, 6. Edition,
1990.

Max Vetter. Informationssysteme in der Unternehmung: eine FEin
fiihrung in die Datenmodellierung und Anwendungsentwicklung. B.G.
Teubner Stuttgart, 2. Edition, 1994.

H. M. W. Verbeek, A. Hirnschall, und W. M. P. van der
Aalst. XRL/Flower: Supporting Interorganizational Workflows using
XRL/Petri-net Technology. In Lecture Notes in Computer Science:
Web Services, E-Business, and the Semantic Web, CAiSE 2002 In-
ternational Workshop (WES 2002), Seiten 93-108. Springer Verlag,
Berlin, 2002.

Tien Minh Vu. Entwicklung eines Zieladapters fiir relationale Daten-
banken. Diplomarbeit, IPVS — Universitit Stuttgart, 2005.

Engelbert Westkdmper. Wandlungsfdhige Unternehmensstrukturen
fiir die variantenreiche Serienproduktion — Sonderforschungsbereich
467. Abschlussbericht, Universitéit Stuttgart, 2006.

Seth White und Mark Hapner. JDBC 2.1 API. Spezifikation, Sun
Microsystems, Inc., 1999.

Scott Woodgate, Stephan Mohr, Brian Loesgen, Susie Adams, Alex
Cobb, Benjamin Goeltz, Brandon Gross, Chris Whytock, Erik Lea-
seburg, Gavin Islip, Imran Aziz, Kevin Smith, Michael Roze, Naveen
Goli, Puru Amradkar, und Stephen Roger. Microsoft BizTalk Server
2004 — Unleashed. Sams Publishing, 2005.

Workflow Management Coalition. Reference ~ Model.
http://www.wfmec.org/standards/model2.htm [30.09.2005], 2005.

Workflow Management Coalition (WfMC). Process Definition Inter-
face — XML Process Definition Language (Version 1.09). Specificati-
on, Workflow Management Coalition (WfMC), 2005. Verfiighar bei:
http://www.wfmec.org [01.07.05].

LITERATURVERZEICHNIS

[Wor07]

[WvB01]

[WW02]

[WZ09]

[Yan04]

[Zah99]

World Wide Web Consortium (W3C). Web Services Description Lan-
guage (WSDL) Version 2.0 Part 0: Primer. W3C Recommendation 26
June 2007, W3C, 2007.

Engelbert Westkdmper und Ralf von Briel. Continious improvement
and participative factory planing by computer systems. In Proceedings
of the 51st General Assembly of CIRP, Seiten 347-352, Nancy, France,
2001.

Engelbert Westkdamper und Ralph Winkler. The Use of System Mo-
delling for the Intelligent Planning, Scheduling and Control of Agile
Manufacturing. In Proceedings of the 35th CIRP ISMS ”Manufactu-
ring technology in the information age”, Seiten 644—655, Seoul, South
Korea, 2002.

Engelbert Westkdmper und Erich Zahn, Editoren. Wandlungsfihi-
ge Unternehmensstrukturen — Das Stuttgarter Unternehmensmodell.
Springer Verlag, 2009.

Yingwei Yang. Distribution of the Propagation System. Master thesis,
IPVS — Universitéit Stuttgart, 2004.

Ron Zahavi. Enterprise Application Integration with CORBA — Com-
ponent and Web-Based Solutions. OMG Press - John Wiley Computer
Publishing, 1999.

179

	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	Zusammenfassung in deutscher Sprache
	Zusammenfassung in englischer Sprache (Abstract)
	1 Einleitung
	1.1 Problemstellung und Motivation
	1.2 Zielsetzung
	1.3 Gliederung

	2 Grundlagen
	2.1 Informationssysteme
	2.1.1 Definition
	2.1.2 Architektur
	2.1.3 Modelle und Geschäftsobjekte

	2.2 Enterprise-Resource-Planning-Systeme
	2.3 Enterprise Application Integration
	2.3.1 Unternehmenssicht
	2.3.2 Klassifikationen
	2.3.3 Technologien

	2.4 Datenintegration im Unternehmen
	2.4.1 Globales Schema und homogene Systemlandschaft
	2.4.1.1 Zentrale Datenbank
	2.4.1.2 Verteilte Datenbanken
	2.4.1.3 Replikation

	2.4.2 Föderierte Datenbanken
	2.4.3 Lokale Modelle, Geschäftsprozesse und einheitliche Benutzerschnittstelle

	2.5 Peer-Data-Management
	2.6 Workflows
	2.6.1 Grundlagen
	2.6.2 Workflow-Managementsysteme (WFMS)
	2.6.3 Workflow-Beschreibungen
	2.6.4 Datenintegration mit Workflows

	2.7 XML Technologien
	2.8 Message Oriented Middleware
	2.9 Ereignissysteme
	2.10 Model-Management
	2.10.1 Übersicht
	2.10.2 Automatic Schema Matching

	2.11 Schlussfolgerungen

	3 Grundlegende Konzeption
	3.1 Lösung für Replikation der Informationssystemdaten
	3.2 Basiskonzepte
	3.2.1 Abhängigkeiten und Propagationsprozesse
	3.2.2 Änderungsbeschreibung

	3.3 Transaktionen
	3.4 XML als Basis für Änderungspropagation
	3.4.1 XML zur Definition von Zustandsbeschreibungen
	3.4.2 Technologie für eine XML-basierte Änderungspropagation

	3.5 Sprache für die Definition von Abhängigkeiten
	3.5.1 Deklaration der Eingabe
	3.5.2 Kontrollfluss
	3.5.2.1 Sequentielle Ausführung
	3.5.2.2 Parallele Ausführung
	3.5.2.3 Bedingte Ausführung

	3.5.3 Verarbeitungs- und Output-Befehle
	3.5.3.1 Transform-Befehl
	3.5.3.2 Propagate-Befehl
	3.5.3.3 Der Filterbefehl

	3.6 Pfadausdrücke für Änderungsbeschreibungen
	3.6.1 Propagation Condition Language (PCL)
	3.6.2 XPath-Bibliothek

	3.7 Komponenten
	3.7.1 Repository
	3.7.1.1 Übersicht
	3.7.1.2 Datenmodell
	3.7.1.3 Architektur

	3.7.2 Propagationsmanager
	3.7.2.1 Übersicht
	3.7.2.2 Architektur
	3.7.2.3 Kommunikation zwischen Prozessmanager und Propagationsprozessen

	3.7.3 Abhängigkeitsmanager
	3.7.3.1 Textansicht
	3.7.3.2 Die Kontroll- und Datenflussansicht
	3.7.3.3 Die Abhängigkeitsansicht

	3.8 Konflikterkennung und Auflösung
	3.9 Reihenfolgeeinhaltung von propagierten Änderungsbeschreibungen
	3.10 Fehlerbehandlung
	3.10.1 Fehlerklassifikation
	3.10.2 Fehlerbehandlung im Prozessmanager
	3.10.3 Fehlerbehandlung eines Propagationsprozesses

	3.11 Adapter
	3.11.1 Genereller Adapter
	3.11.2 Adapter für relationale Datenbanken
	3.11.2.1 Quelladapter
	3.11.2.2 Zieladapter

	3.12 Zusammenfassung

	4 Komplexe Propagation
	4.1 Einbindung von Daten aus Drittsystemen
	4.1.1 Problemstellung
	4.1.2 Verwendung eines Datendienstes
	4.1.3 Zugriffsarten
	4.1.4 Von der Definition zur Nutzung eines Datendienstes
	4.1.5 Dienstbeschreibung
	4.1.6 Realisierung
	4.1.6.1 Parameterbindung
	4.1.6.2 XPDL-Befehle
	4.1.6.2.1 Erzeugung der Header und ggf. Parametervorbereitung.
	4.1.6.2.2 Aufruf eines Datendienstes.
	4.1.6.2.3 Integration.

	4.1.6.3 Fehlerbehandlung

	4.1.7 Beispiel

	4.2 Verarbeitung mehrerer Änderungen
	4.2.1 Problemstellung
	4.2.2 Implementierungskonzept der M-zu-N-Erweiterung
	4.2.2.1 Grundlegendes Konzept der M-zu-N-Realisierung
	4.2.2.2 M-zu-N-Manager
	4.2.2.3 Zeitüberschreitungen
	4.2.2.4 Wiederherstellung

	4.2.3 Erweiterung von XPDL
	4.2.4 Erweiterung von PCL
	4.2.5 Schlussfolgerungen

	4.3 Verteilte Propagation
	4.3.1 Problemstellung
	4.3.2 Einschränkungen der Lastverteilung
	4.3.2.1 Reihenfolgeproblem
	4.3.2.2 M-zu-N-Abhängigkeiten
	4.3.2.3 Auswirkungen

	4.3.3 Load-Manager-Ansatz
	4.3.3.1 Architektur
	4.3.3.2 M-zu-N-Verarbeitung
	4.3.3.3 Der Umgang mit der Reihenfolge
	4.3.3.4 Erhöhung der Zuverlässigkeit

	4.3.4 Selbstorganisierter Ansatz

	4.4 Zusammenfassung

	5 Evaluation des Propagationssystems
	5.1 Praxistest
	5.1.1 Integrationsszenario
	5.1.2 Digitale Fabrik und ihre Werkzeuge
	5.1.2.1 Die Digitale Fabrik
	5.1.2.2 Fabrikplanungstisch
	5.1.2.3 Montage-Konfigurator

	5.1.3 Integrationsplattform
	5.1.4 Integration der Digitalen Fabrik und des Planungstisches
	5.1.5 Integration der Digitalen-Fabrik und des Montage-Konfigurators
	5.1.6 Schlussfolgerungen

	5.2 Evaluierung der Performance
	5.2.1 Messmethodik
	5.2.2 Testumgebung
	5.2.3 Realisierung der zuverlässigen Multicast-Warteschlange
	5.2.4 Testfälle
	5.2.4.1 Testfall 1: Update-Häufigkeit
	5.2.4.2 Testfall 2: Begrenzung der nebenläufigen Propagationsprozesse
	5.2.4.3 Testfall 3: Anzahl der Transformationen
	5.2.4.4 Testfall 4: Anzahl der Bedingungen
	5.2.4.5 Testfall 5: Cache-Hitrate
	5.2.4.6 Testfall 6: Vergleich einer 1-zu-N- mit N x 1-zu-1-Abhängigkeiten
	5.2.4.7 Testfall 7: Anzahl der wartenden M-zu-N-Prozesse
	5.2.4.8 Testfall 8: Integration externer Daten
	5.2.4.9 Testfall 9: Einhaltung der Änderungsreihenfolge

	5.2.5 Zusammenfassung
	5.2.6 Vergleich mit Anforderungen aus der Industrie

	5.3 Vergleich mit EAI-Produkten
	5.3.1 BizTalk
	5.3.2 Oracle SOA Suite
	5.3.3 Websphere Message Broker
	5.3.4 Schlussfolgerung

	6 Schlussfolgerung und Ausblick
	6.1 Schlussfolgerungen
	6.2 Ausblick

	Literaturverzeichnis

