Concepts and Algorithms for Efficient
Distributed Processing of Data

Streams

Von der Fakultat Informatik, Elektrotechnik und
Informationstechnik der Universitat Stuttgart
zur Erlangung der Wiirde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Stamatia Rizou
aus Athen

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr. Timos Sellis

Tag der miindlichen Priifung: 26.11.2013
Institut fiir Parallele und Verteilte Systeme (IPVS)
der Universitat Stuttgart

2013

Acknowledgments

First, I would like to thank my Professor Kurt Rothermel, for giving me
this unique opportunity to work with the group of Distributed Systems under
his supervision. His feedback and comments during our regular meetings
refined the concepts and fundamentals of my work and improved its scientific
value. Next, I would like to thank my colleague Frank Diirr. The output
of my research is a result of long discussions between us on several aspects
of my work. This work would not have been possible without his invaluable
contribution and his continuous support and guidance.

I would like also to thank all my colleagues in the Distributed System group.
I would like to give special thanks to my colleagues Ralph Lange, Lars Geiger,
Harald Weinschrott and Nazario Cipriani for our collaboration in the Nexus
project and my colleague, Andreas Grau for his help on the implementation
of one of my placement algorithms on NET Cluster.

I would like also to thank Prof. Timos Sellis for supporting my work
from the very beginning, when he showed me the way to apply for a PhD
in Germany until the end, by acting as a reviewer for my thesis.

During my stay in Stuttgart, I had the chance to meet special people that
made this city feeling like home. Therefore, I would like to thank my friends,
who shared the good and bad moments during the four years I spent in
Stuttgart. My flatmate Theodora, but also Gianna and Maria who joined
later and my friends Vangelis, Alexia, Angelos, Alexandros, Loukianos.

Finally, I want to thank my family for their unconditional love and care
that gives me always strength to go on. My parents Vangelis and Ritsa, and
my brother Vasilis with his family, his wife Mina and my two beloved nephews

Vangelis and Manos.

Contents

Abstract

Deutsche Zusammenfassung

1

Introduction

1.1 Motivation

1.2 Background
1.2.1 Architecture oL
1.2.2 Context Information Layer
1.2.3 Federation Layer
1.2.4 Applications and Middleware Layer

1.3 Contributions Lo

1.4 Structure

Architecture

2.1 System Modelo

2.2 Situation Modelo oo

2.3 System Architecture L.

2.4 Overview of existing approaches and systems
2.4.1 Context management systems

2.4.2 Information Flow Processing

Operator Placement Algorithms

3.1 Network Usage Optimization
3.1.1 System Model
3.1.2 Problem Statement

13

15

17
17
23
23
25
25
26
27
28

31
32
33
36
39
40
20

Contents

3.1.3 Multi-operator Placement Algorithm (MOPA) 67
3.1.4 Integer Linear Programming Formulation 81
3.2 Network Delay Constrained Optimization 83
3.2.1 System Model 84
3.2.2 Problem Statement 85
3.2.3 Constrained Optimization Algorithm 86
3.2.4 Integer Linear Programming Formulation 97
3.3 Processing and Network Delay Constrained Optimization . . . 98
3.3.1 System Model, 98
3.3.2 Problem Statement 102
3.3.3 Placement Algorithm 104
3.4 Related Work oo 112
3.4.1 Complex Event Processing 113
3.4.2 Data Stream Processing 116
3.4.3 Control Systems 121
Evaluation 123
4.1 Network Usage Optimization 125
411 Setupo 126
4.1.2 Evaluation objectives 126
4.1.3 Quality: Continuous MOPA Solution 127
4.1.4 Quality: Discrete MOPA Solutions 130
4.1.5 Convergence: Message Overhead and Migrations 132
4.1.6 Scalability: Execution time and Performance 136
417 Summary 138
4.2 Network Delay Constrained Optimization 139
421 Setup 139
4.2.2 Evaluation Objectives 140

4.2.3 Quality: Relation Between Network Usage and Latency 141
4.2.4 Quality: Fulfillment of Network Latency Constraints . 143
4.2.5 Quality: Deviation from Network Delay Constraints . . 147

Contents

4.2.6 Scalability: Execution Time and Performance

4277 Summary

4.3 Processing and Network Delay Constrained Optimization . . .

4.3.1 Setup

4.3.2 Evaluation Objectives

4.3.3 Quality: Processing and Network Latency
4.3.4 Quality: Network Usage

4.3.5 Overhead: Messages for candidate selection methods

4.3.6 Summary

4.4 Conclusion .

5 Summary and Future Work

5.1 Summary .
5.2 Future Work

References

148
151
152
152
155
155
157

. 158

159
160

163
163
164

167

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8

3.9

3.10

Layered Architecture of Context Aware Systems 18
Extended Nexus Architecture 24
Mapping of operator graph to physical hosts. 34
Situation Template: "Traffic Jam" 35
System Architecture L. 36
Context aware systems classification. 41
Processing Models 42
Two different placements with respective resulting network usage. 58

Example of the gradient method for a 2-dimensional SOP prob-

lem. 72
Example of approximation for function Ujeear () = 25(x—0.2)+

25(x —0.4) +50(x — 0.6) + 50(x — 0.8). 74
Symmetric Operator Placement Solutions. 80
Process flow of the initial placement. 86
Direction of the movement for MOPA-LPMAX 91

Communication Overhead Example for MOPA & MOPA-LPMAX 95

Estimated processing delay (matrix multiplication operator;

matrix size:100)o 102
Estimated processing delay (matrix multiplication operator;
matrix size:1000) Lo 103
Candidate set for one unpinned operator with one sink and one

SOUTCE. . v v v v v v e e e e 108

10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23
4.24

List of Figures

Relative network usage of SBON w.r.t. MOPA (Continuous

solutions). 129
Physical stretch factor of SBON and MOPA w.r.t. optimal
discrete MOP solution (Operator Graph Size:6). 130
Physical stretch factor of SBON and MOPA w.r.t. optimal
discrete MOP solution (Operator Graph Size:15). 131
Cumulative distribution of number of messages exchanged (data
rates 100-200Kbps).o 133
Cumulative distribution of number of messages exchanged (data
rates 50-500Kbps).o 134
Cumulative distribution of local iterations. 135
Stacked histogram of sent and suppressed messages. 136

Cumulative distribution of migrations (data rates 100-200Kbps).137
Cumulative distribution of migrations (data rates 50-500Kbps). 138
Execution time of MOPA and CPLEX w.r.t. graph size. . . . 139
Physical Stretch Factor of MOPA and SBON w.r.t. graph size. 140
Latency and Network Usage stretch for varying heterogeneity. 142
Success rate according to the constraint latency stretch. 143
Success rate for narrow/broad latency stretch interval 144

Network usage stretch for narrow/broad latency stretch interval 145

Cumulative distribution of latency stretch. 146
Cumulative distribution of network usage. 147
Execution time of MOPA-LMAX, CPLEX w.r.t. Graph Size. . 149
Latency Stretch of MOPA-LMAX w.r.t. Graph Size. 150
Network Usage Stretch of MOPA-LMAX w.r.t. Graph Size. . 151
Processing delay w.r.t operator complexity (matrice size). . . . 153

Network and Processing Latency for increasing number of op-
erators.o e 156
Resulting network usage for candidate selection. 157

Communication Overhead. 158

11

List of Tables

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5

Overview of placement problems and algorithms 59
System Model Notation 63
Extended Network Delay Constrained System Model Notation 84

Extended Processing and Network Delay Constrained System
Model e 99
Existing CEP systems supporting distributed event recognition 112

Overview of placement algorithms under test 124
Overview of performance metrics 128
Overview of performance metrics 141
Overview of candidate selection algorithms 154
Overview of performance metrics 154

13

Abstract

During the last years, the proliferation of modern devices capable of captur-
ing context information through various sensors has triggered the blossom of
context-aware systems, which automatically adapt their behaviour based on
the detected context. For many emerging context-aware applications, context
may include a huge amount of entities possibly dispersed geographically over
a wide area. In such large-scale scenarios, the efficient processing of context
information becomes a challenging task. In this dissertation, we are going
to focus on the problem of the efficient processing of context information.
In particular, we will consider the problem of deriving high-level context in-
formation, also referred to as situation in the literature, from sensor data
streams captured by a large set of geographically distributed sensors.

First, we present the architecture of a distributed system that uses rea-
soning algorithms to detect situations in an overlay network of data stream
processing operators. Then we are going to introduce our strategies for the
optimal distribution of data processing between processing nodes in order to
save network resources, by optimizing for bandwidth-delay product, and ful-
fill given QoS requirements, such as end-to-end latency constraints. To this
end, we formulate three (constrained) optimization problems, which search
for an optimal placement of operators onto physical hosts with respect to
different application constraints. The proposed algorithms are executed in
a distributed way, by using local knowledge of the system. Our evaluation
shows that our algorithms achieve good approximations of the optimal solu-

tions, while inducing limited communication overhead.

15

Deutsche Zusammenfassung

Wihrend der letzten Jahre hat die Anzahl an vernetzten Sensoren und mit
Sensoren ausgestatteten Gerdten wie Smartphones stark zugenommen. Diese
weitreichende Verfiigharkeit von Sensorinformationen hat zu einer Vielzahl
so genannter kontextbezogener Anwendungen z.B. in der Logistik, der intelli-
genten Verkehrssteuerung, der Produktion (,,Smart Factory”) oder der Ener-
giewirtschaft (,Smart Grid“) gefiihrt, welche in der Lage sind, ihr Verhalten

automatisch an ihren Kontext anzupassen.

Viele Anwendungsszenarien basieren dabei auf einer grofen Anzahl von
Sensoren (Datenquellen), Kontextdatenprozessoren, welche aus Sensordaten
hoherwertige Kontextinformationen (Situationen) ableiten und Anwendungen
(Datensenken), welche geographisch weit verteilt und iiber Weitverkehrsnetze
bzw. das Internet miteinander vernetzt sind. Die Quellen produzieren dabei
u.U. grofsvolumige Datenstrome (z.B. kontinuierliche Videoaufzeichnungen)
bzw. eine Vielzahl von Datenstromen (z.B. aus grofen Netzen von Tempe-
ratursensoren, Kontaktschleifen entlang von Strafen, Verbrauchsdaten von
yomart-Meters®, usw.). Insbesondere in solch grofen Szenarien stellt die effi-
ziente Kommunikation und Verarbeitung von Sensordatenstromen eine grofe
Herausforderung dar, der sich diese Dissertation widmet. Das iibergeordnete
Ziel dieser Arbeit ist dabei der Entwurf von Konzepten und Mechanismen zur
effizienten verteilten Verarbeitung von Sensordatenstrémen in einem Netz aus
Kontextdatenprozessoren zur Ableitung von héherwertigen Situationen zur
Unterstiitzung kontextbezogener Anwendungen.

Hierzu leistet diese Arbeit die folgenden Beitrége. Zunichst wird eine Archi-
tektur zur verteilten Verarbeitung von Sensordaten in einem dem physischen

Netz iiberlagerten Overlay-Netz aus Datenprozessoren — so genannten Opera-

16 Deutsche Zusammenfassung

toren — entworfen sowie das Konzept der Operatorgraphen zur Modellierung
der verteilten Verarbeitung formal eingefiihrt. Dieses Konzept ermoglicht ins-
besondere die verteilte Ausfithrung von Situationserkennungsoperatoren, z.B.
basierend auf Bayes’schen Netzen.

Des Weiteren werden verschiedene Algorithmen zur optimalen Verteilung
der Operatoren eines Operatorgraphen auf physischen Rechnern (Hosts) im
Overlay-Netz vorgeschlagen (Operatorplatzierung). Ziel der Optimierung ist
dabei die Steigerung der Skalierbarkeit durch die Entlastung des physischen
Kommunikationsnetzes. Hierbei wird im Detail die Minimierung des Band-
breiten-Verzogerungsprodukts der Datenstrome eines Operatorgraphen be-
trachtet. Ferner wird dieses zunéchst reine Optimierungsproblem durch Rand-
bedingungen in Form anwendungsspezifischer Dienstgiiteeigenschaften (Qua-
lity of Service) erweitert. Betrachtet wird hierbei vor allem die Ende-zu-En-
de-Verzogerung von den Datenquellen zur -senke als wichtige Randbedin-
gung zeitkritischer Anwendungen und Prozesse. Neben der Betrachtung der
Kommunikationsverzégerung werden dabei auch verarbeitungsintensive An-
wendungen durch die Einbeziehung der Verarbeitungszeit auf den Rechenk-
noten beriicksichtigt. Ein wesentlicher Beitrag dieser Arbeit ist ein verteilter
Algorithmus zur ndherungsweisen Losung des Optimierungsproblems durch
dezentrale Platzierungsentscheidungen der Operatoren basierend auf lokalem
Wissen. Dieser Algorithmus wird in weiteren Schritten so erweitert, dass eine
gegebene Ende-zu-Ende-Verzogerung eingehalten wird. Die im Rahmen die-
ser Dissertation durchgefiihrten Evaluierungen zeigen, dass diese Verfahren
zu sehr guten Anndherungen der optimalen Losung mit nur geringem Kom-

munikationsaufwand zur Ausfiihrung des verteilten Algorithmus fiihren.

17

1 Introduction

1.1 Motivation

Context-aware systems adapt seamlessly their behaviour according to context
changes, i.e., without the explicit intervention of the end-user. Context could
be any relevant information regarding the interaction of the application and
the user. More formally, context has been defined according to Dey [4] as
“any information that can be used to characterize the situation of entities
(i.e. whether a person, place, or object) that are considered relevant to the
interaction between a user and an application, including the user and the
application themselves”. The automatic adaptation of the system to the cur-
rent context leads to the “pervasive computing” vision, where applications are
adapted to satisfy user expectations.

Context-aware applications include navigation and assistance, environmen-
tal monitoring, smart power grids, traffic and transportation. Imagine, for
instance, a context-aware application that suggests minimal delay routes us-
ing public transportation in a smart city. The system monitors the current
traffic congestion and detects situations that can lead to deviation from the
normal traffic patterns, e.g., car accidents, traffic lights out of use, cable-fire
at the tram. The detection of situations that can affect the normal function
of the public means of transportation plays a critical role in order for the sys-
tem to adapt to current conditions, for instance, to select alternative routes
that can reduce the trip delay. Therefore context-aware systems should be
able to interpret context that can be directly acquired from the environment

to meaningful situations that are relevant to the application.

Sensors constitute the technological enabler to capture continuously sensor

18 1 Introduction

application Application

adaptation Adaptation

Situation (High-level context):

context reasoning o)
Meeting in a room, Traffic Jam...

Low-level context:

preprocessing))
Noise Level, Temperature, Location...

context sources

Sensors, Context Servers

Figure 1.1: Layered Architecture of Context Aware Systems

data to monitor environmental variables such as temperature, humidity, or
wind. Sensors could be stationary sensors, such as temperature sensors, in-
duction loops, road-side units, cameras that are deployed at fixed locations
and continuously track the current context, or mobile embedded in mobile
devices such as smart phones that are carried by users. Managing, inter-
preting and processing sensor data is critical for the success of context-aware

systems, since their behaviour relies on context information.

In order to achieve this goal, context-aware systems typically implement
a layered architecture as shown in Figure 1.1. In the bottom layer, context
sources provide either static data such as city maps or dynamic data such as
sensor data by monitoring the environment. Sensor data can be translated
to observable context, which is the primitive form of context since it can be
directly acquired by sensors. Then, several pieces of observable context are
combined to detect high level context changes and situations. Technically

the correlation of low level context data to deduce situations can be real-

1.1 Motivation 19

ized through context reasoning algorithms [97]. Finally the system adapts
according to the detected situations.

To illustrate this process through an example, consider the scenario of the
automated calculation of shortest routes in a smart city. First a sensor net-
work, which includes induction loops, and road-side units is deployed along
the roads in the city. To calculate the route between two points, the cor-
relation of static data (city maps, bus routes) and dynamic data currently
acquired from sensors, e.g., which streets are currently crowded, have to be
collected and processed. Thus, the detection of the situation “traffic conges-
tion” in a road segment would increase the delay estimation of the trip and
adapt the estimation to current conditions. Finally, a response is returned
back to the application. Now imagine that multiple users query the system to
get notified about different situations. Context data that are generated from
sensors deployed on different locations have to be transferred and processed
in a timely and efficient manner. In such a setting, the amount of data that
are transferred in the system affects the performance of the system, since an
excessive amount of data could lead to bottlenecks and network congestion.

Already for these simple scenarios, we need several pieces of low level con-
text (e.g., distances between cars, average speed), which could come from
different sources (e.g., cars, road-side units, cameras on bridges). The ques-
tion that naturally arises is at which server to correlate this distributed con-
text data. Omne simple solution is to collect all the necessary information
at a central server and perform the reasoning there. In line with this cen-
tralised approach, many of the existing context aware systems are designed
to support specific use case scenarios (e.g., MS Easy Living [22] or Semantic
Space [80]) and cover a limited geographical area (e.g,. one building or con-
ference room). However this naive solution cannot provide a scalable solution
in scenarios with a large number of geographically distributed context sources
that is subject to our work due to several drawbacks: First, it does not utilize
communication resources efficiently since unfiltered data has to be sent to a

possibly distant central server. This increases the network load and might

20 1 Introduction

lead to communication bottlenecks. Secondly, the timeliness of situation de-
tection may increase since the communication with a distant server induces
a longer delay, and communication bottlenecks further slow down this com-
munication. To avoid these problems, it seems reasonable to distribute the
reasoning process to several servers across the network.

An alternative to the centralised approach that increases scalability is the
partitioning of the network. In [50] multiple servers, each one responsible for
a certain geographic region, are used to perform context reasoning. Although
this approach is a first step towards distributed context reasoning, it still
executes reasoning tasks centrally on a dedicated server. Therefore, it may
lead to poor utilization of network resources and limited system performance.
Other existing approaches that enable the distribution of the reasoning task
[51,100] are method-specific, since they refer to a specific reasoning algorithm,
and they do not address the problem of distributed context reasoning as an
optimization problem to achieve efficient utilization of network resources and
high system performance.

Given the limitations of existing approaches to provide a solution that
allows the efficient distribution of reasoning tasks, our work addresses some of
the challenges imposed by distributed context reasoning. First, we present an
abstraction that allows for the distribution of reasoning tasks. Our proposed
model is based on the operator concept which represents a basic reasoning
task. Typically, the detection of a situation involves several sub-tasks to
process sensor data from several distributed sensors, detect sub-situations,
and combine these partial results to the final situation. By encapsulating
processing tasks into processing operators, we allow for the distribution of
the processing to several servers. Thus, the proposed system is based on
a generic formalization of distributed reasoning that allows for the use of
different reasoning algorithms and the distribution of the reasoning process
according to different optimization and QoS criteria.

In detail, our system uses a situation-centric model, which contains pre-

defined situation patterns, called situation templates that are stored as pre

1.1 Motivation 21

knowledge in the system. Situation templates are built from observable con-
text and processing units called operators. Different reasoning methods such
as distributed Bayesian Networks or Petri Nets can be supported through
different operators implementing the specific context correlators. Generally
each situation template forms a graph of operators, which cooperatively per-
forms a reasoning task. At runtime, situation detection is initialized by the
creation of a logical plan, which is derived from a situation template. This
plan describes the detection of a concrete situation at a certain location or
for a given object by an operator graph. Subsequently the system finds a
mapping of the operators of the logical plan to physical hosts according to
the optimization goal of the operator placement. The result is a physical plan
that is finally deployed to execute the reasoning process in an overlay network
of operators.

Given this model, we argue that the problem of optimally placing operators
onto a network of physical nodes, is an optimization problem that applies to
distributed context management systems as well as to Complex Event Pro-
cessing (CEP) and Distributed Stream Management Systems (DSMS). To
this end, we focus on operator placement strategies that search for optimal
mappings of operators to physical nodes such that the network load is min-
imized and application-defined latency restrictions are satisfied. Operator
placement algorithms have been investigated mainly in the context of data
stream processing [2,3,28,84], but also in CEP systems [59,99]. Overall the
existing placement algorithms focus on different optimization objectives [63],
e.g., latency, bandwidth or load depending on the system model and the
application constraints assuming central [28, 52| or distributed network con-
trol [59,84,99]. In this dissertation, we target large-scale scenarios, where a
centralized global view on the system is not possible. To this end, we propose
operator placement algorithms that use only local knowledge to optimize for
network load and satisfy application-defined latency constraints.

In more detail, the operator placement problems presented in this disser-

tation, target communication intensive applications, which require the online

22 1 Introduction

processing of large amount of data. These applications may include envi-
ronmental monitoring, IP network traffic analysis, global sensor networks.
To this end, we first look at an optimization problem where the goal is to
minimize the network load put on the system by the operator network. By
minimizing the network load, we put less burden at the network and thus we
contribute to the avoidance of network congestion and increase the scalability
of the system. Furthermore, we formulate two constrained optimization prob-
lems, which consider application-defined latency constraints, under different
assumptions on the application characteristics. In particular, we distinguish
the following two categories of communication intensive applications, depend-

ing on the size of the data units that they communicate:

e Applications with negligible processing delay, where network latency is

the main part of the end-to-end delay.

e Applications with substantial processing delay, where transmission and

processing delays are substantial parts of the overall end-to-end latency.

For each of the two categories, we present a constrained optimization operator
placement problem that considers a maximum end-to-end delay of detecting
situations. In that respect, the application can specify a threshold of the max-
imum latency that it can tolerate. First we target the applications, where the
processing delay is negligible, we consider the network latency as the domi-
nant factor of the end-to-end latency. To this end, we propose an operator
placement algorithm that solves the constrained optimization problem and we
analyse the interdependence of the bandwidth-delay product and delay opti-
mization. Then we provide a solution for the applications with substantial
processing delay. In that case, the end-to-end latency is affected by network
latency as well as by the processing delay. Therefore, we extend our system
model to consider processing and transmission delays, and we present another
operator placement algorithm solving this constrained optimization problem.

Before we give a detailed overview on the individual contributions of this

1.2 Background 23

dissertation, we introduce the research project "Nexus", which provided the

framework of this work.

1.2 Background

Our research in the area of distributed context reasoning is embedded into
the joint research project Nexus (Collaborative research Centre 627) of the
University of Stuttgart. The Nexus project is centred around the concept of a
context model (also called world model) that provides context-aware applica-
tions with context information. This model includes static context informa-
tion such as map information as well as dynamic information stemming from
sensors. Moreover, this information can be classified as directly observable
context information and high-level context information (situations). Since
the Nexus platform federates the context models of the different providers
and offers context-aware applications a global, consistent view on their con-
text data, centralized context management systems are obviously insufficient.
Therefore in Nexus we have adopted a scalable, distributed architecture that
integrates different services such as distributed query processing and context
reasoning. One of the core functionalities of the Nexus platform is the context
reasoning service, which is relevant to the work presented in this dissertation.
In particular, a basic contribution of this dissertation is to provide the con-
cepts for efficiently deriving situations from observable context information
as part of the Nexus model. Next, we will briefly describe the architecture of

the Nexus platform, which gives the background framework for our work.

1.2.1 Architecture

Nexus uses a three layer architecture, where applications are located on the
top layer. The middle layer forms a federation, which integrates the data
stored on context providers at the bottom layer [77]. Nexus provides different
services based on the application needs. One Nexus core service is the query

processing service. For this service, Nexus follows a request-response model

24 1 Introduction

Applications
Application & | Smart | Visualization
. PP "
Middleware m Factory Client
Layer Middleware
MWS Services Workflows

. Context-Cast
Federation
Laer
Reasoning

Distributed

Reputation and
Accounting
Context
Broker
Operator
Repositon

Query Processing

'
World Wide Space
Context P .
R Augmented History Sensor
information ,
Layer -

Figure 1.2: Extended Nexus Architecture

receiving queries from applications. Based on spatial restrictions in the query,
the federation layer determines the relevant context providers and forwards
the query to them. In a second step, it integrates the results and sends them
back to the application [64]. Another important service in Nexus platform
is the event management service. In Nexus, physical world events can be
observed, by calculating the occurrence probability and comparing this to
the specified threshold probability [16].

In this dissertation we tackle the problem of distributed context reasoning
that comes as an additional service of the Nexus platform. Our work is part
of the extended Nexus platform that was designed during the second funding
period of the Nexus project. The extended Nexus architecture [65] retains the
idea of separating applications, federation, and data providers. However, the
extensions add more flexibility to the federation layer and integrate historical
data and situations within the context data layer. Figure 1.2 depicts the
extended Nexus architecture with its three layers: (1) Context Information
Layer, (2) Federation Layer and (3) Applications & Middleware Layer. In the

next, we present the extended Nexus platform as shown in Figure 1.2.

1.2 Background 25

1.2.2 Context Information Layer

The Context Information Layer consists of context servers from arbitrary
providers. It provides context data at different level of details ranging from
sensed context data, over static context data to historical context data. His-
torical data, such as the trajectory of a moving object or the value pattern
of a thermometer, is stored by specialized history context providers. Such
data can be integrated into the context model by means of meta data for
attributes, which represents the period when an attribute value is valid. His-
tory context providers typically use lossy data compression algorithms, e.g.,
line simplification, to reduce the amount of data to be stored [56,66]. The
data from history context providers can be exported to history warehouses
for more sophisticated analysis, e.g., to develop algorithms for traffic jam

prognosis.

1.2.3 Federation Layer

The Federation Layer is a distributed platform for context services. It works
on hybrid systems [42] and integrates infrastructure-based networks and ad-
hoc networks of mobile devices, as depicted in Figure 1.2. There are two types
of predefined Nexus services: Platform Services are context services typically
used by applications, such as Context Reasoning, Context Cast, or Stream
Query Processing. In contrast, Core Services provide the functionality on
which the Nexus Platform Services rely, including Context Broker, Reasoning

Templates, or Operator Repository.

Context Broker. The Context Broker discovers relevant context providers
for query processing or situation recognition. To this end, it indexes all con-
text providers by means of their models and allows for querying for relevant
providers whose models intersect a certain clipping of the federated context
model. Moreover, it provides distributed index structures [67] for accessing
trajectory data on moving objects. These objects are not bound to a spe-

cific context provider and their trajectory data may be distributed over many

26 1 Introduction

providers.

Distributed Query Processing. Streamed data is highly volatile, poten-
tially infinite, and allows only sequential access. This calls for dedicated
stream processing functionality to enable on-the-fly processing of streamed
data. The Operator Repository enables stream processing, providing suit-
able data stream operators. To avoid load congestion on a particular site,
partitioning and distributing queries across processing node is an essential

step to make stream processing affordable.

Contextcast. The Contextcast service enables applications and services
to send messages to entities with a certain context. Message distribution
does not rely on explicit multicast groups, but uses an overlay network of
context-based routers to forward messages instead. This approach is similar
to content-based publish/subscribe systems, however, the forwarding struc-
tures are adapted to exploit properties of context information such as more

gradual changes.

Context Reasoning. Context reasoning derives new knowledge from low
level context. Since distributed context reasoning is the focus of this dissera-
tion, we will determine the details of the approach during this thesis. In brief,
Nexus uses a situation-centric approach describing each situation by a set of
rules, which constitutes a Situation Template. Each Situation Template
generates a logical execution plan, a directed graph describing the data flow
and the steps of the algorithm. As already mentioned, for scalability rea-
sons, the situation recognition process must be distributed to several physical
nodes. The distribution of the logical execution plans to physical machines

is governed by factors such as latency, bandwidth, and load.

1.2.4 Applications and Middleware Layer

Finally, the Applications € Middleware Layer enables application specific
additions to the platform. It is possible to outsource parts of the applica-

tion logic to the execution environment, with dedicated machines performing

1.3 Contributions 27

application specific tasks. The application logic can be moved into the mid-
dleware layer using Context-aware Workflows [109] together with Context

Integration Processes [110].

1.3 Contributions

The focus of this dissertation is on the development of concepts and mecha-
nisms for a distributed context reasoning system. In detail, the contributions

of this work are:

e Generic System Model for Context Processing. We present a
generic system model using an abstraction that allows us to handle the
problem of distributed context reasoning as an operator placement prob-
lem, known from data stream processing. In particular, we adopt the
operator graph model from stream processing to express the correlation

of several pieces of context to detect a situation.

e Architecture of a Distributed Context Reasoning System. We
introduce an architecture that enables distributed context reasoning by
distributing the reasoning process to several physical nodes such that
the system performance is improved. The distribution of the reason-
ing process is transparent to the application, which has access only to
the final outcome of the reasoning process. Therefore, the design of
the architecture decouples the two problems of context reasoning and

operator placement.

e Operator Placement Algorithm for Minimizing Network Load.
We present a placement algorithm that finds a mapping of operators to
physical hosts such that the induced network load is minimized. By
minimizing the network load, we contribute to the scalability of the
system, since the system gets slower loaded and thus, can handle a

large number of data stream tasks. The proposed algorithm works in a

28 1 Introduction

distributed way, i.e. the operators place themselves on physical nodes

based on their local view.

e Operator Placement Algorithm with Latency Constraints. We
also present two operator placement algorithms that consider application-
defined latency requirements. The ultimate goal is to fulfill application-
defined latency constraints while minimizing the network load. Thus,
apart from the optimization goal, here we try to fulfill also end-to-end
latency constraints. In a first step, we target applications with negli-
gible processing delay. Then, we consider applications with significant

processing and transmission delay.

e Evaluation of Operator Placement Algorithms. As part of this
dissertation, we provide an evaluation of the proposed operator place-
ment algorithms by using a network simulator as well as an emulator
test bed that allows a more accurate testing of the performance of the

placement algorithm that considers processing delays.

1.4 Structure

The structure of the dissertation is as follows: In Chapter 2, we present an ar-
chitecture for a distributed context reasoning system that has been designed
in the frame of this dissertation. In that chapter we will introduce the op-
erator graph model, which is a core model abstraction for our approach to
distributed context reasoning. Moreover, we present the proposed architec-
ture and we explain in detail its components and functionalities, before we
explain the novelty of our proposed architecture with respect to the state of
the art context-management systems. In Chapter 3, we present the operator
placement problems and algorithms considered in this dissertation. For each
of the three operator placement problems, we first present the system model
that help us to formulate the problem, before we present the corresponding

operator placement algorithm. Furthermore, at the end of this chapter, we

1.4 Structure 29

present related work in the area of operator placement algorithms with respect
to the proposed operator placement algorithms. In Chapter 4, we present the
evaluation results that were collected during the testing of the operator place-
ment algorithms presented in Chapter 3 before we conclude our work and we

discuss directions for future research in this area in Chapter 5.

31

2 Architecture

In this chapter, we are going to present our solution for the design of a dis-
tributed context reasoning system [94]. In our approach, context reasoning is
used to detect high-level contextual changes of the environment, called situ-
ations, from various pieces of low-level context that can be directly acquired
by sensors. Our work focuses especially on large-scale scenarios where the
context sources are distributed and cover a large geographic area. Imagine
for instance a navigation service in a smart city, where real-time information
coming from cameras and sensors, located in different places in the network,
is correlated with static data, such as city maps to detect traffic congestion
points and derive optimal routes for users. Context data coming from dif-
ferent places across the route should be transmitted through the network
in order to get processed and finally the result should be delivered to the
application.

Although extensive work has been done on the representation and reason-
ing of context information, most existing context reasoning systems do not
address or only address partially the efficient in-network processing of context
data. In order to tackle this problem, we propose a novel architecture that
uses a graph-based representation for reasoning tasks, which allows for their
distributed execution in the network.

More precisely, our system model is based on the abstraction of the operator
graph, which formulates the context reasoning task through a directed graph
of processing units, called operators. We show later how this model can
depict several problems from different application domains. The operator
graph is used as an interface between the context reasoning algorithms and

the network control layer, which is responsible for the distribution of context

32 2 Architecture

reasoning. On the one hand, the operators enclose the functionality of the
context reasoning algorithm. On the other hand, they constitute the smallest
processing unit that can be deployed on a physical host.

In the following, we present first our system model and we introduce the
core notion of our architecture, the operator graph, before we present the
architecture of the system and we discuss the related work in context man-

agement systems.

2.1 System Model

Our system model consists of a physical network model that represents the
physical interconnected network of physical nodes hosting the reasoning tasks
and an ezecution model representing the service functionality to be executed
on the physical hosts.

In particular, we assume a network of physical nodes that are spread over
a wide geographical area and are capable of hosting reasoning tasks. Each
physical node has different specifications in terms of computing capacity and
is placed in certain location in the network, thus inducing different network
latency depending on the node to communicate. Therefore the execution of
a reasoning task may differ in terms of communication and processing delay
depending on the physical node that hosts the task. To this end, the selection
of the physical hosts that will execute the reasoning tasks has a strong impact
on the performance of the system in terms of the network load and end-to-end
delay.

In our execution model, we assume that each reasoning task can be rep-
resented by an operator graph, which is a core abstraction of our proposed
system architecture. Initially, the operator graph was introduced for dis-
tributed data stream processing to model a stream processing task as an in-
terconnected graph of traditional relational operators such as merge, join, and
select. However, this model can be adopted by other application domains,

since the operator can represent an arbitrary processing task on its input

2.2 Situation Model 33

streams to generate an output stream as we explain in Section 2.4. Thus, the
operator graph model provides a unified representation of the service specific
models.

In more detail, the operator graph is a graph that constitutes an abstract
representation of the various functionalities to be deployed, together with
the description of their interdependency. In particular, the different func-
tionalities are encapsulated into primitive processing units, which are called
operators. The operators then act as black boxes which hide the functionality
of the specific services. In addition, the edges of the operator graph denote
information exchange between operators. Furthermore, additional informa-
tion that is useful for placing the operators onto the physical network can be
expressed by restrictions either on the operators (e.g., computational load,
memory requirements) or on the edges of the graph (e.g., latency require-

ments, bandwidth consumption).

2.2 Situation Model

In our proposed system architecture, we use the operator graph model, pre-
sented in previous subsection, to represent a reasoning task that process ob-
servable context to detect situations. In that respect, the context reasoning
task splits into basic processing units, each one representing a partial result
of the complete reasoning task. The idea is to exploit this characteristic of
combining partial results to generate higher level context, by assigning the
partial reasoning tasks to different physical hosts in order to increase the
performance of the system.

Therefore, we introduce here the context reasoning operators, which process
observable context data to infer situations. Given the adopted operator graph
model, several algorithms could be used to detect situations, as long as they
follow the principle of combining partial results. As explained in the previous
section, a situation is composed of multiple forms of elementary context and

describes the combination of circumstances at a given moment, a state of

34 2 Architecture

Operator Graph

Physical Network

Figure 2.1: Mapping of operator graph to physical hosts.

affairs. Here we use a situation-centric approach, where each situation that
can be detected by the system, is predefined by experts and stored as pre-
knowledge of the system. For each situation one or more predefined situation
recognition patterns, called situation templates that describe the relations
between the various pieces of context, might exist. Situation templates are
graphs consisting of nodes providing observable context and operator nodes.
Operator nodes are method specific and describe the processing of the input
data to derive high level context. In Fig. 2.2 we see an example of a situation
template describing the situation “Traffic Jam”. For the detection of this
situation, we assume three kinds of observable context: sensor data about
the number of cars in this part of the road, the average speed of the cars,
and an internet text sensor which scans the WWW space to find context
information related to the location of the situation. The unary operators
connected with the external sources act as filters, which allow only the data
within a range to pass to the next operator. Then Bayesian operators are

applied to compute the probability of the (sub-)situations as described in [83].

2.2 Situation Model 35

S, S, T F

true true 0.7 0.3

true true 0.6 04

s: Bayesian Operator

R I 1 true false 0.0 1
false true 0.0 1 false . 0.0 1
false false 0.0 1 false false 0.0 1
s,: Bayesian Operator |
51 T £ s T F s T F
P 09 01 p 08 02 \ P 0.8 0.2
| s,: value<25 | | s,: value<20km/h | | s3: string=="traffic jam” |
| counter-sensor | | speed-sensor | | InternetText-sensor |

Figure 2.2: Situation Template: "Traffic Jam"

In order to calculate the probability of a (sub-)situation, we need to know
the values of the so called Contribution Probability Tables (CPT). CPTs are
not predefined, but situation template might include some initial values, as
shown in Fig.1, that later will be changed by a learning process.

Fig.2.1 shows an example of mapping an operator graph -which corresponds
to a situation template in our model- onto physical hosts according to our
system model. In that respect, the operator graph acts as a logical plan by de-
scribing the operators and their interdependencies, while the overlay network
of operators that is built after the mapping of the operators onto physical
hosts as shown in Fig.2.1 represent the physical plan, since it assigns the rea-
soning operators onto physical hosts. Hence, it becomes challenging, given
a logical plan and representation of the physical network, to find an optimal
physical plan with respect to different optimization criteria e.g., network load
or latency. Note that typically in an operator graph, the data sources and
sinks are pinned, i.e., they are bound in specific physical hosts in the net-
work. Therefore, the problem of converting a logical plan to a physical one,

is mainly associated with the placement of the unpinned (reasoning) opera-

36 2 Architecture
Application
[Context Aware Application] Layer
Request Teedback ﬁ Context
— [[Feedback) Response | peasoming
Execution Environment Layer

Situation Template Logical
Repository Planner

Context Broker Logical Plan

Feedback
Adaptation

Distributed

Distributed
Operator
Execution

Initial
Operator
Placement

2
Resource Model

Operator
Placement

Observable
Context

Deployment of Physical Plan

Physical
Plan
World

[Static Data] [Historical Data] [Situation Data]] Z’]‘;:f’

[Sensor Data]

[World Model

Figure 2.3: System Architecture

tors onto physical hosts. Later on, in Chapter 3, we define in a more formal
way the operator placement problem and we describe different methods to

solve this problem.

2.3 System Architecture

We now present our system architecture for distributed context reasoning.
Fig. 2.3 shows the components and the interfaces of the distributed reasoning
system, which belong to three different layers: World Model Layer, Context
Reasoning Layer, and Application Layer. In the basic layer, the World Model
provides the observable context to the situation detection components, which
constitute the second layer that processes the observable context to derive
high level context in an efficient way. The context-aware application lies on
the top layer, representing the user that interacts with the system either to
query for situations of certain objects or locations, or subscribing for events
on detected situations. In addition to these basic parts, the auxiliary services
support the core components by providing additional information to situation
detection components.

The system operates in two distinct phases: the Initialization Phase and the

Ezxecution Phase. During the initialization, the system creates a query plan,

2.3 System Architecture 37

which describes a reasoning task by an operator graph with pinned context
sources and sinks. Then an optimization step takes place, which maps the
operator graph to an overlay network, where the free operators are placed
to physical nodes such that an optimization goal is achieved. The operator
graph is then deployed on the physical network and the system enters the
execution phase. During the execution phase the reasoning task is executed
in a distributed way on the physical network while the system continuously
optimizes the mapping of the operator graph by adapting the overlay operator
network to the current network condition. Next we describe in detail the core
components of the architecture:

Query Planner. The Query Planner receives the user specifications and
it retrieves the corresponding situation template from the Situation Tem-
plate Repository, which stores all the available situation templates. The user
specifications include the definition of the detectable situation as well QoC
(Quality of Context) and QoS (Quality of Service) requirements of the user.

After the retrieval of the situation template, the Query Planner contacts
the Context Broker |64] to discover the context sources needed to perform
the reasoning task. For instance, in the traffic jam scenario, it might ask for
all camera sensors at a certain road or the context servers providing informa-
tion about the average speed of cars on this road. In general, the Context
Broker can be realized as a distributed lookup service for context sources,
where each source is described by the kind of data it provides, the quality
of the provided data and the spatial area covered by the data. Finally, the
Query Planner encapsulates each partial reasoning task in an operator, as
specified in the situation template, and pins the sources and the application
to their corresponding physical hosts in the network. The result of this proce-
dure is an operator graph, which contains pinned (sources, application) and
unpinned operators. This operator graph acts as an interface between the
Query Planner and the initial placement component.

Initial Operator Placement. The Initial Operator Placement assigns

the unpinned operators of the operator graph to physical hosts according to

38 2 Architecture

defined optimization criteria. To achieve this goal, it executes an operator
placement algorithm in a centralized way. In particular, the initial placement
component first contacts the Resource Model to get the information about the
physical nodes and links that represent the available resources in the physical
network such as latency, available bandwidth, or load. The Resource Model
is dependent on the placement algorithm and can be realized as a distributed
lookup service. After retrieving information about the current network con-
dition, the initial placement should find a mapping of the unpinned operators
to physical hosts which optimizes for a certain criterion. Usual criteria for
placement optimizations are network usage, latency, and load [8,63,84,92]. In
Chapter 3, we present different placement algorithms that target different op-
timization goals and we discuss other existing approaches for the placement
of operators onto physical hosts. The output of the placement algorithm
is an overlay operator network, which extends the operator graph with the
additional information of the physical mapping of the operators. Then the
operator graph is finally deployed on the physical network and the system
enters the execution phase.

Distributed Operator Execution. After the deployment of the physical
plan, it starts the distributed execution of the operators, which realizes the
reasoning task in a distributed way. If the user has subscribed for certain
situations, this task is executed permanently and the user is notified of new
situations when they are detected. In particular the distributed operator exe-
cution receives the context data from the selected sources of the World Model,
performs the reasoning task and then notifies the application. Furthermore it
also writes the result of the context reasoning back to the World Model. As
we have already mentioned, the situation is a part of the World Model and
therefore its current status is to be updated. This approach also allows for
the storage of historic situations.

Distributed Operator Placement. Since the network conditions might
change during the Execution Phase, the initial placement might not fulfill at

some point in time its optimization goal anymore. The distributed operator

2.4 Overview of existing approaches and systems 39

placement service is responsible for the adaptation of the operator placement
to the current network conditions. Here, the operator placement is done in a
distributed way and it modifies, if necessary, a part of the physical plan. In
other words, when the distributed placement algorithm finds a better place-
ment for an operator, it initiates the migration of this operator to another
physical host by modifying this part of the physical plan. Then the execu-
tion environment is responsible for the deployment of the new physical plan.
This process is an event-driven process, which is triggered by changes of the
network conditions. Most of the existing placement algorithms provide dis-
tributed placement strategies that adapt the operator placement during the
execution of the operator graph based on local information. For instance
in [92] we proposed a distributed version of our placement algorithm optimiz-
ing for network usage.

Feedback Adaptation. The user can send feedback to the system about
the occurrence of the detected situation in the real world (e.g. false posi-
tives/negatives). The user feedback is used by the Feedback Adaptation to
improve the quality of the situation detection. In particular the feedback
adaptation component is responsible for the re-configuration of the operators
during the distributed operator execution. The operator configuration is de-
pendent on the reasoning algorithm. For instance, in case of the Bayesian
Networks, the algorithm proposed in [120] can be used to calculate the new
values of the CPTs.

2.4 Overview of existing approaches and systems

In this section, we discuss related work in the field of context management
systems but also in the related fields of Complex Event Processing (CEP) and
Data Stream Management Systems (DSMS). As we analyse later, these differ-
ent research communities have developed systems that share some common
goals and aspects. In particular, from a network viewpoint, context manage-

ment systems share common characteristics with CEP and DSMS systems,

40 2 Architecture

since they all require the timely processing of data flows from a set of sources
dispersed over the network to several sinks. In that respect, Gucola et al. |74]
have tried to analyse the commonalities and differences between complex
event processing and data stream processing. In this work, they introduce
the concept of information flow processing (IFP), which aims to provide an
abstraction model that applies for both CEP and DSMS systems. This model
could serve also as a baseline to discuss the common characteristics between
IFP and context management systems.

The following section gives an overview of state-of-the art approaches in
context management systems. Then, we discuss CEP and DSMS systems
as IFP systems and we analyse their differences and commonalities with the

presented context management systems.

2.4.1 Context management systems

In the last years, researchers have developed several context management sys-
tems proposing different architectures depending on the target applications.
Although existing systems support distributed application scenarios, they ad-
dress the problem of the scalability and efficiency of context data processing
in a distributed environment partially. Context reasoning is usually consid-
ered independently on the strategies used for distributed context processing,
which might lead to inflexible models that cannot exploit the distributed
nature of context data. In our architecture, we address the problem of dis-
tributed context reasoning as a whole. Therefore, we propose a model that
provides the interface between the context reasoning methods and the distri-
bution algorithms and enables the efficient distributed context reasoning. We
see now in more detail how our system differs compared to existing context
aware systems.

Context management systems may vary according to the adopted context
abstraction and the respective context model. Other differentiation criteria

refer to the architectural design of the context management systems and

2.4 Overview of existing approaches and systems 41

Context Management Systems

Middleware-based

Application-based /\

Distri
Centralized /stnbuted\
Geographic- content- Load- Operator-
based based based based
:Zg,:jgle:éss] Context Management Rizou et al. [94]
Bik k'[R]I (19] Framework [61]
ikakis et al.
SOCAM([49] PACE[5[4] | Gu etal. [51]
Context Toolkit[40] CoBrA[29
Gaia [95] CoCA[43] Ranganthan et al. [89]

Nurmi et al. [78]

Super Spaces[10] Schmidt et al. [100]

Figure 2.4: Context aware systems classification

the respective system types. Since the main contribution of our proposed
system, is the flexible execution of context reasoning tasks to support large-
scale scenarios and address the geographical dispersion of the context sources
and sinks, our analysis will cover mainly the architectural design principles

of the context management systems.

Context management systems typically consist of the context acquisition
layer being comprised by the context sources and the context consumption
layer, which is realized through the context consumers, i.e., sinks. Context
processing could imply an additional optional layer representing the middle-
ware, which is responsible for processing the context and deliver it to the
context consumers. We classify the context management systems that do not
use any middleware infrastructure as application-based systems, since they
rely solely on the context processing on the application side (Figure 2.4).
Furthermore, we distinguish middleware infrastructure systems in two main
categories according to the processing model they adopt. The simpler ap-

proach is the centralized architecture where a single central context server

42

r Middleware-based -

2 Architecture

~ Application-based — —— Middleware-based —
Centralized Distributed
o~ N -
[A e s) Y 5) () —~
j\. S R — F) | \
. A \ (s) — 'S
(5) G | Y \ %
\ N 5. I -
£ p L _ (s (e }——P‘;P —
~, (s — b4 ~— T TRA
) B % () 7 >/
— v >/ ' < -
N |: 5 A (i)
(5) 1 W, L
) (s)

Figure 2.5: Processing Models

is used to collect, process and deliver the related context to the consumers.
This approach has the obvious drawbacks of the centralized solutions, having

a single point of failure.

An alternative solution is a distributed architecture, where multiple servers
distributed in the network are available. Here we distinguish among the dif-
ferent distributed architectures proposed in the literature according to the
rationale of the distribution they follow. The geographic-based distribution
refers to the dispersion of multiple servers, where each one is responsible
for a specific domain and cooperates to process and deliver the context to
the consumers. Although this approach increases scalability compared to
the centralized solution, it may still lead to poor system performance, since
it does not allow the distribution of the reasoning tasks to multiple server
according to specific optimization goals e.g., minimization of network load.
The semantic-based distribution clusters peers according to the type of the
queries they can answer, while the load-based distribution performs load bal-
ancing among multiple context servers. Although these approaches follow a
distributed processing scheme, they target specific goals, e.g., reuse of par-
tial results (semantic-based distribution) or load balancing among the server
(load-based distribution). Our approach follows an operator-based distribu-

tion to allow the optimization of the distribution (operator placement) ac-

2.4 Overview of existing approaches and systems 43

cording to different optimization goals. Thus, we propose a flexible distri-
bution scheme which considers different optimization objectives according to
the application characteristics and the system conditions.

Figure 2.4 provides an overview of the major context management systems
and their position with respect to the adopted system architecture and its
respective processing model. Next, we explain in detail the design of these

systems and their relevance to our work.

2.4.1.1 Application-based Architectures

The context-aware systems classified in this category, do not use middleware
infrastructure and rely solely on the processing performed on the application
nodes.

Hydrogen |55 is one representative system of this category. Hydrogen
follows a fully decentralized approach for mobile context sharing assuming a
network of mobile nodes, willing to share context information. In this respect,
Hydrogen model differentiates between the remote and the local context and
it enables context sharing between nodes that lie in close proximity. In par-
ticular, Hydrogen architecture is a three-tier architecture consisting of an
application, a management and an adaptor layer. All layers are realized in
each context-aware device and enables the communication with other devices.
Hydrogen framework covers small scale scenarios where context sources and
sinks are located close to each other.

In [116], Reconfigurable Context-Sensitive Middleware (RCSM)is presented
to facilitate the development and operation of real-time context-aware soft-
ware in ubiquitous environments. RCSM is a context-sensitive middleware,
which uses an object-oriented embedded middleware. By context-sensitive
here it is meant the capability of the device to initiate and manage the ad-
hoc communication with other devices based on the contextual of the local
devices and its surroundings. RCSM categorizes the context according to its

source, i.e., network context, device context, and user interaction context and

44 2 Architecture

it provides specifications about the relationships of various pieces of context.
Moreover, it enables the context-aware adaptation through the invocation of
appropriate methods upon an event of a context match.

In [19] the authors have proposed a distributed reasoning method that is
based on the Multi-Context Systems paradigm. According to their approach,
ambient agents encode local context knowledge in rules (contexts) and ex-
change this information with other agents. In that respect, each peer in the
network can evaluate the remote and local context to detect high level context
changes. The reasoning method allows the resolution of conflicts according
to the confidence of the context source.

All these systems assume a different system model with respect to ours,
since they use limited computing capacity due to the energy constrained ap-
plication hosts, which are typically mobile devices. Furthermore, in their
system model, the communication among the applications and the sources
is done in ad-hoc way. Therefore these systems cover usually small-scale
scenarios, in contrast to our proposed architecture that targets large-scale

scenarios.

2.4.1.2 Middleware Infrastructure Context Management Systems

In this category, we classify systems that do not rely only on the comput-
ing capabilities of the context sources and sinks, but also use middleware
infrastructure such as context servers, that are responsible for collecting and
processing context data. These architectures typically enable the collection of
pieces of context from multiple dispersed sources. As shown in Figure 2.4, we
distinguish between centralized and distributed middleware-based systems.
In the next paragraphs, we present existing systems that belong to these two

main subcategories of middleware-based systems.

2.4.1.2.1 Centralized In [61], a context aware framework is presented that

facilitates the development of context-aware applications. The framework

2.4 Overview of existing approaches and systems 45

provides an Application Programmer Interface (API) using an extensible on-
tology which defines the contexts that can be used from clients. The whole
architecture of the framework is based on a blackboard-based approach. Ac-
cording to this communication paradigm, all context data update a black-
board that acts as a central knowledge base and is kept by the context server.
In the proposed framework the context server is a mobile terminal having di-
rect communication with other clients. Before the context data are communi-
cated to the context server, a pre-processing step that convert raw measures
captured from sensors into a representation defined in the context ontology.
Therefore this approach is appropriate for small-scale scenarios, when the

context sources and sinks are mobile devices that remain in close proximity.

The Context Toolkit [40] is one from the first attempts to provide a frame-
work for the support of the design and development of context-aware applica-
tions. The Context Toolkit provides a conceptual framework that separates
the acquisition and representation of context from the delivery and reaction to
context changes by the context-aware application. A fundamental concept of
the framework is the context widget which provides an abstraction that hides
the complexity and variety of context acquisition mechanism, e.g., sensors,
RFID, etc. On top of context widgets, the context interpreters are respon-
sible for performing logical inference on the primitive (low-level) context to
derive high level context. Furthermore, context aggregators are used to collect
multiple pieces of context within the same software component and make it
available to the context-aware applications. Context services are the respon-
sible components for performing the reaction to the contextual changes. In
that respect, they provide an abstraction, similar to the abstraction for con-
text acquisition by the context widgets, for the adaptation of context-aware
applications to contextual changes. Finally, another important component
of the Context Toolkit is the discovery component which enables the discov-
ery of the various context widgets, interpreters, aggregators and services in
the framework. The implementation and actual architecture of the Context

Toolkit relies on a centralized model, where a single central server processes

46 2 Architecture

the multiple pieces of context. Although the conceptual framework could be
extended to provide a federation of interpreters, aggregators and discoverers,
Context Toolkit does not tackle the problem of optimally distributing the
workload among several context interpreters.

The Service-Oriented Context-Aware Middleware (SOCAM) [49] is a mid-
dleware that facilitates the development of context-aware applications. The
proposed middleware aims to convert physical spaces to semantic spaces,
where context can be exchanged and used to adapt the behaviour of the sys-
tems to changes of the environment. In more detail, the system architecture is
comprised by the Context Providers, Context Interpreter, Context Database,
Service Location Service and Context-aware Mobile Services. The overall ap-
proach is based on a set of distributed context providers which communicate
with a central server (context interpreter) that performs the context reasoning
and delivers its output to the mobile clients (context-aware mobile services).
Context representation and sharing is achieved through the use of ontologies.
SOCAM architecture follows a centralized approach and therefore it cannot
support large-scale scenarios.

Gaia [95] is a middleware solution that enables the management of con-
text aware applications. Gaia introduces the concept of Active Space that
represent a small-scale physical space, e.g., room that is controlled by a con-
text management entity. In particular, the Gaia architecture consists of three
major components: the Gaia Kernel, the Gaia Application Framework, and
the Applications. The Gaia Kernel is responsible for the management and
deployment of distributed objects and basic services that are used by all appli-
cations. Gaia Appplication Framework provides a set of component building
blocks that support the development of context-aware applications and ad-
dress mobility and dynamism. The applications provide the actual functional-
ity of the context-aware applications converts a physical space into an Active
Space. Gaia supports the development and deployment of context-aware ap-
plications in small scale and therefore it relies on a centralized context server.

To address the problem of scalability, authors propose the construction of

2.4 Overview of existing approaches and systems 47

the SuperSpaces [10] that are supersets of Active Spaces. For an instance, a
building could be a Super Space of multiple Active Spaces rooms. To address
scalability the authors propose the use of an additional interaction layer that
interconnects the Active Spaces. The communication among the basic context
management entities (Active Spaces)could be realized through a recursive or
a peer-to-peer interaction. Nevertheless, this work does not provide an insight
on the actual distribution of reasoning tasks as it is based on a partitioned

control of the global environment.

2.4.1.2.2 Distributed Closer to our work are approaches that adopt a
distributed architecture, assuming multiple context servers. FExisting ap-
proaches, such as |29, 43, 54] propose a geographical-based distribution of
servers, where each server is responsible for a specific region e.g. a building.

For instance, Chen et al. [29] proposed the Context Broker Architecture
(CoBrA) as a framework to build smart environments. According to this
approach, a central server called Context Broker is used to collect context
data and derive high level context. The context consumers (clients) are sub-
scribed to context brokers so that they get notified about the detection of high
level contextual changes. Context Broker has three main components: the
CoBrA Ontology which defines the context vocabulary for sharing context
knowledge, the CoBrA resoning engine which performs the actual context
reasoning to derive high level context and the Module for Privacy Protection
(MoPP) which uses a policy language that enable users to define privacy pro-
tection rules according to which the permission to share a user’s contextual
information is decided. From an architectural viewpoint, CoBrA addresses
large-scale scenarios, through the collaboration of multiple context brokers,
distributed over the network, forming a broker federation layer.

In [43] a Collaborative Context-Aware (CoCA) service platform is pre-
sented to enable the development and operation of context-aware applica-
tions. The platform consists of four major building blocks: the interface,

the data source, the core service and the supplementary service. The in-

48 2 Architecture

terface manager manages the user interface and the interface of the CoCA
platform to application-specific modules. Data source represents the group
of components that provide context data to the core service. The context
data are represented according to the Generic Context Management (GCoM)
model which uses generic as well as domain-specific ontologies for knowledge
representation. The core service collects the low-level data from the data
source and performs the reasoning tasks to derive high level context. There-
fore it uses a RAID-Action engine (Reasoning, Aggregation, Interpretation,
Decision and Action engine) that processes the low level context by aggre-
gating partial context information or reasoning over it to detect high level
contextual changes. Finally, the supplementary service includes components
for knowledge discovery and collaboration services. The collaboration man-
ager supports peer-to-peer negotiation and communication protocols among
devices to assist RAID process. To this end, CoCA platform supports the
participation of multiple servers in the reasoning process due to the collabo-
rative peer-to-peer communication among devices, such as PDAs or PCs in

the neighbourhood.

Henricksen et al. [54] have also motivated the need for middleware in
context-aware systems. In their work, they provide an overview of state-
of-the-art middleware in context-aware systems and describe their proposed
solution, the so-called PACE (Pervasive, Autonomic, Context-aware Environ-
ments) platform. The authors present a set of requirements for middleware
including mobility, security, scalability, and ease of deployment. The main
components of the PACE platform is the context management module, which
handles the context and the preference management component, which tai-
lors the decision-support to the different context-aware applications. The
authors propose the use of a distributed context management layer consist-
ing of multiple context servers, collaborating to efficiently perform reasoning
tasks. However, similar to [29,43|, they consider the partitioning of the net-
work to different servers and they do not tackle the problem of efficiently

distributing the reasoning tasks in multiple servers.

2.4 Overview of existing approaches and systems 49

Gu et al. [51] proposed a content-based distribution, where the reasoning
tasks are distributed to the servers according to the context they refer to. In
particular, the authors proposed a protocol for exchanging messages about
context information which enables the performance of reasoning in a dis-
tributed fashion. Their system model is based on an overlay network where
the peers are grouped in semantic clusters according to the type of the queries
that they can answer, expressed in first-order logic. In our architecture, we
cope with uncertain data that need more sophisticated reasoning methods
and furthermore we assume large-scale overlay networks, where the distribu-
tion of the reasoning task should be done automatically according to different
optimization criteria.

Finally other existing approaches, such as [78,89,100] proposing distributed
solutions for context management, they aim to distribute the workload in
multiple servers targeting a load-based distribution. In more detail, Ran-
ganathan et al. [89] developed a middleware infrastructure which is based
on distributed context servers called context synthesizers. The context syn-
thesizers are spread in the network and support different reasoning methods.
This approach distributes the computational load among multiple context
servers. However it does not allow for the distributed execution of a rea-
soning task on multiple servers, and as a consequence it may lead to poor
network and system performance compared to the optimized distributed ex-
ecution proposed by our system architecture. Nurmi et al. [78| present a
distributed agent-based architecture for distributing the reasoning process.
In this model devices perform simple context reasoning and send their results
to a remote server for more advanced context reasoning such as classifica-
tion that requires more powerful computational capabilities. Although this
work enables distributed context reasoning, it lacks a strategy about how
the reasoning task is distributed in the network. Another approach [100] uses
distributed Bayesian Networks and proposes a placement algorithm that clus-
ters the nodes of a Bayesian network to reduce the communication overhead.

Although this approach is close to our work, it still only provides a solution

50 2 Architecture

to a method specific problem. Our goal is to create a generic formalization,
where different reasoning algorithms can be distributed by different placement
algorithms.

From the overview of existing distributed context management systems, it
is evident that existing approaches focus on specific distribution aspects us-
ing multiple servers to perform load balancing or increase the reuse of partial
results. In that respect, existing systems lack the flexibility to adjust the
distribution of reasoning tasks such that resources are used efficiently and
application-defined constraints are respected. Our approach fills this gap by
proposing an operator-based distribution, where the reasoning task is decom-
posed in primitive subtasks that can be placed onto physical hosts according
to different optimization goals, such as network usage, latency, throughput
etc. The proposed operator graph model allows the consideration of differ-
ent optimization goals based on the application characteristics and the sys-
tem condition. For instance, communication-intensive applications that put
heavy load on the network could be optimized for reducing the amount of
data communicated in the network. To this end, our proposed architecture,
which decomposes the reasoning tasks into a graph of reasoning operators
that can be flexibly mapped onto the physical network enables the efficient

processing of context data in large-scale scenarios.

2.4.2 Information Flow Processing

Relevant to context-aware systems are Complex-Event Processing (CEP) sys-
tems and Data Stream Management Systems (DSMS). On the one hand,
data stream management systems have been an evolution of the traditional
database management systems aiming at handling continuous data streams
without first storing data into a database. On the other hand, complex
event processing systems have their roots in the traditional Pub/Sub (Pub-
lish /Subscribe) systems, which aim to efficiently disseminate information from

a group of publishers (data sources) to a group of subscribers (data sinks).

2.4 Overview of existing approaches and systems o1

Cugola et al. [74] have introduced the term Information Flow Processing (IFP)
to collectively refer to CEP and DSMS systems, since they share a common
goal, namely, the processing of continuous flows of information units. In their
work, they present an overview of existing IFP systems and they discuss their
commonalities and their differences. As it is analysed in more detail in their
work, although these systems share some common aspects, they differ also in
several ways, e.g., in the data model, the query language or the processing
model. In the next paragraphs, we provide a short overview of the goals and
the execution models used in DSMS and CEP systems and then we discuss
their architectural models based on the analysis presented in [74] and their

relation to context management systems.

2.4.2.1 Data Stream Management Systems

Traditional Database Management systems (DBMS) are passive, in the sense
that they retrieve data only when they are triggered by the application. Re-
alizing the limitation of this model, to react autonomously upon events, the
database community has introduced the Active Databases, which are capa-
ble to react upon the detection of predefined situations. More specifically,
in active databases the rules are composed by three different parts, namely,
Event, Condition and Action (ECA). Events could be either internal, e.g.,
the insertion of a tuple, or external events, e.g., clock triggers or external
sensors. Examples of systems classified in active databases are the following
HiPAC [38], Ode |47], Snoop [26].

Although active databases when linked to external sources of events (e.g.,
sensors) are closer to the IFP model, they have the fundamental difference
that they rely on persistent storage, similar to the traditional DBMS. There-
fore, distributed stream management systems were introduced to enable the
real-time processing of unbounded data streams. In DSMS, no assumption
can be made on the data arrival order, and data streams are processed on

the time of arrival due to size and time constraints. In DSMS, queries are

52 2 Architecture

typically continuous, i.e., they are continuously updated as the data streams
arrive. The continuous queries can either be executed periodically or contin-
uously whenever a new data stream item arrives.

The hierarchical network of operators, forming a so-called aggregation tree
[72], which corresponds to an acyclic tree-based operator graph, has been
widely accepted by the database community due to its conceptual simplicity
and its applicability in practical scenarios (e.g., aggregation trees in wireless
sensor networks) [45]. Typical data stream operators can implement either
algebraic queries, meaning that they can keep the distribution properties of
the aggregation tree, i.e., by communicating partial results to their neighbours
in the tree, they are able to compute an ezact query answer; or they may be
holistic queries, i.e., they require the centralized processing of all data in a root
node, which keeps a global view on the data observed so far [17]. Examples of
algebraic queries are Sum, Mean, Max queries, whereas examples of holistic
queries are Median, Distinct Count, and Histogram queries. In that respect,
the tree-based operator graph, adopted in our model, is used for evaluating
algebraic queries but also for calculating approximations of holistic queries in
DSMS.

It is worth mentioning that there is extensive work from the database
community in the optimization of the logical plans to reduce the commu-
nication overhead during the in network processing of aggregation queries.
Typical methods for logical optimization are the use of filters close to the
data sources [45], that reduce the communication overhead on the aggrega-
tion tree; the calculation of so-called summaries (e.g. [46,98]), which reduce
the communication overhead by communicating a subset of data to the root
node, while respecting quality guarantees for the query answer or as recently
introduced in [82], the change of the data granularity based on the applica-
tion quality requirements. In our approach, we focus on the physical plan
optimization, i.e., we use the operator graph, as an abstraction in order to
separate the problem of optimization of the physical plans by searching for

optimal mappings of operators onto physical hosts.

2.4 Overview of existing approaches and systems 53

Although the wide-spread acceptance of the operator graph model, there
are multiple data stream processing research prototypes relying on centralized
processing of data streams e.g., NiagaraCQ [30],0penCQ [70], Tribeca [106],
CQL [13], Stream [12], Aurora [3|, Gigascope [33], Stream Mill [14]. Closer
to our proposed architecture, examples of existing distributed data stream
processing engines using in-network processing of data streams are Telegraph
CQ [28], Borealis 2], Tag [72] and, NexusDS [32].

2.4.2.2 Complex Event Processing Systems

Complex event processing systems unlike DSMS, associate semantics on the
detected events captured by the data sources. In that respect, the goal of
CEP systems is mainly to detect complex event-patterns using sequencing
and ordering relationships that they are not common in DBMS. Traditionally
CEP has been based on the Pub/Sub (Publish/Subscribe) paradigm. In
Pub/Sub systems users subscribe to get notifications from publishers (data
sources) upon the detection of specific events. Typically Pub/Sub systems
can either be topic-based, meaning that a user could subscribe on a topic or
content-based if the subscribers could use complex event filters to define the
content of the desired notifications. CEP could be seen as an extension of
Pub/Sub systems that allow the subscription on complex, composite events
i.e. correlated events following certain sequence patterns.

In terms of execution model, CEP applications form typically multicast
trees, where sources (publishers) communicate events to a set of sinks (sub-
scribers). For detecting composite events, in-network processing of events by
event correlators is required to provide efficient event correlation.

Examples of CEP systems are Traditional PubSub [44], |75], Rapide |71],
GEM [73], Padres [69], DistCED [86], CEDR [15], Cayuga [21], NextCEP
[101], PB-CED [9], Raced [34], Amit [5], Sase+ [6,53], Sase [112], Peex [58],
Tesla/ T-Rex [35,36]. Furthermore, one of the most popular commercial CEP

systems is the Commercial System S [11,57,113]. Closer to our work, examples

54 2 Architecture

of CEP systems allowing for the detection of composite events are Rapide [71],
Padres |69, DistCED (86|, GEM [73].

2.4.2.3 Comparison between DSMS, CEP and Context Management

Systems

DSMS, CEP and context management systems share some common aspects
but they also have fundamental differences. One fundamental distinction
coming from the analysis and comparison between DSMS and CEP is that
DSMS focus mainly on the efficient data processing and handle homogeneous
flows of data, whereas CEP systems focus on event detection and handle
typically heterogeneous flows of data (events) that are combined to detect
complex events. One step further, context management systems are closer to
CEP systems in the sense that they use context reasoning methods to enable
the complex correlation of events into meaningful situations.

Given the focus of our work on the distributed architecture of context
management systems, we discuss here the architectural models used by DSMS
and CEP systems based on [74] that provides a comprehensive overview of
IFP systems with respect to their architecture. In their work, they categorize
the IFP engines in centralized and distributed and they further distinguish
distributed IF'P engines to clustered and networked engines. Clustered IFP
engines use a cluster of strongly connected machines that belong usually to the
same administrative domain, while networked IFP engines assume physical
hosts distributed in a Wide Area Network (WAN) that are connected typically
by Internet links. Note that for networked architectures, the minimization
of the network usage becomes critical, since physical hosts run typically in
different administrative domains.

According to [74], the most common architecture, especially in Active
databases and DSMS is the centralized solution that uses a single server
which collects and processes all the data centrally. The clustered solution is

followed by some commercial systems e.g. Aleri, Coral8 [74], IBM System

2.4 Overview of existing approaches and systems 55

S [11,57,113] and a few DSMS systems (Telegraph CQ [28], Aurora [3|). Fi-
nally the networked architecture is applied for some CEP systems (GEM [73],
Padres [69], DistCED [86]). Our architecture could be also classified in the
networked architecture, since we assume a network of physical hosts dispersed
in a wide area network.

As a conclusion, although CEP, DSMS and context management systems,
implement different operator semantics to define application-specific stream-
ing tasks, they all share a common representation of an overlay network of op-
erators, processing cooperatively a distributed stream processing task. Thus,
the operator graph model could be seen as a unified model that introduces the
problem of physical plan optimization, which seeks for optimal mapping of
operators on physical hosts in the network. In that respect, our proposed ar-
chitecture uses the operator graph model to map the problem of efficient pro-
cessing of context data into an operator placement problem, which is known
from the database community. By using the operator abstraction, we al-
low the use of existing operator placement algorithms initially designed for
other application domains, such as DSMS and CEP to tackle the problem of
distributed context reasoning in context management systems.

Although the operator placement problem is a fundamental common prob-
lem among CEP, DSMS and context management systems, different assump-
tions regarding the underlying physical network (e.g., LAN or WAN), may
lead to different optimization objectives depending on the system model and
the target application. To this end, in the next chapter, we formally con-
sider three variations of the operator placement problem that may apply to
CEP, DSMS as well as context management systems as long as they assume
a networked architecture, where physical hosts are distributed in a WAN. In
that respect, the main objective of the placement algorithms presented in
the next Chapter, is the minimization of the network load, which applies in
large-scale scenarios. Moreover, we consider application-defined end-to-end
latency requirements targeting different applications depending on the size of

the communicated data units in the overlay network of operators.

57

3 Operator Placement Algorithms

In this chapter, we discuss the operator placement problem in three differ-
ent variations that consider different constraints, and we present operator
placement algorithms that solve the resulting problems. Our main concern
is to provide scalable operator placement algorithms that can be used in a
distributed setting. As briefly introduced in Chapter 2, the operator place-
ment problem seeks for an optimal mapping of operators onto physical nodes
to fulfill application constraints and minimize resource costs. The operator
placement affects QoS and efficiency since different placements could lead
to different response times for the application or a different consumption of
network resources.

In particular, here we consider as optimization goal the minimization of
network usage that is formally defined as the bandwidth-delay product of
inter operator data streams of an operator graph. The network usage met-
ric quantifies the network load put onto the system since it is an indicator
of the network traffic. Imagine, for instance, a large-scale camera network
that processes images from distributed data sources to detect activities inside
buildings or across road segments. In this use case, large chunks of data are
to be transmitted from the sources in order to get processed by operators
and finally delivered to the application. For such applications, the amount of
data that is in transit in the network can be a hindrance for the scalability
of the system since it could lead to traffic congestion and bottlenecks.

To illustrate how placement decisions could affect the induced network
load, we present a simple example in Figure 3.1 that shows two different
placements of the same operator graph. For each placement we calculate

the bandwidth-delay product. Since latency depends on the communication

58 3 Operator Placement Algorithms

© soue pracement 1: 14.4m Placement 2: 5.85MB

Q Sink

In-Network
Host

DataRate:50MEB,
DataRate:50MB Delay:20ms

j Delay:20ms

() .

DataRate:75MB
Delay:30ms

DataRate:10MB
DataRate:10MB Delay:100ms

DataRate:50MB

Delay: 100ms
DataRate:50MB

Delay:90ms

DataRate:75MB
Delay:60ms

Delay:100ms

DataRate:10MB, :
Delay:10ms DataRate:10MB

]' Delay:10ms

Figure 3.1: Two different placements with respective resulting network usage.

link between the physical hosts, although the data rates remain the same,
the overall bandwidth-delay product changes significantly from 14.4 MB to
5.85 MB between the two placements, i.e. 8.55 MB could be saved. Thus,
reducing network usage could relieve the system from network load. Thus, the
minimization of the network load leads to the avoidance of network congestion

and, therefore, contributes to the scalability of the system.

Although the minimization of bandwidth-delay product minimizes indi-
rectly also the network latency, which is an important factor of the response
time of the system, it does not directly consider any constraint on the end-to-
end latency between the data sources and sinks of an operator graph. End-
to-end latency is an important application-level quality of service metric for
delay-sensitive applications since it significantly influences the latency of de-
tecting situations. Therefore, the definition of end-to-end latency constraints
is an important requirement for such delay-sensitive applications. A guar-
anteed maximum end-to-end delay is critical for instance for control systems

based on a global network of widely dispersed sensors that have to react in a

99

Problem Algorithms
Network Usage Optimization MOPA

Network Delay Constrained Optimization MOPA-LMAX
Processing & Network Delay Constrained | MOPA-LPMAX

Optimization

Table 3.1: Overview of placement problems and algorithms

timely manner to sensor information to control physical processes. In order to
fulfill delay constraints for the application, we have formulated a constrained
optimization problem, which optimizes network usage, while also considering
constraints on the network latency imposed by the application. In particular,
in this constrained optimization problem, we consider applications, where the
network latency is the dominant factors of the end-to-end latency. In that
respect, in our approach the goal of this constrained optimization problem is
to keep the maximum network latency between a data source and a sink of
an operator graph under a certain threshold.

Then, we formulate another constrained optimization problem, targeting
applications where the processing delay contributes significantly to the end-
to-end latency. For instance, in the case of the large-scale camera network,
data units are images which induce significant transmission and processing
delay. Fulfilling latency constraints for this type of applications requires a
more complex system model which includes processing and transmission de-
lays. To this end, we formulate another constrained optimization problem
and present our approach, which first optimizes for network usage and then
applies a constraint satisfaction algorithm that fulfils the end-to-end latency
constraints.

The remainder of this chapter is structured into three different sections,
where we describe the three different placement problems and correspond-
ing solutions. Table 3.1 shows an overview of the placement problems and

the corresponding algorithms presented in this chapter. In particular, in

60 3 Operator Placement Algorithms

Section 3.1, we formulate the network usage optimization problem and we
present a distributed placement algorithm called Multi-operator Placement
Algorithm (MOPA), which solves the optimization problem in a distributed
way by letting the operators to get placed autonomously according to their
local view. Although our initial goal is to provide a scalable distributed al-
gorithm, we also present in this section an integer linear program (ILP) that
solves the network usage optimization problem in a centralized way. This
centralized solution will be used as reference for measuring the performance
of the proposed distributed algorithm in Chapter 4. Section 3.2 introduces a
constrained optimization problem, which applies a maximum threshold in the
network delay experienced by the application. An algorithm called MOPA-
LMAX is being introduced that solves the presented constrained optimization
problem, by processing the solution provided by the MOPA algorithm such
that the latency constraint is fulfilled. Then, in Section 3.3 we present the
MOPA-LPMAX algorithm, which also tries to fulfill an application-defined la-
tency constraint, by considering both network and processing delays. MOPA-
LPMAX uses a heuristic approach for the selection of candidate nodes to host
the operators. In Section 3.3, we present different heuristic approaches for

the candidate selection, which we are going to evaluate in Chapter 4.

Each of the three sections, presenting the different placement problems has
the following structure: First, we present the system model based on which
the optimization problems are formulated. Since the constrained optimization
problems are extensions of the initial unconstrained optimization problem, we
initially present in Section 3.1.1 a basic system model, and then we extend
this basic model in the next sections and in particular in 3.2.1 and in 3.3.1
in order to introduce the two constrained optimization problems. Given the
specific system model, we then formally introduce the corresponding problem,

before we describe the details of the proposed algorithms.

3.1 Network Usage Optimization 61

3.1 Network Usage Optimization

In this section, we present an algorithm that minimizes the bandwidth-delay
product of the inter-operator streams of an operator graph. By minimizing
the network usage, we put less load onto the network links and thus we
slow down network congestion. Therefore, the optimization of this metric
contributes to the scalability of the system. In particular, this optimization
is important for communication intensive applications producing big data
volumes that need to be transferred across the network and traverse possibly

multiple network links.

We propose a distributed algorithm to solve the so-called Multi-Operator
Placement (MOP) problem, which formally describes the optimal placement
of all operators of an operator graph [92]. The basic idea of this approach is
that each operator finds its optimal placement by solving a local optimization
problem. The sum of these Single-Operator Placement (SOP) problems is then
the solution of the MOP problem. To facilitate the distributed solution of
these placement problems, we use a heuristic solution based on a continuous
search space called latency space, which is used to model delays between
nodes in the underlay network. Assuming there exists a virtual node at every
position in the latency space, we propose a distributed algorithm, where each
operator autonomously finds an optimal virtual node in the latency space. In
a second step, the selected virtual nodes are mapped to the available physical

nodes in the latency space.

According to our general goal to use communication resources efficiently, we
optimized the distributed operator placement algorithm for low communica-
tion overhead by reducing the number of management messages and operator
migrations. We will provide a proof on the optimality of the global solution
with respect to the local solutions, and show by experiments in Chapter 4,
that this continuous solution approximates the discrete solution very well.
Beyond the proposed distributed algorithm, we present also at the end of this

section an integer linear program that solves the multi-operator placement

62 3 Operator Placement Algorithms

problem in a centralized way assuming global knowledge of the network and
system conditions.

Next, we present the basic system model upon which we formulate the un-
constrained optimization problem before we present our proposed distributed

placement algorithm.

3.1.1 System Model

As a prerequisite of the formal problem formulation, we first introduce the
system model together with assumptions and a formal notation. Table 3.2
summarizes the basic definitions of the system model, introduced in this sub-
section. Our system model consists of three main parts. A part of the def-
initions provided in this paragraph describes the physical network, i.e. the
network of physical nodes that are capable of hosting the operators. Another
set of definitions relates to the latency space an abstraction of the physical
network proposed in the literature [84]. Finally, the third group of defini-
tions describes the stream processing task, which is formally represented by
an operator graph.

In more detail, we consider a physical network graph H = (V,&,1) con-
sisting of a set of physical nodes V which are capable of hosting operators
needed for stream processing. These nodes are connected through a set of
communication links £, such as the Internet links, allowing nodes to commu-
nicate with each other directly. Similar to [84], we assume a so-called latency
space, which is an n-dimensional Cartesian space, where every node v has
a position 7, € RU™ guch that the Cartesian distance d(7;7;) = |7, — @y, |
between any pair of nodes v;, v; corresponds to the propagation delay (7;75)
between these nodes!. The latency space can be constructed efficiently in a
distributed manner using delay measurements between physical nodes and an

algorithm for calculating network coordinates such as the Vivaldi algorithm

IThe concrete dimensionality was investigated in the original paper, where the
latency space was introduced [37] and is out of the scope of this dissertation.

3.1 Network Usage Optimization
Physical Network Model
H Underlay network of physical hosts
V Set of physical nodes hosts
veV Physical host in the underlay
& Set of (Internet) links between hosts
viv; €& (Internet) link between hosts
l(T5) Latency between hosts
Latency Space Model
Ty Position (coordinates) in the latency space
d(7v;) Cartesian distance between nodes v;,v; in the latency
space
d(w;w;) Cartesian distance between nodes w;,w; in the latency
space
cw) Set of coordinates of the physical nodes V
Operator Graph Model
g Overlay network of operators
Q Set of operators
w e Operator of the overlay network
Qinned Set of operators placed on specific hosts
Qfree Set of operators that can be placed freely on a physical
host
S Set of pinned operators that generate data (sources)
A Set of pinned operators that consume data (sinks)
F Set of links in the overlay network
Fu Set of in- and out-going links attached to operator w
wiw; € F Link between w; and w; in the overlay network
TWW; Data rate of the stream communicated over the link w;w;

Table 3.2: System Model Notation

63

64 3 Operator Placement Algorithms

proposed by Dabek et al. [37]. To determine its position in the latency space,
every node performs these calculations and provides this information to other
nodes as described later. The set of coordinates of the physical nodes in V
is denoted as C'(V). Note that the latency space is dynamic in the sense
that the positions of physical nodes are continuously adapted depending on
current delays. An overloaded path in the communication network leads to
an increase of the delays between nodes using this path to communicate, and
thus the distance between these nodes increases also. Since our placement
algorithm dynamically adapts to changing node positions, the placement is
adapted by choosing nodes that are close to each other, i.e., nodes whose

communication paths are not overloaded.

In our execution model, a stream processing task is modelled as an acyclic
directed graph of connected operators, called operator graph. As already in-
troduced informally in Chapter 2, the set of the deployed operator graphs
constitutes the operator network. Formally, a stream processing task is mod-

elled as a tree-based operator graph G = {Q, F,r} consisting of a set Q =

{w1,...,wp} of operators that are connected by a set F = {ww;, ..., w;wn}
of links. Operators, which perform any kind of stream processing operations,
may have a number of incoming and outgoing streams. A link is an uni-
directional communication relationship between a pair of operators. Link
wiw; € 1 x € connects operators w; and w;, where the former produces a
stream that is communicated to and consumed by the latter. F,, denotes the
set of in- and out-going links attached to operator w. In our system model, we
assume unreliable communication protocol, such as UDP, between the phys-
ical nodes. An operator w could be either pinned w € ippeq, i-e., its map-
ping to physical node is given and fized, or free w € Qf,¢c, in the sense that
they could be freely assigned to any available node in V. Pinned operators
could be either sources or sinks. More formally, a subset of pinned operators
S C Qpinneq only have outgoing links (producers of data streams) and hence
are called sources-for instance, sensors, while another subset A C (,;peq de-

notes the set of sink operators, which only have incoming links and typically

3.1 Network Usage Optimization 65

represent application entities. Finally, » denotes the inter-operator data rates
in the overlay network, with r(w;w;) specifying the data rate of the stream
communicated over the link ;0.

Based on this system model, we formally define the optimization problem

to be solved next.

3.1.2 Problem Statement

Our placement algorithm tries to minimize the network usage for each individ-
ual operator graph. As already discussed earlier, by optimizing the placement
according to network usage metric, we increase scalability as the communi-
cation load generated by operator graphs is minimized.

Network usage is measured by the number of bytes that are in transit
on the links of the operator graphs at a certain point in time. Formally,
the network usage of link w;w; is defined by the bandwidth-delay product
7 (W)l (wiw;), where r(w;w;) (according to Table 3.2) specifies the data rate
of the stream communicated over that link, and [(@;w;) is the delay of that
link. In our system model, we use the euclidean distance in the latency space
d(@iw;) = \/(x — ;)2 + (y — yi)? + (2 — 2;)? to approximate the link delay

I(w;tw;). Thus, the link delay in our model is defined by d(wiw;) = |7, — 7w, |,
where 7, denotes the position of the operator w in the latency space that it
is mapped (as we explain later) to the closest coordinate 7, of the physical
node v which hosts the operator.

To formalize our optimization problem, we first introduce the Single-operator
Placement (SOP) Problem, which considers the optimal placement of a single
unpinned operator, say w, relative to the placement of its neighbours in the
operator graph. For the SOP problem, we assume that the neighbours are
pinned, and only w is a free operator. This can be interpreted as a snapshot of
the neighbour positions that w is using to find its optimal placement relative
to these current neighbour positions. The SOP optimization goal is to min-

imize the network usage of all the links connected to w, i.e., the aggregated

66 3 Operator Placement Algorithms

bandwidth-delay product of the links in F,, (links connected to w) is to be
minimized. Equation 3.1 expresses the network usage Uocal(7,) associated

with placement 7,:

ulocal(fw> = Z r(w_wz)d(w_wz) = Z T(w_%”fw — T, = (3'1)
ww;€Fy, wwi€Fy,
= > r@V e —w + (g -+ (5)
Given the above definition the SOP problem is formally defined by:
minUpcal (Tw) = min Z 7(Ww;)| Ty — T, (3.2)

ww; €F,

variables Z,, € R? (continuous solution)

variables 7, € C(V) (discrete solution)

The local SOP problem of placing a single operator optimally can be ex-
tended to the global Multi-operator Placement (MOP) problem, which seeks
for the optimal placement of all unpinned operators of an operator graph
G ={Q,F,r}. The goal is to minimize the overall network usage of G. For
a given placement (Zy,,...,7w,), G’s network usage Ugiobal (Tw;; - - - » Tw,) 1S

defined as follows:

uglobal(fwu o ,fw") = Z T‘(Cdibdj)d((ﬂi&)j) (33)

Wiy cF

And the respective optimization problem is formulated as:

min Z/[global(fwn <o 7fW7z) = min Z T(wiwj)d<wiwj) (34)
wiw;eF
variables Z,,, . . ., %, € R3 (continuous solution)

variables Z,,, . . ., Z,, € C(V) (discrete solution)

3.1 Network Usage Optimization 67

This also minimizes the network usage for the entire operator network if all
operator graphs in the operator network (set of all deployed operator graphs)
have only one sink, i.e., sinks do not share common operators.

As shown in the equations above, both SOP and MOP problems can be
solved for physical and virtual nodes. In the latter case, we assume that there
exists a virtual node at every possible position in the continuous latency space,
ie., @, € R3, whereas in the former case, the operators can only be mapped
to those positions in the latency space that are occupied by physical nodes,
ie., &, € C(V). Since the solution space can be either continuous R3 or
discrete C'(V), we distinguish between the continuous and discrete variant of
the MOP and SOP problem.

3.1.3 Multi-operator Placement Algorithm (MOPA)

In this section, we propose a novel distributed placement algorithm approx-
imating the optimal solution of the discrete MOP problem. Since our goal
is to provide a distributed scalable placement algorithm, we propose here a
heuristic approach that is based on the idea to solve first the corresponding
continuous MOP problem and then map the selected virtual nodes to the
available physical nodes to yield an approximation of the discrete MOP solu-
tion. In Chapter 4, we discuss the performance of our algorithm with respect
to the optimal solution.

The continuous MOP problem can be solved in a distributed fashion by
letting each unpinned operator autonomously solve the continuous SOP prob-
lem. In other words, each unpinned operator determines its optimal virtual
node (i.e., its optimal position in the latency space) depending on the current
virtual positions of its neighbouring operators. We prove in Subsection 3.1.3.3
that the collection of the continuous SOP solutions yields an optimal contin-
uous MOP solution. The proposed distributed algorithm can be used for
both the initial placement of an operator graph as well as for adapting the

placement when delay or bandwidth conditions change significantly during

68 3 Operator Placement Algorithms

the execution of an operator graph. For the initial placement, we simply ex-
ecute the algorithm in a centralized way; for the continuous adaptation, the
algorithm is executed in a distributed fashion by the operators.

Algorithm 1 shows an overview of the steps/algorithm performed by each
unpinned operator w. First, a solution for the continuous SOP Problem is
calculated, i.e., the position of the virtual node for w is determined such
that Uypeal(Z,) is minimal (line 1). For the algorithmic details of these cal-
culations we refer to Section 3.1.3.1. In the next step, the selected virtual
node is mapped to the closest available physical node v(line 2) in the latency
space. If vyey differs from the current hosting node veyrrent, the operator is
migrated to the new physical node (lines 3-5), if the selected physical host is
not overloaded after the deployment of the additional operator. Otherwise,
the algorithm excludes this physical node from the search space to prevent
bottlenecks and assigns the operator to the next nearest physical host. Typ-
ically, a number of iterations of the algorithm are required to approximate
the optimal solution. To reduce the number of migrations, a lazy migration
strategy can be applied. In such a case, migrations can be delayed for some
iterations without affecting the final outcome of the algorithm.

For mapping virtual nodes to the available physical nodes, we use a nearest
neighbour search mechanism. As stated in Subsection 3.1.1, we assume that
the position of each physical node is known. Therefore, the nearest neighbour
search can be realized using a distributed index as describe in [107]. For
example, this index can be realized by the physical nodes forming a peer-to-
peer network. The implementation of such a distributed index is beyond the
scope of this dissertation, and we refer to [107] for more details.

After the initial placement, the algorithm is executed in an event-driven
manner. It is triggered for operator w in two cases: A neighbour operator
informs w that the neighbour’s virtual node position or the data rate of a link
connected to w has changed. The first case occurs whenever a neighbouring
operator calculates a new virtual node position when performing the algo-

rithm. For detecting the second case, each unpinned operator measures the

3.1 Network Usage Optimization 69

Algorithm 1 Multiple Operator Placement Algorithm (MOPA)
Require: w is placed at physical node Veyrrent

Require: Virtual coordinates of w’s neighboring operators
Require: Estimations of data rates of links in F
Ensure: w is placed on optimal physical node

: find Z,, such that Uypear(Zw) is minimal

: find closest non-overloaded physical node vyew with @, to @,

1

2

3: if Vnew # Veurrent then
4 migrate w to Vpew

5

: end if

data rate of each incoming and outgoing link using an exponential moving
average. We explain in more detail, the adaptation mechanism in Subsec-
tion 3.1.3.4. For the initial placement we can estimate the data rate of each
link according to the type of application or based on statistics gathered from

previous deployments.

3.1.3.1 Single-operator Placement Algorithm

Here we describe in detail the subalgorithm of Algorithm 1 (line 1) which
approximates the optimal continuous SOP solution in the continuous search
space. The SOP problem corresponds to the well known Fermat-Weber Prob-
lem [27], which asks for the position Z,, that minimizes Ujca1(Zy) (Equ. 3.2).
It is known that there exists no closed formula for the calculation of the
optimal solution of the Fermat-Weber problem unlike the mass centroid cal-
culation that can be computed directly. Furthermore, the optimal solution
cannot be defined exactly but only be approximated since it contains square
roots that may be irrational numbers. There exist several approximation
algorithms proposed in the literature that solves this problem. The most
common one is the Weiszfeld method that implements a gradient method for

this problem. However the Weiszfeld method may experience slow conver-

70 3 Operator Placement Algorithms

Algorithm 2 Single Operator Placement Algorithm
Require: Virtual node coordinates of w’s neighboring operators:

{Zoys - T, }

Require: Data rates of links in F,: {r(@wy),...,r(@ww,)}
Ensure: U(Z,) is minimal

1: &, + ManhattanApproximation{riZy,, ..., nTw, }

2: Z,, < CheckDeadPoints{Z,,,, ..., Zy, }

3: step « max{|Z,, — Tu)l|,- -, |%u, — Tu)|}

4: repeat

5. f « VU(Z)

—

6: if U(Z, + step x u(f)) <U(Z,,) then
T: § « U(Zy + step x u(f)) — U(T.y)

8 Ty < Ty + step x u(f)

9: else

10: step < step/2

11: end if

12: until § < ¢

gence in the case that the solution is a dead point, i.e., a point where the

derivative is not defined.

For our implementation, we have selected to use a simple approximation
algorithm that speeds up the convergence of the algorithm and handles the
dead points, followed by a gradient method with varying step. To calculate
the gradient, VU(Z,) = {811105;1(“), au“g;(y), aul‘gj(z)} at the current position
of operator w we use the following equations?:

2For dead points, where d(@ww;) = 0, we use a hyperbolic approximation d” (ww;) =
V(@ —1)2+ (y —)2 + (2 — 21)2 + ¢, where € a small constant [119].

3.1 Network Usage Optimization 71

Mhocal _ S @) (@ — i) (3.5)

Ox — d(wwy)
OUocal (y - yi)
—_— = r(ww;) ~=—=2 3.6
dy ww; | (i) d(ww;) (36)
Mo cal . — (Z - Zz)

Algorithm 2 shows the gradient method used for searching the minimum
of Uipeal(Zw). In each iteration, we first calculate the direction of the major
flow f, which corresponds to the gradient VU(Z,,) at the current position of
operator w (line 5). Then, we move towards this direction, which is given
by the unit vector u(f), with a certain step length step until we reach the
minimum (cf. Figure 3.2). Initially we set the step to the maximum distance
from w to all of its neighbours (line 3) as the solution is restricted to the
interior of the polygon that the neighbours form. If the current step length
would overshoot the minimum, then it is halved (line 10). In each iteration
the algorithm calculates the new network usage U(Z,,) at the next estimated
virtual position, and if this is smaller than the current network usage (line 6),
it moves to the new virtual position (line 8) and sets as § the difference
between the old and the new network usage (line 7). After a number of
iterations the minimum is trapped and the algorithm terminates when the
difference to the current network usage becomes smaller than a predefined
threshold §; (line 12).

As already mentioned earlier, although the gradient method is simple and
easy to implement, it faces problems of slow convergence when the solution
is at a point where the derivative is not defined, also referred in the literature
as dead point [41|. This is a general problem of the iterative methods that
solve the Weber Problem [41]. To improve the speed of our algorithm and
avoid slow convergence to the dead points, we make a preprocessing in order

to find a good initial point that approximates well the optimal solution.

72 3 Operator Placement Algorithms

Figure 3.2: Example of the gradient method for a 2-dimensional SOP
problem.

To estimate the solution we make an approximation of the corresponding
solution for the Manhattan metric (L norm), which is also proposed as a fast
approximation method for the Weber Problem in [20]. The idea is to consider
the problem for the Manhattan metric instead of the Euclidean metric. In
more detail, if we assume the Manhattan metric for computing the distances

in the latency space?, we get the following equation:

ullxlc};tln(fW) = Z ri| T — Twi |} = (3.8)
leFy,
Zrz(|$—$z’|+|y—yi|+|z—zi)
I€Fu,

The derivative of this function is given by the following equation:

auMhtn
Y leF.,

3Without loss of generality we assume a 3-dimensional latency space

3.1 Network Usage Optimization 73

In particular, the above equation can be split for each dimension as follows:

auMhtn
ol (z) _ S risgn(z — o) (3.10)
& leFo,
auMhtn
10531 () _ Z T’ngn(y — yi) (3.11)
& leFo,
auMhtn
—105511 (2) - Z risgn(z — z;) (3.12)
t leFo,
8Z/[Mhm($)

In Fig. 3.3 we see an example of how the gradient =g for a local
function Uypea(z) = 25(x — 0.2) + 25(x — 0.4) + 50(z — 0.6) + 50(z — 0.8)
approximates the gradient of the ., function for Euclidean distance. In
particular, the curve in the figure shows the derivative of the Ujoear in Eu-

clidean distance, while the discontinuous straight line shows the derivative of

uMhtn

e (z) in x-dimension. As

the corresponding Manhattan metric function
we could also deduce from the Equ. 3.10 the derivative for the Manhattan
metric is an increasing function that changes its value only at the positions
of the neighbours. To this end, the point where the derivative turns from
negative to positive values approximates the root of the Equ. 3.1.

More formally in Alg. 3 we give the algorithm for the Manhattan ap-
proximation. The algorithm gets as input the coordinates of the neighbours
in increasing order (in each dimension z;) and it calculates the sum of the
positive and negative factors of Equ. 3.9 as the value of the Manhattan ap-
proximation increases. At first, the Manhattan approximation is equal to the
lowest coordinate x,, (line 1). Then, in each iteration the sum of the data
rates is calculated (line 5-8) given the position of zy,. Thus, in each itera-
tion the next factor (data rate) in increasing order of the Equ. 3.9 turns from
negative to positive and the new sum is computed until it becomes greater
or equal to zero (line 10). The stopping condition indicates the change of
the sign of the derivative, which means that at this point zymt, we have

reached the desired approximation solution. This process must be repeated

74 3 Operator Placement Algorithms

150 |- M i
dx :
100 |- __du :
dx :
50 oo !
. : . X
0.3 n4 0.15 ne 1.0

-50 eeeeeeensssnneransd

I 1 .

150 s

Figure 3.3: Example of approximation for function Upcar(z) = 25(x — 0.2) +
25(x — 0.4) + 50(x — 0.6) + 50(x — 0.8).

for each dimension and finally we get a vector T, which is the solution of the
Manhattan approximation.

After having specified an approximation of the initial point, we check for
dead points by comparing the network usage at the approximated position
and the network usage at the neighbours (Alg. 4). If the network usage in one
of the points is lower than the one given by the Manhattan approximation,
we use this point as initial position and finally we give the output of this

procedure to the iterative method that computes the local minimum.

3.1.3.2 Clustering

In the previous paragraph we have described an approximation algorithm
for the continuous SOP problem. Although this algorithm approximates the
optimal solution for the SOP problem, it might not yield an optimal solution
for the continuous MOP problem in cases where two unpinned operators tend
to collapse at one position. Such cases can happen when the SOP solution
lies at the position of a neighbour that is an unpinned operator [96].

To overcome this problem we use the technique of operator clustering

[23, 88], whenever the SOP solutions of two neighboring operators coincide.

3.1 Network Usage Optimization 75

Algorithm 3 Manhattan Approximation
Require: Coordinates of w’s neighboring operators in increasing order in

dimension z;: {zy,, ..., 2y, }
Require: Estimations of data rates of links in L,: {r(@wy),...,r(@w,)}
Ensure: z,, is the median of the neighbours in dimension x;
1 e+1
2: repeat
3: DataRatesSum <« 0
TMhtn < Zw;
for all z,,, € {zw,,...,2,} do
if Tntn > 70, then
DataRatesSum <— DataRatesSum + r(wwy)

else

DataRatesSum < DataRatesSum — r(wwyj)
10: end if

11: end for

12: 1—1+1

13: until DataRatesSum > 0

14: x, + TMhtn

In detail, if the distance between an operator and its nearest neighbour is
dropping below a threshold, both operators form a cluster where one opera-
tor acts as cluster head. The head of the cluster performs the optimization of
the SOP problem for both operators that to the outside now act as one op-
erator. Generally, this procedure can be repeated until a non trivial solution
is found, i.e., the solution is a differentiable point or it is a pinned operator.
It has to be mentioned that the clustering is evaluated in each iteration of
the algorithm. Therefore, an operator might detach later from a cluster if the
virtual coordinates of the clustered operators have diverged. However since
the operators of a cluster are placed on the same physical node, these local

computations do not affect the network load induced by the algorithm.

76 3 Operator Placement Algorithms

Algorithm 4 Check Dead Points
Require: Coordinates of w’s neighboring operators: {Zy,, ..., Zw, }

Ensure: Finds dead point if exists
1: for all 7,,, do
2: if U(7y,,) <U(Z,) then

3: Ty, < Ty
4: end if
5: end for

3.1.3.3 Distribution Properties

If every operator independently optimizes its local position by solving the
continuous SOP problem (Algorithm 2), then eventually every operator will
be placed in a local optimal position. We call this solution an all-local opti-
mal solution. Here we prove the following proposition: An all-local optimal
solution is a global optimal solution of the MOP problem.

First, we prove the following necessary condition:

Theorem 1 In the global optimal state, where Ugiohal (Tw,, - - - , Tw,)15 mini-
mal, each operator w is at its local optimal position such that Uipcal(T,,) s

minimal.

Proof. We will prove this claim using a proof by contradiction: Assume there
exists a minimal solution, Umin = Uglobal (Twy , - - - , Tw,) = min, such that there
exists at least one operator w, that is not at its local optimal position, i.e.,
Unocal (Tw,) # min. (Otherwise there is nothing to prove since every operator
is already at its local optimal position.) Then, the resulting global network
usage is Unin = Ulocal (Tw.) + D, cnw, Uocal (T,)-

Assume all operators besides w, are fixed to the places of the global minimal
solution. Then, we can do a local optimization for w, by moving w, to a new
position Z;, with Uiecar(Z},) = min. The resulting global network usage is
then defined as U] ., = Uiocal(Z),,) + ijeﬁ\w* Unocal (T,)-

m

3.1 Network Usage Optimization 7

Since Uioeal(T,.) < Uiocal(Tw,), ULy, < Umin, which is a contradiction to
the assumption that Ui, is minimal. W

The sufficient condition that an all-local-optimal solution is always the
optimal MOP solution, remains to be proven. To prove the sufficient condition
we first show that each all-local optimal solution is a (possibly local) minimum

of MOP uglobali

Lemma 1 For any operator graph G, an all-local optimal solution (Z,,,, ..., Zy,)

is also a local minimum of the global function Ugiobal (T, - - - Tw,)-

Proof. If the solution is at a differentiable point, the partial derivatives of

Uglohal are equal to zero since it holds that:

o, Ohoce
global _ LOC&I — Z T(W) X U(fwj - wa)
0Ty,

ijie}"wj

0T,

Therefore the all-local optimal solution is a local minimum.

If one of the partial derivatives is not defined, then the solution of the
corresponding SOP problem lies on a non differentiable point (dead point).
According to our algorithm in this special case the operator will be clustered
with its neighbour and the MOP solution is given by the solution of the
clustered operator graph. Clustering is repeated until either it finds a differ-
entiable solution for the clustered operator graph, which we have proved to
be a local minimum, or it finds a SOP solution at a non-differentiable point,
in case the MOP problem is degraded to a trivial SOP, with one unpinned
operator and a set of pinned neighbours (sources and sinks).

Thus we have proven that an all-local optimal solution is also a minimum
of the global function.ll

Up to now we have proven that the global function is minimal only in all-
local optimal states, i.e., an all-local optimal solution is a local minimum of
Uglobal- It Temains to be proven that an all-local optimal solution is also a
sufficient condition for a global minimum of Ugiepa. We show this by using

the convexity properties of the global function Ugjpar, Which has only one

78 3 Operator Placement Algorithms

minimum. In that respect, we prove the sufficient condition that finalizes our

proof.
Theorem 2 For any operator graph G, an all-local optimal solution (Zy,, . .., Zw,)
is also the unique minimum of the global function Ugohal(Tw,, - - -, Tw,)-

Proof. From Lemma 1 we know that an all-local optimal solution is a local
minimum of Ugjohar. Furthermore, we know that Uyohar has only one minimum
since it is a convex function, i.e., if we have found a local minimum of Ugjghal
we also have found its global minimum. W

So finally we know that an all-local optimal solution is a local minimum
of Uglohal. Furthermore, we have shown that Usjopar has only one minimum,
i.e., if we have found a local minimum of Ugjopar We also have found its global
minimum. Therefore, an all-local optimal solution must be the global op-
timal solution of continuous MOP problem, which is approximated by our

distributed placement algorithm.

3.1.3.4 Dynamic adaptation of Operator Placement

After the initial placement, the positions of operators is optimized contin-
uously according to Algorithm 1. Note that although the initial placement
yields already the final positions of operators, the quality of this initial so-
lution might degenerate due to dynamically changing network conditions.
Therefore, we let each physical node dynamically re-evaluate the positions of
its hosted operators, in order to migrate operators if necessary.

In detail, an operator re-placement for operator w is triggered in two situ-

ations:

1. The coordinates of a neighbouring operator of w in the latency space

change.

2. The input or output data rate of w changes.

3.1 Network Usage Optimization 79

The first situation might occur, if a neighbouring operator re-evaluates its
position in the latency space for the same reasons (a neighbour changed its
position or data rates changed). An operator reacts to this change, using an
event-driven mechanism. If an operator calculates a new SOP solution, it
sends its new coordinates to its neighbouring operators. This event will also
trigger a re-evaluation of the receiver’s coordinates.

Here we have to mention that different all-local-optimal solutions might
exist that correspond to the same minimum. We have only proven that there
is a unique minimum but not that this minimum is reached by only one
solution. In fact if we visualize the problem in the coordinate space, we see
that there might be multiple symmetric points where the distance to the
neighbours remain the same. Assume, for instance, the simple example in
Figure 3.4, where we have only one source and one sink and the data rates to
both directions of the free operator w are equal (r). In this example, all the
positions of w that lie on the straight line between the source and the sink
cause the same global network usage Ugional (Z,) = 7 x d. The existence of the
symmetric solutions can lead to oscillations for more complex topologies as
the neighbors will move back and forth between the symmetric positions and
trigger re-placement events although the minimum has been reached already.
To avoid such oscillations, every operator checks if the difference between
the new minimum after the change of the coordinates of the neighbouring
operators and the one before the dynamic change is below a threshold, and
in that case it does not send the new position to its neighbours.

The second situation is due to rate changes of the incoming data streams.
For instance, a sensor might produce streams of considerably different rates
during the day and night. Consider for instance a traffic flow sensor, measur-
ing the number of cars passing-by a certain location. During rush hours the
data rate of this sensor is obviously higher than during the night. Thus, sub-
sequent operators attached to this sensor might receive streams of different
data rates during different periods. Moreover, an operator might produce a

different output data rate if the values of the input data change. For instance,

80 3 Operator Placement Algorithms

\ Sink

>

~

%

d optimal positions of ®
with minimum network usage

mMin Uggpa(X,) = r<d

® source

Figure 3.4: Symmetric Operator Placement Solutions.

a temperature filter might be configured such that it only reports tempera-
tures higher than 20° Celsius. So depending on the input temperature, this

operator produces different output data rates.

Obviously, such dynamic changes cannot be foreseen in advance. Rather,
we let each operator measure the current input and output data rates con-

tinuously using an exponential moving average:

Thew = O X Tcurrent + (1 - a) X Told

With this formula, the new data rate of a stream is calculated based on the
currently measured data rate reyrent and the previous data rgq. Parameter
a € [0, 1] defines, how much the data rate is smoothed by weighting historic

values.

If a significant change of data rates is detected by an operator, the operator
will re-evaluate its position in the latency space, send this position to its
neighbours, and possibly initiate a migration if a different physical node is

closer to the new position than the current one.

3.1 Network Usage Optimization 81

3.1.4 Integer Linear Programming Formulation

In this section, we formulate the optimization problem in (Equ. 3.2) as an
integer linear programming (ILP). This problem formulation is directly ap-
plicable to a centralized ILP solver. Although we explicitly strive for a dis-
tributed algorithm rather than a centralized solution requiring the gathering
of global knowledge at a central node, this ILP serves as a reference for the

evaluation of our distributed approach.

The problem formulation is based on the ILP for subgraph isomorphism
presented in [68]. In particular, we adapt the ILP for finding sub-graph
isomorphisms by introducing constraints for pinned operators. Moreover,
we changed the objective of the optimization to reflect our goal, namely,

minimizing the sum of delay-data rate products.

In detail, for the integer linear problem formulation, we keep the same
system of the physical network H = (V,&,[) and the operator graph G =
{Q, F,r} as introduced in Subsection 3.1.1, and we use integer linear pro-
gramming, instead of the latency space abstraction to formulate our problem.
To this end, we introduce the following definitions. We define the placement
of each free operator w; € Q.. by a binary vector z; € {0, 1}|V‘. Since an
operator has to be placed on exactly one host, the vector x; has exzactly one
1 at the position of host vj, where the operator is placed. Furthermore, we
define a vector y; € {0, 1}|g| for each operator graph link, such that the vector
has exactly one 1 at the position of edge e; , where the operator graph edge

is placed.

Given the above definitions, the problem of minimizing the network usage

can be expressed as:

82 3 Operator Placement Algorithms

minZZr(f)l(e)yfye, (3.13)

fEF ecf
subject to :
Tom, =1 Y € Vinned (3.14)
wayy =1 YVweW (3.15)
vey
> ype=1 VferF (3.16)
ecf
Z Y(wy wa),(v1,v2) = Twi,m Vv eV, V(wl,wg) e F (3.17)
(1/171/2)65
Z Y(wr,ws),(v1,v2) = Twa,ve Yig € V, V(wl,wg) e F (3.18)
(V17V2)65

In the objective (3.13), we minimize the sum of bandwidth-delay products
for each underlay edge e (host-to-host connection) on which an operator graph
edge f is placed. Constraint (3.14) ensures that each pinned operator w; €
Qpinned is placed on the given host v,,. Moreover, constraint (3.15) and (3.16)
guarantee that each operator w is placed on exactly one host and each operator
graph edge f is placed on exactly one underlay edge e. Finally, constraint
(3.17) and (3.18) ensure that the operator placements and operator graph
edge placements defined by the vectors x and y, respectively, are consistent.
That is, if two operator graph edges start at the same source node (operator),
then they must be mapped such that the target edges in the underlay network
also start at the source node (host). Moreover, this host must also be the
target of the operator mapping of the source operator defined by x. The same
constraints applies to the destination nodes of operator graph edges.

Given the above ILP formulation of our problem, we can use an ILP solver
to solve the discrete multi-operator placement problem in a centralized man-
ner. In Chapter 4, we present evaluation results of the execution of the above
ILP compared to the distributed algorithm (MOPA).

3.2 Network Delay Constrained Optimization 83

3.2 Network Delay Constrained Optimization

Although the optimization of network usage contributes to the scalability of
the system, it does not take into consideration any constraint from the ap-
plication’s point of view. Here, we consider also latency constraints from the
application. In this section, our target are applications that do not require
intensive processing of operators. In other words, we assume that the trans-
mission delay as part of the network delay* as well as the processing delay
are negligible. In the next section, we will consider processing-intensive ap-
plications. This assumption applies to scenarios where data units are small
and only simple processing operations are required. A typical example is the
communication of temperature values and checking whether the values exceed
a certain threshold. Since a sensor value only contains few bytes, its trans-
mission delay (time to put the sensor data on the wire) is small. Moreover,
comparing a simple value like an integer or floating point against a threshold
induces a very small delay.

In particular, the proposed operator placement algorithm considers a given
end-to-end delay while trying to minimize the network usage. Our algorithm
is based on a two-phase process [91]. First, we find an operator placement
that minimizes network usage (unconstrained optimization phase). Secondly,
we distort the optimal solution such that the QoS constraint is fulfilled while
minimizing the impact onto the network usage (constraint satisfaction phase).
This basic approach is different from related constrained optimization ap-
proaches that usually first enumerate a set of feasible solutions with respect
to the QoS constraint and from this set select the best solution with respect
to the optimization criteria [52,81,90]. In contrast to these approaches, our
approach enables us to calculate the costs in terms of the optimization met-
ric that we have to pay to fulfill the given QoS constraint. The knowledge

about the individual costs for achieving the specific constraint can be a useful

*Network delay—transmission delay-+signal propagation delay-+queuing delay of
routers+processing delay of routers.

84 3 Operator Placement Algorithms

Operator Graph Model

wiw; € Q | Set of link(s) that connect w; and w; in the overlay net-
work

Q Set of paths in an operator graph

Og 4 Set of end-to-end paths in an operator graph

Table 3.3: Extended Network Delay Constrained System Model Notation

information for the system in order to negotiate the level of QoS provision.
For instance, if achieving the QoS guarantees involves negligible cost, it can
be acknowledged without further negotiation. However, if it would require
large costs, a re-negotiation could be initiated to relax the QoS constraint in
favour of a less costly solution.

To solve this constrained optimization problem, we use a two-phase op-
timization process. In the first optimization phase, we use the algorithm
presented in the previous chapter to minimize the network usage. Then we
apply a constraint satisfaction method, which calculates a solution for the
constrained optimization problem by moving operators in the latency space
along a path of minimal increase of network usage to a new position fulfilling
the delay constraint after the mapping of the continuous solution to the dis-
crete set of physical nodes. We will both show at the rest of this section, how
operators can be placed at the initial deployment, and how operator positions
can be adapted to dynamic network conditions during runtime.

In the next subsection we are going to extend the system model presented
in Subsection 3.1.1 to express the targeted constrained optimization problem.
Then we are going to formulate the constrained optimization problem, before

we present our approach.

3.2.1 System Model

Here we use as a baseline the system model introduced in Subsection 3.1.1. In

that respect in the underlying system, we use the physical network model and

3.2 Network Delay Constrained Optimization 85

the latency space abstraction as presented in Subsection 3.1.1 , i.e. we assume
a set of physical nodes V distributed in the network, where each physical host
uses a network coordinate algorithm to determine its position in the latency
space.

Furthermore, in our execution model, we assume, similar to Subsection
3.1.1, a stream processing task modelled as a directed operator graph G =

{Q, F,r} that consists of a set Q = {w1,...,wp} of operators connected by

a set F = {W01w;,...,wjwy,} of links. However, we extend this execution
model in order to express the end-to-end latency. Table 3.3 summarizes the
new concepts of the extended execution model. As explained earlier a link
wiw; €) x () is a directed connection that links one operator w; to another
wj. Up to now, we have only used this notation, for one-hop neighbours in
the operator graph. Here, we extend this notation to pathsbetween operators
consisting of several hops in the overlay network. That is, W;w; denotes
the path between w; and w; defined as the union of the links on this path.
An end-to-end path w;w; denotes a path connecting a source w; and a sink

(application) wj. Each graph typically contains a set of end-to-end paths

Q554 = {WiWj, ..., W[}

3.2.2 Problem Statement

Our goal is to find an operator placement on physical hosts such that the
network usage of inter-operator data streams is minimized under a given la-
tency constraint. Next, we give a formal definition of the resulting placement
problem.

We consider the optimization problem as presented in the previous chapter
(Equ. 3.4). In addition to this optimization goal, we introduce the objective
function to express the constraints in terms of latency. In general, to calculate
the latency, we have to sum up the network and processing delays, since
normally each operator introduces a certain processing delay. However, as

we have mentioned earlier we consider applications that send small messages

86 3 Operator Placement Algorithms

/Unconstrained \ / Constraint Satisfaction Phase\

Optimization Phase

Minimize Reduce Latency ' Mapping to
Network Usage - In Latency Space physical host

In Latency Space

k / K 1 Check Constraint | /

Figure 3.5: Process flow of the initial placement.

over long distances. Therefore, we consider the delay to process these small
messages on the physical host to be negligible in comparison with the network
delay. Given this assumption, we introduce the latency of a path w;w; as
the sum of the delays of all the links participating in the path L(wiw;) =
> e L@R00).

Then, the latency of an operator graph will be the maximum latency of all
the end-to-end paths of G:

L(G) = L(wiwj,...,wpw) = max L(wiw;)

wiw;€Qs -4

Finally we define our constrained optimization problem as follows:
min Ugiobal (Zw, s - - - 5 Las,), SUbject to L(G) < lpaa (3.19)

;where 4. is a user defined constraint for the maximum delay.

3.2.3 Constrained Optimization Algorithm

Next we present our approach for solving the constrained optimization prob-
lem of Equ. 3.19. First we give an overview of the whole process and then we

describe in detail how operator positions are calculated.

3.2 Network Delay Constrained Optimization 87

3.2.3.1 Constrained Optimization Process: Overview

The whole process of our constrained optimization method consists of two
phases as shown in Fig. 3.5. In the first phase, called Unconstrained Opti-
mization Phase we find the optimal position of the operators in the latency
space such that the network usage of the operator graph becomes minimal,
i.e., we solve the continuous version of the unconstrained optimization prob-
lem of Equ. 3.4. In the second phase, called Constraint Satisfaction Phase,
we try to find a solution that fulfills the given latency constraint on the
one hand. On the other hand, the calculated solution should deviate from
the (unconstrained) optimal placement w.r.t. network usage only minimally.
Therefore, we start at the optimal positions in terms of network usage that
were calculated in the first phase, and move operators towards the latency
minimum on paths that increase the network usage the least. This movement
is executed in the continuous latency space. After we have moved an operator
for a certain distance towards the latency minimum, we map the continuous
positions to the discrete positions of physical hosts and check whether the
latency constraint has been fulfilled. If it is fulfilled, we have found a solution
of the constrained optimization problem (Equ. 3.19); if it is not fulfilled, we
initiate another iteration by moving operators further into the direction of

the latency minimum.

For the initial placement, we execute the algorithm centrally on one dedi-
cated physical node, called coordinator node. After the deployment of oper-
ators, the adaptation of the solution is done in a distributed manner. This
means that an event-driven model initiates a new round of optimizations each
time it detects a change of the conditions of the problem. In Section 3.2.3.5
we are going to describe in detail, how the algorithm is executed to adapt
the placement of operator to dynamic changes, after we have described the
centralized execution of the optimization and constraint satisfaction phase in

the next sub-sections.

88 3 Operator Placement Algorithms

3.2.3.2 Unconstrained Optimization Phase

During the unconstrained optimization phase, we search the minimum of the
unconstrained optimization problem of Equ. 3.4. We use for that purpose
the unconstrained optimization placement algorithm presented in the previ-
ous section. As presented earlier, the placement algorithm can be executed
centralized as well as distributed. During the initial placement, the above
mentioned coordinator node executes this algorithm centrally. We assume
for the initial placement that the data rates are derived from the type of
application or estimated based on statistics gathered from previous deploy-
ments. During the execution of the operators, the adaptation algorithm can
adapt these values by measuring the data rates during runtime as we see in
Section 3.2.3.5.

3.2.3.3 Constraint Satisfaction Algorithm (MOPA-LMAX)

After the unconstrained optimization, all operators are in a position such that
the induced network usage is minimal. However, since the unconstrained op-
timization only solves the unconstrained optimization problem, the maximum
latency path in the operator graph might violate the given delay constraint.
Next we present the constraint satisfaction algorithm, which we call MOPA-
LMAX, that moves operators from their optimal position such that: (1) the
latency is reduced, (2) the deviation of the network usage after re-placement
is minimal compared to the optimal network usage immediately after the
unconstrained optimization. First, we give an overview of this constraint
satisfaction algorithm before we explain it in detail.

The general course of actions of the MOPA-LMAX algorithm, shown in
Alg.5, is as follows. First, we map the current continuous positions of the
operators to the closest physical hosts in the latency space, in order to be able
to check the latency constraint after the mapping to physical hosts (line 1)
rather than onto virtual hosts. Whenever we map operators to physical hosts,

we only consider non-overloaded physical hosts to prevent bottlenecks. Then,

3.2 Network Delay Constrained Optimization 89

we check whether the latency of the operator graph £(G) fulfills the given
latency constraint lq, (line 2). If it fulfills the constraint, we have found
a suitable operator placement and return this mapping (line 2, 11). If the
latency constraint is violated, we find new coordinates for the nodes. First,
we determine the maximum latency path (line 3) of the operator graph in the
continuous space. Then, we select one operator on this path and determine
a direction of movement that reduces the latency of this path (line 4) and at
the same time increases network usage the least. Details about this step are
presented in Subsection 3.2.3.4. If we cannot find a direction that reduces the
latency, we cannot find a solution that satisfies the given latency constraint
and return the current mapping of operators (line 5-6). Otherwise, we move
the selected operator by a certain step length into the calculated direction in
the latency space (line 8). Then we repeat the steps of calculating a mapping
to physical hosts (line 9), and checking for the satisfaction of the latency
constraint.

The step size of the iterative algorithm should be selected carefully since
it affects the accuracy of the solution. For our evaluation, empirically we
see that a step of 1 gives a good approximation of the solution. In order to
map the continuous solution to physical nodes whose positions in the latency
space are closest to the calculated virtual node positions, we realize a nearest
neighbour search [107], similar to the unconstrained algorithm presented in
Section 3.1. The coordinator node queries this infrastructure to perform the
mapping step. Finally, it deploys the operators on the physical nodes and the

execution of the operator tree starts.

3.2.3.4 Operator Selection and Direction of Movement

Next, we explain in detail how we select the operator to move and its respec-
tive direction (line 4, Algorithm 1). For this purpose, we first calculate the
optimal direction for each operator on the maximum latency path and then

select the one node with the minimal impact on the network usage.

90 3 Operator Placement Algorithms

Algorithm 5 MOPA-LMAX

Require: U(Z,,,...,Ty,) is minimal

Ensure: Finds a mapping (v1,...,v,) such that L£(G) < Ilnes and
U(Zy,, ..., Ty,) is minimal
1: map each operator w; to closest non-overloaded v;
2: while (L(G) > lnae) do
3: determine maximum latency path w;w;

select operator w € w;w; and direction dir to move

4:

5. if dir = 0 then {already at latency minimum}
6: return current mapping (vy,...,0,)

7. end if

8:

. -
move operator w by a step length step into dir
9: map operator w to closest non-overloaded 1yew
10: end while

11: return current mapping (v1,...,vy)

More formally, we first search for a direction c?z_;‘ = (dirg, diry,dir;) to
move each unpinned operator w on the maximum latency path, such that:
(1) L(w;wy) is reduced, (2) the increase of U(Z,,) is minimal if the operator is
moved into the direction cﬁ“

In general, the impact on the network usage when moving into a certain
direction dir is inverse proportional to Qﬁw(gﬁ“) = VU (fw)-gﬁﬂ, where - denotes
the dot product of the network usage gradient VU(x,) and the direction of
the movement cﬁ“, ie., W“’a—;(‘r) s diry + 824%_;1(1/) * diry + au“’a—;l(z) xdir,. Note
that since (ﬁ" is a unit vector, ¢, models the projection of the gradient onto
the direction of the movement. For instance, if ¢, < 0, then the operator is
moving inversely to the gradient and therefore the network usage will increase
proportional to the value of the gradient.

More formally, if D is the set of possible directions that reduce the latency,
our goal is to maximize the function @Aﬁ) = maXﬁeD{VZ/{(fw) : cw"}

Since L(w;w;) is a convex function, moving into the direction of Ly, will

3.2 Network Delay Constrained Optimization 91

S
w V
A
(a) U], outside ASwA. (b) U];,, inside ASwA.

Figure 3.6: Direction of the movement for MOPA-LPMAX

certainly reduce latency and in the ultimate case will lead to the minimum
latency path. Actually, Ly, might not be a single point but a line segment
connecting a source S and a sink A since obviously all positions on a direct

connection between S and A will lead to minimum latency.

Based on the observation that L, is a line segment rather than a unique
point, we show next how to calculate the direction cﬁ’ that points towards
Lmin and maximizes qbw(ciz—';). In Fig. 3.6 we see an example where an un-
pinned operator w should be moved towards the latency minimum L., de-
fined by the line segment SA. As we see in this figure, the possible directions
that point to the latency minimum are inside the angle # between the vectors
cjzl and R Since the possible directions belong only to the plane defined
by the points SwA, the direction cm" will be affected only by the projection
of the network usage gradient VU'(z,,) on the plane SwA. Thus, in Fig. 3.6
we see that the direction that maximizes the dot product ¢, is the direction
that has the smallest angle 6 to the projection of the gradient of the network

usage on the plane SwA.

In general, we can distinguish two different cases according to the posi-
/
min

SwA: (1) U’ . is outside the triangle ASwA (Fig. 3.6). In this case, the

min

tion of the projection of the network usage minimum on the plane

92 3 Operator Placement Algorithms

Algorithm 6 Operator and Direction Selection
Require: Positions 7, S1, A

_>
Ensure: Finds wepy and dirgpe such that ¢, is maximum
1: for all w € w;w; do
. - — -
2 if VU(a2) x u(@A) - VU (12, x u(@9)) < 0 then
- -

3 gz}i)(dzr) — [|VU'(22)]|
L dir — VU'(a7)
5: else

- T4
6 G (dir) MAXG2 oA w(@d)) VU'(z;,) - dir
- -
7 dir < arg ¢, (dir)
8
9

end if

if ¢ > ¢opt then
10: Gopt < Py Wopt < W, cﬁ"opt — u(cﬁ“)
11: end if
12: end for

e —
direction dir should be the direction of the vector wA or B, whichever
has the smallest angle 6 to the projection of the gradient VU'(z,,) on the
_>
plane SwA. Therefore, this vector will maximize the dot product, i.e., dir =

H
arg{max VU'(x,,) - dir}, where u denotes the unit vector. (2)

dire{u(@A)u(@8)}

U/ . is inside the triangle ASwA (Fig. 3.6). In this case, the direction dir

should be the direction of the projection of the gradient VU'(z,,), since this
will induce a maximal decrease of network usage.

In order to distinguish between the two cases, we have to identify when

Unnin

_>
inside the triangle when vector wA and w5 are on different sides of VU’ (2,).

is inside the triangle. As we see in the example of Fig. 3.6, U/, is
This condition (the relative position of VU'(z;,)) cannot be identified only
through the dot product. Therefore, we need to calculate the cross products
VU'(£,) x WA and VU'(£,) x =S, Note that the cross product of two vectors
A = {Aj, A2, A3} and B = {Bi1, B2, B3} in three dimensional Euclidean
space, is given by: Ax B = (A9B3 — A3Bs)i + (A3By — A1B3)j + (A1 By —

3.2 Network Delay Constrained Optimization 93

A2 By)k. Therefore, the result of the cross product is another vector which is
perpendicular to the plane containing the two input vectors. If the two vectors
m,ﬁ lie on different sides of vector VU'(x,,), then their cross products
VU' () x u(m), VU' () x u(ﬁ) have different directions, i.e., the dot
product of their cross products are negative.

Algorithm 6 shows the final algorithm that we use to determine the operator
to move and the direction of the movement. For all operators on the path,
we find the optimal direction that maximizes the dot product ¢, (line 2-12).
To this end, we first check if the projection of the network usage minimum
is inside the triangle, i.e., the dot product of the cross products is negative
(line 2). Then the optimal direction is the direction of the projection of the
gradient (line 3-4). In any other case, ¢, is set to the maximum of the dot
products VU'(z,,) u(w_1>4)7 vu' () u(cﬁ) (line 6-7). Finally, we compare ¢,
to the current maximum dot product of the path. If ¢, exceeds the current
maximum, we keep the identifier for the operator to move as well as the
direction of the movement (line 9-11). The iterative process continues until
we have checked all the operators on the path. The output of the algorithm
is the identifier of the best operator to move wqpt, together with its optimal

direction.

3.2.3.5 Dynamic adaptation of placement

After the initial placement of operators, the operator graph is deployed in
the network. During the execution of the operators a change in network
conditions or the data rates of inter-operator data streams might degrade
the initial placement by rendering the initial solution suboptimal or violating
the given delay constraints. Therefore, the placement of operators has to
be adapted to dynamic network conditions. Next, we describe the dynamic
adaptation during runtime.

The adaptation process is based on an event-driven model that triggers the

re-placement of operators whenever the position of neighbouring operators

94 3 Operator Placement Algorithms

change or if the data rates of incoming or out-coming data streams change.
In case of such changes, the operator graph enters the unconstrained opti-
mization phase where operator positions are optimized for minimal network
usage. The unconstrained optimization is realized by running the algorithm
presented in Section 3.2.3 in a distributed manner [92|. In the distributed
case, each operator optimizes its local network usage and exchanges messages
with its neighbours to communicate its new position, until the positions of
its neighbours do not change any more. After a number of iterations, the
distributed algorithm yields the final solution for the operator graph.

Subsequently, the operator graph enters the constraint satisfaction phase.
However, since the operators are distributed on different hosts, the operators
should coordinate to decide when and how to enter the constraint satisfac-
tion phase. For this purpose, as for the initial placement, we again use a
coordinator node. For the initial placement, the position of the coordinator
node is not crucial, whereas for the adaptation it is beneficial to choose the
root node as coordinator, since it can help as the root node of an aggre-
gation tree. To detect the transition between the two phases, we create an
aggregation tree where state information (the current position of operators) is
propagated bottom-up towards the root. To avoid additional message over-
head, we piggy-back this state information of a subtree onto the messages
that are communicated during the unconstrained optimization phase. Thus,
the coordinator node has a global view onto the operator graph at each point
in time with a delay that depends on the time to transmit the messages along
the tree.

Fig. 3.7 exemplifies our approach for an operator graph of 15 nodes. In that
case, during the optimization phase, the 6 free operators exchange messages to
cooperatively converge to a network usage minimum. Note that the operators
connected to the sink, which is the coordinator node, send messages to the
coordinator node to update the global view onto the operator graph. Based
on this global view, the coordinator node assumes that the unconstrained

optimization has reached a stable state, when it does not receive any message

3.2 Network Delay Constrained Optimization 95

Unconstrained Optimization Phase Constraint Satisfaction Phase

Communication Overhead--MOPA

.»’ Notification-MOPA--LMAX
¥ State Information-MOPA--LMAX -

Figure 3.7: Communication Overhead Example for MOPA & MOPA-LPMAX

from its neighbouring operators for a certain time interval At. If this time
expires and no state update messages have been received, the coordinator
node performs the constraint satisfaction phase centrally as described in the
previous section. When it finds a new solution of the constrained optimization
problem, the root propagates a message to all nodes/operators in the tree,
containing the mapping of the unpinned operators as shown in Fig. 3.7. After
the propagation of the message along the tree, all the operators are informed
about their final position and initiate a migration if necessary.

The time of the transition from the optimization phase to the constraint
satisfaction phase depends on the time of the dynamic changes that may
happen unexpectedly in the system. Therefore,it is possible that a new dy-
namic change triggers the optimization phase, while the coordinator node
performs the constraint satisfaction step. In that case, the coordinator node
will not propagate the solution of the constrained optimization problem to
the tree and the whole optimization process will start from the beginning. In
that respect, the point in time to pass from the optimization to constraint
satisfaction phase does not affect the final outcome of the algorithm, but it

determines the responsiveness of the system to dynamic changes.

In particular, the parameter At defines the time to respond to dynamic

96 3 Operator Placement Algorithms

changes. If it is set very low, then the system will react faster to dynamic
changes by re-calculating the physical mappings of operators more frequently
and thus resulting possibly in more migrations in the physical network. Since
the migrations are costly both in terms of communication overhead and la-
tency, we try to avoid entering the constraint satisfaction phase before we
reach a stable state by approximating an upper bound for the time to get the
messages transmitted along the operator tree. Thus, we propose to set this
parameter equal to the time to send a message from the most distant source
in the tree to the root plus a small constant.

In very dynamic environments, the unconstrained optimization might take
a long time to reach a stable state during which the delay constraint is possibly
not fulfilled. In order to avoid being stuck in the unconstrained optimization
phase for a long period, we introduce an additional parameter AT that defines
the maximum time interval that the root should wait until it executes the
constraint satisfaction algorithm.

Finally, we analyse the communication overhead induced by the adaptation
algorithm. In general, the induced message overhead mainly consists of the
following messages: (1) The messages required to distributively solve the
unconstrained optimization problem during the unconstrained optimization
phase. An analysis of this overhead is presented in Chapter 4, (2) The state
information propagated upwards in the aggregation tree to determine the
end of the unconstrained optimization. The additional overhead introduced
for transmitting state information is expected to be small since we can re-
use the information propagated during the unconstrained optimization in
step 1—in this phase, nodes already exchange their coordinates. (3) The
notification messages about new operator positions propagated downwards
along the operator tree. This requires only #unpinnedOperators messages.

Fig. 3.7 shows an example of the communication overhead for MOPA and
MOPA-LMAX for an operator graph of 15 nodes. We see that during the
unconstrained optimization phase, the unpinned operators exchange messages

to cooperatively find a global network usage minimum. To this end, the

3.2 Network Delay Constrained Optimization 97

additional overhead introduced for transmitting state information to the root
of the aggregation tree is proportional to the communication overhead of
MOPA. At the constraint satisfaction phase, we need only 6 messages equal
to the number of the unpinned operator in the operator graph. Overall, we see
that only Steps (2) and (3) introduce a small amount of additional messages

compared to the unconstrained optimization.

3.2.4 Integer Linear Programming Formulation

In this section, we extend the formulation of the optimization problem in
(Equ. 3.2) as an integer linear programming (ILP) presented in Subsec-
tion 3.1.4, to provide an ILP formulation for the constrained optimization
problem in (Equ. 3.19). Similar to the ILP formulation presented in Sec-
tion 3.1.4, this problem formulation is directly applicable to a centralized ILP
solver and it will be used as a reference for the evaluation of the constrained
satisfaction algorithm Alg. 5 in Chapter 4.

For the integer linear programming formulation of the constrained opti-
mization problem, we keep the same definitions as presented in Section 3.1.4
and we extend our model similar to Subsection 3.2.1 with the definition of
the end-to-end paths Qg4 = {q1,...,qn}. For the ILP formulation each
path ¢; is defined as binary vector: ¢; € {0, 1}|]:|, with

1, if operator graph edge f € Fis part of the end-to-end path.
qi.f =
0, otherwise.
A valid solution must satisfy the latency constraint for each end-to-end path
gi- Therefore, to solve the constrained optimization problem in (Equ. 3.19),
we add in the ILP formulation presented in Subsection 3.1.4 the following

constraint:

Z Z Gi,fYfel(€) = lmaz, V¢ € Qs (3.20)

fEF ecf

98 3 Operator Placement Algorithms

3.3 Processing and Network Delay Constrained

Optimization

In previous section, we introduced an algorithm fulfilling latency constraints
while optimizing the network usage. However, the previous algorithm tar-
gets applications communicating small data units where the transmission and
processing delays are negligible. To this end, in this section, we extend the
constraint optimization problem to also consider processing and transmission
delays. Thus, we target processing intensive applications. Consider, for in-
stance, a multimedia streaming application |76], transferring larger chunks of
data to be processed. In this category of applications, processing delay and
data transmission delay could affect significantly the end-to-end delay of the
system.

Our approach first optimizes for network usage and then applies a con-
straint satisfaction algorithm that fulfils the end-to-end latency constraints
[93]. The computing resources are used in an efficient way in the sense that
nodes with more residual resources are preferred over others, and only if they

reduce the processing delay of the corresponding operators to be placed.

3.3.1 System Model

In order to consider transmission and processing delays during the placement,
we need an extended system model also modelling the size of data to de
transmitted and the processing at hosts. Next, we introduce this extended
model.

In our execution model, we use the basic definitions presented in Subsec-
tion 3.1.1 and Subsection 3.2.1, i.e., a stream processing task is modelled as a
directed operator graph G = {2, F,r} that consists of a set Q = {w1,...,wy}
of operators that are connected by a set F = {wiw;, ..., w;wy} of links. Ad-
ditional to this execution model, we introduce here the notion of a data unit
which represents the minimal discrete data unit to be transmitted between

the operators and processed at hosts. A sequence of data units forms a data

3.3 Processing and Network Delay Constrained Optimization 99

Physical Network Model
Cu; Capacity of host v;
mipsy, Processing speed of host v;
Qu; run queue length
Operator Graph Model
T Minimal discrete data unit to be transmitted between
the operators
P(wg, v) Processing delay that a data unit experiences at host v
hosting operator wy.
T(1,v) Transmission delay for putting a data unit on the wire
at host v
LP(wiwj) | Total delay of an end-to-end path w;wj, including pro-
cessing and network delays
Sr Size of data unit

Table 3.4: Extended Processing and Network Delay Constrained System
Model

stream. We define s, as the size of a data unit 7. A data unit forms the basic
unit of processing for each operator. Typically, sources generate sequences
of data units in intervals that are then processed by operators and finally
consumed by the sinks.

Since, in this section, we consider that the end-to-end delay contains pro-
cessing as well as network delays, we extend the system model presented in
Section 3.2.1 accordingly. In particular, 7 (7,v) defines the transmission de-
lay for putting a data unit on the wire at host v. In order to estimate 7 (7, v),
we continuously measure the transmission delay 7 (7', v) of a real data unit 7/
(probe unit) of size s.. on a physical host v and we calculate the transmission
delay as T(1,v) = (s7/s.)T (7, v).

Moreover, to be able to estimate the processing delay on a physical host,

we introduce here a simple processing model that assumes that the processing

100 3 Operator Placement Algorithms

power of a host is equally distributed to all operators running on this host
(which is typically the case if all processes have the same priority). More
formally, we define as P(wg, V) the processing delay that a data unit experi-
ences at host v hosting operator wy. For the local host where the operator is
currently located, P(wyg,) can be measured directly. However, determining
P(wp,v) is not a trivial task for other hosts where the operator is currently
not located. Note that the placement algorithm needs information about
P(wg, v) before it actually places the operator on host v to make a decision
which host is suitable with respect to processing delay before actually migrat-
ing an operator. Therefore, the basic problem is to estimate the processing
delay of an operator w when executed on host v taking into consideration the
fact that hosts have dynamic processing load and different processing power.
Here, we use a simple model for estimating the processing delay, which pro-
vides a sufficiently good estimation according to the results presented later
in this section. However, our approach is open to other more sophisticated
performance models, based, for instance on black box or white box tests and

more on elaborate machine models [62,104].

Our estimation is based on two metrics to define the processing power and
load of each host, respectively. On the one hand, we use the bogomips metric
to define the speed of a machine [108]. Bogomips express the number of
iterations per second of a loop with empty body. It is used, for instance, by
the Linux system at the beginning of the boot process. Obviously, this metric
cannot capture every aspect of the speed of a host such as different relative
speeds for integers and floating point operations. However, it gives a coarse
estimate to compare two machines and proved to be sufficiently accurate for
our purpose in our measurements. On the other hand, we use the run queue
length of the processor to express the load of a host. The run queue length
defines the number of processes waiting for the CPU. Intuitively, the share of
processing time an operator receives will shrink proportional to the number
of processes running on the host (here, a process can be another operator as

well as any other process running on the host).

3.3 Processing and Network Delay Constrained Optimization 101

Assume that the operator is currently running on host v; and we want to
estimate the processing delay of that operator if it migrates to host v;. The
current capacity c,, of host v; with processing speed mips,, and run queue

length ¢,, is given by the following formula:

mzp Sy

}

¢y, = min {mips,,,
vi

The capacity of the other host is given by:

mipsy;
qv, +1

}

¢y, = min {mips,,

Here, mips/q defines the bogomips that one process receives if g processes are
competing for the CPU. On host v; where the operator is currently placed, g¢,,
already includes the operator. On the (candidate) host v; we have to add 1 to
qv; to reflect the queue size after the migration to v;. The minimum function
ensures that on an unloaded host and short processing times with longer idle
periods between data units the operator cannot receive more than 100% of
the CPU. As an indicator of the current relative performance of the two hosts
we define the speedup factor: speedup;; = % Finally, we approximate the
remote time to run the operator on host v;]as the product of the speedup

factor and the local processing time at host v;:
P(w,v;) = speedup;; * P(w, v;)

In order to evaluate our processing model, we ran several experiments where
we tried to estimate the processing time of an operator, given that different
numbers of operators were already deployed at the candidate host. For these
experiments, we considered operators that realize a matrix multiplication
with different matrix sizes. Moreover, we approximated the run queue length
by using an exponential moving average with a smooth factor equal to 0.05,
using the system activity report (sar) command to query the current value of
the run queue length of a Linux system. Figure 3.9 and Figure 3.8 show the

approximated and the real processing time for operators with different matrix

102 3 Operator Placement Algorithms

T T

Estimation —3—
Real Wall Time --+- ; 3
4 R R At

Processing Delay (sec)

Run Queue Length

Figure 3.8: Estimated processing delay (matrix multiplication operator; ma-
trix size:100)

size. As expected, the processing time increases by the increase of the run
queue length and the model captures correctly the tendency of the processing
delay. For operators with matrice size 100, the average relative error equals
to 20%, while for operators with matrix size 1000, the corresponding average

relative error is lower than 11.2%.

3.3.2 Problem Statement

Before we formulate our constrained optimization problem, we define here
the end-to-end latency LP(w;w;) of an end-to-end path wjtw;. More formally,
extending the definition of end-to-end latency from Section 3.2.2, end-to-end
latency is defined as the time that a data unit 7 needs to get transmitted and

processed along a path between source w; and sink w;:

LP(r,m7w7) =

Y L@ A TEm) + T+ Y Plok,)

WEW EWW; W EW;Wj

3.3 Processing and Network Delay Constrained Optimization 103

500

T T
Estimation —8— ‘
450 = Real Wall Time ===~ n

400 |- e S TT .
350 | e e -
30 e A -
250 | I -
200 | Rt rrrrrrrrrrrrrrr -

Processing Delay (sec)
)k

150 | A o T — .

100 I I I

Run Queue Length

Figure 3.9: Estimated processing delay (matrix multiplication operator; ma-
trix size:1000)

In this equation,as already introduced in the previous sections, £(7x7;) de-
fines the communication link delay of a link (7x7;) on the path, i.e., the time it
takes to transmit a single bit between the two physical hosts, hosting operator
wi and wy. Similar to the previous sections, for modelling the propagation
delay, we use the latency space model as already introduced in Subsection
3.1.1.

As already mentioned, in this section we consider the processing delays
T (1,v) and P(wg,) to contribute significantly in the end-to-end delay. Based
on the previous definitions of 7 (7, v) and P(wy, V) , we can define the latency
of an operator graph as the maximum end-to-end latency contained in oper-
ator graph G, i.e. the maximum latency that a tuple experiences traversing
the longest path in the operator graph. Formally speaking, the latency of an
operator graph G is defined by:

LP(G) = max LP(tww;) =

Wiw;€Qs 54

= max Y {LOGAATrw) + T+ Y Pl)

Wiw;€Qs 4

Wr Wy EWiW; W EWWj

104 3 Operator Placement Algorithms

Based on the end-to-end latency and network usage definitions, we can
now formally define our placement problem. This problem is defined as con-
strained optimization problem where a user defined maximum end-to-end
latency restriction Ip,,q. has to be fulfilled while minimizing the induced net-

work usage:

min Uglobal (Lw,s - - - » T,), subjectto LP(G) < Ipmax (3.21)

3.3.3 Placement Algorithm

In this section, we present the operator placement algorithm to solve the
above constrained optimization problem. We start with an overview of the

algorithm, and then present further details in the following subsection.

3.3.3.1 Overview of Algorithm

The basic idea of the algorithm is similar to the constraint placement al-
gorithm presented in Subsection 3.2.3. Again, we use a two-step placement
process. In the optimization step, we search for an optimal placement w.r.t.
network usage. In the second step, we modify this unconstrained solution
such that the end-to-end latency constraint is satisfied and the network usage
is only increased as few as possible compared to the unconstrained solution.
Unlike the problem introduced in Section 3.2.2, the problem of Equ. 3.21,
includes processing and transmission delays. By moving the operators in the
latency space as proposed in Section 3.2.3, we can reduce the communication
latency only. Thus, for solving the extended problem of Equ. 3.21, we need a
strategy that considers also processing and transmission delay.

Intuitively, to reach a better solution, the operators should be placed on
hosts that reduce the end-to-end latency, either by moving to faster nodes
(reducing processing delay) or by reducing the network latency. Theoreti-
cally, we could find the optimal solution of the constraint placement problem

by an exhaustive search that considers every host in the system. However,

3.3 Processing and Network Delay Constrained Optimization 105

obviously this would lead to high overhead for larger sets of hosts and opera-
tors. Therefore our solution is based on the idea to find some candidate hosts
that reduce the end-to-end latency. We find promising nodes by searching in
certain areas of the latency space—later we will show in detail how to find
a good set of candidates. Then, we communicate with the candidates to get
their processing and transmission delay. Finally as we see later, in order to
keep the network usage as low as possible, we iterate over the candidate nodes
and we select those that reduce the end-to-end latency while increasing the
network usage minimally.

Depending on the phase, the output of the constraint satisfaction algorithm
will be either an initial placement or a new placement of the operators. In

the later case, the operators are migrated to the new hosts.

3.3.3.2 Constraint Satisfaction Algorithm (MOPA-LPMAX)

Next, we describe the details of the constraint satisfaction step. As men-
tioned, the constraint satisfaction algorithm, to which we refer as MOPA-
LPMAX, depicted in Algorithm 7 is invoked after the optimization step.
Therefore, before the execution of this algorithm all operators are placed on
hosts such that Equation 3.4 is minimal. For the explanations below, it is
important to realize that U(G) is a function that depends on the coordi-
nates of the hosts hosting operators in the latency space since the Euclidean
distance between hosts in the latency space defines the propagation delay
(Function £) between hosts and therefore their operators. In the beginning,
U(G) = Unin where Upi, denotes the minimal network usage, which is found
by the optimization step.

However, although /(G) is minimal after the optimization step, the latency
of the longest path of the graph might be higher than the requested maximum
latency, i.e., Equation 3.21 is not fulfilled in general. Algorithm 5 now tries
to distort this optimal solution to stay as close as possible to Upin and fulfill

the latency constraint.

106 3 Operator Placement Algorithms

Algorithm 7 MOPA-LPMAX Algorithm

Require: U(Z,,,,...,Ty,) is minimal

Ensure: Finds a mapping (v1,...,v,) such that £(G) < lpee and
U(Zy,s -+, Ty,) is minimal
1: while (LP(G) > lpmaz) do
2: find maximum latency path w;w;
3: if candidate set candidates(w;wj) does not exist then
4 for all operator w € W;w; do
5: find candidate set candidates(w)
6 sort candidates(w) by distance to Upin
7 candidates(w;w;) < candidates(w;w;) U candidates(w)
8 end for
9: endif

10: if candidates(w;w;) = () then {already at latency minimum}

11: notify application

12: else

13: for all operator w € w;w; do

14: get next candidate v/ in candidates(w)
15: f’(w) — T,

16: AU +— U(T,) —U(Z,,)

17: end for

18: end if

19: assign operator w with minimal AU to v/
20: delete candidate v/ from candidates(w)
21: delete candidate v/ from candidates(w;w;)
22: end while

23: return current mapping (v, ..., V)

3.3 Processing and Network Delay Constrained Optimization 107

Algorithm 5 gets as input an initial mapping of the operators to hosts
such that the network usage of the operator graph is minimal. First, the
algorithm finds the longest path in the operator graph, and checks if the
latency restriction is already fulfilled(line 1). In that case, it simply returns
the current mapping. Otherwise, it enters the main body of the algorithm,

where it checks for alternative mappings.

For each operator on the longest path, the algorithm finds a set of candidate
hosts where the operator could be migrated to (line 5). The candidate set is
calculated once in the beginning for each operator on a path (line 3-9). The
candidates are selected such that moving an operator to a candidate host
decreases the latency of the longest path. The calculation of the candidate
set includes networks delays as well as estimated processing delays (in the
next subsection, we are going to discuss in detail how this candidate set is
determined). If the candidate set of all operators on the maximum delay
path is empty, the latency cannot be decreased any further and the algorithm
stops without finding a valid solution (line 10). In this case, the application
is notified that the latency constraint cannot be fulfilled, and the application
might choose to decrease its requirements or simply stop (line 11). If the
candidate set is not empty, the latency can be further decreased by migrating
to any candidate host. The idea is, not to choose an arbitrary candidate but
a candidate that increases the network usage the least in order to distort the
optimal solution w.r.t. to network usage the least. To this end, the hosts of
the candidate set are sorted according to the distance to Ui, (line 6), and
the host with the minimal distance leading to the minimal network usage

increase AU (w)(line 13-19) is chosen as new host for operator w.

This process is continued until either the candidate set is empty, i.e., the
latency cannot be further decreased (see above), or the latency constraint is
fulfilled. In the later case, the mapping of operators (wi,...,wy,) to hosts
(v1,...,vy) respectively is returned, and the operators are migrated to these
hosts.

108 3 Operator Placement Algorithms

T T T 6
Physical Host +
Network Coordinates of similar latency ——

T T T T

+ +

Figure 3.10: Candidate set for one unpinned operator with one sink and one

source.

3.3.3.3 Selection of Candidates

Calculating the candidate set is a crucial operation during the constraint
satisfaction step. If the candidate set is too big, the overhead increases since
every candidate has to be contacted and checked with respect to its processing
and network delay. If the candidate set is small and misses some valid hosts
that would decrease latency, no valid solution might be found although it
exists in the network. In order to find a good trade-off between overhead and
success rate, we considered different candidate selection strategies, which are
described next.

First, we introduce a selection strategy that uses an optimal restriction
of the search space. Next, we illustrate this idea through a simple example
and we prove a pruning criterion that reduces the search space further. It
is important to observe that all suitable candidates are restricted inside el-
lipsoidal shapes in the Euclidean latency space. Figure 1 visualizes a simple
example of an operator w with one source w; and one sink w;. The end-to-
end delay LP for this simple example is the sum of the propagation delays
of the operator to its neighbours® £ = £(ww1) + L(wws), plus the processing

SWithout loss of generality, we assume here that the sink and the source have no

3.3 Processing and Network Delay Constrained Optimization 109

Algorithm 8 Candidate Selection Algorithm
Require: Bounding box for ellipse £

Ensure: Candidate set candidates of size k
1: find all hosts hosts inside ellipse E [range query|
2: sort hosts hosts by distance to Upin

while #candidates < k do

w

4: contact next host v/ in hosts
5. if P(w,v) < P(w,v) + T + N — Npin then
6: candidates < V'
7. end if

8: end while

9

: return candidates

delay P = P(w,v) at the host v of operator w, and the transmission delays
T =T(r,v)+ T(7,v) of the input tuple 7 and output tuple 7’. Each value
of the end-to-end delay LP represents an ellipse in the latency space with
foci points defined by the positions of the two neighbours w; and w;. Note
that according to the definition of the ellipse, all points on an ellipse have the
same distance to the foci points, i.e., they lead to the same end-to-end delay.

It is straightforward to see that only the nodes that reside inside the ellipse
LP =L+ P+ T, can lead to better solutions since for nodes outside the
ellipse even if the processing delay is zero, the network delay would still exceed
the current latency £P. Thus, the candidate nodes are restricted inside the
ellipse LP. In order to find the candidate hosts within E, we could perform
a range query in the latency space using the latency space service and query
range LP.

Although checking all nodes inside the ellipse includes all valid candidates,
it might lead to very high communication overhead if the set of enclosed nodes
within the ellipse is large. As we discuss in Chapter 4, the set of enclosed

nodes, is related to the difference between the network and processing delay.

processing delay

110 3 Operator Placement Algorithms

If processing delay is in order of seconds, then checking of all nodes inside
the ellipse might lead to an exhaustive search that makes the application
of such method impossible in practice. Thus, in order to strictly limit the
candidate nodes to a reasonable size, we should select only k£ hosts among all
the nodes in the ellipse to contact. To this end, in this section we discuss
possible heuristics to be used to prune the search space that will be evaluated
in Chapter 4.

Straightforward solutions to that problem are to choose the k closest nodes
with respect to network usage minimum that reside in the ellipse, or to select
k random hosts inside the ellipse. Random selection of hosts could be bene-
ficial in case the suitable hosts do not lie in the direct vicinity of the current
host. However, these heuristics do not consider the value of the total delay
during the selection of the candidates, which is important to identify promis-
ing candidate nodes. Therefore, we propose a method that uses a pruning
criterion, which filters out some of the nodes inside the search space. To this
end, we introduce the following pruning criterion for the processing delay of
the candidate hosts:

Pruning Criterion Let w be an operator placed on a host v with commu-
nication latency L to two neighbouring operators and with processing delay
P. Assume also a data unit 7 with transmission delay 7. A host v/ can
only lead to a better solution than that of v w.r.t. latency, if and only if the
following condition is fulfilled: P(w, ") < P(w,v)+T + L — Lmin, where Ly
represents the minimum network delay of operator w to its two neighbours.

Proof. Assume that the total delay on host v/ is equal to P(w, ')+ L +T".
If v/ is a better candidate host, it should hold that £P' < LP, thus the
following inequality should hold:

Plw, Y+ L +T <Plwv)+L+T = (3.22)
Plw, V) < Plw,v)+L+T — (L' +T)

We can find a maximum bound for the equation by minimizing £+ 7". Net-

work latency is minimized when the host v/ lies on the line segment between

3.3 Processing and Network Delay Constrained Optimization 111

the two neighbouring operators w; and ws, leading to a minimum possible
network delay L. If we also assume that 1/ has negligible transmission

delay, i.e., T = 0, we get a minimum bound for £' + T
L' +T < Lin (3.23)

From Eq. 3.22 and Eq. 3.23, we finally get:

Plw, V) <Plw,)+ L+T = (L' +T)<Plw,v)+ L+ T — Lonin =

Plw,) <P(w,v) + T + L = Lunin

, which proves the pruning criterion.

Algorithm 8 shows the pseudocode for the candidate selection strategy
using the pruning criterion. According to this method, we first get all the
hosts that reside in the ellipse by performing a range query on the latency
space. Then we contact one by one the next nearest host with respect to
network usage minimum inside the ellipse and we check if it satisfies the
pruning criterion. In that case, the host is included in the candidate set. The
process is repeated until £ hosts that satisfy the pruning criterion are found.
Obviously, this method induces higher overhead, than the naive solutions
proposed earlier, but it is expected to give better quality results, since it
takes also into consideration the pruning criterion. Although, the criterion
is likely to return less nodes, it still does not strictly limit the number of
returned candidates, since the selectivity of the filter depends on the speed
of the current host. Thus, if the current host is quite fast, the criterion tends
to filter out more hosts, while in case of a slow current host, less candidate
hosts will be filtered out.

In Chapter 4, we are going to provide an evaluation of the proposed heuris-
tic using the pruning criterion, compared to simple heuristics, i.e., Random,

and, k-Nearest Neighbour selection as discussed earlier.

112 3 Operator Placement Algorithms

System Optimization Objectives/ Constraints

Padres [69] Routing delay, Network traffic

FAIDECS [111| | Throughput, Latency

Hermes [86] Bandwidth, Latency, Reliability, Load

Cordies [59] Stability, Application constraints

DHCEP [99] Network usage, System/Application Con-
straints

Table 3.5: Existing CEP systems supporting distributed event recognition

3.4 Related Work

In previous chapter, we have provided the related work in the field of context-
aware, distributed stream processing and complex event processing systems
and we have identified similarities in the architectural approach for processing
streams of data. In-network processing that is based on a fully distributed
model, i.e., an overlay network of processing operators, is mainly used in
the IFP systems but as analysed in Chapter 2, there is a potential in us-
ing this model for increasing the scalability of context-management systems.
Therefore, in this section we discuss the strategies for the operator place-
ment problem that has been investigated in different contexts, i.e., as part of
data stream management or CEP systems but also a relevant approach from

control systems.

To this end, this section is structured in three different subsections depend-
ing on the targeted system, namely complex event processing, distributed
stream processing, control systems. As we analyse later, each approach fo-
cuses on different aspects of the placement problem, trying to fulfil different

constraints.

3.4 Related Work 113

3.4.1 Complex Event Processing

Before we present in detail the existing work in this field, we briefly discuss the
relevance of the operator placement problem to the CEP systems. As already
mentioned in Chapter 2, CEP systems process flows of events in an effort to
detect and forward (composite) events to interesting peers (subscribers). CEP
systems rely on Pub/Sub systems that connect the Publishers, producing
primitive events to the Subscribers that consume events. In that respect,
similar to the operator graph model, CEP tasks form an overlay network with
a set of sources (publishers), a set of sinks (subscribers) and possibly a set of
in-network event correlators that generate composite events by aggregating
primitive events. In that respect, the position of the physical node(s) that the
event composition is performed is similar to the general operator placement

problem.

In the field of CEP systems, several systems that allow for distributed
event detection have been proposed (FAIDECS [111], Siena [25], Hermes [86],
Gryphon [7], Padres [69]). Early works in CEP systems allow for the sub-
scription to basic primitive events and do not consider in-network aggrega-
tion of events. These systems rely mostly on a network of broker nodes,
which perform matching between advertisements and subscriptions and for-
ward the events accordingly. In that respect, systems, such as SIENA [25]
and Gryphon [7] have focused on the efficient routing of primitive events
by reducing the communication costs between clients and brokers and thus
avoiding the flooding of events to all subscribers. However, these works do
not consider placement of complex event correlators since they focus mainly
on the filtering and routing of primitive events and leave the aggregation and

composition of events to the application programmer.

Closer to our work, are CEP systems that allow for the aggregation and
composition of events and consider the placement of event correlators. Ta-
ble 3.5 provides an overview of existing CEP systems, that we discuss in the

next paragraphs, which consider placement problems with respect to their

114 3 Operator Placement Algorithms

main optimization goals.

For instance, PADRES [69] use rule-based brokers that are capable of com-
posing atomic events to complex composite events. The event composition
is performed on rule-based brokers that are preferably close to publishers.
Although the heuristic strategy of placing rule-based brokers (that represent
in-network operators in our model) close to the publishers reduces the com-
munication overhead since the events are filtered close to the sources, it does
not lead to optimal placement decisions with respect to network usage opti-
mization goal.

In another work, Hermes [87] provides a set of heuristic solutions called dis-
tribution policies for the placement of mobile complex event (CE) detectors
in the network. Initially, Hermes [86] used a DHT (Distributed Hash Table)
to determine the rendezvous nodes that perform the in-network composition
of events between publishers and subscribers. Then, in [87] an extension of
Hermes framework was presented that incorporates new distribution policies.
In particular, in [87] authors propose five different distribution policies that
optimize different metrics such as bandwidth consumption, latency, load, re-
liability, and stability. Each distribution policy depending on the objective
takes advantage of the decomposition, re-use and locality of CE detectors.
In their evaluation, they show that by applying these simple heuristics, they
could reduce the communication overhead especially in the part of the wire-
less network since the CE detectors could be reused. The proposed heuristics
are based on the decomposition, reuse and locality of the CE detectors and
they do not use any network- and system-specific information, e.g., network
or computing capacity information, that is necessary in order to take good
placement decisions. Our placement algorithms use network- and system-
specific information by incorporating information by the latency space and
the processing model presented in Subsection 3.3.1.

FAIDECS [111] considers also composite events and applies a broadcast al-
gorithm for effectively sending all related events to the interested subscribers.

The broadcast strategy is based on Hermes approach [86], which uses DHT

3.4 Related Work 115

to determine rendezvous nodes (mergers) for publishers and subscribers. In
addition to this approach, FAIDECS proposes the replication of mergers to
increase the availability. However, the selection of merger nodes is based
on DHT nodes that are not always optimal for reducing application-related
properties such as latency, since they are designed to reduce the number of
hops.

Relevant to our work, is also the approach of Koch et al. [59] that adopts
also an operator-driven distribution for CEP systems. In particular, the au-
thors present Cordies [59], a novel CEP system that enables efficient dis-
tributed event correlation. Cordies uses an expressive language for imple-
menting CE operators and enables distributed event correlation through Cor-
relation Description (CD) placement. Cordies is able to integrate user-defined
placement algorithms. In their work, they formulate the placement problem
as a constraint satisfaction problem (CSP) and they propose a heuristic solu-
tion that solves this problem. Their approach uses the application constraints
to prune the search space of candidate physical hosts and optimizes the place-
ment for stability. In [99], Schilling et al. have also proposed a placement
algorithm for CEP systems. In their work, they assume a heterogeneous
network of physical hosts that limit significantly the search space for the
placement decisions. Therefore, they first find a valid initial placement that
they optimize after deployment for network usage. During the optimization
phase, the algorithm uses a simulation annealing technique to find alterna-
tive better solutions based on its local knowledge. Although this approach
optimizes also for network usage, this work is based on different assumptions
since the proposed placement algorithm tries to find initially a set of feasible
solutions and subsequently optimizes the placement with respect to network
usage based on local knowledge.

To summarize, distribution policies have been in the focus of several works
in CEP systems. However, these works were based on different system mod-
els, i.e. assuming an overlay network of specific physical nodes, called brokers,

that are capable of performing the event composition. To this end, the pro-

116 3 Operator Placement Algorithms

posed placement algorithms focus mainly on the satisfaction of the application
and system constraints and the identification of a set of feasible solutions. In
our model, we address the optimization problem given a large search space

of physical hosts that are capable of hosting operators.

3.4.2 Data Stream Processing

In-network processing data has been applied in several distributed data stream
processing systems. Placement strategies vary both in terms of their system
model and optimization goal. In particular, system model may consider mo-
bile nodes that are linked via wireless links and/or Internet topology-like net-
works that communicate via Internet links. Each of the system model, has dif-
ferent properties (e.g. in terms of energy consumption, reliability of links and
nodes) that lead to different placement strategies. Therefore in this section,
we distinguish between operator placement algorithms for Infrastructure-
based systems considering infrastructure nodes as physical hosts and place-
ment strategies for wireless and ad-hoc networks. Since our work focuses on
the Wide Area Networks (WAN), where physical nodes communicate via In-
ternet links, we provide a detailed overview of existing algorithms for these
systems and then we briefly discuss placement strategies supporting mobility

of nodes.

3.4.2.1 Operator Placement in Infrastructure-based Systems

Lakshmanan et al. [63] provide a comprehensive overview of existing opera-
tor placement algorithms for large-scale scenarios. Their study show that the
diversity of optimization goals leads to different placement algorithms. Ac-
cording to this work, popular optimization goals for data stream processing
include load, latency, bandwidth, system constraints, and operator impor-
tance optimizations. Triggered by this work, we have clustered the related
work in four main categories, i.e., network usage, latency and other constraint

optimization, load balancing, and availability, which correspond to main op-

3.4 Related Work 117

timization goal considered by the placement strategies in the cluster.

3.4.2.1.1 Network Usage Optimization Ahmad et al. [8] at first proposed
an approach for operator placement optimizing the bandwidth-delay product.
With this approach, nodes are chosen that lie on the paths between two end-
points of a DHT-based overlay network. However, in [85] Pietzuch et al.
showed that looking for candidate nodes on DHT paths leads to a poor ap-
proximation of the optimal solution since the actual goal of the DHT routing

tables is to minimize the number of hops rather than network usage.

Closest to our optimization algorithm is the work of Pietzuch et al. [84],
who were the first to propose the usage of the latency space as an inter-
mediate continuous search space for operator placement problem. In their
approach, called SBON, the operator placement in the latency space is based
on a physical model of springs. The goal of the proposed algorithm is to
minimize the overall energy of the corresponding physical system. However,
in this model energy is proportional to the square of the latency while the
network usage is only linear dependent on the latency. In other words, SBON
optimizes the metric bandwidth x delay2, which does not intuitively model
network usage. For instance by doubling the length of a physical path be-
tween two operators, the number of bits in transit on this path is only doubled
rather than quadrupled. In contrast, MOPA, presented as a solution to the
network usage optimization problem, actually optimizes bandwidth x delay,
while MOPA-LMAX provides a trade-off solution between network usage and
network latency. Moreover, our algorithm fully exploits the locality of the
problem by finding at each iteration the current local optimal solution, while
SBON uses another model, which gradually moves at each iteration towards
the local optimum. Our evaluations presented in 4show that our algorithm
outperforms SBON not only in the quality of optimization results, but also
in terms of the communication and operator migration overhead induced by

the placement algorithm.

118 3 Operator Placement Algorithms

3.4.2.1.2 Latency and other Constraint Optimization Next, we describe
methods that consider other performance metrics which directly or implicitly
optimize for latency or other application specific QoS metrics. In more detail,
some approaches combine latency guarantees with load balancing. Gu et al.
presented an algorithm that uses global knowledge to checks exhaustively all
hosts in order to identify some candidate hosts [52]. Then, it selects the hosts
that minimize a congestion aggregation metric modelling the processing and
network residual resources. Such an optimization metric can be useful for
cases where the network is heavily loaded, but it is less efficient for other
situations. Moreover this work assumes global knowledge of the network
conditions which is not always a realistic assumption.

A decentralized approach for operator placement has been presented in
[118]. The authors propose a decentralized solution that enables the local
cooperation of the nodes to optimize the so-called performance ratio, which
models the relative performance of a query, i.e. the end-to-end latency of
a data unit divided by the inherit complexity of the query. The proposed
solution uses local knowledge to find a solution for the optimization problem.
One important assumption considered in this problem, is that the nodes are
interconnected by a local network. For our placement problems we consider
that physical nodes are interconnected in a WAN (wide area network) via
Internet. Therefore, given our system model the solution proposed in [118]
may be trapped in local optima, since nodes seek for better placements in close
vicinity in terms of geographical proximity that might not be proportional to
network delay.

In [11], Amini et al. introduced a placement problem which optimizes for
the weighted throughput, which is an indicator of the total productive work
done by the system. The proposed approach, called ACES (Adaptive Con-
trol for Extremescale Stream processing systems), is a two-tiered approach
for adaptive, distributed resource control. In more detail, the first tier opti-
mizes the placement of operators onto physical hosts to maximize weighted

throughput, while the second tier configures the input and output rates such

3.4 Related Work 119

that they adapt to varying incoming load. This solution does not consider
any latency constraint and it has a different optimization goal with respect
to network usage optimization.

NexusDS [32] focuses on the fulfillment of the QoS application constraints,
e.g., bandwidth, latency, reliability requirements. The proposed approach is
based on six subsequent steps: Conflation, Early prune, Graph Assembly,
Ranking, Mapping and, Execution. During conflation phase, adjacent nodes
in the operator graph are merged to create virtual nodes. Early prune finds
promising candidate nodes and links that fulfill the QoS constraints. Then,
during graph assembly, the set of feasible solutions is being identified by
combining nodes and edges that fulfill the application criteria. Finally a score
value for each QoS property is considered to rank the feasible solutions and
find the most appropriate one that better fits QoS constraints. The placement
problem considered in this paper differs compared to ours in the sense that
it does not optimize for network usage but the solution is determined mainly
by the application constraints. Moreover, this work focuses on the discovery
of an initial placement of operators and it does not address the problem of

continuous adaptation of operator placement.

3.4.2.1.3 Load Balancing Optimization Some initial works in the oper-
ator placement problem focuses on load balancing techniques that optimize
for fair load distribution across the different physical nodes. Flux [102] has
proposed a load balancing scheme for continuous queries. In their proposed
solution, they use a central controller to monitor the load of the computing
nodes and make load balancing decisions. Our work uses a distributed re-
source lookup and does not consider global system knowledge. Borealis [114]
has solved another operator placement problem. In their work, they optimize
the time correlations among different operators in an effort to distribute load
fairly among servers. However in both of these works, network resources are
considered abundant and the network costs are not part of the optimization

strategy.

120 3 Operator Placement Algorithms

Unlike the previous works [102] [114], in our approach we do not try to
optimize directly for load balancing. Load balancing strives to distribute as
fairly as possible the operators on physical nodes such that the computational
load is balanced. As motivated earlier, our primary optimization goal is to
minimize the network load and thus make the network more scalable. In
MOPA-LPMAX algorithm, we consider the computational load implicitly by
integrating the processing delay to the end-to-end delay. If the processing
delay gets significantly large -possibly because of an overload situation on a
node-, then the placement will prefer less loaded nodes. Thus, it makes an
indirect load balancing, only when this is necessary, but it can allow load

unfairness as long as the latency constraints are not violated.

3.4.2.1.4 Availability Optimization Other placement algorithms, try to
optimize for availability and exploit operator re-use [90] [18]. Repantis et
al. [90] have proposed a placement algorithm that maximizes availability while
fulfilling bandwidth limitations. Their approach uses a distributed placement
algorithm that discovers a set of candidate nodes and rank them in decreasing
latency. The goal is to provide high available distributed data stream pro-
cessing. Benzing et al. [18] have proposed a system that allows operator reuse
and provides flexible data stream retrieval in different resolutions. Although
our model allows the re-use of operators, it does not explicitly consider the
optimization problem for larger operator networks that are generated by the
merging of different operator graphs. In that respect, the investigation of
methods and algorithms that provide high availability is out of the scope of

the placement problems and algorithms presented in this dissertation.

3.4.2.2 Operator Placement Considering Wireless Communication

In this paragraph, we discuss placement algorithms that consider also mobile
nodes connected via a wireless network. Mobile nodes are typically energy-
constraint, which imposes additional placement restrictions in the system

level.

3.4 Related Work 121

Closer to our work, are strategies that consider both wired and wireless
communication. For instance, in [105], the authors solve an operator place-
ment problem, which considers network transmission delays and energy con-
sumption, based on a hierarchical system model of physical nodes with in-
creasing computing capacity. This system model implies a heterogeneous un-
derlying network that may consist of mobile as well as infrastructure nodes.
Ying et al. [117] have formulated the operator placement and intermediate
data caching problem to minimize an aggregated cost based on computation,
communication and storage costs. The authors present distributed algorithms
that solve the problem assuming a sensor network of diameter Ly,qz.

Our algorithms could be used to support heterogeneous, including infras-
tructure and mobile nodes. However, since our initial goal is to design place-
ment algorithm for Infrastructure networks, a study on the performance of
this algorithm and possible extensions for supporting these mobile scenarios
is out of the scope of this dissertation.

Finally, other approaches in wireless sensor networks consider energy ef-
ficiency |103,115] and bandwidth constraints |39] under quality constraints
on the accuracy of the query results. The consideration of data accuracy is
another aspect, usually considered in the wireless sensor networks, that is
not part of our system model. As already presented, in our approach, we
consider operator placement to be the only degree of freedom for our op-
timization, without taking into consideration other possible changes in the
structure and semantics of the operators, e.g. semantics of operators, control

of input/output data rates that could change the accuracy of the results.

3.4.3 Control Systems

Operator placement problem has been recently investigated in the context of
control systems, e.g., plant control networks, where monitored data have to
be communicated to control processes running on different physical nodes.

Finding optimal placement for controllers, resembles the problem of finding

122 3 Operator Placement Algorithms

optimal placement of operators over a network of physical nodes.

In that respect, Carabelli et al. [24] have been motivated by our problem
formulation, to investigate centralized techniques based on integer linear pro-
gramming that solve a variation of discrete multi-operator placement problem
exactly. Their ILP formulation solves a routing problem (shortest path prob-
lem) instead of adopting a subgraph isomorphism formulation as we did for
the ILP formulation in Subsection3.1.4. In that respect, [24] makes strong
assumptions on the execution environment. First, it assumes availability of
underlay network topology to define shortest paths in underlay and finds
an optimal placement with respect to the underlay making a deployment in
today’s network infrastructures more complex. Our assumptions are much
weaker. Approach could be deployed already in today’s Internet infrastruc-
ture as an overlay network. In contrast, we strive for an overlay network ap-
proach applicable to today’s internet infrastructure. Secondly, [24] does not
consider adaptation and assumes unrestricted bandwidth. Our approach in-
directly considers bandwidth restrictions through latency space. When links
become overloaded, the latency increases due to longer queues in routers.
This in turn increases the delay-bandwidth product.

Moreover, in their proposed solution, all data has to be collected at a central
node, called a placement controller. This centralized approach potentially
puts high stress on the central node and its links, in particular, for larger
operator graphs and/or dynamic state. As in any centralized solution, fault
tolerance becomes an issue, since the central node is a single point of failure.
Our approach for solving the unconstrained optimization problem (MOPA)
provides a lightweight heuristic solution that is executed in a distributed way,
i.e., information only has to be exchanged between neighbours in operator

graph (local communication only).

123

4 Evaluation

In this chapter, we discuss the experimental results of the placement algo-
rithms solving the three placement problems presented in the previous chap-
ter. For the evaluation of the algorithms, we have used two different meth-
ods, namely simulation and emulation. In particular, we have used PeerSim
as a network simulator in order to evaluate the MOPA and MOPA-LMAX
algorithms, which solve the unconstrained optimization and the network la-
tency constraint optimization problems respectively. Then, we have used
the NET emulator |48] developed at the University of Stuttgart to test the
MOPA-LPMAX algorithm, which solves the general constrained optimiza-
tion problem which considers also processing delays. The reason we have
selected a different evaluation tool for the MOPA-LPMAX algorithm is that
since MOPA-LPMAX considers processing delays, a real system under test
is necessary to provide real measurements on the processing delays. This
environment can be provided by an emulation test bed such as the NET

emulator.

Table 4.1 shows an overview of the algorithm under test, the reference
algorithms and the evaluation environment. In more detail, as part of our
simulation experiments, in Section 4.1 we compare the solution of the MOPA
algorithm, which solves the unconstrained optimization problem, presented
in Section 3.1, with the optimal solution as well as with the SBON approach
that as already discussed uses a spring relaxation method to minimize network
usage. For the comparison with the optimal solution, we have implemented
the integer linear program presented in Subsection 3.1.4. Although ILP is not
applicable in our system model, since it assumes central global knowledge of

the system, we use ILP as reference to evaluate the optimality of our solution.

124 4 Evaluation

Algorithms Evaluated Testing
Problem . .
under Test against Environment
PeerSim
Network Usage . (Simulation),
o MOPA Optimal, SBON
Optimization Cplex (MIP
solver)
) PeerSim
Network Optimal,))
(Simulation),
Latency MOPA-LMAX MOPA,
Cplex (MIP
Constraints ILP-LMAX
solver)
Network and
EL, Random, NET
Processing ckNN)
kNN (Emulation)
Latency

Table 4.1: Overview of placement algorithms under test

Then, in section 4.2, we compare the solution found by our proposed
MOPA-LMAX algorithm for the network latency constrained problem, pre-
sented in Section 3.2, with the optimal solution and the solution of the un-
constrained optimization. For the comparison with optimal solution, we use
an exhaustive search for small operator graphs. For the analysis of the scala-
bility of the algorithm with respect to the size of the operator graphs we have
also implemented the integer linear program presented in Subsection 3.2.4,
which calculate the optimal solution. Note that the reason we compare the
unconstrained solution found by MOPA with the constrained solution found
by MOPA-LMAX, is to provide an analysis on the trade-off between network
usage and network latency optimization. Finally, in Section 4.3, we present
the evaluation for MOPA-LPMAX by comparing the performance of different

candidate selection methods presented in Subsection 3.3.4

For the setup of the experiments, we have specified the parameters of the

4.1 Network Usage Optimization 125

physical network (number of nodes, network latency among them etc.) and
the operator graphs (structure, data rates etc.). Regarding the setup of the
physical network, for all experiments, we have used the same underlying
(physical) network topology. In particular, we have used data gathered from
a real network, namely the PlanetLab [31]. The PlanetLab topology consists
of 226 physical nodes including real measurements of the delays between the
nodes globally distributed. Thus, providing a wide-area scenario with major-
ity of network latencies in the range of [45,205] ms. The coordinates of the
physical nodes in the latency space were found using a prototype implemen-
tation of the Vivaldi algorithm [1] that achieves to map the physical nodes in
the latency space with an average error of 15ms w.r.t. to the measured de-
lays. The real PlanetLab topology gives us the chance to assess the practical

performance of our algorithm in a realistic system.

The rest of this chapter is structured similar to the previous one, i.e., in each
Section, we discuss for each of three placement problems introduced in the
previous chapter, the evaluation of the proposed placement algorithms. For
each of the three problems, we first present the evaluation setup, by providing
details on the configuration of the various experiments. Since the setup for
the physical network is the same for all experiments, in next sections, we
describe the setup of the parameters of the operator graphs, depending on
the goal of each experiment and present the evaluation objectives for each set
of experiments. Then we go into detail in the main evaluation results, before

we provide a brief summary for each of the evaluation sections.

4.1 Network Usage Optimization

First, we evaluate the performance of the unconstrained optimization algo-
rithm. As explained in the introduction, we have used the network simulator

PeerSim, to test our algorithm.

126 4 Evaluation

4.1.1 Setup

Since the structures of the operator graphs to be deployed possibly influence
the performance of the placement algorithm we use, depending on the con-
crete experiment, operator graphs with different sizes, varying from 6 up to
15 nodes. Moreover, we assume that every operator has two or three children
since we assume that this represents the usual case of an operator graph well.

The data rates on the links are generated randomly by varying the initial
output data rates of the sources and the selectivity of the operators in a certain
interval. The output data rates of the sources are distributed uniformly in
the interval between 100 and 200 kbps or 50 and 500 kbps, depending on the
scenario. The selectivity of an operator is defined as the percentage of the
output data rate with respect to the input data rate of the operator. Thus,
operators with a selectivity close to 0 act as highly selective filters in the
network and generate very low output data rates, whereas operators with
selectivity close to 1 generate output data rates equal to the incoming rate.

In our evaluation, we vary the selectivity of the operators between 0 and 1.

4.1.2 Evaluation objectives

As already mentioned earlier, we compare our unconstrained optimization
placement algorithm, to one state of the art algorithm called SBON [84].
Moreover, we compare our algorithm to the theoretical optimal placement
algorithm (called MOPopt) solving the discrete MOP problem.

For the comparison with the optimal solution, we use two approaches. For
large operator graphs, we use a mixed integer programming (MIP) solver that
implements the ILP formulation presented in Section 3.1.3. to test also the
speed of our algorithm compared to a MIP solver. For small operator graphs,
we use a simple exhaustive search to verify the optimality of our solution.

Table 4.2 shows an overview of the performance metrics used for the eval-
uation of MOPA. The main objectives of our evaluation are to measure the

quality of the solution and the convergence properties of the algorithm. To

4.1 Network Usage Optimization 127

measure the quality of the solution, we compare our algorithm to SBON [84]
and to the optimal solution (called MOPopt) that minimizes the network
usage. We compare the quality of our solution both for the continuous as
well as for the discrete variation of the multi-operator placement problem.

Furthermore, we test the convergence properties of our algorithm.

First, we measure the performance of MOPA compared to SBON in the
continuous latency space and then we provide a comparison of both MOPA
and SBON with respect to the optimal solution both for operator graphs of
varying size. Next, we investigate the convergence properties of our algo-
rithm. In particular, we measure the overhead induced by our algorithm in
a distributed setting, by measuring the number of messages to be exchanged
among the operators in order to find a new optimized placement as well as
by measuring the number of migrations which lead to a better placement.
Finally, we investigate the scalability of our algorithm with respect to the
operator graph size. In that respect, we measure the execution time and
the precision of MOPA, our proposed distributed algorithm, compared to a
centralized integer linear programming solver, which solves the integer linear

program introduced in Section 3.1 for varying operator graph size.

For each evaluation objective, we have assigned specific performance met-

rics, that we explain in detail in the following subsections.

4.1.3 Quality: Continuous MOPA Solution

First we evaluate the quality of a placement determined by MOPA to an
SBON placement w.r.t. the continuous solutions, i.e. the coordinates of the
free operators in the continuous latency space. In this experiment, we use

operator graphs with 12 operators and 2 to 3 children per operator.

For the comparison, we use the virtual stretch factor Sspon Mopa as per-
formance metric. The virtual stretch expresses the network usage of SBON

relative to the network usage of MOPA based on their continuous solutions:

128

4 Evaluation

Objective Performance Definition

Metric

Virtual (Net- UgiobalsmON
Quality Uglobal,moPA

work Usage)

Stretch Factor

. Uglobal, SBON|MOPA
Ph 1 (Net- | &=
ySlca (¢ Uglobal,optimal

work Usage)

Stretch Factor
Convergence Messages # messages
Properties Migrations # migrations
Scalability Execution Time | Value in sec

(w.r.t. Operator
Graph Size)

(Net-
Usage)
Stretch Factor

Physical

work

Uglobal, SBON|MOPA

Ugloba,l,optima,l

Table 4.2: Overview of performance metrics

SSBON,MOPA =

Uslobal, SBON
Uslobal, MOPA

(4.1)

That is, the virtual stretch compares solutions in the continuous virtual

latency space rather than the results after mapping to the physical nodes.

A comparison of the latter can be found in the next Subsection 4.1.4. For

example a virtual stretch of 1.2 shows that the output of SBON algorithm is
20% worse than the optimal MOPA solution.

Figure 4.1 shows the cumulative distribution of the virtual stretch factors
of SBON. This figure is the result of the placement of 1000 graphs. First

of all, we can see that SBON always has a virtual stretch greater than 1.0.

That means, MOPA always achieved higher quality continuous solutions than
SBON. This is due to the spring relaxation algorithm of SBON that finds

4.1 Network Usage Optimization 129

110
100
90
80

1<)
= 70
=
S 60
o
% 50
Vi
X 40
T /
30 /
20
10
SBON ——
0 1
1 11 12 13 14 15 16

virtual stretch

Figure 4.1: Relative network usage of SBON w.r.t. MOPA (Continuous
solutions).

the mass centroid rather than the solution to the continuous multi-operator

placement problem.

In approximately half of the cases the virtual stretch of SBON is lower than
1.1. Thus, SBON achieves a good estimation with a maximum difference of
10% of the optimal in 50% of the cases. This good result of SBON is due to the
fact that similar to MOPA the spring relaxation algorithm moves operators in
the correct direction of the major flow. However, in contrast to MOPA, SBON
stops too early before it reaches the minimum, whereas MOPA moves on until
the optimal placement is reached. The remaining 50% of the measurements
have a stretch factor between 1.1 and 1.5, i.e., in 50% of the cases, MOPA
reduces the network usage significantly leading to 10% to 50% less network
usage than SBON.

So we see that in the continuous space MOPA is always better achieving
an average improvement compared to the SBON of 12% and a maximum of
52%.

130 4 Evaluation

110
100 -
20 / ol
- 80 /
S 70 H
= |
S 60
o
® 50 |}
\ 1
X 40 |
a '
30 |t
20
10 I' MOPA o
’ SBON -

0
1 15 2 25 3 35 4 45 5 55 6 65 7
physical stretch

Figure 4.2: Physical stretch factor of SBON and MOPA w.r.t. optimal dis-
crete MOP solution (Operator Graph Size:6).

4.1.4 Quality: Discrete MOPA Solutions

As a first step we investigated the quality of approximated discrete MOP
solutions.

As performance metric, we use the physical stretch factor:

A

Uglobal SBON|MOPA
U

global,optimal

SSBON|MOPA,global =
Uglobal,SBON\MOPA denotes the network usage of a discrete network usage op-
timization solution given by SBON and MOPA, respectively. Uglobal,optimal
defines the optimal discrete MOP solution determined by MOPopt. This op-
timum serves as a reference of the approximated solutions achieved by SBON
and MOPA. We perform this evaluation both operator graphs 6 nodes as well
as for larger operator graphs of 15 nodes. For the small operator graphs, we
used an exhaustive search to calculate the optimal solution of the network us-
age optimization problem, while for the large graphs, we used a mixed integer
programming solver to run the ILP program presented in Subsection 3.1.4.

The details of this implementation will be explained in the next subsection.

4.1 Network Usage Optimization 131

100

L e e e
BO [
50 -.’; B [———
40 Hf o
BO [
200 _—

10 fH

P(X < stretch)

 MOPA ——

: : ‘ - SBON --------

2 Il Il Il Il Il Il 1 1 1

1 156 2 25 3 35 4 45 5 55 6
physical stretch

Figure 4.3: Physical stretch factor of SBON and MOPA w.r.t. optimal dis-
crete MOP solution (Operator Graph Size:15).

Figure 4.2 shows the cumulative distribution (for the small operator graph)
of this experiment resulting from 1000 simulation runs. We see that in 70%
of the measurements MOPA has a stretch factor lower than 1.1. The average
stretch factor of MOPA is 1.14. Thus we see that although the latency space
sparsely populated with the 256 physical nodes of Planetlab topology, the
optimal continuous MOP solution does not degenerate significantly after the
physical mapping.

We also see that for 70% of the measurements, SBON has a stretch factor
of 1.3 which is 16% higher than the physical stretch of MOPA for the same
percentage. The average stretch factor of SBON is 1.29 compared to 1.14
for MOPA. Thus, MOPA keeps its theoretical advantage of having optimal
continuous MOP solutions also after the mapping to physical nodes.

The highest stretch factor for SBON is 6.61, whereas the maximum of
MOPA is only 3.67. In these cases the approximation is not close to the
physical optimum. On the one hand, such a case can be caused by a bad
mapping of a physical node in the latency space where the delays between

physical nodes modelled in the latency space do not accurately reflect the real

132 4 Evaluation

delays. On the other hand, the sparse character of the network topology can
lead to bad discrete MOP approximations, where no well-matching physical
node for the calculated virtual node position can be found.

Figure 4.3 shows the corresponding cumulative distribution for the large
graphs of 15 nodes resulting from 1000 runs. We see that the performance
of MOPA and SBON algorithms compared to the optimal solution slightly
degrades with respect to their performance for the small operator graphs. In
more detail, the average stretch factor for MOPA is 1.21 compared to an aver-
age stretch factor of 1.39 for SBON. Moreover, for 70% of the measurements,
MOPA has a stretch factors of lower than 1.19, which is 23% lower than the
corresponding stretch factor for SBON (1.42%). Thus we see that for larger
operator graphs, which contain more free operators, the discovery of the op-
timal solutions becomes more challenging. However, as we see MOPA still
keeps a signifant improvement over SBON by achieving 18% lower stretch

factor on average.

4.1.5 Convergence: Message Overhead and Migrations

Finally, we evaluate the convergence properties of MOPA compared to SBON.
We consider two performance metrics. First, we measure the induced network
overhead denoted by the number of messages that have to be exchanged in
order to communicate virtual node coordinates to neighbouring operators
whenever a new operator position has been calculated. Secondly, we measure
the number of operator migrations that are performed until the equilibrium is
reached. Since migrations largely outweigh local computations, the number
of migrations is also an indicator for the convergence time.

For this experiment, we use operator graphs with size of 12 nodes. We
first let both algorithms converge to a stable solution. Then, we generate
a dynamic change by resetting the output data rates of all sources to new
random values (in the range of 100 to 200 Kbps). The sudden change of the

data rates provokes the re-placement of the operators. Note that a sudden

4.1 Network Usage Optimization 133

110 _— _—
100
1)
80
70
60
50
40
30
20
10

Messages)[%]

P(X<=

Messages

Figure 4.4: Cumulative distribution of number of messages exchanged (data
rates 100-200Kbps).

change of all the data rates is a worst case scenario since the whole operator
graph is affected. We placed 2000 operator graphs and measured the number
of migrations and messages exchanged until the equilibrium is reached.
Figure 4.4 shows the cumulative distribution of the number of required
messages for SBON and MOPA. We see that MOPA needs significantly fewer
messages to converge to a new equilibrium in all the cases. In detail, MOPA
needs between 0 and 28 messages, while SBON needs 64 to 365 messages. On
average, MOPA only needs 3.25% of the messages that are needed by SBON.
Furthermore, MOPA in 26.9% of the instances needed less than 2 messages to
converge to the new solution. This result implies that the dynamic change was
not significant enough to change the location of the network usage optimum.
Thus, in order to investigate this result further, we have run another ex-
periment, where we created a dynamic change that is more challenging for
MOPA, by changing the relative values of the data rates more drastically. In
more detail, we have set the output data rates of the sources in the range of 50
to 500 Kbps. Thus, we have increased the variation in the value of data rates

on the links, which alters possibly the network usage minimum. Figure 4.5

134 4 Evaluation

110
100

90 r
80 /
70 /

60
50 /

Messages)[%]

P(X<

30 /
20 :
10 MOPA

SBON

1 10 100 1000
Messages

Figure 4.5: Cumulative distribution of number of messages exchanged (data
rates 50-500Kbps).

shows the cumulative distribution for this experiment. We see that also in
this case MOPA has a superior performance needing 4 messages on average,
compared to 135 messages for SBON. In more detail, MOPA needs less than
11 messages in 63% of the instances, while SBON needs 134 messages for the
same percentage of simulation runs. Thus, we see that even for significant
dynamic changes MOPA adapts its solution by sending only few messages
(up to 32 messages).

To get a better insight into this result, we have measured for each algorithm,
MOPA and SBON the number of local iterations, i.e., how many times the
operators should contact their neighbours until the operator graph converges
to a new solution. Figure 4.6 shows the cumulative distribution for the local
iterations for MOPA and SBON. As expected MOPA needs significantly less
iterations from 0 up to 11 iterations, while SBON needs from 10 up to 551.
This result shows that MOPA is able to move in larger steps, while SBON
moves slowly, making only small progress in each iteration. Furthermore, we
also measured the number of the suppressed messages, i.e., messages that

are not sent over the network, since the neighboring operator resides on the

4.1 Network Usage Optimization 135

110
100 r —
90 /

—. 80

g |

’a 70 /

c

£ 60

£ /

g 50

I

% 40

& 30
20
10 MOPA

SBON e
0
1 10 100

Iterations

Figure 4.6: Cumulative distribution of local iterations.

same physical node. Figure 4.7 shows the percentage of sent and suppressed
messages with respect to the total number of messages. We see that for
SBON the suppressed messages are 6.4%, while for MOPA the corresponding
percentage is 21.8%. Thus, we see that in addition to the convergence speed,
MOPA is more probable to create clusters, which reduce the communication

overhead of the algorithm.

Figure 4.8 and Figure 4.9 depict the cumulative distributions of the num-
ber of migrations in the physical network for MOPA and SBON for dynamic
changes depending on the output data rates. The performance of the algo-
rithms is similar for both dynamic changes. Both MOPA and SBON needs
from 0 up to 8 migrations to converge to the new solution. Again, MOPA
outperforms SBON by an average of 26.8% (for changes in the range from
100 to 200 Kbps) and 26.4% (for changes in the range from 50 to 500 Kbps)
less migrations. Moreover, we see that in more than 90% of the simulations,
MOPA needs less migrations than SBON. Similar to the number of exchanged
messages, the reason for the smaller number of migrations of MOPA is the

faster convergence due to larger step size.

136 4 Evaluation

100

oo [975% C===31 Suppressed
» 920 X O 4 == Sent
3 LS
1 R
o] 80 |- —
7
o 70 —
=
© 60 —
P50 -
@]
[40 — I
&
:,E, 30 - —
o 20 —
[0
o 10 - —
SBON MOPA

Figure 4.7: Stacked histogram of sent and suppressed messages.

4.1.6 Scalability: Execution time and Performance

In Subsection 3.1.4 we have presented an integer linear program (ILP) that
can be used to calculate a solution of the operator placement problem cen-
trally on one host with global knowledge. In contrast to our distributed
algorithm MOPA, this ILP cannot provide a distributed solution and rely
on local knowledge. However, it can serve as a reference with respect to the
computational efficiency (executing any communication overhead for the dis-
tributed execution of MOPA for a fair comparison). For our comparison, we
have used the commercial mixed integer programming solver CPLEX 12.5.0
from IBM, which is considered to be one of the fastest mixed integer program-
ming solvers currently [60] Both CPLEX and MOPA were executed locally
on one machine (Intel Core i5, 2.67 GHz, 4 cores, 12 GB RAM).

For our experiments, we used the PlanetLab topology as the underlying
network. For the settings of the operator graph, we use a tree-based graph
with varying size starting from operator graphs with 10 nodes up to 50 nodes.
At each run, we alter the data rates and the location of the pinned operators.
We used 1,000 operator graphs to compare ILP with MOPA. Figure 4.10

4.1 Network Usage Optimization 137

110 T T T T T T T T T
100
90
80
70
60
50
40
30
20 oo
10 | <

Migrations)[%]

P(X<=

Migrations

Figure 4.8: Cumulative distribution of migrations (data rates 100-200Kbps).

summarizes the measurements in terms of execution time for both MOPA and
CPLEX. We observe that MOPA keeps a low execution time varying from
0.66 seconds up to 3 seconds for operator graphs of 50 nodes, while CPLEX
needs from 1.91 seconds up to 18.45 seconds to calculate the optimal solution.
This results show that the execution time of CPLEX increases significantly
with the increase of he operator nodes, while MOPA is more scalable keeping
its execution time in the order of a few seconds even for large operator graphs

of 50 nodes.

Finally, Figure 4.11 shows the average network usage stretch factor for both
MOPA and SBON colpared to the optimal solution calculated by CPLEX for
varying operator graph size. We observe that the average network usage
stratch factor does not vary significantly with size of the operator gpaph for
both SBON and MOPA. For SBON the average stretch factor varies from
1.40 up to 1.46, while for MOPA the corresponding value varies from 1.18 to
1.21. Thus, we see that MOPA can provide high quality solutions deviating
only 21% on average from the optimum even for large operator graphs of 50

nodes.

138 4 Evaluation

110

100 e
90
80
70
60
50
40
30
20

Migrations)[%)]

P(X<

10 MOPA
0 SBON -~
0 1 2 3 4 5 6 7 8 9 10
Migrations

Figure 4.9: Cumulative distribution of migrations (data rates 50-500Kbps).

4.1.7 Summary

The evaluation results of the MOPA algorithm show that MOPA can achieve
a good estimation (14%— 21%) of the optimal solution, by using a fully
distributed approach that considers only local knowledge of the system. Fur-
thermore, we showed that MOPA finds better solutions than SBON, since
the latter approach approximates the optimal solution by calculating the mass
centroid, which does not necessarily coincide with the geometric median which
is the actual network usage minimum. Finally, MOPA produces also signif-
icantly less overhead than SBON, by using only 3.25% of the messages that
are needed by SBON, since it makes large steps towards the network usage
minimum and it is more likely to merge free operators into clusters. More-
over, MOPA is able to calculate the solution even of large operator graphs
of 50 nodes in 3 seconds on average, while one of the fastest state-of-the-art
(centralized) linear programming solver need 18.45 seconds to calculate the

solution for the same operator graph size.

4.2 Network Delay Constrained Optimization 139

20

MOPA —&— ‘
BBF P —w— X

e e

Speed (sec)

O N b O @
T

i
10 20 30 40 50
Operator Graph Size

Figure 4.10: Execution time of MOPA and CPLEX w.r.t. graph size.

4.2 Network Delay Constrained Optimization

Next, we present the performance evaluation of the MOPA-LMAX algorithm
which solves the network delay constrained optimization algorithm by com-
paring it to the theoretic optimum and our unconstrained optimization algo-

rithm.

4.2.1 Setup

Similar to the evaluation of the MOPA algorithm, we evaluate the perfor-
mance of MOPA-LMAX in the network simulator PeerSim. For our experi-
ments, we use the PlanetLab physical network as presented in the introduc-
tion of this Chapter. For the settings of the operator graphs, we use operator
graphs with 6 nodes. Similar to the evaluation setup of MOPA presented in
Subsection 4.1.1, we alter the selectivity of the operators and we generate
output data rates from the sources in the interval between 100 and 200 kbps.
Since there is no related approach that solves the same constrained optimiza-
tion problem, we compare our constrained optimization algorithm with the

theoretic optimum and the MOPA algorithm presented in 3.1 which solves

140 4 Evaluation

15 T T T ' '
LAD [ey]
1,35 L]

i . MOPA —=— _
1L ; ; SBON ——

10 20 30 40 50
Operator Graph Size

Physical stretch

Figure 4.11: Physical Stretch Factor of MOPA and SBON w.r.t. graph size.

the unconstrained network usage optimization problem. To find the real op-

timum, we execute an exhaustive search on all possible placements.

4.2.2 Evaluation Objectives

The evaluation objectives for MOPA-LMAX are related to the quality of the
solution and the scalability of the algorithm. We do not provide a further eval-
uation on the communication overhead induced by MOPA-LMAX since this
is similar to MOPA overhead as discussed in Subsection 3.2.3. As discussed
in the introduction, we compare MOPA-LMAX with the unconstrained opti-
mization algorithm MOPA and with optimal solution, found by an exhaustive
search for small operator graphs. First, we investigate the relationship be-
tween the minimization of bandwidth-delay product and the minimization of
network delay. Our comparison is based on the quality of the solution in terms
of resulting network usage and latency. Next, we calculate the success rate,
which is the percentage of the experiments that fulfill the latency constraint
and we provide a further insight on the distribution of instances with respect

to network usage and latency constraint. Finally, we provide an insight on

4.2 Network Delay Constrained Optimization 141

the scalability of the algorithm with respect to the operator graph size by
using the extended ILP formulation of the constrained optimization problem
presented in Subsection 3.2.4. Table 4.3 shows the performance metrics used

for our evaluation, that will be further explained in the next subsections.

Objective Performance Definition
Metric
: Latency Strefch | Zumconstr_opt
Quality min
Factor

Uconstr_opt

Network Usage -

Stretch Factor

#successful _experiments

Success Rate

F#experiments
Scalability Execution Time | Value in sec
(w.r.t. Operator | Latency Stretch L“’%ﬁ"t

Graph Size) Factor
Network Usage
Stretch Factor

Uconstr_opt

Um in

Table 4.3: Overview of performance metrics

4.2.3 Quality: Relation Between Network Usage and Latency

First, we analyze the basic relation between the two metrics subject to this
algorithm, namely network usage and latency. Since the network usage con-
tains as one factor the delay between operators, in this experiment we see
how close an unconstrained optimization of the network usage can get to the
latency minimum.

We have conducted 1000 experiments and measured the latency and the

142 4 Evaluation

2.3 I I I

22 Bl
§ 21 — ////_
13} 2 + e —
£ 19} e -
5 18} /,/ -
§ 17 — g -
7 16| H
0} 15 -
g 14 ------ + 7]
o 13
< 1.2 latency stretch —B— —

11, nflstvvork usalge stretchI -—+--

1

1 2 3 4 5
Heterogeneity Factor h

Figure 4.12: Latency and Network Usage stretch for varying heterogeneity.

network usage minimum. In detail, we have calculated by exhaustive search
the theoretic latency minimum Ly, and the latency Lunconstr opt achieved
by the optimal unconstrained optimization of the network usage. In order
to quantify the difference w.r.t. latency between the network usage optimum

and the latency minimum, we calculated the latency stretch factor defined by

Lunconstr_opt

Sunconstr_opt,min = — - Similarly, the network usage stretch is defined
—_ min

as Sconstr_opt,min = —q—=, Where Uconstr_opt i the network usage of the
_— min p—

constrained optimization with minimum latency constraints and U, is the
theoretic optimum of the unconstrained optimization.

To parametrize the heterogeneity of the operator graph, we introduce the
heterogeneity factor h. In detail, for an operator connected to n sources, we
set the output data rates of n — 1 sources at the same random value r and
the remaining output data rate at h -, i.e. proportional to h. Moreover, the
selectivity of the unpinned operators is set to 1/h, i.e., inversely proportional
to h. Thus, for large h, the input data rates of an operator are unbalanced,
while the output data rates of the operator are low.

Figure 4.12 shows the results for varying values of the heterogeneity factor

h. We see that as the heterogeneity increases, the stretch factors both in terms

4.2 Network Delay Constrained Optimization 143

T T
70 o
6o

50 |-

Success Rate

40 oy

30 .

T MOPA-LMAX —%—

20 | | | | 1 1 1 1

1 12 14 16 18 2 22 24 26 28 3
Latency Constraint Stretch

Figure 4.13: Success rate according to the constraint latency stretch.

of latency and network usage are also increasing, since there are more high
data rate sources making the unconstrained network usage and the latency
minimum considerably different. Moreover, we see that the network usage
stretch is generally larger than the latency stretch. This is due to the fact
that the latency is bounded by the distance between the sources and the
sinks, whereas the network usage is affected by the values of the data rates
that can eliminate or amplify some of the factors of the total sum of an

operator graph’s network usage.

4.2.4 Quality: Fulfillment of Network Latency Constraints

Next, we continue with the analysis of the performance of the MOPA-LMAX
algorithm for the network delay constrained optimization problem. First, we
evaluate the ability of our algorithm to achieve a given latency constraint.
In the following experiment, we vary the given latency constraint in the in-
terval [Lmin, Lunconstr_opt], i-€., between the theoretic latency minimum and
the latency achieved by the unconstrained optimization algorithm. Choos-

ing a lower bound of Ly, ensures that in every case a solution exists. By

144 4 Evaluation

100
90
80
70
60
50
40
30 N - <

20 FE=AB]
EA Narrow Interval —8—
10 oo Broad Interval --+--]
0 I N T R IO I |

Success Rate [%]

0 0102030405060.70809 1
Constraint defined by Lmin+x*[Lunconstr-Lmin]

Figure 4.14: Success rate for narrow /broad latency stretch interval

choosing an upper bound of Lynconstr_opt We evaluate cases with non-trivial
solutions that would not be achieved by an unconstrained optimization al-
gorithm. Moreover, in order to distinguish between challenging cases, where
the solution of the unconstrained optimization algorithm is far from the la-
tency minimum, we classify our experiments according to the achieved latency
stretch factor of the unconstrained optimization algorithm. For instance the
class [1.0, 1.2] contains all experiments, where the unconstrained solution has
a latency stretch of 1.0 to 1.2 compared to the theoretic latency minimum.
In general, as the latency stretch of the unconstrained solution increases, the
constraint interval [Lin, Lunconstr_opt) also broadens.

For our experiment, we have generated 1000 operator graphs with varying
heterogeneity factor h € [1, 3] and measured the performance of our algorithm
by calculating the percentage of the experiments that achieved a latency be-
 #successful _experiments

low the constraint by successpate = Toxporiments

periments, where the latency constraint was met, divided by the number of all

, i.e. successful ex-

experiments. Furthermore, to evaluate the cost for satisfying the constraint,
we calculate the network usage stretch with respect to the network usage of

the unconstrained problem that we get after the unconstrained optimization:

4.2 Network Delay Constrained Optimization 145

4 —T—TT T T T T T
I Narrow Interval —&—
N Broad Interval --+--
1.3 4--.._* : : : : : :

Network Usage Stretch

P S T T O O M
0 0102030405060.70809 1
Constraint defined by Lmin+x*[Lunconstr-Lmin]

Figure 4.15: Network usage stretch for narrow /broad latency stretch interval

S . Uconstriopt
constr _opt,unconstr _opt — [

unconstr_opt

Fig. 4.13 shows the success riailg)e of our unconstrained optimization algo-
rithm for different classes. Here, we see that for low latency stretch, e.g.,
below 1.2 of the unconstrained solution, our algorithm has a low average suc-
cess rate of 27%, while for larger latency stretch, e.g., between 1.4 — 1.6, the
algorithm works better achieving an average success rate of 62%. For even
higher latency stretch, e.g., between 2.6 — 2.8, our algorithm can achieve an
average success rate of 79%. We can explain the poor average success rate
of our algorithm for low latency stretch of the unconstrained solution since
low latency stretch means a narrow interval of the latency constraints. Thus,
in such cases all requested latency constraints are very close to the real op-
timum. However, as we see in the next subsection, also in these cases our
algorithm returns a good approximation of the optimum.

Figure 4.14 and Figure 4.15 show the success rate and the network us-
age stretch for operator graphs with latency stretch values between 1.0 and
1.2 (narrow interval), and 2.0 and 2.2 (broad interval), respectively. In Fig-
ure 4.14, we see on the x axis the latency constraints that are requested, vary-

ing gradually in a step of 10% of the total constraint interval [Lmin, Lunconstr_opt)

146 4 Evaluation

100 o
Q0 [
80 |
7 (0 R N S e —
60 [y

50 -
40 -
30
20 -
10 |

P(X < stretch)

""" MOPA-LMAX —— .

i
4 5 6 7 8 9 10
latency stretch

Figure 4.16: Cumulative distribution of latency stretch.

at a time, ie., lpar € [Lmin + 2 * (Lunconstr_opt — Lmin)], where z € [0,1].
On y axis we have depicted the success rate of the constrained solution. Sim-
ilarly, in Figure 4.15 we have depicted the latency constraint in the x axis
and the network usage stretch in the y axis. On the one hand, we see that
when the latency stretch is low (Figure 4.14), the average success rate is in-
creasing slowly from 20% to 46% while the average network usage stretch is
kept low and decreases slowly from 1.13 to 1.1 (Figure 4.15). On the other
hand, for large latency stretch values (Figure 4.14), we see that the success
rate increases gradually, going from 29% for strict constraints where z < 0.1
up to 98% for relaxed constraints where x is above 0.8, and the network usage
costs decrease significantly from 1.37 to 1.09 (Figure 4.15) for more relaxed
constraints.

Thus, we see that for small latency stretch of the unconstrained solution,
the success rate remains in general low, while the cost is also low since even the
unconstrained optimization algorithm can achieve a good approximation of
the latency constraint, while for larger latency stretch our algorithm performs
better as the constraints become more relaxed, resulting in higher success

rates and lower costs with respect to network usage.

4.2 Network Delay Constrained Optimization 147

100 fo : e
BO [
| T
K S R O L A
0 J Y | S NS S S S—
10 |- ‘

P(X < stretch)

 MOPALMAX ——]
0 1 2 3 4 5 6
network usage stretch

Figure 4.17: Cumulative distribution of network usage.

4.2.5 Quality: Deviation from Network Delay Constraints

In the previous experiment, we have presented the evaluation results with
respect to the fulfillment of the constraints. We have seen that in some cases
especially where the latency constraint was close to the latency minimum, we
get low success rates, since it becomes hard to approximate the latency min-
imum and satisfy these strict constraints. To get a better understanding of
the performance of the algorithm, in this experiment, we have a closer look on
the quality of solutions by considering the distribution of the achieved laten-
cies around requested latency constraints. On the one hand, this evaluation
shows how far apart unsuccessful solutions are from the requested constraints.
On the other hand, it also shows us the degree of overshooting of successful

solutions.

For this experiment, we use a generic scenario with heterogeneity factor h €
[1,5] and latency constraints randomly set in the interval [Luin, Lunconstr_opt)

to get a general picture of the precision of the algorithm.

The quality of a solution in terms of latency can be evaluated by the latency

Lconstriopt

stretch of the solution, Sconstr opt,1 = , i.e. the constrained op-

max lm(JT

148 4 Evaluation

timum compared to the requested latency constraint l,,4,, which intuitively
shows how close the solution is to the requested constraint.

Fig. 4.16 shows the cumulative distribution of the latency stretch for a set
of 4,000 simulation runs. Overall, 56% of the solutions were successful, i.e.
the latency constraint was met, whereas in 44% of the simulations, the la-
tency constraint was violated. In detail, 70% of the unsuccessful experiments
that were above [, have a latency stretch between 0.9 and 1. Moreover
75% of the successful solutions, where the requested latency I, was met,
have a latency stretch below 1.15%. Thus, we see that the majority of the
instances are distributed closely around the constraint. However, there are
some instances with larger deviation from l,qz, €.g. 5% that are above 1.4.
As we have seen during the evaluation of MOPA algorithm in Section 4.1, such
bad approximations of the optimal solution may exist due to the mapping of
continuous to discrete solution.

Moreover, we calculate the network usage stretch compared to the net-

work usage of the theoretic constrained optimum found by exhaustive search

Uconstriopt

Sconstr_opt,theoretic_constr_opt = SR — Figure 4.17 shows the cor-
responding cumulative distribution. We see that there is a percentage of 41%
that have a smaller network usage than the constrained optimum. In these
cases, the latency constraint was not met by the solution. Therefore, the
network usage stretch can be even smaller than the theoretical constrained
optimum. Moreover for the possibly successful solutions that have a stretch
above 1, we see that our algorithm achieves a very good approximation of
the constrained optimum with an average network usage stretch of 1.09%. In
80% of these cases the network usage stretch is below 1.17%, showing that

our algorithm achieves its goal to keep the network usage low.

4.2.6 Scalability: Execution Time and Performance

To evaluate the scalability of MOPA-LMAX, we have implemented the inte-

ger linear program formulation presented in Subsection 3.2.4 in CPLEX, the

4.2 Network Delay Constrained Optimization 149

MOPA-LMAX —&— ' ' '
- CPLEX —»— :
S 100 fo ‘ .
<5 L
)
(]
S
C i i i i i i
S 10F
: : i i i i i i :
[8) i
5 ‘
>< i
Lu i
s
E | | | | | |]

10 12 14 16 18 20
Operator Graph Size

Figure 4.18: Execution time of MOPA-LMAX, CPLEX w.r.t. Graph Size.

mixed integer programming solver used also in the experiment presented in
Subsection 4.1.6. Both CPLEX and MOPA-LMAX were executed locally on
one machine (Intel Core i5, 2.67 GHz, 4 cores, 12 GB RAM).

For our experiments, we used the PlanetLab topology as the underlying
network. At each run, we alter the location of the pinned operators and we
used 100 operator graphs to compare the extended ILP presented in Subsec-
tion 3.2.4 with MOPA-LMAX. Note that if we provide a latency constraint
lower than the latency minimum, CPLEX will not return any solution, since
the constraint is infeasible. Therefore, to ensure that the latency constraints
set for the execution of the ILP are feasible solutions, we have first executed
MOPA-LMAX with latency constraint equal to zero. In that case, MOPA-
LMAX has returned the best possible solution. The latency returned by
MOPA-LMAX was then fed as latency constraint to the ILP.

For the settings of the operator graph, we use a tree-based graph with vary-
ing size starting from operator graphs with 10 nodes up to 20 nodes. We do
not provide results for operator graphs with more than 20 nodes, since the
execution time of the ILP presented in Subsection 3.2.4 in CPLEX is already

for operator graphs of 20 nodes very high. In particular, as it is shown in

150

Latency Stretch

1.2
1.15
11
1.05

0.95
0.9
0.85

4 Evaluation

08 i i
10 12 14 16 18 20
Operator Graph Size

Figure 4.19: Latency Stretch of MOPA-LMAX w.r.t. Graph Size.

Figure 4.18 . the execution time for CPLEX varies from 58 seconds for oper-
ator graphs with 10 nodes up to 296 seconds on average for operator graphs
of 50 nodes, while MOPA-LMAX needs almost 0.92 — 0.93 second on average
to calculate its solution. Thus, we see that the additional latency constraint
introduced in Subsection 3.2.4 has significantly increased the execution time
of the extended ILP compared to the ILP for the unconstrained optimization
problem presented in Subsection 3.2.4, while MOPA-LMAX has kept a low
execution time compared to MOPA, keeping its scalability properties.
Figure 4.19 and Figure 4.20 show the average latency and network usage
stretch factor for MOPA-LMAX for varying operator graph size. Since we
have used the as latency constraint, the latency value returned by MOPA-
LMAX, CPLEX has returned equal or better solutions both in terms of la-
tency and network usage. Therefore, we have used as reference for the cal-
culation of the latency stretch factor and network usage stretch factor of
MOPA-LMAX the latency achieved by CPLEX. In Figure 4.20 we observe
that the average network usage stretch factor varies from 1.08 for operator
graphs of 10 nodes up to 1.14 for graphs of 20 nodes, while the corresponding
latency stretch factor Figure 4.19 varies from 1.02 up to 1.13. Thus, we see

4.2 Network Delay Constrained Optimization 151

12 ' ' ! ! !

1.1

Network Usage Stretch
=
'
1

0.0

M();PA-LMA;X —al—

08 i i
10 12 14 16 18 20
Operator Graph Size

Figure 4.20: Network Usage Stretch of MOPA-LMAX w.r.t. Graph Size.

that MOPA-LMAX keeps its performance even for larger operator graphs of
20 nodes by achieving an average latency and network usage stretch factor of

1.13 and 1.14 respectively.

4.2.7 Summary

As a conclusion of this evaluation, we can say that our algorithm achieves a
good balance between network usage optimization and satisfaction of latency
constraints with an average success rate 62% for constraints with latency
stretch of 1.4 —1.6. In cases that the constraint is not satisfied, our algorithm
still finds a good approximation of the solution with a latency stretch below
1.15% for 75% of the instances, while minimizing the cost in terms of network
usage by achieving an average network usage stretch of 1.09%.

Furthermore, our evaluation results provide an analysis of the relationship
between network usage and network latency. Since network usage includes
network latency, its minimization implies also reduction of the overall end-
to-end latency. In our evaluation, we have seen that the heterogeneity of

the operator graphs, meaning the variation of the data rates on its links

152 4 Evaluation

is a determinant on the ability of MOPA, which solves the unconstrained
optimization problem, to minimize the network delay. Finally, we also showed
that MOPA-LMAX is a scalable algorithm achieving good quality solutions
with average network usage stretch factor of 1.14 and latency stretch factor

of 1.13, even for larger operator graphs of 20 nodes.

4.3 Processing and Network Delay Constrained

Optimization

In this section, we present the evaluation results for the MOPA-LPMAX al-
gorithm, which solve the processing and network delay constrained optimiza-
tion. We start with a description of the evaluation setup. Then, we evaluate
in detail the performance of the placement algorithm in terms of optimality

w.r.t. network load and its capability to satisfy latency constraints.

4.3.1 Setup

To evaluate MOPA-LPMAX, we have implemented them for the NET clus-
ter [48], an emulation environment developed at the University of Stuttgart.
NET provides an emulation environment for testing distributed systems and
communication protocols. It combines the benefits of real-time experiments
and network simulation. NET consists of a compute cluster, where every
cluster node hosts several virtual nodes (in our case the operator hosts) that
execute real implementation of the “software under test”. Nodes are connected
by an emulated communication network that can be parametrized such that
it resembles a given network (including network topology and link character-
istics such as latency and bandwidth). Using emulation instead of simulation
gives us the chance to test a real implementation of our placement algorithm
under realistic conditions.

For the physical network, we use the PlanetLab topology as described in
the introduction of this chapter. On top of the physical network, we used

4.3 Processing and Network Delay Constrained Optimization 153

100000 llll T T T IIIIII T T lllllll -
I Operator Processing Delay —+—
S 10000 | | |
(7] L
£
I 1000
) L
a)
> L
£ 100 E
7 r
n
[}
8 L
& 10 i
1-1111 1 llllllli 1 llllllli
10 100 1000
Matrice Size

Figure 4.21: Processing delay w.r.t operator complexity (matrice size).

the Pyxida system running on each host [1]| to calculate the latencies of the
experiments online. Pyxida implements the Vivaldi algorithm [37] in order to
calculate accurate coordinates where the distance closely matches the propa-
gation delay.

For the operator graphs, we have used operators with different complexity.
In particular, in order to vary the processing load induced by operators,
we used operators implementing a matrix multiplication with different sizes.
Besides giving us the opportunity to easily manipulate the processing load
of operators, matrix multiplication is a common operation used, for instance,
for traffic matrices in network monitoring or image recognition. We varied
the size of matrices in the range from 50 to 500 by defining four discrete
sizes of {50, 100,200,500} elements. Thus, we cover a large spectrum of
heterogeneous operators in terms of processing load. Consequently, the size
of the data unit is defined by the size of the matrices.

To demonstrate the use of the matrix multiplication operator as configura-
tion parameter to vary the processing delay, we have measured the induced
processing delay of operators executing matrix multiplication with different

matrix size on unloaded physical nodes. Figure 4.21 shows the results. In

154

4 Evaluation

Method Basic Idea

EL Return all hosts in F

kNN Return the k nearest neighbours

Rand Return k& random nodes that reside in the ellipse

ckNN Return the k nearest neighbours fulfilling the prun-
ing criterion

Table 4.4: Overview of candidate selection algorithms

Objective Performance Definition
Metric
) Latency Value in ms
Quality -
Network Usage | Value in Kb
Overhead Messages # messages

Table 4.5: Overview of performance metrics

particular, for operators of size 10 and 100, the average processing delay is

2.48 msec and 17.71 msec respectively. Moreover, for a matrix size of 500,

the average processing delay is 2.49 sec, while for 1000 the processing delay

goes up to 24.09 sec. Thus, we see that by using variable matrix size, we can

vary the induce processing delay as expected.

For our experiments, an operator graph, has typically two free operators to

be placed. The data sources feed the operators with data every 20 up to 120

seconds following a uniform distribution leading to heterogeneous data rates.

Moreover, the data sources and sinks are uniformly distributed on random

hosts in the network. The parameter k that defines the size of the candidate

set is set to 5 hosts, i.e., 2.5% of the total number of hosts in the network.

4.3 Processing and Network Delay Constrained Optimization 155

4.3.2 Evaluation Objectives

We evaluated our placement algorithm MOPA-LPMAX with different candi-
date selection strategies as discussed in Subsection 3.3.3. Table 4.4 summa-
rizes the candidate selection strategies presented in Subsection 3.3.3. Ellipse
(EL) represents the strategy that checks all nodes inside the search ellipse.
K-Nearest Neighbour (kNN) implements the k-nearest neighbour search with
respect to the network usage minimum. K-Random (kRand) implements
the random selection strategy, which selects random hosts that reside inside
the ellipse. Finally, Conditional K-Nearest Neighbor (CkNN) implements the
pruned search according to the pruning criterion presented earlier. For each
candidate selection strategy, we measure the resulting end-to-end latency, the
network usage, and the communication overhead to discover the candidate
hosts.

For the evaluation of MOPA-LPMAX, we have focused on the quality and
communication overhead. In particular, we compare the four different selec-
tion strategies presented in Subsection 3.3.3 in terms of the resulting latency
and network usage, and we measure the messages exchanged to candidate
hosts. Table 4.5 summarizes the performance metrics used for our evalu-
ation. For the quantification of latency and network usage, we have used

absolute values as we discuss in the next subsections.

4.3.3 Quality: Processing and Network Latency

In the first experiment, we evaluate the QoS capabilities of our placement
algorithm with the different candidate selection strategies. In order to explore
the limitations of the different strategies, we consider an extreme case with
very hard latency constraints: By setting the latency constraint to zero, we
let the placement algorithm search for the operator placement with minimum
possible latency. We deployed up to 240 operators gradually and measured
the achieved latency for each candidate selection strategy.

Figure 4.22 shows the achieved latency over the number of deployed oper-

156 4 Evaluation

130
120
110 FkRand --%--
100
90
80
70
60
50
40
30
20
10

End-to-End Latency (sec)

50 100 150 200 250
Number of Operators

Figure 4.22: Network and Processing Latency for increasing number of
operators.

ators. As expected the latency increases with the number of deployed oper-
ators since the system load increases. Initially all methods almost perform
similarly since initially the system has no load and all hosts can execute the
operators with the same expected (low) delay. In this case, the solution is
mainly defined by the network latency and not by the processing delay.

As the number of operators increases, some hosts get more load and become
slower in comparison to other hosts. In that case, the latency of the random
strategy kRand increases faster compared to the other strategies since it se-
lects randomly hosts inside the ellipse. The greedy strategy kNN is more
resilient to the load but finally deviates also significantly from CkNN up to
38% since it only considers a limited set of hosts in the vicinity of the network
usage minimum. Another interesting result is that the approach that searches
all nodes in the ellipse (EL) performs similarly to the greedy kNN strategy,
without achieving the best result.

This behaviour can be explained given the absolute values of the processing
delays. As discussed earlier, for operators with matrix size 500, the processing

delay is expressed in seconds. Since the communication latency in the latency

4.3 Processing and Network Delay Constrained Optimization

Network Load (KBytes)

157

O P N W b 01 O N 0O ©

Candidates Selection Strategy

Figure 4.23: Resulting network usage for candidate selection.

space is typically expressed in milliseconds, the resulting ellipse in such case
would lead to an exhaustive search over the network, where the physical nodes
will be evaluated mainly based on their processing delay. Thus, given the ex-
pected error of the processing model between 11% and 20% depending on the
operator complexity as presented in 3.3.1, this heuristic could be disoriented

while trying to find the fastest physical node in the network.

4.3.4 Quality: Network Usage

Next, we analyse the performance of the different candidate selection strate-
gies in terms of network usage. As already mentioned in Section 3.3.3, the
different strategies try to leave out some possible solutions to limit overhead.
Therefore, we expect the approaches with better QoS performance to have the
higher costs in terms of network usage. For the same experiment as before, we
calculate the average network load of the deployed operator graphs. In order
to measure the network load, we have taken snapshots of the data that were
in transit at certain points in time measured in K Bytes. Finally, we have

calculated the average data load over the time for the different strategies.

158 4 Evaluation

300 —
kNN ==<= L
250 bkRand === b
0 CKNN n——
S EL
B 200 B R
(%]
2
o AB0 | R RS
o s
g
2 100 [N
S
Z e
BO | N
0 | zam N yevax| -

Candidates Selection Strategy

Figure 4.24: Communication Overhead.

Figure 4.23 shows the absolute values in K Bytes of the network load for the
different candidate selection strategies. As we see in Figure 4.23 the average
network usage is low 6.8 K Bytes for the greedy kNN strategy and the random
strategy. That is expected, since these approaches do not fulfill optimally
the latency constraints and, therefore, can achieve a lower network usage.
Moreover, CkNN induces 14% greater network load (7.8 K Bytes) compared
to kNN and random strategy- However, given that CkNN provides a 38%
lower latency on average, it still achieves a good balance between the network
usage minimization and the fulfilment of the latency constraints. Finally, EL
does not manage to find good candidate hosts and also induces high network
load. This could be interpreted due to the sensitivity of EL heuristic to base

its decision on the approximation of the processing delay.

4.3.5 Overhead: Messages for candidate selection methods

Finally, we discuss the communication overhead induced by each candidate
selection strategy. Figure 4.24 shows the average number of messages commu-

nicated between the coordinator and other hosts in order to define a candidate

4.3 Processing and Network Delay Constrained Optimization 159

set. For kNN and kRand the number of messages are 10, since by default these
strategies communicate with only £ = 5 hosts and they need two messages
(request /response) for each contact to a candidate host. For the EL algo-
rithm using the optimal restriction in the latency space, the average number
of messages is 288, with a standard deviation of 44 messages. This means
that a host contacts on average 144 out of 200 hosts to decide on a placement.
As already discussed, this is a result of the absolute values between the com-
munication latency and processing delay. Thus, the induced communication
overhead severely impacts the practical application of this method, due to
the high communication overhead that it induces, but also because it cannot
guarantee high quality solutions, since it would react extremely slow at each

network change using possibly outdated delay measurements.

Finally, for CkNN the number of messages is 18, with a standard deviation
of 4 messages. Thus, we see that the strategy that uses the pruning criterion
not only performs better in terms of the constraint satisfaction problem, but
also keeps the number of messages very low querying on average about 5%
of the total hosts. In other words, we see that it is sufficient to check only a

small subset of all hosts that reside in the ellipse.

4.3.6 Summary

In this section, we have presented the results for the MOPA-LPMAX algo-
rithm by using four different candidate selection strategies. Our results show,
that the conditional K-Nearest Neighbour method, which uses the pruning
criterion introduced in Section 3.3.3, outperforms the simple kNearest neigh-
bour and the random selection of k physical hosts inside the ellipse, since
it achieves a 38% lower latency with the cost of 14% greater network usage.
Moreover, the proposed method induces limited overhead by using only 18
messages on average to find a solution for an operator graph with two free

operators.

160 4 Evaluation

4.4 Conclusion

The evaluation results presented in this chapter have provided insights on
the performance of the proposed placement algorithms, presented in Chapter
3. Our evaluations show that MOPA achieves nearly optimal solutions (with
average stretch factor of 14% — 21%), depending on the size of the graph,
while using only local knowledge. Although the algorithm is executed in a
distributed way, the induced overhead in terms of messages exchanged and

migrations is smaller than state-of-the-art method SBON.

Furthermore, MOPA is used as a baseline algorithm for solving the two
constrained optimization problems presented in Chapter 3. Therefore, the
two algorithms inherit the properties of MOPA in terms of quality of solution
and overhead. For the network latency constraints, we see that in hetero-
geneous operator graphs, minimizing the network usage leads to a network
latency that is significantly different to the latency minimum. In that respect,
especially for scenarios where the data rates of the operator graph vary signif-
icantly, we need a constraint satisfaction algorithm that tailors the solution
to meet application-defined latency constraints. We see that the success rate
of our proposed algorithm MOPA-LMAX depends on the strictness of the la-
tency constraint. For relaxed latency constraints (with latency stretch greater
than 2 with respect to the minimal feasible latency), our algorithm always
find a good solution achieving up to 98% success rate on average. Only if the
constraint is very close to the minimal feasible latency, the success rate de-
creases. Moreover, MOPA-LMAX can find a solution to the network latency
constrained optimization problem in a few seconds (3 seconds) even for larger
operator graphs of 20 nodes, while the centralized MIP solver needs hundreds
of seconds to find the optimal solution. Furthermore, in terms of accuracy,
MOPA-LMAX approximates the optimal solution found by the extended ILP

by 13% greater latency and 14% network usage on average.

Finally, we evaluated MOPA-LPMAX with four different selection strate-
gies and we have identified cKNN as the best candidate selection strategy.

4.4 Conclusion 161

In our experiments, we have seen that considering the processing delay dur-
ing optimization becomes more important when the system has a significant
load, and when the physical nodes become heterogeneous in terms of speed.
Therefore, the MOPA-LPMAX algorithm is more relevant for scenarios where
the physical machines vary in terms of their computing capabilities and load.

As a conclusion of our evaluation, we see that the proposed algorithms
MOPA, MOPA-LMAX, MOPA-LPMAX significantly reduce the network us-
age and are able to meet given latency constraints in realistic scenarios. The
selection of the most appropriate algorithm between the three depends on
the properties of the scenario and in particular, on the heterogeneity of the
operator graph, and the heterogeneity of the physical network in terms of

load and computing power.

163

5 Summary and Future Work

Finally, we provide a brief summary of the contents of this dissertation, before

we discuss possible future extensions of this work.

5.1 Summary

In this dissertation, we have presented concepts and algorithms for the effi-
cient processing of distributed context streams. Our work has been motivated
by the need of designing a system that enables distributed context reasoning.
To this end, we have proposed a novel architecture for distributed context
reasoning that uses the concept of the operator graph. Given this generic
system model that allows for the distribution of reasoning tasks, we then for-
mulated three operator placement problems that target different application
scenarios and we presented algorithms that solve these problem considering
local knowledge.

In detail, we have first formulated the Multi-operator placement problem,
which seeks for an optimal placement of operators minimizing the bandwidth-
delay products of the inter-operator data streams. For this problem, we have
presented a distributed algorithm that allows for the autonomous placement
of the operators based on their local view. As reference for our distributed al-
gorithm, we have presented an integer linear program that solves the network
usage optimization problem in a centralized way assuming global knowledge
of the system. Our evaluation showed that our distributed algorithm finds
near optimal solutions (on average 14% deviation from the optimum). Fur-
thermore, the algorithm achieves higher quality solutions and induces less

overhead in terms of messages and migrations with respect to another rele-

164 5 Summary and Future Work

vant state-of-the-art algorithm.

Secondly, we extended the network usage optimization problem by adding
an application-defined latency constraint, which considers the communication
latency as the dominant factor of the end-to-end delay. For this problem,
we provided a constraint satisfaction algorithm that starts from an optimal
placement with respect to network usage and tries to degrade the solution
minimally in terms of network usage to reach the delay constraint. Our
evaluation results showed that our algorithm achieves high success rates up
to 98%.

Finally, we have considered a latency-constrained optimization problem,
that additionally takes processing and network transmission delays for large
data items into account. Our algorithm finds promising candidate nodes that
may decrease the processing or network delay. We have used different can-
didate selection methods depending on the proximity of the nodes to the
network usage minimum and their processing delay. Our evaluation showed
that the candidate selection method, which uses our proposed pruning crite-
rion can achieve a better balance between network usage and latency with

respect to other simple heuristic solutions.

5.2 Future Work

The work presented in this dissertation could be extended into different di-
rections by considering different systems models and/or placement problems.

As an immediate extension of the presented work, one could consider the
problem of optimizing a set of operator graphs rather than a single graph.
Here, the concept of sharing operators between graphs becomes essential.
Sharing operator can be beneficial, for instance, to reduce the computational
and communication overhead (an operator only has to be executed once and
its output can be re-used). However, in some cases a shared operator might
prevent to find a solution meeting given latency constraints. Therefore, the

placement algorithm has to be carefully designed to make the right decisions

5.2 Future Work 165

when to share an operator.

A second extension of the presented work could be the integration of mobile
nodes into the system model. Taking into account the trend of modern smart
phones, such mobile nodes could serve as sensors, sinks (applications), and
hosts for operators. However, there are also several challenges that have to
be solved to benefit from the large crowd of available mobile nodes. For
instance, energy becomes an important constraints that has to be considered
during operator placement. Moreover, node mobility and availability change
the model of fixed sources and sinks. Node mobility might also trigger the
frequent migration of operators to constantly fulfill given end-to-end latency
constraints. First steps into this direction have already been taken in another
work at the University of Stuttgart [79]. This work also shows that it might
be beneficial to consider modern execution environments such as powerful
compute clouds or edge servers close to the mobile devices and therefore
available with small latency.

Another possible research direction is the design of optimal placement
strategies for application models other than stream processing. In particu-
lar, it would be interesting to investigate placement algorithms for multi-tier
applications using a request /response model. In such a system, the applica-
tion consists of client/server components where the components of tier n act
as clients to servers of tier n + 1. A typical example are web applications
following a three-tier architecture: Frontend (GUI), middle tier (application
logic), backend (persistent data storage; database). The middle tier itself
could be split up into further tiers if application servers can be ordered ac-
cording to client /server relationships between application servers (application
servers use other application servers). If we consider the frontend (clients)
and backend (database) to be fixed (pinned), the question is where to place
the middle tier services to minimize network usage (or cost in general) and
guarantee a certain maximum response time (typically tens of milliseconds
for many web services)? In particular for new infrastructure models such

as cloud computing environments consisting of multiple data centers, this

166 5 Summary and Future Work

placement problem becomes highly relevant. Since often cloud services are
driven by pay-as-you-go pricing models, minimizing communication cost and
computational cost, while achieving high computing elasticity, through op-
timal placement strategies are of great importance. To solve this problem,
our model needs to be adapted to a request/response model considering the
whole round trip between frontend and backend, a dynamic set of clients, the
replication of services as another degree of freedom, and further optimization
goals such as minimum monetary cost or elasticity.

Finally, the optimization problems presented in this dissertation could also
be extended to consider optimizations of the logical plan, i.e. the degradation
of query result by load shedding or the consideration of multiple data granu-
larities, which imply different data rates. In that case, our model should be
extended to include the quality of the logical plan, to find a trade-off solution

between quality and computing (and network) costs.

167

References

1]

2]

3]

4]

[5]

(6]

Network Coordinate Research at Harvard. http://www.eecs.

harvard.edu/~syrah/nc/.

Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S
Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,
and Stan Zdonik. The Design of the Borealis Stream Processing Engine.
In Proc. of CIDR, 2005.

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,

and Stan Zdonik. Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120-139, August 2003.

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In HUC' 1999: Proceedings of the 1st interna-

tional symposium on Handheld and Ubiquitous Computing, pages 304—
307, London, UK, 1999. Springer-Verlag.

Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB
Journal, 13(2):177-203, May 2004.

Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.
Efficient pattern matching over event streams. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
SIGMOD 2008, pages 147-160, 2008.

http://www.eecs.harvard.edu/~syrah/nc/
http://www.eecs.harvard.edu/~syrah/nc/

168

|7l

8]

19]

[10]

[11]

[12]

[13]

References

Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra. Matching events in a content-based subscrip-
tion system. In In Proceedings of the Eighteenth Annual ACM Sym-
posium on Principles of Distributed Computing (PODC 19Distributed
Stream Management using Utility-Driven Self- Adaptive Middleware, 99,
1999.

Yanif Ahmad and Ugur Cetintemel. Network-aware query processing
for stream-based applications. In VLDB 2004, pages 456-467, 2004.

Mert Akdere, Ugur Cetintemel, and Nesime Tatbul. Plan-based com-
plex event detection across distributed sources. Proc. VLDB Endow.,
1(1):66-77, August 2008.

J. Al-Muhtadi, Shiva Chetan, A. Ranganathan, and R. Campbell. Su-
per spaces: a middleware for large-scale pervasive computing environ-
ments. In Pervasive Computing and Communications Workshops, 2004.
Proceedings of the Second IEEE Annual Conference on, pages 198-202,
2004.

L. Amini, N. Jain, Anshul Sehgal, J. Silber, and O. Verscheure. Adap-
tive control of extreme-scale stream processing systems. In ICDCS
2006. 26th IEEE International Conference on Distributed Computing
Systems, 2006., page 71, 2006.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas,

Rohit Varma, and Jennifer Widom. Stream: The stanford stream data
manager. IEEE Data FEng. Bull., 26(1):19-26, 2003.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous
query language: semantic foundations and query execution. The VLDB
Journal, 15(2):121-142, June 2006.

References 169

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zan-
iolo. A data stream language and system designed for power and ex-
tensibility. In Proceedings of the 15th ACM international conference on
Information and knowledge management, CIKM 2006, pages 337-346,
2006.

Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng
Hong. Consistent Streaming Through Time: A Vision for Event Stream
Processing. In CIDR 2007, pages 363-374, 2007.

Martin Bauer. Observing Physical World Events through a Distributed
World Model. Dissertation, Universitdt Stuttgart : Sonderforschungs-
bereich SFB 627 (Nexus: Umgebungsmodelle fiir mobile kontextbezo-
gene Systeme), Germany, May 2007.

Luca Becchetti, loannis Chatzigiannakis, and Yiannis Giannakopoulos.
Streaming techniques and data aggregation in networks of tiny arte-
facts. Computer Science Review, 5(1):27 — 46, 2011.

Andreas Benzing, Boris Koldehofe, and Kurt Rothermel. Efficient sup-
port for multi-resolution queries in global sensor networks. In Pro-

ceedings of the 5th International Conference on Communication System
Software and Middleware, COMSWARE 2011, pages 11:1-11:12, New
York, NY, USA, 2011. ACM.

A. Bikakis and G. Antoniou. Defeasible contextual reasoning with argu-
ments in ambient intelligence. Knowledge and Data Engineering, IEEE
Transactions on, 22(11):1492-1506, 2010.

Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations
for sums of distances, clustering and the Fermat-Weber problem. Com-
putational Geometry: Theory and Aplications, 24:135-146, 2002.

170

[21]

[22]

23]

[24]

[25]

26]

27]

28]

References

Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel
Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker
White. Cayuga: a high-performance event processing engine. In Pro-
ceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, SIGMOD 2007, pages 1100-1102, 2007.

Barry Brumitt, Brian Meyers, John Krumm, A Kern, and Steven
Shafer. Easyliving: Technologies for intelligent environments. In Pro-
ceedings of the 2nd international symposium on Handheld and Ubiqui-

tous Computing, pages 12-29. Springer-Verlag, 2000.

P. Calamai and Charalambous C. Solving multifacility location prob-
lems involving euclidean distances. Naval Research Logistics Quarterly,
27(4):609-620, 1980.

B.W. Carabelli, A. Benzing, F. Durr, B. Koldehofe, K. Rothermel,
G. Seyboth, R. Blind, M. Burger, and F. Allgower. Exact convex
formulations of network-oriented optimal operator placement. In Deci-
sion and Control (CDC), 2012 IEEE 51st Annual Conference on, pages
3777-3782, 2012.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-
sign and evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3):332-383, August 2001.

S. Chakravarthy and D. Mishra. Snoop: An expressive event specifi-
cation language for active databases. Data & Knowledge Engineering,
14:1 — 26, 1994.

R. Chandrasekaran and A. Tamir. Algebraic optimization: the Fermat-
Weber location problem. Math. Program., 46(2):219-224, 1990.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

References 171

[29]

[30]

[31]

[32]

[33]

Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq: con-
tinuous dataflow processing. In SIGMOD 2003: Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages
668-668, New York, NY, USA, 2003. ACM.

Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in the con-
text broker architecture. In PERCOM ’04: Proceedings of the Second
IEEE International Conference on Pervasiwe Computing and Commu-
nications (PerCom’04), page 277, Washington, DC, USA, 2004. IEEE
Computer Society.

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-
garacq: a scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, SIGMOD 2000, pages 379-390, New York, NY,
USA, 2000. ACM.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-
terson, Mike Wawrzoniak, and Mic Bowman. Planetlab: An overlay
testbed for broad-coverage services. ACM SIGCOMM Computer Com-

munication Review, pages 3—12, 2003.

Nazario Cipriani, Mike Eissele, Andreas Brodt, Matthias (Grossmann,
and Bernhard Mitschang. NexusDS: a flexible and extensible middle-
ware for distributed stream processing. In IDEAS 2009: Proceedings of
the 2009 International Database Engineering; Applications Symposium,
pages 152-161, New York, NY, USA, 2009. ACM.

Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, SIGMOD 2003, pages 647651, 2003.

172

[34]

[35]

[36]

37]

38

[39]

[40]

References

Gianpaolo Cugola and Alessandro Margara. Raced: an adaptive mid-
dleware for complex event detection. In Proceedings of the 8th Inter-
national Workshop on Adaptive and Reflective MIddleware, ARM 2009,
pages 5:1-5:6, 2009.

Gianpaolo Cugola and Alessandro Margara. Tesla: a formally defined
event specification language. In Proceedings of the Fourth ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS 2010,
pages 50-61, 2010.

Gianpaolo Cugola and Alessandro Margara. Complex event processing
with t-rex. J. Syst. Softw., 85(8):1709-1728, August 2012.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM 200/: Proceed-
ings of the 2004 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 15-26, New York,
NY, USA, 2004. ACM.

U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu,
R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny,

and R. Jauhari. The hipac project: combining active databases and
timing constraints. SIGMOD Rec., 17(1):51-70, March 1988.

Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos.
Bandwidth-constrained queries in sensor networks. The VLDB Journal,
17(3):443-467, May 2008.

Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping of context-
aware applications. Hum.-Comput. Interact., 16(2):97-166, December
2001.

References 173

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

Z. Drezner and H.W. Hamacher. Fuacility Location: Applications and
Theory. Springer, 2004.

Dominique Dudkowski, Harald Weinschrott, and Pedro Jos¢ Marron.
Design and implementation of a reference model for context manage-
ment in mobile ad-hoc networks. In Proc. of AINA Workshops, 2008.

D. Ejigu, M. Scuturici, and L. Brunie. Coca: A collaborative context-
aware service platform for pervasive computing. In Information Tech-
nology, 2007. ITNG 2007. Fourth International Conference on, pages
297-302, April.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish /subscribe. ACM Comput.
Surv., 35(2):114-131, June 2003.

Minos Garofalakis. Distributed data streams. In LING LIU and
M.TAMER A-ZSU, editors, Encyclopedia of Database Systems, pages
883-890. Springer US, 2009.

Minos Garofalakis and Phillip B. Gibbons. Wavelet synopses with error
guarantees. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, SIGMOD ’02, pages 476-487, New
York, NY, USA, 2002. ACM.

Narain H. Gehani and H. V. Jagadish. Ode as an active database:
Constraints and triggers. In Proceedings of the 17th International Con-
ference on Very Large Data Bases, VLDB 1991, pages 327-336, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

A. Grau, K. Herrmann, and K. Rothermel. Efficient and Scalable Net-
work Emulation Using Adaptive Virtual Time. In 18th Internatonal

Conference on Computer Communications and Networks, Aug. 2009.

174

[49]

[50]

[51]

52|

[53]

[54]

[55]

References

Tao Gu, H.K. Pung, and Da Qing Zhang. A middleware for building
context-aware mobile services. In Vehicular Technology Conference,
2004. VTC 2004-Spring. 2004 IEEE 59th, volume 5, pages 26562660
Vol.5, May.

Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented mid-
dleware for building context-aware services. J. Netw. Comput. Appl.,
28(1):1-18, 2005.

Tao Gu, Hung Keng Pung, and Daqging Zhang. Peer-to-peer context rea-
soning in pervasive computing environments. In PERCOM °08: Pro-
ceedings of the 2008 Sixth Annual IEEE International Conference on
Pervasive Computing and Communications, pages 406-411, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

Xiaohui Gu, Philip S. Yu, and Klara Nahrstedt. Optimal Compo-
nent Composition for Scalable Stream Processing. In Proceedings of
the 25th IEEFE International Conference on Distributed Computing Sys-
tems, ICDCS 2005, 2005.

D. Gyllstrom, J. Agrawal, Yanlei Diao, and N. Immerman. On sup-
porting kleene closure over event streams. In Data Engineering, 2008.
ICDE 2008. IEEE 2jth International Conference on, pages 1391-1393,
2008.

Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan
Balasubramaniam. Middleware for distributed context-aware systems.
In International Symposium on Distributed Objects and Applications
(DOA, pages 846-863. Springer, 2005.

T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann,
and W. Retschitzegger. Context-awareness on mobile devices - the hy-
drogen approach. In System Sciences, 2005. Proceedings of the 36th

Annual Hawaii International Conference on, page 10 pp., jan. 2003.

References 175

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Nicola Honle, Matthias Grofmann, Daniela Nicklas, and Bernhard
Mitschang. Preprocessing position data of mobile objects. In Proc.
of MDM, 2008.

Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke,
Jennifer Widom, Hari Balakrishnan, Ugur Cetintemel, Mitch Cherni-
ack, Richard Tibbetts, and Stan Zdonik. Towards a streaming sql stan-
dard. Proc. VLDB Endow., 1(2):1379-1390, August 2008.

Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Prob-
abilistic event extraction from rfid data. In ICDE, pages 1480-1482,
2008.

Gerald Koch, Boris Koldehofe, and Kurt Rothermel. Cordies: Expres-
sive Event Correlation in Distributed Systems. In Proceedings of the
Fourth ACM International Conference on Distributed Event-Based Sys-
tems, 2010.

Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert,
Timo Berthold, RobertE. Bixby, Emilie Danna, Gerald Gamrath, Am-
brosM. Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann, Ted
Ralphs, Domenico Salvagnin, DanielE. Steffy, and Kati Wolter. Miplib
2010. Mathematical Programming Computation, 3(2):103-163, 2011.

P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm. Man-
aging context information in mobile devices. Pervasive Computing,
IEFEE, 2(3):42-51, July-Sept.

Niels Rode Kristensen, Henrik Madsen, and Sten Bay JgRgensen.

Parameter estimation in stochastic grey-box models. Automatica,
40(2):225-237, February 2004.

Geetika T. Lakshmanan, Ying Li, and Rob Strom. Placement strate-

176

|64]

[65]

|66]

67]

|68

[69]

[70]

References

gies for internet-scale data stream systems. Internet Computing, IFEFE,
12(6):50-60, Nov.-Dec. 2008.

Ralph Lange. Scalable Management of Trajectories and Context Model
Descriptions. Dissertation, Universitdt Stuttgart : Sonderforschungs-
bereich SFB 627 (Nexus: Umgebungsmodelle fiir mobile kontextbezo-
gene Systeme), Germany, Dezember 2010.

Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Grossmann, Har-
ald Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou,
and Kurt Rothermel. Making the world wide space happen: New chal-
lenges for the nexus context platform. Pervasive Computing and Com-

munications, IEEE International Conference on, 0:1-4, 2009.

Ralph Lange, Frank Diirr, and Kurt Rothermel. Online trajectory data
reduction using connection-preserving dead reckoning. In Proc. of Mo-
biQuitous, 2008.

Ralph Lange, Frank Diirr, and Kurt Rothermel. Scalable processing of
trajectory-based queries in space-partitioned moving objects databases.
In Proc. of ACM GIS, 2008.

Pierre Le Bodic, Pierre HERoux, SéBastien Adam, and Yves Lecourtier.
An integer linear program for substitution-tolerant subgraph isomor-
phism and its use for symbol spotting in technical drawings. Pattern
Recogn., 45(12):4214-4224, December 2012.

Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on Middleware,
Middleware 2005, pages 249-269, 2005.

Ling Liu, C. Pu, and Wei Tang. Continual queries for internet scale

References 177

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

event-driven information delivery. Knowledge and Data Engineering,
IEEE Transactions on, 11(4):610-628, 1999.

David C. Luckham. Rapide: a language and toolset for simulation of
distributed systems by partial orderings of events. In Proceedings of the
DIMACS workshop on Partial order methods in verification, POMIV
1996, pages 329-357, 1997.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. Tag: a tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(S1):131-146, December 2002.

Masoud Mansouri-Samani and Morris Sloman. Gem: a generalized
event monitoring language for distributed systems. Distributed Systems
Engineering, 4(2):96, 1997.

Alessandro Margara and Gianpaolo Cugola. Processing flows of infor-
mation: from data stream to complex event processing. In Proceedings
of the 5th ACM international conference on Distributed event-based sys-
tem, DEBS 2011, pages 359-360, New York, NY, USA, 2011. ACM.

Gero Miihl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based
Systems. Springer Publishing Company, Incorporated, 1st edition, 2010.

Sumedh Mungee, Nagarajan Surendran, and Douglas C. Schmidt. The
Design and Performance of a CORBA Audio/Video Streaming Service.

In Hawaiian International Conference on System Sciences, 1999.

Daniela Nicklas, Matthias Grofsmann, Thomas Schwarz, Steffen Volz,
and Bernhard Mitschang. A model-based, open architecture for mobile,

spatially aware applications. In Proc. of SSTD, 2001.

Petteri Nurmi, Michael Przybilski, Greger Lindén, and Patrik Floréen.
An architecture for distributed agent-based data preprocessing. In AIS-
ADM, pages 123-133, 2005.

178

[79]

[80]

[81]

[82]

[83]

[84]

[85]

References

Beate Ottenwélder, Boris Koldehofe, Kurt Rothermel, and Umakishore
Ramachandran. MigCEP: Operator Migration for Mobility Driven Dis-
tributed Complex Event Processing. In Proceedings of the 7th ACM
International Conference on Distributed Event-Based Systems (DEBS),
pages 1-12. ACM Press, Juni 2013.

Sebastian Padé and Mirella Lapata. Constructing semantic space mod-
els from parsed corpora. In ACL ’03: Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics, pages 128-135,
Morristown, NJ, USA, 2003. Association for Computational Linguistics.

Olga Papaemmanouil, Yanif Ahmad, Ugur Cetintemel, and John Jan-
notti. Application-aware Overlay Networks for Data Dissemination. In
ICDE Workshops, page 76, 2006.

Kostas Patroumpas and Timos Sellis. Multi-granular time-based sliding
windows over data streams. In Proceedings of the 2010 17th Interna-
tional Symposium on Temporal Representation and Reasoning, TIME
10, pages 146-153, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks

of Plausible Inference. Morgan Kaufmann, September 1988.

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopou-
los, Matt Welsh, and Margo Seltzer. Network-aware operator placement
for stream-processing systems. In ICDE 2006: Proceedings of the 22nd
International Conference on Data Engineering, page 49, Washington,
DC, USA, 2006. TEEE Computer Society.

Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie, Matt Welsh,
Margo Seltzer, and Mema Roussopoulos. [evaluating dht-based service

placement for stream-based overlays.

References 179

[36]

[87]

[38]

[89]

[90]

[91]

[92]

193]

Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework
for event composition in distributed systems. In Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on Middleware,
Middleware 2003, pages 62-82, 2003.

P.R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as
a generic middleware extension. Network, IEEE, 18(1):44-55, 2004.

Francisc Rado. The euclidean multifacility location problem. Operations
Research, 36(3):485-492, 1988.

Anand Ranganathan and Roy H. Campbell. A middleware for context-
aware agents in ubiquitous computing environments. In Proceedings
of the ACM/IFIP/USENIX 2003 International Conference on Middle-
ware, Middleware 2003, pages 143-161, New York, NY, USA, 2003.
Springer-Verlag New York, Inc.

Thomas Repantis, Xiaohui Gu, and Vana Kalogeraki. Synergy: Shar-
ing Aware Component Composition for Distributed Stream Processing
Systems. In Middleware, pages 322-341, 2006.

Stamatia Rizou, Frank Diirr, and Kurt Rothermel. Providing QoS
Guarantees for Large-Scale Operator Networks. In Proceedings of the
12th IEEE International Conference on High Performance Comput-
ing and Communications, pages 337-345, Melbourne, VIC, Australia,
September 2010. ITEEE Computer Society Press.

Stamatia Rizou, Frank Diirr, and Kurt Rothermel. Solving the Multi-
operator Placement Problem in Large Scale Operator Networks. In 19th

Internatonal Conference on Computer Communications and Networks,
2010.

Stamatia Rizou, Frank Diirr, and Kurt Rothermel. Fulfilling End-to-

End Latency Constraints in Large-scale Streaming Environments. In

180

[94]

[95]

[96]

[97]

98]

[99]

[100]

References

Proceedings of the 30th IEEE International Performance Computing
and Communications Conference: IPCCC’11, pages 1-8. IEEE Xplore,
November 2011.

Stamatia Rizou, Kai Haussermann, Frank Diirr, Nazario Cipriani, and
Kurt Rothermel. A System for Distributed Context Reasoning. In ICAS
2010, pages 84-89, 2010.

Manuel Roméan, Christopher Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. A middleware in-
frastructure for active spaces. IEEE Pervasive Computing, 1(4):74-83,
October 2002.

J. B. Rosen and G. L. Xue. On the Convergence of Miehles Algorithm
for the Euclidean Multifacility Location Problem. Operations Research,
40(1):188-191, 1992.

Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik,
and Douglas D. Edwards. Artificial intelligence: a modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

Dimitris Sacharidis, Antonios Deligiannakis, and Timos Sellis. Hierar-
chically compressed wavelet synopses. The VLDB Journal, 18(1):203—
231, January 2009.

B. Schilling, B. Koldehofe, and K. Rothermel. Efficient and distributed
rule placement in heavy constraint-driven event systems. In High Per-
formance Computing and Communications (HPCC), 2011 IEEE 13th
International Conference on, pages 355-364, 2011.

Roman Schmidt and Karl Aberer. Efficient Peer-to-Peer Belief Prop-
agation. In Fourteenth International Conference on Cooperative Infor-
mation Systems (CooplS), 2006.

References 181

[101]

[102]

[103]

[104]

[105]

[106]

107]

Nicholas Poul Schultz-Mgller, Matteo Migliavacca, and Peter Pietzuch.
Distributed complex event processing with query rewriting. In Proceed-
ings of the Third ACM International Conference on Distributed Fvent-
Based Systems, DEBS 2009, pages 4:1-4:12, 2009.

M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, and M.J. Franklin.
Flux: an adaptive partitioning operator for continuous query systems.
In Data Engineering, 2003. Proceedings. 19th International Conference
on, pages 25-36, 2003.

A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and K. Chrysan-
this. Balancing energy efficiency and quality of aggregate data in sensor
networks. The VLDB Journal, 13(4):384-403, December 2004.

Jonas Sjoberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste,
Bernard Deylon, Pierre yves Glorennec, Hakan Hjalmarsson, and Ana-
toli Juditsky. Nonlinear black-box modeling in system identification: a
unified overview. Automatica, 31:1691-1724, 1995.

Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator
placement for in-network stream query processing. In In PODS, pages
250-258, 2005.

Mark Sullivan and Andrew Heybey. Tribeca: a system for managing
large databases of network traffic. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference, ATEC 1998, pages
2-2, Berkeley, CA, USA, 1998. USENIX Association.

Egemen Tanin, Deepa Nayar, and Hanan Samet. An efficient nearest
neighbor algorithm for P2P settings. In Proceedings of the 2005 National
Conference on Digital Government Research, pages 21-28. Digital Gov-
ernment Society of North America, 2005.

182

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

References

William van Dorst. The quintessential linux benchmark: All about the
"bogomips" number displayed when linux boots. Linuz J., 1996(21es),
January 1996.

Matthias Wieland, Oliver Kopp, Daniela Nicklas, and Frank Leymann.
Towards Context-Aware Workflows. In Proc. of CAWSE, 2007.

Matthias Wieland, Daniela Nicklas, and Frank Leymann. Managing
technical processes using smart workflows. ServiceWave, December

2008. to appear.

Gregory Aaron Wilkin, K. R. Jayaram, Patrick Eugster, and Ankur
Khetrapal. Faidecs: fair decentralized event correlation. In Proceed-
ings of the 12th ACM/IFIP/USENIX international conference on Mid-
dleware, Middleware 2011, pages 228-248, Berlin, Heidelberg, 2011.
Springer-Verlag.

Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex
event processing over streams. In SIGMOD 2006, 2006.

Kirsten W. Wu, Kun-Lung, Wei Fan, Philip S. Yu, Charu C. Aggar-
wal, David A. George, Bugra Gedik, Eric Bouillet, Xiaohui Gu, Gang
Luo, and Haixun Wang. Challenges and experience in prototyping a
multi-modal stream analytic and monitoring application on system s.

In Proceedings of the 33rd international conference on Very large data
bases, VLDB 2007, pages 1185-1196, 2007.

Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load dis-
tribution in the borealis stream processor. In Proceedings of the 21st
International Conference on Data Engineering, ICDE 2005, pages 791
802, Washington, DC, USA, 2005. IEEE Computer Society.

Yong Yao and Johannes Gehrke. The cougar approach to in-network

References 183

116]

[117]

[118]

[119]

[120]

query processing in sensor networks. SIGMOD Rec., 31(3):9-18,
September 2002.

Stephen S. Yau and Fariaz Karim. Context-sensitive middleware for
real-time software in ubiquitous computing environments. In Proc. /
th IEEE International Symp. on Object-Oriented Real-time Distributed
Computing (ISORC 2001, pages 163-170, 2001.

Lei Ying, Zhen Liu, D. Towsley, and C.H. Xia. Distributed operator
placement and data caching in large-scale sensor networks. In INFO-
COM 2008. The 27th Conference on Computer Communications. IEEE,
pages 977-985, 2008.

Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Ji Wu. Efficient Dy-
namic Operator Placement in a Locally Distributed Continuous Query
System. In Proceedings of the 2006 Confederated international confer-
ence on On the Move to Meaningful Internet Systems: CooplS, DOA,
GADA, and ODBASE - Volume Part I, ODBASE’06/OTM’06, pages
54-71, 2006.

Horst W. Hamacher Zvi Drezner. The Fermat-Weber Problem. In
Facility Location: Applications and Theory, pages 1-24. 2005.

Oliver Zweigle, Kai Hiussermann, Uwe-Philipp Képpeler, and Paul
Levi. Extended TA Algorithm for adapting a Situation Ontology.
In Proceedings of the FIRA RoboWorld Congress 2009, Progress in
Robotics, volume 44 of Communications in Computer and Information

Science, pages 364-371, Incheon, Korea, August 2009. Springer Verlag.

	Abstract
	Deutsche Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Architecture
	1.2.2 Context Information Layer
	1.2.3 Federation Layer
	1.2.4 Applications and Middleware Layer

	1.3 Contributions
	1.4 Structure

	2 Architecture
	2.1 System Model
	2.2 Situation Model
	2.3 System Architecture
	2.4 Overview of existing approaches and systems
	2.4.1 Context management systems
	2.4.2 Information Flow Processing

	3 Operator Placement Algorithms
	3.1 Network Usage Optimization
	3.1.1 System Model
	3.1.2 Problem Statement
	3.1.3 Multi-operator Placement Algorithm (MOPA)
	3.1.4 Integer Linear Programming Formulation

	3.2 Network Delay Constrained Optimization
	3.2.1 System Model
	3.2.2 Problem Statement
	3.2.3 Constrained Optimization Algorithm
	3.2.4 Integer Linear Programming Formulation

	3.3 Processing and Network Delay Constrained Optimization
	3.3.1 System Model
	3.3.2 Problem Statement
	3.3.3 Placement Algorithm

	3.4 Related Work
	3.4.1 Complex Event Processing
	3.4.2 Data Stream Processing
	3.4.3 Control Systems

	4 Evaluation
	4.1 Network Usage Optimization
	4.1.1 Setup
	4.1.2 Evaluation objectives
	4.1.3 Quality: Continuous MOPA Solution
	4.1.4 Quality: Discrete MOPA Solutions
	4.1.5 Convergence: Message Overhead and Migrations
	4.1.6 Scalability: Execution time and Performance
	4.1.7 Summary

	4.2 Network Delay Constrained Optimization
	4.2.1 Setup
	4.2.2 Evaluation Objectives
	4.2.3 Quality: Relation Between Network Usage and Latency
	4.2.4 Quality: Fulfillment of Network Latency Constraints
	4.2.5 Quality: Deviation from Network Delay Constraints
	4.2.6 Scalability: Execution Time and Performance
	4.2.7 Summary

	4.3 Processing and Network Delay Constrained Optimization
	4.3.1 Setup
	4.3.2 Evaluation Objectives
	4.3.3 Quality: Processing and Network Latency
	4.3.4 Quality: Network Usage
	4.3.5 Overhead: Messages for candidate selection methods
	4.3.6 Summary

	4.4 Conclusion

	5 Summary and Future Work
	5.1 Summary
	5.2 Future Work

	References

