
Concepts and Algorithms for E�cient

Distributed Processing of Data

Streams

Von der Fakultät Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Stamatia Rizou

aus Athen

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr. Timos Sellis

Tag der mündlichen Prüfung: 26.11.2013

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2013

3

Acknowledgments

First, I would like to thank my Professor Kurt Rothermel, for giving me

this unique opportunity to work with the group of Distributed Systems under

his supervision. His feedback and comments during our regular meetings

re�ned the concepts and fundamentals of my work and improved its scienti�c

value. Next, I would like to thank my colleague Frank Dürr. The output

of my research is a result of long discussions between us on several aspects

of my work. This work would not have been possible without his invaluable

contribution and his continuous support and guidance.

I would like also to thank all my colleagues in the Distributed System group.

I would like to give special thanks to my colleagues Ralph Lange, Lars Geiger,

Harald Weinschrott and Nazario Cipriani for our collaboration in the Nexus

project and my colleague, Andreas Grau for his help on the implementation

of one of my placement algorithms on NET Cluster.

I would like also to thank Prof. Timos Sellis for supporting my work

from the very beginning, when he showed me the way to apply for a PhD

in Germany until the end, by acting as a reviewer for my thesis.

During my stay in Stuttgart, I had the chance to meet special people that

made this city feeling like home. Therefore, I would like to thank my friends,

who shared the good and bad moments during the four years I spent in

Stuttgart. My �atmate Theodora, but also Gianna and Maria who joined

later and my friends Vangelis, Alexia, Angelos, Alexandros, Loukianos.

Finally, I want to thank my family for their unconditional love and care

that gives me always strength to go on. My parents Vangelis and Ritsa, and

my brother Vasilis with his family, his wife Mina and my two beloved nephews

Vangelis and Manos.

5

Contents

Abstract 13

Deutsche Zusammenfassung 15

1 Introduction 17

1.1 Motivation . 17

1.2 Background . 23

1.2.1 Architecture . 23

1.2.2 Context Information Layer 25

1.2.3 Federation Layer . 25

1.2.4 Applications and Middleware Layer 26

1.3 Contributions . 27

1.4 Structure . 28

2 Architecture 31

2.1 System Model . 32

2.2 Situation Model . 33

2.3 System Architecture . 36

2.4 Overview of existing approaches and systems 39

2.4.1 Context management systems 40

2.4.2 Information Flow Processing 50

3 Operator Placement Algorithms 57

3.1 Network Usage Optimization 61

3.1.1 System Model . 62

3.1.2 Problem Statement . 65

6 Contents

3.1.3 Multi-operator Placement Algorithm (MOPA) 67

3.1.4 Integer Linear Programming Formulation 81

3.2 Network Delay Constrained Optimization 83

3.2.1 System Model . 84

3.2.2 Problem Statement . 85

3.2.3 Constrained Optimization Algorithm 86

3.2.4 Integer Linear Programming Formulation 97

3.3 Processing and Network Delay Constrained Optimization . . . 98

3.3.1 System Model . 98

3.3.2 Problem Statement . 102

3.3.3 Placement Algorithm 104

3.4 Related Work . 112

3.4.1 Complex Event Processing 113

3.4.2 Data Stream Processing 116

3.4.3 Control Systems . 121

4 Evaluation 123

4.1 Network Usage Optimization 125

4.1.1 Setup . 126

4.1.2 Evaluation objectives 126

4.1.3 Quality: Continuous MOPA Solution 127

4.1.4 Quality: Discrete MOPA Solutions 130

4.1.5 Convergence: Message Overhead and Migrations 132

4.1.6 Scalability: Execution time and Performance 136

4.1.7 Summary . 138

4.2 Network Delay Constrained Optimization 139

4.2.1 Setup . 139

4.2.2 Evaluation Objectives 140

4.2.3 Quality: Relation Between Network Usage and Latency 141

4.2.4 Quality: Ful�llment of Network Latency Constraints . 143

4.2.5 Quality: Deviation from Network Delay Constraints . . 147

Contents 7

4.2.6 Scalability: Execution Time and Performance 148

4.2.7 Summary . 151

4.3 Processing and Network Delay Constrained Optimization . . . 152

4.3.1 Setup . 152

4.3.2 Evaluation Objectives 155

4.3.3 Quality: Processing and Network Latency 155

4.3.4 Quality: Network Usage 157

4.3.5 Overhead: Messages for candidate selection methods . 158

4.3.6 Summary . 159

4.4 Conclusion . 160

5 Summary and Future Work 163

5.1 Summary . 163

5.2 Future Work . 164

References 167

9

List of Figures

1.1 Layered Architecture of Context Aware Systems 18

1.2 Extended Nexus Architecture 24

2.1 Mapping of operator graph to physical hosts. 34

2.2 Situation Template: "Tra�c Jam" 35

2.3 System Architecture . 36

2.4 Context aware systems classi�cation 41

2.5 Processing Models . 42

3.1 Two di�erent placements with respective resulting network usage. 58

3.2 Example of the gradient method for a 2-dimensional SOP prob-

lem. 72

3.3 Example of approximation for function Ulocal(x) = 25(x−0.2)+

25(x− 0.4) + 50(x− 0.6) + 50(x− 0.8). 74

3.4 Symmetric Operator Placement Solutions. 80

3.5 Process �ow of the initial placement. 86

3.6 Direction of the movement for MOPA-LPMAX 91

3.7 Communication Overhead Example for MOPA&MOPA-LPMAX 95

3.8 Estimated processing delay (matrix multiplication operator;

matrix size:100) . 102

3.9 Estimated processing delay (matrix multiplication operator;

matrix size:1000) . 103

3.10 Candidate set for one unpinned operator with one sink and one

source. 108

10 List of Figures

4.1 Relative network usage of SBON w.r.t. MOPA (Continuous

solutions). 129

4.2 Physical stretch factor of SBON and MOPA w.r.t. optimal

discrete MOP solution (Operator Graph Size:6). 130

4.3 Physical stretch factor of SBON and MOPA w.r.t. optimal

discrete MOP solution (Operator Graph Size:15). 131

4.4 Cumulative distribution of number of messages exchanged (data

rates 100-200Kbps). 133

4.5 Cumulative distribution of number of messages exchanged (data

rates 50-500Kbps). 134

4.6 Cumulative distribution of local iterations. 135

4.7 Stacked histogram of sent and suppressed messages. 136

4.8 Cumulative distribution of migrations (data rates 100�200Kbps).137

4.9 Cumulative distribution of migrations (data rates 50�500Kbps). 138

4.10 Execution time of MOPA and CPLEX w.r.t. graph size. . . . 139

4.11 Physical Stretch Factor of MOPA and SBON w.r.t. graph size. 140

4.12 Latency and Network Usage stretch for varying heterogeneity. 142

4.13 Success rate according to the constraint latency stretch. 143

4.14 Success rate for narrow/broad latency stretch interval 144

4.15 Network usage stretch for narrow/broad latency stretch interval 145

4.16 Cumulative distribution of latency stretch. 146

4.17 Cumulative distribution of network usage. 147

4.18 Execution time of MOPA-LMAX, CPLEX w.r.t. Graph Size. . 149

4.19 Latency Stretch of MOPA-LMAX w.r.t. Graph Size. 150

4.20 Network Usage Stretch of MOPA-LMAX w.r.t. Graph Size. . 151

4.21 Processing delay w.r.t operator complexity (matrice size). . . . 153

4.22 Network and Processing Latency for increasing number of op-

erators. 156

4.23 Resulting network usage for candidate selection. 157

4.24 Communication Overhead. 158

11

List of Tables

3.1 Overview of placement problems and algorithms 59

3.2 System Model Notation . 63

3.3 Extended Network Delay Constrained System Model Notation 84

3.4 Extended Processing and Network Delay Constrained System

Model . 99

3.5 Existing CEP systems supporting distributed event recognition 112

4.1 Overview of placement algorithms under test 124

4.2 Overview of performance metrics 128

4.3 Overview of performance metrics 141

4.4 Overview of candidate selection algorithms 154

4.5 Overview of performance metrics 154

13

Abstract

During the last years, the proliferation of modern devices capable of captur-

ing context information through various sensors has triggered the blossom of

context-aware systems, which automatically adapt their behaviour based on

the detected context. For many emerging context-aware applications, context

may include a huge amount of entities possibly dispersed geographically over

a wide area. In such large-scale scenarios, the e�cient processing of context

information becomes a challenging task. In this dissertation, we are going

to focus on the problem of the e�cient processing of context information.

In particular, we will consider the problem of deriving high-level context in-

formation, also referred to as situation in the literature, from sensor data

streams captured by a large set of geographically distributed sensors.

First, we present the architecture of a distributed system that uses rea-

soning algorithms to detect situations in an overlay network of data stream

processing operators. Then we are going to introduce our strategies for the

optimal distribution of data processing between processing nodes in order to

save network resources, by optimizing for bandwidth-delay product, and ful-

�ll given QoS requirements, such as end-to-end latency constraints. To this

end, we formulate three (constrained) optimization problems, which search

for an optimal placement of operators onto physical hosts with respect to

di�erent application constraints. The proposed algorithms are executed in

a distributed way, by using local knowledge of the system. Our evaluation

shows that our algorithms achieve good approximations of the optimal solu-

tions, while inducing limited communication overhead.

15

Deutsche Zusammenfassung

Während der letzten Jahre hat die Anzahl an vernetzten Sensoren und mit

Sensoren ausgestatteten Geräten wie Smartphones stark zugenommen. Diese

weitreichende Verfügbarkeit von Sensorinformationen hat zu einer Vielzahl

so genannter kontextbezogener Anwendungen z.B. in der Logistik, der intelli-

genten Verkehrssteuerung, der Produktion (�Smart Factory�) oder der Ener-

giewirtschaft (�Smart Grid�) geführt, welche in der Lage sind, ihr Verhalten

automatisch an ihren Kontext anzupassen.

Viele Anwendungsszenarien basieren dabei auf einer groÿen Anzahl von

Sensoren (Datenquellen), Kontextdatenprozessoren, welche aus Sensordaten

höherwertige Kontextinformationen (Situationen) ableiten und Anwendungen

(Datensenken), welche geographisch weit verteilt und über Weitverkehrsnetze

bzw. das Internet miteinander vernetzt sind. Die Quellen produzieren dabei

u.U. groÿvolumige Datenströme (z.B. kontinuierliche Videoaufzeichnungen)

bzw. eine Vielzahl von Datenströmen (z.B. aus groÿen Netzen von Tempe-

ratursensoren, Kontaktschleifen entlang von Straÿen, Verbrauchsdaten von

�Smart-Meters�, usw.). Insbesondere in solch groÿen Szenarien stellt die e�-

ziente Kommunikation und Verarbeitung von Sensordatenströmen eine groÿe

Herausforderung dar, der sich diese Dissertation widmet. Das übergeordnete

Ziel dieser Arbeit ist dabei der Entwurf von Konzepten und Mechanismen zur

e�zienten verteilten Verarbeitung von Sensordatenströmen in einem Netz aus

Kontextdatenprozessoren zur Ableitung von höherwertigen Situationen zur

Unterstützung kontextbezogener Anwendungen.

Hierzu leistet diese Arbeit die folgenden Beiträge. Zunächst wird eine Archi-

tektur zur verteilten Verarbeitung von Sensordaten in einem dem physischen

Netz überlagerten Overlay-Netz aus Datenprozessoren � so genannten Opera-

16 Deutsche Zusammenfassung

toren � entworfen sowie das Konzept der Operatorgraphen zur Modellierung

der verteilten Verarbeitung formal eingeführt. Dieses Konzept ermöglicht ins-

besondere die verteilte Ausführung von Situationserkennungsoperatoren, z.B.

basierend auf Bayes'schen Netzen.

Des Weiteren werden verschiedene Algorithmen zur optimalen Verteilung

der Operatoren eines Operatorgraphen auf physischen Rechnern (Hosts) im

Overlay-Netz vorgeschlagen (Operatorplatzierung). Ziel der Optimierung ist

dabei die Steigerung der Skalierbarkeit durch die Entlastung des physischen

Kommunikationsnetzes. Hierbei wird im Detail die Minimierung des Band-

breiten-Verzögerungsprodukts der Datenströme eines Operatorgraphen be-

trachtet. Ferner wird dieses zunächst reine Optimierungsproblem durch Rand-

bedingungen in Form anwendungsspezi�scher Dienstgüteeigenschaften (Qua-

lity of Service) erweitert. Betrachtet wird hierbei vor allem die Ende-zu-En-

de-Verzögerung von den Datenquellen zur -senke als wichtige Randbedin-

gung zeitkritischer Anwendungen und Prozesse. Neben der Betrachtung der

Kommunikationsverzögerung werden dabei auch verarbeitungsintensive An-

wendungen durch die Einbeziehung der Verarbeitungszeit auf den Rechenk-

noten berücksichtigt. Ein wesentlicher Beitrag dieser Arbeit ist ein verteilter

Algorithmus zur näherungsweisen Lösung des Optimierungsproblems durch

dezentrale Platzierungsentscheidungen der Operatoren basierend auf lokalem

Wissen. Dieser Algorithmus wird in weiteren Schritten so erweitert, dass eine

gegebene Ende-zu-Ende-Verzögerung eingehalten wird. Die im Rahmen die-

ser Dissertation durchgeführten Evaluierungen zeigen, dass diese Verfahren

zu sehr guten Annäherungen der optimalen Lösung mit nur geringem Kom-

munikationsaufwand zur Ausführung des verteilten Algorithmus führen.

17

1 Introduction

1.1 Motivation

Context-aware systems adapt seamlessly their behaviour according to context

changes, i.e., without the explicit intervention of the end-user. Context could

be any relevant information regarding the interaction of the application and

the user. More formally, context has been de�ned according to Dey [4] as

�any information that can be used to characterize the situation of entities

(i.e. whether a person, place, or object) that are considered relevant to the

interaction between a user and an application, including the user and the

application themselves�. The automatic adaptation of the system to the cur-

rent context leads to the �pervasive computing� vision, where applications are

adapted to satisfy user expectations.

Context-aware applications include navigation and assistance, environmen-

tal monitoring, smart power grids, tra�c and transportation. Imagine, for

instance, a context-aware application that suggests minimal delay routes us-

ing public transportation in a smart city. The system monitors the current

tra�c congestion and detects situations that can lead to deviation from the

normal tra�c patterns, e.g., car accidents, tra�c lights out of use, cable-�re

at the tram. The detection of situations that can a�ect the normal function

of the public means of transportation plays a critical role in order for the sys-

tem to adapt to current conditions, for instance, to select alternative routes

that can reduce the trip delay. Therefore context-aware systems should be

able to interpret context that can be directly acquired from the environment

to meaningful situations that are relevant to the application.

Sensors constitute the technological enabler to capture continuously sensor

18 1 Introduction

Low‐level context:
Noise Level, Temperature, Location…

Situation (High‐level context):
Meeting in a room, Traffic Jam…

Adaptation

Application

Sensors, Context Serverscontext sources

preprocessing

context reasoning

adaptation

application

Figure 1.1: Layered Architecture of Context Aware Systems

data to monitor environmental variables such as temperature, humidity, or

wind. Sensors could be stationary sensors, such as temperature sensors, in-

duction loops, road-side units, cameras that are deployed at �xed locations

and continuously track the current context, or mobile embedded in mobile

devices such as smart phones that are carried by users. Managing, inter-

preting and processing sensor data is critical for the success of context-aware

systems, since their behaviour relies on context information.

In order to achieve this goal, context-aware systems typically implement

a layered architecture as shown in Figure 1.1. In the bottom layer, context

sources provide either static data such as city maps or dynamic data such as

sensor data by monitoring the environment. Sensor data can be translated

to observable context, which is the primitive form of context since it can be

directly acquired by sensors. Then, several pieces of observable context are

combined to detect high level context changes and situations. Technically

the correlation of low level context data to deduce situations can be real-

1.1 Motivation 19

ized through context reasoning algorithms [97]. Finally the system adapts

according to the detected situations.

To illustrate this process through an example, consider the scenario of the

automated calculation of shortest routes in a smart city. First a sensor net-

work, which includes induction loops, and road-side units is deployed along

the roads in the city. To calculate the route between two points, the cor-

relation of static data (city maps, bus routes) and dynamic data currently

acquired from sensors, e.g., which streets are currently crowded, have to be

collected and processed. Thus, the detection of the situation �tra�c conges-

tion� in a road segment would increase the delay estimation of the trip and

adapt the estimation to current conditions. Finally, a response is returned

back to the application. Now imagine that multiple users query the system to

get noti�ed about di�erent situations. Context data that are generated from

sensors deployed on di�erent locations have to be transferred and processed

in a timely and e�cient manner. In such a setting, the amount of data that

are transferred in the system a�ects the performance of the system, since an

excessive amount of data could lead to bottlenecks and network congestion.

Already for these simple scenarios, we need several pieces of low level con-

text (e.g., distances between cars, average speed), which could come from

di�erent sources (e.g., cars, road-side units, cameras on bridges). The ques-

tion that naturally arises is at which server to correlate this distributed con-

text data. One simple solution is to collect all the necessary information

at a central server and perform the reasoning there. In line with this cen-

tralised approach, many of the existing context aware systems are designed

to support speci�c use case scenarios (e.g., MS Easy Living [22] or Semantic

Space [80]) and cover a limited geographical area (e.g,. one building or con-

ference room). However this naive solution cannot provide a scalable solution

in scenarios with a large number of geographically distributed context sources

that is subject to our work due to several drawbacks: First, it does not utilize

communication resources e�ciently since un�ltered data has to be sent to a

possibly distant central server. This increases the network load and might

20 1 Introduction

lead to communication bottlenecks. Secondly, the timeliness of situation de-

tection may increase since the communication with a distant server induces

a longer delay, and communication bottlenecks further slow down this com-

munication. To avoid these problems, it seems reasonable to distribute the

reasoning process to several servers across the network.

An alternative to the centralised approach that increases scalability is the

partitioning of the network. In [50] multiple servers, each one responsible for

a certain geographic region, are used to perform context reasoning. Although

this approach is a �rst step towards distributed context reasoning, it still

executes reasoning tasks centrally on a dedicated server. Therefore, it may

lead to poor utilization of network resources and limited system performance.

Other existing approaches that enable the distribution of the reasoning task

[51,100] are method-speci�c, since they refer to a speci�c reasoning algorithm,

and they do not address the problem of distributed context reasoning as an

optimization problem to achieve e�cient utilization of network resources and

high system performance.

Given the limitations of existing approaches to provide a solution that

allows the e�cient distribution of reasoning tasks, our work addresses some of

the challenges imposed by distributed context reasoning. First, we present an

abstraction that allows for the distribution of reasoning tasks. Our proposed

model is based on the operator concept which represents a basic reasoning

task. Typically, the detection of a situation involves several sub-tasks to

process sensor data from several distributed sensors, detect sub-situations,

and combine these partial results to the �nal situation. By encapsulating

processing tasks into processing operators, we allow for the distribution of

the processing to several servers. Thus, the proposed system is based on

a generic formalization of distributed reasoning that allows for the use of

di�erent reasoning algorithms and the distribution of the reasoning process

according to di�erent optimization and QoS criteria.

In detail, our system uses a situation-centric model, which contains pre-

de�ned situation patterns, called situation templates that are stored as pre

1.1 Motivation 21

knowledge in the system. Situation templates are built from observable con-

text and processing units called operators. Di�erent reasoning methods such

as distributed Bayesian Networks or Petri Nets can be supported through

di�erent operators implementing the speci�c context correlators. Generally

each situation template forms a graph of operators, which cooperatively per-

forms a reasoning task. At runtime, situation detection is initialized by the

creation of a logical plan, which is derived from a situation template. This

plan describes the detection of a concrete situation at a certain location or

for a given object by an operator graph. Subsequently the system �nds a

mapping of the operators of the logical plan to physical hosts according to

the optimization goal of the operator placement. The result is a physical plan

that is �nally deployed to execute the reasoning process in an overlay network

of operators.

Given this model, we argue that the problem of optimally placing operators

onto a network of physical nodes, is an optimization problem that applies to

distributed context management systems as well as to Complex Event Pro-

cessing (CEP) and Distributed Stream Management Systems (DSMS). To

this end, we focus on operator placement strategies that search for optimal

mappings of operators to physical nodes such that the network load is min-

imized and application-de�ned latency restrictions are satis�ed. Operator

placement algorithms have been investigated mainly in the context of data

stream processing [2, 3, 28, 84], but also in CEP systems [59, 99]. Overall the

existing placement algorithms focus on di�erent optimization objectives [63],

e.g., latency, bandwidth or load depending on the system model and the

application constraints assuming central [28, 52] or distributed network con-

trol [59, 84, 99]. In this dissertation, we target large-scale scenarios, where a

centralized global view on the system is not possible. To this end, we propose

operator placement algorithms that use only local knowledge to optimize for

network load and satisfy application-de�ned latency constraints.

In more detail, the operator placement problems presented in this disser-

tation, target communication intensive applications, which require the online

22 1 Introduction

processing of large amount of data. These applications may include envi-

ronmental monitoring, IP network tra�c analysis, global sensor networks.

To this end, we �rst look at an optimization problem where the goal is to

minimize the network load put on the system by the operator network. By

minimizing the network load, we put less burden at the network and thus we

contribute to the avoidance of network congestion and increase the scalability

of the system. Furthermore, we formulate two constrained optimization prob-

lems, which consider application-de�ned latency constraints, under di�erent

assumptions on the application characteristics. In particular, we distinguish

the following two categories of communication intensive applications, depend-

ing on the size of the data units that they communicate:

• Applications with negligible processing delay, where network latency is

the main part of the end-to-end delay.

• Applications with substantial processing delay, where transmission and

processing delays are substantial parts of the overall end-to-end latency.

For each of the two categories, we present a constrained optimization operator

placement problem that considers a maximum end-to-end delay of detecting

situations. In that respect, the application can specify a threshold of the max-

imum latency that it can tolerate. First we target the applications, where the

processing delay is negligible, we consider the network latency as the domi-

nant factor of the end-to-end latency. To this end, we propose an operator

placement algorithm that solves the constrained optimization problem and we

analyse the interdependence of the bandwidth-delay product and delay opti-

mization. Then we provide a solution for the applications with substantial

processing delay. In that case, the end-to-end latency is a�ected by network

latency as well as by the processing delay. Therefore, we extend our system

model to consider processing and transmission delays, and we present another

operator placement algorithm solving this constrained optimization problem.

Before we give a detailed overview on the individual contributions of this

1.2 Background 23

dissertation, we introduce the research project "Nexus", which provided the

framework of this work.

1.2 Background

Our research in the area of distributed context reasoning is embedded into

the joint research project Nexus (Collaborative research Centre 627) of the

University of Stuttgart. The Nexus project is centred around the concept of a

context model (also called world model) that provides context-aware applica-

tions with context information. This model includes static context informa-

tion such as map information as well as dynamic information stemming from

sensors. Moreover, this information can be classi�ed as directly observable

context information and high-level context information (situations). Since

the Nexus platform federates the context models of the di�erent providers

and o�ers context-aware applications a global, consistent view on their con-

text data, centralized context management systems are obviously insu�cient.

Therefore in Nexus we have adopted a scalable, distributed architecture that

integrates di�erent services such as distributed query processing and context

reasoning. One of the core functionalities of the Nexus platform is the context

reasoning service, which is relevant to the work presented in this dissertation.

In particular, a basic contribution of this dissertation is to provide the con-

cepts for e�ciently deriving situations from observable context information

as part of the Nexus model. Next, we will brie�y describe the architecture of

the Nexus platform, which gives the background framework for our work.

1.2.1 Architecture

Nexus uses a three layer architecture, where applications are located on the

top layer. The middle layer forms a federation, which integrates the data

stored on context providers at the bottom layer [77]. Nexus provides di�erent

services based on the application needs. One Nexus core service is the query

processing service. For this service, Nexus follows a request-response model

24 1 Introduction

App

MWS

FN

App

FN

Federation

Applicationzb
Middlewarez

Layer
App

FN

Applications

Nexus Core
Services

Context‐Cast

Middleware
Services

Context‐aware
Workflows

Nexus System
Services

Reputationzand
Accounting

Smart
Factory

Visualization
Client

…

FN FN
Federation

Layer

Contextz
Informationz

Layer

FN

CP CP World Wide Space

Context‐Cast

Context
Reasoning

Distributed
QueryzProcessing

Augmented
WorldzData

History
Warehouse

Context
Broker

Accounting

Operator
Repository

Sensor
Data

Figure 1.2: Extended Nexus Architecture

receiving queries from applications. Based on spatial restrictions in the query,

the federation layer determines the relevant context providers and forwards

the query to them. In a second step, it integrates the results and sends them

back to the application [64]. Another important service in Nexus platform

is the event management service. In Nexus, physical world events can be

observed, by calculating the occurrence probability and comparing this to

the speci�ed threshold probability [16].

In this dissertation we tackle the problem of distributed context reasoning

that comes as an additional service of the Nexus platform. Our work is part

of the extended Nexus platform that was designed during the second funding

period of the Nexus project. The extended Nexus architecture [65] retains the

idea of separating applications, federation, and data providers. However, the

extensions add more �exibility to the federation layer and integrate historical

data and situations within the context data layer. Figure 1.2 depicts the

extended Nexus architecture with its three layers: (1) Context Information

Layer, (2) Federation Layer and (3) Applications & Middleware Layer. In the

next, we present the extended Nexus platform as shown in Figure 1.2.

1.2 Background 25

1.2.2 Context Information Layer

The Context Information Layer consists of context servers from arbitrary

providers. It provides context data at di�erent level of details ranging from

sensed context data, over static context data to historical context data. His-

torical data, such as the trajectory of a moving object or the value pattern

of a thermometer, is stored by specialized history context providers. Such

data can be integrated into the context model by means of meta data for

attributes, which represents the period when an attribute value is valid. His-

tory context providers typically use lossy data compression algorithms, e.g.,

line simpli�cation, to reduce the amount of data to be stored [56, 66]. The

data from history context providers can be exported to history warehouses

for more sophisticated analysis, e.g., to develop algorithms for tra�c jam

prognosis.

1.2.3 Federation Layer

The Federation Layer is a distributed platform for context services. It works

on hybrid systems [42] and integrates infrastructure-based networks and ad-

hoc networks of mobile devices, as depicted in Figure 1.2. There are two types

of prede�ned Nexus services: Platform Services are context services typically

used by applications, such as Context Reasoning, Context Cast, or Stream

Query Processing. In contrast, Core Services provide the functionality on

which the Nexus Platform Services rely, including Context Broker, Reasoning

Templates, or Operator Repository.

Context Broker. The Context Broker discovers relevant context providers

for query processing or situation recognition. To this end, it indexes all con-

text providers by means of their models and allows for querying for relevant

providers whose models intersect a certain clipping of the federated context

model. Moreover, it provides distributed index structures [67] for accessing

trajectory data on moving objects. These objects are not bound to a spe-

ci�c context provider and their trajectory data may be distributed over many

26 1 Introduction

providers.

Distributed Query Processing. Streamed data is highly volatile, poten-

tially in�nite, and allows only sequential access. This calls for dedicated

stream processing functionality to enable on-the-�y processing of streamed

data. The Operator Repository enables stream processing, providing suit-

able data stream operators. To avoid load congestion on a particular site,

partitioning and distributing queries across processing node is an essential

step to make stream processing a�ordable.

Contextcast. The Contextcast service enables applications and services

to send messages to entities with a certain context. Message distribution

does not rely on explicit multicast groups, but uses an overlay network of

context-based routers to forward messages instead. This approach is similar

to content-based publish/subscribe systems, however, the forwarding struc-

tures are adapted to exploit properties of context information such as more

gradual changes.

Context Reasoning. Context reasoning derives new knowledge from low

level context. Since distributed context reasoning is the focus of this dissera-

tion, we will determine the details of the approach during this thesis. In brief,

Nexus uses a situation-centric approach describing each situation by a set of

rules, which constitutes a Situation Template. Each Situation Template

generates a logical execution plan, a directed graph describing the data �ow

and the steps of the algorithm. As already mentioned, for scalability rea-

sons, the situation recognition process must be distributed to several physical

nodes. The distribution of the logical execution plans to physical machines

is governed by factors such as latency, bandwidth, and load.

1.2.4 Applications and Middleware Layer

Finally, the Applications & Middleware Layer enables application speci�c

additions to the platform. It is possible to outsource parts of the applica-

tion logic to the execution environment, with dedicated machines performing

1.3 Contributions 27

application speci�c tasks. The application logic can be moved into the mid-

dleware layer using Context-aware Work�ows [109] together with Context

Integration Processes [110].

1.3 Contributions

The focus of this dissertation is on the development of concepts and mecha-

nisms for a distributed context reasoning system. In detail, the contributions

of this work are:

• Generic System Model for Context Processing. We present a

generic system model using an abstraction that allows us to handle the

problem of distributed context reasoning as an operator placement prob-

lem, known from data stream processing. In particular, we adopt the

operator graph model from stream processing to express the correlation

of several pieces of context to detect a situation.

• Architecture of a Distributed Context Reasoning System. We

introduce an architecture that enables distributed context reasoning by

distributing the reasoning process to several physical nodes such that

the system performance is improved. The distribution of the reason-

ing process is transparent to the application, which has access only to

the �nal outcome of the reasoning process. Therefore, the design of

the architecture decouples the two problems of context reasoning and

operator placement.

• Operator Placement Algorithm for Minimizing Network Load.

We present a placement algorithm that �nds a mapping of operators to

physical hosts such that the induced network load is minimized. By

minimizing the network load, we contribute to the scalability of the

system, since the system gets slower loaded and thus, can handle a

large number of data stream tasks. The proposed algorithm works in a

28 1 Introduction

distributed way, i.e. the operators place themselves on physical nodes

based on their local view.

• Operator Placement Algorithm with Latency Constraints. We

also present two operator placement algorithms that consider application-

de�ned latency requirements. The ultimate goal is to ful�ll application-

de�ned latency constraints while minimizing the network load. Thus,

apart from the optimization goal, here we try to ful�ll also end-to-end

latency constraints. In a �rst step, we target applications with negli-

gible processing delay. Then, we consider applications with signi�cant

processing and transmission delay.

• Evaluation of Operator Placement Algorithms. As part of this

dissertation, we provide an evaluation of the proposed operator place-

ment algorithms by using a network simulator as well as an emulator

test bed that allows a more accurate testing of the performance of the

placement algorithm that considers processing delays.

1.4 Structure

The structure of the dissertation is as follows: In Chapter 2, we present an ar-

chitecture for a distributed context reasoning system that has been designed

in the frame of this dissertation. In that chapter we will introduce the op-

erator graph model, which is a core model abstraction for our approach to

distributed context reasoning. Moreover, we present the proposed architec-

ture and we explain in detail its components and functionalities, before we

explain the novelty of our proposed architecture with respect to the state of

the art context-management systems. In Chapter 3, we present the operator

placement problems and algorithms considered in this dissertation. For each

of the three operator placement problems, we �rst present the system model

that help us to formulate the problem, before we present the corresponding

operator placement algorithm. Furthermore, at the end of this chapter, we

1.4 Structure 29

present related work in the area of operator placement algorithms with respect

to the proposed operator placement algorithms. In Chapter 4, we present the

evaluation results that were collected during the testing of the operator place-

ment algorithms presented in Chapter 3 before we conclude our work and we

discuss directions for future research in this area in Chapter 5.

31

2 Architecture

In this chapter, we are going to present our solution for the design of a dis-

tributed context reasoning system [94]. In our approach, context reasoning is

used to detect high-level contextual changes of the environment, called situ-

ations, from various pieces of low-level context that can be directly acquired

by sensors. Our work focuses especially on large-scale scenarios where the

context sources are distributed and cover a large geographic area. Imagine

for instance a navigation service in a smart city, where real-time information

coming from cameras and sensors, located in di�erent places in the network,

is correlated with static data, such as city maps to detect tra�c congestion

points and derive optimal routes for users. Context data coming from dif-

ferent places across the route should be transmitted through the network

in order to get processed and �nally the result should be delivered to the

application.

Although extensive work has been done on the representation and reason-

ing of context information, most existing context reasoning systems do not

address or only address partially the e�cient in-network processing of context

data. In order to tackle this problem, we propose a novel architecture that

uses a graph-based representation for reasoning tasks, which allows for their

distributed execution in the network.

More precisely, our system model is based on the abstraction of the operator

graph, which formulates the context reasoning task through a directed graph

of processing units, called operators. We show later how this model can

depict several problems from di�erent application domains. The operator

graph is used as an interface between the context reasoning algorithms and

the network control layer, which is responsible for the distribution of context

32 2 Architecture

reasoning. On the one hand, the operators enclose the functionality of the

context reasoning algorithm. On the other hand, they constitute the smallest

processing unit that can be deployed on a physical host.

In the following, we present �rst our system model and we introduce the

core notion of our architecture, the operator graph, before we present the

architecture of the system and we discuss the related work in context man-

agement systems.

2.1 System Model

Our system model consists of a physical network model that represents the

physical interconnected network of physical nodes hosting the reasoning tasks

and an execution model representing the service functionality to be executed

on the physical hosts.

In particular, we assume a network of physical nodes that are spread over

a wide geographical area and are capable of hosting reasoning tasks. Each

physical node has di�erent speci�cations in terms of computing capacity and

is placed in certain location in the network, thus inducing di�erent network

latency depending on the node to communicate. Therefore the execution of

a reasoning task may di�er in terms of communication and processing delay

depending on the physical node that hosts the task. To this end, the selection

of the physical hosts that will execute the reasoning tasks has a strong impact

on the performance of the system in terms of the network load and end-to-end

delay.

In our execution model, we assume that each reasoning task can be rep-

resented by an operator graph, which is a core abstraction of our proposed

system architecture. Initially, the operator graph was introduced for dis-

tributed data stream processing to model a stream processing task as an in-

terconnected graph of traditional relational operators such as merge, join, and

select. However, this model can be adopted by other application domains,

since the operator can represent an arbitrary processing task on its input

2.2 Situation Model 33

streams to generate an output stream as we explain in Section 2.4. Thus, the

operator graph model provides a uni�ed representation of the service speci�c

models.

In more detail, the operator graph is a graph that constitutes an abstract

representation of the various functionalities to be deployed, together with

the description of their interdependency. In particular, the di�erent func-

tionalities are encapsulated into primitive processing units, which are called

operators. The operators then act as black boxes which hide the functionality

of the speci�c services. In addition, the edges of the operator graph denote

information exchange between operators. Furthermore, additional informa-

tion that is useful for placing the operators onto the physical network can be

expressed by restrictions either on the operators (e.g., computational load,

memory requirements) or on the edges of the graph (e.g., latency require-

ments, bandwidth consumption).

2.2 Situation Model

In our proposed system architecture, we use the operator graph model, pre-

sented in previous subsection, to represent a reasoning task that process ob-

servable context to detect situations. In that respect, the context reasoning

task splits into basic processing units, each one representing a partial result

of the complete reasoning task. The idea is to exploit this characteristic of

combining partial results to generate higher level context, by assigning the

partial reasoning tasks to di�erent physical hosts in order to increase the

performance of the system.

Therefore, we introduce here the context reasoning operators, which process

observable context data to infer situations. Given the adopted operator graph

model, several algorithms could be used to detect situations, as long as they

follow the principle of combining partial results. As explained in the previous

section, a situation is composed of multiple forms of elementary context and

describes the combination of circumstances at a given moment, a state of

34 2 Architecture

Operator GraphOperator Graph

Ph i l N t kPhysical Network

Figure 2.1: Mapping of operator graph to physical hosts.

a�airs. Here we use a situation-centric approach, where each situation that

can be detected by the system, is prede�ned by experts and stored as pre-

knowledge of the system. For each situation one or more prede�ned situation

recognition patterns, called situation templates that describe the relations

between the various pieces of context, might exist. Situation templates are

graphs consisting of nodes providing observable context and operator nodes.

Operator nodes are method speci�c and describe the processing of the input

data to derive high level context. In Fig. 2.2 we see an example of a situation

template describing the situation �Tra�c Jam�. For the detection of this

situation, we assume three kinds of observable context: sensor data about

the number of cars in this part of the road, the average speed of the cars,

and an internet text sensor which scans the WWW space to �nd context

information related to the location of the situation. The unary operators

connected with the external sources act as �lters, which allow only the data

within a range to pass to the next operator. Then Bayesian operators are

applied to compute the probability of the (sub-)situations as described in [83].

2.2 Situation Model 35

s5: Bayesian Operator

s1 s2 T F

true true 0.7 0.3

true false 0.0 1

s3 s4 T F

true true 0.6 0.4

true false 0.0 1
false true 0.0 1

false false 0.0 1

true false 0.0 1

false true 0.0 1

false false 0.0 1

s4: Bayesian Operator

s1: value<25

s1 T F

p 0.9 0.1

s2: value<20km/h s3: string==“traffic jam”

s2 T F

p 0.8 0.2

s3 T F

p 0.8 0.2

speed‐sensorcounter‐sensor InternetText‐sensor

s1: value<25 s2: value<20km/h s3: string== traffic jam

Figure 2.2: Situation Template: "Tra�c Jam"

In order to calculate the probability of a (sub-)situation, we need to know

the values of the so called Contribution Probability Tables (CPT). CPTs are

not prede�ned, but situation template might include some initial values, as

shown in Fig.1, that later will be changed by a learning process.

Fig.2.1 shows an example of mapping an operator graph -which corresponds

to a situation template in our model- onto physical hosts according to our

system model. In that respect, the operator graph acts as a logical plan by de-

scribing the operators and their interdependencies, while the overlay network

of operators that is built after the mapping of the operators onto physical

hosts as shown in Fig.2.1 represent the physical plan, since it assigns the rea-

soning operators onto physical hosts. Hence, it becomes challenging, given

a logical plan and representation of the physical network, to �nd an optimal

physical plan with respect to di�erent optimization criteria e.g., network load

or latency. Note that typically in an operator graph, the data sources and

sinks are pinned, i.e., they are bound in speci�c physical hosts in the net-

work. Therefore, the problem of converting a logical plan to a physical one,

is mainly associated with the placement of the unpinned (reasoning) opera-

36 2 Architecture

Auxiliary Services

Context Aware Application

Request
ResponsePl

an

Feedback

Application
Layer

Context
Reasoningy

Logical
Planner

Situation Template
Repository

Execution Environment

p

f
 P
hy
si
ca
l
 P

Feedback
Adaptation

Reasoning
Layer

Physical
Initial

Operator

Distributed
Operator
ExecutionDistributed

Operator

Context Broker

Resource Model

Logical Plan

lo
ym

en
t
 o
f p

Plan
Operator
Placement

Placement

World Model

Observable
Context

D
ep

World

Sensor Data Static Data Historical Data Situation Data Model
Layer

Figure 2.3: System Architecture

tors onto physical hosts. Later on, in Chapter 3, we de�ne in a more formal

way the operator placement problem and we describe di�erent methods to

solve this problem.

2.3 System Architecture

We now present our system architecture for distributed context reasoning.

Fig. 2.3 shows the components and the interfaces of the distributed reasoning

system, which belong to three di�erent layers: World Model Layer, Context

Reasoning Layer, and Application Layer. In the basic layer, the World Model

provides the observable context to the situation detection components, which

constitute the second layer that processes the observable context to derive

high level context in an e�cient way. The context-aware application lies on

the top layer, representing the user that interacts with the system either to

query for situations of certain objects or locations, or subscribing for events

on detected situations. In addition to these basic parts, the auxiliary services

support the core components by providing additional information to situation

detection components.

The system operates in two distinct phases: the Initialization Phase and the

Execution Phase. During the initialization, the system creates a query plan,

2.3 System Architecture 37

which describes a reasoning task by an operator graph with pinned context

sources and sinks. Then an optimization step takes place, which maps the

operator graph to an overlay network, where the free operators are placed

to physical nodes such that an optimization goal is achieved. The operator

graph is then deployed on the physical network and the system enters the

execution phase. During the execution phase the reasoning task is executed

in a distributed way on the physical network while the system continuously

optimizes the mapping of the operator graph by adapting the overlay operator

network to the current network condition. Next we describe in detail the core

components of the architecture:

Query Planner. The Query Planner receives the user speci�cations and

it retrieves the corresponding situation template from the Situation Tem-

plate Repository, which stores all the available situation templates. The user

speci�cations include the de�nition of the detectable situation as well QoC

(Quality of Context) and QoS (Quality of Service) requirements of the user.

After the retrieval of the situation template, the Query Planner contacts

the Context Broker [64] to discover the context sources needed to perform

the reasoning task. For instance, in the tra�c jam scenario, it might ask for

all camera sensors at a certain road or the context servers providing informa-

tion about the average speed of cars on this road. In general, the Context

Broker can be realized as a distributed lookup service for context sources,

where each source is described by the kind of data it provides, the quality

of the provided data and the spatial area covered by the data. Finally, the

Query Planner encapsulates each partial reasoning task in an operator, as

speci�ed in the situation template, and pins the sources and the application

to their corresponding physical hosts in the network. The result of this proce-

dure is an operator graph, which contains pinned (sources, application) and

unpinned operators. This operator graph acts as an interface between the

Query Planner and the initial placement component.

Initial Operator Placement. The Initial Operator Placement assigns

the unpinned operators of the operator graph to physical hosts according to

38 2 Architecture

de�ned optimization criteria. To achieve this goal, it executes an operator

placement algorithm in a centralized way. In particular, the initial placement

component �rst contacts the Resource Model to get the information about the

physical nodes and links that represent the available resources in the physical

network such as latency, available bandwidth, or load. The Resource Model

is dependent on the placement algorithm and can be realized as a distributed

lookup service. After retrieving information about the current network con-

dition, the initial placement should �nd a mapping of the unpinned operators

to physical hosts which optimizes for a certain criterion. Usual criteria for

placement optimizations are network usage, latency, and load [8,63,84,92]. In

Chapter 3, we present di�erent placement algorithms that target di�erent op-

timization goals and we discuss other existing approaches for the placement

of operators onto physical hosts. The output of the placement algorithm

is an overlay operator network, which extends the operator graph with the

additional information of the physical mapping of the operators. Then the

operator graph is �nally deployed on the physical network and the system

enters the execution phase.

Distributed Operator Execution. After the deployment of the physical

plan, it starts the distributed execution of the operators, which realizes the

reasoning task in a distributed way. If the user has subscribed for certain

situations, this task is executed permanently and the user is noti�ed of new

situations when they are detected. In particular the distributed operator exe-

cution receives the context data from the selected sources of the World Model,

performs the reasoning task and then noti�es the application. Furthermore it

also writes the result of the context reasoning back to the World Model. As

we have already mentioned, the situation is a part of the World Model and

therefore its current status is to be updated. This approach also allows for

the storage of historic situations.

Distributed Operator Placement. Since the network conditions might

change during the Execution Phase, the initial placement might not ful�ll at

some point in time its optimization goal anymore. The distributed operator

2.4 Overview of existing approaches and systems 39

placement service is responsible for the adaptation of the operator placement

to the current network conditions. Here, the operator placement is done in a

distributed way and it modi�es, if necessary, a part of the physical plan. In

other words, when the distributed placement algorithm �nds a better place-

ment for an operator, it initiates the migration of this operator to another

physical host by modifying this part of the physical plan. Then the execu-

tion environment is responsible for the deployment of the new physical plan.

This process is an event-driven process, which is triggered by changes of the

network conditions. Most of the existing placement algorithms provide dis-

tributed placement strategies that adapt the operator placement during the

execution of the operator graph based on local information. For instance

in [92] we proposed a distributed version of our placement algorithm optimiz-

ing for network usage.

Feedback Adaptation. The user can send feedback to the system about

the occurrence of the detected situation in the real world (e.g. false posi-

tives/negatives). The user feedback is used by the Feedback Adaptation to

improve the quality of the situation detection. In particular the feedback

adaptation component is responsible for the re-con�guration of the operators

during the distributed operator execution. The operator con�guration is de-

pendent on the reasoning algorithm. For instance, in case of the Bayesian

Networks, the algorithm proposed in [120] can be used to calculate the new

values of the CPTs.

2.4 Overview of existing approaches and systems

In this section, we discuss related work in the �eld of context management

systems but also in the related �elds of Complex Event Processing (CEP) and

Data Stream Management Systems (DSMS). As we analyse later, these di�er-

ent research communities have developed systems that share some common

goals and aspects. In particular, from a network viewpoint, context manage-

ment systems share common characteristics with CEP and DSMS systems,

40 2 Architecture

since they all require the timely processing of data �ows from a set of sources

dispersed over the network to several sinks. In that respect, Gucola et al. [74]

have tried to analyse the commonalities and di�erences between complex

event processing and data stream processing. In this work, they introduce

the concept of information �ow processing (IFP), which aims to provide an

abstraction model that applies for both CEP and DSMS systems. This model

could serve also as a baseline to discuss the common characteristics between

IFP and context management systems.

The following section gives an overview of state-of-the art approaches in

context management systems. Then, we discuss CEP and DSMS systems

as IFP systems and we analyse their di�erences and commonalities with the

presented context management systems.

2.4.1 Context management systems

In the last years, researchers have developed several context management sys-

tems proposing di�erent architectures depending on the target applications.

Although existing systems support distributed application scenarios, they ad-

dress the problem of the scalability and e�ciency of context data processing

in a distributed environment partially. Context reasoning is usually consid-

ered independently on the strategies used for distributed context processing,

which might lead to in�exible models that cannot exploit the distributed

nature of context data. In our architecture, we address the problem of dis-

tributed context reasoning as a whole. Therefore, we propose a model that

provides the interface between the context reasoning methods and the distri-

bution algorithms and enables the e�cient distributed context reasoning. We

see now in more detail how our system di�ers compared to existing context

aware systems.

Context management systems may vary according to the adopted context

abstraction and the respective context model. Other di�erentiation criteria

refer to the architectural design of the context management systems and

2.4 Overview of existing approaches and systems 41

Centralized
Distributed

Geographic-
based

Content-
based

Load-
based

Operator-
based

Application-based

Middleware-based

Hydrogen[55]
RCSM[116]
Bikakis et al.[19]

Context Management
Framework [61]
SOCAM[49]
Context Toolkit[40]
Gaia [95]
Super Spaces[10]

PACE[54]
CoBrA[29]
CoCA[43]

Gu et al. [51]

Ranganthan et al. [89]
Nurmi et al. [78]
Schmidt et al. [100]

Rizou et al. [94]

Context Management Systems

Figure 2.4: Context aware systems classi�cation

the respective system types. Since the main contribution of our proposed

system, is the �exible execution of context reasoning tasks to support large-

scale scenarios and address the geographical dispersion of the context sources

and sinks, our analysis will cover mainly the architectural design principles

of the context management systems.

Context management systems typically consist of the context acquisition

layer being comprised by the context sources and the context consumption

layer, which is realized through the context consumers, i.e., sinks. Context

processing could imply an additional optional layer representing the middle-

ware, which is responsible for processing the context and deliver it to the

context consumers. We classify the context management systems that do not

use any middleware infrastructure as application-based systems, since they

rely solely on the context processing on the application side (Figure 2.4).

Furthermore, we distinguish middleware infrastructure systems in two main

categories according to the processing model they adopt. The simpler ap-

proach is the centralized architecture where a single central context server

42 2 Architecture

Application‐based Middleware‐based Middleware‐basedpp
Centralized Distributed

Figure 2.5: Processing Models

is used to collect, process and deliver the related context to the consumers.

This approach has the obvious drawbacks of the centralized solutions, having

a single point of failure.

An alternative solution is a distributed architecture, where multiple servers

distributed in the network are available. Here we distinguish among the dif-

ferent distributed architectures proposed in the literature according to the

rationale of the distribution they follow. The geographic-based distribution

refers to the dispersion of multiple servers, where each one is responsible

for a speci�c domain and cooperates to process and deliver the context to

the consumers. Although this approach increases scalability compared to

the centralized solution, it may still lead to poor system performance, since

it does not allow the distribution of the reasoning tasks to multiple server

according to speci�c optimization goals e.g., minimization of network load.

The semantic-based distribution clusters peers according to the type of the

queries they can answer, while the load-based distribution performs load bal-

ancing among multiple context servers. Although these approaches follow a

distributed processing scheme, they target speci�c goals, e.g., reuse of par-

tial results (semantic-based distribution) or load balancing among the server

(load-based distribution). Our approach follows an operator-based distribu-

tion to allow the optimization of the distribution (operator placement) ac-

2.4 Overview of existing approaches and systems 43

cording to di�erent optimization goals. Thus, we propose a �exible distri-

bution scheme which considers di�erent optimization objectives according to

the application characteristics and the system conditions.

Figure 2.4 provides an overview of the major context management systems

and their position with respect to the adopted system architecture and its

respective processing model. Next, we explain in detail the design of these

systems and their relevance to our work.

2.4.1.1 Application-based Architectures

The context-aware systems classi�ed in this category, do not use middleware

infrastructure and rely solely on the processing performed on the application

nodes.

Hydrogen [55] is one representative system of this category. Hydrogen

follows a fully decentralized approach for mobile context sharing assuming a

network of mobile nodes, willing to share context information. In this respect,

Hydrogen model di�erentiates between the remote and the local context and

it enables context sharing between nodes that lie in close proximity. In par-

ticular, Hydrogen architecture is a three-tier architecture consisting of an

application, a management and an adaptor layer. All layers are realized in

each context-aware device and enables the communication with other devices.

Hydrogen framework covers small scale scenarios where context sources and

sinks are located close to each other.

In [116], Recon�gurable Context-Sensitive Middleware (RCSM)is presented

to facilitate the development and operation of real-time context-aware soft-

ware in ubiquitous environments. RCSM is a context-sensitive middleware,

which uses an object-oriented embedded middleware. By context-sensitive

here it is meant the capability of the device to initiate and manage the ad-

hoc communication with other devices based on the contextual of the local

devices and its surroundings. RCSM categorizes the context according to its

source, i.e., network context, device context, and user interaction context and

44 2 Architecture

it provides speci�cations about the relationships of various pieces of context.

Moreover, it enables the context-aware adaptation through the invocation of

appropriate methods upon an event of a context match.

In [19] the authors have proposed a distributed reasoning method that is

based on the Multi-Context Systems paradigm. According to their approach,

ambient agents encode local context knowledge in rules (contexts) and ex-

change this information with other agents. In that respect, each peer in the

network can evaluate the remote and local context to detect high level context

changes. The reasoning method allows the resolution of con�icts according

to the con�dence of the context source.

All these systems assume a di�erent system model with respect to ours,

since they use limited computing capacity due to the energy constrained ap-

plication hosts, which are typically mobile devices. Furthermore, in their

system model, the communication among the applications and the sources

is done in ad-hoc way. Therefore these systems cover usually small-scale

scenarios, in contrast to our proposed architecture that targets large-scale

scenarios.

2.4.1.2 Middleware Infrastructure Context Management Systems

In this category, we classify systems that do not rely only on the comput-

ing capabilities of the context sources and sinks, but also use middleware

infrastructure such as context servers, that are responsible for collecting and

processing context data. These architectures typically enable the collection of

pieces of context from multiple dispersed sources. As shown in Figure 2.4, we

distinguish between centralized and distributed middleware-based systems.

In the next paragraphs, we present existing systems that belong to these two

main subcategories of middleware-based systems.

2.4.1.2.1 Centralized In [61], a context aware framework is presented that

facilitates the development of context-aware applications. The framework

2.4 Overview of existing approaches and systems 45

provides an Application Programmer Interface (API) using an extensible on-

tology which de�nes the contexts that can be used from clients. The whole

architecture of the framework is based on a blackboard-based approach. Ac-

cording to this communication paradigm, all context data update a black-

board that acts as a central knowledge base and is kept by the context server.

In the proposed framework the context server is a mobile terminal having di-

rect communication with other clients. Before the context data are communi-

cated to the context server, a pre-processing step that convert raw measures

captured from sensors into a representation de�ned in the context ontology.

Therefore this approach is appropriate for small-scale scenarios, when the

context sources and sinks are mobile devices that remain in close proximity.

The Context Toolkit [40] is one from the �rst attempts to provide a frame-

work for the support of the design and development of context-aware applica-

tions. The Context Toolkit provides a conceptual framework that separates

the acquisition and representation of context from the delivery and reaction to

context changes by the context-aware application. A fundamental concept of

the framework is the context widget which provides an abstraction that hides

the complexity and variety of context acquisition mechanism, e.g., sensors,

RFID, etc. On top of context widgets, the context interpreters are respon-

sible for performing logical inference on the primitive (low-level) context to

derive high level context. Furthermore, context aggregators are used to collect

multiple pieces of context within the same software component and make it

available to the context-aware applications. Context services are the respon-

sible components for performing the reaction to the contextual changes. In

that respect, they provide an abstraction, similar to the abstraction for con-

text acquisition by the context widgets, for the adaptation of context-aware

applications to contextual changes. Finally, another important component

of the Context Toolkit is the discovery component which enables the discov-

ery of the various context widgets, interpreters, aggregators and services in

the framework. The implementation and actual architecture of the Context

Toolkit relies on a centralized model, where a single central server processes

46 2 Architecture

the multiple pieces of context. Although the conceptual framework could be

extended to provide a federation of interpreters, aggregators and discoverers,

Context Toolkit does not tackle the problem of optimally distributing the

workload among several context interpreters.

The Service-Oriented Context-Aware Middleware (SOCAM) [49] is a mid-

dleware that facilitates the development of context-aware applications. The

proposed middleware aims to convert physical spaces to semantic spaces,

where context can be exchanged and used to adapt the behaviour of the sys-

tems to changes of the environment. In more detail, the system architecture is

comprised by the Context Providers, Context Interpreter, Context Database,

Service Location Service and Context-aware Mobile Services. The overall ap-

proach is based on a set of distributed context providers which communicate

with a central server (context interpreter) that performs the context reasoning

and delivers its output to the mobile clients (context-aware mobile services).

Context representation and sharing is achieved through the use of ontologies.

SOCAM architecture follows a centralized approach and therefore it cannot

support large-scale scenarios.

Gaia [95] is a middleware solution that enables the management of con-

text aware applications. Gaia introduces the concept of Active Space that

represent a small-scale physical space, e.g., room that is controlled by a con-

text management entity. In particular, the Gaia architecture consists of three

major components: the Gaia Kernel, the Gaia Application Framework, and

the Applications. The Gaia Kernel is responsible for the management and

deployment of distributed objects and basic services that are used by all appli-

cations. Gaia Appplication Framework provides a set of component building

blocks that support the development of context-aware applications and ad-

dress mobility and dynamism. The applications provide the actual functional-

ity of the context-aware applications converts a physical space into an Active

Space. Gaia supports the development and deployment of context-aware ap-

plications in small scale and therefore it relies on a centralized context server.

To address the problem of scalability, authors propose the construction of

2.4 Overview of existing approaches and systems 47

the SuperSpaces [10] that are supersets of Active Spaces. For an instance, a

building could be a Super Space of multiple Active Spaces rooms. To address

scalability the authors propose the use of an additional interaction layer that

interconnects the Active Spaces. The communication among the basic context

management entities (Active Spaces)could be realized through a recursive or

a peer-to-peer interaction. Nevertheless, this work does not provide an insight

on the actual distribution of reasoning tasks as it is based on a partitioned

control of the global environment.

2.4.1.2.2 Distributed Closer to our work are approaches that adopt a

distributed architecture, assuming multiple context servers. Existing ap-

proaches, such as [29, 43, 54] propose a geographical-based distribution of

servers, where each server is responsible for a speci�c region e.g. a building.

For instance, Chen et al. [29] proposed the Context Broker Architecture

(CoBrA) as a framework to build smart environments. According to this

approach, a central server called Context Broker is used to collect context

data and derive high level context. The context consumers (clients) are sub-

scribed to context brokers so that they get noti�ed about the detection of high

level contextual changes. Context Broker has three main components: the

CoBrA Ontology which de�nes the context vocabulary for sharing context

knowledge, the CoBrA resoning engine which performs the actual context

reasoning to derive high level context and the Module for Privacy Protection

(MoPP) which uses a policy language that enable users to de�ne privacy pro-

tection rules according to which the permission to share a user's contextual

information is decided. From an architectural viewpoint, CoBrA addresses

large-scale scenarios, through the collaboration of multiple context brokers,

distributed over the network, forming a broker federation layer.

In [43] a Collaborative Context-Aware (CoCA) service platform is pre-

sented to enable the development and operation of context-aware applica-

tions. The platform consists of four major building blocks: the interface,

the data source, the core service and the supplementary service. The in-

48 2 Architecture

terface manager manages the user interface and the interface of the CoCA

platform to application-speci�c modules. Data source represents the group

of components that provide context data to the core service. The context

data are represented according to the Generic Context Management (GCoM)

model which uses generic as well as domain-speci�c ontologies for knowledge

representation. The core service collects the low-level data from the data

source and performs the reasoning tasks to derive high level context. There-

fore it uses a RAID-Action engine (Reasoning, Aggregation, Interpretation,

Decision and Action engine) that processes the low level context by aggre-

gating partial context information or reasoning over it to detect high level

contextual changes. Finally, the supplementary service includes components

for knowledge discovery and collaboration services. The collaboration man-

ager supports peer-to-peer negotiation and communication protocols among

devices to assist RAID process. To this end, CoCA platform supports the

participation of multiple servers in the reasoning process due to the collabo-

rative peer-to-peer communication among devices, such as PDAs or PCs in

the neighbourhood.

Henricksen et al. [54] have also motivated the need for middleware in

context-aware systems. In their work, they provide an overview of state-

of-the-art middleware in context-aware systems and describe their proposed

solution, the so-called PACE (Pervasive, Autonomic, Context-aware Environ-

ments) platform. The authors present a set of requirements for middleware

including mobility, security, scalability, and ease of deployment. The main

components of the PACE platform is the context management module, which

handles the context and the preference management component, which tai-

lors the decision-support to the di�erent context-aware applications. The

authors propose the use of a distributed context management layer consist-

ing of multiple context servers, collaborating to e�ciently perform reasoning

tasks. However, similar to [29, 43], they consider the partitioning of the net-

work to di�erent servers and they do not tackle the problem of e�ciently

distributing the reasoning tasks in multiple servers.

2.4 Overview of existing approaches and systems 49

Gu et al. [51] proposed a content-based distribution, where the reasoning

tasks are distributed to the servers according to the context they refer to. In

particular, the authors proposed a protocol for exchanging messages about

context information which enables the performance of reasoning in a dis-

tributed fashion. Their system model is based on an overlay network where

the peers are grouped in semantic clusters according to the type of the queries

that they can answer, expressed in �rst-order logic. In our architecture, we

cope with uncertain data that need more sophisticated reasoning methods

and furthermore we assume large-scale overlay networks, where the distribu-

tion of the reasoning task should be done automatically according to di�erent

optimization criteria.

Finally other existing approaches, such as [78,89,100] proposing distributed

solutions for context management, they aim to distribute the workload in

multiple servers targeting a load-based distribution. In more detail, Ran-

ganathan et al. [89] developed a middleware infrastructure which is based

on distributed context servers called context synthesizers. The context syn-

thesizers are spread in the network and support di�erent reasoning methods.

This approach distributes the computational load among multiple context

servers. However it does not allow for the distributed execution of a rea-

soning task on multiple servers, and as a consequence it may lead to poor

network and system performance compared to the optimized distributed ex-

ecution proposed by our system architecture. Nurmi et al. [78] present a

distributed agent-based architecture for distributing the reasoning process.

In this model devices perform simple context reasoning and send their results

to a remote server for more advanced context reasoning such as classi�ca-

tion that requires more powerful computational capabilities. Although this

work enables distributed context reasoning, it lacks a strategy about how

the reasoning task is distributed in the network. Another approach [100] uses

distributed Bayesian Networks and proposes a placement algorithm that clus-

ters the nodes of a Bayesian network to reduce the communication overhead.

Although this approach is close to our work, it still only provides a solution

50 2 Architecture

to a method speci�c problem. Our goal is to create a generic formalization,

where di�erent reasoning algorithms can be distributed by di�erent placement

algorithms.

From the overview of existing distributed context management systems, it

is evident that existing approaches focus on speci�c distribution aspects us-

ing multiple servers to perform load balancing or increase the reuse of partial

results. In that respect, existing systems lack the �exibility to adjust the

distribution of reasoning tasks such that resources are used e�ciently and

application-de�ned constraints are respected. Our approach �lls this gap by

proposing an operator-based distribution, where the reasoning task is decom-

posed in primitive subtasks that can be placed onto physical hosts according

to di�erent optimization goals, such as network usage, latency, throughput

etc. The proposed operator graph model allows the consideration of di�er-

ent optimization goals based on the application characteristics and the sys-

tem condition. For instance, communication-intensive applications that put

heavy load on the network could be optimized for reducing the amount of

data communicated in the network. To this end, our proposed architecture,

which decomposes the reasoning tasks into a graph of reasoning operators

that can be �exibly mapped onto the physical network enables the e�cient

processing of context data in large-scale scenarios.

2.4.2 Information Flow Processing

Relevant to context-aware systems are Complex-Event Processing (CEP) sys-

tems and Data Stream Management Systems (DSMS). On the one hand,

data stream management systems have been an evolution of the traditional

database management systems aiming at handling continuous data streams

without �rst storing data into a database. On the other hand, complex

event processing systems have their roots in the traditional Pub/Sub (Pub-

lish/Subscribe) systems, which aim to e�ciently disseminate information from

a group of publishers (data sources) to a group of subscribers (data sinks).

2.4 Overview of existing approaches and systems 51

Cugola et al. [74] have introduced the term Information Flow Processing (IFP)

to collectively refer to CEP and DSMS systems, since they share a common

goal, namely, the processing of continuous �ows of information units. In their

work, they present an overview of existing IFP systems and they discuss their

commonalities and their di�erences. As it is analysed in more detail in their

work, although these systems share some common aspects, they di�er also in

several ways, e.g., in the data model, the query language or the processing

model. In the next paragraphs, we provide a short overview of the goals and

the execution models used in DSMS and CEP systems and then we discuss

their architectural models based on the analysis presented in [74] and their

relation to context management systems.

2.4.2.1 Data Stream Management Systems

Traditional Database Management systems (DBMS) are passive, in the sense

that they retrieve data only when they are triggered by the application. Re-

alizing the limitation of this model, to react autonomously upon events, the

database community has introduced the Active Databases, which are capa-

ble to react upon the detection of prede�ned situations. More speci�cally,

in active databases the rules are composed by three di�erent parts, namely,

Event, Condition and Action (ECA). Events could be either internal, e.g.,

the insertion of a tuple, or external events, e.g., clock triggers or external

sensors. Examples of systems classi�ed in active databases are the following

HiPAC [38], Ode [47], Snoop [26].

Although active databases when linked to external sources of events (e.g.,

sensors) are closer to the IFP model, they have the fundamental di�erence

that they rely on persistent storage, similar to the traditional DBMS. There-

fore, distributed stream management systems were introduced to enable the

real-time processing of unbounded data streams. In DSMS, no assumption

can be made on the data arrival order, and data streams are processed on

the time of arrival due to size and time constraints. In DSMS, queries are

52 2 Architecture

typically continuous, i.e., they are continuously updated as the data streams

arrive. The continuous queries can either be executed periodically or contin-

uously whenever a new data stream item arrives.

The hierarchical network of operators, forming a so-called aggregation tree

[72], which corresponds to an acyclic tree-based operator graph, has been

widely accepted by the database community due to its conceptual simplicity

and its applicability in practical scenarios (e.g., aggregation trees in wireless

sensor networks) [45]. Typical data stream operators can implement either

algebraic queries, meaning that they can keep the distribution properties of

the aggregation tree, i.e., by communicating partial results to their neighbours

in the tree, they are able to compute an exact query answer; or they may be

holistic queries, i.e., they require the centralized processing of all data in a root

node, which keeps a global view on the data observed so far [17]. Examples of

algebraic queries are Sum, Mean, Max queries, whereas examples of holistic

queries are Median, Distinct Count, and Histogram queries. In that respect,

the tree-based operator graph, adopted in our model, is used for evaluating

algebraic queries but also for calculating approximations of holistic queries in

DSMS.

It is worth mentioning that there is extensive work from the database

community in the optimization of the logical plans to reduce the commu-

nication overhead during the in network processing of aggregation queries.

Typical methods for logical optimization are the use of �lters close to the

data sources [45], that reduce the communication overhead on the aggrega-

tion tree; the calculation of so-called summaries (e.g. [46, 98]), which reduce

the communication overhead by communicating a subset of data to the root

node, while respecting quality guarantees for the query answer or as recently

introduced in [82], the change of the data granularity based on the applica-

tion quality requirements. In our approach, we focus on the physical plan

optimization, i.e., we use the operator graph, as an abstraction in order to

separate the problem of optimization of the physical plans by searching for

optimal mappings of operators onto physical hosts.

2.4 Overview of existing approaches and systems 53

Although the wide-spread acceptance of the operator graph model, there

are multiple data stream processing research prototypes relying on centralized

processing of data streams e.g., NiagaraCQ [30],OpenCQ [70], Tribeca [106],

CQL [13], Stream [12], Aurora [3], Gigascope [33], Stream Mill [14]. Closer

to our proposed architecture, examples of existing distributed data stream

processing engines using in-network processing of data streams are Telegraph

CQ [28], Borealis [2], Tag [72] and, NexusDS [32].

2.4.2.2 Complex Event Processing Systems

Complex event processing systems unlike DSMS, associate semantics on the

detected events captured by the data sources. In that respect, the goal of

CEP systems is mainly to detect complex event-patterns using sequencing

and ordering relationships that they are not common in DBMS. Traditionally

CEP has been based on the Pub/Sub (Publish/Subscribe) paradigm. In

Pub/Sub systems users subscribe to get noti�cations from publishers (data

sources) upon the detection of speci�c events. Typically Pub/Sub systems

can either be topic-based, meaning that a user could subscribe on a topic or

content-based if the subscribers could use complex event �lters to de�ne the

content of the desired noti�cations. CEP could be seen as an extension of

Pub/Sub systems that allow the subscription on complex, composite events

i.e. correlated events following certain sequence patterns.

In terms of execution model, CEP applications form typically multicast

trees, where sources (publishers) communicate events to a set of sinks (sub-

scribers). For detecting composite events, in-network processing of events by

event correlators is required to provide e�cient event correlation.

Examples of CEP systems are Traditional PubSub [44], [75], Rapide [71],

GEM [73], Padres [69], DistCED [86], CEDR [15], Cayuga [21], NextCEP

[101], PB-CED [9], Raced [34], Amit [5], Sase+ [6, 53], Sase [112], Peex [58],

Tesla/T-Rex [35,36]. Furthermore, one of the most popular commercial CEP

systems is the Commercial System S [11,57,113]. Closer to our work, examples

54 2 Architecture

of CEP systems allowing for the detection of composite events are Rapide [71],

Padres [69], DistCED [86], GEM [73].

2.4.2.3 Comparison between DSMS, CEP and Context Management

Systems

DSMS, CEP and context management systems share some common aspects

but they also have fundamental di�erences. One fundamental distinction

coming from the analysis and comparison between DSMS and CEP is that

DSMS focus mainly on the e�cient data processing and handle homogeneous

�ows of data, whereas CEP systems focus on event detection and handle

typically heterogeneous �ows of data (events) that are combined to detect

complex events. One step further, context management systems are closer to

CEP systems in the sense that they use context reasoning methods to enable

the complex correlation of events into meaningful situations.

Given the focus of our work on the distributed architecture of context

management systems, we discuss here the architectural models used by DSMS

and CEP systems based on [74] that provides a comprehensive overview of

IFP systems with respect to their architecture. In their work, they categorize

the IFP engines in centralized and distributed and they further distinguish

distributed IFP engines to clustered and networked engines. Clustered IFP

engines use a cluster of strongly connected machines that belong usually to the

same administrative domain, while networked IFP engines assume physical

hosts distributed in a Wide Area Network (WAN) that are connected typically

by Internet links. Note that for networked architectures, the minimization

of the network usage becomes critical, since physical hosts run typically in

di�erent administrative domains.

According to [74], the most common architecture, especially in Active

databases and DSMS is the centralized solution that uses a single server

which collects and processes all the data centrally. The clustered solution is

followed by some commercial systems e.g. Aleri, Coral8 [74], IBM System

2.4 Overview of existing approaches and systems 55

S [11, 57,113] and a few DSMS systems (Telegraph CQ [28], Aurora [3]). Fi-

nally the networked architecture is applied for some CEP systems (GEM [73],

Padres [69], DistCED [86]). Our architecture could be also classi�ed in the

networked architecture, since we assume a network of physical hosts dispersed

in a wide area network.

As a conclusion, although CEP, DSMS and context management systems,

implement di�erent operator semantics to de�ne application-speci�c stream-

ing tasks, they all share a common representation of an overlay network of op-

erators, processing cooperatively a distributed stream processing task. Thus,

the operator graph model could be seen as a uni�ed model that introduces the

problem of physical plan optimization, which seeks for optimal mapping of

operators on physical hosts in the network. In that respect, our proposed ar-

chitecture uses the operator graph model to map the problem of e�cient pro-

cessing of context data into an operator placement problem, which is known

from the database community. By using the operator abstraction, we al-

low the use of existing operator placement algorithms initially designed for

other application domains, such as DSMS and CEP to tackle the problem of

distributed context reasoning in context management systems.

Although the operator placement problem is a fundamental common prob-

lem among CEP, DSMS and context management systems, di�erent assump-

tions regarding the underlying physical network (e.g., LAN or WAN), may

lead to di�erent optimization objectives depending on the system model and

the target application. To this end, in the next chapter, we formally con-

sider three variations of the operator placement problem that may apply to

CEP, DSMS as well as context management systems as long as they assume

a networked architecture, where physical hosts are distributed in a WAN. In

that respect, the main objective of the placement algorithms presented in

the next Chapter, is the minimization of the network load, which applies in

large-scale scenarios. Moreover, we consider application-de�ned end-to-end

latency requirements targeting di�erent applications depending on the size of

the communicated data units in the overlay network of operators.

57

3 Operator Placement Algorithms

In this chapter, we discuss the operator placement problem in three di�er-

ent variations that consider di�erent constraints, and we present operator

placement algorithms that solve the resulting problems. Our main concern

is to provide scalable operator placement algorithms that can be used in a

distributed setting. As brie�y introduced in Chapter 2, the operator place-

ment problem seeks for an optimal mapping of operators onto physical nodes

to ful�ll application constraints and minimize resource costs. The operator

placement a�ects QoS and e�ciency since di�erent placements could lead

to di�erent response times for the application or a di�erent consumption of

network resources.

In particular, here we consider as optimization goal the minimization of

network usage that is formally de�ned as the bandwidth-delay product of

inter operator data streams of an operator graph. The network usage met-

ric quanti�es the network load put onto the system since it is an indicator

of the network tra�c. Imagine, for instance, a large-scale camera network

that processes images from distributed data sources to detect activities inside

buildings or across road segments. In this use case, large chunks of data are

to be transmitted from the sources in order to get processed by operators

and �nally delivered to the application. For such applications, the amount of

data that is in transit in the network can be a hindrance for the scalability

of the system since it could lead to tra�c congestion and bottlenecks.

To illustrate how placement decisions could a�ect the induced network

load, we present a simple example in Figure 3.1 that shows two di�erent

placements of the same operator graph. For each placement we calculate

the bandwidth-delay product. Since latency depends on the communication

58 3 Operator Placement Algorithms

Figure 3.1: Two di�erent placements with respective resulting network usage.

link between the physical hosts, although the data rates remain the same,

the overall bandwidth-delay product changes signi�cantly from 14.4 MB to

5.85 MB between the two placements, i.e. 8.55 MB could be saved. Thus,

reducing network usage could relieve the system from network load. Thus, the

minimization of the network load leads to the avoidance of network congestion

and, therefore, contributes to the scalability of the system.

Although the minimization of bandwidth-delay product minimizes indi-

rectly also the network latency, which is an important factor of the response

time of the system, it does not directly consider any constraint on the end-to-

end latency between the data sources and sinks of an operator graph. End-

to-end latency is an important application-level quality of service metric for

delay-sensitive applications since it signi�cantly in�uences the latency of de-

tecting situations. Therefore, the de�nition of end-to-end latency constraints

is an important requirement for such delay-sensitive applications. A guar-

anteed maximum end-to-end delay is critical for instance for control systems

based on a global network of widely dispersed sensors that have to react in a

59

Problem Algorithms

Network Usage Optimization MOPA

Network Delay Constrained Optimization MOPA-LMAX

Processing & Network Delay Constrained

Optimization

MOPA-LPMAX

Table 3.1: Overview of placement problems and algorithms

timely manner to sensor information to control physical processes. In order to

ful�ll delay constraints for the application, we have formulated a constrained

optimization problem, which optimizes network usage, while also considering

constraints on the network latency imposed by the application. In particular,

in this constrained optimization problem, we consider applications, where the

network latency is the dominant factors of the end-to-end latency. In that

respect, in our approach the goal of this constrained optimization problem is

to keep the maximum network latency between a data source and a sink of

an operator graph under a certain threshold.

Then, we formulate another constrained optimization problem, targeting

applications where the processing delay contributes signi�cantly to the end-

to-end latency. For instance, in the case of the large-scale camera network,

data units are images which induce signi�cant transmission and processing

delay. Ful�lling latency constraints for this type of applications requires a

more complex system model which includes processing and transmission de-

lays. To this end, we formulate another constrained optimization problem

and present our approach, which �rst optimizes for network usage and then

applies a constraint satisfaction algorithm that ful�ls the end-to-end latency

constraints.

The remainder of this chapter is structured into three di�erent sections,

where we describe the three di�erent placement problems and correspond-

ing solutions. Table 3.1 shows an overview of the placement problems and

the corresponding algorithms presented in this chapter. In particular, in

60 3 Operator Placement Algorithms

Section 3.1, we formulate the network usage optimization problem and we

present a distributed placement algorithm called Multi-operator Placement

Algorithm (MOPA), which solves the optimization problem in a distributed

way by letting the operators to get placed autonomously according to their

local view. Although our initial goal is to provide a scalable distributed al-

gorithm, we also present in this section an integer linear program (ILP) that

solves the network usage optimization problem in a centralized way. This

centralized solution will be used as reference for measuring the performance

of the proposed distributed algorithm in Chapter 4. Section 3.2 introduces a

constrained optimization problem, which applies a maximum threshold in the

network delay experienced by the application. An algorithm called MOPA-

LMAX is being introduced that solves the presented constrained optimization

problem, by processing the solution provided by the MOPA algorithm such

that the latency constraint is ful�lled. Then, in Section 3.3 we present the

MOPA-LPMAX algorithm, which also tries to ful�ll an application-de�ned la-

tency constraint, by considering both network and processing delays. MOPA-

LPMAX uses a heuristic approach for the selection of candidate nodes to host

the operators. In Section 3.3, we present di�erent heuristic approaches for

the candidate selection, which we are going to evaluate in Chapter 4.

Each of the three sections, presenting the di�erent placement problems has

the following structure: First, we present the system model based on which

the optimization problems are formulated. Since the constrained optimization

problems are extensions of the initial unconstrained optimization problem, we

initially present in Section 3.1.1 a basic system model, and then we extend

this basic model in the next sections and in particular in 3.2.1 and in 3.3.1

in order to introduce the two constrained optimization problems. Given the

speci�c system model, we then formally introduce the corresponding problem,

before we describe the details of the proposed algorithms.

3.1 Network Usage Optimization 61

3.1 Network Usage Optimization

In this section, we present an algorithm that minimizes the bandwidth-delay

product of the inter-operator streams of an operator graph. By minimizing

the network usage, we put less load onto the network links and thus we

slow down network congestion. Therefore, the optimization of this metric

contributes to the scalability of the system. In particular, this optimization

is important for communication intensive applications producing big data

volumes that need to be transferred across the network and traverse possibly

multiple network links.

We propose a distributed algorithm to solve the so-called Multi-Operator

Placement (MOP) problem, which formally describes the optimal placement

of all operators of an operator graph [92]. The basic idea of this approach is

that each operator �nds its optimal placement by solving a local optimization

problem. The sum of these Single-Operator Placement (SOP) problems is then

the solution of the MOP problem. To facilitate the distributed solution of

these placement problems, we use a heuristic solution based on a continuous

search space called latency space, which is used to model delays between

nodes in the underlay network. Assuming there exists a virtual node at every

position in the latency space, we propose a distributed algorithm, where each

operator autonomously �nds an optimal virtual node in the latency space. In

a second step, the selected virtual nodes are mapped to the available physical

nodes in the latency space.

According to our general goal to use communication resources e�ciently, we

optimized the distributed operator placement algorithm for low communica-

tion overhead by reducing the number of management messages and operator

migrations. We will provide a proof on the optimality of the global solution

with respect to the local solutions, and show by experiments in Chapter 4,

that this continuous solution approximates the discrete solution very well.

Beyond the proposed distributed algorithm, we present also at the end of this

section an integer linear program that solves the multi-operator placement

62 3 Operator Placement Algorithms

problem in a centralized way assuming global knowledge of the network and

system conditions.

Next, we present the basic system model upon which we formulate the un-

constrained optimization problem before we present our proposed distributed

placement algorithm.

3.1.1 System Model

As a prerequisite of the formal problem formulation, we �rst introduce the

system model together with assumptions and a formal notation. Table 3.2

summarizes the basic de�nitions of the system model, introduced in this sub-

section. Our system model consists of three main parts. A part of the def-

initions provided in this paragraph describes the physical network, i.e. the

network of physical nodes that are capable of hosting the operators. Another

set of de�nitions relates to the latency space an abstraction of the physical

network proposed in the literature [84]. Finally, the third group of de�ni-

tions describes the stream processing task, which is formally represented by

an operator graph.

In more detail, we consider a physical network graph H = (V , E , l) con-

sisting of a set of physical nodes V which are capable of hosting operators

needed for stream processing. These nodes are connected through a set of

communication links E , such as the Internet links, allowing nodes to commu-

nicate with each other directly. Similar to [84], we assume a so-called latency

space, which is an n-dimensional Cartesian space, where every node ν has

a position ~xν ∈ Rdim such that the Cartesian distance d(νiνj) = |~xνi − ~xνj |
between any pair of nodes νi, νj corresponds to the propagation delay l(νiνj)

between these nodes1. The latency space can be constructed e�ciently in a

distributed manner using delay measurements between physical nodes and an

algorithm for calculating network coordinates such as the Vivaldi algorithm

1The concrete dimensionality was investigated in the original paper, where the

latency space was introduced [37] and is out of the scope of this dissertation.

3.1 Network Usage Optimization 63

Physical Network Model

H Underlay network of physical hosts

V Set of physical nodes hosts

ν ∈ V Physical host in the underlay

E Set of (Internet) links between hosts

νiνj ∈ E (Internet) link between hosts

l(νiνj) Latency between hosts

Latency Space Model

~xν Position (coordinates) in the latency space

d(νiνj) Cartesian distance between nodes νi, νj in the latency

space

d(ωiωj) Cartesian distance between nodes ωi, ωj in the latency

space

C(V) Set of coordinates of the physical nodes V
Operator Graph Model

G Overlay network of operators

Ω Set of operators

ω ∈ Ω Operator of the overlay network

Ωpinned Set of operators placed on speci�c hosts

Ωfree Set of operators that can be placed freely on a physical

host

S Set of pinned operators that generate data (sources)

A Set of pinned operators that consume data (sinks)

F Set of links in the overlay network

Fω Set of in- and out-going links attached to operator ω

ωiωj ∈ F Link between ωi and ωj in the overlay network

rωiωj Data rate of the stream communicated over the link ωiωj

Table 3.2: System Model Notation

64 3 Operator Placement Algorithms

proposed by Dabek et al. [37]. To determine its position in the latency space,

every node performs these calculations and provides this information to other

nodes as described later. The set of coordinates of the physical nodes in V
is denoted as C(V). Note that the latency space is dynamic in the sense

that the positions of physical nodes are continuously adapted depending on

current delays. An overloaded path in the communication network leads to

an increase of the delays between nodes using this path to communicate, and

thus the distance between these nodes increases also. Since our placement

algorithm dynamically adapts to changing node positions, the placement is

adapted by choosing nodes that are close to each other, i.e., nodes whose

communication paths are not overloaded.

In our execution model, a stream processing task is modelled as an acyclic

directed graph of connected operators, called operator graph. As already in-

troduced informally in Chapter 2, the set of the deployed operator graphs

constitutes the operator network. Formally, a stream processing task is mod-

elled as a tree-based operator graph G = {Ω,F , r} consisting of a set Ω =

{ω1, . . . , ωn} of operators that are connected by a set F = {ω1ωi, . . . , ωjωn}
of links. Operators, which perform any kind of stream processing operations,

may have a number of incoming and outgoing streams. A link is an uni-

directional communication relationship between a pair of operators. Link

ωiωj ∈ Ω × Ω connects operators ωi and ωj , where the former produces a

stream that is communicated to and consumed by the latter. Fω denotes the

set of in- and out-going links attached to operator ω. In our system model, we

assume unreliable communication protocol, such as UDP, between the phys-

ical nodes. An operator ω could be either pinned ω ∈ Ωpinned, i.e., its map-

ping to physical node is given and �xed, or free ω ∈ Ωfree, in the sense that

they could be freely assigned to any available node in V . Pinned operators

could be either sources or sinks. More formally, a subset of pinned operators

S ⊂ Ωpinned only have outgoing links (producers of data streams) and hence

are called sources-for instance, sensors, while another subset A ⊂ Ωpinned de-

notes the set of sink operators, which only have incoming links and typically

3.1 Network Usage Optimization 65

represent application entities. Finally, r denotes the inter-operator data rates

in the overlay network, with r(ωiωj) specifying the data rate of the stream

communicated over the link ωiωj .

Based on this system model, we formally de�ne the optimization problem

to be solved next.

3.1.2 Problem Statement

Our placement algorithm tries to minimize the network usage for each individ-

ual operator graph. As already discussed earlier, by optimizing the placement

according to network usage metric, we increase scalability as the communi-

cation load generated by operator graphs is minimized.

Network usage is measured by the number of bytes that are in transit

on the links of the operator graphs at a certain point in time. Formally,

the network usage of link ωiωj is de�ned by the bandwidth-delay product

r(ωiωj)l(ωiωj), where r(ωiωj) (according to Table 3.2) speci�es the data rate

of the stream communicated over that link, and l(ωiωj) is the delay of that

link. In our system model, we use the euclidean distance in the latency space

d(ωiωj) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 to approximate the link delay

l(ωiωj). Thus, the link delay in our model is de�ned by d(ωiωj) = |~xωi−~xωj |,
where ~xω denotes the position of the operator ω in the latency space that it

is mapped (as we explain later) to the closest coordinate ~xν of the physical

node ν which hosts the operator.

To formalize our optimization problem, we �rst introduce the Single-operator

Placement (SOP) Problem, which considers the optimal placement of a single

unpinned operator, say ω, relative to the placement of its neighbours in the

operator graph. For the SOP problem, we assume that the neighbours are

pinned, and only ω is a free operator. This can be interpreted as a snapshot of

the neighbour positions that ω is using to �nd its optimal placement relative

to these current neighbour positions. The SOP optimization goal is to min-

imize the network usage of all the links connected to ω, i.e., the aggregated

66 3 Operator Placement Algorithms

bandwidth-delay product of the links in Fω (links connected to ω) is to be

minimized. Equation 3.1 expresses the network usage Ulocal(~xω) associated

with placement ~xω:

Ulocal(~xω) =
∑

ωωi∈Fω

r(ωωi)d(ωωi) =
∑

ωωi∈Fω

r(ωωi)|~xω − ~xωi | = (3.1)

=
∑

ωωi∈Fω

r(ωωi)
√

(x− xi)2 + (y − yi)2 + (z − zi)2

Given the above de�nition the SOP problem is formally de�ned by:

minUlocal(~xω) = min
∑

ωωi∈Fω

r(ωωi)|~xω − ~xωi | (3.2)

variables ~xω ∈ R3 (continuous solution)

variables ~xω ∈ C(V) (discrete solution)

The local SOP problem of placing a single operator optimally can be ex-

tended to the global Multi-operator Placement (MOP) problem, which seeks

for the optimal placement of all unpinned operators of an operator graph

G = {Ω,F , r}. The goal is to minimize the overall network usage of G. For
a given placement (~xω1 , . . . , ~xωn), G's network usage Uglobal(~xω1 , . . . , ~xωn) is

de�ned as follows:

Uglobal(~xω1 , . . . , ~xωn) =
∑

ωiωj∈F

r(ωiωj)d(ωiωj) (3.3)

And the respective optimization problem is formulated as:

minUglobal(~xω1 , . . . , ~xωn) = min
∑

ωiωj∈F

r(ωiωj)d(ωiωj) (3.4)

variables ~xω1 , . . . , ~xωn ∈ R3 (continuous solution)

variables ~xω1 , . . . , ~xωn ∈ C(V) (discrete solution)

3.1 Network Usage Optimization 67

This also minimizes the network usage for the entire operator network if all

operator graphs in the operator network (set of all deployed operator graphs)

have only one sink, i.e., sinks do not share common operators.

As shown in the equations above, both SOP and MOP problems can be

solved for physical and virtual nodes. In the latter case, we assume that there

exists a virtual node at every possible position in the continuous latency space,

i.e., ~xω ∈ <3, whereas in the former case, the operators can only be mapped

to those positions in the latency space that are occupied by physical nodes,

i.e., ~xω ∈ C(V). Since the solution space can be either continuous <3 or

discrete C(V), we distinguish between the continuous and discrete variant of

the MOP and SOP problem.

3.1.3 Multi-operator Placement Algorithm (MOPA)

In this section, we propose a novel distributed placement algorithm approx-

imating the optimal solution of the discrete MOP problem. Since our goal

is to provide a distributed scalable placement algorithm, we propose here a

heuristic approach that is based on the idea to solve �rst the corresponding

continuous MOP problem and then map the selected virtual nodes to the

available physical nodes to yield an approximation of the discrete MOP solu-

tion. In Chapter 4, we discuss the performance of our algorithm with respect

to the optimal solution.

The continuous MOP problem can be solved in a distributed fashion by

letting each unpinned operator autonomously solve the continuous SOP prob-

lem. In other words, each unpinned operator determines its optimal virtual

node (i.e., its optimal position in the latency space) depending on the current

virtual positions of its neighbouring operators. We prove in Subsection 3.1.3.3

that the collection of the continuous SOP solutions yields an optimal contin-

uous MOP solution. The proposed distributed algorithm can be used for

both the initial placement of an operator graph as well as for adapting the

placement when delay or bandwidth conditions change signi�cantly during

68 3 Operator Placement Algorithms

the execution of an operator graph. For the initial placement, we simply ex-

ecute the algorithm in a centralized way; for the continuous adaptation, the

algorithm is executed in a distributed fashion by the operators.

Algorithm 1 shows an overview of the steps/algorithm performed by each

unpinned operator ω. First, a solution for the continuous SOP Problem is

calculated, i.e., the position of the virtual node for ω is determined such

that Ulocal(~xω) is minimal (line 1). For the algorithmic details of these cal-

culations we refer to Section 3.1.3.1. In the next step, the selected virtual

node is mapped to the closest available physical node ν(line 2) in the latency

space. If νnew di�ers from the current hosting node νcurrent, the operator is

migrated to the new physical node (lines 3�5), if the selected physical host is

not overloaded after the deployment of the additional operator. Otherwise,

the algorithm excludes this physical node from the search space to prevent

bottlenecks and assigns the operator to the next nearest physical host. Typ-

ically, a number of iterations of the algorithm are required to approximate

the optimal solution. To reduce the number of migrations, a lazy migration

strategy can be applied. In such a case, migrations can be delayed for some

iterations without a�ecting the �nal outcome of the algorithm.

For mapping virtual nodes to the available physical nodes, we use a nearest

neighbour search mechanism. As stated in Subsection 3.1.1, we assume that

the position of each physical node is known. Therefore, the nearest neighbour

search can be realized using a distributed index as describe in [107]. For

example, this index can be realized by the physical nodes forming a peer-to-

peer network. The implementation of such a distributed index is beyond the

scope of this dissertation, and we refer to [107] for more details.

After the initial placement, the algorithm is executed in an event-driven

manner. It is triggered for operator ω in two cases: A neighbour operator

informs ω that the neighbour's virtual node position or the data rate of a link

connected to ω has changed. The �rst case occurs whenever a neighbouring

operator calculates a new virtual node position when performing the algo-

rithm. For detecting the second case, each unpinned operator measures the

3.1 Network Usage Optimization 69

Algorithm 1 Multiple Operator Placement Algorithm (MOPA)
Require: ω is placed at physical node νcurrent

Require: Virtual coordinates of ω's neighboring operators

Require: Estimations of data rates of links in Fω
Ensure: ω is placed on optimal physical node

1: �nd ~xω such that Ulocal(~xω) is minimal

2: �nd closest non-overloaded physical node νnew with ~xνnew to ~xω
3: if νnew 6= νcurrent then

4: migrate ω to νnew

5: end if

data rate of each incoming and outgoing link using an exponential moving

average. We explain in more detail, the adaptation mechanism in Subsec-

tion 3.1.3.4. For the initial placement we can estimate the data rate of each

link according to the type of application or based on statistics gathered from

previous deployments.

3.1.3.1 Single-operator Placement Algorithm

Here we describe in detail the subalgorithm of Algorithm 1 (line 1) which

approximates the optimal continuous SOP solution in the continuous search

space. The SOP problem corresponds to the well known Fermat-Weber Prob-

lem [27], which asks for the position ~xω that minimizes Ulocal(~xω) (Equ. 3.2).

It is known that there exists no closed formula for the calculation of the

optimal solution of the Fermat-Weber problem unlike the mass centroid cal-

culation that can be computed directly. Furthermore, the optimal solution

cannot be de�ned exactly but only be approximated since it contains square

roots that may be irrational numbers. There exist several approximation

algorithms proposed in the literature that solves this problem. The most

common one is the Weiszfeld method that implements a gradient method for

this problem. However the Weiszfeld method may experience slow conver-

70 3 Operator Placement Algorithms

Algorithm 2 Single Operator Placement Algorithm
Require: Virtual node coordinates of ω's neighboring operators:

{~xω1 , . . . , ~xωn}
Require: Data rates of links in Fω: {r(ωω1), . . . , r(ωωn)}
Ensure: U(~xω) is minimal

1: ~xω ← ManhattanApproximation{r1~xω1 , . . . , rn~xωn}
2: ~xω ← CheckDeadPoints{~xω1 , . . . , ~xωn}
3: step← max{|~xω1 − ~xω)|, . . . , |~xωn − ~xω)|}
4: repeat

5: ~f ← ∇U(~xω)

6: if U(~xω + step× u(~f)) < U(~xω) then

7: δ ← U(~xω + step× u(~f))− U(~xω)

8: ~xω ← ~xω + step× u(~f)

9: else

10: step← step/2

11: end if

12: until δ < δt

gence in the case that the solution is a dead point, i.e., a point where the

derivative is not de�ned.

For our implementation, we have selected to use a simple approximation

algorithm that speeds up the convergence of the algorithm and handles the

dead points, followed by a gradient method with varying step. To calculate

the gradient, ∇U(~xω) = {∂Ulocal(x)
∂x ,

∂Ulocal(y)
∂y ,

∂Ulocal(z)
∂z } at the current position

of operator ω we use the following equations2:

2For dead points, where d(ωωi) = 0, we use a hyperbolic approximation dH(ωωi) =√
(x− xi)2 + (y − yi)2 + (z − zi)2 + ε, where ε a small constant [119].

3.1 Network Usage Optimization 71

∂Ulocal

∂x
=

∑
ωωi∈Fωi

r(ωωi)
(x− xi)
d(ωωi)

(3.5)

∂Ulocal

∂y
=

∑
ωωi∈Fωi

r(ωωi)
(y − yi)
d(ωωi)

(3.6)

∂Ulocal

∂z
=

∑
ωωi∈Fωi

r(ωωi)
(z − zi)
d(ωωi)

(3.7)

Algorithm 2 shows the gradient method used for searching the minimum

of Ulocal(~xω). In each iteration, we �rst calculate the direction of the major

�ow ~f , which corresponds to the gradient ∇U(~xω) at the current position of

operator ω (line 5). Then, we move towards this direction, which is given

by the unit vector u(~f), with a certain step length step until we reach the

minimum (cf. Figure 3.2). Initially we set the step to the maximum distance

from ω to all of its neighbours (line 3) as the solution is restricted to the

interior of the polygon that the neighbours form. If the current step length

would overshoot the minimum, then it is halved (line 10). In each iteration

the algorithm calculates the new network usage U(~xω) at the next estimated

virtual position, and if this is smaller than the current network usage (line 6),

it moves to the new virtual position (line 8) and sets as δ the di�erence

between the old and the new network usage (line 7). After a number of

iterations the minimum is trapped and the algorithm terminates when the

di�erence to the current network usage becomes smaller than a prede�ned

threshold δt (line 12).

As already mentioned earlier, although the gradient method is simple and

easy to implement, it faces problems of slow convergence when the solution

is at a point where the derivative is not de�ned, also referred in the literature

as dead point [41]. This is a general problem of the iterative methods that

solve the Weber Problem [41]. To improve the speed of our algorithm and

avoid slow convergence to the dead points, we make a preprocessing in order

to �nd a good initial point that approximates well the optimal solution.

72 3 Operator Placement Algorithms

Ulocal

ω3

ω2ω

ω

step u(f)

r(ωω) u(x -x)ω ωιι ι

Figure 3.2: Example of the gradient method for a 2-dimensional SOP
problem.

To estimate the solution we make an approximation of the corresponding

solution for the Manhattan metric (L1 norm), which is also proposed as a fast

approximation method for the Weber Problem in [20]. The idea is to consider

the problem for the Manhattan metric instead of the Euclidean metric. In

more detail, if we assume the Manhattan metric for computing the distances

in the latency space3, we get the following equation:

UMhtn
local (~xω) =

∑
l∈Fωi

rl| ~xω − ~xωi |1 = (3.8)

∑
l∈Fωi

rl(| x− xi | + | y − yi | + | z − zi |)

The derivative of this function is given by the following equation:

∂UMhtn
local

∂~xωi
=

∑
l∈Fωi

rlsgn(~xωi − ~xω) (3.9)

3Without loss of generality we assume a 3-dimensional latency space

3.1 Network Usage Optimization 73

In particular, the above equation can be split for each dimension as follows:

∂UMhtn
local (x)

∂x
=

∑
l∈Fωi

rlsgn(x− xi) (3.10)

∂UMhtn
local (y)

∂x
=

∑
l∈Fωi

rlsgn(y − yi) (3.11)

∂UMhtn
local (z)

∂x
=

∑
l∈Fωi

rlsgn(z − zi) (3.12)

In Fig. 3.3 we see an example of how the gradient ∂UMhtn
local (x)
∂x for a local

function Ulocal(x) = 25(x − 0.2) + 25(x − 0.4) + 50(x − 0.6) + 50(x − 0.8)

approximates the gradient of the Ulocal function for Euclidean distance. In

particular, the curve in the �gure shows the derivative of the Ulocal in Eu-

clidean distance, while the discontinuous straight line shows the derivative of

the corresponding Manhattan metric function UMhtn
local (x) in x-dimension. As

we could also deduce from the Equ. 3.10 the derivative for the Manhattan

metric is an increasing function that changes its value only at the positions

of the neighbours. To this end, the point where the derivative turns from

negative to positive values approximates the root of the Equ. 3.1.

More formally in Alg. 3 we give the algorithm for the Manhattan ap-

proximation. The algorithm gets as input the coordinates of the neighbours

in increasing order (in each dimension xi) and it calculates the sum of the

positive and negative factors of Equ. 3.9 as the value of the Manhattan ap-

proximation increases. At �rst, the Manhattan approximation is equal to the

lowest coordinate xω1 (line 1). Then, in each iteration the sum of the data

rates is calculated (line 5-8) given the position of xMhtn. Thus, in each itera-

tion the next factor (data rate) in increasing order of the Equ. 3.9 turns from

negative to positive and the new sum is computed until it becomes greater

or equal to zero (line 10). The stopping condition indicates the change of

the sign of the derivative, which means that at this point xMhtn we have

reached the desired approximation solution. This process must be repeated

74 3 Operator Placement Algorithms

Figure 3.3: Example of approximation for function Ulocal(x) = 25(x − 0.2) +

25(x− 0.4) + 50(x− 0.6) + 50(x− 0.8).

for each dimension and �nally we get a vector ~xω, which is the solution of the

Manhattan approximation.

After having speci�ed an approximation of the initial point, we check for

dead points by comparing the network usage at the approximated position

and the network usage at the neighbours (Alg. 4). If the network usage in one

of the points is lower than the one given by the Manhattan approximation,

we use this point as initial position and �nally we give the output of this

procedure to the iterative method that computes the local minimum.

3.1.3.2 Clustering

In the previous paragraph we have described an approximation algorithm

for the continuous SOP problem. Although this algorithm approximates the

optimal solution for the SOP problem, it might not yield an optimal solution

for the continuous MOP problem in cases where two unpinned operators tend

to collapse at one position. Such cases can happen when the SOP solution

lies at the position of a neighbour that is an unpinned operator [96].

To overcome this problem we use the technique of operator clustering

[23, 88], whenever the SOP solutions of two neighboring operators coincide.

3.1 Network Usage Optimization 75

Algorithm 3 Manhattan Approximation
Require: Coordinates of ω's neighboring operators in increasing order in

dimension xi: {xω1 , . . . , xωn}
Require: Estimations of data rates of links in Lω: {r(ωω1), . . . , r(ωωn)}
Ensure: xω is the median of the neighbours in dimension xi
1: i← 1

2: repeat

3: DataRatesSum← 0

4: xMhtn ← xωi

5: for all xωj ∈ {xω1 , . . . , xωn} do
6: if xMhtn > xωj then

7: DataRatesSum← DataRatesSum + r(ωωj)

8: else

9: DataRatesSum← DataRatesSum− r(ωωj)
10: end if

11: end for

12: i← i+ 1

13: until DataRatesSum ≥ 0

14: xω ← xMhtn

In detail, if the distance between an operator and its nearest neighbour is

dropping below a threshold, both operators form a cluster where one opera-

tor acts as cluster head. The head of the cluster performs the optimization of

the SOP problem for both operators that to the outside now act as one op-

erator. Generally, this procedure can be repeated until a non trivial solution

is found, i.e., the solution is a di�erentiable point or it is a pinned operator.

It has to be mentioned that the clustering is evaluated in each iteration of

the algorithm. Therefore, an operator might detach later from a cluster if the

virtual coordinates of the clustered operators have diverged. However since

the operators of a cluster are placed on the same physical node, these local

computations do not a�ect the network load induced by the algorithm.

76 3 Operator Placement Algorithms

Algorithm 4 Check Dead Points
Require: Coordinates of ω's neighboring operators: {~xω1 , . . . , ~xωn}
Ensure: Finds dead point if exists

1: for all ~xωi do

2: if U(~xωi) < U(~xω) then

3: ~xωi ← ~xω

4: end if

5: end for

3.1.3.3 Distribution Properties

If every operator independently optimizes its local position by solving the

continuous SOP problem (Algorithm 2), then eventually every operator will

be placed in a local optimal position. We call this solution an all-local opti-

mal solution. Here we prove the following proposition: An all-local optimal

solution is a global optimal solution of the MOP problem.

First, we prove the following necessary condition:

Theorem 1 In the global optimal state, where Uglobal(~xω1 , . . . , ~xωn)is mini-

mal, each operator ω is at its local optimal position such that Ulocal(~xω) is

minimal.

Proof. We will prove this claim using a proof by contradiction: Assume there

exists a minimal solution, Umin = Uglobal(~xω1 , . . . , ~xωn) = min, such that there

exists at least one operator ω∗ that is not at its local optimal position, i.e.,

Ulocal(~xω∗) 6= min. (Otherwise there is nothing to prove since every operator

is already at its local optimal position.) Then, the resulting global network

usage is Umin = Ulocal(~xω∗) +
∑

ωj∈Ω\ω∗ Ulocal(~xωj).

Assume all operators besides ω∗ are �xed to the places of the global minimal

solution. Then, we can do a local optimization for ω∗ by moving ω∗ to a new

position ~x′ω∗ with Ulocal(~x
′
ω∗) = min. The resulting global network usage is

then de�ned as U ′min = Ulocal(~x
′
ω∗) +

∑
ωj∈Ω\ω∗ Ulocal(~xωj).

3.1 Network Usage Optimization 77

Since Ulocal(~x
′
ω∗) < Ulocal(~xω∗), U ′min < Umin, which is a contradiction to

the assumption that Umin is minimal. �

The su�cient condition that an all-local-optimal solution is always the

optimal MOP solution, remains to be proven. To prove the su�cient condition

we �rst show that each all-local optimal solution is a (possibly local) minimum

of MOP Uglobal:

Lemma 1 For any operator graph G, an all-local optimal solution (~xω1 , . . . , ~xωn)

is also a local minimum of the global function Uglobal(~xω1 , . . . , ~xωn).

Proof. If the solution is at a di�erentiable point, the partial derivatives of

Uglobal are equal to zero since it holds that:

∂Uglobal

∂~xωj
=
∂Ulocal

∂~xωj
=

∑
ωjωi∈Fωj

r(ωjωi)× u(~xωj − ~xωi)

Therefore the all-local optimal solution is a local minimum.

If one of the partial derivatives is not de�ned, then the solution of the

corresponding SOP problem lies on a non di�erentiable point (dead point).

According to our algorithm in this special case the operator will be clustered

with its neighbour and the MOP solution is given by the solution of the

clustered operator graph. Clustering is repeated until either it �nds a di�er-

entiable solution for the clustered operator graph, which we have proved to

be a local minimum, or it �nds a SOP solution at a non-di�erentiable point,

in case the MOP problem is degraded to a trivial SOP, with one unpinned

operator and a set of pinned neighbours (sources and sinks).

Thus we have proven that an all-local optimal solution is also a minimum

of the global function.�

Up to now we have proven that the global function is minimal only in all-

local optimal states, i.e., an all-local optimal solution is a local minimum of

Uglobal. It remains to be proven that an all-local optimal solution is also a

su�cient condition for a global minimum of Uglobal. We show this by using

the convexity properties of the global function Uglobal, which has only one

78 3 Operator Placement Algorithms

minimum. In that respect, we prove the su�cient condition that �nalizes our

proof.

Theorem 2 For any operator graph G, an all-local optimal solution (~xω1 , . . . , ~xωn)

is also the unique minimum of the global function Uglobal(~xω1 , . . . , ~xωn).

Proof. From Lemma 1 we know that an all-local optimal solution is a local

minimum of Uglobal. Furthermore, we know that Uglobal has only one minimum

since it is a convex function, i.e., if we have found a local minimum of Uglobal

we also have found its global minimum. �

So �nally we know that an all-local optimal solution is a local minimum

of Uglobal. Furthermore, we have shown that Uglobal has only one minimum,

i.e., if we have found a local minimum of Uglobal we also have found its global

minimum. Therefore, an all-local optimal solution must be the global op-

timal solution of continuous MOP problem, which is approximated by our

distributed placement algorithm.

3.1.3.4 Dynamic adaptation of Operator Placement

After the initial placement, the positions of operators is optimized contin-

uously according to Algorithm 1. Note that although the initial placement

yields already the �nal positions of operators, the quality of this initial so-

lution might degenerate due to dynamically changing network conditions.

Therefore, we let each physical node dynamically re-evaluate the positions of

its hosted operators, in order to migrate operators if necessary.

In detail, an operator re-placement for operator ω is triggered in two situ-

ations:

1. The coordinates of a neighbouring operator of ω in the latency space

change.

2. The input or output data rate of ω changes.

3.1 Network Usage Optimization 79

The �rst situation might occur, if a neighbouring operator re-evaluates its

position in the latency space for the same reasons (a neighbour changed its

position or data rates changed). An operator reacts to this change, using an

event-driven mechanism. If an operator calculates a new SOP solution, it

sends its new coordinates to its neighbouring operators. This event will also

trigger a re-evaluation of the receiver's coordinates.

Here we have to mention that di�erent all-local-optimal solutions might

exist that correspond to the same minimum. We have only proven that there

is a unique minimum but not that this minimum is reached by only one

solution. In fact if we visualize the problem in the coordinate space, we see

that there might be multiple symmetric points where the distance to the

neighbours remain the same. Assume, for instance, the simple example in

Figure 3.4, where we have only one source and one sink and the data rates to

both directions of the free operator ω are equal (r). In this example, all the

positions of ω that lie on the straight line between the source and the sink

cause the same global network usage Uglobal(~xω) = r×d. The existence of the
symmetric solutions can lead to oscillations for more complex topologies as

the neighbors will move back and forth between the symmetric positions and

trigger re-placement events although the minimum has been reached already.

To avoid such oscillations, every operator checks if the di�erence between

the new minimum after the change of the coordinates of the neighbouring

operators and the one before the dynamic change is below a threshold, and

in that case it does not send the new position to its neighbours.

The second situation is due to rate changes of the incoming data streams.

For instance, a sensor might produce streams of considerably di�erent rates

during the day and night. Consider for instance a tra�c �ow sensor, measur-

ing the number of cars passing-by a certain location. During rush hours the

data rate of this sensor is obviously higher than during the night. Thus, sub-

sequent operators attached to this sensor might receive streams of di�erent

data rates during di�erent periods. Moreover, an operator might produce a

di�erent output data rate if the values of the input data change. For instance,

80 3 Operator Placement Algorithms

sink

source

�

min U (x) = r dglobal �
�

r

d

r

optimal positions of

with minimum network usage

�

�

Figure 3.4: Symmetric Operator Placement Solutions.

a temperature �lter might be con�gured such that it only reports tempera-

tures higher than 20◦ Celsius. So depending on the input temperature, this

operator produces di�erent output data rates.

Obviously, such dynamic changes cannot be foreseen in advance. Rather,

we let each operator measure the current input and output data rates con-

tinuously using an exponential moving average:

rnew = α× rcurrent + (1− α)× rold

With this formula, the new data rate of a stream is calculated based on the

currently measured data rate rcurrent and the previous data rold. Parameter

α ∈ [0, 1] de�nes, how much the data rate is smoothed by weighting historic

values.

If a signi�cant change of data rates is detected by an operator, the operator

will re-evaluate its position in the latency space, send this position to its

neighbours, and possibly initiate a migration if a di�erent physical node is

closer to the new position than the current one.

3.1 Network Usage Optimization 81

3.1.4 Integer Linear Programming Formulation

In this section, we formulate the optimization problem in (Equ. 3.2) as an

integer linear programming (ILP). This problem formulation is directly ap-

plicable to a centralized ILP solver. Although we explicitly strive for a dis-

tributed algorithm rather than a centralized solution requiring the gathering

of global knowledge at a central node, this ILP serves as a reference for the

evaluation of our distributed approach.

The problem formulation is based on the ILP for subgraph isomorphism

presented in [68]. In particular, we adapt the ILP for �nding sub-graph

isomorphisms by introducing constraints for pinned operators. Moreover,

we changed the objective of the optimization to re�ect our goal, namely,

minimizing the sum of delay-data rate products.

In detail, for the integer linear problem formulation, we keep the same

system of the physical network H = (V , E , l) and the operator graph G =

{Ω,F , r} as introduced in Subsection 3.1.1, and we use integer linear pro-

gramming, instead of the latency space abstraction to formulate our problem.

To this end, we introduce the following de�nitions. We de�ne the placement

of each free operator ωi ∈ Ωfree by a binary vector xi ∈ {0, 1}|V|. Since an

operator has to be placed on exactly one host, the vector xi has exactly one

1 at the position of host vj , where the operator is placed. Furthermore, we

de�ne a vector yi ∈ {0, 1}|E| for each operator graph link, such that the vector
has exactly one 1 at the position of edge ej , where the operator graph edge

is placed.

Given the above de�nitions, the problem of minimizing the network usage

can be expressed as:

82 3 Operator Placement Algorithms

min
∑
f∈F

∑
e∈E

r(f)l(e)yf,e, (3.13)

subject to :

xω,νω = 1 ∀ω ∈ Ωpinned (3.14)∑
ν∈V

xω,ν = 1 ∀ω ∈ W (3.15)∑
e∈E

yf,e = 1 ∀f ∈ F (3.16)∑
(ν1,ν2)∈E

y(ω1,ω2),(ν1,ν2) = xω1,ν1 ∀ ν1 ∈ V , ∀ (ω1, ω2) ∈ F (3.17)

∑
(ν1,ν2)∈E

y(ω1,ω2),(ν1,ν2) = xω2,ν2 ∀ ν2 ∈ V , ∀ (ω1, ω2) ∈ F (3.18)

In the objective (3.13), we minimize the sum of bandwidth-delay products

for each underlay edge e (host-to-host connection) on which an operator graph

edge f is placed. Constraint (3.14) ensures that each pinned operator ωi ∈
Ωpinned is placed on the given host νω. Moreover, constraint (3.15) and (3.16)

guarantee that each operator ω is placed on exactly one host and each operator

graph edge f is placed on exactly one underlay edge e. Finally, constraint

(3.17) and (3.18) ensure that the operator placements and operator graph

edge placements de�ned by the vectors x and y, respectively, are consistent.

That is, if two operator graph edges start at the same source node (operator),

then they must be mapped such that the target edges in the underlay network

also start at the source node (host). Moreover, this host must also be the

target of the operator mapping of the source operator de�ned by x. The same

constraints applies to the destination nodes of operator graph edges.

Given the above ILP formulation of our problem, we can use an ILP solver

to solve the discrete multi-operator placement problem in a centralized man-

ner. In Chapter 4, we present evaluation results of the execution of the above

ILP compared to the distributed algorithm (MOPA).

3.2 Network Delay Constrained Optimization 83

3.2 Network Delay Constrained Optimization

Although the optimization of network usage contributes to the scalability of

the system, it does not take into consideration any constraint from the ap-

plication's point of view. Here, we consider also latency constraints from the

application. In this section, our target are applications that do not require

intensive processing of operators. In other words, we assume that the trans-

mission delay as part of the network delay4 as well as the processing delay

are negligible. In the next section, we will consider processing-intensive ap-

plications. This assumption applies to scenarios where data units are small

and only simple processing operations are required. A typical example is the

communication of temperature values and checking whether the values exceed

a certain threshold. Since a sensor value only contains few bytes, its trans-

mission delay (time to put the sensor data on the wire) is small. Moreover,

comparing a simple value like an integer or �oating point against a threshold

induces a very small delay.

In particular, the proposed operator placement algorithm considers a given

end-to-end delay while trying to minimize the network usage. Our algorithm

is based on a two-phase process [91]. First, we �nd an operator placement

that minimizes network usage (unconstrained optimization phase). Secondly,

we distort the optimal solution such that the QoS constraint is ful�lled while

minimizing the impact onto the network usage (constraint satisfaction phase).

This basic approach is di�erent from related constrained optimization ap-

proaches that usually �rst enumerate a set of feasible solutions with respect

to the QoS constraint and from this set select the best solution with respect

to the optimization criteria [52, 81, 90]. In contrast to these approaches, our

approach enables us to calculate the costs in terms of the optimization met-

ric that we have to pay to ful�ll the given QoS constraint. The knowledge

about the individual costs for achieving the speci�c constraint can be a useful

4Network delay=transmission delay+signal propagation delay+queuing delay of

routers+processing delay of routers.

84 3 Operator Placement Algorithms

Operator Graph Model

ωiωj ∈ Q Set of link(s) that connect ωi and ωj in the overlay net-

work

Q Set of paths in an operator graph

QS→A Set of end-to-end paths in an operator graph

Table 3.3: Extended Network Delay Constrained System Model Notation

information for the system in order to negotiate the level of QoS provision.

For instance, if achieving the QoS guarantees involves negligible cost, it can

be acknowledged without further negotiation. However, if it would require

large costs, a re-negotiation could be initiated to relax the QoS constraint in

favour of a less costly solution.

To solve this constrained optimization problem, we use a two-phase op-

timization process. In the �rst optimization phase, we use the algorithm

presented in the previous chapter to minimize the network usage. Then we

apply a constraint satisfaction method, which calculates a solution for the

constrained optimization problem by moving operators in the latency space

along a path of minimal increase of network usage to a new position ful�lling

the delay constraint after the mapping of the continuous solution to the dis-

crete set of physical nodes. We will both show at the rest of this section, how

operators can be placed at the initial deployment, and how operator positions

can be adapted to dynamic network conditions during runtime.

In the next subsection we are going to extend the system model presented

in Subsection 3.1.1 to express the targeted constrained optimization problem.

Then we are going to formulate the constrained optimization problem, before

we present our approach.

3.2.1 System Model

Here we use as a baseline the system model introduced in Subsection 3.1.1. In

that respect in the underlying system, we use the physical network model and

3.2 Network Delay Constrained Optimization 85

the latency space abstraction as presented in Subsection 3.1.1 , i.e. we assume

a set of physical nodes V distributed in the network, where each physical host

uses a network coordinate algorithm to determine its position in the latency

space.

Furthermore, in our execution model, we assume, similar to Subsection

3.1.1, a stream processing task modelled as a directed operator graph G =

{Ω,F , r} that consists of a set Ω = {ω1, . . . , ωn} of operators connected by

a set F = {ω1ωi, . . . , ωjωn} of links. However, we extend this execution

model in order to express the end-to-end latency. Table 3.3 summarizes the

new concepts of the extended execution model. As explained earlier a link

ωiωj ∈ Ω × Ω is a directed connection that links one operator ωi to another

ωj . Up to now, we have only used this notation, for one-hop neighbours in

the operator graph. Here, we extend this notation to pathsbetween operators

consisting of several hops in the overlay network. That is, ωiωj denotes

the path between ωi and ωj de�ned as the union of the links on this path.

An end-to-end path ωiωj denotes a path connecting a source ωi and a sink

(application) ωj . Each graph typically contains a set of end-to-end paths

QS→A = {ωiωj , . . . , ωkωl}.

3.2.2 Problem Statement

Our goal is to �nd an operator placement on physical hosts such that the

network usage of inter-operator data streams is minimized under a given la-

tency constraint. Next, we give a formal de�nition of the resulting placement

problem.

We consider the optimization problem as presented in the previous chapter

(Equ. 3.4). In addition to this optimization goal, we introduce the objective

function to express the constraints in terms of latency. In general, to calculate

the latency, we have to sum up the network and processing delays, since

normally each operator introduces a certain processing delay. However, as

we have mentioned earlier we consider applications that send small messages

86 3 Operator Placement Algorithms

Constraint Satisfaction PhaseUnconstrained
Optimization Phase

Reduce Latency
In Latency Space

Mapping to
physical host

Minimize
Network Usage

p

Check Constraint
In Latency Space

Figure 3.5: Process �ow of the initial placement.

over long distances. Therefore, we consider the delay to process these small

messages on the physical host to be negligible in comparison with the network

delay. Given this assumption, we introduce the latency of a path ωiωj as

the sum of the delays of all the links participating in the path L(ωiωj) =∑
ωkωl∈ωiωj L(ωkωl).

Then, the latency of an operator graph will be the maximum latency of all

the end-to-end paths of G:

L(G) = L(ωiωj , . . . , ωkωl) = max
ωiωj∈QS→A

L(ωiωj)

Finally we de�ne our constrained optimization problem as follows:

minUglobal(~xω1 , . . . , ~xωn), subject to L(G) ≤ lmax (3.19)

,where lmax is a user de�ned constraint for the maximum delay.

3.2.3 Constrained Optimization Algorithm

Next we present our approach for solving the constrained optimization prob-

lem of Equ. 3.19. First we give an overview of the whole process and then we

describe in detail how operator positions are calculated.

3.2 Network Delay Constrained Optimization 87

3.2.3.1 Constrained Optimization Process: Overview

The whole process of our constrained optimization method consists of two

phases as shown in Fig. 3.5. In the �rst phase, called Unconstrained Opti-

mization Phase we �nd the optimal position of the operators in the latency

space such that the network usage of the operator graph becomes minimal,

i.e., we solve the continuous version of the unconstrained optimization prob-

lem of Equ. 3.4. In the second phase, called Constraint Satisfaction Phase,

we try to �nd a solution that ful�lls the given latency constraint on the

one hand. On the other hand, the calculated solution should deviate from

the (unconstrained) optimal placement w.r.t. network usage only minimally.

Therefore, we start at the optimal positions in terms of network usage that

were calculated in the �rst phase, and move operators towards the latency

minimum on paths that increase the network usage the least. This movement

is executed in the continuous latency space. After we have moved an operator

for a certain distance towards the latency minimum, we map the continuous

positions to the discrete positions of physical hosts and check whether the

latency constraint has been ful�lled. If it is ful�lled, we have found a solution

of the constrained optimization problem (Equ. 3.19); if it is not ful�lled, we

initiate another iteration by moving operators further into the direction of

the latency minimum.

For the initial placement, we execute the algorithm centrally on one dedi-

cated physical node, called coordinator node. After the deployment of oper-

ators, the adaptation of the solution is done in a distributed manner. This

means that an event-driven model initiates a new round of optimizations each

time it detects a change of the conditions of the problem. In Section 3.2.3.5

we are going to describe in detail, how the algorithm is executed to adapt

the placement of operator to dynamic changes, after we have described the

centralized execution of the optimization and constraint satisfaction phase in

the next sub-sections.

88 3 Operator Placement Algorithms

3.2.3.2 Unconstrained Optimization Phase

During the unconstrained optimization phase, we search the minimum of the

unconstrained optimization problem of Equ. 3.4. We use for that purpose

the unconstrained optimization placement algorithm presented in the previ-

ous section. As presented earlier, the placement algorithm can be executed

centralized as well as distributed. During the initial placement, the above

mentioned coordinator node executes this algorithm centrally. We assume

for the initial placement that the data rates are derived from the type of

application or estimated based on statistics gathered from previous deploy-

ments. During the execution of the operators, the adaptation algorithm can

adapt these values by measuring the data rates during runtime as we see in

Section 3.2.3.5.

3.2.3.3 Constraint Satisfaction Algorithm (MOPA�LMAX)

After the unconstrained optimization, all operators are in a position such that

the induced network usage is minimal. However, since the unconstrained op-

timization only solves the unconstrained optimization problem, the maximum

latency path in the operator graph might violate the given delay constraint.

Next we present the constraint satisfaction algorithm, which we call MOPA-

LMAX, that moves operators from their optimal position such that: (1) the

latency is reduced, (2) the deviation of the network usage after re-placement

is minimal compared to the optimal network usage immediately after the

unconstrained optimization. First, we give an overview of this constraint

satisfaction algorithm before we explain it in detail.

The general course of actions of the MOPA-LMAX algorithm, shown in

Alg.5, is as follows. First, we map the current continuous positions of the

operators to the closest physical hosts in the latency space, in order to be able

to check the latency constraint after the mapping to physical hosts (line 1)

rather than onto virtual hosts. Whenever we map operators to physical hosts,

we only consider non-overloaded physical hosts to prevent bottlenecks. Then,

3.2 Network Delay Constrained Optimization 89

we check whether the latency of the operator graph L(G) ful�lls the given

latency constraint lmax (line 2). If it ful�lls the constraint, we have found

a suitable operator placement and return this mapping (line 2, 11). If the

latency constraint is violated, we �nd new coordinates for the nodes. First,

we determine the maximum latency path (line 3) of the operator graph in the

continuous space. Then, we select one operator on this path and determine

a direction of movement that reduces the latency of this path (line 4) and at

the same time increases network usage the least. Details about this step are

presented in Subsection 3.2.3.4. If we cannot �nd a direction that reduces the

latency, we cannot �nd a solution that satis�es the given latency constraint

and return the current mapping of operators (line 5-6). Otherwise, we move

the selected operator by a certain step length into the calculated direction in

the latency space (line 8). Then we repeat the steps of calculating a mapping

to physical hosts (line 9), and checking for the satisfaction of the latency

constraint.

The step size of the iterative algorithm should be selected carefully since

it a�ects the accuracy of the solution. For our evaluation, empirically we

see that a step of 1 gives a good approximation of the solution. In order to

map the continuous solution to physical nodes whose positions in the latency

space are closest to the calculated virtual node positions, we realize a nearest

neighbour search [107], similar to the unconstrained algorithm presented in

Section 3.1. The coordinator node queries this infrastructure to perform the

mapping step. Finally, it deploys the operators on the physical nodes and the

execution of the operator tree starts.

3.2.3.4 Operator Selection and Direction of Movement

Next, we explain in detail how we select the operator to move and its respec-

tive direction (line 4, Algorithm 1). For this purpose, we �rst calculate the

optimal direction for each operator on the maximum latency path and then

select the one node with the minimal impact on the network usage.

90 3 Operator Placement Algorithms

Algorithm 5 MOPA-LMAX
Require: U(~xω1 , . . . , ~xωn) is minimal

Ensure: Finds a mapping (ν1, . . . , νn) such that L(G) ≤ lmax and

U(~xω1 , . . . , ~xωn) is minimal

1: map each operator ωi to closest non-overloaded νi
2: while (L(G) > lmax) do

3: determine maximum latency path ωiωj
4: select operator ω ∈ ωiωj and direction

−→
dir to move

5: if
−→
dir = 0 then {already at latency minimum}

6: return current mapping (ν1, . . . , νn)

7: end if

8: move operator ω by a step length step into
−→
dir

9: map operator ω to closest non-overloaded νnew

10: end while

11: return current mapping (ν1, . . . , νn)

More formally, we �rst search for a direction
−→
dir = (dirx, diry, dirz) to

move each unpinned operator ω on the maximum latency path, such that:

(1) L(ωiωj) is reduced, (2) the increase of U(~xω) is minimal if the operator is

moved into the direction
−→
dir.

In general, the impact on the network usage when moving into a certain

direction
−→
dir is inverse proportional to φω(

−→
dir) = ∇U(~xω)·

−→
dir, where · denotes

the dot product of the network usage gradient ∇U(~xω) and the direction of

the movement
−→
dir, i.e., ∂Ulocal(x)

∂x ∗dirx+
∂Ulocal(y)

∂y ∗diry +
∂Ulocal(z)

∂z ∗dirz. Note
that since

−→
dir is a unit vector, φω models the projection of the gradient onto

the direction of the movement. For instance, if φω < 0, then the operator is

moving inversely to the gradient and therefore the network usage will increase

proportional to the value of the gradient.

More formally, if D is the set of possible directions that reduce the latency,

our goal is to maximize the function φω(
−→
dir) = max−→

dir∈D{∇U(~xω) ·
−→
dir}.

Since L(ωiωj) is a convex function, moving into the direction of Lmin will

3.2 Network Delay Constrained Optimization 91

Umin

S

A

ω

U'(x)ω

θ

'

(a) U ′
min outside ∆SωA.

Umin

S

A

ω U'(x)ω '

(b) U ′
min inside ∆SωA.

Figure 3.6: Direction of the movement for MOPA-LPMAX

certainly reduce latency and in the ultimate case will lead to the minimum

latency path. Actually, Lmin might not be a single point but a line segment

connecting a source S and a sink A since obviously all positions on a direct

connection between S and A will lead to minimum latency.

Based on the observation that Lmin is a line segment rather than a unique

point, we show next how to calculate the direction
−→
dir that points towards

Lmin and maximizes φω(
−→
dir). In Fig. 3.6 we see an example where an un-

pinned operator ω should be moved towards the latency minimum Lmin de-

�ned by the line segment SA. As we see in this �gure, the possible directions

that point to the latency minimum are inside the angle θ between the vectors
−→
ωA and

−→
ωS. Since the possible directions belong only to the plane de�ned

by the points SωA, the direction
−→
dir will be a�ected only by the projection

of the network usage gradient ∇U ′(~xω) on the plane SωA. Thus, in Fig. 3.6

we see that the direction that maximizes the dot product φω is the direction

that has the smallest angle θ to the projection of the gradient of the network

usage on the plane SωA.

In general, we can distinguish two di�erent cases according to the posi-

tion of the projection of the network usage minimum U ′min on the plane

SωA: (1) U ′min is outside the triangle ∆SωA (Fig. 3.6). In this case, the

92 3 Operator Placement Algorithms

Algorithm 6 Operator and Direction Selection
Require: Positions ~xω, S1, A

Ensure: Finds ωopt and
−→
diropt such that φω is maximum

1: for all ω ∈ ωiωj do
2: if ∇U ′(~xω)× u(

−→
ωA) · ∇U ′(~xω × u(

−→
ωS)) < 0 then

3: φω(
−→
dir)← ‖∇U ′(~xω)‖

4:
−→
dir ← ∇U ′(~xω)

5: else

6: φω(
−→
dir)← max−→

dir∈{u(
−→
ωA),u(

−→
ωS)}∇U

′(~xω) ·
−→
dir

7:
−→
dir ← arg φω(

−→
dir)

8: end if

9: if φω > φopt then

10: φopt ← φω, ωopt ← ω,
−→
diropt ← u(

−→
dir)

11: end if

12: end for

direction
−→
dir should be the direction of the vector

−→
ωA or

−→
ωS, whichever

has the smallest angle θ to the projection of the gradient ∇U ′(~xω) on the

plane SωA. Therefore, this vector will maximize the dot product, i.e.,
−→
dir =

arg{max−→
dir∈{u(

−→
ωA),u(

−→
ωS)}∇U

′(~xω) ·
−→
dir}, where u denotes the unit vector. (2)

U ′min is inside the triangle ∆SωA (Fig. 3.6). In this case, the direction
−→
dir

should be the direction of the projection of the gradient ∇U ′(~xω), since this

will induce a maximal decrease of network usage.

In order to distinguish between the two cases, we have to identify when

U ′min is inside the triangle. As we see in the example of Fig. 3.6, U ′min is

inside the triangle when vector
−→
ωA and

−→
ωS are on di�erent sides of ∇U ′(~xω).

This condition (the relative position of ∇U ′(~xω)) cannot be identi�ed only

through the dot product. Therefore, we need to calculate the cross products

∇U ′(~xω)×
−→
ωA and ∇U ′(~xω)×

−→
ωS. Note that the cross product of two vectors

~A = {A1, A2, A3} and ~B = {B1, B2, B3} in three dimensional Euclidean

space, is given by: ~A × ~B = (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 −

3.2 Network Delay Constrained Optimization 93

A2B1)k. Therefore, the result of the cross product is another vector which is

perpendicular to the plane containing the two input vectors. If the two vectors
−→
ωA,
−→
ωS lie on di�erent sides of vector ∇U ′(~xω), then their cross products

∇U ′(~xω) × u(
−→
ωA), ∇U ′(~xω) × u(

−→
ωS) have di�erent directions, i.e., the dot

product of their cross products are negative.

Algorithm 6 shows the �nal algorithm that we use to determine the operator

to move and the direction of the movement. For all operators on the path,

we �nd the optimal direction that maximizes the dot product φω (line 2-12).

To this end, we �rst check if the projection of the network usage minimum

is inside the triangle, i.e., the dot product of the cross products is negative

(line 2). Then the optimal direction is the direction of the projection of the

gradient (line 3-4). In any other case, φω is set to the maximum of the dot

products ∇U ′(~xω) ·u(
−→
ωA),∇U ′(~xω) ·u(

−→
ωS) (line 6-7). Finally, we compare φω

to the current maximum dot product of the path. If φω exceeds the current

maximum, we keep the identi�er for the operator to move as well as the

direction of the movement (line 9-11). The iterative process continues until

we have checked all the operators on the path. The output of the algorithm

is the identi�er of the best operator to move ωopt, together with its optimal

direction.

3.2.3.5 Dynamic adaptation of placement

After the initial placement of operators, the operator graph is deployed in

the network. During the execution of the operators a change in network

conditions or the data rates of inter-operator data streams might degrade

the initial placement by rendering the initial solution suboptimal or violating

the given delay constraints. Therefore, the placement of operators has to

be adapted to dynamic network conditions. Next, we describe the dynamic

adaptation during runtime.

The adaptation process is based on an event-driven model that triggers the

re-placement of operators whenever the position of neighbouring operators

94 3 Operator Placement Algorithms

change or if the data rates of incoming or out-coming data streams change.

In case of such changes, the operator graph enters the unconstrained opti-

mization phase where operator positions are optimized for minimal network

usage. The unconstrained optimization is realized by running the algorithm

presented in Section 3.2.3 in a distributed manner [92]. In the distributed

case, each operator optimizes its local network usage and exchanges messages

with its neighbours to communicate its new position, until the positions of

its neighbours do not change any more. After a number of iterations, the

distributed algorithm yields the �nal solution for the operator graph.

Subsequently, the operator graph enters the constraint satisfaction phase.

However, since the operators are distributed on di�erent hosts, the operators

should coordinate to decide when and how to enter the constraint satisfac-

tion phase. For this purpose, as for the initial placement, we again use a

coordinator node. For the initial placement, the position of the coordinator

node is not crucial, whereas for the adaptation it is bene�cial to choose the

root node as coordinator, since it can help as the root node of an aggre-

gation tree. To detect the transition between the two phases, we create an

aggregation tree where state information (the current position of operators) is

propagated bottom-up towards the root. To avoid additional message over-

head, we piggy-back this state information of a subtree onto the messages

that are communicated during the unconstrained optimization phase. Thus,

the coordinator node has a global view onto the operator graph at each point

in time with a delay that depends on the time to transmit the messages along

the tree.

Fig. 3.7 exempli�es our approach for an operator graph of 15 nodes. In that

case, during the optimization phase, the 6 free operators exchange messages to

cooperatively converge to a network usage minimum. Note that the operators

connected to the sink, which is the coordinator node, send messages to the

coordinator node to update the global view onto the operator graph. Based

on this global view, the coordinator node assumes that the unconstrained

optimization has reached a stable state, when it does not receive any message

3.2 Network Delay Constrained Optimization 95

Notification-MOPA--LMAX
Communication Overhead--MOPA

State Information-MOPA--LMAX

Unconstrained Optimization Phase Constraint Satisfaction Phase

Figure 3.7: Communication Overhead Example for MOPA &MOPA-LPMAX

from its neighbouring operators for a certain time interval ∆t. If this time

expires and no state update messages have been received, the coordinator

node performs the constraint satisfaction phase centrally as described in the

previous section. When it �nds a new solution of the constrained optimization

problem, the root propagates a message to all nodes/operators in the tree,

containing the mapping of the unpinned operators as shown in Fig. 3.7. After

the propagation of the message along the tree, all the operators are informed

about their �nal position and initiate a migration if necessary.

The time of the transition from the optimization phase to the constraint

satisfaction phase depends on the time of the dynamic changes that may

happen unexpectedly in the system. Therefore,it is possible that a new dy-

namic change triggers the optimization phase, while the coordinator node

performs the constraint satisfaction step. In that case, the coordinator node

will not propagate the solution of the constrained optimization problem to

the tree and the whole optimization process will start from the beginning. In

that respect, the point in time to pass from the optimization to constraint

satisfaction phase does not a�ect the �nal outcome of the algorithm, but it

determines the responsiveness of the system to dynamic changes.

In particular, the parameter ∆t de�nes the time to respond to dynamic

96 3 Operator Placement Algorithms

changes. If it is set very low, then the system will react faster to dynamic

changes by re-calculating the physical mappings of operators more frequently

and thus resulting possibly in more migrations in the physical network. Since

the migrations are costly both in terms of communication overhead and la-

tency, we try to avoid entering the constraint satisfaction phase before we

reach a stable state by approximating an upper bound for the time to get the

messages transmitted along the operator tree. Thus, we propose to set this

parameter equal to the time to send a message from the most distant source

in the tree to the root plus a small constant.

In very dynamic environments, the unconstrained optimization might take

a long time to reach a stable state during which the delay constraint is possibly

not ful�lled. In order to avoid being stuck in the unconstrained optimization

phase for a long period, we introduce an additional parameter ∆T that de�nes

the maximum time interval that the root should wait until it executes the

constraint satisfaction algorithm.

Finally, we analyse the communication overhead induced by the adaptation

algorithm. In general, the induced message overhead mainly consists of the

following messages: (1) The messages required to distributively solve the

unconstrained optimization problem during the unconstrained optimization

phase. An analysis of this overhead is presented in Chapter 4, (2) The state

information propagated upwards in the aggregation tree to determine the

end of the unconstrained optimization. The additional overhead introduced

for transmitting state information is expected to be small since we can re-

use the information propagated during the unconstrained optimization in

step 1�in this phase, nodes already exchange their coordinates. (3) The

noti�cation messages about new operator positions propagated downwards

along the operator tree. This requires only #unpinnedOperators messages.

Fig. 3.7 shows an example of the communication overhead for MOPA and

MOPA-LMAX for an operator graph of 15 nodes. We see that during the

unconstrained optimization phase, the unpinned operators exchange messages

to cooperatively �nd a global network usage minimum. To this end, the

3.2 Network Delay Constrained Optimization 97

additional overhead introduced for transmitting state information to the root

of the aggregation tree is proportional to the communication overhead of

MOPA. At the constraint satisfaction phase, we need only 6 messages equal

to the number of the unpinned operator in the operator graph. Overall, we see

that only Steps (2) and (3) introduce a small amount of additional messages

compared to the unconstrained optimization.

3.2.4 Integer Linear Programming Formulation

In this section, we extend the formulation of the optimization problem in

(Equ. 3.2) as an integer linear programming (ILP) presented in Subsec-

tion 3.1.4, to provide an ILP formulation for the constrained optimization

problem in (Equ. 3.19). Similar to the ILP formulation presented in Sec-

tion 3.1.4, this problem formulation is directly applicable to a centralized ILP

solver and it will be used as a reference for the evaluation of the constrained

satisfaction algorithm Alg. 5 in Chapter 4.

For the integer linear programming formulation of the constrained opti-

mization problem, we keep the same de�nitions as presented in Section 3.1.4

and we extend our model similar to Subsection 3.2.1 with the de�nition of

the end-to-end paths QS→A = {q1, . . . , qn}. For the ILP formulation each

path qi is de�ned as binary vector: qi ∈ {0, 1}|F|, with

qi,f =

1, if operator graph edge f ∈ F is part of the end-to-end path.

0, otherwise.

A valid solution must satisfy the latency constraint for each end-to-end path

qi. Therefore, to solve the constrained optimization problem in (Equ. 3.19),

we add in the ILP formulation presented in Subsection 3.1.4 the following

constraint:

∑
f∈F

∑
e∈E

qi,fyf,el(e) ≥ lmax, ∀ qi ∈ QS→A (3.20)

98 3 Operator Placement Algorithms

3.3 Processing and Network Delay Constrained

Optimization

In previous section, we introduced an algorithm ful�lling latency constraints

while optimizing the network usage. However, the previous algorithm tar-

gets applications communicating small data units where the transmission and

processing delays are negligible. To this end, in this section, we extend the

constraint optimization problem to also consider processing and transmission

delays. Thus, we target processing intensive applications. Consider, for in-

stance, a multimedia streaming application [76], transferring larger chunks of

data to be processed. In this category of applications, processing delay and

data transmission delay could a�ect signi�cantly the end-to-end delay of the

system.

Our approach �rst optimizes for network usage and then applies a con-

straint satisfaction algorithm that ful�ls the end-to-end latency constraints

[93]. The computing resources are used in an e�cient way in the sense that

nodes with more residual resources are preferred over others, and only if they

reduce the processing delay of the corresponding operators to be placed.

3.3.1 System Model

In order to consider transmission and processing delays during the placement,

we need an extended system model also modelling the size of data to de

transmitted and the processing at hosts. Next, we introduce this extended

model.

In our execution model, we use the basic de�nitions presented in Subsec-

tion 3.1.1 and Subsection 3.2.1, i.e., a stream processing task is modelled as a

directed operator graph G = {Ω,F , r} that consists of a set Ω = {ω1, . . . , ωn}
of operators that are connected by a set F = {ω1ωi, . . . , ωjωn} of links. Ad-
ditional to this execution model, we introduce here the notion of a data unit

which represents the minimal discrete data unit to be transmitted between

the operators and processed at hosts. A sequence of data units forms a data

3.3 Processing and Network Delay Constrained Optimization 99

Physical Network Model

cνi Capacity of host νi

mipsνi Processing speed of host νi

qνi run queue length

Operator Graph Model

τ Minimal discrete data unit to be transmitted between

the operators

P(ωk, ν) Processing delay that a data unit experiences at host ν

hosting operator ωk.

T (τ, ν) Transmission delay for putting a data unit on the wire

at host ν

LP(ωiωj) Total delay of an end-to-end path ωiωj , including pro-

cessing and network delays

sτ Size of data unit

Table 3.4: Extended Processing and Network Delay Constrained System

Model

stream. We de�ne sτ as the size of a data unit τ . A data unit forms the basic

unit of processing for each operator. Typically, sources generate sequences

of data units in intervals that are then processed by operators and �nally

consumed by the sinks.

Since, in this section, we consider that the end-to-end delay contains pro-

cessing as well as network delays, we extend the system model presented in

Section 3.2.1 accordingly. In particular, T (τ, ν) de�nes the transmission de-

lay for putting a data unit on the wire at host ν. In order to estimate T (τ, ν),

we continuously measure the transmission delay T (τ ′, ν) of a real data unit τ ′

(probe unit) of size s′τ on a physical host ν and we calculate the transmission

delay as T (τ, ν) = (sτ/s
′
τ)T (τ ′, ν).

Moreover, to be able to estimate the processing delay on a physical host,

we introduce here a simple processing model that assumes that the processing

100 3 Operator Placement Algorithms

power of a host is equally distributed to all operators running on this host

(which is typically the case if all processes have the same priority). More

formally, we de�ne as P(ωk, ν) the processing delay that a data unit experi-

ences at host ν hosting operator ωk. For the local host where the operator is

currently located, P(ωk, ν) can be measured directly. However, determining

P(ωk, ν) is not a trivial task for other hosts where the operator is currently

not located. Note that the placement algorithm needs information about

P(ωk, ν) before it actually places the operator on host ν to make a decision

which host is suitable with respect to processing delay before actually migrat-

ing an operator. Therefore, the basic problem is to estimate the processing

delay of an operator ω when executed on host ν taking into consideration the

fact that hosts have dynamic processing load and di�erent processing power.

Here, we use a simple model for estimating the processing delay, which pro-

vides a su�ciently good estimation according to the results presented later

in this section. However, our approach is open to other more sophisticated

performance models, based, for instance on black box or white box tests and

more on elaborate machine models [62,104].

Our estimation is based on two metrics to de�ne the processing power and

load of each host, respectively. On the one hand, we use the bogomips metric

to de�ne the speed of a machine [108]. Bogomips express the number of

iterations per second of a loop with empty body. It is used, for instance, by

the Linux system at the beginning of the boot process. Obviously, this metric

cannot capture every aspect of the speed of a host such as di�erent relative

speeds for integers and �oating point operations. However, it gives a coarse

estimate to compare two machines and proved to be su�ciently accurate for

our purpose in our measurements. On the other hand, we use the run queue

length of the processor to express the load of a host. The run queue length

de�nes the number of processes waiting for the CPU. Intuitively, the share of

processing time an operator receives will shrink proportional to the number

of processes running on the host (here, a process can be another operator as

well as any other process running on the host).

3.3 Processing and Network Delay Constrained Optimization 101

Assume that the operator is currently running on host νi and we want to

estimate the processing delay of that operator if it migrates to host νj . The

current capacity cνi of host νi with processing speed mipsνi and run queue

length qνi is given by the following formula:

cνi = min {mipsνi ,
mipsνi
qνi

}

The capacity of the other host is given by:

cνj = min {mipsνj ,
mipsνj
qνj + 1

}

Here, mips/q de�nes the bogomips that one process receives if q processes are

competing for the CPU. On host νi where the operator is currently placed, qνi
already includes the operator. On the (candidate) host νj we have to add 1 to

qνj to re�ect the queue size after the migration to νj . The minimum function

ensures that on an unloaded host and short processing times with longer idle

periods between data units the operator cannot receive more than 100% of

the CPU. As an indicator of the current relative performance of the two hosts

we de�ne the speedup factor : speedupij =
cνi
cνj

. Finally, we approximate the

remote time to run the operator on host νj as the product of the speedup

factor and the local processing time at host νi:

P(ω, νi) = speedupij ∗ P(ω, νj)

In order to evaluate our processing model, we ran several experiments where

we tried to estimate the processing time of an operator, given that di�erent

numbers of operators were already deployed at the candidate host. For these

experiments, we considered operators that realize a matrix multiplication

with di�erent matrix sizes. Moreover, we approximated the run queue length

by using an exponential moving average with a smooth factor equal to 0.05,

using the system activity report (sar) command to query the current value of

the run queue length of a Linux system. Figure 3.9 and Figure 3.8 show the

approximated and the real processing time for operators with di�erent matrix

102 3 Operator Placement Algorithms

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

se
c)

Run Queue Length

Estimation
Real Wall Time

Figure 3.8: Estimated processing delay (matrix multiplication operator; ma-
trix size:100)

size. As expected, the processing time increases by the increase of the run

queue length and the model captures correctly the tendency of the processing

delay. For operators with matrice size 100, the average relative error equals

to 20%, while for operators with matrix size 1000, the corresponding average

relative error is lower than 11.2%.

3.3.2 Problem Statement

Before we formulate our constrained optimization problem, we de�ne here

the end-to-end latency LP(ωiωj) of an end-to-end path ωiωj . More formally,

extending the de�nition of end-to-end latency from Section 3.2.2, end-to-end

latency is de�ned as the time that a data unit τ needs to get transmitted and

processed along a path between source ωi and sink ωj :

LP(τ, ωiωj) =

∑
ωkωl∈ωiωj

{L(νkνl) + T (τ, νk) + T (τ, νl)}+
∑

ωk∈ωiωj

P(ωk, νk)

3.3 Processing and Network Delay Constrained Optimization 103

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

se
c)

Run Queue Length

Estimation
Real Wall Time

Figure 3.9: Estimated processing delay (matrix multiplication operator; ma-
trix size:1000)

In this equation,as already introduced in the previous sections, L(νkνl) de-

�nes the communication link delay of a link (νkνl) on the path, i.e., the time it

takes to transmit a single bit between the two physical hosts, hosting operator

ωk and ωl. Similar to the previous sections, for modelling the propagation

delay, we use the latency space model as already introduced in Subsection

3.1.1.

As already mentioned, in this section we consider the processing delays

T (τ, ν) and P(ωk, ν) to contribute signi�cantly in the end-to-end delay. Based

on the previous de�nitions of T (τ, ν) and P(ωk, ν) , we can de�ne the latency

of an operator graph as the maximum end-to-end latency contained in oper-

ator graph G, i.e. the maximum latency that a tuple experiences traversing

the longest path in the operator graph. Formally speaking, the latency of an

operator graph G is de�ned by:

LP(G) = max
ωiωj∈QS→A

LP(τωiωj) =

= max
ωiωj∈QS→A

∑
ωkωl∈ωiωj

{L(νkνl) + T (τ, νk) + T (τ, νl)}+
∑

ωk∈ωiωj

P(ωk, νk)

104 3 Operator Placement Algorithms

Based on the end-to-end latency and network usage de�nitions, we can

now formally de�ne our placement problem. This problem is de�ned as con-

strained optimization problem where a user de�ned maximum end-to-end

latency restriction lpmax has to be ful�lled while minimizing the induced net-

work usage:

minUglobal(~xω1 , . . . , ~xωn), subject to LP(G) ≤ lpmax (3.21)

3.3.3 Placement Algorithm

In this section, we present the operator placement algorithm to solve the

above constrained optimization problem. We start with an overview of the

algorithm, and then present further details in the following subsection.

3.3.3.1 Overview of Algorithm

The basic idea of the algorithm is similar to the constraint placement al-

gorithm presented in Subsection 3.2.3. Again, we use a two-step placement

process. In the optimization step, we search for an optimal placement w.r.t.

network usage. In the second step, we modify this unconstrained solution

such that the end-to-end latency constraint is satis�ed and the network usage

is only increased as few as possible compared to the unconstrained solution.

Unlike the problem introduced in Section 3.2.2, the problem of Equ. 3.21,

includes processing and transmission delays. By moving the operators in the

latency space as proposed in Section 3.2.3, we can reduce the communication

latency only. Thus, for solving the extended problem of Equ. 3.21, we need a

strategy that considers also processing and transmission delay.

Intuitively, to reach a better solution, the operators should be placed on

hosts that reduce the end-to-end latency, either by moving to faster nodes

(reducing processing delay) or by reducing the network latency. Theoreti-

cally, we could �nd the optimal solution of the constraint placement problem

by an exhaustive search that considers every host in the system. However,

3.3 Processing and Network Delay Constrained Optimization 105

obviously this would lead to high overhead for larger sets of hosts and opera-

tors. Therefore our solution is based on the idea to �nd some candidate hosts

that reduce the end-to-end latency. We �nd promising nodes by searching in

certain areas of the latency space�later we will show in detail how to �nd

a good set of candidates. Then, we communicate with the candidates to get

their processing and transmission delay. Finally as we see later, in order to

keep the network usage as low as possible, we iterate over the candidate nodes

and we select those that reduce the end-to-end latency while increasing the

network usage minimally.

Depending on the phase, the output of the constraint satisfaction algorithm

will be either an initial placement or a new placement of the operators. In

the later case, the operators are migrated to the new hosts.

3.3.3.2 Constraint Satisfaction Algorithm (MOPA�LPMAX)

Next, we describe the details of the constraint satisfaction step. As men-

tioned, the constraint satisfaction algorithm, to which we refer as MOPA-

LPMAX, depicted in Algorithm 7 is invoked after the optimization step.

Therefore, before the execution of this algorithm all operators are placed on

hosts such that Equation 3.4 is minimal. For the explanations below, it is

important to realize that U(G) is a function that depends on the coordi-

nates of the hosts hosting operators in the latency space since the Euclidean

distance between hosts in the latency space de�nes the propagation delay

(Function L) between hosts and therefore their operators. In the beginning,

U(G) = Umin where Umin denotes the minimal network usage, which is found

by the optimization step.

However, although U(G) is minimal after the optimization step, the latency

of the longest path of the graph might be higher than the requested maximum

latency, i.e., Equation 3.21 is not ful�lled in general. Algorithm 5 now tries

to distort this optimal solution to stay as close as possible to Umin and ful�ll

the latency constraint.

106 3 Operator Placement Algorithms

Algorithm 7 MOPA-LPMAX Algorithm
Require: U(~xω1 , . . . , ~xωn) is minimal

Ensure: Finds a mapping (ν1, . . . , νn) such that L(G) ≤ lmax and

U(~xω1 , . . . , ~xωn) is minimal

1: while (LP(G) > lpmax) do

2: �nd maximum latency path ωiωj
3: if candidate set candidates(ωiωj) does not exist then

4: for all operator ω ∈ ωiωj do
5: �nd candidate set candidates(ω)

6: sort candidates(ω) by distance to Umin

7: candidates(ωiωj)← candidates(ωiωj) ∪ candidates(ω)

8: end for

9: end if

10: if candidates(ωiωj) = ∅ then {already at latency minimum}

11: notify application

12: else

13: for all operator ω ∈ ωiωj do
14: get next candidate ν ′ in candidates(ω)

15: ~x′(ω)← ~x′ν

16: ∆U ← U(~x′ω)− U(~xω)

17: end for

18: end if

19: assign operator ω with minimal ∆U to ν ′

20: delete candidate ν ′ from candidates(ω)

21: delete candidate ν ′ from candidates(ωiωj)

22: end while

23: return current mapping (ν1, . . . , νn)

3.3 Processing and Network Delay Constrained Optimization 107

Algorithm 5 gets as input an initial mapping of the operators to hosts

such that the network usage of the operator graph is minimal. First, the

algorithm �nds the longest path in the operator graph, and checks if the

latency restriction is already ful�lled(line 1). In that case, it simply returns

the current mapping. Otherwise, it enters the main body of the algorithm,

where it checks for alternative mappings.

For each operator on the longest path, the algorithm �nds a set of candidate

hosts where the operator could be migrated to (line 5). The candidate set is

calculated once in the beginning for each operator on a path (line 3-9). The

candidates are selected such that moving an operator to a candidate host

decreases the latency of the longest path. The calculation of the candidate

set includes networks delays as well as estimated processing delays (in the

next subsection, we are going to discuss in detail how this candidate set is

determined). If the candidate set of all operators on the maximum delay

path is empty, the latency cannot be decreased any further and the algorithm

stops without �nding a valid solution (line 10). In this case, the application

is noti�ed that the latency constraint cannot be ful�lled, and the application

might choose to decrease its requirements or simply stop (line 11). If the

candidate set is not empty, the latency can be further decreased by migrating

to any candidate host. The idea is, not to choose an arbitrary candidate but

a candidate that increases the network usage the least in order to distort the

optimal solution w.r.t. to network usage the least. To this end, the hosts of

the candidate set are sorted according to the distance to Umin (line 6), and

the host with the minimal distance leading to the minimal network usage

increase ∆U(ω)(line 13-19) is chosen as new host for operator ω.

This process is continued until either the candidate set is empty, i.e., the

latency cannot be further decreased (see above), or the latency constraint is

ful�lled. In the later case, the mapping of operators (ω1, . . . , ωn) to hosts

(ν1, . . . , νn) respectively is returned, and the operators are migrated to these

hosts.

108 3 Operator Placement Algorithms

-3 -2 -1 0 1 2 3 4 5

-4

-2

0

2

4

6

-4-20246810121416

Network Coordinates of similar latency

ω

ω ω

1

2

Physical Host

Figure 3.10: Candidate set for one unpinned operator with one sink and one
source.

3.3.3.3 Selection of Candidates

Calculating the candidate set is a crucial operation during the constraint

satisfaction step. If the candidate set is too big, the overhead increases since

every candidate has to be contacted and checked with respect to its processing

and network delay. If the candidate set is small and misses some valid hosts

that would decrease latency, no valid solution might be found although it

exists in the network. In order to �nd a good trade-o� between overhead and

success rate, we considered di�erent candidate selection strategies, which are

described next.

First, we introduce a selection strategy that uses an optimal restriction

of the search space. Next, we illustrate this idea through a simple example

and we prove a pruning criterion that reduces the search space further. It

is important to observe that all suitable candidates are restricted inside el-

lipsoidal shapes in the Euclidean latency space. Figure 1 visualizes a simple

example of an operator ω with one source ωi and one sink ωj . The end-to-

end delay LP for this simple example is the sum of the propagation delays

of the operator to its neighbours5 L = L(ωω1) +L(ωω2), plus the processing
5Without loss of generality, we assume here that the sink and the source have no

3.3 Processing and Network Delay Constrained Optimization 109

Algorithm 8 Candidate Selection Algorithm
Require: Bounding box for ellipse E

Ensure: Candidate set candidates of size k

1: �nd all hosts hosts inside ellipse E [range query]

2: sort hosts hosts by distance to Umin

3: while #candidates < k do

4: contact next host ν ′ in hosts

5: if P(ω, ν′) < P(ω, ν) + T +N −Nmin then

6: candidates← ν ′

7: end if

8: end while

9: return candidates

delay P = P(ω, ν) at the host ν of operator ω, and the transmission delays

T = T (τ, ν) + T (τ ′, ν) of the input tuple τ and output tuple τ ′. Each value

of the end-to-end delay LP represents an ellipse in the latency space with

foci points de�ned by the positions of the two neighbours ωi and ωj . Note

that according to the de�nition of the ellipse, all points on an ellipse have the

same distance to the foci points, i.e., they lead to the same end-to-end delay.

It is straightforward to see that only the nodes that reside inside the ellipse

LP = L + P + T , can lead to better solutions since for nodes outside the

ellipse even if the processing delay is zero, the network delay would still exceed

the current latency LP . Thus, the candidate nodes are restricted inside the

ellipse LP . In order to �nd the candidate hosts within E, we could perform

a range query in the latency space using the latency space service and query

range LP .
Although checking all nodes inside the ellipse includes all valid candidates,

it might lead to very high communication overhead if the set of enclosed nodes

within the ellipse is large. As we discuss in Chapter 4, the set of enclosed

nodes, is related to the di�erence between the network and processing delay.

processing delay

110 3 Operator Placement Algorithms

If processing delay is in order of seconds, then checking of all nodes inside

the ellipse might lead to an exhaustive search that makes the application

of such method impossible in practice. Thus, in order to strictly limit the

candidate nodes to a reasonable size, we should select only k hosts among all

the nodes in the ellipse to contact. To this end, in this section we discuss

possible heuristics to be used to prune the search space that will be evaluated

in Chapter 4.

Straightforward solutions to that problem are to choose the k closest nodes

with respect to network usage minimum that reside in the ellipse, or to select

k random hosts inside the ellipse. Random selection of hosts could be bene-

�cial in case the suitable hosts do not lie in the direct vicinity of the current

host. However, these heuristics do not consider the value of the total delay

during the selection of the candidates, which is important to identify promis-

ing candidate nodes. Therefore, we propose a method that uses a pruning

criterion, which �lters out some of the nodes inside the search space. To this

end, we introduce the following pruning criterion for the processing delay of

the candidate hosts:

Pruning Criterion Let ω be an operator placed on a host ν with commu-

nication latency L to two neighbouring operators and with processing delay

P . Assume also a data unit τ with transmission delay T . A host ν ′ can

only lead to a better solution than that of ν w.r.t. latency, if and only if the

following condition is ful�lled: P(ω, ν′) < P(ω, ν)+T +L−Lmin, where Lmin

represents the minimum network delay of operator ω to its two neighbours.

Proof. Assume that the total delay on host ν ′ is equal to P(ω, ν′)+L′+T ′.
If ν ′ is a better candidate host, it should hold that LP ′ < LP , thus the

following inequality should hold:

P(ω, ν′) + L′ + T ′ < P(ω, ν) + L+ T ⇒ (3.22)

P(ω, ν′) < P(ω, ν) + L+ T − (L′ + T ′)

We can �nd a maximum bound for the equation by minimizing L′+T ′. Net-
work latency is minimized when the host ν ′ lies on the line segment between

3.3 Processing and Network Delay Constrained Optimization 111

the two neighbouring operators ω1 and ω2, leading to a minimum possible

network delay Lmin. If we also assume that ν ′ has negligible transmission

delay, i.e., T = 0, we get a minimum bound for L′ + T ′:

L′ + T ′ < Lmin (3.23)

From Eq. 3.22 and Eq. 3.23, we �nally get:

P(ω, ν′) < P(ω, ν) + L+ T − (L′ + T ′) < P(ω, ν) + L+ T − Lmin ⇒

P(ω, ν′) < P(ω, ν) + T + L − Lmin

, which proves the pruning criterion. �

Algorithm 8 shows the pseudocode for the candidate selection strategy

using the pruning criterion. According to this method, we �rst get all the

hosts that reside in the ellipse by performing a range query on the latency

space. Then we contact one by one the next nearest host with respect to

network usage minimum inside the ellipse and we check if it satis�es the

pruning criterion. In that case, the host is included in the candidate set. The

process is repeated until k hosts that satisfy the pruning criterion are found.

Obviously, this method induces higher overhead, than the naive solutions

proposed earlier, but it is expected to give better quality results, since it

takes also into consideration the pruning criterion. Although, the criterion

is likely to return less nodes, it still does not strictly limit the number of

returned candidates, since the selectivity of the �lter depends on the speed

of the current host. Thus, if the current host is quite fast, the criterion tends

to �lter out more hosts, while in case of a slow current host, less candidate

hosts will be �ltered out.

In Chapter 4, we are going to provide an evaluation of the proposed heuris-

tic using the pruning criterion, compared to simple heuristics, i.e., Random,

and, k-Nearest Neighbour selection as discussed earlier.

112 3 Operator Placement Algorithms

System Optimization Objectives/ Constraints

Padres [69] Routing delay, Network tra�c

FAIDECS [111] Throughput, Latency

Hermes [86] Bandwidth, Latency, Reliability, Load

Cordies [59] Stability, Application constraints

DHCEP [99] Network usage, System/Application Con-

straints

Table 3.5: Existing CEP systems supporting distributed event recognition

3.4 Related Work

In previous chapter, we have provided the related work in the �eld of context-

aware, distributed stream processing and complex event processing systems

and we have identi�ed similarities in the architectural approach for processing

streams of data. In-network processing that is based on a fully distributed

model, i.e., an overlay network of processing operators, is mainly used in

the IFP systems but as analysed in Chapter 2, there is a potential in us-

ing this model for increasing the scalability of context-management systems.

Therefore, in this section we discuss the strategies for the operator place-

ment problem that has been investigated in di�erent contexts, i.e., as part of

data stream management or CEP systems but also a relevant approach from

control systems.

To this end, this section is structured in three di�erent subsections depend-

ing on the targeted system, namely complex event processing, distributed

stream processing, control systems. As we analyse later, each approach fo-

cuses on di�erent aspects of the placement problem, trying to ful�l di�erent

constraints.

3.4 Related Work 113

3.4.1 Complex Event Processing

Before we present in detail the existing work in this �eld, we brie�y discuss the

relevance of the operator placement problem to the CEP systems. As already

mentioned in Chapter 2, CEP systems process �ows of events in an e�ort to

detect and forward (composite) events to interesting peers (subscribers). CEP

systems rely on Pub/Sub systems that connect the Publishers, producing

primitive events to the Subscribers that consume events. In that respect,

similar to the operator graph model, CEP tasks form an overlay network with

a set of sources (publishers), a set of sinks (subscribers) and possibly a set of

in-network event correlators that generate composite events by aggregating

primitive events. In that respect, the position of the physical node(s) that the

event composition is performed is similar to the general operator placement

problem.

In the �eld of CEP systems, several systems that allow for distributed

event detection have been proposed (FAIDECS [111], Siena [25], Hermes [86],

Gryphon [7], Padres [69]). Early works in CEP systems allow for the sub-

scription to basic primitive events and do not consider in-network aggrega-

tion of events. These systems rely mostly on a network of broker nodes,

which perform matching between advertisements and subscriptions and for-

ward the events accordingly. In that respect, systems, such as SIENA [25]

and Gryphon [7] have focused on the e�cient routing of primitive events

by reducing the communication costs between clients and brokers and thus

avoiding the �ooding of events to all subscribers. However, these works do

not consider placement of complex event correlators since they focus mainly

on the �ltering and routing of primitive events and leave the aggregation and

composition of events to the application programmer.

Closer to our work, are CEP systems that allow for the aggregation and

composition of events and consider the placement of event correlators. Ta-

ble 3.5 provides an overview of existing CEP systems, that we discuss in the

next paragraphs, which consider placement problems with respect to their

114 3 Operator Placement Algorithms

main optimization goals.

For instance, PADRES [69] use rule-based brokers that are capable of com-

posing atomic events to complex composite events. The event composition

is performed on rule-based brokers that are preferably close to publishers.

Although the heuristic strategy of placing rule-based brokers (that represent

in-network operators in our model) close to the publishers reduces the com-

munication overhead since the events are �ltered close to the sources, it does

not lead to optimal placement decisions with respect to network usage opti-

mization goal.

In another work, Hermes [87] provides a set of heuristic solutions called dis-

tribution policies for the placement of mobile complex event (CE) detectors

in the network. Initially, Hermes [86] used a DHT (Distributed Hash Table)

to determine the rendezvous nodes that perform the in-network composition

of events between publishers and subscribers. Then, in [87] an extension of

Hermes framework was presented that incorporates new distribution policies.

In particular, in [87] authors propose �ve di�erent distribution policies that

optimize di�erent metrics such as bandwidth consumption, latency, load, re-

liability, and stability. Each distribution policy depending on the objective

takes advantage of the decomposition, re-use and locality of CE detectors.

In their evaluation, they show that by applying these simple heuristics, they

could reduce the communication overhead especially in the part of the wire-

less network since the CE detectors could be reused. The proposed heuristics

are based on the decomposition, reuse and locality of the CE detectors and

they do not use any network- and system-speci�c information, e.g., network

or computing capacity information, that is necessary in order to take good

placement decisions. Our placement algorithms use network- and system-

speci�c information by incorporating information by the latency space and

the processing model presented in Subsection 3.3.1.

FAIDECS [111] considers also composite events and applies a broadcast al-

gorithm for e�ectively sending all related events to the interested subscribers.

The broadcast strategy is based on Hermes approach [86], which uses DHT

3.4 Related Work 115

to determine rendezvous nodes (mergers) for publishers and subscribers. In

addition to this approach, FAIDECS proposes the replication of mergers to

increase the availability. However, the selection of merger nodes is based

on DHT nodes that are not always optimal for reducing application-related

properties such as latency, since they are designed to reduce the number of

hops.

Relevant to our work, is also the approach of Koch et al. [59] that adopts

also an operator-driven distribution for CEP systems. In particular, the au-

thors present Cordies [59], a novel CEP system that enables e�cient dis-

tributed event correlation. Cordies uses an expressive language for imple-

menting CE operators and enables distributed event correlation through Cor-

relation Description (CD) placement. Cordies is able to integrate user-de�ned

placement algorithms. In their work, they formulate the placement problem

as a constraint satisfaction problem (CSP) and they propose a heuristic solu-

tion that solves this problem. Their approach uses the application constraints

to prune the search space of candidate physical hosts and optimizes the place-

ment for stability. In [99], Schilling et al. have also proposed a placement

algorithm for CEP systems. In their work, they assume a heterogeneous

network of physical hosts that limit signi�cantly the search space for the

placement decisions. Therefore, they �rst �nd a valid initial placement that

they optimize after deployment for network usage. During the optimization

phase, the algorithm uses a simulation annealing technique to �nd alterna-

tive better solutions based on its local knowledge. Although this approach

optimizes also for network usage, this work is based on di�erent assumptions

since the proposed placement algorithm tries to �nd initially a set of feasible

solutions and subsequently optimizes the placement with respect to network

usage based on local knowledge.

To summarize, distribution policies have been in the focus of several works

in CEP systems. However, these works were based on di�erent system mod-

els, i.e. assuming an overlay network of speci�c physical nodes, called brokers,

that are capable of performing the event composition. To this end, the pro-

116 3 Operator Placement Algorithms

posed placement algorithms focus mainly on the satisfaction of the application

and system constraints and the identi�cation of a set of feasible solutions. In

our model, we address the optimization problem given a large search space

of physical hosts that are capable of hosting operators.

3.4.2 Data Stream Processing

In-network processing data has been applied in several distributed data stream

processing systems. Placement strategies vary both in terms of their system

model and optimization goal. In particular, system model may consider mo-

bile nodes that are linked via wireless links and/or Internet topology-like net-

works that communicate via Internet links. Each of the system model, has dif-

ferent properties (e.g. in terms of energy consumption, reliability of links and

nodes) that lead to di�erent placement strategies. Therefore in this section,

we distinguish between operator placement algorithms for Infrastructure-

based systems considering infrastructure nodes as physical hosts and place-

ment strategies for wireless and ad-hoc networks. Since our work focuses on

the Wide Area Networks (WAN), where physical nodes communicate via In-

ternet links, we provide a detailed overview of existing algorithms for these

systems and then we brie�y discuss placement strategies supporting mobility

of nodes.

3.4.2.1 Operator Placement in Infrastructure-based Systems

Lakshmanan et al. [63] provide a comprehensive overview of existing opera-

tor placement algorithms for large-scale scenarios. Their study show that the

diversity of optimization goals leads to di�erent placement algorithms. Ac-

cording to this work, popular optimization goals for data stream processing

include load, latency, bandwidth, system constraints, and operator impor-

tance optimizations. Triggered by this work, we have clustered the related

work in four main categories, i.e., network usage, latency and other constraint

optimization, load balancing, and availability, which correspond to main op-

3.4 Related Work 117

timization goal considered by the placement strategies in the cluster.

3.4.2.1.1 Network Usage Optimization Ahmad et al. [8] at �rst proposed

an approach for operator placement optimizing the bandwidth-delay product.

With this approach, nodes are chosen that lie on the paths between two end-

points of a DHT-based overlay network. However, in [85] Pietzuch et al.

showed that looking for candidate nodes on DHT paths leads to a poor ap-

proximation of the optimal solution since the actual goal of the DHT routing

tables is to minimize the number of hops rather than network usage.

Closest to our optimization algorithm is the work of Pietzuch et al. [84],

who were the �rst to propose the usage of the latency space as an inter-

mediate continuous search space for operator placement problem. In their

approach, called SBON, the operator placement in the latency space is based

on a physical model of springs. The goal of the proposed algorithm is to

minimize the overall energy of the corresponding physical system. However,

in this model energy is proportional to the square of the latency while the

network usage is only linear dependent on the latency. In other words, SBON

optimizes the metric bandwidth × delay2, which does not intuitively model

network usage. For instance by doubling the length of a physical path be-

tween two operators, the number of bits in transit on this path is only doubled

rather than quadrupled. In contrast, MOPA, presented as a solution to the

network usage optimization problem, actually optimizes bandwidth × delay,

while MOPA-LMAX provides a trade-o� solution between network usage and

network latency. Moreover, our algorithm fully exploits the locality of the

problem by �nding at each iteration the current local optimal solution, while

SBON uses another model, which gradually moves at each iteration towards

the local optimum. Our evaluations presented in 4show that our algorithm

outperforms SBON not only in the quality of optimization results, but also

in terms of the communication and operator migration overhead induced by

the placement algorithm.

118 3 Operator Placement Algorithms

3.4.2.1.2 Latency and other Constraint Optimization Next, we describe

methods that consider other performance metrics which directly or implicitly

optimize for latency or other application speci�c QoS metrics. In more detail,

some approaches combine latency guarantees with load balancing. Gu et al.

presented an algorithm that uses global knowledge to checks exhaustively all

hosts in order to identify some candidate hosts [52]. Then, it selects the hosts

that minimize a congestion aggregation metric modelling the processing and

network residual resources. Such an optimization metric can be useful for

cases where the network is heavily loaded, but it is less e�cient for other

situations. Moreover this work assumes global knowledge of the network

conditions which is not always a realistic assumption.

A decentralized approach for operator placement has been presented in

[118]. The authors propose a decentralized solution that enables the local

cooperation of the nodes to optimize the so-called performance ratio, which

models the relative performance of a query, i.e. the end-to-end latency of

a data unit divided by the inherit complexity of the query. The proposed

solution uses local knowledge to �nd a solution for the optimization problem.

One important assumption considered in this problem, is that the nodes are

interconnected by a local network. For our placement problems we consider

that physical nodes are interconnected in a WAN (wide area network) via

Internet. Therefore, given our system model the solution proposed in [118]

may be trapped in local optima, since nodes seek for better placements in close

vicinity in terms of geographical proximity that might not be proportional to

network delay.

In [11], Amini et al. introduced a placement problem which optimizes for

the weighted throughput, which is an indicator of the total productive work

done by the system. The proposed approach, called ACES (Adaptive Con-

trol for Extremescale Stream processing systems), is a two-tiered approach

for adaptive, distributed resource control. In more detail, the �rst tier opti-

mizes the placement of operators onto physical hosts to maximize weighted

throughput, while the second tier con�gures the input and output rates such

3.4 Related Work 119

that they adapt to varying incoming load. This solution does not consider

any latency constraint and it has a di�erent optimization goal with respect

to network usage optimization.

NexusDS [32] focuses on the ful�llment of the QoS application constraints,

e.g., bandwidth, latency, reliability requirements. The proposed approach is

based on six subsequent steps: Con�ation, Early prune, Graph Assembly,

Ranking, Mapping and, Execution. During con�ation phase, adjacent nodes

in the operator graph are merged to create virtual nodes. Early prune �nds

promising candidate nodes and links that ful�ll the QoS constraints. Then,

during graph assembly, the set of feasible solutions is being identi�ed by

combining nodes and edges that ful�ll the application criteria. Finally a score

value for each QoS property is considered to rank the feasible solutions and

�nd the most appropriate one that better �ts QoS constraints. The placement

problem considered in this paper di�ers compared to ours in the sense that

it does not optimize for network usage but the solution is determined mainly

by the application constraints. Moreover, this work focuses on the discovery

of an initial placement of operators and it does not address the problem of

continuous adaptation of operator placement.

3.4.2.1.3 Load Balancing Optimization Some initial works in the oper-

ator placement problem focuses on load balancing techniques that optimize

for fair load distribution across the di�erent physical nodes. Flux [102] has

proposed a load balancing scheme for continuous queries. In their proposed

solution, they use a central controller to monitor the load of the computing

nodes and make load balancing decisions. Our work uses a distributed re-

source lookup and does not consider global system knowledge. Borealis [114]

has solved another operator placement problem. In their work, they optimize

the time correlations among di�erent operators in an e�ort to distribute load

fairly among servers. However in both of these works, network resources are

considered abundant and the network costs are not part of the optimization

strategy.

120 3 Operator Placement Algorithms

Unlike the previous works [102] [114], in our approach we do not try to

optimize directly for load balancing. Load balancing strives to distribute as

fairly as possible the operators on physical nodes such that the computational

load is balanced. As motivated earlier, our primary optimization goal is to

minimize the network load and thus make the network more scalable. In

MOPA-LPMAX algorithm, we consider the computational load implicitly by

integrating the processing delay to the end-to-end delay. If the processing

delay gets signi�cantly large -possibly because of an overload situation on a

node-, then the placement will prefer less loaded nodes. Thus, it makes an

indirect load balancing, only when this is necessary, but it can allow load

unfairness as long as the latency constraints are not violated.

3.4.2.1.4 Availability Optimization Other placement algorithms, try to

optimize for availability and exploit operator re-use [90] [18]. Repantis et

al. [90] have proposed a placement algorithm that maximizes availability while

ful�lling bandwidth limitations. Their approach uses a distributed placement

algorithm that discovers a set of candidate nodes and rank them in decreasing

latency. The goal is to provide high available distributed data stream pro-

cessing. Benzing et al. [18] have proposed a system that allows operator reuse

and provides �exible data stream retrieval in di�erent resolutions. Although

our model allows the re-use of operators, it does not explicitly consider the

optimization problem for larger operator networks that are generated by the

merging of di�erent operator graphs. In that respect, the investigation of

methods and algorithms that provide high availability is out of the scope of

the placement problems and algorithms presented in this dissertation.

3.4.2.2 Operator Placement Considering Wireless Communication

In this paragraph, we discuss placement algorithms that consider also mobile

nodes connected via a wireless network. Mobile nodes are typically energy-

constraint, which imposes additional placement restrictions in the system

level.

3.4 Related Work 121

Closer to our work, are strategies that consider both wired and wireless

communication. For instance, in [105], the authors solve an operator place-

ment problem, which considers network transmission delays and energy con-

sumption, based on a hierarchical system model of physical nodes with in-

creasing computing capacity. This system model implies a heterogeneous un-

derlying network that may consist of mobile as well as infrastructure nodes.

Ying et al. [117] have formulated the operator placement and intermediate

data caching problem to minimize an aggregated cost based on computation,

communication and storage costs. The authors present distributed algorithms

that solve the problem assuming a sensor network of diameter Lmax.

Our algorithms could be used to support heterogeneous, including infras-

tructure and mobile nodes. However, since our initial goal is to design place-

ment algorithm for Infrastructure networks, a study on the performance of

this algorithm and possible extensions for supporting these mobile scenarios

is out of the scope of this dissertation.

Finally, other approaches in wireless sensor networks consider energy ef-

�ciency [103, 115] and bandwidth constraints [39] under quality constraints

on the accuracy of the query results. The consideration of data accuracy is

another aspect, usually considered in the wireless sensor networks, that is

not part of our system model. As already presented, in our approach, we

consider operator placement to be the only degree of freedom for our op-

timization, without taking into consideration other possible changes in the

structure and semantics of the operators, e.g. semantics of operators, control

of input/output data rates that could change the accuracy of the results.

3.4.3 Control Systems

Operator placement problem has been recently investigated in the context of

control systems, e.g., plant control networks, where monitored data have to

be communicated to control processes running on di�erent physical nodes.

Finding optimal placement for controllers, resembles the problem of �nding

122 3 Operator Placement Algorithms

optimal placement of operators over a network of physical nodes.

In that respect, Carabelli et al. [24] have been motivated by our problem

formulation, to investigate centralized techniques based on integer linear pro-

gramming that solve a variation of discrete multi-operator placement problem

exactly. Their ILP formulation solves a routing problem (shortest path prob-

lem) instead of adopting a subgraph isomorphism formulation as we did for

the ILP formulation in Subsection3.1.4. In that respect, [24] makes strong

assumptions on the execution environment. First, it assumes availability of

underlay network topology to de�ne shortest paths in underlay and �nds

an optimal placement with respect to the underlay making a deployment in

today's network infrastructures more complex. Our assumptions are much

weaker. Approach could be deployed already in today's Internet infrastruc-

ture as an overlay network. In contrast, we strive for an overlay network ap-

proach applicable to today's internet infrastructure. Secondly, [24] does not

consider adaptation and assumes unrestricted bandwidth. Our approach in-

directly considers bandwidth restrictions through latency space. When links

become overloaded, the latency increases due to longer queues in routers.

This in turn increases the delay-bandwidth product.

Moreover, in their proposed solution, all data has to be collected at a central

node, called a placement controller. This centralized approach potentially

puts high stress on the central node and its links, in particular, for larger

operator graphs and/or dynamic state. As in any centralized solution, fault

tolerance becomes an issue, since the central node is a single point of failure.

Our approach for solving the unconstrained optimization problem (MOPA)

provides a lightweight heuristic solution that is executed in a distributed way,

i.e., information only has to be exchanged between neighbours in operator

graph (local communication only).

123

4 Evaluation

In this chapter, we discuss the experimental results of the placement algo-

rithms solving the three placement problems presented in the previous chap-

ter. For the evaluation of the algorithms, we have used two di�erent meth-

ods, namely simulation and emulation. In particular, we have used PeerSim

as a network simulator in order to evaluate the MOPA and MOPA-LMAX

algorithms, which solve the unconstrained optimization and the network la-

tency constraint optimization problems respectively. Then, we have used

the NET emulator [48] developed at the University of Stuttgart to test the

MOPA-LPMAX algorithm, which solves the general constrained optimiza-

tion problem which considers also processing delays. The reason we have

selected a di�erent evaluation tool for the MOPA-LPMAX algorithm is that

since MOPA-LPMAX considers processing delays, a real system under test

is necessary to provide real measurements on the processing delays. This

environment can be provided by an emulation test bed such as the NET

emulator.

Table 4.1 shows an overview of the algorithm under test, the reference

algorithms and the evaluation environment. In more detail, as part of our

simulation experiments, in Section 4.1 we compare the solution of the MOPA

algorithm, which solves the unconstrained optimization problem, presented

in Section 3.1, with the optimal solution as well as with the SBON approach

that as already discussed uses a spring relaxation method to minimize network

usage. For the comparison with the optimal solution, we have implemented

the integer linear program presented in Subsection 3.1.4. Although ILP is not

applicable in our system model, since it assumes central global knowledge of

the system, we use ILP as reference to evaluate the optimality of our solution.

124 4 Evaluation

Problem
Algorithms

under Test

Evaluated

against

Testing

Environment

Network Usage

Optimization
MOPA Optimal, SBON

PeerSim

(Simulation),

Cplex (MIP

solver)

Network

Latency

Constraints

MOPA-LMAX

Optimal,

MOPA,

ILP-LMAX

PeerSim

(Simulation),

Cplex (MIP

solver)

Network and

Processing

Latency

ckNN
EL, Random,

kNN

NET

(Emulation)

Table 4.1: Overview of placement algorithms under test

Then, in section 4.2, we compare the solution found by our proposed

MOPA-LMAX algorithm for the network latency constrained problem, pre-

sented in Section 3.2, with the optimal solution and the solution of the un-

constrained optimization. For the comparison with optimal solution, we use

an exhaustive search for small operator graphs. For the analysis of the scala-

bility of the algorithm with respect to the size of the operator graphs we have

also implemented the integer linear program presented in Subsection 3.2.4,

which calculate the optimal solution. Note that the reason we compare the

unconstrained solution found by MOPA with the constrained solution found

by MOPA-LMAX, is to provide an analysis on the trade-o� between network

usage and network latency optimization. Finally, in Section 4.3, we present

the evaluation for MOPA-LPMAX by comparing the performance of di�erent

candidate selection methods presented in Subsection 3.3.4

For the setup of the experiments, we have speci�ed the parameters of the

4.1 Network Usage Optimization 125

physical network (number of nodes, network latency among them etc.) and

the operator graphs (structure, data rates etc.). Regarding the setup of the

physical network, for all experiments, we have used the same underlying

(physical) network topology. In particular, we have used data gathered from

a real network, namely the PlanetLab [31]. The PlanetLab topology consists

of 226 physical nodes including real measurements of the delays between the

nodes globally distributed. Thus, providing a wide-area scenario with major-

ity of network latencies in the range of [45, 205] ms. The coordinates of the

physical nodes in the latency space were found using a prototype implemen-

tation of the Vivaldi algorithm [1] that achieves to map the physical nodes in

the latency space with an average error of 15ms w.r.t. to the measured de-

lays. The real PlanetLab topology gives us the chance to assess the practical

performance of our algorithm in a realistic system.

The rest of this chapter is structured similar to the previous one, i.e., in each

Section, we discuss for each of three placement problems introduced in the

previous chapter, the evaluation of the proposed placement algorithms. For

each of the three problems, we �rst present the evaluation setup, by providing

details on the con�guration of the various experiments. Since the setup for

the physical network is the same for all experiments, in next sections, we

describe the setup of the parameters of the operator graphs, depending on

the goal of each experiment and present the evaluation objectives for each set

of experiments. Then we go into detail in the main evaluation results, before

we provide a brief summary for each of the evaluation sections.

4.1 Network Usage Optimization

First, we evaluate the performance of the unconstrained optimization algo-

rithm. As explained in the introduction, we have used the network simulator

PeerSim, to test our algorithm.

126 4 Evaluation

4.1.1 Setup

Since the structures of the operator graphs to be deployed possibly in�uence

the performance of the placement algorithm we use, depending on the con-

crete experiment, operator graphs with di�erent sizes, varying from 6 up to

15 nodes. Moreover, we assume that every operator has two or three children

since we assume that this represents the usual case of an operator graph well.

The data rates on the links are generated randomly by varying the initial

output data rates of the sources and the selectivity of the operators in a certain

interval. The output data rates of the sources are distributed uniformly in

the interval between 100 and 200 kbps or 50 and 500 kbps, depending on the

scenario. The selectivity of an operator is de�ned as the percentage of the

output data rate with respect to the input data rate of the operator. Thus,

operators with a selectivity close to 0 act as highly selective �lters in the

network and generate very low output data rates, whereas operators with

selectivity close to 1 generate output data rates equal to the incoming rate.

In our evaluation, we vary the selectivity of the operators between 0 and 1.

4.1.2 Evaluation objectives

As already mentioned earlier, we compare our unconstrained optimization

placement algorithm, to one state of the art algorithm called SBON [84].

Moreover, we compare our algorithm to the theoretical optimal placement

algorithm (called MOPopt) solving the discrete MOP problem.

For the comparison with the optimal solution, we use two approaches. For

large operator graphs, we use a mixed integer programming (MIP) solver that

implements the ILP formulation presented in Section 3.1.3. to test also the

speed of our algorithm compared to a MIP solver. For small operator graphs,

we use a simple exhaustive search to verify the optimality of our solution.

Table 4.2 shows an overview of the performance metrics used for the eval-

uation of MOPA. The main objectives of our evaluation are to measure the

quality of the solution and the convergence properties of the algorithm. To

4.1 Network Usage Optimization 127

measure the quality of the solution, we compare our algorithm to SBON [84]

and to the optimal solution (called MOPopt) that minimizes the network

usage. We compare the quality of our solution both for the continuous as

well as for the discrete variation of the multi-operator placement problem.

Furthermore, we test the convergence properties of our algorithm.

First, we measure the performance of MOPA compared to SBON in the

continuous latency space and then we provide a comparison of both MOPA

and SBON with respect to the optimal solution both for operator graphs of

varying size. Next, we investigate the convergence properties of our algo-

rithm. In particular, we measure the overhead induced by our algorithm in

a distributed setting, by measuring the number of messages to be exchanged

among the operators in order to �nd a new optimized placement as well as

by measuring the number of migrations which lead to a better placement.

Finally, we investigate the scalability of our algorithm with respect to the

operator graph size. In that respect, we measure the execution time and

the precision of MOPA, our proposed distributed algorithm, compared to a

centralized integer linear programming solver, which solves the integer linear

program introduced in Section 3.1 for varying operator graph size.

For each evaluation objective, we have assigned speci�c performance met-

rics, that we explain in detail in the following subsections.

4.1.3 Quality: Continuous MOPA Solution

First we evaluate the quality of a placement determined by MOPA to an

SBON placement w.r.t. the continuous solutions, i.e. the coordinates of the

free operators in the continuous latency space. In this experiment, we use

operator graphs with 12 operators and 2 to 3 children per operator.

For the comparison, we use the virtual stretch factor SSBON,MOPA as per-

formance metric. The virtual stretch expresses the network usage of SBON

relative to the network usage of MOPA based on their continuous solutions:

128 4 Evaluation

Objective Performance

Metric

De�nition

Quality
Virtual (Net-

work Usage)

Stretch Factor

Ûglobal,SBON

Ûglobal,MOPA

Physical (Net-

work Usage)

Stretch Factor

Ûglobal,SBON|MOPA

Ûglobal,optimal

Convergence

Properties

Messages # messages

Migrations # migrations

Scalability

(w.r.t. Operator

Graph Size)

Execution Time Value in sec

Physical (Net-

work Usage)

Stretch Factor

Ûglobal,SBON|MOPA

Ûglobal,optimal

Table 4.2: Overview of performance metrics

SSBON,MOPA =
Uglobal,SBON

Uglobal,MOPA
(4.1)

That is, the virtual stretch compares solutions in the continuous virtual

latency space rather than the results after mapping to the physical nodes.

A comparison of the latter can be found in the next Subsection 4.1.4. For

example a virtual stretch of 1.2 shows that the output of SBON algorithm is

20% worse than the optimal MOPA solution.

Figure 4.1 shows the cumulative distribution of the virtual stretch factors

of SBON. This �gure is the result of the placement of 1000 graphs. First

of all, we can see that SBON always has a virtual stretch greater than 1.0.

That means, MOPA always achieved higher quality continuous solutions than

SBON. This is due to the spring relaxation algorithm of SBON that �nds

4.1 Network Usage Optimization 129

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 1.1 1.2 1.3 1.4 1.5 1.6

P
(X

 ≤
 s

tr
et

ch
)

[%
]

virtual stretch

SBON

Figure 4.1: Relative network usage of SBON w.r.t. MOPA (Continuous
solutions).

the mass centroid rather than the solution to the continuous multi-operator

placement problem.

In approximately half of the cases the virtual stretch of SBON is lower than

1.1. Thus, SBON achieves a good estimation with a maximum di�erence of

10% of the optimal in 50% of the cases. This good result of SBON is due to the

fact that similar to MOPA the spring relaxation algorithm moves operators in

the correct direction of the major �ow. However, in contrast to MOPA, SBON

stops too early before it reaches the minimum, whereas MOPA moves on until

the optimal placement is reached. The remaining 50% of the measurements

have a stretch factor between 1.1 and 1.5, i.e., in 50% of the cases, MOPA

reduces the network usage signi�cantly leading to 10% to 50% less network

usage than SBON.

So we see that in the continuous space MOPA is always better achieving

an average improvement compared to the SBON of 12% and a maximum of

52%.

130 4 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

P
(X

 ≤
 s

tr
et

ch
)

[%
]

physical stretch

MOPA
SBON

Figure 4.2: Physical stretch factor of SBON and MOPA w.r.t. optimal dis-
crete MOP solution (Operator Graph Size:6).

4.1.4 Quality: Discrete MOPA Solutions

As a �rst step we investigated the quality of approximated discrete MOP

solutions.

As performance metric, we use the physical stretch factor :

SSBON|MOPA,global =
Ûglobal,SBON|MOPA

Ûglobal,optimal

Ûglobal,SBON|MOPA denotes the network usage of a discrete network usage op-

timization solution given by SBON and MOPA, respectively. Ûglobal,optimal

de�nes the optimal discrete MOP solution determined by MOPopt. This op-

timum serves as a reference of the approximated solutions achieved by SBON

and MOPA. We perform this evaluation both operator graphs 6 nodes as well

as for larger operator graphs of 15 nodes. For the small operator graphs, we

used an exhaustive search to calculate the optimal solution of the network us-

age optimization problem, while for the large graphs, we used a mixed integer

programming solver to run the ILP program presented in Subsection 3.1.4.

The details of this implementation will be explained in the next subsection.

4.1 Network Usage Optimization 131

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P
(X

≤
st

re
tc

h)

physical stretch

MOPA
SBON

Figure 4.3: Physical stretch factor of SBON and MOPA w.r.t. optimal dis-
crete MOP solution (Operator Graph Size:15).

Figure 4.2 shows the cumulative distribution (for the small operator graph)

of this experiment resulting from 1000 simulation runs. We see that in 70%

of the measurements MOPA has a stretch factor lower than 1.1. The average

stretch factor of MOPA is 1.14. Thus we see that although the latency space

sparsely populated with the 256 physical nodes of Planetlab topology, the

optimal continuous MOP solution does not degenerate signi�cantly after the

physical mapping.

We also see that for 70% of the measurements, SBON has a stretch factor

of 1.3 which is 16% higher than the physical stretch of MOPA for the same

percentage. The average stretch factor of SBON is 1.29 compared to 1.14

for MOPA. Thus, MOPA keeps its theoretical advantage of having optimal

continuous MOP solutions also after the mapping to physical nodes.

The highest stretch factor for SBON is 6.61, whereas the maximum of

MOPA is only 3.67. In these cases the approximation is not close to the

physical optimum. On the one hand, such a case can be caused by a bad

mapping of a physical node in the latency space where the delays between

physical nodes modelled in the latency space do not accurately re�ect the real

132 4 Evaluation

delays. On the other hand, the sparse character of the network topology can

lead to bad discrete MOP approximations, where no well-matching physical

node for the calculated virtual node position can be found.

Figure 4.3 shows the corresponding cumulative distribution for the large

graphs of 15 nodes resulting from 1000 runs. We see that the performance

of MOPA and SBON algorithms compared to the optimal solution slightly

degrades with respect to their performance for the small operator graphs. In

more detail, the average stretch factor for MOPA is 1.21 compared to an aver-

age stretch factor of 1.39 for SBON. Moreover, for 70% of the measurements,

MOPA has a stretch factors of lower than 1.19, which is 23% lower than the

corresponding stretch factor for SBON (1.42%). Thus we see that for larger

operator graphs, which contain more free operators, the discovery of the op-

timal solutions becomes more challenging. However, as we see MOPA still

keeps a signifant improvement over SBON by achieving 18% lower stretch

factor on average.

4.1.5 Convergence: Message Overhead and Migrations

Finally, we evaluate the convergence properties of MOPA compared to SBON.

We consider two performance metrics. First, we measure the induced network

overhead denoted by the number of messages that have to be exchanged in

order to communicate virtual node coordinates to neighbouring operators

whenever a new operator position has been calculated. Secondly, we measure

the number of operator migrations that are performed until the equilibrium is

reached. Since migrations largely outweigh local computations, the number

of migrations is also an indicator for the convergence time.

For this experiment, we use operator graphs with size of 12 nodes. We

�rst let both algorithms converge to a stable solution. Then, we generate

a dynamic change by resetting the output data rates of all sources to new

random values (in the range of 100 to 200 Kbps). The sudden change of the

data rates provokes the re-placement of the operators. Note that a sudden

4.1 Network Usage Optimization 133

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 10 100

P
(X

<
=

M
es

sa
ge

s)
[%

]

Messages

MOPA
SBON

Figure 4.4: Cumulative distribution of number of messages exchanged (data
rates 100-200Kbps).

change of all the data rates is a worst case scenario since the whole operator

graph is a�ected. We placed 2000 operator graphs and measured the number

of migrations and messages exchanged until the equilibrium is reached.

Figure 4.4 shows the cumulative distribution of the number of required

messages for SBON and MOPA. We see that MOPA needs signi�cantly fewer

messages to converge to a new equilibrium in all the cases. In detail, MOPA

needs between 0 and 28 messages, while SBON needs 64 to 365 messages. On

average, MOPA only needs 3.25% of the messages that are needed by SBON.

Furthermore, MOPA in 26.9% of the instances needed less than 2 messages to

converge to the new solution. This result implies that the dynamic change was

not signi�cant enough to change the location of the network usage optimum.

Thus, in order to investigate this result further, we have run another ex-

periment, where we created a dynamic change that is more challenging for

MOPA, by changing the relative values of the data rates more drastically. In

more detail, we have set the output data rates of the sources in the range of 50

to 500 Kbps. Thus, we have increased the variation in the value of data rates

on the links, which alters possibly the network usage minimum. Figure 4.5

134 4 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 10 100 1000

P
(X

<
=

M
es

sa
ge

s)
[%

]

Messages

MOPA
SBON

Figure 4.5: Cumulative distribution of number of messages exchanged (data
rates 50-500Kbps).

shows the cumulative distribution for this experiment. We see that also in

this case MOPA has a superior performance needing 4 messages on average,

compared to 135 messages for SBON. In more detail, MOPA needs less than

11 messages in 63% of the instances, while SBON needs 134 messages for the

same percentage of simulation runs. Thus, we see that even for signi�cant

dynamic changes MOPA adapts its solution by sending only few messages

(up to 32 messages).

To get a better insight into this result, we have measured for each algorithm,

MOPA and SBON the number of local iterations, i.e., how many times the

operators should contact their neighbours until the operator graph converges

to a new solution. Figure 4.6 shows the cumulative distribution for the local

iterations for MOPA and SBON. As expected MOPA needs signi�cantly less

iterations from 0 up to 11 iterations, while SBON needs from 10 up to 551.

This result shows that MOPA is able to move in larger steps, while SBON

moves slowly, making only small progress in each iteration. Furthermore, we

also measured the number of the suppressed messages, i.e., messages that

are not sent over the network, since the neighboring operator resides on the

4.1 Network Usage Optimization 135

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 10 100

P
(X

<=
Ite

ra
tio

ns
)[

%
]

Iterations

MOPA
SBON

Figure 4.6: Cumulative distribution of local iterations.

same physical node. Figure 4.7 shows the percentage of sent and suppressed

messages with respect to the total number of messages. We see that for

SBON the suppressed messages are 6.4%, while for MOPA the corresponding

percentage is 21.8%. Thus, we see that in addition to the convergence speed,

MOPA is more probable to create clusters, which reduce the communication

overhead of the algorithm.

Figure 4.8 and Figure 4.9 depict the cumulative distributions of the num-

ber of migrations in the physical network for MOPA and SBON for dynamic

changes depending on the output data rates. The performance of the algo-

rithms is similar for both dynamic changes. Both MOPA and SBON needs

from 0 up to 8 migrations to converge to the new solution. Again, MOPA

outperforms SBON by an average of 26.8% (for changes in the range from

100 to 200 Kbps) and 26.4% (for changes in the range from 50 to 500 Kbps)

less migrations. Moreover, we see that in more than 90% of the simulations,

MOPA needs less migrations than SBON. Similar to the number of exchanged

messages, the reason for the smaller number of migrations of MOPA is the

faster convergence due to larger step size.

136 4 Evaluation

 0
 10

 20
 30

 40
 50
 60

 70
 80

 90
 100

SBON MOPA

P
er

ce
nt

ag
e

of
 T

ot
al

 M
es

sa
ge

s Sent
Suppressed

1

Figure 4.7: Stacked histogram of sent and suppressed messages.

4.1.6 Scalability: Execution time and Performance

In Subsection 3.1.4 we have presented an integer linear program (ILP) that

can be used to calculate a solution of the operator placement problem cen-

trally on one host with global knowledge. In contrast to our distributed

algorithm MOPA, this ILP cannot provide a distributed solution and rely

on local knowledge. However, it can serve as a reference with respect to the

computational e�ciency (executing any communication overhead for the dis-

tributed execution of MOPA for a fair comparison). For our comparison, we

have used the commercial mixed integer programming solver CPLEX 12.5.0

from IBM, which is considered to be one of the fastest mixed integer program-

ming solvers currently [60] Both CPLEX and MOPA were executed locally

on one machine (Intel Core i5, 2.67 GHz, 4 cores, 12 GB RAM).

For our experiments, we used the PlanetLab topology as the underlying

network. For the settings of the operator graph, we use a tree-based graph

with varying size starting from operator graphs with 10 nodes up to 50 nodes.

At each run, we alter the data rates and the location of the pinned operators.

We used 1, 000 operator graphs to compare ILP with MOPA. Figure 4.10

4.1 Network Usage Optimization 137

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9 10

P
(X

<
=

M
ig

ra
tio

ns
)[

%
]

Migrations

MOPA
SBON

Figure 4.8: Cumulative distribution of migrations (data rates 100�200Kbps).

summarizes the measurements in terms of execution time for both MOPA and

CPLEX. We observe that MOPA keeps a low execution time varying from

0.66 seconds up to 3 seconds for operator graphs of 50 nodes, while CPLEX

needs from 1.91 seconds up to 18.45 seconds to calculate the optimal solution.

This results show that the execution time of CPLEX increases signi�cantly

with the increase of he operator nodes, while MOPA is more scalable keeping

its execution time in the order of a few seconds even for large operator graphs

of 50 nodes.

Finally, Figure 4.11 shows the average network usage stretch factor for both

MOPA and SBON colpared to the optimal solution calculated by CPLEX for

varying operator graph size. We observe that the average network usage

stratch factor does not vary signi�cantly with size of the operator gpaph for

both SBON and MOPA. For SBON the average stretch factor varies from

1.40 up to 1.46, while for MOPA the corresponding value varies from 1.18 to

1.21. Thus, we see that MOPA can provide high quality solutions deviating

only 21% on average from the optimum even for large operator graphs of 50

nodes.

138 4 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9 10

P
(X

<
=

M
ig

ra
tio

n
s)

[%
]

Migrations

MOPA
SBON

Figure 4.9: Cumulative distribution of migrations (data rates 50�500Kbps).

4.1.7 Summary

The evaluation results of the MOPA algorithm show that MOPA can achieve

a good estimation (14%� 21%) of the optimal solution, by using a fully

distributed approach that considers only local knowledge of the system. Fur-

thermore, we showed that MOPA �nds better solutions than SBON, since

the latter approach approximates the optimal solution by calculating the mass

centroid, which does not necessarily coincide with the geometric median which

is the actual network usage minimum. Finally, MOPA produces also signif-

icantly less overhead than SBON, by using only 3.25% of the messages that

are needed by SBON, since it makes large steps towards the network usage

minimum and it is more likely to merge free operators into clusters. More-

over, MOPA is able to calculate the solution even of large operator graphs

of 50 nodes in 3 seconds on average, while one of the fastest state-of-the-art

(centralized) linear programming solver need 18.45 seconds to calculate the

solution for the same operator graph size.

4.2 Network Delay Constrained Optimization 139

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50

S
pe

ed
 (

se
c)

Operator Graph Size

MOPA
ILP

Figure 4.10: Execution time of MOPA and CPLEX w.r.t. graph size.

4.2 Network Delay Constrained Optimization

Next, we present the performance evaluation of the MOPA-LMAX algorithm

which solves the network delay constrained optimization algorithm by com-

paring it to the theoretic optimum and our unconstrained optimization algo-

rithm.

4.2.1 Setup

Similar to the evaluation of the MOPA algorithm, we evaluate the perfor-

mance of MOPA-LMAX in the network simulator PeerSim. For our experi-

ments, we use the PlanetLab physical network as presented in the introduc-

tion of this Chapter. For the settings of the operator graphs, we use operator

graphs with 6 nodes. Similar to the evaluation setup of MOPA presented in

Subsection 4.1.1, we alter the selectivity of the operators and we generate

output data rates from the sources in the interval between 100 and 200 kbps.

Since there is no related approach that solves the same constrained optimiza-

tion problem, we compare our constrained optimization algorithm with the

theoretic optimum and the MOPA algorithm presented in 3.1 which solves

140 4 Evaluation

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 10 20 30 40 50

P
hy

si
ca

l s
tr

et
ch

Operator Graph Size

MOPA
SBON

Figure 4.11: Physical Stretch Factor of MOPA and SBON w.r.t. graph size.

the unconstrained network usage optimization problem. To �nd the real op-

timum, we execute an exhaustive search on all possible placements.

4.2.2 Evaluation Objectives

The evaluation objectives for MOPA-LMAX are related to the quality of the

solution and the scalability of the algorithm. We do not provide a further eval-

uation on the communication overhead induced by MOPA-LMAX since this

is similar to MOPA overhead as discussed in Subsection 3.2.3. As discussed

in the introduction, we compare MOPA-LMAX with the unconstrained opti-

mization algorithm MOPA and with optimal solution, found by an exhaustive

search for small operator graphs. First, we investigate the relationship be-

tween the minimization of bandwidth-delay product and the minimization of

network delay. Our comparison is based on the quality of the solution in terms

of resulting network usage and latency. Next, we calculate the success rate,

which is the percentage of the experiments that ful�ll the latency constraint

and we provide a further insight on the distribution of instances with respect

to network usage and latency constraint. Finally, we provide an insight on

4.2 Network Delay Constrained Optimization 141

the scalability of the algorithm with respect to the operator graph size by

using the extended ILP formulation of the constrained optimization problem

presented in Subsection 3.2.4. Table 4.3 shows the performance metrics used

for our evaluation, that will be further explained in the next subsections.

Objective Performance

Metric

De�nition

Quality
Latency Stretch

Factor

Lunconstr_opt

Lmin

Network Usage

Stretch Factor

Uconstr_opt

Umin

Success Rate #successful_experiments
#experiments

Scalability

(w.r.t. Operator

Graph Size)

Execution Time Value in sec

Latency Stretch

Factor

Lconstr_opt

Lmin

Network Usage

Stretch Factor

Uconstr_opt

Umin

Table 4.3: Overview of performance metrics

4.2.3 Quality: Relation Between Network Usage and Latency

First, we analyze the basic relation between the two metrics subject to this

algorithm, namely network usage and latency. Since the network usage con-

tains as one factor the delay between operators, in this experiment we see

how close an unconstrained optimization of the network usage can get to the

latency minimum.

We have conducted 1000 experiments and measured the latency and the

142 4 Evaluation

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3

 1 2 3 4 5

A
ve

ra
ge

 S
tr

et
ch

 F
ac

to
r

Heterogeneity Factor h

latency stretch
network usage stretch

Figure 4.12: Latency and Network Usage stretch for varying heterogeneity.

network usage minimum. In detail, we have calculated by exhaustive search

the theoretic latency minimum Lmin and the latency Lunconstr_opt achieved

by the optimal unconstrained optimization of the network usage. In order

to quantify the di�erence w.r.t. latency between the network usage optimum

and the latency minimum, we calculated the latency stretch factor de�ned by

Sunconstr_opt,min =
Lunconstr_opt

Lmin
. Similarly, the network usage stretch is de�ned

as Sconstr_opt,min =
Uconstr_opt

Umin
, where Uconstr_opt is the network usage of the

constrained optimization with minimum latency constraints and Umin is the

theoretic optimum of the unconstrained optimization.

To parametrize the heterogeneity of the operator graph, we introduce the

heterogeneity factor h. In detail, for an operator connected to n sources, we

set the output data rates of n − 1 sources at the same random value r and

the remaining output data rate at h · r, i.e. proportional to h. Moreover, the

selectivity of the unpinned operators is set to 1/h, i.e., inversely proportional

to h. Thus, for large h, the input data rates of an operator are unbalanced,

while the output data rates of the operator are low.

Figure 4.12 shows the results for varying values of the heterogeneity factor

h. We see that as the heterogeneity increases, the stretch factors both in terms

4.2 Network Delay Constrained Optimization 143

 20

 30

 40

 50

 60

 70

 80

 90

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
uc

ce
ss

 R
at

e

Latency Constraint Stretch

MOPA-LMAX

Figure 4.13: Success rate according to the constraint latency stretch.

of latency and network usage are also increasing, since there are more high

data rate sources making the unconstrained network usage and the latency

minimum considerably di�erent. Moreover, we see that the network usage

stretch is generally larger than the latency stretch. This is due to the fact

that the latency is bounded by the distance between the sources and the

sinks, whereas the network usage is a�ected by the values of the data rates

that can eliminate or amplify some of the factors of the total sum of an

operator graph's network usage.

4.2.4 Quality: Ful�llment of Network Latency Constraints

Next, we continue with the analysis of the performance of the MOPA-LMAX

algorithm for the network delay constrained optimization problem. First, we

evaluate the ability of our algorithm to achieve a given latency constraint.

In the following experiment, we vary the given latency constraint in the in-

terval [Lmin, Lunconstr_opt], i.e., between the theoretic latency minimum and

the latency achieved by the unconstrained optimization algorithm. Choos-

ing a lower bound of Lmin ensures that in every case a solution exists. By

144 4 Evaluation

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

e
[%

]

Constraint defined by Lmin+x*[Lunconstr-Lmin]

Narrow Interval
Broad Interval

Figure 4.14: Success rate for narrow/broad latency stretch interval

choosing an upper bound of Lunconstr_opt we evaluate cases with non-trivial

solutions that would not be achieved by an unconstrained optimization al-

gorithm. Moreover, in order to distinguish between challenging cases, where

the solution of the unconstrained optimization algorithm is far from the la-

tency minimum, we classify our experiments according to the achieved latency

stretch factor of the unconstrained optimization algorithm. For instance the

class [1.0, 1.2] contains all experiments, where the unconstrained solution has

a latency stretch of 1.0 to 1.2 compared to the theoretic latency minimum.

In general, as the latency stretch of the unconstrained solution increases, the

constraint interval [Lmin, Lunconstr_opt] also broadens.

For our experiment, we have generated 1000 operator graphs with varying

heterogeneity factor h ∈ [1, 3] and measured the performance of our algorithm

by calculating the percentage of the experiments that achieved a latency be-

low the constraint by successrate =
#successful_experiments

#experiments , i.e. successful ex-

periments, where the latency constraint was met, divided by the number of all

experiments. Furthermore, to evaluate the cost for satisfying the constraint,

we calculate the network usage stretch with respect to the network usage of

the unconstrained problem that we get after the unconstrained optimization:

4.2 Network Delay Constrained Optimization 145

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

w
or

k
U

sa
ge

 S
tr

et
ch

Constraint defined by Lmin+x*[Lunconstr-Lmin]

Narrow Interval
Broad Interval

Figure 4.15: Network usage stretch for narrow/broad latency stretch interval

Sconstr_opt,unconstr_opt =
Uconstr_opt

Uunconstr_opt
.

Fig. 4.13 shows the success rate of our unconstrained optimization algo-

rithm for di�erent classes. Here, we see that for low latency stretch, e.g.,

below 1.2 of the unconstrained solution, our algorithm has a low average suc-

cess rate of 27%, while for larger latency stretch, e.g., between 1.4− 1.6, the

algorithm works better achieving an average success rate of 62%. For even

higher latency stretch, e.g., between 2.6 − 2.8, our algorithm can achieve an

average success rate of 79%. We can explain the poor average success rate

of our algorithm for low latency stretch of the unconstrained solution since

low latency stretch means a narrow interval of the latency constraints. Thus,

in such cases all requested latency constraints are very close to the real op-

timum. However, as we see in the next subsection, also in these cases our

algorithm returns a good approximation of the optimum.

Figure 4.14 and Figure 4.15 show the success rate and the network us-

age stretch for operator graphs with latency stretch values between 1.0 and

1.2 (narrow interval), and 2.0 and 2.2 (broad interval), respectively. In Fig-

ure 4.14, we see on the x axis the latency constraints that are requested, vary-

ing gradually in a step of 10% of the total constraint interval [Lmin, Lunconstr_opt]

146 4 Evaluation

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 1 2 3 4 5 6 7 8 9 10

P
(X

≤
st

re
tc

h)

latency stretch

MOPA-LMAX

Figure 4.16: Cumulative distribution of latency stretch.

at a time, i.e., lmax ∈ [Lmin + x ∗ (Lunconstr_opt − Lmin)], where x ∈ [0, 1].

On y axis we have depicted the success rate of the constrained solution. Sim-

ilarly, in Figure 4.15 we have depicted the latency constraint in the x axis

and the network usage stretch in the y axis. On the one hand, we see that

when the latency stretch is low (Figure 4.14), the average success rate is in-

creasing slowly from 20% to 46% while the average network usage stretch is

kept low and decreases slowly from 1.13 to 1.1 (Figure 4.15). On the other

hand, for large latency stretch values (Figure 4.14), we see that the success

rate increases gradually, going from 29% for strict constraints where x < 0.1

up to 98% for relaxed constraints where x is above 0.8, and the network usage

costs decrease signi�cantly from 1.37 to 1.09 (Figure 4.15) for more relaxed

constraints.

Thus, we see that for small latency stretch of the unconstrained solution,

the success rate remains in general low, while the cost is also low since even the

unconstrained optimization algorithm can achieve a good approximation of

the latency constraint, while for larger latency stretch our algorithm performs

better as the constraints become more relaxed, resulting in higher success

rates and lower costs with respect to network usage.

4.2 Network Delay Constrained Optimization 147

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 1 2 3 4 5 6

P
(X

≤
st

re
tc

h)

network usage stretch

MOPA-LMAX

Figure 4.17: Cumulative distribution of network usage.

4.2.5 Quality: Deviation from Network Delay Constraints

In the previous experiment, we have presented the evaluation results with

respect to the ful�llment of the constraints. We have seen that in some cases

especially where the latency constraint was close to the latency minimum, we

get low success rates, since it becomes hard to approximate the latency min-

imum and satisfy these strict constraints. To get a better understanding of

the performance of the algorithm, in this experiment, we have a closer look on

the quality of solutions by considering the distribution of the achieved laten-

cies around requested latency constraints. On the one hand, this evaluation

shows how far apart unsuccessful solutions are from the requested constraints.

On the other hand, it also shows us the degree of overshooting of successful

solutions.

For this experiment, we use a generic scenario with heterogeneity factor h ∈
[1, 5] and latency constraints randomly set in the interval [Lmin, Lunconstr_opt]

to get a general picture of the precision of the algorithm.

The quality of a solution in terms of latency can be evaluated by the latency

stretch of the solution, Sconstr_opt,lmax =
Lconstr_opt

lmax
, i.e. the constrained op-

148 4 Evaluation

timum compared to the requested latency constraint lmax, which intuitively

shows how close the solution is to the requested constraint.

Fig. 4.16 shows the cumulative distribution of the latency stretch for a set

of 4, 000 simulation runs. Overall, 56% of the solutions were successful, i.e.

the latency constraint was met, whereas in 44% of the simulations, the la-

tency constraint was violated. In detail, 70% of the unsuccessful experiments

that were above lmax have a latency stretch between 0.9 and 1. Moreover

75% of the successful solutions, where the requested latency lmax was met,

have a latency stretch below 1.15%. Thus, we see that the majority of the

instances are distributed closely around the constraint. However, there are

some instances with larger deviation from lmax, e.g. 5% that are above 1.4.

As we have seen during the evaluation of MOPA algorithm in Section 4.1, such

bad approximations of the optimal solution may exist due to the mapping of

continuous to discrete solution.

Moreover, we calculate the network usage stretch compared to the net-

work usage of the theoretic constrained optimum found by exhaustive search

Sconstr_opt,theoretic_constr_opt =
Uconstr_opt

Utheoretic_constr_opt
. Figure 4.17 shows the cor-

responding cumulative distribution. We see that there is a percentage of 41%

that have a smaller network usage than the constrained optimum. In these

cases, the latency constraint was not met by the solution. Therefore, the

network usage stretch can be even smaller than the theoretical constrained

optimum. Moreover for the possibly successful solutions that have a stretch

above 1, we see that our algorithm achieves a very good approximation of

the constrained optimum with an average network usage stretch of 1.09%. In

80% of these cases the network usage stretch is below 1.17%, showing that

our algorithm achieves its goal to keep the network usage low.

4.2.6 Scalability: Execution Time and Performance

To evaluate the scalability of MOPA-LMAX, we have implemented the inte-

ger linear program formulation presented in Subsection 3.2.4 in CPLEX, the

4.2 Network Delay Constrained Optimization 149

 1

 10

 100

 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(s

ec
)

Operator Graph Size

MOPA-LMAX
CPLEX

Figure 4.18: Execution time of MOPA-LMAX, CPLEX w.r.t. Graph Size.

mixed integer programming solver used also in the experiment presented in

Subsection 4.1.6. Both CPLEX and MOPA-LMAX were executed locally on

one machine (Intel Core i5, 2.67 GHz, 4 cores, 12 GB RAM).

For our experiments, we used the PlanetLab topology as the underlying

network. At each run, we alter the location of the pinned operators and we

used 100 operator graphs to compare the extended ILP presented in Subsec-

tion 3.2.4 with MOPA-LMAX. Note that if we provide a latency constraint

lower than the latency minimum, CPLEX will not return any solution, since

the constraint is infeasible. Therefore, to ensure that the latency constraints

set for the execution of the ILP are feasible solutions, we have �rst executed

MOPA-LMAX with latency constraint equal to zero. In that case, MOPA-

LMAX has returned the best possible solution. The latency returned by

MOPA-LMAX was then fed as latency constraint to the ILP.

For the settings of the operator graph, we use a tree-based graph with vary-

ing size starting from operator graphs with 10 nodes up to 20 nodes. We do

not provide results for operator graphs with more than 20 nodes, since the

execution time of the ILP presented in Subsection 3.2.4 in CPLEX is already

for operator graphs of 20 nodes very high. In particular, as it is shown in

150 4 Evaluation

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 12 14 16 18 20

La
te

nc
y

S
tr

et
ch

Operator Graph Size

MOPA-LMAX

Figure 4.19: Latency Stretch of MOPA-LMAX w.r.t. Graph Size.

Figure 4.18 . the execution time for CPLEX varies from 58 seconds for oper-

ator graphs with 10 nodes up to 296 seconds on average for operator graphs

of 50 nodes, while MOPA-LMAX needs almost 0.92− 0.93 second on average

to calculate its solution. Thus, we see that the additional latency constraint

introduced in Subsection 3.2.4 has signi�cantly increased the execution time

of the extended ILP compared to the ILP for the unconstrained optimization

problem presented in Subsection 3.2.4, while MOPA-LMAX has kept a low

execution time compared to MOPA, keeping its scalability properties.

Figure 4.19 and Figure 4.20 show the average latency and network usage

stretch factor for MOPA-LMAX for varying operator graph size. Since we

have used the as latency constraint, the latency value returned by MOPA-

LMAX, CPLEX has returned equal or better solutions both in terms of la-

tency and network usage. Therefore, we have used as reference for the cal-

culation of the latency stretch factor and network usage stretch factor of

MOPA-LMAX the latency achieved by CPLEX. In Figure 4.20 we observe

that the average network usage stretch factor varies from 1.08 for operator

graphs of 10 nodes up to 1.14 for graphs of 20 nodes, while the corresponding

latency stretch factor Figure 4.19 varies from 1.02 up to 1.13. Thus, we see

4.2 Network Delay Constrained Optimization 151

 0.8

 0.9

 1

 1.1

 1.2

 10 12 14 16 18 20

N
et

w
or

k
U

sa
ge

 S
tr

et
ch

Operator Graph Size

MOPA-LMAX

Figure 4.20: Network Usage Stretch of MOPA-LMAX w.r.t. Graph Size.

that MOPA-LMAX keeps its performance even for larger operator graphs of

20 nodes by achieving an average latency and network usage stretch factor of

1.13 and 1.14 respectively.

4.2.7 Summary

As a conclusion of this evaluation, we can say that our algorithm achieves a

good balance between network usage optimization and satisfaction of latency

constraints with an average success rate 62% for constraints with latency

stretch of 1.4−1.6. In cases that the constraint is not satis�ed, our algorithm

still �nds a good approximation of the solution with a latency stretch below

1.15% for 75% of the instances, while minimizing the cost in terms of network

usage by achieving an average network usage stretch of 1.09%.

Furthermore, our evaluation results provide an analysis of the relationship

between network usage and network latency. Since network usage includes

network latency, its minimization implies also reduction of the overall end-

to-end latency. In our evaluation, we have seen that the heterogeneity of

the operator graphs, meaning the variation of the data rates on its links

152 4 Evaluation

is a determinant on the ability of MOPA, which solves the unconstrained

optimization problem, to minimize the network delay. Finally, we also showed

that MOPA-LMAX is a scalable algorithm achieving good quality solutions

with average network usage stretch factor of 1.14 and latency stretch factor

of 1.13, even for larger operator graphs of 20 nodes.

4.3 Processing and Network Delay Constrained

Optimization

In this section, we present the evaluation results for the MOPA-LPMAX al-

gorithm, which solve the processing and network delay constrained optimiza-

tion. We start with a description of the evaluation setup. Then, we evaluate

in detail the performance of the placement algorithm in terms of optimality

w.r.t. network load and its capability to satisfy latency constraints.

4.3.1 Setup

To evaluate MOPA-LPMAX, we have implemented them for the NET clus-

ter [48], an emulation environment developed at the University of Stuttgart.

NET provides an emulation environment for testing distributed systems and

communication protocols. It combines the bene�ts of real-time experiments

and network simulation. NET consists of a compute cluster, where every

cluster node hosts several virtual nodes (in our case the operator hosts) that

execute real implementation of the �software under test�. Nodes are connected

by an emulated communication network that can be parametrized such that

it resembles a given network (including network topology and link character-

istics such as latency and bandwidth). Using emulation instead of simulation

gives us the chance to test a real implementation of our placement algorithm

under realistic conditions.

For the physical network, we use the PlanetLab topology as described in

the introduction of this chapter. On top of the physical network, we used

4.3 Processing and Network Delay Constrained Optimization 153

 1

 10

 100

 1000

 10000

 100000

 10 100 1000

P
ro

ce
ss

in
g
 D

e
la

y
(m

se
c)

Matrice Size

Operator Processing Delay

Figure 4.21: Processing delay w.r.t operator complexity (matrice size).

the Pyxida system running on each host [1] to calculate the latencies of the

experiments online. Pyxida implements the Vivaldi algorithm [37] in order to

calculate accurate coordinates where the distance closely matches the propa-

gation delay.

For the operator graphs, we have used operators with di�erent complexity.

In particular, in order to vary the processing load induced by operators,

we used operators implementing a matrix multiplication with di�erent sizes.

Besides giving us the opportunity to easily manipulate the processing load

of operators, matrix multiplication is a common operation used, for instance,

for tra�c matrices in network monitoring or image recognition. We varied

the size of matrices in the range from 50 to 500 by de�ning four discrete

sizes of {50, 100, 200, 500} elements. Thus, we cover a large spectrum of

heterogeneous operators in terms of processing load. Consequently, the size

of the data unit is de�ned by the size of the matrices.

To demonstrate the use of the matrix multiplication operator as con�gura-

tion parameter to vary the processing delay, we have measured the induced

processing delay of operators executing matrix multiplication with di�erent

matrix size on unloaded physical nodes. Figure 4.21 shows the results. In

154 4 Evaluation

Method Basic Idea

EL Return all hosts in E

kNN Return the k nearest neighbours

Rand Return k random nodes that reside in the ellipse

ckNN Return the k nearest neighbours ful�lling the prun-

ing criterion

Table 4.4: Overview of candidate selection algorithms

Objective Performance

Metric

De�nition

Quality
Latency Value in ms

Network Usage Value in Kb

Overhead Messages # messages

Table 4.5: Overview of performance metrics

particular, for operators of size 10 and 100, the average processing delay is

2.48 msec and 17.71 msec respectively. Moreover, for a matrix size of 500,

the average processing delay is 2.49 sec, while for 1000 the processing delay

goes up to 24.09 sec. Thus, we see that by using variable matrix size, we can

vary the induce processing delay as expected.

For our experiments, an operator graph, has typically two free operators to

be placed. The data sources feed the operators with data every 20 up to 120

seconds following a uniform distribution leading to heterogeneous data rates.

Moreover, the data sources and sinks are uniformly distributed on random

hosts in the network. The parameter k that de�nes the size of the candidate

set is set to 5 hosts, i.e., 2.5% of the total number of hosts in the network.

4.3 Processing and Network Delay Constrained Optimization 155

4.3.2 Evaluation Objectives

We evaluated our placement algorithm MOPA-LPMAX with di�erent candi-

date selection strategies as discussed in Subsection 3.3.3. Table 4.4 summa-

rizes the candidate selection strategies presented in Subsection 3.3.3. Ellipse

(EL) represents the strategy that checks all nodes inside the search ellipse.

K-Nearest Neighbour (kNN) implements the k-nearest neighbour search with

respect to the network usage minimum. K-Random (kRand) implements

the random selection strategy, which selects random hosts that reside inside

the ellipse. Finally, Conditional K-Nearest Neighbor (CkNN) implements the

pruned search according to the pruning criterion presented earlier. For each

candidate selection strategy, we measure the resulting end-to-end latency, the

network usage, and the communication overhead to discover the candidate

hosts.

For the evaluation of MOPA-LPMAX, we have focused on the quality and

communication overhead. In particular, we compare the four di�erent selec-

tion strategies presented in Subsection 3.3.3 in terms of the resulting latency

and network usage, and we measure the messages exchanged to candidate

hosts. Table 4.5 summarizes the performance metrics used for our evalu-

ation. For the quanti�cation of latency and network usage, we have used

absolute values as we discuss in the next subsections.

4.3.3 Quality: Processing and Network Latency

In the �rst experiment, we evaluate the QoS capabilities of our placement

algorithm with the di�erent candidate selection strategies. In order to explore

the limitations of the di�erent strategies, we consider an extreme case with

very hard latency constraints: By setting the latency constraint to zero, we

let the placement algorithm search for the operator placement with minimum

possible latency. We deployed up to 240 operators gradually and measured

the achieved latency for each candidate selection strategy.

Figure 4.22 shows the achieved latency over the number of deployed oper-

156 4 Evaluation

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 50 100 150 200 250

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
se

c)

Number of Operators

kNN
kRand
CkNN

EL

Figure 4.22: Network and Processing Latency for increasing number of
operators.

ators. As expected the latency increases with the number of deployed oper-

ators since the system load increases. Initially all methods almost perform

similarly since initially the system has no load and all hosts can execute the

operators with the same expected (low) delay. In this case, the solution is

mainly de�ned by the network latency and not by the processing delay.

As the number of operators increases, some hosts get more load and become

slower in comparison to other hosts. In that case, the latency of the random

strategy kRand increases faster compared to the other strategies since it se-

lects randomly hosts inside the ellipse. The greedy strategy kNN is more

resilient to the load but �nally deviates also signi�cantly from CkNN up to

38% since it only considers a limited set of hosts in the vicinity of the network

usage minimum. Another interesting result is that the approach that searches

all nodes in the ellipse (EL) performs similarly to the greedy kNN strategy,

without achieving the best result.

This behaviour can be explained given the absolute values of the processing

delays. As discussed earlier, for operators with matrix size 500, the processing

delay is expressed in seconds. Since the communication latency in the latency

4.3 Processing and Network Delay Constrained Optimization 157

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

N
e
tw

o
rk

 L
o
a

d
 (

K
B

yt
e

s)

Candidates Selection Strategy

kNN
kRand
CkNN

EL

Figure 4.23: Resulting network usage for candidate selection.

space is typically expressed in milliseconds, the resulting ellipse in such case

would lead to an exhaustive search over the network, where the physical nodes

will be evaluated mainly based on their processing delay. Thus, given the ex-

pected error of the processing model between 11% and 20% depending on the

operator complexity as presented in 3.3.1, this heuristic could be disoriented

while trying to �nd the fastest physical node in the network.

4.3.4 Quality: Network Usage

Next, we analyse the performance of the di�erent candidate selection strate-

gies in terms of network usage. As already mentioned in Section 3.3.3, the

di�erent strategies try to leave out some possible solutions to limit overhead.

Therefore, we expect the approaches with better QoS performance to have the

higher costs in terms of network usage. For the same experiment as before, we

calculate the average network load of the deployed operator graphs. In order

to measure the network load, we have taken snapshots of the data that were

in transit at certain points in time measured in KBytes. Finally, we have

calculated the average data load over the time for the di�erent strategies.

158 4 Evaluation

 0

 50

 100

 150

 200

 250

 300

N
um

be
r

of
 M

es
sa

ge
s

Candidates Selection Strategy

kNN
kRand
ckNN

EL

Figure 4.24: Communication Overhead.

Figure 4.23 shows the absolute values inKBytes of the network load for the

di�erent candidate selection strategies. As we see in Figure 4.23 the average

network usage is low 6.8KBytes for the greedy kNN strategy and the random

strategy. That is expected, since these approaches do not ful�ll optimally

the latency constraints and, therefore, can achieve a lower network usage.

Moreover, CkNN induces 14% greater network load (7.8KBytes) compared

to kNN and random strategy- However, given that CkNN provides a 38%

lower latency on average, it still achieves a good balance between the network

usage minimization and the ful�lment of the latency constraints. Finally, EL

does not manage to �nd good candidate hosts and also induces high network

load. This could be interpreted due to the sensitivity of EL heuristic to base

its decision on the approximation of the processing delay.

4.3.5 Overhead: Messages for candidate selection methods

Finally, we discuss the communication overhead induced by each candidate

selection strategy. Figure 4.24 shows the average number of messages commu-

nicated between the coordinator and other hosts in order to de�ne a candidate

4.3 Processing and Network Delay Constrained Optimization 159

set. For kNN and kRand the number of messages are 10, since by default these

strategies communicate with only k = 5 hosts and they need two messages

(request/response) for each contact to a candidate host. For the EL algo-

rithm using the optimal restriction in the latency space, the average number

of messages is 288, with a standard deviation of 44 messages. This means

that a host contacts on average 144 out of 200 hosts to decide on a placement.

As already discussed, this is a result of the absolute values between the com-

munication latency and processing delay. Thus, the induced communication

overhead severely impacts the practical application of this method, due to

the high communication overhead that it induces, but also because it cannot

guarantee high quality solutions, since it would react extremely slow at each

network change using possibly outdated delay measurements.

Finally, for CkNN the number of messages is 18, with a standard deviation

of 4 messages. Thus, we see that the strategy that uses the pruning criterion

not only performs better in terms of the constraint satisfaction problem, but

also keeps the number of messages very low querying on average about 5%

of the total hosts. In other words, we see that it is su�cient to check only a

small subset of all hosts that reside in the ellipse.

4.3.6 Summary

In this section, we have presented the results for the MOPA-LPMAX algo-

rithm by using four di�erent candidate selection strategies. Our results show,

that the conditional K-Nearest Neighbour method, which uses the pruning

criterion introduced in Section 3.3.3, outperforms the simple kNearest neigh-

bour and the random selection of k physical hosts inside the ellipse, since

it achieves a 38% lower latency with the cost of 14% greater network usage.

Moreover, the proposed method induces limited overhead by using only 18

messages on average to �nd a solution for an operator graph with two free

operators.

160 4 Evaluation

4.4 Conclusion

The evaluation results presented in this chapter have provided insights on

the performance of the proposed placement algorithms, presented in Chapter

3. Our evaluations show that MOPA achieves nearly optimal solutions (with

average stretch factor of 14% − 21%), depending on the size of the graph,

while using only local knowledge. Although the algorithm is executed in a

distributed way, the induced overhead in terms of messages exchanged and

migrations is smaller than state-of-the-art method SBON.

Furthermore, MOPA is used as a baseline algorithm for solving the two

constrained optimization problems presented in Chapter 3. Therefore, the

two algorithms inherit the properties of MOPA in terms of quality of solution

and overhead. For the network latency constraints, we see that in hetero-

geneous operator graphs, minimizing the network usage leads to a network

latency that is signi�cantly di�erent to the latency minimum. In that respect,

especially for scenarios where the data rates of the operator graph vary signif-

icantly, we need a constraint satisfaction algorithm that tailors the solution

to meet application-de�ned latency constraints. We see that the success rate

of our proposed algorithm MOPA-LMAX depends on the strictness of the la-

tency constraint. For relaxed latency constraints (with latency stretch greater

than 2 with respect to the minimal feasible latency), our algorithm always

�nd a good solution achieving up to 98% success rate on average. Only if the

constraint is very close to the minimal feasible latency, the success rate de-

creases. Moreover, MOPA-LMAX can �nd a solution to the network latency

constrained optimization problem in a few seconds (3 seconds) even for larger

operator graphs of 20 nodes, while the centralized MIP solver needs hundreds

of seconds to �nd the optimal solution. Furthermore, in terms of accuracy,

MOPA-LMAX approximates the optimal solution found by the extended ILP

by 13% greater latency and 14% network usage on average.

Finally, we evaluated MOPA-LPMAX with four di�erent selection strate-

gies and we have identi�ed cKNN as the best candidate selection strategy.

4.4 Conclusion 161

In our experiments, we have seen that considering the processing delay dur-

ing optimization becomes more important when the system has a signi�cant

load, and when the physical nodes become heterogeneous in terms of speed.

Therefore, the MOPA-LPMAX algorithm is more relevant for scenarios where

the physical machines vary in terms of their computing capabilities and load.

As a conclusion of our evaluation, we see that the proposed algorithms

MOPA, MOPA-LMAX, MOPA-LPMAX signi�cantly reduce the network us-

age and are able to meet given latency constraints in realistic scenarios. The

selection of the most appropriate algorithm between the three depends on

the properties of the scenario and in particular, on the heterogeneity of the

operator graph, and the heterogeneity of the physical network in terms of

load and computing power.

163

5 Summary and Future Work

Finally, we provide a brief summary of the contents of this dissertation, before

we discuss possible future extensions of this work.

5.1 Summary

In this dissertation, we have presented concepts and algorithms for the e�-

cient processing of distributed context streams. Our work has been motivated

by the need of designing a system that enables distributed context reasoning.

To this end, we have proposed a novel architecture for distributed context

reasoning that uses the concept of the operator graph. Given this generic

system model that allows for the distribution of reasoning tasks, we then for-

mulated three operator placement problems that target di�erent application

scenarios and we presented algorithms that solve these problem considering

local knowledge.

In detail, we have �rst formulated the Multi-operator placement problem,

which seeks for an optimal placement of operators minimizing the bandwidth-

delay products of the inter-operator data streams. For this problem, we have

presented a distributed algorithm that allows for the autonomous placement

of the operators based on their local view. As reference for our distributed al-

gorithm, we have presented an integer linear program that solves the network

usage optimization problem in a centralized way assuming global knowledge

of the system. Our evaluation showed that our distributed algorithm �nds

near optimal solutions (on average 14% deviation from the optimum). Fur-

thermore, the algorithm achieves higher quality solutions and induces less

overhead in terms of messages and migrations with respect to another rele-

164 5 Summary and Future Work

vant state-of-the-art algorithm.

Secondly, we extended the network usage optimization problem by adding

an application-de�ned latency constraint, which considers the communication

latency as the dominant factor of the end-to-end delay. For this problem,

we provided a constraint satisfaction algorithm that starts from an optimal

placement with respect to network usage and tries to degrade the solution

minimally in terms of network usage to reach the delay constraint. Our

evaluation results showed that our algorithm achieves high success rates up

to 98%.

Finally, we have considered a latency-constrained optimization problem,

that additionally takes processing and network transmission delays for large

data items into account. Our algorithm �nds promising candidate nodes that

may decrease the processing or network delay. We have used di�erent can-

didate selection methods depending on the proximity of the nodes to the

network usage minimum and their processing delay. Our evaluation showed

that the candidate selection method, which uses our proposed pruning crite-

rion can achieve a better balance between network usage and latency with

respect to other simple heuristic solutions.

5.2 Future Work

The work presented in this dissertation could be extended into di�erent di-

rections by considering di�erent systems models and/or placement problems.

As an immediate extension of the presented work, one could consider the

problem of optimizing a set of operator graphs rather than a single graph.

Here, the concept of sharing operators between graphs becomes essential.

Sharing operator can be bene�cial, for instance, to reduce the computational

and communication overhead (an operator only has to be executed once and

its output can be re-used). However, in some cases a shared operator might

prevent to �nd a solution meeting given latency constraints. Therefore, the

placement algorithm has to be carefully designed to make the right decisions

5.2 Future Work 165

when to share an operator.

A second extension of the presented work could be the integration of mobile

nodes into the system model. Taking into account the trend of modern smart

phones, such mobile nodes could serve as sensors, sinks (applications), and

hosts for operators. However, there are also several challenges that have to

be solved to bene�t from the large crowd of available mobile nodes. For

instance, energy becomes an important constraints that has to be considered

during operator placement. Moreover, node mobility and availability change

the model of �xed sources and sinks. Node mobility might also trigger the

frequent migration of operators to constantly ful�ll given end-to-end latency

constraints. First steps into this direction have already been taken in another

work at the University of Stuttgart [79]. This work also shows that it might

be bene�cial to consider modern execution environments such as powerful

compute clouds or edge servers close to the mobile devices and therefore

available with small latency.

Another possible research direction is the design of optimal placement

strategies for application models other than stream processing. In particu-

lar, it would be interesting to investigate placement algorithms for multi-tier

applications using a request/response model. In such a system, the applica-

tion consists of client/server components where the components of tier n act

as clients to servers of tier n + 1. A typical example are web applications

following a three-tier architecture: Frontend (GUI), middle tier (application

logic), backend (persistent data storage; database). The middle tier itself

could be split up into further tiers if application servers can be ordered ac-

cording to client/server relationships between application servers (application

servers use other application servers). If we consider the frontend (clients)

and backend (database) to be �xed (pinned), the question is where to place

the middle tier services to minimize network usage (or cost in general) and

guarantee a certain maximum response time (typically tens of milliseconds

for many web services)? In particular for new infrastructure models such

as cloud computing environments consisting of multiple data centers, this

166 5 Summary and Future Work

placement problem becomes highly relevant. Since often cloud services are

driven by pay-as-you-go pricing models, minimizing communication cost and

computational cost, while achieving high computing elasticity, through op-

timal placement strategies are of great importance. To solve this problem,

our model needs to be adapted to a request/response model considering the

whole round trip between frontend and backend, a dynamic set of clients, the

replication of services as another degree of freedom, and further optimization

goals such as minimum monetary cost or elasticity.

Finally, the optimization problems presented in this dissertation could also

be extended to consider optimizations of the logical plan, i.e. the degradation

of query result by load shedding or the consideration of multiple data granu-

larities, which imply di�erent data rates. In that case, our model should be

extended to include the quality of the logical plan, to �nd a trade-o� solution

between quality and computing (and network) costs.

167

References

[1] Network Coordinate Research at Harvard. http://www.eecs.

harvard.edu/~syrah/nc/.

[2] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S

Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,

and Stan Zdonik. The Design of the Borealis Stream Processing Engine.

In Proc. of CIDR, 2005.

[3] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,

and Stan Zdonik. Aurora: a new model and architecture for data stream

management. The VLDB Journal, 12(2):120�139, August 2003.

[4] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark

Smith, and Pete Steggles. Towards a better understanding of context

and context-awareness. In HUC 1999: Proceedings of the 1st interna-

tional symposium on Handheld and Ubiquitous Computing, pages 304�

307, London, UK, 1999. Springer-Verlag.

[5] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB

Journal, 13(2):177�203, May 2004.

[6] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.

E�cient pattern matching over event streams. In Proceedings of the

2008 ACM SIGMOD international conference on Management of data,

SIGMOD 2008, pages 147�160, 2008.

http://www.eecs.harvard.edu/~syrah/nc/
http://www.eecs.harvard.edu/~syrah/nc/

168 References

[7] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar D. Chandra. Matching events in a content-based subscrip-

tion system. In In Proceedings of the Eighteenth Annual ACM Sym-

posium on Principles of Distributed Computing (PODC 19Distributed

Stream Management using Utility-Driven Self- Adaptive Middleware,99,

1999.

[8] Yanif Ahmad and U§ur Çetintemel. Network-aware query processing

for stream-based applications. In VLDB 2004, pages 456�467, 2004.

[9] Mert Akdere, U�gur Çetintemel, and Nesime Tatbul. Plan-based com-

plex event detection across distributed sources. Proc. VLDB Endow.,

1(1):66�77, August 2008.

[10] J. Al-Muhtadi, Shiva Chetan, A. Ranganathan, and R. Campbell. Su-

per spaces: a middleware for large-scale pervasive computing environ-

ments. In Pervasive Computing and Communications Workshops, 2004.

Proceedings of the Second IEEE Annual Conference on, pages 198�202,

2004.

[11] L. Amini, N. Jain, Anshul Sehgal, J. Silber, and O. Verscheure. Adap-

tive control of extreme-scale stream processing systems. In ICDCS

2006. 26th IEEE International Conference on Distributed Computing

Systems, 2006., page 71, 2006.

[12] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,

Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas,

Rohit Varma, and Jennifer Widom. Stream: The stanford stream data

manager. IEEE Data Eng. Bull., 26(1):19�26, 2003.

[13] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous

query language: semantic foundations and query execution. The VLDB

Journal, 15(2):121�142, June 2006.

References 169

[14] Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zan-

iolo. A data stream language and system designed for power and ex-

tensibility. In Proceedings of the 15th ACM international conference on

Information and knowledge management, CIKM 2006, pages 337�346,

2006.

[15] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng

Hong. Consistent Streaming Through Time: A Vision for Event Stream

Processing. In CIDR 2007, pages 363�374, 2007.

[16] Martin Bauer. Observing Physical World Events through a Distributed

World Model. Dissertation, Universität Stuttgart : Sonderforschungs-

bereich SFB 627 (Nexus: Umgebungsmodelle für mobile kontextbezo-

gene Systeme), Germany, May 2007.

[17] Luca Becchetti, Ioannis Chatzigiannakis, and Yiannis Giannakopoulos.

Streaming techniques and data aggregation in networks of tiny arte-

facts. Computer Science Review, 5(1):27 � 46, 2011.

[18] Andreas Benzing, Boris Koldehofe, and Kurt Rothermel. E�cient sup-

port for multi-resolution queries in global sensor networks. In Pro-

ceedings of the 5th International Conference on Communication System

Software and Middleware, COMSWARE 2011, pages 11:1�11:12, New

York, NY, USA, 2011. ACM.

[19] A. Bikakis and G. Antoniou. Defeasible contextual reasoning with argu-

ments in ambient intelligence. Knowledge and Data Engineering, IEEE

Transactions on, 22(11):1492�1506, 2010.

[20] Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations

for sums of distances, clustering and the Fermat-Weber problem. Com-

putational Geometry: Theory and Aplications, 24:135�146, 2002.

170 References

[21] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel

Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker

White. Cayuga: a high-performance event processing engine. In Pro-

ceedings of the 2007 ACM SIGMOD international conference on Man-

agement of data, SIGMOD 2007, pages 1100�1102, 2007.

[22] Barry Brumitt, Brian Meyers, John Krumm, A Kern, and Steven

Shafer. Easyliving: Technologies for intelligent environments. In Pro-

ceedings of the 2nd international symposium on Handheld and Ubiqui-

tous Computing, pages 12�29. Springer-Verlag, 2000.

[23] P. Calamai and Charalambous C. Solving multifacility location prob-

lems involving euclidean distances. Naval Research Logistics Quarterly,

27(4):609�620, 1980.

[24] B.W. Carabelli, A. Benzing, F. Durr, B. Koldehofe, K. Rothermel,

G. Seyboth, R. Blind, M. Burger, and F. Allgower. Exact convex

formulations of network-oriented optimal operator placement. In Deci-

sion and Control (CDC), 2012 IEEE 51st Annual Conference on, pages

3777�3782, 2012.

[25] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-

sign and evaluation of a wide-area event noti�cation service. ACM

Trans. Comput. Syst., 19(3):332�383, August 2001.

[26] S. Chakravarthy and D. Mishra. Snoop: An expressive event speci�-

cation language for active databases. Data & Knowledge Engineering,

14:1 � 26, 1994.

[27] R. Chandrasekaran and A. Tamir. Algebraic optimization: the Fermat-

Weber location problem. Math. Program., 46(2):219�224, 1990.

[28] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

References 171

Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq: con-

tinuous data�ow processing. In SIGMOD 2003: Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages

668�668, New York, NY, USA, 2003. ACM.

[29] Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in the con-

text broker architecture. In PERCOM '04: Proceedings of the Second

IEEE International Conference on Pervasive Computing and Commu-

nications (PerCom'04), page 277, Washington, DC, USA, 2004. IEEE

Computer Society.

[30] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-

garacq: a scalable continuous query system for internet databases. In

Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, SIGMOD 2000, pages 379�390, New York, NY,

USA, 2000. ACM.

[31] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-

terson, Mike Wawrzoniak, and Mic Bowman. Planetlab: An overlay

testbed for broad-coverage services. ACM SIGCOMM Computer Com-

munication Review, pages 3�12, 2003.

[32] Nazario Cipriani, Mike Eissele, Andreas Brodt, Matthias Grossmann,

and Bernhard Mitschang. NexusDS: a �exible and extensible middle-

ware for distributed stream processing. In IDEAS 2009: Proceedings of

the 2009 International Database Engineering; Applications Symposium,

pages 152�161, New York, NY, USA, 2009. ACM.

[33] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav

Shkapenyuk. Gigascope: a stream database for network applications.

In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, SIGMOD 2003, pages 647�651, 2003.

172 References

[34] Gianpaolo Cugola and Alessandro Margara. Raced: an adaptive mid-

dleware for complex event detection. In Proceedings of the 8th Inter-

national Workshop on Adaptive and Re�ective MIddleware, ARM 2009,

pages 5:1�5:6, 2009.

[35] Gianpaolo Cugola and Alessandro Margara. Tesla: a formally de�ned

event speci�cation language. In Proceedings of the Fourth ACM Inter-

national Conference on Distributed Event-Based Systems, DEBS 2010,

pages 50�61, 2010.

[36] Gianpaolo Cugola and Alessandro Margara. Complex event processing

with t-rex. J. Syst. Softw., 85(8):1709�1728, August 2012.

[37] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a

decentralized network coordinate system. In SIGCOMM 2004: Proceed-

ings of the 2004 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 15�26, New York,

NY, USA, 2004. ACM.

[38] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu,

R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny,

and R. Jauhari. The hipac project: combining active databases and

timing constraints. SIGMOD Rec., 17(1):51�70, March 1988.

[39] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos.

Bandwidth-constrained queries in sensor networks. The VLDB Journal,

17(3):443�467, May 2008.

[40] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual

framework and a toolkit for supporting the rapid prototyping of context-

aware applications. Hum.-Comput. Interact., 16(2):97�166, December

2001.

References 173

[41] Z. Drezner and H.W. Hamacher. Facility Location: Applications and

Theory. Springer, 2004.

[42] Dominique Dudkowski, Harald Weinschrott, and Pedro José Marrón.

Design and implementation of a reference model for context manage-

ment in mobile ad-hoc networks. In Proc. of AINA Workshops, 2008.

[43] D. Ejigu, M. Scuturici, and L. Brunie. Coca: A collaborative context-

aware service platform for pervasive computing. In Information Tech-

nology, 2007. ITNG 2007. Fourth International Conference on, pages

297�302, April.

[44] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. The many faces of publish/subscribe. ACM Comput.

Surv., 35(2):114�131, June 2003.

[45] Minos Garofalakis. Distributed data streams. In LING LIU and

M.TAMER Ã�ZSU, editors, Encyclopedia of Database Systems, pages

883�890. Springer US, 2009.

[46] Minos Garofalakis and Phillip B. Gibbons. Wavelet synopses with error

guarantees. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data, SIGMOD '02, pages 476�487, New

York, NY, USA, 2002. ACM.

[47] Narain H. Gehani and H. V. Jagadish. Ode as an active database:

Constraints and triggers. In Proceedings of the 17th International Con-

ference on Very Large Data Bases, VLDB 1991, pages 327�336, San

Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[48] A. Grau, K. Herrmann, and K. Rothermel. E�cient and Scalable Net-

work Emulation Using Adaptive Virtual Time. In 18th Internatonal

Conference on Computer Communications and Networks, Aug. 2009.

174 References

[49] Tao Gu, H.K. Pung, and Da Qing Zhang. A middleware for building

context-aware mobile services. In Vehicular Technology Conference,

2004. VTC 2004-Spring. 2004 IEEE 59th, volume 5, pages 2656�2660

Vol.5, May.

[50] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented mid-

dleware for building context-aware services. J. Netw. Comput. Appl.,

28(1):1�18, 2005.

[51] Tao Gu, Hung Keng Pung, and Daqing Zhang. Peer-to-peer context rea-

soning in pervasive computing environments. In PERCOM '08: Pro-

ceedings of the 2008 Sixth Annual IEEE International Conference on

Pervasive Computing and Communications, pages 406�411, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[52] Xiaohui Gu, Philip S. Yu, and Klara Nahrstedt. Optimal Compo-

nent Composition for Scalable Stream Processing. In Proceedings of

the 25th IEEE International Conference on Distributed Computing Sys-

tems, ICDCS 2005, 2005.

[53] D. Gyllstrom, J. Agrawal, Yanlei Diao, and N. Immerman. On sup-

porting kleene closure over event streams. In Data Engineering, 2008.

ICDE 2008. IEEE 24th International Conference on, pages 1391�1393,

2008.

[54] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan

Balasubramaniam. Middleware for distributed context-aware systems.

In International Symposium on Distributed Objects and Applications

(DOA, pages 846�863. Springer, 2005.

[55] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann,

and W. Retschitzegger. Context-awareness on mobile devices - the hy-

drogen approach. In System Sciences, 2003. Proceedings of the 36th

Annual Hawaii International Conference on, page 10 pp., jan. 2003.

References 175

[56] Nicola Hönle, Matthias Groÿmann, Daniela Nicklas, and Bernhard

Mitschang. Preprocessing position data of mobile objects. In Proc.

of MDM, 2008.

[57] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke,

Jennifer Widom, Hari Balakrishnan, U�gur Çetintemel, Mitch Cherni-

ack, Richard Tibbetts, and Stan Zdonik. Towards a streaming sql stan-

dard. Proc. VLDB Endow., 1(2):1379�1390, August 2008.

[58] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Prob-

abilistic event extraction from r�d data. In ICDE, pages 1480�1482,

2008.

[59] Gerald Koch, Boris Koldehofe, and Kurt Rothermel. Cordies: Expres-

sive Event Correlation in Distributed Systems. In Proceedings of the

Fourth ACM International Conference on Distributed Event-Based Sys-

tems, 2010.

[60] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert,

Timo Berthold, RobertE. Bixby, Emilie Danna, Gerald Gamrath, Am-

brosM. Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann, Ted

Ralphs, Domenico Salvagnin, DanielE. Ste�y, and Kati Wolter. Miplib

2010. Mathematical Programming Computation, 3(2):103�163, 2011.

[61] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm. Man-

aging context information in mobile devices. Pervasive Computing,

IEEE, 2(3):42�51, July-Sept.

[62] Niels Rode Kristensen, Henrik Madsen, and Sten Bay JøRgensen.

Parameter estimation in stochastic grey-box models. Automatica,

40(2):225�237, February 2004.

[63] Geetika T. Lakshmanan, Ying Li, and Rob Strom. Placement strate-

176 References

gies for internet-scale data stream systems. Internet Computing, IEEE,

12(6):50�60, Nov.-Dec. 2008.

[64] Ralph Lange. Scalable Management of Trajectories and Context Model

Descriptions. Dissertation, Universität Stuttgart : Sonderforschungs-

bereich SFB 627 (Nexus: Umgebungsmodelle für mobile kontextbezo-

gene Systeme), Germany, Dezember 2010.

[65] Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Grossmann, Har-

ald Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou,

and Kurt Rothermel. Making the world wide space happen: New chal-

lenges for the nexus context platform. Pervasive Computing and Com-

munications, IEEE International Conference on, 0:1�4, 2009.

[66] Ralph Lange, Frank Dürr, and Kurt Rothermel. Online trajectory data

reduction using connection-preserving dead reckoning. In Proc. of Mo-

biQuitous, 2008.

[67] Ralph Lange, Frank Dürr, and Kurt Rothermel. Scalable processing of

trajectory-based queries in space-partitioned moving objects databases.

In Proc. of ACM GIS, 2008.

[68] Pierre Le Bodic, Pierre HéRoux, SéBastien Adam, and Yves Lecourtier.

An integer linear program for substitution-tolerant subgraph isomor-

phism and its use for symbol spotting in technical drawings. Pattern

Recogn., 45(12):4214�4224, December 2012.

[69] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in

content-based publish/subscribe systems. In Proceedings of the

ACM/IFIP/USENIX 2005 International Conference on Middleware,

Middleware 2005, pages 249�269, 2005.

[70] Ling Liu, C. Pu, and Wei Tang. Continual queries for internet scale

References 177

event-driven information delivery. Knowledge and Data Engineering,

IEEE Transactions on, 11(4):610�628, 1999.

[71] David C. Luckham. Rapide: a language and toolset for simulation of

distributed systems by partial orderings of events. In Proceedings of the

DIMACS workshop on Partial order methods in veri�cation, POMIV

1996, pages 329�357, 1997.

[72] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong. Tag: a tiny aggregation service for ad-hoc sensor networks.

SIGOPS Oper. Syst. Rev., 36(SI):131�146, December 2002.

[73] Masoud Mansouri-Samani and Morris Sloman. Gem: a generalized

event monitoring language for distributed systems. Distributed Systems

Engineering, 4(2):96, 1997.

[74] Alessandro Margara and Gianpaolo Cugola. Processing �ows of infor-

mation: from data stream to complex event processing. In Proceedings

of the 5th ACM international conference on Distributed event-based sys-

tem, DEBS 2011, pages 359�360, New York, NY, USA, 2011. ACM.

[75] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based

Systems. Springer Publishing Company, Incorporated, 1st edition, 2010.

[76] Sumedh Mungee, Nagarajan Surendran, and Douglas C. Schmidt. The

Design and Performance of a CORBA Audio/Video Streaming Service.

In Hawaiian International Conference on System Sciences, 1999.

[77] Daniela Nicklas, Matthias Groÿmann, Thomas Schwarz, Ste�en Volz,

and Bernhard Mitschang. A model-based, open architecture for mobile,

spatially aware applications. In Proc. of SSTD, 2001.

[78] Petteri Nurmi, Michael Przybilski, Greger Lindén, and Patrik Floréen.

An architecture for distributed agent-based data preprocessing. In AIS-

ADM, pages 123�133, 2005.

178 References

[79] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, and Umakishore

Ramachandran. MigCEP: Operator Migration for Mobility Driven Dis-

tributed Complex Event Processing. In Proceedings of the 7th ACM

International Conference on Distributed Event-Based Systems (DEBS),

pages 1�12. ACM Press, Juni 2013.

[80] Sebastian Padó and Mirella Lapata. Constructing semantic space mod-

els from parsed corpora. In ACL '03: Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics, pages 128�135,

Morristown, NJ, USA, 2003. Association for Computational Linguistics.

[81] Olga Papaemmanouil, Yanif Ahmad, Ugur Çetintemel, and John Jan-

notti. Application-aware Overlay Networks for Data Dissemination. In

ICDE Workshops, page 76, 2006.

[82] Kostas Patroumpas and Timos Sellis. Multi-granular time-based sliding

windows over data streams. In Proceedings of the 2010 17th Interna-

tional Symposium on Temporal Representation and Reasoning, TIME

'10, pages 146�153, Washington, DC, USA, 2010. IEEE Computer So-

ciety.

[83] Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks

of Plausible Inference. Morgan Kaufmann, September 1988.

[84] Peter Pietzuch, Jonathan Ledlie, Je�rey Shneidman, Mema Roussopou-

los, Matt Welsh, and Margo Seltzer. Network-aware operator placement

for stream-processing systems. In ICDE 2006: Proceedings of the 22nd

International Conference on Data Engineering, page 49, Washington,

DC, USA, 2006. IEEE Computer Society.

[85] Peter Pietzuch, Je�rey Shneidman, Jonathan Ledlie, Matt Welsh,

Margo Seltzer, and Mema Roussopoulos. [evaluating dht-based service

placement for stream-based overlays.

References 179

[86] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework

for event composition in distributed systems. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware,

Middleware 2003, pages 62�82, 2003.

[87] P.R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as

a generic middleware extension. Network, IEEE, 18(1):44�55, 2004.

[88] Francisc Rado. The euclidean multifacility location problem. Operations

Research, 36(3):485�492, 1988.

[89] Anand Ranganathan and Roy H. Campbell. A middleware for context-

aware agents in ubiquitous computing environments. In Proceedings

of the ACM/IFIP/USENIX 2003 International Conference on Middle-

ware, Middleware 2003, pages 143�161, New York, NY, USA, 2003.

Springer-Verlag New York, Inc.

[90] Thomas Repantis, Xiaohui Gu, and Vana Kalogeraki. Synergy: Shar-

ing Aware Component Composition for Distributed Stream Processing

Systems. In Middleware, pages 322�341, 2006.

[91] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. Providing QoS

Guarantees for Large-Scale Operator Networks. In Proceedings of the

12th IEEE International Conference on High Performance Comput-

ing and Communications, pages 337�345, Melbourne, VIC, Australia,

September 2010. IEEE Computer Society Press.

[92] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. Solving the Multi-

operator Placement Problem in Large Scale Operator Networks. In 19th

Internatonal Conference on Computer Communications and Networks,

2010.

[93] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. Ful�lling End-to-

End Latency Constraints in Large-scale Streaming Environments. In

180 References

Proceedings of the 30th IEEE International Performance Computing

and Communications Conference: IPCCC'11, pages 1�8. IEEE Xplore,

November 2011.

[94] Stamatia Rizou, Kai Häussermann, Frank Dürr, Nazario Cipriani, and

Kurt Rothermel. A System for Distributed Context Reasoning. In ICAS

2010, pages 84�89, 2010.

[95] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-

ganathan, Roy H. Campbell, and Klara Nahrstedt. A middleware in-

frastructure for active spaces. IEEE Pervasive Computing, 1(4):74�83,

October 2002.

[96] J. B. Rosen and G. L. Xue. On the Convergence of Miehle± Algorithm

for the Euclidean Multifacility Location Problem. Operations Research,

40(1):188�191, 1992.

[97] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik,

and Douglas D. Edwards. Arti�cial intelligence: a modern approach.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[98] Dimitris Sacharidis, Antonios Deligiannakis, and Timos Sellis. Hierar-

chically compressed wavelet synopses. The VLDB Journal, 18(1):203�

231, January 2009.

[99] B. Schilling, B. Koldehofe, and K. Rothermel. E�cient and distributed

rule placement in heavy constraint-driven event systems. In High Per-

formance Computing and Communications (HPCC), 2011 IEEE 13th

International Conference on, pages 355�364, 2011.

[100] Roman Schmidt and Karl Aberer. E�cient Peer-to-Peer Belief Prop-

agation. In Fourteenth International Conference on Cooperative Infor-

mation Systems (CoopIS), 2006.

References 181

[101] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.

Distributed complex event processing with query rewriting. In Proceed-

ings of the Third ACM International Conference on Distributed Event-

Based Systems, DEBS 2009, pages 4:1�4:12, 2009.

[102] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, and M.J. Franklin.

Flux: an adaptive partitioning operator for continuous query systems.

In Data Engineering, 2003. Proceedings. 19th International Conference

on, pages 25�36, 2003.

[103] A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and K. Chrysan-

this. Balancing energy e�ciency and quality of aggregate data in sensor

networks. The VLDB Journal, 13(4):384�403, December 2004.

[104] Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste,

Bernard Deylon, Pierre yves Glorennec, Hakan Hjalmarsson, and Ana-

toli Juditsky. Nonlinear black-box modeling in system identi�cation: a

uni�ed overview. Automatica, 31:1691�1724, 1995.

[105] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator

placement for in-network stream query processing. In In PODS, pages

250�258, 2005.

[106] Mark Sullivan and Andrew Heybey. Tribeca: a system for managing

large databases of network tra�c. In Proceedings of the annual con-

ference on USENIX Annual Technical Conference, ATEC 1998, pages

2�2, Berkeley, CA, USA, 1998. USENIX Association.

[107] Egemen Tanin, Deepa Nayar, and Hanan Samet. An e�cient nearest

neighbor algorithm for P2P settings. In Proceedings of the 2005 National

Conference on Digital Government Research, pages 21�28. Digital Gov-

ernment Society of North America, 2005.

182 References

[108] William van Dorst. The quintessential linux benchmark: All about the

"bogomips" number displayed when linux boots. Linux J., 1996(21es),

January 1996.

[109] Matthias Wieland, Oliver Kopp, Daniela Nicklas, and Frank Leymann.

Towards Context-Aware Work�ows. In Proc. of CAiSE, 2007.

[110] Matthias Wieland, Daniela Nicklas, and Frank Leymann. Managing

technical processes using smart work�ows. ServiceWave, December

2008. to appear.

[111] Gregory Aaron Wilkin, K. R. Jayaram, Patrick Eugster, and Ankur

Khetrapal. Faidecs: fair decentralized event correlation. In Proceed-

ings of the 12th ACM/IFIP/USENIX international conference on Mid-

dleware, Middleware 2011, pages 228�248, Berlin, Heidelberg, 2011.

Springer-Verlag.

[112] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex

event processing over streams. In SIGMOD 2006, 2006.

[113] Kirsten W. Wu, Kun-Lung, Wei Fan, Philip S. Yu, Charu C. Aggar-

wal, David A. George, Bu�gra Gedik, Eric Bouillet, Xiaohui Gu, Gang

Luo, and Haixun Wang. Challenges and experience in prototyping a

multi-modal stream analytic and monitoring application on system s.

In Proceedings of the 33rd international conference on Very large data

bases, VLDB 2007, pages 1185�1196, 2007.

[114] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load dis-

tribution in the borealis stream processor. In Proceedings of the 21st

International Conference on Data Engineering, ICDE 2005, pages 791�

802, Washington, DC, USA, 2005. IEEE Computer Society.

[115] Yong Yao and Johannes Gehrke. The cougar approach to in-network

References 183

query processing in sensor networks. SIGMOD Rec., 31(3):9�18,

September 2002.

[116] Stephen S. Yau and Fariaz Karim. Context-sensitive middleware for

real-time software in ubiquitous computing environments. In Proc. 4

th IEEE International Symp. on Object-Oriented Real-time Distributed

Computing (ISORC 2001, pages 163�170, 2001.

[117] Lei Ying, Zhen Liu, D. Towsley, and C.H. Xia. Distributed operator

placement and data caching in large-scale sensor networks. In INFO-

COM 2008. The 27th Conference on Computer Communications. IEEE,

pages 977�985, 2008.

[118] Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Ji Wu. E�cient Dy-

namic Operator Placement in a Locally Distributed Continuous Query

System. In Proceedings of the 2006 Confederated international confer-

ence on On the Move to Meaningful Internet Systems: CoopIS, DOA,

GADA, and ODBASE - Volume Part I, ODBASE'06/OTM'06, pages

54�71, 2006.

[119] Horst W. Hamacher Zvi Drezner. The Fermat-Weber Problem. In

Facility Location: Applications and Theory, pages 1�24. 2005.

[120] Oliver Zweigle, Kai Häussermann, Uwe-Philipp Käppeler, and Paul

Levi. Extended TA Algorithm for adapting a Situation Ontology.

In Proceedings of the FIRA RoboWorld Congress 2009, Progress in

Robotics, volume 44 of Communications in Computer and Information

Science, pages 364�371, Incheon, Korea, August 2009. Springer Verlag.

	Abstract
	Deutsche Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Architecture
	1.2.2 Context Information Layer
	1.2.3 Federation Layer
	1.2.4 Applications and Middleware Layer

	1.3 Contributions
	1.4 Structure

	2 Architecture
	2.1 System Model
	2.2 Situation Model
	2.3 System Architecture
	2.4 Overview of existing approaches and systems
	2.4.1 Context management systems
	2.4.2 Information Flow Processing

	3 Operator Placement Algorithms
	3.1 Network Usage Optimization
	3.1.1 System Model
	3.1.2 Problem Statement
	3.1.3 Multi-operator Placement Algorithm (MOPA)
	3.1.4 Integer Linear Programming Formulation

	3.2 Network Delay Constrained Optimization
	3.2.1 System Model
	3.2.2 Problem Statement
	3.2.3 Constrained Optimization Algorithm
	3.2.4 Integer Linear Programming Formulation

	3.3 Processing and Network Delay Constrained Optimization
	3.3.1 System Model
	3.3.2 Problem Statement
	3.3.3 Placement Algorithm

	3.4 Related Work
	3.4.1 Complex Event Processing
	3.4.2 Data Stream Processing
	3.4.3 Control Systems

	4 Evaluation
	4.1 Network Usage Optimization
	4.1.1 Setup
	4.1.2 Evaluation objectives
	4.1.3 Quality: Continuous MOPA Solution
	4.1.4 Quality: Discrete MOPA Solutions
	4.1.5 Convergence: Message Overhead and Migrations
	4.1.6 Scalability: Execution time and Performance
	4.1.7 Summary

	4.2 Network Delay Constrained Optimization
	4.2.1 Setup
	4.2.2 Evaluation Objectives
	4.2.3 Quality: Relation Between Network Usage and Latency
	4.2.4 Quality: Fulfillment of Network Latency Constraints
	4.2.5 Quality: Deviation from Network Delay Constraints
	4.2.6 Scalability: Execution Time and Performance
	4.2.7 Summary

	4.3 Processing and Network Delay Constrained Optimization
	4.3.1 Setup
	4.3.2 Evaluation Objectives
	4.3.3 Quality: Processing and Network Latency
	4.3.4 Quality: Network Usage
	4.3.5 Overhead: Messages for candidate selection methods
	4.3.6 Summary

	4.4 Conclusion

	5 Summary and Future Work
	5.1 Summary
	5.2 Future Work

	References

