
Modellierung regelkonformer

Geschäftsprozesse

Von der Fakultät für Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart zur Erlangung der

Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Daniel Schleicher
aus Waiblingen

Hauptberichter: Prof. Dr. Frank Leymann

Mitberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Tag der mündlichen Prüfung: 30.07.2014

Institut für Architektur von Anwendungssystemen der

Universität Stuttgart

2014

ii

INHALTSVERZEICHNIS

1. Einleitung 11

1.1. Bedeutung von Compliance für Unternehmen heute . . 12

1.2. Zentrales Anliegen . 14

1.3. Problemstellung und Motivation 16

1.4. Forschungsbeiträge der Arbeit 20

1.4.1. Erweiterung eines Variabilitätskonzepts und ei-

nes Prozessmetamodells für die Unterstützung

der Entwicklung regelkonformer Prozesse . . . 21

1.4.2. Algorithmus zur Überprüfung des Kontrollflus-

ses von Teilbereichen von Prozessen 22

1.4.3. Algorithmus zur Überprüfung des Datenflusses

in Prozessmodellen 23

1.4.4. Ein Mechanismus zur Unterstützung der Zu-

sammenarbeit bei der Erstellung regelkonfor-

mer Prozesse . 25

iii

1.4.5. Architektur eines Prototyps zur Evaluierung der

vorgestellten Konzepte und Algorithmen 26

1.5. Definition des Arbeitsbereichs 27

1.6. Aufbau der Arbeit . 29

2. Grundlagen der Entwicklung regelkonformer Prozesse 31

2.1. Bedeutung des Begriffs Compliance im Kontext dieser

Arbeit . 31

2.2. Business Process Management 33

2.3. Business Process Model and Notation 1.0 (BPMN 1.0) 33

2.3.1. Tasks . 34

2.3.2. Kontrollfluss . 34

2.3.3. Datenfluss . 35

2.3.4. Ereignisse . 35

2.3.5. Gateways . 36

2.3.6. Datenobjekte . 37

2.4. Oryx . 37

2.5. Lineare Temporale Logik 38

2.6. Modelchecking . 39

2.7. SPIN . 39

2.8. PROMELA . 40

2.9. JSON . 40

2.10.Prozessfragment . 41

3. Verwandte Arbeiten 43

3.1. Unterstützung menschlicher Prozessmodellierer 44

3.2. Regelkonformes Geschäftsprozessmanagement 48

3.3. Regelkonforme Prozessmodellierung 52

iv Inhaltsverzeichnis

3.4. Automatische Überprüfung von Prozessmodellen an-

hand von Complianceregeln zur Entwicklungszeit . . . 60

3.5. Zusammenfassung und Einordnung 62

4. Entwicklung von Prozessen mit regelkonformem Kontrollfluss 63

4.1. Beispielszenario: Blutspendeprozess des Roten Kreuz

Hong Kong . 64

4.2. Vorlagenbasierte Entwicklung regelkonformer Prozesse 70

4.2.1. Das abstrakte Prozessmodell eines Compliance-

templates . 72

4.2.2. Der Variabilitätsdeskriptor eines Compliance-

templates . 77

4.2.3. Der Compliancedeskriptor eines Compliance-

templates . 80

4.2.4. Vervollständigen von Compliancetemplates . . . 83

4.3. Compliancescope . 85

4.3.1. Definition Compliancescope aufbauend auf der

Definition eines Hypergraphen 86

4.3.2. Erweiterung von BPMN 1.0 mit Compliancescopes 87

4.4. Gegenüberstellung der Anwendungsgebiete von Com-

pliancetemplates und Compliancescopes 90

4.5. Verifizierungsalgorithmus für den Kontrollfluss eines

Prozesses . 91

4.5.1. Transformation von BPMN in Petrinetze 95

4.5.2. Repräsentation von Petrinetzen in PROMELA . 96

4.6. Zusammenfassung . 103

Inhaltsverzeichnis v

5. Entwicklung von Prozessen mit regelkonformem Datenfluss 107

5.1. Beispielprozess . 108

5.2. Compliancedomains . 110

5.2.1. Definition von Compliancedomains 114

5.3. Verifizierungsalgorithmus 117

5.3.1. Eigenschaften von Datenflusskonnektoren . . . 118

5.3.2. Eigenschaften von Compliancedomains 118

5.4. Datenflussanalyse im Feld der Compilerentwicklung . . 123

5.5. Kombination von datenfluss- mit kontrollflussbasierten

Complianceregeln . 125

5.5.1. Generische Compliancesprache für die Kombi-

nation von datenbasierten mit kontrollflussba-

sierten Complianceregeln 130

5.5.2. Formale Definition einer generischen Complian-

cesprache . 131

5.5.3. Beispiele . 133

5.5.4. Automatische Überprüfung von Ausdrücken in

einer generischen Compliancesprache, die aus

verschiedensprachigen Ausdrücken aufgebaut

sind . 136

5.6. Zusammenfassung . 141

6. Gemeinsame Erstellung regelkonformer Prozesse 145

6.1. Erstellung regelkonformer Prozesse unter Beteiligung

mehrerer Partner . 146

6.2. Werkzeuge für die Erstellung regelkonformer Prozesse 151

vi Inhaltsverzeichnis

6.3. Vervollständigungsebenen: Ein Konzept zur gemein-

schaftlichen Entwicklung regelkonformer Prozesse . . . 153

6.3.1. Verschachtelte Complianceregeln und Flexibilität 158

6.3.2. Erfüllbarkeit verschmolzener Regelsätze 161

6.3.3. Behandlung erfüllter Complianceregeln 162

6.3.4. Auftreten von Konflikten zwischen Compliance-

regeln . 164

6.4. Überprüfung von Complianceregeln von verschachtel-

ten Compliancescopes . 168

6.5. Zusammenfassung . 172

7. Prototyp 175

7.1. Funktionalität des Prototyps 175

7.2. Architektur des Prototyps 179

7.3. Compliancewizard . 185

7.4. Variabilitäts-Wizard . 187

7.5. Sidebar-Plugin . 188

7.6. Ableitungs-Plugin . 188

7.7. LTL-Plugin . 189

7.8. Complianceservlet . 191

7.9. LTL-Servlet . 191

7.10.Compliancechecker . 192

7.11.Performanzmessungen . 197

7.12.Zusammenfassung . 200

8. Zusammenfassung und Ausblick 201

8.1. Anwendungsgebiet der Dissertation 202

8.2. Ausblick . 205

Inhaltsverzeichnis vii

Literaturverzeichnis 209

Abbildungsverzeichnis 229

Tabellenverzeichnis 235

Anhang 235

A. Codebeispiele 237

B. Komplexe Prozessbeispiele 249

viii Inhaltsverzeichnis

ZUSAMMENFASSUNG

Regelkonformes Verhalten ist für viele Firmen und Konzerne ein wich-

tiger Punkt auf der Agenda hin zu einer nachhaltigen Wachstumsstra-

tegie. Durch den in den letzten Jahren gestiegenen regulatorischen

Druck und die zu erwartenden Strafen bei Verstößen gegen Regeln

und Gesetze, sind Firmen gezwungen, sich intensiver mit der Über-

wachung ihrer Geschäftsprozesse zu befassen. Die wiederkehrenden

Skandale um nicht regelkonformes Verhalten von Mitarbeitern und die

daraus resultierenden Konsequenzen unterstreichen die Richtigkeit

dieser Richtungswendung.

Viele Firmen arbeiten mit IT-unterstützten Geschäftsprozessen, in

deren automatische Ausführung Menschen eingebunden sind. Die-

se Geschäftsprozesse müssen bezüglich der Einhaltung neuer oder

sich ändernder Regeln und Gesetze auf dem neuesten Stand gehalten

werden. Den Aufwand für die Aktualisierung der Geschäftsprozesse

möglichst gering zu halten, ist eine Herausforderung, der die Unter-

nehmen gegenüber stehen.

1

Der Begriff Compliance drückt im Englischen das Einhalten von Re-

geln und Gesetzen aus. Im günstigsten Fall sollte Compliance schon

bei der Erstellung eines neuen Prozesses in Betracht gezogen werden,

da in dieser Phase Entwicklungsfehler mit dem geringsten Aufwand

behoben werden können. Durch die Zunahme der Regeln und Ge-

setze, die von Geschäftsprozessen eingehalten werden müssen, ist es

wichtig, die Anforderungen mit Bezug auf Compliance von den wirt-

schaftlichen Zielen der Prozessentwicklung zu trennen. Menschliche

Prozessentwickler sollen sich voll und ganz auf die Entwicklung der

Geschäftslogik eines Prozesses konzentrieren können. Die Überprü-

fung von Gesetzen und Regularien soll automatisiert durch Werkzeuge

geschehen, die weitgehend im Hintergrund arbeiten.

Graphische Entwicklungswerkzeuge müssen Mittel bereitstellen, um

Regularien und Gesetze zu verwalten und diese mit Geschäftsprozes-

sen zu verbinden. Es müssen dabei zwei Szenarien behandelt werden

können. Erstens müssen Regeln und Gesetze vor Beginn der Entwick-

lung eines neuen Prozesses festgelegt und automatisch überprüfbar

gemacht werden. Zweitens müssen bestehende Geschäftsprozesse mit

neuen Regeln und Gesetzen verknüpft werden können. Desweiteren

müssen von den Überprüfungswerkzeugen verschiedene Arten von

Regeln und Gesetzen verarbeitet werden können. Beispiele hierfür

sind Regeln, die auf den Datenfluss in Prozessen angewendet werden

oder Regeln, die auf den Kontrollfluss in Prozessen Anwendung finden.

Diese Arbeit erweitert eine bestehende Entwicklungsumgebung für

Geschäftsprozesse und implementiert die oben aufgeführten Anfor-

derungen. Bei der Entwicklung der Konzepte und deren Umsetzung

im Prototyp wurde darauf geachtet, dass diese Konzepte die Entwick-

lungsarbeit am Geschäftsprozess so wenig wie möglich behindern.

2

Die bestehende Entwicklungsumgebung für Geschäftsprozesse wur-

de intern umstrukturiert, so dass alle Änderungen am aktuell ange-

zeigten Prozessmodell auf Verstöße gegen Complianceregeln überprüft

werden können.

Die beiden grundlegenden Forschungsbeiträge dieser Arbeit sind das

Compliancetemplate und der Compliancescope. Das Compliancetem-

plate ist eine Prozessvorlage, die an bestimmten Stellen unvollständig

ist. Nur diese Stellen können von einem Prozessentwickler mit Prozess-

aktivitäten gefüllt werden, um einen vollständig spezifizierten Prozess

zu erhalten. Durch diese Vorgabe wird verhindert, dass Compliance-

regeln umgangen werden können.

Der Compliancescope ist ein Mittel, um Teile von bestehenden Pro-

zessmodellen mit Complianceregeln zu verknüpfen. Diese Teile von

Prozessmodellen werden automatisch überprüft, wenn eine Ände-

rung an ihnen vorgenommen wird. Die automatische Überprüfung

von Teilen von Prozessmodellen übernimmt das zur Entwicklung des

Prozesses verwendete graphische Entwicklungswerkzeug.

Aufbauend auf diesen beiden Konzepten beschreibt die vorliegende

Dissertation drei weitere Beiträge. Das Konzept der Compliancedomain

baut auf dem Konzept des Compliancescopes auf und erweitert die-

sen, um mit datenbasierten Complianceregeln arbeiten zu können.

Vervollständigungsebenen sind ein Konzept, verschiedenen Partnern die

Arbeit an einem, mit Complianceregeln versehenen Prozessmodell, zu

ermöglichen. Die Architektur des Prototyps dieser Dissertation zeigt,

wie diese neuen Konzepte umgesetzt und somit anwendbar gemacht

werden können.

3

ABSTRACT

Compliance is an important issue for many enterprises on their way

to a sustainable growth. Due to the increased regulatory pressure

stemming from more and more rules and regulations being set in place

and associated penalties, enterprises are more intensively forced to

cope with compliance issues concerning their business processes. The

returning scandals concerning non-compliant behaviour of employees

and the subsequent penalties stress the correctness of this turn.

Many enterprises are running IT-driven business processes. Humans

are integrated into the automatic execution of these business processes.

These business processes must be kept up to date in order to meet

changing regulations. Holding the effort on a reasonable level for

keeping business processes up to date is a challenge enterprises are

facing today.

Compliance should be considered from the beginning of the de-

velopment phase of a new business process. It takes less effort for

removing compliance issues in this phase. Due to the increased num-

5

ber of regulations it is important to separate compliance requirements

from business requirements during the development of a new business

process. Human business process developers should be able to fully

concentrate on the development of the business logic of a new business

process. The adherence to compliance rules should automatically be

guaranteed by graphical development tools. These tools should check

compliance rules in the background.

Graphical business process development tools have to provide means

to manage regulations and laws. These tools must also support the

linking of compliance rules to business processes. When working with

these tools two scenarios should be possible: First of all compliance

rules must be automatically verifiable from the beginning of the de-

velopment of a business process. Second, it must be possible to link

compliance rule to existing business processes. Apart from that the

tools used to automatically check compliance rules in the background

must be capable of dealing with different kinds of compliance rules.

Examples for different kinds of compliance rules are compliance ru-

les restricting the control flow of a business process in contrast to

compliance rules restricting the data flow of a business process.

This thesis extends an existing integrated development environment

(IDE) for business processes. It realises the requirements stated above.

One goal for the development of the prototypical implementation of

the new concepts is that the additions to the existing platform do not

hamper human developers during the creation phase of a business

process.

The existing IDE has been restructured from the ground up. With

these changes it is possible to introduce compliance checking mecha-

nisms which are capable of coping with different kinds of compliance

6

rules.

The two fundamental contributions of this thesis are the Compliance

Template and the Compliance Scope. The compliance template is a

process template which is kept incomplete in a number of places.

Only these places can be filled with business activities by human

business process developers in order to get a fully specified business

process. This development restriction prevents human business process

developers from circumventing compliance rules, which are already

present in the original compliance template.

The compliance scope is a means to attach compliance rules to

certain areas in a business process. A modification of the business

process within such an area makes it only necessary to automatically

check the area where the modification was made.

Based on the fundamental concepts this thesis describes three fur-

ther new concepts. The concept of a Compliance Domain is based on

the compliance scope. Compliance scopes are extended to be able to

work with data-based compliance rules. The concept of a refinement

layer allows for integrating different stake-holders during the deve-

lopment of a new business process. The architecture of the prototype

shows the practicability of the approach of this thesis.

7

DANKSAGUNGEN

Es ist geschafft! Nach Jahren der Arbeit, vielen Veröffentlichungen,

Vorträgen und Gesprächen liegt meine Dissertation vor Ihnen. Damit

ist es an der Zeit mich bei denen zu bedanken, die mich in dieser

spannenden Phase meines Lebens begleitet haben.

Ich möchte mich besonders bei Herrn Professor Frank Leymann für

das Vertrauen bedanken, das er in mich setzte, als ich mit meiner Dis-

sertation ganz am Anfang stand. Ohne dieses Vertrauen, die Anleitung

und die Motivation, die ich aus den Gesprächen mit ihm gewonnen

habe, hätte die vorliegende Arbeit nicht entstehen können.

Die Forschungsrichtung der vorliegenden Arbeit, sowie die Herange-

hensweise an die Forschungsfragen wurden durch viele Gespräche mit

Mitgliedern des Instituts für Architektur von Anwendungssystemen der

Universität Stuttgart positiv beeinflusst. Folgende Personen möchte ich

in diesem Zusammenhang besonders erwähnen. Tobias Anstett und

Ralph Retter für ihre Unterstützung bei der Suche nach der zünden-

den Idee und der Hilfe bei der Festlegung meiner Forschungsrichtung.

9

David Schumm als Ratgeber mit vielen hilfreichen Tipps im Bereich

Compliance. Tammo van Lessen, Jörg Nitzsche und Ralph Retter für

die Starthilfe beim Verfassen eines wissenschaftlichen Artikels und

dessen Veröffentlichung.

Besonders danken möchte ich auch Maike Buhr, Christoph Fehling,

Daniel Gerlach, Christoph Schleicher und David Schumm für ihren

großen Einsatz als Lektoren des vorliegenden Dokuments.

Weiterhin bedanke ich mich bei Tobias Binz, Uwe Breitenbücher,

Hanna Eberle, Christoph Fehling, Katharina Görlach, Dimka Karas-

toyanova, Oliver Kopp, Daniel Martin, Alexander Nowak, Sebastian

Wagner, Branimir Wetzstein, Matthias Wieland, Daniel Wutke und

Sema Zor für ihr Lob, ihre konstruktive Kritik, ihre Anregungen und

Ideen, die die vorliegende Arbeit positiv beeinflusst haben.

10

K
A

P
IT

E
L 1

EINLEITUNG

Noch vor einigen Jahren wenig beachtet, ist Compliance in den letzten

Jahren zu einem Schlagwort in den Führungsetagen der Unternehmen

avanciert [SALS10, HM10, KBE+10a, KBE+10b]. Unter dem Begriff

Compliance versteht die vorliegende Arbeit Regelkonformität von

Abläufen in Unternehmen. Im Folgenden wird der Begriff Compliance

mit dem Begriff Regelkonformität synonym verwendet.

Ausgehend von einer allgemeinen Betrachtung von Compliance

in Unternehmen wird das der vorliegenden Arbeit zugrunde liegen-

de konkrete Problem in diesem Kapitel näher umrissen. Einerseits

wird gezeigt, wie wichtig Compliance für Unternehmen und deren

Geschäftsprozesse ist. Andererseits wird geklärt, welchen Beitrag die

vorliegende Arbeit im Bereich der Entwicklung regelkonformer Ge-

schäftsprozesse leistet.

11

1.1. Bedeutung von Compliance für Unternehmen heute

Eines der wohl bekanntesten Regelwerke sind die Zehn Gebote der

Bibel [LB01]. Hier wurden schon vor Jahrtausenden Richtlinien defi-

niert, die für die damalige Gesellschaft bindend waren. Richtlinien sind

ein wichtiger Bestandteil des menschlichen Zusammenlebens. Dies

setzt sich auch bei der Arbeit in Unternehmen und den Beziehungen

zwischen Unternehmen fort.

Compliance wird in den nächsten Jahren für Unternehmen eine

immer größere Rolle spielen. Dies zeigt eine Studie von A.T. Kearney

[MPRS13]. In dieser Studie wurden 40 Complianceexperten führen-

der Unternehmen zum Thema Compliance befragt. Demnach sind die

immer weiter steigende Zahl von Unternehmen, die in bestimmten

Rechtssystemen tätig sind, die steigende Zahl der Vorschriften und die

persönliche Haftbarkeit des Topmanagements für Complianceverstöße,

Hauptgründe für die zunehmende Bedeutung von Compliance in Un-

ternehmen. Die Unternehmen erwarten vermehrt Complianceverstöße

in den Bereichen Produktsicherheit, Datensicherheit und Korruption.

Aus diesen Gründen wollen die meisten der befragten Unternehmen

ihre Compliancesysteme ausbauen.

Weiter zeigt die Studie auf, dass viele in Unternehmen ausgeführte

Prozesse im Hinblick auf Compliance neu aufgebaut werden müssen.

Die Integration von Compliance-Regeln in Prozesse sehen dabei 70%

der Manager als wesentlich an.

Die Möglichkeit der Verhängung hoher Strafen ist ein weiterer Grund

für Unternehmen sich mit Compliancefragen zu beschäftigen. Der Au-

tokonzern Daimler musste im April 2010 185 Millionen Dollar Strafe

zahlen aufgrund von Korruptionsvorwürfen. Siemens musste 800 Mil-

12 1 | Einleitung

lionen Dollar Strafe aufgrund von Bestechungsvorwürfen zahlen. Bei-

de Konzerne standen daraufhin unter der Aufsicht der Securities and

Exchange Commission (SEC), der US-Börsenaufsichtsbehörde. Unter

dieser Aufsicht mussten beide Unternehmen Auflagen der SEC erfüllen,

um von weiteren Geldstrafen unbehelligt zu bleiben [Haw11, Mat12].

Weiterhin zeigt die Einführung eines Vorstandsressorts für Compliance,

dass dieses Thema für Daimler langfristige Relevanz hat [PJ12]. Im

Jahr 2011 hatte ein Händler der Schweizer Großbank UBS 1,5 Milliar-

den Euro Verlust gemacht. Interne Kontrollsysteme hätten bei diesem

Betrag Alarm schlagen müssen.1 Weiterhin zahlte die UBS in einem

Vergleich mit den USA 780 Millionen Dollar Strafe, um einer Anklage

in einem Steuerhinterziehungsfall zu entgehen.2

Beispiele für Regelwerke, die von Firmen beachtet werden müssen,

sind der Sarbanes-Oxley Act (SOX) [Uni02] von 2002, der Gramm-

Leach-Bliley Act [Uni99] oder Basel II [Bas06] von 2006. Ähnliche

Regelwerke findet man in weiteren Ländern, wie zum Beispiel in China,

mit dem Gesetz der Chinesischen Volksrepublik zur Volksbank Chinas

(Englisch: The law of the people’s republic of China on the people’s

bank of China) [Chi03]. Weitere Regularien beziehen sich auf firmen-

interne Vereinbarungen. Beispielsweise kann eine Vereinbarung die

Förderung des Green Business Process Management (BPM) [NLS+11]

sein.

Im Folgenden werden Geschäftsprozesse der Kürze wegen als Pro-

zesse bezeichnet. Der Begriff Prozessmodell wird verwendet, um einen

1http://www.sueddeutsche.de/geld/untersuchung-zu-ubs-skandal-wie-ein-
haendler-milliarden-verzocken-konnte-1.1172370

2http://www.spiegel.de/wirtschaft/einigung-in-steuerhinterzieher-fall-ubs-
verraet-geheimdaten-hunderter-kunden-an-us-justiz-a-608573.html

1.1 | Bedeutung von Compliance für Unternehmen heute 13

mit einer graphischen oder textuellen Notation erstellten Prozess zu

beschreiben.

Diese Arbeit beschäftigt sich mit der Compliance von IT-unterstützten

Prozessen. Bei IT-unterstützten Prozessen sind für einen Teil der Aus-

führung eines Prozesses IT-Systeme verantwortlich. Für die Erstellung

von IT-unterstützten Prozessen werden spezielle Prozessbeschreibungs-

sprachen, wie zum Beispiel die Business Process Execution Langua-

ge (BPEL) [OAS07] eingesetzt. Schon bei der Erstellung von BPEL-

Prozessen sollte die Einhaltung von Complianceregeln gewährleistet

werden. Dies ist schon aus dem Grund notwendig, da die Beseitigung

eines Fehlverhaltens eines Prozesses in der Entwicklungsphase relativ

wenig Zeit und Mühe kostet im Vergleich zur Behebung eines Fehlers

in einem produktiv eingesetzten Prozess [Bro95].

Die fortschreitende Automatisierung ist eines der Mittel, derer sich

Unternehmen heutzutage bedienen, um wettbewerbsfähig zu bleiben

und Kunden und Aktionäre zufrieden zu stellen. Dies ist einer der Grün-

de für ein immer größer werdendes Interesse von Unternehmen am

Prozessmanagement [LR00]. Parallel dazu sehen sich Unternehmen

einer immer größer werdenden Zahl von regulatorischen Anforde-

rungen gegenüber gestellt. Diese Anforderungen sind in den meisten

Fällen in Gesetzestexten niedergeschrieben (siehe oben).

1.2. Zentrales Anliegen

Das Hauptanliegen der vorliegenden Arbeit besteht darin, den mensch-

lichen Prozessentwickler dabei zu unterstützen, Prozesse zu entwi-

ckeln, die bestimmten Complianceregeln genügen. Ein Mitarbeiter

soll zum Beispiel beim Einfügen einer Aktivität in einen Prozess dar-

14 1 | Einleitung

auf aufmerksam gemacht werden, wenn diese eine Complianceregel

verletzt. Die bisher in der Literatur aufgeführten Konzepte konzentrie-

ren sich darauf, die Grundlagen für die automatische Überprüfung

von Prozessen bereitzustellen. Die vorliegende Arbeit geht davon aus,

dass Complianceregeln mittels formaler Sprachen definiert und mit

speziellen Programmen überprüft werden können.

Darüber hinaus werden graphische Mittel vorgestellt, die den mensch-

lichen Prozessmodellierer bei der Erstellung regelkonformer Prozesse

leiten. Zum Beispiel werden Prozessmodellierer durch eine Prozessvor-

lage, oder die Definition von Bereichen in Prozessen, die mit bestimm-

ten Complianceregeln verknüpft sind, bei der Entwicklung geleitet.

Auf diesem neuen Ansatz bauen weitere Beiträge der vorliegenden

Dissertation auf.

Das Ziel, menschliche Prozessmodellierer bei der Entwicklung regel-

konformer Prozesse zu unterstützen, wird durch die Erstellung eines

Prototyps, der die in dieser Arbeit vorgestellten Konzepte implemen-

tiert, erreicht. Die folgenden Eigenschaften des Prototyps ermöglichen

dies:

• Der Prototyp zeigt dem Prozessmodellierer durch automatische

Überprüfung, ob Verstöße gegen Complianceregeln im Prozess

vorliegen. Er zeigt weiterhin den Ort, wo im Prozess diese Ver-

stöße vorliegen.

• Mit dem Prototyp kann eine Prozessvorlage geladen werden,

die die Grundlage für die Entwicklung eines regelkonformen

Prozesses darstellt.

• Der Prototyp lässt es zu, bestimmte Bereiche in einem Prozess

1.2 | Zentrales Anliegen 15

mit Complianceregeln zu versehen. Danach können nur noch

die Änderungen in diesen Bereichen vorgenommen werden, die

diese Complianceregeln nicht verletzen.

• Mit dem Prototyp ist es möglich, Complianceregeln zu definieren,

die aus atomaren Ausdrücken bestehen, die mit verschiedenen

formalen Sprachen beschrieben sein können.

Die Technik des Modelchecking wird verwendet, um die automati-

sche Überprüfung der Complianceregeln möglich zu machen. Model-

checking ist ein Werkzeug, das für die Umsetzung der neuen Konzepte

dieser Arbeit im Prototyp verwendet wird.

Neben anderen Beiträgen sind die folgenden Beiträge Schwerpunkte

dieser Arbeit:

• Das Compliancetemplate. Siehe Kapitel 4.2

• Der Compliancescope. Siehe Kapitel 4.3

• Die Compliancedomain. Siehe Kapitel 5.2

1.3. Problemstellung und Motivation

Prozesse sind die Grundlage der Zusammenarbeit innerhalb von Unter-

nehmen und zwischen Partnern. Für die Erstellung von Produkten sind

sie unverzichtbar. Complianceregeln, die auf Prozessen Anwendung

finden, decken somit einen wichtigen Teil aller möglichen Compliance-

regeln ab, die in Unternehmen vorstellbar sind. Die vorgestellten

neuen Konzepte im Bereich der Entwicklung regelkonformer Prozesse

sind somit ein wichtiger Schritt hin zur vollständigen Kontrolle von

16 1 | Einleitung

Unternehmensprozessen. In dieser Arbeit wird ein Prototyp vorgestellt,

der zeigt, wie Unternehmen in Zukunft Prozesse erstellen und diese

gleichzeitig regelkonform halten können.

Die Verwaltung, Anwendung und Durchsetzung von Compliance-

regeln ist für Organisationen ein komplexes Problem. Die Komplexität

dieses Problems wird durch die Zahl und den Umfang der relevanten

Gesetzestexte bestimmt. Wie oben erläutert, nimmt die Zahl der Ge-

setzestexte, die Organisationen befolgen müssen, seit Jahren stetig zu.

Auch der Grad der Automatisierung und der IT-unterstützten Prozesse

nimmt in Organisationen zu. Organisationen müssen bei Prüfungen

nachweisen, wie ihre Prozesse abgelaufen sind. Weiter müssen sie zei-

gen, dass sie ausreichende Maßnahmen ergriffen haben, um Verstöße

gegen Complianceregeln zu vermeiden.

Diese Arbeit ist durch mehrere Faktoren motiviert. Der erste Faktor

ist der wirtschaftliche Aspekt der Einhaltung von Complianceregeln.

Es können hohe Strafen oder hohe Verluste auf die Unternehmen

zukommen, wenn sie Complianceregeln verletzen.

Auch die Entlastung des menschlichen Prozessmodellierers ist eine

Motivation dieser Arbeit. Der Prozessmodellierer soll sich bei der Er-

stellung von regelkonformen Prozessen auf das eigentliche Ziel der

Entwicklung des Prozesses konzentrieren. Die Einhaltung bestimmter

Regeln soll während der Entwicklung eines Prozesses für den Men-

schen zweitrangig sein.

Bestehende Ansätze zur Überprüfung der Compliance eines Pro-

zesses bauen darauf auf, das gesamte Prozessmodell zu überprüfen

[ADW08], das bis zu diesem Zeitpunkt erstellt wurde. Diese Überprü-

fung des gesamten Prozessmodells kann jedoch überflüssig sein, wenn

nur eine unwesentliche Änderung an diesem Prozessmodell vorgenom-

1.3 | Problemstellung und Motivation 17

men wurde. Es sollte demnach möglich sein, nur die geänderten Teile

eines Prozesses automatisch zu überprüfen und somit Zeit und Kos-

ten zu sparen. Dieses Ziel verfolgen die in dieser Arbeit vorgestellten

Ansätze für die Überprüfung von Prozessen.

Im Gegensatz zur Ausführungsphase gibt es für die Phase der Er-

stellung eines Prozesses nur unzureichende Werkzeuge und Konzepte,

um Verstöße gegen Complianceregeln automatisch zu erkennen. Der

wissenschaftliche Beitrag dieser Arbeit besteht aus zwei Komponenten.

1. Der Präsentation neuer Konzepte zur Verwaltung und Überprü-

fung von Complianceregeln zur Entwicklungszeit eines Prozes-

ses.

2. Der Architektur und Implementierung eines Prototyps, der diese

Konzepte umsetzt.

Anforderungen an diesen Prototyp sind:

1. Die Möglichkeit der Verknüpfung bestimmter Bereiche in einem

Prozess mit Complianceregeln.

2. Der Prototyp unterstützt die Beteiligung mehrerer Partner an

der Erstellung eines Prozesses, ohne sich gegenseitig zu be-

hindern. Insbesondere soll es möglich sein, dass verschiedene

Partner bei der Erstellung des Prozesses neue Complianceregeln

in das Prozessmodell integrieren. Bei Unvereinbarkeit neuer

Complianceregeln mit bereits im Prozess vorhandenen, soll der

menschliche Prozessmodellierer informiert werden.

3. Complianceregeln sollen in verschiedenen Sprachen beschreib-

bar sein. Diese Sprachen sollen es zumindest unterstützen, Compliance-

18 1 | Einleitung

regeln zu schreiben, die den Kontrollfluss und den Datenfluss in

einem Prozess einschränken.

4. Die Möglichkeit zur automatischen Überprüfung von Compliance-

regeln, die mit Prozessen verknüpft sind.

5. Der Prototyp soll nach einer Überprüfung von Complianceregeln

bei einer Verletzung einer Complianceregel anzeigen, durch

welche Konstrukte im Prozessmodell diese Verletzung zustande

gekommen ist.

Der Prototyp erweitert eine bestehende Umgebung zur Erstellung

von Prozessen mit Funktionalität, um Complianceregeln zu verwalten,

mit Prozessen zu verknüpfen und automatisch zu überprüfen.

Um die Erstellung regelkonformer Prozesse optimal zu unterstützen,

benötigt man Werkzeuge, die in verschiedenen Entwicklungssituatio-

nen und im Umgang mit verschiedenartigen Complianceregeln Lösun-

gen bieten. Die in dieser Arbeit behandelten Entwicklungssituationen

sind die Neuentwicklung von Prozessen und die Änderung bestehender

Prozesse.

Die Neuentwicklung von Prozessen stand bislang nicht im wissen-

schaftlichen Fokus. Ein Konzept in diesem Bereich muss die Festlegung

der Complianceregeln für einen neu zu entwickelnden Prozess vor

der eigentlichen Entwicklung des Prozesses ermöglichen. Weiter muss

bereits zu Beginn der Prozessentwicklung sichergestellt werden, dass

Überprüfungsmechanismen für die Einhaltung von Complianceregeln

greifen. Diese Überprüfungsmechanismen leiten den Prozessmodellie-

rer während der Modellierung hin zu einem regelkonformen Prozess.

Ein anderer Fall, für den in dieser Arbeit ein neues Konzept prä-

1.3 | Problemstellung und Motivation 19

sentiert wird, ist die Änderung existierender Prozesse, die nicht mit

Complianceregeln versehen sind. Überprüfungsmechanismen, die in

graphische Entwicklungswerkzeuge eingebaut sind, greifen hier nicht.

Für solche existierenden Prozesse zeigt diese Arbeit eine Lösung, mit

der Prozessmodelle mit Complianceregeln verknüpft und automatisch

überprüft werden.

Eine weiteres Ziel dieser Dissertation ist die Bereitstellung von Kon-

zepten für die abteilungsübergreifende Entwicklung regelkonformer

Prozesse. Teammitglieder sollen zum Beispiel bei der Entwicklung von

Prozessen über Landesgrenzen hinweg miteinander arbeiten können.

Es wird daher ein Konzept und eine Implementierung benötigt, die es

möglich machen, dass Complianceregeln an verschiedenen Stellen im

Prozessmodell und von verschiedenen Teams im Entwicklungsprozess

eingeführt werden können.

Diese Anforderungen sollen mit unterschiedlichen Arten von Compliance-

regeln zusammen arbeiten. Es ist daher notwendig, dass Compliance-

regeln, die in verschiedenen Sprachen geschrieben worden sind, ver-

bunden werden können. Weiterhin sollen die oben geforderten Kon-

zepte und Algorithmen mit zukünftigen Sprachen zur Definition von

Complianceregeln zusammen arbeiten können.

1.4. Forschungsbeiträge der Arbeit

Der wissenschaftliche Beitrag dieser Arbeit gliedert sich in einen theo-

retischen und einen praktischen Teil. Im theoretischen Teil werden

Konzepte dargestellt, die Lösungen für die Entwicklung regelkonfor-

mer Prozesse repräsentieren. Außerdem zeigen diese Konzepte, wie

menschliche Prozessmodellierer bei der Entwicklung regelkonformer

20 1 | Einleitung

Prozesse unterstützt werden können.

Im praktischen Teil wird gezeigt, wie die theoretischen Konzepte in

einem Prototyp zusammen arbeiten.

Im Folgenden werden die Forschungsbeiträge dieser Arbeit präsen-

tiert.

1.4.1. Erweiterung eines Variabilitätskonzepts und eines

Prozessmetamodells für die Unterstützung der Entwicklung

regelkonformer Prozesse

Das in [ML08, Mie08] vorgestellte und in Abschnitt 4 beschriebene

Variabilitätskonzept macht es möglich, Variabilitätspunkte in belie-

bigen Dokumenten zu definieren. Diese Variabilitätspunkte können

dann anhand verschiedener Kriterien zeitlich variabel gefüllt werden.

Ein Beispiel für einen Einsatzbereich dieses Variabilitätskonzepts sind

BPEL-Prozesse, die zur Entwicklungszeit mit Variabilitätspunkten ver-

sehen werden. Zur Deploymentzeit werden diese Variabilitätspunkte

gefüllt. So wird der BPEL Prozess lauffähig gemacht.

In dieser Arbeit wird dieses Konzept erweitert und für die Bedürfnis-

se der Anwendung von Complianceregeln auf einen Prozess angepasst.

Der Name dieses neuen Konzepts ist Compliancedeskriptor. Hierzu

wird eine Prozessvorlage mit Variabilitätspunkten versehen, die zur

Entwicklungszeit von einem menschlichen Prozessmodellierer mit Ak-

tivitäten gefüllt wird. Der Compliancedeskriptor wird dazu verwendet,

die Menge der Aktivitäten einzuschränken, mit der die Variabilitäts-

punkte befüllt werden können. Diese Einschränkung wird mittels

formaler Complianceregeln definiert, die im Compliancedeskriptor

enthalten sind. Ein graphisches Entwicklungswerkzeug ist somit in der

1.4 | Forschungsbeiträge der Arbeit 21

Lage bei einer Modifikation eines Prozessmodells Complianceregeln

auszuwerten und bei einer Verletzung den Prozessmodellierer zu be-

nachrichtigen. Dieser Beitrag erfüllt durch die Umsetzung im Prototyp

die Anforderung 1.

Im Folgenden werden die in [ML08] eingeführten Variabilitätspunk-

te Complianceregionen genannt. Diese Bezeichnung ist sinnvoll, da in

dieser Arbeit nur Variabilitätspunkte verwendet werden, die sich in

Prozessmodellen befinden und mit Complianceregeln versehen sind.

Weiterhin wird mit diesem Namen auf dem in [EUL09] von Eberle

et al. vorgestellten Konzept einer Region aufgebaut, welches nicht

spezifizierte Bereiche in einem Prozessmodell definiert.

Die Kombination eines Compliancedeskriptors, eines Variabilitätsde-

skriptors und einer mit Complianceregionen versehenen Prozessvorla-

ge wird Compliancetemplate genannt.

Die Konzepte dieses Beitrags der Dissertation wurden zum ersten

Mal in [SALM09] vorgestellt.

1.4.2. Algorithmus zur Überprüfung des Kontrollflusses von

Teilbereichen von Prozessen

In dieser Arbeit wird ein neues Konzept zur Annotation von Teil-

prozessen mit Complianceregeln, der Compliancescope [SWLS10],

präsentiert. Darauf aufbauend zeigt Abschnitt 4.5 einen Algorithmus,

der es mit der Technik des Modelcheckings ermöglicht, die annotierten

Teilprozesse auf Verstöße gegen Complianceregeln zu untersuchen.

Die oben vorgestellte Erweiterung eines Variabilitätskonzepts zur

Definition von Complianceanforderungen auf Prozessmodellen kann

im Wesentlichen auf neu erstellte Prozessmodelle angewendet wer-

22 1 | Einleitung

den. Jedoch muss auch ein Mittel bereitgestellt werden, um existie-

rende Prozessmodelle mit Complianceregeln zu versehen und somit

Modifikationen automatisch überprüfbar zu machen. Ein solches Kon-

zept, das zur Annotation von Prozessmodellen mit Complianceregeln

dient, ist das Konzept des Compliancescopes. Mit Compliancescopes

können Bereiche eines Prozessmodells definiert werden, für die be-

stimmte Complianceregeln gelten. Die oben erwähnten Compliance-

deskriptoren werden für die Verknüpfung von Compliancescopes mit

Complianceregeln verwendet. Werden die in einem Compliancescope

enthaltenen Aktivitäten von einem Prozessmodellierer geändert, müs-

sen nur die mit dem entsprechenden Compliancescope verknüpften

Complianceregeln überprüft werden und nicht das gesamte Prozess-

modell. Compliancescopes erfüllen durch die Umsetzung im Prototyp

die Anforderung 1.

Zur Verifikation von Modifikationen an Compliancetemplates und

Compliancescopes werden Modelchecker verwendet. Hierbei wird der

zu verifizierende Teil eines Prozessmodells in ein Modell in der Einga-

besprache eines Modelcheckers transformiert. Die Antwort des Model-

checkers dient dazu, den menschlichen Prozessmodellierer darüber zu

unterrichten, ob die aktuelle Modifikation Complianceregeln verletzt

hat. Die Umsetzung der automatischen Überprüfung von Compliance-

regeln erfüllt die Anforderung 4.

1.4.3. Algorithmus zur Überprüfung des Datenflusses in

Prozessmodellen

Die in den vorhergehenden Abschnitten vorgestellten Konzepte zur

Annotation und Verifikation von Complianceregeln auf Prozessmo-

1.4 | Forschungsbeiträge der Arbeit 23

dellen, beschäftigen sich ausschließlich mit dem Kontrollfluss eines

Prozessmodells. Das heißt, es können hiermit Eigenschaften überprüft

werden, die zum Beispiel die Abfolge bestimmter Aktivitäten betreffen.

Die automatische Untersuchung des Datenflusses ist ein weiterer

wissenschaftlicher Beitrag dieser Arbeit, der in Abschnitt 5.3 beschrie-

ben wird. Hierfür wurde das Konzept eines Compliancescopes erwei-

tert und verallgemeinert. Diese Erweiterung wird Compliancedomain

[SFG+11] genannt.

Compliancedomains dienen dazu, den Datenfluss in einem Prozess-

modell einzuschränken. Wie mit Compliancescopes können auch mit

Compliancedomains Bereiche in einem Prozessmodell definiert wer-

den, in denen bestimmte Daten verarbeitet werden können, andere

aber nicht. Im Gegensatz zu Compliancescopes ist der Anwendungsbe-

reich von Compliancedomains viel weiter gefasst. Die mit Complian-

cedomains in Bereiche eingeteilten Prozessmodelle können anhand

dieser Bereiche aufgespalten und auf verschiedenen Plattformen zum

Laufen gebracht werden. Diese Plattformen können zum Beispiel das

private Rechenzentrum einer Organisation oder eine Public-Cloud

[MG09] sein. In diesem Beispiel können dann vertrauliche Daten des

Prozesses im privaten Rechenzentrum der Organisation verarbeitet

werden, während andere Operationen in der Public-Cloud ausgeführt

werden. Das heißt, die Aktivitäten einer Compliancedomain, die die

Verarbeitung von nicht sensiblen Daten erlaubt, können in einer Public-

Cloud Infrastruktur ausgeführt werden, während andere Aktivitäten

in einem privaten Rechenzentrum ausgeführt werden müssen. Com-

pliancedomains erfüllen durch die Umsetzung im Prototyp die Anfor-

derung 3 der Möglichkeit zur Definition von Complianceregeln, die

den Datenfluss in einem Prozess einschränken.

24 1 | Einleitung

1.4.4. Ein Mechanismus zur Unterstützung der Zusammenarbeit bei

der Erstellung regelkonformer Prozesse

Bei der Erstellung von Prozessmodellen in Organisationen sind meist

mehrere Personen in verschiedenen Abteilungen beteiligt. Diesen Per-

sonen kommen unterschiedliche Aufgaben bei der Erstellung eines

Prozesses zu. Neben der Rolle eines Prozessmodellierers gibt es zum

Beispiel auch Complianceexperten oder Sicherheitsexperten, die ihren

Beitrag zur Erstellung eines Prozessmodells leisten.

Ein Konzept zur Koordination dieser, an der Erstellung eines Prozess-

modells beteiligten Personen mit verschiedenen Rollen, stellt einen

wissenschaftlichen Beitrag dieser Arbeit dar, der in Kapitel 6 beschrie-

ben wird. Dieses Konzept heißt Vervollständigungsebene [SALS10]. Das

Konzept einer Vervollständigungsebene dient dazu, Compliancetem-

plates schichtweise zu vervollständigen. Als erster Schritt wird ein

Compliancetemplate von Personen mit einer bestimmten Rolle durch

das Einfügen neuer Aktivitäten in freie Stellen des Prozesses, soge-

nannte Complianceregionen, verfeinert. Diese Aktivitäten können auch

wieder Complianceregionen sein. Werden weitere Complianceregionen

in vorhandene Complianceregionen eingefügt, so öffnet dies eine wei-

tere Vervollständigungsebene. Das so veränderte Compliancetemplate

wird an eine andere Personengruppe oder Abteilung einer Organisa-

tion weitergegeben und vervollständigt. Mehrere Personen können

so in die schichtweise Entwicklung eines Prozesses eingebunden wer-

den, indem sie Compliancetemplates zu einem syntaktisch korrekten

Prozess vervollständigen. In jeder Modellierungsschicht können von

unterschiedlichen Personen mit unterschiedlichen Anforderungen und

Qualifikationen Änderungen vorgenommen werden. Das Konzept der

1.4 | Forschungsbeiträge der Arbeit 25

Vervollständigungsebenen erfüllt Anforderung 2 durch die Umsetzung

im Prototyp dieser Dissertation.

1.4.5. Architektur eines Prototyps zur Evaluierung der vorgestellten

Konzepte und Algorithmen

Die in den vorhergehenden Abschnitten vorgestellten wissenschaft-

lichen Beiträge sind prototypisch umgesetzt. Die Architektur dieses

Prototyps stellt einen wesentlichen wissenschaftlichen Beitrag dieser

Arbeit dar. Die Architektur und die Entscheidungswege, die zu ihr führ-

ten, sind in einem eigenen Kapitel beschrieben (siehe Kapitel 7). Dieses

Kapitel zeigt die Komplexität der Lösung sowie die erstellten Software-

komponenten, um die neu entwickelten Konzepte dieser Dissertation

zu implementieren. Ferner zeigt es die Lösungen für Probleme, die bei

der Entwicklung und Integration der Softwarekomponenten auftraten.

Der Prototyp verbindet die neuen Konzepte dieser Dissertation und

zeigt wie diese zusammen spielen, um eine vollständige Lösung für

die regelkonforme Prozessentwicklung zu bilden. Der Prototyp ba-

siert auf dem web-basierten BPMN Editor Oryx [DOW08]. Außerdem

setzt der Prototyp die Anforderung 5 um, indem er dem Benutzer

nach einer Überprüfung bei Verletzung einer Complianceregel an-

zeigt, in welchem Bereich des Prozesses die Complianceregel verletzt

wurde. Weiterhin wird der Ausführungspfad, der zur Verletzung der

Complianceregel führt, angezeigt.

26 1 | Einleitung

1.5. Definition des Arbeitsbereichs

Diese Arbeit präsentiert Konzepte für die automatische Überprüfung

von Prozessmodellen. Diese Konzepte greifen in der ersten, der Ent-

wicklungsphase, des BPM-Lebenszyklus. Prozessmodelle werden mit-

tels graphischer Werkzeuge entwickelt. Die neuen Konzepte können

in graphische Entwicklungswerkzeuge eingebaut werden. Mit diesen

Konzepten ist es möglich, jede Veränderung an einem Prozessmodell

zu überprüfen. Ein Prozessmodellierer kann darauf aufmerksam ge-

macht werden, wenn seine Änderung an einem Prozessmodell eine

Complianceregel verletzt.

Die Übersetzung von Gesetzestexten in formale Ausdrücke ist ei-

ne Aufgabe, die nicht in dieser Dissertation bearbeitet wird. Diese

Arbeit bietet eine Plattform, die bei angemessener Verwendung, die

Entwicklung regelkonformer Prozesse unterstützt. Die Plattform wird

angemessen verwendet, wenn sie so eingesetzt wird, dass menschliche

Prozessmodellierer so wenig wie möglich daran gehindert werden, ihr

Ziel der Erstellung neuer Prozesse zu verfolgen.

Die wissenschaftlichen Beiträge dieser Arbeit sind im Bereich der

graphischen Modellierung von Prozessen und der Architektur des Pro-

totyps angesiedelt. Um die in dieser Arbeit neu vorgestellten Konzepte

im Prototyp zu realisieren, wurden Arbeiten aus dem Bereich des

Modelchecking und der Petrinetze verwendet. Die Verwendung dieser

Arbeiten ermöglicht es, Prozessmodelle automatisch im Prototyp zu

überprüfen.

Complianceregeln können ein sehr weites Feld von Eigenschaften ab-

decken, die für einen Prozess gelten müssen. Denkbare Eigenschaften

sind zum Beispiel der Energieverbrauch eines Prozesses zur Laufzeit,

1.5 | Definition des Arbeitsbereichs 27

der zur Entwicklungszeit berechnet werden könnte oder eine Ober-

grenze für die Antwortzeit, die ein Prozess zur Laufzeit nicht über-

schreiten darf. Die im Folgenden vorgestellten Lösungen beziehen sich

jedoch auf den Kontrollfluss und den Datenfluss eines Prozesses. Das

Ziel, das mit dieser Einschränkung erreicht wird, ist, eine umfassende

Lösung zu präsentieren, die für diese Arten von Prozesseigenschaften

angewendet werden kann.

Die Eckpunkte dieser Arbeit werden in der folgenden Liste vorge-

stellt:

• Die verwendeten Complianceregeln wurden nicht aus Gesetzes-

texten abgeleitet. Jedoch beruhen die Beispiele dieser Arbeit

auf Beispielen aus der Literatur und Erfahrungen, die in den

EU-Projekten MASTER1 und COMPAS2 gemacht wurden.

• Der durchweg in dieser Arbeit verwendete Beispielprozess stammt

aus der Literatur [TLF+10]. Er ist ein Modell eines real existie-

renden Prozesses in einem Krankenhaus.

Zusammenfassend zeigt diese Arbeit erste Schritte in Richtung eines

Werkzeugs für die regelkonforme Entwicklung von Prozessen. Die

Beiträge liegen auf der Ebene der graphischen Prozessentwicklung.

Sie reichern Prozesse mit Informationen an, die von Werkzeugen

verwendet werden, um sie zur Entwicklungszeit auf Verstöße gegen

Complianceregeln zu untersuchen.

In der Arbeit sind alle graphisch dargestellten Prozesse mit der Pro-

zessbeschreibungssprache Business Process Model and Notation 1.0

1http://www.master-fp7.eu
2http://compas-ict.eu

28 1 | Einleitung

(BPMN 1.0) [Bus04] erstellt. Da die Ausführungssemantik von BPMN

1.0 in der Spezifikation nicht formal beschrieben ist, wird die Ausfüh-

rungssemantik von BPMN 2.0 [Obj11] verwendet. Weiterhin wird der

Erweiterungsmechanismus von BPMN 2.0 verwendet. BPMN ist ein

weit verbreiteter Standard zur Beschreibung von Prozessmodellen, der

in dieser Arbeit im Gegensatz zu nicht standardisierten Prozessnota-

tionen verwendet wird, um die Möglichkeit von Fehlinterpretationen

von Prozessen gering zu halten.

Die in dieser Arbeit vorgestellten Techniken und Lösungsansätze

sind jedoch erweiterbar und bilden daher die Grundlage für die Aus-

weitung des Einsatzgebiets.

1.6. Aufbau der Arbeit

Diese Dissertation ist wie folgt gegliedert. Kapitel 2 präsentiert die

Technologien und Konzepte auf denen diese Arbeit aufbaut. Es legt

die Grundlagen, die zum Verständnis der Arbeit notwendig sind. Kapi-

tel 3 erörtert verwandte Arbeiten für den Bereich der regelkonformen

Prozessentwicklung. Die automatische Überprüfung des Kontrollflus-

ses von Prozessen zur Entwicklungszeit ist ein Thema, das in Kapi-

tel 4 bearbeitet wird. Hier werden zwei Konzepte vorgestellt, die

menschlichen Prozessmodellierern dabei helfen sollen, einen Prozess

mit regelkonformem Kontrollfluss zu erstellen. In Kapitel 5 werden

Konzepte präsentiert, die den Datenfluss eines Prozesses zur Entwick-

lungszeit automatisch überprüfen. Die Kombination von kontrollfluss-

mit datenflussbasierten Complianceregeln ist Thema des Kapitels 5.5.

Ein Mechanismus zur Erstellung regelkonformer Prozesse unter Ein-

bindung mehrerer Partner stellt Kapitel 6 vor. Die Architektur und

1.6 | Aufbau der Arbeit 29

Implementierung des Prototyps wird in Kapitel 7 erläutert. Kapitel 8

fasst die in dieser Arbeit gezeigten Erkenntnisse zusammen und gibt

einen Ausblick auf mögliche darauf aufbauende Arbeiten.

30 1 | Einleitung

K
A

P
IT

E
L 2

GRUNDLAGEN DER

ENTWICKLUNG

REGELKONFORMER PROZESSE

2.1. Bedeutung des Begriffs Compliance im Kontext dieser
Arbeit

Der Begriff Compliance wird in dieser Arbeit mit dem deutschen Begriff

Regelkonformität gleichgesetzt. Das Thema Compliance von Prozessen

beschäftigt sich mit der Einhaltung von Richtlinien und Regeln, die

auf Prozesse Anwendung finden.

Compliance ist ein Thema, das Firmen heutzutage immer mehr

bewegt und auch in Zusammenhang mit Geschäftsprozessen in Zu-

kunft bewegen wird [MPRS13, SGN07, KSMP07, LSG08]. Gerade im

31

Bereich des Prozessmanagement ist Compliance somit unverzichtbar.

Ein Beispiel hierfür ist die weltweite Finanzkrise, die damit begann,

dass 2007 die US Immobilienblase platzte. Viele Banken hatten an

Privatpersonen Kredite vergeben, die später von den Kreditnehmern

nicht zurückbezahlt werden konnten.

32 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Regeln können aus verschiedenen Quellen stammen. Folgende drei

Quellen sind relevant: Gesetzestexte, Regeln, die durch Werte der

Gesellschaft geprägt sind und firmeninterne Regeln. Beispiele für wich-

tige Gesetze im Bereich Business Process Management sind Basel II

[Bas06] und der Sarbanes-Oxley Act (SOX) [Uni02].

Diese Arbeit leitet keine auf Prozesse anwendbare Complianceregeln

aus Gesetzestexten ab. Die in den folgenden Kapiteln gezeigten Regeln

sind fiktiv. Sie leiten sich aus den Erfahrungen des Autors mit wissen-

schaftlichen Projekten aus dem Bereich Compliance von Prozessen

ab.

2.2. Business Process Management

Beginnend mit der Entwicklungsphase im Geschäfsprozesslebenszy-

klus beschäftigt sich das Business Process Management mit allen Tätig-

keiten, die bei der Arbeit mit Geschäftsprozessen anfallen.

2.3. Business Process Model and Notation 1.0 (BPMN 1.0)

BPMN wurde in der Version 1.0 als eine graphische Notation zur Be-

schreibung von Geschäftsprozessen entworfen. Sie besteht aus einer

Vielzahl graphischer Symbole, von denen die wichtigsten in den fol-

genden Abschnitten vorgestellt werden. Im Januar 2011 wurde die

Version 2.0 von BPMN fertiggestellt. Zu den wichtigsten Neuerun-

gen von BPMN 2.0 zählen die vollständige Spezifikation der Ausfüh-

rungssemantik und eine Beschreibung der Verarbeitung von Daten in

BPMN-Prozessen. Die Beschreibung der Ausführungssemantik und der

Datenflusssemantik von BPMN 2.0-Prozessen ist für diese Arbeit grund-

2.3 | Business Process Model and Notation 1.0 (BPMN 1.0) 33

legend, da Complianceregeln den Kontrollfluss und den Datenfluss

in einem Prozess betreffen. Ohne die Einführung dieser Semantiken

hätten automatische Prüfverfahren keine Grundlage zur Überprüfung

dieser Complianceregeln. In dieser Arbeit wird aus Gründen der Kom-

plexitätsreduktion BPMN 1.0 zusammen mit der Ausführungssemantik

und dem Erweiterungsmechanismus von BPMN 2.0 verwendet, da

in BPMN 2.0 unter anderem auch einige neue Symbole eingeführt

wurden, die für die Ergebnisse der vorliegenden Arbeit nicht ausschlag-

gebend sind.

Im Folgenden werden die wichtigsten graphischen Elemente von

BPMN 1.0 erläutert. Die Auswahl der dargestellten BPMN Elemente

erfolgte im Hinblick auf die Verwendung im Rahmen der vorliegenden

Arbeit.

2.3.1. Tasks

Tasks werden in BPMN 1.0 als Rechtecke mit abgerundeten Ecken

dargestellt. Die verschiedenen Tasks unterscheiden sich durch die

Linienbreite des Rechtecks und durch das im Rechteck enthaltene

Piktogramm. Tasks können als einzelne auszuführende Schritte in

einem Prozess angesehen werden. Abbildung 2.1 zeigt zwei Tasks.

2.3.2. Kontrollfluss

Der Begriff Kontrollfluss bezeichnet im Zusammenhang mit Geschäftspro-

zessen die Einschränkung der möglichen Ausführungsabfolgen von

Aktivitäten. Realisiert wird dies zum Beispiel in BPMN 1.0 mit Hilfe

von Kontrollflusskonnektoren (siehe Abbildung 2.1). Dies sind Pfei-

le, die die Aktivitäten eines Prozessmodells verbinden und so eine

34 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Abbildung 2.1.: Einschränkung der Möglichkeiten der Abfolge von
Aktivitäten mit Hilfe eines Kontrollflusskonnektors

Ausführungsreihenfolge vorgeben.

2.3.3. Datenfluss

Für die Ausführung einer Aktivität werden Eingabedaten benötigt.

Weiterhin wird von einer Aktivität in der Regel ein Resultat in Form

von Ausgabedaten erzeugt. Diese Ausgabedaten werden mittels Daten-

konnektoren zum Beispiel zu weiteren Aktivitäten oder Datenobjekten

weitergeleitet. Die so entstehende Bewegung von Daten in einem

Prozess wird als Datenfluss des Prozesses bezeichnet.

2.3.4. Ereignisse

Ereignisse können in Prozessmodellen verwendet werden, um be-

stimmte Situationen, die zur Ausführungszeit auftreten können, zu

modellieren. Es gibt drei Arten von Ereignissen in BPMN 1.0: Starter-

eignisse, Intermediate-Ereignisse und Endereignisse. Abbildung 2.2

zeigt beispielhaft ein Startereignis. Alle Ereignisse in BPMN sind durch

eine Kreisform gekennzeichnet. Ereignisse unterscheiden sich durch

die Linienbreite des Kreises und durch das im Kreis enthaltene Pikto-

gramm. Das Startereignis enthält kein Piktogramm. Es zeigt an, wo

ein Prozess gestartet werden kann.

2.3 | Business Process Model and Notation 1.0 (BPMN 1.0) 35

Abbildung 2.2.: Beispiel für ein Ereignis in BPMN: Startereignis

Abbildung 2.3.: Und-Gateway links; Exklusiv-oder-Gateway rechts

2.3.5. Gateways

Gateways werden in BPMN 1.0 dazu verwendet, Verzweigungen in Pro-

zessmodellen zu modellieren. Abbildung 2.3 zeigt zwei der wichtigsten

Gateways: das Und-Gateway (links) und das Exklusiv-oder-Gateway

(rechts).

Mit dem Und-Gateway kann der Kontrollfluss in einem Prozessmo-

dell in zwei oder mehrere Zweige aufgeteilt werden, die parallel ausge-

führt werden. Mit dem Exklusiv-oder-Gateway kann der Kontrollfluss

im Prozessmodell anhand von Bedingungen aufgeteilt werden. Die

ausgehenden Kontrollflusskonnektoren eines Exklusiv-oder-Gateways

sind jeweils mit Bedingungen verknüpft. Ist eine solche Bedingung

wahr, so wird der Prozess in dem Zweig weiter ausgeführt, mit dem

die Bedingung verknüpft ist.

36 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Abbildung 2.4.: Datenobjekt

2.3.6. Datenobjekte

Datenobjekte dienen der graphischen Abbildung des Datenflusses in

einem Prozessmodell. Abbildung 2.4 zeigt zwei miteinander durch

einen Kontrollflusskonnektor verbundene Tasks. Weiterhin zeigt die

Abbildung den Datenfluss, der durch die mit dem Datenobjekt und den

Tasks verbundenen Datenassoziationen (gestrichelte Pfeile) dargestellt

ist.

2.4. Oryx

Oryx [DOW08] ist ein webbasierter, graphischer BPMN-Editor. Er wird

in dieser Arbeit als Grundlage für die prototypische Implementierung

der neuen Konzepte verwendet. Oryx wurde am Hasso-Plattner-Institut

entwickelt und ist in zwei Hauptkomponenten aufgeteilt. Das Frontend

ist eine hauptsächlich in JavaScript entwickelte Komponente, die die

graphische Entwicklungsumgebung für den Benutzer bereitstellt. Sie

wird in einem Browser ausgeführt. Das Backend ist hauptsächlich

in Java geschrieben und bietet unter anderem Funktionalität zum

Speichern und Laden von Prozessmodellen.

2.4 | Oryx 37

2.5. Lineare Temporale Logik

Das Konzept der Linearen Temporalen Logik [Pnu77, Pnu86] (LTL)

wurde Anfang der 1980er Jahre von Armir Pnueli in die Informatik

eingeführt. Anwendungsgebiete für LTL sind Zustandssysteme wie zum

Beispiel Betriebssysteme oder Protokolle. Zustandssysteme generieren

bei der Ausführung Abfolgen von Zuständen, die sie erreicht haben.

Mit LTL ist es möglich diese Abfolgen von Zuständen zu beschreiben.

Heute wird die temporale Logik in vielen Anwendungsgebieten

eingesetzt. Ein Beispiel ist das Feld der Prozessverwaltung.

Mit Linearer Temporaler Logik wird eine Sprache bezeichnet, in

der ausschließlich mit diskreten Zeitschritten gearbeitet wird. Das

bedeutet, dass zwischen zwei aufeinander folgenden Zuständen eines

reakiven Systems immer ein Zeitintervall der Länge eins liegt.

Mit V als eine Menge aussagenlogischer Konstanten ist die Sprache

LLT L(V) der Linearen Temporalen Aussagenlogik wie folgt definiert:

Das Alphabet von LLT L(V) besteht aus. . .

• allen aussagenlogischen Konstanten von V

• und den Zeichen false | � | 3 |# | U | W |→ | (|).

Weiter definieren wir:

• Jede aussagenlogische Konstante Vk aus V ist eine Formel.

• false ist Formel.

• Wenn A und B Formeln sind, dann sind �A, 3A, #A, A U B, A

W B und A⇒ B Formeln.

38 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Es können die aus der Aussagenlogik bekannten Operatoren ¬, ∧, ∨,

⇔ und true verwendet werden.

Die oben neu eingeführten Operatoren haben die folgenden Bedeu-

tungen:

• �A: A ist in allen folgenden Zeitpunkten wahr.

• 3A: A ist nach einer bestimmten Zeitspanne wahr.

• #A: A ist zum nächsten Zeitpunkt wahr.

• A U B: A ist so lange wahr, bis B wahr ist. Danach darf A nicht

mehr wahr sein.

• A W B: A ist so lange wahr, bis B wahr ist. Danach darf A nicht

mehr wahr sein. Oder A ist immer wahr.

Weiterhin gilt: 3 A = ¬�¬ A.

2.6. Modelchecking

Unter Modelchecking wird die automatische Überprüfung eines Mo-

dells anhand formal definierter Eigenschaften verstanden, die dieses

Modell erfüllen muss [JGP99]. Das Modell bildet dabei die wichtigsten

Eigenschaften eines real existierenden Systems ab. Ein solches System

kann zum Beispiel ein Geschäftsprozess oder ein anderes verteiltes

System sein.

2.7. SPIN

SPIN [Hol03] ist ein in den Bell Labs entwickelter Modelchecker, der

seit 1991 frei verfügbar ist. Die Eingabesprache von SPIN ist PROMELA.

2.7 | SPIN 39

Zur Spezifikation der Eigenschaften, die ein zu überprüfendes Modell

erfüllen muss, dient die Lineare Temporale Logik.

2.8. PROMELA

PROMELA (Process oder Protocol Meta Language) [Hol03] ist die

Eingabesprache des SPIN Modelcheckers. Ursprünglich wurde sie zur

Erstellung von nebenläufigen, verteilten Systemen konzipiert. Auf-

grund ihrer Mächtigkeit kann sie jedoch auch in anderen Bereichen,

zum Beispiel zur Erstellung von Petrinetzmodellen, verwendet werden.

Die Kommunikation zwischen zwei Komponenten wird in PROMELA

mittels Nachrichtenkanälen modelliert. Diese können sowohl synchron

als auch asynchron arbeiten. PROMELA hat eine an die Programmier-

sprache C angelehnte Syntax.

2.9. JSON

JSON1 ist ein Datenformat, mit dem es möglich ist, komplexe Datenob-

jekte über textbasierte Datentransferprotokolle, wie zum Beispiel HTTP,

zu übertragen. JSON wird hier beschrieben, da der in der vorliegenden

Arbeit vorgestellte Algorithmus 4.1 damit arbeitet.

Listing 2.1: Arrayrepräsentation der Plätze eines Petrinetzes

{
"Name" : "Max Musterknabe" ,

"Alter" : 32 ,

"Adresse" : {
"Street" : "Langestraße" ,

1http://json.org/json-de.html

40 2 | Grundlagen der Entwicklung regelkonformer Prozesse

"City" : "Musterstadt"
} ,

"Kinder" : [
{
"Name" : "Maike"

} ,

{
"Name" : "Karl"

}
]

}

Codelisting 2.1 zeigt ein JSON-Datenobjekt, das eine Person beschreibt.

Hierzu werden die gängigsten Modellierungskonstrukte von JSON ver-

wendet. Objekte sind in JSON in geschweifte Klammern eingerahmt.

Innerhalb dieser Objekte werden Schlüsselwertpaare dazu verwen-

det, um einem Objekt Daten zuzuordnen. Weiterhin können Arrays

definiert werden. Diese sind mit eckigen Klammern eingerahmt.

2.10. Prozessfragment

Eberle et al. definieren Prozessfragmente [EUL09] als Teilstücke von

Prozessen. Dabei wird beschrieben, dass Prozessfragmente in sich

unvollständig spezifiziert sein können. So können sie beispielsweise

Lücken aufweisen. Für Lücken ist nicht definiert, wie der Prozess sich

dort zur Ausführungszeit verhält. Um einen vollständigen Prozess zu

erhalten, müssen Lücken mit Aktivitäten gefüllt werden. Weiterhin

können Prozessfragmente Kontrollflusskonnektoren enthalten, die ent-

weder an deren Anfang oder Ende nicht mit einer Aktivität verbunden

sind.

2.10 | Prozessfragment 41

K
A

P
IT

E
L 3

VERWANDTE ARBEITEN

Dieses Kapitel setzt die in dieser Arbeit vorgestellten Konzepte in den

aktuellen wissenschaftlichen Kontext und gibt einen Forschungsüber-

blick. Die Abschnitte dieses Kapitels sind so aufgebaut, dass zuerst

die verwandten Arbeiten zu einem speziellen Themengebiet vorge-

stellt werden. Anschließend werden die verwandten Arbeiten in den

Zusammenhang mit dieser Dissertation gebracht. Die behandelten

Themengebiete sind dabei nach dem Abstraktionsgrad sortiert. Zu

Beginn wird ein Überblick über Arbeiten im Bereich der Unterstützung

menschlicher Prozessmodellierer bei der Entwicklung regelkonformer

Prozesse (Abschnitt 3.1) gegeben. Weiterhin werden die Bereiche des

regelkonformen Geschäftsprozessmanagements (Abschnitt 3.2) und

der regelkonformen Prozessmodellierung (Abschnitt 3.3) bearbeitet.

Den Schluss bilden Arbeiten zu Linearer Temporaler Logik und Model-

checking (Abschnitt 3.4).

43

3.1. Unterstützung menschlicher Prozessmodellierer

Das Hauptziel dieser Arbeit ist es, einen menschlichen Prozessmodel-

lierer dabei zu unterstützen, regelkonforme Prozesse zu entwickeln.

Die Unterstützung soll dabei so weit gehen, dass der menschliche

Prozessmodellierer nur mit Complianceproblemen konfrontiert wird,

wenn eine Complianceregel verletzt wird. Im Folgenden werden Ar-

beiten aufgezeigt, die Lösungen für die Unterstützung menschlicher

Prozessmodellierer anbieten.

Awad et al. zeigen in [ADW08] einen Ansatz zur Überprüfung von

Prozessmodellen mit dem Ziel Verstöße gegen Complianceregeln auf-

zudecken. Es werden in diesem Ansatz Complianceregeln verwendet,

die den Kontrollfluss in einem Prozessmodell einschränken. Zur Über-

prüfung von Complianceregeln wird in diesem Ansatz BPMN-Q, eine

Abfragesprache für BPMN-Modelle in Repositories verwendet, um

die Prozessmodelle in einem Repository herauszufiltern, die für eine

Überprüfung auf Verstöße gegen Complianceregeln in Frage kom-

men. Die in Frage kommenden Prozessmodelle werden mit Hilfe eines

Modelcheckers auf Verstöße gegen Complianceregeln überprüft. Die-

jenigen Prozessmodelle, die gegen die zur Überprüfung verwendete

Complianceregel verstoßen, werden dem Benutzer angezeigt. Ein Pro-

zessmodell, das gerade bearbeitet wird, muss folglich vor der Überprü-

fung auf Complianceverstöße in das Repository eingecheckt werden.

Das Konzept wird in [AWW09] um datenbasierte Complianceregeln

erweitert.

Weiterhin zeigen Awad et al. in [AW09] eine auf dem vorhergehen-

den Ansatz aufbauende Lösung zur Überprüfung von Prozessmodellen

in einem Repository auf Verletzungen von Complianceregeln. In die-

44 3 | Verwandte Arbeiten

sem Ansatz werden alle Prozessmodelle in einem Repository auf Ver-

letzungen von Complianceregeln untersucht. Die Erweiterung des vor-

hergehenden Ansatzes besteht in der automatischen Generierung von

sogenannten Anti-Patterns aus BPMN-Q-Anfragen. Anti-Patterns sind

BPMN-Q-Anfragen, die auf einem Prozessmodell ausgeführt werden.

Ist eine solche Anfrage erfolgreich, so ist das betreffende Prozessmo-

dell nicht regelkonform. Anti-Patterns zeigen dem Prozessmodellierer

die Stelle in einem Prozessmodell an, die eine bestimmte Compliance-

regel verletzt. Ein weiterer Vorteil von Anti-Patterns besteht in der

Vermeidung der Verwendung von Modelcheckern, um Verletzungen

von Complianceregeln in einem Prozessmodell anzuzeigen.

In seiner Dissertation zeigt Awad [Awa10], aufbauend auf den oben

besprochenen Veröffentlichungen, wie ein ganzheitlicher Ansatz ausse-

hen kann, der einen menschlichen Prozessmodellierer bei der Entwick-

lung regelkonformer Prozesse unterstützt. BPMN-Q Anfragen dienen

hier zur graphischen Illustration von Complianceregeln. Dies soll es

Prozessmodellierern mit nicht-technischem Hintergrund erleichtern,

mit Complianceregeln umzugehen. Diese graphische Repräsentation

von Complianceregeln wird dann in eine formale Sprache transfor-

miert, die als Eingabesprache für einen Modelchecker dient. Da dies

automatisch geschieht, muss sich der menschliche Prozessmodellierer

nicht mit den technischen Eigenheiten der hinter der Lösung liegenden

Konzepte auseinandersetzen, möchte er einen regelkonformen Prozess

erstellen.

In [TEHP11] werden Muster für die am häufigsten in der Literatur

erwähnten Complianceregeln vorgestellt. Diese dienen der einfacheren

Arbeit mit Complianceregeln für Menschen ohne technischen Hinter-

grund. Referenziert werden die Muster anhand ihres Namens. Somit

3.1 | Unterstützung menschlicher Prozessmodellierer 45

bleibt dem menschlichen Prozessmodellierer die formale Repräsen-

tation bei der Arbeit mit einer Complianceregel verborgen. Jedes in

[TEHP11] vorgestellte Muster beschreibt eine Complianceregel, die

den Kontrollfluss in einem Prozessmodell einschränkt.

Datenbasierte Complianceregeln sind das Thema in [KLRM+10].

Sie werden in dieser Arbeit so aufbereitet, dass sie mit einem Mo-

delchecker überprüft werden können. Bei der Überprüfung ganzer

Prozessmodelle wird der menschliche Prozessmodellierer mit dem

graphischen Werkzeug Aristaflow Process Template Editor unterstützt.

Dieses Werkzeug stößt auch die Untersuchung des angezeigten Pro-

zessmodells auf Verletzungen von datenbasierten Complianceregeln

an.

In [BDSV05] wird eine Abbildung von LTL-Formeln auf BPMN-

Konstrukte gezeigt. Dies ist eine Grundlage für die Unterstützung

menschlicher Prozessmodellierer beim Umgang mit Complianceregeln,

da Complianceregeln in einer formalen Sprache vorliegen müssen,

damit sie als Eingabe für die automatische Überprüfung von Prozess-

modellen verwendet werden können.

Die automatische Überprüfung von Complianceregeln auf Prozess-

modellen ist Thema in [LMX07]. Es wird hier darauf Wert gelegt, dass

Prozessmodelle und Complianceregeln getrennt voneinander erstellt

und bearbeitet werden können. In diesem Ansatz wird ein in der

Business Process Execution Language (BPEL) geschriebenes Prozess-

modell in ein π-Kalkül-Modell übertragen. Complianceregeln werden

in einer graphischen Modellierungssprache erstellt und danach in LTL

transformiert. Modelchecking wird verwendet, um Prozessmodelle

automatisch auf Verletzungen von Complianceregeln zu untersuchen.

In der in [Elg12] vorgestellten Dissertation wird ein Rahmenwerk

46 3 | Verwandte Arbeiten

für die Verwaltung und Erstellung regelkonformer Geschäftsprozes-

se beschrieben. Hier wird ein Ansatz gezeigt, der es menschlichen

Prozessmodellierern erleichtern soll, mit formalen Ausdrücken umzu-

gehen, die gebraucht werden, um Complianceregeln zu spezifizieren.

Dies geschieht mit Hilfe von Vorlagen. Vorlagen können mit Hilfe ihres

Namens referenziert werden. Sie werden als atomare Compliance-

regeln gesehen. In diesen Vorlagen verbergen sich die komplexen

formalen Ausdrücke, die Complianceregeln beschreiben. Die Arbeit

beschreibt weiter, wie menschliche Prozessmodellierer diese Vorlagen

verwenden, um Prozessmodelle auf Regelverletzungen zu überprü-

fen. Zur Überprüfung von Prozessmodellen werden Techniken aus

dem Modelchecking herangezogen. Konkret wird LTL verwendet, um

Complianceregeln zu spezifizieren. Der SPIN Modelchecker dient als

Untersuchungswerkzeug.

In den in diesen Arbeiten vorgestellten Lösungen werden ganze

Prozessmodelle als Grundlage für die Überprüfung von Compliance-

verstößen herangezogen. Viele Lösungen verwenden Techniken aus

dem Modelchecking, um die automatische Überprüfung von Prozess-

modellen durchzuführen. Der Vorteil von Modelcheckern ist die Qua-

lität der Untersuchungsergebnisse. Verletzt ein Prozessmodell eine

Complianceregel, so wird dieser Fehler gefunden. Weiterhin wird ein

Beispielpfad im betreffenden Prozessmodell gezeigt, der zu diesem

Fehler führte. Der Nachteil von Modelcheckern ist deren Laufzeit. Bei

der Überprüfung ganzer Prozessmodelle kann es zu einer sehr lan-

gen Laufzeit eines Modelcheckers kommen, da sie ein exponentielles

Laufzeitverhalten haben [Var01].

Weiterhin werden Lösungen präsentiert, die zeigen, wie formale

Sprachen verwendet werden, um Complianceregeln auszudrücken.

3.1 | Unterstützung menschlicher Prozessmodellierer 47

Einige Ansätze verwenden graphische Notationen, um Compliance-

regeln zu erstellen. Aus diesen graphischen Modellen werden dann die

formalen Modelle erstellt, die als Eingabesprache für Modelchecker

verwendet werden.

Die vorliegende Dissertation hingegen legt Wert darauf, eine Lösung

zu präsentieren, die bei der Entwicklung von Prozessen den Menschen

in den Vordergrund stellt. Bei der Erstellung der Konzepte stand die Be-

nutzerfreundlichkeit im Vordergrund. Der Hauptaspekt, der in diesem

Zusammenhang betrachtet wird, ist die Antwortzeit des zu erstellen-

den Prototyps. Diese sollte so gering wie möglich sein [Nie93]. Die

Einbeziehung der Benutzerfreundlichkeit ist notwendig, da die Er-

stellung regelkonformer Prozesse immer von Menschen durchgeführt

wird.

Jedes in dieser Arbeit vorgestellte Konzept wurde mit Blick auf die

Benutzerfreundlichkeit entwickelt. Gegenüber bereits existierenden

Ansätzen ist es zum Beispiel möglich, Complianceregeln mit frei defi-

nierbaren Bereichen in einem Prozessmodell zu verknüpfen. Mit der

Größe des mit einer Complianceregel verknüpften Prozessbereichs

kann zum Beispiel die Wartezeit auf ein Überprüfungsergebnis ange-

passt werden.

3.2. Regelkonformes Geschäftsprozessmanagement

Wie in Kapitel 1 dargestellt, ist die Einhaltung von Regularien im

Feld des Geschäftsprozessmanagement in den letzten Jahren zu einem

zentralen Thema des Unternehmensmanagements avanciert. Diese

Entwicklung führte auch in der Wissenschaft zu verstärkten Anstren-

gungen in dieser Richtung neue Konzepte und Lösungen zu präsentie-

48 3 | Verwandte Arbeiten

ren.

Zwei von der Europäischen Union (EU) geförderte Projekte be-

schäftigten sich mit neuen Konzepten in unterschiedlichen Teilen des

Geschäftsprozesslebenszyklus. Im ersten EU-Projekt mit dem Namen

Compliance-driven Models, Languages, and Architectures for Services

(COMPAS)1 wurde unter anderem der Geschäftsprozesslebenszyklus

um einige Phasen erweitert, die für den Bereich Compliance wichtig

sind. Es entstand der Compliancelebenszyklus. Im Compliancelebens-

zyklus wurden zu den bestehenden Phasen Modellierung, Ausführung,

Überwachung und Prüfung des Geschäftsprozesslebenszyklus die Pha-

sen Compliancebeurteilung, Anpassung der IT-Systeme und statische

Überprüfung hinzugefügt. COMPAS befasste sich hauptsächlich mit

den Unterphasen der Entwicklungsphase des Compliancelebenszyklus.

Für die Phase Compliancebeurteilung wurde erforscht, wie sich na-

türlichsprachliche Gesetzestexte in Ausdrücke übersetzen lassen, die

mit einer formalen Sprache geschrieben sind. Weiterhin wurde für

die Phase der Modellierung das Konzept eines Compliancefragments

entwickelt [SLM+10]. Compliancefragmente bauen auf der Definition

von Prozessfragmenten [EUL09] auf. Sie sind Prozessteile, die nicht

ausführbar sind, weil sie typischerweise nicht voll spezifiziert sind. Ein

Compliancefragment erfüllt durch seine Implementierung einen oder

mehrere Complianceanforderungen. Compliancefragmente sind dazu

gedacht, in bestehende Prozessmodelle eingefügt zu werden. Das Ein-

fügen eines Compliancefragments passt das Verhalten des betreffenden

Prozesses in bestimmten Situationen an Vorgaben an.

Die Hauptherausforderungen der Verwaltung von Compliancefrag-

1http://compas-ict.eu

3.2 | Regelkonformes Geschäftsprozessmanagement 49

menten werden im Artikel [SLS10] herausgestellt. Weiterhin werden

Techniken für das Herausfiltern und Verbergen von Compliancefrag-

menten gezeigt, die auf Transformationen aufbauen, die für die Er-

stellung von Prozesssichten entwickelt wurden. Dies geschieht mit

Hilfe von Transformationsvorschriften, die ein Prozessmodell in eine

Prozesssicht übertragen.

In [SAL+10] wird ein Verwaltungsmodell für Complianceregeln

im Bereich des Geschäftsprozessmanagement vorgestellt. Dieses Ver-

waltungsmodell zeigt, dass Compliance nicht nur für die in einem

Unternehmen eingesetzten Prozesse wichtig ist, sondern auch für alle

für die Ausführung eines Prozesses benötigten Ressourcen. In die-

sem Verwaltungsmodell werden Compliancekontrollen in zwei Typen

aufgeteilt: Kontrollen die beschreiben wie Complianceanforderungen

untersucht werden müssen und Kontrollen die beschreiben, wie ein

Prozess abzulaufen hat. Weiterhin wird gezeigt, wie BPEL erweitert

werden kann, um Compliancefragmente mit BPEL zu verwenden.

Auch der Artikel [SLM+10] befasst sich mit Prozessfragmenten und

deren Einsatz im Bereich der regelkonformen Prozessmodellierung.

Es werden hier zwei Mechanismen für den Einsatz von Prozessfrag-

menten in Prozessen gezeigt. Der erste Mechanismus, das Ankleben

von Prozessfragmenten an Prozesse, fügt Prozessfragmente direkt in

einen Prozess ein, so dass sie Teil des Prozesses werden. Der zweite

Mechanismus, das Hineinweben von Prozessfragmenten in Prozesse,

verwendet eine Softwarekomponente. Diese überwacht die Ausfüh-

rung eines Prozessmodells und führt an bestimmten Stellen die in den

Prozess hineingewebten Prozessfragmente aus.

Der Beitrag von COMPAS in der Phase statische Überprüfung befasst

sich mit der automatischen Überprüfung von Complianceregeln auf

50 3 | Verwandte Arbeiten

Prozessmodellebene. Hier werden Techniken aus dem Modelchecking

verwendet, um ganze Prozessmodelle automatisch zu überprüfen

[STK+10].

Das zweite EU-Projekt mit dem Namen Managing Assurance, Se-

curity and Trust for sERvices (MASTER)1 erforschte den gesamten

Geschäftsprozesslebenszyklus mit Fokus auf die Ausführungszeit von

IT-unterstützten Geschäftsprozessen. In der Phase der Modellierung

wurden hier Konzepte entwickelt, um Informationen, die für spätere

Phasen im Prozesslebenszyklus wichtig sind, in Prozessmodelle einzu-

fügen. In der Ausführungsphase wurde ein Konzept mit dem Namen

Enforcement [AKL+09, GCS+10] verwendet. Mit diesem Konzept ist

es möglich, zur Laufzeit Gegenmaßnahmen zu ergreifen, sollte ein

Prozess Complianceregeln verletzen. Weiterhin wurden in der Phase

Überwachung Konzepte und Prototypen entwickelt, um anhand von

Laufzeitereignissen, zu ermitteln, ob von einem laufenden Prozess

nicht erlaubte Aktionen durchgeführt werden.

In der Phase Prüfung wurden Konzepte und Prototypen entwickelt,

um anhand der Ausführungsdaten vieler abgelaufener Prozesse zu ent-

scheiden, ob die ihnen zugrunde liegenden Prozessmodelle geändert

werden müssen, um den ihnen auferlegten Richtlinien zu genügen.

In [WPD+11] zeigen Weidlich et al., dass das Konzept der Beha-

vioural Profiles (Verhaltensprofile) auch auf Compliance in Prozessmo-

dellen angewendet werden kann. Behavioural Profiles werden dazu

verwendet, um Aussagen über miteinander in Beziehung stehenden

Paaren von Aktivitäten in Prozessmodellen zu machen. In dem vor-

gestellten Ansatz werden sie als Metrik verwendet, um die Regelkon-

1http://www.master-fp7.eu

3.2 | Regelkonformes Geschäftsprozessmanagement 51

formität von Prozessmodellen für drei Arten von Complianceregeln

zu überprüfen. Es können damit die Ausführungsreihenfolge von Ak-

tivitäten, die zwingende Ausführung einer Aktivität und die kausale

Abhängigkeit von Aktivitäten zueinander überprüft werden.

Die in diesem Abschnitt vorgestellten Arbeiten haben das Ziel, viele

Teilbereiche des Prozesslebenszyklus um Konzepte zur Einhaltung und

Überprüfung von Complianceregeln zu erweitern.

Die vorliegende Arbeit befasst sich mit der ersten Phase des Prozess-

lebenszyklus, der Modellierungsphase. Sie präsentiert hier Konzepte,

die sich eingehend mit dem Thema der Unterstützung menschlicher

Prozessmodellierer bei der Erstellung regelkonformer Prozesse befas-

sen.

3.3. Regelkonforme Prozessmodellierung

Ein Überblick über die Forschungsherausforderungen im Bereich des

regelkonformen Geschäftsprozessmanagements wird in der Veröffent-

lichung [SGN07] gezeigt. Das zweite große Themengebiet dieser Ver-

öffentlichung ist ein Ansatz zur Modellierung von Complianceregeln.

Im Hinblick auf die Modellierung von Complianceregeln sehen die

Autoren Bedarf für Vereinfachung. Sie sind der Meinung, dass derzeit

der Mensch nicht ausreichend dabei unterstützt wird, Mengen von

Complianceregeln zu verwalten. Dies sei zum Beispiel der Fall bei der

Verwaltung von Complianceregeln, die zur Laufzeit von Geschäftspro-

zessen eingesetzt werden, um diese automatisch zu untersuchen.

Der Artikel zeigt wie Complianceregeln mit Formal-Contract-Logic

(FCL) [GM06] modelliert werden können. FCL bringt Eigenschaften

mit, die bei der Modellierung von Complianceregeln hilfreich sind.

52 3 | Verwandte Arbeiten

Eine dieser Eigenschaften ist die Möglichkeit normative oder norm-

gebende Ausdrücke zu erstellen. Weiterhin zeigt er einen Ansatz wie

diese Complianceregeln graphisch mit Prozessmodellen verknüpft wer-

den können.

Der in [BBD+11] beschriebene Ansatz zur regelkonformen Modellie-

rung von Prozessen im Finanzsektor zeigt, wie die Semantic Business

Process Modeling Language (SBPML) mit Complianceregeln verknüpft

werden kann. Diese Complianceregeln können automatisch überprüft

werden. Bei der automatischen Überprüfung wird das Auftreten von

durch Complianceregeln beschriebener Muster im Prozessmodell über-

prüft.

Ein Policy-basiertes Rahmenwerk für die Verwaltung von Compliance-

regeln und den mit ihnen verknüpften Prozessen wird in [KSMP07]

präsentiert. Weiterhin werden in diesem Artikel acht Anforderungen

an ein solches Rahmenwerk gestellt. Im Folgenden werden diese acht

Anforderungen skizziert:

• Änderungsmanagement: Da Complianceregeln eine Umsetzung

von Regularien in formale Definitionen darstellen, kann davon

ausgegangen werden, dass sie regelmäßig geändert werden

müssen. Ebenso soll es die Möglichkeit geben Prozessmodelle

anzupassen.

• Nachvollziehbarkeit und Zuweisbarkeit von Effekten bei der

Ausführung eines Prozessen beim Einsatz von Compliance-

regeln: Es muss klar sein, welche Effekte die Verknüpfung von

Complianceregeln mit einem Prozessmodell zur Ausführungszeit

haben.

3.3 | Regelkonforme Prozessmodellierung 53

• Komplexität der Complianceregeln: Das Rahmenwerk soll die

Verwaltung von Complianceregeln vereinfachen. Dazu müssen

Complianceregeln in einer generischen Form vorliegen, um für

verschiedene Verwendungszwecke einsetzbar zu sein.

• Effektivität der eingesetzten Complianceregeln: Es muss mit-

tels der eingesetzten Complianceüberprüfungsalgorithmen be-

stimmt werden können, ob die mit einem Prozessmodell ver-

knüpften Complianceregeln die erwünschte Wirkung erzielen.

• Kosten: Der Einsatz des Rahmenwerks muss die Gesamtkosten

der regelkonformen Prozessverwaltung reduzieren.

• Durchsetzung von Complianceregeln: Das Rahmenwerk muss

sicherstellen, dass mit Prozessmodellen verknüpfte Compliance-

regeln nicht umgangen werden können.

• Skalierbarkeit: Complianceregeln und Prozesse können belie-

big komplex werden. Das Rahmenwerk muss mit dieser Komple-

xität umgehen können.

• Einflussanalyse von Änderungen: Complianceregeln können

voneinander abhängig sein. Die Wirkung der Änderung einer

Complianceregel muss vor dem Einsatz überprüft werden kön-

nen.

Im Artikel [LSG08] werden die Nachteile von Überwachungssys-

temen aufgezeigt, die anhand von Ereignissen die Regelkonformität

dieser Prozesse überwachen.

54 3 | Verwandte Arbeiten

Systeme können erst nach der Verletzung einer Complianceregel rea-

gieren. Weiterhin sind die für die Überprüfung verwendeten Compliance-

regeln oft hart in die Systeme integriert. Dies führt zu einer schlechten

Wartbarkeit und Änderbarkeit. Deshalb ist es notwendig Compliancea-

spekte schon zur Entwicklungszeit eines Prozesses zu betrachten.

Governatori et al. zeigen in [Gov08] eine Methode für die Pro-

zessverwaltung, die in drei Schritte gegliedert ist. Diese Schritte sind

die Anreicherung von Prozessen mit Complianceregeln, die automati-

sche Überprüfung von Complianceregeln und die Rückmeldung von

Regelverstößen zur Anpassung von Prozessmodellen.

In diesem Artikel wird die Formal-Contract-Logic (FCL) verwen-

det, um Prozessmodelle mit Complianceanforderungen anzureichern.

Weiterhin zeigt der Artikel Algorithmen, um in FCL geschriebene

Complianceregeln zusammen mit einem Prozessmodell automatisch

zu überprüfen.

Überprüfungen von Complianceregeln sollen an drei Stellen im

Geschäftsprozesslebenszyklus vorgenommen werden [STK+10]. Die

erste Stelle ist die Entwicklungsphase. Es müssen hier statische Über-

prüfungen des entstehenden Prozesses vorgenommen werden. Die

zweite Stelle ist die Ausführungszeit eines Prozesses. Die ausgeführten

Instanzen von Prozessen müssen hier anhand von bei der Ausführung

entstandenen Ereignissen auf Verletzungen von Complianceregeln

überprüft werden. Die dritte Stelle ist die Überprüfung nach der Aus-

führung von Instanzen. Dies bedingt, dass alle während der Ausfüh-

rung erzeugten Ereignisse in einer Datenbank gespeichert werden.

Im Artikel [LGRMD08] werden Ansätze gezeigt, die Compliance-

regeln eines Prozesses während des gesamten BPM Lebenszyklus über-

prüfen. Er zeigt an Prozessverwaltungssysteme gestellte Anforderun-

3.3 | Regelkonforme Prozessmodellierung 55

gen, um die Überprüfung von Complianceregeln zu unterstützen und

bewertet bestehende Lösungen auf Grundlage dieser Anforderungen.

Die folgende Liste zeigt diese Anforderungen an ein Prozessverwal-

tungssystem, das den gesamten BPM-Lebenszyklus im Hinblick auf

Compliance abdeckt:

• Eine formale Sprache zur Spezifikation von Complianceregeln.

• Verwaltungswerkzeuge für Complianceregeln: Compliance-

regeln können sich ändern und werden von der Entwicklungs-

phase bis zur Audit-Phase im BPM-Lebenszyklus eingesetzt. Dies

soll durch entsprechende Werkzeuge unterstützt werden.

• Unterstützung implementierungsunabhängiger sowie domä-

nenspezifischer Complianceregeln: Complianceregeln können

in unterschiedlichen Anwendungsgebieten eingesetzt werden.

Es wäre hinderlich für die Wiederverwendbarkeit, wenn sie in ei-

ner für ein bestimmtes Anwendungsgebiet eingesetzten Sprache

spezifiziert wären. Aus diesem Grund sollen Complianceregeln

auch in domänenübergreifenden Sprachen spezifiziert werden

können. Eine Complianceregel, die in einer domänenübergrei-

fenden Sprache spezifiziert ist, kann in eine domänenspezifische

Sprache transformiert werden.

• Überprüfung von Complianceregeln zur Entwicklungszeit

und zur Laufzeit.

• Überprüfung von Änderungen an laufenden Prozessmodel-

len: Änderungen an laufenden Prozessmodellen können zu nicht

regelkonformen Prozessinstanzen führen.

56 3 | Verwandte Arbeiten

• Überprüfung der Einhaltung von Complianceregeln bei der

Änderung eines Prozessmodells: Änderungen an laufenden

Prozessinstanzen und parallele Änderungen an deren Prozess-

modellen können zu Inkonsistenzen bei der Einhaltung von

Complianceregeln führen. Dies muss durch die automatische

Überprüfung jeder Änderung eines Prozessmodells verhindert

werden.

• Unterstützung von prozessübergreifenden Complianceregeln:

Da Prozesse oft aus mehreren Teilprozessen zusammengesetzt

sind, ist es notwendig Complianceregeln über Prozessgrenzen

hinweg zu definieren und überprüfen zu können.

• Klar verständliche Rückmeldungen der Überprüfungswerk-

zeuge: Es ist für die Benutzbarkeit der Werkzeuge zur automati-

schen Überprüfung von Prozessen unabdingbar, dass Meldungen

der Systeme klar verständlich sind und wenn möglich direkt auf

Fehlerquellen hinweisen.

• Außer-Kraft-Setzen von Complianceregeln: Manche Compliance-

regeln sind eher als Vorschläge für einen reibungslosen Ablauf

eines Prozesses zu verstehen. Wird das Außer-Kraft-Setzen von

Complianceregeln vom System nicht unterstützt, so kann dies

zu einer Ablehnung des Systems durch die Benutzer führen.

• Mechanismen zur Zurückverfolgung: Änderungen an Prozess-

modellen oder das Außer-Kraft-Setzen von Complianceregeln

müssen vom System dokumentiert werden. Somit kann nach

Prozessende nachvollzogen werden, welche Entscheidungen zur

3.3 | Regelkonforme Prozessmodellierung 57

Laufzeit getroffen wurden. Dies ist zum Beispiel im klinischen

Bereich von zentraler Bedeutung.

Aufbauend auf [LGRMD08] zeigt [LRD08] ein Rahmenwerk für

die Integration von Wissensbereichen in Prozessverwaltungssysteme.

Weiter wird gezeigt, wie semantische Einschränkungen an Prozessmo-

dellen definiert werden können. Der Hauptteil der Veröffentlichung

befasst sich mit der Definition eines Maßstabs für semantische Kor-

rektheit von Prozessmodellen und der effizienten Überprüfung von

semantischen Einschränkungen. Abschließend wird eine Architektur

eines Repositorys für die Verwaltung semantischer Einschränkungen

gezeigt.

Ein weiteres Rahmenwerk zur Überprüfung von Complianceregeln

wird in [LMX07] vorgestellt. Zur Modellierung von Complianceregeln

wird die graphische Sprache BPSL (Business Property Specification

Language) verwendet. Es wird argumentiert, dass es mit dieser Spra-

che im Gegensatz zur Arbeit mit Linearer Temporaler Logik (LTL) für

Menschen einfacher sei, Complianceregeln zu erstellen. Zur Definition

von Prozessmodellen wird BPEL verwendet. Auch hier wird argumen-

tiert, dass es für Menschen einfacher sei mit BPEL Geschäftsprozesse

zu erstellen, als mit π-Kalkül.

Zur Überprüfung von Complianceregeln werden Techniken aus dem

Bereich des Modelchecking verwendet. Dazu werden die in BPSL

geschriebenen Complianceregeln in LTL-Ausdrücke und die BPEL Pro-

zessmodelle in π-Kalkül-Prozesse übersetzt. Werden Verletzungen von

Complianceregeln in einem Prozessmodell gefunden, so können Bei-

spiele für Ausführungspfade im originalen BPEL-Prozessmodell angege-

ben werden. Ein solches Beispiel ist das Ergebnis, das ein Modelchecker

58 3 | Verwandte Arbeiten

ausgibt, sobald er eine Regelverletzung gefunden hat.

Im Artikel [DCD+09] unterstreichen Daniel et al. die Notwendig-

keit, das Thema Compliance schon ab der Designphase des BPM-

Lebenszyklus zu beachten. Zu diesem Zweck wird ein Konzept prä-

sentiert, um Prozessmodelle mit Metadaten anzureichern, welche von

einer Ausführungsumgebung ausgelesen werden, um Ereignisse zu

bestimmten Zeitpunkten während der Ausführung zu erzeugen. Diese

Ereignisse können in einem sogenannten Reporting-Dashboard gra-

phisch dargestellt werden. Menschen können mit diesen Informationen

Regelverletzungen, die zur Laufzeit eines Prozesses aufgetreten sind,

ausfindig machen. Weiterhin wird vorgeschlagen mit Prozesssichten

zu arbeiten, um dem menschlichen Prozessdesigner zu jedem Zeit-

punkt die Informationen anzubieten, die er für eine Aufgabe benötigt.

Mit Prozesssichten können zum Beispiel Teile von Prozessmodellen

ausgeblendet werden, um die Informationsdichte für menschliche

Prozessmodellierer zu reduzieren.

Viele Wissenschaftler, die sich mit der regelkonformen Implementie-

rung von Prozessen beschäftigen, sind der Meinung, dass menschliche

Prozessmodellierer mehr Unterstützung durch Modellierungswerkzeu-

ge benötigen. Die meisten in diesem Abschnitt gezeigten Konzepte

zielen darauf ab, den Umgang mit Complianceregeln und deren Ver-

knüpfung mit Prozessmodellen zu erleichtern. Hierfür werden Kon-

zepte beschrieben, die die Complianceregeln von Hochsprachen in

niedrigere, für Modelchecker als Eingabesprachen geeignete Sprachen,

übersetzen. Weiterhin wird gezeigt, wie Modelchecker eingesetzt wer-

den können, um Prozessmodelle auf Verletzungen von Compliance-

regeln zu überprüfen.

Die vorliegende Arbeit präsentiert für einige, der in [KSMP07] auf-

3.3 | Regelkonforme Prozessmodellierung 59

gestellten Anforderungen, Lösungen. Eine Lösung, die das Änderungs-

management erleichtert, wird durch die Möglichkeit der graphischen

Modellierung von LTL-Formeln in Abschnitt 7.7 gezeigt. Die Effekti-

vität der eingesetzten Complianceregeln kann mit Hilfe der in dieser

Arbeit vorgestellten Konzepte zur Überprüfung von Teilen von Pro-

zessmodellen evaluiert werden. Dies ist in Abschnitt 4 beschrieben.

Die Skalierbarkeit des in dieser Arbeit vorgestellten Ansatzes ist durch

die Implementierung des im Abschnitt 7.3 vorgestellten Compliance-

wizards sichergestellt. Es können hiermit zum Beispiel beliebig viele

Complianceregeln mit einem Prozess verknüpft werden. Weiterhin sind

die in dieser Arbeit verwendeten Modelchecker weit verbreitet und in

der Industrie sowie in Großprojekten häufig eingesetzt [JGP99].

Die Verwendung von Compliancefragmenten zur Umsetzung von

Complianceanforderungen ist ein Schritt in die Richtung dieser Ar-

beit. Fragmente werden auch in den hier vorgestellten Konzepten

verwendet.

3.4. Automatische Überprüfung von Prozessmodellen anhand
von Complianceregeln zur Entwicklungszeit

Um Prozessmodelle anhand von Complianceregeln zur Entwicklungs-

zeit zu überprüfen, werden in der Literatur Methoden beschrieben, die

auf der Verwendung von Modelcheckern aufbauen [ETHP10, Awa10,

WMM09, STK+10].

In [WMM09] und [Wol10] zeigen Wolter et al. wie Zugangskon-

trolleigenschaften angewendet auf BPMN-Prozesse mit dem SPIN Mo-

delchecker überprüft werden können. Vorhandene Arbeiten [DDO08,

RMF07] dienen hier als Basis. In diesen Arbeiten wird gezeigt, wie

60 3 | Verwandte Arbeiten

BPMN Prozessmodelle in Petri-Netze überführt werden können. Weiter-

hin wird gezeigt, wie Petrinetze mit der Sprache PROMELA spezifiziert

werden können. PROMELA ist die Eingabesprache des SPIN Model-

checkers.

Ein weiterer Ansatz [Awa10] baut auf der Verwendung des NuSMV

Modelcheckers auf. Um in einigen Fällen den teuren Aufruf dieses Mo-

delcheckers zu vermeiden, wird das zu untersuchende Prozessmodell

als erstes einer syntaktischen Prüfung unterzogen. Da die in diesem

Artikel behandelten Complianceregeln den Kontrollfluss eines Prozes-

ses einschränken, wird bei dieser Überprüfung getestet, ob ein Pfad im

Prozessmodell existiert, der zur Erfüllung einer Complianceregel durch

das Prozessmodell führt. BPMN-Q wird für diese Prüfung verwendet.

Ist diese Prüfung positiv verlaufen, das heißt, eine Complianceregel

könnte theoretisch von einem Prozessmodell erfüllt werden, so wird

im Anschluss NuSMV verwendet, um eine semantische Prüfung durch-

zuführen. Im anderen Fall muss NuSMV nicht aufgerufen werden, da

kein Ausführungspfad im Prozessmodell besteht, der zur Erfüllung der

Complianceregel führen kann. Das Low Level Petri net Analyser (LoLa)

wird in dieser Arbeit für die Überprüfung des Nichtvorhandenseins

von Deadlocks verwendet.

In [STK+10] wird ein Ansatz zur automatischen Überprüfung vorge-

stellt, der die Transformation eines Prozessmodells nach Reo [Arb04],

einer graphischen auf Nachrichtenkanälen aufbauenden Prozessspra-

che, beschreibt. Prozessmodele, die in Reo vorliegen, können nach

einer Bearbeitung durch einen Experten mit dem Modelchecker PRISM

[KNP02] überprüft werden.

3.4 | Automatische Überprüfung von Prozessmodellen anhand von

Complianceregeln zur Entwicklungszeit
61

3.5. Zusammenfassung und Einordnung

Von den in diesem Abschnitt gezeigten Ansätzen ist der in [Wol10]

umgesetzte Ansatz der am stärksten wissenschaftlich bearbeitete. Der

Ansatz beruht auf der Transformation eines BPMN-Prozessmodells

in ein Petrinetz. Dieses Petrinetz wird dann in die Eingabesprache

des in dieser Arbeit verwendeten Modelcheckers SPIN übersetzt. Eine

Eigenschaft eines Modelcheckers ist die Möglichkeit zur Bereitstellung

eines Gegenbeispiels im Falle der Aufdeckung einer Regelverletzung.

Ein Gegenbeispiel zeigt den Ausführungspfad in einem Prozessmodell

an, das zu dieser Regelverletzung führte. In der vorliegenden Arbeit

wird gezeigt, wie die Ausgabe des SPIN Modelcheckers automatisch

auf den ursprünglichen BPMN-Prozess abgebildet werden kann.

62 3 | Verwandte Arbeiten

K
A

P
IT

E
L 4

ENTWICKLUNG VON PROZESSEN

MIT REGELKONFORMEM

KONTROLLFLUSS

Das Kapitel befasst sich mit den Konzepten, die dazu dienen, einen

menschlichen Prozessmodellierer dabei zu unterstützen, regelkonfor-

me Prozesse zu erstellen. Das heißt, dass alle Modifikationen, die

an einem Prozess durchgeführt werden, gegen die mit dem Prozess

verbundenen Complianceregeln geprüft werden müssen.

Beginnend mit der Erläuterung eines laufenden Prozessbeispiels

(siehe Abschnitt 4.1) beschreibt dieses Kapitel zwei der in Kapitel 1.4

vorgestellten wissenschaftlichen Beiträge, Compliancetemplates (Ab-

schnitt 4.2) und Compliancescopes (Abschnitt 4.3), im Detail. In Ab-

schnitt 4.5 wird ein Algorithmus zur Überprüfung von Prozessmo-

63

dellen auf Verstöße gegen Complianceregeln gezeigt. Die lückenlose

Präsentation der einzelnen Schritte des Algorithmus vom graphischen

Prozessmodell bis hin zum Modelchecking soll die Umsetzbarkeit der

zuvor gezeigten theoretischen Ansätze unterstreichen.

Viele Complianceregeln, die auf Prozesse angewendet werden, be-

einflussen den Kontrollfluss eines Prozesses. Der Kontrollfluss eines

Prozesses stellt die möglichen Ausführungspfade eines Prozessmodells

dar [LR00]. Um bestimmte kontrollflussbasierte Complianceregeln

einzuhalten, dürfen manche Pfade dieses Kontrollflusses zur Laufzeit

nicht ausgeführt werden. Das heißt, es muss schon zur Entwicklungs-

zeit eines Prozesses untersucht werden, ob eine Modifikation an einem

Prozessmodell einen unerlaubten Ausführungspfad in das Prozessmo-

dell einfügt. Um Kosten zu sparen ist es ratsam, die Regelkonformität

eines Prozessmodells so früh wie möglich zu gewährleisten [Boe87].

Des Weiteren können Prozessmodelle schnell unübersichtlich werden.

Menschliche Prozessmodellierer sind mit der ihnen auferlegten Auf-

gabe der Entwicklung eines Prozesses ausgelastet. Aus diesem Grund

müssen Prozessmodellierer bei der Erstellung von regelkonformen

Prozessen unterstützt werden, damit sie sich auf die eigentliche Auf-

gabe konzentrieren können: der Entwicklung eines Prozesses, der die

gestellten Anforderungen erfüllt.

4.1. Beispielszenario: Blutspendeprozess des Roten Kreuz Hong
Kong

Abbildung 4.1 zeigt ein Szenario, welches auf einem existierenden

Prozess des Roten Kreuz Hong Kong basiert. Beschrieben wurde dieser

Prozess in [TLF+10]. Da der Prozess mit einer nicht standardisierten

64 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Patientendaten

sammeln

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Legende

Task

Kontrollfluss

Paralleles

Gateway

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Blutverbrauchs-

daten

vorbereiten

Send Blood

Data

Persist Blood

Data

Blutdaten

empfangen und

quittieren

Abbildung 4.1.: Beispielprozess. (Vgl. [SFG+11])

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong 65

Notation beschrieben wurde, wurde er in Abbildung 4.1 in Business

Process Model and Notation (BPMN) übertragen. Dieser Prozess dient

als Beispiel zur Erläuterung der Beiträge dieser Dissertation. Um die

Komplexität dieses Beispielprozesses in einem Rahmen zu halten,

der es ermöglicht, die in diesem Kapitel vorgestellten Konzepte zu

erläutern, wurde darauf verzichtet, den Datenfluss im Prozessmodell

explizit zu modellieren. Weiterhin wurde darauf verzichtet spezielle

Task-Typen, wie zum Beispiel Service-Tasks, zu verwenden. Wissen

über die Implementierung der Tasks in diesem Prozessmodell ist für

die Erläuterung der neuen Konzepte dieser Arbeit nicht vonnöten.

Anhang B zeigt zwei Prozesse, die mit den neuen Konzepten dieser

Arbeit versehen wurden. Diese Prozesse beruhen auf Erfahrungen des

Autors der vorliegenden Arbeit im Automobilkonzern Daimler in der

Funktion als IT Architekt und zeigen somit die Verwendbarkeit der

neuen Konzepte dieser Dissertation zur Lösung wirklichkeitsgetreuer

Probleme.

Der Prozess in Abbildung 4.1 beschreibt die Schritte einer Blutent-

nahme über die Lagerung bis zur statistischen Erfassung der Blut-

proben. So beginnt dieser Prozess mit dem Empfang der bei einer

Blutentnahme erhobenen Daten. Diese Daten werden statistisch er-

fasst und es wird ein Blutverbrauchsbericht erstellt. Anhand dieses

Berichts werden der Öffentlichkeit eine über alle Blutproben kon-

solidierte Gesundheitsinformation mitgeteilt. Parallel dazu werden

in den Krankenhäusern des Roten Kreuz Hong Kong Patientendaten

gesammelt. Die Gesundheitsinformationen und Blutverbrauchsdaten

werden dann zusammen gespeichert. Dies dient dazu, eine spätere

Auswertung der gesamten Daten über bestimmte Zeiträume möglich

zu machen.

66 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Im Folgenden werden Beispiele für Complianceregeln aufgeführt,

die für diesen Prozess denkbar wären.

• Die Aktivität Blutdaten empfangen und quittieren und Blutspender-

daten speichern müssen immer in dieser Reihenfolge ausgeführt

werden. Im Beispielprozess gilt die Annahme, dass ein Gesetz

existiert, das die Quittierung elektronisch empfangener Blutda-

ten als ersten Schritt bei der Datenverarbeitung vorschreibt.

• In diesem Prozess ist ein sogenanntes Separation of Duties Sze-

nario (Deutsch: Vier-Augen-Prinzip) vorstellbar. Unter dem Be-

griff Separation of Duties versteht man die Vorgabe, dass be-

stimmte Aufgaben von verschiedenen Personen durchgeführt

werden müssen. Die Aktivitäten Patienten-Daten sammeln und

Blutverbrauchs-Daten vorbereiten müssen von verschiedenen, mit

entsprechenden Fähigkeiten versehenen Personen ausgeführt

werden. Diese Aktivitäten müssen weiterhin in der im Beispiel

aufgeführten Reihenfolge ausgeführt werden.

• Kontrollflussbasierte Complianceregel: Die Aktivitäten Blutver-

brauchsbericht generieren, Blutverbrauchsbericht lesen und Ge-

sundheitsinformationen bereitstellen müssen parallel zu den Akti-

vitäten Patientendaten sammeln, Blutverbrauchsdaten vorbereiten

und Blutverbrauchsdaten versenden ausgeführt werden. Dies lässt

schließen, dass der in Abbildung 4.1 dargestellte Kontrollfluss so

bestehen muss, damit der gezeigte Prozess syntaktisch korrekt

ist und damit er die oben skizzierten Complianceregeln einhält.

Dwyer et al. stellen in [DAC99] wiederkehrende Muster bei der Er-

stellung von Eigenschaften von Systemen vor. Außerdem zeigt Dwyer

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong 67

die Häufigkeit mit der bestimmte Muster vorkommen. Das am meisten

vorkommende Muster ist das so genannte Response-Muster. Dieses Mus-

ter beschreibt einen Ausführungspfad in einem System in dem nach

Eintreten eines Ereignisses ein bestimmtes weiteres Ereignis in einem

unbestimmten Zeitabstand eintreten muss. In Beispielprozess könnte

dieses weitere Ereignis die Quittierung der empfangenen Blutdaten

sein.

Turetken et al. verwenden diese Muster in [TEHP11]. Hier wer-

den wiederkehrende Muster für Complianceregeln aufgezeigt, die auf

Prozesse Anwendung finden. Auch die oben aufgeführten Compliance-

regeln für das laufende Beispiel dieser Arbeit wurden von Dwyer et

al. abstrakt beschrieben. Tabelle 4.1 zeigt einige Beispiele für wie-

derkehrende Muster von Dwyer et al. [DAC98] sowie Beispiele aus

weiterführender Literatur [TEHP11].

Diese Complianceregeln sind mit Hilfe von LTL [Pnu77] geschrie-

ben. In der formalen Definition dieser Regeln sind die Variablen A und

B mit den Namen von Aktivitäten in einem Prozess gleichzusetzen.

Zur Beschreibung der Beispiele wird die Abbildung von Variablenna-

men von Complianceregeln auf Namen von Aktivitäten in Prozessen

verwendet. Der Ansatz kann jedoch mit beliebigen Abbildungen von

Variablen in Complianceregeln auf Konstrukte in Prozessen verwendet

werden. Zum Beispiel könnten Variablen in Complianceregeln auf End-

punkte von Services abgebildet werden, die von Aktivitäten in einem

Prozess aufgerufen werden. Somit ist die Complianceregel unabhängig

vom tatsächlichen Namen einer Aktivität. Damit können zum Beispiel

die Services eingeschränkt werden, die in einem bestimmten Prozess

aufgerufen werden können.

In den folgenden Kapiteln werden zwei Ansätze für die Entwicklung

68 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Tabelle 4.1.: Liste von kontrollflussbasierten Complianceregeln (eini-
ge basierend auf [DAC98]). Die Funktionsweise der in
diesen Ausdrücken verwendeten Operatoren wird in Ab-
schnitt 2.5 beschrieben.

Regelbeschreibung Definition in LTL

Aktivität A muss vor dem Prozessende aus-
geführt werden.

3 A

Aktivität A soll nie ausgeführt werden. ¬3A

Aktivität A muss sich immer in der Aus-
führung befinden. Das heißt, der Prozess
muss aus mindestens zwei parallelen Zwei-
gen bestehen. In einem der beiden Zweige
muss immer A gelten.

� A

Ausführungsreihenfolge: Nachdem A aus-
geführt wurde, wird vor dem Prozessende
B ausgeführt.

�(A⇒3B)

Ausführungsreihenfolge: Nachdem A und
danach B ausgeführt wurde wird vor dem
Prozessende C ausgeführt.

3C ⇒
(¬C U(A∧¬C∧#(¬C U B)))

Gemeinsames Auftreten von Aktivitäten. 3A∧3B

Ausführung von A hat Vorrang vor der Aus-
führung von B.

¬B W A

Entweder A oder B sollen ausgeführt wer-
den.

3(A ∨ B)

Entweder wird A oder B ausgeführt aber
nicht beide zusammen oder keine von bei-
den.

3(A ∨ B) ∨ (3¬A ∧ 3¬B)

Zuerst wird A und danach vor dem Prozes-
sende B ausgeführt. Dies führt zur Ausfüh-
rung von C.

�(A ∧ #3B ⇒
#(3(B ∧ 3C)))

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong 69

von regelkonformen Prozessen gezeigt. Der in Abschnitt 4.2 vorge-

stellte Ansatz kann bei der Neuentwicklung von Prozessen eingesetzt

werden. Der in Abschnitt 4.3 vorgestellte Ansatz wird dazu verwen-

det, existierende Prozesse mit Complianceregeln zu versehen. Diese

Complianceregeln können von graphischen Entwicklungswerkzeugen

bei Modifikationen an Prozessmodellen dazu verwendet werden, Re-

gelkonformität sicher zu stellen.

4.2. Vorlagenbasierte Entwicklung regelkonformer Prozesse

Das in diesem Abschnitt vorgestellte Konzept eines Compliancetem-

plates wird als Grundlage für die Entwicklung eines neuen Prozesses

verwendet. Dieses Kapitel stellt zunächst die drei Bestandteile von

Compliancetemplates, das abstrakte Prozessmodell (Abschnitt 4.2.1),

den Variabilitätsdeskriptor (Abschnitt 4.2.2) und den Compliance-

deskriptor (Abschnitt 4.2.3), vor. Danach wird erläutert, wie mit

dem Compliancetemplate ein neuer Prozess erstellt werden kann (Ab-

schnitt 4.2.4).

Ein Beispielszenario für die Verwendung von Compliancetemplates

könnte die Notwendigkeit der Neuentwicklung des in Kapitel 4.1 vorge-

stellten Beispielprozesses sein. Nachdem der Prozess im Beispielszena-

rio mehrfach ausgeführt wurde, könnten zum Beispiel Schwachstellen

auffällig geworden sein. Der benötigte neue Prozess wird auf Grundla-

ge eines Compliancetemplates erstellt. Compliancetemplates werden

von Experten in den Gebieten der Prozessentwicklung und Compliance

erstellt. Nach der Erstellung werden sie zur Vervollständigung an die

eigentlichen Prozessentwickler weitergegeben.

Compliancetemplates [SALM09] sind unvollständig spezifizierte Pro-

70 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Blutdaten

empfangen und

quittieren

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Patientendaten

sammeln

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Legende

Task

Kontrollfluss

Paralleles

Gateway

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Blutverbrauchs-

daten

vorbereiten

Send Blood

Data

Persist Blood

Data

Compliance-

region

Compliance-

region

Compliance-

region

Complianceregion

Abbildung 4.2.: Abstraktes Prozessmodell eines Compliancetemplates

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 71

zessmodelle. Sie dienen als Vorlage für die Neuentwicklung von Pro-

zessen. Das abstrakte Prozessmodell eines Compliancetemplates im-

plementiert bestimmte Complianceregeln, die für den neuen Prozess

gelten müssen. Das heißt, es legt die spätere Struktur eines Prozesses

in Grundzügen fest. Der Variabilitätsdeskriptor stellt die Mengen an

Aktivitäten bereit, die allgemein zur Füllung eines abstrakten Pro-

zessmodells zur Verfügung stehen. Der Compliancedeskriptor enthält

Complianceregeln. Diese werden auf die Complianceregionen eines

abstrakten Prozessmodells angewendet und schränken somit die Men-

ge der Aktivitäten ein, die in diese Complianceregionen eingefügt

werden können. Mit den Complianceregeln kann somit auf die Ausfüh-

rungsreihenfolge der Aktivitäten in einem Prozess Einfluss genommen

werden.

In einem Unternehmen kann es mehrere Arten von Compliance-

templates geben, die die Grundlage für verschiedene Prozesse bil-

den. Damit die implizit in einem Compliancetemplate enthaltenen

Complianceregeln nicht durch Modifikationen am abstrakten Prozess-

modell verändert werden können, kann ein Compliancetemplate nur

an speziellen dafür vorgesehenen Punkten geändert und somit ver-

vollständigt werden. In den folgenden Abschnitten werden die drei

Bestandteile eines Compliancetemplates vorgestellt.

4.2.1. Das abstrakte Prozessmodell eines Compliancetemplates

Dieser Abschnitt stellt die Erweiterung der BPMN 1.0 Spezifikation um

eine Complianceregion dar. Mit dieser Erweiterung wird das abstrakte

Prozessmodell eines Compliancetemplates formal definiert.

Die vorliegende Dissertation verwendet eine in Abbildung 4.10 ge-

72 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

zeigte Grundmenge von BPMN 1.0 Elementen mit der Annahme der

Ausführungssemantik von BPMN 2.0. Bevor das abstrakte Prozessmo-

dell eines Compliancetemplates definiert werden kann, muss definiert

werden, aus welchen Teilen ein BPMN Prozess aufgebaut ist. Siehe

hierzu Definition 1.

Das in Abbildung 4.2 gezeigte Prozessmodell ist eine Erweiterung

des in Abbildung 4.1 gezeigten Blutspendeprozesses. Der ursprüngli-

che Blutspendeprozess wurde mit Complianceregionen versehen. Ein

abstraktes Prozessmodell ist nicht vollständig spezifiziert. Die darin

enthaltenen Complianceregionen müssen mit einzelnen Aktivitäten

oder Prozessfragmenten [EUL09] gefüllt werden, um einen vollständi-

gen Prozess zu bekommen.

BPMN wurde in der vorliegenden Arbeit erweitert und Compliance-

regionen hinzugefügt. Für die Erweiterung wurde der Erweiterungs-

mechanismus von BPMN 2.0 verwendet. Eine Kurzbeschreibung von

BPMN findet sich in Abschnitt 2.3.

Abbildung 4.3 zeigt eine vereinfachte Darstellung des in der BPMN

2.0 Spezifikation vorgestellten Erweiterungsmechanismusses. Alle

BPMN 2.0 Elemente wie Tasks oder Gateways erben von der in Abbil-

dung 4.3 dargestellten Klasse BaseElement. Alle Klassen, die von der

Klasse BaseElement erben, können erweitert werden.

Eine BPMN-Erweiterung wird durch die Implementierung einer Klas-

se, die vom Typ ExtensionDefinition erbt, erstellt. ExtensionDefinition-

Klassen können unabhängig von einem BPMN-Modell erstellt werden.

Um ein BPMN-Modell zu erweitern werden sie mit der Klasse Extension

komponiert, welche wiederum mit der Klasse Definitions komponiert

ist. Die Klasse Definitions erbt von der Klasse BaseElement. Dies macht

die Klasse Definitions und die mit ihr komponierten Klassen zu einem

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 73

Definitions Extensions

1 *

ExtensionDefinition

1

1

ExtensionAttributeDefinition

1

*

BaseElement * *

ComplianceregionTask * *

Abbildung 4.3.: BPMN 2.0-Erweiterungsmechanismus skizziert in
UML (Vgl. [Obj11])

vollwertigen BPMN-Element, das als Erweiterung eines BPMN-Modells

dienen kann.

BPMN-Elemente können wie folgt erweitert werden. Erstellung einer

Klasse, die vom Typ ExtensionDefinition erbt. Assoziation dieser Klasse

mit einer Klasse, die von der Klasse BaseElement erbt. Der Zweck der

Klasse ExtensionAttributeDefinition ist die Erweiterung vorhandener

BPMN 2.0-Elemente mit neuen Attributen.

Der oben vorgestellte Erweiterungsmechanismus von BPMN 2.0

wurde verwendet, um Complianceregionen in BPMN 1.0 einzuführen.

74 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Dies ist in Abbildung 4.3 durch die Erstellung der Klasse Complian-

ceregion und deren Assoziation mit der Klasse Task geschehen. Eine

Complianceregion erweitert somit einen Task. Complianceregionen

haben dieselben Eigenschaften wie BPMN 1.0-Tasks. Das heißt zum

Beispiel, dass mehrere Kontrollflusskonnektoren auf sie zeigen können.

Und es können auch mehrere Kontrollflusskonnektoren von ihnen weg

führen.

Mit diesen Erweiterungen ist es möglich, ein abstraktes Prozess-

modell eines Compliancetemplates in einem graphischen Entwick-

lungswerkzeug zu einem syntaktisch korrekten BPMN-Prozess zu ver-

vollständigen. Bei dieser Vervollständigung muss vom graphischen

Entwicklungswerkzeug erzwungen werden, dass nur die im abstrakten

Prozessmodell enthaltenen Complianceregionen verändert werden

können. Es dürfen keine Modifikationen an anderen Teilen des ab-

strakten Prozessmodells vorgenommen werden, da sonst die darin

implizit enthaltenen Complianceregeln verletzt werden könnten. Es

ist jedoch von Vorteil bei der Befüllung einer Complianceregion aus

einer Menge möglicher Prozessfragmente auswählen zu können. So

können Prozessfragmente wiederverwendet werden, die schon einmal

in anderen Prozessen eingesetzt wurden.

Definition 1 (BPMN Prozess [ODHA06]). Ein BPMN Prozess ist ein

Tupel P = (K,E ,G,F) mit:

• K als der Menge der Knoten, die in die disjunkten Mengen der

Aktivitäten A (zum Beispiel Tasks), Ereignisse E und Gateways G
aufgeteilt werden können.

• E als der Menge der Ereignisse, die in die disjunkten Mengen der

Start-Ereignisse ES , Intermediate-Ereignisse E I und End-Ereignisse

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 75

E E aufgeteilt werden können. Intermediate-Ereignisse könnten in

die disjunkten Mengen der Intermediate-Message-Ereignisse E I
M

und Intermediate-Timer-Ereignisse E I
T aufgeteilt werden.

• G als der Menge der Gateways, die in die disjunkten Mengen der

parallelen Gateways GP , der daten-basierten exklusiven Gateways

GD, der ereignis-basierten exklusiven Gateways GE , der inklusiven

Gateways G I und der komplexen Gateways GC aufgeteilt werden

kann.

• Der Kontrollflussrelation F ⊆ K × K, die die Menge der Kontroll-

flusskonnektoren beschreibt. Die Relation F beschreibt einen gerich-

teten Graphen.

Im Folgenden wird definiert, wann ein BPMN Prozess frei von Syn-

taxfehlern ist. Mit x ∈K berechnet die Funktion in(x) den Eingangs-

grad eines Knotens x, das heißt die Anzahl der auf den Knoten zeigen-

den Kontrollflusskonnektoren. Die Funktion out(x) berechnet entspre-

chend den Ausgangsgrad eines Knotens x. Um einen gültigen BPMN

Prozess zu erstellen, müssen bestimmte Syntax-Regeln eingehalten

werden.

Definition 2 (Gültiger BPMN Prozess [ODHA06]). Ein BPMN Prozess

ist gültig, wenn die folgenden Syntax-Regeln eingehalten werden:

• ∀e ∈ ES | in(e) = 0∧ out(e)≥ 1. Alle Startereignisse haben den

Eingangsgrad 0 und einen Ausgangsgrad größer oder gleich 1.

• ∀e ∈ E E | out(e) = 0∧ in(e) ≥ 1. Alle Endereignisse haben den

Ausgangsgrad 0 und einen Eingangsgrad größer oder gleich 1.

76 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

• ∀e ∈ E I | in(e) = out(e) = 1. Alle Intermediate-Ereignisse haben

einen Eingangsgrad von 1 und einen Ausgangsgrad von 1.

• ∀g ∈ GF ∧ ∀g ∈ GD | in(e) = 1 ∧ out(e) ≥ 1. Parallel-Fork-

Gateways und Event-Based-XOR-Decision-Gateways haben einen

Eingangsgrad von 1 und einen Ausgangsgrad großer oder gleich 1.

• ∀g ∈ GJ ∧ ∀g ∈ GM | in(e) ≥ 1 ∧ out(e) = 1. Parallel-Join-

Gateways und XOR-Merge–Gateways haben einen Eingangsgrad

größer 1 und einen Ausgangsgrad von 1.

Definition 3 (BPMN+ (Mit Complianceregionen erweitertes BPMN)).

Sei C die Menge der Complianceregionen und K die Menge der Knoten in

einem Prozessmodell. Sei weiterhin K+ =K∪ C. Dann gilt:

BPMN+ = {K+,A,E ,G,F}.

Ein abstraktes Prozessmodell eines Compliancetemplates besteht

aus einem BPMN Prozessmodell, welches mit mindestens einer Com-

plianceregion versehen wurde. Dies wird in Definition 4 beschrieben.

Definition 4 (Abstraktes Prozessmodell A eines Compliancetempla-

tes). Sei ein Prozessmodell P ∈ BPMN+. Das bedeutet, P ist ein Tupel

(K+P ,AP ,EP ,GP ,FP). Dann gilt: P ∈A⇔∃k ∈K+P : t ype(k) = C

4.2.2. Der Variabilitätsdeskriptor eines Compliancetemplates

Das Konzept eines Variabilitätsdeskriptors wurde von Mietzner et al.

[MLP08, ML08, Mie08] entwickelt. Es wurde allgemein definiert, um

Software-Artefakte jeglicher Art mit Variabilitäten zu versehen. In

dieser Arbeit werden Variabilitätsdeskriptoren dazu verwendet, um

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 77

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Patientendaten

sammeln

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Blutverbrauchs-

daten

vorbereiten

Send Blood

Data

Persist Blood

Data

Compliance-

region

Compliance-

region

Compliance-

region

Variabilitätsdeskriptor

Variabilitätspunkt 1

Alternative A

Daten

Verschlüsseln

Alternative B

Patienten

befragen

Patientendaten

anonymisieren

Patientendaten

aufbereiten

Variabilitätspunkt 2

Alternative A

Vorgang

protokollieren

Alternative B

Blutverbrauchs-

daten versenden

Legende

Task

Kontrollfluss

Paralleles

Gateway

Complianceregion

Blutdaten

empfangen und

quittieren

Abbildung 4.4.: Abstraktes Prozessmodell eines Compliancetemplates
in Verbund mit Variabilitätsdeskriptor

78 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

anzuzeigen, welche Mengen von Aktivitäten zur Füllung von Com-

plianceregionen verwendet werden können. Abbildung 4.4 zeigt den

abstrakten Prozess eines Compliancetemplates zusammen mit einem

Variabilitätsdeskriptor. Variabilitätsdeskriptoren sind aus Variabilitäts-

punkten aufgebaut, die Alternativen enthalten. Alternativen können

als Mengen von Aktivitäten angesehen werden, die zusammen in eine

Complianceregion eingefügt werden können. Der in Abbildung 4.4 ge-

zeigte Variabilitätspunkt 1 enthält zum Beispiel die Alternativen A und

B. Ein weiterer Bestandteil von Variabilitätspunkten sind Lokatoren.

Ein Lokator ist in Abbildung 4.4 als gestrichelter Pfeil dargestellt. Er

beginnt bei einem Variabilitätspunkt und endet bei einer Compliance-

region. Variabilitätspunkte können voneinander abhängig sein. Dies

bedeutet für den Fall der Abhängigkeit zweier Variabilitätspunkte A

und B: wenn A in einem Prozessmodell verwendet wurde, muss der

von diesem Variabilitätspunkt abhängige Variabilitätspunkt B auch

verwendet werden. Weiterhin können aktivierende Bedingungen mit

jeder Abhängigkeit definiert werden. Diese Bedingungen werden aus-

gewertet, wenn eine bestimmte Abhängigkeit ausgewertet werden soll.

Mit aktivierenden Bedingungen ist es im obigen Beispiel möglich, nach

der Verwendung einer Alternative in A eine Alternative in B nicht mehr

verfügbar zu machen.

Zeigen ein oder mehrere Lokatoren auf eine Complianceregion, so

dürfen nur die Mengen an Aktivitäten in die betreffende Compliance-

region eingefügt werden, die in dem Variabilitätspunkt enthalten sind,

in dem auch der betreffende Lokator definiert ist. Zeigt kein Lokator

auf eine Complianceregion, so dürfen alle Variabilitätspunkte in dem

mit dem Compliancetemplate verbundenen Variabilitätsdeskriptor zur

Befüllung verwendet werden.

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 79

Die formale Definition eines Variabilitätsdeskriptors zeigt [Mie10].

4.2.3. Der Compliancedeskriptor eines Compliancetemplates

Abbildung 4.5 zeigt das gesamte Compliancetemplate mit allen drei

Komponenten. Vergleicht man Abbildung 4.4 mit Abbildung 4.5, so ist

der Compliancedeskriptor auf der linken Seite hinzugekommen. Das

Konzept des Compliancedeskriptors ist an das Konzept des Variabili-

tätsdeskriptors angelehnt. Das Gegenstück zu Variabilitätspunkten bei

den Variabilitätsdeskriptoren sind Compliancepunkte bei Complian-

cedeskriptoren. Auch hier können, genau wie bei den Variabilitätsde-

skriptoren, Abhängigkeiten zwischen den einzelnen Compliancepunk-

ten eines Compliancedeskriptors definiert werden. Für die Definition

dieser Abhängigkeiten wurde dasselbe Modell wie bei den Variabili-

tätsdeskriptoren gewählt. Dieses Modell ist in [Mie08] beschrieben.

Ein Metamodell, das die Zusammenhänge der Komponenten des

Compliancedeskriptors zeigt, ist in Abbildung 4.6 in UML dargestellt.

Ein Compliancedeskriptor enthält demnach eine beliebige Zahl von

Abhängigkeiten und eine beliebige Zahl von Compliancepunkten. Das

Konzept einer Abhängigkeit ist an die Definition eines Variabilitäts-

punkts in [Mie10] angelehnt. Abhängigkeiten enthalten genau eine

Abhängigkeitsquelle und ein Abhängigkeitsziel. Compliancepunkte

enthalten Complianceregeln.

Complianceregeln besitzen eine formale Definition. Diese kann von

graphischen Entwicklungswerkzeugen dazu verwendet werden, Modi-

fikationen am abstrakten Prozess automatisch zu untersuchen. Verletzt

eine Modifikation eine solche formale Definition einer Compliance-

regel, kann das graphische Entwicklungswerkzeug den menschlichen

80 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Patientendaten

sammeln

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Blutverbrauchs-

daten

vorbereiten

Send Blood

Data

Persist Blood

Data

Compliance-

region

Compliance-

region

Compliance-

region

Variabilitätsdeskriptor

Variabilitätspunkt 1

Alternative A

Daten

Verschlüsseln

Alternative B

Patienten

befragen

Patientendaten

anonymisieren

Patientendaten

aufbereiten

Variabilitätspunkt 2

Alternative A

Vorgang

protokollieren

Alternative B

Blutverbrauchs-

daten versenden

Compliancedeskriptor

Compliancepunkt 1

Comlianceregel A

Complianceregion kann

nicht mit Aktivitäten zur

Datenverschlüsselung

gefüllt werden

Complianceregel B

Prozesskonstrukte, die

in Complianceregionen

eingesetzt werden,

dürfen keine Links

enthalten die die

Grenze der Compl.-

Region überqueren

Compliancelink

Compliancelink

Legende

Task

Kontrollfluss

Paralleles

Gateway

Complianceregion

Blutdaten

empfangen und

quittieren

Abbildung 4.5.: Abstraktes Prozessmodell eines Compliancetempla-
tes in Verbund mit Variabilitätsdeskriptor und
Compliancedeskriptor

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 81

Compliance-

deskriptor

Compliance-

punkt

Compliancelink
Compliance-

regel

1

1..*

enthält

1

1..*

hat

Formale

Definition

1..*1
hat

1

1

hat

Abhängigkeit
0..*1

hat

Abhängigkeits-

quelle

Abhängigkeits-

ziel

1

1

hat

1

1

hat

Sprachindikator
1 1

hat

Complianceregion
11

hat

BPMN-erweiterung

Abbildung 4.6.: Metamodell eines Compliancedeskriptors

82 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Prozessmodellierer darauf aufmerksam machen. Eine formale Defini-

tion enthält ihrerseits einen Sprachindikator. Dieser dient dazu, den

Werkzeugen, die mit der formalen Definition einer Complianceregel

arbeiten, anzuzeigen, in welcher Sprache diese geschrieben ist. Mög-

liche Werte, die ein Sprachindikator annehmen kann, sind LTL oder

XPath.

Eine Complianceregel enthält weiterhin einen oder mehrere Com-

pliancelinks, welche auf Complianceregionen zeigen. Mit diesen Com-

pliancelinks wird festgelegt, auf welche Complianceregionen die be-

treffende Complianceregel angewendet werden soll.

4.2.4. Vervollständigen von Compliancetemplates

In diesem Abschnitt werden die Ergebnisse der Arbeiten [WKK+11,

KWS11] verwendet, die zum besseren Verständnis zusammengefasst

werden.

Wie oben erwähnt müssen Compliancetemplates vervollständigt

werden, um aus ihnen einen syntaktisch korrekten Prozess zu machen.

Diese Vervollständigung erfolgt in zwei Schritten. Zuerst werden die

Complianceregionen bestimmt, die zu einem bestimmten Zeitpunkt im

Vervollständigungsprozess befüllt werden können. Die Entscheidung,

welche Complianceregionen dies sind, wird anhand von Abhängigkei-

ten zwischen den Complianceregionen automatisch getroffen. Diese

Abhängigkeiten sind durch die Abhängigkeiten zwischen den Alterna-

tiven in Variabilitätsdeskriptoren definiert. Betrachtet wird der Fall der

Abhängigkeit der Alternative B von der Alternative A in einem Variabili-

tätsdeskriptor. Alternative A ist mittels eines Compliancelinks mit einer

Complianceregion X verbunden. Alternative B ist auf dieselbe Weise

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 83

mit einer Complianceregion Y verbunden. In diesem Fall muss zunächst

Complianceregion X befüllt werden. Danach kann Complianceregion

Y befüllt werden. Für die Auflistung der für eine Complianceregion in

Frage kommenden Aktivitäten werden Abhängigkeiten zwischen Va-

riabilitätspunkten mit einbezogen. Eine vollständige Beschreibung des

in der vorliegenden Arbeit verwendeten Mechanismus zur Auflösung

von Abhängigkeiten und des Berechnens von Complianceregionen, die

befüllt werden dürfen, ist in [WKK+11, KWS11] nachzulesen. Diese

Veröffentlichungen bauen auf dem Konzept eines Compliancetempla-

tes auf.

Mit dem Ergebnis kann in einem zweiten Schritt vom Prozessmo-

dellierer eine der verbleibenden Alternativen für die Befüllung einer

Complianceregion ausgewählt und eingesetzt werden. Bei der Vervoll-

ständigung dürfen nur Complianceregionen mit Aktivitäten befüllt

werden. Neben der Möglichkeit, Complianceregionen mit einer oder

mehrerer Alternativen aus dem Variabilitätsdeskriptor zu befüllen,

ist es einem Prozessmodellierer auch erlaubt, die eingefügten Alter-

nativen zu verändern. Es dürfen keine anderen Modifikationen am

Compliancetemplate vorgenommen werden. Insbesondere dürfen kei-

ne Kontrollflusskonnektoren geändert werden, die sich außerhalb der

Complianceregionen befinden. Mit dem Einsetzen von Aktivitäten in

Complianceregionen können jedoch Complianceregeln verletzt wer-

den, die im Compliancedeskriptor definiert sind, welcher in jedem

Compliancetemplate vorhanden ist. Für die Untersuchung, ob eine Ak-

tivität, die in eine bestimmte Complianceregion eingefügt wurde, eine

oder mehrere mit dieser Complianceregion verknüpfte Compliance-

regeln verletzt, werden Konzepte und Algorithmen verwendet, die in

Kapitel 4.3 beschrieben werden.

84 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

4.3. Compliancescope

Compliancetemplates werden verwendet, um regelkonforme Prozesse

zu erstellen, die von einem bestimmten Punkt aus neu entwickelt

werden müssen. Dieser Punkt ist das Compliancetemplate. Complian-

cetemplates werden nach dem Anwendungsbereich ausgewählt, in

welchem der zu entwickelnde Prozess eingesetzt werden soll.

Im Gegensatz dazu haben Firmen eine Fülle existierender Prozesse,

die, wie andere Software auch, gewartet und an neue Gegebenheiten

angepasst werden müssen. Auch diese Prozesse unterliegen denselben

Complianceanforderungen wie neu zu erstellende Prozesse. Ände-

rungen an einem Prozessmodell, die bei einer Wartung durchgeführt

werden, dürfen ein regelkonformes Prozessmodell nicht in ein nicht

regelkonformes Prozessmodell überführen. Im Folgenden wird ein

Konzept vorgestellt, das dazu dient, Bereiche in einem Prozessmo-

dell zu markieren, für die bestimmte Complianceregeln gelten. Dieses

Konzept heißt Compliancescope [SWLS10].

Compliancescopes und Complianceregionen haben die Gemein-

samkeit, dass die sich in ihnen befindlichen Aktivitäten bestimmte

Complianceregeln einhalten müssen, die mit diesen beiden Konstruk-

ten verknüpft sind. Weiterhin markieren beide Konzepte Bereiche in

einem Prozessmodell, um bestimmte mit ihnen verknüpfte Compliance-

regeln auf diese Bereiche anzuwenden. Eine weitere Gemeinsamkeit

ist, dass Compliancedeskriptoren bei beiden Konzepten für die Defini-

tion von Complianceregeln verwendet werden. Jedoch ist das Konzept

eines Compliancescopes weiter gefasst als das einer Complianceregion.

Ein Compliancescope kann wie schon oben erwähnt nachträglich auf

einen bereits existierenden Prozess angewendet werden. Compliance-

4.3 | Compliancescope 85

scopes können sich überlappen und auch das gesamte Prozessmodell

umspannen, um global gültige Complianceregeln auf Prozessmodelle

anzuwenden.

Compliancescopes können auf zwei Arten in Prozesse eingefügt

werden:

1. Complianceregionen werden zu Compliancescopes transformiert,

wenn bei der Vervollständigung eines Prozessmodells Aktivitäten

in sie eingefügt werden.

2. Compliancescopes werden von Experten in existierende Prozesse

eingefügt. Diese Prozesse werden damit automatisch auf Verstö-

ße gegen Complianceregeln zum Beispiel bei Änderungen am

Prozess überprüfbar gemacht.

Genau wie bei Compliancetemplates können die mit Compliance-

scopes verknüpften Complianceregeln von graphischen Entwicklungs-

werkzeugen dazu verwendet werden, um den Prozessmodellierer auf

die Verletzung einer Complianceregel aufmerksam zu machen.

4.3.1. Definition Compliancescope aufbauend auf der Definition eines

Hypergraphen

Ein Compliancescope stellt eine Hyperkante in einem Hypergraphen

dar. Hypergraphen sind Graphen, die Kanten enthalten, die nicht wie

gewöhnliche Kanten nur zwei Knoten des Graphen miteinander verbin-

den, sondern beliebig viele. Solche Kanten nennt man Hyperkanten.

Hyperkanten werden in einem Graphen als Kreise gezeichnet, in de-

nen eine oder mehrere Knoten des Graphen enthalten sind. Es folgt

86 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

die Definition eines Hypergraphen, auf welcher die Definition eines

Compliancescopes aufgebaut ist.

Definition 5 (Hypergraph). Ein Hypergraph G besteht aus der Menge

von Knoten N und der Menge von Hyperkanten H zwischen den Knoten.

Jede Hyperkante ist eine Menge von Knoten: H ⊆ {2N \;}. Hyperkanten

sind ungerichtet [Ber89].

Auf dieser Grundlage kann die Definition eines Compliancescopes

erfolgen:

Definition 6. Ein Compliancescope ist eine Hyperkante h ∈ H in einem

Hypergraphen G, der mit einem Compliancedeskriptor verknüpft ist. Ein

Compliancescope übernimmt die Eigenschaften einer Hyperkante.

Überträgt man das Konzept der Hypergraphen auf ein BPMN 1.0

Prozessmodell und bildet die in der Definition von BPMN (Definition 1)

beschriebenen Knoten K auf die Knoten N in einem Hypergraphen

ab, dann stellen die Hyperkanten H die Compliancescopes in diesem

Prozessmodell dar.

4.3.2. Erweiterung von BPMN 1.0 mit Compliancescopes

Der in Kapitel 4.2.1 beschriebene Erweiterungsmechanismus der Busi-

ness Process Model and Notation 2.0 (BPMN 2.0) wird auch verwendet,

um BPMN mit Compliancescopes zu versehen.

Abbildung 4.7 zeigt ein mit einem Compliancescope versehenes

Prozessmodell. Aus Gründen der Übersichtlichkeit wurde das Pro-

zessmodell mit nur einem Compliancescope versehen. In dieser Ab-

bildung sieht man auch einen Compliancedeskriptor, der diejenigen

4.3 | Compliancescope 87

Compliancedeskriptor

Compliancepunkt 1

Comlianceregel A

Compliancescope kann

nicht mit Aktivitäten zur

Datenverschlüsselung

gefüllt werden

Complianceregel B

Compliancescope kann

nicht mit Aktivitäten zur

lokalen Speicherung

gefüllt werden

Compliancelink

Compliancelink

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Patientendaten

sammeln

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Legende

Task

Kontrollfluss

Paralleles

Gateway

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Blutverbrauchs-

daten

vorbereiten

Send Blood

Data

Persist Blood

Data

Compliance-

ScopeBlutdaten

empfangen und

quittieren

Abbildung 4.7.: Annotation eines Prozessmodells mit einem
Compliancedeskriptor

88 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Geschäfts-

Prozess-

Konstrukt

Compliance-

Scope

Compliance-

Deskriptor

1..*

1
enthält

1

1..*

Verbunden mit

BaseElement

Aus der BPMN 2.0

Spezifikation

Abbildung 4.8.: Metamodell eines Compliancescopes

Complianceregeln beinhaltet, die auf das gezeigte Prozessmodell ange-

wendet werden sollen. Im Speziellen sieht man, dass die Compliance-

regel A mit dem Compliancescope verbunden ist.

Abbildung 4.8 zeigt das Metamodell eines Compliancescopes in

UML. Ein Compliancescope enthält mindestens ein Prozesskonstrukt.

Prozesskonstrukte sind dadurch definiert, dass sie von der Klasse

BaseElement erben, welche in der BPMN 2.0 Spezifikation definiert

4.3 | Compliancescope 89

ist. Ein in der BPMN 2.0 Spezifikation beschriebenes Prozesskonstrukt

kann zum Beispiel eine Aktivität sein. Weiterhin ist ein Compliance-

deskriptor mit einem Compliancescope verbunden. Das Metamodell

eines Compliancedeskriptors ist in Abbildung 4.6 zu sehen. Der mit

dem Compliancescope verbundene Compliancedeskriptor enthält die

Complianceregeln, die auf die im Compliancedeskriptor enthaltenen

Aktivitäten angewendet werden sollen.

4.4. Gegenüberstellung der Anwendungsgebiete von
Compliancetemplates und Compliancescopes

Sowohl das Konzept des Compliancetemplates als auch das Konzept

des Compliancescopes ist dazu geeignet, Prozesse mit regelkonformem

Kontrollfluss zu erstellen. Die Konzepte werden jedoch in verschiede-

nen Anwendungsgebieten eingesetzt. Mit den Compliancetemplates

wurde ein Ansatz vorgestellt, der bei der Neuerstellung von regelkon-

formen Prozessen einsetzbar ist. Hierbei wird eine Vorlage für einen

Prozess verwendet, die neben freien Stellen vordefinierte Aktivitäten

enthält. Die freien Stellen dieser Vorlage können bei der Entwick-

lung des neuen Prozesses mit Aktivitäten gefüllt werden, während die

vordefinierten Aktivitäten bestimmte Aspekte von Complianceregeln

implementieren, die nicht geändert werden dürfen. Ein Compliance-

template definiert somit implizit die Complianceregeln, die ein neuer

Prozess einhalten muss.

Compliancescopes werden bei der Modifikation von bestehenden Pro-

zessen eingesetzt. Bestehende Prozesse werden hierbei mittels soge-

nannter Compliancescopes in Bereiche aufgeteilt, in denen bestimmte

Complianceregeln gelten. Die Complianceregeln, die für einen be-

90 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

stimmten Compliancescope gelten müssen, werden aus einer Menge an

bestehenden Complianceregeln ausgewählt und mit dem entsprechen-

den Compliancescope verknüpft. Es können aber auch Compliance-

regeln neu definiert und mit einem Compliancescope verbunden wer-

den. Auch dieser Ansatz befasst sich ausschließlich mit kontrollflussba-

sierten Complianceregeln. Nimmt ein menschlicher Prozessmodellierer

Änderungen an einem solchen mit einem Compliancescope versehenen

Bereich vor, so kann das verwendete graphische Entwicklungswerk-

zeug Rückmeldung geben, ob die Modifikation gültig war. Gültige

Modifikationen verletzen keine mit dem entsprechenden Compliance-

scope verbundenen Complianceregel.

In beiden Ansätzen werden Techniken aus dem Bereich des Mo-

delchecking verwendet, um Änderungen automatisch überprüfen zu

können. Hierfür wird ein Teil des aktuellen Prozessmodells in ein Petri-

netz übersetzt und dann dem Modelchecker in seiner Eingabesprache

übergeben.

4.5. Verifizierungsalgorithmus für den Kontrollfluss eines
Prozesses

Der Kontrollfluss von Compliancescopes und Complianceregionen

wird auf die gleiche Art verifiziert. Wie bei den anderen in diesem

Kapitel vorgestellten Konzepten, liegt der Fokus auch bei dem in

diesem Abschnitt vorgestellten Verifizierungsalgorithmus, auf dem

Kontrollfluss eines Prozessmodells. Der in dieser Arbeit vorgestellte

Ansatz verwendet die Technologie des Modelcheckings [CGP01], um

den Kontrollfluss eines Prozessmodells auf Unvereinbarkeiten mit

bestimmten Complianceregeln zu überprüfen.

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 91

Modelchecking ist eine Technologie, die ursprünglich zur Untersu-

chung von komplexen Systemen, wie Prozessoren verwendet wurde.

Mit dieser Technologie lassen sich Eigenschaften, die ein solches Sys-

tem erfüllen muss, prüfen. Hierbei wird dieses System in ein Modell

des Systems übersetzt. Dieses Modell wird mit einer Sprache beschrie-

ben, die von einem Modelchecker interpretiert und analysiert werden

kann. Ein solches Modell kann zum Beispiel die Schaltkreise eines

Prozessors nachbilden. Dieses Modell muss auf der einen Seite stark

genug abstrahiert sein, damit die Zahl der zu erwartenden Zustände in

Grenzen gehalten wird. Auf der anderen Seite muss es komplex genug

sein, um nach der Überprüfung von Eigenschaften, Rückschlüsse auf

das originale System zuzulassen.

Es gibt viele Softwarewerkzeuge, wie zum Beispiel NuSMV [CCG+02],

Prism [KNP02] oder SPIN [Hol03], welche die Konzepte des Model-

checkings umsetzen. In dieser Arbeit wird der SPIN Modelchecker

verwendet, da er schon seit 1980 entwickelt wird und in vielen An-

wendungen eingesetzt wird [Spi]. Das lange Bestehen des SPIN Mo-

delcheckers führte zu einem ausgereiften Produkt. SPIN wurde seit

der Anfangszeit stetig weiterentwickelt und findet auch heute noch in

vielen kommerziellen wie auch nicht kommerziellen Projekten Verwen-

dung [JGP99]. In [WMM09] wird weiterhin gezeigt, wie von SPIN er-

zeugte Gegenbeispiele auf ein ursprüngliches BPMN-Modell abgebildet

werden können. Dies ist ein wichtiges Merkmal, das dem menschlichen

Prozessmodellierer dabei hilft, die Verletzung einer Complianceregel

zu verstehen. Ein weiteres Merkmal des SPIN Modelcheckers ist die

Verwendung von Linearer Temporaler Logik (LTL) als Sprache zur

Spezifikation von Eigenschaften des zu überprüfenden Modells. Vie-

le Modelchecker wie zum Beispiel LoLA [Sch00] verwenden hierfür

92 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Computation Tree Logic (CTL). Vardi argumentiert in [Var01], dass

LTL Spezifikationen für Menschen leichter zu schreiben sind, da bei

LTL die Zustände eines Systems linear betrachtet werden, während mit

CTL Zustandsbäume beschrieben werden. Weiter argumentiert Vardi,

dass der oft in der Literatur angenommene Geschwindigkeitsvorteil

von CTL Modelcheckern in der Praxis verloren geht.

Die folgende Beschreibung des Verifizierungsalgorithmus basiert auf

der Entscheidung für den SPIN Modelchecker. Aus dieser Entschei-

dung resultieren einige der Schritte des Verifizierungsalgorithmus.

Beispielsweise die Transformation des BPMN-Prozessmodells in die

Eingabesprache für SPIN, PROMELA.

Modelle, die mit dem SPIN Modelchecker überprüft werden sol-

len, müssen in der Eingabesprache PROMELA [Ger97] (siehe Ab-

schnitt 2.8) geschrieben werden. PROMELA ist eine C-ähnliche Spra-

che, die entwickelt wurde, um die drei wichtigsten Bestandteile eines

SPIN-Modells zu definieren: Prozesse, Kanäle und Variablen.

Die in der Literatur vorgestellten Konzepte zur Untersuchung von

Prozessmodellen auf Regelkonformität untersuchen das gesamte Pro-

zessmodell [ETHP10, Awa10, WMM09, STK+10]. Das in der vorlie-

genden Arbeit vorgestellte Konzept verwendet Compliancescopes für

die Definition von Regionen in einem Prozessmodell, in denen be-

stimmte Complianceregeln gelten. Beispiele für solche Compliance-

regeln finden sich in Tabelle 4.1 und in den Abbildungen 4.2 und 4.7.

Wird durch das Ändern von Aktivitäten innerhalb eines Compliance-

scopes eine mit diesem Compliancescope verknüpfte Complianceregel

verletzt, muss nur der Prozessteil in diesem Compliancescope über-

prüft werden.

Da diese Arbeit sich mit der Erstellung von regelkonformen Pro-

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 93

zessmodellen in BPMN 1.0 auseinandersetzt, muss das BPMN 1.0-

Prozessmodell in eine Repräsentation in PROMELA übersetzt werden,

um mit dem SPIN Modelchecker überprüft werden zu können.

Es existieren mehrere Ansätze für die Überführung von BPMN 1.0

Prozessmodellen nach PROMELA, die im Folgenden erläutert werden.

Im ersten Ansatz [VF07] werden alle Konstrukte eines BPMN 1.0

Prozessmodells in eigenständige PROMELA-Prozesse übersetzt. Der

Nachrichtenaustausch zwischen den Konstrukten des BPMN 1.0-Prozessmodells

wird mittels Kanälen zwischen den PROMELA-Prozessen umgesetzt

[Gro11]. Die Verwendung dieses Ansatzes führt zu unübersichtlichen

PROMELA Programmen, die eine Zuordnung von PROMELA Program-

mabschnitten zu BPMN-Prozessteilen erschweren.

Der zweite Ansatz verwendet für die Übersetzung von BPMN Pro-

zessmodellen in PROMELA ein Petrinetz als Zwischenmodell. Da Petri-

netze sehr ausführlich in der Literatur behandelt werden und in vielen

Bereichen Anwendung finden, wird dieser Ansatz in der vorliegenden

Dissertation für die Transformation von BPMN 1.0 Prozessmodellen in

PROMELA Programme verwendet. Für die Definition der BPMN 2.0

Ausführungssemantik wurde ein sogenanntes Tokenmodell herangezo-

gen. Ein Token ist ein Konzept, um die Ausführung von Sequenzen in

einem Prozessmodell zu verdeutlichen. Ein Token wird, ähnlich wie

bei Petrinetzen, zwischen den BPMN 2.0 Konstrukten weitergereicht.

Abbildung 4.9 zeigt die Schritte die bei der Überprüfung von Pro-

zessmodellen durch Modelchecker durchgeführt werden müssen. In

den folgenden Abschnitten werden diese Schritte erläutert.

94 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

verification

BPMN- Modell
in Petrinetz

transformieren

Interne
Repräsentat ion des
Petrinetz- Modells in

PROMELA-
Repräsentat ion

umwandeln

Modelcheck
durchführen

Ergebnis des
Modelchecks

ausgeben

Daniel Schleicher 1 of 1 28.01.2013

Abbildung 4.9.: Überprüfungsschritte für BPMN Prozesse geschrieben
in BPMN

Abbildung 4.10.: In dieser Dissertation verwendete Grundmenge von
BPMN 1.0 Elementen

4.5.1. Transformation von BPMN in Petrinetze

Für die Überprüfung von Compliancescopes werden die in dem betref-

fenden Compliancescope enthaltenen Aktivitäten in ein Petrinetzmo-

dell transformiert. In [DDO08] werden Transformationen der wich-

tigsten BPMN 1.0 Konstrukte auf entsprechende Petrinetzfragmente

gezeigt. Die in der vorliegenden Dissertation verwendete Grundmen-

ge von BPMN 1.0 Elementen ist in Abbildung 4.10 dargestellt. Diese

Menge deckt sich mit der in [DDO08] verwendeten Grundmenge an

BPMN-Elementen. In der vorliegenden Dissertation wird nur mit die-

ser Menge an BPMN 1.0 Elementen gearbeitet, da die in [DDO08]

vorgestellten Ergebnisse unverändert weiterverwendet werden sollen.

Die Bedingung für eine unveränderte Weiterverwendung ist es, die

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 95

Grundannahmen von [DDO08] nicht zu verändern.

Abbildung 4.11 zeigt einige der grundlegenden BPMN-Sprachelemente

und deren Entsprechung als Petrinetzkonstrukt. Die mit Inklusive Auf-

teilung und Inklusive Zusammenführung bezeichneten Transformatio-

nen wurden in [DDO08] nicht dargestellt und sind im Rahmen der vor-

liegenden Arbeit erstellte Ergänzungen. Um ein BPMN-Prozessmodell

in ein Petrinetz zu überführen wird das BPMN-Prozessmodell durch-

laufen und jedes BPMN Konstrukt nacheinander auf ein Petrinetz-

konstrukt abgebildet. Dabei werden die gestrichelten Plätze in den

Petrinetzkonstrukten ersetzt.

Die Beschreibung der Verwendung von Modelcheckern und die

Beschreibung der Transformation von BPMN-Prozessmodellen ver-

deutlicht die Anwendbarkeit der wissenschaftlichen Beiträge der vor-

liegenden Arbeit.

BPMN-Elemente, die mit dem Datenfluss innerhalb eines BPMN-

Prozesses zu tun haben, werden bei der Abbildung in ein Petrinetz

nicht berücksichtigt, da sich dieses Kapitel ausschließlich mit dem

Kontrollfluss eines Geschäftsprozesses befasst. In Kapitel 5 wird darge-

legt, wie der Datenfluss eines Geschäftsprozesses auf Regelkonformität

untersucht werden kann.

4.5.2. Repräsentation von Petrinetzen in PROMELA

Um mit dem SPIN Modelchecker überprüft werden zu können, muss

das aus einem BPMN 1.0 Prozess erzeugte Petrinetz in ein PROMELA

Programm übersetzt werden. Der Zwischenschritt bei der Transfor-

mation über ein Petrinetz hat sich in der von Stefan Grohe [Gro11]

durchgeführten Untersuchung als am vorteilhaftesten herausgestellt.

96 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Task

Startereignis

Endereignis

Task

Zwischenereignis

Parallele Aufteilung

Parallele

Zusammenführung

Exklusive

Zusammenführung

Inklusive Aufteilung

Inklusive

Zusammenführung

Exklusive Aufteilung

Abbildung 4.11.: Abbildung von BPMN 1.0 Konstrukten auf Petrinetze
(angelehnt an [DDO08])

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 97

Es ist mit diesem Ansatz einfacher, Rückschlüsse auf das ursprüngliche

BPMN-Prozessmodell zu ziehen. Für die Repräsentation der Plätze

eines Petrinetzes wird der in [RMF07] vorgestellte Ansatz verwendet.

In diesem Ansatz repräsentiert ein Array von Integerwerten die Plätze

eines Petrinetzes. Abgesehen davon werden Makros verwendet. Ma-

kros werden zum Beispiel verwendet, um Konstanten zu definieren.

Diese Konstanten können dann im Quelltext eines Programms verwen-

det werden. Der Compiler ersetzt bei der Übersetzung des Programms

die Konstanten mit den ihnen zugewiesenen Werten. In dieser Arbeit

wird mit Makros festgelegt, wann eine Transition schalten kann und

was beim Schalten einer Transition passiert. Das folgende Makro zeigt

einen Array, welcher die Plätze des entsprechenden Petrinetzes reprä-

sentiert. Dieser Codezeile nach zu urteilen hat das Petrinetz 12 Plätze:

die Plätze 0 bis 11.

byte p lace s [11] ;

Die Makros, die dazu verwendet werden, das Verhalten des Petri-

Netzes zu modellieren, sind in zwei Bereiche aufgeteilt. Im ersten

Bereich wird definiert, in welchen Zuständen des Petri-Netzes welche

Transitionen schalten können. Das folgende Codebeispiel zeigt ein

Makro, welches definiert, dass die Transition 0 schalten kann, wenn

auf Platz 0 eine Marke liegt und auf Platz 2 keine Marke liegt.

#define t rans i t ion0Ready (p lace s [0] && ! p lace s [2])

Im zweiten Verwendungsbereich von Makros wird definiert, welche

Marken von einer Transition konsumiert werden und welche Marken

erzeugt werden, wenn diese Transition aktiviert wird. Das nächste

Codebeispiel zeigt das Makro mit Namen transition0Fire welches de-

finiert, dass beim Aktivieren der Transition 0 eine Marke von Platz 0

98 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

konsumiert wird und auf Platz 2 eine Marke erzeugt wird.

#define t r a n s i t i o n 0 F i r e p lace s [0] = 0;

p lace s [2] = 1;

Codebeispiel 4.1 zeigt eine do-Schleife, welche die Ausführung eines

Petrinetzes in PROMELA steuert. In jedem Schleifendurchgang wird

ein Zweig, der mit einem doppelten Doppelpunkt beginnt, ausgewählt.

Nach den jeweiligen Doppelpunkten steht der sogenannte Guard. Ein

Guard ist eine Bedingung, die eintreffen muss, damit die nachfolgen-

den Instruktionen ausgeführt werden können. Im Fall eines PROMELA

Programms, das die Ausführung eines Petrinetzes simuliert, wird ein

solcher Guard durch die ready-Makros definiert. Sie beschreiben, wel-

che Plätze des Petrinetzes mit Marken versehen sein müssen, damit

eine bestimmte Transition schalten kann.

Die nach dem Guard stehenden Anweisungen werden in der d_step

Umgebung ausgeführt. Die d_step Umgebung sorgt dafür, dass die in

ihr enthaltenen Anweisungen wie eine einzelne Anweisung gesehen

werden und deterministisch ausgeführt werden. Dies bedeutet, dass

die Ausführung dieser Anweisungen nicht durch andere nebenläufige

Prozesse unterbrochen werden kann.

In den in Codebeispiel 4.1 dargestellten d_step Umgebungen wird

mittels der printf Funktion auf der Konsole ausgegeben, welche Transi-

tion gerade geschalten hat, und es wird das Makro aufgerufen, das die

Anweisungen zum Schalten der jeweiligen Transition enthält. In Code-

beispiel 4.1 wird auch ein Beispiel gezeigt, wie die do-Schleife abgebro-

chen wird. Befindet sich eine Marke auf dem Platz 2, so wird die Aus-

führung des Programms mittels der nachfolgenden Goto-Anweisung

zum Label accept geleitet.

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 99

Listing 4.1: Hauptteil des PROMELA-Programms, das für die Ausfüh-

rung der Makros zuständig ist

do
: : t rans i t ion0Ready −> d_step { p r i n t f ("PROCESSED_transition

0") ;

t r a n s i t i o n 0 F i r e }
: : t rans i t ion1Ready −> d_step { p r i n t f ("PROCESSED_transition

1") ;

t r a n s i t i o n 1 F i r e }
: : p[2] −> goto accept

od ;

accept : p r i n t f ("Accepted") ;

Das Codebeispiel A.1 im Anhang zeigt das gesamte laufende Beispiel

aus Abbildung 4.1 als PROMELA Programm.

Im Folgenden wird das PROMELA Konstrukt einer Never-Claim be-

schrieben. Das Verständnis von Never-Claims trägt zum Verständnis

des Algorithmus zur Überprüfung von Compliancescopes bei. Eine

sogenannte Never-Claim wird in Codebeispiel 4.2 gezeigt. Eine Never-

Claim ist die negierte Version der LTL-Formel, die mit dem zu überprü-

fenden Modell dem Modelchecker übergeben wird. Der in dieser Arbeit

verwendete Modelchecker SPIN erzeugt aus einer ihm übergebenen

LTL-Formel durch Negation eine Never-Claim. Diese negierten LTL-

Formeln sind insofern beim Vorgang des Modelchecking nützlich, als

dass damit die Erstellung eines Gegenbeispiels für den Modelchecker

möglich wird. Tritt die Bedingung einer Never-Claim ein, die nicht ein-

treten darf, so kann der Modelchecker den Ausführungspfad, der zum

Eintreten dieser Bedingung geführt hat, als Gegenbeispiel zurückge-

ben. Das Gegenbeispiel zeigt, dass das zu überprüfende Modell nicht

den in der mitgegebenen LTL-Formel beschriebenen Eigenschaften

100 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

genügt.

4.5 | Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses 101

Listing 4.2: Beispiel für eine Never-Claim

1 never { / !(<>(Task3)) /
2 a c c e p t _ i n i t :

T0_ in i t :

4 if
: : (! ((Task3))) −> goto T0_ in i t

6 fi ;

}

Die Transformation eines Prozessmodells in ein Petrinetz wird in

[RMF07, DDO08] verwendet und in [Gro11, Wol10, WMM09] umge-

setzt, um BPMN-Prozessmodele in PROMELA Programme zu überfüh-

ren.

Algorithmus 4.1 Überprüfung von Compliancescopes
1: function ÜBERPRÜFECOMPLIANCE(Parameter: Compliancescope,

ComplianceRegel)
2: Petrinetz = erstellePetriNetz(Compliancescope);
3: PromelaProgramm = erstellePromelaProgramm(Petrinetz);
4: NeverClaim = erstelleNeverClaim(ComplianceRegel);
5: if überprüfeMitModelChecker(PromelaProgramm, Never-

Claim) then
6: zeigeNachricht: "Compliancescope ist regelkonform.";
7: else
8: zeigeGegenbeispiel();
9: end if

10: end function

Algorithmus 4.1 zeigt die Schritte, die für die Überprüfung eines

Compliancescopes durchgeführt werden müssen. Die dort gezeigte

Funktion überprüfeCompliance zeigt die Hauptbestandteile des Verifi-

zierungsalgorithmus. Eingabeparameter dieser Funktion sind zwei Ob-

102 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

jekte. Die Eingabeobjekte enthalten den zu überprüfenden Compliance-

scope und eine zur Überprüfung herangezogene Complianceregel in

Linearer Temporaler Logik (LTL). In Zeile zwei des Programms wird

der übergebene Compliancescope in eine interne Repräsentation ei-

nes Petrinetzes transformiert. LTL-Formeln können in dem in dieser

Arbeit vorgestellten Prototyp graphisch erstellt werden. Die nächs-

ten beiden Zeilen des Algorithmus transformieren die LTL-Formel

in eine Never Claim in PROMELA und das Petrinetz in eine Reprä-

sentation in PROMELA. Nach den Transformationsschritten wird die

Never Claim zusammen mit dem zu überprüfenden Modell an den

Modelchecker übergeben. Genügt das Modell den in der LTL-Formel

definierten Anforderungen wird dies dem Benutzer mit der Meldung

„Compliancescope ist regelkonform.“ angezeigt. Im anderen Fall wird

ein Gegenbeispiel generiert, das zeigt, welcher Ausführungspfad im

Modell die Complianceregel verletzt.

4.6. Zusammenfassung

Die in diesem Kapitel beschriebenen Konzepte zeigen den menschli-

chen Prozessmodellierern bei der Erstellung regelkonformer Prozesse

Complianceverletzungen an. Der Fokus in diesem Kapitel liegt auf

Complianceregeln, die den Kontrollfluss eines Prozesses betreffen. Es

wurden mit dem Compliancetemplate (siehe Abschnitt 4.2) und dem

Compliancescope (siehe Abschnitt 4.3) zwei Mechanismen vorgestellt,

mit denen diese Ziele erreicht werden.

Compliancetemplates unterstützen menschliche Prozessentwickler

bei der Erstellung neuer, regelkonformer Prozesse. Compliancescopes

werden auf bestehende Prozesse angewendet, um Änderungen an

4.6 | Zusammenfassung 103

diesen Prozessen automatisch überprüfbar zu machen. Beide Konzep-

te sind formal definiert und es wurde ein Verifizierungsalgorithmus

beschrieben, der in beiden Konzepten verwendet wird.

Gegenüber der Überprüfung des gesamten Prozessmodells bei jeder

Änderung hat die Überprüfung mit Hilfe von Compliancescopes den

Vorteil, dass der Benutzer bestimmen kann, wie viele Aktivitäten in ei-

nem Compliancescope enthalten sind und wie viele Complianceregeln

mit diesem Compliancescope verknüpft sind. Diese beiden Faktoren

haben starken Einfluss auf das Laufzeitverhalten der Complianceprü-

fung. Mit der Verwendung von Compliancescopes kann ein Benutzer

das Gebiet in einem Prozess, dass bei einer Modifikation automatisch

überprüft wird einschränken, und somit die Laufzeit der Compliance-

prüfung auf einem angemessenen Niveau halten. Compliancescopes

unterscheiden sich in mehreren Bereichen von Subprozessen, wie sie

in der BPMN Spezifikation definiert sind.

• Compliancescopes können eine beliebige Form annehmen. Mit

dieser Flexibilität ist es möglich beliebige Mengen von Aktivi-

täten eines Prozesses in einen Compliancescope aufzunehmen.

BPMN Subprozesse werden als Rechtecke mit abgerundeten

Kanten gezeichnet.

• Im Gegensatz zu den Grenzen von BPMN Subprozessen können

die Grenzen von Compliancescopes von Kontrollflusskonnekto-

ren überquert werden. Dies ist ein weiterer Punkt die Flexibilität

des Einsatzes von Compliancescopes zu erhöhen.

• Ein Compliancescope kann auch nur Objekte, die keine BPMN-

Tasks sind, beinhalten.

104 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

• Compliancescopes können sich mit anderen Compliancescopes

überlappen. Das heißt, sie können Teilmengen von BPMN-Elementen

von anderen Compliancescopes enthalten.

• Zum Konzept der Compliancescopes gehört der Überprüfungs-

algorithmus. Im Gegensatz zu bestehenden Arbeiten wird in

diesem Algorithmus neben der Auswertung der Compliance-

regel auch die Erfüllbarkeit der Complianceregel getestet.

Die Flexibilität, die durch die oben aufgeführten Eigenschaften von

Compliancescopes bedingt ist, hilft menschlichen Prozessentwicklern

dabei, Compliancescopes so zu gestalten, dass verletzte Compliancere-

geln schnell lokalisiert werden können. Somit muss nicht das gesamte

Prozessmodell bei der Behebung einer verletzten Complianceregel

betrachtet werden, sondern nur der betroffene Compliancescope.

Weiterhin sind Compliancescopes ein Werkzeug, um den Umgang

mit Complianceregeln, die auf einen Prozess angewendet werden, zu

erleichtern. Würden alle diese Complianceregeln mit dem Gesamtpro-

zess verknüpft werden, so würde die Menge der Complianceregeln

ab einer bestimmten Zahl unübersichtlich und unverständlich wer-

den. Mit Compliancescopes kann man Complianceregeln dort mit dem

Prozess verknüpfen, wo sie Anwendung finden.

Im folgenden Kapitel wird ein Konzept vorgestellt, welches auch

den Datenfluss in einem Prozessmodell einschränkt. Der Datenfluss

eines Prozesses ist neben dem Kontrollfluss die zweite Dimension, die

es bei der Entwicklung regelkonformer Prozesse zu beachten gibt.

Prozesse können heute aufgeteilt und an verschiedenen Orten ausge-

führt werden [Kha08]. Bei der Ausführung eines verteilten Prozesses

4.6 | Zusammenfassung 105

kann es zu Einschränkungen des Datenflusses bedingt durch Com-

plianceanforderungen kommen. Dies ist beispielsweise der Fall, wenn

bestimmte Daten bestimmte Landesgrenzen nicht überschreiten dür-

fen.

106 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

K
A

P
IT

E
L 5

ENTWICKLUNG VON PROZESSEN

MIT REGELKONFORMEM

DATENFLUSS

Dieses Kapitel befasst sich mit datenbasierten Complianceregeln. Es de-

finiert hierfür das Konzept einer Compliancedomain in Abschnitt 5.2.

Ein Verifizierungsalgorithmus für Compliancedomains wird in Ab-

schnitt 5.3 vorgestellt. Das Kapitel schließt mit Abschnitt 5.5, in wel-

chem ein Ansatz zur Kombination von datenbasierten mit kontrollfluss-

basierten Complianceregeln zu einer zusammengesetzten Compliance-

regel gezeigt wird.

Neben dem Kontrollfluss spielt auch der Datenfluss in Prozessen

eine große Rolle, wenn es um die Einhaltung von Gesetzen oder Re-

geln geht. Der Datenfluss eines Prozesses beschreibt, wie die Daten

107

in einem Prozess fließen und transformiert werden. Daten werden

zum Beispiel von Aktivitäten verändert und zur weiteren Verarbeitung

für andere Aktivitäten freigegeben. Im Folgenden werden zwei un-

terschiedliche Arten von Regeln und Gesetzen berücksichtigt. Zum

einen die Regeln und Gesetze, die auf die Abfolge von Aktivitäten, also

den Kontrollfluss eines Prozesses, zielen. Zum anderen die Arten von

Regeln und Gesetzen, die auf die in einem Prozess verwendeten Daten

Anwendung finden.

5.1. Beispielprozess

Ein wichtiger Bereich sind Gesetze, die den Umgang mit persönlichen

Daten betreffen. Gerade im medizinischen Bereich ist der verantwor-

tungsvolle Umgang mit solchen Daten unabdingbar. Das in dieser

Arbeit verwendete Beispielszenario ist in diesem Bereich platziert und

stellt die Abfolge von Schritten dar, die durchlaufen werden, wenn

eine Blutspende durchgeführt wird. Die einzelnen Schritte sind in

Abbildung 5.1 dargestellt. Um die bei einer Blutspende entstehenden

Patientendaten zu schützen, muss ein solcher Blutspendeprozess eini-

ge Regeln einhalten. Beispielsweise sollen Patientendaten nur anony-

misiert von der Blutspendestation an Krankenhäuser weitergegeben

werden.

Datengetriebene Complianceregeln werden in dieser Arbeit losge-

löst von kontrollflussgetriebenen Complianceregeln eingeführt. Die-

se Trennung ist sinnvoll, um die Besonderheiten dieser Arten von

Complianceregeln besser vermitteln zu können.

Ein Anwendungsgebiet, auf welchem datengetriebene Compliance-

regeln eine große Rolle spielen, ist das Cloud Computing [Ley09].

108 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Konzepte des Cloud Computing werden sich in nächster Zeit vermehrt

in IT-Infrastrukturen von Unternehmen durchsetzen. Cloud Computing

verspricht Unternehmen viel Einsparungspotential für die Unterhal-

tung ihrer IT-unterstützten Operationen. Dies wird einerseits durch

die Auslagerung von IT-gesteuerten Prozessen und Programmen zu

Public-Clouds [MG09] von externen Cloud-Providern erreicht, auf

der anderen Seite können Unternehmen ihre eigene IT-Infrastruktur

effizienter nutzen, wenn sie eine sogenannte Private Cloud [MG09]

einführen. Zwischen diesen beiden Modellen befindet sich das Kon-

zept einer Hybrid-Cloud [MG09], welches die beiden zuerst genannten

Cloudarten vereint. In einer Hybrid-Cloud können zum Beispiel Kun-

dendaten in der eigenen Private-Cloud verarbeitet werden, während

Operationen wie zum Beispiel die Steuerung der Maschinen eines

Unternehmens in der Public-Cloud durchgeführt werden können. Ein

Teil eines Prozesses könnte zum Beispiel in der Private-Cloud eines

Unternehmens ausgeführt werden, während ein anderer Teil desselben

Prozesses bei einem Partner des Unternehmens ausgeführt wird, der

eine Public-Cloud betreibt. Für diese beiden Teile gelten entweder vom

Gesetzgeber oder vom Unternehmen selbst vorgeschriebene Regeln

bezüglich der Daten, die in ihm verarbeitet werden dürfen. Diese Re-

geln wirken sich darauf aus, welche Daten zwischen den Teilen des

Prozesses hin- und hergeschoben werden dürfen.

In Bezug auf den Datenschutz ist es notwendig schon bei der Ent-

wicklung von Prozessen Mechanismen bereitzustellen, die den mensch-

lichen Prozessmodellierer dabei unterstützen, regelkonforme Prozesse

zu erstellen. Ein Konzept, welches zur Entwicklungszeit eines Prozes-

ses eingesetzt werden kann und diese Vorgaben erfüllt, wird in diesem

Kapitel vorgestellt.

5.1 | Beispielprozess 109

Dieses Konzept trägt den Namen Compliancedomain [SFG+11]. Eine

solche Compliancedomain stellt in einem Prozess einen Bereich dar,

der auf einer bestimmten Infrastruktur ausgeführt wird. Gleichzeitig

gelten für diesen Bereich bestimmte, datenbasierte Complianceregeln,

die an eine Compliancedomain annotiert sind.

5.2. Compliancedomains

Compliancedomains erben alle Eigenschaften von Compliancescopes

und erweitern sie mit Eigenschaften, die bei der Untersuchung von

datenbasierten Complianceregeln herangezogen werden können.

Compliancedomains haben zwei grundsätzliche Aufgaben. Sie wer-

den erstens benötigt, um ein Prozessmodell in Bereiche aufzuteilen.

Diese Bereiche können auf verschiedenen Ausführungsumgebungen

laufen [Kha08]. Ausführungsumgebungen können zum Beispiel das

private Rechenzentrum einer Firma oder eine Public-Cloud sein. Die

zweite Aufgabe ist die Annotation von Bereichen eines Prozessmodells

mit datenbasierten Complianceregeln. Compliancedomains werden

somit auf schon bestehende Prozessmodelle angewendet.

Abbildung 5.1 zeigt den Beispielprozess aus Abbildung 4.1. Dieser

Prozess ist mit Compliancedomains versehen. Diese Compliancedo-

mains stellen die verschiedenen physischen Orte dar, an denen dieser

Beispielprozess ausgeführt wird. Compliancedomain 0 repräsentiert

die Orte, an denen Prozessteile, die mit Blutspenden zu tun haben,

ausgeführt werden. Compliancedomain 1 repräsentiert die Verwal-

tung der Krankenhäuser und Blutspendeeinrichtungen. Hier werden

Statistiken über die verfügbaren und bereits verbrauchten Blutkon-

serven geführt. Compliancedomain 2 repräsentiert die öffentlichen

110 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Empfange

Blutdaten

Patientendaten

sammeln

Legende

Task

Kontrollfluss

Paralleles

Gateway

Compliance-

domain 2:

Öffentliche

Krankenhäuser

Compliance-

regeln

Compliance-

domain 0:

Blutspende

Compliance-

regeln

Compliance-

regeln

Compliance-

domain 1:

Krankenhaus-

verwaltung

Blutspender-

daten speichern

Blutverbrauchs-

bericht

generieren

Blutverbrauchs-

bericht lesen

Gesundheits-

informationen

bereitstellen

Blutverbrauchs-

daten

vorbereiten

Blutverbrauchs-

daten

versenden

Gesundheits-

informationen

lesen

Gesundheits-

daten speichern

Abbildung 5.1.: Beispielprozess versehen mit Datenobjekten und
Compliancedomains

Krankenhäuser. Hier werden die Blutspenden weiterverarbeitet und

den Patienten verabreicht.

An diesen Compliancedomains ist jeweils ein Satz von datenbasier-

ten Complianceregeln angeheftet. Beispiele für solche datenbasierten

Complianceregeln werden in der folgenden Liste angeführt:

• Ein Beispiel für eine datenbasierte Complianceregel für Com-

5.2 | Compliancedomains 111

pliancedomain 0 ist, dass Daten von Blutspenden in diesem

Prozess nicht mit Patientenakten abgeglichen werden dürfen.

Dies bedeutet, dass keine Patientendaten aus den öffentlichen

Krankenhäusern in dieser Compliancedomain verarbeitet wer-

den dürfen.

• In Compliancedomain 2 dürfen keine Namen von Blutspendern

verarbeitet werden. Dies hat zur Folge, dass solche Nachrichten

von Compliancedomain 0 zu Compliancedomain 2 keine Na-

men enthalten dürfen. Beispielsweise müssen Blutkonserven in

Compliancedomain 2 mittels Nummern identifiziert werden.

• Anhand von Daten der öffentlichen Krankenhäuser und der Da-

ten aus den Blutspendestationen generiert die Verwaltung der

Krankenhäuser und Blutspendestationen einen Blutverbrauchs-

bericht. Eine für Compliancedomain 1 geltende Complianceregel

ist, dass keine Daten über die Anzahl der Blutspender verarbeitet

werden dürfen. Es dürfen also von Compliancedomain 0 nur zu-

sammengefasste Daten über die Menge des gespendeten Blutes

an Compliancedomain 1 geschickt werden.

Vergleicht man Compliancedomains mit den in Kapitel 4.3 vorgestell-

ten Compliancescopes, so werden einige Gemeinsamkeiten deutlich.

Zum einen ist beiden Konzepten gemein, dass sie in einem Prozess-

modell bestimmte Bereiche markieren, für die bestimmte Eigenschaf-

ten gelten. Zum anderen werden, wie bei Compliancescopes auch,

Complianceregeln mit den in einem Prozessmodell eingefügten Com-

pliancedomains verknüpft. Der Unterschied zwischen beiden Konzep-

ten liegt im jeweiligen Anwendungsbereich. Während Compliance-

112 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

scopes dafür verwendet werden, um den Kontrollfluss eines Prozess-

modells zu regulieren, hat der Einsatz von Compliancedomains in

einem Prozessmodell deutlich weitere Auswirkungen auf den späteren

produktiven Einsatz eines Prozesses. Die Umrahmung eines Teils eines

Prozessmodells weist den darin enthaltenen Prozesskonstrukten eine

bestimmte Ausführungsumgebung zu, die für alle in einer Complian-

cedomain enthaltenen Prozesskonstrukte gleich ist. Dies ist bei der

Anwendung von Compliancescopes nicht der Fall. Die Bindung von

Prozessfragmenten, die von einem Compliancescope umrahmt werden,

ist somit nicht so stark, wie die durch eine Compliancedomain erwirkte

Bindung.

Im Beispiel in Abbildung 5.1 könnte die IT-Infrastruktur, die diesen

Prozess unterstützt, wie folgt aussehen:

Die Services, die von den Tasks aufgerufen werden, die von Com-

pliancedomain 0 eingerahmt sind, könnten auf einem Laptop in einem

Blutspendemobil des Roten Kreuzes ausgeführt werden. Der Teil des

Prozesses, der von Compliancedomain 1 eingerahmt wird, könnte

in einer Public-Cloud ausgeführt werden, da hier unkritische Daten

verarbeitet werden. Das heißt alle Daten, die in Compliancedomain 1

verarbeitet werden sind anonymisiert und zusammengefasst. Es wird

angenommen, dass aus diesen Daten keine Rückschlüsse auf real exis-

tierende Personen gezogen werden können. Der Teil des Prozesses, der

von Compliancedomain 2 eingerahmt ist, könnte in einer sogenannten

Community-Cloud ausgeführt werden. Diese stellen Cloud-Lösungen

für Kunden mit bestimmten Anforderungen bereit. Diese Anforderun-

gen könnten zum Beispiel auf die bereitgestellte Software abzielen.

Im oben gezeigten Beispiel könnte eine solche Community-Cloud von

einem Verbund von öffentlichen Krankenhäusern bezahlt werden, so

5.2 | Compliancedomains 113

dass die von den Krankenhäusern erhobenen Daten immer noch unter

der Datenhoheit dieser Krankenhäuser bleiben. Die Krankenhäuser

können so den gesetzlichen Anforderungen bezüglich der Verarbeitung

von Patientendaten gerecht werden.

5.2.1. Definition von Compliancedomains

Formal sind Compliancedomains an die Definition von Compliance-

scopes angelehnt. Compliancedomains sind auch Hyperkanten H in

einem Hypergraphen G. Auch für Compliancedomains gilt entspre-

chend Definition 5.

Übertragen auf Business Process Model and Notation 1.0 (BPMN

1.0) entspricht ein Hypergraph H einem BPMN Prozess. Die Knoten

in H entsprechen den Aktivitäten in diesem BPMN Prozess-Fragment

und die Kanten in H entsprechen den Compliancedomains.

Abbildung 5.2 zeigt ein UML Modell der Komponenten einer Com-

pliancedomain. Compliancedomains erben alle Eigenschaften von

Compliancescopes. Demnach beinhaltet eine Compliancedomain min-

destens ein Prozesskonstrukt und sie ist mit einem Compliancedeskrip-

tor verbunden. Prozesskonstrukte sind allgemein alle Elemente, die

in einer Prozesssprache enthalten sind. Weiter enthält eine Complian-

cedomain ein Input-Datenformat und ein Output-Datenformat. Diese

beiden Eigenschaften beschreiben jeweils, welche Daten in eine Com-

pliancedomain hinein und welche herauskopiert werden dürfen. Als

Beschreibungssprache dieser Eigenschaften wird in der vorliegenden

Arbeit XML verwendet. Das vorliegende Konzept zur Beschreibung

von Datenformaten kann jedoch auf beliebige Beschreibungssprachen

angewendet werden.

114 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Compliance-

domain

Policy

1

1..*

hat

Ausgabe-format
11

hatEingabe-format
1 1

hat

Geschäfts-

prozess-

konstrukt

Compliance-

scope

Compliance-

deskriptor

1 1..*
Verbunden mit

11..*
enthält

Abbildung 5.2.: Meta-Modell einer Compliancedomain

Aus technischer Sicht sind die Input- und Output-Formate einer

Compliancedomain Formatvorlagen für die Daten, die in einer Com-

pliancedomain verarbeitet werden dürfen. Ein Beispiel für eine solche

Formatvorlage ist, dass alle Attribute eines Datensatzes, der eine Per-

son darstellt, in einer Compliancedomain verarbeitet werden dürfen.

Somit sind alle anderen Datensätze, die nicht dieser Spezifikation

genügen, von der Verarbeitung in dieser Compliancedomain ausge-

schlossen. Des Weiteren ist eine Compliancedomain mit einer oder

mehreren Policies verknüpft. Mit diesen Policies können Eigenschaf-

ten von Ausführungsumgebungen beschrieben werden, auf denen die

jeweiligen Compliancedomains ausgeführt werden dürfen. Policies

können zum Beispiel mit dem Policy-Framework WS-Policy [Web07]

5.2 | Compliancedomains 115

erstellt werden. Das vorliegende Konzept ist jedoch auf keine spezielle

Sprache beschränkt. Das Konzept einer Policy wird vorgestellt, um ein

vollständiges Bild einer Compliancedomain und ihres Anwendungsbe-

reichs zu präsentieren.

Im Folgenden wird anhand eines Beispiels gezeigt, wie Complian-

cedomains bestimmten Ausführungsumgebungen, wie beispielsweise

Clouds, zugeordnet werden können. Dieses Beispiel arbeitet mit den

drei Cloud-Arten: Public-Cloud, Hybrid-Cloud und Private-Cloud. Die

Zuordnung von Compliancedomains auf Ausführungsumgebungen ist

jedoch nicht auf diese drei Cloud-Arten beschränkt. Welche Cloud-

Arten bei der Zuordnung in Betracht gezogen werden, muss von Fall zu

Fall entschieden werden. Als weitere Ausführungsumgebungen wären

zum Beispiel auch private Rechenzentren, Outsourced Private-Clouds

oder Outsourced Community-Clouds denkbar.

Wie in Tabelle 5.1 dargestellt, sind die möglichen Ausführungsum-

gebungen, die für eine Compliancedomain in Frage kommen, geglie-

dert. Die Ausführungsumgebung wird danach festgelegt, mit welcher

Wichtigkeit die in ihr verarbeiteten Daten vom menschlichen Prozess-

modellierer bewertet wurden. Die Wichtigkeit dieser Daten richtet sich

danach, wie bedeutsam diese Daten für die Firma oder Organisation

sind, der sie gehören. Die Wichtigkeit wird in Stufen von eins bis drei

festgelegt. Wobei eins die höchste Wichtigkeit darstellt und drei die

niedrigste.

Compliancedomains, die Daten mit der höchsten Wichtigkeit ver-

arbeiten, dürfen laut Tabelle 5.1 nur in einem organisationseigenen

Rechenzentrum verarbeitet werden. Daten, die mit Wichtigkeit zwei

bewertet wurden, dürfen in einem privaten Rechenzentrum, in einer

Community-Cloud oder einer Hybrid-Cloud verarbeitet werden. Für

116 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Tabelle 5.1.: Zusammenhang der Wichtigkeit von Daten für eine Or-
ganisation und deren mögliche Verarbeitung in Cloud-
Umgebungen

Wichtigkeit
1 2 3

Cloud-Umgebungen
Public-Cloud X
Hybrid-Cloud X X
Private-Cloud X X X

Community-Clouds gilt, dass ein Anbieter für mehrere Organisationen

oder Firmen Dienste anbietet, die den Anforderungen genügen, die

diese Organisationen oder Firmen in einem Bereich gemein haben.

Daten mit der niedrigsten Wichtigkeit dürfen in Public-Clouds verar-

beitet werden. Weiterhin dürfen solche Daten auch in allen anderen

Cloud-Arten und privaten Rechenzentren verarbeitet werden.

5.3. Verifizierungsalgorithmus

Im Gegensatz zu Compliancescopes wird bei Compliancedomains kein

Modelchecker verwendet, um Complianceregeln zu überprüfen. Da-

tenbasierte Complianceregeln, die mit Compliancedomains verknüpft

werden, verlangen ein anderes Verfahren, um die Einhaltung dieser

Regeln zu überprüfen. Das Verfahren und die Grundbausteine solcher

datenbasierter Complianceregeln werden im Folgenden erläutert.

Datenbasierte Complianceregeln schränken den Datenfluss in einem

Prozessmodell ein. In den nächsten Abschnitten werden Eigenschaf-

ten von Kontrollflusskonnektoren und Compliancedomains definiert,

die in datenbasierten Complianceregeln Anwendung finden. Diese

5.3 | Verifizierungsalgorithmus 117

Eigenschaften wurden in [SLS+11] vorgestellt. Sie müssen von einer

Sprache unterstützt werden, die für die Definition von datenbasierten

Complianceregeln eingesetzt werden soll.

Definition 7 (Abstrakter Datentyp).

Nach [OW12] besteht ein abstrakter Datentyp aus „einer oder meh-

reren, mit üblichen mathematischen Methoden festgelegten Mengen von

Objekten und darauf definierten Operationen.“

Ein ADT ist demnach ein Tupel ADT = (W1..Wn, O1..On) von n Werten

W und den mit ihnen assoziierten Operationen O.

5.3.1. Eigenschaften von Datenflusskonnektoren

Datenflusskonnektoren kopieren Daten zwischen Datenobjekten und

Aktivitäten. Ein Datenflusskonnektor ist ein Tupel D = (q, z, d) mit der

Datenquelle q, dem Datenziel z und dem Datentyp d der zu kopieren-

den Daten. Es gilt q ∈ A mit A als der Menge aller Aktivitäten in einem

Prozess und z ∈ A.

5.3.2. Eigenschaften von Compliancedomains

Definition 8 (Ein- und Ausgabedatentyp einer Compliancedomain).

Der Eingabedatentyp einer Compliancedomain CD ist ein Tupel EingabeC D =

(W1...Wm, O1...Ok) von Werten Wm und Operationen Ok.

Analog wird mit AusgabeC D der Datentyp bezeichnet, den die Da-

ten haben müssen, die aus einer Compliancedomain CD heraus kopiert

werden.

Daten werden zum Beispiel unter Verwendung von Datenflusskon-

nektoren zwischen Compliancedomains ausgetauscht. Dies kann bei-

118 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

spielsweise durch Zuweisungen von Daten zwischen einer Aktivität

A und einem Datenobjekt B geschehen. Wobei sich die Aktivität A

außerhalb und das Datenobjekt B innerhalb der betreffenden Com-

pliancedomain befindet.

Die Zuweisung EingabeC D = D schränkt beispielsweise den Eingabe-

Datentyp EingabeC D auf den Datentyp D ein.

Komplexere datenbasierte Complianceregeln können durch Kon-

katenation mit den logischen Operatoren ∧ und ∨ erstellt werden.

Weiterhin können Formeln mit dem ¬ Operator verneint werden und

es können Klammern eingesetzt werden. Die zugrundeliegende Spra-

che ist in Abschnitt 5.5.2 beschreiben.

Die Einhaltung einer solchen Complianceregel wird durch das ver-

wendete graphische Entwicklungswerkzeug durchgesetzt. Wird eine

Änderung an den in einer Compliancedomain befindlichen Prozesstei-

len durchgeführt, so überprüft das graphische Entwicklungswerkzeug

diese Änderung auf Übereinstimmung mit allen an die betreffende

Compliancedomain angehefteten Complianceregeln.

Ist die Eingabeeigenschaft einer Compliancedomain mittels einer

Complianceregel eingeschränkt, so kann vom graphischen Entwick-

lungswerkzeug automatisch überprüft werden, ob eine Datenasso-

ziation, die Daten von außerhalb einer Compliancedomain in diese

Compliancedomain kopiert, zulässig ist. Algorithmus 5.1 zeigt, wie

dies technisch umgesetzt werden kann.

Das hier angewendete Verfahren basiert auf dem Vergleich von Da-

tenformaten. Hierbei wird beim Kopieren von Daten untersucht, ob

das Datenformat der Quelle mit dem in der Complianceregel definier-

ten Datenformat vereinbar ist. Bei dieser Untersuchung wird mit den

Datenformaten gearbeitet, da zur Entwicklungszeit keine Instanzdaten

5.3 | Verifizierungsalgorithmus 119

Blutgruppe

Vorname

Blutgruppe

GeschlechtGeschlecht

Person Person

Knoten-

Menge A

Knoten-

Menge B

Abbildung 5.3.: Vergleich von Daten-schemas zur Überprüfung einer
Complianceregel.

vorhanden sind, die untersucht werden könnten. Die Untersuchung

der Datenformate ist für den in Abbildung 5.1 gezeigten Anwendungs-

fall ausreichend, da man hiermit zum Beispiel verhindern kann, dass

bestimmte Daten wie der Name einer Person nicht in eine bestimmte

Compliancedomain kopiert werden können. Es wird konkret vergli-

chen, ob das Format der Daten, die innerhalb eines Prozesses kopiert

werden, in dieser Compliancedomain verarbeitet werden kann. Dies

wird im Folgenden anhand von Abbildung 5.3 näher erläutert. Algo-

rithmus 5.1 beschreibt den Ablauf der Überprüfung der Datenformate.

Abbildung 5.3 zeigt beispielhaft zwei Datentypen, die jeweils Ei-

genschaften einer Person darstellen. Diese Eigenschaften spielen im

Beispielszenario aus Abbildung 5.1 beim Kopieren von Personendaten

eine Rolle. In diesem Beispielszenario dürfen in Compliancedomain 0

die in Abbildung 5.3 links dargestellten Daten einer Person verarbeitet

werden. Während in Compliancedomain 2 nur die in Abbildung 5.3

rechts dargestellten Daten einer Person verarbeitet werden dürfen.

Wir nehmen an, dass Daten einer Person von Compliancedomain 0

in Compliancedomain 2 kopiert werden sollen. Um Daten zu kopieren

120 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

wird in Business Process Model and Notation 1.0 (BPMN 1.0) eine

Datenassoziation zwischen diesen beiden Compliancedomains einge-

fügt. Eine solche Datenassoziation hat drei Eigenschaften, die beim

Einfügen in ein Prozessmodell gesetzt werden müssen: Die Datenquel-

le, das Datenziel und das Format der zu kopierenden Daten. Im oben

gezeigten Beispiel ist dieses Datenformat der Datenassoziation durch

den in Abbildung 5.3 links dargestellten Baum von Eigenschaften einer

Person repräsentiert.

Für die Validierung von Eingabe- und Ausgabeeigenschaften von

Compliancedomains sind Validatoren zuständig. Ein solcher Valida-

tor wird beim Einfügen einer Datenassoziation in ein Prozessmodell

mit der Überprüfung von Eingabe- und Ausgabeeigenschaften der

betreffenden Compliancedomains betraut.

Dieser Validator vergleicht nur die beiden in Abbildung 5.3 darge-

stellten Eigenschaften einer Person und deckt auf, dass diese nicht

übereinstimmen. Der menschliche Prozessdesigner, der die Datenasso-

ziation in das betreffende Prozessmodell eingefügt hat, kann darauf

aufmerksam gemacht werden. Eine Maßnahme, um die Compliance-

regel von Compliancedomain 2 einzuhalten, besteht darin, das Da-

tenformat der in Compliancedomain 2 zu kopierenden Daten an das

gültige Datenformat von Compliancedomain 2 anzupassen. Am Bei-

spiel von Abbildung 5.3 müsste also die Eigenschaft Vorname aus dem

linken Datenformat entfernt werden.

Algorithmus 5.1 zeigt in Pseudo-Code, wie der oben beschriebene

Vergleich von Datenformaten implementiert wurde. Der Algorithmus

wurde für die Verarbeitung von BPMN 1.0 Prozessmodellen entwickelt.

Die in diesem Algorithmus gezeigte Funktion checkComplianceDomain

dient dazu, von einem graphischen Entwicklungswerkzeug aufgerufen

5.3 | Verifizierungsalgorithmus 121

Algorithmus 5.1 Überprüfung von Compliancedomains
1: function CHECKCOMPLIANCEDOMAIN(BpmnModel complDomain,

DataSchema complRule)
2: DA relDataAssocs = getRelevantDataAssocs(complDomain);
3: for DA currDataAssoc in relDataAssocs do
4: return checkDataAssoc(currDataAssoc, complRule);
5: end for
6: end function
7: function CHECKDATAASSOC(DA currDataAssoc, DataSchema com-

plRule)
8: DataSchema dataToBeCopied = currDataAs-

soc.getDataSchema();
9: return DataSchema result = checkComplRu-

le(dataToBeCopied, complRule);
10: end function

zu werden. Der Algorithmus kann in mehreren Situationen aufgerufen

werden. Beispielsweise nach einer bestimmten Anzahl von Änderungen

oder nach einer bestimmten Zeit, in der das Prozessmodell bearbeitet

wird. Die Eingabeparameter sind von links nach rechts:

• bpmnProcModel: Das betreffende Prozessmodell, welches durch

das Einfügen einer Datenassoziation geändert wurde.

• complDomain: Der Teil des Prozessmodells, der sich in der be-

treffenden Compliancedomain befindet, in der Änderungen vor-

genommen worden sind.

• complRule: Beschreibt den Datentyp, der in der betreffenden

Compliancedomain verarbeitet werden darf.

In Zeile 2 werden die relevanten Datenassoziationen gesammelt. Da-

122 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

tenassoziationen sind dann relevant für den Algorithmus, wenn sie

die Grenze der betreffenden Compliancedomain überschreiten. In den

Zeilen 3 bis 5 werden alle relevanten Datenassoziationen auf Unverein-

barkeit mit der übergebenen Complianceregel untersucht, wobei die

Funktion checkDataAssoc aufgerufen wird. In dieser Funktion findet

in den Zeilen 7 bis 10 die eigentliche Überprüfung der betreffenden

Complianceregel statt. Hierbei wird aus der übergebenen Datenasso-

ziation das Datenformat der zu kopierenden Daten ausgelesen und

der nicht aufgeführten Funktion checkComplRule übergeben. Diese

Funktion vergleicht die Datenformate der Complianceregel und der re-

levanten Datenassoziation miteinander. Das Ergebnis dieses Vergleichs

ist entweder ein leeres Objekt, sofern die betreffende Complianceregel

nicht verletzt wurde oder aber ein Datenschema, das die Elemente

enthält, die nicht übereingestimmt haben.

5.4. Datenflussanalyse im Feld der Compilerentwicklung

Datenflussanalyse ist im Compilerbau ein Mittel, um den Datenfluss

möglicher Programmausführungspfade zu untersuchen [ASU86]. Die

Ergebnisse werden dazu verwendet, Programme zur Compilezeit zu

optimieren. Die Optimierungen zielen auf eine Beschleunigung der

Laufzeit oder des Speicherverbrauchs eines Programms ab. Im Ge-

gensatz zu der in dieser Arbeit vorgestellten Datenflussanalyse, wird

bei der Datenflussanalyse im Compilerbau die Ausführung eines Pro-

gramms simuliert. Ein Ergebnis einer solchen Simulation ist die Aufde-

ckung von toten Pfaden in einem Programm und die Vorhersage von

Wertebereichen, die die Variablen eines untersuchten Programms bei

der Ausführung annehmen.

5.4 | Datenflussanalyse im Feld der Compilerentwicklung 123

Diese Informationen sind für die Erreichung des Ziels der Unter-

stützung von menschlichen Prozessmodellierern bei der Entwicklung

von regelkonformen Geschäftsprozessen nebensächlich. Man könnte

die Wertebereiche, die Variablen während der Ausführung einnehmen,

zur Überprüfung von Complianceregeln heranziehen. So könnte zum

Beispiel eine Complianceregel überprüft werden, die festlegt, dass

eine bestimmte Variable in einem Prozess nur einen bestimmten Wert

annehmen darf.

Es gibt jedoch einige Argumente, die dagegen sprechen. Im Compi-

lerbau werden erstens Datenflussanalysen nur für bestimmte Eingaben

durchgeführt. Für die Überprüfung von datenbasierten Compliance-

regeln wäre es unerlässlich, Datenflussanalysen für den gesamten

Eingaberaum eines Prozesses durchzuführen. Zweitens müsste die

gesamte Datenflussanalyse erneut berechnet werden, würde das be-

treffende Prozessmodell an einer beliebigen Stelle geändert. Eine solch

zeitaufwändige Berechnung ist bei dem in diesem Kapitel vorgestell-

ten Mechanismus zur Überprüfung von datenbasierten Compliance-

regeln nicht notwendig. Bei einer Änderung müssen hier lediglich die

Complianceregeln überprüft werden, die mit der Compliancedomain

verknüpft sind, in der die Änderung vorgenommen wurde.

Im folgenden Abschnitt wird die Zusammenführung kontrollfluss-

basierter und datenbasierter Complianceregeln gezeigt. Compliance-

regeln können einerseits einen Teil, der den Kontrollfluss in einem

Prozess einschränkt und andererseits einen Teil, der den Datenfluss

einschränkt beinhalten [ETHP10]. Ein Beispiel für eine solche Com-

plianceregel ist die Einhaltung des Vier-Augen-Prinzips. Eine Com-

plianceregel, die dieses Prinzip beschreibt, muss sicherstellen, dass ein

Dokument (Daten-Teil) von mindestens zwei verschiedenen Personen

124 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

untersucht wird. Die Untersuchung des Dokuments von den beiden

Personen kann dabei parallel oder sequenziell ablaufen (Kontrollfluss-

Teil).

5.5. Kombination von datenfluss- mit kontrollflussbasierten
Complianceregeln

Die Forschung im Bereich der Compliance von Prozessen begann mit

der Untersuchung des Kontrollflusses in Prozessen. Turetken et. al

zeigen in [TEHP11] einige Regelmuster, wie sie häufiger bei der prak-

tischen Auseinandersetzung mit Complianceregeln im Prozessbereich

auftreten. Die in dem Artikel gezeigten Complianceregeln zielen aus-

schließlich auf den Kontrollfluss eines Prozesses ab. Ein Grund für die

anfängliche Ausblendung des Datenflusses bei der Untersuchung von

Complianceregeln für Prozesse mag die einfachere Handhabbarkeit

des Kontrollflusses im Gegensatz zum Datenfluss in einem Prozess

gewesen sein. Für die Erstellung von Complianceregeln, die den Da-

tenfluss eines Prozesses einschränken, gibt es Sprachen wie die Lineare

Temporale Logik (LTL), die weit verbreitet Anwendung finden.

Dieser Abschnitt zeigt die Notwendigkeit der Verbindung von kon-

trollflussbasierten mit datenbasierten Complianceregeln und präsen-

tiert eine generische Compliancesprache (Abschnitt 5.5.1), die es

ermöglicht diese beiden Complianceregeltypen in einem Ausdruck

zusammenzufassen. Jeder Teilausdruck eines zusammengefassten Aus-

drucks kann von einem dafür vorgesehen Plugin verifiziert werden.

Weiterhin wird ein Algorithmus präsentiert (Abschnitt 5.5.4), der es

ermöglicht, kombinierte Complianceregeln, die mit der generischen

Compliancesprache erstellt wurden, automatisch auszuwerten.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln125

Das Verständnis des Datenflusses ist in den oben genannten Veröf-

fentlichungen jedoch ein anderes als im Folgenden. In diesen Veröf-

fentlichungen wird der Datenfluss aus der den Kontrollfluss beeinflus-

senden Richtung gesehen. Es kann anhand der in einem Prozessmodell

vorhandenen Daten berechnet werden, welche Teile eines Prozesses

ausgeführt werden, da die vorhandenen Daten oft Kontrollflussent-

scheidungen in einem Prozessmodell beeinflussen. Dies geschieht zum

Beispiel bei einer If-Verzweigung. Hier wird eine Bedingung ausge-

wertet. Dies kann unter Zuhilfenahme beliebiger Daten im Prozess

geschehen. Mit diesen Arbeiten kann also gezeigt werden, welche

Bereiche eines Prozesses bei welchen Eingabedaten ausgeführt wer-

den. Dieses Ergebnis macht eine Aussage über den Kontrollfluss eines

Geschäftsprozesses und bringt wenig Klarheit über den Datenfluss.

Die Untersuchung, welche Teile eines Programms bei welcher Eingabe

ausgeführt werden, ist im Bereich des Compilerbaus gut erforscht und

aufgearbeitet [ASU86].

In der vorliegenden Arbeit wird deshalb nicht auf diese Art der Ab-

hängigkeit zwischen dem Kontrollfluss und dem Datenfluss in einem

Prozess eingegangen. Vielmehr werden Complianceregeln untersucht,

die ihre Relevanz aus dem Bereich der verteilten Ausführung von Pro-

zessen haben. Einen Ansatz Prozesse aufzuteilen und in einer verteilten

Umgebung auszuführen findet man in [KL06]. Die in dieser Arbeit vor-

gestellten datenbasierten Complianceregeln beruhen auf der Tatsache,

dass es bei einer Aufteilung eines Prozesses wichtig ist, welche Daten

zwischen den Teilen des Prozesses fließen. Mit Complianceregeln kann

der Datenfluss zwischen bestimmten Bereichen in einem aufgeteilten

Prozess eingeschränkt werden.

Ein Anwendungsfall für die Aufteilung eines Prozesses ist der Ein-

126 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

stieg eines Unternehmens oder einer Organisation in die Verwendung

des Cloud-Computing. Cloud-Computing wird für Unternehmen nicht

nur wegen der großen Einsparpotentiale, sondern auch aufgrund

besserer Möglichkeiten der Skalierbarkeit von Anwendungen immer

interessanter. Die Verwendung von Public-Clouds verspricht hierbei

das größte Einsparpotential, da Anbieter von Public-Clouds dieselben

Ressourcen für verschiedene Kunden wiederverwenden und sie somit

optimal auslasten können. Dies führt zu einem Kostenvorteil, den

die Betreiber von Public-Clouds an ihre Kunden weitergeben können.

Hat sich ein Unternehmen für die Verwendung einer Public-Cloud

entschieden, gilt es die Frage zu beantworten, welche Teile der Pro-

zesse in der Public-Cloud ausgeführt werden sollen. Im Hinblick auf

rechtliche Vorgaben sind einige Dinge zwingend zu beachten. So muss

ein Unternehmen beispielsweise darauf achten, dass Daten, die an

einen Public-Cloud Provider übertragen werden, in einem passenden

rechtlichen Rahmen auch beim Provider weiterverarbeitet werden.

Falls eine Firma die Kostenvorteile einer Public-Cloud nutzen und

dennoch bestimmte Daten schützen möchte, ist eine Hybrid-Cloud das

richtige Mittel: Hierbei wird der Teil eines Prozesses, der zum Beispiel

sensible Daten verarbeitet in der Private-Cloud eines Unternehmens

ausgeführt, während der Teil eines Prozesses, der unkritische Daten

verarbeitet, in einer Public-Cloud ausgeführt werden kann. Für die

Einteilung eines Prozesses in kritische und unkritische Bereiche ist das

Konzept der Compliancedomain anwendbar.

Wie die oben aufgeführten Beispiele zeigen, beschäftigt sich die

Literatur entweder mit kontrollflussbasierten oder mit datenbasierten

Complianceregeln. Es ist jedoch gerade im Bereich des Geschäftspro-

zessmanagements wichtig, kontrollflussbasierte mit datenbasierten

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln127

Complianceregeln zu verbinden. Dies wird am folgenden Beispiel einer

kombinierten Complianceregel deutlich.

Beispiel 1 (Kombinierte Complianceregel). „Die gesammelten Blut-

proben sollen an zwei unabhängigen Stellen A und B überprüft werden.

Danach sollen die Ergebnisse von A und B von einer weiteren unabhän-

gigen Stelle C verglichen werden. Weichen die Ergebnisse von A und B

voneinander ab, so kann die betreffende Blutprobe nicht weiterverarbeitet

werden.“

Mit dieser Complianceregel wird erstens festgelegt, dass zwei Aktivi-

täten A und B vor Aktivität C ausgeführt werden. Dies ist folglich eine

kontrollflussbasierte Complianceregel. Zweitens wird deutlich, dass

Aktivität C mit den Ergebnissen der Aktivitäten A und B arbeiten muss.

Arbeitet Aktivität C mit anderen Daten, wäre die Complianceregel

nicht erfüllt.

Nun wird diese Complianceregel auf das in dieser Arbeit durchgän-

gig verwendete Prozessbeispiel angewendet, welches mit BPMN Pools

versehen wurde, um Verantwortlichkeiten für die im Prozess enthal-

tenen Aktivitäten zuzuweisen. Abbildung 5.4 zeigt den Prozess, auf

den die oben vorgestellte kombinierte Complianceregel angewendet

werden soll. Um die in Beispiel 1 gezeigte Complianceregel auf dieses

Prozessmodell anzuwenden, müssen die Platzhalter A, B und C mit

Aktivitäten in diesem Prozess verknüpft werden. Die Verknüpfungen

sehen wie folgt aus:

• Platzhalter A ist verknüpft mit der Aktivität Blutprobe Überprüfen

im Pool der Blutspendestation.

128 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Blutspendestation KrankenhäuserVerwaltung

Blutspender-

daten speichern

Blutverbrauchs-

daten

versenden

Blutverbrauchs-

bericht

generieren
Blutprobe

überprüfen

Gesundheits-

informationen

bereitstellen

<BloodDonationData>

<DateOfDonation permittedCDs="0, 1, 2">1.7.2010</

DateOfDonation>

<BloodGroup permittedCDs="0, 1, 2">0</BloodGroup>

<Gender permittedCDs="0, 1, 2">Female</Gender>

<Surename permittedCDs="0">Doe</Surename>

<GivenName permittedCDs="0">Jane</GivenName>

<Street permittedCDs="0">EastRd 10</Street>

<ZIP permittedCDs="0, 2">33344</ZIP>

<Country permittedCDs="0, 2">GB</Country>

</BloodDonationData>

Business Process Data

Context

D
o

n
a

to
in

 C
e

n
te

r

Receive Blood

Sample Record

P
ri
v
a

te
 C

lo
u

d

Write Blood

Donor Data

Send Blood

Data

Persist Blood

Data

Legende

Task

Kontrollfluss

Paralleles

Gateway

Prüfergebnisse

vergleichen

Gesundheits-

daten speichern

Send Blood

Data

Persist Blood

Data

Blutdaten

empfangen und

quittieren

Abbildung 5.4.: Beispielprozess, der den gesamten Kontrollfluss und
einen Teil des Datenflusses zeigt.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln129

• Platzhalter B ist verknüpft mit der Aktivität Blutprobe Überprüfen

im Pool der Krankenhäuser.

• Platzhalter C ist verknüpft mit der Aktivität Prüfergebnisse ver-

gleichen im Pool der Verwaltung.

5.5.1. Generische Compliancesprache für die Kombination von

datenbasierten mit kontrollflussbasierten Complianceregeln

Die in Kapitel 4 und in diesem Kapitel gezeigten zwei Arten von Com-

plianceregeln wurden in der Literatur getrennt voneinander behandelt.

Diese beiden Arten sind kontrollflussbasierte und datenflussbasierte

Complianceregeln. Der Bedarf für eine übergeordnete Compliance-

sprache, mit der Complianceregeln ausgedrückt werden können, die

aus den zwei Complianceregelarten aufgebaut sind, wird in [HWG09]

aufgezeigt. Hier wird argumentiert, dass formale Sprachen sich für

bestimmte Zwecke eignen und für andere weniger. Diesen Bedarf

greift die vorliegende Arbeit auf und zeigt, wie Teile von Compliance-

regeln, die in beliebigen formalen Sprachen geschrieben sind, zu einer

Complianceregel kombiniert werden können. Dieser Abschnitt verfolgt

bei der Definition der übergeordneten Compliancesprache einen prag-

matischen Ansatz, indem er zeigt, wie die Aussagenlogik erweitert

werden kann, um dieser Anforderung gerecht zu werden.

Die Beschreibung einer Sprache, die diese Anforderung erfüllt, ist

das Ziel dieses Abschnitts. Abbildung 5.5 zeigt die Kombination von

Beispielsprachen mittels einer übergeordneten generischen Complian-

cesprache. Sowohl Lineare Temporale Logik (siehe Abschnitt 4.1) als

auch XPath [BBC+07] können für die Definition von Complianceregeln

verwendet werden. Mit LTL können kontrollflussbasierte Compliance-

130 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

...LTLXPath

Spezifische

Compliance-

sprachen

Generische

Sprache
Generische Compliancesprache

Abbildung 5.5.: Generische Compliancesprache
(vergleiche:[SWLS10])

regeln entworfen werden. XPath wird im Prototyp der vorliegenden

Dissertation als Beschreibungssprache für datenbasierte Compliance-

regeln eingesetzt.

Begonnen wird mit der Beschreibung der einzelnen Schritte, die

notwendig sind, um eine solche übergeordnete Compliancesprache zu

erstellen. Eine Eigenschaft dieser Sprache soll sein, dass beliebige Be-

schreibungssprachen für logische Zusammenhänge mit ihr verwendet

werden können. Weiterhin soll die Sprache auf einer weit verbreiteten

Grundsprache aufbauen, um so das Erlernen dieser Sprache zu erleich-

tern. Ausdrücke, die in dieser Sprache geschrieben sind, sollen somit

für Personen mit Vorwissen auf dem Gebiet logischer Sprachen intuitiv

verständlich sein. Diese Eigenschaften dienen dem Ziel der vorliegen-

den Dissertation: der Erleichterung für den Menschen regelkonforme

Prozesse zu erstellen.

5.5.2. Formale Definition einer generischen Compliancesprache

Dieser Abschnitt stellt die formale Definition der generischen Com-

pliancesprache bereit. Abbildung 5.6 zeigt eine Erweiterung der Backus-

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln131

〈Satz〉 → 〈AtomarerSatz〉 | 〈Satz〉 〈Verbinder〉 〈Satz〉 |
¬〈Satz〉

〈AtomarerSatz〉 → 〈Term〉 | 〈Term〉 = 〈Term〉

〈Term〉 → 〈Sprachbezeichner〉”–
”〈BeliebigsprachigerTerm〉

〈Verbinder〉 → ⇒ | ∧ | ∨ | ⇔

〈Sprachbezeichner〉 → LTL | XPath | . . .

〈BeliebigsprachigerTerm〉 → Sprachausdruck

Abbildung 5.6.: Übergeordnete Sprache zur Definition von
Complianceregeln (Erweiterung der BNF der
Aussagenlogik)

Naur-Form (BNF) der Aussagenlogik. Die hier gezeigte BNF der Aussa-

genlogik wurde mit dem Ziel erweitert, die in Abschnitt 5.5.1 aufge-

führten Eigenschaften einer generischen Compliancesprache in diese

Sprache einzuführen. Die formale Semantik der Aussagenlogik wird

dabei beibehalten. Mit dieser Erweiterung ist es möglich, aussagenlo-

gische Ausdrücke zu erweitern, dass Ausdrücke, die in verschiedenen

Sprachen geschrieben sind, in einen Ausdruck eingebettet werden.

Die Aussagenlogik wurde verwendet, weil sie eine der bekanntesten

Sprachen für die Erstellung logischer Ausdrücke ist. Sie bietet sich

daher als Basis für eine Erweiterung an. Durch die Verwendung der

132 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Aussagenlogik können Modellierer von Complianceregeln ihre Kennt-

nisse über die Aussagenlogik anwenden und mit dem Wissen über die

Erstellung von Complianceregeln verknüpfen.

Die BNF der Aussagenlogik wurde an zwei Stellen erweitert. Die

erste Stelle, an der eine Erweiterung vorgenommen wurde, ist die

Produktionsregel für das 〈Term〉-Nichtterminal. Terme gehen in zwei

Nichtterminale über, von denen das Erste ein Sprachbezeichner sein

muss und das zweite einen Ausdruck in einer „fremden“ Sprache be-

schreibt. Anhand der Auswertung dieses Sprachbezeichners kann dann

zum Beispiel eine grafische Entwicklungsumgebung ein bestimmtes

Programm zur Auswertung des nachfolgenden Ausdrucks heranziehen.

Die zweite Änderung an der BNF der Aussagenlogik wurde in der

vorletzten Zeile der in Abbildung 5.6 gezeigten BNF eingeführt. Hier

wird der weiter oben eingeführte Sprachbezeichner spezifiziert. Als

Beispiele für Sprachbezeichner sind LTL und XPath aufgeführt.

Die dritte Erweiterung ist in der letzten Zeile zu sehen. Hier wurde

ebenfalls eine neue Produktionsregel eingeführt, die dazu dient, das

Nichtterminal 〈BeliebigsprachigerTerm〉 in ein Terminal zu überführen,

das die Spezifikation eines Ausdrucks in einer beliebigen Sprache

ermöglicht.

5.5.3. Beispiele

Die in Beispiel 1 gezeigte Complianceregel besteht aus zwei Teilen,

dem Kontrollflussteil und dem Datenflussteil. Für jeden dieser Tei-

le muss eine andere Sprache zur Beschreibung verwendet werden.

Es ist nicht möglich, beide Arten von Complianceregeln mit einer

existierenden Sprache auszudrücken, da die Anwendungsgebiete zu

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln133

unterschiedlich sind. Dies wird deutlich, wirft man einen Blick in die

in Kapitel 4 und in diesem Kapitel vorgestellten Complianceregeln. Im

Folgenden wird gezeigt, wie eine solche kombinierte Complianceregel

von automatischen Werkzeugen ausgewertet wird.

Beispiel 2 (Verknüpfung von Teilen einer Complianceregel). Eine

Complianceregel R wird durch Verknüpfung logischer Ausdrücke A, B

und C mit Konjunktionen erstellt. Die Ausdrücke A, B und C können in

verschiedenen logischen Sprachen geschrieben sein.

R= LT L− A ∧ X Path− B ∧ LT L− C

Beispiel 2 zeigt, wie die Ausdrücke A, B und C mit einer Konjunk-

tion verbunden werden können. Vor jedem dieser Ausdrücke steht

ein beispielhafter Sprachbezeichner. Prinzipiell können beliebig viele

Ausdrücke auf diese Weise miteinander verbunden werden. Diese Aus-

drücke können in einer beliebigen logischen Sprache geschrieben sein.

Konjunktionen werden zum Beispiel in der Aussagenlogik verwendet.

Die Verifizierung eines verbundenen Ausdrucks wird dann von einem

Programm angestoßen, das den umgebenden prädikatenlogischen Aus-

druck analysiert und für die darin enthaltenen Ausdrücke in anderen

Sprachen weitere Programme (Plugins) zur Verifizierung aufruft.

In Kapitel 4 wurde Lineare Temporale Logik als Beschreibungsspra-

che für kontrollflussbasierte Complianceregeln verwendet, während

in dem vorliegenden Kapitel gezeigt wurde, wie datenflussbasierte

Complianceregeln spezifiziert werden können. Es wird nun beispiel-

haft gezeigt, wie diese Sprachen für die Definition einer kombinierten

Complianceregel verwendet werden können. Dazu wird die Beispiel-

complianceregel aus Beispiel 1 herangezogen. Wie oben beschrieben,

besagt der kontrollflussbasierte Teil dieser Complianceregel, dass die

134 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Aktivitäten A und B vor der Aktivität C ausgeführt werden sollen.

Ausgedrückt in Linearer Temporaler Logik (LTL) ergibt dies diesen

Ausdruck:

�((3A∧3B)⇒3C) (5.1)

Die Complianceregel stellt sicher, dass im gesamten Prozess (global)

gilt, dass letztendlich (finally) C ausgeführt wird, wenn A und B

ausgeführt wurden. Es ist hierbei unerheblich, in welcher Reihenfolge

A und B ausgeführt werden. Die Aktivitäten A und B müssen nicht

direkt hintereinander ausgeführt werden. Sie können zum Beispiel

auch parallel ausgeführt werden.

Der datenbasierte Teil der in Beispiel 1 gezeigten Complianceregel

ist in diesem Beispiel nicht explizit beschrieben. Dies ist bei einer

real existierenden Complianceregel meist der Fall. Implizit muss je-

doch angenommen werden, dass die Ergebnisse der Aktivitäten A und

B als Eingabe für Aktivität C dienen. Der datenbasierte Teil dieser

Complianceregel würde folglich mit den in Abschnitt 5.3 vorgestellten

datenbasierten Eigenschaften von Datenobjekten und Aktivitäten wie

in Gleichung 5.2 aussehen:

EingabeC = AusgabeA∧ AusgabeB (5.2)

Kombiniert man nun diese beiden Regeltypen mittels einer Konjunk-

tion, so erhält man nachstehende Formel. Der Sprachbezeichner für

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln135

den datenbasierten Teil ist data.

Datenbasier terTeil
︷ ︸︸ ︷

data− (EingabeC = AusgabeA∧ AusgabeB)∧

Kont rol l f lussbasier terTeil
︷ ︸︸ ︷

LT L− (�((3A∧3B)⇒3C))

(5.3)

Die beiden Formelteile werden mittels einer Konjunktion verbunden,

da sowohl der datenbasierte als auch der kontrollflussbasierte Teil der

Complianceregel wahr sein müssen, damit der Wahrheitswert der ge-

samten Complianceregel wahr ist. Für die beiden in Gleichung 5.3 mar-

kierten Teile sind dann bei der Überprüfung der gesamten Compliance-

regel jeweils verschiedene Programme zuständig.

5.5.4. Automatische Überprüfung von Ausdrücken in einer

generischen Compliancesprache, die aus

verschiedensprachigen Ausdrücken aufgebaut sind

Das Ziel der Zusammenführung verschiedener Arten von Compliance-

regeln in einem logischen Ausdruck besteht in der Möglichkeit solche

Ausdrücke automatisch überprüfbar zu machen. Die Grundlage des

weiter unten präsentierten Algorithmus bildet das Konzept des Regel-

baumes [Gro11]. Regelbäume sind Binärbäume, deren innere Knoten

aussagenlogische Operatoren, wie beispielsweise die Konjunktion (∧),

sind. Die Blätter von Regelbäumen repräsentieren Complianceregeln,

die in beliebigen Sprachen geschrieben sein können. Wenn für eine

solche in einem Blatt des Regelbaums verwendete Sprache ein Werk-

zeug zur Verarbeitung eines Ausdrucks dieser Sprache existiert, so

kann diese Teilcomplianceregel automatisch überprüft werden.

136 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Das Konzept wird in dieser Arbeit dazu verwendet, kombinierte

Complianceregeln graphisch darzustellen, um die einzelnen Schrit-

te des Überprüfungsalgorithmus zu erklären. Regelbäume sind ein

Hilfsmittel, um Ausdrucke, die in der generischen Compliancesprache

geschrieben sind, besser verständlich darzustellen.

Definition 9 (Regelbaum). Ein Regelbaum R= (KI ,KB,KH) mit KI

als der Menge der inneren Knoten, KB als der Menge der Blattknoten

(innere Knoten mit Grad 2) und KH als der Menge der Halbblatt-Knoten

ist ein Binärbaum. Der Regelbaum hat folgende Eigenschaften:

1. ∀k ∈KI : k ∈K∧ ∪K∨ ∪K=. K∧ ist die Menge Knoten, die die

Konjunktion repräsentieren, K∨ ist die Menge der Knoten, die die

Disjunktion repräsentieren und K= ist die Menge der Knoten, die

Gleichheit repräsentieren.

2. ∀k ∈KH : k ∈K¬. K¬ ist die Menge der Knoten, die die Negation

repräsentieren.

3. ∀k ∈ KB : k ∈ KL. KL beschreibt die Menge der Knoten, die

einen beliebigsprachigen logischen Ausdruck repräsentieren.

Ein Regelbaum ist ein Binärbaum, dessen innere Knoten aussagenlo-

gische Operatoren repräsentieren. Die Operatoren ∧, ∨ und = haben

als Knoten in diesem Baum einen Eingang und zwei Ausgänge. Ab-

bildung 5.7 zeigt dies für den ∧-Operator. Der ¬-Operator hat einen

Eingang und einen Ausgang. Die Blätter dieses Baumes repräsentieren

Ausdrücke in beliebigen logischen Sprachen.

Abbildung 5.7 zeigt die in Gleichung 5.3 aufgestellte Compliance-

regel als Regelbaum.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln137

□((◊A ∧ ◊B) → ◊C)

∧

EingabeC =

AusgabeA ∧

AusgabeB

Abbildung 5.7.: Darstellung des Regelbaumes für das laufende Beispiel

Wie die Überprüfung von mit der generischen Compliancesprache

beschriebenen Complianceregeln erfolgt, zeigt Algorithmus 5.2. Dieser

Algorithmus basiert auf dem Algorithmus der in-order Traversierung

[OW12] von Binärbäumen. Er ist hier aufgeführt, um zu zeigen wie

dieser theoretische Ansatz für die Untersuchung von Compliancepro-

blemen eingesetzt werden kann.

Wie in Zeile eins dargelegt, beschreibt der Algorithmus die Im-

plementierung der Funktion verify. Diese Funktion liefert entweder

true oder false zurück. Als Parameter wird ihr ein Regelbaum-Objekt

übergeben. Dieses Regelbaum-Objekt ist vom Typ BinaryTree.

In dieser Methode verify wird der Regelbaum unter Anwendung ei-

ner Tiefensuche durchlaufen. Die Implementierung der Methode verify

ist in zwei Teile geteilt. Diese Teile sind durch die in Zeile 3 gezeigte

If-Anweisung definiert. Wie oben definiert, werden die inneren Knoten

eines Regelbaumes auf die logischen Operatoren abgebildet, die die

in einem Ausdruck kombinierten Complianceregeln verbinden. Die

Blätter des Regelbaumes repräsentieren die einzelnen Compliance-

regeln, die zu einer großen Complianceregel zusammengefügt worden

sind. Die in Zeile 3 gezeigte If-Anweisung überprüft, ob es sich bei

138 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Algorithmus 5.2 Überprüfung eines Regelbaumes (vergleiche
[SLS+11])

1: function VERIFY(BinaryTree ruleTree)
2: boolean result = false;
3: if not ruleTree.isOperator() then
4: return ruleTree.getComplianceRule().check();
5: else
6: if ruleTree.getParent().isNot() then
7: return not (verify(ruleTree.getChild());)
8: else
9: result = verify(ruleTree.getLeft());

10: if ruleTree.getParent().isAnd() then
11: return result and verify(ruleTree.getRight());
12: end if
13: if ruleTree.getParent().isOr() then
14: return result or verify(ruleTree.getRight());
15: end if
16: end if
17: end if
18: return false;
19: end function

dem aktuell zu untersuchenden Knoten des übergebenen Regelbau-

mes um einen inneren Konten, also einen Operator, oder um ein

Blatt, also eine Complianceregel handelt. Handelt es sich um eine

Complianceregel, so wird in Zeile 4 die Complianceregel aus dem

aktuellen Knoten überprüft. Für diese Überprüfung wird der oben er-

wähnte Sprachbezeichner ausgewertet, um die Sprache zu bestimmen,

mit der diese Complianceregel geschrieben wurde. Anschließend kann

das Programm aufgerufen werden, das Complianceregeln in dieser

Sprache verarbeiten kann.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln139

Jeder Knoten im zu untersuchenden Regelbaum stellt die Methode

getComplianceRule() bereit. Mit ihr ist es möglich, das Objekt, das

eine Complianceregel repräsentiert, die mit dem aktuellen Knoten des

Regelbaums verknüpft ist, abzufragen. Alle Complianceregel-Objekte

implementieren die Methode check(). In dieser Methode wird das

Plugin aufgerufen, das mit der Sprache umgehen kann, in der die

betreffende Complianceregel geschrieben ist.

Handelt es sich um einen inneren Knoten, der einen Operator reprä-

sentiert, so wird die Ausführung des Algorithmus in Zeile 6 fortgeführt.

Zunächst wird hier untersucht, ob es sich um einen not-Operator han-

delt. Ist dies der Fall, so wird die Methode verify rekursiv mit dem

Kindknoten des aktuellen Knotens aufgerufen. Das Ergebnis wird ne-

giert zurückgegeben. In Zeile 9 wird durch einen rekursiven Aufruf

der Methode verify begonnen, den linken Teilbaum zu durchlaufen.

Die Rekursion stoppt, wenn die Suche an einem Blatt des Regelbau-

mes angekommen ist. In diesem Fall wird die Anweisung in Zeile vier

ausgeführt.

In den Zeilen 10 bis 15 wird für jeden bei der Tiefensuche gefunde-

nen Knoten untersucht, ob dieser einen Operator der Form and oder or

repräsentiert. Basierend auf dem Ergebnis dieser Untersuchung wird

in den Zeilen 11 und 14 das Ergebnis der Funktion berechnet. In dieser

Phase des Algorithmus ist der Wahrheitswert für den linken Teilbaum

bekannt. Dieser wurde in Zeile 9 berechnet. Ist der aktuelle Knoten

zum Beispiel ein and-Operator, so wird der Wahrheitswert des linken

Teilbaumes mit dem Wahrheitswert des rechten Teilbaumes konjugiert

und als Ergebnis des Algorithmus zurückgegeben.

Tritt keiner der in der Methode verify behandelten Fälle ein, so

wird der Wahrheitswert false zurückgeliefert. Der Algorithmus muss

140 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

hier aber noch nicht beendet werden, da ein anderer Teilbaum den

Wahrheitswert true haben könnte. Der Algorithmus kann zum Beispiel

fortgeführt werden, wenn zwei Teilbäume des Regelbaumes mit einer

Disjunktion verbunden sind. Hier muss nur einer der beiden Teilbäume

den Wahrheitswert true aufweisen. Das heißt, die Auswertung der

Complianceregeln in nur einem Teilbaum muss den Wahrheitswert

true ergeben, um der Auswertung des gesamten Regelbaumes den

Wahrheitswert true zu geben.

Sind alle Teilbäume des Regelbaums durchlaufen, kann das Ergebnis

der Complianceuntersuchung ausgegeben werden. Dieses Ergebnis

lautet entweder true, sofern die durch den Regelbaum repräsentierte

Complianceregel durch das zugrunde liegende Prozessmodell erfüllt

ist, oder es lautet false, wenn dies nicht der Fall ist.

5.6. Zusammenfassung

In diesem Kapitel wurde aufgezeigt, dass bei der Definition von Compliance-

regeln auch der Datenfluss in einem Prozessmodell eine Rolle spielt.

Anhand des in dieser Arbeit durchgehend verwendeten Beispiels wurde

diese Behauptung untermauert. Um datenflussbasierte Compliance-

regeln für menschliche Prozessmodellierer leichter handhabbar zu

machen, wurde das Konzept einer Compliancedomain vorgestellt.

Mit diesem Konzept ist es möglich, Bereiche in einem Prozessmo-

dell zu markieren. Für jeden dieser Bereiche können datenbasierte

Complianceregeln definiert und mit ihnen verknüpft werden. Die mit

einer Compliancedomain verknüpften Complianceregeln gelten für

alle in ihr enthaltenen Prozesskonstrukte. Sie dienen dazu, den Da-

tenfluss in einem Prozessmodell einzuschränken. Weiterhin können

5.6 | Zusammenfassung 141

Compliancedomains mit Ausführungsumgebungen, wie zum Beispiel

einer Public-Cloud, verknüpft werden. Somit kann ein Prozess an

den Grenzen der Compliancedomains mit den in [KL06] vorgestell-

ten Mechanismen zerteilt und auf den durch die Compliancedomains

zugewiesenen Ausführungsumgebungen ausgeführt werden. Die mit

den Compliancedomains verknüpften Complianceregeln stehen in

direktem Zusammenhang mit den mit ihnen verknüpften Ausführungs-

umgebungen. Manche Ausführungsumgebungen, wie zum Beispiel

eine Public-Cloud, erfordern eine restriktivere Handhabung des Daten-

flusses als beispielsweise ein privates Rechenzentrum. So könnte der

Versand von personenbezogenen Daten in eine Public-Cloud von einer

Firma verboten worden sein. Dies könnte in einer entsprechenden

Complianceregel umgesetzt sein. Neben einer formalen Definition von

Compliancedomains wurde ein Algorithmus erläutert, der zeigt, wie

datenbasierte Complianceregeln überprüft werden können.

Dieser Abschnitt definiert eine generische Compliancesprache, die es

erstmals ermöglicht, unterschiedliche Sprachen für die Spezifizierung

einer Complianceregel zu verwenden. Diese generische Compliance-

sprache basiert auf der weit verbreiteten Aussagenlogik und erweitert

diese, um andere Sprachen in aussagenlogische Ausdrücke einzubetten.

Die einzelnen Teile eines solchen Ausdrucks werden auf Grundlage der

mit dem Ausdruck verknüpften Compliancedomain ausgewertet. Für

jeden dieser Teile des Ausdrucks wird ein Wahrheitswert ermittelt. Die

Kombination der einzelnen Wahrheitswerte ergibt den Wahrheitswert

des Gesamtausdrucks.

Eine leicht verständliche Darstellung für Ausdrücke dieser generi-

schen Compliancesprache sind Regelbäume. Sie werden dazu verwen-

det, den als letzten Punkt in diesem Abschnitt vorgestellten Untersu-

142 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

chungsalgorithmus für die generische Compliancesprache zu erklären.

5.6 | Zusammenfassung 143

K
A

P
IT

E
L 6

GEMEINSAME ERSTELLUNG

REGELKONFORMER PROZESSE

Die in dieser Arbeit vorgestellten Konzepte dienen der Unterstützung

von menschlichen Prozessmodellierern bei der Erstellung regelkon-

former Prozesse. Lösungen, um dieses Ziel zu erreichen, wurden in

den vorhergehenden Kapiteln gezeigt. Doch nur durch eine genau

festgelegte Abfolge von Schritten zur Erstellung von Prozessen, die

nicht umgangen werden kann, lässt sich die Erstellung von nicht

regelkonformen Prozessen vermeiden. Die in den vorhergehenden

Kapiteln gezeigten Lösungen lassen sich in diese Abfolge von Schritten

einbinden.

Dieses Kapitel befasst sich mit der Methodik, die bei der Erstellung

regelkonformer Prozesse in Organisationen umgesetzt werden muss.

Es zeigt in Abschnitt 6.1 den Prozess, der die Arbeit mit mehreren Part-

145

nern an einem Prozess regelt. Danach wird in Abschnitt 6.2 gezeigt,

welche Werkzeuge notwendig sind, um diesen Prozess bestmöglich

zu unterstützen und um eine Umgehung unmöglich zu machen. Der

Hauptbeitrag dieses Kapitels, das Konzept der Vervollständigungsebe-

nen, wird in Abschnitt 6.3 ausführlich erläutert.

Die im Folgenden vorgestellten Abläufe müssen in einer Organisati-

on installiert und durchgesetzt werden.

6.1. Erstellung regelkonformer Prozesse unter Beteiligung
mehrerer Partner

Abbildung 6.1 zeigt, wie die in den vorangegangenen Kapiteln vor-

gestellten Konzepte, Compliancetemplate und Compliancescope, in

einen Prozess zur Erstellung regelkonformer Prozesse eingebunden

sind. Der Prozess ist mit Business Process Model and Notation (BPMN)

beschrieben. Die Abbildung zeigt eine Zusammenarbeit zwischen drei

Organisationen. Compliancetemplate Lieferant, einem Unternehmen,

das sich auf Beratung im Bereich Compliance von Prozessen speziali-

siert hat (Complianceberatung) und ein Kunde mit Bedarf an Lösungen

zur Erstellung von regelkonformen Prozessen.

Der in Abbildung 6.1 gezeigte Prozess beginnt mit der Erkenntnis

einer Organisation, dass ein neuer Prozess für eine bestimmte Aufga-

be erstellt werden muss. Es wird davon ausgegangen, dass bei dem

Hersteller von Compliancelösungen für Prozesse der Bedarf für ein

neues Compliancetemplate erkannt wird. Dieser Bedarf kann zum

Beispiel durch einen Kunden ausgelöst werden. Das laufende Beispiel

dieser Arbeit aus Abbildung 4.1 aufgreifend, könnte die Krankenhaus-

verwaltung des Roten Kreuzes von Hong Kong dieser Kunde sein.

146 6 | Gemeinsame Erstellung regelkonformer Prozesse

C
o

m
p

lia
n

c
e

-

B
e

ra
tu

n
g

K
u

n
d

e
C

o
m

p
lia

n
c
e

te
m

p
la

te
 L

ie
fe

ra
n

t

P
ro

z
e

s
s
-

V
o

rl
a

g
e

n
-

V
e

rw
a

lt
e

r

P
ro

z
e

s
s
-

E
n

tw
ic

k
le

r
Erkenntnis:

Bedarf

vorhanden

Compliance-

Template

erstellen

C
o

m
p

lia
n

c
e
-

E
x
p

e
rt

e Sammlung

relevanter

Compliance-

Regeln

Compliance-Regeln

für neues

Compliancetemplate

definieren

Compliance-

Scopes und

Domains

einfügen

P
ro

z
e

s
s
-

E
n

tw
ic

k
le

r

(K
u

n
d

e
) Compliance-

Template

füllen

Prozess

überprüfen

Complianceregel verletzt

Prozess

ausführen

P
ro

je
k
t

M
a

n
a

g
e

m
e

n
t

Projekt

Erstellen

Abbildung 6.1.: Ablauf der Erstellung regelkonformer Prozesse. Nota-
tion: angelehnt an BPMN

Der Bedarf könnte hier darin bestanden haben, die Schritte, die bei

einer Blutabnahme durchzuführen sind, zu standardisieren. Weiter-

hin könnte die verbesserte Dokumentation von Blutentnahmen eine

Anforderung gewesen sein. Um die Komplexität von Abbildung 6.1

in Grenzen zu halten, wird das Auslösen des Bedarfs nicht gezeigt.

Die Anwendung der Methodik verlangt die Definition verschiedener

Rollen. Diese Rollen können von Teilbereichen oder Einzelpersonen in

einer Organisation ausgefüllt werden. Die folgende Liste erklärt die in

Abbildung 6.1 verwendeten Rollen.

• Verantwortlicher für Compliancetemplates: Ein Inhaber die-

ser Rolle ist für die Erstellung und Wartung einzelner Complian-

cetemplates oder Mengen von Compliancetemplates verantwort-

6.1 | Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner 147

lich, wobei die eigentliche Entwicklung an weitere Personen

vergeben oder ausgelagert werden kann. Der Verantwortliche

für ein Compliancetemplate ist Ansprechpartner für alle Belange,

die das Compliancetemplate betreffen.

• Prozess-Modellierer: Ein Prozessmodellierer ist mit der Erstel-

lung und Änderung von Compliancetemplates betraut.

• Complianceexperte: Ein Complianceexperte verfügt über Fach-

wissen im Bereich der Gesetze, die bei der Erstellung und dem

Betrieb von Prozessen Anwendung finden. Ihm kommt die Rolle

zu, mit den Rechtsprechungen in verschiedenen Ländern bezüg-

lich der Erstellung und der Ausführung von Prozessen vertraut

zu sein.

• Prozessmodellierer (Kunde): Der Prozess-Modellierer auf Sei-

ten des Kunden ist für die Vervollständigung von Complian-

cetemplates zuständig. Inhaber dieser Rolle stellen aus einem

Compliancetemplate, einen vollständigen Prozess her. Dies ge-

schieht mit den in Kapitel 4.2 vorgestellten Mitteln.

Nachdem der Bedarf für ein neues Compliancetemplate festgestellt

wurde, wird ein Projekt erstellt, an dem Personen mit den beschriebe-

nen Rollen mitarbeiten. Dieses Projekt wird vom Projektmanagement

bis zur Fertigstellung des neuen Compliancetemplates betreut. Das

Compliancetemplate ist nach dem Schritt Compliance- Scopes und Do-

mains einfügen fertiggestellt. Im Schritt der Projekterstellung werden

Personen mit den benötigten Kenntnissen in das Projekt eingebunden.

Weiterhin wird ein Einsatzbereich abgesteckt, in dem das zu erstel-

lende Compliancetemplate angesiedelt sein soll. Dieser Bereich kann

148 6 | Gemeinsame Erstellung regelkonformer Prozesse

zum Beispiel mit wirtschaftlichen oder geographischen Eigenschaften

des Compliancetemplates beschrieben sein. In dem laufenden Beispiel

dieser Arbeit ist dies der medizinische Bereich. In diesem Projektschritt

werden auch die funktionalen Anforderungen festgelegt, die das neue

Compliancetemplate implementieren muss. Hiermit wird festgelegt,

welchen Zweck das neue Compliancetemplate erfüllen muss.

Nachdem das Projekt erstellt wurde, kann die Sammlung der für

das neue Compliancetemplate relevanten Complianceregeln begin-

nen. Dies geschieht unter Beachtung des vom Projektmanagement für

das neue Compliancetemplate gesteckten wirtschaftlichen Rahmens.

In diesem Schritt wird analysiert, welche Anforderungen bezüglich

der Rechtssicherheit des zu erstellenden Compliancetemplates beach-

tet werden müssen. Es muss beispielsweise herangezogen werden,

in welchem wirtschaftlichen Bereich ein Prozess ausgeführt werden

soll, der mit dem neuen Compliancetemplate erstellt wird. Weiterhin

müssen die für das zu erstellende Compliancetemplate relevanten

Gesetzestexte ausgewählt werden. Nach der Auswahl müssen diese

Gesetzestexte analysiert und in Complianceregeln übersetzt werden,

die auf IT-unterstützte Prozesse anwendbar sind. Dieser Schritt ist

notwendig, da Gesetzestexte nicht direkt mit Hinblick auf Prozes-

se geschrieben werden. Im laufenden Beispiel dieser Arbeit ist der

wirtschaftliche Bereich, für den die geltenden Complianceregeln aus-

gewählt werden sollen, der medizinische Bereich. Hier ist der Schutz

der Privatsphäre der Patienten von zentraler Bedeutung. Compliance-

regeln, die den Umgang mit Personendaten betreffen, sind in diesem

Bereich restriktiver als in anderen Bereichen.

Die so entstandene Sammlung von Complianceregeln, die für den

wirtschaftlichen Rahmen gelten, in dem das neue Compliancetempla-

6.1 | Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner 149

te eingesetzt werden soll, wird im nächsten Schritt verwendet, um

diejenigen Complianceregeln auszuwählen, die auf das neue Complian-

cetemplate angewendet werden sollen. Die Entscheidungen, welche

Complianceregeln dies sind, wird anhand mehrerer Kriterien getrof-

fen. Erstens werden nur Complianceregeln in Betracht gezogen, die

im vorhergegangenen Schritt des Erstellungsprozesses als relevant

bezeichnet wurden. Zweitens werden die funktionalen Anforderun-

gen in Betracht gezogen, die das zu erstellende Compliancetemplate

implementieren muss.

Nach der Auswahl der Complianceregeln folgt deren Übersetzung in

eine maschinenlesbare Sprache. Dieser Schritt ist notwendig, da viele

Complianceregeln Interpretationen von Gesetzestexten sind. Die Über-

setzung von Complianceregeln in maschinenlesbare Ausdrücke wird

von Complianceexperten durchgeführt. Eine solche maschinenlesbare

Sprache ist zum Beispiel LTL oder die in Kapitel 5.5.1 vorgestellte Spra-

che zur Definition von datenbasierten Complianceregeln. Im Schritt

Compliancetemplate erstellen wird das Compliancetemplate von ei-

nem Prozessmodellierer unter Berücksichtigung der einzuhaltenden

Complianceregeln erstellt. Das Compliancetemplate wird so erstellt,

dass es die einzuhaltenden Complianceregeln implementiert. Im lau-

fenden Beispiel stellt eine solche Complianceregel die Überprüfung

der Blutproben von mindestens zwei unabhängigen Seiten sicher. Des

Weiteren werden die Regionen definiert, die beim Vervollständigen des

Compliancetemplates mit neuen Aktivitäten gefüllt werden können.

Sollte es notwendig sein, können im nächsten Schritt Compliance-

scopes und Compliancedomains in das neue Compliancetemplate ein-

gefügt werden. Compliancescopes können beim Vervollständigen von

Compliancetemplates wichtig sein, wenn durch den Anwender Än-

150 6 | Gemeinsame Erstellung regelkonformer Prozesse

derungen an bereits eingefügten Prozessfragmenten vorgenommen

werden. Mittels der Compliancescopes kann der Umfang der zugelas-

senen Änderungsmöglichkeiten eingeschränkt werden. Zum Beispiel

ist es vorstellbar, dass im Compliancetemplate für die Blutentnahme

des Roten Kreuzes Hong Kong, die Blutentnahmeaktivität durch eine

neuere Version ersetzt wird.

Nach der Fertigstellung kann das Compliancetemplate an einen

Kunden übergeben werden. Dieser verwendet Werkzeuge, die die

unautorisierte Arbeit mit Compliancetemplates unterbinden. Diese

Werkzeuge implementieren die in dieser Arbeit vorgestellten Konzepte.

6.2. Werkzeuge für die Erstellung regelkonformer Prozesse

Alle Softwarekomponenten, die an der Erstellung eines regelkonfor-

men Prozesses beteiligt sind, müssen bestimmten Anforderungen ge-

nügen. In der folgenden Liste sind diese Komponenten aufgelistet und

die dazugehörigen Anforderungen beschrieben. Abbildung 6.2 zeigt,

wie diese Komponenten verbunden sind.

• Sicheres Templaterepository: Prüft beim Lesen und Schreiben

die Integrität von Compliancetemplates und Prozessen. Das Le-

sen aus dem Repository und Schreiben in das Repository ist nur

für Personen und Werkzeuge erlaubt, die sich am Repository

erfolgreich über eine dafür bereitgestellte Schnittstelle authen-

tifiziert haben. Dies kann mit Authentifizierungsmechanismen,

die mit asymmetrischen Schlüsseln arbeiten, erreicht werden.

Das Templaterepository dient somit dem Ziel den Zugang zu

Compliancetemplates und Prozessen, die mit Compliancescopes

und Compliancedomains versehen sind, zu beschränken.

6.2 | Werkzeuge für die Erstellung regelkonformer Prozesse 151

Sicheres
Template-
repository

Entwicklungs-
werkzeug

Compliance-
checker

Compliance-
template

Prozess-
modell

Abbildung 6.2.: Konzeptionelle Übersicht über die Komponenten, die
für die Entwicklung regelkonformer Prozesse mitein-
ander arbeiten müssen.

• Entwicklungswerkzeug für Prozesse: Ein Entwicklungswerk-

zeug für die Entwicklung regelkonformer Prozesse muss die

in dieser Arbeit vorgestellten Konzepte implementieren. Das

Entwicklungswerkzeug kann auch ein einfacher Texteditor sein.

• Compliancechecker: Diese Komponente ist für die automati-

sche Untersuchung von Prozessmodellen zuständig. Mit ihr kön-

nen Prozessmodelle nach einer Modifikation auf Einhaltung von

Complianceregeln überprüft werden.

Mit diesen Werkzeugen kann das Compliancetemplate zu einem

syntaktisch korrekten Prozess vervollständigt werden. Es wird hier-

bei an den dafür vorgesehenen Stellen, den Complianceregionen, mit

weiteren Aktivitäten befüllt. Ein Compliancetemplate kann nach jeder

Modifikation automatisch auf Complianceregelverletzungen überprüft

werden. Es kann auch nach Abschluss einer Reihe von Modifikationen

automatisch überprüft werden. Bei der Erstellung von Prozessen sind

oft mehrere Personen mit unterschiedlichen Fähigkeiten beteiligt, die

verschiedene Ziele bei der Vervollständigung eines Compliancetempla-

152 6 | Gemeinsame Erstellung regelkonformer Prozesse

tes verfolgen. In heutigen, global agierenden Unternehmen, können

Personen weit voneinander entfernt sein, so dass eine direkte Zusam-

menarbeit erschwert ist. Das folgende Kapitel beschreibt ein Konzept

zur gemeinschaftlichen Vervollständigung von Compliancetemplates.

6.3. Vervollständigungsebenen: Ein Konzept zur
gemeinschaftlichen Entwicklung regelkonformer Prozesse

Analog zur Erstellung herkömmlicher Software können am Entste-

hungsprozess von Prozessmodellen mehrere Modellierer beteiligt sein.

Ausschlaggebend ist hierbei zum einen, dass für den Entwicklungspro-

zess Modellierer mit unterschiedlichen Fähigkeiten benötigt werden,

und zum anderen die durch Parallelentwicklung von Teilprozessen

erreichte Zeitersparnis. Ein Konzept, das dabei hilft, die Zusammenar-

beit verschiedener Personen bei der Erstellung eines Prozessmodells

zu steuern, ist das Konzept der Vervollständigungsebenen [SALS10].

Die beiden Hauptmerkmale von Vervollständigungsebenen sind:

• Kontrollflusskonnektoren können die Grenzen von Vervollstän-

digungsebenen überqueren. Dies resultiert daraus, dass Vervoll-

ständigungsebenen von ihren zugrundeliegenden Compliance-

scopes begrenzt werden

• Sie können beliebige Mengen von Elementen eines Prozesses

enthalten. Zum Beispiel ist es erlaubt Vervollständigungsebenen

zu bilden, die keine Aktivitäten enthalten. Dies resultiert daraus,

dass Vervollständigungsebenen von ihren zugrundeliegenden

Compliancescopes begrenzt werden

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
153

• Vervollständigungsebenen können sich mit anderen Complian-

cescopes überlappen. Das heißt, sie können Teilmengen von

BPMN-Elementen von anderen Vervollständigungsebenen ent-

halten.

• Sie repräsentieren Phasen des Prozesses, mit dem auf Grund-

lage von Compliancetemplates, Prozessmodelle vervollständigt

werden. Diese Phasen werden zum Beispiel in Abbildung 6.3 als

Ebenen dargestellt.

• Sie stellen ein Sichtenkonzept nach [SLS10] dar, das zeigt, wel-

che Informationen in einer bestimmten Phase des Prozesses

der Vervollständigung eines Compliancetemplates herangezogen

werden können.

Das in diesem Kapitel vorgestellte Konzept ist in der in Abbildung 6.1

gezeigten Methodik an der Stelle Compliancetemplate füllen einsetzbar.

Vervollständigungsebenen können bei der Arbeit mit externen Ex-

perten unterstützend eingesetzt werden, wenn ihnen zum Beispiel

lediglich der Zugang zu den Vervollständigungsebenen und somit

Prozessinformationen gewährt wird, die für die Beratung nötig sind.

Dadurch müssen Firmen nicht komplette Prozesse offen legen, um

Expertenrat einzuholen.

Weiterhin dienen Vervollständigungsebenen der Reduktion der Kom-

plexität bei der Arbeit an einem Prozessmodell. Auf bestimmten Ver-

vollständigungsebenen ist zum Beispiel nicht das gesamte Prozessmo-

dell zu sehen, sondern nur der Teil, der gerade von einer bestimmten

Person vervollständigt wird. Dieser Ansatz des Ausblendens von Infor-

mationen, die für ein bestimmtes Problem unnötig sind, nennt man

154 6 | Gemeinsame Erstellung regelkonformer Prozesse

den Teile-und-herrsche-Ansatz. Dieser Ansatz ist grundlegend für die

Bearbeitung von Problemen, die zu groß sind, um in einem Schritt

gelöst zu werden. Dabei wird das Gesamtproblem in Teilprobleme zer-

legt, die für sich gelöst werden müssen, um eine Lösung des Gesamt-

problems zu bekommen. Vervollständigungsebenen zwingen hierbei

die an der Erstellung eines Prozessmodells beteiligten Personen den

Teile-und-herrsche-Ansatz für die Erstellung des Prozessmodells zu

verwenden. Dies folgt zum Beispiel daraus, dass zu einem bestimmten

Zeitpunkt während der Vervollständigung nur bestimmte Teile des zu

bearbeitenden Prozessmodells sichtbar sind. Im Gegensatz zu BPMN

Subprozessen können Compliancescopes beliebige Teilmengen von

Elementen eines Prozesses enthalten (siehe Kapitel 4.3.1). Vervollstän-

digungsebenen visualisieren diese Teilmengen von Elementen eines

Prozesses.

Abbildung 6.3 zeigt, wie aus einem Compliancetemplate über mehre-

re Vervollständigungsebenen hinweg ein vollständiger Prozess entsteht.

Vollständig ist ein Prozess dann, wenn im Prozess keine nicht befüllte

Complianceregion mehr existiert.

Auf Vervollständigungsebene 1 wird ein Compliancetemplate ver-

wendet, welches schon eine für den späteren Prozess wichtige Menge

an Complianceregeln implementiert. Um beim Beispielszenario aus

Kapitel 4 zu bleiben, könnte dieses Compliancetemplate das in Abbil-

dung 4.2 gezeigte sein. Es könnte somit auf Vervollständigungsebene

1 die Erstellung eines neuen Blutentnahmeprozesses angestoßen wer-

den. Durch das Einfügen neuer Aktivitäten in eine Complianceregion

auf einer Vervollständigungsebene wird eine neue Vervollständigungs-

ebene aufgespannt. In Abbildung 6.3 wird durch das Einfügen von

Aktivitäten in Complianceregion A die Vervollständigungsebene zwei

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
155

Weiterleitung der

Complianceregel

CA

Weiterleitung der

Complianceregeln

CA und CB

CB

CA

CA

Vervollständigungs-

Ebene 1

Vervollständigungs-

Ebene 3

Vervollständigungs-

Ebene 2 B

V
e

rv
o

ll
s

tä
n

d
ig

u
n

g

Compliancetemplate

A

CA CB

Abbildung 6.3.: Beispiel: Vervollständigungsebenen; Weiterleitung
von Complianceregeln (vergleiche [SALS10])

aufgespannt.

Die in Complianceregion A eingefügte Menge von Aktivitäten ent-

hält wiederum eine Complianceregion. Diese muss mit Aktivitäten

gefüllt werden, um einen syntaktisch korrekten Prozess zu bekommen.

Dies geschieht auf Vervollständigungsebene 3. Die auf Vervollständi-

gungsebene 3 eingefügte Menge von Aktivitäten enthält keine weitere

Complianceregion. Somit sind alle Complianceregionen in diesem

Beispiel mit Aktivitäten gefüllt. Der Prozess ist syntaktisch korrekt.

Abbildung 6.3 zeigt weiterhin, wie Complianceregeln zwischen den

Vervollständigungsebenen weitergereicht werden. Darauf wird im fol-

genden Kapitel eingegangen.

Eine Vervollständigungsebene ist durch ein Tupel

v = (c, vV ,VK) mit

156 6 | Gemeinsame Erstellung regelkonformer Prozesse

• c ∈ C als einem Compliancetemplate aus der Menge aller Com-

pliancetemplates C ,

• vV ∈ V als der Vatervervollständigungsebene aus der Menge der

Vervollständigungsebenen V und

• VK als der Menge der Kind-Vervollständigungsebenen von V
beschrieben.

Um die Vatervervollständigungsebene vv einer Vervollständigungs-

ebene v zu bestimmen, wird die Funktion vater definiert. Jede Ver-

vollständigungsebene hat keine oder höchstens eine Vatervervollstän-

digungsebene. Deshalb definieren wir

vater : V → V ∪∅.

Die Vatervervollständigungsebene vV wird berechnet, indem man

einen Compliancescope si aus der Menge aller Compliancescopes

Si einer anderen Vervollständigungsebenen vi findet, der dieselben

Aktivitäten enthält, die in der Vervollständigungsebene v enthalten

sind.

Weiter wird die Funktion akt mit A als der Menge aller Aktivitäten

und P als der Menge aller Prozesselemente, die Aktivitäten enthalten

können, definiert:

akt : P → A.

Mit akt(v), als der Menge aller Aktivitäten einer Vervollständigungs-

ebene v und akt(s), als der Menge aller Aktivitäten eines Complian-

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
157

cescopes s kann die Vatervervollständigungsebene vv einer Vervollstän-

digungsebene v wie folgt berechnet werden:

vater(v) = vV ∈ V mit si ∈ Si ∧ akt(v) = akt(s)

Zur Bestimmung der Kindervervollständigungsebenen wird die Funk-

tion kinder definiert. Jede Vervollständigungsebene hat entweder kein

Kind oder eine beliebig große Menge von Kindern:

kinder : V → 2V .

Die Menge der Kindervervollständigungsebenen VK wird berechnet,

indem man für jeden Compliancescope si aus der Menge aller Com-

pliancescopes Si der Vervollständigungsebene v prüft, ob die Menge

der Aktivitäten akt(vi) gleich der Menge der Aktivitäten akt(si) ist.

Diese Vervollständigungsebene wird zur Menge der Kindervervollstän-

digungsebenen VK von v hinzugefügt.

kinder(v) = VK ∈ 2V mit ∀vK ∈ VK ∧ si ∈ Si : akt(si) = akt(vk)

6.3.1. Verschachtelte Complianceregeln und Flexibilität

Complianceregionen sind mit Complianceregeln verknüpft. Fügt man

eine Complianceregion in ein Prozessmodell ein, so werden auto-

matisch auch die mit ihr verknüpften Complianceregeln in das Pro-

zessmodell übernommen. Auf jeder der in Abbildung 6.3 gezeigten

Vervollständigungsebenen können durch das Einfügen weiterer Com-

plianceregionen neue Complianceregeln eingeführt werden, die im

158 6 | Gemeinsame Erstellung regelkonformer Prozesse

ursprünglichen Compliancetemplate nicht vorhanden waren. Damit

ist es möglich, dass zum Beispiel externe Berater bei der Vervollständi-

gung eines Compliancetemplates spezielle, für ihr Fachgebiet wichtige

Complianceregeln einfügen.

Durch die Möglichkeit des Einfügens weiterer Complianceregionen

in ein Compliancetemplate ergeben sich Probleme, die im Folgenden

erläutert werden. Das erste Problem tritt beim Einfügen einer Menge

von Aktivitäten in ein Compliancetemplate auf, welches mindestens

eine Complianceregion enthält. Dies wird in Abbildung 6.4 auf Ver-

vollständigungsebene 1 gezeigt. Hier wird in die Complianceregion

(schraffiert) die Menge von vier Aktivitäten eingefügt, die auf Vervoll-

ständigungsebene zwei gezeigt wird. In dieser Menge ist wiederum

eine Complianceregion (schraffiert) enthalten. Mit beiden Complian-

ceregionen sind Complianceregeln verknüpft, die in Abbildung 6.4

vereinfacht dargestellt sind. Die Complianceregeln auf Vervollständi-

gungsebene 1 verhindern, dass eine Aktivität vom Typ A in die mit

ihr verknüpfte Complianceregion eingefügt wird. Die Compliance-

regel auf Vervollständigungsebene zwei dagegen besagt, dass eine

Aktivität vom Typ A in diese mit ihr verbundene Complianceregion

eingefügt werden muss. Beim Einfügen von Aktivitäten in die in Ver-

vollständigungsebene zwei platzierte Complianceregion müssen beide

Complianceregeln beachtet werden. Die auf Vervollständigungsebe-

ne drei eingefügten Aktivitäten werden in die Complianceregion auf

Vervollständigungsebene zwei eingefügt und damit implizit auch in

die Complianceregion auf Vervollständigungsebene 1. Die beiden mit

diesen Complianceregionen verknüpften Complianceregeln schließen

sich jedoch gegenseitig aus. Das bedeutet, dass das Erfüllen der einen

Complianceregel das Nichterfüllen der anderen Complianceregel zur

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
159

Folge hat. Fügt man zum Beispiel auf Vervollständigungsebene drei

eine Aktivität vom Typ A ein, so ist die Complianceregel von Vervoll-

ständigungsebene zwei erfüllt. Jedoch ist die Complianceregel von

Vervollständigungsebene 1 verletzt.

Das zugrundeliegende Konzept der Verarbeitung von Compliance-

regeln bei der Arbeit mit Vervollständigungsebenen ist die Weiter-

leitung von Complianceregeln. Complianceregeln, die auf tieferen

Vervollständigungsebenen eingefügt wurden, werden, wie in Abbil-

dung 6.3 gezeigt, an höhere Vervollständigungsebenen weitergeleitet.

Bei der Weiterleitung von Complianceregeln zwischen Vervollständi-

gungsebenen werden die für eine Vervollständigungsebene geltenden

Complianceregeln miteinander verschmolzen. Da diese Arbeit mit Li-

nearer Temporaler Logik (LTL) und einer neuen Sprache zur Definition

datenbasierter Complianceregeln arbeitet, ist im Folgenden die Funk-

tion verschmelze zur Verschmelzung von Complianceregeln, die mit

diesen Sprachen geschrieben sind, definiert. Mit M, als der Menge

zu verschmelzender Ausdrücke, und V, als der Menge aller logischen

Ausdrücke, gilt:

verschmelze : M → V

Die Funktion verschmelze ist wie folgt definiert:

verschmelze(a, b) = a ∧ b mit a, b ∈ M

In dieser Arbeit wird angenommen, dass die Funktion verschmelze

so implementiert ist, dass sie zwei logische Ausdrücke A und B mittels

einer Konjunktion verbindet. Die Konjunktion wird verwendet, da ein

160 6 | Gemeinsame Erstellung regelkonformer Prozesse

CA

CØA

Vervollständigungs-

Ebene 1

Vervollständigungs-

Ebene 3

Vervollständigungs-

Ebene 2

Direkter

Konflikt

Abbildung 6.4.: Entstehung eines Konflikts beim Einfügen von Com-
plianceregionen (vergleiche [SALS10])

durch Verschmelzung entstandener Ausdruck dann den Wahrheitswert

1 annehmen soll, wenn alle Teilausdrücke wahr sind.

6.3.2. Erfüllbarkeit verschmolzener Regelsätze

Kontrollflussbasierte Complianceregeln werden in der vorliegenden

Arbeit mittels Linearer Temporaler Logik (LTL) beschrieben. Eine Ei-

genschaft von Ausdrücken in LTL ist die Möglichkeit, dass ein solcher

Ausdruck nicht erfüllbar ist. Das bedeutet, dass es für einen unerfüll-

baren Ausdruck in LTL keine Belegung gibt, für die der Ausdruck den

Wahrheitswert wahr annimmt. Eine Belegung definiert die Zuweisung

von Werten zu den Variablen einer logischen Formel.

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
161

Complianceregeln, die durch Verschmelzung, wie im Kapitel 6.3.1

gezeigt, entstanden sind, können unerfüllbar sein. Grund dafür ist,

dass bei der Auswertung der verschmolzenen Complianceregel die

Teilausdrücke separat mittels Funktionen ausgewertet werden. Diese

Teilausdrücke können somit als Variablen der verschmolzenen aussa-

genlogischen Formel angesehen werden. Da Aussagenlogische Aus-

drücke unerfüllbar sein können, gilt für eine durch Verschmelzung

entstandene Complianceregel der Erfüllbarkeitsbegriff der Aussagen-

logik.

6.3.3. Behandlung erfüllter Complianceregeln

Im Hinblick auf die automatische Überprüfung von Prozessmodellen

anhand von mit ihnen verknüpften Complianceregeln sollten diese

Complianceregeln so einfach wie möglich sein. Dafür spricht die expo-

nentielle Laufzeit [Var01] von Modelchecking Algorithmen.

Beim Einfügen von Mengen von Aktivitäten in ein Prozessmodell

kann der Fall auftreten, dass eine Complianceregel erfüllt wird. Wird

durch das Einfügen von Aktivitäten in Complianceregionen ein Teil

einer Complianceregel erfüllt, so muss dieser Teil bei der weiteren

Befüllung des Prozessmodells nicht mehr bei automatischen Überprü-

fungen beachtet werden. Diese Complianceregeln werden nicht an die

nächst höhere Vervollständigungsebene weitergeleitet. Dies wird im

Folgenden erläutert.

Abbildung 6.5 zeigt mehrere Beispiele für die Weiterleitung nicht

erfüllter Complianceregeln. Die auf Vervollständigungsebene 1 einge-

führte Complianceregel CX drückt aus, dass eine Aktivität vom Typ

X eingefügt werden muss. Die Complianceregel CX wird durch das

162 6 | Gemeinsame Erstellung regelkonformer Prozesse

X

Y

CZ

CX ∧ CY

Z

Vervollständigungs-

Ebene 1

Vervollständigungs-

Ebene 3

Vervollständigungs-

Ebene 2

CX∧ CY

CY∧ CZ

X

X X

Abbildung 6.5.: Weiterleitung von nicht erfüllten Complianceregeln
(vergleiche [SALS10])

Einfügen der Aktivität X auf Vervollständigungsebene 2 erfüllt und

somit nicht weitergeleitet. Welche Complianceregeln weitergeleitet

werden dürfen, kann automatisch mit einem Modelchecker berechnet

werden. Dafür wird jede Teilregel einer kombinierten Complianceregel

einzeln auf Erfüllung durch die zugrundeliegende Complianceregion

überprüft. Ist die Teilregel erfüllt, muss sie nicht weitergeleitet werden.

Einzig die Complianceregel CY wird weitergeleitet. Parallel dazu wird

auf Vervollständigungsebene zwei die Complianceregel CZ eingeführt.

CZ wird mit der Complianceregel CY zur Vervollständigungsebene

drei weitergeleitet. Hier werden die beiden Complianceregeln CY und

CZ durch das Einfügen der Aktivitäten Y und Z erfüllt. Weiterhin ist

hier der Vorgang der Vervollständigung dieses Compliancetemplates

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
163

beendet, da alle Complianceregionen mit mindestens einer Aktivität

befüllt worden sind.

6.3.4. Auftreten von Konflikten zwischen Complianceregeln

Durch das Weiterleiten und Verschmelzen von Complianceregeln ent-

stehen zwei Arten von Konflikten, die beim Vervollständigen von Com-

pliancetemplates auftreten können, direkte und indirekte Konflikte. Ein

Konflikt tritt auf, wenn zwei sich gegenseitig ausschließende logische

Ausdrücke bei der Weiterleitung von Complianceregeln zwischen Ver-

vollständigungsebenen miteinander verknüpft werden. Hierbei ist zu

beachten, dass für zwei sich gegenseitig ausschließende Ausdrücke A

und B gilt:

(A⇔¬B) (6.1)

Mit V , als der Menge aller Vervollständigungsebenen gilt. Ein di-

rekter Konflikt wird mit zwei Vervollständigungsebenen va ∈ V und

vb ∈ V wie folgt bestimmt. vb ist ein Element der Menge der Kindver-

vollständigungsebenen von va:

vb ∈ kinder(va)

Weiter wird die Funktion cr mit S als der Menge aller Compliance-

scopes und R als der Menge aller Complianceregeln definiert:

cr : S→ R.

164 6 | Gemeinsame Erstellung regelkonformer Prozesse

Mit Sa als der Menge aller Compliancescopes der Vervollständi-

gungsebene va und akt(sa), als der Funktion, die die Menge der im

Compliancescope sa ∈ Sa enthaltenen Aktivitäten zurück gibt, gilt. Die

Funktion cr(sa) gibt die mit dem Compliancescope sa ∈ Sa verknüpfte

Complianceregel zurück. Ein Konflikt wird direkt genannt, wenn die

Negation von cr(sb) mit einer auf va liegenden Complianceregion sa

verknüpft ist.

Sei der Compliancescope sb ∈ akt(sa). Ein Konflikt wird indirekt

genannt, wenn die Negation von cr(sa) mit einer auf vb liegenden

Complianceregion sb verknüpft ist.

Mit der Funktion kon f l wird berechnet, ob ein Konflikt direkt oder

indirekt ist, oder ob kein Konflikt vorliegt.

kon f l(sa, sb) =











direkt, mit sa ∈ Sa ∧ sb ∈ akt(Sa)∧ cr(sa) = ¬cr(Sb)

indirekt, mit sa ∈ Sa ∧ sb ∈ akt(Sa)∧¬cr(sa) = cr(Sb)

kein, andern f al ls

Ein Konflikt kann beseitigt werden, wenn mindestens eine der bei-

den am Konflikt beteiligten Formeln geändert wird. Unter Verwendung

des in Abschnitt 6.3.3 beschriebenen Konzepts zur Löschung von erfüll-

ten Teilausdrücken von Complianceregeln, kann eine Complianceregel

auch durch das Einfügen einer neuen Aktivität geändert werden. Da

eine erfüllte Teil-Complianceregel nicht mehr zur automatischen Über-

prüfung herangezogen wird, hat sich die effektiv zu überprüfende

Complianceregel geändert.

Ein indirekter Konflikt kann durch das Einfügen von Aktivitäten in

ein Prozessmodell beseitigt werden, wenn das Einfügen einer Men-

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
165

A

CA

CA ∧ CØA

Vervollständigungs-

Ebene 1

Vervollständigungs-

Ebene 2
X

Abbildung 6.6.: Beseitigung eines indirekten Konflikts. Durch das Ein-
fügen der Aktivität A auf Vervollständigungsebene
2 wird die Complianceregel CA gelöscht, so dass sie
nicht mehr bei der automatischen Überprüfung her-
angezogen wird. Folglich wird bei der automatischen
Überprüfung der unerfüllbare Ausdruck CA∧¬CA in
den erfüllbaren Ausdruck ¬CA überführt.

ge von Aktivitäten die positive der beiden in Konflikt stehenden

Complianceregeln erfüllt. Somit kann der erfüllte Teil der verschmol-

zenen Complianceregel aus dem Ausdruck entfernt werden. Der Aus-

druck ist damit erfüllbar.

Direkte Konflikte können nicht durch das Einfügen von Aktivitäten

beseitigt werden.

Abbildung 6.6 zeigt ein Beispiel für das Beseitigen eines indirekten

Konflikts. Die auf Vervollständigungsebene 1 eingeführte Compliance-

regel CA wird durch das Einfügen der Aktivität A auf Vervollständi-

gungsebene 2 erfüllt. Sie kann deshalb gelöscht werden und wird

166 6 | Gemeinsame Erstellung regelkonformer Prozesse

damit nicht mehr bei der automatischen Überprüfung beachtet. Die

Complianceregeln, die zur Überprüfung des Prozessmodells verwendet

werden, sind somit erfüllbar. Die auf der Vervollständigungsebene 2

gezeigte verschmolzene Complianceregel stellt dies dar.

Ein direkter Konflikt kann nicht durch Einfügen von Aktivitäten

in einen Prozess beseitigt werden. Dies rührt daher, dass bei einem

direkten Konflikt der umgekehrte Fall des in Abbildung 6.6 gezeigten

Szenarios eintritt. Das heißt, die auf Vervollständigungsebene 1 ge-

zeigte Complianceregel müsste statt CA (C¬A) heißen. Dies bedeutet,

dass in die schraffierte Aktivität auf Vervollständigungsebene 1 keine

Aktivität vom Typ A eingefügt werden darf. Diese Regel gilt erst dann

als erfüllt, wenn der Prozess mit anderen Aktivitäten befüllt und somit

syntaktisch korrekt ist. Eine negative Complianceregel muss also zu

jeder Zeit während der Befüllung eines Prozessmodells erfüllt sein.

Tritt ein Konflikt mit einer negativen, auf einer niedrigen Vervollständi-

gungsebene verknüpften Complianceregel auf, so muss dieser Konflikt

durch Umschreiben der Complianceregeln aufgelöst werden. Zum

Beispiel könnte die negative Complianceregel erst auf einer höheren

Vervollständigungsebene Anwendung finden.

Eine Einschränkung des Ansatzes der Prozesserstellung mit Vervoll-

ständigungsebenen ist, dass Änderungen an einem Prozessmodell nur

von einer niedrigeren Vervollständigungsebene an eine höhere Vervoll-

ständigungsebene weitergegeben werden können, da das Weiterrei-

chen von Änderungen in die andere Richtung mit einigen Problemen

behaftet ist. Diese Probleme sollen hier genannt aber nicht bearbeitet

werden, da sie nicht im Fokus dieser Arbeit liegen.

6.3 | Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung

regelkonformer Prozesse
167

6.4. Überprüfung von Complianceregeln von verschachtelten
Compliancescopes

Der Algorithmus zur Untersuchung von Complianceverstößen in Pro-

zessen mit ineinander verschachtelten Compliancescopes ist in Algo-

rithmus 6.1 dargestellt. Im Folgenden wird der Algorithmus erläutert.

Der Algorithmus untersucht rekursiv alle in einem Startcompliances-

cope enthaltenen Compliancescopes auf Verletzungen von Complian-

ceregeln. Er beginnt mit dem aktuell äußersten Compliancescope und

endet mit dem Überprüfungsergebnis des innersten Compliancescopes.

Der Algorithmus endet zudem, wenn mindestens eine Compliance-

regel in einem beliebigen Compliancescope verletzt oder wenn eine

Complianceregel gefunden wurde, die unerfüllbar ist.

In Zeile 3 wird die mit dem als Parameter übergebenen Complian-

cescope verknüpfte Complianceregel mit den Complianceregeln ver-

knüpft, die von äußeren Compliancescopes weitergegeben wurden.

Danach wird überprüft, ob diese kombinierte Complianceregel erfüll-

bar ist. Ist dies nicht der Fall, kann hier die Überprüfung abgebrochen

werden, da eine unerfüllbare Complianceregel per Definition nie von

einem Prozess erfüllt werden kann.

Ist die kombinierte Complianceregel erfüllbar (Zeile 4), so wird das

Modelchecking des aktuellen Compliancescopes angestoßen (Zeile 7).

Bei diesem Schritt werden zusätzlich erfüllte Teilregeln der kombinier-

ten Complianceregel gelöscht. Da diese Teilregeln erfüllt sind, müssen

sie nicht an innere Compliancescopes weitergegeben werden. Diese

Verkürzung der aktuellen Complianceregel führt zu kürzeren Laufzei-

ten bei den Überprüfungen der inneren Compliancescopes. Im besten

Fall kann die aktuelle Complianceregel vollständig erfüllt sein, so dass

168 6 | Gemeinsame Erstellung regelkonformer Prozesse

Algorithmus 6.1 Beschreibung des Algorithmus der Überprüfung von
Complianceregeln verschachtelter Compliancescopes in Pseudocode.
Vergleiche: [Bur12]

1: function CHECKCOMPLIANCE(ComplScope scope, ComplRule outer-
Rules)

2: ComplRule complRuleCurrentScope = scope.getComplRule();
3: ComplRule combinedComplRule = con-

cat(complRuleCurrentScope, outerRules);
4: if satCheck(combinedComplRule) then
5: //Fulfilled compliance rules are deleted from
6: //combinedComplRule in method modelcheck.
7: if modelcheck(scope, combinedComplRule) then
8: List innerComplScopes = generateInnerComplSco-

pes(scope);
9: if size(innerComplScopes) < 1 then

10: print(true);
11: else
12: for ComplScope innerScope in innerComplScopes

do
13: checkCompliance(innerScope, combinedCom-

plRule);
14: end for
15: end if
16: else
17: print(false);
18: end if
19: else
20: print(“Combined compliance rule not satisfiable.”);
21: end if
22: end function

6.4 | Überprüfung von Complianceregeln von verschachtelten Compliancescopes169

die Complianceprüfung innerer Compliancescopes nicht angestoßen

werden muss, falls der innere Compliancescope mit keiner eigenen

Complianceregel verknüpft ist.

Zeigt der Modelchecker einen Verstoß gegen die kombinierte Com-

plianceregel des aktuellen Compliancescopes an, so wird ein Beispiel

generiert, das den Ausführungspfad im Prozess bis zur Verletzung der

Complianceregel anzeigt. Wird keine Verletzung einer Compliancere-

gel des aktuellen Compliancescopes gefunden, so wird die Liste der

inneren Compliancescopes generiert (Zeile 8).

Sind keine inneren Compliancescopes vorhanden, kann die Überprü-

fung abgebrochen und das Überprüfungsergebnis ausgegeben werden

(Zeile 9). Das Ergebnis ist in diesem Fall positiv. Sind innere Complian-

cescopes vorhanden, wird diese Liste durchlaufen (Zeile 12). Jeder in

dieser Liste enthaltene Compliancescope ist ein Eingabeparameter für

den rekursiven Aufruf dieses Algorithmus. Abbildung 6.7 zeigt eine

in BPMN erstellte graphische Repräsentation des oben beschriebenen

Algorithmus.

170 6 | Gemeinsame Erstellung regelkonformer Prozesse

complianceCheckVervollstEbenen

Complianceregel des
aktuellen

Compliancescopes
holen

Complianceregel des aktuellen
Compliancescopes

mit Complianceregel des äußeren
Compliancescopes verknüpfen

Erfüllbarkeit der
kombinierten

Complianceregel
prüfen

Complianceregel
aktueller

Compliancescope

Kombinierte
Complianceregel

Ergebnis
Erfüllbarkeitsprüfung

Ergebnis
Erfüllbarkeit

ausgeben

Modelchecking
und Erkennung

posit iver erfüllter
Teilregeln

Kombinierte
Complianceregel

ohne posit ive
erfüllte Teilformeln

Ergebnis der
Complianceprüfung

Ergebnis
Modelchecking

ausgeben

Liste innerer
Compliancescopes

generieren

Liste innerer
Compliancescopes

Liste innerer
Compliancescopes

durchlaufen

Aktueller
Compliancescope

Complianceregel
nicht erfüllbar

Complianceregel
Erfüllbar

Complianceregel
nicht erfülltComplianceregel erfüllt

Keine inneren
Compliancescopes

Innere
Compliancescopes

vorhanden

Daniel Schleicher 1 of 1 06.02.2013

Abbildung 6.7.: Beschreibung des Algorithmus der Überprüfung von
Complianceregeln verschachtelter Compliancescopes
in BPMN. Quelle: [Bur12]

6.4 | Überprüfung von Complianceregeln von verschachtelten Compliancescopes171

6.5. Zusammenfassung

Die in dieser Arbeit vorgestellten Konzepte, die der Unterstützung

menschlicher Prozessmodellierer dienen, müssen sinnvoll miteinander

kombiniert werden, um ihre volle Wirksamkeit entfalten zu können.

Bei der Erstellung von Prozessen müssen Werkzeuge eingesetzt wer-

den, die bestimmte Complianceregeln auf den Prozessen überprüfen.

Daraus folgt, dass es nicht möglich sein darf, die überwachte Erstellung

von Prozessen zu umgehen.

Dies wird durch eine in diesem Kapitel vorgestellte Methodik er-

reicht. Die Umsetzung dieser Methodik verlangt die Verwendung der

in dieser Arbeit vorgestellten Konzepte.

Der in diesem Kapitel vorgestellte BPMN-Prozess dient Organisa-

tionen als Anhaltspunkt, wie die verschiedenen Konzepte verbunden

werden sollten. Die Methodik besteht aber nicht nur aus diesem BPMN-

Prozess, sondern auch aus begleitenden Anforderungen. Die beiden

wichtigsten Anforderungen sind die im BPMN-Prozess verwendeten

Rollen, die in einer Organisation eingeführt werden müssen, damit die

Methodik umgesetzt werden kann. Weiterhin müssen auf der Seite der

IT-Infrastruktur Anforderungen erfüllt werden. Es muss zum Beispiel

ein Repository bereitgestellt werden, auf welches nur mit bestimm-

ten Werkzeugen zugegriffen werden kann. Diese Werkzeuge sind im

Sinne dieser Arbeit Prozessmodellierungswerkzeuge. Durch die Ein-

schränkung des Zugriffs auf das Prozessrepository ist von Beginn der

Entwicklung eines Prozesses festgelegt, dass Änderungen an Prozessen

nur mit den dafür vorgesehenen Prozessmodellierungswerkzeugen

vorgenommen werden können.

Die Erstellung von Prozessen in Unternehmen verlangt oft die Ein-

172 6 | Gemeinsame Erstellung regelkonformer Prozesse

beziehung mehrerer Personen, die verschiedene Expertisen aufweisen.

Die Zusammenarbeit verschiedener Personen an einem Prozessmodell

wird innerhalb der in diesem Kapitel vorgestellten Methodik durch

das Konzept der Vervollständigungsebenen geregelt. Die erste dieser

Vervollständigungsebenen ist das Compliancetemplate auf dem der

spätere Prozess basiert. Hier werden die ersten Änderungen vollzogen

indem neue Aktivitäten eingefügt werden. Eine weitere Vervollständi-

gungsebene wird geschaffen, wenn eine Complianceregion mit diesen

neuen Aktivitäten in das Prozessmodell eingefügt wird. Auf der nächs-

ten Vervollständigungsebene kann der Prozess weiter mit Aktivitäten

gefüllt werden, bis keine leere Complianceregion mehr übrig bleibt.

In diesem Kapitel wurde weiterhin ein Problem bei der Arbeit mit

Vervollständigungsebenen aufgezeigt. Beim Weiterleiten von Compliance-

regeln von einer niedrigeren Vervollständigungsebene zu einer höhe-

ren kann es vorkommen, dass die daraus resultierenden Regelsätze

unerfüllbar werden. Dies mündet in Konflikten zwischen den ein-

zelnen Vervollständigungsebenen, die entweder durch das Einfügen

von Aktivitäten auf höheren Vervollständigungsebenen oder durch

menschliches Eingreifen behoben werden können. Konflikte können

sowohl Complianceregeln, die den Datenfluss eines Prozesses ein-

schränken, als auch Complianceregeln, die den Kontrollfluss eines

Prozesses einschränken, betreffen. Auch Complianceregeln, die den

Datenfluss einschränken, können sich gegenseitig ausschließen.

6.5 | Zusammenfassung 173

K
A

P
IT

E
L 7

PROTOTYP

Eine Evaluation der hier vorgestellten Konzepte erfolgt durch die Im-

plementierung in einem Prototyp. Der Prototyp implementiert und

integriert alle in dieser Arbeit vorgestellten Konzepte und Lösungsan-

sätze und ist unter http://www.danielschleicher.com erreich-

bar.

7.1. Funktionalität des Prototyps

Dieser Abschnitt bietet eine Sicht auf die Funktionen des Prototyps

dieser Arbeit. Der Prototyp baut auf dem webbasierten BPMN-Editor

Oryx [DOW08] auf.

Die folgende Liste an Funktionen wurde Oryx in dieser Arbeit hin-

zugefügt:

1. Spezieller Task für Complianceregion: Die Menge von Sym-

175

http://www.danielschleicher.com

bolen der BPMN 1.0 Spezifikation wurde durch einen neuen

Task erweitert. Dieser Task stellt eine Complianceregion (siehe

Abschnitt 4.2) dar. Er ist durch ein Puzzle-Teil gekennzeichnet.

2. Modus zur Komplettierung von Compliancetemplates: Bei

der Befüllung von Compliancetemplates ist durch einen spezi-

ellen Modus sichergestellt, dass nur Complianceregionen mit

neuen Aktivitäten befüllt werden können.

3. Neue Form für die Erstellung von Compliancescopes und

Compliancedomains: Die Menge von Symbolen der BPMN 1.0

Spezifikation wurde durch eine neue Form erweitert. Mit ihr

kann man Compliancescopes (siehe Abschnitt 4) oder Com-

pliancedomains (siehe Abschnitt 5) modellieren. Diese Form

kann alle BPMN 1.0 Elemente enthalten. Außerdem können

Complianceregeln mit ihr verknüpft werden.

4. Überprüfung von Compliancescopes und Compliancedomains:

Compliancescopes und Compliancedomains teilen ein Prozess-

modell in verschiedene Bereiche auf. Mit dem Prototyp ist es

möglich, einzelne Compliancescopes automatisch auf Verletzun-

gen von Complianceregeln untersuchen zu lassen. Hierbei kön-

nen beliebige in einem Prozessmodell vorhandene Compliance-

scopes oder Compliancedomains zur Überprüfung ausgewählt

werden.

5. Verknüpfung Complianceregeln mit Complianceregionen, Com-

pliancedomains oder Compliancescopes: Die in dieser Arbeit

gezeigten neuen Modellierungskonstrukte Complianceregion,

Compliancescope und Compliancedomain, mit denen BPMN

176 7 | Prototyp

1.0 erweitert wurde, können mit Complianceregeln verknüpft

werden.

6. Beispiel für Verletzung einer Complianceregel: Die in dieser

Arbeit verwendeten Modelchecker erzeugen beim Auffinden der

Verletzung einer Complianceregel ein Beispiel, das zeigt, wie die-

se Verletzung zustande kam. Dieses Beispiel wird in der Sprache

des Modelcheckers ausgegeben. Im Prototyp wird diese Ausgabe

transformiert und auf den aktuell überprüften BPMN-Prozess

abgebildet. Damit ist es für menschliche Prozessmodellierer

leichter, Maßnahmen zur Behebung von Regelverletzungen zu

ergreifen.

7. Verschachtelung von Compliancescopes: Compliancescopes

können ineinander verschachtelt werden.

8. Behandlung von Complianceregeln ineinander verschach-

telter Compliancescopes: Die Complianceregeln von ineinan-

der verschachtelten Compliancescopes werden nach dem in

Abschnitt 6.3 vorgestellten Mechanismus miteinander verknüpft

und auf Erfüllbarkeit geprüft.

9. Graphische Repräsentation von Vervollständigungsebenen:

Vervollständigungsebenen werden graphisch so repräsentiert,

dass alle Bereiche in einem Prozessmodell, die in einer Vervoll-

ständigungsebene geändert werden dürfen, dunkel dargestellt

werden.

10. Verarbeitung von kontrollfluss- und datenflussbasierten Com-

plianceregeln: Der Prototyp ist dafür ausgelegt, kontrollfluss-

7.1 | Funktionalität des Prototyps 177

basierte (Sprache LTL) und datenflussbasierte (Sprache XPath)

Complianceregeln auf einem Prozessmodell zu überprüfen. Auch

können diese beiden Arten von Complianceregeln miteinander

zu einer komplexen Complianceregeln (siehe Abschnitt 5.5)

kombiniert werden.

Bei den Arbeiten am Prototyp sind weitere Funktionalitäten entwi-

ckelt worden, die nicht direkt auf einen Beitrag dieser Dissertation

zurückgeführt werden können. Sie entstanden, um Menschen weite-

re Möglichkeiten zur Verfügung zu stellen komfortabel mit Oryx zu

arbeiten. Sie werden in der folgenden Liste kurz erläutert.

11. Graphische Modellierung von kontrollflussbasierten Com-

plianceregeln: Oryx wurde mit einem Plugin und einer Menge

von Symbolen erweitert, die es ermöglichen, LTL-Formeln gra-

phisch zu entwickeln.

Der zweite Grund für die Einführung der graphischen Modellie-

rung von LTL-Formeln ist die Erleichterung des Umgangs mit

LTL-Formeln, damit von der abstrakten textuellen Repräsentati-

on Abstand genommen werden kann.

12. Bestimmung der Zeitabstände der Überprüfung von Compliance-

regeln: Es ist mit dem Prototyp möglich einzustellen, wie oft

eine automatische Überprüfung des Prozessmodells durchge-

führt werden soll. Es kann ein Zeitintervall eingestellt werden,

nach dessen Ablauf der Prozess automatisch auf Verletzungen

von Complianceregeln überprüft wird. Außerdem kann festge-

legt werden, dass das Prozessmodell nach Durchführung einer

178 7 | Prototyp

bestimmten Zahl von Änderungen automatisch überprüft wer-

den soll.

13. Verwendung eines Regelbaums (siehe 5.5.4): Die Repräsenta-

tion einer kombinierten Complianceregel in einem Baum macht

es für Menschen einfacher, mit der Verschachtelung der einzel-

nen Teilausdrücke umzugehen.

7.2. Architektur des Prototyps

Es handelt sich bei dem für diese Arbeit implementierten Prototyp

um ein graphisches Entwicklungswerkzeug für Prozesse. Er wurde auf

Grundlage des web-basierten BPMN Editors Oryx entwickelt.

Die Benutzeroberfläche von Oryx wird in Abbildung 7.1 gezeigt. Sie

ist in vier Teilbereiche aufgeteilt:

• Prozessmodell (Mitte): In der Mitte ist das Prozessmodell zu

sehen, das gerade bearbeitet wird. Es enthält ein das abstrakte

Prozessmodell eines Compliancetemplates, welcher der Erstel-

lung des in dieser Arbeit verwendeten Beispielprozesses dient.

Die grün markierten Aktivitäten können im nächsten Schritt mit

Aktivitäten oder Prozessfragmenten gefüllt werden.

• Symbolleiste (oben): Die Symbolleiste im oberen Teil des Oryx-

Fensters enthält Schaltflächen für die wichtigsten Funktionen

von Oryx, wie zum Beispiel Speichern oder Kopieren und Einfü-

gen. Mittels Plugins können hier neue Schaltflächen eingebun-

den werden, wie dies für den Prototyp der vorliegenden Arbeit

geschehen ist.

7.2 | Architektur des Prototyps 179

Abbildung 7.1.: Oberfläche von Oryx. Rechts befindet sich das Sidebar-
Plugin. Es zeigt, abhängig von der aktuellen Mo-
dellierungssituation, entweder Eigenschaften des ge-
rade markierten Teils des Prozessmodells oder die
für das Füllen von Complianceregionen verfügbaren
Prozessfragmente.180 7 | Prototyp

• Shape-Repository (links):Auf der linken Seite sieht man das

sogenannte Shape-Repository. Hier sind die Objekte hinterlegt,

mit denen gearbeitet werden kann, um einen Prozess zu model-

lieren. In Abbildung 7.1 sind Objekte zur Erstellung von BPMN

1.0-Prozessmodellen geladen. Sie zeigt weiterhin zwei für diesen

Prototyp erstellte neue Objekte: Die Variable Region und den

Compliancescope.

• Fragment-Repository (rechts): Auf der rechten Seite wird das

sogenannte Fragment-Repository gezeigt. Es enthält Prozessfrag-

mente, die in das in der Mitte gezeigte Prozessmodell eingefügt

werden können.

Abbildung 7.2 gibt eine Übersicht über die wichtigsten Kompo-

nenten von Oryx und den Komponenten des Prototyps. Die Pfeile

stellen Aufrufbeziehungen dar, wobei ein Pfeil von der aufrufenden

zur aufgerufenen Komponente zeigt. Oryx besteht aus zwei Kompo-

nenten, dem Backend und dem Frontend. Beide Komponenten sind

als sogenannte Web-Applications implementiert und laufen auf einem

Servlet-Container, wie zum Beispiel Tomcat1.

Das Frontend von Oryx ist hauptsächlich in JavaScript implemen-

tiert. Der in JavaScript implementierte Teil von Oryx verwendet die

JavaScript-Frameworks Prototype2 und EXTJs3. Prototype stellt Kon-

zepte aus der Objektorientierung zu Verfügung, während EXTJs ein

Framework zur Erstellung von dynamischen Weboberflächen ist. Die

in Abbildung 7.2 gezeigte Komponente Oryx-Core implementiert die

1http://tomcat.apache.org
2http://www.prototypejs.org
3http://www.sencha.com/products/extjs

7.2 | Architektur des Prototyps 181

Backend

Compliance-
checker

LTL-servlet Compliance-
servlet

LTL-operator

Fragment-
repository

LTL-
translator

Maude-
adapter Spin-adapter Promela-

exporter

Oryx-Core

Frontend

LTLSat-Plugin Sidebar-
plugin

Variability-
wizard

Compliance-
wizard

Ableitungs-
plugin

Editor

Abbildung 7.2.: Überblick über die Architektur des Prototyps. Pfeile
zeigen von der aufrufenden zur aufgerufenen Kompo-
nente. Die in der vorliegenden Dissertation erstellten
Komponenten sind mit durchgezogenen Linien ge-
zeichnet. Alle schon vorhandenen Komponenten sind
mit unterbrochenen Linien gezeichnet.

grundlegenden graphischen und funktionalen Aspekte von Oryx. Zum

Beispiel ist hier ein Plugin-Mechanismus implementiert.

Alle weiteren Komponenten von Oryx sind als Plugins implementiert.

Zum Beispiel werden mit Oryx Plugins zur Speicherung von Prozess-

modellen, zum Export von Prozessmodellen oder zum Rückgängigma-

chen von Arbeitsschritten bereitgestellt. Die in Abbildung 7.2 gezeigten

182 7 | Prototyp

Plugins auf Frontend-Seite wurde im Rahmen in dieser Arbeit erstellt.

Tabelle 7.2 zeigt sie zusammen mit der von ihnen implementierten

Funktionalität.

Das Backend von Oryx ist in Java geschrieben und verwendet die

Servlet-Technologie, um mit dem Frontend zu kommunizieren. Auch

dieser Teil von Oryx verfügt über einen Plugin-Mechanismus, welcher

in der vorliegenden Arbeit genutzt wurde, um Schnittstellen für das

Aufrufen von Modelcheckern zu schaffen. In dieser Arbeit werden

die beiden Modelchecker SPIN (Spin-Adapter) und Maude (Maude-

Adapter) über Plugins im Backend aufgerufen.

Im Folgenden werden alle neu zu Oryx hinzugekommenen Software-

komponenten, wie zum Beispiel Plugins näher erläutert. Danach wird

das Zusammenspiel dieser Softwarekomponenten bei der Ausführung

eines Anwendungsfalls, der aus dem Beispielszenario stammt, gezeigt.

7.2 | Architektur des Prototyps 183

Tabelle
7.1.:Funktionen

und
im

plem
entierende

Kom
ponenten

des
Prototyps

K
om

pon
en

te
des

Prototyps

N
u

m
m

er
der

Fu
n

ktion
alität

au
s

Liste
in

K
ap.7.1

C
om

pliance-
w

izard
Variabilitäts-

W
izard

Sidebar-
Plugin

A
bleitungs-
Plugin

LTL-
Plugin

C
om

pliance-
servlet

LTL-
Servlet

C
om

pliance-
checker

12
X

34
X

X
5

X
X

X
6

X
7

X
8

X
X

910
X

X
X

X
X

1112
X

13
X

184 7 | Prototyp

7.3. Compliancewizard

Der Compliancewizard ist ein Frontend-Plugin, welches einen neuen

Knopf in die Liste im oberen Bereich des Oryx Editorfensters platziert.

Abbildung 7.3 zeigt die Liste der Auswahlmöglichkeiten, die erscheint,

wenn dieser neue Knopf gedrückt wird. Die genaue Funktionalität

jedes Elements in der Liste kann in [Gro11] nachgelesen werden. In

dieser Arbeit soll auf die wichtigsten dieser Auswahlelemente einge-

gangen werden. Der Compliancewizard setzt die Funktionalitäten 8,

10, 5, 12 und 13 der Liste in Abschnitt 7.1 um.

Wird das oberste Auswahlelement gedrückt, so gelangt man in die

Ansicht des Compliancewizards, welche im Folgenden genauer er-

läutert wird. Mit dem zweiten und dritten Auswahlelement können

automatische Complianceüberprüfungen sowohl vom gesamten Pro-

Abbildung 7.3.: Neuer Knopf mit Funktionalitäten zur Überprüfung
von an den Prozess annotierten Complianceregeln.

7.3 | Compliancewizard 185

zessmodell als auch von einzelnen ausgewählten Compliancescopes

angestoßen werden.

Abbildung 7.4 zeigt das Popup-Fenster des Compliancewizards. Die-

ses Fenster wird nur angezeigt, wenn ein Compliancescope oder eine

Complianceregion zuvor im Editor mit der Maus markiert wurde. Ist

dies der Fall, so werden die mit diesem Compliancescope oder dieser

Complianceregion verknüpften Complianceregeln angezeigt.

Die Anzeige der Regeln erfolgt als Regelbaum. Mit diesem Kon-

zept ist es möglich, graphisch die Verschachtelung von LTL-Formeln

darzustellen. Die Knöpfe im oberen Bereich des Fensters des Com-

pliancewizards können dazu verwendet werden, das Aussehen dieses

Regelbaumes zu verändern. Im Besonderen können mit dem mit LTL

bezeichneten Knopf neue in LTL geschriebene Complianceregeln in

den Regelbaum eingefügt werden. Mit dem mit DATATRANSFER be-

zeichneten Knopf können Complianceregeln, die in der Sprache zur

Definition von datenbasierten Complianceregeln geschrieben sind, in

den Regelbaum eingefügt werden.

186 7 | Prototyp

Abbildung 7.4.: Compliancewizard: Dient der Annotation von
Complianceregeln an Complianceregionen oder
Compliancescopes

7.4. Variabilitäts-Wizard

Der Variabilitäts-Wizard ist ein weiteres Frontend-Plugin, welches bei

der Erstellung von Compliancetemplates hilft. Es stellt die folgenden

Funktionalitäten bereit, welche in der Diplomarbeit von Falko Kötter

[Köt10] im Detail beschrieben sind:

• Annotation von Alternativen an Complianceregionen: Alternati-

ven sind Prozessfragmente, die in ein Compliancetemplate oder

einen Compliancescope eingefügt werden können [MMLP09]

(Funktionalität 5 in der Liste in Abschnitt 7.1).

• Definition von Abhängigkeiten zwischen Complianceregionen in

7.4 | Variabilitäts-Wizard 187

einem Compliancetemplate:

Diese Abhängigkeiten geben eine Reihenfolge vor, in der die

Complianceregionen mit Aktivitäten befüllt werden müssen

(Funktionalität 10 in der Liste in Abschnitt 7.1).

7.5. Sidebar-Plugin

Das Sidebar-Plugin ist auf der rechten Seite im Oryx-Editor sichtbar

und enthält Prozessfragmente. Diese Prozessfragmente können zur

Befüllung von Compliancetemplates verwendet werden. Das Sidebar-

Plugin setzt Funktionalität 5 der Liste in Abschnitt 7.1 um. Es zeigt Pro-

zessfragmente an, wenn zwei Bedingungen erfüllt sind: Erstens muss

sich der Oryx-Editor im Ableitungs-Modus befinden. Im Ableitungs-

Modus können nur Complianceregionen verändert werden. Es kann in

diesem Modus keine Änderung am vorliegenden Compliancetemplate

durchgeführt werden. Zweitens muss im Oryx-Editor eine Compliance-

region markiert sein, welche vom Oryx-Editor zur Ableitung freigege-

ben ist. Die Auswahl, welche Prozessfragmente angezeigt werden, trifft

ein Complianceexperte bei der Erstellung eines Compliancetemplates.

Dies geschieht mit dem in Abschnitt 7.4 vorgestellten Variabilitäts-

wizard.

7.6. Ableitungs-Plugin

Diese Oryx-Erweiterung ist für die Befüllung eines Compliancetempla-

tes zuständig. Das Ableitungs-Plugin setzt Funktionalität 2 der Liste

in Abschnitt 7.1 um. Es wurde von Weidmann [WKK+11] und Kötter

[Köt10] entwickelt und wird als Bestandteil des Prototyps der Voll-

188 7 | Prototyp

ständigkeit wegen erwähnt. In einem Compliancetemplate kann die

Reihenfolge, in der Complianceregionen mit Aktivitäten befüllt wer-

den können, durch Abhängigkeiten zwischen den Complianceregionen

vorgegeben sein. Diese Abhängigkeiten wurden bei der Erstellung

des Compliancetemplates eingefügt. Ableitungen können mit dem

Variabilitäts-Wizard definiert werden. Das Ableitungs-Plugin besteht

aus einem Knopf in der oberen Leiste des Oryx-Editors und einem

Mechanismus, der die Ableitung, also die Erstellung eines vollstän-

digen Prozesses, leitet. Wird der zum Ableitungs-Plugin gehörende

Knopf betätigt, gelangt der Oryx-Editor in den Ableitungs-Modus. In

diesem Modus werden diejenigen Complianceregionen grün darge-

stellt, die zur Befüllung mit Aktivitäten freigegeben sind. Alle anderen

Complianceregionen werden rot dargestellt. Befüllt man die zu einem

Zeitpunkt freigegebenen Complianceregionen, so können im Zuge des-

sen weitere Complianceregionen zur Befüllung freigegeben werden,

da bestimmte Konditionen erfüllt wurden. Solche Konditionen können

zum Beispiel Abhängigkeiten zwischen Complianceregionen, wie in

Kapitel 4.2.4 beschrieben, sein.

7.7. LTL-Plugin

Das LTL-Plugin wurde von Stefan Grohe im Zuge seiner Masterarbeit

[Gro11] entwickelt. Dies geschah unter Anleitung des Autors der vor-

liegenden Dissertation. Es erweitert die Funktionalität des Frontends.

Das Plugin wird nur geladen, wenn mit dem Editor graphisch eine

LTL-Formel bearbeitet wird. Es stellt zum Beispiel eine Funktion bereit,

mit der es möglich ist, die graphisch gezeigte LTL-Formel in einer

textuellen Repräsentation anzuzeigen (siehe Funktionalität 10 in der

7.7 | LTL-Plugin 189

Abbildung 7.5.: Graphische Modellierung von LTL-Formeln

Liste in Abschnitt 7.1). Abbildung 7.5 zeigt die graphisch entwickelte

Version der LTL-Formel �(Task4⇒�(Task5)).

Abbildung 7.5 zeigt außerdem, (wie auch in Abschnitt 5.5.2 be-

schrieben) wie Complianceregeln erstellt werden müssen, damit sie

im Prototyp eingesetzt werden können. Die Eigenschaften einer LTL-

Formel werden durch ihren Namen mit dem BPMN-Task verknüpft,

dessen Zustand sie repräsentieren. In dieser Complianceregel spielen

Task4 und Task5 eine Rolle. Weiterhin können alle Elemente verwen-

det werden, die in LTL definiert sind. Abbildung 7.5 zeigt zum Beispiel

den Finally-Operator.

Diese graphische Repräsentation einer Complianceregel wird beim

Speichern in einen textuellen Ausdruck umgewandelt, der von den an

Oryx angeschlossenen Modelcheckern und SAT-Checkern verarbeitet

werden kann. Dies wurde, unter Anleitung des Autors dieser Disser-

tation, in den zwei Diplomarbeiten [Gro11] und [Bur12] umgesetzt.

Weiterhin wurde die graphische Notation von LTL aus dieser Quelle

entnommen: [BDSV05].

190 7 | Prototyp

7.8. Complianceservlet

Das Complianceservlet hat zwei Funktionen. Es kann aufgerufen wer-

den, um eine Überprüfung der Complianceregeln eines Prozessmodells

anzustoßen. Das Complianceservlet enthält außerdem Funktionalität

um ein Prozessmodell zu exportieren. Das Complianceservlet setzt

Funktionalität 4 der Liste in Abschnitt 7.1 um.

Wird im Complianceservlet die Funktion zur Überprüfung eines Pro-

zessmodells aufgerufen, so wird das als Parameter übergebene Prozess-

modell zunächst in ein Petrinetz-Modell überführt. Dieses Petrinetz-

Modell bildet den Kontrollfluss des originalen Prozessmodells ab. Im

nächsten Schritt wird das Petrinetz-Modell in die Eingabesprache PRO-

MELA [RMF07] des SPIN Modelcheckers überführt. Zusammen mit

den mit dem Prozessmodell verknüpften Complianceregeln ist es die

Aufgabe von SPIN das Prozessmodell auf Verletzungen der Compliance-

regeln zu überprüfen. Konnte SPIN eine Verletzung von Compliance-

regeln erkennen, so wird eine Beschreibung, welcher Ausführungspfad

zu dieser Verletzung führte, von SPIN an das Complianceservlet zu-

rückgegeben. Das Complianceservlet gibt diese Information wiederum

an den Oryx-Editor zurück, der sie dem Benutzer anzeigt.

7.9. LTL-Servlet

Das LTL-Servlet implementiert Funktionalität, um LTL-Formeln, die

mit dem graphischen Formeleditor erstellt wurden, in eine textuelle

Repräsentation umzuwandeln (siehe Funktionalität 10 in der Liste in

Abschnitt 7.1). Das LTL-Servlet kann LTL-Formeln in zwei verschiedene

Repräsentationen umwandeln. Die erste Repräsentation ist für die Ver-

7.9 | LTL-Servlet 191

wendung mit dem SPIN Modelchecker, die andere für die Verwendung

mit dem Maude Modelchecker geeignet.

7.10. Compliancechecker

Das Compliancechecker-Plugin ist dafür zuständig, verschiedenartige

Complianceregeln automatisch zu überprüften. Der Complianceche-

cker setzt Funktionalität 4, 6, 7, 8 und 10 der Liste in Abschnitt 7.1

um. Weiterhin enthält es Funktionalität für die Transformation von

Oryx-Prozessmodellen in die Eingabesprachen dieser beiden Model-

checker.

Der SPIN Modelchecker wird vom Compliancechecker-Plugin aufge-

rufen, wenn eine Überprüfung eines Prozessmodells auf Verletzungen

von Complianceregeln angestoßen wurde. Der Maude Modelchecker

dient zur Überprüfung der Erfüllbarkeit von LTL-Formeln und wird

entweder parallel zum Aufruf von SPIN oder für eine Überprüfung der

Erfüllbarkeit einer LTL-Formel aufgerufen.

Abbildung 7.6 zeigt das Überprüfungsergebnis einer Compliance-

prüfung zweier ineinander geschachtelter Compliancescopes, das dem

Benutzer präsentiert wird. Der Überprüfungsmechanismus, der die-

sem Ergebnis zugrunde liegt wird, in Kapitel 6.3 beschrieben. Die mit

diesen Compliancescopes verknüpften Complianceregeln sind:

• Compliancescope 1: 3Task2 ∧ 3Task3

• Compliancescope 2: ¬3Task3

Diese Ergebnisdarstellung wurde unter Anleitung des Autors dieser

Dissertation von Alexej Burkow in seiner Masterarbeit [Bur12] umge-

setzt. Alle Compliancescopes, deren Complianceregeln verletzt sind,

192 7 | Prototyp

werden rot dargestellt. Alle Compliancescopes, deren Compliance-

regeln nicht verletzt sind, werden grün dargestellt.

Die Abbildung zeigt unten ein detailliertes Ergebnis der Complian-

ceprüfung. Für jeden untersuchten Compliancescope enthält diese Er-

gebnisdarstellung einen Reiter. Auf diesem Reiter wird gezeigt, in wel-

chen Schritten die mit dem Compliancescope verknüpften Compliance-

regeln überprüft wurden. Die markierte Stelle in dieser Abbildung

zeigt die Complianceregel, die für Compliancescope 2 gilt. Diese be-

sagt, dass eine Aktivität mit dem Namen Task3 nicht auftreten darf.

Da dies aber in Compliancescope 2 der Fall ist, wird dieser rötlich als

nicht erfüllt gekennzeichnet.

Abbildung 7.7 zeigt bis auf eine Änderung denselben Prozess wie

Abbildung 7.6. Diese Änderung ist die Umbenennung von Task3 in

Task4. Diese Umbenennung führt dazu, dass der zweite Teil der mit

dem Compliancescope 1 verknüpften Complianceregel nicht erfüllt

wird, da weder in diesem Compliancescope noch in einem in ihm

enthaltenen Compliancescope eine Aktivität mit dem Namen Task3

enthalten ist. Weiter zeigt die Abbildung das Ergebnis der Überprüfung

von Compliancescope 1. Markiert ist die mit diesem Compliancescope

verknüpfte Complianceregel. Der erste Teil dieser Complianceregel

(3Task2) wird durch das Vorhandensein einer Aktivität mit dem

Namen Taks2 in Compliancescope 1 erfüllt. Der zweite Teil dieser

Complianceregel wird in Compliancescope 1 nicht erfüllt. Deshalb

wird dieser Teil an Compliancescope 2 weitergegeben. Dies ist in Abbil-

dung 7.7 in der vorletzten Zeile des Prüfergebnisses von Compliance-

scope 1 ersichtlich.

Abbildung 7.8 zeigt das Überprüfungsergebnis von Compliance-

scope 2. Es wurde von dem Programm festgestellt, dass die mit

7.10 | Compliancechecker 193

Abbildung 7.6.: Anzeige des Überprüfungsergebnisses bei geschachtel-
ten Compliancescopes

194 7 | Prototyp

Abbildung 7.7.: Anzeige des Überprüfungsergebnisses bei geschachtel-
ten Compliancescopes: Erfüllung des ersten Teils der
mit Compliancescope 1 verknüpften Complianceregel

7.10 | Compliancechecker 195

Compliancescope 2 verknüpfte Complianceregel zusammen mit der

weitergegebenen Complianceregel von Compliancescope 1 nicht erfüll-

bar ist. In der Abbildung ist diese verbundene unerfüllbare Compliance-

regel markiert. Diese Situation trat ein, da die mit Compliancescope 1

verknüpfte Complianceregel nicht durch Compliancescope 1 erfüllt

werden konnte. Diese Complianceregel hätte mit dem Vorhanden-

sein einer Aktivität mit dem Namen Task3 erfüllt werden können.

Die Complianceregel wurde dadurch an Compliancescope 2 weiterge-

reicht. Dies führte zu der in Abbildung 7.8 markierten konkatenierten

unerfüllbaren Complianceregel.

Datengetriebene Complianceregeln werden in der Komponente Com-

pliancechecker ebenfalls überprüft. Der Compliancechecker setzt Funk-

tionalität 4 der Liste in Abschnitt 7.1 um. Es wird dafür der in Kapi-

tel 5.3 erläuterte Algorithmus verwendet. Dieser Algorithmus wurde

erstmals in [SFG+11] präsentiert und in [Gro11] umgesetzt.

196 7 | Prototyp

Abbildung 7.8.: Anzeige des Überprüfungsergebnisses geschachtelter
Compliancescopes: Unerfüllbarkeit weitergereichter
Complianceregeln

7.11. Performanzmessungen

Das Ziel dieser Arbeit besteht in der Konzeption und Implementierung

von benutzerfreundlichen Konzepten zur automatischen Überprüfung

von Prozessmodellen. Ein Aspekt, der Benutzerfreundlichkeit ausweist,

besteht in kurzen Antwortzeiten von Programmen. Ein Hauptfaktor

für die Laufzeit einer Überprüfung eines Prozessmodells liegt in der

7.11 | Performanzmessungen 197

Parallele Zweige 8 14 16 18 19 20
Laufzeit in ms 1.362 2.343 6.259 26.337 54.188 124.849

Tabelle 7.2.: Messergebnisse der Laufzeiten (in Millisekunden) von
Complianceuntersuchungen eines Prozessmodells mit
parallelen Zweigen [Gro11].

Abbildung 7.9.: Prozessmodell mit dem die Geschwindigkeitsuntersu-
chungen durchgeführt wurden.

Laufzeit des aufgerufenen Modelcheckers begründet. Diese liegt im

PSPACE-vollständigen Bereich [SC85].

Tabelle 7.2 zeigt Geschwindigkeitsmessungen der Überprüfung eines

Test-Prozessmodells (siehe Abbildung 7.9). Dieses Test-Prozessmodell

besteht aus einem Startereignis, auf der linken Seite, und einem Ender-

eignis, auf der rechten. Dazwischen teilt ein paralleles Gateway den

Kontrollfluss des Prozessmodells in zwei parallel laufende Kontroll-

flussstränge auf. Ein zweites, paralleles Gateway führt diese beiden

Kontrollflussstränge wieder zusammen. Bevor das Endereignis erreicht

198 7 | Prototyp

wird, wird Task 2 ausgeführt.

Für den Geschwindigkeitstest wurde die LTL-Formel 3Task2 mit

dem Prozessmodell verknüpft. Diese LTL-Formel besagt, dass bei jeder

Ausführung dieses Prozesses der Task 2 ausgeführt werden muss. Die-

ses Prozessmodell wurde in Oryx geladen und auf Verletzungen von

Complianceregeln mit Oryx untersucht. Dabei wurden für die Durch-

führung der Geschwindigkeitstests die Anzahl der parallelen Pfade

wie in Tabelle 7.2 gezeigt erhöht. In der Diplomarbeit von Stefan Gro-

he [Gro11] sind die Testbedingungen im Detail erläutert. Tabelle 7.2

zeigt weiterhin das exponentielle Wachstum der Ausführungszeit eines

solchen Compliancechecks mit Oryx. Dieses Wachstum ist auf die Lauf-

zeit von Modelcheckern zurückzuführen, welche PSPACE-Vollständig

ist. Um lange Wartezeiten auf das Ergebnis eines Compliancechecks

zu vermeiden, besteht die Möglichkeit, die Untersuchung auf Teile

des Prozessmodells zu beschränken. Dies ist mit dem in dieser Arbeit

vorgestellten Konzept der Compliancescopes möglich, da es der Proto-

typ zulässt, die Inhalte bestimmter Compliancescopes zu überprüfen

und nicht das gesamte Prozessmodell. Compliancescopes sind somit

notwendig, um die Benutzbarkeit des Prototyps zu erhöhen, indem

lange Wartezeiten auf Prüfergebnisse vermieden werden.

Ein weiteres Mittel, um die Antwortzeiten und somit die Benutzbar-

keit des Prototyps zu erhöhen, ist Caching. Zum Beispiel werden im

Prototyp LTL-Formeln, die in das Eingabeformat für den Modelchecker

SPIN transformiert wurden, für eine spätere Verwendung aufbewahrt.

Damit entfällt bei einer erneuten Überprüfung eines Compliancescopes

der Schritt der Transformation der dazugehörigen Complianceregel

in das Eingabeformat von SPIN, wenn dieser Compliancescope zuvor

schon überprüft wurde.

7.11 | Performanzmessungen 199

7.12. Zusammenfassung

Dieses Kapitel zeigt die Architektur des Prototyps, der die in dieser

Arbeit vorgestellten Konzepte und Lösungen implementiert. Es zeigt,

welche Erweiterungen hierfür am webbasierten BPMN Editor Oryx vor-

genommen wurden. Besonders zu erwähnen sind hier das Ableitungs-

Plugin, welches das Konzept der Compliancetemplates umsetzt, das

Sidebar-Plugin, welches dazu dient, Prozessfragmente in Prozesse ein-

zufügen, der Compliancewizard, der die Funktionalität implementiert,

um Compliancescopes und Complianceregionen mit Complianceregeln

zu verknüpfen und der Compliancechecker, der die automatische Über-

prüfung von Prozessmodellen mittels Modelcheckern durchführt. Die

Erweiterungen sind in einem Architekturdiagramm aufgeführt und

miteinander in Verbindung gesetzt. Das Kapitel enthält eine detaillierte

Beschreibung jeder Erweiterung.

Ein wichtiges Kriterium für die Benutzbarkeit des Prototyps ist die

Laufzeit bis das Ergebnis der Überprüfung einer Complianceregel an-

gezeigt werden kann. Im letzten Teil dieses Kapitels sind Geschwindig-

keitsmessungen für unterschiedlich große Prozessmodelle beschrieben,

da die Laufzeit der Complianceprüfung von der Anzahl der Knoten im

Prozess abhängt.

200 7 | Prototyp

K
A

P
IT

E
L 8

ZUSAMMENFASSUNG UND

AUSBLICK

Diese Dissertation befasst sich mit der Unterstützung von Prozess-

modellierern bei der Entwicklung regelkonformer Geschäftsprozesse.

Gezeigt werden eine Erweiterung eines Variabilitätskonzepts für die

Unterstützung der Entwicklung regelkonformer Prozesse (siehe Bei-

trag 1.4.1), ein Algorithmus zur Überprüfung des Kontrollflusses von

Prozessmodellen (siehe Beitrag 1.4.2), ein Algorithmus zur Überprü-

fung des Datenflusses in Prozessmodellen (siehe Beitrag 1.4.3), ein

Mechanismus zur Zusammenarbeit bei der Erstellung regelkonformer

Prozesse (siehe Beitrag 1.4.4) und die Architektur eines Prototyps

zur Verifikation der vorgestellten Konzepte und Algorithmen (siehe

Beitrag 1.4.5). Diese Konzepte können zur Entwicklungszeit angewen-

det werden, um Geschäftsprozesse automatisch auf Verletzungen von

201

Complianceregeln zu überprüfen. Die zwei Anwendungsfälle, die diese

Konzepte, wie im Folgenden beschrieben, abdecken sind:

• die Entwicklung eines von Grund auf neuen Geschäftsprozesses

• die Wartung eines bestehenden Geschäftsprozesses.

8.1. Anwendungsgebiet der Dissertation

Im ersten Anwendungsfall beginnt der menschliche Prozessmodellierer

auf Grundlage eines Compliancetemplates mit der Entwicklung eines

neuen Prozesses. Solche Compliancetemplates können für verschie-

dene Anwendungsfälle in einer Firma vorhanden sein. Zum Beispiel

könnte ein Compliancetemplate in einer Bank für die Entwicklung von

Kreditantragsprozessen bereits bestehen.

Compliancetemplates implementieren bestimmte Complianceregeln,

die für alle Prozesse gelten müssen, für die sie die Grundlage bil-

den. Bei einem Kreditantragsprozess könnte dies die Einhaltung des

Vier-Augen-Prinzips sein. Das Vier-Augen-Prinzip besagt, dass zwei

unterschiedliche Personen einen Kreditantrag prüfen müssen.

Bei der Erstellung eines neuen Geschäftsprozesses wird der menschli-

che Prozessmodellierer von einem graphischen Entwicklungswerkzeug

unterstützt. Dieses Entwicklungswerkzeug stellt sicher, dass die von

einem Compliancetemplate implementierten Complianceregeln nicht

durch Modifikationen umgangen werden können.

Compliancetemplates enthalten unter anderem Complianceregio-

nen. Sie sind die Orte, an denen Modifikationen durchgeführt werden

dürfen. Das Compliancetemplate kann durch Befüllen der Complian-

ceregionen mit Aktivitäten vollständig gemacht werden.

202 8 | Zusammenfassung und Ausblick

Im zweiten Anwendungsfall wird ein bestehender Prozess vor der

Wartung durch einen menschlichen Prozessmodellierer mit Compliance-

scopes versehen. Durchgeführt wird dies von einem Compliance-

experten. Compliancescopes stellen Bereiche in einem Prozessmo-

dell dar, die mit Complianceregeln verknüpft sind. Prozesse, die mit

Compliancescopes versehen sind, können automatisch auf Verletzun-

gen von Complianceregeln überprüft werden. In dieser Dissertation

wird dies, wie auch im vorhergehenden Anwendungsfall, mit Techni-

ken des Modelchecking bewerkstelligt. Die in diesem Zusammenhang

neu erstellten und weiterentwickelten Konzepte, Compliancetempla-

te, Compliancescope und Vervollständigungsebenen können in einem

graphischen Entwicklungswerkzeug realisiert werden, wie dies im

Rahmen dieser Dissertation geschehen ist.

Im Zusammenhang mit den oben vorgestellten Anwendungsfällen

wurde untersucht, welche Arten von Complianceregeln für die Prozes-

sentwicklung von Bedeutung sind. Dies sind kontrollflussbasierte und

datenflussbasierte Complianceregeln. Bei der Arbeit mit Compliance-

templates werden kontrollflussbasierte Complianceregeln verwendet.

Bei der Arbeit mit Compliancedomains werden datenflussbasierte

Complianceregeln verwendet.

Abschließend wurde ein Mechanismus vorgestellt, die verdeutlicht,

wie die eingangs vorgestellten Konzepte in einer Organisation umge-

setzt werden können. Darüber hinaus wurden Rollen definiert, die

in Unternehmen eingeführt werden müssen, damit die dargestellten

Konzepte umgesetzt werden können.

Weiterhin wurde ein Konzept entwickelt, das die Zusammenarbeit

bei der Erstellung eines Prozessmodells zwischen verschiedenen Abtei-

lungen einer Firma ermöglicht. Dieses Konzept arbeitet mit Complian-

8.1 | Anwendungsgebiet der Dissertation 203

cetemplates. Es beschreibt die Vervollständigung eines Compliance-

templates zu einem syntaktisch korrekten Prozess auf verschiedenen

Ebenen. Ein Compliancetemplate stellt die erste Ebene bei dieser Art

der Vervollständigung dar. Weitere Ebenen können durch Einfügen von

Complianceregionen in das Compliancetemplate erstellt werden. Sind

alle Complianceregionen bei der Vervollständigung mit Aktivitäten

befüllt, ist der Prozess vollständig.

Die Arbeit an dem Thema der regelkonformen Prozessmodellierung

hat weiterreichende Fragen aufgeworfen, die im Folgenden dargestellt

werden.

Eine Frage, die mit Abschluss dieser Arbeit offen bleibt, ist, in wie-

weit durch Complianceregeln die Möglichkeiten der Prozessmodel-

lierung eingeschränkt werden solle. Im ersten Extrem arbeitete man

gänzlich ohne gesondert definierte Complianceregeln. Hier würde man

alle Complianceregeln im Prozessmodell durch strukturierende Pro-

zesskonstrukte umsetzen. Dies können zum Beispiel Pfeile zwischen

Aktivitäten sein. Im anderen Extrem würde ein Prozessmodell nur

durch Complianceregeln definiert werden. Dies streift das Feld der

deklarativen Prozessmodellierung. In diesem Feld des BPM werden

Prozesse anhand von Anforderungen modelliert. Durch diese Anforde-

rungen wird implizit eine Abfolge der im Prozessmodell enthaltenen

Aktivitäten definiert. Diese Anforderungen können sehr eng gefasst

sein, so dass der Prozess nur durch sie definiert ist. Complianceregeln

stehen in einem engen Zusammenhang mit diesen Anforderungen der

deklarativen Prozessmodellierung. Mit Complianceregeln ist es, wie

auch mit den Anforderungen möglich, die Ausführungsreihenfolge der

in einem Prozessmodell enthaltenen Aktivitäten zu bestimmen. Aus

diesen Überlegungen lassen sich weitere Forschungsfragen ableiten.

204 8 | Zusammenfassung und Ausblick

Hierbei geht es erstens darum in wieweit sich Complianceregeln und

Anforderungen für die deklarative Modellierung von Prozessen ähneln.

Ist diese Frage geklärt muss überlegt werden, in wieweit Anforderun-

gen und Complianceregeln vermischt werden können. Es liegt nahe,

dass der Mittelweg zwischen diesen beiden Extremen die beste Vorge-

hensweise bei der Erstellung regelkonformer Prozesse ist. Dies muss

jedoch wissenschaftlich untersucht werden.

8.2. Ausblick

Der in dieser Dissertation gezeigte Ansatz zur automatischen Über-

prüfung von Complianceregeln ist nicht nur für die Überprüfung von

Complianceregeln geeignet. Er kann auf weitere Gebiete wie zum

Beispiel das Green Business Process Management oder Datensicherheit

ausgeweitet werden. Hier ist es denkbar, dass Aktivitäten mit einer Um-

weltverträglichkeitszahl verknüpft werden. Damit kann automatisch

bestimmt werden, wie umweltverträglich der Gesamtprozess ist. Die in

der vorliegenden Arbeit vorgestellten Konzepte Compliancetemplate

und Compliancescope sind allgemein ausgelegt und können mit dieser

Anforderung umgehen. Es müssen jedoch geeignete Prüfwerkzeuge

entwickelt werden, die die in der vorliegenden Dissertation gezeigten

Konzepte umsetzten.

Das Konzept der Compliancedomains wurde in dieser Dissertation

aus Sicht der Entwicklungszeit eines Prozesses entworfen. Es kann

auch in Richtung der Ausführung eines Geschäftsprozesses ausgeweitet

werden. Dies wird im folgenden Abschnitt gezeigt.

Das Konzept der Compliancedomains befasst sich mit der Einschrän-

kung des Datenflusses in einem Prozess. Es ist aus der Überlegung

8.2 | Ausblick 205

heraus entstanden, dass es für Organisationen verboten sein kann,

Daten an einen bestimmten Ort zu transferieren. Somit grenzen Com-

pliancedomains den Bereich ein, in dem bestimmte Daten verarbeitet

werden können. Diese Eingrenzung muss zur Laufzeit eines Prozesses

auch gelten und überprüft werden. In [SFG+11] wird ein Konzept

vorgestellt, das Laufzeitprüfungen des Datenflusses eines Prozesses

beschreibt. Services werden mit einer Annotation verknüpft, die be-

schreibt, an welchem physikalischen Ort sich der Service befindet.

Weiterhin zeigt das Konzept, wie Softwarekomponenten, die sich an

der Grenze einer physikalischen Umgebung befinden, Nachrichten

untersuchen und anhand von Complianceregeln entscheiden, ob eine

Nachricht die Grenze überschreiten darf. Diese Complianceregeln wer-

den zur Entwicklungszeit mit Compliancedomains verknüpft und zur

Laufzeit an die Softwarekomponenten weitergegeben.

Der ABIS Ansatz [WKK+11] kann mit den in dieser Dissertation vor-

gestellten Konzepten erweitert werden. Im ABIS Ansatz wird beschrie-

ben, wie Geschäftsprozesse auf verschiedenen Komplexitätsebenen

modelliert werden können. Außerdem zeigt der Ansatz, wie Ände-

rungen zwischen diesen Komplexitätsebenen weitergereicht werden

können. Es ist denkbar, dass mit diesen weitergereichten Änderungen

auch Complianceregeln zwischen den Komplexitätsebenen weiterge-

reicht werden können. Im von der Deutschen Forschungsgesellschaft

(DFG) geförderten Projekt Konzepte und Methoden zur Unterstützung

von Fachanwendern bei der Umsetzung von Adaptivität und Compliance-

Richtlinien in Geschäftsprozessen [LS13] wird auf den Forschungser-

gebnissen der vorliegenden Arbeit aufgebaut. Unter anderem werden

in diesem Forschungsprojekt die Möglichkeiten einer übergeordneten

Compliancesprache ergründet.

206 8 | Zusammenfassung und Ausblick

Diese Dissertation befasst sich ausschließlich mit Complianceregeln,

die sich auf die Syntax in einem Prozess beziehen. Zum Beispiel kann

eine Complianceregel die Ausführungsreihenfolge zweier Aktivitäten

in einem Prozess vorschreiben. Es kann jedoch keine Complianceregel

erstellt werden, die verlangt, dass in einem Prozess das Vier-Augen-

Prinzip umgesetzt werden muss. Eine solche Complianceregel muss

zunächst in einen logischen Ausdruck überführt werden, der dann

automatisch verarbeitet werden kann. In Arbeiten, die auf dieser

Dissertation aufbauen, könnten neue Überprüfungskonzepte erstellt

werden, die mit Ontologien arbeiten, um Verletzungen semantischer

Complianceregeln aufzudecken.

Ein weiteres Themengebiet für zukünftige Arbeiten stellt die Pro-

zessübergreifende Überprüfung von Complianceregeln dar. In dieser

Dissertation gilt die Annahme, dass Complianceregeln nur im Rahmen

des ihnen zugewiesenen Prozesses gelten. Es liegt jedoch nahe, dass

Anwendungen aus mehreren Prozessen bestehen, die sich gegenseitig

aufrufen und miteinander interagieren. Dies muss in den zukünftigen

Konzepten zur Überprüfung von Complianceregeln beachtet werden.

8.2 | Ausblick 207

LITERATURVERZEICHNIS

[ADW08] AWAD, Ahmed ; DECKER, Gero ; WESKE, Mathias: Efficient

compliance checking using BPMN-Q and temporal logic.

In: BPM ’08 Proceedings of the 6th International Confe-

rence on Business Process Management, 2008, S. 326–341

[AKL+09] ANSTETT, Tobias ; KARASTOYANOVA, Dimka ; LEYMANN,

Frank ; MIETZNER, Ralph ; MONAKOVA, Ganna ; SCHLEI-

CHER, Daniel ; STRAUCH, Steve: MC-Cube: Mastering cu-

stomizable compliance in the cloud. In: SPRINGER (Hrsg.):

Proceedings of the 7th International Joint Conference on

Service Oriented Computing, Springer Verlag, November

2009, 592-606

[Arb04] ARBAB, Farhad: Reo: a channel-based coordination model

for component composition. In: Mathematical. Structures

in Comp. Sci. 14 (2004), Juni, Nr. 3, 329–366. http://
dx.doi.org/10.1017/S0960129504004153. – DOI

10.1017/S0960129504004153. – ISSN 0960–1295

209

http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1017/S0960129504004153

[ASU86] AHO, A.V. ; SETHI, R. ; ULLMAN, J.D.: Com-

pilers: principles, techniques, and tools. Addison-

Wesley, 1986 (Addison-Wesley series in computer

science). http://books.google.de/books?id=-
CpTewAACAAJ. – ISBN 9780201100884

[AW09] AWAD, Ahmed ; WESKE, Mathias: Visualization of

compliance violation using anti-patterns / Business

Process Technology Group at Hasso Platter Insti-

tute at the University of Potsdam. Version: 2009.

http://bpt.hpi.uni-potsdam.de/pub/Public/
BptPublications/VoV.pdf. 2009 (BPT Technical

Report 02-2009 02-2009). – Forschungsbericht

[Awa10] AWAD, Ahmed Mahmoud Hany A.: A compliance mana-

gement rramework for business process models, Business

Process Technology Group, Hasso Plattner Institute, Uni-

versity Potsdam, Diss., 2010

[AWW09] AWAD, Ahmed ; WEIDLICH, Matthias ; WESKE, Mathias:

Specification, verification and explanation of violation

for data aware compliance rules. In: Proceedings of the

7th International Joint Conference on Service-Oriented

Computing. Berlin, Heidelberg : Springer-Verlag, 2009

(ICSOC-ServiceWave ’09). – ISBN 978–3–642–10382–7,

500–515

[Bas06] BASEL COMMITTEE ON BANKING SUPERVISION: Basel II ca-

pital accord: international convergence of capital mea-

surements and capital standards: A revised framework

210 Literaturverzeichnis

http://books.google.de/books?id=-CpTewAACAAJ
http://books.google.de/books?id=-CpTewAACAAJ
http://bpt.hpi.uni-potsdam.de/pub/Public/BptPublications/VoV.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/BptPublications/VoV.pdf

(comprehensive version) / Basel Committee on Banking

Supervision. Version: Juni 2006. http://www.bis.
org/publ/bcbs128.pdf. 2006. – Forschungsbericht.

– ISBN 92–9197–720–9

[BBC+07] BOAG, Scott ; BERGLUND, Anders ; CHAMBERLIN, Don

; SIMÉON, Jérôme ; KAY, Michael ; ROBIE, Jonathan ;

FERNÁNDEZ, Mary F.: XML Path Language (XPath) 2.0 /

W3C. 2007. – W3C Recommendation. – http://www.
w3.org/TR/2007/REC-xpath20-20070123/

[BBD+11] BECKER, Jörg ; BERGENER, Philipp ; DELFMANN, Patrick ;

EGGERT, Mathias ; WEISS, Burkhard: Supporting business

process compliance in financial institutions - A Model-

Driven Approach. In: Wirtschaftinformatik Proceedings

2011, 2011

[BDSV05] BRAMBILLA, Marco ; DEUTSCH, Alin ; SUI, Liying ; VIANU,

Victor: The role of visual tools in a web application

design and verification framework: A visual notation for

LTL formulae. In: ICWE, 2005, S. 557–568

[Ber89] BERGE, Claude (Hrsg.): Hypergraphs combi-

natorics of finite sets. Bd. 45. Elsevier, 1989.

http://dx.doi.org/DOI:10.1016/S0924-
6509(08)70093-X. http://dx.doi.org/DOI:
10.1016/S0924-6509(08)70093-X. ISSN 0924–

6509

[Boe87] BOEHM, Barry W.: Improving software productivity. In:

Literaturverzeichnis 211

http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs128.pdf
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X

Computer 20 (1987), September, Nr. 9, 43–57. http:
//dx.doi.org/10.1109/MC.1987.1663694. – DOI

10.1109/MC.1987.1663694. – ISSN 0018–9162

[Bro95] BROOKS, Frederick P. Jr.: The mythical man-month (anni-

versary ed.). Boston, MA, USA : Addison-Wesley Longman

Publishing Co., Inc., 1995. – ISBN 0–201–83595–9

[Bur12] BURKOW, Alexej: LTL- Erfüllbarkeitsprüfung für inkre-

mentelle Entwicklung von Geschäftsprozessen, Universität

Stuttgart, Fakultät Informatik, Elektrotechnik und

Informationstechnik, Germany, Masterarbeit, August

2012. http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-
3386&engl=0. – 103 S.

[Bus04] BUSINESS PROCESS MASNAGEMENT INITATIVE: Business pro-

cess modeling notation (BPMN) version 1.0, Mai 2004. –

http://www.bpmn.org/

[CCG+02] CIMATTI, A. ; CLARKE, E. ; GIUNCHIGLIA, E. ; GIUNCHIGLIA,

F. ; PISTORE, M. ; ROVERI, M. ; SEBASTIANI, R. ; TACCHELLA,

A.: NuSMV version 2: an openSource tool for symbolic

model checking. In: Proc. International Conference on

Computer-Aided Verification (CAV 2002) Bd. 2404. Co-

penhagen, Denmark : Springer, July 2002 (LNCS)

[CGP01] CLARKE, Edmund M. ; GRUMBERG, Orna ; PELED, Doron:

Model checking. Cambridge, Mass. : MIT Press, 2001. –

ISBN 0262032708

212 Literaturverzeichnis

http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.1109/MC.1987.1663694
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www.bpmn.org/

[Chi03] CHINA: Law of the people’s republic of China on

the people’s bank of China. http://www.china.
org.cn/business/laws_regulations/2007-
06/22/content_1214826.htm, 2003

[DAC98] DWYER, Matthew B. ; AVRUNIN, George S. ; CORBETT,

James C.: Property specification patterns for finite-state

verification. In: FMSP, 1998, S. 7–15

[DAC99] DWYER, Matthew B. ; AVRUNIN, George S. ; CORBETT,

James C.: Patterns in property specifications for finite-

state verification. In: Proceedings of the 21st interna-

tional conference on Software engineering - ICSE ’99

(1999), 411–420. http://dx.doi.org/10.1145/
302405.302672. – DOI 10.1145/302405.302672. ISBN

1581130740

[DCD+09] DANIEL, Florian ; CASATI, Fabio ; D’ANDREA, Vincenzo

; STRAUCH, Steve ; SCHUMM, David ; LEYMANN, Frank ;

MULO, Emmanuel ; ZDUN, Uwe ; DUSTDAR, Schahram ;

SEBAHI, Samir ; MARCHI, Fabien de ; HACID, Mohand-Said:

Business compliance governance in service-oriented ar-

chitectures. In: AWAN, Irfan (Hrsg.) ; YOUNAS, Mu-

hammad (Hrsg.) ; HARA, Takahiro (Hrsg.) ; DURRESI,

Arjan (Hrsg.): Proceedings of the IEEE Twenty-Third Inter-

national Conference on Advanced Information Networking

and Applications (AINA’09), Bradford, United Kingdom,

May 26-29, 2009, IEEE Press, Mai 2009. – ISBN 978–1–

4244–4000–9, 113–120

Literaturverzeichnis 213

http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1145/302405.302672

[DDO08] DIJKMAN, Remco M. ; DUMAS, Marlon ; OUYANG, Chun:

Formal semantics and analysis of BPMN process models

using petri nets. 2008

[DOW08] DECKER, Gero ; OVERDICK, Hagen ; WESKE, Mathias: Oryx

– an open modeling platform for the BPM community. In:

BPM ’08 Proceedings of the 6th International Conference

on Business Process Management Bd. 5240, Springer, 2008

(LNCS). – ISBN 978–3–540–85757–0

[Elg12] ELGAMMAL, A.F.S.A.: Towards a comprehensi-

ve framework for business process compliance.

http://ideas.repec.org/p/ner/tilbur/
urnnbnnlui12-5470311.html, 2012

[ETHP10] ELGAMMAL, Amal ; TÜRETKEN, Oktay ; HEUVEL, Willem-Jan

van d. ; PAPAZOGLOU, Mike P.: On the formal specification

of regulatory compliance: a comparative analysis. In:

ICSOC Workshops, 2010, S. 27–38

[EUL09] EBERLE, Hanna ; UNGER, Tobias ; LEYMANN, Frank: Pro-

cess fragments. In: MEERSMAN, Robert (Hrsg.) ; DILLON,

Tharam (Hrsg.) ; HERRERO, Pilar (Hrsg.): On the Move to

Meaningful Internet Systems: OTM 2009 Bd. 5870, Sprin-

ger, 2009 (Lecture Notes in Computer Science). – ISBN

978–3–642–05147–0, S. 398–405

[GCS+10] GHEORGHE, Gabriela ; CRISPO, Bruno ; SCHLEICHER, Daniel

; ANSTETT, Tobias ; LEYMANN, Frank ; MIETZNER, Ralph ;

MONAKOVA, Ganna: Combining enforcement strategies

214 Literaturverzeichnis

http://ideas.repec.org/p/ner/tilbur/urnnbnnlui12-5470311.html
http://ideas.repec.org/p/ner/tilbur/urnnbnnlui12-5470311.html

in service oriented architectures. In: ICSOC 2010 procee-

dings, Springer, Dezember 2010, 288–302

[Ger97] GERTH, Rob: Concise promela reference. http://
spinroot.com/spin/Man/Quick.html, 1997

[GM06] GOVERNATORI, Guido ; MILOSEVIC, Zoran: A for-

mal analysis of a business contract language. In:

Int. J. Cooperative Inf. Syst. 15 (2006), Nr. 4, 659-

685. http://dblp.uni-trier.de/db/journals/
ijcis/ijcis15.html#GovernatoriM06

[Gov08] GOVERNATORI, Guido: The journey to business process

compliance. In: Public Law (2008), S. 1–32

[Gro11] GROHE, Stefan: Visualisierung und Implementierung von

Compliance Scopes, Universität Stuttgart, Fakultät Infor-

matik, Elektrotechnik und Informationstechnik, Germany,

Diplomarbeit, Mai 2011. – 98 S.

[Haw11] HAWRANEK, Dietmar: Trapped in the US web: daimler

upset with over-eager american oversight. http://www.
spiegel.de/international/business/trapped-
in-the-us-web-daimler-upset-with-over-
eager-american-oversight-a-803350-2.html,

December 2011

[HM10] HARDER, Bernd H. ; MARUHN, Ralf: Auftragsdatenver-

arbeitung. http://www.cloud-practice.de/know-
how/auftragsdatenverarbeitung, 2010

Literaturverzeichnis 215

http://spinroot.com/spin/Man/Quick.html
http://spinroot.com/spin/Man/Quick.html
http://dblp.uni-trier.de/db/journals/ijcis/ijcis15.html#GovernatoriM06
http://dblp.uni-trier.de/db/journals/ijcis/ijcis15.html#GovernatoriM06
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.cloud-practice.de/know-how/auftragsdatenverarbeitung
http://www.cloud-practice.de/know-how/auftragsdatenverarbeitung

[Hol03] HOLZMANN, Gerard: Spin model checker, the: primer and

reference manual. First. Addison-Wesley Professional,

2003. – ISBN 0–321–22862–6

[HWG09] HOFFMANN, Jörg ; WEBER, Ingo ; GOVERNATORI, Guido: On

compliance checking for clausal constraints in annotated

process models. In: Information Systems Frontiers (2009),

Mai. http://dx.doi.org/10.1007/s10796-009-
9179-7. – DOI 10.1007/s10796–009–9179–7. – ISSN

1387–3326

[JGP99] JR., Edmund M. C. ; GRUMBERG, Orna ; PELED, Do-

ron A.: Model checking. The MIT Press, 1999 http:
//www.amazon.com/Model-Checking-Edmund-
Clarke-Jr/dp/0262032708%3FSubscriptionId%
3D13CT5CVB80YFWJEPWS02%26tag%3Dws%
26linkCode%3Dxm2%26camp%3D2025%
26creative%3D165953%26creativeASIN%
3D0262032708. – ISBN 0262032708

[KBE+10a] KESSLER, Dr. A. ; BÖHM, Dr. M. ; ERMOLD, Eiko ;

WEHRAN, Heino ; VEHLOW, Markus: Cloud complian-

ce. http://www.cloud-practice.de/know-how/
cloud-compliance, 2010

[KBE+10b] KESSLER, Dr. A. ; BÖHM, Dr. M. ; ERMOLD, Eiko ; WEHRAN,

Heino ; VEHLOW, Markus: Cloud Compliance - Motive,

Herausforderungen und Hürden. http://www.cloud-
practice.de/know-how/cloud-compliance-
motive-herausforderungen-und-huerden, 2010

216 Literaturverzeichnis

http://dx.doi.org/10.1007/s10796-009-9179-7
http://dx.doi.org/10.1007/s10796-009-9179-7
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.cloud-practice.de/know-how/cloud-compliance
http://www.cloud-practice.de/know-how/cloud-compliance
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden

[Kha08] KHALAF, Rania: Supporting business process fragmentation

while maintaining operational semantics : a BPEL perspec-

tive, Universität Stuttgart, Fakultät Informatik, Elektro-

technik und Informationstechnik, Germany, Dissertation,

März 2008. – 193 S.

[KL06] KHALAF, Rania ; LEYMANN, Frank: Role-based decompo-

sition of business processes using BPEL. In: Proceedings

of the IEEE International Conference on Web Services. Wa-

shington, DC, USA : IEEE Computer Society, 2006 (ICWS

’06). – ISBN 0–7695–2669–1, 770–780

[KLRM+10] KNUPLESCH, David ; LY, Linh T. ; RINDERLE-MA, Stefanie

; PFEIFER, Holger ; DADAM, Peter: On enabling data-

aware compliance checking of business process models.

In: Proceedings of the 29th international conference on

Conceptual modeling, 2010

[KNP02] KWIATKOWSKA, M. ; NORMAN, G. ; PARKER, D.: PRISM:

probabilistic symbolic model checker. In: FIELD, T. (Hrsg.)

; HARRISON, P. (Hrsg.) ; BRADLEY, J. (Hrsg.) ; HARDER, U.

(Hrsg.): Proc. 12th International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation

(TOOLS’02) Bd. 2324, Springer, 2002 (LNCS), S. 200–

204

[Köt10] KÖTTER, Falko: Prozessvarianten in unternehmensüber-

greifenden Servicenetzwerken, Universität Stuttgart,

Fakultät Informatik, Elektrotechnik und Informa-

tionstechnik, Germany, Diplomarbeit, November

Literaturverzeichnis 217

2010. http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-
3046&engl=0. – 119 S.

[KSMP07] KHARBILI, Marwane E. ; STEIN, Sebastian ; MARKO-

VIC, Ivan ; PULVERMÜLLER, Elke: Towards a Frame-

work for Semantic Business Process Compliance Manage-

ment. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.142.9939. Version: 2007

[KWS11] KOETTER, Falko ; WEIDMANN, Monika ; SCHLEICHER, Da-

niel: Guaranteeing soundness of adaptive business pro-

cesses using ABIS. In: ABRAMOWICZ, Witold (Hrsg.) ;

AALST, Wil (Hrsg.) ; MYLOPOULOS, John (Hrsg.) ; RO-

SEMANN, Michael (Hrsg.) ; SHAW, Michael J. (Hrsg.) ;

SZYPERSKI, Clemens (Hrsg.) ; AALST, Wil (Hrsg.) ; MY-

LOPOULOS, John (Hrsg.) ; ROSEMANN, Michael (Hrsg.) ;

SHAW, Michael J. (Hrsg.) ; SZYPERSKI, Clemens (Hrsg.):

Business Information Systems Bd. 87. Springer Berlin

Heidelberg, 2011, S. 74–85

[LB01] LUTHER, M. ; BIBELGESELLSCHAFT, Deutsche: Die Bibel:.

Amer Bible Society, 2001 http://books.google.de/
books?id=uGw4QwAACAAJ. – ISBN 9783438011022

[Ley09] LEYMANN, Frank: Cloud computing: the next revolution

in IT. In: Proc. 52th Photogrammetric Week, Wichmann

Verlag, September 2009. – ISBN 978–3–87907–483–9, S.

3–12

218 Literaturverzeichnis

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9939
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9939
http://books.google.de/books?id=uGw4QwAACAAJ
http://books.google.de/books?id=uGw4QwAACAAJ

[LGRMD08] LY, Linh T. ; GÖSER, Kevin ; RINDERLE-MA, Stefanie ; DA-

DAM, Peter: Compliance of semantic constraints - a requi-

rements analysis for process management systems. In:

Proc. 1st Int’l Workshop on Governance, Risk and Com-

pliance - Applications in Information Systems (GRCIS’08),

2008

[LMX07] LIU, Y. ; MÜLLER, S. ; XU, K.: A static compliance-checking

framework for business process models. In: IBM Syst. J.

46 (2007), Nr. 2, S. 335–361. – ISSN 0018–8670

[LR00] LEYMANN, Frank ; ROLLER, Dieter: Production workflow:

concepts and techniques. Upper Saddle River, NJ, USA :

Prentice Hall PTR, 2000. – ISBN 0–13–021753–0

[LRD08] LY, Linh T. ; RINDERLE, Stefanie ; DADAM, Peter: Integra-

tion and verification of semantic constraints in adapti-

ve process management systems. In: Data & Knowled-

ge Engineering 64 (2008), Januar, Nr. 1, 3–23. http:
//dx.doi.org/10.1016/j.datak.2007.06.007. –

DOI 10.1016/j.datak.2007.06.007. – ISSN 0169023X

[LS13] LEYMANN, Frank ; SPATH, Dieter: Konzepte und

Methoden zur Unterstützung von Fachanwendern

bei der Umsetzung von Adaptivität und Compliance-

Richtlinien in Geschäftsprozessen. http://gepris.dfg.
de/gepris/OCTOPUS/?module=gepris&task=
showDetail&context=projekt&id=219206707,

January 2013

Literaturverzeichnis 219

http://dx.doi.org/10.1016/j.datak.2007.06.007
http://dx.doi.org/10.1016/j.datak.2007.06.007
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707

[LSG08] LU, Ruopeng ; SADIQ, Shazia ; GOVERNATORI, Guido: Com-

pliance aware business process design. In: Proceedings

of the 2007 international conference on Business process

management. Berlin, Heidelberg : Springer-Verlag, 2008

(BPM’07). – ISBN 3–540–78237–0, 978–3–540–78237–7,

120–131

[Mat12] MATTHEWS, Christopher M.: Daimler not out of the

woods in bribery case. http://blogs.wsj.com/
corruption-currents/2012/04/05/daimler-
not-out-of-the-woods-in-bribery-case/,

April 2012

[MG09] MELL, Peter ; GRANCE, Tim: The NIST defini-

tion of cloud computing. http://csrc.nist.
gov/publications/nistpubs/800-145/SP800-
145.pdf, 2009

[Mie08] MIETZNER, Ralph: Using variability descriptors to descri-

be customizable SaaS application templates / University

of Stuttgart, Faculty of Computer Science, Electrical Engi-

neering, and Information Technology, Germany. Univer-

sity of Stuttgart, Institute of Architecture of Application

Systems, January 2008 (2008/01). – Technical Report

Computer Science. – 27 S.

[Mie10] MIETZNER, Ralph: A method and implementation to define

and provision variable composite applications, and its usa-

ge in cloud computing. Holzgartenstr. 16, 70174 Stuttgart,

220 Literaturverzeichnis

http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Universität Stuttgart, Diss., 2010. http://elib.uni-
stuttgart.de/opus/volltexte/2010/5614

[ML08] MIETZNER, Ralph ; LEYMANN, Frank: Generation of BPEL

customization processes for SaaS applications from Va-

riability Descriptors. In: IEEE SCC, 2008, S. 359–366

[MLP08] MIETZNER, Ralph ; LEYMANN, Frank ; PAPAZOGLOU, Mi-

ke P.: Defining composite configurable SaaS application

packages using SCA, variability descriptors and SaaS

multi-tenancy patterns. In: Proceedings of the 3rd Intl.

Conf. on Internet and Web Applications and Services ICIW

2008. Athens, Greece : IEEE, Januar 2008

[MMLP09] MIETZNER, Ralph ; METZGER, Andreas ; LEYMANN, Frank ;

POHL, Klaus: Variability modeling to support customizati-

on and deployment of multi-tenant-aware Software as

a Service applications. In: PESOS ’09: Proceedings of the

2009 ICSE Workshop on Principles of Engineering Service

Oriented Systems. Washington, DC, USA : IEEE Computer

Society, 2009, S. 18–25

[MPRS13] MALKWITZ, Alexander ; PLEINES, Rüdiger ; REHLING,

Timm ; SCHIKORA, Jan: Compliance in Industrie-

unternehmen - Eine sehr persönliche Angelegen-

heit. http://www.germany.atkearney.com/
documents/856314/1305459/Compliance+in+
manufacturing.pdf/94d99f86-c52e-466a-b4dc-
f5e830a2e8b2, June 2013

Literaturverzeichnis 221

http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2

[Nie93] NIELSEN, Jakob: Usability engineering. San Francisco, CA,

USA : Morgan Kaufmann Publishers Inc., 1993. – ISBN

0125184050

[NLS+11] NOWAK, Alexander ; LEYMANN, Frank ; SCHLEICHER, Daniel

; SCHUMM, David ; WAGNER, Sebastian: Green business

process patterns. In: Proceedings of the 18th Conference on

Pattern Languages of Programs, PLoP 2011, ACM, Oktober

2011

[OAS07] OASIS: Web services business process execution language

version 2.0 – OASIS gstandard, 2007

[Obj11] OBJECT MANAGEMENT GROUP: Business Process Model and

Notation (BPMN) - Version 2.0. http://www.omg.org/
spec/BPMN/2.0/, 2011

[ODHA06] OUYANG, Chun ; DUMAS, Marlon ; HOFSTEDE, Arthur H. M.

; AALST, Wil M. P. d.: From BPMN process models to BPEL

web services. In: Proceedings of the IEEE International

Conference on Web Services. Washington, DC, USA : IEEE

Computer Society, 2006 (ICWS ’06). – ISBN 0–7695–

2669–1, S. 285–292

[OW12] OTTMANN, Thomas ; WIDMAYER, Peter: Algorithmen und

Datenstrukturen, 5. Auflage. Spektrum Akademischer

Verlag, 2012. – I–XXII, 1–774 S. – ISBN 978–3–8274–

2803–5

[PJ12] PREUSS, Susanne ; JAHN, Joachim: Daimler

rechnet mit schnellerem Ende der Überwachung.

222 Literaturverzeichnis

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

http://www.faz.net/aktuell/wirtschaft/
amerikanische-boersenaufsicht-daimler-
rechnet-mit\-schnellerem-ende-der-
ueberwachung-11741661.html, 2012

[Pnu77] PNUELI, Amir: The temporal logic of programs. In: FOCS,

1977, S. 46–57

[Pnu86] PNUELI, A: Current trends in concurrency. Overviews

and tutorials. Version: 1986. http://dl.acm.org/
citation.cfm?id=19518.19527. New York, NY, USA

: Springer-Verlag New York, Inc., 1986. – ISBN 0–387–

16488–X, Kapitel Applications of temporal logic to the

specification and verification of reactive systems: a survey

of current trends, 510–584

[RMF07] RIBEIRO, Óscar R. ; M. FERNANDES, Jo ao: Translating

synchronous petri nets into PROMELA for verifying be-

havioural properties. In: SIES, 2007, S. 266–273

[SAL+10] SCHUMM, David ; ANSTETT, Tobias ; LEYMANN, Frank ;

SCHLEICHER, Daniel ; STRAUCH, Steve: Essential aspects

of compliance management with focus on business pro-

cess automation. In: ABRAMOWICZ, Witold (Hrsg.) ; ALT,

Rainer (Hrsg.) ; FÄHNRICH, Klaus-Peter (Hrsg.) ; FRAN-

CZYK, Bogdan (Hrsg.) ; MACIASZEK, Leszek A. (Hrsg.):

INFORMATIK 2010: Business Process and Service Science

Proceedings of ISSS and BPSC Bd. 177, Gesellschaft für

Informatik e.V. (GI), September 2010 (Lecture Notes in

Informatics), S. 127–138

Literaturverzeichnis 223

http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://dl.acm.org/citation.cfm?id=19518.19527
http://dl.acm.org/citation.cfm?id=19518.19527

[SALM09] SCHLEICHER, Daniel ; ANSTETT, Tobias ; LEYMANN, Frank

; MIETZNER, Ralph: Maintaining compliance in customi-

zable process models. In: MEERSMAN, Robert (Hrsg.) ;

DILLON, Tharam (Hrsg.) ; HERRERO, Pilar (Hrsg.): Procee-

dings of the 17th International Conference on Cooperative

Information Systems (CoopIS 2009) Bd. 5870. Heidel-

berg : Springer Verlag, November 2009 (Lecture Notes in

Computer Science). – ISBN 978–3–642–05147–0, 60–75

[SALS10] SCHLEICHER, Daniel ; ANSTETT, Tobias ; LEYMANN, Frank ;

SCHUMM, David: Compliant business process design using

refinement layers. In: R. MEERSMAN, T. D. a. (Hrsg.): OTM

2010 Conferences, Springer Verlag, Oktober 2010

[SC85] SISTLA, A. P. ; CLARKE, E. M.: The complexity of proposi-

tional linear temporal logics. In: J. ACM 32 (1985), Juli,

Nr. 3, S. 733–749. – ISSN 0004–5411

[Sch00] SCHMIDT, Karsten: LoLA: a low level analyser. In: NIELSEN,

Mogens (Hrsg.) ; SIMPSON, Dan (Hrsg.): Application and

Theory of Petri Nets 2000: 21st International Conference,

ICATPN 2000, Aarhus, Denmark, June 2000. Proceedings

Bd. 1825, Springer-Verlag, Juni 2000 (Lecture Notes in

Computer Science), S. 465–474

[SFG+11] SCHLEICHER, Daniel ; FEHLING, Christoph ; GROHE, Stefan

; LEYMANN, Frank ; NOWAK, Alexander ; SCHNEIDER, Pa-

trick ; SCHUMM, David: Compliance domains: a means to

model data-restrictions in cloud environments. In: En-

224 Literaturverzeichnis

terprise Distributed Object Computing Conference (EDOC),

IEEE Xplore, 2011

[SGN07] SADIQ, Shazia ; GOVERNATORI, Guido ; NAMIRI, Kioumars:

Modeling control objectives for business process com-

pliance. In: Proceedings of the 5th international confe-

rence on Business process management. Berlin, Heidelberg

: Springer-Verlag, 2007 (BPM’07). – ISBN 3–540–75182–

3, 978–3–540–75182–3, 149–164

[SLM+10] SCHUMM, David ; LEYMANN, Frank ; MA, Zhilei ; SCHEIBLER,

Thorsten ; STRAUCH, Steve: Integrating compliance into

business processes: process fragments as reusable com-

pliance controls. In: SCHUMANN/KOLBE/BREITNER/FRE-

RICHS (Hrsg.): Proceedings of the Multikonferenz Wirt-

schaftsinformatik (MKWI), Universitätsverlag Göttingen,

Februar 2010, S. 2125–2137

[SLS10] SCHUMM, David ; LEYMANN, Frank ; STREULE, Alexander:

Process views to support compliance management in

business processes. In: BUCCAFURRI, Francesco (Hrsg.)

; SEMERARO, Giovanni (Hrsg.): Proceedings of the 11th

International Conference on Electronic Commerce and Web

Technologies (EC-Web 2010) Bd. 61. Bilbao, Spain :

Springer-Verlag, September 2010 (Lecture Notes in Busi-

ness Information Processing), 131–142

[SLS+11] SCHLEICHER, Daniel ; LEYMANN, Frank ; SCHNEIDER, Pa-

trick ; SCHUMM, David ; WOLF, Tamara: An approach to

Literaturverzeichnis 225

combine data-related and control-flow-related complian-

ce rules. In: Proceedings of SOCA, IEEE Computer Society,

Dezember 2011

[Spi] SPINROOT.COM: Inspiring applications of spin. http://
spinroot.com/spin/success.html,

[STK+10] SCHUMM, David ; TURETKEN, Oktay ; KOKASH, Natallia ;

ELGAMMAL, Amal ; LEYMANN, Frank ; HEUVEL, Willem-Jan

van d.: Business process compliance through reusable

units of compliant processes. In: Proceedings of the 1st

Workshop on Engineering SOA and the Web (ESW’10),

Springer, Juli 2010

[SWLS10] SCHLEICHER, Daniel ; WEIDMANN, Monika ; LEYMANN,

Frank ; SCHUMM, David: Compliance scopes: Extending

the BPMN 2.0 meta model to specify compliance requi-

rements. In: Proceedings of SOCA 2010, IEEE Computer

Society, Dezember 2010

[TEHP11] TURETKEN, Oktay ; ELGAMMAL, Amal ; HEUVEL, Willem-

Jan van d. ; PAPAZOGLOU, Mike: Enforcing compliance

on business processes through the use of patterns. In:

European Conference on Information Systems (ECIS 2011),

Elsevier, 2011

[TLF+10] TROJER, Thomas ; LEE, Cheuk kwong ; FUNG, Benjamin

C. M. ; NARUPIYAKUL, Lalita ; HUNG, Patrick C. K.: Privacy-

aware health information sharing. In: Privacy-Aware

226 Literaturverzeichnis

http://spinroot.com/spin/success.html
http://spinroot.com/spin/success.html

Knowledge Discovery: Novel Applications and New Techni-

ques, Chapman and Hall/CRC Press, 2010

[Uni99] UNITED STATES: Gramm-Leach-Bliley act. U.S.

G.P.O., 1999 http://books.google.com/books?
id=4mhiQwAACAAJ

[Uni02] UNITED STATES CODE: Sarbanes-Oxley Act of 2002, PL

107-204, 116 Stat 745. Codified in Sections 11, 15, 18,

28, and 29 USC, July 2002

[Var01] VARDI, Moshe Y.: Branching vs. linear time: final show-

down. In: Proceedings of the 7th International Conference

on Tools and Algorithms for the Construction and Analy-

sis of Systems. London, UK, UK : Springer-Verlag, 2001

(TACAS 2001). – ISBN 3–540–41865–2, 1–22

[VF07] VAZ, CÃ¡tia ; FERREIRA, Carla: Towards automated ve-

rification of web services. In: Proceedings of the IADIS

International Conference on WWW/Internet, 2007. – ISBN

978–972–8924–44–7, S. 84–92

[Web07] WEB SERVICES POLICY WORKING GROUP ; W3C (Hrsg.):

Web services policy 1.5 - framework. : W3C, Sep 2007.

http://www.w3.org/TR/ws-policy/

[WKK+11] WEIDMANN, Monika ; KÖTTER, Falko ; KINTZ, Maximilien ;

SCHLEICHER, Daniel ; MIETZNER, Ralph ; LEYMANN, Frank:

Adaptive business process modeling in the internet of

services (ABIS). In: INTERNET, Proceedings of the Sixth

International Conference o. (Hrsg.) ; APPLICATIONS, Web

Literaturverzeichnis 227

http://books.google.com/books?id=4mhiQwAACAAJ
http://books.google.com/books?id=4mhiQwAACAAJ
http://www.w3.org/TR/ws-policy/

(Hrsg.) ; 2011, Services (. (Hrsg.): Adaptive Business

Process Modeling in the Internet of Services (ABIS), Xpert

Publishing Services, März 2011, S. 29–34

[WMM09] WOLTER, Christian ; MISELDINE, Philip ; MEINEL, Chri-

stoph: Verification of business process entailment cons-

traints using SPIN. In: MASSACCI, Fabio (Hrsg.) ; REDWINE,

Samuel (Hrsg.) ; ZANNONE, Nicola (Hrsg.): Engineering

Secure Software and Systems Bd. 5429. Springer Berlin /

Heidelberg, 2009. – ISBN 978–3–642–00198–7

[Wol10] WOLTER, Christian: A methodology for model-driven pro-

cess security, Hasso-Plattner Institute for IT Systems En-

gineering, Diss., 2010

[WPD+11] WEIDLICH, Matthias ; POLYVYANYY, Artem ; DESAI, Nirmit

; MENDLING, Jan ; WESKE, Mathias: Process compliance

analysis based on behavioural profiles. In: Inf. Syst. 36

(2011), Nr. 7, S. 1009–1025

Angegebene URLs wurden zuletzt am 09.11.2013 aufgerufen.

228 Literaturverzeichnis

ABBILDUNGSVERZEICHNIS

2.1. Einschränkung der Möglichkeiten der Abfolge von Ak-

tivitäten mit Hilfe eines Kontrollflusskonnektors 35

2.2. Beispiel für ein Ereignis in BPMN: Startereignis 36

2.3. Und-Gateway links; Exklusiv-oder-Gateway rechts . . . 36

2.4. Datenobjekt . 37

4.1. Beispielprozess. (Vgl. [SFG+11]) 65

4.2. Abstraktes Prozessmodell eines Compliancetemplates . 71

4.3. BPMN 2.0-Erweiterungsmechanismus skizziert in UML

(Vgl. [Obj11]) . 74

4.4. Abstraktes Prozessmodell eines Compliancetemplates

in Verbund mit Variabilitätsdeskriptor 78

4.5. Abstraktes Prozessmodell eines Compliancetemplates

in Verbund mit Variabilitätsdeskriptor und Compliance-

deskriptor . 81

4.6. Metamodell eines Compliancedeskriptors 82

229

4.7. Annotation eines Prozessmodells mit einem

Compliancedeskriptor . 88

4.8. Metamodell eines Compliancescopes 89

4.9. Überprüfungsschritte für BPMN Prozesse geschrieben

in BPMN . 95

4.10.In dieser Dissertation verwendete Grundmenge von

BPMN 1.0 Elementen . 95

4.11.Abbildung von BPMN 1.0 Konstrukten auf Petrinetze

(angelehnt an [DDO08]) 97

5.1. Beispielprozess versehen mit Datenobjekten und Com-

pliancedomains . 111

5.2. Meta-Modell einer Compliancedomain 115

5.3. Vergleich von Daten-schemas zur Überprüfung einer

Complianceregel. 120

5.4. Beispielprozess, der den gesamten Kontrollfluss und

einen Teil des Datenflusses zeigt. 129

5.5. Generische Compliancesprache (vergleiche:[SWLS10]) 131

5.6. Übergeordnete Sprache zur Definition von Compliance-

regeln (Erweiterung der BNF der Aussagenlogik) . . . 132

5.7. Darstellung des Regelbaumes für das laufende Beispiel 138

6.1. Ablauf der Erstellung regelkonformer Prozesse. Notati-

on: angelehnt an BPMN 147

6.2. Konzeptionelle Übersicht über die Komponenten, die

für die Entwicklung regelkonformer Prozesse miteinan-

der arbeiten müssen. 152

230 Abbildungsverzeichnis

6.3. Beispiel: Vervollständigungsebenen; Weiterleitung von

Complianceregeln (vergleiche [SALS10]) 156

6.4. Entstehung eines Konflikts beim Einfügen von Com-

plianceregionen (vergleiche [SALS10]) 161

6.5. Weiterleitung von nicht erfüllten Complianceregeln (ver-

gleiche [SALS10]) . 163

6.6. Beseitigung eines indirekten Konflikts. Durch das Ein-

fügen der Aktivität A auf Vervollständigungsebene 2

wird die Complianceregel CA gelöscht, so dass sie nicht

mehr bei der automatischen Überprüfung herangezo-

gen wird. Folglich wird bei der automatischen Über-

prüfung der unerfüllbare Ausdruck CA ∧ ¬CA in den

erfüllbaren Ausdruck ¬CA überführt. 166

6.7. Beschreibung des Algorithmus der Überprüfung von

Complianceregeln verschachtelter Compliancescopes in

BPMN. Quelle: [Bur12] 171

7.1. Oberfläche von Oryx. Rechts befindet sich das Sidebar-

Plugin. Es zeigt, abhängig von der aktuellen Model-

lierungssituation, entweder Eigenschaften des gerade

markierten Teils des Prozessmodells oder die für das

Füllen von Complianceregionen verfügbaren Prozess-

fragmente. 180

Abbildungsverzeichnis 231

7.2. Überblick über die Architektur des Prototyps. Pfeile

zeigen von der aufrufenden zur aufgerufenen Kompo-

nente. Die in der vorliegenden Dissertation erstellten

Komponenten sind mit durchgezogenen Linien gezeich-

net. Alle schon vorhandenen Komponenten sind mit

unterbrochenen Linien gezeichnet. 182

7.3. Neuer Knopf mit Funktionalitäten zur Überprüfung von

an den Prozess annotierten Complianceregeln. 185

7.4. Compliancewizard: Dient der Annotation von Compliance-

regeln an Complianceregionen oder Compliancescopes 187

7.5. Graphische Modellierung von LTL-Formeln 190

7.6. Anzeige des Überprüfungsergebnisses bei geschachtel-

ten Compliancescopes . 194

7.7. Anzeige des Überprüfungsergebnisses bei geschachtel-

ten Compliancescopes: Erfüllung des ersten Teils der

mit Compliancescope 1 verknüpften Complianceregel . 195

7.8. Anzeige des Überprüfungsergebnisses geschachtelter

Compliancescopes: Unerfüllbarkeit weitergereichter Com-

plianceregeln . 197

7.9. Prozessmodell mit dem die Geschwindigkeitsuntersu-

chungen durchgeführt wurden. 198

B.1. Fiktiver Prozess zum Bau eines Autos. Der Prozess wird

von links nach rechts gelesen und enthält mehrfach

verschachtelte Compliancescopes. 250

B.2. Graphische Repräsentation der mit dem Compliances-

cope mit dem Namen Gesamtprozess aus Abbildung B.1

verknüpften Complianceregel. 252

232 Abbildungsverzeichnis

B.3. Graphische Repräsentation der mit dem Compliances-

cope mit dem Namen Rohbau aus Abbildung B.1 ver-

knüpften Complianceregel. 253

B.4. Graphische Repräsentation der mit dem Compliances-

cope mit dem Namen Lackieren aus Abbildung B.1 ver-

knüpften Complianceregel. 254

B.5. Fiktiver Prozess zur Buchung öffentlicher Verkehrsmittel 255

Abbildungsverzeichnis 233

TABELLENVERZEICHNIS

4.1. Liste von kontrollflussbasierten Complianceregeln (ei-

nige basierend auf [DAC98]). Die Funktionsweise der

in diesen Ausdrücken verwendeten Operatoren wird in

Abschnitt 2.5 beschrieben. 69

5.1. Zusammenhang der Wichtigkeit von Daten für eine Or-

ganisation und deren mögliche Verarbeitung in Cloud-

Umgebungen . 117

7.1. Funktionen und implementierende Komponenten des

Prototyps . 184

7.2. Messergebnisse der Laufzeiten (in Millisekunden) von

Complianceuntersuchungen eines Prozessmodells mit

parallelen Zweigen [Gro11]. 198

235

A
N

H
A

N
G A

CODEBEISPIELE

Dieses Codebeispiel zeigt das laufende Beispiel aus Abbildung 4.1. In

den Zeilen 4 bis 15 ist zu sehen, wie die Tasks des Beispielszenarios

auf die Plätze des Petrinetzes abgebildet sind. Bis Zeile 45 werden die

Transitionen und die Plätze, die belegt sein müssen, damit sie schalten

können, definiert. In den Zeilen 48 bis 50 wird das Petri-Netz mit der

Startbelegung initialisiert. Die Ausführung des Petri-Netzes wird in

den Zeilen 51 bis 67 simuliert.

Listing A.1: Repräsentation des Beispielszenarios als Petrinetz, ge-

schrieben in PROMELA

1 byte p [20] ;
2

3 #define Task3 false
4 #define Empfange_Blutdaten p[3]
5 #define Blutspender−daten_speichern p[4]
6 #define Patientendaten_sammeln p[8]

237

7 #define Blu tverbrauchsda ten_vorbere i t en p[10]
8 #define Blutverbrauchsdaten_versenden p[11]
9 #define Gesundhe i t s i n fo rma t i onen_be re i t s t e l l en p[13]

10 #define Blutverbrauchsdaten_versenden p[11]
11 #define Gesundhei t s in format ionen_ lesen p[15]
12 #define Gesundhei tsdaten_speichern p[16]
13 #define B lu tve rb rauchsbe r i ch t_gene r i e ren p[18]
14 #define B lu t ve rb rauchsbe r i ch t _ l e s en p[13]
15 #define Gesundhe i t s i n fo rma t i onen_be re i t s t e l l en p[19]
16 #define rd_22_ t rans i t i on0 p[1] && ! p[2]
17 #define f i r e _ 2 2 _ t r a n s i t i o n 0 p[1] = 0; p[2] = 1;

18 #define rd_23_ t rans i t i on1 p[2] && ! p[3]
19 #define f i r e _ 2 3 _ t r a n s i t i o n 1 p[2] = 0; p[3] = 1;

20 #define rd_24_ t rans i t i on2 p[3] && ! p[4]
21 #define f i r e _ 2 4 _ t r a n s i t i o n 2 p[3] = 0; p[4] = 1;

22 #define rd_25_ t rans i t i on3 p[4] && ! p[6] && ! p[7]
23 #define f i r e _ 2 5 _ t r a n s i t i o n 3 p[4] = 0; p[6] = 1; p[7] = 1;

24 #define rd_26_ t rans i t i on4 p[7] && ! p[8]
25 #define f i r e _ 2 6 _ t r a n s i t i o n 4 p[7] = 0; p[8] = 1;

26 #define rd_27_ t rans i t i on5 p[8] && ! p[9]
27 #define f i r e _ 2 7 _ t r a n s i t i o n 5 p[8] = 0; p[9] = 1;

28 #define rd_28_ t rans i t i on6 p[9] && ! p[10]
29 #define f i r e _ 2 8 _ t r a n s i t i o n 6 p[9] = 0; p[10] = 1;

30 #define rd_29_ t rans i t i on7 p[10] && ! p[11]
31 #define f i r e _ 2 9 _ t r a n s i t i o n 7 p[10] = 0; p[11] = 1;

32 #define rd_30_ t rans i t i on8 p[19] && p[11] && ! p[14]
33 #define f i r e _ 3 0 _ t r a n s i t i o n 8 p[19] = 0; p[11] = 0; p[14] = 1;

34 #define rd_31_ t rans i t i on9 p[14] && ! p[15]
35 #define f i r e _ 3 1 _ t r a n s i t i o n 9 p[14] = 0; p[15] = 1;

36 #define rd_32_ t rans i t i on10 p[15] && ! p[16]
37 #define f i r e _ 3 2 _ t r a n s i t i o n 1 0 p[15] = 0; p[16] = 1;

38 #define rd_33_ t rans i t i on11 p[16] && ! p[17]
39 #define f i r e _ 3 3 _ t r a n s i t i o n 1 1 p[16] = 0; p[17] = 1;

40 #define rd_34_ t rans i t i on12 p[6] && ! p[18]

238

41 #define f i r e _ 3 4 _ t r a n s i t i o n 1 2 p[6] = 0; p[18] = 1;

42 #define rd_35_ t rans i t ion13 p[18] && ! p[13]
43 #define f i r e _ 3 5 _ t r a n s i t i o n 1 3 p[18] = 0; p[13] = 1;

44 #define rd_36_ t rans i t ion14 p[13] && ! p[19]
45 #define f i r e _ 3 6 _ t r a n s i t i o n 1 4 p[13] = 0; p[19] = 1;

46 active proctype t e s t ()

47 {
48 d_step { p[0] = 0; p[1] = 1; p[2] = 0; p[3] = 0; p[4] = 0;

p[5] = 0; p[6] = 0; p[7] = 0; p[8] = 0; p[9] = 0; p

[10] = 0; p[11] = 0; p[12] = 0; p[13] = 0; p[14] = 0; p

[15] = 0; p[16] = 0; p[17] = 0; p[18] = 0; p[19] = 0; }
49 do
50 : : rd_22_ t rans i t i on0 −> d_step{printf("

PROCESSED_22_transition0") ; f i r e _ 2 2 _ t r a n s i t i o n 0 }
51 : : rd_23_ t rans i t i on1 −> d_step{printf("

PROCESSED_23_transition1") ; f i r e _ 2 3 _ t r a n s i t i o n 1 }
52 : : rd_24_ t rans i t i on2 −> d_step{printf("

PROCESSED_24_transition2") ; f i r e _ 2 4 _ t r a n s i t i o n 2 }
53 : : rd_25_ t rans i t i on3 −> d_step{printf("

PROCESSED_25_transition3") ; f i r e _ 2 5 _ t r a n s i t i o n 3 }
54 : : rd_26_ t rans i t i on4 −> d_step{printf("

PROCESSED_26_transition4") ; f i r e _ 2 6 _ t r a n s i t i o n 4 }
55 : : rd_27_ t rans i t i on5 −> d_step{printf("

PROCESSED_27_transition5") ; f i r e _ 2 7 _ t r a n s i t i o n 5 }
56 : : rd_28_ t rans i t i on6 −> d_step{printf("

PROCESSED_28_transition6") ; f i r e _ 2 8 _ t r a n s i t i o n 6 }
57 : : rd_29_ t rans i t i on7 −> d_step{printf("

PROCESSED_29_transition7") ; f i r e _ 2 9 _ t r a n s i t i o n 7 }
58 : : rd_30_ t rans i t i on8 −> d_step{printf("

PROCESSED_30_transition8") ; f i r e _ 3 0 _ t r a n s i t i o n 8 }
59 : : rd_31_ t rans i t i on9 −> d_step{printf("

PROCESSED_31_transition9") ; f i r e _ 3 1 _ t r a n s i t i o n 9 }
60 : : rd_32_ t rans i t i on10 −> d_step{printf("

PROCESSED_32_transition10") ; f i r e _ 3 2 _ t r a n s i t i o n 1 0 }

239

61 : : rd_33_ t rans i t i on11 −> d_step{printf("
PROCESSED_33_transition11") ; f i r e _ 3 3 _ t r a n s i t i o n 1 1 }

62 : : rd_34_ t rans i t i on12 −> d_step{printf("
PROCESSED_34_transition12") ; f i r e _ 3 4 _ t r a n s i t i o n 1 2 }

63 : : rd_35_ t rans i t i on13 −> d_step{printf("
PROCESSED_35_transition13") ; f i r e _ 3 5 _ t r a n s i t i o n 1 3 }

64 : : rd_36_ t rans i t i on14 −> d_step{printf("
PROCESSED_36_transition14") ; f i r e _ 3 6 _ t r a n s i t i o n 1 4 }

65 : : p[17] −> goto accept

66 od ;

67 accept : printf("Accepted") ;

68 }

Es folgt ein Minimalbeispiel eines Compliancetemplates in XML

in Listing A.2. Dieses Beispiel basiert auf dem XML Schema für ein

Compliancetemplate in Listing A.3.

Listing A.2: Minimalbeispiel für ein Compliancetemplate

1 <?xml version="1.0" encoding="UTF-8"?>
2 <complTemplate:complianceTemplate

3 xmlns:complTemplate="http://www.danielschleicher.com/
complianceTemplate"

4 xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"
6 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
7 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
8 xmlns:d i="http://www.omg.org/spec/DD/20100524/DI"
9 xs i : schemaLocat ion="http://www.omg.org/spec/BPMN/20100524/

MODEL BPMN20.xsd
10 http://www.danielschleicher.com/complianceTemplate

complianceTemplate.xsd">
11 <complTemplate:compl ianceDescr iptor>
12 <complTemplate:compliancePunkt>
13 <complTemplate:complianceRegel>

240

14 <complTemplate:complianceLink>
15 <complTemplate:complianceRegionXpath>/

complTemplate:complianceTemplate/
bpmn2:def in i t ions /bpmn2:process/
complTemplate:complianceRegion</
complTemplate:complianceRegionXpath>

16 </ complTemplate:complianceLink>
17 <complTemplate:formalComplianceRule>
18 <complTemplate: languageIndicator> l t l</

complTemplate: languageIndicator>
19 <complTemplate:complianceRule>[]Task1</

complTemplate:complianceRule>
20 </ complTemplate:formalComplianceRule>
21 </ complTemplate:complianceRegel>
22 </ complTemplate:compliancePunkt>
23 </ complTemplate:compl ianceDescr iptor>
24 <complTempla te :var iab i l i t yMode l>
25 <comp lTemp la t e : va r i ab i l i t yPo in t>
26 <complTemplate:name/>
27 <complTempla te :a l te rna t ive>
28 <complTemplate:name>f r e e</complTemplate:name>
29 <complTemplate:defaul t>t rue</ complTemplate:defaul t>
30 <complTemplate:empty/>
31 </ complTempla te :a l te rna t ive>
32 <complTemplate:xPathLocator>/

complTemplate:complianceTemplate/ bpmn2:def in i t ions /
bpmn2:process/ complTemplate:complianceRegion</
complTemplate:xPathLocator>

33 </ comp lTemp la t e : va r i ab i l i t yPo in t>
34 </ complTempla te :var iab i l i t yMode l>
35 <bpmn2:def in i t ions targetNamespace="http://sample.bpmn2.

org/bpmn2/sample/process">
36 <bpmn2:process id="process_1" name="Default Process">
37 <bpmn2:startEvent id="StartEvent_1">

241

38 <bpmn2:outgoing>SequenceFlow_1</bpmn2:outgoing>
39 </bpmn2:startEvent>
40 <bpmn2:sequenceFlow id="SequenceFlow_1" sourceRef="

StartEvent_1" t a rge tRe f="ComplianceRegion_1"/>
41 <bpmn2:endEvent id="EndEvent_1">
42 <bpmn2:incoming>SequenceFlow_2</bpmn2:incoming>
43 </bpmn2:endEvent>
44 <complTemplate:complianceRegion id="ComplianceRegion_1

" name="Compliance Region">
45 <bpmn2:incoming>SequenceFlow_1</bpmn2:incoming>
46 <bpmn2:outgoing>SequenceFlow_2</bpmn2:outgoing>
47 </ complTemplate:complianceRegion>
48 <bpmn2:sequenceFlow id="SequenceFlow_2" name=""

sourceRef="ComplianceRegion_1" t a rge tRe f="
EndEvent_1"/>

49 </bpmn2:process>
50 <bpmndi:BPMNDiagram id="BPMNDiagram_1" name="Default

Process Diagram">
51 <bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="

process_1">
52 <bpmndi:BPMNShape id="BPMNShape_1" bpmnElement="

StartEvent_1">
53 <dc:Bounds he ight="36.0" width="36.0" x="100.0" y=

"100.0"/>
54 </bpmndi:BPMNShape>
55 <bpmndi:BPMNShape id="BPMNShape_2" bpmnElement="

EndEvent_1">
56 <dc:Bounds he ight="36.0" width="36.0" x="500.0" y=

"100.0"/>
57 </bpmndi:BPMNShape>
58 <bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_1"

bpmnElement="SequenceFlow_1" sourceElement="
BPMNShape_1" targetE lement="
BPMNShape_ComplianceRegion_1">

242

59 <di :waypoint x s i : t y p e="dc:Point" x="136.0" y="
118.0"/>

60 <di :waypoint x s i : t y p e="dc:Point" x="264.0" y="
119.0"/>

61 </bpmndi:BPMNEdge>
62 <bpmndi:BPMNShape id="BPMNShape_ComplianceRegion_1"

bpmnElement="ComplianceRegion_1">
63 <dc:Bounds he ight="50.0" width="110.0" x="264.0" y

="94.0"/>
64 </bpmndi:BPMNShape>
65 <bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_2"

bpmnElement="SequenceFlow_2" sourceElement="
BPMNShape_ComplianceRegion_1" targetE lement="
BPMNShape_2">

66 <di :waypoint x s i : t y p e="dc:Point" x="374.0" y="
119.0"/>

67 <di :waypoint x s i : t y p e="dc:Point" x="500.0" y="
118.0"/>

68 </bpmndi:BPMNEdge>
69 </bpmndi:BPMNPlane>
70 </bpmndi:BPMNDiagram>
71 </ bpmn2:def in i t ions>
72 </ complTemplate:complianceTemplate>

Listing A.3: XML Schema für ein Compliancetemplate

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!−− e d i t e d with XMLSpy v2013 sp1 (x64) (h t t p : //www. a l t o v a .

com) by P a t r i c i a Bart−Plange (Daimler AG) −−>
3 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://www.danielschleicher.com/
complianceTemplate" xmlns:bpmn="http://www.omg.org/spec/
BPMN/20100524/MODEL" targetNamespace="http://www.
danielschleicher.com/complianceTemplate"
elementFormDefault="qualified" a t t r ibu teFormDefau l t="

243

unqualified">
4 <xs : impor t namespace="http://www.omg.org/spec/BPMN

/20100524/MODEL" schemaLocation="Semantic.xsd"/>
5 <xs : impor t namespace="http://www.omg.org/spec/BPMN

/20100524/MODEL" schemaLocation="BPMN20.xsd"/>
6 <xs :e lement name="complianceTemplate" type="

ns1:tcomplianceTemplate"/>
7 <xs:complexType name="tcomplianceTemplate">
8 <x s : a l l>
9 <xs :e lement r e f="ns1:complianceDescriptor" minOccurs="

0" maxOccurs="1"/>
10 <xs :e lement r e f="ns1:variabilityModel" minOccurs="0"

maxOccurs="1"/>
11 <xs :e lement r e f="bpmn:definitions" minOccurs="1"

maxOccurs="1"/>
12 </ x s : a l l>
13 </xs:complexType>
14 <xs :e lement name="complianceRegion" type="

ns1:tcomplianceRegion" subs t i tu t ionGroup="
bpmn:flowElement"/>

15 <xs:complexType name="tcomplianceRegion">
16 <xs:complexContent>
17 <x s : ex t en s i on base="bpmn:tActivity">
18 <xs :sequence>
19 <xs :e lement r e f="bpmn:laneSet" minOccurs="0"

maxOccurs="unbounded"/>
20 <xs :e lement r e f="bpmn:flowElement" minOccurs="0"

maxOccurs="unbounded"/>
21 <xs :e lement r e f="bpmn:artifact" minOccurs="0"

maxOccurs="unbounded"/>
22 </ xs :sequence>
23 <x s : a t t r i b u t e name="triggeredByEvent" type="

xs:boolean" default="false"/>
24 </ x s : ex t en s i on>

244

25 </xs:complexContent>
26 </xs:complexType>
27 <xs :e lement name="complianceScope" type="

ns1:tcomplianceScope" subs t i tu t ionGroup="
bpmn:flowElement"/>

28 <xs:complexType name="tcomplianceScope">
29 <xs:complexContent>
30 <x s : ex t en s i on base="ns1:tcomplianceRegion"/>
31 </xs:complexContent>
32 </xs:complexType>
33 <xs :e lement name="languageIndicator" type="

ns1:tlanguageIndicator"/>
34 <xs:s impleType name="tlanguageIndicator">
35 <x s : r e s t r i c t i o n base="xs:string"/>
36 </ xs:s impleType>
37 <xs :e lement name="formalComplianceRule" type="

ns1:tformalComplianceRule"/>
38 <xs:complexType name="tformalComplianceRule">
39 <xs :sequence>
40 <xs :e lement r e f="ns1:languageIndicator" minOccurs="1"

maxOccurs="1"/>
41 <xs :e lement name="complianceRule" type="xs:string"

minOccurs="1" maxOccurs="1"/>
42 </ xs :sequence>
43 </xs:complexType>
44 <xs :e lement name="complianceLink" type="

ns1:tcomplianceLink"/>
45 <xs:complexType name="tcomplianceLink">
46 <xs :sequence>
47 <xs :e lement name="complianceRegionXpath" type="

xs:string" minOccurs="1" maxOccurs="unbounded"/>
48 </ xs :sequence>
49 </xs:complexType>

245

50 <xs :e lement name="complianceRegel" type="
ns1:tcomplianceRegel"/>

51 <xs:complexType name="tcomplianceRegel">
52 <xs :sequence>
53 <xs :e lement r e f="ns1:complianceLink"/>
54 <xs :e lement r e f="ns1:formalComplianceRule"/>
55 </ xs :sequence>
56 </xs:complexType>
57 <xs :e lement name="compliancePunkt" type="

ns1:tcomliancePunkt"/>
58 <xs:complexType name="tcomliancePunkt">
59 <xs :sequence>
60 <xs :e lement r e f="ns1:complianceRegel"/>
61 </ xs :sequence>
62 </xs:complexType>
63 <xs :e lement name="dependencySourceXPath" type="

ns1:tdependencySourceXPath"/>
64 <xs:s impleType name="tdependencySourceXPath">
65 <x s : r e s t r i c t i o n base="xs:string"/>
66 </ xs:s impleType>
67 <xs :e lement name="dependencyTargetXPath" type="

ns1:tdependencyTargetXPath"/>
68 <xs:s impleType name="tdependencyTargetXPath">
69 <x s : r e s t r i c t i o n base="xs:string"/>
70 </ xs:s impleType>
71 <xs :e lement name="dependency" type="ns1:tdependency"/>
72 <xs:complexType name="tdependency">
73 <xs :sequence>
74 <xs :e lement r e f="ns1:dependencySourceXPath" minOccurs=

"1" maxOccurs="1"/>
75 <xs :e lement r e f="ns1:dependencyTargetXPath" minOccurs=

"1" maxOccurs="1"/>
76 </ xs :sequence>
77 </xs:complexType>

246

78 <xs :e lement name="complianceDescriptor" type="
ns1:tcomplianceDescriptor"/>

79 <xs:complexType name="tcomplianceDescriptor">
80 <xs :sequence>
81 <xs :e lement r e f="ns1:compliancePunkt"/>
82 <xs :e lement r e f="ns1:dependency" minOccurs="0"

maxOccurs="unbounded"/>
83 </ xs :sequence>
84 </xs:complexType>
85 <xs :e lement name="xPathLocator" type="xs:string"/>
86 <xs :e lement name="alternative" type="ns1:talternative"/>
87 <xs:complexType name="talternative">
88 <xs :sequence>
89 <xs :e lement name="name" type="xs:string"/>
90 <xs :e lement name="default" type="xs:boolean"/>
91 <xs :any namespace="##targetNamespace" processContents=

"lax" maxOccurs="unbounded"/>
92 </ xs :sequence>
93 </xs:complexType>
94 <xs :e lement name="variabilityPoint" type="

ns1:tvariabilityPoint"/>
95 <xs:complexType name="tvariabilityPoint">
96 <xs :sequence>
97 <xs :e lement name="name" type="xs:string"/>
98 <xs :e lement name="dependentOn" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
99 <xs :e lement r e f="ns1:alternative" minOccurs="1"

maxOccurs="unbounded"/>
100 <xs :e lement r e f="ns1:xPathLocator" minOccurs="1"

maxOccurs="unbounded"/>
101 </ xs :sequence>
102 </xs:complexType>
103 <xs :e lement name="variabilityModel" type="

ns1:tvariabilityModel"/>

247

104 <xs:complexType name="tvariabilityModel">
105 <xs :sequence>
106 <xs :e lement r e f="ns1:variabilityPoint" minOccurs="1"

maxOccurs="unbounded"/>
107 </ xs :sequence>
108 </xs:complexType>
109 </xs:schema>

248

A
N

H
A

N
G B

KOMPLEXE PROZESSBEISPIELE

Die in den Abbildungen B.1 und B.5 gezeigten Prozesse zeigen die

Anwendbarkeit der in dieser Dissertation vorgestellten Konzepte an

Beispielen, deren Komplexität an die Komplexität realer Prozesse

angelehnt ist.

Der Fokus des in Abbildung B.1 gezeigten Prozesses liegt in der

Anwendbarkeit von Compliancescopes mit realitätsnahen Prozessen.

Die in diesem Beispiel gezeigten Compliancescopes sind mehrfach

ineinander verschachtelt. Mit jedem Compliancescope sind Complian-

ceregeln verknüpft. Daraus ergibt sich die Situation, dass nicht erfüllte

Complianceregeln äußerer Compliancescopes an die inneren Com-

pliancescopes weitergegeben werden müssen.

Im Folgenden werden die mit den Compliancescopes Gesamtprozess,

Rohbau und Lackieren verknüpften Complianceregeln gezeigt. Damit

wird die Plausibilität der in diesem Prozess verwendeten Compliancere-

249

Abbildung B.1.: Fiktiver Prozess zum Bau eines Autos. Der Prozess
wird von links nach rechts gelesen und enthält mehr-
fach verschachtelte Compliancescopes.

250

geln und somit die Anwendbarkeit des Konzepts des Compliancescopes

mit realitätsnahen Prozessen gezeigt. Alle anderen Compliancescopes

in diesem Beispiel sind auch mit Complianceregeln versehen. Aus

Platzgründen werden diese nicht aufgeführt.

251

Abbildung B.2.: Graphische Repräsentation der mit dem Complian-
cescope mit dem Namen Gesamtprozess aus Abbil-
dung B.1 verknüpften Complianceregel.

• Complianceregel Gesamtprozess: Die in Abbildung B.2 gezeig-

te Complianceregel bedeutet, dass nach dem Task MontageStart

immer der Task Auslieferung ausgeführt werden muss. Es ist sinn-

voll solche allgemeinen Complianceregeln mit dem äußersten

Compliancescope eines Prozesses zu verknüpfen. Damit wird

das Grundgerüst des Prozesses festgelegt.

• Complianceregel Rohbau: Die in Abbildung B.3 gezeigte Com-

plianceregel bedeutet, dass der Task unterbauVerschrauben im-

mer ausgeführt werden muss, wenn der Task tuerenFertigen

ausgeführt wird und umgekehrt. Diese Complianceregel stellt

die strukturelle Integrität des Teilprozesses im Compliancescope

Rohbau sicher.

• Complianceregel Lackieren: Die in Abbildung B.4 gezeigte

Complianceregel bedeutet, dass der Task Schwarz alleine ausge-

führt wird oder die Tasks Weiss und Blau zusammen ausgeführt

werden müssen. Mit dieser Complianceregel kann sichergestellt

252

Abbildung B.3.: Graphische Repräsentation der mit dem Complian-
cescope mit dem Namen Rohbau aus Abbildung B.1
verknüpften Complianceregel.

werden, dass zum Beispiel Einschränkungen von Maschinen bei

der Prozessmodellierung beachtet werden. Es könnte hier der

Fall sein, dass die Lackiermaschine entweder nur Schwarz in

einem Durchlauf lackieren kann oder Blau und Weiß zusammen

in einem Durchlauf.

Abbildung B.5 zeigt einen anderen fiktiven Prozess. Er zeigt die

Schritte die nötig sein könnten mit der App mit dem Namen Moovel von

Daimler ein öffentliches Verkehrsmittel zu buchen. Moovel integriert

mehrere Anbieter von öffentlichen Verkehrsmitteln in einer App. In

den Suchergebnissen können Reisemöglichkeiten unter Verwendung

mehrerer Anbieter angezeigt werden.

Im Folgenden wird beispielhaft eine datenbasierte Complianceregel

253

Abbildung B.4.: Graphische Repräsentation der mit dem Compliances-
cope mit dem Namen Lackieren aus Abbildung B.1
verknüpften Complianceregel.

gezeigt, die in diesem Prozess mit der Compliancedomain mit dem

Namen PublicCloud verknüpft sein könnte.

Es muss in diesem Prozess zum Beispiel verhindert werden, dass

sensible Daten, die in der Compliancedomain mit dem Namen Priva-

teCloud verarbeitet werden nach außen gelangen. Daher muss unter

anderem die Datenassoziation überprüft werden, die vom Task mit

dem Namen Forward Booked Tickets zum Datenobjekt Ticket List zeigt.

Es kann hier zum Beispiel festgelegt werden, dass nur die Ticket-

nummer und der Name des Käufers übertragen werden, jedoch nicht

die Zahlungsmethode und Bankverbindung. Dies kann mit der in Ab-

schnitt 5.2 vorgestellten auf XPath basierenden Compliancesprache

festgelegt und automatisch überprüft werden.

254

Abbildung B.5.: Fiktiver Prozess zur Buchung öffentlicher
Verkehrsmittel

255

	1 Einleitung
	1.1 Bedeutung von Compliance für Unternehmen heute
	1.2 Zentrales Anliegen
	1.3 Problemstellung und Motivation
	1.4 Forschungsbeiträge der Arbeit
	1.4.1 Erweiterung eines Variabilitätskonzepts und eines Prozessmetamodells für die Unterstützung der Entwicklung regelkonformer Prozesse
	1.4.2 Algorithmus zur Überprüfung des Kontrollflusses von Teilbereichen von Prozessen
	1.4.3 Algorithmus zur Überprüfung des Datenflusses in Prozessmodellen
	1.4.4 Ein Mechanismus zur Unterstützung der Zusammenarbeit bei der Erstellung regelkonformer Prozesse
	1.4.5 Architektur eines Prototyps zur Evaluierung der vorgestellten Konzepte und Algorithmen

	1.5 Definition des Arbeitsbereichs
	1.6 Aufbau der Arbeit

	2 Grundlagen der Entwicklung regelkonformer Prozesse
	2.1 Bedeutung des Begriffs Compliance im Kontext dieser Arbeit
	2.2 Business Process Management
	2.3 Business Process Model and Notation 1.0 (BPMN 1.0)
	2.3.1 Tasks
	2.3.2 Kontrollfluss
	2.3.3 Datenfluss
	2.3.4 Ereignisse
	2.3.5 Gateways
	2.3.6 Datenobjekte

	2.4 Oryx
	2.5 Lineare Temporale Logik
	2.6 Modelchecking
	2.7 SPIN
	2.8 PROMELA
	2.9 JSON
	2.10 Prozessfragment

	3 Verwandte Arbeiten
	3.1 Unterstützung menschlicher Prozessmodellierer
	3.2 Regelkonformes Geschäftsprozessmanagement
	3.3 Regelkonforme Prozessmodellierung
	3.4 Automatische Überprüfung von Prozessmodellen anhand von Complianceregeln zur Entwicklungszeit
	3.5 Zusammenfassung und Einordnung

	4 Entwicklung von Prozessen mit regelkonformem Kontrollfluss
	4.1 Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong
	4.2 Vorlagenbasierte Entwicklung regelkonformer Prozesse
	4.2.1 Das abstrakte Prozessmodell eines Compliancetemplates
	4.2.2 Der Variabilitätsdeskriptor eines Compliancetemplates
	4.2.3 Der Compliancedeskriptor eines Compliancetemplates
	4.2.4 Vervollständigen von Compliancetemplates

	4.3 Compliancescope
	4.3.1 Definition Compliancescope aufbauend auf der Definition eines Hypergraphen
	4.3.2 Erweiterung von BPMN 1.0 mit Compliancescopes

	4.4 Gegenüberstellung der Anwendungsgebiete von Compliancetemplates und Compliancescopes
	4.5 Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses
	4.5.1 Transformation von BPMN in Petrinetze
	4.5.2 Repräsentation von Petrinetzen in PROMELA

	4.6 Zusammenfassung

	5 Entwicklung von Prozessen mit regelkonformem Datenfluss
	5.1 Beispielprozess
	5.2 Compliancedomains
	5.2.1 Definition von Compliancedomains

	5.3 Verifizierungsalgorithmus
	5.3.1 Eigenschaften von Datenflusskonnektoren
	5.3.2 Eigenschaften von Compliancedomains

	5.4 Datenflussanalyse im Feld der Compilerentwicklung
	5.5 Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln
	5.5.1 Generische Compliancesprache für die Kombination von datenbasierten mit kontrollflussbasierten Complianceregeln
	5.5.2 Formale Definition einer generischen Compliancesprache
	5.5.3 Beispiele
	5.5.4 Automatische Überprüfung von Ausdrücken in einer generischen Compliancesprache, die aus verschiedensprachigen Ausdrücken aufgebaut sind

	5.6 Zusammenfassung

	6 Gemeinsame Erstellung regelkonformer Prozesse
	6.1 Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner
	6.2 Werkzeuge für die Erstellung regelkonformer Prozesse
	6.3 Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung regelkonformer Prozesse
	6.3.1 Verschachtelte Complianceregeln und Flexibilität
	6.3.2 Erfüllbarkeit verschmolzener Regelsätze
	6.3.3 Behandlung erfüllter Complianceregeln
	6.3.4 Auftreten von Konflikten zwischen Complianceregeln

	6.4 Überprüfung von Complianceregeln von verschachtelten Compliancescopes
	6.5 Zusammenfassung

	7 Prototyp
	7.1 Funktionalität des Prototyps
	7.2 Architektur des Prototyps
	7.3 Compliancewizard
	7.4 Variabilitäts-Wizard
	7.5 Sidebar-Plugin
	7.6 Ableitungs-Plugin
	7.7 LTL-Plugin
	7.8 Complianceservlet
	7.9 LTL-Servlet
	7.10 Compliancechecker
	7.11 Performanzmessungen
	7.12 Zusammenfassung

	8 Zusammenfassung und Ausblick
	8.1 Anwendungsgebiet der Dissertation
	8.2 Ausblick

	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Anhang
	A Codebeispiele
	B Komplexe Prozessbeispiele

