Universitat Stuttgart

Modellierung regelkonformer

Geschiftsprozesse

Von der Fakultét fiir Informatik, Elektrotechnik und
Informationstechnik der Universitit Stuttgart zur Erlangung der
Wiirde eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von
Daniel Schleicher

aus Waiblingen

Hauptberichter: Prof. Dr. Frank Leymann
Mitberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Tag der miindlichen Priifung: 30.07.2014

Institut fiir Architektur von Anwendungssystemen der

Universitit Stuttgart

2014

INHALTSVERZEICHNIS

1. Einleitung 11
1.1. Bedeutung von Compliance fiir Unternehmen heute . . 12
1.2. Zentrales Anliegen 14
1.3. Problemstellung und Motivation 16
1.4. Forschungsbeitrdge der Arbeit 20

1.4.1. Erweiterung eines Variabilitdtskonzepts und ei-

nes Prozessmetamodells fiir die Unterstiitzung

der Entwicklung regelkonformer Prozesse ... 21
1.4.2. Algorithmus zur Uberpriifung des Kontrollflus-

ses von Teilbereichen von Prozessen 22
1.4.3. Algorithmus zur Uberpriifung des Datenflusses

in Prozessmodellen 23
1.4.4. Ein Mechanismus zur Unterstiitzung der Zu-

sammenarbeit bei der Erstellung regelkonfor-

mer Prozesse 25

3.

1.4.5. Architektur eines Prototyps zur Evaluierung der
vorgestellten Konzepte und Algorithmen

1.5. Definition des Arbeitsbereichs
1.6. Aufbauder Arbeit

Grundlagen der Entwicklung regelkonformer Prozesse
2.1. Bedeutung des Begriffs Compliance im Kontext dieser
Arbeit
2.2. Business Process Management
2.3. Business Process Model and Notation 1.0 (BPMN 1.0)
231, Tasks
2.3.2. Kontrollfluss
23.3. Datenfluss
2.3.4. Ereignisse
2.3.5. Gateways i i e e
2.3.6. Datenobjekte
24, OTYX .« o ot i e e e e e
2.5. Lineare Temporale Logik.
2.6. Modelchecking
2.7. SPIN . . . e
2.8. PROMELA. i
2.9. JSON.

2.10.Prozessfragment

Verwandte Arbeiten
3.1. Unterstiitzung menschlicher Prozessmodellierer
3.2. Regelkonformes Geschéftsprozessmanagement

3.3. Regelkonforme Prozessmodellierung

Inhaltsverzeichnis

3.4. Automatische Uberpriifung von Prozessmodellen an-
hand von Complianceregeln zur Entwicklungszeit . . . 60

3.5. Zusammenfassung und Einordnung 62

4. Entwicklung von Prozessen mit regelkonformem Kontrollfluss 63
4.1. Beispielszenario: Blutspendeprozess des Roten Kreuz

HongKong, 64

4.2. Vorlagenbasierte Entwicklung regelkonformer Prozesse 70

4.2.1. Das abstrakte Prozessmodell eines Compliance-

templates 72

4.2.2. Der Variabilitatsdeskriptor eines Compliance-
templates 77

4.2.3. Der Compliancedeskriptor eines Compliance-
templates 80
4.2.4. Vervollstindigen von Compliancetemplates. . . 83
4.3. Compliancescopeo vt 85

4.3.1. Definition Compliancescope aufbauend auf der
Definition eines Hypergraphen 86
4.3.2. Erweiterung von BPMN 1.0 mit Compliancescopes 87

4.4. Gegeniiberstellung der Anwendungsgebiete von Com-
pliancetemplates und Compliancescopes 90

4.5. Verifizierungsalgorithmus fiir den Kontrollfluss eines
Prozesses 91
4.5.1. Transformation von BPMN in Petrinetze 95
4.5.2. Reprasentation von Petrinetzen in PROMELA . 96

4.6. Zusammenfassung 103

Inhaltsverzeichnis v

5. Entwicklung von Prozessen mit regelkonformem Datenfluss 107

5.1. Beispielprozess. 108
5.2. Compliancedomains 110
5.2.1. Definition von Compliancedomains 114
5.3. Verifizierungsalgorithmus 117
5.3.1. Eigenschaften von Datenflusskonnektoren ... 118
5.3.2. Eigenschaften von Compliancedomains 118

5.4. Datenflussanalyse im Feld der Compilerentwicklung . . 123
5.5. Kombination von datenfluss- mit kontrollflussbasierten

Complianceregeln 125
5.5.1. Generische Compliancesprache fiir die Kombi-
nation von datenbasierten mit kontrollflussba-

sierten Complianceregeln. 130
5.5.2. Formale Definition einer generischen Complian-

cesprache 131

5.53. Beispiele 133
5.5.4. Automatische Uberpriifung von Ausdriicken in
einer generischen Compliancesprache, die aus

verschiedensprachigen Ausdriicken aufgebaut

sind 136
5.6. Zusammenfassung, 141
6. Gemeinsame Erstellung regelkonformer Prozesse 145

6.1. Erstellung regelkonformer Prozesse unter Beteiligung
mehrerer Partner 146

6.2. Werkzeuge fiir die Erstellung regelkonformer Prozesse 151

vi Inhaltsverzeichnis

6.3. Vervollstindigungsebenen: Ein Konzept zur gemein-
schaftlichen Entwicklung regelkonformer Prozesse. . . 153

6.3.1. Verschachtelte Complianceregeln und Flexibilitdt 158

6.3.2. Erfiillbarkeit verschmolzener Regelsitze 161
6.3.3. Behandlung erfiillter Complianceregeln 162

6.3.4. Auftreten von Konflikten zwischen Compliance-
regeln. 164

6.4. Uberpriifung von Complianceregeln von verschachtel-
ten Compliancescopes 168
6.5. Zusammenfassung 172
7. Prototyp 175
7.1. Funktionalitiat des Prototyps 175
7.2. Architektur des Prototyps 179
7.3. Compliancewizard 185
7.4. Variabilitdts-Wizard 187
7.5. Sidebar-Plugin 188
7.6. Ableitungs-Plugin 188
7.7. ITL-Plugin 189
7.8. Complianceservlet. 191
7.9. ITL-Servlet i 191
7.10.Compliancechecker 192
7.11.Performanzmessungen 197
7.12.Zusammenfassung 200
8. Zusammenfassung und Ausblick 201
8.1. Anwendungsgebiet der Dissertation 202
8.2. Ausblick 205

Inhaltsverzeichnis vii

Literaturverzeichnis
Abbildungsverzeichnis

Tabellenverzeichnis

Anhang
A. Codebeispiele

B. Komplexe Prozessbeispiele

viii

209

229

235

235

237

249

Inhaltsverzeichnis

/. USAMMENFASSUNG

Regelkonformes Verhalten ist fiir viele Firmen und Konzerne ein wich-
tiger Punkt auf der Agenda hin zu einer nachhaltigen Wachstumsstra-
tegie. Durch den in den letzten Jahren gestiegenen regulatorischen
Druck und die zu erwartenden Strafen bei Verstof3en gegen Regeln
und Gesetze, sind Firmen gezwungen, sich intensiver mit der Uber-
wachung ihrer Geschéftsprozesse zu befassen. Die wiederkehrenden
Skandale um nicht regelkonformes Verhalten von Mitarbeitern und die
daraus resultierenden Konsequenzen unterstreichen die Richtigkeit
dieser Richtungswendung.

Viele Firmen arbeiten mit IT-unterstiitzten Geschiftsprozessen, in
deren automatische Ausfiihrung Menschen eingebunden sind. Die-
se Geschiftsprozesse miissen beziiglich der Einhaltung neuer oder
sich d&ndernder Regeln und Gesetze auf dem neuesten Stand gehalten
werden. Den Aufwand fiir die Aktualisierung der Geschéftsprozesse
moglichst gering zu halten, ist eine Herausforderung, der die Unter-

nehmen gegeniiber stehen.

Der Begriff Compliance driickt im Englischen das Einhalten von Re-
geln und Gesetzen aus. Im giinstigsten Fall sollte Compliance schon
bei der Erstellung eines neuen Prozesses in Betracht gezogen werden,
da in dieser Phase Entwicklungsfehler mit dem geringsten Aufwand
behoben werden konnen. Durch die Zunahme der Regeln und Ge-
setze, die von Geschéftsprozessen eingehalten werden miissen, ist es
wichtig, die Anforderungen mit Bezug auf Compliance von den wirt-
schaftlichen Zielen der Prozessentwicklung zu trennen. Menschliche
Prozessentwickler sollen sich voll und ganz auf die Entwicklung der
Geschiftslogik eines Prozesses konzentrieren kénnen. Die Uberprii-
fung von Gesetzen und Regularien soll automatisiert durch Werkzeuge
geschehen, die weitgehend im Hintergrund arbeiten.

Graphische Entwicklungswerkzeuge miissen Mittel bereitstellen, um
Regularien und Gesetze zu verwalten und diese mit Geschéftsprozes-
sen zu verbinden. Es miissen dabei zwei Szenarien behandelt werden
konnen. Erstens miissen Regeln und Gesetze vor Beginn der Entwick-
lung eines neuen Prozesses festgelegt und automatisch tiberpriifbar
gemacht werden. Zweitens miissen bestehende Geschéftsprozesse mit
neuen Regeln und Gesetzen verkniipft werden konnen. Desweiteren
miissen von den Uberpriifungswerkzeugen verschiedene Arten von
Regeln und Gesetzen verarbeitet werden konnen. Beispiele hierfiir
sind Regeln, die auf den Datenfluss in Prozessen angewendet werden
oder Regeln, die auf den Kontrollfluss in Prozessen Anwendung finden.

Diese Arbeit erweitert eine bestehende Entwicklungsumgebung fiir
Geschiftsprozesse und implementiert die oben aufgefiihrten Anfor-
derungen. Bei der Entwicklung der Konzepte und deren Umsetzung
im Prototyp wurde darauf geachtet, dass diese Konzepte die Entwick-

lungsarbeit am Geschaftsprozess so wenig wie moglich behindern.

Die bestehende Entwicklungsumgebung fiir Geschéaftsprozesse wur-
de intern umstrukturiert, so dass alle Anderungen am aktuell ange-
zeigten Prozessmodell auf Verstof3e gegen Complianceregeln {iberpriift
werden konnen.

Die beiden grundlegenden Forschungsbeitrége dieser Arbeit sind das
Compliancetemplate und der Compliancescope. Das Compliancetem-
plate ist eine Prozessvorlage, die an bestimmten Stellen unvollstandig
ist. Nur diese Stellen konnen von einem Prozessentwickler mit Prozess-
aktivitaten gefiillt werden, um einen vollstdndig spezifizierten Prozess
zu erhalten. Durch diese Vorgabe wird verhindert, dass Compliance-
regeln umgangen werden konnen.

Der Compliancescope ist ein Mittel, um Teile von bestehenden Pro-
zessmodellen mit Complianceregeln zu verkniipfen. Diese Teile von
Prozessmodellen werden automatisch iiberpriift, wenn eine Ande-
rung an ihnen vorgenommen wird. Die automatische Uberpriifung
von Teilen von Prozessmodellen iibernimmt das zur Entwicklung des
Prozesses verwendete graphische Entwicklungswerkzeug.

Aufbauend auf diesen beiden Konzepten beschreibt die vorliegende
Dissertation drei weitere Beitrdge. Das Konzept der Compliancedomain
baut auf dem Konzept des Compliancescopes auf und erweitert die-
sen, um mit datenbasierten Complianceregeln arbeiten zu konnen.
Vervollstindigungsebenen sind ein Konzept, verschiedenen Partnern die
Arbeit an einem, mit Complianceregeln versehenen Prozessmodell, zu
ermoglichen. Die Architektur des Prototyps dieser Dissertation zeigt,
wie diese neuen Konzepte umgesetzt und somit anwendbar gemacht

werden konnen.

ABSTRACT

Compliance is an important issue for many enterprises on their way
to a sustainable growth. Due to the increased regulatory pressure
stemming from more and more rules and regulations being set in place
and associated penalties, enterprises are more intensively forced to
cope with compliance issues concerning their business processes. The
returning scandals concerning non-compliant behaviour of employees
and the subsequent penalties stress the correctness of this turn.

Many enterprises are running IT-driven business processes. Humans
are integrated into the automatic execution of these business processes.
These business processes must be kept up to date in order to meet
changing regulations. Holding the effort on a reasonable level for
keeping business processes up to date is a challenge enterprises are
facing today.

Compliance should be considered from the beginning of the de-
velopment phase of a new business process. It takes less effort for

removing compliance issues in this phase. Due to the increased num-

ber of regulations it is important to separate compliance requirements
from business requirements during the development of a new business
process. Human business process developers should be able to fully
concentrate on the development of the business logic of a new business
process. The adherence to compliance rules should automatically be
guaranteed by graphical development tools. These tools should check
compliance rules in the background.

Graphical business process development tools have to provide means
to manage regulations and laws. These tools must also support the
linking of compliance rules to business processes. When working with
these tools two scenarios should be possible: First of all compliance
rules must be automatically verifiable from the beginning of the de-
velopment of a business process. Second, it must be possible to link
compliance rule to existing business processes. Apart from that the
tools used to automatically check compliance rules in the background
must be capable of dealing with different kinds of compliance rules.
Examples for different kinds of compliance rules are compliance ru-
les restricting the control flow of a business process in contrast to
compliance rules restricting the data flow of a business process.

This thesis extends an existing integrated development environment
(IDE) for business processes. It realises the requirements stated above.
One goal for the development of the prototypical implementation of
the new concepts is that the additions to the existing platform do not
hamper human developers during the creation phase of a business
process.

The existing IDE has been restructured from the ground up. With
these changes it is possible to introduce compliance checking mecha-

nisms which are capable of coping with different kinds of compliance

rules.

The two fundamental contributions of this thesis are the Compliance
Template and the Compliance Scope. The compliance template is a
process template which is kept incomplete in a number of places.
Only these places can be filled with business activities by human
business process developers in order to get a fully specified business
process. This development restriction prevents human business process
developers from circumventing compliance rules, which are already
present in the original compliance template.

The compliance scope is a means to attach compliance rules to
certain areas in a business process. A modification of the business
process within such an area makes it only necessary to automatically
check the area where the modification was made.

Based on the fundamental concepts this thesis describes three fur-
ther new concepts. The concept of a Compliance Domain is based on
the compliance scope. Compliance scopes are extended to be able to
work with data-based compliance rules. The concept of a refinement
layer allows for integrating different stake-holders during the deve-
lopment of a new business process. The architecture of the prototype

shows the practicability of the approach of this thesis.

DANKSAGUNGEN

Es ist geschafft! Nach Jahren der Arbeit, vielen Veroffentlichungen,
Vortréagen und Gespréchen liegt meine Dissertation vor Thnen. Damit
ist es an der Zeit mich bei denen zu bedanken, die mich in dieser
spannenden Phase meines Lebens begleitet haben.

Ich mochte mich besonders bei Herrn Professor Frank Leymann fiir
das Vertrauen bedanken, das er in mich setzte, als ich mit meiner Dis-
sertation ganz am Anfang stand. Ohne dieses Vertrauen, die Anleitung
und die Motivation, die ich aus den Gespriachen mit ihm gewonnen
habe, hétte die vorliegende Arbeit nicht entstehen konnen.

Die Forschungsrichtung der vorliegenden Arbeit, sowie die Herange-
hensweise an die Forschungsfragen wurden durch viele Gesprache mit
Mitgliedern des Instituts fiir Architektur von Anwendungssystemen der
Universitat Stuttgart positiv beeinflusst. Folgende Personen mochte ich
in diesem Zusammenhang besonders erwdhnen. Tobias Anstett und
Ralph Retter fiir ihre Unterstiitzung bei der Suche nach der ziinden-

den Idee und der Hilfe bei der Festlegung meiner Forschungsrichtung.

David Schumm als Ratgeber mit vielen hilfreichen Tipps im Bereich
Compliance. Tammo van Lessen, Jorg Nitzsche und Ralph Retter fiir
die Starthilfe beim Verfassen eines wissenschaftlichen Artikels und
dessen Veroffentlichung.

Besonders danken mochte ich auch Maike Buhr, Christoph Fehling,
Daniel Gerlach, Christoph Schleicher und David Schumm fiir ihren
grofden Einsatz als Lektoren des vorliegenden Dokuments.

Weiterhin bedanke ich mich bei Tobias Binz, Uwe Breitenbiicher,
Hanna Eberle, Christoph Fehling, Katharina Gorlach, Dimka Karas-
toyanova, Oliver Kopp, Daniel Martin, Alexander Nowak, Sebastian
Wagner, Branimir Wetzstein, Matthias Wieland, Daniel Wutke und
Sema Zor fiir ihr Lob, ihre konstruktive Kritik, ihre Anregungen und

Ideen, die die vorliegende Arbeit positiv beeinflusst haben.

10

KAPITEL

EINLEITUNG

Noch vor einigen Jahren wenig beachtet, ist Compliance in den letzten
Jahren zu einem Schlagwort in den Fiihrungsetagen der Unternehmen
avanciert [SALS10, HM10, KBET10a, KBET10b]. Unter dem Begriff
Compliance versteht die vorliegende Arbeit Regelkonformitiat von
Abldufen in Unternehmen. Im Folgenden wird der Begriff Compliance
mit dem Begriff Regelkonformitédt synonym verwendet.

Ausgehend von einer allgemeinen Betrachtung von Compliance
in Unternehmen wird das der vorliegenden Arbeit zugrunde liegen-
de konkrete Problem in diesem Kapitel ndher umrissen. Einerseits
wird gezeigt, wie wichtig Compliance fiir Unternehmen und deren
Geschéftsprozesse ist. Andererseits wird geklart, welchen Beitrag die
vorliegende Arbeit im Bereich der Entwicklung regelkonformer Ge-

schéftsprozesse leistet.

11

1.1. Bedeutung von Compliance fiir Unternehmen heute

Eines der wohl bekanntesten Regelwerke sind die Zehn Gebote der
Bibel [LBO1]. Hier wurden schon vor Jahrtausenden Richtlinien defi-
niert, die fiir die damalige Gesellschaft bindend waren. Richtlinien sind
ein wichtiger Bestandteil des menschlichen Zusammenlebens. Dies
setzt sich auch bei der Arbeit in Unternehmen und den Beziehungen
zwischen Unternehmen fort.

Compliance wird in den néchsten Jahren fiir Unternehmen eine
immer grofRere Rolle spielen. Dies zeigt eine Studie von A.T. Kearney
[MPRS13]. In dieser Studie wurden 40 Complianceexperten fiihren-
der Unternehmen zum Thema Compliance befragt. Demnach sind die
immer weiter steigende Zahl von Unternehmen, die in bestimmten
Rechtssystemen tétig sind, die steigende Zahl der Vorschriften und die
personliche Haftbarkeit des Topmanagements fiir ComplianceverstéRe,
Hauptgriinde fiir die zunehmende Bedeutung von Compliance in Un-
ternehmen. Die Unternehmen erwarten vermehrt Complianceverstol3e
in den Bereichen Produktsicherheit, Datensicherheit und Korruption.
Aus diesen Griinden wollen die meisten der befragten Unternehmen
ihre Compliancesysteme ausbauen.

Weiter zeigt die Studie auf, dass viele in Unternehmen ausgefiihrte
Prozesse im Hinblick auf Compliance neu aufgebaut werden miissen.
Die Integration von Compliance-Regeln in Prozesse sehen dabei 70%
der Manager als wesentlich an.

Die Moglichkeit der Verhdngung hoher Strafen ist ein weiterer Grund
fiir Unternehmen sich mit Compliancefragen zu beschéftigen. Der Au-
tokonzern Daimler musste im April 2010 185 Millionen Dollar Strafe
zahlen aufgrund von Korruptionsvorwiirfen. Siemens musste 800 Mil-

12 1| Einleitung

lionen Dollar Strafe aufgrund von Bestechungsvorwiirfen zahlen. Bei-
de Konzerne standen daraufhin unter der Aufsicht der Securities and
Exchange Commission (SEC), der US-Borsenaufsichtsbehorde. Unter
dieser Aufsicht mussten beide Unternehmen Auflagen der SEC erfiillen,
um von weiteren Geldstrafen unbehelligt zu bleiben [Haw11, Mat12].
Weiterhin zeigt die Einfiihrung eines Vorstandsressorts fiir Compliance,
dass dieses Thema fiir Daimler langfristige Relevanz hat [PJ12]. Im
Jahr 2011 hatte ein Héndler der Schweizer GrofSbank UBS 1,5 Milliar-
den Euro Verlust gemacht. Interne Kontrollsysteme hétten bei diesem
Betrag Alarm schlagen miissen.! Weiterhin zahlte die UBS in einem
Vergleich mit den USA 780 Millionen Dollar Strafe, um einer Anklage
in einem Steuerhinterziehungsfall zu entgehen.?

Beispiele fiir Regelwerke, die von Firmen beachtet werden miissen,
sind der Sarbanes-Oxley Act (SOX) [UniO2] von 2002, der Gramm-
Leach-Bliley Act [Uni99] oder Basel II [Bas06] von 2006. Ahnliche
Regelwerke findet man in weiteren Lindern, wie zum Beispiel in China,
mit dem Gesetz der Chinesischen Volksrepublik zur Volksbank Chinas
(Englisch: The law of the people’s republic of China on the people’s
bank of China) [Chi03]. Weitere Regularien beziehen sich auf firmen-
interne Vereinbarungen. Beispielsweise kann eine Vereinbarung die
Forderung des Green Business Process Management (BPM) [NLST11]
sein.

Im Folgenden werden Geschéftsprozesse der Kiirze wegen als Pro-

zesse bezeichnet. Der Begriff Progzessmodell wird verwendet, um einen

thttp:/ /www.sueddeutsche.de/geld /untersuchung-zu-ubs-skandal-wie-ein-
haendler-milliarden-verzocken-konnte-1.1172370

Zhttp://www.spiegel.de/wirtschaft/einigung-in-steuerhinterzieher-fall-ubs-
verraet-geheimdaten-hunderter-kunden-an-us-justiz-a-608573.html

1.1 | Bedeutung von Compliance fir Unternehmen heute 13

mit einer graphischen oder textuellen Notation erstellten Prozess zu
beschreiben.

Diese Arbeit beschéftigt sich mit der Compliance von IT-unterstiitzten
Prozessen. Bei IT-unterstiitzten Prozessen sind fiir einen Teil der Aus-
fiihrung eines Prozesses IT-Systeme verantwortlich. Fiir die Erstellung
von IT-unterstiitzten Prozessen werden spezielle Prozessbeschreibungs-
sprachen, wie zum Beispiel die Business Process Execution Langua-
ge (BPEL) [OAS07] eingesetzt. Schon bei der Erstellung von BPEL-
Prozessen sollte die Einhaltung von Complianceregeln gewahrleistet
werden. Dies ist schon aus dem Grund notwendig, da die Beseitigung
eines Fehlverhaltens eines Prozesses in der Entwicklungsphase relativ
wenig Zeit und Miihe kostet im Vergleich zur Behebung eines Fehlers
in einem produktiv eingesetzten Prozess [Bro95].

Die fortschreitende Automatisierung ist eines der Mittel, derer sich
Unternehmen heutzutage bedienen, um wettbewerbsfiahig zu bleiben
und Kunden und Aktionére zufrieden zu stellen. Dies ist einer der Griin-
de fiir ein immer grof3er werdendes Interesse von Unternehmen am
Prozessmanagement [LROO]. Parallel dazu sehen sich Unternehmen
einer immer groller werdenden Zahl von regulatorischen Anforde-
rungen gegeniiber gestellt. Diese Anforderungen sind in den meisten
Féllen in Gesetzestexten niedergeschrieben (siehe oben).

1.2. Zentrales Anliegen

Das Hauptanliegen der vorliegenden Arbeit besteht darin, den mensch-
lichen Prozessentwickler dabei zu unterstiitzen, Prozesse zu entwi-
ckeln, die bestimmten Complianceregeln geniigen. Ein Mitarbeiter

soll zum Beispiel beim Einfiigen einer Aktivitit in einen Prozess dar-

14 1| Einleitung

auf aufmerksam gemacht werden, wenn diese eine Complianceregel
verletzt. Die bisher in der Literatur aufgefiihrten Konzepte konzentrie-
ren sich darauf, die Grundlagen fiir die automatische Uberpriifung
von Prozessen bereitzustellen. Die vorliegende Arbeit geht davon aus,
dass Complianceregeln mittels formaler Sprachen definiert und mit
speziellen Programmen iiberpriift werden konnen.

Dariiber hinaus werden graphische Mittel vorgestellt, die den mensch-
lichen Prozessmodellierer bei der Erstellung regelkonformer Prozesse
leiten. Zum Beispiel werden Prozessmodellierer durch eine Prozessvor-
lage, oder die Definition von Bereichen in Prozessen, die mit bestimm-
ten Complianceregeln verkniipft sind, bei der Entwicklung geleitet.
Auf diesem neuen Ansatz bauen weitere Beitrdge der vorliegenden
Dissertation auf.

Das Ziel, menschliche Prozessmodellierer bei der Entwicklung regel-
konformer Prozesse zu unterstiitzen, wird durch die Erstellung eines
Prototyps, der die in dieser Arbeit vorgestellten Konzepte implemen-
tiert, erreicht. Die folgenden Eigenschaften des Prototyps ermoglichen

dies:

* Der Prototyp zeigt dem Prozessmodellierer durch automatische
Uberpriifung, ob VerstéfRe gegen Complianceregeln im Prozess
vorliegen. Er zeigt weiterhin den Ort, wo im Prozess diese Ver-

stole vorliegen.

e Mit dem Prototyp kann eine Prozessvorlage geladen werden,
die die Grundlage fiir die Entwicklung eines regelkonformen

Prozesses darstellt.

* Der Prototyp ldsst es zu, bestimmte Bereiche in einem Prozess

1.2 | Zentrales Anliegen 15

mit Complianceregeln zu versehen. Danach kénnen nur noch
die Anderungen in diesen Bereichen vorgenommen werden, die

diese Complianceregeln nicht verletzen.

* Mit dem Prototyp ist es moglich, Complianceregeln zu definieren,
die aus atomaren Ausdriicken bestehen, die mit verschiedenen

formalen Sprachen beschrieben sein konnen.

Die Technik des Modelchecking wird verwendet, um die automati-
sche Uberpriifung der Complianceregeln méglich zu machen. Model-
checking ist ein Werkzeug, das fiir die Umsetzung der neuen Konzepte
dieser Arbeit im Prototyp verwendet wird.

Neben anderen Beitrdgen sind die folgenden Beitrdge Schwerpunkte
dieser Arbeit:

* Das Compliancetemplate. Siehe Kapitel 4.2
* Der Compliancescope. Siehe Kapitel 4.3

* Die Compliancedomain. Siehe Kapitel 5.2

1.3. Problemstellung und Motivation

Prozesse sind die Grundlage der Zusammenarbeit innerhalb von Unter-
nehmen und zwischen Partnern. Fiir die Erstellung von Produkten sind
sie unverzichtbar. Complianceregeln, die auf Prozessen Anwendung
finden, decken somit einen wichtigen Teil aller méglichen Compliance-
regeln ab, die in Unternehmen vorstellbar sind. Die vorgestellten
neuen Konzepte im Bereich der Entwicklung regelkonformer Prozesse
sind somit ein wichtiger Schritt hin zur vollstindigen Kontrolle von

16 1| Einleitung

Unternehmensprozessen. In dieser Arbeit wird ein Prototyp vorgestellt,
der zeigt, wie Unternehmen in Zukunft Prozesse erstellen und diese
gleichzeitig regelkonform halten kénnen.

Die Verwaltung, Anwendung und Durchsetzung von Compliance-
regeln ist fiir Organisationen ein komplexes Problem. Die Komplexitét
dieses Problems wird durch die Zahl und den Umfang der relevanten
Gesetzestexte bestimmt. Wie oben erldutert, nimmt die Zahl der Ge-
setzestexte, die Organisationen befolgen miissen, seit Jahren stetig zu.
Auch der Grad der Automatisierung und der IT-unterstiitzten Prozesse
nimmt in Organisationen zu. Organisationen miissen bei Priifungen
nachweisen, wie ihre Prozesse abgelaufen sind. Weiter miissen sie zei-
gen, dass sie ausreichende MafSnahmen ergriffen haben, um Verstél3e
gegen Complianceregeln zu vermeiden.

Diese Arbeit ist durch mehrere Faktoren motiviert. Der erste Faktor
ist der wirtschaftliche Aspekt der Einhaltung von Complianceregeln.
Es konnen hohe Strafen oder hohe Verluste auf die Unternehmen
zukommen, wenn sie Complianceregeln verletzen.

Auch die Entlastung des menschlichen Prozessmodellierers ist eine
Motivation dieser Arbeit. Der Prozessmodellierer soll sich bei der Er-
stellung von regelkonformen Prozessen auf das eigentliche Ziel der
Entwicklung des Prozesses konzentrieren. Die Einhaltung bestimmter
Regeln soll wihrend der Entwicklung eines Prozesses fiir den Men-
schen zweitrangig sein.

Bestehende Ansiitze zur Uberpriifung der Compliance eines Pro-
zesses bauen darauf auf, das gesamte Prozessmodell zu tiberpriifen
[ADWO08], das bis zu diesem Zeitpunkt erstellt wurde. Diese Uberprii-
fung des gesamten Prozessmodells kann jedoch tiberfliissig sein, wenn

nur eine unwesentliche Anderung an diesem Prozessmodell vorgenom-

1.3 | Problemstellung und Motivation 17

men wurde. Es sollte demnach moglich sein, nur die gednderten Teile
eines Prozesses automatisch zu {iberpriifen und somit Zeit und Kos-
ten zu sparen. Dieses Ziel verfolgen die in dieser Arbeit vorgestellten
Ansitze fiir die Uberpriifung von Prozessen.

Im Gegensatz zur Ausfiihrungsphase gibt es fiir die Phase der Er-
stellung eines Prozesses nur unzureichende Werkzeuge und Konzepte,
um Verstofde gegen Complianceregeln automatisch zu erkennen. Der
wissenschaftliche Beitrag dieser Arbeit besteht aus zwei Komponenten.

1. Der Prisentation neuer Konzepte zur Verwaltung und Uberprii-
fung von Complianceregeln zur Entwicklungszeit eines Prozes-

ses.

2. Der Architektur und Implementierung eines Prototyps, der diese

Konzepte umsetzt.

Anforderungen an diesen Prototyp sind:

1. Die Moglichkeit der Verkniipfung bestimmter Bereiche in einem

Prozess mit Complianceregeln.

2. Der Prototyp unterstiitzt die Beteiligung mehrerer Partner an
der Erstellung eines Prozesses, ohne sich gegenseitig zu be-
hindern. Insbesondere soll es moglich sein, dass verschiedene
Partner bei der Erstellung des Prozesses neue Complianceregeln
in das Prozessmodell integrieren. Bei Unvereinbarkeit neuer
Complianceregeln mit bereits im Prozess vorhandenen, soll der

menschliche Prozessmodellierer informiert werden.

3. Complianceregeln sollen in verschiedenen Sprachen beschreib-

bar sein. Diese Sprachen sollen es zumindest unterstiitzen, Compliance-

18 1| Einleitung

regeln zu schreiben, die den Kontrollfluss und den Datenfluss in

einem Prozess einschranken.

4. Die Moglichkeit zur automatischen Uberpriifung von Compliance-

regeln, die mit Prozessen verkniipft sind.

5. Der Prototyp soll nach einer Uberpriifung von Complianceregeln
bei einer Verletzung einer Complianceregel anzeigen, durch
welche Konstrukte im Prozessmodell diese Verletzung zustande

gekommen ist.

Der Prototyp erweitert eine bestehende Umgebung zur Erstellung
von Prozessen mit Funktionalitdt, um Complianceregeln zu verwalten,
mit Prozessen zu verkniipfen und automatisch zu iiberpriifen.

Um die Erstellung regelkonformer Prozesse optimal zu unterstiitzen,
beno6tigt man Werkzeuge, die in verschiedenen Entwicklungssituatio-
nen und im Umgang mit verschiedenartigen Complianceregeln Losun-
gen bieten. Die in dieser Arbeit behandelten Entwicklungssituationen
sind die Neuentwicklung von Prozessen und die Anderung bestehender
Prozesse.

Die Neuentwicklung von Prozessen stand bislang nicht im wissen-
schaftlichen Fokus. Ein Konzept in diesem Bereich muss die Festlegung
der Complianceregeln fiir einen neu zu entwickelnden Prozess vor
der eigentlichen Entwicklung des Prozesses ermoglichen. Weiter muss
bereits zu Beginn der Prozessentwicklung sichergestellt werden, dass
Uberpriifungsmechanismen fiir die Einhaltung von Complianceregeln
greifen. Diese Uberpriifungsmechanismen leiten den Prozessmodellie-
rer wihrend der Modellierung hin zu einem regelkonformen Prozess.

Ein anderer Fall, fiir den in dieser Arbeit ein neues Konzept préa-

1.3 | Problemstellung und Motivation 19

sentiert wird, ist die Anderung existierender Prozesse, die nicht mit
Complianceregeln versehen sind. Uberpriifungsmechanismen, die in
graphische Entwicklungswerkzeuge eingebaut sind, greifen hier nicht.
Fiir solche existierenden Prozesse zeigt diese Arbeit eine Losung, mit
der Prozessmodelle mit Complianceregeln verkniipft und automatisch
iiberpriift werden.

Eine weiteres Ziel dieser Dissertation ist die Bereitstellung von Kon-
zepten fiir die abteilungsiibergreifende Entwicklung regelkonformer
Prozesse. Teammitglieder sollen zum Beispiel bei der Entwicklung von
Prozessen iiber Landesgrenzen hinweg miteinander arbeiten konnen.
Es wird daher ein Konzept und eine Implementierung benétigt, die es
moglich machen, dass Complianceregeln an verschiedenen Stellen im
Prozessmodell und von verschiedenen Teams im Entwicklungsprozess
eingefiithrt werden konnen.

Diese Anforderungen sollen mit unterschiedlichen Arten von Compliance-
regeln zusammen arbeiten. Es ist daher notwendig, dass Compliance-
regeln, die in verschiedenen Sprachen geschrieben worden sind, ver-
bunden werden konnen. Weiterhin sollen die oben geforderten Kon-
zepte und Algorithmen mit zukiinftigen Sprachen zur Definition von

Complianceregeln zusammen arbeiten kénnen.

1.4. Forschungsbeitrige der Arbeit

Der wissenschaftliche Beitrag dieser Arbeit gliedert sich in einen theo-
retischen und einen praktischen Teil. Im theoretischen Teil werden
Konzepte dargestellt, die Losungen fiir die Entwicklung regelkonfor-
mer Prozesse reprisentieren. Aulserdem zeigen diese Konzepte, wie

menschliche Prozessmodellierer bei der Entwicklung regelkonformer

20 1| Einleitung

Prozesse unterstiitzt werden konnen.

Im praktischen Teil wird gezeigt, wie die theoretischen Konzepte in
einem Prototyp zusammen arbeiten.

Im Folgenden werden die Forschungsbeitrége dieser Arbeit prasen-

tiert.

1.4.1. Erweiterung eines Variabilitdtskonzepts und eines
Prozessmetamodells fiir die Unterstiitzung der Entwicklung

regelkonformer Prozesse

Das in [MLO08, Mie08] vorgestellte und in Abschnitt 4 beschriebene
Variabilitdtskonzept macht es moglich, Variabilitdtspunkte in belie-
bigen Dokumenten zu definieren. Diese Variabilitdtspunkte kénnen
dann anhand verschiedener Kriterien zeitlich variabel gefiillt werden.
Ein Beispiel fiir einen Einsatzbereich dieses Variabilitidtskonzepts sind
BPEL-Prozesse, die zur Entwicklungszeit mit Variabilitdtspunkten ver-
sehen werden. Zur Deploymentzeit werden diese Variabilitdtspunkte
gefiillt. So wird der BPEL Prozess lauffahig gemacht.

In dieser Arbeit wird dieses Konzept erweitert und fiir die Bed{irfnis-
se der Anwendung von Complianceregeln auf einen Prozess angepasst.
Der Name dieses neuen Konzepts ist Compliancedeskriptor. Hierzu
wird eine Prozessvorlage mit Variabilitdtspunkten versehen, die zur
Entwicklungszeit von einem menschlichen Prozessmodellierer mit Ak-
tivitdten gefiillt wird. Der Compliancedeskriptor wird dazu verwendet,
die Menge der Aktivitdten einzuschranken, mit der die Variabilitéts-
punkte befiillt werden konnen. Diese Einschrankung wird mittels
formaler Complianceregeln definiert, die im Compliancedeskriptor

enthalten sind. Ein graphisches Entwicklungswerkzeug ist somit in der

1.4 | Forschungsbeitrage der Arbeit 21

Lage bei einer Modifikation eines Prozessmodells Complianceregeln
auszuwerten und bei einer Verletzung den Prozessmodellierer zu be-
nachrichtigen. Dieser Beitrag erfiillt durch die Umsetzung im Prototyp
die Anforderung 1.

Im Folgenden werden die in [MLO8] eingefiihrten Variabilitatspunk-
te Complianceregionen genannt. Diese Bezeichnung ist sinnvoll, da in
dieser Arbeit nur Variabilitdtspunkte verwendet werden, die sich in
Prozessmodellen befinden und mit Complianceregeln versehen sind.
Weiterhin wird mit diesem Namen auf dem in [EUL09] von Eberle
et al. vorgestellten Konzept einer Region aufgebaut, welches nicht
spezifizierte Bereiche in einem Prozessmodell definiert.

Die Kombination eines Compliancedeskriptors, eines Variabilitdtsde-
skriptors und einer mit Complianceregionen versehenen Prozessvorla-
ge wird Compliancetemplate genannt.

Die Konzepte dieses Beitrags der Dissertation wurden zum ersten
Mal in [SALMO09] vorgestellt.

1.4.2. Algorithmus zur Uberpriifung des Kontrollflusses von
Teilbereichen von Prozessen

In dieser Arbeit wird ein neues Konzept zur Annotation von Teil-
prozessen mit Complianceregeln, der Compliancescope [SWLS10],
prasentiert. Darauf aufbauend zeigt Abschnitt 4.5 einen Algorithmus,
der es mit der Technik des Modelcheckings ermdglicht, die annotierten
Teilprozesse auf Verstofde gegen Complianceregeln zu untersuchen.
Die oben vorgestellte Erweiterung eines Variabilitdtskonzepts zur
Definition von Complianceanforderungen auf Prozessmodellen kann

im Wesentlichen auf neu erstellte Prozessmodelle angewendet wer-

22 1| Einleitung

den. Jedoch muss auch ein Mittel bereitgestellt werden, um existie-
rende Prozessmodelle mit Complianceregeln zu versehen und somit
Modifikationen automatisch iiberpriifbar zu machen. Ein solches Kon-
zept, das zur Annotation von Prozessmodellen mit Complianceregeln
dient, ist das Konzept des Compliancescopes. Mit Compliancescopes
konnen Bereiche eines Prozessmodells definiert werden, fiir die be-
stimmte Complianceregeln gelten. Die oben erwdhnten Compliance-
deskriptoren werden fiir die Verkniipfung von Compliancescopes mit
Complianceregeln verwendet. Werden die in einem Compliancescope
enthaltenen Aktivitidten von einem Prozessmodellierer gedndert, miis-
sen nur die mit dem entsprechenden Compliancescope verkniipften
Complianceregeln iiberpriift werden und nicht das gesamte Prozess-
modell. Compliancescopes erfiillen durch die Umsetzung im Prototyp
die Anforderung 1.

Zur Verifikation von Modifikationen an Compliancetemplates und
Compliancescopes werden Modelchecker verwendet. Hierbei wird der
zu verifizierende Teil eines Prozessmodells in ein Modell in der Einga-
besprache eines Modelcheckers transformiert. Die Antwort des Model-
checkers dient dazu, den menschlichen Prozessmodellierer dariiber zu
unterrichten, ob die aktuelle Modifikation Complianceregeln verletzt
hat. Die Umsetzung der automatischen Uberpriifung von Compliance-

regeln erfiillt die Anforderung 4.

1.4.3. Algorithmus zur Uberpriifung des Datenflusses in
Prozessmodellen

Die in den vorhergehenden Abschnitten vorgestellten Konzepte zur

Annotation und Verifikation von Complianceregeln auf Prozessmo-

1.4 | Forschungsbeitrage der Arbeit 23

dellen, beschéftigen sich ausschlief3lich mit dem Kontrollfluss eines
Prozessmodells. Das heilst, es konnen hiermit Eigenschaften {iberpriift
werden, die zum Beispiel die Abfolge bestimmter Aktivititen betreffen.

Die automatische Untersuchung des Datenflusses ist ein weiterer
wissenschaftlicher Beitrag dieser Arbeit, der in Abschnitt 5.3 beschrie-
ben wird. Hierfiir wurde das Konzept eines Compliancescopes erwei-
tert und verallgemeinert. Diese Erweiterung wird Compliancedomain
[SFG™11] genannt.

Compliancedomains dienen dazu, den Datenfluss in einem Prozess-
modell einzuschranken. Wie mit Compliancescopes konnen auch mit
Compliancedomains Bereiche in einem Prozessmodell definiert wer-
den, in denen bestimmte Daten verarbeitet werden kénnen, andere
aber nicht. Im Gegensatz zu Compliancescopes ist der Anwendungsbe-
reich von Compliancedomains viel weiter gefasst. Die mit Complian-
cedomains in Bereiche eingeteilten Prozessmodelle kénnen anhand
dieser Bereiche aufgespalten und auf verschiedenen Plattformen zum
Laufen gebracht werden. Diese Plattformen konnen zum Beispiel das
private Rechenzentrum einer Organisation oder eine Public-Cloud
[MGO09] sein. In diesem Beispiel konnen dann vertrauliche Daten des
Prozesses im privaten Rechenzentrum der Organisation verarbeitet
werden, wéhrend andere Operationen in der Public-Cloud ausgefiihrt
werden. Das heil3t, die Aktivitdten einer Compliancedomain, die die
Verarbeitung von nicht sensiblen Daten erlaubt, konnen in einer Public-
Cloud Infrastruktur ausgefiihrt werden, wahrend andere Aktivitdten
in einem privaten Rechenzentrum ausgefiihrt werden miissen. Com-
pliancedomains erfiillen durch die Umsetzung im Prototyp die Anfor-
derung 3 der Moglichkeit zur Definition von Complianceregeln, die

den Datenfluss in einem Prozess einschranken.

24 1| Einleitung

1.4.4. Ein Mechanismus zur Unterstiitzung der Zusammenarbeit bei

der Erstellung regelkonformer Prozesse

Bei der Erstellung von Prozessmodellen in Organisationen sind meist
mehrere Personen in verschiedenen Abteilungen beteiligt. Diesen Per-
sonen kommen unterschiedliche Aufgaben bei der Erstellung eines
Prozesses zu. Neben der Rolle eines Prozessmodellierers gibt es zum
Beispiel auch Complianceexperten oder Sicherheitsexperten, die ihren
Beitrag zur Erstellung eines Prozessmodells leisten.

Ein Konzept zur Koordination dieser, an der Erstellung eines Prozess-
modells beteiligten Personen mit verschiedenen Rollen, stellt einen
wissenschaftlichen Beitrag dieser Arbeit dar, der in Kapitel 6 beschrie-
ben wird. Dieses Konzept heilst Vervollstdndigungsebene [SALS10]. Das
Konzept einer Vervollstdndigungsebene dient dazu, Compliancetem-
plates schichtweise zu vervollstdndigen. Als erster Schritt wird ein
Compliancetemplate von Personen mit einer bestimmten Rolle durch
das Einfiigen neuer Aktivitdten in freie Stellen des Prozesses, soge-
nannte Complianceregionen, verfeinert. Diese Aktivitdten konnen auch
wieder Complianceregionen sein. Werden weitere Complianceregionen
in vorhandene Complianceregionen eingefiigt, so 6ffnet dies eine wei-
tere Vervollstdndigungsebene. Das so verdnderte Compliancetemplate
wird an eine andere Personengruppe oder Abteilung einer Organisa-
tion weitergegeben und vervollstindigt. Mehrere Personen konnen
so in die schichtweise Entwicklung eines Prozesses eingebunden wer-
den, indem sie Compliancetemplates zu einem syntaktisch korrekten
Prozess vervollstandigen. In jeder Modellierungsschicht konnen von
unterschiedlichen Personen mit unterschiedlichen Anforderungen und

Qualifikationen Anderungen vorgenommen werden. Das Konzept der

1.4 | Forschungsbeitrage der Arbeit 25

Vervollstdandigungsebenen erfiillt Anforderung 2 durch die Umsetzung

im Prototyp dieser Dissertation.

1.4.5. Architektur eines Prototyps zur Evaluierung der vorgestellten

Konzepte und Algorithmen

Die in den vorhergehenden Abschnitten vorgestellten wissenschaft-
lichen Beitrdge sind prototypisch umgesetzt. Die Architektur dieses
Prototyps stellt einen wesentlichen wissenschaftlichen Beitrag dieser
Arbeit dar. Die Architektur und die Entscheidungswege, die zu ihr fiihr-
ten, sind in einem eigenen Kapitel beschrieben (siehe Kapitel 7). Dieses
Kapitel zeigt die Komplexitit der Losung sowie die erstellten Software-
komponenten, um die neu entwickelten Konzepte dieser Dissertation
zu implementieren. Ferner zeigt es die Losungen fiir Probleme, die bei
der Entwicklung und Integration der Softwarekomponenten auftraten.
Der Prototyp verbindet die neuen Konzepte dieser Dissertation und
zeigt wie diese zusammen spielen, um eine vollstindige Losung fiir
die regelkonforme Prozessentwicklung zu bilden. Der Prototyp ba-
siert auf dem web-basierten BPMN Editor Oryx [DOWO08]. AuRerdem
setzt der Prototyp die Anforderung 5 um, indem er dem Benutzer
nach einer Uberpriifung bei Verletzung einer Complianceregel an-
zeigt, in welchem Bereich des Prozesses die Complianceregel verletzt
wurde. Weiterhin wird der Ausfithrungspfad, der zur Verletzung der

Complianceregel fiihrt, angezeigt.

26 1| Einleitung

1.5. Definition des Arbeitsbereichs

Diese Arbeit prisentiert Konzepte fiir die automatische Uberpriifung
von Prozessmodellen. Diese Konzepte greifen in der ersten, der Ent-
wicklungsphase, des BPM-Lebenszyklus. Prozessmodelle werden mit-
tels graphischer Werkzeuge entwickelt. Die neuen Konzepte kénnen
in graphische Entwicklungswerkzeuge eingebaut werden. Mit diesen
Konzepten ist es moglich, jede Verdnderung an einem Prozessmodell
zu iUiberpriifen. Ein Prozessmodellierer kann darauf aufmerksam ge-
macht werden, wenn seine Anderung an einem Prozessmodell eine
Complianceregel verletzt.

Die Ubersetzung von Gesetzestexten in formale Ausdriicke ist ei-
ne Aufgabe, die nicht in dieser Dissertation bearbeitet wird. Diese
Arbeit bietet eine Plattform, die bei angemessener Verwendung, die
Entwicklung regelkonformer Prozesse unterstiitzt. Die Plattform wird
angemessen verwendet, wenn sie so eingesetzt wird, dass menschliche
Prozessmodellierer so wenig wie moglich daran gehindert werden, ihr
Ziel der Erstellung neuer Prozesse zu verfolgen.

Die wissenschaftlichen Beitrdge dieser Arbeit sind im Bereich der
graphischen Modellierung von Prozessen und der Architektur des Pro-
totyps angesiedelt. Um die in dieser Arbeit neu vorgestellten Konzepte
im Prototyp zu realisieren, wurden Arbeiten aus dem Bereich des
Modelchecking und der Petrinetze verwendet. Die Verwendung dieser
Arbeiten ermoglicht es, Prozessmodelle automatisch im Prototyp zu
tiberpriifen.

Complianceregeln konnen ein sehr weites Feld von Eigenschaften ab-
decken, die fiir einen Prozess gelten miissen. Denkbare Eigenschaften

sind zum Beispiel der Energieverbrauch eines Prozesses zur Laufzeit,

1.5 | Definition des Arbeitsbereichs 27

der zur Entwicklungszeit berechnet werden kénnte oder eine Ober-
grenze fiir die Antwortzeit, die ein Prozess zur Laufzeit nicht {iber-
schreiten darf. Die im Folgenden vorgestellten Losungen beziehen sich
jedoch auf den Kontrollfluss und den Datenfluss eines Prozesses. Das
Ziel, das mit dieser Einschridnkung erreicht wird, ist, eine umfassende
Losung zu présentieren, die fiir diese Arten von Prozesseigenschaften
angewendet werden kann.

Die Eckpunkte dieser Arbeit werden in der folgenden Liste vorge-
stellt:

* Die verwendeten Complianceregeln wurden nicht aus Gesetzes-
texten abgeleitet. Jedoch beruhen die Beispiele dieser Arbeit
auf Beispielen aus der Literatur und Erfahrungen, die in den
EU-Projekten MASTER! und COMPAS? gemacht wurden.

* Der durchweg in dieser Arbeit verwendete Beispielprozess stammt
aus der Literatur [TLF"10]. Er ist ein Modell eines real existie-

renden Prozesses in einem Krankenhaus.

Zusammenfassend zeigt diese Arbeit erste Schritte in Richtung eines
Werkzeugs fiir die regelkonforme Entwicklung von Prozessen. Die
Beitrage liegen auf der Ebene der graphischen Prozessentwicklung.
Sie reichern Prozesse mit Informationen an, die von Werkzeugen
verwendet werden, um sie zur Entwicklungszeit auf Verstof3e gegen
Complianceregeln zu untersuchen.

In der Arbeit sind alle graphisch dargestellten Prozesse mit der Pro-

zessbeschreibungssprache Business Process Model and Notation 1.0

http://www.master-fp7.eu
2http://compas-ict.eu

28 1| Einleitung

(BPMN 1.0) [Bus04] erstellt. Da die Ausfithrungssemantik von BPMN
1.0 in der Spezifikation nicht formal beschrieben ist, wird die Ausfiih-
rungssemantik von BPMN 2.0 [Obj11] verwendet. Weiterhin wird der
Erweiterungsmechanismus von BPMN 2.0 verwendet. BPMN ist ein
weit verbreiteter Standard zur Beschreibung von Prozessmodellen, der
in dieser Arbeit im Gegensatz zu nicht standardisierten Prozessnota-
tionen verwendet wird, um die Moglichkeit von Fehlinterpretationen
von Prozessen gering zu halten.

Die in dieser Arbeit vorgestellten Techniken und Losungsansitze
sind jedoch erweiterbar und bilden daher die Grundlage fiir die Aus-

weitung des Einsatzgebiets.

1.6. Aufbau der Arbeit

Diese Dissertation ist wie folgt gegliedert. Kapitel 2 prasentiert die
Technologien und Konzepte auf denen diese Arbeit aufbaut. Es legt
die Grundlagen, die zum Verstindnis der Arbeit notwendig sind. Kapi-
tel 3 erortert verwandte Arbeiten fiir den Bereich der regelkonformen
Prozessentwicklung. Die automatische Uberpriifung des Kontrollflus-
ses von Prozessen zur Entwicklungszeit ist ein Thema, das in Kapi-
tel 4 bearbeitet wird. Hier werden zwei Konzepte vorgestellt, die
menschlichen Prozessmodellierern dabei helfen sollen, einen Prozess
mit regelkonformem Kontrollfluss zu erstellen. In Kapitel 5 werden
Konzepte prasentiert, die den Datenfluss eines Prozesses zur Entwick-
lungszeit automatisch tiberpriifen. Die Kombination von kontrollfluss-
mit datenflussbasierten Complianceregeln ist Thema des Kapitels 5.5.
Ein Mechanismus zur Erstellung regelkonformer Prozesse unter Ein-

bindung mehrerer Partner stellt Kapitel 6 vor. Die Architektur und

1.6 | Aufbau der Arbeit 29

Implementierung des Prototyps wird in Kapitel 7 erldutert. Kapitel 8
fasst die in dieser Arbeit gezeigten Erkenntnisse zusammen und gibt

einen Ausblick auf moégliche darauf aufbauende Arbeiten.

30 1| Einleitung

KAPITEL

GGRUNDLAGEN DER
ENTWICKLUNG
REGELKONFORMER PROZESSE

2.1. Bedeutung des Begriffs Compliance im Kontext dieser
Arbeit

Der Begriff Compliance wird in dieser Arbeit mit dem deutschen Begriff
Regelkonformitdt gleichgesetzt. Das Thema Compliance von Prozessen
beschiftigt sich mit der Einhaltung von Richtlinien und Regeln, die
auf Prozesse Anwendung finden.

Compliance ist ein Thema, das Firmen heutzutage immer mehr
bewegt und auch in Zusammenhang mit Geschéftsprozessen in Zu-
kunft bewegen wird [MPRS13, SGNO7, KSMP07, LSG08]. Gerade im

31

Bereich des Prozessmanagement ist Compliance somit unverzichtbar.
Ein Beispiel hierfiir ist die weltweite Finanzkrise, die damit begann,
dass 2007 die US Immobilienblase platzte. Viele Banken hatten an
Privatpersonen Kredite vergeben, die spater von den Kreditnehmern

nicht zuriickbezahlt werden konnten.

32 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Regeln konnen aus verschiedenen Quellen stammen. Folgende drei
Quellen sind relevant: Gesetzestexte, Regeln, die durch Werte der
Gesellschaft gepréagt sind und firmeninterne Regeln. Beispiele fiir wich-
tige Gesetze im Bereich Business Process Management sind Basel II
[Bas06] und der Sarbanes-Oxley Act (SOX) [Uni02].

Diese Arbeit leitet keine auf Prozesse anwendbare Complianceregeln
aus Gesetzestexten ab. Die in den folgenden Kapiteln gezeigten Regeln
sind fiktiv. Sie leiten sich aus den Erfahrungen des Autors mit wissen-
schaftlichen Projekten aus dem Bereich Compliance von Prozessen
ab.

2.2. Business Process Management

Beginnend mit der Entwicklungsphase im Geschéfsprozesslebenszy-
klus beschiéftigt sich das Business Process Management mit allen TAtig-

keiten, die bei der Arbeit mit Geschiftsprozessen anfallen.

2.3. Business Process Model and Notation 1.0 (BPMN 1.0)

BPMN wurde in der Version 1.0 als eine graphische Notation zur Be-
schreibung von Geschéftsprozessen entworfen. Sie besteht aus einer
Vielzahl graphischer Symbole, von denen die wichtigsten in den fol-
genden Abschnitten vorgestellt werden. Im Januar 2011 wurde die
Version 2.0 von BPMN fertiggestellt. Zu den wichtigsten Neuerun-
gen von BPMN 2.0 zdhlen die vollstdndige Spezifikation der Ausfiih-
rungssemantik und eine Beschreibung der Verarbeitung von Daten in
BPMN-Prozessen. Die Beschreibung der Ausfiihrungssemantik und der

Datenflusssemantik von BPMN 2.0-Prozessen ist fiir diese Arbeit grund-

2.3 | Business Process Model and Notation 1.0 (BPMN 1.0) 33

legend, da Complianceregeln den Kontrollfluss und den Datenfluss
in einem Prozess betreffen. Ohne die Einfiihrung dieser Semantiken
hiitten automatische Priifverfahren keine Grundlage zur Uberpriifung
dieser Complianceregeln. In dieser Arbeit wird aus Griinden der Kom-
plexitdtsreduktion BPMN 1.0 zusammen mit der Ausfiihrungssemantik
und dem Erweiterungsmechanismus von BPMN 2.0 verwendet, da
in BPMN 2.0 unter anderem auch einige neue Symbole eingefiihrt
wurden, die fiir die Ergebnisse der vorliegenden Arbeit nicht ausschlag-
gebend sind.

Im Folgenden werden die wichtigsten graphischen Elemente von
BPMN 1.0 erldutert. Die Auswahl der dargestellten BPMN Elemente
erfolgte im Hinblick auf die Verwendung im Rahmen der vorliegenden
Arbeit.

2.3.1. Tasks

Tasks werden in BPMN 1.0 als Rechtecke mit abgerundeten Ecken
dargestellt. Die verschiedenen Tasks unterscheiden sich durch die
Linienbreite des Rechtecks und durch das im Rechteck enthaltene
Piktogramm. Tasks konnen als einzelne auszufithrende Schritte in

einem Prozess angesehen werden. Abbildung 2.1 zeigt zwei Tasks.

2.3.2. Kontrollfluss

Der Begriff Kontrollfluss bezeichnet im Zusammenhang mit Geschéftspro-
zessen die Einschriankung der moglichen Ausfithrungsabfolgen von
Aktivitaten. Realisiert wird dies zum Beispiel in BPMN 1.0 mit Hilfe
von Kontrollflusskonnektoren (siehe Abbildung 2.1). Dies sind Pfei-
le, die die Aktivititen eines Prozessmodells verbinden und so eine

34 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Abbildung 2.1.: Einschrankung der Moglichkeiten der Abfolge von
Aktivititen mit Hilfe eines Kontrollflusskonnektors

Ausfiihrungsreihenfolge vorgeben.

2.3.3. Datenfluss

Fiir die Ausfithrung einer Aktivitit werden Eingabedaten benotigt.
Weiterhin wird von einer Aktivitit in der Regel ein Resultat in Form
von Ausgabedaten erzeugt. Diese Ausgabedaten werden mittels Daten-
konnektoren zum Beispiel zu weiteren Aktivitdten oder Datenobjekten
weitergeleitet. Die so entstehende Bewegung von Daten in einem

Prozess wird als Datenfluss des Prozesses bezeichnet.

2.3.4. Ereignisse

Ereignisse konnen in Prozessmodellen verwendet werden, um be-
stimmte Situationen, die zur Ausfithrungszeit auftreten kénnen, zu
modellieren. Es gibt drei Arten von Ereignissen in BPMN 1.0: Starter-
eignisse, Intermediate-Ereignisse und Endereignisse. Abbildung 2.2
zeigt beispielhaft ein Startereignis. Alle Ereignisse in BPMN sind durch
eine Kreisform gekennzeichnet. Ereignisse unterscheiden sich durch
die Linienbreite des Kreises und durch das im Kreis enthaltene Pikto-
gramm. Das Startereignis enthélt kein Piktogramm. Es zeigt an, wo

ein Prozess gestartet werden kann.

2.3 | Business Process Model and Notation 1.0 (BPMN 1.0) 35

O

Abbildung 2.2.: Beispiel fiir ein Ereignis in BPMN: Startereignis

Abbildung 2.3.: Und-Gateway links; Exklusiv-oder-Gateway rechts

2.3.5. Gateways

Gateways werden in BPMN 1.0 dazu verwendet, Verzweigungen in Pro-
zessmodellen zu modellieren. Abbildung 2.3 zeigt zwei der wichtigsten
Gateways: das Und-Gateway (links) und das Exklusiv-oder-Gateway
(rechts).

Mit dem Und-Gateway kann der Kontrollfluss in einem Prozessmo-
dell in zwei oder mehrere Zweige aufgeteilt werden, die parallel ausge-
fiihrt werden. Mit dem Exklusiv-oder-Gateway kann der Kontrollfluss
im Prozessmodell anhand von Bedingungen aufgeteilt werden. Die
ausgehenden Kontrollflusskonnektoren eines Exklusiv-oder-Gateways
sind jeweils mit Bedingungen verkniipft. Ist eine solche Bedingung
wabhr, so wird der Prozess in dem Zweig weiter ausgefiihrt, mit dem

die Bedingung verkniipft ist.

36 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Abbildung 2.4.: Datenobjekt

2.3.6. Datenobjekte

Datenobjekte dienen der graphischen Abbildung des Datenflusses in
einem Prozessmodell. Abbildung 2.4 zeigt zwei miteinander durch
einen Kontrollflusskonnektor verbundene Tasks. Weiterhin zeigt die
Abbildung den Datenfluss, der durch die mit dem Datenobjekt und den
Tasks verbundenen Datenassoziationen (gestrichelte Pfeile) dargestellt
1st.

2.4. Oryx

Oryx [DOWO0S8] ist ein webbasierter, graphischer BPMN-Editor. Er wird
in dieser Arbeit als Grundlage fiir die prototypische Implementierung
der neuen Konzepte verwendet. Oryx wurde am Hasso-Plattner-Institut
entwickelt und ist in zwei Hauptkomponenten aufgeteilt. Das Frontend
ist eine hauptsachlich in JavaScript entwickelte Komponente, die die
graphische Entwicklungsumgebung fiir den Benutzer bereitstellt. Sie
wird in einem Browser ausgefiihrt. Das Backend ist hauptsichlich
in Java geschrieben und bietet unter anderem Funktionalitidt zum

Speichern und Laden von Prozessmodellen.

2.4 | Oryx 37

2.5. Lineare Temporale Logik

Das Konzept der Linearen Temporalen Logik [Pnu77, Pnu86] (LTL)
wurde Anfang der 1980er Jahre von Armir Pnueli in die Informatik
eingefiihrt. Anwendungsgebiete fiir LTL sind Zustandssysteme wie zum
Beispiel Betriebssysteme oder Protokolle. Zustandssysteme generieren
bei der Ausfiihrung Abfolgen von Zustdnden, die sie erreicht haben.
Mit LTL ist es moglich diese Abfolgen von Zustdnden zu beschreiben.

Heute wird die temporale Logik in vielen Anwendungsgebieten
eingesetzt. Ein Beispiel ist das Feld der Prozessverwaltung.

Mit Linearer Temporaler Logik wird eine Sprache bezeichnet, in
der ausschlieflich mit diskreten Zeitschritten gearbeitet wird. Das
bedeutet, dass zwischen zwei aufeinander folgenden Zustinden eines
reakiven Systems immer ein Zeitintervall der Lange eins liegt.

Mit V als eine Menge aussagenlogischer Konstanten ist die Sprache
L;71.(V) der Linearen Temporalen Aussagenlogik wie folgt definiert:
Das Alphabet von £;7; (V) besteht aus. ..

¢ allen aussagenlogischen Konstanten von V

* und den Zeichenfalse | O | O[O | U |[W | —= | (]).

Weiter definieren wir:
* Jede aussagenlogische Konstante V, aus V ist eine Formel.
e false ist Formel.

e Wenn A und B Formeln sind, dann sind OA, CA, OA,AUB, A
W B und A = B Formeln.

38 2 | Grundlagen der Entwicklung regelkonformer Prozesse

Es konnen die aus der Aussagenlogik bekannten Operatoren —, A, V,
< und true verwendet werden.
Die oben neu eingefithrten Operatoren haben die folgenden Bedeu-

tungen:
* [A: Aist in allen folgenden Zeitpunkten wahr.
e OA: A ist nach einer bestimmten Zeitspanne wahr.
* OA: A ist zum néchsten Zeitpunkt wahr.

* A U B: A ist so lange wahr, bis B wahr ist. Danach darf A nicht

mehr wahr sein.

* AW B: A ist so lange wabhr, bis B wahr ist. Danach darf A nicht
mehr wahr sein. Oder A ist immer wahr.

Weiterhin gilt: & A = -[0- A.

2.6. Modelchecking

Unter Modelchecking wird die automatische Uberpriifung eines Mo-
dells anhand formal definierter Eigenschaften verstanden, die dieses
Modell erfiillen muss [JGP99]. Das Modell bildet dabei die wichtigsten
Eigenschaften eines real existierenden Systems ab. Ein solches System
kann zum Beispiel ein Geschiftsprozess oder ein anderes verteiltes

System sein.

2.7. SPIN

SPIN [Hol03] ist ein in den Bell Labs entwickelter Modelchecker, der
seit 1991 frei verfiigbar ist. Die Eingabesprache von SPIN ist PROMELA.

2.7 | SPIN 39

Zur Spezifikation der Eigenschaften, die ein zu iiberpriifendes Modell

erfiillen muss, dient die Lineare Temporale Logik.

2.8. PROMELA

PROMELA (Process oder Protocol Meta Language) [Hol03] ist die
Eingabesprache des SPIN Modelcheckers. Urspriinglich wurde sie zur
Erstellung von nebenldufigen, verteilten Systemen konzipiert. Auf-
grund ihrer Machtigkeit kann sie jedoch auch in anderen Bereichen,
zum Beispiel zur Erstellung von Petrinetzmodellen, verwendet werden.
Die Kommunikation zwischen zwei Komponenten wird in PROMELA
mittels Nachrichtenkanilen modelliert. Diese konnen sowohl synchron
als auch asynchron arbeiten. PROMELA hat eine an die Programmier-

sprache C angelehnte Syntax.

2.9. JSON

JSON! ist ein Datenformat, mit dem es moglich ist, komplexe Datenob-
jekte iiber textbasierte Datentransferprotokolle, wie zum Beispiel HTTB
zu lbertragen. JSON wird hier beschrieben, da der in der vorliegenden

Arbeit vorgestellte Algorithmus 4.1 damit arbeitet.

Listing 2.1: Arrayreprasentation der Plédtze eines Petrinetzes

"Name": "Max Musterknabe",
"Alter": 32,
"Adresse": {

"Street": "Langestrafie",

Thttp://json.org/json-de.html

40 2 | Grundlagen der Entwicklung regelkonformer Prozesse

"City": "Musterstadt"

})
"Kinder": [
{
"Name": "Maike"
b,
{
"Name": "Karl"
}

}

Codelisting 2.1 zeigt ein JSON-Datenobjekt, das eine Person beschreibt.
Hierzu werden die gangigsten Modellierungskonstrukte von JSON ver-
wendet. Objekte sind in JSON in geschweifte Klammern eingerahmt.
Innerhalb dieser Objekte werden Schliisselwertpaare dazu verwen-
det, um einem Objekt Daten zuzuordnen. Weiterhin kénnen Arrays

definiert werden. Diese sind mit eckigen Klammern eingerahmt.

2.10. Prozessfragment

Eberle et al. definieren Prozessfragmente [EUL09] als Teilstiicke von
Prozessen. Dabei wird beschrieben, dass Prozessfragmente in sich
unvollstidndig spezifiziert sein kénnen. So konnen sie beispielsweise
Liicken aufweisen. Fiir Liicken ist nicht definiert, wie der Prozess sich
dort zur Ausfiihrungszeit verhédlt. Um einen vollstdndigen Prozess zu
erhalten, miissen Liicken mit Aktivititen gefillt werden. Weiterhin
koénnen Prozessfragmente Kontrollflusskonnektoren enthalten, die ent-
weder an deren Anfang oder Ende nicht mit einer Aktivitit verbunden

sind.

2.10 | Prozessfragment 41

KAPITEL

VERWANDTE ARBEITEN

Dieses Kapitel setzt die in dieser Arbeit vorgestellten Konzepte in den
aktuellen wissenschaftlichen Kontext und gibt einen Forschungsiiber-
blick. Die Abschnitte dieses Kapitels sind so aufgebaut, dass zuerst
die verwandten Arbeiten zu einem speziellen Themengebiet vorge-
stellt werden. Anschliefend werden die verwandten Arbeiten in den
Zusammenhang mit dieser Dissertation gebracht. Die behandelten
Themengebiete sind dabei nach dem Abstraktionsgrad sortiert. Zu
Beginn wird ein Uberblick iiber Arbeiten im Bereich der Unterstiitzung
menschlicher Prozessmodellierer bei der Entwicklung regelkonformer
Prozesse (Abschnitt 3.1) gegeben. Weiterhin werden die Bereiche des
regelkonformen Geschéftsprozessmanagements (Abschnitt 3.2) und
der regelkonformen Prozessmodellierung (Abschnitt 3.3) bearbeitet.
Den Schluss bilden Arbeiten zu Linearer Temporaler Logik und Model-
checking (Abschnitt 3.4).

43

3.1. Unterstiitzung menschlicher Prozessmodellierer

Das Hauptziel dieser Arbeit ist es, einen menschlichen Prozessmodel-
lierer dabei zu unterstiitzen, regelkonforme Prozesse zu entwickeln.
Die Unterstiitzung soll dabei so weit gehen, dass der menschliche
Prozessmodellierer nur mit Complianceproblemen konfrontiert wird,
wenn eine Complianceregel verletzt wird. Im Folgenden werden Ar-
beiten aufgezeigt, die Losungen fiir die Unterstiitzung menschlicher
Prozessmodellierer anbieten.

Awad et al. zeigen in [ADWO8] einen Ansatz zur Uberpriifung von
Prozessmodellen mit dem Ziel Versto3e gegen Complianceregeln auf-
zudecken. Es werden in diesem Ansatz Complianceregeln verwendet,
die den Kontrollfluss in einem Prozessmodell einschrinken. Zur Uber-
priifung von Complianceregeln wird in diesem Ansatz BPMN-Q, eine
Abfragesprache fiir BPMN-Modelle in Repositories verwendet, um
die Prozessmodelle in einem Repository herauszufiltern, die fiir eine
Uberpriifung auf Versté3e gegen Complianceregeln in Frage kom-
men. Die in Frage kommenden Prozessmodelle werden mit Hilfe eines
Modelcheckers auf VerstoRRe gegen Complianceregeln tiberpriift. Die-
jenigen Prozessmodelle, die gegen die zur Uberpriifung verwendete
Complianceregel verstofsen, werden dem Benutzer angezeigt. Ein Pro-
zessmodell, das gerade bearbeitet wird, muss folglich vor der Uberprii-
fung auf ComplianceverstéRe in das Repository eingecheckt werden.
Das Konzept wird in [AWWO09] um datenbasierte Complianceregeln
erweitert.

Weiterhin zeigen Awad et al. in [AW09] eine auf dem vorhergehen-
den Ansatz aufbauende Lésung zur Uberpriifung von Prozessmodellen

in einem Repository auf Verletzungen von Complianceregeln. In die-

44 3 | Verwandte Arbeiten

sem Ansatz werden alle Prozessmodelle in einem Repository auf Ver-
letzungen von Complianceregeln untersucht. Die Erweiterung des vor-
hergehenden Ansatzes besteht in der automatischen Generierung von
sogenannten Anti-Patterns aus BPMN-Q-Anfragen. Anti-Patterns sind
BPMN-Q-Anfragen, die auf einem Prozessmodell ausgefiihrt werden.
Ist eine solche Anfrage erfolgreich, so ist das betreffende Prozessmo-
dell nicht regelkonform. Anti-Patterns zeigen dem Prozessmodellierer
die Stelle in einem Prozessmodell an, die eine bestimmte Compliance-
regel verletzt. Ein weiterer Vorteil von Anti-Patterns besteht in der
Vermeidung der Verwendung von Modelcheckern, um Verletzungen
von Complianceregeln in einem Prozessmodell anzuzeigen.

In seiner Dissertation zeigt Awad [Awa1l0], aufbauend auf den oben
besprochenen Verdffentlichungen, wie ein ganzheitlicher Ansatz ausse-
hen kann, der einen menschlichen Prozessmodellierer bei der Entwick-
lung regelkonformer Prozesse unterstiitzt. BPMN-Q Anfragen dienen
hier zur graphischen Illustration von Complianceregeln. Dies soll es
Prozessmodellierern mit nicht-technischem Hintergrund erleichtern,
mit Complianceregeln umzugehen. Diese graphische Reprasentation
von Complianceregeln wird dann in eine formale Sprache transfor-
miert, die als Eingabesprache fiir einen Modelchecker dient. Da dies
automatisch geschieht, muss sich der menschliche Prozessmodellierer
nicht mit den technischen Eigenheiten der hinter der Losung liegenden
Konzepte auseinandersetzen, mochte er einen regelkonformen Prozess
erstellen.

In [TEHP11] werden Muster fiir die am héufigsten in der Literatur
erwahnten Complianceregeln vorgestellt. Diese dienen der einfacheren
Arbeit mit Complianceregeln fiir Menschen ohne technischen Hinter-

grund. Referenziert werden die Muster anhand ihres Namens. Somit

3.1 | Unterstltzung menschlicher Prozessmodellierer 45

bleibt dem menschlichen Prozessmodellierer die formale Reprasen-
tation bei der Arbeit mit einer Complianceregel verborgen. Jedes in
[TEHP11] vorgestellte Muster beschreibt eine Complianceregel, die
den Kontrollfluss in einem Prozessmodell einschrankt.

Datenbasierte Complianceregeln sind das Thema in [KLRM'10].
Sie werden in dieser Arbeit so aufbereitet, dass sie mit einem Mo-
delchecker {iberpriift werden kénnen. Bei der Uberpriifung ganzer
Prozessmodelle wird der menschliche Prozessmodellierer mit dem
graphischen Werkzeug Aristaflow Process Template Editor unterstiitzt.
Dieses Werkzeug sto3t auch die Untersuchung des angezeigten Pro-
zessmodells auf Verletzungen von datenbasierten Complianceregeln
an.

In [BDSV05] wird eine Abbildung von LTL-Formeln auf BPMN-
Konstrukte gezeigt. Dies ist eine Grundlage fiir die Unterstiitzung
menschlicher Prozessmodellierer beim Umgang mit Complianceregeln,
da Complianceregeln in einer formalen Sprache vorliegen miissen,
damit sie als Eingabe fiir die automatische Uberpriifung von Prozess-
modellen verwendet werden konnen.

Die automatische Uberpriifung von Complianceregeln auf Prozess-
modellen ist Thema in [LMX07]. Es wird hier darauf Wert gelegt, dass
Prozessmodelle und Complianceregeln getrennt voneinander erstellt
und bearbeitet werden konnen. In diesem Ansatz wird ein in der
Business Process Execution Language (BPEL) geschriebenes Prozess-
modell in ein 7-Kalkiil-Modell iibertragen. Complianceregeln werden
in einer graphischen Modellierungssprache erstellt und danach in LTL
transformiert. Modelchecking wird verwendet, um Prozessmodelle
automatisch auf Verletzungen von Complianceregeln zu untersuchen.

In der in [Elg12] vorgestellten Dissertation wird ein Rahmenwerk

46 3 | Verwandte Arbeiten

fiir die Verwaltung und Erstellung regelkonformer Geschéftsprozes-
se beschrieben. Hier wird ein Ansatz gezeigt, der es menschlichen
Prozessmodellierern erleichtern soll, mit formalen Ausdriicken umzu-
gehen, die gebraucht werden, um Complianceregeln zu spezifizieren.
Dies geschieht mit Hilfe von Vorlagen. Vorlagen konnen mit Hilfe ihres
Namens referenziert werden. Sie werden als atomare Compliance-
regeln gesehen. In diesen Vorlagen verbergen sich die komplexen
formalen Ausdriicke, die Complianceregeln beschreiben. Die Arbeit
beschreibt weiter, wie menschliche Prozessmodellierer diese Vorlagen
verwenden, um Prozessmodelle auf Regelverletzungen zu {iberprii-
fen. Zur Uberpriifung von Prozessmodellen werden Techniken aus
dem Modelchecking herangezogen. Konkret wird LTL verwendet, um
Complianceregeln zu spezifizieren. Der SPIN Modelchecker dient als
Untersuchungswerkzeug.

In den in diesen Arbeiten vorgestellten Losungen werden ganze
Prozessmodelle als Grundlage fiir die Uberpriifung von Compliance-
verstofden herangezogen. Viele Losungen verwenden Techniken aus
dem Modelchecking, um die automatische Uberpriifung von Prozess-
modellen durchzufiihren. Der Vorteil von Modelcheckern ist die Qua-
litdt der Untersuchungsergebnisse. Verletzt ein Prozessmodell eine
Complianceregel, so wird dieser Fehler gefunden. Weiterhin wird ein
Beispielpfad im betreffenden Prozessmodell gezeigt, der zu diesem
Fehler fiihrte. Der Nachteil von Modelcheckern ist deren Laufzeit. Bei
der Uberpriifung ganzer Prozessmodelle kann es zu einer sehr lan-
gen Laufzeit eines Modelcheckers kommen, da sie ein exponentielles
Laufzeitverhalten haben [Var01].

Weiterhin werden Losungen prisentiert, die zeigen, wie formale

Sprachen verwendet werden, um Complianceregeln auszudriicken.

3.1 | Unterstltzung menschlicher Prozessmodellierer 47

Einige Ansitze verwenden graphische Notationen, um Compliance-
regeln zu erstellen. Aus diesen graphischen Modellen werden dann die
formalen Modelle erstellt, die als Eingabesprache fiir Modelchecker
verwendet werden.

Die vorliegende Dissertation hingegen legt Wert darauf, eine Losung
zu prasentieren, die bei der Entwicklung von Prozessen den Menschen
in den Vordergrund stellt. Bei der Erstellung der Konzepte stand die Be-
nutzerfreundlichkeit im Vordergrund. Der Hauptaspekt, der in diesem
Zusammenhang betrachtet wird, ist die Antwortzeit des zu erstellen-
den Prototyps. Diese sollte so gering wie moglich sein [Nie93]. Die
Einbeziehung der Benutzerfreundlichkeit ist notwendig, da die Er-
stellung regelkonformer Prozesse immer von Menschen durchgefiihrt
wird.

Jedes in dieser Arbeit vorgestellte Konzept wurde mit Blick auf die
Benutzerfreundlichkeit entwickelt. Gegeniiber bereits existierenden
Ansétzen ist es zum Beispiel moglich, Complianceregeln mit frei defi-
nierbaren Bereichen in einem Prozessmodell zu verkniipfen. Mit der
GroRRe des mit einer Complianceregel verkniipften Prozessbereichs
kann zum Beispiel die Wartezeit auf ein Uberpriifungsergebnis ange-

passt werden.

3.2. Regelkonformes Geschéftsprozessmanagement

Wie in Kapitel 1 dargestellt, ist die Einhaltung von Regularien im
Feld des Geschéftsprozessmanagement in den letzten Jahren zu einem
zentralen Thema des Unternehmensmanagements avanciert. Diese
Entwicklung fiihrte auch in der Wissenschaft zu verstarkten Anstren-

gungen in dieser Richtung neue Konzepte und Losungen zu prasentie-

48 3 | Verwandte Arbeiten

ren.

Zwei von der Européischen Union (EU) geférderte Projekte be-
schéftigten sich mit neuen Konzepten in unterschiedlichen Teilen des
Geschéftsprozesslebenszyklus. Im ersten EU-Projekt mit dem Namen
Compliance-driven Models, Languages, and Architectures for Services
(COMPAS)! wurde unter anderem der Geschéftsprozesslebenszyklus
um einige Phasen erweitert, die fiir den Bereich Compliance wichtig
sind. Es entstand der Compliancelebenszyklus. Im Compliancelebens-
zyklus wurden zu den bestehenden Phasen Modellierung, Ausfithrung,
Uberwachung und Priifung des Geschiftsprozesslebenszyklus die Pha-
sen Compliancebeurteilung, Anpassung der IT-Systeme und statische
Uberpriifung hinzugefiigt. COMPAS befasste sich hauptsichlich mit
den Unterphasen der Entwicklungsphase des Compliancelebenszyklus.
Fiir die Phase Compliancebeurteilung wurde erforscht, wie sich na-
tlirlichsprachliche Gesetzestexte in Ausdriicke {ibersetzen lassen, die
mit einer formalen Sprache geschrieben sind. Weiterhin wurde fiir
die Phase der Modellierung das Konzept eines Compliancefragments
entwickelt [SLM*10]. Compliancefragmente bauen auf der Definition
von Prozessfragmenten [EUL0O9] auf. Sie sind Prozessteile, die nicht
ausfiihrbar sind, weil sie typischerweise nicht voll spezifiziert sind. Ein
Compliancefragment erfiillt durch seine Implementierung einen oder
mehrere Complianceanforderungen. Compliancefragmente sind dazu
gedacht, in bestehende Prozessmodelle eingefiigt zu werden. Das Ein-
fligen eines Compliancefragments passt das Verhalten des betreffenden
Prozesses in bestimmten Situationen an Vorgaben an.

Die Hauptherausforderungen der Verwaltung von Compliancefrag-

thttp://compas-ict.eu

3.2 | Regelkonformes Geschéftsprozessmanagement 49

menten werden im Artikel [SLS10] herausgestellt. Weiterhin werden
Techniken fiir das Herausfiltern und Verbergen von Compliancefrag-
menten gezeigt, die auf Transformationen aufbauen, die fiir die Er-
stellung von Prozesssichten entwickelt wurden. Dies geschieht mit
Hilfe von Transformationsvorschriften, die ein Prozessmodell in eine
Prozesssicht iibertragen.

In [SAL"10] wird ein Verwaltungsmodell fiir Complianceregeln
im Bereich des Geschéftsprozessmanagement vorgestellt. Dieses Ver-
waltungsmodell zeigt, dass Compliance nicht nur fiir die in einem
Unternehmen eingesetzten Prozesse wichtig ist, sondern auch fiir alle
fiir die Ausfiihrung eines Prozesses benotigten Ressourcen. In die-
sem Verwaltungsmodell werden Compliancekontrollen in zwei Typen
aufgeteilt: Kontrollen die beschreiben wie Complianceanforderungen
untersucht werden miissen und Kontrollen die beschreiben, wie ein
Prozess abzulaufen hat. Weiterhin wird gezeigt, wie BPEL erweitert
werden kann, um Compliancefragmente mit BPEL zu verwenden.

Auch der Artikel [SLM"10] befasst sich mit Prozessfragmenten und
deren Einsatz im Bereich der regelkonformen Prozessmodellierung.
Es werden hier zwei Mechanismen fiir den Einsatz von Prozessfrag-
menten in Prozessen gezeigt. Der erste Mechanismus, das Ankleben
von Prozessfragmenten an Prozesse, fiigt Prozessfragmente direkt in
einen Prozess ein, so dass sie Teil des Prozesses werden. Der zweite
Mechanismus, das Hineinweben von Prozessfragmenten in Prozesse,
verwendet eine Softwarekomponente. Diese {iberwacht die Ausfiih-
rung eines Prozessmodells und fiihrt an bestimmten Stellen die in den
Prozess hineingewebten Prozessfragmente aus.

Der Beitrag von COMPAS in der Phase statische Uberpriifung befasst

sich mit der automatischen Uberpriifung von Complianceregeln auf

50 3 | Verwandte Arbeiten

Prozessmodellebene. Hier werden Techniken aus dem Modelchecking
verwendet, um ganze Prozessmodelle automatisch zu iiberpriifen
[STK'10].

Das zweite EU-Projekt mit dem Namen Managing Assurance, Se-
curity and Trust for sERvices (MASTER)® erforschte den gesamten
Geschéftsprozesslebenszyklus mit Fokus auf die Ausfithrungszeit von
IT-unterstiitzten Geschéftsprozessen. In der Phase der Modellierung
wurden hier Konzepte entwickelt, um Informationen, die fiir spétere
Phasen im Prozesslebenszyklus wichtig sind, in Prozessmodelle einzu-
fiigen. In der Ausfithrungsphase wurde ein Konzept mit dem Namen
Enforcement [AKLT09, GCS*10] verwendet. Mit diesem Konzept ist
es moglich, zur Laufzeit GegenmalfSnahmen zu ergreifen, sollte ein
Prozess Complianceregeln verletzen. Weiterhin wurden in der Phase
Uberwachung Konzepte und Prototypen entwickelt, um anhand von
Laufzeitereignissen, zu ermitteln, ob von einem laufenden Prozess
nicht erlaubte Aktionen durchgefiihrt werden.

In der Phase Priifung wurden Konzepte und Prototypen entwickelt,
um anhand der Ausfithrungsdaten vieler abgelaufener Prozesse zu ent-
scheiden, ob die ihnen zugrunde liegenden Prozessmodelle geéndert
werden miissen, um den ihnen auferlegten Richtlinien zu geniigen.

In [WPD'11] zeigen Weidlich et al., dass das Konzept der Beha-
vioural Profiles (Verhaltensprofile) auch auf Compliance in Prozessmo-
dellen angewendet werden kann. Behavioural Profiles werden dazu
verwendet, um Aussagen iiber miteinander in Beziehung stehenden
Paaren von Aktivititen in Prozessmodellen zu machen. In dem vor-

gestellten Ansatz werden sie als Metrik verwendet, um die Regelkon-

thttp:/ /www.master-fp7.eu

3.2 | Regelkonformes Geschéftsprozessmanagement 51

formitéit von Prozessmodellen fiir drei Arten von Complianceregeln
zu liberpriifen. Es konnen damit die Ausfiihrungsreihenfolge von Ak-
tivititen, die zwingende Ausfithrung einer Aktivitat und die kausale
Abhéangigkeit von Aktivititen zueinander tiberpriift werden.

Die in diesem Abschnitt vorgestellten Arbeiten haben das Ziel, viele
Teilbereiche des Prozesslebenszyklus um Konzepte zur Einhaltung und
Uberpriifung von Complianceregeln zu erweitern.

Die vorliegende Arbeit befasst sich mit der ersten Phase des Prozess-
lebenszyklus, der Modellierungsphase. Sie présentiert hier Konzepte,
die sich eingehend mit dem Thema der Unterstiitzung menschlicher
Prozessmodellierer bei der Erstellung regelkonformer Prozesse befas-

Sen.

3.3. Regelkonforme Prozessmodellierung

Ein Uberblick iiber die Forschungsherausforderungen im Bereich des
regelkonformen Geschéftsprozessmanagements wird in der Veroffent-
lichung [SGNO7] gezeigt. Das zweite grofse Themengebiet dieser Ver-
offentlichung ist ein Ansatz zur Modellierung von Complianceregeln.
Im Hinblick auf die Modellierung von Complianceregeln sehen die
Autoren Bedarf fiir Vereinfachung. Sie sind der Meinung, dass derzeit
der Mensch nicht ausreichend dabei unterstiitzt wird, Mengen von
Complianceregeln zu verwalten. Dies sei zum Beispiel der Fall bei der
Verwaltung von Complianceregeln, die zur Laufzeit von Geschéftspro-
zessen eingesetzt werden, um diese automatisch zu untersuchen.
Der Artikel zeigt wie Complianceregeln mit Formal-Contract-Logic
(FCL) [GMO06] modelliert werden kénnen. FCL bringt Eigenschaften

mit, die bei der Modellierung von Complianceregeln hilfreich sind.

52 3 | Verwandte Arbeiten

Eine dieser Eigenschaften ist die Moglichkeit normative oder norm-
gebende Ausdriicke zu erstellen. Weiterhin zeigt er einen Ansatz wie
diese Complianceregeln graphisch mit Prozessmodellen verkniipft wer-
den koénnen.

Der in [BBD"11] beschriebene Ansatz zur regelkonformen Modellie-
rung von Prozessen im Finanzsektor zeigt, wie die Semantic Business
Process Modeling Language (SBPML) mit Complianceregeln verkniipft
werden kann. Diese Complianceregeln konnen automatisch {iberpriift
werden. Bei der automatischen Uberpriifung wird das Auftreten von
durch Complianceregeln beschriebener Muster im Prozessmodell {iber-
prift.

Ein Policy-basiertes Rahmenwerk fiir die Verwaltung von Compliance-
regeln und den mit ihnen verkniipften Prozessen wird in [KSMPO07]
prasentiert. Weiterhin werden in diesem Artikel acht Anforderungen
an ein solches Rahmenwerk gestellt. Im Folgenden werden diese acht

Anforderungen skizziert:

» Anderungsmanagement: Da Complianceregeln eine Umsetzung
von Regularien in formale Definitionen darstellen, kann davon
ausgegangen werden, dass sie regelmiflig gedndert werden
miissen. Ebenso soll es die Moglichkeit geben Prozessmodelle

anzupassen.

* Nachvollziehbarkeit und Zuweisbarkeit von Effekten bei der
Ausfiihrung eines Prozessen beim Einsatz von Compliance-
regeln: Es muss klar sein, welche Effekte die Verkniipfung von
Complianceregeln mit einem Prozessmodell zur Ausfiithrungszeit
haben.

3.3 | Regelkonforme Prozessmodellierung 53

* Komplexitit der Complianceregeln: Das Rahmenwerk soll die
Verwaltung von Complianceregeln vereinfachen. Dazu miissen
Complianceregeln in einer generischen Form vorliegen, um fiir

verschiedene Verwendungszwecke einsetzbar zu sein.

 Effektivitit der eingesetzten Complianceregeln: Es muss mit-
tels der eingesetzten Complianceiiberpriifungsalgorithmen be-
stimmt werden kénnen, ob die mit einem Prozessmodell ver-

kniipften Complianceregeln die erwiinschte Wirkung erzielen.

¢ Kosten: Der Einsatz des Rahmenwerks muss die Gesamtkosten

der regelkonformen Prozessverwaltung reduzieren.

* Durchsetzung von Complianceregeln: Das Rahmenwerk muss
sicherstellen, dass mit Prozessmodellen verkniipfte Compliance-

regeln nicht umgangen werden konnen.

» Skalierbarkeit: Complianceregeln und Prozesse konnen belie-
big komplex werden. Das Rahmenwerk muss mit dieser Komple-

xitdt umgehen konnen.

« Einflussanalyse von Anderungen: Complianceregeln kénnen
voneinander abhéngig sein. Die Wirkung der Anderung einer
Complianceregel muss vor dem Einsatz iiberpriift werden kon-

nen.

Im Artikel [LSG08] werden die Nachteile von Uberwachungssys-
temen aufgezeigt, die anhand von Ereignissen die Regelkonformitit

dieser Prozesse tiberwachen.

54 3 | Verwandte Arbeiten

Systeme konnen erst nach der Verletzung einer Complianceregel rea-
gieren. Weiterhin sind die fiir die Uberpriifung verwendeten Compliance-
regeln oft hart in die Systeme integriert. Dies fithrt zu einer schlechten
Wartbarkeit und Anderbarkeit. Deshalb ist es notwendig Compliancea-
spekte schon zur Entwicklungszeit eines Prozesses zu betrachten.

Governatori et al. zeigen in [Gov08] eine Methode fiir die Pro-
zessverwaltung, die in drei Schritte gegliedert ist. Diese Schritte sind
die Anreicherung von Prozessen mit Complianceregeln, die automati-
sche Uberpriifung von Complianceregeln und die Riickmeldung von
Regelverstofden zur Anpassung von Prozessmodellen.

In diesem Artikel wird die Formal-Contract-Logic (FCL) verwen-
det, um Prozessmodelle mit Complianceanforderungen anzureichern.
Weiterhin zeigt der Artikel Algorithmen, um in FCL geschriebene
Complianceregeln zusammen mit einem Prozessmodell automatisch
zu iiberpriifen.

Uberpriifungen von Complianceregeln sollen an drei Stellen im
Geschiftsprozesslebenszyklus vorgenommen werden [STK*10]. Die
erste Stelle ist die Entwicklungsphase. Es miissen hier statische Uber-
priifungen des entstehenden Prozesses vorgenommen werden. Die
zweite Stelle ist die Ausfiihrungszeit eines Prozesses. Die ausgefiihrten
Instanzen von Prozessen miissen hier anhand von bei der Ausfiihrung
entstandenen Ereignissen auf Verletzungen von Complianceregeln
{iberpriift werden. Die dritte Stelle ist die Uberpriifung nach der Aus-
fiihrung von Instanzen. Dies bedingt, dass alle wahrend der Ausfiih-
rung erzeugten Ereignisse in einer Datenbank gespeichert werden.

Im Artikel [LGRMDO8] werden Anséitze gezeigt, die Compliance-
regeln eines Prozesses wahrend des gesamten BPM Lebenszyklus {iber-

priifen. Er zeigt an Prozessverwaltungssysteme gestellte Anforderun-

3.3 | Regelkonforme Prozessmodellierung 55

gen, um die Uberpriifung von Complianceregeln zu unterstiitzen und

bewertet bestehende Losungen auf Grundlage dieser Anforderungen.

Die folgende Liste zeigt diese Anforderungen an ein Prozessverwal-

tungssystem, das den gesamten BPM-Lebenszyklus im Hinblick auf

Compliance abdeckt:

56

* Eine formale Sprache zur Spezifikation von Complianceregeln.

* Verwaltungswerkzeuge fiir Complianceregeln: Compliance-

regeln konnen sich dndern und werden von der Entwicklungs-
phase bis zur Audit-Phase im BPM-Lebenszyklus eingesetzt. Dies
soll durch entsprechende Werkzeuge unterstiitzt werden.

Unterstiitzung implementierungsunabhéngiger sowie doma-
nenspezifischer Complianceregeln: Complianceregeln konnen
in unterschiedlichen Anwendungsgebieten eingesetzt werden.
Es wire hinderlich fiir die Wiederverwendbarkeit, wenn sie in ei-
ner fiir ein bestimmtes Anwendungsgebiet eingesetzten Sprache
spezifiziert waren. Aus diesem Grund sollen Complianceregeln
auch in doméneniibergreifenden Sprachen spezifiziert werden
konnen. Eine Complianceregel, die in einer doménentiibergrei-
fenden Sprache spezifiziert ist, kann in eine doméanenspezifische

Sprache transformiert werden.

Uberpriifung von Complianceregeln zur Entwicklungszeit

und zur Laufzeit.

Uberpriifung von Anderungen an laufenden Prozessmodel-
len: Anderungen an laufenden Prozessmodellen kénnen zu nicht

regelkonformen Prozessinstanzen fiihren.

3 | Verwandte Arbeiten

« Uberpriifung der Einhaltung von Complianceregeln bei der
Anderung eines Prozessmodells: Anderungen an laufenden
Prozessinstanzen und parallele Anderungen an deren Prozess-
modellen kénnen zu Inkonsistenzen bei der Einhaltung von
Complianceregeln fiihren. Dies muss durch die automatische
Uberpriifung jeder Anderung eines Prozessmodells verhindert

werden.

¢ Unterstiitzung von prozessiibergreifenden Complianceregeln:
Da Prozesse oft aus mehreren Teilprozessen zusammengesetzt
sind, ist es notwendig Complianceregeln iiber Prozessgrenzen

hinweg zu definieren und iiberpriifen zu kénnen.

* Klar verstindliche Riickmeldungen der Uberpriifungswerk-
zeuge: Es ist fiir die Benutzbarkeit der Werkzeuge zur automati-
schen Uberpriifung von Prozessen unabdingbar, dass Meldungen
der Systeme klar verstandlich sind und wenn méglich direkt auf

Fehlerquellen hinweisen.

¢ Aufler-Kraft-Setzen von Complianceregeln: Manche Compliance-
regeln sind eher als Vorschldge fiir einen reibungslosen Ablauf
eines Prozesses zu verstehen. Wird das Aulser-Kraft-Setzen von
Complianceregeln vom System nicht unterstiitzt, so kann dies

zu einer Ablehnung des Systems durch die Benutzer fithren.

» Mechanismen zur Zuriickverfolgung: Anderungen an Prozess-
modellen oder das Aufder-Kraft-Setzen von Complianceregeln
miissen vom System dokumentiert werden. Somit kann nach

Prozessende nachvollzogen werden, welche Entscheidungen zur

3.3 | Regelkonforme Prozessmodellierung 57

Laufzeit getroffen wurden. Dies ist zum Beispiel im klinischen
Bereich von zentraler Bedeutung.

Aufbauend auf [LGRMDO08] zeigt [LRD08] ein Rahmenwerk fiir
die Integration von Wissensbereichen in Prozessverwaltungssysteme.
Weiter wird gezeigt, wie semantische Einschrankungen an Prozessmo-
dellen definiert werden konnen. Der Hauptteil der Veroffentlichung
befasst sich mit der Definition eines Mal3stabs fiir semantische Kor-
rektheit von Prozessmodellen und der effizienten Uberpriifung von
semantischen Einschrankungen. Abschlielend wird eine Architektur
eines Repositorys fiir die Verwaltung semantischer Einschrankungen
gezeigt.

Ein weiteres Rahmenwerk zur Uberpriifung von Complianceregeln
wird in [LMXO07] vorgestellt. Zur Modellierung von Complianceregeln
wird die graphische Sprache BPSL (Business Property Specification
Language) verwendet. Es wird argumentiert, dass es mit dieser Spra-
che im Gegensatz zur Arbeit mit Linearer Temporaler Logik (LTL) fiir
Menschen einfacher sei, Complianceregeln zu erstellen. Zur Definition
von Prozessmodellen wird BPEL verwendet. Auch hier wird argumen-
tiert, dass es fiir Menschen einfacher sei mit BPEL Geschéftsprozesse
zu erstellen, als mit 7t-Kalkiil.

Zur Uberpriifung von Complianceregeln werden Techniken aus dem
Bereich des Modelchecking verwendet. Dazu werden die in BPSL
geschriebenen Complianceregeln in LTL-Ausdriicke und die BPEL Pro-
zessmodelle in 7t-Kalkiil-Prozesse iibersetzt. Werden Verletzungen von
Complianceregeln in einem Prozessmodell gefunden, so konnen Bei-
spiele fiir Ausfiihrungspfade im originalen BPEL-Prozessmodell angege-
ben werden. Ein solches Beispiel ist das Ergebnis, das ein Modelchecker

58 3 | Verwandte Arbeiten

ausgibt, sobald er eine Regelverletzung gefunden hat.

Im Artikel [DCD"09] unterstreichen Daniel et al. die Notwendig-
keit, das Thema Compliance schon ab der Designphase des BPM-
Lebenszyklus zu beachten. Zu diesem Zweck wird ein Konzept pra-
sentiert, um Prozessmodelle mit Metadaten anzureichern, welche von
einer Ausfithrungsumgebung ausgelesen werden, um Ereignisse zu
bestimmten Zeitpunkten wahrend der Ausfithrung zu erzeugen. Diese
Ereignisse konnen in einem sogenannten Reporting-Dashboard gra-
phisch dargestellt werden. Menschen kénnen mit diesen Informationen
Regelverletzungen, die zur Laufzeit eines Prozesses aufgetreten sind,
ausfindig machen. Weiterhin wird vorgeschlagen mit Prozesssichten
zu arbeiten, um dem menschlichen Prozessdesigner zu jedem Zeit-
punkt die Informationen anzubieten, die er fiir eine Aufgabe benotigt.
Mit Prozesssichten konnen zum Beispiel Teile von Prozessmodellen
ausgeblendet werden, um die Informationsdichte fiir menschliche
Prozessmodellierer zu reduzieren.

Viele Wissenschaftler, die sich mit der regelkonformen Implementie-
rung von Prozessen beschaftigen, sind der Meinung, dass menschliche
Prozessmodellierer mehr Unterstiitzung durch Modellierungswerkzeu-
ge benotigen. Die meisten in diesem Abschnitt gezeigten Konzepte
zielen darauf ab, den Umgang mit Complianceregeln und deren Ver-
kniipfung mit Prozessmodellen zu erleichtern. Hierfiir werden Kon-
zepte beschrieben, die die Complianceregeln von Hochsprachen in
niedrigere, fiir Modelchecker als Eingabesprachen geeignete Sprachen,
tibersetzen. Weiterhin wird gezeigt, wie Modelchecker eingesetzt wer-
den koénnen, um Prozessmodelle auf Verletzungen von Compliance-
regeln zu tiberpriifen.

Die vorliegende Arbeit prasentiert fiir einige, der in [KSMPO07] auf-

3.3 | Regelkonforme Prozessmodellierung 59

gestellten Anforderungen, Lésungen. Eine Losung, die das Anderungs-
management erleichtert, wird durch die Moglichkeit der graphischen
Modellierung von LTL-Formeln in Abschnitt 7.7 gezeigt. Die Effekti-
vitédt der eingesetzten Complianceregeln kann mit Hilfe der in dieser
Arbeit vorgestellten Konzepte zur Uberpriifung von Teilen von Pro-
zessmodellen evaluiert werden. Dies ist in Abschnitt 4 beschrieben.
Die Skalierbarkeit des in dieser Arbeit vorgestellten Ansatzes ist durch
die Implementierung des im Abschnitt 7.3 vorgestellten Compliance-
wizards sichergestellt. Es konnen hiermit zum Beispiel beliebig viele
Complianceregeln mit einem Prozess verkniipft werden. Weiterhin sind
die in dieser Arbeit verwendeten Modelchecker weit verbreitet und in
der Industrie sowie in GroRprojekten haufig eingesetzt [JGP99].

Die Verwendung von Compliancefragmenten zur Umsetzung von
Complianceanforderungen ist ein Schritt in die Richtung dieser Ar-
beit. Fragmente werden auch in den hier vorgestellten Konzepten

verwendet.

3.4. Automatische Uberpriifung von Prozessmodellen anhand
von Complianceregeln zur Entwicklungszeit

Um Prozessmodelle anhand von Complianceregeln zur Entwicklungs-
zeit zu iiberpriifen, werden in der Literatur Methoden beschrieben, die
auf der Verwendung von Modelcheckern aufbauen [ETHP10, Awalo,
WMMO09, STK10].

In [WMMO09] und [Wol10] zeigen Wolter et al. wie Zugangskon-
trolleigenschaften angewendet auf BPMN-Prozesse mit dem SPIN Mo-
delchecker tiberpriift werden kénnen. Vorhandene Arbeiten [DDOO0S,
RMFO07] dienen hier als Basis. In diesen Arbeiten wird gezeigt, wie

60 3 | Verwandte Arbeiten

BPMN Prozessmodelle in Petri-Netze {iberfiihrt werden konnen. Weiter-
hin wird gezeigt, wie Petrinetze mit der Sprache PROMELA spezifiziert
werden konnen. PROMELA ist die Eingabesprache des SPIN Model-
checkers.

Ein weiterer Ansatz [Awa10] baut auf der Verwendung des NuSMV
Modelcheckers auf. Um in einigen Fillen den teuren Aufruf dieses Mo-
delcheckers zu vermeiden, wird das zu untersuchende Prozessmodell
als erstes einer syntaktischen Priifung unterzogen. Da die in diesem
Artikel behandelten Complianceregeln den Kontrollfluss eines Prozes-
ses einschrianken, wird bei dieser Uberpriifung getestet, ob ein Pfad im
Prozessmodell existiert, der zur Erfiillung einer Complianceregel durch
das Prozessmodell fiihrt. BPMN-Q wird fiir diese Priifung verwendet.
Ist diese Priifung positiv verlaufen, das heif’t, eine Complianceregel
konnte theoretisch von einem Prozessmodell erfiillt werden, so wird
im Anschluss NuSMV verwendet, um eine semantische Priifung durch-
zufithren. Im anderen Fall muss NuSMV nicht aufgerufen werden, da
kein Ausfithrungspfad im Prozessmodell besteht, der zur Erfiillung der
Complianceregel fithren kann. Das Low Level Petri net Analyser (LoLa)
wird in dieser Arbeit fiir die Uberpriifung des Nichtvorhandenseins
von Deadlocks verwendet.

In [STK"10] wird ein Ansatz zur automatischen Uberpriifung vorge-
stellt, der die Transformation eines Prozessmodells nach Reo [Arb04],
einer graphischen auf Nachrichtenkanélen aufbauenden Prozessspra-
che, beschreibt. Prozessmodele, die in Reo vorliegen, konnen nach
einer Bearbeitung durch einen Experten mit dem Modelchecker PRISM
[KNPO2] {iberpriift werden.

3.4 | Automatische Uberpriifung von Prozessmodellen anhand von 61
Complianceregeln zur Entwicklungszeit

3.5. Zusammenfassung und Einordnung

Von den in diesem Abschnitt gezeigten Ansitzen ist der in [Wol10]
umgesetzte Ansatz der am stérksten wissenschaftlich bearbeitete. Der
Ansatz beruht auf der Transformation eines BPMN-Prozessmodells
in ein Petrinetz. Dieses Petrinetz wird dann in die Eingabesprache
des in dieser Arbeit verwendeten Modelcheckers SPIN iibersetzt. Eine
Eigenschaft eines Modelcheckers ist die Moglichkeit zur Bereitstellung
eines Gegenbeispiels im Falle der Aufdeckung einer Regelverletzung.
Ein Gegenbeispiel zeigt den Ausfiihrungspfad in einem Prozessmodell
an, das zu dieser Regelverletzung fiihrte. In der vorliegenden Arbeit
wird gezeigt, wie die Ausgabe des SPIN Modelcheckers automatisch
auf den urspriinglichen BPMN-Prozess abgebildet werden kann.

62 3 | Verwandte Arbeiten

KAPITEL

ENTWICKLUNG VON PROZESSEN
MIT REGELKONFORMEM
KONTROLLFLUSS

Das Kapitel befasst sich mit den Konzepten, die dazu dienen, einen
menschlichen Prozessmodellierer dabei zu unterstiitzen, regelkonfor-
me Prozesse zu erstellen. Das heildt, dass alle Modifikationen, die
an einem Prozess durchgefiihrt werden, gegen die mit dem Prozess
verbundenen Complianceregeln gepriift werden miissen.

Beginnend mit der Erlduterung eines laufenden Prozessbeispiels
(siehe Abschnitt 4.1) beschreibt dieses Kapitel zwei der in Kapitel 1.4
vorgestellten wissenschaftlichen Beitrdge, Compliancetemplates (Ab-
schnitt 4.2) und Compliancescopes (Abschnitt 4.3), im Detail. In Ab-
schnitt 4.5 wird ein Algorithmus zur Uberpriifung von Prozessmo-

63

dellen auf Verstof3e gegen Complianceregeln gezeigt. Die liickenlose
Préasentation der einzelnen Schritte des Algorithmus vom graphischen
Prozessmodell bis hin zum Modelchecking soll die Umsetzbarkeit der
zuvor gezeigten theoretischen Ansétze unterstreichen.

Viele Complianceregeln, die auf Prozesse angewendet werden, be-
einflussen den Kontrollfluss eines Prozesses. Der Kontrollfluss eines
Prozesses stellt die moglichen Ausfithrungspfade eines Prozessmodells
dar [LROO]. Um bestimmte kontrollflussbasierte Complianceregeln
einzuhalten, diirfen manche Pfade dieses Kontrollflusses zur Laufzeit
nicht ausgefiihrt werden. Das heil3t, es muss schon zur Entwicklungs-
zeit eines Prozesses untersucht werden, ob eine Modifikation an einem
Prozessmodell einen unerlaubten Ausfiihrungspfad in das Prozessmo-
dell einfiigt. Um Kosten zu sparen ist es ratsam, die Regelkonformitat
eines Prozessmodells so frith wie moglich zu gewéhrleisten [Boe87].
Des Weiteren konnen Prozessmodelle schnell uniibersichtlich werden.
Menschliche Prozessmodellierer sind mit der ihnen auferlegten Auf-
gabe der Entwicklung eines Prozesses ausgelastet. Aus diesem Grund
miissen Prozessmodellierer bei der Erstellung von regelkonformen
Prozessen unterstiitzt werden, damit sie sich auf die eigentliche Auf-
gabe konzentrieren konnen: der Entwicklung eines Prozesses, der die
gestellten Anforderungen erfiillt.

4.1. Beispielszenario: Blutspendeprozess des Roten Kreuz Hong
Kong

Abbildung 4.1 zeigt ein Szenario, welches auf einem existierenden
Prozess des Roten Kreuz Hong Kong basiert. Beschrieben wurde dieser

Prozess in [TLFT10]. Da der Prozess mit einer nicht standardisierten

64 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

empfangen und

Blutspender-
daten speichern

(Blutverfl)raucl 1S

bericht

generieren

Blutverbrauchs-
bericht lesen

(gesuna ieItS- \

Patientendaten

(I;iuévergrauci iS- \

informationen
bereitstellen

sammeln

daten
vorbereiten

utverbrauchs-
daten
versenden

informationen

Gesundheits-
daten speichern

Legende

-

> Kontrollfluss

Paralleles
Gateway

Abbildung 4.1.: Beispielprozess. (Vgl. [SEG*11])

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong

Notation beschrieben wurde, wurde er in Abbildung 4.1 in Business
Process Model and Notation (BPMN) {ibertragen. Dieser Prozess dient
als Beispiel zur Erlduterung der Beitrédge dieser Dissertation. Um die
Komplexitit dieses Beispielprozesses in einem Rahmen zu halten,
der es ermoglicht, die in diesem Kapitel vorgestellten Konzepte zu
erldutern, wurde darauf verzichtet, den Datenfluss im Prozessmodell
explizit zu modellieren. Weiterhin wurde darauf verzichtet spezielle
Task-Typen, wie zum Beispiel Service-Tasks, zu verwenden. Wissen
tiber die Implementierung der Tasks in diesem Prozessmodell ist fiir
die Erlauterung der neuen Konzepte dieser Arbeit nicht vonnéten.
Anhang B zeigt zwei Prozesse, die mit den neuen Konzepten dieser
Arbeit versehen wurden. Diese Prozesse beruhen auf Erfahrungen des
Autors der vorliegenden Arbeit im Automobilkonzern Daimler in der
Funktion als IT Architekt und zeigen somit die Verwendbarkeit der
neuen Konzepte dieser Dissertation zur Losung wirklichkeitsgetreuer
Probleme.

Der Prozess in Abbildung 4.1 beschreibt die Schritte einer Blutent-
nahme iiber die Lagerung bis zur statistischen Erfassung der Blut-
proben. So beginnt dieser Prozess mit dem Empfang der bei einer
Blutentnahme erhobenen Daten. Diese Daten werden statistisch er-
fasst und es wird ein Blutverbrauchsbericht erstellt. Anhand dieses
Berichts werden der Offentlichkeit eine {iber alle Blutproben kon-
solidierte Gesundheitsinformation mitgeteilt. Parallel dazu werden
in den Krankenh&dusern des Roten Kreuz Hong Kong Patientendaten
gesammelt. Die Gesundheitsinformationen und Blutverbrauchsdaten
werden dann zusammen gespeichert. Dies dient dazu, eine spétere
Auswertung der gesamten Daten i{iber bestimmte Zeitraume moglich

zu machen.

66 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Im Folgenden werden Beispiele fiir Complianceregeln aufgefiihrt,

die fiir diesen Prozess denkbar wéren.

* Die Aktivitdt Blutdaten empfangen und quittieren und Blutspender-
daten speichern miissen immer in dieser Reihenfolge ausgefiihrt
werden. Im Beispielprozess gilt die Annahme, dass ein Gesetz
existiert, das die Quittierung elektronisch empfangener Blutda-

ten als ersten Schritt bei der Datenverarbeitung vorschreibt.

* In diesem Prozess ist ein sogenanntes Separation of Duties Sze-
nario (Deutsch: Vier-Augen-Pringip) vorstellbar. Unter dem Be-
griff Separation of Duties versteht man die Vorgabe, dass be-
stimmte Aufgaben von verschiedenen Personen durchgefiihrt
werden miissen. Die Aktivitaten Patienten-Daten sammeln und
Blutverbrauchs-Daten vorbereiten miissen von verschiedenen, mit
entsprechenden Fihigkeiten versehenen Personen ausgefiihrt
werden. Diese Aktivititen miissen weiterhin in der im Beispiel

aufgefithrten Reihenfolge ausgefiihrt werden.

* Kontrollflussbasierte Complianceregel: Die Aktivitdten Blutver-
brauchsbericht generieren, Blutverbrauchsbericht lesen und Ge-
sundheitsinformationen bereitstellen miissen parallel zu den Akti-
vitdten Patientendaten sammeln, Blutverbrauchsdaten vorbereiten
und Blutverbrauchsdaten versenden ausgefiihrt werden. Dies lasst
schlief3en, dass der in Abbildung 4.1 dargestellte Kontrollfluss so
bestehen muss, damit der gezeigte Prozess syntaktisch korrekt

ist und damit er die oben skizzierten Complianceregeln einhalt.

Dwyer et al. stellen in [DAC99] wiederkehrende Muster bei der Er-

stellung von Eigenschaften von Systemen vor. AufSerdem zeigt Dwyer

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong 67

die Haufigkeit mit der bestimmte Muster vorkommen. Das am meisten
vorkommende Muster ist das so genannte Response-Muster. Dieses Mus-
ter beschreibt einen Ausfiihrungspfad in einem System in dem nach
Eintreten eines Ereignisses ein bestimmtes weiteres Ereignis in einem
unbestimmten Zeitabstand eintreten muss. In Beispielprozess konnte
dieses weitere Ereignis die Quittierung der empfangenen Blutdaten
sein.

Turetken et al. verwenden diese Muster in [TEHP11]. Hier wer-
den wiederkehrende Muster fiir Complianceregeln aufgezeigt, die auf
Prozesse Anwendung finden. Auch die oben aufgefiihrten Compliance-
regeln fiir das laufende Beispiel dieser Arbeit wurden von Dwyer et
al. abstrakt beschrieben. Tabelle 4.1 zeigt einige Beispiele fiir wie-
derkehrende Muster von Dwyer et al. [DAC98] sowie Beispiele aus
weiterfiihrender Literatur [TEHP11].

Diese Complianceregeln sind mit Hilfe von LTL [Pnu77] geschrie-
ben. In der formalen Definition dieser Regeln sind die Variablen A und
B mit den Namen von Aktivititen in einem Prozess gleichzusetzen.
Zur Beschreibung der Beispiele wird die Abbildung von Variablenna-
men von Complianceregeln auf Namen von Aktivititen in Prozessen
verwendet. Der Ansatz kann jedoch mit beliebigen Abbildungen von
Variablen in Complianceregeln auf Konstrukte in Prozessen verwendet
werden. Zum Beispiel konnten Variablen in Complianceregeln auf End-
punkte von Services abgebildet werden, die von Aktivititen in einem
Prozess aufgerufen werden. Somit ist die Complianceregel unabhéingig
vom tatsdchlichen Namen einer Aktivitdt. Damit konnen zum Beispiel
die Services eingeschrankt werden, die in einem bestimmten Prozess
aufgerufen werden kénnen.

In den folgenden Kapiteln werden zwei Ansétze fiir die Entwicklung

68 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Tabelle 4.1.: Liste von kontrollflussbasierten Complianceregeln (eini-
ge basierend auf [DAC98]). Die Funktionsweise der in
diesen Ausdriicken verwendeten Operatoren wird in Ab-

schnitt 2.5 beschrieben.

Regelbeschreibung

Definition in LTL

Aktivitat A muss vor dem Prozessende aus-
gefithrt werden.

Aktivitat A soll nie ausgefiihrt werden.

Aktivitdt A muss sich immer in der Aus-
fiihrung befinden. Das heil3t, der Prozess
muss aus mindestens zwei parallelen Zwei-
gen bestehen. In einem der beiden Zweige
muss immer A gelten.

Ausfiihrungsreihenfolge: Nachdem A aus-
gefiihrt wurde, wird vor dem Prozessende
B ausgefiihrt.

Ausfiihrungsreihenfolge: Nachdem A und
danach B ausgefiihrt wurde wird vor dem
Prozessende C ausgefiihrt.

Gemeinsames Auftreten von Aktivitaten.

Ausfiihrung von A hat Vorrang vor der Aus-
fiihrung von B.

Entweder A oder B sollen ausgefiihrt wer-
den.

Entweder wird A oder B ausgefiihrt aber
nicht beide zusammen oder keine von bei-
den.

Zuerst wird A und danach vor dem Prozes-
sende B ausgefiihrt. Dies fiihrt zur Ausfiih-
rung von C.

O A

—OA
OA

O(A=> ©B)

OC =
(—C U(AA~CAO(~C U B)))

OCANSOB
“BWA

O(A V B)

O(AV B) V (O—=A A O—B)

O A OCB =
O(O(B A ©C)))

4.1 | Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong 69

von regelkonformen Prozessen gezeigt. Der in Abschnitt 4.2 vorge-
stellte Ansatz kann bei der Neuentwicklung von Prozessen eingesetzt
werden. Der in Abschnitt 4.3 vorgestellte Ansatz wird dazu verwen-
det, existierende Prozesse mit Complianceregeln zu versehen. Diese
Complianceregeln kdnnen von graphischen Entwicklungswerkzeugen
bei Modifikationen an Prozessmodellen dazu verwendet werden, Re-

gelkonformitit sicher zu stellen.

4.2. Vorlagenbasierte Entwicklung regelkonformer Prozesse

Das in diesem Abschnitt vorgestellte Konzept eines Compliancetem-
plates wird als Grundlage fiir die Entwicklung eines neuen Prozesses
verwendet. Dieses Kapitel stellt zunéchst die drei Bestandteile von
Compliancetemplates, das abstrakte Prozessmodell (Abschnitt 4.2.1),
den Variabilitatsdeskriptor (Abschnitt 4.2.2) und den Compliance-
deskriptor (Abschnitt 4.2.3), vor. Danach wird erldutert, wie mit
dem Compliancetemplate ein neuer Prozess erstellt werden kann (Ab-
schnitt 4.2.4).

Ein Beispielszenario fiir die Verwendung von Compliancetemplates
konnte die Notwendigkeit der Neuentwicklung des in Kapitel 4.1 vorge-
stellten Beispielprozesses sein. Nachdem der Prozess im Beispielszena-
rio mehrfach ausgefiihrt wurde, konnten zum Beispiel Schwachstellen
auffallig geworden sein. Der benétigte neue Prozess wird auf Grundla-
ge eines Compliancetemplates erstellt. Compliancetemplates werden
von Experten in den Gebieten der Prozessentwicklung und Compliance
erstellt. Nach der Erstellung werden sie zur Vervollstindigung an die
eigentlichen Prozessentwickler weitergegeben.

Compliancetemplates [SALMO09] sind unvollstdndig spezifizierte Pro-

70 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Blutdaten
empfangen und
quittieren

Compliance-
region (J\j}

Blutspender-
daten speichern

Blutverbrauchs-
bericht
generieren

Blutverbrauchs-
bericht lesen

esundheits-
informationen
bereitstellen

Patientendaten
sammeln

Compliance-

region {:}

esundheits-
informationen

Compliance-
region ﬁ},

Gesundheits-
daten speichern

Legende

Task

Paralleles
Gateway

» Kontrollfluss

Complianceregion

Abbildung 4.2.: Abstraktes Prozessmodell eines Compliancetemplates

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 71

zessmodelle. Sie dienen als Vorlage fiir die Neuentwicklung von Pro-
zessen. Das abstrakte Prozessmodell eines Compliancetemplates im-
plementiert bestimmte Complianceregeln, die fiir den neuen Prozess
gelten miissen. Das heil’t, es legt die spatere Struktur eines Prozesses
in Grundziigen fest. Der Variabilitatsdeskriptor stellt die Mengen an
Aktivitdten bereit, die allgemein zur Fiillung eines abstrakten Pro-
zessmodells zur Verfiigung stehen. Der Compliancedeskriptor enthélt
Complianceregeln. Diese werden auf die Complianceregionen eines
abstrakten Prozessmodells angewendet und schrénken somit die Men-
ge der Aktivitidten ein, die in diese Complianceregionen eingefiigt
werden konnen. Mit den Complianceregeln kann somit auf die Ausfiih-
rungsreihenfolge der Aktivitdten in einem Prozess Einfluss genommen
werden.

In einem Unternehmen kann es mehrere Arten von Compliance-
templates geben, die die Grundlage fiir verschiedene Prozesse bil-
den. Damit die implizit in einem Compliancetemplate enthaltenen
Complianceregeln nicht durch Modifikationen am abstrakten Prozess-
modell verdndert werden kénnen, kann ein Compliancetemplate nur
an speziellen dafiir vorgesehenen Punkten gedndert und somit ver-
vollstandigt werden. In den folgenden Abschnitten werden die drei

Bestandteile eines Compliancetemplates vorgestellt.

4.2.1. Das abstrakte Prozessmodell eines Compliancetemplates

Dieser Abschnitt stellt die Erweiterung der BPMN 1.0 Spezifikation um
eine Complianceregion dar. Mit dieser Erweiterung wird das abstrakte
Prozessmodell eines Compliancetemplates formal definiert.

Die vorliegende Dissertation verwendet eine in Abbildung 4.10 ge-

72 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

zeigte Grundmenge von BPMN 1.0 Elementen mit der Annahme der
Ausfiihrungssemantik von BPMN 2.0. Bevor das abstrakte Prozessmo-
dell eines Compliancetemplates definiert werden kann, muss definiert
werden, aus welchen Teilen ein BPMN Prozess aufgebaut ist. Siehe
hierzu Definition 1.

Das in Abbildung 4.2 gezeigte Prozessmodell ist eine Erweiterung
des in Abbildung 4.1 gezeigten Blutspendeprozesses. Der urspriingli-
che Blutspendeprozess wurde mit Complianceregionen versehen. Ein
abstraktes Prozessmodell ist nicht vollstdndig spezifiziert. Die darin
enthaltenen Complianceregionen miissen mit einzelnen Aktivititen
oder Prozessfragmenten [EUL09] gefiillt werden, um einen vollstandi-
gen Prozess zu bekommen.

BPMN wurde in der vorliegenden Arbeit erweitert und Compliance-
regionen hinzugefiigt. Fiir die Erweiterung wurde der Erweiterungs-
mechanismus von BPMN 2.0 verwendet. Eine Kurzbeschreibung von
BPMN findet sich in Abschnitt 2.3.

Abbildung 4.3 zeigt eine vereinfachte Darstellung des in der BPMN
2.0 Spezifikation vorgestellten Erweiterungsmechanismusses. Alle
BPMN 2.0 Elemente wie Tasks oder Gateways erben von der in Abbil-
dung 4.3 dargestellten Klasse BaseElement. Alle Klassen, die von der
Klasse BaseElement erben, konnen erweitert werden.

Eine BPMN-Erweiterung wird durch die Implementierung einer Klas-
se, die vom Typ ExtensionDefinition erbt, erstellt. ExtensionDefinition-
Klassen konnen unabhéngig von einem BPMN-Modell erstellt werden.
Um ein BPMN-Modell zu erweitern werden sie mit der Klasse Extension
komponiert, welche wiederum mit der Klasse Definitions komponiert
ist. Die Klasse Definitions erbt von der Klasse BaseElement. Dies macht

die Klasse Definitions und die mit ihr komponierten Klassen zu einem

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 73

Definitions Extensions

et
1 *
1
1
BaseElement| * * |ExtensionDefinition
1
Task * * |Complianceregion ExtensionAttributeDefinition

Abbildung 4.3.: BPMN 2.0-Erweiterungsmechanismus skizziert in
UML (Vgl. [Obj11])

vollwertigen BPMN-Element, das als Erweiterung eines BPMN-Modells
dienen kann.

BPMN-Elemente konnen wie folgt erweitert werden. Erstellung einer
Klasse, die vom Typ ExtensionDefinition erbt. Assoziation dieser Klasse
mit einer Klasse, die von der Klasse BaseElement erbt. Der Zweck der
Klasse ExtensionAttributeDefinition ist die Erweiterung vorhandener
BPMN 2.0-Elemente mit neuen Attributen.

Der oben vorgestellte Erweiterungsmechanismus von BPMN 2.0

wurde verwendet, um Complianceregionen in BPMN 1.0 einzufiihren.

74 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Dies ist in Abbildung 4.3 durch die Erstellung der Klasse Complian-
ceregion und deren Assoziation mit der Klasse Task geschehen. Eine
Complianceregion erweitert somit einen Task. Complianceregionen
haben dieselben Eigenschaften wie BPMN 1.0-Tasks. Das heilst zum
Beispiel, dass mehrere Kontrollflusskonnektoren auf sie zeigen kénnen.
Und es konnen auch mehrere Kontrollflusskonnektoren von ihnen weg
fithren.

Mit diesen Erweiterungen ist es moglich, ein abstraktes Prozess-
modell eines Compliancetemplates in einem graphischen Entwick-
lungswerkzeug zu einem syntaktisch korrekten BPMN-Prozess zu ver-
vollstindigen. Bei dieser Vervollstiandigung muss vom graphischen
Entwicklungswerkzeug erzwungen werden, dass nur die im abstrakten
Prozessmodell enthaltenen Complianceregionen verdndert werden
konnen. Es diirfen keine Modifikationen an anderen Teilen des ab-
strakten Prozessmodells vorgenommen werden, da sonst die darin
implizit enthaltenen Complianceregeln verletzt werden konnten. Es
ist jedoch von Vorteil bei der Befiillung einer Complianceregion aus
einer Menge moglicher Prozessfragmente auswahlen zu konnen. So
konnen Prozessfragmente wiederverwendet werden, die schon einmal

in anderen Prozessen eingesetzt wurden.
Definition 1 (BPMN Prozess [ODHAOQ6]). Ein BPMN Progess ist ein
Tupel P = (K, &,G, F) mit:

* IC als der Menge der Knoten, die in die disjunkten Mengen der
Aktivitdten A (zum Beispiel Tasks), Ereignisse £ und Gateways G

aufgeteilt werden konnen.

* & als der Menge der Ereignisse, die in die disjunkten Mengen der
Start-Ereignisse £, Intermediate-Ereignisse £ und End-Ereignisse

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 75

EE aufgeteilt werden konnen. Intermediate-Ereignisse konnten in
die disjunkten Mengen der Intermediate-Message-Ereignisse 81{,[

und Intermediate-Timer-Ereignisse 5# aufgeteilt werden.

* G als der Menge der Gateways, die in die disjunkten Mengen der
parallelen Gateways G¥, der daten-basierten exklusiven Gateways
GP, der ereignis-basierten exklusiven Gateways G, der inklusiven
Gateways G' und der komplexen Gateways G¢ aufgeteilt werden

kann.

* Der Kontrollflussrelation F C K x K, die die Menge der Kontroll-
flusskonnektoren beschreibt. Die Relation F beschreibt einen gerich-

teten Graphen.

Im Folgenden wird definiert, wann ein BPMN Prozess frei von Syn-
taxfehlern ist. Mit x € KC berechnet die Funktion in(x) den Eingangs-
grad eines Knotens x, das hei3t die Anzahl der auf den Knoten zeigen-
den Kontrollflusskonnektoren. Die Funktion out(x) berechnet entspre-
chend den Ausgangsgrad eines Knotens x. Um einen giiltigen BPMN
Prozess zu erstellen, miissen bestimmte Syntax-Regeln eingehalten

werden.

Definition 2 (Giiltiger BPMN Prozess [ODHAOQ6]). Ein BPMN Progzess

ist giiltig, wenn die folgenden Syntax-Regeln eingehalten werden:

» Vee &5 |in(e) =0 Aout(e) > 1. Alle Startereignisse haben den
Eingangsgrad 0 und einen Ausgangsgrad grofSer oder gleich 1.

e Ve &F | out(e) = 0 Ain(e) > 1. Alle Endereignisse haben den
Ausgangsgrad 0 und einen Eingangsgrad grofser oder gleich 1.

76 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

» Vee &' | in(e) = out(e) = 1. Alle Intermediate-Ereignisse haben

einen Eingangsgrad von 1 und einen Ausgangsgrad von 1.

* Vg € GF AVg € GP | in(e) = 1 Aout(e) > 1. Parallel-Fork-
Gateways und Event-Based-XOR-Decision-Gateways haben einen

Eingangsgrad von 1 und einen Ausgangsgrad grofser oder gleich 1.

e Vg e G'AVg € GM | in(e) > 1 Aout(e) = 1. Parallel-Join-
Gateways und XOR-Merge—Gateways haben einen Eingangsgrad

grofser 1 und einen Ausgangsgrad von 1.

Definition 3 (BPMN™ (Mit Complianceregionen erweitertes BPMN)).
Sei C die Menge der Complianceregionen und K die Menge der Knoten in
einem Prozessmodell. Sei weiterhin K™ = K UC. Dann gilt:

BPMN* ={K*, AE,G,F}

Ein abstraktes Prozessmodell eines Compliancetemplates besteht
aus einem BPMN Prozessmodell, welches mit mindestens einer Com-

plianceregion versehen wurde. Dies wird in Definition 4 beschrieben.

Definition 4 (Abstraktes Prozessmodell .4 eines Compliancetempla-
tes). Sei ein Progzessmodell P € BPMN™. Das bedeutet, P ist ein Tupel
(K}, Ap,Ep,Gp, Fp). Dann gilt: P € A <= Fk € K : type(k)=C

4.2.2. Der Variabilitdtsdeskriptor eines Compliancetemplates

Das Konzept eines Variabilitatsdeskriptors wurde von Mietzner et al.
[MLP08, ML08, Mie08] entwickelt. Es wurde allgemein definiert, um
Software-Artefakte jeglicher Art mit Variabilititen zu versehen. In
dieser Arbeit werden Variabilitdtsdeskriptoren dazu verwendet, um

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 77

Blutdaten
empfangen und
quittieren

Compliance-
region {:}

Blutspender-
daten speichern

Variabilitatsdeskriptor
Variabilitatspunkt 1

Alternative A

Daten
Verschliisseln

Alternative B
Patienten
befragen

/] Patientendaten

// anonymisieren

Blutverbrauchs-
bericht
generieren

Blutverbrauchs-
bericht lesen

esundheits-
informationen
bereitstellen

Patientendaten
sammeln

Patientendaten
aufbereiten

N/
Variabilitatspunkt 2

Alternative A

Vorgang
protokollieren

Alternative B

Blutverbrauchs-
daten versenden
7
~

Blutverbrauchs-
daten
versenden

esundheits-
informationen

Compliance-
region ({j}

Gesundheits-
daten speichern

Legende

Task

Kontrollfluss

Paralleles
Gateway

Complianceregion

D@

Abbildung 4.4.: Abstraktes Prozessmodell eines Compliancetemplates
in Verbund mit Variabilitatsdeskriptor

78 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

anzuzeigen, welche Mengen von Aktivititen zur Fiillung von Com-
plianceregionen verwendet werden konnen. Abbildung 4.4 zeigt den
abstrakten Prozess eines Compliancetemplates zusammen mit einem
Variabilitatsdeskriptor. Variabilititsdeskriptoren sind aus Variabilitéts-
punkten aufgebaut, die Alternativen enthalten. Alternativen kénnen
als Mengen von Aktivitdten angesehen werden, die zusammen in eine
Complianceregion eingefiigt werden kénnen. Der in Abbildung 4.4 ge-
zeigte Variabilitdtspunkt 1 enthélt zum Beispiel die Alternativen A und
B. Ein weiterer Bestandteil von Variabilitdtspunkten sind Lokatoren.
Ein Lokator ist in Abbildung 4.4 als gestrichelter Pfeil dargestellt. Er
beginnt bei einem Variabilitdtspunkt und endet bei einer Compliance-
region. Variabilititspunkte kénnen voneinander abhéngig sein. Dies
bedeutet fiir den Fall der Abhéngigkeit zweier Variabilitdtspunkte A
und B: wenn A in einem Prozessmodell verwendet wurde, muss der
von diesem Variabilitdtspunkt abhéngige Variabilitdtspunkt B auch
verwendet werden. Weiterhin konnen aktivierende Bedingungen mit
jeder Abhéngigkeit definiert werden. Diese Bedingungen werden aus-
gewertet, wenn eine bestimmte Abhédngigkeit ausgewertet werden soll.
Mit aktivierenden Bedingungen ist es im obigen Beispiel moglich, nach
der Verwendung einer Alternative in A eine Alternative in B nicht mehr
verfiigbar zu machen.

Zeigen ein oder mehrere Lokatoren auf eine Complianceregion, so
diirfen nur die Mengen an Aktivititen in die betreffende Compliance-
region eingefiigt werden, die in dem Variabilitdtspunkt enthalten sind,
in dem auch der betreffende Lokator definiert ist. Zeigt kein Lokator
auf eine Complianceregion, so diirfen alle Variabilitdtspunkte in dem
mit dem Compliancetemplate verbundenen Variabilitdtsdeskriptor zur

Befiillung verwendet werden.

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 79

Die formale Definition eines Variabilitatsdeskriptors zeigt [Mie10].

4.2.3. Der Compliancedeskriptor eines Compliancetemplates

Abbildung 4.5 zeigt das gesamte Compliancetemplate mit allen drei
Komponenten. Vergleicht man Abbildung 4.4 mit Abbildung 4.5, so ist
der Compliancedeskriptor auf der linken Seite hinzugekommen. Das
Konzept des Compliancedeskriptors ist an das Konzept des Variabili-
tatsdeskriptors angelehnt. Das Gegenstiick zu Variabilitdtspunkten bei
den Variabilitidtsdeskriptoren sind Compliancepunkte bei Complian-
cedeskriptoren. Auch hier konnen, genau wie bei den Variabilitatsde-
skriptoren, Abhédngigkeiten zwischen den einzelnen Compliancepunk-
ten eines Compliancedeskriptors definiert werden. Fiir die Definition
dieser Abhéngigkeiten wurde dasselbe Modell wie bei den Variabili-
tatsdeskriptoren gewéhlt. Dieses Modell ist in [Mie08] beschrieben.

Ein Metamodell, das die Zusammenhinge der Komponenten des
Compliancedeskriptors zeigt, ist in Abbildung 4.6 in UML dargestellt.
Ein Compliancedeskriptor enthélt demnach eine beliebige Zahl von
Abhéngigkeiten und eine beliebige Zahl von Compliancepunkten. Das
Konzept einer Abhédngigkeit ist an die Definition eines Variabilitats-
punkts in [Mie10] angelehnt. Abhéngigkeiten enthalten genau eine
Abhéngigkeitsquelle und ein Abhéangigkeitsziel. Compliancepunkte
enthalten Complianceregeln.

Complianceregeln besitzen eine formale Definition. Diese kann von
graphischen Entwicklungswerkzeugen dazu verwendet werden, Modi-
fikationen am abstrakten Prozess automatisch zu untersuchen. Verletzt
eine Modifikation eine solche formale Definition einer Compliance-

regel, kann das graphische Entwicklungswerkzeug den menschlichen

80 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Blutdaten
empfangen und
quittieren

Complianc
region
Blutspender-
daten speichern

Compliancedeskriptor Variabilitatsdeskriptor

Compliancepunkt 1

Compliancelink m-————"~"~"7°

Comlianceregel A

Variabilitatspunkt 1

Alternative A

Verschliisseln

Complianceregion kann
nicht mit Aktivitaten zur
Datenverschliisselung
gefillt werden

Complianceregel B
Prozesskonstrukte, die
in Compliar i

eingesetzt werden,

durfen keine Links
enthalten die die

Grenze der Compl.-

Region

Alternative B

utverbrauchs-
bericht
enerieren

Patientendaten
sammeln

Blutverbrauchs- Variabilitatspunkt 2

bericht lesen

Alternative A

Blutverbrauchs-

daten Alternative B

vorbereiten Blutverbrauchs-
daten versenden

esundheits-
informationen
bereitstellen

Blutverbrauchs-
daten
versenden

Legende

Task

Kontrollfluss

lesen
Complianc
region

Paralleles
Gateway

Gesundheits-

daten speichern Complianceregion

@)

Abbildung 4.5.: Abstraktes Prozessmodell eines Compliancetempla-
tes in Verbund mit Variabilititsdeskriptor und
Compliancedeskriptor

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 81

Compliance-
deskriptor

*

Abhangigkeits-
ziel

1
enthalt
l“*

Compliance-
punkt

Compliance-
regel

0..
hat:

1.*
hat:

Abhangigkeits-
quelle

'

hat

!

Formale
Definition

Compliancelink

BPMN-erweiterung

82

hat:
1

Sprachindikator

Complianceregion

Abbildung 4.6.: Metamodell eines Compliancedeskriptors

4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Prozessmodellierer darauf aufmerksam machen. Eine formale Defini-
tion enthélt ihrerseits einen Sprachindikator. Dieser dient dazu, den
Werkzeugen, die mit der formalen Definition einer Complianceregel
arbeiten, anzuzeigen, in welcher Sprache diese geschrieben ist. Mog-
liche Werte, die ein Sprachindikator annehmen kann, sind LTL oder
XPath.

Eine Complianceregel enthalt weiterhin einen oder mehrere Com-
pliancelinks, welche auf Complianceregionen zeigen. Mit diesen Com-
pliancelinks wird festgelegt, auf welche Complianceregionen die be-

treffende Complianceregel angewendet werden soll.

4.2.4. Vervollstindigen von Compliancetemplates

In diesem Abschnitt werden die Ergebnisse der Arbeiten [WKK' 11,
KWS11] verwendet, die zum besseren Verstindnis zusammengefasst
werden.

Wie oben erwihnt miissen Compliancetemplates vervollstandigt
werden, um aus ihnen einen syntaktisch korrekten Prozess zu machen.
Diese Vervollstindigung erfolgt in zwei Schritten. Zuerst werden die
Complianceregionen bestimmt, die zu einem bestimmten Zeitpunkt im
Vervollstandigungsprozess befiillt werden kénnen. Die Entscheidung,
welche Complianceregionen dies sind, wird anhand von Abhéngigkei-
ten zwischen den Complianceregionen automatisch getroffen. Diese
Abhéngigkeiten sind durch die Abhéngigkeiten zwischen den Alterna-
tiven in Variabilitatsdeskriptoren definiert. Betrachtet wird der Fall der
Abhéngigkeit der Alternative B von der Alternative A in einem Variabili-
tatsdeskriptor. Alternative A ist mittels eines Compliancelinks mit einer

Complianceregion X verbunden. Alternative B ist auf dieselbe Weise

4.2 | Vorlagenbasierte Entwicklung regelkonformer Prozesse 83

mit einer Complianceregion Y verbunden. In diesem Fall muss zunéchst
Complianceregion X befiillt werden. Danach kann Complianceregion
Y befiillt werden. Fiir die Auflistung der fiir eine Complianceregion in
Frage kommenden Aktivitdten werden Abhédngigkeiten zwischen Va-
riabilitdtspunkten mit einbezogen. Eine vollstindige Beschreibung des
in der vorliegenden Arbeit verwendeten Mechanismus zur Auflésung
von Abhédngigkeiten und des Berechnens von Complianceregionen, die
befiillt werden diirfen, ist in [WKK" 11, KWS11] nachzulesen. Diese
Veroffentlichungen bauen auf dem Konzept eines Compliancetempla-
tes auf.

Mit dem Ergebnis kann in einem zweiten Schritt vom Prozessmo-
dellierer eine der verbleibenden Alternativen fiir die Befiillung einer
Complianceregion ausgewahlt und eingesetzt werden. Bei der Vervoll-
standigung diirfen nur Complianceregionen mit Aktivititen befiillt
werden. Neben der Moglichkeit, Complianceregionen mit einer oder
mehrerer Alternativen aus dem Variabilitdatsdeskriptor zu befiillen,
ist es einem Prozessmodellierer auch erlaubt, die eingefiigten Alter-
nativen zu verdndern. Es diirfen keine anderen Modifikationen am
Compliancetemplate vorgenommen werden. Insbesondere diirfen kei-
ne Kontrollflusskonnektoren gedndert werden, die sich auf3erhalb der
Complianceregionen befinden. Mit dem Einsetzen von Aktivitdten in
Complianceregionen kénnen jedoch Complianceregeln verletzt wer-
den, die im Compliancedeskriptor definiert sind, welcher in jedem
Compliancetemplate vorhanden ist. Fiir die Untersuchung, ob eine Ak-
tivitdt, die in eine bestimmte Complianceregion eingefiigt wurde, eine
oder mehrere mit dieser Complianceregion verkniipfte Compliance-
regeln verletzt, werden Konzepte und Algorithmen verwendet, die in

Kapitel 4.3 beschrieben werden.

84 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

4.3. Compliancescope

Compliancetemplates werden verwendet, um regelkonforme Prozesse
zu erstellen, die von einem bestimmten Punkt aus neu entwickelt
werden miissen. Dieser Punkt ist das Compliancetemplate. Complian-
cetemplates werden nach dem Anwendungsbereich ausgewéhlt, in
welchem der zu entwickelnde Prozess eingesetzt werden soll.

Im Gegensatz dazu haben Firmen eine Fiille existierender Prozesse,
die, wie andere Software auch, gewartet und an neue Gegebenheiten
angepasst werden miissen. Auch diese Prozesse unterliegen denselben
Complianceanforderungen wie neu zu erstellende Prozesse. Ande-
rungen an einem Prozessmodell, die bei einer Wartung durchgefiihrt
werden, diirfen ein regelkonformes Prozessmodell nicht in ein nicht
regelkonformes Prozessmodell iiberfithren. Im Folgenden wird ein
Konzept vorgestellt, das dazu dient, Bereiche in einem Prozessmo-
dell zu markieren, fiir die bestimmte Complianceregeln gelten. Dieses
Konzept heidt Compliancescope [SWLS10].

Compliancescopes und Complianceregionen haben die Gemein-
samkeit, dass die sich in ihnen befindlichen Aktivititen bestimmte
Complianceregeln einhalten miissen, die mit diesen beiden Konstruk-
ten verkniipft sind. Weiterhin markieren beide Konzepte Bereiche in
einem Prozessmodell, um bestimmte mit ihnen verkniipfte Compliance-
regeln auf diese Bereiche anzuwenden. Eine weitere Gemeinsamkeit
ist, dass Compliancedeskriptoren bei beiden Konzepten fiir die Defini-
tion von Complianceregeln verwendet werden. Jedoch ist das Konzept
eines Compliancescopes weiter gefasst als das einer Complianceregion.
Ein Compliancescope kann wie schon oben erwadhnt nachtraglich auf

einen bereits existierenden Prozess angewendet werden. Compliance-

4.3 | Compliancescope 85

scopes konnen sich iiberlappen und auch das gesamte Prozessmodell
umspannen, um global giiltige Complianceregeln auf Prozessmodelle
anzuwenden.

Compliancescopes konnen auf zwei Arten in Prozesse eingefiigt

werden:

1. Complianceregionen werden zu Compliancescopes transformiert,
wenn bei der Vervollstindigung eines Prozessmodells Aktivitdten

in sie eingefiigt werden.

2. Compliancescopes werden von Experten in existierende Prozesse
eingefiigt. Diese Prozesse werden damit automatisch auf Versto-
Re gegen Complianceregeln zum Beispiel bei Anderungen am

Prozess iiberpriifbar gemacht.

Genau wie bei Compliancetemplates konnen die mit Compliance-
scopes verkniipften Complianceregeln von graphischen Entwicklungs-
werkzeugen dazu verwendet werden, um den Prozessmodellierer auf

die Verletzung einer Complianceregel aufmerksam zu machen.

4.3.1. Definition Compliancescope aufbauend auf der Definition eines

Hypergraphen

Ein Compliancescope stellt eine Hyperkante in einem Hypergraphen
dar. Hypergraphen sind Graphen, die Kanten enthalten, die nicht wie
gewoOhnliche Kanten nur zwei Knoten des Graphen miteinander verbin-
den, sondern beliebig viele. Solche Kanten nennt man Hyperkanten.
Hyperkanten werden in einem Graphen als Kreise gezeichnet, in de-

nen eine oder mehrere Knoten des Graphen enthalten sind. Es folgt

86 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

die Definition eines Hypergraphen, auf welcher die Definition eines

Compliancescopes aufgebaut ist.

Definition 5 (Hypergraph). Ein Hypergraph G besteht aus der Menge
von Knoten N und der Menge von Hyperkanten H zwischen den Knoten.
Jede Hyperkante ist eine Menge von Knoten: H C {2V \ @}. Hyperkanten
sind ungerichtet [Ber89].

Auf dieser Grundlage kann die Definition eines Compliancescopes

erfolgen:

Definition 6. Ein Compliancescope ist eine Hyperkante h € H in einem
Hypergraphen G, der mit einem Compliancedeskriptor verkniipft ist. Ein

Compliancescope iibernimmt die Eigenschaften einer Hyperkante.

Ubertragt man das Konzept der Hypergraphen auf ein BPMN 1.0
Prozessmodell und bildet die in der Definition von BPMN (Definition 1)
beschriebenen Knoten K auf die Knoten N in einem Hypergraphen
ab, dann stellen die Hyperkanten H die Compliancescopes in diesem

Prozessmodell dar.

4.3.2. Erweiterung von BPMN 1.0 mit Compliancescopes

Der in Kapitel 4.2.1 beschriebene Erweiterungsmechanismus der Busi-
ness Process Model and Notation 2.0 (BPMN 2.0) wird auch verwendet,
um BPMN mit Compliancescopes zu versehen.

Abbildung 4.7 zeigt ein mit einem Compliancescope versehenes
Prozessmodell. Aus Griinden der Ubersichtlichkeit wurde das Pro-
zessmodell mit nur einem Compliancescope versehen. In dieser Ab-

bildung sieht man auch einen Compliancedeskriptor, der diejenigen

4.3 | Compliancescope 87

o >~/ _Compliance-
Compliancedeskriptor -~ ~

) PSS / 7/ Biutdaten) \Scope
Compliancepunkt 1 / empfangen und \
| e)
Comlianceregel A T~— A /
\ /

Compliancescope kann
nicht mit Aktivitaten zur N
Datenverschliisselung

gefiillt werden +
- - Blutverbrauchs-

bericht
Complianceregel B generieren
Compliancescope kann
nicht mit Aktivitéten zur
lokalen Speicherung
gefillt werden

Patientendaten
sammeln

Blutverbrauchs-
bericht lesen

esundheits-
informationen
bereitstellen

Legende

)
—>

esundheits-
informationen
lesen

Kontrollfluss

Paralleles
Gateway

Gesundheits-
daten speichern

Abbildung 4.7.: Annotation eines Prozessmodells mit einem
Compliancedeskriptor

88 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Aus der BPMN 2.0
Spezifikation

Geschaéfts- |

Prozess- "—D BaseElement

Konstrukt

1.%
enthalt

Compliance-
Scope

1
Verbunden mit

1.*

Compliance-
Deskriptor

Abbildung 4.8.: Metamodell eines Compliancescopes

Complianceregeln beinhaltet, die auf das gezeigte Prozessmodell ange-
wendet werden sollen. Im Speziellen sieht man, dass die Compliance-
regel A mit dem Compliancescope verbunden ist.

Abbildung 4.8 zeigt das Metamodell eines Compliancescopes in
UML. Ein Compliancescope enthélt mindestens ein Prozesskonstrukt.
Prozesskonstrukte sind dadurch definiert, dass sie von der Klasse
BaseElement erben, welche in der BPMN 2.0 Spezifikation definiert

4.3 | Compliancescope 89

ist. Ein in der BPMN 2.0 Spezifikation beschriebenes Prozesskonstrukt
kann zum Beispiel eine Aktivitédt sein. Weiterhin ist ein Compliance-
deskriptor mit einem Compliancescope verbunden. Das Metamodell
eines Compliancedeskriptors ist in Abbildung 4.6 zu sehen. Der mit
dem Compliancescope verbundene Compliancedeskriptor enthilt die
Complianceregeln, die auf die im Compliancedeskriptor enthaltenen

Aktivititen angewendet werden sollen.

4.4. Gegeniiberstellung der Anwendungsgebiete von
Compliancetemplates und Compliancescopes

Sowohl das Konzept des Compliancetemplates als auch das Konzept
des Compliancescopes ist dazu geeignet, Prozesse mit regelkonformem
Kontrollfluss zu erstellen. Die Konzepte werden jedoch in verschiede-
nen Anwendungsgebieten eingesetzt. Mit den Compliancetemplates
wurde ein Ansatz vorgestellt, der bei der Neuerstellung von regelkon-
formen Prozessen einsetzbar ist. Hierbei wird eine Vorlage fiir einen
Prozess verwendet, die neben freien Stellen vordefinierte Aktivititen
enthélt. Die freien Stellen dieser Vorlage konnen bei der Entwick-
lung des neuen Prozesses mit Aktivititen gefiillt werden, wéihrend die
vordefinierten Aktivitdten bestimmte Aspekte von Complianceregeln
implementieren, die nicht gedndert werden diirfen. Ein Compliance-
template definiert somit implizit die Complianceregeln, die ein neuer
Prozess einhalten muss.

Compliancescopes werden bei der Modifikation von bestehenden Pro-
zessen eingesetzt. Bestehende Prozesse werden hierbei mittels soge-
nannter Compliancescopes in Bereiche aufgeteilt, in denen bestimmte

Complianceregeln gelten. Die Complianceregeln, die fiir einen be-

920 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

stimmten Compliancescope gelten miissen, werden aus einer Menge an
bestehenden Complianceregeln ausgewahlt und mit dem entsprechen-
den Compliancescope verkniipft. Es konnen aber auch Compliance-
regeln neu definiert und mit einem Compliancescope verbunden wer-
den. Auch dieser Ansatz befasst sich ausschlieRlich mit kontrollflussba-
sierten Complianceregeln. Nimmt ein menschlicher Prozessmodellierer
Anderungen an einem solchen mit einem Compliancescope versehenen
Bereich vor, so kann das verwendete graphische Entwicklungswerk-
zeug Riickmeldung geben, ob die Modifikation giiltig war. Giiltige
Modifikationen verletzen keine mit dem entsprechenden Compliance-
scope verbundenen Complianceregel.

In beiden Ansidtzen werden Techniken aus dem Bereich des Mo-
delchecking verwendet, um Anderungen automatisch iiberpriifen zu
konnen. Hierfiir wird ein Teil des aktuellen Prozessmodells in ein Petri-
netz iibersetzt und dann dem Modelchecker in seiner Eingabesprache

iibergeben.

4.5. Verifizierungsalgorithmus fiir den Kontrollfluss eines
Prozesses

Der Kontrollfluss von Compliancescopes und Complianceregionen
wird auf die gleiche Art verifiziert. Wie bei den anderen in diesem
Kapitel vorgestellten Konzepten, liegt der Fokus auch bei dem in
diesem Abschnitt vorgestellten Verifizierungsalgorithmus, auf dem
Kontrollfluss eines Prozessmodells. Der in dieser Arbeit vorgestellte
Ansatz verwendet die Technologie des Modelcheckings [CGP01], um
den Kontrollfluss eines Prozessmodells auf Unvereinbarkeiten mit

bestimmten Complianceregeln zu iiberpriifen.

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 91

Modelchecking ist eine Technologie, die urspriinglich zur Untersu-
chung von komplexen Systemen, wie Prozessoren verwendet wurde.
Mit dieser Technologie lassen sich Eigenschaften, die ein solches Sys-
tem erfiillen muss, priifen. Hierbei wird dieses System in ein Modell
des Systems iibersetzt. Dieses Modell wird mit einer Sprache beschrie-
ben, die von einem Modelchecker interpretiert und analysiert werden
kann. Ein solches Modell kann zum Beispiel die Schaltkreise eines
Prozessors nachbilden. Dieses Modell muss auf der einen Seite stark
genug abstrahiert sein, damit die Zahl der zu erwartenden Zustande in
Grenzen gehalten wird. Auf der anderen Seite muss es komplex genug
sein, um nach der Uberpriifung von Eigenschaften, Riickschliisse auf
das originale System zuzulassen.

Es gibt viele Softwarewerkzeuge, wie zum Beispiel NuSMV [CCG'02],
Prism [KNP02] oder SPIN [Hol03], welche die Konzepte des Model-
checkings umsetzen. In dieser Arbeit wird der SPIN Modelchecker
verwendet, da er schon seit 1980 entwickelt wird und in vielen An-
wendungen eingesetzt wird [Spi]. Das lange Bestehen des SPIN Mo-
delcheckers fiihrte zu einem ausgereiften Produkt. SPIN wurde seit
der Anfangszeit stetig weiterentwickelt und findet auch heute noch in
vielen kommerziellen wie auch nicht kommerziellen Projekten Verwen-
dung [JGP99]. In [WMMO9] wird weiterhin gezeigt, wie von SPIN er-
zeugte Gegenbeispiele auf ein urspriingliches BPMN-Modell abgebildet
werden kénnen. Dies ist ein wichtiges Merkmal, das dem menschlichen
Prozessmodellierer dabei hilft, die Verletzung einer Complianceregel
zu verstehen. Ein weiteres Merkmal des SPIN Modelcheckers ist die
Verwendung von Linearer Temporaler Logik (LTL) als Sprache zur
Spezifikation von Eigenschaften des zu tiberpriifenden Modells. Vie-

le Modelchecker wie zum Beispiel LoLA [Sch00] verwenden hierfiir

92 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Computation Tree Logic (CTL). Vardi argumentiert in [Var01], dass
LTL Spezifikationen fiir Menschen leichter zu schreiben sind, da bei
LTL die Zusténde eines Systems linear betrachtet werden, wahrend mit
CTL Zustandsbaume beschrieben werden. Weiter argumentiert Vardi,
dass der oft in der Literatur angenommene Geschwindigkeitsvorteil
von CTL Modelcheckern in der Praxis verloren geht.

Die folgende Beschreibung des Verifizierungsalgorithmus basiert auf
der Entscheidung fiir den SPIN Modelchecker. Aus dieser Entschei-
dung resultieren einige der Schritte des Verifizierungsalgorithmus.
Beispielsweise die Transformation des BPMN-Prozessmodells in die
Eingabesprache fiir SPIN, PROMELA.

Modelle, die mit dem SPIN Modelchecker iiberpriift werden sol-
len, miissen in der Eingabesprache PROMELA [Ger97] (siehe Ab-
schnitt 2.8) geschrieben werden. PROMELA ist eine C-dhnliche Spra-
che, die entwickelt wurde, um die drei wichtigsten Bestandteile eines
SPIN-Modells zu definieren: Prozesse, Kanile und Variablen.

Die in der Literatur vorgestellten Konzepte zur Untersuchung von
Prozessmodellen auf Regelkonformitit untersuchen das gesamte Pro-
zessmodell [ETHP10, Awal0, WMMO09, STK"10]. Das in der vorlie-
genden Arbeit vorgestellte Konzept verwendet Compliancescopes fiir
die Definition von Regionen in einem Prozessmodell, in denen be-
stimmte Complianceregeln gelten. Beispiele fiir solche Compliance-
regeln finden sich in Tabelle 4.1 und in den Abbildungen 4.2 und 4.7.
Wird durch das Andern von Aktivititen innerhalb eines Compliance-
scopes eine mit diesem Compliancescope verkniipfte Complianceregel
verletzt, muss nur der Prozessteil in diesem Compliancescope iiber-
priift werden.

Da diese Arbeit sich mit der Erstellung von regelkonformen Pro-

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 93

zessmodellen in BPMN 1.0 auseinandersetzt, muss das BPMN 1.0-
Prozessmodell in eine Représentation in PROMELA {ibersetzt werden,
um mit dem SPIN Modelchecker tiberpriift werden zu kénnen.

Es existieren mehrere Ansitze fiir die Uberfithrung von BPMN 1.0
Prozessmodellen nach PROMELA, die im Folgenden erldutert werden.

Im ersten Ansatz [VF07] werden alle Konstrukte eines BPMN 1.0
Prozessmodells in eigenstandige PROMELA-Prozesse iibersetzt. Der
Nachrichtenaustausch zwischen den Konstrukten des BPMN 1.0-Prozessmodell.
wird mittels Kanélen zwischen den PROMELA-Prozessen umgesetzt
[Grol1]. Die Verwendung dieses Ansatzes fithrt zu uniibersichtlichen
PROMELA Programmen, die eine Zuordnung von PROMELA Program-
mabschnitten zu BPMN-Prozessteilen erschweren.

Der zweite Ansatz verwendet fiir die Ubersetzung von BPMN Pro-
zessmodellen in PROMELA ein Petrinetz als Zwischenmodell. Da Petri-
netze sehr ausfiihrlich in der Literatur behandelt werden und in vielen
Bereichen Anwendung finden, wird dieser Ansatz in der vorliegenden
Dissertation fiir die Transformation von BPMN 1.0 Prozessmodellen in
PROMELA Programme verwendet. Fiir die Definition der BPMN 2.0
Ausfithrungssemantik wurde ein sogenanntes Tokenmodell herangezo-
gen. Ein Token ist ein Konzept, um die Ausfithrung von Sequenzen in
einem Prozessmodell zu verdeutlichen. Ein Token wird, dhnlich wie
bei Petrinetzen, zwischen den BPMN 2.0 Konstrukten weitergereicht.

Abbildung 4.9 zeigt die Schritte die bei der Uberpriifung von Pro-
zessmodellen durch Modelchecker durchgefiihrt werden miissen. In

den folgenden Abschnitten werden diese Schritte erlautert.

94 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

Interne

Reprasentation des

Petrinetz- Modells in
ELA.

BPMN- Modell
in Petrinetz
transformieren

Ergebnis des
Modelchecks
ausgeben

Représentation
umwandeln

Modelcheck
durchfiihren

Abbildung 4.9.: Uberpriifungsschritte fiir BPMN Prozesse geschrieben
in BPMN

Start
O Start @ Message %
Gateway
@ End Message O End \:I Task E Subprocess AND 7

@ Gateway XOR

f—n Intermediate Intermediate Intermediate
e Message Timer Exception

Flow

Abbildung 4.10.: In dieser Dissertation verwendete Grundmenge von
BPMN 1.0 Elementen

4.5.1. Transformation von BPMN in Petrinetze

Fiir die Uberpriifung von Compliancescopes werden die in dem betref-
fenden Compliancescope enthaltenen Aktivitdten in ein Petrinetzmo-
dell transformiert. In [DDO08] werden Transformationen der wich-
tigsten BPMN 1.0 Konstrukte auf entsprechende Petrinetzfragmente
gezeigt. Die in der vorliegenden Dissertation verwendete Grundmen-
ge von BPMN 1.0 Elementen ist in Abbildung 4.10 dargestellt. Diese
Menge deckt sich mit der in [DDO08] verwendeten Grundmenge an
BPMN-Elementen. In der vorliegenden Dissertation wird nur mit die-
ser Menge an BPMN 1.0 Elementen gearbeitet, da die in [DDOO08]
vorgestellten Ergebnisse unverdandert weiterverwendet werden sollen.

Die Bedingung fiir eine unverdnderte Weiterverwendung ist es, die

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 95

Grundannahmen von [DDOO08] nicht zu verdndern.

Abbildung 4.11 zeigt einige der grundlegenden BPMN-Sprachelemente
und deren Entsprechung als Petrinetzkonstrukt. Die mit Inklusive Auf-
teilung und Inklusive Zusammenfiihrung bezeichneten Transformatio-
nen wurden in [DDOO08] nicht dargestellt und sind im Rahmen der vor-
liegenden Arbeit erstellte Ergdnzungen. Um ein BPMN-Prozessmodell
in ein Petrinetz zu iiberfithren wird das BPMN-Prozessmodell durch-
laufen und jedes BPMN Konstrukt nacheinander auf ein Petrinetz-
konstrukt abgebildet. Dabei werden die gestrichelten Plétze in den
Petrinetzkonstrukten ersetzt.

Die Beschreibung der Verwendung von Modelcheckern und die
Beschreibung der Transformation von BPMN-Prozessmodellen ver-
deutlicht die Anwendbarkeit der wissenschaftlichen Beitrége der vor-
liegenden Arbeit.

BPMN-Elemente, die mit dem Datenfluss innerhalb eines BPMN-
Prozesses zu tun haben, werden bei der Abbildung in ein Petrinetz
nicht berticksichtigt, da sich dieses Kapitel ausschlief3lich mit dem
Kontrollfluss eines Geschiftsprozesses befasst. In Kapitel 5 wird darge-
legt, wie der Datenfluss eines Geschaftsprozesses auf Regelkonformitét

untersucht werden kann.

4.5.2. Représentation von Petrinetzen in PROMELA

Um mit dem SPIN Modelchecker iiberpriift werden zu konnen, muss
das aus einem BPMN 1.0 Prozess erzeugte Petrinetz in ein PROMELA
Programm {ibersetzt werden. Der Zwischenschritt bei der Transfor-
mation iiber ein Petrinetz hat sich in der von Stefan Grohe [Groll]

durchgefiihrten Untersuchung als am vorteilhaftesten herausgestellt.

96 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

-~
Startereignis Inklusive Aufteilung N7
) ,I N - -
~_/ (\) N
-~
N2
Endereignis
-~ -~
ﬂ 1O)
Parallele A
Task Zusammenfuhrung
~ {\ _/
Task L»I—u) -~
-7 ~ N_/
(\)
Exklusive
. i Zusammenfihrung
Zwischenereignis b
-~ -~ N/ -~
@» (\—>|—>(\
N_/ N_/ ._/
(
N_7
Parallele Aufteilung
- Inklusive
~-7 Zusammenfiihrung
-~ {’ ~
<_/ N_7/
)
N -~
Exklusive Aufteilung X)
-~ () N
—~ N_/
{\‘/ o
- N_7/
N_/

Abbildung 4.11.: Abbildung von BPMN 1.0 Konstrukten auf Petrinetze
(angelehnt an [DDOO08])

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 97

Es ist mit diesem Ansatz einfacher, Riickschliisse auf das urspriingliche
BPMN-Prozessmodell zu ziehen. Fiir die Reprisentation der Plitze
eines Petrinetzes wird der in [RMF07] vorgestellte Ansatz verwendet.
In diesem Ansatz reprisentiert ein Array von Integerwerten die Plétze
eines Petrinetzes. Abgesehen davon werden Makros verwendet. Ma-
kros werden zum Beispiel verwendet, um Konstanten zu definieren.
Diese Konstanten kénnen dann im Quelltext eines Programms verwen-
det werden. Der Compiler ersetzt bei der Ubersetzung des Programms
die Konstanten mit den ihnen zugewiesenen Werten. In dieser Arbeit
wird mit Makros festgelegt, wann eine Transition schalten kann und
was beim Schalten einer Transition passiert. Das folgende Makro zeigt
einen Array, welcher die Plitze des entsprechenden Petrinetzes repra-
sentiert. Dieser Codezeile nach zu urteilen hat das Petrinetz 12 Plétze:
die Plétze O bis 11.

byte places[11];

Die Makros, die dazu verwendet werden, das Verhalten des Petri-
Netzes zu modellieren, sind in zwei Bereiche aufgeteilt. Im ersten
Bereich wird definiert, in welchen Zustdnden des Petri-Netzes welche
Transitionen schalten konnen. Das folgende Codebeispiel zeigt ein
Makro, welches definiert, dass die Transition O schalten kann, wenn

auf Platz O eine Marke liegt und auf Platz 2 keine Marke liegt.

#define transitionOReady (places[0] && !places[2])

Im zweiten Verwendungsbereich von Makros wird definiert, welche
Marken von einer Transition konsumiert werden und welche Marken
erzeugt werden, wenn diese Transition aktiviert wird. Das néichste
Codebeispiel zeigt das Makro mit Namen transitionOFire welches de-
finiert, dass beim Aktivieren der Transition O eine Marke von Platz 0

98 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

konsumiert wird und auf Platz 2 eine Marke erzeugt wird.

#define transitionOFire places[0] = 0;
places[2] = 1;

Codebeispiel 4.1 zeigt eine do-Schleife, welche die Ausfithrung eines
Petrinetzes in PROMELA steuert. In jedem Schleifendurchgang wird
ein Zweig, der mit einem doppelten Doppelpunkt beginnt, ausgew4hlt.
Nach den jeweiligen Doppelpunkten steht der sogenannte Guard. Ein
Guard ist eine Bedingung, die eintreffen muss, damit die nachfolgen-
den Instruktionen ausgefiihrt werden kénnen. Im Fall eines PROMELA
Programms, das die Ausfithrung eines Petrinetzes simuliert, wird ein
solcher Guard durch die ready-Makros definiert. Sie beschreiben, wel-
che Plitze des Petrinetzes mit Marken versehen sein miissen, damit
eine bestimmte Transition schalten kann.

Die nach dem Guard stehenden Anweisungen werden in der d_step
Umgebung ausgefiihrt. Die d_step Umgebung sorgt dafiir, dass die in
ihr enthaltenen Anweisungen wie eine einzelne Anweisung gesehen
werden und deterministisch ausgefiihrt werden. Dies bedeutet, dass
die Ausfithrung dieser Anweisungen nicht durch andere nebenldufige
Prozesse unterbrochen werden kann.

In den in Codebeispiel 4.1 dargestellten d_step Umgebungen wird
mittels der printf Funktion auf der Konsole ausgegeben, welche Transi-
tion gerade geschalten hat, und es wird das Makro aufgerufen, das die
Anweisungen zum Schalten der jeweiligen Transition enthalt. In Code-
beispiel 4.1 wird auch ein Beispiel gezeigt, wie die do-Schleife abgebro-
chen wird. Befindet sich eine Marke auf dem Platz 2, so wird die Aus-
fiihrung des Programms mittels der nachfolgenden Goto-Anweisung

zum Label accept geleitet.

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 929

Listing 4.1: Hauptteil des PROMELA-Programms, das fiir die Ausfiih-

rung der Makros zustdndig ist

do
transitionOReady —> d_step{printf ("PROCESSED_transition
0");
transitionOFire}
transitionlReady —> d_step{printf ("PROCESSED_transition
1";
transitionl1Fire}

:: p[2] — goto accept
od;
accept: printf("Accepted");

Das Codebeispiel A.1 im Anhang zeigt das gesamte laufende Beispiel
aus Abbildung 4.1 als PROMELA Programm.

Im Folgenden wird das PROMELA Konstrukt einer Never-Claim be-
schrieben. Das Verstandnis von Never-Claims tragt zum Verstdndnis
des Algorithmus zur Uberpriifung von Compliancescopes bei. Eine
sogenannte Never-Claim wird in Codebeispiel 4.2 gezeigt. Eine Never-
Claim ist die negierte Version der LTL-Formel, die mit dem zu iiberprii-
fenden Modell dem Modelchecker iibergeben wird. Der in dieser Arbeit
verwendete Modelchecker SPIN erzeugt aus einer ihm iibergebenen
LTL-Formel durch Negation eine Never-Claim. Diese negierten LTL-
Formeln sind insofern beim Vorgang des Modelchecking niitzlich, als
dass damit die Erstellung eines Gegenbeispiels fiir den Modelchecker
moglich wird. Tritt die Bedingung einer Never-Claim ein, die nicht ein-
treten darf, so kann der Modelchecker den Ausfiihrungspfad, der zum
Eintreten dieser Bedingung gefiihrt hat, als Gegenbeispiel zuriickge-
ben. Das Gegenbeispiel zeigt, dass das zu iiberpriifende Modell nicht
den in der mitgegebenen LTL-Formel beschriebenen Eigenschaften

100 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

gentuigt.

4.5 | Verifizierungsalgorithmus fir den Kontrollfluss eines Prozesses 101

Listing 4.2: Beispiel fiir eine Never-Claim

never { / 1(<>(Task3)) /
accept_init:
TO_init:
if
(! ((Task3))) — goto TO_init
fi;

>

Die Transformation eines Prozessmodells in ein Petrinetz wird in
[RMF07, DDO08] verwendet und in [Gro1l1, Wol10, WMMO09] umge-
setzt, um BPMN-Prozessmodele in PROMELA Programme zu {iberfiih-
ren.

Algorithmus 4.1 Uberpriifung von Compliancescopes

1: function UBERPRUFECOMPLIANCE(Parameter: Compliancescope,
ComplianceRegel)
Petrinetz = erstellePetriNetz(Compliancescope);
PromelaProgramm = erstellePromelaProgramm (Petrinetz);
NeverClaim = erstelleNeverClaim(ComplianceRegel);
if {berpriifeMitModelChecker(PromelaProgramm, Never-
Claim) then

6: zeigeNachricht: "Compliancescope ist regelkonform.";
7: else

8: zeigeGegenbeispiel);

9: end if

10: end function

Algorithmus 4.1 zeigt die Schritte, die fiir die Uberpriifung eines
Compliancescopes durchgefiihrt werden miissen. Die dort gezeigte
Funktion iiberpriifeCompliance zeigt die Hauptbestandteile des Verifi-

zierungsalgorithmus. Eingabeparameter dieser Funktion sind zwei Ob-

102 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

jekte. Die Eingabeobjekte enthalten den zu {iberpriifenden Compliance-
scope und eine zur Uberpriifung herangezogene Complianceregel in
Linearer Temporaler Logik (LTL). In Zeile zwei des Programms wird
der iibergebene Compliancescope in eine interne Reprisentation ei-
nes Petrinetzes transformiert. LTL-Formeln konnen in dem in dieser
Arbeit vorgestellten Prototyp graphisch erstellt werden. Die néchs-
ten beiden Zeilen des Algorithmus transformieren die LTL-Formel
in eine Never Claim in PROMELA und das Petrinetz in eine Repréa-
sentation in PROMELA. Nach den Transformationsschritten wird die
Never Claim zusammen mit dem zu iiberpriifenden Modell an den
Modelchecker iibergeben. Geniigt das Modell den in der LTL-Formel
definierten Anforderungen wird dies dem Benutzer mit der Meldung
»,Compliancescope ist regelkonform.“ angezeigt. Im anderen Fall wird
ein Gegenbeispiel generiert, das zeigt, welcher Ausfiihrungspfad im

Modell die Complianceregel verletzt.

4.6. Zusammenfassung

Die in diesem Kapitel beschriebenen Konzepte zeigen den menschli-
chen Prozessmodellierern bei der Erstellung regelkonformer Prozesse
Complianceverletzungen an. Der Fokus in diesem Kapitel liegt auf
Complianceregeln, die den Kontrollfluss eines Prozesses betreffen. Es
wurden mit dem Compliancetemplate (siehe Abschnitt 4.2) und dem
Compliancescope (siehe Abschnitt 4.3) zwei Mechanismen vorgestellt,
mit denen diese Ziele erreicht werden.

Compliancetemplates unterstiitzen menschliche Prozessentwickler
bei der Erstellung neuer, regelkonformer Prozesse. Compliancescopes

werden auf bestehende Prozesse angewendet, um Anderungen an

4.6 | Zusammenfassung 103

diesen Prozessen automatisch iiberpriifbar zu machen. Beide Konzep-
te sind formal definiert und es wurde ein Verifizierungsalgorithmus
beschrieben, der in beiden Konzepten verwendet wird.

Gegeniiber der Uberpriifung des gesamten Prozessmodells bei jeder
Anderung hat die Uberpriifung mit Hilfe von Compliancescopes den
Vorteil, dass der Benutzer bestimmen kann, wie viele Aktivititen in ei-
nem Compliancescope enthalten sind und wie viele Complianceregeln
mit diesem Compliancescope verkniipft sind. Diese beiden Faktoren
haben starken Einfluss auf das Laufzeitverhalten der Complianceprii-
fung. Mit der Verwendung von Compliancescopes kann ein Benutzer
das Gebiet in einem Prozess, dass bei einer Modifikation automatisch
iiberpriift wird einschréanken, und somit die Laufzeit der Compliance-
priifung auf einem angemessenen Niveau halten. Compliancescopes
unterscheiden sich in mehreren Bereichen von Subprozessen, wie sie
in der BPMN Spezifikation definiert sind.

* Compliancescopes konnen eine beliebige Form annehmen. Mit
dieser Flexibilitit ist es moglich beliebige Mengen von Aktivi-
tidten eines Prozesses in einen Compliancescope aufzunehmen.
BPMN Subprozesse werden als Rechtecke mit abgerundeten

Kanten gezeichnet.

* Im Gegensatz zu den Grenzen von BPMN Subprozessen konnen
die Grenzen von Compliancescopes von Kontrollflusskonnekto-
ren {iberquert werden. Dies ist ein weiterer Punkt die Flexibilitét

des Einsatzes von Compliancescopes zu erhéhen.

* Ein Compliancescope kann auch nur Objekte, die keine BPMN-

Tasks sind, beinhalten.

104 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

* Compliancescopes konnen sich mit anderen Compliancescopes
iiberlappen. Das heil3t, sie konnen Teilmengen von BPMN-Elementen

von anderen Compliancescopes enthalten.

* Zum Konzept der Compliancescopes gehért der Uberpriifungs-
algorithmus. Im Gegensatz zu bestehenden Arbeiten wird in
diesem Algorithmus neben der Auswertung der Compliance-

regel auch die Erfillbarkeit der Complianceregel getestet.

Die Flexibilitit, die durch die oben aufgefiihrten Eigenschaften von
Compliancescopes bedingt ist, hilft menschlichen Prozessentwicklern
dabei, Compliancescopes so zu gestalten, dass verletzte Compliancere-
geln schnell lokalisiert werden kdnnen. Somit muss nicht das gesamte
Prozessmodell bei der Behebung einer verletzten Complianceregel
betrachtet werden, sondern nur der betroffene Compliancescope.

Weiterhin sind Compliancescopes ein Werkzeug, um den Umgang
mit Complianceregeln, die auf einen Prozess angewendet werden, zu
erleichtern. Wiirden alle diese Complianceregeln mit dem Gesamtpro-
zess verkniipft werden, so wiirde die Menge der Complianceregeln
ab einer bestimmten Zahl uniibersichtlich und unverstidndlich wer-
den. Mit Compliancescopes kann man Complianceregeln dort mit dem
Prozess verkniipfen, wo sie Anwendung finden.

Im folgenden Kapitel wird ein Konzept vorgestellt, welches auch
den Datenfluss in einem Prozessmodell einschriankt. Der Datenfluss
eines Prozesses ist neben dem Kontrollfluss die zweite Dimension, die
es bei der Entwicklung regelkonformer Prozesse zu beachten gibt.

Prozesse konnen heute aufgeteilt und an verschiedenen Orten ausge-

fiihrt werden [KhaO8]. Bei der Ausfiihrung eines verteilten Prozesses

4.6 | Zusammenfassung 105

kann es zu Einschrankungen des Datenflusses bedingt durch Com-
plianceanforderungen kommen. Dies ist beispielsweise der Fall, wenn
bestimmte Daten bestimmte Landesgrenzen nicht iiberschreiten diir-
fen.

106 4 | Entwicklung von Prozessen mit regelkonformem Kontrollfluss

KAPITEL

ENTWICKLUNG VON PROZESSEN
MIT REGELKONFORMEM
DATENFLUSS

Dieses Kapitel befasst sich mit datenbasierten Complianceregeln. Es de-
finiert hierfiir das Konzept einer Compliancedomain in Abschnitt 5.2.
Ein Verifizierungsalgorithmus fiir Compliancedomains wird in Ab-
schnitt 5.3 vorgestellt. Das Kapitel schlief3t mit Abschnitt 5.5, in wel-
chem ein Ansatz zur Kombination von datenbasierten mit kontrollfluss-
basierten Complianceregeln zu einer zusammengesetzten Compliance-
regel gezeigt wird.

Neben dem Kontrollfluss spielt auch der Datenfluss in Prozessen
eine grof3e Rolle, wenn es um die Einhaltung von Gesetzen oder Re-

geln geht. Der Datenfluss eines Prozesses beschreibt, wie die Daten

107

in einem Prozess flieffen und transformiert werden. Daten werden
zum Beispiel von Aktivitdten verdndert und zur weiteren Verarbeitung
fiir andere Aktivitdten freigegeben. Im Folgenden werden zwei un-
terschiedliche Arten von Regeln und Gesetzen beriicksichtigt. Zum
einen die Regeln und Gesetze, die auf die Abfolge von Aktivitdten, also
den Kontrollfluss eines Prozesses, zielen. Zum anderen die Arten von
Regeln und Gesetzen, die auf die in einem Prozess verwendeten Daten

Anwendung finden.

5.1. Beispielprozess

Ein wichtiger Bereich sind Gesetze, die den Umgang mit personlichen
Daten betreffen. Gerade im medizinischen Bereich ist der verantwor-
tungsvolle Umgang mit solchen Daten unabdingbar. Das in dieser
Arbeit verwendete Beispielszenario ist in diesem Bereich platziert und
stellt die Abfolge von Schritten dar, die durchlaufen werden, wenn
eine Blutspende durchgefiihrt wird. Die einzelnen Schritte sind in
Abbildung 5.1 dargestellt. Um die bei einer Blutspende entstehenden
Patientendaten zu schiitzen, muss ein solcher Blutspendeprozess eini-
ge Regeln einhalten. Beispielsweise sollen Patientendaten nur anony-
misiert von der Blutspendestation an Krankenhiuser weitergegeben
werden.

Datengetriebene Complianceregeln werden in dieser Arbeit losge-
l6st von kontrollflussgetriebenen Complianceregeln eingefiihrt. Die-
se Trennung ist sinnvoll, um die Besonderheiten dieser Arten von
Complianceregeln besser vermitteln zu konnen.

Ein Anwendungsgebiet, auf welchem datengetriebene Compliance-

regeln eine grole Rolle spielen, ist das Cloud Computing [Ley09].

108 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Konzepte des Cloud Computing werden sich in nachster Zeit vermehrt
in IT-Infrastrukturen von Unternehmen durchsetzen. Cloud Computing
verspricht Unternehmen viel Einsparungspotential fiir die Unterhal-
tung ihrer IT-unterstiitzten Operationen. Dies wird einerseits durch
die Auslagerung von IT-gesteuerten Prozessen und Programmen zu
Public-Clouds [MGO09] von externen Cloud-Providern erreicht, auf
der anderen Seite konnen Unternehmen ihre eigene IT-Infrastruktur
effizienter nutzen, wenn sie eine sogenannte Private Cloud [MG09]
einfithren. Zwischen diesen beiden Modellen befindet sich das Kon-
zept einer Hybrid-Cloud [MGO09], welches die beiden zuerst genannten
Cloudarten vereint. In einer Hybrid-Cloud kénnen zum Beispiel Kun-
dendaten in der eigenen Private-Cloud verarbeitet werden, wiahrend
Operationen wie zum Beispiel die Steuerung der Maschinen eines
Unternehmens in der Public-Cloud durchgefiihrt werden kénnen. Ein
Teil eines Prozesses konnte zum Beispiel in der Private-Cloud eines
Unternehmens ausgefiihrt werden, wéihrend ein anderer Teil desselben
Prozesses bei einem Partner des Unternehmens ausgefithrt wird, der
eine Public-Cloud betreibt. Fiir diese beiden Teile gelten entweder vom
Gesetzgeber oder vom Unternehmen selbst vorgeschriebene Regeln
beziiglich der Daten, die in ihm verarbeitet werden diirfen. Diese Re-
geln wirken sich darauf aus, welche Daten zwischen den Teilen des
Prozesses hin- und hergeschoben werden diirfen.

In Bezug auf den Datenschutz ist es notwendig schon bei der Ent-
wicklung von Prozessen Mechanismen bereitzustellen, die den mensch-
lichen Prozessmodellierer dabei unterstiitzen, regelkonforme Prozesse
zu erstellen. Ein Konzept, welches zur Entwicklungszeit eines Prozes-
ses eingesetzt werden kann und diese Vorgaben erfiillt, wird in diesem

Kapitel vorgestellt.

5.1 | Beispielprozess 109

Dieses Konzept trigt den Namen Compliancedomain [SFG'11]. Eine
solche Compliancedomain stellt in einem Prozess einen Bereich dar,
der auf einer bestimmten Infrastruktur ausgefiihrt wird. Gleichzeitig
gelten fiir diesen Bereich bestimmte, datenbasierte Complianceregeln,

die an eine Compliancedomain annotiert sind.

5.2. Compliancedomains

Compliancedomains erben alle Eigenschaften von Compliancescopes
und erweitern sie mit Eigenschaften, die bei der Untersuchung von
datenbasierten Complianceregeln herangezogen werden kénnen.

Compliancedomains haben zwei grundsitzliche Aufgaben. Sie wer-
den erstens benétigt, um ein Prozessmodell in Bereiche aufzuteilen.
Diese Bereiche konnen auf verschiedenen Ausfithrungsumgebungen
laufen [KhaO8]. Ausfithrungsumgebungen konnen zum Beispiel das
private Rechenzentrum einer Firma oder eine Public-Cloud sein. Die
zweite Aufgabe ist die Annotation von Bereichen eines Prozessmodells
mit datenbasierten Complianceregeln. Compliancedomains werden
somit auf schon bestehende Prozessmodelle angewendet.

Abbildung 5.1 zeigt den Beispielprozess aus Abbildung 4.1. Dieser
Prozess ist mit Compliancedomains versehen. Diese Compliancedo-
mains stellen die verschiedenen physischen Orte dar, an denen dieser
Beispielprozess ausgefiihrt wird. Compliancedomain O reprisentiert
die Orte, an denen Prozessteile, die mit Blutspenden zu tun haben,
ausgefiihrt werden. Compliancedomain 1 reprasentiert die Verwal-
tung der Krankenhéuser und Blutspendeeinrichtungen. Hier werden
Statistiken iiber die verfiigbaren und bereits verbrauchten Blutkon-

serven gefiithrt. Compliancedomain 2 représentiert die offentlichen

110 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Compliance- .-~ - h NG
domain 0: A
Blutspende,”

_{Compliance-
’ regeln

: ‘ Compliance-
: ; domain 2:
\ 1 [Blutspender- / Offentliche
| \ daten speichern | ; Krankenhéuser

Compliance-)\
regeln || | | — S +

-, /Blutverbrauchs—,
bericht

. K R i
Compliance- / \ / /

domain 1:

[
H
Krankenhaus- Y
verwaltung

esundheits-
informationen b
bereitstellen /.~ /

Blutverbrauchs™
daten
versender

Legende 4 : // e]
/ esundheits- Compliance-
() = o ,, gk
r/I

-1 informationen
:
Kontrolifluss ﬁ /

lesen
Paralleles

Gateway

Abbildung 5.1.: Beispielprozess versehen mit Datenobjekten und
Compliancedomains

Krankenhé&user. Hier werden die Blutspenden weiterverarbeitet und
den Patienten verabreicht.

An diesen Compliancedomains ist jeweils ein Satz von datenbasier-
ten Complianceregeln angeheftet. Beispiele fiir solche datenbasierten

Complianceregeln werden in der folgenden Liste angefiihrt:

* Ein Beispiel fiir eine datenbasierte Complianceregel fiir Com-

5.2 | Compliancedomains 111

pliancedomain O ist, dass Daten von Blutspenden in diesem
Prozess nicht mit Patientenakten abgeglichen werden diirfen.
Dies bedeutet, dass keine Patientendaten aus den offentlichen
Krankenhé&usern in dieser Compliancedomain verarbeitet wer-
den diirfen.

In Compliancedomain 2 diirfen keine Namen von Blutspendern
verarbeitet werden. Dies hat zur Folge, dass solche Nachrichten
von Compliancedomain 0 zu Compliancedomain 2 keine Na-
men enthalten diirfen. Beispielsweise miissen Blutkonserven in

Compliancedomain 2 mittels Nummern identifiziert werden.

Anhand von Daten der 6ffentlichen Krankenhduser und der Da-
ten aus den Blutspendestationen generiert die Verwaltung der
Krankenh&duser und Blutspendestationen einen Blutverbrauchs-
bericht. Eine fiir Compliancedomain 1 geltende Complianceregel
ist, dass keine Daten iiber die Anzahl der Blutspender verarbeitet
werden diirfen. Es diirfen also von Compliancedomain 0 nur zu-
sammengefasste Daten iiber die Menge des gespendeten Blutes

an Compliancedomain 1 geschickt werden.

Vergleicht man Compliancedomains mit den in Kapitel 4.3 vorgestell-

ten Compliancescopes, so werden einige Gemeinsamkeiten deutlich.

Zum einen ist beiden Konzepten gemein, dass sie in einem Prozess-

modell bestimmte Bereiche markieren, fiir die bestimmte Eigenschaf-

ten gelten. Zum anderen werden, wie bei Compliancescopes auch,

Complianceregeln mit den in einem Prozessmodell eingefiigten Com-

pliancedomains verkniipft. Der Unterschied zwischen beiden Konzep-

ten liegt im jeweiligen Anwendungsbereich. Wahrend Compliance-

5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

scopes dafiir verwendet werden, um den Kontrollfluss eines Prozess-
modells zu regulieren, hat der Einsatz von Compliancedomains in
einem Prozessmodell deutlich weitere Auswirkungen auf den spéteren
produktiven Einsatz eines Prozesses. Die Umrahmung eines Teils eines
Prozessmodells weist den darin enthaltenen Prozesskonstrukten eine
bestimmte Ausfiihrungsumgebung zu, die fiir alle in einer Complian-
cedomain enthaltenen Prozesskonstrukte gleich ist. Dies ist bei der
Anwendung von Compliancescopes nicht der Fall. Die Bindung von
Prozessfragmenten, die von einem Compliancescope umrahmt werden,
ist somit nicht so stark, wie die durch eine Compliancedomain erwirkte
Bindung.

Im Beispiel in Abbildung 5.1 konnte die IT-Infrastruktur, die diesen
Prozess unterstiitzt, wie folgt aussehen:

Die Services, die von den Tasks aufgerufen werden, die von Com-
pliancedomain O eingerahmt sind, konnten auf einem Laptop in einem
Blutspendemobil des Roten Kreuzes ausgefiihrt werden. Der Teil des
Prozesses, der von Compliancedomain 1 eingerahmt wird, kdnnte
in einer Public-Cloud ausgefiihrt werden, da hier unkritische Daten
verarbeitet werden. Das heil3t alle Daten, die in Compliancedomain 1
verarbeitet werden sind anonymisiert und zusammengefasst. Es wird
angenommen, dass aus diesen Daten keine Riickschliisse auf real exis-
tierende Personen gezogen werden konnen. Der Teil des Prozesses, der
von Compliancedomain 2 eingerahmt ist, konnte in einer sogenannten
Community-Cloud ausgefiihrt werden. Diese stellen Cloud-Lésungen
fiir Kunden mit bestimmten Anforderungen bereit. Diese Anforderun-
gen konnten zum Beispiel auf die bereitgestellte Software abzielen.
Im oben gezeigten Beispiel konnte eine solche Community-Cloud von

einem Verbund von 6ffentlichen Krankenhiusern bezahlt werden, so

5.2 | Compliancedomains 113

dass die von den Krankenh&usern erhobenen Daten immer noch unter
der Datenhoheit dieser Krankenh&user bleiben. Die Krankenh&iuser
konnen so den gesetzlichen Anforderungen beziiglich der Verarbeitung

von Patientendaten gerecht werden.

5.2.1. Definition von Compliancedomains

Formal sind Compliancedomains an die Definition von Compliance-
scopes angelehnt. Compliancedomains sind auch Hyperkanten H in
einem Hypergraphen G. Auch fiir Compliancedomains gilt entspre-
chend Definition 5.

Ubertragen auf Business Process Model and Notation 1.0 (BPMN
1.0) entspricht ein Hypergraph H einem BPMN Prozess. Die Knoten
in H entsprechen den Aktivititen in diesem BPMN Prozess-Fragment
und die Kanten in H entsprechen den Compliancedomains.

Abbildung 5.2 zeigt ein UML Modell der Komponenten einer Com-
pliancedomain. Compliancedomains erben alle Eigenschaften von
Compliancescopes. Demnach beinhaltet eine Compliancedomain min-
destens ein Prozesskonstrukt und sie ist mit einem Compliancedeskrip-
tor verbunden. Prozesskonstrukte sind allgemein alle Elemente, die
in einer Prozesssprache enthalten sind. Weiter enthilt eine Complian-
cedomain ein Input-Datenformat und ein Output-Datenformat. Diese
beiden Eigenschaften beschreiben jeweils, welche Daten in eine Com-
pliancedomain hinein und welche herauskopiert werden diirfen. Als
Beschreibungssprache dieser Eigenschaften wird in der vorliegenden
Arbeit XML verwendet. Das vorliegende Konzept zur Beschreibung
von Datenformaten kann jedoch auf beliebige Beschreibungssprachen

angewendet werden.

114 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Geschafts- 1.* 1 : _ 1 1. ; .
prozess- +——-enthélt—— Compliance —Verbunden mit— Compll_ance
scope deskriptor
konstrukt
Eingabe-format ——hat—=n Compliance- = hat = Ausgabe-format
g o domain o 9
1
hat
1.*
Policy

Abbildung 5.2.: Meta-Modell einer Compliancedomain

Aus technischer Sicht sind die Input- und Output-Formate einer
Compliancedomain Formatvorlagen fiir die Daten, die in einer Com-
pliancedomain verarbeitet werden diirfen. Ein Beispiel fiir eine solche
Formatvorlage ist, dass alle Attribute eines Datensatzes, der eine Per-
son darstellt, in einer Compliancedomain verarbeitet werden diirfen.
Somit sind alle anderen Datensétze, die nicht dieser Spezifikation
geniigen, von der Verarbeitung in dieser Compliancedomain ausge-
schlossen. Des Weiteren ist eine Compliancedomain mit einer oder
mehreren Policies verkniipft. Mit diesen Policies konnen Eigenschaf-
ten von Ausfithrungsumgebungen beschrieben werden, auf denen die
jeweiligen Compliancedomains ausgefiihrt werden diirfen. Policies
kénnen zum Beispiel mit dem Policy-Framework WS-Policy [Web07]

5.2 | Compliancedomains 115

erstellt werden. Das vorliegende Konzept ist jedoch auf keine spezielle
Sprache beschréinkt. Das Konzept einer Policy wird vorgestellt, um ein
vollstédndiges Bild einer Compliancedomain und ihres Anwendungsbe-
reichs zu prisentieren.

Im Folgenden wird anhand eines Beispiels gezeigt, wie Complian-
cedomains bestimmten Ausfiihrungsumgebungen, wie beispielsweise
Clouds, zugeordnet werden kénnen. Dieses Beispiel arbeitet mit den
drei Cloud-Arten: Public-Cloud, Hybrid-Cloud und Private-Cloud. Die
Zuordnung von Compliancedomains auf Ausfithrungsumgebungen ist
jedoch nicht auf diese drei Cloud-Arten beschrénkt. Welche Cloud-
Arten bei der Zuordnung in Betracht gezogen werden, muss von Fall zu
Fall entschieden werden. Als weitere Ausfithrungsumgebungen wéren
zum Beispiel auch private Rechenzentren, Outsourced Private-Clouds
oder Outsourced Community-Clouds denkbar.

Wie in Tabelle 5.1 dargestellt, sind die moglichen Ausfiihrungsum-
gebungen, die fiir eine Compliancedomain in Frage kommen, geglie-
dert. Die Ausfiihrungsumgebung wird danach festgelegt, mit welcher
Wichtigkeit die in ihr verarbeiteten Daten vom menschlichen Prozess-
modellierer bewertet wurden. Die Wichtigkeit dieser Daten richtet sich
danach, wie bedeutsam diese Daten fiir die Firma oder Organisation
sind, der sie gehoren. Die Wichtigkeit wird in Stufen von eins bis drei
festgelegt. Wobei eins die hochste Wichtigkeit darstellt und drei die
niedrigste.

Compliancedomains, die Daten mit der hochsten Wichtigkeit ver-
arbeiten, diirfen laut Tabelle 5.1 nur in einem organisationseigenen
Rechenzentrum verarbeitet werden. Daten, die mit Wichtigkeit zwei
bewertet wurden, diirfen in einem privaten Rechenzentrum, in einer

Community-Cloud oder einer Hybrid-Cloud verarbeitet werden. Fiir

116 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Tabelle 5.1.: Zusammenhang der Wichtigkeit von Daten fiir eine Or-
ganisation und deren moégliche Verarbeitung in Cloud-
Umgebungen

Wichtigkeit
1 2 3

Public-Cloud X
Cloud-Umgebungen | Hybrid-Cloud X X
Private-Cloud X X X

Community-Clouds gilt, dass ein Anbieter fiir mehrere Organisationen
oder Firmen Dienste anbietet, die den Anforderungen geniigen, die
diese Organisationen oder Firmen in einem Bereich gemein haben.
Daten mit der niedrigsten Wichtigkeit diirfen in Public-Clouds verar-
beitet werden. Weiterhin diirfen solche Daten auch in allen anderen
Cloud-Arten und privaten Rechenzentren verarbeitet werden.

5.3. Verifizierungsalgorithmus

Im Gegensatz zu Compliancescopes wird bei Compliancedomains kein
Modelchecker verwendet, um Complianceregeln zu iiberpriifen. Da-
tenbasierte Complianceregeln, die mit Compliancedomains verkniipft
werden, verlangen ein anderes Verfahren, um die Einhaltung dieser
Regeln zu iiberpriifen. Das Verfahren und die Grundbausteine solcher
datenbasierter Complianceregeln werden im Folgenden erldutert.
Datenbasierte Complianceregeln schranken den Datenfluss in einem
Prozessmodell ein. In den nachsten Abschnitten werden Eigenschaf-
ten von Kontrollflusskonnektoren und Compliancedomains definiert,

die in datenbasierten Complianceregeln Anwendung finden. Diese

5.3 | Verifizierungsalgorithmus 117

Eigenschaften wurden in [SLS*11] vorgestellt. Sie miissen von einer
Sprache unterstiitzt werden, die fiir die Definition von datenbasierten

Complianceregeln eingesetzt werden soll.

Definition 7 (Abstrakter Datentyp).

Nach [OW12] besteht ein abstrakter Datentyp aus ,einer oder meh-
reren, mit iiblichen mathematischen Methoden festgelegten Mengen von
Objekten und darauf definierten Operationen.“

Ein ADT ist demnach ein Tupel ADT = (W;..W,,, 0;..0,,) von n Werten

W und den mit ihnen assozgiierten Operationen O.

5.3.1. Eigenschaften von Datenflusskonnektoren

Datenflusskonnektoren kopieren Daten zwischen Datenobjekten und
Aktivitidten. Ein Datenflusskonnektor ist ein Tupel D = (g, 2, d) mit der
Datenquelle g, dem Datenziel z und dem Datentyp d der zu kopieren-
den Daten. Es gilt ¢ € A mit A als der Menge aller Aktivitdten in einem

Prozess und z € A.

5.3.2. Eigenschaften von Compliancedomains

Definition 8 (Ein- und Ausgabedatentyp einer Compliancedomain).

Der Eingabedatentyp einer Compliancedomain CD ist ein Tupel Eingabe.p =
(W;...W,,, 0;...0;) von Werten W,,, und Operationen O.

Analog wird mit Ausgabe.p der Datentyp bezeichnet, den die Da-
ten haben miissen, die aus einer Compliancedomain CD heraus kopiert

werden.

Daten werden zum Beispiel unter Verwendung von Datenflusskon-

nektoren zwischen Compliancedomains ausgetauscht. Dies kann bei-

118 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

spielsweise durch Zuweisungen von Daten zwischen einer Aktivitit
A und einem Datenobjekt B geschehen. Wobei sich die Aktivitdt A
aul’erhalb und das Datenobjekt B innerhalb der betreffenden Com-
pliancedomain befindet.

Die Zuweisung Eingabe.p = D schrankt beispielsweise den Eingabe-
Datentyp Eingabe.p auf den Datentyp D ein.

Komplexere datenbasierte Complianceregeln kénnen durch Kon-
katenation mit den logischen Operatoren A und V erstellt werden.
Weiterhin konnen Formeln mit dem — Operator verneint werden und
es konnen Klammern eingesetzt werden. Die zugrundeliegende Spra-
che ist in Abschnitt 5.5.2 beschreiben.

Die Einhaltung einer solchen Complianceregel wird durch das ver-
wendete graphische Entwicklungswerkzeug durchgesetzt. Wird eine
Anderung an den in einer Compliancedomain befindlichen Prozesstei-
len durchgefiihrt, so tiberpriift das graphische Entwicklungswerkzeug
diese Anderung auf Ubereinstimmung mit allen an die betreffende
Compliancedomain angehefteten Complianceregeln.

Ist die Eingabeeigenschaft einer Compliancedomain mittels einer
Complianceregel eingeschrinkt, so kann vom graphischen Entwick-
lungswerkzeug automatisch {iberpriift werden, ob eine Datenasso-
ziation, die Daten von auflerhalb einer Compliancedomain in diese
Compliancedomain kopiert, zuldssig ist. Algorithmus 5.1 zeigt, wie
dies technisch umgesetzt werden kann.

Das hier angewendete Verfahren basiert auf dem Vergleich von Da-
tenformaten. Hierbei wird beim Kopieren von Daten untersucht, ob
das Datenformat der Quelle mit dem in der Complianceregel definier-
ten Datenformat vereinbar ist. Bei dieser Untersuchung wird mit den

Datenformaten gearbeitet, da zur Entwicklungszeit keine Instanzdaten

5.3 | Verifizierungsalgorithmus 119

Person Person

Blutgruppe Blutgruppe Knoten-
Knoten- Menge B
Geschlecht Menge A Geschlecht

Vorname

Abbildung 5.3.: Vergleich von Daten-schemas zur Uberpriifung einer
Complianceregel.

vorhanden sind, die untersucht werden konnten. Die Untersuchung
der Datenformate ist fiir den in Abbildung 5.1 gezeigten Anwendungs-
fall ausreichend, da man hiermit zum Beispiel verhindern kann, dass
bestimmte Daten wie der Name einer Person nicht in eine bestimmte
Compliancedomain kopiert werden konnen. Es wird konkret vergli-
chen, ob das Format der Daten, die innerhalb eines Prozesses kopiert
werden, in dieser Compliancedomain verarbeitet werden kann. Dies
wird im Folgenden anhand von Abbildung 5.3 néher erldutert. Algo-
rithmus 5.1 beschreibt den Ablauf der Uberpriifung der Datenformate.
Abbildung 5.3 zeigt beispielhaft zwei Datentypen, die jeweils Ei-
genschaften einer Person darstellen. Diese Eigenschaften spielen im
Beispielszenario aus Abbildung 5.1 beim Kopieren von Personendaten
eine Rolle. In diesem Beispielszenario diirfen in Compliancedomain 0
die in Abbildung 5.3 links dargestellten Daten einer Person verarbeitet
werden. Wahrend in Compliancedomain 2 nur die in Abbildung 5.3
rechts dargestellten Daten einer Person verarbeitet werden diirfen.
Wir nehmen an, dass Daten einer Person von Compliancedomain 0

in Compliancedomain 2 kopiert werden sollen. Um Daten zu kopieren

120 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

wird in Business Process Model and Notation 1.0 (BPMN 1.0) eine
Datenassoziation zwischen diesen beiden Compliancedomains einge-
fiigt. Eine solche Datenassoziation hat drei Eigenschaften, die beim
Einfiigen in ein Prozessmodell gesetzt werden miissen: Die Datenquel-
le, das Datenziel und das Format der zu kopierenden Daten. Im oben
gezeigten Beispiel ist dieses Datenformat der Datenassoziation durch
den in Abbildung 5.3 links dargestellten Baum von Eigenschaften einer
Person reprasentiert.

Fiir die Validierung von Eingabe- und Ausgabeeigenschaften von
Compliancedomains sind Validatoren zustdndig. Ein solcher Valida-
tor wird beim Einfiigen einer Datenassoziation in ein Prozessmodell
mit der Uberpriifung von Eingabe- und Ausgabeeigenschaften der
betreffenden Compliancedomains betraut.

Dieser Validator vergleicht nur die beiden in Abbildung 5.3 darge-
stellten Eigenschaften einer Person und deckt auf, dass diese nicht
iibereinstimmen. Der menschliche Prozessdesigner, der die Datenasso-
ziation in das betreffende Prozessmodell eingefiigt hat, kann darauf
aufmerksam gemacht werden. Eine MafSnahme, um die Compliance-
regel von Compliancedomain 2 einzuhalten, besteht darin, das Da-
tenformat der in Compliancedomain 2 zu kopierenden Daten an das
giiltige Datenformat von Compliancedomain 2 anzupassen. Am Bei-
spiel von Abbildung 5.3 miisste also die Eigenschaft Vorname aus dem
linken Datenformat entfernt werden.

Algorithmus 5.1 zeigt in Pseudo-Code, wie der oben beschriebene
Vergleich von Datenformaten implementiert wurde. Der Algorithmus
wurde fiir die Verarbeitung von BPMN 1.0 Prozessmodellen entwickelt.
Die in diesem Algorithmus gezeigte Funktion checkComplianceDomain
dient dazu, von einem graphischen Entwicklungswerkzeug aufgerufen

5.3 | Verifizierungsalgorithmus 121

Algorithmus 5.1 Uberpriifung von Compliancedomains

1:

10:

N U R

function cHEckCoMmpPLIANCEDOMAIN(BpmnModel complDomain,
DataSchema complRule)
DA relDataAssocs = getRelevantDataAssocs(complDomain);
for DA currDataAssoc in relDataAssocs do
return checkDataAssoc(currDataAssoc, complRule);
end for
end function
function cHEckDATAAssoc(DA currDataAssoc, DataSchema com-

plRule)

DataSchema dataToBeCopied = currDataAs-
soc.getDataSchema();

return DataSchema result = checkComplRu-

le(dataToBeCopied, complRule);
end function

zu werden. Der Algorithmus kann in mehreren Situationen aufgerufen

werden. Beispielsweise nach einer bestimmten Anzahl von Anderungen

oder nach einer bestimmten Zeit, in der das Prozessmodell bearbeitet

wird. Die Eingabeparameter sind von links nach rechts:

* bpmnProcModel: Das betreffende Prozessmodell, welches durch

das Einfiigen einer Datenassoziation gedndert wurde.

* complDomain: Der Teil des Prozessmodells, der sich in der be-
treffenden Compliancedomain befindet, in der Anderungen vor-

genommen worden sind.

* complRule: Beschreibt den Datentyp, der in der betreffenden

Compliancedomain verarbeitet werden darf.

In Zeile 2 werden die relevanten Datenassoziationen gesammelt. Da-

122

5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

tenassoziationen sind dann relevant fiir den Algorithmus, wenn sie
die Grenze der betreffenden Compliancedomain iiberschreiten. In den
Zeilen 3 bis 5 werden alle relevanten Datenassoziationen auf Unverein-
barkeit mit der {ibergebenen Complianceregel untersucht, wobei die
Funktion checkDataAssoc aufgerufen wird. In dieser Funktion findet
in den Zeilen 7 bis 10 die eigentliche Uberpriifung der betreffenden
Complianceregel statt. Hierbei wird aus der {ibergebenen Datenasso-
ziation das Datenformat der zu kopierenden Daten ausgelesen und
der nicht aufgefiihrten Funktion checkComplRule iibergeben. Diese
Funktion vergleicht die Datenformate der Complianceregel und der re-
levanten Datenassoziation miteinander. Das Ergebnis dieses Vergleichs
ist entweder ein leeres Objekt, sofern die betreffende Complianceregel
nicht verletzt wurde oder aber ein Datenschema, das die Elemente

enthalt, die nicht iibereingestimmt haben.

5.4. Datenflussanalyse im Feld der Compilerentwicklung

Datenflussanalyse ist im Compilerbau ein Mittel, um den Datenfluss
moglicher Programmausfithrungspfade zu untersuchen [ASU86]. Die
Ergebnisse werden dazu verwendet, Programme zur Compilezeit zu
optimieren. Die Optimierungen zielen auf eine Beschleunigung der
Laufzeit oder des Speicherverbrauchs eines Programms ab. Im Ge-
gensatz zu der in dieser Arbeit vorgestellten Datenflussanalyse, wird
bei der Datenflussanalyse im Compilerbau die Ausfithrung eines Pro-
gramms simuliert. Ein Ergebnis einer solchen Simulation ist die Aufde-
ckung von toten Pfaden in einem Programm und die Vorhersage von
Wertebereichen, die die Variablen eines untersuchten Programms bei

der Ausfiihrung annehmen.

5.4 | Datenflussanalyse im Feld der Compilerentwicklung 123

Diese Informationen sind fiir die Erreichung des Ziels der Unter-
stiitzung von menschlichen Prozessmodellierern bei der Entwicklung
von regelkonformen Geschiftsprozessen nebenséchlich. Man konnte
die Wertebereiche, die Variablen wahrend der Ausfiihrung einnehmen,
zur Uberpriifung von Complianceregeln heranziehen. So kénnte zum
Beispiel eine Complianceregel {iberpriift werden, die festlegt, dass
eine bestimmte Variable in einem Prozess nur einen bestimmten Wert
annehmen darf.

Es gibt jedoch einige Argumente, die dagegen sprechen. Im Compi-
lerbau werden erstens Datenflussanalysen nur fiir bestimmte Eingaben
durchgefiihrt. Fiir die Uberpriifung von datenbasierten Compliance-
regeln wire es unerlésslich, Datenflussanalysen fiir den gesamten
Eingaberaum eines Prozesses durchzufiihren. Zweitens miisste die
gesamte Datenflussanalyse erneut berechnet werden, wiirde das be-
treffende Prozessmodell an einer beliebigen Stelle gedndert. Eine solch
zeitaufwandige Berechnung ist bei dem in diesem Kapitel vorgestell-
ten Mechanismus zur Uberpriifung von datenbasierten Compliance-
regeln nicht notwendig. Bei einer Anderung miissen hier lediglich die
Complianceregeln iiberpriift werden, die mit der Compliancedomain
verkniipft sind, in der die Anderung vorgenommen wurde.

Im folgenden Abschnitt wird die Zusammenfiithrung kontrollfluss-
basierter und datenbasierter Complianceregeln gezeigt. Compliance-
regeln kénnen einerseits einen Teil, der den Kontrollfluss in einem
Prozess einschriankt und andererseits einen Teil, der den Datenfluss
einschriankt beinhalten [ETHP10]. Ein Beispiel fiir eine solche Com-
plianceregel ist die Einhaltung des Vier-Augen-Prinzips. Eine Com-
plianceregel, die dieses Prinzip beschreibt, muss sicherstellen, dass ein

Dokument (Daten-Teil) von mindestens zwei verschiedenen Personen

124 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

untersucht wird. Die Untersuchung des Dokuments von den beiden
Personen kann dabei parallel oder sequenziell ablaufen (Kontrollfluss-
Teil).

5.5. Kombination von datenfluss- mit kontrollflussbasierten
Complianceregeln

Die Forschung im Bereich der Compliance von Prozessen begann mit
der Untersuchung des Kontrollflusses in Prozessen. Turetken et. al
zeigen in [TEHP11] einige Regelmuster, wie sie hiufiger bei der prak-
tischen Auseinandersetzung mit Complianceregeln im Prozessbereich
auftreten. Die in dem Artikel gezeigten Complianceregeln zielen aus-
schlief3lich auf den Kontrollfluss eines Prozesses ab. Ein Grund fiir die
anfangliche Ausblendung des Datenflusses bei der Untersuchung von
Complianceregeln fiir Prozesse mag die einfachere Handhabbarkeit
des Kontrollflusses im Gegensatz zum Datenfluss in einem Prozess
gewesen sein. Fiir die Erstellung von Complianceregeln, die den Da-
tenfluss eines Prozesses einschrianken, gibt es Sprachen wie die Lineare
Temporale Logik (LTL), die weit verbreitet Anwendung finden.
Dieser Abschnitt zeigt die Notwendigkeit der Verbindung von kon-
trollflussbasierten mit datenbasierten Complianceregeln und prasen-
tiert eine generische Compliancesprache (Abschnitt 5.5.1), die es
ermoglicht diese beiden Complianceregeltypen in einem Ausdruck
zusammenzufassen. Jeder Teilausdruck eines zusammengefassten Aus-
drucks kann von einem dafiir vorgesehen Plugin verifiziert werden.
Weiterhin wird ein Algorithmus prasentiert (Abschnitt 5.5.4), der es
ermoglicht, kombinierte Complianceregeln, die mit der generischen

Compliancesprache erstellt wurden, automatisch auszuwerten.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregelr125

Das Verstdndnis des Datenflusses ist in den oben genannten Verof-
fentlichungen jedoch ein anderes als im Folgenden. In diesen Verof-
fentlichungen wird der Datenfluss aus der den Kontrollfluss beeinflus-
senden Richtung gesehen. Es kann anhand der in einem Prozessmodell
vorhandenen Daten berechnet werden, welche Teile eines Prozesses
ausgefiihrt werden, da die vorhandenen Daten oft Kontrollflussent-
scheidungen in einem Prozessmodell beeinflussen. Dies geschieht zum
Beispiel bei einer If-Verzweigung. Hier wird eine Bedingung ausge-
wertet. Dies kann unter Zuhilfenahme beliebiger Daten im Prozess
geschehen. Mit diesen Arbeiten kann also gezeigt werden, welche
Bereiche eines Prozesses bei welchen Eingabedaten ausgefiihrt wer-
den. Dieses Ergebnis macht eine Aussage {iber den Kontrollfluss eines
Geschiéftsprozesses und bringt wenig Klarheit {iber den Datenfluss.
Die Untersuchung, welche Teile eines Programms bei welcher Eingabe
ausgefiihrt werden, ist im Bereich des Compilerbaus gut erforscht und
aufgearbeitet [ASU86].

In der vorliegenden Arbeit wird deshalb nicht auf diese Art der Ab-
héngigkeit zwischen dem Kontrollfluss und dem Datenfluss in einem
Prozess eingegangen. Vielmehr werden Complianceregeln untersucht,
die ihre Relevanz aus dem Bereich der verteilten Ausfiihrung von Pro-
zessen haben. Einen Ansatz Prozesse aufzuteilen und in einer verteilten
Umgebung auszufiihren findet man in [KLO6]. Die in dieser Arbeit vor-
gestellten datenbasierten Complianceregeln beruhen auf der Tatsache,
dass es bei einer Aufteilung eines Prozesses wichtig ist, welche Daten
zwischen den Teilen des Prozesses fliel3en. Mit Complianceregeln kann
der Datenfluss zwischen bestimmten Bereichen in einem aufgeteilten
Prozess eingeschriankt werden.

Ein Anwendungsfall fiir die Aufteilung eines Prozesses ist der Ein-

126 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

stieg eines Unternehmens oder einer Organisation in die Verwendung
des Cloud-Computing. Cloud-Computing wird fiir Unternehmen nicht
nur wegen der grol3en Einsparpotentiale, sondern auch aufgrund
besserer Moglichkeiten der Skalierbarkeit von Anwendungen immer
interessanter. Die Verwendung von Public-Clouds verspricht hierbei
das grofte Einsparpotential, da Anbieter von Public-Clouds dieselben
Ressourcen fiir verschiedene Kunden wiederverwenden und sie somit
optimal auslasten konnen. Dies fithrt zu einem Kostenvorteil, den
die Betreiber von Public-Clouds an ihre Kunden weitergeben konnen.
Hat sich ein Unternehmen fiir die Verwendung einer Public-Cloud
entschieden, gilt es die Frage zu beantworten, welche Teile der Pro-
zesse in der Public-Cloud ausgefiihrt werden sollen. Im Hinblick auf
rechtliche Vorgaben sind einige Dinge zwingend zu beachten. So muss
ein Unternehmen beispielsweise darauf achten, dass Daten, die an
einen Public-Cloud Provider {ibertragen werden, in einem passenden
rechtlichen Rahmen auch beim Provider weiterverarbeitet werden.

Falls eine Firma die Kostenvorteile einer Public-Cloud nutzen und
dennoch bestimmte Daten schiitzen mochte, ist eine Hybrid-Cloud das
richtige Mittel: Hierbei wird der Teil eines Prozesses, der zum Beispiel
sensible Daten verarbeitet in der Private-Cloud eines Unternehmens
ausgefiihrt, wihrend der Teil eines Prozesses, der unkritische Daten
verarbeitet, in einer Public-Cloud ausgefiihrt werden kann. Fiir die
Einteilung eines Prozesses in kritische und unkritische Bereiche ist das
Konzept der Compliancedomain anwendbar.

Wie die oben aufgefiihrten Beispiele zeigen, beschiftigt sich die
Literatur entweder mit kontrollflussbasierten oder mit datenbasierten
Complianceregeln. Es ist jedoch gerade im Bereich des Geschéftspro-

zessmanagements wichtig, kontrollflussbasierte mit datenbasierten

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln27

Complianceregeln zu verbinden. Dies wird am folgenden Beispiel einer

kombinierten Complianceregel deutlich.

Beispiel 1 (Kombinierte Complianceregel). , Die gesammelten Blut-
proben sollen an zwei unabhdngigen Stellen A und B iiberpriift werden.
Danach sollen die Ergebnisse von A und B von einer weiteren unabhdn-
gigen Stelle C verglichen werden. Weichen die Ergebnisse von A und B
voneinander ab, so kann die betreffende Blutprobe nicht weiterverarbeitet

werden.“

Mit dieser Complianceregel wird erstens festgelegt, dass zwei Aktivi-
taten A und B vor Aktivitit C ausgefiihrt werden. Dies ist folglich eine
kontrollflussbasierte Complianceregel. Zweitens wird deutlich, dass
Aktivitit C mit den Ergebnissen der Aktivitdten A und B arbeiten muss.
Arbeitet Aktivitdt C mit anderen Daten, wire die Complianceregel
nicht erfiillt.

Nun wird diese Complianceregel auf das in dieser Arbeit durchgin-
gig verwendete Prozessbeispiel angewendet, welches mit BPMN Pools
versehen wurde, um Verantwortlichkeiten fiir die im Prozess enthal-
tenen Aktivititen zuzuweisen. Abbildung 5.4 zeigt den Prozess, auf
den die oben vorgestellte kombinierte Complianceregel angewendet
werden soll. Um die in Beispiel 1 gezeigte Complianceregel auf dieses
Prozessmodell anzuwenden, miissen die Platzhalter A, B und C mit
Aktivitdten in diesem Prozess verkniipft werden. Die Verkniipfungen

sehen wie folgt aus:

* Platzhalter A ist verkniipft mit der Aktivitit Blutprobe Uberpriifen

im Pool der Blutspendestation.

128 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Verwaltung Blutspendestation Krankenh&user

Blutdaten
empfangen und
quittieren

Blutspender-
daten speichern

—————————

o
Blutverbrauchs-
bericht

esundheits-
informationen
bereitstellen

Prufergebnisse | | | | N
vergleichen
Gesundheits-
daten speichern

Blutverbrauchs-
daten

versenden

Abbildung 5.4.: Beispielprozess, der den gesamten Kontrollfluss und
einen Teil des Datenflusses zeigt.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregelr129

* Platzhalter B ist verkniipft mit der Aktivitit Blutprobe Uberpriifen

im Pool der Krankenh&user.

* Platzhalter C ist verkniipft mit der Aktivitét Priifergebnisse ver-
gleichen im Pool der Verwaltung.

5.5.1. Generische Compliancesprache fiir die Kombination von

datenbasierten mit kontrollflussbasierten Complianceregeln

Die in Kapitel 4 und in diesem Kapitel gezeigten zwei Arten von Com-
plianceregeln wurden in der Literatur getrennt voneinander behandelt.
Diese beiden Arten sind kontrollflussbasierte und datenflussbasierte
Complianceregeln. Der Bedarf fiir eine {ibergeordnete Compliance-
sprache, mit der Complianceregeln ausgedriickt werden kénnen, die
aus den zwei Complianceregelarten aufgebaut sind, wird in [HWG09]
aufgezeigt. Hier wird argumentiert, dass formale Sprachen sich fiir
bestimmte Zwecke eignen und fiir andere weniger. Diesen Bedarf
greift die vorliegende Arbeit auf und zeigt, wie Teile von Compliance-
regeln, die in beliebigen formalen Sprachen geschrieben sind, zu einer
Complianceregel kombiniert werden konnen. Dieser Abschnitt verfolgt
bei der Definition der iibergeordneten Compliancesprache einen prag-
matischen Ansatz, indem er zeigt, wie die Aussagenlogik erweitert
werden kann, um dieser Anforderung gerecht zu werden.

Die Beschreibung einer Sprache, die diese Anforderung erfiillt, ist
das Ziel dieses Abschnitts. Abbildung 5.5 zeigt die Kombination von
Beispielsprachen mittels einer {ibergeordneten generischen Complian-
cesprache. Sowohl Lineare Temporale Logik (siehe Abschnitt 4.1) als
auch XPath [BBC*07] konnen fiir die Definition von Complianceregeln

verwendet werden. Mit LTL konnen kontrollflussbasierte Compliance-

130 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Generische Generische Compliancesprache
Sprache

Spezifische
Compliance- XPath LTL
sprachen

Abbildung 5.5.: Generische Compliancesprache
(vergleiche:[SWLS10])

regeln entworfen werden. XPath wird im Prototyp der vorliegenden
Dissertation als Beschreibungssprache fiir datenbasierte Compliance-
regeln eingesetzt.

Begonnen wird mit der Beschreibung der einzelnen Schritte, die
notwendig sind, um eine solche iibergeordnete Compliancesprache zu
erstellen. Eine Eigenschaft dieser Sprache soll sein, dass beliebige Be-
schreibungssprachen fiir logische Zusammenhénge mit ihr verwendet
werden konnen. Weiterhin soll die Sprache auf einer weit verbreiteten
Grundsprache aufbauen, um so das Erlernen dieser Sprache zu erleich-
tern. Ausdriicke, die in dieser Sprache geschrieben sind, sollen somit
fiir Personen mit Vorwissen auf dem Gebiet logischer Sprachen intuitiv
verstdndlich sein. Diese Eigenschaften dienen dem Ziel der vorliegen-
den Dissertation: der Erleichterung fiir den Menschen regelkonforme

Prozesse zu erstellen.

5.5.2. Formale Definition einer generischen Compliancesprache

Dieser Abschnitt stellt die formale Definition der generischen Com-

pliancesprache bereit. Abbildung 5.6 zeigt eine Erweiterung der Backus-

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln 31

(Satz) — (AtomarerSatz) | (Satz) (Verbinder) (Satz) |
—(Satz)

(AtomarerSatz) — (Term) | (Term) = (Term)

(Term) — (Sprachbezeichner)”-
”(BeliebigsprachigerTerm)

(Verbinder) - = |A |V | &
(Sprachbezeichner) — LTL | XPath | ...

(BeliebigsprachigerTerm) — Sprachausdruck

Abbildung 5.6.: Ubergeordnete Sprache zur Definition von
Complianceregeln (Erweiterung der BNF der
Aussagenlogik)

Naur-Form (BNF) der Aussagenlogik. Die hier gezeigte BNF der Aussa-
genlogik wurde mit dem Ziel erweitert, die in Abschnitt 5.5.1 aufge-
fithrten Eigenschaften einer generischen Compliancesprache in diese
Sprache einzufiihren. Die formale Semantik der Aussagenlogik wird
dabei beibehalten. Mit dieser Erweiterung ist es moglich, aussagenlo-
gische Ausdriicke zu erweitern, dass Ausdriicke, die in verschiedenen
Sprachen geschrieben sind, in einen Ausdruck eingebettet werden.
Die Aussagenlogik wurde verwendet, weil sie eine der bekanntesten
Sprachen fiir die Erstellung logischer Ausdriicke ist. Sie bietet sich

daher als Basis fiir eine Erweiterung an. Durch die Verwendung der

132 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Aussagenlogik konnen Modellierer von Complianceregeln ihre Kennt-
nisse {iber die Aussagenlogik anwenden und mit dem Wissen iiber die
Erstellung von Complianceregeln verkniipfen.

Die BNF der Aussagenlogik wurde an zwei Stellen erweitert. Die
erste Stelle, an der eine Erweiterung vorgenommen wurde, ist die
Produktionsregel fiir das (Term)-Nichtterminal. Terme gehen in zwei
Nichtterminale {iber, von denen das Erste ein Sprachbezeichner sein
muss und das zweite einen Ausdruck in einer ,fremden“ Sprache be-
schreibt. Anhand der Auswertung dieses Sprachbezeichners kann dann
zum Beispiel eine grafische Entwicklungsumgebung ein bestimmtes
Programm zur Auswertung des nachfolgenden Ausdrucks heranziehen.

Die zweite Anderung an der BNF der Aussagenlogik wurde in der
vorletzten Zeile der in Abbildung 5.6 gezeigten BNF eingefiihrt. Hier
wird der weiter oben eingefiihrte Sprachbezeichner spezifiziert. Als
Beispiele fiir Sprachbezeichner sind LTL und XPath aufgefiihrt.

Die dritte Erweiterung ist in der letzten Zeile zu sehen. Hier wurde
ebenfalls eine neue Produktionsregel eingefiihrt, die dazu dient, das
Nichtterminal (BeliebigsprachigerTerm) in ein Terminal zu {iberfiihren,
das die Spezifikation eines Ausdrucks in einer beliebigen Sprache

ermoglicht.

5.5.3. Beispiele

Die in Beispiel 1 gezeigte Complianceregel besteht aus zwei Teilen,
dem Kontrollflussteil und dem Datenflussteil. Fiir jeden dieser Tei-
le muss eine andere Sprache zur Beschreibung verwendet werden.
Es ist nicht moglich, beide Arten von Complianceregeln mit einer

existierenden Sprache auszudriicken, da die Anwendungsgebiete zu

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregelr1 33

unterschiedlich sind. Dies wird deutlich, wirft man einen Blick in die
in Kapitel 4 und in diesem Kapitel vorgestellten Complianceregeln. Im
Folgenden wird gezeigt, wie eine solche kombinierte Complianceregel
von automatischen Werkzeugen ausgewertet wird.

Beispiel 2 (Verkniipfung von Teilen einer Complianceregel). Eine
Complianceregel R wird durch Verkniipfung logischer Ausdriicke A, B
und C mit Konjunktionen erstellt. Die Ausdriicke A, B und C konnen in
verschiedenen logischen Sprachen geschrieben sein.

R=LTL—-A A XPath—B A LTL—-C

Beispiel 2 zeigt, wie die Ausdriicke A, B und C mit einer Konjunk-
tion verbunden werden kénnen. Vor jedem dieser Ausdriicke steht
ein beispielhafter Sprachbezeichner. Prinzipiell konnen beliebig viele
Ausdriicke auf diese Weise miteinander verbunden werden. Diese Aus-
driicke konnen in einer beliebigen logischen Sprache geschrieben sein.
Konjunktionen werden zum Beispiel in der Aussagenlogik verwendet.
Die Verifizierung eines verbundenen Ausdrucks wird dann von einem
Programm angestof3en, das den umgebenden pradikatenlogischen Aus-
druck analysiert und fiir die darin enthaltenen Ausdriicke in anderen
Sprachen weitere Programme (Plugins) zur Verifizierung aufruft.

In Kapitel 4 wurde Lineare Temporale Logik als Beschreibungsspra-
che fiir kontrollflussbasierte Complianceregeln verwendet, wahrend
in dem vorliegenden Kapitel gezeigt wurde, wie datenflussbasierte
Complianceregeln spezifiziert werden kénnen. Es wird nun beispiel-
haft gezeigt, wie diese Sprachen fiir die Definition einer kombinierten
Complianceregel verwendet werden konnen. Dazu wird die Beispiel-
complianceregel aus Beispiel 1 herangezogen. Wie oben beschrieben,

besagt der kontrollflussbasierte Teil dieser Complianceregel, dass die

134 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Aktivitdten A und B vor der Aktivitit C ausgefiihrt werden sollen.
Ausgedriickt in Linearer Temporaler Logik (LTL) ergibt dies diesen
Ausdruck:

O((CAAOB) = <OC) (5.1)

Die Complianceregel stellt sicher, dass im gesamten Prozess (global)
gilt, dass letztendlich (finally) C ausgefiihrt wird, wenn A und B
ausgefiihrt wurden. Es ist hierbei unerheblich, in welcher Reihenfolge
A und B ausgefiihrt werden. Die Aktivitdten A und B miissen nicht
direkt hintereinander ausgefiihrt werden. Sie konnen zum Beispiel
auch parallel ausgefiihrt werden.

Der datenbasierte Teil der in Beispiel 1 gezeigten Complianceregel
ist in diesem Beispiel nicht explizit beschrieben. Dies ist bei einer
real existierenden Complianceregel meist der Fall. Implizit muss je-
doch angenommen werden, dass die Ergebnisse der Aktivitdten A und
B als Eingabe fiir Aktivitit C dienen. Der datenbasierte Teil dieser
Complianceregel wiirde folglich mit den in Abschnitt 5.3 vorgestellten
datenbasierten Eigenschaften von Datenobjekten und Aktivitdten wie
in Gleichung 5.2 aussehen:

Eingabe. = Ausgabe, A Ausgabeg (5.2)

Kombiniert man nun diese beiden Regeltypen mittels einer Konjunk-

tion, so erhélt man nachstehende Formel. Der Sprachbezeichner fiir

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregelr1 35

den datenbasierten Teil ist data.

DatenbasierterTeil KontrollflussbasierterTeil
data — (Eingabe. = Ausgabey, ANAusgabeg) ALTL — (O((CAA OB) = <C).
(5.3)

Die beiden Formelteile werden mittels einer Konjunktion verbunden,
da sowohl der datenbasierte als auch der kontrollflussbasierte Teil der
Complianceregel wahr sein miissen, damit der Wahrheitswert der ge-
samten Complianceregel wahr ist. Fiir die beiden in Gleichung 5.3 mar-
kierten Teile sind dann bei der Uberpriifung der gesamten Compliance-

regel jeweils verschiedene Programme zustandig.

5.5.4. Automatische Uberpriifung von Ausdriicken in einer
generischen Compliancesprache, die aus

verschiedensprachigen Ausdriicken aufgebaut sind

Das Ziel der Zusammenfiihrung verschiedener Arten von Compliance-
regeln in einem logischen Ausdruck besteht in der Moglichkeit solche
Ausdriicke automatisch {iberpriifbar zu machen. Die Grundlage des
weiter unten prasentierten Algorithmus bildet das Konzept des Regel-
baumes [Gro11]. Regelbdume sind Bindrbdume, deren innere Knoten
aussagenlogische Operatoren, wie beispielsweise die Konjunktion (A),
sind. Die Blatter von Regelbdumen représentieren Complianceregeln,
die in beliebigen Sprachen geschrieben sein kénnen. Wenn fiir eine
solche in einem Blatt des Regelbaums verwendete Sprache ein Werk-
zeug zur Verarbeitung eines Ausdrucks dieser Sprache existiert, so

kann diese Teilcomplianceregel automatisch iiberpriift werden.

136 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Das Konzept wird in dieser Arbeit dazu verwendet, kombinierte
Complianceregeln graphisch darzustellen, um die einzelnen Schrit-
te des Uberpriifungsalgorithmus zu erkliren. Regelbidume sind ein
Hilfsmittel, um Ausdrucke, die in der generischen Compliancesprache

geschrieben sind, besser verstandlich darzustellen.

Definition 9 (Regelbaum). Ein Regelbaum R = (Kz,Kp,Ky) mit K1
als der Menge der inneren Knoten, Ky als der Menge der Blattknoten
(innere Knoten mit Grad 2) und Ky, als der Menge der Halbblatt-Knoten
ist ein Bindrbaum. Der Regelbaum hat folgende Eigenschaften:

1. VkeKr : ke K,UK, UK_. K, ist die Menge Knoten, die die
Konjunktion reprdsentieren, IC, ist die Menge der Knoten, die die
Disjunktion reprdsentieren und K_ ist die Menge der Knoten, die

Gleichheit reprdsentieren.

2. Yke Ky : k€ K_. K, ist die Menge der Knoten, die die Negation

reprdsentieren.

3. Vke Kg : k € K. K beschreibt die Menge der Knoten, die

einen beliebigsprachigen logischen Ausdruck reprdsentieren.

Ein Regelbaum ist ein Bindrbaum, dessen innere Knoten aussagenlo-
gische Operatoren reprisentieren. Die Operatoren A, V und = haben
als Knoten in diesem Baum einen Eingang und zwei Ausgédnge. Ab-
bildung 5.7 zeigt dies fiir den A-Operator. Der =-Operator hat einen
Eingang und einen Ausgang. Die Blitter dieses Baumes repréasentieren
Ausdriicke in beliebigen logischen Sprachen.

Abbildung 5.7 zeigt die in Gleichung 5.3 aufgestellte Compliance-
regel als Regelbaum.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln 37

Eingabec =

Ausgabea A
Ausgabeg

a((0A A OB) — 0C)

Abbildung 5.7.: Darstellung des Regelbaumes fiir das laufende Beispiel

Wie die Uberpriifung von mit der generischen Compliancesprache
beschriebenen Complianceregeln erfolgt, zeigt Algorithmus 5.2. Dieser
Algorithmus basiert auf dem Algorithmus der in-order Traversierung
[OW12] von Bindrbdumen. Er ist hier aufgefiihrt, um zu zeigen wie
dieser theoretische Ansatz fiir die Untersuchung von Compliancepro-
blemen eingesetzt werden kann.

Wie in Zeile eins dargelegt, beschreibt der Algorithmus die Im-
plementierung der Funktion verify. Diese Funktion liefert entweder
true oder false zuriick. Als Parameter wird ihr ein Regelbaum-Objekt
iibergeben. Dieses Regelbaum-Objekt ist vom Typ BinaryTree.

In dieser Methode verify wird der Regelbaum unter Anwendung ei-
ner Tiefensuche durchlaufen. Die Implementierung der Methode verify
ist in zwei Teile geteilt. Diese Teile sind durch die in Zeile 3 gezeigte
If-Anweisung definiert. Wie oben definiert, werden die inneren Knoten
eines Regelbaumes auf die logischen Operatoren abgebildet, die die
in einem Ausdruck kombinierten Complianceregeln verbinden. Die
Blatter des Regelbaumes représentieren die einzelnen Compliance-
regeln, die zu einer grof3en Complianceregel zusammengefiigt worden

sind. Die in Zeile 3 gezeigte If-Anweisung iiberpriift, ob es sich bei

138 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

Algorithmus 5.2 Uberpriifung eines Regelbaumes (vergleiche
[SLST11])

1: function vErIFY(BinaryTree ruleTree)

2: boolean result = false;

3 if not ruleTree.isOperator() then
4 return ruleTree.getComplianceRule().check();
5 else
6: if ruleTree.getParent().isNot() then
7: return not (verify(ruleTree.getChild());)
8 else
9: result = verify(ruleTree.getLeft());
10: if ruleTree.getParent().isAnd() then
11: return result and verify(ruleTree.getRight());
12: end if
13: if ruleTree.getParent().isOr() then
14: return result or verify(ruleTree.getRight());
15: end if
16: end if
17: end if
18: return false;

19: end function

dem aktuell zu untersuchenden Knoten des {ibergebenen Regelbau-
mes um einen inneren Konten, also einen Operator, oder um ein
Blatt, also eine Complianceregel handelt. Handelt es sich um eine
Complianceregel, so wird in Zeile 4 die Complianceregel aus dem
aktuellen Knoten iiberpriift. Fiir diese Uberpriifung wird der oben er-
wahnte Sprachbezeichner ausgewertet, um die Sprache zu bestimmen,
mit der diese Complianceregel geschrieben wurde. Anschliefend kann
das Programm aufgerufen werden, das Complianceregeln in dieser

Sprache verarbeiten kann.

5.5 | Kombination von datenfluss- mit kontrollflussbasierten Complianceregelr139

Jeder Knoten im zu untersuchenden Regelbaum stellt die Methode
getComplianceRule() bereit. Mit ihr ist es moglich, das Objekt, das
eine Complianceregel représentiert, die mit dem aktuellen Knoten des
Regelbaums verkniipft ist, abzufragen. Alle Complianceregel-Objekte
implementieren die Methode check(). In dieser Methode wird das
Plugin aufgerufen, das mit der Sprache umgehen kann, in der die
betreffende Complianceregel geschrieben ist.

Handelt es sich um einen inneren Knoten, der einen Operator repra-
sentiert, so wird die Ausfithrung des Algorithmus in Zeile 6 fortgefiihrt.
Zunéichst wird hier untersucht, ob es sich um einen not-Operator han-
delt. Ist dies der Fall, so wird die Methode verify rekursiv mit dem
Kindknoten des aktuellen Knotens aufgerufen. Das Ergebnis wird ne-
giert zuriickgegeben. In Zeile 9 wird durch einen rekursiven Aufruf
der Methode verify begonnen, den linken Teilbaum zu durchlaufen.
Die Rekursion stoppt, wenn die Suche an einem Blatt des Regelbau-
mes angekommen ist. In diesem Fall wird die Anweisung in Zeile vier
ausgefiihrt.

In den Zeilen 10 bis 15 wird fiir jeden bei der Tiefensuche gefunde-
nen Knoten untersucht, ob dieser einen Operator der Form and oder or
repréasentiert. Basierend auf dem Ergebnis dieser Untersuchung wird
in den Zeilen 11 und 14 das Ergebnis der Funktion berechnet. In dieser
Phase des Algorithmus ist der Wahrheitswert fiir den linken Teilbaum
bekannt. Dieser wurde in Zeile 9 berechnet. Ist der aktuelle Knoten
zum Beispiel ein and-Operator, so wird der Wahrheitswert des linken
Teilbaumes mit dem Wahrheitswert des rechten Teilbaumes konjugiert
und als Ergebnis des Algorithmus zuriickgegeben.

Tritt keiner der in der Methode verify behandelten Félle ein, so

wird der Wahrheitswert false zuriickgeliefert. Der Algorithmus muss

140 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

hier aber noch nicht beendet werden, da ein anderer Teilbaum den
Wahrheitswert true haben kénnte. Der Algorithmus kann zum Beispiel
fortgefiihrt werden, wenn zwei Teilbdume des Regelbaumes mit einer
Disjunktion verbunden sind. Hier muss nur einer der beiden Teilbdume
den Wahrheitswert true aufweisen. Das heil3t, die Auswertung der
Complianceregeln in nur einem Teilbaum muss den Wahrheitswert
true ergeben, um der Auswertung des gesamten Regelbaumes den
Wahrheitswert true zu geben.

Sind alle Teilbdume des Regelbaums durchlaufen, kann das Ergebnis
der Complianceuntersuchung ausgegeben werden. Dieses Ergebnis
lautet entweder true, sofern die durch den Regelbaum représentierte
Complianceregel durch das zugrunde liegende Prozessmodell erfiillt

ist, oder es lautet false, wenn dies nicht der Fall ist.

5.6. Zusammenfassung

In diesem Kapitel wurde aufgezeigt, dass bei der Definition von Compliance-
regeln auch der Datenfluss in einem Prozessmodell eine Rolle spielt.
Anhand des in dieser Arbeit durchgehend verwendeten Beispiels wurde
diese Behauptung untermauert. Um datenflussbasierte Compliance-
regeln fiir menschliche Prozessmodellierer leichter handhabbar zu
machen, wurde das Konzept einer Compliancedomain vorgestellt.
Mit diesem Konzept ist es moglich, Bereiche in einem Prozessmo-
dell zu markieren. Fiir jeden dieser Bereiche konnen datenbasierte
Complianceregeln definiert und mit ihnen verkniipft werden. Die mit
einer Compliancedomain verkniipften Complianceregeln gelten fiir
alle in ihr enthaltenen Prozesskonstrukte. Sie dienen dazu, den Da-

tenfluss in einem Prozessmodell einzuschrianken. Weiterhin konnen

5.6 | Zusammenfassung 141

Compliancedomains mit Ausfiihrungsumgebungen, wie zum Beispiel
einer Public-Cloud, verkniipft werden. Somit kann ein Prozess an
den Grenzen der Compliancedomains mit den in [KL0O6] vorgestell-
ten Mechanismen zerteilt und auf den durch die Compliancedomains
zugewiesenen Ausfithrungsumgebungen ausgefiihrt werden. Die mit
den Compliancedomains verkniipften Complianceregeln stehen in
direktem Zusammenhang mit den mit ihnen verkniipften Ausfiihrungs-
umgebungen. Manche Ausfithrungsumgebungen, wie zum Beispiel
eine Public-Cloud, erfordern eine restriktivere Handhabung des Daten-
flusses als beispielsweise ein privates Rechenzentrum. So kénnte der
Versand von personenbezogenen Daten in eine Public-Cloud von einer
Firma verboten worden sein. Dies konnte in einer entsprechenden
Complianceregel umgesetzt sein. Neben einer formalen Definition von
Compliancedomains wurde ein Algorithmus erlautert, der zeigt, wie
datenbasierte Complianceregeln iiberpriift werden kénnen.

Dieser Abschnitt definiert eine generische Compliancesprache, die es
erstmals ermoglicht, unterschiedliche Sprachen fiir die Spezifizierung
einer Complianceregel zu verwenden. Diese generische Compliance-
sprache basiert auf der weit verbreiteten Aussagenlogik und erweitert
diese, um andere Sprachen in aussagenlogische Ausdriicke einzubetten.
Die einzelnen Teile eines solchen Ausdrucks werden auf Grundlage der
mit dem Ausdruck verkniipften Compliancedomain ausgewertet. Fiir
jeden dieser Teile des Ausdrucks wird ein Wahrheitswert ermittelt. Die
Kombination der einzelnen Wahrheitswerte ergibt den Wahrheitswert
des Gesamtausdrucks.

Eine leicht verstandliche Darstellung fiir Ausdriicke dieser generi-
schen Compliancesprache sind Regelbdume. Sie werden dazu verwen-

det, den als letzten Punkt in diesem Abschnitt vorgestellten Untersu-

142 5 | Entwicklung von Prozessen mit regelkonformem Datenfluss

chungsalgorithmus fiir die generische Compliancesprache zu erklaren.

5.6 | Zusammenfassung 143

KAPITEL

GEMEINSAME ERSTELLUNG

REGELKONFORMER PROZESSE

Die in dieser Arbeit vorgestellten Konzepte dienen der Unterstiitzung
von menschlichen Prozessmodellierern bei der Erstellung regelkon-
former Prozesse. Losungen, um dieses Ziel zu erreichen, wurden in
den vorhergehenden Kapiteln gezeigt. Doch nur durch eine genau
festgelegte Abfolge von Schritten zur Erstellung von Prozessen, die
nicht umgangen werden kann, lisst sich die Erstellung von nicht
regelkonformen Prozessen vermeiden. Die in den vorhergehenden
Kapiteln gezeigten Losungen lassen sich in diese Abfolge von Schritten
einbinden.

Dieses Kapitel befasst sich mit der Methodik, die bei der Erstellung
regelkonformer Prozesse in Organisationen umgesetzt werden muss.

Es zeigt in Abschnitt 6.1 den Prozess, der die Arbeit mit mehreren Part-

145

nern an einem Prozess regelt. Danach wird in Abschnitt 6.2 gezeigt,
welche Werkzeuge notwendig sind, um diesen Prozess bestmoglich
zu unterstiitzen und um eine Umgehung unmoglich zu machen. Der
Hauptbeitrag dieses Kapitels, das Konzept der Vervollstdndigungsebe-
nen, wird in Abschnitt 6.3 ausfiihrlich erldutert.

Die im Folgenden vorgestellten Abldufe miissen in einer Organisati-

on installiert und durchgesetzt werden.

6.1. Erstellung regelkonformer Prozesse unter Beteiligung
mehrerer Partner

Abbildung 6.1 zeigt, wie die in den vorangegangenen Kapiteln vor-
gestellten Konzepte, Compliancetemplate und Compliancescope, in
einen Prozess zur Erstellung regelkonformer Prozesse eingebunden
sind. Der Prozess ist mit Business Process Model and Notation (BPMN)
beschrieben. Die Abbildung zeigt eine Zusammenarbeit zwischen drei
Organisationen. Compliancetemplate Lieferant, einem Unternehmen,
das sich auf Beratung im Bereich Compliance von Prozessen speziali-
siert hat (Complianceberatung) und ein Kunde mit Bedarf an Lésungen
zur Erstellung von regelkonformen Prozessen.

Der in Abbildung 6.1 gezeigte Prozess beginnt mit der Erkenntnis
einer Organisation, dass ein neuer Prozess fiir eine bestimmte Aufga-
be erstellt werden muss. Es wird davon ausgegangen, dass bei dem
Hersteller von Compliancelosungen fiir Prozesse der Bedarf fiir ein
neues Compliancetemplate erkannt wird. Dieser Bedarf kann zum
Beispiel durch einen Kunden ausgeltst werden. Das laufende Beispiel
dieser Arbeit aus Abbildung 4.1 aufgreifend, konnte die Krankenhaus-
verwaltung des Roten Kreuzes von Hong Kong dieser Kunde sein.

146 6 | Gemeinsame Erstellung regelkonformer Prozesse

Erkenntnis:
Bedarf
vorhanden

Verwalter

Prozess:
Vorlagen-

Projekt
Management

Compliancetemplate Lieferant

Prozess:
Entwickler

Compliance-
Template
erstellen

Compliance-
Scopes und
Domains
einfiigen

Sammlung

Compliance-Regeln
relevanter fur neues
Compliance- Compliancetemplate

Regeln definieren

Compliance-
Beratung
Compliance-
Experte

2

Compliance-
Template

Prozess
uberprifen
Complanceregel verletz

Prozess
ausfiihren

-0

Kunde

fullen

Prozess:
Entwickler
(Kunde)

Abbildung 6.1.: Ablauf der Erstellung regelkonformer Prozesse. Nota-
tion: angelehnt an BPMN

Der Bedarf konnte hier darin bestanden haben, die Schritte, die bei
einer Blutabnahme durchzufiihren sind, zu standardisieren. Weiter-
hin konnte die verbesserte Dokumentation von Blutentnahmen eine
Anforderung gewesen sein. Um die Komplexitdt von Abbildung 6.1
in Grenzen zu halten, wird das Auslosen des Bedarfs nicht gezeigt.
Die Anwendung der Methodik verlangt die Definition verschiedener
Rollen. Diese Rollen konnen von Teilbereichen oder Einzelpersonen in
einer Organisation ausgefiillt werden. Die folgende Liste erklart die in

Abbildung 6.1 verwendeten Rollen.

* Verantwortlicher fiir Compliancetemplates: Ein Inhaber die-
ser Rolle ist fiir die Erstellung und Wartung einzelner Complian-

cetemplates oder Mengen von Compliancetemplates verantwort-

6.1 | Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner 147

lich, wobei die eigentliche Entwicklung an weitere Personen
vergeben oder ausgelagert werden kann. Der Verantwortliche
fiir ein Compliancetemplate ist Ansprechpartner fiir alle Belange,

die das Compliancetemplate betreffen.

Prozess-Modellierer: Ein Prozessmodellierer ist mit der Erstel-

lung und Anderung von Compliancetemplates betraut.

Complianceexperte: Ein Complianceexperte verfiigt iiber Fach-
wissen im Bereich der Gesetze, die bei der Erstellung und dem
Betrieb von Prozessen Anwendung finden. Thm kommt die Rolle
zu, mit den Rechtsprechungen in verschiedenen Landern beziig-
lich der Erstellung und der Ausfiihrung von Prozessen vertraut

Zu sein.

Prozessmodellierer (Kunde): Der Prozess-Modellierer auf Sei-
ten des Kunden ist fiir die Vervollstindigung von Complian-
cetemplates zustdndig. Inhaber dieser Rolle stellen aus einem
Compliancetemplate, einen vollstindigen Prozess her. Dies ge-
schieht mit den in Kapitel 4.2 vorgestellten Mitteln.

Nachdem der Bedarf fiir ein neues Compliancetemplate festgestellt

wurde, wird ein Projekt erstellt, an dem Personen mit den beschriebe-

nen Rollen mitarbeiten. Dieses Projekt wird vom Projektmanagement

bis zur Fertigstellung des neuen Compliancetemplates betreut. Das

Compliancetemplate ist nach dem Schritt Compliance- Scopes und Do-

mains einfiigen fertiggestellt. Im Schritt der Projekterstellung werden

Personen mit den benotigten Kenntnissen in das Projekt eingebunden.

Weiterhin wird ein Einsatzbereich abgesteckt, in dem das zu erstel-

lende Compliancetemplate angesiedelt sein soll. Dieser Bereich kann

6 | Gemeinsame Erstellung regelkonformer Prozesse

zum Beispiel mit wirtschaftlichen oder geographischen Eigenschaften
des Compliancetemplates beschrieben sein. In dem laufenden Beispiel
dieser Arbeit ist dies der medizinische Bereich. In diesem Projektschritt
werden auch die funktionalen Anforderungen festgelegt, die das neue
Compliancetemplate implementieren muss. Hiermit wird festgelegt,
welchen Zweck das neue Compliancetemplate erfiillen muss.

Nachdem das Projekt erstellt wurde, kann die Sammlung der fiir
das neue Compliancetemplate relevanten Complianceregeln begin-
nen. Dies geschieht unter Beachtung des vom Projektmanagement fiir
das neue Compliancetemplate gesteckten wirtschaftlichen Rahmens.
In diesem Schritt wird analysiert, welche Anforderungen beziiglich
der Rechtssicherheit des zu erstellenden Compliancetemplates beach-
tet werden miissen. Es muss beispielsweise herangezogen werden,
in welchem wirtschaftlichen Bereich ein Prozess ausgefiihrt werden
soll, der mit dem neuen Compliancetemplate erstellt wird. Weiterhin
miissen die fiir das zu erstellende Compliancetemplate relevanten
Gesetzestexte ausgewahlt werden. Nach der Auswahl miissen diese
Gesetzestexte analysiert und in Complianceregeln iibersetzt werden,
die auf IT-unterstiitzte Prozesse anwendbar sind. Dieser Schritt ist
notwendig, da Gesetzestexte nicht direkt mit Hinblick auf Prozes-
se geschrieben werden. Im laufenden Beispiel dieser Arbeit ist der
wirtschaftliche Bereich, fiir den die geltenden Complianceregeln aus-
gewdahlt werden sollen, der medizinische Bereich. Hier ist der Schutz
der Privatsphire der Patienten von zentraler Bedeutung. Compliance-
regeln, die den Umgang mit Personendaten betreffen, sind in diesem
Bereich restriktiver als in anderen Bereichen.

Die so entstandene Sammlung von Complianceregeln, die fiir den

wirtschaftlichen Rahmen gelten, in dem das neue Compliancetempla-

6.1 | Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner 149

te eingesetzt werden soll, wird im néchsten Schritt verwendet, um
diejenigen Complianceregeln auszuwahlen, die auf das neue Complian-
cetemplate angewendet werden sollen. Die Entscheidungen, welche
Complianceregeln dies sind, wird anhand mehrerer Kriterien getrof-
fen. Erstens werden nur Complianceregeln in Betracht gezogen, die
im vorhergegangenen Schritt des Erstellungsprozesses als relevant
bezeichnet wurden. Zweitens werden die funktionalen Anforderun-
gen in Betracht gezogen, die das zu erstellende Compliancetemplate
implementieren muss.

Nach der Auswahl der Complianceregeln folgt deren Ubersetzung in
eine maschinenlesbare Sprache. Dieser Schritt ist notwendig, da viele
Complianceregeln Interpretationen von Gesetzestexten sind. Die Uber-
setzung von Complianceregeln in maschinenlesbare Ausdriicke wird
von Complianceexperten durchgefiihrt. Eine solche maschinenlesbare
Sprache ist zum Beispiel LTL oder die in Kapitel 5.5.1 vorgestellte Spra-
che zur Definition von datenbasierten Complianceregeln. Im Schritt
Compliancetemplate erstellen wird das Compliancetemplate von ei-
nem Prozessmodellierer unter Beriicksichtigung der einzuhaltenden
Complianceregeln erstellt. Das Compliancetemplate wird so erstellt,
dass es die einzuhaltenden Complianceregeln implementiert. Im lau-
fenden Beispiel stellt eine solche Complianceregel die Uberpriifung
der Blutproben von mindestens zwei unabhéngigen Seiten sicher. Des
Weiteren werden die Regionen definiert, die beim Vervollstindigen des
Compliancetemplates mit neuen Aktivitaten gefiillt werden konnen.

Sollte es notwendig sein, konnen im nichsten Schritt Compliance-
scopes und Compliancedomains in das neue Compliancetemplate ein-
gefiigt werden. Compliancescopes kénnen beim Vervollstindigen von

Compliancetemplates wichtig sein, wenn durch den Anwender An-

150 6 | Gemeinsame Erstellung regelkonformer Prozesse

derungen an bereits eingefiigten Prozessfragmenten vorgenommen
werden. Mittels der Compliancescopes kann der Umfang der zugelas-
senen Anderungsmoglichkeiten eingeschriankt werden. Zum Beispiel
ist es vorstellbar, dass im Compliancetemplate fiir die Blutentnahme
des Roten Kreuzes Hong Kong, die Blutentnahmeaktivitat durch eine
neuere Version ersetzt wird.

Nach der Fertigstellung kann das Compliancetemplate an einen
Kunden iibergeben werden. Dieser verwendet Werkzeuge, die die
unautorisierte Arbeit mit Compliancetemplates unterbinden. Diese
Werkzeuge implementieren die in dieser Arbeit vorgestellten Konzepte.

6.2. Werkzeuge fiir die Erstellung regelkonformer Prozesse

Alle Softwarekomponenten, die an der Erstellung eines regelkonfor-
men Prozesses beteiligt sind, miissen bestimmten Anforderungen ge-
niigen. In der folgenden Liste sind diese Komponenten aufgelistet und
die dazugehorigen Anforderungen beschrieben. Abbildung 6.2 zeigt,

wie diese Komponenten verbunden sind.

* Sicheres Templaterepository: Priift beim Lesen und Schreiben
die Integritdt von Compliancetemplates und Prozessen. Das Le-
sen aus dem Repository und Schreiben in das Repository ist nur
fiir Personen und Werkzeuge erlaubt, die sich am Repository
erfolgreich {iber eine dafiir bereitgestellte Schnittstelle authen-
tifiziert haben. Dies kann mit Authentifizierungsmechanismen,
die mit asymmetrischen Schliisseln arbeiten, erreicht werden.
Das Templaterepository dient somit dem Ziel den Zugang zu
Compliancetemplates und Prozessen, die mit Compliancescopes

und Compliancedomains versehen sind, zu beschréanken.

6.2 | Werkzeuge fUr die Erstellung regelkonformer Prozesse 151

Compliance- Prozess-
Sicheres template Entwicklungs- modell Compliance-

Template- werkzeug checker
repository

Abbildung 6.2.: Konzeptionelle Ubersicht iiber die Komponenten, die
fiir die Entwicklung regelkonformer Prozesse mitein-
ander arbeiten miissen.

* Entwicklungswerkzeug fiir Prozesse: Ein Entwicklungswerk-
zeug fiir die Entwicklung regelkonformer Prozesse muss die
in dieser Arbeit vorgestellten Konzepte implementieren. Das

Entwicklungswerkzeug kann auch ein einfacher Texteditor sein.

* Compliancechecker: Diese Komponente ist fiir die automati-
sche Untersuchung von Prozessmodellen zustdndig. Mit ihr kon-
nen Prozessmodelle nach einer Modifikation auf Einhaltung von

Complianceregeln iiberpriift werden.

Mit diesen Werkzeugen kann das Compliancetemplate zu einem
syntaktisch korrekten Prozess vervollstdndigt werden. Es wird hier-
bei an den dafiir vorgesehenen Stellen, den Complianceregionen, mit
weiteren Aktivitiaten befiillt. Ein Compliancetemplate kann nach jeder
Modifikation automatisch auf Complianceregelverletzungen tiberpriift
werden. Es kann auch nach Abschluss einer Reihe von Modifikationen
automatisch iiberpriift werden. Bei der Erstellung von Prozessen sind
oft mehrere Personen mit unterschiedlichen Fihigkeiten beteiligt, die

verschiedene Ziele bei der Vervollstindigung eines Compliancetempla-

152 6 | Gemeinsame Erstellung regelkonformer Prozesse

tes verfolgen. In heutigen, global agierenden Unternehmen, kénnen
Personen weit voneinander entfernt sein, so dass eine direkte Zusam-
menarbeit erschwert ist. Das folgende Kapitel beschreibt ein Konzept

zur gemeinschaftlichen Vervollstindigung von Compliancetemplates.

6.3. Vervollstiandigungsebenen: Ein Konzept zur
gemeinschaftlichen Entwicklung regelkonformer Prozesse

Analog zur Erstellung herkommlicher Software konnen am Entste-
hungsprozess von Prozessmodellen mehrere Modellierer beteiligt sein.
Ausschlaggebend ist hierbei zum einen, dass fiir den Entwicklungspro-
zess Modellierer mit unterschiedlichen Fahigkeiten benotigt werden,
und zum anderen die durch Parallelentwicklung von Teilprozessen
erreichte Zeitersparnis. Ein Konzept, das dabei hilft, die Zusammenar-
beit verschiedener Personen bei der Erstellung eines Prozessmodells
zu steuern, ist das Konzept der Vervollstidndigungsebenen [SALS10].
Die beiden Hauptmerkmale von Vervollstindigungsebenen sind:

* Kontrollflusskonnektoren kdnnen die Grenzen von Vervollstén-
digungsebenen iiberqueren. Dies resultiert daraus, dass Vervoll-
standigungsebenen von ihren zugrundeliegenden Compliance-

scopes begrenzt werden

* Sie konnen beliebige Mengen von Elementen eines Prozesses
enthalten. Zum Beispiel ist es erlaubt Vervollstdndigungsebenen
zu bilden, die keine Aktivitdten enthalten. Dies resultiert daraus,
dass Vervollstdndigungsebenen von ihren zugrundeliegenden

Compliancescopes begrenzt werden

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

* Vervollstandigungsebenen kénnen sich mit anderen Complian-
cescopes iiberlappen. Das heilst, sie konnen Teilmengen von
BPMN-Elementen von anderen Vervollstindigungsebenen ent-
halten.

* Sie reprisentieren Phasen des Prozesses, mit dem auf Grund-
lage von Compliancetemplates, Prozessmodelle vervollstdndigt
werden. Diese Phasen werden zum Beispiel in Abbildung 6.3 als

Ebenen dargestellt.

* Sie stellen ein Sichtenkonzept nach [SLS10] dar, das zeigt, wel-
che Informationen in einer bestimmten Phase des Prozesses
der Vervollstindigung eines Compliancetemplates herangezogen

werden konnen.

Das in diesem Kapitel vorgestellte Konzept ist in der in Abbildung 6.1
gezeigten Methodik an der Stelle Compliancetemplate fiillen einsetzbar.

Vervollstindigungsebenen konnen bei der Arbeit mit externen Ex-
perten unterstiitzend eingesetzt werden, wenn ihnen zum Beispiel
lediglich der Zugang zu den Vervollstindigungsebenen und somit
Prozessinformationen gewahrt wird, die fiir die Beratung noétig sind.
Dadurch miissen Firmen nicht komplette Prozesse offen legen, um
Expertenrat einzuholen.

Weiterhin dienen Vervollstandigungsebenen der Reduktion der Kom-
plexitét bei der Arbeit an einem Prozessmodell. Auf bestimmten Ver-
vollstdndigungsebenen ist zum Beispiel nicht das gesamte Prozessmo-
dell zu sehen, sondern nur der Teil, der gerade von einer bestimmten
Person vervollstdndigt wird. Dieser Ansatz des Ausblendens von Infor-

mationen, die fiir ein bestimmtes Problem unnétig sind, nennt man

154 6 | Gemeinsame Erstellung regelkonformer Prozesse

den Teile-und-herrsche-Ansatz. Dieser Ansatz ist grundlegend fiir die
Bearbeitung von Problemen, die zu groR sind, um in einem Schritt
gelost zu werden. Dabei wird das Gesamtproblem in Teilprobleme zer-
legt, die fiir sich gelost werden miissen, um eine Losung des Gesamt-
problems zu bekommen. Vervollstindigungsebenen zwingen hierbei
die an der Erstellung eines Prozessmodells beteiligten Personen den
Teile-und-herrsche-Ansatz fiir die Erstellung des Prozessmodells zu
verwenden. Dies folgt zum Beispiel daraus, dass zu einem bestimmten
Zeitpunkt wihrend der Vervollstindigung nur bestimmte Teile des zu
bearbeitenden Prozessmodells sichtbar sind. Im Gegensatz zu BPMN
Subprozessen konnen Compliancescopes beliebige Teilmengen von
Elementen eines Prozesses enthalten (siehe Kapitel 4.3.1). Vervollstdn-
digungsebenen visualisieren diese Teilmengen von Elementen eines
Prozesses.

Abbildung 6.3 zeigt, wie aus einem Compliancetemplate {iber mehre-
re Vervollstindigungsebenen hinweg ein vollstindiger Prozess entsteht.
Vollstindig ist ein Prozess dann, wenn im Prozess keine nicht befiillte
Complianceregion mehr existiert.

Auf Vervollstandigungsebene 1 wird ein Compliancetemplate ver-
wendet, welches schon eine fiir den spéteren Prozess wichtige Menge
an Complianceregeln implementiert. Um beim Beispielszenario aus
Kapitel 4 zu bleiben, konnte dieses Compliancetemplate das in Abbil-
dung 4.2 gezeigte sein. Es konnte somit auf Vervollstindigungsebene
1 die Erstellung eines neuen Blutentnahmeprozesses angestol3en wer-
den. Durch das Einfiigen neuer Aktivititen in eine Complianceregion
auf einer Vervollstindigungsebene wird eine neue Vervollstandigungs-
ebene aufgespannt. In Abbildung 6.3 wird durch das Einfiigen von

Aktivitdten in Complianceregion A die Vervollstdndigungsebene zwei

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

=N N N
Vervollstandigungs-
Ebene 3
Weiterleitung der

Complianceregeln

Caund Cg

Vervollstandigungs-
Ebene 2

Weiterleitung der
Complianceregel
Ca

Vervollstandigung

Vervollstandigungs-
Ebene 1

Abbildung 6.3.: Beispiel: Vervollstandigungsebenen; Weiterleitung
von Complianceregeln (vergleiche [SALS10])

aufgespannt.

Die in Complianceregion A eingefiigte Menge von Aktivititen ent-
hilt wiederum eine Complianceregion. Diese muss mit Aktivitdten
gefiillt werden, um einen syntaktisch korrekten Prozess zu bekommen.
Dies geschieht auf Vervollstindigungsebene 3. Die auf Vervollstandi-
gungsebene 3 eingefiigte Menge von Aktivitdten enthéalt keine weitere
Complianceregion. Somit sind alle Complianceregionen in diesem
Beispiel mit Aktivitdten gefiillt. Der Prozess ist syntaktisch korrekt.
Abbildung 6.3 zeigt weiterhin, wie Complianceregeln zwischen den
Vervollstaindigungsebenen weitergereicht werden. Darauf wird im fol-
genden Kapitel eingegangen.

Eine Vervollstdndigungsebene ist durch ein Tupel

v = (c, vy, Vi) mit

156 6 | Gemeinsame Erstellung regelkonformer Prozesse

* ¢ €(als einem Compliancetemplate aus der Menge aller Com-

pliancetemplates C,

* vy €V als der Vatervervollstindigungsebene aus der Menge der

Vervollstdndigungsebenen V und

* Vi als der Menge der Kind-Vervollstdandigungsebenen von V

beschrieben.

Um die Vatervervollstidndigungsebene v, einer Vervollstindigungs-
ebene v zu bestimmen, wird die Funktion vater definiert. Jede Ver-
vollstindigungsebene hat keine oder hochstens eine Vatervervollstan-

digungsebene. Deshalb definieren wir
vater :V -V U@.

Die Vatervervollstindigungsebene v, wird berechnet, indem man
einen Compliancescope s; aus der Menge aller Compliancescopes
S; einer anderen Vervollstandigungsebenen v; findet, der dieselben
Aktivitiaten enthélt, die in der Vervollstdndigungsebene v enthalten
sind.

Weiter wird die Funktion akt mit A als der Menge aller Aktivitdten
und P als der Menge aller Prozesselemente, die Aktivitdten enthalten

konnen, definiert:
akt : P — A.

Mit akt(v), als der Menge aller Aktivitaten einer Vervollstindigungs-

ebene v und akt(s), als der Menge aller Aktivitdten eines Complian-

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

cescopes s kann die Vatervervollstindigungsebene v, einer Vervollstan-

digungsebene v wie folgt berechnet werden:
vater(v) =vy, € V mits; €S; A akt(v) = akt(s)

Zur Bestimmung der Kindervervollstdndigungsebenen wird die Funk-
tion kinder definiert. Jede Vervollstindigungsebene hat entweder kein

Kind oder eine beliebig grofse Menge von Kindern:
kinder : V — 2",

Die Menge der Kindervervollstandigungsebenen Vi wird berechnet,
indem man fiir jeden Compliancescope s; aus der Menge aller Com-
pliancescopes S; der Vervollstindigungsebene v priift, ob die Menge
der Aktivitaten akt(v;) gleich der Menge der Aktivitdten akt(s;) ist.
Diese Vervollstindigungsebene wird zur Menge der Kindervervollstan-

digungsebenen Vi von v hinzugefiigt.
kinder(v) = Vi € 2V mit Vv € Vi As; €8, : akt(s;) = akt(vy)

6.3.1. Verschachtelte Complianceregeln und Flexibilitét

Complianceregionen sind mit Complianceregeln verkniipft. Fiigt man
eine Complianceregion in ein Prozessmodell ein, so werden auto-
matisch auch die mit ihr verkniipften Complianceregeln in das Pro-
zessmodell iibernommen. Auf jeder der in Abbildung 6.3 gezeigten
Vervollstandigungsebenen kénnen durch das Einfiigen weiterer Com-

plianceregionen neue Complianceregeln eingefithrt werden, die im

158 6 | Gemeinsame Erstellung regelkonformer Prozesse

urspriinglichen Compliancetemplate nicht vorhanden waren. Damit
ist es moglich, dass zum Beispiel externe Berater bei der Vervollstandi-
gung eines Compliancetemplates spezielle, fiir ihr Fachgebiet wichtige
Complianceregeln einfiigen.

Durch die Mdglichkeit des Einfiigens weiterer Complianceregionen
in ein Compliancetemplate ergeben sich Probleme, die im Folgenden
erldutert werden. Das erste Problem tritt beim Einfiigen einer Menge
von Aktivitaten in ein Compliancetemplate auf, welches mindestens
eine Complianceregion enthélt. Dies wird in Abbildung 6.4 auf Ver-
vollstindigungsebene 1 gezeigt. Hier wird in die Complianceregion
(schraffiert) die Menge von vier Aktivititen eingefiigt, die auf Vervoll-
standigungsebene zwei gezeigt wird. In dieser Menge ist wiederum
eine Complianceregion (schraffiert) enthalten. Mit beiden Complian-
ceregionen sind Complianceregeln verkniipft, die in Abbildung 6.4
vereinfacht dargestellt sind. Die Complianceregeln auf Vervollstdndi-
gungsebene 1 verhindern, dass eine Aktivitdt vom Typ A in die mit
ihr verkniipfte Complianceregion eingefiigt wird. Die Compliance-
regel auf Vervollstdandigungsebene zwei dagegen besagt, dass eine
Aktivitdt vom Typ A in diese mit ihr verbundene Complianceregion
eingefiigt werden muss. Beim Einfiigen von Aktivititen in die in Ver-
vollstdndigungsebene zwei platzierte Complianceregion miissen beide
Complianceregeln beachtet werden. Die auf Vervollstdndigungsebe-
ne drei eingefiigten Aktivititen werden in die Complianceregion auf
Vervollstindigungsebene zwei eingefiigt und damit implizit auch in
die Complianceregion auf Vervollstindigungsebene 1. Die beiden mit
diesen Complianceregionen verkniipften Complianceregeln schliel3en
sich jedoch gegenseitig aus. Das bedeutet, dass das Erfiillen der einen

Complianceregel das Nichterfiillen der anderen Complianceregel zur

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

Folge hat. Fiigt man zum Beispiel auf Vervollstindigungsebene drei
eine Aktivitdt vom Typ A ein, so ist die Complianceregel von Vervoll-
stindigungsebene zwei erfiillt. Jedoch ist die Complianceregel von
Vervollstindigungsebene 1 verletzt.

Das zugrundeliegende Konzept der Verarbeitung von Compliance-
regeln bei der Arbeit mit Vervollstindigungsebenen ist die Weiter-
leitung von Complianceregeln. Complianceregeln, die auf tieferen
Vervollstindigungsebenen eingefiigt wurden, werden, wie in Abbil-
dung 6.3 gezeigt, an hohere Vervollstindigungsebenen weitergeleitet.
Bei der Weiterleitung von Complianceregeln zwischen Vervollstandi-
gungsebenen werden die fiir eine Vervollstindigungsebene geltenden
Complianceregeln miteinander verschmolzen. Da diese Arbeit mit Li-
nearer Temporaler Logik (LTL) und einer neuen Sprache zur Definition
datenbasierter Complianceregeln arbeitet, ist im Folgenden die Funk-
tion verschmelze zur Verschmelzung von Complianceregeln, die mit
diesen Sprachen geschrieben sind, definiert. Mit M, als der Menge
zu verschmelzender Ausdriicke, und V, als der Menge aller logischen

Ausdriicke, gilt:
verschmelze : M — V
Die Funktion verschmelze ist wie folgt definiert:
verschmelge(a,b) =aAbmita,be M
In dieser Arbeit wird angenommen, dass die Funktion verschmelze

so implementiert ist, dass sie zwei logische Ausdriicke A und B mittels

einer Konjunktion verbindet. Die Konjunktion wird verwendet, da ein

160 6 | Gemeinsame Erstellung regelkonformer Prozesse

Vervollstandigungs-
Ebene 3

Vervollstandigungs-
Ebene 2
Direkter
Ca Konflikt

Vervollstandigungs-
Ebene 1

Abbildung 6.4.: Entstehung eines Konflikts beim Einfiigen von Com-
plianceregionen (vergleiche [SALS10])

durch Verschmelzung entstandener Ausdruck dann den Wahrheitswert

1 annehmen soll, wenn alle Teilausdriicke wahr sind.

6.3.2. Erfillbarkeit verschmolzener Regelsitze

Kontrollflussbasierte Complianceregeln werden in der vorliegenden
Arbeit mittels Linearer Temporaler Logik (LTL) beschrieben. Eine Ei-
genschaft von Ausdriicken in LTL ist die Moglichkeit, dass ein solcher
Ausdruck nicht erfiillbar ist. Das bedeutet, dass es fiir einen unerfiill-
baren Ausdruck in LTL keine Belegung gibt, fiir die der Ausdruck den
Wahrheitswert wahr annimmt. Eine Belegung definiert die Zuweisung

von Werten zu den Variablen einer logischen Formel.

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajg?

regelkonformer Prozesse

Complianceregeln, die durch Verschmelzung, wie im Kapitel 6.3.1
gezeigt, entstanden sind, kénnen unerfiillbar sein. Grund dafiir ist,
dass bei der Auswertung der verschmolzenen Complianceregel die
Teilausdriicke separat mittels Funktionen ausgewertet werden. Diese
Teilausdriicke konnen somit als Variablen der verschmolzenen aussa-
genlogischen Formel angesehen werden. Da Aussagenlogische Aus-
driicke unerfiillbar sein konnen, gilt fiir eine durch Verschmelzung
entstandene Complianceregel der Erfiillbarkeitsbegriff der Aussagen-

logik.

6.3.3. Behandlung erfiillter Complianceregeln

Im Hinblick auf die automatische Uberpriifung von Prozessmodellen
anhand von mit ihnen verkniipften Complianceregeln sollten diese
Complianceregeln so einfach wie moglich sein. Dafiir spricht die expo-
nentielle Laufzeit [Var01] von Modelchecking Algorithmen.

Beim Einfiigen von Mengen von Aktivititen in ein Prozessmodell
kann der Fall auftreten, dass eine Complianceregel erfiillt wird. Wird
durch das Einfiigen von Aktivititen in Complianceregionen ein Teil
einer Complianceregel erfiillt, so muss dieser Teil bei der weiteren
Befiillung des Prozessmodells nicht mehr bei automatischen Uberprii-
fungen beachtet werden. Diese Complianceregeln werden nicht an die
néchst hohere Vervollstindigungsebene weitergeleitet. Dies wird im
Folgenden erldutert.

Abbildung 6.5 zeigt mehrere Beispiele fiir die Weiterleitung nicht
erfiillter Complianceregeln. Die auf Vervollstindigungsebene 1 einge-
fiihrte Complianceregel Cy driickt aus, dass eine Aktivitdt vom Typ

X eingefiigt werden muss. Die Complianceregel Cy wird durch das

162 6 | Gemeinsame Erstellung regelkonformer Prozesse

Vervollstandigungs-
Ebene 3

Vervollstéandigungs-
Ebene 2

Vervollstandigungs-
Ebene 1

Abbildung 6.5.: Weiterleitung von nicht erfiillten Complianceregeln
(vergleiche [SALS10])

Einfligen der Aktivitdt X auf Vervollstindigungsebene 2 erfiillt und
somit nicht weitergeleitet. Welche Complianceregeln weitergeleitet
werden diirfen, kann automatisch mit einem Modelchecker berechnet
werden. Dafiir wird jede Teilregel einer kombinierten Complianceregel
einzeln auf Erfiillung durch die zugrundeliegende Complianceregion
tiberpriift. Ist die Teilregel erfiillt, muss sie nicht weitergeleitet werden.
Einzig die Complianceregel Cy wird weitergeleitet. Parallel dazu wird
auf Vervollstdndigungsebene zwei die Complianceregel C, eingefiihrt.
C, wird mit der Complianceregel Cy zur Vervollstindigungsebene
drei weitergeleitet. Hier werden die beiden Complianceregeln Cy und
C, durch das Einfiigen der Aktivitdten Y und Z erfiillt. Weiterhin ist

hier der Vorgang der Vervollstindigung dieses Compliancetemplates

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

beendet, da alle Complianceregionen mit mindestens einer Aktivitét
befiillt worden sind.

6.3.4. Auftreten von Konflikten zwischen Complianceregeln

Durch das Weiterleiten und Verschmelzen von Complianceregeln ent-
stehen zwei Arten von Konflikten, die beim Vervollstdndigen von Com-
pliancetemplates auftreten konnen, direkte und indirekte Konflikte. Ein
Konflikt tritt auf, wenn zwei sich gegenseitig ausschlieRende logische
Ausdriicke bei der Weiterleitung von Complianceregeln zwischen Ver-
vollstdndigungsebenen miteinander verkniipft werden. Hierbei ist zu
beachten, dass fiir zwei sich gegenseitig ausschlieBende Ausdriicke A
und B gilt:

(A< -B) (6.1)

Mit V, als der Menge aller Vervollstindigungsebenen gilt. Ein di-

rekter Konflikt wird mit zwei Vervollstindigungsebenen v, € V und

vy, € V wie folgt bestimmt. v, ist ein Element der Menge der Kindver-
vollstandigungsebenen von v,:

vy € kinder(v,)

Weiter wird die Funktion cr mit S als der Menge aller Compliance-

scopes und R als der Menge aller Complianceregeln definiert:

cr:S—R.

164 6 | Gemeinsame Erstellung regelkonformer Prozesse

Mit S, als der Menge aller Compliancescopes der Vervollstandi-
gungsebene v, und akt(s,), als der Funktion, die die Menge der im
Compliancescope s, € S, enthaltenen Aktivitdten zuriick gibt, gilt. Die
Funktion cr(s,) gibt die mit dem Compliancescope s, € S, verkniipfte
Complianceregel zuriick. Ein Konflikt wird direkt genannt, wenn die
Negation von cr(s,) mit einer auf v, liegenden Complianceregion s,
verkniipft ist.

Sei der Compliancescope s, € akt(s,). Ein Konflikt wird indirekt
genannt, wenn die Negation von cr(s,) mit einer auf v, liegenden
Complianceregion s; verkniipft ist.

Mit der Funktion konf [wird berechnet, ob ein Konflikt direkt oder

indirekt ist, oder ob kein Konflikt vorliegt.

direkt, mits, €S, Asp € akt(S,) Acr(s,) = —cr(Sy)
konfl(s,,sp) = 1 indirekt, mits, €S, Asy € akt(S,) A—cr(sy) =cr(Sy)

kein, andernfalls

Ein Konflikt kann beseitigt werden, wenn mindestens eine der bei-
den am Konflikt beteiligten Formeln gedndert wird. Unter Verwendung
des in Abschnitt 6.3.3 beschriebenen Konzepts zur Loschung von erfiill-
ten Teilausdriicken von Complianceregeln, kann eine Complianceregel
auch durch das Einfiigen einer neuen Aktivitdt gedndert werden. Da
eine erfiillte Teil-Complianceregel nicht mehr zur automatischen Uber-
priifung herangezogen wird, hat sich die effektiv zu {iberpriifende
Complianceregel gedndert.

Ein indirekter Konflikt kann durch das Einfiigen von Aktivititen in

ein Prozessmodell beseitigt werden, wenn das Einfiigen einer Men-

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

Vervollstandigungs-
Ebene 2

Vervollstandigungs-
Ebene 1
Y c

Abbildung 6.6.: Beseitigung eines indirekten Konflikts. Durch das Ein-
fligen der Aktivitit A auf Vervollstindigungsebene
2 wird die Complianceregel C, geloscht, so dass sie
nicht mehr bei der automatischen Uberpriifung her-
angezogen wird. Folglich wird bei der automatischen
Uberpriifung der unerfiillbare Ausdruck C, A =Cy4 in
den erfiillbaren Ausdruck —C, tberfiihrt.

ge von Aktivititen die positive der beiden in Konflikt stehenden
Complianceregeln erfiillt. Somit kann der erfiillte Teil der verschmol-
zenen Complianceregel aus dem Ausdruck entfernt werden. Der Aus-
druck ist damit erfiillbar.

Direkte Konflikte kénnen nicht durch das Einfiigen von Aktivititen
beseitigt werden.

Abbildung 6.6 zeigt ein Beispiel fiir das Beseitigen eines indirekten
Konflikts. Die auf Vervollstindigungsebene 1 eingefiihrte Compliance-
regel C, wird durch das Einfiigen der Aktivitdt A auf Vervollstandi-
gungsebene 2 erfiillt. Sie kann deshalb geloscht werden und wird

166 6 | Gemeinsame Erstellung regelkonformer Prozesse

damit nicht mehr bei der automatischen Uberpriifung beachtet. Die
Complianceregeln, die zur Uberpriifung des Prozessmodells verwendet
werden, sind somit erfiillbar. Die auf der Vervollstdndigungsebene 2
gezeigte verschmolzene Complianceregel stellt dies dar.

Ein direkter Konflikt kann nicht durch Einfiigen von Aktivititen
in einen Prozess beseitigt werden. Dies riihrt daher, dass bei einem
direkten Konflikt der umgekehrte Fall des in Abbildung 6.6 gezeigten
Szenarios eintritt. Das heil3t, die auf Vervollstindigungsebene 1 ge-
zeigte Complianceregel miisste statt C, (C_4) heilen. Dies bedeutet,
dass in die schraffierte Aktivitit auf Vervollstindigungsebene 1 keine
Aktivitdt vom Typ A eingefiigt werden darf. Diese Regel gilt erst dann
als erfiillt, wenn der Prozess mit anderen Aktivitidten befiillt und somit
syntaktisch korrekt ist. Eine negative Complianceregel muss also zu
jeder Zeit wihrend der Befiillung eines Prozessmodells erfiillt sein.
Tritt ein Konflikt mit einer negativen, auf einer niedrigen Vervollsténdi-
gungsebene verkniipften Complianceregel auf, so muss dieser Konflikt
durch Umschreiben der Complianceregeln aufgelost werden. Zum
Beispiel konnte die negative Complianceregel erst auf einer héheren
Vervollstindigungsebene Anwendung finden.

Eine Einschrankung des Ansatzes der Prozesserstellung mit Vervoll-
standigungsebenen ist, dass Anderungen an einem Prozessmodell nur
von einer niedrigeren Vervollstdndigungsebene an eine hohere Vervoll-
stindigungsebene weitergegeben werden konnen, da das Weiterrei-
chen von Anderungen in die andere Richtung mit einigen Problemen
behaftet ist. Diese Probleme sollen hier genannt aber nicht bearbeitet

werden, da sie nicht im Fokus dieser Arbeit liegen.

6.3 | Vervollstadndigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklajgg
regelkonformer Prozesse

6.4. Uberpriifung von Complianceregeln von verschachtelten
Compliancescopes

Der Algorithmus zur Untersuchung von Complianceversté3en in Pro-
zessen mit ineinander verschachtelten Compliancescopes ist in Algo-
rithmus 6.1 dargestellt. Im Folgenden wird der Algorithmus erldutert.

Der Algorithmus untersucht rekursiv alle in einem Startcompliances-
cope enthaltenen Compliancescopes auf Verletzungen von Complian-
ceregeln. Er beginnt mit dem aktuell dul3ersten Compliancescope und
endet mit dem Uberpriifungsergebnis des innersten Compliancescopes.
Der Algorithmus endet zudem, wenn mindestens eine Compliance-
regel in einem beliebigen Compliancescope verletzt oder wenn eine
Complianceregel gefunden wurde, die unerfiillbar ist.

In Zeile 3 wird die mit dem als Parameter iibergebenen Complian-
cescope verkniipfte Complianceregel mit den Complianceregeln ver-
kniipft, die von dulleren Compliancescopes weitergegeben wurden.
Danach wird iiberpriift, ob diese kombinierte Complianceregel erfiill-
bar ist. Ist dies nicht der Fall, kann hier die Uberpriifung abgebrochen
werden, da eine unerfiillbare Complianceregel per Definition nie von
einem Prozess erfiillt werden kann.

Ist die kombinierte Complianceregel erfiillbar (Zeile 4), so wird das
Modelchecking des aktuellen Compliancescopes angestof3en (Zeile 7).
Bei diesem Schritt werden zusétzlich erfiillte Teilregeln der kombinier-
ten Complianceregel geloscht. Da diese Teilregeln erfiillt sind, miissen
sie nicht an innere Compliancescopes weitergegeben werden. Diese
Verkiirzung der aktuellen Complianceregel fiihrt zu kiirzeren Laufzei-
ten bei den Uberpriifungen der inneren Compliancescopes. Im besten

Fall kann die aktuelle Complianceregel vollstindig erfiillt sein, so dass

168 6 | Gemeinsame Erstellung regelkonformer Prozesse

Algorithmus 6.1 Beschreibung des Algorithmus der Uberpriifung von
Complianceregeln verschachtelter Compliancescopes in Pseudocode.
Vergleiche: [Burl2]
1: function cHECKCOMPLIANCE(ComplScope scope, ComplRule outer-
Rules)
ComplRule complRuleCurrentScope = scope.getComplRule();
ComplRule combinedComplRule = con-
cat(complRuleCurrentScope, outerRules);

w N

4 if satCheck(combinedComplRule) then
5 //Fulfilled compliance rules are deleted from
6: //combinedComplRule in method modelcheck.
7 if modelcheck(scope, combinedComplRule) then
8 List innerComplScopes = generatelnnerComplSco-
pes(scope);
9: if size(innerComplScopes) < 1 then
10: print(true);
11: else
12: for ComplScope innerScope in innerComplScopes
do
13: checkCompliance(innerScope, combinedCom-
plRule);
14: end for
15: end if
16: else
17: print(false);
18: end if
19: else
20: print(“Combined compliance rule not satisfiable.”);
21: end if

22: end function

6.4 | Uberpriifung von Complianceregeln von verschachtelten Compliancescop9

die Compliancepriifung innerer Compliancescopes nicht angesto3en
werden muss, falls der innere Compliancescope mit keiner eigenen
Complianceregel verkniipft ist.

Zeigt der Modelchecker einen Verstof$ gegen die kombinierte Com-
plianceregel des aktuellen Compliancescopes an, so wird ein Beispiel
generiert, das den Ausfiihrungspfad im Prozess bis zur Verletzung der
Complianceregel anzeigt. Wird keine Verletzung einer Compliancere-
gel des aktuellen Compliancescopes gefunden, so wird die Liste der
inneren Compliancescopes generiert (Zeile 8).

Sind keine inneren Compliancescopes vorhanden, kann die Uberprii-
fung abgebrochen und das Uberpriifungsergebnis ausgegeben werden
(Zeile 9). Das Ergebnis ist in diesem Fall positiv. Sind innere Complian-
cescopes vorhanden, wird diese Liste durchlaufen (Zeile 12). Jeder in
dieser Liste enthaltene Compliancescope ist ein Eingabeparameter fiir
den rekursiven Aufruf dieses Algorithmus. Abbildung 6.7 zeigt eine
in BPMN erstellte graphische Représentation des oben beschriebenen

Algorithmus.

170 6 | Gemeinsame Erstellung regelkonformer Prozesse

Complianceregel des
llen

> aktuelle
| Compliancescopes
holen

v o Ektueller

Complianceregel

Aktueller
Compliancescope

H Compli des aktuellen

Compliancescopes.

: mit Complianceregel des duBeren
Compliancescopes verkniipfen

Kombinierte
.. | complianceregel
Erfiillbarkeit der | ...-x""""
H kombinierten
Complianceregel
prifen

: —
H Kombiniert Ergebnis
Corr?p;r\‘ialr:‘:::::gel Erfillbarkeitspriifung

Complianceregel Complianceregel
Erfilibar

ohne positive
erfillite Teilformeln nicht erfulibar

N und Erkennung Er%?lgta”ru;t
: positiver erfallter ausgeben
e~ Teilregeln g

Ergebnis der
Compliancepriifung

H Complianceregel
: Complianceregel erfiillt nicht erfallt

: X

Liste innerer
Compliancescopes
generieren

Ergebnis
Modelchecking
ausgeben

Keine inneren
mpliancescopes

Liste innerer
Compliancescopes
Innere

+.. Compliancescopes
A vorhanden

Liste innerer
@ k

durchlaufen

0

Abbildung 6.7.: Beschreibung des Algorithmus der Uberpriifung von
Complianceregeln verschachtelter Compliancescopes
in BPMN. Quelle: [Burl2]

6.4 | Uberpriifung von Complianceregeln von verschachtelten Compliancescop@$

6.5. Zusammenfassung

Die in dieser Arbeit vorgestellten Konzepte, die der Unterstiitzung
menschlicher Prozessmodellierer dienen, miissen sinnvoll miteinander
kombiniert werden, um ihre volle Wirksamkeit entfalten zu konnen.
Bei der Erstellung von Prozessen miissen Werkzeuge eingesetzt wer-
den, die bestimmte Complianceregeln auf den Prozessen iiberpriifen.
Daraus folgt, dass es nicht moglich sein darf, die {iberwachte Erstellung
von Prozessen zu umgehen.

Dies wird durch eine in diesem Kapitel vorgestellte Methodik er-
reicht. Die Umsetzung dieser Methodik verlangt die Verwendung der
in dieser Arbeit vorgestellten Konzepte.

Der in diesem Kapitel vorgestellte BPMN-Prozess dient Organisa-
tionen als Anhaltspunkt, wie die verschiedenen Konzepte verbunden
werden sollten. Die Methodik besteht aber nicht nur aus diesem BPMN-
Prozess, sondern auch aus begleitenden Anforderungen. Die beiden
wichtigsten Anforderungen sind die im BPMN-Prozess verwendeten
Rollen, die in einer Organisation eingefiihrt werden miissen, damit die
Methodik umgesetzt werden kann. Weiterhin miissen auf der Seite der
IT-Infrastruktur Anforderungen erfiillt werden. Es muss zum Beispiel
ein Repository bereitgestellt werden, auf welches nur mit bestimm-
ten Werkzeugen zugegriffen werden kann. Diese Werkzeuge sind im
Sinne dieser Arbeit Prozessmodellierungswerkzeuge. Durch die Ein-
schrankung des Zugriffs auf das Prozessrepository ist von Beginn der
Entwicklung eines Prozesses festgelegt, dass Anderungen an Prozessen
nur mit den dafiir vorgesehenen Prozessmodellierungswerkzeugen
vorgenommen werden konnen.

Die Erstellung von Prozessen in Unternehmen verlangt oft die Ein-

172 6 | Gemeinsame Erstellung regelkonformer Prozesse

beziehung mehrerer Personen, die verschiedene Expertisen aufweisen.
Die Zusammenarbeit verschiedener Personen an einem Prozessmodell
wird innerhalb der in diesem Kapitel vorgestellten Methodik durch
das Konzept der Vervollstandigungsebenen geregelt. Die erste dieser
Vervollstindigungsebenen ist das Compliancetemplate auf dem der
spitere Prozess basiert. Hier werden die ersten Anderungen vollzogen
indem neue Aktivitdten eingefiigt werden. Eine weitere Vervollstidndi-
gungsebene wird geschaffen, wenn eine Complianceregion mit diesen
neuen Aktivitidten in das Prozessmodell eingefiigt wird. Auf der nachs-
ten Vervollstindigungsebene kann der Prozess weiter mit Aktivitdten
gefiillt werden, bis keine leere Complianceregion mehr {ibrig bleibt.
In diesem Kapitel wurde weiterhin ein Problem bei der Arbeit mit
Vervollstdndigungsebenen aufgezeigt. Beim Weiterleiten von Compliance-
regeln von einer niedrigeren Vervollstindigungsebene zu einer hohe-
ren kann es vorkommen, dass die daraus resultierenden Regelsitze
unerfiillbar werden. Dies miindet in Konflikten zwischen den ein-
zelnen Vervollstindigungsebenen, die entweder durch das Einfiigen
von Aktivititen auf héheren Vervollstindigungsebenen oder durch
menschliches Eingreifen behoben werden konnen. Konflikte konnen
sowohl Complianceregeln, die den Datenfluss eines Prozesses ein-
schranken, als auch Complianceregeln, die den Kontrollfluss eines
Prozesses einschrénken, betreffen. Auch Complianceregeln, die den
Datenfluss einschrianken, konnen sich gegenseitig ausschlieSen.

6.5 | Zusammenfassung 173

KAPITEL

PROTOTYP

Eine Evaluation der hier vorgestellten Konzepte erfolgt durch die Im-
plementierung in einem Prototyp. Der Prototyp implementiert und
integriert alle in dieser Arbeit vorgestellten Konzepte und Losungsan-
sédtze und ist unter http://www.danielschleicher. com erreich-

bar.

7.1. Funktionalitit des Prototyps

Dieser Abschnitt bietet eine Sicht auf die Funktionen des Prototyps
dieser Arbeit. Der Prototyp baut auf dem webbasierten BPMN-Editor
Oryx [DOWO08] auf.

Die folgende Liste an Funktionen wurde Oryx in dieser Arbeit hin-

zugefiigt:

1. Spezieller Task fiir Complianceregion: Die Menge von Sym-

175

http://www.danielschleicher.com

bolen der BPMN 1.0 Spezifikation wurde durch einen neuen
Task erweitert. Dieser Task stellt eine Complianceregion (siehe

Abschnitt 4.2) dar. Er ist durch ein Puzzle-Teil gekennzeichnet.

2. Modus zur Komplettierung von Compliancetemplates: Bei
der Befiillung von Compliancetemplates ist durch einen spezi-
ellen Modus sichergestellt, dass nur Complianceregionen mit

neuen Aktivitdten befiillt werden konnen.

3. Neue Form fiir die Erstellung von Compliancescopes und
Compliancedomains: Die Menge von Symbolen der BPMN 1.0
Spezifikation wurde durch eine neue Form erweitert. Mit ihr
kann man Compliancescopes (siehe Abschnitt 4) oder Com-
pliancedomains (siehe Abschnitt 5) modellieren. Diese Form
kann alle BPMN 1.0 Elemente enthalten. Aulerdem kénnen

Complianceregeln mit ihr verkniipft werden.

4. Uberpriifung von Compliancescopes und Compliancedomains:
Compliancescopes und Compliancedomains teilen ein Prozess-
modell in verschiedene Bereiche auf. Mit dem Prototyp ist es
moglich, einzelne Compliancescopes automatisch auf Verletzun-
gen von Complianceregeln untersuchen zu lassen. Hierbei kon-
nen beliebige in einem Prozessmodell vorhandene Compliance-
scopes oder Compliancedomains zur Uberpriifung ausgewihlt

werden.

5. Verkniipfung Complianceregeln mit Complianceregionen, Com-
pliancedomains oder Compliancescopes: Die in dieser Arbeit
gezeigten neuen Modellierungskonstrukte Complianceregion,
Compliancescope und Compliancedomain, mit denen BPMN

176 7 | Prototyp

1.0 erweitert wurde, konnen mit Complianceregeln verkniipft

werden.

6. Beispiel fiir Verletzung einer Complianceregel: Die in dieser
Arbeit verwendeten Modelchecker erzeugen beim Auffinden der
Verletzung einer Complianceregel ein Beispiel, das zeigt, wie die-
se Verletzung zustande kam. Dieses Beispiel wird in der Sprache
des Modelcheckers ausgegeben. Im Prototyp wird diese Ausgabe
transformiert und auf den aktuell {iberpriiften BPMN-Prozess
abgebildet. Damit ist es fiir menschliche Prozessmodellierer
leichter, Maf3nahmen zur Behebung von Regelverletzungen zu

ergreifen.

7. Verschachtelung von Compliancescopes: Compliancescopes
konnen ineinander verschachtelt werden.

8. Behandlung von Complianceregeln ineinander verschach-
telter Compliancescopes: Die Complianceregeln von ineinan-
der verschachtelten Compliancescopes werden nach dem in
Abschnitt 6.3 vorgestellten Mechanismus miteinander verkntipft
und auf Erfiillbarkeit gepriift.

9. Graphische Reprisentation von Vervollstindigungsebenen:
Vervollstindigungsebenen werden graphisch so reprisentiert,
dass alle Bereiche in einem Prozessmodell, die in einer Vervoll-
stindigungsebene gedndert werden diirfen, dunkel dargestellt

werden.

10. Verarbeitung von kontrollfluss- und datenflussbasierten Com-

plianceregeln: Der Prototyp ist dafiir ausgelegt, kontrollfluss-

7.1 | Funktionalitat des Prototyps 177

basierte (Sprache LTL) und datenflussbasierte (Sprache XPath)
Complianceregeln auf einem Prozessmodell zu {iberpriifen. Auch
koénnen diese beiden Arten von Complianceregeln miteinander
zu einer komplexen Complianceregeln (siehe Abschnitt 5.5)

kombiniert werden.

Bei den Arbeiten am Prototyp sind weitere Funktionalitdten entwi-
ckelt worden, die nicht direkt auf einen Beitrag dieser Dissertation
zuriickgefiihrt werden konnen. Sie entstanden, um Menschen weite-
re Moglichkeiten zur Verfiigung zu stellen komfortabel mit Oryx zu

arbeiten. Sie werden in der folgenden Liste kurz erldutert.

11. Graphische Modellierung von kontrollflussbasierten Com-
plianceregeln: Oryx wurde mit einem Plugin und einer Menge
von Symbolen erweitert, die es ermoglichen, LTL-Formeln gra-
phisch zu entwickeln.

Der zweite Grund fiir die Einfiihrung der graphischen Modellie-
rung von LTL-Formeln ist die Erleichterung des Umgangs mit
LTL-Formeln, damit von der abstrakten textuellen Représentati-
on Abstand genommen werden kann.

12. Bestimmung der Zeitabstinde der Uberpriifung von Compliance-
regeln: Es ist mit dem Prototyp moglich einzustellen, wie oft
eine automatische Uberpriifung des Prozessmodells durchge-
fiihrt werden soll. Es kann ein Zeitintervall eingestellt werden,
nach dessen Ablauf der Prozess automatisch auf Verletzungen
von Complianceregeln iiberpriift wird. Aullerdem kann festge-

legt werden, dass das Prozessmodell nach Durchfithrung einer

178 7 | Prototyp

bestimmten Zahl von Anderungen automatisch {iberpriift wer-
den soll.

13. Verwendung eines Regelbaums (siehe 5.5.4): Die Représenta-
tion einer kombinierten Complianceregel in einem Baum macht
es fiir Menschen einfacher, mit der Verschachtelung der einzel-

nen Teilausdriicke umzugehen.

7.2. Architektur des Prototyps

Es handelt sich bei dem fiir diese Arbeit implementierten Prototyp
um ein graphisches Entwicklungswerkzeug fiir Prozesse. Er wurde auf
Grundlage des web-basierten BPMN Editors Oryx entwickelt.

Die Benutzeroberflache von Oryx wird in Abbildung 7.1 gezeigt. Sie

ist in vier Teilbereiche aufgeteilt:

¢ Prozessmodell (Mitte): In der Mitte ist das Prozessmodell zu
sehen, das gerade bearbeitet wird. Es enthélt ein das abstrakte
Prozessmodell eines Compliancetemplates, welcher der Erstel-
lung des in dieser Arbeit verwendeten Beispielprozesses dient.
Die griin markierten Aktivititen konnen im néchsten Schritt mit

Aktivititen oder Prozessfragmenten gefiillt werden.

e Symbolleiste (oben): Die Symbolleiste im oberen Teil des Oryx-
Fensters enthalt Schaltflichen fiir die wichtigsten Funktionen
von Oryx, wie zum Beispiel Speichern oder Kopieren und Einfii-
gen. Mittels Plugins konnen hier neue Schaltflichen eingebun-
den werden, wie dies fiir den Prototyp der vorliegenden Arbeit

geschehen ist.

7.2 | Architektur des Prototyps 179

eidwespue

sseuasmyEIep on uppwes
uzjepuzjusiied
ajdwegssas0Idns nig

sidwesmolfebesssau

oupaIgaldEYT
Zwswbeipeg
wawbeipoog . wayoiads usep) uzrepInig 512040 Buppauuo) [
-iapuadsinig abuejdwi3z Sjuaag pul @
uawibeljpeg

S1USA3 21RIPAULIIUT BuImoauL [
51UBAZ BIEIpBWLIBIUY BulyNED [
suen3 ues
SPB(qo eIea

ss0i pay Guay Buok

UOREIIRSEI JUOD PNOID.

sy
Juo0pnojoowsg Y 7
souRIuIMS 5
ajdwexassdoogpaisen shemares
SIAIY [

sidwexasedoospaisen
[l uass| 1LIag :wh;muﬂww_%m sdoog saveduoy @]

adoogidwoniuswbeIsa] . EEL) SyanelqrRAang syanesqiarIng

uoibey siaeuEn {7
Blleeg AaniiqeieA
Asoysoday Juswbely - AjligeleA [0°Z NWdE
<« (wesbeiq-NWdE) sanuadoid » Asoysoday adeys
HE®» ¥ (P | = DDB | -NDEHB® > 00 % -5 -89FnrEsbefF2exPLY 0BREE

7 | Prototyp

dellierungssituation, entweder Eigenschaften des ge-
rade markierten Teils des Prozessmodells oder die
fiir das Fiillen von Complianceregionen verfiigbaren

Plugin. Es zeigt, abhingig von der aktuellen Mo-
Prozessfragmente.

Abbildung 7.1.: Oberfldche von Oryx. Rechts befindet sich das Sidebar-

180

* Shape-Repository (links):Auf der linken Seite sieht man das
sogenannte Shape-Repository. Hier sind die Objekte hinterlegt,
mit denen gearbeitet werden kann, um einen Prozess zu model-
lieren. In Abbildung 7.1 sind Objekte zur Erstellung von BPMN
1.0-Prozessmodellen geladen. Sie zeigt weiterhin zwei fiir diesen
Prototyp erstellte neue Objekte: Die Variable Region und den

Compliancescope.

* Fragment-Repository (rechts): Auf der rechten Seite wird das
sogenannte Fragment-Repository gezeigt. Es enthalt Prozessfrag-
mente, die in das in der Mitte gezeigte Prozessmodell eingefiigt

werden konnen.

Abbildung 7.2 gibt eine Ubersicht iiber die wichtigsten Kompo-
nenten von Oryx und den Komponenten des Prototyps. Die Pfeile
stellen Aufrufbeziehungen dar, wobei ein Pfeil von der aufrufenden
zur aufgerufenen Komponente zeigt. Oryx besteht aus zwei Kompo-
nenten, dem Backend und dem Frontend. Beide Komponenten sind
als sogenannte Web-Applications implementiert und laufen auf einem
Servlet-Container, wie zum Beispiel Tomcat!.

Das Frontend von Oryx ist hauptsdchlich in JavaScript implemen-
tiert. Der in JavaScript implementierte Teil von Oryx verwendet die
JavaScript-Frameworks Prototype? und EXTJs®. Prototype stellt Kon-
zepte aus der Objektorientierung zu Verfiigung, wahrend EXTJs ein
Framework zur Erstellung von dynamischen Weboberfldchen ist. Die
in Abbildung 7.2 gezeigte Komponente Oryx-Core implementiert die

http: //tomcat.apache.org
Zhttp://www.prototypejs.org
3http://www.sencha.com/products/extjs

7.2 | Architektur des Prototyps 181

Abbildung 7.2.: Uberblick iiber die Architektur des Prototyps. Pfeile
zeigen von der aufrufenden zur aufgerufenen Kompo-
nente. Die in der vorliegenden Dissertation erstellten
Komponenten sind mit durchgezogenen Linien ge-
zeichnet. Alle schon vorhandenen Komponenten sind
mit unterbrochenen Linien gezeichnet.

grundlegenden graphischen und funktionalen Aspekte von Oryx. Zum
Beispiel ist hier ein Plugin-Mechanismus implementiert.

Alle weiteren Komponenten von Oryx sind als Plugins implementiert.
Zum Beispiel werden mit Oryx Plugins zur Speicherung von Prozess-
modellen, zum Export von Prozessmodellen oder zum Riickgdngigma-
chen von Arbeitsschritten bereitgestellt. Die in Abbildung 7.2 gezeigten

182 7 | Prototyp

Plugins auf Frontend-Seite wurde im Rahmen in dieser Arbeit erstellt.
Tabelle 7.2 zeigt sie zusammen mit der von ihnen implementierten
Funktionalitat.

Das Backend von Oryx ist in Java geschrieben und verwendet die
Servlet-Technologie, um mit dem Frontend zu kommunizieren. Auch
dieser Teil von Oryx verfiigt iber einen Plugin-Mechanismus, welcher
in der vorliegenden Arbeit genutzt wurde, um Schnittstellen fiir das
Aufrufen von Modelcheckern zu schaffen. In dieser Arbeit werden
die beiden Modelchecker SPIN (Spin-Adapter) und Maude (Maude-
Adapter) iiber Plugins im Backend aufgerufen.

Im Folgenden werden alle neu zu Oryx hinzugekommenen Software-
komponenten, wie zum Beispiel Plugins ndher erlautert. Danach wird
das Zusammenspiel dieser Softwarekomponenten bei der Ausfithrung

eines Anwendungsfalls, der aus dem Beispielszenario stammt, gezeigt.

7.2 | Architektur des Prototyps 183

Tabelle

Nummer der

7.1.: Funktionen und implementierende Komponenten des Prototyps
Komponente des Prototyps

Compliance- Variabilitdts- Sidebar- Ableitungs- LTL- Compliance- LTL- Compliance-

Funktionalitét wizard Wizard Plugin Plugin Plugin servlet Servlet checker

aus Liste in

Kap. 7.1

1

i e T
e B
e x X
s | X X X
e s <
e R b <
8| X X
g
- 0 | X X x X X
..... I e
..... 12 | X
..... 13 | X

7 | Prototyp

184

7.3. Compliancewizard

Der Compliancewizard ist ein Frontend-Plugin, welches einen neuen
Knopf in die Liste im oberen Bereich des Oryx Editorfensters platziert.
Abbildung 7.3 zeigt die Liste der Auswahlmoglichkeiten, die erscheint,
wenn dieser neue Knopf gedriickt wird. Die genaue Funktionalitat
jedes Elements in der Liste kann in [Grol1] nachgelesen werden. In
dieser Arbeit soll auf die wichtigsten dieser Auswahlelemente einge-
gangen werden. Der Compliancewizard setzt die Funktionalititen 8,
10, 5, 12 und 13 der Liste in Abschnitt 7.1 um.

Wird das oberste Auswahlelement gedriickt, so gelangt man in die
Ansicht des Compliancewizards, welche im Folgenden genauer er-
lautert wird. Mit dem zweiten und dritten Auswahlelement kénnen

automatische Compliancetiberpriifungen sowohl vom gesamten Pro-

1HQR- aa . t =

% Compliance Wizard

() Check Compliance

&) Check Compliance (selected scopes)

ed Show Compliance Result
rauchs dheitsir
ht H Clear Complance Result tionen
eren = stellen

| Bxport as PHNML

Import Compliance Scope

13

._;;. Export Compliance Scope

Abbildung 7.3.: Neuer Knopf mit Funktionalititen zur Uberpriifung
von an den Prozess annotierten Complianceregeln.

7.3 | Compliancewizard 185

zessmodell als auch von einzelnen ausgewihlten Compliancescopes
angesto3en werden.

Abbildung 7.4 zeigt das Popup-Fenster des Compliancewizards. Die-
ses Fenster wird nur angezeigt, wenn ein Compliancescope oder eine
Complianceregion zuvor im Editor mit der Maus markiert wurde. Ist
dies der Fall, so werden die mit diesem Compliancescope oder dieser
Complianceregion verkniipften Complianceregeln angezeigt.

Die Anzeige der Regeln erfolgt als Regelbaum. Mit diesem Kon-
zept ist es moglich, graphisch die Verschachtelung von LTL-Formeln
darzustellen. Die Knopfe im oberen Bereich des Fensters des Com-
pliancewizards konnen dazu verwendet werden, das Aussehen dieses
Regelbaumes zu verdndern. Im Besonderen konnen mit dem mit LTL
bezeichneten Knopf neue in LTL geschriebene Complianceregeln in
den Regelbaum eingefiigt werden. Mit dem mit DATATRANSFER be-
zeichneten Knopf kénnen Complianceregeln, die in der Sprache zur
Definition von datenbasierten Complianceregeln geschrieben sind, in

den Regelbaum eingefiigt werden.

186 7 | Prototyp

B HR R - &

Compliance Wizard x

Edit Remove | NOT AND OR LTL DATATRANSFER

Tree =
= —) COMPLIANCE ASSURAMNCE RULE
= AND
= LTL(LTL_Finally_T2, 15)
JSO0R
Z;- LTL(Globally_T3, 34)

ok cancel |

gater SpercrerT

b

Abbildung 7.4.: Compliancewizard: Dient der Annotation von
Complianceregeln an Complianceregionen oder
Compliancescopes

7.4. Variabilitats-Wizard

Der Variabilitdats-Wizard ist ein weiteres Frontend-Plugin, welches bei
der Erstellung von Compliancetemplates hilft. Es stellt die folgenden
Funktionalitaten bereit, welche in der Diplomarbeit von Falko Kotter
[K6t10] im Detail beschrieben sind:

* Annotation von Alternativen an Complianceregionen: Alternati-
ven sind Prozessfragmente, die in ein Compliancetemplate oder
einen Compliancescope eingefiigt werden kénnen [MMLP09]
(Funktionalitat 5 in der Liste in Abschnitt 7.1).

* Definition von Abhéngigkeiten zwischen Complianceregionen in

7.4 | Variabilitats-Wizard 187

einem Compliancetemplate:

Diese Abhéngigkeiten geben eine Reihenfolge vor, in der die
Complianceregionen mit Aktivititen befiillt werden miissen
(Funktionalitét 10 in der Liste in Abschnitt 7.1).

7.5. Sidebar-Plugin

Das Sidebar-Plugin ist auf der rechten Seite im Oryx-Editor sichtbar
und enthélt Prozessfragmente. Diese Prozessfragmente konnen zur
Befiillung von Compliancetemplates verwendet werden. Das Sidebar-
Plugin setzt Funktionalitét 5 der Liste in Abschnitt 7.1 um. Es zeigt Pro-
zessfragmente an, wenn zwei Bedingungen erfiillt sind: Erstens muss
sich der Oryx-Editor im Ableitungs-Modus befinden. Im Ableitungs-
Modus kénnen nur Complianceregionen verdndert werden. Es kann in
diesem Modus keine Anderung am vorliegenden Compliancetemplate
durchgefiihrt werden. Zweitens muss im Oryx-Editor eine Compliance-
region markiert sein, welche vom Oryx-Editor zur Ableitung freigege-
ben ist. Die Auswahl, welche Prozessfragmente angezeigt werden, trifft
ein Complianceexperte bei der Erstellung eines Compliancetemplates.
Dies geschieht mit dem in Abschnitt 7.4 vorgestellten Variabilitats-

wizard.

7.6. Ableitungs-Plugin

Diese Oryx-Erweiterung ist flir die Befiillung eines Compliancetempla-
tes zustidndig. Das Ableitungs-Plugin setzt Funktionalitéit 2 der Liste
in Abschnitt 7.1 um. Es wurde von Weidmann [WKK"11] und Kétter
[Ko6t10] entwickelt und wird als Bestandteil des Prototyps der Voll-

188 7 | Prototyp

stindigkeit wegen erwéhnt. In einem Compliancetemplate kann die
Reihenfolge, in der Complianceregionen mit Aktivititen befiillt wer-
den konnen, durch Abhingigkeiten zwischen den Complianceregionen
vorgegeben sein. Diese Abhédngigkeiten wurden bei der Erstellung
des Compliancetemplates eingefiigt. Ableitungen konnen mit dem
Variabilitiats-Wizard definiert werden. Das Ableitungs-Plugin besteht
aus einem Knopf in der oberen Leiste des Oryx-Editors und einem
Mechanismus, der die Ableitung, also die Erstellung eines vollstan-
digen Prozesses, leitet. Wird der zum Ableitungs-Plugin gehoérende
Knopf betétigt, gelangt der Oryx-Editor in den Ableitungs-Modus. In
diesem Modus werden diejenigen Complianceregionen griin darge-
stellt, die zur Befiillung mit Aktivititen freigegeben sind. Alle anderen
Complianceregionen werden rot dargestellt. Befiillt man die zu einem
Zeitpunkt freigegebenen Complianceregionen, so konnen im Zuge des-
sen weitere Complianceregionen zur Befiillung freigegeben werden,
da bestimmte Konditionen erfiillt wurden. Solche Konditionen kénnen
zum Beispiel Abhéngigkeiten zwischen Complianceregionen, wie in

Kapitel 4.2.4 beschrieben, sein.

7.7. LTL-Plugin

Das LTL-Plugin wurde von Stefan Grohe im Zuge seiner Masterarbeit
[Grol1] entwickelt. Dies geschah unter Anleitung des Autors der vor-
liegenden Dissertation. Es erweitert die Funktionalitdt des Frontends.
Das Plugin wird nur geladen, wenn mit dem Editor graphisch eine
LTL-Formel bearbeitet wird. Es stellt zum Beispiel eine Funktion bereit,
mit der es moglich ist, die graphisch gezeigte LTL-Formel in einer

textuellen Reprasentation anzuzeigen (siehe Funktionalitit 10 in der

7.7 | LTL-Plugin 189

FIMALLY

FIMALLY

Abbildung 7.5.: Graphische Modellierung von LTL-Formeln

Liste in Abschnitt 7.1). Abbildung 7.5 zeigt die graphisch entwickelte
Version der LTL-Formel O(Task4 = O(Task5)).

Abbildung 7.5 zeigt aulerdem, (wie auch in Abschnitt 5.5.2 be-
schrieben) wie Complianceregeln erstellt werden miissen, damit sie
im Prototyp eingesetzt werden konnen. Die Eigenschaften einer LTL-
Formel werden durch ihren Namen mit dem BPMN-Task verkniipft,
dessen Zustand sie reprasentieren. In dieser Complianceregel spielen
Task4 und Task5 eine Rolle. Weiterhin konnen alle Elemente verwen-
det werden, die in LTL definiert sind. Abbildung 7.5 zeigt zum Beispiel
den Finally-Operator.

Diese graphische Reprisentation einer Complianceregel wird beim
Speichern in einen textuellen Ausdruck umgewandelt, der von den an
Oryx angeschlossenen Modelcheckern und SAT-Checkern verarbeitet
werden kann. Dies wurde, unter Anleitung des Autors dieser Disser-
tation, in den zwei Diplomarbeiten [Gro11] und [Burl2] umgesetzt.
Weiterhin wurde die graphische Notation von LTL aus dieser Quelle
entnommen: [BDSV05].

190 7 | Prototyp

7.8. Complianceservlet

Das Complianceservlet hat zwei Funktionen. Es kann aufgerufen wer-
den, um eine Uberpriifung der Complianceregeln eines Prozessmodells
anzustof3en. Das Complianceservlet enthélt aulerdem Funktionalitét
um ein Prozessmodell zu exportieren. Das Complianceservlet setzt
Funktionalitat 4 der Liste in Abschnitt 7.1 um.

Wird im Complianceservlet die Funktion zur Uberpriifung eines Pro-
zessmodells aufgerufen, so wird das als Parameter {ibergebene Prozess-
modell zunichst in ein Petrinetz-Modell iiberfiihrt. Dieses Petrinetz-
Modell bildet den Kontrollfluss des originalen Prozessmodells ab. Im
néchsten Schritt wird das Petrinetz-Modell in die Eingabesprache PRO-
MELA [RMFO07] des SPIN Modelcheckers iiberfiihrt. Zusammen mit
den mit dem Prozessmodell verkniipften Complianceregeln ist es die
Aufgabe von SPIN das Prozessmodell auf Verletzungen der Compliance-
regeln zu iiberpriifen. Konnte SPIN eine Verletzung von Compliance-
regeln erkennen, so wird eine Beschreibung, welcher Ausfithrungspfad
zu dieser Verletzung fiihrte, von SPIN an das Complianceservlet zu-
riickgegeben. Das Complianceservlet gibt diese Information wiederum

an den Oryx-Editor zuriick, der sie dem Benutzer anzeigt.

7.9. LTL-Servlet

Das LTL-Servlet implementiert Funktionalitat, um LTL-Formeln, die
mit dem graphischen Formeleditor erstellt wurden, in eine textuelle
Reprasentation umzuwandeln (siehe Funktionalitidt 10 in der Liste in
Abschnitt 7.1). Das LTL-Servlet kann LTL-Formeln in zwei verschiedene

Reprisentationen umwandeln. Die erste Reprasentation ist fiir die Ver-

7.9 | LTL-Servlet 191

wendung mit dem SPIN Modelchecker, die andere fiir die Verwendung
mit dem Maude Modelchecker geeignet.

7.10. Compliancechecker

Das Compliancechecker-Plugin ist dafiir zustdndig, verschiedenartige
Complianceregeln automatisch zu iiberpriiften. Der Complianceche-
cker setzt Funktionalitit 4, 6, 7, 8 und 10 der Liste in Abschnitt 7.1
um. Weiterhin enthélt es Funktionalitét fiir die Transformation von
Oryx-Prozessmodellen in die Eingabesprachen dieser beiden Model-
checker.

Der SPIN Modelchecker wird vom Compliancechecker-Plugin aufge-
rufen, wenn eine Uberpriifung eines Prozessmodells auf Verletzungen
von Complianceregeln angestof3en wurde. Der Maude Modelchecker
dient zur Uberpriifung der Erfiillbarkeit von LTL-Formeln und wird
entweder parallel zum Aufruf von SPIN oder fiir eine Uberpriifung der
Erfiillbarkeit einer LTL-Formel aufgerufen.

Abbildung 7.6 zeigt das Uberpriifungsergebnis einer Compliance-
priifung zweier ineinander geschachtelter Compliancescopes, das dem
Benutzer prasentiert wird. Der Uberpriifungsmechanismus, der die-
sem Ergebnis zugrunde liegt wird, in Kapitel 6.3 beschrieben. Die mit

diesen Compliancescopes verkniipften Complianceregeln sind:
* Compliancescope 1: CTask2 A OTask3
* Compliancescope 2: = Task3

Diese Ergebnisdarstellung wurde unter Anleitung des Autors dieser
Dissertation von Alexej Burkow in seiner Masterarbeit [Burl2] umge-

setzt. Alle Compliancescopes, deren Complianceregeln verletzt sind,

192 7 | Prototyp

werden rot dargestellt. Alle Compliancescopes, deren Compliance-
regeln nicht verletzt sind, werden griin dargestellt.

Die Abbildung zeigt unten ein detailliertes Ergebnis der Complian-
cepriifung. Fiir jeden untersuchten Compliancescope enthilt diese Er-
gebnisdarstellung einen Reiter. Auf diesem Reiter wird gezeigt, in wel-
chen Schritten die mit dem Compliancescope verkniipften Compliance-
regeln iiberpriift wurden. Die markierte Stelle in dieser Abbildung
zeigt die Complianceregel, die fiir Compliancescope 2 gilt. Diese be-
sagt, dass eine Aktivitdt mit dem Namen Task3 nicht auftreten darf.
Da dies aber in Compliancescope 2 der Fall ist, wird dieser rétlich als
nicht erfillt gekennzeichnet.

Abbildung 7.7 zeigt bis auf eine Anderung denselben Prozess wie
Abbildung 7.6. Diese Anderung ist die Umbenennung von Task3 in
Task4. Diese Umbenennung fiihrt dazu, dass der zweite Teil der mit
dem Compliancescope 1 verkniipften Complianceregel nicht erfiillt
wird, da weder in diesem Compliancescope noch in einem in ihm
enthaltenen Compliancescope eine Aktivitdt mit dem Namen Task3
enthalten ist. Weiter zeigt die Abbildung das Ergebnis der Uberpriifung
von Compliancescope 1. Markiert ist die mit diesem Compliancescope
verkniipfte Complianceregel. Der erste Teil dieser Complianceregel
(OTask2) wird durch das Vorhandensein einer Aktivitit mit dem
Namen Taks2 in Compliancescope 1 erfiillt. Der zweite Teil dieser
Complianceregel wird in Compliancescope 1 nicht erfiillt. Deshalb
wird dieser Teil an Compliancescope 2 weitergegeben. Dies ist in Abbil-
dung 7.7 in der vorletzten Zeile des Priifergebnisses von Compliance-
scope 1 ersichtlich.

Abbildung 7.8 zeigt das Uberpriifungsergebnis von Compliance-
scope 2. Es wurde von dem Programm festgestellt, dass die mit

7.10 | Compliancechecker 193

o - i
Compliancescope 1 Cumpllanc:a\

e] Z
Compliancescope 2 Compllancé\

. Task3 .

Compliance Check Result x

Result | Compliancescope 2 (Invalid) Compliancescope 1 (Valid)

»

Message .
One of the operands evaluated to false.
Log
Retrieving 1tl rule from compliance scope "Compliancescope 2" ...
Evaluating AND-Operator
| Evaluating LIL-Cperator
| Evaluating ! (<> Task3)
| Finished evaluating LIL-Operator
Finished evaluating AND-Operator
Current rule: ! (<> Task3)
No outer rules. Consistency check skipped.

m

Model checking and elimination of indirect conflicts by omitting

or, fulfilled: false, positiwve: false
Finished evaluating AND-Operator, fulfilled: false, positive: false

Concatenated rules passed to inner scopes: ! (<> Task3)

Finished checking, result: Invalid =

Close |

Abbildung 7.6.: Anzeige des Uberpriifungsergebnisses bei geschachtel-
ten Compliancescopes

194 7 | Prototyp

[Result || Complancescope 2 (UnSatsfable) | Comphancescope 1 (invalc) |

Message
One of the operands evaluated to false.
Log
Retrieving 1tl rule from compliance acope "Compliancescope 1" ...
Evaluating AND-Operator
| Evaluating LTL-Operator
| Evaluating <> Task2
| Finished evaluating LIL-Cperator
| Evaluating LTL-Operator
| Evaluating <> Task3
| Finished evaluating LTL-Operator
Finished evaluating AND-Operator
Current rule: (<> Task2)/\ (<> Task3d)
No outer rules. Consistency check skipped.

Model checking and elimination of indirect conflicts by omitting
positive fulfilled properties for passing to inner scopes:
Evaluating AND-Operator
| Evaluating LTL-Operator
| Evaluating <>((Task2))
| Finished evaluating LTL-Operator, fulfilled: true, positive: true
| Operand OMITTED, will not be pa3sed to inner acopes.
| Evaluating LTL-Operator
| Evaluating <>((Task3))
| Finished evaluating LIL-Cperator, fulfilled: false, positive: true
Finished evaluating AND-Operator, fulfilled: false, positive: true

Concatenated rules passed to inner scopes: <> Task3

Finished checking, result: Invalid

Abbildung 7.7.: Anzeige des Uberpriifungsergebnisses bei geschachtel-
ten Compliancescopes: Erfiillung des ersten Teils der
mit Compliancescope 1 verkniipften Complianceregel

7.10 | Compliancechecker 195

Compliancescope 2 verkniipfte Complianceregel zusammen mit der
weitergegebenen Complianceregel von Compliancescope 1 nicht erfiill-
bar ist. In der Abbildung ist diese verbundene unerfiillbare Compliance-
regel markiert. Diese Situation trat ein, da die mit Compliancescope 1
verkniipfte Complianceregel nicht durch Compliancescope 1 erfiillt
werden konnte. Diese Complianceregel hitte mit dem Vorhanden-
sein einer Aktivitit mit dem Namen Task3 erfiillt werden konnen.
Die Complianceregel wurde dadurch an Compliancescope 2 weiterge-
reicht. Dies fiihrte zu der in Abbildung 7.8 markierten konkatenierten
unerfiillbaren Complianceregel.

Datengetriebene Complianceregeln werden in der Komponente Com-
pliancechecker ebenfalls iberpriift. Der Compliancechecker setzt Funk-
tionalitdt 4 der Liste in Abschnitt 7.1 um. Es wird dafiir der in Kapi-
tel 5.3 erlauterte Algorithmus verwendet. Dieser Algorithmus wurde
erstmals in [SFG'11] présentiert und in [Gro11] umgesetzt.

196 7 | Prototyp

Compliancescope 1 Compliance

Compliance Check Result b3

| @ ‘|7Q)mpr|ancesoupe Z(UnSat'sﬁable{H Compliancescope 1 (Invalid) |

Message
The concatenated rules are not satisfiable.
Log
Retrieving 1tl rule from compliance scope "Compliancescope 2" ...
Evaluating AND-Operator
| Evaluating LIL-Operator
I Evaluating ! (<> Task3)
| Finished evaluating LTL-Operator
Finished evaluating END-Operator
Current rule: ! (<> Task3)

T

oncatenated rules: (<> Task3) /\ (! (<> Task3d)) I

Conaistency checking of this scope's rule with all cuter scope's rules:

Finished checking, result: UnSatisfiable

Abbildung 7.8.: Anzeige des Uberpriifungsergebnisses geschachtelter
Compliancescopes: Unerfiillbarkeit weitergereichter
Complianceregeln

7.11. Performanzmessungen

Das Ziel dieser Arbeit besteht in der Konzeption und Implementierung
von benutzerfreundlichen Konzepten zur automatischen Uberpriifung
von Prozessmodellen. Ein Aspekt, der Benutzerfreundlichkeit ausweist,
besteht in kurzen Antwortzeiten von Programmen. Ein Hauptfaktor

fiir die Laufzeit einer Uberpriifung eines Prozessmodells liegt in der

7.11 | Performanzmessungen 197

Parallele Zweige 8 14 16 18 19 20

Laufzeitinms | 1.362 | 2.343 | 6.259 | 26.337 | 54.188 | 124.849

Tabelle 7.2.: Messergebnisse der Laufzeiten (in Millisekunden) von
Complianceuntersuchungen eines Prozessmodells mit
parallelen Zweigen [Grol1].

Branchil

> Branch2

v

Abbildung 7.9.: Prozessmodell mit dem die Geschwindigkeitsuntersu-
chungen durchgefiihrt wurden.

Laufzeit des aufgerufenen Modelcheckers begriindet. Diese liegt im
PSPACE-vollstindigen Bereich [SC85].

Tabelle 7.2 zeigt Geschwindigkeitsmessungen der Uberpriifung eines
Test-Prozessmodells (siehe Abbildung 7.9). Dieses Test-Prozessmodell
besteht aus einem Startereignis, auf der linken Seite, und einem Ender-
eignis, auf der rechten. Dazwischen teilt ein paralleles Gateway den
Kontrollfluss des Prozessmodells in zwei parallel laufende Kontroll-
flussstrédnge auf. Ein zweites, paralleles Gateway fiihrt diese beiden

Kontrollflussstrdnge wieder zusammen. Bevor das Endereignis erreicht

198 7 | Prototyp

wird, wird Task 2 ausgefiihrt.

Fiir den Geschwindigkeitstest wurde die LTL-Formel < Task2 mit
dem Prozessmodell verkniipft. Diese LTL-Formel besagt, dass bei jeder
Ausfiihrung dieses Prozesses der Task 2 ausgefiihrt werden muss. Die-
ses Prozessmodell wurde in Oryx geladen und auf Verletzungen von
Complianceregeln mit Oryx untersucht. Dabei wurden fiir die Durch-
fiihrung der Geschwindigkeitstests die Anzahl der parallelen Pfade
wie in Tabelle 7.2 gezeigt erhoht. In der Diplomarbeit von Stefan Gro-
he [Grol1] sind die Testbedingungen im Detail erlautert. Tabelle 7.2
zeigt weiterhin das exponentielle Wachstum der Ausfithrungszeit eines
solchen Compliancechecks mit Oryx. Dieses Wachstum ist auf die Lauf-
zeit von Modelcheckern zuriickzufiihren, welche PSPACE-Vollstdandig
ist. Um lange Wartezeiten auf das Ergebnis eines Compliancechecks
zu vermeiden, besteht die Moglichkeit, die Untersuchung auf Teile
des Prozessmodells zu beschrinken. Dies ist mit dem in dieser Arbeit
vorgestellten Konzept der Compliancescopes moglich, da es der Proto-
typ zulésst, die Inhalte bestimmter Compliancescopes zu iiberpriifen
und nicht das gesamte Prozessmodell. Compliancescopes sind somit
notwendig, um die Benutzbarkeit des Prototyps zu erh6hen, indem
lange Wartezeiten auf Priifergebnisse vermieden werden.

Ein weiteres Mittel, um die Antwortzeiten und somit die Benutzbar-
keit des Prototyps zu erhohen, ist Caching. Zum Beispiel werden im
Prototyp LTL-Formeln, die in das Eingabeformat fiir den Modelchecker
SPIN transformiert wurden, fiir eine spatere Verwendung aufbewahrt.
Damit entfillt bei einer erneuten Uberpriifung eines Compliancescopes
der Schritt der Transformation der dazugehorigen Complianceregel
in das Eingabeformat von SPIN, wenn dieser Compliancescope zuvor

schon tberpriift wurde.

7.11 | Performanzmessungen 199

7.12. Zusammenfassung

Dieses Kapitel zeigt die Architektur des Prototyps, der die in dieser
Arbeit vorgestellten Konzepte und Losungen implementiert. Es zeigt,
welche Erweiterungen hierfiir am webbasierten BPMN Editor Oryx vor-
genommen wurden. Besonders zu erwidhnen sind hier das Ableitungs-
Plugin, welches das Konzept der Compliancetemplates umsetzt, das
Sidebar-Plugin, welches dazu dient, Prozessfragmente in Prozesse ein-
zufligen, der Compliancewizard, der die Funktionalitdt implementiert,
um Compliancescopes und Complianceregionen mit Complianceregeln
zu verkniipfen und der Compliancechecker, der die automatische Uber-
priifung von Prozessmodellen mittels Modelcheckern durchfiihrt. Die
Erweiterungen sind in einem Architekturdiagramm aufgefiihrt und
miteinander in Verbindung gesetzt. Das Kapitel enthilt eine detaillierte
Beschreibung jeder Erweiterung.

Ein wichtiges Kriterium fiir die Benutzbarkeit des Prototyps ist die
Laufzeit bis das Ergebnis der Uberpriifung einer Complianceregel an-
gezeigt werden kann. Im letzten Teil dieses Kapitels sind Geschwindig-
keitsmessungen fiir unterschiedlich grof3e Prozessmodelle beschrieben,
da die Laufzeit der Compliancepriifung von der Anzahl der Knoten im

Prozess abhéngt.

200 7 | Prototyp

KAPITEL

/ZUSAMMENFASSUNG UND

AUSBLICK

Diese Dissertation befasst sich mit der Unterstiitzung von Prozess-
modellierern bei der Entwicklung regelkonformer Geschéftsprozesse.
Gezeigt werden eine Erweiterung eines Variabilitdtskonzepts fiir die
Unterstiitzung der Entwicklung regelkonformer Prozesse (siehe Bei-
trag 1.4.1), ein Algorithmus zur Uberpriifung des Kontrollflusses von
Prozessmodellen (siehe Beitrag 1.4.2), ein Algorithmus zur Uberprii-
fung des Datenflusses in Prozessmodellen (siehe Beitrag 1.4.3), ein
Mechanismus zur Zusammenarbeit bei der Erstellung regelkonformer
Prozesse (siehe Beitrag 1.4.4) und die Architektur eines Prototyps
zur Verifikation der vorgestellten Konzepte und Algorithmen (siehe
Beitrag 1.4.5). Diese Konzepte konnen zur Entwicklungszeit angewen-

det werden, um Geschéftsprozesse automatisch auf Verletzungen von

201

Complianceregeln zu tiberpriifen. Die zwei Anwendungsfille, die diese
Konzepte, wie im Folgenden beschrieben, abdecken sind:

* die Entwicklung eines von Grund auf neuen Geschéftsprozesses

* die Wartung eines bestehenden Geschéftsprozesses.

8.1. Anwendungsgebiet der Dissertation

Im ersten Anwendungsfall beginnt der menschliche Prozessmodellierer
auf Grundlage eines Compliancetemplates mit der Entwicklung eines
neuen Prozesses. Solche Compliancetemplates konnen fiir verschie-
dene Anwendungsfille in einer Firma vorhanden sein. Zum Beispiel
konnte ein Compliancetemplate in einer Bank fiir die Entwicklung von
Kreditantragsprozessen bereits bestehen.

Compliancetemplates implementieren bestimmte Complianceregeln,
die fiir alle Prozesse gelten miissen, fiir die sie die Grundlage bil-
den. Bei einem Kreditantragsprozess konnte dies die Einhaltung des
Vier-Augen-Prinzips sein. Das Vier-Augen-Prinzip besagt, dass zwei
unterschiedliche Personen einen Kreditantrag priifen miissen.

Bei der Erstellung eines neuen Geschiftsprozesses wird der menschli-
che Prozessmodellierer von einem graphischen Entwicklungswerkzeug
unterstiitzt. Dieses Entwicklungswerkzeug stellt sicher, dass die von
einem Compliancetemplate implementierten Complianceregeln nicht
durch Modifikationen umgangen werden kdnnen.

Compliancetemplates enthalten unter anderem Complianceregio-
nen. Sie sind die Orte, an denen Modifikationen durchgefiihrt werden
diirfen. Das Compliancetemplate kann durch Befiillen der Complian-

ceregionen mit Aktivititen vollstindig gemacht werden.

202 8 | Zusammenfassung und Ausblick

Im zweiten Anwendungsfall wird ein bestehender Prozess vor der
Wartung durch einen menschlichen Prozessmodellierer mit Compliance-
scopes versehen. Durchgefiihrt wird dies von einem Compliance-
experten. Compliancescopes stellen Bereiche in einem Prozessmo-
dell dar, die mit Complianceregeln verkniipft sind. Prozesse, die mit
Compliancescopes versehen sind, konnen automatisch auf Verletzun-
gen von Complianceregeln iiberpriift werden. In dieser Dissertation
wird dies, wie auch im vorhergehenden Anwendungsfall, mit Techni-
ken des Modelchecking bewerkstelligt. Die in diesem Zusammenhang
neu erstellten und weiterentwickelten Konzepte, Compliancetempla-
te, Compliancescope und Vervollstindigungsebenen konnen in einem
graphischen Entwicklungswerkzeug realisiert werden, wie dies im
Rahmen dieser Dissertation geschehen ist.

Im Zusammenhang mit den oben vorgestellten Anwendungsfallen
wurde untersucht, welche Arten von Complianceregeln fiir die Prozes-
sentwicklung von Bedeutung sind. Dies sind kontrollflussbasierte und
datenflussbasierte Complianceregeln. Bei der Arbeit mit Compliance-
templates werden kontrollflussbasierte Complianceregeln verwendet.
Bei der Arbeit mit Compliancedomains werden datenflussbasierte
Complianceregeln verwendet.

Abschliel’end wurde ein Mechanismus vorgestellt, die verdeutlicht,
wie die eingangs vorgestellten Konzepte in einer Organisation umge-
setzt werden konnen. Dartiber hinaus wurden Rollen definiert, die
in Unternehmen eingefiihrt werden miissen, damit die dargestellten
Konzepte umgesetzt werden konnen.

Weiterhin wurde ein Konzept entwickelt, das die Zusammenarbeit
bei der Erstellung eines Prozessmodells zwischen verschiedenen Abtei-

lungen einer Firma ermdglicht. Dieses Konzept arbeitet mit Complian-

8.1 | Anwendungsgebiet der Dissertation 203

cetemplates. Es beschreibt die Vervollstandigung eines Compliance-
templates zu einem syntaktisch korrekten Prozess auf verschiedenen
Ebenen. Ein Compliancetemplate stellt die erste Ebene bei dieser Art
der Vervollstindigung dar. Weitere Ebenen kénnen durch Einfiigen von
Complianceregionen in das Compliancetemplate erstellt werden. Sind
alle Complianceregionen bei der Vervollstandigung mit Aktivitdten
befiillt, ist der Prozess vollstandig.

Die Arbeit an dem Thema der regelkonformen Prozessmodellierung
hat weiterreichende Fragen aufgeworfen, die im Folgenden dargestellt
werden.

Eine Frage, die mit Abschluss dieser Arbeit offen bleibt, ist, in wie-
weit durch Complianceregeln die Moglichkeiten der Prozessmodel-
lierung eingeschrinkt werden solle. Im ersten Extrem arbeitete man
géanzlich ohne gesondert definierte Complianceregeln. Hier wiirde man
alle Complianceregeln im Prozessmodell durch strukturierende Pro-
zesskonstrukte umsetzen. Dies konnen zum Beispiel Pfeile zwischen
Aktivitdten sein. Im anderen Extrem wiirde ein Prozessmodell nur
durch Complianceregeln definiert werden. Dies streift das Feld der
deklarativen Prozessmodellierung. In diesem Feld des BPM werden
Prozesse anhand von Anforderungen modelliert. Durch diese Anforde-
rungen wird implizit eine Abfolge der im Prozessmodell enthaltenen
Aktivitdten definiert. Diese Anforderungen konnen sehr eng gefasst
sein, so dass der Prozess nur durch sie definiert ist. Complianceregeln
stehen in einem engen Zusammenhang mit diesen Anforderungen der
deklarativen Prozessmodellierung. Mit Complianceregeln ist es, wie
auch mit den Anforderungen moglich, die Ausfiihrungsreihenfolge der
in einem Prozessmodell enthaltenen Aktivitdten zu bestimmen. Aus

diesen Uberlegungen lassen sich weitere Forschungsfragen ableiten.

204 8 | Zusammenfassung und Ausblick

Hierbei geht es erstens darum in wieweit sich Complianceregeln und
Anforderungen fiir die deklarative Modellierung von Prozessen dhneln.
Ist diese Frage geklart muss iiberlegt werden, in wieweit Anforderun-
gen und Complianceregeln vermischt werden kénnen. Es liegt nahe,
dass der Mittelweg zwischen diesen beiden Extremen die beste Vorge-
hensweise bei der Erstellung regelkonformer Prozesse ist. Dies muss

jedoch wissenschaftlich untersucht werden.

8.2. Ausblick

Der in dieser Dissertation gezeigte Ansatz zur automatischen Uber-
priifung von Complianceregeln ist nicht nur fiir die Uberpriifung von
Complianceregeln geeignet. Er kann auf weitere Gebiete wie zum
Beispiel das Green Business Process Management oder Datensicherheit
ausgeweitet werden. Hier ist es denkbar, dass Aktivitdten mit einer Um-
weltvertraglichkeitszahl verkniipft werden. Damit kann automatisch
bestimmt werden, wie umweltvertriglich der Gesamtprozess ist. Die in
der vorliegenden Arbeit vorgestellten Konzepte Compliancetemplate
und Compliancescope sind allgemein ausgelegt und kénnen mit dieser
Anforderung umgehen. Es miissen jedoch geeignete Priifwerkzeuge
entwickelt werden, die die in der vorliegenden Dissertation gezeigten
Konzepte umsetzten.

Das Konzept der Compliancedomains wurde in dieser Dissertation
aus Sicht der Entwicklungszeit eines Prozesses entworfen. Es kann
auch in Richtung der Ausfiihrung eines Geschéftsprozesses ausgeweitet
werden. Dies wird im folgenden Abschnitt gezeigt.

Das Konzept der Compliancedomains befasst sich mit der Einschran-

kung des Datenflusses in einem Prozess. Es ist aus der Uberlegung

8.2 | Ausblick 205

heraus entstanden, dass es fiir Organisationen verboten sein kann,
Daten an einen bestimmten Ort zu transferieren. Somit grenzen Com-
pliancedomains den Bereich ein, in dem bestimmte Daten verarbeitet
werden konnen. Diese Eingrenzung muss zur Laufzeit eines Prozesses
auch gelten und iiberpriift werden. In [SFG™11] wird ein Konzept
vorgestellt, das Laufzeitpriifungen des Datenflusses eines Prozesses
beschreibt. Services werden mit einer Annotation verkniipft, die be-
schreibt, an welchem physikalischen Ort sich der Service befindet.
Weiterhin zeigt das Konzept, wie Softwarekomponenten, die sich an
der Grenze einer physikalischen Umgebung befinden, Nachrichten
untersuchen und anhand von Complianceregeln entscheiden, ob eine
Nachricht die Grenze iiberschreiten darf. Diese Complianceregeln wer-
den zur Entwicklungszeit mit Compliancedomains verkniipft und zur
Laufzeit an die Softwarekomponenten weitergegeben.

Der ABIS Ansatz [WKK*11] kann mit den in dieser Dissertation vor-
gestellten Konzepten erweitert werden. Im ABIS Ansatz wird beschrie-
ben, wie Geschaftsprozesse auf verschiedenen Komplexitdtsebenen
modelliert werden kénnen. Auerdem zeigt der Ansatz, wie Ande-
rungen zwischen diesen Komplexitdtsebenen weitergereicht werden
konnen. Es ist denkbar, dass mit diesen weitergereichten Anderungen
auch Complianceregeln zwischen den Komplexitdtsebenen weiterge-
reicht werden konnen. Im von der Deutschen Forschungsgesellschaft
(DFG) geforderten Projekt Kongepte und Methoden zur Unterstiitzung
von Fachanwendern bei der Umsetzung von Adaptivitdt und Compliance-
Richtlinien in Geschdftsprozessen [LS13] wird auf den Forschungser-
gebnissen der vorliegenden Arbeit aufgebaut. Unter anderem werden
in diesem Forschungsprojekt die Méglichkeiten einer {ibergeordneten

Compliancesprache ergriindet.

206 8 | Zusammenfassung und Ausblick

Diese Dissertation befasst sich ausschlielich mit Complianceregeln,
die sich auf die Syntax in einem Prozess beziehen. Zum Beispiel kann
eine Complianceregel die Ausfiihrungsreihenfolge zweier Aktivitdten
in einem Prozess vorschreiben. Es kann jedoch keine Complianceregel
erstellt werden, die verlangt, dass in einem Prozess das Vier-Augen-
Prinzip umgesetzt werden muss. Eine solche Complianceregel muss
zundchst in einen logischen Ausdruck iiberfiihrt werden, der dann
automatisch verarbeitet werden kann. In Arbeiten, die auf dieser
Dissertation aufbauen, kénnten neue Uberpriifungskonzepte erstellt
werden, die mit Ontologien arbeiten, um Verletzungen semantischer
Complianceregeln aufzudecken.

Ein weiteres Themengebiet fiir zukiinftige Arbeiten stellt die Pro-
zessiibergreifende Uberpriifung von Complianceregeln dar. In dieser
Dissertation gilt die Annahme, dass Complianceregeln nur im Rahmen
des ihnen zugewiesenen Prozesses gelten. Es liegt jedoch nahe, dass
Anwendungen aus mehreren Prozessen bestehen, die sich gegenseitig
aufrufen und miteinander interagieren. Dies muss in den zukiinftigen

Konzepten zur Uberpriifung von Complianceregeln beachtet werden.

8.2 | Ausblick 207

[ADWO8]

[AKLT09]

[Arb04]

LITERATURVERZEICHNIS

Awap, Ahmed ; DECKER, Gero ; WESKE, Mathias: Efficient
compliance checking using BPMN-Q and temporal logic.
In: BPM ’08 Proceedings of the 6th International Confe-

rence on Business Process Management, 2008, S. 326-341

ANSTETT, Tobias ; KaArRasTovaNOvA, Dimka ; LEYMANN,
Frank ; MIETZNER, Ralph ; MonAKkova, Ganna ; SCHLEI-
CHER, Daniel ; STRAUCH, Steve: MC-Cube: Mastering cu-
stomizable compliance in the cloud. In: SPRINGER (Hrsg.):
Proceedings of the 7th International Joint Conference on
Service Oriented Computing, Springer Verlag, November
2009, 592-606

ARrBAB, Farhad: Reo: a channel-based coordination model
for component composition. In: Mathematical. Structures
in Comp. Sci. 14 (2004), Juni, Nr. 3, 329-366. http://
dx.doi.org/10.1017/S0960129504004153. — DOI
10.1017/50960129504004153. — ISSN 0960-1295

209

http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1017/S0960129504004153

[ASU86]

[AW09]

[Awal0]

[AWWO09]

[Bas06]

210

Ano, AN, ; SetHI, R. ; ULLmaAN, J.D.: Com-
pilers: principles, techniques, and tools. = Addison-
Wesley, 1986 (Addison-Wesley series in computer
science). http://books.google.de/books?id=-
CpTewAACAAJ. — ISBN 9780201100884

AwaDp, Ahmed ; WEsSkE, Mathias: Visualization of
compliance violation using anti-patterns / Business
Process Technology Group at Hasso Platter Insti-
tute at the University of Potsdam. Version: 2009.
http://bpt.hpi.uni-potsdam.de/pub/Public/
BptPublications/VoV.pdf. 2009 (BPT Technical
Report 02-2009 02-2009). — Forschungsbericht

Awap, Ahmed Mahmoud Hany A.: A compliance mana-
gement rramework for business process models, Business
Process Technology Group, Hasso Plattner Institute, Uni-
versity Potsdam, Diss., 2010

AwaDp, Ahmed ; WEIDLICH, Matthias ; WESKE, Mathias:
Specification, verification and explanation of violation
for data aware compliance rules. In: Proceedings of the
7th International Joint Conference on Service-Oriented
Computing. Berlin, Heidelberg : Springer-Verlag, 2009
(ICSOC-ServiceWave '09). — ISBN 978-3-642-10382-7,
500-515

BAsEL COMMITTEE ON BANKING SUPERVISION: Basel II ca-
pital accord: international convergence of capital mea-

surements and capital standards: A revised framework

Literaturverzeichnis

http://books.google.de/books?id=-CpTewAACAAJ
http://books.google.de/books?id=-CpTewAACAAJ
http://bpt.hpi.uni-potsdam.de/pub/Public/BptPublications/VoV.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/BptPublications/VoV.pdf

(comprehensive version) / Basel Committee on Banking
Supervision. Version: Juni 2006. http://www.bis.
org/publ/bcbs128.pdf. 2006. — Forschungsbericht.
— ISBN 92-9197-720-9

[BBCT07] BoAG, Scott ; BERGLUND, Anders ; CHAMBERLIN, Don
; SIMEON, Jérome ; Kay, Michael ; RoBiE, Jonathan ;
FERNANDEZ, Mary E: XML Path Language (XPath) 2.0 /
W3C. 2007. - W3C Recommendation. — http://www.
w3.org/TR/2007 /REC-xpath20-20070123/

[BBDT11] BECKER, Jorg ; BERGENER, Philipp ; DELFMANN, Patrick ;
EGGERT, Mathias ; WEIss, Burkhard: Supporting business
process compliance in financial institutions - A Model-
Driven Approach. In: Wirtschaftinformatik Proceedings
2011, 2011

[BDSVO5] BraMBILLA, Marco ; DEUTSCH, Alin ; Sui, Liying ; VIANU,
Victor: The role of visual tools in a web application
design and verification framework: A visual notation for
LTL formulae. In: ICWE, 2005, S. 557-568

[Ber89] BErRGe, Claude (Hrsg.): Hypergraphs combi-
natorics of finite sets. Bd. 45. Elsevier, 1989.
http://dx.doi.org/D0I:10.1016/S0924-

6509(08)70093-X. http://dx.doi.org/D0OI:
10.1016/50924-6509(08)70093-X. ISSN 0924-
6509

[Boe87] BorHM, Barry W.: Improving software productivity. In:

Literaturverzeichnis 211

http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs128.pdf
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X
http://dx.doi.org/DOI: 10.1016/S0924-6509(08)70093-X

[Bro95]

[Burl2]

[Bus04]

[CCGT02]

[CGPO1]

212

Computer 20 (1987), September, Nr. 9, 43-57. http:
//dx.doi.org/10.1109/MC.1987.1663694. — DOI
10.1109/MC.1987.1663694. — ISSN 0018-9162

Brooks, Frederick B Jr.: The mythical man-month (anni-
versary ed.). Boston, MA, USA : Addison-Wesley Longman
Publishing Co., Inc., 1995. — ISBN 0-201-83595-9

Burkow, Alexej: LTL- Erfiillbarkeitspriifung fiir inkre-
mentelle Entwicklung von Geschdftsprozessen, Universitat
Stuttgart, Fakultit Informatik, Elektrotechnik und
Informationstechnik, Germany, Masterarbeit, August
2012. http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-
3386&engl=0. - 103 S.

BusINEss PROCESS MASNAGEMENT INITATIVE: Business pro-
cess modeling notation (BPMN) version 1.0, Mai 2004. —
http://www.bpmn.org/

CIMATTI, A. ; CLARKE, E. ; GIUNCHIGLIA, E. ; GIUNCHIGLIA,
E ; PISTORE, M. ; ROVERI, M. ; SEBASTIANI, R. ; TACCHELLA,
A.: NuSMV version 2: an openSource tool for symbolic
model checking. In: Proc. International Conference on
Computer-Aided Verification (CAV 2002) Bd. 2404. Co-
penhagen, Denmark : Springer, July 2002 (LNCS)

CLARKE, Edmund M. ; GRUMBERG, Orna ; PELED, Doron:
Model checking. Cambridge, Mass. : MIT Press, 2001. —
ISBN 0262032708

Literaturverzeichnis

http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.1109/MC.1987.1663694
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3386&engl=0
http://www.bpmn.org/

[Chi03]

[DAC98]

[DAC99]

[DCD*09]

CHINA: Law of the people’s republic of China on
the people’s bank of China. http://www.china.
org.cn/business/laws_regulations/2007-
06/22/content_1214826.htm, 2003

DwvyEeR, Matthew B. ; AVRUNIN, George S. ; CORBETT,
James C.: Property specification patterns for finite-state
verification. In: FMSP, 1998, S. 7-15

DwvyEeR, Matthew B. ; AVRUNIN, George S. ; CORBETT,
James C.: Patterns in property specifications for finite-
state verification. In: Proceedings of the 21st interna-
tional conference on Software engineering - ICSE 99
(1999), 411-420. http://dx.doi.org/10.1145/
302405.302672. - D01 10.1145/302405.302672. ISBN
1581130740

DaANIEL, Florian ; Casati, Fabio ; D’ANDREA, Vincenzo
; STRAUCH, Steve ; ScHUMM, David ; LEYMANN, Frank ;
MuLo, Emmanuel ; ZDUN, Uwe ; DUSTDAR, Schahram ;
SEBAHI, Samir ; MARcHI, Fabien de ; Hacip, Mohand-Said:
Business compliance governance in service-oriented ar-
chitectures. In: Awan, Irfan (Hrsg.) ; Younas, Mu-
hammad (Hrsg.) ; HARA, Takahiro (Hrsg.) ; DURRESI,
Arjan (Hrsg.): Proceedings of the IEEE Twenty-Third Inter-
national Conference on Advanced Information Networking
and Applications (AINA09), Bradford, United Kingdom,
May 26-29, 2009, IEEE Press, Mai 2009. — ISBN 978-1-
4244-4000-9, 113-120

Literaturverzeichnis 213

http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://www.china.org.cn/business/laws_regulations/2007-06/22/content_1214826.htm
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1145/302405.302672

[DDO08]

[DOWO08]

[Elg12]

[ETHP10]

[EUL09]

[GCST10]

214

D1JKMAN, Remco M. ; Dumas, Marlon ; OuyaNG, Chun:
Formal semantics and analysis of BPMN process models

using petri nets. 2008

DECKER, Gero ; OvERDICK, Hagen ; WESKE, Mathias: Oryx
— an open modeling platform for the BPM community. In:
BPM ’08 Proceedings of the 6th International Conference
on Business Process Management Bd. 5240, Springer, 2008
(LNCS). — ISBN 978-3-540-85757-0

ELcammaL, A.ES.A.: Towards a comprehensi-
ve framework for business process compliance.
http://ideas.repec.org/p/ner/tilbur/
urnnbnnluil2-5470311.html, 2012

ELGAMMAL, Amal ; TURETKEN, Oktay ; HEUVEL, Willem-Jan
van d. ; ParazocGLou, Mike P: On the formal specification
of regulatory compliance: a comparative analysis. In:
ICSOC Workshops, 2010, S. 27-38

EBERLE, Hanna ; UNGER, Tobias ; LEYMANN, Frank: Pro-
cess fragments. In: MEERSMAN, Robert (Hrsg.) ; DILLON,
Tharam (Hrsg.) ; HERRERO, Pilar (Hrsg.): On the Move to
Meaningful Internet Systems: OTM 2009 Bd. 5870, Sprin-
ger, 2009 (Lecture Notes in Computer Science). — ISBN
978-3-642-05147-0, S. 398-405

GHEORGHE, Gabriela ; CrRispo, Bruno ; SCHLEICHER, Daniel
; ANSTETT, Tobias ; LEYMANN, Frank ; MIETZNER, Ralph ;

MonaAKovA, Ganna: Combining enforcement strategies

Literaturverzeichnis

http://ideas.repec.org/p/ner/tilbur/urnnbnnlui12-5470311.html
http://ideas.repec.org/p/ner/tilbur/urnnbnnlui12-5470311.html

[Ger97]

[GMO06]

[Gov08]

[Grol1]

[Haw11]

[HM10]

in service oriented architectures. In: ICSOC 2010 procee-
dings, Springer, Dezember 2010, 288-302

GErTH, Rob: Concise promela reference. http://
spinroot.com/spin/Man/Quick.html, 1997

GOVERNATORI, Guido ; MILOSEvVIC, Zoran: A for-
mal analysis of a business contract language. In:
Int. J. Cooperative Inf. Syst. 15 (2006), Nr. 4, 659-
685. http://dblp.uni-trier.de/db/journals/
ijcis/ijcis15.html#GovernatoriM06

GOVERNATORI, Guido: The journey to business process
compliance. In: Public Law (2008), S. 1-32

GROHE, Stefan: Visualisierung und Implementierung von
Compliance Scopes, Universitit Stuttgart, Fakultit Infor-
matik, Elektrotechnik und Informationstechnik, Germany,
Diplomarbeit, Mai 2011. — 98 S.

HAwRANEK, Dietmar: Trapped in the US web: daimler
upset with over-eager american oversight. http://www.
spiegel.de/international/business/trapped-
in-the-us-web-daimler-upset-with-over-
eager-american-oversight-a-803350-2.html,
December 2011

HARDER, Bernd H. ; MArRuUHN, Ralf: Auftragsdatenver-
arbeitung. http://www.cloud-practice.de/know-

how/auftragsdatenverarbeitung, 2010

Literaturverzeichnis 215

http://spinroot.com/spin/Man/Quick.html
http://spinroot.com/spin/Man/Quick.html
http://dblp.uni-trier.de/db/journals/ijcis/ijcis15.html#GovernatoriM06
http://dblp.uni-trier.de/db/journals/ijcis/ijcis15.html#GovernatoriM06
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.spiegel.de/international/business/trapped-in-the-us-web-daimler-upset-with-over-eager-american-oversight-a-803350-2.html
http://www.cloud-practice.de/know-how/auftragsdatenverarbeitung
http://www.cloud-practice.de/know-how/auftragsdatenverarbeitung

[Hol03]

[HWGO09]

[JGP99]

[KBE*10a]

[KBET10Db]

216

HorzmaNN, Gerard: Spin model checker, the: primer and
reference manual. First. Addison-Wesley Professional,
2003. — ISBN 0-321-22862-6

HoFFMANN, Jorg ; WEBER, Ingo ; GOVERNATORI, Guido: On
compliance checking for clausal constraints in annotated
process models. In: Information Systems Frontiers (2009),
Mai. http://dx.doi.org/10.1007/s10796-009-
9179-7. - DOI 10.1007/s10796-009-9179-7. — ISSN
1387-3326

JrR., Edmund M. C. ; GRUMBERG, Orna ; PELED, Do-
ron A.: Model checking. The MIT Press, 1999 http:
//www .amazon.com/Model-Checking-Edmund-
Clarke-Jr/dp/0262032708%3FSubscriptionId,
3D13CT5CVB80YFWJEPWS02%,26tag’%3Dws%
261inkCode?,3Dxm27%26camp’%3D2025%
26creative,3D165953%26creativeASINY,
3D0262032708. — ISBN 0262032708

KessLEr, Dr. A. ; Boéum, Dr. M. ; ErmorDp, Eiko ;
WEHRAN, Heino ; VEHLow, Markus: Cloud complian-
ce. http://www.cloud-practice.de/know-how/

cloud-compliance, 2010

KESSLER, Dr. A. ; BoHM, Dr. M. ; ERMoOLD, Eiko ; WEHRAN,
Heino ; VEHLow, Markus: Cloud Compliance - Motive,
Herausforderungen und Hiirden. http://www.cloud-
practice.de/know-how/cloud-compliance-

motive-herausforderungen-und-huerden, 2010

Literaturverzeichnis

http://dx.doi.org/10.1007/s10796-009-9179-7
http://dx.doi.org/10.1007/s10796-009-9179-7
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.cloud-practice.de/know-how/cloud-compliance
http://www.cloud-practice.de/know-how/cloud-compliance
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden
http://www.cloud-practice.de/know-how/cloud-compliance-motive-herausforderungen-und-huerden

[KhaO8]

[KLO6]

[KLRM110]

[KNPO2]

[K6t10]

KHALAF, Rania: Supporting business process fragmentation
while maintaining operational semantics : a BPEL perspec-
tive, Universitat Stuttgart, Fakultat Informatik, Elektro-
technik und Informationstechnik, Germany, Dissertation,
Mirz 2008. — 193 S.

KHaLAF, Rania ; LEyMANN, Frank: Role-based decompo-
sition of business processes using BPEL. In: Proceedings
of the IEEE International Conference on Web Services. Wa-
shington, DC, USA : IEEE Computer Society, 2006 (ICWS
’06). — ISBN 0-7695-2669-1, 770-780

KnupLEscH, David ; Ly, Linh T. ; RINDERLE-MA, Stefanie
; PFEIFER, Holger ; DapamMm, Peter: On enabling data-
aware compliance checking of business process models.
In: Proceedings of the 29th international conference on

Conceptual modeling, 2010

KwiIATKOWSKA, M. ; NORMAN, G. ; PARKER, D.: PRISM:
probabilistic symbolic model checker. In: FiELD, T. (Hrsg.)
; HARrISON, P (Hrsg.) ; BRADLEY, J. (Hrsg.) ; HARDER, U.
(Hrsg.): Proc. 12th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation
(TOOLS’02) Bd. 2324, Springer, 2002 (LNCS), S. 200-
204

KOTTER, Falko: Progessvarianten in unternehmensiiber-
greifenden Servicenetzwerken, Universitat Stuttgart,
Fakultidt Informatik, FElektrotechnik und Informa-

tionstechnik, Germany, Diplomarbeit, November

Literaturverzeichnis 217

[KSMPO7]

[KWS11]

[LBO1]

[Ley09]

218

2010. http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-
3046&engl=0.- 119 S.

KHARBILI, Marwane E. ; STEIN, Sebastian ; MARKO-
vic, Ivan ; PULVERMULLER, Elke: Towards a Frame-
work for Semantic Business Process Compliance Manage-
ment. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.142.9939. Version: 2007

KoEeTTER, Falko ; WEIDMANN, Monika ; SCHLEICHER, Da-
niel: Guaranteeing soundness of adaptive business pro-
cesses using ABIS. In: ABramowicz, Witold (Hrsg.) ;
Aarst, Wil (Hrsg.) ; MyLopouLos, John (Hrsg.) ; Ro-
SEMANN, Michael (Hrsg.) ; SHAw, Michael J. (Hrsg.) ;
SzypERrski, Clemens (Hrsg.) ; AaLst, Wil (Hrsg.) ; My-
LorouLos, John (Hrsg.) ; RosEMANN, Michael (Hrsg.) ;
SHaw, Michael J. (Hrsg.) ; SzyPErski, Clemens (Hrsg.):
Business Information Systems Bd. 87. Springer Berlin
Heidelberg, 2011, S. 74-85

LUTHER, M. ; BIBELGESELLSCHAFT, Deutsche: Die Bibel:.
Amer Bible Society, 2001 http://books.google.de/
books?id=uGw4QwAACAAJ. — ISBN 9783438011022

LEYMANN, Frank: Cloud computing: the next revolution
in IT. In: Proc. 52th Photogrammetric Week, Wichmann
Verlag, September 2009. — ISBN 978-3-87907-483-9, S.
3-12

Literaturverzeichnis

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9939
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.9939
http://books.google.de/books?id=uGw4QwAACAAJ
http://books.google.de/books?id=uGw4QwAACAAJ

[LGRMDO8] Ly, Linh T. ; GOSER, Kevin ; RINDERLE-MA, Stefanie ; Da-

[LMXO07]

[LROO]

[LRDO8]

[LS13]

DAM, Peter: Compliance of semantic constraints - a requi-
rements analysis for process management systems. In:
Proc. 1st Int’l Workshop on Governance, Risk and Com-
pliance - Applications in Information Systems (GRCIS’08),
2008

Liu, Y. ; MULLER, S. ; XU, K.: A static compliance-checking
framework for business process models. In: IBM Syst. J.
46 (2007), Nr. 2, S. 335-361. — ISSN 0018-8670

LEYMANN, Frank ; RoLLER, Dieter: Production workflow:
concepts and techniques. Upper Saddle River, NJ, USA :
Prentice Hall PTR, 2000. — ISBN 0-13-021753-0

Ly, Linh T. ; RINDERLE, Stefanie ; DApAM, Peter: Integra-
tion and verification of semantic constraints in adapti-
ve process management systems. In: Data & Knowled-
ge Engineering 64 (2008), Januar, Nr. 1, 3-23. http:
//dx.doi.org/10.1016/j.datak.2007.06.007. —
DOI 10.1016/j.datak.2007.06.007. — ISSN 0169023X

LEYMANN, Frank ; SpaTH, Dieter: Kongepte und
Methoden gzur Unterstiitzung von Fachanwendern
bei der Umsetzung von Adaptivitit und Compliance-
Richtlinien in Geschdftsprozessen. http://gepris.dfg.
de/gepris/0CTOPUS/?module=gepris&task=
showDetail&context=projekt&id=219206707,
January 2013

Literaturverzeichnis 219

http://dx.doi.org/10.1016/j.datak.2007.06.007
http://dx.doi.org/10.1016/j.datak.2007.06.007
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707
http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=219206707

[LSGO8]

[Mat12]

[MGO09]

[Mie08]

[Miel0]

220

Lu, Ruopeng ; SapiQ, Shazia ; GOVERNATORI, Guido: Com-
pliance aware business process design. In: Proceedings
of the 2007 international conference on Business process
management. Berlin, Heidelberg : Springer-Verlag, 2008
(BPM’07). — ISBN 3-540-78237-0, 978-3-540-78237-7,
120-131

MatTHEWS, Christopher M.: Daimler not out of the
woods in bribery case. http://blogs.wsj.com/
corruption-currents/2012/04/05/daimler-
not-out-of-the-woods-in-bribery-case/,
April 2012

MELL, Peter ; GRANCE, Tim: The NIST defini-
tion of cloud computing. http://csrc.nist.
gov/publications/nistpubs/800-145/SP800-
145 .pdf, 2009

MIETZNER, Ralph: Using variability descriptors to descri-
be customizable SaaS application templates / University
of Stuttgart, Faculty of Computer Science, Electrical Engi-
neering, and Information Technology, Germany. Univer-
sity of Stuttgart, Institute of Architecture of Application
Systems, January 2008 (2008/01). — Technical Report

Computer Science. — 27 S.

MIETZNER, Ralph: A method and implementation to define
and provision variable composite applications, and its usa-

ge in cloud computing. Holzgartenstr. 16, 70174 Stuttgart,

Literaturverzeichnis

http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://blogs.wsj.com/corruption-currents/2012/04/05/daimler-not-out-of-the-woods-in-bribery-case/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[MLOS]

[MLPO8]

[MMLPO9]

[MPRS13]

Universitat Stuttgart, Diss., 2010. http://elib.uni-
stuttgart.de/opus/volltexte/2010/5614

MIETZNER, Ralph ; LEYMANN, Frank: Generation of BPEL
customization processes for SaaS applications from Va-
riability Descriptors. In: IEEE SCC, 2008, S. 359-366

MIETZNER, Ralph ; LEYMANN, Frank ; ParazocGLou, Mi-
ke P: Defining composite configurable Saa$S application
packages using SCA, variability descriptors and SaaS
multi-tenancy patterns. In: Proceedings of the 3rd Intl.
Conf. on Internet and Web Applications and Services ICIW
2008. Athens, Greece : IEEE, Januar 2008

MIETZNER, Ralph ; METZGER, Andreas ; LEYMANN, Frank ;
PoHL, Klaus: Variability modeling to support customizati-
on and deployment of multi-tenant-aware Software as
a Service applications. In: PESOS '09: Proceedings of the
2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems. Washington, DC, USA : IEEE Computer
Society, 2009, S. 18-25

Markwitz, Alexander ; PLEINES, Riidiger ; REHLING,
Timm ; ScHIKORA, Jan: Compliance in Industrie-
unternehmen - Eine sehr personliche Angelegen-
heit. http://www.germany.atkearney.com/
documents/856314/1305459/Compliance+in+
manufacturing.pdf/94d99f86-c52e-466a-bddc-
£5e830a2e8b2, June 2013

Literaturverzeichnis 221

http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://elib.uni-stuttgart.de/opus/volltexte/2010/5614
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2
http://www.germany.atkearney.com/documents/856314/1305459/Compliance+in+manufacturing.pdf/94d99f86-c52e-466a-b4dc-f5e830a2e8b2

[Nie93]

[NLS*T11]

[0AS07]

[Obj11]

[ODHA06]

[OW12]

[PJ12]

222

NIELSEN, Jakob: Usability engineering. San Francisco, CA,
USA : Morgan Kaufmann Publishers Inc., 1993. — ISBN
0125184050

Nowak, Alexander ; LEYMANN, Frank ; SCHLEICHER, Daniel
; ScHuMM, David ; WAGNER, Sebastian: Green business
process patterns. In: Proceedings of the 18th Conference on
Pattern Languages of Programs, PLoP 2011, ACM, Oktober
2011

OASIS: Web services business process execution language
version 2.0 — OASIS gstandard, 2007

OBJECT MANAGEMENT GROUP: Business Process Model and
Notation (BPMN) - Version 2.0. http://www.omg.org/
spec/BPMN/2.0/, 2011

OuYANG, Chun ; Dumas, Marlon ; HOFSTEDE, Arthur H. M.
; AaLsT, Wil M. P d.: From BPMN process models to BPEL
web services. In: Proceedings of the IEEE International
Conference on Web Services. Washington, DC, USA : IEEE
Computer Society, 2006 (ICWS ’06). — ISBN 0-7695-
2669-1, S. 285-292

OTTMANN, Thomas ; WIDMAYER, Peter: Algorithmen und
Datenstrukturen, 5. Auflage. Spektrum Akademischer
Verlag, 2012. — I-XXII, 1-774 S. — ISBN 978-3-8274—
2803-5

PreUss, Susanne ; JaHN, Joachim: Daimler

rechnet mit schnellerem Ende der Uberwachung.

Literaturverzeichnis

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

http://www.faz.net/aktuell/wirtschaft/
amerikanische-boersenaufsicht-daimler-
rechnet-mit\-schnellerem-ende-der-
ueberwachung-11741661.html, 2012

[Pnu77] PNUELL, Amir: The temporal logic of programs. In: FOCS,
1977, S. 46-57

[Pnu86] PNUELI, A: Current trends in concurrency. Overviews
and tutorials. Version: 1986. http://dl.acm.org/
citation.cfm?7id=19518.19527. New York, NY, USA
: Springer-Verlag New York, Inc., 1986. — ISBN 0-387-
16488-X, Kapitel Applications of temporal logic to the
specification and verification of reactive systems: a survey
of current trends, 510-584

[RMFO7] RiBEIRO, Oscar R. ; M. FERNANDES, Jo ao: Translating
synchronous petri nets into PROMELA for verifying be-
havioural properties. In: SIES, 2007, S. 266-273

[SALT10] Scuumwm, David ; ANsTETT, Tobias ; LEyMaNN, Frank ;
SCHLEICHER, Daniel ; STRAUCH, Steve: Essential aspects
of compliance management with focus on business pro-
cess automation. In: ABrRamowicz, Witold (Hrsg.) ; ALT,
Rainer (Hrsg.) ; FAuNRIcH, Klaus-Peter (Hrsg.) ; FRAN-
czyk, Bogdan (Hrsg.) ; MAcIAszEK, Leszek A. (Hrsg.):
INFORMATIK 2010: Business Process and Service Science
Proceedings of ISSS and BPSC Bd. 177, Gesellschaft fiir
Informatik e.V. (GI), September 2010 (Lecture Notes in
Informatics), S. 127-138

Literaturverzeichnis 223

http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://www.faz.net/aktuell/wirtschaft/amerikanische-boersenaufsicht-daimler-rechnet-mit\-schnellerem-ende-der-ueberwachung-11741661.html
http://dl.acm.org/citation.cfm?id=19518.19527
http://dl.acm.org/citation.cfm?id=19518.19527

[SALMO09]

[SALS10]

[SC85]

[Sch00]

[SFGt11]

224

SCHLEICHER, Daniel ; ANSTETT, Tobias ; LEyMANN, Frank
; MIETZNER, Ralph: Maintaining compliance in customi-
zable process models. In: MEERSMAN, Robert (Hrsg.) ;
DiLLoN, Tharam (Hrsg.) ; HERRERO, Pilar (Hrsg.): Procee-
dings of the 17th International Conference on Cooperative
Information Systems (CooplS 2009) Bd. 5870. Heidel-
berg : Springer Verlag, November 2009 (Lecture Notes in
Computer Science). — ISBN 978-3-642-05147-0, 60-75

SCHLEICHER, Daniel ; ANSTETT, Tobias ; LEYMANN, Frank ;
ScHuMM, David: Compliant business process design using
refinement layers. In: R. MEERSMAN, T. D. a. (Hrsg.): OTM
2010 Conferences, Springer Verlag, Oktober 2010

S1STLA, A. P ; CLARKE, E. M.: The complexity of proposi-
tional linear temporal logics. In: J. ACM 32 (1985), Juli,
Nr. 3, S. 733-749. — ISSN 0004-5411

ScHMIDT, Karsten: LoLA: a low level analyser. In: NIELSEN,
Mogens (Hrsg.) ; SimpsoN, Dan (Hrsg.): Application and
Theory of Petri Nets 2000: 21st International Conference,
ICATPN 2000, Aarhus, Denmark, June 2000. Proceedings
Bd. 1825, Springer-Verlag, Juni 2000 (Lecture Notes in
Computer Science), S. 465-474

SCHLEICHER, Daniel ; FEHLING, Christoph ; GROHE, Stefan
; LEYMANN, Frank ; Nowak, Alexander ; SCHNEIDER, Pa-
trick ; ScHumm, David: Compliance domains: a means to

model data-restrictions in cloud environments. In: En-

Literaturverzeichnis

terprise Distributed Object Computing Conference (EDOC),
IEEE Xplore, 2011

[SGNO07] SADIQ, Shazia ; GOVERNATORI, Guido ; NAMIRI, Kioumars:
Modeling control objectives for business process com-
pliance. In: Proceedings of the 5th international confe-
rence on Business process management. Berlin, Heidelberg
: Springer-Verlag, 2007 (BPM’07). — ISBN 3-540-75182-
3, 978-3-540-75182-3, 149-164

[SLM*10] ScuumM, David ; LEyMANN, Frank ; Ma, Zhilei ; SCHEIBLER,
Thorsten ; STRAUCH, Steve: Integrating compliance into
business processes: process fragments as reusable com-
pliance controls. In: SCHUMANN/KOLBE/BREITNER/FRE-
RicHS (Hrsg.): Proceedings of the Multikonferenz Wirt-
schaftsinformatik (MKWI), Universititsverlag Gottingen,
Februar 2010, S. 2125-2137

[SLS10] ScHuMM, David ; LEymMANN, Frank ; STREULE, Alexander:
Process views to support compliance management in
business processes. In: BuccarFurri, Francesco (Hrsg.)
; SEMERARO, Giovanni (Hrsg.): Proceedings of the 11th
International Conference on Electronic Commerce and Web
Technologies (EC-Web 2010) Bd. 61. Bilbao, Spain :
Springer-Verlag, September 2010 (Lecture Notes in Busi-

ness Information Processing), 131-142

[SLST11] SCHLEICHER, Daniel ; LEYMANN, Frank ; SCHNEIDER, Pa-

trick ; ScHumwMm, David ; WoLF, Tamara: An approach to

Literaturverzeichnis 225

[Spi]

[STK"10]

[SWLS10]

[TEHP11]

[TLET10]

226

combine data-related and control-flow-related complian-
ce rules. In: Proceedings of SOCA, IEEE Computer Society,
Dezember 2011

SPINROOT.cOM: Inspiring applications of spin. http://

spinroot.com/spin/success.html,

ScaumM, David ; TURETKEN, Oktay ; KokasH, Natallia ;
ELGaMMAL, Amal ; LEYMANN, Frank ; HEUVEL, Willem-Jan
van d.: Business process compliance through reusable
units of compliant processes. In: Proceedings of the 1st
Workshop on Engineering SOA and the Web (ESW’10),
Springer, Juli 2010

SCHLEICHER, Daniel ; WEIDMANN, Monika ; LEYMANN,
Frank ; ScHummMm, David: Compliance scopes: Extending
the BPMN 2.0 meta model to specify compliance requi-
rements. In: Proceedings of SOCA 2010, IEEE Computer
Society, Dezember 2010

TURETKEN, Oktay ; ELcaMMAL, Amal ; HEUVEL, Willem-
Jan van d. ; ParazoGLou, Mike: Enforcing compliance
on business processes through the use of patterns. In:
European Conference on Information Systems (ECIS 2011),
Elsevier, 2011

TROJER, Thomas ; LEg, Cheuk kwong ; FUNG, Benjamin
C. M. ; NARUPIYAKUL, Lalita ; Hung, Patrick C. K.: Privacy-

aware health information sharing. In: Privacy-Aware

Literaturverzeichnis

http://spinroot.com/spin/success.html
http://spinroot.com/spin/success.html

Knowledge Discovery: Novel Applications and New Techni-
ques, Chapman and Hall /CRC Press, 2010

[Uni99] UNITED STATES: Gramm-Leach-Bliley act. U.S.
G.PO., 1999 http://books.google.com/books?
id=4mhiQwAACAAJ

[Uni02] UNITED STATES CODE: Sarbanes-Oxley Act of 2002, PL
107-204, 116 Stat 745. Codified in Sections 11, 15, 18,
28, and 29 USC, July 2002

[Var01] VARDI, Moshe Y.: Branching vs. linear time: final show-
down. In: Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analy-
sis of Systems. London, UK, UK : Springer-Verlag, 2001
(TACAS 2001). — ISBN 3-540-41865-2, 1-22

[VF07] Vaz, CAitia ; FERREIRA, Carla: Towards automated ve-
rification of web services. In: Proceedings of the IADIS
International Conference on WWW /Internet, 2007. — ISBN
978-972-8924-44-7, S. 84-92

[Web07] WEB SERVICES PoLicy WoRKING GRouP ; W3C (Hrsg.):
Web services policy 1.5 - framework. : W3C, Sep 2007.
http://www.w3.org/TR/ws-policy/

[WKK™11] WEeIDMANN, Monika ; KOTTER, Falko ; KiNTz, Maximilien ;
SCHLEICHER, Daniel ; MIETZNER, Ralph ; LEYMANN, Frank:
Adaptive business process modeling in the internet of
services (ABIS). In: INTERNET, Proceedings of the Sixth

International Conference o. (Hrsg.) ; AppLicaTiONS, Web

Literaturverzeichnis 227

http://books.google.com/books?id=4mhiQwAACAAJ
http://books.google.com/books?id=4mhiQwAACAAJ
http://www.w3.org/TR/ws-policy/

[WMMO9]

[Wol10]

[WPD'11]

(Hrsg.) ; 2011, Services (. (Hrsg.): Adaptive Business
Process Modeling in the Internet of Services (ABIS), Xpert
Publishing Services, Miarz 2011, S. 29-34

WorLTER, Christian ; MiseLDINE, Philip ; MEINEL, Chri-
stoph: Verification of business process entailment cons-
traints using SPIN. In: Massaccl, Fabio (Hrsg.) ; REDWINE,
Samuel (Hrsg.) ; ZANNONE, Nicola (Hrsg.): Engineering
Secure Software and Systems Bd. 5429. Springer Berlin /
Heidelberg, 2009. — ISBN 978-3-642-00198-7

WoLTER, Christian: A methodology for model-driven pro-
cess security, Hasso-Plattner Institute for IT Systems En-

gineering, Diss., 2010

WEIDLICH, Matthias ; POLYVYANYY, Artem ; DEsAI, Nirmit
; MENDLING, Jan ; WESKE, Mathias: Process compliance
analysis based on behavioural profiles. In: Inf. Syst. 36
(2011), Nr. 7, S. 1009-1025

Angegebene URLs wurden zuletzt am 09.11.2013 aufgerufen.

228

Literaturverzeichnis

2.1.

2.2,
2.3.
2.4.

4.1.
4.2.
4.3.
4.4.

4.5.

4.6.

ABBILDUNGSVERZEICHNIS

Einschridnkung der Moglichkeiten der Abfolge von Ak-

tivititen mit Hilfe eines Kontrollflusskonnektors 35
Beispiel fiir ein Ereignis in BPMN: Startereignis 36
Und-Gateway links; Exklusiv-oder-Gateway rechts . . . 36
Datenobjekt 37
Beispielprozess. (Vgl. [SFGT11]) 65

Abstraktes Prozessmodell eines Compliancetemplates . 71

BPMN 2.0-Erweiterungsmechanismus skizziert in UML
(Vgl. [Obj11]) .« . 74
Abstraktes Prozessmodell eines Compliancetemplates
in Verbund mit Variabilitatsdeskriptor. 78

Abstraktes Prozessmodell eines Compliancetemplates
in Verbund mit Variabilitatsdeskriptor und Compliance-
deskriptor 81
Metamodell eines Compliancedeskriptors 82

229

4.7. Annotation eines Prozessmodells mit einem

Compliancedeskriptor 88
4.8. Metamodell eines Compliancescopes 89
4.9. Uberpriifungsschritte fiir BPMN Prozesse geschrieben

inBPMN e 95
4.10.In dieser Dissertation verwendete Grundmenge von

BPMN 1.0Elementen 95
4.11.Abbildung von BPMN 1.0 Konstrukten auf Petrinetze

(angelehnt an [DDO08]) 97

5.1. Beispielprozess versehen mit Datenobjekten und Com-
pliancedomains 111
5.2. Meta-Modell einer Compliancedomain 115
5.3. Vergleich von Daten-schemas zur Uberpriifung einer
Complianceregel. 120
5.4. Beispielprozess, der den gesamten Kontrollfluss und
einen Teil des Datenflusses zeigt. 129
5.5. Generische Compliancesprache (vergleiche:[SWLS10]) 131
5.6. Ubergeordnete Sprache zur Definition von Compliance-
regeln (Erweiterung der BNF der Aussagenlogik) ... 132
5.7. Darstellung des Regelbaumes fiir das laufende Beispiel 138

6.1. Ablauf der Erstellung regelkonformer Prozesse. Notati-

on: angelehntan BPMN 147
6.2. Konzeptionelle Ubersicht iiber die Komponenten, die

fiir die Entwicklung regelkonformer Prozesse miteinan-

der arbeiten miissen. 152

230 Abbildungsverzeichnis

6.3. Beispiel: Vervollstindigungsebenen; Weiterleitung von
Complianceregeln (vergleiche [SALS10]) 156
6.4. Entstehung eines Konflikts beim Einfiigen von Com-
plianceregionen (vergleiche [SALS10]) 161
6.5. Weiterleitung von nicht erfiillten Complianceregeln (ver-
gleiche [SALS10]), 163
6.6. Beseitigung eines indirekten Konflikts. Durch das Ein-
fligen der Aktivitit A auf Vervollstindigungsebene 2
wird die Complianceregel C, geloscht, so dass sie nicht
mehr bei der automatischen Uberpriifung herangezo-
gen wird. Folglich wird bei der automatischen Uber-
prifung der unerfiillbare Ausdruck C, A =C, in den
erfiillbaren Ausdruck =C, iiberfihrt. 166
6.7. Beschreibung des Algorithmus der Uberpriifung von
Complianceregeln verschachtelter Compliancescopes in
BPMN. Quelle: [Burl2] 171

7.1. Oberfldache von Oryx. Rechts befindet sich das Sidebar-
Plugin. Es zeigt, abhéngig von der aktuellen Model-
lierungssituation, entweder Eigenschaften des gerade
markierten Teils des Prozessmodells oder die fiir das
Fiillen von Complianceregionen verfiigbaren Prozess-
fragmente. 180

Abbildungsverzeichnis 231

7.2. Uberblick iiber die Architektur des Prototyps. Pfeile
zeigen von der aufrufenden zur aufgerufenen Kompo-
nente. Die in der vorliegenden Dissertation erstellten
Komponenten sind mit durchgezogenen Linien gezeich-
net. Alle schon vorhandenen Komponenten sind mit
unterbrochenen Linien gezeichnet. 182

7.3. Neuer Knopf mit Funktionalititen zur Uberpriifung von
an den Prozess annotierten Complianceregeln. 185

7.4. Compliancewizard: Dient der Annotation von Compliance-
regeln an Complianceregionen oder Compliancescopes 187

7.5. Graphische Modellierung von LTL-Formeln 190

7.6. Anzeige des Uberpriifungsergebnisses bei geschachtel-
ten Compliancescopes 194

7.7. Anzeige des Uberpriifungsergebnisses bei geschachtel-
ten Compliancescopes: Erfiillung des ersten Teils der
mit Compliancescope 1 verkniipften Complianceregel . 195

7.8. Anzeige des Uberpriifungsergebnisses geschachtelter
Compliancescopes: Unerfiillbarkeit weitergereichter Com-
plianceregeln 197

7.9. Prozessmodell mit dem die Geschwindigkeitsuntersu-
chungen durchgefiihrt wurden. 198

B.1. Fiktiver Prozess zum Bau eines Autos. Der Prozess wird
von links nach rechts gelesen und enthélt mehrfach
verschachtelte Compliancescopes. 250
B.2. Graphische Reprédsentation der mit dem Compliances-
cope mit dem Namen Gesamtprozess aus Abbildung B.1

verkniipften Complianceregel. 252

232 Abbildungsverzeichnis

B.3. Graphische Représentation der mit dem Compliances-
cope mit dem Namen Rohbau aus Abbildung B.1 ver-
kniipften Complianceregel. 253
B.4. Graphische Représentation der mit dem Compliances-
cope mit dem Namen Lackieren aus Abbildung B.1 ver-
kniipften Complianceregel. 254
B.5. Fiktiver Prozess zur Buchung offentlicher Verkehrsmittel 255

Abbildungsverzeichnis 233

4.1.

5.1

7.1.

7.2.

TABELLENVERZEICHNIS

Liste von kontrollflussbasierten Complianceregeln (ei-
nige basierend auf [DAC98]). Die Funktionsweise der
in diesen Ausdriicken verwendeten Operatoren wird in
Abschnitt 2.5 beschrieben.. L.

Zusammenhang der Wichtigkeit von Daten fiir eine Or-
ganisation und deren mogliche Verarbeitung in Cloud-

Umgebungen

Funktionen und implementierende Komponenten des
Prototyps
Messergebnisse der Laufzeiten (in Millisekunden) von
Complianceuntersuchungen eines Prozessmodells mit
parallelen Zweigen [Groll].

198

235

3

4

5

6

ANHANG

CODEBEISPIELE

Dieses Codebeispiel zeigt das laufende Beispiel aus Abbildung 4.1. In
den Zeilen 4 bis 15 ist zu sehen, wie die Tasks des Beispielszenarios
auf die Plétze des Petrinetzes abgebildet sind. Bis Zeile 45 werden die
Transitionen und die Plétze, die belegt sein miissen, damit sie schalten
konnen, definiert. In den Zeilen 48 bis 50 wird das Petri-Netz mit der
Startbelegung initialisiert. Die Ausfithrung des Petri-Netzes wird in
den Zeilen 51 bis 67 simuliert.

Listing A.1: Repréasentation des Beispielszenarios als Petrinetz, ge-
schrieben in PROMELA

byte p[20];
#define Task3 false
#define Empfange Blutdaten p[3]

#define Blutspender—daten_speichern p[4]
#define Patientendaten sammeln p[8]

237

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

238

Blutverbrauchsdaten_vorbereiten p[10]
Blutverbrauchsdaten_versenden p[11]
Gesundheitsinformationen_bereitstellen p[13]
Blutverbrauchsdaten versenden p[11]
Gesundheitsinformationen_lesen p[15]
Gesundheitsdaten_speichern p[16]
Blutverbrauchsbericht generieren p[18]
Blutverbrauchsbericht lesen p[13]
Gesundheitsinformationen_bereitstellen p[19]
rd 22 transition0 p[1] && !p[2]

fire_22 transition0 p[l] = 0; p[2] = 1;
rd 23 transitionl p[2] && !p[3]
fire_23 transitionl p[2] = 0; p[3] = 1;

rd_24_ transition2 p[3] && !p[4]
fire_24 transition2 p[3] = 0; p[4] = 1;
rd_25_transition3 p[4] && !p[6] && !p[7]

fire_25 transition3 p[4] = 0; p[6] = 1; p[7] = 1;

rd 26 _transition4 p[7] && !p[8]

fire_26_transition4 p[7] = 0; p[8] = 1;
rd_27_transition5 p[8] && !p[9]
fire_27_transition5 p[8] = 0; p[9] = 1;

rd 28 transition6 p[9] && !p[10]

fire_28 transition6 p[9] = 0; p[10] = 1;
rd_29 transition7 p[10] && !p[11]

fire_29 transition7 p[10] = 0; p[11l] = 1;
rd_30_transition8 p[19] && p[11] && !p[1l4]

fire_30 transition8 p[19] = 0; p[11] = 0; p[l4] = 1;

rd 31 transition9 p[14] && !p[15]
fire_31_transition9 p[14] = 0; p[15] = 1;
rd 32 transition10 p[15] && !p[16]

fire_32 transitionl10 p[15] = 0; p[16] = 1;
rd 33 transitionll p[16] && !p[17]
fire_33 transitionll p[16] = 0; p[17] = 1;

rd 34 transitionl2 p[6] && !p[18]

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

#define fire 34 transitionl2 p[6] = 0; p[18] = 1;
#define rd 35 transitionl13 p[18] && !p[13]
#define fire 35 transitionl3 p[18] = 0; p[13] = 1;
#define rd 36 transitionl4 p[13] && !p[19]
#define fire_36_transitionl4 p[13] = 0; p[19] = 1;
active proctype test()
{
d_step { p[0] = 0; p[1] = 1; p[2] = 0; p[3] = 0; p[4] = O;
p[5] = 0; p[6] = 0; p[7] = 0; p[8] = 0; p[9] = 0; p
[10] = 0; p[11] = 0; p[12] = 0; p[13] = 0; p[14] = 0; p
[15] = 0; p[16] = 0; p[17] = 0; p[18] = 0; p[19] = 0; }
do

rd_22 transition0 —> d_step{printf ("
PROCESSED_22_transition0"); fire 22 transitionO}
rd_23_transitionl —> d_step{printf("
PROCESSED_23_transitionl"); fire_23_transitionl}
rd_24_transition2 —> d_step{printf("
PROCESSED_24_transition2"); fire_ 24 transition2}
rd_25_transition3 —> d_step{printf ("
PROCESSED_25_transition3"); fire 25 transition3}
rd_26_transition4 —> d_step{printf("
PROCESSED_26_transition4"); fire_26_transition4}
rd_27_ transition5 —> d_step{printf ("
PROCESSED_27_transitionb"); fire 27 transition5}
rd_28_transition6 —> d_step{printf ("
PROCESSED_28_transition6"); fire_28_transition6}
rd_29_transition7 —> d_step{printf("
PROCESSED_29_transition7"); fire 29 transition7}
rd_30_transition8 —> d_step{printf ("
PROCESSED_30_transition8"); fire 30 transition8}
rd_31_transition9 —> d_step{printf("
PROCESSED_31_transition9"); fire_31_transition9}
rd_32 transitionl0 —> d_step{printf ("
PROCESSED_32_transition10"); fire 32 transitionlO}

239

61

62

63

64

65

66

67

68

N

10

12

13

rd_33_transitionll —> d_step{printf ("
PROCESSED_33_transitionl1"); fire 33 transitionll}
rd_34 transitionl2 — d_step{printf ("
PROCESSED_34_transition12"); fire 34 _transitionl2}
rd_35 transitionl3 —> d_step{printf ("
PROCESSED_35_transition13"); fire 35 transitionl3}
rd_36_transitionl4 —> d_step{printf ("
PROCESSED_36_transition14"); fire 36_transitionl4}
p[17] — goto accept

od;

accept: printf("Accepted");

Es folgt ein Minimalbeispiel eines Compliancetemplates in XML
in Listing A.2. Dieses Beispiel basiert auf dem XML Schema fiir ein

Compliancetemplate in Listing A.3.

Listing A.2: Minimalbeispiel fiir ein Compliancetemplate

<?xml version="1.0" encoding="UTF-8"?>
<complTemplate:complianceTemplate
xmlns:complTemplate="http://www.danielschleicher.com/
complianceTemplate"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
xsi:schemaLlocation="http://www.omg.org/spec/BPMN/20100524/
MODEL BPMN20.xsd
http://www.danielschleicher.com/complianceTemplate
complianceTemplate.xsd">
<complTemplate:complianceDescriptor>
<complTemplate:compliancePunkt>
<complTemplate:complianceRegel>

240

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

<complTemplate:complianceLink>
<complTemplate:complianceRegionXpath>/
complTemplate:complianceTemplate /
bpmn2:definitions/bpmn2:process/
complTemplate:complianceRegion</
complTemplate:complianceRegionXpath>
</complTemplate:complianceLink>
<complTemplate:formalComplianceRule>
<complTemplate:languagelndicator>1tl</
complTemplate:languageIndicator>
<complTemplate:complianceRule>[] Taskl</
complTemplate:complianceRule>
</complTemplate:formalComplianceRule>
</complTemplate:complianceRegel>
</complTemplate:compliancePunkt>
</complTemplate:complianceDescriptor>
<complTemplate:variabilityModel>
<complTemplate:variabilityPoint>
<complTemplate:name />
<complTemplate:alternative>

<complTemplate:name>free</complTemplate:name>

<complTemplate:default>true</complTemplate:default>

<complTemplate:empty />
</complTemplate:alternative>
<complTemplate:xPathLocator>/

complTemplate:complianceTemplate/bpmn2:definitions/

bpmn2:process/complTemplate:complianceRegion</

complTemplate:xPathLocator>
</complTemplate:variabilityPoint>
</complTemplate:variabilityModel>

<bpmn2:definitions targetNamespace="http://sample.bpmn2.

org/bpmn2/sample/process">

<bpmn2:process id="process_1" name="Default Process">

<bpmn2:startEvent id="StartEvent_1">

241

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

242

<bpmn2:outgoing>SequenceFlow_1</bpmn2:outgoing>
</bpmn2:startEvent>
<bpmn2:sequenceFlow id="SequenceFlow_1" sourceRef="
StartEvent_1" targetRef="ComplianceRegion_1"/>
<bpmn2:endEvent id="EndEvent_1">
<bpmn2:incoming>SequenceFlow_2</bpmn2:incoming>
</bpmn2:endEvent>

<complTemplate:complianceRegion id="ComplianceRegion_1

" name="Compliance Region">

<bpmn2:incoming>SequenceFlow_1</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_2</bpmn2:outgoing>
</complTemplate:complianceRegion>
<bpmn2:sequenceFlow id="SequenceFlow_2" name=""
sourceRef="ComplianceRegion_1" targetRef="
EndEvent_1"/>
</bpmn2:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1" name="Default
Process Diagram">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="
process_1">
<bpmndi:BPMNShape id="BPMNShape_1" bpmnElement="
StartEvent_1">
<dc:Bounds height="36.0" width="36.0" x="100.0"
"100.0" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_2" bpmnElement="
EndEvent_1">
<dc:Bounds height="36.0" width="36.0" x="500.0"
"100.0" />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_1"
bpmnElement="SequenceFlow_1" sourceElement="
BPMNShape_1" targetElement="
BPMNShape_ComplianceRegion_1">

59 <di:waypoint xsi:type="dc:Point" x="136.0" y="

118.0" />

60 <di:waypoint xsi:type="dc:Point" x="264.0" y="
119.0" />

61 </bpmndi:BPMNEdge>

62 <bpmndi:BPMNShape id="BPMNShape_ComplianceRegion_1"

bpmnElement="ComplianceRegion_1">

63 <dc:Bounds height="50.0" width="110.0" x="264.0" y
="94.0"/>

64 </bpmndi:BPMNShape>

65 <bpmndi:BPMNEdge id="BPMNEdge_SequenceFlow_2"

bpmnElement="SequenceFlow_2" sourceElement="
BPMNShape_ComplianceRegion_1" targetElement="
BPMNShape_2">

66 <di:waypoint xsi:type="dc:Point" x="374.0" y="
119.0" />

67 <di:waypoint xsi:type="dc:Point" x="500.0" y="
118.0" />

68 </bpmndi:BPMNEdge>

69 </bpmndi:BPMNPlane>

70 </bpmndi:BPMNDiagram>

71 </bpmn2:definitions>
72 </complTemplate:complianceTemplate>

Listing A.3: XML Schema fiir ein Compliancetemplate

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!— edited with XMLSpy v2013 spl (x64) (http://www. altova.
com) by Patricia Bart—Plange (Daimler AG) —>

3 <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:nsl="http://www.danielschleicher.com/
complianceTemplate" xmlns:bpmn="http://www.omg.org/spec/
BPMN/20100524/MODEL" targetNamespace="http://www.
danielschleicher.com/complianceTemplate"
elementFormDefault="qualified" attributeFormDefault="

243

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

unqualified">
<xs:import namespace="http://www.omg.org/spec/BPMN
/20100524 /MODEL" schemalocation="Semantic.xsd"/>
<xs:import namespace="http://www.omg.org/spec/BPMN
/20100524 /MODEL" schemaLocation="BPMN20.xsd" />
<xs:element name="complianceTemplate" type="
nsl:tcomplianceTemplate" />
<xs:complexType name="tcomplianceTemplate">
<xs:all>

<xs:element ref="nsl:complianceDescriptor" minOccurs="

0" maxOccurs="1"/>
<xs:element ref="nsl:variabilityModel" minOccurs="0"
maxOccurs="1"/>
<xs:element ref="bpmn:definitions" minOccurs="1"
maxOccurs="1"/>
</xs:all>
</xs:complexType>
<xs:element name="complianceRegion" type="
nsl:tcomplianceRegion" substitutionGroup="
bpmn:flowElement" />
<xs:complexType name="tcomplianceRegion">
<xs:complexContent>
<xs:extension base="bpmn:tActivity">
<xs:sequence>
<xs:element ref="bpmn:laneSet" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="bpmn:flowElement" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="bpmn:artifact" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="triggeredByEvent" type="
xs:boolean" default="false"/>

</xs:extension>

244

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

</xs:complexContent>
</xs:complexType>
<xs:element name="complianceScope" type="
nsl:tcomplianceScope" substitutionGroup="
bpmn:flowElement" />
<xs:complexType name="tcomplianceScope">
<xs:complexContent>
<xs:extension base="nsl:tcomplianceRegion"/>
</xs:complexContent>
</xs:complexType>
<xs:element name="languageIndicator" type="
nsl:tlanguageIndicator" />
<xs:simpleType name="tlanguageIndicator">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="formalComplianceRule" type="
nsl:tformalComplianceRule" />
<xs:complexType name="tformalComplianceRule">
<Xxs:sequence>
<xs:element ref="nsl:languageIndicator" minOccurs="1"
maxOccurs="1"/>
<xs:element name="complianceRule" type="xs:string"
minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<xs:element name="complianceLink" type="
nsl:tcompliancelink" />
<xs:complexType name="tcomplianceLink">
<Xxs:sequence>
<xs:element name="complianceRegionXpath" type="
xs:string" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

245

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

<xs:element name="complianceRegel" type="
nsl:tcomplianceRegel" />
<xs:complexType name="tcomplianceRegel">
<xs:sequence>
<xs:element ref="nsl:complianceLink"/>
<xs:element ref="nsl:formalComplianceRule" />
</xs:sequence>
</xs:complexType>
<xs:element name="compliancePunkt" type="
nsl:tcomliancePunkt" />
<xs:complexType name="tcomliancePunkt">
<xs:sequence>
<xs:element ref="nsl:complianceRegel" />
</xs:sequence>
</xs:complexType>
<xs:element name="dependencySourceXPath" type="
nsl:tdependencySourceXPath" />
<xs:simpleType name="tdependencySourceXPath">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="dependencyTargetXPath" type="
nsl:tdependencyTargetXPath" />
<xs:simpleType name="tdependencyTargetXPath">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:element name="dependency" type="nsl:tdependency" />

<xs:complexType name="tdependency">
<xs:sequence>

<xs:element ref="nsl:dependencySourceXPath" minOccurs=

"1" maxOccurs="1"/>

<xs:element ref="nsl:dependencyTargetXPath" minOccurs=

"1" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

246

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

<xs:element name="complianceDescriptor" type="
nsl:tcomplianceDescriptor" />
<xs:complexType name="tcomplianceDescriptor">
<xs:sequence>
<xs:element ref="nsl:compliancePunkt"/>
<xs:element ref="nsl:dependency" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="xPathLocator" type="xs:string"/>
<xs:element name="alternative" type="nsl:talternative"/>
<xs:complexType name="talternative'">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="default" type="xs:boolean"/>
<xs:any namespace="##targetNamespace" processContents=
"lax" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="variabilityPoint" type="
nsl:tvariabilityPoint" />
<xs:complexType name="tvariabilityPoint">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="dependentOn" type="xs:string"
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="nsl:alternative" minOccurs="1"
maxOccurs="unbounded" />
<xs:element ref="nsl:xPathLocator" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="variabilityModel" type="
nsl:tvariabilityModel" />

247

104

105

106

107

108

<xs:complexType name="tvariabilityModel">
<xs:sequence>
<xs:element ref="nsl:variabilityPoint" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

109 </xs:schema>

248

ANHANG

KOMPLEXE PROZESSBEISPIELE

Die in den Abbildungen B.1 und B.5 gezeigten Prozesse zeigen die
Anwendbarkeit der in dieser Dissertation vorgestellten Konzepte an
Beispielen, deren Komplexitit an die Komplexitidt realer Prozesse
angelehnt ist.

Der Fokus des in Abbildung B.1 gezeigten Prozesses liegt in der
Anwendbarkeit von Compliancescopes mit realitdtsnahen Prozessen.
Die in diesem Beispiel gezeigten Compliancescopes sind mehrfach
ineinander verschachtelt. Mit jedem Compliancescope sind Complian-
ceregeln verkniipft. Daraus ergibt sich die Situation, dass nicht erfiillte
Complianceregeln dufderer Compliancescopes an die inneren Com-
pliancescopes weitergegeben werden miissen.

Im Folgenden werden die mit den Compliancescopes Gesamtprozess,
Rohbau und Lackieren verkniipften Complianceregeln gezeigt. Damit

wird die Plausibilitit der in diesem Prozess verwendeten Compliancere-

249

Compliance)

Compliance)

KaeuferEinladen

Compliance| (Sales

ﬁ

TuerenAnbring
en
HochzeitDurch
fuehren

— b [8 . 17O
2 8
3¢ £
% =4
g H
H 3
H H

[
)
|

FarbeAbfragen

]
— : -0
s 8
5 g
£ H
5
2
-
§
H
5 3
H & a
2 2)
3 3

AngebotAuswa
ehlen

AngebotPruefen|

Gesamtprozess

Einkauf

Abbildung B.1.: Fiktiver Prozess zum Bau eines Autos. Der Prozess
wird von links nach rechts gelesen und enthélt mehr-

fach verschachtelte Compliancescopes.
250

geln und somit die Anwendbarkeit des Konzepts des Compliancescopes
mit realitdtsnahen Prozessen gezeigt. Alle anderen Compliancescopes
in diesem Beispiel sind auch mit Complianceregeln versehen. Aus

Platzgriinden werden diese nicht aufgefiihrt.

251

IMP FINALLY
MontageStart Auslieferung

Abbildung B.2.: Graphische Représentation der mit dem Complian-

252

cescope mit dem Namen Gesamtprozess aus Abbil-
dung B.1 verkniipften Complianceregel.

* Complianceregel Gesamtprozess: Die in Abbildung B.2 gezeig-

te Complianceregel bedeutet, dass nach dem Task MontageStart
immer der Task Auslieferung ausgefiihrt werden muss. Es ist sinn-
voll solche allgemeinen Complianceregeln mit dem duf3ersten
Compliancescope eines Prozesses zu verkniipfen. Damit wird

das Grundgeriist des Prozesses festgelegt.

Complianceregel Rohbau: Die in Abbildung B.3 gezeigte Com-
plianceregel bedeutet, dass der Task unterbauVerschrauben im-
mer ausgefithrt werden muss, wenn der Task tuerenFertigen
ausgefithrt wird und umgekehrt. Diese Complianceregel stellt
die strukturelle Integritit des Teilprozesses im Compliancescope

Rohbau sicher.

Complianceregel Lackieren: Die in Abbildung B.4 gezeigte
Complianceregel bedeutet, dass der Task Schwarz alleine ausge-
fiihrt wird oder die Tasks Weiss und Blau zusammen ausgefiihrt

werden miissen. Mit dieser Complianceregel kann sichergestellt

(FINALLY

unterbauVerschrauben

tuerenFertigen

Abbildung B.3.: Graphische Reprasentation der mit dem Complian-
cescope mit dem Namen Rohbau aus Abbildung B.1
verkniipften Complianceregel.

werden, dass zum Beispiel Einschrdnkungen von Maschinen bei
der Prozessmodellierung beachtet werden. Es konnte hier der
Fall sein, dass die Lackiermaschine entweder nur Schwarz in
einem Durchlauf lackieren kann oder Blau und Weil zusammen

in einem Durchlauf.

Abbildung B.5 zeigt einen anderen fiktiven Prozess. Er zeigt die
Schritte die notig sein konnten mit der App mit dem Namen Moovel von
Daimler ein 6ffentliches Verkehrsmittel zu buchen. Moovel integriert
mehrere Anbieter von offentlichen Verkehrsmitteln in einer App. In
den Suchergebnissen kénnen Reisemoglichkeiten unter Verwendung
mehrerer Anbieter angezeigt werden.

Im Folgenden wird beispielhaft eine datenbasierte Complianceregel

253

FINALLY

Abbildung B.4.: Graphische Représentation der mit dem Compliances-
cope mit dem Namen Lackieren aus Abbildung B.1
verkniipften Complianceregel.

gezeigt, die in diesem Prozess mit der Compliancedomain mit dem
Namen PublicCloud verkniipft sein konnte.

Es muss in diesem Prozess zum Beispiel verhindert werden, dass
sensible Daten, die in der Compliancedomain mit dem Namen Priva-
teCloud verarbeitet werden nach auf3en gelangen. Daher muss unter
anderem die Datenassoziation iiberpriift werden, die vom Task mit
dem Namen Forward Booked Tickets zum Datenobjekt Ticket List zeigt.
Es kann hier zum Beispiel festgelegt werden, dass nur die Ticket-
nummer und der Name des Kaufers {ibertragen werden, jedoch nicht
die Zahlungsmethode und Bankverbindung. Dies kann mit der in Ab-
schnitt 5.2 vorgestellten auf XPath basierenden Compliancesprache

festgelegt und automatisch iiberpriift werden.

254

Abbildung B.5.: Fiktiver = Prozess zur Buchung Offentlicher
Verkehrsmittel
255

	1 Einleitung
	1.1 Bedeutung von Compliance für Unternehmen heute
	1.2 Zentrales Anliegen
	1.3 Problemstellung und Motivation
	1.4 Forschungsbeiträge der Arbeit
	1.4.1 Erweiterung eines Variabilitätskonzepts und eines Prozessmetamodells für die Unterstützung der Entwicklung regelkonformer Prozesse
	1.4.2 Algorithmus zur Überprüfung des Kontrollflusses von Teilbereichen von Prozessen
	1.4.3 Algorithmus zur Überprüfung des Datenflusses in Prozessmodellen
	1.4.4 Ein Mechanismus zur Unterstützung der Zusammenarbeit bei der Erstellung regelkonformer Prozesse
	1.4.5 Architektur eines Prototyps zur Evaluierung der vorgestellten Konzepte und Algorithmen

	1.5 Definition des Arbeitsbereichs
	1.6 Aufbau der Arbeit

	2 Grundlagen der Entwicklung regelkonformer Prozesse
	2.1 Bedeutung des Begriffs Compliance im Kontext dieser Arbeit
	2.2 Business Process Management
	2.3 Business Process Model and Notation 1.0 (BPMN 1.0)
	2.3.1 Tasks
	2.3.2 Kontrollfluss
	2.3.3 Datenfluss
	2.3.4 Ereignisse
	2.3.5 Gateways
	2.3.6 Datenobjekte

	2.4 Oryx
	2.5 Lineare Temporale Logik
	2.6 Modelchecking
	2.7 SPIN
	2.8 PROMELA
	2.9 JSON
	2.10 Prozessfragment

	3 Verwandte Arbeiten
	3.1 Unterstützung menschlicher Prozessmodellierer
	3.2 Regelkonformes Geschäftsprozessmanagement
	3.3 Regelkonforme Prozessmodellierung
	3.4 Automatische Überprüfung von Prozessmodellen anhand von Complianceregeln zur Entwicklungszeit
	3.5 Zusammenfassung und Einordnung

	4 Entwicklung von Prozessen mit regelkonformem Kontrollfluss
	4.1 Beispielszenario: Blutspendeprozess des Roten Kreuz Hong Kong
	4.2 Vorlagenbasierte Entwicklung regelkonformer Prozesse
	4.2.1 Das abstrakte Prozessmodell eines Compliancetemplates
	4.2.2 Der Variabilitätsdeskriptor eines Compliancetemplates
	4.2.3 Der Compliancedeskriptor eines Compliancetemplates
	4.2.4 Vervollständigen von Compliancetemplates

	4.3 Compliancescope
	4.3.1 Definition Compliancescope aufbauend auf der Definition eines Hypergraphen
	4.3.2 Erweiterung von BPMN 1.0 mit Compliancescopes

	4.4 Gegenüberstellung der Anwendungsgebiete von Compliancetemplates und Compliancescopes
	4.5 Verifizierungsalgorithmus für den Kontrollfluss eines Prozesses
	4.5.1 Transformation von BPMN in Petrinetze
	4.5.2 Repräsentation von Petrinetzen in PROMELA

	4.6 Zusammenfassung

	5 Entwicklung von Prozessen mit regelkonformem Datenfluss
	5.1 Beispielprozess
	5.2 Compliancedomains
	5.2.1 Definition von Compliancedomains

	5.3 Verifizierungsalgorithmus
	5.3.1 Eigenschaften von Datenflusskonnektoren
	5.3.2 Eigenschaften von Compliancedomains

	5.4 Datenflussanalyse im Feld der Compilerentwicklung
	5.5 Kombination von datenfluss- mit kontrollflussbasierten Complianceregeln
	5.5.1 Generische Compliancesprache für die Kombination von datenbasierten mit kontrollflussbasierten Complianceregeln
	5.5.2 Formale Definition einer generischen Compliancesprache
	5.5.3 Beispiele
	5.5.4 Automatische Überprüfung von Ausdrücken in einer generischen Compliancesprache, die aus verschiedensprachigen Ausdrücken aufgebaut sind

	5.6 Zusammenfassung

	6 Gemeinsame Erstellung regelkonformer Prozesse
	6.1 Erstellung regelkonformer Prozesse unter Beteiligung mehrerer Partner
	6.2 Werkzeuge für die Erstellung regelkonformer Prozesse
	6.3 Vervollständigungsebenen: Ein Konzept zur gemeinschaftlichen Entwicklung regelkonformer Prozesse
	6.3.1 Verschachtelte Complianceregeln und Flexibilität
	6.3.2 Erfüllbarkeit verschmolzener Regelsätze
	6.3.3 Behandlung erfüllter Complianceregeln
	6.3.4 Auftreten von Konflikten zwischen Complianceregeln

	6.4 Überprüfung von Complianceregeln von verschachtelten Compliancescopes
	6.5 Zusammenfassung

	7 Prototyp
	7.1 Funktionalität des Prototyps
	7.2 Architektur des Prototyps
	7.3 Compliancewizard
	7.4 Variabilitäts-Wizard
	7.5 Sidebar-Plugin
	7.6 Ableitungs-Plugin
	7.7 LTL-Plugin
	7.8 Complianceservlet
	7.9 LTL-Servlet
	7.10 Compliancechecker
	7.11 Performanzmessungen
	7.12 Zusammenfassung

	8 Zusammenfassung und Ausblick
	8.1 Anwendungsgebiet der Dissertation
	8.2 Ausblick

	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Anhang
	A Codebeispiele
	B Komplexe Prozessbeispiele

