
Position Sharing for Location Privacy in

Non-trusted Systems

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der Universität

Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Pavel Skvortsov
aus Donezk

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr.-Ing. Dr. h. c. Peter Göhner

Tag der mündlichen Prüfung: 30.04.2015

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2015

CONTENTS

Contents 6

Acknowledgements 7

Kurzfassung (German) 9

Abstract 11

1. Introduction 13

1.1. Background: Location-Based Services . 13

1.2. Motivation . 16

1.3. Focus and Contributions . 18

2. Position Sharing Approach 21

2.1. System Model . 21

2.2. Privacy Metrics . 26

2.3. Problem Statement . 26

2.4. Share Generation and Share Fusion Algorithms 28

2.4.1. Open Space – Any Share Order: “a-posteriori” Share Generation . . . 28

2.4.1.1. Share Fusion Algorithm . 29

2.4.1.2. “A-posteriori” Share Generation Algorithm 29

2.4.2. Open Space – Any Share Order: “a-priori” Share Generation 31

2.4.2.1. “A-priori” Share Generation Algorithm 32

2.4.3. Open Space – Fixed Share Order . 34

2.4.3.1. OSPS-FSO: Share Fusion Algorithm 35

3

2.4.3.2. OSPS-FSO: Share Generation Algorithm 36

2.4.3.3. Adjustment of pi During the Radius Increase 37

2.4.3.4. Computation of Arbitrary-shaped Area Size 39

2.4.4. System Model Extension: Map Knowledge 39

2.4.5. Constrained Space – Fixed Share Order (Map-aware Approach, CSPS) 41

2.4.5.1. Share Fusion Algorithm . 42

2.4.5.2. Share Generation Algorithm . 43

2.4.6. Summary: Comparison of Algorithms . 44

2.5. Security Analysis . 47

2.5.1. Attacker Model . 47

2.5.2. Monte Carlo Simulation . 48

2.5.3. Open Space Evaluation . 49

2.5.3.1. Comparison of OSPS-ASO “a-posteriori” and OSPS-ASO “a-

priori” . 49

2.5.3.2. Comparison of OSPS-ASO “a-priori” and OSPS-FSO 52

2.5.4. Constrained Space Evaluation . 56

2.5.4.1. Map Information Format . 57

2.5.4.2. Analysis of CSPS . 58

2.5.5. Summary: Comparison of Algorithms . 59

2.5.6. Alternative Estimations of Security . 61

2.5.6.1. OSPS-ASO “a-posteriori” and Convolution of Shares 62

2.5.6.2. OSPS-ASO “a-priori” and Impossibility of Deconvolution of

Shares . 64

2.5.6.3. Alternative Estimations of Security: Summary 66

2.6. Performance Evaluation . 66

2.6.1. Evaluation Setup . 67

2.6.2. Processing Overhead . 67

2.6.3. Attacker’s Overhead . 69

2.6.4. Communication Overhead . 70

2.7. Related Work: Privacy in Location-based Services 71

2.7.1. Cryptography-based Approaches . 71

2.7.2. Position Dummies . 71

2.7.3. Mix Zones . 73

2.7.4. k-anonymity . 75

4 Contents

2.7.5. Spatial Obfuscation . 81

2.7.6. Coordinate Transformation . 83

2.7.7. Trajectory Privacy . 85

2.7.8. Map-aware Approaches . 86

2.7.9. Secret Sharing and Position Sharing . 89

2.7.10. Classification of Location Privacy Approaches 90

2.7.11. Related Work: Summary . 94

2.8. Conclusion . 97

3. Optimization of Share Placement 99

3.1. Problem Statement . 100

3.1.1. Extended System Model . 100

3.1.2. Privacy Metric . 102

3.1.3. Problem Statement . 102

3.2. Background and Related Work . 103

3.2.1. Trust Models . 104

3.2.2. Placement and Allocation Optimization Techniques 104

3.3. Analysis of Share Placement’s Influence on Privacy 109

3.3.1. Influence of LS Risks on Probabilistic Privacy Guarantees 109

3.3.2. Influence of Number of LSs on Probabilistic Privacy Guarantees 110

3.3.3. Influence of Number of LSs on Probabilistic Privacy Guarantees 111

3.4. General Selection & Placement Algorithm . 114

3.5. Optimizing Share Placement . 116

3.5.1. Share Placement Problem and Its Complexity 116

3.5.2. Optimized Share Placement Algorithm 118

3.5.3. Placement Strategies for Special Cases 119

3.6. Evaluation . 123

3.6.1. Performance Evaluation . 124

3.6.2. Probabilistic Guarantees of Privacy Levels after Placement Optimization124

3.7. Conclusion . 127

4. Location Update Algorithms for Position Sharing 129

4.1. Background and Related Work . 129

4.1.1. Classification of Location Update Protocols 130

4.1.2. A Combined Location Update Protocol 131

Contents 5

4.1.3. Dead Reckoning Protocols . 133

4.1.4. Map-based Dead-Reckoning . 134

4.1.5. Summary . 135

4.2. Problem Statement . 136

4.3. Position Sharing Update Approaches . 137

4.3.1. Position Sharing Update Approach 1: PSUA1 139

4.3.2. Position Sharing Update Approach 2: PSUA2 141

4.3.3. Position Sharing Update Approach 3: PSUA3 142

4.3.4. Estimations of Efficiency . 143

4.4. Optimized Location Update Algorithm . 144

4.5. Security of Location Updates . 147

4.5.1. Challenges of Consecutive Updates . 147

4.5.2. Secure Location Updates . 148

4.5.3. Further Privacy Challenges: Discussion 151

4.6. Evaluation . 154

4.6.1. Evaluation Setup . 154

4.6.2. Communication Cost after Reduction of Updates 155

4.6.3. Probabilistic Guarantees of Privacy Levels after Position Update Opti-

mization . 158

4.7. Conclusion . 159

5. Conclusion 161

5.1. Summary . 161

5.2. Outlook . 163

Bibliography 165

List of Figures 181

List of Tables 187

A. List of Selected Abbreviations 189

B. List of Selected Notations 191

6 Contents

ACKNOWLEDGEMENTS

I would like to gratefully thank Prof. Kurt Rothermel from the University of Stuttgart and

Prof. Vladimir Svjatnyj from the Donetsk National Technical University for granting me

the opportunity to conduct this research. Prof. Kurt Rothermel carefully supervised my

work, especially in the early stages, which allowed this work to become of great scientific

significance. Special thanks go to my supervisor Frank Dürr for his advice on improving

the content and structure of this dissertation, as well as for his collaboration on scientific

publications in the process.

I would also like to thank the students who were engaged in this work at various stages:

Björn Schembera, Andreas Paul, Daniel del Hoyo and Simon Hänle.

I have enjoyed working with my colleagues from the Distributed Systems department

including Ralph Lange, Marius Wernke, Stamatia Rizou, Stefan Föll, Lars Geiger, Harald

Weinschrott and many others.

In terms of financial support, I am thankful for the scholarship from the land of Baden-

Württemberg, and the German Research Foundation (Deutsche Forschungsgemeinschaft,

DFG), whose project Nexus gave rise to the topic of this work.

For their continued emotional and all-round support, I would like to thank my family –

especially during my long years of study in school and at the Donetsk National Technical

University.

Finally, I would like to especially thank Ben Carabelli and Ralph Lange who read my work

prior to submission, and therefore gave many helpful suggestions to improve it.

7

KURZFASSUNG (GERMAN)

Ortsbezogene Dienste (engl. location-based services) dienen dazu, die aktuelle geographische

Position des Nutzers zu bestimmen und im Rahmen einer Anwendung zu nutzen. Heutzutage

sind viele ortsbezogene Anwendungen für Nutzer mobiler Endgeräte verfügbar und weit

verbreitet, wie z.B. Google Now, Trace4You oder FourSquare. Diese Anwendungen sind auch

in verschiedenen Umgebungen eingesetzt, in denen Positionsprivatheit ein kritisches Thema

für Benutzer ist. Eine allgemeine Lösung für die Sicherung der Positionsprivatheit eines

Benutzers ist, seine Positionsinformationen von geringerer Genauigkeit zu veröffentlichen.

In dieser Arbeit schlagen wir einen Ansatz vor, der räumliche Verschleierung benutzt, um

Positionsprivatheit mobiler Nutzer zu sichern.

Nach der Offenlegung der Position des Benutzers mit einem bestimmten Verschleierungs-

grad ist der Kompromiss zwischen Datenschutz und Genauigkeit sehr wichtig, da das Ver-

trauen in die Dienstanbieter begrenzt ist. Eine höhere Verschleierung erhöht Positionspri-

vatheit, führt aber zu geringerer Qualität der Dienstleistung. Wir bieten das “Position

Sharing”-Verfahren an, um dieses Problem zu lösen. Die Grundidee ist, dass Positionsin-

formationen zwischen mehreren Dienstanbietern in Form von separaten Datenstücken (in

dieser Arbeit als Positionsshares bezeichnet) verteilt werden. Unser Ansatz ermöglicht die

Nutzung von nichtvertrauenswürdigen Dienstanbietern und verwaltet flexibel mehrere Stufen

des Datenschutzes für Benutzerpositionen, die auf probabilistischen Privatheitsmetriken

basieren. In dieser Arbeit präsentieren wir den “Position Sharing” Ansatz für mehrere Dien-

stanbieter der ortsbezogenen Dienste, der die Algorithmen zur Erzeugung und Kombination

von Positionsshares beinhaltet.

Eine wichtige Herausforderung im Rahmen des Ansatzes ist, dass der Umgebungskontext

des Benutzers deutlich das Niveau der Verschleierung verringern kann. D.h., ein Flugzeug, ein

Boot oder ein Auto stellt unterschiedliche Anforderungen an die zu verschleiernden Gebiete

9

dar. Deswegen ist es nötig, die Karteninformationen bei der Auswahl der verschleierten

Gebiete zu berücksichtigen. Wir gehen davon aus, dass eine statische Karte einem Angreifer

bekannt ist, die die echte Benutzerposition enthüllen kann. Wir analysieren, wie sich die

Karteninformation auf die Erzeugung und Fusion der Positionsshares auswirkt. Wir zeigen

auch den Unterschied zwischen dem kartebewussten “Position Sharing” Ansatz und seiner

Version für unstrukturierte Gebiete. Unsere Sicherheitsanalyse zeigt, dass der vorgeschlagene

“Position Sharing”-Ansatz gute Sicherheitsgarantien für unstrukturierte sowie strukturierte

Raummodelle anbietet.

Die nächste Herausforderung ist, dass mehrere Positionsserver bzw. Serveranbieter un-

terschiedliche Vertrauenswürdigkeitswerte aus der Sicht des Benutzers haben können. In

diesem Fall möchte der Benutzer unterschiedliche Genauigkeitsgrade der Positionsinfor-

mationen an jedem einzelnen Positionsserver offenlegen. Wir schlagen einen Ansatz für

Platzierungsoptimierung vor, der sicherstellt, dass das Risiko der Positionsserver nach den in-

dividuellen Vertrauensniveaus ausgeglichen wird. Unsere Evaluierung zeigt eine signifikante

Verbesserung der Positionsprivatheit nach der Anwendung der optimierten Shareverteilung,

im Vergleich zu der Gleichverteilung der Shares.

Das letzte betrachtete Problem ist das Lokationsupdateverfahren. Laut unserem Basisansatz

kann dies zu einem erheblichen Kommunikationsaufwand führen, wenn die Anzahl der un-

terschiedlichen Positionsserver (und der entsprechenden Privatheitsniveaus) n hoch ist:

Jedes Update würde n Nachrichten von jedem mobilen Nutzer an die Positionsserver er-

fordern, vor allem im Fall einer hohen Aktualisierungsrate. Wir bieten daher ein optimiertes

Lokationsupdateverfahren an, um die Anzahl der Nachrichten so zu verringern, dass die

Positionsprivatheit der mobilen Nutzer unverändert bleibt.

10 Contents

ABSTRACT

Currently, many location-aware applications are available for mobile users of location-based

services. Applications such as Google Now, Trace4You or FourSquare are being widely

used in various environments where privacy is a critical issue for users. A general solution

for preserving location privacy for a user is to degrade the quality of his or her position

information. In this work, we propose an approach that uses spatial obfuscation to secure

the users’ position information. By revealing the user’s position with a certain degree of

obfuscation, the first crucial issue is the tradeoff between privacy and precision. This tradeoff

problem is caused by limited trust in the location service providers: higher obfuscation

increases privacy but leads to lower quality of service. We overcome this problem by

introducing the position sharing approach. Our main idea is that position information is

distributed amongst multiple providers in the form of separate data pieces called position

shares. Our approach allows for the usage of non-trusted providers and flexibly manages

the user’s location privacy level based on probabilistic privacy metrics. In this work, we

present the multi-provider based position sharing approach, which includes algorithms for

the generation of position shares and share fusion algorithms.

The second challenge that must be addressed is that the user’s environmental context

can significantly decrease the level of obfuscation. For example, a plane, a boat and a car

create different requirements for the obfuscated region. Therefore, it is very important to

consider map-awareness in selecting the obfuscated areas. We assume that a static map is

known to an adversary, which may help in deriving the user’s true position. We analyze both

how map-awareness affects the generation and fusion of position shares and the difference

between the map-aware position sharing approach and its open space based version. Our

security analysis shows that the proposed position sharing approach provides good security

guarantees for both open space and constrained space based models.

11

The third challenge is that multiple location servers and/or their providers may have

different trustworthiness from the user’s point of view. In this case, the user would prefer

not to reveal an equal level (precision) of position information to every server. We propose a

placement optimization approach that ensures that risk is balanced among the location servers

according to their individual trust levels. Our evaluation shows significant improvement of

privacy guarantees after applying the optimized share distribution, in comparison with the

equal share distribution.

The fourth related problem is the location update algorithm. A high number of different

location servers n (corresponding to n privacy levels) may lead to significant communication

overhead. Each update would require n messages from the mobile user to the location

servers, especially in cases of high update rate. Therefore, we propose an optimized location

update algorithm to decrease the number of messages sent without reducing the number of

privacy levels and the user’s privacy.

12 Contents

C
H

A
P

T
E

R 1
INTRODUCTION

In this chapter, we begin by presenting basic information about location-based services using

private user information. Then, we explain the need for preserving the user’s location privacy

while using the location-based services. Finally, we outline the goals and main features of

our approach.

1.1. Background: Location-Based Services

During the last few decades, we have experienced an unprecedented increase in access to

digital geographical information. The major contributing factors include the advance of cloud

services to store personal data remotely, the increased availability of fast internet connection

and the widespread usage of mobile devices, in addition to the common usage of geographic

positioning. The combined utilization of these modern technologies has allowed to create a

large variety of applications for users. Among them, location-based applications (LBAs) are

very popular nowadays. The availability of the user’s position makes services possible which

users could only dream of before: automated navigation with advanced geographical maps,

geo-social networking, search for places and locations by the given criteria, etc.

LBAs are supported by location services, which store the positions of mobile objects

(MOs) at location servers (LSs). At the same time, powerful mobile devices such as mobile

phones, smartphones, PDAs and tablet computers are becoming increasingly widespread.

Such mobile devices offer high processing power, large memory capacity and an integrated

positioning system—for example, the satellite-based Global Positioning System (GPS), which

was deployed between 1989 and 1994. Similarly to the Internet, GPS was initially developed

13

for military use and then later made available for civilian and commercial use. The widespread

flat-rate tariffs for network communication make the use of location-based applications

affordable for many users.

A location-based service (LBS) is a service for the users of mobile devices, which allows

for exchanging and processing the users’ location data through the mobile network. For ex-

ample, web services such as Google Now [Goo15], InstaMapper [Ins14], Trace4You [Tra14],

Facebook Places [Fac15] and FourSquare [Fou14] support queries for obtaining a user’s

nearest neighbors, local points of interests or a set of friends in a given area, etc. The

convergence of technologies which enables the functioning of an LBS is shown in Figure 1.1

[Mok07]. We can see that the use of advanced mobile devices with Internet access enables

the mobile Internet. If spatial databases become available over the Internet, they are known

as Web-GIS (Geographic Information System). Overall, the cooperation of all these tech-

nologies forms what is called the LBS. The basic system architecture of an LBS (Figure 1.2)

consisting of mobile device, positioning system, location server and communication network

[VMG+01, RM03, SNE06]. Below, we describe each major component in more detail.

Mobile device. It is an MO carried by mobile user, which can be used to request various

services and send them the required information. Today, the most widespread example of

such a device is a smartphone, i.e., a mobile phone with advanced functionality including a

GPS receiver.

Positioning system. This system allows the mobile device to automatically determine

its position locally. The methods for determining the position may vary: for example, the

Figure 1.1.: Convergence of technologies for creating an LBS [Mok07]

14 1 | Introduction

Figure 1.2.: System architecture of an LBS

localization can be done through GPS, or through a mobile radio system, which provides the

ID of the current mobile radio cell (the cell ID).

Location server (LS). An LS is responsible for managing the position information of

mobile devices and provides this information to the LBAs. Thus, LBAs make use of the

location-based information stored in a spatial database at the LSs. The LS stores at least

the current (i.e., the last known) position of each tracked mobile object; however, it can

also store their movement history. Furthermore, LSs can store and manage the positions of

various static objects, for instance, by providing detailed map knowledge from the spatial

database.

Finally, a communication network is needed between the system components in order

to enable the exchange of information between them.

It should be noted that a simple LBS could also operate without having an LS. In such case,

the positions of mobile devices are sent directly to the LBS, and the mobile devices receive

the requested information related to their current positions. However, as soon as position

information is shared by multiple LBAs, LSs are necessary to store this information. There

are two major advantages if LSs are available in the system and they store spatial database of

multiple user positions: first, the availability of LSs provides scalability and efficiency, since

multiple LBAs can share information about the MO’s position updates; second, it allows for

1.1 | Background: Location-Based Services 15

spatial queries over multiple moving objects to be implemented and processed.

The LBS user allows LBS to obtain position information of his or her mobile device by

communicating through the mobile network. In return, mobile users get access to services

provided by the LBS [VMG+01, ACD+07]. In other words, LBS offers a variety of services

for mobile users, by making use of their position information. A typical service is when

a user requests location information about an interesting object called a Point of Interest

(POI), for example, searching for nearby hotels or getting information about the current

traffic situation in the locality. Such services are pro-active (query-based). Other services

are reactive (event-based), i.e., they run in the background and react to events such as a

shopping center visit, which could trigger a location-based advertisement. In both cases,

location-based services analyze the user’s environmental context primarily depending on his

or her position.

1.2. Motivation

As we have shown, to answer location-based queries of a mobile user, LBAs require the mobile

user to reveal his or her position. The position information sent by a user to the LBS should

be precise enough to provide an acceptable quality of service for the variety of location-based

applications. The user’s location privacy is a critical issue, since the user’s position must

be provided to a third party—LSs and/or service providers—which are usually considered

non-trusted from the user’s point of view. An LS can be compromised by an attacker, or

its provider can be malicious and misuse the user’s private information. Therefore, it is

important to have alternative solutions in order to provide better security.

According to the well-known definition of privacy for information handling by Alan Westin

[Wes67], privacy is the user’s ability to determine independently how to deal with his or

her own information. In other words, the user must be able to protect the information

from unauthorized access and undesired processing. Simply put, the user wants to maintain

control over his or her personal information, including position information.

The need for location privacy was studied by Brush et al. [BKS10]. The majority of

respondents in that study said that they were willing to disclose their location information

if it was in the public (i.e., not personal) interest such as for managing traffic jams or for

planning future bus routes. However, in those cases, when the processed information was

very personal, the respondents were concerned about their privacy (e.g., while using services

such as a recommended place advisor service or daily route tracking).

16 1 | Introduction

A large number of examples of leaked information exist; there are web-resources that mon-

itor such cases on a daily basis [Pri14]. Moreover, the recent WikiLeaks and PRISM scandals

[Wik14, BBC14, The14] show not only that privately shared data can be maliciously tracked

and later disclosed but also that even well-protected centralized data storage facilities of

high-level governmental institutions cannot be trusted, and therefore they cannot guarantee

100% data security and resilience against attacks.

Further critical problems exist in addition to problems of unauthorized or undesired

disclosure of information. If other persons can access the user’s position at any time, this

lack of security may have consequences for his or her personal well-being [DK06]. Thus,

the user’s position is always connected with privacy and security. Moreover, by using the

information obtained about visited locations and POIs, an adversary can create a user profile,

which will include the social behavior, health status, and personal interests of the targeted

user [DK06, DF03]. For example, if it is known that a politically-sensitive event was held at

the same place and time where a person was located, information about his or her political

views can be derived. As a result, people can be persecuted by third parties based on the

obtained position information and location-based context information. Dobson and Fisher

describe “geoslavery” as a potential undermining of privacy through the use of LBS, and

warn of the possibility of dire consequences if the people’s location privacy continues to be

undermined [DF03]. In particular, the authors describe “stalking” as a situation in which a

person is pursued or harassed to be then forced to perform actions against his or her will.

The protection of privacy in LBS should be provided at different levels [Eyo08]:

First, personal privacy protection must be highlighted to members of society, so that people

are aware of and can assess the potential dangers and possible consequences related to the

privacy-critical services available and offered to them.

Second, a legal framework to regulate the protection exists. For example, § 98 of the

Germany’s Telecommunications Act [Bun14] states that the use of location information is

prohibited if the target person has not agreed to such usage. Anyone who acts contrary to

this principle can be prosecuted.

However, these rules and policies are not sufficient for privacy protection, since the

legal framework may lag behind the technological developments over time. Moreover, the

legal framework can be consciously or unconsciously betrayed and undermined. There

are many recent incidents which illustrate such behavior; for example, the case of Apple

smartphones, which stored all the user’s position data without authorization and notification.

Moreover, since legal prosecution generally involves long delays after the attack occurred

1.2 | Motivation 17

and is therefore not a sufficient countermeasure, because the dire consequences have already

taken place with regard to the victim. Thus, the problem of LBS users’ privacy must be

ensured through technical measures.

In this work, we propose an approach that allows an LBA to define the level of position

precision required, while at the same time it allows the user to preserve his or her location

privacy according to individual preferences. This approach includes flexible management

of the user’s position precision and the corresponding location privacy levels. The flexible

management is achieved by utilizing multiple LSs of different providers. Emerging tech-

nology trends such as federated systems [CB04] and “mashups” (web application hybrids)

[ZP07] show that multiple providers can cooperate. The increasing availability of large dis-

tributed (including cloud-based) infrastructures at a reasonable price provides scalable and

efficient management of large amounts of location data. Suitable infrastructures are already

offered by major operators, for example, Amazon [Ama14], Google [Goo14], Microsoft, IBM

and some smaller companies like ElasticHosts [Ela14], Rackspace [Rac15] and XCalibre

Communications [XCa14].

1.3. Focus and Contributions

In this work, we propose an approach for preserving location privacy of an LBS user in order

to address the location privacy challenges described above.

Our primary contribution is a novel concept for the management of position information,

which preserves the user’s location privacy by using multiple non-trusted service providers and

utilizing the spatial obfuscation technique (originally published in [DSR11]). The objective

is to solve the problem of providers’ trustworthiness and user’s vulnerability through the

utilization of multiple location servers of different providers, instead of using servers of a

trusted third party. Each location server of the user-selected set stores un-encrypted position

information, which we call a position share. The main idea of our approach is to split the

user’s precise position information into position shares containing position information of

limited precision, the number of which can be defined by the user. The user distributes

the generated position shares among n multiple LSs of different providers. The precision

level available for different LBAs can be flexibly managed by defining the number of shares

accessible for each of them: By obtaining k out of n shares (0< k ≤ n), LBAs can get position

information with a certain obfuscation degree.

Our position sharing approach decreases the vulnerability of user’s position information

18 1 | Introduction

against possible attacks and provides the principle of graceful degradation of privacy. This

means that a compromised LS reveals position information only of a limited precision, thus

overcoming the problem of a single trusted third entity. Moreover, our approach provides a

gradual increase of position precision after obtaining every new position share. Users can

allow different location-aware applications to access an individual number of shares k, which

corresponds to their trust in these applications, thus they can flexibly manage multiple levels

of location privacy.

As our primary contribution, we present algorithms for share generation and fusion suited

for open space (without considering map knowledge).

The second contribution is the adaptation of the basic position sharing approach to the

map-aware scenario (originally published in [SDR12]). We present an extension of our

approach to make it map-aware during the obfuscation process, i.e., to take into account

space constraints like topography, land surface, roads, buildings, etc. The obfuscation shape

in our basic position sharing approach is generated independently from the map as a simple

circle. This could lead to privacy problems. If an obfuscation shape covers an area where the

mobile user cannot possibly be located, this decreases the user’s privacy level dramatically.

For instance, a car’s level of obfuscation is far lower than desired if it is located within an

obfuscation area such as a circle, 90% of which are agricultural fields and only 10% are roads.

Therefore, we extend the basic position sharing approach to the map-aware obfuscation in

order to resist the privacy attacks caused by the constrained space environment. Namely,

we perform the adjustment of obfuscation shape’s size, depending on the user type and the

corresponding representation of privacy sensitivity of various map regions. As a result, the

share generation algorithm creates obfuscation shapes by taking into account map-based

knowledge.

The third contribution is that having considered individual trustworthiness levels for LSs

we improve privacy by optimizing share placement onto LSs based on their trustworthiness.

In the basic approach, we assume that each LS has the same probability to be compromised.

Therefore, we place the same degree of position information onto each LS. However, if many

of the selected LSs have low trustworthiness (i.e., they can be hacked easily, or if they are

malicious themselves), this lack of security could lead to the user’s position being almost

exactly revealed. Thus, if the information about trustworthiness of each LS or its provider

is available to the mobile user, we can adapt the share placement in such a way that less

trusted LSs get only the position information of lower precision, while more trusted LSs are

allowed to store position information with higher precision.

1.3 | Focus and Contributions 19

The fourth contribution is a location update approach which reduces communication

overhead caused by multiple consecutive updates without decreasing the user’s privacy. If the

number of different LSs n is large, and/or the position update rate is high, this may lead

to significant communication overhead, since at every update we have to update all of n

shares in a naïve approach. We propose an optimized location update algorithm to reduce

the number of messages to be sent without impacting the user’s privacy.

The fifth contribution is a novel classification of major techniques for protecting location

privacy based on which protection goals they fulfill and which attacks they can resist (origi-

nally published in [WSDR14]). This contribution includes an analysis of possible attacker

knowledge and types of mobile user’s information that must be protected. In the proposed

classification, we analyze which combinations of attacks are currently not considered in the

literature, and we show how our position sharing approach relates to other approaches.

The contributions of this thesis have also been presented in several publications [DWSR10,

DSR11, SDR12, WSDR14]. In [DWSR10], the author contributed to the basic principle of

position sharing together with Frank Dürr. In [DSR11], the author introduced the algorithms

of secure position sharing based on geometric transformations. Also, the author implemented

the approach, while the measurements were performed together with Frank Dürr. In [SDR12],

the author developed the concept of map-aware secure position sharing based on geometric

transformations, implemented the approach and conducted the evaluation. In [WSDR14],

the author provided the basic principle of classification of location privacy approaches. The

classification of location privacy goals and attacks was provided by Marius Wernke. The

above mentioned contributions were refined in collaboration with Frank Dürr.

There were several student theses supervised by the author [Sch11, Hae12, Pau11, Hoy12],

which have also contributed to this work: Björn Schembera developed the basics of share

placement optimization [Sch11]; Simon Hänle contributed to the concept and evaluation of

the location update approach [Hae12]; Andreas Paul [Pau11] and Daniel del Hoyo [Hoy12]

improved the mechanisms of reading and representing map information.

This work is structured as follows. In the second chapter, we present our basic position

sharing approach and its extended map-aware version. This includes an analysis of the privacy

guarantees provided by our approach as well as measurements of its runtime performance.

In the third chapter, we describe an algorithm for share placement optimization. In the fourth

chapter, we propose a location update algorithm which reduces communication overhead

without affecting privacy levels. Finally, we summarize the results of this work and outline

possible future research directions.

20 1 | Introduction

C
H

A
P

T
E

R 2
POSITION SHARING APPROACH

In this chapter, we present our basic position sharing approach. It is based on work that has

been previously published [DSR11, SDR12, WSDR14]. First, we describe our system model

and privacy metrics, and define the problem. The approach includes four versions of share

generation and share fusion algorithms, that depend on the methods of share generation,

randomness of share fusion (fixed vs. free order of fusing shares) and availability of map

knowledge (open space model vs. constrained space model). Next, we analyze the location

privacy guarantees by evaluating the privacy metrics defined in the problem statement, and

we evaluate the runtime performance of the approach. After that, we analyze and classify

the related work in the field of location privacy in location-based services. We conclude the

chapter with a summary.

2.1. System Model

The components of our LBS system are shown in Figure 2.1. They include a mobile object

(MO), i.e., a user with a mobile device, location servers (LSs) of multiple service providers,

and location-based applications (LBAs), which provide location-based services.

Mobile objects (MOs) are the objects whose positions are managed on LSs and used by

LBAs. MOs correspond to users carrying a mobile device such as a smartphone with a

positioning system such as GPS. By using this positioning system, the MO can determine its

current position, which is denoted as π and represented by two-dimensional coordinates.

For the sake of simplicity, we assume the position reported by the positioning system to

be perfectly precise and accurate. In a real system, the detected position may already be

21

imprecise and inaccurate to a certain degree (depending on the positioning system). However,

we assume that this sensing error is much smaller than the artificial imprecision introduced

by position obfuscation. A position of certain precision is defined by a circular area which we

call obfuscation area, where radius r of this circular area defines precision prec(π) = φ = r

of position π. A smaller radius corresponds to a higher precision, i.e., precision level: if

r1 = prec(π1), r2 = prec(π2) and r1 < r2, the precision of π1 is higher than the precision of

π2.

The MOs issue location-based queries (through interfaces provided by the LBAs), for which

they have to send their position information to LSs. However, we assume that the mobile user

does not want his or her precise position to be revealed to a third party. For that reason, a

local component installed on the MO runs a share generation algorithm. We assume that this

component can be implemented in a trustworthy way, for example, by using TCP (Trusted

Computing Platform) [DND07]. Given a precise position π, a number of n shares, and a

lowest precision φmin, the share generation algorithm generates position shares denoted as

the master share s0 and the set S of n refinement shares S = {s1, s2, . . . , sn}:

generate(π, n,φmin) = s0, S (2.1)

The master share s0 is generated so that the position p0 given through s0 has the minimal

Figure 2.1.: System model: mobile object (MO) sends information to location servers (LSs),
which provide this information to location-based applications (LBAs)

22 2 | Position Sharing Approach

precision prec(p0) = φ0 = φmin, which satisfies the maximal privacy demands of the user,

i.e., it has the highest obfuscation level. Given s0 and a subset Sk ⊆ S of k refinement shares

(k ≤ n), a refined position pk can be calculated using a share fusion algorithm:

fuse(s0, Sk) = pk (2.2)

Each further refinement share sk+1 provides a more precise position pk+1:

fuse(s0, Sk+1) = pk+1, (2.3)

where prec(pk+1)≤ prec(pk), i.e., φk+1 ≤ φk

Only after obtaining all the position shares, the last share sn reveals the exact MO’s position

pn = π of highest precision φn = φmax without obfuscation:

fuse(s0, S) = π, (2.4)

with prec(π) = φmax

The obfuscated positions p0, p1, . . . , pn−1 correspond to precision levels φ0,φ1, . . . ,φn−1.

Thus, n different location privacy levels are provided.

We say that shares are heterogeneous if for a subset of refinement shares Sk ⊆ S with size

|Sk| = k (|S| = n, k ≤ n), after fusing k shares into pk, we obtain the required precision

level φk only after fusing these shares in a certain fixed order. In cases when shares are

heterogeneous, each refinement share sk increases the position precision by an individual

pre-defined value ∆φk .

If a share generation algorithm produces homogeneous shares, only the number k of

obtained shares defines the resulting precision levelφk, and the fusion order of the refinement

shares can be arbitrary. In this case, the precision increase is equal for each share: ∆φ1 =

∆
φ
2 = . . .=∆φn = φmax/n.

According to our position sharing approach, each share decreases the size of the obfuscation

area, i.e., it increases the precision level of the given MO’s position. An example of precision

increase through share fusion for circular obfuscation areas is shown in Figure 2.2. Later

2.1 | System Model 23

in this chapter, we will introduce share generation algorithms with different assumptions

regarding the shares’ precisions and fusion order.

We assume that multiple LSs from different independent service providers are available,

and each LS corresponds to a separate provider. We consider a provider’s LS as a single entity,

but this LS can be implemented by a number of physical severs on a lower level, for example,

in a data center. Since no single LS is trusted completely by the MO, no LS is allowed to

store the MO’s precise position.

After share generation, the master share is known to everybody—in particular, every

LBA—for instance, through full replication at every LS and unrestricted access by LBAs.

Hence, every LBA can track MOs with (at least) a precision of φmin. Therefore, φmin is usually

chosen large, i.e., as a large radius corresponding to a low precision.

The open (i.e., non-secret and available for each system actor) information also includes

the number of LSs and the algorithms of share generation and share fusion. The only secret

information is the set of refinement shares s1, s2, . . . , sn−1. The MO distributes the refinement

shares among n selected LSs:

place({s1, s2, . . . , sn}, L) : S −→ L (2.5)

LSs store the shares of position information sent to it by MOs and deliver this information

to authorized LBAs. Each LS has a common access control mechanism, which allows for the

Figure 2.2.: Basic idea of position sharing approach: after getting each new share, the
precision is increased until we get the exact MO’s position π

24 2 | Position Sharing Approach

specification of access rights (given by a user) for the LBAs’ access to shares stored at this LS.

The mapping of shares to LSs or the precision increase ∆φ could be adjusted to the

individual trustworthiness of the LS, giving more trusted LSs better or more shares. In

this chapter, we assume the exact levels of MO’s trust to LSs to be unknown; therefore,

the trustworthiness of every LS provider is assumed to be equal. Later in Chapter 3, we

extend our system model by considering various trustworthiness levels of LSs stored in a

trust database.

Refinement shares are only known to authorized LBAs. The MO specifies which precision

each LBA should get (see Figure 2.1). Usually, this decision defines a trade-off between

the quality of service an LBA can provide with a certain precision of information and the

privacy requirements of the MO. The trusted share generation component running on the

MO’s device Next, the MO assigns access rights to a number of refinement shares, which

provides this precision. Shares and the respective access rights are sent together to the

LSs. The LSs use common access control mechanisms to deliver refinement shares only to

authorized LBAs. LBAs receive the necessary access rights (credentials) together with the

relevant LS addresses from the MO. Then LBAs fuse the obtained shares in order to get the

MO’s position within the defined level of precision.

Since the MO’s position information is distributed among LSs, a compromised LS reveals

only a position of strictly limited precision. This ensures an important property of our position

sharing approach: graceful degradation of privacy (increase of precision) with the number

of compromised LSs.

LBAs can subscribe to receive continuous position updates from the target MOs; or they

can issue and process location-based queries to get the MOs’ positions. However, in this

chapter we assume that share generation is only triggered sporadically rather than with

every update of the positioning system. Typically, this is the case when using a “check-in”

usage pattern, where the user manually publishes his or her position sporadically at certain

locations. Although the presented algorithms could also work with continuous positions

updates, subsequent (close) positions might reveal additional information to an attacker.

Such problems arising from continuous updates are addressed in Chapter 4. However, at this

point we assume that a minimum position update interval is ensured and thus the succeeding

obfuscation shapes of precision φk do not intersect.

2.1 | System Model 25

2.2. Privacy Metrics

The user’s privacy levels are primarily defined by precision levels φk, which are pre-defined

by the user for each 0 ≤ k ≤ n as radii rk of a circular obfuscation areas. Higher precision

φk corresponds to a smaller obfuscation area, and vice versa. The problem is as follows:

an attacker can derive a precision φk,attack higher than φk if the attacker knows the share

generation algorithm and the k shares. As we will show later, analysis of k obtained shares in

addition to the knowledge of share generation algorithm can provide stochastic knowledge

about the true user position π. This makes the precision levels probabilistic. Thus, we need a

probability distribution that ensures that an attacker is not able to predict the MO’s position π

for a given precision φk with sufficiently high probability Pk,attack. The following distribution

Pk,attack(φk,attack) defines the probability of an attacker obtaining a position πk,attack of a certain

precision φk,attack = prec(πk,attack) depending on the number k of compromised LSs:

Pk,attack(φk,attack) = Pr[φk,attack ≤ φk] (2.6)

This metric can be used by the MO to define the acceptable probabilistic guarantees

represented as a set of probability thresholds Pk(φk) corresponding to various precision

levels φk. For example, an MO can specify that an attacker must not be able to obtain a

position of precision φ1 ≤ 1 km with probability P1,attack > 0.2, and precision φ2 ≤ 2 km with

probability P2,attack > 0.1.

By using this metric, we can define the security of the given share generation algorithm.

Namely, we determine the probability levels corresponding to the precision levels guaranteed

for each number of known shares k and the given master share. These levels allow the user

to decide whether his or her privacy levels are acceptable, after the user has selected φmin, n

and the generation share algorithm. If the privacy guarantees do not provide the required

level of security, the user can improve them by adjusting the user-defined parameters Pk,

φmin and n, or by using a different share generation algorithm.

2.3. Problem Statement

The problem is to find a secure approach for the generation and fusion of shares, such

that the following property is fulfilled for the generated shares: Given the master share s0

and a set Sk of refinement shares, it must not be possible to derive a position with higher

26 2 | Position Sharing Approach

precision than the intended precision φk with probability Pk,attack higher than a user-defined

probability Pk (cf. Equation 2.6). The user can analyze the values of Pk,attack provided by

share generation algorithm and decide whether the given probabilistic guarantees of privacy

levels are acceptable.

We define the following as given:

• n location servers,

• the MO’s precise position π,

• the probability distribution Pk(φk), which specifies the required probabilistic guarantees

for each precision level φk.

Problem: Find a share generation algorithm generate(. . .) (cf. Equation 2.1) which ran-

domly generates set S containing a master share s0 and n refinement shares s1 . . . sn, and

a share fusion algorithm fuse(. . .) (cf. Equations 2.2-2.4) which concatenates the shares

s0 . . . sn such that the resulting point is π:

S = {s0 . . . sn} :
n
∑

k=0

sk = π (2.7)

such that the set of shares S satisfies the current user’s privacy requirements, i.e., each

further kth share must provide the pre-defined probabilistic guarantees of privacy levels

Pk(φk):

∀ φk,attack : Pk(φk)> Pr[φk,attack ≤ φk]; (2.8)

finally, the precision φk of each imprecise position pi+1
k derived by share fusion after

obtaining the minimized set S has to be pre-defined:

prec(pk) = φk (2.9)

2.3 | Problem Statement 27

2.4. Share Generation and Share Fusion Algorithms

In this section, four different algorithms for generating and fusing the position shares are

presented (see Figure 2.3).

First, we present the basic position sharing approach, which does not consider space

constraints and assumes any share order during share fusion; it has two versions: “a-

posteriori” and “a-priori”. Then, we propose an approach with fixed share order during share

fusion, which allows for the intersection of obfuscation circles and provides size adjustment

of the obfuscation area resulting from the intersection. Finally, we present the map-aware

position sharing approach, which adapts the area adjustment for the constrained space model.

For each of these approaches, we present a share generation and share fusion algorithm.

2.4.1. Open Space – Any Share Order: “a-posteriori” Share Generation

Here we describe the position sharing approach for open space, later referred to as OSPS-ASO

(Open Space Position Sharing with Any Share Order), first introduced in [DSR11]. Within

the open space model, we assume that the prior probability for the mobile user to be located

at each point in space is uniform. We present the main principles of share generation and

share fusion, which are also the basis for the more advanced versions of our approach as

well.

Figure 2.3.: Classification of position sharing algorithms

28 2 | Position Sharing Approach

2.4.1.1. Share Fusion Algorithm

Algorithm 1 shows the share fusion algorithm of OSPS-ASO. As input parameters we have

the number of LS providers (and correspondingly the total number of refinement shares) n,

the obtained refinement shares ~s1 . . . ~sk (k < n), and the master share s0.

The master share is the initial obfuscation circle c0 with center p0 (line 3) and radius

r0 (line 4). The refinement shares are shift vectors S = {~s1 . . . ~sn}. In the fusion algorithm,

starting from the initial obfuscation circle c0 (lines 3-4), step-by-step for k shares (line 5) each

of the vectors ~si shifts the center pi of the current obfuscation circle ci (line 6) while reducing

the radius ri (line 7) of the current obfuscation circle by a pre-defined value∆r = r0/n =∆φ
(line 2). The resulting obfuscation circle is ck (line 8); an example for n= 4; k = 3 is shown

in Figure 2.4.

Algorithm 1 OSPS-ASO: fusion of shares
1: function f use_k_shares_OSPS_ASO(n, s0, ~s1 . . . ~sk)
2: ∆r ← r0/n
3: ~p← ~p0
4: r ← r0
5: for i = 1 to k do
6: ~p← ~p+ ~si;
7: r ← r −∆r
8: return ck = {~p, r}

As shown in Figure 2.4, the order of obtainment of the refinement shares can be arbitrary,

while the precision (namely, radius and area) of every obfuscation circle ck is pre-defined.

This is achieved by limiting the maximal length of shift vectors by ∆r =∆φ.

For the same circle c0, the maximal acceptable vector length decreases with the increase

of n (r0 = 25 km, 0< k < 5), as shown in Figure 2.5. As a result, each obfuscation circle ck

is inside the previous obfuscation circle ck−1 for any order of refinement shares obtainment.

Note that according to the algorithm presented, even if one tries to intersect the circles

resulting from combinations of the same k vectors in a different order, this will not bring

higher precision: the resulting obfuscation circle ck will be the same for any share fusion

order.

2.4.1.2. “A-posteriori” Share Generation Algorithm

The share generation algorithm that provides “a-posteriori” definition of s0 related to π is

presented in Algorithm 2. First, we determine the maximal shift length ∆r = ∆φ = r0/n

2.4 | Share Generation and Share Fusion Algorithms 29

Figure 2.4.: OSPS-ASO: fusion of the same set of shares in an arbitrary order

Figure 2.5.: OSPS-ASO: maximal vector length depending on n

(line 2). Then, we generate n shift vectors s1 . . . sn with randomly selected direction in

[0;360◦] and randomly selected length in the interval [0;∆r] (line 4). After that, the

position p0 of the master share s0 is calculated so that its concatenation with all of the

refinement vectors results in the precise MO position π= pn (line 5).

We generate the set of shift vectors s1 . . . sn randomly (lines 2-3), having the master share’s

radius r0 = φmin, the target number of shift vectors n, the exact MO position π = pn and

the maximal shift length ∆r. The direction of the generated vectors is chosen uniformly at

random, while their lengths are chosen uniformly at random from the interval [0;∆r].

Note that if the length of each vector is smaller than ∆r and if c0 contains π, we get a

30 2 | Position Sharing Approach

Algorithm 2 OSPS-ASO: generation of shares “a-posteriori”
1: ∆r ← r0/n
2: function gen_n_shares_a_posteriori(s0, n,π)
3: for i = 1 to n do
4: select randomly ~si with |~si| ≤∆r
5: ~p0← π−

∑n
i=1 ~si

6: return ~s0 . . . ~sn

symmetric permutation group property independent of the vectors’ direction. That is,

∀i ∈ [1; n] : |~si| ≤∆φ and pn ∈ c0 (2.10)

is a sufficient condition for creating a vector set, i.e., a vector set which allows for the

fusion of shares in any order and provides the required precision levels φk. Thus, the center

p0 of the initial circle c0 is defined a-posteriori by the concatenation of the random shift

vectors from S to the true MO’s position π (line 4).

Figure 2.6 shows the distribution of the precise MO position π inside c0 for “a-posteriori”

share generation Algorithm 2, having a total number of LSs n = 5 and 1000 runs of the

Monte Carlo method. We can see that the end point of the concatenation of all vectors tends

to be closer to the center of circle c0. The resulting probability of finding the user’s position

π inside c0 is high (as we will show in our evaluations later in more detail). In order to

overcome this shortcoming, we propose an alternative “a-priori” share generation algorithm.

2.4.2. Open Space – Any Share Order: “a-priori” Share Generation

In this section we will present another approach to the open space scenario which we call

“a-priori” share generation. The “a-posteriori” share generation algorithm is very simple and

fast, but produces shares that make the exact MO’s position π predictable, as it is illustrated

in Figure 2.6. The “a-priori” algorithm aims to improve the stochastic properties of the share

set by preventing such high-density regions within the obfuscation circles of probability

distributions for π.

The share fusion algorithm for “a-posteriori” share generation is the same as for “a-

posteriori” share generation (see Algorithm 1). Thus, the “a-priori” modification of our

approach changes only the share generation algorithm.

2.4 | Share Generation and Share Fusion Algorithms 31

Figure 2.6.: Distribution of π inside c0 for “a-posteriori” share generation Algorithm 2 (n = 5,
Monte Carlo with 1000 runs) [DSR11]

2.4.2.1. “A-priori” Share Generation Algorithm

The generation of shares in OSPS-ASO with “a-priori” definition of the master share’s center

is presented in Algorithm 3 and works as follows: The input parameters are the MO-defined

radius r0 = φmin of the initial obfuscation circle c0, the total number of shares n and the

precise user position π= pn. First, we determine the maximal shift length ∆r =∆φ = r0/n

(line 2). Then, the position p0 of the initial circle c0 is selected randomly according to

a uniform distribution, such that π = pn is inside c0 (line 3). The set of the refinement

shift vectors S = {~s1 . . . ~sn−1} is generated randomly (lines 4-6), such that starting from the

center of c0 the concatenation of all shift vectors of S gives the resulting point π= pn (with

rn = 0 correspondingly), which coincides with the user’s position π within c0 (line 8). The

consistency of the operation (line 8) with the maximal vector length is guaranteed by the

restriction of line 7.

Finally, the MO sends the position information to n LS, including the master share s0, the

size of the radius decrease after every shift ∆r (in OSPS, ∆r is constant for all shifts), and

one share ~si for each LS.

The important condition of line 7 of Algorithm 3 defines whether the required share set

has not been found yet (Figure 2.7a) or it has been found (Figure 2.7b). The problem is

that before the required set is found, the share generation algorithm should traverse many

randomly generated share sets s1 . . . sn−1. The number of such sets is not pre-defined: for

example, if π is located far away from the center of c0, this process takes more time, since

32 2 | Position Sharing Approach

Algorithm 3 OSPS-ASO: generation of shares “a-priori”
1: function gen_n_shares_OSPS_ASO_a_priori(s0, n,π)
2: ∆r ← r0/n
3: select randomly p0 such that distance(~p0,π)≤ r0
4: do
5: for i = 1 to n− 1 do
6: select randomly ~si with |~si| ≤∆r such that π ∈ ci
7: while distance(~p0 +

∑n−1
i=1 ~si ,π)>∆r

8: ~sn← π− (~p0 +
∑n−1

i=1 ~si)
9: return ~s0 . . . ~sn

Figure 2.7.: “A-priori” share generation Algorithm 3, line 7: (a) condition is not fulfilled; (b)
condition is fulfilled

the probability of generating a random share set which reaches π is lower in this case. Note

that the main cycle (lines 4-7) is guaranteed to terminate in case of a sufficiently large vector

sampling. The execution times of the “a-priori” share generation algorithm are evaluated

later in this chapter.

An example pdf for the “a-priori” share generation Algorithm 3 is illustrated in Figure 2.8a,

while Figure 2.8b shows an example of a correlated vector set where vectors are biased

towards the North-East area. This bias means that shift vectors are correlated and therefore

by knowing k of them (0< k < n) an attacker can obtain a pdf of the resulting user position

π. Such analysis and its effect on the probabilistic guarantees of privacy levels will be

evaluated later in this chapter. However, note that this correlation of vectors does not affect

the initial uniform probability distribution when the number of known shares k = 0 (cf.

Figure 2.8a).

2.4 | Share Generation and Share Fusion Algorithms 33

Figure 2.8.: (a) Example pdf for “a-priori” share generation Algorithm 3 (n = 5, Monte Carlo
with 1000 runs); (b) example of a correlated vector set where vectors are biased
towards the North-East area [DSR11]

2.4.3. Open Space – Fixed Share Order

Now, we relax the restrictions on the maximal vector length, which cause uneven probability

distributions and biased vector sets of OSPS-ASO. This results in a non-arbitrary (as in the

OSPS-ASO approach) but fixed (pre-defined) order of shares during their fusion. An example

of a share fusion in the fixed order is shown in Figure 2.9. We define this approach as Open

Space Position Sharing with Fixed Share Order (OSPS-FSO).

However, the allowed intersections (overlapped areas) of the obfuscation circles decrease

the size of the actual obfuscation area for any k > 0. Thus, an area adjustment is needed for

the intersected circles even without considering map-based knowledge. The goal of OSPS-

FSO is to keep the obfuscation area above a certain threshold through the adjustment of

the obfuscation circles’ radius. Thus, OSPS-FSO eases the limitations on the maximal vector

length by allowing for circle intersections, and has a flexible radius for each obfuscation

circle.

In OSPS-FSO, the obfuscation area for k shares of precision φk is not equal to the pre-

defined size of the circle ck alone (as it is in OSPS-ASO), but is defined through the area Ak

of intersection of k circles c1 . . . ck (see Figure 2.10a). Now, the goal of the radius increase is

to adjust the intersection area Ak up to the size of area of ck denoted as area(ck), which it

34 2 | Position Sharing Approach

Figure 2.9.: Fusion of shares in a fixed order without area adjustment

would have without intersections:

Ak = area(c0 ∩ c1 ∩ . . .∩ ck) = π ∗ r2
k (2.11)

At the same time, the radius adjustment must be secure, i.e., an attacker should not be

able to derive the original (non-adjusted) obfuscation area.

2.4.3.1. OSPS-FSO: Share Fusion Algorithm

The share fusion algorithm (Algorithm 4) for OSPS-FSO is illustrated in Figure 2.10a and

includes the following steps. First, having the master share s0, the obfuscation area Ak is

defined by the initial obfuscation circle c0 (line 2) and the center of the current obfuscation

circle is set as p0 (line 3). Then, the concatenation of k shift vectors ~s1 . . . ~sk is performed

iteratively for i = 1 . . . k (line 5), defining at each step the circle ci with individual radius ri

(line 6). Each obfuscation circle intersects with the previously obtained obfuscation area, by

which the current obfuscation area Ak for k shares is defined (line 7).

Note that vectors can be added only in a fixed order, otherwise the consistency of obfusca-

tion areas (namely, the sizes of Ak) cannot be preserved: the obfuscation area Ak does not

have a pre-defined shape such as a circle, but it has a pre-defined size. Therefore, we present

2.4 | Share Generation and Share Fusion Algorithms 35

Figure 2.10.: OSPS-FSO: a) intersection A2 of three circles c0, c1, c2; b) adjustment of
intersection area through radius increase for c1: A1 = area(c0 ∩ c1)

Algorithm 4 OSPS-FSO: fusion of shares
1: function f use_k_shares_OSPS_FSO(n, c0, ~s1 . . . ~sk, r1 . . . rk)
2: Ak← c0
3: ~p← p0
4: for i = 1 to k do
5: ~p← ~p+ ~si
6: ci ← {~p, ri}
7: Ak← Ak ∩ ci
8: end for
9: return Ak

the OSPS-FSO share generation algorithm, which preserves the required position precision

(and correspondingly the user’s privacy guarantees) by adjusting the size of Ak.

2.4.3.2. OSPS-FSO: Share Generation Algorithm

Next, we present the share generation algorithm for the OSPS-FSO approach. The problem

to solve here is the reduction of the obfuscation area Ak due to the intersections of ck and

the previous obfuscation circles c0 . . . ck−1. In order to preserve the needed obfuscation level,

we increase the radius rk until the area of Ak achieves the value of the non-intersected area

of ck (see Equation 2.11), as we show in Figure 2.10b.

The first step of the share generation algorithm (Algorithm 5) is to randomly select the

center p0 of the initial obfuscation circle c0 according to the uniform probability distribution

(a similar principle to that in the “a-priori” version of the OSPS share generation algorithm)

36 2 | Position Sharing Approach

Algorithm 5 OSPS-FSO: generation of shares
1: function gen_n_shares_OSPS_FSO(n, r0,π)
2: select randomly p0 with distance(p0,π)≤ r0
3: A0← area(c0)
4: for i = 1 to n− 1 do
5: ri ← r0 ∗ (n− i)/n
6: select randomly ~si with |~si| ≤ 2 ∗ ri−1 and π ∈ ci
7: Ai ← area(ci)
8: while area(∩i

j=1(c j))< Ai do
9: ri , pi ← increase_and_adjust(ri , pi ,∆r)

10: end while
11: end for
12: ~sn← π− (~p0 +

∑n−1
i=1 ~si)

13: return ~s0 . . . ~sn, r0 . . . rn

within radius r0 around the given true user position π = pn (line 2). After that, the shift

vectors ~s1 . . . ~sn−1 are generated, which connect p0 and pn−1 (lines 4-6). The corresponding

radii are increased as well, taking into account not only the space constraints, but also the

intersections with the previous obfuscation circles (lines 8-10). Finally, the last shift vector

sn is defined as the connection of the point pn−1 with the true MO’s position π (line 12).

The result is that each share is represented by the shift vector ~si, the individual radius ri

and the sequence number i itself. Thus, a fixed order of shares fusion is pre-defined in the

OSPS-FSO approach; in contrast, the OSPS-ASO approach presented previously relies on an

arbitrary sequence of share fusion.

2.4.3.3. Adjustment of pi During the Radius Increase

There is an important aspect concerning the increase_and_adjust(ri, . . .) function for radius

increase (Algorithm 5, line 9): if we use a deterministic algorithm for the area adjustment,

an attacker can calculate the inverse function to decrease the size of the obfuscation area.

Namely, if we increase radius ri without changing the circle’s position pi, an attacker can

reduce the obfuscation area Ai by simply decreasing the obtained radius ri (see Figure 2.11a).

This is possible if an attacker knows the share generation algorithm and therefore knows the

initial (non-increased) value of the radius ri(a).

In order to avoid such a situation, the position of circle ci must be adjusted so that the

original position of ci(a) within ci cannot be found, and therefore the possible location of

the exact MO’s position pn = π cannot be restricted within a smaller area. Figure 2.11b

illustrates that after adjusting pi, pn can be located anywhere within ci, and is not restricted

2.4 | Share Generation and Share Fusion Algorithms 37

Figure 2.11.: Adjustment of pi during radius increase: (a) no adjustment of pi;
(b) randomized adjustment of pi

by the lesser radius ri(a). In other words, an attacker is not able to reduce the obfuscation

area Ai just by knowing the share generation algorithm.

Algorithm 6 Radius increase with adjustment of pi for OSPS-FSO
1: function increase_and_ad just(ri , pi ,∆r)
2: ri(a)← ri
3: Ai ← area(ci(a))
4: while area(∩i

j=1(c j))< Ai do
5: ri ← ri +∆r
6: end while
7: xshi f t ← get_random_shift(pi , ri(a), ri)
8: yshi f t ← get_random_shift(pi , ri(a), ri)
9: pi ← shift(pi , xshi f t , yshi f t)

10: if area(∩i
j=1(c j))< Ai then

11: ri , pi ← increase_and_adjust(ri , pi ,∆r) //recursive call
12: else
13: while area(∩i

j=1(c j))> Ai do
14: ri ← ri −∆r
15: end while
16: ri ← ri +∆r
17: end if
18: return pi , ri

The function increase_and_adjust(ri, . . .) for radius increase combined with the adjust-

ment of the obfuscation circle’s position pi is presented in Algorithm 6. First, for the current

38 2 | Position Sharing Approach

pi, we determine the radius ri which makes the intersection area large enough (lines 2-6).

Then we perform the random shift of pi, not longer than ri − ri(a) (lines 7-9). After that we

check whether the current radius ri satisfies the area condition (line 10). If the intersection

area is still not large enough, we call the function increase_and_adjust(ri, . . .) recursively

(line 11). If the intersection area now exceeds the target value Ai, we simply decrease the

current radius ri until it achieves the required size (lines 12-16).

2.4.3.4. Computation of Arbitrary-shaped Area Size

In several lines of the above presented increase_and_adjust(ri, . . .) algorithm, we need to

calculate the intersection area of multiple circles area(∩i
j=1(c j)), i.e., an arbitrary-shaped

area size. The size of such intersection area is calculated through space discretization

with the discretization step, i.e., the distance between the lattice lines selected as ri/100

(cf. Figure 2.12 with larger discretization step for illustrative purposes). After defining

a virtual lattice, we count the number of the lattice crossing points dk,intersec t covered by

the intersection shape. Knowing the number of points dk,original located within the original

(non-adjusted) circle ci(a) and the area of a non-intersected circle ci(a), we convert dk,intersec t

into the corresponding area value:

area(∩i
j=1(c j)) =

dk,intersec t · area(ci(a))

dk,original
(2.12)

Note that later we will apply the same area computation principle when we have the map

knowledge Mu as an additional intersection factor: dk,intersec t is then the number of points

located within area(Mu ∩i
j=1 (c j)).

In Figure 2.12, we show the space discretization principle for k = 3, with black points

within the intersection shape of c0, c1 and c2 and white points within the remaining area of

c2. Here, dk,original is the number of white and black points together, while dk,intersec t is the

number of white points.

2.4.4. System Model Extension: Map Knowledge

Now, the system model is extended by assuming the availability of map knowledge, which

means that the MO has locally stored map information for the surrounding region. Moreover,

the MO knows his or her own type of mobility and can distinguish between cars and pedes-

2.4 | Share Generation and Share Fusion Algorithms 39

Figure 2.12.: Computation of an arbitrary-shaped area size for c2 based on space
discretization

trians, as well as boats, trains and planes. With this information, the MO is able to specify a

map representation Mu that defines the map regions where he or she might be located, and

use these regions during share generation.

The map-based knowledge allows each map to be considered as a binary map representation

with a Boolean attribute assigned to different map regions. “True” means that a given MO

can possibly be located there; “false” means that it is impossible that a given MO is located

in this area. Thus, this Boolean attribute of a region can be different for each given MO and

depends on the mode of MO’s movement. For example, cars can only drive on paved roads,

while pedestrians are not supposed to use highways; and neither cars nor pedestrians are

expected to be located in hard-to-reach regions like mountains. The map representation

is generated individually for each user type by analyzing the map-based knowledge. The

Boolean attribute can be assigned for every single map feature (e.g., a building, a bridge,

etc.), set of features, land surface of a certain type (e.g., a lake, an urban area, an agricultural

field, etc.), or any combination of those.

We assume that each map region marked with “true” has equal probability of the MO to

be located in any point of the region. Simple example of visual map representation for the

given map of Figure 2.13a is presented in Figure 2.13b: grey areas show “true” regions Mu1

40 2 | Position Sharing Approach

for a moving user u1.

Similarly, Figure 2.14 shows two map representations: the left one shows where cars can

move, while the right one shows where pedestrians can move. Here, green areas indicate

“true”, while dark-red and white areas indicate “false”.

2.4.5. Constrained Space – Fixed Share Order (Map-aware Approach,

CSPS)

Having developed OSPS-FSO with radius adjustment, this approach can be easily adapted to

the constrained space model. In the map-aware position sharing approach for constrained

space (CSPS), we define the obfuscation area Ak for k shares of precision φk through

the intersection not only of k circles c1 . . . ck, but also of the map representation Mu (see

Figure 2.15a):

Ak = area(Mu ∩ c0 ∩ c1 ∩ . . .∩ ck) = π ∗ r2
k (2.13)

CSPS includes a share fusion algorithm and a share generation algorithm, which allow us

to overcome the disadvantages of OSPS described previously. CSPS is applicable for both

open space and constrained space models; it assumes fixed share order.

Before the share generation, the user has to select the map representation Mu, which

defines the map regions where he can possibly be located according to his movement mode.

Mu is individual for each user, since different users can be possibly located in different map

regions. Generally, the user u1 corresponds to the region Mu1, u2 corresponds to Mu2, and so

on.

Figure 2.13.: (a) Basic map; (b) map representation Mu1 for a moving user u1

2.4 | Share Generation and Share Fusion Algorithms 41

Figure 2.14.: (a) Map representation Mu1 for an MO as a car u1; (b) map representation Mu2

for an MO as a pedestrian u2; green areas indicate “true”, dark-red and white
areas indicate “false” [Pau11]

Figure 2.15.: CSPS: a) intersection of 3 circles c0, c1, c2 and the map representation Mu;
b) adjustment of intersection area through radius increase for c1:
A1 = area(Mu ∩ c0 ∩ c1) = area(c1a)

For the inclusion of map representation Mu into the computation of Ak ’s area, the algorithms

of share fusion and share generation require only small changes.

2.4.5.1. Share Fusion Algorithm

The share fusion algorithm for CSPS (Algorithm 7) requires a single modification: at first,

the obfuscation area Ak is defined not only by the initial obfuscation circle c0 but also by its

intersection with the map representation Mu (line 2), as shown in Figure 2.15a. The next

42 2 | Position Sharing Approach

steps are the same as in Algorithm 4.

Algorithm 7 CSPS: fusion of shares
1: function f use_k_shares_CSPS(Mu, n, c0, ~s1 . . . ~sk, r1 . . . rk)
2: Ak← Mu ∩ c0
3: ~p← ~p0
4: for i = 1 to k do
5: ~p← ~p+ ~si
6: ci ← {~p, ri}
7: Ak← Ak ∩ ci
8: end for
9: return Ak

2.4.5.2. Share Generation Algorithm

The share generation algorithm for CSPS also takes Mu into consideration: the radius rk is

increased until the area of Mu ∩ (c0 ∩ c1 ∩ . . .∩ ck) achieves the value of the non-intersected

area of ck (see Figure 2.15b).

Algorithm 8 has additional lines (4-6): the radius r0 of the initial circle c0 is increased

taking into consideration the map representation Mu in order to adjust the size of A0 = Mu∩c0.

Then, in order to adjust the radii of shares ~s1 . . . ~sn−1, Mu is included in the condition of line 11.

The rest of steps of the share generation algorithm for CSPS are the same as in Algorithm 5.

Algorithm 8 CSPS: generation of shares
1: function gen_n_shares_CSPS(n, Mu, r0,π)
2: select randomly p0 with distance(p0,π)≤ r0
3: A0← area(c0)
4: while area(Mu ∩ c0)< A0 do
5: r0← increase_and_adjust_CSPS(r0, p0,∆r)
6: end while
7: for i = 1 to n− 1 do
8: ri ← r0 ∗ (n− i)/n
9: select randomly ~si with |~si| ≤ 2 ∗ ri−1 and π ∈ ci

10: Ai ← area(ci)
11: while area(Mu ∩∩i

j=1(c j))< Ai do
12: ri , pi ← increase_and_adjust_CSPS(ri , pi ,∆r)
13: end while
14: end for
15: ~sn← π− (~p0 +

∑n−1
i=1 ~si)

16: return ~s0 . . . ~sn, r0 . . . rn

Furthermore, the function increase_and_adjust_CSPS(. . .) (line 12) is similar to

2.4 | Share Generation and Share Fusion Algorithms 43

increase_and_adjust(. . .) (Algorithm 6) and presented in Algorithm 9. Note that the

diffenrence is that Mu is now included in the conditions of lines 4, 10 and 13 of Algorithm 6.

The computation of an arbitrary-shaped area’s size area(Mu ∩∩i
j=1(c j)) is done according to

the same principle based on space discretization as described in Section 2.4.3.4.

Algorithm 9 Radius increase with adjustment of pi for CSPS
1: function increase_and_ad just_CSPS(ri , pi ,∆r)
2: ri(a)← ri
3: Ai ← area(ci(a))
4: while area(Mu ∩i

j=1 (c j))< Ai do
5: ri ← ri +∆r
6: end while
7: xshi f t ← get_random_shift(pi , ri(a), ri)
8: yshi f t ← get_random_shift(pi , ri(a), ri)
9: pi ← shift(pi , xshi f t , yshi f t)

10: if area(Mu ∩i
j=1 (c j))< Ai then

11: ri , pi ← increase_and_adjust(ri , pi ,∆r) //recursive call
12: else
13: while area(Mu ∩i

j=1 (c j))> Ai do
14: ri ← ri −∆r
15: end while
16: ri ← ri +∆r
17: end if
18: return pi , ri

2.4.6. Summary: Comparison of Algorithms

Table 2.1 compares the important properties of the position sharing approaches described in

this chapter. The second column represents the properties of the OSPS-ASO “a-posteriori” and

OSPS-ASO “a-priori” algorithms, while the third column contains the properties of OSPS-FSO

and the map-aware CSPS approach. Only CSPS is map-aware, but note that OSPS-FSO

shares most of the properties of CSPS with the exception of the actual map reading, which is

done by CSPS in the same way as OSPS-FSO determines the arbitrary obfuscation shape Ak.

The obfuscation shape Ak can be arbitrary in OSPS-FSO and CSPS, since these two ap-

proaches support intersection of k obfuscation circles and therefore provide more flexibility

within share generation, i.e., the generated shift vectors can be longer. However, the resulting

disadvantage of such approach is that the generated shares provide individual radii reduction

at each kth step of share fusion, and therefore the shares are not interchangeable by order as

in both OSPS-ASO versions. For OSPS-FSO and CSPS, radius decrease is also individual for

44 2 | Position Sharing Approach

every fusion step k, while OSPS-ASO radius decrease is pre-defined and equal for each share.

Note that in spite of the described differences between the algorithms, the resulting

precision in each algorithm is guaranteed to be preserved corresponding to the radius rk.

This principle requires more complex area adjustment for OSPS-FSO and CSPS, since they

provide non-circular obfuscation shapes as opposed to OSPS-ASO.

Only OSPS-ASO “a-posteriori” is based on the “a-posteriori” selection of user’s position

π within the master share’s obfuscation circle c0. All the other approaches use “a-priori”

selection, which provides better probabilistic guarantees of precision levels (as it will be

shown in Section 2.5), but requires more runs during the share generation.

Only in OSPS-ASO “a-priori”, the generated vector set is biased, i.e., shift vectors tend

to form a correlated set. The reason for this bias is the “a-priori” c0 selection, which is

combined with limited shift vector lengths; as a result, the vectors are often stretched in

order to connect the center of the initial obfuscation circle p0 and the precise user’s position

pi. Other algorithms either have free p0 selection (OSPS-ASO “a-posteriori”) or free shift

vector lengths, and therefore provide non-biased vector sets.

In general, share generation in OSPS-FSO and CSPS is more complex, since they often

require to shift centers of obfuscation circles ck during the area adjustment phase even after

initial share generation. This process is required to make the arbitrary obfuscation shape Ak

large enough to satisfy the basic precision requirements.

In the next section, we will present the evaluation of the presented algorithms in order to

analyze the impact of the listed algorithm properties on their security and performance.

2.4 | Share Generation and Share Fusion Algorithms 45

Comparison of position sharing approaches

OSPS-ASO
OSPS-FSO
and CSPS

Map-awareness No (disadvantage)
OSPS-FSO: no

CSPS: yes (advantage)
Fusion: allow

for intersection
of obfuscation circles

No Yes

Fusion: independent
from shares order

Yes: arbitrary sequence
of shares during fusion

(advantage)

No: the sequence
of shares is pre-defined

(disadvantage)

Fusion: radius decrease
r0/n; same for

every k

Depends on
obfuscation shape Ak;

individual
for every k

Fusion: precision (area)
for k shares Pre-defined: π · r2

k Pre-defined: π · r2
k

Fusion: obfuscation shape circle
Intersection of circles
and map-based areas

Generation: basic method
Algorithm 2: “a-posteriori”

Algorithm 3: “a-priori” A-priori

Generation: biased vector set

OSPS-ASO “a-priori”:
no (advantage);

OSPS-ASO “a-posteriori”:
yes (disadvantage)

No (advantage)

Generation: need to
shift centers of ck

No Yes

Table 2.1.: Comparison of position sharing algorithms

46 2 | Position Sharing Approach

2.5. Security Analysis

This section introduces the attacker model and analyzes privacy guarantees provided by our

position sharing approaches. For evaluation, we use the privacy metrics already defined in

Section 2.2.

2.5.1. Attacker Model

On the one hand, attackers can circumvent the access control mechanisms of LSs to get

access to as many secret refinement shares as possible. On the other hand, attackers can be

represented by malicious LSs or providers. In general, attackers have access to k out of n

shares, e.g., a compromised LBA has access to k out of n shares for which it received access

rights from the MO. As already described in Section 2.1, k defines a trade-off between the

QoS that can be offered by the LBA due to the limited precision of position information, and

the degree of lost privacy should the LBA misuse the position information. Therefore, in our

approach, adjusting k is the basic means of controlling privacy risks. We should note that we

do not explicitly consider the case of cooperating attackers, i.e., multiple malicious LS or

LBA providers that exchange their shares to increase the number of (compromised) shares.

To handle such a case, the MO needs to assess the risk that providers cooperate, which

is a different problem of defining suitable trust relations and modeling relations between

providers: for example, which LS are sharing the same server (cloud) infrastructure operated

by the same third-party provider, or which providers have to reveal their data to the same

legal entity because they fall under the same jurisdiction, etc.

As already mentioned, adjusting k is then an effective means to control privacy only if the

precision of positions derived from these shares are well-defined. If the share generation

algorithm is perfectly secure, an attacker with k compromised shares can calculate a position

with at least the precisionφk. However, due to a certain predictability of share generation, the

attacker can even increase the precision beyond that value as already discussed in Section 2.4.

Since we assume that the share generation algorithm is known to everybody, the attacker

can use a Monte Carlo Simulation to simulate the process of share generation and predict

further possible refinement shares from the known shares (as described in the next section).

To quantify the (undesired) effect of share prediction and the resulting effective security

of shares, we use the probabilistic metrics Pk,attack and Pk,10%. As it was described earlier in

Section 2.2, the privacy metric Pk,attack defines the probability of an attacker refining the MO’s

position to an area with precision φk,attack where φk,attack ≤ φk. This metric gives insight into

2.5 | Security Analysis 47

the absolute precision that an attacker can acquire; for instance, an attacker can calculate a

position of 500 m precision with 90% probability.

The second privacy metric Pk,10% is a special case of Pk,attack. Pk,10% defines the probability of

an attacker pinpointing the MO’s position π to an area of 10% size of pk covering the highest

probability, i.e., a worst-case 10%-area. A perfectly secure set of shares leads to Pk,10% = 0.1,

meaning that the position of MO π is uniformly distributed within the obfuscation area. A

non-uniform probability distribution of MO within ck increases Pk,10% to values greater than

10%. This metric is based on a relative area size compared to pk. It has to be noted that the

choice of using 10% instead of another value is based on two reasons. First, the empiric

observations have shown that the peaks of high density of non-uniform distributions are

usually concentrated in the smaller parts of the obfuscation circle ck. The selection of an

area fraction which is much larger than 10%, e.g., 50%, would hide these higher peaks of

probability concentrated in the smaller sub-areas within the selected larger area. For example,

consider a pdf with the following parameters: Pk,10% = 0.9 (90% of probability corresponds to

10% of precision), showing a very vulnerable π with disclosure of probability 10 times higher

than in the ideal case, while Pk,50% = 0.95, which is only ca. 2 times worse than the ideal

value (which is Pk,50% = 0.5). Second, the Pk,10% metric is intuitively understandable for a

user: with the base of 10, it is easier to understand the practical meaning of the probabilistic

values of Pk,10%. For example, Pk,10% = 0.25 means that the probability of disclosure is

2.5 times higher than in a perfectly secure (uniform) case. At the same time, for an area

other than 10%, e.g., 15%, it would be more difficult to see the actual level of probabilistic

guarantees by looking into the resulting value: Pk,15% = 0.375 would be an equivalent of a

probability which is 2.5 times higher than a uniform probability distribution.

2.5.2. Monte Carlo Simulation

The general idea of Monte Carlo simulation is to obtain a statistically significant number

of output samples of a method (or a phenomenon) by executing the given method with

randomized inputs [Eck87]. The Monte Carlo simulation is usually employed when analytical

description of the simulated method is not available, as we will show later in Section 2.5.6.

In our case, in order to evaluate the probabilistic privacy guarantees provided by share

generation algorithms of our position sharing approach, we simulate the attacker’s action by

repeatedly running a share generation algorithm and sampling the probability distribution

of the MO’s position π. Then, we analyze the resulting position distribution to determine the

most likely area in which the MO is located. The randomized inputs are position shares and,

48 2 | Position Sharing Approach

with the exception of the OSPS-ASO “a-priori” algorithm, the center of the master share p0.

In more detail, this method works as follows: Assuming that an attacker knows the share

generation algorithm and k of n shares, we perform the share generation algorithm so many

times that 100 full share sets with distance(pknown
k , pMC

k)≤ ε are found. Here, pknown
k denotes

the points resulting from the concatenation of k shares known to an attacker, pMC
k denotes the

points resulting from the concatenation of k shares generated by the Monte Carlo simulation,

and ε is a maximal deviation of pMC
k from pknown

k . The deviation ε is selected as ∆φ/10

empirically, such that the computation does not take more than several seconds. As the

result, we obtain a set of 100 target MO’s positions π= pn providing a discrete probability

distribution. Then, we calculate the probabilistic guarantees Pk,10% by counting the number

of π samples inside the worst case 10% area of Ak, i.e., such 10% area of Ak where the

maximal number of π points is located.

The results of the Monte Carlo method running 100 times were illustrated above in

Section 2.4, with red dots depicting the samples of π: Figure 2.6 shows the resulting pdf for

the OSPS-ASO “a-posteriori” share generation algorithm, Figure 2.8a shows the resulting

pdf for the OSPS-ASO “a-priori” algorithm.

2.5.3. Open Space Evaluation

Next, we evaluate the security of the share generation algorithm. We assume that the attacker

has compromised k out of n shares (or has access to k shares, if we consider a malicious LBA)

and uses a Monte Carlo simulation to further increase the MO’s precision beyond φmax−k∆φ.

In this section, we begin with the assumption that MOs can move without restrictions in an

open space. This evaluation shows the difference between our first approach, OSPS-ASO,

presented in [DSR11] that fuses the refinement shares in an arbitrary order, and the fixed

order fusion approach, OSPS-FSO.

2.5.3.1. Comparison of OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori”

In Figure 2.16, we depict the dependency of the probability Pk,10% on different privacy

(precision) levels k for share generation Algorithm 2 and various n values. The horizontal

axis defines the radii sizes for various privacy levels k; the steps of precision decrease are

smaller for higher n values, since∆φi = φmax/n, according to our assumptions in this chapter.

The vertical axis defines Pk,10%, i.e., the probability of π being located within 10% of the

current obfuscation area (as explained before in Section 2.2 and Section 2.5.1).

2.5 | Security Analysis 49

Figure 2.16.: Dependency of probabilistic guarantees Pk,10% on different precision levels
represented through the corresponding radii rk for various n values with r0 = 75
km: “a-posteriori” share generation Algorithm 2; 100 runs of the Monte Carlo
method

The probability values Pk,10% are lower for higher precision (i.e., for smaller radii rk),

since the convolution of a lesser number of remaining shift vectors results in a less biased

probability distribution. However, note that the Pk,10% values are relative with regard to the

current ck: they show better predictability of π for smaller k within the given ck, but by

knowing fewer shares, an attacker knows a lower precision corresponding to a larger radius

rk. This property is based on fact that in the “a-posteriori” algorithm (as opposed to the

“a-priori” algorithm), we do not reach a pre-defined point π but simply add generated random

shares to each other. Thus, the more random variables were generated independently from

each other, the more predictable is their sum, and the higher are the Pk,10% values for higher

n. The basis for this property of the “a-posteriori” share generation will be also discussed in

more detail later in Section 2.5.6.1.

We can see that although we have more privacy levels with n= 10, Pk,10% is much higher

for larger n’s if we employ the “a-posteriori” share generation Algorithm 2. Thus, excessively

high n values are not preferred in terms of privacy. At the same time, the case of n = 2

provides the best probabilities Pk,10%, yet with only two possible precision levels, which is

not flexible.

We present the dependency of probabilistic guarantees Pk,10% on different precision levels

for various n values for share generation Algorithm 3 (“a-priori”) in Figure 2.17. The main

50 2 | Position Sharing Approach

Figure 2.17.: Dependency of probabilistic guarantees Pk,10% on different precision levels
represented through the corresponding radii rk for various n values with r0 = 75
km: “a-priori” share generation Algorithm 3; 100 runs of the Monte Carlo
method

difference is that by employing Algorithm 3 we achieved higher Pk,10% values correspond to

higher precision. This is due to the fact that with every next known kth share, an attacker

derives (through the Monte Carlo simulation) stronger correlation between the known k

shares that are directed toward π in more or less fuzzy way. Initially, in the circle c0, π is

distributed uniformly (cf. 10% corresponding to r0 = 75 km in Figure 2.17), which means

that π is most likely far away from the center of c0. Having the maximal length of shift

vectors limited by ∆φ = r0/n, the shift vectors are becoming more or less stretched (an

example of such stretched vector set was shown in Figure 2.8 of Section 2.4.2.1).

Another important property of the “a-priori” share generation algorithm is that the Pk,10%

values are located within a “tunnel”, i.e., the correlation between vectors rather depends on

the absolute values of precision (horizontal axis) than on k known shares, as it is in case

of the “a-posteriori” share generation algorithm. Thus, the “a-priori” algorithm allows for

the use of the largest possible value of n, without making the stochastic properties of the

generated share sets worse, as happens when increasing n in terms of the “a-posteriori” share

generation algorithm.

2.5 | Security Analysis 51

2.5.3.2. Comparison of OSPS-ASO “a-priori” and OSPS-FSO

First, we analyze how deeply the generated obfuscation circles are mutually intersected in the

case of OSPS-FSO. In Figure 2.18, we show the kth circle fraction after k circles intersected,

without performing area adjustment. This means that for smaller k values, the intersection

cuts a large portion of the previous obfuscation area, but with the increase of k, the circles

become much smaller and cannot reduce the obfuscation shape as much as before. The radii

are decreasing linearly, while obfuscation areas decrease quadratically.

As a result, the absolute difference between the original radius and the adjusted radius

decreases with each k. To evaluate this, we measured how the average radius sizes change

after the area adjustment is performed in OSPS-FSO. In Figure 2.19, we compare the average

radii of obfuscation circles for OSPS with area adjustment (OSPS-FSO) and OSPS-ASO

“a-priori”. We can see that the difference between the two curves increases for smaller k

values. This is due to the fact that the target area size Ak = π ∗ r2
k is much higher for such

circles.

Next, we present the maximal possible shift vector lengths, which the OSPS-ASO and OSPS-

FSO approaches produce. This parameter is important, since small vectors lead to uneven

Figure 2.18.: OSPS-FSO: kth circle fraction after k circles are intersected, without area
adjustment; 1000 runs of the Monte Carlo method

52 2 | Position Sharing Approach

Figure 2.19.: Radii of obfuscation circles ck depending on k of n shares for OSPS-ASO
“a-priori” and OSPS-FSO; 1000 runs of the Monte Carlo method

distributions, while relaxed limitations on vector lengths help to achieve more uniform

probability distribution over the obfuscation area. In Figure 2.20, we can see that even the

maximal allowed shift value of OSPS-ASO (note that OSPS-ASO allows for any share order,

cf. Table 2.1 in Section 2.4.6) is much lower than the average shift value of OSPS-FSO, which

requires fixed share order. This is due to the following features of the algorithms: First,

the limit of the shift length (r0/n) always decreases with the increase of n for OSPS-ASO.

Second, the average shift lengths of OSPS-FSO do not decrease with a larger total number of

shares n. This is an important advantage of OSPS-FSO in comparison with OSPS-ASO, since

it leads to a closer to uniform probability distribution.

Figure 2.21 presents different probabilities Pk,10% for different n’s, such that we can analyze

the effect of area adjustment on OSPS-FSO. The first curve depicted as “OSPS-FSO (no area

adj.)” shows the Pk,10% values for the 10% area of the intersection area of k obfuscation circles

(without area adjustment). The second curve depicted as “OSPS-FSO (no area adj.; corrected

m.)” shows a corrected measurement of Pk,10%, where the Pk,10% values are calculated for

the 10% area of the the non-intersected area of circle ck (also without area adjustment).

The second curve is needed in order to have comparable Pk,10% values, since after the area

2.5 | Security Analysis 53

Figure 2.20.: Maximal possible shift of OSPS-ASO algorithms compared with the average
shift of the fixed order based OSPS-FSO algorithm without area adjustment,
and OSPS-FSO algorithm with area adjustment; r0 = 40 km; 1000 runs of the
Monte Carlo method

adjustment, the size of resulting obfuscation area Ak equals the size of ck. With the third

curve depicted as “OSPS-FSO (with area adj.)”, we can see that after the area adjustment is

done, the probabilities Pk,10% are lower for any k > 0.

Next, we show how the computed obfuscation area decreases in accordance with k known

shares (Figure 2.22a). In the open space model, this curve is the same for OSPS-ASO and

OSPS-FSO: OSPS-FSO does not have any intersections, as it adjusts the obfuscation areas

after intersections up to their initial size.

The comparison of OSPS-FSO with the OSPS-ASO “a-priori” approach is shown in Fig-

ure 2.22b. By using the privacy metrics defined earlier, we measured the maximal probability

of an attacker to derive that the target MO’s position π is located within 10% of the current

obfuscation circle ck: Pk,10% = Pr[10% ∗ area(Ak) ≤ φat tack]. We can see that OSPS-FSO,

similarly to OSPS-ASO “a-priori”, has the initial uniform distribution of the pn = π over the

initial obfuscation area having k = 0. For the larger k, the disclosure probability provided by

OSPS-FSO is far lower than the one provided by OSPS-ASO “a-priori” and does not exceed

54 2 | Position Sharing Approach

Figure 2.21.: Analysis of OSPS-FSO algorithm with and without area adjustment depending
on k of n shares; 1000 runs of the Monte Carlo method

≈ 25% of probability corresponding to 10% of area. Moreover, the increase of Pk,10% proba-

bilities with k is significantly smaller for OSPS-FSO. Generally, OSPS-ASO “a-priori” makes π

very predictable for the values of k that are closer to n. Thus, the OSPS-FSO provides lower

probability values Pk,10% for the wider spectrum of k within the open space model.

Another view of the user’s privacy is shown in Figure 2.23. Figure 2.23a illustrates which

fraction of the obfuscation area covers the given probabilities Pk,attack for each number of

known shares k out of n = 5. The straight diagonal lines represent the linear precision

values Pk,attack = 100%, relevant when the share generation algorithm is not known to an

attacker. The three other curves represent the precision values corresponding to k levels

provided by the OSPS-ASO “a-priori” (Figure 2.23a) and OSPS-FSO (Figure 2.23b) share

generation algorithms. Similarly as in Figure 2.22b, we can see in Figure 2.23 that the

OSPS-FSO approach provides higher Pk,attack values corresponding to larger radii (i.e., lower

precision) than the OSPS-ASO “a-priori” approach. Therefore, OSPS-FSO guarantees lower

probability of the precision’s disclosure to an attacker than OSPS-ASO “a-priori”.

2.5 | Security Analysis 55

Figure 2.22.: (a) Obfuscation area computed for different k for both OSPS-ASO “a-priori”
and OSPS-FSO; (b) comparison of share generation algorithms: probability of
deriving that the target MO’s position π is located within 10% of the current
obfuscation circle ck (Pk,10%); n= 5; r0 = 25 km; 100 runs of the Monte Carlo
simulation

Figure 2.23.: Precision φk,at tack corresponding to probability Pk,attack(φk,at tack) depending on
k for (a) OSPS-ASO and (b) OSPS-FSO; n = 5, r0 = 10 km; 100 runs of the
Monte Carlo simulation

2.5.4. Constrained Space Evaluation

In this section we first describe the Shapefile format that we use for reading map information.

Then we analyze the security of the map-aware share generation algorithm (CSPS).

56 2 | Position Sharing Approach

2.5.4.1. Map Information Format

Shapefile [Esr98] is one of ESRI1 file formats developed for representing spatial information.

It became a de facto standard, as it is supported by many applications, and many open spatial

databases are currently available in the Shapefile format. The information represented by

the Shapefile format for the same map is stored in several files. They contain geometric

objects (features) with corresponding attributes in the form of “key / value” pairs assigned

to each map object. The files of the Shapefile format include:

• *.SHP – contains the geometrical data;

• *.DBF – defines the attributes of the geometrical data in form of the “key / value” pairs;

• *.SHX – contains the attributes from the *.DBF file linked to the geometrical data from

the *.SHP file;

• .SHP.XML (optional) – contains metadata in XML format;

• .PRJ (optional) – specifies the coordinate system.

Shapefiles distinguish three basic geometrical types: Point, PolyLine, Polygon. By using

additional properties, these three basic types can be extended into further types. One

extension is based on the multi-set principle: for example, a Multi-Point object can contain

several points, but it will be considered as a single object. Another advanced geometrical

type is so called Measured Shapetype. It defines the M parameter assigned to each point in

addition to the X and Y coordinates. The M parameter can be used for different purposes,

e.g., to represent the height of buildings. Another Shapefile geometrical type is Multipatch,

which forms a surface of multiple surface parts. In contrast to polygons, the surface parts

can be described as “triangle fans” or “triangle strips”. These are areas consisting of triangles

that are formed by lying next to each other or in a circle.

In our evaluation, we check whether any geometrical types are present in the given location.

The most frequently used types are polygons and multipolygons, since they are applicable to

such common map objects as buildings and squares.

1ESRI stands for Environmental Systems Research Institute.

2.5 | Security Analysis 57

2.5.4.2. Analysis of CSPS

This subsection evaluates the privacy characteristics of the map-aware algorithm by consid-

ering two different kinds of movement constraints. The effect of map-based constraints for

share generation is highly dependent on each map and the user-specific map representation

Mu.

As we explained in Section 2.4.5, the only difference of CSPS compared to OSPS-FSO

is that the arbitrary-shaped non-circular obfuscation area Ak now includes the intersection

with the underlying map knowledge (see Section 2.4.3.4 for details of an arbitrary-shaped

area size computation). Otherwise, CSPS is the same algorithm as OSPS-FSO with the same

area adjustment procedure (cf. Algorithm 5, Algorithm 8). Therefore, in this evaluation we

analyze the effect of the underlying map knowledge on the size of obfuscation area Ak.

We analyzed the obfuscation area reductions caused by two different map types. The first

one is a more fine-granular (small-scale) map where Mu is assumed to consist of only the

roads and squares of the City of Los Angeles (see Figure 2.24a). The second example shows

a more coarse-granular (large-scale) map, where Mu includes all areas except forests in the

German state of Baden-Württemberg, i.e., MOs can be located everywhere but in forests (see

Figure 2.24b).

We analyze the major difference between the OSPS-FSO and CSPS approaches by calculat-

ing the obfuscation areas formed after the intersection of the generated obfuscation circles

with the underlying maps. The CSPS generates the obfuscation circles in such a way that

Figure 2.24.: (a) Roads and squares of the City of Los Angeles; (b) forests of
Baden-Württemberg

58 2 | Position Sharing Approach

the size of the obfuscation area is never below the desired threshold, as was described in

Section 2.4.5. This adjustment is not performed by OSPS-FSO; therefore, the resulting size

of the generated effective obfuscation area is smaller and the location privacy of the user is

lower.

Our metric is the obfuscation area size which can be expressed as Ak = Mu ∩∩k
j=1(c j) (cf.

Algorithm 8).

In Figure 2.25, we show the resulting sizes of obfuscation areas Ak remaining after inter-

sections. We have generated 1000 sets of shares and calculated the average obfuscation

circle fraction of ck, which is left after intersecting with circles c0, . . . ck−1 for various share

numbers n. This value for CSPS is at least 100% or larger due to space discretization and

corresponding computational inaccuracy. This is the result of the applied adjustment, while

in the case of OSPS-FSO, the value can vary a lot depending on each map.

The two lower curves represent the results of OSPS-FSO. The middle curve shows the

result of intersections with a coarse-granular map representation M1 of Figure 2.24b, while

the lowest curve shows the result of intersections with a fine-granular map representation

M2 of Figure 2.24a. “SPS-FSO+M1” depicts the results for the City of Los Angeles map,

while “SPS-FSO+M2” depicts the results for the forests of Baden-Württemberg map. We can

see that these curves slowly increase from 40% to 60% with increasing number of circles

intersected k. This increase is due to the linear-based radius decrease of each kth circle,

which causes quadratic area decrease. Since the latter circles are much smaller, they tend

to be fully covered by the previous circles despite their large number; moreover, they tend

to be overlapped by even smaller map regions where the user can be located. Also, we can

see that the intersection with the coarse-granular map representation M2 decreases the area

more than the overlapping with the fine-granular M1.

The demonstrated results are very important in preserving user’s location privacy: the

adjustment function of CSPS keeps the obfuscation area not smaller than 100% of the original

size and therefore preserves the user’s privacy (precision) requirements (which depend on

both k and the map knowledge). In contrast, if we apply OSPS-FSO, which does not take

map knowledge into account within the same adjustment function, the obfuscation would

be reduced by 40%–60% for the given maps.

2.5.5. Summary: Comparison of Algorithms

Table 2.2 summarizes the selected properties of probabilistic privacy guarantees provided

by the approaches presented in this chapter. In columns two and three, we present the

2.5 | Security Analysis 59

Figure 2.25.: The intersection area of circles c0∩ c1∩ . . .∩ ck of CSPS compared to OSPS-FSO
with no area adjustment based on map knowledge; 1000 runs of the Monte
Carlo method

properties of OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori” algorithms. In column four,

we show the properties of OSPS-FSO and CSPS, since OSPS-FSO has the same properties as

CSPS in this context as they represent the same share generation algorithm in its core. The

only difference is that CSPS also includes the underlying map reading.

To estimate a pdf, we always require the Monte Carlo simulation, with the exception of

the OSPS-ASO “a-posteriori” share generation algorithm, where pdf can be also determined

analytically due to its simplicity. However, OSPS-ASO “a-posteriori” provides a pdf that

is close to normal distribution, i.e., the precise user position π is easier to predict for an

attacker. The pdf of OSPS-ASO “a-priori” is also non-uniform for k > 0, yet it is uniform for

the important case of k = 0. The pdf provided by OSPS-FSO and CSPS are uniform-line,

since these algorithms do not require strict limitation of shift vector lengths, which cause the

non-uniform pdf character of both OSPS-ASO algorithms.

An important question is whether the increase of n (i.e., generating more shares and

60 2 | Position Sharing Approach

distributing them among a larger number of LSs) has a positive effect on security. Our

evaluations have shown that the only share generation algorithm that makes π more pre-

dictable for higher n is OSPS-ASO “a-posteriori”. All the other algorithms allow for using the

benefits of larger n (e.g., for having more precision levels) without making the probabilities

Pk,10% worse, i.e., without having increased the probability peaks in their pdf’s. However, it

is also interesting to note that the difference between the probabilities Pk,10% − Pk−1,10% of

two consecutive precision levels (defined as “probabilistic guarantees delta” in the table)

decreases in the OSPS-ASO “a-posteriori” algorithm, thus making the probabilistic peak

lower for each next k. In OSPS-ASO “a-priori”, this delta is decreasing, while in OSPS-FSO

and CSPS it remains close to constant. Therefore, we can state that each algorithm has its

stronger and weaker properties, while CSPS generally has the most positive properties and

does not have major drawbacks in comparison with the other algorithms.

2.5.6. Alternative Estimations of Security

In this section, we analyze the security characteristics of the share generation algorithms

presented earlier by analytical methods rather than simulation. We mainly target the OSPS-

ASO “a-posteriori” and the OSPS-ASO “a-priori” share generation algorithms. At the same

time, the conclusions made for OSPS-ASO “a-priori” are also valid for OSPS-FSO and CSPS,

Privacy guarantees of share generation algorithms
OSPS-ASO

“a-posteriori”
OSPS-ASO
“a-priori”

OSPS-FSO
and CSPS

Method to
estimate pdf

analytical and
Monte Carlo

Monte Carlo for k > 0
(for k = 0 not needed)

Monte Carlo for k > 0
(for k = 0 not needed)

Resulting pdf normal-like
biased

(exception: k = 0)

Distribution
is closer to uniform

⇒ better
privacy guarantees

Effect of
n’s increase

positive (more
precision levels);

negative (increase
of probability peak)

Positive only Positive only

Probabilistic
guarantees

delta
Decreasing Increasing Constant

Table 2.2.: Comparison of various position sharing algorithms: privacy guarantees

2.5 | Security Analysis 61

since the latter two algorithms also rely on the “a-priori” selection of MO’s position π within

the master share’s obfuscation circle c0.

2.5.6.1. OSPS-ASO “a-posteriori” and Convolution of Shares

For a rough estimation of how the MO’s position π is distributed in the current obfuscation

ci, the Central Limit Theorem for random walk can be used in the “a-posteriori” algorithm

version (Algorithm 2). Assume that the attacker wants to know the distribution of π inside

of c0, i.e., n refinement shares are unknown to the attacker.

According to the Central Limit Theorem, for a sum of independent and identically dis-

tributed random elements Sn = X1+ X2+ . . .+ Xn, n ∈ N , if each element X i has finite values

of expectation µ and dispersion σ2, then:

Sn −µn
σ
p

n
→ N(0,1), (2.14)

where N(0, 1) denotes the normal density distribution. In our case:

σ
p

n=
d2

max

12
;µ=

dmax

2
(2.15)

Here, we can do an a-priori pdf estimation: it is well-known that the convolution of n≥ 6

uniformly distributed random variables follows approximately a normal distribution [GS97].

The problem, however, is that for a small n (for n < 6) the pdf character is not so clearly

defined.

Convolution of Probability Distributions. In general, convolution is a sum of variables

or functions. In our case, we need to find how the target MO’s position π is concentrated

inside the known obfuscation circle from the point of view of an attacker (in the “a-posteriori”

algorithm version). Here, the functions to be convoluted are the unknown shares viewed as

vector variables X i uniformly distributed in the given interval.

Although for 2< n< 6 the pdf is still similar to normal distribution according to the Central

Limit Theorem, we can use the formula for convolution of multiple probability distributions

[KC01] in order to determine the pdf more precisely. The convolution of one-dimensional

62 2 | Position Sharing Approach

variables, each of which is uniformly distributed in the interval [a; b], is determined by:

f (n)(x) =







1
(n−1)!(b−a)n

∑ñ(n,x)
i=0 (−1)i(

n
i)(x − na− i(b− a))n−1, if na ≤ x ≤ nb,

0, otherwise,
(2.16)

where ñ(n, x) =
�

x−na
b−a

�

is the largest integer lesser than x−na
b−a .

In special cases when the vector variables X i are uniformly distributed in the interval [0, 1],

then fSn
(x) is given by the simplified formula [Usp37]:

fSn
(x) =







1
(n−1)!

∑x
i=0 (−1)i(

n
i)(x − i)n−1, if 0≤ x ≤ n,

0, otherwise
(2.17)

As an example, Figure 2.26 shows the result of two uniformly distributed variables: the

special case of convolution known as Triangular Distribution (or Simpson Distribution)

[KVD04].

The illustration for n = 2,4,6,8 and 10 (a = 0; b = 1 for each element) is shown in

Figure 2.27. Applying this to our approach, it shows the obfuscation decrease from n= 10

down to 2 with two shares obtained at each step. Triangular Distribution is obtained at

n= 2.

Figure 2.26.: Convolution of two uniform probabilities [GS97]

2.5 | Security Analysis 63

Figure 2.27.: Convolution of n uniform probabilities [GS97]

Note that in Figure 2.27 the coordinate values of the distributions are summed, while in

our approach we have different numbers of providers n for the same radii of obfuscation

circles. The resulting level of probability changes for different values of n, if the sum of the

convoluted variables is fixed as required when generating n shares for the given radius r0

of the master share (Figure 2.28). The stochastic properties of the share set become worse

(i.e., the target MO’s position becomes more predictable) with increasing of n in the case of

the “a-posteriori” share generation algorithm. This occurs despite the fact that the larger

number of shares allows for the distribution of position information among a larger amount

of LSs and therefore reduces the risks of its disclosure. This property was analyzed in more

detail in Section 2.5.3; also see Figure 2.16.

The previous examples deal with one-dimensional variables. In order to get a two-

dimensional convolution of uniform probability distributions, we need to multiply two

one-dimensional functions such as shown in Equation 2.16, one for X and one for Y

[GS97, Mat00]. The resulting two-dimensional pdf is called circular bivariate distribu-

tion and retains the properties of the one-dimensional distributions, i.e., it is normal-like

(see Figure 2.29).

2.5.6.2. OSPS-ASO “a-priori” and Impossibility of Deconvolution of Shares

Here, we explain why for OSPS-ASO “a-priori” (Algorithm 2) we cannot apply a convolution-

based approach as for the “a-posteriori” algorithm version (Algorithm 3), which makes

impossible the use of a mathematical formula to determine the probability distribution of π

64 2 | Position Sharing Approach

Figure 2.28.: One-dimensional pdf’s for different n values, with the sum of the convoluted
variables fixed: curves with higher peaks correspond to higher n

Figure 2.29.: Circular bivariate distributions for n= 2 and n= 5

for the “a-priori” algorithm version (Algorithm 2).

To find the precise probability distribution of π resulting from the convolution of n− i

unknown shift vectors by knowing i shift vectors (i = 0 . . . n− 1), we would need to use the

deconvolution procedure [PZ02]:

convolution: h(x) = (f ∗ g)(x) =

∞
∫

−∞

f (t)g(x − t)d t

deconvolution: f (x) = F−1[ĥ/ ĝ],

(2.18)

where F is the Fourier transform of function f .

Our goal is to find an intermediate distribution after convoluting n− i shift vectors by

knowing that the resulting probability distribution, i.e., that the convolution of n shift vectors

2.5 | Security Analysis 65

results in a uniform distribution.

However, such a deconvolution is “ill-posed”, meaning that we only know the resulting

distribution, while a probability distribution of any intermediate variable (i.e., shift vector)

is unknown. Even if an attacker knew the first distribution (i.e., the distribution of already

obtained i vectors’ concatenation points), the deconvolution result is represented by a

multidimensional family of functions, and not by a single function [PZ02].

At the same time, statistical solutions of Circular Random Walk [Ste63] are not applicable

for OSPS-ASO “a-priori” due the following reasons: First, there is an insufficient number of

variables must be calculated (usually, the number of shares n is not expected to be much

larger then 10). Second, although the length deviation is known, the angular deviation

required for statistical analysis is unknown: at the first step (i = 1), no deviation is known;

at steps i > 1 only an intermediate deviation is known, since pn is not revealed until the last

share.

2.5.6.3. Alternative Estimations of Security: Summary

An attacker can estimate a pdf for the OSPS-ASO “a-priori” algorithm by using the Central

Limit Theorem of convolution of probabilistic variables. However, these estimations can

be only precise in case of large n, while we expect that the number of shares n within the

position sharing approach usually is not going to be larger than 10. If n is smaller or equals

10, as in our evaluations, the Monte Carlo simulation provides better, i.e., more precise pdf’s.

In case of the OSPS-ASO “a-priori” algorithm, we have shown that it is not possible to

determine the probability distribution of π through a non-heuristic (analytical) solution

such as deconvolution or Circular Random Walk, since we know only the resulting pdf and

cannot determine stochastic properties of the intermediate variables, i.e., the probability

distributions of the refinement shares generated by OSPS-ASO “a-priori”. Therefore, we

have used the Monte Carlo simulation earlier in this chapter to evaluate the probabilistic

guarantees of the precision levels provided by our share generation algorithms.

2.6. Performance Evaluation

Since the processing power and storage capacities of today’s server-side (e.g., cloud) in-

frastructures are much more advanced than the MO’s device characteristics, the client side

becomes the bottle-neck of the system, whereas the server side is less important with regard

66 2 | Position Sharing Approach

to cost optimization. Therefore, not only the security guarantees but also the processing

costs of algorithms are important, especially for small hand-held mobile devices.

First, we analyze the execution times of our share generation algorithms on a mobile

device. Second, we make an estimation of attacker’s computational overhead assuming

more powerful hardware. Third, we consider the communication cost required to transmit

the necessary shares from MOs to LSs. Since in this chapter we assume snapshot position

updates, we estimate the size of the messages and not their number.

2.6.1. Evaluation Setup

According to our approach, the share fusion is done on the LBA side, while share generation

must be done locally by the MO. Moreover, while share fusion algorithms always have linear

complexity O(n) to sum n vectors, the share generation in all algorithms except the first

(“a-posteriori” OSPS-ASO) version is non-deterministic, being usually more complex and

requiring more time. We therefore focus on analyzing the computational overhead required

by the share generation algorithms.

We implemented our share generation algorithms and ran them on the HTC Desire HD

smartphone with Android OS (CPU: 1 GHz Qualcomm QSD8250 Snapdragon, memory: 576

MB RAM). We measured the average time it took for our share generation algorithms to

generate the full new set of position shares for a single position update. For this evaluation,

we used the Google Caliper micro-benchmarking framework, which executes each share

generation algorithm multiple times and calculates the average time required.

It is reasonable to assume that the adversary has a more powerful device available to

analyze the pdf of the MO’s position. Thus, we simulated an attacker’s Monte Carlo analysis

for FSO and CSPS algorithms by using hardware with Intel Core i7 CPU (1.60 GHz) and 4GB

RAM.

2.6.2. Processing Overhead

In Table 2.3, we can see the average execution time in milliseconds (ms) of the first two

algorithms based on open space (OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori”) for the

sets of shares of different sizes n generated for a single position update. As expected, the

execution time of OSPS-ASO “a-posteriori” is always significantly smaller than for OSPS-ASO

“a-priori”, since OSPS-ASO “a-priori” has to traverse many more vector sets in order to find

the one that connects the starting point p0 with the end-point pn.

2.6 | Performance Evaluation 67

n 2 4 8 16 32 64 128
OSPS-ASO “a-posteriori” 0.06 0.21 1.22 8.65 16.2 561 � 1 s

OSPS-ASO “a-priori” 3.4 32.6 164.27 2273 � 1s � 1 s � 1 s
OSPS-FSO without area adj. 0.9 1.1 1.4 1.6 1.7 2.2 2.9

OSPS-FSO with area adj. 3.5 4.4 11.0 1 s � 1s � 1 s � 1 s
CSPS 17.1 104.6 1039 � 1 s � 1s � 1 s � 1 s

Table 2.3.: Processing overhead of OSPS-ASO algorithms, ms

The time needed to generate the set of shares for OSPS-FSO without area adjustment

is always smaller than for both OSPS-ASO versions. The reason for this difference is that

OSPS-ASO applies more constraints to the vectors, and therefore many more randomly

generated sets are dismissed before the suitable set (which guarantees the arbitrary order of

share fusion) is found.

OSPS-FSO with area adjustment is slower than OSPS-FSO without area adjustment but

still faster than both OSPS-ASO versions, since intersection area computation is simple when

only circles are considered. In turn, the processing times required for the map-aware CSPS

approach are highly dependent on the map granularity and the efficiency of reading the

map data. In Table 2.3, we provided the CSPS execution results for the City of Los Angeles

map presented in the previous section. We can see that CSPS is the slowest share generation

algorithm, since it requires to read the map data during the computation of the intersection

area.

We can analyze absolute execution times by assuming a maximum position update rate of

1 Hz, which is the maximum rate of common GPS receivers. This assumption about update

rate can be considered as the worst case in terms of communication overhead, representing

frequent and continuous tracking scenario. Under this assumption, OSPS-ASO “a-posteriori”

is able to generate more than 64 shares online in real time until one second elapses, whereas

OSPS-ASO “a-priori”, OSPS-FSO (with area adjustment) and CSPS can generate at least 8

shares within one second, i.e., provide 8 different privacy levels. For most LBAs, 8 privacy

levels should be sufficient; moreover, we expect that the majority of LBAs will have much

smaller position update rates than 1 Hz. Therefore, we can conclude that real-time position

obfuscation is feasible with our algorithms.

68 2 | Position Sharing Approach

2.6.3. Attacker’s Overhead

An important issue is how efficiently an attacker can obtain a pdf of the user’s position by

performing the Monte Carlo simulation for different values of k number of already known

shares and different share generation algorithms. However, note that even if an attacker

had have a very powerful hardware and could obtain the pdf’s within a reasonable time,

those pdf’s would provide no worse probability distributions Pk,attack(φk,attack) than the ones

guaranteed by the corresponding share generation algorithms.

Here, we analyze the processing time required for an attacker if OSPS-ASO “a-posteriori”

(Algorithm 2), OSPS-ASO “a-priori” (Algorithm 3), OSPS-FSO (Algorithm 5) and CSPS

(Algorithm 8) are employed.

In our analysis, the attacker uses the Monte Carlo simulation to sample the pdf according

to our attacker model (see Section 2.5.1) and the simulation methodology described in

Section 2.5.2. The attacker executes the known share generation algorithm (in the way as

a regular user would perform this for generating shares) enough times in order to obtain

a set of 100 samples of the exact MO’s position π over the obfuscation area. An attacker

tries to utilize the k known shares to get the resulting pdf that represents the correlation

between the known k shares and the resulting position π. For each further share of k known

shares, the Monte Carlo simulation looks for a matching k of the newly generated random

share sets, while the previously found set match for k − 1 shares cannot be reused. If k

generated shares match with k known shares, position π is obtained and saved as a sample

point for building a pdf. As a result, the time required for the Monte Carlo tests grows

exponentially with the increase in k, as our measurements show (cf. Table 2.4). The only

exception is the OSPS-ASO “a-posteriori” algorithm, since in this algorithm each generated

share is stochastically independent, and therefore k− 1 shares can be reused.

We also can see that it is very costly for an attacker to find share sets that match the k

known shares for the share generation algorithms OSPS-FSO and CSPS, since these algorithms

require area size computations. Moreover, CSPS is dependent on the concrete map and its

granularity during the computations. Thus, more time (more than one hour for k > 2 and

n > 4) is required to simulate the share generation algorithm of CSPS than of OSPS-FSO

due to the map analysis. In contrast, 100 runs of the Monte Carlo simulation for the both

versions of OSPS-ASO (“a-posteriori” and “a-priori”) is much faster than in case of CSPS and

OSPS-FSO. This simulation is done within one minute for the given n and k combinations,

and therefore it is easier for an attacker to derive the desired pdf for OSPS-ASO.

2.6 | Performance Evaluation 69

n 3 4 5
k 1 2 1 2 3 1 2 > 2

OSPS-ASO “a-posteriori” 0.08 0.11 0.09 0.12 � 1s 0.09 0.16 � 1 s
OSPS-ASO “a-priori” 1.69 30.6 2.07 38.28 > 1 m 6.34 63.75 > 1m

OSPS-FSO 2.13 88.6 7.74 191 > 1 h 12.7 271 > 1h
CSPS 419 > 1 h 814 > 1 h � 1h 973 > 1h � 1 h

Table 2.4.: Attacker’s processing overhead for Monte Carlo analysis resulting in 100 samples
of position π, having k known shares out of n shares, s

2.6.4. Communication Overhead

Next, we estimate the size (payload) of the update messages and the corresponding commu-

nication overhead. Despite the fact that all of the n shares for each position update must be

sent, each single share is quite small in size: user id (≈ 32 bytes) + 2 floating point numbers

for the shift vector (8 bytes). If this piece of information is sent using the UDP protocol with

a binary format, we can estimate that the transmission of, for example, 8 shares requires

only about 550bytes to send. Taking into account that the most modern LBSs use HTTP

protocol with JSON or XML payloads, the size of a single position update might be around

two times higher. The major part of the traffic amount generated by a location update is

required for the establishment of secure sessions; for example, 1810bytes would be used

by SSL protocol [PRRJ06]. The given values demonstrate that in our approach it is not a

problem (in terms of messages size) to send the required amount of position information

after each update.

Another important issue regarding communication overhead is that our approach produces

a large number of messages to be sent in cases where a naïve update protocol is applied. For

instance, shares do not have to be updated as long as the user moves within the smallest

obfuscation circle. If he or she moves further, the complete share set does not necessarily

need to be updated at once. In many situations, it might be sufficient to update only a single

or a few shares. Our optimized location update protocol will be presented in Chapter 4.

70 2 | Position Sharing Approach

2.7. Related Work: Privacy in Location-based Services

This section gives an overview of major existing techniques for protecting location privacy:

cryptography, position dummies, mix zones, k-anonymity, spatial obfuscation, coordinate

transformation and secret sharing. Then, we classify them according to their privacy goals

and the adversarial attacks they are able to resist. The major contributions of this section

were originally published in [WSDR14].

2.7.1. Cryptography-based Approaches

A classic solution to ensure the confidentiality of the user’s position is to use cryptography.

However, by encrypting user positions stored on servers, server-side query processing of

advanced queries like range queries over the encrypted data is usually impossible, or possible

only at a very high cost [RPB08].

Another example of a cryptography-based approach for location privacy was proposed by

Mascetti et al. [MFB+11] in proximity services of geo-social networks. The authors assume

that service providers are untrustworthy and consider the scenario where mobile users want

to notify their friends called buddies of their proximity. The main idea is that the secret keys

are shared with the selected buddies in a distributed fashion and remain unknown to the

service providers. The authors use a precision metric which is defined through the union of

multiple discrete space cells called granules. A drawback of this approach is that it requires a

complex implementation of the encryption functionalities, and it is mainly suitable for the

specific case of proximity calculation within geo-social networks.

2.7.2. Position Dummies

The goal of position dummies is to secure the user’s true position by sending multiple false

positions (“dummies”) to the location servers together with the true position [KYS05]. The

essential advantage of this approach is that the user himself/herself can generate dummies

without the need for trusted third-party components that could introduce additional security

problems. The user identity is not secured by such dummies, because new fake IDs are not

generated together with the dummy positions.

Various examples of position data distribution by adding dummy positions with different

ubiquity, congestion and uniformity parameters to the true user position are shown in

Figure 2.30a-e. Obviously, it is challenging to create dummies that cannot be distinguished

2.7 | Related Work: Privacy in Location-based Services 71

from the true user position, particularly, when an adversary has additional context information

such as a roadmap and can track the user for longer times.

An advanced method to generate dummies is presented in the SybilQuery approach pro-

posed by Shankar et al. [SGI09]. This approach assumes that the mobile user has a database

with traffic history for the surrounding area, which allows him or her to create additional

dummy positions along the past real trajectories of other MOs, so that these dummy positions

cannot be distinguished from the real user positions. Figure 2.31 shows (a) a simple location

query compared with (b) a location query using the SybilQuery approach. Note that the

SybilQuery approach prevents the exclusion of fake dummies by employing the location

tracking analysis, since all points lie along real movement paths. For this approach to be

possible, a database with MOs’ traffic history is required, which can be outdated or difficult

to obtain.

Pareschi et al. presented another approach based on dummies, which resist “shadow attacks”

[PRB08]. The shadow attack can be performed by an attacker that uses LBS and pretends to

be another user, i.e., the attacker issues location-based queries being a “shadow” under a

fake pseudonym of the target user. Then the attacker can get additional knowledge about the

target user by analyzing the content of service responses. The proposed defense techniques

include fake query generation and delaying user queries.

The general problem with the dummies approach is that dummy positions can be easily

Figure 2.30.: Example of position data distribution with diverse ubiquity, congestion and
uniformity parameters [KYS05]

72 2 | Position Sharing Approach

Figure 2.31.: Querying an LBS: (a) without SybilQuery; (b) using SybilQuery with k = 3
[SGI09]

distinguished from the real positions if an attacker has some background information such

as database of real user movements [SGI09]. Even if the real paths database is assumed to

be available, the dummies approach does not provide robust privacy guarantees or multiple

privacy levels. In addition, the transmissions of fake positions and operations on them cause

excessive costs.

2.7.3. Mix Zones

The idea of the mix zones approach proposed by Beresford et al. [BS04] is to define privacy-

sensitive areas called mix zones, where all users must be protected such that the user position

is hidden within these zones. This is achieved by not sending any position updates within a

zone. However, by observing the user positions right outside a mix zone and while entering

and leaving zones, it is possible to infer their trajectory inside the zone and to link incoming

and outgoing traces of a mix zone to obtain complete trajectories. Therefore, Beresford et al.

introduced dynamic pseudonyms [BS04] as a part of the mix zone concept, which means that

the mobile user changes his or her pseudonym upon entering and exiting the mix zone in

order to protect his or her identity. As such, it becomes more difficult for an adversary to

determine the user’s trajectory within the mix zone by tracing the entry and exit points of a

given user.

A mix zone with three mobile users moving through it is presented in Figure 2.32. The entry

and exit points of the mix zone are reached by the mobile users under different pseudonyms,

making it more difficult for an attacker to obtain their trajectories within the mix zone.

The MobiMix approach presented by Palanisamy and Liu [PL11] applies the mix zone

2.7 | Related Work: Privacy in Location-based Services 73

Figure 2.32.: Example of movement of 3 users through a simple mix zone [BS04]

concept to road networks. The authors extended the basic mix zones concept by taking into

account diverse context information, which can be used by an attacker to derive detailed

trajectories. The additional parameters include geometrical, temporal constraints and users’

density. The MobiMix approach is illustrated in Figure 2.33, showing the mix zones concept

applied over a road network, thus obfuscating direction of each car after entering the mix

zone.

Figure 2.33.: Mix zone over a road network [PL11]

74 2 | Position Sharing Approach

Another extension of the mix zones idea is the dynamic mix zones approach of Ouyang et al.

[OXL+08]. It adapts the mix zones dynamically depending on the user movements instead

of having mix zones with pre-defined static boundaries. Figure 2.34 shows the heuristic

selection of a dynamic circular mix zone with its center in A, B and C for a single time point,

such that it covers the maximum number of user positions.

The approaches based on mix zones lack flexibility, because they need a pre-defined

location-based (or user-based, as in [OXL+08]) division of space into fixed zones, and they

do not allow for different levels of privacy in different zones.

2.7.4. k-anonymity

k-anonymity is a widely accepted concept that guarantees that in a cluster (i.e., a set or

tuple) of k objects (in our case, mobile users), only one of them is the target object and

it is indistinguishable from the k − 1 other objects of the cluster. Thus, the probability of

determining the target user is 1/k.

Many approaches exist that apply the general concept of k-anonymity to location privacy.

The adaptive cloaking approach, as proposed by Mokbel et al. [MCA06], considers the minimal

size of the obfuscation area including k users. It is based on hierarchical division of space

into cells in order to cluster mobile objects in the form of a pyramid. Thus, by preserving the

original precision and privacy, this approach reduces the cost of querying, i.e., the cost of

search for the requested obfuscation area. The principle of adaptive cloaking is presented in

Figure 2.35. Only the space cells adjacent (i.e., needed to meet privacy requirements) to the

MO’s movement are maintained, instead of maintaining the whole pyramid’s index structure.

Figure 2.34.: Dynamic circular mix zones [OXL+08]

2.7 | Related Work: Privacy in Location-based Services 75

Figure 2.35.: Adaptive location anonymizer [MCA06]

Gedik et al. proposed the CliqueCloak algorithm [GL05, GL08] based on k-anonymity, which

also performs spatial and temporal cloaking. Similarly to the adaptive cloaking approach

[MCA06], in order to preserve acceptable location privacy, a user can additionally define

individual upper limits for both obfuscation area size and time periods associated with

his or her positions. Figure 2.36 illustrates the Clique-Cloak algorithm with the resulting

3-dimensional spatio-temporal cloaking boxes (2.36e).

Usually, achieving k-anonymity requires a TTP which has a global view of the service users.

An exception is the approach of Chow et al. [CML06] that avoids using a single trusted

anonymizer by using P2P communication to find a spatial region so that it covers the needed

number of other k− 1 mobile users (i.e., a cluster). After the needed cluster is found, the

user sends it to the client indirectly by using a randomly selected node to hide the identity

of the query issuer. The system architecture for the P2P spatial cloaking is presented in

Figure 2.37. It consists of LBS databases and mobile users who can communicate with each

other and send queries to LBSs through the base station.

Zhang et al. [ZH09] introduced an approach to combine the use of a TTP and P2P principles.

The proposed system can switch between these modes depending on privacy settings and

other parameters, therefore balancing the work load and communication cost in a more

efficient way. To improve the security of the P2P mode, the authors present the Random

Range Shifting (RRS) algorithm (illustrated in Figure 2.38). To avoid centering the mobile

object in the selected cluster of users, the space cluster is selected randomly while the

algorithm is looking for k users. Thus, this version of k-anonymity guarantees that the

calculated clusters of k users remain the same over several queries. This property of k-

76 2 | Position Sharing Approach

Figure 2.36.: The Clique-Cloak algorithm [GL05]

Figure 2.37.: System architecture for P2P spatial cloaking [CML06]

2.7 | Related Work: Privacy in Location-based Services 77

clusters is called reciprocity, and it guarantees that attacks on several intersecting k-clusters

of different queries cannot easily identify the target user.

Another approach to achieve reciprocity of k-clusters is presented by Ghinita et al. [GKS07].

The authors propose to use Hilbert space-filling curves for the indexing of service users and

their locations. Figure 2.39 shows two examples of a Hilbert space-filling curves with different

granularities of space distribution (4× 4 cells and 8× 8 cells). The advantage of the Hilbert

space indexing is that physically close objects likely have numerically close indices. By

utilizing such distance-aware spatial indexing, the anonymizer always selects the same fixed

set of k − 1 additional users for each query of a given user; therefore, it is impossible to

decrease k by excluding some users after intersecting the clusters retrieved from multiple

queries. Thus, so called strong k-anonymity is guaranteed by the reciprocity property.

Yet another approach to achieve reciprocity of k-clusters is proposed by Talukder and

Ahamed [TA10]. The authors use adaptive nearest neighborhood cloaking to achieve this

property. They describe how their approach resists two types of the multi-query attack:

shrink region attack and region intersection attack. The aim of these attacks it to reduce the

number k of cluster’s users by issuing multiple queries with similar target location and then

Figure 2.38.: RRS algorithm for the number of clients in a mobile client’s surrounding cell
Km = 7 [ZH09]

78 2 | Position Sharing Approach

Figure 2.39.: Hilbert curve examples: (a) 4× 4 cells; (b) 8× 8 cells [GKS07]

overlapping the received k-clusters.

There are also a number of approaches inspired by database privacy principles, which

are also applicable in cases when an MO needs to send multiple attributes of itself to an

LBS. Such approaches add additional parameters to the k-anonymity guarantee in order to

improve it. Usually these ideas originate from the database privacy field, but they can also

be applied in the field of location privacy if LBS users are represented by more attributes

than just their identity and location.

For example, Machanavajjhala et al. introduced the l-diversity parameter to extend the

k-anonymity guarantees [MKGV07]. Their approach preserves the diversity of the personal

context for the given k-cluster. Thus, the target user position cannot be disclosed by analyzing

non-spatial attributes of the MOs. To illustrate l-diversity, Figure 2.40 shows two tables

containing 4-clusters. The information presented in the first table (Figure 2.40a) is less

secure, since the user identity can be revealed by analyzing the sensitive attributes (here:

condition of a patient) although the 4-anonymity of each cluster has been preserved. For

example, in the case of the last 4-cluster, an attacker knows with 100% certainty that the

target user has cancer. The second table (Figure 2.40b) is improved by providing the 3-

diversity, so that the probability of a target user to have a certain disease is not higher than

33.3%. The additional security is achieved by grouping the entries in such a way that at

least 3 different sensitive (condition) values are represented in each 4-cluster. This approach

guarantees that 3 users within each cluster are indistinguishable, i.e., l-diverse (3-diverse).

Similarly, l-diverse k-anonymity was guaranteed by Bamba et al. [BLPW08] by using a

sophisticated dynamic cloaking approach. The authors proposed various ways to find l-diverse

k-clusters of users: top-down (starting with larger space cells and dividing them into smaller

2.7 | Related Work: Privacy in Location-based Services 79

Figure 2.40.: (a) 4-anonymous inpatient microdata; (b) 3-diverse inpatient microdata
[MKGV07]

cells), bottom-up (starting with small space cells and merging them into larger cells) and

hybrid spatial cloaking. The anonymization of spatio-temporal range queries is achieved by

incorporating temporal cloaking.

Domingo-Ferrer et al. proposed a so-called p-sensitivity parameter to improve k-anonymity

guarantees [SSDF08]. The idea is to prevent all mobile user profiles in a k-cluster from

sharing a combination of confidential key attributes, which would otherwise disclose the

confidential attributes of the user.

The next extension of k-anonymity and l-diversity parameters was proposed by Li et al.

[LLV07]: t-closeness represents the distance between an attribute’s distribution within the

selected cluster of k users and the same attribute’s distribution over the total set of users.

This distance should not be smaller than a certain threshold.

Another database-driven approach was introduced by Wong et al. based on (α, k)-anonymity

[WLFW06]. This approach is an extension of k-anonymity similar to l-diversity, where α

denotes the maximum relative diversity of the given sensitive attribute in the set of tuples.

Contrary to the number of multiple diverse attributes l in a given tuple (k-cluster), the α

parameter is used to preserve the diversity of a given separate attribute.

Also, there are a number of approaches called historical k-anonymity, where the k-

anonymity principle is applied to multiple position updates. Historical k-anonymity methods

improve k-anonymity guarantees by taking into account the temporal component of the user’s

position information, i.e., to provide k-anonymity guarantees for moving objects [MBW+09].

Similarly as with achieving strong k-anonymity by clustering, the historical information of

80 2 | Position Sharing Approach

multiple users is divided into blocks with each block containing the positions of at least k

users.

The problem of all location privacy approaches based on k-anonymity is that in order to

select a k-set, a trusted anonymizer with a global view must be available in the system, i.e.,

an undesired TTP is required.

2.7.5. Spatial Obfuscation

Spatial obfuscation approaches preserve the user’s location privacy by deliberately reducing

the precision of position information sent by the user to an LBS. A classic spatial obfuscation

approach is presented by Ardagna et al. [ACD+07], in which a mobile user sends circular

areas instead of his or her exact positions to the location server. The obfuscation areas are

generated in a secure way, which means that the target user position is distributed uniformly

inside the obfuscation shape. Figure 2.41 illustrates different obfuscation techniques: (a)

enlarging the radius, (b) shifting the center, and (c) reducing the radius. We apply these

techniques in our position sharing approach, while providing additional properties such as

graceful degradation and multiple privacy levels.

An important advantage of spatial obfuscation is that it requires no TTP, since the user

himself or herself can calculate the obfuscation area (in contrast to k-anonymity and other

techniques relying on a TTP). However, this advantage comes at a price, which means that

the clients are not provided with the precise user position. This trade-off between privacy and

precision was studied by Cheng et al. [CZBP06]. They introduced a probabilistic model of

results of range queries, depending on the overlapping size of query area and the obfuscation

shapes. Figure 2.42 illustrates the query score of ILRQ (Imprecise Location-based Range

Query). Here, p denotes the probability that user S yields Ri as the query answer, while V is

Figure 2.41.: Obfuscation by: (a) enlarging the radius; (b) shifting the center; (c) reducing
the radius [ACD+07]

2.7 | Related Work: Privacy in Location-based Services 81

the precision of Ri with respect to the full set of answers R, where R gives the exact desired

query answer.

Instead of geometric obfuscation shapes like circles, Duckham and Kulik have used obfus-

cation graphs to apply the concept of location obfuscation to road networks [DK05]. With

the addition of fake vertexes, their obfuscation graphs can be applied if the road network is

available. Figure 2.43 illustrates the addition of dummy vertex s to the obfuscated multi-

source graph algorithm with a set of query locations Q = q1, . . . , q5 (gray vertices) and a set

of obfuscation locations O = o1, . . . , o6 (black vertices).

An example of a location privacy approach based on geometric obfuscation is the n-CD

approach of Li et al. [LSTL13]. According to this approach, a mobile user generates n so

called concealed disks (CDs), such that their combination provides the “anonymity zone”

around his or her position. The unpredictability of the resulting anonymity zone is preserved,

since the overlapping and rotation of the CDs is done in a randomized fashion. The advantage

of the n-CD approach is that, similarly to our position sharing approach, it does not require a

trusted third party, which would store the precise location information of mobile users. The

disadvantage, however, is that the n-CD approach does not provide multiple levels of privacy,

i.e., precision levels depending on the user’s trust in different location-aware applications.

The addition of each further kth CD refines the obfuscation area, but there is no pre-defined

value of this refinement, and, therefore, there are no guaranteed k precision levels. Another

drawback of the n-CD approach is that the proposed privacy metric reflects only the area

Figure 2.42.: Query score of ILRQ; p – probability that user S obtains Ri as the query answer;
V – precision of Ri with respect to the full set of answers R [CZBP06]

82 2 | Position Sharing Approach

Figure 2.43.: Addition of a dummy vertex s to the obfuscated multisource graph, with a
set of query locations Q = q1, . . . , q5 (gray vertices) and a set of obfuscation
locations O = o1, . . . , o6 (black vertices) [DK05]

size of the anonymity zone, while the probability distribution of the precise user position

over the anonymity zone is not considered [PSD15].

The problem of the obfuscation’s accuracy was addressed by Perazzo et al. [DP12]. The

authors proposed an approach based on spatial obfuscation, which guarantees uniform

probability distribution of the true user’s position over the obfuscated area while taking

into consideration the inaccuracy parameters of the positioning system. Figure 2.44 shows

examples of two different assumptions about the size of the measurement inaccuracy errors,

which usually reduce the probability density near the borders of the obfuscation area.

Our position sharing approach is also based on spatial obfuscation, but additionally it

provides graceful degradation of position precision depending on the number of missing

position shares and therefore supports multiple obfuscation levels. Moreover, the mobile

user is able to define the position precision levels that each location-based application is

authorized to obtain, depending on its trustworthiness from the user’s individual perspective.

2.7.6. Coordinate Transformation

A location privacy approach using coordinate transformation was proposed by Gutscher et al.

[Gut06]. The mobile users perform some simple geometric operations (shifting, rotating)

over their positions’ coordinates before sending them to the location-based service. In order

2.7 | Related Work: Privacy in Location-based Services 83

Figure 2.44.: Obfuscation circles with two different error measures [DP12]

to recover the original position, the transformation function needs to be distributed among

the clients. Thus, it is not possible to compare the positions of different users obfuscated with

different transformation functions, for instance, to perform range queries. Figure 2.45 shows

how point ~p is represented in two different coordinate systems kA and kB, with corresponding

coordinates ~cp,A and ~cp,B, where ~dB,A is the transformation vector.

Our position sharing approach is also based on coordinate transformations; however, to

provide the LBS with different levels of granularity and thus enable multiple privacy levels,

we combine coordinate transformation and spatial obfuscation.

Another method based on the concept of spatial transformation called SpaceTwist was

presented by Yiu et al. [YJHL08]. The goal of this approach is to support private kNN-queries

sent by the mobile user, which pretend that he or she has issued the query from a fake

location. The user sends multiple queries to the server containing his or her fake location

Figure 2.45.: Representation of point ~p in two coordinate systems kA and kB, with
corresponding coordinates ~cp,A and ~cp,B; ~dB,A is the transformation vector
[Gut06]

84 2 | Position Sharing Approach

instead of the actual one, and then filters the received data in order to get the needed

results for his or her true position. Thus, location privacy is achieved by degrading the query

accuracy. Figure 2.46 shows the so called demand space and supply space. The supply space

expands by iteratively querying and adding the nearest neighbors of the fake anchor location.

The demand space is only known to the mobile user, and therefore he or she can perform the

query without letting the LBS know his or her true location – until the number of obtained

neighbors expands the supply space so much that it completely covers the demand space.

Thus, in order to finally get the precise position, excessive querying is required, which leads

to high communication cost.

2.7.7. Trajectory Privacy

Next, we will describe approaches that consider the temporal dimension in addition to the

user location information and therefore aim to preserve trajectory privacy. One such approach

based on k-anonymity was already presented above (historical k-anonymity [MBW+09]).

As an alternative method, spatio-temporal obfuscation can be applied in order to protect

movement trajectories of users [GG03]. In addition to decreasing the precision of positions,

they also decrease the precision of the temporal information associated with positions until

a specified k-anonymity criterion is achieved.

A similar idea was also presented by Ghinita et al. in their spatio-temporal cloaking approach

[GDSB09]. To improve the security of spatial cloaking, the authors take into consideration

attacks based on background map knowledge represented by a set of privacy-sensitive

features as well as attacks based on the known maximum speed of objects (also called

maximum movement boundary attack). As an example, Figure 2.47 shows the attack model

Figure 2.46.: Demand space and supply space before and after the refinement [YJHL08]

2.7 | Related Work: Privacy in Location-based Services 85

with background knowledge about the surrounding sensitive locations (e.g., hospital and

night club), so that the area where the target user can be possibly located is reduced by

intersecting the sensitive areas with the maximal user movement possible.

The principle of temporal cloaking by delaying the location update described by Ghinita et

al. [GDSB09] is illustrated in Figure 2.48a; for comparison, the spatial cloaking principle

in shown in Figure 2.48b. The delay for temporal cloaking is calculated as the distance

between two locations A and B divided by a sufficiently slow MO’s speed, so that the possible

movement area is large enough to satisfy privacy requirements.

In addition to these approaches, a number of similar approaches developed to protect spatio-

temporal location privacy exist, including trajectory clustering [LHW07], trajectory trans-

formation [TM08], uncertainty-aware path cloaking [HGXA07], virtual trip lines [HGH+08],

fake paths [LLLZ09], etc.

An approach that utilizes the concept of k-anonymity for securing a complete published

user trajectory was presented by Abul et al. [ABN08]. The authors apply an enhancement of

k-anonymity for spatial-temporal cloaking called (k,δ)-anonymity. The idea is that before

publishing, the trajectories of at least k users are co-located into a “space tunnel” of radius

δ/2, which defines the desired uncertainty (privacy) level. Figure 2.49 shows a (2,δ)-

anonymity set formed by two co-localized trajectories, their respective uncertainty levels,

and the central cylindrical volume of radius δ/2, which contains both trajectories [ABN08].

Note that we do not consider securing the whole trajectory as one of our goals, but future

work could extend our approach in this way.

2.7.8. Map-aware Approaches

A significant problem with many spatial obfuscation-based approaches is that the desired

size of the obfuscation areas can be reduced if an adversary applies background knowledge,

Figure 2.47.: Attack model with background map knowledge [GDSB09]

86 2 | Position Sharing Approach

Figure 2.48.: Spatio-temporal cloaking: (a) temporal cloaking; (b) spatial cloaking
[GDSB09]

Figure 2.49.: A (2,δ)-anonymity set formed by two co-localized trajectories, their respective
uncertainty levels, and the central cylindrical volume of radius δ/2, which
contains both trajectories [ABN08]

2.7 | Related Work: Privacy in Location-based Services 87

in particular the map knowledge, in order to reduce the effective size of the obfuscation area.

To resist such map matching attacks, Ardagna et al. proposed a landscape-aware obfuscation

approach [ACG09]. The work of Ardagna et al. provides theoretical background for map-

awareness. Moreover, it presents the idea of adjusting the radius of the obfuscation disk in

order to preserve the user’s privacy from being affected by landscape knowledge.

This approach of Ardagna et al. is based on a probability distribution function that defines

the probability of user being located in certain areas of a map. The obfuscation area is

selected considering the probability of user being located in areas of the obfuscation shape.

Figure 2.50 shows an example of a one-dimensional landscape prior to probability distribution

λ(t): the user is b times as likely to be localized between 0 and 2d than elsewhere (here, R

denotes the obfuscation circle radius).

In our work, we adapt a similar principle to our position sharing approach with multiple

non-trusted servers and provide flexible management of privacy levels.

Another advanced obfuscation approach by Damiani et al. [DBS10] called PROBE applies

the map-awareness principle to protect semantic locations, i.e., to ensure that a user cannot

be revealed by being located in certain sensitive locations. This obfuscation approach expands

the obfuscation area adaptively, so that the probability of the user to be in a certain semantic

location is below the given threshold. Figure 2.51 shows an obfuscated map generated by

the location privacy algorithm for two hospitals taken as an example of critical semantic

locations. The space is represented in a discrete fashion through polygonal regions, which

are gradually added together in order to cover the required area. The resulting obfuscation

region can have any shape, but the approach lacks flexibility due to the enforced cell-based

Figure 2.50.: Example of 1D landscape prior probability distribution λ(t): the user is b times
more likely to be localized between 0 and 2d than elsewhere (R – obfuscation
circle radius) [ACG09]

88 2 | Position Sharing Approach

space representation.

2.7.9. Secret Sharing and Position Sharing

In order to address the problem of non-trusted location server infrastructures, Marias et al.

[MDKG05] proposed an approach for the distributed management of position information

based on the concept of secret sharing [Sha79]. The basic idea of this approach is to divide

position information into shares, which are then distributed onto a set of non-trusted location

servers. In order to recover the precise positions, the LBS client (application) needs to retrieve

the complete set of shares from multiple servers. The advantage of this approach is that a

compromised server cannot reveal any position information since it does not have all the

necessary shares. However, one important disadvantage of this approach is that location

servers cannot perform any computations on the shares, for instance, in order to perform

range queries. Thus, even if only a single location server is not available, the user’s position

is not accessible to location-based applications.

An approach based on secret sharing was proposed by Wernke et al. [WDR12] (PShare).

Unlike our position sharing approach, which generates shares based on geometric transfor-

mations, the authors utilize the concept of multi-secret sharing for share generation [CC05].

PShare also supports symbolic location information in addition to geometric information.

The idea of PShare is that the mobile user generates the shares based on the polynomial rep-

resentation of his or her precise position π and the k positions of degrading precision, while

π is the combination of k polynomials according to the multi-secret scheme [CC05] using

the Chinese Remainder Theorem. Clients can partially reconstruct the allowed precision

Figure 2.51.: Obfuscated map generated by the PROBE algorithm for two hospitals [DBS10]

2.7 | Related Work: Privacy in Location-based Services 89

by obtaining the k points and performing their Lagrange interpolation (see Figure 2.52).

An important difference between PShare and our approach is that PShare uses discretized

square-based space representation and such corresponding indexing that the precision change

between the nearest privacy levels cannot be smaller that factor 4 (cf. Figure 2.52a). This

significantly limits the flexibility of privacy levels management by the mobile user. Also,

all clients are required to know the sophisticated cryptographic functions of PShare, which

does not satisfy the requirements of interaction between large numbers of independent users

within geosocial networks.

2.7.10. Classification of Location Privacy Approaches

There are a number of works that survey the state of the art of techniques of protecting

location privacy and try to classify them [Kru09, SDFMB08, WL09, CM11]. For example, a

survey of major existing location privacy approaches classified according to general techniques

applied was presented in [Kru09], while Solanas et al. classified approaches based on their

reliance on a trusted third party (TTP) [SDFMB08].

A basic classification according to schemes of communication applied between the mobile

Figure 2.52.: (a) Geometric area of obfuscated MO position p(π, l) for granularity of precision
levels b = 2 and precision level lmax = 3; (b) PShare-GLM (geometric location
model) process overview [WDR12]

90 2 | Position Sharing Approach

user and the LBS was presented by Solanas et al. [SDFMB08]. The three major communica-

tion schemes are illustrated in Figure 2.53. According to the simplest scheme (Figure 2.53a),

mobile user and LBS communicate directly with each other under the assumption that the

LBS provider is fully trusted. In the second scheme (Figure 2.53b), the LBS provider is

not trusted; therefore, there is another trusted entity (e.g., an anonymizer) called trusted

third party (TTP) that operates between the LBS and the mobile user. TTP is responsible for

making the users’ locations secure. In the third scheme (Figure 2.53c), a set of mobile users

collaborate to help each other to communicate with an untrusted LBS in a secure way.

Another classification of location privacy approaches proposed by Mokbel [Mok07] in-

cluded an overview of location privacy challenges, techniques and attacks. Many possible

attacks were considered, together with approaches for resisting such attacks. The author

describes location privacy concepts such as location perturbation, spatial cloaking and k-

anonymity. Additionally, he considers various system architectures used by location privacy

approaches: (a) non-cooperative architectures (having independent system actors); (b)

centralized architecture with a trusted third party; (c) peer-to-peer (P2P) architecture.

Location privacy approaches can be classified according to the possible attacks on the user’s

location privacy, which they can resist. Figure 2.54 shows the generalized representation of

existing LBS privacy threats presented by Bettini et al. [BMW+09]. The authors proposed

the following classification of privacy threats: (a) attacks exploiting quasi-identifiers in

Figure 2.53.: (a) Scheme of direct communication between the mobile object and the LBS;
(b) communication between the mobile object and the LBS through an inter-
mediate trusted third party (TTP); (c) communication scheme between a set of
collaborative users and an untrusted LBS. L is precise position; L′ is obfuscated
position; query is denoted as Q [SDFMB08]

2.7 | Related Work: Privacy in Location-based Services 91

requests; (b) snapshot vs. historical attacks; (c) single- vs. multiple-issuer attacks; (d) attacks

exploiting knowledge of the defense. The authors also analyzed and categorized the existing

approaches with respect to their ability to resist the attacks described.

Privacy threats can be also classified into the following categories [Kru09]: (a) analysis

of movement patterns; (b) context inference; (c) simulated privacy attacks (when attacker

sends queries by pretending to be the target user and derives location information from

query answers).

By extending the concepts of the works presented above, we have proposed our own

classification of existing location privacy attacks and techniques [WSDR14]. We grouped the

location privacy techniques and approaches according to two major parameters: the privacy

goals, i.e., the information secured by each approach, and the assumed attacker knowledge,

i.e., methods or additional information, which an attacker can use in order to undermine the

user’s location privacy. As privacy goals, we considered securing user’s identity (ID), position

and timestamp associated with the position; these goals can be selected separately or in any

combination.

To represent attacker knowledge, we classified it by distinguishing (a) whether single or

multiple user positions are available, including various attacks based on multiple positions,

and (b) whether the context (i.e., additional personal or environmental information) is

known (see Figure 2.55). Thus, we considered the availability of additional knowledge to

Figure 2.54.: General privacy threats in LBS [BMW+09]

92 2 | Position Sharing Approach

an attacker such as any kind of user context and the user’s movement history.

Our classification of attacks based on the given knowledge is shown in Figure 2.56. We

distinguish between single position attacks, context linking attacks, multiple position attacks,

attacks combining context linking and multiple position attacks, and attacks based on

compromising a TTP component. For more details regarding the location privacy attacks, we

refer to the original publication [WSDR14].

After analyzing the major location privacy techniques and approaches, we proposed their

classification based on the analysis which protection goals they fulfill for different attacks (see

Figure 2.57). Each protection goal is defined by whether the attribute identity, position and

time should be protected (3) or not (5). The stated techniques provide the corresponding

protection goal assuming a certain attacker knowledge. If the technique can resist an attacker

with a certain attack, this is denoted by a 3 in the main part of the table, whereas an empty

cell denotes that the attack can be successful against the stated technique. The gray cells

indicate possible future research directions not covered by the stated techniques. For each

approach, we marked whether it needs a trusted third party (TTP) or not. We arranged

the different approaches based on their primary protection goal. Approaches marked by “*”

provide the protection goal as a sub-goal in addition to their primary protection goal.

We can see that most approaches protecting the user’s identity against different attacks

are based on k-anonymity. However, they usually require a TTP (i.e., an anonymizer). If

the user wants to preserve location privacy without protecting his identity, the most popular

technique to apply is spatial obfuscation. Its major drawback is that clients can only retrieve

Figure 2.55.: Classification of attacker knowledge [WSDR14]

2.7 | Related Work: Privacy in Location-based Services 93

Figure 2.56.: Classification of location privacy attacks [WSDR14]

an obfuscation area instead of a precise user position. To overcome this problem, we proposed

the position sharing approach, where the user can flexibly manage the precision provided to

each application.

The most challenging goal is represented by the case when user trajectory and ID should

be secured. We can also see that the most challenging attacks are those that link the user’s

location information with the user’s personal context, and those that reduce privacy by

matching the user’s revealed location information with map knowledge.

In the given classification (Figure 2.57), we also show how our position sharing approach

[DSR11, SDR12] relates to other approaches. The position sharing approach takes map

knowledge into account in order to prevent de-obfuscation by map-based attacks; also, it

resists “maximal movement boundary” attacks (as we will describe later in Chapter 4).

2.7.11. Related Work: Summary

As we have shown above, there is a great variety of methods for preserving user’s location

privacy, but usually they have significant limitations and drawbacks. For example, the k-

anonymity-based location privacy approaches rely on a trusted anonymizer with a global

view, i.e., an undesired TTP is required.

If cryptography-based approaches are applied to encrypt user positions stored on servers,

the problem is that server-side query processing of advanced queries like range queries over

the encrypted data is impossible, or require a very high cost.

The general problem with the position dummies approach is that dummy positions can be

easily distinguished from the real positions; moreover, the transmissions of fake positions

and operations on them cause excessive costs.

The approaches based on mix zones lack flexibility with regard to the user position’s

94 2 | Position Sharing Approach

Figure 2.57.: Classification of location privacy techniques according to location privacy goals
and attacker knowledge [WSDR14]

2.7 | Related Work: Privacy in Location-based Services 95

precision, because they need a pre-defined location-based or user-based division of space

into fixed zones, and they do not allow for different levels of privacy in different zones.

An important advantage of spatial obfuscation is that it requires no TTP, since the user

himself or herself can calculate the obfuscation area (in contrast to k-anonymity and other

techniques relying on a TTP). However, this advantage comes at a price, which means that

the clients are not provided with the precise user position. Our position sharing approach is

also based on spatial obfuscation, but additionally it supports multiple obfuscation levels.

If the approach of coordinate transformation is applied to secure the user’s position, the

limitation is that it is not possible to compare the positions of different users obfuscated

with different transformation functions, for instance, to perform range queries. Our position

sharing approach is also based on coordinate transformations; however, to provide the LBS

with different levels of granularity and thus enable multiple privacy levels, we combine

coordinate transformation and spatial obfuscation.

The drawback of the original secret sharing approach is that even if only a single part of

the secret is not available, the user’s position is not accessible to location-based applications.

The PShare approach was proposed to extend the idea of secret sharing and provide the

graceful degradation property, i.e., the precision of positions revealed to a potential attacker

can be incomplete, yet it will increase with the number of secret shares [WDR12]. The main

difference to our approach is that PShare uses discretized square-based space representation

and such corresponding indexing that the precision change between the nearest privacy

levels cannot be smaller that factor 4 (cf. Figure 2.52a). This significantly limits the flexibility

of privacy levels management by the mobile user. Also, all clients are required to know the

sophisticated cryptographic functions of PShare, which does not satisfy the requirements of

interaction between large numbers of independent users within geosocial networks.

In order to overcome the limitations described above, we proposed the concept of position

sharing [DSR11, SDR12] for secure management of private position information stored

on non-trusted location servers. Our method is that the mobile user splits the position

information into so called position shares, where each share defines his or her position with

strictly limited precision. These shares are distributed onto a set of non-trusted location

servers, so that each server has only a position of limited precision, but which, at the same

time, can be used to perform calculations. Through share fusion algorithms using simple

geometric operations, multiple shares can be combined into positions of higher precision.

Location-based applications can be provided with positions of different precision levels

depending on the number of shares distributed to them. Within our approach, we also take

96 2 | Position Sharing Approach

into consideration the problems of map-awareness, share placement and position updates.

2.8. Conclusion

In this chapter, we have presented our basic position sharing approach and our classification

of the existing location privacy approaches based on our previous publications [DWSR10,

DSR11, SDR12, WSDR14]. The key idea of our position sharing approach is that the mobile

user’s position information is distributed among multiple location servers of different service

providers in the form of separate data pieces, which we call position shares. The main

advantages of this approach are that a trusted third party is avoided and that we are able

to flexibly manage the revealed position’s precision levels by defining the number of shares

allowed to be obtained by each application.

We introduced four modifications to our approach. They include: OSPS-ASO with “a-

posteriori” share generation, OSPS-ASO with the “a-priori” version of share generation,

OSPS-FSO with fixed share order and the map-aware algorithm version called CSPS.

The difference between “a-priori” and “a-posteriori” algorithms lies in the predictability of

the share set. They provide different dependencies of probabilistic guarantees corresponding

on precision levels of the MO’s position for each number of known shares k. OSPS-FSO

lowers the peaks of probability distribution of both “a-priori” and “a-posteriori” versions of

the OSPS-ASO. However, OSPS-FSO does so by introducing an additional requirement of

fixing the order in which shares can be obtained and fused.

CSPS is basically an extension of OSPS-FSO, which provides map-awareness. This is done

through adjustment of the obfuscation area, which is found through the intersection of the

obfuscation circles and the map regions where the user can be located. Both OSPS-FSO and

CSPS provide close-to-uniform distribution of probability of the MO’s position inside the

current obfuscation area, while CSPS provides this type of distribution if the map knowledge

in form of a binary map representation is available. They both require a pre-defined order

for obtaining and fusing the position shares.

All four of the presented approaches have the following limitations, which will be solved

in the next chapters:

• In order to take into account different trustworthiness levels of the providers, it is

necessary to optimize the share placement depending on the corresponding parameters

of the providers.

2.8 | Conclusion 97

• Since the current approaches consider only snapshot user positions, a mobility-aware

share generation is needed, which includes efficient updating of shares, i.e., updating

of the smallest required number of shares.

98 2 | Position Sharing Approach

C
H

A
P

T
E

R 3
OPTIMIZATION OF SHARE PLACEMENT

Up until this point, our basic position sharing approach (see Chapter 2) assumes that all

LSs are equally trusted. However, this is not always a valid assumption. The probability of

malicious behavior by LSs (i.e., their trustworthiness) can vary and can be estimated by using,

for example, a feedback system providing the diverse trustworthiness levels of different LSs.

In this chapter, we will extend our system model and present a share placement approach

that takes LS trustworthiness into account in order to improve the user’s location privacy. The

basics of this approach were originally published in the diploma thesis of Björn Schembera

[Sch11]. The author developed the main principles of share placement optimization, refined

the optimization goals and algorithms, and supervised the diploma thesis as a whole.

We define the trustworthiness of LSs by using a probabilistic trust model. The trust value

represents the probability that an LS behaves correctly, i.e., does not misuse the user’s private

position information, collaborate with other LSs, or become compromised by an external

attacker.

The main goal is to optimize the placement of shares to LSs so as to decrease the risk

of disclosure of large amounts of private location information. An LS with a higher trust

level (i.e., a lower risk level) can obtain more position information (i.e., more shares, or

“larger” shares) than a less trustworthy LS. This improves the user’s location privacy measured

according to our privacy metrics as the probability that a certain precision will be disclosed.

Our privacy metrics guarantee that the end risk is balanced among LSs and that the probability

of each precision level’s disclosure does not exceed the pre-defined threshold.

Note that during optimization of share placement, we do not need to consider the actual

content of a position share. In other words, our placement approach is suitable for both

99

shares which contain geometrical information (such as in our main position sharing approach

described in Chapter 2) and shares which contain numerical information (such as in the

approach of Wernke et al. [WDR12]).

We distinguish a number of scenarios regarding the heterogeneity of shares and providers’

trustworthiness. We analyze the privacy guarantees and computational complexity of the

generalized placement algorithm, as well as special cases of share placement.

3.1. Problem Statement

In this section, we introduce our system model that was extended so as to address the

trustworthiness of LSs. Then we describe our privacy metrics for optimizing the placement

of position shares and formulate the problem statement.

3.1.1. Extended System Model

In order to extend our system to make it able to adapt according to the LSs trustworthiness,

we need to extend our system model as originally presented in Figure 2.1 (Section 2.1).

The new version of the system model is shown in Figure 3.1. In addition to the three main

components (mobile object (MO), location server (LS), location-based applications (LBA)), it

also contains a trust database.

Figure 3.1.: Extended system model: now including a trust database

100 3 | Optimization of Share Placement

We assume that each LS is in principle non-trusted, and that it can be compromised with

a known probability pi. Therefore, we introduce into our system model the trust database,

which maps LSi to a risk value pi ∈ [0;1], providing the probabilities pi that LSi can be

compromised. The risk value pi represents the probability that LSi will behave maliciously,

i.e., misuse the user’s private position information, or be compromised by an external attacker.

Different LSs might have different risks depending, for instance, on the reputation of their

provider. Moreover, different users might have personal trust in the same LS (and/or its

provider). Thus, there is a personally or commonly determined trust value assigned to each

available LS.

Note that in Figure 3.1 we depict the trust database as a single centralized entity. However,

our assumptions and our placement approach are also valid in case if each MO has his or

her own trust database locally.

The trust database answers the user’s queries with the risk values pi for the given LS. These

values can be obtained, for example, by analyzing the feedback of other users through a

reputation system [GHS08, Gut09]. The design of the trust database and the concepts for

calculating pi are beyond the scope of this work. Here, we rely on the generic probabilistic

trust model and trust management concepts developed in [KBR05]. This model is generic in

the sense that allows mapping of various representations of trust values to the probabilistic

interval [0;1]. Based on the obtained risk values, the user can determine the number and

set of LSs needed to satisfy his or her security requirements, as we will explain in the next

sections.

Since each LS has an individual trust value, the user’s position’s privacy highly depends

on the number of selected LSs and the placement of shares to different LSs. Previously, we

assumed equal share placement, i.e., each LS stored shares of the same precision increase

∆
φ

i . Now, we want to make sure that an LS with a higher trust level can store more precise

position information than an LS which has a higher risk of being compromised. Thus, each

refinement share si increases the position precision by an individual pre-defined value ∆φi .

Regarding the optimization of share placement, the exact content of a position share is

not important: it can contain any cryptographic, geometric, or numerical information that

increases the precision of the user’s position. In the basic position sharing approach presented

in Chapter 2, we introduced position sharing concept based on geometric transformations. At

the same time, an alternative position sharing concept based on numerical operations on the

user’s position information was described by Wernke et al. [WDR12]. Our share placement

optimization, proposed later in this chapter, is applicable to both the open space position

3.1 | Problem Statement 101

sharing approaches and the map-aware approaches described in the previous chapter, as

well as to the approach of Wernke et al. [WDR12].

3.1.2. Privacy Metric

To evaluate the user’s privacy, we must determine which position precision of user position

can an attacker derive from shares stored by k compromised LSs, and what is the probability

of compromising these k LSs by the attacker. Assuming k compromised LSs, the shares must

be placed such that an attacker – e.g., a malicious location service provider or LBA – cannot

derive information of higher precision than required by user, with higher probability than

required by user, in order not to violate the user’s privacy requirements.

The formal definition of the probabilistic privacy metric defined in the previous chapter

needs to be modified. Previously, the probability was dependent on the share generation

algorithm’s pdf over the obfuscation area corresponding to the current precision level k

obtained by LBAs in an ordinary fashion. Now, the precision of a position φk defined as

radius rk of a circular obfuscation area corresponds to a level k that is obtained by an attacker

and depends on the probabilities pi of the correspondingly compromised LSi.

Thus, the following distribution defines the probability Pk,attack that an attacker can obtain

a position πk,attack of a certain precision φk,attack = prec(πk,attack) depending on the number k

of compromised LSs (consequently, depending also on the number and content of shares

placed onto these k LSs):

Pk,attack(φk,attack) = Pr[φk,attack ≤ φk] (3.1)

As before, this metric defines the acceptable probabilistic guarantees of privacy levels

represented as a set of probability thresholds Pk(φk) corresponding to various precision levels

φk. For example, an MO user can specify that an attacker should not be able to (compromise

LSs and) obtain a position of precision φ1 ≤ 1 km with probability P1,attack > 20%, and φ2 ≤ 2

km with P2,attack > 10%, etc.

3.1.3. Problem Statement

The problem of share placement among the available LSs can be defined as a constrained

optimization problem. The constraint is that an attacker cannot derive a position πk,attack =

102 3 | Optimization of Share Placement

fuse(s0, Sk) of precision prec(πk,attack) > φk with a probability Pk,attack(φk,attack) higher than

Pk(φk), where Sk denotes the set of compromised refinement shares. That is, the user defines

probabilistic guarantees Pk for different precision levels.

The optimization goal is to provide the specified privacy levels and their probabilistic

guarantees by (a) utilizing a minimal number of LSs which (b) store shares in an optimal

way. By minimizing the number of required LSs, we limit the overhead required for updating

(communicating) and storing shares at multiple servers.

We define the following as given:

• a master share s0,

• a set S of n refinement shares {s1, . . . , sn} to provide the precision (privacy) levels φk

for the LBAs,

• a set L of m0 available LS, which can store shares, L = {LS1, . . . , LSm0},

• a set of risk values {p1, . . . , pm0} providing the probabilities for each LSi of L that it can

be compromised (pi ∈ [0;1]),

• the probability values Pk(φk), which specify the required probabilistic guarantees for

each precision level φk (k = 0 . . . n).

Problem: Find the minimal number m of LSs in the range 2≤ m≤ m0 and a share placement

place(. . .) of n shares to a set of m LSs denoted as L′:

place({s1, . . . , sn}, L) : S→ L′ ⊆ L, (3.2)

such that m= |L′| is minimal and it satisfies the user’s security requirements:

∀ φk,attack : Pk(φk)> Pr[φk,attack ≤ φk] (3.3)

3.2. Background and Related Work

Next, we describe the existing trust models and some techniques of performing optimal

placement, including exact and heuristic methods.

3.2 | Background and Related Work 103

3.2.1. Trust Models

Trust is a vague term which cannot be precisely and universally defined [Gam88]. Among the

existing trust models described in the current research [NWvL07], many are applicable for

our system, since they define trust values1 as probabilities of a certain trustee’s behavior. For

instance, Maurer [Mau96] formally described how a user can derive probabilistic trustwor-

thiness values based on a set of experienced events. An evidential model where probabilistic

trust values are generated by a distributed reputation system was presented by Yu and Singh

[YS02]. Jøsang and Ismail [JI02] define a probabilistic trust value as the expectation of

the beta probability function, which allows to determine the posterior probability of binary

events based on the collected feedback.

Another usage of probabilistic values was presented by Singhal and Ou [SO09]. The

authors presented a concept of how an attacker can combine a system’s vulnerabilities to

stage an attack such as a data breach, and a model of dependencies among vulnerabilities by

using probabilistic graphs based on various input data.

A trust model of the feedback-based reputation system proposed by Gutscher allows trust

values to be computed based on trust relations [Gut07, GHS08]. The authors distinguish

between first-order probabilistic trust calculus, where trust is represented through real

numbers in the interval [0;1], and second-order calculus, where trust is a discrete probability

distribution of probabilities corresponding to the trust values (also in [0;1]).

A generic trust model was proposed by Kinateder et al. [KBR05], which utilizes different trust

models in order to generalize them. The authors present a formal basis for the transformation

of trust values of different trust models into a comparable probabilistic trust metric with

values in [0;1].

3.2.2. Placement and Allocation Optimization Techniques

Our problem is to optimize the placement of position shares on non-trusted servers in order

to balance security risks. This problem can be categorized as a problem of combinatorial

optimization. A generalized combinatorial optimization problem is to find an optimal solution

from a variety of possible solutions (i.e. combinations), while satisfying optimality criteria

[KV06, Hu82]. Some well-known combinatorial optimization problems include Travelling

Salesman Problem (TSP) [KV06], Bin Packing [KV06, MT90] and Knapsack Problems [MT90].

In the case of TSP, for example, the goal is to find the shortest route that visits all the nodes

1In this work, we consider only static values given at one point of time, without being changed over time.

104 3 | Optimization of Share Placement

of a given graph exactly once and then finishes at the starting point.

Formally, a combinatorial optimization problem is defined as follows [KV06]: Let L be the

set of all possible solutions; then, the cost function f which assigns cost to each possible

solution is:

f : L→ R (3.4)

To solve a combinatorial optimization problem, we need to find an optimal solution lopt

out of the set of all possible solutions L, which is the best in terms of the cost function and

satisfies all the given requirements, formally:

(∃ lopt ∈ L) ∀ l ∈ L : f (lopt)≤ f (l) (3.5)

The objective of the combinatorial optimization is to find such an lopt . Applied to our

problem, this corresponds to traversing the set L of all possible placements of shares to

LSs. The cost function f corresponds to the resulting probabilistic guarantees of privacy

levels provided by the given share placement. We need to select the optimal placement,

i.e., placement that satisfies the required probabilistic guarantees of privacy levels for the

minimal possible n. The full problem description of share placement will be presented in

Section 3.1.

Example: Knapsack Problem

The Knapsack Problem [KV06] is an example of a typical combinatorial optimization

problem, which is similar to our share placement problem. The Knapsack Problem’s goal

is to distribute (allocate) objects among knapsacks in such a way that no single knapsack is

overloaded, and at the same time the number of knapsacks used is minimized.

Every optimization problem includes an important decision: can the problem for the given

requirements be solved or not. In the case of the Knapsack Problem, the question is whether

n objects can be distributed among k knapsacks without the condition of Equation 3.5 being

violated. In our case, we assume that a solution is possible. If not, the requirements of

acceptable probabilistic guarantees of privacy levels of Equation 3.5 must be relaxed.

The Problem’s Complexity

Combinatorial problems are often NP-hard [HU90]. The NP-hardness of a problem means

3.2 | Background and Related Work 105

that the given problem is at least as hard to solve as any other problem in the complexity

class NP. If a problem is NP-hard, there exist no (known) deterministic algorithm which can

solve it in polynomial time. Currently, for the class of NP-hard problems, no faster solutions

than deterministic algorithms with exponential complexity are known.

One method to prove that problem A is NP-hard, is to select a problem B such that B is

already known to be NP-hard [Sto01, MT90]. If B can be reduced in polynomial time to A,

then A is NP-hard. The reduction algorithm should transform the initial problem in such a

way that the same solutions are generated both before and after the reduction for the same

inputs.

Some basic and widely known techniques of combinatorial optimization are described

below. As stated previously, these problems are often NP-hard, and therefore the trade-off

between the solution’s accuracy and its performance is very important.

Complete Enumeration Method

The complete enumeration method enumerates and evaluates all the possible solutions

(combinations), and then selects the best one. The weak side of this approach is the large

number of possible solutions; this number increases exponentially with the size of the

problem. Although a calculation may take an extremely long time for large combinatorial

problems, taking into account the computing power of modern CPUs, the method of complete

enumeration is acceptable for small combinatorial problems.

Branch-and-Bound Approach

Branch-and-Bound is an approach based on backtracking algorithms for optimization

problems [LW66, Hu82]. Backtracking algorithms process a tree of solutions and try to

construct the successive candidate solutions into an overall solution. Branch-and-Bound

applies backtracking’s structured search in a tree of solutions to optimization problems,

where optimality is considered as a decision factor, along with the validity of the solution

candidate. Prior to entering a tree’s branch, the algorithm checks whether the following

results in this direction will be non-optimal with regard to a given threshold. Only if the

obtained value is below the threshold, will the search be continued in this direction. If there

are no current branches that satisfy this condition, then there will be a step back in the tree

of solutions. If at some decision step it becomes clear that no valid overall solution can be

constructed, the complete remaining branch of candidates is discarded. If the search process

reaches a dead end, the algorithm goes back one step to the next node, in order to process

the unvisited nodes by following the same principle.

106 3 | Optimization of Share Placement

The Branch-and-Bound method is accurate, meaning that it always finds a solution and

goes through a structured list of all candidate solutions, from which the invalid or non-

optimal solutions are excluded as early as possible. Although this reduces complexity, the

processing time of the tree of solutions is still O(cn): in the worst case, all nodes must be

visited. In practice, the performance of Branch-and-Bound is highly dependent on each

specific problem. The definition of the problem also includes how to set the threshold and

how many branches can be excluded at an early stage.

Heuristics

The problem-specific heuristic methods are those approaches that determine an approxi-

mate solution of NP-hard problems in an efficient amount of time. Some examples of the

known heuristics for NP-hard problems can be found in the literature [KV06].

Metaheuristic describes a method for approximate determination of the solution for an

optimization problem. This method is not problem-specific but rather generally applicable

[Wei02]. Next, we make an overview of some metaheuristic methods, including more

detailed descriptions of evolutionary algorithms, since later in this chapter we present a

share placement approach based on this concept.

Metaheuristics (1): Local Search

According to the local search approach [Egl90], also known as the Hill Climbing algorithm,

the first step is to determine an initial solution, which can be done at random or based on a

heuristic. After that, starting from this initial solution, the neighboring solutions that are

numerically close to it are processed. If there is a better solution in the neighborhood, then

the algorithm proceeds further. The problem is that the process can get stuck in a local

optimum, since it accepts the first local maximum as a solution.

The method of Simulated Annealing [Egl90] is a modification of the local search approach.

This concept is based on the simulation of the annealing process in physics. This process fol-

lows the law that a system’s transition from state Z to another state depends on eener g y(Z)/temp,

where ener g y(Z) is the energy of the system in that state, and temp is the current tempera-

ture. If we consider temperature as the probability of acceptance of non-optimal neighboring

state Z ′, then applied to optimization problems, this means that the lower is the temperature

during the probabilistic search, the less likely is the selection of a non-optimal state.

Although the described methods are fast, they are not always sufficient. The pure local

search can get stuck in a local optimum, whereas Simulated Annealing is very much dependent

on each concrete optimization problem [Wei02].

3.2 | Background and Related Work 107

Metaheuristics (2): Evolutionary Algorithms

Evolutionary algorithms simulate optimization problems as evolutionary processes [Wei02].

They can be defined as an extension of the local search approach; the difference is that now

additional solution candidates are generated and combined with each other. In addition,

mutations are performed to ensure that the entire possible range of values is covered.

The following types of evolutionary algorithms are distinguished: evolution strategies,

evolutionary programming and genetic algorithms.

For an evolutionary algorithm to be applied to an optimization problem, the problem must

be encoded as a genome. The candidate solutions are usually represented as bit vectors

(alternatively, as integer vectors). Potential solution candidates are called individuals. First,

the initial solution candidates are determined either randomly or based on a heuristic. The

set of all individuals at a given time is referred to as a population or generation.

Individuals of the initial population are crossed with each other, and different crossover

operations are applied. Depending on the crossover operator, different parts of the genome

are combined. Finally, a random exchange of some individuals is performed, which is called

mutation. This operation is important to cover all potentially possible values in the range.

The individuals generated from a population will then be evaluated by a fitness function.

The fitness function rates the quality of an individual with respect to the optimization goal.

Then, the top rated individuals are selected, and the cycle begins again. The whole cycle is

shown in Figure 3.2; it ends either when a pre-determined number of generations is reached

or when the target criterion is achieved.

Evolutionary algorithms provide a good approximation for combinatorial optimization

problems, since they traverse a lot of combinations by using the mutation operator, and

therefore, can reliably find the global optimum. Furthermore, the algorithm’s parameters

are easy to customize, e.g., through better selection of the initial population we can improve

Figure 3.2.: Cycle of an evolutionary algorithm [Wei02]

108 3 | Optimization of Share Placement

the algorithm’s runtime and accuracy.

In principle, evolutionary algorithms approach the optimal solution quickly, but then

require more time as they continue searching for the exact globally optimal value. The

disadvantage is the increased processing time compared to the local search approach, since

the performed operations are more complex. The processing time of evolutionary algorithms

depends on the termination condition: if the number of iterations of generations is fixed, the

required time is rather constant and is determined primarily by the cost of the combination

operators.

3.3. Analysis of Share Placement’s Influence on Privacy

Before presenting our solution to the share placement problem, we make two basic as-

sumptions. First, increasing the number m of LSs leads to higher security with regard to

probabilistic guarantees of precision levels. At the same time, a large m is not desired, since

it would increase the storage resources utilization and communication cost. Therefore, it

is beneficial to incrementally increase m only until the security requirements are fulfilled.

Second, we can increase security by optimizing the distribution of shares for a given m. In

this section, we analyze the validity of both assumptions.

3.3.1. Influence of LS Risks on Probabilistic Privacy Guarantees

In this section, we illustrate the influence of LS risks on the user’s probabilistic guarantees

of precision levels. To differentiate it from other parameters, we assume that all LSs have

equal risk p and that shares are uniformly distributed among the LSs, i.e., all ∆φi are equal.

p denotes the probability that an LS is compromised (equal for each LS) and therefore an

attacker can access its refinement shares.

There are
� m

kat tack

�

combinations of LSs to compromise exactly kat tack LSs. Each combination

has the probability pkat tack(1− p)m−kat tack . Therefore, Pk,attack(φk,attack) = Pr[φk,attack ≤ φk] can

be calculated as follows:

Pk,attack(φk,attack) =
m
∑

k=kat tack

�

m
k

�

pk(1− p)m−k (3.6)

Based on this formula, we can show the changes of different LS probabilistic guarantees

3.3 | Analysis of Share Placement’s Influence on Privacy 109

of precision levels by varying p.

In Figure 3.3, we show the user’s probabilistic guarantees of precision level (i.e., the

probability that at least k LSs will be compromised) for m = 10 and different risk values

p. As we can see, for p = 0.1 the probability of at least three LSs being compromised is

less than 10%; for p = 0.5 with probability 50% at least five LSs will be compromised; and

p = 0.9 provides almost no security at all. In general, user security has a very strong (reverse

exponential) dependency on p.

3.3.2. Influence of Number of LSs on Probabilistic Privacy Guarantees

Next, we analyze the influence of the number m of LSs on the security, assuming that LSs have

equal risk values p. The assumption of equal risks is similar as in Chapter 2 [DSR11, SDR12].

Obviously, in this case, each increase of the number of equally trusted LSs (which store equal

shares) also improves security, since any potential attack on an LS can compromise a smaller

piece of position information. To demonstrate this, we consider a scenario with p = 0.2

for each LS and two numbers of LSs, namely m= 3 and m= 10. In this scenario, k = 100

shares were distributed uniformly among the LSs.

Figure 3.4 depicts the resulting probabilistic guarantees of precision levels Pk,attack of

Figure 3.3.: Probabilistic guarantees of precision levels Pk,attack depending on various LS risk
values p

110 3 | Optimization of Share Placement

obtaining a certain increase of position precision φ for φmin = 100 km. Note that the

depicted curves have different numbers of steps, since the precision revealed to an attacker

depends on the number of compromised LSs (0, . . . , 3 for m= 3; 0, . . . , 10 for m= 10). We

can see that a larger number of LSs increases the security, i.e., it provides lower probability

of obtaining a position of certain precision. For instance, to get an increase in precision of

φ = 30km, an attacker needs to compromise only one LS for m = 3, but he or she has to

compromise three LSs for m= 10 in order to get the same result. Therefore, in addition to

increasing the flexibility of generating different precision levels, using a larger number of

LSs for storing position shares also increases security.

3.3.3. Influence of Number of LSs on Probabilistic Privacy Guarantees

In this section, we show how changing the number and set of selected LSs affects the

user’s probabilistic guarantees of precision levels. We calculate the probabilistic guarantees

Pk,attack(φk,attack) in a similar way as in Equation 3.6. With different risks, the difference is

that now, instead of multiplying each kth probability by the number of
�m

k

�

combinations, we

Figure 3.4.: Probabilistic guarantees of precision levels Pk,attack depending on two different
sets of LSs (m = 3 and m = 10) for φmin = 100 km; φ denotes the obtained
increase of position’s precision

3.3 | Analysis of Share Placement’s Influence on Privacy 111

summarize the probability of each k-combination separately:

Pk,attack(φk,attack) =
m
∑

k=kattack

(mk)
∑

i=0

pi,incl · pi,excl, (3.7)

pi,incl =
m
∏

j=0

p j,∀p j ∈ Pk,i (3.8)

pi,excl =
m
∏

j=0

(1− p j),∀p j /∈ Pk,i, (3.9)

where Pk,i is the set of risks of the ith k-combination out of m LS risks. There are
�m

k

�

combinations of LSs to compromise exactly k LSs. Each combination has the probability

defined by multiplying the risks p j of (included) k LSs and the inverse risks 1− p j of the

rest (excluded) m − k LSs. To get a probability of exactly k compromised LSs, we have

to summarize the probability of each k-combination. Finally, to get a probability of at

least k compromised LSs, we summarize the probabilities corresponding to {k, k+ 1, . . . , m}
compromised LSs.

In the next sections, we will also consider placement of differently heterogeneous shares to

LSs. In this case, Equation 3.7 must be extended to include the individual precision increase

∆φ j of share s j as a multiplier in order to take into account the heterogeneity of shares (for

homogeneous shares, ∆φ j is implicitly assumed to be 1 for each share s j):

Pk,attack(φk,attack) =
m
∑

k=kattack

(mk)
∑

i=0

pi
incl · p

i
excl ·∆φ j (3.10)

The examples of LS sets with less diverse and more diverse risks are shown in Figure 3.5

and Figure 3.6 for m0 = 5. In the beginning, m= 2; then we incrementally add one LS with

the lowest risk at a time, until m = 5. We can see that the positive effect of m’s increase

is neutralized by the growing risks of the newly included LS, especially in case of strongly

different risks (Figure 3.6). Thus, there is usually no need to increase m further if the next

112 3 | Optimization of Share Placement

LSs to be selected are much less trusted than the ones previously selected.

As we can see, the equal share placement on LSs with different risks can increase the

probability of the position’s precision being revealed to an attacker, especially at lower

precision levels. But an increase of the number of selected LS m alone may not solve this

problem. In order to achieve the required probabilistic guarantees of precision levels for the

given m, we optimize share placement to the LSs as we will show in the next sections.

Figure 3.5.: Probabilistic guarantees of precision levels Pk,attack depending on various sets of
selected m LSs: the case of less diverse LS risks: m0 = 5; p1 = 0.1; p2 = 0.2; p3 =
0.3; p4 = 0.4; p5 = 0.5

3.3 | Analysis of Share Placement’s Influence on Privacy 113

Figure 3.6.: Probabilistic guarantees of precision levels Pk,attack depending on various sets
of selected m LS: the case of more diverse LS risks m0 = 5; p1 = 0.01; p2 =
0.05; p3 = 0.25; p4 = 0.5; p5 = 0.9

3.4. General Selection & Placement Algorithm

In this section, we describe the general selection and placement algorithm (Algorithm 10),

which presents the solution of two goals defined in our problem statement (Section 3.1.3) in

two major steps without describing the second step in detail: (a) selection of m LSs L′ = {LS1,

LS2, . . . , LSm}; (b) optimization of placement of n shares among these LSs by mapping the

shares to the selected LSs: S → L′. The goal of optimization is to improve the provided

probabilistic guarantees Pk,attack by placing more position information on more trusted LSs.

The basic idea is to start with the smallest set of LSs and incrementally increase m until the

security constraints (Equation 3.1) are fulfilled. As shown in Algorithm 10, first we calculate

and check the probabilistic guarantees of precision levels for uniform share placement, where

every LS manages exactly one share, independent of its individual risk value. This is the

strategy used in our basic position sharing approach presented in Chapter 2 [DSR11, SDR12].

For each number of LSs, we first check whether a uniform placement (line 8) where each

LS stores an equal number of shares (independent of its individual risk value) fulfills the

user-defined probabilistic guarantees of privacy levels (lines 9-11). If a uniform placement

fulfills these levels, we have already found a placement solution, as this placement fulfills

the required probabilistic guarantees of precision levels and contains the minimum number

of LSs. By optimizing the share placement (line 12), we can further improve security beyond

114 3 | Optimization of Share Placement

the user-requested level (line 13) at the expense of using computational and energy resources

for running the optimization algorithm.

Algorithm 10 General Selection & Placement Algorithm
1: function place(Pk(φk), S, L, m0, mmin, n)
2: m← mmin − 1
3: sort_by_ascending_pi(L)
4: L′← get_selected_set(L, m)
5: solut ion_ f ound ← f alse
6: repeat
7: m← m+ 1
8: distribute_equal(Pk(φk), S, L′, m)
9: if ∀ φk : Pk < Pk,attack(φk) then

10: solut ion_ f ound ← t rue
11: else
12: place_optimized(S, L′, m)
13: if ∀ φk : Pk < Pk,attack(φk) then
14: solut ion_ f ound ← t rue
15: end if
16: end if
17: until (m= m0)||(solut ion_ f ound)
18: return S→ L′

If the uniform (non-optimized) share placement on LSs already represents a solution

that satisfies the problem statement’s requirements, we skip the optimization algorithm to

save the resources of the mobile device that executes this algorithm. If the uniform share

placement does not satisfy the user’s privacy requirements, we optimize the placement by

relocating shares from less trusted to more trusted LSs, as will be presented later in detail.

If it is still impossible to satisfy the required probabilistic guarantees of precision levels for

the current m, we increase the number of LSs. In each step, we add the next most trusted LS

to set L′, since the subset of the most trusted LSs provides the highest security. Therefore,

the available LSs must be initially sorted by ascending risks pi (line 3).

If m reaches the total number of available LSs m0, while a solution has not been found,

the current user’s security requirements are too strict for the given constraints. Therefore, in

order to perform an exhaustive search, the user should relax the constraints (i.e., probabilistic

guarantees of privacy levels) given in Equation 3.1 (Section 3.1.2) step by step, and execute

the algorithm again.

In lines 9 and 13 of Algorithm 10, we calculate the probabilistic guarantees of precision

levels of a placement. In Section 3.3.3, we will show how we calculate the probabilistic

guarantees of precision levels Pk,attack for different numbers kat tack of compromised LSs for a

3.4 | General Selection & Placement Algorithm 115

given placement.

3.5. Optimizing Share Placement

In this section, we present an algorithm to solve the optimized share placement problem,

which is executed within Algorithm 10 by calling function place_optimized(. . .). We consider

the situation where a set L′ of m= |L′| LSs with lowest risks has been selected and is fixed.

Thus, an optimized placement of n shares to these LSs in L′ must be found, as the uniform

placement strategy did not satisfy the user’s security constraints (cf. problem statement in

Section 3.1.3).

First, we show that this problem is NP-hard. Then, we propose a heuristic solution based

on a genetic algorithm. After that, we show some simpler solutions for the special cases of

share placement, which allow placement to be calculated in linear time.

3.5.1. Share Placement Problem and Its Complexity

At this point of the algorithm, we have a set of m LSs defined and fixed. Now, we aim to

achieve a balanced placement of n shares among these LSs such that no single LS represents a

higher security risk with regard to the stored precision than the other LSs, i.e., we guarantee

that the probability of each precision level’s disclosure does not exceed the pre-defined

threshold (as defined in our Problem Statement in Section 3.1.3).

Our optimization of the share placement among LSs is based on the principle of allocation

of capital (i.e., shares) between segments or business units (i.e., LSs). We take into account

the important properties of our problem: (a) we first generate all the shares and distribute

them all at the same time (ad not one by one), and (b) according to our system model, LSs

are independent entities and there are no stochastic dependencies between them. If shares

would be distributed in an additive manner, or there would be interdependencies between

the LSs, incremental allocation, marginal allocation or Myers-Read method of allocation could

be used [Alb03, VM03]. In our case, we require a non-incremental allocation, which is called

absolute allocation.

There exist many methods of allocation, most of which however have different system

model assumptions compared to our system model. For example, they assume more complex

and differentiable definition of the risk measure (Euler principle), explicit collaboration

between the LSs (Game Theory), or stochastic dependencies between the LSs and risks

116 3 | Optimization of Share Placement

(Covariance principle, Conditional Expectation principle, etc.) [Pav08, Alb03, VM03]. Thus,

after selecting from methods of capital allocation, we employ absolute proportional allocation.

The principle of proportional allocation is to equalize the expected information losses (also

called Expected Monetary Values in the risk management theory [Pri97]) corresponding to

different LSs and calculated as multiplication of the risk and the share value assigned to each

LS. Proportional capital allocation guarantees that the allocated capital must not exceed the

stand-alone risk-adjusted capital assigned to each LS, which fits our problem statement goal

(Equation 3.3).

We call our placement problem the Balanced Risk Placement Problem (BRPP). Formally, a

share placement S→ L′ ⊆ L has balanced risk if the proportion of position precisions φi1,j

and φi2,j stored by LSi1 and LSi2 respectively (j = 1 . . . n) is inversely proportional to the

corresponding risks pi1 and pi2 of LSi1 and LSi2:

S→ L′ ⊆ L : ∀ i1, i2 ∈ {1, . . . , m} :

∑n
j=1∆φi2, j

∑n
j=1∆φi1, j

=
pi1

pi2
(3.11)

If the exact equality of proportions is not feasible due to the given risk values and other

parameters, the goal is to find a share placement solution which is close to the best possible

solution:

minimize : maxm
i=1

n
∑

j=1

pi∆φi, j −minm
i=1

n
∑

j=1

pi∆φi, j, (3.12)

under the restrictions of probabilistic guarantees of precision levels given in Equation 3.3.

This problem refines the placement goal (b) of our main problem statement (Section 3.1.3),

i.e., defines how the function place_optimized(. . .) of Algorithm 10 must be realized.

In the general case, we must distribute n heterogeneous shares among m LSs with heteroge-

neous risks. The total number of possible combinations is mn. The considered BRPP problem

(Equation 3.12) is a NP-hard problem. This can be shown by reducing the Agent Bottleneck

Generalized Assignment Problem (ABGAP), which is known to be NP-hard [MN88, AP98],

3.5 | Optimizing Share Placement 117

to BRPP. The formal definition of ABGAP is:

minimize : maxm
i=1

n
∑

j=1

pi∆φi, j (3.13)

subject to :
m
∑

i=1

n
∑

j=1

wi, j · x i, j ≤ wi, (3.14)

where
n
∑

j=1

x i, j ≤ 1; x i, j ∈ {0;1}; i = 1, . . . , m; j = 1, . . . , n (3.15)

ABGAP is equivalent to our placement problem (Equation 3.2), since one can be polyno-

mially transformed into another: If we simplify our problem by adding an LS with zero risk,

we can exclude the second term from Equation 3.12. This means that in order to solve our

problem, we must also solve ABGAP. Thus, our problem is at least NP-hard. An exhaustive

search to solve an NP-hard problem is infeasible in a reasonable amount of time.

The total number of possible placement combinations for distributing n shares among

m LSs is O(mn). Since this number grows exponentially with the number of shares, an

exhaustive search is very costly for larger m and n. Even relatively small numbers (e.g.,

m= 5 and n= 15) require analysis of more than 3 ∗ 1010 combinations. At the same time,

such an exhaustive search is not worth its computational costs, as a much faster linear-

time heuristic can produce a solution that would not differ much in terms of probabilistic

guarantees of privacy levels. Our goal is not to find the best placement among all possible

combinations, but for a placement that is secure enough to satisfy the required probabilistic

guarantees of privacy levels. Therefore, we need a strategy that guides our search for secure

placement in a reasonable (linear) period of time.

3.5.2. Optimized Share Placement Algorithm

Since BRPP is NP-hard, we use a heuristic approach to solve it. In general, problem-specific

heuristics or meta-heuristics can be used to find an approximation solution. We applied

the meta-heuristic of genetic algorithms [Wei02]. Genetic algorithms belong to the class

of evolutionary algorithms (see Section 3.2.2), as they reproduce the process of biological

118 3 | Optimization of Share Placement

evolution. In general, they traverse multiple solution candidates by combining and mutating1

them into new possible solutions. Each new solution (in our case, a share placement) is

rated according to a fitness (objective) function defined by Equation 3.12. Then, the best

placements in terms of the objective functions are selected, and the cycle can repeat until

the goal is reached or the limit of cycles is achieved.

We implemented a genetic algorithm for share placement as shown in Algorithm 11. The

input parameters are the probabilistic guarantees of precision levels Pk(φk), the set of LSs

L′ of size m, and the fixed set of shares S of size n. First, we define the initial population

as 10 random placements (line 3). Then, we build a population of 40 new placements by

recombining two placements with a uniform crossover (with a probability of 50%) (lines 5-

11). Afterwards, the placement is mutated by changing one assignment randomly (line 12),

ensuring that all theoretically possible placements can be created. The values of 10 initial

placements and 40 recombined placements are selected in such a way that they provide a

large number of combinations within each iteration.

Next, the 40 created placements are rated according to an objective function, and the 10

best placements are selected (lines 14-15). The 10 best placements are used as input for

the next algorithm’s iteration. Thus, the resulting placements are getting better after every

iteration. This cycle is iterated 200 times or stopped if the conditions of Equation 3.12 are

satisfied (lines 4-18). The value of 200 iterations is selected such that it ensures convergence.

Our experiments have shown that we already achieve a near-optimal placement solution

after ca. 20 iterations. If, after all cycles, the probabilistic guarantees of precision levels are

still not acceptable (line 4), we say that the solution cannot be found for the given input

parameters.

3.5.3. Placement Strategies for Special Cases

In this section, we analyze special placement cases in order to apply simpler solutions than

the general one presented above under some given initial conditions.

The possible placement cases are summarized in Table 3.1. First, we distinguish whether

the set of shares is pre-defined or if a user can freely generate a new share set that would

better suit the needed placement. Second, we consider separately the homogeneous and

heterogeneous trustworthiness (risk) levels of LSs. Finally, the generated shares themselves

can provide different or equal increases of precision, i.e., be homogeneous or heterogeneous.

1The mutation operator ensures that we escape a local optimal solution and advance to new combinations.

3.5 | Optimizing Share Placement 119

Algorithm 11 Genetic Algorithm for Share Placement

1: function place_optimized(S, L′, m)
2: t ← 0
3: Popul[1 . . . 10]← RandomPlacement(S, L′, m)
4: while t < 200 and ∀ Pk < Pk,attack do
5: for p = 1 to 40 do
6: i1← RandomInteger(m)
7: i2← RandomInteger(m)
8: u← RandomBoolean()
9: if u then

10: PopulTemp[p]← Cross(PopulTemp, i1, i2)
11: end if
12: PopulTemp[p]←Mutate(PopulTemp[p])
13: end for
14: Evaluate(PopulTemp)
15: Popul ← Select10Best(PopulTemp)
16: Pat tack(φ)← BestLevels(Popul)
17: t ← t + 1
18: end while

We expect that the most relevant cases are 1d and 2b, but generally, all of them are realistic

and define a placement problem that can be solved in different ways.

First, we consider special cases 1a-1d under the assumption that the number of shares

is not pre-defined, i.e., a user can generate the number of shares that allows for optimal

placement (cf. Figure 3.7). Note that in each such case, the number of shares ni to be stored

at each LSi can be proportionally increased without violating placement optimum criterion:

ni ← c · ni, where c is a multiplier constant for each i.

Set of shares is not pre-defined Set of shares is pre-defined
Case LS risk Share Case LS risk Share weight

1a homogeneous homogeneous 2a homogeneous homogeneous
1b heterogeneous homogeneous 2b heterogeneous homogeneous
1c homogeneous heterogeneous 2c homogeneous heterogeneous
1d heterogeneous heterogeneous 2d heterogeneous heterogeneous

Required approach
Number adjustment Placement optimization

Table 3.1.: Overview of share placement cases

120 3 | Optimization of Share Placement

Case 1a: LS risks are homogeneous and shares are homogeneous. Then we can simply

generate the needed number of shares n equal to the number of LSs n and place each share

to one LS.

n= m; ni =
n
m
= 1 (3.16)

Case 1b: LS risks are heterogeneous, while shares are homogeneous. The needed total

number of shares n depends on the relation between LS risk values. First, we determine the

maximal (worst case) sum: nmax =
∑m

i=1
1
pi

; next we divide the result through the greatest

common divisor d = gcd(1
p1

. . . 1
pm
): n= nmax

d . Thus, the numbers of generated shares and

assigned shares to each LS are:

n=
m
∑

i=1

d
pi

; ni =
d
pi

(3.17)

Case 1c: LS risks are homogeneous, while shares are heterogeneous. This case is trivial

and degrades into 1a, since the shares can be generated homogeneous as risks here.

n= m; ni =
n
m

, with homogeneous shares si (3.18)

Case 1d: LS risks are heterogeneous, and shares are heterogeneous. As in the case 1a,

n= m, and the share precision increases are determined as 1
ri

, and then normalized.

n= m; ni =
n
m

, with precision increases ∆φi =
1
pi

(3.19)

Under the assumption of free share generation, the computational complexity of share

placement for all cases (1a, 1b, 1c and 1d) is linear: O(m). Thus, we do not need a real place-

ment algorithm here, but an assignment of shares after generating suitable heterogeneous

shares.

3.5 | Optimizing Share Placement 121

Figure 3.7.: Share placement cases 1a, 1c, 1b, 1d

Figure 3.8.: Share placement cases 2a, 2b, 2c, 2d

122 3 | Optimization of Share Placement

Next, in cases 2a-2d (cf. Figure 3.8), we assume that the number and composition of

shares are pre-defined, i.e., we cannot generate another set of shares and should improve

the placement of the already existing set. Note that in Figure 3.8 we use integer values of

share precision increases for the sake of simplicity; they can be also defined by floating-point

values.

Case 2a: LS risks are homogeneous, and shares are homogeneous. Having n ≥ m,

we assign shares, e.g., through the round-robin principle. The resulting balancing is not

dependent on the order of share assignment. The placement imbalance can be relatively

large for small m values and small n
m relation, but it cannot be improved under the given

assumptions.

n= const; ni = n mod m+ (1− i mod m) (3.20)

The computational complexity needed for share placement in case 2a is O(m).

Case 2b: LS risks are heterogeneous, while shares are homogeneous. Such situations are

likely to occur, but the placement problem in such conditions is not trivial and in worst case

scenarios require an NP-hard solution. Therefore, we solve case 2b in the same way as the

most general case 2d below.

Case 2c: LS risks are homogeneous, while shares are heterogeneous: in this case we have

a “knapsack problem”. The computational complexity needed for an exact (ideal) share

placement in this case is O(mn), as in the most general case 2d below.

Case 2d: LS risks are heterogeneous, and shares are heterogeneous. This situation, being

the most general problem, also includes cases 2b and 2c. We described the general solution

above in Section 3.5.2.

3.6. Evaluation

In this section, we analyze the performance and the improvement of the probabilistic guar-

antees of precision levels provided by the proposed placement algorithms.

3.6 | Evaluation 123

3.6.1. Performance Evaluation

According to the principle of position sharing, share placement has to be calculated on the

mobile device of the user, since it is the only trusted entity in our system model. Since mobile

devices are typically restricted in terms of processing power and energy, the runtime of our

share placement algorithm is crucial. Therefore, we measured the runtime of placing a set

of shares on a state of the art mobile device. To evaluate the computational cost, we used a

smartphone HTC Desire with Android OS (CPU: 1 GHz Qualcomm QSD8250 Snapdragon,

memory: 576 MB RAM). We tested the full number of cycles of the genetic algorithm, without

terminating the algorithm under the “solution found” condition (i.e., we have tested the

worst case scenario, where the solution is not feasible for the given parameters). The number

of LSs was given as m= 5;10; 20, and the number of shares n is in the interval [m; 50].

Figure 3.9 shows the average runtime for placing n shares on m LSs. As our evaluation

shows, Algorithm 11 has linear complexity (cf. Figure 3.9) and is executed in less than one

second even for larger input parameters (m= 20, n= 50). Therefore, we conclude that the

algorithm is also suitable for resource-poor mobile devices.

3.6.2. Probabilistic Guarantees of Privacy Levels after Placement

Optimization

Now, we consider the influence of share placement on probabilistic guarantees of privacy

(precision) levels by analyzing several placement examples.

Figure 3.9.: Computational cost of genetic share placement algorithm (Algorithm 10)

124 3 | Optimization of Share Placement

As was shown previously in Figure 3.6 (Section 3.3.3), in the case of different LS risks,

the probability of an LS compromise can be very high, especially for lower k (i.e., lower

precision values). The reason is that the probability values of risky LS cause a substantial

increase in some k-combinations’ probability (Equation 3.7). We overcome this problem by

optimizing share placement, so that LSs with higher security risks will receive less precise

shares. The influence of various placements on user security is illustrated in Figure 3.10.

Naïve approach: Assuming that we have different risks p1 = 0.1; p2 = 0.2; p3 = 0.4,

equal share placement, r0 = 100 km, and each LS has stores shares providing 33 km

precision increase. Thus, the precision increase of 33 km (one third of r0) can be achieved

by compromising at least one LS with probability P1,attack = 56.8% (cf. Figure 3.10).

Optimized approach: Having the same risks as above, we distribute 100 km of precision

(r0 = 100 km) proportionally to the risk values (57 km to LS1, 29 km to LS2 and 14 km to

LS3). Then the disclosed precision increase (which corresponds to exactly one compromised

LS with probability P1,attack = 56.8%) is not 33 km but only 22 km. The security is improved

compared to the naïve approach, since the same probability levels correspond to lower

precision values (cf. Figure 3.10).

Next, we compare the resulting probabilistic guarantees of precision levels of optimized

share placement compared to a basic (non-optimized) placement algorithm, having a more

Figure 3.10.: Precision φ and probabilistic guarantees of precision levels Pk,attack for different
share placements

3.6 | Evaluation 125

general scenario with randomly generated risk values. We place n = 15 shares on m = 5

LSs with heterogeneous risks; the risk values were chosen uniformly at random from the

interval [0;0.5]: p1 = 0.4932; p2 = 0.3292; p3 = 0.2344; p4 = 0.1788; p5 = 0.0925. The

basic algorithm distributes an equal number of shares (3) to each LS, while the optimized

placement placed 1, 2, 2, 3 and 7 shares onto the given LSs.

Figure 3.11 depicts the probabilistic guarantees of precision levels Pk,attack for the different

precision levels φ. Note that the precision levels φk,attack which correspond to the probability

levels Pk,attack are calculated as the weighted average of position precisions of each possible

k-combination. The figure shows that the optimized share placement algorithm leads to

a significantly lower probability of compromising the respective shares for most precision

levels.

Figure 3.11.: Placement optimization: precision φ and probabilistic guarantees of precision
levels Pk,attack

126 3 | Optimization of Share Placement

3.7. Conclusion

This chapter presented an extension for our basic position sharing approach, which improves

the user’s location privacy in the case when the available location servers are not equally

trustworthy. We presented an algorithm to select the minimal required number of LSs and

to optimize the distribution of position shares among them. The main result is that more

position information is placed on the LSs that are more trusted. Thus, we avoid the situation

where high precision can be disclosed with high probability after an attack on an LS. We

have shown that our placement heuristic has linear runtime complexity, and therefore it can

be executed on MOs with low processing power. We also considered special placement cases

in order to apply simpler solutions than the general placement heuristic under suitable initial

conditions.

3.7 | Conclusion 127

C
H

A
P

T
E

R 4
LOCATION UPDATE ALGORITHMS FOR

POSITION SHARING

The position sharing approach that was presented in the previous chapters is suited for

snapshot (single) location updates, so that a complete set of shares has to be re-generated

and sent to the corresponding set of LSs every time a position update event is triggered.

This principle might produce a high communication overhead, e.g., if the update rate is

high and the number of LSs is large. However, in many cases the re-generation and update

of the whole share set causes redundancy (e.g., in cases where movements of the MO are

insignificant). Hence, we aim to minimize the number of update messages in our system.

In this chapter, we present a location update approach, the basics of which were published

in the diploma thesis of Simon Hänle [Hae12]. The author developed the main concept of

the location update approach, contributed to the refinement of location update algorithms

for different scenarios, and supervised the diploma thesis as a whole.

After giving an overview of related work, we define the problem of message reduction.

Then, we describe two movement scenarios, and finally, we propose an optimized location

update algorithm.

4.1. Background and Related Work

In this section, we first describe the location update protocols, focusing on dead-reckoning

protocols. After that, we present some works, which aim to optimize message overhead.

129

4.1.1. Classification of Location Update Protocols

Next, we describe the different types of existing location update protocols. Figure 4.1

illustrates the different types of protocols, which, according to the survey of Leonhardi et al.

[LR01], fall into the following three main categories:

• “querying protocols” – the server side initiates a location update of the target MO’s

position;

• “reporting protocols” – the decision for a location update is made from the client-side

(by the MO);

• “combined protocols” – combination of the querying and reporting protocols principles.

Multiple classes of querying protocols are distinguished: simple, caching and periodic

protocols.

According to simple protocols, the server always queries the location update from the MO if

it needs the MO’s current position, e.g., for a subscribed LBA. This ensures that the obtained

MO’s position is always accurate. However, this can lead to high numbers of update messages

if the position is being queried very often.

Caching protocols represent an optimization of simple protocols: the server always stores

the copy of the last transmitted position information. When the MO’s position is queried by

an LBA, the server performs an assessment of the position’s accuracy. If the result is below a

pre-determined limit, then the server forwards to the LBA the stored MO’s previous position;

otherwise, the server requests an update from the MO. Here, the estimation of accuracy

Figure 4.1.: Overview of different types of location update protocols [LR01]

130 4 | Location Update Algorithms for Position Sharing

can be either pessimistic or optimistic. The pessimistic variant is to calculate how far the

MO could have moved since the last update based on its maximum speed (the maximum

speed value must be defined in advance). In the optimistic variant, not maximal but average

velocity of the MO is assumed. Thus, a situation might occur where the position deviation

between the last saved MO position and the actual MO position exceeds the limit ε, e.g., if

the MO has moved since the last update at a speed greater than the average speed. As a

consequence, fewer update messages must be sent as compared to the pessimistic variant.

Periodic protocols are organized in such a way that the server requests a location update

from the MO periodically, i.e., after a pre-defined time interval. This principle is very similar

to the time-based update protocol presented later.

Reporting protocols can be classified as simple, time-based, and distance-based reporting

protocols and dead reckoning protocols.

According to the principle of the simple reporting protocol, a position update is triggered

every time a sensor system has detected a position change. In the case of an excessively

accurate sensor system, this may lead to a very high number of update messages produced.

Time-based protocols: an update message is always sent to the server after a specified time

interval ∆t. The accuracy of location data in this case depends on the speed of the MO: if

the MO is moving at high speed and the time interval ∆t is large, then its actual position

differs significantly from the last position stored on the server, i.e., the accuracy is decreased.

Distance-based protocols: a position update message is always sent if the geographical

distance since the last update exceeds a specified threshold d. This protocol is well suited to

MOs that are moving very slowly or almost not moving at all.

Dead-reckoning protocols represent an optimization of the distance-based protocols, where

the server predicts the current position of the MO based on its last position, speed and

movement direction. The MO also calculates this position and sends an update message

when the geographical difference between the actual position and the calculated position

is greater than a specified bound ε (Figure 4.2). This protocol can save a lot of messages,

provided that the MO is moving at a constant speed in a predetermined direction, or if the

MO’s destination is known.

4.1.2. A Combined Location Update Protocol

Leonhardi and Rothermel [LR01] proposed a combined protocol that utilizes the ideas of both

distance-based update protocols and querying protocols. The system works as follows: the

basic approach is the same as for the distance-based protocols, but in the case of insufficient

4.1 | Background and Related Work 131

Figure 4.2.: Linear dead-reckoning principle [LDR08]

accuracy, the server may request an update message at any time with regard to the last saved

MO’s position. To minimize the number of update messages, the limit of distance d can be

dynamically adjusted (in the distance-based protocol) in correspondence with the velocity of

the MO.

Furthermore, the authors consider the protocol’s behavior in the case of an absence of

communication between the MO and the server and present the analytical comparison of

various location update protocols in terms of location accuracy and the number of update

messages produced.

The analytical results of this comparison can be summarized as follows: in general, the

performance of the distance-based protocol is better than that of the time-based protocol,

and the optimistic caching querying protocol is better than the pessimistic one. The number

of update messages increases in the case of querying protocols with the number of requests;

therefore the querying protocols are better than the reporting protocols in cases of low query

rates. When the query rate is high, distance-based reporting protocols perform better than

pessimistic caching querying protocols.

The analysis of the update protocols’ accuracy says that pessimistic querying protocols

can guarantee a fixed inaccuracy value ε, regardless of the MO’s speed. The optimistic

querying protocol usually produces more inaccuracy. The time-based reporting protocol has

low average inaccuracy at low movement speeds, whereas distance-based reporting protocol

has constant average inaccuracy for all speed levels. In general, reporting protocols do not

guarantee an inaccuracy threshold ε for MOs.

The performance of the combined location update protocol proposed by Leonhardi and

Rothermel [LR01] was analyzed based on real position data. Its efficiency depends on the

query rate and the parameter that determines whether the last MO’s position stored on the

132 4 | Location Update Algorithms for Position Sharing

server should be updated. At high query rates, it is less efficient than the distance-based

reporting protocol; however, at low rates it requires far fewer update messages. In contrast

to the reporting protocols, it provides a pre-defined bound ε for the MO’s location inaccuracy.

4.1.3. Dead Reckoning Protocols

Now, we will consider dead-reckoning protocols in more detail. In [LNR02], the authors

present an overview of various existing dead-reckoning protocols and classify them as follows

(Figure 4.3).

Linear prediction: The most simple dead-reckoning protocol, which assumes that the MO

moves linearly (e.g., a car on a highway). This protocol is easy to implement and usually

requires fewer update messages than naïve update protocols.

Prediction with higher-order function: This protocol allows for the prediction of non-linear

movements of the MO, such as curves or splines. The speed of the MO can be also calculated

based on the measured acceleration.

Map-based dead-reckoning: This case assumes that the MO usually moves along a road

network (e.g., a car driving through town). The aim of the map-based dead-reckoning

protocols is to compare the MO’s position with the map of the surrounding environment.

Such maps can be obtained, for example, from navigation systems. The protocol must decide

the direction in which the MO is most likely to move at every road crossing.

Map-based dead-reckoning with probabilities: This improved map-based dead-reckoning

protocol uses probability information at road crossings. This method can be user-independent,

Figure 4.3.: Overview of different types of dead-reckoning protocols [LNR02]

4.1 | Background and Related Work 133

if provided with information about the percentage of users who at crossing X select junction

Y ; or it can be user-specific, if provided with information about how often user U at crossing

X selects junction Z . Of course, to be able to obtain such information we need to have a

large spatial database included in the system model.

History-based dead-reckoning: This protocol is based on the assumption that the movement

history of a given user (profile) is recorded over a long period of time. Since many users have

a regular daily routine (e.g., driving to work every morning and home again in the evening),

the performance of this protocol is similar to the map-based dead-reckoning with additional

probability information. The resulting profile can either be user-specific or user-independent.

Dead-reckoning with known route: If the route of the given MO is pre-determined, then

only its speed has to be considered, since it is already known which junction will be chosen

by this MO at each crossing. In this case, the protocol operates just like the map-based

dead-reckoning with ideal movement prediction, since the predicted MO’s route matches its

true route exactly.

4.1.4. Map-based Dead-Reckoning

In addition to an overview of the existing dead-reckoning approaches, a map-based dead

reckoning algorithm was developed in [LNR02]. The proposed location update algorithm

uses a map extracted from the automotive navigation system. The map will be interpreted

as a graph, where each node represents a crossing, and the roads between the crossings are

represented as graph edges. This graph-based representation helps to calculate the MO’s

position offline more precisely, with the most challenging part being in the right selection of

edges after the crossings. The authors call the search for a right edge along the neighboring

graph part forward-tracking and backward-tracking.

As the evaluation of [LNR02] shows, the proposed location update algorithm achieves a

significant reduction in the number of update messages and thus reduces communication

overhead between the MO and the server. However, it offers no way of obfuscating the

exact location of the user, and also has the problem that the server that performs the

calculations is a single TTP in the system, i.e., the proposed algorithm assumes that the

server is always trustworthy. Since the server stores the exact position of the MO, the MO’s

position information can be revealed in the case of a compromised or malicious server.

134 4 | Location Update Algorithms for Position Sharing

4.1.5. Summary

The existing approaches in the field of location update algorithms cover many aspects of the

optimization of LBS operation. In general, many of them achieve good results in optimizing

the update messages. However, traditional approaches reducing single updates such as

dead-reckoning are not applicable to our position sharing approach, since they are not suited

to obfuscated positions. As illustrated in Figure 4.4, the calculation of the predicted position

causes the resulting radius to double in size, since the MO can be originally located in

any point of the previous obfuscation circle: obfuscated locations increase the prediction’s

deviation by 2 ∗ r. As a result, the position prediction becomes worthless and unhelpful.

While the MO is still able to calculate his or her position, the server cannot do it.

Moreover, there are currently no approaches that would provide obfuscation-based location

privacy, simultaneous usage of multiple location servers, and a reduction in the number of

update messages all at the same time. In this work, we solve these problems in an integrated

way that is specific to the basic position sharing approach introduced in Chapter 2.

In this chapter, we will describe how the required update message overhead can be

significantly reduced: depending on the situation, up to 70-80% of communication overhead

can be saved without violating the privacy guarantees provided or the precision levels of the

MO’s position.

Figure 4.4.: Optimization of location updates: why dead reckoning is not applicable

4.1 | Background and Related Work 135

4.2. Problem Statement

Next, we formulate the reduction of location updates as a constrained optimization problem.

The optimization goal is to reduce the total number of location update messages sent in the

system. According to our system model (Figure 3.1), the communication overhead consists of

messages being sent from MOs to LSs (denoted as the number of messages N MO−LS) and from

LSs to LBAs (N LS−LBA). LBAs can subscribe to receive continuous MO’s position updates from

the LSs (with each update triggered by the LSs in this case); or they can pro-actively issue

and process location-based queries to get the MOs’ positions from the LSs. The constraints say

that there should be no change of position precision φk as a result, as well as no reduction

of the user’s probabilistic guarantees Pk,attack(φk,attack) of precision (privacy) levels.

We define the following as given:

• n location servers,

• the MO’s previous consecutive precise position πi, i.e., position defined before πi+1

(the algorithm is run on the MO side, which means that the MO’s own precise positions

are available),

• the MO’s next consecutive precise position πi+1, i.e., position defined after πi,

• a master share s0 generated for πi,

• a set S i of n refinement shares s1 . . . sn generated for πi,

• the probability distribution Pk(φk), which specifies the required probabilistic guarantees

for each precision level φk.

Problem: Find the set of shares S i+1
opt , where the concatenation of all shift vectors of S i+1

opt

must point to πi+1 according to the basic requirements of share generation (Algorithm 3,

Section 2.4.2.1):

S i+1
opt = {s

i+1
0 . . . si+1

n } :
n
∑

k=0

si+1
k = πi+1, (4.1)

such that S i+1
opt requires the minimal number of update messages, i.e., there is no other

set of shares S i+1
other that can produce a smaller number of update messages N(S i+1

other) than

136 4 | Location Update Algorithms for Position Sharing

N(S i+1
opt):

∀S i+1
other , S i+1

other 6= S i+1
opt : N(S i+1

opt)≤ N(S i+1
other); (4.2)

the set of shares S i+1
opt must also satisfy the current user’s privacy requirements, i.e., each

further kth share must provide the pre-defined probabilistic guarantees of privacy levels

Pk(φk):

∀ φk,attack : Pk(φk)> Pr[φk,attack ≤ φk]; (4.3)

finally, the precision φk of each imprecise position pi+1
k derived by share fusion after

obtaining the minimized set S i+1
opt has to be the same as the precision of the corresponding

imprecise position pi
k constructed from the original set of shares S i:

∀S i+1
k ∈ S i+1

opt , S i
k ∈ S i : φk(p

i+1
k (S

i+1
k)) = φk(p

i
k(S

i
k)) (4.4)

In other words, S i+1 and S i should differ in as few shares as possible, i.e., in S i+1 as many

shares as possible should be reused from S i.

Note that we do not assume that an MO’s complete trajectory is available. We consider

only the close sequential position updates. Hence, we cannot apply statistical analysis of

the past positions and the respective parameters such as speed, and therefore we do not

consider approaches for preserving privacy of a complete trajectory (see Section 2.7.7).

Those approaches are independent from the method of share updating, i.e., they consider

MO’s position as a single entity and not as a combination of shares. Our goal is only to reduce

the number of shares to be sent during neighboring consecutive updates without violating

the precision levels and their probabilistic guarantees provided by the share generation

algorithm.

4.3. Position Sharing Update Approaches

Usually, one position change corresponds to one update message from the MO to the LS, and

one message from the LS to an LBA. Our basic approach allows for sharing user’s position

4.3 | Position Sharing Update Approaches 137

among multiple non-trusted LSs, but the price for that is the increased communication

overhead. The reason for the increased overhead is that after each location update, an

MO must send n messages with new position shares to n different LSs, while an LBA must

receive k messages from k LSs in order to obtain the position of the precision level k that it

is authorized to know. Thus, our goal is to send a smaller number of messages than n after

each position change.

Depending on the movement scenario, different location update approaches can be ben-

eficial. The key factor here is the relation between the distance traveled between two

consecutive updates and the radii of obfuscation circles.

First, we consider continuous position updates, i.e., updates which are close to each other

with update intervals of up to 15 seconds. The examples of such position update scenarios

are navigation, way finding and tracking (Figure 4.5a).

Second, we consider sporadic position updates, i.e., updates which are distant from each

other with update intervals from several minutes to more than one hour. Such updates

would occur as a result of point-of-interest queries from the LBAs to the LSs (Figure 4.5b).

Sporadic updates are hardly predictable, not frequent, and the distances between them are

usually large.

In both cases described above, we assume that only a limited movement history is known

and that no complete trajectory (i.e., movement history) is available.

Next, we will present different approaches suited for different relations of the travelled

distance to the radius provided by the position share, namely, for (a) continuous position

Figure 4.5.: Location updates optimization: (a) navigation scenario; (b) point-of-interest
queries scenario

138 4 | Location Update Algorithms for Position Sharing

updates, (b) sporadic position updates and (c) combined position updates. Finally, we will

integrate these approaches into a holistic location update algorithm.

In the following, we illustrate our location update approaches with the obfuscation circles

based on the OSPS-ASO “a-priori” share generation and fusion. However, our location update

approaches are also applicable to other share generation and fusion algorithms.

4.3.1. Position Sharing Update Approach 1: PSUA1

If the MO moves insignificantly or it does not move at all between two consecutive updates

and remains inside circle ck (and does not stay in ck+1), then only the shares sk+1 . . . sn have to

be recalculated and sent to the LSs. For example, Figure 4.6 shows that the MO’s movement

does not intersect the innermost circle cn−1. Therefore, only share sn must be updated.

The pseudocode for our first position sharing update approach denoted as PSUA1 is

presented in Algorithm 12. In order to find the last non-affected by the movement precision

level k, we calculate the distance between the newly updated position πi+1 and the centers

pk
i of circles ck generated for the previous position πi (line 2). If this distance is smaller than

the radius rk, the user remained inside the circle ck:

distance(πi+1, pk
i)≤ rk (4.5)

This condition needs to be checked for each circle starting from the smallest one cn−1, until

the condition is met or the master share’s radius r0 is exceeded.

Figure 4.6.: PSUA1: little movement of MO; MO remains inside the innermost circle cn−1

4.3 | Position Sharing Update Approaches 139

Algorithm 12 Location Update Algorithm: PSUA1
1: function update_shares_1(~πi , ~πi+1, n, ~s0 . . . ~sn)
2: while distance(~πi+1, ~pk

i)≤ rk do
3: k← k− 1
4: end while
5: ~sk+1 . . . ~sn← regenerate_shares(~πi+1, k+ 1, n,φmin,∆φ)
6: send(~sk+1 . . . ~sn)

Having determined k, we can calculate the total number of update messages for PSUA1.

Regarding the communication between the MO and the LSs, n − k shares have to be re-

generated (line 5) and re-sent (line 6) in PSUA1, The resulting saving rate is:

RMO−LS
PSUA1 =

k
n

(4.6)

The number of saved messages is N MO−LS
PSUA1 = k.

It is more difficult to calculate the communication between LSs and LBAs, since it depends

on the number of LBAs (which cannot be affected by the MO) and the required precision

level. As defined in our problem statement (Section 4.2), the position update can be either

queried by LBAs, or triggered by LSs for subscribed LBAs. We introduce the probability of an

LBA receiving an update of position p j, i.e., of getting shares s0 . . . s j as Pupd([s0 . . . s j]); we

will give an estimation of the Pupd probabilities later in Section 4.3.4 and Section 4.6.1. Thus,

the saving rate in communication between LSs and the LBAs can be expressed as follows:

RLS−LBA
PSUA1 =

∑k
j=0 Pupd([s0 . . . s j])

∑n
j=0 Pupd([s0 . . . s j])

(4.7)

The absolute number of saved messages is defined as the number of LBAs nLBA multiplied

by the sum of the update probability of the refinement shares which were not sent due to

the optimization:

N LS−LBA
PSUA1 = nLBA ·

k
∑

j=0

Pupd([s0 . . . s j]) (4.8)

140 4 | Location Update Algorithms for Position Sharing

4.3.2. Position Sharing Update Approach 2: PSUA2

If the MO moves fast or the update rate is very low, the new MO’s master share can be located

completely outside the previous master share, as depicted in Figure 4.7.

The condition of having no intersection between two consecutive master shares is:

distance(πi+1, p0
i)> 2 ∗ r0 (4.9)

The main idea of our second position update approach (PSUA2) is that under the conditions

of Equation 4.9, we can recalculate and update only the master share while keeping the

refinement shares unchanged.

The pseudocode for PSUA2 is presented in Algorithm 13. If the condition of Equation 4.9

is met (line 2), only a new master share has to be generated (line 3) and sent (line 5) to

the corresponding LSs, while the refinement shares s1 . . . sn will remain the same without

causing any inconsistency during their fusion. This is preserved by the fact that the shares

are relative shift vectors, while the absolute coordinates are only contained in the master

share s0.

Algorithm 13 Location Update Algorithm: PSUA2
1: function update_shares_2(~πi , ~πi+1, n, ~s0 . . . ~sn)
2: if distance(~πi+1, ~p0

i)> 2 ∗ r0 then
3: ~s0 = ~πi+1 − ~πi
4: end if
5: send(~s0)

Figure 4.7.: PSUA2: large movement of MO; two consecutive master shares do not intersect

4.3 | Position Sharing Update Approaches 141

Next, we analyze the communication costs for PSUA2. Since only one share has to be

updated, the number of sent messages between MO and LS is N MO−LS
PSUA2 = 1, and the saving

rate is:

RMO−LS
PSUA2 =

n− 1
n

, (4.10)

whereas the message saving rate between LSs and LBAs is:

RLS−LBA
PSUA2 =

∑n
j=1 Pupd([s j . . . sn])

∑n
j=0 Pupd([s j . . . sn])

(4.11)

The absolute number of messages between LSs and LBAs equals the number of LBAs, so

N LS−LBA
PSUA2 = nLBA, since the master share has to be re-sent to each LBA.

Note that since N MO−LS
PSUA2 = 1, PSUA2 can be considered as the optimal approach for the

case when LS-LBA communication cost is ignored, e.g., when Pupd(. . .) is negligibly small or

cannot be estimated.

4.3.3. Position Sharing Update Approach 3: PSUA3

In special cases where neither PSUA1 nor PSUA2 is applicable, we apply non-optimized

location updating called PSUA3. In PSUA1 and PSUA2, we considered that the new (obfus-

cated) position lies either completely inside the old master share or completely outside it.

The next version of position sharing update approach (PSUA3) represents an intersection of

two consecutive share sets, i.e., a situation when both conditions of Equation 4.5 for PSUA1

and Equation 4.9 for PSUA2 are not satisfied. This causes a degradation of privacy through

reduction of the obfuscation area1, i.e., it is more likely that the MO’s actual position lies

within the intersection of circles.

The pseudocode for PSUA3 is presented in Algorithm 14. All shares have to be re-generated

(line 3) and sent (line 5), so that the total number of sent messages (without any messages

1For example, Maximum Velocity Attack [GDSB09] could be applied: if an attacker gets two successive
master shares and their timestamps, he or she can predict a travelled distance dmax after a certain time.

142 4 | Location Update Algorithms for Position Sharing

saved) is:

NPSUA3 = n+ (nLBA ·
n
∑

j=0

Pupd([s j . . . sn]) (4.12)

Algorithm 14 Location Update Algorithm: PSUA3
1: function update_shares_3(~pi , ~pi+1, n, ~s0 . . . ~sn)
2: if ∀k ∈ {1 . . . n− 1} : (distance(~πi+1, ~p0

i)≤ 2 ∗ r0) & (distance(~pi+1, ~pk
i)> rk) then

3: ~s0 . . . ~sn← regenerate_all_shares(~pi+1, n,φmin,∆φ)
4: end if
5: send(~s0 . . . ~sn)

4.3.4. Estimations of Efficiency

Now, we will perform a preliminary analysis of the gain in efficiency that the two main

proposed approaches can provide: PSUA2, corresponding to the location update strategy for

sporadic updates, and PSUA1, corresponding to the location update strategy for frequent

updates.

The total communication cost in both cases includes: (a) the cost of communication

between the MO and the LSs; (b) the cost of communication between the LSs and the LBAs.

Consider a situation in which the LSs push location updates to an LBA subscribed to the

given MO, when the observed positions of that MO are changing. Why is then one sn update

better than one s0 update? Assume the following situation: n= 4; LBA has k shares, each k

with equal probability 20%:

Pupd([sk . . . sn]) = 20%, k = 0 . . . n (4.13)

For such a case, Figure 4.8 shows the rough estimation of LS-LBA communication cost

depending on k, so that the privacy level k here corresponds to the number of shares being

obtained by the LBA from k LSs.

If we only take into account communication between the mobile user and the LSs, we

can state the following: The usage of PSUA2 will lead to the reduction of messages by

1− 1/n= (n− 1)/n. For example, n= 5 leads to reduction by 80% (cf. Figure 4.8).

The possible limitations for PSUA2 include the situation when a new set of LSs is selected

4.3 | Position Sharing Update Approaches 143

Figure 4.8.: Location updates optimization: estimation of communication cost LS-LBA

or the access rights are changed. In addition, the set of the MO’s position shares ages and

becomes more vulnerable with time. Using PSUA1, an ideal case we can achieve for MO-LS

communication is the same message reduction as with PSUA2; in the worst case, the resulting

reduction will be only 1/n.

4.4. Optimized Location Update Algorithm

As we have shown, there are two optimized approaches for sending location updates (PSUA1

and PSUA2) and the non-optimized update approach (PSUA3). Since PSUA1 and PSUA2 pro-

duce varying numbers of messages in different cases, our goal now is to formally distinguish

these cases and achieve the total communication cost as N = min(NPSUA1, NPSUA2).

Note that PSUA1 and PSUA2 cannot be further optimized, because the number of updates

from MO to LSs triggered by PSUA2 is 1, which is the minimal number of messages which

makes a position update possible. The number of updates from MO to LSs triggered by

PSUA1 is n− k, since the precision levels c0 . . . ck are not affected. If we send even one share

less, it would mean that no correct refinement of precision levels possible at least for one of

the levels k+ 1 . . . n and thus the precision and privacy guarantees are violated.

Thus, we only need to select one of the approaches (PSUA1 or PSUA2), as it is not possible

to further reduce the amount of messages within the approaches themselves. The main

challenge is to find the condition defining the point where PSUA2 is better than PSUA1 in

144 4 | Location Update Algorithms for Position Sharing

terms of the total number of messages required for location updates (including MO-LS and

LS-LBA communication).

Therefore, before sending a location update, the MO determines the best way to do the

update – namely, which one of the two optimized approaches can be applied and which one

produces the minimal number of messages. To determine the break-even point between

PSUA1 and PSUA2, we equate the absolute costs of MO-LS and LS-LBA for PSUA1 and

PSUA2:

N MO−LS
PSUA1 + N LS−LBA

PSUA1
?
= N MO−LS

PSUA2 + N LS−LBA
PSUA2 (4.14)

Next, the MO checks whether PSUA1 or PSUA2 should be applied for the kth precision

level requested by the LBA for the given location update.

k+ nLBA ·
n
∑

j=n−k+1

Pupd([s j . . . sn])
?
= 1+ nLBA (4.15)

Then, we check the conditions for PSUA1 (Equation 4.5) and PSUA2 (Equation 4.9). If they

are satisfied, an optimized location update can be applied; otherwise, the naïve approach

(PSUA3) should be used. In the end, we achieve a situation, such that any further reduction

of update messages would reduce the delivered position precision, while any increase of

update messages would increase the communication overhead without improving the pre-

defined precision. The pseudo-code for the general location update algorithm is presented

in Algorithm 15. Note that the find_optimal_k(. . .) function in line 2 finds k according to

Equation 4.15.

As an example, we show the point where PSUA2 becomes more beneficial than PSUA1,

if assumed that n = 10, k = 1 . . . 10, nLBA = 10 (Figure 4.9). The number of required

messages is heavily dependent on k. Another important factor is whether the updated share

is the master share (PSUA2), which should be sent to every LBA after each update, or the

updated shares are k refinement shares, which need to be re-sent in the case of PSUA1. The

communication cost required by PSUA2 is constant, with only one message between the

MO and the LSs, and the whole set of 10 (n) messages between LSs and LBAs. The cost of

PSUA1 is lower for small k values, but it increases rapidly with both MO-LSs and LSs-LBAs

communication increasing together with k. Thus, we can say that PSUA1 is more efficient

4.4 | Optimized Location Update Algorithm 145

Algorithm 15 Location Update Algorithm
1: function update_shares(~πi , ~πi+1, n, ~s0 . . . ~sn)
2: k← find_optimal_k(~πi , ~πi+1, n, ~s0 . . . ~sn)
3: if distance(~πi+1)< k ∗ r0/n then
4: update_shares_1(~πi , ~πi+1, n, ~s0 . . . ~sk)
5: else
6: if distance(~πi , ~πi+1)> 2 ∗ r0 then
7: update_shares_2(~πi , ~πi+1, n, ~s0 . . . ~sk)
8: else
9: update_shares_3(~πi , ~πi+1, n, ~s0 . . . ~sk)

10: end if
11: end if

for a number of refinement shares that does not exceed 4 out of 10, while PSUA2 is more

beneficial for k ≥ 4 (cf. Figure 4.9).

Figure 4.9.: The intersection of the curves is the point where PSUA2 starts to be more
beneficial than PSUA1; the communication cost values are calculated for n = 10,
k = 1 . . . 10, nLBA = 10

146 4 | Location Update Algorithms for Position Sharing

4.5. Security of Location Updates

Thus far, we have extended our basic approach with a temporal dimension by considering

multiple consecutive location updates and reduced the required communication overhead.

Now, we consider the influence of location update algorithms and multiple updates on

privacy.

4.5.1. Challenges of Consecutive Updates

The privacy guarantees provided by the basic position sharing approach introduced in

Chapter 2 are valid for isolated position updates. In this chapter, we have already presented

a location update algorithm which optimizes the communication overhead considering the

last two consecutive position updates on-the-fly. However, the problem is that by acquiring

a larger sequence of updates, an adversary is able to gain more information about the

current MO’s position than was originally intended to be revealed by the MO. The well-

known adversarial method of gaining additional knowledge through consecutive updates

is so-called Maximum Velocity Attack [GDSB09]. An adversary can apply it in cases where

the approximate velocity of the MO is known, along with the MO’s previous positions. Such

information can either be inferred from previous updates, or based on observed statistics of

similar MOs.

Knowing the time that has elapsed between the last updates and the maximum velocity of

the MO, the maximum distance of the target MO from the last position can be calculated.

Then an attacker can find the area that is reachable from the last known position in the

elapsed time, given the maximum MO speed.

In Figure 4.10, we show the previous MO’s update (obfuscation circle) on the left and the

current update on the right. The larger circle’s radius rmax is equal to the maximum distance

that this MO could have traveled since the previous location update during the period of

time between the two updates. Assuming the maximum possible velocity to be known, the

adversary can determine the area covering the maximal possible traveled distance. The

radius of the circle is the product of the maximum velocity and the time difference between

the updates:

rmax = (t i − t i−1) ∗ vmax , (4.16)

4.5 | Security of Location Updates 147

where : vmax =
distance(pi−2, pi−1) + 2 ∗ rk

t i−1 − t i−2
(4.17)

The area covered by the circle with rmax includes every point within the maximum reachable

distance from every point in the last known location. By intersecting this area with the new

obfuscation circle (center in pk
i) provided by MO as the next update, the adversary can get

an area that might be less than or equal to the area of the new update. Thus, we can check

whether the current user’s position is located in the overlapping area of both the circles, as

shown in Figure 4.10. If the intersection is less than the area of the new update, then the

attacker can conclude that the target MO is within the intersected area and not in the area

outside of the intersection. Thus, the precision achieved is higher than the precision that was

intended by the mobile user. In this case, the location privacy level of the MO is compromised

by velocity based linkage attacks. Note that in this case, no additional information besides

the positions and their corresponding timestamps is used.

4.5.2. Secure Location Updates

The first privacy requirement corresponding to our problem statement (Equation 4.4) is

that the position update optimization must not reduce the obfuscation area, i.e., cause an

Figure 4.10.: Velocity-based linkage attack: reachable area based on MO’s speed and
obfuscation area reduced through overlapping

148 4 | Location Update Algorithms for Position Sharing

undesired increase in position precision φk. Under this condition, we can state that the

proposed location update algorithms do not reduce the number of shares, i.e., do not change

the precision level available to the authorized LBAs. In other words, the smaller number of

shares sent from the MO to the LS does not affect the number of shares provided to LBAs.

Therefore, no change in precision occurs.

Until now, we have only considered the locations of updates. The problem is that if at least

two previous consecutive updates with their timestamps are known, the obfuscation area

can be reduced by applying the Maximum Velocity Attack described in the previous section,

which limits the maximal possible travelled distance by the MO since the last update based

on the MO’s estimated maximal speed. To prevent this attack, we must omit the location

update if the next obfuscation circle intersects with the maximal movement boundary. This is

a well-known counter-measure against such an attack, described by Wernke et al. [WDR13].

We applied a similar defense against the Maximum Velocity Attack as already presented in

the literature [GDSB09, WDR13]. We accomplish this by skipping position updates if they

undermine the location privacy.

The general idea is that we must skip a position update if we see that the execution of

the next update will make it impossible to satisfy the privacy requirement using spatial

obfuscation alone. By skipping the scheduled update, we increase the area reachable from

the last update, as it is illustrated in Figure 4.11. The new reachable area is depicted as an

extended area resulting from increased time delay after an update was skipped. Obviously,

the overlapping area between the new larger shared circle with rmax and the reachable

area after skipping an update is larger than before. Thus, we achieve higher privacy by

introducing more position imprecision.

We say that an update is secure if any point of the current c i
k is reachable from the previous

c i−1
k . The time between two previous consecutive updates is used to determine the MO’s

maximal speed, and the reachability area for the next MO’s position is then determined by

using this speed estimation. We calculate the maximal possible distance that an MO can

travel after the last update πi with the interval t i − t i−1 as:

rmax =
(t i − t i−1) · (distance(πi−2,πi−1) + 2 ∗ r0)

t i−1 − t i−2
(4.18)

Algorithm 16 shows how we make the decision whether to send the current update or

skip it for security reasons. We assume that we know two previous updates in addition to

4.5 | Security of Location Updates 149

Figure 4.11.: Skipped update’s effect: extended area

the current update; this is the minimum number required to estimate the MO’s speed. We

assume that the current obfuscation level is k and it remains the same for all three of the

updates.

Algorithm 16 Secure Location Update
1: function update_posi t ion(t i , t i−1, t i−2, Si , Si−1, Si−2)
2: vmax = (distance(πi−2,πi−1) + 2 ∗ rk)/(t i−1 − t i−2)
3: rmax = (t i − t i−1) ∗ vmax
4: if rmax > distance(πi−2,πi−1) then
5: send_to_LSs(si

0 . . . si
k)

6: else
7: skip_update(Si)
8: end if

First, we calculate the reachable radius rmax (lines 2-3). If this distance completely covers

the obfuscation circle c i
k of the current update si

k, we send the location update as usual

(lines 4-5). If c i
k is intersected and therefore reduced, we skip this update (lines 6-7).

The example in Figure 4.12 shows three consecutive updates, where any point within the

last update’s obfuscation circle c i
k is reachable from the previous obfuscation circle c i−1

k .

After applying this principle to the two scenarios tested in the previous section, we obtained

150 4 | Location Update Algorithms for Position Sharing

Figure 4.12.: Maximal movement boundary: estimation shows that any point within the
obfuscation circle c i

k is reachable from the previous obfuscation circle c i−1
k

the following results. Since the updates are close to each other, 95-98% of updates are secure

in the case of the continuous location updates scenario and 75-83% are secure in the case of

the sporadic updates scenario. The reason for such high rates is that the estimated speed

in the second case is usually low due to the long delays between updates, while the master

share radius r0 is larger.

The second privacy requirement corresponding to our problem statement (Equation 4.3)

is the probabilistic metric Pk(φk). Having the separate location updates represented by the

known obfuscation circle c i
k, the remaining shares si

k . . . si
n and the corresponding refined

obfuscation circles c i
k . . . c i

n within c i
k remain unknown for an attacker, even under the as-

sumption that he or she knows the share generation algorithm. The randomness of share

generation is preserved by the unchanged share generation algorithms (see Algorithms 2-8),

so that the probabilistic guarantees of privacy levels Pk(φk) are the same as in the basic

position sharing approaches.

4.5.3. Further Privacy Challenges: Discussion

Additionally, it would be possible to consider a pdf based on the movement correlation

instead of one based on intersection of the binary movement boundary. A similar idea of

applying the probabilistic prediction based on linear dead reckoning was proposed by Zhou

and Chirikjian [ZC03]. After determining such a pdf based on the previous updates record,

it will be necessary to convolute the share generation pdf and the pdf of the next predicted

position. However, such an approach requires analysis of the trajectory correlation pattern

4.5 | Security of Location Updates 151

and is beyond the scope of this work.

Next, we consider the situation when an attacker knows the indices of the updated shares

even without having their content. We analyze whether he or she can gain additional

knowledge about π by considering such a situation with regard to PSUA1, PSUA2 and PSUA3

(selected according to Algorithm 15).

In PSUA2, only the master share is being updated by the MO. Since the master share s0 is

known to everyone according to the basic assumptions of the position sharing approach, the

knowledge that it was updated does not affect privacy.

In PSUA3, all the shares s0 . . . sn are updated, therefore, knowing their indices also does

not provide any new information. An attacker can only come to the conclusion that the MO

did not move further than 2 ∗ r0 from his or her previous position. This geometrical area

is large enough, especially if taken into account that the previous MO’s position remains

unknown to the attacker as well.

In PSUA1, the set of updated shares can be different than the set of k shares that an attacker

is already authorized to know. Whereas the precision levels are revealed in ascending order

starting from p0, the shares in PSUA1 are updated in descending order starting from sn. We

illustrate this principle in Figure 4.13, which shows that if n = 10, up to 3 shares can be

updated in terms of PSUA1 (according to the calculations presented earlier in Figure 4.9).

The gray area indicates the limits of the MO’s movement according to an update of the last

three shares s8, s9, s10.

Figure 4.13.: Knowing indices of updated shares in PSUA1: examples for n = 10, 3 last
shares are updated.

152 4 | Location Update Algorithms for Position Sharing

However, note that the location of π is unknown to an attacker, and therefore the location

of the gray area is also unknown to him or her. Assuming that the previous trajectory is

not known, or that it is not correlated, the basic property of the position sharing approach

is that π is distributed uniformly within the obfuscation area of ck known to the attacker.

Thus, the knowledge about the indices of the updated unknown shares does not increase the

probability of π being located within any sub-area of ck. Since the precise user position is

distributed uniformly within ck (whether the previous one πi or the next one πi+1), even if πi

and πi+1 are highly correlated, an attacker cannot know exactly where they lie within ck. This

statement is correct if we use OSPS-ASO “a-priori”, OSPS FSO or CSPS share generation as the

basic location privacy approach. However, the problem of knowing the indices of updated

shares is another argument against use of the “a-posteriori” share generation algorithm

version; the reason is that one of the points πi, πi+1 is likely to be in the center of ck.

The speed-based movement restrictions do not restrict the obfuscation area in this case

either, since the start and the end of the MO’s movement are imprecise. Thus, the only

privacy-critical issue is that by knowing the previous updates in PSUA1, an attacker may

guess the length and the direction of the movement within the kth circle of πi+1. This

is the situation where updates of shares corresponding to kth (or less than kth) privacy

level show a movement pattern, and only the unknown shares (k + 1th or further) are

updated. Figure 4.14 shows how trajectory analysis combined with knowledge of the indices

of updated shares may help to predict the location of πi within ck. In such a case, since the

MO’s further movement is predictable, there will be a higher probability that π is located on

the direction-dependent (here: right) side of ck. However, it is important that the whole ck

area is still reachable since π remains unknown (note that in Figure 4.14 the exact location of

π is depicted only for illustrative purposes). This case is beyond the scope of this work, since

it is related to the analysis of trajectory patterns. We refer to the work of Riaz et al. [RDR15],

where the corresponding analysis was conducted using a system model similar to our system

model and having applied the principles of distributed position sharing.

4.5 | Security of Location Updates 153

Figure 4.14.: Knowing indices of updated shares and the trajectory pattern: c0 is updated
during the first 3 updates, while the 4th update affects only the last three shares
(s10, s9, s8); n= 10

4.6. Evaluation

Next, we present the evaluation of our optimized share placement algorithm. We start with

an evaluation of the communication cost of the algorithm, before we compare the achieved

probabilistic guarantees of precision levels provided by our approach to the ones of the basic

approach.

4.6.1. Evaluation Setup

We evaluated our location update algorithms by using the open database of real location

data called GeoLife [ZXM10]. The GeoLife data sets include daily routine trajectories such

as the route to and from work, or hiking and biking trips. Most trajectories were recorded at

intervals of 1-5 seconds or 5-10 meters (cf. Figure 4.15).

We selected two datasets which represent different scenarios: continuous updates (with

update intervals of up to 15 seconds) and sporadic updates (with update intervals from

several minutes to more than one hour). Then we evaluated the location update behavior

and measured the rate of message reduction.

For the evaluation, we assumed that the probability for each precision level φi of MO’s

position being required for the LBAs is equal (see Section 4.3.4, Figure 4.8). If the probability

of getting various precision levels is not equal, its function will remain similar to the one

shown in Figure 4.8, i.e., it will be decreasing, with first shares always requested more often

than the latter shares. The exception would be extreme cases such as those where only

precision pconst is always required. Thus, in order to reduce the communication cost, the

154 4 | Location Update Algorithms for Position Sharing

Figure 4.15.: An example of Geolife location data with position updates marked by red dots;
small time intervals (1-5 seconds) and small distances (5-10 meters) between
updates [Hae12]

latter shares should be updated if possible.

In this case, the number of messages sent to the LSs required for the LBAs linearly increases

for each subsequent requested precision level φi. For example, to get the lowest precision, an

LBA needs to obtain only a single share s0 (1 message), while the highest precision requires

obtaining the complete set of shares from s0 to sn (n messages). In this latter case, the

probability of getting a share si linearly decreases for each subsequent i:

Pupd([si]) = 1−
i
n

(4.19)

4.6.2. Communication Cost after Reduction of Updates

First, we evaluate the number of messages sent through continuous updates for the number

of LSs n = 5 and the number of LBAs nLBA = 5. Note that the GeoLife data set represent

very frequent position updates with only tens of meters distances between the updates.

Therefore, in order to make possible selection of both PSUA1 and PSUA2, we selected radii

of obfuscation circles comparable to the distances between the updates: radii r0 = 5 m

(Figure 4.16) and r0 = 50 m (Figure 4.17). The horizontal axis depicts the sequential

4.6 | Evaluation 155

numbers of position updates. For the given setup, the naïve approach would generate 20060

messages. The optimized approach generates 11520 for r0 = 5 m and 3856 messages for

r0 = 50 m, which equals a saving rate of 42.6% and 80.8% correspondingly. The PSUA2 is

often selected in Figure 4.16 due to the small radius, while using a larger radius, as shown

in Figure 4.17, only PSUA1 is selected.

Next, we analyze the scenario of sporadic updates for radii r0 = 50 m (Figure 4.18) and

r0 = 100 m (Figure 4.19), where the naïve approach would generate 420 messages; n= 5;

nLBA = 5. The most commonly selected solution is PSUA2. Sometimes PSUA3 is selected

due to master share intersections with r0 = 100. As a result, the optimized location update

algorithm generates 154 for r0 = 50 and 224 messages r0 = 100 (a saving rate of 63.3% and

46.7% respectively).

We also analyzed the interdependency between the saving rate and the radius r0 of the

master share (see Figure 4.20). For continuous (frequent) updates, a larger r0 usually causes

fewer updates, since the movements are smaller compared to the obfuscation circles. For

sporadic updates, this tendency is similar in the long term, yet for a significant range of r0

values (for the given data set: between 0 and 300 m), a smaller r0 leads to less intersections

and, therefore, to a smaller number of update messages.

Figure 4.16.: Continuous location updates with radius r0 = 5 m; n= 5; nLBA = 5

156 4 | Location Update Algorithms for Position Sharing

Figure 4.17.: Continuous location updates with radius r0 = 50 m; n= 5; nLBA = 5

Figure 4.18.: Sporadic location updates with radius r0 = 50 m; n= 5; nLBA = 5

Figure 4.19.: Sporadic location updates with radius r0 = 100 m; n= 5; nLBA = 5

4.6 | Evaluation 157

Figure 4.20.: Saving rate (reduction of update messages, %) depending on radius r0 of the
master share; n= 5; nLBA = 5 [Hae12]

4.6.3. Probabilistic Guarantees of Privacy Levels after Position Update

Optimization

Next, we analyze the probabilistic guarantees of privacy levels after the location update algo-

rithms have been applied (Figure 4.21). The first (dashed) curve represents the probabilistic

privacy guarantees of the OSPS-ASO “a-priori” share generation algorithm as measured

in Section 2.5.3 and shown initially in Figure 2.22b. The second (solid) curve represents

the probabilistic privacy guarantees of the same share generation algorithm after PSUA1

approach was used in order to reduce the number of updates. Note that we do not need to

evaluate the effect of PSUA2, since it does not affect the generation of the refinement shares.

In order to simulate the effect of PSUA1 on the share generation algorithm, we re-generated

{k + 1 . . . n} shares after selecting each vector set and relocating π within the respective

limits, where k was selected randomly in {1 . . . n−1}. We made 100 runs of the Monte Carlo

method for n= 5, same as in Section 2.5.3 (with r0 represented as 1.0, since the absolute

radius value has no influence on the Pk,10% values as we do not consider map knowledge

in this comparison). We can see that the resulting probability values Pk,10% are very close

for both OSPS-ASO “a-priori” with and without PSUA1, while the small deviation is due to

probabilistic nature of the Monte Carlo method. These results show that the re-generation of

a subset of shares does not change the stochastic properties of a share generation algorithm,

if the re-generation was done according to the same algorithm which was applied to generate

the initial set of shares.

158 4 | Location Update Algorithms for Position Sharing

Figure 4.21.: Probabilistic guarantees of privacy levels Pk,10% of OSPS-ASO “a-priori” with
and without PSUA1 applied; n= 5, 100 runs of the Monte Carlo method

4.7. Conclusion

In this chapter, we have extended our main position sharing approach in order to address

further real-world challenges. The approach was adapted to the scenario of multiple consec-

utive updates, as opposed to the scenario of single isolated snapshot updates assumed in the

previous chapters.

We have optimized the communication cost of location updates by sending only a subset

of k shares out of total number of shares n, while preserving the required level of position

obfuscation. The main factors contributing to the cost reduction are: 1) the radii of the

obfuscation circles, 2) number of privacy levels n, and 3) the travelled distance between the

last two updates. In most cases, we can achieve significant communication cost reduction by

sending fewer messages than through the naïve basic position sharing approach.

To have a comprehensive determination of communication cost, we take into account

the messages sent from MOs to LSs together with the messages sent from LSs to LBAs. The

proposed location update algorithm selects the optimal strategy by analyzing the current

distance and obfuscation parameters. In the evaluation section, we showed that the proposed

location update approach minimizes the communication cost by saving up to 80% of messages

without reducing the user’s location privacy.

4.7 | Conclusion 159

C
H

A
P

T
E

R 5
CONCLUSION

In this section, we summarize our work and outline possible directions for future research

that could further improve our position sharing approach.

5.1. Summary

Both personal privacy and cyber security are currently attracting increasing attention, and

location privacy is one of the things of most concern to many people.

In this work, we have presented a novel approach for preserving the location privacy of

a mobile user of location-based services. The main idea of our approach is to distribute

position information among n location servers of independent service providers. In order to

hide the user’s exact location, the user’s position information is represented as an obfuscation

circle. The size of the obfuscation circle defines the user’s location privacy level, which can

be changed if location-based applications are provided with additional pieces of information

called position shares. The position shares are represented as randomly generated shift

vectors. To increase the precision of the user’s position, the position shares shift the center

of the current obfuscation circle and reduce the circle size.

In our approach, we distinguish such steps as share generation, share update and share

fusion. We proposed four different versions of the share generation algorithm: three of them

apply to the open space scenario (i.e., without map knowledge available in the system),

while the fourth approach modification is designed to preserve the desired privacy levels

assuming that map-based knowledge is available to an adversary.

We have analyzed the probabilistic guarantees of the user’s privacy levels provided by our

161

share generation algorithms by using probabilistic privacy metrics. We measured probabilities

of each precision level that can be gained by an adversary, assuming that he or she already

knows k shares (0≤ k ≤ n). Among the open space based share generation algorithms, the

first version (OSPS-ASO “a-posteriori”) provides equal but high predictability of the target

user’s position for each k, while the second algorithm (OSPS-ASO “a-priori”) guarantees high

security for smaller k’s but increases the probability of a user’s precise position being guessed

for higher k values. The third algorithm (OSPS-FSO) provides a close to uniform distribution

of probability of the user being located within each kth obfuscation circle. However, this

uniform distribution of probability is only possible if the order of share fusion is pre-defined

and fixed (unlike in the first two share generation algorithm versions).

On the basis of our third share generation algorithm for open space, we have proposed an

algorithm for constrained space (CSPS). This algorithm withstands an attacker’s use of map

knowledge that could significantly reduce the original obfuscation area, i.e., location privacy

level. We overcome this problem by increasing the radii of the obfuscation circles far enough

to attain the desired size of the resulting obfuscation area.

We also improved our approach with regard to the placement of shares among the location

servers by taking into consideration the trustworthiness of the servers. The availability of

information about the servers’ trustworthiness allows mobile users to balance risk by placing

more position information on more trusted servers.

Finally, we proposed an optimized location update algorithm, which reduces communica-

tion cost in the case of continuous position updates by up to 70-80%. This cost reduction is

achieved by selecting the minimal required subset of shares that can be updated without

affecting the precision levels and privacy guarantees of the user’s position information.

We can summarize the most significant properties of the proposed position sharing ap-

proach as follows:

• Graceful degradation of privacy levels in cases where some position shares became

unavailable;

• No need for a trusted third party;

• Flexible management of privacy levels by mobile users.

162 5 | Conclusion

5.2. Outlook

There are still some aspects of our position sharing approach that could be improved. Possible

improvements and future research steps include the following:

The algorithm versions with adaptive increase of the obfuscation circle’s radius (OSPS-

FSO and CPSP) can be easily modified to provide k-anonymity guarantees by adjusting the

obfuscation area not only until it achieves a required size but until it covers k users. The

precondition here is the availability of information about all the neighboring users. Such

precondition contradicts our current system model, which assumes that the position shares

are generated by the MO with no global view of the system.

Boolean values assigned to map regions in CSPS can also be replaced by a probability

estimation in the range of [0;1], if a database with the corresponding statistics is available.

Such region-specific probabilities could be based on a concrete database or on general

probabilistic estimations. However, this will not significantly change the principles of our

adjustment algorithm. A challenge would be to consider different maps, with low and high

percentages of areas where the user can be located, and special cases. In other words, diverse

levels of privacy sensitivity can be considered for different map regions. The theoretical basis

for formal definition and processing of a non-binary map representation is given in [ACG09].

An example of map representation with diverse probabilities assigned to map regions and

objects is shown in Figure 5.1.

Figure 5.1.: Map representation with different probabilities assigned to different map objects
[Pau11]

5.2 | Outlook 163

Also, the user may want to secure not only snapshot and continuous positions but a

complete published trajectory. This is a challenge, since we would need to hide the start

point and the end point as well as to obfuscate the whole route.

Furthermore, if we assume that additional contextual information such as user’s interests,

advanced history of events and traces are known to an attacker, the appropriate counter-

measures would need to be applied.

It is also possible to use the “a-priori” and “a-posteriori” methods in a random way, for

example, by adding a random variable to select which of those two methods is used for each

position update (50% each on average). This would significantly undermine an attacker’s

ability to compute the pdf while preserving the ASO (any share order) property.

164 5 | Conclusion

BIBLIOGRAPHY

[ABN08] ABUL, Osman ; BONCHI, Francesco ; NANNI, Mirco: Never Walk Alone: Un-

certainty for Anonymity in Moving Objects Databases. In: Data Engineering,

2008. ICDE 2008. IEEE 24th International Conference on, 2008, S. 376–385

(cited on pages 86, 87, and 184)

[ACD+07] ARDAGNA, C.A. ; CREMONINI, M. ; DAMIANI, E. ; DE CAPITANI DI VIMER-

CATI, S. ; SAMARATI, P.: Location Privacy Protection Through Obfuscation-

based Techniques. In: Proc. of the 21st Annual IFIP WG 11.3 Working Con-

ference on Data and Applications Security Bd. 4602, 2007, S. pages 47–60

(cited on pages 16, 81, and 183)

[ACG09] ARDAGNA, Claudio A. ; CREMONINI, Marco ; GIANINI, Gabriele: Landscape-

aware location-privacy protection in location-based services. In: Journal

of Systems Architecture 55 (2009), April, S. 243–254. – ISSN 1383–7621

(cited on pages 88, 163, and 184)

[Alb03] ALBRECHT, Peter: Risk Based Capital Allocation / Sonderforschungsbere-

ich 504, Universitat Mannheim. 2003 (03-02). – Forschungsbericht. – .

(cited on pages 116 and 117)

[Ama14] AMAZON WEB SERVICES LLC: Amazon. http://aws.amazon.com, October 2014

(cited on page 18)

[AP98] ARORA, Shalini ; PURI, M. C.: A variant of time minimizing assignment problem.

In: European Journal of Operational Research 110 (1998), Nr. 2, S. 314–325

(cited on page 117)

165

[BBC14] BBC: Q and A: NSA’s Prism internet surveillance scheme.

http://www.bbc.com/news/technology-23051248, October 2014

(cited on page 17)

[BKS10] BRUSH, A. J. B. ; KRUMM, John ; SCOTT, James: Exploring end user preferences

for location obfuscation, location-based services, and the value of location. In:

Proceedings of the 12th ACM international conference on Ubiquitous computing.

New York, NY, USA : ACM, September 2010 (Ubicomp ’10). – ISBN 978–1–

60558–843–8, 95–104 (cited on page 16)

[BLPW08] BAMBA, Bhuvan ; LIU, Ling ; PESTI, Peter ; WANG, Ting: Supporting Anonymous

Location Queries in Mobile Environments with PrivacyGrid. In: Proceeding of

the 17th international conference on World Wide Web (WWW ’08). New York, NY,

USA : ACM, 2008. – ISBN 978–1–60558–085–2, S. 237–246 (cited on page 79)

[BMW+09] BETTINI, Claudio ; MASCETTI, Sergio ; WANG, Xiaoyang S. ; FRENI, Dario

; JAJODIA, Sushil: Anonymity and Historical-Anonymity in Location-

Based Services. In: Privacy in Location-Based Applications, 2009, S. 1–30

(cited on pages 91, 92, and 184)

[BS04] BERESFORD, Alastair R. ; STAJANO, Frank: Mix Zones: User Privacy

in Location-aware Services. In: PerCom Workshops, 2004, S. 127–131

(cited on pages 73, 74, and 183)

[Bun14] BUNDESMINISTERIUM FÜR VERKEHR UND DIGITALE INFRASTRUKTUR:

Telekommunikationsgesetz. http://www.bmvi.de/SharedDocs/DE/

Anlage/Digitales/telekommunikationsgesetz-2012.pdf, October 2014

(cited on page 17)

[CB04] CHUN, Brent N. ; BAVIER, Andy: Decentralized Trust Management and Ac-

countability in Federated Systems. In: Proceedings of the Proceedings of the 37th

Annual Hawaii International Conference on System Sciences (HICSS’04) - Track 9

- Volume 9. Washington, DC, USA : IEEE Computer Society, 2004 (HICSS ’04). –

ISBN 0–7695–2056–1, S. 90279.1– (cited on page 18)

[CC05] CHAN, Chao-Wen ; CHANG, Chin-Chen: A scheme for threshold multi-secret

sharing. In: Applied Mathematics and Computation 166 (2005), Nr. 1, S. 1–14

(cited on page 89)

166 Bibliography

[CM11] CHOW, Chi-Yin ; MOKBEL, Mohamed F.: Trajectory privacy in location-based

services and data publication. In: SIGKDD Explorations 13 (2011), Nr. 1, S.

19–29 (cited on page 90)

[CML06] CHOW, Chi-Yin ; MOKBEL, Mohamed F. ; LIU, Xuan: A peer-to-peer spatial cloak-

ing algorithm for anonymous location-based service. In: GIS ’06: Proceedings

of the 14th annual ACM international symposium on Advances in geographic

information systems. New York, NY, USA : ACM, 2006. – ISBN 1–59593–529–0,

S. 171–178 (cited on pages 76, 77, and 183)

[CZBP06] CHENG, Reynold ; ZHANG, Yu ; BERTINO, Elisa ; PRABHAKAR, Sunil: Preserving

User Location Privacy in Mobile Data Management Infrastructures. In: 6th

Workshop on Privacy Enhancing Technologies Bd. 4258/2006, Springer Berlin /

Heidelberg, 2006, S. 393–412 (cited on pages 81, 82, and 183)

[DBS10] DAMIANI, Maria L. ; BERTINO, Elisa ; SILVESTRI, Claudio: The PROBE

Framework for the Personalized Cloaking of Private Locations. In: Trans-

actions on Data Privacy 3 (2010), August, Nr. 2, 123–148. http://

dl.acm.org/citation.cfm?id=1824401.1824404. – ISSN 1888–5063

(cited on pages 88, 89, and 184)

[DF03] DOBSON, J. E. ; FISHER, P. F.: Geoslavery. In: Technology and Society Magazine,

IEEE 22 (2003), Nr. 1, 47–52. http://dx.doi.org/10.1109/mtas.2003.

1188276. – DOI 10.1109/mtas.2003.1188276 (cited on page 17)

[DK05] DUCKHAM, Matt ; KULIK, Lars: A Formal Model of Obfuscation and

Negotiation for Location Privacy. In: Proceedings of the International

Conference on Pervasive Computing (Pervasive 2005), 2005, S. 152–170

(cited on pages 82, 83, and 183)

[DK06] DUCKHAM, Matt ; KULIK, Lars: Location privacy and location-aware computing.

In: Dynamic and mobile GIS: investigating changes in space and time Bd. 3, CRC

Press, Boca Rator, FL, 2006, S. 35–51 (cited on page 17)

[DND07] DJORDJEVIC, Ivan ; NAIR, Srijith K. ; DIMITRAKOS, Theodosis: Virtualised Trusted

Computing Platform for Adaptive Security Enforcement of Web Services Interac-

tions. In: ICWS, IEEE Computer Society, 2007, S. 615–622 (cited on page 22)

Bibliography 167

http://dl.acm.org/citation.cfm?id=1824401.1824404
http://dl.acm.org/citation.cfm?id=1824401.1824404
http://dx.doi.org/10.1109/mtas.2003.1188276
http://dx.doi.org/10.1109/mtas.2003.1188276

[DP12] DINI, Gianluca ; PERAZZO, Pericle: Uniform obfuscation for location privacy. In:

Proceedings of the 26th Annual IFIP WG 11.3 conference on Data and Applications

Security and Privacy. Berlin, Heidelberg : Springer-Verlag, 2012 (DBSec’12). –

ISBN 978–3–642–31539–8, 90–105 (cited on pages 83, 84, and 183)

[DSR11] DÜRR, Frank ; SKVORTSOV, Pavel ; ROTHERMEL, Kurt: Position Shar-

ing for Location Privacy in Non-trusted Systems. In: Proceedings of the

9th IEEE International Conference on Pervasive Computing and Communi-

cations (PerCom 2011). Seattle, USA : IEEE, March 2011, S. 189–196

(cited on pages 18, 20, 21, 28, 32, 34, 49, 94, 96, 97, 110, 114, and 181)

[DWSR10] DÜRR, Frank ; WERNKE, Marius ; SKVORTSOV, Pavel ; ROTHERMEL, Kurt: Towards

a Position Sharing Approach for Location-based Services. In: Proceedings of the

W3C Workshop on Privacy for Advanced Web APIs, Online, July 2010, S. 1–3

(cited on pages 20 and 97)

[Eck87] ECKHARDT, Roger: Stan Ulam, John von Neumann, and the Monte Carlo

Method. In: Los Alamos Science (1987), S. 131–143 (cited on page 48)

[Egl90] EGLESE, R. W.: Simulated annealing: A tool for operational research.

In: European Journal of Operational Research 46 (1990), June, Nr. 3, 271-

281. http://ideas.repec.org/a/eee/ejores/v46y1990i3p271-281.

html (cited on page 107)

[Ela14] ELASTICHOSTS LTD: ElasticHosts Ltd. http://www.elastichosts.com, October

2014 (cited on page 18)

[Esr98] ESR, I. ; ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, INC. (Hrsg.): ESRI

Shapefile Technical Description. . : Environmental Systems Research In-

stitute, Inc., jul 1998. http://www.esri.com/library/whitepapers/

pdfs/shapefile.pdf (cited on page 57)

[Eyo08] EYOB, Ephrem: Social Implications of Data Mining and Information Privacy: In-

terdisciplinary Frameworks and Solutions. Hershey, PA : Information Science Ref-

erence - Imprint of: IGI Publishing, 2008. – ISBN 1605661961, 9781605661964

(cited on page 17)

[Fac15] FACEBOOK PLACES: Facebook. www.facebook.com/places, January 2015

(cited on page 14)

168 Bibliography

http://ideas.repec.org/a/eee/ejores/v46y1990i3p271-281.html
http://ideas.repec.org/a/eee/ejores/v46y1990i3p271-281.html
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[Fou14] FOURSQUARE: Foursquare. www.foursquare.com, October 2014

(cited on page 14)

[Gam88] GAMBETTA, Diego: Can We Trust Trust? In: Trust: Making and Breaking

Cooperative Relations, Basil Blackwell, 1988, S. 213–237 (cited on page 104)

[GDSB09] GHINITA, Gabriel ; DAMIANI, Maria L. ; SILVESTRI, Claudio ; BERTINO,

Elisa: Preventing velocity-based linkage attacks in location-aware appli-

cations. In: GIS ’09: Proceedings of the 17th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems. New

York, NY, USA : ACM, 2009. – ISBN 978–1–60558–649–6, S. 246–255

(cited on pages 85, 86, 87, 142, 147, 149, and 184)

[GG03] GRUTESER, Marco ; GRUNWALD, Dirk: Anonymous Usage of Location-Based

Services Through Spatial and Temporal Cloaking. In: Proceedings of the 1st

international conference on Mobile systems, applications and services (MobiSys

’03). New York, NY, USA : ACM, 2003, S. 31–42 (cited on page 85)

[GHS08] GUTSCHER, Andreas ; HEESEN, Jessica ; SIEMONEIT, Oliver: Possibilities and

Limitations of Modeling Trust and Reputation. In: WSPI Bd. 332, CEUR-WS.org,

2008 (CEUR Workshop Proceedings), S. 1–12 (cited on pages 101 and 104)

[GKS07] GHINITA, Gabriel ; KALNIS, Panos ; SKIADOPOULOS, Spiros: PRIVE: anony-

mous location-based queries in distributed mobile systems. In: WWW ’07:

Proceedings of the 16th international conference on World Wide Web. New

York, NY, USA : ACM, 2007. – ISBN 978–1–59593–654–7, S. 371–380

(cited on pages 78, 79, and 183)

[GL05] GEDIK, Bugra ; LIU, Ling: Location Privacy in Mobile Systems: A

Personalized Anonymization Model. In: ICDCS, 2005, S. 620–629

(cited on pages 76, 77, and 183)

[GL08] GEDIK, B. ; LIU, Ling: Protecting Location Privacy with Personalized k-

Anonymity: Architecture and Algorithms. In: IEEE Transactions on Mobile

Computing 7 (2008), January, Nr. 1, S. 1–18. http://dx.doi.org/10.

1109/TMC.2007.1062. – DOI 10.1109/TMC.2007.1062. – ISSN 1536–1233

(cited on page 76)

Bibliography 169

http://dx.doi.org/10.1109/TMC.2007.1062
http://dx.doi.org/10.1109/TMC.2007.1062

[Goo14] GOOGLE CLOUD PLATFORM: Google. https://cloud.google.com/compute/,

October 2014 (cited on page 18)

[Goo15] GOOGLE NOW: Google. http://google.com/landing/now, January 2015

(cited on page 14)

[GS97] GRINSTEAD, C. M. ; SNELL, J. L.: Introduction to probability. American Mathe-

matical Society, 1997 (cited on pages 62, 63, 64, and 183)

[Gut06] GUTSCHER, Andreas: Coordinate transformation - a solution for the pri-

vacy problem of location based services? In: Proceedings of 20th Interna-

tional Parallel and Distributed Processing Symposium IPDPS 2006, 2006, S. 7pp.

(cited on pages 83, 84, and 183)

[Gut07] GUTSCHER, A.: A Trust Model for an Open, Decentralized Reputation System. In:

Proceedings of the Joint iTrust and PST Conferences on Privacy Trust Management

and Security (IFIPTM 2007), 2007, S. 213–237 (cited on page 104)

[Gut09] GUTSCHER, Andreas: Reasoning with Uncertain and Conflicting Opinions in

Open Reputation Systems. In: Electronic Notes in Theoretical Computer Sci-

ence 244 (2009), August, 67–79. http://dx.doi.org/10.1016/j.entcs.

2009.07.039. – DOI 10.1016/j.entcs.2009.07.039. – ISSN 1571–0661

(cited on page 101)

[Hae12] HAENLE, Simon: Location Update Algorithms for Position Sharing,

Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Infor-

mationstechnik, Germany, Diplomarbeit, October 2012. – 1–92 S.

(cited on pages 20, 129, 155, 158, and 186)

[HGH+08] HOH, Baik ; GRUTESER, Marco ; HERRING, Ryan ; BAN, Jeff ; WORK, Daniel ;

HERRERA, Juan-Carlos ; BAYEN, Alexandre M. ; ANNAVARAM, Murali ; JACOBSON,

Quinn: Virtual trip lines for distributed privacy-preserving traffic monitoring.

In: Proceeding of the 6th international conference on Mobile systems, applications,

and services (MobiSys ’08). New York, NY, USA : ACM, 2008. – ISBN 978–1–

60558–139–2, S. 15–28 (cited on page 86)

[HGXA07] HOH, Baik ; GRUTESER, Marco ; XIONG, Hui ; ALRABADY, Ansaf: Preserving

Privacy in GPS Traces via Uncertainty-aware Path Cloaking. In: CCS ’07:

170 Bibliography

http://dx.doi.org/10.1016/j.entcs.2009.07.039
http://dx.doi.org/10.1016/j.entcs.2009.07.039

Proceedings of the 14th ACM conference on Computer and communications security.

New York, NY, USA : ACM, 2007. – ISBN 978–1–59593–703–2, S. 161–171

(cited on page 86)

[Hoy12] HOYO, Daniel del: Probabilistic map representation using GeoTools. Studienarbeit:

Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Verteilte

Systeme, May 2012 (cited on page 20)

[Hu82] HU, T. C.: Combinatorial algorithms. Reading, MA : Addison-Wesley, 1982

(cited on pages 104 and 106)

[HU90] HOPCROFT, John E. ; ULLMAN, Jeffrey D.: Introduction To Automata Theory,

Languages, And Computation. 1st. Boston, MA, USA : Addison-Wesley Longman

Publishing Co., Inc., 1990. – ISBN 020102988X (cited on page 105)

[Ins14] INSTAMAPPER LLC: InstaMapper LLC. http://www.instamapper.com/, October

2014 (cited on page 14)

[JI02] JØSANG, A. ; ISMAIL, R.: The beta reputation system. In: Proceedings of the

15th Bled Electronic Commerce Conference, 2002, S. 1–14 (cited on page 104)

[KBR05] KINATEDER, Michael ; BASCHNY, Ernesto ; ROTHERMEL, Kurt: Towards a Generic

Trust Model - Comparison of Various Trust Update Algorithms. In: iTrust, 2005,

S. 177–192 (cited on pages 101 and 104)

[KC01] KILLMANN, Frank ; COLLANI, Elart von: A Note on the Convolution of the Uni-

form and Related Distributions and Their Use in Quality Control. In: Economic

Quality Control 16 (2001), January, Nr. 1, S. 17–41. http://dx.doi.org/

10.1515/eqc.2001.17. – DOI 10.1515/eqc.2001.17. – ISSN 0940–5151

(cited on page 62)

[Kru09] KRUMM, John: A survey of computational location privacy. In: Per-

sonal and Ubiquitous Computing 13 (2009), August, Nr. 6, S. 391–399

(cited on pages 90 and 92)

[KV06] KORTE, Bernhard ; VYGEN, Jens: Combinatorial Optimization: Theory and Algo-

rithms. 3rd. Germany : Springer, 2006 http://www.springer.com/math/

numbers/book/978-3-540-71843-7 (cited on pages 104, 105, and 107)

Bibliography 171

http://dx.doi.org/10.1515/eqc.2001.17
http://dx.doi.org/10.1515/eqc.2001.17
http://www.springer.com/math/numbers/book/978-3-540-71843-7
http://www.springer.com/math/numbers/book/978-3-540-71843-7

[KVD04] KOTZ, S. ; VAN DORP, J.R.: Beyond Beta: Other Continuous Families Of Distribu-

tions With Bounded Support And Applications. World Scientific, 2004. – ISBN

9789812561152 (cited on page 63)

[KYS05] KIDO, H. ; YANAGISAWA, Y. ; SATOH, T.: An anonymous communication

technique using dummies for location-based services. In: Proceedings of

the International Conference on Pervasive Services (ICPS ’05), 2005, S. 88–97

(cited on pages 71, 72, and 183)

[LDR08] LANGE, Ralph ; DÜRR, Frank ; ROTHERMEL, Kurt: Online trajectory data

reduction using connection-preserving dead reckoning. In: Proceedings of

the 5th Annual International Conference on Mobile and Ubiquitous Systems:

Computing, Networking, and Services. ICST, Brussels, Belgium, Belgium : ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 2008 (Mobiquitous ’08). – ISBN 978–963–9799–27–1, 52:1–

52:10 (cited on pages 132 and 185)

[LHW07] LEE, Jae-Gil ; HAN, Jiawei ; WHANG, Kyu-Young: Trajectory clustering: a

partition-and-group framework. In: SIGMOD Conference, 2007, S. 593–604

(cited on page 86)

[LLLZ09] LEE, Ken C. K. ; LEE, Wang-Chien ; LEONG, Hong V. ; ZHENG, Baihua: OPAQUE:

Protecting Path Privacy in Directions Search. In: ICDE, 2009, S. 1271–1274

(cited on page 86)

[LLV07] LI, Ninghui ; LI, Tiancheng ; VENKATASUBRAMANIAN, S.: t-Closeness: Pri-

vacy Beyond k-Anonymity and l-Diversity. In: Proceedings of the IEEE 23rd

International Conference on Data Engineering (ICDE 2007), 2007, S. 106–115

(cited on page 80)

[LNR02] LEONHARDI, Alexander ; NICU, Christian ; ROTHERMEL, Kurt: A Map-based

Dead-reckoning Protocol for Updating Location Information. In: Proceedings

of the 2nd International Workshop on Parallel and Distributed Computing Issues

in Wireless Networks and Mobile Computing (IPDPSWPIM 2002), 2002, S. 1–11

(cited on pages 133, 134, and 185)

[LR01] LEONHARDI, Alexander ; ROTHERMEL, Kurt: A Comparison of Protocols

for Updating Location Information. In: Baltzer Cluster Computing Journal

172 Bibliography

(2001), January, 355–367. http://www.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2001-12&engl=

(cited on pages 130, 131, 132, and 185)

[LSTL13] LI, Ming ; SALINAS, Sergio ; THAPA, Arun ; LI, Pan: n-CD: A geometric approach

to preserving location privacy in location-based services. In: INFOCOM, 2013

Proceedings IEEE, 2013. – ISSN 0743–166X, S. 3012–3020 (cited on page 82)

[LW66] LAWLER, E. L. ; WOOD, D. E.: Branch-And-Bound Methods: A Survey. In:

Operations Research 14 (1966), Nr. 4, 699–719. http://dx.doi.org/10.

2307/168733. – DOI 10.2307/168733. – ISSN 0030364X (cited on page 106)

[Mat00] MATHEWS, Paul: The Circular Normal Distribution. In: Mathews Malnar and

Bailey, Inc. (2000), S. 1–20 (cited on page 64)

[Mau96] MAURER, Ueli M.: Modelling a Public-Key Infrastructure. In: ESORICS, 1996,

S. 325–350 (cited on page 104)

[MBW+09] MASCETTI, Sergio ; BETTINI, Claudio ; WANG, Xiaoyang S. ; FRENI, Dario

; JAJODIA, Sushil: ProvidentHider: An Algorithm to Preserve Historical

k-Anonymity in LBS. In: Mobile Data Management, 2009, S. 172–181

(cited on pages 80 and 85)

[MCA06] MOKBEL, Mohamed F. ; CHOW, Chi-Yin ; AREF, Walid G.: The new Casper: query

processing for location services without compromising privacy. In: Proceedings

of the 32nd international conference on Very large data bases (VLDB ’06), VLDB

Endowment, 2006, S. 763–774 (cited on pages 75, 76, and 183)

[MDKG05] MARIAS, G.F. ; DELAKOURIDIS, C. ; KAZATZOPOULOS, L. ; GEORGIADIS, P.: Lo-

cation privacy through secret sharing techniques. In: Proceedings of the 1st

International IEEE WoWMoM Workshop on Trust, Security and Privacy for Ubiq-

uitous Computing (WOWMOM ’05). Washington, DC, USA : IEEE Computer

Society, June 2005, S. 614–620 (cited on page 89)

[MFB+11] MASCETTI, Sergio ; FRENI, Dario ; BETTINI, Claudio ; WANG, X. S. ; JAJODIA,

Sushil: Privacy in geo-social networks: proximity notification with untrusted

service providers and curious buddies. In: The VLDB Journal 20 (2011), August,

Nr. 4, S. 541–566. – ISSN 1066–8888 (cited on page 71)

Bibliography 173

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2001-12&engl=
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2001-12&engl=
http://dx.doi.org/10.2307/168733
http://dx.doi.org/10.2307/168733

[MKGV07] MACHANAVAJJHALA, Ashwin ; KIFER, Daniel ; GEHRKE, Johannes ; VENKITA-

SUBRAMANIAM, Muthuramakrishnan: L-diversity: Privacy beyond k-anonymity.

In: ACM Transactions on Knowledge Discovery from Data 1 (2007), Nr.

1, S. 3. http://dx.doi.org/http://doi.acm.org/10.1145/1217299.

1217302. – DOI http://doi.acm.org/10.1145/1217299.1217302. – ISSN

1556–4681 (cited on pages 79, 80, and 183)

[MN88] MAZZOLA, J. B. ; NEEBE, A. W.: Bottleneck generalized assignment problems.

In: Engineering Costs and Production Economics 14 (1988), Nr. 1, S. 61–65

(cited on page 117)

[Mok07] MOKBEL, Mohamed F.: Privacy in Location-Based Services: State-of-the-Art and

Research Directions. In: MDM, 2007, S. 228 (cited on pages 14, 91, and 181)

[MT90] MARTELLO, Silvano ; TOTH, Paolo: Knapsack Problems: Algorithms and Computer

Implementations. New York, NY, USA : John Wiley & Sons, Inc., 1990. – ISBN

0–471–92420–2 (cited on pages 104 and 106)

[NWvL07] NEISSE, R. ; WEGDAM, M. ; VAN SINDEREN, M.J. ; LENZINI, G.: Trust Management

Model and Architecture for Context-Aware Service Platforms. In: On the Move

to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS Bd.

4804. Berlin : Springer Verlag, November 2007 (Lecture Notes in Computer

Science), 1803–1820 (cited on page 104)

[OXL+08] OUYANG, Yi ; XU, Yurong ; LE, Zhengyi ; CHEN, Guanling ; MAKEDON, Fillia:

Providing location privacy in assisted living environments. In: Proceedings of

the 1st international conference on PErvasive Technologies Related to Assistive

Environments (PETRA ’08). New York, NY, USA : ACM, 2008. – ISBN 978–1–

60558–067–8, S. 1–8 (cited on pages 75 and 183)

[Pau11] PAUL, Andreas: Visualisierung von Kartenobjekten mit GeoTools. Studienarbeit:

Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Verteilte

Systeme, June 2011 (cited on pages 20, 42, 163, 182, and 186)

[Pav08] PAVLOVIC, Dusko: Dynamics, robustness and fragility of trust. In: CoRR

abs/0808.0732 (2008) (cited on page 117)

174 Bibliography

http://dx.doi.org/http://doi.acm.org/10.1145/1217299.1217302
http://dx.doi.org/http://doi.acm.org/10.1145/1217299.1217302

[PL11] PALANISAMY, Balaji ; LIU, Ling: MobiMix: Protecting location privacy with

mix-zones over road networks. In: Proceedings of the 2011 IEEE 27th Inter-

national Conference on Data Engineering. Washington, DC, USA : IEEE Com-

puter Society, 2011 (ICDE ’11). – ISBN 978–1–4244–8959–6, S. 494–505

(cited on pages 73, 74, and 183)

[PRB08] PARESCHI, Linda ; RIBONI, Daniele ; BETTINI, Claudio: Protecting Users’

Anonymity in Pervasive Computing Environments. In: PerCom, 2008, S. 11–19

(cited on page 72)

[Pri97] PRITCHARD, C.L.: Risk management. ESI International, 1997 https://

books.google.co.in/books?id=ZJLuoq-xgvMC. – ISBN 9781890367060

(cited on page 117)

[Pri14] PRIVACY RIGHTS CLEARINGHOUSE: Privacy Rights Clearinghouse.

http://www.privacyrights.org/data-breach, October 2014 (cited on page 17)

[PRRJ06] POTLAPALLY, N.R. ; RAVI, S. ; RAGHUNATHAN, A. ; JHA, N.K.: A study of

the energy consumption characteristics of cryptographic algorithms and se-

curity protocols. In: Mobile Computing, IEEE Transactions on 5 (2006), Feb,

Nr. 2, S. 128–143. http://dx.doi.org/10.1109/TMC.2006.16. – DOI

10.1109/TMC.2006.16. – ISSN 1536–1233 (cited on page 70)

[PSD15] PERAZZO, Pericle ; SKVORTSOV, Pavel ; DINI, Gianluca: On Designing Resilient

Location-Privacy Obfuscators. In: The Computer Journal (2015), February.

http://dx.doi.org/10.1093/comjnl/bxv009. – DOI 10.1093/comjn-

l/bxv009 (cited on page 83)

[PZ02] PENSKY, Marianna ; ZAYED, Ahmed: Density Deconvolution of Different Con-

ditional Distributions. In: Annals of the Institute of Statistical Mathematics

54 (2002), Nr. 3, 701-712. http://EconPapers.repec.org/RePEc:spr:

aistmt:v:54:y:2002:i:3:p:701-712 (cited on pages 65 and 66)

[Rac15] RACKSPACE US INC.: The Rackspace Cloud. http://www.rackspace.com, January

2015 (cited on page 18)

[RDR15] RIAZ, Zohaib ; DÜRR, Frank ; ROTHERMEL, Kurt: Optimized Location Update

Protocols for Secure and Efficient Position Sharing. In: Proceedings of the

Bibliography 175

https://books.google.co.in/books?id=ZJLuoq-xgvMC
https://books.google.co.in/books?id=ZJLuoq-xgvMC
http://dx.doi.org/10.1109/TMC.2006.16
http://dx.doi.org/10.1093/comjnl/bxv009
http://EconPapers.repec.org/RePEc:spr:aistmt:v:54:y:2002:i:3:p:701-712
http://EconPapers.repec.org/RePEc:spr:aistmt:v:54:y:2002:i:3:p:701-712

2nd International Conference on Networked Systems: NetSys 2015; Cottbus,

Germany, March 9-13, 2015, IEEE Computer Society, March 2015, S. 1–8

(cited on page 153)

[RM03] RAO, Bharat ; MINAKAKIS, Louis: Evolution of Mobile Location-based Services.

In: Communications of the ACM 46 (2003), December, Nr. 12, S. 61–65. – ISSN

0001–0782 (cited on page 14)

[RPB08] RIBONI, Daniele ; PARESCHI, Linda ; BETTINI, Claudio: Privacy in Georefer-

enced Context-aware Services: A Survey. In: Proceedings of the 1st Interna-

tional Workshop on Privacy in Location-Based Applications, 2008, S. 151–172

(cited on page 71)

[Sch11] SCHEMBERA, Björn: Platzierungsoptimierung für vertrauliche Verwaltung der

verteilten Positionsinformationen, Universität Stuttgart, Fakultät Informatik,

Elektrotechnik und Informationstechnik, Germany, Diplomarbeit, May 2011. –

1–104 S. (cited on pages 20 and 99)

[SDFMB08] SOLANAS, Agusti ; DOMINGO-FERRER, Josep ; MARTÍNEZ-BALLESTÉ, Antoni:

Location Privacy in Location-Based Services: Beyond TTP-based Schemes. In:

PiLBA, 2008, S. 127–131 (cited on pages 90, 91, and 184)

[SDR12] SKVORTSOV, Pavel ; DÜRR, Frank ; ROTHERMEL, Kurt: Map-aware Po-

sition Sharing for Location Privacy in Non-trusted Systems. In: Pro-

ceedings of the 10th International Conference on Pervasive Computing (Per-

vasive 2012). Newcastle, UK : Springer, June 2012, S. 388–405

(cited on pages 19, 20, 21, 94, 96, 97, 110, and 114)

[SGI09] SHANKAR, Pravin ; GANAPATHY, Vinod ; IFTODE, Liviu: Privately query-

ing location-based services with SybilQuery. In: UbiComp, 2009, S. 31–40

(cited on pages 72, 73, and 183)

[Sha79] SHAMIR, Adi: How to share a secret. In: Communications of the ACM 22 (1979),

Nr. 11, S. 612–613. – ISSN 0001–0782 (cited on page 89)

[SNE06] STEINIGER, Stefan ; NEUN, Moritz ; EDWARDES, Alistair: Foundations of Loca-

tion Based Services Lesson 1 CartouCHe 1- Lecture Notes on LBS, V. 1.0. 2006

(cited on page 14)

176 Bibliography

[SO09] SINGHAL, Anoop ; OU, Xinming: Techniques for enterprise network security

metrics. In: Proceedings of the 5th Annual Workshop on Cyber Security and

Information Intelligence Research: Cyber Security and Information Intelligence

Challenges and Strategies. New York, NY, USA : ACM, 2009 (CSIIRW ’09). –

ISBN 978–1–60558–518–5, 25:1–25:4 (cited on page 104)

[SSDF08] SOLANAS, Agusti ; SEBÉ, Francesc ; DOMINGO-FERRER, Josep: Micro-

aggregation-based heuristics for p-sensitive k-anonymity: one step beyond.

In: Proceedings of the 2008 international workshop on Privacy and anonymity

in information society (PAIS ’08). New York, NY, USA : ACM, 2008. – ISBN

978–1–59593–965–4, S. 61–69 (cited on page 80)

[Ste63] STEPHENS, M. A.: Random Walk on a Circle. In: Biometrika 50 (1963),

Dezember, Nr. 3/4, 385+. http://dx.doi.org/10.2307/2333907. – DOI

10.2307/2333907. – ISSN 00063444 (cited on page 66)

[Sto01] STORER, J.A.: An Introduction to Data Structures and Algorithms. Birkhäuser

Boston, 2001 (Progress in Computer Science and Applied Logic Series). http:

//books.google.de/books?id=S-tXjl1hsUYC. – ISBN 9780817642532

(cited on page 106)

[TA10] TALUKDER, Nilothpal ; AHAMED, Sheikh I.: Preventing multi-query attack in

location-based services. In: Proceedings of the third ACM conference on Wireless

network security. New York, NY, USA : ACM, 2010 (WiSec ’10). – ISBN 978–1–

60558–923–7, 25–36 (cited on page 78)

[The14] THE WASHINGTON POST: Here’s everything we know about PRISM to date.

http://www.washingtonpost.com/blogs/wonkblog/wp/2013/06/12/heres-

everything-we-know-about-prism-to-date/, October 2014 (cited on page 17)

[TM08] TERROVITIS, Manolis ; MAMOULIS, Nikos: Privacy Preservation in the Publication

of Trajectories. In: 9th International Conference on Mobile Data Management

(MDM ’08), 2008, S. 65–72 (cited on page 86)

[Tra14] TRACE4YOU: FALCOM. http://www.trace4you.com, October 2014

(cited on page 14)

[Usp37] USPENSKY, James V.: Introduction to Mathematical Probability. McGraw-Hill,

1937 (cited on page 63)

Bibliography 177

http://dx.doi.org/10.2307/2333907
http://books.google.de/books?id=S-tXjl1hsUYC
http://books.google.de/books?id=S-tXjl1hsUYC

[VM03] VENTER, Gary G. ; MAJOR, John A.: Allocating Capital By Risk Measures: A

Systematic Survey. In: Guy Carpenter Views, Guy Carpenter, August 2003, S.

1–7 (cited on pages 116 and 117)

[VMG+01] VIRRANTAUS, K. ; MARKKULA, J. ; GARMASH, A. ; TERZIYAN, V. ; VEIJALAINEN,

J. ; KATANOSOV, A. ; TIRRI, H.: Developing GIS-supported location-based ser-

vices. In: Web Information Systems Engineering, 2001. Proceedings of the Second

International Conference on Bd. 2, 2001, S. 66–75 (cited on pages 14 and 16)

[WDR12] WERNKE, Marius ; DÜRR, Frank ; ROTHERMEL, Kurt: PShare: Position Sharing

for Location Privacy based on Multi-Secret Sharing. In: Proceedings of the

10th IEEE International Conference on Pervasive Computing and Communica-

tions (PerCom 2012). Lugano, Switzerland : IEEE, March 2012, S. 153–161

(cited on pages 89, 90, 96, 100, 101, 102, and 184)

[WDR13] WERNKE, Marius ; DÜRR, Frank ; ROTHERMEL, Kurt: PShare: Ensuring loca-

tion privacy in non-trusted systems through multi-secret sharing. In: Perva-

sive and Mobile Computing (2013), Nr. 0, -. http://www.sciencedirect.

com/science/article/pii/S1574119213000229. – ISSN 1574–1192

(cited on page 149)

[Wei02] WEICKER, Karsten: Evolutionäre Algorithmen. Stuttgart : Teubner, 2002

(cited on pages 107, 108, 118, and 184)

[Wes67] WESTIN, Alan: Privacy and Freedom. New York : New Jork Atheneum, 1967

(cited on page 16)

[Wik14] WIKILEAKS: WikiLeaks Archives. https://wikileaks.org/, October 2014

(cited on page 17)

[WL09] WANG, Ting ; LIU, Ling: From data privacy to location privacy.

(2009), April, 217–247. http://portal.acm.org/author_page.cfm?id=

1326035. ISBN 978–0–387–88734–0 (cited on page 90)

[WLFW06] WONG, Raymond Chi-Wing ; LI, Jiuyong ; FU, Ada Wai-Chee ; WANG, Ke: (alpha,

k)-anonymity: an enhanced k-anonymity model for privacy preserving data

publishing. In: KDD, 2006, S. 754–759 (cited on page 80)

178 Bibliography

http://www.sciencedirect.com/science/article/pii/S1574119213000229
http://www.sciencedirect.com/science/article/pii/S1574119213000229
http://portal.acm.org/author_page.cfm?id=1326035
http://portal.acm.org/author_page.cfm?id=1326035

[WSDR14] WERNKE, Marius ; SKVORTSOV, Pavel ; DÜRR, Frank ; ROTHERMEL, Kurt:

A Classification of Location Privacy Attacks and Approaches. In: Per-

sonal and Ubiquitous Computing (Special Issue on Security and Trust in

Context-Aware Systems) 18 (2014), Nr. 1, 163–175. http://dx.doi.

org/10.1007/s00779-012-0633-z. – DOI 10.1007/s00779–012–0633–z

(cited on pages 20, 21, 71, 92, 93, 94, 95, 97, and 184)

[XCa14] XCALIBRE COMMUNICATIONS LTD: Flexiscale. http://flexiscale.com, October

2014 (cited on page 18)

[YJHL08] YIU, Man L. ; JENSEN, Christian S. ; HUANG, Xuegang ; LU, Hua:

SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query Per-

formance, and Query Accuracy in Mobile Services. In: Proc. of ICDE,

IEEE Computer Society, 2008. – ISBN 978–1–4244–1836–7, S. 366–375

(cited on pages 84, 85, and 183)

[YS02] YU, Bin ; SINGH, Munindar P.: An Evidential Model of Distributed Reputation

Management. In: In Proceedings of First International Joint Conference on

Autonomous Agents and Multiagent Systems, ACM Press, 2002, S. 294–301

(cited on page 104)

[ZC03] ZHOU, Yu ; CHIRIKJIAN, Gregory S.: Probabilistic models of dead-reckoning

error in nonholonomic mobile robots. In: In Proc. IEEE Int. Conf. Robotics and

Automation (ICRA, 2003, S. 1594–1599 (cited on page 151)

[ZH09] ZHANG, Chengyang ; HUANG, Yan: Cloaking locations for anonymous location

based services: a hybrid approach. In: GeoInformatica 13 (2009), Nr. 2, S.

159–182 (cited on pages 76, 78, and 183)

[ZP07] ZOU, Joe ; PAVLOVSKI, Christopher J.: Towards Accountable Enterprise Mashup

Services. In: Proceedings of the IEEE International Conference on e-Business

Engineering. Washington, DC, USA : IEEE Computer Society, 2007 (ICEBE ’07).

– ISBN 0–7695–3003–6, S. 205–212 (cited on page 18)

[ZXM10] ZHENG, Yu ; XIE, Xing ; MA, Wei-Ying: GeoLife: A Collaborative Social Network-

ing Service among User, Location and Trajectory. In: IEEE Data Eng. Bull. 33

(2010), Nr. 2, S. 32–39 (cited on page 154)

Bibliography 179

http://dx.doi.org/10.1007/s00779-012-0633-z
http://dx.doi.org/10.1007/s00779-012-0633-z

LIST OF FIGURES

1.1. Convergence of technologies for creating an LBS [Mok07] 14

1.2. System architecture of an LBS . 15

2.1. System model: mobile object (MO) sends information to location servers

(LSs), which provide this information to location-based applications (LBAs) . 22

2.2. Basic idea of position sharing approach: after getting each new share, the

precision is increased until we get the exact MO’s position π 24

2.3. Classification of position sharing algorithms . 28

2.4. OSPS-ASO: fusion of the same set of shares in an arbitrary order 30

2.5. OSPS-ASO: maximal vector length depending on n 30

2.6. Distribution of π inside c0 for “a-posteriori” share generation Algorithm 2

(n= 5, Monte Carlo with 1000 runs) [DSR11] 32

2.7. “A-priori” share generation Algorithm 3, line 7: (a) condition is not fulfilled;

(b) condition is fulfilled . 33

2.8. (a) Example pdf for “a-priori” share generation Algorithm 3 (n = 5, Monte

Carlo with 1000 runs); (b) example of a correlated vector set where vectors

are biased towards the North-East area [DSR11] 34

2.9. Fusion of shares in a fixed order without area adjustment 35

2.10.OSPS-FSO: a) intersection A2 of three circles c0, c1, c2; b) adjustment of inter-

section area through radius increase for c1: A1 = area(c0 ∩ c1) 36

2.11.Adjustment of pi during radius increase: (a) no adjustment of pi; (b) ran-

domized adjustment of pi . 38

2.12.Computation of an arbitrary-shaped area size for c2 based on space discretization 40

2.13.(a) Basic map; (b) map representation Mu1 for a moving user u1 41

181

2.14.(a) Map representation Mu1 for an MO as a car u1; (b) map representation

Mu2 for an MO as a pedestrian u2; green areas indicate “true”, dark-red and

white areas indicate “false” [Pau11] . 42

2.15.CSPS: a) intersection of 3 circles c0, c1, c2 and the map representation Mu; b)

adjustment of intersection area through radius increase for c1: A1 = area(Mu∩
c0 ∩ c1) = area(c1a) . 42

2.16.Dependency of probabilistic guarantees Pk,10% on different precision levels

represented through the corresponding radii rk for various n values with

r0 = 75 km: “a-posteriori” share generation Algorithm 2; 100 runs of the

Monte Carlo method . 50

2.17.Dependency of probabilistic guarantees Pk,10% on different precision levels

represented through the corresponding radii rk for various n values with

r0 = 75 km: “a-priori” share generation Algorithm 3; 100 runs of the Monte

Carlo method . 51

2.18.OSPS-FSO: kth circle fraction after k circles are intersected, without area

adjustment; 1000 runs of the Monte Carlo method 52

2.19.Radii of obfuscation circles ck depending on k of n shares for OSPS-ASO

“a-priori” and OSPS-FSO; 1000 runs of the Monte Carlo method 53

2.20.Maximal possible shift of OSPS-ASO algorithms compared with the average

shift of the fixed order based OSPS-FSO algorithm without area adjustment,

and OSPS-FSO algorithm with area adjustment; r0 = 40 km; 1000 runs of the

Monte Carlo method . 54

2.21.Analysis of OSPS-FSO algorithm with and without area adjustment depending

on k of n shares; 1000 runs of the Monte Carlo method 55

2.22.(a) Obfuscation area computed for different k for both OSPS-ASO “a-priori”

and OSPS-FSO; (b) comparison of share generation algorithms: probability of

deriving that the target MO’s position π is located within 10% of the current

obfuscation circle ck (Pk,10%); n = 5; r0 = 25 km; 100 runs of the Monte Carlo

simulation . 56

2.23.Precision φk,at tack corresponding to probability Pk,attack(φk,at tack) depending

on k for (a) OSPS-ASO and (b) OSPS-FSO; n = 5, r0 = 10 km; 100 runs of

the Monte Carlo simulation . 56

2.24.(a) Roads and squares of the City of Los Angeles; (b) forests of Baden-

Württemberg . 58

182 List of Figures

2.25.The intersection area of circles c0∩c1∩ . . .∩ck of CSPS compared to OSPS-FSO

with no area adjustment based on map knowledge; 1000 runs of the Monte

Carlo method . 60

2.26.Convolution of two uniform probabilities [GS97] 63

2.27.Convolution of n uniform probabilities [GS97] 64

2.28.One-dimensional pdf’s for different n values, with the sum of the convoluted

variables fixed: curves with higher peaks correspond to higher n 65

2.29.Circular bivariate distributions for n= 2 and n= 5 65

2.30.Example of position data distribution with diverse ubiquity, congestion and

uniformity parameters [KYS05] . 72

2.31.Querying an LBS: (a) without SybilQuery; (b) using SybilQuery with k = 3

[SGI09] . 73

2.32.Example of movement of 3 users through a simple mix zone [BS04] 74

2.33.Mix zone over a road network [PL11] . 74

2.34.Dynamic circular mix zones [OXL+08] . 75

2.35.Adaptive location anonymizer [MCA06] . 76

2.36.The Clique-Cloak algorithm [GL05] . 77

2.37.System architecture for P2P spatial cloaking [CML06] 77

2.38.RRS algorithm for the number of clients in a mobile client’s surrounding cell

Km = 7 [ZH09] . 78

2.39.Hilbert curve examples: (a) 4× 4 cells; (b) 8× 8 cells [GKS07] 79

2.40.(a) 4-anonymous inpatient microdata; (b) 3-diverse inpatient microdata

[MKGV07] . 80

2.41.Obfuscation by: (a) enlarging the radius; (b) shifting the center; (c) reducing

the radius [ACD+07] . 81

2.42.Query score of ILRQ; p – probability that user S obtains Ri as the query answer;

V – precision of Ri with respect to the full set of answers R [CZBP06] 82

2.43.Addition of a dummy vertex s to the obfuscated multisource graph, with a

set of query locations Q = q1, . . . , q5 (gray vertices) and a set of obfuscation

locations O = o1, . . . , o6 (black vertices) [DK05] 83

2.44.Obfuscation circles with two different error measures [DP12] 84

2.45.Representation of point ~p in two coordinate systems kA and kB, with corre-

sponding coordinates ~cp,A and ~cp,B; ~dB,A is the transformation vector [Gut06] . 84

2.46.Demand space and supply space before and after the refinement [YJHL08] . 85

List of Figures 183

2.47.Attack model with background map knowledge [GDSB09] 86

2.48.Spatio-temporal cloaking: (a) temporal cloaking; (b) spatial cloaking [GDSB09] 87

2.49.A (2,δ)-anonymity set formed by two co-localized trajectories, their respective

uncertainty levels, and the central cylindrical volume of radius δ/2, which

contains both trajectories [ABN08] . 87

2.50.Example of 1D landscape prior probability distribution λ(t): the user is b

times more likely to be localized between 0 and 2d than elsewhere (R –

obfuscation circle radius) [ACG09] . 88

2.51.Obfuscated map generated by the PROBE algorithm for two hospitals [DBS10] 89

2.52.(a) Geometric area of obfuscated MO position p(π, l) for granularity of pre-

cision levels b = 2 and precision level lmax = 3; (b) PShare-GLM (geometric

location model) process overview [WDR12] . 90

2.53.(a) Scheme of direct communication between the mobile object and the

LBS; (b) communication between the mobile object and the LBS through an

intermediate trusted third party (TTP); (c) communication scheme between

a set of collaborative users and an untrusted LBS. L is precise position; L′ is

obfuscated position; query is denoted as Q [SDFMB08] 91

2.54.General privacy threats in LBS [BMW+09] . 92

2.55.Classification of attacker knowledge [WSDR14] 93

2.56.Classification of location privacy attacks [WSDR14] 94

2.57.Classification of location privacy techniques according to location privacy

goals and attacker knowledge [WSDR14] . 95

3.1. Extended system model: now including a trust database 100

3.2. Cycle of an evolutionary algorithm [Wei02] . 108

3.3. Probabilistic guarantees of precision levels Pk,attack depending on various LS

risk values p . 110

3.4. Probabilistic guarantees of precision levels Pk,attack depending on two different

sets of LSs (m= 3 and m= 10) for φmin = 100 km; φ denotes the obtained

increase of position’s precision . 111

3.5. Probabilistic guarantees of precision levels Pk,attack depending on various sets

of selected m LSs: the case of less diverse LS risks: m0 = 5; p1 = 0.1; p2 =

0.2; p3 = 0.3; p4 = 0.4; p5 = 0.5 . 113

184 List of Figures

3.6. Probabilistic guarantees of precision levels Pk,attack depending on various sets

of selected m LS: the case of more diverse LS risks m0 = 5; p1 = 0.01; p2 =

0.05; p3 = 0.25; p4 = 0.5; p5 = 0.9 . 114

3.7. Share placement cases 1a, 1c, 1b, 1d . 122

3.8. Share placement cases 2a, 2b, 2c, 2d . 122

3.9. Computational cost of genetic share placement algorithm (Algorithm 10) . . 124

3.10.Precisionφ and probabilistic guarantees of precision levels Pk,attack for different

share placements . 125

3.11.Placement optimization: precision φ and probabilistic guarantees of precision

levels Pk,attack . 126

4.1. Overview of different types of location update protocols [LR01] 130

4.2. Linear dead-reckoning principle [LDR08] . 132

4.3. Overview of different types of dead-reckoning protocols [LNR02] 133

4.4. Optimization of location updates: why dead reckoning is not applicable . . . 135

4.5. Location updates optimization: (a) navigation scenario; (b) point-of-interest

queries scenario . 138

4.6. PSUA1: little movement of MO; MO remains inside the innermost circle cn−1 139

4.7. PSUA2: large movement of MO; two consecutive master shares do not intersect141

4.8. Location updates optimization: estimation of communication cost LS-LBA . . 144

4.9. The intersection of the curves is the point where PSUA2 starts to be more

beneficial than PSUA1; the communication cost values are calculated for

n= 10, k = 1 . . . 10, nLBA = 10 . 146

4.10.Velocity-based linkage attack: reachable area based on MO’s speed and ob-

fuscation area reduced through overlapping . 148

4.11.Skipped update’s effect: extended area . 150

4.12.Maximal movement boundary: estimation shows that any point within the

obfuscation circle c i
k is reachable from the previous obfuscation circle c i−1

k . . 151

4.13.Knowing indices of updated shares in PSUA1: examples for n = 10, 3 last

shares are updated. 152

4.14.Knowing indices of updated shares and the trajectory pattern: c0 is updated

during the first 3 updates, while the 4th update affects only the last three

shares (s10, s9, s8); n= 10 . 154

List of Figures 185

4.15.An example of Geolife location data with position updates marked by red

dots; small time intervals (1-5 seconds) and small distances (5-10 meters)

between updates [Hae12] . 155

4.16.Continuous location updates with radius r0 = 5 m; n= 5; nLBA = 5 156

4.17.Continuous location updates with radius r0 = 50 m; n= 5; nLBA = 5 157

4.18.Sporadic location updates with radius r0 = 50 m; n= 5; nLBA = 5 157

4.19.Sporadic location updates with radius r0 = 100 m; n= 5; nLBA = 5 157

4.20.Saving rate (reduction of update messages, %) depending on radius r0 of the

master share; n= 5; nLBA = 5 [Hae12] . 158

4.21.Probabilistic guarantees of privacy levels Pk,10% of OSPS-ASO “a-priori” with

and without PSUA1 applied; n= 5, 100 runs of the Monte Carlo method . . . 159

5.1. Map representation with different probabilities assigned to different map

objects [Pau11] . 163

186 List of Figures

LIST OF TABLES

2.1. Comparison of position sharing algorithms . 46

2.2. Comparison of various position sharing algorithms: privacy guarantees 61

2.3. Processing overhead of OSPS-ASO algorithms, ms 68

2.4. Attacker’s processing overhead for Monte Carlo analysis resulting in 100

samples of position π, having k known shares out of n shares, s 70

3.1. Overview of share placement cases . 120

187

A
P

P
E

N
D

IX A
LIST OF SELECTED ABBREVIATIONS

• ABGAP – Agent Bottleneck Generalized Assignment Problem

• ASO – Arbitrary Share Order

• BRPP – Balanced Risk Placement Problem

• CPU – Central Processing Unit

• CSPS – Constrained Space Position Sharing

• ESRI – Environmental Systems Research Institute

• FSO – Fixed Share Order

• GPS – Global Positioning System

• HTTP – Hypertext Transfer Protocol

• ILRQ – Imprecise Location-based Range Query

• JSON – JavaScript Object Notation

• LBA – Location-Based Application

• LBS – Location-Based Service

• LS – Location Server

• MO – Mobile Object

189

• NP – Nondeterministic Polynomial time

• OS – Operating System

• OSPS – Open Space Position Sharing

• P2P – Peer-to-Peer

• pdf – Probability Density Function

• POI – Point of Interest

• PSUA – Position Sharing Update Approach

• QoS – Quality of Service

• RRS – Random Range Shifting

• SSL – Secure Sockets Layer

• TCP – Trusted Computing Platform

• TTP – Trusted Third Party

• TSP – Travelling Salesman Problem

• XML – Extensible Markup Language

190 A | List of Selected Abbreviations

A
P

P
E

N
D

IX B
LIST OF SELECTED NOTATIONS

n number of shares

m0 total number of available LSs

m number of selected LSs

L total set of LSs

L′ set of selected LSs

pi obfuscated position of MO after obtaining ith share

pi in Chapter 3: risk level of ith LS

S set of shares

Sn set of n shares

si ith share

ni number of shares assigned to LSi

φ position precision

∆
φ

i precision increase provided by ith share si

π precise position of MO

πi precise position of MO at the ith update

s0 master share (share with minimal position precision i.e. maximal obfuscation)

πattack MO’s position derived by an attacker

Pk,attack probability of k LSs compromised by an attacker

Pk acceptable probability of k LSs compromised

191

	Contents
	Acknowledgements
	Kurzfassung (German)
	Abstract
	1 Introduction
	1.1 Background: Location-Based Services
	1.2 Motivation
	1.3 Focus and Contributions

	2 Position Sharing Approach
	2.1 System Model
	2.2 Privacy Metrics
	2.3 Problem Statement
	2.4 Share Generation and Share Fusion Algorithms
	2.4.1 Open Space – Any Share Order: ``a-posteriori'' Share Generation
	2.4.1.1 Share Fusion Algorithm
	2.4.1.2 ``A-posteriori'' Share Generation Algorithm

	2.4.2 Open Space – Any Share Order: ``a-priori'' Share Generation
	2.4.2.1 ``A-priori'' Share Generation Algorithm

	2.4.3 Open Space – Fixed Share Order
	2.4.3.1 OSPS-FSO: Share Fusion Algorithm
	2.4.3.2 OSPS-FSO: Share Generation Algorithm
	2.4.3.3 Adjustment of Lg During the Radius Increase
	2.4.3.4 Computation of Arbitrary-shaped Area Size

	2.4.4 System Model Extension: Map Knowledge
	2.4.5 Constrained Space – Fixed Share Order (Map-aware Approach, CSPS)
	2.4.5.1 Share Fusion Algorithm
	2.4.5.2 Share Generation Algorithm

	2.4.6 Summary: Comparison of Algorithms

	2.5 Security Analysis
	2.5.1 Attacker Model
	2.5.2 Monte Carlo Simulation
	2.5.3 Open Space Evaluation
	2.5.3.1 Comparison of OSPS-ASO ``a-posteriori'' and OSPS-ASO ``a-priori''
	2.5.3.2 Comparison of OSPS-ASO ``a-priori'' and OSPS-FSO

	2.5.4 Constrained Space Evaluation
	2.5.4.1 Map Information Format
	2.5.4.2 Analysis of CSPS

	2.5.5 Summary: Comparison of Algorithms
	2.5.6 Alternative Estimations of Security
	2.5.6.1 OSPS-ASO ``a-posteriori'' and Convolution of Shares
	2.5.6.2 OSPS-ASO ``a-priori'' and Impossibility of Deconvolution of Shares
	2.5.6.3 Alternative Estimations of Security: Summary

	2.6 Performance Evaluation
	2.6.1 Evaluation Setup
	2.6.2 Processing Overhead
	2.6.3 Attacker's Overhead
	2.6.4 Communication Overhead

	2.7 Related Work: Privacy in Location-based Services
	2.7.1 Cryptography-based Approaches
	2.7.2 Position Dummies
	2.7.3 Mix Zones
	2.7.4 Lg-anonymity
	2.7.5 Spatial Obfuscation
	2.7.6 Coordinate Transformation
	2.7.7 Trajectory Privacy
	2.7.8 Map-aware Approaches
	2.7.9 Secret Sharing and Position Sharing
	2.7.10 Classification of Location Privacy Approaches
	2.7.11 Related Work: Summary

	2.8 Conclusion

	3 Optimization of Share Placement
	3.1 Problem Statement
	3.1.1 Extended System Model
	3.1.2 Privacy Metric
	3.1.3 Problem Statement

	3.2 Background and Related Work
	3.2.1 Trust Models
	3.2.2 Placement and Allocation Optimization Techniques

	3.3 Analysis of Share Placement's Influence on Privacy
	3.3.1 Influence of LS Risks on Probabilistic Privacy Guarantees
	3.3.2 Influence of Number of LSs on Probabilistic Privacy Guarantees
	3.3.3 Influence of Number of LSs on Probabilistic Privacy Guarantees

	3.4 General Selection & Placement Algorithm
	3.5 Optimizing Share Placement
	3.5.1 Share Placement Problem and Its Complexity
	3.5.2 Optimized Share Placement Algorithm
	3.5.3 Placement Strategies for Special Cases

	3.6 Evaluation
	3.6.1 Performance Evaluation
	3.6.2 Probabilistic Guarantees of Privacy Levels after Placement Optimization

	3.7 Conclusion

	4 Location Update Algorithms for Position Sharing
	4.1 Background and Related Work
	4.1.1 Classification of Location Update Protocols
	4.1.2 A Combined Location Update Protocol
	4.1.3 Dead Reckoning Protocols
	4.1.4 Map-based Dead-Reckoning
	4.1.5 Summary

	4.2 Problem Statement
	4.3 Position Sharing Update Approaches
	4.3.1 Position Sharing Update Approach 1: PSUA1
	4.3.2 Position Sharing Update Approach 2: PSUA2
	4.3.3 Position Sharing Update Approach 3: PSUA3
	4.3.4 Estimations of Efficiency

	4.4 Optimized Location Update Algorithm
	4.5 Security of Location Updates
	4.5.1 Challenges of Consecutive Updates
	4.5.2 Secure Location Updates
	4.5.3 Further Privacy Challenges: Discussion

	4.6 Evaluation
	4.6.1 Evaluation Setup
	4.6.2 Communication Cost after Reduction of Updates
	4.6.3 Probabilistic Guarantees of Privacy Levels after Position Update Optimization

	4.7 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Outlook

	Bibliography
	List of Figures
	List of Tables
	A List of Selected Abbreviations
	B List of Selected Notations

