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KURZFASSUNG (GERMAN)

Ortsbezogene Dienste (engl. location-based services) dienen dazu, die aktuelle geographische
Position des Nutzers zu bestimmen und im Rahmen einer Anwendung zu nutzen. Heutzutage
sind viele ortsbezogene Anwendungen fiir Nutzer mobiler Endgerite verfiigbar und weit
verbreitet, wie z.B. Google Now, Trace4You oder FourSquare. Diese Anwendungen sind auch
in verschiedenen Umgebungen eingesetzt, in denen Positionsprivatheit ein kritisches Thema
fiir Benutzer ist. Eine allgemeine Losung fiir die Sicherung der Positionsprivatheit eines
Benutzers ist, seine Positionsinformationen von geringerer Genauigkeit zu veroffentlichen.
In dieser Arbeit schlagen wir einen Ansatz vor, der rdumliche Verschleierung benutzt, um
Positionsprivatheit mobiler Nutzer zu sichern.

Nach der Offenlegung der Position des Benutzers mit einem bestimmten Verschleierungs-
grad ist der Kompromiss zwischen Datenschutz und Genauigkeit sehr wichtig, da das Ver-
trauen in die Dienstanbieter begrenzt ist. Eine hohere Verschleierung erhoht Positionspri-
vatheit, fiithrt aber zu geringerer Qualitidt der Dienstleistung. Wir bieten das “Position
Sharing”-Verfahren an, um dieses Problem zu 16sen. Die Grundidee ist, dass Positionsin-
formationen zwischen mehreren Dienstanbietern in Form von separaten Datenstiicken (in
dieser Arbeit als Positionsshares bezeichnet) verteilt werden. Unser Ansatz ermoglicht die
Nutzung von nichtvertrauenswiirdigen Dienstanbietern und verwaltet flexibel mehrere Stufen
des Datenschutzes fiir Benutzerpositionen, die auf probabilistischen Privatheitsmetriken
basieren. In dieser Arbeit prasentieren wir den “Position Sharing” Ansatz fiir mehrere Dien-
stanbieter der ortsbezogenen Dienste, der die Algorithmen zur Erzeugung und Kombination
von Positionsshares beinhaltet.

Eine wichtige Herausforderung im Rahmen des Ansatzes ist, dass der Umgebungskontext
des Benutzers deutlich das Niveau der Verschleierung verringern kann. D.h., ein Flugzeug, ein

Boot oder ein Auto stellt unterschiedliche Anforderungen an die zu verschleiernden Gebiete



dar. Deswegen ist es notig, die Karteninformationen bei der Auswahl der verschleierten
Gebiete zu beriicksichtigen. Wir gehen davon aus, dass eine statische Karte einem Angreifer
bekannt ist, die die echte Benutzerposition enthiillen kann. Wir analysieren, wie sich die
Karteninformation auf die Erzeugung und Fusion der Positionsshares auswirkt. Wir zeigen
auch den Unterschied zwischen dem kartebewussten “Position Sharing” Ansatz und seiner
Version fiir unstrukturierte Gebiete. Unsere Sicherheitsanalyse zeigt, dass der vorgeschlagene
“Position Sharing”-Ansatz gute Sicherheitsgarantien fiir unstrukturierte sowie strukturierte
Raummodelle anbietet.

Die nédchste Herausforderung ist, dass mehrere Positionsserver bzw. Serveranbieter un-
terschiedliche Vertrauenswiirdigkeitswerte aus der Sicht des Benutzers haben konnen. In
diesem Fall mochte der Benutzer unterschiedliche Genauigkeitsgrade der Positionsinfor-
mationen an jedem einzelnen Positionsserver offenlegen. Wir schlagen einen Ansatz fiir
Platzierungsoptimierung vor, der sicherstellt, dass das Risiko der Positionsserver nach den in-
dividuellen Vertrauensniveaus ausgeglichen wird. Unsere Evaluierung zeigt eine signifikante
Verbesserung der Positionsprivatheit nach der Anwendung der optimierten Shareverteilung,
im Vergleich zu der Gleichverteilung der Shares.

Das letzte betrachtete Problem ist das Lokationsupdateverfahren. Laut unserem Basisansatz
kann dies zu einem erheblichen Kommunikationsaufwand fiihren, wenn die Anzahl der un-
terschiedlichen Positionsserver (und der entsprechenden Privatheitsniveaus) n hoch ist:
Jedes Update wiirde n Nachrichten von jedem mobilen Nutzer an die Positionsserver er-
fordern, vor allem im Fall einer hohen Aktualisierungsrate. Wir bieten daher ein optimiertes
Lokationsupdateverfahren an, um die Anzahl der Nachrichten so zu verringern, dass die

Positionsprivatheit der mobilen Nutzer unverandert bleibt.
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ABSTRACT

Currently, many location-aware applications are available for mobile users of location-based
services. Applications such as Google Now, Trace4You or FourSquare are being widely
used in various environments where privacy is a critical issue for users. A general solution
for preserving location privacy for a user is to degrade the quality of his or her position
information. In this work, we propose an approach that uses spatial obfuscation to secure
the users’ position information. By revealing the user’s position with a certain degree of
obfuscation, the first crucial issue is the tradeoff between privacy and precision. This tradeoff
problem is caused by limited trust in the location service providers: higher obfuscation
increases privacy but leads to lower quality of service. We overcome this problem by
introducing the position sharing approach. Our main idea is that position information is
distributed amongst multiple providers in the form of separate data pieces called position
shares. Our approach allows for the usage of non-trusted providers and flexibly manages
the user’s location privacy level based on probabilistic privacy metrics. In this work, we
present the multi-provider based position sharing approach, which includes algorithms for
the generation of position shares and share fusion algorithms.

The second challenge that must be addressed is that the user’s environmental context
can significantly decrease the level of obfuscation. For example, a plane, a boat and a car
create different requirements for the obfuscated region. Therefore, it is very important to
consider map-awareness in selecting the obfuscated areas. We assume that a static map is
known to an adversary, which may help in deriving the user’s true position. We analyze both
how map-awareness affects the generation and fusion of position shares and the difference
between the map-aware position sharing approach and its open space based version. Our
security analysis shows that the proposed position sharing approach provides good security

guarantees for both open space and constrained space based models.

11



The third challenge is that multiple location servers and/or their providers may have
different trustworthiness from the user’s point of view. In this case, the user would prefer
not to reveal an equal level (precision) of position information to every server. We propose a
placement optimization approach that ensures that risk is balanced among the location servers
according to their individual trust levels. Our evaluation shows significant improvement of
privacy guarantees after applying the optimized share distribution, in comparison with the
equal share distribution.

The fourth related problem is the location update algorithm. A high number of different
location servers n (corresponding to n privacy levels) may lead to significant communication
overhead. Each update would require n messages from the mobile user to the location
servers, especially in cases of high update rate. Therefore, we propose an optimized location
update algorithm to decrease the number of messages sent without reducing the number of

privacy levels and the user’s privacy.
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CHAPTER

INTRODUCTION

In this chapter, we begin by presenting basic information about location-based services using
private user information. Then, we explain the need for preserving the user’s location privacy
while using the location-based services. Finally, we outline the goals and main features of

our approach.

1.1. Background: Location-Based Services

During the last few decades, we have experienced an unprecedented increase in access to
digital geographical information. The major contributing factors include the advance of cloud
services to store personal data remotely, the increased availability of fast internet connection
and the widespread usage of mobile devices, in addition to the common usage of geographic
positioning. The combined utilization of these modern technologies has allowed to create a
large variety of applications for users. Among them, location-based applications (LBAs) are
very popular nowadays. The availability of the user’s position makes services possible which
users could only dream of before: automated navigation with advanced geographical maps,
geo-social networking, search for places and locations by the given criteria, etc.

LBAs are supported by location services, which store the positions of mobile objects
(MOs) at location servers (LSs). At the same time, powerful mobile devices such as mobile
phones, smartphones, PDAs and tablet computers are becoming increasingly widespread.
Such mobile devices offer high processing power, large memory capacity and an integrated
positioning system—for example, the satellite-based Global Positioning System (GPS), which
was deployed between 1989 and 1994. Similarly to the Internet, GPS was initially developed

13



for military use and then later made available for civilian and commercial use. The widespread
flat-rate tariffs for network communication make the use of location-based applications
affordable for many users.

A location-based service (LBS) is a service for the users of mobile devices, which allows
for exchanging and processing the users’ location data through the mobile network. For ex-
ample, web services such as Google Now [Gool5], InstaMapper [Ins14], Trace4You [Tral4],
Facebook Places [Fac15] and FourSquare [Foul4] support queries for obtaining a user’s
nearest neighbors, local points of interests or a set of friends in a given area, etc. The
convergence of technologies which enables the functioning of an LBS is shown in Figure 1.1
[Mok07]. We can see that the use of advanced mobile devices with Internet access enables
the mobile Internet. If spatial databases become available over the Internet, they are known
as Web-GIS (Geographic Information System). Overall, the cooperation of all these tech-
nologies forms what is called the LBS. The basic system architecture of an LBS (Figure 1.2)
consisting of mobile device, positioning system, location server and communication network
[VMG*01, RM03, SNE06]. Below, we describe each major component in more detail.

Mobile device. It is an MO carried by mobile user, which can be used to request various
services and send them the required information. Today, the most widespread example of
such a device is a smartphone, i.e., a mobile phone with advanced functionality including a
GPS receiver.

Positioning system. This system allows the mobile device to automatically determine

its position locally. The methods for determining the position may vary: for example, the

GIS/ Spatial
Database

Mobile
Devices

Mobile
nterne

Figure 1.1.: Convergence of technologies for creating an LBS [Mok07]
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Figure 1.2.: System architecture of an LBS

localization can be done through GPS, or through a mobile radio system, which provides the
ID of the current mobile radio cell (the cell ID).

Location server (LS). An LS is responsible for managing the position information of
mobile devices and provides this information to the LBAs. Thus, LBAs make use of the
location-based information stored in a spatial database at the LSs. The LS stores at least
the current (i.e., the last known) position of each tracked mobile object; however, it can
also store their movement history. Furthermore, LSs can store and manage the positions of
various static objects, for instance, by providing detailed map knowledge from the spatial
database.

Finally, a communication network is needed between the system components in order
to enable the exchange of information between them.

It should be noted that a simple LBS could also operate without having an LS. In such case,
the positions of mobile devices are sent directly to the LBS, and the mobile devices receive
the requested information related to their current positions. However, as soon as position
information is shared by multiple LBAs, LSs are necessary to store this information. There
are two major advantages if LSs are available in the system and they store spatial database of
multiple user positions: first, the availability of LSs provides scalability and efficiency, since

multiple LBAs can share information about the MO’s position updates; second, it allows for

1.1 | Background: Location-Based Services 15



spatial queries over multiple moving objects to be implemented and processed.

The LBS user allows LBS to obtain position information of his or her mobile device by
communicating through the mobile network. In return, mobile users get access to services
provided by the LBS [VMG*"01, ACD*07]. In other words, LBS offers a variety of services
for mobile users, by making use of their position information. A typical service is when
a user requests location information about an interesting object called a Point of Interest
(POI), for example, searching for nearby hotels or getting information about the current
traffic situation in the locality. Such services are pro-active (query-based). Other services
are reactive (event-based), i.e., they run in the background and react to events such as a
shopping center visit, which could trigger a location-based advertisement. In both cases,
location-based services analyze the user’s environmental context primarily depending on his

or her position.

1.2. Motivation

As we have shown, to answer location-based queries of a mobile user, LBAs require the mobile
user to reveal his or her position. The position information sent by a user to the LBS should
be precise enough to provide an acceptable quality of service for the variety of location-based
applications. The user’s location privacy is a critical issue, since the user’s position must
be provided to a third party—LSs and/or service providers—which are usually considered
non-trusted from the user’s point of view. An LS can be compromised by an attacker, or
its provider can be malicious and misuse the user’s private information. Therefore, it is
important to have alternative solutions in order to provide better security.

According to the well-known definition of privacy for information handling by Alan Westin
[Wes67], privacy is the user’s ability to determine independently how to deal with his or
her own information. In other words, the user must be able to protect the information
from unauthorized access and undesired processing. Simply put, the user wants to maintain
control over his or her personal information, including position information.

The need for location privacy was studied by Brush et al. [BKS10]. The majority of
respondents in that study said that they were willing to disclose their location information
if it was in the public (i.e., not personal) interest such as for managing traffic jams or for
planning future bus routes. However, in those cases, when the processed information was
very personal, the respondents were concerned about their privacy (e.g., while using services

such as a recommended place advisor service or daily route tracking).
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A large number of examples of leaked information exist; there are web-resources that mon-
itor such cases on a daily basis [Pri14]. Moreover, the recent WikiLeaks and PRISM scandals
[Wik14, BBC14, Thel4] show not only that privately shared data can be maliciously tracked
and later disclosed but also that even well-protected centralized data storage facilities of
high-level governmental institutions cannot be trusted, and therefore they cannot guarantee
100% data security and resilience against attacks.

Further critical problems exist in addition to problems of unauthorized or undesired
disclosure of information. If other persons can access the user’s position at any time, this
lack of security may have consequences for his or her personal well-being [DK06]. Thus,
the user’s position is always connected with privacy and security. Moreover, by using the
information obtained about visited locations and POIs, an adversary can create a user profile,
which will include the social behavior, health status, and personal interests of the targeted
user [DKO6, DF03]. For example, if it is known that a politically-sensitive event was held at
the same place and time where a person was located, information about his or her political
views can be derived. As a result, people can be persecuted by third parties based on the
obtained position information and location-based context information. Dobson and Fisher
describe “geoslavery” as a potential undermining of privacy through the use of LBS, and
warn of the possibility of dire consequences if the people’s location privacy continues to be
undermined [DF03]. In particular, the authors describe “stalking” as a situation in which a
person is pursued or harassed to be then forced to perform actions against his or her will.

The protection of privacy in LBS should be provided at different levels [Eyo08]:

First, personal privacy protection must be highlighted to members of society, so that people
are aware of and can assess the potential dangers and possible consequences related to the
privacy-critical services available and offered to them.

Second, a legal framework to regulate the protection exists. For example, § 98 of the
Germany’s Telecommunications Act [Bun14] states that the use of location information is
prohibited if the target person has not agreed to such usage. Anyone who acts contrary to
this principle can be prosecuted.

However, these rules and policies are not sufficient for privacy protection, since the
legal framework may lag behind the technological developments over time. Moreover, the
legal framework can be consciously or unconsciously betrayed and undermined. There
are many recent incidents which illustrate such behavior; for example, the case of Apple
smartphones, which stored all the user’s position data without authorization and notification.

Moreover, since legal prosecution generally involves long delays after the attack occurred
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and is therefore not a sufficient countermeasure, because the dire consequences have already
taken place with regard to the victim. Thus, the problem of LBS users’ privacy must be
ensured through technical measures.

In this work, we propose an approach that allows an LBA to define the level of position
precision required, while at the same time it allows the user to preserve his or her location
privacy according to individual preferences. This approach includes flexible management
of the user’s position precision and the corresponding location privacy levels. The flexible
management is achieved by utilizing multiple LSs of different providers. Emerging tech-
nology trends such as federated systems [CB04] and “mashups” (web application hybrids)
[ZP07] show that multiple providers can cooperate. The increasing availability of large dis-
tributed (including cloud-based) infrastructures at a reasonable price provides scalable and
efficient management of large amounts of location data. Suitable infrastructures are already
offered by major operators, for example, Amazon [Amal4], Google [Goo14], Microsoft, IBM
and some smaller companies like ElasticHosts [Ela14], Rackspace [Rac15] and XCalibre

Communications [XCal4].

1.3. Focus and Contributions

In this work, we propose an approach for preserving location privacy of an LBS user in order
to address the location privacy challenges described above.

Our primary contribution is a novel concept for the management of position information,
which preserves the user’s location privacy by using multiple non-trusted service providers and
utilizing the spatial obfuscation technique (originally published in [DSR11]). The objective
is to solve the problem of providers’ trustworthiness and user’s vulnerability through the
utilization of multiple location servers of different providers, instead of using servers of a
trusted third party. Each location server of the user-selected set stores un-encrypted position
information, which we call a position share. The main idea of our approach is to split the
user’s precise position information into position shares containing position information of
limited precision, the number of which can be defined by the user. The user distributes
the generated position shares among n multiple LSs of different providers. The precision
level available for different LBAs can be flexibly managed by defining the number of shares
accessible for each of them: By obtaining k out of n shares (0 < k < n), LBAs can get position
information with a certain obfuscation degree.

Our position sharing approach decreases the vulnerability of user’s position information

18 1 | Introduction



against possible attacks and provides the principle of graceful degradation of privacy. This
means that a compromised LS reveals position information only of a limited precision, thus
overcoming the problem of a single trusted third entity. Moreover, our approach provides a
gradual increase of position precision after obtaining every new position share. Users can
allow different location-aware applications to access an individual number of shares k, which
corresponds to their trust in these applications, thus they can flexibly manage multiple levels
of location privacy.

As our primary contribution, we present algorithms for share generation and fusion suited
for open space (without considering map knowledge).

The second contribution is the adaptation of the basic position sharing approach to the
map-aware scenario (originally published in [SDR12]). We present an extension of our
approach to make it map-aware during the obfuscation process, i.e., to take into account
space constraints like topography, land surface, roads, buildings, etc. The obfuscation shape
in our basic position sharing approach is generated independently from the map as a simple
circle. This could lead to privacy problems. If an obfuscation shape covers an area where the
mobile user cannot possibly be located, this decreases the user’s privacy level dramatically.
For instance, a car’s level of obfuscation is far lower than desired if it is located within an
obfuscation area such as a circle, 90% of which are agricultural fields and only 10% are roads.
Therefore, we extend the basic position sharing approach to the map-aware obfuscation in
order to resist the privacy attacks caused by the constrained space environment. Namely,
we perform the adjustment of obfuscation shape’s size, depending on the user type and the
corresponding representation of privacy sensitivity of various map regions. As a result, the
share generation algorithm creates obfuscation shapes by taking into account map-based
knowledge.

The third contribution is that having considered individual trustworthiness levels for LSs
we improve privacy by optimizing share placement onto LSs based on their trustworthiness.
In the basic approach, we assume that each LS has the same probability to be compromised.
Therefore, we place the same degree of position information onto each LS. However, if many
of the selected LSs have low trustworthiness (i.e., they can be hacked easily, or if they are
malicious themselves), this lack of security could lead to the user’s position being almost
exactly revealed. Thus, if the information about trustworthiness of each LS or its provider
is available to the mobile user, we can adapt the share placement in such a way that less
trusted LSs get only the position information of lower precision, while more trusted LSs are

allowed to store position information with higher precision.
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The fourth contribution is a location update approach which reduces communication
overhead caused by multiple consecutive updates without decreasing the user’s privacy. If the
number of different LSs n is large, and/or the position update rate is high, this may lead
to significant communication overhead, since at every update we have to update all of n
shares in a naive approach. We propose an optimized location update algorithm to reduce
the number of messages to be sent without impacting the user’s privacy.

The fifth contribution is a novel classification of major techniques for protecting location
privacy based on which protection goals they fulfill and which attacks they can resist (origi-
nally published in [WSDR14]). This contribution includes an analysis of possible attacker
knowledge and types of mobile user’s information that must be protected. In the proposed
classification, we analyze which combinations of attacks are currently not considered in the
literature, and we show how our position sharing approach relates to other approaches.

The contributions of this thesis have also been presented in several publications [DWSR10,
DSR11, SDR12, WSDR14]. In [DWSR10], the author contributed to the basic principle of
position sharing together with Frank Diirr. In [DSR11], the author introduced the algorithms
of secure position sharing based on geometric transformations. Also, the author implemented
the approach, while the measurements were performed together with Frank Diirr. In [SDR12],
the author developed the concept of map-aware secure position sharing based on geometric
transformations, implemented the approach and conducted the evaluation. In [WSDR14],
the author provided the basic principle of classification of location privacy approaches. The
classification of location privacy goals and attacks was provided by Marius Wernke. The
above mentioned contributions were refined in collaboration with Frank Diirr.

There were several student theses supervised by the author [Sch11, Hael12, Paull, Hoy12],
which have also contributed to this work: Bjorn Schembera developed the basics of share
placement optimization [Sch11]; Simon Hénle contributed to the concept and evaluation of
the location update approach [Hael2]; Andreas Paul [Paull] and Daniel del Hoyo [Hoy12]
improved the mechanisms of reading and representing map information.

This work is structured as follows. In the second chapter, we present our basic position
sharing approach and its extended map-aware version. This includes an analysis of the privacy
guarantees provided by our approach as well as measurements of its runtime performance.
In the third chapter, we describe an algorithm for share placement optimization. In the fourth
chapter, we propose a location update algorithm which reduces communication overhead
without affecting privacy levels. Finally, we summarize the results of this work and outline

possible future research directions.
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CHAPTER

POSITION SHARING APPROACH

In this chapter, we present our basic position sharing approach. It is based on work that has
been previously published [DSR11, SDR12, WSDR14]. First, we describe our system model
and privacy metrics, and define the problem. The approach includes four versions of share
generation and share fusion algorithms, that depend on the methods of share generation,
randomness of share fusion (fixed vs. free order of fusing shares) and availability of map
knowledge (open space model vs. constrained space model). Next, we analyze the location
privacy guarantees by evaluating the privacy metrics defined in the problem statement, and
we evaluate the runtime performance of the approach. After that, we analyze and classify
the related work in the field of location privacy in location-based services. We conclude the

chapter with a summary.

2.1. System Model

The components of our LBS system are shown in Figure 2.1. They include a mobile object
(MO), i.e., a user with a mobile device, location servers (LSs) of multiple service providers,
and location-based applications (LBAs), which provide location-based services.

Mobile objects (MOs) are the objects whose positions are managed on LSs and used by
LBAs. MOs correspond to users carrying a mobile device such as a smartphone with a
positioning system such as GPS. By using this positioning system, the MO can determine its
current position, which is denoted as 7 and represented by two-dimensional coordinates.
For the sake of simplicity, we assume the position reported by the positioning system to

be perfectly precise and accurate. In a real system, the detected position may already be
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imprecise and inaccurate to a certain degree (depending on the positioning system). However,
we assume that this sensing error is much smaller than the artificial imprecision introduced
by position obfuscation. A position of certain precision is defined by a circular area which we
call obfuscation area, where radius r of this circular area defines precision prec(n) =¢ =r
of position 7. A smaller radius corresponds to a higher precision, i.e., precision level: if
r, = prec(m,),r, = prec(m,) and r; < r,, the precision of 7, is higher than the precision of
Ty

The MOs issue location-based queries (through interfaces provided by the LBAs), for which
they have to send their position information to LSs. However, we assume that the mobile user
does not want his or her precise position to be revealed to a third party. For that reason, a
local component installed on the MO runs a share generation algorithm. We assume that this
component can be implemented in a trustworthy way, for example, by using TCP (Trusted
Computing Platform) [DNDO7]. Given a precise position 7t, a number of n shares, and a
lowest precision ¢,,;,, the share generation algorithm generates position shares denoted as

the master share s, and the set S of n refinement shares S = {s1,s5,...,5,}:

generate(7, n, ¢,,;,) = So,S 2.1)
The master share s, is generated so that the position p, given through s, has the minimal

+ rights to access location servers

location server; Share

Share fusion | BA
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Figure 2.1.: System model: mobile object (MO) sends information to location servers (LSs),
which provide this information to location-based applications (LBASs)
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precision prec(py) = ¢y = P,in, Which satisfies the maximal privacy demands of the user,
i.e., it has the highest obfuscation level. Given s, and a subset S, € S of k refinement shares

(k < n), a refined position p, can be calculated using a share fusion algorithm:

fuse(so, Sk) = Pk (2.2)

Each further refinement share s, ; provides a more precise position p;,;:

fuse(sg, Sk+1) = Pr+1 (2.3)

where prec(py,;) < prec(py), i.e., Ppi < Pi

Only after obtaining all the position shares, the last share s, reveals the exact MO’s position

p,, = 7 of highest precision ¢, = ¢,,,, without obfuscation:

fuse(sy,S) =, (2.4)

with prec(7) = ¢ax

The obfuscated positions py, p;,.-.,P,_1 correspond to precision levels ¢, ¢1,..., P,_1-
Thus, n different location privacy levels are provided.

We say that shares are heterogeneous if for a subset of refinement shares S, C S with size
ISk| = k (|S| = n, k < n), after fusing k shares into p,, we obtain the required precision
level ¢, only after fusing these shares in a certain fixed order. In cases when shares are
heterogeneous, each refinement share s, increases the position precision by an individual
pre-defined value A,q:.

If a share generation algorithm produces homogeneous shares, only the number k of
obtained shares defines the resulting precision level ¢, and the fusion order of the refinement
shares can be arbitrary. In this case, the precision increase is equal for each share: A‘f =
Al = .. = AP = ¢u/n.

According to our position sharing approach, each share decreases the size of the obfuscation
area, i.e., it increases the precision level of the given MO’s position. An example of precision

increase through share fusion for circular obfuscation areas is shown in Figure 2.2. Later
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in this chapter, we will introduce share generation algorithms with different assumptions
regarding the shares’ precisions and fusion order.

We assume that multiple LSs from different independent service providers are available,
and each LS corresponds to a separate provider. We consider a provider’s LS as a single entity,
but this LS can be implemented by a number of physical severs on a lower level, for example,
in a data center. Since no single LS is trusted completely by the MO, no LS is allowed to
store the MO’s precise position.

After share generation, the master share is known to everybody—in particular, every
LBA—for instance, through full replication at every LS and unrestricted access by LBAs.
Hence, every LBA can track MOs with (at least) a precision of ¢,,;,. Therefore, ¢,,;, is usually
chosen large, i.e., as a large radius corresponding to a low precision.

The open (i.e., non-secret and available for each system actor) information also includes
the number of LSs and the algorithms of share generation and share fusion. The only secret
information is the set of refinement shares s;,s,,...,s,_;. The MO distributes the refinement

shares among n selected LSs:

place({s;,85,...,8,},L):S— L (2.5)

LSs store the shares of position information sent to it by MOs and deliver this information

to authorized LBAs. Each LS has a common access control mechanism, which allows for the
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Figure 2.2.: Basic idea of position sharing approach: after getting each new share, the
precision is increased until we get the exact MO’s position 7t
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specification of access rights (given by a user) for the LBAs’ access to shares stored at this LS.

The mapping of shares to LSs or the precision increase A? could be adjusted to the
individual trustworthiness of the LS, giving more trusted LSs better or more shares. In
this chapter, we assume the exact levels of MO’s trust to LSs to be unknown; therefore,
the trustworthiness of every LS provider is assumed to be equal. Later in Chapter 3, we
extend our system model by considering various trustworthiness levels of LSs stored in a
trust database.

Refinement shares are only known to authorized LBAs. The MO specifies which precision
each LBA should get (see Figure 2.1). Usually, this decision defines a trade-off between
the quality of service an LBA can provide with a certain precision of information and the
privacy requirements of the MO. The trusted share generation component running on the
MOQO’s device Next, the MO assigns access rights to a number of refinement shares, which
provides this precision. Shares and the respective access rights are sent together to the
LSs. The LSs use common access control mechanisms to deliver refinement shares only to
authorized LBAs. LBAs receive the necessary access rights (credentials) together with the
relevant LS addresses from the MO. Then LBAs fuse the obtained shares in order to get the
MO’s position within the defined level of precision.

Since the MO’s position information is distributed among LSs, a compromised LS reveals
only a position of strictly limited precision. This ensures an important property of our position
sharing approach: graceful degradation of privacy (increase of precision) with the number
of compromised LSs.

LBAs can subscribe to receive continuous position updates from the target MOs; or they
can issue and process location-based queries to get the MOs’ positions. However, in this
chapter we assume that share generation is only triggered sporadically rather than with
every update of the positioning system. Typically, this is the case when using a “check-in”
usage pattern, where the user manually publishes his or her position sporadically at certain
locations. Although the presented algorithms could also work with continuous positions
updates, subsequent (close) positions might reveal additional information to an attacker.
Such problems arising from continuous updates are addressed in Chapter 4. However, at this
point we assume that a minimum position update interval is ensured and thus the succeeding

obfuscation shapes of precision ¢, do not intersect.
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2.2. Privacy Metrics

The user’s privacy levels are primarily defined by precision levels ¢,, which are pre-defined
by the user for each 0 < k < n as radii r; of a circular obfuscation areas. Higher precision
¢, corresponds to a smaller obfuscation area, and vice versa. The problem is as follows:
an attacker can derive a precision ¢y ... higher than ¢, if the attacker knows the share
generation algorithm and the k shares. As we will show later, analysis of k obtained shares in
addition to the knowledge of share generation algorithm can provide stochastic knowledge
about the true user position 7t. This makes the precision levels probabilistic. Thus, we need a
probability distribution that ensures that an attacker is not able to predict the MQO’s position 7t
for a given precision ¢, with sufficiently high probability Py ... The following distribution
Py atack (P aractl) defines the probability of an attacker obtaining a position 7t . of a certain

precision @y ,iack = Prec(7y aack) depending on the number k of compromised LSs:

Pk,attack(¢k,attack) = Pr[¢k,attack < ¢k] (26)

This metric can be used by the MO to define the acceptable probabilistic guarantees
represented as a set of probability thresholds P,(¢,) corresponding to various precision
levels ¢,. For example, an MO can specify that an attacker must not be able to obtain a
position of precision ¢; < 1 km with probability P; ,, > 0.2, and precision ¢, < 2 km with
probability Py ;a0 > 0.1.

By using this metric, we can define the security of the given share generation algorithm.
Namely, we determine the probability levels corresponding to the precision levels guaranteed
for each number of known shares k and the given master share. These levels allow the user
to decide whether his or her privacy levels are acceptable, after the user has selected ¢,,;,,, n
and the generation share algorithm. If the privacy guarantees do not provide the required
level of security, the user can improve them by adjusting the user-defined parameters Py,

¢min and n, or by using a different share generation algorithm.

2.3. Problem Statement

The problem is to find a secure approach for the generation and fusion of shares, such
that the following property is fulfilled for the generated shares: Given the master share s,

and a set S; of refinement shares, it must not be possible to derive a position with higher
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precision than the intended precision ¢, with probability Py ... higher than a user-defined
probability P, (cf. Equation 2.6). The user can analyze the values of Py .., provided by
share generation algorithm and decide whether the given probabilistic guarantees of privacy
levels are acceptable.

We define the following as given:
* n location servers,
* the MO’s precise position T,

* the probability distribution P,.(¢, ), which specifies the required probabilistic guarantees

for each precision level ¢,.

Problem: Find a share generation algorithm generate(...) (cf. Equation 2.1) which ran-
domly generates set S containing a master share s, and n refinement shares s, ...s,, and
a share fusion algorithm fuse(...) (cf. Equations 2.2-2.4) which concatenates the shares

So - - - S, such that the resulting point is 7:

n

S={sy...s,} : Zsk=7'c 2.7)

k=0

such that the set of shares S satisfies the current user’s privacy requirements, i.e., each

further kth share must provide the pre-defined probabilistic guarantees of privacy levels

P ():

V ¢k,attack : Pk(¢k) > Pr[d)k,attack < ¢k]; (28)

finally, the precision ¢, of each imprecise position p,i” derived by share fusion after

obtaining the minimized set S has to be pre-defined:

prec(py) = ¢y (2.9)
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2.4. Share Generation and Share Fusion Algorithms

In this section, four different algorithms for generating and fusing the position shares are
presented (see Figure 2.3).

First, we present the basic position sharing approach, which does not consider space
constraints and assumes any share order during share fusion; it has two versions: “a-
posteriori” and “a-priori”. Then, we propose an approach with fixed share order during share
fusion, which allows for the intersection of obfuscation circles and provides size adjustment
of the obfuscation area resulting from the intersection. Finally, we present the map-aware
position sharing approach, which adapts the area adjustment for the constrained space model.

For each of these approaches, we present a share generation and share fusion algorithm.

2.4.1. Open Space — Any Share Order: “a-posteriori” Share Generation

Here we describe the position sharing approach for open space, later referred to as OSPS-ASO
(Open Space Position Sharing with Any Share Order), first introduced in [DSR11]. Within
the open space model, we assume that the prior probability for the mobile user to be located
at each point in space is uniform. We present the main principles of share generation and
share fusion, which are also the basis for the more advanced versions of our approach as

well.

Share Generation

Any Share Order ' Fixed Share Order '
> .a-posteriori® —»- for open space '
- .a-priori* — for constrained space .

Figure 2.3.: Classification of position sharing algorithms

[
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2.4.1.1. Share Fusion Algorithm

Algorithm 1 shows the share fusion algorithm of OSPS-ASO. As input parameters we have
the number of LS providers (and correspondingly the total number of refinement shares) n,
the obtained refinement shares s7 ...s; (k < n), and the master share s,,.

The master share is the initial obfuscation circle ¢, with center p, (line 3) and radius
ro (line 4). The refinement shares are shift vectors S = {s] ...s,}. In the fusion algorithm,
starting from the initial obfuscation circle ¢, (lines 3-4), step-by-step for k shares (line 5) each
of the vectors §; shifts the center p; of the current obfuscation circle ¢; (line 6) while reducing
the radius r; (line 7) of the current obfuscation circle by a pre-defined value Ar =r,/n= A,
(line 2). The resulting obfuscation circle is ¢, (line 8); an example for n = 4; k = 3 is shown

in Figure 2.4.

Algorithm 1 OSPS-ASO: fusion of shares

: function fuse k_shares OSPS_ASO(n,sg,s .. .Sk)
Ar «rg/n
P < Do
rerg
fori=1tok do
Ppep+s;
re—r—Ar
return ¢, = {p, r}

A L R il S

As shown in Figure 2.4, the order of obtainment of the refinement shares can be arbitrary,
while the precision (namely, radius and area) of every obfuscation circle ¢, is pre-defined.
This is achieved by limiting the maximal length of shift vectors by Ar = A.

For the same circle c,, the maximal acceptable vector length decreases with the increase
of n (r, =25 km, 0 < k <5), as shown in Figure 2.5. As a result, each obfuscation circle ¢,
is inside the previous obfuscation circle c,_; for any order of refinement shares obtainment.

Note that according to the algorithm presented, even if one tries to intersect the circles
resulting from combinations of the same k vectors in a different order, this will not bring
higher precision: the resulting obfuscation circle ¢, will be the same for any share fusion

order.

2.4.1.2. “A-posteriori” Share Generation Algorithm

The share generation algorithm that provides “a-posteriori” definition of s, related to 7 is

presented in Algorithm 2. First, we determine the maximal shift length Ar = A, =ry/n
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Figure 2.5.: OSPS-ASO: maximal vector length depending on n

(line 2). Then, we generate n shift vectors s, ...s, with randomly selected direction in
[0;360°] and randomly selected length in the interval [0; Ar] (line 4). After that, the
position p, of the master share s, is calculated so that its concatenation with all of the
refinement vectors results in the precise MO position © = p,, (line 5).

We generate the set of shift vectors s; ...s, randomly (lines 2-3), having the master share’s
radius ry = ¢, the target number of shift vectors n, the exact MO position © = p,, and
the maximal shift length Ar. The direction of the generated vectors is chosen uniformly at
random, while their lengths are chosen uniformly at random from the interval [0; Ar].

Note that if the length of each vector is smaller than Ar and if ¢, contains 7, we get a
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Algorithm 2 OSPS-ASO: generation of shares “a-posteriori”

Ar «—ro/n
function gen_n_shares_a_posteriori(sg,n, )
fori=1tondo
select randomly s; with |5}| < Ar
Po < m— 2., 5
return s;...s,

QU H b

symmetric permutation group property independent of the vectors’ direction. That is,

Vie[l;n]: 5] <A, and p, €, (2.10)

is a sufficient condition for creating a vector set, i.e., a vector set which allows for the
fusion of shares in any order and provides the required precision levels ¢,. Thus, the center
po of the initial circle ¢, is defined a-posteriori by the concatenation of the random shift
vectors from S to the true MO’s position 7t (line 4).

Figure 2.6 shows the distribution of the precise MO position 7t inside ¢, for “a-posteriori”
share generation Algorithm 2, having a total number of LSs n = 5 and 1000 runs of the
Monte Carlo method. We can see that the end point of the concatenation of all vectors tends
to be closer to the center of circle c,. The resulting probability of finding the user’s position
7 inside c, is high (as we will show in our evaluations later in more detail). In order to

overcome this shortcoming, we propose an alternative “a-priori” share generation algorithm.

2.4.2. Open Space — Any Share Order: “a-priori” Share Generation

In this section we will present another approach to the open space scenario which we call
“a-priori” share generation. The “a-posteriori” share generation algorithm is very simple and
fast, but produces shares that make the exact MO’s position 7t predictable, as it is illustrated
in Figure 2.6. The “a-priori” algorithm aims to improve the stochastic properties of the share
set by preventing such high-density regions within the obfuscation circles of probability
distributions for 7.

The share fusion algorithm for “a-posteriori” share generation is the same as for “a-
posteriori” share generation (see Algorithm 1). Thus, the “a-priori” modification of our

approach changes only the share generation algorithm.
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Figure 2.6.: Distribution of 7 inside c, for “a-posteriori” share generation Algorithm 2 (n =5,
Monte Carlo with 1000 runs) [DSR11]

2.4.2.1. “A-priori” Share Generation Algorithm

The generation of shares in OSPS-ASO with “a-priori” definition of the master share’s center
is presented in Algorithm 3 and works as follows: The input parameters are the MO-defined
radius r, = ¢,,;, of the initial obfuscation circle c,, the total number of shares n and the
precise user position 7 = p,,. First, we determine the maximal shift length Ar = Ay =ry/n
(line 2). Then, the position p, of the initial circle c, is selected randomly according to
a uniform distribution, such that © = p,, is inside ¢, (line 3). The set of the refinement
shift vectors S = {57 ...s,_;} is generated randomly (lines 4-6), such that starting from the
center of c, the concatenation of all shift vectors of S gives the resulting point = = p, (with
r, = 0 correspondingly), which coincides with the user’s position © within ¢, (line 8). The
consistency of the operation (line 8) with the maximal vector length is guaranteed by the
restriction of line 7.

Finally, the MO sends the position information to n LS, including the master share s, the
size of the radius decrease after every shift Ar (in OSPS, Ar is constant for all shifts), and
one share §; for each LS.

The important condition of line 7 of Algorithm 3 defines whether the required share set
has not been found yet (Figure 2.7a) or it has been found (Figure 2.7b). The problem is
that before the required set is found, the share generation algorithm should traverse many
randomly generated share sets s; ...s,_;. The number of such sets is not pre-defined: for

example, if 7 is located far away from the center of ¢, this process takes more time, since
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Algorithm 3 OSPS-ASO: generation of shares “a-priori”

1: function gen_n_shares OSPS ASO _a_priori(sg,n, )
2: Ar «ry/n
3: select randomly p, such that distance(py, ) < g
4: do
5: fori=1ton—1do
6: select randomly s} with |5}| < Ar such that © € ¢;
. . - n—1 -
7: while distance(p, +1 D S, m) > Ar
— — n—1 -
8: §, — m—(py+ 2121 $1)
9: returns...s,
// e \‘\ r/ e T ~\\
e S3 - e 3;& 3
/ dist(m,p,_;) > Ag ’ L dist(m,p,_1) <Ag
Fé - recalculate K s, - share set found
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Figure 2.7.: “A-priori” share generation Algorithm 3, line 7: (a) condition is not fulfilled; (b)
condition is fulfilled

the probability of generating a random share set which reaches 7 is lower in this case. Note
that the main cycle (lines 4-7) is guaranteed to terminate in case of a sufficiently large vector
sampling. The execution times of the “a-priori” share generation algorithm are evaluated
later in this chapter.

An example pdf for the “a-priori” share generation Algorithm 3 is illustrated in Figure 2.8a,
while Figure 2.8b shows an example of a correlated vector set where vectors are biased
towards the North-East area. This bias means that shift vectors are correlated and therefore
by knowing k of them (0 < k < n) an attacker can obtain a pdf of the resulting user position
7. Such analysis and its effect on the probabilistic guarantees of privacy levels will be
evaluated later in this chapter. However, note that this correlation of vectors does not affect
the initial uniform probability distribution when the number of known shares k = 0 (cf.

Figure 2.8a).
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(a) (b)

Figure 2.8.: (a) Example pdf for “a-priori” share generation Algorithm 3 (n = 5, Monte Carlo
with 1000 runs); (b) example of a correlated vector set where vectors are biased
towards the North-East area [DSR11]

2.4.3. Open Space - Fixed Share Order

Now, we relax the restrictions on the maximal vector length, which cause uneven probability
distributions and biased vector sets of OSPS-ASO. This results in a non-arbitrary (as in the
OSPS-ASO approach) but fixed (pre-defined) order of shares during their fusion. An example
of a share fusion in the fixed order is shown in Figure 2.9. We define this approach as Open
Space Position Sharing with Fixed Share Order (OSPS-FSO).

However, the allowed intersections (overlapped areas) of the obfuscation circles decrease
the size of the actual obfuscation area for any k > 0. Thus, an area adjustment is needed for
the intersected circles even without considering map-based knowledge. The goal of OSPS-
FSO is to keep the obfuscation area above a certain threshold through the adjustment of
the obfuscation circles’ radius. Thus, OSPS-FSO eases the limitations on the maximal vector
length by allowing for circle intersections, and has a flexible radius for each obfuscation
circle.

In OSPS-FSO, the obfuscation area for k shares of precision ¢, is not equal to the pre-
defined size of the circle ¢, alone (as it is in OSPS-ASO), but is defined through the area A,
of intersection of k circles c; ...c, (see Figure 2.10a). Now, the goal of the radius increase is

to adjust the intersection area A, up to the size of area of ¢, denoted as area(c; ), which it
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Figure 2.9.: Fusion of shares in a fixed order without area adjustment

would have without intersections:

2
A =area(coNecyN...Nc) =1y (2.11)
At the same time, the radius adjustment must be secure, i.e., an attacker should not be

able to derive the original (non-adjusted) obfuscation area.

2.4.3.1. OSPS-FSO: Share Fusion Algorithm

The share fusion algorithm (Algorithm 4) for OSPS-FSO is illustrated in Figure 2.10a and
includes the following steps. First, having the master share s, the obfuscation area A; is
defined by the initial obfuscation circle ¢, (line 2) and the center of the current obfuscation
circle is set as p, (line 3). Then, the concatenation of k shift vectors s7 ...s;. is performed
iteratively for i = 1...k (line 5), defining at each step the circle ¢; with individual radius r;
(line 6). Each obfuscation circle intersects with the previously obtained obfuscation area, by
which the current obfuscation area A, for k shares is defined (line 7).

Note that vectors can be added only in a fixed order, otherwise the consistency of obfusca-
tion areas (namely, the sizes of A;) cannot be preserved: the obfuscation area A, does not

have a pre-defined shape such as a circle, but it has a pre-defined size. Therefore, we present
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(increased)

(a) (b)

Figure 2.10.: OSPS-FSO: a) intersection A, of three circles ¢, ¢;, ¢,; b) adjustment of
intersection area through radius increase for c,: A; = area(c,N¢;)

Algorithm 4 OSPS-FSO: fusion of shares

: function fuse_k_shares OSPS FSO(n,cy,8]-.-Si>sT1---T%)
A ¢

: P < po

: fori=1to k do

BB+

¢ —{B,ri}

Ak (_Ak ne;

: end for

: return A,

\OOO>1.0_\S.{1-I>-MN'—!

the OSPS-FSO share generation algorithm, which preserves the required position precision

(and correspondingly the user’s privacy guarantees) by adjusting the size of A,.

2.4.3.2. OSPS-FSO: Share Generation Algorithm

Next, we present the share generation algorithm for the OSPS-FSO approach. The problem
to solve here is the reduction of the obfuscation area A, due to the intersections of ¢, and
the previous obfuscation circles ¢, . ..c,_;. In order to preserve the needed obfuscation level,
we increase the radius r, until the area of A; achieves the value of the non-intersected area
of ¢, (see Equation 2.11), as we show in Figure 2.10b.

The first step of the share generation algorithm (Algorithm 5) is to randomly select the
center p, of the initial obfuscation circle ¢, according to the uniform probability distribution

(a similar principle to that in the “a-priori” version of the OSPS share generation algorithm)
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Algorithm 5 OSPS-FSO: generation of shares

: function gen _n_shares OSPS_FSO(n,rgy, m)
: select randomly p, with distance(py, ) < 1
: Ay « area(cg)
:fori=1ton—1do
r;—rox(n—i)/n
select randomly §; with |$}| < 2xr,_; and 7 € ¢;
A; « area(c;)
while area(ﬂj.:l(cj)) <A; do
r;, p; < increase_and_adjust(r;, p;, Ar)
end while
: end for
Déy e =By + X, 5)
: return sy...S,, rg...T

R N A S il S e

O St
w N = O

n

within radius r, around the given true user position © = p,, (line 2). After that, the shift
vectors §] ...s,_; are generated, which connect p, and p,_; (lines 4-6). The corresponding
radii are increased as well, taking into account not only the space constraints, but also the
intersections with the previous obfuscation circles (lines 8-10). Finally, the last shift vector
s, is defined as the connection of the point p,_; with the true MO’s position 7 (line 12).

The result is that each share is represented by the shift vector §;, the individual radius r;
and the sequence number i itself. Thus, a fixed order of shares fusion is pre-defined in the
OSPS-FSO approach; in contrast, the OSPS-ASO approach presented previously relies on an
arbitrary sequence of share fusion.

2.4.3.3. Adjustment of p; During the Radius Increase

There is an important aspect concerning the increase_and_adjust(r,, ...) function for radius
increase (Algorithm 5, line 9): if we use a deterministic algorithm for the area adjustment,
an attacker can calculate the inverse function to decrease the size of the obfuscation area.
Namely, if we increase radius r; without changing the circle’s position p;, an attacker can
reduce the obfuscation area A; by simply decreasing the obtained radius r; (see Figure 2.11a).
This is possible if an attacker knows the share generation algorithm and therefore knows the
initial (non-increased) value of the radius r;,.

In order to avoid such a situation, the position of circle ¢; must be adjusted so that the

original position of c¢;,) within ¢; cannot be found, and therefore the possible location of

i(a
the exact MO’s position p, = 7 cannot be restricted within a smaller area. Figure 2.11b

illustrates that after adjusting p;, p, can be located anywhere within c;, and is not restricted
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(a) (b)

Figure 2.11.: Adjustment of p; during radius increase: (a) no adjustment of p;;
(b) randomized adjustment of p;

by the lesser radius r,. In other words, an attacker is not able to reduce the obfuscation

area A; just by knowing the share generation algorithm.

Algorithm 6 Radius increase with adjustment of p; for OSPS-FSO

1: function increase_and_adjust(r;, p;, Ar)
2! Ti) < T
3: A; « area(c;(,))
4: while area(ﬂ}zl(cj)) <A; do
50 rjer+Ar
6: end while
7: Xspipe < get_random_shift(p;, ri(q), ;)
8: Ysnife < get_random_shift(p;, riq), i)
9: pi « shift(p;, Xenig > Ysnife)
10: if area(ﬂ}zl(cj)) < A; then
11:  r;,p; < increase_and_adjust(r;, p;, Ar) //recursive call
12: else
13:  while area(ﬂj.:l(cj)) >A; do
14: rie—r;—Ar
15:  end while
16: 1«1+ Ar
17: end if
18: return p;,r;

The function increase_and_adjust(r;, ...) for radius increase combined with the adjust-

ment of the obfuscation circle’s position p; is presented in Algorithm 6. First, for the current
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p;> we determine the radius r; which makes the intersection area large enough (lines 2-6).
Then we perform the random shift of p;, not longer than r; — ) (lines 7-9). After that we
check whether the current radius r; satisfies the area condition (line 10). If the intersection
area is still not large enough, we call the function increase_and_adjust(r;,...) recursively
(line 11). If the intersection area now exceeds the target value A;, we simply decrease the

current radius r; until it achieves the required size (lines 12-16).

2.4.3.4. Computation of Arbitrary-shaped Area Size

In several lines of the above presented increase_and_adjust(r;,...) algorithm, we need to
calculate the intersection area of multiple circles area(ﬂ;'.:l(cj)), i.e., an arbitrary-shaped
area size. The size of such intersection area is calculated through space discretization
with the discretization step, i.e., the distance between the lattice lines selected as r;/100
(cf. Figure 2.12 with larger discretization step for illustrative purposes). After defining
a virtual lattice, we count the number of the lattice crossing points dy ;;ersecc COvered by
the intersection shape. Knowing the number of points dy ;s l0cated within the original
(non-adjusted) circle ¢,y and the area of a non-intersected circle c;(,), we convert dy ;. ersect

into the corresponding area value:

. d; ; -area(c;,))
area(ﬂ;zl(cj))z k,intersect i(a) (2.12)

dk,original

Note that later we will apply the same area computation principle when we have the map
knowledge M, as an additional intersection factor: d ;, e,sec, iS then the number of points
located within area(M,, ”3:1 ().

In Figure 2.12, we show the space discretization principle for k = 3, with black points
within the intersection shape of c,, ¢; and c, and white points within the remaining area of
Cy. Here, d 4inar i the number of white and black points together, while dy ;,epsec. 1S the

number of white points.

2.4.4. System Model Extension: Map Knowledge

Now, the system model is extended by assuming the availability of map knowledge, which
means that the MO has locally stored map information for the surrounding region. Moreover,

the MO knows his or her own type of mobility and can distinguish between cars and pedes-
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Figure 2.12.: Computation of an arbitrary-shaped area size for c, based on space
discretization

trians, as well as boats, trains and planes. With this information, the MO is able to specify a
map representation M, that defines the map regions where he or she might be located, and
use these regions during share generation.

The map-based knowledge allows each map to be considered as a binary map representation
with a Boolean attribute assigned to different map regions. “True” means that a given MO
can possibly be located there; “false” means that it is impossible that a given MO is located
in this area. Thus, this Boolean attribute of a region can be different for each given MO and
depends on the mode of MO’s movement. For example, cars can only drive on paved roads,
while pedestrians are not supposed to use highways; and neither cars nor pedestrians are
expected to be located in hard-to-reach regions like mountains. The map representation
is generated individually for each user type by analyzing the map-based knowledge. The
Boolean attribute can be assigned for every single map feature (e.g., a building, a bridge,
etc.), set of features, land surface of a certain type (e.g., a lake, an urban area, an agricultural
field, etc.), or any combination of those.

We assume that each map region marked with “true” has equal probability of the MO to
be located in any point of the region. Simple example of visual map representation for the

given map of Figure 2.13a is presented in Figure 2.13b: grey areas show “true” regions M,
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for a moving user u;.
Similarly, Figure 2.14 shows two map representations: the left one shows where cars can
move, while the right one shows where pedestrians can move. Here, green areas indicate

“true”, while dark-red and white areas indicate “false”.

2.4.5. Constrained Space — Fixed Share Order (Map-aware Approach,
CSPS)

Having developed OSPS-FSO with radius adjustment, this approach can be easily adapted to
the constrained space model. In the map-aware position sharing approach for constrained
space (CSPS), we define the obfuscation area A, for k shares of precision ¢, through
the intersection not only of k circles c; ...c,, but also of the map representation M, (see
Figure 2.15a):

A =area(M,NcoNey N...N¢) =T*T7 (2.13)

CSPS includes a share fusion algorithm and a share generation algorithm, which allow us
to overcome the disadvantages of OSPS described previously. CSPS is applicable for both
open space and constrained space models; it assumes fixed share order.

Before the share generation, the user has to select the map representation M,,, which
defines the map regions where he can possibly be located according to his movement mode.
M,, is individual for each user, since different users can be possibly located in different map

regions. Generally, the user u; corresponds to the region M,,, u, corresponds to M,,,, and so

L

on.

(b)

Figure 2.13.: (a) Basic map; (b) map representation M,; for a moving user u,
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Figure 2.14.: (a) Map representation M,,; for an MO as a car u;; (b) map representation M,,
for an MO as a pedestrian u,; green areas indicate “true”, dark-red and white
areas indicate “false” [Paull]

(b)

Figure 2.15.: CSPS: a) intersection of 3 circles c,, ¢;, ¢, and the map representation M,,;
b) adjustment of intersection area through radius increase for c;:
A, =area(M, NcyNc;) =area(cy,)

For the inclusion of map representation M, into the computation of A;’s area, the algorithms
of share fusion and share generation require only small changes.
2.4.5.1. Share Fusion Algorithm

The share fusion algorithm for CSPS (Algorithm 7) requires a single modification: at first,
the obfuscation area A, is defined not only by the initial obfuscation circle ¢, but also by its

intersection with the map representation M, (line 2), as shown in Figure 2.15a. The next
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steps are the same as in Algorithm 4.

Algorithm 7 CSPS: fusion of shares

: function fuse k_shares CSPS(M,,n,cg,S1---Sk>T1+--Tk)
A<= M, Ncg

: P < Do

: fori=1tok do

P D+

Ci < {ﬁﬁ ri}

A — A Ng;

: end for

: return Ay

2.4.5.2. Share Generation Algorithm

The share generation algorithm for CSPS also takes M,, into consideration: the radius r is
increased until the area of M, N (¢, N¢; N...N¢) achieves the value of the non-intersected
area of ¢; (see Figure 2.15b).

Algorithm 8 has additional lines (4-6): the radius r, of the initial circle ¢, is increased
taking into consideration the map representation M,, in order to adjust the size of A, = M, Nc,.
Then, in order to adjust the radii of shares s ...s,”;, M, is included in the condition of line 11.

The rest of steps of the share generation algorithm for CSPS are the same as in Algorithm 5.

Algorithm 8 CSPS: generation of shares

1: function gen_n_shares_CSPS(n,M,, 1y, T)

2: select randomly p, with distance(py, ) < 1

3: Ay « area(cg)

4: while area(M, N¢y) <A, do

5. ry« increase_and_adjust CSPS(r, py, Ar)

6: end while

7: fori=1ton—1do

8 rie—rogx(n—i)/n

9: select randomly §; with [§}| < 2xr;,_; and T € ;
10:  A; « area(c;)
11:  while area(M, N ﬂ§~:1(cj)) <A; do
12: r;, p; < increase_and_adjust_CSPS(r;, p;, Ar)
13:  end while
14: end for
15: §; = m— (o + 2y 51)

=
(@)

: return sy...S,, rg... Ty

Furthermore, the function increase_and_adjust_CSPS(...) (line 12) is similar to
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increase_and_adjust(...) (Algorithm 6) and presented in Algorithm 9. Note that the
diffenrence is that M, is now included in the conditions of lines 4, 10 and 13 of Algorithm 6.
The computation of an arbitrary-shaped area’s size area(M, N ﬂ?zl(cj)) is done according to

the same principle based on space discretization as described in Section 2.4.3.4.

Algorithm 9 Radius increase with adjustment of p; for CSPS

: function increase_and_adjust CSPS(r;,p;, Ar)
: ri(a) T

. A; « area(cj(q))

: while area(M,, 03'21 (¢;)) <A; do

rie—r;+Ar

: end while

: Xgpipe < get_random_shift(p;, riq), i)

: Ysnife < get_random_shift(p;, riq), ;)

PP Shift(Pi; Xshift> Yshif )

: if area(M,, ﬁ;.zl (¢j)) <A; then

VPN UNWN R

=
=)

11:  r;,p; < increase_and_adjust(r;, p;, Ar) //recursive call
12: else

13:  while area(M,, ”§=1 (c;))>A; do

14: rie—r—Ar

15:  end while

16: rj <1+ Ar

17: end if

18: return p;,r;

2.4.6. Summary: Comparison of Algorithms

Table 2.1 compares the important properties of the position sharing approaches described in
this chapter. The second column represents the properties of the OSPS-ASO “a-posteriori” and
OSPS-ASO “a-priori” algorithms, while the third column contains the properties of OSPS-FSO
and the map-aware CSPS approach. Only CSPS is map-aware, but note that OSPS-FSO
shares most of the properties of CSPS with the exception of the actual map reading, which is
done by CSPS in the same way as OSPS-FSO determines the arbitrary obfuscation shape A,.

The obfuscation shape A, can be arbitrary in OSPS-FSO and CSPS, since these two ap-
proaches support intersection of k obfuscation circles and therefore provide more flexibility
within share generation, i.e., the generated shift vectors can be longer. However, the resulting
disadvantage of such approach is that the generated shares provide individual radii reduction
at each kth step of share fusion, and therefore the shares are not interchangeable by order as
in both OSPS-ASO versions. For OSPS-FSO and CSPS, radius decrease is also individual for
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every fusion step k, while OSPS-ASO radius decrease is pre-defined and equal for each share.

Note that in spite of the described differences between the algorithms, the resulting
precision in each algorithm is guaranteed to be preserved corresponding to the radius ry.
This principle requires more complex area adjustment for OSPS-FSO and CSPS, since they
provide non-circular obfuscation shapes as opposed to OSPS-ASO.

Only OSPS-ASO “a-posteriori” is based on the “a-posteriori” selection of user’s position
7t within the master share’s obfuscation circle c,. All the other approaches use “a-priori”
selection, which provides better probabilistic guarantees of precision levels (as it will be
shown in Section 2.5), but requires more runs during the share generation.

Only in OSPS-ASO “a-priori”, the generated vector set is biased, i.e., shift vectors tend
to form a correlated set. The reason for this bias is the “a-priori” c, selection, which is
combined with limited shift vector lengths; as a result, the vectors are often stretched in
order to connect the center of the initial obfuscation circle p, and the precise user’s position
pi. Other algorithms either have free p, selection (OSPS-ASO “a-posteriori”) or free shift
vector lengths, and therefore provide non-biased vector sets.

In general, share generation in OSPS-FSO and CSPS is more complex, since they often
require to shift centers of obfuscation circles ¢, during the area adjustment phase even after
initial share generation. This process is required to make the arbitrary obfuscation shape A;
large enough to satisfy the basic precision requirements.

In the next section, we will present the evaluation of the presented algorithms in order to

analyze the impact of the listed algorithm properties on their security and performance.
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Comparison of position sharing approaches

OSPS-ASO

OSPS-FSO
and CSPS

Map-awareness

No (disadvantage)

OSPS-FSO: no
CSPS: yes (advantage)

Fusion: allow
for intersection
of obfuscation circles

No

Yes

Fusion: independent
from shares order

Yes: arbitrary sequence
of shares during fusion

No: the sequence
of shares is pre-defined

(advantage) (disadvantage)
Depends on
Fusion: radius decrease ro/n; same for obfusc.auf)g shape Ay
every k individual
for every k

Fusion: precision (area)
for k shares

Pre-defined: 7 -r?

Pre-defined: 7 - rlf

Fusion: obfuscation shape

circle

Intersection of circles
and map-based areas

Generation: basic method

Algorithm 2: “a-posteriori”
Algorithm 3: “a-priori”

A-priori

Generation: biased vector set

OSPS-ASO “a-priori”:
no (advantage);
OSPS-ASO “a-posteriori”:
yes (disadvantage)

No (advantage)

Generation: need to
shift centers of ¢,

No

Yes

46

Table 2.1.: Comparison of position sharing algorithms
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2.5. Security Analysis

This section introduces the attacker model and analyzes privacy guarantees provided by our
position sharing approaches. For evaluation, we use the privacy metrics already defined in

Section 2.2.

2.5.1. Attacker Model

On the one hand, attackers can circumvent the access control mechanisms of LSs to get
access to as many secret refinement shares as possible. On the other hand, attackers can be
represented by malicious LSs or providers. In general, attackers have access to k out of n
shares, e.g., a compromised LBA has access to k out of n shares for which it received access
rights from the MO. As already described in Section 2.1, k defines a trade-off between the
QoS that can be offered by the LBA due to the limited precision of position information, and
the degree of lost privacy should the LBA misuse the position information. Therefore, in our
approach, adjusting k is the basic means of controlling privacy risks. We should note that we
do not explicitly consider the case of cooperating attackers, i.e., multiple malicious LS or
LBA providers that exchange their shares to increase the number of (compromised) shares.
To handle such a case, the MO needs to assess the risk that providers cooperate, which
is a different problem of defining suitable trust relations and modeling relations between
providers: for example, which LS are sharing the same server (cloud) infrastructure operated
by the same third-party provider, or which providers have to reveal their data to the same
legal entity because they fall under the same jurisdiction, etc.

As already mentioned, adjusting k is then an effective means to control privacy only if the
precision of positions derived from these shares are well-defined. If the share generation
algorithm is perfectly secure, an attacker with k compromised shares can calculate a position
with at least the precision ¢,. However, due to a certain predictability of share generation, the
attacker can even increase the precision beyond that value as already discussed in Section 2.4.
Since we assume that the share generation algorithm is known to everybody, the attacker
can use a Monte Carlo Simulation to simulate the process of share generation and predict
further possible refinement shares from the known shares (as described in the next section).

To quantify the (undesired) effect of share prediction and the resulting effective security
of shares, we use the probabilistic metrics Py ;i and Py o0, As it was described earlier in
Section 2.2, the privacy metric Py .. defines the probability of an attacker refining the MO’s

position to an area with precision ¢y, Where ¢y e < @ This metric gives insight into
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the absolute precision that an attacker can acquire; for instance, an attacker can calculate a
position of 500 m precision with 90% probability.

The second privacy metric Py ;o is a special case of P ,ack- Py 100 defines the probability of
an attacker pinpointing the MO’s position 7 to an area of 10% size of p, covering the highest
probability, i.e., a worst-case 10%-area. A perfectly secure set of shares leads to Py ;¢ = 0.1,
meaning that the position of MO 7t is uniformly distributed within the obfuscation area. A
non-uniform probability distribution of MO within ¢, increases P ;o, to values greater than
10%. This metric is based on a relative area size compared to p,. It has to be noted that the
choice of using 10% instead of another value is based on two reasons. First, the empiric
observations have shown that the peaks of high density of non-uniform distributions are
usually concentrated in the smaller parts of the obfuscation circle c,. The selection of an
area fraction which is much larger than 10%, e.g., 50%, would hide these higher peaks of
probability concentrated in the smaller sub-areas within the selected larger area. For example,
consider a pdf with the following parameters: P 14y, = 0.9 (90% of probability corresponds to
10% of precision), showing a very vulnerable = with disclosure of probability 10 times higher
than in the ideal case, while Py 5o, = 0.95, which is only ca. 2 times worse than the ideal
value (which is Py 500, = 0.5). Second, the Py 4, metric is intuitively understandable for a
user: with the base of 10, it is easier to understand the practical meaning of the probabilistic
values of Py ;. For example, Py ;o, = 0.25 means that the probability of disclosure is
2.5 times higher than in a perfectly secure (uniform) case. At the same time, for an area
other than 10%, e.g., 15%, it would be more difficult to see the actual level of probabilistic
guarantees by looking into the resulting value: P, ;5,, = 0.375 would be an equivalent of a
probability which is 2.5 times higher than a uniform probability distribution.

2.5.2. Monte Carlo Simulation

The general idea of Monte Carlo simulation is to obtain a statistically significant number
of output samples of a method (or a phenomenon) by executing the given method with
randomized inputs [Eck87]. The Monte Carlo simulation is usually employed when analytical
description of the simulated method is not available, as we will show later in Section 2.5.6.

In our case, in order to evaluate the probabilistic privacy guarantees provided by share
generation algorithms of our position sharing approach, we simulate the attacker’s action by
repeatedly running a share generation algorithm and sampling the probability distribution
of the MO’s position 7. Then, we analyze the resulting position distribution to determine the

most likely area in which the MO is located. The randomized inputs are position shares and,
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with the exception of the OSPS-ASO “a-priori” algorithm, the center of the master share p,.

In more detail, this method works as follows: Assuming that an attacker knows the share
generation algorithm and k of n shares, we perform the share generation algorithm so many
times that 100 full share sets with distance(p,’z”"wn, py¢) < e are found. Here, p’,j”"W” denotes
the points resulting from the concatenation of k shares known to an attacker, p;'¢ denotes the

points resulting from the concatenation of k shares generated by the Monte Carlo simulation,

known

k
empirically, such that the computation does not take more than several seconds. As the

and e is a maximal deviation of pkMC from p . The deviation € is selected as A,/10
result, we obtain a set of 100 target MO’s positions 7t = p,, providing a discrete probability
distribution. Then, we calculate the probabilistic guarantees Py ;4,, by counting the number
of 7 samples inside the worst case 10% area of A;, i.e., such 10% area of A, where the
maximal number of 7 points is located.

The results of the Monte Carlo method running 100 times were illustrated above in
Section 2.4, with red dots depicting the samples of 7: Figure 2.6 shows the resulting pdf for
the OSPS-ASO “a-posteriori” share generation algorithm, Figure 2.8a shows the resulting
pdf for the OSPS-ASO “a-priori” algorithm.

2.5.3. Open Space Evaluation

Next, we evaluate the security of the share generation algorithm. We assume that the attacker
has compromised k out of n shares (or has access to k shares, if we consider a malicious LBA)
and uses a Monte Carlo simulation to further increase the MO’s precision beyond ¢,,,,, —kA,,.
In this section, we begin with the assumption that MOs can move without restrictions in an
open space. This evaluation shows the difference between our first approach, OSPS-ASO,
presented in [DSR11] that fuses the refinement shares in an arbitrary order, and the fixed
order fusion approach, OSPS-FSO.

2.5.3.1. Comparison of OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori”

In Figure 2.16, we depict the dependency of the probability P, o4, on different privacy
(precision) levels k for share generation Algorithm 2 and various n values. The horizontal
axis defines the radii sizes for various privacy levels k; the steps of precision decrease are
smaller for higher n values, since Af’ = ¢,qx /1, according to our assumptions in this chapter.
The vertical axis defines Py ;o4 i.€., the probability of = being located within 10% of the

current obfuscation area (as explained before in Section 2.2 and Section 2.5.1).
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Figure 2.16.: Dependency of probabilistic guarantees P ;4 on different precision levels
represented through the corresponding radii r for various n values with r, = 75
km: “a-posteriori” share generation Algorithm 2; 100 runs of the Monte Carlo
method

The probability values Py 1o, are lower for higher precision (i.e., for smaller radii r;),
since the convolution of a lesser number of remaining shift vectors results in a less biased
probability distribution. However, note that the P ;4,, values are relative with regard to the
current ¢;: they show better predictability of 7 for smaller k within the given ¢, but by
knowing fewer shares, an attacker knows a lower precision corresponding to a larger radius
r.. This property is based on fact that in the “a-posteriori” algorithm (as opposed to the
“a-priori” algorithm), we do not reach a pre-defined point 7w but simply add generated random
shares to each other. Thus, the more random variables were generated independently from
each other, the more predictable is their sum, and the higher are the P, 4, values for higher
n. The basis for this property of the “a-posteriori” share generation will be also discussed in
more detail later in Section 2.5.6.1.

We can see that although we have more privacy levels with n = 10, Py ;q¢, is much higher
for larger n’s if we employ the “a-posteriori” share generation Algorithm 2. Thus, excessively
high n values are not preferred in terms of privacy. At the same time, the case of n = 2
provides the best probabilities Py ;4,, yet with only two possible precision levels, which is
not flexible.

We present the dependency of probabilistic guarantees Py 14, on different precision levels

for various n values for share generation Algorithm 3 (“a-priori”) in Figure 2.17. The main
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Figure 2.17.: Dependency of probabilistic guarantees P ;4 on different precision levels
represented through the corresponding radii r for various n values with r, = 75
km: “a-priori” share generation Algorithm 3; 100 runs of the Monte Carlo
method

difference is that by employing Algorithm 3 we achieved higher P ;,, values correspond to
higher precision. This is due to the fact that with every next known kth share, an attacker
derives (through the Monte Carlo simulation) stronger correlation between the known k
shares that are directed toward 7 in more or less fuzzy way. Initially, in the circle c,, 7 is
distributed uniformly (cf. 10% corresponding to r, = 75 km in Figure 2.17), which means
that 7 is most likely far away from the center of ¢,. Having the maximal length of shift
vectors limited by A, = ry/n, the shift vectors are becoming more or less stretched (an
example of such stretched vector set was shown in Figure 2.8 of Section 2.4.2.1).

Another important property of the “a-priori” share generation algorithm is that the Py ;4
values are located within a “tunnel”, i.e., the correlation between vectors rather depends on
the absolute values of precision (horizontal axis) than on k known shares, as it is in case
of the “a-posteriori” share generation algorithm. Thus, the “a-priori” algorithm allows for
the use of the largest possible value of n, without making the stochastic properties of the
generated share sets worse, as happens when increasing n in terms of the “a-posteriori” share

generation algorithm.
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2.5.3.2. Comparison of OSPS-ASO “a-priori” and OSPS-FSO

First, we analyze how deeply the generated obfuscation circles are mutually intersected in the
case of OSPS-FSO. In Figure 2.18, we show the kth circle fraction after k circles intersected,
without performing area adjustment. This means that for smaller k values, the intersection
cuts a large portion of the previous obfuscation area, but with the increase of k, the circles
become much smaller and cannot reduce the obfuscation shape as much as before. The radii
are decreasing linearly, while obfuscation areas decrease quadratically.

As a result, the absolute difference between the original radius and the adjusted radius
decreases with each k. To evaluate this, we measured how the average radius sizes change
after the area adjustment is performed in OSPS-FSO. In Figure 2.19, we compare the average
radii of obfuscation circles for OSPS with area adjustment (OSPS-FSO) and OSPS-ASO
“a-priori”. We can see that the difference between the two curves increases for smaller k
values. This is due to the fact that the target area size A; = 7 % r,f is much higher for such
circles.

Next, we present the maximal possible shift vector lengths, which the OSPS-ASO and OSPS-

FSO approaches produce. This parameter is important, since small vectors lead to uneven

%ofe, n=2 —B- 0SPS-FSO %ofc, p=3 - 0SPS-FSO
100 100
80 \ 80 |
60 60 |
40 40
20 20
0 k| © k
0 1 0 1 2
%ofe. n=4 ——0SPS-FSO %ofc, n=5 —-0SPS-FSO
100 100
80 80 |
60 60 |
40 40
20 20
0 k' o k
0 1 2 3 0 1 2 3 4

Figure 2.18.: OSPS-FSO: kth circle fraction after k circles are intersected, without area
adjustment; 1000 runs of the Monte Carlo method
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Figure 2.19.: Radii of obfuscation circles ¢, depending on k of n shares for OSPS-ASO
“a-priori” and OSPS-FSO; 1000 runs of the Monte Carlo method

distributions, while relaxed limitations on vector lengths help to achieve more uniform
probability distribution over the obfuscation area. In Figure 2.20, we can see that even the
maximal allowed shift value of OSPS-ASO (note that OSPS-ASO allows for any share order,
cf. Table 2.1 in Section 2.4.6) is much lower than the average shift value of OSPS-FSO, which
requires fixed share order. This is due to the following features of the algorithms: First,
the limit of the shift length (r,/n) always decreases with the increase of n for OSPS-ASO.
Second, the average shift lengths of OSPS-FSO do not decrease with a larger total number of
shares n. This is an important advantage of OSPS-FSO in comparison with OSPS-ASO, since
it leads to a closer to uniform probability distribution.

Figure 2.21 presents different probabilities Py , 4, for different n’s, such that we can analyze
the effect of area adjustment on OSPS-FSO. The first curve depicted as “OSPS-FSO (no area
adj.)” shows the P 4, values for the 10% area of the intersection area of k obfuscation circles
(without area adjustment). The second curve depicted as “OSPS-FSO (no area adj.; corrected
m.)” shows a corrected measurement of P 14, Where the P 14, values are calculated for
the 10% area of the the non-intersected area of circle ¢, (also without area adjustment).

The second curve is needed in order to have comparable P, ;o values, since after the area
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Figure 2.20.: Maximal possible shift of OSPS-ASO algorithms compared with the average
shift of the fixed order based OSPS-FSO algorithm without area adjustment,
and OSPS-FSO algorithm with area adjustment; r, = 40 km; 1000 runs of the
Monte Carlo method

adjustment, the size of resulting obfuscation area A, equals the size of ¢,. With the third
curve depicted as “OSPS-FSO (with area adj.)”, we can see that after the area adjustment is
done, the probabilities P 14y, are lower for any k > 0.

Next, we show how the computed obfuscation area decreases in accordance with k known
shares (Figure 2.22a). In the open space model, this curve is the same for OSPS-ASO and
OSPS-FSO: OSPS-FSO does not have any intersections, as it adjusts the obfuscation areas
after intersections up to their initial size.

The comparison of OSPS-FSO with the OSPS-ASO “a-priori” approach is shown in Fig-
ure 2.22b. By using the privacy metrics defined earlier, we measured the maximal probability
of an attacker to derive that the target MO’s position 7t is located within 10% of the current
obfuscation circle ¢;: Py 199, = Pr[10% x area(Ay) < ¢yrqcx)- We can see that OSPS-FSO,
similarly to OSPS-ASO “a-priori”, has the initial uniform distribution of the p,, = 7 over the
initial obfuscation area having k = 0. For the larger k, the disclosure probability provided by
OSPS-FSO is far lower than the one provided by OSPS-ASO “a-priori” and does not exceed
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Figure 2.21.: Analysis of OSPS-FSO algorithm with and without area adjustment depending
on k of n shares; 1000 runs of the Monte Carlo method

~ 25% of probability corresponding to 10% of area. Moreover, the increase of Py 44, proba-
bilities with k is significantly smaller for OSPS-FSO. Generally, OSPS-ASO “a-priori” makes 7t
very predictable for the values of k that are closer to n. Thus, the OSPS-FSO provides lower
probability values Py ;o for the wider spectrum of k within the open space model.
Another view of the user’s privacy is shown in Figure 2.23. Figure 2.23a illustrates which
fraction of the obfuscation area covers the given probabilities Py ,,q for each number of
known shares k out of n = 5. The straight diagonal lines represent the linear precision
values Py ,,c = 100%, relevant when the share generation algorithm is not known to an
attacker. The three other curves represent the precision values corresponding to k levels
provided by the OSPS-ASO “a-priori” (Figure 2.23a) and OSPS-FSO (Figure 2.23b) share
generation algorithms. Similarly as in Figure 2.22b, we can see in Figure 2.23 that the
OSPS-FSO approach provides higher Py ., values corresponding to larger radii (i.e., lower
precision) than the OSPS-ASO “a-priori” approach. Therefore, OSPS-FSO guarantees lower
probability of the precision’s disclosure to an attacker than OSPS-ASO “a-priori”.
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Figure 2.22.: (a) Obfuscation area computed for different k for both OSPS-ASO “a-priori”
and OSPS-FSO; (b) comparison of share generation algorithms: probability of
deriving that the target MO’s position 7t is located within 10% of the current
obfuscation circle ¢, (P 1004); 1 = 5; 1y = 25 km; 100 runs of the Monte Carlo

simulation
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Figure 2.23.: Precision ¢y 4,4 corresponding to probability Py ,iack(®Pk arack) depending on
k for (a) OSPS-ASO and (b) OSPS-FSO; n =5, ry = 10 km; 100 runs of the

Monte Carlo simulation

2.5.4. Constrained Space Evaluation

In this section we first describe the Shapefile format that we use for reading map information.

Then we analyze the security of the map-aware share generation algorithm (CSPS).

56

2 | Position Sharing Approach



2.5.4.1. Map Information Format

Shapefile [Esr98] is one of ESRI' file formats developed for representing spatial information.
It became a de facto standard, as it is supported by many applications, and many open spatial
databases are currently available in the Shapefile format. The information represented by
the Shapefile format for the same map is stored in several files. They contain geometric
objects (features) with corresponding attributes in the form of “key / value” pairs assigned

to each map object. The files of the Shapefile format include:

* SHP — contains the geometrical data;

* DBF - defines the attributes of the geometrical data in form of the “key / value” pairs;

*.SHX - contains the attributes from the *.DBF file linked to the geometrical data from
the *.SHP file;

.SHPXML (optional) — contains metadata in XML format;

.PRJ (optional) - specifies the coordinate system.

Shapefiles distinguish three basic geometrical types: Point, PolyLine, Polygon. By using
additional properties, these three basic types can be extended into further types. One
extension is based on the multi-set principle: for example, a Multi-Point object can contain
several points, but it will be considered as a single object. Another advanced geometrical
type is so called Measured Shapetype. It defines the M parameter assigned to each point in
addition to the X and Y coordinates. The M parameter can be used for different purposes,
e.g., to represent the height of buildings. Another Shapefile geometrical type is Multipatch,
which forms a surface of multiple surface parts. In contrast to polygons, the surface parts
can be described as “triangle fans” or “triangle strips”. These are areas consisting of triangles
that are formed by lying next to each other or in a circle.

In our evaluation, we check whether any geometrical types are present in the given location.
The most frequently used types are polygons and multipolygons, since they are applicable to

such common map objects as buildings and squares.

LESRI stands for Environmental Systems Research Institute.
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2.5.4.2. Analysis of CSPS

This subsection evaluates the privacy characteristics of the map-aware algorithm by consid-
ering two different kinds of movement constraints. The effect of map-based constraints for
share generation is highly dependent on each map and the user-specific map representation
M,.
As we explained in Section 2.4.5, the only difference of CSPS compared to OSPS-FSO
is that the arbitrary-shaped non-circular obfuscation area A, now includes the intersection
with the underlying map knowledge (see Section 2.4.3.4 for details of an arbitrary-shaped
area size computation). Otherwise, CSPS is the same algorithm as OSPS-FSO with the same
area adjustment procedure (cf. Algorithm 5, Algorithm 8). Therefore, in this evaluation we
analyze the effect of the underlying map knowledge on the size of obfuscation area A;.

We analyzed the obfuscation area reductions caused by two different map types. The first
one is a more fine-granular (small-scale) map where M, is assumed to consist of only the
roads and squares of the City of Los Angeles (see Figure 2.24a). The second example shows
a more coarse-granular (large-scale) map, where M, includes all areas except forests in the
German state of Baden-Wiirttemberg, i.e., MOs can be located everywhere but in forests (see
Figure 2.24b).

We analyze the major difference between the OSPS-FSO and CSPS approaches by calculat-
ing the obfuscation areas formed after the intersection of the generated obfuscation circles

with the underlying maps. The CSPS generates the obfuscation circles in such a way that

(@) (b)

Figure 2.24.: (a) Roads and squares of the City of Los Angeles; (b) forests of
Baden-Wiirttemberg
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the size of the obfuscation area is never below the desired threshold, as was described in
Section 2.4.5. This adjustment is not performed by OSPS-FSO; therefore, the resulting size
of the generated effective obfuscation area is smaller and the location privacy of the user is
lower.

Our metric is the obfuscation area size which can be expressed as A, = M, N ﬂi.‘zl(cj) (cf.
Algorithm 8).

In Figure 2.25, we show the resulting sizes of obfuscation areas A, remaining after inter-
sections. We have generated 1000 sets of shares and calculated the average obfuscation
circle fraction of c;, which is left after intersecting with circles c, ... c,_; for various share
numbers n. This value for CSPS is at least 100% or larger due to space discretization and
corresponding computational inaccuracy. This is the result of the applied adjustment, while
in the case of OSPS-FSO, the value can vary a lot depending on each map.

The two lower curves represent the results of OSPS-FSO. The middle curve shows the
result of intersections with a coarse-granular map representation M; of Figure 2.24b, while
the lowest curve shows the result of intersections with a fine-granular map representation
M, of Figure 2.24a. “SPS-FSO+M1” depicts the results for the City of Los Angeles map,
while “SPS-FSO+M2” depicts the results for the forests of Baden-Wiirttemberg map. We can
see that these curves slowly increase from 40% to 60% with increasing number of circles
intersected k. This increase is due to the linear-based radius decrease of each kth circle,
which causes quadratic area decrease. Since the latter circles are much smaller, they tend
to be fully covered by the previous circles despite their large number; moreover, they tend
to be overlapped by even smaller map regions where the user can be located. Also, we can
see that the intersection with the coarse-granular map representation M, decreases the area
more than the overlapping with the fine-granular M;.

The demonstrated results are very important in preserving user’s location privacy: the
adjustment function of CSPS keeps the obfuscation area not smaller than 100% of the original
size and therefore preserves the user’s privacy (precision) requirements (which depend on
both k and the map knowledge). In contrast, if we apply OSPS-FSO, which does not take
map knowledge into account within the same adjustment function, the obfuscation would

be reduced by 40%-60% for the given maps.

2.5.5. Summary: Comparison of Algorithms

Table 2.2 summarizes the selected properties of probabilistic privacy guarantees provided

by the approaches presented in this chapter. In columns two and three, we present the
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Figure 2.25.: The intersection area of circles c,N¢c; N...N ¢, of CSPS compared to OSPS-FSO
with no area adjustment based on map knowledge; 1000 runs of the Monte
Carlo method

properties of OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori” algorithms. In column four,
we show the properties of OSPS-FSO and CSPS, since OSPS-FSO has the same properties as
CSPS in this context as they represent the same share generation algorithm in its core. The
only difference is that CSPS also includes the underlying map reading.

To estimate a pdf, we always require the Monte Carlo simulation, with the exception of
the OSPS-ASO “a-posteriori” share generation algorithm, where pdf can be also determined
analytically due to its simplicity. However, OSPS-ASO “a-posteriori” provides a pdf that
is close to normal distribution, i.e., the precise user position 7 is easier to predict for an
attacker. The pdf of OSPS-ASO “a-priori” is also non-uniform for k > 0, yet it is uniform for
the important case of k = 0. The pdf provided by OSPS-FSO and CSPS are uniform-line,
since these algorithms do not require strict limitation of shift vector lengths, which cause the
non-uniform pdf character of both OSPS-ASO algorithms.

An important question is whether the increase of n (i.e., generating more shares and
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distributing them among a larger number of LSs) has a positive effect on security. Our
evaluations have shown that the only share generation algorithm that makes = more pre-
dictable for higher n is OSPS-ASO “a-posteriori”. All the other algorithms allow for using the
benefits of larger n (e.g., for having more precision levels) without making the probabilities
Py 100, WoOTSE, i.e., without having increased the probability peaks in their pdf’s. However, it
is also interesting to note that the difference between the probabilities Py ;qo, — Pr_1,109 Of
two consecutive precision levels (defined as “probabilistic guarantees delta” in the table)
decreases in the OSPS-ASO “a-posteriori” algorithm, thus making the probabilistic peak
lower for each next k. In OSPS-ASO “a-priori”, this delta is decreasing, while in OSPS-FSO
and CSPS it remains close to constant. Therefore, we can state that each algorithm has its
stronger and weaker properties, while CSPS generally has the most positive properties and

does not have major drawbacks in comparison with the other algorithms.

2.5.6. Alternative Estimations of Security

In this section, we analyze the security characteristics of the share generation algorithms
presented earlier by analytical methods rather than simulation. We mainly target the OSPS-
ASO “a-posteriori” and the OSPS-ASO “a-priori” share generation algorithms. At the same
time, the conclusions made for OSPS-ASO “a-priori” are also valid for OSPS-FSO and CSPS,

Privacy guarantees of share generation algorithms

OSPS-ASO OSPS-ASO OSPS-FSO
“a-posteriori” “a-priori” and CSPS
Method to analytical and Monte Carlo for k > 0 | Monte Carlo for k > 0
estimate pdf Monte Carlo (for k = 0 not needed) | (for k = 0 not needed)
Distribution
Resulting pdf normal-like bi.ased is closer to uniform
(exception: k =0) = better

privacy guarantees

positive (more
Effect of precision levels);

) o Positive only Positive only
n’s increase | negative (increase
of probability peak)
Probabilistic
guarantees Decreasing Increasing Constant
delta

Table 2.2.: Comparison of various position sharing algorithms: privacy guarantees
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since the latter two algorithms also rely on the “a-priori” selection of MO’s position 7t within

the master share’s obfuscation circle c,,.

2.5.6.1. OSPS-ASO “a-posteriori” and Convolution of Shares

For a rough estimation of how the MQO’s position 7 is distributed in the current obfuscation
¢;, the Central Limit Theorem for random walk can be used in the “a-posteriori” algorithm
version (Algorithm 2). Assume that the attacker wants to know the distribution of 7 inside
of ¢, i.e., n refinement shares are unknown to the attacker.

According to the Central Limit Theorem, for a sum of independent and identically dis-
tributed random elements S, = X; + X, +...+X,,n € N, if each element X; has finite values

of expectation u and dispersion %, then:

S,—un
——— — N(0,1), 2.14

where N (0, 1) denotes the normal density distribution. In our case:

O_ﬁ: driax;‘u — dmax (2'15)
12 2

Here, we can do an a-priori pdf estimation: it is well-known that the convolution of n > 6
uniformly distributed random variables follows approximately a normal distribution [GS97].
The problem, however, is that for a small n (for n < 6) the pdf character is not so clearly
defined.

Convolution of Probability Distributions. In general, convolution is a sum of variables
or functions. In our case, we need to find how the target MO’s position 7t is concentrated
inside the known obfuscation circle from the point of view of an attacker (in the “a-posteriori”
algorithm version). Here, the functions to be convoluted are the unknown shares viewed as
vector variables X; uniformly distributed in the given interval.

Although for 2 < n < 6 the pdf is still similar to normal distribution according to the Central
Limit Theorem, we can use the formula for convolution of multiple probability distributions

[KCO01] in order to determine the pdf more precisely. The convolution of one-dimensional
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variables, each of which is uniformly distributed in the interval [a; b], is determined by:

1 Anx) ¢ 4yi n _ T n—1 .
£ = C= =T Yo (D@ (x—na—i(b—a))*!, ifna<x<nb, 2.16)

0, otherwise,

X—na

where 7i(n, x) = [ﬁ] is the largest integer lesser than

x—na
b—a *

In special cases when the vector variables X; are uniformly distributed in the interval [0, 1],

then f; (x) is given by the simplified formula [Usp37]:

o o (FD (D =), ifo<x<n,

fs,(x) = (2.17)

0, otherwise

As an example, Figure 2.26 shows the result of two uniformly distributed variables: the
special case of convolution known as Triangular Distribution (or Simpson Distribution)
[KVDO04].

The illustration for n = 2,4,6,8 and 10 (a = 0;b = 1 for each element) is shown in
Figure 2.27. Applying this to our approach, it shows the obfuscation decrease from n = 10
down to 2 with two shares obtained at each step. Triangular Distribution is obtained at

n=2.

P 1t a=0: b=1 PR
0.8
0.6
0.4
0.2+t
X
0.5 1 1.5 2

Figure 2.26.: Convolution of two uniform probabilities [GS97]
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Figure 2.27.: Convolution of n uniform probabilities [GS97]

Note that in Figure 2.27 the coordinate values of the distributions are summed, while in
our approach we have different numbers of providers n for the same radii of obfuscation
circles. The resulting level of probability changes for different values of n, if the sum of the
convoluted variables is fixed as required when generating n shares for the given radius r,
of the master share (Figure 2.28). The stochastic properties of the share set become worse
(i.e., the target MO’s position becomes more predictable) with increasing of n in the case of
the “a-posteriori” share generation algorithm. This occurs despite the fact that the larger
number of shares allows for the distribution of position information among a larger amount
of LSs and therefore reduces the risks of its disclosure. This property was analyzed in more
detail in Section 2.5.3; also see Figure 2.16.

The previous examples deal with one-dimensional variables. In order to get a two-
dimensional convolution of uniform probability distributions, we need to multiply two
one-dimensional functions such as shown in Equation 2.16, one for X and one for Y
[GS97, Mat00]. The resulting two-dimensional pdf is called circular bivariate distribu-
tion and retains the properties of the one-dimensional distributions, i.e., it is normal-like
(see Figure 2.29).

2.5.6.2. OSPS-ASO “a-priori” and Impossibility of Deconvolution of Shares

Here, we explain why for OSPS-ASO “a-priori” (Algorithm 2) we cannot apply a convolution-
based approach as for the “a-posteriori” algorithm version (Algorithm 3), which makes

impossible the use of a mathematical formula to determine the probability distribution of 7
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Figure 2.28.: One-dimensional pdf’s for different n values, with the sum of the convoluted
variables fixed: curves with higher peaks correspond to higher n

n:2 HZS

Figure 2.29.: Circular bivariate distributions forn=2and n=>5

for the “a-priori” algorithm version (Algorithm 2).
To find the precise probability distribution of 7 resulting from the convolution of n —1i
unknown shift vectors by knowing i shift vectors (i =0...n—1), we would need to use the

deconvolution procedure [PZ02]:

convolution: h(x)=(f *g)(x) = f f(t)g(x—t)dt
s (2.18)

deconvolution: f(x)=F~'[h/$],

where F is the Fourier transform of function f.
Our goal is to find an intermediate distribution after convoluting n — i shift vectors by

knowing that the resulting probability distribution, i.e., that the convolution of n shift vectors
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results in a uniform distribution.

However, such a deconvolution is “ill-posed”, meaning that we only know the resulting
distribution, while a probability distribution of any intermediate variable (i.e., shift vector)
is unknown. Even if an attacker knew the first distribution (i.e., the distribution of already
obtained i vectors’ concatenation points), the deconvolution result is represented by a
multidimensional family of functions, and not by a single function [PZ02].

At the same time, statistical solutions of Circular Random Walk [Ste63] are not applicable
for OSPS-ASO “a-priori” due the following reasons: First, there is an insufficient number of
variables must be calculated (usually, the number of shares n is not expected to be much
larger then 10). Second, although the length deviation is known, the angular deviation
required for statistical analysis is unknown: at the first step (i = 1), no deviation is known;
at steps i > 1 only an intermediate deviation is known, since p,, is not revealed until the last

share.

2.5.6.3. Alternative Estimations of Security: Summary

An attacker can estimate a pdf for the OSPS-ASO “a-priori” algorithm by using the Central
Limit Theorem of convolution of probabilistic variables. However, these estimations can
be only precise in case of large n, while we expect that the number of shares n within the
position sharing approach usually is not going to be larger than 10. If n is smaller or equals
10, as in our evaluations, the Monte Carlo simulation provides better, i.e., more precise pdf’s.

In case of the OSPS-ASO “a-priori” algorithm, we have shown that it is not possible to
determine the probability distribution of 7t through a non-heuristic (analytical) solution
such as deconvolution or Circular Random Walk, since we know only the resulting pdf and
cannot determine stochastic properties of the intermediate variables, i.e., the probability
distributions of the refinement shares generated by OSPS-ASO “a-priori”. Therefore, we
have used the Monte Carlo simulation earlier in this chapter to evaluate the probabilistic

guarantees of the precision levels provided by our share generation algorithms.

2.6. Performance Evaluation

Since the processing power and storage capacities of today’s server-side (e.g., cloud) in-
frastructures are much more advanced than the MO’s device characteristics, the client side

becomes the bottle-neck of the system, whereas the server side is less important with regard
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to cost optimization. Therefore, not only the security guarantees but also the processing
costs of algorithms are important, especially for small hand-held mobile devices.

First, we analyze the execution times of our share generation algorithms on a mobile
device. Second, we make an estimation of attacker’s computational overhead assuming
more powerful hardware. Third, we consider the communication cost required to transmit
the necessary shares from MOs to LSs. Since in this chapter we assume snapshot position

updates, we estimate the size of the messages and not their number.

2.6.1. Evaluation Setup

According to our approach, the share fusion is done on the LBA side, while share generation
must be done locally by the MO. Moreover, while share fusion algorithms always have linear
complexity O(n) to sum n vectors, the share generation in all algorithms except the first
(“a-posteriori” OSPS-ASO) version is non-deterministic, being usually more complex and
requiring more time. We therefore focus on analyzing the computational overhead required
by the share generation algorithms.

We implemented our share generation algorithms and ran them on the HTC Desire HD
smartphone with Android OS (CPU: 1 GHz Qualcomm QSD8250 Snapdragon, memory: 576
MB RAM). We measured the average time it took for our share generation algorithms to
generate the full new set of position shares for a single position update. For this evaluation,
we used the Google Caliper micro-benchmarking framework, which executes each share
generation algorithm multiple times and calculates the average time required.

It is reasonable to assume that the adversary has a more powerful device available to
analyze the pdf of the MO’s position. Thus, we simulated an attacker’s Monte Carlo analysis
for FSO and CSPS algorithms by using hardware with Intel Core i7 CPU (1.60 GHz) and 4GB
RAM.

2.6.2. Processing Overhead

In Table 2.3, we can see the average execution time in milliseconds (ms) of the first two
algorithms based on open space (OSPS-ASO “a-posteriori” and OSPS-ASO “a-priori”) for the
sets of shares of different sizes n generated for a single position update. As expected, the
execution time of OSPS-ASO “a-posteriori” is always significantly smaller than for OSPS-ASO
“a-priori”, since OSPS-ASO “a-priori” has to traverse many more vector sets in order to find

the one that connects the starting point p, with the end-point p,,.
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n 2 4 8 16 32 64 128
OSPS-ASO “a-posteriori” 0.06 | 0.21 1.22 8.65 | 16.2 | 561 | >1s
OSPS-ASO “a-priori” 3.4 | 32.6 | 164.27 | 2273 | > 1s | > 1s | >1s
OSPS-FSO without area adj. | 0.9 1.1 1.4 1.6 1.7 2.2 2.9
OSPS-FSO with area adj. 3.5 4.4 11.0 1s |[>1s|>1s|>1s
CSPS 17.1 | 104.6 | 1039 |>1s|>1s|>1s|>1s

Table 2.3.: Processing overhead of OSPS-ASO algorithms, ms

The time needed to generate the set of shares for OSPS-FSO without area adjustment
is always smaller than for both OSPS-ASO versions. The reason for this difference is that
OSPS-ASO applies more constraints to the vectors, and therefore many more randomly
generated sets are dismissed before the suitable set (which guarantees the arbitrary order of
share fusion) is found.

OSPS-FSO with area adjustment is slower than OSPS-FSO without area adjustment but
still faster than both OSPS-ASO versions, since intersection area computation is simple when
only circles are considered. In turn, the processing times required for the map-aware CSPS
approach are highly dependent on the map granularity and the efficiency of reading the
map data. In Table 2.3, we provided the CSPS execution results for the City of Los Angeles
map presented in the previous section. We can see that CSPS is the slowest share generation
algorithm, since it requires to read the map data during the computation of the intersection
area.

We can analyze absolute execution times by assuming a maximum position update rate of
1Hz, which is the maximum rate of common GPS receivers. This assumption about update
rate can be considered as the worst case in terms of communication overhead, representing
frequent and continuous tracking scenario. Under this assumption, OSPS-ASO “a-posteriori”
is able to generate more than 64 shares online in real time until one second elapses, whereas
OSPS-ASO “a-priori”, OSPS-FSO (with area adjustment) and CSPS can generate at least 8
shares within one second, i.e., provide 8 different privacy levels. For most LBAs, 8 privacy
levels should be sufficient; moreover, we expect that the majority of LBAs will have much
smaller position update rates than 1 Hz. Therefore, we can conclude that real-time position

obfuscation is feasible with our algorithms.
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2.6.3. Attacker’s Overhead

An important issue is how efficiently an attacker can obtain a pdf of the user’s position by
performing the Monte Carlo simulation for different values of k number of already known
shares and different share generation algorithms. However, note that even if an attacker
had have a very powerful hardware and could obtain the pdf’s within a reasonable time,
those pdf’s would provide no worse probability distributions P ,ac(@x arac) than the ones
guaranteed by the corresponding share generation algorithms.

Here, we analyze the processing time required for an attacker if OSPS-ASO “a-posteriori”
(Algorithm 2), OSPS-ASO “a-priori” (Algorithm 3), OSPS-FSO (Algorithm 5) and CSPS
(Algorithm 8) are employed.

In our analysis, the attacker uses the Monte Carlo simulation to sample the pdf according
to our attacker model (see Section 2.5.1) and the simulation methodology described in
Section 2.5.2. The attacker executes the known share generation algorithm (in the way as
a regular user would perform this for generating shares) enough times in order to obtain
a set of 100 samples of the exact MO’s position 7 over the obfuscation area. An attacker
tries to utilize the k known shares to get the resulting pdf that represents the correlation
between the known k shares and the resulting position 7t. For each further share of k known
shares, the Monte Carlo simulation looks for a matching k of the newly generated random
share sets, while the previously found set match for k — 1 shares cannot be reused. If k
generated shares match with k known shares, position 7t is obtained and saved as a sample
point for building a pdf. As a result, the time required for the Monte Carlo tests grows
exponentially with the increase in k, as our measurements show (cf. Table 2.4). The only
exception is the OSPS-ASO “a-posteriori” algorithm, since in this algorithm each generated
share is stochastically independent, and therefore k — 1 shares can be reused.

We also can see that it is very costly for an attacker to find share sets that match the k
known shares for the share generation algorithms OSPS-FSO and CSPS, since these algorithms
require area size computations. Moreover, CSPS is dependent on the concrete map and its
granularity during the computations. Thus, more time (more than one hour for k > 2 and
n > 4) is required to simulate the share generation algorithm of CSPS than of OSPS-FSO
due to the map analysis. In contrast, 100 runs of the Monte Carlo simulation for the both
versions of OSPS-ASO (“a-posteriori” and “a-priori”) is much faster than in case of CSPS and
OSPS-FSO. This simulation is done within one minute for the given n and k combinations,

and therefore it is easier for an attacker to derive the desired pdf for OSPS-ASO.
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n 3 4 5
k 1 2 1 2 3 1 2 > 2
OSPS-ASO “a-posteriori” | 0.08 | 0.11 | 0.09 | 0.12 | <K1s | 0.09 | 0.16 | K15
OSPS-ASO “a-priori” 1.69 | 30.6 | 2.07 | 38.28 | >1m | 6.34 | 63.75 | >1m
OSPS-FSO 2.13| 88.6 | 774 | 191 | >1h [12.7 | 271 | >1h
CSPS 419 | >1h | 814 | >1h | >1h | 973 | >1h | > 1h

Table 2.4.: Attacker’s processing overhead for Monte Carlo analysis resulting in 100 samples
of position 7, having k known shares out of n shares, s

2.6.4. Communication Overhead

Next, we estimate the size (payload) of the update messages and the corresponding commu-
nication overhead. Despite the fact that all of the n shares for each position update must be
sent, each single share is quite small in size: user id (~ 32 bytes) + 2 floating point numbers
for the shift vector (8 bytes). If this piece of information is sent using the UDP protocol with
a binary format, we can estimate that the transmission of, for example, 8 shares requires
only about 550 bytes to send. Taking into account that the most modern LBSs use HTTP
protocol with JSON or XML payloads, the size of a single position update might be around
two times higher. The major part of the traffic amount generated by a location update is
required for the establishment of secure sessions; for example, 1810 bytes would be used
by SSL protocol [PRRJO6]. The given values demonstrate that in our approach it is not a
problem (in terms of messages size) to send the required amount of position information
after each update.

Another important issue regarding communication overhead is that our approach produces
a large number of messages to be sent in cases where a naive update protocol is applied. For
instance, shares do not have to be updated as long as the user moves within the smallest
obfuscation circle. If he or she moves further, the complete share set does not necessarily
need to be updated at once. In many situations, it might be sufficient to update only a single

or a few shares. Our optimized location update protocol will be presented in Chapter 4.
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2.7. Related Work: Privacy in Location-based Services

This section gives an overview of major existing techniques for protecting location privacy:
cryptography, position dummies, mix zones, k-anonymity, spatial obfuscation, coordinate
transformation and secret sharing. Then, we classify them according to their privacy goals
and the adversarial attacks they are able to resist. The major contributions of this section
were originally published in [WSDR14].

2.7.1. Cryptography-based Approaches

A classic solution to ensure the confidentiality of the user’s position is to use cryptography.
However, by encrypting user positions stored on servers, server-side query processing of
advanced queries like range queries over the encrypted data is usually impossible, or possible
only at a very high cost [RPBO8].

Another example of a cryptography-based approach for location privacy was proposed by
Mascetti et al. [MFB*11] in proximity services of geo-social networks. The authors assume
that service providers are untrustworthy and consider the scenario where mobile users want
to notify their friends called buddies of their proximity. The main idea is that the secret keys
are shared with the selected buddies in a distributed fashion and remain unknown to the
service providers. The authors use a precision metric which is defined through the union of
multiple discrete space cells called granules. A drawback of this approach is that it requires a
complex implementation of the encryption functionalities, and it is mainly suitable for the

specific case of proximity calculation within geo-social networks.

2.7.2. Position Dummies

The goal of position dummies is to secure the user’s true position by sending multiple false
positions (“dummies”) to the location servers together with the true position [KYSO5]. The
essential advantage of this approach is that the user himself/herself can generate dummies
without the need for trusted third-party components that could introduce additional security
problems. The user identity is not secured by such dummies, because new fake IDs are not
generated together with the dummy positions.

Various examples of position data distribution by adding dummy positions with different
ubiquity, congestion and uniformity parameters to the true user position are shown in

Figure 2.30a-e. Obviously, it is challenging to create dummies that cannot be distinguished

2.7 | Related Work: Privacy in Location-based Services 71



from the true user position, particularly, when an adversary has additional context information
such as a roadmap and can track the user for longer times.

An advanced method to generate dummies is presented in the SybilQuery approach pro-
posed by Shankar et al. [SGIO9]. This approach assumes that the mobile user has a database
with traffic history for the surrounding area, which allows him or her to create additional
dummy positions along the past real trajectories of other MOs, so that these dummy positions
cannot be distinguished from the real user positions. Figure 2.31 shows (a) a simple location
query compared with (b) a location query using the SybilQuery approach. Note that the
SybilQuery approach prevents the exclusion of fake dummies by employing the location
tracking analysis, since all points lie along real movement paths. For this approach to be
possible, a database with MOs’ traffic history is required, which can be outdated or difficult
to obtain.

Pareschi et al. presented another approach based on dummies, which resist “shadow attacks”
[PRB08]. The shadow attack can be performed by an attacker that uses LBS and pretends to
be another user, i.e., the attacker issues location-based queries being a “shadow” under a
fake pseudonym of the target user. Then the attacker can get additional knowledge about the
target user by analyzing the content of service responses. The proposed defense techniques
include fake query generation and delaying user queries.

The general problem with the dummies approach is that dummy positions can be easily

.

(a) (b)
o (e ]®
s a . e b
- | o ®
. . 5
() (d)

Figure 2.30.: Example of position data distribution with diverse ubiquity, congestion and
uniformity parameters [KYS05]
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Figure 2.31.: Querying an LBS: (a) without SybilQuery; (b) using SybilQuery with k = 3
[SGIO9]

distinguished from the real positions if an attacker has some background information such
as database of real user movements [ SGIO9]. Even if the real paths database is assumed to
be available, the dummies approach does not provide robust privacy guarantees or multiple

privacy levels. In addition, the transmissions of fake positions and operations on them cause
excessive costs.

2.7.3. Mix Zones

The idea of the mix zones approach proposed by Beresford et al. [BS04] is to define privacy-
sensitive areas called mix zones, where all users must be protected such that the user position
is hidden within these zones. This is achieved by not sending any position updates within a
zone. However, by observing the user positions right outside a mix zone and while entering
and leaving zones, it is possible to infer their trajectory inside the zone and to link incoming
and outgoing traces of a mix zone to obtain complete trajectories. Therefore, Beresford et al.
introduced dynamic pseudonyms [BS04] as a part of the mix zone concept, which means that
the mobile user changes his or her pseudonym upon entering and exiting the mix zone in
order to protect his or her identity. As such, it becomes more difficult for an adversary to
determine the user’s trajectory within the mix zone by tracing the entry and exit points of a
given user.

A mix zone with three mobile users moving through it is presented in Figure 2.32. The entry
and exit points of the mix zone are reached by the mobile users under different pseudonyms,
making it more difficult for an attacker to obtain their trajectories within the mix zone.

The MobiMix approach presented by Palanisamy and Liu [PL11] applies the mix zone
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Figure 2.32.: Example of movement of 3 users through a simple mix zone [BS04]

concept to road networks. The authors extended the basic mix zones concept by taking into
account diverse context information, which can be used by an attacker to derive detailed
trajectories. The additional parameters include geometrical, temporal constraints and users’
density. The MobiMix approach is illustrated in Figure 2.33, showing the mix zones concept

applied over a road network, thus obfuscating direction of each car after entering the mix

zone.
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Figure 2.33.: Mix zone over a road network [PL11]
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Another extension of the mix zones idea is the dynamic mix zones approach of Ouyang et al.
[OXL*08]. It adapts the mix zones dynamically depending on the user movements instead
of having mix zones with pre-defined static boundaries. Figure 2.34 shows the heuristic
selection of a dynamic circular mix zone with its center in A, B and C for a single time point,
such that it covers the maximum number of user positions.

The approaches based on mix zones lack flexibility, because they need a pre-defined
location-based (or user-based, as in [OXL*08]) division of space into fixed zones, and they

do not allow for different levels of privacy in different zones.

2.7.4. k-anonymity

k-anonymity is a widely accepted concept that guarantees that in a cluster (i.e., a set or
tuple) of k objects (in our case, mobile users), only one of them is the target object and
it is indistinguishable from the k — 1 other objects of the cluster. Thus, the probability of
determining the target user is 1/k.

Many approaches exist that apply the general concept of k-anonymity to location privacy.
The adaptive cloaking approach, as proposed by Mokbel et al. [MCA06 ], considers the minimal
size of the obfuscation area including k users. It is based on hierarchical division of space
into cells in order to cluster mobile objects in the form of a pyramid. Thus, by preserving the
original precision and privacy, this approach reduces the cost of querying, i.e., the cost of
search for the requested obfuscation area. The principle of adaptive cloaking is presented in
Figure 2.35. Only the space cells adjacent (i.e., needed to meet privacy requirements) to the

MO’s movement are maintained, instead of maintaining the whole pyramid’s index structure.
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Figure 2.34.: Dynamic circular mix zones [OXL"08]
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Figure 2.35.: Adaptive location anonymizer [MCAO6 ]

Gedik et al. proposed the CliqueCloak algorithm [ GLO5, GL08] based on k-anonymity, which
also performs spatial and temporal cloaking. Similarly to the adaptive cloaking approach
[MCAO06], in order to preserve acceptable location privacy, a user can additionally define
individual upper limits for both obfuscation area size and time periods associated with
his or her positions. Figure 2.36 illustrates the Clique-Cloak algorithm with the resulting
3-dimensional spatio-temporal cloaking boxes (2.36€).

Usually, achieving k-anonymity requires a TTP which has a global view of the service users.
An exception is the approach of Chow et al. [CML06] that avoids using a single trusted
anonymizer by using P2P communication to find a spatial region so that it covers the needed
number of other k — 1 mobile users (i.e., a cluster). After the needed cluster is found, the
user sends it to the client indirectly by using a randomly selected node to hide the identity
of the query issuer. The system architecture for the P2P spatial cloaking is presented in
Figure 2.37. It consists of LBS databases and mobile users who can communicate with each
other and send queries to LBSs through the base station.

Zhang et al. [ZHO09] introduced an approach to combine the use of a TTP and P2P principles.
The proposed system can switch between these modes depending on privacy settings and
other parameters, therefore balancing the work load and communication cost in a more
efficient way. To improve the security of the P2P mode, the authors present the Random
Range Shifting (RRS) algorithm (illustrated in Figure 2.38). To avoid centering the mobile
object in the selected cluster of users, the space cluster is selected randomly while the
algorithm is looking for k users. Thus, this version of k-anonymity guarantees that the

calculated clusters of k users remain the same over several queries. This property of k-
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Figure 2.37.: System architecture for P2P spatial cloaking [CMLO06]
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clusters is called reciprocity, and it guarantees that attacks on several intersecting k-clusters
of different queries cannot easily identify the target user.

Another approach to achieve reciprocity of k-clusters is presented by Ghinita et al. [ GKS07].
The authors propose to use Hilbert space-filling curves for the indexing of service users and
their locations. Figure 2.39 shows two examples of a Hilbert space-filling curves with different
granularities of space distribution (4 x 4 cells and 8 x 8 cells). The advantage of the Hilbert
space indexing is that physically close objects likely have numerically close indices. By
utilizing such distance-aware spatial indexing, the anonymizer always selects the same fixed
set of k — 1 additional users for each query of a given user; therefore, it is impossible to
decrease k by excluding some users after intersecting the clusters retrieved from multiple
queries. Thus, so called strong k-anonymity is guaranteed by the reciprocity property.

Yet another approach to achieve reciprocity of k-clusters is proposed by Talukder and
Ahamed [TA10]. The authors use adaptive nearest neighborhood cloaking to achieve this
property. They describe how their approach resists two types of the multi-query attack:
shrink region attack and region intersection attack. The aim of these attacks it to reduce the

number k of cluster’s users by issuing multiple queries with similar target location and then
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Figure 2.39.: Hilbert curve examples: (a) 4 x 4 cells; (b) 8x 8 cells [GKS07]

overlapping the received k-clusters.

There are also a number of approaches inspired by database privacy principles, which
are also applicable in cases when an MO needs to send multiple attributes of itself to an
LBS. Such approaches add additional parameters to the k-anonymity guarantee in order to
improve it. Usually these ideas originate from the database privacy field, but they can also
be applied in the field of location privacy if LBS users are represented by more attributes
than just their identity and location.

For example, Machanavajjhala et al. introduced the [-diversity parameter to extend the
k-anonymity guarantees [MKGVO07]. Their approach preserves the diversity of the personal
context for the given k-cluster. Thus, the target user position cannot be disclosed by analyzing
non-spatial attributes of the MOs. To illustrate [-diversity, Figure 2.40 shows two tables
containing 4-clusters. The information presented in the first table (Figure 2.40a) is less
secure, since the user identity can be revealed by analyzing the sensitive attributes (here:
condition of a patient) although the 4-anonymity of each cluster has been preserved. For
example, in the case of the last 4-cluster, an attacker knows with 100% certainty that the
target user has cancer. The second table (Figure 2.40b) is improved by providing the 3-
diversity, so that the probability of a target user to have a certain disease is not higher than
33.3%. The additional security is achieved by grouping the entries in such a way that at
least 3 different sensitive (condition) values are represented in each 4-cluster. This approach
guarantees that 3 users within each cluster are indistinguishable, i.e., [-diverse (3-diverse).

Similarly, [-diverse k-anonymity was guaranteed by Bamba et al. [BLPWO08] by using a
sophisticated dynamic cloaking approach. The authors proposed various ways to find [-diverse

k-clusters of users: top-down (starting with larger space cells and dividing them into smaller
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Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition Zip Code| Age | Nationality Condition
1 130%* | < 30 * Heart Disease 1 1305* | < 40 * Heart Disease
2 130%* | < 30 * Heart Disease 4 1305% | <40 * Viral Infection
3 130%* | < 30 * Viral Infection 9 1305* | < 40 * Cancer
4 130%* | < 30 * Viral Infection 10 || 1305* | <40 * Cancer
5 1485% | > 40 * Cancer 5 1485% | = 40 * Cancer
6 1485% | > 40 * Heart Disease 6 1485% | = 40 * Heart Disease
7 1485* | > 40 ® Viral Infection 7 1485* | = 40 * Viral Infection
8 1485* | > 40 * Viral Infection 8 1485% | = 40 * Viral Infection
9 130%* 3% * Cancer 2 1306% | < 40 * Heart Disease
10 || 130%* 3k * Cancer 3 1306* | < 40 * Viral Infection
11 130%* 3% * Cancer 11 1306% | < 40 * Cancer
12 || 130%* 3k * Cancer 12 || 1306* | <40 * Cancer

(a) (b)

Figure 2.40.: (a) 4-anonymous inpatient microdata; (b) 3-diverse inpatient microdata
[MKGVO07]

cells), bottom-up (starting with small space cells and merging them into larger cells) and
hybrid spatial cloaking. The anonymization of spatio-temporal range queries is achieved by
incorporating temporal cloaking.

Domingo-Ferrer et al. proposed a so-called p-sensitivity parameter to improve k-anonymity
guarantees [ SSDF08]. The idea is to prevent all mobile user profiles in a k-cluster from
sharing a combination of confidential key attributes, which would otherwise disclose the
confidential attributes of the user.

The next extension of k-anonymity and [-diversity parameters was proposed by Li et al.
[LLVO7]: t-closeness represents the distance between an attribute’s distribution within the
selected cluster of k users and the same attribute’s distribution over the total set of users.
This distance should not be smaller than a certain threshold.

Another database-driven approach was introduced by Wong et al. based on (a, k)-anonymity
[WLFWO06]. This approach is an extension of k-anonymity similar to [-diversity, where a
denotes the maximum relative diversity of the given sensitive attribute in the set of tuples.
Contrary to the number of multiple diverse attributes [ in a given tuple (k-cluster), the a
parameter is used to preserve the diversity of a given separate attribute.

Also, there are a number of approaches called historical k-anonymity, where the k-
anonymity principle is applied to multiple position updates. Historical k-anonymity methods
improve k-anonymity guarantees by taking into account the temporal component of the user’s
position information, i.e., to provide k-anonymity guarantees for moving objects [MBW*09].

Similarly as with achieving strong k-anonymity by clustering, the historical information of

80 2 | Position Sharing Approach



multiple users is divided into blocks with each block containing the positions of at least k
users.

The problem of all location privacy approaches based on k-anonymity is that in order to
select a k-set, a trusted anonymizer with a global view must be available in the system, i.e.,

an undesired TTP is required.

2.7.5. Spatial Obfuscation

Spatial obfuscation approaches preserve the user’s location privacy by deliberately reducing
the precision of position information sent by the user to an LBS. A classic spatial obfuscation
approach is presented by Ardagna et al. [ACD"07], in which a mobile user sends circular
areas instead of his or her exact positions to the location server. The obfuscation areas are
generated in a secure way, which means that the target user position is distributed uniformly
inside the obfuscation shape. Figure 2.41 illustrates different obfuscation techniques: (a)
enlarging the radius, (b) shifting the center, and (c) reducing the radius. We apply these
techniques in our position sharing approach, while providing additional properties such as
graceful degradation and multiple privacy levels.

An important advantage of spatial obfuscation is that it requires no TTB since the user
himself or herself can calculate the obfuscation area (in contrast to k-anonymity and other
techniques relying on a TTP). However, this advantage comes at a price, which means that
the clients are not provided with the precise user position. This trade-off between privacy and
precision was studied by Cheng et al. [CZBP06]. They introduced a probabilistic model of
results of range queries, depending on the overlapping size of query area and the obfuscation
shapes. Figure 2.42 illustrates the query score of ILRQ (Imprecise Location-based Range
Query). Here, p denotes the probability that user S yields R; as the query answer, while V is

b) c)

Figure 2.41.: Obfuscation by: (a) enlarging the radius; (b) shifting the center; (c) reducing
the radius [ACD*07]
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the precision of R; with respect to the full set of answers R, where R gives the exact desired
query answetr.

Instead of geometric obfuscation shapes like circles, Duckham and Kulik have used obfus-
cation graphs to apply the concept of location obfuscation to road networks [DKO5]. With
the addition of fake vertexes, their obfuscation graphs can be applied if the road network is
available. Figure 2.43 illustrates the addition of dummy vertex s to the obfuscated multi-
source graph algorithm with a set of query locations Q =q;, ..., qs (gray vertices) and a set
of obfuscation locations O = o0, ..., 04 (black vertices).

An example of a location privacy approach based on geometric obfuscation is the n-CD
approach of Li et al. [LSTL13]. According to this approach, a mobile user generates n so
called concealed disks (CDs), such that their combination provides the “anonymity zone”
around his or her position. The unpredictability of the resulting anonymity zone is preserved,
since the overlapping and rotation of the CDs is done in a randomized fashion. The advantage
of the n-CD approach is that, similarly to our position sharing approach, it does not require a
trusted third party, which would store the precise location information of mobile users. The
disadvantage, however, is that the n-CD approach does not provide multiple levels of privacy,
i.e., precision levels depending on the user’s trust in different location-aware applications.
The addition of each further kth CD refines the obfuscation area, but there is no pre-defined
value of this refinement, and, therefore, there are no guaranteed k precision levels. Another

drawback of the n-CD approach is that the proposed privacy metric reflects only the area

- R={S2,S3}

- p(R2)=0.3 RS

- V(Ry)=1 S,  p(Rs)=0.2

- V(R5)=0.5
"

“R=(S;) S R0
- p(R1)=0.2 - p(R4)=0.3
- V(R1)=0.5 R ={S,,S3} - V(Ry)=0

Figure 2.42.: Query score of ILRQ; p — probability that user S obtains R; as the query answer;
V — precision of R; with respect to the full set of answers R [CZBP06]

82 2 | Position Sharing Approach



'“'“-e——% | > S

g BT )

Figure 2.43.: Addition of a dummy vertex s to the obfuscated multisource graph, with a
set of query locations Q = q,,...,qs (gray vertices) and a set of obfuscation
locations O = 04, ..., 04 (black vertices) [DKO5]

size of the anonymity zone, while the probability distribution of the precise user position
over the anonymity zone is not considered [PSD15].

The problem of the obfuscation’s accuracy was addressed by Perazzo et al. [DP12]. The
authors proposed an approach based on spatial obfuscation, which guarantees uniform
probability distribution of the true user’s position over the obfuscated area while taking
into consideration the inaccuracy parameters of the positioning system. Figure 2.44 shows
examples of two different assumptions about the size of the measurement inaccuracy errors,
which usually reduce the probability density near the borders of the obfuscation area.

Our position sharing approach is also based on spatial obfuscation, but additionally it
provides graceful degradation of position precision depending on the number of missing
position shares and therefore supports multiple obfuscation levels. Moreover, the mobile
user is able to define the position precision levels that each location-based application is

authorized to obtain, depending on its trustworthiness from the user’s individual perspective.

2.7.6. Coordinate Transformation

A location privacy approach using coordinate transformation was proposed by Gutscher et al.
[Gut06]. The mobile users perform some simple geometric operations (shifting, rotating)

over their positions’ coordinates before sending them to the location-based service. In order
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Figure 2.44.: Obfuscation circles with two different error measures [DP12]

to recover the original position, the transformation function needs to be distributed among
the clients. Thus, it is not possible to compare the positions of different users obfuscated with
different transformation functions, for instance, to perform range queries. Figure 2.45 shows
how point p is represented in two different coordinate systems k, and kj, with corresponding
coordinates c, 4 and c, 5, where d; 4 is the transformation vector.

Our position sharing approach is also based on coordinate transformations; however, to
provide the LBS with different levels of granularity and thus enable multiple privacy levels,
we combine coordinate transformation and spatial obfuscation.

Another method based on the concept of spatial transformation called SpaceTwist was
presented by Yiu et al. [YJHLO8]. The goal of this approach is to support private kNN-queries
sent by the mobile user, which pretend that he or she has issued the query from a fake

location. The user sends multiple queries to the server containing his or her fake location

Figure 2.45.: Representation of point p in two coordinate systems k, and kj, with
corresponding coordinates c,, and c,; dp, is the transformation vector
[Gut06]
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instead of the actual one, and then filters the received data in order to get the needed
results for his or her true position. Thus, location privacy is achieved by degrading the query
accuracy. Figure 2.46 shows the so called demand space and supply space. The supply space
expands by iteratively querying and adding the nearest neighbors of the fake anchor location.
The demand space is only known to the mobile user, and therefore he or she can perform the
query without letting the LBS know his or her true location — until the number of obtained
neighbors expands the supply space so much that it completely covers the demand space.
Thus, in order to finally get the precise position, excessive querying is required, which leads

to high communication cost.

2.7.7. Trajectory Privacy

Next, we will describe approaches that consider the temporal dimension in addition to the
user location information and therefore aim to preserve trajectory privacy. One such approach
based on k-anonymity was already presented above (historical k-anonymity [MBW*09]).
As an alternative method, spatio-temporal obfuscation can be applied in order to protect
movement trajectories of users [GG03]. In addition to decreasing the precision of positions,
they also decrease the precision of the temporal information associated with positions until
a specified k-anonymity criterion is achieved.

A similar idea was also presented by Ghinita et al. in their spatio-temporal cloaking approach
[GDSBO09]. To improve the security of spatial cloaking, the authors take into consideration
attacks based on background map knowledge represented by a set of privacy-sensitive
features as well as attacks based on the known maximum speed of objects (also called

maximum movement boundary attack). As an example, Figure 2.47 shows the attack model
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Figure 2.46.: Demand space and supply space before and after the refinement [ YJHLO8]
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with background knowledge about the surrounding sensitive locations (e.g., hospital and
night club), so that the area where the target user can be possibly located is reduced by
intersecting the sensitive areas with the maximal user movement possible.

The principle of temporal cloaking by delaying the location update described by Ghinita et
al. [GDSB09] is illustrated in Figure 2.48a; for comparison, the spatial cloaking principle
in shown in Figure 2.48b. The delay for temporal cloaking is calculated as the distance
between two locations A and B divided by a sufficiently slow MO’s speed, so that the possible
movement area is large enough to satisfy privacy requirements.

In addition to these approaches, a number of similar approaches developed to protect spatio-
temporal location privacy exist, including trajectory clustering [LHWO7], trajectory trans-
formation [TMO8], uncertainty-aware path cloaking [HGXAO07], virtual trip lines [HGH"08],
fake paths [LLLZ09], etc.

An approach that utilizes the concept of k-anonymity for securing a complete published
user trajectory was presented by Abul et al. [ABNO8]. The authors apply an enhancement of
k-anonymity for spatial-temporal cloaking called (k, 6)-anonymity. The idea is that before
publishing, the trajectories of at least k users are co-located into a “space tunnel” of radius
6/2, which defines the desired uncertainty (privacy) level. Figure 2.49 shows a (2, 6)-
anonymity set formed by two co-localized trajectories, their respective uncertainty levels,
and the central cylindrical volume of radius 6/2, which contains both trajectories [ABNO8].

Note that we do not consider securing the whole trajectory as one of our goals, but future

work could extend our approach in this way:.

2.7.8. Map-aware Approaches

A significant problem with many spatial obfuscation-based approaches is that the desired

size of the obfuscation areas can be reduced if an adversary applies background knowledge,
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Figure 2.47.: Attack model with background map knowledge [ GDSB09]
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uncertainty levels, and the central cylindrical volume of radius §/2, which
contains both trajectories [ABN08]
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in particular the map knowledge, in order to reduce the effective size of the obfuscation area.

To resist such map matching attacks, Ardagna et al. proposed a landscape-aware obfuscation
approach [ACG09]. The work of Ardagna et al. provides theoretical background for map-
awareness. Moreover, it presents the idea of adjusting the radius of the obfuscation disk in
order to preserve the user’s privacy from being affected by landscape knowledge.

This approach of Ardagna et al. is based on a probability distribution function that defines
the probability of user being located in certain areas of a map. The obfuscation area is
selected considering the probability of user being located in areas of the obfuscation shape.
Figure 2.50 shows an example of a one-dimensional landscape prior to probability distribution
A(t): the user is b times as likely to be localized between 0 and 2d than elsewhere (here, R
denotes the obfuscation circle radius).

In our work, we adapt a similar principle to our position sharing approach with multiple
non-trusted servers and provide flexible management of privacy levels.

Another advanced obfuscation approach by Damiani et al. [DBS10] called PROBE applies
the map-awareness principle to protect semantic locations, i.e., to ensure that a user cannot
be revealed by being located in certain sensitive locations. This obfuscation approach expands
the obfuscation area adaptively, so that the probability of the user to be in a certain semantic
location is below the given threshold. Figure 2.51 shows an obfuscated map generated by
the location privacy algorithm for two hospitals taken as an example of critical semantic
locations. The space is represented in a discrete fashion through polygonal regions, which
are gradually added together in order to cover the required area. The resulting obfuscation

region can have any shape, but the approach lacks flexibility due to the enforced cell-based
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[
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Figure 2.50.: Example of 1D landscape prior probability distribution A(t): the user is b times
more likely to be localized between 0 and 2d than elsewhere (R — obfuscation
circle radius) [ACGO09]
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space representation.

2.7.9. Secret Sharing and Position Sharing

In order to address the problem of non-trusted location server infrastructures, Marias et al.
[MDKGO5] proposed an approach for the distributed management of position information
based on the concept of secret sharing [Sha79]. The basic idea of this approach is to divide
position information into shares, which are then distributed onto a set of non-trusted location
servers. In order to recover the precise positions, the LBS client (application) needs to retrieve
the complete set of shares from multiple servers. The advantage of this approach is that a
compromised server cannot reveal any position information since it does not have all the
necessary shares. However, one important disadvantage of this approach is that location
servers cannot perform any computations on the shares, for instance, in order to perform
range queries. Thus, even if only a single location server is not available, the user’s position
is not accessible to location-based applications.

An approach based on secret sharing was proposed by Wernke et al. [WDR12] (PShare).
Unlike our position sharing approach, which generates shares based on geometric transfor-
mations, the authors utilize the concept of multi-secret sharing for share generation [ CCO5].
PShare also supports symbolic location information in addition to geometric information.
The idea of PShare is that the mobile user generates the shares based on the polynomial rep-
resentation of his or her precise position 7 and the k positions of degrading precision, while
7t is the combination of k polynomials according to the multi-secret scheme [CCO5] using

the Chinese Remainder Theorem. Clients can partially reconstruct the allowed precision
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Figure 2.51.: Obfuscated map generated by the PROBE algorithm for two hospitals [DBS10]
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by obtaining the k points and performing their Lagrange interpolation (see Figure 2.52).
An important difference between PShare and our approach is that PShare uses discretized
square-based space representation and such corresponding indexing that the precision change
between the nearest privacy levels cannot be smaller that factor 4 (cf. Figure 2.52a). This
significantly limits the flexibility of privacy levels management by the mobile user. Also,
all clients are required to know the sophisticated cryptographic functions of PShare, which
does not satisfy the requirements of interaction between large numbers of independent users
within geosocial networks.

2.7.10. Classification of Location Privacy Approaches

There are a number of works that survey the state of the art of techniques of protecting
location privacy and try to classify them [Kru09, SDFMB08, WL09, CM11]. For example, a
survey of major existing location privacy approaches classified according to general techniques
applied was presented in [Kru09], while Solanas et al. classified approaches based on their
reliance on a trusted third party (TTP) [SDFMBO08].

A basic classification according to schemes of communication applied between the mobile
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Figure 2.52.: (a) Geometric area of obfuscated MO position p(, 1) for granularity of precision
levels b = 2 and precision level [,,,,,, = 3; (b) PShare-GLM (geometric location
model) process overview [WDR12]
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user and the LBS was presented by Solanas et al. [SDFMBO08]. The three major communica-
tion schemes are illustrated in Figure 2.53. According to the simplest scheme (Figure 2.53a),
mobile user and LBS communicate directly with each other under the assumption that the
LBS provider is fully trusted. In the second scheme (Figure 2.53b), the LBS provider is
not trusted; therefore, there is another trusted entity (e.g., an anonymizer) called trusted
third party (TTP) that operates between the LBS and the mobile user. TTP is responsible for
making the users’ locations secure. In the third scheme (Figure 2.53c), a set of mobile users
collaborate to help each other to communicate with an untrusted LBS in a secure way.
Another classification of location privacy approaches proposed by Mokbel [Mok07] in-
cluded an overview of location privacy challenges, techniques and attacks. Many possible
attacks were considered, together with approaches for resisting such attacks. The author
describes location privacy concepts such as location perturbation, spatial cloaking and k-
anonymity. Additionally, he considers various system architectures used by location privacy
approaches: (a) non-cooperative architectures (having independent system actors); (b)
centralized architecture with a trusted third party; (c) peer-to-peer (P2P) architecture.
Location privacy approaches can be classified according to the possible attacks on the user’s
location privacy, which they can resist. Figure 2.54 shows the generalized representation of
existing LBS privacy threats presented by Bettini et al. [BMW"09]. The authors proposed

the following classification of privacy threats: (a) attacks exploiting quasi-identifiers in
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Figure 2.53.: (a) Scheme of direct communication between the mobile object and the LBS;
(b) communication between the mobile object and the LBS through an inter-
mediate trusted third party (TTP); (c) communication scheme between a set of
collaborative users and an untrusted LBS. L is precise position; L’ is obfuscated
position; query is denoted as Q [SDFMBO08]
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requests; (b) snapshot vs. historical attacks; (c) single- vs. multiple-issuer attacks; (d) attacks
exploiting knowledge of the defense. The authors also analyzed and categorized the existing
approaches with respect to their ability to resist the attacks described.

Privacy threats can be also classified into the following categories [Kru09]: (a) analysis
of movement patterns; (b) context inference; (c) simulated privacy attacks (when attacker
sends queries by pretending to be the target user and derives location information from
query answers).

By extending the concepts of the works presented above, we have proposed our own
classification of existing location privacy attacks and techniques [WSDR14]. We grouped the
location privacy techniques and approaches according to two major parameters: the privacy
goals, i.e., the information secured by each approach, and the assumed attacker knowledge,
i.e., methods or additional information, which an attacker can use in order to undermine the
user’s location privacy. As privacy goals, we considered securing user’s identity (ID), position
and timestamp associated with the position; these goals can be selected separately or in any
combination.

To represent attacker knowledge, we classified it by distinguishing (a) whether single or
multiple user positions are available, including various attacks based on multiple positions,
and (b) whether the context (i.e., additional personal or environmental information) is

known (see Figure 2.55). Thus, we considered the availability of additional knowledge to
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Figure 2.54.: General privacy threats in LBS [BMW*09]
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an attacker such as any kind of user context and the user’s movement history.

Our classification of attacks based on the given knowledge is shown in Figure 2.56. We
distinguish between single position attacks, context linking attacks, multiple position attacks,
attacks combining context linking and multiple position attacks, and attacks based on
compromising a TTP component. For more details regarding the location privacy attacks, we
refer to the original publication [WSDR14].

After analyzing the major location privacy techniques and approaches, we proposed their
classification based on the analysis which protection goals they fulfill for different attacks (see
Figure 2.57). Each protection goal is defined by whether the attribute identity, position and
time should be protected (v') or not (X). The stated techniques provide the corresponding
protection goal assuming a certain attacker knowledge. If the technique can resist an attacker
with a certain attack, this is denoted by a v in the main part of the table, whereas an empty
cell denotes that the attack can be successful against the stated technique. The gray cells
indicate possible future research directions not covered by the stated techniques. For each
approach, we marked whether it needs a trusted third party (TTP) or not. We arranged
the different approaches based on their primary protection goal. Approaches marked by “*”
provide the protection goal as a sub-goal in addition to their primary protection goal.

We can see that most approaches protecting the user’s identity against different attacks
are based on k-anonymity. However, they usually require a TTP (i.e., an anonymizer). If
the user wants to preserve location privacy without protecting his identity, the most popular

technique to apply is spatial obfuscation. Its major drawback is that clients can only retrieve
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Figure 2.55.: Classification of attacker knowledge [WSDR14]
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Figure 2.56.: Classification of location privacy attacks [WSDR14]

Compromised TTP

an obfuscation area instead of a precise user position. To overcome this problem, we proposed
the position sharing approach, where the user can flexibly manage the precision provided to
each application.

The most challenging goal is represented by the case when user trajectory and ID should
be secured. We can also see that the most challenging attacks are those that link the user’s
location information with the user’s personal context, and those that reduce privacy by
matching the user’s revealed location information with map knowledge.

In the given classification (Figure 2.57), we also show how our position sharing approach
[DSR11, SDR12] relates to other approaches. The position sharing approach takes map
knowledge into account in order to prevent de-obfuscation by map-based attacks; also, it

resists “maximal movement boundary” attacks (as we will describe later in Chapter 4).

2.7.11. Related Work: Summary

As we have shown above, there is a great variety of methods for preserving user’s location
privacy, but usually they have significant limitations and drawbacks. For example, the k-
anonymity-based location privacy approaches rely on a trusted anonymizer with a global
view, i.e., an undesired TTP is required.

If cryptography-based approaches are applied to encrypt user positions stored on servers,
the problem is that server-side query processing of advanced queries like range queries over
the encrypted data is impossible, or require a very high cost.

The general problem with the position dummies approach is that dummy positions can be
easily distinguished from the real positions; moreover, the transmissions of fake positions
and operations on them cause excessive costs.

The approaches based on mix zones lack flexibility with regard to the user position’s
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precision, because they need a pre-defined location-based or user-based division of space
into fixed zones, and they do not allow for different levels of privacy in different zones.

An important advantage of spatial obfuscation is that it requires no TTE since the user
himself or herself can calculate the obfuscation area (in contrast to k-anonymity and other
techniques relying on a TTP). However, this advantage comes at a price, which means that
the clients are not provided with the precise user position. Our position sharing approach is
also based on spatial obfuscation, but additionally it supports multiple obfuscation levels.

If the approach of coordinate transformation is applied to secure the user’s position, the
limitation is that it is not possible to compare the positions of different users obfuscated
with different transformation functions, for instance, to perform range queries. Our position
sharing approach is also based on coordinate transformations; however, to provide the LBS
with different levels of granularity and thus enable multiple privacy levels, we combine
coordinate transformation and spatial obfuscation.

The drawback of the original secret sharing approach is that even if only a single part of
the secret is not available, the user’s position is not accessible to location-based applications.
The PShare approach was proposed to extend the idea of secret sharing and provide the
graceful degradation property, i.e., the precision of positions revealed to a potential attacker
can be incomplete, yet it will increase with the number of secret shares [WDR12]. The main
difference to our approach is that PShare uses discretized square-based space representation
and such corresponding indexing that the precision change between the nearest privacy
levels cannot be smaller that factor 4 (cf. Figure 2.52a). This significantly limits the flexibility
of privacy levels management by the mobile user. Also, all clients are required to know the
sophisticated cryptographic functions of PShare, which does not satisfy the requirements of
interaction between large numbers of independent users within geosocial networks.

In order to overcome the limitations described above, we proposed the concept of position
sharing [DSR11, SDR12] for secure management of private position information stored
on non-trusted location servers. Our method is that the mobile user splits the position
information into so called position shares, where each share defines his or her position with
strictly limited precision. These shares are distributed onto a set of non-trusted location
servers, so that each server has only a position of limited precision, but which, at the same
time, can be used to perform calculations. Through share fusion algorithms using simple
geometric operations, multiple shares can be combined into positions of higher precision.
Location-based applications can be provided with positions of different precision levels

depending on the number of shares distributed to them. Within our approach, we also take
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into consideration the problems of map-awareness, share placement and position updates.

2.8. Conclusion

In this chapter, we have presented our basic position sharing approach and our classification
of the existing location privacy approaches based on our previous publications [DWSR10,
DSR11, SDR12, WSDR14]. The key idea of our position sharing approach is that the mobile
user’s position information is distributed among multiple location servers of different service
providers in the form of separate data pieces, which we call position shares. The main
advantages of this approach are that a trusted third party is avoided and that we are able
to flexibly manage the revealed position’s precision levels by defining the number of shares
allowed to be obtained by each application.

We introduced four modifications to our approach. They include: OSPS-ASO with “a-
posteriori” share generation, OSPS-ASO with the “a-priori” version of share generation,
OSPS-FSO with fixed share order and the map-aware algorithm version called CSPS.

The difference between “a-priori” and “a-posteriori” algorithms lies in the predictability of
the share set. They provide different dependencies of probabilistic guarantees corresponding
on precision levels of the MQ’s position for each number of known shares k. OSPS-FSO
lowers the peaks of probability distribution of both “a-priori” and “a-posteriori” versions of
the OSPS-ASO. However, OSPS-FSO does so by introducing an additional requirement of
fixing the order in which shares can be obtained and fused.

CSPS is basically an extension of OSPS-FSO, which provides map-awareness. This is done
through adjustment of the obfuscation area, which is found through the intersection of the
obfuscation circles and the map regions where the user can be located. Both OSPS-FSO and
CSPS provide close-to-uniform distribution of probability of the MO’s position inside the
current obfuscation area, while CSPS provides this type of distribution if the map knowledge
in form of a binary map representation is available. They both require a pre-defined order
for obtaining and fusing the position shares.

All four of the presented approaches have the following limitations, which will be solved

in the next chapters:

* In order to take into account different trustworthiness levels of the providers, it is
necessary to optimize the share placement depending on the corresponding parameters

of the providers.
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 Since the current approaches consider only snapshot user positions, a mobility-aware
share generation is needed, which includes efficient updating of shares, i.e., updating

of the smallest required number of shares.
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CHAPTER

OPTIMIZATION OF SHARE PLACEMENT

Up until this point, our basic position sharing approach (see Chapter 2) assumes that all
LSs are equally trusted. However, this is not always a valid assumption. The probability of
malicious behavior by LSs (i.e., their trustworthiness) can vary and can be estimated by using,
for example, a feedback system providing the diverse trustworthiness levels of different LSs.
In this chapter, we will extend our system model and present a share placement approach
that takes LS trustworthiness into account in order to improve the user’s location privacy. The
basics of this approach were originally published in the diploma thesis of Bjorn Schembera
[Sch11]. The author developed the main principles of share placement optimization, refined
the optimization goals and algorithms, and supervised the diploma thesis as a whole.

We define the trustworthiness of LSs by using a probabilistic trust model. The trust value
represents the probability that an LS behaves correctly, i.e., does not misuse the user’s private
position information, collaborate with other LSs, or become compromised by an external
attacker.

The main goal is to optimize the placement of shares to LSs so as to decrease the risk
of disclosure of large amounts of private location information. An LS with a higher trust
level (i.e., a lower risk level) can obtain more position information (i.e., more shares, or
“larger” shares) than a less trustworthy LS. This improves the user’s location privacy measured
according to our privacy metrics as the probability that a certain precision will be disclosed.
Our privacy metrics guarantee that the end risk is balanced among LSs and that the probability
of each precision level’s disclosure does not exceed the pre-defined threshold.

Note that during optimization of share placement, we do not need to consider the actual

content of a position share. In other words, our placement approach is suitable for both
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shares which contain geometrical information (such as in our main position sharing approach
described in Chapter 2) and shares which contain numerical information (such as in the
approach of Wernke et al. [WDR12]).

We distinguish a number of scenarios regarding the heterogeneity of shares and providers’
trustworthiness. We analyze the privacy guarantees and computational complexity of the

generalized placement algorithm, as well as special cases of share placement.

3.1. Problem Statement

In this section, we introduce our system model that was extended so as to address the
trustworthiness of LSs. Then we describe our privacy metrics for optimizing the placement

of position shares and formulate the problem statement.

3.1.1. Extended System Model

In order to extend our system to make it able to adapt according to the LSs trustworthiness,
we need to extend our system model as originally presented in Figure 2.1 (Section 2.1).
The new version of the system model is shown in Figure 3.1. In addition to the three main
components (mobile object (MO), location server (LS), location-based applications (LBA)), it

also contains a trust database.
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Figure 3.1.: Extended system model: now including a trust database
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We assume that each LS is in principle non-trusted, and that it can be compromised with
a known probability p;. Therefore, we introduce into our system model the trust database,
which maps LS; to a risk value p; € [0; 1], providing the probabilities p; that LS; can be
compromised. The risk value p; represents the probability that LS; will behave maliciously,
i.e., misuse the user’s private position information, or be compromised by an external attacker.
Different LSs might have different risks depending, for instance, on the reputation of their
provider. Moreover, different users might have personal trust in the same LS (and/or its
provider). Thus, there is a personally or commonly determined trust value assigned to each
available LS.

Note that in Figure 3.1 we depict the trust database as a single centralized entity. However,
our assumptions and our placement approach are also valid in case if each MO has his or
her own trust database locally.

The trust database answers the user’s queries with the risk values p; for the given LS. These
values can be obtained, for example, by analyzing the feedback of other users through a
reputation system [ GHS08, Gut09]. The design of the trust database and the concepts for
calculating p; are beyond the scope of this work. Here, we rely on the generic probabilistic
trust model and trust management concepts developed in [KBRO5]. This model is generic in
the sense that allows mapping of various representations of trust values to the probabilistic
interval [0; 1]. Based on the obtained risk values, the user can determine the number and
set of LSs needed to satisfy his or her security requirements, as we will explain in the next
sections.

Since each LS has an individual trust value, the user’s position’s privacy highly depends
on the number of selected LSs and the placement of shares to different LSs. Previously, we
assumed equal share placement, i.e., each LS stored shares of the same precision increase
Af). Now, we want to make sure that an LS with a higher trust level can store more precise
position information than an LS which has a higher risk of being compromised. Thus, each
refinement share s; increases the position precision by an individual pre-defined value A?’.

Regarding the optimization of share placement, the exact content of a position share is
not important: it can contain any cryptographic, geometric, or numerical information that
increases the precision of the user’s position. In the basic position sharing approach presented
in Chapter 2, we introduced position sharing concept based on geometric transformations. At
the same time, an alternative position sharing concept based on numerical operations on the
user’s position information was described by Wernke et al. [WDR12]. Our share placement

optimization, proposed later in this chapter, is applicable to both the open space position
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sharing approaches and the map-aware approaches described in the previous chapter, as
well as to the approach of Wernke et al. [WDR12].

3.1.2. Privacy Metric

To evaluate the user’s privacy, we must determine which position precision of user position
can an attacker derive from shares stored by k compromised LSs, and what is the probability
of compromising these k LSs by the attacker. Assuming k compromised LSs, the shares must
be placed such that an attacker — e.g., a malicious location service provider or LBA — cannot
derive information of higher precision than required by user, with higher probability than
required by user, in order not to violate the user’s privacy requirements.

The formal definition of the probabilistic privacy metric defined in the previous chapter
needs to be modified. Previously, the probability was dependent on the share generation
algorithm’s pdf over the obfuscation area corresponding to the current precision level k
obtained by LBAs in an ordinary fashion. Now, the precision of a position ¢, defined as
radius r of a circular obfuscation area corresponds to a level k that is obtained by an attacker
and depends on the probabilities p; of the correspondingly compromised LS..

Thus, the following distribution defines the probability Py, that an attacker can obtain
a position 7Ty 4. Of @ certain precision @y yuack = Prec(my 4ac) depending on the number k
of compromised LSs (consequently, depending also on the number and content of shares
placed onto these k LSs):

Pk,attack(¢k,attack) = Pr[¢k,attack < ¢k] (31)

As before, this metric defines the acceptable probabilistic guarantees of privacy levels
represented as a set of probability thresholds P,(¢;) corresponding to various precision levels
¢. For example, an MO user can specify that an attacker should not be able to (compromise
LSs and) obtain a position of precision ¢; < 1 km with probability P; ,,q > 20%, and ¢, < 2
km with P, ;.0 > 10%, etc.

3.1.3. Problem Statement

The problem of share placement among the available LSs can be defined as a constrained

optimization problem. The constraint is that an attacker cannot derive a position 7 i =
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fuse(sy, Sy) of precision prec(7y 4aq) > ¢ With a probability P ek @i arack) higher than
P,(¢;), where S, denotes the set of compromised refinement shares. That is, the user defines
probabilistic guarantees P, for different precision levels.

The optimization goal is to provide the specified privacy levels and their probabilistic
guarantees by (a) utilizing a minimal number of LSs which (b) store shares in an optimal
way. By minimizing the number of required LSs, we limit the overhead required for updating
(communicating) and storing shares at multiple servers.

We define the following as given:
* a master share s,

* aset S of n refinement shares {s;,...,s,} to provide the precision (privacy) levels ¢,
for the LBAs,

a set L of m, available LS, which can store shares, L = {LS,,...,LS, o},

a set of risk values {p, ..., o} providing the probabilities for each LS; of L that it can
be compromised (p; € [0;1]),

the probability values P,(¢,), which specify the required probabilistic guarantees for

each precision level ¢, (k=0...n).

Problem: Find the minimal number m of LSs in the range 2 < m < m, and a share placement

place(...) of n shares to a set of m LSs denoted as L’:

place({s;,...,s,},L):S—> L' CL, (3.2)
such that m = |L’| is minimal and it satisfies the user’s security requirements:
V ¢k,attack : Pk(¢k) > Pr[¢k,attack < ¢k] (33)

3.2. Background and Related Work

Next, we describe the existing trust models and some techniques of performing optimal

placement, including exact and heuristic methods.
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3.2.1. Trust Models

Trust is a vague term which cannot be precisely and universally defined [Gam88]. Among the
existing trust models described in the current research [NWvL07], many are applicable for
our system, since they define trust values'® as probabilities of a certain trustee’s behavior. For
instance, Maurer [Mau96] formally described how a user can derive probabilistic trustwor-
thiness values based on a set of experienced events. An evidential model where probabilistic
trust values are generated by a distributed reputation system was presented by Yu and Singh
[YS02]. Jesang and Ismail [JI02] define a probabilistic trust value as the expectation of
the beta probability function, which allows to determine the posterior probability of binary
events based on the collected feedback.

Another usage of probabilistic values was presented by Singhal and Ou [SO09]. The
authors presented a concept of how an attacker can combine a system’s vulnerabilities to
stage an attack such as a data breach, and a model of dependencies among vulnerabilities by
using probabilistic graphs based on various input data.

A trust model of the feedback-based reputation system proposed by Gutscher allows trust
values to be computed based on trust relations [Gut07, GHS08]. The authors distinguish
between first-order probabilistic trust calculus, where trust is represented through real
numbers in the interval [0;1], and second-order calculus, where trust is a discrete probability
distribution of probabilities corresponding to the trust values (also in [0;1]).

A generic trust model was proposed by Kinateder et al. [KBRO5 ], which utilizes different trust
models in order to generalize them. The authors present a formal basis for the transformation
of trust values of different trust models into a comparable probabilistic trust metric with

values in [0;1].

3.2.2. Placement and Allocation Optimization Techniques

Our problem is to optimize the placement of position shares on non-trusted servers in order
to balance security risks. This problem can be categorized as a problem of combinatorial
optimization. A generalized combinatorial optimization problem is to find an optimal solution
from a variety of possible solutions (i.e. combinations), while satisfying optimality criteria
[KV06, Hu82]. Some well-known combinatorial optimization problems include Travelling
Salesman Problem (TSP) [KV06], Bin Packing [KV06, MT90] and Knapsack Problems [MT90].

In the case of TSB for example, the goal is to find the shortest route that visits all the nodes

In this work, we consider only static values given at one point of time, without being changed over time.
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of a given graph exactly once and then finishes at the starting point.
Formally, a combinatorial optimization problem is defined as follows [KV0O6]: Let L be the
set of all possible solutions; then, the cost function f which assigns cost to each possible

solution is:

f:L—>R (3.4)

To solve a combinatorial optimization problem, we need to find an optimal solution [,
out of the set of all possible solutions L, which is the best in terms of the cost function and

satisfies all the given requirements, formally:

(3 Lp€L) YV IeL: f(l,,)<fD) (3.5)

The objective of the combinatorial optimization is to find such an [,,,. Applied to our

opt*
problem, this corresponds to traversing the set L of all possible placements of shares to
LSs. The cost function f corresponds to the resulting probabilistic guarantees of privacy
levels provided by the given share placement. We need to select the optimal placement,
i.e., placement that satisfies the required probabilistic guarantees of privacy levels for the
minimal possible n. The full problem description of share placement will be presented in

Section 3.1.

Example: Knapsack Problem

The Knapsack Problem [KV06] is an example of a typical combinatorial optimization
problem, which is similar to our share placement problem. The Knapsack Problem’s goal
is to distribute (allocate) objects among knapsacks in such a way that no single knapsack is
overloaded, and at the same time the number of knapsacks used is minimized.

Every optimization problem includes an important decision: can the problem for the given
requirements be solved or not. In the case of the Knapsack Problem, the question is whether
n objects can be distributed among k knapsacks without the condition of Equation 3.5 being
violated. In our case, we assume that a solution is possible. If not, the requirements of

acceptable probabilistic guarantees of privacy levels of Equation 3.5 must be relaxed.

The Problem’s Complexity
Combinatorial problems are often NP-hard [HU90]. The NP-hardness of a problem means
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that the given problem is at least as hard to solve as any other problem in the complexity
class NP. If a problem is NP-hard, there exist no (known) deterministic algorithm which can
solve it in polynomial time. Currently, for the class of NP-hard problems, no faster solutions
than deterministic algorithms with exponential complexity are known.

One method to prove that problem A is NP-hard, is to select a problem B such that B is
already known to be NP-hard [Sto01, MT90]. If B can be reduced in polynomial time to A,
then A is NP-hard. The reduction algorithm should transform the initial problem in such a
way that the same solutions are generated both before and after the reduction for the same
inputs.

Some basic and widely known techniques of combinatorial optimization are described
below. As stated previously, these problems are often NP-hard, and therefore the trade-off

between the solution’s accuracy and its performance is very important.

Complete Enumeration Method

The complete enumeration method enumerates and evaluates all the possible solutions
(combinations), and then selects the best one. The weak side of this approach is the large
number of possible solutions; this number increases exponentially with the size of the
problem. Although a calculation may take an extremely long time for large combinatorial
problems, taking into account the computing power of modern CPUs, the method of complete

enumeration is acceptable for small combinatorial problems.

Branch-and-Bound Approach

Branch-and-Bound is an approach based on backtracking algorithms for optimization
problems [LW66, Hu82]. Backtracking algorithms process a tree of solutions and try to
construct the successive candidate solutions into an overall solution. Branch-and-Bound
applies backtracking’s structured search in a tree of solutions to optimization problems,
where optimality is considered as a decision factor, along with the validity of the solution
candidate. Prior to entering a tree’s branch, the algorithm checks whether the following
results in this direction will be non-optimal with regard to a given threshold. Only if the
obtained value is below the threshold, will the search be continued in this direction. If there
are no current branches that satisfy this condition, then there will be a step back in the tree
of solutions. If at some decision step it becomes clear that no valid overall solution can be
constructed, the complete remaining branch of candidates is discarded. If the search process
reaches a dead end, the algorithm goes back one step to the next node, in order to process

the unvisited nodes by following the same principle.
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The Branch-and-Bound method is accurate, meaning that it always finds a solution and
goes through a structured list of all candidate solutions, from which the invalid or non-
optimal solutions are excluded as early as possible. Although this reduces complexity, the
processing time of the tree of solutions is still O(c"): in the worst case, all nodes must be
visited. In practice, the performance of Branch-and-Bound is highly dependent on each
specific problem. The definition of the problem also includes how to set the threshold and

how many branches can be excluded at an early stage.

Heuristics

The problem-specific heuristic methods are those approaches that determine an approxi-
mate solution of NP-hard problems in an efficient amount of time. Some examples of the
known heuristics for NP-hard problems can be found in the literature [KV06].

Metaheuristic describes a method for approximate determination of the solution for an
optimization problem. This method is not problem-specific but rather generally applicable
[Wei02]. Next, we make an overview of some metaheuristic methods, including more
detailed descriptions of evolutionary algorithms, since later in this chapter we present a

share placement approach based on this concept.

Metaheuristics (1): Local Search

According to the local search approach [Egl90], also known as the Hill Climbing algorithm,
the first step is to determine an initial solution, which can be done at random or based on a
heuristic. After that, starting from this initial solution, the neighboring solutions that are
numerically close to it are processed. If there is a better solution in the neighborhood, then
the algorithm proceeds further. The problem is that the process can get stuck in a local
optimum, since it accepts the first local maximum as a solution.

The method of Simulated Annealing [Egl90] is a modification of the local search approach.
This concept is based on the simulation of the annealing process in physics. This process fol-
lows the law that a system’s transition from state Z to another state depends on e®"¢"8Y(?)/temp
where energy(Z) is the energy of the system in that state, and temp is the current tempera-
ture. If we consider temperature as the probability of acceptance of non-optimal neighboring
state Z’, then applied to optimization problems, this means that the lower is the temperature
during the probabilistic search, the less likely is the selection of a non-optimal state.

Although the described methods are fast, they are not always sufficient. The pure local
search can get stuck in a local optimum, whereas Simulated Annealing is very much dependent

on each concrete optimization problem [Wei02].
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Metaheuristics (2): Evolutionary Algorithms

Evolutionary algorithms simulate optimization problems as evolutionary processes [Wei02].
They can be defined as an extension of the local search approach; the difference is that now
additional solution candidates are generated and combined with each other. In addition,
mutations are performed to ensure that the entire possible range of values is covered.
The following types of evolutionary algorithms are distinguished: evolution strategies,
evolutionary programming and genetic algorithms.

For an evolutionary algorithm to be applied to an optimization problem, the problem must
be encoded as a genome. The candidate solutions are usually represented as bit vectors
(alternatively, as integer vectors). Potential solution candidates are called individuals. First,
the initial solution candidates are determined either randomly or based on a heuristic. The
set of all individuals at a given time is referred to as a population or generation.

Individuals of the initial population are crossed with each other, and different crossover
operations are applied. Depending on the crossover operator, different parts of the genome
are combined. Finally, a random exchange of some individuals is performed, which is called
mutation. This operation is important to cover all potentially possible values in the range.
The individuals generated from a population will then be evaluated by a fitness function.
The fitness function rates the quality of an individual with respect to the optimization goal.
Then, the top rated individuals are selected, and the cycle begins again. The whole cycle is
shown in Figure 3.2; it ends either when a pre-determined number of generations is reached
or when the target criterion is achieved.

Evolutionary algorithms provide a good approximation for combinatorial optimization
problems, since they traverse a lot of combinations by using the mutation operator, and
therefore, can reliably find the global optimum. Furthermore, the algorithm’s parameters

are easy to customize, e.g., through better selection of the initial population we can improve
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Figure 3.2.: Cycle of an evolutionary algorithm [Wei02]
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the algorithm’s runtime and accuracy.

In principle, evolutionary algorithms approach the optimal solution quickly, but then
require more time as they continue searching for the exact globally optimal value. The
disadvantage is the increased processing time compared to the local search approach, since
the performed operations are more complex. The processing time of evolutionary algorithms
depends on the termination condition: if the number of iterations of generations is fixed, the
required time is rather constant and is determined primarily by the cost of the combination

operators.

3.3. Analysis of Share Placement’s Influence on Privacy

Before presenting our solution to the share placement problem, we make two basic as-
sumptions. First, increasing the number m of LSs leads to higher security with regard to
probabilistic guarantees of precision levels. At the same time, a large m is not desired, since
it would increase the storage resources utilization and communication cost. Therefore, it
is beneficial to incrementally increase m only until the security requirements are fulfilled.
Second, we can increase security by optimizing the distribution of shares for a given m. In

this section, we analyze the validity of both assumptions.

3.3.1. Influence of LS Risks on Probabilistic Privacy Guarantees

In this section, we illustrate the influence of LS risks on the user’s probabilistic guarantees
of precision levels. To differentiate it from other parameters, we assume that all LSs have
equal risk p and that shares are uniformly distributed among the LSs, i.e., all Af’ are equal.
p denotes the probability that an LS is compromised (equal for each LS) and therefore an
attacker can access its refinement shares.

There are (ka:lﬂck) combinations of LSs to compromise exactly k,,,,.x LSs. Each combination
has the probability peec(1 — p)™ e, Therefore, P yaa(brcaac) = Pl Pianack < i) can
be calculated as follows:

m

PrasaBraasd = 2 Jpra=pr 36)

k=kattack

Based on this formula, we can show the changes of different LS probabilistic guarantees
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of precision levels by varying p.

In Figure 3.3, we show the user’s probabilistic guarantees of precision level (i.e., the
probability that at least k LSs will be compromised) for m = 10 and different risk values
p. As we can see, for p = 0.1 the probability of at least three LSs being compromised is
less than 10%; for p = 0.5 with probability 50% at least five LSs will be compromised; and
p = 0.9 provides almost no security at all. In general, user security has a very strong (reverse

exponential) dependency on p.

3.3.2. Influence of Number of LSs on Probabilistic Privacy Guarantees

Next, we analyze the influence of the number m of LSs on the security, assuming that LSs have
equal risk values p. The assumption of equal risks is similar as in Chapter 2 [DSR11, SDR12].
Obviously, in this case, each increase of the number of equally trusted LSs (which store equal
shares) also improves security, since any potential attack on an LS can compromise a smaller
piece of position information. To demonstrate this, we consider a scenario with p = 0.2
for each LS and two numbers of LSs, namely m = 3 and m = 10. In this scenario, k = 100
shares were distributed uniformly among the LSs.

Figure 3.4 depicts the resulting probabilistic guarantees of precision levels Py ;.. Of
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Figure 3.3.: Probabilistic guarantees of precision levels Py ., depending on various LS risk
values p
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obtaining a certain increase of position precision ¢ for ¢,,;, = 100 km. Note that the
depicted curves have different numbers of steps, since the precision revealed to an attacker
depends on the number of compromised LSs (0, ...,3 for m=3;0,...,10 for m = 10). We
can see that a larger number of LSs increases the security, i.e., it provides lower probability
of obtaining a position of certain precision. For instance, to get an increase in precision of
¢ = 30km, an attacker needs to compromise only one LS for m = 3, but he or she has to
compromise three LSs for m = 10 in order to get the same result. Therefore, in addition to
increasing the flexibility of generating different precision levels, using a larger number of

LSs for storing position shares also increases security.

3.3.3. Influence of Number of LSs on Probabilistic Privacy Guarantees

In this section, we show how changing the number and set of selected LSs affects the
user’s probabilistic guarantees of precision levels. We calculate the probabilistic guarantees
P attack (@ arackd) 1D @ similar way as in Equation 3.6. With different risks, the difference is

m
k

that now, instead of multiplying each kth probability by the number of ( ) combinations, we
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Figure 3.4.: Probabilistic guarantees of precision levels P, ., depending on two different
sets of LSs (m = 3 and m = 10) for ¢,,;, = 100 km; ¢ denotes the obtained
increase of position’s precision
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summarize the probability of each k-combination separately:

m (%)
Pk,attack(¢k,attack) = Z Piincl " Pijexcls (3.7)
k=kattack 1=0
m
Piind :l_[Pj,ij ePk,i (38)
=0
m
pi,exd:l_[(]-_pj): Vp] ¢Pk,i: (3.9)
j=0

where P, ; is the set of risks of the ith k-combination out of m LS risks. There are (',’:)
combinations of LSs to compromise exactly k LSs. Each combination has the probability
defined by multiplying the risks p; of (included) k LSs and the inverse risks 1 — p; of the
rest (excluded) m — k LSs. To get a probability of exactly k compromised LSs, we have
to summarize the probability of each k-combination. Finally, to get a probability of at
least k compromised LSs, we summarize the probabilities corresponding to {k,k +1,...,m}
compromised LSs.

In the next sections, we will also consider placement of differently heterogeneous shares to
LSs. In this case, Equation 3.7 must be extended to include the individual precision increase
Ag¢; of share s; as a multiplier in order to take into account the heterogeneity of shares (for

homogeneous shares, A¢; is implicitly assumed to be 1 for each share s;):

m (%)
Pk,attack(¢k,attack) = Z Zpilnd ) péxcl ) A¢] (3.10)

k= kattack i=0

The examples of LS sets with less diverse and more diverse risks are shown in Figure 3.5
and Figure 3.6 for m, = 5. In the beginning, m = 2; then we incrementally add one LS with
the lowest risk at a time, until m = 5. We can see that the positive effect of m’s increase
is neutralized by the growing risks of the newly included LS, especially in case of strongly

different risks (Figure 3.6). Thus, there is usually no need to increase m further if the next
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LSs to be selected are much less trusted than the ones previously selected.

As we can see, the equal share placement on LSs with different risks can increase the

probability of the position’s precision being revealed to an attacker, especially at lower

precision levels. But an increase of the number of selected LS m alone may not solve this

problem. In order to achieve the required probabilistic guarantees of precision levels for the

given m, we optimize share placement to the LSs as we will show in the next sections.
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3.4. General Selection & Placement Algorithm

In this section, we describe the general selection and placement algorithm (Algorithm 10),
which presents the solution of two goals defined in our problem statement (Section 3.1.3) in
two major steps without describing the second step in detail: (a) selection of m LSs L” = {LS;,
LS,, ..., LS,,}; (b) optimization of placement of n shares among these LSs by mapping the
shares to the selected LSs: S — L’. The goal of optimization is to improve the provided
probabilistic guarantees Py ., Dy placing more position information on more trusted LSs.

The basic idea is to start with the smallest set of LSs and incrementally increase m until the
security constraints (Equation 3.1) are fulfilled. As shown in Algorithm 10, first we calculate
and check the probabilistic guarantees of precision levels for uniform share placement, where
every LS manages exactly one share, independent of its individual risk value. This is the
strategy used in our basic position sharing approach presented in Chapter 2 [DSR11, SDR12].

For each number of LSs, we first check whether a uniform placement (line 8) where each
LS stores an equal number of shares (independent of its individual risk value) fulfills the
user-defined probabilistic guarantees of privacy levels (lines 9-11). If a uniform placement
fulfills these levels, we have already found a placement solution, as this placement fulfills
the required probabilistic guarantees of precision levels and contains the minimum number

of LSs. By optimizing the share placement (line 12), we can further improve security beyond
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the user-requested level (line 13) at the expense of using computational and energy resources
for running the optimization algorithm.

Algorithm 10 General Selection & Placement Algorithm

1: function place(Pr(¢y),S, L, mgy, Mpypin, N)
2! M My, —1
3: sort_by ascending p;(L)
4: L' « get_selected_set(L, m)
5: solution_found « false
6: repeat
7. me<m+1l
8:  distribute_equal(Pi(¢y),S, L, m)
9: ifV @i : P < Piartack(@1) then
10: solution_found « true
11:  else
12: place_optimized(S, L', m)
13: if V ¢y : Py < Pparrack () then
14: solution_found « true
15: end if
16:  end if

17: until (m = my)||(solution_found)
18: return S — L’

If the uniform (non-optimized) share placement on LSs already represents a solution
that satisfies the problem statement’s requirements, we skip the optimization algorithm to
save the resources of the mobile device that executes this algorithm. If the uniform share
placement does not satisfy the user’s privacy requirements, we optimize the placement by
relocating shares from less trusted to more trusted LSs, as will be presented later in detail.

If it is still impossible to satisfy the required probabilistic guarantees of precision levels for
the current m, we increase the number of LSs. In each step, we add the next most trusted LS
to set L', since the subset of the most trusted LSs provides the highest security. Therefore,
the available LSs must be initially sorted by ascending risks p; (line 3).

If m reaches the total number of available LSs m,, while a solution has not been found,
the current user’s security requirements are too strict for the given constraints. Therefore, in
order to perform an exhaustive search, the user should relax the constraints (i.e., probabilistic
guarantees of privacy levels) given in Equation 3.1 (Section 3.1.2) step by step, and execute
the algorithm again.

In lines 9 and 13 of Algorithm 10, we calculate the probabilistic guarantees of precision
levels of a placement. In Section 3.3.3, we will show how we calculate the probabilistic

guarantees of precision levels Py ., for different numbers k., of compromised LSs for a
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given placement.

3.5. Optimizing Share Placement

In this section, we present an algorithm to solve the optimized share placement problem,
which is executed within Algorithm 10 by calling function place_optimized(...). We consider
the situation where a set L’ of m = |L’| LSs with lowest risks has been selected and is fixed.
Thus, an optimized placement of n shares to these LSs in L’ must be found, as the uniform
placement strategy did not satisfy the user’s security constraints (cf. problem statement in
Section 3.1.3).

First, we show that this problem is NP-hard. Then, we propose a heuristic solution based
on a genetic algorithm. After that, we show some simpler solutions for the special cases of

share placement, which allow placement to be calculated in linear time.

3.5.1. Share Placement Problem and Its Complexity

At this point of the algorithm, we have a set of m LSs defined and fixed. Now, we aim to
achieve a balanced placement of n shares among these LSs such that no single LS represents a
higher security risk with regard to the stored precision than the other LSs, i.e., we guarantee
that the probability of each precision level’s disclosure does not exceed the pre-defined
threshold (as defined in our Problem Statement in Section 3.1.3).

Our optimization of the share placement among LSs is based on the principle of allocation
of capital (i.e., shares) between segments or business units (i.e., LSs). We take into account
the important properties of our problem: (a) we first generate all the shares and distribute
them all at the same time (ad not one by one), and (b) according to our system model, LSs
are independent entities and there are no stochastic dependencies between them. If shares
would be distributed in an additive manner, or there would be interdependencies between
the LSs, incremental allocation, marginal allocation or Myers-Read method of allocation could
be used [Alb03, VMO03]. In our case, we require a non-incremental allocation, which is called
absolute allocation.

There exist many methods of allocation, most of which however have different system
model assumptions compared to our system model. For example, they assume more complex
and differentiable definition of the risk measure (Euler principle), explicit collaboration
between the LSs (Game Theory), or stochastic dependencies between the LSs and risks
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(Covariance principle, Conditional Expectation principle, etc.) [Pav08, Alb03, VMO03]. Thus,
after selecting from methods of capital allocation, we employ absolute proportional allocation.
The principle of proportional allocation is to equalize the expected information losses (also
called Expected Monetary Values in the risk management theory [Pri97]) corresponding to
different LSs and calculated as multiplication of the risk and the share value assigned to each
LS. Proportional capital allocation guarantees that the allocated capital must not exceed the
stand-alone risk-adjusted capital assigned to each LS, which fits our problem statement goal
(Equation 3.3).

We call our placement problem the Balanced Risk Placement Problem (BRPP). Formally, a
share placement S — L’ C L has balanced risk if the proportion of position precisions ¢;; ;
and ¢;,; stored by LS;; and LS;, respectively (j = 1...n) is inversely proportional to the

corresponding risks p;; and p;, of LS;; and LS;,:

n
. Zj:1 Aq")iz,j _ Iﬂ

S—L'CL:Vil,i2e{l,...,m}: =
Zj:1A¢i1,j Di2

(3.11)

If the exact equality of proportions is not feasible due to the given risk values and other
parameters, the goal is to find a share placement solution which is close to the best possible

solution:

n n
minimize : maxi”;lzpiA(bi)j — min;“zlz pPiAP; (3.12)
j=1 j=1

under the restrictions of probabilistic guarantees of precision levels given in Equation 3.3.
This problem refines the placement goal (b) of our main problem statement (Section 3.1.3),
i.e., defines how the function place optimized(...) of Algorithm 10 must be realized.

In the general case, we must distribute n heterogeneous shares among m LSs with heteroge-
neous risks. The total number of possible combinations is m". The considered BRPP problem
(Equation 3.12) is a NP-hard problem. This can be shown by reducing the Agent Bottleneck
Generalized Assignment Problem (ABGAP), which is known to be NP-hard [MN88, AP98],
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to BRPP. The formal definition of ABGAP is:

n
minimize : maxl.”;lz piAqbi,j (3.13)
j=1
m n
subject to : Z WX S wy, (3.14)
i=1 j=1
n
where in’j <Lix;;€{0;1hi=1,...,m;j=1,...,n (3.15)
j=1

ABGAP is equivalent to our placement problem (Equation 3.2), since one can be polyno-
mially transformed into another: If we simplify our problem by adding an LS with zero risk,
we can exclude the second term from Equation 3.12. This means that in order to solve our
problem, we must also solve ABGAP. Thus, our problem is at least NP-hard. An exhaustive
search to solve an NP-hard problem is infeasible in a reasonable amount of time.

The total number of possible placement combinations for distributing n shares among
m LSs is O(m™). Since this number grows exponentially with the number of shares, an
exhaustive search is very costly for larger m and n. Even relatively small numbers (e.g.,
m =5 and n = 15) require analysis of more than 3 * 10'° combinations. At the same time,
such an exhaustive search is not worth its computational costs, as a much faster linear-
time heuristic can produce a solution that would not differ much in terms of probabilistic
guarantees of privacy levels. Our goal is not to find the best placement among all possible
combinations, but for a placement that is secure enough to satisfy the required probabilistic
guarantees of privacy levels. Therefore, we need a strategy that guides our search for secure

placement in a reasonable (linear) period of time.

3.5.2. Optimized Share Placement Algorithm

Since BRPP is NP-hard, we use a heuristic approach to solve it. In general, problem-specific
heuristics or meta-heuristics can be used to find an approximation solution. We applied
the meta-heuristic of genetic algorithms [Wei02]. Genetic algorithms belong to the class

of evolutionary algorithms (see Section 3.2.2), as they reproduce the process of biological
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evolution. In general, they traverse multiple solution candidates by combining and mutating®
them into new possible solutions. Each new solution (in our case, a share placement) is
rated according to a fitness (objective) function defined by Equation 3.12. Then, the best
placements in terms of the objective functions are selected, and the cycle can repeat until
the goal is reached or the limit of cycles is achieved.

We implemented a genetic algorithm for share placement as shown in Algorithm 11. The
input parameters are the probabilistic guarantees of precision levels P,(¢,), the set of LSs
L’ of size m, and the fixed set of shares S of size n. First, we define the initial population
as 10 random placements (line 3). Then, we build a population of 40 new placements by
recombining two placements with a uniform crossover (with a probability of 50%) (lines 5-
11). Afterwards, the placement is mutated by changing one assignment randomly (line 12),
ensuring that all theoretically possible placements can be created. The values of 10 initial
placements and 40 recombined placements are selected in such a way that they provide a
large number of combinations within each iteration.

Next, the 40 created placements are rated according to an objective function, and the 10
best placements are selected (lines 14-15). The 10 best placements are used as input for
the next algorithm’s iteration. Thus, the resulting placements are getting better after every
iteration. This cycle is iterated 200 times or stopped if the conditions of Equation 3.12 are
satisfied (lines 4-18). The value of 200 iterations is selected such that it ensures convergence.
Our experiments have shown that we already achieve a near-optimal placement solution
after ca. 20 iterations. If, after all cycles, the probabilistic guarantees of precision levels are
still not acceptable (line 4), we say that the solution cannot be found for the given input

parameters.

3.5.3. Placement Strategies for Special Cases

In this section, we analyze special placement cases in order to apply simpler solutions than
the general one presented above under some given initial conditions.

The possible placement cases are summarized in Table 3.1. First, we distinguish whether
the set of shares is pre-defined or if a user can freely generate a new share set that would
better suit the needed placement. Second, we consider separately the homogeneous and
heterogeneous trustworthiness (risk) levels of LSs. Finally, the generated shares themselves

can provide different or equal increases of precision, i.e., be homogeneous or heterogeneous.

!The mutation operator ensures that we escape a local optimal solution and advance to new combinations.
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Algorithm 11 Genetic Algorithm for Share Placement

1: function place_optimized(S,L’, m)

2: t<0

3: Popul[1...10] « RandomPlacement(S,L’,m)
4: while t <200 and V Py < Py gyacx dO

5. for p=1to40do

6: i; < RandomInteger(m)

7: iy < RandomInteger(m)

8: u < RandomBoolean()

9: if u then
10: PopulTemp[p] « Cross(Popul Temp, i;,i,)
11: end if
12: PopulTemp[p] < Mutate(Popul Temp[p])
13:  end for
14:  Evaluate(Popul Temp)
15:  Popul « Select10Best(Popul Temp)
16:  Pgiiqck(¢) < BestLevels(Popul)
17: t—t+1

18: end while

We expect that the most relevant cases are 1d and 2b, but generally, all of them are realistic
and define a placement problem that can be solved in different ways.

First, we consider special cases 1a-1d under the assumption that the number of shares
is not pre-defined, i.e., a user can generate the number of shares that allows for optimal
placement (cf. Figure 3.7). Note that in each such case, the number of shares n; to be stored
at each LS; can be proportionally increased without violating placement optimum criterion:

n; < c - n;, where c is a multiplier constant for each i.
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Set of shares is not pre-defined Set of shares is pre-defined
Case |  LSrisk | Share Case | LSrisk | Share weight
la | homogeneous | homogeneous 2a | homogeneous | homogeneous
1b | heterogeneous | homogeneous 2b | heterogeneous | homogeneous
lc | homogeneous | heterogeneous 2c¢ | homogeneous | heterogeneous
1d | heterogeneous | heterogeneous || 2d | heterogeneous | heterogeneous

Required approach

Number adjustment

Placement optimization

Table 3.1.: Overview of share placement cases
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Case 1la: LS risks are homogeneous and shares are homogeneous. Then we can simply
generate the needed number of shares n equal to the number of LSs n and place each share

to one LS.

n=m;n=—=1 (3.16)

Case 1b: LS risks are heterogeneous, while shares are homogeneous. The needed total

number of shares n depends on the relation between LS risk values. First, we determine the
m 1,

i=1 7> next we divide the result through the greatest

maximal (worst case) sum: n,,, = .,
common divisor d = gcd(pi1 pi): n= "Z}i. Thus, the numbers of generated shares and

assigned shares to each LS are:
= d d
n=Z—; n,=— (3.17)

Case 1c: LS risks are homogeneous, while shares are heterogeneous. This case is trivial

and degrades into 1a, since the shares can be generated homogeneous as risks here.

n .
n=m; n; = —, with homogeneous shares s; (3.18)
m

Case 1d: LS risks are heterogeneous, and shares are heterogeneous. As in the case 1a,

n =m, and the share precision increases are determined as %, and then normalized.

n 1
n=m; n; = —, with precision increases A¢; = — (3.19)
m

Under the assumption of free share generation, the computational complexity of share
placement for all cases (1a, 1b, 1c and 1d) is linear: O(m). Thus, we do not need a real place-
ment algorithm here, but an assignment of shares after generating suitable heterogeneous

shares.
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Figure 3.7.: Share placement cases 1a, 1c, 1b, 1d
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Figure 3.8.: Share placement cases 2a, 2b, 2c, 2d
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Next, in cases 2a-2d (cf. Figure 3.8), we assume that the number and composition of
shares are pre-defined, i.e., we cannot generate another set of shares and should improve
the placement of the already existing set. Note that in Figure 3.8 we use integer values of
share precision increases for the sake of simplicity; they can be also defined by floating-point

values.

Case 2a: LS risks are homogeneous, and shares are homogeneous. Having n > m,
we assign shares, e.g., through the round-robin principle. The resulting balancing is not
dependent on the order of share assignment. The placement imbalance can be relatively
large for small m values and small - relation, but it cannot be improved under the given

assumptions.

n = const;n; = n mod m + (1 —i mod m) (3.20)
The computational complexity needed for share placement in case 2a is O(m).

Case 2b: LS risks are heterogeneous, while shares are homogeneous. Such situations are
likely to occur, but the placement problem in such conditions is not trivial and in worst case
scenarios require an NP-hard solution. Therefore, we solve case 2b in the same way as the

most general case 2d below.

Case 2c: LS risks are homogeneous, while shares are heterogeneous: in this case we have
a “knapsack problem”. The computational complexity needed for an exact (ideal) share

placement in this case is O(m"), as in the most general case 2d below.

Case 2d: LS risks are heterogeneous, and shares are heterogeneous. This situation, being
the most general problem, also includes cases 2b and 2c. We described the general solution
above in Section 3.5.2.

3.6. Evaluation

In this section, we analyze the performance and the improvement of the probabilistic guar-

antees of precision levels provided by the proposed placement algorithms.

3.6 | Evaluation 123



3.6.1. Performance Evaluation

According to the principle of position sharing, share placement has to be calculated on the
mobile device of the user, since it is the only trusted entity in our system model. Since mobile
devices are typically restricted in terms of processing power and energy, the runtime of our
share placement algorithm is crucial. Therefore, we measured the runtime of placing a set
of shares on a state of the art mobile device. To evaluate the computational cost, we used a
smartphone HTC Desire with Android OS (CPU: 1 GHz Qualcomm QSD8250 Snapdragon,
memory: 576 MB RAM). We tested the full number of cycles of the genetic algorithm, without
terminating the algorithm under the “solution found” condition (i.e., we have tested the
worst case scenario, where the solution is not feasible for the given parameters). The number
of LSs was given as m = 5;10; 20, and the number of shares n is in the interval [m; 50].
Figure 3.9 shows the average runtime for placing n shares on m LSs. As our evaluation
shows, Algorithm 11 has linear complexity (cf. Figure 3.9) and is executed in less than one
second even for larger input parameters (m = 20, n = 50). Therefore, we conclude that the

algorithm is also suitable for resource-poor mobile devices.

3.6.2. Probabilistic Guarantees of Privacy Levels after Placement
Optimization

Now, we consider the influence of share placement on probabilistic guarantees of privacy

(precision) levels by analyzing several placement examples.
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Figure 3.9.: Computational cost of genetic share placement algorithm (Algorithm 10)
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As was shown previously in Figure 3.6 (Section 3.3.3), in the case of different LS risks,
the probability of an LS compromise can be very high, especially for lower k (i.e., lower
precision values). The reason is that the probability values of risky LS cause a substantial
increase in some k-combinations’ probability (Equation 3.7). We overcome this problem by
optimizing share placement, so that LSs with higher security risks will receive less precise

shares. The influence of various placements on user security is illustrated in Figure 3.10.

Naive approach: Assuming that we have different risks p;, = 0.1;p, = 0.2;p; = 0.4,
equal share placement, r, = 100 km, and each LS has stores shares providing 33 km
precision increase. Thus, the precision increase of 33 km (one third of r,) can be achieved

by compromising at least one LS with probability P; ., = 56.8% (cf. Figure 3.10).

Optimized approach: Having the same risks as above, we distribute 100 km of precision
(ro =100 km) proportionally to the risk values (57 km to LS;, 29 km to LS, and 14 km to
LS;). Then the disclosed precision increase (which corresponds to exactly one compromised
LS with probability P; ., = 56.8%) is not 33 km but only 22 km. The security is improved
compared to the naive approach, since the same probability levels correspond to lower

precision values (cf. Figure 3.10).

Next, we compare the resulting probabilistic guarantees of precision levels of optimized

share placement compared to a basic (non-optimized) placement algorithm, having a more
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Figure 3.10.: Precision ¢ and probabilistic guarantees of precision levels Py ., for different
share placements
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general scenario with randomly generated risk values. We place n = 15 shareson m =5

LSs with heterogeneous risks; the risk values were chosen uniformly at random from the
interval [0;0.5]: p; = 0.4932; p, = 0.3292; p; = 0.2344; p, = 0.1788; ps = 0.0925. The
basic algorithm distributes an equal number of shares (3) to each LS, while the optimized

placement placed 1, 2, 2, 3 and 7 shares onto the given LSs.

Figure 3.11 depicts the probabilistic guarantees of precision levels Py ., for the different

precision levels ¢. Note that the precision levels ¢y .., which correspond to the probability

levels Py o, are calculated as the weighted average of position precisions of each possible

k-combination. The figure shows that the optimized share placement algorithm leads to

a significantly lower probability of compromising the respective shares for most precision

levels.
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Figure 3.11.: Placement optimization: precision ¢ and probabilistic guarantees of precision

levels Py attack
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3.7. Conclusion

This chapter presented an extension for our basic position sharing approach, which improves
the user’s location privacy in the case when the available location servers are not equally
trustworthy. We presented an algorithm to select the minimal required number of LSs and
to optimize the distribution of position shares among them. The main result is that more
position information is placed on the LSs that are more trusted. Thus, we avoid the situation
where high precision can be disclosed with high probability after an attack on an LS. We
have shown that our placement heuristic has linear runtime complexity, and therefore it can
be executed on MOs with low processing power. We also considered special placement cases
in order to apply simpler solutions than the general placement heuristic under suitable initial

conditions.
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CHAPTER

LLOCATION UPDATE ALGORITHMS FOR
POSITION SHARING

The position sharing approach that was presented in the previous chapters is suited for
snapshot (single) location updates, so that a complete set of shares has to be re-generated
and sent to the corresponding set of LSs every time a position update event is triggered.
This principle might produce a high communication overhead, e.g., if the update rate is
high and the number of LSs is large. However, in many cases the re-generation and update
of the whole share set causes redundancy (e.g., in cases where movements of the MO are
insignificant). Hence, we aim to minimize the number of update messages in our system.

In this chapter, we present a location update approach, the basics of which were published
in the diploma thesis of Simon Héanle [Hae12]. The author developed the main concept of
the location update approach, contributed to the refinement of location update algorithms
for different scenarios, and supervised the diploma thesis as a whole.

After giving an overview of related work, we define the problem of message reduction.
Then, we describe two movement scenarios, and finally, we propose an optimized location

update algorithm.

4.1. Background and Related Work

In this section, we first describe the location update protocols, focusing on dead-reckoning

protocols. After that, we present some works, which aim to optimize message overhead.
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4.1.1. Classification of Location Update Protocols

Next, we describe the different types of existing location update protocols. Figure 4.1
illustrates the different types of protocols, which, according to the survey of Leonhardi et al.

[LRO1], fall into the following three main categories:

* “querying protocols” — the server side initiates a location update of the target MO’s

position;

* “reporting protocols” — the decision for a location update is made from the client-side
(by the MO);

* “combined protocols” — combination of the querying and reporting protocols principles.

Multiple classes of querying protocols are distinguished: simple, caching and periodic
protocols.

According to simple protocols, the server always queries the location update from the MO if
it needs the MQO’s current position, e.g., for a subscribed LBA. This ensures that the obtained
MO’s position is always accurate. However, this can lead to high numbers of update messages
if the position is being queried very often.

Caching protocols represent an optimization of simple protocols: the server always stores
the copy of the last transmitted position information. When the MO’s position is queried by
an LBA, the server performs an assessment of the position’s accuracy. If the result is below a
pre-determined limit, then the server forwards to the LBA the stored MQ’s previous position;

otherwise, the server requests an update from the MO. Here, the estimation of accuracy

update protocols

querying reporting combined
simple caching periodic  simple distance- time- dead-
based based reckoning

Figure 4.1.: Overview of different types of location update protocols [LRO1]
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can be either pessimistic or optimistic. The pessimistic variant is to calculate how far the
MO could have moved since the last update based on its maximum speed (the maximum
speed value must be defined in advance). In the optimistic variant, not maximal but average
velocity of the MO is assumed. Thus, a situation might occur where the position deviation
between the last saved MO position and the actual MO position exceeds the limit €, e.g., if
the MO has moved since the last update at a speed greater than the average speed. As a
consequence, fewer update messages must be sent as compared to the pessimistic variant.

Periodic protocols are organized in such a way that the server requests a location update
from the MO periodically, i.e., after a pre-defined time interval. This principle is very similar
to the time-based update protocol presented later.

Reporting protocols can be classified as simple, time-based, and distance-based reporting
protocols and dead reckoning protocols.

According to the principle of the simple reporting protocol, a position update is triggered
every time a sensor system has detected a position change. In the case of an excessively
accurate sensor system, this may lead to a very high number of update messages produced.

Time-based protocols: an update message is always sent to the server after a specified time
interval At. The accuracy of location data in this case depends on the speed of the MO: if
the MO is moving at high speed and the time interval At is large, then its actual position
differs significantly from the last position stored on the server, i.e., the accuracy is decreased.

Distance-based protocols: a position update message is always sent if the geographical
distance since the last update exceeds a specified threshold d. This protocol is well suited to
MOs that are moving very slowly or almost not moving at all.

Dead-reckoning protocols represent an optimization of the distance-based protocols, where
the server predicts the current position of the MO based on its last position, speed and
movement direction. The MO also calculates this position and sends an update message
when the geographical difference between the actual position and the calculated position
is greater than a specified bound e (Figure 4.2). This protocol can save a lot of messages,
provided that the MO is moving at a constant speed in a predetermined direction, or if the
MO’s destination is known.

4.1.2. A Combined Location Update Protocol

Leonhardi and Rothermel [LRO1] proposed a combined protocol that utilizes the ideas of both
distance-based update protocols and querying protocols. The system works as follows: the

basic approach is the same as for the distance-based protocols, but in the case of insufficient
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Figure 4.2.: Linear dead-reckoning principle [LDRO8]

accuracy, the server may request an update message at any time with regard to the last saved
MO’s position. To minimize the number of update messages, the limit of distance d can be
dynamically adjusted (in the distance-based protocol) in correspondence with the velocity of
the MO.

Furthermore, the authors consider the protocol’s behavior in the case of an absence of
communication between the MO and the server and present the analytical comparison of
various location update protocols in terms of location accuracy and the number of update
messages produced.

The analytical results of this comparison can be summarized as follows: in general, the
performance of the distance-based protocol is better than that of the time-based protocol,
and the optimistic caching querying protocol is better than the pessimistic one. The number
of update messages increases in the case of querying protocols with the number of requests;
therefore the querying protocols are better than the reporting protocols in cases of low query
rates. When the query rate is high, distance-based reporting protocols perform better than
pessimistic caching querying protocols.

The analysis of the update protocols’ accuracy says that pessimistic querying protocols
can guarantee a fixed inaccuracy value €, regardless of the MO’s speed. The optimistic
querying protocol usually produces more inaccuracy. The time-based reporting protocol has
low average inaccuracy at low movement speeds, whereas distance-based reporting protocol
has constant average inaccuracy for all speed levels. In general, reporting protocols do not
guarantee an inaccuracy threshold e for MOs.

The performance of the combined location update protocol proposed by Leonhardi and
Rothermel [LRO1] was analyzed based on real position data. Its efficiency depends on the

query rate and the parameter that determines whether the last MO’s position stored on the
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server should be updated. At high query rates, it is less efficient than the distance-based
reporting protocol; however, at low rates it requires far fewer update messages. In contrast

to the reporting protocols, it provides a pre-defined bound € for the MO’s location inaccuracy.

4.1.3. Dead Reckoning Protocols

Now, we will consider dead-reckoning protocols in more detail. In [LNR02], the authors
present an overview of various existing dead-reckoning protocols and classify them as follows
(Figure 4.3).

Linear prediction: The most simple dead-reckoning protocol, which assumes that the MO
moves linearly (e.g., a car on a highway). This protocol is easy to implement and usually
requires fewer update messages than naive update protocols.

Prediction with higher-order function: This protocol allows for the prediction of non-linear
movements of the MO, such as curves or splines. The speed of the MO can be also calculated
based on the measured acceleration.

Map-based dead-reckoning: This case assumes that the MO usually moves along a road
network (e.g., a car driving through town). The aim of the map-based dead-reckoning
protocols is to compare the MO’s position with the map of the surrounding environment.
Such maps can be obtained, for example, from navigation systems. The protocol must decide
the direction in which the MO is most likely to move at every road crossing.

Map-based dead-reckoning with probabilities: This improved map-based dead-reckoning

protocol uses probability information at road crossings. This method can be user-independent,

dead-reckoning
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no route route known
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Figure 4.3.: Overview of different types of dead-reckoning protocols [LNRO2]
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if provided with information about the percentage of users who at crossing X select junction
Y; or it can be user-specific, if provided with information about how often user U at crossing
X selects junction Z. Of course, to be able to obtain such information we need to have a
large spatial database included in the system model.

History-based dead-reckoning: This protocol is based on the assumption that the movement
history of a given user (profile) is recorded over a long period of time. Since many users have
a regular daily routine (e.g., driving to work every morning and home again in the evening),
the performance of this protocol is similar to the map-based dead-reckoning with additional
probability information. The resulting profile can either be user-specific or user-independent.

Dead-reckoning with known route: If the route of the given MO is pre-determined, then
only its speed has to be considered, since it is already known which junction will be chosen
by this MO at each crossing. In this case, the protocol operates just like the map-based
dead-reckoning with ideal movement prediction, since the predicted MO’s route matches its

true route exactly.

4.1.4. Map-based Dead-Reckoning

In addition to an overview of the existing dead-reckoning approaches, a map-based dead
reckoning algorithm was developed in [LNRO2]. The proposed location update algorithm
uses a map extracted from the automotive navigation system. The map will be interpreted
as a graph, where each node represents a crossing, and the roads between the crossings are
represented as graph edges. This graph-based representation helps to calculate the MQO’s
position offline more precisely, with the most challenging part being in the right selection of
edges after the crossings. The authors call the search for a right edge along the neighboring
graph part forward-tracking and backward-tracking.

As the evaluation of [LNRO2] shows, the proposed location update algorithm achieves a
significant reduction in the number of update messages and thus reduces communication
overhead between the MO and the server. However, it offers no way of obfuscating the
exact location of the user, and also has the problem that the server that performs the
calculations is a single TTP in the system, i.e., the proposed algorithm assumes that the
server is always trustworthy. Since the server stores the exact position of the MO, the MO’s

position information can be revealed in the case of a compromised or malicious server.
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4.1.5. Summary

The existing approaches in the field of location update algorithms cover many aspects of the
optimization of LBS operation. In general, many of them achieve good results in optimizing
the update messages. However, traditional approaches reducing single updates such as
dead-reckoning are not applicable to our position sharing approach, since they are not suited
to obfuscated positions. As illustrated in Figure 4.4, the calculation of the predicted position
causes the resulting radius to double in size, since the MO can be originally located in
any point of the previous obfuscation circle: obfuscated locations increase the prediction’s
deviation by 2 x r. As a result, the position prediction becomes worthless and unhelpful.
While the MO is still able to calculate his or her position, the server cannot do it.

Moreover, there are currently no approaches that would provide obfuscation-based location
privacy, simultaneous usage of multiple location servers, and a reduction in the number of
update messages all at the same time. In this work, we solve these problems in an integrated
way that is specific to the basic position sharing approach introduced in Chapter 2.

In this chapter, we will describe how the required update message overhead can be
significantly reduced: depending on the situation, up to 70-80% of communication overhead
can be saved without violating the privacy guarantees provided or the precision levels of the
MO’s position.
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Figure 4.4.: Optimization of location updates: why dead reckoning is not applicable
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4.2. Problem Statement

Next, we formulate the reduction of location updates as a constrained optimization problem.

The optimization goal is to reduce the total number of location update messages sent in the
system. According to our system model (Figure 3.1), the communication overhead consists of
messages being sent from MOs to LSs (denoted as the number of messages NM°~15) and from
LSs to LBAs (NL571BA)  LBAs can subscribe to receive continuous MO’s position updates from
the LSs (with each update triggered by the LSs in this case); or they can pro-actively issue
and process location-based queries to get the MOs’ positions from the LSs. The constraints say
that there should be no change of position precision ¢, as a result, as well as no reduction
of the user’s probabilistic guarantees Py ,ack(Pi aack) Of precision (privacy) levels.

We define the following as given:

* n location servers,

* the MO’s previous consecutive precise position 7;, i.e., position defined before ;.
(the algorithm is run on the MO side, which means that the MO’s own precise positions

are available),
* the MO’s next consecutive precise position 7, , i.e., position defined after r;,
* a master share s, generated for 7;,
* aset S' of n refinement shares s, ...s, generated for 7;,

* the probability distribution P,(¢; ), which specifies the required probabilistic guarantees

for each precision level ¢,.

Problem: Find the set of shares SS;}, where the concatenation of all shift vectors of S;;}
must point to 7t;,; according to the basic requirements of share generation (Algorithm 3,
Section 2.4.2.1):

n

i+1 i+1 i+1 . i+1 __
SHL={si1 .51} 1 D s =y, 4.1)
k=0

such that Sf);;} requires the minimal number of update messages, i.e., there is no other

set of shares S'*! that can produce a smaller number of update messages N(S'*! ) than

other other
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N(8i+1 .

opt/*®

vséi_}ier’ Sti)-:'_i}er 75 S(l);: : N(S(l);:) < N(S(l:}ier ) (42)

the set of shares Sf);} must also satisfy the current user’s privacy requirements, i.e., each

further kth share must provide the pre-defined probabilistic guarantees of privacy levels

P ():

V ¢k,attack : Pk(¢k) > Pr[d)k,attack < ¢k]; (43)

finally, the precision ¢, of each imprecise position p,i” derived by share fusion after
obtaining the minimized set S;} has to be the same as the precision of the corresponding

imprecise position p}( constructed from the original set of shares S':

VS esitl siest ¢ g pit(SM) = dilpi(S)) (4.4)

In other words, S'™! and S should differ in as few shares as possible, i.e., in S*! as many
shares as possible should be reused from S-.

Note that we do not assume that an MO’s complete trajectory is available. We consider
only the close sequential position updates. Hence, we cannot apply statistical analysis of
the past positions and the respective parameters such as speed, and therefore we do not
consider approaches for preserving privacy of a complete trajectory (see Section 2.7.7).
Those approaches are independent from the method of share updating, i.e., they consider
MO’s position as a single entity and not as a combination of shares. Our goal is only to reduce
the number of shares to be sent during neighboring consecutive updates without violating
the precision levels and their probabilistic guarantees provided by the share generation

algorithm.

4.3. Position Sharing Update Approaches

Usually, one position change corresponds to one update message from the MO to the LS, and

one message from the LS to an LBA. Our basic approach allows for sharing user’s position
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among multiple non-trusted LSs, but the price for that is the increased communication
overhead. The reason for the increased overhead is that after each location update, an
MO must send n messages with new position shares to n different LSs, while an LBA must
receive k messages from k LSs in order to obtain the position of the precision level k that it
is authorized to know. Thus, our goal is to send a smaller number of messages than n after
each position change.

Depending on the movement scenario, different location update approaches can be ben-
eficial. The key factor here is the relation between the distance traveled between two
consecutive updates and the radii of obfuscation circles.

First, we consider continuous position updates, i.e., updates which are close to each other
with update intervals of up to 15 seconds. The examples of such position update scenarios
are navigation, way finding and tracking (Figure 4.5a).

Second, we consider sporadic position updates, i.e., updates which are distant from each
other with update intervals from several minutes to more than one hour. Such updates
would occur as a result of point-of-interest queries from the LBAs to the LSs (Figure 4.5b).
Sporadic updates are hardly predictable, not frequent, and the distances between them are
usually large.

In both cases described above, we assume that only a limited movement history is known
and that no complete trajectory (i.e., movement history) is available.

Next, we will present different approaches suited for different relations of the travelled

distance to the radius provided by the position share, namely, for (a) continuous position
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Figure 4.5.: Location updates optimization: (a) navigation scenario; (b) point-of-interest
queries scenario
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updates, (b) sporadic position updates and (c) combined position updates. Finally, we will
integrate these approaches into a holistic location update algorithm.

In the following, we illustrate our location update approaches with the obfuscation circles
based on the OSPS-ASO “a-priori” share generation and fusion. However, our location update

approaches are also applicable to other share generation and fusion algorithms.

4.3.1. Position Sharing Update Approach 1: PSUA1

If the MO moves insignificantly or it does not move at all between two consecutive updates
and remains inside circle ¢; (and does not stay in ¢, ), then only the shares s, ...s, have to
be recalculated and sent to the LSs. For example, Figure 4.6 shows that the MO’s movement
does not intersect the innermost circle c,_,. Therefore, only share s, must be updated.

The pseudocode for our first position sharing update approach denoted as PSUAL is
presented in Algorithm 12. In order to find the last non-affected by the movement precision
level k, we calculate the distance between the newly updated position 7t;,; and the centers
pl’F of circles ¢, generated for the previous position 7; (line 2). If this distance is smaller than

the radius ry, the user remained inside the circle c;:

distance(r;,,, pf) < 1y (4.5)

This condition needs to be checked for each circle starting from the smallest one c,_,, until

the condition is met or the master share’s radius r, is exceeded.
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Figure 4.6.: PSUA1: little movement of MO; MO remains inside the innermost circle c¢,_;
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Algorithm 12 Location Update Algorithm: PSUA1

function update_shares_1(7;, mi}1,1,5 . - .Sn)

while distance(r7 1, p¥) < ry do
ke—k—1
end while
Sikt1 - - -Sp < regenerate_shares(miq,k+ 1,1, Ppin, Ag)
send(siyq---Sp)

A Rl r e

Having determined k, we can calculate the total number of update messages for PSUA1.
Regarding the communication between the MO and the LSs, n — k shares have to be re-

generated (line 5) and re-sent (line 6) in PSUA1, The resulting saving rate is:

k
RMO-LS _ (4.6)
n

PSUA1

The number of saved messages is Npaor: > = k.

It is more difficult to calculate the communication between LSs and LBAs, since it depends
on the number of LBAs (which cannot be affected by the MO) and the required precision
level. As defined in our problem statement (Section 4.2), the position update can be either
queried by LBAs, or triggered by LSs for subscribed LBAs. We introduce the probability of an
LBA receiving an update of position p;, i.e., of getting shares s ...s; as P,4([so...5;]); we
will give an estimation of the P,,; probabilities later in Section 4.3.4 and Section 4.6.1. Thus,

the saving rate in communication between LSs and the LBAs can be expressed as follows:

k
RLS —LBA _ Z] OPupd([so-..Sj])

4.7)
PSUAL Z] =0 pd([SO"'Sj])

The absolute number of saved messages is defined as the number of LBAs n; 5, multiplied
by the sum of the update probability of the refinement shares which were not sent due to

the optimization:

Nosoni = Mypa - Z wpd([So -+ -5;]) (4.8)
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4.3.2. Position Sharing Update Approach 2: PSUA2

If the MO moves fast or the update rate is very low, the new MO’s master share can be located

completely outside the previous master share, as depicted in Figure 4.7.
The condition of having no intersection between two consecutive master shares is:

distance(m;,,p;) > 2% 1 (4.9)

The main idea of our second position update approach (PSUA2) is that under the conditions
of Equation 4.9, we can recalculate and update only the master share while keeping the
refinement shares unchanged.

The pseudocode for PSUA2 is presented in Algorithm 13. If the condition of Equation 4.9
is met (line 2), only a new master share has to be generated (line 3) and sent (line 5) to
the corresponding LSs, while the refinement shares s ...s, will remain the same without
causing any inconsistency during their fusion. This is preserved by the fact that the shares

are relative shift vectors, while the absolute coordinates are only contained in the master

share s,,.

Algorithm 13 Location Update Algorithm: PSUA2

1: function update _shares 2(7;, i} 1,M,5q---Sy)

2: if distance(n;} 1, p?) > 2% r then
3t Sp =T —

4: end if

5: send(sp)
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Figure 4.7.: PSUA2: large movement of MO; two consecutive master shares do not intersect
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Next, we analyze the communication costs for PSUA2. Since only one share has to be

updated, the number of sent messages between MO and LS is Ny¢0,* = 1, and the saving
rate is:
Rio-ts - 171 (4.10)
PSUA2 ~— n 2 :

whereas the message saving rate between LSs and LBAs is:

LS—LBA _ Zj=1 Ppa(lsj...s,])
Rpsunz = <oon i
=0 Pupa[s;---54])

The absolute number of messages between LSs and LBAs equals the number of LBAs, so

NS L34 = n gy, since the master share has to be re-sent to each LBA.
Note that since NI’,VS’LOJXZLS =1, PSUA2 can be considered as the optimal approach for the

case when LS-LBA communication cost is ignored, e.g., when P,,(...) is negligibly small or

cannot be estimated.

4.3.3. Position Sharing Update Approach 3: PSUA3

In special cases where neither PSUA1 nor PSUA2 is applicable, we apply non-optimized
location updating called PSUA3. In PSUA1 and PSUA2, we considered that the new (obfus-
cated) position lies either completely inside the old master share or completely outside it.
The next version of position sharing update approach (PSUA3) represents an intersection of
two consecutive share sets, i.e., a situation when both conditions of Equation 4.5 for PSUA1
and Equation 4.9 for PSUA2 are not satisfied. This causes a degradation of privacy through
reduction of the obfuscation area’, i.e., it is more likely that the MO’s actual position lies
within the intersection of circles.

The pseudocode for PSUA3 is presented in Algorithm 14. All shares have to be re-generated

(line 3) and sent (line 5), so that the total number of sent messages (without any messages

'For example, Maximum Velocity Attack [GDSB09] could be applied: if an attacker gets two successive
master shares and their timestamps, he or she can predict a travelled distance d,,,, after a certain time.
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saved) is:

Npsuaz = n+(nLBA'ZPupd([Sj'-'sn]) (4.12)
=0

Algorithm 14 Location Update Algorithm: PSUA3
1: function update _shares 3(p;, pii1,M,50 - --Sn) R
2: if YVke{l...n—1}: (distance(n{;l,;;?) <2xry) & (distance(p{.}l,pf) > r;) then
3 8y...8p < regenerate_all_shares(pii1,M, Pmin, A¢)
4: end if
5: send(sg...s,)

4.3.4. Estimations of Efficiency

Now, we will perform a preliminary analysis of the gain in efficiency that the two main
proposed approaches can provide: PSUA2, corresponding to the location update strategy for
sporadic updates, and PSUA1, corresponding to the location update strategy for frequent
updates.

The total communication cost in both cases includes: (a) the cost of communication
between the MO and the LSs; (b) the cost of communication between the LSs and the LBAs.

Consider a situation in which the LSs push location updates to an LBA subscribed to the
given MO, when the observed positions of that MO are changing. Why is then one s, update
better than one s, update? Assume the following situation: n = 4; LBA has k shares, each k
with equal probability 20%:

Pupa([5¢---5,1) =20%, k=0...n (4.13)

For such a case, Figure 4.8 shows the rough estimation of LS-LBA communication cost
depending on k, so that the privacy level k here corresponds to the number of shares being
obtained by the LBA from k LSs.

If we only take into account communication between the mobile user and the LSs, we
can state the following: The usage of PSUA2 will lead to the reduction of messages by
1—1/n=(n—1)/n. For example, n =5 leads to reduction by 80% (cf. Figure 4.8).

The possible limitations for PSUA2 include the situation when a new set of LSs is selected
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Figure 4.8.: Location updates optimization: estimation of communication cost LS-LBA

or the access rights are changed. In addition, the set of the MO’s position shares ages and
becomes more vulnerable with time. Using PSUA1, an ideal case we can achieve for MO-LS
communication is the same message reduction as with PSUA2; in the worst case, the resulting

reduction will be only 1/n.

4.4. Optimized Location Update Algorithm

As we have shown, there are two optimized approaches for sending location updates (PSUA1
and PSUA2) and the non-optimized update approach (PSUA3). Since PSUA1 and PSUA2 pro-
duce varying numbers of messages in different cases, our goal now is to formally distinguish
these cases and achieve the total communication cost as N = min(Npgya1, Npsyaz)-

Note that PSUA1 and PSUA2 cannot be further optimized, because the number of updates
from MO to LSs triggered by PSUA2 is 1, which is the minimal number of messages which
makes a position update possible. The number of updates from MO to LSs triggered by
PSUAL is n — k, since the precision levels ¢, ... ¢, are not affected. If we send even one share
less, it would mean that no correct refinement of precision levels possible at least for one of
the levels k + 1...n and thus the precision and privacy guarantees are violated.

Thus, we only need to select one of the approaches (PSUA1 or PSUA2), as it is not possible
to further reduce the amount of messages within the approaches themselves. The main
challenge is to find the condition defining the point where PSUA2 is better than PSUA1 in
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terms of the total number of messages required for location updates (including MO-LS and
LS-LBA communication).

Therefore, before sending a location update, the MO determines the best way to do the
update — namely, which one of the two optimized approaches can be applied and which one
produces the minimal number of messages. To determine the break-even point between
PSUA1 and PSUA2, we equate the absolute costs of MO-LS and LS-LBA for PSUA1 and
PSUAZ2:

MO-LS LS—LBA ° \fMO-LS LS—LBA
NPSUAl + NPSUAl - NPSUAZ + NPSUAZ (4 14)

Next, the MO checks whether PSUA1 or PSUA2 should be applied for the kth precision
level requested by the LBA for the given location update.

n

k+n;p,- Z Pupd([sj...sn])é1+nLBA (4.15)
j=n—k+1

Then, we check the conditions for PSUA1 (Equation 4.5) and PSUA2 (Equation 4.9). If they
are satisfied, an optimized location update can be applied; otherwise, the naive approach
(PSUA3) should be used. In the end, we achieve a situation, such that any further reduction
of update messages would reduce the delivered position precision, while any increase of
update messages would increase the communication overhead without improving the pre-
defined precision. The pseudo-code for the general location update algorithm is presented
in Algorithm 15. Note that the find optimal k(...) function in line 2 finds k according to
Equation 4.15.

As an example, we show the point where PSUA2 becomes more beneficial than PSUAI,
if assumed that n = 10, k = 1...10, n;z, = 10 (Figure 4.9). The number of required
messages is heavily dependent on k. Another important factor is whether the updated share
is the master share (PSUA2), which should be sent to every LBA after each update, or the
updated shares are k refinement shares, which need to be re-sent in the case of PSUA1. The
communication cost required by PSUA2 is constant, with only one message between the
MO and the LSs, and the whole set of 10 (n) messages between LSs and LBAs. The cost of
PSUAL1 is lower for small k values, but it increases rapidly with both MO-LSs and LSs-LBAs

communication increasing together with k. Thus, we can say that PSUA1 is more efficient
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Algorithm 15 Location Update Algorithm

function update_shares(7;, T} 1,1,5q - -Spy)
k « find_optimal k(7;, 7i\1,1,80-..5,)
if distance(7t; ;) < k * ry/n then
update_shares 1(7;, 7;y1,1,50 - - - Sk)
else
if distance(7;, ;1) > 2 x 1 then
update_shares 2(7;, 7jy1,1,50 - - - Sk)
else
update_shares 3(7;, 7jy1, 1,50 - - - Sk)
end if
: end if

CREILH WD

_ =
= O

for a number of refinement shares that does not exceed 4 out of 10, while PSUA2 is more
beneficial for k > 4 (cf. Figure 4.9).
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Figure 4.9.: The intersection of the curves is the point where PSUA2 starts to be more
beneficial than PSUA1; the communication cost values are calculated for n = 10,
k=1...10,n;5,=10
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4.5. Security of Location Updates

Thus far, we have extended our basic approach with a temporal dimension by considering
multiple consecutive location updates and reduced the required communication overhead.
Now, we consider the influence of location update algorithms and multiple updates on

privacy.

4.5.1. Challenges of Consecutive Updates

The privacy guarantees provided by the basic position sharing approach introduced in
Chapter 2 are valid for isolated position updates. In this chapter, we have already presented
a location update algorithm which optimizes the communication overhead considering the
last two consecutive position updates on-the-fly. However, the problem is that by acquiring
a larger sequence of updates, an adversary is able to gain more information about the
current MQO’s position than was originally intended to be revealed by the MO. The well-
known adversarial method of gaining additional knowledge through consecutive updates
is so-called Maximum Velocity Attack [GDSB09]. An adversary can apply it in cases where
the approximate velocity of the MO is known, along with the MO’s previous positions. Such
information can either be inferred from previous updates, or based on observed statistics of
similar MOs.

Knowing the time that has elapsed between the last updates and the maximum velocity of
the MO, the maximum distance of the target MO from the last position can be calculated.
Then an attacker can find the area that is reachable from the last known position in the
elapsed time, given the maximum MO speed.

In Figure 4.10, we show the previous MO’s update (obfuscation circle) on the left and the

current update on the right. The larger circle’s radius r,,,, is equal to the maximum distance

max
that this MO could have traveled since the previous location update during the period of
time between the two updates. Assuming the maximum possible velocity to be known, the
adversary can determine the area covering the maximal possible traveled distance. The
radius of the circle is the product of the maximum velocity and the time difference between

the updates:

Tmax = (ti - ti—l) * Viaxs (416)

4.5 | Security of Location Updates 147



_ distance(p;_s, p;_1) + 2% 1y

where: v “4.17)

max
ti 1 —tis

The area covered by the circle with r,,,, includes every point within the maximum reachable
distance from every point in the last known location. By intersecting this area with the new
obfuscation circle (center in pf) provided by MO as the next update, the adversary can get
an area that might be less than or equal to the area of the new update. Thus, we can check
whether the current user’s position is located in the overlapping area of both the circles, as
shown in Figure 4.10. If the intersection is less than the area of the new update, then the
attacker can conclude that the target MO is within the intersected area and not in the area
outside of the intersection. Thus, the precision achieved is higher than the precision that was
intended by the mobile user. In this case, the location privacy level of the MO is compromised
by velocity based linkage attacks. Note that in this case, no additional information besides

the positions and their corresponding timestamps is used.

4.5.2. Secure Location Updates

The first privacy requirement corresponding to our problem statement (Equation 4.4) is

that the position update optimization must not reduce the obfuscation area, i.e., cause an

Reachable area _-—"_ ~~ Obfuscation area
based on MO'’s -~ ~~ _ reduced through
speed 7 \, overlapping

e . —

Figure 4.10.: Velocity-based linkage attack: reachable area based on MO’s speed and
obfuscation area reduced through overlapping
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undesired increase in position precision ¢,. Under this condition, we can state that the
proposed location update algorithms do not reduce the number of shares, i.e., do not change
the precision level available to the authorized LBAs. In other words, the smaller number of
shares sent from the MO to the LS does not affect the number of shares provided to LBAs.
Therefore, no change in precision occurs.

Until now, we have only considered the locations of updates. The problem is that if at least
two previous consecutive updates with their timestamps are known, the obfuscation area
can be reduced by applying the Maximum Velocity Attack described in the previous section,
which limits the maximal possible travelled distance by the MO since the last update based
on the MO’s estimated maximal speed. To prevent this attack, we must omit the location
update if the next obfuscation circle intersects with the maximal movement boundary. This is
a well-known counter-measure against such an attack, described by Wernke et al. [WDR13].
We applied a similar defense against the Maximum Velocity Attack as already presented in
the literature [GDSB09, WDR13]. We accomplish this by skipping position updates if they
undermine the location privacy.

The general idea is that we must skip a position update if we see that the execution of
the next update will make it impossible to satisfy the privacy requirement using spatial
obfuscation alone. By skipping the scheduled update, we increase the area reachable from
the last update, as it is illustrated in Figure 4.11. The new reachable area is depicted as an
extended area resulting from increased time delay after an update was skipped. Obviously,
the overlapping area between the new larger shared circle with r,,,, and the reachable
area after skipping an update is larger than before. Thus, we achieve higher privacy by
introducing more position imprecision.

We say that an update is secure if any point of the current c]i is reachable from the previous
c,i_l. The time between two previous consecutive updates is used to determine the MQO’s
maximal speed, and the reachability area for the next MO’s position is then determined by
using this speed estimation. We calculate the maximal possible distance that an MO can

travel after the last update 7t; with the interval ¢t; —t;_; as:

t;—t;_1) - (dist i—9, Ti_1) +2
roo= (t; — t;_y) - (distance(;_,, ;1) % T) (4.18)

tig—tio

Algorithm 16 shows how we make the decision whether to send the current update or

skip it for security reasons. We assume that we know two previous updates in addition to
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Figure 4.11.: Skipped update’s effect: extended area

the current update; this is the minimum number required to estimate the MQ’s speed. We
assume that the current obfuscation level is k and it remains the same for all three of the

updates.

Algorithm 16 Secure Location Update

: function update_position(t;, t;_1,t;_5,S;,Si_1,S;—2)
! Vmax = (distance(7t;_y, ;1) + 2% 1) /(i1 — t;3)
Tmax = (ti = tii1) * Vinax
if 1,4, > distance(m;_,, 7;_;) then
i i

send_to_LSs(sg...s;)
else

skip_update(S;)
end if

N A A R TS

First, we calculate the reachable radius r,,,, (lines 2-3). If this distance completely covers
the obfuscation circle c,i( of the current update s;'{, we send the location update as usual
(lines 4-5). If c,i is intersected and therefore reduced, we skip this update (lines 6-7).

The example in Figure 4.12 shows three consecutive updates, where any point within the
last update’s obfuscation circle c,i is reachable from the previous obfuscation circle c]i_l.

After applying this principle to the two scenarios tested in the previous section, we obtained
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Figure 4.12.: Maximal movement boundary: estimation shows that any point within the
obfuscation circle ¢} is reachable from the previous obfuscation circle ;'

the following results. Since the updates are close to each other, 95-98% of updates are secure
in the case of the continuous location updates scenario and 75-83% are secure in the case of
the sporadic updates scenario. The reason for such high rates is that the estimated speed
in the second case is usually low due to the long delays between updates, while the master
share radius ry is larger.

The second privacy requirement corresponding to our problem statement (Equation 4.3)
is the probabilistic metric P,(¢,). Having the separate location updates represented by the
known obfuscation circle c}, the remaining shares s; ...s' and the corresponding refined
obfuscation circles c,i( .. cfl within c}( remain unknown for an attacker, even under the as-
sumption that he or she knows the share generation algorithm. The randomness of share
generation is preserved by the unchanged share generation algorithms (see Algorithms 2-8),
so that the probabilistic guarantees of privacy levels P,(¢;) are the same as in the basic

position sharing approaches.

4.5.3. Further Privacy Challenges: Discussion

Additionally, it would be possible to consider a pdf based on the movement correlation
instead of one based on intersection of the binary movement boundary. A similar idea of
applying the probabilistic prediction based on linear dead reckoning was proposed by Zhou
and Chirikjian [ZC03]. After determining such a pdf based on the previous updates record,
it will be necessary to convolute the share generation pdf and the pdf of the next predicted

position. However, such an approach requires analysis of the trajectory correlation pattern
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and is beyond the scope of this work.

Next, we consider the situation when an attacker knows the indices of the updated shares
even without having their content. We analyze whether he or she can gain additional
knowledge about 7t by considering such a situation with regard to PSUA1, PSUA2 and PSUA3
(selected according to Algorithm 15).

In PSUA2, only the master share is being updated by the MO. Since the master share s, is
known to everyone according to the basic assumptions of the position sharing approach, the
knowledge that it was updated does not affect privacy.

In PSUAS3, all the shares s, ...s, are updated, therefore, knowing their indices also does
not provide any new information. An attacker can only come to the conclusion that the MO
did not move further than 2 x r, from his or her previous position. This geometrical area
is large enough, especially if taken into account that the previous MQ’s position remains
unknown to the attacker as well.

In PSUA1, the set of updated shares can be different than the set of k shares that an attacker
is already authorized to know. Whereas the precision levels are revealed in ascending order
starting from p,, the shares in PSUA1 are updated in descending order starting from s,.. We
illustrate this principle in Figure 4.13, which shows that if n = 10, up to 3 shares can be
updated in terms of PSUA1 (according to the calculations presented earlier in Figure 4.9).
The gray area indicates the limits of the MO’s movement according to an update of the last

three shares sg, sg, 51¢-

Known updated
Known privacy shares:
level: c; 3 out of 10

Known privacy
level: ¢,

Known updated
shares:
3 out of 10

Figure 4.13.: Knowing indices of updated shares in PSUA1: examples for n = 10, 3 last
shares are updated.
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However, note that the location of 7 is unknown to an attacker, and therefore the location
of the gray area is also unknown to him or her. Assuming that the previous trajectory is
not known, or that it is not correlated, the basic property of the position sharing approach
is that 7 is distributed uniformly within the obfuscation area of ¢, known to the attacker.
Thus, the knowledge about the indices of the updated unknown shares does not increase the
probability of 7 being located within any sub-area of c,. Since the precise user position is
distributed uniformly within ¢, (whether the previous one 7; or the next one ;. ,), even if m;
and m,,, are highly correlated, an attacker cannot know exactly where they lie within c;. This
statement is correct if we use OSPS-ASO “a-priori”, OSPS FSO or CSPS share generation as the
basic location privacy approach. However, the problem of knowing the indices of updated
shares is another argument against use of the “a-posteriori” share generation algorithm
version; the reason is that one of the points 7t;, 7;,; is likely to be in the center of c,.

The speed-based movement restrictions do not restrict the obfuscation area in this case
either, since the start and the end of the MO’s movement are imprecise. Thus, the only
privacy-critical issue is that by knowing the previous updates in PSUA1, an attacker may
guess the length and the direction of the movement within the kth circle of n;, ;. This
is the situation where updates of shares corresponding to kth (or less than kth) privacy
level show a movement pattern, and only the unknown shares (k + 1th or further) are
updated. Figure 4.14 shows how trajectory analysis combined with knowledge of the indices
of updated shares may help to predict the location of 7; within ¢;. In such a case, since the
MO’s further movement is predictable, there will be a higher probability that 7 is located on
the direction-dependent (here: right) side of ¢,. However, it is important that the whole ¢,
area is still reachable since 7 remains unknown (note that in Figure 4.14 the exact location of
1t is depicted only for illustrative purposes). This case is beyond the scope of this work, since
it is related to the analysis of trajectory patterns. We refer to the work of Riaz et al. [RDR15],
where the corresponding analysis was conducted using a system model similar to our system

model and having applied the principles of distributed position sharing.
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Update 4:

Update 1: Update 2: Update 3: Known updated
Known privacy Known privacy Known privacy shares:
level: c;3 level: c; 3 out of 10

level: c;3

Figure 4.14.: Knowing indices of updated shares and the trajectory pattern: c, is updated
during the first 3 updates, while the 4th update affects only the last three shares
(510559,8g); n =10

4.6. Evaluation

Next, we present the evaluation of our optimized share placement algorithm. We start with
an evaluation of the communication cost of the algorithm, before we compare the achieved
probabilistic guarantees of precision levels provided by our approach to the ones of the basic

approach.

4.6.1. Evaluation Setup

We evaluated our location update algorithms by using the open database of real location
data called GeoLife [ZXM10]. The GeoLife data sets include daily routine trajectories such
as the route to and from work, or hiking and biking trips. Most trajectories were recorded at
intervals of 1-5 seconds or 5-10 meters (cf. Figure 4.15).

We selected two datasets which represent different scenarios: continuous updates (with
update intervals of up to 15 seconds) and sporadic updates (with update intervals from
several minutes to more than one hour). Then we evaluated the location update behavior
and measured the rate of message reduction.

For the evaluation, we assumed that the probability for each precision level ¢; of MO’s
position being required for the LBAs is equal (see Section 4.3.4, Figure 4.8). If the probability
of getting various precision levels is not equal, its function will remain similar to the one
shown in Figure 4.8, i.e., it will be decreasing, with first shares always requested more often
than the latter shares. The exception would be extreme cases such as those where only

precision p,,,, is always required. Thus, in order to reduce the communication cost, the
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Figure 4.15.: An example of Geolife location data with position updates marked by red dots;

small time intervals (1-5 seconds) and small distances (5-10 meters) between
updates [Hael2]

latter shares should be updated if possible.

In this case, the number of messages sent to the LSs required for the LBAs linearly increases
for each subsequent requested precision level ¢;. For example, to get the lowest precision, an
LBA needs to obtain only a single share s, (1 message), while the highest precision requires
obtaining the complete set of shares from s, to s, (n messages). In this latter case, the

probability of getting a share s; linearly decreases for each subsequent i:

Poa(ls:]) =1 —i (4.19)

4.6.2. Communication Cost after Reduction of Updates

First, we evaluate the number of messages sent through continuous updates for the number
of LSs n = 5 and the number of LBAs n;;, = 5. Note that the GeolLife data set represent
very frequent position updates with only tens of meters distances between the updates.
Therefore, in order to make possible selection of both PSUA1 and PSUA2, we selected radii
of obfuscation circles comparable to the distances between the updates: radii r, = 5 m
(Figure 4.16) and r, = 50 m (Figure 4.17). The horizontal axis depicts the sequential
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numbers of position updates. For the given setup, the naive approach would generate 20060
messages. The optimized approach generates 11520 for r, = 5 m and 3856 messages for
ro = 50 m, which equals a saving rate of 42.6% and 80.8% correspondingly. The PSUA2 is
often selected in Figure 4.16 due to the small radius, while using a larger radius, as shown
in Figure 4.17, only PSUAL1 is selected.

Next, we analyze the scenario of sporadic updates for radii r, = 50 m (Figure 4.18) and
ro =100 m (Figure 4.19), where the naive approach would generate 420 messages; n = 5;
n;pa = 5. The most commonly selected solution is PSUA2. Sometimes PSUAS is selected
due to master share intersections with r, = 100. As a result, the optimized location update
algorithm generates 154 for r, = 50 and 224 messages r, = 100 (a saving rate of 63.3% and
46.7% respectively).

We also analyzed the interdependency between the saving rate and the radius r, of the
master share (see Figure 4.20). For continuous (frequent) updates, a larger r, usually causes
fewer updates, since the movements are smaller compared to the obfuscation circles. For
sporadic updates, this tendency is similar in the long term, yet for a significant range of r,
values (for the given data set: between 0 and 300 m), a smaller r,, leads to less intersections

and, therefore, to a smaller number of update messages.

25 Messages
20 4 Y ¥ W LA L L L 4 . Al hhk S T Y S
15 + P5SUA1
+ PSUAZ2
10 PSUA3
5 I HHE
0 Updates
] 50 100 150 200 250 300 350 400

Figure 4.16.: Continuous location updates with radius ryp =5m; n=>5; n 3, =5
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Figure 4.17.: Continuous location updates with radius 1y =50 m; n=>5; n; 3, =5
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Figure 4.18.: Sporadic location updates with radius r, =50 m; n =5; n;5, =5
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Figure 4.19.: Sporadic location updates with radius r, =100 m; n =5; n;zp, =5
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Figure 4.20.: Saving rate (reduction of update messages, %) depending on radius r, of the
master share; n =5; n;z, =5 [Hael2]

4.6.3. Probabilistic Guarantees of Privacy Levels after Position Update

Optimization

Next, we analyze the probabilistic guarantees of privacy levels after the location update algo-
rithms have been applied (Figure 4.21). The first (dashed) curve represents the probabilistic
privacy guarantees of the OSPS-ASO “a-priori” share generation algorithm as measured
in Section 2.5.3 and shown initially in Figure 2.22b. The second (solid) curve represents
the probabilistic privacy guarantees of the same share generation algorithm after PSUA1
approach was used in order to reduce the number of updates. Note that we do not need to
evaluate the effect of PSUA2, since it does not affect the generation of the refinement shares.

In order to simulate the effect of PSUA1 on the share generation algorithm, we re-generated
{k +1...n} shares after selecting each vector set and relocating 7= within the respective
limits, where k was selected randomly in {1...n—1}. We made 100 runs of the Monte Carlo
method for n = 5, same as in Section 2.5.3 (with r, represented as 1.0, since the absolute
radius value has no influence on the P, ;,, values as we do not consider map knowledge
in this comparison). We can see that the resulting probability values Py ., are very close
for both OSPS-ASO “a-priori” with and without PSUA1, while the small deviation is due to
probabilistic nature of the Monte Carlo method. These results show that the re-generation of
a subset of shares does not change the stochastic properties of a share generation algorithm,
if the re-generation was done according to the same algorithm which was applied to generate
the initial set of shares.
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Figure 4.21.: Probabilistic guarantees of privacy levels P; ;4 of OSPS-ASO “a-priori” with
and without PSUA1 applied; n =5, 100 runs of the Monte Carlo method

4.7. Conclusion

In this chapter, we have extended our main position sharing approach in order to address
further real-world challenges. The approach was adapted to the scenario of multiple consec-
utive updates, as opposed to the scenario of single isolated snapshot updates assumed in the
previous chapters.

We have optimized the communication cost of location updates by sending only a subset
of k shares out of total number of shares n, while preserving the required level of position
obfuscation. The main factors contributing to the cost reduction are: 1) the radii of the
obfuscation circles, 2) number of privacy levels n, and 3) the travelled distance between the
last two updates. In most cases, we can achieve significant communication cost reduction by
sending fewer messages than through the naive basic position sharing approach.

To have a comprehensive determination of communication cost, we take into account
the messages sent from MOs to LSs together with the messages sent from LSs to LBAs. The
proposed location update algorithm selects the optimal strategy by analyzing the current
distance and obfuscation parameters. In the evaluation section, we showed that the proposed
location update approach minimizes the communication cost by saving up to 80% of messages

without reducing the user’s location privacy.
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CHAPTER

CONCLUSION

In this section, we summarize our work and outline possible directions for future research

that could further improve our position sharing approach.

5.1. Summary

Both personal privacy and cyber security are currently attracting increasing attention, and
location privacy is one of the things of most concern to many people.

In this work, we have presented a novel approach for preserving the location privacy of
a mobile user of location-based services. The main idea of our approach is to distribute
position information among n location servers of independent service providers. In order to
hide the user’s exact location, the user’s position information is represented as an obfuscation
circle. The size of the obfuscation circle defines the user’s location privacy level, which can
be changed if location-based applications are provided with additional pieces of information
called position shares. The position shares are represented as randomly generated shift
vectors. To increase the precision of the user’s position, the position shares shift the center
of the current obfuscation circle and reduce the circle size.

In our approach, we distinguish such steps as share generation, share update and share
fusion. We proposed four different versions of the share generation algorithm: three of them
apply to the open space scenario (i.e., without map knowledge available in the system),
while the fourth approach modification is designed to preserve the desired privacy levels
assuming that map-based knowledge is available to an adversary.

We have analyzed the probabilistic guarantees of the user’s privacy levels provided by our
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share generation algorithms by using probabilistic privacy metrics. We measured probabilities
of each precision level that can be gained by an adversary, assuming that he or she already
knows k shares (0 < k < n). Among the open space based share generation algorithms, the
first version (OSPS-ASO “a-posteriori”) provides equal but high predictability of the target
user’s position for each k, while the second algorithm (OSPS-ASO “a-priori”) guarantees high
security for smaller k’s but increases the probability of a user’s precise position being guessed
for higher k values. The third algorithm (OSPS-FSO) provides a close to uniform distribution
of probability of the user being located within each kth obfuscation circle. However, this
uniform distribution of probability is only possible if the order of share fusion is pre-defined
and fixed (unlike in the first two share generation algorithm versions).

On the basis of our third share generation algorithm for open space, we have proposed an
algorithm for constrained space (CSPS). This algorithm withstands an attacker’s use of map
knowledge that could significantly reduce the original obfuscation area, i.e., location privacy
level. We overcome this problem by increasing the radii of the obfuscation circles far enough
to attain the desired size of the resulting obfuscation area.

We also improved our approach with regard to the placement of shares among the location
servers by taking into consideration the trustworthiness of the servers. The availability of
information about the servers’ trustworthiness allows mobile users to balance risk by placing
more position information on more trusted servers.

Finally, we proposed an optimized location update algorithm, which reduces communica-
tion cost in the case of continuous position updates by up to 70-80%. This cost reduction is
achieved by selecting the minimal required subset of shares that can be updated without
affecting the precision levels and privacy guarantees of the user’s position information.

We can summarize the most significant properties of the proposed position sharing ap-

proach as follows:

» Graceful degradation of privacy levels in cases where some position shares became

unavailable;
* No need for a trusted third party;

* Flexible management of privacy levels by mobile users.
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5.2. Outlook

There are still some aspects of our position sharing approach that could be improved. Possible
improvements and future research steps include the following:

The algorithm versions with adaptive increase of the obfuscation circle’s radius (OSPS-
FSO and CPSP) can be easily modified to provide k-anonymity guarantees by adjusting the
obfuscation area not only until it achieves a required size but until it covers k users. The
precondition here is the availability of information about all the neighboring users. Such
precondition contradicts our current system model, which assumes that the position shares
are generated by the MO with no global view of the system.

Boolean values assigned to map regions in CSPS can also be replaced by a probability
estimation in the range of [0;1], if a database with the corresponding statistics is available.
Such region-specific probabilities could be based on a concrete database or on general
probabilistic estimations. However, this will not significantly change the principles of our
adjustment algorithm. A challenge would be to consider different maps, with low and high
percentages of areas where the user can be located, and special cases. In other words, diverse
levels of privacy sensitivity can be considered for different map regions. The theoretical basis
for formal definition and processing of a non-binary map representation is given in [ACG09].
An example of map representation with diverse probabilities assigned to map regions and

objects is shown in Figure 5.1.

Figure 5.1.: Map representation with different probabilities assigned to different map objects
[Paull]
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Also, the user may want to secure not only snapshot and continuous positions but a
complete published trajectory. This is a challenge, since we would need to hide the start
point and the end point as well as to obfuscate the whole route.

Furthermore, if we assume that additional contextual information such as user’s interests,
advanced history of events and traces are known to an attacker, the appropriate counter-
measures would need to be applied.

It is also possible to use the “a-priori” and “a-posteriori” methods in a random way, for
example, by adding a random variable to select which of those two methods is used for each
position update (50% each on average). This would significantly undermine an attacker’s

ability to compute the pdf while preserving the ASO (any share order) property.
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APPENDIX

LLIST OF SELECTED ABBREVIATIONS

ABGAP - Agent Bottleneck Generalized Assignment Problem

ASO - Arbitrary Share Order

BRPP - Balanced Risk Placement Problem
CPU - Central Processing Unit

CSPS - Constrained Space Position Sharing
ESRI - Environmental Systems Research Institute
FSO - Fixed Share Order

GPS - Global Positioning System

HTTP — Hypertext Transfer Protocol

ILRQ - Imprecise Location-based Range Query
JSON - JavaScript Object Notation

LBA - Location-Based Application

LBS — Location-Based Service

LS - Location Server

MO - Mobile Object
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* NP - Nondeterministic Polynomial time
* OS - Operating System

* OSPS - Open Space Position Sharing

* P2P — Peer-to-Peer

* pdf — Probability Density Function

* POI - Point of Interest

* PSUA - Position Sharing Update Approach
* QoS - Quality of Service

* RRS - Random Range Shifting

* SSL — Secure Sockets Layer

* TCP - Trusted Computing Platform

* TTP - Trusted Third Party

* TSP - Travelling Salesman Problem

* XML - Extensible Markup Language
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APPENDIX

LIST OF SELECTED NOTATIONS

n number of shares
m total number of available LSs
number of selected LSs
L total set of LSs
L set of selected LSs
Di obfuscated position of MO after obtaining ith share
Di in Chapter 3: risk level of ith LS
S set of shares
S, set of n shares
S; ith share
n; number of shares assigned to LS;
¢ position precision
Af’ precision increase provided by ith share s;
precise position of MO
; precise position of MO at the ith update
So master share (share with minimal position precision i.e. maximal obfuscation)
Taack | MO’s position derived by an attacker
Py aack | Probability of k LSs compromised by an attacker
P, acceptable probability of k LSs compromised
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