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Abstract

Manufacturing organizations around the globe are now leaning towards just-in time or
customized production in order to gain competitive advantage in an ever more intense
marketplace. The problem with customized or variant production is that, organizations
have to track the different product parts precisely in order to ensure that the right part
is at the right place in the right amount at the right time, to deliver customized products
to their customers. Due to this reason, companies are now increasingly using RFID
technology to track production in real-time.

The wide spread deployment of RFID technology for production monitoring and track-
ing is impeded by the fact that the technology is inherently unreliable and RFID readers
suffer from errors such as duplicate, false, missed and out of order readings. In this
work we have presented algorithms to a) enable real-time tracking and monitoring of
product parts on the production lines, b) provide probabilistic guarantees to the real-
time product parts that are being tracked c) enable the RFID readers to self-calibrate
their reader probabilities so that the readings that they generate are highly reliable at
all times d) generate complex manufacturing events and provide probabilistic guaran-
tees for the accuracy of these complex manufacturing events. In particular the following
contributions are made in this thesis.

As a first contribution, we developed a consistency stack that conceptually divides the
different consistency/reliability issues in production monitoring into separate layers. In
addition to this we have built a consistency management framework to ensure consistent
real-time production monitoring, using unreliable RFID devices. Secondly, we deal with
the problem of detecting object sequences by a set of unreliable RFID readers that
are installed along production lines. We propose a probabilistic sequence detection
algorithm that assigns probabilities to objects detected by RFID devices and provides
probabilistic guarantees regarding the real-time sequences of objects on the production
lines.

Thirdly, we developed a probabilistic model to assign probabilities to the RFID readers
and to the product part detections. We also present a probability self-calibration
algorithm that automatically adapts the probabilities of RFID readers to better reflect
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LIST OF SYMBOLS

their performance at current instance of time. This would ensure that unreliable RFID
devices would have little or no say in the overall production monitoring and tracking
within the production environment.

The use of RFID technology in manufacturing and production is still limited because
of the non-availability of middleware solutions to transform raw RFID data into higher
level meaningful information. So as our fourth contribution, we present a complex
event processing framework that can be deployed in manufacturing environments. The
framework is capable of processing raw RFID events to generate complex manufactur-
ing events that are of relevance to the production operations. The framework assigns
probabilities to each complex event, which are continuously updated as more inform-
ation is made available regarding these events. This provides a measure to the higher
level applications about how accurate or inaccurate a certain complex event really is.

20



Zusammenfassung

Die Just-in-time-Produktion und die Fertigung kundenspezifischer Produkte sind wich-
tige Anforderungen an Unternehmen, die in einem hoch kompetitiven globalen Markt
agieren. Die variantenreiche Serienproduktion erfordert die präzise Verfolgung des ak-
tuellen Ortes von Werkstücken und Produktteilen während des Produktionsprozesses
um sicherzustellen, dass die richtigen Teile zum richtigen Zeitpunkt in der richtigen
Menge am richtigen Ort sind. Daher setzen Firmen zunehmend RFID-Technologie ein,
um Teile in Echtzeit während der Produktion zu verfolgen.

Der weitverbreitete Einsatz von RFID-Technologie fÃ1
4
r die Produktionsüberwachung

und Verfolgung von Teilen wird durch die technologiebedingte Unzuverlässigkeit der
funkbasierten RFID-Sensoren erschwert, die zu Fehlern wie die mehrfache Detektion
von Teilen (Duplikate), nicht detektierte Teile, falsch erfasste Teile (z.B. von benach-
barten Produktionslinien) und Reihenfolgefehlern führt. In dieser Arbeit stellen wir
Algorithmen zur Behandlung dieser Fehler und Verbesserung der Zuverlässigkeit vor,
die (a) eine Verfolgung von Teilen entlang von Produktionslinien in Echtzeit mit Hil-
fe von RFID-Lesern erlauben; (b) probabilistische Aussagen bezüglich der durch eine
Menge von RFID-Sensoren gemachten Beobachtungen ermöglichen; (c) RFID-Leser au-
tomatisch kalibrieren, um so deren Zuverlässigkeit zu ermitteln und durch redundante
Beobachtungen die Qualität der Beobachtungen des Systems zu verbessern; (d) die
Ableitung komplexer Produktionsereignisse aus einfachen Beobachtungen ermöglichen
und für diese komplexen Ereignisse probabilistische Aussagen zu deren Korrektheit
geben. Im Einzelnen leistet diese Arbeit die folgenden Beiträge.

Als erster Beitrag wird ein Schichtenmodell (Konsistenz-Stack) vorgeschlagen, das die
verschiedenen Zuverlässigkeits- und Konsistenzaspekte der Produktionsüberwachung
in aufeinander aufbauende Schichten einteilt. Des Weiteren wird ein Rahmenwerk fÃ1

4
r

die Produktionsüberwachung mit Hilfe unzuverlässiger RFID-Sensoren entworfen, das
konsistente Beobachtungen ermöglicht.

Als zweiter Beitrag werden Konzepte und Algorithmen zur verteilten Beobachtung von
Objektsequenzen entlang von Produktionslinien mit Hilfe einer Menge unzuverlässiger
RFID-Sensoren vorgeschlagen. Hierzu wird ein probabilistischer Algorithmus zur Erfas-
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sung der Sequenz von Objekten entworfen, der einzelnen Beobachtungen Wahrschein-
lichkeiten zuweist und aus mehreren Beobachtungen die Reihenfolge der Objekte ab-
leitet, zusammen mit einer Wahrscheinlichkeit für die Korrektheit der ermittelten Se-
quenzen.

Drittens wird ein probabilistisches Modell zur Modellierung der Zuverlässigkeit von
RFID-Lesern und der ermittelten Objektpositionen vorgeschlagen, sowie ein Verfahren
zur automatischen Kalibrierung dieser Wahrscheinlichkeiten. Hierdurch soll insbeson-
dere der negative Einfluss einzelner unzuverlässiger RFID-Leser vermindert und somit
die Konsistenz der Beobachtung mit Hilfe mehrerer Leser verbessert werden.

Als vierter Beitrag wird in dieser Arbeit ein Rahmenwerk fÃ1
4
r die Ableitung komple-

xer, aussagekräftiger Produktionsereignisse aus Sensorbeobachtungen entwickelt, das
insbesondere einzelne Beobachtungen von RFID-Sensoren zu komplexen Ereignissen
verknüpft, um somit die Fertigungssteuerung zu unterstützen. Komplexe Ereignisse, die
aus unzuverlässigen Sensorbeobachtungen abgeleitet werden, werden dabei wiederum
mit Wahrscheinlichkeiten verknüpft, um Anwendungen die Bewertung der Korrektheit
erkannter komplexer Ereignisse zu ermöglichen.
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Chapter 1
Introduction

Industry is the cornerstone of growth and development in the modern world and pro-
duction plants and factories form the basic building blocks on which the industry
stands. Manufacturing has gone through a lot of improvements during the past 100
years. In the early nineteenth century when Henry Ford developed the first assembly
line [For07], everything on the line was done manually. Recent advancements in tech-
nology have also made their way into factories and as a result new and innovative tools
and ideas have revolutionized modern production environments.

Due to ever increasing competition, manufacturing organizations are trying to gain
competitive advantage by either positioning themselves as a niche producer or by devel-
oping and designing mass market and yet custom-made products. These build-to-order
products allow the users to tailor the products to their hearts content. Several man-
ufacturers have now made the transition from making batch products to developing
build-to-order variant products. Some of the prominent variant manufacturers include
BMW, Porsche, Toyota and Daimler in the automotive sector and HP, Dell, and IBM
in the PC and consumer electronics sector.

Dell has setup an online portal, where anyone can go and custom built its own PC,
which would then be assembled and ship by Dell in almost the same time as it would
take to buy a generic PC or laptop from any other vendor. Even among the mass
market competitors vast differences exist in the number of product variants that the
company is able to offer to its customers. As an example, Toyota offers 448 different
variants for Toyota Yaris as compared to 176,576 variants offered by VW for VW
Polo. Porsche on the other hand offers its customers 107 different variants to chose
from [Kho11]. Once a customer precisely selects what he needs in his car, he would
have to wait for around three months for Porsche to deliver his car.

In order to ensure correct, optimized, and error free variant production, Porsche is using
a set of error prevention techniques during both the production planning and assembly
process. During the planning phase similar and closely related cars are arranged to-
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Figure 1.1: The Build-to-Order production system of Porsche based on the pearl-chain
principle [Kho11]

gether. This ensures that the highly variable custom requests have a certain amount of
discipline and order. This pre-assembly phase greatly simplifies the assembly process,
as workers would now have to carry out similar tasks on a series of semi-assembled cars
instead of performing different tasks on each and every car.

During the assembly process, Porsche utilizes barcode technology and a customized
lighting system to prevent assembly errors. There are numerous assembly points within
the factory. At each and every assembly point, certain defined parts are assembled
together with the semi-assembled vehicles. Each semi-assembled vehicle has a barcode
tag attached to it. The parts that are to be assembled are arranged on shelves (or
come in through conveyor belts/production lines). Every shelf has a variably coloured
light bulb attached to it. When the semi-assembled car reaches the assembly point,
a worker uses a barcode reader to read the tag on the semi-assembled car. Since the
specification for the car is written on the barcode, the colored bulb on a specific shelf
lightens up to indicate to the worker that the vehicle be assembled using a part from
this specific shelf. This barcode based system is aimed at preventing assembly errors
from happening.

In addition to this, Porsche is also using techniques to discover errors within a maximum
of five minutes after an assembly procedure. At certain assembly points, the parts to be
assembled are placed within special carts before the arrival of the semi-assembled cars.
These carts should become empty i.e. all items within the cart should be assembled
with the incoming car. In case a cart is not empty after five minutes i.e. items in it
were not consumed, an error message is generated which would inform the factory that
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an incorrect or incomplete assembly has taken place within the last five minutes at
that specific assembly point. Figure 1.1 shows the production system used by Porsche
in a graphical manner.

Even with the utilization of technologies such as barcode, workers get physically and
mentally stressed out due to the nature of repetitive tasks. Moreover, owing to the
huge variety of products, it becomes difficult to ensure 5Rs (i.e. to have the right part,
of the right quality, at the right moment, in the right quantity, in the right place) for
variant or just-in-time production (cf. Figure 1.2). Implementing the 5Rs rule for just-
in-time production is easier said than done. Various errors emerge during assembling
parts to their respective products, such as sequence and synchronization errors. In a
sequence error, product parts move on the assembly line in an incorrect order where
as in a synchronization error the semi-assembled cars reach the assembly point but
the parts that have reached the assembly point belong to other semi-assembled cars.
The large number of variants makes managing the state of the product really tough.
Furthermore, a worker might forget to scan the product part, or he might forget to
press the button to indicate the completion of assembling a specific part.

Although barcode technology provides certain advantages when it comes to monitoring
the production processes, it has a lot of limitations such as the need for extensive human
interaction and line of sight readings, which are also limited to single reads at a time.

Due to the limitations posed by barcode technology, manufacturers are now switching
over to radio frequency identification (RFID) systems. RFID technology can be used to
detect the presence or absence of objects and to know their relative positions within the
production environments. The system generally comprises of two main components: a
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transponder (tag) and an interrogator (reader). To make an object identifiable, a tag
is attached to it. Tags are of two types: passive and active. A passive tag does not
need a power source. It uses a coupling element to obtain power from the reader. An
active tag on the other hand has its own voltage supply (a battery) and gets power
from it. It also contains an electronic microchip that is used for processing and storage.
The RFID reader reads identification data from tags and could also modify the data
currently stored on these tags. The utilization of RFID systems has been picking pace
gradually. The market size for passive RFID technology was $874 million in 2011 and
is expected to reach $3.9 billion by the end of 2016, which would represent a compound
annual growth rate (CAGR) of 29.3% from 2011 to 2016 according to a recent market
research [Inc11]. The prime reason for the exponential growth in the passive RFID
market segment is the expectation that the price of a passive RFID tag would soon be
reduced to 1 cent per tag.

The main advantages of RFID over barcode technology in variant manufacturing is that
RFID provides features such as contactless and non-line of sight identification, multiple
tag reads, seamless interfacing with higher level processing devices (PCs) etc., that are
essential for real-time production tracking. Due to these advantages, Ford [Joh02],
BMW and Vauxhall [BL97] [ZGP04] have deployed RFID based systems, whereby
they place a programmed RFID tag on a vehicle skid. During each production step,
the tag is read to determine what needs to be done and the updates are automatically
written to the tag. This results in eliminating paper work and the associated human
errors.

The existing RFID deployments in industry only track the products and not the indi-
vidual parts. Due to this, the manufacturer is able to find out about an error (such
as an incorrect product assembly) but remains oblivious to the reasons for the error
(delays, product parts out of sequence etc). In the sections below we would take a
detailed look at some of the specific problems facing the manufacturing industry re-
garding variant production monitoring and the solutions that we propose to address
these issues.

1.1 Research Objectives

This thesis focuses on three problem areas in factories that are an impediment to
variant production.

1.1.1 Consistent Real-Time Production Monitoring

In customized or variant production environment, the production process remains the
same. However, the parts moving through the production lines vary, which results in
different variants of the same product. In such an individualized production scenario
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it is essential to ensure that product parts move through the production lines in a
desired sequence. A disruption in the correct sequence of these parts will produce an
undesirable final product, which will not be consistent with the production plan.

RFID readers can be used for real-time production monitoring by putting RFID tags
on the product parts and installing RFID readers on the production lines. However,
RFID readers have a reliability of 80-90% [AKFR07], which is further affected by
environmental factors such as presence of metal objects, interference from multiple
readers, or the presence of multiple tags. In case a reader attempts to detect more
than five tags, its reliability drops to 70% [PSR+06], [Vio05], [HC06].

Missing out on product parts will result in different readers on the same production line
detecting different product part sequences. As an example, consider that three product
parts o1, o2 and o3 pass through the production line with o1 being the first product part
and o3 being the last. An RFID reader missing out on o3 will assume that the product
part sequence is o1, o2, whereas another RFID reader that misses out o2 will assume
that the product part sequence is o1, o3. Missing out on detecting the product parts
is not the only consistency issue. RFID readers can detect product parts incorrectly,
overshoot and detect product parts passing through neighboring production lines, and
can have duplicate readings. One of the many focus(es) of our work is to deal with
these consistency issues that arise from unreliable RFID readers in real-time production
monitoring.

In recent times, the RFID community has proposed several middleware systems for
deploying RFID devices. Savant [CTCC03], HiFi [FJK+05], RFIDStack [FL05] are
primarily focused on efficient handling and querying of large amounts of RFID data.
WinRFID [PSR+06] on the other hand is concerned with data availability.

The BRIDGE project [IAM09] has proposed concepts for supply chain data consist-
ency and use rule-based data analysis techniques to monitor the RFID data generated
throughout the supply chain for inconsistencies. RF2ID [AKFR07] tries to address the
unreliability of RFID devices by deploying multiple RFID readers along the path of
object movement. Bauer et al. [BJS04] have proposed a solution to monitor the loca-
tion of specialized mobile tools, which must be fitted on manufacturing machines for
assembling customized products. However, till now there exists no solution to monitor
the state of production, and detect the product parts and their sequences as they move
through the production lines.

We propose a system tailored to the monitoring of product part sequences by a set of
unreliable RFID readers (cf. Chapter 5). In order to accomplish this we have designed
a novel production path abstraction, which models the flow of product parts on the
production lines. Several RFID readers are deployed on each production path, which
detect product parts as they move through these paths. The redundancy in RFID
reader deployments together with the knowledge of production paths and product part
routes is used to detect the consistency issues in production monitoring.
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1.1.2 Self-Calibration of RFID Reader Probabilities

In our initial approach we detect product parts and the sequence of these product parts
as they move across the production path. The product part and sequence detections
also have associated probabilities. However, our initial approach assumed that RFID
readers would have fixed probabilities of correct readings which are known a-priori.
This does not reflect reality, since the reliability of an RFID reader can change over time
or can differ from the manufacturer specified reliability levels even at the deployment
time.

As a matter of fact our experiments revealed that RFID readers of the same model,
developed by the same manufacturer deployed under same physical conditions perform
differently from one another.

A lot of scientific effort has been made in order to improve RFID reader reliabil-
ity. The inability of an RFID reader to detect all the tags occurs due to collision
between multiple tags, all of which try to send data to the RFID reader at the same
time. Several techniques have been developed overtime to solve this issue. These tech-
niques can be broadly divided into two categories: probabilistic identification methods
[Sch83], [EPC04], [Vog02], [ZKS04], [CK05], [FW06], [Flo06], [BKS05], [LJL05] and de-
terministic identification algorithms [CCK04], [SRSMN06], [CS88], [NC05], [ZCJ+04],
[HW98], [BR05b], [LLS00], [ML05], [GFL87], [PFP04]. In probabilistic identification,
all the tags transmit at the same time, whereas in deterministic identification the
reader pre-determines a certain number of tags to send their ID to the reader. This
pre-determinism leaks a lot of information and hence is not preferred due to security
reasons.

We have tried to address the same issue, i.e. to increase the reliability of RFID readers,
albeit from a different angle (cf. Chapter 6). Instead of ensuring that a reader reads all
the tags, we assign probabilities to RFID readers and then calibrate these probabilities
over time to reflect how reliably the reader reads all the tags. So overtime an RFID
reader’s probability would tell us how many tags it would detect and how many tags
it would miss. This real-time measure of the reliability of RFID readers allow us to
assign appropriate weightage to the readings of all RFID devices deployed within the
production environment.

1.1.3 Reliable Complex Manufacturing Event Processing

Another important aspect of reliable variant production is the ability to detect man-
ufacturing errors in real-time. By doing so the manufacturing organization is quickly
able to identify whether or not the products are being assembled according to the
customers’ orders.

Till now, we only focused on detecting basic RFID events and ensuring that these events
are as accurate as possible. However, such basic events are of little or no benefit in a
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variant production environment as it provides no higher level meaning and awareness
about the state of production. In order to resolve this issue, we identified complex
higher level events/errors that are of importance to a production environment. These
complex errors include: a) sequence errors, b) synchronization errors, c) delay errors,
d) incorrect part position errors, and e) missing part errors.

Several RFID based CEP systems [ZZ08], [HYHZ08], [WDR06], [WLLB06] have been
proposed by the research community. These systems differ from our endeavour in two
important ways. Firstly, the prime objective of these systems was to develop a CEP
based system for processing RFID streams. Although we are also detecting complex
events, these events cant be detected using off the shelf complex event processing sys-
tems. The first and foremost contribution was to develop algorithms to detect the
complex manufacturing events mentioned in the previous paragraph. In addition to
developing algorithms to detect these complex manufacturing events, we also designed
a system to assign probabilities to these complex events/errors so as to provide prob-
abilistic guarantees to these complex events. As of now, ours’ is the only work that
endeavours to provide reliability guarantees for complex events.

The information regarding the accuracy of complex manufacturing events can then be
used by higher level applications to decide whether to act upon a certain event or not.

1.2 Contribution

The main contributions of the work performed as a part of this PhD thesis are the
following:

1. We have presented several case studies regarding how manufacturing organiz-
ations are transitioning from developing products to delivering services. After
presenting these case studies, we took a detailed look at some of the different
components or building blocks that need to be developed and deployed in order
for a variant production environment to have reliable and error free variant pro-
duction [HMW+11]. These building blocks essentially serve as requirements for
our work.

With respect to [HMW+11], my colleagues from GSaME: J. Minguez, M. Wörner,
P. Hollstein, S. Zor, and S. Silcher contributed the writeup of their respective
research projects which form different components within the smart factory. The
abstract, introduction, related work and discussion of my personal work has been
my personal contribution.

2. We propose a consistency stack for RFID based production monitoring middle-
wares. The consistency stack is conceptual in nature and categorizes the different
consistency issues into separate layers. By presenting a consistency stack we have
formalized the consistency issues, such as duplicate readings, missed readings, and
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false readings etc., that need to be considered by almost all RFID applications. In
addition to the RFID consistency issues, the stack also formalizes the production
consistency issues, such as sequence and synchronization errors [HKDR10].

3. We have designed a production path/line based system model to provide prob-
abilistic guarantees regarding real-time production monitoring. In addition to
this, we have also developed an algorithm to detect object sequences and as-
sign probabilities to these sequences. Furthermore, we exploit redundancies in
the deployment of RFID readers to increase the confidence in the detected se-
quences [HKDR10].

With respect to [HKDR10], Imran Ahmed Khan worked as a Hiwi student on
the simulation prototype to evaluate the concepts. The design, and refinement
of the concepts and the research paper that was eventually published as a result
of this effort has been my personal contribution. During the paper review phase,
Dr. rer. nat. Frank Dürr provided valuable feedback that greatly helped in
finalizing and refining the probabilistic model. In addition to this, Dr. rer. nat.
Faraz Ahmed Memon and Gerald Koch reviewed the research paper and provided
valuable feedback.

4. We also designed and developed an efficient and scalable self-calibration al-
gorithm. The self-calibration algorithm automatically calibrates the probabilities
of RFID readers deployed in the factory to reflect the reliability with which these
readers are detecting product parts at any given instance of time [HRDR12].

With respect to [HRDR12], MSc. Farhan Rashid contributed towards implement-
ing the prototype to evaluate the concepts of the self-calibration algorithm within
his masters thesis. The design and development of concepts and the research pa-
per that eventually came out of this effort was my personal contribution. During
the paper review phase, Dr. rer. nat. Frank Dürr provided valuable feedback
and also presented the work at the Pervasive conference which was held in United
Kingdom.

5. We identified several complex events that are of interest in a manufacturing
environment. After that we designed and developed algorithms to detect each
of these complex manufacturing events. In addition to this, we formulated a
probabilistic model to assign probabilities to the detected complex manufacturing
events so that the factory workers and staff can know with certainty how reliable
a certain complex manufacturing event is. The complex event processing system
is not limited to a single source for receiving data and can fuse data coming from
a diverse array of sensors and generate complex manufacturing events reliably.

Philipp Riffelmacher provided detailed overview on the working of the Lernfabrik
[Rif13]. Later on Max Dinkelmann provided valuable feedback on the concepts
for complex manufacturing events and supported the evaluation of RFID readers
within the Lernfabrik by scheduling access time to the Lernfabrik for me and
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my master’s thesis student Eid Badr. Without the valuable support of Philipp
Riffelmacher and Max Dinkelmann, the RFID tests conducted at the Lernfabrik
would not have been possible.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. In Chapter 2 we discuss the notion
of product service systems and show how a variant production environment can actu-
ally provide certain informational services to both the producers and the consumers.
We also highlight the different components that need to be developed in order for
the variant production environment to offer the services under discussion. Chapter 3
addresses the system model on which the entire real-time production monitoring infra-
structure was built. Chapter 4 presents the Lernfabrik, which is a production testbed
that was used to evaluate the reliability of RFID readers. Chapter 5 presents the RFID
based consistency management framework that can be used to monitor production in
factories in real-time. Chapter 6 describes the self-calibration algorithm, which is used
to self-calibrate the probabilities of RFID readers that are deployed to monitor pro-
duction processes in a factory. The complex manufacturing events are presented in
Chapter 7 along with the algorithms to detect these events. Finally, the summary of
our contributions and an outlook onto future work is presented in Chapter 8.
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Chapter 2
Case Studies: From Production based

Manufacturing to Services based Manufacturing

For most of the twentieth century, a high quality product or lower prices were sufficient
to differentiate amongst competitors. However, due to globalization, tear down of
import duties, and saturation of markets, the possibility to distinguish on the basis of a
product alone has become impossible. Products have converged remarkably during the
past decade in terms of quality, technology and pricing. Due to this reason, companies
are now facing ever increasing competitive pressures and decreasing profit margins
[BLE+07].

One way out of this competitive situation is to integrate products with services and
offer them together as Product Service Systems (PSS). The bundling of products and
services can result in fulfillment of customer needs and establishment of intensive long
term relationships with the customers at the same time. Such a scenario creates com-
petitive advantage and additional barriers for competitors to encroach on a company’s
customers. In addition to this, research has proved that a PSS offering can extend the
product life cycle considerably, resulting in continued revenues and more sustainable
operations [SD03].

The most common example of a PSS is a leasing service that companies offer to their
customers. The service allows the customers to lease the product (laptop, automo-
biles, etc.) instead of paying cash out right for the product. The leasing service has
become such an integral offering especially in the automobile industry that almost all
major automobile manufacturers now have a financial arm that offers leasing service
for customers [Vol94], [Toy00], [GM92], [For59].

However, product services are not limited to financial services alone. Informational
services form the other main component of services that companies frequently offer to
the customers. Examples of information services include: information of ingredients
mentioned on food items, and constant tracking of parcels that is available for postal
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services like DHL and FedEx etc. Product warranties are another example of service
offered to customers, which allow users to buy products with an assurance that if
anything goes wrong in a certain defined time-frame, the customer wont lose out on
his investment in the product.

When it comes to product service systems, much of the attention has been focused on
bundling services with the product itself, whereas the entire process of manufacturing
has remained a black box inaccessible to the customers. Once a customer orders a
product, he has no way of finding out if his product has been planned, and how long
it will take for his product to be assembled. If the customer is able to get real-time
information about the product that he has ordered, the entire process of manufacturing
would itself be transformed into an information service for the customer. We believe
that today’s state of technology can transform factories into smart environments that
can provide real-time production information not just to the producers but to the
consumers as well.

In this chapter, we will discuss the different building blocks (such as real-time pro-
duction monitoring, RFID based complex event processing, etc.) of a smart variant
production environment that would be capable of informing its customers about the
status of their products in real-time. In addition to discussing the building blocks of
the factory we would also highlight the different services that such a futuristic factory
can offer to both the company itself and its customers [HMW+11].

The rest of the chapter is structured as follows: in Section 2.1, we take a look at different
services case studies in the manufacturing domain. In Section 2.2, the notion of an
RFID-based smart variant production environment is presented along with the different
components that are needed to create such a smart manufacturing environment. The
different services that can be offered by such a smart variant production environment
are then discussed in Section 2.3. In Section 2.4 we have summarized the numerous
requirements for creating a smart variant production environment.

2.1 Product Service Systems: Case Studies

The entire premise of this chapter is that factories should not just build and deliver
products but instead should take a leap forward and deliver services as well. Before
dwelling into what services facories can deliver and how they can deliver them, it might
be pertinent to have a look at some case-studies where-by product offerings were trans-
formed into service offerings or normal product buying agreements were modified to
depict sales of services. In Section 2.1.1 we would take a look at how the US De-
partment of Defense DoD is now structuring its normal procurement contracts to be
performance-based or service-based contracts. Section 2.1.2 takes a look at the Power-
by-Hour contracts of Rolls-Royce, which is one of the leading aircraft engine manufac-
turers in the world. The section will also explain how the company has transformed
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itself from selling aircraft engines to selling services that ensures engine availability and
uptime for aircrafts. Section 2.1.3 takes a look at Car2Go, a car sharing service that
is literally transforming Daimler AG from a producer of cars to a provider of mobility
services.

2.1.1 Performance Based Contracting at U.S. Department of Defense

The US Department of Defence (DoD) is now increasingly shifting towards Performance
based Contracting (PBC) [KCN07], whereby the department would only be paying for
the quality or availability of a certain service. The basic idea of performance based
contracts is that you pay for the performance outcome and not the individual parts and
repairs that are delivered to you. Instead of buying a certain product and a set of spare
parts, a certain no of repairs etc, a buyer buys a predetermined level of availability of
the product.

In layman’s terms you pay for an equipment when it works and dont pay when it
doesn’t. If the idea catches fire, we might soon be living in a world where we would
pay for our car, only when it works. The same would be true for all other commodities
that we use but do not consume such as the Television or the Toaster.

Prior to PBC, the DoD mostly relied on fixed-contracts - whereby a buyer pays a fixed
pre-determined price to purchase spare parts and support and maintenance services
or cost-plus contracts - whereby a supplier repairs the product that he has sold and
charges the entire cost plus a certain premium as service charges.

The problem with both of these models is that both of these contracts do not align
the objectives of the buyer with the objectives of the supplier. As an example: when
a part of a product breaks, there is no incentive for the supplier to repair it at the
lowest possible cost, since everything would be reimbursed. Furthermore, the supplier
also has no incentive in repairing the product in the least possible time frame.

The US Department of Defence initiated 57 PBL programs in 2002. Because of the
availability guarantees that are inherent in performance based contracts, these con-
tracts were an astounding success over the previous prevailing models. In August
2004, the DoD mandated that all future support contracts would be structured around
the performance based contracting model. As a result of this by 2005, the number of
PBCs climbed to 92.

2.1.2 The Rolls-Royce Engine Case Study

Till now we have dicussed performance based contracts from military’s stand-point.
However, such contracts and services have been used by the industry for a much longer
time. Rolls-Royce was the first company to offer performance based contracts to com-
mercial airlines for Rolls-Royce engines and other aviation products.
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The problem with the airline industry is that aeroplane availability is of utmost im-
portance to airline operations. A typical commercial airline does 6-8 short hops, or a
minimum of 2 domestic long haul flights or typically 1 international flight per day per
aeroplane. Such an operational schedule means that an aeroplane is in constant use,
while only the operational staff such as the pilots and air hostesses change over.

Engine availability is almost synonymous to aeroplane availability in the airline in-
dustry. Due to this critical nature of availability of engines to the operations of
the commercial airlines, Rolls-Royce started to offer the aviation industry perform-
ance based contracts. According to these contracts, the commercial airlines such as
Lufthansa, Emirates etc would not buy the Rolls-Royce engine outright but would only
pay for the number of hours for which the Rolls-Royce engines fitted in the aeroplanes
in their fleet would be used. Rolls-Royce coined the term ”Power by the Hour” for
such contracts and the airlines started paying Rolls-Royce for the number of hours for
which the engines performed.

Prior to ”Power by the Hour” contracts once an engine was sold, it was in the interest
of the engine manufacturer or supplier that the engine malfunctions so that the manu-
facturer/supplier could generate extra income from repairs and services. The more the
engine malfunctioned, the better for the supplier and worst for the commercial airliner.
Needless to mention that the after the initial engine sales were made, the fortunes of
both the engine manufacturers and the airline operators were inversely proportional.

However, with ”Power by the Hour” contracting, Rolls-Royce only gets paid for the
number of hours for which its engines perform. So when an engine malfunctions, its
in the interest of Rolls-Royce to repair the engine as quickly as possible. Furthermore,
Rolls-Royce does not get paid for the repairs, but only for the operational hours of the
engine.

The contracts became such a resounding success, that in 2011 Rolls-Royce generated
an annual revenue of 11.3 billion pounds out of which more than half came from ”Power
by the Hour” contracts [Rel12].

Today performance based contracting is a norm and not an exception in the commer-
cial airline industry and most airlines only pay for the number of hours for which they
use the engines. All engine manufacturers such as General Electric and Pratt & Whit-
ney etc now offer performance based contracts to their customers. The crux of this
discussion is that in airline industry, aircraft engines are not sold as a product but are
rather offered as a service.

2.1.3 Car2Go

Car2Go [Con08] is a car rental service of Daimler AG. The service was initially launched
on experimental basis in Ulm, Germany in 2008. For much of 2008, the service was
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car2go Overview – Walter Rosenkranz – Page 5

- 1. Member A, Three Point to Point trips:  7, 10, 

and 24 minutes; 2.5, 2.5, 3.7 miles

- 2. Member B, Point to Point Trip, 11 minutes, 1.2 

miles

- 3. Member C, Point to Point Trip: 10 minutes; 

3.1 miles

- 4. Member D, Two Point to Point and one Round 

Trip*: 7,10 and 24 minutes; 1.2, 2.5, and 3.7 miles

- 5. Member E, Two Point to Point Trips: 32 

minutes and 1  hour 9 minutes; 10 and 7.5  miles

- 6. Member F, Two Point to Point Trips: 23 and 16 

minutes; 6.2 and 3.1miles

- 7. Member F, Point to Point Trip, 27 minutes, 5 

miles

- 8. Member F, Round Trip*, 1 hour 24 minutes, 

6.8 miles

* Only start and end destination know by car2go path of travel not tracked

EXAMPLE OF A DAILY CAR2GO UTILIZATION

Figure 2.1: Typical Car2Go Daily Utilization [Car12]

test-marketed exclusively with Daimler employees. However, it is now available for
general public as well.

The Car2Go service is revolutionary in many ways. To start with, this is the first time
an automobile manufacturer is trying to shift the conversation in the automobile sector
from products (cars) to services (mobility). Price of an average car produced by Ger-
man automobile manufacturers ranges between 20,000-25,000 euros. In comparison, an
average car produced by Chinese auto-manufacturers costs around 12,000-15,000 euros.
However, there is much more to owning a car, then the initial purchase price. This is
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why consumer organizations have now come up with a concept known as TCO (Total
Cost of Ownership) [Rep12] which takes into account factors such as depreciation, fuel,
interest, insurance, maintenance, and taxes on a particular car to compute the real cost
of owning a car for 1-5 years. When we take all these factors into account. The real
cost of a car is not its initial purchase price, but rather the total cost of ownership/km
over 1-5 years.

In order for customers to see cars not in terms of a product but rather in terms of the
service they provide (i.e. mobility), auto-manufacturers must come up with offers that
charge for a service (mobility) and not the product (a car). Daimler’s Car2Go service
is an effort by Daimler to do just that.

With Car2Go, Daimler is not just competing with cheaper and inferior quality cars, it
is competing with the entrenched car rental and taxi services as well. Upon registration
with the service, a customer gets an electronic seal. The seal can be used to open up
any available car. Car2Go has specially developed a smartphone app to help its users
locate available cars in the vicinity. Once a user has reached his destination, he can
park the car at any public parking space. Users can rent the car for as little as a few
minutes to as long as they desire.

Car2Go charges a per minute rate and offers fixed discounted rates for hourly and daily
usage. The rates are all inclusive of fuel, insurance, maintenance, rent and parking.
The per minute charging model of Car2Go is a deviation from the normal car rental
services, that allow users to rent cars for a minimum of 1 day to begin with.

After 5 years of its initial test launch, Car2Go service has turned out to be a phenomenal
success. As of May 2013, the service operates over 7,300 smart two person vehicles in
25 cities around the world serving more than 375,000 customers [Rep13].

A cursory look at the statistics mentioned above show that Car2Go has around 51
registered members per car. Figure 2.1 shows typical Car2Go daily utilization. Each
line is a new trip undertaken by a different user. Car2Go commissioned an internal
study in the city of Seattle, which revealed that [Car12]:

• Each Car2Go vehicle is estimated to take an average of 15 private vehicles off the
road.

• 30% of households that joined a car sharing service sold a car and others delayed
purchasing one.

• 20% of Car2Go members are either very likely or somewhat likely to reduce the
number of vehicles owned.

• 67% of Car2Go members hold a transit pass to utilize public transportation.

Car2Go plans to launch in a further 25 cities and take the tally of total cities to 50
within the next 5 years. In addition to this, the service plans to have a joint information
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and payment system to enable an interface with the public transport in the cities in
which it is operating.

The Car2Go service should not just be seen as an effort by Daimler AG to compete
with low end cars produced by companies in China and India. The real prize could
actually be much bigger than that. Support and maintenance services constitute a
significant part of the world economy, and often generate twice as much profits as the
sales of the original products. A study conducted by Accenture in 2003 [DK03] revealed
that General Motors booked profits of $2 billion on after-sales services of $9 billion.
This is a much higher rate of profit compared to what General Motors’ $150 billion in
car sales generated over the same period. The study showed that automanufacturers
generate 40%-50% of their total profits from after-sales services which form only 25%
of the over-all revenue stream. What Daimler is really trying to do is enter a services
market that is much more profitable than the products market.

2.2 Requirements for a Smart Variant Production Environment

The idea behind a smart variant production environment is to create a context sensitive
factory that could not just build products but also deliver services to both the produ-
cers and the consumers alike. The factory would be capable of monitoring production
processes in real-time so that any disruptions in production can be detected and recti-
fied immediately. Based on an extensive survey of variant production organizations, we
have drafted the following requirements for a smart variant production environment:

1. It should be able to monitor/track production in real-time. Monitoring should
not be limited to monitoring a specific part or process, instead all parts and
mobile machine tools should be monitored in real-time and at all times.

2. It should be able to present the results of production and asset monitoring to
higher level management and consumers alike in a meaningful way.

3. It should be able to adapt to process changes and system changes in a graceful
manner.

4. It should be able to respond to changes (intended and unintended) during man-
ufacturing in real-time. An intended change can be a product configuration
change request from a consumer in the midst of production, whereas an unin-
tended change can be a product identified as not being assembled according to a
plan.

In the sub-section below, we present the different requirements for building a smart
variant production environment.
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2.2.1 Real-Time Production Monitoring:

The first requirement for a smart variant production environment is to monitor and
track all production processes in real time. By deploying a real-time production monit-
oring system, factories would be able to monitor all aspects of production immediately
as product parts are being made and assembled on the shop floor. Data updates are
instantaneous and continual, and would not require any human intervention. Critical
data such as parts produced, production time, down time, incorrect parts, work-in
progress products, and finished product counts can be compiled and made available
within seconds for the production managers to analyze and decide upon.

Real-time production monitoring would enable factories to have cost-effective and cent-
ralized control over plant operations, which would result in improved efficiency, greater
visibility, and higher levels of productivity.

This requirement formulated the basic component of our research effort. Real-time
production monitoring can be carried out in a factory by deploying RFID devices. In
order to accomplish this, we developed an RFID-based real-time production monitoring
framework (cf. Chapter 5). Furthermore we also developed several algorithms to ensure
that the production monitoring is reliable (cf. Chapter 5 and 6).

2.2.2 RFID-based Complex Event Processing Framework for Manufacturing:

Once an RFID-based production monitoring component is deployed, it will enable a
factory to monitor the product parts moving across the production lines in real-time.
However, raw RFID data poses additional challenges that need to be addressed in order
to effectively use this real-time RFID data.

First and foremost, the raw RFID events have implied meaning which needs to be
transformed and aggregated with other events to obtain the semantic meaning of those
events in the context of manufacturing. Consider for example that we have an RFID
event ”part p1 at production line 1 at time t” and another RFID event ”part p2
at production line 1 at time t”. Now from our production database we would know
that part p1 needs to be assembled together with part p2 and since our RFID-based
production monitoring framework is telling us that it has read both the parts at the
same time at the same place, it means that the two parts have been assembled together.
This task of deriving high level complex events from low level raw RFID data is referred
to as complex event processing (CEP).

The second problem is that this raw RFID data is temporal in nature and is generated
in high volume, so the processing of this data needs to be done in an automatic manner
and in real-time. Therefore in order to address the second requirement of the smart
variant production environment i.e. to present the results of production monitoring to
producers and consumers in a meaningful way, we would need to have an RFID based
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complex event processing framework for the manufacturing domain. This component
of the smart variant production environment has also been developed and presented in
Chapter 7.

2.2.3 Realiability Framework for Production Monitoring:

In production environments accuracy and precision is of paramount importance. In
a factory setting merely having a real-time production monitoring and complex event
processing framework would not be enough if these components wont have a high
degree of reliability. Consider for example that we have developed and deployed the
RFID-based real-time production monitoring framework. Now, our framework tells us
that product part o1 is missing on production line 1. Does this mean that the product
part o1 is actually missing or is it that the RFID reader deployed on production line 1
missed out on detecting the product part.

In short, both the real-time production monitoring and complex event processing com-
ponents would only be half good if we don’t have a reliability component or mechanism
to ensure that the product parts monitored and the complex events detected have ac-
tually occured in reality. Therefore, a smart variant production environment must also
have a reliability framework to ensure this. We have also designed and implemented
this component of the smart variant production environment and provide probabilistic
guarantees for both product part and complex event detections that these detections
actually match reality (cf. Chapter 5 and 7).

2.2.4 Real-Time Networked Manufacturing:

Once a real-time production monitoring component and the complex event processing
component are deployed, we can monitor the production process in real-time and gain
meaningful insight into the production process by viewing high level information such
as information about the work-in-progress products in real-time. However, in case
there is a discrepancy the system would merely report the inconsistency.

In order for the factory to react to this newly generated RFID data (which is also
the fourth requirement for a smart variant production environment), we would have
to integrate this data with all the other systems running within the factory, such as
the Manufacturing Execution System (MES), or Materials Control System (MCS).
This integration will enable the relevant systems within the smart variant production
environment to get RFID data and respond to changes in the production process in
real-time.

As an example consider that a product has been fitted together with an incorrect part.
Once this information is made available, it makes no sense for the assembly of this
product to continue. Therefore, the MES can update its schedule and also let the MCS
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know that it should not deliver the remaining parts of this product to their respective
assembly points. Such a real-time removal of faulty products from the production line
would save the factory from complete assembly of a faulty product which in any case
would have to be disassembled and then re-assembled again.

The integration of all the existing systems and components within a factory was beyond
the scope of our work. However, systems and technologies are now available that can
ensure that the different components within a factory can be networked with each other
and respond to changes in real-time.

2.3 Service Offerings of a Smart Variant Production Environment

In this section we would take a look at some of the services that can be offered once
a smart variant production infrastructure is in place. It is worth noting that since the
smart variant production environment would be able to generate immense amount of
additional contextual data as compared to a traditional factory, most of the services
that can be offered by establishing a smart variant production environment are also
informational in nature.

2.3.1 Production Monitoring for Consumers

In the past, the postal service was a black box process for the customers. Customers
used to send post and after doing so have had no information about what happened to
their post. Whether the post was delivered successfully was only known to them once
they received a response from the person to whom the post was sent.

This lack of information was such a big market opportunity that saw the rise of com-
panies like FedEx that strived on nothing but speed and informational transparency.
Users of FedEx can find out exactly where the post is during each step of the delivery
process and can find out at what time the post was delivered and who exactly received
it.

Today’s factories work in exactly the same way as the postal service used to work in
olden days. Once a product is ordered, the user has no way of finding out if the product
is planned for production, when it will be produced, and at what stage of production it
currently is. This lack of information is especially troublesome for products that have
a long manufacturing cycle, such as automobiles or aeroplanes.

The real-time product tracking component of a smart variant production environment
can not only be of use for the producers but can also be offered as an informational
service to the customers, thereby allowing them to access real-time information about
the state of assembly of their product. We firmly believe that access to this particular
information will have a similarly disruptive affect on the manufacturing segment as the
access to postal information had on the postal service.
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2.3.2 Dynamic Product Re-configurations

Integration of RFID technology for real-time production monitoring with networked
manufacturing can significantly reduce response time for both the producers (reaction
to production errors) and consumers (changes to previous orders). Let us consider the
assembly of a laptop at a computer manufacturer. The customer usually specifies the
processor, the RAM, the hard disk, graphics card, screen size and other accessories.
With networked manufacturing and production monitoring service for consumers (cf.
Section 2.3.1), customers would have the flexibility to change their order specifications
midway through manufacturing. At any moment of time, the customer can track what
parts of the laptop has been assembled together and what is still to be done and
hence can change the specification of the parts that are still to be assembled together.
The factory would respond to these changes in a similar way as it would respond to
production errors and will consider the previous customer order to be incorrect and
would change the production process such that the new and correct specification is
assembled. Since the production environment will be closely integrated there won’t be
any paperwork and human interference in order to carry out these changes. In this
way, a company would be able to provide customer satisfaction through tailor-made
products supplied reliably and efficiently with exceptionally short response times.

2.3.3 Production Data Traceability for Producers

The services mentioned above are the ones that can be offered to the customers. How-
ever, a smart variant production environment can also offer production data traceability
to the company itself. Production data should be traced in order to enhance opera-
tional efficiency and to infer the quality of different product parts. As a matter of fact,
RFID technology has already been used to achieve the above mentioned objectives. In
the sections below, we would take a look at two possible ways in which traceability
information could benefit a company.

Data Traceability for Operational Efficiency and Asset Visibility:

Ngai et al [NCL+07] have reported a research study about deployment of an RFID-
based traceability system in an aircraft engineering company based in Hong Kong.
The company is responsible for maintaining and repairing aircrafts produced by both
Boeing and Airbus for different airlines. The study concluded that RFID technology
was able to efficiently and effectively track both assets (machines and tools required
for maintenance) and repairable items (aircraft parts) during the maintenance cycle.
Due to this, the said company was able to increase operational efficiency and enhance
asset visibility.

Data Traceability for Inference of Product Quality:

One of the ways in which cost reductions can be achieved in supply chain management is
by managing information about a physical object throughout its life cycle [Ina09]. This
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is one aspect for which RFID technology is being used in supply chain management
by retailers like Wal-Mart and Tesco [Rob05], [Pro03]. One side affect of managing
the information about a physical object throughout its life-cycle is that this makes
it feasible to maintain the traceability information of the object and hence can be
used to infer the quality of the product in which that physical object is used. Foods,
pharmaceuticals and the airline industry are prime examples of areas that require
maintenance of traceability information about the objects that constitutes the products
[KSCB03], [Jon06], [PTMS07].

True traceability would require that products should not just be monitored once they
are produced but should be monitored even during production along with the parts that
are used to manufacture these products. Once a factory would have this traceability
data, it can have operational efficiencies and asset visibility and can use this information
to infer product quality if and when required. In addition to this the production data
traceability service would enable a smart variant production environment to enhance
customer experience by providing traceability information about the product and its
parts throughout the life-cycle of the product.

2.4 Summary

In this chapter we presented several case studies to show that both commercial and mil-
itary organizations are now moving away from procuring and manufacturing products
to assembling and acquiring services. The case studies further showed the advantages
of acquiring services over typical products in certain manufacturing scenarios. We then
move on the present requirements for a smart variant production environment and fi-
nally described several services that can be provided by the smart variant production
environment to its customers.

The real-time production monitoring, complex manufacturing event processing and
reliability framework that are the basic building blocks of a smart variant production
environment form the basis of the work we have undertaken in this research project.
Each of these tasks are detailed in separate chapters later on in this dissertation.
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Chapter 3
System Model

In this chapter we discuss the system model and assumptions that form the basis of the
entire dissertation. The chapter is divided into several sections. Production Monitoring
System (cf. Section 3.1) present the different architectural and design components of
our system. After that we go on to present the Formal System Model (cf. Section
3.2). The Event Model (cf. Section 3.3) discusses the basic events that are generated
within our system. Next we go on to discuss the different RFID Reader Failures (cf.
Section 3.4) that we consider in our work. The discussion of RFID Reader Failures is
succeeded by System Failures and Assumptions (cf. Section 3.5) in which we talk about
the different system failures and our assumptions regarding those failures. Lastly, the
chapter is concluded with a short summary (cf. Section 3.6).

3.1 Real-Time Production Monitoring System

The Real-Time Production Monitoring System can be divided into three broad cat-
egories: production system, monitoring framework, and the applications (cf. Figure
3.1). The Production System (cf. Section 3.1.1) is the factory environment that is to be
monitored and supplies the Real-Time Production Monitoring System with real-time
production data. The Monitoring Framework (cf. Section 3.1.2) consists of infrastruc-
ture that is needed to collect and make sense of the real-time production data which
is supplied by the production system. The Applications (cf. Section 3.1.4) in turn rely
on the real-time data provide higher level services.

3.1.1 Production System

In factories, product parts moving through production lines meet at certain assembly
points. It is at these assembly points that these product parts are processed or as-
sembled. In our framework, production lines are modelled as production paths.
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Figure 3.1: System Architecture

Production paths can run in parallel, converge at an assembly point, or diverge from
an assembly point. The movement of product parts on production paths is sequential
and uni-directional. Since the topology of these production lines and assembly points
vary from one factory to the other, the box representing Production System in Figure
3.1 is empty. However, a potential factory deployment scenario along with the different
Monitoring Framework components is shown in Figure 3.2.

3.1.2 Monitoring Framework

The monitoring framework (cf. Figure 3.1) is comprised of a global repository, several
virtual readers vrs and a large number of physical RFID readers prs. Figure 3.2 shows a
potential factory deployment scenario of the vrs and prs in our production monitoring
framework. The discussion of important components and concepts of the monitoring
framework follows:

Physical Reader: Physical RFID readers, denoted as prs, are deployed on the pro-
duction lines. Each product part is tagged with an RFID tag, and as these product
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Figure 3.2: Sample Factory Deployment

parts move across the production lines, they are continuously tracked by the prs. A pr
can read several RFID tags within its sensing range.

The physical readers prs are placed on the production paths and detect the product
parts moving through these paths. A read event e by a pr is defined as, e = (o, pr, t);
where t is the time at which product part o was detected by physical reader pr.

Since the location of each pr is already known via the global repository, we can deduce
the location of product part o from the location of the pr that detected product part
o. Each read event e is correct with a certain probability, p(e). For the purposes of
Chapter 5 we assume that every pr correctly detects the product parts with the same
probability. However, this assumption would be dealt upon in Chapter 6, in which
we would present a system to continuously update the probabilities of RFID readers
according to the accuracy with which they detect the product parts.

Virtual Reader: The task of detecting hundreds of product parts and thousands
of potential complex events requires extensive computations. In order to achieve this
objective, we have designed a distributed and scalable abstraction called the virtual
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reader vr. The vrs distribute the workload and process the data close to the sources
prs.

Each pr is assigned to exactly one virtual reader vr and covers a contiguous part of
the production path. The set of prs corresponding to a virtual reader vri is denoted
by PRi = {pr(i,1), pr(i,2), . . . , pr(i,m)}. In production environments since the topology
of the manufacturing plant does not change very often, the pr to vr mapping can be
done during system initialization.

The manufacturing plant is divided into topological regions. The regions are strictly
non-overlapping. Every region is associated with exactly one vr such that the vr can
process the events generated by the prs in that region. Our framework can monitor
product parts and detect complex manufacturing events in factories irrespective of the
plant topology.

A vr gathers raw data from a set of prs in its region. This data is then used to track
product parts and deduce sequences of product parts moving through the production
paths. Since a large number of product parts move through the production paths
during assembly, the inherent inaccuracies of the RFID readers lead to many possible
product parts sequences. To overcome this issue, the deduced sequences are assigned
probabilities that represent the likelihood for that sequence to exist.

Global Repository: The repository has knowledge of the entire factory layout, pro-
duction modules, the locations of the physical readers prs, virtual readers vrs, and the
assembly points. The precise information stored in the repository is listed below:

• Plant Topology: The layout of the factory including the location of production
lines and assembly points and their respective order.

• Physical Readers: Location of physical readers and their mapping with the Vir-
tual Readers.

• Virtual Readers: The layout of the Virtual Reader deployments, that is inform-
ation such as which VR succeedes and preceeds which other VR.

• Production Plan: Information regarding the production plan, such as what products
would be assembled on a given day, which product parts would be a part of what
products, and what product parts would move through which production lines.
Production plan is discussed in detail in LernFabfrik (cf. Chapter 4.2)

• Production Data Archives: Historical production data, such as what products
were assembled during what day, and which parts were used to assemble specific
products.

The repository does not perform any computations. In fact, it provides other com-
ponents with the above mentioned information that is necessary for processing data or
responding to queries.
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Figure 3.3: Polytree/DAG Model of Sample Factory Deployment

3.1.3 System Interface

The System Interface provides an API using which the higher level applications can
query the Monitoring Framework and access useful information regarding the state of
production of both the products and the production process. The methods listed below
are only a representation of the kind of information that can be accessed via the API
and is in no way an exhaustive list of the API functions.

getPartPosition(productpart id): returns the last sensed position of a product
part.

getProductStatus(product id): returns the last updated production status of the
product.

getErrorPosition(product id): returns the position at which the product had an
error.

isProductFaulty(product id): returns true if the product has a production error,
false otherwise.

isProductionOnTrack(product id): returns true if the assembly of the product is
going according to the production plan and on schedule, false otherwise.

getErrorImpact(error id): returns the number of products affected by the error.

getErrorProbability(error id): returns the probability of the error.
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3.1.4 Applications

The design an development of applications that would use the data generated by real-
time production monitoring system is beyond the scope of this work. However, we
would still like to elaborate some potential applications that can be built on top of our
system.

Production monitoring: Production monitoring would naturally be the first ap-
plication that can be built for both the producers and customers. The application
would be capable of providing real-time information about the status of production of
individual products.

Inventory Monitoring: An inventory monitoring application would inform the fact-
ory manegement about the status of inventory of different components. In a normal
inventory system, a component is removed from inventory when it leaves the ware-
house. However, the real-time inventory monitoring could track the component even
during production and would consider the part used/consumed when it either leaves
the plant as part of a product or is destroyed or gets damaged.

Fault Monitoring: A fault monitoring application would inform the factory manage-
ment about the faults/errors that may arise during production in real-time. In addition
to this, the management could be apraised about the delay in shipment of products as
a result of these faults.

Production Data Traceability: A traceability application can be built that can
be used to find out traceability information about an individual product such as the
date on which the product was built, the different components that were used to build
the product, if there were any production issues during the production of that specific
product and so on.

3.2 Formal System Model

We model a factory or production environment in our framework as a polytree, which
is basically a directed acyclic graph whose underlying undirected graph is a tree. Both
the assembly points and the physical readers prs deployed on the production paths
are designated as vertices on the polytree, where as the production paths are modeled
as the edges of the tree. Figure 3.3 is a Polytree/DAG representation of the sample
factory deployment shown previously in Figure 3.2.

Our polytree is always a rooted tree. The root vertex is a vertex at which the product
is completely assembled and hence moves out of the factory. The leaf nodes or ver-
tices are the assembly points at which the production process initiates. Leaf nodes
are vertices of degree 1 or in other words are terminal vertices. Production paths
normally have multiple terminal vertices from where multiple components may start
initial production.
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The edges in the polytree have a natural orientation towards the root. In terms of the
production environment this means that product parts would actually move from the
initial assembly point towards the terminal assembly point or from leaves towards the
root.

The set of all vertices within the polytree is denoted by V = {a, b, . . . , n}. The set
of all vertices representing the physical readers prs is denoted by PR = {c, d, . . . ,m},
where PR ∈ V . The set of all vertices representing the assembly points is denoted by
AP = {e, f, . . . , o}, where AP ∈ V . PR and AP are disjoint that is no member of one
set is contained in the other, in other words PR∩AP = ∅. The set of all edges within
the polytree are denoted by EG = {a, b, . . . , n}.
The set of vrs in the production monitoring framework is denoted by V R = {vr1, vr2,
. . . , vrn}. Each vri knows its predecessor(s) vri−1 and successor(s) vri+1. A vr at the
start of manufacturing plant does not have a predecessor vri−1, where as a vr at the
end of manufacturing plant does not have a successor vri+1. Each vr is configured to
receive information from its predecessor vri−1 and sends information to its successor
vri+1.

(pri @ prj) is the production path order, which implies that pri is deployed before
prj on the production path i.e. product parts will first be read by pri and then by prj.

Since physical readers prs are modeled as vertices in our framework, the production
path order (pri @ prj), can also be depicted as u ≤ v, where pri is represented by
vertex v and prj is represented by vertex u.

The polytree has a topological ordering called the tree-order. The tree-order is a partial
ordering on the vertices of the tree with u ≤ v if and only if the unique path from the
root to vertex v passes through vertex u. In general, this ordering is not unique; a
polytree has a unique tree order if and only if it has a directed path containing all the
vertices. In this case the ordering is the same as the order in which the vertices appear
in the path.

The polytree in our framework is a labeled graph i.e. all of its vertices and edges are
given a unique label. So, if there would be n vertices in the tree, the labels would be
1, 2, ..., n. Edges of the tree are also labeled similarly.

Both the vertices and edges of the tree have associated weights, with Wv depicting the
weight of vertex v and Wxy used to depict the weight of edge (xy).

The weight of each vertex denotes the time in seconds it takes for the production process
at that assembly point to be completed, whereas the weight of each edge denotes the
amount of time it would take for an object to traverse the production path depicted
by the edge.

We have already mentioned that both the assembly points and physical readers are
modeled as vertices. Both of these vertices have weights. Figure 3.4 shows a Polytree
having vertex and edge weights. The circular nodes represent the physical readers,
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Figure 3.4: Polytree/DAG with Vertex and Edge Weights

where as the square vertices represent the assembly points. However, this depiction
is only graphic, since we different between the two types of vertices because of their
membership in their respective sets PR and AP .

Vertices denoting the assembly points have positive real integer weights, where as
the vertices denoting the physical readers have null weights. The weights for vertices
depicting physical readers are null/zero because it takes no time for a physical reader
to perform its task. In other words the physical readers are able to read product
parts moving on the production paths without interfering with the movement of these
product parts. On the other hand, the processing at each assembly point requires
some time. The weight of each assembly point depicts the amount of time it takes for
a product part to move through the assembly point. The actual unit of time could
be seconds, minutes or even hours depending upon the production environment. For
the rest of this dissertation we would assume that the time unit is 1 second, unless
otherwise stated.

During any specific production run, the product parts move on the production lines
in a cyclic manner i.e. when production is in progress a new product part enters the
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production line every 1 second. This is refered to as the arrival rate of new product
parts. The arrival rate varies from one production environment to the other. Product
parts would keep entering the production line in a cyclic manner until the production
is halted or is successfully completed. The concept of cycles in the simulations that
we have conducted to evaluate our algorithms have been further elaborated in Chapter
5.3.1

In addition to assigning weights to the edges we also perform edge coloring i.e. assign
different colors to all the edges of the polytree. A key property of edge coloring de-
scribed in literature is that no two adjacent edges should have the same color. In our
model, we purposely violate the ”no two adjacent edges are similarly colored” property.
Adjacent edges in our polytree can and do have the same color. The similarly colored
adjacent edges and vertices in our polytree depict the region/range of a virtual reader
vr.

If v is reachable from u, then u is a predecessor of v and v is a successor of u. If there
is a path from u to v, then u is a direct predecessor or parent of v, and v is a direct
successor or child of u.

The distance dG(u, v) between two vertices u and v in the polytree is the length of a
shortest path between them. When u and v are identical, their distance is 0. When u
and v are unreachable from each other, their distance is defined to be infinity ∞. As
an example the distance between the root and the leaves of the polytree in Figure 3.4
is 21.

3.3 Event Model

This Event Model section is divided into two sub-sections: Raw RFID Events (cf.
Section 3.3.1), and Primitive Events (cf. Section 3.3.2). The raw RFID events section
discusses the raw RFID events and explains the techniques that we use to transform
these raw events into primitive events. The primitive events section discusses the
primitive events which are filtered events that do not contain any duplicates.

3.3.1 Raw Read Events

Raw events are events detected by RFID readers. These raw events contain noise in
the form of false positives, and duplicates. Another type of noise is false negatives,
which are RFID events that a reader fails to read although their corresponding tags
are within the reading range of the reader.

A raw event is defined as:

eraw = (oi, pri, ti); where ti represents the time at which product part oi was detected
by physical reader pri.
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eraw are raw events such that there exists other raw events eraw having the same oi
and pri. In other words there exists other detections of the same product part oi by
the physical reader pri

3.3.2 Primitive Read Events

Primitive read events are de-noised or non-duplicate physical readings. We operate
the RFID readers in continuous read mode. In this mode, the readers read RFID tags
continuously as long as the tag is within the read range of the reader. In order to filter
out the noise, we insert each RFID tag detected by an RFID reader into a queue. If the
same tag is detected again, a counter associated with the queued tag is increased. Once
the counter reaches a certain threshold we transform that read event into a primitive
event. In this way all the duplicate reads for the tag are eliminated. In case the counter
of the raw RFID event fails to reach the threshold value, they are discarded as being
false positive events.

A primitive event is defined as:

e = (oi, pri, ti) such that there exists no other primitive event e having the same oi and
pri.

The probability of a primitive read event p(e) denotes the probability with which a
product part o was correctly read by a pr. In the rest of this dissertation, we would
use primitive read events in our algorithms and would refer to them as read events.

3.4 RFID Reader Failures

In this section we will go through the different errors that affect the reliable operations
of the RFID devices. RFID reader errors result from the operations of RFID devices
and can be broadly divided into four distinct categories; duplicate reads, false reads,
missed reads, and out of order reads.

3.4.1 Duplicate Reads

Duplicate reads occur when a pr reads the same product part o multiple times. This
happens because we operate the RFID readers in continuous mode. In this mode, the
readers continuously read RFID tags. Since, it takes some time for a product part
to move across the read range of an RFID reader, the product part is normally read
multiple times during that single pass across the reader. We filter out the duplicate
reads as is explained in Primitive Read Events (cf. Section 3.3.2).

54



3.5 System Failures and Assumptions

3.4.2 False Reads

False reads occur when a physical reader pr reads a product part oi incorrectly or
overshoots and reads other product parts that are not on the production line, but may
come within the sensing range of the pr. Let PPplnppi

= {oa, ob . . . , on} be a set of all
product parts that are supposed to pass through production path ppi. Then a false
read is defined as a read event efalse = (oi, pri, ti) | oi /∈ PPplnppi

. PPplnppi
is obtained

from the global repository (cf. Section 3.1.2), which has information about each specific
product part that is to pass through a specific production path.

3.4.3 Out of Order Reads

Out of order reads occur due to the read range of the prs, similar to false reads. An
out of order read occurs when a pr detects product parts in the order (oj < oi), when
the actual product part order PPOact on the production path was (oi < oj).

3.4.4 Missed Reads

Missed reads occur as a result of unreliability of prs. Some of the common causes of
missed readings include metallic interference and batch tag reads. If a product part oi
passes through the production line on which physical reader pri is deployed but is not
detected by the physical reader pri, it is considered a missed read.

We find out missed reads of a particular physical reader pri using the following method.
Let PPLvr = {oa, ob . . . , on} be a set of all detected product parts at a vr and PPLpri =
{oa, ob . . . , om} be a set of detected product parts by physical reader pri. Then the
complement of PPLvr with respect to PPLpri (PPLvr\PPLpri = {x : x ∈ PPL | x /∈
PPLpri}) gives us the set of missed readings PPLprimissed

of pri. The cardinality of set
PPLprimissed

gives the total number of missed reads of physical reader pri.

3.5 System Failures and Assumptions

We assume that the smart variant production environment in which our system would
be deployed would have a local area network connected via ethernet [MB76], with
TCP/IP based communication protocol [CI05] for the higher layers. TCP/IP is a
reliable protocol that ensures that data is sent reliably and efficiently over the network.

In addition to this, we assume a fault tolerant system in which there are no omission (for
e.g., crash failures, failing to receive a request, or failing to send a response etc.) or com-
mission failures (e.g., processing a request incorrectly, corrupting local state, and/or
sending an incorrect or inconsistent response to a request etc.). Several algorithms and
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protocols have been proposed to make a system tolerant to crash faults. Protocols such
as Q/U [AEMGG+05], HQ [CML+06], Zyzzyva [KAD+10], ABsTRACTs [GKQV10],
Aardvark [CWA+09] and RBFT [AMQ13] can be readily deployed in order to achieve
fault tolerant node replication with low costs, high performance and robustness.

Furthermore, we assume the clocks between the different nodes to have high accuracy
(in sub-microsecond range). Protocols such as Network Time Protocol (NTP) [Mil91]
can not provide such accuracies, however IEEE precision time protocol [LEWM05] can
achieve sub-microsecond level accuracies between system nodes in a local area network.
For our system, we need accuracies within the sub-second range, so the IEEE precision
time protocol is an adequate solution for our system.

3.6 Summary

In this chapter we have presented the different system components that form the basis of
our dissertation. These components include the virtual reader, physical reader, higher
level applications and the interfaces between these components. We then move on to
present a formal system model for the real-time production monitoring framework. In
addition to this, we also formally presented the basic RFID events and presented the
different RFID reader failures such as duplicate readings, false readings, out-of-order
readings and missed readings that must be considered by any reliable RFID framework.
Finally, we discuss our assumptions regarding network and node failures.
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Chapter 4
LernFabrik

The Lernfabrik [LCW08] (german for teaching/learning factory) is a modern factory
infrastructure that is established at the University of Stuttgart for conducting research
on manufacturing processes using real products and production lines. We conducted
experiments at the Lernfabrik in order to find out the reliability of off-the-shelf RFID
readers. Our experiments showed that the accuracy of RFID readers is not just a
number but is dependent on many factors such as the position of the RFID reader, the
distance between the reader and the tag, the distance between two adjacent tags, the
number of tags that the reader is trying to detect simultaneously and so on.

The rest of the chapter is divided into several sections. Section 4.1 introduces the
Lernfabrik and discusses the design of the factory and the different types of products
that it produces. Section 4.2 discusses at length the production planning process and
finally presents the production plans that are created as a result of this process. Section
4.3 goes on to present the results of RFID reader experiments that we conducted in
the Lernfabrik. Finally Section 4.4 provides a brief summary of the chapter.

4.1 LernFabrik Introduction

The Lernfabrik has several modules which can be configured into various topologies.
Figure 4.1 shows the various deployment topologies of the lernfabrik. The Lernfabrik
modules are of two types active modules such as the robotic arm or the assembly points
on which some activity takes place and inactive modules such as the production lines
and the storage area. The production process involves product planning and product
assembly. Production planning involves plans for the type of products that would be
built, the parts that would belong to each product and so on. Planning for a single
type of product is a simplified process, however, with variant production, this process
becomes quiet extensive.
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(a) (b)

(c) (d)

Figure 4.1: LernFabrik Deployment Topologies

The Lernfabrik produces a stationary box that has three parts: a large cup, a small cup
and a thermometer or a hydrometer. Each of these three parts has several different
variants such as a large cup without hole, a large cup with hole, a large cup with
stripes, etc. The lernfabrik can produce around two dozen product variants. The
product parts are assembled on a baseplate, which in turn is mounted on a tray that
moves on the production line. The baseplate has three sockets (placeholders) for the
parts, and every part can be placed on any of the three sockets on the baseplate. The
assembly of each new part on the baseplate is carried out by a human worker or the
robot at the assembly point. When the baseplate reaches the assembly point it stops
for a few seconds, the worker places a new part on the plate and updates the terminal
which enables the baseplate to move again.

Each baseplate moves through three assembly points and three cameras that are fitted
after each assembly point. A correct assembly involves the placement of the right
product part on the right position on the baseplate.

We used the Lernfabrik as a test environment to evaluate the reliability of RFID
readers in a real production environment. The rest of this chapter is divided into two
main sections Production Planning (cf. Section 4.2) and RFID Reader Evaluations (cf.
Section 4.3). In the production planning section, we explain how the production is
planned within the Lernfabrik and also show the production plans that are generated
as an outcome of this process. The RFID reader evaluations section discuss the RFID
reader evaluations under different settings.
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Figure 4.2: ER Model of Production Database

4.2 Production Planning

Production planning is arguably one of the most important and crucial steps in pro-
duction and specially in variant production. Once the factory has received orders to
build a certain number and type of products, it starts to plan the actual production.
This involves planning for each of the sub-parts for all these products to be available
in the inventory and then be available on the production lines in the desired order and
sequence at the desired time.

In order to explain production planning, we would walk you through the different
production planning steps taken in the lernfabrik in order to produce the different
variants of the stationary box day in and day out. Figure 4.2 shows the ER model
for the key elements of the lernfabrik production database. The database consists of
four basic entities or tables namely: product parts, product part variants, products
and product variants. Each product (i.e. stationary box) consists of many different
product parts. Each of the product parts in turn have many different variants, which
results in the final products being built having different variants of their own. Table 4.1
lists all the different product part variants along with their respective codes that are
used to produce stationary boxes at the lernfabrik. Figure 4.3 in turn shows some of
the different variants of stationary boxes that are produced using the different product
part variants at the lernfabrik.

At the start of each day, the production manager at the lernfabrik receives a production
plan which details the different product variants that are to be produced during that
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Table 4.1: Product Part Variants
Product Part Code Product Part

ppv1 Large Cup
ppv2 Large Cup with Hole
ppv3 Large Cup with Stripes
ppv4 Small Cup
ppv5 Small Cup with Hole
ppv6 Small Cup with Stripes
ppv7 Thermometer
ppv8 Hydrometer

day. Table 4.2 shows a sample production plan from the lernfabrik, the production
plan lists the different products that are to be built during that specific day along with
precise specification of the different product part variants that would become a part of
each of these products.

Before the production plan is taken to the factory floor to carry out production, it is
processed. This step involves sorting the production plan for the different product part
variants such that the same product part variants are next to each other. Table 4.3
shows the initial production plan for a certain day, after it has been processed. In our
scenario, we sort the production plan with respect to the product part 1, and then go

(a) (b)

(c) (d)

Figure 4.3: LernFabrik Product Variants
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Table 4.2: Production Plan for Day X

Product Code Product Part 1 Product Part 2 Product Part 3

pv1 Large Cup Small Cup Thermometer
pv2 Large Cup with Hole Small Cup with Stripes Thermometer
pv3 Large Cup Small Cup with Hole Hydrometer
pv4 Large Cup with Stripes Small Cup with Stripes Hydrometer
pv5 Large Cup Small Cup Hydrometer
pv6 Large Cup with Hole Small Cup with Hole Thermometer
pv7 Large Cup with Hole Small Cup with Stripes Hydrometer
pv8 Large Cup with Stripes Small Cup with Hole Hydrometer
pv9 Large Cup Small Cup with Stripes Hydrometer
pv10 Large Cup Small Cup with Hole Thermometer
pv11 Large Cup with Stripes Small Cup with Stripes Thermometer
pv12 Large Cup with Stripes Small Cup Thermometer
pv13 Large Cup Small Cup with Stripes Thermometer
pv14 Large Cup with Stripes Small Cup Hydrometer
pv15 Large Cup with Hole Small Cup Thermometer
pv16 Large Cup with Hole Small Cup with Hole Hydrometer
pv17 Large Cup with Stripes Small Cup with Hole Thermometer
pv18 Large Cup with Hole Small Cup Hydrometer
... ... ... ...

on to sort the production plan with respect to product part 2 and finally with respect
to product part 3.

It can clearly be seen that in the processed production plan, all the products having
Large Cups, would be produced one after the other, and then the products having
Large Cup with Holes would be produced and so on.

The core idea of processing is to make the production plan resemble a batch production
operation as much as possible so as to eliminate the complexity of assembling different
product part variants on the production floor. If our stationary box would have con-
sisted of only one part (i.e. product part 1), the processing step would have ensured
that first all the Large Cups are produced and then the Large Cups with holes and
then the ones with stripes. In essence, the production process would have mimiced a
batch production process for each specific variant of product part 1.

All companies that carry out variant manufacturing process their production plans
to minimize complexity during the actual production process. Automobile companies
for example arrange similar and closely related cars together to simplify the assembly
process as much as possible.

From the processed production plan (cf. Table 4.3), we can easily deduce the planned
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Table 4.3: Production Plan for Day X after Processing

Product Code Product Part 1 Product Part 2 Product Part 3

pv1 Large Cup Small Cup Thermometer
pv5 Large Cup Small Cup Hydrometer
pv10 Large Cup Small Cup with Hole Thermometer
pv3 Large Cup Small Cup with Hole Hydrometer
pv13 Large Cup Small Cup with Stripes Thermometer
pv9 Large Cup Small Cup with Stripes Hydrometer
pv15 Large Cup with Hole Small Cup Thermometer
pv18 Large Cup with Hole Small Cup Hydrometer
pv6 Large Cup with Hole Small Cup with Hole Thermometer
pv16 Large Cup with Hole Small Cup with Hole Hydrometer
pv2 Large Cup with Hole Small Cup with Stripes Thermometer
pv7 Large Cup with Hole Small Cup with Stripes Hydrometer
pv12 Large Cup with Stripes Small Cup Thermometer
pv14 Large Cup with Stripes Small Cup Hydrometer
pv17 Large Cup with Stripes Small Cup with Hole Thermometer
pv8 Large Cup with Stripes Small Cup with Hole Hydrometer
pv11 Large Cup with Stripes Small Cup with Stripes Thermometer
pv4 Large Cup with Stripes Small Cup with Stripes Hydrometer
... ... ... ...

product part order PPOpln in which each of the product parts should move on their
respective production lines. Table 4.4 shows the planned product part order PPOpln

in which the product parts 1, 2 and 3 should move on their respective production lines.
Table 4.4 has been created by replacing the names of the product parts in the planned
product part order PPOpln (cf. Table 4.3) with the respective codes for each of these
product parts (cf. Table 4.1).

The planned product part order PPOpln is then used during the production process to
ensure if the product parts are moving on the production lines in the appropriate and
planned order.

4.3 RFID Reader Evaluations

In this section we will describe the different rfid evaluations that we conducted in
the lernfabrik. The purpose of these evaluations was to have a benchmark for the
performance of these readers in the lernfabrik under different conditions and settings.

We configured the lernfabrik and deployed seven passive modules (production lines)
and three active modules (assembly points) to build our production environment. We
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Table 4.4: Planned Product Part Order for Day X

Product Part 1 Product Part 2 Product Part 3

ppv1 ppv4 ppv7
ppv1 ppv4 ppv8
ppv1 ppv5 ppv7
ppv1 ppv5 ppv8
ppv1 ppv6 ppv7
ppv1 ppv6 ppv8
ppv2 ppv4 ppv7
ppv2 ppv4 ppv8
ppv2 ppv5 ppv7
ppv2 ppv5 ppv8
ppv2 ppv6 ppv7
ppv2 ppv6 ppv8
ppv3 ppv4 ppv7
ppv3 ppv4 ppv8
ppv3 ppv5 ppv7
ppv3 ppv5 ppv8
ppv3 ppv6 ppv7
ppv3 ppv6 ppv8
... ... ...

configured the production lines in a straight line (one after the other), with an assembly
point deployed after every two production lines. We deployed three vrs and six RFID
readers prs. The vrs were Lenovo T61 laptops with 4GB RAM, 100GB harddisk and
2.50 GHz Intel Core 2 Duo processors, whereas the RFID readers prs were Volaré UHF
USB readers [Vol13].

We placed RFID tags on each and every product part and then studied the effects
of tag placement, multiple tag reads, tag orientation, RFID reader power, and reader
interference on the accuracy of RFID readers. The metrics that we evaluated are
more or less standard metrics to measure the performance of RFID readers [LW09].
Our studies showed that the accuracy of RFID readers changes with a change in the
parameters. As an example the accuracy of the readers decreased if the distance
between the reader and the production line was increased, or if the reader power was
decreased and so on. In addition to this our studies revealed that two RFID readers
from the same manufacturer does not have the same reliability under perfectly similar
conditions. The evaluations therefore further highlighted the need to calibrate the
RFID reader probabilities, a task that has been discussed at length in Self-Calibration
of RFID Reader Probabilities (cf. Chapter 6).

For each of the following experiment we assembled 100 products. The different factors
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Figure 4.4: Effect of Tag Placement on False Negatives

Figure 4.5: Performance of Different Readers when Varying Power Value
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that affect the reliability of the physical readers prs have been evaluated below:

Tag Placement: We tested two tag placement settings: using a spacer, which was
an insulation material between the tag and the metallic product part, and attaching
part of the tag to the product part, while leaving some part unattached. Figure 4.4
shows the effect of each setting on the number of false negatives. As you can see the
number of false negatives decreases dramatically when the tags were attached to the
items using spacers. For scenarios, where we attached the entire tag to the metal parts,
the detections were not possible. In each of the subsequent experiment, we used spacer
between the parts and the RFID tags.

Differences among Readers: In this experiment, we tried to test the performance
of different prs. Figure 4.5 shows the differences among the prs when the power is
varied. The number of missed tags differs from reader to reader. For values less than
13 dBm, RFID Reader C has the lowest number of false negatives for the same power
value. These experiments reveal that even RFID readers of the same model and from
the same company vary in reliability even when they are operating under exactly the
same conditions.

Multiple Object Reads: In this experiment, we evaluated the reliability of RFID
readers for multiple product part detections. Figure 4.6 shows the performance of
the RFID reader when it has to read one product part as compared to three product
parts at the same time. When a single part was used, the number of false negatives
was slightly less than the number of false negatives when three parts were used. The
number of false negatives could have been higher, if the readers had to detect even more
tags simultaneously. However, since in the lernfabrik the product consists of only three
parts, we sufficed ourselves to these values. This experiment showed one of the most
common and pressing issues with RFID readers i.e. the reliability of RFID readers
decreases when the RFID reader has to read multiple RFID tags simultanesouly.

Tag Orientation: In this experiment, we studied the effect of tag orientation on out-
of-order readings. We used two different tag orientations. In one setting the product
parts were placed on the base plates such that when they move through the production
line, the RFID tags would directly face the antenna of the RFID readers deployed on
the production line. In the second setting, the product parts were placed randomly on
the base plates. The results (cf. Figure 4.7) show that random placement of product
parts on the base plates caused a higher number of out-of-order readings, this was
because RFID readers read tags more reliably if the tags are facing the readers.

Reader Power: In this experiment we studied the effect of RFID reader power on
out-of-order readings. The results (cf. Figure 4.8) show that reducing reader power to
14 dBm eliminated all out-of-order readings. In order to further examine the effect of
varying power on the number of out-of-order readings, we used three product parts per
baseplate and tried to detect these product parts under four different power settings.
Figure 4.8 shows that reducing the RFID reader power reduces the number of out-of-
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Figure 4.6: Effect of Number of Objects on the Reader’s Performance

Figure 4.7: Effect of Tag Orientation on the Out-of-Order Readings
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order readings. This is because, by reducing the power of an RFID reader its sensing
range is reduced, which in turn decreases the number of out-of-order tag reads.

Interfering Readers: In this experiment we studied the effect of an RFID reader
within the sensing range of another reader on out-of-order readings. Figure 4.9 shows
the results when reader B is deployed before reader A on the production line i.e.
(readerB @ readerA). This means that product parts would first be read by reader B
and then by reader A. The results show that the reader that is deployed after another
reader has a lesser number of out-of-order readings and hence a higher reliability. This
is because when a reader (which in this case is reader A) is deployed within the sensing
range of another reader, the sensing range of the later reader (i.e. reader A) decreases.
The decrease in the sensing range of reader A, in turn has the same effect on out-of-
order reads as is observed when we reduce the power of a RFID reader.

Discussion: From the lernfabrik experiments we can conclude that on the one hand
we have to increase the reader power in order to avoid missed reads, and on the other
hand we must reduce it to minimize the number of out-of-order reads. From the results
discussed above, it is obvious that it is hard to find a setting without having some type
of errors. The results of these experiments make it abundantly obvious that we need
some sort of a middleware to solve the issue of unreliablity in RFID readers. This is
exactly what we have endeavoured to do in the subsequent chapters of our work.

4.4 Summary

In this chapter we described the lernfabrik at length. This description also included a
discussion of how production is actually planned. In addition to this we also presented
the results of RFID reader evaluations that were conducted at the lernfabrik.

The findings of the lernfabrik evaluations are summarized below:

• Tag Placement: We placed RFID tags on metallic parts both directly and using
a spacer between the tag and the metallic part. The evaluations showed that
tags placed with a spacer have had far higher read accuracy then the ones placed
directly on the metal objects.

• Differences among Readers: In this study we tested three RFID readers under
the same physical conditions. The results showed that even RFID readers of the
same model and from the same manufacturer have different accuracy even when
they are operating under the same conditions.

• Multiple Object Reads: In this study we observed that the accuracy of RFID
readers was slightly lower when they had to read 3 simultaneous tags, as compared
to a setting in which readers had to read just 1 RFID tag at a time. Experiments
conducted by other researchers [PSR+06], [Vio05], [HC06] show that this accuracy
fall sharply when readers have to read more than five tags simultaneously.
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Figure 4.8: Reader Power: Multiple Product Parts

Figure 4.9: Reader B ahead of Reader A
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• Tag Orientation: In this study we evaluated two different tag orientation settings.
Firstly, the tags were placed on the product parts so that they would face the
readers while passing in front of them. Secondly, the tags were placed randomly
on the product parts. The evaluations showed that the RFID readers have far
higher accuracy when they have to read tags which are directly facing them.

• Reader Power: The reader power evaluations revealed that reducing the reader
power reduces the out-of-order readings. This is quiet intuitive as well, since
with higher power the read range of an RFID reader increases which results in
the reader reading tags out of order.

• Reader Interference: The experiments for reader interference revealed that if
two readers are deployed within the read range of each other. The out-of-order
readings of the later reader is less than that of the one deployed before it. This
is because the signals of the initial readers interferes with the second reader and
decreases the read range of the later reader.

The results of RFID reader evaluations provides further motivation for a real-time
monitoring framework that not just monitors the production environment but also
provide guarantees regarding the reliability of RFID devices.
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Chapter 5
RFID Based Consistency Management Framework

for Production Monitoring

Manufacturing organizations are now increasingly deploying RFID based systems to
gather information regarding the state of production in real-time. Toyota (South
Africa) for example has tagged its carriers to streamline manufacturing and vehicle
tracking. The tags are intended to remain with the vehicle throughout its life and
hold its maintenance history. Harley Davidson has implemented process automation
by tagging bins carrying product parts to provide instructions to employees at each
stage of the process. Johnson Controls has started using RFID to track cars and truck
seats throughout the assembly process. TrenStar tracks their beer kegs to improve
demand forecasts and increase efficiency. International Paper tracks their paper roll to
reduce lost or misdirected rolls. Gap tracks its denim apparel to improve customer ser-
vice through better inventory management. Raxel has started tagging reusable plastic
biohazard containers to avoid contamination. Michelin on the other hand tags its tyres
to comply with the TREAD act and recall management and so on [BR05a]. All the
RFID deployments mentioned above were carried out in order to improve shop floor
inventory tracking and automate warehouse operations.

The problem with majority of the existing RFID systems is that they merely deal
with increasing the efficiency of manufacturing operations by eliminating manual work
and replacing it with automatic accounting and inventory management. None of the
RFID deployments that we have just discussed, tries to track each and every product
part throughout the different stages of production and in doing so detect different
production errors as soon as they arise.

Such real-time production monitoring is of utmost importance in a variant production
environment and is vital to ensure that variant products are produced correctly and
efficiently and production errors are detected as quickly as possible. In this chapter,
we present a:
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• consistency stack for RFID based production monitoring middlewares/frameworks.
The consistency stack is conceptual in nature and categorizes the different con-
sistency issues into separate layers. The basic purpose of presenting the consist-
ency stack is to make an effort to formalize the different consistency issues, such
as duplicate readings, missed readings, and false readings etc., that need to be
considered by almost all RFID applications.

• probabilistic model for sequence detection. The model assigns probabilities to
the product part and product sequence detections and hence provide a measure
of how accurate these detections are.

• algorithms and system to improve the accuracy of sequence detections through
redundant readings.

The rest of the chapter is structured as follows. The consistency stack is described in
Section 5.1. In Section 5.2, the probabilistic sequence detection algorithm is presented
followed by its evaluations in Section 5.3. Section 5.4 provides an overview of the
related work. Finally, we conclude the chapter with a short summary in Section 5.5.

5.1 Consistency Stack

We have categorized the different consistency issues that may arise in manufacturing
environments into a layered model called the consistency stack. The consistency
stack is comprised of two distinct sub-stacks, the RFID consistency substack and the
production consistency substack (cf. Figure 5.1).

• RFID consistency substack (cf. Section 5.1.1) deals with consistency between
physical world (for e.g. actual location of a product part) and the world model
(i.e. observed location of the product part by our monitoring framework).

• Production consistency substack (cf. Section 5.1.2) deals with consistency between
world model (i.e. observed location of the product part) and the production plan.

The RFID consistency substack lies below the production consistency substack be-
cause it is necessary to have reliable RFID readings before comparing that data with
the planned product part order PPOpln. The RFID consistency substack has been
implemented and is deployed on the virtual readers vrs, where as the implementation
and evaluation of the production consistency substack is discussed in Chapter 7.

5.1.1 RFID Consistency Substack

The RFID consistency substack addresses the consistency issues of RFID devices that
hamper the correct perception of the physical world. These consistency issues arise as
a result of the inherent unreliability of RFID readers. The consistency issues within
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Figure 5.1: Consistency Stack for RFID Deployments in Production Environments

this substack are systematically eliminated using contextual knowledge. In particular,
we will show later (cf. Section 5.2) how the knowledge about production paths can be
used to derive accurate sequence information.

Duplicate Elimination: RFID readers can have duplicate readings. Duplicate elim-
ination is now often performed by the RFID readers, however [BWL06], [BWL+07]
provide techniques to eliminate duplicate readings at the system level. The duplicate
elimination layer filters out duplicate readings.

False Reading Elimination: RFID Readers prs can report false readings due to a
number of reasons such as incorrect product part detections, and overshooting (reading
product parts moving on neighboring production paths) etc. In manufacturing envir-
onments, product parts cannot change their production paths i.e. randomly jump from
one path onto another. We use this knowledge of production paths and product part
routes to eliminate false readings.

Missed Reading Detection: RFID readers are unreliable and hence may miss out
on detecting certain product parts. In our implementation, we deploy multiple prs on
a production path. Since product parts can not skip a location on a production path,
even if a pr misses out on a product part, it is detected by other prs deployed on that
production path. Section 5.2 describes in detail how missed product parts are detected
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and probabilities are assigned to product part detections.

RFID Substack Interface: The RFID substack interface supports location queries
such as location of a product part on the production path, location at which the
sequence of product parts got changed and so on. The interface masks physical errors
that may arise as a result of unreliable RFID devices and provides probabilistic results.

5.1.2 Production Consistency Substack

The production consistency substack addresses the consistency issues that result in
improper products being manufactured. As a result of these issues the products be-
ing assembled differ from the planned product specifications. These consistency issues
may arise as a result of mechanical or human faults. The consistency issues within this
substack can be detected using domain knowledge, such as production plans, product
specifications, planned product part order etc. Unlike the RFID consistency substack
that eliminates the issues that arise as a result of RFID devices, the production con-
sistency substack merely detects and reports issues to the applications, and the actual
task of resolving the issues is left to the applications.

The production consistency substack is further sub-divided into two layers: the se-
quential consistency layer and the synchronizational consistency layer. The sequential
consistency layer lies below the synchronizational consistency layer, because product
parts that are not in desired sequence can never be synchronized with other product
parts. In other words, sequential consistency is needed to achieve synchronizational
consistency.

Sequential Consistency: During manufacturing, product parts should move through
the production paths in certain defined sequences in order to be assembled with other
product parts correctly. Deviation of actual product part sequence PPOact which
is the sequence of product parts on the production line from the planned sequences
PPOpln is referred to as sequential inconsistency. Sequential inconsistencies can arise
as a result of mechanical or human faults, that may alter the sequence of objects.
The sequential consistency layer uses information from the production plan to detect
sequential inconsistencies.

Synchronizational Consistency: During manufacturing, product parts should ar-
rive at the assembly points within certain defined time spans in order to be correctly
assembled with other sub-components i.e. product parts should reach assembly points
in sync with their corresponding product parts. Mechanical failures or human errors
may cause delays in some areas of a factory, which results in synchronizational issues
at some assembly points. The synchronizational consistency layer ensures that product
parts moving through the production paths are in sync and will reach the assembly
points within the required time span to be assembled together with their respective
sub-components.

74



5.2 Probabilistic Sequence Detection

In the rest of this chapter we would discuss the specific functionality of RFID consist-
ency substack (i.e. reliable detection of product parts and product part sequences). To
accomplish this we have designed a sequence detection algorithm that eliminates false
positives and negatives in RFID readings based on a probabilistic model (cf. Section
5.2). The functionality of the production consistency substack (i.e. reliable detection of
production issues and errors) is discussed in the RFID-based complex event processing
chapter (cf. Chapter 7)

5.2 Probabilistic Sequence Detection

In this section we present the concepts for probabilistic sequence detection of product
parts moving on the production lines. First we present the probabilistic sequence
model, that is used to detect the product part sequences (cf. Section 5.2.1). Then
we provide an overview of our approach (cf. Section 5.2.2). After that we describe
the actual probabilistic sequence detection algorithm (cf. Section 5.2.3). Finally, we
explain how we detect changes to product part sequences on the production lines (cf.
Section 5.2.4).

5.2.1 Probabilistic Sequence Model

Due to the inherent unreliability of RFID devices, there is a possibility that different
prs may deduce different product part sequences. In order to resolve this issue, we
assign probabilities to the deduced sequences, which serve as a measure of confidence
in the correctness of deduced sequences.

A partial sequence ps (oi < oj) implies that oi is directly ahead of oj on the production
path such that there exists no ok : (oi < ok < oj). In contrast an extended sequence
es (oi << on) implies that oi is ahead of on on the production path such that there
exists an ok : (oi < . . . ok . . . < on). Non-unique partial sequences are partial sequences
of the form (oi < oj) and (oi < ok), which implies that oi is directly ahead of both oj
and ok. Since product parts move in sequence on the production paths, non-unique
partial sequences cannot exist in reality. However, they can arise as a result of different
inconsistent readings, which have already been explained previously (cf. Section 3.4).
One of the goals of the sequence detection algorithm is to resolve such inconsistencies
using multiple readings for partial sequences, and assigning probabilities to detected
sequences.

The probability of a sequence denotes the probability with which a deduced sequence
(partial or extended) matches reality. The probability of a deduced partial sequence ps
is denoted by p(ps), whereas the probability of a deduced extended sequence is denoted
by p(es)
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The goal of our algorithm is to determine the sequence of product parts (oi < . . . ok . . . <
on) moving through the production paths. Each sequence has an associated probability,
which enables applications to query the real-time production monitoring framework for
the most probable current sequence.

5.2.2 Overview

In this section we will give a brief overview of our approach. The core steps of the
probabilistic sequence detection algorithm are as follows:

1. Detect all possible partial sequences ps. The outcome of this step are multiple
possible ps, which are stored in a partial sequence list PSL, which contains all
the possible ps detected at a particular virtual reader vr. If there are n product
parts on the production line, we would have n−1 partial sequences in reality. As
an example, for four product parts o1, o2, o3, and o4, we would have three partial
sequences (o1 < o2), (o2 < o3), and (o3 < o4).

2. Assign probabilities to the detected partial sequences. The probability assign-
ment in our algorithm works in such a way that the probabilities of partial se-
quences that exist in reality would increase over time, whereas that of false or
non-unique partial sequences would decrease over time.

3. Detect all possible extended sequences es. The outcome of this step are multiple
possible es. Unlike partial sequences, only one possible extended sequence can
exist in reality. As an example, for four product parts o1, o2, o3, and o4, we would
have only one extended sequence in reality i.e. (o1 < o2 < o3 < o4).

4. Assign probabilities to the detected extended sequences. Due to unreliability of
RFID readers, we would have non-unique partial sequences, which in turn would
lead to multiple extended sequences. However, over time the probability of the
extended sequence that would match the actual sequence of product parts on
the production line would be higher then all other extended sequences. Hence,
we would eventually have the most probable extended sequence of product parts
moving on the production line.

5.2.3 Sequence Detection Algorithm

Sequence detection algorithm is divided into three sub-sections. In the data structures
section, we describe all the data structures that are used in the algorithm. Then we
go on to describe the partial sequence detection algorithm and finally we conclude by
explaining the extended sequence detection algorithm.

Data Structures:

• event ei = (oi, pri, ti): Read event ei by pri.
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• eventspri = (e1, e2, ... en): Set of read events of pri.

• eventsvri = (e1, e2, ... em): Set of read events at vri.

• productpart oi = (oi, ttl): Product part oi is associated with its id and a time to
live ttl variable.

• Product part list PPL = (o1, o2, ... on): Product part list contains all the product
parts detected at the vri.

• Partial sequence psi = ((oi < oj), events, p(psi), ttl): Each partial sequence
psi contains a partial sequence of the form (oi < oj), the events that led to the
detection of the partial sequence, the probability with which the partial sequence
was detected and a time to live ttl variable that shows how recently the sequence
was detected.

• Partial sequence list PSL = (ps1, ps2, ... psn): Partial sequence list PSL contains
all the partial sequences ps detected at the vri.

• Extended sequence esi = ((oi < oj < ok... < on), PSLe, p(esi), ttl): Each
extended sequence esi contains the extended sequence, the partial sequences ps
that led to the deduction of the extended sequence stored in PSLe, the probability
with which the extended sequence was detected and a time to live ttl variable for
the extended sequence.

• Extended Sequence List ESL[n] = (es1, es2, ... esm), where n denotes the length
of the extended sequence: Extended sequence list ESL contains all the extended
sequences that were detected at the vri. We maintain a separate extended se-
quence list for sequences of a specific length. As an example, extended sequences
of length 3 would be stored in ESL[3], where as extended sequences of length 4
would be stored in in ESL[4]

Partial Sequence Detection:

The sequence detection algorithm runs on the vrs. After every read event e by a pr,
we try to determine the partial sequence ps of the product part o that was read. If a
ps is deduced, we compute the probability of the ps and try to extend the ps to create
an es. The es is also assigned a probability.

Partial sequence ps detection involves detecting sequence duplets of the form (oi < oj).
A ps is detected using the following three rules:

1. Rule 1: If pr detects a product part oi at time ti and then detects product part oj
at a later time ti+k, then oi is ahead of oj on the production path, i.e. (oi < oj).

2. Rule 2: If pri is deployed before prj on the production path i.e. (pri @ prj), then
a product part oi detected by prj at time ti is ahead of product part oj detected
by pri at the same time ti, i.e. (oi < oj).
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Algorithm 1 Partial Sequence Detection Algorithm

1: Let ei = (oi, pri, ti) be a read event detected at vri
2: PPL;
3: PSL;
4: ESL;

5: while pri detects oi do
6: ps = PartialSequenceDetection(oi);
7: end while

8: for function ps PartialSequenceDetection(oi) do

9: if oi != new productpart then
10: PPL.oi.ttl == 1;
11: else {oi == new productpart}
12: oi.ttl == 1;
13: eventspri ← oi;
14: PPL ← oi;
15: Detect partial sequence ps using sequence detection rules

16: if partial sequence psi is deduced then
17: if psi == new sequence then
18: psi.ttl == 1;
19: psi.p(ps)← ComputePSProbability(psi);
20: PSL ← psi;
21: return psi;
22: else {sequence psi != new sequence}
23: there exists a PSL.psh such that PSL.psh == psi;
24: PSL.psh.ttl == 1;
25: PSL.psh.o1.addevents(psi.o1.readevent);
26: PSL.psh.o2.addevents(psi.o2.readevent);
27: PSL.psh.p(ps) ← ComputePSProbability(psh);
28: return PSL.psh;
29: end if
30: end if
31: end if
32: end for

33: for function p(ps) ComputePSProbability(ps) do
34: p(ps) = (1− [(1− p)ps.neo1 + (1− p)ps.neo2 − (1− p)ps.neo1+ps.neo2 ]);
35: return p(ps);
36: end for
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3. Rule 3: If pri is deployed before prj on the production path i.e. (pri @ prj), then
a product part oi detected by prj at time ti is ahead of product part oj detected
by pri at a later time ti+k, i.e. (oi < oj).

Whenever a product part oi is read by pri, it is placed in the respective eventspri . The
product part oi is also added to the product part list (PPL). Each product part has an
associated time to live (ttl) variable, which shows how recently the product part was
detected. Whenever a product part is detected its ttl is refreshed and set to ’1’. This
ttl is then decreased over time. If the product part is not detected again before its ttl
becomes 0, it is removed from the PPL. If the product part is detected before its ttl
becomes 0, its ttl is refreshed to ’1’ once again. (cf. Algorithm 1 line 8-14).

For every read event of a product part, we try to deduce the partial sequence ps of
the product part with the previously detected product parts using the rules discussed
above.

Each deduced partial sequence (oi < oj) is associated with an event list that contains
the read events that led to the deduction of the ps, along with the probability with
which this partial sequence was deduced and a time to live ttl variable that shows how
recently the ps was deduced. So basically we have two ttl variables, one associated with
product parts and the other with the deduced partial sequences. Once a ps is detected,
it is added to the partial sequence list (PSL), which contains all the ps detected at a
vr. (cf. Algorithm 1 line 15-21).

If the newly read product part is already present in the PPL, the ttl of the product
part is refreshed to ’1’ (cf. Algorithm 1 line 9-10). Similarly if the deduced ps is already
present in the PSL, the ttl of the ps is refreshed to ’1’. In addition to this the events
that led to this recent deduction of the ps are added to the event list of the ps, and
the probability of the ps is re-computed (cf. Algorithm 1 line 22-32).

The probability of a partial sequence (o1 < o2) is computed as:

p(ps) = 1− [(1− p)neo1 + (1− p)neo2 − (1− p)neo1+neo2 ]

where neo1 is the number of read events for o1 and neo2 is the number of read events
for o2. As long as at least one read event for o1 and one read event for o2 is correct,
we can make a statement about the partial sequence (o1 < o2). Only if, either all read
events for o1 are incorrect (1− p)neo1 or all read events for o2 are incorrect (1− p)neo2 ,
we cannot derive a sequence. In order to not count the incorrect read events twice,
we subtract (1 − p)neo1+neo2 . This gives us the probability that of no correct reading
for (o1 < o2). Subtracting this probability from 1 gives us the probability of all the
cases where at least one correct reading for o1 and at least one correct reading for o2
is included in the set of readings.

A product part oi is removed from PPL if it times out, i.e. if its ttl becomes 0. Once
a product part oi is removed from the PPL, all the ps in which product part oi was
participating are also removed from the PSL. In addition to this, a ps is also removed
from the PSL, if it times out, i.e. if the ttl of the partial sequence ps becomes 0.
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After every cycle, a vri sends its PSL to vri+1. Upon receiving the PSL from vri−1,
vri merges the PSL of vri−1 with its own PSL. The ps deduced at vri−1 that are not
deduced at vri as yet are discarded because the PSL of vri should only contain the
ps deduced within the vicinity/range of vri. The ps deduced at vri−1 that are also
present in the PSL of vri are merged together by combining the event lists of the two
ps, re-computing their probability and setting the ttl of the ps to the recent value.

Extended Sequence Detection:

Whenever a ps is added to the PSL, we try to extend it to create an extended sequence
es. Partial sequences can be extended if they are transitive i.e. for ps (oi < oj) and
(oj < ok) we can create an extended sequence es (oi << ok) = (oi < oj < ok) (cf.
Algorithm 2 line 18-34).

Upon determination of transitivity in partial sequences, the extended sequence es is
added to the extended sequence list (ESL). Whenever an extended sequence is updated
as a result of transitivity determination, we compare it with all the other extended
sequences within the ESL to determine if a transitivity relationship now exists between
this recently updated extended sequence and the other extended sequences in the ESL.
If transitivity is determined between two es, they are removed from the ESL and the
new es created by extending the two transitive extended sequences is added to the
ESL (cf. Algorithm 2 line 3-16).

The PSL can contain non-unique partial sequences of the form (oi < oj) and (oi < ok).
However, once transitivity is determined between (oi < oj) and (oj < ok), the partial
sequence (oi < ok) is removed from the PSL. Whenever a ps is removed from the PSL
as a result of being timed out or determination of non-uniqueness, all the es containing
the ps are also removed from the ESL.

Each extended sequence list (ESL) has an order denoted as (ESL[n]), where [n] depicts
the length of the sequences stored in that particular ESL. As an example (ESL[3])
will only contain extended sequences of length 3, where as (ESL[4]) will store extended
sequences of length 4. When a new extended sequence is created, it is stored in the
ESL corresponding to the length of this new extended sequence.

An extended sequence list (ESL[n]) of a particular length can contain multiple exten-
ded sequences. As an example consider extended sequence list (ESL[3]) having two
sequences es1 (o1 < o2 < o3) having a probability of 0.9 and es2 (o1 < o3 < o2) having
a probability of 0.5. When an extended sequence list has multiple extended sequences,
the sequence with the highest probability is considered to be the extended sequence on
the production line.

The probability of an extended sequence es of three product parts o1, o2, o3 (o1 <<
o3) = (o1 < o2 < o3) is computed as:

p(es) = 1− [(1− p)neo1 + (1− p)neo2 + (1− p)neo3 − (1− p)neo1+neo2 − (1− p)neo1+neo3 −
(1− p)neo2+neo3 − 2 ∗ (1− p)neo1+neo2+neo3 ]
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Algorithm 2 Extended Sequence Detection Algorithm
1: PSL;
2: ESL;
3: for procedure ExtendedSequenceDetection(psi) do
4: while vri deduces a partial sequence psi do
5: for all ps in PSL do
6: if PSL.ps.o2 == psi.o1 then
7: esi ← PSL.ps.append(psi);
8: esi.p(es) ← ComputeESProbability(esi);
9: ComputeESTransitivity(esi);

10: else {psi.o2 == PSL.ps.o1}
11: esi ← psi.append(PSL.ps);
12: esi.p(es) ← ComputeESProbability(esi);
13: ComputeESTransitivity(esi);
14: end if
15: end for
16: end while
17: end for
18: for procedure ComputeESTransitivity(esi) do
19: for every esn in ESL do
20: if ESL.esn.on == esi.o1 then
21: esnew ← ESL.esn.append(esi);
22: ESL.remove(esn);
23: ESL ← esnew;
24: ESL.esnew.p(es) ← ComputeESProbability(esnew);
25: else {esi.on == ESL.esn.o1}
26: esnew ← esi.append(ESL.esn);
27: ESL.remove(esn);
28: ESL ← esnew;
29: ESL.esnew.p(es) ← ComputeESProbability(esnew);
30: else {esi not transitive with any esn in ESL}
31: ESL ← esi;
32: end if
33: end for
34: end for
35: for function p(es) ComputeESProbability(es) do
36: p(es) = 1− [

∑N
i=1(1− p)es.neoi − (

∑N
j=1,k=1(1− p)

es.neoj+es.neok − (N − 1) ∗ (1−
p)

∑N
l=1 es.neol ];

37: return p(es);
38: end for
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where neo1 is the number of read events for o1, neo2 is the number of read events for
o2 and neo3 is the number of read events for o3. As long as at least one read event
for o1, o2 and o3 is correct, we can make a statement about the extended sequence
(o1 < o2 < o3). We can not derive a sequence, if all the read events for o1 are incorrect
(i.e. (1 − p)neo1 ) or all the read events for o2 are incorrect (i.e. (1 − p)neo2 ) or all the
read events for o3 are incorrect (i.e. (1− p)neo3 ).

In order to not count the incorrect read events twice, we would have to subtract the
cases where both the read events for o1 and o2 were incorrect (1− p)neo1+neo2 , the case
where both the read events for o1 and o3 were incorrect (1−p)neo1+neo3 , the case where
both the read events for o2 and o3 were incorrect (1− p)neo2+neo3 and the cases where
the read events for all of o1, o2, o3 were incorrect 2 ∗ (1− p)neo1+neo2+neo3 .

This gives us the probability of no correct reading for (o1 < o2 < o3). Subtracting this
probability from 1 gives us the probability of all the cases where at least one correct
reading for o1, o2 and o3 is included in the set of readings.

Similarly the probability of an extended sequence of n objects (o1 << on) is computed
as:

p(es) = 1− [
∑N

i=1(1− p)neoi − (
∑N

j=1,k=1(1− p)
neoj+neok − (N − 1) ∗ (1− p)

∑N
l=1 neol ];

∀j, k ∈ [1, N ] and j 6= k, and j 6= z where z ∈ [1, j]

5.2.4 Change of Sequence Detection

Product part sequences can change due to human intervention or other mechanical
reasons. The objective of change detection is to reflect changes in deduced sequences
as quickly as possible, once they occur. A sequence can change as a result of product
part removal or sequence reversal. In product part removal scenario a product part is
removed or gets dropped off the production path resulting in (oi < oj) getting changed
to (oi < ok). In sequence reversal scenario a human picks up a product part and places
it ahead or behind other product parts. This intervention results in one or more ps
getting reversed i.e. (oi < oj) getting changed to (oj < oi).

If a product part is removed from the production path, its ttl will decrease over time.
Once the product part times out (i.e. its ttl becomes 0), it will be removed from the
PPL. Once the product part is removed from the PPL, all the ps in which the product
part was participating are also removed from the PSL, along with corresponding ex-
tended sequences from the ESL.

If a sequence is reversed, the old ps will not be deduced again and will time out (i.e. its
ttl will become 0), whereas the probability of the newly deduced ps will increase over
time. Once the old ps times out, it is removed from the PSL and all corresponding es
are removed from the ESL as well.
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Figure 5.2: Simulation Cycle

5.3 Evaluations

In this section, we evaluate the performance of the probabilistic sequence detection
algorithm with respect to the accuracy with which the algorithm detects partial and
extended sequences. Simulations were performed using PeerSim [JMJV09], a large-
scale P2P discrete event simulator.y

5.3.1 Simulation Setup

Accuracy in our context is defined as the number of sequences correctly determined in
the presence of missed readings. Missed readings indicate that a reader is unable to
detect a product part. All the simulations are performed with 8,192 physical readers
prs distributed across 1024 nodes, where each node in our context is a virtual reader
vr. The primary performance metric for the evaluations is the time (in cycles) it takes
for the algorithm to detect a certain percentage of the total deduced sequences with a
probability of 90% or more.

Simulation Cycle: Before moving on to discuss the different evaluations, it is per-
tinent to first describe a simulation cycle. We have already explained in the system
model (cf: Chapter 3.2) that during any production run, the product parts move on
the production lines in a cyclic manner i.e. when a production is in progress a new
product part enters the production line every x seconds. The Peersim simulator can
be operated in cycle or event mode. In the event mode, computations are performed
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whenever an event is triggered, where as in cycle mode, computations are performed
on each an every cycle. All of our experiments in this dissertation have been carried
out on Peersim with the simulator being run in cycle mode.

A simulation cycle in our experiments is the time it take for a product part to move
from one physical reader onto the next. Furthermore, during every cycle the product
parts already on the production line move ahead by one physical reader respectively.
In order to further explain this, lets consider a concrete example. Figure 5.2 shows a
production line with four physical readers deployed on it. Before the simulation starts,
there are no product parts moving on the production line. But as the production run
starts, during the first cycle, product part o1 is in front of physical reader pr1. During
the second cycle, o1 moves forward and is now in front of physical reader pr2, where as
a new product part o2 comes onto the production line and is now in front of physical
reader pr1. Similarly during the third cycle, both o1 and o2 moves forward and a new
product part o3 comes on the production line and is now infront of physical reader pr1.

5.3.2 Impact of Physical Reader Distribution

In this scenario, the impact of distribution of prs within the vrs is evaluated. The read
probability p(e) of each pr is set to 0.7. Figure 5.3(a) shows the performance of the
algorithm, when prs are distributed uniformly amongst the vrs i.e. each vr contains
8 prs, whereas Figure 5.3(b) shows the performance of the algorithm when prs are
distributed amongst the vrs using a Zipf-like distribution with α = 1.0 i.e. 80% of the
prs are distributed across half of the vrs, whereas the remaining 20% of the prs are
distributed across the remaining half of the vrs.

Uniform Distribution of Physical Readers: In uniform distribution scenario (cf.
Figure 5.3(a)), more than 90% of the ps i.e. sequences of length 2 reach a probability of
90% or above in less than 12 cycles. 100% of the ps can never have a probability of 90%
or above because we always have a small percentage of non-unique partial sequences,
which have low probabilities. The percentage of ps having a probability of 90% or
above stablizes at the 90% mark around 50th cycle indicating that the remaining ps in
the system are non-unique partial sequences. The es of length 8 and 16 are detected
late because a new product part enters the production line on each cycle, therefore o16
enters the production line on the 16th cycle. The first es of length 8 and 16 are deduced
with a probability greater than 90% around the 9th and 18th cycle. The es of length 8
has very few deductions after 60th cycle. This is because es of length 8 are consumed
i.e. removed from ESL, since they start participating in the deduction of es of longer
lengths. The longest es in the ESL has a length of 16, this is because earlier objects
get timed out as a result of leaving the vr. Only around 40% of the es in the system
reach a probability of 90% or above. This is in line with reality because unlike ps, only
a few es are probable and only one can exist in reality.
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Figure 5.3: Impact of Physical Reader Distribution
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Zipfian Distribution of Physical Readers: In the zipfian distribution scenario (cf.
Figure 5.3(b)) the probabilities of ps and es are far lower than the uniform distribution
scenario. This is because due to the skew in distribution of prs, some vrs have more
prs than are needed to accurately deduce sequences, while the other vrs may not have
enough prs to accurately deduce sequences.

5.3.3 Probabilistic Detection of Partial and Extended Sequences

Previous scenario (cf. Section 5.3.2) showed that the probabilistic sequence detection
algorithm works better with prs uniformly distributed across vrs. In this scenario, we
keep the distribution of prs uniform across the vrs, and further evaluate the confidence
with which the probabilistic sequence detection algorithm deduce partial and extended
sequences. The read probability p(e) of prs was set to 0.7.

For the partial sequences (cf. Figure 5.4(a)), our algorithm was able to deduce more
than 90% of all ps with a probability of 90% or above. Whereas for the extended
sequences of length 16 (cf. Figure 5.4(b)), the sequence detection algorithm was able
to deduce around 80% of the es with a probability of 50% or above, around 60% of the
es with a probability of 70% or above, and around 40% of the es with a probability
of 90% or above. In other words, as the probability increases, the number of exten-
ded sequences decreases. This is perfectly inline with reality since only one extended
sequence actually exist on the production line.

5.3.4 Influence of Physical Reader Reliability

In this scenario, we evaluated the influence of physical reader reliability on the probab-
ilistic sequence detection algorithm. The prs were uniformly distributed amongst the
vrs and the evaluations were conducted by setting the read probability p(e) of prs to
0.5, 0.7, and 0.9.

For pr accuracy/reliability of 0.7 and 0.9, the sequence detection algorithm was able to
deduce more than 90% of all partial sequences ps with a probability of 90% or above
(cf. Figure 5.5(a)). However, with a pr accuracy/reliability of 0.5, only around 60% of
the ps were deduced with a probability of 90% or above.

5.3.5 Change Induction with Time to Live (TTL)

In this scenario, we have evaluated the ability of the probabilistic sequence detection
algorithm to handle changes in sequences and have also used ttl to time out both the
product parts and the sequences. The evaluations were conducted by setting the ttl to
10, 8, and 6 cycles. The prs were uniformly distributed amongst the vrs and a change
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Figure 5.4: Probabilistic Detection of Partial and Extended Sequences
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Figure 5.5: Influence of Physical Reader Reliability
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is induced on the 100th cycle by removing a product part from the production path to
mimic a product part removal scenario.

When sequences were not timed out (cf. Figure 5.3(a)), the algorithm was able to
deduce more than 90% of the ps with a probability of 90% or above. When the
sequences were timed out (cf. Figure 5.6(a)), the algorithm deduces around 60% of
the ps with a probability of 90% or above for ttl of 6 cycles, around 40% of the ps
with a probability of 90% or above for ttl of 8 cycles, and deduces around 30% of the
ps with a probability of 90% or above for ttl of 10 cycles for product part sequences.
Furthermore, with ttl the longest es is of length 12 (cf. Figure 5.6(b)) instead of 16
(cf. Figure 5.3(a)).

The percentage of ps having a probability greater than 90% has decreased. This is
because due to timing out sequences, the stale but correct ps are quickly removed
from the PSL. Stale ps are those ps that were correct but can no longer be deduced
because their respective product parts have left the vr. The quick removal of stale ps
additionally result in es of lesser lengths.

A good probabilistic sequence detection algorithm would have a large percentage of
ps and a low percentage of es with a very high probability. There can be a lot of ps
because of the large number of product parts moving through the production lines,
therefore a large percentage of ps with a very high probability will indicate that the
system has a high degree of confidence in a large percentage of ps. In contrast with
the ps, there can only be one correct es. Therefore, the percentage of es having a high
probability should always be very low. The removal of stale ps through using time to
live mechanism, results in only around 5% of es having a probability of 90% or above
(cf. Figure 5.6(b)) as compared to around 40% of the es with a probability of 90% or
above when the time to live mechanism was not applied (cf. Figure 5.4(b)).

The probabilistic sequence detection algorithm also handles changes very robustly and
the induction of changes does not have a dramatic affect on sequence deductions. This
is evident from the performance of the algorithm after the 100th cycle (cf. Figure 5.6(a)
and Figure 5.6(b)), when a product part was randomly removed from the production
lines to mimic product part removal scenario.

5.4 Related Work

In this chapter we have proposed an RFID-based data management framework to
track products and product parts in real-time in production environments. Research
work that has previously been done in this area can be broadly divided into RFID
data management frameworks, RFID-based object tracking and RFID deployments in
manufacturing. In order to properly address the topic, the related work has also been
divided into the aforementioned categories.
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Figure 5.6: Change Induction with TTL
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5.4.1 RFID Data Management Frameworks

Since RFID readers can produce a huge amount of data, we need to have sophistic-
ated techniques and/or infrastructure to manage this data. HiFi (High fan-in) sys-
tem [FJK+05] is one such system which consists of a large number of receptors (RFID
sensors) to collect raw data readings. These sensor are deployed at the edge of the
system/network. The data produced by these edge devices is aggregated locally with
data from other nearby devices. The locally collected data is then aggregated within
a larger area, and so on. Data requests within the system are specified by using a
stream-oriented query language. The language is used at each level to query data
flowing from the edges of the network towards the interior of the system. HiFi uses a
five stage process to convert raw receptor readings into useful data. These stages of
processing are cleaning, smoothing, arbitrating, validating and analysing and are col-
lectively termed as CSAVA. CSAVA uses a window of data items to process the data
from each receptor. This windowed-based query processing has inherent delays which
causes a significant data lag from the time when a receptor reads a data value to the
time when data is available at the output.

Another important RFID data management framework is RF2ID (Reliable Frame-
work for Radio Frequency Identification) [AKFR07], which was primarily developed to
address the reliability issues in RFID deployments. The system tries to address the re-
liability issues by deploying multiple RFID readers along the path of object movement.
RF2ID employs an abstraction called the Virtual Reader. Data aggregated by multiple
readers is sent to a certain virtual reader which is responsible for processing this data
and generating a more reliable sensor data from the raw readings. The virtual reader
is able to generate a more reliable sensor data since it has access to redundant RFID
reader data.

WinRFID [PSR+06] is yet another RFID-based middleware framework. The prime
objective of the framework is to have extensibility and scalability for RFID data man-
agement. The system has divided RFID related management tasks into five separate
layers : RFID hardware, protocols, data processing, XML framework and data repres-
entation. The RFID hardware layer is responsible for managing physical hardware like
readers, tags, and other sensors. The protocol layer deals with reader-tag protocols.
The data processing layer deals with the processing (filtering, aggregating etc) of the
data streams generated by the RFID readers. The raw tag data from the physical
layer data stream can be formatted in a variety of ways to a high-level XML based
representation. These formatting tasks are performed at the XML framework layer.
The final data representation layer is responsible for presenting data to be consumed
by different enterprise level applications such as database servers, portals, mobile in-
frastructure etc. In a nutshell WinRFID has tried to incorporate the layered approach
of OSI reference model [Zim80] into RFID data processing so as to have an extensible
and scalable architecture.
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RFID Stack [FL05] is an RFID framework that was designed to address the issue of
restricted bandwidth available to RFID devices. Since RFID data is eventually con-
sumed by a diverse set of applications RFID Stack proposes the use of an event-based
middleware (publish-subscribe system) to decouple RFID readers from applications.
Publish Subscribe systems are broadly divided into two categories: Content-based
publish subscribe systems [CRW01], [JCL+10], [TKK+11], [TKKR12] and Topic-based
publish subscribe systems [BBQ+07], [CMTV07], [MZV07], [CJV10]. Content-based
publish subscribe systems deliver messages to the subscriber if the attributes or con-
tent of those messages match the constraints defined by the subscriber. In topic-based
publish subscribe systems, messages are sent to ”topics” or named logical channels.
Subscribers in a topic based publish subscribe system would receive all messages pub-
lished to the topics to which they subscribe. In addition to this, all subscribers to a
topic will receive the same messages.

RFID Stack uses a content-based publish subscribe system, Elvin [SAB+00] to deliver
messages generated by RFID readers to the subscribed applications. The obvious ad-
vantage of using a publish-subscribe system for RFID data management in RFID Stack
is that RFID readers do not have to track the applications that are interested in a cer-
tain message. Similarly, applications consuming RFID data do not have to maintain
communication channel with individual RFID readers, and can just specify the events
in which they are interested by submitting their subscriptions to the messaging sys-
tem. This results in less bandwidth requirement for disseminating useful messages to
subscribing applications.

Discussion: HiFi (High fan-in) system [FJK+05] was mainly developed to create an
infrastructure to manage huge amount of raw data produced by RFID deployments.
WinRFID [PSR+06] tries to do something similar and has tried to create an extensible
and scalable architecture for managing RFID data. RFID Stack [FL05] on the other
hand was proposed to address the issue of restricted bandwidth available to RFID
devices. The system tries to do that by using a publish-subscribe system to disseminate
RFID events to applications. The main objective of RF2ID however was to address the
reliability issues in RFID deployments specially the ones in logistics and warehousing
domains.

In our work, we have also tried to address the issue of reliability. However, reliability
takes on an altogether new meanings in production environments. In logistics and
warehousing applications, ensuring reliability suffices by ensuring that all the objects
have been accounted for. However, in production environments product parts/objects
should not just be properly accounted for, they should also have a pre-determined
order/sequence and should be present at critical locations at certain defined time-
spans. None of the systems mentioned above accomplishes what is actually the prime
requirement in production environments.
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5.4.2 RFID-based Object Tracking

RFID technology has been used in the industry for robustly tracking the parts or
part carriers during production, storage, distribution and ultimately the supply chain.
Although the technology simplifies the process of object tracking, the unreliability of
RFID devices and tags leads to uncertainty in the location of the objects that are
being tracked. In order to increase the reliability with which objects are tracked,
several methodologies and frameworks have been proposed. In the sections below, we
would take a brief look at some of these frameworks and techniques.

Pradip et al [DBD04] proposed an architecture to track the mobility of physical objects
tagged with RFID labels or EPC codes [Bro01]. RFID readers form the leaves of the
topology. These readers continuously detect RFID tags attached to the mobile objects.
Since a lot of RFID readers are reading the tags, which results in a large data that needs
to be managed, a certain number of RFID readers are assigned to a data routing server
which resides at the next level of the architectural hierarchy. These data servers form
a distributed hierarchical structure amongst themselves for the purpose of managing
the data flow. The job of the data servers is to smoothen and aggregate the data
coming from the RFID readers. In addition to this, these servers which are referred
to as Savants also correct errors introduced during the process of data capture at the
RFID reader level. The Savants themselves are also organized in a tree-like structure,
with the leaf nodes being called Edge Savants and the internal nodes being labelled as
the Internal Savants.

All the information associated with the RFID tag is archived in Physical Markup
Language (PML) [BMKL01] which is designed as a common language for describing
physical objects. A sample PML file contains both static and dynamic data related
to a certain object. These PML files are stored on a specialized server appropriately
named as the PML server. The PML server resides one level above the Savants in
the architectural hierarchy with multiple savants being connected to a PML server.
The static data pertaining to an object would include EPC class-level manufacturer’s
data etc, whereas the dynamic data related to an object would consist of the mobility
information like its location centric data. The static data is stored in a database which
is called Information Database (IDB) whereas the dynamic mobility information is
stored in mobility management registers. Similar to mobile cellular systems, every
EPC is associated with its Home Location Register (HLR) [RR02]. The HLRs are
maintained at the corresponding Home PML of the object and keeps track of all the
pointers to its information database. When an object leaves its current location, its
HLR information which keeps a history of the PML servers visited by the EPC is
updated. The association between the EPC and the HLR is permanent for as long as
the EPC stays within its home. When the EPC is assigned a new Home PML, HLR
of the EPC is changed to the new owner’s HLR.

Similar to the HLR, a dynamically changing Visitor Location Register (VLR) [RR02]
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register is maintained at each PML server. This VLR keeps information about all the
visiting objects. When a new object is detected by an RFID reader, the corresponding
PML Server makes a copy of all the relevant EPC information about this RFID tag
from its HLR at the H-PML and stores it in its local VLR. Typically in an organization,
each PML server would have an associated HLR and VLR.

In order to query information about any object, its H-PML should first be identified.
Due to this reason, there exists a mapping between the IP address of the H-PML
of an object and the EPC of that object. This mapping is performed by an Object
Naming Service (ONS), which is a similar concept to the Internet Domain Name Service
(DNS) [Moc83]. For any information update regarding an EPC, the ONS is queried to
retrieve the IP address of the H-PML after which the update required is sent to the
H-PML.

Yap et al [YSM05] argued that humans are powerful sensors who can better locate
objects based on cues and identifiable landmarks and hence should be involved in the
task of tracking objects. One advantage of bringing humans into the loop is that it
reduces the complexity of the system and eventually results in a simple and scalable
architecture. Yap et al [YSM05] propose a system called MAX in which they assume
that all physical objects can have a wireless tag attached to them, with each tag
containing information about the physical object with which it is attached. These
physical objects can be spread over a vast geographical area, which in turn could be
divided into sub-structures such as rooms, hallways etc which in this work are called
localities.

Within each locality, MAX has a three-tiered architecture which consists of base sta-
tions that are tied to a locality; sub-stations that are mainly tied to static objects (e.g.,
chairs, tables, shelves); and finally the RFID tags that are attached to the physical ob-
jects (e.g., keys, books, phone, documents).

Kumar et al. [KAE00] evaluated two approaches to track objects by attaching net-
working devices to them. The first approach which is referred to as SCOUT-AGG uses
aggregation along with the sensor hierarchy. In this approach the sensors are organ-
ized in an hierarchy such that the higher level sensors have more concise and aggregate
information about the objects sensed by low level sensors. Remote sensors then use
this aggregate information at the high level sensors to direct queries towards the low
level sensors having more precise information about a certain object.

However, the aggregation based approach suffer from inefficiencies due to the fact that
aggregation typically results in a loss of information. As a result of this, a parent sensor
does not know for certain if an object is located in a certain child branch or not and
hence the query has to be forwarded up the hierarchy (until the root) to reach all other
relevant branches as well in order to ensure a response. This issue can lead to flooding
in the worst case.

The second approach uses indirection with the hierarchy and is referred to as SCOUT-
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MAP. In this approach, sensors use a hash function to map an object name to a
sensor address that becomes the locator sensor for the object. This approach was first
presented in Landmark routing by Tsuchiya et al [Tsu88]. The address of the sensor
monitoring the object and the object location is stored at the locator sensor for the
object. Whenever a query is made, it first performs the same algorithmic mapping to
the object name and obtains the locator sensor address. The locator sensor is then
contacted for the object location or for the address of the sensor monitoring the object.

Indirection based approach also suffers from inefficiencies relative to SCOUT-AGG
when either the mobility of objects or network dynamics exceeds a certain threshold.
The locator sensor needs to be updated in SCOUT-MAP whenever the object moves.
Similarly, the excessive rate of network dynamics can also make indirection inefficient
as many objects would have to be re-mapped to different locator sensors after the
topology has been changed.

James Brusey and Duncan McFarlane [BM05] have tried to examine the impact of
RFID technology for part tracking in the industry. They presented an approach to
integrate RFID sensor data with a representation of the state of the manufacturing
system and a model of how that state is changed. The aim of there approach is to
enhance the accuracy with which the parts are identified thereby improving the robust-
ness of the over all manufacturing system. The central idea of the Brusey approach is
that parts are rarely seen in isolation, but often travel together.

A common example that comes to mind is that of pallets and cases containing many
parts that are to be tracked. Two cases on the same pallet will tend to both be detected
by RFID sensors at around the same time. Similarly, the pallet will be detected along
with the two cases. All together they form an aggregate. Aggregated objects provide
an opportunity to improve the reliability of RFID information. The authors developed
a containment relationship, which defines a container and the contained objects. In
the example given above the pallet would be the container and the parts on it would
become the contained parts in the logical model. Once a containment relationship is
established for a certain container and its constituent parts. It is not necessary to
track all the parts and hence tracking the container would lead to the tracking of all
the contained parts.

Wang et al [WLWT07] proposed a system to track objects moving on the assembly
lines. The objective of the work is to find out the location of a specific object on the
assembly line so as to perform some tasks on it. For the system, Wang et al [WLWT07]
deployed a certain number of RFID readers along the assembly lines in a factory. These
readers were interconnected wirelessly to form an RFID grid. This RFID network grid
establishes a monitoring region on the assembly line. Each object, with an RFID tag
attached, moving through this monitoring region will be detected by the readers. Since
each tag has a unique id, the moving objects are thus uniquely identified and located
on the assembly line.

95



5 RFID Based Consistency Management Framework for Production Monitoring

In addition to tracking objects on the assembly line, the authors further employed non-
linear Bayesian tracking method to forecast the object’s moving direction and future
location by recursively calculating the previous probability density function (pdf) of
the tag’s position in the region. This forecasting information can then be used by the
production facility to coordinate its production tools at the location on which it wants
to process the said object.

Discussion: Pradip et al [DBD04] proposed an architecture to track the mobility of
physical objects tagged with RFID labels or EPC codes [Bro01]. The system main-
tains an object naming service similar to how the names are managed by Internet
Domain Name Service (DNS). However, the object tracking concepts used by Pra-
dip et al are similar to the ones used by RADAR [BP00], SpotON [HVBW01] and
LANDMARC [NLLP04]. RADAR recordes and processes signal strength information
at multiple base stations which are positioned so as to provide overlapping coverage in
the area of interest. SpotON uses an aggregation algorithm to perform a three dimen-
sional location sensing based on radio signal strength analysis on the RFID devices.
LANDMARC on the other hand, uses active RFID tags for locating objects inside
buildings. They use reference tags within the building and location of each RFID tag
then is computed with reference to these tags.

Yap et al [YSM05] have argued that humans are powerful sensors who can better locate
objects based on cues and identifiable landmarks. So they have tried to perform object
tracking by having humans involved in the loop. Kumar et al. [KAE00] however have
tried to track objects without having humans in the loop and by using unattended
methods. The approaches presented in SCOUT either use aggregation or maintains
hierarchies to route queries to lower level sensors, which are located near the actual
physical objects.

James Brusey et al [BM05] presented an approach to integrate RFID sensor data with
a representation of the state of the manufacturing system and a model of how that
state is changed. The aim of there approach is to enhance the accuracy with which
the parts are identified thereby improving the robustness of the over all manufacturing
system. Similarly, Wang et al [WLWT07] proposed a system to track objects moving
on the assembly lines. The objective of Wang’s work is to find out the location of a
specific object on the assembly line so as to perform some tasks on it.

Bursey and Wang’s work is highly related to our approach. Bursey [BM05] tries to in-
crease the reliability of detections by forming aggregates and containment relationships
etc. However, what sets us apart is that we have developed a model to assign probab-
ilities to these detections and hence can argue with mathematical precision about the
reliability of our detections. Wang et al has presented a solution to track RFID tagged
objects moving within a certain geographical area. The technique allows knowing the
relative location of objects. Again, this is something that we also try to accomplish.
However, we go a step further and also try to find out if the part is in a correct position
with regards to other moving parts or not i.e. if its in moving through the production
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lines in a correct sequence or not.

5.4.3 RFID in Manufacturing

RFID applications are closely tied to manufacturing executive system which are used
to control the production process. RFID technology may support many of the control
functionality in a manufacturing environment like operation scheduling, labour man-
agement, maintenance management, data collection, quality management and perform-
ance analysis. Some of applications and deployments of RFID technology in manufac-
turing are discussed briefly in this section.

In [BR05a], the authors presented a detailed discussion on applications of RFID in
manufacturing. Major applications include warehouse management, manufacturing
engineering, and mistake-proofing of mixed-flow assembly. The authors also reviewed
a number of internal needs driven applications. Toyota (South Africa) for example has
tagged its carriers to streamline manufacturing and vehicle tracking. The tags are in-
tended to remain with the vehicle throughout its life and hold its maintenance history.
Harley Davidson has implemented process automation by tagging bins carrying parts
to provide instructions to employees at each stage of the process. Johnson Controls
has started using RFID to track cars and truck seats throughout the assembly process.
TrenStar tracks their beer kegs to improve demand forecasts and increase efficiency. In-
ternational Paper tracks their paper roll to reduce lost or misdirected rolls. Gap tracks
its denim apparel to improve customer service through better inventory management.
Raxel has started tagging reusable plastic biohazard containers to avoid contamination.
Michelin on the other hand tags its tyres to comply with the TREAD act and recall
management. All the RFID deployments mentioned above were carried out in order
to improve shop floor inventory tracking and automate warehouse operations.

Automobile manufacturers have also successfully deployed RFID based systems in their
production facilities. As an example Ford Motor Company uses RFID technology at
its automated production lines in Cuautitlan, Mexico in order to improve product
quality [Joh02]. The Cuautitlan facility produces 300,000 to 400,000 cars and trucks
each year. Each of these vehicles are built using just-in-time assembling where suppliers
supply parts on an as-needed basis. Due to this, it is crucial that the inventory and
production in the plant are precisely tracked.

Prior to the deployment of RFID technology, Ford used a manual coding system to
track automobile and truck frames as they went through the final assembly, paint and
body shop areas of the production line. However, manual tracking was ineffective due
to frequent errors and costs associated with resulting production oversights.

With the RFID technology deployed, an RFID tag is placed on a vehicle skid, and then
programmed with a serial number that is used to reference the vehicle in Ford’s oper-
ating system. As a vehicle passes through the different stages of production, different
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parts of the 23 digit serial number are referenced, indicating what needs to be done at
each station. The manual system required an identification sheet to be manually up-
dated at each step, whereas with the RFID deployment the updates are automatically
written to the tag. In this way, the risk of operator errors in updating the sheets to
determine what needs to be done is totally eradicated.

BMW and Vauxhall [BL97], [ZGP04] have also made use of the RFID technology to
accurately customize the cars according to the customer specifications. A read/write
smart RFID tag is programmed with the customer specification and is then placed on
the car. The tag moves with the car during the production process and at each step
is read to determine exactly what needs to be done and which equipment needs to be
fitted into this specific car. This tracking ensures that the car is manufactured with
the correct color, model, interior, and other user specifications.

Similarly [VPR09] has also inspected several applications of RFID in manufacturing
and explored their perceived benefits in the field. The inspected applications spanned
areas as diverse as production activity control, inventory management, quality control,
plant maintenance, and tracking new product development.

Zhekun et al [ZGP04] have presented the concept of having smart and intelligent parts
in the production environments. The idea is that each part should be smart in a
sense that it should have a unique itentity and be able to communicate with other
parts and production tools for flexible manufacturing. In addition to this, the authors
have also presented the notion of concurrent intelligent manufacturing [LLGF08]. The
idea behind concurrent manufacturing process is that it would be a process in which
both the design of the product and its manufacturing run concurrently. The design in
this scenario does not indicate the design of each individual part, but rather entails
the specification of the specific parts that should be used for the manufacturing of
the overall product. In this scenario the customer typically acts as the designer and
indicates the specifications of the product. The idea is that the customer specification
should be programmed on an RFID tag that should then be read at each stage of
assembly to determine what tasks need to be performed. If during the manufacturing
the customer decides to change his/her specification, the tag information should be
updated accordingly. Since, each assembly point carries out the processing after reading
the RFID tag, the updated specification would ultimately result in a modified product.

Tan et al [TWLW08] developed an RFID based stacking and sorting system for a
Tobacco manufacturing plant. The system uses RFID readers deployed along the
production line. These readers are connected to the control machines (e.g. sorting and
stacking machines) in the plant. An RFID tag is attached to each cigarette box and
contains information about the box such as the brand of cigarettes and how it should
be handled and stored. An RFID reader, reads tags on the cigarette boxes moving on
the line and sends this information to a sorting controller which in turn determines
where to route the box. A stacker crane robot stacks the forwarded boxes on pallets
according to their brand. Pallets also have RFID tags. At the end of the assembly
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line another RFID reader updates the RFID tags on the pallets to contain information
regarding what type of cigarette boxes are contained within each specific pallet. The
authors also conducted a comparative study with the existing barcode based system.
The study concluded that the RFID based system enhances time management and
reduces the number of damaged products because it does not need manual scanning of
tags. In addition to this, the higher memory of RFID tags results in a more efficient
management of the products in the warehouse.

Fagui et al [LM06] developed an RFID based Activity Monitoring System (RAMS) for
a bath-tub manufacturing plant. The plant produces two types of bath-tubs a normal
and a specialized one. Each of these tubs has a different production plan. Customers
can give their preferences when ordering the special bath-tub. The system tracks the
activity being performed at each step. This activity monitoring results are then used
by managers to follow up with the orders for each specialized bath-tub. Through the
deployment of this system, the authors have tried to rectify some commonly occurring
problems such as: missing components, workers moving products to the wrong place
or forgetting to move them to the desired location on time. The deployment of RAMS
resulted in a 5% increase in the service level of the plant and a 1.5% annual increase
in sales. In addition to this, it resulted in a 60% reduction in delayed production and
subsequently accounted for a 0.5 million US dollar reduction in the inventory costs per
annum.

Latham et al [LWG08] have presented an RFID based time tracking system for moisture
sensitive devices that was deployed at Universal Avionics. In the production of avionics
systems and equipments, Universal Avionics uses Moisture Sensitive Devices (MSD).
The exposure time of these devices and components should be accurately tracked so
that the operators can be notified when the moisture from the air has accumulated to a
critical level. A part that accumulates more moisture then is desirable would ultimately
cause a critical part failure later on in the manufacturing process, and hence would
result in a loss of time and resources. The system developed by Latham et al tracks the
time period during which trays containing MSDs are exposed to open air. Each tray
is attached with an RFID tag. When a tray comes in i.e. is read by the RFID reader,
the system starts logging its exposure time. The system generates a warning message
when the exposure time is about to reach the maximum threshold limit. This notifies
the operators to take preventive measures. Prior to this, Universal Avionics managed
this activity manually, whereby the workers would record the time on sheets and would
then perform manual calculations to find out the exposure times. This manual process
consumed 3 hours of an employee each day.

Working worker assembly island is a form of manufacturing in which the products and
their sub-parts are placed at fixed positions on the shop floor while the workers move
from one place to another to carry out the production process. During production,
tools and product parts are brought to the work center for the assembly according to
the production plan. In order to carry out the assembly process efficiently workers need
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to know about the position of tools and parts with accuracy and tools and parts should
also be at the destined positions. In their work Huang et al. [HZJ07], [HZJ08] have
presented a system that tags production tools and parts with RFID tags and provides
real-time information about the location of the required tools on the shop floor.

Bauer et al [BJS04] conducted a study which showed that the development of the ratio
of mobile resources to machines almost doubled over the last 20 years. This is a result
of the high degree of individualization in capital goods manufacturing which is often
coupled with a frequent changing of machinery settings and customized tools during
production. Such a process quickly becomes non-transparent and hard to manage.
Due to this reason, production planning based on current and exact information has
become a central element of success for factories with high demands in productivity
and flexibility. The central idea of the study is that capital goods manufacturers would
benefit a great deal by incorporating RFID-based production tracking within their
factories.

Similarly, Harun et al [HCW08] have presented a theoretical model and a generic
RFID framework to build an RFID-enabled aerospace manufacturing environment.
Their work is a step towards filling the gap between the physical flow of object in
the aerospace manufacturing and their planning in the virtual world. According to
the authors, an RFID based monitoring framework would enable airline manufacturers
to better plan and control production, maintain product traceability, have inventory
visibility and enhance labor productivity in addition with fulfilling a lot of regularity
requirements.

Discussion: Baudin et al. [BR05a] presented a detailed discussion on applications of
RFID in manufacturing. Some of the major applications that they discussed include
warehouse management, manufacturing engineering, and mistake-proofing of mixed-
flow assembly etc. Similarly, automobile manufacturers have also successfully deployed
RFID based systems in their production facilities. Prominent examples include the use
of RFID technology at Ford plant in Cuautitlan, Mexico [Joh02] and the use of RFID
technology by BMW and Vauxhall [BL97], [ZGP04] to accurately customize the cars
according to the customer specifications.

In addition to this, Tan et al [TWLW08] presented a solution that used RFID tech-
nology to perform automatic stacking and sorting in a Tobacco manufacturing plant.
Fagui et al [LM06] developed an RFID based Activity Monitoring System (RAMS) for
discrete manufacturing. While Latham et al [LWG08] developed an RFID based time
tracking system for moisture sensitive devices for Universal Avionics.

All the applications discussed thus far, primarly deals with tracking or performing
simple checks on products using RFID technology, where the primary goal is to improve
productivity by eliminating manual labour and increase productivity by decreasing the
number of errors that are made during production. However, none of the systems
or deployments deal with the inherent unreliable nature of RFID technology and do
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not present any solution to increase the accuracy of the RFID deployments in the
production environments. The primary difference between our system and the ones
discussed above is that we have developed a comprehensive probabilistic algorithm
that assigns probabilities to each of the detected part and the sequences and hence
provides a measure of accuracy for each detection.

In addition to the systems that have already been developed and deployed, we also took
a look at some proposed solutions. As an example, Bauer et al [BJS04] suggested that
mobile computing can be used in production environments to track product parts and
tools and hence can provide great advantages in tracking men and materials. Harun et
al [HCW08] have presented a theoretical model and a generic RFID framework to build
an RFID-enabled aerospace manufacturing environment. Both of these works, do not
present a concrete implementation and primarily focus on discussing the advantages of
having RFID deployments in manufacturing environments.

5.5 Summary

In this chapter we have presented the Consistency stack, which divides the consistency
issues into separate layers. These layers address inconsistencies that may arise due to
the unreliability of RFID devices and issues in production environments due to variant
production. We have also presented a real-time production monitoring framework
that uses a probabilistic model to ensure reliable real-time production monitoring. A
sequence detection algorithm is also presented that attaches probabilistic guarantees
to the object sequences detected by the RFID readers.

Our evaluations show that our framework performs better when the prs are uniformly
distributed across the vrs. In addition to this the sequence detection algorithm is
able to detect extended sequences with more than 90% probability even when the
accuracy/reliability of the prs is only 70%.

101





Chapter 6
Self-Calibration of RFID Reader Probabilities in a

Smart Variant Production Environment

Accuracy and precision is of utmost importance in manufacturing environments. One
of the major stumbling blocks for RFID deployments in manufacturing industry is the
inherent unreliability of the RFID technology. In the previous chapter, we proposed
an RFID-based framework that uses multiple RFID readers deployed on the produc-
tion lines to monitor product parts and product part sequences. The basic idea of the
approach was to detect product parts reliably using unreliable RFID readers. Redund-
ancies in the deployment of RFID readers were exploited to increase the confidence in
the detected sequences.

A short coming of the initial approach is that we assume that RFID readers would have
fixed probabilities of correct readings which are known a priori. This has nothing to
do with reality, since the hard fact is that the reliability of an RFID reader is dynamic.
In addition to this the actual reliability of the RFID reader can be different from the
reliability guarantees provided by the reader manufacturer depending on the deploy-
ment setup. In order to overcome these issues, we propose an efficient and scalable
self-calibration algorithm in this chapter that dynamically updates the probabilities of
RFID readers. This ensures that the probabilities of RFID readers reflect the current
conditions at all times, and hence the detections of a faulty reader has a minimalistic
effect on the overall performance of the real-time monitoring of product parts. We
have conducted simulations to evaluate the probability self-calibration algorithm un-
der different settings. The evaluations show that our algorithm is able to estimate the
probabilities of physical readers with an accuracy of more than 90% even for physical
readers having reliability as low as 70%.

The rest of the chapter is structured as follows. An extension of our system model is
discussed in Section 6.1. In Section 6.2 we formally discuss the problem that we want
to solve. Section 6.3 presents the probability self-calibration algorithm. Section 6.4
discusses the evaluations, followed by a review of related work in Section 6.5. Finally,
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Figure 6.1: System Deployment

we conclude the chapter with a short summary in Section 6.6.

6.1 System Model Extension

The system model has already been described at length (cf. Chapter 3). However, the
few additions that were necessary for the physical readers prs to self-calibrate their
sensing probabilities are discussed below:

Virtual Readers: Virtual readers, denoted as vrs, represent an abstraction of phys-
ical readers. Each pr is connected to exactly one vr. The one change from the system
model discussed earlier (cf. Chapter 3) is that the communication between vrs is now
bi-directional i.e. each vr both sends and receives information to/from its predecessor
vri−1 and successor vri+1. Figure 6.1 shows this modification. The vrs are respons-
ible for detecting different failures which are detailed in the RFID reader errors (cf.
Chapter 3.4). In addition to this, the vrs also compute and continuously re-configure
the probabilities of RFID readers.

Each vr also has access to two global variables, planned product part order PPOpln and
actual product part order PPOact. PPOpln contains the list of all product parts and
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the order in which they are suppose to move on the production line. This product part
order is planned during production planning and has already been discussed extensively
(cf. Chapter 4). In the beginning the PPOact contains the same product part order as
PPOpln. However, over time PPOact reflects the actual order of product parts moving
on the production lines.

We have already designed a sequence detection algorithm (cf. Chapter 5.2) to detect
the actual product part order from a set of RFID readings. Therefore, we would assume
that PPOact contains the exact order in which product parts are moving across the
production lines at all times.

6.2 Problem Statement

The goal of our algorithm is to eliminate RFID based sensing errors in order to have
an accurate model of the physical world. To achieve this goal, we use a probabilistic
model which is discussed below:

Every pr has an associated probability p(pract), which reflects the supposed reliability
of the pr, and an estimated probability p(prest), which contains the probability of the
pr as estimated by our algorithm (cf. Section 6.3.3). The probability of read event p(e)
is the probability with which product part o was correctly detected by pr. For any
read event e, p(e) = p(prest).

In reality, the probability of a pr depends on various pr properties and its deployed
environment. For instance, p(pract) is influenced by the type of the reader, the orienta-
tion of the reader’s antenna and the RFID tag that is being read, and so on. Therefore,
each reader has an individual probability which is hard to know a-priori. Our goal is to
develop a self-calibrating system that estimates and adapts p(prest) during production
monitoring.

6.2.1 Physical Changes on Production Lines

Physical changes on the production lines are deviations from PPOpln as a result of
factors such as human intervention, and mechanical failures etc. These deviations result
in contradictory readings, which have to be distinguished from erroneous reads/RFID
reading errors.

Contradictory Readings: Contradictory readings are readings that are categorized
as RFID errors (cf. Chapter 3.4) by the system when in fact they depict the true
reality of the physical world. Contradictory readings occur due to physical changes
on the production lines. Changes can occur due to product part removal such as
(oi < oj < ok) getting changed to (oi < ok), product part insertion such as (oi < oj)
getting changed to (oi < om < oj) or change in product part order such as (oi < oj)
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getting changed to (oj < oi). The net effect of all three types of changes is a change
in the partial sequence ps. So in case of change in product part order from (oi < oj)
to (oj < oi), the production monitoring system might assume that the new reality
(oj < oi) is merely a false reading by some physical readers and hence would categorize
such readings as false readings.

In variant production, product parts need to move through production lines in pre-
defined order so that they can be correctly assembled with their corresponding parts.
Changes in partial sequence ps would result in inconsistent final products and hence
are not desirable. The goal of detecting physical changes is to detect inconsistencies
between physical world and the production plan. Detection of RFID reader errors is
required to accurately detect physical changes since an inaccurate model of the physical
world would make it impossible to make correct assumptions about inconsistencies
between the physical world and the production plan. It is worth noting that the effect
of a physical change and an RFID reader error might at first look similar w.r.t the
detected read event. For instance, an out of order read may initially look similar to a
physical change of product part order. Therefore, we need algorithms to distinguish
between RFID reader errors and contradictory readings.

6.3 Self-Calibration of RFID Reader Probabilities

In this section we present concepts for the self-calibration of physical reader probab-
ilities. First we provide an overview of our algorithm (cf. Section 6.3.1). Then we
discuss the detection of possible partial sequences (cf. Section 6.3.2). After that we
describe the actual probability calibration algorithm (cf. Section 6.3.3) and in the end
we explain the process of change detection (cf. Section 6.3.4).

6.3.1 Overview

In this section we will give a brief overview of our approach. The basic steps of our
algorithm follows:

1. Detect possible partial sequences ps. The outcome of this step are multiple
possible ps which are stored in a global partial sequence list PSLg, which contains
all the possible ps deduced by our system. Unlike the PSL introduced in the
previous chapter, PSLg is a global list and contains the partial sequences detected
throughout the system i.e. by all virtual readers. Where as PSL contained partial
sequences detected at a particular virtual reader.

2. For each ps, calculate p(ps) which is a probability for ps being the correct se-
quence. p(ps) is calculated from the probabilities of associated read events that
participated in the detection of ps.
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3. Determine the most probable partial sequence psmp amongst the different conflict-
ing ps in PSLg. If there are two conflicting ps, psi (oi < oj) and psj (oj < oi) with
p(psi) being 0.9 and p(psj) being 0.81, psi will be considered as the most prob-
able partial sequence psmp. If a partial sequence ps does not have any conflicting
ps, it is automatically considered as the most probable partial sequence psmp.
So in a nutshell, all unique partial sequences are considered as psmp, whereas in
case of non-unique partial sequences, the sequence with the highest probability
is considered as psmp. We assume that psmp reflects reality, which is a reasonable
assumption if many redundant readings have been considered.

4. Calibrate the probability of each individual RFID reader by finding out how
many correct and incorrect readings it has made. This is done by comparing
the read events of a pr with all the psmp within PSLg. Every reading that is
not consistent with the most probable partial sequence psmp is considered an
incorrect reading. In order to distinguish between correct and incorrect readings,
we consider different possible RFID reader errors(false, out of order, and missed
readings).

6.3.2 Probabilistic Partial Sequence Detection

The process of calibrating RFID reader probabilities involves three steps:

1. Detection of possible partial sequences.

2. Determination of most probable partial sequences

3. Self-Calibrating the probabilities of RFID readers.

Step 1: Detection of possible partial sequences was the topic of sequence detection
algorithm and has already been discussed at length in the previous chapter (cf: Chapter
5.2). Step 2 is a very simplistic task in which all the unique partial sequences are tagged
as psmp, whereas in case of non-unique partial sequences, the partial sequence with the
highest probability is tagged as psmp. The third step, self-calibration of RFID reader
probabilities is the most important part of this chapter and is described at length in
the subsequent section (cf. Section 6.3.3).

6.3.3 Self-Calibration of RFID Reader Probabilities

The core idea of the probability self-calibration algorithm is to detect the RFID reader
errors and physical changes and dynamically update the estimated probability p(prest)
of a pr to reflect the reliability of that pr at a particular instance of time. The probab-
ility p(e) of a read event e is dependent on the probability p(pr) of the pr that detected
the event. In other words p(e) = p(pr). Therefore any inaccuracy in the probabilities
of prs will induce errors in probabilities of the detected events. In order to have correct
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and accurate probabilities of read events the probability of prs should be calibrated
over time.

We have already mentioned that for the purpose of our algorithm we would assume the
probability of the read event e to be equal to the estimated probability p(prest) of the
physical reader pr i.e. p(e) = p(prest). The idea behind this is that since we would be
continously calibrating the estimated probability p(prest), the probability of the read
event p(e) would at all times reflect the real probability of the physical reader and not
some factory assigned value.

The PSLg is a probabilistically ordered list, such that if there are two conflicting ps
(oi < oj) and (oi < ok), the ps with the higher probability would be stored above the
other one. Furthermore, the more probable partial sequence psmp would be assumed
to be the actual partial sequence on the production line.

The estimated probability p(prest) of a pr is computed as:

p(prest) = (productparts− errors)/productparts;

where productparts is the total number of product parts that passed through the
physical reader pr on the production line, and errors is the sum of all errors committed
by the pr, i.e., errors = n(missed reads) + n(false reads) + n(out of order reads) (cf.
Algorithm 3 line 26-29). p(prest) is re-computed whenever a product part is detected
or is categorized as a false, missed or out-of-order read.

We do not consider duplicate readings since a duplicate does not carry additional
information. We filter out duplicate readings in a pre-processing step by aggregating
directly succeeding read events of a product part o by a pr into one read event for
the product part o. Furthermore, we do not have to distinguish between the different
types of errors in this formula, as we have already explained that we can only make a
statement about the order of two product parts if at least two read events are correct.
An incorrect event cannot be used to determine the true order since any kind of error
(false, out of order, missed reads) will invalidate the partial sequence ps.

False Reading Detection Whenever a read event ei = (oi, pri, ti) is detected by a
pri, we compare oi with PPpln, which is a list that contains all the product parts that
are planned to pass through this production line to determine if oi was supposed to
pass through this line. If oi is not a part of PPpln, we compare the partial sequence
psi (oi−1 < oi) detected at pri with all the partial sequences in PSLg. In case psi
(oi−1 < oi) is not psmp in PSLg i.e. there exists psj that contradict partial sequence
psi and have a higher probability, oi is categorized as a false read. psi (oi−1 < oi) is
inserted into the FPLpri , which is a list that contains all the falsely detected partial
sequences by pri. After adding the ps to the FPLpri , p(prest) of pri is recalculated (cf.
Algorithm 3 line 14-23).

To explain this intuitively, if we have two partial sequences psi (oi−1 < oi), and psj
(oi−1 < oj) with probability of psi being 0.8 and probability of psj being 0.9, then psi
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Algorithm 3 Probability Self-Calibration Algorithm

1: Let ei = (oi, pri, ti) be a read event detected at vri

2: DPLvri = oi
3: DPLpri = oi

4: if oi ∈ PPpln then {oi not a false read}
5: if ((oi−1 < oi) ∈ PSLg AND(oi−1 < oi).probability > (oi−1 <

any)AND(oi−1 < oi).probability > (any < ppi)) then
6: oi not an out-of-order read
7: for all prn ∈ vri where n=0 to i-1 do
8: if ¬oi ∈ DPLprn then {prn missed to detect oi}
9: MPLprn = oi
10: trigger estimateProbability(prn)
11: end if
12: end for
13: else {oi is Out-of-Order Read}
14: OOPLpri = (oi−1 < oi)
15: trigger estimateProbability(pri)
16: end if
17: else { oi not in PPpln }
18: if ((ppi−1 < ppi) is most probable ps ∈ PSLg) then
19: for all prn ∈ vri where n=0 to i-1 do
20: if (oi−1 < oi) ∈ FPLprn then
21: remove oi from FPLprn
22: trigger estimateProbability(prn)
23: end if
24: end for
25: else { oi is a false read }
26: FPLpri = (oi−1 < oi);
27: remove oi from DPLvri ;
28: trigger estimateProbability(pri)
29: end if
30: end if

31: if ((oi−1 < oi).probability < psconflicting.probability) then
32: trigger ChangeEvent (PSLg, vri−1, psconflicting)
33: end if

34: for procedure estimateProbability(pri) do
35: productparts = n(DPLpri) + n(MPLpri)
36: errorspri = n(MPLpri) + n(FPLpri) + n(OOPLpri)

37: p(priest) =
productparts−errorspri

productparts
38: end for
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can not be the correct partial sequence. This further tells us that product part oi can
not be behind product part oi−1. Furthermore, since oi is not in PPpln, it was never
supposed to be on this production line and hence is a false reading.

Out of Order Reading Detection Once we have determined that oi is not a false
read, we try to figure out if pri has detected oi in the correct order. In order to
determine this we compare psi (oi−1 < oi) with PSLg. If psi (oi−1 < oi) is found to
have a higher probability then any partial sequence having oi−1 as the first part in
the sequence or oi as the later part in the sequence, then (oi−1 < oi) is not an out-
of-order read. However, if (oi−1 < oi) is a partial sequence with a lower probability
as compared to its conflicting partial sequence we insert it into out of order parts list
OOPLpri , which contains all the partial sequences that were deduced as a result of
out of order reads by pri. The p(prest) for pri is also recalculated at this time (cf.
Algorithm 3 line 5-13).

In order to further elaborate this, lets assume that pri has detected a partial sequence
psi (oi−1 < oi) and the probability of psi is 0.7. Lets further assume that we have
another partial sequence psj (oi−1 < oj) in PSLg such that the probability of psj is 0.9
and hence psj is currently the most probable partial sequence. Since, we have already
eliminated the possibility of product part oi being a false reading, the only possibility
is that the physical reader pri has detected oi out of order. In other words if there
exists a conflicting partial sequence psj having a higher probability, then psi is an out
of order partial sequence.

Missed Reading Detection Once we have eliminated the possibility of oi to be a
false positive (false read, out of order read), we try to determine if there exist some
prs that missed out on detecting oi. This is done by comparing oi with DPLpr of the
prs that are deployed before pri to find out if they have also detected oi. If oi is not
already present in a particular pr’s detected parts list (say DPLprh), it is placed in the
missed parts list MPLprh , which is a list that contains all the product parts that prh
failed to detect. The p(prest) for prh is also recalculated (cf. Algorithm 3 line 8-10).

6.3.4 Detection of Physical Changes

The objective of the probability self-calibration algorithm (cf. Section 6.3.3) is to detect
how many correct and incorrect readings a physical reader has made and then reflect
this in the probability of the respective physical reader. However, we have already
mentioned before (cf. Section 6.2.1) that the physical changes on the production lines
are initially similar to incorrect readings. Due to this the probabilities of readers that
detect physical changes are at first penalized incorrectly. In order to rectify this issue,
it is important to detect physical changes. In this section, we will analyse different
classes of physical changes to see which ones are actually critical, and how they can be
distinguished from RFID reader errors.
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Algorithm 4 Change Detection Event

1: for upon event ChangeEvent(PSLg, vri+1, psconflicting) do
2: for all prn ∈ vri do
3: for all ps ∈ FPLprn do
4: if (ps == psconflicting) then
5: remove psconflicting from FPLprn

6: trigger estimateProbability(prn)
7: end if
8: end for
9: for all pso ∈ OOPLprn do

10: if (ps == psconflicting) then
11: remove psconflicting from OOPLprn

12: trigger estimateProbability(prn)
13: end if
14: end for
15: for all ps ∈MPLprn do
16: if (ps == psconflicting) then
17: remove psconflicting from MPLprn

18: trigger estimateProbability(prn)
19: end if
20: end for
21: end for
22: end for

If a product part oi is removed from the production line at a specific point, the prs
deployed prior to this point will not be able to report this change. However, the prs
deployed ahead of the point of change would be able to detect this change, which will
be reflected by the non-detection of oi. vri will not penalize the probability of any of
the prs for missing to detect this part. This is because vri only finds out if pri has
missed out on detecting oi if oi is later detected by prj, where (pri @ prj) (cf. Section
6.3.3).

If the partial sequence is changed as a result of either sequence reversal i.e. (oi < oj) is
changed to (oj < oi) or product part insertion i.e. (oi < ok) is changed to (oi < oj < ok),
this change will soon be reflected in the PSL of vri+1. Initially, these two types of phys-
ical changes cannot be distinguished from RFID reader errors. Therefore, our strategy
is to wait till the probability of the new partial sequence becomes greater then the
probability of the older and conflicting partial sequence(s) before we make a definite
statement about the actual product part order PPOact. Moreover, old readings (read-
ings before the physical change) will time out since we apply a time to live mechanism
to readings. This increases the probability of the current sequence over time.

As an example, assume that the current sequence on the production line is (o1 < o2 <
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o3) with partial sequence (o1 < o2) having a probability of 0.9 and (o2 < o3) also has
a probability of 0.9. However, if this sequence on the production line gets changed
to (o1 < o3) as a result of removal of o2 from the production line. Since prs would
no longer be able to detect o2, it would time out along with all the partial sequences
in which it is participating. Whenever a product part o is detected by a pr its ttl
is set to 1. This ttl is then decreased by a certain time unit every time a pr on the
production line fails to detect it. However, if after being missed out by two prs, the
third pr detects the product part o, its ttl is again refreshed to 1. Once a product part
o is timed out, all the partial sequences in which product part o was participating are
also timed out. Eventually the probability of (o1 < o3) would become greater than
the probability of (o1 < o2) and (o2 < o3), since the two partial sequences in which
o2 was participating will be timed out. Whenever the probabilities of conflicting/non-
unique partial sequences interchange, we trigger a change event which is also sent to
the predecessor vri−1 of this vri (cf. Algorithm 3 line 24-25).

Once a changed event is received/detected at a vri, the vri compares the conflicting
partial sequences (o1 < o2) and (o2 < o3) with the FPLpr, OOPLpr and MPLpr of
all of its prs to find and remove the conflicting partial sequences from these lists. The
p(prest) of all prs that contained (o1 < o2) and (o2 < o3) in their lists is also recomputed
(cf. Algorithm 4). If the probability of pr is decreased incorrectly for detecting the new
reality, the recomputation of the probabilities of every pr that detected the conflicting
partial sequence rectifies this error.

6.4 Evaluations

In this section, we discuss the performance of the probability self-calibration algorithm
under simulated settings. We decided to evaluate our algorithm in a simulated setting
because a simulation environment provides the possibility to evaluate a large scenario.
Furthermore, we also wanted to test our algorithm in a controlled setting, whereby we
could control/set the ground truths, such as the probabilities of prs. The simulations
were performed using PeerSim [JMJV09]. All simulations were performed with 8,000
prs distributed across 1,000 nodes (vrs), except where otherwise specified.

A cycle in our simulations is the time taken by a product part o to move from one pr to
the next one. So after every cycle a new product part is introduced on the production
line, while the previous ones move ahead by one pr. We start calculating p(prest) after
50 cycles so that we have enough redundant readings to make a reasonable estimate.
p(prest) is then continuously re-calculated every 5 cycles. To evaluate the performance
of our algorithm we calculate the accuracy with which we are able to determine the
estimated probability of each pr:

accuracy = (1− |p(prest)− p(pract)|/p(pract)) ∗ 100
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Figure 6.2: Calibration accuracy with random accuracy of PRs

The main performance metric is the time (in cycles) it takes for the algorithm to
estimate the probabilities of all prs with a high reliability.

6.4.1 Effect of Actual Probability of Physical Readers

In this scenario we evaluate the effect of different actual probabilities of prs on the
performance of the self-calibration algorithm. prs are distributed uniformly among the
vrs. The rate of induced physical changes is 50 cycle per change and the simulation
is run for 300 cycles. The results (cf. Figure 6.2) show that the higher the actual
probability of prs, the less time it takes to calibrate the estimated probability with
a relatively high accuracy. This is obvious since it is much harder to estimate the
probabilities of prs if there are only a few accurate readings.

6.4.2 Effect of Change in Actual Probability of Physical Readers

In this scenario we evaluated the time it takes for the algorithm to calibrate the es-
timated probabilities, when the actual probabilities of the prs gets changed. Initially
we assigned a random actual probability to each pr in the range of 0.5-0.9. Then the
reliability of all prs is abruptly changed. The new actual probabilities also lie within
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Figure 6.3: Calibration accuracy with change in actual probability

the range of 0.5-0.9. The evaluation runs for 700 cycles, and the changes were induced
at the 300th cycle. Figure 6.3 shows the percentage of all prs having a reliability of
over 90% and 95% over the time. After the change is induced at cycle 300, the accuracy
of estimated probability drops significantly. However the system becomes stable once
again after approximately 100 cycles.

6.4.3 Effect of Rate of Physical Changes

In this evaluation we observed the effect on the performance of self-calibration al-
gorithm under varying rates of physical changes. The actual probability of prs is fixed
to 0.7 and they are distributed uniformly among the vrs. The algorithm’s performance
was tested under three different change rates 50, 25, and 5 cycle/change. Figure 6.4
shows the percentage of prs which have an estimation accuracy of over 90% over time.
The results are almost same for 50 cycle/change and 25 cycle/change as can be seen in
Figure 6.4, but for the scenario in which we were inducing a change every 5 cycles the
calibration time increases along with a decrease in the accuracy of estimated probabil-
ity. However, once the system reaches a stable state, the rate of change does not have
much effect on accuracy of estimated probabilities.
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6.4.4 Calibrated vs Uncalibrated System

In this scenario we observed the difference between a system in which pr probabilit-
ies are calibrated vs one which does not perform calibrations. We took three sets of
readings by setting the actual probabilities of prs to 0.5, 0.7, and 0.9. We then set the
estimated probability of all physical readers to 0.5. Figure 6.5 shows how the estimated
probability changes over time. In an uncalibrated system since the estimated probab-
ility does not change i.e. p(prest) = p(pract), the error between the actual probability
and the estimated probability will never reduce. It is obvious from the results that
the error between actual and estimated probabilities in this uncalibrated system could
at best be 0 and at worst be 0.4. In normal scenarios, the error will depend on the
difference between the configured probabilities for readers and their actual probabil-
ities. However, the error in our system once the algorithm calibrates the estimated
probabilities is never greater than 0.05.

6.4.5 Effect of Number of Virtual Readers

In this scenario we observed the effect of the number of vrs on the performance of
the self-calibration algorithm. The actual probabilities of prs were fixed to 0.7 for this
experiment and prs were distributed uniformly among all vrs. The number of vrs used
were 1000, 2500 and 5000. The simulation was run for 300 cycles, with a physical
change in the product part order being induced every 50 cycles. Figure 6.6 shows the
percentage of prs that attained a calibration accuracy of over 90% over time. It is clear
from Figure 6.6 that calibration time is reduced with an increase in the number of vrs,
but this also increases the error in the probability estimations. The calibration time
is reduced because each vr has lesser number of prs and hence a small data sample,
which enables the vrs to estimate the probabilities quickly. But now since each vr has
a smaller data sample, the estimation accuracy suffers.

6.4.6 Effect of Distribution of Physical Readers

In this scenario, we observed the effect of pr distribution on the performance of the
self-calibration algorithm. The actual probability of prs was set to 0.7 and the simu-
lation was run for 300 cycles with changes induced at every 50th cycle. The prs were
distributed amongst the vrs using uniform and zipfian distribution. In zipfian distribu-
tion we set α = 1.0. This ensured that 80% of the prs are distributed across half of the
vrs, whereas the remaining 20% of the prs are distributed across the remaining half of
the vrs. Figure 6.7 shows the results of this evaluation. It is obvious from the results
that the distribution of prs has no effect on the accuracy of the calibration process.
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Figure 6.4: Calibration accuracy with different rate of change

6.5 Related Work

In this chapter, we presented a self-calibration algorithm to calibrate the probabilities
of RFID readers so as to have a higher reliability for the objects detected by these
RFID readers. RFID devices are inherently unreliable, therefore the reliability issue
has been at the core of many research efforts undertaken in this area. In this section we
will briefly discuss some of the research work that has been done to enhance reliability
in RFID devices under different deployment scenarios.

Reliable Estimations of RFID Tags in Retail Industry: A lot of retailers
have now deployed RFID technology to optimize their inventory and commodity flows
[GSH07]. However, this deployment has lead to a separate set of issues due to the
unreliable nature of RFID devices. The issue is that RFID devices do no read all the
tags for a given assembly of items, as some of the tags are always at the blind spot of
a reader. Due to this, the retailers can not have a reliable estimate of their inventory
for replenishment planning and other applications.

RFID devices can not determine their tag-identification rates on their own. Similarly,
unread tags can not be determined till the physical conditions that led to their non-
detection are changed.

In order to solve this issue and have a reliable estimate of the total RFID tags within
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Figure 6.5: Calibrated vs Uncalibrated system

a certain area, Weiss et al [WFCBB08] have proposed a strategy which is similar to
mark and recapture methods [Seb82], [Sch38] used by scientists to estimate an animal
population’s size. In mark and recapture methods, a portion of the population (whose
size is being estimated) is captured, marked and then released. After a certain time,
another portion of the population is captured and the number of species that were
marked in the previous capture are counted. The theory is that the number of marked
individuals in the second sample would be proportional to the number of marked in-
dividuals in the whole population of the species. So the total animal population is
obtained by dividing the number of marked individuals by the proportion of marked
individuals in the second sample. The formula for mark recapture method is given
below:

N = MC/N ; where

• N = estimate of the total animal population size

• M = total number of animals captured and marked in the first sample

• C = total number of animals captured in the second sample

• R = number of animals captured and marked in the first sample that were then
present in the second sample.

The TagMark system proposed by Weiss et al [WFCBB08] works on the principle of
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Figure 6.6: Calibration accuracy with different number of VRs

mark recapture method, except that the total population being estimated is that of
RFID tags instead of animals. A portion of the inventory is captured and marked.
After a certain time, the inventory is read again and the total number of tags/items
that were marked previously in this second capture is used to determine the overall
size of the inventory.

An assumption of the mark recapture method is that the study population is closed i.e.
no individuals die, are born, or move into or out of the study area. This assumption
is easier to control with retail inventories as compared to animal population in a given
area.

Jacobsen et al [JNPL09] have also proposed a similar method to reliably estimate the
total number of tags using multiple independent session readings. However, they have
extended their work to provide estimates for the error probability and the probability
that tags are missing as well.

Identifying RFID Tags Using Group Completeness Technique: Backes et al
[BGK11] have employed a group completeness technique to address the missing tag
problem. RFID tags of a certain group contain references to other tags within their
group. This group of RFID tags are then placed on a certain consignment or set of
pallets. The RFID reader maintains two sets ’X’ and ’Y’, which are initially empty.
For each tag read, the reader stores the id of the tags in set X and the references
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Figure 6.7: Calibration accuracy with different PR distributions

contained within this tag in set Y. The RFID reader repeats this process for all the
items or pallets that move across the reader. Once the process is complete, the two
sets are compared. If all the tags in set Y are not present in set X, the reader has
missed out on reading certain tags. In this way, the system is able to find out with a
high probability that the tags are missing.

ASSIST - Automated System for Surgical Instrument and Sponge Tracking:
In [RMA+08] Rivera et al. developed an RFID based automated system (ASSIST) for
tracking sponges that are used during surgeries. During medical surgeries, the problem
of forgetting objects inside a patient’s body might lead to his death. With all the
caution taken by nurses and doctors, miscounting the sponges or other errors would
bring the problem back. Reports estimate that forgetting sponges or other objects
within the patients body happen once in every 1500 surgeries. ASSIST tries to solve
this very problem. The system uses low frequency RFID since the readers in this
case can read tags even if they are inside the patients body and covered with different
body fluids or organs. The process of sponge tracking starts at a check-in station. It
verifies that all sponges in a package are available and registers them in the database
for future usage in the tracking process. When the system initiates, the number of
available sponges are displayed on the GUI. All the sponges that are used are tagged
with an RFID tag. After the doctor has used a sponge, he should discard it by putting
it in a bucket that signifies a check-out station. The number of discarded and checked-
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in sponges is updated when a sponge is discarded and is simultaneously displayed on
the GUI. At the end of each operation the number of checked-in sponges should be
equal to the number of checked-out sponges, else the system would generate an error
message.

Once an error message is generated, the doctors use a patient scanner which is a blanket
embedded with RFID antenna to find the missing sponges. The blanket is spread over
the patients body to read any tag that might be present within the patient’s body.
X-rays can not be used for this purpose since they do not efficiently detect presence
of a sponge if its near to bones. Rivera et al’s experiments showed that the patient
scanner can detect sponges tagged with RFID tags within a vivo porcine model in less
than 5 seconds.

Reliability of RFID in Metal Environment: Arora et al. [AMK+07] studied the
effects of metal on the performance of RFID at ultra-high frequency (UHF). In their
experiments, they set up a metal sheet and attached an RFID tag to it. A robot holds
the RFID reader and moves in front of the tags within a certain area. For each position
of the RFID reader they recorded whether the reader was able to read the tag or not.
The study found that for different metals the reading reliability is different.

Arora et al. also compared the reliability of RFID readers when different metals were
used. The three different metals that they used in their study were: Brass, Aluminium,
and mild steel. For reading reliability, mild steel settings gave the highest reading rate.
Aluminium came second and Brass third. To improve the reading reliability the authors
used three different techniques:

• using a spacer between the tag and metal,

• providing offset to the tag,

• and angling tags i.e. lifting them up from one end.

The first technique showed huge improvements in reliability without compromising the
read rates. The second and third technique also improved the reliability, but offered
less reading rates as compared to the first technique.

Reliability Factors in RFID Deployments: Rehmati et al. [RZHJ07] investigated
several factors that affect the reliability of RFID system for tracking applications.
These factors include:

• Distance between neighbouring tags.

• Distance between the tags and the RFID reader.

• Orientation of the tag when attached to an item.

• Location and the number of tags on an object.

In their work, the authors focused on passive tags as they have weak signal and a lower
read reliability than active tags. They performed extensive experiments and found
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that the reliability of readings decreases when the distance between the reader and the
tags increase. Furthermore, reliability is increased when the distance between the tags
is increased. The authors also tested six different orientation settings and found that
the orientation of tags is a very significant factor in the reliability of RFID readers.
Orienting tags perpendicularly against the reader reduces the reliability of reading to
its minimum; however orienting tags such that they are facing the reader improves the
reading reliability significantly.

The reliability of RFID readers can also be improved by simple and cost-effective re-
dundancy techniques like redundancy at the reader level, the tag level and the antenna
level. Different measurements taken during the study show that redundancy at tag level
is the most effective form of redundancy. After tag level redundancy, antenna level re-
dundancy has shown considerable improvements in system reliability. The reader level
redundancy however, significantly reduced reliability as RFID readers did not support
dense reader mode and the presence of several RFID readers caused reader to reader
interference. These results can be helpful in deployment of RFID-based tracking ap-
plications which require a certain level of reliability.

Detecting Cloned Tags - Forced False Positives: Tag cloning is a technique
in which you copy the data and values of a genuine tag and use that data in some
other (counterfeit) tag. This activity is done to launch counterfeit products into the
market. Tag cloning causes confusion in an RFID tracking and tracing system and a
financial lose for businesses that depend on RFID technology to track their products.
Traditional security techniques either rely on encryption [BGK+07], [Jue05], [WHC06],
[PLHCTR09] or some form of authentication [Dim05], [TB06], [SM08] that is performed
before a tag sends its data to a reader in order to avoid tag cloning. However, Lehtonen
et al. [LMF09] have presented a non-cryptographic solution that relies on RFID traces
to detect if a tag is genuine or counterfeit.

The basic idea of the approach is that a genuine tag has a normal predefined logistical
route i.e. the product on which the tag is attached would move from location A to
B and then to C. A cloned tag however, would not have such a logistical route and
might have directly appeared at location C. Sensing a tag at location A, then sensing
it at location B is called a transition from A to B. A probability is assigned to all
transitions. Counterfeit tags either directly appear at a location or have transitioned
through a low probability route and hence are easily weeded out.

Discussion: Weiss et al [WFCBB08] have tried to solve the issue of reliable estimation
of total number of RFID tags within a certain area by employing mark and recapture
methods [Seb82], [Sch38] used by scientists to estimate an animal population’s size.
Backes et al [BGK11] on the other hand have employed a group completeness technique
to address the missing tag problem. RFID tags of a certain group contain references
to other tags within their group. The references to all the tags in the group must be
resolved in order for the system to assume that all the tags have been read.
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Arora et al. [AMK+07] studied the effects of metal on the reliability of RFID tech-
nology. The study did not proposed a particular solution to the reliability issue, but
nevertheless could be used by researchers trying to address the reliability problems in
their systems research. Rehmati et al. [RZHJ07] investigated the impact of several
factors on the reliability of RFID system for tracking applications. These factors in-
clude: distance between neighbouring tags, distance between the tags and the RFID
reader, orientation of the tag when attached to an item, location and the number of
tags on an object. Similar to Arora et al. [AMK+07], the work does not presents a
specific solution to the reliability problem. But nevertheless is another important work
towards benchmarking the core issues and factors that critically impact the reliability
of RFID devices.

Tag cloning, is a method whereby you induce counterfeit tags into the system. The
whole process could also be defined as a forced false positive problem - whereby an
adversary is creating a situation to make your RFID system have false positives i.e.
accept fake tags as real ones. Traditionally, the problem was addressed using encryp-
tion based solutions [BGK+07], [Jue05], [WHC06], [PLHCTR09] or using some form
of authentication [Dim05], [TB06], [SM08]. However, Lehtonen et al. [LMF09] have
presented a non-cryptographic solution that relies on RFID traces to detect if a tag
is genuine or counterfeit. Our approach to detecting false positives etc. is similar to
Lehtonen et al, in a sense that we also incorporate contextual knowledge of the plant
layout and movment of production parts to weed out false positives.

What really sets us apart from the work done to address the unreliability of RFID
devices to date is that the work done till now has either tried to some how estimate the
total number of tags or avoid false tags using some filtering techniques. We on the other
hand have tried to assign an reliability attribute to the RFID readers. This attribute
or probability is than continuously calibrated to reflect the reliability with which the
RFID device correctly detects product parts moving on the production lines. This
reliability measure is then use to allocate a corresponding weightage to the readings of
that RFID device.

6.6 Summary

In this chapter, we have presented concepts for the reliable monitoring of product parts
in production with unreliable RFID sensors. Based on a probabilistic model, we have
presented algorithms for self-calibration of RFID readers to reflect the probability of
real errors. The basic idea of this approach is to exploit redundant readings to get an
accurate model, which is then used for calibration.

The evaluations of our probability self-calibration algorithm shows that it reacts ro-
bustly to induced changes as it was able to calibrate itself to a stable state with an
accuracy of greater than 90% even in the presence of changes induced after every 5
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cycle. The evaluations further showed that the algorithm was more accurate if the
prs are clustered together within a small number of vrs, since that scenario provides
each vr with a significantly larger RFID dataset to calibrate the probabilities. The
evaluations also revealed the obvious fact that accuracy of probability self-calibration
algorithm is dependent on pr reliability.
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Chapter 7
RFID Based Complex Event Processing In A

Smart Variant Production Environment

The focus of our work till now was to track and monitor production in real-time and
to do so with a high degree of accuracy and precision. However, the low level RFID
events, such as part1 at position1, are of little importance to the people running the
factories. What plant managers want is access to high level information that allows
them to see if everything is going according to plan or not. And in case, things are not
going according to plan, they want to be informed about whats going wrong, where it
is going wrong and what to do in order to remedy the situation.

This demand calls for a need to process low level RFID data and generate complex but
meaningful manufacturing events that can be understood and acted upon by the people
responsible for the production environments. In order to solve this issue, we have
developed a probabilistic complex event processing framework that detects complex
manufacturing events and assigns probabilities to these events. These probabilities are
continuously updated and represent the confidence that the system has in the accuracy
of a certain complex event at any instance of time. In particular our system detects
the following complex manufacturing events: a) sequence errors, b) synchronization
errors, c) delay errors, d) incorrect part position errors, and e) missing part errors.

Several RFID based CEP systems [ZZ08], [HYHZ08], [WDR06], [WLLB06] have been
proposed by the research community. However, these systems merely provide an event
language that can be used by the RFID community to generate general RFID-based
complex events. The problem with the complex manufacturing events that we have
listed above is that they can not be generated using a generic CEP event language.
Due to this reason, we have had to design specific and novel algorithms to detect each
of the complex manufacturing event that we have outlined above. The algorithms that
we have designed can be thought of as operators in our CEP system that enable the
manufacturing organizations to detect sequence, synchronization, delay, incorrect part
position and missing part errors.
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Figure 7.1: RFID Consistency Stack [Extended]

In addition to this, accuracy and reliability is of paramount importance in production
environments. The reason for this being that plant managers can not work upon
information unless it is highly accurate and precise. In order to fulfil this requirement,
we have designed a probabilistic model that assigns probabilities to each and every
complex event. These probabilities then serve as a measure of confidence about how
reliable a certain complex event really is.

The main contributions presented in this chapter are as follows. First, we propose an
extension to our previously introduced consistency stack (cf. Chapter 5.1), which is a
conceptual model for describing different kinds of RFID reader and production errors.
Second, we propose probabilistic models and algorithms for detecting different complex
manufacturing errors/events. Third, we present simulation results to show that our
approach reliably detects the complex manufacturing events that we set out to detect
in the first place.

The rest of the chapter is structured as follows. The extension of the consistency
stack is described in Section 7.1. In Section 7.2, we describe the different complex
manufacturing events, where as the algorithms to detect and assign probabilities to the
detected complex events are discussed in Section 7.3. Section 7.4 details the evaluations,
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followed by a review of related work in Section 7.5. Finally, we conclude the chapter
with a short summary in Section 7.6.

7.1 Consistency Stack Extension

We have categorized the different consistency issues that may arise during real-time
production monitoring using RFID readers into a layered model called the consistency
stack. The consistency stack is comprised of two distinct sub-stacks, the RFID con-
sistency substack and the production consistency substack (cf. Figure 7.1). The RFID
consistency substack deals with RFID reader errors that can cause problems in proper
monitoring of the production processes, whereas the production consistency substack
deals with inconsistencies between the production plan and the current state of product
parts for e.g. the planned sequence vs. the actual sequence detected by the RFID con-
sistency substack. The RFID consistency substack has been discussed previously (cf.
Chapter 5.1), so for the purpose of brevity we will only discuss the different layers of
the production consistency substack in the sub-sections below:

7.1.1 Production Consistency Substack

The production consistency substack ensures that the production process is consistent
with the production plan and makes sure that errors are detected as quickly as possible.
The production consistency stack is further sub-divided into pre-assembly consistency
issues and post-assembly issues.

The pre-assembly issues (sequence and synchronization consistency) are issues that
arise before the product parts have actually been assembled together. The detec-
tion of these issues results in avoidance of incorrect and undesirable products being
assembled. The post-assembly issues are issues that are a result of incorrect and un-
desirable product assembly. The detection of the post-assembly issues would enable the
factory to not ship out the undesirable products, or remove them from the production
lines to avoid further processing.

The positioning of the pre-assembly and post-assembly issues within the production
consistency stack is significant, because if the pre-assembly issues are not resolved in a
timely manner, they invariably lead to post-assembly issues. As an example, consider
that two product parts on1 and on2 are moving in sync with each other, where product
part on1 belongs to product n1 and product part on2 belongs to product n2. This is a
synchronization error, since only product parts belonging to the same product should
move in sync with each other on the production lines. If both of these parts on1 and on2
would continue to move in sync with each other, they would reach an assembly point
together and hence would be assembled with each other. This would lead to presence
inconsistency, which is a post-assembly consistency issue.
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Figure 7.2: Sequence Inconsistency Leading to Synchronization Inconsistency

We have already discussed the pre-assembly consistency issues i.e. sequence consistency
and synchronization consistency (cf. Chapter 5.1.2), so would only discuss the post-
assembly consistency issues in the sections below.

Presence consistency: When two product parts are assembled together, it must
be ensured that not only they are assembled correctly, but the right parts have been
assembled together. The presence of incorrect parts on the product or absence of
correct parts on the product is referred to as presence consistency.

As an example, lets consider the following scenario. We have an assembly point ap1.
At ap1 two production lines meet and product parts from both the production lines are
assembled together. If we have product part on1 on one production line and on2 on the
other production line, they would be assembled together at ap1. Here n denotes that
both the product parts belong to product n. So in this scenario we will not have any
presence inconsistency since firstly, both the product parts belong to the same product,
and secondly both the product parts are present i.e. assembled into the final product.

If on the other hand we would have had product part on1 on production line 1 and
om1 on production line 2, this would have lead to presence inconsistency, since the
semi-assembled product that leaves the assembly point ap1 should have had product
parts on1 and on2. The absence of the correct product part on1 and the presence of the
incorrect product part om1 is a presence inconsistency.

Similarly, if we would have had product part on1 on production line 1 and no product
part on production line 2. The semi-assebled product would only have product part
on1 on it. This absence of product part on2 is also a presence inconsistency.

Position consistency: Position consistency ensures that the right product part has
been assembled at the right position. Position consistency is a superset of presence
consistency, which merely demands that the right product part be assembled. Position
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consistency goes a step further and requires that not only should the right product
part be present on the assembled product, it should be assembled at the right position.
However in situations were the position of parts is irrelevant, we can leave out position
consistency checks.

In order to further understand position consistency lets take a concrete example from
the lernfabrik (cf. Chapter 4). Within the Lernfabrik, we have three product parts
that are assembled on the baseplate. The baseplate has three position holders for each
of these three parts, which could be labeled as position 1, position 2, and position
3. Each of these three parts can be placed on any of the three positions. However,
product part 3 (i.e. the thermometer or the hydrometer) is assembled by a robotic
arm, which is programmed to place product part 3 on position 3. Before, assembling
product part 3 on the baseplate, the robotic arm checks with the help of sensors and
cameras if position 3 is empty. If it is, the robotic arm assembles product part 3 onto
the product, if however, the position is not empty the robotic arm assumes that it has
already assembled product part 3 and hence performs no task.

There can be a situation when a human worker by mistake places product part 2 on
position 3 of a baseplate instead of position 2. In such a scenario, when this product
would reach the robotic worker, it would not assemble product part 3 and would let
the baseplate pass as is. This production error, resulting from incorrect positioning of
product parts on the product within the lernfabrik can only be remedied by human
intervention.

Discussion: Before moving on to the next section, it is pertinent to discuss the ra-
tionale behind the positioning of different production consistency issues within the
production consistency substack. Within the production consistency stack, the pre-
assembly consistency issues are below the post-assembly issues (cf. Figure 7.1). This
is intuitive, since it is logical to first try and resolve the pre-assembly issues and then
move on to resolve the post-assembly issues.

However, a second and perhaps the more important reason for this ordering is that
each of the lower consistency issue, if left unresolved eventually leads to the higher level
consistency issue. To understand this, lets consider a concrete example. According to
a production plan, product parts on1 and om1 have to move on production line 1 such
that (on1 < om1) i.e. on1 is ahead of om1 and product parts on2 and om2 have to move
on production line 2 such that (on2 < om2) i.e. on2 is ahead of om2.

on1 and om1 move according to plan on production line 1. However on production line 2,
(om2 < on2) (cf. Figure 7.2). This is a sequence inconsistency. In order to be assembled
together correctly, product parts on1 and on2 should reach the assembly point in sync.
with each other. However, since we have a sequence inconsistency on production line 2,
product part on1 would be moving on the production line in sync. with om2. So in this
case, the sequence inconsistency has led to a synchronizational inconsistency as well.
Now once, both on1 and om2 would reach the assembly point, they would be assembled
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together. Since both product parts belong to different products, we now have presence
inconsistency as well.

From the example presented above it is obvious that lower level issues such as sequence
inconsistency if not addressed immediately and adequately would result in higher level
issues such as position inconsistency. The opposite of this situation is not true i.e. a
position consistency has no effect on sequence consistency.

7.2 Complex Manufacturing Events

Complex events are the result of processing primitive events using application rules/
operators. The type of a complex event depends on the application and the processing
rules defined for it.

Since RFID devices are inherently unreliable, there is a possibility that physical readers
prs may detect objects moving on the production lines differently from each other. As
an example there could be a situation whereby pr1 make detect product part o1 and o3
and miss out on detecting product part o2, where as pr2 may detect product part o1 and
o2 and miss out on detecting product part o3. In such a scenario, the complex events
detected from the read events of one pr would be different from the ones detected from
the read events of the very next pr. To solve this issue, we assign probabilities to the
derived complex events. These probabilities are then constantly updated as we gather
more evidence regarding these complex events.

The probability of a complex event p(ce) denotes the probability with which a deduced
complex event matches reality.

In addition to the p(ce) we also have complex event threshold cethd, which is a global
variable. The purpose of this variable is to allow the system users to determine when
to trigger the complex events. The complex events in the system are generated when
the p(ce) becomes greater than cethd i.e. (p(ce) > cethd). As an example suppose, the
cethd is set to 0.8, as a result whenever a complex event would be detected it wont be
triggered right away. Rather the system would wait till the probability of that complex
event p(ce) becomes greater than 0.8. Once the probability of the complex event p(ce)
becomes greater than 0.8, it would be generated/triggered.

In the sections below, we will discuss in detail the different complex events that are
generated in our system alongwith the application rules/algorithms that we use to
detect these events.

7.2.1 Sequence Error

In a variant production environment the product parts must reach the assembly points
in certain defined sequences in order for the products to be assembled correctly. If
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product parts are not moving on the assembly lines in defined sequences, we would
have sequence errors.

As an example, lets assume that the planed product part order PPOpln is (o1 < o2 <
o3 < o4). If due to some human error the actual order of product parts PPOact on
the production line is (o1 < o2 < o4 < o3), we would have a sequence error. We have
already discussed the process of partial sequence and extended sequence detections
(cf. Chapter 5.2), however not every sequence detection leads to a sequence error.
Sequence errors are merely those sequences that deviate from the planned product
part order PPOpln. The exact process of detecting and generating sequence error
events is discussed in Section 7.3.1

7.2.2 Synchronization Error

The product parts should not only reach the assembly points in time, they should
also reach the assembly points in certain defined time span in order to be correctly
assembled with corresponding parts that would be arriving at the assembly points
from other production lines. If a product part does not reach the assembly point in its
defined time span, we would have a synchronization error. The synchronization error
can be caused by both sequence issues and delays on the production line.

As an example, lets assume that product part on1 is moving on production line 1 and
product part on2 is moving on product line 2. Now since, both of these product parts
belong to product n, they should reach the assembly line at the same time in order to
be assembled together. In order to reach the assembly point at the same time, both
of these product parts should move on their respective production lines in sync with
each other i.e. when on1 is 2 minutes away from the assembly point, on2 should also
be only 2 minutes away from the assembly point. If on1 is 2 minutes away from the
assembly point but on2 is 10 minutes away from the same assembly point, we would
have a synchronization error event.

The synchronization error can be caused by both sequence issues and delays on the
production line. The remedy to each of these specific case is different. A synchroniz-
ation error caused by a delay on the production line can be rectified by stopping the
product parts on the other production line as well. Syncrhonization errors caused as a
result of sequence issues can not be resolved without resolving the sequence error.

The task of detecting whether product parts are in sync with each other or not and
generating synchronization error events is explained in Section 7.3.2

7.2.3 Delay Error

Production lines could break or stop moving due to mechanical faults. Such a scenario
would lead to delay errors.
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As an example, lets assume that we have two production lines and 10 product parts
moving on each of these production lines. The product parts moving on production
line 1 are (oa1 < ob1 < oc1 < od1 < oe1 < of1 < og1 < oh1 < oi1 < oj1), where as the
product parts moving on production line 2 are (oa2 < ob2 < oc2 < od2 < oe2 < of2 <
og2 < oh2 < oi2 < oj2). If the production line 2 experiences a mechanical failure and
breaks down after product part oc2 has passed, the system would initially believe that
the physical readers deployed on the production line are missing out on detecting the
product parts behind oc2. However, the delay error detection algorithm (cf. Section
7.3.3) would soon realize that the prs are not missing out on detecting the product
parts, but rather its a delay on the production line.

Since the physical readers deloyed ahead of the fault would no longer be able to detect
the product parts, the delay error would also lead to synchronization errors. The task
of detecting delay errors on the production line is explained at length in Section 7.3.3.

7.2.4 Missing Part Error

Since a large part of manufacturing still requires human intervention which is an er-
ror prone endeavour, we frequently have situations whereby a worker misses out on
assembling a certain part. Such a situation leads to missing part errors.

As an example, lets assumed that a human worker is standing at an assembly point
and product part on1 arrives on production line 1 and product part on2 arrives on
production line 2. The worker misses out on assembling product part on2 with on1
and lets product part on1 pass through the assembly point. This is an error since all
products leaving this assembly point should have both product parts.

It is highly likely that this worker would then assemble product part on2 onto a different
product and thus create yet another production error. Whenever, a product leaves an
assembly point, we check if all the required parts are assembled or if the product is
missing some part. If some part has not been assembled, we generate a missing part
error. The actual task of detecting missing product parts is discussed in Section 7.3.4.

Although, this might seem to be a very trivial and straigh forward task, yet missing
product parts are one of the most common production errors. We have already dis-
cussed in the introduction of this dissertation (cf. Chapter 1) about how Porsche has
a lighting system to find out if a missing part error has occured. The way Porsche
accomplishes this is by placing product parts in a cart at an assembly point. Once a
car arrives at that assembly point, all parts within the cart must be assembled with
the car. If the cart is not empty within five minutes, lights on the cart would start
blinking to indicate that the worker(s) at this assembly point have not assembled all
the parts onto one of the cars that left this assembly point within the last five minutes.
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7.2.5 Incorrect Part Position Error

In some products, there is a possibility that two or more product parts could be as-
sembled interchangeably. Each of these parts should be assembled at its correct loca-
tion. However, since the design allows for one part to be assembled at the place of the
other one, there is a possibility that a part is assembled at the wrong position. Such
scenarios result in incorrect part position errors.

From a production consistency stack standpoint, incorrect part position error is actually
a position consistency issue (cf. Section 7.1.1). The detection of incorrect part position
error is discussed in detail in Section 7.3.5.

7.3 Probabilistic Complex Event Detection

The goal of probabilistic complex event detection is to detect complex manufacturing
events reliably. Each complex event has an associated probability, which enables applic-
ations to query the real-time production monitoring framework for the most probable
complex events that have been detected within the factory.

In this section we discuss the different complex event and explain how each of these
events is detected. In addition to this, we also present the algorithms that are used to
assign probabilities to these complex events so that we could have a confidence measure
for each detected complex event.

7.3.1 Sequence Error Detection

In this section we present the core concepts for detecting sequence errors on the pro-
duction lines. First we would provide an overview of our approach. Then we describe
the actual probabilistic sequence error detection algorithm and explain how
sequence error events are generated in our system.

Overview:

The main steps involved in detecting a sequence error are:

1. Detect all possible product part sequences ps. The outcome of this step are
multiple product part sequences, each of which are stored in a global partial
sequence list PSLg, which contains all possible ps deduced by our system.

2. For every detected ps, we try to calculate p(ps) which is a probability for ps being
the correct sequence. p(ps) is calculated from the probabilities of associated read
events that participated in the detection of ps.

3. Whenever, the probability of the partial sequence p(ps) is modified, we try to
compare it with complex event threshold cethd. If the probability of the partial
sequence p(ps) is less than cethd, we do nothing.
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Algorithm 5 Sequence Error Detection Algorithm

1: Let ei = (oi, pri, ti) be a read event detected at vri

2: PSLg;
3: cethd;

4: while pri detects oi do
5: ps = PartialSequenceDetection(oi);
6: if ps.p(ps) > cethd then
7: if ps does not belongs to PPOpln then
8: ceseq ← ps;
9: trigger ceseq;

10: end if
11: end if
12: end while

4. If however, the probability of the partial sequence p(ps) is greater than cethd, we
try to determine if it is a sequence error ceseq or not.

Sequence Error Detection Algorithm:

The process of sequence error detection involves two major steps:

• Partial Sequence Detection

• Sequence Error Generation

Partial Sequence Detection: The process of detecting partial sequences and as-
signing probabilities to these sequences (i.e. steps 1 and 2 of Overview) have already
been discussed at length previously (cf: Chapter 5.2). So for the purpose of brevity
we would assume that the partial sequences are detected using the sequence detection
algorithm. Furthermore, each of these partial sequences have associated probabilit-
ies which are continuously updated to reflect the confidence with which these partial
sequences match reality on the production lines.

Sequence Error Generation: Whenever a new sequence is detected or we have a
change in the probability of the existing sequence (ps), we compare p(ps) with complex
event threshold cethd. If the probability of the sequence p(ps) is less than cethd, we do
nothing (cf: Algorithm 5 lines 4-6).

If however, the probability of the sequence p(ps) is greater than cethd, we compare the
sequence ps with the planned product part order PPOpln, which is the sequence/order
in which the product parts are supposed to pass on the production line. If the sequence
ps belongs to the planned product part order, it means that everything is going ac-
cording to plan. If on the other hand, the sequence ps is not present in the planned
product part order PPOpln, it is a sequence error and hence we generate the sequence
error event ceseq (cf: Algorithm 5 lines 6-9).
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(a) (b)

Figure 7.3: Edge Distances and Synchronous Edges

The value of cethd is provided by the applications/end user and hence can be re-
configured to make the system report highly probable or less probable complex events
according to the application requirements.

7.3.2 Synchronization Error Detection

In this section we present the concepts for probabilistic synchronization detection
between product parts moving on the different production lines. In the beginning
we would present the probabilistic synchronization model, that is used to de-
tect the product part synchronizations. After that we provide an overview of our
approach. Then we describe the actual probabilistic synchronization error de-
tection algorithm and explain how synchronization error events are generated in our
system.

Probabilistic Synchronization Model:

In order for the products to be assembled correctly, the different product parts should
arrive at the assembly points within certain defined time spans i.e. the parts of a
specific product should reach the assembly point in sync with each other. A delay or
break up of this clockwork precision may lead to incorrect assembly of the product.

Before diving into the details of the probabilistic synchronization model, it is worth-
while to revisit some of the concepts discussed in the system model chapter (cf: Chapter
3) that are of relevance with the synchronization discussion. We know from the system
model (cf: Chapter 3.2) that the production environment is modeled as a polytree with
assembly points and physical readers denoted as vertices of the tree and production
lines modeled as edges of the tree. Furthermore, both the edges and vertices in the
polytree have weights which denote the amount of time it takes for that specific edge
to perform its task. In case of the vertice, the weight signifies the amount of time the
assembly point takes to assemble the product parts arriving at that assembly point.
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Where as in case of the edge, the edge weight shows the amount of time it takes for
product parts to move across the production line denoted by that particular edge.

From the edge and vertex weights we can compute the distance between any two edges
or the distance between any physical reader and an assembly point. In order to further
explain this lets take a concrete example with two sets of sub-trees shown in figure
7.3(a) and figure 7.3(b).

In figure 7.3(a) we have 5 vertices (a, b, c, d, e) and four edges (ab, be, cd, de).
From the system model (cf: Chapter 3.2), we know that both physical readers prs and
assembly points are modeled as vertices. The difference between these two is that ver-
tices representing physical readers prs have null weights, where as vertices representing
assembly point have integral weights. So, we can easily deduce that vertices (a, b,
c, d) represent physical readers prs, where as vertex e represents an assembly point.
From the edge and vertex weights, we can easily compute the distance between any
two edges. As an example, the distances between the different vertices of the sub-tree
in figure 7.3(a) are: dG(a, e) = 4, dG(b, e) = 2, dG(c, e) = 4, dG(d, e) = 2. From this
we can easily see that (a and c) and (b and d) have the same distance to vertex e i.e.
(dG(a, e) = dG(c, e) = 4 and dG(b, e) = dG(d, e) = 2).

Similarly, in figure 7.3(b) we have 5 vertices (v, w, x, y, z) and four edges (vw, wz,
xy, yz). In this scenario only two vertices (i.e. v and x) have the same distance from
vertex z (i.e. dG(v, z) = dG(x, z) = 5)

A synchronization error event cesyn (oi syn oj) implies that product part oi belonging
to product pi is on production line ppi at position a and product part oj belonging to
product pj is on production line ppj at position x, such that the distance from position
a to the next assembly point ap is equal to the distance from position x to assembly
point ap (i.e. dG(a, ap) = dG(x, ap)). This is an error because product parts oi and oj
belong to different products, but would reach the assembly point ap at the same time
and hence would be assembled with each other.

In order to detect synchronization errors, we map physical readers prs on one produc-
tion line with physical readers prs on the other production line(s) such that both these
mapped physical readers prs have the same distance from the next assembly point.
This mapping is defined as (prippm map prjppn ), where pri on production line ppm is
mapped with prj on production path ppn. In other words, if both pri and prj would
detect product part oi and oj at time ti. Then both of these product parts oi and oj
would reach the next assembly point together and hence would be assembled with one
another.

Due to the inherent unreliability of RFID readers we can also have non-unique syn-
chronizations (oi syn oj) and (oi syn ok). This implies that oi is in sync with both
oj and ok. Since there can only be one object at a certain position at one instance of
time, non-unique synchronizations cannot exist in reality.
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(a) (b)

Figure 7.4: Non-Unique Syncrhonizations

In order to understand how we can have non-unique synchronizations, lets consider
the following example. Figure 7.4 shows a scenario in which physical reader pr1 and
physical reader pr2 have the same temporal distance from the assembly point ap and
hence are mapped together. Similarly physical reader pr3 and physical reader pr4 are
also mapped together. In Figure (a) physical reader pr1 detects product part o1 and
physical reader pr2 detects product part o2 at the same time. Since both of these
physical readers are mapped together, we would have a synchronization (o1 syn o2).
These product parts then move forward on the production line and ultimately reach
physical reader pr3 and physical reader pr4 respectively. However, at this stage physical
reader pr3 overshoots and detects product part o3, while physical reader pr4 detects
product part o2. Since physical reader pr3 and physical reader pr4 are also mapped
together, we would have a synchronization (o3 syn o2).

From the example above, we have two product part synchronizations (o1 syn o2) and
(o3 syn o2). This is not possible in reality, since such a situation would mean that
product part o1 and product part o3 are at the same location at the same time. Such
synchronizations are called non-unique synchronizations and arise as a result of inherent
unreliability of RFID readers.

The probability of a synchronization error event p(cesyn) denotes the probability with
which a deduced synchronization error matches reality. The goal of the synchronization
error detection algorithm is to determine if the product parts moving on different
production lines are in sync with each other or not and if they are in sync. whether
they belong to the same product or not.

Overview:

In this section we will provide a brief overview of our approach. The basic steps of the
probabilistic synchronization error detection algorithm are as follows:

1. Detect all possible production part synchronizations. The outcome of this step
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are multiple possible synchronizations syns, which are stored in a SynList, which
contains all possible synchronizations detected within the system. If we have n
physical reader mappings (prippm map prjppn ), then on every cycle (for a descrip-
tion of cycle see Chapter 5.3.1) we would have n synchronizations being detected.

2. Assign probabilities to the detection synchronizations. We have already explained
that non-unique synchronizations can exist in reality. Probability assignment to
synchronizations work in a way such that the probabilities of synchronizations
that exist in reality increase over time, where as that of false synchronizations
decrease over time.

3. Whenever, the probability of a synchronization syn is changed, we compare it
with the complex event threshold cethd. If the probability of the synchronization
syn is less than cethd, we do nothing.

4. If however, the probability of the synchronization syn is greater than cethd, we
try to determine if a synchronization error cesyn has occured or not.

Synchronization Error Detection Algorithm:

Before explaining the synchronization error detection algorithm it is pertinent to enlist
the data structures that are used in the algorithm.

• event ei = (oi, pri, ti): Read event ei by pri.

• eventspri = (e1, e2, ... en): Set of read events of pri.

• eventsvri = (e1, e2, ... em): Set of read events at vri.

• productpart oi = (oi, ttl): Product part oi is associated with its id and a time to
live ttl variable.

• Product part list PPL = (o1, o2, ... on): Product part list contains all the product
parts detected at the vri.

• Synchronization syni = ((oi syn oj), events, p(syni), ttl): Each synchronization
syni contains a product part synchronization of the form (oi syn oj), the events
that led to the detection of the product part synchronization, the probability
with which the product part synchronization was detected and a time to live ttl
variable that shows how recently the synchronization was detected.

• Synchronization list SynList = (syn1, syn2, ... synn): Synchronization list
SynList contains all the product part synchronizations syn detected at the vri.

A cesyn occurs if (oi syn oj), where product part oi belonging to product pi is in
synchronization with product part oj belonging to product pj. Synchronization syn
between two product parts is detected using the following rule:

If pri detects a product part oi at time ti on production path ppm and prj detects a
product part oj at time ti on production path ppn, then (oi syn oj) if and only if there
exists a mapping between pri and prj i.e. (prippm map prjppn ).
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Algorithm 6 Synchronization Error Detection Algorithm

1: Let ei = (oi, pri, ti) be a read event detected at vri
2: PPL;
3: SynList;
4: cethd;

5: while pri detects oi do
6: if oi != new productpart then
7: PPL.oi.ttl == 1;
8: else {oi == new productpart}
9: oi.ttl == 1;

10: PPL ← oi;
11: Detect synchronization syn using synchronization detection rules
12: if synchronization syni is deduced then
13: if synchronization syni == new synchronization then
14: syni.ttl == 1;
15: syni.p(syni) ← ComputeProbability(syni);
16: SynList ← syni;
17: else {synchronization syni != new synchronization}
18: there exists a SynList.synh such that SynList.synh == syni;
19: SynList.synh.ttl == 1;
20: SynList.synh.o1.addevents(syni.o1.readevent);
21: SynList.synh.o2.addevents(syni.o2.readevent);
22: SynList.synh.p(syn) ← ComputeProbability(synh);
23: end if
24: end if
25: end if

26: if (p(syni) > cethd) then
27: if (syni.o1 AND syni.o2) does not belong to same product then
28: trigger synchronization error cesyn;
29: end if
30: end if
31: end while

32: for function p(syn) ComputeProbability(syni) do
33: p(syni) = (1− [(1− p)syni.neo1 + (1− p)syni.neo2 − (1− p)syni.neo1+syni.neo2 ]);

34: return p(syni);
35: end for

Whenever a new product part oi is detected, we place it in the product part list
PPL and try to deduce the synchronization syn of the product part with the product
parts detected on other production paths using the rule mentioned above. Once a
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synchronization syn is deduced, it is added to the synchronization list SynList (cf:
Algorithm 6 lines 5-25).

The ttl of both the product part oi and the deduced synchronization syn is initially
set to 1 and is decreased by a certain amount on every time unit, which is 1 cycle
in our simulations. The ttl of the product part oi or the syn is refreshed to 1, if the
product part oi or the deduced synchronization syn is detected again (cf: Algorithm 6
lines 12-19). If the ttl of the product part oi becomes 0, it is removed from the PPL.
The removal of the product part oi from the PPL indicates that product part oi is
no longer on any of the production lines. Once a product part oi is removed from the
PPL, all the synchronizations in which product part oi was participating are removed
from the SynList. In addition to this, a synchronization syn is also removed from the
SynList, if the ttl of the synchronization syn becomes 0.

If the synchronization (oi syn oj) occurs in reality, its probability will increase over
time. Once the probability of the synchronization p(syn) exceeds the complex event
threshold cethd, we check if both the product parts oi and oj belong to the same product.
If both the product parts do not belong to the same product, a synchronization error
event cesyn is triggered (cf: Algorithm 6 lines 26-30).

The probability of a synchronization (o1 syn o2) is computed as:

p(cesyn) = (1− [(1− p)neo1 + (1− p)neo2 − (1− p)neo1+neo2 ]

where neo1 is the number of read events for o1 and neo2 is the number of read events
for o2. As long as at least one read event for o1 and one read event for o2 is correct, we
can make a statement about the synchronization (o1 syn o2). Only if, either all read
events for o1 are incorrect (1− p)neo1 or all read events for o2 are incorrect (1− p)neo2 ,
we cannot derive a synchronization. In order to not count the incorrect read events
twice, we subtract (1 − p)neo1+neo2 . This gives us the probability that of no correct
reading for (o1 < o2). Subtracting this probability from 1 gives us the probability of
all the cases where at least one correct reading for o1 and at least one correct reading
for o2 is included in the set of readings.

The formula for computing the probability of a synchronization is similar to probability
computation for sequence errors (cf. Chapter 5.2.3). This is because both of these
complex errors are generated as a result of event detections by two physical readers,
each of which is independent but related to the other. Both the physical readers in
question are independent because the performance and reliability of any one of the
physical reader is not affected by the other reader or the detection of a product part
by one reader is not affected by the detection or non-detection of that product part by
the other physical reader. The physical readers in case of sequence errors are related
in a sense that both are deployed on the same production line, where as the physical
readers in case of synchronization errors have a special mapping relationship between
one another.
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7.3.3 Delay Error Detection

In this section we would present the concepts for probabilistic detection of delay on the
production lines. First we present the probabilistic delay model, that is used to de-
tect the delay on the production lines. Then we provide an overview of our approach.
Finally, we describe the actual probabilistic delay error detection algorithm and
explain how delay error events are triggered within our system.

Probabilistic Delay Model:

Time and precision is of critical importance in production. Any delay on a production
path would cause product parts moving on this path to either arrive late at the assembly
point and hence would either result in incorrect assembly of products or in an overall
delay for the entire production. Delays are typically caused due to mechanical or
human failures.

A delay error cedel is different from missed reading, which is an RFID reader failure (cf:
missed reads Chapter 3.4.4). In a missed read, an RFID reader fails to read a product
part that is on the production line. However, in case of a delay, an RFID reader does
not read a product part that is not on the production line. Both of these situations
are fundamentally different i.e. in the case of missed read the RFID reader is failing
to detect a product part that exists in reality, where as in the case of delay an RFID
reader is detecting the non-existence of a product part on the production line. But
from the system perspective, we have no way of distinguishing one from the other.

The solution to this problem relies on a key difference between delay error and missed
reading. We hold an assumption, that in case of a missed reading, there will eventually
be a physical reader that would be able to read the product part which was missed
out by a prior physical reader, and hence we would find out that the product part in
question still is still moving on the production line and that the prior reader actually
missed out on detecting it. For an elaboration on how missed readings are detected,
see how we detect missed readings during self calibration of RFID reader probabilities
(cf: Chapter 6.3).

In case of delay error, since it would be a break down of the production line, none
of the physical readers deployed on the production line would be able to detect the
product part(s). Since, we assign probabilities to each and every complex event, the
probability of delay error p(cedel) would eventually increase above the complex event
threshold cethd and hence we would have reasonable confidence in the fact that we have
a delay on our production line.

A delay read event is a read event edelay = (di, pri, ti); where ti represents the time at
which product part di was detected by physical reader pri. The product part di is not
a real product part. We trigger the delay read event edelay whenever a physical reader
misses out on detecting a real product part. The detection of product part di signifies
that the physical reader pri has not detected any real product part.
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A delay sequence ds is a sequence of the form (oi < d) which implies that product
part oi is directly ahead of a special product part d on the production line or (d < oi)
which implies that a special product part d is directly ahead of product part oi on
the production line or (d < d) which implies that a virtual product part d is ahead of
another virtual product part d.

Overview:

In this section we provide a brief overview of our approach. The core steps of the
probabilistic delay detection algorithm are as follows:

1. Detect all possible delay sequences ds. The result of this step are multiple possible
ds, which are stored in a delay list DelList, which contains all the possible
delay sequences ds detected at a particular virtual reader. Not all of these delay
sequences ds would be actual delays on the production line, as some or most of
these delay sequences might be a result of missed reads.

2. Assign probabilities to the detected delay sequences. The probability assign-
ment in our system works in a way such that the probability of the actual delay
sequences ds would increase over time, where as the probability of the delay
sequences created as a result of missed reads would decrease over time.

3. Whenever the probability of a delay sequence is modified as a result of new
readings, we compare the probability of the delay sequence with the complex
event threshold cethd. If the probability of the delay sequence is less then cethd,
we do nothing.

4. If however, the probability of the delay sequence ds becomes greater than the
complex event threshold cethd, the system no longer treats it as a possible delay
and becomes sure that it really is a delay and triggers the delay error event cedel.

Delay Error Detection Algorithm:

Before explaining the synchronization error detection algorithm it is pertinent to enlist
the data structures that are used in the algorithm.

• event ei = (oi, pri, ti): Read event ei by pri.

• eventspri = (e1, e2, ... en): Set of read events of pri.

• eventsvri = (e1, e2, ... em): Set of read events at vri.

• productpart oi = (oi, ttl): Product part oi is associated with its id and a time to
live ttl variable.

• Product part list PPL = (o1, o2, ... on): Product part list contains all the product
parts detected at the vri.

• Delay sequence dsi = ((oi < d) or (d < oj), events, p(dsi), ttl): Each delay
sequence dsi contains a delay sequence of the form (oi < d), the events that led
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to the detection of the delay sequence dsi, the probability with which the delay
sequence was detected and a time to live ttl variable that shows how recently the
delay sequence was detected.

• Delay Sequence list DelList = (ds1, ds2, ... dsn): Delay Sequence list delList
contains all the delay sequences ds detected at the vri.

Detection of a delay sequence ds is similar to detecting a partial sequence ps. A ds is
detected using the following two rules:

1. If a physical reader pri detects a product part oi at time ti and then fails to detect
any product part at time ti+1, we trigger a delay event edelay = (d, pri, ti+1). This
implies that pri has detected a non-object/non-product part d at time ti+1. This
in turn implies that oi is ahead of d on the production path, i.e. (oi < d).

2. If pri is deployed directly before prj on the production path i.e. (pri @ prj), then
a product part oi detected by prj at time ti is ahead of the non-product part d
detected by pri at the same time ti, i.e. (oi < d).

Whenever a product part oi or a virtual product part d is detected, it is added to the
product part list PPL. Whenever a virtual product part d is detected, its ttl is set
to 1 (cf: Algorithm 7 lines 9-10). This ttl is then decreased over time. If the virtual
product part d is not detected before its ttl becomes 0, it is removed from the PPL. If
the virtual product part is detected before its ttl becomes 0, its ttl is refreshed to ’1’
once again.

As soon as we add the virtual product part d to the product part list PPL, we try
to deduce a delay sequence ds using the rules mentioned above (cf: Algorithm 7 lines
13-14). If a delay sequence ds is deduced, it is added to the delay list DelList, which
contains all the delay sequences detected at the virtual reader vr. Every delay sequence
in the DelList is associated with three variables - a probability of the delay sequences,
an event list containing all the read events e and delay events edelay that led to the
detection of the delay sequence ds, and a ttl of the delay sequence ds, which shows
how recently the delay sequence ds was deduced (cf: Algorithm 7 lines 8-20).

If the newly deduced ds is already present in the DelList, its ttl is refreshed to 1 (cf:
Algorithm 7 lines 21-23). Similar to the ttl of the virtual product part d, the ttl of
the delay sequence ds is decreased over time. If the delay sequence ds is not deduced
again before its ttl becomes 0, it is removed from the DelList. If however, the delay
sequence ds is deduced again before its ttl becomes 0, its ttl is refreshed to ’1’ once
again. Furthermore, if the ttl of a virtual product part d becomes 0, all the delay
sequences ds in which it is participating are removed from the DelList.

The probability of a delay sequence ds is re-computed whenever we have new read
events that lead to the deduction of the delay sequence ds (cf: Algorithm 7 lines 18
and 26). With any delay sequence ds there are only two possibilities. Either more read
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Algorithm 7 Delay Error Detection Algorithm

1: Let edelay = (di, pri, ti) be a delay read event detected at vri
2: PPL;
3: DelList;
4: cethd;

5: while pri detects di do
6: ds = DelaySequenceDetection(di);
7: end while

8: for function ds DelaySequenceDetection(di) do
9: if di != new virtualproductpart then

10: PPL.di.ttl == 1;
11: else {di == new virtualproductpart}
12: di.ttl == 1;
13: PPL ← di;
14: Detect delay sequence ds using delay sequence detection rules

15: if delay sequence dsi is deduced then
16: if dsi == new delaysequence then
17: dsi.ttl == 1;
18: dsi.p(ds)← ComputeProbability(dsi);
19: DelList ← dsi;
20: return dsi;
21: else {delay sequence dsi != new delaysequence}
22: there exists a DelList.dsh such that DelList.dsh == dsi;
23: DelList.dsh.ttl == 1;
24: DelList.dsh.o1.addevents(dsi.o1.readevent);
25: DelList.dsh.o2.addevents(dsi.o2.readevent);
26: DelList.dsh.p(ds) ← ComputeProbability(dsh);
27: return DelList.dsh;
28: end if
29: end if
30: end if
31: if (p(ds) > cethd) then
32: trigger delay error cedel;
33: end if
34: end for

35: for function p(ds) ComputeProbability(ds) do
36: p(ds) = (1− [(1− p)ds.neo1 + (1− p)ds.ned − (1− p)ds.neo1+ds.ned ]);
37: return p(ds);
38: end for
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events would lead to the deduction of this delay sequence ds and hence its probability
would increase or no read event would lead to the deduction of this delay sequence ds
in which case its ttl would become 0 and it will be removed from the DelList.

If the delay sequence ds is created as a result of a missed read by a physical reader. The
other physical readers prs deployed on the production line would/should successfully
read the product part oi and hence the delay sequence ds would eventually time out.

Once the probability of a delay sequence ds exceeds the cethd, we assume that this
delay sequence is not a result of physical readers prs missing out on detecting a part
and hence trigger the delay complex event cedel.

There can be multiple delays on a particular production path such as (oi < di) and
(oj < dj). Our method of detecting delays allow us to detect and report these different
delays separately. Additionally, each delay error event cedel is of the form (oi < di).
From this event, we can easily deduce the product part after which the delay has
occurred. Furthermore, since each read event contains the time at which the event
was detected and the physical reader that detected the event, we can easily identify
the location of origin of each particular delay within the smart variant production
environment.

The probability of a delay sequence (o1 < d1) is computed as:

p(ds) = (1− [(1− p)neo1 + (1− p)ned1 − (1− p)neo1+ned1 ]

where neo1 is the number of read events for o1 and ned1 is the number of read events
for d1. As long as at least one read event for o1 and one read event for d1 is correct,
we can make a statement about the delay sequence (o1 < d1). Only if, either all read
events for o1 are incorrect (1− p)neo1 or all read events for d1 are incorrect (1− p)ned1 ,
we cannot derive a sequence. In order to not count the incorrect read events twice,
we subtract (1 − p)neo1+ned1 . This gives us the probability that of no correct reading
for (o1 < d1). Subtracting this probability from 1 gives us the probability of all the
cases where at least one correct reading for o1 and at least one correct reading for d1
is included in the set of readings.

The probability of a delay sequence is computed in exactly the same way as we compute
the probability of a partial sequence (cf: Chapter 5.2.3), since essentially both are a
sequence of product parts moving on the production line.

7.3.4 Missing Part Error Detection

Missed assembly is a frequent issue in production environments. Due to mental or
physical stress a worker may miss out on assembling a certain product part on to a
product. Whenever, two product parts o1 and o2 are assembled together at an assembly
point, the physical readers deployed ahead of this assembly point would detect both the
product parts at the same time. Whenever a physical reader detects two product parts
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at the same time, we perform data aggregation and create a new product part. In case,
the physical reader detects product parts o1 and o2, we would create an aggregated
product part (o1 : o2) and store this newly aggregated/assembled product part in the
assembled parts list AsmList which contains a list of all the product parts that have
been assembled together, alongwith the events that led to this aggregation/assembly
and a probability assigned to each of these aggregated parts. The probability of the
aggregated parts depicts the confidence with which we know that both the aggregated
parts exist in reality.

In case a worker fails to assemble a product part with another product part, the
physical readers deployed ahead of the assembly point would be able to detect only
one product part, which would ultimately result in a missing part error event. In order
to explain this further, lets consider a concrete example. Figure shows a situation in
which product part o1 and o2 reaches the assembly point at the same time. However,
the worker at the assembly point picks up product part o2 and forgets to assemble it
with o1 and puts it on some shelf. This results in product part o1 passing through the
assembly appoint without being assembled with product part o2. After the assembly
point, each physical reader should detect two product parts. However, in this case the
physical reader deployed ahead of the assembly point would only detect product part
o1. In this situation, we would assume that the physical reader has detected product
part o1 and has failed to detect the second product part, which is a similar situation
to detecting a virtual product part d. So we would create an aggregated product part
(o1 : d) which would signify that the physical reader detected a product part o1 and
failed to detect a product part (hence the detection of virtual product part d). Since
product part o1 is not assembled together with anyother product part, the situation
would be repeated at every subsequent physical reader and the read events of each
physical reader would be added to the event list of of the aggregated product part
(o1 : d) in the AsmList. With each new detection of the aggregated product part, we
continue to update the probability of the aggregated product part.

Once the probability of the aggregated product part becomes greater then the com-
plex event threshold cethd, we compare the aggregated product part, with the planned
product part order PPOpln to see if both the assembled product parts belong to the
same product. If they do not belong to the same product, which would obviously be
the case in the example explained above, we trigger a missing part error event cempp

The probability of the aggregated product parts (o1 : d1) is computed as:

p(partsagg) = (1− [(1− p)neo1 + (1− p)ned1 − (1− p)neo1+ned1 ]

where neo1 is the number of read events for o1 and ned1 is the number of read events
for d1. As long as at least one read event for o1 and one read event for d1 is correct,
we can make a statement about the aggregated product parts (o1 : d1). Only if, either
all read events for o1 are incorrect (1 − p)neo1 or all read events for d1 are incorrect
(1− p)ned1 , we cannot derive a conclusion regarding the aggregated product parts. In
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Algorithm 8 Missing Part Error Detection Algorithm

1: Let ei = (oi, pri, ti) and ej = (dj, pri, ti) be read events detected simultaneously by
pri

2: o1 = null;
3: o2 = null;
4: PPL;
5: AsmList;
6: cethd;

7: while pri detects multiple parts do
8: o1 ← ei.oi;
9: o2 ← ej.dj;

10: partsagg.o1 ← o1;
11: partsagg.o2 ← o2;
12: if partsagg == new aggregared part then
13: partsagg.ttl ← 1;
14: partsagg.p(partsagg ← ComputeProbability(o1, o2);
15: AsmList ← partsagg;
16: else {aggregated parts (o1:o2) != new aggregated parts}
17: ∃ AsmList.partsaggi such that partsaggi .o1 == o1 AND partsaggi .o2 == o2;
18: AsmList.partsaggi .ttl == 1;
19: AsmList.partsaggi .o1.addevents(o1.readevent);
20: AsmList.partsaggi .o2.addevents(o2.readevent);
21: AsmList.partsaggi .p(partsagg ← ComputeProbability(partsaggi .o1,

partsaggi .o2);
22: end if
23: if (p(partsagg) > cethd) then
24: if partsaggi .o1 AND partsaggi .o2 does not belong to same product then
25: trigger missing part error cempp;
26: end if
27: end if
28: end while

29: for function p(partsagg) ComputeProbability(o1, o2) do
30: p(partsagg) = (1− [(1− p)neo1 + (1− p)neo2 − (1− p)neo1+neo2 ]);
31: return p(partsagg);
32: end for

order to not count the incorrect read events twice, we subtract (1 − p)neo1+ned1 . This
gives us the probability of no correct reading for (o1 : d1). Subtracting this probability
from 1 gives us the probability of all the cases where at least one correct reading for
o1 and at least one correct reading for d1 is included in the set of readings.
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The second step is to apply the edge detection algorithm on the gray image using a threshold of 128. 

The third step is to count the number of bits in each of the nine featuring squares. 

The fourth step is to filter the results in (3) using another threshold. 

The fifth step: 

 Check the results in (3) for square 1,2, and 3, successively.  

 If count(square 1) is more than the threshold  then a large cup is placed in position 1 and break 

 If count(square 2) is more than the threshold  then a small cup is placed in position 1 and break 

 If count(square 3) is more than the threshold  then a thermometer is placed in position 1 and 
break 

Otherwise position 1 is empty 

The sixth step: Repeat (5) for squares 4, 5, 6 with respect to position 2 and squares 7, 8, 9 with respect 
to position 3 

And the result is the type of object on each socket in the plate. As well as a statement of any missing 
object. This result is compared to the planned positioning of parts, in case of any alternation to it; a 
misplaced part error is detected (raised), on the other hand, if a part is missing whereas it is assumed to 
be assembled; a missing part assembly error is detected. (rasied). 
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Rfid Based Assembly Assistance for Workers in the Smart Factory: 
 

rfid based parts assembly visual instructions for workers in assembly zones 

In variant production each plate has its own set of parts and each part has to be assembled in a specific 
position on it. And this differs from plate to plate. Each part is assembled on the plate at an assembly 
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Figure 7.5: Grey Scale Image (Left), Edge Detection Applied (Right)

Missing Part Error Variants:

The aggregated product parts can be of two forms:

1. Missing part (o1 : d1): This scenario has already been explained above. In this
situation a product part has not been assembled with product part o1 and d1
signifies that a product part is missing from this assembly.

2. Incorrect part (o1n : o2m): In this scenario, the aggregated part shows that
product part o1n which belongs to product n has been assembled together with
product part o2m which belongs to productm. This is an error, since the a product
part should only be assembled together with product parts that belong to the
same product. In other words product part o1n should have been assembled with
product part o2n , both of which belongs to product n. The aggregated product
part (o1n : o2m), signifies that the correct product part o2n is missing from the
assembly. This special case of missing part error can occur as a result of sequence
errors that are not resolved before the product parts reach the assembly points.

7.3.5 Incorrect Part Position Error Detection

In production, the right product part should be assembled at the right position. As an
example, in the Lernfabrik [Ben09], all the three product parts can be placed at any
of the three positions of the base plate. However, we also have a robotic arm in the
factory that only places product parts at a specific pre-programmed position on the
base plate. If a worker places a product part at the position on which the robotic arm
is supposed to place its product part, the robotic arm will never be able to assemble its
product part and hence the assembly of this specific product will never be completed.

Detection of such an error is not possible using RFID technology, because with RFID
technology we can only detect the presence or absence of a product part and not the
position at which the part was placed or assembled. To detect such errors we are using
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Algorithm 9 Part Position Detection

1: Grey Scale Transform ( )
2: Sobel Edge Detection Algorithm ( Threshold = 128 )
3: position = 1
4: while position < 4 do
5: if position.count(square1) > Threshold then
6: position ← large cup
7: else
8: if position.count(square2) > Threshold then
9: position ← small cup

10: end if
11: else
12: if position.count(square3) > Threshold then
13: position ← watch
14: end if
15: else
16: position ← empty
17: end if
18: position+ +
19: end while

an image processing based technique. We have two cameras installed immediately after
the assembly points in the Lernfabrik. These cameras capture the images of the base
plates with product parts on it, as these plates move across the production lines.

In our product, since all the parts are of different size and shape, we are able to find
out the location of the assembled part using basic image detection techniques.

Once an image is captured, we apply 256 degree grey scale transformation and then
apply sobel edge detection algorithm with a threshold of 128. Figure 7.5 shows the
grey scale image and an image with edge detection applied.

The large cup occupies all the three squares at a position, whereas the small cup
occupies only two squares and the watch just one featuring square. If at any position
all the three squares are occupied, then the large cup is located at that position, if two
squares of the image are occupied then the small cup is located there, if just one square
is occupied then the watch is located at that position. The algorithm for detecting part
position is listed in Algorithm 9.

The incorrect position detection algorithm provides us with the type of object on each
position in the plate. This result is compared with the planned positioning of parts.
In case of any discrepancies, an incorrect part position error ceipp is triggered.
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7.4 Evaluations

In this section, we discuss the performance of the probabilistic complex event pro-
cessing system under simulated settings. We decided to evaluate our system in a
simulated setting because a simulation environment provides the possibility to evalu-
ate a large scenario. Furthermore, we also wanted to test our system in a controlled
setting, whereby we could set the ground truths, such as the probabilities of prs. The
simulations were performed using PeerSim [JMJV09], a large scale distributed P2P
discrete event simulator. All simulations were performed with 8,000 physical readers
prs distributed across 1000 nodes/virtual readers vrs.

A cycle in our simulations is the time taken by a product part to move from one pr
to the next. So after every cycle a new product part is introduced on the production
line, while the previous ones move ahead by one pr.

7.4.1 Accuracy and Precision

Before moving on to discuss the evaluations, it is pertinent to explain accuracy and
precision since both of these terms would be used extensively in the evaluations. We
have evaluated our system in terms of its accuracy and precision.

Accuracy of a measurement system is defined as the degree of closeness of measure-
ments of a quantity with respect to the quantity’s actual or true value. In our scenario,
complex events triggered by our system would be accurate if they represent the fact i.e.
a delay error event cedel would be accurate if there would be a delay on the production
lines.

Precision of a measurement system is defined as the degree with which the results
could be repeated or reproduced. In our scenario, the complex events triggered would
be precise if a large number of preceding and succeeding complex events would also
report the same fact i.e. a delay error event would be precise if preceding and/or
succeeding events also report a delay on the production line. In other words the
complex event processing system would not be very precise, if one physical reader
reports an error on the production line, where as the next physical reader does not
detect the said error.

For the purpose of measurements, whenever an event was triggered in our system, we
categorized it as either true positive, false positive, true negative or false negative.
Accuracy and precision was then calculated as:

accuracy = (no of true positives + no of true negatives) / (no of true positives + no
of false positives + no of false negatives + no of true negatives)

precision = no of true positives / (no of true positives + no of false positives)
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7.4.2 Comparison of False, Missed, Out of Order and Uniformly Distributed
Raw RFID Errors

In this scenario, we observed the effect of false, missed, out of order and uniformly
distributed false, missed and out of order RFID errors on the accuracy and precision
of complex events. For the purpose of these evaluations we set the actual probability
of physical reader prs to 0.7 and also fixed the CE Threshold to 0.7. The value of CE
Threshold is used by our system to determine when to trigger a complex event. If the
value of CE Threshold is set to 0.7, our CEP system would trigger a complex event
once the probability of the complex event is greater than 0.7.

Accuracy: Figure 7.6(a) shows the results for accuracy measurements of false, missed,
out of order and uniformly distributed raw RFID Errors. The results show that initially
accuracy of the detected complex events shot up to 80% (0.8). However, this was
because in the beginning there were only a small no of complex events in the system.
When the number of complex events that were being detected increased the accuracy
started to come down. However, the accuracy of the system never dropped below 50%
even with a pr probability and CE Threshold of 0.7.

From the simulation results its obvious that the accuracy of the system is not affected
by the type of raw RFID errors that caused the complex event.

Precision: Figure 7.6(b) shows the results for precision measurements of false, missed,
out of order and uniformly distributed raw RFID Errors. From the results, it is evident
that the system was able to detect complex events with a very high precision. In the
beginning the precision of the system reached as high as 100%. However, as more com-
plex events were detected, the precision of detecting complex events started decreasing
and eventually stabilised at around 70%.

The simulation results also reveal that the precision of the system is not affected by
the type of raw RFID errors that triggered the complex events.

7.4.3 Comparison of Complex Errors

In this scenario, we compared the different complex events. The objective was to find
out if the complex event processing framework detects different complex events with
the same accuracy and precision or not. For the purpose of these evaluations the actual
probability of prs was set to 0.7 and the CE Threshold was set to 0.7.

Accuracy: Figure 7.7(a) shows the results for accuracy measurements of different
types of complex events. The simulation results show that initially the accuracy of
the detected complex events rose to around 80%, but then stabilized after around 50
cycles at 50%. The initial increase in accuracy could be attributed to a low number
of complex events within the system. As the number of complex events increased the
system started to move towards its equilibrium mark. The 50% accuracy in detecting
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Figure 7.6: Accuracy and Precision Comparison of False, Missed, OO & Uniform Errors
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different complex events is certainly a very good performance specially given the fact
that the underlying physical readers were only 70% accurate and the CE Threshold
was set 0.7.

From the simulation results its obvious that the accuracy of the system is not affected
by the type of complex events.

Precision: Figure 7.7(b) shows the results for precision measurements of different
types of complex events. The results show that precision of our system is higher
than its accuracy. The probabilistic complex event processing system was able to
detect different types of complex events with more than 70% precision, even when the
underlying physical readers were only 70% accurate.

Another observation that needs to be mentioned here is that the system is not affected
by the type of complex events.

7.4.4 Comparison of Reliability of Physical Readers

In this scenario, we evaluated the performance of the CEP system by varying the
accuracy of the physical readers. We took five set of readings by setting the actual
probability of prs to 0.5, 0.6, 0.7, 0.8, and 0.9. The objective was to observe how
the complex event processing system performs in the presence of both reliable and
unreliable raw RFID data. The CE Threshold for the system was set to 0.7.

Accuracy: Figure 7.8(a) shows the results for accuracy measurements. The simulation
results show that initially the accuracy of detected complex events rose higher but
then stabilized a little lower. The accuracy of complex events when the accuracy of
underlying physical readers was 90% rose to 80% but then stabilized around 60% level.
Similarly, when the accuracy of underlying physical readers was 50%, the accuracy of
complex events detected remained stable at 30% level. From the results, it is obvious
that complex events are detected with higher accuracy when the underlying physical
readers have a higher accuracy.

Precision: Figure 7.8(b) shows the results for precision measurements. The simulation
results show that the precision of detected complex events is more than 90% when the
accuracy of physical readers is 90%. The precision of detected complex events falls
with a decrease in the accuracy of physical readers. The precision of complex events
with physical reader accuracy of 60% remained around 70%.

One striking observation is that the precision of complex events decreased symmet-
rically with the decrease in physical reader accuracy as long as the physical reader
accuracy remained above 60%. Once the physical reader accuracy is decreased to 50%,
the precision of complex events falls off the grid and the detected complex events were
only around 10% precise.
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Figure 7.8: Accuracy and Precision Comparison of PR 50, 60, 70, 80, & 90
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7.4.5 Comparison of Complex Event Thresholds

In this scenario, we evaluated the performance of the CEP system by varying the CE
Threshold. The system was observed under five different CE Threshold levels i.e. CET
50, 60, 70, 80, and 90. The actual probability of prs was set to 0.7 for these evaluations.

Accuracy: Figure 7.9(a) shows the results for accuracy measurements. The results
show that the accuracy of detected complex events shot up to as high as 80% however
with the passage of time and as more complex events were detected the overall accuracy
of the detected complex events stabilized between 60 and 50 percentile. In general the
accuracy of detected complex events increased with the increase in the CE Threshold,
however, the increase in accuracy of detected complex events is not remarkable.

The increase in the accuracy of detected complex events remain symmetrical till the
CE Threshold remain above 60%. However, when the CE Threshold is fixed at 50%,
the accuracy of detected complex events fell to as low as 30%. This means that our
system can not detect complex events with a reasonable reliability if the CE Threshold
is lowered to 50%.

Precision: Figure 7.9(b) shows the results for precision measurements. The results
show that the precision of detected complex events rose to as high as 100%. However
once we have had a significant number of complex events within the system, the overall
precision of the detected complex events stabilized between 90 and 70 percentile. In
general the precision of detected complex events increased with the increase in the
CE Threshold. But the increase in the precision of detected complex events is not
remarkable as long as the CE Threshold remained above 60%.

The increase in the precision of detected complex events remain symmetrical till the
CE Threshold remain above 60%. However, when the CE Threshold is fixed at 50%,
the precision of detected complex events fell to around 40%. This means that our
system can not detect complex events with a reasonable precision if the CE Threshold
is lowered to 50%.

7.4.6 Probabilistic Complex Event Processing System vs Non Probabilistic
Complex Even Processing System

In this section we have compared our probabilistic complex event processing system
with a non probabilistic complex event processing system. The non probabilistic com-
plex event processing system does not assign probabilities to complex events, so there
is no way of finding out how accurate a certain complex event really is. In addition to
this the non probabilistic system triggers a complex event as soon as it is detected and
unlike the probabilistic system does not wait for the probability of the complex event
to reach a certain threshold. This is because in the non probabilistic scenario complex
events do not have associated probabilities.
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Figure 7.9: Accuracy and Precision Comparison of CET 50, 60, 70, 80, 90
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In our evaluations we have mimicked the behaviour of a non probabilistic complex
event processing system by fixing the CE Threshold value to 0. This would ensure that
the system would trigger a complex event as soon as it is detected, which is exactly
what a non probabilistic system is supposed to do.

Effect of Complex Event Thresholds

In this scenario we compared the non-probabilistic complex event processing system
(i.e. a system having CE Threshold = 0) with a probabilistic complex event processing
system having CE Thresholds of 50, and 90. The only variable in these experiments
was the accuracy of the physical readers.

PR Probability 50%:

Accuracy: Figure 7.10(a) shows the results for accuracy measurements. In this ex-
periment we fixed the pr accuracy at 50%. The results of this experiment are quiet
predictable and show that the higher the CE Threshold value the more accurately our
system detects complex events. As a matter of fact, for pr accuracy of 0.5 (50%), the
CE Threshold of 90% is almost 400% more accurate than a non probabilistic complex
event detection system.

The accuracy of detecting complex events with CE Threshold 90 was initially around
60% but then stabilized and remained greater than 40% at all times. However, there
was no marked difference between the accuracy of detecting complex events in a non
probabilistic system and a probabilistic system having a pr accuracy of 50% and CE
Threshold of 50%.

Precision: Figure 7.10(b) shows the results for precision measurements. In this exper-
iment we fixed the pr accuracy at 50%. The results show that the precision of detected
complex events increased symmetrically when the CE Threshold was increased from 50
to 90. The precision of detected complex events for CE Threshold was initially around
80% level, but then continued to swing wildly between 70% and 40% mark. Similarly
the precision of detected complex events for CE Threshold was initially around 60%
level, but then continued to swing between 50% and 20%. This behaviour is indicative
of the fact that we can not have a high and predictable precision measure with low
physical reader pr accuracy.

The precision of CE Threshold 0 (i.e. non probabilistic complex event detection sys-
tem), remained constant around 10% level. This shows that even with extremely low
pr accuracy, the probabilistic complex event detection system is almost 400% more
precise than the non-probabilistic complex event processing system.

PR Probability 70%:

Accuracy: Figure 7.11(a) shows the results for accuracy measurements. In this ex-
periment we fixed the pr accuracy at 70%. Similar to Figure 7.10(a), this experiment
also reveals that the probabilistic complex event detection system detects events with
higher accuracy when the CE threshold is higher. If we compare the performance
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Figure 7.10: Accuracy and Precision Comparison of CET 90, 50 and 0 with PR 50
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of CE Threshold 90 with non probabilistic complex event detection system (i.e. CE
Threshold 0), we can observe that that CE Threshold 90 is almost 600% more accurate
than the non-probabilistic complex event detection system when the pr accuracy is
fixed at 0.7.

The accuracy of detecting complex events with CE Threshold 90 was initially around
80% but then stabilized at a lower level. However, the accuracy of CE Threshold 90
never went below 60%. Similarly, the accuracy of CE Threshold 50 initially spiked to
60% but then stabilized around 30%, whereas the accuracy of CE Threshold 0 (i.e.
non probabilistic complex event detection system) remained around 10%.

Precision: Figure 7.11(b) shows the results for precision measurements. In this ex-
periment we fixed the pr accuracy at 70%. The probabilistic complex event processing
system was able to detect complex events with a precision of 80%. If we compare,
the precision of CE Threshold 90 with the precision of CE Threshold 90 in Figure
7.10(b), then we can easily see that the precision of detecting complex events increased
by around 300%-400% for CE Threshold 90. If we compare the performance of CE
Threshold 90 with non probabilistic complex event detection system (i.e. CE Threshold
0), we can see that CE Threshold 90 is almost 800% more precise than non-probabilistic
complex event detection system when the pr accuracy is fixed at 0.7.

The precision of non probabilistic system (i.e. CE Threshold 0) remained constant
around 10%. The precision of CE Threshold 50 remained around 50%, which translates
to an increase of 400% over non probabilistic system (i.e. CE Threshold 0). If we
compare the precision of CE Threshold 0 with the precision of CE Threshold 0 in
Figure 7.10(b), we can easily conclude that the change in the accuracy of prs has no
effect on the precision of non probabilistic system.

PR Probability 90%:

Accuracy: Figure 7.12(a) shows the results for accuracy measurements. In this ex-
periment we fixed the pr accuracy at 90%. As has been observed in Figure 7.10(a) and
Figure 7.11(a), we can see that higher the CE Threshold, the more accurately we are
able to detect complex events. When we compare the performance of CE Threshold
90 with non probabilistic complex event detection system (i.e. CE Threshold 0), we
can observe that that CE Threshold 90 is almost 800% more accurate than the non-
probabilistic complex event detection system when the pr accuracy is fixed at 0.9.
From Figure 7.10(a),7.11(a),7.12(a) we can conclude that we are able to achieve a
100% increase in accuracy in detecting the complex events for every 0.1 increase in the
accuracy of prs for CE Threshold of 90.

The accuracy of detecting complex events with CE Threshold 90 was initially around
90% but then stabilized at a lower level. However, the accuracy of CE Threshold 90
never went below 70%.

Another important observation is that unlike Figure 7.6(a) and Figure 7.11(a), CE
Threshold 50 was remarkably more accurate than CE Threshold 0. CE Threshold 50
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Figure 7.11: Accuracy and Precision Comparison of CET 90, 50 and 0 with PR 70
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initially started at 60% accuracy but then eased off a bit, however, it always remained
above 40% accuracy level. In terms of percentages, CE Threshold 50 was almost 300%
more accurate than a non probabilistic system with a pr accuracy of 90%.

If we compare the results of Figure 7.10(a) with Figure 7.12(a), we can observe that
the accuracy of CE Threshold 90 in Figure 7.10(a) is comparable to the accuracy of
CE Threshold 50 in Figure 7.12(a).

Precision: Figure 7.12(b) shows the results for precision measurements. In this ex-
periment we fixed the pr accuracy at 90%. The precision of CE Threshold 90 started
off at around 100% level and remained fairly stable and never went below 90%. Simil-
arly there was no significant difference between the precision of CE Threshold 90 and
CE Threshold 50. However, precision of detected complex events for CE Threshold 0
(i.e. non probabilistic system) was very poor and remained constant around 10% level.
When we compare the performance of CE Threshold 90 and 50 with non probabil-
istic complex event detection system (i.e. CE Threshold 0), we can observe that CE
Threshold 90 and 50 are almost 800% more precise than the non-probabilistic complex
event detection system when the pr accuracy is fixed at 0.9.

A comparison of CE Threshold 90 with CE Threshold 90 in Figure 7.10(b) and Figure
7.11(b) shows that precision of detected complex events increase with an increase in
the accuracy of prs. However, a comparison of CE Threshold 50 with CE Threshold
50 in Figure 7.10(b) and Figure 7.11(b) shows no such pattern and instead reveals
that precision of detected complex events is extremely low and undeterministic as long
as accuracy of prs remain below 90%. But when the accuracy of prs is 90%, the
precision of detected complex events with CE Threshold 50 is almost equal to that of
CE Threshold 90. This leads us to conclude that the precision of complex events is
dependent upon the accuracy of prs and the variation in CE Thresholds between 50-90
have very little effect on it.

If we compare the precision of CE Threshold 0 with the precision of CE Threshold 0 in
Figure 7.10(b) and Figure 7.11(b), we can easily conclude that if the CE Threshold is
0, then the change in the accuracy of physical readers prs has no effect on the precision.

Effect of Physical Reader Accuracy

In this scenario we compared the probabilistic and non-probabilistic complex event
processing system by varying the physical reader accuracies. The different physical
reader probabilities that we used in our evaluations were pr 90, 70, and 50.

CE Threshold 90%:

Accuracy: Figure 7.13(a) shows the results for accuracy measurements. In this ex-
periment we fixed the CE Threshold at 90%. The experiment further reveals what we
have already observed before that if the CE Threshold is kept constant the accuracy
of detecting complex events increases with an increase in the accuracy of underlying
physical readers. The behaviour however, can not be generalized and is a characteristic

162



7.4 Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

A
c
c
u
r
a
c
y
 
o
f
 

 
D
e
t
e
c
t
e
d
 
C
o
m
p
l
e
x
 
E
v
e
n
t
s
 

 
w
i
t
h
 
P
R
 
A
c
c
u
r
a
c
y
 
0
.
9

Time/Cycles

CE Threshold 90%
CE Threshold 50%
CE Threshold 0%

(a) Accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

P
r
e
c
i
s
i
o
n
 
o
f
 

 
D
e
t
e
c
t
e
d
 
C
o
m
p
l
e
x
 
E
v
e
n
t
s
 
 

 
w
i
t
h
 
P
R
 
A
c
c
u
r
a
c
y
 
0
.
9

Time/Cycles

CE Threshold 90%
CE Threshold 50%
CE Threshold 0%

(b) Precision

Figure 7.12: Accuracy and Precision Comparison of CET 90, 50 and 0 with PR 90
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of a relatively high CE Threshold. We would see later on that CE Threshold 50 and
non probabilistic complex event detection system does not exhibit the same behaviour.

The accuracy of complex event detection with PR 90 remained above 60%, PR 70
remained above 50% and PR 50 remained above 40% with a CE Threshold of 90. This
means that for CE Threshold 90, every 20% increase in the pr accuracy led to a 20%
increase in the accuracy of detected complex events.

Precision: Figure 7.13(b) shows the results for precision measurements. In this exper-
iment we fixed the CE Threshold at 90%. The general observation of this experiment
was that the precision of complex event detection increased with the increase in the
accuracy of underlying physical readers. The precision of complex events detected
remained above 90% when the physical reader pr accuracy was 90%. The precision
of detected complex events remained greater than 80% with pr accuracy of 70% and
remained above 40% with pr accuracy of 50%.

The precision of detected complex events swung wildly when the pr accuracy was fixed
at 50%. This shows that the precision can not be determined precisely when the pr
accuracy is this low.

CE Threshold 50%:

Accuracy: Figure 7.14(a) shows the results for accuracy measurements. In this ex-
periment we fixed the CE Threshold at 50%. The accuracy of detected complex events
for pr accuracy of 90% remained above 40%.

However, the accuracy of physical reader pr 70 and pr 50 show an interesting picture.
The accuracy of detecting complex events when the accuracy of pr was 70 remained
fairly constant at around 30% level. However, the accuracy of pr 50 initially swung
wildly and then continued to drop before stabilizing at around 10% level. From this
experiment it is obvious that we can not have a reliable accuracy measure of complex
events when the CE Threshold is lowered to 50%.

Precision: Figure 7.14(b) shows the results for precision measurements. In this ex-
periment we fixed the CE Threshold at 50%. The precision of detected complex events
remained extremely high for pr 90, and never went below 90%. This clearly shows that
precision is highly dependent on accurate underlying physical readers.

The precision of pr 70 remained constant around 50%. This shows that by reducing
the pr accuracy by 20%, the precision of detected complex events decreased by almost
50%. The precision of pr 50 presented an interesting picture. Precision of pr 50 initially
started at around 60% but then continued to swing wildly. It went to as low as 20%
before increasing again. However, the precision for pr 50 never stabilized above 60%.
This shows that the precision with which complex events are detected is very hard to
ascertain, if the underlying physical readers are only 50% accurate.

CE Threshold 0%:
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Figure 7.14: Accuracy and Precision Comparison of CET 50 with PR 90,70, 50
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Accuracy: Figure 7.15(a) shows the results for accuracy measurements. In this ex-
periment we fixed the CE Threshold at 0%. In simpler words, the experiment shows
the accuracy of detected complex events in a non probabilistic complex event detec-
tion system under varyingly accurate physical readers. Figure 7.15(a) shows that the
accuracy of detected complex events remained around 10% for pr accuracy of 90%.
Furthermore, the accuracy of complex events for pr probability of 70 was exactly the
same as that of events detected with pr accuracy of 90%. Similarly the accuracy of
detected complex events with pr accuracy of 50% wasn’t much different either.

This experiment makes it abundantly clear that irrespective of how accurate or inac-
curate the underlying physical readers are, the detected complex events can not have
any meaningful accuracy, if we do not have a probabilistic complex event detection
system. Triggering each and every complex event as soon as it is detected would lead
to an extremely low accuracy for the detected complex events.

If we compare the results of this experiment with Figure 7.13(a), we would see that
the accuracy of detected complex events increased by 600% (CE Threshold 90 and PR
90) in the best case and by 300% (CE Threshold 90 and PR 50) in the worst case.

Precision: Figure 7.15(b) shows the results for precision measurements. In this ex-
periment we fixed the CE Threshold at 0%. The results show that the precision of
detected complex events remained around 10% for physical readers having an accuracy
of 90%, 70%, and 50%.

The take away point of this experiment is that the precision of the detected complex
events is not effected by an increase or decrease in the accuracy of underlying physical
readers, if these complex events does not have associated probabilities and are triggered
as soon as they are detected. Figure 7.15 serves as a every emphatic motivation for
using probabilistic complex event detection in a smart variant production environment.

If we compare the results of this experiment with Figure 7.13(b) and Figure 7.14(b),
we would see that the precision of detected complex events increased by 800% (CE
Threshold 90 and PR 90) in the best case and by 300% (CE Threshold 50 and PR 50)
in the worst case.

7.5 Related Work

Over the years, much research effort has been put into developing complex event pro-
cessing systems. In the sections below, we will take a brief look at some of the important
systems that have been designed and developed.

DistCED: distributed complex event detection DistCED [PSB03], which was
developed in Java, is perhaps one of the earliest distributed complex event processing
systems. The framework uses extended, non-deterministic finite state automata to
detect events. The system defines six operators which are concatenation. sequence,
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Figure 7.15: Accuracy and Precision Comparison of CET 0 with PR 90,70, 50
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iteration, alternation, timing and parallelisation. These operators are specified using
an expressive CE language. In order to overcome the issue of incorrect event detection
DistCED uses a delayed detection policy that makes detectors wait till events are stable
enough for detection. This ensure that late arrival of events due to network and node
issues do not cause problems. Although the authors proposed automata distribution,
they did not presented any algorithms or cost models for this distribution.

SASE: CEP over streams: Wu et al [WDR06], [GWC+06] carried out another
pioneering work in the field. The authors developed a CEP system called SASE which
can be used to execute complex event queries over real-time streams of RFID readings.
For the purpose of their work, the authors assumed an infinite sequence of events to be
an event stream, since RFID event streams tend to vary from video and audio streams
in a way that RFID streams consist of discrete and distinct events which could be
intermittently dispersed over time.

The basic structure of the language used to define complex events is:

EVENT <event pattern>

[WHERE <qualification>]

[WITHIN <window>]

where event pattern describes the type of events which in our scenario would have been
sequence, synchronization, delay etc. Qualification describes the conditions that needs
to be fulfilled in order for the raw events to be correlated and composed into complex
events. In general the WHERE clause is a boolean combination of predicates that use
one of the six comparison operators (=, 6=, >, <, ≤, ≥). The Window describes the
time span within which the events should occur to be correlated together.

For a given sequence of events as input, the output is also a sequence of events which
are composed together. The complex events within the SASE system are generated by
concatenating all the attributes of the matching input events, and hence the resulting
events can provide all necessary information to monitoring applications. One of the
short comings of the SASE language is that it only allows for transformation of primitive
events to complex events and not from complex events to (even more) complex events.
Another issue is that the SASE language assumes total ordering of events.

Bridging physical and virtual worlds: CEP for RFID data streams: Wang et
al [WLLB06] have also proposed an RFID based complex event processing system. The
system uses ECA (Event Condition Action) based rules to trigger complex events based
on raw RFID events. Wang et al divided the complex event constructors/operators into
two categories: non-temporal event constructors and temporal event constructors. The
non-temporal constructors include OR, AND and NOT operators whereas the temporal
constructors comprise of SEQ (sequence), TSEQ (distance constrained sequence), and
WITHIN constructors.
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The authors have also presented constructs to create rules, which can be thought of as
macros. The general construct of a rule is presented below:

CREATE RULE rule id, rule name

ON event

IF condition

DO action 1; action 2; ...; action n

These rules can be used to perform low level tasks such as data filtering to elimin-
ate duplicates or high level semantic tasks such as defining rules to create location
transformation or to create containment relationships.

Cayuga: a high-performance event processing engine

Cayuga [DGH+06], [DGP+07] is a single server based CEP system developed at Cornell
University. Event streams are infinite sequences of relational tuples with interval-based
timestamps. The Cayuga query language is derived from an event algebra [DGH+06];
and is basically a simple mapping of the SQL operators to algebra operators having
an SQLish syntax. The query language is quiet similar to the SASE event query
language [WDR06] discussed in the previous section. Each query has the following
form:

SELECT {attributes}

FROM {algebra_expression}

PUBLISH {output_stream}

The SELECT clause specifies the attributes in the output stream schema, the FROM
clause specifies a Cayuga event pattern, and the PUBLISH clause gives the output
stream a name. Cayuga’s event algebra has six operators: projection, selection, renam-
ing, union, conditional sequence and iteration. Event algebra expressions are detected
by nondeterministic finite automata, which can detect unbounded sequences. This is
again something that is quiet similar to both SASE and DistCED. To achieve high
performance, Cayuga uses custom heap management, indexing of operator predicates
and reuse of shared automata instances. However, Cayuga does not support automated
query rewriting and distributed detection. The task of distributing Cayuga automata
is made quiet difficult by the fact that the system merges event algebra expressions into
a single automaton, which would have to be partitioned across nodes for distribution.

Distributed CEP with query rewriting: NEXT is a CEP system developed by
Schultz et al [SMMP09], that tries to perform distributed event detection along with
performing query re-writing. The system has been designed and developed by the same
team that was behind the DistCED system. So similar to DistCED, Next also uses
an expressive automata-based approach for event detection. The events are defined by
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the users using a high level SQL-like language that has six basic operators. These six
operators are: the filter operator, the union operator, the next operator, the iteration
operator, the exception operator, and the time operator.

The system can be considered an upgrade to the DistCED system in terms of the
distributed capabilities. In this system the authors have tried to develop a system that
is capable of deploying operators on distributed nodes. In order to do this, the event
language facilitates the rewriting of expressions into equivalent ones and the automata
model provides facilities to deploy detection operators across multiple machines. In
addition to this, the system is capable of making optimisation and placement decisions
according to cost functions derived from the resource consumption of event automata.
This cost model is further used to rewrite queries with the express purpose of reducing
the CPU consumption of these queries.

CEP in RFID middleware: a three layer perspective: Hu et al. [HYHZ08] also
proposed an RFID based complex event processing middleware. The CEP middleware
proposed by Hu et al. divides the tasks of detecting complex events into three different
layers: logic structure, temporal constraint, and event detection. In the logic structure
layer, the logical relations between the different event types are defined. This step
could also be termed as the event definition phase. In the temporal constraint layer,
the temporal conditions are described over the events defined in the previous layer.
Whereas, the event detection layer deals with the actual detection of complex events.
Some of the event operators defined by Hu et al. include: aggregation, disjunction,
conjunction, negation, sequence and within. For the purpose of event detection, the au-
thors have used petri-nets, which are directed bi-partite graphs consisting of transitions
(i.e. events that may occur) and states (i.e. states of complex events).

Discussion: Several RFID based CEP systems [ZZ08], [HYHZ08], [WDR06], [WLLB06]
have been proposed by the research community. These systems differ from our endeav-
our in two important ways. Firstly, the prime objective of these systems was to develop
a CEP based system for processing RFID streams. None of these systems didnt come
up with a new algorithm or method to detect complex events. However, in our case
we have designed specific algorithms to detect specific type of complex manufacturing
events that are relevant for our scenario.

Secondly, since we intended to use our system in production environments where reli-
ability and accuracy is of paramount importance, we developed a comprehensive prob-
abilistic complex event detection framework that assigns probabilities to each detected
complex event. This allows the applications to know with certainity how reliable or
unreliable a certain complex event is. None of the CEP systems discussed above have
any accuracy measure for the complex events that they generate.
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7.6 Summary

In this chapter, we have presented concepts and algorithms to detect complex manufac-
turing events. We further designed mechanisms to assign probabilities to these complex
manufacturing events so as to have a measure of how accurate a certain event really
is. In addition to this we also extended the RFID consistency stack that was initially
presented in Chapter 5.1. The stack now includes two additional production issues i.e.
presence and position consistency. Finally we tested out system in a simulated setting.

The simulations that we carried out revealed that for a given CE Threshold, there was
little to no difference in accuracy or precision of the system when it came to detecting
manufacturing errors that were solely caused by false readings, missed readings, out of
order readings or were a combination of all of these basic errors. The reason for this is
that when it comes to the complex event level, all RFID related errors behave the same
way as long as the CE Threshold value is kept constant for all these different errors.

Our evaluations for complex manufacturing errors revealed pretty much the same res-
ults as experienced with raw RFID errors i.e. for a given CE Threshold, the accuracy
and precision with which different complex manufacturing errors were detected re-
mained fairly similar. The accuracy of detecting complex events for a CE Threshold
of 0.7 remained around 60%, whereas the precision remained around 80%.

Furthermore, we studied the effect of reliability of physical readers on the overall accur-
acy and precision of the entire CEP system. Our studies showed that complex events
were detected with a higher accuracy and precision with an increase in the accuracy of
underlying physical readers. The system was able to detect complex events with 60%
accuracy and 95% precision when the accuracy of the physical readers was around 90%.
When the accuracy of physical readers was reduced to 50%, the accuracy of complex
events decreased to 30% and the precision decreased to 10%.

The studies conducted to find the effect of CE Thresholds on the overall system accur-
acy and precision revealed that the accuracy and precision of complex manufacturing
events was unpredictable for a CE Threshold of 50% or lower. However, when the CE
Threshold was higher than 60% the accuracy and precision of detecting complex events
increased with an increase in the CE Threshold.

In addition to the studies discussed above, we also conducted comparative studies to
find out how the probabilistic CEP system would fare against a non-probabilistic CEP
system. We compared the two systems firstly by varying the CE Thresholds and then
by varying the physical reader accuracies. The results revealed that:

Effect of CE Thresholds:

• PR accuracy of 50%: The probabilistic CEP system was 400% more accurate and
around 600% more precise than the non-probabilistic system when CE Threshold
was 90%.
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• PR accuracy of 70%: The probabilistic CEP system was 600% more accurate and
around 400% more precise than non-probabilistic system when the CE Threshold
was 90%.

• PR accuracy of 90%: The probabilistic CEP system was almost 800% more
accurate and precise than non-probabilistic system when the CE threshold was
90%.

Effect of PR Accuracy:

• CE Threshold of 90%: With a CE Threshold of 90%, the accuracy of complex
event detections increased by roughly 20% for every 20% increase in the accuracy
of underlying physical readers.

• CE Threshold of 50%: The results show that the accuracy of detecting complex
events when the accuracy of physical readers pr was 70 remained fairly constant
at around 30% level. However, the accuracy of complex events with pr 50 initially
swung wildly and then continued to drop before stabilizing at around 10% level.
The experiments revealed that 50% is an extremely low threshold level to achieve
predictable results.

• CE Threshold of 0%: The accuracy of detected complex events remained around
10% for physical reader pr accuracy of 90, 70 and 50. The results show that
if we do not assign probabilities to complex events and trigger them as soon as
they are detected, the complex events can not be reported with any meaningful
accuracy irrespective of how accurate the underlying physical readers are.
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Chapter 8
Summary and Future Work

In this chapter, we summarize the main contributions of this thesis and present a brief
discussion on possible future work.

8.1 Summary

We have divided the summary into 5 sub-sections, each corresponding to a chapter
in this work. Section 8.1.1 provides the motivation for our work. Section 8.1.2 dis-
cusses the system model which forms the basis for the entire work carried out in the
subsequent chapters. Section 8.1.4 briefs the real-time production monitoring and se-
quence detection algorithm. Section 8.1.5 summarizes the self-calibration algorithm
that was designed to continuously calibrate the probabilities of RFID readers. Section
8.1.6 presents the essence of the complex manufacturing events and the algorithms used
to assign probabilities to these events.

8.1.1 Case Studies

Service offerings are now either replacing or becoming as important and significant as
product offerings in terms of revenues for companies. Due to this reason companies are
now increasingly bundling services with products. In this chapter, we surveyed some
of the successful services offered by both military and commercial organizations. In
addition to this, we presented the notion of the smart variant production environment
and discussed the different components or building blocks that are needed for such an
environment. The design of some of these components (such as the real-time production
monitoring and complex event detection within the production environments) forms
the core of our work. In addition, we also presented some of the services that such a
production facility could offer to the company and to its customers.
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In short a smart variant production environment would lead to: improved lead time,
increased productivity, improved inventory management, improved customer relation-
ships, reduced human errors, reduce manpower and manual data recording, reduction
of product part and mobile tool losses.

Each of the benefit listed above has the potential of saving a production organization
millions in revenues each year.

8.1.2 System Model

Within the system model chapter (cf: Chapter 3) we formally discussed the model on
which our system is built. In specific we formulated the notion of physical readers,
virtual readers, network topology, and the system events. Further we also discussed
the event model and detailed the events that are generated in our system. In addition
to this we also formalized the different RFID reader failures such as duplicate readings,
false readings, out-of-order readings, and missed readings that should be considered by
any reliable RFID framework. Furthermore, we also formalized the failure model and
the network and node failure assumptions.

8.1.3 Lernfabrik

Within the Lernfabrik chapter (cf: Chapter 4) we presented the Lernfabrik at length,
including the different components or modules that are present within the factory.
Furthermore, we performed comprehensive evaluations regarding the reliability of RFID
readers. This data from these evaluations was later used to fine tune the simulations
that were done to validate the various algorithms designed in this work.

Within the Lernfabrik we conducted evaluations to study the effects of tag placement,
multiple tag reads, tag orientation, RFID reader power, and reader interference on the
accuracy of RFID readers. The findings of our study are summarized below:

• Tag Placement: RFID tags were placed on the metallic product parts in two
different ways. Firstly they were placed on the parts directly and in the second
setting they were placed with a spacer between the tag and the part. The evalu-
ations showed that tags placed with a spacer have had far higher read accuracy
then the ones placed directly on the metal objects.

• Differences among Readers: Three different RFID readers were tested under
exactly the same physical conditions. The results showed that even RFID readers
of the same model and from the same manufacturer have different accuracy even
when they are operating under the same conditions.

• Multiple Object Reads: The false negatives for RFID readers was slightly higher
for 3 simultaneous tag reads, as compared to a setting in which the readers had
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to read just 1 RFID tag at a time. Experiments conducted by other researchers
[PSR+06], [Vio05], [HC06] show that the accuracy of RFID readers fall sharply
when they have to read more than five tags simultaneously. We only conducted
evaluations for 3 tags because that was the maximun number of product parts in
our product on the Lernfabrik.

• Tag Orientation: We evaluated two different tag orientation settings. In the
first setting the tags were placed on the product parts in such a manner that
when they pass across the readers, they would be directly facing the readers. In
the second setting the tags were placed randomly on the product parts. The
evaluations showed that the RFID readers have far higher accuracy when they
have to read tags which are directly facing them.

• Reader Power: The reader power evaluations revealed that reducing the reader
power reduces the out-of-order readings. This is quiet intuitive, since with higher
power, the read range of an RFID reader increases which results in the reader
reading tags out of order.

• Reader Interference: The experiments for reader interference revealed that if
two readers are deployed within the read range of each other. The out-of-order
readings of the later reader is less than that of the one deployed before it. This
is because the signals of the initial reader interferes with the second reader and
decreases the read range of the later reader.

The results of RFID reader evaluations provides further motivation for a real-time
monitoring framework that not just monitors the production environment but also
provide guarantees regarding the reliability of RFID devices.

8.1.4 Probabilistic Sequence Detection of Product Parts

In our work we presented the Consistency stack (cf. Chapter 5). The stack is conceptual
in nature and divides the consistency issues into separate layers. These layers address
inconsistencies that may arise due to the unreliability of RFID devices and issues in
production environments due to variant production. The consistency stack is the first
effort of its kind to formalize the consistency issues (such as duplicate readings, missed
readings, and false readings) that may arise as a result of using RFID devices for
real-time production monitoring.

Furthermore, we have also designed a sequence detection algorithm that attaches prob-
abilistic guarantees to the product part sequences detected by the RFID readers de-
ployed along the production paths.

Our evaluations show that our framework performs better when the physical readers
prs are uniformly distributed across the vrs. Partial sequences were being detected with
greater than 90% probability when the physical readers were distributed uniformly as
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against roughly 80% probability which was achieved when the readers were distributed
in zipfian manner. The improvement in probability was more evident with partial
sequences, as uniformly distributed physical readers were able to detect these partial
sequences with around 40% probability as compared to the roughly 10% probability of
zipfian distribution.

The evaluations for physical reader reliability showed that the sequence detection al-
gorithm was able to detect 90% of all partial sequences with greater than 90% prob-
ability even when the physical reader accuracy was 0.7. An even greater number of
partial sequences were detected with greater than 90% probability with a pr accuracy
of 0.9. Even with a sequence length of 16, more than 80% of all extended sequences
were detected with greater than 90% probability when the accuracy of the prs was
only 70%. The results clearly show that the sequence detection algorithm does a very
good job of detecting sequence with extremely high probability even when the physical
readers are only 70% accurate.

8.1.5 Probabilistic Self Re-calibration of RFID Reader Probabilities

In this chapter (cf. Chapter 6), we discussed that RFID readers are inherently un-
reliable and this unreliability can increase or decrease (mostly increase) over time.
Therefore, in order to have accurate monitoring of product parts using RFID readers,
it is important to constantly calibrate the physical reader pr accuracy. To achieve
this objective, we presented an algorithm that allows RFID readers to self-calibrate
their accuracy to reflect the probability with which each individual physical reader is
detecting product parts moving on the production lines.

The basic idea of the self-calibration algorithm is to find out how many correct and
incorrect readings an RFID reader has made. This is done by comparing the readings
of an RFID reader with the most probable readings. This gives us the accuracy with
which the reader is detecting the product parts.

Our evaluations for the effect of actual probability of physical readers showed that
the higher the actual probability of physical readers prs, the less time the system
needed to calibrate the estimated probability of these physical readers with a relatively
high accuracy. This should not be a surprise for anyone, because if we consider the
converse of this situation it would become evident that we can not estimate the actual
probabilities of physical readers with little or no accurate readings being performed by
the physical readers.

In addition to the observation made above, our evaluations showed that the self-
calibration algorithm reacted robustly to induced physical changes. The algorithm
was able to calibrate itself to an accuracy of greater than 90% even in the presence
of changes induced after every 5 cycle. The only difference that the higher rate of
change made was that the algorithm needed a little more time to reach a stable state
as compared with a lower rate of change scenario.
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Our evaluations further revealed that the time to calibrate the estimated probabilities
of physical readers is reduced if a large number of physical readers are clustered together
in one virtual reader. The reason for this is that, if we spread physical readers sparsely
across a large number of virtual readers, each reader would have a smaller data sample
to perform its computations and as a result the estimated accuracy would suffer.

We also compared the performance of our calibrated system with a system in which
reader probabilities are not calibrated. In an uncalibrated system, the difference
between the estimated probability of the physical reader and its actual probability
will be induced at system initialization time or if the reader breaks down. The dif-
ference between estimated and actual probabilities in such a system would never be
reduced and would continue to adversely impact the overall reliability of the entire in-
frastructure. Theoretically the difference between the estimated and actual probability
of physical reader in an uncalibrated system could be as high as 0.99, since one can
fix the probability of the reader at 0.99 and the reader can then break down and stop
performing and hence have an actual accuracy of 0.0. However, in a calibrated system
the difference between the estimated probability and the actual probability of physical
readers is never greater than 0.05.

8.1.6 Probabilistic Complex Manufacturing Event Detection

In this chapter (cf. Chapter 7), we have presented concepts for the detection of com-
plex manufacturing events using unreliable RFID readings. Based on a probabilistic
model we presented the algorithm to assign probabilities to each of the detected com-
plex manufacturing events. The basic idea of our approach is to exploit redundant
readings to get an accurate picture of the real world. In addition to detecting com-
plex manufacturing events with a high degree of accuracy, we also extended the RFID
consistency stack from Chaper 5.1 to further include important production issues. Fur-
thermore, we performed comprehensive evaluations in a simulated environment to test
our algorithms.

The simulations that we carried out revealed that for a given CE Threshold, there was
little to no difference in accuracy or precision of the system when it came to detecting
manufacturing errors that were solely caused by false readings, missed readings, out of
order readings or were a combination of all of these basic errors. The reason for this is
that all RFID related errors behave the same way with respect to the complex events
as long as the CE Threshold value is kept constant for all these different errors.

Our evaluations for complex manufacturing errors revealed pretty much the same res-
ults as experienced with raw RFID errors i.e. for a given CE Threshold, the accuracy
and precision with which different complex manufacturing errors were detected re-
mained fairly similar. The accuracy of detecting complex events for a CE Threshold
of 0.7 remained around 60%, whereas the precision remained around 80%.
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Furthermore, we studied the effect of reliability of physical readers on the overall accur-
acy and precision of the entire CEP system. Our studies showed that complex events
were detected with a higher accuracy and precision with an increase in the accuracy of
underlying physical readers. The system was able to detect complex events with 60%
accuracy and 95% precision when the accuracy of the physical readers was around 90%.
When the accuracy of physical readers was reduced to 50%, the accuracy of complex
events decreased to 30% and the precision decreased to 10%.

The studies conducted to find the effect of CE Thresholds on the overall system accur-
acy and precision revealed that the accuracy and precision of complex manufacturing
events was unpredictable for a CE Threshold of 50% or lower. However, when the CE
Threshold was higher than 60% the accuracy and precision of detecting complex events
increased with an increase in the CE Threshold.

In addition to the studies discussed above, we also conducted comparative studies to
find out how the probabilistic CEP system would fare against a non-probabilistic CEP
system. We compared the two systems firstly by varying the CE Thresholds and then
by varying the physical reader accuracies. The results revealed that:

Effect of CE Thresholds:

• PR accuracy of 50%: The probabilistic CEP system was 400% more accurate and
around 600% more precise than the non-probabilistic system when CE Threshold
was 90%.

• PR accuracy of 70%: The probabilistic CEP system was 600% more accurate and
around 400% more precise than non-probabilistic system when the CE Threshold
was 90%

• PR accuracy of 90%: The probabilistic CEP system was almost 800% more
accurate and precise than non-probabilistic system when the CE threshold was
90%.

Effect of PR Accuracy:

• CE Threshold of 90%: With a CE Threshold of 90%, the accuracy of complex
event detections increased by roughly 20% for every 20% increase in the accuracy
of underlying physical readers.

• CE Threshold of 50%: The results show that the accuracy of detecting complex
events with pr 70 remained fairly constant at around 30% level. However, the
accuracy of pr 50 initially swung wildly and then continued to drop before sta-
bilizing at around 10% level. The experiments revealed that 50% is an extremely
low threshold level to achieve predictable results.

• CE Threshold of 0%: The accuracy of detected complex events remained around
10% for physical reader accuracy of 90, 70 and 50. The results show that if we do
not assign probabilities to complex events and trigger them once they have crossed

180



8.2 Future Work

a certain accuracy threshold, the complex events can not be detected with any
meaningful accuracy irrespective of how accurate the underlying physical readers
are.

8.2 Future Work

There exists many ways to extend the work in this thesis or in general to perform future
research in the area of real-time production monitoring. However, in the following sec-
tions, we would discuss three of the most pressing problems that still need to be solved.
Section 8.2.1 discusses the issues with efficient dissemination of complex manufactur-
ing events, Section 8.2.2 presents the problem of quality of service in a manufacturing
environment that has deployed an event dissemination system and finally Section 8.2.3
presents the issue of production line fragmentation.

8.2.1 Efficient Dissemination of Complex Manufacturing Events

We undertook the task of detecting complex manufacturing events and assigning them
probabilities, so as to know how reliable each and every event is (cf. Chapter 7). The
events that we have detected so far include sequence, synchronization, delay, missing
part and incorrect part position error. Currently all of these manufacturing events are
generated during the production process at the shop floor. In the future however, we
expect that a smart variant production environment would generate complex events
across both operational domains (such as inventory, logistics etc) and business domains
(such as HR, finance, etc).

In order to elaborate these future events lets discuss some concrete examples. Imagine
an employee working on the production line and making repetitive errors. The pro-
duction environment can define some rules to generate events which would inform the
company about how good or bad a worker performed on the production line during
the past hour, day, week or month. In case of excessive mistakes the worker could be
pulled out of the production line immediately. The events generated for such mistakes
would be similar to the yellow and red cards shown to footballers who make fouls or
improper tackles on the football field. Such events would fall under the HR category
and should be reported to HR department for preventive/corrective actions.

Another set of events that would potentially be generated include events that would
inform the company that the inventory of a certain part is now at critical levels and
new shipments of the parts must be ordered for smooth and uninterrupted continuation
of production. Such events would belong to the inventory domain.

From the two examples discussed above, it is obvious that in the future a smart real-
time production monitoring framework would generate complex events that would be-
long to specific domains i.e. events should have specific recipients and hence should
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not be flooded to the entire system. In order to achieve this task, the smart real-time
production monitoring framework must have a proper and efficient event dissemina-
tion mechanism. Publish/Subscribe is the paradigm of choice for efficient and reliable
event/message dissemination. In a publish/subscribe system, the sender (publisher)
of the event does not send the event directly to the receiver (subscriber). The gen-
erated events are categorized into classes, with the publisher having no knowledge
about the number or type of subscribers that would receive these events. Similarly, the
subscribers register to receive events belonging to a certain class, without having any
knowledge of what and who generated those events.

Jin et al. [JZL+09] have already proposed using publish/subscribe to disseminate raw
RFID events. However, the issue with their work is that it does not cater to production
environments and hence does not provide for the fact that since RFID readings could be
erroneous, a lot of incorrect events would be generated. So, although publish/subscribe
mechanism is used to avoid flooding events to all applications Jin et al’s system still
floods applications with incorrect events.

We propose that complex manufacturing events should first be assigned probabilit-
ies in order to filter out the incorrect events and then be disseminated using a pub-
lish/subscribe system in order to ensure that events are only sent to the applications
that want and are supposed to get those events.

8.2.2 QoS Requirements for Complex Manufacturing Events

From the discussion in the previous section it is obvious that we would need a pub-
lish/subscribe based system to efficiently disseminate complex manufacturing events
across different operational and administrative domains. In a manufacturing environ-
ment information should not just be generated, but should be generated as quickly
as possible and as reliably as possible so as to rectify the problems before they could
become catastrophic issues. This time critical and reliability centric nature of man-
ufacturing environments would pose certain quality of service requirements on the
publish/subscribe system that would be deployed to address event dissemination.

The issue with publish/subscribe systems is that they are inherently decoupled - i.e.
producers and receivers are not directly connected with each other. This poses serious
research questions for any system that uses publish/subscribe as its core infrastruc-
ture and yet is tasked to disseminate events in a timely manner. Due to this reason,
we believe that there is a serious need to develop algorithms to address QoS require-
ments - with special emphasis towards QoS requirements (such as end-to-end delay
and security and confidentiality of events being disseminated) that would be relevant
to manufacturing organizations.
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8.2.3 Fragmentation on the Production Lines

It is very typical to have errors during production. Some of the common errors that
have already been discussed in this work include: sequence, synchronization, delay,
missing parts and incorrect part position errors. The only way to resolve these errors
is to remove the products that have experienced errors from the production line in
order to avoid completion of incorrect final products. However, removal of the faulty
products from the production line is only a partial solution as the product that has
been removed still needs to be manufactured and delivered to the customer. Due to
this reason, once the error with the product is resolved, it should be re-scheduled and
re-inducted onto the production line.

A very simplistic solution is to re-schedule these products for the next day/batch
of production. This is the current state of the art in manufacturing, as companies
re-schedule the faulty products for the next round of production. However, once a
product is removed from the production line, a gap is created on the production line.
This is a real physical gap and is both temporal and spatial in nature. In order to
explain this, lets imagine a scenario in which three product parts were moving on the
production line (o1, o2, o3). After sometime, the smart real-time production monitoring
framework realizes that o2 is faulty and hence removes it from the production line. Due
to this reason, o2 is pulled off from the line and all its corresponding parts moving on
any other lines would also be pulled off. Now the state of the production line would be
(o1, , o3) i.e. the production line would have product part o1, a gap in place of where
o2 would have been and o3. After the workers at a certain assembly point have worked
on o1, they would wait for o3 to reach the assembly point in order to work on it. This
idle time would have previously been spent while working on o2.

From the example presented above it is obvious that each product that is pulled off the
assembly line only saves the factory the hassle of building that product from scratch.
The factory still losses out on precious time that could have been spent building that
product. Each product pulled from the production line is equal to a product that the
factory would never be able to manufacture. This is clearly a waste of precious time
and resources for production environments. In our discussions with the manufacturing
people, they expressed extreme desire for a solution to this problem i.e. for some sort
of a mechanism to have re-induction of faulty product parts onto the production lines
during the normal course of production.

One way to address this issue is to frame it as a fragmentation and de-fragmentation
problem of the file system domain. In file-systems, the term fragmentation is used to
describe the inability of the file system to lay out related data sequentially. Due to
fragmentation, the disk head movement or seeks would increase which would result in
a decreased throughput. Many methods have been proposed to solve fragmentation in
file systems [JIQ96], [AM04], [Dav95], [Dav98] , however these methods are inapplicable
for fragmentation on the production lines due to the simple fact that fragments on the
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production lines are temporal and spatial in nature i.e. they move over time across the
production lines. So although the problem that we face in production environments
can be framed as a fragmentation problem, we would need new and innovative solutions
to solve these fragmentation issues on production lines.
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