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Abstract

With the proliferation of streaming data from sources such as sensors in the Internet of
Things (IoT), situational aware applications become possible. Such applications react
to situations in the surrounding world that are signaled by complex event patterns that
occur in the sensor streams. In order to detect the patterns that correspond to the situa-
tions of interest, Complex Event Processing (CEP) is the paradigm of choice. In CEP,
a distributed operator graph is spanned between the event sources and the applications.
Each operator step-wise detects event patterns on subsequences, called windows, of its
input stream and forwards output events that signal the detection to its successors. To
cope with the ever-increasing workload at the operators, operator parallelization be-
comes necessary. To this end, data parallelization is a powerful paradigm, building on
an architecture that consists of a splitter, operator instances and a merger, to scale up
and scale out CEP operators. In doing so, the operators need to provide consistent out-
put streams, i.e., not produce false-negatives or false-positives, keep a latency bound
on pattern detection, elastically adapt their resource reservations to the workload, and
be fault-tolerant against node and network failures. Related work has proposed data
parallelization techniques that build on splitting the input event streams of an operator
either in a key-based, a batch-based or a pane-based way. These approaches, however,
only support a limited range of CEP operators.
The goals of this thesis are (i) to support data parallelization for all window-based
CEP operators, (ii) to develop adaptation methods such that CEP operators can keep
a user-defined latency bound while minimizing costs for computing and networking
resources, and (iii) to develop recovery methods that guarantee fault-tolerance at a low
run-time overhead.
To this end, the following contributions are made. First, we propose a window-based
data parallelization method that is based on the externalization of the operator’s win-
dow policy to a data parallelization framework. Second, basing on Queuing Theory,
we propose a method to adapt the operator parallelization degree at run-time to the
workload such that probabilistic bounds on the event buffering in the operator can be
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16 ABSTRACT

met. Third, we propose a batch scheduling algorithm that is able to assign subsequent
overlapping windows to the same operator instance, so that communication overhead is
minimized, while a latency bound in the operator instances is still kept. Forth, we pro-
pose a framework for parallel processing of inter-dependent windows that is based on
the speculative processing of multiple versions of multiple windows in parallel. Fifth,
we propose a lightweight rollback recovery method for CEP operator networks that
exploits the externalization of the operator window policy to allow for the recovery of
an arbitrary number of operators.



Zusammenfassung

Die zunehmende Verbreitung von Datenströmen aus Quellen wie Sensoren im Inter-
net der Dinge macht situationsbewusste Anwendungen möglich. Solche Anwendun-
gen reagieren auf Situationen in der Umgebung, die durch komplexe Ereignismuster
in den Datenströmen signalisiert werden. Um Ereignismuster zu erkennen, die den in-
teressanten Situationen entsprechen, wird heute komplexe Ereignisverarbeitung, oder
Complex Event Processing (CEP), intensiv genutzt. In CEP wird ein verteilter Ope-
ratorengraph zwischen den Ereignisquellen und den Anwendungen, die CEP nutzen,
aufgespannt. Jeder Operator detektiert schrittweise Ereignismuster in Teilsequenzen
seiner Eingangsströme, die Fenster genannt werden. Erkannte Ereignismuster werden
den Nachfolgern im Operatorengraph durch Ausgangsereignisse angezeigt. Um mit
den immer weiter zunehmenden Arbeitslasten der Operatoren umgehen zu können, ist
deren Parallelisierung notwendig. Zu diesem Zweck ist die Datenparallelisierung ein
mächtiges Werkzeug. Sie basiert darauf, anhand einer dreistufigen Architektur, beste-
hend aus Splitter, Operatorinstanzen und Merger, die Operatoren zu skalieren. Dabei
müssen die Operatoren einen konsistenten Ausgangsstrom erzeugen, der keine falsch-
negativen und falsch-positiven Ereignisse enthält, eine Latenzschranke in der Ereigni-
serkennung einhalten, ihre Ressourcenreservierungen elastisch an die Arbeitslast an-
passen, und fehlertolerant gegenüber Knoten- und Netzwerkfehlern sein. Verwandte
Arbeiten haben Techniken zur Datenparallelisierung vorgeschlagen, die darauf bau-
en, eingehende Datenströme im Splitter entweder anhand eines Schlüsselwertes, einer
Stapelgröße oder in Scheiben, sogenannten Panes, aufzuspalten. Diese Techniken un-
terstützen jedoch nur eine begrenzte Auswahl von Operatoren.
Die Ziele dieser Dissertation bestehen darin, (i) Datenparallelisierung für alle fenster-
basierten CEP-Operatoren zu ermöglichen, (ii) Adaptionsmechanismen zu entwickeln,
sodass Operatoren eine nutzerdefinierte Latenzschranke einhalten können, während die
Kosten für Rechen- und Netzwerkressourcen minimiert werden, und (iii) Wiederher-
stellungsmethoden zu entwickeln, die Fehlertoleranz zu geringen Laufzeitkosten ga-
rantieren.

17



18 ZUSAMMENFASSUNG

Zu diesem Zweck werden die folgenden Beiträge geleistet. Erstens schlagen wir eine
fensterbasierte Datenparallelisierungsmethode vor, die darauf basiert, dass die Fen-
sterbewegungen eines Operators einem Datenparallelisierungsframework gegenüber
offengelegt werden. Zweitens schlagen wir eine Methode zur Adaption des Operators
vor, die auf Warteschlangentheorie beruht und zur Laufzeit den Parallelisierungsgrad
des Operators so an die Arbeitslast anpasst, dass probabilistische Grenzen in Bezug auf
die Pufferung von Ereignissen im Operator durchgesetzt werden. Drittens schlagen wir
einen Schedulingalgorithmus vor, der aufeinander folgende und überlappende Fenster
der gleichen Operatorinstanz zuweist, sodass der Kommunikationsaufwand minimiert
wird, während eine Latenzschranke in den Operatorinstanzen eingehalten wird. Vier-
tens schlagen wir ein Framework für die parallele Verarbeitung voneinander abhängi-
ger Fenster vor, das auf der spekulativen, parallelen Verarbeitung mehrerer Versionen
mehrerer Fenster basiert. Fünftens schlagen wir eine leichtgewichtige Wiederherstel-
lungsmethode für CEP-Operatorennetzwerke vor, die die Offenlegung der Fensterbe-
wegungen eines Operators ausnutzt, um die Wiederherstellung einer beliebigen Anzahl
von Operatoren zu ermöglichen.



1
Introduction

In the recent years, we face an unseen boost of streaming data becoming available from
sensors, social networks, stock markets, and various other sources. For instance, bil-
lions of sensors and smart objects, i.e., objects with embedded electronics that enable
identification, sensing and actuation capabilities, are deployed throughout the globe,
collecting data about the physical world. They grow in numbers [Int14] and have the
power to enable new applications in the areas of smart homes, smart cities, environ-
mental monitoring, health-care, smart business and security, paving the way towards
the Internet of Things (IoT) [AIM10, MSPC12]. This bears a huge economical poten-
tial: For instance, in the IoT, revenues of 267 billion USD have been predicted for the
year 2020 by Forbes [For17] .

The data streams from sources like sensors contain valuable information about the
situation in the surrounding world. For instance, sensor data in a traffic monitoring
environment can contain information on the current traffic flow. However, the single
data elements—also referred to as events—like position updates of cars stemming from
GPS sensor readings, contain only low level information. In order to gain higher level
insights that are valuable for interested parties—such as other vehicles that adapt their
route to a traffic jam or traffic operators that open additional lanes on a high-way—the
low level source event streams have to be aggregated such that situations of interest
can be detected. To this end, a middleware is needed between the event sources and
sinks that enables the consistent and timely detection of situations by integrating and
continuously analyzing the low level source event streams. Consistency in situation
detection means that neither false-positives nor false-negatives should occur, i.e., nei-
ther should a situation be detected that is not signaled in the source event streams, nor
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20 1. INTRODUCTION

should a situation detection be missed when the source event streams actually signal
it. Inconsistent situation detection can lead to wrong decisions, e.g., wrong routing de-
cisions, that cost money and degrade customer satisfaction, or even can cause serious
damage. Timeliness in situation detection refers to the time span between the point in
time when the last source event that signals a situation of interest has been emitted and
the point in time when the corresponding situation is actually detected and signaled to
the interested party. Late detections of a situation are, in the worst case, useless for the
end user; the acceptable delay between the occurrence of a situation and its detection
is application-dependent and can be specified as a latency bound by a domain expert.

Complex Event Processing (CEP) [Luc01, BOO09, CM10, KKR10, CM12c] is a key
paradigm that helps in realizing a middleware for situation detection. CEP allows for
specifying a network of multiple dependent operators that step-wise transform low-
level event streams into complex events that correspond to the situations of interest,
e.g., critical power grid situations or traffic jams. Operators detect event patterns on
their incoming event streams. Often, the pattern detection is window-based, i.e., pat-
terns are detected on restricted event sequences—denoted as windows—of the incom-
ing event streams. Windows can have arbitrary size and slide—i.e., move—depending
on the window policy and on the events occurring in the incoming streams. In partic-
ular, subsequent windows can overlap, i.e., they have an event sequence in common.
CEP systems further provide means to execute the operators in a distributed manner to
ensure an efficient utilization of the available resources [PLS+06,RDR10,CGLPN16].

In doing so, applications often encompass a high and fluctuating number of events to be
processed. This challenges CEP systems in several ways: First, high rates of incoming
event streams make it necessary to run single operators in a parallel fashion, exploiting
multi-core architectures (scale-up) as well as computing clusters that encompass mul-
tiple machines (scale-out). This challenge is referred to as operator parallelization.
Second, the fluctuation of data rates makes it necessary to elastically provide the com-
putational resources that are necessary to process the current load, as providing for the
worst-case event rates would lead to costly over-provisioning in times of lower pres-
sure. This challenge is referred to as operator elasticity. Furthermore, the CEP system
needs to be able to cope with node and network failure, referred to as reliability.

Generally, data parallelization is a promising method to scale up and scale out opera-
tors in an elastic manner by employing a split–process–merge architecture. A splitter
partitions the incoming event streams of an operator into independently processable
parts which are processed in parallel by an elastic set of operator copies, denoted as
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operator instances. The detected complex events are emitted by the operator instances
to a merger that sorts them into a deterministic order. In this setting, the crucial ques-
tion is how to split the event streams such that the partitions can be processed inde-
pendently by the operator instances in parallel. The existing splitting approaches, key-
based [Hir12, FMKP13], batch-based [BDWT13] and pane-based [BT11, KWF+16]
splitting, are insufficient in terms of expressiveness, i.e., they do not support window-
based CEP operators.

Besides that, window-based operators challenge existing elasticity methods. When
windows are large, assigning a window to an operator instances impacts the processing
load on that instance for a long time. Moreover, the processing load that a single event
in a window puts on the operator instance may depend on the event’s position in the
window [MTR17]. While processing a window, processing state is gathered in the
operator instance. This state may grow over the course of the window, such that later
events in the window yield heavier processing load. Elasticity methods that just react
on feedback parameters, e.g., CPU utilization in the operator instances [FMKP13], are
not able to stabilize the system in such challenging conditions.

Furthermore, the scheduling of windows to operator instances influences the process-
ing load and hence, the latency, induced in the operator instances. Assigning differ-
ent overlapping windows to different operator instances implies that events from the
overlapping sequence of the event stream have to be replicated to both operator in-
stances, leading to higher communication overhead. If the overlapping windows are
all assigned to a single operator instance in one batch, events are not replicated and
communication overhead is reduced, but the load on that operator instance is higher,
so that the latency increases. In the literature, there is a lack of methods to control the
trade-off between communication overhead and latency in operator instances.

Lastly, window-based operators lack efficient reliability-preserving mechanisms. Pro-
viding active [Sch90, VKR11] or passive [BMST93] standby operators causes a lot of
cost; to survive f operator failures, f +1 replicas of an operator need to be provisioned.
To overcome the large overhead, roll-back recovery has been proposed, where check-
points of the operator state are periodically taken; in case of a failure, the operator state
is recovered from the checkpoint [EAWJ02, SM11]. Still, as window-based operators
may gather a large internal state while processing large windows, checkpointing causes
a lot of overhead even at failure-free run-time. A more lightweight roll-back recovery
method that exploits the window policies in the operator to avoid costly checkpoints of
the internal state is still lacking.
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The goal of this thesis is to develop concepts and algorithms that support the scalability,
elasticity, and reliability of window-based CEP operators. To this end, an expressive
stream partitioning method is presented that allows for utilizing data parallelism in all
window-based CEP operators. Further, a model-based elasticity method is presented
that allows for taking into account workload fluctuations and processing latency fluc-
tuations in operator instances by providing a problem formulation and adaptation algo-
rithm that are based on Queuing Theory. To control the scheduling of windows to op-
erator instances, a batch scheduling controller is proposed that tries to minimize com-
munication overhead while keeping a latency bound in the operator instances. Lastly,
a rollback recovery approach is developed that takes into account operator feedback
about the window policies in order to avoid heavy-weight checkpointing of operator
state, thus reducing run-time overhead.

1.1 Background

This section introduces the background of the thesis work. First, the technological
trends that influence the thesis work are discussed in Section 1.1.1. Following that dis-
cussion, in Section 1.1.2, the paradigm of CEP is introduced, providing an overview
of current CEP systems and discussing requirements posed on the CEP systems in the
context of the discussed technological trends and scenarios. High data rates can only
be handled by employing parallelization on the CEP system; the current paralleliza-
tion methods are, hence, discussed in Section 1.1.3 and shortcomings in supporting the
requirements on CEP are highlighted. Overcoming those shortcomings for window-
based CEP operators is the major goal of this thesis. The thesis has been carried out
in the scope of two subsequent projects, funded by the Baden-Württemberg Stiftung
gGmbH and the Deutsche Forschungsgesellschaft DFG. Section 1.1.4 provides back-
ground information on those research projects.

1.1.1 Technological Trends

Two major technological trends that influence the field of CEP are regarded in this
thesis: (1) The surge of streaming data being available, and (2) the cloud computing
paradigm enabling the elastic provisioning of resources. In this section, these trends
are discussed with focus on their impact on the design of CEP systems.
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Streaming Data

There is an ongoing trend of increasing availability of all kinds of sensor data. In
the course of the proliferation of the Internet of Things, “smart” things equipped with
sensors are deployed in billions in the surrounding world [Int14], producing a huge
amount of streaming data. Moreover, with the surge of social networks such as Face-
book, Twitter, etc., the trend of Social Sensing is emerging [AA13, MGSR17a], where
humans serve as sensor carriers or sensors themselves, emitting messages, posts and
tweets. Such data streams contain valuable high-level information that can be ex-
ploited by analyzing the low-level data “on the fly”. For instance, analyzing sensor
streams of cars allows for live vehicle diagnosis [SZG10], analyzing smart meter data
allows for load predictions and outlier detections [JZ14], analyzing smart factory data
allows for detecting anomalies in the production process [GJK+17], and analyzing
Twitter streams allows for performing sentiment analysis [AXV+11] and even predict-
ing crowd behavior [Kal14].

Cloud Computing

Cloud computing [Hay08, BYV+09, AFG+10] is a paradigm that describes the advent
of computing and storage as a utility. That means, that users get provisioned with
resources on demand, and get billed for those resources according to their usage (pay-
as-you-go). This view of cloud computing is also often referred to as “Infrastructure
as a- Service” (IaaS). The on-demand resource provisioning in cloud computing en-
ables an elastic style of scaling data analytics frameworks according to the fluctuating
workload. The incentives of elasticity are clear: Instead of providing (and paying for)
resources for the anticipated peak workload, the system rather adapts its resource reser-
vations to the workload in such a way that always enough resources are available to
keep the Quality of Services (QoS) goals, such as throughput and latency, but to avoid
costly overprovisioning.

Besides the advantages of elastic resource provisioning, cloud computing also offers
a high level of abstraction that eases the deployment and management of applica-
tions [Hay08]. Instead of administrating and maintaining their own infrastructure,
which is cumbersome and costly, users can buy that service as well from the cloud
providers. Cloud providers offer a simple resource provisioning abstraction, i.e., pre-
defined “flavors” of virtual machines (VMs). Problems such as load balancing and
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placement of the VMs on the infrastructure [RLTB10], migration of VMs [VBVB09],
etc., are handled by the cloud provider and are opaque to the user.

1.1.2 Complex Event Processing (CEP)

Complex Event Processing (CEP) [Luc01, BOO09, CM12c] has evolved as the para-
digm of choice to detect and integrate events in situation-aware applications. In CEP,
domain experts specify a query in a query language like Snoop [CM94], Amit [AE04],
SASE [WDR06] or TESLA [CM10]. Those languages involve constructs like event
sequences, conjunctions, and negations, in order to define the event patterns to be
detected. A query corresponds to an event pattern that marks a situation of inter-
est occurring in the surrounding world. This overall pattern is broken down into
multiple sub-patterns that are detected by a distributed operator graph [CBB+03,
KMR+13, OMK14, JAA+06, SMMP09]. In the operator graph, each operator detects
event patterns on its incoming event streams and produces outgoing events whenever
an event pattern was detected. The operators are placed according to a placement strat-
egy [PLS+06,RDR10,CGLPN16] on the available computing nodes between the event
sources and sinks.

Examples

In the following, two example scenarios are introduced, where CEP systems are used in
order to detect situations of interest from low-level sensor streams: a traffic monitoring
system and a “friend finder” application.

(1) Traffic Monitoring. In smart cities, automated traffic monitoring systems are de-
ployed, as depicted in Figure 1.1. On highways, it is often desirable to establish an
overtaking ban, especially in danger zones like road construction sites. Given two
cameras, Src1 and Src2, deployed at two locations at the beginning and end of the no-
passing zone (L1 and L2), a CEP system can be used in order to detect when a vehicle
overtakes another one. The operator graph consists of 3 operators: Each video stream
from the cameras Src1 and Src2 is sent to a number plate detection operator ωplate that
extracts the number plates of distinct cars from the video frames. The detected number
plates are streamed to an overtaking detection operator ωovertake that detects when the
ordering of number plates in the two incoming streams is different, which indicates
overtaking.
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Figure 1.1: Traffic monitoring:
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Figure 1.2: Friend finder:
Finding a person in a
video stream.

(2) Friend Finder. A friend finder application offers the functionality to detect whether
a person of interest (e.g., a participant of a marathon) is currently located in a specific
area of interest (e.g, the goal of the marathon). To this end, a camera and an opera-
tor graph consisting of two operators are employed. The camera Src1 captures video
frames from the area of interest. The video frames are streamed to a face detection
operator ω f _det. which detects all faces of distinct persons in the video stream. On the
other hand, the friend finder application is a source Src2 of request events searching
for specific persons of interest. Faces from ω f _det. as well as requests from Src2 are
streamed to a face recognition operator ω f _rec. that detects whether a requested person
is currently in the face stream.

Operator Execution

Based on the operator ωovertake from the traffic monitoring scenario and the operator
ω f _rec. from the friend finder scenario, some basic concepts of CEP operators are in-
troduced in the following. First, both operators are window-based, i.e., they restrict
the viable sets of events that can build a queried pattern by employing a sliding win-
dow over the incoming event streams. Second, they may further restrict the events that
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can build a pattern by employing a consumption policy. In order to detail those con-
cepts, ωovertake and ω f _rec. are formalized in the MATCH-RECOGNIZE notation [ZWC07],
which is briefly explained in the following.

MATCH-RECOGNIZE expressions consist of three language clauses. The first language
clause, PATTERN, describes the search pattern as a sequence of symbols that are fur-
ther specified in the query’s DEFINE clause. The WITHIN ... FROM clause specifies
a window end condition (following WITHIN) and window start condition (following
FROM); both can refer to symbols specified in the DEFINE clause. Optionally, a CONSUME
clause can be used in order to specify consumption policies, as explained later. Note
that we have added the WITHIN ... FROM clause to the original MATCH-RECOGNIZE
notation [ZWC07] to increase its expressiveness. It originally stems from the TESLA
event specification language [CM10], which is more expressive, but also more verbose
than MATCH-RECOGNIZE.

The formalization of ωovertake and ω f _rec. is listed in Figure 1.3. To detect violations
of the overtaking ban, ωovertake employs windows: Whenever a vehicle A passes L1
(symbol A in the query), a new window w is opened, and when the same vehicle passes
L2 (symbol D in the query), w is closed. This window policy is describe in the pattern’s
WITHIN ... FROM clause. Another vehicle B that appears in the L1 stream within
window w (symbol B in the query) has passed L1 after A. When B appears again in
window w in the L2 stream (symbol C in the query), it has passed L2 before A. If this
is the case, B has overtaken A and thus violated the traffic rules. If B appears in the L2
stream after window w has been closed, there is no traffic violation. Hence, the window
creates a context within which the processing of events is meaningful in detecting the
queried pattern. In particular, all cars that pass both L1 and L2 within w have overtaken
vehicle A that opened w. Similarly, windows are also employed in ω f _rec.. Each request
opens a new window that initiates the context for that request. The window is kept open
for a given time span, denoted as the window scope (ws). Within that time span, all
face events are compared to the request that opened the window. If a match is found,
a “friend detection” event is produced. Please note that multiple windows can overlap.
This means that events that are part of multiple different windows are evaluated in the
context of each window individually. For instance, a face event that is in the window
scope of multiple request event is evaluated for a match to each of those requests.

Overlapping windows can lead to the case that the same event is used in multiple
pattern detections. For instance, a face event could be matched to different requests.
In some cases, this can lead to ambiguities and is not desired. For instance, in a video
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[ωovertake]

PATTERN (A B C)

DEFINE

A AS A.type = L1

B AS B.type = L1

C AS C.plate = B.plate and C.type = L2

D AS D.plate = A.plate and D.type = L2

WITHIN D happens FROM A

[ω f _rec.]

PATTERN (A B)

DEFINE

A AS A.type = request

B AS B.type = face and B.“face_match(A)′′

WITHIN ws time units FROM A.timestamp

Figure 1.3: Queries for the example operators ωovertake from the traffic monitoring
scenario and ω f _rec. from the friend finder scenario.

surveillance application that detects “tailgating” situations, i.e., when an unauthorized
person directly follows an authorized person, there is a one-to-one relation between the
unauthorized person’s detection and the tailgating situation—the unauthorized person
can only directly tailgate one authorized person when it enters the door. After tailgating
was detected for an unauthorized person once, no more tailgating events should be
produced for that person. To enforce that an event is not used more than once in
detecting a pattern, a consumption policy can be specified in the query. Consumption
policies specify under which conditions an event is consumed when being part of a
pattern instance, i.e., the event is excluded from further pattern detections. We provide
a more detailed discussion of windows and event consumptions in Chapter 2.

Requirements on CEP

Situation-aware applications pose a set of requirements on pattern detection in CEP.
The following requirements are discussed in this section: consistency, timeliness, elas-
ticity, and reliability.

Consistency. For CEP systems, it is important that detected events capture the status
of the monitored surrounding world in a consistent way, i.e., no events of interest are
disregarded (false-negatives) as well as no “wrong” events that did not really occur
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are delivered to event sinks (false-positives). For instance, in the traffic monitoring
scenario, all overtaking violations should be detected, as well as no overtaking should
be reported that has not occurred. False-negatives and false-positives would under-
mine the acceptance of an automated traffic control by issuing wrong tickets or leaving
transgressors undetected. Similarly, the friend finder application would suffer from
false-negatives and false-positives, leading to degraded customer satisfaction.

Timeliness. Besides consistency, timeliness plays an important role in event detection.
That means that situations of interest are detected by the CEP system within an accept-
able time span from the time of their occurrence until the situation is reported to the
event sinks. For instance, in the traffic monitoring application, low latency of overtak-
ing detection allows for direct feedback to drivers who have violated the traffic rules.
In the friend finder application, late detection of a person of interest can mean that
the relevant person has already left the scene. Depending on the specific needs of the
application using the CEP system, latency bounds on situation detection are specified
by a domain expert.

Elasticity. Workloads for the operators of a CEP system are often heavily fluctuat-
ing as the event rates from the sources change over time. For instance, in the traffic
monitoring scenario, the density of cars on the road determines the rate of distinct num-
ber plates detected by the ωplate operators, and hence, the incoming event rate of the
ωovertake operator. Official traffic statistics from the California Department of Trans-
portation1 show that in one single hour (“rush hour”) up to 25 % of the total daily traffic
volume can occur on streets. Similarly, in the friend finder application, over time, a
different number of distinct persons are in the detection range of the camera sensor
Src1. This means that the face detection operator ω f _det. emits a fluctuating number of
face events to the face recognition operator ω f _rec., which leads to changing workload.
Furthermore, in the course of time, different rates of friend finder requests from Src2

may be issued, adding to the workload variation of ω f _rec.. Resource provisioning for
peak workloads would block resources even when workloads are low and hence, in-
duce an unnecessarily high cost. With the advent of cloud computing, resources can be
elastically provided and billed according to the needs of the user. However, in order to
exploit this opportunity to save costs, a CEP system must be able to elastically adapt
its resource reservations according to its needs, without compromising consistency or
timeliness of event detection.

1http://traffic-counts.dot.ca.gov/
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Fault-tolerance. CEP systems should be able to tolerate the failure of computing nodes.
That means, that despite of the failure of a number of nodes, the consistency of event
detection should not be compromised. At the same time, the recovery mechanism
should not induce a lot of overhead at failure-free system run-time.

1.1.3 Operator Parallelization in CEP

High event rates demand that CEP operators are highly scalable. However, sequen-
tial operator implementations cannot exploit the power of multi-core architectures and
elastic cloud resources. To increase scalability of the CEP system, operator paral-
lelization is a necessity, i.e., enabling operators to detect multiple patterns in parallel
using multiple cores and even multiple computing nodes. In the following, state-of-
the-art operator parallelization methods are analyzed. In doing so, the focus on the
analysis is on the scalability, i.e., how much parallelism can be achieved, and the ex-
pressiveness, i.e., the range of supported CEP queries, of the parallelization methods.
Two main methods are analyzed: Task parallelization and data parallelization.

Task Parallelization

In task parallelization, also known as pipelining or intra-operator parallelization, in-
ternal processing steps that can be run in parallel are identified by deriving operator
states and state transitions from the query [SGLN+11, BDWT13]. The operator logic
is split accordingly, and the identified processing steps are executed in parallel on the
incoming event streams. This approach offers only a limited achievable parallelization
degree depending on the number of states in the query. For instance, operator ωovertake

from the traffic monitoring scenario in Figure 1.1 only offers four states. Those states
are: (1) vehicle A detected at L1, (2) vehicle B detected at L1, (3) vehicle B detected
at L2, (4) vehicle A detected at L2. Hence, using task parallelization, ωovertake could
only utilize four processing units (CPU cores or computing nodes); adding more re-
sources to ωovertake would not increase the throughput further. This exemplifies that
task parallelization only offers limited scalability, which in many cases yields only in-
sufficient operator throughput (cf. [BDWT13]). The same limitations hold true for the
face recognition operator ω f _rec. from the friend finder scenario. To increase the scala-
bility of operators, a parallelization method that can scale the parallelism independently
of the query is needed.
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A common variant of task parallelization uses lazy evaluation techniques on event
sequence patterns to increase the operator throughput [CM12b, KSS15]. Those tech-
niques check the event stream for terminator events, i.e., the last event of the event
sequence in a pattern, and only evaluate preceding events when such a terminator
event is found. The underlying assumption is that a terminator event can be deter-
mined independently of other events, e.g., solely based on its event type. However,
often, sequence patterns depend on the comparison of the events’ payload, e.g., a stock
quote increasing 3 times in a row; whether a quote is the third in a row that is increas-
ing can only be determined when the two preceding quotes are analyzed. Hence, such
techniques are only addressing a subset of possible event patterns.

Data Parallelization

In data parallelization [MBF14, HSS+14, CCA+10, BMK+11, BEH+10, SHGW12,
BAJR14,BDWT13,MKR15,MMTR16,MMA17,MTR17,DMM17b], instead of split-
ting the operator logic into different states, the incoming event streams are split into
partitions that can be processed by a number of identical instances of the operator.
Figure 1.4 depicts the architecture of a data parallelization framework, consisting of
a splitter, a number of operator instances and a merger. The splitter assigns events
from the incoming event streams according to a partitioning model to different op-
erator instances. The execution of an operator instance is controlled by a runtime
environment (RE). This comprises the management of partitions and communication
with the splitter. The RE receives information about the assigned partitions and the
corresponding events, and manages the operator execution so that the assigned parti-
tions are processed. The merger ensures that an ordering between all produced events
is established if such an ordering is required at subsequent operators or event sinks.
In data parallelization, the crucial question is how to split the incoming event streams
such that the operator instances consistently detect the event patterns according to the
query. To this end, three different partitioning models have been proposed in the liter-
ature: key-based, batch-based and pane-based.

Key-based partitioning proposes to split the event stream by a key that is encoded in
the events [ZR11, Hir12, FMKP13, Ged14, MMTR16, MMA17], e.g., a stock symbol
in algorithmic trading [Hir12] or a post ID in social network analysis [MMTR16].
Different key value ranges are assigned to different operator instances. However, the
parallelism is restricted to the number of different key values; moreover, not all pat-
tern definitions in CEP exhibit key-based data parallelism. In many cases, there is no
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Figure 1.4: Conceptual architecture of a data parallelization framework.

common key available that would allow to group events to different operator instances.
Instead, the membership of a distinct event to a certain pattern may depend on the ap-
pearance of other events. This is, for instance, the case in the ωovertake operator from
the traffic monitoring scenario. The overtaking situation is detected just when vehicle
B is detected a second time before vehicle A. That means, that the appearance of both
vehicles A and B is put into a temporal relation. Sending all events of vehicle A to an
operator instance ωA

overtake and all events of vehicle B to a different operator instance
ωB

overtake would prohibit to detect the overtaking situation.

Batch-based partitioning, as proposed in the run-based parallelization approach in
[BDWT13], splits the incoming event streams into batches that are large enough to
fit any match to an instance of the queried pattern. Besides the problem that this can
cause communication overhead when patterns fluctuate in their size, the approach is
insufficient to support partitioning for operators that detect patterns of an unknown
size. This is the case in the ωovertake operator from the traffic monitoring scenario,
where a window closes only when the same vehicle that opened the window appears
at the second sensor Src2: How long a window is opened depends on the speed of the
vehicle, which might heavily fluctuate over different windows. Also in many other
CEP operators, the window size is unknown a-priori, e.g., in aperiodic, periodic and
sequence operators as defined in the Snoop pattern definition language [CM94].

Pane-based partitioning has been proposed in stream processing systems [BT11,
KWF+16]. For instance, when the maximum or median value of a window of 1 minute
shall be computed, that window is split into 6 fragments of 10 seconds, the fragments’
maximum or median values are computed in parallel, and the global window’s value is
aggregated from the fragments’ results. This parallel aggregation procedure is based
on the idea of pane-based aggregations [LMT+05]. However, CEP patterns often im-
pose a temporal dependency between the events of a window that prevents the vertical
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splitting, e.g., when a sequence of events A and B is searched. Furthermore, addi-
tional constraints on the events can be formulated, e.g., A and B have a parameter x,
such that A : x > B : x (e.g., to detect chart patterns in stock markets [Hir12]). If the
events are scattered among different panes, such dependencies and constraints cannot
be analyzed.

Concluding from the observations we have made so far, there is currently no consis-
tent operator parallelization method that allows for a high degree of parallelism for
window-based CEP operators.

1.1.4 Project Background

This thesis has been carried out in the course of two subsequent projects: (1) “Complex
Event Processing in the Large” (CEPiL), a research project funded by the research pro-
gram “Internationale Spitzenforschung II” of the Baden-Württemberg Stiftung gGmbH,
and (2) “Parallel Complex Event Processing to Meet Probabilistic Latency Bounds”
(PRECEPT), a research project funded by the Deutsche Forschungsgemeinschaft DFG,
research grant RO 1086/19-1. It is worth to mention that in both projects, a strong col-
laboration of the IPVS with the research group of Prof. Umakishore Ramachandran
from Georgia Institute of Technology, USA, was established. In this section, the back-
ground of both projects is described briefly.

CEPiL

The goal of the CEPiL project, running from 2010 to 2013, was to develop concepts
for highly scalable, reliable and secure CEP systems. The outcomes of the project were
manifold. Among others, several research papers and 2 doctoral theses [Sch15, Ott16]
were published. In particular, the author of this thesis developed a concept for roll-
back recovery of CEP operators, which is part of this thesis and described in Chapter
6. Here, a short overview of the other results of the CEPiL project is provided.

To achieve high scalability, two research challenges have been addressed in the project.
On the one hand, Schilling et al. [SKR11, Sch15] investigated operator placement
strategies in heterogeneous and heavily constrained environments. They developed a
decentralized placement algorithm that is able to minimize network usage while being
adaptive to dynamic changes of processing nodes, rules, and load characteristics. On
the other hand, Ottenwälder et al. [KORR12, OKRR13, OKR+14a, OKR+14b, Ott16]
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investigated mobility-aware CEP systems. They developed methods to automatically
adapt the processing of data streams to the changing location and range-of-interest of
the user. In particular, the migration of operators and the sharing of similar query
results among multiple users has been investigated.

For increasing the reliability of CEP systems, besides the roll-back recovery approach
described in Chapter 6 of this thesis, an active-standby approach has been developed
by Völz et al. [VKR11]. In particular, they proposed an algorithm for coordinating
the operator replicas such that no false-positives, duplicates and false-negatives occur
while the overhead of coordination is minimized.

In terms of security in CEP, Schilling et al. [SKRR13,Sch15] proposed an approach to
prevent the inference of confidential input streams from legally received output streams
of the CEP system. In their approach, access policies can be specified for each input
stream based on a measure of obfuscation; those policies are then enforced by algo-
rithms for access consolidation.

While working on the CEPiL project, it was found that despite of the improvements
achieved by operator placement and support for user mobility, the parallelization of
operators is a major challenge toward achieving high scalability. As a result of this, the
PRECEPT project was devised.

PRECEPT

The goal of the PRECEPT project, started in 2015, is to develop methods for the con-
figuration and dynamic adaptation of operators and operator networks, such that the
overall CEP system can probabilistically meet a latency bound under varying and dy-
namic workloads. To this end, three sub-goals are addressed in PRECEPT. First, ex-
pressive data parallelization methods are developed that support window-based CEP
operators. Second, methods for the configuration and dynamic adaptation of single
CEP operators are developed, such that a single parallel operator can probabilistically
meet a latency bound under dynamic workloads. Third, methods for the cost-minimal
configurations of a network of operators are developed so that the entire network of
operators can meet probabilistic end-to-end latency bounds. The first two goals, ex-
pressive data parallelization and dynamic operator configuration, are addressed in this
thesis. The third goal, optimization throughout the entire operator graph, is subject to
current research in the PRECEPT project that is outside of the scope of this thesis.
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1.2 Research Scope and Goals

The overall research goal of this thesis is to support window-based CEP operators
with methods for data parallelization, elasticity, and reliability, such that user-defined
latency bounds can be met while the overall cost of computation and communication
is minimized. This goal is broken down into several sub-goals, which are introduced
and detailed in the following.

Expressive data parallelization. Previous work on parallel CEP has dealt with task
parallelization or data parallelization that employs key-based, batch-based or pane-
based stream partitioning. Those approaches do not support many of the window-
based CEP operators that can be specified in expressive query languages such as Snoop
[CM94] and Tesla [CM10]. Hence, the first goal of this thesis is to develop a suit-
able data parallelization method for all window-based CEP operators. This requires
concepts for consistent event stream splitting and the parallel execution of operator
instances.

Adapting the parallelization degree. The rate of events streamed to a CEP operator
can change tremendously over time. The second goal of this thesis is to develop meth-
ods to adapt the number of operator instances at system run-time. The main challenge
for window-based operators is that adaptations have to be planned ahead of time: When
windows are large, the assignment of a window to an operator instance influences the
processing load imposed on that instance for a long time.

Minimizing communication cost. When splitting the event streams into overlapping
windows, the scheduling of those windows to the available operator instances poses a
trade-off between load balancing and communication overhead. When overlapping
windows are assigned to different operator instances, the events from the overlap are
replicated. This means that those events can be processed in parallel, which reduces
the processing latency and balances the load between the operator instances. However,
replicating the events poses a higher communication overhead between the splitter and
the operator instances. The third major goal of this thesis is to control the trade-off,
such that a latency bound is kept in the operator instances while the communication
overhead between splitter and operator instances is minimized.
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Supporting event consumptions. Event consumptions prohibit an event to be part
of multiple pattern instances. This poses challenges on data-parallel processing of
overlapping windows, as event consumptions can induce inter-window dependencies.
The forth goal, hence, is to resolve those dependencies such that inter-dependent win-
dows can be processed in parallel.

Efficient operator recovery. When computing nodes fail, the processing state of
operators is lost. The challenge is to allow for efficient state recovery without inducing
too much run-time overhead, e.g., for taking checkpoints. The fifth goal in this thesis
is to support efficient recovery schemes that work for non-parallelized as well as data-
parallel CEP operators.

1.3 Contributions

In this thesis, work presented in [KMR+13], [MKR14], [MKR15], [MTR17] and
[MST+17], is combined and extended toward a reliable parallel CEP system. In the
course of the research projects CEPiL and PRECEPT, the work has been carried out
jointly with colleagues from the IPVS, University of Stuttgart, Germany, and the Geor-
gia Institute of Technology, USA. Hence, the technical contributions of the author of
this thesis are highlighted in the following description.

The contributions of this thesis are:

1. An expressive stream partitioning model, referred to as pattern sensitive stream
partitioning, together with an implementation in a data parallelization frame-
work. The partitioning model allows to consistently parallelize a wide class of
CEP operators and ensures a high degree of parallelism. In particular, it com-
prises an interface to externalize the operator’s window policy. This work has
been published in [MKR14] and [MKR15]. The main contributions of the author
of this thesis are the window-based stream partitioning model, the expressive in-
terface definition to the operator’s window policy and the implementation and
evaluation of the overall data parallelization approach.

2. A model-based proactive controller, basing on Queuing Theory (QT), to adapt
the operator parallelization degree to the workload fluctuations, such that a bound
on the buffering induced in an operator can be enforced. This work has been
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published in [MKR14] and [MKR15]. The main contributions of the author of
this thesis are the development, implementation and evaluation of the QT-based
parallelization degree adaptation model.

3. A scheduling algorithm and controller to minimize communication cost when
assigning overlapping windows to operator instances. The controller is based on
a model that predicts latency peaks in operator instances, such that the optimal
amount of overlapping windows can be scheduled to each operator instance dy-
namically at run-time. This work has been published in [MTR17]. The main
contributions of the author of this thesis are the model-based batch scheduling
controller, the predictive latency model and the implementation and extensive
evaluation of the controller and of the latency model.

4. A framework, named SPECTRE, for parallel processing in the face of event
consumptions. To overcome inter-dependencies between overlapping windows,
the SPECTRE framework employs a speculative processing method that allows
the execution of multiple versions of multiple windows using different event sets
in parallel. This work has been published in [MST+17]. The main contributions
of the author of this thesis are a probabilistic model that predicts the survival
probability of window versions based on feedback about partial pattern matches
from the operator instances and a scheduling algorithm that ensures that always
those window versions are processed that have the highest survival probability.

5. A rollback recovery method for CEP operator networks, denoted as savepoint
recovery. The proposed method avoids heavy-weight checkpointing of operator
state. The basic idea is that in between the processing of two different windows,
the processing state of the operator is empty, so that the overall operator state
only depends on the positions of the next window in the incoming event streams.
Savepoint recovery relies on the externalization of the window scopes from the
operator to the recovery system, and the coordination of multiple such scopes
on multiple adjacent operators in order to capture a consistent state of the whole
operator graph. This work has been published in [KMR+13]. The main contri-
butions of the author of this thesis are the savepoint updating and coordination
algorithm in the operators, the failure recovery algorithm that restores operator
states, and the implementation and evaluation of the approach in a simulation
framework.
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1.4 Structure

The structure of the thesis is organized as follows. Chapter 2 introduces the fundamen-
tal assumptions in this thesis, describing an event processing and a system model as
well as the basic architecture of a data parallelization framework for CEP operators.
In Chapter 3, the data parallelization framework is detailed by describing its pattern
sensitive stream partitioning model and the QT-based parallelization degree adaptation
method. The batch scheduling controller and algorithm are introduced in Chapter 4,
describing how the maximal amount of overlapping windows can be scheduled to a
single operator instance while a latency bound in that instance can still be kept. The
problem of inter-window dependencies that are caused by event consumptions is tack-
led in Chapter 5, describing the SPECTRE system that resolves dependencies by means
of speculative execution. Finally, the topic of fault tolerance is handled in Chapter 6,
introducing the light-weight savepoint recovery algorithm that allows for the recov-
ery of multiple failed operators. Finally, Chapter 7 closes this thesis by providing a
summary and an outlook to new trends and open research questions in the field.
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2
Fundamentals

This chapter introduces a general system and CEP model. Further, it introduces a
generic data parallelization architecture for CEP operators. Parts of the system model
and architecture description have already been published in [KMR+13], [MKR14],
[MKR15], [MTR17] and [MST+17]. The notation and system model of those publi-
cations is unified and refined here.

2.1 CEP Model

This section introduces the general models and notations of events, queries, and CEP
operators used throughout this thesis.

Operator Graph. The operation of a CEP system is modeled by a directed, acyclic
graph (DAG)—the operator graph G(Src∪Ω∪Snk,L)—that interconnects sources in
Src, operators in Ω, and sinks in Snk in form of event streams in L ⊂ (Src ∪ Ω)×

ω1 ω2 

ω3 

Sources 

Operators 

Sinks 

Src1 Src2 Src3 

Snk1 Snk2 

Figure 2.1: Schematic of an exemplary operator graph.
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(Ω ∪ Snk). In this model, the sources act as producers of basic events (e.g., sensor
streams), operators perform correlations on their incoming event streams to produce
new outgoing events, and sinks consume events emitted by the CEP system. The func-
tionality of each operator is defined by a distinct query. The query contains a set of
patterns to be searched in the incoming event streams of an operator. There are many
different CEP query languages that differ in their expressiveness, e.g, Snoop [CM94],
Amit [AE04], SASE [WDR06] and TESLA [CM10]. Furthermore, user-defined func-
tions can be embedded in a query, e.g., computer vision algorithms embedded in a face
recognition operator.

Figure 2.1 depicts an examplary operator graph, comprising three sources, three op-
erators and two sinks, all represented by vertices, and event streams represented by
directed edges. In the following, models of the components of the operator graph, i.e.,
sources, operators, sinks and event streams, are described in more detail.

Event. An event is a data element that represents a change or a condition in the physical
world that potentially is of interest to the applications using the CEP system, i.e., to the
sinks in the operator graph. Events can be basic events stemming from event sources
such as sensors that represent low-level information such as a position update of a
car, or more complex events stemming from CEP operators that represent high-level
information such as the detection of a traffic jam. Each event consists of content and
meta data. There are no restrictions on the content of events; for instance, an event
content can comprise numerical data from sensors, text from a posting in a social
network, a video frame captured by a camera, or a notification about the occurrence of
a situation of interest emitted by a CEP operator. The meta data of an event consists of
the following fields: (1) the event type, and (2) a timestamp. The event type abstracts
common properties of a similar set of events; as such, it is a basic building block of all
CEP languages and systems [CM94, AE04, WDR06, CM10]. The timestamp reflects
the physical time of occurrence of the situation that caused the event to happen. For
instance, if the event reflects a detection of a person in a scene by a face recognition
operator, the timestamp of the event signaling the detection may represent the time
when the person was captured by the camera in the video frame that eventually led to
the detection. An important assumption is that timestamps of events that are produced
by the CEP system are computed solely based on the timestamps of the incoming
events, but not based on the wall clock time of event production inside of the CEP
system. On the other hand, events produced by event sources, such as sensors, may
contain timestamps that reflect the wall clock time of the underlying observation (e.g.,
time of a temperature measurement).
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Event Stream. An event stream (p,d) ∈ L is directed from a producer p to a destina-
tion d and ensures that events are delivered in the order they are produced. We call p
the predecessor of d and d the successor of p. Accordingly, (p,d) is called an outgoing
stream of p and an incoming stream of d. Events from different incoming streams have
a well-defined, global ordering that is independent of the physical time of their arrival
at the operator.

Event Source. Event sources emit events to the CEP operator graph via event streams
that connect the sources to the ingress operators of the graph. Often, event sources are
sensors; however, social networks, stock exchanges, and other arbitrary applications
can be event sources as well.

Event Sink. Event sinks receive events that are produced by the operator graph via
event streams that connect the egress operators to the sinks. Events emitted to sinks
signal that a situation of interest has occurred. As such, requirements on the consis-
tency and timeliness of the delivered events are imposed by the event sinks.

Operator. An operator ω ∈ Ω performs processing of its incoming event streams
(in,ω) ∈ L, denoted by Iω. During its execution, ω conceptually performs a sequence
of correlation steps on Iω. In each correlation step, the operator determines a window w

which is a finite subset of events in each stream of Iω. A correlation function fω : w→
(e1, . . . ,em) specifies a mapping from a window to a finite, possibly empty set of events
produced by the operator. The produced events are written in order of occurrence to
its outgoing event streams. For each outgoing stream a different set of events may be
written.

To express the set of relevant events in a correlation step, the query of an operator
imposes a window of valid events on its incoming event streams. Such a window can
depend on time or the number of events [WDR06, CM10, CM12a, KMR+13, MKR15,
MTR17,DMM17b], but also on more complex predicates, e.g., on the content of events
[GMM+16] or (combinations of) specific event occurrences that mark the beginning
and end of a window [MKR15]. With the arrival of events in the stream, the window
can capture new events, while old events fall out of the window scope. This concept
is known as a sliding window [ABW06]. In this paper, we denote the valid window at
a specific point in time as wi. When the window slides, the subsequent valid windows
are denoted as wi+1, wi+2, etc.

How a window moves over event streams is defined in the window policy. If multiple
events within a window match a queried pattern, this ambiguity is resolved by a se-
lection policy. Furthermore, the ability to re-use events from a pattern detected in one
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window in another pattern in a different window can be restricted by a consumption
policy. In the following, those policies are defined in more detail.

Window Policy. According to the pattern definition, windows can have different sizes
and a different number of events can occur between two start events of subsequent
windows. We denote the period of time that a window spans, i.e., the time between the
first event and the last event of a window, as the window scope, ws. Further, we denote
the period of time between two start events of subsequent windows as the window shift,
∆. Both window scope and window shift can be fixed or flexible. Depending on the
window scope and shift, different subsequent windows can overlap, i.e., events are part
of multiple different windows.

Selection Policy. In detecting a pattern within the scope of a window, there can be
ambiguities. This is the case when multiple events within the same window match a
searched pattern. To resolve this issue, a selection policy specifies which of the candi-
date events to select for building the corresponding complex event. Common selection
policies select the earliest or latest candidate events, but also more sophisticated poli-
cies are possible.

Consumption Policy. A further ambiguity in pattern detection is whether an event is
allowed to be used in multiple pattern instances or not. In some cases, multiple corre-
lations of the same event are problematic. If there is a many-to-one relation between
incoming events and detected situations, i.e., many events build a pattern instance but
a single event can only be part of one pattern instance, contradicting complex events
are produced when events are re-used.

Many-to-one or one-to-one relations are a common case in situation detections, e.g., in
a video surveillance application that detects tailgating situations, i.e., when an unau-
thorized person directly follows an authorized person. This is a one-to-one relation
between the unauthorized person’s detection and the tailgating situation—the unau-
thorized person can only directly tailgate one authorized person when she enters the
door. After tailgating was detected for an unauthorized person once, no more tailgating
events should be produced for that person. Another example is a query from a cam-
era surveillance application that contains the pattern “Person A is directly followed by
Person B within 10 seconds”. A single Person A can only be directly followed by one
other Person B. After the “directly-followed-by” relation is detected for the first time
and a complex event is emitted, the corresponding Person A event shall not be part of
further “directly-followed-by” relations.
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To resolve such issues, event specification languages allow for the specification of a
consumption policy [CM94, ZU99, AE04, CM10]. The consumption policy defines
which selected events are consumed after they have participated in a complex event
detection: It might be none, all or some of them—e.g., depending on the event type or
other parameters.

Example An operator ω receives two event streams which contain events of type
A and B. The query implemented in ω detects when an event of type B follows
an event of type A within 1 minute. This query can be formalized in the extended
MATCH-RECOGNIZE notation [ZWC07] introduced in Section 1.1.2 as follows:

[QE ]

PATTERN (A B)

DEFINE

A AS A.type = A

B AS B.type = B

WITHIN 1 minute FROM A.timestamp

This pattern can be detected by opening a window with a scope of 1 minute (window
scope) whenever an A event occurs (window shift); when a B event is detected in a
window opened by an A event, a complex event can be created.

Suppose the events A1, A2, B1, B2 and B3 occur in the event stream in that order, i.e.,
Ai denotes the i-th occurrence of an event of type A in the stream (cf. Figure 2.2).
Now, different combinations of selection and consumption policies results in different
complex events being emitted. In the following, three examples are provided.

Let us assume that the first A in a window is correlated with every B in the same
window—this can be defined in the selection policy as “Earliest A, each B”. As shown
in Figure 2.2a, 5 complex events are detected:1 A1

B1
, A1

B2
, A2

B1
, A2

B2
, and A2

B3
. Notice, that the

corresponding incoming events are correlated multiple times, i.e., they are not con-
sumed after building a complex event. In the example in Figure 2.2b, selected events
of type B are consumed when a complex event is detected, referred to as consumption
policy “selected B”. Now, only 3 complex events are produced: A1

B1
, A1

B2
, and A2

B3
. In that

case, B1 and B2 are not re-used after being correlated with A1 in the first window w1.
In a third example in Figure 2.2c, the selection policy is set to “Earliest A, earliest B”

1 X
Y denotes a complex event created from incoming events X and Y .
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Figure 2.2: Query QE with different selection policies (SP) and consumption policies
(CP).

and the consumption policy is set to “selected B”. Now, the produced complex events
are A1

B1
and A2

B2
.

As shown with the examples above, the set of produced complex events depends on
the interplay between selection and consumption policy.

2.2 System Model

Computing Infrastructure. The operators of a given operator graph G are hosted
in a distributed computing infrastructure that consists of a set of n computing nodes
connected by a communication network. A node may comprise multiple processing
entities (e.g., a processor or processor core), possibly sharing physical memory, and
may host multiple operators. Different nodes can communicate via communication
channels that are established for each event stream in G and guarantee eventual in-order
delivery of streamed events. In Chapters 3 to 5 of this thesis, nodes and communication
channels are assumed to be failure-free. In Chapter 6, it is investigated how to detect
node and network failures and how to recover the operator graph from such failures.

Administrative Domains. Computing nodes are grouped into disjoint administrative
domains. For example, a domain might be a public data center of a cloud provider or
a private data center of a company. In this thesis, the following assumptions are made
about domains: (1) Nodes belonging to the same domain typically share the same
LAN. (2) All resources of a domain belong to the same administrative unit, i.e., all of
a domain’s resources are controlled and managed by a single provider. In the general
case, the execution of an operator graph can be distributed over multiple domains (cf.
Figure 2.3). The mapping of operators to domains typically depends on the location
of sources and sinks. For example, an operator that significantly reduces the event rate
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Figure 2.3: Administrative domains. The coarse-grained placement of operator sub-
graphs on the different domains is given.

by aggregating the output of a source should be located close to that source in order
to save network bandwidth. This “coarse-grained” placement problem [CGLPN16]
has been subject to extensive research resulting in a wide range of algorithms that
allow for minimizing bandwidth usage [PLS+06, RDR10] or dealing with resource
constraints [SKR11].

In this thesis, we assume that such a coarse-grained placement of the overall operator
graph on the different domains has already been determined. Hence, operator (sub-
)graphs that are deployed within a single domain can be considered in isolation. This
has the following consequence on the infrastructure model. As the nodes are close
to each other and the resources are under control of a single provider, it is assumed
that probabilistic bounds on the worst-case communication latency between nodes of
the same domain are known. For instance, such a probabilistic bound may be: “the
communication latency between node n1 and n2 is less than 5 ms in 99% of the time”.
A practical example of such a latency bound can be found in the PingMesh system
[GYX+15] that measured in a Microsoft data center a 99th percentile of inter-node
latency of 1.34 ms.

2.3 Data Parallelization Architecture

2.3.1 Overview

To execute an operator ω in a parallel fashion, it is embedded into a data parallelization
framework. The basic model of such a framework consists of a split–process–merge
architecture, as depicted in Figure 2.4. The single components, i.e., splitter, opera-
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Figure 2.4: Parallel operator model and composition of operator latency between event
arrival and (complex) event emission.

tor instances, and merger, are distributed over the available computing nodes of ω’s
domain. They communicate via event streams as defined in Section 2.1. To support
asynchronous operation, the components are each equipped with an incoming event
queue. Events arriving from a predecessor component are placed in the queue, and re-
moved after being processed by the respective component. In the following, the tasks
of the different components are detailed.

Splitter. The splitter is responsible for partitioning the incoming event streams into
windows, according to the operator’s window policy (cf. Section 2.1). When the start
of a new window is detected, the window is scheduled to one of the operator instances.
Events that are part of scheduled windows are forwarded to the operator instances
accordingly.

Operator Instance. An operator instance processes events from its incoming event
stream according to the assigned windows. When a pattern is detected, outgoing events
are emitted to the merger. The number of operator instances is elastic, i.e., new in-
stances can be added or existing instances can be removed at system run-time.

Merger. The merger receives all produced events from the operator instances corre-
sponding to the detected patterns. It sorts the events from the different event streams
into a well-defined ordering given by their time stamps.
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2.3.2 Operator Latency

From the point of view of an event sink, the situation detection latency is the period
of time from the occurrence of a source event that signals a situation of interest until
the situation is actually detected and signaled to the interested sink by a corresponding
complex event. As the delayed detection of a situation degrades the benefits for the
sink application, it imposes a situation detection latency bound on the CEP system.
The situation detection latency bound is sub-divided into individual operator latency
bounds for each single operator. In this thesis, we assume that this division is given,
so that each operator has its individual operator latency bound assigned. The goal is
to configure the data parallelization framework in such a way that a given operator ω

keeps its given operator latency bound LBω. An important assumption in this thesis is
that all latency bounds are probabilistic. That means that in PLB percent of cases, the
latency bound of LBω time units must be kept. This assumption is practical in real-
world scenarios, as reaching a 100 percent latency guarantee may be very expensive or
even impossible due to unpredictable workload fluctuations.

Latency occurring within a parallelized operator is composed of queuing latency, pro-
cessing latency and communication latency in or between the different operator com-
ponents (cf. Figure 2.4). Recall that, following the assumption of placing all compo-
nents of an operator in a single domain (cf. Section 2.2), the communication latency
between the components is bounded and known. Then, the overall operator latency λω

is calculated as:

λω = λs +λc +λo +λc +λm

with λs being the latency of the splitter, λo the latency of the operator instances, λm

the latency of the merger, and λc the communication latency between two different
components.

It is assumed that bounds on λs and λm are known based on profiling the splitter and
merger component. This is a reasonable assumption, as splitting and merging are light-
weight operations that should not become the system bottleneck. Hence, λo is consid-
ered as the share of λω that is in control of the configuration of the parallel operator—a
detailed definition of operator configuration will be provided in Section 2.3.3. In an
operator instance, we define the operational latency of an event e, λo(e), as the pe-
riod between the point in time when e arrives at an operator instance and the point in
time when e is completely processed in all assigned windows in this operator instance.
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When, at the time of arrival of e, the operator instance is still busy with processing
earlier events, e waits in a queue until its processing can start. This is called queu-
ing latency of e, λq(e). Then, e is processed, which induces the processing latency of
e, λp(e), the time from starting to process e until e is processed in all assigned win-
dows. Overall, the operational latency of an event is the sum of its queuing latency and
processing latency, i.e., λo(e) = λq(e)+λp(e).

To keep the operator latency bound LBω, it is required that

λo(e)≤ LBω−λs−λm−2∗λc with a probability of PLB.

2.3.3 Operator Configuration

This thesis focuses on two ways of configuring the operator. First, the number of
operator instances can be changed dynamically, i.e., the framework is elastic. This
way, it can react to changing load. The problem how to set and adapt the number of
operator instances is addressed in Chapter 3.

Second, the splitter can employ different scheduling algorithms in order to assign win-
dows to operator instances. By assigning multiple subsequent overlapping windows to
the same operator instance, the communication overhead between splitter and opera-
tor instances can be reduced, but at the same time, the operator instance might suffer
overload conditions that increase its operational latency. The problem how to control
this trade-off is addressed in Chapter 4.



3
Stream Partitioning and Adaptation

In the previous chapters, we have seen that operator parallelization is important in order
to handle high workloads in CEP systems. Further, we have noticed that window-based
operators are an important building block of CEP systems. Finally, we have outlined
that workloads of CEP operators are often heavily fluctuating, while cloud computing
allows to dynamically add and remove computing nodes from the CEP system. These
observations lead to two research questions: (1) How to split the streams to allow
for data parallelization of window-based operators? (2) How to adapt the operator
parallelization degree to fluctuating workload, such that low-latency event detection
is ensured while cost is minimized? Those research questions are addressed in this
chapter as outlined in the following.

First, the problem of consistent and expressive stream partitioning of window-based
CEP operators is tackled. As pointed out in Section 1.1.3, the existing stream partition-
ing methods, key-based [ZR11, Hir12, FMKP13, Ged14, MMTR16, MMA17], batch-
based [BDWT13], and pane-based [BT11, KWF+16] partitioning, do not support all
window-based CEP operators. To support those operators, the solution presented in
this chapter allows for a programmatic description of the window policy by means of
a simple API in the splitter. Thus, by exposing the window policies of the operator to
the data parallelization framework, expressive parallelization can be supported.

Second, the dynamic adaptation of the resources used for window-based CEP opera-
tors to fluctuating workloads is tackled. The goal is that low-latency event detection
can be ensured at minimal cost. Latency in event detection can have several causes,
such as latency imposed by communication, processing, and queuing of events. While
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for communication and processing latencies, bounds can be found that can be met with
high probability, unlimited queuing latency can occur when an operator is overloaded
and therefore needs to buffer an unlimited amount of events. This can have drastic
consequences and dramatically reduces the benefits an IoT application can draw from
a CEP system. Therefore, it is of critical importance to develop CEP systems that
can guarantee a buffer limit even under high and fluctuating workloads. When facing
fluctuating workloads, the parallelization degree must be continuously adapted in or-
der to keep a buffering limit at low resource cost. However, since fluctuations of the
workload can have a delayed effect on the imposed processing load in event detection,
reactive approaches [FMKP13,GSHW14], i.e., approaches that solely react to changes
in the utilization of resources, are not able to ensure a predictable buffering limit. As
later also confirmed by our evaluation results, those reactive approaches exceed the
acceptable buffering limit at times by a factor of more than 1000.

In this chapter, material published in [MKR14] and [MKR15] is presented. The con-
tributions are threefold: (i) We propose a novel pattern-sensitive stream partitioning
model. The partitioning model allows to consistently parallelize a wide class of CEP
operators and ensures a high degree of parallelism. (ii) We propose methods to model
the workload and dynamically adapt the parallelization degree utilizing Queuing The-
ory (QT), so that a buffering limit of each operator can be met predictably. (iii) Our
evaluation shows that the proposed stream partitioning methods can achieve a high
throughput of up to 380,000 events per second even on commodity hardware. More-
over, we show in the context of a traffic monitoring scenario that the adaptation meth-
ods enforce even under heavily fluctuating workloads a stable parallelization degree
and this way ensure that the buffering limit is met and only little over-provisioning of
resources is required.

The chapter is structured as follows. In Section 3.1, extensions to the system model
presented in Chapter 2 are introduced. Section 3.2 describes the tackled problems and
formalizes the guarantees that the system shall provide. The novel stream partitioning
model is described in Section 3.3. In Section 3.4, the problem of adapting the operator
parallelization degree is tackled. In Section 3.5, an extensive evaluation of the system is
presented, showing the performance and efficiency in the context of realistic scenarios
in the field of traffic monitoring. Related work is discussed in Section 3.6. Finally, the
chapter is concluded in Section 3.7.
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3.1 System Model

Extensions of the System Model. The system model in this chapter extends the
generic system model described in Chapter 2 as follows. The data parallelization
framework is deployed on an infrastructure that consists of a number of computing
nodes that are considered failure-free and provide a homogeneous computing capabil-
ity, i.e., the same CPU and memory capabilities1. The number of nodes that can be
used by the data parallelization framework is flexible and a sufficient number of nodes
is available. This way, new nodes can be allocated for the deployment of operator in-
stances as well as deallocated when they are not used any more. The allocation of a
new node and deployment of an operator instance takes TH (Time Horizon) time units
from the allocation request until the instance is available. The nodes are connected by
communication links which guarantee eventual in-order delivery of data.

Extensions of the Data Parallelization Framework. The model of the data paral-
lelization framework in this chapter extends the generic model described in Chapter 2
as follows. Events arriving on the incoming streams of the splitter are stored in-order
in a queue. The instances process the events of the assigned windows and acknowl-
edge them as soon as they are processed. When an event has been acknowledged by
all operator instances which it has been assigned to, the event is discarded from the
splitter queue. This way, the splitter queue grows or shrinks depending on the ratio of
completely processed events to newly arriving events. In particular, the splitter’s queue
represents a “watermark” of global processing progress of all operator instances; the
splitter queue is at least as long as the longest queue of any operator instance. Intro-
ducing the splitter queue simplifies the modeling of the adaptation problem in Queuing
Theory, as shown later.

Note, that in this chapter, we assume that operators follow the “no consumption” pol-
icy, i.e., events can be (re-)used in multiple correlations in multiple overlapping win-
dows. Selection policies and window policies may be arbitrary.

1To work with heterogeneous nodes, the methods developed in this chapter can be extended to take
into account individual computational capabilities of nodes by employing operator profiles for all avail-
able node types (cf. Section 3.4.2). However, homogeneous capabilities are a common case in cloud
computing, so that the assumption is practical to focus on the main challenges that are tackled in this
chapter.
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3.2 Problem Description

As motivated in Chapter 1, timeliness of situation detection is a crucial requirement on
a CEP system. That means, that a (probabilistic) latency bound between the occurrence
of a situation in the surrounding world and its detection by the CEP system must be
kept. In Chapter 2, we have defined the latency bound on a single operator and refined
the composition of the operator latency. In particular, we assume that fixed bounds
on the latency induced for splitter, merger and communication between the operator
components are given. This means that the portion of the overall operator latency
that is not fixed is the operational latency λo, i.e., the latency induced in the operator
instances, consisting of the queuing latency λq and the processing latency λp.

In order to keep the latency bound of an operator, it is crucial that the queuing latency
in operator instances is limited. This can only be achieved if the operator through-
put keeps up with the incoming event rates. If the operator throughput is permanently
lower than the incoming event rate, events are queuing up, leading to unbounded queu-
ing latency. On the other hand, if the operator throughput is permanently higher than
the incoming event rate, no queuing of events happens, so that the queuing latency is
zero. However, to achieve that, costly overprovisioning of resources is needed, because
event rates often fluctuate faster than the operator configuration can react, so that the
configuration must be set for worst-case event rates.

The idea of the adaptation mechanism developed in this chapter is to allow for a limited
amount of operator overload, i.e., to allow for a limited amount of queuing happening
in the operator. This promises to be more cost-efficient, as the resource provisioning
does not need to be done in the most pessimistic manner. In this regard, we consider the
incoming event rates and the event processing rates of operator instances as probabilis-
tic processes and use Queuing Theory to give probabilistic guarantees on the queuing
occurring in the operator instances.

When defining the “amount of queuing” that happens in an operator instance, the first
and intuitive definition would be the queuing latency λq. However, it has turned out that
it is hard to compute probabilistic distributions of λq using Queuing Theory. Instead,
the queue length, i.e., the number of events queued in an operator instance, is more
convenient to be used in Queuing Theory. In particular, for some distributions of event
arrival rate and event processing rate, stationary distributions of the queue length can
be computed, yielding the desired probabilistic guarantees on the queue length. From
queue length bounds, it is a simple step to deduce queuing latency bounds when event
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processing times are known. Note, that this requires that each event in the queue has
the same distribution of event processing latencies, i.e., there are no different event
processing latencies for different event types, as discussed in Chapter 4. There are two
ways to overcome this limitation. A simple, pessimistic way is to perform a worst-case
analysis, assuming that all events in the queue are of the event type that has the highest
processing latency. A more complex way is to compute the expected processing latency
of n events in the queue by taking into account the expected distribution of different
event types in the incoming event streams. Sometimes, there is a third way. When an
event type does not significantly contribute to the processing load in the operator, it
can simply be ignored in the queuing model.

Problem Formalization. Under the setup of Section 3.1, for an operator ω, the fol-
lowing guarantees must be provided: Given a correct prediction of the probabilistic
distribution of inter-arrival times of events TH time units in the future, the paralleliza-
tion degree is constantly adapted so that a user-defined buffering level limit BLω of
buffered events in the queue of the splitter will be kept with a user-defined probability
Prequired. For example, if the buffer limit is 100 with Prequired = 95 %, then the filling
level of the queue at the splitter will be below 100 events with a probability of 95 %
when checked at an arbitrary point in time. In 5 % of the cases, the buffer limit may
be exceeded, i.e., there are more than 100 events queued at the splitter. This can lead
to temporary high latency. By setting the value of Prequired, the users can define how
strict their queuing bound, and thus, their latency bound, is.

Solving this problem involves solving two sub-problems: Stream partitioning that
leads to correct processing results and the adaptation of the parallelization degree to
fluctuating workloads. The splitter should work with a simple model that only requires
minimal knowledge about the operator logic that is needed in order to partition the
incoming streams. Executing the operator in the parallelization framework should be
possible without interference into the operator logic. To increase the processing rate of
an operator, stream partitioning in the splitter should happen independently of process-
ing the partitions in the operator instances. Furthermore, the operator instances should
process the assigned partitions while sharing only minimal state amongst each other
and needing only minimal synchronization effort. The method for adapting the par-
allelization degree has to take into account the time needed to deploy a new operator
instance on a new computing node.



54 3. STREAM PARTITIONING AND ADAPTATION

3.3 Window-based Stream Partitioning

To find partitions in the event streams that yield consistent processing results in the
operator instances without requiring any adaptations of the operator logic, we develop
a window-based partitioning model that is based on the operator model introduced
in Chapter 2. The partitioning model is capable of partitioning the incoming event
streams of an operator in such a way that the operator instances produce consistent
outgoing event streams according to the operator’s window policy.

3.3.1 Partitioning Model

Recall that an operator is executed according to its correlation function fω, mapping
windows of events from the incoming streams to detected events that are emitted on the
outgoing streams. As the correlation function is a mapping, there is no computational
state maintained between two different correlation steps. That means that two windows
can be processed on different nodes independently of each other.

The idea of the proposed partitioning model is to split the incoming event stream by
windows which contain the patterns to be detected, so that we refer to the model as
window-based stream partitioning. That means that each partition must comprise one
or more complete windows, i.e., all events that are part of the window(s).

To ensure that a window is completely contained in a partition, all events between the
first and the last event of the window must be part of that partition. Thus, to partition
the incoming event streams Iω, the points where windows start and end must be deter-
mined. For each event in Iω, one or more out of three possible conditions are true: (i)
The event triggers that a new window is opened. (ii) The event is part of open windows.
(iii) The event triggers that one or more open windows are closed. To evaluate which
condition is true, the splitter offers an interface that can be programmed according to
the operator’s window policy and that provides the ability to store variables that capture
internal state, e.g., about window start times. The interface comprises two predicates:

Po : e→ BOOL, and

Pc : (wopen,e)→ BOOL.

For each incoming event e, Po is evaluated to determine whether e opens a window,
and Pc is evaluated with each open window wopen to determine whether e closes wopen.
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1: int nextStart = 0, slideTime, windowScope

2: bool Po (Event e) begin
3: if e.timestamp ≥ nextStart then
4: nextStart = e.timestamp + slideTime - (e.timestamp % slideTime)
5: return TRUE
6: else
7: return FALSE
8: end if
9: end function

10: bool Pc (Event e, Window w) begin
11: if e.timestamp > (w.startTime + windowScope) then
12: return TRUE
13: else
14: return FALSE
15: end if
16: end function

Figure 3.1: Predicates for the time sliding window operator.

Depending on the order of the evaluations of Po and Pc on a newly arrived event,
different semantics can be realized with respect to whether the opening and closing
events are part of the window or not.

Examples: In Figure 3.1, we present the predicates for a time-based sliding window
operator [ABW06]. Partitions are spanned over all events within a time window that
moves by a sliding parameter for each new window. In Figure 3.2, the predicates
for a sequence operator Sequence(A;B) [CM94] of two events of type A and B are
listed. Partitions are spanned between an event of type A and the next event of type B
following it.

3.3.2 Runtime Environment

The runtime environment (RE) manages the execution of an operator instance. It re-
ceives the windows assigned by the splitter and enforces that exactly those correla-
tion steps are executed that correspond to the assigned windows. In particular, the
RE enforces an isolation between the different windows, i.e., prevents operator in-
stances from processing windows that have not been assigned to them. This is done
in the following way: When the operator instance processes an event e that potentially
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1: bool Po (Event e) begin
2: if e.type == “A” then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end function

8: bool Pc (Event e, Window w) begin
9: if e.type == “B” AND e.timestamp > w.startTime then

10: return TRUE
11: else
12: return FALSE
13: end if
14: end function

Figure 3.2: Predicates for the sequence operator SEQ(A;B).

opens a new window according to its internal window policy, a function in the RE
isAssigned(e) is called that signals whether the window starting with e has been as-
signed to this operator instance or not. Finally, when an event has been processed in
all assigned windows it is part of, the RE sends an acknowledgment to the splitter.

3.3.3 Expressiveness

To analyze the window policies for which consistent stream partitioning is supported
by the proposed partitioning method, we analyze different categories of CEP oper-
ators from the literature. The following categories are considered: Sliding window
operators (time-based (Ti) and tuple-based (Tu)) [ABW06], disjunction (∨), sequence
(;), conjunction (∧), aperiodic (A) and periodic (P) operators (all [CM94]) employing
an unrestricted consumption mode [AC11], i.e., events can be used in several parti-
tions without restrictions. Figure 3.3 compares window-based stream partitioning, the
batch-based partitioning approach proposed in [BDWT13] where event streams are
partitioned into batches of a fixed size, and the key-based approaches like [IBY+07,
CCA+10,BEH+10,BMK+11,SHGW12,sto14] where event streams are partitioned by
a key contained in the events. Batch-based partitioning cannot work consistently with
operators for which the maximal amount of events contained in a window depends on
the occurring events and, hence, is unknown before run-time, which is the case for (Ti),



3.4. ADAPTING THE PARALLELIZATION DEGREE 57

Ti Tu ∨ ; ∧ A P
Window-based x x x x x x x
Batch-based – x x – x – –
Key-based – – x – x – –

Figure 3.3: Support of consistent partitioning. ‘x’ denotes supported, ‘–’ denotes not
supported.

(;), (A) and (P) operators. Key-based partitioning is even less expressive. It does not
allow for the consistent partitioning of event streams based on any other information
than keys contained in every single event. Thus, the window context of an event cannot
be considered as it would be needed in (Ti), (Tu), (;), (A) and (P) operators.

Window-based stream partitioning does not suffer from those limitations. For all an-
alyzed operator types, the splitting logic is expressive enough to specify the window
start and end. The predicates of the time-based sliding window (Ti) operator are listed
in Figure 3.1. For the tuple-based sliding window (Tu) operator, the predicates are
similar: Instead of a time stamp, a counter is used or sequence numbers are compared
to the partition start event. Disjunction (∨) and conjunction (∧) predicates check the
corresponding conditions for opening and closing partitions, e.g., attribute values of
an event. The sequence (;) predicates are listed in Figure 3.2. For aperiodic (A) and
periodic (P) operators, arbitrary start and end conditions can be set, which can be com-
posed of other operators. Accordingly, the predicates from the corresponding operators
can be utilized to build the predicates of (A) and (P).

3.4 Adapting the Parallelization Degree

In this section, we describe how to automatically adapt the parallelization degree at
changing workloads. We aim for always deploying the optimal parallelization de-
gree, which is the minimal degree that allows the operator to keep the assigned buffer
limit with the required probability. To achieve this goal, we employ Queuing Theory
(QT) [GSTH11] to deduce a stationary distribution of the splitter queue length for a
given parallelization degree. According to QT, we model the workload and processing
latency of an operator by probabilistic arrival and service processes of events. Corre-
sponding to the arrival process, the events in Iω determine the workload of ω. They
are streamed from ω’s predecessors, resulting in a process of inter-arrival times of
events. Corresponding to the service process, the processing latency of ω is described
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Figure 3.4: Workflow of the adaptation of the parallelization degree.

as the time it takes to process an event completely (i.e., in all windows it is part of).
This way, it is possible to configure the parallelization degree solely based on the ob-
served arrival and service processes without interference of the internal operator logic.
Fig. 3.4 depicts the interplay of methods in our approach: Models of the predicted
future workload and of the corresponding processing latencies are used for continu-
ously calculating the optimal parallelization degree with QT methods. The calculated
degree is established by an adaptation algorithm that allocates and deallocates operator
instances.

3.4.1 Workload Monitoring and Prediction

A typical workload may consist of three parts [HHKA14]: Seasonal behavior, trends
and noise. To account for short term fluctuations around an average value, i.e., noise,
as well as medium or long term changes, i.e., seasonal behavior and trends, we divide
the time scale into time slices (cf. Figure 3.5) and denote tn the time slice that ends at a
point in time n. To this end, we employ a sliding time window with a length of slength
time units that for each new time slice moves by sfreq time units. In each time slice, the
inter-arrival time of arriving events follows a probabilistic distribution. Parameters of
the distribution, for example the mean value, can change over subsequent time slices.
In Figure 3.5, a schematic distribution of inter-arrival times X in a time slice tn is
depicted as an example. Note that depending on the distribution, all parameters of the
distribution can change over subsequent time slices, e.g., the mean and the variance in
a normal distribution. To enable workload monitoring, the splitter logs the inter-arrival
times of events.
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Figure 3.5: Schematic: workload distribution at an operator in a time slice.

To automatically match the logged data set of a time slice to a probabilistic distri-
bution of inter-arrival times, we have developed a workload classification algorithm
that comprises three basic steps [Fei15]: The algorithm iterators over a set of sup-
ported distributions (exponential, deterministic, normal, uniform, Pareto, log-normal
and Weibull distributions), the parameters of the selected distribution are estimated,
and the goodness of the match with respect to the log is determined. The distribution
that fits the logged data best is determined.

To estimate the parameters of the selected distribution, the algorithm chooses between
two approaches, depending on the selected distribution. When the parameters can be
described as a function of the moments of the distribution function, the method of
matching the distribution moments [Fei15] is applied. This method is chosen when
no higher moments are needed, i.e., when the selected distribution is the exponential,
deterministic, normal, uniform or log-normal distribution. Otherwise, the maximum
likelihood method [Fei15] is applied. With this method, the parameters are calculated
such that they would, when sampled from the selected distribution, lead to the given
monitored data with the highest probability.

To check the goodness of the selected distribution, statistical tests are applied [Ste74,
Fei15]. An important kind of goodness-of-fit test are tests that utilize statistics based
on the empirical distribution function (EDF) [Ste74]. The downside of this approach
is that the necessary statistic tables are only available for standard distributions like
the normal or the exponential distribution. In other more sophisticated cases, the algo-
rithm employs the χ2 test for homogeneity, where random samples from the selected
distribution are created and checked against the monitored data [FHC12]. This has the
advantage that the hypothetic distribution is not directly included in the analysis, but
only indirectly through the samples.
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In order to predict the future workload TH time units ahead, we use methods from time
series analysis on the workload monitored in the latest time slices. At highly dynamic
workloads like Wikipedia page requests, state of the art forecasting methods yield a
mean relative error of about 20 % [HHKA14]. Such predictions errors have to be taken
into account by adding an overestimation factor when the workload shows characteris-
tics that make it hard to yield accurate predictions. Depending on the distribution that
has been monitored, a different number of parameters will be predicted. For instance,
when considering an exponential distribution, only the mean value is relevant, while in
a normal distribution also the variance is subject to prediction.

3.4.2 Operator Profiling

The processing latency of an operator instance depends on the workload. For example,
in an operator that employs a time-based window, higher event rates mean that the pro-
cessed windows contain more events. This can lead to more state gathered in the single
windows, such that the processing latency of events in the window increases, and to
a higher overlap between subsequent windows, so that more events are processed in
multiple windows, which also increases the event processing latency. To account for
those dependencies, an operator ω is profiled before run-time for different workloads
on the target infrastructure. To create an operator profile, first of all an operator in-
stance is instrumented. That means that a monitoring function is added that measures
how long it takes to process an event. The operator instance is then executed with dif-
ferent workload distributions that are expected to occur. From the measurements, the
corresponding distributions of processing latencies are built with the same probability
distribution fitting methods that we use in workload monitoring.

3.4.3 Degree Calculation

Recall that the optimal parallelization degree needs to be recalculated whenever the
predicted workload changes. Here, we present the algorithm for the parallelization
degree calculation, which is listed in Figure 3.6. Given the predicted workload at time
slice tn+TH and the operator profile, the algorithm first calculates the probability that
the queue length will be less or equal to BLω for a fixed parallelization degree c. If
the probability is too small, c is increased, until the minimal c is found that yields a
probability higher than or equal to Prequired, which is returned by the function.
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1: function calculate_degree () begin
2: c = current_degree // parallelization degree
3: while true do
4: P = ∑

BLω

n=1 P(Q(t) = n) // applying QT formulas
5: if P < Prequired then
6: c = c+1
7: else
8: if P ≥ Prequired AND last_P < Prequired then
9: return c

10: else
11: c = c−1
12: end if
13: end if
14: last_P = P
15: end while
16: end function

Figure 3.6: Algorithm for calculating the optimal parallelization degree.

Let Q = {Q(t) : t ≥ 0} be the random process of the queue length Q(t) at time t at a
fixed parallelization degree, workload distribution and operator profile. In the core, the
algorithm employs methods from QT to calculate the queue length probability P(Q(t)
≤ BLω), i.e., the probability that there are not more than BLω events buffered in the
queue. Depending on the workload distribution, the corresponding processing latency
distribution and the number of operator instances, the distribution of Q(t) can settle
down for t → ∞ to a stationary distribution, so that P(Q(t) ≤ BLω) can be calculated.
Closed-form formulas to calculate P(Q(t) ≤ BLω) are available for M/M/c [Bos14]
and M/D/c [Tij06] queuing systems2. The algorithm uses the available mathematical
formulas to compute the queue length probabilities P(Q(t) ≤ BLω) (line 4). The par-
allelization degree c is adapted accordingly, until the minimal c is found that yields
P(Q(t) ≤ BLω) ≥ Prequired (lines 5 – 14).

2We follow Kendall’s notation, A/B/c, A = iat distribution, B = processing latency distribution, c =
parallelization degree, M = exponential distribution / Markovian process, D = deterministic distribution
/ constant. The queue capacity is infinite and the queuing discipline is FIFO in all models used in this
work. The actual queue capacity of the system is indeed limited by physical constraints which are,
however, typically much higher than the required buffer limits, so that they don’t have to be considered
in the mathematical model.
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1: function adapt_degree () begin
2: new_degree = calculate_degree()
3: dif = last_degree−new_degree
4: if dif < 0 then
5: cancel |dif | instances in TH time units
6: end if
7: if dif > 0 then
8: Try to recall dif cancellations
9: n = number of successfully recalled cancellations

10: Deploy dif −n new instances
11: end if
12: last_degree = new_degree
13: end function

Figure 3.7: Algorithm for adapting the parallelization degree.

However, for many distributions, Q(t) does not settle down to a stationary distribu-
tion, and in practice not all predicted workloads and profiled service time distributions
follow an exponential distribution or are deterministic. In that case, they are approxi-
mated by an exponential or deterministic distribution such that the cumulative distribu-
tion function (cdf) of inter-arrival times is higher than the cdf of the actual distribution.
That way, the approximation yields smaller inter-arrival times, i..e., it is pessimistic.
When approximating the processing time distribution, it is done in the opposite way:
The cdf of the approximation must be smaller to yield larger processing times. Note
that it is necessary to have a well-fitting workload and service time classification in
order to make sure the approximation yields smaller inter-arrival times and higher pro-
cessing latencies than the real distributions.

3.4.4 Adaptation

Adaptation of the parallelization degree. The algorithm for adapting the paralleliza-
tion degree is listed in Figure 3.7. It is initiated every sfreq time units. The new optimal
parallelization degree is calculated with the algorithm from Section 3.4.3 based on the
predicted workload in TH time units. If there is a difference dif between the old and
the new degree, the adaptation of the degree in TH time units is prepared. There are
two cases: (i) dif < 0 and (ii) dif > 0. In case (i) (line 4), the cancellation of |dif | in-
stances in TH time units is registered (line 5). At the time of cancellation, the operator
instances are unregistered in the splitter, so that they do not receive new windows. The
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instances finish processing the assigned windows and then are shut down. In case (ii)
(line 7), in order to reduce the number of deployment operations, it is first checked how
many canceled instances are not shut down yet and can be reused. Those n instances
are registered in the splitter (lines 8–9). The rest of the dif − n instances are newly
deployed and registered in the splitter as soon as they are live (line 10).

Adaptation of slength and sfreq. slength must be long enough to capture a suffi-
cient number of events to determine the workload distribution with high confidence.
For instance, consider the mean value in an exponential distribution. In order to reach
a confidence interval of 95 % that does not exceed δ = ±5% of the sample mean,
following an approximation in [Gue12], slength is chosen such that the required num-
ber of measurements num_measurements is 1600, while for δ = ±10% a value of
num_measurements = 400 is sufficient. There is a trade-off between the time needed
to collect enough measurements and the statistical significance of the derived workload
distribution. If the number of measurements in a time slice is too low, the confidence
of the workload distribution and thereby also the workload prediction are affected neg-
atively. However, it is evident that at a low arrival rate of events, it takes a long time
until enough measurements are available to reason about the distribution with high
confidence. At an average arrival rate of 0.5 events per second, it takes 3200 seconds,
that is more than 53 minutes, in order to collect 1600 measurements needed to achieve
the aforementioned confidence level.

We propose the algorithm QT-DYN that dynamically adapts slength: A time slice ends
at a maximal time limit max(slength) or when num_measurements measurements are
available. For instance, we can set max(slength) = 3 minutes and num_measurements=
400. In that case, a time slice ends either after 3 minutes or when 400 measurements
are taken. This algorithm allows for setting bounds in the trade-off between time and
accuracy of capturing the workload distribution. The algorithm is embedded into the
procedure of processing measurements (cf. Figure 3.8), checking the conditions when
a measurement in a time slice is being processed. The function signals when the time
slice is completed, so that the workload distribution can be computed.

In setting the system parameter sfreq, it must be small enough so that changes in the
workload are detected timely, but the higher it is the less computational overhead is
caused. Another important factor is how fast the workload is expected to change and
what is the impact on the parallelization degree. If it changes often and very abruptly
and a small change has high impact on the parallelization degree, a lower value of sfreq
can be beneficial.
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1: function process_measurement (time_slice t, measurement m) begin
2: if (m.timestamp ≥ t.start + max(slength))
3: or (t.#measurements ≥ num_measurements) then
4: t.COMPLETED( )
5: else
6: t.ADD_MEASUREMENT(m)
7: end if
8: end function

Figure 3.8: Processing measurements in time slices with the QT-DYN algorithm.

3.5 Evaluation

In this section, we evaluate the proposed method to adapt the operator parallelization
degree by analyzing the queue lengths and processing latencies at different workloads.
We compare the QT-based approach to a reactive approach that adapts the paralleliza-
tion degree based on the average CPU utilization (cf. Section 3.5.2). Furthermore, we
analyze the effects of approximating given workload and service time distributions.
Finally, we evaluate the performance of the splitter in partitioning the incoming event
streams.

3.5.1 System Parameters

All experiments were performed on a computing cluster consisting of 6 physical hosts
with 8 CPU cores (Intel(R) Xeon(R) CPU E5620 @ 2.40GHz) and 24 GB memory
that are connected by 10-Gigabit-Ethernet connections. Up to 4 operator instances are
deployed on one host. We assume that it takes 60 seconds to deploy a new opera-
tor instance (TH = 60 seconds), which corresponds to typical boot times, e.g., in the
Amazon EC2 Cloud3.
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Figure 3.9: Operator profile of ωovertake.

3.5.2 Dynamic Degree Adaptation

Traffic Monitoring Scenario

Recall the traffic monitoring scenario introduced in Section 1.1.2. Given two sensors
with synchronized clocks deployed at the beginning and end of a no-passing zone
(L1 and L2), the operator ωovertake detects when a vehicle overtakes another one. We
assume the following parameters of the setup: Between L1 and L2, there is a distance
of 15 kilometers. Following the speed limit, the vehicles in average drive 60 kilometers
per hour; however, there is a ratio of 10 percent of faster vehicles on the road which
drive between 60 and 72 kilometers per hour (uniformly distributed). It has been shown
in a number of measurement studies that the distribution of vehicles on a road follows
a Poisson process [MM13], thus resulting in exponential distribution of inter-arrival
times of vehicles at the checkpoints.

Operator Profile

Fig. 3.9 shows the measured operator profile. For sake of simplicity, we only consider
events of type L2, because in the implementation of ωovertake, events of type L1 are just
added to a list which is a negligible operation while events of type L2 are compared to
all events of type L1 that have occurred in the window, leading to noticeable processing
latency. The processing latency grows polynomially with the event rate. For employing

3http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html
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QT, we approximate the profile with the deterministic values of the 99th percentile and
model the queuing system as an M/D/c queue.

Taking into account the operator profiles, the requirements on the queue length for
the following evaluations are set to BLω = 15 and Prequired = 95%, yielding queuing
latency of less than 4 seconds even at the highest traffic density. This allows for direct
feedback to a driver who violated the traffic rules. In our experiments, we choose
sfreq = slength, i.e., subsequent monitoring windows are non-overlapping.

Fixed Average Inter-arrival Time

Figure 3.10a shows the measured queue sizes of our QT-based approach, with a fixed
slength at 1600 events, compared to a reactive approach that adapts the parallelization
degree depending on the average CPU load of active operator instances. The reactive
approach adds a new instance once the average CPU load over two subsequent time
frames of 5 seconds is higher than 70 % and removes one instance when it is less
than 50 %. Such reactive approaches have been used in related work; here, we follow
the settings of a reactive controller used by Fernandez et al. [FMKP13] in their SEEP
stream processing system. In the QT approach, we used naive forecast [HHKA14],
using the latest measured workload distribution as the predicted one. In the scenario,
the inter-arrival time of cars has an average of 200 ms and the queue sizes are measured
each 10 seconds over an experiment run time of more than 8 hours. As can be seen in
Figure 3.10a, QT reaches a 95-percentile of 8 events, so that in 95 % of the time the
queue length is 8 or lower and BLω is kept. The reactive CPU-based approach fails to
keep BLω; the 95th percentile is at more than 17,000 events.

Furthermore, we measured the parallelization degree that is deployed in the different
adaptation approaches (Figure 3.10b). In the QT-based approach, a stable degree of 8
is kept, as the workload classification reliably detects the workload distribution. The
reactive CPU-based approach, however, does not stabilize the degree. Instead, it is
gradually increased to a certain level and then suddenly drops, taking another 30 min-
utes to increase again. The reason is that the traffic monitoring operator works on
large, overlapping windows. The processing effort per event depends on the number
of windows that contain the event as well as the number of events that already have
been processed within a window, as a new event from L2 needs to be compared to a
growing number of events from L1 in a growing window. Initially, the reactive CPU-
based approach assigns many windows to a small number of instances, because the
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CPU load in the beginning of processing a window is still small. When the CPU load
grows, it is already too late to add new instances, because the windows that cause the
overload are already assigned to the small number of instances. Note, that we do not
migrate intermediate window states in our approach, so that the effects of overloading
an operator instance with too many windows lasts until the windows are closed again.
The algorithm adds more and more instances, and finally overshoots. Then, the same
cycle starts again.

Dynamic Average Inter-arrival Time

In the second scenario, the average inter-arrival time (iat) of events grows and shrinks
over time to simulate a rush hour. The system is set up with an initial parallelization
degree of 8. Within 2 hours, the traffic density grows from 0.5 cars per second to
5 cars per second, stays at that peak level for 2 hours and then gradually decreases
over the next 2 hours back to 0.5 cars per second. All other assumptions and require-
ments are the same as in the previous scenario. When applying QT, we have evaluated
different strategies for choosing slength: (i) Fixed sizes of the time slices containing
num_measurements measurements (denoted by QT-num_measurements), and (ii) the
bounded dynamic algorithm QT-DYN (cf. Section 3.4.4) with max(slength) = 3 min-
utes and num_measurements = 400.

Figure 3.10c shows the cumulative distribution function (cdf) of the queue sizes for the
QT-400, the QT-1600, the QT-DYN, and the reactive CPU-based approach, where the
95-percentile is at 15, 18, 14 and 4,500 respectively. Looking into the logs of the QT-
1600 approach, higher queue sizes than 15 mostly happen while scaling up, as it takes
some time to gather 1,600 iat measurements. For instance, gathering 1,600 iat measure-
ments at an event arrival rate of 4 events per second (corresponds to 4 cars per second
passing L2 in our traffic scenario) would take 400 seconds. Using a smaller number
of measurements in QT-400 and QT-DYN diminishes the problem while still giving a
good estimation of the workload distribution. In Figure 3.10d, the parallelization de-
gree of the QT and reactive CPU-based approach is depicted. Similarly to the static
scenario, we can observe in the QT approach a stable development of the degree that
follows the workload while a heavily fluctuating degree occurs in the reactive CPU-
based approach. The dynamic algorithm QT-DYN shows a good adaptation behavior,
as it allows for fast adaptations at a low event rate while increasing the confidence at a
high event rate.
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Figure 3.10: Evaluation results for different scenarios.
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To further elaborate on the impact of the parallelization degree, we analyzed the im-
posed cost when running the dynamic scenario with the QT algorithms and the reactive
CPU-based approach. We measure the cost for running operator instances based on a
low pricing granularity of 1 minute, like it is given, for instance, in Google’s cloud
computing offerings4. For the sake of generality, we assume that occupying a comput-
ing node that can host one operator instance for one minute costs 1 Cost Unit (CU).
Figure 3.10f shows that in the QT approach, QT-DYN performs best with 1906 CU,
followed by QT-400 with 1961 CU (+ 2.9 %) and QT-1600 with 2096 CU (+ 7.1 %).
Furthermore, the reactive CPU-based approach yields the lowest cost with 1502 CU.
However, it fails to meet the buffer limit.

To elaborate on the relation between the queue length and the total operator latency,
we have measured the end-to-end latency of the operator. That is the period between
the point in time when an event that ends the detection of a pattern arrives at the splitter
and the point in time when all corresponding outgoing events have been created. Figure
3.10e shows that the reactive CPU-based approach imposes a much higher latency than
the QT-based approach. In 5 % of the cases, the latency is even higher than 530 seconds
and only in 29 % of the time a low latency of under 2 seconds is achieved. In contrast
to this, the QT based approach yields a 95th percentile in latency of 1759 ms with
QT-DYN, 2036 ms with QT-400 (+ 15.7 %), and 2471 ms with QT-1600 (+ 40.5 %).

Analyzing the results, it is evident that QT-DYN yields a better overall performance
than QT-400 and QT-1600. While the improvement of the buffering level in com-
parison to QT-400 might not be significant and could be interpreted as a statistical
deviation, the improvements in cost and especially in latency are clear.

3.5.3 Approximating Distributions

Recall that according to the considerations in Section 3.4.3, iat and processing latency
distributions that do not yield a stationary queue length distribution in a QT queuing
system are approximated by exponential or deterministic distributions. To analyze the
effects of such approximations, we consider several distributions: (i) The Pareto dis-
tribution representing heavy tailed, skewed distributions, (ii) the uniform distribution
representing short tailed distributions, and (iii) the log-normal distribution represent-
ing the multiplicative product of many independent, positive random variables. We run
two experiments for each distribution:

4https://cloud.google.com/compute/pricing
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Parameters E1 λ−1 c E2 D c

Uniform a = 100,
b = 200

0.0432 10 0.199 4

Pareto xmin =

0.05,
k = 2

0.0667 6 0.5 10

Log-normal µ =−1.0,
σ = 0.2

0.1266 3 0.586 12

Figure 3.11: Parameters, corresponding approximations and calculated parallelization
degrees for the approximated distributions.

E1: In the first experiment, the iat follows the approximated distribution while the
processing latency follows an exponential distribution with an average value of
300 ms. In the experiment, the given iat is approximated by an exponential
distribution, building an M/M/c queuing system.

E2: In the second experiment, the iat follows an exponential distribution with an av-
erage value of 66.7 ms while the processing latency follows the approximated
distribution. In the experiment, the given processing latency is approximated by
a deterministic distribution, building an M/D/c queuing system.

We have chosen different parameters for the distributions, which are all listed in Figure
3.11 in the column “Parameters”. In the E1 and E2 section in that table, the param-
eters of the corresponding approximations are listed, i.e. the average value “λ−1” of
the exponential approximation of the iat in E1 and the value “D” of the deterministic
approximation of the processing latency in E2. In both experiments, “c” denotes the
parallelization degree computed with QT formulas.

BLω is kept in all experiments (cf. Figure 3.10g), so that the approximations show
good results.

3.5.4 Splitter Throughput

In the splitter, the predicate logic for typical operators consists of only a fixed number
of parameter comparisons that are performed for each event in Po and Pc. What scales
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up the effort in evaluating the predicates is the number of concurrently open windows,
as for each open window, Pc is evaluated on each event. We analyze this effect by eval-
uating the sliding tuple-based window of 10,000 events with an increasing number of
overlapping windows between 1 and 10,000. Figure 3.10h shows that the splitter yields
high throughput that degrades proportionally to the number of overlapping windows.

3.6 Related Work

Besides window-based splitting, as proposed in this chapter, other splitting approaches
in data parallel stream processing are key-based, batch-based and pane-based splitting.
Those approaches are discussed in Section 1.1.3.

In case of operator overload, two situations can occur: (i) The operator applies load
shedding, i.e., discarding events that it is not capable of processing in time [TcZ07,
CJ09, KCFP12]. This apparently leads to inconsistencies (false-negatives or false-
positives), which are not tolerable in many scenarios. (ii) A high amount of events
need to be buffered before being processed, which can cause an unacceptable latency
in event detection. To avoid this case, the throughput of the operator has to be adapted
to the workload. Different approaches have been proposed to dynamically adapt the
operator parallelization degree.

In terms of elasticity approaches, we can differentiate between reactive approaches
and proactive approaches. Reactive approaches decide about scaling based on live-
feedback from the CEP system. Examples for feedback parameters are CPU load,
measured latency or throughput of operator instances. In contrast to that, proactive
approaches predict the future workload and resulting system behavior beforehand, so
that adaptations of the parallelization degree can be issued earlier. In the following, we
discuss reactive and proactive approaches from literature in terms of the method they
use for deciding when to adapt the operator parallelization degree and the guarantees
that the elasticity control provides in terms of timeliness of event processing.

Schneider et al. [SAG+09] propose a data parallelization framework for stateless elas-
tic operators on multi-core hosts. The thread level, i.e., number of threads active
in an operator, is increased or decreased in a greedy manner based on the stability
of the operator throughput, until a stability condition is met and the thread level is
kept. The system does not provide any guarantees on throughput or latency. The
reactive scale-out approach proposed by Fernandez et al. [FMKP13] scales the op-
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erator based on the current CPU load of operator instances. However, the approach
does not offer any guarantees on meeting a specific buffering level, as our evalua-
tion results also have shown. Similarly, the elasticity mechanism in StreamCloud by
Gulisano et al. [GJPPnM+12] as well as MillWheel by Akidau et al. [ABB+13] are
based on a threshold on the average CPU utilization in the system and cannot pro-
vide guarantees on latency. In [GSHW14], a more sophisticated elasticity algorithm
is proposed that uses the feedback parameters congestion and throughput. However, it
does not guarantee buffer limits at bursty workloads. Heinze et al., based on their
FUGU system [HJP+13], analyze three different auto-scaling strategies [HPJF14]:
Global threshold-based, local threshold-based, and model-based with reinforcement
learning. However, their approach does not guarantee latency bounds. Later, Heinze
et al. [HJHF14] propose a hybrid reactive and model-based controller for elastically
scaling the number of machines used in order to deploy the operator graphs of multiple
queries. The goal of their approach is to keep an average end-to-end latency bound.
Based on that work, Heinze et al. in their later work [HRM+15] propose an online
parameter optimization method for automatically tuning six different thresholds of re-
active scaling methods that scale in or out the number of virtual machines that host
a set of operators. As their work addresses key-based data parallelization using state
migration when changing the parallelization degree of an operator, it cannot be directly
applied to window-based data parallelization without state migration, as proposed in
our work. Mencagli [Men16] proposes a reactive game-theoretic distributed controller
for elastic stream processing operators. The operators implement a strategy to achieve
a Nash equilibrium in a game, where operators increase their parallelization degree
when they detect that they are a system bottleneck. Mencagli shows that a coopera-
tive strategy, where incentives are provided to promote cooperation between different
operators, bring the system closer to the global optimum than a purely selfish strategy.
The game settings aim to maximize the system throughput without giving any specific
guarantees on latency.

The proactive approach of Balkesen et al. [BTO13] tries to forecast the exact event
arrival rate and assumes a fixed per-tuple processing latency when determining the
optimal parallelization degree, which does not always hold, as we show with the op-
erator profiles in our traffic monitoring scenario (cf. Section 3.5). De Matteis and
Mencagli [DMM16] propose latency-aware and energy-efficient scaling of key-based
data parallel stream processing operators on multi-core machines based on a Model
Predictive Control strategy. Similar to the our work, a disturbance forecaster predicts
the future event arrival rate and processing latency. To predict the average per-tuple
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latency, a formula from QT is applied (Kingman’s formula), which depends on the
system utilization and the coefficients of variation of the inter-arrival time and the
service time. Contrasting to our work, this makes the model more widely appli-
cable, as it works with G/G/x queue models (i.e., no particular distributions are as-
sumed), but the model predicts average latency instead of queue length distributions,
and hence, does not allow for providing worst-case guarantees. In [DMM17a], De
Matteis and Mencagli extend their approach to horizontal scaling across several com-
puting nodes, building on the same predictive control model. Lohrmann et al. [LJK15]
propose a controller that adapts the parallelization degree of all operators in a dis-
tributed operator graph such that an average latency bound is met. The controller
employs a QT model that is based on Kingman’s formula, similarly as in De Matteis
and Mencagli [DMM16], to predict the queuing latency in the system. A reactive com-
ponent doubles the parallelization degree if an operator, against the predictions of the
QT model, becomes a bottleneck, so that bottlenecks are quickly removed.

Performance modeling approaches, e.g., Queuing Petri Nets [Kou06] or latency esti-
mation models like Mace [CGB+11], require a deeper knowledge of the operators and
do not provide methods to adapt the parallelization degree in order to yield a limited
buffering level at fluctuating workloads. QT has also been applied in other related
fields to model or predict queuing latency, such as process mining [SWGM15] and
business process management [SWG+15].

3.7 Conclusion

In this chapter, we have identified two important shortcomings on the way towards
low latency event detection in CEP systems. First, the state of the art lacks consistent
parallelization models for a large class of operators. Second, state-of-the-art systems
are not equipped with a method to adaptively determine the optimal parallelization
degree at fluctuating workloads in order to guarantee a buffering limit is met.

To this end, the proposed pattern-sensitive stream partitioning method supports the
consistent parallelization of the window-based CEP operators. Furthermore, the pro-
posed QT-based degree adaptation method is able to meet probabilistic buffering limits
at highly fluctuating workloads.
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4
Bandwidth-Efficient Scheduling

We have seen in the previous chapters that in a window-based data parallelization
framework for CEP operators, incoming event streams of an operator are split into
windows that can be processed in parallel by an arbitrary number of operator instances.
Those operator instances do not share state, so that they can be hosted on shared noth-
ing hosts, e.g., virtual machines in a cloud data center, which allows for high scalability
and elasticity. To ensure consistency, each window contains all events needed in order
to detect a pattern. This means that different windows can overlap, i.e., events are part
of multiple windows [BDWT13, MKR15]. When splitting incoming event streams,
the data parallelization framework assigns a window to an operator instance when the
start of the window is detected. In doing so, assigning overlapping windows to dif-
ferent operator instances results in increasing communication overhead, as events that
are part of multiple different windows are replicated to multiple operator instances. In
the worst case, an event may be transmitted to all operator instances, leading to a high
network load. In cloud data centers, this may not only impair the performance of the
hosted CEP system, but also the performance of other applications hosted on the same
infrastructure. Network-intensive applications have been identified as a major cause of
bottlenecks in cloud data centers [GHJ+09, BCKR11, LDGB13]. Therefore, reducing
the bandwidth consumption of parallel CEP systems can be of great worth to all hosted
applications.

To reduce the bandwidth consumption, we employ batch scheduling of subsequent
overlapping windows, i.e., assigning them to the same operator instance. That way,
events from the overlap only need to be transferred once. However, at the same time,
the operator instance must process more windows in a shorter time. This can lead to

75
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temporary overload, so that events are buffered and queuing latency is accumulating.
Nevertheless, the latency between arrival of an event and its successful processing must
not exceed a given latency bound. We address the following challenges in batching the
optimal amount of windows, which cannot be solved with state-of-the-art scheduling
algorithms from stream processing [CcR+03, LMT+05, BT11].

• Per-event latency: Each incoming event at an operator can potentially trigger
the detection of a pattern leading to a situation detection. Therefore, a latency
bound should be kept for each single event.
• Window overlap: The overlap between windows of a batch influences the pro-

cessing load induced by each event, as each event is processed in the context of
each window it is part of. Moreover, the scheduling decision is made on open
windows, i.e., the events and the overlap of a window are not known at schedul-
ing time.
• Automatic adaptation: A batch scheduling controller should be able to auto-

matically adapt to changing workload conditions without being manually trained
for those conditions beforehand.

In this chapter, material published in [MTR16] and [MTR17] is presented. The follow-
ing contributions are provided. (1) Based on evaluations from different CEP operators,
we identify key factors that influence the latency in operator instances. In particular,
we identify factors that have not been regarded in related work before. (2) Taking into
account the identified key factors, we propose a model-based batch scheduling con-
troller. The model allows to predict the latency induced in operator instances when
assigning windows. (3) We provide extensive evaluations of the system behavior in
two different scenarios, showing that our approach minimizes communication over-
head while operator instances keep a required latency bound even when the system
faces heavily fluctuating workloads.

4.1 Problem Description

The system model assumed in this chapter is the same as in Chapter 3. Further, we
assume the data parallelization framework introduced in Chapter 2 with the window-
based, pattern-sensitive stream partitioning method introduced in Chapter 3.

In particular, upon detection of the start of a new window, this window is assigned
to an operator instance according to a scheduling algorithm. In an operator instance,
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incoming events are processed sequentially. Within each window, an event has a differ-
ent context. Therefore, when processing an event e, the operator instance sequentially
processes e in the context of each window that e is part of.

Example: In the scenario in Figure 4.1, the pattern to be detected is “within one minute
after occurrence of an event of type A, a sequence of events of type B and C occurs”.
In the extended MATCH-RECOGNIZE notation [ZWC07] introduced in Section 1.1.2, this
query can be formalized as follows:

PATTERN (A B C)

DEFINE

A AS A.type = A

B AS B.type = B

C AS C.type = C

WITHIN 1 minute FROM A.timestamp

The splitter opens a window whenever an event of type A occurs, and closes the win-
dow after one minute. The operator instances check whether in a window, events of
type B and C occur in the right order. Taking a look at the splitting, we see that all
events following A1 within one minute are part of the same window wx: If some of the
events would be missing, they could not be checked for the Sequence(B;C) sub-pattern
that follows A1. In the example, two overlapping windows wx and wy have been as-
signed to the same operator instance i. When i processes an event, e.g., C1, this event
has a different context in wx than in wy: In wx, Sequence(B;C) is detected, while in wy,
the sequence is not detected. In checking the occurrences of the sequence pattern in
different windows, operator instance i processes C1 sequentially first in wx and then in
wy.

Because scheduling windows to operator instances significantly influences the latency
induced in each operator instance, in this chapter, we focus on batch scheduling suit-
able amounts of windows to operator instances such that a latency bound in those
operator instances is kept.

Problem Formalization: To minimize the communication overhead, the batch schedul-
ing controller tries to assign as many subsequent windows as possible to the same op-
erator instance subject to the constraint that the operational latency of events in that
instance must not exceed a latency bound LB. As soon as the start of a new win-
dow wnew is detected by the splitter, the batch scheduling controller decides whether
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Figure 4.1: Splitting and scheduling.

assigning that window to the same operator instance as the previous window would
cause operational latency of events to exceed LB. The batch scheduling controller does
not know in advance all the events in wnew, which makes the decision very challeng-
ing. We denote this problem as the batch scheduling problem in data-parallel CEP
operators.

The trade-off tackled in the batch scheduling problem is exemplified in Figure 4.1.
An event A3 arrives at the splitter and the splitter detects that A3 starts a new window
wnew, which now has to be scheduled. Let us suppose that a set of previous windows
Wold =(..., wx, wy) has already been scheduled to a specific operator instance i. Events
before A3 in Wold have been transferred to operator instance i. However, further events
arriving after A3 can as well be part of some of the windows in Wold; hence, they are
transferred to operator instance i, too. When scheduling wnew to operator instance i,
communication overhead can be reduced, because events overlapping between wnew

and Wold do not need to be transferred to multiple different operator instances. On
the other hand, they need to be processed additionally in the scope of wnew, inducing
higher processing latency in operator instance i. The splitter has to decide whether
wnew can be assigned to operator instance i such that the operational latency does not
increase beyond LB.

4.2 Batch Scheduling

To analyze the batch scheduling problem, in this section, we make the following con-
tributions. First, in Section 4.2.1, we identify and thoroughly analyze key factors that
influence the operational latency in an operator instance. We conclude that the impact
of key factors on operational latency in an operator instance is complex and depends
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(a) Traffic monitoring: Processing latency of events in differ-
ent positions in a window. L1 events: black, L2 events: red.

(b) Face recognition: Processing latency of events in different
positions in a window. Face events: black, query events: red.

Figure 4.2: Evaluation of processing latency.

on the workload as well as on the operator. Then, in Section 4.2.2, we highlight the
difficulties in developing a reactive batch scheduling controller that works without a
latency model.

4.2.1 Key Factors

In the following, we first identify and analyze key factors that influence the processing
latency of events in the scope of a single window. Based on that, we identify and
analyze key factors that influence operational latency in a whole batch of windows.
To this end, we evaluate two different CEP operators: a traffic monitoring and a face
recognition operator (cf. Section 1.1.2). We ran all experiments on the computing
cluster described in Section 4.4 with a parallelization degree of 8.

Processing latency of events in a window. When processing a single window in an
operator instance, each event imposes a specific processing latency. This is different
from stream processing where the processing latency of an event in a window is con-
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sidered fixed [BT11,ZR11]. We identified two key factors that influence the processing
latency of an event in a window: its type and its position.

Event type. Event types are a fundamental concept in CEP. Many query languages,
such as Snoop [CM94], Amit [AE04], SASE [WDR06] and Tesla [CM10], allow for
the definition of event patterns based on event types—e.g. Sequence(A;B), a sequence
of events of type A and B. In the traffic monitoring operator, different event types are
processed in a different way. L1 events are simply added to a list of seen events, while
L2 events are compared to the seen events (cf. Figure 4.2a). In the face recognition
operator, query events are processed by building a face model of the queried person,
while face events are processed by comparing them to the established face model of
the window (cf. Figure 4.2b). In both operators, we see different processing latencies
depending on the event types.

Position of event. When processing events of a window, internal state is gathered
in an operator [FMKP13, BDWT13], which can influence the processing latency of
events. For instance, in the traffic monitoring operator, an L2 event eL2 can poten-
tially complete a sub-pattern Sequence(B;C) with B.type = L1 and with C.plate =

B.plate and C.type = L2 and this way complete the pattern (cf. the query formalization
of ωovertake provided in Section 1.1.2). Therefore, eL2 is compared to all L1 events that
have been seen in the window before (equi-join operator). Thus, with a higher posi-
tion of eL2, its processing latency increases, as evaluated in Figure 4.2a. However, the
processing latency of events does not necessarily increase with position. In the face
recognition operator, each face event is compared to a query event; the face_match

function imposes the same processing latency in each event position (cf. Figure 4.2b).

Operational latency in a batch of windows. In a batch of windows, different win-
dows may overlap. When the batch scheduling controller assigns a window to an op-
erator instance that overlaps with other windows, the processing latency of all events
in the overlap is influenced, as events are processed sequentially in the scope of their
windows. Recall that a window has to comprise all events needed in order to detect
a queried pattern. Therefore, the overlap of different windows cannot be changed by
the batch scheduling controller. That is different from batch scheduling problems han-
dled in stream processing, where batches are considered to be arbitrarily large, non-
overlapping sets of events, and batch scheduling decides how many events shall be
batched to a processing node [LMT+05, DZSS14].

In the following, we identify key factors influencing the overlap of windows and an-
alyze their impact on operational latency in operator instances. To this end, we run
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scenario parameters measurements

#
batch

size

avg.

iat (s)
ws (s)

max. op.

latency (s)

feedback

delay (s)

max. queue

length

feedback

delay (s)

1 500 0.15 900 2.4 725.5 15 773.6

2 500 0.125 900 3.7 757.7 27 724.8

3 500 0.1 900 24.1 699.0 248 810.2

4 750 0.1 900 100.6 800.8 1029 844.0

5 1,000 0.1 900 116.1 824.3 1194 795.6

6 1,000 0.1 1000 197.8 1,041.8 1699 999.0

7 1,000 0.1 1100 199.2 1,179.2 1898 1,100.0

(a) Traffic monitoring operator.

scenario parameters measurements

#
batch

size

avg.

iat (s)
ws (s)

max. op.

latency (s)

feedback

delay (s)

max. queue

length

feedback

delay (s)

1 10 0.667 10 37.9 46.3 43 10.1

2 10 0.4 10 68.7 77.1 84 9.4

3 10 0.286 10 99.7 108.0 115 10.6

4 15 0.286 10 145.1 153.2 164 8.3

5 20 0.286 10 195.1 200.7 191 10.2

6 20 0.286 15 289.4 301.8 234 14.4

7 20 0.286 20 392.1 410.1 258 19.6

(b) Face recognition operator.

Figure 4.3: Max. operational latency, queue length and feedback delays.
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experiments with the traffic monitoring operator and the face recognition operator. In
each experiment, using different traffic densities and different numbers of persons in a
video frame, one key factor value is changed while all other key factors are kept con-
stant, and the differences in operational latency peaks are analyzed (cf. Figure 4.3).
For each experiment, more than 370,000 measurements have been taken.

Batch size. The batch size, i.e., number of windows assigned to an operator instance in
a batch, influences the overlap of the windows, and hence, the operational latency of
events. However, the relation between batch size and operational latency peak is not
trivial. In the traffic monitoring operator, increasing the batch size by 50 % and then
by further 33 % induces an increase in operational latency peak by 317 % and 15 %,
respectively (cf. Figure 4.3a, #3, #4 and #5). In the face recognition operator, the re-
lation between batch size and operational latency seems to be proportional (cf. Figure
4.3b). We suppose that this irregular behavior of the operational latency peak origi-
nates in the queuing behavior of operator instances. As long as an operator instance
is not overloaded by the scheduled batch of windows, queuing latency is moderate,
mostly caused by small event bursts in the incoming event stream. When an overload
occurs, queuing latency increases very abruptly, so that operational latency peaks in-
crease rapidly (e.g., by 317 % in the traffic monitoring operator from experiment #3
to experiment #4). After that, adding more overload by increasing the batch size even
further increases the operational latency peaks more smoothly, i.e., not in an abrupt
way.

Inter-arrival time (iat). Given a fixed batch size, the inter-arrival time iat of events
influences the queuing latency of events. Further, it can influence the number of events
in the windows, e.g., in time-based windows. The number of events in windows in-
fluences their overlap, which, in turn, influences the processing latency of the events.
Thus, there is a complex relation between iat and operational latency. In the traffic
monitoring operator, we decreased the average iat of events first by 17 %, and then
by further 20 %. This induced an increase in operational latency peak by 54 % and
551 %, respectively (cf. Figure 4.3a, #1, #2 and #3). Similarly, in the face recognition
operator, decreasing the average iat of events first by 40 % and then by further 28.5
%, led to an increase in operational latency peak by 81 % and 45 %, respectively (cf.
Figure 4.3b).

Window scope (ws). The window scope ws—i.e., the time stamp difference between
the start and end event of a window—depends on the queried patterns to be detected
by the CEP operator. It can be fixed to a specific time, e.g., when the query depends on
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a time-based window [ABW06], but it can also depend on the occurrence of specific
events, e.g., in aperiodic queries or queries that define a sequence of specific events
[CM10, CM94]. For instance, in the traffic monitoring operator, the start and end of a
window depend on the speed of the vehicles, as a window starts when a vehicle passes
L1 and ends when the same vehicle passes L2. When the speed of a vehicle is lower,
the time spanned by the window opened from this vehicle is larger. Therefore, the size
and overlap of windows can change even when the batch size and iat stay the same.
This is different from stream processing, where only windows of fixed size and fixed
slide— time- or count-based—are analyzed [BT11]. In the traffic monitoring operator,
we increased ws by 11 %, and then by further 10 %. This induced an increase in
operational latency peak by 70 % and 1 %, respectively (Figure 4.3a, #5, #6 and #7).
In the face recognition operator, however, increasing ws led to a proportional increase
in operational latency peaks.

From the observations on key factors that influence operational latency when process-
ing a batch of windows, we conclude that building a direct mapping from batch size,
inter-arrival time and window scope to operational latency peaks in operator instances
is hard. The relation between key factors and operational latency peaks that occur in
operator instances is complex, and different in different operators. A model trained
before run-time (off-line) or at run-time (online), hence, does not suffice; due to the
complex relations between key factors, it is hard to train a model that can make reliable
predictions outside of the learned parameter value ranges. Further, domain knowledge
alone is not enough in order to hand-craft a latency model: Knowledge about the oper-
ator implementation does not necessarily help in understanding the relations between
the identified key factors and the operational latency peak.

In the following, we discuss whether the need for a latency model predicting the op-
erational latency can be completely avoided by employing a reactive batch scheduling
controller.

4.2.2 Reactive Controllers

Here, we discuss the difficulties involved in devising a reactive batch scheduling con-
troller. Reactive controllers are widely used in scheduling algorithms in the related
field of parallel stream processing systems [LMT+05, DZSS14]. The basic idea of
a reactive controller is that it schedules windows according to feedback parameters
(like operational latency or queue length) from the operator instances that indicate
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how many windows can be batched. In the following, we point out the differences
in batch scheduling in data-parallel CEP operators to scheduling problems that have
been solved with reactive controllers. Then, we analyze operational latency and queue
length of operator instances in the scope of the scenarios used in Section 4.2.1 in de-
tail and show that none of these parameters provides reliable feedback to implement a
reactive controller.

In data-parallel CEP operators, in order to maintain the latency bound for each event,
the batch scheduling controller decides at the start of a window to which instance this
window is scheduled. Then, it directs all events that arrive in the scope of that window
to the corresponding instance. It is infeasible for the controller to wait until all events
of the window are present and then schedule the window; it would take too much time
in view of per-event latency bounds. After assigning a window to an operator instance
at the occurrence of its start event, many other events of that window arrive until the
window is finally closed. Thus, over the whole time span of the window, feedback
parameters in the operator instance are influenced by the scheduling decision, i.e.,
a long time after the scheduling decision has been made. That poses a completely
different problem from other batch scheduling problems that are tackled with reactive
batch scheduling, e.g., the problem of scheduling batches of events in streamed batch
processing [DZSS14], where a controller first builds a batch of available events and
then assigns it to an operator instance.

Therefore, in data-parallel CEP operators, there can be a high delay between the as-
signment of a window to an operator instance and the occurrence of the peak value of
the feedback parameters in that operator instance. We denote this delay as the feedback
delay. In Figure 4.3a, we have measured the feedback delay of operational latency and
of queue length in the different runs of the traffic monitoring operator under different
conditions; a feedback delay of 699 to 1,179 seconds occurred for both parameters.
In that time, many subsequent batch scheduling decisions have to be made by the
controller. At the same time, key factors like inter-arrival time, window scope, event
types, etc. continuously change. Moreover, the feedback delay is not constant, so that
the controller cannot rely on it; it is not clear whether the feedback parameter measured
in an operator instance is already the peak value or how much further it will grow.

To mitigate high feedback delays, we devise a latency-reactive controller that reacts
on the current operational latency in operator instances. Windows are batched to the
same operator instance until at the instance, the current operational latency reaches a
threshold TH; subsequent windows are scheduled to the next operator instance. This,
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Figure 4.4: Traffic monitoring: Operational latency with reactive batch scheduling at
TH = 100ms under different window scopes.

however, poses the question how to set TH. A simple experiment shows that a static TH
is not good enough to keep the latency bound LB. We run evaluations using the traffic
monitoring operator at an average inter-arrival time of cars of 200 ms, aiming to keep
LB = 1s. With TH = 100ms, reactive batch scheduling more or less was able to keep
LB when ws was not higher than 500 s (cf. Figure 4.4). However, at a ws of 600 s and
700 s, TH = 100ms led to systematically wrong batch scheduling decisions; LB was
violated by a factor of almost 100. Obviously, TH has to be adapted to the changing
key factor values. In doing so, the feedback to change TH is available only after LB
already has been violated, i.e., after a long feedback delay. The same problems apply
when using the queue length peaks as a feedback parameter: The feedback delay is
high. Again, using the current queue length as feedback parameter requires a suitable
threshold, which in turn has to be adapted to changing key factor values.

In the face recognition operator, window scopes are much smaller. While the feedback
delay of operational latency peaks is still high (46 to 410 seconds), the feedback delay
of the queue length peaks is smaller (8 to 20 seconds; cf. Figure 4.3b). However,
this does not automatically make the queue length peaks a good parameter for reactive
controllers. First of all, 20 seconds is still a long time; in the real-world workloads
analyzed in Section 4.4, sudden bursts demand for an even faster reaction. Second,
the relation between queue length peak and operational latency peak is not trivial; the
operational latency peak does not necessarily occur when the most events are in the
queue, but rather when the most expensive events are in the queue. This demands for a
more thorough analysis. We conclude that neither operational latency nor queue length
are a reliable feedback parameter for a purely reactive batch scheduling controller.
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Instead of pure feedback mechanisms, our approach uses a simple, yet powerful latency
model. It takes into account feedback from operator instances, but also includes a
prediction and analysis step.

4.3 Model-based Controller

The batch scheduling controller must predict whether the operational latency peak in
an operator instance will be higher than LB when batching a new window wnew. To
this end, we introduce a latency model. We aim to find the right balance between the
complexity, the reasonable consideration of feedback from operator instances and of
domain expert knowledge, and the accuracy and precision of the model.

4.3.1 Basic Approach

Recall that the operational latency of an event e is built up of its queuing and pro-
cessing latency: λo(e) = λq(e)+ λp(e). If the processing latency λp(e) of an event
is higher than the inter-arrival time iat to its successor event, this imposes additional
queuing latency to the successor event. On the other hand, if λp(e) is smaller than
iat, the queuing latency of the successor event becomes smaller or even zero, i.e., e
does not induce queuing latency for the successor event. In the following, we refer
to the difference between λp and iat as the gain γ of an event: γ(e) = λp(e)− iat. If
λp(e)> iat, we speak of a negative gain; else, we speak of a positive gain1. In Figure
4.5a, we provide an example. Suppose that the iat between events is 5 time units (TU),
and the window contains 7 events: 2 events of type A impose each λp = 8 TU, 2 events
of type B impose each λp = 7 TU, 2 events of type C impose each λp = 4 TU, and 1
event of type D imposes λp = 2 TU. Then, the gains of the single events are between
+3 and -3 TU (+3 for type A, +2 for B, -1 for C, -3 for D).

Now, for the overall window wnew, the aggregated gains of the set of events with
λp(e) > iat are termed the total negative gain: Γ− = ∑γ(e) : e ∈ wnew ∧λp(e) > iat.
In the given example (Figure 4.5a), those are the events of type A and B; hence,
Γ− = 3+3+2+2 = 10 TU. The aggregated gains of the set of events with λp(e)< iat
are termed the total positive gain2: Γ+ = ∑γ(e) : e ∈ wnew ∧ λp(e) < iat. In the

1Negative gains are positive numbers and positive gains are negative numbers. The terminology
refers to the impact of an event on the feasibility to schedule a window in a batch.

2If λp(e) = iat, neither negative nor positive gains occur.
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Figure 4.5: Different sequences of negative and positive gains, in worst case (WC),
best case (BC) and in a medium case (MC).

given example (Figure 4.5a), those are the events of type C and D; hence, Γ+ =

(−1)+(−1)+(−3) =−5 TU.

After defining the total negative and positive gains, in the following, we analyze pos-
sible sequences of negative and positive gains and the impact on the queuing latency
peak λmax

q . In Figure 4.5b, first all negative gains occur, followed by all positive gains.
This is the worst case with respect to λmax

q ; in the example sequence, λmax
q = 10 TU.

Note, that also any other sequence of events of types A and B would lead to the same
λmax

q . In the worst case, hence, λmax
q = Γ−. However, an interleaving between negative

and positive gains is possible as well. In the examples in Figures 4.5c and 4.5d, the
events with negative and positive gains interleave to a different extent. This leads to
different values of λmax

q , because although the queuing latency is increased by events
with negative gains, events with positive gains compensate for that; a successor event
of an event with positive gain faces a lower queuing latency.

The actual sequence of events with negative and positive gains in wnew is very difficult
to predict. It would essentially correspond to predicting each single event in wnew and
its iat. To account for the discussed interleaving of events with negative and positive
gains, therefore, we introduce a compensation factor α. α allows for modeling the ex-
tent of interleaving of negative and positive gains without the need to explicitly define
the sequence of events in wnew in the prediction: λmax

q = Γ−+α ∗Γ+. Taking a look
at the best-case example in Figure 4.5c, we see that the negative and positive gains are
maximally interleaving, hence, α = 1. Accordingly, λmax

q = 10+1∗ (−5) = 5. Figure
4.5d exemplifies an event sequence in between the worst- and best-case: Parts of the
positive gains are interleaving with the negative gains, hence, α = 0.8. Accordingly,
λmax

q = 10+0.8∗ (−5) = 6.

Please notice that the first event of wnew might already face a queuing latency λinit
q at

its arrival. This can be due to previous windows that had been scheduled to the same
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operator instance. Hence, the final formula to calculate the queuing latency peak is:3

λmax
q = λinit

q +Γ−+α∗Γ+,α ∈ [0,1].

From the queuing latency peak λmax
q , the operational latency peak λmax

o is calculated
by adding the maximal processing latency λmax

p of any event in wnew. This bases on
the pessimistic assumption that the most expensive event occurs right at the queuing
latency peak; as we do not know the event sequence, this assumption is justified by the
goal to avoid underestimations of λmax

o . Hence,
λmax

o = λmax
q +λmax

p .

Using this latency model, the operational latency peak can be predicted, and the schedul-
ing decision—to batch or not to batch—can be performed accordingly. In the follow-
ing, we describe how the parameters of the model are predicted.

4.3.2 Prediction of Model Parameters

The proposed latency model is based on the prediction of the total sum of negative
and positive gains of all events in wnew; i.e., it does not consider individual events,
but it regards events in wnew as sets of events imposing negative or positive gains.
Hence, it builds on the prediction of the set of events in wnew, including their processing
latency λp and their inter-arrival time iat. Further, a prediction of the initial queuing
latency λinit

q and the compensation factor α is needed. Based on those values, the
model predicts the operational latency peak. In this section, we introduce and discuss
appropriate prediction methods and algorithms.

Inter-arrival time. The splitter continuously monitors the past iat values in a window
of mtime time units. Our iat model tackles two challenges: heavy fluctuations of the
iat around an average value (variance) and rapid changes of the average iat (changing
trend).

Tackling the first challenge, the splitter arranges the monitored inter-arrival times in
a discrete model (cf. Figure 4.6). The range of measured iat values is divided into
a number of equally-sized bins. The measured iats are sorted into the corresponding
bin; for each bin Bi, the mean value iat(Bi)

′
is computed. To each bin, a weight(Bi) is

assigned, i.e. ratio of number of entries in the bin to total number of measurements in
all bins. The number of bins controls the accuracy of the model; the minimum number
of bins is 1.

3For the sake of readability, we did not mention in the text that λmax
q = λinit

q , if Γ−+α∗Γ+ < 0.
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Tackling the second challenge, we introduce a negative bias on the monitored mean
value iat(Bi)

′
in each bin. This way, the model accounts for changes in the average

iat between the monitored value iat(Bi)
′

and the value that will occur in wnew. The
negative bias is modeled based on a factor δiat of standard deviations σ of the monitored
iats, e.g., 1 standard deviation or 2 standard deviations. Then,
iat(Bi) = iat(Bi)

′−δiat ∗σ.

Processing latency. In our model, λp depends on the overlap Θ and the processing
latency in a single window λw

p : λp = Θ∗λw
p . As discussed in Section 4.2, λw

p depends
on the event type and the position of the event in a window. Hence, first of all, our
model differentiates between different event types. This design decision has two con-
sequences: First, the prediction model of λw

p takes into account the type, i.e., predicts
λw

p(type), the in-window processing latency of events of a specific type. Second, the set
of events in wnew is predicted with respect to the number of events of different types.

For modeling λw
p(type), we propose the same methods as for modeling iat, using a

combination of negative bias and bins. Same as in iat bins, in each latency bin Bl ,
we predict λw

p (Bl) = λw
p (Bi)

′
+δλp ∗σ, i.e., the measured mean in-window processing

latency in the latency bin plus a factor δλp of standard deviations. The advantage of
monitoring the current (distribution of) λw

p(type) in the operator instances over building
a position-dependent latency model is that we can implicitly incorporate the position
dependency: When the (distribution of) positions of events in windows change, e.g.,
due to changing workload or changing window scopes, this is reflected in the moni-
tored current (distribution of) λw

p(type) values.

The overlap Θ for all events of wnew is modeled as the average overlap of events of
wnew in the current batch, denoted by Θ. Predicting Θ is performed according to the
following model (cf. Figure 4.7). When wnew is scheduled in a batch of already opened
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windows, a number of events in wnew has the current overlap Θ̂, until the oldest open
window woldest in the batch closes. From closing woldest until closing wnew, the overlap
decreases step-wise in regular intervals each time a window between woldest and wnew

is closed. In that phase, the average overlap is Θ̂/2. In order to compute Θ, we weigh
the ratio of events with overlap Θ̂ to the events with overlap Θ̂/2. In doing so, we
assume in our model that all windows in the batch have the same window scope ws,
and between the start of two windows there is the same shift ∆; ws and ∆ are measured
in the splitter at regular intervals to keep them up to date at each scheduling decision.

At the start of wnew, woldest is already open since (Θ̂−1)∗∆ time units, as Θ̂−1 is the
number of windows between woldest and wnew that were opened in intervals of ∆ time
units. Therefore, woldest stays open for ws− (Θ̂−1)∗∆ more time units. When woldest

closes, the phase of closing windows starts, spanning (Θ̂− 1) ∗∆ time units. Hence,
the weighed average overlap is computed as follows:

Θ = (ws−(Θ̂−1)∗∆)∗Θ̂+((Θ̂−1)∗∆)∗Θ̂/2
ws .

Number of events. For predicting the set of events in wnew, there are three significant
factors in the model: (1) The window scope ws, (2) the iat, and (3) the ratio of different
event types, denoted as ratio(type), that models which percentage of events in wnew is
of a specific type. These factors are gained from monitoring them in the incoming
event stream in the splitter in the past mtime time units. To predict the total number
of events in wnew, we again use a negative bias of δiat standard deviations σ(iat), so
that iat = iat′− δiat ∗σ(iat). Then, the total number of events n is predicted as n =
ws
iat , and the number of events of a specific type, denoted by #(type), is predicted as
ratio(type)∗n.

Initial queuing latency. The initial queuing latency is predicted for each operator
instance separately, depending on the content of the incoming event queue. To this end,
operator instances report the number of events of each type and their average overlap Θ

in the assigned windows in regular intervals to the splitter. The splitter calculates λinit
q

of an operator instance as the sum of the processing latencies of all reported events in
its queue: λinit

q = ∑types #events∗Θ∗λw
p(type).

Compensation factor. For modeling the compensation factor α, there are two possi-
bilities.

First, we propose a heuristic, denoted as T-COUNT, for adapting α based on the current
extent of interleaving between events with different processing latency in the incoming
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stream. To this end, events are divided into two groups, a group with high processing
latency, denoted by T− and a group with low processing latency, denoted by T+. The
distinction between the groups is made based on the average λw

p(type) of the event
types. The event types are sorted by their average λw

p(type). Then, the sorted list is
split into two halves: The 50th quantile of event types with highest processing latency
are assigned to T−, the other event types are assigned to T+. The splitter continuously
counts in a monitoring window of temporal size mtime, how many events of the event
types in T−, denoted by c−, and how many events of the event types in T+, denoted by
c+, occur. Further, the splitter counts how often events in T− and T+ follow each other,
i.e., the number of transitions, denoted by ct . The maximal number of transitions is 2∗
min{c+,c−}. Trivially, the minimum number of transitions is 1. Then, α is predicted
as the proportion of ct to the maximal number of transitions: α = ct−1

2∗min{c+,c−} .

The second alternative is that a domain expert sets a fixed or dynamic value of α

based on off-line training if the characteristics of the expected workloads are known
beforehand.

4.3.3 Scheduling Algorithm

Having a prediction of the events in wnew, including their processing latencies and inter-
arrival times, the batch scheduling controller predicts the total negative and positive
gains and the operational latency peak in order to schedule wnew. In this section, we
introduce the algorithms.

Total negative and positive gains prediction. To predict Γ− and Γ+, the predicted
processing latencies and inter-arrival times have to be combined. Each processing la-
tency bin represents a number of events in wnew having a specific λp; each iat bin
represents a number of events having a specific iat. In order to calculate the total nega-
tive and positive gain of all events, the number of events having a specific combination
of λp and iat is predicted. To this end, events from the bin with the highest λp are com-
bined with the lowest iat, and events with the lowest λp are combined with the highest
iat. The concrete algorithm is presented in the following (cf. algorithm in Figure 4.8).
First, for each type, the total number of events, #(type), is divided into latency bins
according to the weights of the bins: The number of events #(Bl) in a latency bin Bl

is: #(Bl) = #(type)∗weight(Bl). Then, all latency bins of all event types are sorted by
their mean processing latency (highest first). The iat bins are sorted by the their mean
iat (lowest first); the number of events #(Bi) in an iat bin Bi is computed based on
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1: 〈long, long〉 predictGains ( ) begin // returns Γ− and Γ+

2: predict #events for each latency bin Bl: #(Bl)

3: sort latency bins by mean latency (highest first)
4: predict #events for each iat bin Bi: #(Bi)

5: sort iat bins by mean iat (lowest first)
6: while true do
7: #combination← min{#(Bl),#(Bi)}
8: gain← #combination∗ (Θ∗λw

p(Bl)− iat(Bi))

9: if gain > 0 then
10: Γ−← Γ−+gain
11: else
12: Γ+← Γ++gain
13: end if
14: #(Bl)← #(Bl)−#combination
15: #(Bi)← #(Bi)−#combination
16: if #(Bi) = 0 then
17: i← i+1 // next iat bin
18: end if
19: if #(Bl) = 0 then
20: l← l +1 // next latency bin
21: end if
22: if no more bins then
23: return 〈Γ−,Γ+〉
24: end if
25: end while
26: end function

Figure 4.8: Predict negative and positive gains.

1: OperatorInstance ωx // current operator instance
2: void schedule ( ) begin
3: λmax

o ← LatencyModel.newPrediction()
4: if λmax

o ≤ LB then
5: assign σ to ωx

6: else
7: x← (x+1) MOD #op_instances // Round-Robin
8: assign σ to ωx

9: end if
10: end function

Figure 4.9: Batch scheduling algorithm.



4.4. EVALUATION 93

the total number of events, n, and the weight of the bin, #(Bi) = n∗weight(Bi). Then,
the numbers of events in the processing latency bins and iat bins are combined such
that the highest processing latencies are combined with the lowest iats. The algorithm
iterates through the bins (lines 6 – 25): For the combination of a specific latency and
iat bin, the gain of the events in this combination is calculated based on the processing
latency and the iat of the bins. If the predicted gain is greater than 0, it is added to the
total negative gains, else, it is added to the total positive gains. Then, the next com-
bination of bins is processed. When the iteration went through all bins, the resulting
total negative and positive gains are returned.

Operational latency peak. The operational latency peak λmax
o is predicted with the

formulas introduced in Section 4.3.1, taking into account the predicted parameters as
described in Section 4.3.2: λmax

o = λmax
q +λmax

p , with λmax
q = λinit

q +Γ−+α∗Γ+. In do-
ing so, λmax

p is predicted as the in-window processing latency λw
p of the most expensive

event type in the most expensive latency bin, denoted max(λw
p), at the average overlap:

λmax
p = Θ∗max(λw

p).

Batch Scheduling. When scheduling a new window, the controller checks whether
batching it to the same operator instance the last window was assigned to would lead
to a violation of LB. The scheduling algorithm is listed in Figure 4.9. The latency
model is queried for a prediction of the operational latency peak λmax

o (line 3). The
predicted λmax

o is compared to LB and a batch scheduling decision is made accordingly:
If λmax

o ≤ LB, the window is assigned to the same instance as the last window (lines
4–5); else, it is scheduled to the next operator instance according to the Round-Robin
algorithm (lines 6–8).

4.4 Evaluation

In our evaluations, we analyze the proposed batch scheduling controller in two steps.
In a first step, we perform a distinct evaluation of the proposed latency model. We
show the accuracy and precision of the latency model when predicting the negative
gains, positive gains and latency peaks in different situations under synthetic work-
loads. In the second step, we measure the performance of the overall event process-
ing system under different realistic conditions—such as inter-arrival times and latency
bounds—comparing the model-based batch scheduling controller to Round-Robin and
to a reactive batch scheduling algorithm. The cost of prediction is also evaluated.
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Symbol Parameter Description

iat average inter-arrival time of events

b batch size, i.e., number of subsequent windows scheduled to same op. in-
stance

ws window scope, i.e., temporal scope of a window

Γ−,Γ+ total negative and positive gains

α compensation factor

λo, λq, λp operational latency, queuing latency and processing latency of an event in
an operator instance; λo = λq +λp

λmax
q queuing latency peak: λmax

q = λinit
q +Γ−+α∗Γ+

λinit
q initial queuing latency before processing the first event of a window

LB latency bound, i.e., the peak operational latency that shall not be exceeded

RR Round-Robin scheduling, circularly assigns one window to each operator
instance

δiat,δλp negative bias of measured iat or λp in the monitoring window, in std. devi-
ations: e.g., iat−δiat ∗σ

mtime size of the workload monitoring window

TH scheduling threshold of reactive baseline controller, cf. Section 4.2.2

Figure 4.10: Symbols used.
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Experimental Setup and Notation. To evaluate the batch scheduling controller, we
have integrated it into the existing data parallelization framework that has been intro-
duced in Chapter 3. All experiments were performed on a computing cluster consisting
of 16 homogeneous hosts with each 8 CPU cores (Intel(r) Xeon(R) CPU E5620 @ 2.40
GHz) and 24 GB memory, connected by 10-GB Ethernet links. The components of the
parallelization framework were distributed among the available hosts. Symbols used
in the evaluations are listed in Figure 4.10.

4.4.1 Latency Model

In the following, we evaluate the accuracy and precision of the proposed latency model.
We present the evaluation in two parts: First, we evaluate the predictions of the total
negative and positive gains. Based on that, we then analyze the prediction of the queu-
ing latency peak, which depends on the prediction of negative and positive gains as
well as on the compensation factor α.

Interpretation of the figures in this section. We measured both the predicted values
as well as the values that actually occurred in the operator instances. In all experiment
results, on the y-axis, we depict the predicted values normalized to the measured val-
ues. For example, a value of 1.0 means that the prediction exactly met the actually
occurred value, a value smaller than 1.0 means that the prediction was too low (i.e.,
underestimation), and a value higher than 1.0 means that the prediction was too high
(i.e., overestimation). All figures depict the 10th, 25th, 50th, 75th, and 90th quantiles
in a “candlesticks” representation.

Negative and Positive Gains

In analyzing the prediction of Γ− and Γ+, we run evaluations on synthetic workloads.
Using synthetic workloads allows us to perform measurements in controlled situations
where all of the parameters are well-known and completely under our control. This
is not the case in real-world workloads, as used in the evaluation of the overall event
processing system in Section 4.4.2. For the face recognition operator, we created a syn-
thetic stream of face events (i.e. images containing a person’s face). Each 2 seconds,
a burst of 4 face events with an inter-arrival time of 10 ms was created, which resem-
bles 4 persons in front of a camera that captures a picture each 2 seconds. The query
events were generated with a fixed rate of 1 query per second, so that each second, one
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Figure 4.11: Face recognition operator at ws = 10s: prediction of negative and positive
gains. b = 1.

new window was started. For the traffic monitoring operator, we created a workload
trace with an average inter-arrival time of events of 100 ms that follows an exponential
distribution, which resembles 5 cars per second passing each road checkpoint.

Figure 4.11a shows evaluations of the prediction of negative and positive gains in the
face recognition operator for a single window (b = 1) using a different number of iat
bins. If only 1 bin is used, the predictions of Γ− and Γ+ are poor. With a growing
number of iat bins, the latency model becomes more accurate: With 2, 4 or 8 bins,
the predictions of both Γ− and Γ+ are very accurate. 2 bins are sufficient, as the
workload is also divided into two phases: face events arrive in bursts, and in between
the bursts, no face events arrive. In contrast to the effect of iat bins, using a negative
bias of δiat standard deviations does not make the predictions more accurate, but more
pessimistic (cf. 4.11b): The higher δiat is, the higher is the predicted Γ−, but the lower
is the predicted Γ+. Further, we evaluate the impact of using bins and pessimistic
bias for processing latency. As shown in Figures 4.11c and 4.11d, neither of the two
strategies had positive impact on the accuracy of the latency model. This is because
the processing latency of single events in single windows does not fluctuate very much
in the face recognition operator.
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Figure 4.12: Traffic monitoring operator at ws = 900s: prediction of negative and
positive gains. b = 1000.

We evaluated the latency model also with the traffic monitoring operator when batch-
ing 1,000 windows (b = 1,000). Same as in the face recognition operator, employing
iat bins quickly improves the prediction accuracy (cf. Figure 4.12a). Further, using
a negative bias of δiat standard deviations makes the prediction more pessimistic (cf.
4.12b). Concerning processing latency, employing latency bins improves the accuracy
of the latency model only slightly (cf. Figure 4.12c). Even though the processing
latency in the traffic monitoring operator is position-dependent, the occurrence of neg-
ative and positive gains is still dominated by the iat; hence, the usage of latency bins
alone does not lead to satisfactory results. Employing a negative bias of δλp standard
deviations on processing latency again makes the latency model more pessimistic (cf.
Figure 4.12d).

We also tested both scenarios with a higher batch size. In the face recognition operator
at b = 4, employing iat bins leads to the same improvements of the model accuracy (cf.
Figure 4.13a). In the traffic monitoring operator at b = 2000, even at only one iat bin,
the accuracy is already high and adding more bins does not improve the model. This is
because at a high batch size, the overlap of windows is high, and hence, the processing
latency of events—especially those of type L2 (cf. Section 4.2.1)—is high as well.
Basically, that means that most of the events of type L2 will generate a negative gain,
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Figure 4.13: Higher batch sizes. (a) Face recognition, b = 4. (b) Traffic monitoring,
b = 2000.

no matter if the specific iat of an event is high or low. In other words, the fluctuations
of iat do not dominate the total negative and positive gains any longer; therefore, more
iat bins do not improve the model.

Queuing Latency Peak

Recall that the queuing latency peak is predicted based on the total negative and posi-
tive gains and the compensation factor α: λmax

q = λinit
q +Γ−+α∗Γ+. We show on the

examples of the face recognition operator and the traffic monitoring operator that our
proposed T-COUNT heuristic provides a suitable, slightly pessimistic estimation of α

such that no under-estimation of queuing latency peak occurs. Additionally, we evalu-
ate the prediction of the initial queuing latency λinit

q . Following our observations from
Section 4.4.1, we employ the latency model with 2 iat bins, so that the predictions of
Γ− and Γ+ are accurate.

For the face recognition operator, we see in Figure 4.14 that the T-COUNT heuristic
leads to a good overall estimation of λmax

q . In predicting λinit
q , fluctuations are caused

by events in the network that have not yet arrived in the queue of an operator instance
and are not considered in the feedback to the splitter. However, the impact of this issue
on the prediction of λmax

q is small, as λmax
q is dominated by the negative and positive

gains.

In the traffic monitoring operator, at b = 2000 and ws = 900s, T-COUNT also guar-
antees that λmax

q is not underestimated (cf. Figure 4.15). It is worth to mention that
λinit

q was at 0 all the time, that means, even when scheduling the 2000th window in the
batch, the incoming queue of an operator instance was still empty; hence, we omit the
(trivial) prediction of λinit

q in the figure. Queuing only happens when the events with
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Figure 4.14: Predictions of queuing latency peak. Face recognition operator, b = 4,
ws = 10s.

high positions in the windows of the batch are processed. This effect supports our ar-
gumentation from Section 4.2.2 that pure feedback-based scheduling is not applicable
to the batch scheduling problem.
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Figure 4.15: Predictions of queuing latency peak. Traffic monitoring operator, b =

2000, ws = 900s.

Besides the T-COUNT heuristic, we also systematically evaluated the impact of fixed
values of α on the prediction of λmax

q . As can be seen in Figures 4.14 and 4.15, using
different fixed values leads to different degrees of over- or underestimations of λmax

q .
Off-line profiling can be used in order to develop pessimistic or optimistic models to set
α, when the characteristics of the workload are well-known before system deployment.
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4.4.2 Overall Event Processing System

We compare our model-based batch scheduling controller to two baseline scheduling
algorithms: Round-Robin scheduling and latency-reactive scheduling. Round-Robin
aims for good load balancing but disregards communication overhead; it is the stan-
dard scheduling algorithm used in window-based data parallelization systems such
as [MKR15]. Latency-reactive scheduling, as described in Section 4.2.2, batches win-
dows to an operator instance until its operational latency exceeds a threshold TH. It is
used as a latency-aware baseline algorithm to compete against our model-based con-
troller.

Traffic Monitoring Scenario. In our dynamic traffic monitoring scenario, we mod-
eled the inter-arrival time of vehicles as an exponential distribution with an average
value following a sinusoidal curve between 2000 ms and 200 ms. Following the eval-
uation of the latency model in Section 4.4.1, we set-up the controller to use 8 iat bins
and a tumbling monitoring window with mtime = 60s. To account for the position-
dependency of the operator and the rapdily changing workload, we add a pessimistic
bias of δλp = 2 standard deviations on the monitored processing latency and δiat = 0.75
standard deviations on the monitored iat. In all experiments, the parallelization degree,
i.e., number of operator instances, was fixed at 8. Each experiment was running for 5
hours.

At a window scope of 500 seconds, Round-Robin scheduling resulted in an opera-
tional latency peak of 200 ms (cf. Figure 4.16a). 724,464 events have been transmitted
between the splitter and the operator instances (cf. Figure 4.16b). We ran the same ex-
periment using our batch scheduling controller allowing for 2.5, 5 and 10 times higher
operational latency peaks than yielded in Round-Robin: 500 ms, 1 s and 2 s. As shown
in Figure 4.16a, LB was kept. The communication overhead was reduced by 53 %,
59 % and 64 %, respectively (cf. Figure 4.16b). We compared this performance to the
latency-reactive scheduler described in Section 4.2.2; the reactive scheduler batches
windows to an operator instance until it reports a current operational latency of more
than TH = 100ms. The operational latency and communication overhead was very
similar to model-based scheduling at LB = 2s; however, the tail of the latency distribu-
tion is much longer, leading to 50 % higher operational latency peaks. This indicates
that the reactive scheduler erratically batches too many windows, leading to a less
predictable latency of the operator instances than when the model-based controller is
used.
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Figure 4.16: Traffic monitoring operator. (a) Operational latency. (b) Communication
cost.

Face Recognition Scenario. With the dynamic face recognition scenario, we evaluate
the system behavior at a highly bursty real-world workload. A real video stream from
a camera installed on campus—capturing 1 frame each 2 seconds—is processed by a
face detection operator and the detected faces are streamed to the face recognition op-
erator. Simulating users of a face recognition application, the arrival of new queries is
modeled as an exponential distribution with an average inter-arrival time of 2 seconds.
The face recognition operator detects whether the queried person is in the face event
stream, using a window scope of ws = 10s. Each experiment ran for 150 minutes. Ac-
cording to the insights we gained from the evaluation of the latency model in Section
4.4.1, we set-up the controller to use 2 iat bins. Further, we set mtime = 10s (tumbling
window) and δiat = 1.0 standard deviations to account for the changing iat.

For Round-Robin scheduling, we measured an operational latency peak of 6 seconds
(cf. Figure 4.17a). 68,412 events have been transmitted between the splitter and the
operator instances (cf. Figure 4.17b). We ran the same experiment using our batch
scheduling controller allowing for 2.5, 5 and 10 times higher operational latency peaks
than yielded in Round-Robin: 15 s, 30 s and 60 s. The latency bounds are kept in all
tested settings (cf. Figure 4.17a). The communication overhead was reduced by 14 %,
31 % and 76 %, respectively (cf. Figure 4.17b). We compared this performance to the
latency-reactive scheduler described in Section 4.2.2 with TH = 6s. The operational
latency peaks were 15 % higher than with the model-based controller at LB = 60s,
while the communication overhead was 14 % higher as well. With a higher threshold
TH, the reactive scheduler would induce even higher latency peaks, while with a lower
TH, it would induce an even higher communication overhead; hence, the model-based
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Figure 4.17: Face recognition operator. (a) Operational latency. (b) Communication
cost.

controller is more effective, no matter how the reactive scheduler’s threshold TH is set
up.

In summary, model-based batch scheduling is effective in trading communication over-
head against operational latency. In comparison, reactive scheduling is less predictable
and effective than model-based scheduling; it might still be useful in cases where a
simple best-effort batching approach is sufficient, but should not be used when latency
bounds must be enforced.
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Figure 4.18: Latency of (a) scheduling and (b) updating statistics.

Scalability. We evaluate the scalability of our approach in two aspects. First, the
scheduling latency, i.e., the time between the detection of the start of a new window
and the scheduling decision (cf. Algorithm in Figure 4.9). It includes predicting the
negative and positive gains (cf. Algorithm in Figure 4.8), whose complexity is de-
termined by the granularity of the latency model, i.e., the number of bins used in the
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model. We measured a very low scheduling latency of in average 0.02 ms for up to
32 bins used (cf. Figure 4.18a), which is the maximal number of bins needed in any
of the scenarios that we have tested (cf. Section 4.4.1). For comparison, the median
scheduling latency in reactive scheduling and in Round-Robin scheduling was both
0.004 ms. There is a small overhead for the model-based batch scheduling controller
involved compared to the simple strategies. However, this is not significant in most
scenarios; if scheduling would be a throughput bottleneck in the splitter, the frequency
of predicting negative and positive gains could be adapted (i.e., not predicting fresh
gains at each single scheduling decision) to mitigate such situations.

Second, we evaluate the time needed to update the latency model with new statistics
from the monitoring window, i.e., the monitoring latency. This comprises recomputing
the weights, average values and standard deviations of the bins. Using 32 bins, we
measured a linear growth with the number of events in the monitoring window (cf.
Figure 4.18b). At 1,000,000 events in a monitoring window, updating the statistics took
between 100 and 200 ms, which is a reasonable time to adapt the model to changes in
the workload.

4.5 Related Work

In related work, there have been addressed different problems of assigning batches of
individual events to instances of stream processing operators. Das et al. [DZSS14]
propose a reactive controller in order to batch a minimal number of events to an oper-
ator such that the throughput is sufficiently high to process the current workload. In
their processing model, operators can aggregate larger sets of events more efficiently,
so that the throughput of operators grows with the batch size. A similar problem had
been studied before by Carney et al. [CcR+03]. Micro-batching, as used, e.g., in Spark
Streaming [ZDL+12], provides efficient failure recovery and batch-like programming
paradigms by handling streaming events as a series of fixed-sized batches. Unlike in
this paper, in all of these approaches, batches are composed of individual events and
not of overlapping windows. Balkesen and Tatbul [BT11] recognize the trade-off of
communication overhead to latency in operator instances when scheduling overlapping
windows. Their analytical cost model assumes fixed processing latency of an event in
a window and fixed count-based or time-based window size and slide. Further, it does
not consider inter-arrival times. Hence, it is not suitable for solving the batch schedul-
ing problem in data-parallel CEP operators.
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Elasticity in data-parallel stream processing, i.e., adapting the number of operator in-
stances to changing workloads, is a complementary problem. Existing solutions that
apply latency models often base on the assumption of fair load balancing [DMM16,
MKR15, LJK15]; batch scheduling defeats this assumption, deliberately inducing a
controlled load imbalance. How to use the proposed latency model of the batch schedul-
ing controller for elasticity control is an interesting research question for future work.

Other latency models for CEP operators have been proposed. The Mace metrics
from Chandramouli et al. [CGB+11] for latency estimation in a CEP middleware pro-
poses an analytical model. However, it assumes the usage of a specific scheduling
algorithm—which is not a batch scheduling algorithm. In the latency model of Zeitler
and Risch, a fixed processing latency of each event is assumed [ZR11]; our latency
model differentiates between different event types and takes into account the overlap
of windows.

Batching is also applied in other fields, like graph processing [XWB+13] and column
data-stores [LFV+12], where it is often preferable to process or store data in batches
instead of handling each single tuple separately. However, typically, optimal batch
sizes are predefined, e.g., by cache sizes, so that fixed batch sizes are employed.

Scheduling algorithms in non-parallel CEP optimize the utilization of resources like
CPU and memory [KLB08, BBD+04] without taking into account batching of over-
lapping data sets.

4.6 Conclusion

In this chapter, we have tackled the problem to batch as many subsequent overlap-
ping windows as possible to the same operator instance in data-parallel CEP operators
subject to the constraint that the operational latency in the operator instance must not
exceed a given latency bound. As the batch scheduling decisions are made on open
windows, a long feedback delay between the decisions and their impact on feedback
parameters is induced, making reactive scheduling approaches infeasible. Instead, we
have proposed a model-based controller. Evaluations show that the controller batches
an optimal amount of windows even at bursty workloads. This way, the bandwidth
consumption of data-parallel CEP operators can be reduced significantly.



5
Supporting Consumption Policies

In the previous Chapters 3 and 4, we have seen that window-based, data-parallel CEP
systems split the incoming event streams into independently processable windows that
capture the temporal relations between single events imposed by the queried event
pattern. The windows are processed in parallel by a number of identical operator in-
stances. An event can be part of different windows, so that windows may overlap.

A crucial question in overlapping windows is whether an event can be used in multiple
pattern instances or not. In many cases, it is preferable to consume an event once it
is part of a pattern instance. In particular, this means to not use the same event for
the detection of further pattern instances in other windows. This way, semantic ambi-
guities and inconsistencies in the complex events that are emitted can be resolved or
prevented. The problem tackled in this paper is that event consumptions impose de-
pendencies between the different windows and thus, prevent their parallel processing.
When the same event is processed in parallel in two different windows, consuming it
in the first window also consumes it from the second window; hence, there is a de-
pendency between both windows, which can hinder their parallel processing. Under-
standing that problem, it is no surprise that existing parallel implementations of CEP
systems [CM12b,BDWT13,MKR15] do not support event consumptions, whereas se-
quential systems often do [CM94, AE04, CM12a]. This limits the scalability of opera-
tors that impose event consumptions. Moreover, it even impedes event consumptions
from their further development in academia and industry, as in times of Big Data and
Internet of Things, parallel CEP systems are becoming the gold standard.

Toward this end, in this chapter, material published in [MST+17] is presented. In par-
ticular, we propose a speculative processing method that allows for parallel processing

105
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Figure 5.1: Data parallelization framework.

of window-based CEP operators in case of event consumptions. The basic idea is
to speculate in each window which events are consumed in the previous windows—
instead of waiting until the previous windows are completely processed. This way,
multiple overlapping windows can be processed in parallel despite inter-window de-
pendencies. To this end, we propose the SPECTRE (SPECulaTive Runtime Environ-
ment) framework, comprising the following contributions: (1) A speculative process-
ing concept that allows the execution of multiple versions of multiple windows using
different event sets in parallel. (2) A probabilistic model to process always those win-
dow versions that have the highest probability to be correct. (3) Extensive evaluations
that show the scalability with a growing number of CPU cores.

5.1 System Model and Problem Analysis

Here, we first discuss extensions of the system model that has been introduced in Chap-
ter 2. Then, we analyze the challenges for parallel event processing that are posed by
event consumptions.

5.1.1 Extensions of the System Model

We assume a shared memory (multi-core) architecture, where the splitter and operator
instances are executed by independent threads running on dedicated CPU cores (cf.
Figure 5.1). We assume that the underlying system can provide k+1 threads, so that 1
thread is pinned to the splitter and k threads are pinned to the operator instances. In the
rest of this paper, we do not differentiate between operator instances (i.e., instances of
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Figure 5.2: QE with selection policy “earliest A, each B” and consumption policy
“selected B”.

the pattern detection logic) and the threads that execute them—we simply refer to both
as operator instances.

As mentioned above, we follow a window-based data parallelization approach. The
incoming event streams are partitioned into windows that capture (temporal) relations
defined in the queried pattern. The windows are assigned with increasing window IDs
and their boundaries are stored in the shared memory (e.g., “wi from event X to event
Y ”).

The splitter periodically schedules to each operator instance a specific window for
processing. The operator instances can hold local state of the processing in shared
memory, e.g., partial pattern matches detected in the assigned window. This allows a
specific window to be processed by any operator instance at any time; in particular,
the processing of a window can be interrupted for some time and resumed later by the
same or a different operator instance.

In this chapter, we assume that CEP operators implement consumption policies. Notice
that when a complex event is detected, all constituent events of the event pattern are
checked against the consumption policy. Then, all events defined by the consumption
policy are consumed as a whole. This implies that events are not consumed while
they only build a partial match, but only when the match is completed and a complex
event is produced. This inherent property is independent of the concrete selection and
consumption policy.

5.1.2 Challenges and Goal

In systems without consumptions, processing of a window cannot impact the events
within another window, i.e., in principle each pair of windows can be processed in
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parallel. However, event consumptions impose a dependency between the windows,
restricting parallelism, as we discuss in the following.

Recall the example query QE from Section 2.1. The queried search pattern was a
sequence of events of type A and B, where the event of type B follows the event of type
A within a time window of 1 minute. In Section 2.1, we had discussed that depending
on the selection and consumption policy of the query, different complex events will be
produced. Here, we want to make clear the problems that event consumption poses on
parallel processing of overlapping windows.

In Figure 5.2, we provide an example where the selection policy is “earliest A, each
B” and the consumption policy is “selected B”. In the first window w1, A1 and B1

build a complex event A1
B1

, such that B1 is consumed; furthermore, A1 and B2 build a
complex event A1

B2
, such that B2 is consumed. If w1 and w2 are processed in parallel,

the consumption of B1 and B2 in w1 might not be known in w2, so that B1 and B2 are
erroneously processed in w2, too, leading to inconsistent results. To prevent anoma-
lies due to concurrent processing, w2 can only be processed after the consumptions in
w1 are known. When the event patterns are more complex than in the given minimal
working example of QE , the dependencies become hard to control. For instance, if the
pattern requires 3 rising stock quotes of B in a sequence, the completion of the pattern
in w1—and hence, the event consumptions—might be unsure until w1 is completely
processed. If 2 events of type B with rising quotes have already been detected in w1,
the completion of the pattern depends on whether a third B occurs; this might only
be known at the end of w1. The standard procedure to deal with data dependencies is
to wait with processing w2 until w1 is completely processed and hence, all consump-
tions in w1 are known. This, however, impedes the parallel processing of overlapping
windows.

In this chapter, we aim to develop a framework to enable parallel processing of all
CEP operators, regardless of their selection and consumption policy. To this end, we
develop a speculative processing method that overcomes the data dependencies im-
posed by event consumptions, so that data-parallel processing becomes possible. The
framework shall deliver exactly those complex events that would be produced in se-
quential processing; in particular, no false-positives and false-negatives shall occur.
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Figure 5.3: Consumption Problem: (a) Structural View. (b) Processing View. (c) Man-
agement View.

5.2 The SPECTRE System

To tackle the dependencies between different windows imposed by event consump-
tions, we propose the SPECTRE (SPECulaTive Runtime Environment) system, a highly
parallel framework for CEP operators. SPECTRE aims to detect the dependencies be-
tween different windows and to resolve them by means of speculative execution.

This section is organized as follows. In Section 5.2.1, we introduce the speculative
processing approach we follow in SPECTRE. It is based on creating multiple specula-
tive window versions in order to resolve inter-dependencies between windows. Based
on that concept, in Section 5.2.2, we explain how SPECTRE determines and schedules
the k “best” window versions to k operator instances for parallel processing. Finally, in
Section 5.2.3, we provide details on how the k operator instances perform the parallel
processing of the assigned window versions.

5.2.1 Speculation Approach

As pointed out above, operators process their incoming data stream based on windows.
In particular, operators search for queried patterns to occur in the sequence of events
comprised by a window. Windows can overlap, i.e., a pair of windows might have a
sequence of events in common. The windows of an operator are totally ordered ac-
cording to their start events. We call a window, say w j, a successor of another window,
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wi, iff the start event of wi occurs before the start event of w j in the corresponding
event stream. For example, in Figure 5.3(a), w1 starts earlier than w2; hence, w2 is a
successor of w1. In the same way, w3 is a successor both of w2 and of w1.

Now, we can define a consumption dependency (or dependency for short) between
windows. Roughly speaking, a window w j depends on another window wi, if the
consumption of some events in wi might affect the processing of window w j. Formally,
we define that w j depends on wi iff w j is a successor of wi and w j overlaps with wi. For
example, in Figure 5.3(a), w2 depends on w1, and w3 depends both on w2 and on w1.

Now, we will introduce the concept of a consumption group. A consumption group is
maintained for each partial match of a search pattern found in a window. It records
all events of this window that need to be consumed if the partial match becomes a to-
tal match, i.e., the corresponding search pattern is eventually detected in the window.
Let’s assume that an operator is acting on some window w. Whenever the operator
processes an event starting a new partial match of some search pattern, it creates a
new consumption group associated with w. When it processes an event that completes
a pattern, it completes the corresponding consumption group. On the other hand, a
consumption group is abandoned if the corresponding pattern cannot be completed
anymore. Consequently, while processing the events of a window, multiple consump-
tion groups can be created that are associated with w. However, all of them will be
completed or abandoned at the latest when processing of w is finished.

While acting upon w, the operator adds events to be potentially consumed to the con-
sumption groups associated with w, in conformance with the specified consumption
policy. When a consumption group is completed, all events contained in this group are
consumed together. If the consumption group is abandoned instead, it is just dropped
and no events are consumed.

For example, let us assume that a query for pattern of a sequence of three events of
type A, B and C in a window of time scope 1 minute, is processed by an operator. Let
us further assume the consumption policy is set to consume all participating events in
case of a pattern match. When detecting an event of type A, say A1, in a window, the
operator creates a new consumption group. The first event of type B, B1, is added to
the consumption group. If the window ends (i.e., 1 minute has passed) and no event of
type C is detected, the consumption group is abandoned and no events are consumed
in the window. If an event of type C, say C1, occurs after B1 and within the window
scope, the consumption group is completed, and all three events participating in the
pattern match, A1, B1 and C1, are consumed together.
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At the time a consumption group is created that is associated with window w, it is un-
known whether the corresponding pattern will eventually be completed in w. Clearly,
the outcome of the consumption group (complete or abandon) might affect events of all
windows that depend on w. One way to handle this uncertainty is to defer the process-
ing of all depending windows until the consumption group terminates (completed or
abandoned). However, in general this amounts to processing all windows sequentially.
The approach that we follow in SPECTRE is to generate two window versions for
each window depending on w, one version assuming that the consumption group will
be completed and the other one assuming the consumption group will be abandoned.
These window versions can then be processed in parallel to w. Once the outcome of
the consumption group is known, i.e., completed or abandoned, processing continues
on the corresponding window versions that assume the correct outcome while the other
window versions that assume the wrong outcome are just dropped. Obviously, this ap-
proach allows for processing dependent windows in parallel even in the presence of
event consumptions.

With this approach, windows that depend on other windows may have multiple ver-
sions that depend on the outcome of the associated consumption groups. In principle
there is a window version for any combination of the complete and abandon case of
the consumption groups that a window depends upon. When one of these consumption
group is abandoned, all window versions assuming this consumption group to com-
plete can be dropped, and vice versa.

To capture the dependency between consumption groups and window versions, we
introduce the concept of a dependency tree. There is an individual dependency tree
for each independent window, i.e., each window that does not depend on any other
window according to our definition above. The vertices of the dependency tree are
window versions or consumption groups, while the directed edges of the tree specify
the dependencies between them. The root of the dependency tree is the only version of
an independent window—by definition, there is only one such version.

The vertex of a window version WV , say v(WV), has at most one child. The sub-
hierarchy rooted by this child includes all versions of windows depending on WV , if
any. We will denote this sub-hierarchy as v(WV)’s subtree. The subtree is rooted by a
consumption group if a consumption group is associated with v(WV). Otherwise the
root of the subtree is a window version directly dependent on v(WV), if any.

A vertex representing a consumption group CG, say v(CG), always has two children,
one for each possible outcome of CG (completed or abandoned). The so-called com-
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pletion edge of v(CG) links the subtree of window versions for which completion of
CG is assumed, whereas the so-called abandon edge of v(CG) links the subtree of win-
dow versions which assume CG to be abandoned. That is, all window versions that
can be reached via v(CG)’s completion edge do not include any event included in CG,
while events in CG have no effect on window versions linked by v(CG)’s abandon
edge.

When a consumption group CG associated with a window version WV is created, the
following is performed: v(CG) is added as a new child of v(WV) to the dependency
tree. The old subtree of v(WV) is linked by v(CG)’s abandon edge, while a modified
copy of the subtree is linked by v(CG)’s completion edge. The modification makes
sure that no events included in CG occur in the window versions of the subtree linked
by v(CG)’s completion edge. In other words, for each window version existing in
v(WV)’s old dependent versions subtree, a copy that suppresses all events listed in CG
is added. Therefore, each new consumption group associated with v(WV) doubles the
window versions in v(WV)’s subtree.

Algorithms for dependency tree management: In the following, we formalize the
algorithms for the management of the dependency tree. There are three different cases
that require a modification of the dependency tree: (1) a new dependent window is
opened, (2) a new consumption group associated to a window version is created, (3)
an existing consumption group is completed or abandoned.

New dependent window. When a new window wnew is opened that depends on another
window wx, for every leaf vertex of the dependency tree rooted by the window version
of wx, new window versions are created as child vertices. The corresponding algorithm
is listed in Figure 5.4, lines 1–10.

Example: In Figure 5.3, at the start of w3, new window versions (WV6 to WV10) of w3

are created and the corresponding vertices ( v(WV6) to v(WV10) ) are attached to all
leaf nodes of the dependency tree rooted by the window version of w1. If a leaf vertex
is a consumption group CG, two window versions of w3 are created and attached (a
version for completion of CG, and a version for abandoning of CG); if a leaf vertex is
a window version, one window version of w3 is created and attached.

Consumption group created. Recall that when a consumption group CG associated
with a window version WV is created, the old subtree of v(WV) is linked by v(CG)’s
abandon edge, while a modified copy of the subtree is linked by v(CG)’s completion
edge. The corresponding algorithm is listed in Figure 5.4, lines 12–16.
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1: newWindow ( ) begin
2: for each leafVertex ∈ dependencytree do
3: if leafVertex is window version then
4: leafVertex.child← new v(WV)
5: else // else, it is a Consumption Group
6: leafVertex.completionEdge← new v(WV)
7: leafVertex.abandonEdge← new v(WV)
8: end if
9: end for

10: end function
11:

12: consumptionGroupCreated (CGroup CG, WinVersion WV) begin
13: create a modified copy of the subtree attached to v(WV)
14: v(CG).completionEdge←v(WV).modifiedSubtree
15: v(CG).abandonEdge←v(WV).originalSubtree
16: end function
17:

18: consumptionGroupCompleted (CGroup CG) begin
19: v(CG).abandonEdge← null
20: v(CG).parent.child←v(CG).completionEdge
21: end function
22:

23: consumptionGroupAbandoned (CGroup CG) begin
24: v(CG).completionEdge← null
25: v(CG).parent.child←v(CG).abandonEdge
26: end function

Figure 5.4: Algorithms for managing the dependency tree.
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Example: In Figure 5.3, WV2 creates CG3. Then, v(CG3) is attached as a new child to
v(WV2), and the former child, v(WV6), becomes the root of the unmodified subtree of
v(CG3). For all window versions in the unmodified subtree of v(CG3), a new alterna-
tive version is created that assumes that CG3 will be completed. Suppose CG3 contains
event E4. Then, window version WV6 (from the unmodified subtree) contains event E4,
whereas the alternative window version WV7 (from the modified subtree) suppresses
event E4.

Consumption group completed / abandoned. When a consumption group is completed
or abandoned, the respective opposite abandon or completion path of that consump-
tion group is removed from the dependency tree. There are two different reasons why
a consumption group is abandoned: (1) Due to the termination of the corresponding
window version/end of window, or (2) due to a condition from a negation statement be-
ing fulfilled. For instance, a pattern specification of a sequence of events of type A and
B can define that no event of type C shall occur between the A and B events. If a con-
sumption group is opened with an A event, the occurrence of a C event would trigger
the consumption group to be abandoned as the pattern instance cannot be completed
any more, even if a B event would occur later. The algorithms for subtree removal are
listed in Figure 5.4, lines 18–26.

To be able to process k window versions in parallel we obviously need k operator
instances. That means, that typically only a small fraction of all possible window
versions can be considered for speculative processing. To be able select the k most
promising window versions, we need a method for predicting the probability of possi-
ble window versions to survive (i.e., not to be dropped). In Section 5.2.2, we propose
a scheme for scheduling the k most promising window versions on a collection of k
operator instances.

5.2.2 Selecting and Scheduling the Top-k Window Versions

The intuition behind SPECTRE is to predict the k “best” speculative window versions
and schedule them for parallel processing on k operator instances. To determine the
top-k window versions, SPECTRE periodically determines the k window versions with
the highest probability to survive in the entire dependency tree. In other words, SPEC-
TRE does not create and schedule windows, as assumed in Section 5.1.1, but window
versions; in doing so, multiple versions of the same window can be scheduled to dif-
ferent operator instances in parallel.
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Whether or not a window version WV survives depends on the outcome of the preced-
ing consumption groups, i.e. the consumption groups on the path from WV to the root
of the dependency tree. In the following, we will denote this path as WV’s root path.
Remember, each vertex representing a consumption group has two outgoing edges,
a complete and an abandon edge. We say that the complete or abandon edge of a
consumption group, say CG, becomes valid when CG is completed or abandoned, re-
spectively. Once one of these edges becomes valid, the other one turns invalid. Conse-
quently, WV survives only if all abandon and complete edges on its root path eventually
become valid, i.e., WV is dropped if at least one of these edges turns invalid.

The probability of WV to survive depends on the completion probabilities of the con-
sumption groups on WV’s root path. The survival probability of WV , denoted as
SP(WV) is determined as follows: Let P(CG) be the probability that CG is com-
pleted. Moreover, let CGc and CGa be the set of consumption groups that contribute
a complete and abandon edge to WV’s root path, respectively. Then1, SP(WV) =

∏c∈CGc P(c)×∏c′∈CGa(1−P(c′)).

Prediction Model

Now, we discuss how we predict the completion probability of a consumption group.
Generally, we observe that the probability that a consumption group is completed
equals to the probability that the underlying partial match for a search pattern is com-
pleted. Our scheme for predicting the completion probability P(CG) of a consumption
group CG at a given time takes into account two factors: (1) The inverse degree of
completion, i.e., how many more events are at least required in order to complete the
pattern—denoted by δ—and (2) the expected number of events left in the window,
denoted by n. If δ is low and many events are still expected to occur in the window,
the probability of completion is high. On the other hand, if δ is high and only very
few events are still expected in the window, the probability of completion is low. In
the following, we describe how the probabilistic model is built and updated at system
run-time.

1Note that this calculation is based on the assumption that the different consumption groups are
completed or abandoned independently of each other. If there are dependencies between different oc-
currences of a pattern and, hence, between the completion of different consumption groups, this can be
incorporated in the probability calculation by using dependent / conditional probabilities. However, for
the sake of simplicity of the presentation of technical concepts and algorithms, we use the formula for
independent probabilities here.
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1: predictCompletionProbability (ConsumptionGroup CG) begin
2: n← Splitter.avgWindowSize−posInWindow
3: if n≤ 0 then
4: n← 1 // At least 1 more event expected
5: end if
6: Tn← (1− n mod `

` )∗Tb n
` c∗`+

n mod `
` ∗Td n

` e∗`
7: δ← CG.completionState
8: v0← δ-th unit vector
9: vn← Tn ∗ v0

10: return vn[last]
11: end function

Figure 5.5: Calculation of completion probability of a consumption group.

The dynamic process of pattern completion while processing events is modeled as a
discrete-time Markov process. The state of the Markov process is spanned from δ to
0. For instance, if a pattern instance consists of at least 3 events (e.g., a sequence of 3
events, or a set of 3 events), the state-space has the elements “3”, “2”, “1” and “0”, with
“0” representing the state of total pattern completion. Based on statistics monitored at
system run-time, a stochastic matrix T1 is built that describes the transition probabil-
ities between the states of the Markov process when processing one event. To this
end, window versions of independent windows gather statistics about the probability
of changing from δold to δnew when an event is processed. The transition probabilities
between any pair of δold and δnew are captured in a matrix T new

1 . After ρ new mea-
surements are available, an updated T1 is computed from the old T old

1 and the newly
calculated T new

1 as T1 = (1−α)∗T old
1 +α∗T new

1 (exponential smoothing). α ∈ [0,1] is
a system parameter to control the impact of recent and of old statistics on T1.

Now, the probability of state transitions when processing n events can be computed by
raising T1 to the n-th power: Tn = (T1)

n. The initial state is modeled as a row vector
v0 = (0, ...,0,1,0, ...,0)—the δ-th unit vector, where the δ-th position is 1 and all other
positions are 0. The probabilities of reaching the different states in n steps can be
computed as vn = Tn ∗ v0. The last entry of vn, referring to state “0”, is the probability
to complete the pattern in n steps starting from state v0.

To reduce the number of matrix multiplications, each time when T1 is updated, a set
of predefined “step sizes” is precomputed, e.g., T10, T20, T30, etc., providing transition
probabilities when 10, 20, 30, ... events are processed. If the number of expected
events n is in between two precomputed steps, the transition probabilities are linearly
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interpolated, e.g., T14 = 0.6 ∗T10 + 0.4 ∗T20. The step size, denoted as `, is a system
parameter.

Figure 5.5 formalizes the described methods in an algorithm. The expected number
of events left in the window, n, is calculated from the average window size monitored
in the splitter and the position of the last processed event in the window (line 2). The
probability matrix Tn is calculated by linear interpolation of precomputed matrices
(line 6). δ is obtained directly from CG (line 7) and is used in order to build v0 (line 8);
vn is calculated according to the description above (line 9). The resulting completion
probability (transition to state “ 0” / pattern completed) is returned (line 10).

Scheduling

Here, we describe how SPECTRE periodically selects and schedules the k window
versions with the highest survival probability.

Notice that the survival probability of window versions is decreasing in a root-to-leaf
direction in the dependency tree, i.e., in a window version’s subtree there exist only
window versions that have the same or a lower survival probability. Therefore, window
versions are already sorted by their survival probability in the dependency tree, so that
it already represents a max-heap, which simplifies the selection of the top-k versions
substantially. From top to the bottom, window versions are added to the top-k list as
detailed in the algorithm in Figure 5.6. The algorithm works with two data structures:
(1) a set storing the resulting top-k versions (line 2), and (2) a priority queue storing
candidates for being added to the top-k versions (line 3). The priority queue sorts the
contained versions by their probability, highest probability first. Until k versions are
found, the highest version from the candidate list is added to the result set (lines 4–6).
The children of that version are also added as candidates (lines 7–9). This way, the top-
k window versions are determined with only visiting the minimal number of vertices
in the dependency tree.

The scheduling algorithm, listed in Figure 5.7, does not re-schedule window versions
that are already scheduled to avoid unnecessary operations and to increase memory
and cache locality of operator instances. Hence, the to-be-scheduled versions are de-
termined (lines 7–9). Further, “free” operator instances are determined that will get a
new window version scheduled (lines 10–11). Then, every window version that needs
to be scheduled is scheduled to one of the free operator instances (lines 14–17).
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1: findTopKVersions (dependencyTree, k) begin
2: result←{} // set
3: candidates←{dependencyTree.root} // priority queue
4: for i← 1...k do
5: tmp← candidates.pop()
6: result.append(tmp)
7: for each M← tmp.child do
8: candidates.add(M)

9: end for
10: end for
11: return result
12: end function

Figure 5.6: Top-k window version selection algorithm.

1: List〈OperatorInstance〉 operatorInstances
2: Tree dependencyTree
3: schedule ( ) begin
4: List〈WindowVersion〉 toBeScheduled // empty list
5: List〈OperatorInstance〉 freeOperatorInstances← operatorInstances
6: List〈WindowVersion〉 topkVersions← findTopKVersions(dependencyTree)
7: for each WindowVersion WV in topkVersions do // first pass
8: if not WV .isScheduled() then // WV must be scheduled
9: toBeScheduled.add(WV)

10: else// the operator instance keeps WV
11: freeOperatorInstances.remove(WV.getOperatorInstance())

12: end if
13: end for
14: for each WindowVersion WV in toBeScheduled do // second pass
15: OperatorInstance OP← freeOperatorInstances.pop()
16: OP.scheduledWV←WV
17: end for
18: end function

Figure 5.7: Splitter: Scheduling algorithm.
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5.2.3 Parallel Processing of Window Versions

Here, we describe how operator instances process their assigned window version ac-
cording to the dependencies in the dependency tree. In particular, we describe how
events are processed and suppressed, and how consumption groups are updated when
sub-patterns are detected in a window version.

The scheduled window versions are processed in parallel by the associated operator
instances. This means, that an operator instance processes or suppresses events ac-
cording to the dependencies of the window version. In particular, when the root path
of the window version meets the completion edge of a consumption group, events
in that consumption group are not processed: they are suppressed. Complex events
produced when processing a speculative window version are kept buffered until the
window version either becomes valid—then, the complex events are emitted—or is
dropped—then, the complex events are dropped, too. Further, when an event is pro-
cessed, updates of the consumption groups can occur (creation, completion or aban-
doning a consumption group, or adding the event to an existing consumption group).
In the following, we detail the underlying algorithms.

Figure 5.8 lists the algorithm for event processing in the operator instances. In the
beginning of a processing cycle, the operator instance checks whether the splitter has
scheduled a new window version (lines 7–9). Then, the next event of the currently
scheduled window version is processed (lines 11–29). The operator instance checks
whether the event is part of any consumption group that shall be suppressed (line 13).
If this is the case, the event is suppressed, i.e., its processing is skipped. If the event
is not suppressed, it is processed according to the operator logic (line 14). In doing
so, there can be four different actions triggered based on feedback that the operator
logic provides. (1) The processed event can complete one or multiple partial matches:
This induces the creation of one or multiple complex events and the completion of the
associated consumption groups. In that case, the emitted complex events are buffered,
and the dependency tree is updated, calling the consumptionGroupCompleted function
(cf. Section 5.2.1). (2) The processed event can lead to the abandoning of consumption
groups, either by closing the window, or by invalidating the underlying partial match.
In this case, the dependency tree is updated, calling the consumptionGroupAbandoned
function (cf. Section 5.2.1). (3) The processed event can lead to the creation of a new
consumption group by initiating a new partial match. In this case, the dependency tree
is updated, calling the consumptionGroupCreated function (cf. Section 5.2.1). (4) The
processed event can become part of one or several existing partial matches, possibly
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1: WindowVersion currentWV // currently processed WV
2: WindowVersion scheduledWV // currently scheduled WV
3: int i← 0 // processing counter
4: main () begin
5: while true do
6: i← i+1
7: if scheduledWV 6= currentWV then // changed WV?
8: currentWV← scheduledWV
9: end if

10:
11: // process the next event
12: Event nextEvent← currentWV.Window.getNextEvent()
13: if nextEvent not in currentWV.suppressedCGs then
14: Feedback fb← process(nextEvent)
15: if fb: emitted complex event E, completed CGc then
16: buffer E
17: dependencyTree.consumptionGroupCompleted(CGc)
18: end if
19: if fb: abandoned CGa then
20: dependencyTree.consumptionGroupAbandoned(CGa)
21: end if
22: if fb: created CGnew then
23: dependencyTree.
24: consumptionGroupCreated(CGnew,currentWV)
25: end if
26: if fb: added nextEvent to CG then
27: CG.add(nextEvent)
28: end if
29: end if
30:
31: // consistency check after each i steps
32: if (i mod consistencyCheckFreq) == 0 then // consistency check
33: bool inconsistencyDetected← false
34: for CG ∈ currentWV.suppressedCGs do
35: if CG.version! = CG.lastCheckedVersion then
36: if currentWV.usedEvents∩CG.events 6= /0 then
37: inconsistencyDetected← true
38: end if
39: end if
40: CG.lastCheckedVersion← CG.version
41: end for
42: if inconsistencyDetected then
43: rollback currentWV
44: end if
45: end if// end of consistency check
46: end while
47: end function

Figure 5.8: Operator Instances: Event Processing.
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adding the event to the associated consumption groups. In this case, the affected con-
sumption groups are updated directly without changing the structure of the dependency
tree. Note, that in the implementation of SPECTRE, the function calls of the opera-
tor instances on the dependency tree are buffered—they are actually executed on the
dependency tree in a batch at each new scheduling cycle of the splitter.

The k scheduled window versions are processed concurrently by the k operator in-
stances without synchronizing the processing progress of the different window ver-
sions. This can lead to a situation where an update on an existing consumption group
is propagated too late, causing inconsistencies. For instance, when an event is added to
a consumption group CG in one window version WVa after it has been processed in an-
other window version WVb adjacent to CG’s completion edge, an inconsistency can be
induced in WVb (i.e., an event is processed that should be suppressed). To detect such
situations, SPECTRE employs periodic consistency checks; the underlying algorithm
is sketched in lines 31 – 45. For every consumption group to be suppressed in the cur-
rently processed window version, the algorithm checks whether an update has occurred
since the last consistency check. If this is the case, the algorithm checks whether in the
current window version, any event in the updated consumption group has been erro-
neously processed. If yes, then an inconsistency has been detected: The event should
have been suppressed, but has actually been processed. If an inconsistency is detected,
the state of the window version is rolled back to the start, i.e., the window version is
reprocessed from the start. Instead of reprocessing a window version from the start in
case of an inconsistency, it could also be recovered from an intermediate checkpoint.
However, when implementing that approach, we realized that the overhead in periodi-
cally checkpointing all window versions is much higher than the gain from recovering
from checkpoints.

5.3 Evaluations

In this section, we evaluate the performance of SPECTRE under different real-world
and synthetic workloads and varying queries in the setting of an algorithmic trading
scenario. We analyze the scalability of SPECTRE with a growing number of operator
instances and the overhead involved in speculation and dependency management.
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5.3.1 Experimental Setup

Here, we describe the evaluation platform, the SPECTRE implementation and the
datasets and queries used in the evaluations.

Evaluation Platform. We run SPECTRE on a shared memory multi-core machine
with 2x10 CPU cores (Intel Xeon E5-2687WV3 3.1 GHz) that support hyper-threading
(i.e., 40 hardware threads). The total available memory in the machine is 128 GB and
the operating system is CentOS 7.3.

Implementation. SPECTRE is implemented using C++. The pattern detection and
window splitting logic of the queries in these evaluations are implemented as a user-
defined function (UDF) inside SPECTRE. Further, we provide a client program that
reads events from a source file and sends them to SPECTRE over a TCP connection.
Our implementation of SPECTRE is open source2.

Datasets. We employ two different datasets centered around an algorithmic trading
scenario.

First, a real-world stock quotes stream originating from the New York Stock Exchange
(NYSE). This dataset contains real intra-day quotes of around 3000 stock symbols
from NYSE collected over two months from Google Finance3; in total, it contains
more than 24 million stock quotes. The quotes have a resolution of 1 quote per minute
for each stock symbol. We refer to this dataset as the NYSE Stock Quotes dataset,
denoted as NYSE. NYSE represents realistic data for stock market pattern analytics.

Second, we generated a random sequence of 3 million events consisting of 300 dif-
ferent stock symbols; the probability of each stock symbol is equally distributed in
the sequence. We refer to this dataset as the Random Stock Symbols dataset, denoted
as RAND. This dataset has been deliberately produced in a way such that the average
completion probability of consumption groups is fixed. It is used for benchmarking
the Markov model used in SPECTRE.

Queries. We employ three different queries, Q1 to Q3, in the evaluations (cf. Fig-
ure 5.9). The queries are listed in the extended MATCH-RECOGNIZE notation [ZWC07]
introduced in Section 1.1.2. We further extended the MATCH-RECOGNIZE notation by a
CONSUME clause (which stems from the TESLA event specification language [CM10])
to specify consumption policies.

2https://github.com/spectreCEP
3https://www.google.com/finance
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[Q1]

PATTERN (MLE RE1 RE2 ... REq)

DEFINE

MLE AS (MLE.closePrice

> MLE.openPrice),

RE1 AS (RE1.closePrice

> RE1.openPrice),

RE2 AS (RE2.closePrice

> RE2.openPrice),

...,

REq AS (REq.closePrice

> REq.openPrice)

WITHIN ws events FROM MLE

CONSUME (MLE RE1 RE2 ... REq)

[Q3]
PATTERN (A SET( X1 ... Xn))

WITHIN ws events

FROM every s events

CONSUME (A SET( X1 ... Xn))

[Q2]

PATTERN (A B+ C D+ E F+ G H+ I J+ K L+ M)

DEFINE

A AS (A.closePrice< lowerLimit),

B AS (B.closePrice> lowerLimit

AND B.closePrice< upperLimit),

C AS (C.closePrice> upperLimit),

D AS (D.closePrice> lowerLimit

AND D.closePrice< upperLimit),

E AS (E.closePrice< lowerLimit),

F AS (F.closePrice> lowerLimit

AND F.closePrice< upperLimit),

G AS (G.closePrice> upperLimit),

H AS (H.closePrice> lowerLimit

AND H.closePrice< upperLimit),

I AS (G.closePrice< lowerLimit),

J AS (J.closePrice> lowerLimit

AND J.closePrice< upperLimit),

K AS (G.closePrice> upperLimit),

L AS (L.closePrice> lowerLimit

AND L.closePrice< upperLimit),

M AS (M.closePrice< lowerLimit),

WITHIN ws events FROM every s events

CONSUME (A B+ C D+ E F+ G H+ I J+ K L+ M)

Figure 5.9: Queries.

Q1 detects a complex event when the first q rising or the first q falling stock quotes of
any stock symbol (defined as RE or FE, respectively) are detected within ws minutes
from a rising or falling quote of a leading stock symbol (defined as MLE). The leading
stock symbols are composed of a list of 16 technology blue chip companies. In the
listing of Q1, we show only the stock rising pattern; the falling pattern is constructed
accordingly. In case a complex event is detected, all constituent incoming events are
consumed. Note, that this query always has a fixed pattern length of q, and each
matching event moves the pattern detection to a higher completion stage.

Q2 is a query from related work (Balkesen and Tatbul [BDWT13], Query 9) that we
extended by a window size of ws events, a window slide of s events and a consumption
policy. It detects a complex event when specific changes occur in the price of a stock
symbol between defined upper and lower limits. As in Q1, all constituent incoming
events are consumed when a complex event is detected. We use the lower and upper
limits to control the average pattern size. A small lower and a large upper limit results
in a larger average pattern size, and vice versa. In contrast to Q1, Q2 has a variable
length even for a fixed lower and upper limit. A matching event might or might not
influence the pattern completion: the Kleene+ implies that many events can match
while the pattern completion does not progress.
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Q3 detects a set of n specific stock symbols following stock symbol A. In contrast to
the other queries, the ordering of those n symbols is not important. The pattern length
n, window size ws, and window slide s can be freely varied. All constituent events are
consumed when a complex event is detected.

5.3.2 Performance Evaluation

In this section, we evaluate the throughput and scalability of SPECTRE. First of all,
we evaluate how SPECTRE performs with a growing number of parallel operator in-
stances and with different consumption group completion probabilities. After that, we
provide a detailed analysis of the Markov model SPECTRE uses to predict the comple-
tion probability of consumption groups. Finally, we discuss a comparison to the CEP
engine T-REX [CM12a].

If not noted otherwise, we employ the following settings. The number of created con-
sumption groups is limited to one per window version. The Markov model is employed
with the parameters α = 0.7 and `= 10.

To measure the system throughput, we streamed the datasets as fast as possible to the
system. Each experiment was repeated 10 times. The figures show the 0th, 25th, 50th,
75th and 100th percentiles of the experiment results in a “candlesticks” representation.

Scalability

Here, we evaluate the scalability of SPECTRE. To this end, we analyze the system
throughput, i.e., the number of events processed per second, with a growing number of
operator instances. The following questions are addressed: (1) How does the scalabil-
ity depend on the completion probability of the consumption groups? (2) How much
computational and memory overhead is induced by maintaining the dependency tree
and determining the top-k window versions?

Effect of Completion Probability of Consumption Groups We expect that the com-
pletion probability of consumption groups influences the system throughput. To make
that clear, regard two extreme cases: All consumption groups are abandoned, or all
consumption groups are completed. In the first case, SPECTRE should only schedule
window versions on the left-most path of the dependency tree. In the second case,
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Figure 5.10: Evaluations. (a)+(d): Scalability (Q1 on NYSE). (b)+(e): Scalability (Q2
on NYSE). (c)+(f): Overhead (Q1 on NYSE).

SPECTRE should only schedule window versions on the right-most path of the depen-
dency tree. In both cases, the scheduling algorithm should traverse the dependency
tree in depth; i.e., it should schedule k window versions from k different windows.
Further, none of the scheduled window versions should be dropped; all of them should
survive. Hence, the throughput should be maximal. On the other hand, suppose that
the completion probability of all consumption groups is constantly at 50 %. In that
case, SPECTRE should traverse the dependency tree in breadth; i.e., it should sched-
ule 1 window version of the first window, 2 window versions of the second window,
4 window versions of the third window, etc. However, only 1 window version of each
window can survive; all others will be dropped. Hence, the higher k is, the more fu-
tile processing is performed, as the probability to predict the correct window version
drops exponentially with k. In the following, we analyze whether SPECTRE shows
the expected behavior and discuss implications.

To this end, we run a set of experiments with queries Q1 and Q2, using the NYSE
dataset. In both queries, there are parameters that can be changed such that the aver-
age completion probability of consumption groups is manipulated. In Q1, we achieve
this by directly setting the pattern size q, such that the ratio between pattern size and
window size changes. Larger patterns are less likely to complete. In Q2, we cannot
directly set the pattern size. However, we influence the average pattern size—and thus,
the average completion probability—by changing the upper and lower limit parameters
in the pattern definition.
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In Q1, we employ a sliding window with a window size ws of 8,000 events, setting pat-
tern sizes q of 40, 80, 160, 320, 640, 1280, and 2560 events. We calculate a “ground
truth” value of the completion probability of consumption groups by performing a
sequential pass without speculations: The number of created consumption groups di-
vided by the number of produced complex events provides the ground truth value. The
system throughput employing 1, 2, 4, 8, 16, and 32 operator instances, is depicted
in Figure 5.10 (a). The corresponding ground truth probabilities are depicted in Fig-
ure 5.10 (d).

At a ratio of pattern size to window size of 40 / 8,000 (i.e., 0.005), the ground truth
of consumption group completion probability is at 100 %, i.e., all partial matches are
completed. The throughput scales almost linearly with a growing number of operator
instances, from 10,800 events/second at 1 operator instance to 154,000 events/second
at 16 operator instances (scaling factor 14.3) and 218,000 events/second at 32 oper-
ator instances (scaling factor 20.2). Increasing the pattern size decreases the com-
pletion probability of consumption groups. At a ratio of pattern size to window size
of 640 / 8,000 (i.e., 0.08), the ground truth of consumption group completion prob-
ability is at 56 %, i.e., half of partial matches are completed and the other half are
abandoned. The throughput scales from 9,200 events/second at 1 operator instance to
35,000 events/second at 8 operator instances (scaling factor 3.8). However, employ-
ing more than 8 operator instances does not increase the throughput further: With 16
and 32 operator instances, it is comparable to 8 operator instances. Further increasing
the pattern size, we reach a ground truth of consumption group completion proba-
bility of 13 % at a ratio of pattern size to window size of 2560 / 8,000 (i.e., 0.32).
Here, the throughput scales better, from 8,700 events/second at 1 operator instance to
131,900 events/second at 16 operator instances (scaling factor 15.2). Here, 32 operator
instances do not improve the throughput further compared to 16 operator instances.

In Q2, we employ a sliding window with a window size ws of 8,000 events and a
sliding factor s of 1,000 events. We arranged the lower and upper limit parameters in
the pattern definition such that the corresponding average pattern sizes were 180, 226,
496, 560, 839, 1261, 1653, and 2223 events, plus one setting that made it impossible
for a pattern to be completed. The system throughput employing 1, 2, 4, 8, 16, and
32 operator instances, is depicted in Figure 5.10 (b). The corresponding ground truth
probabilities are depicted in Figure 5.10 (e).

At a ratio of pattern size to window size of 180 / 8,000 (i.e., 0.02), the ground truth
of consumption group completion probability is at 100 %, i.e., all partial matches are
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completed. The throughput scales almost linearly with a growing number of operator
instances, from 10,300 events/second at 1 operator instance to 139,800 events/second
at 16 operator instances (scaling factor 13.8) and 200,400 events/second at 32 opera-
tor instances (scaling factor 19.5). At a ratio of pattern size to window size of 560 /
8,000 (i.e., 0.07), the ground truth of consumption group completion probability is at
50 %, i.e., half of partial matches are completed and the other half are abandoned.
The throughput scales from 10,900 events/second at 1 operator instance to 64,900
events/second at 8 operator instances (scaling factor 6.0). Employing more than 8
operator instances does not increase the throughput further: With 16 and 32 operator
instances, it is comparable to 8 operator instances. When none of the partial matches
can complete (denoted by “0 cplx”), the throughput scales from 10,400 events/second
at 1 operator instance to 108,400 events/second at 16 operator instances (scaling factor
10.4) and 174,300 events/second at 32 operator instances (scaling factor 16.8).

Discussion of the results. We draw the following conclusions from the results. First
of all, our assumptions on the system behavior are backed by the measurements. Fur-
ther, the different queries impose “throughput profiles” that have a similar shape. The
scaling behavior in SPECTRE, using the speculation approach, is very different from
other event processing systems that have been analyzed in related work. In SPEC-
TRE, the parallelization-to-throughput ratio largely depends on the completion proba-
bility of partial matches. This new factor leads to interesting implications when adapt-
ing the parallelization degree (i.e., elasticity), which is typically done based on event
rates [DMM16, MKR15, LJK15] or CPU utilization [ABB+13, FMKP13]. Existing
elasticity mechanisms do not take into account the completion probability to determine
the optimal resource provisioning. Using the described throughput curves, SPECTRE
could adapt the number of operator instances based on the current pattern completion
probability.

Overhead of Speculation Here, we analyze the computational and memory over-
head of maintaining the dependency tree in the splitter and scheduling the top-k win-
dow versions.

In a first experiment (Q1, NYSE dataset, q = 80, window size = 8,000), we measure
how often the splitter can perform a complete cycle of tree maintenance and top-k
scheduling per second. The cycle is described as follows: (a) Maintenance: performing
all updates on the dependency tree that have been issued since the last maintenance,
i.e., creating new consumption groups and window versions and delete dropped ones,
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and (b) scheduling: schedule the new top-k window versions to the k operator instances
according to the updated dependency tree.

In Figure 5.10 (c), the results are depicted. With 1 operator instance, SPECTRE
achieves a maintenance and scheduling frequency of 4 million cycles per second. With
increasing number of operator instances, the scheduling frequency decreases but is still
considerably high, where SPECTRE achieves a scheduling frequency of 650,000 and
450,000 times per second with 16 and 32 operator instances, respectively. We con-
clude that there is some overhead involved in the management of the dependency tree
and the scheduling algorithm, but there are no indications that this would become a
bottleneck in the system.

Another concern about the dependency tree might be its growth and size in memory.
To this end, we measured the maximal number of window versions maintained in the
dependency tree at the same time (Q1, NYSE dataset, q = 80, window size = 8,000).
The results of the experiments are depicted in Figure 5.10 (f). With 1 operator instance,
the maximal tree size was at 41 window versions, growing up to 4,332 at 16 operator
instances and 6,730 window versions at 32 operator instances. This is not a serious
issue in terms of memory consumption. Indeed, the importance of a suitable top-k
window version selection becomes obvious here: Determining the k window versions
that will survive out of a large number of window versions that will eventually be
dropped is a huge challenge, which SPECTRE could handle reasonably well in the
performed experiments.

Markov Model

After we have discussed the overall system throughput and different factors that im-
pact it, we go into a more detailed analysis of the completion probability model of
consumption groups. In particular, we want to know how well the proposed Markov
model behaves when the probabilities of complex events are changing. To this end,
we perform two different experiments of query Q3 with different ratios of pattern size
to window size: A ratio of 0.002 that has a high consumption group completion prob-
ability and a ratio of 0.1 that has a lower consumption group completion probability.
We employed 32 operator instances and the window size ws was set to 1000 events
where a new window is opened every 100 events (s = 100). We compare the proposed
Markov model with a probability model that assigns each consumption group a fixed
completion probability. The results of the two experiments are depicted in Figure 5.11
(a) and (b), respectively.
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Figure 5.11: Evaluation of Markov Model.

At a ratio 0.002, the completion probability of a consumption group was at 100%.
Accordingly, assigning a fixed probability of 100% to the consumption groups yielded
a throughput of 279,000 events per second, which was significantly better than other
fixed probabilities. The Markov model with a throughput of 277,000 events per second
proved to be competitive with the best fixed model.

At a ratio of 0.1, the completion probability of a consumption group was at 32%.
Accordingly, assigning a fixed probability of 20% to the consumption groups yielded
a throughput of 86,000 events per second, which was significantly better than other
fixed probabilities. The Markov model with a throughput of 79,000 events per second
performed almost as good as the best fixed model.

From those results, we draw two conclusions. First, the Markov model is able to auto-
matically learn suitable consumption group probabilities in different settings. Second,
we can see that wrong probability predictions can cause a large throughput penalty.

Comparison to T-REX

We have also implemented query Q1 in the T-REX event processing engine [CM12a].
In total numbers, T-REX performed much worse than SPECTRE, reaching a through-
put of only about 1,000 events per second. While this shows that the throughput of
SPECTRE is competitive, it is worth to mention that both systems are different. T-
REX is a general-purpose event processing engine that automatically translates queries
into state machines, whereas SPECTRE employs user-defined functions to implement
queries which allows for more code optimizations. T-REX does not support event con-
sumptions in parallel processing, while SPECTRE can utilize multi-core machines to
scale the throughput.
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5.4 Related Work

In the past decades, a number of different CEP systems and pattern definition languages
has been proposed. Besides CEP languages that do not support event consumptions,
such as SASE [WDR06], the concept of event consumption gained growing impor-
tance. Based on practical use cases, Snoop [CM94] defined 4 different so-called pa-
rameter contexts, which are predefined combinations of selection and consumption
policies. Building on a more systematic analysis of the problem, Zimmer and Un-
land [ZU99] proposed an event algebra that differentiated between 5 different selec-
tion and 3 different consumption policies that can be combined. Picking up and ex-
tending that work, the Amit system [AE04] allowed for distinct specifications of the
selection and consumption policy. Finally, Tesla [CM10] and its implementation T-
REX [CM12a] introduced a formal definition of its supported policies. The proposed
speculation methods and the SPECTRE framework are applicable to any combination
of selection and consumption policies.

Speculation has been widely applied to deal with out-of-order events in stream pro-
cessing. Mutschler and Philippsen [MP14] propose an adaptive buffering mechanism
to sort the events before processing them, introducing a slack time. When an event
arrives outside of the slack time, results are recomputed. However, slack times can-
not be used to overcome window dependencies in the event consumption problem: If
one window is processed later, all depending windows would also need to be deferred.
Brito et al. [BFSF08] as well as Wester et al. [WCN+09] propose transaction-based
systems to roll-back processing when out-of-order events arrive. Their systems are not
parallel, meaning that they only employ one speculation path for each operator. We
also roll-back when window versions reach an inconsistent state. However, we pro-
pose a highly parallel multi-path speculation method (not only one path) and employ
a probabilistic model to schedule the most promising window versions; hence, our
system scales with an increasing number of CPU cores. Balazinska et al. [BKKL07]
propose a system that quickly emits approximate results that are later refined when
out-of-order events arrive. Our model would generally allow to be extended toward
supporting probabilistic approximations, as a survival probability is given on the win-
dow versions. However, in this paper, we focus on consistent event detection (no
false-positives, no false-negatives) and leave approximate applications of our model to
the future work. Brito et al. [BFF09] propose for non-deterministic stream processing
operators to mark events as speculative before logs have been committed to disc for
consistent recovery. The speculative events can be forwarded to successor operators
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in the operator graph that treat them specifically. In SPECTRE, speculative complex
events are kept buffered until the window version is confirmed. We focus on provid-
ing deterministic event streams to the successor operators; in particular, we do not
assume that subsequent operators or event sinks can handle events that are marked as
speculative.

Alevizos et al. [AAP17] use Pattern Markov Chains to predict the completion probabil-
ity and completion time of partial pattern matches. They use the prediction of pattern
completion to trigger proactive actions, e.g., in the field of credit fraud detection. Their
model assumes that the transition probabilities are stationary, whereas in SPECTRE,
the transition matrix is updated frequently. Apart from that, their model is similar to
our Markov model and was developed independently at the same time. Using the sur-
vival probabilities of window versions to trigger proactive actions can be an interesting
further application of SPECTRE.

5.5 Conclusion

The SPECTRE system uses window-based data parallelization and optimized specula-
tive execution of interdependent windows to scale the throughput of CEP operators that
impose consumption policies. The novel speculation approach employs a probabilistic
consumption model that allows for processing the k most promising window versions
by k operator instances in parallel on a multi-core machine. Evaluations of the system
show good scalability at a moderate overhead for speculation management.
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6
Efficient Rollback-Recovery with

Savepoints

We have discussed in Section 1.1.2 that in a distributed CEP system, operators hosted
at potentially many different nodes of the network are taking a share in analyzing input
streams and producing streams of outgoing events. Since many physical processes,
e.g., the control of a manufacturing process, depend on the output of event processing
systems, their correctness and performance characteristics are of critical importance.
For CEP systems, this imposes strong requirements with respect to availability and
consistency of their outgoing streams. In particular, the event streams provided to sinks
of CEP systems should be indistinguishable from an execution in which the hosts of
some operators fail or event streams are not available during a temporary partitioning of
the network. The efficiency of reliable event processing can be measured with respect
to its runtime overhead in a failure-free execution as well as its recovery overhead in
the presence of failures.

In this chapter, a method is proposed for operator recovery that avoids any interruption
of the CEP system and minimizes the amount of state to be transferred between nodes
in a failure-free execution. The proposed approach relies on the observation that at
certain points in time, the execution of a CEP operator solely depends on a distinct
window of events from the incoming streams. So, the operator state only comprises
necessary parts of the incoming streams and information about the current event win-
dow on them. Events from incoming streams can be reproduced from predecessor
operators, so that only event sources need to provide outgoing streams in a reliable

133
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way. However, information about the current event window is not reproducible and
therefore is stored in a savepoint and replicated at other operators for fault tolerance.

This chapter includes preliminary work published in the diploma thesis of the author of
this thesis [May12]. That work has been substantially extended and has been published
in [KMR+13], which builds the basis of the main technical content of this chapter.

The contributions of this chapter comprise an expressive, general operator execution
model that enables for any operator to externalize to an execution environment the
current window of events it is processing. The model can be applied to all window-
based operators. To illustrate its expressiveness, a comparison to the event specification
language Snoop [CM94] is drawn. Based on this operator execution model, a savepoint
recovery system is proposed that i) provides the basis in identifying an empty operator
processing state, ii) manages the capturing and replication of savepoints and ensures
the reproducibility of corresponding events, iii) implements a recovery in which also
simultaneous failures of multiple operators can be tolerated.

6.1 System Model

The system and event processing model from Chapter 2 is extended as follows. For
an event e in a stream (p,d) between two components p and d, we denote SN(e) the
sequence number of e in (p,d). SN(e) is deterministically assigned by its producer; it
is used in order to distinguish between different events in the same event stream that
may have the same timestamp. We denote Iω the set of incoming event streams at an
operator ω, and Oω the set of outgoing event streams.

In the previous chapters, we have assumed that operators implement a data paralleliza-
tion architecture as described in Section 2.3. In this chapter, we first assume a se-
quential operator model, which is introduced in Section 6.2. Based on this model,
we develop our operator recovery scheme. Later, in Section 6.7, we discuss how the
recovery scheme can be implemented in the aforementioned data parallelization archi-
tecture.

The operators of the operator graph G are hosted by a set of n nodes, each node hosting
possibly multiple operators. At any time, each node can fail according to the crash re-
covery model, where at most k < n nodes are assumed to permanently fail or crash and
recover an unbounded number of times. In addition, we will consider event sources
and event sinks to be reliable. This means that each event produced by a source will
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be accessible until all dependent operators have signaled that it can be discarded. Fur-
thermore, event sources must be able to reliably store savepoints from their successors.
Similarly, for events streamed to sinks we will use a fault tolerant delivery mechanism
so that eventually a sink receives all events sent to it in the right order.

Note that we do not make any assumptions on timeliness for links connecting sources,
operators and sinks, nor do we demand any synchronization of their clocks. The system
can be realized as a highly distributed correlation network that involves communication
over an Internet-like topology. We will use a monitoring component to suspect faulty
processes and trigger reconfigurations of the placement of operators on nodes. The
accurateness of this component, however, will only affect the performance, but not the
correctness of the proposed method.

6.2 Approach Overview

Note that any approach that allows for the recovery of the state of failed operators re-
quires the replication of state. The difference between different recovery methods is
how and where state is replicated, e.g., at standby operators or at a persistent storage.
One important observation from the rollback-recovery approach [EAWJ02] is that state
Λ(T ) at a point in time T corresponds to state at a previous point in time Tsp plus a
deviation ∆(Λ(Tsp),Λ(T )) that happened on the state between Tsp and T . We are look-
ing for the optimal Tsp, when the state of an operator is minimal, so that its replication
requires only a minimum of resources.

Figure 6.1 shows a model of the components of an operator ω. Incoming events from
Iω are cached in a set of queues QI from which the selector determines windows of
events to be mapped to outgoing events by the correlation function fω. Further, the
selector can remove events from QI when they are no longer needed. The produced
events are augmented with a sequence number by the sequencer and put into a set of
queues QO from which they will be transferred to ω’s successors in the operator graph.

The state Λ(T ) of ω comprises the states of QI , the selector, fω, the sequencer and
QO. Observe that fω implements a mapping in its mathematical sense from a window
w to sets of produced events, or, more precisely, attribute-value-pairs of events from
w are mapped to attribute-value-pairs of produced events, each such mapping denoted
a correlation step. Although fω builds up internal state, in this model there are no
dependencies in between two subsequent correlation steps. Therefore, at a point in
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Figure 6.1: Operator Model.

time between two subsequent correlation steps, denoted Tsp, fω is stateless. The state
of the sequencer only comprises one parameter, which is the next SN to be assigned
to the next emitted event. In an arbitrary CEP operator, the state of the selector could
be large, comprising manifold relations. For instance, subsequent windows could be
inter-dependent because of intermediate event consumptions (cf. Chapter 5). In such
a general case, taking a memory snapshot of the processing stack of the selector or
implementing a custom state extraction method would be inevitable. However, the
selector state can be drastically reduced with our operator execution model, introduced
in Section 6.3, that prohibits inter-dependencies between subsequent windows. Indeed,
as we show in Section 6.3.1, the state of the selector is reduced to one sequence number
for each incoming event stream of the operator, pointing to the start events of a window.
Finally, the state of QI and QO comprises all events contained in the operator’s in and
out queues. However, as we show in Section 6.5, in case of an operator failure, the
state of QI can be reproduced by re-streaming events from the operator’s predecessor,
while QO can be reproduced by the operator.

In our savepoint recovery system, in order to be able to recover an operator ω once it
has failed at a point in time T , the recovery procedure determines an earlier point in
time Tsp < T with the following properties: (i) fω is stateless, (ii) all events that QO

contained at Tsp will never need to be reproduced by ω in the future, and (iii) events
in QI at Tsp are available in ω’s predecessors for re-streaming. Here, we outline how
those properties are determined by the savepoint recovery system.

(i) Stateless times of fω are indicated to an execution environment by a hook that is
installed in the correlation logic of the operators. The corresponding interface to the
execution environment is specified in Section 6.3.
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(ii) The second property is achieved by a distributed acknowledgment algorithm, which
is described in Section 6.4.2. It synchronizes the points in time Tsp for recovery be-
tween adjacent operators. The general idea is that an acknowledgment or ACK in-
dicates that an event does never have to be recovered any more, i.e., it has become
“unnecessary”. This has two consequences: First, such an event can be discarded from
QO, as it will never have to be re-streamed to a successor of ω in the operator graph for
recovery. Second, when recovering ω in case of a failure, it does not need to be able
to re-produce the ACKed event any longer. This means that ω can move its recovery
point Tsp to a point in time after the acknowledged event had been produced. The ac-
knowledgment algorithm ensures that the latest recovery point Tsp at an arbitrary point
in time T is always chosen with regard to this property.

(iii) The third property is also achieved by the acknowledgment algorithm (cf. Sec-
tion 6.4.2), which only acknowledges events at a predecessor if they are not part of QI

at Tsp anymore.

Now, the relevant non-reproducible state of ω at Tsp comprises only the state of the
selector and the sequencer, which is captured in a savepoint and replicated at ω’s pre-
decessors. A savepoint only contains one sequence number for each incoming event
stream (for the selector state) and one sequence number for the next event to be pro-
duced (for the sequencer state); hence, a savepoint is very lightweight. If ω fails at
time T , Λ(Tsp) is restored from the replicated savepoint and from replayed events of
QI from the predecessors. From this point on, the re-execution of ω, i.e., performing a
sequence of correlation steps, will allow the operator to restore Λ(T ).

6.3 Execution Model

The following execution model refines the operator model introduced in Section 6.2.
It describes the implementation of the selector and the sequencer, and defines the in-
terface of an arbitrary operator implementation to these components. In doing so, we
aim to keep the interface simple, so that existing implementations of fω can easily be
embedded into the proposed system.

Let a window w〈〈SNstart
i ,SNend

i 〉, · · · 〉 on Iω comprise for each incoming stream i ∈
(in,ω) all events between a start event with SNstart

i and an end event with SNend
i . Then,

w contains all incoming events on which fω executes one correlation step. Notice that,
in contrast to the window model used in previous chapters, in this execution model, a
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Figure 6.2: Example: Interface calls to the EE when shifting the window.

window has a distinct start and end event in each incoming event stream. This is useful
in order to increase the expressiveness of our recovery scheme. In particular, certain
combinations of selection and consumption policies, as defined in the parameter con-
texts of the Snoop pattern definition language [CM94], can be supported, which would
not be possible with the simpler window model used in previous chapters.

To implement the correlation function fω, both the selector and the sequencer, which
we together denote the execution environment (EE), provide an interface. The interface
of the selector is defined as EVICT(removal), with removal being a data structure that
specifies how many events to remove from each incoming event stream in Iω. The
removal of n events from a stream i ∈ (in,ω) results in the slide of w to the next
window w’: SNstart′

i = SNstart
i + n, i.e., the start event moves further corresponding

to the number of removed events. This is also known as eviction of events from the
window [THS17]. Each correlation step has to result in at least one eviction in at
least one of the incoming streams to ensure progress of the sliding window. That
way, the selector keeps track of the start events of the windows, and just feeds events
from QI to fω until its eviction interface is called and the next window starts. Events
that are marked as evicted by fω get deleted from QI . The interface of the sequencer
EMIT(event) takes a produced event from fω, assigns it a SN and puts it into QO.

Example (Figure 6.2): Consider a business monitoring system for which an operator
ω monitors whether customer requests were successfully answered. In this scenario,
ω is required to produce an alarm or confirmation depending on whether a customer
request was answered within 10 minutes or not. The correct detection depends on the
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successful detection of a customer request as well as detecting successful answers. In
a correlation step, fω takes one event of type R (requests), say er, and then checks
events of type A (answers) for a matching request ID attribute. The step ends when an
event ea of type A is reached that is either corresponding to er or has a timestamp that
is more than 10 minutes older than the one of er, so that the 10 minutes timespan has
been violated. In the first case, fω would emit an event etimely and would evict er and
events of type A that have a smaller timestamp than er, as answers are not expected
to appear before the next request. In the second case, an event ealarm is emitted and
delivered to a special agent who will work on the request with a high priority. er and
events of type A that have a smaller timestamp than er are evicted in this case, too. In
the example in Figure 6.2, the window is shifted from w1 to w2 by evicting 1 event of
type R and 2 events of type A.

6.3.1 Properties

Property 6.1 (STATE OF AN OPERATOR AT Tsp.) Let Tsp be a point in time when an
operator ω starts processing a new window wsp. Then, Λ(Tsp) of ω comprises:

• Events in QI .

• The state of the selector: For each incoming stream i ∈ (in,ω): SNstart
i of wsp.

• The state of the sequencer: The SN of the first event to be produced in wsp.

Explanation: Events in QI can be replayed from predecessors. In order to restore the
selector, the SNs of the start events of wsp have to be restored. Then, the selector
can provide to fω exactly the same window that had been provided in the primary
execution of the correlation step, which leads to the production of exactly the same
events. The subsequent window wsp+1 depends only on wsp, etc., so that all subsequent
windows are indistinguishable from a failure-free execution. To restore the sequencer,
it is initialized with the SN of the next event to be emitted.

Property 6.2 (START EVENTS OF CONSECUTIVE WINDOWS.) For a window ws,
each start event has a higher or equal sequence number compared to the window wp

of a preceding correlation step.

Explanation: Windows are moved when correlation steps are finished. Moving a win-
dow means that events are evicted; an eviction of an event from a window always leads
to a higher sequence number of the next start event of the next window.



140 6. EFFICIENT ROLLBACK-RECOVERY WITH SAVEPOINTS

6.3.2 Expressiveness

After we have defined how the execution model of our event processing system works,
here, we analyze its expressiveness in terms of support for CEP operator types. As
a reference, we will take the event specification language Snoop [CM94] and analyze
whether all event patterns that are formalized in Snoop can be implemented in our exe-
cution model. This has several reasons: First, Snoop has been motivated by real-world
event processing scenarios. Such scenarios comprise, amongst others, sensor applica-
tions (e.g., hospital monitoring and global position tracking), applications that exhibit
causal dependency (e.g., between aborts and rollbacks, bug reports and releases) and
trend analysis and forecasting applications (e.g., security trading, stock market analy-
sis). Second, Snoop is well-established in the scientific CEP community. But above
all, Snoop provides a high expressiveness in comparison to other languages, as Cugola
and Margara show in their article [CM12c].

In Snoop, complex event patterns can be correlated by event operators, which are the
following ones: Disjunction, sequence, conjunction, aperiodic and periodic operators.
Further, parameter contexts in Snoop describe the selection and consumption policy
of events in a window. The following parameter contexts are defined: (i) Recent,
where only the most recent occurrences of events of different type are selected. (ii)
Chronicle, where incoming events are selected in the chronological order they occur.
(iii) Continuous, where continuously each event that can possibly start a correlation
is selected. (iv) Cumulative, where all events between a possible start and end event
of a window are selected. In each of the parameter contexts except for Continuous,
all selected events are consumed after correlation. For more detailed explanations and
examples, please refer to the original Snoop paper [CM94].

Proposition 6.3 (EXPRESSIVENESS OF THE EXECUTION MODEL.) All event opera-
tors and parameter contexts of Snoop can be implemented using the proposed execution
model.

PROOF In Snoop, event expressions define a finite time interval in which one or more
atomic happenings, or events, can occur. Thus, they correspond to finite sets of event
sequences. So they are equivalent to event windows as they are defined in the execution
model. All Snoop event operators work solely with event expressions as operands.
Thus, the sequence of execution iterations of Snoop event operators can be seen as an
execution with a sequence of event windows (w1,w2,w3, ...) as operands.

Lemma 1 For the operands (w1,w2,w3, ...) of a Snoop event operator, the following
properties are satisfied:
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(i) SNstart
j ∈wk+1 ≥ SNstart

j ∈wk ∀ j ∈ (in,ω),

(ii) For all event operators and parameter contexts, there exists an implementation of
fω so that when it is executed on w1, w2, w3..., the events produced by fω satisfy the
semantics of Snoop.

PROOF (i) Proof by contradiction. If

∃ e with e ∈ wk+1∧ e ∈ j : SN(e)< SNstart
j ∈ wk; j ∈ (in,ω), then e would be in a later

window but have a lower SN than the start event of wk. This contradicts to the policy
that sequence numbers are assigned sequentially on each event stream.

(ii) is satisfied because given the event windows, fω can implement any operations on a
window, especially any functionality of a Snoop event operator can be implemented.�

Lemma 2 None of the parameter contexts demands for the consumption of an inter-
mediate event that is located within the window bounds of the next correlation step. 2

PROOF In Recent, when the detection of an event pattern in a window w1 is completed,
all events between the window start event and the event that completed the pattern are
consumed. This cannot affect intermediate events of the next window w2.

In Chronicle, events are selected in the order they occur in the window and then they
are consumed, so no intermediate consumption can occur.

In Continuous, no explicit consumptions happen at all.

In Cumulative, all events of a window are consumed. �

As a conclusion of Lemma 1 and Lemma 2, fω works on a sequence of windows that
do not demand intermediate consumptions (i.e., consumptions of events in the middle
of another window) and so it can implement the interface to the EE defined by the
execution model. So, our execution model is at least as expressive as the Snoop event
specification language. �
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6.4 Capturing and Replicating Savepoints

6.4.1 Log and Savepoint Management

Logs of Outgoing Events

Events in QI of ω are preserved in the QO of its upstream neighbors (i.e., predecessors),
so that no additional events need to be transferred over the network at failure-free
runtime. If ω fails, QI can be restored when its predecessors re-send their QO. QO must
always contain enough events to restore the successor to its latest acknowledged state
Λ(Tsp) which depends on the coordination of savepoints described in Section 6.4.2.
Note, however, that outgoing events are reproduced when an operator recovers, so that
events in QO are reproducible and do not need to be replicated.

Savepoints and Savepoint Trees

Savepoints contain the non-reproducible part of Λ(Tsp), which comprises the state of
the selector and the sequencer. They are stored together with QO in the volatile memory
of the predecessors of ω. If ω’s predecessor is an event source, savepoints and events
can be stored there in a reliable way, as event sources are assumed to survive failures.

So, when ω crashes at a point in time T , its predecessors hold all state information that
is necessary to restore Λ(T ): Λ(Tsp) is restored from the savepoints and events from
QO at predecessors, and ∆(Tsp,T ) is restored by re-running ω from Tsp until T . We
will determine later the points in time when an operator has to update and distribute
its savepoint. To deal with asynchrony, it is necessary that all predecessors store a
complete savepoint, so that at the recovery of ω a self-consistent savepoint is available,
i.e., the information about the start events of w belong to the same w. In contrast to
that, the retransmitted event streams in Iω do not have to be consistent with regard
to the same savepoint, because it is easily possible for a restored operator to discard
events that stem from older windows and, hence, are not part of QI .

By now, only one failed operator can be restored at a time, but not several adjacent
operators that fail at the same time. To make that possible, the non-reproducible part
of Λ(Tsp), namely the savepoint, is replicated at all operators of the transitive closure
of the predecessor relation in the operator graph, so that each operator preserves a tree
of savepoints in its memory.
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Figure 6.3: ACK flow and pruning of QO.

6.4.2 Coordination of Savepoints

In order to restore Λ(T ) of ω, the time of the latest savepoint Tsp to restore Λ(T )
has to be determined. This depends on the events that are part of QO at T ; more
precisely, the earlier the events of QO at T had been produced, the earlier is Tsp. A
trivial implementation would never prune QO so that it contains all events an operator
has ever produced. In case of recovery, Tsp would be “zero”, i.e., the operator would
be restored to the point in time when it initially started its work. To avoid that, it is
necessary that an operator prunes QO from time to time, i.e., excludes events from
Λ(T ) and increases Tsp. Events can be pruned when they are no longer necessary
for the consistency of the event streams delivered to the event sinks. The necessity
condition is defined as follows:

Definition 6.1 (Necessity of Events) An event e is a necessary event if an event sink
is interested in it and has not yet acknowledged its receipt.

If all sinks interested in e have acknowledged its receipt at a point in time TACK , a pre-
decessor operator ω can be sure that e is not necessary anymore and delete it (and all
earlier events) from its QO. That way, e and all earlier events are not part of Λ(T ) for
any T ≥ TACK , so that Tsp, and hence, the savepoint, can be adjusted to the correlation
step in which the first event following e had initially been produced. This is done by
means of the inverse correlation function f−1 : e→ σe, which maps SN(e) to the start
events of the window we in which e had been produced. The most efficient implemen-
tation of f−1 is for each window to store SNstart

i for each stream i ∈ (in,ω) together
with the produced events in QO. For each incoming stream, events before the corre-
sponding start event of we are discarded from QI at Tsp and their SN is acknowledged
at ω’s predecessors. The predecessors proceed in the same way that ω does, prune
their QO and adapt their Tsp to the production of events in QO, update their savepoint
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accordingly in the savepoint tree, acknowledge SNs from f−1 at their predecessors and
send them the updated savepoint tree for further replication.

Example (Figure 6.3): The sink in the depicted operator graph receives an event with
SN = 2 from its predecessor ωn. When the sink has received and processed that event
in a way such that it does never need to receive that event again, it sends an ACK to
ωn containing SN = 2. Notice that the decision when to send such an ACK is up to the
implementation of the application that received events from the CEP system. When
receiving the ACK with SN = 2, ωn prunes the events with SN = 1 and SN = 2 from
its outgoing queue QO. Further, ωn moves its own savepoint to a point in time after
the event with SN = 2 has been produced, as in case of recovery of ωn, it does not
need to re-produce the event with SN = 2 (or any other earlier event). This update of
the savepoint of ωn results in a new ACK that ωn send to its own predecessor ωn−1.
Suppose that events with SN = 11 through 14 from the incoming stream of ωn where
used by ωn in order to produce the events with SN = 1 and 2 on its outgoing stream.
Now that ωn does not have to re-produce the events with SN = 1 and 2 on its outgoing
stream any more (as they were ACKed), ωn also does not have to receive the events
with SN = 11 through 14 from the outgoing stream of its predecessor ωn−1 any more
in case ωn crashes and recovers. Thus, ωn ACKs the events with SN = 11 through 14
at its predecessor ωn−1.

As this example shows, to coordinate savepoints, we make use of ACKs which contain
the SN of the acknowledged event. Additionally, the updated savepoint tree is piggy-
backed on the ACK, if applicable. When receiving an ACK, an operator replaces the
obsolete part in its savepoint tree, if applicable, prunes QO and checks whether Tsp can
be updated. If this is the case, the operator sends an ACK to each of its predecessors.
That way the ACKs flow upstream, i.e., against the flow direction of events, until they
reach the event sources signaling that stored source events have become unnecessary
and can be discarded.

The algorithm for log and savepoint maintenance of an operator is formalized in Fig-
ure 6.4. When an operator receives an ACK from one of its successors, it checks
whether whether this ACK renders events from QO unnecessary (lines 6–7). If this
the is the case, the operator proceeds as follows. To figure out which events in QI

are rendered unnecessary, the inverse correlation function is evaluated (line 10), which
returns the start events of the window in which the ACKed event had been produced.
Events before those start events are pruned from QI (line 11). A new savepoint is
created that captures the aforementioned window start events (line 12). QO is pruned,
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1: Map<successor, ACK> latestRecACKs // Contains latest received ACK from each
successor

2: Savepoint ownSP // Contains current own savepoint
3: List<Event> QI // Queues of incoming events
4: List<Event> QO // Queues of outgoing events

5: upon 〈RECEIVEACK〉(inACK)
6: latestRecACKs.INSERT(inACK.producer, inACK)
7: if latestRecACKs.GETOLDESTACKEDSEQ() has changed then // update own

savepoint
8: sn = inACK.GETACKEDSEQNO()
9: e_acked = QO.GETEVENT(sn)

10: map < instream,SeqNo > = f−1(e_acked)
11: QI .PRUNE // prune QI

12: newSavepoint = NEW SAVEPOINT(map < instream,SeqNo >, sn)
13: QO.PRUNE(sn) // prune QO

14: SavepointTree = NEW SAVEPOINTTREE()
15: SavepointTree.SETROOT(newSavepoint)
16: for all ACK in latestRecAcks do
17: SavepointTree.ADDCHILD(ACK.savepointTree)
18: end for
19: newACK = NEW ACK(SavepointTree)
20: for all predecessors do
21: SEND(newACK)
22: end for
23: end if
24: end

Figure 6.4: Algorithm for log and savepoint maintenance at an operator ω.
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Figure 6.5: Example: Event and ACK flow in an operator graph.

such that it does not contain events older than the ACKed event (line 13). Now, the
new savepoint tree of the operator is constructed (line 14). The new savepoint of the
operator is the root of the savepoint tree (line 15). For each successor of the operator,
the latest received savepoint tree of that successor is attached as a child to the root of
the operator’s savepoint tree (lines 16–18). The new savepoint tree is disseminated to
all of the operator’s predecessors (lines 19–22).

Figure 6.5 provides an example of the algorithm. In the left figure, events are flow-
ing downstream, starting at the event sources and getting correlated with each other
until some (complex) events are delivered to event sinks. In the right graph, the sinks
acknowledge different SNs of received events. The minimal SN acknowledged by all
connected event sinks at ωn signals the latest unnecessary event. Accordingly, QO is
pruned, the savepoint tree is updated and sent with an ACK to all predecessors. They
store the new savepoint tree, update their own savepoint if applicable, send ACKs to
their predecessors, etc., until finally the ACKs reach the event sources, where the save-
point trees are replicated and all acknowledged events are discarded.
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1: upon 〈RECEIVEINIT〉(predecessors, successors)
2: for all op in predecessors do
3: SEND(op, RECOVERYREQUEST)
4: end for
5: while not received all RECOVERYINFORMATION do
6: upon 〈RECEIVERECOVERYNOTIFICATION〉(predecessor)
7: SEND(predecessor, RECOVERYREQUEST)
8: end
9: upon 〈RECEIVERECOVERYINFORMATION〉()

10: list<RecoveryInformation>.ADD(RecoveryInformation)
11: end
12: end while
13: RESTORESTATE(latestRecoveryInformation)
14: end

15: upon 〈RECEIVERECOVERYREQUEST〉(successor)
16: SavepointTree = latestRecACKs.GET(successor).GETSAVEPOINTTREE()
17: RecoveryInformation = NEW RECOVERYINFORMATION(QO, latestRecACKs)
18: SEND(successor, RecoveryInformation)
19: end

Figure 6.6: Algorithms for recovery of an operator ω.

6.5 Algorithms for Operator Recovery

6.5.1 Recovery of the State of Failed Operators

For the description of the recovery algorithm, we will at first assume that operator fail-
ures are detected immediately and that failed operators are restarted automatically.
Also, we assume that an operator knows his direct predecessors, even after it has
crashed and recovered. From this point, we describe how an operator will be able
to restore its state with regard to the latest available savepoint, so that event streams
that were lost due to the failure get reproduced. Later, we will describe how the fail-
ure detection and operator topology management can be solved in an asynchronous
system.
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Recovery Procedure

The algorithms for the recovery of an operator are listed in Figure 6.6. After its restart,
a failed operator ω sends a message to its predecessors that is called RECOVERYRE-
QUEST (lines 2–4). When an operator receives such a RECOVERYREQUEST, it answers
by sending the recovery information necessary for restoring the state of ω, which com-
prises QO (replay of the outgoing event stream) and the savepoint tree of ω (lines
15–19). ω waits until it has received all recovery information (lines 5–12). Then it
identifies the answer among all answers from all its predecessors that contains the lat-
est savepoint SP, which is the answer with the highest value for the SN of the next
event to be produced (line 13). ω restores Λ(Tsp) by initializing the selector with the
window defined in the SP, restores QI with the replayed events from the predecessors,
and initializes the sequencer with the next SN to be assigned to a produced event.

To cope with multiple simultaneous failures of adjacent operators, ω sends a RECOV-
ERYNOTIFICATION to its successors after its recovery. So, if one of those operators
is awaiting recovery information from ω, it can detect that the RECOVERYREQUEST

might have been lost because of a failure of ω and resend it. This way, a failed prede-
cessor does not lead to an infinite waiting time of a restarted operator for receiving all
recovery information. From bottom up, failed operators can recover, each sending the
necessary recovery information to its successor, until all operators are restored to their
latest ACKed state again.

6.5.2 Control and Adjustment of the Operator Topology

By now, we have assumed an error-free, immediate detection and restart of failed op-
erators. However, in an asynchronous system, a perfect failure detector cannot be
implemented to solve that problem. Instead, we have to work with a weaker failure
detector abstraction that suspects operators to have failed, but the suspicions might be
wrong.

Coordination of Operator Recovery

We employ a central component denoted coordinator which has global knowledge
about the operator topology and is eventually always up and running, i.e., there might
be times when the coordinator is not available, but it will always come back online.
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The only state that needs to be recovered in case the coordinator fails is the knowledge
of the operator topology, such that the availability of operators can be checked and
recovery can be initiated if necessary. This state can be reliably stored in a redundant
fashion, e.g., in a distributed data base. While the coordinator is not available, operator
recovery would be delayed. In order to increase availability of the coordinator, it can
be implemented in a distributed fashion. Section 6.7 discusses how this can be done.

The coordinator uses a failure detector with strong completeness (each failed oper-
ator will eventually be detected) and eventual weak accuracy (there is a time after
which some correct process is never suspected), i.e., an eventually strong failure detec-
tor [CT96]. Such a failure detector checks for heartbeat messages that correct operators
send in a certain frequency. If a heartbeat message from ω did not arrive at the coor-
dinator within a time bound τ, it will be suspected to have failed. As we work with an
asynchronous system model, the coordinator can never be sure whether the operator
has really failed, but it is sure that a failed and not yet fully recovered operator will not
send heartbeat messages anymore, so eventually every failure will be detected.

The algorithm at the coordinator for monitoring and control of the operators is listed in
Figure 6.7. If ω is suspected to have failed, a replacement operator ω′, i.e., an operator
that implements the same correlation function as ω, is installed on a free system re-
source (lines 16–19). When ω′ is initialized, it starts the recovery procedure described
in Section 6.5.1. Now, it might be the case that the coordinator suspects ω′ to have
failed, too, so that ω′′ is initialized, and so on. For that reason, suspected operators
are not terminated immediately, but have the ability to run in parallel with their re-
placements. When the first of these parallel operators makes some real progress in
event processing, the coordinator decides on that operator to remain in the topology
and terminates all other replacement operators, i.e., they are shut down and their di-
rect successors and predecessors are notified not to send messages to them any longer
(lines 20–26). The notion of progress is defined as follows:

Definition 6.2 (PROCESSING PROGRESS OF AN OPERATOR.) An operator ω has
made
progress after the restoration of its state when it updates its own savepoint for the first
time.

A savepoint update moves forward the point in time to which an operator gets recov-
ered after its failure. That way, liveness of the system is guaranteed and the topology
will finally stabilize. Note, that it is no problem for successors and predecessors of
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1: list<operator> operators // list of all operators
2: list<operator> suspected // suspected operators
3: list<operator> progressed // operators that have participated in the overall com-

putational progress
4: map<string, list<operator> > replacements // replacements of an operator

5: procedure MONITORINGPROCEDURE()
6: while true do // infinite loop
7: nextCheck← CURRENTTIME() + checkFrequency
8: for all operators do
9: CHECKLIVENESS(operator)

10: end for
11: wait until nextCheck
12: end while
13: end procedure

14: procedure CHECKLIVENESS(operator)
15: if (CURRENTTIME - lastReceivedHeartbeat.TIME ) > τoperator then
16: if operator /∈ suspected then
17: suspected.ADD(operator)
18: STARTREPLACEMENT(operator)
19: end if
20: else // operator is alive
21: if operator ∈ suspected
22: and operator ∈ progressed then
23: RECALLREPLACEMENTS(operator)
24: ADAPTTAU(operator, higher) // increase τoperator

25: end if
26: end if
27: end procedure

Figure 6.7: Algorithm for monitoring and management of operator topology at the
coordinator.
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Figure 6.8: Recovery from an operator failure.

ω to cope with multiple replacements of ω running in parallel: As the replacements
produce exactly the same events, the duplicates can easily be filtered, and ACKs are
sent only to operators from which the ACKed events have been received.

When it turns out that ω had been suspected by mistake, i.e., when the coordinator had
suspected ω and then received a heartbeat, the time bound τ can be adjusted to avoid
such false suspicions in the future (Figure 6.7, line 24).

Example: Figure 6.8 shows how an operator ωk fails and is replaced by ω′k. The
coordinator suspects ωk and starts ω′k. ω′k initializes by sending RECOVERYREQUESTS

to its predecessors, receives recovery information as responses, restores its state and
sends RECOVERYNOTIFICATIONS to its successors. Now, ω′k is fully incorporated
into event production, and when enough events have been produced so that ACKs
are received that make ω′k update its savepoint, a progress notification is sent to the
coordinator. Then, ωk is deleted from the system, i.e., its successors and predecessors
are notified to stop trying to communicate with ωk.
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6.5.3 Correctness Analysis

For proving completeness and consistency of event streams at the sinks, we prove
that there are no false-negatives or false-positives and that the overall system makes
processing progress despite an arbitrary number of simultaneous operator failures.

Proposition 6.4 (NO EVENT LOSS.) In spite of the failure and recovery of an arbi-
trary number of operators at the same time, no necessary event in the sense of Defini-
tion 6.1 gets lost in an unrecoverable way.

PROOF Let snk be a sink that has not yet received and acknowledged an event ec. Let
ωp1 be a direct predecessor of snk, ωp2 a direct predecessor of ωp1, and so on. Then
the latest savepoint of ωp1 is captured with respect to a point in time Tsp1 before ec

has been produced. So, ec is reproducible by a recovered operator ωp1. Further, the
latest savepoint of ωp2 is captured with respect to a point in time when events that
are part of Λ(Tsp1) of ωp1 are reproducible, and so on, so that all necessary events are
reproducible.

Proposition 6.5 (NO FALSE-POSITIVE EVENTS.)
Despite the simultaneous failure and recovery of an arbitrary number of operators,
there are not delivered any events to the sinks that would not have been delivered in
the failure-free execution of all operators.

PROOF Property 6.1 shows that the state of ω at Tsp contains exactly the information
that is kept in a savepoint plus events from QI . As the savepoint is captured and repli-
cated, it cannot deviate from the original savepoint after the recovery of ω. Further,
necessary events from QI are either replayed from a predecessor or recursively repro-
duced, whereas the recursion stops at a point where events from some component of
the operator graph are replayed (at the latest from the event sources). Events in QO

are exactly the same events as originally sent in outgoing streams. As the recovered
ω starts to process the same window on indistinguishable copies of the events from a
failure-free operator execution, the produced events are indistinguishable, too.

Proposition 6.6 (LIVENESS OF THE SYSTEM.) Events are delivered to the event
sinks after a finite time from their physical occurrence, i.e., the CEP system makes
progress in spite of the failure and recovery of an arbitrary number of operators.
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Figure 6.9: Run-time overhead comparison between rollback-recovery and active repli-
cation.

PROOF As only correct operators send heartbeat messages to the coordinator, failed
operators will eventually be suspected and replacements are started. The topology
stabilizes when an operator signaled processing progress with regard to Definition 6.2.
So, the liveness of the system is ensured, given that only a finite number of hosts fails
and there are enough correct hosts to run all operators. �

6.6 Evaluation

In the evaluation, first of all we want to analyze the overhead of our approach induced
at failure-free run-time: We measure the communication overhead and compare it with
the overhead that would be induced by an active replication approach. Further, we
analyze how the frequency of acknowledgments, the induced communication overhead
and the size of QO are related. In doing so, we have implemented the algorithms in
an event-based simulation without considering incidental influences like underlying
hardware topologies and communication protocols in order to emphasize the inherent
overhead that would be caused in any implementation on any underlying infrastructure.
To this end, we employ an event-based simulation using the OMNeT++ simulation
environment [VH08].

As a second aspect, we address the delay that the recovery of operators induces. In
doing so, we identify significant parameters and develop a mathematical model of the
recovery time of a failed operator.
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6.6.1 Run-time Overhead

Our approach mainly induces run-time overhead with respect to two different aspects:
The transmission of ACKs induces communication overhead, and the volatile storage
of QO and savepoint trees impacts the memory footprint of operators and event sources.

Communication Overhead

The only data sent over the communication links at failure-free run-time are ACKs.
We compute the size of an ACK as: S(SimpleACK)+(#Savepoints×S(Savepoint)).
S(SimpleACK) is 4 bytes for the acknowledged SN, S(Savepoint) is 4 bytes for the
SN of the next produced event, and n×4 bytes in a n-ary tree for the SNs of the start
events in Iω. An event is considered to be of a size of 16 bytes, 4 bytes for its SN, 4
bytes timestamp and 8 bytes payload. As the simulated operator topology, we chose
n-ary trees with a depth of 3 for n = 1 to 5, with the root operator connected to 1
event sink and each leave operator connected to 1 event source. Event sources produce
events with a frequency of 1 event / ms. We compare the overhead with the messaging
overhead that would have been caused by duplicate events in the active replication
approach [VKR11] developed by Völz et al. We assume a low replication factor of 2
and the best case scenario for the leader election (only one leader at a time), leading
to an overhead that approximately equates to the number of events sent through the
network regularly, neglecting the overhead that the leader election would cause. Figure
6.9 shows how much additional data is sent over the network within 5 minutes. As one
can see, our rollback-recovery approach induces less communication overhead than the
compared active replication approach. Conclusions on this are drawn in Section 6.6.3.

Memory Consumption

The consumption of main memory an operator or event source induces can be divided
into two different parts: One part is the memory that is used for intermediate results
in event processing, containing QI and the memory stack of fω. This part contains
no specific overhead of the rollback-recovery approach, but rather the normal mem-
ory footprint of any event processing operator, so that we do not consider this in our
evaluations. The other part is the memory used by all data stored solely for the pur-
pose of enabling efficient rollback-recovery. This part is determined by two aspects:
The size of the stored savepoint trees of the successors and the size of QO. The size
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of the savepoint trees depends solely on the operator topology and basically consists
of one savepoint for each member of the transitive closure of the successor relation
and is static (for a static operator topology). The size of QO, however, is dynamic and
depends on the time between two consecutive ACKs that lead to its pruning.

To determine the maximal memory footprint, we analyze the event sources, as they
have to store the maximal savepoint trees and events produced by sources have the
maximal lifetime, i.e., the time between their production and storage in QO and the
receiving of their ACK which triggers their deletion from QO. We have measured
the influence of the complexity of the events delivered to the event sinks, i.e., the
number of simple source events that are aggregated to a complex event, on the size
of QO in the event sources. To do so, we built a simple topology containing one
event source producing events in a frequency of 1 event / ms, a variable number of
sequential operators and one event sink. In each correlation step, an operator takes
10 new events from its incoming stream and produces 1 outgoing event. Figure 6.10
shows the results: With an increasing complexity of the events delivered to the sink,
the lifetime of events in the outlog of the event sources increases. Conclusions on this
are drawn in Section 6.6.3.
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nication overhead and the maximal size of QO at the source.

Influence of ACK Frequency

We have further evaluated how the frequency of ACKs influences the maximal size of
QO at sources and the run-time communication overhead. In doing so, we programmed
the event sink to only acknowledge each freq-th event that it receives. The underlaying
topology is a binary tree with a depth of 3, the rest of the parameters is as in the pre-
ceding scenarios. Figure 6.11 shows the results: When the ACK frequency decreases,
the outlog size increases, but the communication overhead decreases. Conclusions on
this are drawn in Section 6.6.3.

6.6.2 Analytical Model of Recovery Overhead

As the rollback procedures take some time until an operator state is restored, it takes
longer for the system to recover from failures in comparison to active replication
(where a replicated operator can take over processing with almost no latency). The
recovery time of an operator ω is

recoverytime(ω) = Tfd +Tdeploy +Trec +Tpred

with the parameters: (i) Tfd = Tchannel_delay+Thb_freq: Failure detection latency depends
on the communication delay between operators and the coordinator and on the fre-
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quency of heartbeat checks. (ii) Tdeploy: Allocation of resources and deployment of the
replacement operator mainly depends on the underlying technology such as communi-
cation channels and the availability of resources. For example, when using an elastic
compute cloud such as Amazon EC2, it can take some minutes until a new node is allo-
cated. The time can be reduced when pre-deployed operators are provided [FMKP13].
(iii) Trec = max(Tchannel_delay)+max(size(rec_inf )× channel_rate): Recovery of the
deployed replacement depends on the slowest connection to a predecessor and on the
size of the recovery information. (iv) Ti: Recovery of predecessor operators in the case
of i adjacent failures: Tpred = ∑

i−1
j=1 recoverytime(ω j). This is the sum of the recovery

times of failed predecessors, which first need to be recovered successively in order to
recover ω.

6.6.3 Conclusions on the Evaluation

Run-time Overhead

We see that in comparison to active replication the network load can be reduced drasti-
cally by applying the proposed approach. An increasing node degree causes that more
sources participate in the production of simple events that get eventually aggregated
to a complex event delivered to event sinks. That way, the number of simple events
per source aggregated in such a complex event decreases and the frequency of ACKs
increases. Therefore, the communication overhead increases faster with rollback-
recovery than with active replication. However, this behavior can be controlled by
the event sinks: If they decrease their frequency of ACKs, the overall network load
decreases exponentially, but the size of QO at sources increases linearly. Besides the
low network load, we do not need to preserve redundant resources as we would need
to do in active replication. An additional advantage is that we are able to recover from
multiple arbitrary operator failures with rollback-recovery (in fact, all operators can
fail at the same time and be restored), a property which would cause immense costs in
active replication.

Recovery Overhead

Recovery generally takes longer than in active replication. The main parameters highly
depend on the communication channels and the provisioning of nodes to deploy re-
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placement operators. The size of recovery information is limited to the size of the
savepoint tree plus the amount of re-streamed events.

6.7 Extensions

This section discusses extensions of the proposed recovery method.

How can savepoint recovery be applied to the data parallelization framework in-
troduced in Chapters 2 and 3?

Savepoint recovery builds upon the exposure of the internal window semantics and
processing of the CEP operators to the recovery framework. When dealing with a par-
allel CEP operator that consists of a split–process–merge architecture, it is not straight
forward to implement the interface to the execution environment. First of all, multi-
ple operator instance process multiple windows in parallel. This raises the question of
what the current savepoint of the operator is, and how it is determined and updated at
run-time. Second, hosting different components of the parallel operator on different
computing nodes yields the possibility of a partial failure, where, for instance, some
operator instances fail, while others are still up and running.

Savepoint Management

The basic idea is that the splitter implements the interface to the execution environ-
ment of the savepoint recovery algorithm. This is intuitive, as the splitter already
has the overview of all windows and their assignment to operator instances. Opera-
tor instances acknowledge each completely processed window to the splitter when the
outgoing event is arrived and acknowledged at the merger. This way, the splitter knows
the progress of processing of the windows.

Further, the splitter is also responsible for updating the operator savepoint. Hence,
receiving ACKs from downstream operators, computing the new operator savepoint,
and sending ACKs that contain the updated savepoint to the upstream operators, is all
performed in the splitter. This means that in the savepoint protocol, other operators
communicate with the parallel operator only via the splitter; the fact that the operator
is a parallel operator is transparent to them.

Once the splitter gets an ACK from the successor operator, it checks whether to up-
date the operator savepoint. The savepoint is updated with respect to the window the
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acknowledged event was produced in, iff all previous windows also have been ac-
knowledged by the operator instances. If not so, the savepoint cannot be updated yet,
because some previous windows are still in operation in the operator instances.

Failure Recovery

When recovering from node failures, we differentiate the failure of the three different
components of the parallelization framework: splitter, operator instances, and merger.

If the splitter fails, this is treated like a complete operator failure. This means that all
operator instances and the merger are stopped and their state is released. Then, the
splitter recovers according to the savepoint recovery protocol: the coordinator sends
RecoveryRequests to the predecessors in the operator graph, and the splitter replica
receives RecoveryInformation that contain the latest savepoints and event streams.
When recovered, the splitter starts assigning windows to the operator instances, and
the overall operator is recovered.

If one or more operator instances fail, the splitter sets up new operator instances (or
uses the existing ones), assigning the unacknowledged windows that had been assigned
to the failed operator instances to the running operator instances. Duplicate events that
might exist in the merger are filtered.

If the merger fails, events emitted from the operator instances since the last savepoint’s
window need to be replayed to the merger to avoid event loss. Operator instances
can buffer their complex events for restreaming. Hence, when the merger failure is
detected, the splitter sets up a new merger and informs the operator instance to re-
stream their outgoing event buffer to the recovering merger.

How can event consumptions be handled in savepoint recovery?

Event consumptions build up dependencies between different windows (cf. Chapter 5)
and therefore are part of the operator state. Such consumptions need to be “replayed”
when restoring an operator state. To make that possible, they can be stored in the
operator savepoint, e.g., in a table that connects correlation steps with the performed
event consumptions. Thus, the size of the savepoints and thereby the run-time overhead
would increase.

How can the execution model by simplified for fixed window slide?

In some CEP operators, the window slide is fixed, e.g., by a fixed number of events
or by a fixed time. Then, the execution environment can track the window movement
without needing feedback from the operator about the number of evicted events. This
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simplifies the interface between the EE and fω: fω just has to signal the end of each
correlation step.

How can the coordinator be implemented in a distributed manner?

When distributing the coordinator functionality over different nodes, it is intuitive to
make a predecessor the coordinator of a successor, as they communicate with each
other anyway and heartbeat messages could be piggybacked. In doing so, it is impor-
tant that each operator has exactly one coordinator responsible for its failure detection
and recovery, so that the operator topology stabilizes. To solve this problem for asyn-
chronous systems, concepts of leader election or group membership are necessary, e.g.,
as used in [FB98].

6.8 Related Work

The existing approaches to support fault tolerance for CEP and stream processing op-
erators can be divided into three categories: The first category targets applications
characterized as “partial fault-tolerant” [BBJ+, JSGAW09]. In the case of a failure,
systems try to produce information which is not perfectly accurate but might still be
useful to the receiver. In the second category, information is published tentatively
and corrections can be issued at a later point in time that revoke the messages sent be-
fore [BFSF08,BFF09,HCCZ08,BBMS05]. These solutions are based on two premises:
(i) Dependencies of operators on each other’s output have to be within a reasonable
limit to keep correction cost acceptable and, more important, (ii) the correction of
incorrect messages has to be possible at all. In the scenarios we are examining, de-
cisions might have already been made based on incorrect information that are either
very costly or even impossible to correct. Therefore, accurate event streams, i.e., event
streams without false positives or false negatives, are needed at the event sinks at all
times.

Solutions that provide accurate event streams at all times involve the replication
of functionality in active or passive replication [Sch90, BMST93], or rollback-
recovery [EAWJ02] using checkpoints in combination with logs. Among others, these
three principles have been applied to distributed stream processing systems; however,
none of the current approaches provides all of the necessary properties for large-scale
distributed CEP systems. In the following, we will discuss the proposed solutions
individually.
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Approaches using active or passive replication [HCZ08] typically incur quadratic over-
head in terms of messages during failure-free execution. An optimized active replica-
tion approach proposed by Völz et al. [VKR11] employs a leader election algorithm to
reduce the message overhead during failure-free runtime. Still, for tolerating f simul-
taneous failures, f +1 replicas are deployed for each operator, creating at least a linear
message overhead. Martin et al. [MBF11] propose to use spare computing cycles that
are available due to resource overprovisioning in elastic stream processing in order to
perform the redundant computations of the replicas. This way, the additional resource
cost of active replication can be reduced.

Rollback-recovery [EAWJ02], on the other hand, requires to take and store checkpoints
at regular times. In doing so, checkpointing [KBG08, SM11] requires the execution
of state-extraction algorithms that need either to be specified individually for each
operator or require taking a full memory snapshot. Therefore, these approaches either
restrict the user to using predefined operators only or require additional expertise to
implement the extraction function on user-defined CEP operators. On the other hand,
a memory snapshot can only be taken if the respective pages are write-locked, which
incurs significant delay during failure-free operator execution.

In StreamMine3G, a stream processing system developed by Martin et al. [MSD+15],
several fault tolerance schemes, such as active replication and rollback-recovery, are
supported. A self-adaptive fault tolerance controller employs the most suitable fault
tolerance scheme dynamically at run-time, taking into account the system workload
and constraints provided by the user regarding recovery time and semantics. This
way, the resource consumption of fault tolerance can be minimized, while the user’s
constraints are satisfied.

The basic idea to recompute outgoing event streams from incoming event streams
originates in the “upstream backup” approach proposed by Hwang et al. [HBR+03,
HBR+05]. In the terms of their work, in savepoint recovery, we target “deterministic
operators”, i.e., operators that always produce the same output when they receive the
same incoming event streams. The guarantee we provide in savepoint recovery is of
the type “repeating recovery”, i.e., output tuples of a recovered operator are identical to
those produced previously by the primary operator. Hwang et al. [HBR+03,HBR+05]
in their work recognize that this would require a checkpointing mechanism in the oper-
ators. In savepoint recovery, we avoid heavy-weight checkpointing of arbitrary internal
operator state by building the state extraction on top of the exposure of the operator’s
window semantics, so that operator state is only captured when it is minimal.
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6.9 Conclusion

Although reliability is critical for many applications involving CEP systems, state-of-
the-art approaches have clear shortcomings in providing accurate processing and low
run-time overhead in a large-scale deployment.

This chapter proposed a novel rollback-recovery mechanism for multiple simultaneous
operator failures in distributed CEP systems that eliminates the need for checkpoints
and does not use persistent storage at operators. This way, it avoids the main drawbacks
of previous approaches, which increase processing and network load for creating and
maintaining large checkpoints, or burden application developers with defining operator
specific mechanisms for checkpointing and recovery.

We defined an event processing model based on the concept of event windows to find
points in time when a CEP system has minimal non-reproducible state which is then
stored in replicated savepoints. The rest of the operator state can be reproduced from
primary event streams, so that only event sources have to maintain events in a reliable
way. An algorithm to coordinate savepoint maintenance over multiple levels of opera-
tors is provided, allowing to recover from simultaneous operator failures. We proved
the algorithm correctness and provided evaluation results demonstrating its behavior
in different parameter settings in comparison to active replication. The evaluations
have shown that the network load can be reduced drastically, and that the frequency
of acknowledgments at event sinks is a design parameter that can be used to balance
between memory requirements and network load.



7
Conclusion and Outlook

This chapter closes the thesis by providing a summary of the presented results and an
outlook to possible future research directions in this field.

7.1 Summary

The proliferation of sensors, e.g., in the Internet of Things, provides an unseen surge
of streaming data being available for real-time data analytics. Often, situation-aware
applications are interested in high-level situations in the surrounding world rather than
in low-level sensor readings. To close the information gap between sensors and appli-
cations, the paradigm of Complex Event Processing (CEP) has been proposed [Luc01].
In a CEP system, a distributed network of operators step-wise detects patterns in event
streams that correspond to the situations of interest. Nowadays, CEP systems are
widely accepted both in academia as well as industry (Apache Flink [CKE+15], IBM
Streams [IBM17], Oracle CEP [Ora17], Twitter Heron [KBF+15], WSO2 Complex
Event Processor [WS017], T-REX [CM12a], and many more). In CEP operators, to
detect a search pattern, the infinite event sequence in the incoming event streams is
restricted to a series of sub-sequences by means of a sliding window. In doing so, the
window restricts the sequence of events that are allowed to build a search pattern. In
many scenarios, such as traffic monitoring, social network analysis, and algorithmic
trading, CEP operators face high and fluctuating workloads in their incoming event
streams. Hence, it becomes necessary to enable CEP operators to exploit multi-core
architectures and cloud computing by allowing for a distributed and parallel operator
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execution. In doing so, data parallelization provides a high degree of parallelism by
splitting the incoming event streams of an operator, processing the different partitions
in parallel on an elastic set of identical operator copies, and merging the produced
events into a deterministic order.

State of the art stream partitioning methods, i.e., key-based, batch-based and pane-
based partitioning, are not suitable for all window-based operators. In particular, CEP
operators often neither provide a key encoded in the events that is suitable for splitting
(which excludes key-based partitioning), nor have fixed window sizes (which excludes
batch-based partitioning), while temporal relations between the events prohibit split-
ting the windows into horizontal panes (which excludes pane-based partitioning). To
overcome the shortcomings of existing methods, we have introduced a window-based
data parallelization framework. It comes with an interface to expose the window se-
mantics of the operators to the framework. The interface consists of two logical pred-
icates, Po and Pc, that evaluate when windows are opened and closed. This way, all
window-based operators can be supported. The data parallelization framework comes
with an elasticity controller, based on Queuing Theory, that adapts the parallelization
degree, i.e., the number of operator instances, to the fluctuating event rates. The con-
troller guarantees that a limit on events buffered in the operator is kept.

Scheduling subsequent overlapping windows to different operator instances in a Round-
Robin fashion leads to good load balancing and low latency, but also induces a high
network load between the splitter and the operator instances. This can be problematic
in cloud environments, where multiple applications share the same data center net-
work. Batch scheduling, i.e., scheduling multiple subsequent windows to the same
operator instance in a batch, decreases the event replication and hence, the network
load. However, it imposes temporary overload on the single operator instances, lead-
ing to latency spikes. To control the trade-off between communication overhead and
latency, we have introduced a model-based controller that predicts the impact of batch
scheduling a window on the latency in the operator instance. This way, the maximum
amount of overlapping windows can be batched, while a latency bound is kept in the
operator instances. We have shown that the communication overhead can be reduced
by up to 76 % compared to Round-Robin scheduling.

When different overlapping windows are independent from each other, they can nat-
urally be processed in parallel in different operator instances. However, consumption
policies can impose dependencies between subsequent overlapping windows. A con-
sumption policy may prohibit an event to be part of multiple search pattern instances.
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That implies that the constituent events of a pattern instance detected in one window are
excluded from all other windows as well, which breaks the data parallelism between
different windows. To overcome the dependencies between windows, we proposed the
SPECTRE framework for speculative processing of multiple dependent windows in
parallel. In SPECTRE, based on the likelihood of an event’s consumption in a win-
dow, subsequent windows may speculatively suppress that event. This way, we could
reach an up to linear scalability of SPECTRE with the number of CPU cores, despite
of window inter-dependencies.

When operators or computing nodes fail, internal operator state and events are lost.
This usually leads to inconsistencies in the event streams delivered to the event sinks
of the operator graph. To overcome this problem, operator state and events either have
to be replicated, or recovered. Replication is expensive, as for each operator, f addi-
tional replicas have to be hosted in order to survive f operator failures. On the other
hand, classical rollback-recovery requires to periodically take checkpoints of the op-
erator state. This causes interruptions of the event processing, and demands for state
externalization methods. To overcome the shortcomings of existing fault tolerance
approaches, we proposed a novel method for rollback-recovery, called savepoint re-
covery. Our method allows for recovery from multiple simultaneous operator failures,
but eliminates the need for persistent checkpoints. In savepoint recovery, the operator
state is preserved in savepoints at points in time when current window of the operator
is shifted. As in between two windows, no processing state is preserved, this reduces
the size of the overall operator state to the current window position on the incoming
event streams. The incoming event streams themselves are reproducible from upstream
operators, so that a savepoint only needs to capture the window positions. We propose
an expressive window-based event processing model to determine savepoints in an op-
erator at run-time and algorithms for savepoint coordination in a distributed operator
network. Evaluations show that very low overhead at failure-free run-time in compar-
ison to other fault tolerance approaches is achieved.

7.2 Outlook

There are new technological trends that are likely to have a great impact on distributed,
parallel CEP systems. Besides the trend of centralization of computing capabilities in
cloud data centers, there is emerging a “counter movement”, pushing computing re-
sources to the edge of the network. The reason for this is intuitive: As the number
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of data sources such as sensors is tremendously increasing, it is not feasible or eco-
nomical anymore to ship all data to the cloud for analysis [BTMR17]. Instead, a more
heterogeneous computing infrastructure needs to be developed and deployed. Here,
we discuss new research challenges for CEP that emerge from that trend.

Fog Computing

Fog computing describes a computational continuum between cloud data centers and
data sources and sinks at the edge of the Internet [BMZA12, Con17]. As such, fog
computing is an important trend that facilitates the distribution of CEP operators.
It consists of an orchestrated set of fog nodes that are typically hierarchically or-
ganized in multiple tiers [HLR+13, SHL+16, SGRM17]. Note, that fog computing
is extending cloud computing beyond traditional cloud data centers that are just de-
ployed closer to the network edge—referred to as edge clouds [TLG16]. Instead,
fog computing features a great heterogeneity of the fog nodes; this exceeds the pre-
defined flavors of virtual machines deployed on standard hardware connected by a
data center network, as known in cloud computing. In particular, fog nodes may
provide different types of CPUs and architectures (x86, ARM), specialized hardware
(GPU, FPGA), and different types of persistent storage (HDD, SSD) and memory
[Con17,MGSR17a,MGG+17,MGSR17b]. Moreover, network latency and bandwidth
between different fog nodes becomes a larger issue compared to a single cloud data
center.

When applying fog computing to distributed CEP systems, the heterogeneity of fog
architectures, in comparison to cloud computing, poses new challenges on operator
placement and elasticity. Early works in that field by Cardellini et al. try tackling
the challenge by formulating the placement and parallelization problem as an integer
linear program [CGLPN17]. Whilst this allows for computing the optimal replication
degree and placement, the approach may not be scalable to a large number of operators
and fog nodes. There is a need for efficient heuristics that solve the problem on the fly,
as to account for the dynamics in distributed CEP systems and applications.

Another challenge in fog computing is that the domains of different fog layers may
not be in control of a single administrative organization. This means that there might
not be a global, fine-grained control of the end-to-end deployment of a CEP operator
graph. As the field of fog computing is still in an early development stage, it is not
clear yet how the interaction between different fog domains can be managed.



7.2. OUTLOOK 167

Load Shedding

In parallel CEP, a common assumption is the availability of unlimited computing re-
sources in cloud environments. As a consequence, it is assumed to always be possible
to increase the degree of operator parallelization by assigning additional computing
resources. However, in many cases, computing resources are limited, e.g., if operators
are executed on mobile nodes or in fog environments. Even in cloud environments,
where computing resources in principle are unlimited, the available monetary budged
might restrict the available computing power. Instead of increasing the parallelization
degree, the quality of event detection in CEP can be reduced when the workload ex-
ceeds the computational capabilities of a CEP operator. This is usually achieved by
skipping the processing of events or whole windows, i.e., load shedding.

Load shedding has been widely studied in stream processing, where aggregation of
simple values is predominant [TcZ+03,TZ06,TcZ07,RBQ16]. In CEP pattern match-
ing, the implications of load shedding to the quality of detection of complex patterns
are not that well understood yet. Ottenwälder et al. [OKR+14b] proposed to use the
metrics precision and recall in order to assess the quality of re-used results from sim-
ilar ranges in answering moving range queries in mobility scenarios. This is for sure
one possible metric for assessing load shedding strategies with regard to true/false
positives/negatives ratios. However, other metrics might be more expressive in CEP
scenarios. The metrics proposed by Zilberstein in the field of so-called “anytime algo-
rithms” [Zil96], i.e., certainty, accuracy and specificity of the results, may lead toward
more elaborate metrics suitable to CEP. Besides suitable quality metrics, further re-
search questions are what load to shed in a single operator and where to shed load
in the overall operator graph. In stream processing, typically, load shedding strate-
gies regard operators as a black box, not using knowledge of the operator’s query or
about internal state. The question is, how knowledge of the query of an operator can
be exploited in load shedding, and whether the exposure of internal state, e.g., partial
matches, of the operator can be exploited as well?
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